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Zusammenfassung

Das Hauptziel der vorliegenden Doktorarbeit ist die vergleichende Unter-
suchung, Weiterentwicklung und Anwendung verschiedener Ansätze zur
Messung von Synchronisation und Interdependenz zwischen Zeitreihen. Die
behandelten Ans̈atze beinhalten die lineare Kreuzkorrelation und zwei aus
der Informationstheorie abgeleitete Maße, Mutual Information und Transfer-
Entropie. Des weiteren werden zwei Indices für Phasensynchronisation sowie
vier Versionen nichtlinearer Interdependenzmae untersucht.

Im ersten Teil dieser Arbeit werden zwei neue Schätzer f̈ur Mutual Infor-
mation und Transfer-Entropie vorgestellt. Diese weisen im Gegensatz zu
den bisher gebräuchlichen Scḧatzern minimale systematische und statistische
Fehler auf.

Anschließend werden im zweiten Teil zwei verschiedene Methoden der
Phasenextraktion, zum einen basierend auf der Hilbert-Transformation und
zum anderen auf der Wavelet-Transformation, theoretisch miteinander ver-
glichen.

Im dritten Teil werden die verschiedenen Maße zur Analyse elektroen-
zephalographischer Aufzeichnungen von Epilepsie-Patienten herangezogen.
Zunächst wird in einer umfassenden Studie die Eignung der verschiedenen
Maße zur Lokalisierung des epileptischen Fokus untersucht. Anschließend
werden die dabei gewonnenen Resultate mit Hilfe einer speziellen bivariaten
Surrogatdatenmethode getestet.

Im letzten Teil dieser Arbeit wird eine neue auf der Mutual Information
basierende Methode der hierarchischen Klassifizierung präsentiert. Anhand
einer Anwendung auf zwei Beispiele biologischer Daten (dem EKG einer
schwangeren Frau sowie DNS verschiedener Spezies) wird illustriert, dass
diese Methode zu guten Ergebnissen für Daten verschiedenster Herkunft
führen kann.
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Chapter 1

Introduction

The history of the very interesting phenomenon ofsynchronizationstarted in the seven-
teenth century when the famous Dutch researcher Christiaan Huygens observed perfect
agreement between the oscillating motions of two clocks hanging from a common sup-
port [41, 89]. The word“synchronization” came to many contemporary languages from
ancient Greece. The etymology of this word is very simple, it consists of two partsσυν
(syn = common) andχρoνoς (chronos = time). In a direct translation the verb “synchro-
nize” means “to happen at the same time” or “to agree in time”. This translation can be
taken as a first approximation to the definition of synchronization because it contains one
of the main features, namely coincidence in time, i.e., synchronous motion. One can argue,
that this condition is too weak, especially, if coincidence happens very rarely. In our opin-
ion the repeated coincidence over long time, i.e., lasting synchronous motion, is usually a
consequence of synchronization. Therefore, in this thesis we will use synchronization and
synchronous motion as synonymous.

Later, in the beginning of the twentieth century, synchronization phenomena were studied
by W.H. Eccles and J.H. Vincent in the context of electrical and radio engineering de-
velopment. In their experiments the adjustment of the frequencies of two coupled triode
generators with initially different frequencies was demonstrated. A few years later E. Ap-
pleton [11] and B. van der Pol extended the experiments of Eccles and Vincent and also
undertook theoretical investigations of synchronization phenomena. Van der Pol derived
his famous equation, the first example of a non-linear self-oscillating system [124]. More-
over, van der Pol together with van der Mark proposed an electrical model of the human
heart consisting of three coupled relaxation oscillators [125].

A new stage of synchronization studies started some decades after the discovery of deter-
ministic chaos [71]. In the early1980s, the notion of synchronization was extended to the
case of interacting chaotic oscillators [31, 86, 4, 84]. Deterministic chaos is characterized
by sensitivity to initial conditions, i.e., trajectories starting from very close points diverge
exponentially. Therefore, synchronization between chaotic oscillators was not expected.
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CHAPTER 1. INTRODUCTION

However, extensive experimental investigations have proven its existence. Prominent ex-
amples include electronics [87, 39, 83], laser dynamics [28, 105, 119], solid state physics
[85], plasma physics [97], communication [20, 45] and chaos control [91, 107].

The simplest form of synchronization occurs if the states of systems exactly coincide in
time. This type of synchronization is usually referred to as identical synchronization. It can
be observed if the coupling strength between identical systems is high enough [31, 86]. In
this case coincidence means that the two states are identical. One can easily extend the no-
tion of coincidence to a more complicated functional relation. This leads us to the concept
of generalized synchronization, which was introduced for unidirectionally coupled systems
in Refs. [4, 106]. Quite often the most reliable information about interacting systems is
contained in the phases of each system. An entrainment of these phases is fundamental for
phase synchronization. For chaotic oscillators it was first described in Refs. [101, 88, 80].

The variety of synchronization concepts spurred the development of many different ap-
proaches aiming at a quantification of the degree of synchronization between two systems
or rather between two time series measured from the respective systems. Mutual infor-
mation is one of them [37, 21]. It is zero if and only if two random variables are strictly
independent. This distinctive feature singles out mutual information among other mea-
sures. Different estimators for mutual information were proposed in the literature but all of
them have significant systematical errors. This problem has motivated us to develop two
new families of estimators with a minimal bias. These estimators will be introduced in the
first original part of this thesis.

Topological approaches to quantify generalized synchronization include the method of mu-
tual false nearest neighbors [106] and the index based on non-linear mutual predictions
[108] as well as more recent measures like the non-linear interdependencies [13] and syn-
chronization likelihood [116]. Different ways to quantify phase synchronization have been
proposed in [120, 72]. In this context, the notion of a phase is very important and different
approaches for its extraction from time series have been developed. Two of the most im-
portant techniques use the Hilbert transform [101] and the wavelet transform [57]. In the
literature a theoretical comparison of these two methods was still missing. This compari-
son along with an extended discussion about the ambiguity of phase definition constitutes
the second original part of this thesis.

A challenging application for measures of synchronization is the study of neuronal dynam-
ics, since synchronization phenomena have been increasingly recognized as a key feature
for establishing the communication between different regions of the brain [126, 29, 127].
On the other hand synchronization plays an important role for pathological processes such
as Parkinson’s disease or epilepsy. A unique window to neuronal dynamics is given by
electroencephalographic (EEG) recordings from epilepsy patients undergoing pre-surgical
diagnostics [69]. To yield sufficient information for an unequivocal localization of the
seizure-generating structure (epileptic focus) in the brain, sometimes multichannel record-
ings using intracranial monitoring techniques are acquired. In this case the EEG is recorded
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directly from the surface of the brain and from specific structures within the brain [26].
The investigation of these recordings by means of linear and non-linear time series analy-
sis techniques can help to further understand the spatio-temporal dynamics of the epileptic
brain (see, e.g., [62]). In particular, synchronization and de-synchronization phenomena
play an important role in the epileptic process. This motivated us to carry out a com-
prehensive comparison of the different measures of synchronization with respect to their
capability to detect the side of the epileptic focus. To test the degree to which the ob-
tained results are specifically related to synchronization phenomena we applied a bivariate
surrogate data analysis. This study constitutes the third original part of this thesis.

All measures of phase synchronization and nonlinear interdependence test for similarities
between two systems using only one dimensional times series, whereas mutual information
can be applied to objects of any dimension. This feature puts mutual information between
solely bivariate approaches and multivariate approaches, like e.g., independent component
analysis (ICA) [42]. In application to the analysis of multichannel EEG recordings multi-
variate methods can be used to derive different kinds of spatial and temporal information.
For example, grouping the different channels for a more precise localization of the epilep-
tic focus or classification of the intervals preceding an epileptic seizure and the intervals
far away from any seizure activity can be of great value in epilepsy research. An attempt
to retrieve this type of information can be undertaken with the help of clustering methods
[27, 43]. In the last original part of this thesis we propose a new method for a hierarchi-
cal clustering of data based on the grouping property of mutual information. We show
two examples of its application to data from genetics (mitochondrial DNA sequences of
mammals) and cardiology (electrical activity of the heart of a pregnant woman).

This thesis is organized as follows: First, in Chapter 2 an introduction to synchronization
and its different notions is given. In Chapter 3 different approaches to quantify synchro-
nization phenomena are presented. Along with traditional methods such as linear cross-
correlation and coherence functions (Sec. 3.1), nonlinear approaches with information the-
oretical background, namely mutual information (Sec. 3.2) and transfer entropy (Sec. 3.3)
and methods developed in the framework of nonlinear time series analysis (Secs. 3.4 and
3.5) are introduced. In Sec. 3.2.2 new estimators for mutual information and transfer en-
tropy are presented. Sections 3.4.3 and 3.4.4 contain a comparative study of different phase
extraction methods. In Chapter 4 all measures of synchronization and interdependence in-
troduced in Chapter 3 are applied to electroencephalographic time series measured from
the brain of epilepsy patients (Section 4.1). In particular, the localization of the epileptic
focus is addressed in Section 4.2. The bivariate surrogate data techniques are described
and applied in Sec. 4.2.2. In Chapter 5 a new algorithm for hierarchical clustering based
on mutual information is presented. In Section 5.1 the algorithm is formulated and in Sec-
tion 5.3 two its applications are discussed. Finally, the conclusions of this thesis are drawn
in Chapter 6.
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Chapter 2

What is synchronization?

Following Pikovskyet al. we will understand synchronization as anadjustment of rhythms
of oscillating objects due to their weak interaction[89]. Let us explain in more detail
what exactly we understand under the terms used in this definition. Interaction can be
realized for instance through a coupling. The coupling can be either unidirectional or bidi-
rectional. In the latter case one could expectmutual synchronization, both systems adjust
their rhythms to each other. In the former case one usually speaks about synchronization
by an external force, where the forcing system is also called adriver and the driven system
is called aresponse. The rhythm of the response is adjusted to the rhythms of the driver.

One of the main properties which distinguish a synchronization phenomenon for instance
from a resonance is the existence of own rhythms for each oscillating object, even when
not driven at all. If the rhythm of a response is only induced by a driver (as it is the case
with the resonance) then it is not possible to treat it as synchronization. Moreover, own
rhythms should exist also for a noninteractive case, i.e., a system under consideration can
in principle be separated into different subsystems all of which have their own rhythms. A
prominent example is the hare-lynx cycle, a well-known ecological phenomenon in which
one cannot speak about synchronization between the two populations because the hare-lynx
ecological system cannot be separated into independent oscillating subsystems (either the
lynxes will die without food or the hare population will explode). Nevertheless, in such a
large system as a human brain, which is known to contain approximately1011 neurons with
a total of1014 to 1015 synaptic connections, one can still investigate the synchronization
phenomenon between different brain regions. Considering the strength of an interaction
one can say that as soon as it gets strong (very large values of coupling) one cannot speak
of two interacting systems but rather of one combined system. That is why the word
“weak” appears in the definition of synchronization.

In the literature three main types of synchronization are usually distinguished, namely
identical synchronization, phase synchronization, andgeneralized synchronization.
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CHAPTER 2. WHAT IS SYNCHRONIZATION?

2.1 Identical synchronization

The simplest case of synchronization is identical or complete synchronization. It is ob-
served if the states of coupled systems coincide in the limitt → ∞ [31, 86]. For the two
systemsX andY with state vectorsx(t) andy(t) it means

lim
t→∞[x(t)− y(t)] = 0. (2.1)

Identical synchronization is a special case of many other types of synchronization which
is obtained for sufficiently strong coupling, however, only in the case when the systems
have identical parameters. Otherwise, if the parameters of the coupled systems slightly
mismatch, the states can come close to each other but still remain different.

2.2 Phase synchronization

Phase synchronization is based on the notion of the phase of oscillation, originating from
the phase of a harmonic motion. In physics the term “phase” carries many different mean-
ings. For instance the phase in “phase transition” has nothing to do with the phase in “phase
space”. In the following we will always use the term “phase” in the sense of a phase of an
oscillation.

The phase is a very specific variable of a motion. If we consider the behavior of an oscil-
lating object in a coordinate system rotating with an angular velocity of oscillations then
the motion will be represented in state space by a single point. Moreover, any perturba-
tion of the phase along the trajectory is equivalent to a change in time. Since autonomous
systems are time invariant, the phase perturbation neither grows nor decays. The phase
of an oscillator can be considered as the variable that corresponds to the zero Lyapunov
exponent. That is why the phase can be very easily adjusted by an external action, i.e.,
synchronization can occur.

Phase synchronization is a natural concept for the description of two coupled linear (har-
monic) or non-linear oscillators or any other system for which the definition and deter-
mination of a phase is straightforward. Only recently has this concept been also applied
to chaotic oscillators [101, 88, 80] and even further extended to the analysis of almost
arbitrary dynamics (cf. [102]).

Mathematically, phase synchronization can be defined as the entrainment of the phases:

|nϕx(t)−mϕy(t)| ≤ const, (2.2)

whereϕx(t) andϕy(t) are the phases extracted from systemsX andY , n andm being
integers. Different methods of phase extraction will be considered in detail in the Sec. 3.4.
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2.3. GENERALIZED SYNCHRONIZATION

The phases do not have to be defined in this Section on the circle from0 to 2π but should
rather be unfolded.

Phase synchronization has fewer constraints than identical synchronization, i.e., only the
phases have to be locked whereas the amplitudes can remain chaotic and may even be
uncorrelated.

2.3 Generalized synchronization

As already stated in Sec. 2.1, identical synchronization which is characterized by complete
coincidence of states of the systems can only occur for identical systems. If the systems
are not identical it is still possible to speak about synchronization if one system (response)
is following the other (driver), although in a weaker sense. This phenomenon is usually
called generalized synchronization [106, 4, 84].

Let us consider two systems which are unidirectionally coupled:

x(t + 1) = f(x(t)),

y(t + 1) = g(x(t), y(t)). (2.3)

Herex is a driver, andy is a response. One speaks about generalized synchronization if
the state of the response is completely defined by the state of the driver, i.e., there exists a
functionG such that

y = G(x). (2.4)

The functionG does not need to be smooth. In fact, Pyragas [92] defined the cases of
smooth and non-smooth transformations as strong and weak synchronization, respectively
(see also Ref. [40]).

The existence of generalized synchronization means that dynamics ofy is completely de-
fined by the dynamics ofx. It becomes possible only if the dynamics ofy is stable, i.e., the
maximal Lyapunov exponent1 corresponding toy is negative. This condition is necessary
and sufficient if one excludes the case of multistability.

The relation between phase synchronization and generalized synchronization can not be
defined in general. First, in Ref. [83] it was claimed that generalized synchronization
implies phase synchronization i.e., the phase synchronization appears first with increasing
of the interaction strength. Later, for several examples the reverse order was found [130].

It is possible to apply the techniques designed to detect generalized synchronization not to
the systems directly but rather to their phases. This type of synchronization was described
in Ref. [60] and was calledgeneralized phase synchronization.

1This Lyapunov exponent is also sometimes called conditional Lyapunov exponent [84].
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CHAPTER 2. WHAT IS SYNCHRONIZATION?

2.4 Once again about identical synchronization

Let us consider the identical synchronization from a slightly different point of view. The
usual identical synchronization introduced in Sec. 2.1 can schematically be represented as

X ⇐⇒ Y. (2.5)

Here systemsX andY speakto each other.

The next possible case when two identical systems might synchronize is if they are driven
by a common driver (unidirectional coupling). Two responses which onlylistento the same
driver but are not coupled directly might still be identically synchronized with each other.
The driverZ can be a system completely different fromX andY (it can even be a random
noise), and clearlyX andZ are not synchronized identically. The schematic representation
is the following

X ←− Z −→ Y. (2.6)

In this case one usually speaks about generalized synchronization between the driverZ and
the responseX (or Y ) as described in the previous Section. The identical synchronization
between two responses can be used as a criterion for generalized synchronization (auxiliary
[3] or replica [84] system approach). The existence of identical synchronization between
non interacting, but driven systems is already non trivial. The situation will become more
difficult if we let the systemsX andY influence the driver through a back coupling. This
can be schematically represented as

X ⇐⇒ Z ⇐⇒ Y. (2.7)

Here the responsesX andY do not onlylisten to the driverZ but alsotalk to it but not
with each other. Strictly speaking, the subsystems are neither responses nor drivers, but for
convenience we will still refer toX andY as responses and toZ as a driver. Also in this
case the identical synchronization betweenX andY is possible, although the responsesX
andY are not identically synchronized with the driverZ.

This type of identical synchronization can be also used as a criterion for thepartial gener-
alized synchronizationbetween the driverZ and the responseX (or Y ) [131].
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Chapter 3

Measures of interdependence and
synchronization

In this Chapter we will review different methods for the detection of interdependencies and
synchronization. We will also introduce new estimators for mutual information and transfer
entropy, which serve as measures of dependence and predominant direction of interaction,
respectively. All these methods will be applied later in this thesis to experimental time
series mainly of biological nature, e.g., electrocardiograms or electroencephalograms.

In their discussion about detection of synchronization from experimental data Pikovsky
et al. [89] distinguish two types of experiments, namely “active” and “passive” ones. In
the next chapters, where we will apply methods for detection of interdependencies and
synchronization to biological time series, we will obviously deal with experiments of the
“passive” type. In such experiments a “tuning knob” is not available. It is not always
possible to control in detail the parameters of the systems and/or the interaction strength.

One naturally arising question is whether one can detect synchronization by analyzing
bivariate data from passive experiments. A very important property of synchronization is
adjustment and it is a process and not a state. That is why the answer to the question is
that in general such detection is not possible. Nevertheless, a synchronization analysis may
provide useful information on the interrelation or interdependence of systems.

This Chapter has the following structure. First, the linear cross-correlation will be intro-
duced in Sec. 3.1. In Secs. 3.2 and 3.3 the two measures with information theoretical
background, namely mutual information and transfer entropy, will be discussed. Here new
estimators for mutual information will be presented. Measures of phase synchronization
as well as the relation between some of them will be discussed in Sec. 3.4. Finally, in
Sec. 3.5 measures of generalized synchronization based on the relation between attractors
reconstructed in time-delay state space will be described.

9



CHAPTER 3. MEASURES OF INTERDEPENDENCE AND SYNCHRONIZATION

3.1 Cross-correlation

A physical processX can be described either in thetime domain, by the value of some
quantityx(t) as a function of time, or alternatively in thefrequency domain, where the pro-
cessX is specified by giving a complex function̂x(ω) of frequencyω. One goes backward
and forward between these two representations by means of theFourier transform(FT),

x̂(ω) = (Fx)(ω) =
∫ ∞

−∞
x(t)eiωtdt, (3.1)

x(t) = (F−1x̂)(t) =
1

2π

∫ ∞

−∞
x̂(ω)e−iωtdω, (3.2)

where(Fx) denotes the FT and(F−1x̂) denotes its inverse [18].

The cross-correlation function of two functionsx(t) andy(t) is defined as a function of a
time lag τ :

cxy(τ) =
∫ ∞

−∞
x(t + τ)y(t)dt. (3.3)

In the frequency domain one can define the cross-spectrum function which is a complex
function of frequency,

c̃xy(ω) = (Fx)(ω) · (Fy)∗(ω), (3.4)

where the asterisk denotes complex conjugation. One can prove the correlation theorem:

cxy = (F c̃xy) and c̃xy = (F−1cxy). (3.5)

This result shows that multiplying the FT of one function by the complex conjugate of the
FT of the other gives the FT of their cross-correlation. The cross-correlation of a func-
tion with itself is called itsautocorrelationand the cross-spectrum of a function with itself
is called itsautospectrum. In this case the correlation theorem (Eq.(3.5)) becomes the
well known Wiener-Kninchin theorem. In addition, one can also introduce the normal-
ized cross-spectrum, which is usually calledcoherencefunction. It is the cross-spectrum
normalized by the autospectra of each function:

Γxy(ω) =
|〈c̃xy(ω)〉|√

〈c̃xx(ω)〉
√
〈c̃yy(ω)〉

, (3.6)

where〈·〉 denotes the ensemble average.

In applications one usually deals with a finite amount of measurements offered by experi-
mentalists. Assume thatx0, . . . , xN−1 andy0, . . . , yN−1 are two simultaneously measured
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3.2. MUTUAL INFORMATION

stationary time series, which have zero mean and unit variance. The estimate of the cross-
correlation is then defined1 as a function of the time lagτ = −(N − 1), . . . , 0, . . . , N − 1:

cxy(τ) =





1
N−τ

∑N−τ
i=1 xi+τyi, τ ≥ 0

cyx(−τ), τ < 0.
(3.7)

The cross-correlation is normalized to the range from minus one (complete anti-synchro-
nization) to one (complete synchronization). The value of cross-correlation near zero in-
dicates linear independence of systems. The estimator for the cross-correlation could give
non-zero values for two completely linearly independent system. That is why a signifi-
cance threshold for the estimated cross-correlation should be taken into account (e.g., the
Bartlett estimator [15, 18]). Nevertheless, the cross-correlation is one of the simplest and
mostly used measures of synchronization between two systems, although it is not sensitive
to nonlinear dependencies.

The estimation of the coherence function (Eq.(3.6)) is not easy. The ensemble averaging
is not possible and we have to replace it by the time average assuming the stationarity
of underlying dynamics. Usually one divides time series into segments and estimates the
cross-spectrum and the autospectra for each segment, and then takes the average over these
segments. The choice of the segment length, a window function (e.g., Bartlett, Welch) is
not always obvious and depends on the problem in hand.

While the coherence function is a function of the frequencyω, it is a very useful measure
when one is interested in the synchronization related to certain frequency ranges only, e.g.,
in the classical EEG frequency bands (cf. [69]).

In applications (see Chapter 4) we will use two measures of linear synchronization, namely

C0 = cxy(0), (3.8)

i.e., the cross-correlation at zero time lag and the maximum cross-correlation:

Cmax = max
τ
{|cxy(τ)|}. (3.9)

Both of these are symmetric measures.

3.2 Mutual information

Information theoretical measures [21, 37] like Shannon and Kolmogorov entropies are
widely used to analyze nonlinear systems. In particular, they are used to characterize the

1Here and in the following we will use the same notations for mathematical quantity and their estimates.
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CHAPTER 3. MEASURES OF INTERDEPENDENCE AND SYNCHRONIZATION

degree of randomness of time sequences, and to quantify the difference between two prob-
ability distributions. Statistical dependence between signals is often estimated by their
mutual information (MI).

Among the measures of interdependence between random variables, MI is singled out
by its close ties to Shannon entropy and the theoretical advantages derived from this. In
contrast to the linear cross-correlation, it is sensitive also to dependencies which do not
manifest themselves in the cross-correlation. Indeed, MI is zero if and only if the two
random variables are strictly independent. The latter is also true for quantities based on
Renyi entropies [95], and these are often easier to estimate (in particular if their order is2).

First, the Shannon entropy is defined fordiscreterandom variables. Assume that one has a
discrete random variableX, with pX(x) = prob(X = x), wherex is one of the possible
states ofX. Then the Shannon entropy is defined as

H(X) = −∑
x

pX(x) log pX(x). (3.10)

The Shannon entropy is theaverage informationaboutX. The base of the logarithm deter-
mines the units in which information is measured. In particular, taking the base two leads
to information measured in bits. In the following we always will use natural logarithms.

To define an entropy for a continuous variableX with density2 µX one first introduces some
binning (‘coarse-graining’), artificially defining thereby a discrete random variable. Ifx is
a vector with dimensionm and each bin has Lebesgue measure∆, thenpX(x) ≈ µX(x̃)∆m

with x̃ chosen suitably in binx. According to Eq.(3.10) the entropy for the binned variable
will be3

Hbin(X) ≈ H̃(X)−m log ∆, (3.11)

where thedifferential entropyH̃(X) is given by

H̃(X) = −
∫

dx µX(x) log µX(x). (3.12)

Notice thatHbin(X) is a true (average) information and is thus non-negative, butH̃(X)
is not an information and can be negative. Also,H̃(X) is not invariant under homeomor-
phisms (smooth and uniquely invertible maps)x → φ(x).

The MI between two discrete random variablesX and Y with marginal probabilities
pX(x) = prob(X = x) andpY (y) = prob(Y = y), and with joint probabilityp(x, y) =
prob(X = x, Y = y) is defined as

I(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

pX(x)pY (y)
. (3.13)

2Here, it is assumed that the density of X exists as a “smooth function”.
3If X lives on a fractal setm, then for∆ → 0 one hasHbin(X) ∼ −DI log ∆, whereDI is its informa-

tion dimension.
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3.2. MUTUAL INFORMATION

For continuous variables one can use a similar binning to find thatI(X, Y ) remains finite
and is independent of∆, giving

I(X, Y ) = lim
∆→0

Ibin =
∫∫

dxdy µ(x, y) log
µ(x, y)

µX(x)µY (y)
, (3.14)

whereµ(x, y) is the joint density andµX(x) =
∫

dyµ(x, y) andµY (y) =
∫

dxµ(x, y) are
the marginal densities ofX andY . It is assumed that the integrals written above exist
in some mathematical sense. In particular, it is always assumed that0 log(0) = 0, and
therefore one does not have to assume that densities are strictly positive.

Despite of being the sum of entropies

I(X,Y ) = H(X) + H(Y )−H(X,Y ) (3.15)

the MI is invariant under homeomorphismsx → φ(x) andy → ψ(y).

PROOF: If JX = ||∂X/∂X ′|| andJY = ||∂Y/∂Y ′|| are the Jacobi determinants then

µ′(x′, y′) = JX(x′)JY (y′)µ(x, y) (3.16)

and similarly for the marginal densities, which gives

I(X ′, Y ′) =
∫∫

dx′dy′µ′(x′, y′) log
µ′(x′, y′)

µ′x(x′)µ′y(y′)

=
∫∫

dxdy µ(x, y) log
µ(x, y)

µx(x)µy(y)

= I(X, Y ) . (3.17)

Forn random variablesX1, X2 . . . Xn, the MI is defined as

I(X1, . . . , Xn) =
n∑

k=1

H(Xk)−H(X1, . . . , Xn). (3.18)

This quantity is often referred to as (generalized) redundancy, in order to distinguish it
from different “mutual informations” which are constructed analogously to higher order
cumulants, but we shall not follow this usage.

3.2.1 Estimation of Mutual Information

In applications, one usually has the data available in form of a statistical sample. To esti-
mateI(X, Y ) one starts fromN bivariate measurementszi = (xi, yi), i = 1, . . . , N which
are assumed to be iid (independent identically distributed) realizations. The aim is to esti-
mateI(X,Y ) from the set{zi} alone, without knowing explicitly the densitiesµ, µx, and
µy.

13



CHAPTER 3. MEASURES OF INTERDEPENDENCE AND SYNCHRONIZATION

The most straightforward and widespread approach for estimating MI consists in partition-
ing the supports ofX andY into bins of finite size, and approximating Eq.(3.14) by the
finite sum

I(X, Y ) ≈ Ibin(X,Y ) ≡ ∑
x,y

p(x, y) log
p(x, y)

pX(x)pY (y)
. (3.19)

An estimator ofIbin(X, Y ) is obtained by simply counting the numbers of points falling
into the various bins. Ifnx (ny) is the number of points falling into thex-th bin of X
(y-th bin ofY ), andnxy is the number of points in their intersection, then we approximate
pX(x) ≈ nx/N , pY (y) ≈ ny/N , andp(x, y) ≈ nxy/N . It has already been mentioned that
Ibin converges toI(X, Y ) if we first let N → ∞ and then let all bin sizes tend to zero, if
all densities exist as proper (not necessarily smooth) functions.

The bin sizes used in Eq.(3.19) do not need to be the same for all bins. Optimized estima-
tors [30, 23] use adaptive bin sizes which are essentially geared at having equal numbers
nxy for all pairs(x, y) with non-zero measure. While such estimators are much better than
estimators using fixed bin sizes, they still have systematic errors which result from approx-
imating I(X, Y ) by Ibin(X, Y ), and from approximating (logarithms of) probabilities by
(logarithms of) frequency ratios. The latter bias could presumably be minimized by using
corrections for finitenx resp.nxy [35, 33].

Kernel techniques is an attractive alternative to binning a distribution which is discussed
thoroughly in the literature (cf. [114]). The main assumption is that the probability density
is smooth enough such that structure below a certain kernel band width may be ignored.
The simplest possibility is to estimate the density at a pointx̃ by the number of points in a
box centered at̃x of sizeε divided by its volume. Rather than simply counting the points,
one can give them distance-dependent weights using some kernel function. In order to
reconstruct the density ofX at an arbitrary point̃x , the general form of a kernel estimator
is given by:

µ̂(x̃) =
1

Nε

N∑
x

K(
x̃− x

ε
) (3.20)

The non-negative functionK(x) determines the distance-dependent weight of each point.
One of the most common kernels is the Gaussian kernelK(u) = 1√

2π
e−(1/2) u2

. In case of

the rectangular kernelK(u) = 1
2
, (|u| < 1) this estimator is equivalent to the method men-

tioned in the previous paragraph4. The parameterε is called the band width and determines
the scale below which structure is ignored. IfK satisfies

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du < ∞ (3.21)

andµ is twice differentiable, then at each pointx the convergencêµ(x̃) → µ(x̃) for ε → 0
holds on average [114]. With a finite number of points, the convergence of course may not
be seen since for smallε, statistical fluctuations become important.

4In binning, the points̃x would form a regular lattice with stepε which they usually do not do for kernel
methods.
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3.2. MUTUAL INFORMATION

If some parametric families are assumed for the distributions, it is sufficient to estimate
these parameters and then calculate MI analytically or numerically from the known func-
tional form of the density.

3.2.2 New Estimators

In this Section new estimators [52] for MI will be presented. We first review the derivation
of a related differential Shannon entropy estimate [34, 46, 129] since the estimators for MI
are obtained by very similar arguments.

Let X be a continuous random variable with values in some metric space, i.e., there is a
distance function||x− x′|| defined between any two realizations ofX, and let the density
µ(x) exist as a proper function. Differential Shannon entropy is defined as

H(X) = −
∫

dxµ(x) log µ(x) . (3.22)

Our aim is to estimateH(X) from a random sample(x1 . . . xN) of N realizations ofX.

The first step is to realize that Eq.(3.22) can be understood (up to the minus sign) as an
average oflog µ(x). If we had unbiased estimatorŝlog µ(x) of the latter, we would have an
unbiased estimator

Ĥ(X) = −N−1
N∑

i=1

̂log µ(xi) . (3.23)

In order to obtain the estimate ̂log µ(xi), we consider the probability distributionPk(ε)
for the distance betweenxi and itsk-th nearest neighbour. The probabilityPk(ε)dε is
equal to the probability that there is one point within the distancer ∈ [ε/2, ε/2 + dε/2]
from xi, that there arek − 1 other points at smaller distances, and thatN − k − 1 points
have larger distances fromxk. Let us denote bypi the mass of theε-ball centered atxi,
pi(ε) =

∫
||ξ−xi||<ε/2 dξµ(ξ). Using the trinomial formula we obtain

Pk(ε)dε =
(N − 1)!

1!(k − 1)!(N − k − 1)!
× dpi(ε)

dε
dε × pk−1

i × (1− pi)
N−k−1 (3.24)

or

Pk(ε) = k

(
N − 1

k

)
dpi(ε)

dε
pk−1

i (1− pi)
N−k−1 . (3.25)

One easily checks that this is correctly normalized,
∫

dεPk(ε) = 1. Similarly, one can
obtain the expectation value oflog pi(ε)

E(log pi) =
∫ ∞

0
dε Pk(ε) log pi(ε) = k

(
N − 1

k

) ∫ 1

0
dp pk−1(1− p)N−k−1 log p

= ψ(k)− ψ(N) . (3.26)
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CHAPTER 3. MEASURES OF INTERDEPENDENCE AND SYNCHRONIZATION

Here,ψ(x) is the digamma function,ψ(x) = Γ(x)−1dΓ(x)/dx. It satisfies the recursion
ψ(x+1) = ψ(x)+1/x andψ(1) = −C whereC = 0.5772156 . . . is the Euler-Mascheroni
constant. For largex, ψ(x) ≈ log x − 1/2x. The expectation value is taken here over the
positions of all otherN − 1 points, withxi kept fixed. For anyε, an estimator forlog µ(x)
is obtained by assuming thatµ(x) is constant within the entireε-ball. The latter gives

pi(ε) ≈ cdε
dµ(xi) . (3.27)

whered is the dimension ofx, andcd is the volume of thed-dimensional unit ball. For the
maximum norm one simply hascd = 1, while for the Euclidean normcd = πd/2/Γ(1 +
d/2)/2d.

Using Eqs.(3.26) and (3.27) one obtains

log µ(xi) ≈ ψ(k)− ψ(N)− d E(log ε(i))− log cd , (3.28)

which finally leads to Kozachenko-Leonenko estimator for differential Shannon entropy
[46]

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑

i=1

log ε(i) (3.29)

whereε(i) is twice the distance fromxi to itsk-th neighbour.

From this derivation it is obvious that Eq.(3.29) would be unbiased, if the densityµ(x) were
strictly constant. The only approximation is in Eq.(3.27). For points on a torus (e.g., when
x is a phase) with a strictly positive density one can easily estimate the leading corrections
to Eq.(3.27) for largeN . One finds that they areO(1/N2) and that they scale, for largek
andN , as∼ (k/N)2. In most other cases (including, e.g., Gaussians and uniform densities
in bounded domains with a sharp cut-off) numerical simulations suggest that the error is
∼ k/N or∼ k/N log(N/k).

Mutual information could be obtained by estimating in this wayH(X), H(Y ) andH(X, Y )
separately and using [21]

I(X, Y ) = H(X) + H(Y )−H(X, Y ). (3.30)

But this would mean that the errors made in the individual estimates would presumably not
cancel, and therefore we proceed differently.

Indeed we will present two slightly different algorithms, both based on the above idea.
Both use for the spaceZ = (X, Y ) the maximum norm,

||z − z′|| = max{||x− x′||, ||y − y′||}, (3.31)

while any norms can be used for||x−x′|| and||y−y′|| (they need not be the same, as these
spaces can be completely different). Let us denote byε(i)/2 the distance fromzi to itsk-th
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Figure 3.1: Panel (a): Determination of ε(i), nx(i) and ny(i) in the first algorithm, for k = 1
and some fixed i. In this example, nx(i) = 5 and ny(i) = 3.
Panels (b),(c): Determination of εx(i), εy(i), nx(i) and ny(i) in the second algorithm, for
k = 2. Panel (b) shows a case where εx(i) and εy(i) are determined by the same point,
while panel (c) shows a case where they are determined by different points. In this exam-
ples, nx(i) = 6 and ny(i) = 4.

neighbor, and byεx(i)/2 andεy(i)/2 the distances between the same points projected into
theX andY subspaces. Obviously,ε(i) = max{εx(i), εy(i)}.
In the first algorithm, we count the numbernx(i) of pointsxj whose distance fromxi is
strictly less thanε(i)/2, and similarly fory instead ofx. This is illustrated in Fig. 1a. Notice
thatε(i) is a random (fluctuating) variable, and therefore alsonx(i) andny(i) fluctuate.

Alternatively, in the second algorithm, we replacenx(i) andny(i) by the number of points
with ||xi − xj|| ≤ εx(i)/2 and||yi − yj|| ≤ εy(i)/2 (see Figs. 3.1b and 3.1c).

For both algorithms, we will use the estimator Eq.(3.29) forH(X,Y ). Replacingd by
dX + dY andcd by cdX

cdY
we obtain

Ĥ(X, Y ) = ψ(k)− ψ(N)− log(cdX
cdY

)− dX + dY

N

N∑

i=1

log ε(i) . (3.32)

In order to obtainI(X,Y ) we have to subtract this from the estimates forH(X) andH(Y ).
For the latter we could use Eq.(3.29) directly with the samek. But as we said above, this
would mean that we would effectively use different distance scales in the joint and marginal
spaces. For any fixedk, the distance to thek-th neighbour in the joint space will be larger
than the distances to the neighbours in the marginal spaces. Since the bias in Eq.(3.29)
from the non-uniformity of the density depends of course on these distances, the biases in
Ĥ(X), Ĥ(Y ), and inĤ(X,Y ) would not cancel.

To avoid this, we notice that Eq.(3.29) holds foranyvalue ofk, and that we do not have
to choose a fixedk when estimating the marginal entropies. Assume, as in Fig. 3.1a, that
the k-th neighbour ofxi is on the one of the vertical sides of the square of sizeε(i). In
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this case, if there are altogethernx(i) points within the vertical linesx = xi ± ε(i)/2, then
ε(i)/2 is the distance to the(nx(i) + 1)−st neighbour ofxi, and

Ĥ(X) =
1

N

N∑

i=1

ψ(nx(i) + 1)− ψ(N)− log cdX
− dX

N

N∑

i=1

log ε(i) . (3.33)

For the other direction (they direction in Fig. 3.1a) this is not exactly true, i.e.,ε(i) is not
exactly equal to twice the distance to the(ny(i) + 1)−st neighbour, ifny(i) is analogously
defined as the number of points with||yj − yi|| < ε(i)/2. Nevertheless we can consider
Eq.(3.33) also as a good approximation forH(Y ), if we replace everywhereX by Y in its
right hand side (this approximation becomes exact whenny(i) → ∞, and thus also when
N →∞). If we do this, subtractinĝH(X, Y ) from Ĥ(X) + Ĥ(Y ) leads directly to

I(1)(X,Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N). (3.34)

These arguments can easily be extended tom random variables and lead to

I(1)(X1, X2, . . . , Xm) = ψ(k) + (m− 1)ψ(N)

− 〈ψ(nx1) + ψ(nx2) + . . . + ψ(nxm)〉. (3.35)

The main drawback ofI(1) is that the Kozachenko-Leonenko estimator is used correctly
in only one marginal direction. This seems unavoidable if one wants to stick to isotopic
“balls”, i.e., to (hyper)cubes in the joint space. In order to avoid it we have to switch
to (hyper)rectangles. Let us first discuss the case of two marginal variablesX and Y ,
and generalize later tom variablesX1, . . . , Xm. As illustrated in Figs. 3.1b and 3.1c,
there are two cases to be distinguished (all other cases, where more points fall onto the
boundariesxi ± εx(i)/2 and yi ± εy(i)/2, have zero probability; see however the third
paragraph of Sec. 3.2.3): Either the two sidesεx(i) andεy(i) are determined by the same
point (Fig. 3.1b), or by different points (Fig. 3.1c). In either case we have to replacePk(ε)
by a 2-dimensional density,

Pk(εx, εy) = P
(b)
k (εx, εy) + P

(c)
k (εx, εy) (3.36)

with

P
(b)
k (εx, εy) =

(
N − 1

k

)
d2[qk

i ]

dεxdεy

(1− pi)
N−k−1 (3.37)

and

P
(c)
k (εx, εy) = (k − 1)

(
N − 1

k

)
d2[qk

i ]

dεxdεy

(1− pi)
N−k−1 . (3.38)

Here,qi ≡ qi(εx, εy) is the mass of the rectangle of sizeεx × εy centered at(xi, yi), andpi

is as before the mass of the square of sizeε = max{εx, εy}. The latter is needed since by
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using the maximum norm we guarantee that there are no points in this square which are
not inside the rectangle.

Again we verify straightforwardly thatPk is normalized, while we get instead of Eq.(3.26)

E(log qi) =
∫∫ ∞

0
dεxdεyPk(εx, εy) log qi(εx, εy)

= ψ(k)− 1/k − ψ(N) . (3.39)

Denoting bynx(i) andny(i) the number of points with distance lessor equal to εx(i)/2
resp.εy(i)/2, we get

I(2)(X, Y ) = ψ(k)− 1/k − 〈ψ(nx) + ψ(ny)〉+ ψ(N). (3.40)

For the generalization tom variables we have to considerm-dimensional densities
Pk(εx1 , . . . , εxm). The number of distinct cases (analogous to the two cases shown in
Figs. 3.1b and 3.1c) proliferates asm grows, but fortunately we do not have to consider all
these cases explicitly. One sees easily that each of them contributes toPk a term

∝ dm[qk
i ]

dεx1 . . . dεxm

(1− pi)
N−k−1 (3.41)

The direct calculation of the proportionality factors would be extremely tedious (we did it
for m = 3), but it can be avoided by simply demanding that the sum is correctly normal-
ized. This gives

Pk(εx1 , . . . , εxm) = km−1

(
N − 1

k

)
dm[qk

i ]

dεx1 . . . dεxm

× (1− pi)
N−k−1 . (3.42)

Calculating againE(log qi) = ψ(k)− (m− 1)/k − ψ(N) analytically and approximating
the density by a constant inside the hyper-rectangle, we obtain finally

I(2)(X1, X2, . . . , Xm) = ψ(k)− (m− 1)/k + (m− 1)ψ(N) (3.43)

− 〈ψ(nx1) + ψ(nx2) + . . . + ψ(nxm)〉 .

Before leaving this Section, we should mention that we slightly cheated in deriving
I(2)(X, Y ) (and its generalization tom > 2). Assume that in a particular realization we
haveεx(i) < εy(i), as in Fig. 3.1b,3.1c. In that case we know that there cannot be any
point in the two rectangles[xi − εy(i)/2, xi − εx(i)/2] × [yi − εy(i)/2, yi + εy(i)/2] and
[xi + εx(i)/2, xi + εy(i)/2] × [yi − εy(i)/2, yi + εy(i)/2] (see Fig. 3.2). While we have
taken this correctly into account when estimatingH(X,Y ) (where it was crucial), we have
neglected it inH(X) andH(Y ). There, the corrections are of orderO(1/nx) andO(1/ny)
and should vanish forN → ∞. It could be that their net effect vanishes because they
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Figure 3.2: There cannot be any points inside the shaded rectangles. For the second
method, this means that the estimates of the marginal entropy H(X) (H(Y )) should be
modified, since part of the area outside (inside) the stripe with εx (εy) is forbidden. This is
neglected in Eq.(3.40).

contribute with opposite signs toH(X) andH(Y ). But we have no proof for it. Anyhow,
due to the approximation of constant density within each rectangle we cannot expect our
estimates to be exact for finiteN , and any justification ultimately relies on numerics.

In general, both formulas give very similar results. For the samek, Eq.(3.34) gives slightly
smaller statistical errors (becausenx(i) andny(i) tend to be larger and have smaller relative
fluctuations), but have larger systematic errors. The latter is only severe if we are interested
in very high dimensions whereε(i) typically tends to be much larger than the marginal
εxj

(i). In that case the second algorithm seems preferable. Otherwise, both can be used
equally well.

3.2.3 Implementations Details

• Mutual information is invariant under reparametrization of the marginal variables. If
X ′ = F (X) andY ′ = G(Y ) are homeomorphisms, thenI(X,Y ) = I(X ′, Y ′) (see
(3.17)). This can be used to rescale both variables first to unit variance. In addition,
if the distributions are very skewed and/or rough, it might be a good idea to transform
them such as to become more uniform (or at least single-humped and more or less
symmetric). Although this is not required, strictly spoken, it will in general reduce
errors.

• When implemented straightforwardly, the algorithm spends most of the CPU time
for searching neighbours.

– In the most naive version, we need two nested loops through all points which
gives a CPU time of orderO(N2). While this is acceptable for very small data
sets (sayN ≤ 300), fast neighbour search algorithms are needed when dealing
with larger sets.
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– Let us assume thatX and Y are scalars. An algorithm with complexity
O(N

√
k N) is then obtained by first ranking thexi by magnitude (this can

be done by any sorting algorithm such as quicksort), and co-ranking theyi with
them [90]. Nearest neighbours of(xi, yi) can then be obtained by searching
x-neighbours on both sides ofxi and verifying that their distance iny direction
is not too large. Neighbours in the marginal subspaces are found even easier by
ranking bothxi andyi. Most results in this Chapter were obtained using this
method which is suitable forN up to a few thousands.

– The fastest (but also the most complex) algorithm is obtained by using grids
(‘boxes’) [36]. Indeed, we use three grids: A 2-dimensional one with box
sizeO(

√
k/N) and two 1-dimensional ones with box sizesO(1/N). First the

k neighbours in 2-d space are searched using the 2-d grid, then the boxes at
distances±ε from the central point are searched in the 1-d grids to findnx

and ny. If the distributions are smooth, this leads to complexityO(
√

kN).
This last algorithm is comparable in speed to the algorithm of [23]. For all
three versions of our algorithm it costs only little additional CPU time if one
evaluates, along withI(X, Y ) for somek > 1, also the estimators for smaller
numbers of neighbors.

• Empirical data usually are obtained with a resolution of a few (e.g., 12 or 16) binary
digits, which means that many points in a large set may have identical coordinates.
In that case the numbersnx(i) andny(i) need no longer to be unique (the assump-
tion of continuously distributed points is violated). If no precautions are taken, any
code based on nearest neighbour counting is then bound to give wrong results. The
simplest way out of this dilemma is by adding very low amplitude noise to the data
(≈ 10−10, say, when working with double precision) to break this degeneracy. We
found this to give satisfactory results in all cases.

• Often, MI is estimated afterrank orderingthe data, i.e., after replacing the coordinate
xi by the rank of thei-th point when sorted by magnitude. This is equivalent to ap-
plying a monotonic transformationx → x′, y → y′ to each coordinate which leads
to a strictly uniform empirical density,µ′x(x

′) = µ′y(x
′) = (1/N)

∑N
i=1 δ(x′− i). For

N → ∞ andk À 1 this clearly leaves the MI estimate invariant. But it is not ob-
vious that it leaves invariant also the estimates for finitek, since the transformation
is not smooth at the smallest length scale. We found numerically that rank ordering
gives correct estimates also for smallk, if the distance degeneracies implied by it are
broken by adding low amplitude noise as discussed above. In particular, both esti-
mators still gave zero MI for independent pairs (see below). Although rank ordering
can reduce statistical errors, we did not apply it in the following tests, and we did not
study the properties of the resulting estimators in detail.
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Figure 3.3: Estimates of 〈I(2)(X, Y )〉 − Iexact(X,Y ) for Gaussians with unit variance and
covariances r, plotted against 1/N . In all cases k = 1. The number of realizations is
> 2 × 106 for N <= 1000, and decreases to ≈ 105 for N = 40000. Error bars are smaller
than the size of the symbols.

3.2.4 Results

3.2.4.1 Two-dimensional distributions

We shall first discuss applications of our estimators to correlated Gaussians, mainly be-
cause we can in this way most easily compare our results with analytic results and with
previous numerical analyses. In all cases we shall deal with Gaussians of unit variance and
zero mean. Form such Gaussians with covariance matrixσik i, k = 1 . . . m, one has

I(X1, . . . .Xm) = −1

2
log(det(σ)) . (3.44)

Form = 2 and using the notationr = σXY , this gives

Iexact(X,Y ) = −1

2
log(1− r2) . (3.45)

In Fig. 3.3 we show the systematic errors〈I(2)(X,Y )〉− Iexact(X,Y ) for various values of
r, obtained from a large number of realizations (typically105−107). We show only results
for k = 1, plotted against1/N . Results fork > 1 are similar. To a first approximation
I(1)(X, Y ) andI(2)(X, Y ) depend only on the ratiok/N .

The most conspicuous feature seen in Fig. 3.3, apart from the fact that indeed〈I(2)(X, Y )〉−
Iexact(X,Y ) → 0 for N → ∞, is that the systematic error is compatible with zero for
r = 0, i.e., when the two Gaussians are uncorrelated. We checked this with high statis-
tics runs for many different values ofk andN (a priori one should expect that systematic
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errors become large for very smallN ), and for many more distributions (exponential, uni-
form, etc.). In all cases we found that bothI(1)(X,Y ) andI(2)(X,Y ) become exact for
independent variables. Moreover, the same seems to be true for higher order MI. We thus
have the following conjecture.

Conjecture: Eqs.(3.34) and (3.40) are exact for independentX andY , i.e.,I(1)(X,Y ) =
I(2)(X, Y ) = 0 if and only if I(X,Y ) = 0.

We have no proof for this very surprising result. We have numerical indications that, more-
over,

|I(1,2)(X, Y )− I(X,Y )|
I(X, Y )

≤ const (3.46)

asX andY become more and more independent, but this is much less clean and therefore
much less sure.

In Fig. 3.4 we compare values of〈I(1)(X, Y )〉 (left panel) with those for〈I(2)(X, Y )〉 (right
panel) for different values ofN and forr = 0.9. The horizontal axes showk/N (left) and
(k − 1/2)/N (right). Except for very small values ofk andN , we observe scaling of the
form

I(1)(X,Y ) ≈ Φ(
k

N
) , I(2)(X, Y ) ≈ Φ(

k − 1/2

N
) . (3.47)

This is a general result and is found also for other distributions. The scaling ofI(1)(X,Y )
with k/N results simply from the fact that the number of neighbors within a fixed distance
would scale∝ N , if there were no statistical fluctuations. For largek these fluctuations
should become irrelevant, and thus the MI estimate should depend only on the ratiok/N .
ForI(2)(X, Y ) this argument has to be slightly modified, since the smaller one ofεx andεy

is determined (for largek where the situation illustrated in Fig. 3.1c dominates over that in
Fig. 3.1b) byk − 1 instead ofk neighbors.

The fact thatI(2)(X, Y ) for a given value ofk is betweenI(1)(X,Y ) for k − 1 and
I(1)(X, Y ) for k is also seen from the variances of the estimates. In Fig. 3.5 we show
the standard deviations, again for covariancer = 0.9. These statistical errors depend only
weakly onr. For r = 0 they are approximately 10% smaller. As seen from Fig. 3.5,
the errors ofI(2)(X, Y ; k) are roughly half-way between those ofI(1)(X, Y ; k − 1) and
I(1)(X, Y ; k). They scale roughly as∼ √

N , except for very largek/N . Their dependence
on k does not follow a simple scaling law. The fact that statistical errors increase whenk
decreases is intuitively obvious, since then the width of the distribution ofε increases too.
Qualitatively the same dependence of the errors was observed also for different distribu-
tions. For practical applications, it means that one should usek > 1 in order to reduce
statistical errors, but too large values ofk should be avoided since then the increase of
systematic errors outweighs the decrease of statistical ones. We propose to use typically
k = 2 to 4, except when testing for independence. In the latter case we do not have to
worry about systematic errors, and statistical errors are minimized by takingk to be very
large (up tok ≈ N/2, say).
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The above shows thatI(1)(X,Y ) andI(2)(X,Y ) behave very similarly. Also CPU time
needed to estimate them is nearly the same. In the following, we shall only show data for
one of them, understanding that everything holds also for the other, unless the opposite is
said explicitly.

ForN →∞, the systematic errors tend to zero, as they should. From Figs. 3.3 and 3.4 one
might conjecture that〈I(1,2)(X,Y )〉 − Iexact(X, Y ) ∼ N−1/2, but this is not true. Plotting
this difference on a double logarithmic scale (Fig. 3.6), we see a scaling∼ N−1/2 for
N ≈ 103, but faster convergence for largerN . It can be fitted by a scaling∼ 1/N0.85 for
the largest values ofN reached by our simulations, but the true asymptotic behaviour is
presumably just∼ 1/N .

In Fig. 3.7 we show how therelativesystematic errors behave for Gaussians whenr → 0.
More precisely, we showI(1,2)(X,Y )/I

(1,2)
exact(X,Y ) for k = 1, plotted againstN for four

different values ofr. Obviously these data converge, whenr → 0, to a finite function of
N . We have observed the same also for other distributions, which leads to a conjecture
stronger than the conjecture Eq.(3.46). Assume that we have a one-parameter family of
2-d distributions with densitiesµ(x, y; r), with r being a real-valued parameter. Assume
also thatµ factorizes forr = r0, and that it depends smoothly onr in the vicinity of r0,
with ∂µ(x, y; r)/∂r finite. Then we propose that for many distributions (although not for
all!)

I(1,2)(X,Y )/Iexact(X, Y ) → F (k,N) (3.48)

for r → r0, with some functionF (k, N) which is close to 1 for allk and allN À 1,
and which converges to 1 forN → ∞. We have not found a general criterion for which
families of distributions we should expect Eq.(3.48).

Examples of several other two dimensional distributions can be found in Ref.[52].
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3.2.4.2 High dimensional distributions

In higher dimensions we shall only discuss applications of our estimators tom correlated
Gaussians, because as in the case of two dimensions this is easily compared to analytically
derived values (Eq.(3.44)) and to previous numerical results [22]. As already shown above
for 2-d distributions (Fig. 3.7) our estimates seem to be exact for independent random vari-
ables. We choose the same one-parameter family of 3-d Gaussian distributions with all
the correlation coefficients equal tor as in Ref. [22]. In Fig. 3.8 we show the behavior of
therelativesystematic errors of both proposed estimators. One can easily see that the data
converge forr → 0, i.e., when all three Gaussians become independent. This supports
the conjecture made in the previous subsection. In addition, in Fig. 3.8 one can see the
difference between the estimatorsI(1) andI(2). For intermediate numbers of the points,
N ∼ 100− 200, theI(1) estimator has lower systematic error. Apart from that,I(2) evalu-
ated forN is roughly equal toI(1) evaluated for2N , reflecting the fact thatI(2) effectively
uses smaller length scales as discussed already ford = 2.

To compare our results in high dimension with the ones presented in Ref. [22] we shall
calculate not the MI of all variablesI(X1, X2, ..., Xm) but the MI between two variables,
namely an (m − 1) dimensional vectorXm−1 and a scalarXm, i.e, I(Xm−1, Xm). For
estimation of this MI we can use the same formulas as for the 2-d case (Eq.(3.34) and
Eq.(3.40), respectively) wherenx is defined as the number of points in the (m− 1) dimen-
sional stripe of (hyper)cubic cross section.

In Fig. 3.9 we show the average values ofI(1,2). They are in very good agreement with the
theoretical ones for all three values of the correlation coefficientr and all dimensions tested
here (in contrast, in Ref. [22] the estimators of MI significantly deviate from the theoretical
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values for dimensions≥ 6). It is impossible to distinguish (on this scale) between estimates
I(1) andI(2).

In Fig. 3.10, statistical errors of our estimate are presented as a function of the number
of neighboursk. More precisely, we plotted the standard deviation ofI(1) multiplied by√

N/m againstk for the case where all correlation coefficients arer = 0.9. Each curve
corresponds to a different dimensionm. The data scale roughly as∼ m/

√
N for large di-

mensions. Moreover, these statistical errors seem to converge to finite values fork →∞.
This convergence becomes faster for increasing dimensions. The same behavior is ob-
served forI(2).

3.3 Transfer Entropy

Once the interdependence between two systems has been established, one usually is faced
with the next question, namely what is the predominant direction of interaction, or in other
words who is a driver and who is a response.

Mutual information cannot directly be applied for this purpose because it is symmetric.
In order to analyze driver-response relationships, time-delayed mutual information was
proposed [128]. Later it was shown that quantities based on transition probabilities allow
better detection of information transfer in a system [44, 111]. An appropriate relative
entropy was introduced in Ref. [111], called transfer entropy (TE). In this section TE will
be described.
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Assume thatXi andYj are random iid variables5. Let us define random variables consisting
of words of lengthk, as

X
(k)
i = (Xi, . . . , Xi−k+1), Y

(k)
j = (Yj, . . . , Yj−k+1). (3.49)

If Xi andYj are discrete random variables one can define along with the simple probabili-
tiespi(x) = prob(Xi = x) andpj(y) = prob(Yj = y) the transition probabilities

pi+1(xi+1|x(k)
i , y

(l)
j ) = prob(Xi+1|X(k)

i = x
(k)
i , Y

(l)
j = y

(l)
j ), (3.50)

pj+1(yj+1|y(l)
j , x

(k)
i ) = prob(Yj+1|Y (l)

j = y
(l)
j , X

(k)
i = x

(k)
i ), (3.51)

wherex
(k)
i = (xi, . . . , xi−k+1) is the state ofX(k)

i andy
(j)
i = (yj, . . . , yj−l+1) is the state of

Y
(l)
j . The transition probability denotes the probability of findingXi+1 in statexi+1 when

X
(k)
i is in statex(k)

i andY
(l)
j is in y

(l)
j , and similarly forYj+1.

TE is closely related to conditional entropy. Suppose the future statexi+1 of Xi depends
on thek past statesx(k)

i , but not on thel past statesy(l)
j , then the generalized Markov

propertyp(xi+1|x(k)
i , y

(l)
j ) = p(xi+1|x(k)

i ) holds. If there is any such a dependency, it can
be quantified by the TE, which is obtained by comparing two conditional entropies

T (Xi+1|X(k)
i , Y

(l)
j ) = H(Xi+1|X(k)

i )−H(Xi+1|X(k)
i , Y

(l)
j )

=
∑
x,y

p(xi+1, x
(k)
i , y

(l)
j ) log

p(xi+1|x(k)
i , y

(l)
j )

p(xi+1|x(k)
i )

. (3.52)

In words, the information flowT from systemY to X is the information about the future
of Xi retrieved from bothX(k)

i andY
(j)
j minus the information about it retrieved only from

X
(k)
i . From the construction of the above formula one can easily see that TE is asymmetric

under exchange ofX andY . Information flow from systemX to systemY will be defined
as

T (Yj+1|Y (l)
j , X

(k)
i ) =

∑
x,y

p(yj+1, y
(l)
j , x

(k)
i ) log

p(yj+1|x(l)
j , y

(k)
i )

p(yj+1|y(l)
j )

. (3.53)

The transfer entropy can be expressed as a sum of mutual informations

T (Xi+1|X(k)
i , Y

(l)
j ) = I(

(
Xi+1, X

(k)
i

)
, Y

(l)
j )− I(X

(k)
i , Y

(l)
j ), (3.54)

or

T (Xi+1|X(k)
i , Y

(l)
j ) = I(

(
X

(k)
i , Y

(l)
j

)
, Xi+1)− I(X

(k)
i , Xi+1), (3.55)

where the notationI((X, Y ) , Z) means MI between two variables(X, Y ) andZ.

5In this Section the indicesi andj are time indices, i.e.,i + 1 is the next moment with respect to thei-th
moment
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RewritingT as a sum of Shannon entropies one obtains alternatively

T (Xi+1|X(k)
i , Y

(l)
j ) = H(X

(k)
i , Y

(l)
j )−H(X

(k+1)
i+1 , Y

(l)
j ) + H(X

(k+1)
i+1 )−H(X

(k)
i ). (3.56)

Consider now continuous random variables. Because TE is the difference of MIs, the
binned TE converges under refinement (bin size∆ → 0) to

T (Xi+1|X(k)
i , Y

(l)
j )=

∫∫∫
µ(xi+1, x

(k)
i , y

(l)
j ) log

µ(xi+1|x(k)
i , y

(l)
j )

µ(xi+1|x(k)
i )

dxi+1dx
(k)
i dy

(l)
i , (3.57)

whereµ are the densities in corresponding spaces (the same holds forT (Yj+1|Y (l)
j ).

It shares with MI the property of invariancy under homeomorphismsx → φ(x) and
y → ψ(y).

Theoretically all of the formulas (Eqs.(3.54), (3.55), (3.56)) can be used equally, but they
will give different errors if one uses them for numerical estimation. To check this we
choose a system of equations considered in Ref. [44]. The system consists of two correlated
Gaussians processes, namely

{
Xi+1 = αXi + ηX

i ,
Yi+1 = βYi + γXi + ηY

i ,
(3.58)

whereηX andηY are uncorrelated normal random numbers. For this system transfer en-
tropies (withk = l = 1) can be calculated exactly. For any parametersα, β, γ there
is no information transfer from systemY to systemX, i.e., T (Xi+1|Xi, Yi) ≡ 0, while
T (Y(i+1)|Yi, Xi) > 0. We choose one set of parametersα = 0.5, β = 0.6, γ = 0.4 and
calculateT (Y(i+1)|Yi, Xi). The theoretical value is≈ 0.092280.

In Fig. 3.11a relative systematic errors for the transfer entropy from systemX to systemY
are shown. More precisely, we plot〈T (Y(i+1)|Yi, Xi)〉/ Texact. For the calculation of the av-
erage transfer entropy both formulas Eq.(3.54) and Eq.(3.55) (withj = i and exchangingX
andY ) were used6. The mutual informations appearing in these equations were calculated
using our new estimator Eq.(3.40) for the first term and Eq.(3.43) for the second one (k was
equal to one in both cases). The slight difference between the results of different equations
is more pronounced for long realizations (more then500 points). It occurs because the ex-
act values of mutual informations appearing in Eq.(3.55) (I((Yi, Xi) , Yi+1) ≈ 0.3900 and
I(Yi, Yi+1) ≈ 0.2977) are higher than the ones in Eq.(3.54) (I((Yi+1, Yi) , Xi) ≈ 0.1179
andI(Yi, Xi) ≈ 0.0256) and therefore, also the statistical errors for the same length of the
realization in Eq.(3.55) are higher.

In Fig. 3.11b the absolute value of the transfer entropy from systemY to X is shown. By
construction this value should be equal to zero for Eq.(3.58). The estimated values are very

6The Eq.(3.56) is not shown in the Figure because of huge systematical errors
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Figure 3.11: Solid lines correspond to Eq.(3.54), dashed lines correspond to Eq.(3.55)
(a) relative systematic errors for the average transfer entropy from X to Y . (b) Average
transfer entropy from Y to X. In both cases averaging was done over 2× 106 for N < 500,
over 105 for N < 10000, and over 104 for other values of N .

close to zero, but not as close as in the case of mutual information, where we did not have
any visible bias for the completely independent processes. Unfortunately, this property is
not extended to the transfer entropy. All the mutual informations entering the equations
for T (X(i+1)|Xi, Yi) are non-zero, so they just cancel each other resulting in zero transfer
entropy. Again the values of the transfer entropy obtained using Eq.(3.54) are more precise.
It can be explained with the same arguments as before.

These results have preliminary character and can be extended, e.g., the comparison with
other methods for the estimation of the transfer entropy (cf. Ref. [44]) can be done.

3.4 Phase synchronization

In this Section measures of phase synchronization will be discussed. As the name suggest
phases play the main role in this type of synchronization phenomenon and the extraction
of the phases is a crucial point for the detection of phase synchronization.

3.4.1 Extracting phase via the Hilbert transform

Suppose one has a continuous real signalu(t). Assume it is decomposed into sinusoidal
oscillations and a slowly varying amplitude

u(t) = a(t) cos ϕ(t). (3.59)

However, it is not straightforward how to separate the known functionu(t) into the factors
a(t) andcos ϕ(t). It becomes easier if we assume thatu(t) is the real part of ananalytic
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functionof the complex variablez = t + iτ ,

w(t) = u(t) + iv(t) = a(t) ei ϕ(t), (3.60)

w(t) is calledanalytic signal7 [32, 82, 123].

In the analytical signal concept one chooses as the imaginary partv(t) theHilbert trans-
form (HT) of u(t):

v(t) ≡ (Hu)(t) =
1

π
p.v.

∫ +∞

−∞
u(t′)
t− t′

dt′ (3.63)

(herep.v. denotes the Cauchy principal value8). This choice is unambiguous. Let us denote
by ϕH

x (t) the instantaneous phaseof x(t) defined via the HT. The phase is given by

ϕH
x (t) = arctan

(Hx)(t)

x(t)
. (3.65)

Already on the fact that the HT of a sine is a minus cosine, and the HT of a cosine is
a sine, one can see that HT performs a phase shift of−π/2 (sin(x − π

2
) = −cos(x),

cos(x − π
2
) = sin(x)). Thus, the HT can be considered as an ideal filter with unitary

amplitude response and phase response of−π/2. For non-harmonic signals it performs a
−π/2 phase shift for every spectral component ofu(t).

Noting that HT is a convolution of the signal with1/πt and using the convolution theorem
one can write

Hx = F−1
[
1

i
sgn(ω) · Fx

]
, (3.66)

whereFx denotes the Fourier transform ofx, F−1 its inverse, the functionsgn(ω) = ω
|ω| .

The easiest way to compute the HT is to perform fast FT (FFT) of the original time series,
shift the phase of every frequency component by−π/2 and apply the inverse FFT.

7Consider a complex functionψ(z) of a complex variablez. This function may be written as a complex
function of two real variables:

ψ(z) = ψ(t, τ) = u(t, τ) + i v(t, τ), (t, τ) ∈ R2, z = t + iτ. (3.61)

The functionψ(z) = u(t, τ) + i v(t, τ) is called theanalytic functionif

∂u

∂t
=

∂v

∂τ
;

∂u

∂τ
= −∂v

∂t
. (3.62)

These equations are called Cauchy-Riemann equations.
An analytic signal is defined as a complex function of the real variablet in the form

ψ(t) = u(t, 0) + i v(t, 0), therefore it represents the values of analytic functionψ(z) taken along the real
axis.

8

v(t) =
1
π

lim
ε→0,A→∞

(∫ −ε

−A

+
∫ A

ε

u(t′)
t− t′

dt′
)

(3.64)
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3.4.2 Extracting phase via the wavelet transform

Another method used to extract the phases from time series is based on thewavelet trans-
form (WT) and has recently been introduced by Lachaux et al. [57, 56]. In their ap-
proach the phase was determined by the convolution of the signal with the complex Morlet
wavelet:

Ψ(o)(t) = eiω0t · e−t2/2σ2

. (3.67)

However, this commonly used “Morlet wavelet” is not a wavelet at all, because it does not
fulfill the admissibility condition9.

In our work we compared the method of Lachaux with the one based on the HT [48, 49, 94].
However, for the former we used a slightly different wavelet,

Ψ(t) = (eiω0t − e−ω2
0σ2/2) · e−t2/2σ2

. (3.68)

Hereω0 is the frequency of the wavelet,σ denotes the width of the peak in the spectrum of
wavelet, and the terme−ω2

0σ2/2 is a correction term which was introduced in Ref. [38]. The
FT of the corrected wavelet is(FΨ)(ω) = σ

√
2π ·

(
e−σ2(ω−ω0)2/2 − e−σ2(ω2+ω2

0)/2
)
, giving

(FΨ)(0) = 0.

Instead of the parameterσ we used the number of significant oscillationsnc. In Fig. 3.12
the real part of the wavelet is plotted for two different values ofnc. An approximate
oscillation is rated as “significant” if its amplitude is larger then1% of the value att = 0.
The parameterσ can then be written asσ = nc/6ω0. The smaller the parameterσ, the
narrower is the peak in the spectrum of the wavelet, and the width of the spectrum for
fixedσ does not dependent on the frequencyω0. In our calculations we fixnc and varyω0

(and hereby alsoσ), which allows us to have a wider spectrum for larger frequencies. This
seems to be more reliable in real applications.

The convolution ofx(t) with Ψ(t) yields a complex time series of wavelet coefficients
Wx(t)

(WΨx)(t) = Wx(t) = (Ψ ◦ x)(t) =
∫

Ψ(t′) x(t− t′) dt′ = AW
x (t) · eiϕW

x (t), (3.69)

from which the phase can be defined as

ϕW
x (t) = arctan

Im[Wx(t)]

Re[Wx(t)]
. (3.70)

3.4.3 Comparison of phase extraction methods

In this Section we will discuss the differences and similarities between the two methods
for phase extraction, based on HT and on WT, respectively.

9Indeed, as seen from its FT(FΨ(o))(ω) = σ
√

2π e−σ2(ω−ω0)
2/2 it has a non-zero component atω = 0.
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Figure 3.12: Real part of the corrected complex Morlet wavelet.

The phase defined using the corrected wavelet (Eq.(3.68)) is independent of the mean of
the signal. This is not the case if one uses methods based on the HT or on the simple com-
plex Morlet waveletΨ(o) without this correction (Eq.(3.67)). The phase defined using HT
transform is very sensitive to the mean value of the signal. For stationary signals without
slow components this problem can be solved by subtracting the mean value from the sig-
nal. The case of non-stationary signals or signals with slow components is, however, more
problematic. One can try to filter out “uninteresting” parts of the signal but the choice
of the appropriate filter is not always obvious. Therefore, for such signals as electroen-
cephalograms which are intrinsically non-stationary, the use of corrected complex Morlet
wavelet is more appropriate.

In principle, one can regard the WT as a filtering procedure. Let us first apply WT and then
define the phase of the real part of the wavelet coefficients using the HT

ϕH
Re[Wx](t) = arctan

(HRe[Wx])(t)

Re[Wx(t)]
. (3.71)

Numerically we found that this phase is very similar to the phase defined via WT, i.e.,
ϕH

Re[Wx](t) ≈ ϕW
x (t). This can be explained by approximate analyticity of the complex

Morlet wavelet. A wavelet is called “analytic”, if it is (i) the real part of an analytic function
ψ(z) of z = t + iτ taken along the real axist and (ii)HRe[Ψ] ≡ Im[Ψ]. For such an
analytical wavelet, the phase of the signal via WT is given by

ϕW
x (t) = arctan

Im[Wx(t)]

Re[Wx(t)]
= arctan

(WIm[Ψ]x)(t)

(WRe[Ψ]x)(t)
= arctan

(W(HRe[Ψ])x)(t)

(WRe[Ψ]x)(t)
. (3.72)

Changing the order of the wavelet and the Hilbert transform in the numerator, and noting
that the real (imaginary) part of complex wavelet transform is equivalent to the wavelet
transform with the real (imaginary) part of the wavelet, one gets Eq.(3.71). It means that
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Figure 3.13: Solid lines denote the wavelet transform, dashed lines denote the Hilbert
transform.

for the complexanalytic waveletϕH
Re[Wx](t) ≡ ϕW

x (t). All these formulas are illustrated
in Fig. 3.13. Therefore, the method of defining the phase via WT is a combination of the
filtering realized by the convolution with the real part of the wavelet and HT.

Wavelet Transform≡ Filtering+ Hilbert Transform

The fact that the corrected Morlet wavelet is very close to being analytic is shown in
Fig. 3.14.

It is important to remark that the previous result is not limited to complex Morlet wavelet
and can be extended to other wavelet functions. In particular, from a real wavelet function
Ψ(t) we can construct an analytic signal by using the Hilbert transform, i.e.,Ψ′(t) ≡
Ψ(t) + i (HΨ)(t). Then, fromWx(t) = (Ψ′ ◦ x)(t) we can define a phase using Eq.(3.70).
The important advantage is that we have the freedom of defining the phase from a particular
wavelet function, chosen from available wavelets according to the signal to be studied. This
can be interesting in cases where defining a phase via HT is troublesome or if conventional
filters are not well suited.
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Figure 3.14: Imaginary part of a complex Morlet wavelet and Hilbert transform of the real
part.
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Figure 3.15: Part of the signal analyzed in Fig. 3.16.

3.4.4 Discussion. Phase extraction

In general, all the methods for defining a phase aim to find suitable variables in which the
signal can be represented as a rotation around the origin. The phase can be identified with
the angle of the vector drawn from the origin to the corresponding point on the trajectory.
In the case of the HT method these variables are the signal itself and its Hilbert transform,
for the method based on the WT they are the real and imaginary parts of the wavelet
coefficients. If in an experiment more than one variable is available, one can try to use
them directly or in some combination, e.g., the phase portrait of the Rössler system [104]
plotted inx andy coordinates corresponds to rotations around the origin. For the Lorenz
system [71] one can similarly plot

√
x2 + y2 againstz. This is not a complete list of

methods available in the literature, look for example Refs. [98, 103].

One naturally arising question is whether all these approaches provide in general the same
phase [47]. Unfortunately, they often do not. This is illustrated by the following example.

In Fig. 3.15 we show part of a signal. A phase portrait obtained by plottingx(t) against
x(t + τ) is shown in Fig. 3.16a, a similar phase portrait using the Hilbert transform in
Fig. 3.16b, and the more smooth phase portrait using the wavelet transform in Fig. 3.16c.
In neither case one clearly sees a point around which the orbit circles, thus neither allows
a clear and robust definition of the phase. The spectrum, obtained with a Welch window,
is shown in Fig. 3.17. A prominent peak is seen, but this peak is not sufficiently sharp and
thus a unique angular frequency seems not obtainable. One can try several other methods
popular in signal analysis, but we argue that none of them will lead to a robust determina-
tion of a phase.

And yet – there is a simple and clear-cut phase that enters in this example. The signal
shown in Fig. 3.15 is generated by a random process defined as

x(t) = cos(φ(t)) (3.73)

with the phase performing a biased random walk (cf. [103]),

dφ(t)/dt = ω + η(t) (3.74)
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whereη(t) is δ-correlated white noise,

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = Dδ(t− t′). (3.75)

The parameter values used in Figs. 3.15 and 3.16 areω = 1 Hz andD = 5, and the
integration was made with the stepδt = 0.0001. The delay used in Fig. 3.16a wasτ =
0.015.

If the noise varianceD were much smaller, we would not have problems. The problems
arise since we chose a rather largeD such that the phase is not monotonically increasing.
Instead there are long intervals during which the phase decreases, leading to “fake” loops in
Fig. 3.16abc. The phase portrait obtained using wavelet transform looks more promising,
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Figure 3.16: Phase portraits of the signal shown in Fig. 3.15, obtained by plotting (a)
x(t) against x(t + τ) with τ = 0.015, (b) x(t) against its Hilbert transform and (c) real part
against imaginary part of wavelet coefficients obtained using corrected complex Morlet
wavelet introduced in Sec. 3.4.2 (ω0 = 1Hz, nc = 1).
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Figure 3.17: The spectrum of the signal shown in Fig. 3.15.
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because it has less “fake” loops and is smoother. Moreover, if one takes the parameternc

for example equal to20 (this will correspond to a very narrow filter) one will avoid “fake”
loops completely. But the phase of the signal defined with such transform has nothing to
do with the original phase dynamics, because any details are washed out by the filter.

Our point isnot that presently popular methods for phase extraction cannot distinguish
between such phase reversals (or even just sudden slow-downs of the instantaneous phase
velocity) and “true” amplitude variations10. Rather, we want to stress that there is no
way in principle to distinguish between them. Thus, attempts to improve phase extraction
methods in similarly ambiguous situations are likely to lead to ambiguous results, even if
this ambiguity might be hidden.

Ways to avoid these ambiguities can be found only by restricting ourselves to what we
accept as a sensible phase definition. One could argue, e.g., that a basic intuitive feature of
a phase is itscontinuous temporal progression, i.e., positivity of the instantaneous phase
velocity. Demanding this would mean that there is no possibility at all to define a phase for
the above model, and the same would be true for a large class of signals.

Does this mean that such a requirement is too restrictive to be useful? We believe not. One
traditional way out of the dilemma when phases should be defined for arbitrary signals is
Fourier analysis. One decomposes the signal into harmonic components, and can then de-
fine phases for each component (or, when the signal is decomposed into frequency bands,
for each band). What we propose is to decompose signals more generally into components
with positivebut not necessarily constant (as in a Fourier decomposition) phase velocities.
This added freedom might allow much more physically relevant decompositions. Indeed,
we do not have to invent any new example for this, since the best example demonstrating
the power of such an approach is known since nearly four hundred years: progress in un-
derstanding planetary motion was only possible when Kepler replaced the decomposition
into the harmonic epicycles of Ptolemaeus and Copernicus by a decomposition into elliptic
motions, which are just of the type advocated here. A general ansatz with monotonically
increasing phases in the spirit of the above discussion would bex(t) = f(φ1(t), . . . , φn(t))
with φ̇i(t) > 0 for i = 1, . . . , n. Details of such a decomposition will of course depend on
the problem at hand, and we cannot give any general algorithm. But the possibility and the
eventual usefulness of such an approach should be kept in mind.

3.4.5 Indices of phase synchronization

Let us come back now to the standard notion of phase. To quantify phase synchronization,
several indices were introduced in the literature (see, e.g., [120, 102, 77]). All of them

10A hint at the actual structure of the present time sequence is obtained from the fact that it has many
degenerate extrema: while there are many local maxima and minima with fluctuating amplitudes, the absolute
extrema are all atx(t) = ±1. One might use such kind of information in special cases like the present one,
but this will hardly lead to a universal and robust algorithm.
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quantify in a slightly different way the deviation between the observed phase difference
distribution and the one expected for independent systems. In our analysis we mostly
used two of them, the first is an index introduced in Ref. [120] and based on the Shannon
entropy, the second one is an index based on circular variance [77].

Suppose the phasesϕx(t) andϕy(t) of the signalsX andY are extracted with any method
(the methods need not necessarily be the same). Then it is possible to define the phase
difference as

φxy(t) = ϕx(t)− ϕy(t). (3.76)

These are the common steps in defining both indices. The phase synchronizationindex
based on circular varianceis then given by

γ =
∣∣∣〈eiφxy(t)〉

t
|, (3.77)

where〈·〉t denotes averaging over time.

In the literature this index has been introduced by Mormann and colleagues using the term
mean phase coherence[77], and independently by Rosenblum and colleagues [102]. They
refer to it as theintensity of the first Fourier modeof the phase distribution.

The phase synchronizationindex based on Shannon entropyis defined as

σ =
Smax − S

Smax

, (3.78)

whereS denotes the Shannon entropy of the distribution of the phase differencesφxy,
and Smax is the maximum entropy which corresponds to a uniform distribution of the
phase difference11. Uniformity is assumed to correspond to the distribution of the phase
difference for independent systems, although it is not quite correct. Instead of the uniform
distribution,Smax should be estimated from independent pairs of phases. Since in general
the phase distribution is not uniform, the distribution of phase differences is not either. For
example, for relaxation oscillators the phase variable is changing not uniformly, thus the
phase difference between two oscillators from which at least one is a relaxation oscillator
will be non uniform also in case of independent oscillations. One of the way to avoid this
problem is to switch to the rank ordered phases. Later in this thesis (see Chapter 4) we will
check this idea on the example of EEG data.

In interpreting experimental results forσ andγ, one should always keep in mind that, if the
phase velocities depend on the phase then the phase synchronization indices are not zero
also for independent signals. Thus one should always compare results forσ andγ with
estimates obtained from independentsurrogates[122].

Both indices of phase synchronization introduced in this Section are symmetric by defini-
tion and therefore are not suited to exploit the directionality of interaction. Just recently

11The Shannon entropy is usually estimated using a binning technique.
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two asymmetric extensions of the concept of phase synchronization have been proposed,
the first one by Rosenblum et al. [100, 99] and the second one, an information-theoretic
approach, by Palus and Stefanovska [81]. The former approach has been adapted for the
application to short and noisy time series in Ref. [115]. The property of asymmetry is
shared by the measures of non-linear interdependence introduced in the following Section.

3.5 Non-linear interdependencies

In this Section measures of generalized synchronization will be described. We will con-
centrate on the measures of non-linear interdependencies introduced by Arnhold and col-
leagues in Ref. [13]. This measures are related to earlier attempts to detect generalized
synchronization like the method of mutual false nearest neighbors [106] and the mutual
cross predictability introduced in Ref. [108], but they are optimized for robustness against
noise and imperfections in the data. In Ref. [13], a number of other variants were also
discussed. Some of these variants were found to be inferior, and systematically tested later
in Ref. [93].

From the time series measured in two systemsX andY , let us reconstruct delay vectors
[118] xn = (xn, . . . , xn−(m−1)τ ) andyn = (yn, . . . , yn−(m−1)τ ), wheren = 1, . . . N , m
is the embedding dimension andτ denotes the time lag. Letrn,j andsn,j, j = 1, . . . , k,
denote the time indices of thek nearest neighbors ofxn andyn, respectively.

For eachxn, the mean squared Euclidean distance to itsk neighbors is defined as

R(k)
n (X) =

1

k

k∑

j=1

(
xn − xrn,j

)2
(3.79)

and theY-conditionedmean squared Euclidean distance is defined by replacing the nearest
neighbors by the equal time partners of the closest neighbors ofyn (see Fig. 3.18),

R(k)
n (X|Y ) =

1

k

k∑

j=1

(
xn − xsn,j

)2
. (3.80)

Suppose the point cloud{xn} has an average squared radiusR(X) = 1
N

∑N
n=1 R(N−1)

n (X),
then R(k)

n (X|Y ) ≈ R(k)
n (X) ¿ R(X) if the systems are strongly correlated, while

R(k)
n (X|Y ) ≈ R(X) À R(k)(X) if they are independent. Accordingly, we can define

an interdependence measureS(k)(X|Y ) [13] as

S(k)(X|Y ) =
1

N

N∑

n=1

R(k)
n (X)

R
(k)
n (X|Y )

. (3.81)
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SinceR(k)
n (X|Y ) ≥ R(k)

n (X) by construction, we have

0 < S(k)(X|Y ) ≤ 1. (3.82)

Low values ofS(k)(X|Y ) indicate independence betweenX and Y , while high values
indicate synchronization.

Following Ref. [13, 93] one can define another non-linear interdependence measure
H(k)(X|Y ) as

H(k)(X|Y ) =
1

N

N∑

n=1

log
Rn(X)

R
(k)
n (X|Y )

(3.83)

It is zero if X andY are completely independent, while it is positive if closeness inY
implies closeness inX for equal time partners. It would be negative if close pairs in
Y corresponded mainly to distant pairs inX. This is very unlikely but not impossible.
Therefore,H(k)(X|Y ) = 0 suggests thatX andY are independent, but does not prove
it. This is one main difference betweenH(k)(X|Y ) and the mutual information, which is
defined in Sec. 3.2.

In a study on coupled chaotic systems [93],H was more robust against noise and easier to
interpret thanS, but with the drawback that it is not normalized. Therefore, in Ref. [94] a
new measure which uses a different way of averaging was proposed:

N (k)(X|Y ) =
1

N

N∑

n=1

Rn(X)−R(k)
n (X|Y )

Rn(X)
. (3.84)

It is normalized (but as in the case ofH, it can be slightly negative) and, in principle, more
robust thanS. The measureN reaches its maximum value of1, only if R(k)

n (X|Y ) ≡ 0.
This will not happen even ifX andY are identically synchronized (except in the case of
periodic signals). This small drawback was corrected in Ref. [6], where one more way of
normalizing ratios of distances was proposed,

M (k)(X|Y ) =
1

N

N∑

n=1

Rn(X)−R(k)
n (X|Y )

Rn(X)−R
(k)
n (X|Y )

. (3.85)

The opposite interdependenciesS(Y |X), H(Y |X), N(Y |X) andM(Y |X) are defined in
complete analogy and they are in general not equal toS(X|Y ), H(X|Y ), N(Y |X) and
M(Y |X), respectively. The asymmetry ofS, H, N andM is the main advantage over
other non-linear measures such as the mutual information and the phase synchronization.
This asymmetry can give information about driver-response relationships [13, 93, 109], but
can also reflect the difference of properties of each dynamics [13, 93].

Figure 3.18 illustrates how the non-linear interdependence measures work. Let us consider
a Lorenz and a R̈ossler system that are independent (upper case, no coupling) and a second
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Figure 3.18: Basic idea of the non-linear interdependence measures. The size of the
neighborhood in one of the systems, say X, is compared with the size of its mapping in
the other system. The example shows a Lorenz system driven by a Rössler system with
zero coupling (upper case) and with strong coupling (lower case). Below each attractor,
the corresponding time series is shown. The black crosses on the left panel indicate 50
nearest neighbors of the point xn shown by the white cross. Assume that the nearest
neighbors of xn are at discretely sampled times rn,1, rn,2, . . . , rn,50. On the right panels,
the crosses indicate the states at the same times n (white crosses) and rn,1, rn,2, . . . , rn,50

(black crosses). For upper case S(Y |X) = 0.001 and H(Y |X) = 0.056, for lower case
S(Y |X) = 0.275 and H(Y |X) = 3.694. The (X|Y ) interdependencies are calculated in the
same way, starting with a neighborhood in Y .
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case with the R̈ossler driving the Lorenz via a strong coupling (lower plot). For a detailed
study of synchronization between these systems refer to [93]. Given a neighborhood in
one of the attractors, we see how this neighborhood maps to the other. If the systems are
synchronized, the point cloud is still a small neighborhood (lower plot). On the other hand,
if the points are spread over the attractor (upper plot), the systems are independent. The
four measuresS, H, N andM are just different ways of normalizing ratios of distances.
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Chapter 4

Application to the EEG of epilepsy
patients

In this Chapter the interdependence and synchronization measures introduced in Chapter 3
are applied to electroencephalographic (EEG) recordings of epilepsy patients. Due to the
physiological and pathophysiological variations in the brain these electroencephalographic
time series represent a prominent example of biological data showing a rich and diverse
appearance. Since synchronization plays an important role for pathological processes such
as epilepsy, the EEG recorded from epilepsy patients represents a great challenge for the
application of methods derived from the theory of dynamical systems and, in particular,
from the theory of synchronization.

Applications of several bivariate synchronization measures to the problem of epileptic fo-
cus localization have been reported in the literature [59, 77, 12]. For instance, in Ref. [77]
one of the indices of phase synchronization was applied. In Refs. [59, 12] an application
of different measures of interdependence was described. Making use of only one synchro-
nization measure is the common feature of all these studies, and a comparative study of
different measures was still missing. In such studies a rigorous statistical validation of
the obtained results is very important. Even more important is to test to which degree
the results obtained using synchronization analysis are specifically related to synchroniza-
tion phenomena. This can be done with the powerful method of bivariate surrogate data
analysis.

This Chapter is organized as follows. First, in Sec. 4.1 a short introduction to the disease
epilepsy and to the method of the electroencephalography is given. In Section 4.2 a de-
tailed analysis of the spatial variability of neuronal synchronization is presented, and the
potential of synchronization analysis for the localization of epileptic foci is investigated.
The bivariate surrogate data techniques are described and applied in Sec. 4.2.2. Finally,
conclusions are drawn in Sec. 4.3.
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4.1 Epilepsy and the electroencephalogram

The word‘epilepsy’ is derived from the Greek verbεπιλαµβανειν (epilamvanein= ‘to
be seized’ or ‘to be attacked’). In ancient medicine epilepsy was considered as a “sacred
disease” rather than as a mental disorder. But already the famous ancient Greek physician
Galen emphasized the physical involvement of the brain in epilepsy.

The disease epilepsy is characterized by a sudden and recurrent malfunction of the brain
which manifests itself as an epileptic seizure. These seizures are fundamentally divided
into two main classes -generalizedandpartial. While generalized seizures involve almost
the entire brain, partial (focal) seizures have clinical or electroencephalographic evidence
of a localized onset and usually stay confined to one hemisphere [58]. The origin of focal
seizures is usually calledepileptic focus.

Approximately0.5%−0.8% of the world’s population suffers from epilepsy [10]. With to-
day’s available antiepileptic drugs, seizures can be controlled satisfactorily in about67% of
the affected individuals, another8% may profit from epilepsy surgery. The remaining25%
of epilepsy patients cannot be treated sufficiently by any available therapy. Successful sur-
gical treatment of focal epilepsies requires exact localization of the epileptic focus and its
delineation from functionally relevant areas. For this purpose, different presurgical evalua-
tion methods are currently in use [26]. Neurological and neuropsychological examinations

Figure 4.1: Schematic view of implanted depth electrodes TL and TR. Each depth elec-
trode is equipped with 10 contacts of a nickel-chromium-alloy (diameter: 1 mm, length:
2.5 mm, inter-contact distance: 4 mm).
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Figure 4.2: Two exemplary multichannel SEEG recordings of a patient with mesial tempo-
ral lobe epilepsy originating in the left hippocampal formation. Top: Onset of a seizure and
beginning of ictal activity. The seizure starts about 1 s after the start of the recording with
low amplitude high frequency activity in channels TL01-TL03. Bottom: Interictal activity.
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are complemented by noninvasive techniques such as multichannel magnetoencephalogra-
phy (MEG) and by neuroimaging techniques such as magnetic resonance imaging (MRI).
Single photon emission computed tomography (SPECT) also plays an important role in the
epilepsy diagnostics.

One of the most important diagnostic tools in epileptology is the EEG. As reported by
Caton in1875, the first recordings of electrical activity of the brain were performed in
exposed brains of rabbits and monkeys. In1929 Hans Berger performed the first measure-
ments of brain electrical activity in humans [16]. Nowadays, the EEG is of particularly
high value for the localization of the epileptic focus.

The standard method for epileptic focus localization is to record the patient’s spontaneous
habitual seizure. Depending on the individual occurrence of seizures, this task requires
long-lasting and continuous recordings of the EEG. In case of ambiguous scalp EEG find-
ings, invasive recordings of the electrocorticogram (ECoG) or the stereo-EEG (SEEG) via
chronically implanted intracranial electrodes are applied. A typical implantation scheme
of these electrodes is presented in Fig. 4.1. The exceptional signal to noise ratio and the
excellent temporal and spatial resolution yielded by chronically implanted electrodes allow
a substantially increased precision in the design of the surgical intervention justifying the
high degree of invasiveness. To avoid the necessity of recording seizure activity, reliable
EEG analysis techniques capable of localizing and demarcating the epileptic focus even
during theseizure-free(also calledinterictal) interval would be of great value [61, 9, 5].
The upper panel corresponds to the onset of the seizure which is observed in the left hemi-
sphere of the brain (channels TL01-TL03). In Fig. 4.2 (bottom) a typical interictal EEG is
shown. In this example one can see some differences between the activity in the focal and
in the non-focal hemisphere, but in general this so calledinterictal epileptiform activity
does not allow to reliably localize the epileptic focus.

The conventional surgical treatment of mesial temporal lobe epilepsy consists of a complete
resection of the hippocampal formation in the focal hemisphere of the brain. That is why
precise (up to one or two contacts) localization of epileptic focus can not be confirmed
by post-operative seizure control. This is in contrast to the case for which the focus is
located in the neocortex. Defining only the focal hemisphere of the brain is usually called
lateralization. Nonetheless, in this Chapter we will use the term localization rather than
lateralization keeping in mind the distinction between them.

4.2 Localization of the epileptic focus

Already in the1960s, it was proposed that high voltages in the EEG recorded during the
seizure must represent “hypersynchrony” of individual neurons. Althoughdesynchroniza-
tion processes during epileptic seizures have recently been discussed [78] the fact of highly
synchronous ictal activity of large populations of neurons in the brain is well accepted in
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the EEG analysis community [26, 79]. This fact along with the findings from a careful vi-
sual inspection of the interictal EEG, e.g., synchronous occurrence of spikes, suggests the
following working hypothesis for determining the focal hemisphere of the epileptic brain.

During the interictal period the average synchronization in the focal hemi-
sphere of the brain of epileptic patients is higher than in the non-focal hemi-
sphere.

To test this hypothesis, which has also been tested in Refs. [77, 12], EEG recordings
from 29 patients were analyzed retrospectively (Tab. 4.1). These patients were undergoing
presurgical diagnostics at the Department of Epileptology, University of Bonn, Germany.

All patients achieved complete post-operative seizure control (cf. Ref. [25]) after resection
of the brain area which was correctly assumed to be the epileptic focus. For our study
this means that for all patients the correct hemisphere of the epileptic focus location was
known exactly. In18 patients the focus was localized in the left brain hemisphere while in
11 patients the focus was in the right hemisphere. In the following, the brain hemisphere
containing the epileptic focus will be referred to as the focal side, whereas the opposite
hemisphere will be referred to as the non-focal side. From these29 patients,83 artifact-
free interictal EEG recordings (mean duration:47 minutes) were evaluated by applying a
moving window technique to all combinations of channels of the same side.

The EEG recordings were performed under video control using chronically implanted
intra-hippocampal depth electrodes (see Fig. 4.1). After the implantation the correct place-
ment of the electrodes was verified by magnetic resonance imaging. The recording was

Patient-ID Focus Side Length [min] Patient-ID Focus Side Length [min]
A R 21 P R 79
B R 621 Q R 121
C L 223 R R 79
D L 36 S L 65
E L 150 T L 64
F R 191 U L 70
G L 137 V L 418
H R 34 W L 214
I L 88 X L 26
J L 28 Y L 68
K L 29 Z L 122
L R 21 a l 21
M L 21 b L 52
N R 593 c R 70
O R 226

∑
R11/L18 3886

Table 4.1: Patient characteristics. Depicted are patient-ID, the focal side, and the length
of the recordings.
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carried out on a128-channel amplifier system with band-pass filter settings of0.5− 85 Hz
(12 dB/oct.) using a common average reference. The sampling rate was173.61 Hz and the
resolution of the AD converter was12 bit.

4.2.1 Performance of synchronization measures

4.2.1.1 Methods

For each patient all recordings were analyzed using a moving window technique, which
represents a common way of handling long term EEG recordings [14]. EEG signals were
divided into segments of4096 sampling points each, corresponding to a window length
of 23.6 seconds at the given sampling rate. This window length can be regarded as a
compromise between the required statistical accuracy for the calculation of all measures
used in this thesis and the approximate stationarity within a window length [17].

For the localization analysis we used in total four different classes of measures. As mea-
sures of generalized synchronization we used the nonlinear interdependenciesH,S, M, N
described in Sec. 3.5. Time-delay embedding parameters were set to the following values:
dimensiond = 10, time delayτ = 5. The number of nearest neighborsk and a Theiler-
correctionT to exclude temporally correlated neighbors [121] were:k = 10 andT = 10.
Whenever the values ofH,M , andN became negative, which can happen especially for
the surrogate data, they were replaced by0.

Phase synchronization was quantified using the two indices of phase synchronizationσ and
γ introduced in Sec. 3.4.5. These indices were calculated for the phase differences where
each phase was extracted using both the Hilbert transform (in the following denoted asσH
andγH), and the wavelet transform. The phase synchronization analysis using wavelet
transform allows to concentrate on a specific frequency range by choosing the main fre-
quency of the waveletω0. We have selected several physiologically interesting frequencies.
In the following Figures these indices are denoted byσωω0 andγωω0, whereω0 stands for
the actual value of the main frequency of the corrected complex Morlet wavelet.

As already mentioned in Sec. 3.4.1, the easiest way to compute the HT is to perform a
fast FT (FFT) of the original time series, shift the phase of every frequency component by
−π/2 and to apply the inverse FFT. The phase shift can conveniently be implemented by
swapping the imaginary and the real parts of the FT. To reduce boundary effects one can
exclude several periods at the beginning and at the end of the resulting analytical signal.
In our calculations we proceeded in a similar way. We used a moving window technique
with 50% overlap, and discarded25% of the points at the beginning and at the end of
the resulting analytical signal. The wavelet transform was implemented in the frequency
domain using the convolution theorem.

As we suggested in Sec. 3.4.5, we calculated both indices of phase synchronization for
rank ordered phases. We checked hereby whether non-uniformity in the evolution of each
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Figure 4.3: Exemplary color-coded synchronization matrix obtained for the index based
on circular variance. The phases were extracted with the wavelet transform, ω0 = 18. Dark
colors correspond to high values of the index, white corresponds to 0. For the example
shown here the focus was in the left side.

phase has an influence on the values of the phase synchronization indices. In the following
Figures these indices are denoted byσHI andγHI.

Mutual information was estimated for pairwise combinations of channels of the same side
using our new estimators introduced in Sec. 3.2.2. In the following Figures we denote the
“cubic” estimator (Eq.(3.34)) asICk and the “rectangular” estimator (Eq.(3.40)) asIRk,
wherek stands for the number of the nearest neighbors used in the calculations.

The two linear measures of synchronization described in Sec. 3.1 were also calculated and
in the Figures they are denoted byC0 andCmax.

For all measures and each patient we calculated a synchronization matrix for each window
of the respective recording. The synchronization matrix contains the values of the syn-
chronization measure for all combinations of channels of the same side in the respective
window. In Fig. 4.3 an exemplary synchronization matrix is presented. We can see that
high values are found predominantly in the upper left sub-matrix. This indicates that in the
case presented here synchronization in the focal hemisphere is higher than in the non-focal
hemisphere.

To test the hypothesis proposed in the beginning of this Section we introduce a localization
index, which is defined just as a difference between average synchronization in the focal
and non-focal hemisphere. Suppose we are calculating the measureM , then the localiza-
tion indexL is given by

L = 〈Mfoc〉 − 〈Mnonfoc〉. (4.1)
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Figure 4.4: Color-coded localization index for each patient and each measure. Warm
colors denote a correct localization whereas chilled colors mark a false one.
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To get the localization index for one window the averaging should be done over all chan-
nel combinations in the focal and the non-focal hemisphere, respectively. For the whole
recording of one patients the localization index is obtained by additional averaging over
all windows. The order of the two averaging steps is not important sinceL linearly de-
pends on a measure. According to our hypothesis, a positive value of the localization index
corresponds to a correct localization, and a negative one to a false localization.

The statistical significance of the obtained results is checked by means of the Wilcoxon
signed-rank test. It is a nonparametric procedure used to test the null hypothesis that two
variables have the same distribution. The test makes no assumptions about the shapes of
the distributions of the two variables. However, it takes into account information about
the magnitude of differences within pairs and gives more weight to pairs that show large
differences than to pairs that show small differences. This test statistic is based on the
ranks of the absolute values of the differences between the two variables. An observed
significance level is often calledp value. This value is the basis for deciding whether or
not to reject the null hypothesis. It is the probability that a statistical result as extreme as
the one observed would occur if the null hypothesis were true. If the observed significance
level is small enough, usually less than0.05 or 0.01, the null hypothesis is rejected.

Note that the assumption of higher values of synchronization in the focal hemisphere does
not bias our analysis scheme. The opposite difference would be detected automatically.

4.2.1.2 Results

The results of the localization analysis are presented in Fig. 4.4. Each cell of this color-
coded matrix represents the value of the localization index for the corresponding patient
and measure. The numbers at the right of the Figure represent the number of correctly clas-
sified patients (positive localization index). This number varies from20 to 24 depending
on the measure. For several measures it is not easy to read from the Figure whether the
localization is correct or false because the absolute values of the localization index are very
small. A question arises if these small values are significant enough to be judged as a suc-
cess or a failure of the classification procedure. One possible way to answer this question
is to perform a statistical analysis using standard hypothesis tests.

4.2.1.3 Statistical validation

The distribution which we first put to the Wilcoxon signed-rank statistical test are the dis-
tributions of synchronization values in the focal and in the non-focal side of the brain,
respectively. Each distribution is across patients.

The test retrieved a significant (p < 0.05) difference between the distributions of focal and
non-focal average synchronization values for all measures. Allp values of the Wilcoxon
test are presented in the second subplot of Fig. 4.4.
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Figure 4.5: Results of the localization analysis in combination with the Wilcoxon signed-
rank test. The beige color (+s.) corresponds to a correct and significant localization ac-
cording to the Wilcoxon test. The yellow color (+n.s.) indicates the still positive but non-
significant values of the localization index. The red color (-n.s.) is used for non-significant
but negative values of the localization index and the black one (-s.) denotes significantly
false localizations. The four columns of numbers to the right of the Figure denote the
number of each classification for each measure.
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The Wilcoxon signed-rank test can be applied not only to the average over all windows
but also to each patient and each measure separately. The tested distributions in this case
are the distributions of the synchronization values for the focal and non-focal side in each
window. The results are shown in Fig. 4.5. The majority of the cells in this color-coded plot
indicate a correct and significant localization according to the Wilcoxon test. There are also
cells with positive values of the localization index, and several cells with negative values
which are found to be non-significant. Already from this plot one can see a high correlation
in the results for different measures. The number of patients which are either correctly or
falsely localized by all measures is considerably higher then the number of questionable
localizations with regard to the choice of the measure. The smallest number of correctly
classified cases (18 patients) is found for the index based on circular variance calculated for
the phase difference obtained by the wavelet transform with the central frequency of6 Hz.
The best results (24 patients) are found for the same measure but with central frequency
of the wavelet in a range16 − 17 Hz. In a wider range from16 Hz to 23 Hz the results
for both indices have just one significant correctly localized case less. The results for rank
ordered phases are the same as the results obtained for original phases. The difference
in the performance of all four measures of generalized synchronization disappears after
significance analysis. This is an expectable result because the difference between them is
only in the normalization.

4.2.1.4 Correlations between the different measures

In Fig. 4.6 the pairwise correlation coefficients between all1 average (over all channel
combinations) synchronization values are depicted based on the entire database analyzed
in this Section.

This plot confirms what we have already mentioned in the previous Section, namely that all
the measures correlate well with each other. The minimal correlation values are observed
between the measure of generalized synchronizationH and the majority of phase synchro-
nization measures based on wavelet transform, but still the value of correlation coefficient
is about0.5. One can roughly distinguish clusters of measures corresponding to differ-
ent classes, namely to linear cross-correlation, phase synchronization based on the Hilbert
and wavelet transform, generalized synchronization and mutual information. The highest
correlation is observed within the following three small clusters. The first one consists of
the two measures of phase synchronization based on the Hilbert transform for original and
rank ordered phases. The second one consists of two variants of the generalized synchro-
nization measure, namelyM andN , and both estimators of mutual information also have
high correlation. The biggest cluster consists of phase synchronization measures based on
wavelet transform for the frequency range12−30 Hz, the other frequency range3−9 Hz is

1In general both indices of phase synchronization are strongly correlated. Therefore, for the sake of
clearness of the picture we omit indices based on Shannon entropy.
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Figure 4.6: Correlation coefficients between the average (over all channel combinations)
synchronization values. Coefficients are determined using all 9691 windows from all 29
patients. Different classes of measures are denoted on abscissa axis by LC for linear
correlation, HIL and WAV for phase synchronization based on the Hilbert and the wavelet
transform, respectively, GS for generalized synchronization, and MI for mutual information.

not highly correlated with the previous one. This is in correspondence with the localization
performance, where the worst results were obtained for the frequency6 Hz. The difference
betweenS and all other measures of generalized synchronization is also expectable since
S is the only measure of generalized synchronization which uses a local neighborhood (see
Sec. 3.5).

4.2.2 Bivariate surrogate data analysis

Using the Wilcoxon test for the majority of patiens/measures we found a significant differ-
ence between average values of synchronization in the focal and the non-focal hemisphere
of the epileptic brain. This difference has also been reported for linear and nonlinear uni-
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variate measures which obviously are not sensitive to possible synchronization between
different areas of the brain [9, 7]. Therefore, the question arises whether the difference in
synchronization values is really caused by synchronization phenomena or rather by some
other overall properties of the EEG. This question can be addressed using the concept of
surrogate data. The method of surrogate data allows to test the results, for which analytical
estimation can not be given, against a specified null-hypothesis. For our purpose, the null
hypothesis can be formulated as follows.

H0: Any potential difference in the average values of the synchronization mea-
sure found for the focal and the non-focal hemisphere can be explained by
some differences in properties of the overall dynamics of the focal and the
non-focal hemisphere not related to synchronization.

In the framework of nonlinear time series analysis the concept of surrogates was at first
used as a test for nonlinearity [122, 112, 113]. In general, an ensemble of surrogate time
series is constructed from the original time series in such a way that they have all properties
consistent with the specified null hypothesis in common with the original, but are otherwise
random. A discriminating statistics, which has to be sensitive to at least one property that
is inconsistent with the null hypothesis, is calculated for both the original time series and
the surrogates. If the result for the original falls outside the range of values obtained for
the surrogates, the null hypothesis can be rejected.

In the next paragraphs, we will summarize some aspects of our extensive study of the
necessity, strength and caveats of bivariate surrogate data analysis [6]. In this paper a
hierarchy of null-hypotheses along with different algorithms for their testing have been
discussed.

The main purpose of bivariate surrogate data analysis is to verify the interdependence be-
tween processes under consideration. The simplest null hypothesis for this analysis is that
they are independent linear stochastic processes. To test against this null-hypothesis one
should preserve only the linear properties of each process. But this is not the most interest-
ing case. Actually, from the algorithmic point of view a procedure for generating this type
of surrogates is exactly the same as for univariate surrogates. It should simply be applied
to time series of each process separately. Moreover, the rejection of this null hypothesis
does not necessarily mean that the processes are dependent, they could for example contain
some structure which is not consistent with the assumption of a linear stochastic process.

A natural extension of the previous null hypothesis is to take linear interactions into ac-
count. The processes are still assumed to be linear stochastic ones. Under linear inter-
action we understand all interactions which can be completely described in terms of the
linear cross-correlation function or in terms of its equivalent in the frequency domain, the
coherence function. To test against this extended null hypothesis one has to preserve the
cross-correlation between the processes and the two autocorrelation functions. An algo-
rithm for generating an ensemble of surrogates has to work for both time series simultane-
ously. In the simplest case of phase randomized surrogates the phase difference between
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corresponding components in Fourier transform should be preserved. The rejection of this
null hypothesis can indicate nonlinear synchronization or, e.g., nonlinear structure in inde-
pendent processes.

To take a nonlinear structure into consideration it is possible to assume as a null hypothesis
two processes with arbitrary structure but without nonlinear interdependence and without
significant linear cross- correlation. The easiest way to fulfill this is to take different parts
(e.g., at different instances of time) of a time series generated by the same process. Un-
der the stationarity assumption the shifted versions of the same time series would have
statistically the same structure and autocorrelation. Assuming ergodicity, they should be
independent.

A further generalization of this null hypothesis includes the linear cross-correlation as well.
It is, however, impossible to generate corresponding surrogates, because preserving the
structure along with the autocorrelation and the cross-correlation at the same time com-
pletely specifies both time series and does not leave any degree of freedom for random-
ization. As a way out of this dilemma, Schreiber proposed to preserve only a part of the
cross-correlation and/or the autocorrelation functions (up to some time lagτ ) [110]. This
method uses a simulated annealing technique for generating an ensemble of surrogates and
is therefore very time consuming.

To answer the question we have put in the beginning of this Section we will use time-shifted
surrogates. This type of surrogates is perfectly suited to test against the null-hypothesisH0.

4.2.2.1 Methods

The method of time-shifted surrogates was introduced in Ref. [94]. Later it was used in
Ref. [78], and compared with other bivariate surrogate data methods in Ref. [6]. In contrast
to these studies, we use randomly chosen windows as time shifted surrogates. This allows
us to avoid unwanted high linear cross-correlation between surrogates.

Time-shifted surrogate data analysis was performed for the entire localization database of
patients (cf. Tab. 4.1) and for each synchronization measure. We proceeded in a slightly
different manner for symmetric measures (linear cross-correlation, phase synchronization)
and for asymmetric measures (generalized synchronization). For symmetric measures the
synchronization matrix (see Fig. 4.3) is symmetric but the surrogate synchronization ma-
trix is in general asymmetric. The first line of the surrogate synchronization matrix for
a windowi (see Tab. 4.2) contains the value of the synchronization measure between the
channelA in the windowi and all channels (B∗, . . . , Z∗) from the surrogate windowi∗.
The second line contains the value of the synchronization measure between the channel
B in the windowi and all channels exceptB∗ from the surrogate windowi∗. In general
MAB∗ 6= MBA∗. For asymmetric measures the original synchronization matrix is already
asymmetric. To calculate the surrogate synchronization matrix we proceed essentially as
in the previous case. We use the indices found for the original time series of channelA in
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Channel-ID A B . . . Z
A MAB∗ . . . MAZ∗

B MBA∗ . . . MBZ∗

. . . . . . . . . . . .
Z MZA∗ MZB∗ . . .

Table 4.2: Schematic representation of the surrogate synchronization matrix.

the windowi to calculate the conditional radius (see Sec. 3.5) in the surrogate time series
of channelB from the surrogate windowi∗.

For each window we randomly chose19 surrogate windows from the recordings of the
same patient and calculated19 surrogate synchronization matrices.

4.2.2.2 Results

In Fig. 4.7 the results of the localization analysis in combination with the time-shifted sur-
rogate data test are shown. As in Fig. 4.5 each cell corresponds to one patient and one
measure. Again the majority of the cells indicate correct and significant localization with
regard to the time-shifted surrogate test. It means that the average localization index cal-
culated for the original recording lies outside (in this case higher than) any of19 average
localization indices calculated for the surrogate localization matrix. In comparison with
the results presented in Fig. 4.5, the number of nonsignificant cases has increased, i.e.,
significant results with regard to Wilcoxon statistical test turned out to be nonsignificant
with regard to the time-shifted surrogates test. This means that the difference in the distri-
butions of the average synchronization values in the focal and the non-focal side is due to
some overall properties of the EEG recordings but not due to synchronization. There are
a few patients/measures for which the opposite is true, namely the results are significant
with regard to the time-shifted surrogates test but nonsignificant with regard to Wilcoxon
statistical test. It might mean that the difference in the average synchronization values in
the focal and non-focal side is so small that it can not be distinguished by this statistical
test. But using the time-shifted surrogate data analysis which takes into account additional
information, e.g., about the hidden structure, allows to retrieve a significant distinction.

While the time-shifted surrogate test is applied to each window separately, it is possible
to check the significance of the localization index for each window and to exclude the
nonsignificant windows from the analysis. It will not automatically lead to significant
results after the averaging over all remaining windows, since both correctly and falsely
localized windows are still included in the analysis. In Fig. 4.8 the results of this analysis
are shown. The number of nonsignificant cases decreases in comparison with the previous
analysis (cf. Fig. 4.7). Moreover, the number of correctly localized patients increases
on average by one patient for each measure. A small difference between the localization
results in combination with the Wilcoxon statistical test and the time-shifted surrogate data
test is found for the phase synchronization measures based on the wavelet transform and
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Figure 4.7: Results of the localization analysis in combination with the time-shifted surro-
gate data test. All notations as in the Fig. 4.5.
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Figure 4.8: Results of the localization analysis in combination with the time-shifted surro-
gate data test. Only significant windows are included in averaging. All notations as in the
Fig. 4.5.
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for linear cross-correlation measures. The smallest number of correctly classified cases (17
patients) is again found forγω6. The highest number (24 patients) is obtained for the index
based on Shannon entropy in the frequency range15 − 16 Hz. For higher frequencies of
18 − 23 Hz the results for both indices have just one significant correctly localized case
less. The difference in the performance of all four measures of generalized synchronization
which can be seen in Fig. 4.7 disappears after excluding all nonsignificant windows from
the average.

4.3 Discussion

In this study we addressed the question whether it is possible to identify the location of an
epileptic focus from an intracranial EEG recorded during interictal (seizure-free) intervals.
Based on theoretical considerations and motivated by earlier studies we tested the hypoth-
esis that during the interictal period the average synchronization in the focal hemisphere of
the brain of epileptic patients is higher than in the non-focal hemisphere. Our comparative
study of many different bivariate synchronization measures along with a standard statistical
validation confirmed this hypothesis. Moreover, the results obtained with time-shifted sur-
rogate analysis showed that our results are indeed caused by synchronization phenomena
rather than by some other overall properties of the dynamics.

A comparative study showed high correlations between all synchronization measures. Com-
paratively low correlation between one variant of the generalized synchronizationH mea-
sure and phase synchronization measures based on the wavelet transform in combination
with their correct localization of the epileptic focus for different patients could be used for
a discriminant analysis using both measures.

The obtained results could not compete in their performance with EEG expert readers who
perform a visual inspection of ictal-EEG recordings, i.e., recordings containing seizure.
However, our results were obtained without the necessity of observing seizure activity. On
the other hand, we have to admit that the results obtained for a partly overlapped data base
of patients using univariate analysis in combination with surrogate data correction show
better performance [9, 7].

Beyond any doubts, the prediction of epileptic seizures is another challenging task in the
analysis of EEG recordings from epilepsy patients (for an overview see Refs. [67, 68, 63]).
Recently it was found that bivariate techniques are superior to univariate techniques for
this task [75, 74, 76, 73, 54]. One of the distinctive features of these studies along with
comparison of many univariate and bivariate measures is a careful statistical validation of
the results. This validation is also based on the concept of surrogate data, namely seizure
time surrogates [8] and measure profile surrogates [55, 53].
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Chapter 5

Clustering of data

In this Chapter a new algorithm for data clustering is presented [50, 51]. We start with a
short introduction to clustering in general.

Classification or organizing of data is very important in many scientific disciplines. It is one
of the most fundamental mechanism of understanding and learning [43, 27]. Depending on
the problem, classification can be exclusive or overlapping, supervised or unsupervised. In
the following we will be interested only in exclusive unsupervised classification. This type
of classification is usually called clustering or cluster analysis.

An instance of a clustering problem consists of a set of objects and a set of properties
(called characteristic vector) for each object. The main goal of clustering is the division of
objects into groups using only the characteristic vectors. Cluster analysis organizes data
either as a single grouping of individuals into non-overlapping clusters or as a hierarchy of
nested partitions. The first approach is called partitional clustering (PC), the second one
is the hierarchical clustering (HC). One of the main features of HC methods is the visual
impact of thedendrogramwhich enables one to see how objects are merged into clusters.
From any HC one can obtain a PC by restricting oneself to a “horizontal” cut through the
dendrogram, while one cannot go in the other direction and obtain a full hierarchy from
a single PC. Because of the wide spread of their applications, there are a large variety of
different clustering methods in usage, see, e.g., Refs. [43, 27] for an overview.

The crucial point of all clustering algorithms is the choice of aproximity measure. This
is obtained from the characteristic vectors and can be either an indicator for similarity
(i.e., large for similar and small for dissimilar objects), or a distance-like quantity. In
the latter case it is convenient but not obligatory if it satisfies the standard axioms of a
metric (positivity, symmetry, and triangle inequality). A matrix of all pairwise proximities
is called proximity matrix. Among HC methods one should distinguish between those
where one uses the characteristic vectors only at the first level of the hierarchy and derives
the proximities between clusters from the proximities of their constituents, and methods
where the proximities are calculated each time from their characteristic vectors. The latter
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strategy (which is used also in the present Chapter) allows of course for more flexibility
but might also be computationally costlier.

Quite generally, the “objects” to be clustered can be either single (finite) patterns (e.g.,
DNA sequences) or random variables, i.e.,probability distributions. In the latter case
the data are usually supplied in form of a statistical sample, and one of the simplest and
most widely used similarity measures is the linear (Pearson) correlation coefficient. But
this is not sensitive to nonlinear dependencies which do not manifest themselves in the
covariance and can thus miss important features. This is in contrast to mutual information
(MI) described in Sec. 3.2.

This Chapter is organized as follows. In Sec. 5.1 the relation of MI in Shannon sense to
the MI in Kolmogorov theory is described and the MI clustering algorithm, called MIC,
is presented. In Sec. 5.2 MI distance measure for the Shannon case is introduced and in
Section 5.3 two applications of the new clustering algorithm are discussed. In the last
Section 5.4 we present a short discussion about the place of MIC algorithm among other
clustering algorithms.

5.1 New clustering algorithm

One of the important features of MI is that it has also an “algorithmic” cousin, defined
within algorithmic (Kolmogorov) information theory [66] which measures the similarity
between individual objects.

Let us recall some important facts of algorithmic information theory. In contrast to Shan-
non theory where the basic objects are random variables and entropies areaverageinfor-
mations, algorithmic information theory deals with individual symbol strings and with the
actual information needed to specify them. To “specify” a sequenceX means here to give
the necessary input to a universal computerU , such thatU printsX on its output and stops.
The analogon to entropy, called here usually thecomplexityK(X) of X, is the minimal
length of an input which leads to the outputX, for fixedU . It depends onU , but it can be
shown that this dependence is weak and can be neglected in the limit whenK(X) is large
[66].

Let us denote the concatenation of two stringsX andY asXY . Its complexity isK(XY ).
It is intuitively clear thatK(XY ) should be larger thanK(X) but cannot be larger than
the sumK(X) + K(Y ). Finally, one expects thatK(X|Y ), defined as the minimal length
of a program printingX whenY is furnished as an auxiliary input, is related toK(XY )−
K(Y ). Indeed, one can show [66] (again within correction terms which become irrelevant
asymptotically) that

0 ≤ K(X|Y ) ' K(XY )−K(Y ) ≤ K(X). (5.1)

Notice the close similarity with Shannon entropy.
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The algorithmic information inY aboutX is finally defined as

Ialg(X,Y ) = K(X)−K(X|Y ) ' K(X) + K(Y )−K(XY ). (5.2)

Within the same additive correction terms, one shows that it is symmetric,Ialg(X, Y ) =
Ialg(Y, X), and can thus serve as an analogon to mutual information.

Using Turing’s proof of the halting theorem one can show thatK(X) is in general not
computable. But one can easily give upper bounds. Indeed, the length of any input which
producesX (e.g., by spelling it out verbatim) is an upper bound. Improved upper bounds
are provided by any file compression algorithm such as gnuzip or UNIX “compress”. Good
compression algorithms will give good approximations toK(X), and algorithms whose
performance does not depend on the input file length (in particular since they do not seg-
ment the file during compression) will be crucial for the following.

Another feature of MI which is essential for the present application is thegrouping prop-
erty: The MI between three objects (distributions)X,Y, andZ is equal to the sum of the
MI betweenX andY , plus the MI betweenZ and the combined object (joint distribution)
(XY ),

I(X, Y, Z) = I(X, Y ) + I((X,Y ), Z). (5.3)

Within Shannon information theory this is an exact theorem (see below), while it is true in
the algorithmic version up to the usual logarithmic correction terms [66]. SinceX, Y, andZ
can be themselves composite, Eq.(5.3) can be used recursively for a cluster decomposition
of MI. This motivates the main idea of our clustering method: instead of using, e.g., centers
of masses in order to treat clusters like individual objects in an approximative way only,
we treat them exactly like individual objects when using MI as proximity measure.

More precisely, we propose the following scheme for clusteringn objects with MIC:

(1) Compute a proximity matrix based on pairwise mutual informations; assignn clus-
ters such that each cluster contains exactly one object;

(2) find the two closest clustersi andj;

(3) create a new cluster(ij) by combiningi andj;

(4) delete the lines and columns with indicesi and j from the proximity matrix, and
add one line/column containing the proximities between cluster(ij) and all other
clusters;

(5) if the number of clusters is still> 2, goto (2); else join the two clusters and stop.

5.2 Mutual information distance measure

Mutual information itself is a similarity measure in the sense that small values imply large
“distances” in a loose sense. But it would be useful to modify it such that the resulting
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quantity is a metric in the strict sense, i.e., satisfies the triangle inequality. Indeed, the first
such metric is well known (see e.g the problem 15 of Chapter 2 in Ref. [21]): The quantity

d(X,Y ) = H(X|Y ) + H(Y |X) = H(X, Y )− I(X,Y ) (5.4)

satisfies the triangle inequality, in addition to being non-negative and symmetric and to
satisfyingd(X,X) = 0. The proof proceeds by first showing that for anyZ

H(X|Y ) ≤ H(X,Z|Y ) ≤ H(X|Z) + H(Z|Y ). (5.5)

But d(X,Y ) is not optimal for our purposes. Since we want to compare the proximity
between two single objects and that between two clusters containing maybe many objects,
one would like the distance measure to be unbiased by the sizes of the clusters. As argued
forcefully in Refs. [64, 65], this is not true forIalg(X, Y ), and for the same reasons it is not
true forI(X, Y ) ord(X,Y ) either: A mutual information of 1000 bits should be considered
as large, ifX andY themselves are just 1000 bits long, but it should be considered as very
small, if X andY are huge.

As shown in Refs. [64, 65] within the algorithmic framework, one can form two different
distances which measurerelativedistance, i.e., which are normalized by dividing by a total
entropy. We sketch here only the theorems and proofs for the Shannon version, they are
indeed very similar to their algorithmic analoga in Refs. [64, 65]1.

THEOREM 1: The quantity

D(X, Y ) = 1− I(X,Y )

H(X,Y )
=

d(X,Y )

H(X,Y )
(5.6)

is a metric, withD(X, X) = 0 andD(X, Y ) ≤ 1 for all pairs(X, Y ).

PROOF: Symmetry, positivity and boundedness are obvious. SinceD(X,Y ) can be written
as

D(X,Y ) =
H(X|Y )

H(X, Y )
+

H(Y |X)

H(Y, X)
, (5.7)

it is sufficient for the proof of the triangle inequality to show that each of the two terms on
the r.h.s. is bounded by an analogous inequality, i.e.,

H(X|Y )

H(X, Y )
≤ H(X|Z)

H(X,Z)
+

H(Z|Y )

H(Z, Y )
(5.8)

and similarly for the second term. Eq.(5.8) is proven straightforwardly, using Eq.(5.5) and
the basic inequalitiesH(X) ≥ 0, H(X, Y ) ≤ H(X, Y, Z) andH(X|Z) ≥ 0:

H(X|Y )

H(X,Y )
=

H(X|Y )

H(Y ) + H(X|Y )
≤ H(X|Z) + H(Z|Y )

H(Y ) + H(X|Z) + H(Z|Y )

1We recently found out that this was first proven in Ref. [70].
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=
H(X|Z) + H(Z|Y )

H(X|Z) + H(Y, Z)
≤ H(X|Z)

H(X|Z) + H(Z)
+

H(Z|Y )

H(Y, Z)

=
H(X|Z)

H(X,Z)
+

H(Z|Y )

H(Z, Y )
. (5.9)

THEOREM 2: The quantity

D′(X,Y ) = 1− I(X, Y )

max{H(X), H(Y )} =
max{H(X|Y ), H(Y |X)}

max{H(X), H(Y )} (5.10)

is also a metric, also withD′(X, X) = 0 andD′(X, Y ) ≤ 1 for all pairs (X, Y ). It is
sharper thanD, i.e.,D′(X, Y ) ≤ D(X,Y ).

PROOF: Again we have only to prove the triangle inequality, the other parts being trivial.
For this we have to distinguish different cases [65].
Case 1:max{H(Z), H(Y )} ≤ H(X). Using Eq.(5.5) we obtain

D′(X, Y ) =
H(X|Y )

H(X)
≤ H(X|Z)

H(X)
+

H(Z|Y )

H(Y )

= D′(X, Z) + D′(Z, Y ). (5.11)

Case 2:max{H(Z), H(X)} ≤ H(Y ). This is completely analogous.
Case 3:H(X) ≤ H(Y ) < H(Z). We now have to show that

D′(X, Y ) =
H(Y |X)

H(Y )
≤ H(Y |Z) + H(Z|X)

H(Y )
(5.12)

?≤ D′(X,Z) + D′(Z, Y ) =
H(Z|X)

H(Z)
+

H(Z|Y )

H(Z)
.

Indeed, if the r.h.s. of the first line is less than 1, then

H(Y |X)

H(Y )
≤ H(Y |Z) + H(Z|X)

H(Y )

≤ H(Y |Z) + H(Z|X) + H(Z)−H(Y )

H(Z)

=
H(Z|Y ) + H(Z|X)

H(Z)
, (5.13)

and Eq.(5.12) holds. If it is larger than 1, then also(H(Z|Y ) + H(Z|X))/H(Z) ≥ 1.
Eq.(5.12) must now also hold, sinceH(Y |X)/H(Y ) ≤ 1.
Case 4:H(Y ) ≤ H(X) < H(Z). This is completely analogous to case 3.

Apart from scaling correctly with the total information, in contrast tod(X, Y ), the algorith-
mic analog toD′(X, Y ) is alsouniversal[65], while D(X,Y ) is universal up to a factor 2.
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Essentially this means that ifX ≈ Y according to any non-trivial distance measure, then
X ≈ Y also according toD andD′. In contrast to the other properties ofD andD′, this is
not easy to carry over from algorithmic to Shannon theory. The proof in Ref. [65] depends
onX andY being discrete, which is obviously not true for probability distributions. Based
on the universality argument, it was argued in Ref. [65] thatD′ should be superior toD,
but the numerical studies shown in that reference did not show a clear difference between
them. In the following we shall therefore use primarilyD for simplicity, but we checked
that usingD′ did not give systematically better results.

A major difficulty appears in the Shannon framework, if we deal with continuous ran-
dom variables. As we mentioned in Sec. 3.2, Shannon informations are only finite for
coarse-grained variables, while they diverge if the resolution tends to zero. This means
that dividing MI by entropy as in the definitions ofD andD′ becomes problematic. One
has essentially two alternative possibilities. The first is to actually introduce some coarse-
graining, although it would have not been necessary for the definition ofI(X, Y ), and
divide by the coarse-grained entropies. This introduces an arbitrariness, since the scale∆
is completely ad hoc, unless it can be fixed by some independent arguments. We have found
no such arguments, and thus we propose the second alternative. There we take∆ → 0. In
this caseH(X) ∼ mx log ∆, with mx being the dimension ofX. In this limit D andD′

would tend to 1. But using similarity measures

S(X,Y ) = (1−D(X,Y )) log(1/∆), (5.14)

S ′(X, Y ) = (1−D′(X, Y )) log(1/∆) (5.15)

instead ofD andD′ givesexactlythe same results in MIC, and

S(X, Y ) =
I(X,Y )

mx + my

, S ′(X, Y ) =
I(X,Y )

max{mx,my} . (5.16)

Thus, when dealing with continuous variables, we divide the MI either by the sum or by the
maximum of the dimensions. When starting with scalar variables and whenX is a cluster
variable obtained by joiningm elementary variables, then its dimension is justmx = m.

5.3 Applications of MIC

5.3.1 Mitochondrial DNA

As a first application, we study the mitochondrial DNA of a group of 34 mammals (see
Fig. 5.1). Exactly the same data [1] had previously been analyzed in Refs. [64, 96]. This
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group includes among others2 some rodents and related species3, ferungulates4, and pri-
mates5. It had been chosen in Ref. [64] because of doubts about the relative order among
these three groups [19, 96].

Obviously, we are here dealing with the algorithmic version of information theory, and
informations are estimated by lossless data compression. For constructing the proximity
matrix between individual taxa, we proceed essentially as in Ref. [64] using the special
compression program GenCompress [2] to estimate the complexity.

In Ref. [64], this proximity matrix was then used as the input to a standard HC algorithm
(neighbor-joining and hypercleaning) to produce an evolutionary tree. It is here where our
treatment deviates crucially. We used the MIC algorithm described in the beginning of
this section, with distanceD(X, Y ). The joining of two clusters (the third step in the MIC
algorithm) is obtained by simply concatenating the DNA sequences. There is of course an
arbitrariness in the order of concatenation. For sequence length→∞, sequencesXY and
Y X would have the same information, but in reality they will in general give compressed
sequences of different lengths. As more and more sequences are concatenated in larger
clusters, this problem becomes more and more severe. In a pre-analysis step we could rule
out any influence of this effect on our results. The resulting evolutionary tree obtained with
Gencompress is shown in Fig. 5.1.

The overall structure of this tree closely resembles the one shown in Ref. [96]. All primates
are correctly clustered and also the relative order of the ferungulates is in accordance with
Ref. [96]. On the other hand, there are a number of connections which obviously do not
reflect the true evolutionary tree, see for example the guinea pig with bat, and elephant with
platypus. But the latter two, inspite of being joined together, have a very large distance
from each other, thus their clustering just reflects the fact that neither the platypus nor
the elephant have other close relatives in the sample. Thus we expect that our method
would work better with a larger sample where families are represented by more species
and thus better defined. All in all, however, already the results shown in Fig. 5.1 capture
surprisingly well the overall structure shown in Ref. [96]. Notice that dividing MI by the
total information is essential for this success. If we had used insteadIalg(X, Y ) itself or
the non-normalized distanced(X, Y ) defined in Eq.(5.4), the clustering algorithm used in
Ref. [64] would not have changed much, since all 34 DNA sequences have roughly the

2opossum (Didelphis virginiana), wallaroo (Macropus robustus), and platypus (Ornithorhyncus anatinus)
3rabbit (Oryctolagus cuniculus), guinea pig (Cavia porcellus), fat dormouse (Glis glis), rat (Rattus

norvegicus), squirrel (Scuirus vulgaris), and mouse (Mus musculus)
4horse (Equu caballus), donkey (Equus asinus), Indian rhinoceros (Rhinoceros unicornis), white

rhinoceros (Ceratotherium simum), harbor seal (Phoca vitulina), grey seal (Halichoerus grypus), cat (Fe-
lis catus), dog (Canis familiaris), fin whale (Balenoptera physalus), blue whale (Balenoptera musculus),
cow (Bos taurus), sheep (Ovis aries), pig (Sus scrofa), hippopotamus (Hippopotamus amphibius), neotropi-
cal fruit bat (Artibeus jamaicensis), African elephant (Loxodonta africana), aardvark (Orycteropus afer), and
armadillo (Dasypus novemcintus)

5human (Homo sapiens), common chimpanzee (Pan troglodytes), pigmy chimpanzee (Pan paniscus), go-
rilla (Gorilla gorilla ), orangutan (Pongo pygmaeus), gibbon (Hylobates lar), and baboon (Papio hamadryas)
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Figure 5.1: Phylogenetic tree for 34 mammals (31 eutherians plus 3 non-placenta mam-
mals). In contrast to Fig. 5.4, the heights of nodes are equal to the distances between the
joining daughter clusters.

same length and the same information content. But our MIC algorithm would have been
completely screwed up: After the first cluster formation, we have DNA sequences of very
different lengths to compare with. If we use MI itself as a similarity measure, we would
mainly join large clusters (since they tend to have large MI). If we would used(X, Y ), we
would mainly join small clusters since they have smaller distances.

A heuristic reasoning for the use of MIC for the reconstruction of an evolutionary tree
might be given as follows: Suppose that a proximity matrix has been calculated for a set of
DNA sequences and the smallest distance is found for the pair(X, Y ). Ideally, one would
remove the sequencesX andY , replace them by the sequence of the common ancestor (say
Z) of the two species, update the proximity matrix to find the smallest entry in the reduced
set of species, and so on. But the DNA sequence of the common ancestor is not available.
One solution might be that one tries to reconstruct it by making some compromise between
the sequencesX andY . Instead, we essentially propose to concatenate the sequencesX
andY . This will of course not lead to a plausible sequence of the common ancestor, but it
will optimally represent the informationabout the common ancestor. During the evolution
since the time of the ancestorZ, some parts of its genome might have changed both inX
and inY . These parts are of little use in constructing any phylogenetic tree. Other parts
might not have changed in either. They are recognized anyhow by any sensible algorithm.
Finally, some parts of its genome will have mutated significantly inX but not inY , and
vice versa. This information is essential to find the correct way through higher hierarchy
levels of the evolutionary tree, and it is preserved in concatenating.
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Figure 5.2: ECG of a pregnant woman.

5.3.2 Minimally dependent components in electrocardiograms

As our second application we choose a case where Shannon theory is the proper setting.
We show in Fig. 5.2 an electrocardiogram (ECG) recorded from the abdomen and thorax
of a pregnant woman [24] (8 channels, sampling rate 500 Hz, 5 s total). It is already seen
from this graph that there are at least two important components in this ECG: the heartbeat
of the mother, with a frequency of≈ 3 beat/s, and the heartbeat of the fetus with roughly
twice this frequency. Both are not synchronized. In addition there is noise from various
sources (muscle activity, measurement noise, etc.). While it is easy to detect anomalies in
the mother’s ECG from such a recording, it would be difficult to detect them in the fetal
ECG.

As a first approximation we can assume that the total ECG is a linear superposition of
several independent sources (mother, child, noise1, noise2,...). A standard method to disen-
tangle such superpositions isindependent component analysis(ICA) [42]. In the simplest
case one hasn independent sourcessi(t), i = 1 . . . n and n measured channelsxi(t)
obtained by instantaneous superpositions with a time independent non-singular matrixA,

xi(t) =
n∑

j=1

Aijsj(t) . (5.17)

In this case the sources can be reconstructed by applying the inverse transformation
W = A−1 which is obtained by minimizing the (estimated) mutual informations between
the transformed componentsyi(t) =

∑n
j=1 Wijxj(t). If some of the sources are Gaus-

sian, this leads to ambiguities [42], but it gives a unique solution if the sources have more
structure.
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In reality things are not so simple. For instance, the sources might not be independent,
the number of sources (including noise sources!) might be different from the number
of channels, and the mixing might involve delays. For the present case this implies that
the heartbeat of the mother is seen in several reconstructed componentsyi, and that the
“independent” components are not independent at all. In particular, all componentsyi

which have large contributions from the mother form a cluster with large intra-cluster MIs
and small inter-cluster MIs. The same is true for the fetal ECG, albeit less pronounced. It
is thus our aim to

1) optimally decompose the signals into least dependent components;

2) cluster these components hierarchically such that the most dependent ones are grouped
together;

3) decide on an optimal level of the hierarchy, such that the clusters make most sense
physiologically;

4) project onto these clusters and apply the inverse transformations to obtain cleaned
signals for the sources of interest.

Technically we proceeded as follows [117]:

Since we expect different delays in the different channels, we first used Takens delay em-
bedding [118] with time delay 0.002 s and embedding dimension 3, resulting in24 chan-
nels. We then formed 24 linear combinationsyi(t) and determined the de-mixing coef-
ficientsWij by minimizing the overall mutual information between them, using the MI
estimator described in Sec. 3.2.2. There, two classes of estimators were introduced, one
with square and the other with rectangular neighborhoods. Within each class, one can use
the number of neighbors, calledk in the following, on which the estimate is based. Small
values ofk lead to a small bias but to large statistical errors, while the opposite is true for
largek. But even for very largek the bias is zero when the true MI is zero, and it is system-
atically such that absolute values of the MI are underestimated. Therefore, this bias affects
neither the ranking of the pairwise MIs nor the determination of the optimal de-mixing
matrix. But it depends on the dimension of the random variables, therefore large values of
k are not suitable for the clustering. We thus proceeded as follows: We first usedk = 100
and square neighborhoods to obtain the least dependent componentsyi(t), and then used
k = 3 with rectangular neighborhoods for the clustering. The resulting least dependent
components are shown in Fig. 5.3. They are sorted such that the first components (1 − 5)
are dominated by the mother’s ECG, while the next three contain large contributions from
the fetus. The rest contains mostly noise, although some seem to be still mixed.

These results obtained by visual inspection are fully supported by the cluster analysis.
The dendrogram is shown in Fig. 5.4. In constructing it we usedS(X,Y ) (Eq.(5.16))
as similarity measure to find the correct topology. Again we would have obtained much
worse results if we had not normalized it by dividing MI bymX+mY . In plotting the actual
dendrogram, however, we used the MI of the cluster to determine the height at which the
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Figure 5.3: Least dependent components of the ECG shown in Fig. 5.2, after increasing
the number of channels by delay embedding.

73



CHAPTER 5. CLUSTERING OF DATA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

m
ut

ua
l i

nf
or

m
at

io
n

channel nr.

m
ot

he
r 

ch
ild

 

Figure 5.4: Dendrogram for least dependent components. The height where the two
branches of a cluster join corresponds to the MI of the cluster.
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Figure 5.5: Original ECG where all contributions except those of the child cluster have
been removed.
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two daughters join. The MI of the first five channels, e.g., is≈ 1.44, while that of channels
6 to 8 is≈ 0.3. For any two clusters (tuples)X = X1 . . . Xn andY = Y1 . . . Ym one has
I(X,Y ) ≥ I(X) + I(Y ). This guarantees, if the MI is estimated correctly, that the tree
is drawn properly. The two slight glitches (when clusters (1− 14) and (15− 18) join, and
when (21− 22) is joined with 23) result from small errors in estimating MI. They do in no
way effect our conclusions.

In Fig. 5.4 one can clearly see two big clusters corresponding to the mother and to the child.
There are also some small clusters which should be considered as noise. For reconstructing
the mother and child contributions to Fig. 5.2, we have to decide on one specific clustering
from the entire hierarchy. We decided to make the cut at inter-cluster MI equal to0.1, i.e.,
two clustersX andY are joined wheneverI((X), (Y )) ≡ I(X,Y )− I(X)− I(Y ) ≥ 0.1.
The resulting mother and child clusters are indicated in Fig. 5.4 and were already antici-
pated in sorting the channels. Reconstructing the original ECG from the child components
only, we obtain Fig. 5.5.

5.3.3 One more application of MIC
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Figure 5.6: Dendrogram for different synchronization measures.

A small application triggered by this and previous Chapters is presented here. In Sec. 4.2.1.4
we investigated the correlations between different synchronization measures using corre-
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lation coefficients between average synchronization values (see Fig. 4.6). We drew some
conclusions about closeness of these measures based only on correlation matrix, but these
conclusions were only of qualitative nature. Here we apply the hierarchical clustering al-
gorithm described in this Chapter to the same data. A tree obtained withk = 5 nearest
neighbors and the “rectangular” algorithm is presented in Fig. 5.6. Two estimators of mu-
tual information (IC10 andIR10) constitute the first cluster, the next one contains the two
indices of phase synchronization based on the Hilbert transform and calculated for orig-
inal and rank ordered phase. Then, the measures of phase synchronization based on the
wavelet transform start to merge in clusters. The measures of generalized synchronization
constitute their own cluster which starts with mergingN andM joint subsequently byH
andS. It is interesting that the phase synchronization indices based on wavelet transform
for the frequency range3 − 9 Hz (γω3 − γω9) merge not to the “wavelet” but rather to
the cluster of all other measures. This fact illustrates once again the poor performance in
this frequency range. It is remarkable that measuresγω12 to γω20 which gave the best
performance (see the previous Chapter) form one cluster.

5.4 Discussion

We have shown that MI can not only be used as a proximity measure in clustering, but
that it also suggests a conceptually very simple and natural hierarchical clustering algo-
rithm. We do not claim that this algorithm, calledmutual information clustering(MIC),
is always superior to other algorithms. Indeed, MI is in general not easy to estimate. Ob-
viously, when only crude estimates are possible, MIC will not give very good results too.
But as MI estimates become better, the results of MIC should also improve. The present
work was partly triggered by our investigations of a new class of MI estimators for con-
tinuous random variables which have very small bias and also rather small variances (see
Sec. 3.2.2).

We have illustrated our method with several applications, one from genetics and one from
cardiology. For neither application MIC might give the very best clustering, but it seems
interesting that one common method gives decent results for both, although they are very
different.

The results of MIC should improve, if more data become available. This is trivial, if we
mean by that longer time sequences in the application to ECG, and longer parts of the
genome in the application of Sec. 5.3.1. It is less trivial that we expect MIC to make fewer
mistakes in a phylogenetic tree, when more species are included. The reason is that close-
by species will be correctly joined anyhow, and families – which now are represented only
by single species and thus are poorly characterized – will be much better described by the
concatenated genomes if more species are included.

There are two versions of information theory, algorithmic and probabilistic, and therefore
there are also two variants of both MI and MIC. We have discussed in detail one application
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of each, and shown that indeed common concepts were involved in both. In particular it
was crucial to normalize MI properly, so that it is essentially therelative MI which is
used as proximity measure. For conventional clustering algorithms using algorithmic MI
as proximity measure this had already been stressed in Refs. [64, 65], but it is even more
important for MIC, both in the algorithmic and in the probabilistic version.

In the probabilistic version, one studies the clustering of probability distributions. How-
ever, usually distributions are not provided as such, but are given implicitly by finite ran-
dom samples drawn (more or less) independently from them. On the other hand, the full
power of algorithmic information theory is only reached for infinitely long sequences, and
in this limit any individual sequence defines a sequence of probability measures on finite
subsequences. Thus the strict distinction between the two theories is somewhat blurred
in practice. Nevertheless, one should not confuse the similarity between two sequences
(two English books, say) and that between their subsequence statistics. Whereas two se-
quences are maximally different if they are completely random, their statistics for short
subsequences is then identical (all subsequences appear in both with equal probabilities).
Thus one should always be aware of what similarities or independencies one is looking for.
The fact that MI can be used in similar ways for all these problems is not trivial.
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Chapter 6

Summary and Outlook

Synchronization is among the most important phenomena in many branches of natural sci-
ences, engineering and life sciences [89]. Very often the only information to investigate
this phenomenon is available in form of time series measured from the systems under con-
sideration. The analysis of biological systems is a prominent example of such a setting.
Therefore, to develop and to improve measures which are able to retrieve reliable informa-
tion about synchronization from time series is of great importance for the understanding
of synchronization phenomena. In this thesis four different classes of the synchronization
measures were compared with each other. These measures comprised the linear cross-
correlation, measures with information theoretic background such as mutual information
and transfer entropy, phase synchronization measures based on either Hilbert or wavelet
transform, and measures of generalized synchronization.

In the first part of this thesis we introduced different measures of synchronization. For
mutual information and transfer entropy a new family of estimators was developed. Their
major advantage lies in vastly reduced systematic errors, when compared to previous esti-
mators. This allows to use them on very small data sets. It also makes possible their use in
independent component analysis to estimate absolute values of mutual dependencies.

A theoretical comparison of the two phase extraction methods based on Hilbert and wavelet
transform was derived in the second part of this thesis. Although the notion of phase plays
an important role in oscillation theory and especially for synchronization phenomena the
comparison of different phase extraction methods was still missing. Moreover, an extended
discussion about the ambiguity of phase definition was presented there.

Since pathological processes such as epilepsy are considered to be related to synchroniza-
tion phenomena, all the measures of synchronization were applied in the third part of this
thesis to the analysis of intracranial EEG recordings from epilepsy patients undergoing
pre-surgical diagnostics. In this study we addressed the question whether it is possible
to identify the location of an epileptic focus from an EEG recorded during the seizure-
free interval. The performance of different measures of synchronization with this respect
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was compared. The results of the localization analysis for all measures and the majority
of patients were found significant with respect to the Wilcoxon statistical test. Another
important question whether the obtained results were specific for the synchronization mea-
sures was addressed using bivariate surrogate data technique. These results confirm the
hypothesis about synchronization as one of the factors responsible for the difference in the
focal and the non-focal hemispheres of patients suffering from focal epilepsy.

More generally, synchronization is just one way how systems can show dependencies.
Finding dependencies between different (sub-)systems and classifying these systems based
on the levels of dependencies among them is an important problem surpassing synchro-
nization. Therefore, studying general dependencies and clustering data based on them
constituted another part of the thesis. In this part we introduced a new, conceptually very
simple and natural, hierarchical clustering algorithm, calledmutual information clustering
(MIC). We illustrated our method with several applications. Among them are clustering
of DNA sequences of mammals and clustering of minimally dependent components of the
ECG of a pregnant woman. For these applications MIC might not give the best clustering,
but it appears interesting that one common method gives decent results for both, although
they are very different.

Finally, we applied MIC to cluster the synchronization/interdependencies measures used
in EEG analysis. Using the sequence of average synchronization values as an input we
clustered different synchronization measures. These results can be used to optimize the
choice of measures for localization of the epileptic focus. The possible extensions of this
application to EEG analysis can be, e.g., grouping the different channels for a more pre-
cise localization of the epileptic focus or classification of intervals preceding an epileptic
seizure and intervals far away from any seizure activity. We believe that these directions
will be interesting in epilepsy research.
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NIC Series Volume 2
ISBN 3-00-005746-3, February 2000, 77 pages
out of print

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition
Johannes Grotendorst (Editor)
Winterschool, 21 - 25 February 2000, Forschungszentrum Jülich
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