de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Mass spectrometric investigation of metal hydrides relevant to Extreme Ultraviolet Lithography / vorgelegt von Joshua A.D. Rieger. Wuppertal, November 2023
Inhalt
Acronyms
List of Figures
List of Tables
Scope of this work
Introduction
Photolithography
EUV lithography
Plasma
Plasma fundamentals
Plasma generation
Debris
Tin debris
Decomposition of stannane
Hydrogen etching of tin
Debris of other elements
Surface oxidation processes
Mass spectrometry
Components and structure of mass spectrometers
Creating ions
Electron ionization
Chemical ionization
Mass analyzers
Sector field mass spectrometer
Time-of-flight mass spectrometer
Quartz crystal microbalance
Methods & Instrumentation
Chemicals
Plasma sources
Plasma chamber
Helical coil resonator
Mass spectrometers
Sector field mass spectrometer - MAT95XP
Time-of-flight mass spectrometer
LTOF
CTOF
Quartz crystal microbalance
Electrode coating
Fourier-transform infrared spectrometer
Laser systems
Syntheses
Stannane synthesis
Tin oxide synthesis
Software
RASP
DFT calculations
Results & Discussion
Synthesized stannane
Infrared spectrum of stannane
Mass spectrum of stannane
Doubly charged stannane and the stannane dimer
Influences on stannane mass spectra
Plasma-generated stannane
Neutral tin hydrides
Doubly charged stannane and the stannane dimer
Oxygenated stannane
Comparison of the different experimental set-ups
Ionic tin hydrides
Doubly charged stannane and the stannane dimer
Oxygenated stannane
Experimental settings affecting mass spectra
Comparison of the different experimental set-ups
Tin deuterides
Transport behavior of neutral and ionic tin hydride molecules in glass tubes
Decomposition process of stannane on glass
Other plasma-generated metal hydrides
Lead (Pb)
Magnesium (Mg)
Copper (Cu)
DFT calculations
Cationic tin species
Neutral tin hydrides
Anionic tin hydrides
Conclusion of the simulation results
Initial etching phenomenon
Description of the phenomenon
Oxygen exposition
Addition of oxygen
Tin oxide as target
Quartz crystal microbalance measurements
Sensor characterization
Hydrogen etching of electroplated tin
Etching vs. sputtering
Influence of potentials on electrodes
Additional methods of sensor coating
Sensor coating via thermal evaporation
Sensor coating via stannane decomposition
Simultaneous measurement of QCM and LTOF
Comparison with literature data
Conclusion & Outlook
References