de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Periodic boundary conditions and the error controlled fast multipole method / von Ivo Kabadshow. 2010
Inhalt
Abstract
Table of Contents
List of Figures
List of Tables
1 Introduction
1.1 The N-body Problem
1.1.1 Simple Schemes to Reduce the Complexity
1.1.2 Different Types of Potentials
1.2 Fast Summation Techniques
2 FMM in Three Dimensions
2.1 Informal Description of the FMM
2.2 Mathematical Preliminaries
2.2.1 Expansion of the Inverse Distance
2.2.2 Spherical Harmonic Addition Theorem
2.2.3 Expansion of Particle-Particle Interactions
2.2.4 Addition Theorem for Regular Solid Harmonics
2.2.5 Addition Theorem for Irregular Solid Harmonics
2.2.6 Formal Double Sum Manipulations
2.3 Mathematical Operators
2.3.1 Translation of a Multipole Expansion (M2M)
2.3.2 Conversion of a Multipole Expansion into a Local Expansion (M2L)
2.3.3 Translation of a Local Expansion (L2L)
2.3.4 Rotation-Based Operators
2.3.5 Further Operator Compression
2.4 O(NlogN) Algorithm
2.5 O(N) Algorithm
2.6 Implementation Details
2.6.1 Fractional Tree Depth
2.6.2 Data Structures
2.6.3 Minimization of Near Field and Far Field Computation Time
2.6.4 Limitations of the Algorithm
2.7 Error Analysis
2.7.1 Worst Case Error Bound
2.7.2 Improved Workflow / Error Bound
2.7.3 Stage I of the Error Estimation Scheme
2.7.4 Stage II of the Error Estimation Scheme
2.7.5 FMM without Far Field Contributions
2.7.6 Further Analysis of the Error Bound
3 FMM and Periodic Boundary Conditions
3.1 Minimum Image Convention
3.2 Definition of the Boundary Condition
3.2.1 Three Dimensional Periodicity
3.2.2 Two Dimensional Periodicity
3.2.3 One Dimensional Periodicity
3.2.4 Periodic Potential and Energy
3.3 Convergence of Lattice Sums
3.4 Ewald-Based Summation Schemes
3.5 Parameter-Free Renormalization Approach
3.5.1 Informal Description
3.5.2 Mathematical Operators
3.5.3 Lattice Sum Algorithm
3.6 Implementation Details
3.6.1 Additional FMM Pass for the Lattice Operator
3.6.2 Modifications of FMM Pass 1–5
3.6.3 Fractional Tree Depth and Periodic Boundary Conditions
3.6.4 Dipole Correction
3.7 Periodic Boundaries and Error Control
3.7.1 Stage I of the Error Estimation Scheme
3.7.2 Stage II of the Error Scheme
4 Performance Details of the FMM Implementation
4.1 Scaling
4.2 Precision Verification
4.3 Benchmark
4.4 Additional Features
5 Conclusion and Future Directions
5.1 Conclusion
5.2 Future Directions
A Appendix
Bibliography