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Summary

The main aim of this dissertation is the comparative investigation of different
measures of synchronization derived from various approaches and concepts.
These include both measures for estimating the degree of dependence between
two time series as well as measures which quantify the directionality of this
dependence. The first group comprises the linear cross correlation, mutual in-
formation, six different indices for phase synchronization (based either on the
Hilbert or on the wavelet transform) as well as symmetrized variants of two
nonlinear interdependence measures and of event synchronization. The anti-
symmetrized variants of the last three measures form the group of measures
of directionality.

In the first part of this dissertation the symmetric measures are tested in a
controlled setting by means of various model systems. Using the coupling
strength as a first control parameter it is investigated to which extent the dif-
ferent measures are able to distinguish between different degrees of depen-
dence. Furthermore, the robustness of the measures against external noise is
estimated by varying the signal-to-noise ratio as the second control parameter.

Subsequently, all measures are employed to analyze electroencephalographic
recordings from epilepsy patients. This application part consists of two single
studies. First a comprehensive comparison on the predictability of epileptic
seizures is carried out. Object of investigation is the capability of the differ-
ent measures to reliably distinguish between the intervals preceding epileptic
seizures and the intervals far away from any seizure activity. Already in this
study a great deal of attention is paid to the statistical validation of seizure
predictions. This issue is particularly addressed in the last part of this disser-
tation in which the method of measure profile surrogates is introduced as an
appropriate tool to distinguish between measures and algorithms unsuited for
the prediction of epileptic seizures, and more promising approaches. Two of
the measures of synchronization are used to illustrate this new approach.





Zusammenfassung

Hauptziel der vorliegenden Doktorarbeit ist die vergleichende Untersuchung
verschiedener Ansätze zur Messung von Synchronisation zwischen zwei
Zeitreihen. Diese beinhalten sowohl Maße zur Abschätzung des Grades an
Abhängigkeit als auch Maße, welche die Direktionalität dieser Abḧangigkeit
quantifizieren. Die erste Gruppe umfasst die lineare Kreuzkorrelation, die
Mutual Information, sechs verschiedene Indices für Phasensynchronisation,
basierend entweder auf der Hilbert-Transformation oder auf der Wavelet-
Transformation, sowie symmetrisierte Versionen zweier nichtlinearer Interde-
pendenzmaße und der Event-Synchronisation. Aus den anti-symmetrisierten
Versionen der letzten drei Maße setzt sich die Gruppe der Direktion-
alitätsmaße zusammen.

Im ersten Teil dieser Doktorarbeit werden die Synchronisationsmaße mit
Hilfe verschiedener nichtlinearer Modellsysteme getestet. Mit der Kop-
plungssẗarke als erstem Kontrollparameter wird untersucht, wie gut die Maße
in der Lage sind, verschiedene Grade der Abhängigkeit zu unterscheiden. Die
Robustheit der Maße gegenüber externen Störsignalen wird durch Variation
des Signal-Rausch-Verhältnisses als zweitem Kontrollparameter abgeschätzt.

Anschließend werden die verschiedenen Maße zur Analyse elektroen-
zephalographischer Aufzeichnungen von Epilepsie-Patienten herangezogen.
Dieser Anwendungsteil besteht aus zwei Einzelstudien. Zunächst wird
eine umfassende Vergleichsstudie zur Vorhersagbarkeit epileptischer Anfälle
durchgef̈uhrt. Gegenstand der Untersuchung ist die Eignung der Maße zur
verläßlichen Trennung der Intervalle vor epileptischen Anfällen von den In-
tervallen weit weg von jeglicher Anfallsaktivität. Dabei wird bereits beson-
deres Augenmerk auf das häufig vernachl̈assigte Problem der statistischen Va-
lidierung von Anfallsvorhersagen gelegt. Ausschliesslich mit diesem wichti-
gen Aspekt befasst sich der letzte Teil dieser Arbeit, in dem die Methode der
Maßprofil-Surrogate als geeigneter Lösungsansatz vorgestellt wird. Zwei der
in dieser Arbeit untersuchten Synchronisationsmaße werden dazu verwendet,
dieses neue Verfahren zu illustrieren.
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Chapter 1

Introduction

The words‘synchronous’and ‘synchronicity’ originate from a combination of the Greek
wordsσυν (syn = common) andχρoνoς (chronos = time) and thus can be translated as
‘happening at the same time’. Although the term‘synchronization’shares this etymology,
there is a subtle distinction between the notions of these two words. While a ‘synchronous
motion’ of two or more objects is rather vaguely determined by a pure coincidence which
in principle could be by chance, ‘synchronization’ is more rigorously defined as the (active)
adjustment of rhythms of different oscillating systems due to some kind of interaction or
coupling [123]. Since synchronization generally leads to synchronous motion both terms
are often used synonymous.

Synchronization between dynamical systems has been an active field of research in many
scientific and technical disciplines since the first description of this phenomenon in the
seventeenth century. It was the Dutch scientist Christiaan Huygens who first reported on
his observation of synchronization between two pendulum clocks hanging from a common
support [49]. In the twentieth century systematic study of synchronization phenomena was
started experimentally by Edward Appleton [12] and theoretically by Balthasar van der
Pol who derived the van der Pol equation, the first and still most prominent example of a
nonlinear self-oscillating system [168]. Van der Pol was also the first to apply oscillation
theory to a physiological system, namely the human heart [169]. Starting in the early
1980s and only shortly succeeding the development of the theory of deterministic chaos the
notion of synchronization was further extended to the case of interacting chaotic oscillators
[37, 120, 2, 116]. Since the definition of chaos implies the rapid decorrelation of nearby
orbits due to their high sensitivity on initial conditions, synchronization of two coupled
chaotic systems is a highly counter-intuitive phenomenon. Thus it has been extensively
studied and applied in many disciplines of physics. Prominent examples include electronics
[121, 46, 114], laser dynamics [33, 144, 162], solid state physics [119], plasma physics
[136], communication [22, 57] and control [126, 146].

According to the fact that synchronization phenomena can manifest themselves in many
different ways, a unifying framework for synchronization in chaotic dynamical systems is
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CHAPTER 1. INTRODUCTION

still missing (and might not be achievable at all). Instead various concepts for its descrip-
tion have been offered. The simplest case of complete synchronization can be obtained
if identical systems are coupled sufficiently strong so that their states coincide [37, 120].
Phase synchronization, first described for chaotic oscillators in Refs. [139, 122, 108], is de-
fined as the entrainment of phases, whereas the amplitudes remain chaotic and, in general,
weakly correlated. Furthermore, the concept of generalized synchronization, introduced
for uni-directionally coupled systems [2, 145, 1], denotes the presence of some functional
relation between the states of responder and driver. Since this function does not have to
be the identity, generalized synchronization is already a rather weak criterion, but it is still
surpassed by the notion of interdependence [14] where the mapping of local neighbor-
hoods in the first system onto local neighborhoods in the second system is exploited as the
quantifying criterion.

Corresponding to and extending this variety of concepts, many different approaches aiming
at a quantification of the degree of synchronization between two systems have been pro-
posed. These approaches comprise linear ones like the cross correlation or the coherence
function as well as essentially nonlinear measures like mutual information [43]. Further-
more, different indices of phase synchronization have been introduced [163, 98]. Here the
instantaneous phases are extracted from the time series by using e.g., the Hilbert trans-
form [139] or the wavelet transform [71]. Topological approaches to quantify generalized
synchronization include the method of mutual false nearest neighbors [145] and the index
based on nonlinear mutual predictions [148] as well as more recent measures like the non-
linear interdependencies [14] and synchronization likelihood [160]. Finally, the measure
event synchronization [130] quantifies the over-all level of synchronicity from the number
of quasi-simultaneous appearances of certain predefined events. While most of these mea-
sures are only designed to estimate the degree of synchronization between two systems,
three of these measures, the nonlinear interdependencies and event synchronization, are
also able to reveal possible directionalities between them and thus, at least in principle, to
detect driver-responder relationships.

In the literature on the quantification of synchronization almost exclusively one single mea-
sure is applied either to model systems or to real data. Only rarely different measures are
used to analyze the same system and thus a comprehensive comparison of all these differ-
ent approaches in a ‘controlled setting’ is still missing. This task is addressed in the first
part of this thesis in which the measures of synchronization are applied to different coupled
model systems. The aim is to evaluate to which extent the analysis of these model systems
can render information about the different measures of synchronization useful for a later
application of these measures to field data. To address this aim, the coupling strength as
well as the signal-to-noise ratio serve as control parameters. With the coupling strength
as the first parameter it is tested to which extent the different measures are able to distin-
guish between different levels of coupling. This property is essential in most applications
since rarely the absolute value of synchronization is of interest but rather it is the change
of synchronization between two different states, times, or recording sites that matters. The
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second parameter, the signal-to-noise ratio, is used to investigate whether the results of
the different measures prove to be robust when the signals of interest are contaminated
with a certain level of noise. Robustness against such contaminations is a very important
prerequisite for the application of these measures to field data, since noise is an inevitable
disturbance in any measurement setting.

A prominent example for the acquisition of field data and one of the most important ap-
plications for measures of synchronization is the study of human electroencephalographic
(EEG) signals [90], an outstanding example for the acquisition of such data is the pre-
surgical diagnostics of epilepsy patients. To yield sufficient information for the unequiv-
ocal localization of the seizure-generating structure (epileptic focus), often multichannel
recordings are acquired using intracranial monitoring techniques, in which the brain elec-
trical activity is recorded directly from the surface of the brain and from specific structures
within the brain [32]. The excellent signal to noise ratio and the outstanding temporal
and spatial resolution of these data allow their meaningful investigation by means of linear
and nonlinear time series analysis techniques in order to further understand the spatio-
temporal dynamics of the epileptic brain [83, 82]. Bivariate measures of synchronization
seem to be particularly well suited for this purpose, since synchronization phenomena have
been increasingly recognized as a key feature for establishing the communication between
different regions of the brain [170, 34, 171]. Furthermore, abnormal synchronization of
neuronal ensembles is regarded as the main mechanism responsible for the generation of
epileptic seizures [90].

Probably the most challenging task in the analysis of EEG recordings from epilepsy pa-
tients is the prediction of epileptic seizures (cf. Refs. [87, 89, 86]). Despite the afore-
mentioned interrelations at first mostly univariate measures have been used to address this
issue, and it is only recently that the focus of attention starts to shift towards bivariate
measures and in particular to the question whether measures of synchronization can render
valuable information enabling the prediction of epileptic seizures. To address this question,
a comprehensive comparison of the different measures with respect to their capability to
discriminate the intervals preceding seizures from the intervals far away from any seizure
activity is carried out. Furthermore, in order to investigate to which extent the different
measures of synchronization and directionality carry independent and non-redundant in-
formation, the correlation between these measures is estimated.

Many of the studies dealing with seizure prediction suffer from a severe lack of statistical
validation. Only rarely results are passed to a statistical test and are verified against some
null hypothesisH0 in order to quantify their significance. This issue has first been ad-
dressed by the method of seizure times surrogates proposed by Andrzejak and colleagues
[9]. In the last study of this thesis the method of measure profile surrogates is introduced
as a new and complementary approach. The method is illustrated by statistically validating
the predictive performance of two of the measures of synchronization.

This thesis is organized as follows: First in Chapter 2 some theoretical background about
dynamical systems and their analysis is given along with an introduction to the different
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CHAPTER 1. INTRODUCTION

notions of synchronization. In Chapter 3 a representative selection of different approaches
to quantify the degree of synchronization between two systems are introduced. These mea-
sures are applied to different coupled model systems in Chapter 4 in which they are com-
pared with respect to their capability to reflect the strength of coupling and their robustness
against noise. In Chapter 5 they are applied to electroencephalographic time series mea-
sured from the brain of epilepsy patients (Section 5.1). In particular the issue of epileptic
seizure prediction and its statistical validation is addressed (Section 5.2). First in Section
5.3 the capability of the different measures to reliably detect a distinct pre-seizure state is
evaluated. Furthermore, based on observed correlations between the different measures the
combined use of measures is discussed. The aim of statistical validation is further pursued
in Section 5.4 in which the new method of measure profile surrogates is demonstrated. The
conclusions of this thesis are drawn in Chapter 6.
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Chapter 2

Theoretical background

In the main part of this chapter an overview of the various concepts for the description
of synchronization is given (Section 2.3). As a theoretical fundament for its understanding
the theory of dynamical systems (Section 2.1) and the most important tool in their analysis,
the state space reconstruction (Section 2.2), are described before.

2.1 Dynamical systems

Apart from systems with an infinite number of degrees of freedom, the state of a dynamical
system can generally be described byD time dependent variables. Assigning each of these
system variables to a basis vector in an abstract state space, the instantaneous state of the
system is determined by a point in this state space:

−→x (t) = (x1(t), x2(t), ..., xD(t)) (2.1)

The series of vectors consecutive in time form thetrajectoryof the system. Fordetermin-
istic dynamics the state of the system in the next instant is unequivocally defined by the
present state. If only probabilities for the following state can be given, the dynamics is said
to bestochastic. The continuous temporal evolution of a dynamical system is aflow in the
state space, while a discrete dynamics (this includes the equidistant sampling of a contin-
uous trajectory) is called amap. In the continuous case the dynamics of a deterministic
system can be described by a set of ordinary differential equations:

d−→x (t)

dt
= F (−→x (t)) (2.2)

For a discrete deterministic system the transition from time instantt to time instantt +4t
is represented by a mapping of the state space onto itself:
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CHAPTER 2. THEORETICAL BACKGROUND

−→x (t +4t) = F (−→x (t)) (2.3)

In both cases the temporal evolution of the state variable−→x is governed by a generally
nonlinear functionF .

In addition to this, classical mechanics distinguishes betweenconservativesystems with
Hamiltonian structure, in which, according to the theorem of Liouville, the state space vol-
ume occupied by the system is preserved(divF = 0), anddissipativesystems, which ex-
change energy with their environment and/or with microscopic degrees of freedom which
are not modelled explicitly. Typically, after some initial transients this leads to a contrac-
tion of the occupied state space volume(divF < 0) onto a subset with lower dimension
which is termedattractor. For regular dynamics, this can be a fix point attractor of di-
mension zero, a one dimensional limit cycle or a torus of dimension equal or larger than
two. But due to some stretching- and folding-mechanisms caused by the nonlinear function
F , also so-calledstrange attractorscan occur. These attractors are distinguished by their
self-similarity(comparable structures on any scale) and theirfractal (i.e., non-integer) di-
mension. The later property is, among others, often used to define achaotic system. In this
context, it is important to note that nonlinearity is a necessary but not sufficient condition
for chaos.

2.2 State space reconstruction

Given aD-dimensional system with known dynamics, the equations of motions (2.2) or
(2.3) allow, starting from an initial state−→x (0), the numerical determination of the tem-
poral evolution of all state variables. According to the definition of the state space the
trajectory−→x (t) gives a complete characterization of the dynamics of the system. In a typi-
cal experimental setup mostly only scalar time series are available describing the temporal
evolution of a possibly high dimensional system. Nevertheless the principal possibility to
reconstruct the fundamental dynamics from a single time series was shown in the embed-
ding theorems in Refs. [161, 147]. The method of state space reconstruction via time delay
embedding relies on the assumption that in the limit of an infinite number of data points
and without any noise the influence of all other system variables is reflected in the temporal
evolution of the measured one1.

From a univariate discrete time seriesxn, n = 1, . . . , N , of a dynamical systemX delay
vectors can be reconstructed via

−→x n = (xn, . . . , xn−(m−1)τ ) (2.4)

1In case of multichannel recordings in principle a state space reconstruction using spatial embedding
techniques is possible. In practice the uncertainties in the choice of a spatial delay and other related problems
make this option infeasible (cf. Ref. [58]).
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with m denoting the embedding dimension andτ denoting the time lag. To avoid self cross-
ings of the reconstructed trajectory due to spurious projections, the embedding theorem of
Whitney [175] demands an embedding dimension of

m ≥ 2D + 1. (2.5)

Furthermore, the minimization of obstructive correlations in the state space can be achieved
by setting the time lagτ to the first zero crossing of the autocorrelation function [20] or
the first local minimum of the mutual information function [36]. In this way it is possible
using a single time series to reconstruct a state space topology which is equivalent to the
state space spanned by all system variables.

2.3 Synchronization

Synchronization is rigorously defined as the active adjustment of rhythms of different os-
cillating systems due to some kind of interaction or coupling [123]. There are some impor-
tant physical subtleties and caveats within this definition. First of all it should be possible
to divide the system under investigation into different subsystems which can in principle
generate independent signals. Thus all cases are excluded where the oscillating variables
are just different coordinates of the same system. Instead signals could be measured from
truly separated, identical or non-identical systems, but alternatively they could also stem
from different parts of the same extended system. Second, synchronization takes place be-
tween autonomous systems exhibiting self-sustained oscillations. Without interaction each
of these oscillators continues to generate the same steady and stable rhythm until its source
of energy expires. With weak interaction the systems adjust their rhythm, a phenomenon
occurring more or less persistently even in a certain range of systems’ mismatch of pa-
rameters. In case of very strong coupling, however, the term synchronization might not
be appropriate any more since then the originally independent subsystems now form one
new unified system which can not be regarded as decomposable. A similar problem occurs
when two systems with identical or almost identical dynamical properties are driven by a
common hidden source. In this case they both get synchronized with the common driver
and thus they will show a synchronous behavior, but according to the rigorous definition
they are not synchronized with each other.

Considering these non-trivial implications in the theoretical treatment of synchronization,
it is not surprising that the observation and description of synchronization becomes an even
more vague venture. According to the many different ways in which synchronization phe-
nomena can manifest themselves, various concepts for its description have been offered.
These concepts which mostly focus on different distinct features will be introduced in the
following.
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CHAPTER 2. THEORETICAL BACKGROUND

2.3.1 Complete synchronization

The simplest case of complete or identical synchronization can be obtained if two systems
X andY are coupled sufficiently strong so that their states−→x (t) and−→y (t) coincide in the
limit t →∞ [37, 120]:

lim
t→∞[−→x (t)−−→y (t)] =

−→
0 (2.6)

This can only be obtained for identical systems. Otherwise, if the parameters of coupled
systems slightly mismatch, the states can come close to each other but still remain dif-
ferent. Complete synchronization is included as a special case in all other definitions of
synchronization.

2.3.2 Phase synchronization

In principle, the notion of phase synchronization goes back to the observation of inter-
actions between two pendulum clocks by Huygens [49]. It is the natural concept for the
description of two coupled linear (harmonic) or nonlinear oscillators or any other systems,
where the definition and determination of a phase is obvious. Only recently this concept
has also been applied to chaotic oscillators [139, 122, 108] and even further extended to
the analysis of almost arbitrary time series (cf. [141]). In most cases the phase is extracted
from the time series, e.g., via Hilbert transform. Phase synchronization is then defined as
entrainment of the phases of two oscillating systemsX andY :

|nφx(t)−mφy(t)| ≤ const (2.7)

with n andm being integers. While the phases are locked, the amplitudes remain chaotic
and, in general, uncorrelated [110]. The special case, when in addition to a strictly con-
stant phase shift the amplitudes become also completely correlated, is referred to as lag
synchronization in the literature [140].

2.3.3 Generalized synchronization

Finally, the concept of generalized synchronization, originally introduced for unidirec-
tionally coupled systems [2, 145, 1], but meanwhile also applied to bidirectional coupling
schemes [180], denotes the presence of some functional relation between the state variables
−→x and−→y of driver systemX and responder systemY :

−→y (t) = ψ[−→x (t)]. (2.8)

8



2.3. SYNCHRONIZATION

The mathematical properties demanded for the functionalψ vary throughout the literature.
Usually existence and smoothness are required as minimum conditions, but sometimes
also differentiability and invertibility are considered as prerequisites [117]. The relation
between phase synchronization and generalized synchronization is discussed controver-
sially in the literature. First it has been claimed that generalized synchronization implies
phase synchronization [114], later for certain cases the opposite relation has been reported
[179].

Unidirectionally driven systems are usually said to exhibit generalized synchronization if
the largest Lyapunov exponent of the responder (called conditional Lyapunov exponent in
Ref. [116]) is negative, although this represents merely a necessary and not a sufficient
condition [145].

9





Chapter 3

Measures of synchronization

In this thesis a representative selection of different bivariate measures quantifying the de-
gree of synchronization between two systems is applied to model systems and electroen-
cephalographic time series measured from the brain of epilepsy patients. These measures
comprise symmetric ones like the linear cross correlation, the mutual information and three
different indices of phase synchronization (where the phase of the time series is extracted
by using either the Hilbert transform or the wavelet transform) as well as anti-symmetric
ones like two related approaches quantifying nonlinear interdependencies and the event
synchronization. Similarities and differences of these approaches will be described in this
Chapter.

In general one should always distinguish between a quantity defined for a mathematical
model process and the analogous quantity estimated from finite data (time series) drawn
randomly from this process. Since this thesis is dealing with the analysis of time series
exclusively, all formulas of measures of synchronization are meant to define the respec-
tive estimators. Thus any carets (usually denoting estimators) are omitted for simplicity.
Furthermore, in the following and throughout this thesisx andy with samplesxn andyn

(n = 1, . . . , N) will denote two simultaneously measured discrete univariate time series
of lengthN from two possibly coupled dynamical systemsX andY while −→x n and−→y n

will denote their embedded delay vectors yielded by state space reconstruction (cf. Section
2.2). Before the calculation of these measures all time series are demeaned and normal-
ized to unit variance. Therefore also mean and variance are omitted in all equations for
simplicity.

3.1 Cross correlation

The simplest and most commonly used measure of synchronization is the cross correlation
defined in the time domain as a function of the time lagτ = −(N − 1), . . . , 0, . . . , N − 1:
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CHAPTER 3. MEASURES OF SYNCHRONIZATION

CXY (τ) =





1
N−τ

∑N−τ
n=1 xn+τyn τ ≥ 0

CY X(−τ) τ < 0.
(3.1)

The cross correlation is obtained by normalization of the cross covariance and thus ranges
from minus one (anti-phase synchronization) to one (in-phase synchronization), while in-
termediate values close to zero are attained for linearly independent systems1. The cross
correlation is a measure of linear synchronization betweenX andY only.

This linear synchronization can also be quantified in the frequency domain using the cross
spectrum:

CXY (ω) = (Fx)(ω) · (Fy)∗(ω)x, (3.2)

where(Fx) is the Fourier transform ofx, ω are the discrete frequencies (−N/2 < ω <
N/2) and the asterisk denotes complex conjugation. The cross-spectrum is a complex
number whose amplitude

ΓXY (ω) =
|CXY (ω)|√

CXX(ω) · CY Y (ω)
(3.3)

is called the coherence function. It is normalized by the autocorrelation functions of the
two systems. As a function of the frequencyω this is a very useful measure when one
is interested in the synchronization related to certain frequency ranges only, e.g., in the
classical EEG frequency bands (cf. Ref. [90] and Section 5.1). These are two equivalent
representations related via the correlation theorem and thus the cross correlation function
can be calculated as the inverse Fourier transform of the cross spectrum.

The first measure used in this thesis is the maximum cross correlation which is symmetric
in X andY :

Cmax = max
τ
{|CXY (τ)|}. (3.4)

3.2 Mutual information

In contrast to cross correlation or coherence which are measures of linear dependencies
only, mutual information quantifies nonlinear dependencies as well, i.e., it is zero if and

1Even completely uncoupled time series can spuriously attain non-zero estimated cross-correlation values
due to high values of the autocorrelation function (cf. Ref. [106]). The Bartlett estimator, a significance
threshold for observed cross-correlation values, can be found in Refs. [17, 19].
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3.2. MUTUAL INFORMATION

only if the two time series are strictly independent. As a measure derived from information
theory [43, 24] it is based on the Shannon entropy and therefore allows a straightforward
interpretation (in contrast to quantities based on higher order Renyi entropies [131], which,
however, are often easier to estimate).

Performing a binning of the state spaces of two systemsX andY and denoting bypx(i)
[py(j)] the weight of thei-th [j-th] bin in X-space [Y -space], the mutual information is
defined as

I(X,Y ) = H(X) + H(Y )−H(X,Y ) (3.5)

with H(X) andH(Y ) denoting the Shannon entropies of the respective marginal distribu-
tionspx(i), py(j) with i = 1, . . . ,Mx, j = 1, . . . ,My, e.g.,

H(X) = −
Mx∑

i=1

px(i) log px(i) (3.6)

andH(X, Y ) denoting the Shannon entropy of the joint distributionpxy(i, j), i.e.,

H(X,Y ) = −
M∑

i,j

pxy(i, j) log pxy(i, j). (3.7)

The Shannon entropies would diverge for vanishing bin size and continuousX, whereas
this limit is finite for I(X, Y ) providedX andY are not deterministically related. In this
limit I(X, Y ) becomes an integral over densities. While the different entropies measure
the information content of the marginal spacesX, Y and the joint space(X,Y ), mutual
information quantifies the amount of information ofX obtained by knowingY and vice
versa. When taking the logarithms with base2, all quantities are measured in bits. As men-
tioned above, mutual information is zero if and only if the two time series are independent,
while it attains positive values with a maximum ofI(X, X) = H(X) for identical signals.
Like cross correlation at delayτ = 0, it is symmetric inX andY , i.e.,I(X,Y ) = I(Y, X).

Mutual information can also be regarded as a Kullback-Leibler entropy measuring the gain
in information when replacing the distributionpx(i) · py(j), yielded under the assumption
of independence betweenX andY , by the actual joint probability distributionpxy(i, j),
i.e.,

I(X, Y ) =
M∑

i,j

pxy(i, j) log
pxy(i, j)

px(i)py(j)
. (3.8)

The easiest and most wide spread approach for estimating mutual information from two
time seriesx andy consists in partitioning their supports into bins of finite size and count-
ing the numbers of points falling into the various bins. This binning can either be performed
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CHAPTER 3. MEASURES OF SYNCHRONIZATION

using the time series itself or using the reconstructed state spaces rendered by applying the
method of time delay embedding to the individual time series before. Withnx(i) andny(j)
denoting the number of points falling into thei-th bin of X and thej-th bin of Y respec-
tively, andnxy(i, j) as the number of points in their intersection, the marginal and the joint
probabilities can be approximated as

px(i) ≈ nx(i)

N
, py(j) ≈ ny(j)

N
, pxy(i, j) ≈ nxy(i, j)

N
. (3.9)

More sophisticated estimators [36, 25] use adaptive instead of fixed bin sizes to obtain
approximately equal numbersn(i, j) in all non-empty bins(i, j). But still these estimates
suffer from systematic errors that can in principle be reduced by taking into account the
first two terms of a diverging series of finite size corrections [42]. Another approach to
calculate mutual information uses first order correlation integrals for the estimation of the
single Shannon entropies [41, 115]. This involves the computation of probabilities within
neighborhoods of a certain fixed radius around each point.

In this thesis the first of two new and improved estimates of mutual information introduced
by Kraskov and colleagues in Ref. [62] (based on considerations of Ref. [129]) is used.
Both estimates do not use a fixed neighborhood size, but instead are based on entropy es-
timates fromk-nearest neighbor distances. The first variant uses adaptive (hyper-)cubes
whose size is locally adapted in the joint space and then kept equal in the marginal sub-
spaces. Its estimate reads:

I(X, Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N), (3.10)

for any integerk ∈ [1, . . . , N ]. Here,ψ(x) is the digamma function defined asψ(x) =
Γ(x)−1dΓ(x)/dx. It can easily be calculated using the recursionψ(x + 1) = ψ(x) + 1/x
andψ(1) = −C with C = 0.5772156 . . . the Euler-Mascheroni constant. For largex,
ψ(x) ≈ log x− 1/2x holds.

The second variant uses (hyper-)rectangles instead of (hyper-)cubes, i.e., their size is ad-
justed independently for each of the marginal subspaces. In general it gives very similar
results. For both estimates systematic errors increase withk, while statistical errors de-
crease, with the errors of the first estimate being between those for the second variant with
the samek and those fork′ = k+1. Both estimates are very data efficient (fork = 1 struc-
tures down to the smallest possible scale are resolved), adaptive (the resolution is adjusted
according to the local data density), and have minimal bias. Indeed, the bias of the under-
lying entropy estimates is mainly due to the non-uniformity of the density at the smallest
resolved scale, typically giving errors of the orderO(k/N). Numerically, the estimator
I(X,Y ) proved to become exactly unbiased if the densities of the distributions factorize
(ρx,y = ρxρy), i.e., it vanishes (up to statistical fluctuations) for independent distributions
[62].
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3.3. PHASE SYNCHRONIZATION

Schreiber extended the concept of mutual information and defined the so-calledtransfer
entropy[153], which, as an asymmetric measure, proved to be able to in principle distin-
guish driver-responder relationships. Another asymmetric measure which is based on the
concept of mutual information has recently been proposed by Palus [111].

3.3 Phase synchronization

The first step in quantifying phase synchronization between two time seriesx and y is
the determination of their phasesφx(t) andφy(t). Here this is achieved either via Hilbert
transform or via wavelet transform2. From the rendered phase distributions three different
indices are calculated. Combining these two steps this adds up to a total of six measures of
phase synchronization used in this thesis and described in the following.

3.3.1 Extracting the phase

As a first way to determine the phases of the time series a method is used which is based
on theanalytic signalapproach [38, 113]. From the continuous time seriesx(t) first the
analytic signal is defined

Zx(t) = x(t) + i x̃(t) = AH
x (t)eiφH

x (t), (3.11)

wherex̃(t) is theHilbert transformof x(t):

x̃(t) ≡ (Hx)(t) =
1

π
p.v.

∫ +∞

−∞
x(t′)
t− t′

dt′ (3.12)

(here p.v. denotes the Cauchy principal value). This renders the unambiguous definition of
the so-calledinstantaneous phase:

φH
x (t) = arctan

x̃(t)

x(t)
. (3.13)

Analogously,AH
y andφH

y are defined fromy(t).

In the frequency domain the Hilbert transform performs a phase shift of the original signal
by π

2
leaving the power spectrum unchanged, thus creating an artificial imaginary part for

the real time series. This can be seen by application of the convolution theorem

x̃(t) = −i · FT−1[FT [x(t)]sign(ω)], (3.14)

2Besides that, many other methods of extracting a phase have been proposed (cf. e.g., Refs. [21, 142]).
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CHAPTER 3. MEASURES OF SYNCHRONIZATION

whereFT denotes the Fourier transform andFT−1 its inverse.

The second method used to extract the phases from the time series is based on thewavelet
transformand has recently been introduced by Lachaux et al. [71, 70]. In this approach
the phase is determined by the convolution of the respective signal with a complex Morlet
wavelet (here slightly modified according to Ref. [128])

Ψ(t) = (eiω0t − e−ω2
0σ2/2) · e−t2/2σ2

, (3.15)

whereω0 is the center frequency of the wavelet andσ denotes its rate of decay. This is
proportional to the number of cycles and related to the frequency span by the uncertainty
principle.

The convolution ofx(t) with Ψ(t) yields a complex time series of wavelet coefficients

Wx(t) = (Ψ ◦ x)(t) =
∫

Ψ(t′) x(t− t′) dt′ = AW
x (t) · eiφW

x (t), (3.16)

from which the phases can be defined as

φW
x (t) = arctan

ImW (t)

ReW (t)
. (3.17)

In the same wayWy(t) andφW
y (t) are defined fromy(t).

Although based on very different approaches these two different definitions of phase are
indeed closely related, as demonstrated practically in Ref. [77] and explained theoreti-
cally by Quian Quiroga and colleagues [128]. In short, the phase based on the wavelet
transformφW

x (t) corresponds approximately to the phase based on the Hilbert transform
φH

x (t) which would be rendered after band pass filtering the time series. This correspon-
dence would even get exact if the wavelet approach would be performed by a convolution
with an analytic wavelet and if this wavelet would be used for the band pass filtering in
the Hilbert approach. Therefore in the wavelet approach the center frequencyω0 and the
frequency widthσ of the wavelet can serve as parameters to adjust the frequency range of
interest. In contrast to this, the actual phase extraction based on the Hilbert transform is
free of parameters. This phase retains information from the entire power spectrum. Thus
a comparison of narrow band and broad band synchronization is achievable just by using
both approaches without applying any extra filtering.

3.3.2 Indices of phase synchronization

Based on the phase distributionsφx(t) andφy(t) extracted in the first step, three different
indices of phase synchronization are calculated.
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3.3. PHASE SYNCHRONIZATION

Two of these indices are derived from information theory and have been introduced by
Tass and coworkers in 1998 [163]. As a prerequisite for the calculation of both indices
an equidistant binning of the interval[0, 2π[ is performed. An appropriate value for the
number of binsL is dependent on the length of the two time series [141]:

L = e0.626+0.4 ln(N−1). (3.18)

The first index is calculated from the binned distribution of phase differences. The proba-
bility for a phase difference to belong to a certain binl is roughly estimated by the relative
number of phase differences of the given time series in this bin:

pl =
#( { φx(tj)− φy(tj) ∈ [ l

L
2π, l+1

L
2π[ } )

N
, l = 1 . . . L, (3.19)

where#({·}) indicates the number of elements in the set{·}. With

S = −
L∑

l=1

pl · ln pl (3.20)

denoting the Shannon entropy [157] of this distribution and with

Smax = ln L (3.21)

its maximum possible value (attained for homogenous distributions), the normalizedindex
based on Shannon entropyis yielded as3:

γse =
Smax − S

Smax

. (3.22)

The second index quantifies the conditional probability forφy to fall into a certain bin given
the bin containingφx. This index based on conditional probabilityis defined as

γcp =
1

L

L∑

l=1

|rl| (3.23)

It is the average over

3This definition is used following Ref. [163], although it is not quite correct. Instead of the uniform dis-
tribution,Smax should be estimated from independent pairs of phases. Since in general the phase distribution
is not uniform, the distribution of phase differences is not either. This issue has first been addressed in Ref.
[92].
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rl =
1

Ml

∑
j

φx(tj)∈[ l
L

2π,
l+1
L

2π[

eiφy(tj) (3.24)

with

Ml = # { φx(tj) ∈ [
l

L
2π,

l + 1

L
2π[ } (3.25)

denoting the number of phase valuesφx(t) belonging to binl.

The third index of phase synchronization applied in this thesis is theindex based on circular
variance:

γcv =

∣∣∣∣∣∣
1

N

N∑

j=1

ei[φx(tj)−φy(tj)]

∣∣∣∣∣∣
= 1− CV. (3.26)

HereCV denotes the circular variance [92] of an angular distribution obtained by trans-
forming the phase differences onto the unit circle in the complex plane. In the literature
this index has been introduced by Mormann and colleagues using the termmean phase
coherence[104], later is has also been referred to as the intensity of the first Fourier mode
of the phase distribution [141].

The last index is based on the circular variance, the second statistical moment of a phase
distribution, and thus bears the advantage over the other two indices that it can easily be
adapted to statistical moments of higher order4. Furthermore, it is the only index with a
straightforward way of determining a significance threshold5 to avoid spurious detections
of synchronization in uncoupled time series (equivalent to the Bartlett estimator forCmax).
On the other hand,γcv can underestimate the actual phase synchronization in case of a
multi-modal distribution ofφxy. This can occur when the phase difference remains fairly
stable but occasionally jumps between different values [178]. Although the signals are
synchronized then (except at the times of the jumps), the phase differencesφxy may cancel
in the time average, thus rendering a lowγcv. A multi-modal distribution of the phases
can also appear if the signals are investigated for a1 : 1 synchronization but the real
relationship is1 : 2. In this context, it is noteworthy that all three indices could easily be
adapted to the more general case ofn : m synchronization [163, 104]. Yet throughout this
thesis the analysis remains restricted to the standard case of1 : 1 phase synchronization
(since in our case there is no reason to expect any differentn : m synchronization).

Combining two different ways to extract the phases with three different indices yields a
total of six measures of phase synchronization, namelyγH

se, γH
cp andγH

cv as well asγW
se ,

4Notice, however, that the same caveats apply to it as mentioned in the previous footnote.
5According to the Rayleigh test of uniformity [92] the significance threshold at a confidence level of

p = 0.05 is given byγcv =
√

5.991/2N .

18



3.4. NONLINEAR INTERDEPENDENCIES

γW
cp andγW

cv . All these indices are confined to the interval [0,1]. Values close to zero are
attained for phase differences forming a rather uniform distribution (no phase synchro-
nization) while the maximum value corresponds to Dirac-like distributions (perfect phase
synchronization). The most important feature of these indices is that they are only sensitive
to phases, irrespective of the amplitude of the two signals. This feature has been illustrated
first in Ref. [139] using bidirectionally coupled model systems.

All measures described so far are symmetric by definition and therefore are not suited
to exploit the directionality of interaction. Just recently two asymmetric extensions of
the concept of phase synchronization have been proposed, the first one by Rosenblum
et al. [138, 137] and the second one, an information-theoretic approach, by Palus and
Stefanovska [112]. The former approach has been adapted for the application to short and
noisy time series in Ref. [159]. The property of asymmetry is shared by the two measures
of nonlinear interdependence and the event synchronization. The underlying concepts of
these measures are introduced in the following two Sections.

3.4 Nonlinear interdependencies

As measures for generalized synchronization between two time seriesx andy, the nonlin-
ear interdependenciesS andH have been introduced by Arnhold and coworkers in 1999
[14]. They are related to earlier attempts to detect generalized synchronization like the
method of mutual false nearest neighbors [145] and the mutual cross predictability intro-
duced in Ref. [148] and applied to biological data in Refs. [75, 78]. In contrast to these
measures the nonlinear interdependenciesS andH do not assume a strict functional rela-
tionship between the dynamics of the underlying systemsX andY .

A prerequisite for the calculation of the nonlinear interdependenciesS andH is the state
space reconstruction of the individual time seriesx and y. Using the method of em-
bedding described in Section 2.2, time delay vectors−→x n = (xn, . . . , xn−(m−1)τ ) and
−→y n = (yn, . . . , yn−(m−1)τ ) with embedding dimensionm and time lagτ are reconstructed.
Subsequently, the criterion is investigated whether neighborhood in the state space ofY
implies neighborhood in the state space ofX for equal time partners, and the same is done
for the other direction just by exchangingX andY .

Denoting the time indices of thek nearest neighbors of−→x n and−→y n with rn,j andsn,j,
j = 1, . . . , k, respectively, for each−→x n, the squared mean Euclidean distance to itsk
neighbors is defined as

R(k)
n (X) =

1

k

k∑

j=1

(−→x n −−→x rn,j

)2
. (3.27)

Then, by replacing the nearest neighbors by the equal time partners of the closest neighbors
of −→y n, they-conditionedsquared mean Euclidean distance is given as:
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R(k)
n (X|Y ) =

1

k

k∑

j=1

(−→x n −−→x sn,j

)2
. (3.28)

If the systems are strongly correlated, thenR(k)
n (X|Y ) ≈ R(k)

n (X) is very small when
compared with the average squared distanceR(X) = 1

N

∑N
n=1 R(N−1)

n (X) of {−→x n}, while
R(k)

n (X|Y ) ≈ R(N−1)
n (X) À R(k)

n (X) holds for independent systems. Accordingly, the
nonlinear interdependence measureS(k)(X|Y ) is defined as

S(X|Y ) =
1

N

N∑

n=1

R(k)
n (X)

R
(k)
n (X|Y )

. (3.29)

SinceR(k)
n (X|Y ) ≥ R(k)

n (X) by construction, a proper normalization

0 < S(X|Y ) ≤ 1 (3.30)

is achieved with low values suggesting independence betweenX andY and high values
indicating interdependence.

The second nonlinear interdependence measureH(X|Y ) is defined as

H(X|Y ) =
1

N

N∑

n=1

log
Rn(X)

R
(k)
n (X|Y )

. (3.31)

In the definition ofS(X|Y ) the conditional distanceR(k)
n (X|Y ) is compared to the local

distanceR(k)
n (X) in the time seriesx itself, in H(X|Y ) it is related to the mean squared

distance between two state vectors:

Rn(X) =
1

N − 1

N∑
j=1
j 6=n

(−→x n −−→x j)
2. (3.32)

Also H is close to zero ifX andY are completely independent, while it is positive if
neighborhood inY implies neighborhood inX for equal time partners. But in contrast to
S it is not bounded and it even can attain slightly negative values for the unlikely but not
impossible case that close pairs inY correspond mainly to distant pairs inX.

Exchanging systemsX andY yields the opposite interdependenciesS(Y |X) andH(Y |X)
defined in complete analogy. They are generally not equal toS(X|Y ) andH(Y |X) and this
asymmetry ofS andH is the main advantage over other nonlinear measures such as mutual
information or indices of phase synchronization. It can correctly reflect driver-responder
relationships [14, 127, 151], but can also just be due to different dynamical properties of
the individual time series [14, 127, 118, 160].
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This aspect is isolated by quantifying the over-all degree of synchronization with one mea-
sure, i.e.,

Ss =
S(X|Y ) + S(Y |X)

2
and Hs =

H(X|Y ) + H(Y |X)

2
(3.33)

and the asymmetry with another measure, i.e.,

Sa =
S(X|Y )− S(Y |X)

2
and Ha =

H(X|Y )−H(Y |X)

2
. (3.34)

For the latter positive (negative) values can indicate driver-responder relationships with X
being the driver (responder) and Y being the responder (driver).

3.5 Event Synchronization

The last measure applied in this thesis is the so-called event synchronization proposed
by Quian Quiroga and colleagues in 2002 [130]. This measure, which is based on the
relative timings of certain events in the time series, is different from the others in many
respects. First of all there exist two variants, the first one quantifying the over-all level
of synchronicity from the number of quasi-simultaneous appearances of these events, the
second one dealing with time delay patterns extracted from the precedence of events in
one signal with respect to the other. Secondly it allows the tracking of changes in synchro-
nization and delay with a much higher time resolution than all the other measures. And
finally it is very adaptive since for each application a different choice of events is possible
thus enabling to focus the attention on the pattern of interest without any disturbance from
structures irrelevant to the application in mind.

Before the actual calculation of event synchronization, suitable events have to be defined.
These can be characteristic patterns in the time series such as spikes but also rather com-
mon features like local maxima and/or minima. Then in the first step the respective time
seriesx andy are scanned for these events and the times of their occurrence are marked as
txi andtyj (i = 1, . . . , mx; j = 1, . . . ,my) with mx andmy denoting the respective num-
ber of events. Thus the original time series are actually replaced by new series of event
times (a procedure similar to the well known method of symbolic dynamics) subject to the
quantification of their synchronicity in the last step. Actually this reduction of information
is the most crucial part since event synchronization does not really measure the synchro-
nization between the two time series as a whole but rather the synchronicity between the
defined events only. Thus the event synchronization of two time series can attain totally
different values for different choices of events. Positively speaking the method of event
synchronization is very adaptive, negatively speaking it might not be robust at all.
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A rather useful type of event is given by the following definition of a local maximum
with K denoting the width andh the height of the event (a local minimum is defined
accordingly):

x(ti) > x(ti±k) for k = 1, . . . , K − 1 and x(ti) > x(ti±K) + h (3.35)

In order to achieve an appropriate representation of the original time series in the sequence
of events and to obtain a suitable statistics, it is crucial in the definition of events to ensure a
sufficient number of events. Therefore, in this thesis event times are defined as the simplest
local maxima and local minima with parameters set toK = 1 andh = 0. Thus the only
conditions to be fulfilled arex(ti) > x(ti±1) andx(ti) < x(ti±1) and the same iny. In
the last step the synchronicity of events inX andY is quantified. This can be done in two
different ways.

The first variant is designed for time series with a rather constant event rate. Depending on
this event rate a maximum time lagτ is chosen until which two events are still considered
to be synchronous. To avoid double counting,τ should at least be smaller than half the
minimum inter-event distance. Using

Jτ
ij =





1 if 0 < txi − tyj ≤ τ
1/2 if txi = tyj
0 else

(3.36)

to quantify the relative timing of all events, the number of times an event appears inx
shortly after it appears iny is counted by

c(x|y) =
mx∑

i=1

my∑

j=1

Jτ
ij. (3.37)

With the opposite valuec(y|x) defined accordingly, the symmetrical and anti-symmetrical
combinations are given by

Q =
c(y|x) + c(x|y)√

mx
√

my

(3.38)

and

q =
c(y|x)− c(x|y)√

mx
√

my

. (3.39)

These measures are designed to quantify the synchronization of the time events and their
delay behavior, respectively. They are properly normalized to0 ≤ Q ≤ 1 and−1 ≤ q ≤ 1
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with Q = 1 if and only if all events of the signals are synchronous andq = 1 if and only if
the events inx always precede those iny andq = −1 if vice versa.

In cases where the event rate changes during the recording and a global time scaleτ does
not seem appropriate, the second variant uses a local definition ofτij for each event pair
(ij):

τij = min{txi+1 − txi , t
x
i − txi−1, t

y
j+1 − tyj , t

y
j − tyj−1}/2. (3.40)

The factor1/2 is introduced to avoid double counting in case that, e.g., two events inx
are close to the same event iny. As in the definition of events, the optimal choice ofτij

depends on the problem, other choices likeτ ′ij = min{τ, τij} are also possible. Withτ
replaced byτij the quantityJij is then defined as in Eq. (3.36).

Like all the other measures of synchronization introduced so far,Q andq defined in Eqs.
(3.38) and (3.39) can be calculated for two simultaneously measured time series of length
N resulting in two values quantifying the level of event synchronizationQ and delay asym-
metryq in this time frame, respectively. But in contrast to the other approaches this method
also allows to follow and visualize changes in synchronization and delay with a much
higher temporal resolution. Time resolved variants ofQ and q are simply obtained by
modifying Eq. (3.37) to

cn(x|y) =
∑

i

∑

j

Jij Θ(n− txi ) (3.41)

with n = 1, . . . , N andΘ denoting the Heaviside step function (i.e.,Θ(a) = 0 for a ≤
0 and Θ(a) = 1 for a > 0). The same waycn(y|x) is obtained by exchangingx andy.

From this, the symmetrical and anti-symmetrical combinations are given by

Q(n) = cn(y|x) + cn(x|y) and q(n) = cn(y|x)− cn(x|y) (3.42)

respectively, allowing the time resolved visualization of event synchronization and delay
asymmetry as random walks. First, if an event is found both inx andy within the window
τ (respectivelyτij), the event synchronizationQ(n) increases one step, otherwise it does
not change. Of course,Q(n) also does not change as long as there are no new events at all.
The increase of the monotonic functionQ(n) is proportional to the number of synchronous
events in the two time series.

On the other hand, the delay asymmetryq(n) performs a random walk taking one step up
every time an event inx precedes one iny and one step down in the opposite case. When-
ever an event occurs simultaneously in both signals or appears only in one of them, the
random walker does not move. In case of non-synchronized signals a random walk with
the typical diffusion behavior is obtained, whereas for signals with a delayed synchroniza-
tion q(n) shows a bias going up ifx precedesy and going down if vice versa. Such a
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bias clearly shows the presence of a time delay of the one signal with respect to the other,
but does not necessarily prove the existence of a driver-responder relationship, although it
might suggest it. In fact, as already mentioned in Section 2.3, the two signals might be
driven by a common hidden source and the bias could just indicate different delays. Also,
internal delay loops in one of the two systems could fool the interpretation. In this respect,
it is not different from other indicators of directionality like those of Refs. [138, 137]

Normalized local variants of event synchronization and delay asymmetry can be obtained
by taking the local derivative of the accumulative quantitiesQ(n) andq(n). The degree of
synchronization at timen, averaged over the last∆n time steps, is given by

Q′(n) =
Q(n)−Q(n−∆n)√

∆mx∆my

(3.43)

with ∆my and∆mx denoting the respective number of events in the interval[n−∆n, n].
Similarly, the local delay asymmetry is defined as

q′(n) =
q(n)− q(n−∆n)√

∆mx∆my

. (3.44)
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Chapter 4

Application to coupled model systems

The study of synchronization phenomena in chaotic systems has been a topic of increas-
ing interest since the early 1990s (for an overview cf. Ref. [123]). A great deal of at-
tention is paid to identifying certain regimes of synchronization in coupled identical or
non-identical systems with varying parameters (e.g., different frequency mismatches or an
increasing coupling strength). Various methods exist for the detection of the different types
of synchronization (cf. Section 2.3). Complete synchronization can easily be recognized
by plotting a component of the driver versus the respective component of the responder.
Phase synchronization can be established by a vanishing mean frequency difference [139].
As a practical criterion for the existence of generalized synchronization in unidirection-
ally driven systems, the negativeness of the largest Lyapunov exponent of the responder is
usually employed [116].

Investigations are typically carried out either analytically or by numerically analyzing long
and noise free time series (typically at least in the order of105 data points) that are gener-
ated using model equations. Only rarely the dependence between coupled model systems
is evaluated by applying bivariate measures to short time series (in the order of103 data
points) with or without additive noise. If at all, then almost exclusively a single approach
to measure synchronization is used. Examples of investigations on phase synchronization
include Refs. [163, 104, 112, 159], while approaches to detect generalized synchroniza-
tion have been studied in Refs. [145, 148, 127, 150, 160]. In Ref. [109] the linear cross
correlation, the cross correlation sum [54] as well as different measures for generalized
synchronization (including the nonlinear interdependenciesS andH) have been employed
on several coupled model systems. Different approaches like the cross correlation, mea-
sures of phase synchronization as well as the nonlinear interdependencies as measures of
generalized synchronization have been compared qualitatively in Ref. [99] by analyzing
two bidirectionally coupled R̈ossler systems.

Nevertheless, a comprehensive comparison of different approaches analyzing different
coupled model systems in a ‘controlled’ setting is still missing and thus declared as the aim
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CHAPTER 4. APPLICATION TO COUPLED MODEL SYSTEMS

of the present study. For this aim, the measures of synchronization1 described in Chapter 3
are applied to three coupled model systems with different individual properties (e.g., power
spectra, dimension). These comprise coupled Hénon maps as well as coupled Rössler and
coupled Lorenz systems. This study is divided into two parts corresponding to two dif-
ferent control parameters. With the coupling strength as the first parameter it is tested to
which extent the different measures are able to distinguish between different degrees of
coupling. This property is essential in many field applications since rarely the absolute
value of synchronization is of interest, but rather it is the change of synchronization be-
tween two different states, times, or recording sites that matters. The second parameter,
the signal-to-noise ratio, is used to investigate whether the results of the different measures
prove to be robust when the signals of interest are contaminated with a certain amount of
noise. Robustness against noise is an important prerequisite for the application of these
measures to field data, since noise is an inevitable disturbance in any measurement setting.

The remainder of this study is organized as follows: The coupling schemes are introduced
in Section 4.1.1, whereas the underlying model systems are described in Appendix A. In
Section 4.1.2 the parameters used in the practical implementation of the different measures
of synchronization are given followed by the statistical evaluation designed to compare
these measures in Section 4.1.3. Results on the measures’ capability to reflect the strength
of coupling and their robustness against noise are presented in Sections 4.2.1 and 4.2.2,
respectively. Finally, conclusions are drawn in Section 4.3.

4.1 Methods

4.1.1 Coupling schemes

To investigate and compare the performance of the different bivariate measures, for each
measure the synchronization between the first components of the following coupled model
systems is calculated.

4.1.1.1 H́enon - Hénon

The first example consists of two unidirectionally coupled Hénon maps (cf. Section A.1).
This coupling scheme was proposed in Ref. [148] and later analyzed in Refs. [127, 150,
111, 160, 109]. The equations of motion read for the driver

x′1 = 1.4− x2
1 + bx x2

x′2 = x1, (4.1)

1The directionality of the different approaches has already been addressed in Refs. [127, 150, 128], a
comparison of different approaches is subject to current research [158].
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and for the responder

y′1 = 1.4− (C x1y1 + (1− C) y2
1) + by y2

y′2 = y1. (4.2)

The parameters are set tobx = by = 0.3 to yield identical systems. In Fig. 4.1 the
attractor of the responder as well as plots of the first component of the driver versus the
first component of the responder are shown for increasing values of the coupling strength
C. The attractor of the responder looks the same forC = 0 and C = 0.8 (left), but
while for C = 0 driver and responder are completely independent (the apparent structure
in the right plot is due to the non-uniform densities of the individual systems), identical
synchronization between driver and responder can be observed forC = 0.8 (right). In
between a rather sharp transition slightly belowC = 0.7 takes place.
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Figure 4.1: Coupled identical Hénon maps. The coupling strength C is varied non-
equidistantly: a) 0.0, b) 0.6, c) 0.7, d) 0.8. For each coupling strength the attractor of
the responder is depicted on the left, whereas on the right the first component of the driver
is plotted versus the first component of the responder.

4.1.1.2 R̈ossler - R̈ossler

For the two R̈ossler systems (cf. Section A.3) a unidirectional coupling is employed using
an additional diffusive coupling term. This coupling scheme has been studied in Refs.
[104, 179, 112, 109]. The equations of motion read
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CHAPTER 4. APPLICATION TO COUPLED MODEL SYSTEMS

dx1

dt
= −ωx x2 − x3

dx2

dt
= ωx x1 + 0.15 x2 (4.3)

dx3

dt
= 0.2 + x3 (x1 − 10)

for the first R̈ossler system and

dy1

dt
= −ωy y2 − y3 + C (x1 − y1)

dy2

dt
= ωy y1 + 0.15 y2 (4.4)

dy3

dt
= 0.2 + y3 (y1 − 10).

for the second. A small parameter mismatch between the two systems is introduced by
settingωx = 0.95 andωy = 1.05. The coupling strengthC is varied from0 to 2 in steps
of 0.025. In Fig. 4.2 the attractor of the responder as well as the first component of the
driverX versus the first component of the responderY are plotted for increasing values of
the coupling strengthC. A clear tendency towards the identity can be observed (although
complete synchronization will never be reached due to the parameter mismatch).

y 2(t
)

y
1
(t)

a)

y 1(t
)

x
1
(t)

y 2(t
)

y
1
(t)

b)

y 1(t
)

x
1
(t)

y 2(t
)

y
1
(t)

c)

y 1(t
)

x
1
(t)

y 2(t
)

y
1
(t)

d)

y 1(t
)

x
1
(t)

Figure 4.2: Same as Fig. 4.1, but for the coupled Rössler systems. The coupling strength
C is increased non-equidistantly according to a) 0.0, b) 0.5, c) 1.0, d) 2.0.
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4.1.1.3 Lorenz - Lorenz

For the two Lorenz systems (cf. Section A.2) the same diffusive coupling scheme already
employed in Section 4.1.1.2 is used. The equations of motion of this coupling scheme,
which has already been investigated in Refs. [180, 109], read for the first Lorenz system

dx1

dt
= 10(x2 − x1)

dx2

dt
= x1 (28− x3)− x2 (4.5)

dx3

dt
= x1 x2 − 8

3
x3

and for the second

dy1

dt
= 10(y2 − y1)

dy2

dt
= y1 (28.001− y3)− y2 (4.6)

dy3

dt
= y1 y2 − 8

3
y3 + C (x1 − y1).
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Figure 4.3: Coupled Lorenz systems. First component of the first system versus first
component of the second system. The coupling strength C is increased according to a)
0.0, b) 1.2, c) 1.3, d) 1.325, e) 1.375, f) 1.4, g) 1.475, h) 1.5.
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Please note the small parameter mismatch introduced in the second component. The cou-
pling strengthC is varied from0 to 2 in steps of0.025. In Fig. 4.3 plots of the first
component of the first systemX versus the first component of the second systemY are
shown for increasing values of the coupling strengthC. Here the transition towards a syn-
chronized state (but again no complete synchronization) is much less smooth and there are
even some distinct regimes of anti-correlation in between.

4.1.2 Implementation of measures

For each of the coupled model systems and every parameter combination (coupling, noise
level) time series of length8192 are created, and the first and the last quarter are discarded
leavingN = 4096 data points in the middle for the analysis. The analyzed segments are
taken as the middle part of a larger time series [59] in order to avoid edge effects in the
calculation of the measures for phase synchronization. This needs to be explained in more
detail: The extraction of the instantaneous phases in principle requires integration over
infinite time. Since in practice only the values of neighboring data points give significant
contributions, the only problem left is the extraction of phases close to the edges of the
time series. This problem is solved by the described procedure, since then there are no
edges inside the analyzed time series left. Thus the whole8192 data points are used for
the determination of the phases, but only the4096 phases of the middle part contribute to
the phase distributions needed for the calculation of the measures of phase synchronization.
The valueN = 4096 is selected according to the number of data points used in the analysis
of EEG data in Chapter 5. It is chosen as a power of 2 to enable the use of Fast Fourier
Transform (FFT) algorithms [124] for the calculation of the Fourier-based measures, i.e.,
cross correlation and all indices for phase synchronization (cf. Sections 3.1 and 3.3). This
reduces the computation time from orderN2 to orderN log N . The second step to enable
the extraction of adequate phases is demeaning (i.e., setting the DC Fourier coefficient
(ω = 0) to zero) which is performed in the preprocessing in order to yield a sufficient
number of zero crossings and thus a reasonable progression of the phase (cf. Ref. [60]).
Furthermore, all time series are normalized to unit variance.

In addition to these steps of preprocessing certain parameters have to be selected for a
meaningful application of the different measures. Only cross correlation and the three
indices of phase synchronization based on the Hilbert transform are free of parameters.
From the remaining measures only mutual information (cf. Section 3.2) and event syn-
chronization (cf. Section 3.5) are calculated using the same parameters for all four coupled
model systems. Mutual information is estimated without embedding (embedding dimen-
sion m = 1, no time delayτ needed) and with the number of nearest neighbors set to
k = 1 in order to resolve the smallest possible scales (at the expense of less robustness).
For the calculation of event synchronization events are defined as local maxima and min-
ima and the method of fixed time lag was chosen. The remaining parameters and the
respective values chosen for the different systems are listed in Tab. 4.1. These comprise
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Parameter Hénon-Hénon Rössler-R̈ossler Lorenz-Lorenz
SR - 20 100
ωc 0.42 0.35 0.17
nc 5 2 1
m 3 5 5
τ 1 5 5
T 50 50 50
k 10 10 10

Table 4.1: Parameters for the application of the measures to the different coupled model
systems: Sampling rate SR, center frequency ωc (in units of the Nyquist frequency), num-
ber of cycles nc, embedding dimension m, time delay τ , Theiler correction T and number
of neighbors k.

the center frequencyωc and the number of cyclesnc of the mother wavelet for the three
indices of phase synchronization based on the wavelet transform. For the calculation of
the nonlinear interdependencies (cf. Section 3.4) a reasonable state space reconstruction
(cf. Section 2.2) is a prerequisite. Thus embedding dimensionm and time delayτ have
to be chosen, furthermore a Theiler-correctionT (necessary to exclude temporally related
neighbors [165]) and the number of nearest neighborsk. All parameters are adapted to
the respective system, e.g., the center frequencyωc of the mother wavelet is chosen as the
maximum frequency component of the system (cf. Appendix A). If possible, parameter
values are chosen according to earlier studies (e.g., [127, 150, 128, 109, 99]).

4.1.3 Criterion for comparing different measures

In the first part of this study the different measures are compared in their capability to
distinguish between different degrees of coupling between two systems. To evaluate this
dependence on the coupling strength a measure of order is introduced as follows:

M =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

sign(sj − si). (4.7)

Given a sequence of valuessi, i = 1, . . . , n, this measure evaluates for every possible pair
of values in this sequence, whether the correct order is attained, i.e., whether the second
value (the value with the higher index) is larger than the first value (the value with the lower
index). It is properly normalized as a measure of ascending order, i.e., it attains the value
1 for a sequence with a strict monotonic increase, the value−1 for a sequence with a strict
monotonic decrease, and the value0 for a constant sequence. Its way of measuring order is
illustrated in Fig. 4.4 using a linear and a square function, each with an increasing level of
noise. Differences in steepness or the polynomial order of the increase do not matter, since
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they could be easily eliminated by a suitable monotonic transformation. A linear monotony
is as good as a monotony of any higher or lower order. As a means to compare different
measuresM is designed to yield its maximum value for a measure with a strict monotonic
increase. For such a measure higher values of coupling strength necessarily lead to higher
values of synchronization.
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Figure 4.4: Simple examples to illustrate the measure of order M . a-d) Linear function with
increasing amount of noise, e-h) Square function with increasing amount of noise. Left:
Examples with 101 data point each (yielding 5050 pairs). Beside the plots the respective
value of M is given. Right: y-distances of all single pairs versus the respective x-distances.
Blue (Red): Pairs of value in correct (false) order. Zero line marks separation. Beside the
plot the counted numbers of pairs with correct and false order are given. M is obtained as
their difference divided by the total number of pairs.
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In the second part of this study it is investigated to which extent the different measures
of synchronization yield robust results when the signals of interest are contaminated with
noise. For this aim the noise-to-signal ratio, defined asNSR = σnoise/σsignal, is used as
the second parameter. For each coupled model system and every coupling strength this
noise-to-signal ratio is increased according to

NSR = 10−2+n∗0.1 with n = 0, . . . , 30, (4.8)

thereby covering the range from−0.01 to 10 equidistantly on a logarithmic scale. For each
NSR value,10 different realizations of Gaussian white noise as well as iso-spectral noise
(cf. Appendix B.1 and B.2) are generated and additively superimposed on the coupled
model system. Subsequently, for every measure of synchronization the mean value over
the different realizations is calculated.

To evaluate the robustness against noise, again the measure of orderM is used. Its de-
pendence on the noise-to-signal ratio serves as a means to track to which extent the initial
order (i.e., the dependence on the coupling strength in the absence of noise) is destroyed
by increasing levels of noise. To render a criterion for the comparison of the different mea-
sures, first for each measureM is normalized to the value of the respective systems without
noise. By this means the robustness against noise can be regarded independently from the
initial order. Subsequently, for each measure and every system the critical noise-to-signal
ratio NSRC is defined as the noise-to-signal ratio for which the normalized orderMn for
the first time falls below the thresholdM∗

n = 1/
√

2. To mark the special case thatMn does
not crossM∗

n, NSRC is set to a value beyond the maximum noise level analyzed. The
higher this critical noise-to-signal ratio for a certain measure of synchronization, the more
robust against noise is this measure.

4.2 Results

4.2.1 Dependence on coupling strength

In Fig. 4.5 the dependence of six representative measures of synchronization on the cou-
pling between two identical H́enon-systems is shown. Along with these profiles the maxi-
mum Lyapunov exponent of the responder system is depicted (cf. Ref. [127]). It becomes
negative for couplings larger than0.7, when identical synchronization between the sys-
tems takes place (cf. Fig. 4.1). In the regime0.47 < C < 0.52 it is also slightly negative
indicating weak generalized synchronization. This behavior is reflected by the bivariate
measures showing higher degrees of synchronization with increasing coupling strength.
While this is quite consistent among measures, considerable differences are found regard-
ing their monotony and their sensitivity for weak couplings. The dependence on the cou-
pling strength is rather monotonic for most measures, only for the index based on Shannon
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entropy using the wavelet Transform large fluctuations can be observed (reflecting thatγW
se

is not adapted to the broad frequency spectrum of the Hénon-systems). For this measure
quite high values are obtained already for uncoupled or only weakly coupled systems. This
holds true even more for event synchronizationQ whose increase, however, is much more
steady and starts already at very low coupling strengths. The remaining measures also rise
very slowly with the nonlinear interdependenceSs and mutual informationI showing the
most monotonic behavior. Cross correlationCmax and the index based on circular variance
using the Hilbert TransformγH

cv are slightly less monotonic.
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Figure 4.5: Dependence on the coupling strength for six measures of synchronization
applied to coupled Hénon systems without noise. The maximum Lyapunov exponent of the
responder system is depicted by the thick black line. Vertical lines mark its zero crossings.

The same dependencies are depicted in Fig. 4.6 for the coupled Rössler systems. For
these quasi-periodic systems with a slight frequency mismatch the maximum Lyapunov
exponent of the responder system crosses zero already at a very weak coupling and fur-
ther decreases rather monotonic. The measures of synchronization consistently show an
increase of synchronization for higher coupling strengths. HereγW

se attains an even higher
value thanQ for uncoupled systems (due to the quasi-periodicity of the two Rössler sys-
tems), but its increase towards the maximum value is quite slow as compared to event
synchronization. The increases ofQ andγH

cv are the steepest. These measures even show a
distinct ceiling effect already for low values of the coupling strength. The increase of the
remaining measures is rather gradual withCmax showing less fluctuations thanSs andI.
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Figure 4.6: Same as Fig. 4.5, but this time for the coupled Rössler systems.
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Figure 4.7: Same as Fig. 4.5, but this time for the coupled Lorenz systems.
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Results for the coupled Lorenz systems are shown in Fig. 4.7. Here the maximum Lya-
punov exponent of the responder system shows much more fluctuations than for the other
systems. The change of sign takes place at an intermediate coupling strengthC = 1.3.
For the measures of synchronization considerable fluctuations can be observed as well, but
for coupling strengths below the transition to generalized synchronization these stay on a
rather constant level. This transition is consistently reflected by an increase of synchroniza-
tion. Beyond the transition most measures reach their upper limit. Some measures exhibit
rare deviations from this limit, and only mutual information fluctuates steadily below.

In the next step these qualitative results are quantified by means of the measure of orderM .
The results for each measure and every model system as well as the average values over
measures and over systems are given in Fig. 4.8. The order in the dependence on the cou-
pling strength differs considerably, both among measures as well as among systems. When
comparing the different measures highest values of order are obtained for the nonlinear
interdependencies followed by cross correlation and mutual information. The index based
on conditional probability using the wavelet TransformγW

cp exhibits the least order by far.
Regarding the different model systems it turns out that highest values are obtained either
for the coupled H́enon systems or the coupled Rössler systems but never for the coupled
Lorenz systems. This is due to the fluctuations seen already in Fig. 4.7.
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Figure 4.8: Over-all comparison for the case of noise-free model systems: Measure of
order M for each measure and every system. The dotted black line depicts the mean over
the three model systems. In the last column for each model system the mean value over
measures is displayed.
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4.2.2 Robustness against noise

In this Section the dependence of the different measures of synchronization on the coupling
strength is evaluated for an increasing noise-to-signal ratio.

The dependence on the noise-to-signal ratio is displayed in Fig. 4.9 for the coupled Hénon
systems and the same measures as in the previous Section. In order to assess to which
extent the dependence on the coupling strength in the absence of noise is destroyed by
increasing amounts of noise, the noise-free caseNSR = 0 is depicted in the planar cross-
section beyond the smallest noise-to-signal ratioNSR = 0.01. Thus this layer contains
the values depicted in Fig. 4.5.

For all measures the increase of the noise-to-signal ratio leads to a gradual masking of the
dependence on the coupling strength. For the maximum noise-to-signal ratioNSR = 10
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Figure 4.9: Coupled Hénon systems: Dependence on the coupling strength and the noise-
to-signal ratio: a) Cross correlation Cmax, b) Mutual information I, c) Index based on
circular variance using the Hilbert Transform γH

cv, d) Index based on Shannon entropy using
the wavelet Transform γW

se , e) Nonlinear interdependence Ss, f) Event synchronization Q.
For the sake of completeness, for each measure the case of noise-free systems (NSR = 0)
is plotted beyond the smallest noise-to-signal ratio NSR = 0.01.
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all measures attain rather constant values close to the respective level obtained for uncou-
pled systems without noise. When looking at the complementary cross-section at max-
imum couplingC = 0.8 distinct differences between different measures regarding their
decrease of values can be observed. While cross correlationCmax and the index based on
circular variance using the Hilbert TransformγH

cv are able to maintain their high degree of
synchronization up to intermediate ranges of the noise-to-signal ratio, the synchronization
obtained for mutual informationI and the nonlinear interdependenceSs is concealed rather
quickly. The index based on Shannon entropy using the wavelet TransformγW

se and event
synchronizationQ rank between these extremes.

Results obtained for the coupled Rössler systems are shown in Fig. 4.10. For all measures,
except for event synchronization, a decrease of values with increasing noise-to-signal ra-
tio can be observed, again gradually for some measures and more abrupt for others. For
the highest amount of noise a constant level not dependent on the coupling strength is ob-
tained for each measure. Mostly this level is of the same order as the values obtained for
uncoupled systems without noise, but forγW

se it is even below this level. This effect can
be explained by the quasi-periodicity of the two Rössler systems which is overshadowed
by the noise. For event synchronization the initial synchronization collapses with a little
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Figure 4.10: Same as Fig. 4.9, but this time for the coupled Rössler systems.
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Figure 4.11: Same as Fig. 4.9, but this time for the coupled Lorenz systems.

noise. Here especially in the uncoupled case very low values are attained. With a further
increase of the noise-to-signal ratio the level of the systems without coupling and without
noise is reached. As displayed in Fig. 4.11 the behavior obtained for the coupled Lorenz
systems is very similar to the case of the coupled Rössler systems. The same effects as
described above take place with the only difference that more fluctuations can be observed
which, however, disappear for higher noise-to-signal ratios.

So far the robustness against noise has been described qualitatively, in order to compare the
different measures quantitatively again the measure of orderM is used. It allows to track
how the order obtained for noise-free systems is destroyed with increasing noise-to-signal
ratio. This dependence on the noise-to-signal ratio is plotted exemplarily for the coupled
Hénon systems in Fig. 4.12. The values of order for the noise-free systems are depicted on
the left side of the smallest noise-to-signal ratio. For most measures these degrees of order
are still maintained for lower amounts of noise. Mutual informationI and the index based
on Shannon entropy using the wavelet TransformγW

se even exhibit a slight rise in order and
maximum values are obtained for intermediate noise-to-signal ratios. But from a certain
level of noise for each measures a decrease of order can be observed.

However, the measures with the highest initial order do not necessarily prove to be most
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noise-to-signal ratio for the same measures as before. Also in this plot the case of noise-
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Figure 4.13: Same as Fig. 4.12, but for the normalized measure of order Mn. The dashed
red line marks the threshold value M∗
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√

2. Vertical lines indicate the critical noise-to-
signal ratios NSRC of the respective measure for the coupled Hénon systems.
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Figure 4.14: Over-all comparison for model systems contaminated with white noise: Criti-
cal noise level NSRC for each measure and every system. The thick black line depicts the
mean over the three model systems. In the last column for each model system the mean
value over measures is displayed.

robust as can be seen for the nonlinear interdependenceSs and the mutual informationI.
These measures are most ordered in the absence of noise but this order starts to vanish
already for intermediate noise levels. Finally, for high amounts of noise lowest values of
order are rendered. To compare the robustness of the different measures, the critical noise-
to-signal ratioNSRC is determined as the first noise-to-signal ratio after the normalized
profiles of order have crossed the thresholdM∗

n = 1/
√

2 (cf. Fig. 4.13).

In Fig. 4.14 for each measure and every model system the critical noise-to-signal ratio
NSRC is shown. Furthermore, again the average values over measures as well as over
systems are given. Results for different measures are more consistent than results for dif-
ferent systems. In the comparison of the measures highest robustness is obtained for cross
correlation followed by the two indices based on circular variance. The least robust are
mutual information and event synchronization. For mutual information this is due to the
fact that parameters have been chosen to resolve the smallest possible scale (i.e., only one
nearest neighbor has been regarded). Of course this scale is affected considerably by even
small amounts of noise. On the other hand, events have been defined as local maxima and
minima in order to yield a sufficient statistics and by this the robustness of the single event
is not guaranteed when the signals become contaminated by high levels of noise. As for
the different model systems, the order obtained for the coupled Lorenz systems without
noise proves to be most robust followed by the Hénon and the R̈ossler systems. Regarding
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Figure 4.15: Over-all comparison for model systems contaminated with iso-spectral noise:
Critical noise level NSRC for each measure and every system. If the threshold M∗

n is not
crossed, this is marked by an NSRC-value beyond the maximum noise-to-signal ratio. Due
to this effect an average value of NSRC over different measures or systems is not useful
and thus omitted.

the opposite ranking in the noise-free case (cf. Fig. 4.8), it seems that the more ordered a
system has been without noise, the less noise is necessary to destroy this order.

As for the case of iso-spectral instead of white noise, results for the equivalent analysis
are given in Fig. 4.15. For this type of noise for the different systems the same ranking
is obtained as in the case of white noise. But here for some measures and some coupling
schemesMn does not crossM∗

n at all, i.e., the order of the noise-free case is not destroyed
when the coupled systems become contaminated with noise.

For the H́enon systems in these cases the dependence on the noise-to-signal ratio is main-
tained or only slightly weakened, but for the coupled Rössler and Lorenz systems a new
effect can be observed. This effect is illustrated exemplarily for the coupled Rössler sys-
tems in Fig. 4.16. For some measures (e.g., mutual informationI and the nonlinear inter-
dependenceSs) the rise of synchronization with increasing coupling strength first starts to
fade away with increasingNSR but then gets again more pronounced for high values of
NSR. In these cases for high coupling strengths a (spurious) synchronization between the
contaminating noise-signals can be observed.
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Figure 4.16: Same as Fig. 4.9, but this time for the coupled Rössler systems and iso-
spectral noise.

4.3 Discussion

The aim of this study was to evaluate whether the analysis of model systems can contribute
useful information in order to decide which measure of synchronization is most suitable for
an application to field data. To address this aim, in the first part of this study a comparison
of the different measures of synchronization was carried out regarding their capability to
reflect different degrees of coupling between two model systems. The dependence on the
coupling strength was evaluated using a measure of orderM . There are some caveats in
this evaluation since the approach to useM is built on some very simplifying assumptions.
The most fundamental assumption is that an increase of coupling necessarily leads to an
increase of synchronization. Furthermore, this should hold true for all types of synchro-
nization no matter which model systems are investigated and which coupling schemes are
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employed.

It is quite simple to construct counter-examples in which only one type of synchronization
takes place while all other types are not at all or much less affected (confer also the on-
going discussion on generalized synchronization versus phase synchronization [114, 179]).
In such a case only the respective measures designed to detect the type of synchronization
of interest should increase while all other measures should remain unchanged. Thus the
second assumption does not hold in general. But also the first assumption is not always
fulfilled and it might happen that certain properties of the individual systems or some spe-
cial features in the interaction of the two systems diminish or even reverse the effect of a
higher coupling.

As could be seen when comparing the plots of the first driver component versus the first
responder component in Figs. 4.1-4.3 and the courses of the maximum Lyapunov exponent
of the responder system in Figs. 4.5-4.7 also the different systems investigated in this study
exhibit very different behavior in their transition to synchronization with increasing cou-
pling strength. In particular for the coupled Lorenz system amidst an over-all increase of
synchronization distinct regimes of anti-synchronization and, correspondingly, high fluctu-
ations of the Lyapunov exponent could be observed. On average this behavior was reflected
by the different measures and, furthermore, correctly tracked by the measureM showing
the lowest order for this coupling scheme.

Due to these caveats in the analysis of model systems it seems that the notion of a ‘con-
trolled’ setting is valid only up to a certain extent. Each and every time a careful exam-
ination of the underlying model systems and coupling schemes is unavoidable. Thus the
question which measure is best suited can not be answered in general. Rather it seemed
that the result is clearly dependent on the model system and the coupling scheme. This
is in line with the rather inconsistent results that were obtained for different systems and
measures.

But even if the underlying assumptions do not hold rigorously and the order can not be
used as a strict criterion to compare measures in the first part of this study,M still proves
useful as a means to reduce information since it compresses the dependence on the cou-
pling strength into a single value. The crucial point is the interpretation of a low value of
M indicating a non-monotonic course. Is such value due to a failure of the measure to
distinguish between different levels of coupling or does the measure correctly reflect cer-
tain peculiarities in the systems’ transition to synchronization? Most of all, such a value
should encourage a more careful investigation of the respective dependence on the coupling
strength.

Whereas there were some caveats in the first part of this study, the application of the mea-
sure of order in the second part remained unaffected. Given the order without noise,M
served as an appropriate means to track the changing of this order due to the additive noise.
Using a threshold criterion designed to quantify the robustness against noise, the influence
of Gaussian white noise was evaluated. Regarding the comparison of the different systems
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again robustness was dependent on the system under investigation. For systems with high
order in the absence of noise the least robust results were obtained. As for the comparison
of the different measures, on average all measures proved to be rather robust against white
noise. Slight advantages were observed for cross correlation and the phase synchronization
indices based on circular variance. This is consistent with results obtained in Ref. [99].

Concerning contaminations with iso-spectral noise, for some model systems and some
measures a (spurious) synchronization between the contaminating noise signals could be
observed. This effect was also reported for bidirectionally coupled Rössler systems in Ref.
[99]. It can be explained by the narrowness of the power spectrum of the respective sys-
tems [99], which, by construction of iso-spectral noise (cf. Appendix B.2), leads to the
same narrow power spectrum of the two noise signals added. In case of strong coupling,
the peaks in the power spectrum of the coupled systems (and thus those of the noise signals
as well) align at the same frequency [114]. For low levels of the noise this causes synchro-
nization of the coupled signals, for high levels of noise (spurious) synchronization between
the noise signals can be detected. In the coupling regimes investigated here this was most
prominently observed for the nonlinear interdependencies.

Summing up, the question which measure is best suited for the application to field data
(e.g., of biological or medical origin) can not be answered a priori. Regarding the capa-
bility to distinguish different coupling strengths, due to the individual properties and pecu-
liarities of every system, except for very special cases an obvious and objective criterion
to compare different measures is not at hand. However, as for the robustness against noise,
judgmental statements can be made. Depending on the conditions of data acquaintance and
the expected noise level, the measure should be chosen accordingly. On the other hand, in
most cases the measure to be applied to a certain task can be chosen rather pragmatically
as the measure which most reliably yields valuable information (e.g., information useful
for diagnostic purposes) in test applications. Such an application is presented in the next
Chapter.
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Chapter 5

Application to the EEG of epilepsy
patients

In this Chapter the bivariate measures of synchronization introduced in Chapter 3 and tested
on model systems in Chapter 4 are applied to real data obtained from a system with poorly
understood dynamics. For this purpose the electrical activity of the brain recorded from
epilepsy patients by electroencephalography (EEG) is analyzed. Due to the physiological
and pathophysiological variations in the brain these electroencephalographic time series
represent a prominent example of biological data showing a rich and diverse appearance
and therefore constitute a great challenge for the application of methods derived from the
theory of dynamical systems. Since the EEG is typically measured simultaneously in dif-
ferent regions of the brain, it is highly suited to be investigated by measures of synchro-
nization. First in Section 5.1 a short introduction to the disease epilepsy and the most
important tool of diagnosis, the EEG, is given. The EEG is then analyzed to investigate
to which extent the different measures of synchronization are capable to reflect the tem-
poral variability of the epileptic process. In particular, the measures are tested for their
ability to successfully address the most challenging clinical task, namely the prediction of
epileptic seizures. In these investigations a great deal of attention is paid to the statistical
validation of seizure predictions, a very important aspect which is frequently neglected. In
Section 5.2 a new approach to address this issue, the method of measure profile surrogates,
is introduced and compared against the existing method of seizure times surrogates. Due
to feasibility the latter method is applied in the comparison of the bivariate measures by
means of a comprehensive statistical evaluation of the predictability of seizures in Section
5.3. Furthermore, the combined use of measures is discussed based on observed correla-
tions between the different measures. Finally, in Section 5.4 the new method of measure
profile surrogates is illustrated by exemplarily evaluating the predictive performance of two
measures of synchronization.
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CHAPTER 5. APPLICATION TO THE EEG OF EPILEPSY PATIENTS

5.1 Epilepsy and the electroencephalogram

The word‘epilepsy’ is derived from the Greek verbεπιλαµβανειν (epilamvanein= ‘to
be seized’ or ‘to be attacked’). In ancient history epilepsy was considered to be the sacred
disease (”morbus sacer”) representing attacks by the gods or evil spirits. Nowadays it is
understood that the hallmark of epilepsy, the epileptic seizure, is the (sudden) occurrence
of an intermittent malfunction of the brain. In more detail, it represents the clinical mani-
festation of an excessive, synchronous, abnormal high-frequency firing pattern of neurons
in the brain [32, 107]. Epileptic seizures are fundamentally divided into two main classes
- generalized and partial. While generalized seizures are bilateral and involve almost the
entire brain, partial (focal) seizures have clinical or electroencephalographic evidence of a
localized onset and usually stay confined to one hemisphere [73].

The onset of a focal seizure is assumed to be initiated by abnormally discharging neurons
in a circumscribed region of the brain, the ictal onset zone also called theepileptic focus.
These so-called burster neurons are altered in their fundamental excitability and start to
recruit and entrain neighboring neurons into some ’critical mass’ of hypersynchronous ac-
tivity [167, 177, 23]. This is accompanied by a lack of inhibition which allows the spread-
ing of these pathological discharges both in local areas and also, via preferred synaptic
pathways, into distant brain regions. During the course of seizure propagation the involved
neuronal populations are no longer able to maintain their usual coordinated physiological
information processing and clinical symptoms become evident. These are mostly specific
for the affected brain region and depending on seizure type and severity comprise loss or
impairment of consciousness, absence, tonic contractions or clonic convulsions (or both
combined), localized paralysis as well as sensory, autonomic or psychic symptoms [176].

But epilepsy is much more than seizures. Also temporally distant from these rare, so-called
ictal states (lat. ictus = seizure), i.e., during theinter-ictal state, many neurons exhibit
different forms of epilepsy-specific pathophysiological behavior. The most pronounced
manifestation is the so-calledparoxysmal depolarization shift (PDS), a distinct shift of
the resting membrane potential accompanied by bursts of action potentials (up to 800 per
second) and followed by periods of inhibition [39, 94, 95]. Most often such events occur
isolated, and relatively little perturbation of function can be detected. The area of the
cortex that generates theseinter-ictal epileptiform dischargesis called the irritative zone.
It is clearly related but often not identical to the ictal onset zone.

Approximately5% of the world’s population have an epileptic seizure at least once in
their life, but this does not mean that they suffer from epilepsy, which is only the case
when such seizures occur chronically. The estimated lifetime cumulative incidence (rate
at which new cases of a disease occur) of epilepsy is3% and the prevalence (frequency
of all current cases of a disease) is0.5%. Approximately60% of patients undergo partial
seizures. Although most patients have few seizures or seizures that are well controlled by
antiepileptic or anticonvulsive drugs, an estimated5 − 10% are medically intractable and
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may become candidates for surgical treatment, i.e., the tailored resection of the epileptic
focus [32, 11]. This highly invasive therapy is feasible only if an exact localization of
the epileptic focus and its delineation from functionally important areas can be achieved
by an extensive presurgical evaluation making use of various clinical and diagnostic tools.
First of all different neuroimaging techniques are applied to identify and delineate potential
epileptogenic brain lesions. These are supplemented by a variety of basic neurological and
neuropsychological examinations mainly aiming at an estimation of the extent and pattern
of cognitive deficits possibly caused by an underlying brain disruption.

Despite these modern techniques the most widely used diagnostic tool is still the acquisi-
tion of the EEG, a technique dating back to the late 20s of the past century [18]. Nowadays
the EEG is clinically useful in many neurologic disorders but its use in epilepsy is unique. It
allows a physiologically meaningful visualization of the complex activity of the brain dur-
ing and between seizures. Thus the easiest and most reliable method to exactly localize the
epileptic focus is the electroencephalographic recording of several epileptic seizures and
the identification of the ictal onset zone by visual inspection of the EEG. If non-invasive
techniques are not sufficient to yield the desired information for an unequivocal localiza-
tion, to date usually multichannel recordings are performed using intracranial monitoring
techniques like the electrocorticogram (ECoG) and the stereo-EEG (SEEG). In these cases
the brain electrical activity is recorded directly from the surface of the brain and from spe-
cific structures within the brain. In Fig. 5.1 a typical intracranial implantation scheme as it
is used at the Department of Epileptology, University of Bonn, Germany, is depicted. The
excellent signal to noise ratio and the outstanding temporal and spatial resolution yielded
by implanted electrodes allow a substantially increased precision in the design of the sur-
gical intervention justifying the high degree of invasiveness1. Recent technical progress
like the development of combined digital video-EEG monitoring systems as well as the
use of modern computers together with high capacity storage facilities in principle enable
the processing and analysis of continuous long-term multichannel recordings in real time.

The human brain consists of approximately1011 neurons with a total of1014 to 1015 synap-
tic connections. The electrical activity recorded at each electroencephalographic channel is
assumed to be generated by postsynaptic sum potentials of a very large number of individ-
ual neurons, each of them showing a highly nonlinear discharging behavior (and sometimes
even bursting). The superposition of all these elementary processes of the central nervous
system typically leads to EEG voltage amplitudes of the order of somemV . In Fig. 5.2 the
SEEG of the left and right hippocampal formation recorded from a patient with the epilep-
tic focus located in the left temporal lobe is depicted. The upper and lower traces show

1However, noninvasive multichannel magnetoencephalography (MEG) and scalp EEG analysis, together
with magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), are
expected to supersede invasive EEG recording techniques in many candidates for epilepsy surgery. In the
near future, when these combine with increased local cerebral metabolic information from more sensitive
positron emission tomography (PET) and expected developments in metabolic applications of MRI, the need
for depth and subdural recording should continue to diminish [32].
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Figure 5.1: Schematic view of implanted depth electrodes TL and TR. Each depth elec-
trode is equipped with 10 contacts of a nickel-chromium-alloy (diameter: 1 mm, length: 2.5
mm, inter-contact distance: 4 mm).

an inter-ictal and an ictal interval, respectively. The seizure onset in the left hippocampal
formation is easily recognizable.

In Figs. 5.3 and 5.4 two time series representative of the inter-ictal and the ictal interval
are shown together with the respective power spectrum and state space portrait.

The first measures calculated from EEG data have been linear ones, namely the relative
power contained in certain characteristic frequency bands of the EEG. These comprise:δ
[0-4 Hz], ϑ [4-8 Hz], α [8-13 Hz], β [13-30 Hz] andγ [30-48 Hz]. These intervals have
been defined according to predominant activities in the EEG related to certain states of
vigilance and/or pathology. Other traditional linear measures used in EEG analysis include
the Hjorth parameters [48], time domain based measures derived from the autocorrelation
function and statistical moments like the variance. Recently a variant of the latter resur-
faced as accumulative energy [88].

In most studies the EEG is analyzed retrospectively by means of a moving window tech-
nique [16] dividing the recordings into short segments typically of the order of some tens of
seconds. Univariate nonlinear measures that have been applied using this technique com-
prise estimates of an effective correlation dimension [81, 84, 8, 15], the correlation density
[93], the measureξ quantifying the fraction of nonlinear determinism [4, 5, 10], the largest
Lyapunov exponent [52, 174, 72], measures derived from the theory of symbolic dynamics
[63, 68] and the loss of recurrence as a measure for non-stationarity [134, 133, 132]. Fre-
quently the method of surrogate data [166] is used to focus on specific nonlinear properties
of the EEG [35, 7]. Furthermore, bivariate measures have been used to perform a univari-
ate analysis on a single channel: One time window is kept as a fixed reference and the

50



5.1. EPILEPSY AND THE ELECTROENCEPHALOGRAM

0 2 4 6 8 10 12 14

t[s]

0.5 mV

TL1
TL2
TL3
TL4
TL5
TL6
TL7
TL8
TL9
TL10

TR1
TR2
TR3
TR4
TR5
TR6
TR7
TR8
TR9
TR10

0 2 4 6 8 10 12 14

t[s]

0.5 mV

TL1
TL2
TL3
TL4
TL5
TL6
TL7
TL8
TL9
TL10

TR1
TR2
TR3
TR4
TR5
TR6
TR7
TR8
TR9
TR10

Figure 5.2: Two exemplary multichannel SEEG recordings of the same patient with mesial
temporal lobe epilepsy originating in the left hippocampal formation. Top: Inter-ictal activity.
Bottom: Onset of a seizure and beginning ictal activity.
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Figure 5.3: Inter-ictal EEG: a) Exemplary time series with N = 4096 (≈ 20 sec). b)
Normalized power spectrum. c) Two-dimensional state space portrait (time delay τ = 6).
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Figure 5.4: Ictal EEG: a) Exemplary time series with N = 4096 (≈ 20 sec). b) Normalized
power spectrum. c) Two-dimensional state space portrait (time delay τ = 6).

dynamical changes are tracked by comparing the succeeding windows of the same channel
against this reference [79].

It is only recently that bivariate measures have been more widely applied to human EEG
data. In Refs. [14, 13, 69, 67, 66] the nonlinear interdependencies S and H have been used
to investigate spatio-temporal patterns in the brain of epilepsy patients. The index based
on circular variance using the Hilbert TransformγH

cv (also termed mean phase coherence)
as a measure of phase synchronization has been applied to EEG data from epilepsy pa-
tients by Mormann and colleagues [98, 104, 101, 100]. In the latter two studies also the
linear cross correlation has been used. Phase synchronization with the phase based on the
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wavelet transform has been introduced in Refs. [71, 70] to quantify synchronization be-
tween different areas of the brain during cognitive tasks and also applied in Ref. [61]. In
Ref. [77] phase synchronization measures based on the Hilbert transform and those based
on the wavelet transform have been compared also using EEG data. Quian Quiroga and
colleagues performed a comparison of the performance of different bivariate approaches in
a case study analyzing EEG data from an animal model of epilepsy [128]. Further studies
dealing with synchronization in the EEG include Refs. [53, 111].

5.2 Prediction of epileptic seizures and its statistical vali-
dation

Most epileptic seizures occur ”like a bolt from the blue”, although there are several en-
vironmental and physiological factors known as common seizure precipitants, e.g., sleep
deprivation, hyperventilation, drugs and alcohol or even more frequently withdrawal of al-
cohol. Also the level of consciousness, the state of vigilance, and nonspecific emotional
situations in some susceptible individuals are regarded as potential modulating factors [3].
In reflex epilepsies seizures are triggered by highly specific stimuli, either visual, auditory
or somatosensory in nature [164]. Finally, some patients even can induce seizures by them-
selves. But still, depending on the patient, seizures may occur frequently or infrequently,
only at night or after awakening, in a cyclic pattern, only with highly specific triggers, in
many other permutations, and, most commonly, without any apparent predictability.

To date it remains an open question whether this unpredictability of epileptic seizures can
be overcome by the analysis of the electroencephalogram using different characterizing
measures. In the EEG most seizures are easily recognized by their rhythmic high ampli-
tude activity (cf. Figs. 5.2 and 5.4) reflecting the abnormal synchronization of a large
number of neurons [32]. With this in mind, the question arises whether it is also possible
to discriminate the intervals preceding seizures (pre-ictal periods) from the intervals far
away from any seizure activity (inter-ictal periods). Provided that the analysis of the EEG
would allow to reliably detect a pre-ictal state2 in a prospective setting, new therapeutic
possibilities (e.g., seizure prevention strategies) could be envisaged [29].

Therefore, it is not surprising to find a very rich and diverse literature dealing with the pre-
diction of epileptic seizures. Starting from earliest approaches based on pattern recognition
[173] and spike detection [40, 74] at first mostly univariate measures were employed, ei-
ther linear [135, 28] or nonlinear [52, 30, 84, 93] in nature. Later efforts reporting the

2Note that there is a clear distinction between the term ‘pre-ictal interval’ and the notion of a ‘pre-ictal
state’. While the former term defines the time interval before a seizure, the latter is used to describe a
potential distinct state reflecting a disposition towards a transition to a seizure. Whenever there is a seizure,
there has been a pre-ictal interval before by definition. The existence of the pre-ictal state, however, is still to
be proven.
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predictability of epileptic seizures by applying these two different kinds of univariate mea-
sures include Ref. [88] and Refs. [80, 105], respectively. It is only recently that bivariate
[104, 51, 101] or multivariate [149] measures have been added to the wide range of ap-
proaches reportedly being able to detect a pre-ictal state. The current impact of this topic
is stressed by recent controversies about the relevance of nonlinear approaches for the pre-
diction of epileptic seizures [97, 100] and even more strikingly by studies raising doubts
about the reproducibility of reported claims [26, 15, 72]. For an overview refer to Refs.
[87, 89, 86].

Typically, in a study on the predictability of epileptic seizures first a certain characterizing
measure is calculated from multi-channel EEG using a moving-window technique. The
resulting measure profiles are then scanned for prominent features which can be related
to the actual seizure times. These features might be drops or peaks (e.g., quantified as
threshold crossings) or any other distinct pattern in the measure profile. In a second step
the measures’ capability to distinguish the pre-ictal from the inter-ictal interval is evaluated
with a test statistics quantifying the occurrence of these features relative to the seizure times
and resulting in some kind of performance value. If this performance is high, it might on the
one hand reflect the existence of a pre-ictal state and the capability of the applied measure
to detect it, but it might on the other hand also be due to statistical fluctuations or some
(unknown) bias in the algorithm.

In the design of a seizure prediction algorithm there are many subtle points to be considered
carefully. Typically the calculation of the measure as well as the later statistical evaluation
involves the choice of certain parameters. In this context, much care needs to be taken
to avoid in-sample optimization of these parameters. Certainly, what is true for a single
measure holds also for a larger number of different measures. The application of a huge
variety of measures to the EEG might yield a measure with seemingly good results just by
chance (particularly on a limited database). Secondly, there are many degrees of freedom in
the statistical evaluation. In the case of univariate measures often a best channel selection
is performed, and for bivariate measures, which evaluate the dependencies between two
channels, there are even more channel combinations to choose from. Finally, the same
argument holds for different patients as well. Provocatively speaking, many (spurious)
claims about the existence of a pre-ictal state might just be due to some ’best parameter’,
’best measure’, ’best channel’ and/or ’best patient’ selection.

Since usually these problems cannot be solved in the design of a seizure prediction statis-
tics, the question arises how to interpret a non-zero performance value. This value might
correctly reflect the existence of a detectable pre-ictal state, but it might also be the spurious
result of statistical fluctuations. Therefore, to assess the performance yielded by a seizure
prediction algorithm, a method to judge its statistical validity is needed. The result should
be verified against some null hypothesis and its level of significance should be estimated.
This can be achieved using the concept of surrogates [166, 155], in which the validity of a
given test result is evaluated by applying the test not only to the original data but also to an
ensemble of surrogate data generated by means of a Monte Carlo randomization. In this
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case the null hypothesisH0 to test against can be stated as follows: ”The measure under
investigation is not suited for seizure prediction.” If this null hypothesis is fulfilled it might
be due to two different reasons. Either a pre-ictal state does not exist (and thus there is no
measure suited for seizure prediction) or a pre-ictal state does exist, but the measure is not
able to detect it. On the other hand the null hypothesis can only be rejected if both inverse
conditions are fulfilled: There are specific changes before a seizure and the measure is
sensitive to these changes.

The performance of any seizure prediction algorithm crucially depends on whether the
sequence of actual seizures is matched by some corresponding structure in the measure
profiles. Therefore to test for statistical significance of a good performance by using the
method of surrogates, any such structure should be destroyed by the randomization. Es-
sentially, this can be done in two different ways. Andrzejak and colleagues [9] recently
introduced the method of seizure time surrogates in which the seizure times are random-
ized, while the measure profiles are maintained. In this thesis themethod of measure profile
surrogatesis proposed, a new and complementary approach, in which the seizure times are
kept fixed and instead a constrained randomization of the measure profiles is performed
using the method of simulated annealing [65, 64].

The concept of surrogates as a means to test a null hypothesis is applied equivalently in
both methods: The seizure prediction algorithm is run using the original measure profiles
(seizure times) and its performance is compared to the results of the same algorithm using
an ensemble of measure profile surrogates (seizure time surrogates). Provided that a pre-
ictal state exists and the prediction algorithm is able to detect it, its performance should be
highest for the original measure profiles (seizure times). In this case the null hypothesis
could be rejected at the level of significance determined by the number of measure profile
surrogates (seizure time surrogates).

Both methods are reasonable statistical approaches to address the correspondence between
measure profiles and seizure times, but the method of measure profile surrogates is the
more natural choice: Usually, within the method of surrogates the property to test for is
destroyed in the surrogates. And in the present case the object under investigation is the
measure rather than the sequence of seizures. More specifically, the aim is to test the
measure for its capability to extract information from the EEG that enables the prediction
of the original seizures and not to test the sequence of seizures whether they resemble the
measure profiles.

Within either of these methods there are certain properties of the original which should be
preserved for the surrogates. In the case of seizure time surrogates it has been proposed to
preserve the total number of seizures, the distribution of time intervals between consecutive
seizures, and, as the case may be, any clustering of the seizures [9]. This has been achieved
by a random permutation of the original seizure intervals. As indicated already in Ref. [9],
this approach is applicable only if the number of seizures and hence the number of possible
permutations is large enough to allow the generation of the number of surrogates needed
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to obtain the desired significance. The number of possible permutations is even further
diminished in the presence of recording gaps, since then permutations have to be discarded
whenever one of the surrogate seizures falls into such a gap. To prevent a bias between
the original and the surrogates, also ictal and post-ictal intervals as well as all other events
known to possibly cause changes in the EEG have to be avoided (For the sake of brevity,
throughout this thesis these intervals will also be referred to as recording gaps). But even
when a sufficient number of permutations remain, much care has to be taken to ensure that
the inter-ictal interval as well as any possible pre-ictal interval are equally well represented
in the original and in all of the seizure time surrogates.

In the method of measure profile surrogates these issues are easily addressed, since the
original seizure times are not changed at all. Rather they are correctly considered as given
conditions based upon which the measure profiles are probed for their predictive perfor-
mance. But also in this method there exist some constraints, i.e., properties which should
be extracted from the original measure profile and imposed on the surrogate measure pro-
files. First of all, a suitable randomization should maintain all existing recording gaps.
Furthermore, it is advisable not only to preserve the amplitude distribution but also to
maintain essential parts of the autocorrelation function. The preservation of these features
guarantees that, when regarded independently from the seizure times, the original as well
the surrogate measure profiles can be considered as a possible original measure profile. The
most important property that might remain different is the correspondence to the seizure
times and this is exactly the property under investigation.

Despite the aforementioned advantages of the method of measure profile surrogates, in this
thesis both methods are applied. This is due to the high computational cost of the method
of measure profile surrogates which to date renders the application of this method to a very
large database infeasible. Since the comparison of the bivariate measures regarding their
capability to predict epileptic seizures is carried out by analyzing quasi-continuous long-
term recordings from nine patients, performances yielded are statistically evaluated by
means of the method of seizure times surrogates. Subsequently, the new method of measure
profile surrogates is illustrated by exemplarily evaluating the predictive performance of two
measures of synchronization analyzing recordings from one of these patients.
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5.3 Statistical evaluation of the predictability of seizures

The final aim in the field of seizure prediction is the design of a prospective algorithm
which is able to detect specific changes before an impending seizure when evaluating on-
line the time profiles of a characteristic measure calculated in real-time. A successful
implementation of such an algorithm is dependent on two important prerequisites. These
are the existence of a pre-ictal state different from the inter-ictal state and the capability
of the applied measure to detect it. Since pathological synchronization of neuronal ensem-
bles is regarded as the main mechanism responsible for the generation of epileptic seizures
[90] the bivariate measures of synchronization used in this thesis rank among the most
prominent candidates to fulfill the latter demand. To evaluate which of these measures is
best suited for the prospective detection of a pre-ictal state it is reasonable first of all to
retrospectively compare their ability to distinguish between pre-ictal and inter-ictal inter-
vals. Since the investigation on model systems did not lead to a reasonable exclusion of
one or more measure and since the noise-to-signal ratio of the data to be analyzed is very
low, all measures of synchronization and directionality will be probed for their predictive
performance.

In case that no measure on its own would be capable to predict epileptic seizures with a
sensitivity and specificity sufficient for a clinical application, it seems reasonable to test
whether a combination of different measures could lead to a significant improvement in
predictive performance (cf. Ref. [5]). However, before accomplishing this, it should
be investigated to which extent different measures carry independent and non-redundant
information. In the second part of this study this investigation is carried out for all bivariate
measures analyzed in this thesis.

First a statistical approach is applied to measure profiles rendered from the analysis of
quasi-continuous multi-day EEG recorded intracranially from nine patients (Section 5.3.1.1).
The study is based on cleaned data due to a comprehensive preprocessing performed to
identify and eliminate artifacts (Section 5.3.1.2). Amplitude distributions of pre-ictal and
inter-ictal intervals are compared by means of Receiver-Operating-Characteristics without
the use of any a posteriori knowledge. The analysis is performed with and without smooth-
ing of the measure profiles, allowing different lengths of the pre-ictal interval and finally
testing for both a pre-ictal decrease as well as an increase of the measures’ values (Section
5.3.1.3). Since it is not known beforehand how a potential pre-ictal state manifests itself,
different evaluation schemes are designed focussing either on global or local effects and
using either a constant or an adaptive baseline (Section 5.3.1.4). As mentioned above, the
obtained performance values are statistically validated by the use of seizure time surrogates
(Section 5.3.1.5). Finally, in Section 5.3.1.6 the correlation between the different measures
is quantified.

The whole study is an extension of an earlier study [103] in which the discriminative per-
formance of nine bivariate measures of synchronization was evaluated by analyzing EEG
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recordings from the first five patients of this study. In this earlier study a comprehensive
comparison with univariate approaches was carried out as well. Differences between the
extended results (Section 5.3.2) and the ones reported in Ref. [103] will be discussed in
Section 5.3.3.

5.3.1 Methods

5.3.1.1 Data base and implementation of measures

This study evaluates the ability of the different measures of synchronization and direction-
ality introduced in Chapter 3 to distinguish between pre-ictal and inter-ictal intervals. The
degree of synchronization is quantified by symmetric measures like the linear cross corre-
lationCmax, the mutual informationI and the three different indices of phase synchroniza-
tion with the phase of the time series being extracted either using the Hilbert transform (γH

se,
γH

cp andγH
cv) or the wavelet transform (γW

se , γW
cp andγW

cv ). Furthermore, the symmetrized
variants of the nonlinear interdependenciesSs andHs and the event synchronizationQ are
used, all of them also measuring the level of synchronization. From the latter approaches
also three different measures of asymmetry are yielded, namely the nonlinear interdepen-
denciesSa andHa as well as the delay asymmetryq.

Measures were applied to quasi-continuous multi-day EEG recorded intracranially during
the pre-surgical work-up from nine patients with mesial temporal lobe epilepsy (compris-
ing 66 seizures in a recording time of 860 hours. Seizure onset times were determined by
expert EEG readers using visual inspection.). The first five of these data sets have been
provided from different epilepsy centers for the common data base established for the 1st
International Workshop on Seizure Prediction held in April 2002 in Bonn, Germany [85].
These will be denoted as follows: A (Bonn, Germany), B (Florida, USA), C (Amsterdam,
Holland), D (Kansas, USA) and E (Pennsylvania, USA). The remaining four data sets, like
the first one, have been recorded in the Department of Epileptology, University of Bonn,
Germany. They will be denoted as patients F, G, H and I.

For each measure and every patient time profiles are calculated using a moving window
technique with non-overlapping segments of4096 data points each. Depending on the
sampling rate for the respective patient, the corresponding duration of these segments range
from 17 to 20.5 s (To approximate a uniform segment duration for all patients, data of
patient C are downsampled from480 Hz to240 Hz). This time frame can be regarded as a
good compromise between a high temporal resolution and a statistical accuracy sufficient
for the calculation of the different measures. To considerably reduce the amount of data
and to be most sensitive to local effects the analysis is performed for neighboring channel
combinations only3. More detailed information about the data sets and their acquisition
can be found in Fig. 5.5 and Tab. 5.1.

3For patient C, who had a more distributed implantation scheme without apparent neighborhoods, com-
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ID C Gender Foc L [h] Sz Ch CC SR [Hz] Rs [Bit] FS [Hz]
A D M L 107 10 48 40 200 16 0.3-70
B USA M L 65 15 32 25 200 10 0.1-70
C HOL M L 20 3 32 31 480 12 0.1-100
D USA F L 50 6 51 48 240 10 0.1-100
E USA F L 69 17 81 69 200 12 0.5-70
F D F L 190 1 56 48 200 16 0.3-70
G D M R 112 6 20 18 200 16 0.3-70
H D M L 141 5 48 40 200 16 0.3-70
I D F L 106 3 48 39 200 16 0.3-70∑

860 66 416 358

Table 5.1: Patient characteristics and recording parameters. Depicted are patient-ID,
country of recording, gender, focal side, length of recordings L, number of seizures Sz
as well as channels Ch and combinations of neighboring channels CC. Furthermore, the
sampling rate SR, the AD resolution Rs and the bandpass filter settings FS are given.
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Figure 5.5: Schematic view of data base. Gray horizontal bars denote recording times,
white blocks indicate recording gaps, black vertical lines denote seizures.
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In addition to the steps of preprocessing already described in the first part of Section 4.1.2
certain parameters have to be adjusted for a meaningful application of the different mea-
sures to the EEG (cf. Chapter 3). Only cross correlation and the three indices of phase
synchronization based on the Hilbert transform are free of parameters. The phase syn-
chronization measures based on the wavelet transform were calculated with the center fre-
quency set toωc = 3Hz and the number of cycles set tonc = 3 (chosen according to Refs.
[61, 128]). The calculation of mutual information was performed without embedding (i.e.,
embedding dimensionm = 1, no time delayτ needed) and with the number of nearest
neighbors set tok = 1. The state space reconstruction as a prerequisite for the calculation
of the nonlinear interdependence measures was carried out using an embedding dimension
m = 10 and a time delayd = 5. Here a Theiler correction ofT = 50 data points was
used. The number of nearest neighbors was set tok = 10 (chosen in accordance with Ref.
[128]). Finally, the events as basic ingredients for the calculation of event synchronization
were defined as local maxima and minima and the method of fixed time lag was chosen.

5.3.1.2 Preprocessing: Elimination of artifacts

When measuring physiological data like the human electroencephalogram, it is a non-
trivial task to guarantee a good quality of the data. Very often a preprocessing becomes
necessary since EEG recordings typically are contaminated by various kinds of artifacts
either caused by the recording system (e.g., power line interferences due to unsatisfac-
tory shielding or insulation, data clipping due to insufficient input level adjustment) or by
the patient himself (e.g., artifacts from eye movements or other muscle activity, or due to
pulsative variations of the blood flow). In this study (cf. Ref. [103]), artifacts due to an ex-
ternal reference electrode as well as prominent electrocardiographic signals and movement
artifacts found in the recording of patient E were suppressed by transforming the EEG to a
common average reference scheme. Finally, to identify recording dropouts and data clip-
pings, every analysis window from every patient was scanned for so-called plateaus: Any
analysis window containing either more than40 consecutive sampling points of identical
value or more than1000 data points in different plateaus was declared as artifact. If for
a given channel combination the number of artifact windows thus identified exceeded 5%
of all windows, the entire channel combination was discarded from the further analysis.
This amounted to3 discarded channel combinations for patient A,2 for patient B, and13
for patient E. For the measure profiles of the other channel combinations values of artifact
windows were, according to the respective evaluation scheme, set to the median of the
respective amplitude distributions (i.e., inter-ictal or pre-ictal). With this method any bias
between inter-ictal and pre-ictal intervals due to artifacts is thoroughly avoided.

binations of successive channels were used.
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5.3.1.3 Discriminating the pre-ictal from the inter-ictal interval using ROC-Curves

If a measure is capable to distinguish the pre-ictal interval from the inter-ictal interval, it
should attain different amplitude values for these intervals. Therefore the potential pre-
dictive performance of different measures is evaluated by retrospectively comparing the
amplitude distributions of the respective intervals for each measure (cf. Ref. [103]). There
exists numerous different approaches to judge the dissimilarity of two amplitude distribu-
tions, e.g., the Kolmogorov-Smirnov test. Another well known approach is called Receiver-
Operating-Characteristics (ROC) [44]. Within this statistics, a threshold for amplitude val-
ues is continuously shifted across these distributions, and the fraction of amplitude values
of the first distribution below this threshold is plotted against the respective fraction of the
second distribution. With respect to one of the two complementary hypotheses of separa-
bility (values from the pre-ictal distribution are generally lower (higher) than those from
the inter-ictal distribution) this corresponds to plotting the sensitivity (ratio of true positives
to total number of positives) against1 minus the specificity (ratio of true negatives to total
number of negatives). The capability of a measure to distinguish between the inter-ictal
and the pre-ictal interval, i.e., its potential predictive performance, can then be quantified
by the area between the resulting ROC-curve and the diagonal. Identical distributions lead
to a zero area, while for distributions that are completely non-overlapping, ROC-values
of 0.5 or −0.5 are attained, depending on which hypothesis is used for the definition of
sensitivity and specificity. To cover the range from[−1, 1] this area is renormalized by a
factor of2. Note that this definition differs from common practice in ROC-statistics where
values between0 and1 are used. In Fig. 5.6 an illustration of ROC-curves is depicted.

In previous studies the predictive performance of a measure has been evaluated by quanti-
fying the occurrence of distinct patterns, e.g., local drops or peaks parameterized by their
width and depth relative to a given reference level (e.g., the mean value over all inter-ictal
intervals), in the measures’ profile relative to seizure onset [84, 30]. The approach to com-
pare amplitude distributions using ROC-statistics is more robust since it does not depend
on the choice of a reference level. Nevertheless, its application involves, as usual, the
choice of certain algorithm parameters. If computationally feasible, one common practice
in these cases is to try many different combinations of parameters and to choose the most
successful one.

In this case parameters are necessary because it is not known beforehand which the promi-
nent features are to be extracted from the measure profiles (e.g., drops or peaks), how long
they last, and finally at what times before a seizure they occur. The first point is addressed
by testing for both a pre-ictal decrease of amplitude values (↓, in this thesis positive ROC-
value by definition) as well as an increase (↑, here negative ROC-value by definition),
thereby judging ROC-values by their absolute value. To account for longer durations of
drops or peaks, the analysis is performed not only using the unsmoothed measure profiles,
but also after smoothing of the measure profiles with a backward moving average filter
of sized = 5 min. Using a smoothing filter of sized is equivalent to applying a moving
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window technique to the profiles and calculating the area under the profile in a window
of lengthd. This area is smaller (larger) for windows that contain a local drop (peak).
Therefore, the parameterd governs the minimum duration of drops and peaks since the
smaller the duration of different drops and peaks, the more likely it is that they will cancel
each other out. Subsequently, the profiles can be characterized by their level only, and
simple thresholding with a continuously varied threshold can be used to compare the dif-
ferent distributions of drops and peaks in the inter-ictal and the pre-ictal interval as it is
done using ROC-statistics. Finally, the discriminative test is performed allowing different
lengthss of the pre-ictal interval. Since it is not computationally feasible to perform a sta-
tistical test for every possible duration of a presumed pre-ictal state, four different lengths
are chosen to cover the range of anticipation times for different measures reported in the
literature on seizure prediction:s = 5 min (cf. Refs. [135, 28]),s = 30 min (cf. Refs.
[84, 93, 79, 76, 80]),s = 120 min, ands = 240 min (cf. Refs. [88, 51, 101, 100]). If a
pre-ictal state were reflected by a decrease in values of a characterizing measure starting a
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Figure 5.6: Illustration of Receiver-Operating Characteristics using the three special cases
yielding neutral, minimum and maximum discrimination (a-c) as well as three further ex-
amples of more general distributions (d-f).
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Figure 5.7: Ideal measure profile along with the corresponding amplitude distributions and
ROC-curves for three different lengths of the pre-ictal interval: a) 2 hours, b) 3 hours, c)
1 hour. The actual pre-ictal decrease in the values of the measure profiles is assumed to
start 2 hours before the seizure in all three cases.
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Figure 5.8: Influence of the length of the pre-ictal interval on the discriminative perfor-
mance.
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distinct time before seizure onset, then this effect would be best resolved by defining the
pre-ictal interval according to this time. In this case an optimum discrimination between
the inter-ictal and the pre-ictal amplitude distributions (cf. Fig. 5.7a) would be yielded.
Selecting a pre-ictal interval of a larger (Fig. 5.7b) or smaller (Fig. 5.7c) length would re-
sult in an increased number of false negative or false positive classifications, respectively,
and thus substantially decrease the discriminative performance (cf. Fig. 5.8). The slope on
either side of the maximum performance is dependent on the ratio of the lengths of inter-
and pre-ictal intervals.

Since the ictal and the post-ictal intervals are known to be associated with massive changes
in the EEG, they are not included in either of the two amplitude distributions. More pre-
cisely, recording intervals lasting from seizure onset till 30 min after seizure termination
are discarded from the analysis. If the time between two successive seizures is less than
s + 30 min, the maximum amount of data available (i.e., from the end of the preceding
seizures’ postictal phase till seizure onset) is used instead.

5.3.1.4 Evaluation schemes

Four different evaluation schemes are applied (cf. Ref. [103]):

1. All inter-ictal ⇔ All pre-ictal

In the first and simplest evaluation scheme the distribution of all pre-ictal values from
all combinations of neighboring channels and all seizures of a patient is compared to
the respective distribution of all inter-ictal values. For this approach a high discrim-
ination is attained only in case of a constant global effect, i.e., if either a pre-ictal
increase or a decrease is encountered uniformly and on a similar level in all channel
combinations and for all seizures.

2. Inter-ictal per channel combination⇔ Pre-ictal per channel combination

For an actual seizure prediction a global effect would not be needed, a local effect
would be sufficient as long as its spatial location is constant over successive seizures.
And in fact, in most studies seizure precursors have been reported to occur only in
certain distinct channels or channel combinations. Therefore in the second evalua-
tion scheme the discriminative power of the different measures is evaluated for each
channel combination separately. To account for a possible local effect the channel
combination yielding the best performance is chosen. Therefore in this scheme a
good predictive performance is obtained only if there exists a channel combination
for which seizure precursors occur constantly and on a similar level for all seizures
of a patient.

For this evaluation scheme the discriminative test is illustrated by depicting an ex-
emplary time profile (channel combination TR08-TR09 of patient A analyzed by the
measure for phase synchronizationγH

cv) with its two distributions and the resulting
ROC-curve in Fig. 5.9.
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Figure 5.9: Illustration of the statistical evaluation based on ROC-curves: (a) Original
measure profile of the best channel combination (TR08-TR09) of patient A for the index
based on circular variance using the Hilbert Transform γH

cv obtained by choosing a 5 min
smoothing filter and a pre-ictal interval of 240 min. Seizures are marked by vertical lines,
pre-ictal and inter-ictal intervals are depicted in bright and dark color, respectively. (b)
Distributions of values from all inter-ictal and all pre-ictal intervals. (c) Corresponding ROC-
curve yielding the maximum performance value of 0.68.

3. Inter-ictal per channel combination⇔ Pre-ictal per channel combination and
seizure

In the third evaluation scheme for each channel combination the distribution of all
inter-ictal values is successively compared to the distribution of the pre-ictal values of
every seizure of a patient. Thus a performance value quantifying the discriminative
power of a measure is obtained for every channel combination and each seizure.
The distribution over the different seizures can show whether a measure might be
capable of anticipating not all, but at least certain seizures of a patient. Still this
would constitute a remarkable and useful achievement.

4. Inter-ictal per channel combination and seizure⇔ Pre-ictal per channel combi-
nation and seizure

Also in the fourth evaluation scheme for each channel combination the discriminative
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test is performed for the pre-ictal values of every seizure separately. But here this
distribution is not compared to all inter-ictal values, but rather only to the inter-ictal
values preceding the pre-ictal interval of the respective seizure. While the first test
corresponds to a non-adaptive, constant reference level, this final scheme is adaptive
in the sense that it accounts for possible slow changes in the dynamics resulting in
slow baseline shifts (e.g., due to physiological variations).

The evaluation of this scheme becomes impossible in cases where the interval be-
tween two successive seizures is shorter than35 min + s (30 min for the post-ictal
interval of the first seizure, 5 min as the minimum length for the inter-ictal distri-
bution, and with s as the pre-ictal interval of the second seizure). Whenever such a
clustering of seizures occurs [45], the following relation holds: the longer the pre-
ictal intervals, the more seizures have to be discarded from the analysis. While only
one seizure has to be discarded fors = 5 min, this number amounts to5 for s = 30
min, 24 for s = 120 min, and35 for s = 240 min.

Another evaluation scheme (best channel combination per seizure) has been proposed in
Ref. [51]. However, the practicability of this approach for a potential prospective imple-
mentation appears to be rather limited.

In each of the four evaluation schemes for every measure the respective performance value
is averaged over patients. This average performance is used as the most important bench-
mark in the comparison of the different measures. But it also serves as a criterion for
the optimum combination of parameters (smoothing, length of the pre-ictal interval, ROC-
hypothesis of separability) for each measure. This way the comparison of the different
measures is performed without the use of any a priori knowledge and all measures are
treated equally since ”each one can choose its own optimum parameter combination”. In
the first evaluation scheme only one over-all performance value is compared, from the sec-
ond evaluation scheme onwards the performance value of the best channel combination
is used for comparison. In the third and fourth evaluation scheme the criterion for the
selection of the best channel combination is the median over all seizures of a patient.

5.3.1.5 Seizure times surrogates as a test for statistical validity

To assess the performances yielded by the different measures and to judge their statistical
validity by assigning a level of significance (cf. Section 5.2), an ensemble of19 seizure
times surrogates is generated. In the original method of Ref. [9] each seizure times surro-
gate was obtained by a different random permutation of the intervals between subsequent
seizures. The interval between the beginning of the recording and the first seizure was
not permuted, this seizure was displaced using a random jitter. In the application of Ref.
[103] this interval was included in the permutation scheme. In that study no level of sig-
nificance was assigned to patient C, since the number of seizures and hence the number
of possible permutations is not large enough to allow the generation of the19 surrogates

66



5.3. STATISTICAL EVALUATION OF THE PREDICTABILITY OF SEIZURES

needed to obtain the desired significance. In the extended group of patients analyzed in
this study this problem would cover patients F and I as well. In order to include all patients
in the estimation of significance, here a different randomization scheme is applied. The
intervals between seizures are no longer permuted but rather the seizures themselves are
placed on new positions using a constrained randomization. Clusters of seizures (defined
as consecutive seizures for which the interval in between is less than the maximum length
of the pre-ictal interval, e.g.,240 min) are displaced as a whole. Furthermore, the first four
hours at the beginning of the recording are prohibited in order to guarantee a complete pre-
ictal interval for the very first seizure. Subsequently, for each evaluation scheme and every
measure the seizure prediction algorithm is applied to the respective time profiles using the
different seizure time surrogates instead of the original seizure onset times. In each of the
different evaluation schemes the null hypothesis can be rejected with a significance level
of p = 0.05, if highest performance values are yielded for the original seizure times.

5.3.1.6 Correlations between the different measures

To investigate to which extent the different measures of synchronization and directionality
carry independent and non-redundant information, their correlation is estimated on the en-
tire database analyzed in this Section. For this aim, correlation coefficients are determined
from all 358 channel combinations and all153548 windows from all nine patients.

5.3.2 Results

First a short overview and some general guidelines are given. Subsequently, the results of
the four different evaluation schemes are presented.

These results can be seen as projections of a high-dimensional space since there are many
different degrees of freedom involved (in detail: evaluation schemes, measures, patients,
channel combinations, seizures, order of smoothing filter, length of the pre-ictal interval,
ROC-hypotheses of separability, seizure time sequences). These degrees of freedom are
related as follows: In four different evaluation schemes the predictive performance of four-
teen bivariate measures is evaluated by analyzing nine patients. Each of these patients was
implanted with an individual number of electrodes resulting in an individual number of
channel combinations. Every patient had a certain number of seizures during the record-
ing. In each evaluation scheme the respective pre-ictal intervals are distinguished from the
respective inter-ictal intervals using ROC-statistics. Every analysis is carried out using two
different smoothing filters and four different values for the length of the pre-ictal interval.
Furthermore, both a pre-ictal increase as well as a pre-ictal decrease are considered. Fi-
nally, every discriminative test is performed20 times, one time for the original sequence
of seizures and19 times for the different seizure time surrogates.
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In the following for each evaluation scheme the mean of the respective performance value
over patients is displayed to allow the comparison of the different measures. Furthermore,
each and every time the results yielded for the single patients are depicted using for each
measure the combination of parameters that lead to the respective optimized performance
value. This combination is specified as well.

5.3.2.1 First evaluation scheme: All inter-ictal⇔ All pre-ictal

In the first evaluation scheme the distribution of all pre-ictal values from all neighboring
channel combinations and all seizures of a patient is tested against the respective distribu-
tion of all inter-ictal values. For each measure the maximum out of16 performance values
(two different smoothing filters, four different lengths of the pre-ictal interval, pre-ictal
increase / decrease) is chosen. Results of this evaluation scheme are depicted in Fig. 5.10.

The performance values obtained by averaging over patients range from0.008 for the index
based on circular variance using the Hilbert TransformγH

cv to 0.064 for event synchroniza-
tion. The performances of the anti-symmetric measures are among those of the symmetric
measures. All of these values are non-negative due to the selection of the hypothesis of
separability, pre-ictal increase (↑) or pre-ictal decrease (↓), with the highest absolute ROC-
value. Nevertheless, no measure is able to clearly discriminate the pre-ictal from the inter-
ictal interval in this evaluation scheme since all performance values are quite low and none
of them proves to be significant when tested by the method of seizure times surrogates.

For the measures of synchronization as well as for the measures of directionality a pre-ictal
increase is observed about twice as often as a decrease. The corresponding parametersd
ands that yield the maximum performance show non-uniform values, too.

These results show that no measure is able to show a distinct separation between the distri-
bution of all pre-ictal values from all combinations of neighboring channels and all seizures
and the respective distribution of all inter-ictal values. There is not a single combination
of parameters for which a significant global effect (i.e., an over-all increase or an over-all
decrease of pre-ictal values) can be observed. Since there are two steps of averaging in-
volved in this evaluation scheme (over channel combination and over seizures) all features
that might be predictive of seizures either do not occur globally or do not occur constantly
(or neither of both). If there are local effects (in space or in time) these are either too weak
to leave any remarkable impact in the average or get cancelled out by pronounced opposite
effects. The possibility of predictive features occurring only in some channel combinations
is tested in the next evaluation scheme.

5.3.2.2 Second evaluation scheme:
Inter-ictal per channel combination ⇔ Pre-ictal per channel combination

In the second evaluation scheme a new degree of freedom is introduced, since the discrimi-
native power of the different measures is evaluated for each neighboring channel combina-
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Figure 5.10: Comparison of measures for the first evaluation scheme (All inter -ictal ⇔
All pre-ictal). For each measure the average performance value is depicted by a wide black
bar in the background. In front of these the values obtained for the single patients are dis-
played using the combination of parameters d and s and the respective ROC-hypotheses (↓
for a pre-ictal decrease, ↑ for an increase) that yielded the maximum performance. These
values are stated at the bottom of the figure. At the top the levels of significance of the
performance values are shown. Whenever the p-values is larger than 0.05, the respec-
tive result is marked as non-significant (n.s.). The dashed line separates the measures of
synchronization from the measures of directionality.
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tion separately. Therefore, for each patient and measure the single ROC-value used in the
first evaluation scheme is now replaced by a distribution of ROC-values. An example how
to obtain the ROC-value from a measure profile has already been shown in Fig. 5.9. In
Fig. 5.11 for the same parameter combination, the same measure and the same patient the
pre-ictal and inter-ictal distributions from all neighboring channel combinations of the two
depth electrodes of the left and the right hemisphere are shown exemplarily. For most chan-
nel combinations the pre-ictal and inter-ictal amplitude distributions turn out to be almost
indistinguishable, only for some channel combinations a high degree of discrimination can
be obtained.
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Figure 5.11: Exemplary inter-ictal (blue) and pre-ictal (red) distributions (smoothed) of
γH

cv for each channel combination on the left and right hemisphere of patient A (second
evaluation scheme). A 5 min smoothing filter and a pre-ictal interval of 240 min is used.

For each measure the ROC-value of the channel combination with the highest discrimi-
nation (in this example TR08-TR09) is averaged over patients. The average performance
value is obtained by choosing the parameter combination that yields the highest mean
value. These values are depicted in Fig. 5.12 along with the performance values obtained
for the single patients’ channel combinations with maximum, minimum, and median dis-
crimination. The performance values for the second evaluation scheme range from0.51
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Figure 5.12: Same as Fig. 5.10, but this time for the second evaluation scheme (Inter-ictal
per channel ⇔ Pre-ictal per channel). For each measure and patient, the maximum and
the minimum of the distribution of performance values over different channel combinations
are depicted by the range of vertical bars. The little black square on each bar denotes
the median of the respective distribution. For each measure the over-all performance
value (represented by a black bar in the background) is obtained by averaging over the
performances of the best channel combination for each patient.
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for the nonlinear interdependenceHs to 0.64 for the index based on conditional probabil-
ity using the Hilbert TransformγH

cp. Again the anti-symmetric measures rank between the
symmetric measures. In this scheme for all measures maximum performances are obtained
using a 5 min smoothing. Results for the length of the pre-ictal interval and the ROC-
hypothesis of separability are still not consistent. For10 out of 14 measures performance
values reach statistical significance.

Whereas it has been impossible to find a global effect in the first evaluation scheme, in
this scheme for most measures and patients distinct local effects can be observed in cer-
tain channel combinations (cf. the example given in Fig. 5.11). Due to the new de-
gree of freedom performance values are much higher than in the first evaluation scheme
and, furthermore, mostly prove to be significant. Since all pre-ictal phases are included in
the discriminative test, these effects either occur constantly and on a similar level for all
seizures of a patient or alternatively effects before certain seizures are so pronounced that
they surpass opposite effects preceding other seizures. These results appear quite promis-
ing, nevertheless there are some effects raising doubts about their actual usefulness. When
comparing the performance of different patients it is remarkable that the most discrimi-
native channel combinations can be found for patients with one (patient F) or only a few
seizures (patients E and I, cf. Tab. 5.1). This effect appears to be due to the patients’
different statistical fluctuations (i.e., different number of seizures and different number of
channel combinations). Statistically, it is more likely to find a channel combination with
a (seemingly) good discrimination for a patient with only one seizure than for a patient
with many seizures. In the latter case there is a high chance that different or even opposite
effects in the pre-ictal intervals of different seizures cancel each other out. For the same
reason it is not surprising that for most measures the maximum discrimination is yielded
for a pre-ictal length of5 min. The shorter the over-all pre-ictal length (i.e., the size of the
first distribution of values), the higher the probability to find a good discrimination between
the two distributions just by chance. The fact that the ROC-hypothesis of separability for
which maximum performances are obtained differs among measures casts further doubt on
the usefulness of these results.

5.3.2.3 Third evaluation scheme:
Inter-ictal per channel combination ⇔ Pre-ictal per channel combination
and seizure

In the third evaluation scheme for each channel combination the distribution from the pre-
ictal intervals of the single seizures are tested separately for their overlap with the distri-
bution from the inter-ictal interval. The discriminative test is performed for each channel
combination and every single seizure of a patient and thus for each measure and each pa-
tient a two-dimensional distribution of performance values is yielded.

The results of this evaluation scheme for the combination of parameters (smoothing filter:
5 min, pre-ictal interval:240 min) used in Figs. 5.9 and 5.11 are exemplarily depicted in
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Figure 5.13: Color-coded ROC-values of the third evaluation scheme obtained by applying
γH

cv to patient A (smoothing filter s = 5min, length of the pre-ictal interval d = 240min. In
the first ten columns for each channel combination the ROC-values for the ten seizures of
this patient are shown. The last three columns depict minimum, median, and maximum
of these values. The two channel combinations with the highest median performance
for the hypothesis of a pre-ictal decrease (increase) are marked in black (white). In this
example the performance value is equal to the median decrease of channel combination
TR08-TR09 which is more pronounced than the median increase in channel combination
TR04-TR05.

Fig. 5.13, again for patient A andγH
cv. Here the median values are used as a criterion for the

best channel combination, i.e., the channel combination is selected for which the pre-ictal
intervals of half of the seizures can be distinguished best from the respective inter-ictal
intervals.

The performances of the different measures are depicted in Fig. 5.14 along with the single
patients’ distributions of the median performances in all channel combinations (i.e., the
distribution color-coded in the last but one column in Fig. 5.13). Again maximum, mini-
mum, and median channel combination are depicted (the former two are the ones marked
by black and white crosses in the aforementioned column of that figure).

The average performance values range from0.62 for the nonlinear interdependenceHs to
0.76 for the mutual informationI and are thus substantially higher than the performance
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Figure 5.14: Same as Fig. 5.12, but this time for the third evaluation scheme (Inter-ictal
per channel combination ⇔ Pre-ictal per channel combination and seizure). For each
measure the over-all performance (represented by wide black bars in the background) is
obtained by averaging over the performances of the best channel combinations from each
patient. Again for each patient the distribution over the performances of different channel
combinations is shown, but this time the performance of a channel combination is defined
as the median performance of the different seizures of the respective patient.
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values obtained in the second evaluation scheme. Also in this scheme the ROC-values
obtained for the anti-symmetric measures rank in between. All measures, except for the
nonlinear interdependenceSs, show highest performances when the hypothesis of a pre-
ictal increase is used. While for all measures maximum performances are yielded when a
5 min smoothing filter is applied, the optimal length of the pre-ictal interval varies between
5 min and240 min. Only cross correlation, mutual information, and the Hilbert indices of
phase synchronization as well as the delay asymmetry show significant performances.

For the same evaluation scheme in Fig. 5.15 a different projection of the two-dimensional
performance values (cf. Fig. 5.13) is used to show the actual discriminative performance
of the best channel combination regarding the distribution over all seizures. Using the op-
timum parameter combination for each measure and the best channel combination (with
respect to the median seizure performance, cf. Fig. 5.14) for every patient, the respective
distribution of performance values for all seizures is represented by its maximum, mini-
mum, and median value (there is no such distribution for patient F with only one seizure,
cf. Tab. 5.1). The median values of these distributions correspond to the maximum values
of the distributions displayed in Fig. 5.14. While for all measures and patients the maxi-
mum and also the median of the distribution is positive, for many patients (in particular for
those with a high number of seizures) the minimum is negative. Thus, while for the major-
ity of seizures a certain discrimination of the inter-ictal and the pre-ictal intervals can be
achieved based on either a pre-ictal decrease or increase in values, there are also seizures
of some patients for which the opposite effect is observed.

The reason for the higher performances (when compared to the second evaluation scheme)
appears to be similar to the one mentioned above in the discussion of the second evaluation
scheme. In the third scheme the different seizures of a patient are introduced as a further
degree of freedom (although the median performance and not the performance obtained for
the seizure with maximum discrimination is chosen as a criterion). Thus for every channel
combination the distribution of all pre-ictal values is split up into several pre-ictal distribu-
tions, one for each seizure of a patient. These distributions are now compared against the
same inter-ictal distributions as before. Therefore, it is likely to yield performances equal
to or better than in the previous scheme since there effects before the single seizures might
cancel each other out. Results can become better due to the optimization over more perfor-
mance values with higher statistical fluctuations introduced by the new degree of freedom
(cf. Fig. 5.13). Only if there was a constant effect on a similar level over all seizures, re-
sults would stay the same (of course they are the same for patient F with only one seizure).
This view is further supported by the observation that in this evaluation scheme the per-
formance over different patients is more uniform than before, the observed dependency on
the different number of seizures has disappeared. Also the combination of parameters for
which maximum performances are yielded is much more consistent among the different
measures. All measures, except for the nonlinear interdependenceSs, show a pre-ictal in-
crease, either in synchronization or in asymmetry. In contrast to this uniformity, the length
of the pre-ictal interval still shows conflicting results. Only the measures of phase synchro-
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Figure 5.15: Third evaluation scheme: Minimum, maximum, and median performance
values for different seizures using the best channel combination (with respect to the per-
formance of the median seizure) of each patient and the best parameter combination for
each measure (cf. Fig. 5.14). The median values of the distributions (denoted by the
little black squares inside each bar) correspond to the maximum values of the distributions
displayed in Fig. 5.14. Thus also the mean values over patients (again represented by the
black bars in the background) are the same.
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nization based on the wavelet transform have not only switched their ROC-hypothesis but
also shifted to the long pre-ictal length. Looking at the distributions over different seizures,
again a distinct dependence on the number of seizures can be observed. Whereas for pa-
tients with one or just a few seizures very often all pre-ictal intervals can be discriminated
with one hypothesis, this is rarely possible for the other patients. For these mostly there
exist some seizures for which the opposite ROC-hypothesis is favored. Furthermore, since
many of the seizures investigated in this study occur in clusters (cf. Fig. 5.5), the question
arises whether there is any outstanding importance of the leading seizure. In the compari-
son of the first seizure with the succeeding seizures of a patient no such difference can be
found. Finally, neither in this nor in the other evaluation schemes any correlation between
the location of the channel combinations showing the highest discriminative power based
on either ROC-hypothesis and the focal region of each patient can be seen. Maximum
performances are obtained about as often in the focal as in the non-focal hemisphere.

5.3.2.4 Fourth evaluation scheme:
Inter-ictal per channel and seizure ⇔ Pre-ictal per channel and seizure

Also in the fourth and last evaluation scheme the discriminative test is performed for the
pre-ictal intervals of each seizure separately. But this time for each channel combination
the distributions of these intervals are compared to the distributions of the preceding inter-
ictal intervals. Results for this evaluation scheme are displayed in Figs. 5.16 and 5.17.

As can be seen from Fig. 5.16 average performance values for the measures of synchro-
nization are again higher than those of the second evaluation scheme ranging from0.59 for
the nonlinear interdependenceSs to 0.77 for the index based on Shannon entropy using the
Hilbert TransformγH

se. In comparison to the third evaluation scheme performance values
are higher for some measures but lower for other measures. Once more no fundamental
difference between the symmetric and the anti-symmetric measures can be observed. For
all measures a5 min smoothing filter leads to highest performance values, and for all mea-
sures, except for the event synchronizationQ, maximum performances are obtained for a
pre-ictal length of5 min. The ROC-hypothesis of separability varies from measure to mea-
sure. Only the symmetric and the anti-symmetric variant of event synchronization reach
statistically significant performance values.

In Fig. 5.17 again for each measures’ best parameter combination and each patients’ best
channel combination the distributions of different seizures is depicted. Also in the fourth
evaluation scheme none of the two hypotheses of either a pre-ictal decrease or an increase
in values is valid for all seizures of a patient.

The comparison of the third and the fourth evaluation scheme shows that quite the same
results are yielded no matter whether the pre-ictal distributions of most seizures are dis-
criminated from the preceding intervals only or from the whole inter-ictal interval. Thus
it appears as if accounting for the variability of the inter-ictal intervals by the choice of an
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Figure 5.16: Same as Fig. 5.14, but this time for the fourth evaluation scheme (Inter-ictal
per channel and seizure ⇔ Pre-ictal per channel and seizure). Here the pre-ictal interval
of each seizure is tested only against the preceding inter-ictal interval.
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Figure 5.17: Same as Fig. 5.15, but this time for the fourth evaluation scheme.
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adaptive baseline does not lead to a considerable improvement. In this evaluation scheme
for all measures except for the event synchronizationQ maximum performances are ob-
tained for a pre-ictal length of5 min. In this case the sizes of the two distributions are the
smallest of all evaluation schemes and the high statistical fluctuations associated with this
might be responsible for the preference of this pre-ictal length. For one half of the measures
a pre-ictal increase, for the other half a pre-ictal decrease is observed. Summing up the re-
sults of the third and fourth evaluation scheme it seems that in some channel combinations
there are distinct effects before seizures, but only rarely these effects occur constantly over
all seizures.

5.3.2.5 Correlations between the different measures

In Fig. 5.18 the pairwise correlation coefficients between all fourteen measures are de-
picted based on the entire database analyzed in this Section.
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Figure 5.18: Correlation coefficients between the eleven measures of synchronization as
well as the three measures of directionality. Values are determined using all 358 channel
combinations and all 153548 windows from all nine patients.
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The two different groups of measures for synchronization and measures for directionality
can be recognized easily. The latter are rather independent from the former, but, quite
surprisingly, also from one another. For the anti-symmetric variants of the two nonlinear
interdependencies even the highest anti-correlation (−0.14) of all pairs of measures is ob-
served. Among the measures of synchronization the two nonlinear interdependencies and
event synchronization differ most from the other measures (but with the minimum value
still as high as0.55). Highest correlations (up to0.996) can be observed between the two
indices based on conditional probability, the two indices based on circular variance and the
cross correlation. Also mutual information and the two indices based on Shannon entropy
as well as the two nonlinear interdependencies form subclusters.

5.3.3 Discussion

Comparing the performance of the different measures over all evaluation schemes (the first
scheme does not contribute substantially due to the weak results of all measures) a ranking
over three different groups could be recognized. Maximum and most significant perfor-
mances were obtained for the three indices of phase synchronization based on the Hilbert
transform, closely followed by the mutual information and the cross correlation as the only
linear measure evaluated. Intermediate performances were rendered for the three indices
of phase synchronization based on the wavelet transform along with event synchronization
and all three measures of asymmetry. The weakest and least significant discrimination was
yielded by the symmetrized versions of the nonlinear interdependencies. Neglecting small
fluctuations this tendency remained quite stable over the last three evaluation schemes.
Concerning the different types of synchronization (cf. Section 2.3), measures of phase
synchronization yield better results than measures for generalized synchronization. This
can be regarded as an indication that different concepts for the quantification of synchro-
nization are not equally well suited for the detection of spatio-temporal changes associated
with the generation of epileptic seizures in the brain. This is in good agreement with the
results of Ref. [103]. In this study for the subgroup of the first five patients also a compre-
hensive comparison with twenty-one univariate measures was carried out. These included
twelve linear approaches like the statistical moments and the power spectral bands as well
as nine nonlinear approaches like an estimate of an effective correlation dimension, the
largest Lyapunov exponent and estimates for determinism and entropy. The latter were ap-
plied twice, purely and with a surrogate correction to account for specific nonlinear proper-
ties. In this comparison substantial differences between univariate and bivariate measures
were observed [103]. While univariate measures appeared to be sensitive to changes occur-
ring shortly before a seizure in relation to the period immediately preceding these changes,
bivariate measures were found to reflect changes in dynamics on a longer time scale start-
ing hours before a seizure. Both among the univariate and the bivariate approaches linear
measures performed equally good as or even better than nonlinear measures [103].

In the present study for all but five measures in the first evaluation scheme the5 min
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smoothing was preferred against no smoothing. Again, this was consistent with the results
of Ref. [103] and the explanation given there holds here as well: Smoothing of the measure
profiles leads to a decrease in width of both amplitude distributions (the outliers are cap-
tured) while their mean values are left unchanged. Thus if the mean value of the pre-ictal
distribution differs from the mean value of the inter-ictal distribution, the overlap of the
two distributions is decreased by the smoothing. The separability is increased, and higher
ROC-values are obtained. If the time profiles of a measure are not correlated, the effect of
smoothing is even higher and so is the increase in the discriminative performance.

For the remaining two parameters, the length of the pre-ictal interval and the ROC-hypothesis
of separability, a combined interpretation seems to be appropriate. Starting with the three
measures of directionality a rather uniform picture could be observed. They showed an
increase of pre-ictal values in10 out of 12 cases and a pre-ictal length of5 min in 9 out
of 12 cases (however, only5 of these cases proved to be significant). A rather obvious ex-
planation could be the spreading of hypersynchronous activity during the generation of the
seizure which naturally results in a certain directionality. Thus the different measures might
indicate a driver-responder relationship, e.g., between the focal region and its surrounding.
In this study mostly only the focal hemisphere is known (cf. Tab. 5.1) while the exact de-
lineation of the focus is not given (and sometimes this is very difficult if not impossible to
achieve anyway). Therefore, the verification of this hypothesis was accomplishable only to
a certain extent. In this regard, as in the case of the measures of synchronization also for the
measures of directionality a distinct relation to the focal region of each patient could not be
seen. Maximum performances were obtained about as often in the focal as in the non-focal
hemisphere. Furthermore, because of the short length of the predominant pre-ictal interval
and due to ambiguities in the definition of seizure onset the question arises whether the ob-
served effect is indeed pre-ictal or whether it is due to the first stages of seizure generation
perceived in the last part of this pre-ictal interval. On the other hand, if the effect would
be pre-ictal and if it could successfully be used for a prospective detection of a pre-ictal
state, the prediction horizon could possibly still be large enough to allow the successful
application of seizure prevention techniques [29]. However, in all these cases the corre-
sponding performance values were surpassed by the (significant) performances of the best
measures of synchronization. For these measures, as well as for the aforementioned, only
the shortest and the longest possible length of the pre-ictal interval were observed. Again
a pre-ictal length of5 min was found predominantly. For these cases the accompanying
ROC-hypothesis was almost uniformly distributed showing as much increases as decreases
of synchronization. This can be interpreted as another indication for the high statistical
fluctuations associated with this length. For the remaining11 out of44 trials the most suc-
cessful length was240 min and in all these cases the accompanying ROC-hypothesis was
a pre-ictal increase of synchronization.

This is in contrast to the results yielded in Refs. [104, 101, 100] in which long-lasting de-
creases of synchronization before seizures were reported. In these studies a possible expla-
nation was already given by the hypothesis that a decrease of synchronization is observed
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when a recording site becomes ”torn out” of its physiological state of synchronization with
a neighboring recording site in one direction and is forced into synchronization with some
slowly expanding region of pathologically synchronized neuronal tissue emanating from
another direction. According to this hypothesis decreases and increases of synchronization
go along with each other and can be interpreted as two different local effects of a more
global phenomenon. This point of view was further supported by the observation that an
increase in synchronization is indeed frequently found to be associated with a decrease in
synchronization in an adjacent channel combination, a phenomenon already reported for
the subgroup of patients [103].

Discrepancies between the results of that study and the present ones are due to effects
obtained for the latter four patients which were not included before. Some of these changes
are very distinct, in particular in the second and third evaluation scheme for which in the
earlier study almost exclusively an increase of synchronization using a pre-ictal length of
240 min was reported. This might be due to the different statistical properties of the two
subgroups (cf. Tab. 5.1): The average number of seizures of this early collective of patients
is higher than10, while this number is smaller than4 for the new patients included here.

To account for these non-uniformities the design of the study could be adapted as follows:
In the comparison of the different measures the average has been performed over patients to
account for the best clinical perspective. All patients have been weighted equally although
due to the different number of seizures the analyzed data of the single patients differ a lot in
their statistical properties. Thus a better estimate of the performance of a measure could be
achievable by weighting different patients according to their different numbers of seizures.
This would correspond to averaging over seizures instead of averaging over patients. Also
the different implantation schemes involving different numbers of channels and channel
combinations could be taken into account in the weighting, since the optimization con-
cerned with this additional degree of freedom is very important in the last three evaluation
schemes.

Compared to the investigation on model systems in Chapter 4, in this study it is even more
difficult to objectively assess the performance of different measures, since it is not known
beforehand whether there really exist specific changes of synchronization or directionality
before seizures. If such changes are indicated by one measure but not by another measure,
it is hard to say on a theoretical basis which measure is right. Therefore, in this study
measures are judged rather pragmatically by their predictive performance using the simple
criterion ”Which is the measure that most reliably yields information possibly useful for
diagnostic purposes?”. As reported above, according to this criterion the three indices
of phase synchronization based on the Hilbert transform, mutual information and cross
correlation have to be regarded as most promising.

However, much more research has to be done to evaluate the question whether the statis-
tical performances of these measures are sufficient to yield an acceptable performance in
an algorithmic implementation. In case that no measure on its own is able to fulfill this re-
quirement, a combination of different measures could be more promising as long as these
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measures render complementary or at least non-redundant information. As for the bivari-
ate measures analyzed in this thesis, correlation coefficients showed that at least measures
of synchronization and measures of directionality carry independent information. Among
these groups only the measures of the latter were independent from one another. Thus
combining different measures of synchronization seems to be reasonable only to a certain
extent. Event synchronization and the nonlinear interdependencies were the only measures
that differed considerably from the other.

However, besides the bivariate approach reflecting the interaction between different re-
gions of the brain there are two further concepts to track different kinds of spatio-temporal
variations in the EEG, namely univariate and multivariate approaches. Applying univariate
measures to an EEG signal aims at quantifying the state of the respective region within
the brain with respect to a certain property (e.g., dimension). Multivariate approaches
(e.g., based on spatial embedding techniques [147] or independent component analysis
(ICA) [50]) can extract global information from a multichannel EEG. With respect to the
predictive performance, in Refs. [103, 99] substantial differences between univariate and
bivariate measures were observed. Since so far rarely a multivariate analysis was carried
out, a comprehensive comparison with this approach is still missing. Nevertheless, the as-
sumption that also this approach might yield non-redundant results seems reasonable when
regarding the underlying conceptual differences. Thus combining several measures from
these different approaches appears to be a promising idea worth trying.

In any case, the development of new approaches to predict epileptic seizures should go
along with statistical validation. As announced before, this issue is further addressed in the
following section.
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5.4 The method of measure profile surrogates

In this study the new method of measure profile surrogates introduced in Section 5.2 is
illustrated by exemplarily evaluating the predictive performance of two measures of syn-
chronization, theindex based on circular variance using the Hilbert Transformandevent
synchronization(cf. Section 3). These measures are calculated from the quasi-continuous
EEG recording of patient A (cf. Section 5.3). The seizure prediction statistics applied to
the resulting measure profiles and their surrogates is taken from the methodology of Sec-
tion 5.3.1.3. Again amplitude distributions of pre-ictal and inter-ictal intervals are com-
pared using ROC-curves. The remainder of this study is organized as follows: First the
data (Section 5.4.1.1), the measures (Section 5.4.1.2) and the seizure prediction statistics
(Section 5.4.1.3) used to demonstrate the new method of measure profile surrogates are
described. This method is introduced in Section 5.4.1.4. In Section 5.4.2 the results of the
exemplary application are shown, before the conclusions are drawn in Section 5.4.3.

5.4.1 Methods

5.4.1.1 Data

The analysis was carried out using quasi-continuous multi-channel EEG recorded from an
epilepsy patient over five days during which the patient had ten epileptic seizures (patient
A in Section 5.3, for recording parameters cf. Tab. 5.1). The EEG was recorded prior
to and independently from the design of this study during the pre-surgical work-up [31].
Using two implanted depth electrodes each equipped with10 separate contacts (denoted
as TL01,...,TL10 and TR01,...,TR10), the EEG was measured directly within the brain (cf.
Fig. 5.1). The EEG contains one major and two minor recording gaps. In addition to
the ten ictal and post-ictal intervals (defined from seizure onset until30 min after seizure
termination), four other events known to be associated with changes in the EEG (three
sub-clinical seizures and one period of hyperventilation) took place during the acquisition.

5.4.1.2 Measures

From these data two bivariate measures of synchronization were calculated using a moving
window technique with non-overlapping segments of20.48 s corresponding toN = 4096
data points. In order to focus on local synchronization effects, in this study only the18
neighboring channel combinations (TL01-TL02,...,TL09-TL10 and TR01-TR02,...,TR09-
TR10) were analyzed. Measures comprise the index based on circular variance using the
Hilbert TransformγH

cv (sometimes also termed mean phase coherenceR) as a measure for
phase synchronization (cf. Section 3.3) andevent synchronizationQ (cf. Section 3.5).
Details about their practical implementation can be found in Section 5.3.1.1. For the sake
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of brevity, in the following the index based on circular variance using the Hilbert Transform
will be referred to as ‘phase synchronization’γH

cv.

5.4.1.3 Seizure Prediction Statistics

The seizure prediction statistics to be applied to the original as well as to the surrogate
measure profiles is straightforward, simply comparing amplitude distributions of pre-ictal
and inter-ictal intervals using the renormalized form of Receiver-Operating-Characteristics
(ROC) introduced in Section 5.3.1.3. It is applied to each channel separately according to
the second evaluation scheme ”Inter-ictal per channel⇔ Pre-ictal per channel” described
in Section 5.3.1.4 and illustrated in Fig. 5.9.

To investigate the effect of best parameter selection on the statistical validity of the results,
the same optimization as already used in Section 5.3 is carried out. For the original and the
surrogates the best combination of the two parameters (smoothing and length of the pre-
ictal interval) is selected along with the most successful ROC-hypothesis of separability
(cf. Section 5.3.1.3). Exactly the same optimization is applied to the original and the
surrogates in order to avoid any bias which could fool the interpretation of an acceptance
or a rejection of the null hypothesis.

The evaluation of this algorithm is carried out twice for each measure, first regarding each
channel combination separately and second after selecting the best channel combination.
Thus in the first evaluation scheme there are2 ∗ 2 ∗ 4 = 16 different values to choose from
for each channel combination. Accordingly, in the second scheme the final performance
value for each measure is chosen as the maximum of16 ∗ 18 = 288 different values.

5.4.1.4 Measure Profile Surrogates

To test against a certain null hypothesis via a constrained randomization of time series is a
well known concept within the framework of nonlinear time series analysis [55, 155]. The
original algorithm [166] as well as a number of expansions or refinements [125, 154] are
each designed to impose specific constraints on the surrogates and thus to address one par-
ticular null hypothesis. In contrast to these standard approaches the method of simulated
annealing [152] provides a rather universal means for generating random time series with a
wide variety of possible constraints and therefore allows testing of almost arbitrary null hy-
potheses. Furthermore, the standard algorithms act in the Fourier domain and therefore can
produce artifacts because of their implicit assumption of periodic continuation. The result-
ing edge effect is due to the fact that when preserving the amplitude spectrum, according to
the Wiener-Khinchin theorem only the ‘periodic’ sample autocorrelation function is main-
tained. In contrast, the method of simulated annealing acts in the time domain and thus is
able to preserve the original autocorrelation function. Simulated annealing is also clearly
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superior when it comes to the constrained randomization of data with recording gaps. Cop-
ing with these gaps is a non-trivial problem for Fourier-based randomization schemes. To
treat each segment independently is not a good approach since it is desirable to preserve
autocorrelations between different data sets as well. Interpolation schemes might offer a
solution for quasi-continuous data sets, but become unfeasible when confronted with long
recording gaps. Again, the method of simulated annealing offers a better approach since in
the time domain the missing values due to the recording gaps can be set to zero and thus
can be neglected in the autocorrelation function.

Simulated annealing (for an overview see [172]) as a method for combinatorial minimiza-
tion with false minima was introduced in Ref. [56] and was first applied to the generation of
surrogates from time series by Schreiber [155]. In short, constraints are specified in terms
of a cost function which is then minimized among all possible permutations of the original
measure profile. This cost function can be interpreted as the energyE of a thermodynamic
system which is annealed slowly towards the global minimum. In this process, starting
from an initial random permutation of the original measure profile, randomly chosen pairs
of values are exchanged repeatedly until a desired accuracy (i.e., a sufficiently low value
of the cost function) is reached. In each iteration step the cost function is updated and
depending on the present ”temperature”T the exchange is accepted with probability

p(∆E, T ) =





e−
∆E
T ∆E > 0

1 ∆E ≤ 0.

(5.1)

Exchanges with increasing energy are also accepted with non-zero probability to allow
escaping from local minima. Whenever a certain number of either tested or accepted ex-
changes has been performed, the temperature is slowly decreased according to some cool-
ing scheme (e.g.,Tnew = Told × α with 1 > α À 0).

In the application of this method the three different constraints mentioned in Section 5.2
can easily be imposed on the measure profile surrogates. First of all, recording gaps are
preserved by excluding the missing values in the gaps from the permutation scheme. Since
all surrogates are permutations of the original measure profile, the amplitude distribution
is maintained by construction. The last constraint is the approximate preservation of the
autocorrelation function

C(τ) =
1

N − τ

N−τ−1∑

n=0

xn+τxn τ ≥ 0. (5.2)

This constraint is formulated in the cost function
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E =
N−1∑

τ=1

ωτ

∣∣∣CSurr(τ)− COri(τ)
∣∣∣ (5.3)

with weights here defined as

ωτ =





1
τ

τ ≤ τmax

0 else.
(5.4)

A proper choice of these weights is essential. First, they offer the possibility to define the
part of the autocorrelation function that should be preserved. This crucially depends on
the original autocorrelation function. Four typical examples for the measures and the pa-
tient analyzed are depicted in Fig. 5.19. While the autocorrelation function of most channel
combinations decays rather fast and does not show any long range correlations, some chan-
nel combinations clearly seem to reflect the circadian rhythm resulting approximately in a
24 h periodicity. This different behavior can be judged as an essential property of the indi-
vidual measure profiles worth to be preserved. To guarantee this, for each measure profile
the maximum time lagτmax is set to4600 windows, thereby ensuring that the first26 h of
the autocorrelation function (given a window length of20.48 s) are maintained. Without
such peculiarities present, a reasonable choice could have been the first zero crossing of
the original autocorrelation function.
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Figure 5.19: Four exemplary autocorrelation functions of original measure profiles for the
phase synchronization γH

cv.
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Figure 5.20: Temperature as well as the various cost functions for the 18 different mea-
sure profiles of the phase synchronization γH

cv versus the number of iterations (logarithmic
scale).

The second issue to be considered when choosing appropriate weights is the computational
cost. Typically the number of iterations needed to reach the desired precision is quite large
(cf. Fig. 5.20) and in each iteration step an update of the cost function has to be performed.
Fortunately this only requires the calculation of those terms of the autocorrelation function
to which the two values of the exchanged pair actually contribute. These can further be
reduced by setting every other weight to zero. Given the smoothness of the autocorrelation
function, the omitted terms are then adjusted automatically. To avoid periodicity artifacts
the very first weights are not set to zero. In order to give higher importance to small lags,
the remaining terms are weighted by1/τ . Many further possibilities to reduce the high
computational cost can be found in Refs. [152, 155].

Using this method of simulated annealing for each measure profile from every channel
combination, an ensemble of19 different measure profile surrogates is generated. Subse-
quently, the seizure prediction algorithm is applied to the original as well as to the measure
profile surrogates. As stated already in Section 5.4.1.3, the evaluation of the algorithm

89



CHAPTER 5. APPLICATION TO THE EEG OF EPILEPSY PATIENTS

is carried out twice. Since each measure profile surrogate is generated by a constrained
randomization of a single measure profile from one channel combination, in the first eval-
uation scheme the performance of the two synchronization measures is compared for each
channel combination separately. For the original measure profile as well as for each of the
19 surrogates exactly the same optimization is performed, thereby choosing the one out
of 16 different combinations of parameters (two different smoothing filters, four different
lengths of the pre-ictal interval; pre-ictal increase / decrease) that yields the maximum per-
formance. In the second evaluation scheme for each measure the best channel combination
is selected additionally. Here each measures’ final performance value is thus chosen as the
maximum value out of a set of288 different possibilities. In each of the two schemes the
respective null hypothesis can be rejected with a significance level ofp = 0.05, if highest
values are yielded for the original measure profiles.

Both evaluation schemes test the general null hypothesisH0 ”The measure under investiga-
tion is not suited for seizure prediction.”. But actually they can be regarded as conceptually
different tests with different extended null hypotheses, since they are not based on the same
assumptions. Looking at the single channel combinations corresponds to testing for a pos-
sible predictive feature consisting of a significantly high number of local effects. Selecting
the best channel combination, on the other hand, is aiming at prediction by a maximum
local effect. Apart from these two, many other evaluation schemes are conceivable [103].
Averaging over all channel combinations, to name one further example, would test for a
global effect. In fact, the choice of an evaluation scheme for the surrogate test constitutes a
new degree of freedom which has to be considered carefully. The respective scheme could,
in principle, also be incorporated in the null hypothesis, e.g., the extended null hypothesis
for the second schemeHII

0 could read ”The measure under investigation is not suitable to
find maximum local effects predictive of epileptic seizures.”.

5.4.2 Results

For an exemplary channel combination the original measure profile of the phase synchro-
nizationγH

cv as well as four surrogates are depicted in Fig. 5.21. By construction all mea-
sure profiles are identical in certain characteristic properties (i.e., the recording gaps, the
amplitude distribution and the autocorrelation function up to the maximum time lag) and in
this respect each of them can be regarded as a possible original measure profile. However,
the surrogates can clearly be distinguished from the original measure profile as well as
from one another by the temporal distribution of drops, peaks and quasi-plateaus. The va-
riety among the surrogates clearly demonstrates that the imposed constraints leave enough
degrees of freedom for the randomization and do not overspecify the surrogates.

The remaining and most crucial question is whether the original measure profile stands out
from the surrogates with respect to its correspondence of the seizure times. To answer this
question, the seizure prediction statistics is applied to the original measure profiles as well
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Figure 5.21: Original measure profile of the phase synchronization γH
cv for channel com-

bination TL01-TL02 and four exemplary surrogates, all of them smoothed using a 5 min
moving-average filter. Seizures are marked by solid vertical lines.

as to their surrogates. In the first evaluation scheme each channel combination is regarded
separately performing exactly the same optimization for the original measure profile as
well as for each of the19 surrogates. The resulting performance values are shown in
Fig. 5.22 for the phase synchronizationγH

cv and in Fig. 5.23 for the event synchronization
Q. Signed ROC-values are depicted to indicate whether a pre-ictal decrease or increase
of synchronization is observed for the respective profiles. In order to show the rank of
the original performance inside the distribution of the values obtained for the surrogate
measure profiles, all performances are sorted by their absolute value.

When considering the performances obtained for the original measure profiles only, highly
non-uniform results can be observed. For most channel combinations ROC-values close to
zero are obtained reflecting that pre-ictal and inter-ictal amplitude distributions are almost
indistinguishable. But for some channel combinations (e.g., TR02-TR03, TR05-TR06 and
TR08-TR09) high ROC-values indicating a considerable degree of discrimination between
these distributions can be observed, no matter which of the two measures is used. This
might correctly reflect the existence of a pre-ictal state which can be detected using either

91



CHAPTER 5. APPLICATION TO THE EEG OF EPILEPSY PATIENTS

−1

0

1 TL01−TL02

−1

0

1 TL02−TL03

−1

0

1 TL03−TL04

−1

0

1 *TL04−TL05

−1

0

1 TL05−TL06

−1

0

1 TL06−TL07

−1

0

1 *TL07−TL08

−1

0

1 *TL08−TL09

−1

0

1 *TL09−TL10

−1

0

1 TR01−TR02

−1

0

1 *TR02−TR03

−1

0

1 *TR03−TR04

−1

0

1 *TR04−TR05

−1

0

1 TR05−TR06

−1

0

1 TR06−TR07

−1

0

1 TR07−TR08

−1

0

1 *TR08−TR09

−1

0

1 TR09−TR10

Figure 5.22: Performance values for the first evaluation scheme (parameter optimization
is performed for each channel combination separately) of the phase synchronization γH

cv

for the original measure profiles (highlighted by filled bars) and the surrogates. For each
channel combination of the right and left depth electrode signed ROC-values are depicted,
sorted by their absolute value. Asterisks mark channel combinations yielding maximum
performance for the original measure profile.

measure, but it could also be the spurious result of statistical fluctuations.

This ambiguity can be resolved by the method of measure profile surrogates. First of
all, the information gathered by the surrogates is non-redundant to the information of the
original performance values. This can be seen, e.g., when turning the attention to the results
of event synchronization in channel combinations TL04-TL05 and TR04-TR05 (cf. Fig.
5.23). In the channel combination from the left hemisphere the absolute performance value
obtained for the original measure profile is quite low, but still larger than all values yielded
by the surrogates, whereas in the right channel combination a higher absolute performance
value is observed, which, however, does not prove to be significant.

In contrast to the high consistency in the two measures’ ROC-values regarding the original
measure profiles only, qualitatively different results are obtained in the comparison of the
performances yielded for the original measure profiles with the ones observed for the surro-
gates. For the phase synchronization results seem to be significant for8 out of 18 channel
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Figure 5.23: Same as Fig. 5.22, but for event synchronization Q.

combinations (TL04-TL05, TL07-TL08, TL08-TL09, TL09-TL10, TR02-TR03, TR03-
TR04, TR04-TR05 and TR08-TR09). For event synchronization in5 channel combina-
tions (TL03-TL04, TL04-TL05, TL06-TL07, TR06-TR07 as well as TR08-TR09) highest
absolute ROC-values are obtained for the original measure profiles.

If a hypothesis test with a nominal sizep is performedq times, the likelihoodP to get at
leastr rejections by chance is given by

P =
q∑

k=r

(
q

k

)
pk(1− p)q−k. (5.5)

Here a one-sided test with19 surrogates (hencep = 0.05) is performed forq = 18 different
channel combinations. This yields probabilitiesP (r ≥ 8) ≈ 10−6 for the phase synchro-
nization andP (r ≥ 5) ≈ 10−3 for event synchronization. The calculation of these values
of significance is based on the implicit assumption that measure profiles from different
channel combinations can be regarded as independent. To verify this assumption empiri-
cally, the correlation coefficients of all combinations of measure profiles are estimated (cf.
Fig. 5.24). The majority of values is close to zero and only rarely a distinct dependence is
observed (most prominent the anti-correlations between channel combinations TL02-TL03
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and TL03-TL04 as well as channel combinations TR04-TR05 and TR05-TR06 (cf. Ref.
[102]). Furthermore, as can be seen from Figs. 5.22 and 5.23, also the performance values
obtained for the original measure profiles do not seem to show any kind of clustering for
values from neighboring channel combinations. But even when a slight reduction in the
number of independent channel combinations is taken into account, the effect remains that
the number of channel combinations to show significant ROC-values by itself seems to be
significant. Thus apparently the corresponding null hypothesisHI

0 ”The measure is not
suitable to find a significant number of local effects predictive of epileptic seizures.” can
be rejected for both measures.
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Figure 5.24: Correlation coefficients of the 18 channel combinations (9 from the left and 9
from the right hemisphere) for the phase synchronization γH

cv. Values are determined using
all 18735 time windows of the patient.

When the surrogate test is performed for each channel combination separately, the mean
phase coherence already seemed to show a slightly higher level of statistical validity. This
difference becomes more striking and even leads to a principal distinction in significance
in the second evaluation scheme. Here for each measure and for the original as well as
for the 19 surrogates, the channel combination with the highest performance is chosen.
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The resulting distributions of over-all performance values are shown in Fig. 5.25. While
for the phase synchronization results prove to be significant rendering the highest over-
all performance value for an original measure profile, this time the corresponding null
hypothesisHII

0 can not be rejected for event synchronization. Here the performance value
of the best original measure profile falls into the distribution obtained for the ensembles of
surrogates.
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Figure 5.25: ROC-values of the second evaluation scheme (best channel selected) for the
original measure profiles (highlighted by a filled bar) and the surrogates, again sorted by
their absolute value: (a) phase synchronization γH

cv, (b) Event synchronization Q.

A closer look on the results obtained for event synchronization in Figs. 5.23 and 5.25b
reveals that in the second evaluation scheme the best performance yielded by the orig-
inal measure profile of channel combination TR05-TR06 is surpassed by performances
obtained from surrogate measure profiles from other channel combinations, namely TR04-
TR05 once and TR02-TR03 twice. This effect is due to the fact, that here an ensemble
surrogate test is performed. For each measure the best performance yielded by the entirety
of the18 different original measure profiles is compared to the maximum performance val-
ues of19 surrogate ensembles. These surrogate ensembles preserve the properties of the
ensemble of original measure profiles as a whole, since they consist of18 surrogate mea-
sure profiles each of which individually substitutes one of the original measure profiles.
When the over-all optimization from the second evaluation scheme is now applied to the
original as well as to the surrogate ensembles, it thus can happen that the channel combi-
nation yielding the best performance is not the same for the original measure profiles and
the surrogate ensembles. This effect is required to investigate the statistical validity of the
optimization procedure performed, in this case the best channel selection.
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5.4.3 Discussion

Within the method of measure profile surrogates, results obtained from a seizure prediction
algorithm are tested against the basic null hypothesisH0 ”The measure under investigation
is not suited for the prediction of epileptic seizures.”. To demonstrate this approach two dif-
ferent evaluation schemes have been used to investigate the predictive performance of two
measures of synchronization, namely the phase synchronization and event synchronization,
by means of a straightforward seizure prediction statistics. Measure profile surrogates have
been generated by a constrained randomization of the original measure profiles. In the first
evaluation scheme the significance of the measures’ original performance values has been
tested for each channel combination separately resulting in a higher number of significant
values for the phase synchronization. Finally, after choosing the best channel combination
for each measure in the second scheme an ensemble surrogate test has been performed.
Here only the phase synchronization has reached a significant performance value. Thus
for event synchronization only null hypothesisHI

0 , for the phase synchronization both null
hypothesesHI

0 andHII
0 could have been rejected.

A method to statistically validate the performance of epileptic seizure prediction algo-
rithms (such as the proposed method of measure profile surrogates or, if computationally
infeasible, alternatively the method of seizure time surrogates [9]) should be applied when-
ever there is the slightest chance of any ‘in-sample’ over-optimization. This is the general
case since so far rarely a sufficient amount of data is available to perform a proper ‘out-of-
sample’ study, where the recordings are divided into a training set on which all algorithm
parameters are adjusted and a test set on which the performance of the algorithm is evalu-
ated.

The method of measure profile surrogates is suited to serve the need for statistical valida-
tion of seizure prediction results. On the other hand, in the application of this method there
might be some caveats and pitfalls, too (e.g., a hidden bias between the original profiles
and the surrogates). Therefore also the results obtained with this method should be inter-
preted with care and jumping to conclusions too quickly should thoroughly be avoided.
In particular, the additional degree of freedom introduced in the choice of a suitable null
hypothesis should always be considered. Furthermore, whenever a null hypothesis is re-
jected, it is always very important to keep in mind that the complementary hypothesis is
very comprehensive and might include many different reasons that are possibly responsible
for this rejection.

Concerning the practical implementation of this method, in some cases the computational
cost can be lowered by simplifying the randomization scheme. Some characterizing mea-
sures from time series analysis (e.g., an effective correlation dimension evaluated for seizure
prediction in Refs. [84, 15] or the degree of nonlinear determinism applied in Ref. [9])
show measure profiles with a distinct ceiling effect. For these measures, most values lie
at the upper or lower end of the definition range, and only rarely sparse deviations (i.e.,
drops or peaks) can be observed. In such cases the method of simulated annealing does not
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seem to be appropriate. A suitable randomization of the original measure profile could be
achieved by performing a random shuffle of these deviations instead.

The application of the proposed method of measure profile surrogates is not restricted to
the problem of seizure prediction. In principle it is rather universal and can be used for the
statistical validation of the performance of time-resolved measures in many other detection
and prediction problems. The only requirement is that a finite number of observables
is measured and from their analysis certain circumscribed events are to be detected or
predicted. Thus many other applications are also conceivable.

Regarding the particular application considered in this study it is important to keep in
mind that it was not the aim to prove or disprove the existence of a pre-ictal state, but
rather to supply a new and general means to reliably evaluate the statistical validity of
the performance of a seizure prediction algorithm. In future applications, measure profile
surrogates can be used as a powerful tool to distinguish between measures and algorithms
unsuited for the prediction of epileptic seizures, and more promising approaches.
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Chapter 6

Summary and Outlook

Synchronization is a frequently occurring phenomenon of high prominence in many sci-
entific and technical disciplines [123]. To gain a better understanding of the dynamical
systems involved, the reliable estimation of the synchronization between measured time
series is of utmost importance. In this thesis fourteen different measures of synchroniza-
tion and directionality derived from various theoretical frameworks were compared to each
other with respect to their capability to detect and quantify dependencies in dynamical sys-
tems. The measures of synchronization comprised the linear cross correlation, the mutual
information and six different indices of phase synchronization (either based on Hilbert or
on wavelet transform) as well as symmetrized versions of the nonlinear interdependencies
and the event synchronization. The anti-symmetrized versions of the last three approaches
were used to characterize possible directionalities between two systems.

In the first part of this thesis the measures of synchronization were applied to three different
coupled model systems in order to evaluate whether the analysis of these systems can
contribute useful information for the decision which measure of synchronization is most
suitable for an application to field data. This aim was addressed twofold by comparing
measures on the one hand with respect to their capability to reflect the strength of coupling
and on the other hand regarding their robustness against noise. In both parts of the study
a measure of order was employed as an indicator for a non-monotonic dependence on the
coupling strength. Regarding the first aim, the question which measure is best suited to
distinguish between different coupling strengths could not be answered in general, since
the implicit assumption that an increase of coupling necessarily leads to an increase of all
kinds of synchronization does not hold rigorously for every model system. Furthermore, in
the comparison of measures rather inconsistent results were obtained for different systems.
Therefore, from this part of the analysis no obvious and objective criterion to prefer or to
exclude different measures could be derived.

The second part of the study, the dependence on the degree of noise, remained unaffected
from these caveats and here indeed an assessment of the different measures could be car-
ried out. All measures were quite robust against white noise with slight advantages for
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cross correlation and the phase synchronization indices based on circular variance. As for
the robustness against iso-spectral noise, for some model systems and some measures, in
particular for the nonlinear interdependencies, a (spurious) synchronization between the
contaminating noise-signals could be observed. This should be taken into account when
choosing a suitable measure for an application which might be contaminated by a consid-
erable amount of noise.

To conclude, the analysis of coupled model systems is not able to replace a thorough and
comprehensive test application on the field data to be analyzed. It is certainly useful to ren-
der additional information regarding certain properties of the measures. But the decision
which measure to apply to a certain task should in most cases be made rather pragmatically
by choosing the measure which most reliably yields valuable information in test applica-
tions.

Such a test application was carried out in the second part of this thesis in which the different
measures of synchronization and directionality were applied to electroencephalographic
time series recorded from epilepsy patients. In particular the challenging task of predicting
epileptic seizures was addressed. The given advice to pragmatically use the measure which
most reliably yields valuable information is only reasonable when the evaluation of the
performances is carried out with much care and paying a great deal of attention to the
statistical validation.

Therefore, in this thesis a new approach to address this issue, the method of measure profile
surrogates [65, 64], was introduced and compared against the existing method of seizure
times surrogates [9]. Many advantages of this method could be shown (e.g., the more natu-
ral approach and the easier handling of the constraints), but due to one major disadvantage,
its high computational cost, it could not be used in the comparison of the bivariate mea-
sures regarding their predictive performance. Nevertheless, in the restricted study on one
patient and two measures the new method proved useful in distinguishing between mea-
sures and algorithms unsuited for the prediction of epileptic seizures and more promising
approaches. In conclusion, measure profile surrogates could be established as a powerful
tool to statistically validate epileptic seizure predictions. But since this method is rather
universal and can easily be adapted to validate the performance of time-resolved measures
in many other detection and prediction problems, and given the fast progress in computer
technology, the method of measure profile surrogates can be expected to play a key role in
many future applications.

In the comparison of all bivariate measures (cf. Ref. [103]) a statistical evaluation of
the predictability of epileptic seizures was carried out analyzing measure profiles ren-
dered from quasi-continuous intracranial EEG recordings. In four different evaluation
schemes amplitude distributions of intervals preceding seizures and intervals far away from
any seizure activity were compared using Receiver-Operating-Characteristics (ROC). As
judged by the pragmatic criterion introduced above, different concepts for the quantifi-
cation of synchronization proved to be not equally suited for the detection of temporal
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changes associated with the generation of epileptic seizures in the human brain. While
highest predictive performance values were obtained for the measures of phase synchro-
nization based on the Hilbert transform, the symmetrized versions of the nonlinear inter-
dependencies were least competitive. The three measures of directionality as well as the
only linear measure, the cross correlation, ranked between these extremes.

Much more research has to be done to evaluate the question whether the highest perfor-
mances yielded allow to render an acceptable performance in an algorithmic and prospec-
tive implementation. In case that no measure on its own is able to fulfill this requirement, a
combination of different measures could be more promising as long as these measures ren-
der complementary or at least non-redundant information. For the bivariate measures ana-
lyzed in this thesis considerable redundancies between certain measures of synchronization
could be observed. Thus a combined use of these measures appears to be reasonable only
up to a certain extent. However, because of conceptional differences the combined applica-
tion with uni- or multivariate approaches (e.g., based on independent component analysis)
can be regarded as rather promising. Also the use of bi- or multivariate surrogate techniques
[125, 155, 27, 156, 6] could contribute to a better characterization of the spatio-temporal
variations in the electroencephalogram of epilepsy patients. Finally, a further exploitation
of the directionality of interaction (e.g., using recently proposed methods based on phase
synchronization [138, 137, 159]) could lead to a better understanding of synchronization
phenomena in the human brain.
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Appendix A

Nonlinear deterministic systems

A.1 Hénon map

The H́enon map was the first published example of a strange attractor with less than two
dimensions [47]. It can be considered as a two-dimensional extension of the well-known
logistic map [96]. Its equations read

x′1 = a− x2
1 + b x2

x′2 = x1 (A.1)

For the parametersa = 1.4 andb = 0.3 an exemplary short segment of the first component,
the corresponding power spectrum and the attractor are depicted in Fig. A.1.
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Figure A.1: Hénon map. a) Excerpt of an exemplary time series of the first component.
b) Normalized power spectrum. c) Attractor.
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A.2 Lorenz system

The differential equations introduced by Lorenz as a simplified model for thermal convec-
tion both in the atmosphere and in the fluid of the Rayleigh-Bénard experiment constitute
the first and most famous example of a nonlinear dynamical system exhibiting chaotic be-
havior [91]. The strange attractor with its butterfly shape became one of the most seen
symbols of chaos. The equations of the Lorenz systems are

dx1

dt
= σ(−x1 + x2)

dx2

dt
= r x1 − x2 − x1 x3 (A.2)

dx3

dt
= x1 x2 − bx3.

In Fig. A.2 an exemplary segment of the first component, the corresponding power spec-
trum and a projection of the attractor onto the (x1x3)-plane are shown for the parameters
σ = 10, r = 28 andb = 8
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Figure A.2: Lorenz system. a) Exemplary time series of the first component. b) Normal-
ized power spectrum. c) Projection of the attractor onto the (x1x3)-plane.
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A.3 Rössler system

The differential equations of the Rössler system represent the simplest example of a dy-
namical system with a strange attractor [143]. While the first two equations describe a
linear damped oscillator, the only nonlinear termx1x3 is contained in the third one:

dx1

dt
= −ω{x2 + x3}

dx2

dt
= ω{x1 + a x2} (A.3)

dx3

dt
= {b + x3(x1 − c)}.

For the parametersa = 0.15, b = 0.2 and c = 10 an exemplary segment of the first
component, the corresponding power spectrum and a projection of the attractor onto the
(x1x2)-plane are depicted in Fig. A.3. The characteristic folding mechanism is clearly
visible.
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Figure A.3: Rössler system. a) Exemplary time series of the first component. b) Normal-
ized power spectrum. c) Projection of the attractor onto the (x1x2)-plane.
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Appendix B

Stochastic signals

B.1 White noise

The most commonly used stochastic signal is a sequence of random numbers with either
a uniform amplitude distribution in a certain interval (e.g., [0,1]) or a Gaussian amplitude
distribution. In the asymptotic case of infinitely long signals all frequencies contribute
equally, leading to a homogenous frequency spectrum. In analogy to the spectrum of visi-
ble light such signals are called white noise. In Fig. B.1 an exemplary segment of Gaussian
white noise, the corresponding power spectrum and a state space portrait are shown.
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Figure B.1: Gaussian white Noise. a) Excerpt of an exemplary time series. b) Normalized
power spectrum. c) State space portrait.
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B.2 Iso-spectral noise

Iso-spectral noise is characterized by the same power spectrum as the original time series
and is generated by means of phase-randomized surrogates first introduced in Ref. [166].
The generation of these surrogates consists of three steps: Fourier transform, randomiza-
tion of phases and inverse Fourier transform. In Fig. B.2 an example of a time series
from the Lorenz system and its phase-randomized surrogate is depicted. They look very
different from each other although their power spectrums are indistinguishable.
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Figure B.2: Iso-spectral surrogate: Exemplary time series (Sampling rate: 100 Hz) of the
first component of the Lorenz system (a) with its normalized power spectrum (b). The
phase-randomized surrogate (c) looks completely different but its power spectrum is com-
pletely indistinguishable (d).
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G. Ferńandez. Human memory formation is accompanied by rhinal-hippocampal
coupling and decoupling.Nature Neurosci., 4:1259, 2001.
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[111] M. Palus, V. Koḿarec, Z. Hrnćir, and K. Strebov́a. Synchronization as adjustment
of information rates:Detection from bivariate time series.Phys. Rev. E, 63:046211,
2001.

[112] M. Palus and A. Stefanovska. Direction of coupling from phases of interacting
oscillators:An information-theoretic approach.Phys. Rev. E, 67:055201, 2003.

[113] P. Panter.Modulation, noise, and spectral analysis. McGraw-Hill, New York, 1965.

[114] U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev. Experimental observation of
phase synchronization.Phys. Rev. E, 54:2115, 1996.

[115] K. Pawelzik and H.G. Schuster. Generalized dimensions and entropies from a mea-
sured time series.Phys. Rev. A, 35:481, 1987.

[116] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems.Phys. Rev. Lett.,
64:821, 1990.

[117] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy. Fundamentals
of synchronization in chaotic systems, concepts and applications.Chaos, 7:520,
1997.

116



BIBLIOGRAPHY

[118] E. Pereda, R. Rial, A. Gamundi, and J. Gonzalez. Assessment of changing in-
terdependencies between human electroencephalograms using non-linear methods.
Physica D, 148:147, 2001.

[119] D. W. Peterman, M. Ye, and P. E. Wigen. High frequency synchronization of chaos.
Phys. Rev. Lett., 74:1740, 1995.

[120] A. S. Pikovsky. On the interaction of strange attractors.Z. Phys. B: Condens Matter,
55:149.

[121] A. S. Pikovsky. Phase synchronization of chaotic oscillations by a periodic external
field. Sov J Commun Technol Electron, 30:85, 1985.

[122] A. S. Pikovsky, M. G. Rosenblum, and J. Kurths. Synchronization in a population
of globally coupled chaotic oscillators.Europhys. Lett., 34:165, 1996.

[123] A. S. Pikovsky, M. G. Rosenblum, and J. Kurths.Synchronization.A universal
concept in nonlinear sciences. Cambridge Univ. Press, Cambridge, UK, 2001.

[124] W. H. Press, B. Flannery, S. Teukolsky, and W. Vetterling.Numerical recipes in
Pascal: The art of scientific computing. Cambridge Univ. Press, Cambridge, UK,
1989.

[125] D. Prichard and J. Theiler. Generating surrogate data for time series with several
simultaneously measured variables.Phys. Rev. Lett., 73:951, 1994.

[126] K. Pyragas. Continuous control of chaos by self-controlling feedback.Phys. Lett.
A, 170:421, 1992.

[127] R. Quian Quiroga, J. Arnhold, and P. Grassberger. Learning driver-response rela-
tionships from synchronization patterns.Phys. Rev. E, 61:5142, 2000.

[128] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger. Performance of differ-
ent synchronization measures in real data:A case study on electroencephalographic
signals.Phys. Rev. E, 65:041903, 2002.

[129] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger. Reply to: Comment
on ‘performance of different synchronization measures in real data:A case study on
electroencephalographic signals’.Phys. Rev. E, 67:063902, 2003.

[130] R. Quian Quiroga, T. Kreuz, and P. Grassberger. Event synchronization:A simple
and fast method to measure synchronicity and time delay patterns.Phys. Rev. E,
66:041904, 2002.

[131] A. Renyi. Probability Theory. North Holland, Amsterdam, 1971.
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vielen interessanten Wissenschaftlern zu knüpfen.
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Interesse, die stets einladend offene Bürotür, sowie f̈ur die vielen lehrreichen Gespräche
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ner Epilepsieklinik bin ich Dr. Florian Mormann sehr dankbar. Sowohl in Bonn als
auch in J̈ulich war schliesslich Dr. Ralph G. Andrzejak ein besonders ausdauernder und
verlässlicher Kollege, Diskussionspartner und Freund.

Allen Mitarbeitern der Epilepsieklinik und des Forschungszentrums möchte ich meinen
Dank für die sẗandige Hilfsbereitschaft bei allen auftretenden Problemen aussprechen.
Dabei m̈ochte ich Frau Helga Frank in Jülich besonders hervorheben.

Meinen Freunden, meinen Geschwistern und insbesondere meinen Eltern danke ich sehr
für die kontinuierliche Unterstützung in allen Lebenslagen, ohne die dies alles gar nicht
möglich gewesen ẅare.

Bonn, im September 2003

Thomas Kreuz




