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Vorwort (Hrsg.)

Trockenperioden sind Naturereignisse, welche sich über einen längeren Zeitraum und eher

schleichend entwickeln. Die frühzeitige Wahrnehmung stellt daher eine wesentliche Voraus-

setzung für ein angemessenes Handeln dar. In der vorliegenden Arbeit wird als Beispiel-

region die Ruhr in Nordrhein-Westfalen gewählt, wobei der Fokus auf den Talsperren des

Ruhrverbandes liegt. Die Ruhr wird seit der Industrialisierung stark zur Wasserversorgung

des Ruhrgebietes genutzt, wobei der saisonale Ausgleich durch die Bewirtschaftung der

Talsperren sichergestellt wird. Trockenperioden kehren, wie die Analyse zeigt, auch an

der Ruhr in regelmäÿigen Abständen wieder und zwingen die Entscheidungsträger die Ab-

gabesteuerung an der saisonalen und witterungsgegebenen Situation, dem Bedarf sowie

dem Speicherfüllungsgrad und der wahrscheinlichen weiteren Entwicklung zu orientieren.

Dies gilt insbesondere für extreme Ereignisse.

Die vorliegende Dissertation beschäftigt sich mit der Fragestellung, wie das wasser-

wirtschaftliche Management auf Perioden von Trockenheit bzw. Wassermangel reagieren

kann. Dabei wird eine einfach zu handhabende Methode entwickelt, um auf der einen

Seite die Intensität der Trockenheit zu klassi�zieren und auf der anderen Seite eine Grund-

lage für eine Entscheidungs�ndung zu scha�en. Der gewählte SPI Index (Standardized

Precipitation Index) basiert hierbei ausschlieÿlich auf den in der Vergangenheit gemessenen

Niederschlägen. Weiterhin wird auf die Vorhersehbarkeit von Trockenheit mittels SPI

Index eingegangen. Eine Vorhersage wird unter Verwendung eines ARMA Modells (Auto

Regressive Moving Average) entwickelt. Zudem wird ein stochastisches Simulationsmodell

für monatliche Talsperrenzu�üsse aufgestellt.

Die vorliegende Arbeit zeigt, dass der SPI Index über mehrere Monate akkumuliert werden

kann, so dass sich der Grad der Trockenheit sowohl auf eine Region als auch auf eine Dauer

beziehen lässt. Bei der Analyse mittels SPI Index muss allerdings beachtet werden, dass

eine Trockenperiode nur relativ zu der Vorgeschichte in der untersuchten Region als trocken

a



b Vorwort (Hrsg.)

bezeichnet wird. Die vorgestellte Methode ist unabhängig von Regionen, da sie auf diesen

Relativbetrachtungen gegenüber dem langjährigen Verlauf basiert.

Wuppertal, April 2011 Andreas Schlenkho�
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Abstract 

During the last decades water resources managers are facing severe challenges all over 
the world and the trends of increasing temperature and decreasing precipitation intensify 
this situation. Climate change is a major global challenge facing water resources 
managers. Rising global temperatures will lead to an intensification of the hydrological 
cycle, resulting in dryer dry seasons and wetter rainy seasons, and subsequently 
heightened risks of more extreme, longer and frequent floods and droughts. Drought is 
considered by many to be the most complex but least understood of all natural hazards, 
affecting more people than any other hazard. Drought is a natural hazard temporarily 
affecting almost every region in the world.  The main target of this thesis is to provide 
some analyses and to evolve appropriate and interdisciplinary tools and techniques for 
drought characterization and for enhanced management of water resources systems 
during drought periods. The proposed methodologies are applied to the Ruhr river basin 
as a case study.   

In this thesis, the climate change in the Ruhr river basin has been investigated using a 
set of data containing precipitation, temperature and inflow. All data series have been 
subjected to homogenization procedure. The data homogenization is described in detail. 
Yearly and seasonal trend analyses have been performed on all data series using the 
Mann- Kendall test. The frequency distributions of warm/cold days and very/extremely 
wet days have been examined using percentile indices. 

Results of the hydrological analysis showed that a significant increase in the mean 
temperature is considered over all time scales in the study area. The occurrence of warm 
days in both winter and summer has a significant increase while the occurrence of cold 
days in both seasons showed a similar proportion of significant decrease. These results 
give evidence that the winter becomes warmer and the summer becomes hotter. 

Results of the precipitation analysis give evidence on a significant increase in winter 
precipitation while the increases in summer and the annual precipitation were 
statistically insignificant. The number of consecutive dry days displayed decreasing 
tendencies in winter while there is no indication of statistically significant change in the 
summer. Analysis of very & extremely wet days showed that the main identified trends 
are an increase of the very wet days in the winter. For the inflow analysis, the results 
showed that there is a significant increase in winter inflow while the increases in 
summer and annual inflow were found to be statistically insignificant. Correlation 
calculations, which have been applied to the data series, showed that variations of 
streamflow from year to year were much more strongly related to precipitation changes 
than to temperature changes; this is corresponding to actual common results in 
hydrological research. 
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Drought is a normal, recurrent feature of climate and is a complex phenomenon and 
generally viewed as a sustainable and regionally extensive occurrence of below-average 
natural water availability either in the form of precipitation, river runoff or groundwater. 
The meteorological drought in the Ruhr river basin has been investigated using the 
Standardized Precipitation Index (SPI). The Standardized Precipitation Index aims to 
provide a concise overall picture of drought, regardless of the actual probability 
distribution of the observed cumulative amounts of rainfall for a given time scale. By 
applying the SPI methodology, the obtained results indicated that the drought randomly 
affected the Ruhr river basin and several drought events occurred during the period 
under study. Results also indicated that although the significant positive trend in winter 
precipitation drought visited the Ruhr basin in both summer and winter and that the 
most severely event was in the winter. Trends in SPI data series have been examined 
using the Mann-Kendall test. Results of trend analysis indicated that the proportion of 
drought condition has changed insignificantly during the period under study the Ruhr 
catchment.  

Since the calculations and the analysis of the standardized precipitation index (SPI) are 
complex and not so easy to be done with several precipitation time series, software with 
a friendly and interactive graphical user interface (GUI) for SPI calculations and 
analysis has been developed in MATLAB environment. The main objectives of the 
program are: calculation of the SPI values for a given precipitation data series; detection 
whether a drought event exists in a data series using several time steps and 
classifications of the drought events according to its intensity (moderate, severe, 
extreme). The developed program makes the analysis of the SPI easier compared with 
the program which is used by the National Drought Mitigation Center (USA), rather 
than the developed program has more possibilities. 

Drought forecasting is an essential tool for implementing appropriate mitigation 
measures in order to reduce negative impacts of drought on water resources systems. 
The SPI index has been used as a drought indicator for drought forecasting due to its 
many advantages compared to other drought indices. The capability of the Auto 
Regressive Integrated Moving Average (ARIMA) model in drought forecasting has 
been investigated using the correlation methods of Box and Jenkins and the AIC and 
SBC structure selection criteria. ARIMA models are, in theory, the most general class 
of models for forecasting a time series which can be stationarized by transformations 
such as differencing and logging. Validation of the forecasting models has been carried 
out by comparing SPI values computed on observed precipitation and the corresponding 
forecasts. Results showed a fairly good agreement between observations and forecasts, 
as it has also been confirmed by the values of some performance indices. Results also 
showed that, the good fitting of stochastic models such as ARIMA to hydrologic time 
series such as SPI time series could result in better tool that can be used for water 
resource planning.  
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The forecasting of the standardized precipitation index (SPI) using stochastic models, 
such as ARIMA, is a complex procedure to be performed on several SPI data series. 
There are many statistical software packages, like SAS and SPSS, which are used for 
time series forecasting. In this thesis, a software package, containing ARIMA and 
multiplicative Seasonal Auto Regressive Integrated Moving Average (SARIMA) 
models, has been developed. This program has several advantages compared with the 
other statistical software, when ARIMA model is considered. First of all is simplicity 
compared with other programs which need an experienced user. The user puts limits for 
the model’s parameters then the program optimizes these parameters to detect the best 
candidate model. The predicted results using the developed software have been 
compared with the observed data and with the predicted values obtained by using the 
well known software SPSS in case of ARIMA and SARIMA models. The results of the 
calibration showed good agreement between the forecasted values using the developed 
program and those which were obtained using the software SPSS with reasonable 
accuracy. 

Stochastic simulation of hydrologic time series has been widely used for solving various 
problems associated with the planning, management and operational purposes for 
several decades. In this thesis, the stochastic streamflow generation model of Thomas-
Fiering and a Monte Carlo simulation model have been applied to generate synthetic 
monthly inflow scenarios for four reservoirs in the Ruhr river basin. New method has 
been proposed to preserve the statistical parameters of the random part in the Thomas-
Fiering model. Comparison of the main statistical parameters such as mean, standard 
deviation and skewness has been done for both historical and generated data by the 
proposed models. The results showed that, the generated data series have successfully 
preserved the historical statistical parameters of streamflow. The results showed also 
that, the Thomas-Fiering model has preserved the correlation coefficient between 
consecutive months. Thus, the Thomas-Fiering model was suitable to be used for 
producing inflow scenarios needed for the optimization model and stochastic simulation 
model presented in this thesis.  

Reservoir operation is a complex problem that involves many decision variables, 
multiple objectives as well as considerable risk and uncertainty. In addition, the 
conflicting objectives lead to significant challenges for operators when making 
operational decisions. Reservoir operation for an optimal use of available water during 
prolonged periods of drought has always been a primary concern for water 
management. Using Genetic Algorithm, Pattern Search and Gradient-Based methods, an 
optimization model has been developed for the operation of reservoirs during normal 
periods and drought periods as well. The reservoir Bigge has been presented as case 
study. Two objective functions have been considered, then a weighted approach has 
been adopted to convert the multiple objectives problem into a single objective problem 
so that the user can specify the priorities by giving a specified weight for each function. 
Several scenarios for low inflow periods have been attempted. Each scenario has its 
assumptions for monthly inflow and monthly demand.                                                                                                           
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The evaluation of the model has been carried out using the driest year in the available 
historical records. The monthly inflow of this year has been considered as an input to 
the optimization model. Results of the evaluation demonstrated that, the developed 
model is beneficial. Results also showed that the developed model with its several 
scenarios and the suggested optimization approaches could be helpful for the real life 
operation of the reservoir. 

In reservoir management practices, a simulation model can be used as a valuable 
planning tool to evaluate the impact of changes to the system's configuration or 
operational objectives. The desired generation or release scheduling can be checked 
using inflow forecasting in order to satisfy the entire set of operational constraints. At 
real-time operation stage, a simulation tool can be used to quickly check operational 
alternatives due to emergency events or planning and real-time incongruence. Fuzzy set 
theory plays an important role in dealing with uncertainty when making decisions in 
reservoirs operation. In this thesis, an example of the collective use of stochastic models 
and adaptive network-based fuzzy inference system (ANFIS) for reservoir operation and 
simulation has been presented. ANFIS provides a method for fuzzy modeling to learn 
information about the data set that best allow the associated fuzzy inference system to 
trace the given input/output data. The applicability and capability of the ANFIS model 
have been investigated through the use of a set of data in the Ruhr reservoirs system. 
The historical data are time of year (months), inflow, reservoir storage, SPI index and 
reservoir release. The historical data sets have been divided into two independent sets to 
train and to test the constructed models.  

Two main models have been developed. In both models the set of input include time of 
year, storage, inflow and Standardized Precipitation Index (SPI). The output of the first 
model is the release during the next month; on the other hand, the output of the second 
model is the release of the current month. Predicted release and observed release values 
have been evaluated using several evaluation criteria. Results of the evaluation showed 
that the ANFIS models are accurate and consistent in different subsets. In order to 
demonstrate that the effect of using SPI index as input, two ANFIS models have been 
developed and investigated; one with SPI as input variable, another without. It has been 
found that the model which contains SPI as input variable has consistently superior 
performance compared with the one without SPI index. The results showed that the 
ANFIS models provide reliable reservoir release prediction for the current and the next 
month. Results showed also that the proposed approach could be a good tool for the 
evaluation of release for a specified month and could be also a helpful reference guide 
to the operator during making decisions. 
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Historical records demonstrate that droughts are causing potential impacts. The risk of 
these potential impacts depend on the type of water demand, how these demands are 
met and the corresponding water supplies available to meet these demands. These 
impacts could be categorized into domestical, agricultural, environmental, industrial and 
recreational impacts. The Ruhr basin is exposed to drought hazard rather frequently. 
Results of drought analysis in the Ruhr basin demonstrate that severe and extreme 
events occurred in 1959, 1976, 1996, 2003 and 2007.  

Preparing an efficient drought management plan is the best way to reduce drought 
impacts. These impacts could be continued to several weeks or months even after the 
drought event. In this thesis, a drought management plan is proposed and the procedures 
of this plan have been applied to case studies. The analysis of the case studies showed 
that the implementation of the actions of each stage of drought stages is very important 
to address drought impacts and to prevent reservoir from being drained. Analysis of the 
case studies showed also that the use of a transition probability matrix can be a useful 
guide for decision makers during dry periods. In this study the actions which have been 
qualified only are monthly release of the Bigge reservoir.  
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Deutsche Kurzfassung 

Während der letzten Dekaden hat die Wasserwirtschaft global mit zunehmend 
schwierigeren Herausforderungenin der Wasserbewirtschaftung zu tun. Eine besondere 
Herausforderung stellt der klimatische Trend zu abnehmenden Niederschlägen und 
steigenden Temperaturen dar, der in einigen bereits heute ariden und semi-ariden 
Regionen besonders stark ausgeprägt ist. Der als Klimawandel bezeichnete Prozess stellt 
damit zusätzliche Anforderungen an die Bewirtschaftung der Wasserressourcen dar. 
Generell sollte mit steigenden Temperaturen zwar auch der Wasserkreislauf intensiviert 
werden, was aber nicht nur häufigere und höhere Niederschläge bedeutet, sondern auch 
Perioden längerer Trockenheit einschließt und damit auch das Risiko von Extremen wie 
Wassermangel oder Hochwasser erhöht. Trockenheit wird von vielen Forschern und 
Wasserwirtschaftlern - auch wegen der unscharfen Genese - als eine der komplexesten 
und am wenigsten verstandenen aller Naturgefahren bezeichnet, die zudem weit mehr 
Menschen als alle anderen Gefahren betrifft. Trockenheit ist eine Naturgefahr, die 
zeitweise in fast allen Regionen der Erde auftreten kann. Das Hauptziel dieser Dissertation 
ist es, neben einigen Analysemethoden dem Wasserwirtschaftler, Werkzeuge und 
Techniken für den Umgang mit Trockenheit zur Verfügung zu stellen, die es ermöglichen, 
auf extreme Ereignisse frühezeitig reagieren zu können. Die vorgeschlagene 
Vorgehensweise wurde beispielhaft auf das Einzugsgebiet der Ruhr in Nordrhein-
Westfalen angewendet.  

In dieser Dissertation wurden zunächst Klimaänderungen im Einzugsgebiet der                   
Ruhr anhand von Datenaufzeichnungen über Niederschlag, Temperatur und 
Talsperrenzuflüssen untersucht. Alle untersuchten Zeitreihen wurden homogenisiert und 
die verwendete Methode wurde im Detail beschrieben. Trendanalysen wurden sowohl für 
jährliche als auch für saisonale Zeitreihen mit Hilfe des Mann-Kendall-Tests 
vorgenommen. Dabei wurden Häufigkeitsverteilungen von warmen und kalten Tagen 
sowie von feuchten und sehr feuchten Tagen anhand ihrer Perzentile dargestellt. Die 
Ergebnisse der hydrologischen Analyse zeigten einen signifikanten Anstieg der mittleren 
Temperatur über alle Zeitskalen. Das Auftreten von warmen Tagen sowohl im Winter als 
auch im Sommer hat ebenfalls einen signifikanten Anstieg zu verzeichnen, während die 
Anzahl der kalten Tage eine signifikante Verringerung erfuhr. Insgesamt kann anhand der 
Temperaturaufzeichnungen klar dargelegt werden, dass die Winter wärmer geworden 
sind und die Sommer heißer.  

Die Niederschlagsaufzeichnungen ergaben einen Beleg für einen signifikanten Anstieg der 
Niederschläge im Winter, während für den Sommer keine signifikante Aussage getroffen 
werden konnte. Die Anzahl von aufeinanderfolgend trockenen Tage ging im Winter 
zurück, während im Sommer ein statistisch signifikanter Trend nicht festgestellt werden 
konnte. Die Analyse von feuchten und sehr feuchten Tagen zeigte hauptsächlich ein 
Ansteigen im Winterhalbjahr. Die Zuflüsse zu den Talsperren stiegen ebenfalls nur im 
Winter, während für den Sommer und für das hydrologische Jahr keine signifikanten 
Anstiege gefunden werden konnten. Korrelationsberechnungen zeigten, dass die Zuflüsse 
deutlich stärker mit den Niederschlägen als mit der Temperatur korrelieren, was den 
allgemeinen Erwartungen entspricht.  
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Trockenheit ist eine normale, wiederkehrende Eigenschaft des Klimas und wird als eine 
zeitlich anhaltende, regional ausgeprägte Wasserverfügbarkeit bezeichnet und kann sich 
auf Indikatoren wie Niederschlag, Abfluss oder Grundwasservorrat beziehen. Die 
meteorologische Trockenheit – auch als Niederschlagsdefizit bezeichnet – wurde für das 
Einzugsgebiet der Ruhr anhand des Standardized Precipitation Index (SPI) analysiert. Der 
SPI stellt ein Maß (Index) dar, mit welchem ein zusammenfassendes Urteil über den Grad 
der Trockenheit angegeben werden kann, ohne über eine mögliche Verteilungsfunktion 
der beobachteten Niederschlagssummen für eine Zeitskala Annahmen treffen zu müssen. 
Bei der Anwendung der SPI-Methode auf das Einzugsgebiet der Ruhr zeigte sich, dass 
Trockenperioden zeitlich zufällig verteilt aufgetreten und dass innerhalb der analysierten 
Zeitreihen von 1965 bis 2008 eine Reihe von Trockenperioden aufgetreten sind. Die 
Ergebnisse zeigten auch, dass obwohl die Niederschläge im Winter im Laufe der Jahre 
zugenommen haben, Trockenperioden sowohl im Sommer als auch im Winter auftreten 
und dass die größte Trockenheit der letzen 30 Jahre im Winter aufgetreten ist. 
Trenduntersuchungen des SPI anhand des Mann-Kendall-Tests zeigten, Keine signifikante 
Veränderung.  

Da die Berechnung und Interpretation des SPI insbesondere bei der Analyse mehrerer 
Zeitskalen recht zeitintensiv ist, wurde ein Softwareprogramm mit graphischer 
Eingabemaske (GUI) in der MATLAB-Umgebung (The MathWorks, Inc.) entwickelt. Die 
Hauptziele dieser Software waren eine einfache Oberfläche zu schaffen, um folgende 
Analysen durchführen zu können: a) Berechnung des SPI für gegebene 
Niederschlagszeitreihen, b) Bestimmung, ob die Zeitreihe eine Trockenperiode enthält 
und c) Berechnung und Klassifizierung der Intensität der Trockenheit. Gegenüber dem 
häufig genutzten Programm des US National Mitigation Center ist die Anwendung des hier 
vorgestellten Tools komfortabler.  

Die Vorhersehbarkeit von Trockenheit ist eine wesentliche Voraussetzung für einen 
angemessenen und rechtzeiten Umgang mit solchen Ereignissen. Eine Vorhersage würde 
insbesondere die Talsperrenbewirtschaftung oder mögliche landwirtschaftliche 
Bewässerungsstrategien erheblich vereinfachen und optimieren lassen. In dieser 
Dissertation wurde der SPI als Indikator für eine Vorhersage benutzt. Die Vorhersage 
selbst wurde mit Hilfe eines ARIMA-(Auto Regressive Integrated Moving Average) Modells 
durchgeführt. Die Anpassung des Modells wurde anhand der Korrelationsmethode nach 
Box und Jenkins vorgenommen. Die Auswahl des Modells orientierte sich an den beiden 
Kriterien AIC  und SBC. ARIMA Modelle sind die am meisten eingesetzten Modelle für die 
Vorhersage von Zeitreihen, wobei die erforderliche Stationarität durch Transformationen 
wie Differenzieren oder Logarithmieren erreicht werden kann. Die Überprüfung des so 
entwickelten Vorhersagemodells wurde anhand der vorhandenen Zeitreihe 
vorgenommen. Des SPI-Vorhersagemodell zeigte dabei eine ausreichend gute Anpassung.  
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Die Vorhersage des SPI mittels stochastischer Modelle, wie zum Beispiel mit ARIMA, stellt 
einen komplexen Berechnungsvorgang dar. ARIMA-Modelle sind mittlerweile aber in 
einigen Standard-Statistik-Programmen wie SAS oder SPSS enthaltet werden. In dieser 
Dissertation wurde allerdings ein Softwarepaket entwickelt, welches sowohl ARIMA- 
Modelle als auch saisonale ARIMA-Modelle zur Verfügung stellt und dem Benutzer die 
wesentlichen Arbeitsschritte interaktiv bereitstellt.  

Stochastische Simulationen von hydrologischen Zeitreihen werden seit vielen Jahren 
erfolgreich angewendet. In dieser Dissertation wurde die Generierung von 
Zuflusszeitreihen für vier Talsperren im Einzugsgebiet der Ruhr auf Basis von 
Monatswerten mit Hilfe der Thomas-Fiering Modells und des Monte Carlo-Modells 
durchgeführt. Dabei wurde ein neuer Ansatz für die Erhaltung der statistischen Parameter 
bei der Zufallszahlengenerierung verwendet. Damit konnten neben den Hauptmomenten 
der Verteilungsfunktion auch die Korrelation zwischen aufeinander folgenden Monaten 
erhalten werden, was unter anderem für die Analyse von Summenwerten und die 
Optimierung der Talsperrenbewirtschaftung unerlässlich ist.  

Die Bewirtschaftung von Talsperren ist ein komplexer Prozess, welcher neben 
unterschiedlichen Zielen, eine Reihe von Randbedingungen und Unsicherheiten zu 
berücksichtigen hat. In Trockenzeiten stellt die variable Bewirtschaftung von Talsperren 
häufig die einzige Option für Handlungsalternativen dar. Für die Ermittlung einer fiktiven, 
aber möglichen optimalen Bewirtschaftung und für unterschiedliche Szenarien von 
Trockenperioden und Bedarfssituationen wurden die Optimierung Methoden verwendet 
Genetic Algorithm, Patterns Search und Gradient-Based und auf die Biggetalsperre 
beispielhaft angewendet. Die Ziele wurden in einer gewichteten Funktion 
zusammengeführt und anschließend unter Berücksichtigung der Randbedingungen einer 
Optimierung zugeführt. Das Ergebnis kann als Referenz für die tatsächliche 
Bewirtschaftung verwendet werden, bei der die Entscheidung unter unsicherer Prognose 
über den weiteren Verlauf der Trockenheit getroffen werden muss.  

Für die Talsperrenbewirtschaftung kann ein Simulationsmodell ein sehr hilfreiches 
Werkzeug für die Entscheidungsfindung sein. Der beabsichtigte Abgabeplan kann zum 
Beispiel mit Hilfe der Vorhersagemodelle der Monatszuflüsse abgesichert werden. Ebenso 
lassen sich unterschiedliche Abgabestrategien zeitnah vergleichen. In dieser Dissertation 
wurde die oben beschriebene stochastische Modellierung mit einem Fuzzy-Logic Ansatz 
kombiniert. Dieser Ansatz basiert auf adaptiven Netzwerken und wird als ANFIS 
bezeichnet. Die Anwendung wird wiederum anhand der Biggetalsperre untersucht. Als 
Eingabe wurden der Monat, der Zufluss und die Speicherfüllung sowie der SPI-Index 
verwendet. Als Entscheidung wurde die monatliche Abgabe definiert. Für die Anpassung 
wurden die Zeitreihen in zwei Teile getrennt und als Trainings- und Testdatensatz 
benutzt.  

Zwei unterschiedliche Modelle wurden dabei entwickelt einmal für die Abgabe im 
laufenden und zum anderen für die Abgabe in den kommenden Monaten. Die Modelle 
wurden anhand der historischen Aufzeichnungen validiert. Das so entwickelte Modell war 
gut in der Lage, die historische Bewirtschaftung nachzuvollziehen. Zudem wurden die 
Modelle sowohl mit, als auch ohne SPI Index entwickelt. Es konnte gezeigt werden, dass 
die Nutzung des SPI-Index zu wesentlich realistischeren Entscheidungen führt.  



 

 
xiv 

Historische Aufzeichnungen zeigen, dass Trockenperioden einen erheblichen Einfluss auf 
das Einzugsgebiet und die Talsperrenbewirtschaftung haben. Das Risiko von möglichen 
negativen Einflüsse steht im Zusammenhang mit den unterschiedlichen 
Nutzungsansprüchen. Im Ruhreinzugsgebiet sind die Hauptnutzungen die Trink- und 
Brauchwasserversorgung, die Erfüllung von Umweltqualitätsnormen im Fließgewässer, 
die Befriedigung von Ansprüchen aus touristischen Aktivitäten und eingeschränkt die 
Landwirtschaft. Die Ruhr war im Untersuchungszeitraum relativ häufig von 
Trockenperioden betroffen. Extreme Trockenperioden traten 1959, 1976, 1996, 2003 und 
2007 auf.  

Die Anfertigung und Vorhaltung von Bewirtschaftungs- und Handlungsoptionen im Falle 
einer Trockenheit ist wichtig für Entscheidungen über die Talsperrenbewirtschaftung. In 
dieser Arbeit wurden unterschiedliche Teilaspekte der Bewirtschaftung von Talsperren im 
Falle von Trockenheit aufgezeigt und beispielhaft für die Jahre 1976, 1996 und 2003 in 
einem Entscheidungs-Unterstützungs-Modell zusammengeführt. Es konnte gezeigt 
werden, dass der aufgestellte modellhafte Bewirtschaftungsplan die damaligen 
Expertenentscheidungen untermauert.  
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Chapter 1 

Introduction 
 

1.1 General 

Water resources play an important role in most of human’s activities. During the last 
decades water resources  managers are facing severe challenges all over the world and 
the trends of increasing temperatures and decreasing precipitation intensify this 
situation. Climate change is a major global challenge facing water resources managers. 
Climate change permeates all aspects of our lives, from the food we eat, to the water we 
drink, to the places we can live. Rising global temperatures will lead to an 
intensification of the hydrological cycle, resulting in dryer dry seasons and wetter rainy 
seasons, and subsequently heightened risks of more extreme, longer and frequent floods 
and droughts. 

Drought has been a major concern of mankind for centuries. It is considered by many to 
be the most complex but least understood of all natural hazards, affecting more people 
than any other hazard. Drought is a complex phenomenon and it is generally viewed as 
a sustainable and regionally extensive occurrence of below-average natural water 
availability either in the form of precipitation, river runoff or groundwater. Drought may 
also be referred as an interaction and combination between physical processes and 
human activities (Changnon and Easterling, 1989). Such processes are extremely 
stochastic in nature and, thus, problematical for reliable prediction. However, 
cumulative experience from scientific investigations of recent decades is indicating that 
given a certain period of time in a given locale, the occurrence of an uncertain event 
such as drought, becomes a certainty.   

Drought is considered as a fruitful field for research in several science disciplines. 
Drought and its consequences must be recognized and estimated in advance for all 
planning and management efforts in water resources. Comprehensive planning for 
developing optimal strategies to deal with drought situations is becoming an 
increasingly important subject of concern to researchers and water manager in order to 
protect the affected community from the adverse effects of drought. Drought has direct 
impacts on municipal water resources management, thus water resources decision 
makers must be prepared to anticipate such situations and accept the challenges and 
complications that are involved in dealing with drought related problems. 
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Drought monitoring has much to offer to water decision making. Drought monitoring, 
the ability to assess the current conditions and predict future drought development are a 
key to any water resources management plan during drought periods. The main purpose 
of any drought monitoring system is to identify various drought indices to provide 
information to resources manager and system operators. The indicators that are used to 
derive drought indices are precipitation, snow pack, streamflow and reservoir storage. A 
drought index value is typically a single number, far more useful than raw data for 
decision making (NDMC, 2006). Although none of the major indices is inherently 
superior to the rest in all circumstances, some indices are better suited than others for 
certain uses. Some of the widely used drought indices are the Palmer Drought Severity 
Index (PDSI), Crop Moisture Index (CMI), Standardized Precipitation Index (SPI) and 
Surface Water Supply Index (SWSI). 

Drought forecasting plays an important role in the mitigation of impacts of drought on 
water resources systems. Traditionally, statistical models based on time series methods 
have been used for hydrologic drought forecasting (Kim and Valde´s, 2003). One of the 
basic deficiencies in mitigating the effects of drought is the inability to forecast drought 
conditions reasonably well in advance by either a few months or seasons. Accurate 
drought forecasts would enable optimal operation of irrigation systems. Panu (Panu and 
Sharma, 2002) reported that the ARMA models, pattern recognition techniques, 
physically based models using Palmer drought severity index (PDSI), standardized 
precipitation index (SPI), a moisture adequacy index involving Markov chains, or the 
notion of conditional probability, seems to offer a potential to develop reliable and 
robust forecasts.  

Reservoir operation, especially during drought periods, is a complex problem that 
involves many decision variables, multiple objectives as well as considerable risk and 
uncertainty. In addition, the conflicting objectives lead to significant challenges for 
operators when making operational decisions. Traditionally, reservoir operation is based 
on heuristic procedures, embracing rule curves and subjective judgments by the 
operator. This provides general operation strategies for reservoir releases according to 
the current reservoir level, hydrological conditions, water demands and the time of the 
year (Hakimi-Asiabar et al.). Preparing efficient drought management plan is the best 
way to reduce drought impacts which could be continued to several weeks or months 
even after drought events. Simulation models become the most commonly used method 
for monitoring, planning and managing drought. Simulation models can be used for 
evaluating drought plans before a drought’s onset. 
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1.2 Description of the Study Area 

The River Ruhr catchment area covers 4485 km² and forms the largest reservoir system 
in Germany with a total storage capacity of 464,1 million m³ (Morgenschweis et al., 
2003). The mean annual runoff at the mouth of the Ruhr is 2.4 Billion m3. The Ruhr 
basin contains 16 hydroelectric power plants and 110 pumping stations. The name of 
this region was derived from the name of the river Ruhr. The Ruhr River Association 
(Ruhrverband) is the manager of this reservoir system. The major tasks of the Ruhr 
Association are: to provide drinking water; and to supply local industry with process 
water within the so-called Ruhr district, which is one of the most densely populated and 
industrialized areas in Europe (Morgenschweis et al., 2003). As shown in figure 1.1, 
about 50 % of the withdrawal are exported to neighboring catchments.  

It is due to this highly densely populated area (about 2.13 million inhabitants) that water 
consumption per unit of area is approximately seven times higher than the average 
consumption in the Federal Republic of Germany (Khadr et al., 2009). Special measures 
are therefore necessary in order to guarantee the supply of drinking water and the 
disposal of wastewater (Morgenschweis et al., 2003). Maniak (Maniak and Renz, 1977) 
reported that in 1977, 70 % of the water demand of the Rhenish-Westphalian industrial 
zone was covered by the Ruhr and this percentage increased in dry periods. In times of 
extreme droughts it increases up to the 1.6 fold of the annual average.  

 

  

Figure 1.1: Water management system in the Ruhr drainage basin.                                 
Source (after (Brudy-Zippelius, 2003)). 
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1.3 Objectives and Organization of the Dissertation 

The overall objective of this research effort is to evolve appropriate and 
interdisciplinary tools and techniques for drought characterization and for enhanced 
management of water resources systems during drought periods. The developing tools 
will have four major: 1) Climate change; 2) Drought monitoring and forecasting; 3) 
Reservoir operation during drought and 4) drought management plan. The developed 
tools are demonstrated by an application to the Ruhr river basin as case study. 

The thesis is structured into 11 chapters, a reference list and annexes. 

In Chapter 1 the introductory background on the main theme, the research, study area 
and objectives of the thesis. The various chapters that follow systematically to analyze 
different issues on the basis of these objectives. 

In Chapter 2, an investigation of climate change in the Ruhr River basin is presented 
using a set of measured data containing precipitation, temperature and inflow records. 
All data are subjected to a homogenization procedure; the data homogenization is 
described in detail. Yearly and seasonal trend analyses are performed on all data series 
using the Mann-Kendall test. The frequency distributions of warm & cold days and very 
& extremely wet days are also examined using percentile indices. 

Chapter 3 deals with the temporal and spatial characteristics of meteorological drought 
in the Ruhr river basin using the Standardized Precipitation Index (SPI). The 
Standardized Precipitation Index aims to provide a concise overall picture of drought, 
regardless to the actual probability distribution of the observed cumulative amounts of 
rainfall for a given time scale. 

Chapter 4 deals with drought forecasting, which is an essential tool for implementing 
appropriate mitigation measures in order to reduce negative impacts of drought on water 
resources systems. The capability of the Auto Regressive Integrated Moving Average 
(ARIMA) model in drought forecasting is investigated using the correlation methods of 
Box and Jenkins and the AIC and SBC structure selection criteria. 

Chapter 5 deals with the stochastic simulation of hydrologic time series which has been 
widely used for solving various problems associated with the planning and management 
and operational purposes. The stochastic streamflow generation model of Thomas-
Fiering and the Monte Carlo simulation model are applied to synthetically generate 
monthly inflow scenarios for four reservoirs in the Ruhr river basin. These scenarios are 
then used in the optimization and simulation models of reservoir operation. 
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In chapter 6, an optimization model is proposed for reservoir operation during 
prolonged periods of drought using Genetic Algorithm, Pattern Search and Gradient-
based method. The Bigge reservoir is presented as case study. Several scenarios for low 
inflow period are attempted. Each scenario has its assumptions for monthly inflow and 
monthly demand. Evaluation of the developed model has been carried out using the 
driest year in the available historical records.                                                                                                          

In chapter 7, an example of the collective use of stochastic models and Adaptive Neural 
Network-based Fuzzy Inference System (ANFIS) for reservoir operation and simulation 
is presented. The applicability and capability of the ANFIS model are investigated by 
the use of a set of data in the Ruhr reservoirs system, Germany. The historical data are 
inflow, reservoir storage, the SPI index and reservoir release. The historical data are 
divided into two independent sets, one set to train and the other to test the constructed 
models. Two main models are developed. In both models the set of input includes the 
time of the year, storage, inflow and Standardized Precipitation Index (SPI). The output 
of the first model is the release during the next month; on the other hand, the output of 
the second model is the release of the current month. Predicted release values and 
observed release values are evaluated using several common evaluation criteria.  

In chapter 8, a drought management plan is proposed and the procedures of this plan are 
applied to the case study.  

Chapter 9 presents summaries and conclusions of the research. It also outlines 
recommendations for further research. 

The Appendices provide supplementary information to the materials presented above. 
Appendix A present a graphical user interface (GUI) to monitor and analyze 
meteorological drought using the Standardized Precipitation Index (SPI). Appendix B 
presents software with a friendly graphical user interface (GUI) for meteorological 
drought forecasting. The developed GUI contains ARIMA and multiplicative Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model.  

 



 

  
 

 

 
 

 

 

 

 

 

 



 

  
 

Chapter 2 

Study of Climate Change in the Ruhr River Basin Concerning 
the Occurrence of Drought    

2.1 Climate is changing 

Climate change is a real and growing problem for the world. It is a complex 
phenomenon that alters the whole environment in which humans live. Global climate 
change will have profound implications for the quality of life of hundreds of millions of 
people (Hübler et al., 2008). In the last few years, climate change has become one of the 
most heavily researched subjects in science. There is no doubt that the increase in mean 
global surface temperature by 0.6 ± 0.2 0C over the 20th century (IPCC, 2001)1

Changes in climate variability and extremes of weather have received increased 
attention in the last few years. Understanding changes in climate variability and climate 
extremes is made difficult by interactions between the changes in the mean and 
variability (IPCC, 2001). Such interactions vary from one variable to another one 
depending on the statistical distribution of these variables. For example, the distribution 
of temperatures often resembles a normal distribution where non-stationarity of the 
distribution implies changes in the mean or variance. In such a distribution, an increase 
in the mean leads to new record high temperatures (Figure 2.1.a), but a change in the 
mean does not imply any change in variability.  

 is not 
only a result of climate variability but of enhanced emission of greenhouse gases due to 
human activities (Menzel and Bürger, 2002). From the recent Intergovernmental Panel 
on Climate Change fourth assessment report (IPCC, 2007), little doubt remains that the 
climate system has warmed in recent decade (Steele-Dunne et al., 2008). 

Figure 2.1.b shows that the range between the hottest and coldest temperatures does not 
change. An increase in variability without a change in the mean implies an increase in 
the probability of both hot and cold extremes as well as the absolute value of the 
extremes (Figure 2.1.b). Increases in both the mean and the variability are also possible 
(Figure 2.1.c), which affects the probability of hot and cold extremes, with more 
frequent hot events with more extreme high temperatures and fewer cold events. Other 
combinations of changes in both mean and variability would lead to different results. 

  

                                                           
 

1 Report of the Intergovernmental Panel on Climate Change 
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Figure 2.1: Schematic showing the effect on extreme temperatures 

(a) the mean temperature increases, (b) the variance increases  and (c) when both the 
mean and variance increase for a normal distribution of temperature.                                                  
(Source: IPCC Third Assessment Report: http://www.grida.no/climate/ipcc_tar/wg1/088.htm) 
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2.2 Background 

The average climate experienced over long periods, such as temperature, wind and 
rainfall patterns, has changed many times in response to natural variability and natural 
causes such as volcanic activity. However, according to the Intergovernmental Panel on 
Climate Change (IPCC, 2001), since the industrial revolution, anthropogenic causes are 
playing an important role primarily due to the combustion of fossil fuels, agriculture 
and land-use changes (e.g. deforestation), which has increased the atmospheric 
concentration of aerosols and greenhouse gases. New evidences suggest that most of the 
warming observed over the last 50 years is attributable to human activities 

Historical records show that climate has been changing on different time scales. During 
the last century, a global steady warming trend occurred from the late 1890s through the 
1940s followed by a minor cooling trend in the late 1940s and the 1950s (Leemans and 
Cmmer, 1991). Precipitation plays an important role in the global energy and water 
cycle. Exact information about precipitation amounts reaching the land surface is of 
special importance for fresh water assessment and management related to agriculture 
land use, hydrology and risk reduction of flood and drought (Schneider et al., 2008). 

The importance of assessing trends in weather extremes is often emphasized. The 
principal reason is that extreme weather conditions related to temperature, precipitation, 
storms or other aspects of climate, can cause loss of life, severe damage and large 
economic and societal losses (Moberg, 2006). Using results from a number of 
workshops held in data-sparse regions and high-quality station data supplied by 
numerous scientists world wide, seasonal and annual indices for the period 1951–2003 
were gridded (Alexander et al., 2006). Widespread significant increase in temperature 
extremes for the period 1951–2003, especially those related to daily minimum 
temperatures is evident that warming is apparent in all seasons. Precipitation changes 
have been much less coherent than temperature changes, but annual precipitation has 
shown a widespread significant increase.  

Alexander (Alexander, 2005) studied the variability of  temperature and precipitation in 
the European alps since 1500, unlike temperature, precipitation variation over the 
European Alps showed no significant low-frequency trend and increased uncertainty 
back to 1500.  Results showed that the years 1540, 1921 and 2003 were very likely the 
driest in the context of the last 500 years. Groisman et al (Groisman, 2005) found 
disproportionate changes during the past decades in heavy and very heavy precipitation 
compared to the change in the annual and/or seasonal precipitation. Their results 
indicate an increasing probability of intense precipitation. 
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Moberg (Moberg and Jonesa, 2005) reported that, there are  some coherent patterns of 
climate changes in parts of Europe over the 20th century. The most outstanding feature 
for precipitation is that winter precipitation increased significantly at several stations, 
both regarding the mean precipitation intensity and moderately strong events; at the 
same time, the length of dry spells in winters also generally increased. The length of dry 
periods also increased (insignificantly) in summer, but there are few significant changes 
in summer precipitation amounts. Warming trends dominate in the study region over the 
20th century as a whole, both in winter and summer and both for the cold and warm 
tails of the temperature distribution. When analyzing the two century halves separately, 
there is evidence for markedly different behavior in the warm and cold tails of the 
temperature distribution and also strong differences between winter and summer. 
Winter temperatures warmed in the second half of the century, with the largest changes 
in the cold tail for daily minimum temperatures. There is much less evidence for 
widespread warming in summer in the same period.  

Hundexha  (Hundexha and Bardossy, 2005) investigated the evolution of daily extreme 
precipitation and temperature across Western Germany from 1958 to 2001. The results 
obtained indicated that both the daily minimum and maximum extreme temperatures 
have increased over the investigation period, with the degree of change showing 
seasonal variability. On an annual basis, the change in the daily minimum extreme 
temperature was found to be greater than that of the daily maximum extreme 
temperature. The daily extreme heavy precipitation has shown increasing trends both in 
magnitude and frequency of occurrence in all seasons except summer, where it showed 
the opposite trend. Beck  (Beck et al., 2004) studied the extreme daily precipitation 
events and droughts in Germany. Results gave an evidence of an increase in both 
frequency and intensity of extreme precipitation events in the 20th century. 

Morgenschweis (Morgenschweis et al., 2007) reported that the Ruhr River Association 
analyzed long time series (1927-2005) of calculated areal precipitation with the aid of 
statistical methods to identify trends. Results showed that there is an increase in the 
winter precipitation and no trend was noted for the summer precipitation. Youmin Chen 
(Chen and Buerger) reported that, the mean precipitation in the Ruhr basin will increase, 
but its frequency will slightly decrease and its intensity will significantly increase. 

The main objective of this chapter is to study the change of climate in the Ruhr river 
basin. A set of data, containing precipitation, temperature and inflow records, has been 
used to investigate to perform the required hydrological analysis.   



2.3 Data and Methodology                                                                                                                                                              11                                     

  
 

2.3 Data and Methodology 

2.3.1. Data Collection 

The database includes 13 stations with mean daily temperature and/or precipitation 
series starting at 1961 has been established. The data include 4 stations with mean daily 
inflow series. The inflow time series present the inflow to the main reservoirs in the 
Ruhr river basin namely, Bigge reservoir, Moehne reservoir, Henne reservoir and Sorpe 
reservoir. Source of data is the Ruhrverband (Ruhr River Association). Figure 2.2 shows 
the location of each station used in the study. All time series were checked to find out 
all missing data. Table 2.1 and table 2.2 contain information about stations, covered 
period and the fraction of missing data. 

2.3.2 Analysis of Hydrological Time Series  

Records of rainfall and river flow form suitable data sequence can be studied by the 
methods of time series analysis. The tools of this specialized topic in mathematical 
statistics provide valuable assistance to engineers in solving problems involving the 
frequency of occurrences of major hydrological events (Shaw, 1994). In particular, 
when only a relatively short data record is available, the formulation of a time series 
model of those data can enable long sequences of comparable data to be generated to 
provide the basis for better estimates of hydrological behavior. In addition, the time 
series analysis of rainfall, evaporation, runoff and other sequential records of 
hydrological variables can assist in the evaluation of any irregularities in those records. 
Cross-correlation of different hydrological time series may help in the understanding of 
hydrological processes.  

Tasks of time series analysis include:  

(1) Identification of the several components of a time series,  

(2) Mathematical description (modeling) of different components identified.  

If a hydrological time series is represented by X1, X2, X3, ..., Xt, ..., then symbolically, 
one can represent the structure of the Xt by: 

𝑋𝑡  ⟺  [𝑇𝑡,𝑃𝑡 ,𝐸𝑡]. 

Where Tt is the trend component, Pt is the periodic component and Et is the stochastic 
component (for more details see chapter 5). The first two components are specific 
deterministic features and contain no element of randomness. The third, stochastic, 
component contains both random fluctuations and the self-correlated persistence within 
the data series. These three components form a basic model for time series analysis. 
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 2.3.3 Trend Component  

This may be caused by long-term climatic change or, in river flow, by gradual changes 
in a catchment's response to rainfall owing to land use changes. Sometimes, the 
presence of a trend cannot be readily identified.  

2.3.3.1 Methods of Trend Identification:  

Different statistical methods, both nonparametric tests and parametric tests, for 
identifying trend in time-series are available in the literature. Two methods are 
commonly used for identifying the trend in the hydrologic time series. These two 
methods are The Mann-Kendall test and the Linear Regression Method. In this study the 
Mann-Kendall test has been applied to identify the trend in the time series. This method 
will be discussed briefly in the following section.  

(1) Mann-Kendall Test  

The Mann–Kendall nonparametric test is an effective tool for analyzing change trend. It 
is one of the most common non-parametric rank-based statistical tests which are used in 
hydrological studies (Yue et al., 2002). Mann–Kendall test is simple, robust and can 
cope with missing values and values below a detection limit. To identify the change in 
temperature, precipitation and streamflow for several time scales (year/season/month), 
the probabilistic parameter has been studied at 0.05, 0.10 and 0.20 field significance 
level (Storch and Zwiers, 2001). 

The Mann-Kendall test is based on the test statistic S defined as follows:  

𝑆 = ∑ ∑ 𝑠𝑔𝑛�𝑥𝑖 − 𝑥𝑗�𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                                     (2.1) 

Where xj are the sequential data values, n is the length of the data set and  

𝑠𝑔𝑛(𝜃) = �
1   𝑖𝑓 𝜃 > 0 
0   𝑖𝑓 𝜃 = 0  

−1   𝑖𝑓 𝜃 < 0     
�                                                                        (2.2) 

Mann (1945) and Kendall (1975) have documented that when, the statistic S is 
approximately normally distributed with the mean and the variance as follows:  

𝐸(𝑆) = 0                                                                                                           (2.3) 

𝑉(𝑆) =
𝒏(𝒏−𝟏)(𝟐𝒏+𝟓)−∑ 𝒕𝒑

𝒒
𝒑=𝟏 �𝒕𝒑−𝟏��𝟐𝒕𝒑+𝟓�

𝟏𝟖
                                                   (2.4) 

Where n = number of data, 

tp= the number of ties for the pth value (number of data in the pth group), 

q = the number of tied values (number of groups with equal values/ties).  

The standardized Mann-Kendall test statistic ZMK is computed by: 
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𝑍𝑀𝐾 =

⎩
⎨

⎧
𝑆−1

�𝑉𝑎𝑟(𝑠)
       𝑆 > 0

0                  𝑆 = 0
𝑆+1

�𝑉𝑎𝑟(𝑠)
      𝑆 < 0

�                                                                           (2.5) 

The standardized MK statistic Z follows the standard normal distribution with mean of 
zero and variance of one. The hypothesis that there has not trend will be rejected if 

|𝑍𝑀𝐾| > 𝑍1−∝
2�

                                                                                      (2.6) 

Where 𝑍1−∝
2�
 is the value read from a standard normal distribution table with α being 

the significance level of the test. 

2.3.4 Missing Data Calculation 

In the used data series there are only missing values in precipitation records. The 
calculation of the missing data is performed for the daily time series displaying gaps. 
The procedure of calculation considers the linear regression between the series with 
gaps (Y) and the reference series (X) (Santos and Henriques, 1999; Simolo et al., 2009). 
The correlation coefficient between each two stations is calculated. Then for a data 
series Y, the higher correlation coefficient is selected, then the corresponding data series 
X was selected and finally the missing values in the Y series are calculated. Calculations 
involved series with larger number of available data where the linear model can give 
good estimates of statistical parameters (mean and variance in the extended series). The 
equation used to calculate the missing values is: 
 

Yi = B0 + B1Xi                                                                                                     (2.7) 

Where the regression parameters B0 and B1were calculated by the least squares method 
as follow: 

𝐵1 =
(∑𝑋𝑌)

𝑛� − 𝑋� 𝑌�

𝑆𝑥2
                                                                                             (2.8)   

 

𝐵0 = 𝑌� − 𝐵1𝑋�                                                                                                  (2.9)   
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Table 2.1: Names of stations, covered period and proportion of missing data of the time series of temperature and precipitation records 

Station 
Ref. No. on 
figure 2.2 

Temperature 
covered period 

Temperature missing 
data (%) 

Precipitation 
covered period 

Precipitation 
missing data (%) 

Biggetalsperre 1 1961-1995 0 1960-2007 8.31 

Mohnetalsperre 2 1961-1995 0 1960-2007 8.22 

Sorpetalsperre 3 1961-2007 0 1960-2007 8.32 

Hennetalsperre 4 1961-1995 0 1960-2007 8.03 

Listertalsperre 6 1961-1995 0 1960-2007 0 

Drolshagen_Bleche 8 1961-1995 0 1960-2007 0.28 

Willertshagen_Volmehof 9 1961-1995 0 1960-2007 0.28 

Ennepetalsperre 14 1961-1995 0 1960-2007 13.68 

Neuhaus 23 1961-1995 0 1960-2007 0.46 

Essen_Kettwig 27 1961-1995 0 1960-2007 0.28 
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Station 
Ref. No. on 
figure 2.2 

Temperature 
covered period 

Temperature missing 
data (%) 

Precipitation 
covered period 

Precipitation 
missing data (%) 

Essen_Steele 30 1961-1995 0 1960-2007 0.82 

Hagen 35 1961-1995 0 1960-2007 0.28 

Versetalsperre 5 1961-2007 0 1960-2007 0.28 

 

 

Table 2.2: Names of stations, covered period and proportion of missing data of the time series of inflow records 

Station Inflow covered period Inflow missing data (%) 

Biggetalsperre 1967-2008 0 

Möhnetalsperre 1967-2008 0 

Hennetalsperre 1967-2008 0 

Sorpetalsperre 1967-2008 0 
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Figure 2.2: Location of stations used in the study (Temperature and Precipitation) 

Source: http://www.talsperrenleitzentrale-ruhr.de/daten/internet/veroeffentlichungen/ruhrwassermenge_2006.pdf 
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2.3.5 Homogeneity testing 

Climate data can be used to generate a enormous deal of information about the 
atmospheric environment which affects all aspects of human endeavor (Aguilar et al., 
1998). Many factors affect on the quality and reliability of the data obtained from the 
meteorological stations. Time series of precipitation are influenced by the location of 
the gauge, the tool and method used and the observation quality and the time series 
might gain inhomogeneous structure (Dikbas et al., 2010). For this reason, the reliability 
and quality of the data to be used in the climate analysis be tested statistically. When the 
time series have a homogenous structure, tt can be stated that the observation time series 
is a reliable climatic series.  

A homogeneous climate time series can be defined as one where variations are caused 
only by variations in weather and climate (Keiser and Grieffiths, 1997). If a 
precipitation or a temperature time series is homogeneous, all variability and changes of 
the series can be considered due to the atmospheric processes. 

Most long-term climatic time series have been affected by a number of non-climatic 
factors that make these data unrepresentative of the actual climate variation occurring 
over time (Aguilar et al., 1998). These factors include changes in instruments, observing 
practices, station locations, formulae used to calculate means and station environment. 
Some changes cause sharp discontinuities while other changes, particularly change in 
the environment around the station, can cause gradual biases in the data. All of these 
inhomogeneities can bias a time series and lead to misinterpretations of the studied 
climate. It is important, therefore, to remove the inhomogeneities or at least determine 
the possible error they may cause. 

There exist many methodologies for detecting homogeneity of climatological time 
series. These methods can be grouped into two categories, direct or indirect methods, 
depending on the availability or use of station history files known as metadata. Direct 
methods use metadata and indirect methods use a variety of statistical and graphical 
techniques to determine inhomogeneities (Peterson et al., 1998). The indirect 
homogeneity tests of a climatic time series could be classified into two groups; absolute 
tests and relative tests. The absolute tests depend on the use of a single station’s records, 
whereas relative tests depend on the use of neighboring stations’ data that are 
supposedly homogeneous (Karabork et al., 2007). Some relative homogeneity tests 
which do not require homogeneous reference series have become available (Albert, 
2004; Szentimrey, 1999). 

The main purpose of this section is to determine a reliable climatic series for the climate 
analysis which is the target of this chapter. First, the missing values of the 
meteorological time series are completed (see section 2.3.4) , then the homogeneity will 
be tested. In this study, the two groups of the indirect method are applied to all data 
series to test its homogeneity. 

http://www.wordhippo.com/what-is/another-word-for/enormous.html�
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2.3.5.1 Absolute Homogeneity Tests 

The most common tests which could be used to test the departure of homogeneity of a  
given time series are the Standard Normal Homogeneity Test (SNHT) for a single break 
(Alexandersson, 1986), the Buishand range test (Buishand, 1982), the Pettitt test (Pettitt, 
1979) and the Von Neumann ratio test (Von Neumann, 1941).  All four tests suppose 
under the null hypothesis that the annual values Xi of the testing variable X are 
independent and identically distributed. Under the alternative hypothesis, the SNHT, the 
Buishand range and the Pettitt test assume that a step-wise shift in the mean -a break- is 
present (Yesilirmak et al., 2009). The fourth test, the Von Neumann ratio test, assumes 
under the alternative hypothesis that the series is not randomly distributed. This test is 
not location specific, which means that it does not give information on the year of the 
break. In this study, the Buishand range test and Von Neumann ratio test have been 
applied to all time series for both precipitation and temperature. 

2.3.5.1.1 Buishand Range Test: 

The Buishand Range test can be used for testing homogeneity of the data (Buishand, 
1982). The test is based on the rescaled adjusted partial sums for a time series Xi as 
follow: 

𝑆𝑘 
∗ = ∑ (𝑋𝑖 −  𝑋� )2𝑘

𝑖          ,   k=1, 2,……….., N     , 𝑆0 
∗ = 0                         (2.10) 

When a time series is homogeneous the values of 𝑆𝑘∗ will fluctuate around zero, because 
no systematic deviations of the Xi values with respect to their mean will appear. If a 
break is present in year K, then 𝑆𝑘 

∗  reaches a maximum (negative shift) or minimum 
(positive shift) near the year k = K. Rescaled adjusted partial sums are obtained by 
dividing the  𝑆𝑘 

∗  by the sample standard deviation: 

  𝑆𝑘 
∗∗ =  𝑆𝑘 

∗

𝑆𝑑�             ,   k=1, 2,……….., N                                                   (2.11) 

Where 𝑆𝑑 is the standard deviation, 
 

𝑆𝑑 =  ∑ (𝑋𝑖 −  𝑋�)2 𝑁⁄𝑁
𝑖                                                                                (2.12) 

LA statistic which is sensitive to departures from homogeneity is: 
 

𝑄 =  | 𝑆𝑘 
∗∗|   0≪𝑘≪𝑁

𝑚𝑎𝑥                                                                                       (2.13) 

High values of Q are an indication for a change in level. Critical values for the  test-
statistic can be found in (Buishand, 1982). 
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Figure 2.3 and figure 2.4 present the results of Buishand Range Test for both 
precipitation and temperature time series for all stations which have been used in this 
study. The results indicate that the precipitation time series at 3 stations are not 
homogeneous since the test statistic exceeds the critical value of 1.52 at the 95 % 
confidence level (Figure 2.3.a). On the other hand the results of the Buishand Range 
Test for temperature and inflow time series show that all stations have homogenous data 
series (figure 2.3.b and figure 2.4).    

 

Figure 2.3.a:  Results of the Buishand Range Test – Precipitation data series                       
(1961 - 2007). 

 

Figure 2.3.b:  Results of the Buishand Range Test – Inflow data series (1967 - 2007). 
 

 

    Figure 2.4: Results of the Buishand Range Test – Temperature data series                     
(1961 - 2007). 
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2.3.5.1.2 Von Neumann ratio test: 

The well-known Von Neumann ratio is defined as: 
𝑁𝑉 = ∑ (𝑋𝑖 −  𝑋𝑖+1 )2𝑛−1

𝑖=1 ∑ (𝑋𝑖 −  𝑋� )2𝑛
𝑖=1⁄                                            (2.14) 

In which 𝑿� stands for the average of the Xi's. If the sample contains a break, then the 
value of Nv tends to be lower than this expected value (Buishand, 1982). If the sample 
has rapid variations in the mean, then values of Nv may rise above 2 (Sahin and 
Cigizoglu, 2010). Only this test does not give information on the year of break. The 
results of the Von Neumann ratio test (figures 2.5 and 2.6) indicate that the precipitation 
time series at 2 stations are not homogeneous since the values  of Nv are lower than the 
critical level. 

 

Figure 2.5.a: Results of Von Neumann ratio test – Precipitation data series (1961-2007)  

 

Figure 2.5.b: Results of Von Neumann ratio test – Inflow data series (1967 - 2007)  

 

Figure 2.6: Results of Von Neumann ratio test – Temperature data series (1961 - 2007) 
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2.3.5.2 Relative Homogeneity Tests 

In this study, the relative homogeneity of precipitation has been examined using the 
double mass curve test which is a commonly used data analysis approach. The theory 
behind double mass curves is that by plotting the cumulation of two quantities, the data 
will plot as a straight line and the slope of this line will represent the constant of 
proportionality between the two quantities (Albert, 2004). A break in slope indicates a 
change in the constant of proportionality (Reddy, 2005). The main purpose of these 
curves is to check the consistency of data over time and to identify changes in trends by 
changes in the slope as shown in figure 2.7.  

For example, let Aand B are two neighboring stations in the same region. Suppose that 
in a specific year the amount of precipitation at station A lies above the historical 
average. Then it is expected that the annual amount of B is also higher than the 
historical mean. Because of this correlation it is possible that in a specific region the 
number of significant values is much larger than the expected number under the null 
hypothesis. Figure 2.7 presents a sample of the double mass curve for the precipitation 
data series. The X axis presents the reference station (Listertalsperre), Y axis presents 
other stations (Biggetalsperre, Hennetalsperre and Drolshagen-Bleche) and Z axis 
presents the time in years. Both of Hennetalsperre and Drolshagen-Bleche provided 
significant break in slope as Figure 2.7.  

The time at which a change occurred is the most significant information that obtained 
when a break in slope is provided. Once the date in which the change occurred is 
known, one can study the historical record of the gauging station to see if any changes 
or sampling methods have been documented. To compare the distributions of the data 
series for all stations, the empirical cumulative distribution function plots of the data 
have been plotted. Figure 2.8 presents a sample of the distributions of the data series of 
Biggetalsperre, Hennetalsperre and Listertalsperre stations. It is notable from Figure 2.8 
that the station Hennetalsperre has different distribution. The same approach has been 
applied to the temperature data series and results showed that all station did not provide 
any break in slope as shown in figure 2.9. The cumulative distributions of temperature 
records of all stations (figure 2.10) have approximately the same behavior and seem to 
be parallel to each other because all records are strongly correlated but the stations do 
not have the same statistical properties. 
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Figure 2.7: Cumulative precipitation for station Listertalsperre vs. cumulative 
precipitation for the other stations (1961 - 2007). 

 

 

 Figure 2.8: Empirical cumulative distribution function (CDF) for the precipitation data 
series (1961-2007) 
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Figure 2.9: Empirical cumulative distribution function (CDF) for the temperature data 
series (1961-2007) 

 

 

Figure 2.10: Empirical cumulative distribution function (CDF) for the temperature data 
series (1961-2007) 
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2.4 Temperature Analysis 

In this study 13 stations (table 2.1) with daily air temperature records have been used to 
investigate the trend of the temperature in the Ruhr river basin. Results of correlation 
between the stations showed that there is high correlation (≈1) among the stations. In 
order to analyze the temperature records, several time scales have been considered 
(months, winter, summer and annual) to study the behavior of the temperature trend for 
these time scales. Also the temperature records have been classified to mean, minimum 
and maximum records for the considered time scales to examine the trends of the 
extreme values, occurrence of warm days and occurrence of cold days for both the 
winter and the summer. In many climate data series, a trend may be exist only for a 
specified part of the time series which is called local trend. This may be at the 
beginning, midst, or at the end of the data series. So, the partial time series approach 
was provided to examine the trend for different time periods 

2.4.1 Mean Daily Temperature 

The mean values of a given temperature data series are basic climatic parameters that 
are widely used in the studies of the climate change. The data series of the temperature 
as mentioned before are daily records. The mean values of the months, the winter and 
the summer have been computed within the study period. The results of the different 
time scales have been analyzed by applying the Mann-Kendall trend test. Confidence 
levels of 80 %, 90 % and 95 % were taken as thresholds to classify the significance of 
positive and negative precipitation trends. Trends at significance below the 80 % 
confidence level were not considered. 

Figure 2.11 is a plot of the mean monthly temperatures for station Sorpetalsperre. In 
general there is an increase in the monthly temperature. The Mann-Kendall test shows 
that there is a significant trend in the mean monthly temperature at confidence levels of 
95 % and the estimated trend is 0.0036 0C per month. Results of winter data series 
(figure 2.12) show that there is a significant positive trend in the winter mean 
temperature at confidence levels of 95 % with estimated trend equal to 0.041 0C per 
year. 

Figure 2.13 illustrates the summer mean temperatures for station Sorpetalsperre. As 
shown in the figure, the mean temperature is increasing during the summer. The 
increase of the winter mean temperature is more pronounced than the summer mean 
temperature. Results of Mann-Kendall test show that there is a significant trend in the 
mean summer temperature at confidence levels of 95 % and the estimated trend is 0.037 
0C per year. When the annual time scale is considered, the result (figure 2.14) shows 
significant increase in the mean annual temperature with an increase of 0.039 0C per 
year. Results of the mean temperature analysis showed that for the four examined time 
scales (months, winter, summer and annual) there is in general a significant increase in 
the mean temperature within the study period. Table 2.3 presents the results of Mann-
Kendall test of the above mentioned time scales.  
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Table 2.3: Result of Mann-Kendall test (Trend analysis) - Mean temperature 

 

Figure 2.11:  Fluctuations and trends of mean daily temperature for station 
Sorpetalsperre (Months time scale 1961-2007) 

 

Figure 2.12: Fluctuations and trends of mean daily temperature for station 
Sorpetalsperre (Winter time scale 1961-2007).  

 

Figure 2.13: Fluctuations and trends of mean daily temperature for station 
Sorpetalsperre (Summer time scale 1961-2007). 
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Figure 2.14: Fluctuations and trends of mean daily temperature for station 
Sorpetalsperre (Annual time scale 1961-2007). 

2.4.2 Maximum and Minimum Mean Daily Temperature 

Results of the min and max of mean daily temperature  analysis in the Ruhr basin are in 
good agreement with the analysis done by Brazdil in  1994 (see (Heino, 2004)). The 
analysis which was performed over the min and max of Tmean (Tmean,min - Tmean,max) data 
series has detected an increase in in the winter (Figure 2.15). The trend test shows that 
this increase is significant at 90 % confidence level. On the other hand, an increase in 
Tmean,min and Tmean,max in the summer is detected as shown in Figure 2.16. This increase 
in Tmean,max is significant at 95 % confidence level but the increase in Tmean,min is 
significant at 90 % confidence level. This means that the winter became warmer and the 
summer became hotter. Results of the annual analysis (Figure 2.17) show that the 
increase of Tmean,max is more significant than the increase in Tmean,min. Results of the 
Mann-Kendall test are shown in table 2.4. 

 

Table 2.4: Result of Mann-Kendall test (Trend analysis) – Tmean,min and Tmean,max 
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Figure 2.15: Fluctuations and trends of Tmean , Tmean,min and Tmean,max for station 
Sorpetalsperre (winter-1961-2007) 

 

Figure 2.16: Fluctuations and trends of Tmean , Tmean,min and Tmean,max for station 
Sorpetalsperre (summer-1961-2007)          

 

Figure 2.17: Fluctuations and trends of Tmean , Tmean,min and Tmean,max for station 
Sorpetalsperre (Annual -1961-2007) 

2.4.3 Warm and Cold Days 

The occurrence of cold and warm days is very useful for the detection of changes of 
climate. Trends of the occurrences of cold and warm days in both winter and  summer 
have been examined based on Percentile indices (Alexander, 2005; Tank et al., 2005). 
The Percentile indices are Tw10 %, Tw90 %, Ts10 % and Ts90 % to detect cold/winter, 
warm/winter, cold/summer and warm/summer respectively. The result of the Percentile 
indices shows a significant positive trend in the occurrence of warm days during 
summer (figure 2.18) and negative trend in the occurrence of cold days in the summer 
as well (figure 2.19). On the other hand, a strong positive trend has been detected in the 
winter warm days (figure 2.20). And a strong negative trend in the winter cold days has 
been also detected (figure 2.21). This means that the number of warm days increased in 
both the summer and in the winter as well. 
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Figure 2.18: Time series of occurrence of warm days for station Sorpetalsperre                       
(Summer time scale 1961-2007). 

 

Figure 2.19: Time series of occurrence of cold days for station Sorpetalsperre                         
(Summer time scale 1961-2007).  

 

Figure 2.20: Time series of occurrence of warm days for station Sorpetalsperre                         
(Winter time scale 1961-2007).  

 

Figure 2.21: Time series of occurrence of cold days for station Sorpetalsperre                         
(Winter time scale 1961-2007). 
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2.5 Precipitation Analysis 

Precipitation over a catchment is the most important climatic factor for hydrological 
response. The precipitation data series which have been used in this study are from 1960 
to 2007. Table 2.5 displays the correlation coefficient between stations. In order to 
study the behavior of the change in the amount of precipitation within the study period, 
the amount of precipitation has been calculated over several time scales (months, 
winter, summer and annual). The non-parametric Mann-Kendall test has been applied to 
the several time scales to distinguish the significance of the trend and to find the 
corresponding estimated trend. In many time series the global trend within a specified 
period is insignificant, but if the same time series is divided into more than one part the 
results might be different. So in this study, the time series of the several time scales was 
divided into several parts, then the trend of each part was individually examined to 
classify the several periods within the study period. 
 

Table 2.5: Correlation factor between stations: Precipitation (1961-2007) 
Station No.                       
in Table (1) 

1 2 3 4 6 8 9 14 23 27 30 35 39 

1 1             

2 0.72 1            

3 0.81 0.86 1           

4 0.65 0.72 0.72 1          

6 0.96 0.74 0.84 0.67 1         

8 0.82 0.81 0.78 0.67 0.86 1        

9 0.84 0.7 0.76 0.63 0.86 0.87 1       

14 0.82 0.76 0.85 0.64 0.82 0.71 0.82 1      

23 0.76 0.9 0.82 0.69 0.79 0.87 0.77 0.73 1     

27 0.74 0.68 0.71 0.58 0.75 0.74 0.82 0.77 0.72 1    

30 0.75 0.68 0.72 0.59 0.76 0.74 0.82 0.78 0.73 0.94 1   

35 0.86 0.78 0.85 0.67 0.87 0.81 0.88 0.88 0.83 0.84 0.86 1  

39 0.91 0.76 0.87 0.67 0.92 0.8 0.85 0.88 0.8 0.77 0.78 0.92 1 
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2.5.1 Distribution Changes and Trends 

The analysis of precipitation data series shows that different precipitation trend patterns 
occurred in the Ruhr basin in the study period. Figure 2.22 displays the fluctuations of 
the summation of the monthly precipitation for station Listertalsperre. Trend test shows 
a significant positive trend in the monthly precipitation, while the winter, summer and 
the annual data series have an insignificant positive trend as shown in Figure 2.23, 2.24, 
2.25 respectively. To study the behavior of the trend of each month individually, the 
amount of precipitation for each month was calculated, then the Mann-Kendall test has 
been applied. Results of the Mann-Kendall test are shown in table 2.6. 

 

Table 2.6: Result of Mann-Kendall test (Trend analysis)  

Data series Mean (mm) T-value 
Estimated trend 

(mm)  per year 
Confidence level 

     

Months 100 1.45 0.0194 80 % 

Winter (Nov.-Apr.) 650 1.1 1.87 - 

Summer (May-Oct.) 550 0.84 1.008 - 

Annual 1200 0.825 1.985 - 

November 115 -0.346 -0.242 - 

December 136 0.142 0.170 - 

January 126 1.022 0.903 - 

Febraury 91 1.679 1.049 90 % 

March 101 1.537 0.774 80 % 

April 75 -0.595 -0.290 - 

May 77 -0.079 -0.053 - 

June 91 -0.951 -0.421 - 

July 100 0.488 0.236 - 

August 89 -0.231 -0.111 - 

September 92 0.951 0.410 - 

October 98 0.222 0.122 - 
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Figure 2.22: Trend analysis of the monthly precipitation for station Listertalsperre                   
(Reference period 1960-2007)  

 

Figure 2.23: Trend analysis of the winter precipitation for station Listertalsperre                   
(Reference period 1960-2007)  

 

Figure 2.24: Trend analysis of the summer precipitation for station Listertalsperre                   
(Reference period 1960-2007)  

 

Figure 2.25: Trend analysis of the annually precipitation for station Listertalsperre                   
(Reference period 1960-2007) 
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Morgenschweis (Morgenschweis et al., 2007) examined the trend of the precipitation in 
the Ruhr basin in the period 1927-2005. Results obtained show an increase in winter 
precipitation with a significant trend at 98 % confidence level (figure 2.26). Results 
show also insignificant trend for the summer precipitation. In fact there is no conflict 
between these results and the results shown in Figure 2.23 and table 2.7. It is well 
known that the length of the hydrological time series has a greet affect on the results of 
any trend test and the length of the data series in the two studies is not the same. 
Furthermore, it is very clear from figures 2.25 and 2.26 that the frequency of the 
precipitation within the period 1961-2005 is more or less the same and this was 
expected. 

As mentioned before, the global trend for a given data series may present a significant 
/insignificant increase/decrease within the study period. But locally, if the data series is 
divided into several parts the data series may contain local insignificant /significant 
decrease/increase and vice versa. Figure 2.27 displays an application for the pervious 
approach. When the winter data series was divided into two parts (1960-1995, 1995-
2007), results showed that an significant increase in the winter precipitation has taken 
place within the period 1961-1995. Significant positive trend is detected (95 %) in the 
first part and an insignificant negative trend in the second part as shown in Figure 2.28. 

              

Figure 2.26: Trend analysis of the annually precipitation in the Ruhr basin             
(Reference period 1927-2005) (Morgenschweis et al., 2007)  

 

 Figure 2.27: Trend analysis of the winter precipitation for station Listertalsperre                   
(Reference period 1960-1995)
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Figure 2.28: Trend analysis of the winter precipitation for station Listertalsperre                   
(Reference period (1997-2007) 

2.5.2 Days with No Precipitation 

Days with no precipitation have been detected and examined and the trend has been 
calculated. The days which have been detected are the consecutive days. Five time 
scales were examined namely 3 days, 7 days, 14 days, 21 days and 28 days with no 
precipitation and this has been applied to the winter and the summer data series. In this 
study the day without precipitation is defined as the day within the amount of 
precipitation less than 0.10 mm. Results obtained in this part show an indication 
towards negative insignificant trends  during the winter in the 3 days ,7 days and 14 
days data series (figures 2.29, 2.30, 2.31 and table 2.7). Results of 21 days data series 
show few individual events within the study periods, also for 28 days data series only 
the year 2007 contains this type of consecutive dry days and this event are in April and 
May 2007. The month April in this year had an extreme drought event as shown later in 
chapter 3. 
 

 

 Figure 2.29: Time series of occurrence of no precipitation days for station 
Listertalsperre (3 days time scale–Winter. 1960-2007). 
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Figure 2.30: Time series of occurrence of no precipitation days for station 
Listertalsperre (7 days time scale–Winter.1960-2007). 

 

Figure 2.31: Time series of occurrence of no precipitation days for station 
Listertalsperre (14 days time scale–Winter.1960-2007). 

 

Table 2.7: Result of the Mann-Kendall test (Trend analysis)– days with no precipitation 
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Data series T- value Estimated trend 
Confidence levels 

80 % 90 % 95 % 

Winter 

3 days -0.972 -0.167 day/year - - - 

7 days -0.883 -0.058 day/year - - - 

14 days -0.84 - - - - 

Summer 

3 days 0.017 - - - - 

7 days 0.231 - - - - 

14 days 0.328 - - - - 
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2.5.3 Frequency Distribution of Very and Extremely Wet Days  

The occurrence of very wet and extremely wet days gives evidence about the change in 
the intensity of the precipitation during the study period. Very and extremely wet days 
have been detected based on the precipitation indices PR95 % and PR99 %. Number of 
days (per year/season/month) with precipitation amount above a site specific threshold 
value for very and extremely wet days, were calculated as the 95th (PR95 %) and 99th 
(PR99 %) percentile of the distribution of daily precipitation amounts at days with 1 
mm in the 1961–2007 baseline period.  Let PRw,j be the daily precipitation amount at a 
wet day w (precipitation ≥ 1 mm) in period j and let PRn95 be the 95th percentile of 
precipitation at wet days in the 1961–2007 baseline period. Then the very wet days with 
PRw,j> PRn95 are counted. The extremely wet days are calculated likewise. 

Results of trend analysis for the winter and the summer precipitation show that there are 
insignificant trends in vey and extremely wet days in the summer (figures 2.32, 
2.33).For the winter, an insignificant trend in the extremely wet days data series is 
obtained, while a positive significant trend is detected in the very wet days data series as 
shown in figures 2.34and 2.35. 
 

 

Figure 2.32: Time series of occurrence of very wet days for station Listertalsperre                 
(Summer time scale 1960-2007). 

 

Figure 2.33: Time series of occurrence of extremely wet days for station Listertalsperre 
(Summer time scale 1960-2007).          
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Figure 2.34: Time series of occurrence (days) of very wet days for station 
Listertalsperre (Winter time scale 1960-2007).  

 

   Figure 2.35: Time series of occurrence (days) of extremely wet days for station 
Listertalsperre (Winter time scale 1960-2007). 

2.6 Inflow Analysis 

In this section, trends in inflow, that integrates the influence of atmospheric variables 
over a watershed, at the annual, seasonal and monthly time scales for the periods of 
records 1967-2008 are analyzed for the Ruhr River basin. Presumably, if consistent 
changes are observed in point measurements of precipitation and air temperature, these 
should also be reflected to some degree in streamflow at a watershed scale. As a 
spatially integrated variable streamflow is more appealing for detecting regional trends 
than point measurements of precipitation or temperature which is highly variable in 
space and time (Yan et al., 2007). 

Data are daily inflow time series at the main four reservoirs in the Ruhr basin (table 
2.2).  High correlation between the inflow time series (monthly, seasonally) has been 
detected. For the summer and annual time scales (figures 2.37, 2.38) no significant 
trends have been detected; however for the winter time scale (Figure 2.36) a significant 
positive trend has been detected within the study period at 80 % confidence level. It is 
worth mentioning that when the winter data series were divided, a significant trend has 
been detected within the period 1967-1994 at 90 % confidence level. Results of the 
Mann-Kendall test are shown in table 2.8. 
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Table 2.8: Result of Mann-Kendall test (Trend analysis) - inflow 

 

Figure 2.36: Fluctuations and trends of the inflow in the Ruhr basin                                 
(Bigge Reservoir- Winter time scale. 1967-2008)  

 

 Figure 2.37: Fluctuations and trends of the inflow in the Ruhr basin                                 
(Bigge Reservoir- Summer time scale. 1967-2008) 

 

        Figure 2.38: Fluctuations and trends of the inflow in the Ruhr basin                                
(Bigge Reservoir-Annual time scale. 1967-2008)
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Data series T- value Estimated trend 
Confidence levels 

80 % 90 % 95 % 

Months 0.61 0.00208 M.m3 per year - - - 

Winter 1.314 0.764  M.m3 per year Yes No No 

Summer -0.2817 -0.067  M.m3 per year - - - 

Annual 0.64 0.77  M.m3 per year - - - 
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2.7 Correlation between Precipitation, Temperature and Inflow 

Temperature for station Sorpetalsperre, precipitation for station Listertalsperre and 
inflow into the Bigge reservoir (Biggetalsperre) have been correlated together for daily, 
monthly, winter, summer and annually time scales. Coefficients of correlation are 
shown in Figure 2.39. The daily correlation between the precipitation and the inflow are 
calculated with different lags and one-lag correlation is the best one. 

The correlation coefficient between temperature and precipitation is negative and 
relatively low except the coefficient correlation in the winter which is positive and 
relatively low. This would indicate that through all time scales except the winter as 
temperatures increase, precipitation tends to decrease. The positive correlation between 
temperature and precipitation could be interpreted as increasing temperatures could 
increase atmospheric water vapor, thus producing conditions conducive for increased 
rainfall. The correlation between the temperature and the inflow  through all time scales 
except the winter is negative and relatively high in case of monthly and summer time 
scales (-0.56, -0.48 respectively). This may be due to the fact that with high 
temperatures, evapotranspiration would increase thus reducing streamflow. 

Since precipitation is the driving force for all streamflow in the Ruhr basin, high 
positive correlation coefficients between precipitation and inflow through all time scales 
are expected. Variation in streamflow from year to year is found to be much strongly 
related to precipitation changes than to temperature changes and this is a common result 
in hydrological researches (Krasovskaia, 1995; Limbrunner, 2001). Precipitation and 
inflow are strongly correlated for winter, summer and annually data series and the 
correlation is significant as shown in Figure 2.39. Values of the correlation coefficient 
for the winter, the summer and the annual data series are (0.88), (0.92) and (0.90) 
respectively. 

 

Figure 2.39: Correlation between Temperature, precipitation and Inflow 
Temperature /Precipitation    :      Reference Period 1961-2007 

Temperature /Inflow :      Reference Period 1967-1995              

Precipitation/Inflow                   :      Reference Period 1961-2007  
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2.8 Conclusion 

In this chapter, a study of climate change in the Ruhr basin has been presented using a 
set of data series for temperature, precipitation and inflow.  Homogeneity of data series 
has been examined using several homogeneity tests. These tests, which have been used, 
included absolute and relative homogeneity tests. Results of homogeneity tests showed 
that some individual stations have inhomogeneous time series.  

The findings regarding temperature and precipitation analysis are in good agreement 
with results obtained by Yeshewatesfa (Hundexha and Bardossy, 2005), Morgenschweis 
(Morgenschweis et al., 2007) and (Beck et al., 2004). After examining 68 years of 
precipitation and temperature data and 62 years of streamflow data, some statistically 
significant trends have been identified. There are slight increases in all three variables 
(streamflow, precipitation, temperature) in the Ruhr River basin. 

Between 1961 and 2007, the results showed that a significant increase in the mean 
temperature over all time scales. The occurrence of warm days in both winter and 
summer has significant increase (95% confidence level) while the occurrence of cold 
days in both seasons showed a similar proportion of significant decrease. These results 
give evidence that the winter becomes warmer and the summer becomes hotter 

Results of precipitation analysis gave evidence of a significant increase in the winter 
precipitation while the increases in the summer and the annual precipitation were 
statistically insignificant. The number of consecutive dry days displayed decreasing 
tendencies in winter while there is no indication of statistically significant change in the 
summer. The index PR95 % (very wet days), PR99 % (extremely wet days) have been 
introduced in this study to explore the supposed amplified response of the extreme 
precipitation events relative to the change in total amount. The main identified trends 
are an increase in the very wet days during winter. 

For the inflow data series, obtained results showed that there is a significant increase in 
the winter inflow while the increases in the summer and the annual inflow were found 
to be statistically insignificant. Correlation calculations  which have been applied to the 
data series showed that variations in streamflow from year to year were much more 
strongly related to precipitation changes than to temperature changes and this is a 
common result in hydrological researches. 
 



 

  
 



 

  
 

Chapter 3 

3. Analysis of Meteorological Drought in the Ruhr Basin by 
Using the Standardized Precipitation Index 

 

3.1 Background 

Drought is considered by many researchers to be the most complex but least understood 
of all natural hazards, affecting more people than any other hazard (Sivakumar et al., 
2005). Drought is one of the major weather related disasters which is persisting over 
months or years. It can affect large areas and may have serious environmental, social 
and economic impacts. These impacts depend on the severity, duration, and spatial 
extent of the precipitation deficit, but also and to a large extent on the socio-economic 
and environmental vulnerability of affected regions (European Commission, 2008b). 
When thinking of natural hazards, droughts are often perceived by society to play a less 
dominant role compared to floods. Unlike the effects of a flood which can be 
immediately seen and felt, droughts build up rather slowly, creeping and steadily 
growing (Lehner et al., 2001).    

As drought is a slowly developing phenomenon, only indirectly affecting human life, its 
impacts are often underestimated in financially well off regions such as Europe (Stahl, 
2001). Droughts often result in heavy crop damage and livestock losses, disrupt energy 
production and hurt ecosystems. Drought mortality is concentrated in developing 
countries, while absolute economic losses are largest in developed regions. Drought is a 
major natural hazard affecting large areas and millions of people every year. The World 
Meteorological Organization (WMO) reported  that in the 25 years from 1967 to 1991 
about 1.4 billion people were affected by drought and 1.3 million people were killed 
due to the direct and indirect cause of drought (Obasi, 1994). 

Drought differs from other natural hazards based on several specific features such as 
(Wilhite, 2005) : 

• its unpredictability, due to its medium to long time scale of occurrence, while 
seasonal weather forecasts still present low levels of confidence and accuracy; 

• its slow and progressive onset, cumulative through time, with events being 
detectable only when they are already occurring and impacts identified when 
drought has already become quite severe; 

• its widely distributed impacts, affecting several components of the hydrological 
cycle and many economic sectors of human activity and persisting for a 
considerable period after the event itself has terminated. 
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The severe heat wave which started in Europe in June 2003 and continued through July 
until mid-August, raising summer temperatures up to 30 % higher than the seasonal 
mean in Celsius degrees over a large portion of the continent, extending from the Czech 
Republic to northern Spain and from Italy to Germany (UNEP, 2004). Extreme 
maximum temperatures of 35°C to 40°C were repeatedly recorded in July and to a 
larger extent in August in most of the southern and central countries from Germany to 
Turkey. A recent commonly study performed by the European Commission and 
Member States estimates the costs of droughts in Europe over the last thirty years to at 
least 100 billion Euro. The drought of 2003 in Central and Western Europe has been 
responsible for an estimated economic damage of more than 12 billion Euro (European 
Commission, 2008b). Table 3.1 presents some details about European droughts since 
1970. 

 

Table 3.1: Drought events in Europe 1970-2003. after (Lloyd-Hughes, 2002)).  
Year Region Characteristics 

1971 Most of Europe  
Extremely dry year. The minimum rainfall in Spain during 
30 years. An intensive summer drought in Poland.  The 
water level in the Rhine reached lowest value since 1818. 

1972 USSR  Lowest river levels for 50-80 years. 

1973 
North and east 
Europe 

Very dry spring in eastern UK; low winter rain/snowfall in 
Austria, Germany and Czechoslovakia. 

1974 
Scandinavia, 
France, Holland 

Dry spring in Norway , Denmark, Holland, Austria. 9 week 
spring drought in Sweden and low rainfall April-August in 
France. 

1975 North and east 
Europe 

Dry winter in eastern Europe. Summer rainfall in Sweden 
the lowest on record; October rainfall in Belgium lowest on 
record.  

1976 
Northern  and 
eastern Europe  

Severe drought in SE England, some parts in France and 
UK. Hot dry summer following a dry winter. Record rainfall 
deficits. Surface water and groundwater deficits. Low 
rainfall in Netherlands, Denmark, Norway, Sweden, and 
Scotland. Severe drought in some parts of Germany. 

Year Region Characteristics 

1977 UK 
Dry summer from May to August. Scotland (mid) – driest 
summer since 1868.N Ireland - seventh successive summer 
with below average rainfall.  

1988-92 Most of Europe Anomalous circulation pattern caused rainfall deficits over a 
large area interspersed with short wet periods. Insured 
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losses due to subsidence estimated at £600 m for UK alone 

1990-95 Spain, Portugal 

Prolonged drought across the entire Iberian peninsular. 
Water supplies in Seville were cut for up 

to 12 hours per day during 92-93. Hydroelectric power 
suspended 94-95. 

1992-93 Bulgaria, Hungary 

Very hot, dry summer 1992.Continued with below average 
rainfall to October 1993.Severe loss of agricultural 
production in Bulgaria. Worst drought in USSR for 10 
years. 

1995 

 

Ireland, UK, 
Norway, Sweden 

Hot, dry summer and autumn. Dry soil. Impact on surface 
water supplies but not groundwater. Low temperature, little 
winter snow in Nordic countries. 

1995-96 Germany Extremely dry winter in some parts of Germany 

1996 Bulgaria Hot, dry summer across whole country. 

1999 Finland 
Hot, dry summer in southern Finland. Very low water levels 
both in rivers and groundwater formations.  

2003 
Much of 
continental Europe 

Many deaths from unusually prolonged high temperatures. 
Forest fires, subsidence, power cuts and agricultural losses. 
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3.2 Drought Definitions 

Drought has no universal definition. Drought definitions reflect many disciplinary 
perspectives and therefore incorporate different biological, physicall and socioeconomic 
variables in their definitions. Most of drought definitions are region specific, reflecting 
differences in climatic characteristics. For this reason, it is usually difficult to transfer 
definitions derived for one region to another (AMS, 2009). Labedzki reported that 
Wilhite uncovered  in the early 1980s more than 150 published definitions of drought 
(Labedzki, 2007; NDMC, 2006). The definitions reflect differences in regions, needs 
and disciplinary approaches. 

Beran (Beran and Rodier, 1985) summarized that, in any case it is evident that the 
notion of drought is relative but its chief characteristic is a decrease of water availability 
in a particular period and over a particular area rather than a general decrease of water 
availability. Drought affects all components of the water cycle from a deficit in soil 
moisture reduced groundwater recharge and levels and to low streamflow or dried up 
rivers. It is a reoccurring and worldwide phenomenon, with spatial and temporal 
characteristics that vary significantly from one region to another (Khadr et al., 2009). 

In general, drought gives an impression of water scarcity due to insufficient 
precipitation, high evapotranspiration and over-exploitation of water resources or 
combination of these parameters (Bhuiyan, 2004). The primary cause of a drought is the 
lack of precipitation over a large area and  an extensive period of time; this type is  
called meteorological drought (Tallaksen and Lanen, 2004). This water deficit 
propagates to the hydrological cycle and gives rise to different types of droughts. 

3.3 Classification of Drought 

All types of drought originate from a deficiency of precipitation (Wilhite and Glantz, 
1985). Droughts can be classified in four major categories: 

3.3.1 Meteorological Drought 

Meteorological drought, also termed climatological drought, is commonly based on 
precipitation’s departure from normal average over a certain period of time and region, 
since deficiency of precipitation is highly variable from region to region. 

3.3.2 Hydrological Drought 

This type is associated with the deficiency of water on surface or subsurface due to 
shortfall in precipitation. Although all droughts have their origin from deficiency in 
precipitation, hydrological drought is mainly concerned about how this deficiency 
affects components of the hydrological system such as soil streamflow, moisture, 
groundwater and reservoir levels. 
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3.3.3 Agricultural Drought 

This links several characteristics of both meteorological and hydrological drought to 
agricultural impacts, focusing on precipitation shortages, differences between actual 
potential evapotranspiration, soil, soil water deficits and reduced groundwater or 
reservoir levels. Plant water demand depends on prevailing weather conditions, 
biological characteristics of the specific plant, its stage of growth and the physical and 
biological properties of the soil. 

3.3.4 Socio-Economical Drought 

It is associated with the demand and supply aspect of economic goods together with 
elements of meteorological, hydrological and agricultural drought. This type of drought 
mainly occurs when the demand for an economic good exceeds its supply due to 
weather related shortfall in water supply. 

3.4 Time Sequence of Drought Impacts 

The sequence of impacts associated with meteorological, agricultural and hydrological 
droughts highlights its differences. When drought event begins, the first to suffer is 
usually the agricultural sector because of it is heavily dependence on stored soil water 
(Hisdal and Tallaksen, 2000). The latter can be rapidly depleted over extended dry 
periods. If no precipitation period continues, then people will begin to feel the effects of 
the shortage. Those who rely on surface water (i.e., reservoirs and lakes) will suffer first 
and those who rely on subsurface water (i.e., groundwater) are usually the last to be 
affected. Although, groundwater users, often the last to be affected by drought during its 
onset, they are the last to experience a return to normal water supply levels. Obviously, 
the length of the recovery period is a function of the intensity of the drought, its 
duration and the quantity of precipitation received following the drought period.  

As schematically illustrated in figure 3.1, a drought event is caused by a certain 
meteorological situation, for instance a persisting anticyclone/ high pressure system. 
Associated with the prevailing dry and warm weather, a meteorological drought with a 
rainfall deficit develops. The rainfall deficit and the high evapotranspiration reduce the 
soil water content, which might cause an agricultural drought if it occurs during the 
growing season. Due to the precipitation deficit in the catchment, streamflow decreases 
until it is only fed by groundwater and finally the groundwater reservoirs will also 
deplete. Consequently, hydrological droughts lag the occurrence of atmospheric 
droughts and depending on the season and the crop also the occurrence of agricultural 
drought. Water in hydrological storage systems such as surface and groundwater 
reservoirs is often used for multiple and competing purposes, e.g. flood control,  
irrigation, recreation, hydropower, navigation or wildlife habitat, further complicating 
the sequence and quantification of impacts (Wilhite, 2005). When the demand exceeds 
the supply, a socio-economic drought occurs. 
 



46                                                                                                                                  3.2 Drought Definitions and Classification                                                                                                    

 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The sequence of drought impacts associated with meteorological, 
agricultural and hydrological drought. After (Wilhite, 2009). 
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3.5 Drought Indices 

Drought indices assimilate thousands of data on rainfall, snowpack, streamflow and 
other water supply indicators into a comprehensible big picture. A drought index value 
is typically a single number, far more useful than raw data for decision making (NDMC, 
2006). There are several indices that measure how much precipitation for a given period 
of time has deviated from historically established norms. Although none of the major 
indices is inherently superior to the rest in all circumstances, some indices are better 
suited than others for certain uses. Table 3.2 presents some of the widely used drought 
indices including Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI), 
Standardized Precipitation Index (SPI) and Surface Water Supply Index (SWSI). 
 

Table 3.2: Different drought indices and their pros and cons (after (Awass, 2009)) 
Index Pros Cons Developed by 

PDSI/ 
PHDI 

Non-dimensional, widely 
accepted specially in USA 

 

Arbitrary threshold, 
may lag emerging 
droughts by several 
months less well suited 
for mountainous or of 
frequent climatic 
extremes 

Palmer 1965 

SPI Identifies emerging droughts 
months sooner than the PDSI, 
Limited data input,  can provide 
early warning of drought and help 
assess drought severity 

Arbitrary threshold, 

 

McKee et al. 
1995 

CMI Identifies potential agricultural 
droughts. 

Not a good long-term 
drought monitoring tool 

Palmer 1965 

 

SWSI  

 

Representative measure of water 
availability across a basin, region, 

 

It is difficult to 
compare SWSI values 
between basins or 
regions 

 

Shafer and 
Dezman 1982 
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3.5.1 Standardized Precipitation Index 

3.5.1.1 Definition of the Standardized Precipitation Index (SPI) 

Standardized precipitation index (SPI) is based on an equi-probability transformation of 
aggregated monthly precipitation into a standard normal variable. In practice, 
computation of the index requires the fitting of a probability distribution to aggregated 
monthly precipitation series (e.g. k= 3, 6, 12, 24 months, etc), computing the non-
exceedance probability related to such aggregated values and defining the 
corresponding standard normal quantile as the SPI. McKee (McKee et al., 1993) 
assumed an aggregated precipitation gamma distribution and used a maximum 
likelihood method to estimate the parameters of the distribution. SPI has advantages of 
statistical consistency and the ability to describe both short-term and long-term drought 
impacts through the different time scales of precipitation anomalies (Cancelliere et al., 
2007). Its limitation is that it relies on one input. In general, different studies have 
indicated the usefulness of the SPI to quantify different drought types (Vicente-Serrano 
and L´opez-Moreno, 2005).  

Precipitation is a climatological phenomenon more difficult to study than temperature, 
because it is discontinuous with some days receiving no precipitation, while other days 
receive abundant amounts of precipitation. For this reason, the basic measurement 
period for many precipitation studies is the total precipitation for each month. The 
Standardized Precipitation Index (SPI) is a tool developed by McKee (McKee et al., 
1993) for the purpose of defining and monitoring local droughts. It was conceived to 
identify drought periods and the severity of droughts, at multiple time scales. Shorter or 
longer time scales may reflect lags in the response of different water resources to 
precipitation anomalies.  

McKee (McKee et al., 1993) reported that a drought event occurs if the SPI is 
continuously negative and reaches an intensity of -1.0 or less. The event ends when the 
SPI becomes positive. Each drought event, therefore, has a duration defined by its 
beginning and the end, and an intensity for each month the event continues. The 
accumulated magnitude of the negative values of the SPI during a drought event can be 
considered as drought magnitude. The Standardized Precipitation Index (SPI) is an 
index widely used for drought monitoring purposes. Since its computation requires the 
preliminary fitting of a probability distribution to monthly precipitation aggregated at 
different time scales, the SPI value for a given year and a given month will depend on 
the particular sample of observed precipitation data adopted for its estimation and in 
particular on the sample size. Furthermore, the presence of a trend in the underlying 
precipitation will adversely affect the estimation of parameters and the computation of 
SPI (Cancelliere and Bonaccorso, 2009).                                      
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The calculation of SPI requires that there is no missing data in the time series. The data 
record length is required to be at least 30 years (Wu et al., 2001). A number of 
advantages arises from the use of the SPI index (Cacciamani et al., 2007). First of all, 
the index is simple and is only based on the amount of precipitation so that its 
evaluation is rather easy. Also the SPI index can be computed for multiple time scales 
(i.e., 1, 2, 3, . . . 72 months), thus allowing the comparison between different time 
periods. This can be an excellent communication tool to the public and to policy makers 
(Wilhite et al., 2000). In addition, these various time scales can be useful in assessing 
effects on different components of the hydrologic system (e.g., streamflow, reservoir 
levels and groundwater levels). McKee (McKee et al., 1993) used the classification 
system shown in table 3.3 to define dry and wet events.  

The Standardized Precipitation Index aims to provide a concise overall picture of 
drought, regardless to the actual probability distribution of the observed cumulative 
amounts of rainfall for a given time scale (Gbete and Soumaila, 2007). It consists in 
realizations of standard Gaussian distribution with mean zero and variance one obtained 
by applying appropriate transformation to each of the observed cumulative amount of 
precipitation. But one should notice that applying the inverse of the cumulative 
probability function of the standard Gaussian distribution to the actual cumulative 
probability function of each observed amount of precipitation fails to give Gaussian 
deviates as precipitation data may include many zeros corresponding to period with no 
precipitation. In this study, there is no zero monthly precipitation for the covered period. 
SPI was applied on 1, 3, 6, 9, 12and 24 month time scales.  
 

Table 3.3: Classification of drought based on the SPI index 
SPI Classification 

2 or more Extremely wet 

1.5 to 1.99 Very wet 

1 to 1.49 Moderately wet 

0.99 to -0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 
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3.5.1.2 Computation of the SPI Index 

McKee (McKee et al., 1993) developed the Standardized Precipitation Index (SPI) for 
the purpose of defining and monitoring drought. Among others, the Colorado Climate 
Center, the Western Regional Climate Center and the National Drought Mitigation 
Center use the SPI to monitor current states of drought in the United States. The nature 
of the SPI allows an analyst to determine the rarity of a drought or an anomalously wet 
event at a particular time scale for any location in the world that has a precipitation 
record. 

In the most cases, the Gamma distribution is the distribution that best models observed 
precipitation data. The density probability function for the Gamma distribution is given 
by the expression (Cacciamani et al., 2007): 

𝑔(𝑥) = 1
𝛽𝛼 𝛤(𝛼) 𝑥

𝛼−1𝑒
−𝑥
𝛽                           For x>0                                         (3.1) 

Where:                    

> 0                                                   is a shape parameter 

 β >0                                                    is a scale parameter 

 x > 0                                                   x is the precipitation amount 

𝛤(𝛼) is the Gamma function and defined by:               
 

𝛤(𝛼) =  ∫ 𝑦𝛼−1∞
0 𝑒−𝑦𝑑𝑦                                                                               (3.2) 

Computation of the SPI involves the fitting of a gamma probability density function to a 
given frequency distribution of precipitation totals for a station. The alpha and beta 
parameters of the gamma probability density function are estimated for each station, for 
each time scale of interest (1month, 3 months, 12 months, 48 months, etc.) and for each 
month of the year.  

After estimating coefficient alpha and beta the density of probability function g(x) is 
integrated with respect to x and we obtain an expression for cumulative probability G(x) 
that a certain amount of rain has been observed for a given month and for a specific 
time scale. 

𝐺(𝑥) =  ∫ 𝑔(𝑥)𝑑𝑥 = 1
𝛽𝛼𝛤(𝛼)∫ 𝑥𝛼−1𝑥

0
𝑥
0 𝑒

−𝑥
𝛽 𝑑𝑥                                          (3.3) 

The Gamma function is not defined by x= 0 and since there may be no precipitation the 
cumulative probability becomes: 

  𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥)                                                                           (3.4)           

α
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Where q is the probability of no precipitation. The cumulative probability is then 
transformed into a normal standardized distribution with null average and unit variance 
from which we obtain the SPI index. The above approach, however, is neither practical 
nor numerically simple to use if there are many grid points or many station on which to 
calculate the SPI index. In this case, an alternative method was described in (M.V.K. 
Sivakumar) using the technique that converts the cumulative probability into a standard 
variable Z. 

The SPI Index is then defined as: 

Z=SPI=−�𝑡 − 𝑐0+𝑐1𝑡+𝑐2𝑡2

1+𝑑1𝑡+𝑑2𝑡2+𝑑3𝑡3
�                for 0< H(x) < 0.5                    (3.5)   

 

Z=SPI=+ �𝑡 − 𝑐0+𝑐1𝑡+𝑐2𝑡2

1+𝑑1𝑡+𝑑2𝑡2+𝑑3𝑡3
�          

    
for 0.5 < H(x) <1                      (3.6) 

 Where: 

t= ( ) 






2)(

1ln
xH

                     for     0< H(x) < 0.5                                     (3.7) 

 

t= ( ) 







− 2)(1
1ln

xH
              for     0.5< H(x) < 1                                     (3.8) 

 

Where x is precipitation, H(x) is the cumulative probability of precipitation observed 
and c0, c1, c2, d1, d2 and d3 are constants with the following values: 
 

c0 = 2.515517                  c1 = 0.802853                   c2 = 0.010328 

d1 = 1.432788                  d2 = 0.189269                  d3 = 0.001308  

3.6 Data Collection and Methodology 

The data set which has been used in this chapter is the same data which has been used in 
chapter 2. For more details, please see chapter 2, section 2.3. 

In this study a program called “SPI_Analysis” was used to calculate and analyze the SPI 
values. This program has been developed by the author as a part of this thesis. Details 
about this program are presented in appendix A.  
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3.7 Drought Occurrences and Analysis 

3.7.1 SPI Index of Consecutivel Months 

In this study the overall meteorological drought vulnerability in the Ruhr river basin has 
been assessed by reconstructing historical occurrences of droughts at varying time steps 
and drought categories with the SPI approach. The basic idea is that this can be a guide 
to the decision makers in the Ruhr basin to develop strategies of water resources 
management in the context of drought. The SPI index is applied to long-term 
precipitation data at 13 stations for the period 1960-2007 (January 1960 to December 
2007) (See chapter 2 for more details).  

The occurrences in varying drought categories at 1, 3, 6, 9, 12 and 24 month time steps 
have been analyzed. The SPI values have been calculated for the total period and also 
for a specific month. Figure 3.2 through figure 3.4 illustrate the SPI values based on 1, 
3, and 6 months time steps respectively. Appearance of drought is defined when SPI is 
negative and its intensity comes -1.0 or lower. Several drought events have been 
detected. These events have also different durations. As mentioned before the duration 
of an event is defined as the time between the zero crossings that bound the events.  
 

 

Figure 3.2: SPI time series based on the total monthly precipitation in the Ruhr River 
Basin (1960-2007) (One month time step – SPI_1) (Station Sorpetalsperre ) 
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Figure 3.3: SPI time series based on the total monthly precipitation in the Ruhr River 
Basin (1960-2007) (Three months time step – SPI_3) (Station Sorpetalsperre )                  

  

 

Figure 3.4: SPI time series based on the total monthly precipitation in the Ruhr River 
Basin (1960-2007) (Six months time step – SPI_6) (Station Sorpetalsperre ) 

Figure 3.5 illustrates the accumulated magnitude of the negative values of the SPI based 
on 1, 3 and 6 months time scale. The figure can be used as a guide for the selection of 
the driest years and to compare also between different droughts. As shown in the figure, 
several years (such as 1964, 1976 and 1996) exposed to sever drought.  

Based on an analysis of stations across the Ruhr basin, results showed that SPI defines 
mild drought in 31.9 % of the time, moderate drought in 8.33 % of the time, severe 
drought in 5.5 % of the time and extreme drought in 1.3 % of the time. Because the SPI 
is standardized, these percentages are expected from a normal distribution of SPI. The 
1.3 % of SPI values within the “extreme drought” category is a percentage that is 
typically expected for an “extreme” event (NDMC, 2006). This standardization allows 
determining the rarity of a current drought, as well as the probability of the precipitation 
necessary to end the current drought. Figure 3.6 shows that the probability of the 
occurrence of a dry or a wet event, according to the category, is approximately the 
same. The percentage of an event is the sum of the percentage of all similar events 
through the covered period (1960-2007). 
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Figure 3.5: Accumulated magnitude of the negative values of the SPI                           
(Station Sorpetalsperre ) 

 

 

Figure 3.6: Percentage of dry and wet events based on one month SPI values                             
(Station Sorpetalsperre ) 

 
 

-25

-20

-15

-10

-5

0

Time-Years

A
cc

um
ul

at
ed

 m
ag

ni
tu

de
 o

f -
ve

 S
PI

 

 

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

SPI-9
SPI-1
SPI-3

0

5

10

15

20

25

30

35

40

Pr
ec

en
ta

ge
 (%

)



3.7 Drought Occurrences and Analysis                                                                                                                                        55 

 

3.7.2 SPI Index of a Specified Month 

The SPI values for the months January and April have been calculated based on 1 
month time step as shown in figure 3.7 and figure 3.8. SPI values based on 3 months 
time step (quarter of a hydrological year) as shown in figure 3.19 through figure 3.12. 
Results show that drought occurred in both summer and winter although there is a 
significant increase in the winter precipitation as reported by Morgenschweis 
(Morgenschweis et al., 2007) (figure 2.26). The most extremely drought event in the 
basin was during winter as shown in figures 3.9 and 3.13. Figures 3.13 and 3.14 present 
the time series of SPI data values based on 6 months time step (winter and summer of a 
hydrological year). It is clear from the two figures that several severely and extremely 
drought events occurred in the Ruhr basin and the drought event in the winter of the 
hydrological year 1995-1996 was the most extremely event. 

               

Figure 3.7: Drought severity index values representative of the Ruhr River Basin based 
on one month SPI values (SPI_1_January) (Station Sorpetalsperre ) 

 

   

Figure 3.8: Drought severity index values representative of the Ruhr River Basin based 
on one month SPI values (SPI_1_April) (Station Sorpetalsperre )             
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Figure 3.9: Drought severity index values representative of the Ruhr River Basin        
based on SPI values of Nov., Dec. and Jan. (SPI_3_Jan) (Station Sorpetalsperre ) 

                            

Figure 3.10: Drought severity index values representative of the Ruhr River Basin 
based on SPI values of Feb., Mar. and Apr.  (SPI_3_Apr) (Station Sorpetalsperre ) 

          

Figure 3.11: Drought severity index values representative of the Ruhr River Basin 
based on SPI values of May, Jun. and Jul. (SPI_3_Jul) (Station Sorpetalsperre ) 
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Figure 3.12: Drought severity index values representative of the Ruhr River Basin 
based on SPI values of Aug., Sep. and Oct. (SPI_3_Oct) (Station Sorpetalsperre ) 

 

Figure 3.13 : Drought severity index values representative of the Ruhr River Basin 
based on SPI values of Nov., Dec., Jan., Feb., Mar. and Apr. (SPI_6_April) (Winter)                 

(Station Sorpetalsperre ) 

 

Figure 3.14: Drought severity index values representative of the Ruhr River Basin 
based on SPI values of May, Jun., Jul., Aug., Sep. and Oct. (SPI_6_Oct) (Summer)                  

(Station Sorpetalsperre ) 
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3.7.3 Probability of Drought Occurrence in the Ruhr Basin 

The occurrence in varying drought categories at 3, 6, 9, 12-month and 2-year time steps 
has been analyzed. The aim was to identify drought events at comparable time steps 
based on their occurrence frequencies. Figure 3.15 (a through d) presents   percentages 
of drought occurrence expressed at multiple-time steps for varying drought severity 
categories. Each percentage is obtained by taking the ratio of drought occurrence in 
each time step to the total drought occurrence in the same time step and drought 
category. 
 

                             

(a)           (b) 

                            

(c)                                                                                                 (d) 

Figure 3.15: Drought occurrence in the Ruhr basin (Station Sorpetalsperre ) at different 
drought categories and time steps: 

                  (a) SPI_3           (b) SPI_6             (c) SPI_9             (d) SPI_12 
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3.7.4 Trend of SPI Index 

To examine the trends in the SPI data series the Mann-Kendall test has been applied to 
SPI_3, SPI_6, SPI_9, SPI_12, SPI_3_Jan, SPI_3_Apr, SPI_3_Jul, SPI_3_Oct, 
SPI_6_Apr and SPI_6_Oct. Table 3.4 summarizes the results of the Mann-Kendall test. 
It shows that there, is a positive significant trend in the data series of SPI_3 for the 
months April and October and insignificant trend in SPI_3 for the month July. The 
significant positive trend in the SPI_3 for months April and October can be explained as 
due to the decrease of the number of drought events. This can be clearly noticed from 
figures 3.10 and 3.12 that from 1986 to 2007 the number of drought events is small 
compare with wet events. Conversely, for the month July (negative trend near 80 % 
confidence level) during the same period the number of wet events is small compared 
with drought events 
 

Table 3.4: Results of Mann-Kendall test (1961-2007) 

SPI Category T-value Type of trend 

SPI_3 1.0024 Insignificant 

SPI_6 0.899 Insignificant 

SPI_9 0.876 Insignificant 

SPI_12 1.057 Insignificant 

SPI_3_Jan -0.165 Insignificant 

SPI_3_Apr 1.67 Significant at confidence level of 90 % 

SPI_3_Jul -1.27 Insignificant 

SPI_3_Oct 2.05 Significant at confidence level of 95 % 

SPI_6_Apr 0.59 Insignificant 

SPI_6_Oct -0.22 Insignificant 
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3.7.5 Number of Drought Events 

Many drought events which occurred in the Ruhr river basin have been detected. Table 
3.5 table and 3.6 present the severely and the extremely drought events respectively 
based on 1, 3, 6, 9, 12 and 24 months of SPI values. The two tables show the advantage 
of using several time steps when applying the SPI approach. For example if the SPI 
values are calculated based on one month time step, the detected event might be a 
drought event which cannot be detected if the SPI  is calculated based on 3 months time 
step and vice versa. A practical example for this is shown in table 3.6, when SPI_1 has 
been applied; the drought event which occurred in April 2007, which was a very dry 
month, has been detected. But with SPI_3 this even has not been detected. Also as 
shown in table 3.6 there was an extremely drought event in the winter of the 
hydrological year 1996 (SPI_3 for month February), this event has been detected by 
using SPI based on 3 months time step and did not appear in the results of SPI based on 
one month time step. The results in tables 3.5 and 3.6 show that the Ruhr river basin 
received severely and extremely drought events in the period 1960-2007. 

 

3.8 Conclusion 

The aim of the chapter was to assess the overall meteorological drought vulnerability in 
the Ruhr basin by reconstructing historical occurrences of drought at several time steps 
and drought categories with the  SPI approach. By applying the SPI approach, the 
obtained results indicated that the drought randomly affect the Ruhr river basin. Several 
drought events occurred during the period under study. Results also indicate that inspite 
of a significant positive trend in winter precipitation drought visited the Ruhr basin in 
both summer and winter and that the most severe event was in the winter. Trends in SPI 
data series indicated that the proportion of the Ruhr catchment drought condition has 
changed insignificantly during the period under study. 

Results and the conclusion reached in this study can be an essential step toward 
addressing the issue to drought vulnerability in the Ruhr river basin and will be used as 
a guide for water resources management in the Ruhr river basin during droughts. 

At the end it is worth to be mentioned that in reality extreme drought events in the last 
decades presented no severe challenges to the water supply of the Ruhr district due to 
the reservoir system existing in the Ruhr catchment basin.   
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Table 3.5: Severe drought events according to several time steps Severely Drought Events (Station Sorpetalsperre) 

Severe drought events 

SPI_1 SPI_3 SPI_6 SPI_9 SPI_12 

Year Month Value Year Month Value Year Month Value Year Month Value Year Month  

1962 10 -1.58 1964 1 -1.52 1963 3 -1.84 1963 4 -1.94 1963 5 -1.61 

1962 11 -1.98 1964 3 -1.65 1963 4 -1.69 1963 6 -1.71 1963 7 -1.76 

1963 2 -1.64 1964 5 -1.91 1963 6 -1.69 1964 4 -1.55 1963 8 -1.61 

1964 1 -1.62 1964 6 -1.72 1964 3 -1.50 1964 5 -1.98 1963 9 -1.53 

1964 7 -1.53 1964 8 -1.61 1964 4 -1.85 1964 6 -1.99 1963 12 -1.56 

1968 4 -1.86 1969 1 -1.51 1964 9 -1.93 1964 10 -1.76 1964 1 -1.56 

1969 9 -1.85 1971 10 -1.63 1964 10 -1.54 1964 11 -1.91 1964 6 -1.92 

1971 9 -1.63 1972 12 -1.54 1971 9 -1.53 1964 12 -1.52 1964 12 -1.98 

1972 12 -1.54 1973 1 -1.56 1971 10 -1.96 1971 9 -1.51 1971 10 -1.77 

1973 6 -1.97 1973 2 -1.56 1972 3 -1.78 1971 10 -1.80 1971 11 -1.55 

1973 8 -1.61 1973 8 -1.98 1973 2 -1.53 1971 11 -1.60 1971 12 -1.72 

1974 4 -1.78 1973 9 -1.54 1973 3 -1.68 1971 12 -1.74 1972 5 -1.80 

1975 2 -1.57 1975 12 -1.66 1976 10 -1.78 1972 4 -1.86 1972 6 -1.79 
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SPI_1 SPI_3 SPI_6 SPI_9 SPI_12 

Year Month Value Year Month Value Year Month Value Year Month Value Year Month Value 

1975 12 -1.66 1976 5 -1.86 1976 11 -1.55 1972 5 -1.64 1973 8 -1.89 

1976 4 -1.98 1976 6 -1.98 1977 1 -1.58 1973 8 -1.76 1973 9 -1.95 

1976 8 -1.77 1976 8 -1.61 1983 12 -1.63 1973 9 -1.54 1976 7 -1.53 

1980 5 -1.72 1982 9 -1.78 1989 9 -1.56 1976 6 -1.51 1976 8 -1.68 

1982 7 -1.88 1983 9 -1.64 1989 10 -1.59 1977 1 -1.61 1976 9 -1.87 

1982 9 -1.69 1985 2 -1.53 1991 7 -1.65 1977 2 -1.58 1976 10 -1.81 

1985 10 -1.53 1989 6 -1.85 1991 8 -1.58 1977 3 -1.55 1976 11 -1.58 

1989 6 -1.65 1989 8 -1.58 1991 9 -1.53 1989 11 -1.51 1976 12 -1.52 

1989 11 -1.50 1990 5 -1.57 1993 8 -1.49 1991 9 -1.81 1977 5 -1.65 

1990 5 -1.58 1991 4 -1.83 1995 12 -1.79 1995 12 -1.77 1977 7 -1.56 

1990 7 -1.59 1991 5 -1.72 1996 7 -1.62 1996 9 -1.90 1992 1 -1.60 

1992 5 -1.72 1996 4 -1.83 1997 11 -1.76 1998 2 -1.63 1996 2 -1.87 

1995 10 -1.73 1996 6 -1.97 1997 12 -1.53    1996 11 -1.67 

1996 3 -1.82 1997 1 -1.67       1996 12 -1.57 

1997 11 -1.54 1999 7 -1.56       1997 1 -1.55 
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SPI_1 SPI_3 SPI_6 SPI_9 SPI_12 

Year Month Value Year Month Value Year Month Value Year Month Value Year Month Value 

   2000 6 -1.54       1997 11 -1.56 
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Table 3.6: Extreme drought events according to several time steps (Station Sorpetalsperre) 
Extremely Drought Events 

SPI_1 SPI_3 SPI_6 SPI_9 SPI_12 

Year Month Value Year Month Value Year Month Value Year Month Value Year Month Value 

1960 3 -2.03 1962 11 -2.20 1963 2 -2.06 1963 5 -2.21 1964 7 -2.16 

1968 11 -2.18 1963 3 -2.01 1964 5 -2.64 1964 7 -2.40 1964 8 -2.39 

1971 7 -2.63 1964 2 -2.08 1964 6 -2.32 1964 8 -2.81 1964 9 -2.23 

1972 1 -2.14 1964 7 -2.06 1964 7 -2.01 1964 9 -2.34 1964 10 -2.21 

1978 11 -2.01 1971 9 -2.04 1964 8 -2.22 1972 1 -2.25 1964 11 -2.53 

1984 3 -2.02 1972 2 -2.83 1971 12 -2.02 1972 2 -2.45 1972 1 -2.10 

1986 2 -2.17 1972 3 -2.26 1972 1 -2.03 1972 3 -2.72 1972 2 -2.49 

1988 5 -2.10 1976 4 -2.76 1972 2 -2.45 1976 10 -2.78 1972 3 -2.35 

1989 5 -2.58 1976 10 -2.03 1976 7 -2.21 1976 11 -2.12 1972 4 -2.16 

1993 3 -2.36 1988 6 -2.07 1976 8 -2.19 1976 12 -2.08 1977 1 -2.45 

1995 11 -2.15 1989 7 -2.02 1976 9 -2.17 1991 10 -2.02 1977 2 -2.00 

1995 12 -3.20 1995 12 -3.20 1996 1 -2.50 1996 1 -2.30 1977 3 -2.06 
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SPI_1 SPI_3 SPI_6 SPI_9 SPI_12 

Year Month Value Year Month Value Year Month Value Year Month Value Year Month Value 

1996 1 -2.33 1996 1 -3.43 1996 2 -2.17 1996 2 -2.39 1996 3 -2.41 

1997 1 -2.78 1996 2 -2.32 1996 3 -3.42 1996 3 -2.56 1996 4 -2.86 

1997 9 -2.32 1996 3 -2.33 1996 4 -3.78 1996 4 -3.03 1996 5 -2.98 

2006 6 -2.11 1996 5 -2.29 1996 5 -3.02 1996 5 -2.90 1996 6 -3.00 

2007 4 -2.99 1997 9 -2.30 1996 6 -2.96 1996 6 -3.64 1996 7 -2.72 

         1996 7 -2.97 1996 8 -2.43 

         1996 8 -2.23 1996 9 -2.82 

            1996 10 -2.07 



 

 



 

  
 

Chapter 4 

Meteorological Drought Forecasting Using Stochastic Models    

4.1   Theoretical Basis of Time Series Analysis 

4.1.1   Definition of Time Series 

A Time Series is a sequence of observations taken sequentially in time (Box et al., 
2008). Mostly these observations are collected at equally spaced and discrete time 
intervals. A single time series or more specifically a univariate time series is the time 
series that has only one variable upon which observations are made then. A basic 
assumption in any time series analysis or modeling is that some aspects of the past 
pattern will continue to remain in the future. Also under this set up, often the time series 
process is assumed to be based on past values of the main variable but not on 
explanatory variables which may affect the variable system. So the system acts as a 
black box and we may only be able to know about ‘what’ will happen rather than ‘why’ 
it happens. Thus, if time series models are put to use, say, for instance for forecasting 
purposes, then they are especially applicable in the ‘short term’. Here it is tacitly 
assumed that information about the past is available in the form of numerical data.  

4.1.2   Missing Data 

If some values are missing, they should be replaced by a theoretically defensible 
algorithm. If the time series have too much missing data, it may not be amenable to time 
series analysis (Yaffee and Magee, 2000). If the series does not have too much missing 
observations, it may be possible to perform some missing data analysis, estimation and 
replacement.  

4.1.3   Sample Size 

As a rule, the series should contain enough observations for proper parameter estimation 
(Yaffee and Magee, 2000). There seems to be no hard and fast rule about the minimum 
size. Some authors say that at least 30 observations are needed; others 50 and others 
indicate that there should be at least 60 observations. Ideally, at least 50 observations 
should be available for performing time series analysis as propounded by Box and 
Jenkins who were pioneers in time series modeling. 
 

 

 

http://accounting-financial-tax.com/tag/selection-of-forecasting-method/�
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4.1.4   Stationarity 

Time series may be stationary or non-stationary. A time series is said to be stationary 
when its statistical properties such as mean, variance, autocorrelation, etc. are all 
constant over time. Most statistical forecasting methods are based on the assumption 
that the time series can be rendered approximately stationary (i.e., "stationarized") 
through the use of mathematical transformations. 

Non-stationary time series are characterized by random walk, drift, trend or changing 
variance. It should be prepared for statistical modeling; series are transformed to 
stationary either by taking the natural log or by taking a difference, or by taking residual 
from a regression. If the series can be transformed to stationarity by differencing, it is 
known as difference-stationary. If the series can be transformed to stationarity by 
detrending it, then we say that the series is trend-stationary. 

4.2     The Nature and Use of Forecasts 

4.2.1   Forecasting Definitions and Objectives 

Forecasting can be defined as estimation of future trends by examining and analyzing 
available data. Making good forecasting is not always easy (Montgomery et al., 2008). 
Forecasting is an important problem that covers several fields including business, 
industry, government, economics, environmental science, medicine, social science, 
politics and finance. The importance of forecasting is well understood (Yaffee and 
Magee, 2000). Forecasting problems could be classified into three groups, short-term, 
medium-term and long-term forecasting. Short-term forecasting problems involve 
predicting events only a few time periods (days, weeks, months) into the future. 
Medium-term forecasts extend from one to two years into the future and long-term 
forecasts extend beyond that by many years. Short-term forecasting is usually applied to 
time series which do not change dramatically very quickly and the statistical methods 
are very useful in this case.  

4.2.2   Basic Methodology of Forecasting 

Despite the wide range of problems that require forecasts, there are two general types of 
forecasting techniques as reported in (Yaffee and Magee, 2000). The first is the 
qualitative method and the second is the quantitative method. Qualitative forecasts are 
often used in situations where there is little or no historical data on which to base the 
forecast. Quantitative forecasting methods use historical data and the forecasting model 
summarizes patterns in the data to express a statistical relationship between the previous 
and current values of the variable. Then the model is used to project the patterns in the 
data into the future. The most formal and widely known quantitative forecasting 
techniques are: forecasting based on historical data (naive methods- moving average, 
exponential smoothing, trend analysis and decomposition of time series) and associative 
forecasting (simple regression-multiple regression-econometric modeling) 

http://accounting-financial-tax.com/tag/selection-of-forecasting-method/�
http://www.businessdictionary.com/definition/estimate.html�
http://www.investorwords.com/9809/future.html�
http://www.investorwords.com/5067/trend.html�
http://www.investorwords.com/8894/available.html�
http://accounting-financial-tax.com/tag/forecasts-based-on-historical-data/�
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4.3   Forecasting Using Stochastic Models 

4.3.1   Definition of Stochastic Models 

In probability theory, a stochastic process is the counterpart to a deterministic process or 
deterministic system. Instead of dealing with only one possible "reality" of how the 
process might evolve under time, in a stochastic or random process there is some 
indeterminacy in its future evolution described by probability distributions (Saglam, 
2008). This means that even if the initial condition is known, there are many 
possibilities the process might go to, but some paths are more probable and others less. 

A model that describes the probability structure of a sequence of observations is called a 
stochastic process (Box et al., 2008). Stochastic models, which are often known as time 
series models, have been used in scientific, economic and engineering applications for 
the analysis of time series. Time series modeling techniques have been shown to 
provide a systematic empirical method for simulating and forecasting the behavior of 
uncertain hydrologic systems and for quantifying the expected accuracy of the forecasts. 
In this study, linear stochastic models known as ARIMA and multiplicative Seasonal 
Auto Regressive Integrated Moving Average (SARIMA) models are used to forecast 
meteorological droughts. 

4.4 Forecasting of the SPI Index Using ARIMA and SARIMA Models             

4.4.1   Background Information on Drought Forecasting 

The SPI has been developed for the purpose of defining and monitoring droughts. The 
global climate change in recent years is likely to enhance the frequency of droughts. 
While much of the weather that we experience is brief and short-lived, drought is a 
more gradual phenomenon, slowly affecting an area and tightening its grip with time. In 
severe cases, drought can last for many years, and can have devastating effects on 
agriculture and water supplies. It is very difficult to determine when a drought begins or 
ends. A drought can be short, lasting for just a few months, or it may persist for years 
before climatic conditions return to normal. 

Drought forecasting plays an important role in the mitigation of impacts of drought on 
water resources systems. Traditionally, statistical models have been used for hydrologic 
drought forecasting based on time series methods (Kim and Valde´s, 2003). One of the 
basic deficiencies in mitigating the effects of drought is the inability to forecast drought 
conditions reasonably well in advance by either few months or seasons. Yevjevich as 
reported in (Dracup, 1991)  was among the first at attempting a prediction of properties 
of droughts using the geometric probability distribution, defining a drought of k years as 
k consecutive years when there are no adequate water resources. Saldariaga (Saldariaga 
and Yevjevich, 1970) continued the development of run theory, incorporating concepts 
of time series analysis in formulations to predict drought occurrence.  

http://en.wikipedia.org/wiki/Probability_theory�
http://en.wikipedia.org/wiki/Deterministic_system�
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Rao, and G. P. (Rao and Padmanabhan, 1984) investigated the stochastic nature of 
yearly and monthly Palmer's drought index (PDI) series and to characterize them via 
valid stochastic models which may be used to forecast and to simulate the PDI series. 
The monthly and annual PDI series were analyzed in their study. Sen (Sen, 1990) 
derived exact probability distribution functions of critical droughts in stationary second  
order Markov chains for finite sample lengths on the basis of the enumeration technique 
and predicted the possible critical drought durations that may result from any 
hydrologic phenomenon. Kendall (Kendall and Dracup, 1992) proposed a drought event 
generator using alternating renewal–reward model.  

Moye (Moyé and Kapadia, 1994) developed a pertinent probability distribution based 
on difference equations to forecast drought of prespecified duration and average drought 
length of desired period. Loaiciga (Loaiciga and Leipnik, 1996) modeled the occurrence 
of drought events by the renewal processes. Lohani (Lohani and Loganathan, 1997) 
used PDSI in a non-homogenous Markov chain model to characterize the stochastic 
behavior of drought and based on these drought characterizations an early warning 
system was used for drought management. Chung (Chung and Salas, 2000) used low-
order Discrete Auto Regressive Moving Average (DARMA) models for estimating the 
occurrence probabilities of drought events.  

Kim  (Kim and Valde´s, 2003) used PDSI as drought parameter to forecast drought in 
the Conchos River basin in Mexico using conjunction of dyadic wavelet transforms and 
neural network. There has been considerable research on modeling for various aspects 
of drought, such as the identification and prediction of its duration and severity. 

It is rather easy to sense that a drought has set in, particularly during a cropping season. 
There is a need to develop methods and techniques to forecast the initiation/ termination 
point of droughts. The ARMA models, pattern recognition techniques, physically based 
models using Palmer drought severity index (PDSI), standardized precipitation index 
(SPI), a moisture adequacy index involving Markov chains, or the notion of conditional 
probability, seems to offer a potential to develop reliable and robust forecasts towards 
this goal (Panu and Sharma, 2002).  

Such research efforts would be of considerable importance in mitigating the impacts of 
droughts. The stochastic models presented in this paper are based on SPI as drought 
index. The SPI is used in this study because of several reasons. The primary reason is 
that SPI is based on rainfall alone, so that drought assessment is possible even if other 
hydro-meteorological measurements are not available. The SPI is also not adversely 
affected by topography, it is defined over various timescales and this allows it to 
describe drought conditions over a range of meteorological, hydrological and 
agricultural applications. 
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4.4.2   ARIMA Model 

4.4.2.1   Definition of ARIMA Model 

Auto Regressive Integrated Moving Average (ARIMA) model was advanced by Box 
and Jenkins in 1960s for forecasting a variable (Box and Jenkins, 1970), hence this 
model is also known as Box-Jenkins model. Its appropriate use requires long time series 
data. Box and Jenkins introduced the concept of seasonal non-seasonal ARIMA models 
for describing a seasonal time series and also provided an iterative procedure for 
developing such models. 

ARIMA models are, in theory, the most general class of models for forecasting a time 
series which can be stationarized by transformations such as differencing and logging. 
In fact, the easiest way to think of ARIMA models is as fine-tuned versions of random-
walk and random-trend models. The fine-tuning consists of adding lags of the 
differenced series and/or lags of the forecast errors to the prediction equation, as needed 
to remove any last traces of autocorrelation from the forecast errors.  

The acronym ARIMA stands for "Auto-Regressive Integrated Moving Average”. Lags 
of the differenced series appearing in the forecasting equation are called "auto-
regressive" terms, lags of the forecast errors are called "moving average" terms and a 
time series which needs to be differenced to be made stationary is said to be an 
"integrated" version of a stationary series (Ghafoor and Hanif, 2005). Random-walk and 
random-trend models, autoregressive models and exponential smoothing models (i.e., 
exponential weighted moving averages) are all special cases of ARIMA models.  

4.4.2.2 Description of ARIMA Representation 

In general, a non-seasonal ARIMA model is characterized by the notation ARIMA (p, 
d, q), where “p” is the number of autoregressive terms, “d” is the number of non-
seasonal differences and “q” is the number of lagged forecast errors in the prediction 
equation.  

In ARIMA parlance, TS is a linear function of past actual values and random shocks. 
For instance, given a time series process (Yt), a first order auto-regressive process is 
denoted by ARIMA (1,0,0) or simply AR(1) and is given by: 

Yt = μ + φ1*Yt-1 + εt                                                                                         (4.1)  

where the auto regressive coefficient is denoted by φ "phi". 

and a first order moving average process is denoted by ARIMA (0,0,1) or simply 
MA(1) and is given by: 

Yt = μ - θ1 *εt-1 + εt                                                                                           (4.2) 

Where θ, the coefficient of the lagged forecast error, is denoted by the Greek letter 
"theta". 
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Alternatively, the model ultimately derived, may be a mixture of these processes and of 
higher orders as well. Thus a stationary ARMA (p, d, q) process is defined by the 
equation: 

𝜑𝑝(𝐵)𝛻𝑑𝑌𝑡 =  𝜃𝑞 (𝐵)𝜀𝑡                                                                                (4.3)  
 

Where εt’s are independently and normally distributed with zero mean and constant 
variance σ2 for t = 1, 2,…..n.  

4.4.2.3 Description of Seasonal ARIMA Representation 

Identification of relevant models and inclusion of suitable seasonal variables are 
necessary for seasonal. The Seasonal ARIMA i.e. ARIMA (p, d, q) (P, D, Q)s model, as 
reported in (Shumway and Stoffer, 2000), is defined by: 
 

φp (B) ∅P (Bs) ∇ d 𝛻𝑠𝐷  Yt = ΘQ (Bs) θq (B) εt                                               (4.4) 

 

Where: 
φp (B) = 1 - φ1 B-….-φp Bp                                                                               (4.5) 

 

θq (B) = 1-θ1 B-…-θq Bq                                                                                 (4.6) 
 

∅P (Bs) = 1-∅1 Bs-…-∅P BsP ,                                                                           (4.7) 
 

ΘQ (Bs) = 1- Θ1 Bs-…-ΘQ BsQ                                                                                                                  (4.8) 

Where B is the backshift operator (i.e. B yt= yt-1, B2 yt = yt-2 and so on),’s’ is the seasonal 
lag and ‘εt’ is the sequence of independent normal error variables with mean 0 and 
variance σ2.  ∅ and φ are respectively the seasonal and non-seasonal auto regressive 
parameters. Θ and θ are respectively seasonal and non-seasonal moving average 
parameters. p and q are orders of non-seasonal auto regression and moving average 
parameters respectively whereas P and Q are that of the seasonal auto regression and 
moving average parameters respectively. Also d and D denote non-seasonal and 
seasonal differences respectively. 
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4.4.2.4 The Art of ARIMA Model Building 

(i) Identification 

Identification of the general form of a univariate model involves two steps. Within the 
first step the data series is analyzed for stationarity and normality (Brocklebank and 
Dickey, 2003). There are two kinds of stationarity, viz., stationarity in ‘mean’ and 
stationarity in ‘variance’. A cursory look at the graph of the data and structure of 
autocorrelation and partial correlation coefficients may provide clues for the presence of 
stationarity.  Appropriate differencing of the series is performed (if necessary) to 
achieve stationarity and normality. Stationarity in variance could be achieved by some 
modes of transformation, say, log transformation. This is applicable for both seasonal 
and non-seasonal stationarity. Thus, if ‘Yt’ denotes the original series, the non-seasonal 
difference of first order is: 

Xt = Yt – Yt-1                                                                                                       (4.9) 

Followed by the seasonal differencing (if needed) 
Zt = Xt – Xt—s = (Yt – Yt-1) – (Yt-s - Yt-s-1)                                                     (4.10) 

In the second step the temporal correlation structure of the transformed data is 
identified by examining its autocorrelation (ACF) and partial autocorrelation (PACF) 
functions (Box and Jenkins 1976) and to find the initial values for the orders of non-
seasonal and seasonal parameters, p, q, and P, Q. 

They could be obtained by looking for significant autocorrelation and partial auto- 
correlation coefficients. If second order autocorrelation coefficient is significant, then an 
AR (2), or MA (2) or ARMA (2) model could be tried to start with. This is not a hard 
and fast rule, as sample autocorrelation coefficients are   poor estimates of population 
autocorrelation coefficients. Still they can be used as initial values while the final 
models are achieved after going through the stages repeatedly. Usually up to order 2 for 
p, d, or q are sufficient for developing a good model in practice. 

(ii) Estimation 

At the identification stage several models are tentatively chosen that seem to provide 
statistically adequate representations of the available data. Then precise estimates of 
parameters of the model are to be obtained by least squares as advocated by Box and 
Jenkins. Standard computer packages like SAS, SPSS  are available for finding the 
estimates of relevant parameters using iterative procedures.  

(iii) Diagnostics 

Different models can be obtained for various combinations of AR and MA individually 
and collectively (Khattree and Rao, 2003). The best model is obtained with following 
diagnostics: 
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(a) Low Akaike Information Criteria (AIC)/ Bayesian Information Criteria (BIC)/ 
Schwarz-Bayesian Information Criteria (SBC) 

AIC is given by: 
 

AIC = (-2 log L + 2 m)                                                                                  (4.12) 

Where m = p + q + P + Q and L is the likelihood function. Since -2 logL is 
approximately equal to {n (1+log 2π) + n log σ2} where σ2 is the model MSE, and AIC 
can be written as AIC={n (1+log 2π) + n log σ2 + 2 m}and because the first term in this 
equation is a constant, it is usually omitted while comparing between models. As an 
alternative to AIC, sometimes SBC is also used which is given by: 

 

SBC = log σ2 + (m log n) /n.                                                                       (4.13) 

(b) Plot of residual’s ACF 

Once the appropriate ARIMA model has been fitted, one can examine the goodness of 
fit. If the fitted model is adequate, the residuals should be approximately white noise. 
So, we should check if the residuals have zero mean and if they are uncorrelated. The 
key instruments are the time plot, the ACF and the PACF of the residuals. The 
theoretical ACF and PACF of white noise processes take value zero for lags J ≠ 0, so if 
the model is appropriate most of the coefficients of the sample ACF and PACF should 
be close to zero. In practice, we require that about the 95 % of these coefficients should 
fall within the non-significance bounds. 

(c) Tests for Residual Normality 

Any graph suitable for displaying the distribution of a set of data is suitable for judging 
the normality of the distribution of a group of residuals.  The most common types are; 
Histogram and Normal probability plots. 

The histogram is a frequency plot obtained by placing the data in regularly spaced cells 
and plotting each cell frequency versus the center of the cell. The histogram is not be 
the best choice for judging the distribution of residuals If the sample sizes of residuals 
are generally small (<50). The normal probability plot should produce an approximately 
straight line if the points come from a normal distribution. Small departures from the 
straight line in the normal probability plot are common, but a clearly "S" shaped curve 
on this graph suggests a bimodal distribution of residuals. Breaks near the middle of this 
graph are also indications of abnormalities in the residual distribution. Figure 4.1 
illustrate the steps o the ARIMA model. 
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Figure 4.1: Box-Jenkins modeling approach                                                                               
after (Box and Jenkins, 1970)
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4.4.3    Development of an ARIMA Model to fit the SPI _3 Time Series 

4.4.3.1 Computation of the Standardized Precipitation Index SPI_3 

The frequency of drought events was calculated using the Standardized Precipitation 
Index (SPI). Figure 4.2 shows a sample of calculated SPI_3 time series. All details 
about the methodology and the results were presented in chapter 3 

 

Figure 4.2: A sample of SPI time series 

Time series model development consists of three stages identification, estimation, and 
diagnostic checking (Box and Jenkins, 1970). The identification stage involves 
transforming the data (if necessary) to improve the normality and the stationarity of the 
time series and determining the general form of the model to be estimated. During the 
estimation stage the model parameters are calculated. Finally, diagnostic checks of the 
model are performed to reveal possible model inadequacies and to assist in selecting the 
best model. 

The data set from 1961 to 2007 were used for model development for SPI_3, SPI_6, and 
SPI_9, SPI_12 and SPI_24 series.  The models have been developed for SPI_3, SPI 6, 
SPI 9, SPI 12, and SPI 24. For illustration, two examples are described briefly for SPI_3 
and SPI_6. Details about SPI_9, SPI_12 and SPI_24 are presented in Appendices. The 
model identified for SPI_3 is ARIMA model, and for SPI_6, SPI_9, SPI_12 and SPI_24 
is SARIMA model.  
 

 

 

 

Months

SP
I-

3 

 

 

0 100 200 300 400 500 600
-4

-3

-2

-1

0

1

2

3

4
SPI Time Series
Trend



4.4 Development of ARIMA model to fit the SPI _3 Time Series                                                                                          77 

 

4.4.3.2 Model Identification 

The ACF and PACF have been estimated for SPI_3, as shown in figure 4.3, and figure 
4.4 respectively. The ACF and PACF show the series is stationary. The ACF is damping 
out in sine-wave manner with significant spikes at the first two lags. The first four 
values are significant in PACF, which indicates the process can be modeled as a 
combination of both AR and MA processes. Alternative ARIMA models have been 
identified by considering the ACF and PACF graphs of the SPI series. This indicates a 
possible ARIMA (p, 0, q) model with p = 1–4 and q = 1–3. All the combination have 
been tried to determine the best model out of these candidate models. The model with 
the minimum Akaike Information Criterion (AIC) and minimum Schwarz Bayesian 
Criterion (SBC) was selected as best fit model. Usually the model with the smallest AIC 
has residuals, which resemble white noise (Makridakis and Wheelwright, 1978). Table 
4.1 presents a Comparison of AIC and SBC for the selected candidate models. It is 
clearly from table 4.1 that the model ARIMA(3,0,2) is the one with min AIC, but the 
two models ARIMA(1,0,3) and ARIMA(3,0,2) are examined to compare between the 
results of the two models. 

 

Figure 4.3: ACF plot used for the selection of candidate models for SPI_3 series 
 

 

Figure 4.4: PACF plot used for the selection of candidate models for SPI_3 series 
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Table 4.1: Comparison of AIC and SBC for the selected candidate models 

SPI series Model AIC SBC 

SPI-3 

ARIMA(1,0,2) 
ARIMA(1,0,3) 
ARIMA(3,0,1) 
ARIMA(3,0,2) 
ARIMA(3,0,2) 
ARIMA(4,0,0) 
ARIMA(4,0,1) 
ARIMA(4,0,2) 
ARIMA(4,0,3) 
ARIMA(4,1,2) 
ARIMA(5,0,0) 
ARIMA(5,0,1) 
ARIMA(5,0,2) 

1056.32 
1056.11 
1144.70 
1055.48 
1058.20 
1110.23 
1111.87 
1057.04 
1058.93 
1150.93 
1111.58 
1112.72 
1058.96 

1073.73 
1077.88 
1166.47 
1081.59 
1088.67 
1131.99 
1137.98 
1087.52 
1093.75 
1181.39 
1137.70 
1143.19 
1093.79 

 

4.4.3.3 Parameters Estimation 

After the identification of the model using the AIC and SBC criteria, estimation of 
parameters is done. During the estimation stage, model estimates were calculated 
simultaneously for AR and MA parameters. Model estimates were made using the 
procedure outlined by Box and Jenkins (Box and Jenkins, 1970). Preliminary estimates 
of the parameters were computed from the ACF of the series developed in the 
identification stage. These preliminary estimates were then used as the starting values in 
an optimization algorithm for nonlinear least squares that minimize the residual sum of 
squares. The values of the parameters are shown in table 4.2. Model parameters have 
been calculated using a licensed software package of the statistical program SPSS. 
 

Table 4.2: Statistical parameters of ARIMA (1,0,3), and ARIMA (3,0,2)  

 
Auto regressive 

parameters 

Moving 
average 

parameters 

Residual sum of 
squares 

Residual variance 

ARIMA (1,0,3) 
0.8271 

 
 

- 0.1069 
- 0.1418 
0.6135 

 
207.94 

 

 
0.3638 

 

ARIMA (3,0,2)                                                  
0.07437 
- 0.0258 
0.1217 

- 0.8832 
- 0.8548 

 

 
206.98 

 

 
0.3627 

 

 



4.4 Development of ARIMA model to fit the SPI _3 Time Series                                                                                          79                                                                                                                 

 

  
 

4.4.3.4 Diagnostic Check 

As mentioned before two models have been selected to compare between their results, 
namely ARIMA (1, 0, 3) and ARIMA (3, 0, 2). The models have been identified and the 
parameters have been estimated, then the model verification is concerned with checking 
the residuals of the model to see if they contain any systematic pattern which still can be 
removed to improve on the chosen ARIMA. For a good forecasting model, the residuals 
left over after fitting the model should be white noise. This is done through examining 
the autocorrelations and partial autocorrelations of the residuals of various orders. For 
this purpose, the various correlations up to 70 lags have been computed. Also the 
histogram and the normal probability plot of the residuals have been drawn to check if 
the residual came from normal distribution or not. 

The Ljung–Box test, which is commonly used in auto regressive integrated moving 
average (ARIMA) modeling, has been applied to the residuals of the fitted ARIMA 
models. The Ljung–Box test is a type of statistical test of whether any of a group of 
autocorrelations of a time series is different from zero. Instead of testing randomness at 
each distinct lag, it tests the "overall" randomness based on a number of lags, and is 
therefore a portmanteau test. 

I. ARIMA (1, 0, 3) 

(RACF) the residual ACF function and (RPACF) the residual PACF function should be 
calculated to determine whether residuals are white noise. If some of the RACF or some 
of the RPACF are significantly different from zero, this may indicate that the present 
model is inadequate. The ACF and PACF of residuals of the model ARIMA (1,0,3) are 
shown in figure 4.5 and 4.6 respectively. As shown in figures 4.5 and 4.6, most of the 
values of the RACF and RPACF are within confidence limits except very few 
individual correlations appear large compared with the confidence limits, which is 
expected among 70 lags.  

The figures indicate no significant correlation between residuals. Histogram of residuals 
for SPI_3 is shown in Figure 4.7. The histogram shows that the residuals are normally 
distributed. This signifies residuals to be white noise. The graph of the cumulative 
distribution for the residual data normally appears as a straight line when plotted on 
normal probability paper as shown in figure 4.8 (Chow et al. 1988). The figure shows 
that, the normal probability plot of the residuals look fairly linear thus the normality 
assumptions of the residuals hold (Durbin 1960). 

All results of the Ljung–Box test indicated a failure to reject the null hypothesis that a 
series of residuals exhibits no autocorrelation. 

http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics�
http://en.wikipedia.org/wiki/Statistical_test�
http://en.wikipedia.org/wiki/Autocorrelation�
http://en.wikipedia.org/wiki/Time_series�
http://en.wikipedia.org/wiki/Randomness�
http://en.wikipedia.org/wiki/Lag�
http://en.wikipedia.org/wiki/Portmanteau_test�
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        Figure 4.5: ACF plot used for diagnostic check of the model ARIMA (1, 0, 3) 

 

          Figure 4.6: PACF plot used for Diagnostic Check of the model ARIMA (1, 0, 3) 

 

           Figure 4.7: Histogram of the residuals – ARIMA (1, 0, 3) 

 

  Figure 4.8: Normal probability plot of the residuals- ARIMA (1, 0, 3) 
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II.  ARIMA (3, 0, 2) 

(RACF) the residual ACF function and (RPACF) the residual PACF function of the 
model ARIMA (3,0,2) are shown figure 4.9 and 4.10 respectively. There is no big 
difference between the plots of the model ARIMA (1,0,3) and the model ARIMA 
(3,0,2). Also as shown in figures 4.9 and 4.10, most of the values of the RACF and 
RPACF are within confidence limits except very few individual correlations appear 
large compared with the confidence limits. The figures indicate no significant 
correlation between residuals. Histogram of residuals for SPI_3 in figure 4.11 shows 
that the residuals are normally distributed. This signifies residuals to be white noise. 
The graph of the cumulative distribution for the residual data normally appears as a 
straight line as shown in figure 4.12. 
                  

 

Figure 4.9: ACF plot used for Diagnostic Check of the model ARIMA (3, 0, 2) 
 

 

Figure 4.10: PACF plot used for Diagnostic Check of the model ARIMA (3, 0, 2) 
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Figure 4.11: Histogram of the residuals – ARIMA (3, 0, 2) 

 

Figure 4.12: Normal probability plot of the residuals- ARIMA (3, 0, 2) 
 

4.4.3.5 Drought Forecasting From Selected Models 

ARIMA models are developed basically to forecast the corresponding variable. There 
are two groups of forecasts, namely the sample period forecasts and post-sample period 
forecasts. The first group is used to develop confidence in the model and the second to 
generate genuine forecasts for use in planning and other purposes. The ARIMA model 
can be used to yield both groups of forecasts. The forecast has been done for 1-month 
lead-time using the best models from historical data. Results of forecasting of the 
ARIMA model (1, 0, 3) are shown in figures 4.13, and figure 4.14. Figure 4.14 is a 
zoom window for the months from 550 to the end of the SPI time series, and this zoom 
window was taken from figure 4.13.  Results of forecasting of the ARIMA model (3, 0, 
2) are shown in figures 4.15, and figure 4.16. Figure 4.16 is a zoom window for the 
months from 550 to the end of the SPI time series. It can be clearly observed that the 
forecasted values of the SPI follow the calculated values closely. To evaluate the model, 
basic statistical properties have been compared between observed and forecasted data. 
The results, as shown in table 4.3, show that predicted values preserve the basic 
statistical properties of the observed series. 
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Table 4.3: Statistical properties of ARIMA (1,0,3), and ARIMA (3,0,2) Results 

Model 
Mean of the 

Calculated  SPI 
Mean of the 

forecasted  SPI 

Standard 
deviation of the 
Calculated  SPI 

Standard deviation 
of the 

forecasted  SPI 
RMSE 

ARIMA 
(1,0,3) 

-2.6132e-005 -1.9711e-004 1.0009 0.8056 0.6023 

ARIMA 
(3,0,2) 

-2.6132e-005 -3.3537e-005 1.0009     0.7996 0.6009 

 

 

Figure 4.13: Comparison of calculated SPI with forecasted SPI using ARIMA (1, 0, 3) 

 

Figure 4.14: Comparison of calculated SPI with forecasted SPI using ARIMA (1, 0, 3) 
(From month 550 to the end of the time series) 
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Figure 4.15: Comparison of calculated SPI with forecasted SPI using ARIMA (3, 0, 2) 
 

 

Figure 4.16: Comparison of calculated SPI with forecasted SPI using ARIMA (3, 0, 2) 
(From month 550 to the end of the time series) 

Table 4.4 presents a comparison of calculated SPI with forecasted SPI for both ARIMA 
(1,0,3) and ARIMA(3,0,2). Because of the long length of the SPI time series, only the 
last 21 months have been selected as shown in table 4.4. For illustration, for example in 
ARIMA (1,0,3), the SPI_3 in the second column is the calculated SPI for the total 
period. The second column was used to estimate the statistical parameters of the model 
(see table 4.3) then the forecasted values have been calculated which are in the third 
column. In the fourth column the new SPI time series has been selected. This time series 
is the same as the one which is in the second column except the last three values. This 
was done to forecast these three values to compare between the results. In this case new 
statistical parameters were estimated, then the forecasted values have been calculated as 
shown in fifth column in the table. It is clear from the fourth and the fifth columns that 
there is no big difference between the calculated and the forecasted values of the last 
three months. Comparison of the two models ARIMA (1,0,3) and ARIMA (3,0,2) 
demonstrated that there is no clear difference between the results of the two models. 
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As shown in table 4.4, the last three values in the 5th column which have been 
forecasted based on the data in the 4thcolumn are very closely to the observed data in the 
second column. It is worth mentioning that this is not a special feature for the last three 
values and this has been confirmed by applying the ARIMA model to different lengths 
of the SPI time series. 
 

Table 4.4: Comparison of calculated SPI with forecasted SPI 

ARIMA(1,0,3) ARIMA(3,0,2) 

 SPI_3 
Forecasted 

values 
SPI_3 

Forecas
ted 

values 
SPI_3 

Forecasted 
values 

SPI_3 
Forecasted 

values 

554 1.187 0.8851 1.187  1.187 .89597 1.187  

555 1.442 1.0576 1.442  1.442 1.07650 1.442  

556 -.078 0.6938 -.078  -.078 .70360 -.078  

557 -.132 -0.2769 -.132  -.132 -.27598 -.132  

558 .181 -0.4388 .181  .181 -.37286 .181  

559 .740 0.7102 .740  .740 .61969 .740  

560 .424 0.6148 .424  .424 .61423 .424  

561 -.440 -0.0456 -.440  -.440 -.03075 -.440  

562 -.428 -0.4519 -.428  -.428 -.47829 -.428  

563 .269 -0.2899 .269  .269 -.27457 .269  

564 .455 0.5279 .455  .455 .50029 .455  

565 1.088 0.4330 1.088  1.088 .39878 1.088  

566 -.047 0.6170 -.047  -.047 .67127 -.047  

567 .726 0.0286 .726  .726 -.02137 .726  

568 .480 0.1797 .480  .480 .23417 .480  

569 1.283 0.9356 1.283  1.283 .86749 1.283  

570 2.331 0.7128 2.331  2.331 .74812 2.331  

571 2.776 1.9661 2.776  2.776 1.95123 2.776  

572 2.447 2.4000  2.3997 2.447 2.38402  2.38303 

573 1.082 1.1514  1.1084 1.082 1.15480  1.09348 

574 0.382 0.3971  0.4207 0.382 0.34435  0.35730 
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4.4.4    Development of an ARIMA Model to Fit the SPI _6 Time Series 

4.4.4.1 Model Identification 

Figure 4.17 shows the SPI_6 time series. The ACF and PACF have been estimated for 
SPI-6, as shown in figure 4.18, and figure 4.19 respectively. The ACF is damping out 
with mixture of sine and exponential curve. The first value is significant in PACF which 
indicates an AR (1) as non-seasonal part of the model. Also in the PACF, there are 
significant spikes presented near lag 6, 12 and 18 which indicates a SARIMA model.  

Alternative SARIMA models were identified by considering the ACF and PACF graphs 
of the SPI series. This indicates a possible SARIMA (p, d, q)(P,D,Q)s models with p = 
1:4 , d=0:1, q = 1:4, P=1:4, D=0:1 and Q=1:4. All the combinations were examined to 
determine the best model out of these candidate models. The model that gives the 
minimum Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (SBC) 
is selected as best fit model. Table 4.5 presents a Comparison of AIC and SBC for the 
selected candidate models. It is clearly from table 4.5 that the model SARIMA (1, 0, 
3)(1,0,3)6 is the one with min AIC . 

 

Figure 4.17: SPI_6 time series 

 

Figure 4.18: ACF plot used for the selection of candidate models for SPI_6  series 
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Figure 4.19: PACF plot used for the selection of candidate models for SPI_6 series 
 

Table 4.5: Comparison of AIC and SBC for the selected candidate models 

SPI series Model AIC SBC 

SPI-6 ARIMA(1,0,0) 
ARIMA(1,0,1) 

ARIMA(1,0,0) (1,0,0)6 
ARIMA(1,0,0) (2,0,0)6 
ARIMA(1,0,0) (3,0,0)6 
ARIMA(1,0,0) (4,0,0)6 
ARIMA(1,0,0) (1,0,1)6 
ARIMA(1,0,0) (2,0,1)6 
ARIMA(1,0,0) (3,0,1)6 
ARIMA(1,0,0) (4,0,1)6 
ARIMA(1,0,0) (1,1,1)6 
ARIMA(1,0,0) (2,1,1)6 
ARIMA(1,0,0) (3,1,1)6 
ARIMA(1,0,0) (4,1,1)6 
ARIMA(1,0,1) (1,1,1)6 

ARIMA(1,0,3) (1,0,3)6 

ARIMA(2,0,0) (0,0,0)6 

ARIMA(2,0,0) (1,0,0)6 

ARIMA(2,0,0) (1,0,1)6 
ARIMA(2,0,1) (2,0,2)6 
ARIMA(2,0,2) (2,0,2)6 

812.51 
812.82 
704.38 
645.53 
635.47 
621.32 
598.44 
600.33 
600.65 
601.37 
739.11 
680.64 
674.92 
657.58 

738.508 
581.33 
812.45 
705.56 
600.93 
593.34 
622.42 

821.20 
825.86 
717.42 
662.92 
657.21 
647.40 
615.83 
622.06 
626.74 
631.80 
756.46 
702.32 
700.94 
787.94 
760.19 
620.46 
825.50 
722.95 
622.12 
628.11 
661.55 
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4.4.3.2 Parameters Estimation 

After the identification of the model using the AIC and SBC criteria, estimation of 
parameters was done. During the estimation stage, the auto regressive and moving 
average parameters have been calculated simultaneously for the nonseasonal part of the 
model (AR and MA) and also for the seasonal part of the model (SAR and SMA) as 
well. The values of the parameters are shown in table 4.6. 

Table 4.6: Statistical parameters of the model SARIMA (1,0,3)(1,0,3)6 

 Non-seasonal 
parameters 

Seasonal  
parameters 

Residual 
Sum of 
Squares 

Residual 
Variance 

SARIMA 
(1,0,3)(1,0,3)6 

 

AR 1    = 0.9533 

MA1 =   - 0.0495 

MA2 =   - 0.0227 

MA3 =   - 0.1879 

 

SAR 1  = -0.9376 

SMA1 = - 0.2314 

SMA2 = 0.7747 

SMA3 = 0.0114 

 

89.66 

 

 

0.155 

 

4.4.4.3 Diagnostic Check 

As mentioned before in table 4.5 the model SARIMA (1, 0, 3)(1,0,3)6 has been selected 
as  the one with min AIC. The model has been identified and the parameters have been 
estimated, the model verification is concerned with checking the residuals of the model. 
As mentioned before in the SPI_3 ARIMA models, for a good forecasting model, the 
residuals left over after fitting the model should be white noise. This is done through 
examining the autocorrelations and partial autocorrelations of the residuals of various 
orders. For this purpose, the various correlations up to 70 lags have been computed. The 
histogram Also and the normal probability plot of the residuals have been drawn to 
check if the residual came from normal distribution or not. 

The ACF and PACF of residuals of the model SARIMA (1, 0, 3)(1,0,3)6 are shown in 
figure 4.20 and 4.21 respectively. As shown in figures 4.20 and 4.21, most of the values 
of the RACF and RPACF lies within confidence limits except very few individual 
correlations appear large compared with the confidence limits, which is expected among 
70 lags. The figures indicate no significant correlation between residuals. Histogram of 
residuals for SPI_6 is shown in Figure 4.22. The histogram shows that the residuals are 
normally distributed. This signifies residuals to be white noise. The graph of the 
cumulative distribution for the residual data normally appears as a straight line as shown 
in figure 4.23. The figure show the normal probability plot of the residuals look fairly 
linear, the normality assumptions of the residuals hold (Durbin 1960). 
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Figure 4.20: ACF plot used for Diagnostic Check of the model                                         
SARIMA (1, 0, 3)(1,0,3)6 

 

 

            Figure 4.21: PACF plot used for Diagnostic Check of the model                
SARIMA (1, 0, 3)(1,0,3)6 

 

 

Figure 4.22: Histogram of the residuals – SARIMA (1, 0, 3)(1,0,3)6 
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Figure 4.23: Normal probability plot of the residuals -SARIMA (1, 0, 3)(1,0,3)6 

4.4.4.4 Drought Forecasting with Selected Models 

Results of forecasting of the SARIMA (1, 0, 3)(1,0,3)6 are shown in figures 4.24 and 
figure 4.25. Figure 4.25 is a zoom window for the months from 550 to the end of the 
SPI time series, and this zoom window was taken from figure 4.24. 

It is observed that, the forecasted values of the SPI follow the calculated values very 
closely. Basic statistical properties are compared between observed and forecasted data 
for one month ahead time. The results show that forecasted values preserves the basic 
statistical properties of the observed series (table 4.7). 
 

Table 4.7: Statistical parameters of the model SARIMA (1, 0, 3)(1,0,3)6 

Model 
Mean of the 
Calculated SPI 

Mean of the 
forecasted SPI 

Standard 
deviation of the 
calculated SPI 

Standard deviation 
of the forecasted 
SPI 

RMSE 

SARIMA                           
(1, 0, 3)(1,0,3)6 

  1.9264e-004 -8.7054e-004     1.0010   0.9151 0.398 
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Figure 4.24: Comparison of calculated SPI with forecasted SPI using                           
SARIMA (1, 0, 3)(1,0,3)6 

 

Figure 4.25: Comparison of calculated SPI with forecasted SPI using                           
SARIMA (1, 0, 3)(1,0,3)6 (From month 550 to the end of the time series) 

Table 4.8 presents a comparison of calculated SPI_6 with forecasted SPI_6 for the 
model SARIMA (1, 0, 3)(1,0,3)6. Because of the long length of the SPI time series, only 
the last 21 months were. The first column in the table is the number of months and the 
second column is the calculated SPI_6 for the total period. The second column was used 
to estimate the statistical parameters of the model (see table 4.7), then the forecasted 
values have been calculated as in third column. In the fourth column the new SPI_6 
time series was selected. This time series is the same as the one which was used in the 
second column except the last three values. This means that the length of the new series 
is shorter than the original one by three months. This was done to forecast these three 
values to compare the results. In this case new statistical parameters were estimated then 
the forecasted values have been calculated as shown in fifth column in the table. It is 
clear from the fourth and the fifth columns that there is no big difference between the 
calculated and the forecasted values of the last three months. 
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Table 4.8: Comparison of calculated SPI with forecasted SPI 

SARIMA (1, 0, 3)(1,0,3)6 
 SPI_6 

Forecasted 
values 

SPI_6 
Forecasted 

values 

552 0.51 .16295 0.51  

553 0.25 .61353 0.25  

554 0.70 .80345 0.70  

555 0.93 .76410 0.93  

556 0.46 .44820 0.46  

557 0.16 .29139 0.16  

558 -0.18 -.15362 -0.18  

559 0.15 .00975 0.15  

560 0.48 .01814 0.48  

561 0.06 .14788 0.06  

562 0.36 .14961 0.36  

563 0.10 .62072 0.10  

564 0.69 .06699 0.69  

565 1.06 .63987 1.06  

566 0.80 .81163 0.80  

567 2.02 1.07914 2.02  

568 2.36 1.85954 2.36  

569 2.44 2.53403  2.54764 

570 2.34 2.09435  2.18563 

571 2.24 1.95113  1.78978 



 

 

4.5 Conclusion 

Drought monitoring and forecasting are essential tools for implementing appropriate 
mitigation measures in order to reduce negative impacts. Drought forecasting remains a 
difficult but vitally important task for hydrometeorologists and water resources managers. 
The availability of forecasts of drought indices, and of the related confidence intervals for a 
given site, could be a helpful tool to the decision making process for drought mitigation. 

In this Study, the SPI index has been used as a drought indicator for drought forecasting due 
to its many advantages over other drought indices. This study has investigated the capability 
of ARIMA and SARIMA models in drought forecasting using the correlation methods of Box 
and Jenkins and the AIC and SBC structure selection criteria. Validation of the forecasting 
models has been carried out by comparing SPI values computed on observed precipitation 
and the corresponding forecasts. The results showed a fairly good agreement between 
observations and forecasts, as it has also been confirmed by the values of some performance 
indices. Evaluation of models showed that the results seem to be better for higher SPI series 
(SPI 6, SPI 9,..., and SPI 24)  and this  may be due to increase in filter length which reduces 
the noise more effectively. Finally, the good fitting of stochastic models such as ARIMA and 
SARIMA models to hydrologic time series such as SPI time series will result in a better tool 
that could be used for water resource planning within the basin. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

  
 

Chapter 5 

Stochastic Simulation of Monthly Streamflow  

5.1 Introduction 

Stochastic simulation of hydrologic time series has been widely used for solving various 
problems associated with the planning and management of water resources systems for 
several decades (Kim et al., 2004). Typical examples are the determination of a 
reservoir capacity, evaluations of adequacy and reliability of a reservoir for a given 
capacity, evaluation of adequacy of a water resource management strategy under 
various potential hydrologic scenario, and evaluation of the performance of an irrigation 
system under uncertain irrigation water distributions (Salas and Frevert). Stochastic 
simulation of hydrologic time series such as streamflow is typically based on 
mathematical models and a number of models have been suggested in (Singh and 
Frevert, 2001). Using one type of model or another for a particular case at hand depends 
on several factors such as, physical and statistical characteristics of the process under 
consideration, data availability, the complexity of the system and the overall purpose of 
the simulation study. Given the historical record, one would like the model to reproduce 
the historical statistics. This is why, a standard step in streamflow simulation studies is 
to determine the historical statistics. Once a model has been selected, the next step is to 
estimate the model parameters, then to test whether the model represents reasonably 
well the process under consideration and finally to carry out the needed simulation 
study (Singh and Frevert, 2001). 

Time series of streamflow is an essential information for planning, design and operation 
of many water resources systems. However, in most instances, time series of flow 
records at the location of interest are limited. Therefore, the use of available historic 
streamflow may be insufficient for obtaining  reliable estimate of flow statistics (Juran  
and Arup, 2007). In the event of non availability of a long series of historical 
streamflow record, generation of the data series is of utmost importance. Classical 
stochastic models, such as the Thomas-Fiering model (Altunkaynak et al., 2005; Phien 
and Ruksasilp, 1981), auto regressive moving average (ARMA) models (Box and 
Jenkins, 1970) are generally used for synthetic streamflow generation. Water resource 
planners must consider streamflow variability to provide effective long-term planning 
and management. Incorporating this variability has traditionally been achieved through 
generation of stochastic streamflow. Stochastic simulation of streamflow represents 
reasonable alternate streamflow comparable to observed data available in a river basin. 
These observed data are typically limited in time, limiting variability in the stochastic 
streamflow, particularly concerning the frequency of extremes (Prairie and Rajagopalan, 
2007). 
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In analyzing streamflow and rainfall sequences many hydrologists regard it as a 
realization of a stochastic process (Ismail et al., 2004). The generated data sequences, 
particularly monthly time series such as streamflow or rainfall are widely used in water 
resources planning and management to understand the variability of future system 
performance. Stochastic data generation aimed at generating synthetic data sequences 
that are statistically similar to the observed data sequences. Therefore, the generated 
data is important for more accurate solutions of various complex planning, design and 
operational problems in water resources development. 

Methods for design and operation of water supply reservoirs are usually deal with the 
basis of time intervals of one month which keeps the computing work within reasonable 
limits and appears to produce results of reasonable accuracy (Treiber and Schultz, 1976). 
By replacement of the observed time series by synthetically generated time series of a 
predetermined length, which are used for reservoir design, it became possible to make 
statistical statements on the reliability of the reservoir to fulfill a certain demand. 

In this study two models have been used to generate monthly inflow time series, namely 
the Thomas-Fiering model and the Monte-Carlo simulation model. The following 
section presents some details about these models. 

5.2. Description of Models 

5.2.1 Thomas-Fiering Model 

The first model that appeared in the hydrology literature for the generation of synthetic 
monthly flow sequences is that due to Thomas & Fiering in 1962 (Sen, 1978). Basically, 
this model is of a markovian nature with periodic parameters, namely, the monthly 
means, standard deviations and the lag-zero cross correlations between successive 
months. In its simplest form the model consists of twelve regression equations, one for 
each month. The method of Thomas and Fiering implicitly allows for the non-
Stationarity observed in monthly inflow data (Singhal et al., 1980). 

For the Thomas-Fiering model, synthetic monthly series is generated with the following 
recursive relationship: 

𝑄 𝑖+1 =   𝑄�𝑗+1 +  𝑏𝑗   �𝑄𝑖 − 𝑄�𝑗� + 𝑡𝑖 ∗ 𝑆𝑗+1 ∗   �1 − 𝑟𝑗2�
1
2�                 (5.1)    

Where: 

𝑄𝑖   = the inflow during the i month record from the start of the synthetic sequence. 

𝑄 𝑖+1 = the inflow during the (i+1) month. 

𝑄�𝑗 = the mean monthly inflow during the j month with a repetitive cycle of 12 months. 

𝑄�𝑗+1 = the mean monthly inflow during the month (j+1). 
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𝑏𝑗 = the regression coefficient for estimating the flow in the month j+1 from the month j. 

𝑡𝑖 = a normal random deviate with mean equal to zero and unit variance. 

𝑆𝑗+1= the standard deviation of the inflow in the month j+1. 

𝑟𝑗  = the correlation coefficient between the inflows of the j and j+1 month. 

Equation 5.1 is a linear regression model where the inflow in any month is a linear 
function of the inflow in the preceding month. The sequence of the inflow generated by 
Equation 5.1 possesses the same general statistical properties as those representing 
natural inflow. 

The log transformed historical monthly streamflow data could be used to generate 
synthetic monthly streamflow using the Thomas-Fiering model, as the log-transformed 
data were found to be normally distributed. The use of log transformed streamflow data 
has the advantage of eliminating the negative flows that occur occasionally when 
untransformed streamflow are used in the model (Juran  and Arup, 2007; Maass et al., 
1970).  

 5.2.2 Monte Carlo Simulation 

Simulation is a technique of performing sampling experiments on the model of the 
system (Ubeda and Allan, 1994). Stochastic simulation is experimenting with the model 
over time and includes sampling stochastic variates from probability distributions. 
Monte Carlo Simulation is a technique which has had a great impact in many different 
fields of computational science (Huber, 1997).  The Monte Carlo method is any method 
which solves a problem by generating suitable random numbers and observing that 
fraction of the numbers obeying some property or properties (Weisstein1). The method 
is useful for obtaining numerical solutions to problems which are too complicated to 
solve analytically.  

Monte Carlo methods use random numbers generated from a variety of distributions. 
Efficient generators have been developed for the most commonly used distributions 
(e.g. uniform, Gaussian, and exponential) and general techniques (e.g. inversion) are 
available for arbitrary distributions (Garcia and Wagner, 2006). In many simulation 
applications, it would be necessary to generate random values that are similar to 
existing data. This can be done by resampling from the original data. Another method is 
to fit a parametric distribution from one of the families of the most common 
distributions, and then generate random values from the selected distribution. However, 
choosing a suitable family can sometimes be difficult. In this study, three statistical 
distributions have been used, namely Gamma distribution, Pearson distribution and 
Johnson system of distributions.  

http://mathworld.wolfram.com/StatisticalDistribution.html�
http://mathworld.wolfram.com/StatisticalDistribution.html�
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5.2.2.1 Gamma Distribution 

In probability theory and statistics, the gamma distribution is a two-parameter family of 
continuous probability distributions. It has a scale parameter θ and a shape parameter k. 
If k is an integer then the distribution represents the sum of k independent exponentially 
distributed random variables, each of which has a mean of θ (which is equivalent to a 
rate parameter of θ−1) (Wikipedia1).  When used to describe the sum of a series of 
exponentially distributed variables, the shape factor represents the number of variables 
and the scale factor is the mean of the exponential distribution.  This is apparent when 
the profile of an exponential distribution with mean set to one is compared to a gamma 
distribution with a shape factor of one and a mean of one. 

A random variable X that is gamma-distributed with scale θ and shape k is denoted: 
𝑋~𝛤(𝑘, 𝜃) 𝑜𝑟 𝑋~ 𝐺𝑎𝑚𝑚𝑎 (𝑘,𝜃)                                              (5.2) 

The probability density function of the gamma distribution can be expressed in terms of 
the gamma function parameterized in terms of a shape parameter k and scale parameter 
θ. Both k and θ are positive values. The equation defining the probability density 
function of a gamma-distributed random variable x is 

𝑓(𝑥; 𝑘,𝜃) = 𝑥𝑘−1 𝑒
−𝑥

𝜃�

𝜃𝑘 𝛤(𝑘)    𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝑘,𝜃 > 0                               (5.3) 

The gamma distribution has long been used to model many natural phenomena, 
including daily, monthly and annual streamflow as well as flood flows (Bobée and 
Ashkar, 1991). In order to generate monthly inflow using Gamma distribution, the first 
step is to fit a gamma distribution to a given data series using the maximum likelihood 
estimation and then find the parameters of the selected distribution. Once one gets the 
parameters of gamma distribution, a new data series could be generated. 

 5.2.2.2 Pearson and Johnson Systems of Distribution 

The statistician Karl Pearson devised a system, or family, of distributions that includes a 
unique distribution corresponding to every valid combination of mean, standard 
deviation, skewness, and kurtosis. If the sample values for each of these moments from 
data are computed, it is easy to find the distribution in the Pearson system that matches 
these four moments and to generate a random sample (Mathworks1).The Pearson 
system embeds seven basic types of distribution together in a single parametric 
framework (Weisstein3). It includes common distributions such as the normal and t 
distributions, simple transformations of standard distributions such as a shifted and 
scaled beta distribution and the inverse gamma distribution. Statistician Norman 
Johnson devised a different system of distributions that also includes a unique 
distribution for every valid combination of mean, standard deviation, skewness, and 
kurtosis.  

http://en.wikipedia.org/wiki/Probability_theory�
http://en.wikipedia.org/wiki/Statistics�
http://en.wikipedia.org/wiki/Probability_distribution�
http://en.wikipedia.org/wiki/Scale_parameter�
http://en.wikipedia.org/wiki/Shape_parameter�
http://en.wikipedia.org/wiki/Integer�
http://en.wikipedia.org/wiki/Exponential_distribution�
http://en.wikipedia.org/wiki/Exponential_distribution�
http://en.wikipedia.org/wiki/Probability_density_function�
http://en.wikipedia.org/wiki/Gamma_function�
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5.3 Application to Actual Streamflow Data 

5.3.1 Applications and Data  

For testing the performance of the models which have been used in this study, the 
historical records of monthly inflow of four reservoirs have been used. Inflow data 
series used in this study were obtained from Ruhr River Association (Ruhrverband). 
The inflow time series present the inflow to the main reservoirs in the Ruhr river basin 
namely, Bigge reservoir (Biggetalsperre), Moehne reservoir (Möhnetalsperre), Henne 
reservoir (Hennetalsperre), and Sorpe reservoir (Sorpetalsperre). The considered period 
is from January 1967 to December 2008. All time series were checked to find out all 
missing data. 

Figure 5.1 presents the monthly inflow data series used in this study. Figure 5.2 shows 
another important graph, called a box plot with the statistics of a given data series. It 
shows, on a graph, the minimum and maximum values, the median value and the top 
and bottom quartiles for a given set of data. They consist of a box, which surrounds the 
middle half of the data, containing a line where the median value is. In addition, there 
are two lines stretching from each end of the box. The extents of these lines are the 
minimum and maximum data values of the set. Also the mean was added as a small 
square inside the box.  

 

 Figure 5.1: Observed monthly inflow (M. cu.m) - Bigge Reservoir  

 

       Figure 5.2: Box plot of monthly inflow time series (M. cu.m) - Bigge Reservoir
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5.3.2 Stochastic Generation of Streamflow Series 

5.3.2.1 Generation of monthly streamflow series Using Thomas-Fiering 
Simulation 

Monthly streamflow data have been generated by using Thomas-Fiering model. Initially 
a known streamflow of any month (say, December) along with the mean and standard 
deviation of historical streamflow for that month were fed to equation 5.1. The output 
produced by this equation is the streamflow of the succeeding month.  

As shown in equation 5.1, this equation contains a random part which has a great effect 
on the statistics of the generated streamflow especially the skewness of the generated 
inflow (figure 5.3).  

 

Figure 5.3: Comparison between skewness of observed and generated inflow (with a 
non specific random part) 

The primary model did not preserve the skewness coefficient, and it should be modified 
to meet the statistical requirement. The preservation could be ensured by several ways. 
In this study a new method was developed to preserve the statistical parameters of the 
historical data. The idea behind that, is to generate random numbers (random part in the 
model) that have the same statistical properties of the random part in the observed 
streamflow data series and this method has been applied using Monte Carlo model. 
After adjusting of the random part in the model, the basic statistics such as mean, 
standard deviation, skewness and correlation coefficient etc. between the historical and 
generated streamflow have been computed and compared. Obtained results show a 
harmonization between statistical properties of observed and generated inflow time 
series as shown in figure 5.4 and table 5.1. 

In this study 1000 years of synthetic streamflow has been generated using the selected 
model. It is worth to be mentioned that if the generated streamflow became negative, 
then it was replaced with the minimum observed streamflow the month. Another way to 
avoid negative values could be done by using log transformation (Maass et al., 1970).  
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(a) 

 
(b) 

 
(c) 

Figure 5.4:  Comparison of the statistics of historical and synthetic monthly streamflow 
using Thomas Fiering Model.  (Bigge Reservoir)                                                                                                                                                                  

                          (a) Mean                            (b) Standard deviation            (c) Skewness
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Table 5.1:  The basic statistics of historical and synthetic annual streamflow using Thomas Fiering model-(Bigge Reservoir) 

                        Month 

 

Properties N
ov

em
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r 

D
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A
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r 
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mean 

Obs. 25.09 35.00 37.13 28.31 31.70 18.02 10.24 8.27 9.88 7.80 9.59 16.38 

Pred. 26.41 36.10 36.88 30.03 32.47 19.35 10.46 7.65 10.12 8.09 9.07 16.38 

std. 

Obs. 14.04 17.10 19.86 16.23 16.90 11.01 6.28 6.44 11.23 8.13 9.31 14.20 

Pred. 13.75 17.80 20.15 16.77 17.97 11.31 6.24 5.88 11.58 7.89 9.06 14.18 

skewness 

Obs. 0.51 0.88 0.16 0.83 0.64 0.84 1.05 1.66 2.55 3.20 2.13 2.00 

Pred. 0.75 1.06 0.22 0.67 0.58 0.87 0.99 1.96 2.38 1.87 2.49 1.33 

median 

Obs. 22.92 32.03 36.40 24.69 30.68 16.13 8.43 6.31 5.97 6.36 6.70 12.69 

Pred. 24.65 33.11 35.78 27.27 28.96 17.91 8.80 5.60 4.95 5.19 5.70 13.48 
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                         Month 

Properties 

N
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kurtosis 

Obs. 2.43 3.87 2.10 3.29 2.78 3.77 3.22 5.33 10.03 16.55 7.31 8.19 

Pred. 3.36 4.19 2.07 2.82 2.41 3.83 3.51 6.99 8.63 7.41 9.82 5.01 

1st Q 

Obs. 13.36 24.00 20.83 16.47 17.36 9.22 5.42 3.84 3.75 2.57 4.00 7.60 

Pred. 16.00 22.77 19.32 16.29 17.10 10.48 5.82 3.74 3.51 2.41 3.56 4.87 

3rd Q 

Obs. 35.48 43.48 48.90 37.32 45.23 25.71 12.70 11.06 11.06 10.80 11.14 22.21 

Pred. 34.55 45.56 52.13 39.98 44.98 26.47 13.92 9.23 10.78 10.89 10.38 23.09 
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Figure 5.5 presents a comparison between the observed and the generated monthly 
inflow for Bigge reservoir. The empirical cumulative distribution function plots of the 
data are shown in figure 5.6. It is notable from figure 5.6 that the observed and the 
generated monthly inflow have the same distribution. 
 
 
 

 
 

Figure 5.5: Comparison of the observed and generated monthly inflow using           
Thomas-Fiering model (Bigge Reservoir) 

 

 

Figure 5.6:  Empirical cumulative distribution function (CDF) for the observed and 
generated monthly inflow using Thomas-Fiering model (Bigge Reservoir) 
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5.3.2.2 Generation of monthly streamflow series using Monte Carlo Simulation. 

Monthly streamflow data have been generated using Monte Carlo Simulation by 
applying several approaches namely Gamma distribution, Pearson distribution, and 
Johnson system of distributions. The Gamma distribution was fitted to the observed 
monthly time series then the parameters of the distribution were calculated then a 1000 
year of synthetic streamflow has been generated. Results of this approach show that, 
this method preserves the mean and the standard deviation but it does not preserve the 
skewness coefficient as shown in figure 5.8. 

 

Figure 5.7: Comparison between mean of observed and generated Inflow                    
(Gamma Distribution) (Bigge Reservoir)  

 

Figure 5.8: Comparison between skewness of observed and generated inflow              
(Gamma Distribution) (Bigge Reservoir) 
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For adequately modeling, one must have a distribution which would appropriately 
preserve the skewness inherent in the hydrologic data series. The result of the Pearson 
system showed that this approach is more capable than the other suggested approaches 
(Gamma distribution and Johnson Systems) to preserve the statistical properties of the 
observed data series because it covers a wide range of distribution shapes, including 
both symmetric and skewed distributions. 

To generate a synthetic streamflow from the Pearson distribution that closely matches 
the observed data, simply four sample moments have been computed (mean, standard 
deviation, skewness, kurtosis) and those moments have been treated as distribution 
parameters. Then one of the distributions within the Pearson system which matches the 
combination was selected. 

Streamflow series generated have been compared with the observed series on the basis 
of statistics properties (figure 5.9 and table 5.2). Figure 5.10 present a comparison 
between the observed and the generated monthly inflow for Bigge reservoir. The 
empirical cumulative distribution function plots of the data are shown in figure 5.11. It 
is notable from figure 5.11 that the observed and the generated monthly inflow have 
the same distribution. 

  

In this study, several run tests have been carried out. The sequences of the same length 
as the historical data series at each reservoir have been also generated and the three 
main descriptors, i.e. the mean, standard deviation and skewness coefficient for each 
month have been computed for each sequence. It was found that the values of these 
descriptors were closer to those of the historical sequence when only one sequence with 
larger sample was generated. A size of 1000 was found to produce satisfactory results, 
and that is the reason for its use. 
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(a)                                                                                 

     
(b)         

       
(c) 

Figure 5.9:  Comparison of the statistics of historical and synthetic monthly streamflow 
using Monte Carlo simulation (Bigge Reservoir)   

(a) Mean                     (b) Standard deviation                (c) Skewness 
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Table 5.2:  The basic statistics of historical and synthetic annual streamflow using Monte Carlo simulation (Bigge Reservoir) 

                            Month 

 

Properties N
ov

em
be
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D
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A
pr
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M
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Ju
ne
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pt
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r 

O
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mean 

Obs. 25.09 35.00 37.13 28.31 31.70 18.02 10.24 8.27 9.88 7.80 9.59 16.38 

Pred. 24.38 34.88 36.58 27.92 32.08 18.66 10.12 8.01 9.59 7.89 9.67 16.18 

std. 

Obs. 14.04 17.10 19.86 16.23 16.90 11.01 6.28 6.44 11.23 8.13 9.31 14.20 

Pred. 13.39 17.01 19.65 16.04 16.75 11.22 6.12 6.32 10.98 8.79 9.09 14.64 

skewness 

Obs. 0.51 0.88 0.16 0.83 0.64 0.84 1.05 1.66 2.55 3.20 2.13 2.00 

Pred. 0.56 0.87 0.19 0.83 0.54 0.92 1.09 1.73 2.70 3.49 2.04 2.25 

median 

Obs. 22.92 32.03 36.40 24.69 30.68 16.13 8.43 6.31 5.97 6.36 6.70 12.69 

Pred. 22.36 31.98 35.85 24.79 29.43 16.79 8.16 5.25 4.38 4.21 5.28 10.79 
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                            Month 

Properties 

N
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kurtosis 

Obs. 2.43 3.87 2.10 3.29 2.78 3.77 3.22 5.33 10.03 16.55 7.31 8.19 

Pred. 2.54 3.70 2.12 3.28 2.53 3.73 3.30 5.38 11.08 17.86 6.96 9.73 

1st Q 

Obs. 13.36 24.00 20.83 16.47 17.36 9.22 5.42 3.84 3.75 2.57 4.00 7.60 

Pred. 13.53 21.83 20.80 15.15 18.24 10.26 5.08 3.55 3.53 3.39 3.89 6.30 

3rd Q 

Obs. 35.48 43.48 48.90 37.32 45.23 25.71 12.70 11.06 11.06 10.80 11.14 22.21 

Pred. 33.04 45.37 51.02 37.16 43.92 24.82 13.22 9.82 10.42 8.20 11.68 20.73 
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Figure 5.10:  Comparison of the observed and generated monthly inflow using Monte 
Carlo simulation - (Bigge Reservoir) 

 

Figure 5.11:  Empirical cumulative distribution function (CDF) for the observed and 
generated monthly inflow Monte Carlo simulation (Bigge Reservoir)   
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5.3.3 Comparison between the Results of theThomas-Fiering Model and 
the Monte Carlo Simulation Model. 

To assess the performance of each model, the negative values, correlation between 
consecutive months and Skewness coefficient of the twelve monthly streamflow have 
been examined. These are shown in table 5.3 and table 5.4. All these parameters have 
been calculated for the historical data series and from a 1000-year generated sequence 
(the generated sequence in a month consisted of 1000 values representing the 
streamflow for that month in 1000 consecutive years). The values presented in table 5.3 
are average values of 10 runs. 

Table 5.3: Comparison of model performance based on 1000-years generated 
sequences. (Skewness &negative values) (Bigge reservoir) 

Month 

Skewness coefficient 

Historical data 
Thomass Fering 

model 
Monte Carlo 

simulation model 

Jan. 0.16 0.239 0.173 

Feb. 0.828 0.783 0.757 

Mar. 0.644 0.631 0.671 

Apr. 0.836 0.879 0.882 

May. 1.051 0.893 1.025 

Jun. 1.663 1.759 1.726 

Jul. 2.55 2.499 2.29 

Aug. 3.203 2.513 3.357 

Sep. 2.135 2.365 1.898 

Oct. 2 1.208 2.02 

Nov. 0.51 0.737 0.49 

Dec 0.88 0.987 0.9 

Number of negative 
values 

 103 9 
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Table 5.4: Comparison of model performance based on 1000-years generated 
sequences. (Correlation coefficient) (Bigge reservoir) 

Month 

Correlation coefficient between consecutive months 

Historical data 
Thomass Fering 

model 
Monte Carlo simulation 

model 

Jan. 0.102 0.107 0.019 

Feb. 0.013 -0.026 0.01 

Mar. 0.014 0.067 -0.013 

Apr. 0.076 0.06 -0.004 

May. 0.043 0.031 0.025 

Jun. 0.328 0.323 0.082 

Jul. 0.215 0.244 0.041 

Aug. 0.079 0.107 -0.01 

Sep. 0.336 0.279 -0.014 

Oct. 0.261 0.285 0.02 

Nov. 0.681 0.696 -0.01 

Dec 0.321 0.33 0.012 

 

By inspecting the results shown in tables 5.3 and 5.4, it appeared that the model of 
Thomas-Fiering, with modifications to account for the preservation of the monthly 
skewness coefficients, and Monte Carlo simulation model, both seem to perform very 
well as far as the mean, standard deviation and skewness coefficient are to be 
reproduced. However, it should be noted that the model of Thomas-Fiering preserve the 
correlation coefficient between consecutive months. In the other hand the number of 
negative values obtained by Thomas-Fiering model is more than those by Monte Carlo 
simulation model. These negative data can be avoided using log transformation. But 
when a transformation is applied to the historical record to make it normal or to get 
avoid occurrence of negative values in generated sequences, then the model preserves 
the parameters of the transformed data, but not those of the historical sequence (Phien 
and Ruksasilp, 1981). 
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5.4 Detection of Dry Periods 

As mentioned in previous chapters, the main goal of this thesis is to manage water 
resources during drought periods. So the next step after generating the monthly inflow 
is to detect dry periods. Several time steps have been applied, namely one year, two 
years, three years, four years and five years. In each time step the minimum summation 
of monthly inflow has been detected through the 1000 years of synthetic inflow. To 
illustrate this approach, a time step of three years is taken as an example. A moving 
window with 36 months width has been used to calculate the summation of generated 
monthly inflow. This window moves from the beginning to the end of the data series 
with one month lag. After that the minimum summation, i.e. the window with minimum 
summation, has been selected as the driest period. Results of this approach (figure 5.12) 
could be used as input to the Optimal Reservoirs Operation model presented in the next 
chapter. 

 

Figure 5.12:  An example for detection of driest period using generated monthly inflow 

5.5 Conclusion 

Generating of streamflow using stochastic models is a very important process for water 
resources planning and operational purposes. In this study, the stochastic streamflow 
generation model of Thomas-Fiering and Monte Carlo simulation model have been 
applied to synthetically generate monthly inflow scenarios for four reservoirs in the 
Ruhr river basin. A new method has been applied to Thomas-Fiering model to preserve 
the statistical parameters of the historical data. Comparison of statistical parameters 
such as means, standard deviation and skewness for observed data and generated data 
from the used approaches were presented. The results showed that generated data have 
successfully preserved the historical statistical parameters of streamflow. Results also 
showed that, the Thomas-Fiering model has preserved the correlation coefficient 
between consecutive months. Thus, it can be said that the Thomas-Fiering model is 
suitable to be used for producing inflow scenarios needed for the optimization model 
presented in chapter 6 and stochastic simulation model presented in chapter 7.  
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Chapter 6            

Reservoir System Optimization during Drought Events  

6.1 Background 

Reservoir operations involve flood control and drought management with the goal of 
minimizing adverse environmental impacts and securing water supply for a wide range 
of purposes and a diverse set of water (Tu et al., 2008). Optimizing reservoir operations 
may take into account many factors, such as water allocation, streamflow regulation, 
and real-time decision making regarding advanced scheduling of water releases and 
hydropower generation (Tu et al., 2008). Reservoir operating rules are used to 
determine water yield from a single-reservoir system or a multireservoir system under 
various hydrologic conditions. Reservoir operation involves many decision variables, 
multiple objectives as well as considerable risk and uncertainty (Wang et al., 2010). 
Various techniques are applied to improve the performance of reservoirs operation. 
These techniques include Linear Programming (LP), Nonlinear Programming (NLP), 
Dynamic Programming (DP), and Heuristic Programming such as Genetic algorithms, 
Fuzzy logic, and Neural Networks (Adeyem, 2009). The method chosen for any 
particular case depends mainly on: (i) the character of the objective function and 
whether it is known explicitly; (ii) the nature of the constraints; and (iii) the number of 
independent and dependent variables (Babu and Angira, 2001).  

One of the simplest methods of optimization techniques is the linear programming (LP), 
which had been widely applied to several cases of reservoir operation problems. Some 
of the applications of LP in reservoir operation are suggested in Dorfman (Dorfman, 
1962),  Martin (Martin, 1987), Palmer (Palmer and Holmes, 1988), Randall (Randall et 
al., 1990), Mohan (Mohan and Raipure, 1992) and Mujumdar (Mujumdar and 
Teegavarapu, 1998). In the Dynamic Programming method (DP), multidecision 
problems are broken down into a sequence of separate, but interrelated, single-decision 
sub-problems. thus,  complex problems can be solved by combining the solutions of the 
sub-problems to obtain the solution of the entire problem (Ferreira et al., 1996). It is 
well suited to deal with short-term operation (hourly or daily) when the hydrologic 
inputs and water demands are generally considered deterministic. In case of 
optimization of real-time operations for reservoir systems, the objective functions often 
consist of benefits and costs expressed as non-linear functions of storage and discharge. 
The two approaches used in the solution of non-linear programming (NLP) are direct or 
pattern search method and gradient-based optimization. However, as compared to linear 
programming and dynamic programming, the number of applications of nonlinear 
programming methods in water resources studies is relatively small (Reddy, 2006).  

Pattern search finds a local minimum of an objective function by a method called 
polling (MathWorks9). The search starts at an initial point, which is taken as the initial 
point in the first step. Then the algorithm generate a pattern of points, typically plus and 
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minus the coordinate directions, times a mesh size, and center this pattern on the current 
point. An evaluation of the objective function at every point in the pattern is then 
provided, if the minimum objective in the pattern is lower than the value at the current 
point, then the poll is successful and the minimum point found becomes the current 
point. Then the mesh size is doubled and the algorithm proceeds to the first step. If the 
poll is not successful, then the mesh size is halved. If the mesh size is below a threshold, 
the iterations stop otherwise, the current point is retained and the algorithm proceeds at 
first Step.  

In recent years, Genetic Algorithms (GAs) have become popular among researchers as a 
robust and general optimization technique (Namchaiswadwong et al., 2006). The results 
of employment of GAs to a wide variety of problems have indicated their potential in 
the application to water resource management. The genetic algorithm (GA) is one of the 
most promising techniques in that domain and has received a great deal of attention 
with regard to optimizing complex systems (Chen, 2003). GAs handle nonlinear 
optimization problems in efficient manner and it differs from traditional methods in 
number of ways (Goldberg, 1989). The concept of GAs was developed by Holland and 
his colleagues in the 1960s and 1970s (Konak et al., 2006). In GAs terminology, a 
solution vector is called an individual or chromosome. Chromosomes are made of 
discrete units called gens. Each gene controls one or more features of the chromosome. 
GAs operate with a collection of chromosomes called a population. The population is 
normally randomly initialized. As search evolves, the population includes fitter and 
fitter solutions, and eventually it converges, meaning that it is dominated by a single 
solution (Konak et al., 2006). GAs use two operators to generate new solutions from 
existing ones: crossover and mutation. The crossover operator is the most important 
operator of GAs. 

The objective of this chapter is to build a model, which utilizes maximum available 
information, for optimization of reservoir operation by applying Genetic Algorithm, 
Pattern Search and gradient-based Approaches to the Ruhr reservoirs system in which 
utilization of multipurpose reservoirs are considered. The specific objectives of this 
chapter are: 

1. To apply the suggested approaches to the multipurpose reservoir operation in the 
study area; 

2. To compare between the outputs of the developed model and the historical 
records especially in case of drought events; 

3. To evaluate GA performance against that of pattern search and gradient-based 
Approaches.
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6.2 Development of a Reservoir Optimization Model in the Context of 
Drought 

Optimization is a procedure of finding and comparing feasible solutions until no better 
solution can be found (Deb, 2001). In general, optimization problems can be classified 
into two groups; single objective and multiobjective problems. The main goal of single 
objective optimization problems is to define the minimum or the maximum value of an 
objective function, depending on the goal. The procedures for solving this kind of 
problem are gradient-based and heuristic-based search techniques. 

Multiobjective optimization problems represent an important class of real-world search 
and optimization problems. Multi-objective optimization (MOP) refers to problems 
which includes several objectives that are expected to be fulfilled simultaneously. Burke 
(Burke and Landa Silva, 2006) reported that for multiobjective optimization problems, 
three broad typical approaches can be identified to deal with multiple objectives as 
follow: 

1. Optimizing one objective at a time while imposing constraints on the other 
objectives, 

2. Combining all objectives into a single objective, 

3. Optimizing all objectives simultaneously. 

Frequently in the first approach one objective is chosen as the dominating objective and 
the rest of the objectives are treated as constraints. In the second approach preferences 
for the objectives are established a priori while and the vector of objectives is scalarized 
into one objective by averaging the objectives using a weight vector. In the last 
approach, no preference information is considered or is available before the search. In 
terms of the number of solutions needed, it may be that only one solution is required or 
that a set of solutions should be presented to the decision-makers so that one of the 
solutions can be chosen. In the last case, this set of solutions should represent a trade-off 
among the different objectives. It is also commonly required that this set of solutions be 
as diverse as possible. Such diversity may be in terms of the solution space, the 
objective space or both, depending upon the problem domain.  

In this study the approach of combining all objectives into a single objective has been 
used for developing the optimization model. Details about the procedures of the 
developed model are presented in the following section with an illustration to the 
reservoir Bigge. 
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6.2.1 Objective Functions 

In order to deal with multiple objectives of the reservoir system, the approach of 
combining all objectives into a single objective is adopted to convert the multiple 
objectives problem into a single objective problem. The objective functions of the 
model are to maximize hydropower production subject to flood restrictions and to 
minimize the sum of squared deviations of releases from demands under release 
constraints and other physical and technical constraints. The model is formulated for 
monthly operation, as follows: 

1) Minimize Sum of Squared Deviation of Releases from Demands, 
 

Minimize SQDV=∑ �∑𝐷𝑛,𝑡 − ∑𝑅𝑚,𝑡�
212

𝑖=1                                            (6.1) 

 Where; 

SQDV      : The sum of squared deviation of releases from demands; 

Dn,t           : The demands in period t in Mm3, n =1,…….,n  number of demands; 

Rn,t           : The releases  in period t in Mm3, m =1,…….,m  number of releases 

 

2) Maximize Annual Energy Production 

Maximize E= ∑ �∑�𝑃𝑚 ∗ 𝑅𝑚,𝑡 ∗ 𝐻𝑚,𝑡��12
𝑡=1                                                  (6.2) 

Where; 

E        : The annual energy produced in MkWh; 

Pm      : The power production coefficient (number of turbines = 1,…, m) 

Hm,t     :The net heads  available to turbines (number of turbines = 1,…, m) 

 

The objective functions presented in equations 6.1 and 6.2 are subject to some 
constraints as illustrated in the following section. 
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6.2.2 Constraints 

The objective functions expressed by equations 6.1 and 6.2 are subjected to the 
following constraints: 

a) State transformation equation: continuity of inflow, storage, release and losses. 
𝑆𝑡+1 = 𝑆𝑡 + 𝐼𝑡 − ∑𝑅𝑚,𝑡 − 𝑄𝑡 − 𝑄𝑙𝑜𝑠𝑠                 For all t                       (6.3)  

St            : Active reservoir storage at the beginning of period t in Mm3; 

It             : The inflow to the reservoir during period t in Mm3; 

Ot , 𝑂𝑙𝑜𝑠𝑠 : Overflow and Losses from the reservoir in period t in Mm3  . 

The storage of the reservoir varies from the dead storage capacity to the maximum 
storage capacity according to the month under consideration. Also during the flood risk 
period between 1 November and 1 February, a flood control storage space of 32 million 
cubic meters is kept available, which is then released for refilling in the period between 
1 February and 1 May. 

𝑆𝑚𝑖𝑛,𝑡 < 𝑆𝑡 < 𝑆𝑚𝑎𝑥,𝑡                    (see appendix D)                                  (6.4) 

b) Maximum power production limits 
𝑃𝑚 ∗ 𝑅𝑚,𝑡 ∗ 𝐻𝑚,𝑡  <  𝐸𝑚𝑎𝑥,𝑚         For all m, t    (see appendix D)        (6.5) 

Where, Emax,m  is the maximum amounts of power in MkWh that can be produced by a 
turbine m in a time period t. 

c) Demands constraint 
𝐷𝑛,𝑡,𝑚𝑖𝑛 < 𝑅𝑚,𝑡 < 𝐷𝑛,𝑡,𝑚𝑎𝑥                  (see appendix D)                          (6.6) 

Where, Dn,t,min and Dn,t,max are the minimum and maximum demands in a time period t . 

Water quality requirement constraint 

  ∑�𝑅𝑚,𝑡�  ≥ 𝑀𝑅𝑊𝑄                                                                                     (6.7) 

Where ∑�𝑅𝑚,𝑡� is the summation of releases in a time period t, MRWQ is the minimum 
releases to meet downstream water quality requirement in Mm3 

d) Steady state storage constraint 
S13 = S1                                                                                                              (6.8) 

Under steady-state conditions for the storage, the storage at the end of last month of a 
year is to be equal to the initial storage at the beginning of first month of that year. 
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As mentioned before, in this study a weighted approach is adopted to convert the 
multiple objectives problem into a single objective problem. The user can specify the 
priorities by giving a specified weight for each function. As presented in equations 6.1 
and 6.2, the two objective functions do not have the same units. To bring both the 
objectives into same units, the hydropower objective and SQDV objective are non-
dimensionalized and the final fitness function for the model is as follow: 

𝑭 = 𝑾𝟏
𝑾𝟏+𝑾𝟐

∗ ∑ �∑𝑬𝒎,𝒎𝒂𝒙−∑𝑷𝒎∗𝑹𝒎,𝒕∗𝑯𝒎,𝒕�
∑𝑬𝒎,𝒎𝒂𝒙

𝟏𝟐
𝒕=𝟏 + 𝑾𝟐

𝑾𝟏+𝑾𝟐
∗ ∑ �∑𝑫𝒏,𝒕−∑𝑹𝒎,𝒕�

𝟐

∑𝑫𝒏,𝒕

𝟏𝟐
𝒕=𝟏                  (6.9) 

Where W1 and W2 are constant weights to be chosen based on priority. So the final 
model is to minimize F in the above equation in duly satisfying the constraints.  

6.2.3 Model Application Using Genetic Algorithm 

To apply the optimization approaches to the formula presented in equation 6.9, several 
scenarios have been analyzed. The suggested scenarios are focused especially on dry 
periods as shown in table 6.1. The driest two years in the historical records are 
presented by scenarios13 and 14. Thomas-Fiering model has been used to generate 
inflow of 1000 years, and then the year with minimum summation of monthly inflow 
has been selected to be scenario number 15 in table 6.1. 

The parameters used in applying the optimization model using GA have been selected 
after studying of how the variation in the output of the optimization model can be 
apportioned to these parameters in the input of the model. In the developed model, the 
GA parameters have been fixed for all scenarios. Crossover probability of 0.8; 
population size of 500 and generation size of infinity have been selected. 

Once the GA parameters are fixed the model is run for any scenario of the selected 
scenarios in table 6.1. The optimization model has been applied to all scenarios for two 
sets of priority; hydropower as the priority and only SQDV as the priority. Figure 6.1 
presents the results of scenario 1 (Base Case) and the priority is for the hydropower. 
The optimal annual hydropower is E = 25.70 MkWh and sum of squared deviation of 
releases from demands, SQDV, equals 1984. It is worth mentioning that the annual 
power produced by the reservoir Bigge is 22.60 MkWh (Ruhrverband-online-Report). 

In case of the priority for SQDV, the obtained hydropower is E = 22.97 MkWh and 
SQDV= 387.24 (figure 6.2). It can be clearly observed for figures 6.1 and 6.3 that, if the 
reservoir is having SQDV as the only priority, it tends to keep the storage in the 
reservoir at high level and this due to the relatively small downstream demands, 
whereas for priority for hydropower this is reversed, which requires higher releases to 
produce optimal hydropower. As shown in figures 6.1 and 6.2, the storage in the 
beginning and the end of the optimization processes is the same. Figure 6.3 presents 
results of applying scenario 12 in case of the hydropower is the only priority.  
 

 

http://www.google.de/search?q=are+focused+on&hl=de&client=firefox-a&hs=qDr&rls=org.mozilla:en-GB:official&prmd=n&source=univ&tbs=nws:1&tbo=u&ei=_R-7TLu1FM-Lswb1t7TFDQ&sa=X&oi=news_group&ct=title&resnum=4&ved=0CDkQqAIwAw�
http://en.wikipedia.org/wiki/Mathematical_model�
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Table 6.1: Description of the scenarios which are used in the optimization model 
Scenario (1) Base Case - Mean monthly inflow and initial storage=mean storage 

Scenario (2) Mean monthly inflow and initial storage=90 % of mean storage 

Scenario (3) Mean monthly inflow and initial storage=80 % of mean storage 

Scenario (4) Mean monthly inflow and initial Storage=70  % of mean storage 

Scenario (5) Mean monthly inflow-0.25 * std and mean Initial Storage 

Scenario (6) Mean monthly inflow-0.25 * std and initial storage=90% of mean storage 

Scenario (7) Mean monthly inflow-0.25 * std and initial storage=80 % of mean storage 

Scenario (8) Mean monthly inflow-0.25 * std and initial Storage=70 % of mean storage 

Scenario (9) Mean monthly inflow-0.50 * std and mean initial Storage 

Scenario (10) Mean monthly inflow-0.50 * std and initial storage=90 % of mean storage 

Scenario (11) Mean monthly inflow-0.50 * std and initial storage=80 % of mean storage 

Scenario (12) Mean monthly inflow-0.50 * std and initial storage=70 % of mean storage 

Scenario (13) Monthly inflow of the calendar year 1996 

Scenario (14) Monthly inflow of the calendar year 2003 

Scenario (15) The Year with minimum summation of monthly inflow generated using 
Thomas-Fiering model 

 

            

                     

    Figure 6.1: Optimal release policy - hydropower is the only priority (Scenario 1) 
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Figure 6.2: Optimal release policy - SQDV is the only priority (Scenario 1)  
 

 

               

                    

Figure 6.3: Optimal release policy - hydropower is the only priority (Scenario 12)  
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Results of scenario 15 for the two priorities are shown in figure 6.4 and 6.5 respectively. 
Result indicates that, there is no clear difference between the two priorities. This is due 
to the low inflow of this scenario, 101.46 M.m3, which presents the driest year of 1000 
generated years using Thomas-Fiering model. In this case the constraint of demand 
governs the model and this leads to a relatively low storage accompanied with small 
releases and thus the result are the same if either hydropower or SQDV is selected as the 
only priority. 

    

         

Figure 6.4: Optimal release policy - hydropower is the only priority (Scenario 15) 

 

             

Figure 6.5: Optimal release policy - SQDV is the only priority (Scenario 15)

Jan Apr Jul Oct
0

10

20

30

40

50

Months

M
on

th
ly

 In
flo

w
  M

 c
u.

m
 

Jan Apr Jul Oct Jan
0

50

100

150

Months
M

on
th

ly
 S

to
ra

ge
 M

 c
u.

m
 

Jan Apr Jul Oct
0

10

20

30

40

50

60

Months

M
on

th
ly

 R
el

ea
se

s M
 c

u.
m

 

Jan Apr Jul Oct
0

2

4

6

8

MonthsM
on

th
ly

 E
ne

rg
y 

Pr
od

uc
tio

n 
 M

 k
W

h 

Jan Apr Jul Oct Jan
0

50

100

150

Months

M
on

th
ly

 S
to

ra
ge

 M
 c

u.
m

 

Jan Apr Jul Oct
0

10

20

30

40

50

60

Months

M
on

th
ly

 R
el

ea
se

s M
 c

u.
m

 

Jan Apr Jul Oct
0

1

2

3

4

5

6

7

8

9

Months

M
on

th
ly

 E
ne

rg
y 

Pr
od

uc
tio

n 
 M

 k
W

h 



124                      6.2 Comparison between the Developed Model and Actual Historical Data   

  
 

6.2.3.1 Comparison between the Results of the Developed Model and Actual 
Historical Data 

To evaluate the output of the developed model, the driest year (the year with minimum 
summation of monthly inflow) in the available historical data series has been detected 
then the set of output of the optimization model was compared with those of historical 
data. The calendar year 1996 is the driest year in the available historical records with 
annual inflow 155.3 M.m3, while for the reservoir Bigge, the mean annual inflow is 
240.51 M.m3 (figure 6.6). 

 

Figure 6.6: Comparison between mean monthly inflow and the monthly inflow of the 
calendar year 1996 

 

For the historical calendar year 1996, inflow, storage of reservoir and releases are 
known variables. Using these data the monthly energy produced in MkWh for this year 
has been calculated. Then the historical inflow of the year 1996 and the initial storage 
was taken as an input for the optimization model. Both of monthly target release from 
the reservoir and target storage has been estimated based on the monthly demand to be 
met from the reservoir. The developed model in this study is designed so that demands 
in dry period are reduced up to 70 % of mean monthly demands and always there will 
be a 3 months  of demands reserve in the reservoir in additional to the minimum storage 
required to meet water quality requirements downstream. For this inflow scenario, if the 
hydropower is selected as the only priority, then the optimal release polices obtained are 
shown in figure 6.7. 

The optimal annual hydropower obtained using the optimization model is 15.36 MkWh, 
however the actual annual energy produced in this year is 13.24 MkWh. If the SQDV is 
selected as the only priority, then the annual hydropower is 13.67 MkWh. 
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(a) hydropower is given priority                                                                                 (b) SQDV is given priority 

Figure 6.7: Comparison between results of the optimization model and historical records (Scenario 13 – calendar year 1996)    
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It can be clearly observed from figure 6.7 that for the developed model, the storage at 
the end of optimization period is the same as the initial storage however the historical 
data does not satisfy this constraint. The constraint related to the final storage was 
modified so that the final storage in the model equals this one in the historical data to 
investigate the effect of the final storage at the end of optimization period on results and 
also to present accurate comparison between the developed model and historical data. 
The optimal annual hydropower obtained using the modified model is 12.80 MkWh. 
But still there is a major difference between the modified model and historical data, 
which is the minimum monthly release. As shown in figure 6.7, historical releases 
during several months are less than 4 M.m3, however in the developed model the 
allowable minimum release in case of dry periods is 7.5 M.m3. After modifying this 
constraint in the model, the hydropower obtained using the modified model is 13.41 
MkWh (figure 6.8). 

 

 

 

Figure 6.8: Comparison between results of the optimization model and historical 
records (scenario 13 after modification of final storage constraint) 
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6.2.3.2 Comparison between Alternative Optimization Methods 

Optimization results presented in previous sections obtained using GA approach. In this 
section another two methods are performed,  namely pattern search and gradient-based 
optimization. The two models are subject to the same constraints and optimize the same 
objective function with the same possibilities. Results of GA, pattern search and 
gradient-based optimization have been compared to those of historical data as shown in 
figures 6.9 and table 6.1. Results indicate that, when the priority is for the hydropower, 
the optimal annual hydropower E in case of using GA equals 15.36 MkWh, in case of 
using pattern search equals 16.58 MkWh and in case of using gradient-based 
optimization equals 13.81 MkWh 

 
Figure 6.9: Comparison between Alternative Optimization Methods (scenario 13) 
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Table 6.2: Comparison between Alternative Optimization Methods (scenario 13) 

 

Storage Release Energy Production  M kWh 

GA 
Gradient-

based 
Pattern 
search 

Historical GA 
Gradient-

based 
Pattern 
search 

Historical GA 
Gradient-

based 
Pattern 
search 

Historical 

January 113.89 113.89 113.89 113.89 7.63 7.50 8.89 14.85 0.73 0.72 0.85 1.43 

February 110.87 111.00 109.61 103.65 7.67 7.50 12.14 10.55 0.73 0.71 1.15 0.97 

March 113.83 114.13 108.10 103.72 7.50 7.50 11.41 3.70 0.72 0.72 1.07 0.34 

April 120.30 120.60 110.66 114.00 7.79 7.50 8.35 3.27 0.76 0.74 0.79 0.31 

May 116.89 117.49 106.69 115.11 7.59 7.50 11.05 3.81 0.74 0.73 1.03 0.37 

June 113.93 114.61 100.27 115.92 7.92 7.50 8.39 4.65 0.76 0.72 0.76 0.45 

July 109.09 110.19 94.96 114.36 8.00 7.50 11.33 6.44 0.75 0.71 1.00 0.62 

August 107.36 108.97 89.90 114.20 7.74 7.50 10.13 9.43 0.73 0.71 0.87 0.91 

September 111.88 113.73 92.03 117.04 7.58 7.50 17.62 5.26 0.72 0.72 1.54 0.51 

October 116.42 118.35 86.53 123.89 49.36 7.50 22.98 9.57 5.58 0.73 1.95 0.95 

November 87.36 131.15 83.85 134.62 27.26 26.85 25.36 29.23 2.32 2.72 2.12 3.00 

December 93.81 138.00 92.20 139.10 9.29 53.47 7.67 32.38 0.82 6.65 0.67 3.39 

                                                                                                Total 155.33 155.33 155.33 133.14 15.36 16.58 13.81 13.24 
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6.3 Conclusion 

Reservoir operation for an optimum use of available water during prolonged periods of 
drought has always been a primary concern for water management. Using Genetic 
Algorithm, Pattern Search and Gradient-based method, optimization model has been 
developed for the operation of reservoir during normal periods and drought periods as 
well. The reservoir Bigge has been presented as the case study . Two objective functions 
have been considered then a weighted approach has been adopted to convert the 
multiple objectives problem into a single objective problem so that user can specify the 
priorities by giving a specified weight for each function. Several scenarios for low 
inflow period have been attempted. Each scenario has its assumptions for monthly 
inflow and monthly demand.  

The optimization model developed in this study has been carried out using Genetic 
Algorithm and Direct Search toolbox and Optimization Toolboxes in MATLAB 
software. The obtained results showed that both of GA approach and Gradient-based 
approach provides higher benefits more than Pattern Search approach. Evaluation of the 
developed model has been carried out using the driest year in the available historical 
records. The monthly inflow of this year has been considered as an input to the 
optimization model. Results of evaluation demonstrated that the developed model with 
its several scenarios and the suggested optimization approaches could be a helpful guide 
for the real operation of the reservoir during drought events. 

 



 

  
 



  

  
 

Chapter 7             

Stochastic Simulation of Reservoir Operation Using Adaptive 
Neuro-Fuzzy Inference Systems                                                                    

 

7.1 Background 

In reservoir management practices, a simulation model can be used as a valuable 
planning tool to evaluate the impact of changes to the system's configuration or 
operational objectives. The desired generation or release scheduling can be checked 
using inflow forecasting in order to satisfy the entire set of operational constraints 
(Cicogna et al., 2009). At the real time operation stage, a simulation tool can be used to 
quickly check operational alternatives due to emergency events or planning and real-
time incongruence (Cicogna et al., 2009). 

McMahon (McMahon, 2009) reported that operational models have been broadly 
categorized as descriptive simulation, prescriptive optimization and hybrid simulation 
/optimization models involving elements of both. These categories can be classified as 
follows:  

i. Descriptive models which are used to simulate reservoir release decisions 
following predefined logical “if-then-else” operating rules, driven by input 
hydrologic data and subject to multiple constraints, 

ii. Prescriptive optimization models employ mathematical programming techniques 
to solve for decision variables which maximize or minimize the value of an 
objective function which is subject to multiple constraints.   

iii. Hybrid models which are primarily descriptive simulation models with 
piecewise optimization of specific aspects of predefined operating rules. 

Each type of the described model has strengths and weaknesses with respect to specific 
operational planning and real-time water control applications. Descriptive simulation 
models are most useful for detailed analysis and evaluation of predefined operating 
rules. Several approaches that use fuzzy set theory to simulate reservoir operation have 
been described in the literature. These include fuzzy optimization techniques, fuzzy rule 
base systems, and combinations of the fuzzy approach with other techniques (Dubrovin 
et al., 2002) . 
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The fuzzy logic approach may provide a promising alternative to the methods used for 
reservoir operation modeling because the approach is more flexible and allows 
incorporation of expert opinions, which could make it more acceptable to operators 
(Panigrahi and Mujumdar, 2000). Applications can be found in the work of  Chuntian  
(Chuntian, 1999), Panigrahi (Panigrahi and Mujumdar, 2000), and   Shrestha (Shrestha 
et al., 1996).  The fuzzy rule base could be constructed on the basis of expert knowledge 
or observed data. Approaches for deriving a rule base from observed data have been 
presented by Mohan (S.Mohan and Prasad, 2006), and Panigrahi (Panigrahi and 
Mujumdar, 2000). 

Fuzzy Logic was initiated in 1965 by Lotfi A. Zadeh, professor for computer science at 
the University of California in Berkeley (Zadeh, 1973). Basically, Fuzzy Logic (FL) is a 
multivalued logic that allows intermediate values to be defined between conventional 
evaluations like true/false, yes/no, high/low, etc. Fuzzy logic variables may have a truth 
value that ranges between 0 and 1 and is not constrained to the two truth values of 
classic propositional logic notions like rather tall or very fast can be formulated 
mathematically and processed by computers, in order to apply a more human-like way 
of thinking in the programming of computers (Zadeh, 1973).  

Fuzzy logic models, called fuzzy inference systems, consist of a number of conditional 
"if-then" rules. For the designer who understands the system, these rules are easy to 
write, and as many rules as necessary can be supplied to describe the system adequately.  
In fuzzy logic technique, unlike standard conditional logic, the truth of any statement is 
a matter of degree (Metaxiotis et al., 2003). Fuzzy inference systems rely on 
membership functions to explain to the computer how to calculate the correct value 
between 0 and 1. The degree to which any fuzzy statement is true is denoted by a value 
between 0 and 1.  

The advantages of fuzzy logic are that calculation is straightforward and the model easy 
for the operator to understand due to its structure, which is based on human thinking. 
The system can also be easily modified when necessary (Dubrovin et al., 2002). The 
fuzzy rule based system utilizes the knowledge of a reservoir operator and avoids 
complex optimization procedure hence it may be more acceptable to the reservoir 
managers (S.Mohan and Prasad, 2006). The present study is aimed to present a new 
approach for long-term and short-term reservoir operation based on Artificial Neuro-
Fuzzy Inference Systems (ANFIS). Different models have been developed for 
simulation of reservoirs operation. The procedure is illustrated through a case study of 
the system of Ruhr reservoirs in Germany. 

http://en.wikipedia.org/wiki/Truth_value�
http://en.wikipedia.org/wiki/Truth_value�
http://en.wikipedia.org/wiki/Propositional_logic�
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7.2 Fundamental Fuzzy System for Reservoir Operation Model 

In modeling of reservoir operation with fuzzy logic, the following distinct steps are 
followed (Panigrahi and Mujumdar, 2000 ; Shah, 2009):  

 Selection and fuzzification of inputs, where the crisp inputs such as the inflow, 
reservoir storage and release are transformed into fuzzy variables, 

 Fuzziness procedure and formulation of the fuzzy rule set, based on an expert 
knowledge base, 

 Application of a fuzzy operator, to obtain one number representing the premise 
of each rule, 

 Shaping of the consequence of the rule by implication, 

 De-fuzzificationprocedure. 

Details about these steps can be found in (Dubrovin et al., 2002; Panigrahi and 
Mujumdar, 2000; S.Mohan and Prasad, 2006; Shrestha et al., 1996). 

7.3 Adaptive Neuro-Fuzzy Inference System 

In recent years, there has been a growing trend in the use of fuzzy logic in combination 
with neuro-computing and genetic algorithms in many of the industrial and research 
applications because of their ability to deal with ill-posed and uncertain systems 
(Yegireddi and Kumar, 2008). An adaptive neuro-fuzzy inference system (ANFIS) is a 
fuzzy inference system formulated as a feed-forward neural network. Hence, the 
advantages of a fuzzy system can be combined with a learning algorithm (Venugopal et 
al., 2010). 

Fuzzy systems present particular problems to a developer then rules have to be 
determined somehow. This is usually done by ‘knowledge acquisition’ from an expert. 
It is a time consuming process that is weighed down by many problems. A fuzzy set is 
fully determined by its membership function (Kablan, 2009). This has to be determined, 
for example if it is Gaussian then what are the parameters. The ANFIS approach learns 
the rules and membership functions from data. ANFIS is an adaptive network of nodes 
and directional links with associated learning rules. It is called adaptive because some, 
or all, of the nodes have parameters which affect the output of the node. These networks 
identify and learn relationships between inputs and has been the adaptive network of 
choice to be investigated in detail and used for high frequency forecasting and trading 
due to its high learning capability and membership function definition properties 
(Kablan, 2009). 
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The Sugeno model makes use of if rules to produce an output for each rule. It is similar 
to the Mamdani method in many respects. The first two parts of the fuzzy inference 
process, fuzzifying the inputs and applying the fuzzy operator, are exactly the same. The 
main difference between Mamdani and Sugeno is that in the Sugeno type rule outputs 
consist of the linear combination of the input variables plus a constant term; the final 
output is the weighted average of each rule’s output. Adaptive neuro-fuzzy inference 
system mimics the operation of a Takagi–Sugeno–Kang (TSK) fuzzy system (Tang et 
al., 2005). 

Fuzzy inference systems are composed of five functional blocks as given in Figure 7.1 
as shown in the figure, the ANFIS model contains (Venugopal et al., 2010):  

1. A rule base containing a number of if-then rules,  

2. A database which defines the membership function,                  

3. A decision making interface that operates the given rules,             

4. A fuzzification interface that converts the crisp inputs into “degree of match 
“with  the linguistic values like high or low etc.,   

5. A de fuzzification interface that reconverts to a crisp output. 

The rule base in the Sugeno model has of the form: 
 

If x is A1 and y is B1 then f1 = p1* x + q1* y + r1                                         (7.1)   

 

 If x is A2 and y is B2 then f2 = p2 * x + q2 * y + r2                                      (7.2) 

Where x and y are predefined membership functions,  Ai  and Bi are membership 
values, pi, qi, and ri are the consequent parameters that are updated in the forward pass 
in the learning algorithm, and fi is the outputs within the fuzzy region specified by the 
fuzzy rule. 

 
 

Figure 7.1: An ANFIS architecture for a two rule Sugeno system 
 

    Layer 1   Layer 2   Layer 3   Layer 4   Layer 5                           
              1 w           1 w        1 1 f w   
   X                       
                                              
                        ∑         F   
                        
                      
   Y             2 w         2 w         2 2 f w   
          
        

   A 1   

   A 2   

   B 1   

   B    2   
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Let the membership functions of fuzzy sets Ai and Bj, be μAi and μBi  respectively. The 
five layers that integrate ANFIS are as follow: 

Let the output of the ith node in layer l is denoted as O1,i, then, 

Layer 1:  Every node i in this layer is an adaptive node with node function 

𝑄1,𝑖 = 𝜇𝐴𝑖(𝑥)    for i = 1, 2, or     𝑄1,𝑖 = 𝜇𝐵𝑖−2(𝑦)   for i = 3, 4                                   (7.3)                  

where x (or y) is the input to the ith node and Ai (or Bi−2) is a linguistic labels.                 

Layer 2: This layer consists of the nodes labeled which multiply incoming signals and 
send the product out. Each node output represents the firing strength of a rule. 

                                                                                                                                                     
O2,i = wi = μAi (x) 𝜇𝐵𝑖 (y)     for i = 1, 2                                                                      (7.4)          

Layer 3: In this layer, the nodes labeled N acts to scale the firing strengths to provide 
normalized firing strengths. 

O3i = 𝑤�𝑖  = 𝑤𝑖
𝑤1+𝑤2

 , i= 1,2                                                                                             (7.5)  

Layer 4: The output of layer 4 is comprised of linear combination of inputs multiplied 
by normalized firing strengths. This layer’s nodes are adaptive with node functions.                                                                                                                                

O4i = wi fi = wi (pi x + qi y + ri)                                                                                    (7.6)  

Where, wi is the output of layer 3, and {pi,qi, ri} are the parameter set. Parameters of this 
layer are referred to as consequent parameters.                                                            

Layer 5: This layer consists of a single node, computes the final output as the 
summation of all incoming signals    

O5i = ∑ 𝑤� 
𝑖=1 𝑖 𝑓𝑖 = ∑ 𝑤𝑖𝑓𝑖 

𝑖=1
∑ 𝑤𝑖

 
𝑖=1

                                                                                              (7.7)   

Layers represented by squares are adaptive and their values are adjusted when carrying 
out the system training. Layers represented by circles remain invariable before, during 
and after the training (Kablan, 2009). 
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7.4 Simulation of Reservoir Operation Using Adaptive Neuro-Fuzzy 
Inference Systems –ANFIS 

7.4.1 Data Used in this Study   

The methodology discussed in sections 7.3 and 7.4 has been used for modeling of 
operation of the system of Ruhr reservoirs. A database having monthly inflow, storage, 
release series starting at 1991 has been established. The time series of inflow present the 
inflow to the main reservoirs in the Ruhr river basin namely, Bigge reservoir, Moehne 
reservoir, Henne reservoir and Sorpe reservoir. Source of data is the Ruhrverband (Ruhr 
River Association). All time series were checked to find out all missing data. Table 7.1 
presents a typical data sample of one year of the data which have been used in this 
study. 

Table 7.1: Typical data sample for one year of used data 

Year Month Inflow Storage Release 

1990 11 38.27  102.12 11.73 

1990 12 32.53  128.66 15.71 

1991 1 38.94  145.47 52.33 

1991 2 6.64  132.08 10.59 

1991 3 16.99   128.12 6.33 

1991 4 5.54  138.78 8.86 

1991 5 5.85  135.46 7.88 

1991 6 11.062  133.43 8.33 

1991 7 7.250 136.15 11.96 

1991 8 2.57  131.44 16.80 

1991 9 2.15  117.21 16.15 

1991 10 4.40  103.20 12.24 

7.4.2 Methodology 

In reservoir operation, a direct method for making a decision is to look at the historical 
data for similar cases and make a decision similar to the decision that was mad in those 
cases. One of the main operational goals in the management of reservoirs is to 
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determine a suitable release based on observation data and other conditions. 
Applications of fuzzy logic system which presented in the literature used storage and 
inflow as input to the fuzzy system and the output make a similar decision is the release 
during the same period.  

In this study a new approach using Adaptive neuro-fuzyy inference system approach 
“ANFIS” has been applied. ANFIS has been used to extract the relation of time of year 
(months), storage, inflow, and Standardized Precipitation Index (SPI) and release 
variables and represent them as fuzzy if-then rules. The premise part of fuzzy if-then 
rules is months, inflow, storage, and SPI. The consequent part is the release. The SPI 
has been calculated based on streamflow data series which means that the drought index 
from the streamflow series has been used as one of measures for streamflow deficit. The 
distinctive feature of this method is that the drought management and monitoring would 
be effective because of the more realistic judgment on the drought severity (Yoo et al.). 

Also in this study two main models for the simulation of reservoir operation have been 
developed using ANFIS. Each main model contains a set of sub-models. The set of 
input into the two main models contains time of year, storage, inflow, and Standardized 
Precipitation Index (SPI) with Alternative arrangement. The output of the first model is 
the release during the next month, which could be a helpful reference guide to the 
operator during dealing with decisions. On the other hand, the output of the second 
model is the release of the current month which could be a good tool for the evaluation 
of release for a specified month. 

Each model from the two main models consists of two stages. At the first stage, 
operation rules are developed using fuzzy approach, then the developed fuzzy inference 
system “FIS” is an input to the ANFIS system. ANFIS uses a hybrid learning algorithm 
to identify parameters of Sugeno-type fuzzy inference systems. It applies a combination 
of the least-squares method and the back propagation gradient descent method for 
training FIS membership function parameters to emulate a given training data set. 

At second stage, the operation of reservoirs is simulated for any required number of 
years using the final FIS developed by using ANFIS. Thomas-Fiering model is used to 
generate monthly inflow, and a Markov model is developed to forecast SPI index. The 
entire methodology applied in this study is shown in figure 7.2. 
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Figure 7.2:  Flow diagram of ANFIS model that has been developed for reservoir 
operation and simulation 
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7.4.3 Modeling of Reservoir Operation – Case1: Release of next Month  

The goal of this section is to describe and analyze the main models presented in figure 
7.2. The first case is the case of release of the next month. In this case a main model is 
developed for reservoir operation and this model has been applied to the Ruhr reservoirs 
system. In order to illustrate the methodology, an application to Bigge reservoir will be 
presented in following sub sections.  

7.4.3.1 Selection of Input Data    

Input data consists basically of four variables, namely time of year (month), inflow into 
reservoir, storage volume, and the SPI index. As mentioned in section 7.4.2, in this 
study the SPI index is calculated based on streamflow data series.  More details about 
the methodology of SPI index calculation has been presented in chapter 3. SPI index is 
calculated for different time scales (3, 6, 9, and 12 months). At this stage, Selection of 
Input Data, the SPI time scale is identified before going to the next stage. A sample of 
input data for Bigge reservoir is shown in figure 7.3. 

7.4.3.2 Selection of ANFIS Model 

After selection of SPI time scale, alternative sub-models have been identified by 
considering the input data series. In this study a set of six models for each SPI time 
scale has been developed as shown in table 7.2. This indicates that 24 models have been 
actually tested. All the combination have been tried to determine the best model out of 
these candidate models. In table 7.2, the letter I is an abbreviation for inflow, and S for 
storage volume. For illustration, a typical sample of input/output data of the model M_3 
is shown in table 7.3. 

Table 7.2: Description of the input of ANFIS-based learning models                       
Case1: Release of next month 

Model Input data of the selected model 

M_1 Month(i) I(i) S(i) SPI(i) SPI(i+1)    

M_2 Month(i) I(i) S(i) SPI(i-1) SPI(i) SPI(i+1)   

M_3 Month(i) I(i) S(i-1) S(i) S(i+1) SPI(i-1) SPI(i) SPI(i+1) 

M_4 Month(i) I(i) S(i-1) S(i) SPI(i-1) SPI(i) SPI(i+1)  

M_5 Month(i) I(i) S(i+1) SPI(i-1) SPI(i) SPI(i+1)   

M_6 Month(i) I(i) S(i+1) SPI(i) SPI(i+1) SPI(i+2)   
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Table 7.3: Typical sample of input and output data of the model M_3 

Input Output 

Month (i) Inflow (i) Storage (i-1) Storage (i) Storage (i+1) SPI (i-1) SPI (i) SPI (i+1) Release (i+1) 
11 46.05 103.21 95.36 131.16 -1.43 0.23 0.67 30.51 

12 43.48 95.36 131.16 144.13 0.23 0.67 0.46 25.99 

1 20.83 131.16 144.13 138.97 0.67 0.46 -0.47 7.27 

2 17.17 144.13 138.97 148.87 0.46 -0.47 -0.66 18.23 

3 35.20 138.97 148.87 165.84 -0.47 -0.66 -0.30 12.53 

4 14.19 148.87 165.84 167.50 -0.66 -0.30 0.18 14.00 

5 11.64 165.84 167.50 165.14 -0.30 0.18 0.02 17.60 

6 8.60 167.50 165.14 156.15 0.18 0.02 -0.09 15.39 

7 4.19 165.14 156.15 144.95 0.02 -0.09 -0.04 19.59 

8 9.20 156.15 144.95 134.56 -0.09 -0.04 0.02 12.47 

9 9.99 144.95 134.56 132.07 -0.04 0.02 0.29 16.11 

10 16.17 134.56 132.07 132.13 0.02 0.29 1.12 42.62 

11 55.37 132.07 132.13 144.88 0.29 1.12 0.88 35.92 
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7.4.3.3 Fuzzification of Inputs and ANFIS-Based Learning Models 

The degree to which a particular measurement of inflow or storage is high, low or 
medium depends on how the fuzzy sets of high inflow/low storage are defined. This 
definition may arise from statistical data or neural clustering of historical data. In order 
to begin the training using ANFIS, an initial fuzzy inference system “FIS” is needed 
first. In the present study 42 years of historical data of inflow and 18 years of historical 
data of storage and release have been collected. From this data, 14 years of data have 
been used for building (training) the model and 4 years of data have been used to test 
the model on monthly basis. The long time series of monthly inflow has been used to 
perform the calculation of the standardized SPI because the calculation of SPI index 
should have at least 30 years of historical data (see chapter 3). 

As shown in table 7.3, we have a set of input data and one output (reservoir release). 
FIS, fuzzy inference system, has been generated using fuzzy subtractive clustering to 
develop a set of rules and membership functions that models the data behavior. Then the 
generated FIS has been used as an initial FIS, initial conditions, for ANFIS training. The 
FIS has been then evaluated to obtained output data which is the predicted value of the 
release for the particular model. Figure 7.4 presents the developed FIS system using 
ANFIS system. Forecasted release values and observed release values for training 
period and test period are shown in figure 7.5, 7.6 respectively.   

 

 

Figure 7.4:  Fuzzy inference system “FIS” developed using ANFIS 
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Figure 7.5: ANFIS output for reservoir release (training period).                              
Model M_3 / SPI_9 

 

Figure 7.6: ANFIS output for reservoir release (test period)                                            
Model M_3 / SPI_9 

7.4.3.4 Model Evaluation 

In order to evaluate and compare the forecasting performance of the ANFIS system, it is 
necessary to introduce forecasting evaluation criteria. In this study, four criteria include; 
Mean Absolute Deviations (MAD), R-squared, Root Mean Square Error and correlation 
coefficient have been used. 

i. Mean Absolute Deviations (MAD) 

The MAD measures the average magnitude of the errors in a set of forecasts, without 
considering their direction. It measures accuracy for continuous variables. Expressed the 
MAD is calculated as follow: 

𝑀𝐴𝐷 = ∑ |𝑅𝑜𝑖−𝑅𝑓𝑖|𝑛
𝑖=1

𝑛
                                                                                        (7.8) 

Where  𝑅𝑜 and 𝑅𝑓 are the observed and forecasted reservoir releases, and n is the 
number of observations. 
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ii. R-squared 

In statistics, the coefficient of determination, R2 is used in the context of statistical 
models whose main purpose is the prediction of future outcomes on the basis of other 
related information. The absolute fraction of variance, R2, is calculated as follow: 

𝑅2 = 1 − ∑ (𝑅𝑜𝑖−𝑅𝑓𝑖)2𝑛
𝑖=1
∑ (𝑅𝑜𝑖)2𝑛
𝑖=1

                                                                                  (7.9) 

iii. Root mean squared error (RMSE)                                   

The RMSE is the square root of the variance of the residuals. It indicates the absolute fit 
of the model to the data–how close the observed data points are to the model’s predicted 
values. Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of 
fit. Lower values of RMSE indicate better fit. RMSE is calculated as follow: 

𝑅𝑀𝑆𝐸 = �∑ (𝑅𝑜𝑖−𝑅𝑓𝑖)2𝑛
𝑖=1

𝑛
                                                                             (7.10) 

iv. Correlation coefficient (Cr) 

The correlation coefficient a concept from statistics is a measure of how well trends in 
the forecasted values follow trends in past actual values (historical releases).  The 
correlation coefficient is calculated as follow: 

𝐶𝑟 =
∑  𝑅𝑜𝑖  𝑅𝑓𝑖 − 

�∑  𝑅𝑜𝑖  ��𝑅𝑓𝑖�
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𝑖=1 −
�∑ 𝑅𝑓𝑖
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                                  (7.11) 

The MAD and the RMSE can be used together to diagnose the variation in the errors in a 
set of forecasts. The RMSE will always be larger or equal to the MAD; the greater 
difference between them, the greater the variance in the individual errors in the sample. 
If the RMSE = MAE, then all the errors are of the same magnitude. 

The results of model evaluation for training data sets and test data sets are summarized 
in Table 7.4 and 7.5 respectively. It appears that the ANFIS models are accurate and 
consistent in different subsets, where most of the values of RMSE and MAE are smaller, 
and most of correlation coefficients and R2 are also very close to unity. Results also 
indicate that for each time scale of SPI index, there is one model which has a minimum 
MAE and RMSE, and maximum R2 and Cr. The model which has these advantages 
would be more accurate. It should be noted that the ranges of historical data which have 
been used for model development has clear effect on the model performance. The 
results of models evaluation might also suggest that the ANFIS has a great ability to 
learn from input–output patterns. The results demonstrate that the ANFIS can be 
successfully applied to establish models that could provide reliable release for the 
selected reservoirs.  
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Table 7.4:  Model evaluation criteria in case of release of next month (training period) 

Model 

SPI_3 SPI_6 SPI_9 SPI_12 

RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr 

M_1 6.52 0.93 4.47 0.90 6.27 0.993 4.41 0.89 6.17 0.94 4.15 0.90 7.5 0.91 5.1 0.83 

M_2 6.24 0.93 4.43 0.89 6.28 0.934 4.56 0.90 7.5 0.91 5.16 0.92 7.68 0.90 5.19 0.85 

M_3 5.17 0.95 3.92 0.93 5 0.956 3.69 0.93 5.15 0.95 3.34 0.91 5.59 0.95 4.12 0.92 

M_4 6.27 0.93 4.46 0.89 6.4 0.93 4.69 0.89 7.9 0.89 5.56 0.90 7.9 0.89 5.5 0.87 

M_5 5.9 0.94 4.31 0.93 5.92 0.94 4.39 0.91 8.47 0.88 6.38 0.91 8.09 0.89 6 0.82 

M_6 5.24 0.95 3.81 0.93 5.59 0.95 4.19 0.92 5.82 0.94 3.98 0.91 7.88 0.89 5.76 0.89 
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Table 7.5: Model evaluation criteria in case of release of next month (test period) 

Model 

SPI_3 SPI_6 SPI_9 SPI_12 

RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr 

M_1 7.13 0.92 5.36 0.81 8.95 0.86 6.5 0.73 8.21 0.89 5.7 0.77 8.88 0.87 6.60 0.72 

M_2 7.57 0.91 5.63 0.81 8.40 0.886 6.213 0.76 8.189 0.89 5.71 0.70 8.91 0.87 6.72 0.73 

M_3 7.82 0.90 5.75 0.79 9.14 0.865 7.12 0.72 7.04 0.92 5.209 0.84 7.31 0.91 5.65 0.83 

M_4 7.59 0.91 5.93 0.81 8.80 0.875 6.609 0.75 8.88 0.87 6.27 0.74 8.82 0.88 6.75 0.73 

M_5 7.31 0.91 5.66 0.82 8.40 0.886 6.60 0.77 8.05 0.89 5.64 0.80 7.59 0.91 5.80 0.81 

M_6 6.82 0.93 5.10 0.86 8.13 0.89 6.37 0.78 7.72 0.90 5.492 0.82 7.82 0.90 6.048 0.81 
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7.4.3.5 Simulation of the Reservoir Operation Using the Selected Model 

After development and evaluation of the selected model, the FIS system could be used 
for simulation of reservoir operation for any required number of years (figure 7.7). In 
order to illustrate the mechanism of the simulation process, we will take the model M_3 
as an example and the process will be illustrated step by step as follow: 

 In the model M_3, the set of input consists of 8 variables (see table 7.3). At any 
month t, it is required to predict reservoir release at the next month t+1. 

 The inflow of month t+1 is unknown, and it could be generated by several 
models. In this study Thomas-Fiering Model has been used as an inflow 
generator (see chapter 7). Thomas-Fiering model is used to generate monthly 
inflow for the month t+1; this means that there are two known inputs (month, 
and inflow). 

 From historical data, storages of previous, current, and next month are known. 
As mentioned before, the storage volume is the storage at the beginning of any 
month so storage at months t-1, t, and t+1 are known. 

 After holding the previous steps, three input variables are remaining unknown, 
namely SPI index for months t-1, t, and t+1. SPI for month t-1 is calculated from 
historical data, and SPI for month t is calculated based on the generated inflow 
from Thomas-Fiering Model. SPI index for month t+1 is predicted using 
transition probability matrix. 

Once the input data are available, the developed FIS system predicts the release and this 
process could be repeated for any number of months. The simulation model of a 
reservoir system is based on water balance of reservoirs. The output of the model 
(release) must satisfy the constraints of storage and demands. The simulation model 
subject to the following constraints: 

Storage Continuity 
 

St+1= St+ It - Rt -Ot        for all t                                                                (7.12) 

Where, 

St : Active reservoir storage at the beginning of period t in Mm3; 

It : The inflow to the reservoir during period t in Mm3; 

Ot : Overflow from the reservoir during period t in Mm3; 

Rt  : Reservoir release during period t in Mm3. 



148                                                                                                                                                                      7.4 Model Evaluation  

 

 
 

 Storage Limits 
 

Smin ≤ St ≤ Smax       for all t                                                                             (7.13) 

Where, Smin and Smax are the minimum and maximum active storage of the reservoir and 
these storage limits depend on the month i.e. each month has its storage limits.  

 Demands constraint 
 

𝑅𝑚𝑖𝑛 < 𝑅𝑡                                                                                                       (7.14) 

Where, 𝑅𝑚𝑖𝑛 is the minimum demand in a time period t and this minimum demand is 
identified by the reservoir operator. 
Figure 7.8 presents historical data compared with the results of simulation for a period 
of 15 years. In order to study the behavior of the reservoir storage, a period of 100 year 
has been simulated using the model M_4 and SPI_3.  

 

In order to present long records, a data series of 500 years has been simulated using 
model M_4 & SPI_9.  This process has been executed using CPU 3.0 GHz with 1 GB of 
Ram, and the required time needed to perform this process was 44 hours. Table 7.6 
presents a sample data of the simulated records and this sample data contains the driest 
year in the simulated period. Results of simulation during the period of 500 simulated 
years, using the proposed model, showed that the minimum reservoir storage was 64 
M.m3. During the simulated period, the reservoir storage reached values less than 85 
M.m3 903 times with a percentage of 15 % of the simulated months and the minimum 
release was 5.0 M.m3. It is worth to be mentioned that, in the available historical data, 
the minimum reservoir storage in was 53.1 M.m3 in month December-1976 and the 
minimum release from the Bigge reservoir was 0.535 M.m3 in month April-1979. 
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Figure 7.7:  Flow diagram for the simulation of reservoir Operation 
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Figure 7.8:  Comparison between historical and simulated data                                               
(15 years simulation period) 
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Table 7.6: Sample of simulated data contains the driest year in 500 simulated years 
using model M_4 and SPI_9 

Month (i) Inflow(i) Storage(i-1) Storage(i) SPI(i-1) SPI(i) SPI(i+1) Releas(i+1) 

1.00 33.03 124.93 138.00 0.24 0.16 0.00 20.17 

2.00 8.52 138.00 131.71 0.16 -0.48 0.32 20.88 

3.00 10.48 131.71 120.06 -0.48 -0.84 -0.56 12.47 

4.00 5.91 120.06 109.67 -0.84 -0.99 -0.40 10.75 

5.00 4.62 109.67 103.10 -0.99 -0.99 0.08 9.71 

6.00 3.36 103.10 96.97 -0.99 -1.22 -1.39 11.99 

7.00 1.89 96.97 90.61 -1.22 -1.32 -1.27 17.12 

8.00 1.51 90.61 80.52 -1.32 -1.86 -1.77 12.17 

9.00 6.66 80.52 75.00 -1.86 -2.51 -2.62 5.00 

10.00 4.40 75.00 75.00 -2.51 -2.80 -2.10 5.70 

11.00 12.12 75.00 74.40 -2.80 -2.60 -2.30 7.08 

12.00 26.51 74.40 80.82 -2.60 -2.11 -2.34 12.50 

1.00 16.15 80.82 100.25 -2.11 -2.29 -2.60 6.27 

2.00 12.95 100.25 103.90 -2.29 -2.42 -2.44 9.05 

3.00 25.52 103.90 110.58 -2.42 -2.30 -2.26 9.70 

4.00 4.22 110.58 127.05 -2.30 -2.47 -2.80 6.80 

5.00 28.27 127.05 121.57 -2.47 -1.80 -1.77 6.53 

6.00 16.96 121.57 143.03 -1.80 -1.59 -1.67 12.14 

7.00 19.71 143.03 153.46 -1.59 -1.02 -1.31 13.60 

8.00 7.97 153.46 161.02 -1.02 -0.72 -0.08 19.60 

9.00 7.60 161.02 155.39 -0.72 -0.61 -0.16 22.57 

10.00 14.46 155.39 143.38 -0.61 -0.04 0.16 43.35 

11.00 37.97 143.38 135.28 -0.04 0.59 -0.24 52.61 
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7.4.3.6 Decision Making about the Release of the Next Month 

Real-time reservoir operation requires a quick system response for calculation and 
rational decision making using available monitored data (Khattree and Rao, 2003). A 
quick response to an operator request is of utmost importance for a real-time decision 
support system. Fuzzy inference system gives the best assistance for these issues by 
comparing the similarities of the current events and the historical data. One of the 
important features of the developed models is the ability to forecast the release of next 
month based on the inflow of current month, storage of next month and considering the 
accuracy of SPI forecasting using transition matrix probability. 

In the present study, by using any model from the developed models in case of release 
of next month, the user need only to load the historical data, to identify inflow of 
current month and to identify storage (according to the selected model). Based on 
historical inflow data, the SPI is forecasted using transition matrix probability then the 
FIS system predicts the release of next month. By considering the value of the release 
confidence factor, the operator can decide on the actual release and the starting time for 
operation. 

7.4.4 Modeling of Reservoir Operation–Case2: Release of Current 
Month  

In this main model, assumptions and procedures are the same as the model in case 1, 
case of release of next month, except some differences. The main difference between 
this main model and the one presented in section 7.4.3 is the output. Also set of four 
models for each SPI time scale is developed as shown in table 7.7. Results of training 
and test of models, which presented in table 7.7, are shown in figure 7.9 and figure 7.10 
respectively. Tables 7.8& 7.9 present result of model evaluation for both training and 
test period. 
 

Table 7.7: Description of the input of ANFIS-based learning models                       
Case2: Release of current month 

Model Input data of the selected model 

M_1_1 Month(i) I(i) S(i) SPI(i) SPI(i+1)    

M_2_1 Month(i) I(i) S(i) SPI(i-1) SPI(i) SPI(i+1)   

M_4_1 Month(i) I(i) S(i-1) S(i) SPI(i-1) SPI(i) SPI(i+1)  

M_7_1 Month(i) I(i) S(i) SPI(i) SPI(i+1) SPI(i+2)   
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Figure 7.9 ANFIS output for reservoir release (training period).                              
Case2: Release of current month - Model M_1_1 / SPI_3 

 

 

Figure 7.10: ANFIS output for reservoir release (test period). Case2: Release of current 
month- Model M_1_1 / SPI_3 
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Table 7.8: Model evaluation criteria- case of release of current month (training period) 

Model 
SPI_3 SPI_6 SPI_9 SPI_12 

RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr 

M_1_1 3.97 0.97  2.88 0.96 3.44 0.98  2.46 0.95 3.46 0.98  2.45 0.96 3.45 0.98  2.42 0.92 

M_2_1 3.91 0.97  2.90 0.96 5.37 0.95 4.11 0.93 5.07 0.95 3.8 0.93 5.52 0.95  4.38 0.92 

M_4_1 3.69 0.98  2.75 0.97 3.62 0.98  2.7 0.97 5.58 0.95  4.71 0.92 5.47 0.95  4.22 0.92 

M_7_1 4.38 0.97  3.38 0.95 5.36 0.95 4.16 0.93 5.22 0.95 4.09 0.93 5.4 0.95 4.33 0.93 

Table 7.9: Model evaluation criteria- case of release of current month (test period) 

Model 
SPI_3 SPI_6 SPI_9 SPI_12 

RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr RMSE R2 MAD Cr 

M_1_1 5.47 0.95 4.16 0.91 5.71 0.95  4.29 0.91 5.9 0.94  4.29 0.90 6.3 0.94  4.59 0.88 

M_2_1 5.68 0.95 3.98 0.91 5.48 0.95  4.06 0.92 6.49 0.93  4.62 0.87 5.7 0.95  4.4 0.92 

M_4_1 5.28 0.94 3.86 0.93 6.46 0.95  4.74 0.88 5.91 0.94  4.43 0.89 5.97  0.94 4.48 0.90 

M_7_1 6.23 0.94 4.85 0.90 5.69 0.95 4.4 0.91 5.3 0.95  4.01 0.91 5.76 0.94  4.49 0.91 



7.4 Studying the effect of Using SPI index on Performance enhancement of Simulation Models                           155                                                                   

  
 

7.4.6 Studying the effect of using SPI index on Performance 
enhancement of Simulation Models 

As mentioned before, the approach used in this study is a new approach. A set of 
models with different assumption have been applied. In order to investigate the effect of 
using SPI index, all suggested models have been applied to historical data but without 
using SPI index. Results of models evaluation indicate that using of SPI index has 
enhanced the performance of simulation models. Figure 7.11 and table 7.10 presents a 
comparison between candidate models for the two cases with and without SPI index. 

 

 

 

Figure 7.11: Comparison between evaluation criteria of candidate models for the two 
cases with& without SPI index - Case1” Release of next month”
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Table 7.10: Comparison between evaluation criteria of candidate models for the two cases with& without SPI index                                       
Case1” Release of next month”  (test period). 

Model 

SPI_3 SPI_9 SPI_12 Without SPI 

RMSE R2 MAD RMSE R2 MAD RMSE R2 MAD RMSE R2 MAD 

M_1 7.13 0.916 5.36 8.21 0.889 5.7 8.88 0.87 6.60 11.80 0.77 8.2 

M_2 7.57 0.9077 5.63 8.189 0.889 5.71 8.91 0.87 6.72 11.34 0.79 8.02 

M_3 7.82 0.902 5.75 7.04 0.9203 5.209 7.31 0.914 5.65 11.55 0.78 8.25 

M_4 7.59 0.9073 5.93 8.88 0.87 6.27 8.82 0.875 6.75 10.58 0.82 7.81 

M_5 7.31 0.914 5.66 8.05 0.89 5.64 7.59 0.9073 5.80 11.21 0.79 7.86 

M_6 6.82 0.925 5.10 7.72 0.904 5.492 7.82 0.9016 6.048 10.84 0.81 7.98 
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7.5 Conclusion 

In this study, an example of the collective use of stochastic models and ANFIS has been 
presented. Fuzzy set theory plays an important role in dealing with uncertainty when 
making decisions in reservoirs operation. ANFIS is a powerful fuzzy logic neural 
network, which provides a method for fuzzy modeling to learn information about the 
data set that best allow the associated fuzzy inference system to trace the given 
input/output data. In this study, the use of the adaptive network-based fuzzy inference 
system (ANFIS), to construct a model for reservoir operation, simulation of reservoir 
operation and decision making about reservoir release has been proposed. The 
applicability and capability of the ANFIS model have been investigated through the use 
of a set of data in the Ruhr reservoirs system, Germany. The historical data are inflow, 
storage, SPI index and release. The historical data sets have been divided into two 
independent sets to train and to test the constructed models.  

Two main models have been developed. In both models the set of input include time of 
year, storage, inflow and Standardized Precipitation Index (SPI). The output of the first 
model is the release during the next month; on the other hand, the output of the second 
model is the release of the current month. Fuzzy Inference System has been prepared 
using Fuzzy logic toolbox in MATLAB and this system has been used as an input to 
ANFIS to obtain the final FIS. The FIS has been evaluated to obtained output data 
which is the predicted value of the reservoir release for the particular model. Predicted 
release values and observed release have been then evaluated using several evaluation 
criteria. Results of evaluation showed that the ANFIS models are accurate and 
consistent in different subsets, where most of the values of RMSE and MAE are 
smaller, and most of correlation coefficients and R2 are also very close to unity. 

In order to demonstrate the effect of using SPI index as input, two ANFIS models have 
been developed and investigated; one with SPI as input variable and another without. It 
has been found that, the model which contains SPI as input variable has consistently 
superior performance compared with the one without SPI index. Results obtained in this 
study showed that, the ANFIS models provide reliable reservoir release prediction for 
current and next month. Results also showed that the proposed approach could be a 
good tool for evaluation of release for a specified month and could be also a helpful 
reference guide to the operator during dealing with decisions. 

 
 

 

 

 



 

  
 



 

  
 

 

Chapter 8            

8. Drought Management Plan 
 

8.1 Introduction 

Water is one of the most important natural resources we need. There are several reasons 
for short supply of water. Some of these causes are over-allocation, over-use of water 
sources or a prolonged period of below normal precipitation, more commonly referred 
to as a drought. Drought is a natural hazard temporarily affecting almost every region in 
the world. The temporary shortage of water poses a great threat on nature, quality of life 
and economy. As drought is a slowly developing phenomenon, only indirectly affecting 
human life, its impacts are often underestimated in financially well off regions such as 
Europe (Stahl, 2001). Droughts often result in heavy crop damage and livestock losses, 
disrupt energy production and hurt ecosystems. Drought mortality is concentrated in 
developing countries, while absolute economic losses are largest in developed regions 

Drought is a major natural hazard affecting large areas and millions of people every 
year. The World Meteorological Organization (WMO) estimated that in the 25 years 
from 1967 to 1991 about 1.4 billion people were affected by drought and 1.3 million 
people were killed due to the direct and indirect cause of drought (Obasi, 1994). 

A recent study performed by the European Commission and Member States estimates 
the costs of droughts in Europe over the last thirty years to at least 100 billion Euro 
(European Commission 2007). The drought of 2003 in Central and Western Europe has 
alone been responsible for an estimated economic damage of more than 12 billion Euro 
(European Commission, 2008b). 

Many countries and local municipalities have a drought plan or participate in a drought 
planning effort. The actual implementation of the plans varies, as soon as the drought 
begins to lessen, most efforts get shelved until the next drought happens. There should 
be a more concerted effort to keep the drought planning, preparation and mitigation 
going, especially during the wetter periods. 

Historical records demonstrate that droughts are also causing potential impacts in 
Europe. The risks of these potential impacts depend on the type of water demands, how 
these demands are met and the corresponding water supplies available to meet these 
demands. These impacts could be categorized into environmental, social and economic 
impacts . 

http://ec.europa.eu/environment/water/quantity/scarcity_en.htm�
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Analysis of meteorological drought in the Ruhr basin shows that the Ruhr basin is 
exposed to drought events rather frequently. Historical records of meteorological 
drought in the Ruhr basin demonstrate that several severe and extreme events occurred 
in 1932/34, 1947, 1959, 1976, 1996, 2003 and 2007. It is worth to be mentioned that in 
reality extreme drought events in the last decades presented no severe challenges to the 
water supply of the Ruhr district due to the reservoir system existing in the Ruhr 
catchment basin  (Khadr et al., 2009). In this study a drought management plan was 
proposed for the Ruhr river basin in order to reduce the impacts of drought events. 

8.2 Classification of Drought Impacts 

Drought produces a complex combination of impacts that exten over many sectors.  
Drought impacts can be classified as follow (European Commission, 2008a; Rossi et al., 
2007): 

 Environmental impacts 

• Lack of feed and drinking water, 

• Mortality of fish species, 

• Damages to river life (flora, fauna), 

• Loss of biodiversity in terrestrial areas depending on the aquatic system, 

• Damage to landscape quality (dust, soil erosion and reduce vegetation 
coverage), 

• Forest fires risk, 

• Increase of salt concentration in streams, underground layers and irrigated 
areas.  

 Social impacts 

• Inconveniences due to water system rationing, 

• Risk for health connected with increase of pollution concentration and 
discontinuous water system, 

• Impacts on way of living (unemployment, reduced saving capability, 
difficulty in personal care, reuse of water at home, street and cars washing 
prohibition, doubt on future), 

• Risks on public security due to more frequent fires (forests, pasture).
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 Economic impacts 

• Damage to agricultural production, 

• Damage to forest production, 

• Damage to fishing, 

• Damage to industries connected with agricultural production, 

• Damage to industries affected by hydroelectric energy reduction, 

• Damage to reduced navigability of streams, rivers and canals, 

• Damage to tourism sector due to the reduced water availability in water 
supply and water bodies. 

8.3 Drought and Water Scarcity 

The two terms ‘water scarcity’ and ‘drought’ are commonly used alternately, while they 
are quite different phenomena affected by water management practices and natural 
causes respectively (European Commission 2007). Water-scarcity is both a natural and a 
human-made phenomenon. It is defined as a situation where insufficient water resources 
are available to satisfy long-term average requirements. It refers to long-term water 
imbalances, where the availability is low compared to the demand for water, and means 
that water demand is more than the water resources exploitable under sustainable 
aspects. On the other hand, droughts represent the relevant temporary decrease of the 
average water availability, refer to important deviations from the average level of 
natural water availability and are considered natural phenomena (European 
Commission, 2008b). It is not possible to control the occurrence of droughts although 
the resulting impacts may be mitigated to a certain degree, namely through appropriate 
surveillance and management strategies previously planned in a Drought Management 
Plan “DMP”. 

8.4 Drought Management in the European Union (EU)  

Drought is an issue affecting all EU countries in different ways: severe droughts were 
identified that have affected more than 800.000 km² of the EU’s territory (37 %) and at 
least 100 million inhabitants (20 %) in recent years with different degrees of intensity 
(European Commission, 2008a). Austria, Belgium, Cyprus, Finland, France, Germany, 
Hungary, Italy, Lithuania, Malta, the Netherlands, Norway, Portugal, Spain and the 
United Kingdom have all been hit, but other European countries have also been severely 
affected by droughts (e.g. Slovenia, Greece and Romania). As for the economic impacts 
of drought at the EU level estimates suggest losses of 100 billion Euros over the past 30 
years (European Commission, 2008a). 

http://www.wordhippo.com/what-is/another-word-for/alternately.html�
http://ec.europa.eu/environment/water/quantity/scarcity_en.htm�
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The European Commission (European Commission, 2008a) reported that it is difficult 
to establish common European indicators to describe droughts and define prolonged 
drought due to the complexity of drought variability according to climatic and 
geographic conditions. Therefore the European Commission mentioned that it is better 
to work on different parameters to be included in local or national indicators that could 
be calibrated and compared, when sufficient data is available. The presence or not of 
these parameters in local indicators will depend on their local relevance. 

The member states of EU are using several indicators to identify and manage droughts. 
Spain, UK, Portugal, Italy, Finland Netherlands and France have presented drought 
indicators to describe droughts and identify prolonged drought. According to the 
examples of indicators presented by these Member States, there are two main types of 
indicators. The first type is used to prepare for an event and the second type is used to 
characterize the event when it happens (European Commission, 2008a). Each Member 
State uses the first, the second or a combination of both, according to its needs. In 
general, drinking water supply is the priority usage in most EU countries and a 
minimum volume should be provided to the population whatever the climatic conditions 
are. This priority could become an aggravating factor for drought during summer 
seasons. Its importance compared to drought issues should be evaluated on the 
following factors: number of inhabitants supplied, volume, amount of abstraction from 
surface waters as part of total drinking water abstraction etc. In the following section an 
example of the indicators and management plan, that are used in EU, is presented. 

8.4.1 Drought Management in Spain 

The Spanish indicator system has been recognized to assess the quantitative status of 
water resources in the different exploitation systems existing in each river basin district 
(Rossi et al., 2007). The Hydrological Indicators System (HIS) was elaborated using 
different parameters (inflow, outflow and storage of reservoir, streamflow river gauges 
and aquifer water level) for each exploitation system. These parameters are used to 
assess the quantitative status of water resources in each system, comparing the record 
achieved in a determined period that has a historical and representative mean value.  

As an example for drought indicators in Spain, the status indicator “Ie” that is used in 
the Jucar river basin is calculated as follow: 
 

𝐼𝑒 = 1
2
�1 + 𝑉𝑖−𝑉𝑚𝑒𝑑

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
�  𝑖𝑓 𝑉𝑖  ≥  𝑉𝑚𝑒𝑑                                                      (8.1) 

 

𝐼𝑒 = 𝑉𝑖−𝑉𝑚𝑖𝑛
2(𝑉𝑚𝑒𝑑−𝑉𝑚𝑖𝑛 )

 𝑖𝑓 𝑉𝑖  <  𝑉𝑚𝑒𝑑                                                              (8.2) 
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where; 

Ie        Status indicator, 

Vi       Measured mean value for the analyzed period (one month, 3 accumulated months 
or 12 accumulated months)  

Vmed   Mean value for the historical period, 

Vmax   Maximum value for the historical period, 

Vmin    Minimum value for the historical period. 

The following four levels are used to characterize a drought situation: 

Green level (stable situation)                            Ie  > 0.50                         

Yellow level (pre-alert situation)                      0.50 > Ie  > 0.30            

Orange level (alert situation)                            0.30 > Ie  > 0.15            

Red level (emergency situation)                       0.15 ≥ Ie                          

The bases for the drought in Spain plans were established as follow  : 

 Present indicators that will provide a quick drought status early enough to act 
according to the forecasts of the Plan, 

 Provide knowledge of the resources system and its elements’ capability to be 
strained during scarcity situations, 

 Present structural and non-structural alternatives to reduce drought impacts, and 
adaptation according to the status indicator, 

 Measure the cost of implementing measures, 

 Adapt the administrative structure for its follow-up and coordination among the 
different Administrations involved (Ministry, regional governments, 
municipalities...), 

 Discuss Plans, results and follow-ups with all interested parties, ensuring full public 
participation to avoid social conflicts. 

Basin authorities have been able to particularize plans according to their specificities, 
declare the drought status according to the Hydrological Indicators System “HIS” 
threshold, and initiate measures included in the plan depending on the gravity of the 
phenomenon. Based on the HIS thresholds, monthly maps of the drought situation in the 
different management units within each Spanish basin are being developed (European 
Commission, 2008a). Other examples of drought plans and drought indicators for EU 
states, such as Portugal and France,  are found  in the report  published by European 
Commission  (European Commission, 2008a). 

http://www.wordhippo.com/what-is/another-word-for/particularize.html�
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8.5 Developing a Drought Management Plan for the Ruhr Basin 

8.5.1 Definition of a Drought Management Plan (DMP)    

Drought preparedness and mitigation actions should be carried out by attempting to 
answer some key questions such as: 

 How do the managers when there is a drought? 

 Which institution is in charge to manage drought related problems? 

 What type of measures have to be implemented and when? 

 What type of tools can be adopted to assess the effectiveness of the implemented 
measures? 

A drought management plan (DMP) is a document required to be prepared by a drought 
management setting out how to minimize the impact on communities of water shortages 
caused by drought. It should detail (Rossi et al., 2007) 

 The principal activities and groups at risk, 

 Criteria to identify drought vulnerable areas, 

 Mitigation actions and programs that address the vulnerability faced by the 
service provider in continuing to provide water services during drought 
conditions, 

 Criteria to compare alternative drought mitigation measures, 

 Drought indicators for calamity declaration, 

 Definition of the priority in water allocation under shortage conditions among 
different users (municipal, agricultural and industrial), 

 Tools to improve stakeholders’ participation and public awareness, 

 List of actions to recover drought damage. 

8.5.2 Stages of a Drought Management Plan    

The drought management plan proposed in this study has three phases, which are 
sequentially invoked as conditions dictate. These three phases are Drought Watch, 
Drought Warning and Drought Emergency. 
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8.5.2.1 Drought Watch 

Rainfall data functions as a preliminary indicator for all phases of drought conditions. 
There are several indices that measure how much precipitation for a given period of 
time has deviated from historical norms. The National Drought Mitigation Center in 
U.S. is using the Standardized Precipitation Index (SPI) to monitor moisture supply 
conditions. Many drought planners appreciate the SPI’s versatility. Distinguishing traits 
of this index are that it identifies emerging droughts months sooner than the Palmer 
Index and that it is computed on various time scales. In this study the SPI index and the 
percentile indices are used to assess the drought severity. The percentile indices are 
applied to reservoir storage as shown in table 8.2-a. The percentile indices of each 
month are presented in table 8.2-b. Details about the methodology of the SPI index are 
presented in chapter 3. Table 8.1 defines drought intensities resulting from the SPI 
index. A drought watch is declared when any of the indices indicate a drought watch; 
however indication of one index alone does not mandate a declaration.  

Table 8.1: Classification of drought stages based on the SPI index 

Stages 1 2 3 4 5 6 7 

SPI > 2 
1.5 to 
1.99 

1 to 
1.49 

0.99 to 
-0.99 

-1 to 
-1.49 

-1.5 to 
-1.99 

-2 and 
less 

Classification Extremely 
wet 

Very 
wet 

Moderately 
wet 

Near 
normal 

Moderately 
dry 

Severely 
dry 

Extremely 
dry 

 

Table 8.2-a:  Storage Triggers 

 stable situation Drought Watch Drought Warning 
Drought 

Emergency 

Storage range 
from 

>  45 Percentile 25-45  Percentile 10-25 Percentile 
less than 10 
Percentile 

DMP class 
Green level              

(1) 
Yellow level           

(2) 
Orange level               

(3) 
Red level                   

(4) 

 

Table 8.2-b:  Storage Percentiles (Bigge reservoir) 

Month 
Storage Percentiles (M.m3) 

45  Percentile 25  Percentile 10 Percentile 5 Percentile 

January 138.97 133.20 118.79 89.76 

February 137.74 133.38 123.62 103.18 

March 146.43 139.71 127.37 112.67 
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Month 
Storage Percentiles (M.m3) 

45  Percentile 25  Percentile 10 Percentile 5 Percentile 

April 160.16 154.15 139.40 124.61 

May 163.92 156.32 141.50 122.40 

June 161.54 153.60 135.26 128.44 

July 155.41 144.43 135.22 120.99 

August 145.14 136.93 125.67 110.95 

September 134.64 122.76 116.93 100.42 

October 127.85 117.25 102.32 92.47 

November 132.13 112.68 96.30 86.24 

December 131.79 118.10 100.23 82.49 

8.5.2.2 Drought Warning 

With perfect forecasting abilities, water managers exactly know when and what type of 
restrictions to implement (if that is the management option of choice) to minimize 
drought impacts. Several models are used for drought forecasting. One of these models 
is presented in chapter 4 with a reasonable accuracy. In this study the transition matrix 
is used as a tool for drought assessment. In this study it is supposed that a drought 
warning is declared when one of the following conditions is met; 

• The drought event according to SPI values extended for more than one month, 

• There is more than a 30 % probability that the SPI index of the next month lies 
between -1.5 and -2. This probability is calculated using Markov model as 
explained in the next section, 

• The reservoir storage is less than the 25 percentile.  

8.5.2.2.1 Transition matrix 

Modern probability theory studies chance processes for which the knowledge of 
previous outcomes influences predictions for future experiments (Grinstead and Snell, 
1997). In principle, when we observe a sequence of chance experiments, all of the past 
outcomes could influence our predictions for the next experiment. In 1907, A. A. 
Markov began the study of an important new type of chance process. In this process, the 
outcome of a given experiment can affect the outcome of the next experiment. This type 
of process is called a Markov chain. 
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A Markov chain can be defined as follows: We have a set of states, S = {S1, S2,…. Sr}. 
The process starts in one of these states and successively moves from one state to 
another. Each move is called a step. If the chain is currently in state Si, then it moves to 
state Sj at the next step with a probability denoted by pij, and this probability does not 
depend upon which states the chain was before the current state. The probabilities pij are 
called transition probabilities. The process can remain in the same state and this occurs 
with the probability pii. An initial probability distribution, defined on S, specifies the 
starting state. Usually this is done by specifying a particular state as the starting state. 

In general, the size of this transition probability matrix depends on the total number of 
possible outcomes. For the SPI index, the possible outcomes are the 7 condition states 
as shown in table 8.1, thus the size of the matrix is 7 x 7 for each month (table 8.3). 
These transition probabilities can be more conveniently arranged in the matrix form P 
as follows: 
 

 To  state at the next month t+1 

  

P = 

From 

state 

at 

any 

month 

t 

 

  1 2 3 4 5 6 7 

 1 P11 P12 P13 P14 P15 P16 P17 

 2 P21 P22 P23 P24 P25 P26 P27 

 3 P31 P32 P33 P34 P35 P36 P37 

 4 P41 P42 P43 P44 P45 P46 P47 

 5 P51 P52 P53 P54 P55 P56 P57 

 6 P61 P62 P63 P64 P65 P66 P67 

 7 P71 P72 P73 P74 P75 P76 P77 
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Table 8.3: Transition probability matrix for months based on SPI_3 
 Febraury  March 

Ja
nu

ar
y 

Stage 1 2 3 4 5 6 7 

Fe
br

au
ry

 

Stage 1 2 3 4 5 6 7 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.125 0.375 0.500 0.000 0.000 0.000 3 0.000 0.000 0.286 0.714 0.000 0.000 0.000 

4 0.000 0.000 0.129 0.839 0.032 0.000 0.000 4 0.029 0.000 0.147 0.794 0.029 0.000 0.000 

5 0.000 0.000 0.000 0.500 0.000 0.250 0.250 5 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

6 0.000 0.000 0.000 0.500 0.000 0.250 0.250 6 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 7 0.000 0.000 0.000 0.000 0.000 0.333 0.667 

M
ar

ch
 

April 

A
pr

il 

May 

Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7 

1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

3 0.143 0.000 0.286 0.571 0.000 0.000 0.000 3 0.000 0.000 0.333 0.667 0.000 0.000 0.000 

4 0.000 0.000 0.031 0.844 0.094 0.000 0.031 4 0.000 0.056 0.139 0.722 0.028 0.056 0.000 

5 0.000 0.000 0.000 0.667 0.000 0.333 0.000 5 0.000 0.000 0.000 0.500 0.500 0.000 0.000 

6 0.000 0.000 0.000 1.000 0.000 0.000 0.000 6 0.000 0.000 0.000 0.000 0.000 0.500 0.500 

7 0.000 0.000 0.000 0.333 0.333 0.333 0.000 7 0.000 0.000 0.000 0.000 0.000 1.000 0.000 
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 June  July 

M
ay

 
Stage 1 2 3 4 5 6 7 

Ju
ne

 

Stage 1 2 3 4 5 6 7 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 0.333 0.333 0.333 0.000 0.000 0.000 2 0.000 0.667 0.000 0.333 0.000 0.000 0.000 

3 0.333 0.167 0.000 0.500 0.000 0.000 0.000 3 0.000 0.500 0.500 0.000 0.000 0.000 0.000 

4 0.000 0.032 0.032 0.839 0.000 0.065 0.032 4 0.000 0.000 0.086 0.800 0.086 0.029 0.000 

5 0.000 0.000 0.000 1.000 0.000 0.000 0.000 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.500 0.000 0.500 0.000 6 0.000 0.000 0.000 0.600 0.000 0.000 0.400 

7 0.000 0.000 0.000 0.000 0.000 1.000 0.000 7 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

Ju
ly

 

August 

A
ug

us
t 

September 

Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7 

1 0.500 0.500 0.000 0.000 0.000 0.000 0.000 1 0.500 0.000 0.500 0.000 0.000 0.000 0.000 

2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

3 0.250 0.000 0.250 0.500 0.000 0.000 0.000 3 0.000 0.000 0.375 0.625 0.000 0.000 0.000 

4 0.000 0.000 0.121 0.727 0.121 0.030 0.000 4 0.000 0.000 0.071 0.786 0.071 0.036 0.036 

5 0.000 0.000 0.000 0.667 0.000 0.333 0.000 5 0.000 0.000 0.000 0.600 0.000 0.200 0.200 

6 0.000 0.000 0.000 0.000 1.000 0.000 0.000 6 0.000 0.000 0.000 0.250 0.500 0.250 0.000 

7 0.000 0.000 0.000 0.000 0.000 1.000 0.000 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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 October  November 

Se
pt

em
be

r 
Stage 1 2 3 4 5 6 7 

O
ct

ob
er

 

Stage 1 2 3 4 5 6 7 

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.500 0.000 0.500 0.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

3 0.167 0.167 0.000 0.667 0.000 0.000 0.000 3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

4 0.000 0.000 0.031 0.906 0.063 0.000 0.000 4 0.000 0.028 0.111 0.750 0.083 0.000 0.028 

5 0.000 0.000 0.000 0.500 0.250 0.000 0.250 5 0.000 0.000 0.000 0.600 0.400 0.000 0.000 

6 0.000 0.000 0.000 0.667 0.333 0.000 0.000 6 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.500 0.500 0.000 7 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

N
ov

em
be

r 

December 

D
ec

em
be

r 

January 

Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7 

1 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.333 0.667 0.000 0.000 0.000 3 0.000 0.000 0.500 0.500 0.000 0.000 0.000 

4 0.000 0.030 0.030 0.818 0.030 0.061 0.030 4 0.000 0.000 0.118 0.706 0.088 0.088 0.000 

5 0.000 0.000 0.000 0.600 0.400 0.000 0.000 5 0.000 0.000 0.000 0.750 0.250 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6 0.000 0.000 0.000 0.500 0.000 0.500 0.000 

7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
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8.5.2.3 Drought Emergency 

A drought emergency is declared when there is a reasonable probability that, without 
the implementation of predefined measures to reduce water consumption, a prolonged 
drought period would cause the reservoirs to be drained. Historical records show that 
there are no two droughts which have identical characteristics; therefore no single 
probability profile could be identified in advance that would be applied to the 
declaration of drought emergency. The estimation of this probability is based on several 
items such as analysis of historical records, the pattern of dry period months, reservoirs 
system storage balances, water supply system, precipitation patterns and forecasting 
models. 

8.5.3 Drought Response 

In this section several rules are proposed for each phase of drought phases. Certain 
actions are to be implemented according to each phase of the successive phases. 

8.5.3.1 Drought Watch 

When a drought watch is declared, the following actions are to be implemented to 
prevent and prepare for a very dry stage. These actions are as follow: 

• To increase public attention and to clarify the situation to consumers and request 
their cooperation in water conservation efforts,  

• To reduce the water use; hotels and restaurants are urged to provide water only 
upon request, 

• To prevent washing vehicles except at station with water recycling, 

• To establish direct drought communication between the industrial sectors and 
the drought management planners, 

• To implement industrial water reduction opportunities which are previously 
identified and to identify alternative water sources for emergency use for water 
dependent industries. 

8.5.3.2 Drought Warning  

When drought warning is declared, additional actions are to be implemented to prevent 
and prepare for extremely drought as follow: 

• To make an appeal to the public not to abuse drinking water and to increase the 
water conservation efforts, 
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• To reduce the legal constraints in several steps to reduce the additional water 
supply from reservoirs (e.g. -10 %, -20 %, -25 % depending on economical and 
ecological restrictions), 

• To forbid water use for washing vehicles and the filling of swimming pools,  

• To eliminate the filling of public fountains and watering of public parks, gardens 
and other similar areas and to increase outdoor water restrictions such as street 
cleaning and other outdoor water uses. 

8.5.3.3 Drought Emergency 

When drought emergency is declared, additional actions to those in the previous two 
phases are to be implemented to prevent and prepare for possible loss of supplies and 
maximum reductions for all sectors. These actions are as follow: 

• To reduce central water supply on some hours per day, 

• To close high water consuming industries 

• To maximize the use of alternative sources such as pumping stations, 

• To import drinking water from other regions, 

• To follow the steps of the emergency drought plan including the coordination 
between all sectors and the disaster preparedness commission. 

8.5.4 Case Study 

The main objective of this section is to present an illustration of the proposed drought 
management plan by applying it to an actual drought event from historical records. The 
negative values of the SPI have been aggregated, based on SPI_3 and SPI_6, to be used 
as an indicator for dry years during the period 1969-2007 as shown in table 8.4. From 
the values shown in table 8.4, the three hydrological years 1976, 1996 and 2003 have 
been selected as the driest years. For the selected years precipitation and storage data 
are available. The SPI index, based on one and three months time step,  and storage 
percentiles for the reservoir Bigge have been calculated and shown in table 8.5.  The 
SPI index has been calculated using two time steps because sometimes a drought event 
could be detected using a specified time step, but the same event could not be detected 
using another time step. Thus, using several time steps could be useful when applying 
the drought management plan. It is worth to mention that, the status indicator that is 
used in the Spanish DMP has been applied to the storage records then the results have 
been compared to the storage percentiles as shown in figure 8.1. Results of the 
comparison showed reasonable agreement between the two indicators. In the following 
sections the drought event in selected dry years will be discussed. 
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Table 8.4: Summation of negative values of the SPI (1969-2007) (Bigge reservoir) 

Year 
Summation of 

negative values of 
SPI_3 

Summation of 
negative values 

of SPI_6 
Year 

Summation of 
negative values 

of SPI_3 

Summation of 
negative values 

of SPI_6 

1969 -6.37 -4.83 1989 -8.19 -8.91 

1970 -0.98 -1.60 1990 -4.76 -4.31 

1971 -11.23 -11.94 1991 -10.37 -11.73 

1972 -8.85 -10.14 1992 -1.28 -2.09 

1973 -10.07 -13.24 1993 -5.38 -4.25 

1974 -2.12 -1.96 1994 -1.28 -0.37 

1975 -6.50 -2.34 1995 -6.93 -4.82 

1976 -13.52 -15.62 1996 -14.98 -21.81 

1977 -4.82 -8.29 1997 -9.55 -9.42 

1978 -3.91 -2.65 1998 -1.10 -2.28 

1979 -6.10 -6.97 1999 -5.48 -4.93 

1980 -2.90 -3.30 2000 -3.86 -1.52 

1981 -0.69 -0.18 2001 -2.71 -3.14 

1982 -4.72 -3.38 2002 -0.71 0.00 

1983 -5.50 -3.54 2003 -6.14 -6.94 

1984 -1.48 -1.37 2004 -1.77 -0.82 

1985 -7.49 -4.32 2005 -1.97 -0.37 

1986 0.00 -1.01 2006 -2.41 -2.36 

1987 -0.21 -0.13 2007 -0.13 0.00 

1988 -3.27 -1.74    
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Table 8.5: Description of the drought events in the year 1976 (Bigge Reservoir) 
Ye

ar
 

M
on

th
 

SPI_3 SPI_1 
Storage 
M.m3 

Storage range 
DMP  
class 

SP
I_

3 

st
ag

e DMP  
class 

Probability of the stage of  the 
next month 

SP
I_

1 

st
ag

e DMP  
class 

Probability of the stage of  
the next month 

1976 2 0.1 4 1 79 % to stage 4 -1.46 5 2 28% to 2, 57% to 4, 15% to 5 148.70  > 45 Percentile 1 

1976 3 0.24 4 1 84 % to stage 4 -1.07 5 3 25% to 3, 50% to 4, 25% to 6 153.30  > 45 Percentile 1 

1976 4 -2.76 7 4 100 % to stage 6 -1.98 6 2 100% to stage 4 158.10 < 45 & > 25 Percentile 2 

1976 5 -1.86 6 4 50 % to stage 4, 50 % to 6 0.06 4 1 57 % to stage 4, 23 % to 5 152.80 < 25 & > 10 Percentile 3 

1976 6 -1.98 6 4 60 % to stage 4, 40 % to 7 -1.45 5 2 22 % to stage 3, 67 % to 4 138.00 < 25 & > 10 Percentile 3 

1976 7 -0.78 4 1 72 % to stage 4 0.04 4 1 52 % to stage 4, 17 % to 5 122.90 < 10 Percentile 4 

1976 8 -1.61 6 3 25 % to 4, 50 % to 5, 25 % to 6 -1.77 6 2 50 % to stage 4, 50 % to 5 103.20 < 10 Percentile 4 

1976 9 -1.29 5 3 50 % to 4, 25 % to 5, 25 % to 7 -0.9 4 1 70 % to stage 4, 10 % to 5 86.90 < 5 Percentile 4 

1976 10 -2.03 7 3 100 % to stage 4 -0.68 4 1 72 % to stage 4 71.50 < 5 Percentile 4 

1976 11 -0.62 4 1 82 % to stage 4 0.74 4 1 67 % to stage 4 58.00 <  5 Percentile 4 

1976 12 -0.59 4 1 70 % to stage 4 -0.74 4 1 20 % to stage 3, 65 % to 4 53.10 <  5 Percentile 4 

1977 1 -0.36 4 1 84 % to stage 4 -0.21 4 1 62 % to stage 3, 16 % to 5 69.40 <  5 Percentile 4 

1977 2 -0.68 4 1  0.28 4 1  102.80 <  10 Percentile 4 
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Figure 8.1: Comparison of the status indicator (Spanish DMP) and the storage 
percentile indicator which is proposed in this study (Bigge reservoir) (month December) 

8.5.4.1 Case Study year 1976 

8.5.4.1.1 Drought Watch 

A shown in table 8.5, a drought watch is declared during the month February in 1976 
using SPI_1 However, the storage percentiles and SPI_3 for the same month did not 
indicate a drought watch. With the declaration of drought watch (using SPI_1), all 
actions of this stage are to be implemented to prevent and prepare for very dry stage.  

8.5.4.1.2 Drought Warning 

The probabilities of transition from a specified stage during the current month to a 
specified stage in the next month are presented in table 8.5. When SPI_1 is considered 
for the month March in 1976, where drought watch is also declared, there is a 
probability that the stage of the next month will be also dry (25 % to stage 6) but this 
probability is less than 33 % and this indicates yellow level. The storage range and 
SPI_3 indicate non-drought condition (green level). According to the DMP, the drought 
warning is declared because the drought event extended to more than one month. All 
actions of this stage are to be applied to prepare for extremely drought. 

8.5.4.1.3 Drought Emergency 

As shown in table 8.5, the SPI_1 index indicates that the month April is a severe dry 
event (SPI_1 = - 1.98) and SPI_ 3 indicates an extreme dry event (SPI_3= -2.76). The 
storage percentile also indicates yellow level.  SPI_3 stages show that there is high 
probability (100 % to stage 6) that next month will be extremely dry. These indicators 
lead to the declaration of the drought emergency. It is worth to mention that the 
probability value (100 %) was obtained because this type of drought only happened one 
time during this month through the study period, but the value of probability is not the 
only reason of drought emergency declaration. The drought emergency is declared 
because the drought event is continuing and there is a reasonable probability that 
without the implementation of predefined actions to reduce water consumption, a 
prolonged drought period would cause the reservoirs to be drained and this can be 
clearly notable from the storage data of the following months (table 8.5). 
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The beginning of a normal period (according to SPI_3) was in November 1976 where 
the SPI_3 started to be positive. The impacts of drought on the reservoir storage 
continued until March 1977 as shown in tables 8.5 and 8.6. Table 8.6 presents the 
actions that have been implemented during this period related to reservoir release. A 
comparison of the dry period 1976 with mean historical records is presented in figure 
8.2. 

 Table 8.6: Comparison of the dry period 1976 with normal periods (Bigge reservoir)   
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1 1976 67.46 101.80 20.57 36.52 135.45 36.34 13.56 

2 1976 14.35 148.70 9.75 28.76 135.77 20.64 9.68 

3 1976 10.42 153.30 5.62 31.35 143.67 18.78 2.90 

4 1976 6.40 158.10 11.70 18.25 156.60 15.08 4.51 

5 1976 2.66 152.80 17.46 10.58 159.86 12.40 7.89 

6 1976 2.59 138.00 17.69 8.08 157.88 14.08 7.81 

7 1976 1.36 122.90 21.06 10.18 151.77 16.93 10.49 

8 1976 1.26 103.20 17.56 7.70 144.86 17.89 11.22 

9 1976 1.43 86.90 16.83 9.00 134.65 15.82 9.56 

Tr
an

si
tio

n 
Pe

rio
d 

10 1976 2.39 71.50 15.89 15.62 127.84 18.80 10.40 

11 1976 7.66 58.00 12.56 25.77 124.99 22.90 11.54 

12 1976 20.09 53.10 3.79 35.26 127.87 27.50 10.66 

1 1977 35.88 69.40 2.48 36.52 135.45 36.34 13.56 

N
or

m
al

 P
er

io
d 

2 1977 44.30 102.80 0.70 28.76 135.77 20.64 9.68 

3 1977 11.10 146.40 2.90 31.35 143.67 18.78 2.90 

4 1977 26.67 154.60 10.37 18.25 156.60 15.08 4.51 

5 1977 9.93 170.90 10.53 10.58 159.86 12.40 7.89 

6 1977 7.68 170.30 7.48 8.08 157.88 14.08 7.81 
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                                                                                 (a) 

                                                                                   (b) 

                                                                                    (c) 

                                                                                    (d) 

Figure 8.2: Comparison of the dry period 1976 with mean historical records               
(Bigge reservoir)      

(a) Precipitation              (b)  Inflow                   (c) Storage                          (d) Release 
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8.5.4.2 Case Study year 1996 

8.5.4.2.1 Drought Watch 

A shown in table 8.7, a drought watch is declared during the month October in 1995 
using SPI_1 and the storage percentiles. However, SPI_3 for the same month did not 
indicate a drought watch. For this reason, the use of the transition probability matrix 
could be influential and effective when several time steps are used for SPI calculations. 
With the declaration of drought watch, all actions of this stage are to be implemented to 
prevent and prepare for very dry stages.  

8.5.4.2.2 Drought Warning 

The probabilities of transition from a specified stage during the current month to a 
specified stage in the next month are presented in table 8.7. When SPI_1 is considered 
for the month October, where drought watch was declared, there is a probability that the 
stage of the next month will be also dry (33 % to stage 6 + 33 % to stage 7) in addition 
to the storage range which indicates the warning case (yellow level). By this result the 
drought warning is declared. All actions of this stage are to be applied to prepare for 
extreme drought. This can be clearly noticed in table 8.8, the release of the reservoir 
during the month November  was 14.04 M.m3. This release is relatively small compared 
to the releases of the previous year (42.79 M.m3) and the mean release of this month 
through the study period (22.90 M.m3). 

8.5.4.2.3 Drought Emergency 

As shown in table 8.7, the SPI_1 index indicates that the month November has 
extremely dry event (SPI_1 = - 2.15) and there is high probability to the occurrence of 
this event as mentioned in the previous section. By using the SPI_1 and SPI_3 indices 
simultaneously in addition to the storage percentiles, the emergency stage will continue 
until the month May in 1996. When the SPI_1 is considered, the individual normal 
events which were in between dry periods were not an indication of the end of the dry 
period because normal rainfall of one month does not have notable effect on drought 
impacts.  

This can be illustrated by the month February in the year 1996, SPI_1 indicates normal 
event but SPI_3 indicates an extremely dry event. The storage of this month was also 
less than 10 percentile. That reveals the importance of using SPI index with more than 
one time step. The emergency state ends when both SPI_1 and SPI_3 became positive 
in addition to a high probability that the next month will not have a dry event (table 
8.7). The beginning of normal state is at the month July in 1996 where the SPI_1 started 
to be positive, the probability of a dry event during the next month became small and 
the type of state reached normal stage by September 1996.  
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Table 8.7: Description of the drought events in the year 1996 (Bigge reservoir) 
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DMP  
class 
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e DMP  
class 

Probability of the stage of  the 
next month 

SP
I_
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ag

e DMP  
class 

Probability of the stage of  the 
next month 

1995 10 -0.20 4 1 75 % to stage 4 -1.73 6 3 33 % to 4, 33 % to 6, 33 % to 7 124.2 < 45 & > 25 Percentile 2 

1995 11 -0.99 4 1 82 % to stage 4 -2.15 7 4 67 % to 4, 33% to 6 118.5 < 45 & > 25 Percentile 2 

1995 12 -3.20 7 4 100% to stage 7 -1.85 6 4 50 % to 5, 50  % to 7 112.4 <  25 & > 10 Percentile 3 

1996 1 -3.43 7 4 100 % to stage 7 -2.33 7 4 33 % to 3, 33 % to 4, 33 % to 5 113.8 <  10   Percentile 3 

1996 2 -2.32 7 4 33 % to stage 6, 67 % to 7 0.18 4 1 67 % to 4,  10 % to 7, 3 % to 6  103.6 < 10 Percentile 4 

1996 3 -2.33 7 4 33 % to 4, 33 % to 5, 33 % to 6 -1.82 6 4 100 % to stage 6 103.7 <10 Percentile 4 

1996 4 -1.83 6 4 50 % to stage 6, 50 % to 7 -1.94 6 4 100 % to stage 4 114.0 <  10 Percentile 4 

1996 5 -2.29 7 4 100 % to stage 6 0.01 4 1 57 % to stage 4, 23 % to 5 115.1 <  10 Percentile 4 

1996 6 -1.97 6 4 60 % to stage 4, 40 % to 7 -1.37 5 2 22 % to stage 3, 67 % to 4 115.9 <  10 Percentile 4 

1996 7 -0.60 4 1  72 % to stage 4, 12 % to  5 0.30 4 1 52 % to stage 4, 17 % to 5 114.3 <  10 Percentile 4 

1996 8 -0.20 4 1 78 % to stage 4 0.61 4 1 73 % to stage 4 114.2 <  10 Percentile 3 

1996 9 0.14 4 1 90 % to stage 4  -0.53 4 1 70 % to stage 4, 10 to stage 5 117.0 <  25 & > 10 Percentile 3 

1996 10 0.66 4 1 75 % tos tage 4 1.04 3 1 72 % to stage 4 123.89 < 45 & > 25 Percentile 2 



180                                                                                                                                                                                   8.5 Case study

  
 

Table 8.8 presents the actions that have been implemented during this period related to 
reservoir release. The Releases were reduced compared to mean values and this 
reduction is notable for month 3, 4, 5, 6, 7, and 8 in 1996. Releases during this months 
reached valus less than the 10 percentile of release as shown in table 8.8. To investigate 
the effect of this reduction on the storage, another scenario has been assumed for the 
relase during this dry period. the assumed releases equal to the difference between mean 
values and standard deviation of monthly releases( table 8.8). Results show that the the 
minimu storage using this scenario is 102 M.m3 during August 1996.  

 

Table 8.8: Comparison of the dry period 1996 with normal periods (Bigge reservoir)   
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10 1995 7.62 124.24 13.28 15.62 127.84 18.80 10.40 13.28 

11 1995 7.88 118.58 14.04 25.77 124.99 22.90 11.54 14.04 

12 1995 14.05 112.41 12.57 35.26 127.87 27.50 10.66 12.57 

1 1996 4.61 113.89 14.85 36.52 135.45 36.34 13.56 14.85 

2 1996 10.63 103.65 10.55 28.76 135.77 20.64 9.68 10.55 

3 1996 13.97 103.72 3.70 31.35 143.67 18.78 2.90 2.84 

4 1996 4.38 114.00 3.27 18.25 156.60 15.08 4.51 5.01 
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5 1996 4.62 115.11 3.81 10.58 159.86 12.40 7.89 7.58 

6 1996 3.08 115.92 4.65 8.08 157.88 14.08 7.81 8.87 

7 1996 6.27 114.36 6.44 10.18 151.77 16.93 10.49 9.70 

8 1996 12.26 114.20 9.43 7.70 144.86 17.89 11.22 9.31 
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9 1996 12.12 117.04 5.26 9.00 134.65 15.82 9.56 9.15 

10 1996 20.30 123.89 9.57 15.62 127.84 18.80 10.40 8.15 

11 1996 33.71 134.62 29.23 25.77 124.99 22.90 11.54 9.24 

12 1996 29.37 139.10 32.38 35.26 127.87 27.50 10.66 9.01 
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  (a)  

 

(b) 

 
(c)  

 
(d) 

Figure 8.3: Comparison of the dry period 1996 mean historical records                                                   
(Bigge reservoir) 

(a) Precipitation              (b)  Inflow                   (c) Storage                          (d) Release 
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8.5.4.3 Case Study year 2003 

8.5.4.3.1 Drought Watch 

Table 8.9 shows that the drought watch is declared during the month February in 2003 
using SPI_1 and the storage percentiles. However SPI_3 did not indicate a drought 
watch for the same month. The storage of this month is less than 25 percentilewhich 
declares drough warning.   

8.5.4.3.2 Drought Warning and drought emergency 

As shown in table 8.9, the storage percentile of month March 2003 declares the drought 
emergency (red level) and this DMP class continues until December 2003. SPI_3 of 
month April 2003 (-1.49) shows that there is a 50 % probability that the stage of the 
next month will be also dry. Stages of SPI_3 show that May 2003 was last month with 
drought stage, but it is clearly notable that some months have negative SPI_3 values that 
are more than -1. When SPI_1 is considered, only two months (August and November) 
provided moderately drought stage. Also when SPI_6 is considered, both July and 
August provided moderately drought stage. The values of SPI during this year show that 
there is no existence for severe or extremely drought but the negative values of SPI 
continued for several month. Also releases from reservoir were relatively high 
compared with the inflow during this year (table 8.10), thus the storage percentile 
declared the drought emergency.       
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Table 8.9: Description of the drought events in the year 2003 (Bigge reservoir) 
Ye

ar
 

M
on

th
 

SPI_3 SPI_1 
Storage 
M.m3 

Storage range 
DMP  
class 

SP
I_

3 

st
ag

e DMP  
class 

Probability of the stage of  
the next month 

SP
I_

1 

st
ag

e DMP  
class 

Probability of the stage of  the 
next month 

2003 2 -0.15 4 1 14 % to stage 3, 79 % to 4 -1.02 5 2 28 % to 2, 57 % to4, 14 % to 5 133.2 < 25 & > 10 Percentile 3 

2003 3 -0.42 4 1 3 % to 3, 84 % to 4 , 9 % to 5 -0.64 4 1 12 % to 2, 69 % to 3, 9 % to 4 126.8 < 10 Percentile 4 

2003 4 -1.49 5 3 50 % to 4, 50 % to 5 -0.48 4 1 6 % to 3, 72 % to 4, 9 % to 6 137.5 < 10 Percentile 4 

2003 5 -1.27 5 3 100 % to 4 -0.45 4 1 11 % to 3, 57 % to 4, 23 % to 5 131.3 < 10 Percentile 4 

2003 6 -0.76 4 1 8 % to 3, 80 % to 4 0.01 4 1 7 % to 2, 71 % to 4, 7 % to 5 128.6 < 10 Percentile 4 

2003 7 -0.67 4 1 12 % to 3, 72 % to 4 -0.48 4 1 11 % to 3, 53 % to 4, 17 % to 5 119.4 < 5 Percentile 4 

2003 8 -0.89 4 1 7 % to 3, 78 to 4  -0.98 4 1 10 % to 3, 73 % to 4 108.3 < 5 Percentile 4 

2003 9 -0.47 4 1 3 % to 3, 90 % to 4 0.67 4 1 9 % to 3, 69 % to 4 93.8 < 5 Percentile 4 

2003 10 0.29 4 1 11 % to 3, 75 % to 4 0.79 4 1 71 % to 2, 9 % to 3, 3 % to 5 85.1 < 5 Percentile 4 

2003 11 0.23 4 1 3 % to 3, 82 % to 4 -1.32 5 2 100 % to 4 91.3 < 10 Percentile 4 

2003 12 -0.03 4 1 12 % to 3, 70 % to 4 -0.03 4 1 20 % to 3, 65 % to 4 93.8 < 10 Percentile 4 

2004 1 0.34 4 1 13 % to 3, 84 % to 4 1.15 3 1 14 % to 2, 71 % to 4 126.1 < 25 & > 10 Percentile 3 

2004 2 0.82 4 1 15 % to 3, 79 % to 4 0.34 4 1 10 % to 3, 67 % to 4 136.10 < 45 & > 25 Percentile 2 
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Table 8.10: Comparison of the dry period 2003 with normal periods (Bigge reservoir)   
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Dry period (Case Study) Mean Values (1969- 2008) 
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io
d 11 2002 39.41 122.63 40.93 25.77 124.99 22.90 11.54 

12 2002 41.94 121.11 15.16 35.26 127.87 27.50 10.66 

1 2003 48.90 147.88 63.58 36.52 135.45 36.34 13.56 

D
ry

 P
er

io
d 

2 2003 10.95 133.21 17.28 28.76 135.77 20.64 9.68 

3 2003 24.53 126.87 13.82 31.35 143.67 18.78 2.90 

4 2003 4.71 137.59 10.99 18.25 156.60 15.08 4.51 

5 2003 6.90 131.31 9.60 10.58 159.86 12.40 7.89 

6 2003 3.91 128.61 13.08 8.08 157.88 14.08 7.81 

7 2003 2.56 119.44 13.70 10.18 151.77 16.93 10.49 

8 2003 1.58 108.30 15.99 7.70 144.86 17.89 11.22 

9 2003 3.10 93.88 11.90 9.00 134.65 15.82 9.56 

10 2003 15.74 85.09 9.52 15.62 127.84 18.80 10.40 

11 2003 9.81 91.31 7.28 25.77 124.99 22.90 11.54 

12 2003 38.78 93.84 6.49 35.26 127.87 27.50 10.66 

N
or

m
al

 P
er

io
d 

1 2004 42.03 126.13 32.06 36.52 135.45 36.34 13.56 

2 2004 32.26 136.10 20.83 28.76 135.77 20.64 9.68 

3 2004 17.36 147.54 10.60 31.35 143.67 18.78 2.90 

4 2004 11.77 154.30 7.36 18.25 156.60 15.08 4.51 

. 
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                                                                                    (a) 

 

(b) 

 

(c)  

 (d) 

Figure 8.4: Comparison of the dry period 2003 mean historical records                        
(Bigge reservoir)      

(a) Precipitation              (b)  Inflow                   (c) Storage                          (d) Release 
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8.5.4.4 Comparative Analysis of Droughts of the  years 1976, 1996 and 2003 

As mentioned before, the accumulated magnitude of negative values of SPI have been 
calculated to be used as a measure for the selection of the driest years within the study 
period. The hydrological year 1996 was found to be the most critical year followed by 
1976. The year 2003 was not so critical compared to 1976 and 1996. The drought events 
during 1976 and 2003 were in summer but in 1996 drought event was in winter. 

Table 8.11 illustrates that inspite of the small sum of the monthly inflow during 1976 
(only 20 % higher than 1996), the releases during 1976 exceeded those of 1996 (80 % 
higher than releases during 1996). The main reason behind this is that the water 
abstraction during 1976 was more than this of 1996 as shown in figure 8.5.  

In 1976 the situation (summer drought) was not the same as in 1996 (winter drought). 
The releases were not decreased (to satisfy water demand), thus the storage of the 
reservoir reached minimum value of 53 M.m3 in December 1976. On the other hand, the 
situation during 2003 was totally different. According to data of this year, as shown in 
table 8.10, table 8.11 and figure 8.6, the initial storage of this year was approximately as 
this of 1996  and the summation of the inflow was 1.79 times that of 1996, but despite 
this the reservoir reached a storage  less than 1996 as shown in table 8.11. 

 

 

Figure 8.5: Annual abstracted and exported water in the Ruhr catchement area                      
between 1900 and 2009 

                   Source(http://www.talsperrenleitzentrale-ruhr.de/veroeffentlichungen.html) 
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Table 8.11: Comparison of Drought between hydrological year 1976, 1996 and 2003   
Hydrological                 

Year 
1976 

(Summer drought) 

1996 

(Winter drought) 

2003 

(Summer drought) 

Historical Mean 

(1969-2008) 

Summation of               
monthly inflow 

(November: 
October) 

(Million.m3) 

137.39 114.17                     204.23               237 

Summation of                  
monthly release 

(November: 
October) 

(Million.m3) 

177.09 98.14                 235.55                237 

Difference 
between inflow 

and release. 

D=Inflow_Release

(Million.m3) 

-39.19 16.03 -31.32 0 

Percentage of 
the difference 

between inflow 
and release 

(D/inflow) % 

-28.9 % 14 % -15.3 % 0 % 

 

Minimum  

Storage  

(Million.m3) 

71.50                                     
(reached a value 

of 53.1 in Dec. 76) 
103.65 85.09 124.99 
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                                                                                (a) 

   

                                                                                   (b) 

                                                                                              

                                                                                    (c) 

Figure 8.6: Comparison of Drought between year 1976, 1996 and 2003   
                     (a)  Storage and release                (b) Inflow                                 (c) Mean temperature 
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8.6 Conclusion 

Drought differs from other natural hazards in several important points. Drought is a slow-
onset and creeping phenomenon that makes it difficult to determine the onset and end of the 
event, its duration may range from months to years. The first and important evidence of 
drought is usually stated in precipitation records. The effects of a drought on streamflow 
and reservoirs may not be noticed for several weeks or months. Balancing the needs of all 
users of water supply during a drought periods can be difficult. Drought impacts mitigation 
represents one of the most challenging issues in water resources management, which can be 
successfully carried out by developing an efficient strategy in a Drought Management Plan 
(DMP). The DMP consists of planning, monitoring and implementation of planned and 
emergency actions to recover drought damage. Preparing an efficient drought management 
plan is the best way to reduce drought impacts. These impacts can continue to several 
weeks or months even after a drought event. 

In this study a drought management plan “DMP” has been proposed for the monitoring and 
mitigation of drought in the Ruhr river basin. The proposed DMP consists of three stages 
namely Drought Watch, Drought Warning and Drought Emergency with several actions to 
be implemented during each stage. In the developed DMP, the indicators proposed to 
classify the drought classes are the SPI index and the storage percentiles in addition to the 
transition matrix of probability of the SPI index. In order to select a case study period from 
the historical records, the negative values of the SPI index have been aggregated based on 
one and three months time scale. The dry periods in 1976, 1996 and 2003 have been 
selected as case studies. The procedures of the developed DMP have been applied to the 
case studies. The proposed indicators, the SPI index and the storage percentiles, have been 
calculated during each month for the period under consideration. By applying the proposed 
DMP to the case studies, results showed the successful use of the SPI index based on 
several time scales simultaneously with the storage percentile in classifying the drought 
situation. Results also showed that the transition matrix of probability of the SPI index can 
be a useful guide for decision making during dry periods. 

One of the main findings of this chapter is to emphasize that drought is a natural 
phenomenon, while water scarcity is both a natural and a human-made phenomenon. From 
that point the analysis of the three case studies 1976, 1996 and 2003 demonstrated that 
although 1996 was more critical than the 1976, the year 1995 was better managed.  The 
reservoir storage during the year 1976 reached a value of 53.1 M.m3 while the minimum 
storage of reservoir during the year 1996 was 103.65 M.m3. On the other hand, the annual 
amount of water that was released from the reservoir in 1996 was 98.14 M.m3 and 114.05 
M.m3 in 1976. These results emphasize the importance of implementing the actions of each 
stage of drought stages to address drought impacts and to prevent reservoir from being 
drained.  

Finally, in order to assess risk and respond to drought, water suppliers have to establish a 
local drought management team. The drought management team needs to focus on three 
main goals: get to know the water supplies, improve water use efficiency and communicate, 
educate, and participate.  



 

  
 



 

  
 

Chapter 9 

Conclusions and Recommendations 

In this chapter the main summaries and important conclusions are stated. It also 
provides some recommendations, poses open questions and suggests areas of future 
research. 

9.1 Summary and Conclusions 

The overall objective of this research effort was to study the change of climate in the 
Ruhr river basin and to evolve appropriate techniques and tools for drought 
characterization and for enhanced management of water resources systems during 
drought periods. The developing tools have four major components: 1) Climate change; 
2) Drought monitoring and forecasting; 3) Reservoir operation during drought and 4) 
drought management plan. The developed tools have been demonstrated through an 
application to the Ruhr river basin as case study. 

The major findings of this research are summarized as follows: 

 

 After examining 68 years of precipitation and temperature data and 62 years of 
streamflow data, some statistically significant trends have been identified. There 
are slight increases in all three variables (streamflow, precipitation, temperature) 
in the Ruhr River basin. Between 1961 and 2007 results showed that over the 
study area a significant increase in the mean temperature over all time scales is 
considered. The occurrence of warm days in both winter and summer has a 
significant increase, while the occurrence of cold days in both seasons showed a 
similar proportion of significant decrease which is evident that the winter becomes 
warmer and the summer becomes hotter. Significant increase in the winter 
precipitation has been detected while the increases in the summer and the annual 
precipitation were statistically insignificant. The number of consecutive dry days 
displayed decreasing tendencies in winter while there is no indication of a 
statistically significant change in the summer. The index PR95 % (very wet days), 
PR99 % (extremely wet days) have been introduced in this study to explore the 
supposed amplified response of extreme precipitation events relative to the change 
in total amount. The main identified trends of very & extreme wet days were an 
increase in the very wet days in the winter. Results of inflow analysis showed that 
there is a significant increase in the winter inflow while the increases in summer 
and the annual inflow were found to be statistically insignificant. 
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 By applying the SPI methodology for drought monitoring, the obtained results 
indicated that the drought randomly affect the Ruhr river basin. Several drought 
events occurred during the period under study. Results indicated also that inspite 
of the significant positive trend in winter precipitation, drought visited the Ruhr 
basin in both summer and winter and that the most severely event was in the 
winter. Trends in SPI data series indicated that the proportion of the Ruhr 
catchment drought condition has insignificantly changed during the period under 
study. It is worth to be mentioned that in reality extreme drought events in the last 
decades presented no severe challenges to the water supply of the Ruhr district due 
to the reservoir system existing in the Ruhr catchment basin.   

 

 The SPI index has been used as a drought indicator for drought forecasting due to 
its advantages over other drought indices. The capability of the ARIMA and 
SARIMA models in drought forecasting has been investigated using the 
correlation methods of Box and Jenkins and the AIC and SBC structure selection 
criteria. Results of the model evaluation showed a fairly good agreement between 
observations and forecasts, as it has also been confirmed by the values of some 
performance indices. The evaluation of the models showed that the results seem to 
be better for higher SPI series (SPI_6, SPI_9,..., and SPI_24)  and this  may be due 
to the increase in filter length which reduces the noise more effective. Results 
showed also that the good fitting of stochastic models such as ARIMA and 
SARIMA to hydrologic time series, such as SPI time series, could result in a better 
tool which can be used for water resource planning within the basin. 

 

 
 A software package for meteorological drought forecasting has been developed. 

This package contains two main stochastic models, namely the Auto Regressive 
Moving Average (ARIMA) model and the Seasonal Auto Regressive Moving 
Average (SARIMA) model. The developed software has several advantages 
compared with other programs that are used for time series forecasting, such as its 
simplicity and ease of use. One of the advantages of the developed program is that 
the user does not need to try several candidate models in order to get the best 
model. The user needs only to put limits for the model’s parameters then the 
program optimizes these parameters to detect the best model. The developed 
program has been calibrated using the well known software SPSS. Results of the 
calibration showed good agreement between the forecasted values using the 
developed program and those which obtained using the SPSS software with 
reasonable accuracy. The developed model has some limitations in order to  obtain 
results with reasonable accuracy. Using of SPI model requires that there is no 
missing data in the time series and length data record is required to be at least 30 
years. The developed model can be applied to any precipitataion records 
worldwide. 
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 The stochastic streamflow generation model of Thomas-Fiering and the Monte 
Carlo simulation model have been applied to generate monthly inflow data for 
four reservoirs in the Ruhr river basin. The statistical parameters such as means, 
standard deviation and skewness of the observed data and the generated data of the 
used approaches has been compared. The results showed that the generated data 
have successfully preserved the historical statistical parameters of streamflow. The 
results showed that the Thomas-Fiering model has also preserved the correlation 
coefficient between consecutive months. Thus, the Thomas-Fiering model has 
been used for producing inflow data needed for reservoir optimization and 
simulation models presented in this thesis. 

 

 An optimization model has been developed using Genetic Algorithm (GA), 
Pattern Search and Gradient-based method for reservoir operation during normal 
periods and drought periods as well. The Bigge reservoir has been presented as 
case study. Two objective functions have been considered, then a weighted 
approach has been adopted to convert the multiple objectives problem into a single 
objective problem, so that the user can specify the priorities by giving a specified 
weight for each function. Several scenarios for low inflow periods have been 
attempted. The obtained results showed that both the GA approach and Gradient-
based approach provide higher benefits than the Pattern Search approach. The 
evaluation of the developed model has been carried out using the the driest years 
in the available historical records. The monthly inflow of this year has been 
considered as input to the optimization model. Results of the evaluation 
demonstrated that the optimization model is beneficial. Results also showed that 
the developed model with its several scenarios and the suggested optimization 
approaches could be a helpful guide for the real operation of the reservoir. 

 

 An example of the collective use of stochastic models has been presented. The use 
of the adaptive network-based fuzzy inference system (ANFIS) to construct a 
model for reservoir operation, simulation of reservoir operation and decision 
making about reservoir release has been proposed. The applicability and capability 
of the ANFIS model have been investigated by using a set of data of the Ruhr 
reservoir system, Germany. The used data are time of year (months), inflow, 
storage, Standardized Precipitation Index (SPI) and release. The historical data 
sets have been divided into two independent sets to train and test the constructed 
models. Two main models have been developed. The output of the first model is 
the release during the next month; on the other hand, the output of the second 
model is the release of the current month. Predicted release values and observed 
release have been evaluated using several evaluation criteria.   
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Results of the evaluation showed that the ANFIS models are accurate and 
consistent in different subsets, where most of the values of RMSE and MAE are 
smaller and most of the correlation coefficients and R2 are also very close to 
unity. The effect of using the SPI index as input has been examined using two 
ANFIS models; one with SPI as input variable, another without. It has been found 
that the model which contains SPI as input variable has consistently superior 
performance compared with the one without SPI index. Results obtained in this 
study showed that the ANFIS models provide reliable reservoir release prediction 
for the current and the next month, and the proposed approach could be a good 
tool for the evaluation of the release for a specified month and could also be a 
helpful reference guide to the operator during decision making. 

 

 Preparing an efficient drought management plan is the best way to reduce 
drought impacts. These impacts can continue several weeks or months even after 
a drought event. A drought management plan (DMP) has been proposed for 
monitoring and mitigation of drought in the Ruhr river basin. The proposed 
DMP consists of three stages namely Drought Watch, Drought Warning and 
Drought Emergency with several actions to be implemented during each stage.  
The proposed DMP has been applied to three years as case studies. The analysis 
of the case studies showed that the implementation of the actions of each stage 
of the drought management plan is very important to address drought impacts 
and to prevent reservoirs from being drained. The analysis of the case studies 
also showed, that the use of transition probability matrix can be an useful guide 
for decision makers during dry periods.  
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9.2 Recommendations for Further Study 

To conclude this thesis, the following recommendations are made for further work that 
could lead to enhanced drought management performance: 

• To develop a drought mapping system to monitor meteorological drought using 

the Standardized Precipitation Index (SPI) and interpolation methods.  

• To study the occurrence probabilities, return periods and risk of meteorological 

drought events in the Ruhr river basin. 

• To develop a drought early warning system using the Standardized Precipitation 

Index (SPI) as tool where this is the approach that the European Commission, 

Joint Research Centre proposed for drought forecasting over Europe. 

• To develop a model for predicting the transition from a drought class of severity 

to another using the Standardized Precipitation Index (SPI) as drought indicator. 

• To use the optimization model proposed in this study to develop a model for 

optimal multipurpose-multireservoir operation during drought in the Ruhr basin. 

• To develop a simulation model for operating a multireservoir system during 

drought in the Ruhr basin  using the approach proposed in this study 

• To develop a drought management decision support system for short-term and 

long-term management. 
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Appendix A 

Software for the calculation and Analysis of the Standardized 
Precipitation Index  

 

A.1 Possibilities of SPI _Analysis 

As presented in chapter 3, the calculation and the analysis of the standardized 
precipitation index (SPI) are complex and not so easy to be done with several 
precipitation time series. The developed program named “SPI_Analysis” is a program 
to calculate and analyze the standardized precipitation index (SPI). The main objectives 
of the program are: 

Calculation of the SPI values for a given precipitation data series of a length of least 30 
years with daily records. 

Detection whether a drought event exists in data series. 

Classification of the drought events according to its intensity (moderate- severe- 
extreme).  

The program is easy to use for a given data series. The user only needs to prepare the 
data series to meet the required format.  

A.2 Mathematical Core of SPI_Analysis  

McKee (McKee et al., 1993) developed the Standardized Precipitation Index (SPI) for 
the purpose of defining and monitoring drought. Among others, the Colorado Climate 
Center, the Western Regional Climate Center and the National Drought Mitigation 
Center use the SPI to monitor current states of drought in the United States. The nature 
of the SPI allows an analyst to determine the rarity of a drought or an anomalously wet 
event at a particular time scale for any location in the world that has precipitation 
records. In most cases, the Gamma distribution best models observational precipitation 
data. Details about the SPI methodology are presented in chapter 3.  
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A.3 How to Start an Application  

The SPI_Analysis program is valid for applying to any precipitation data series in any 
basin. User can start the program by double clicking the SPI_Analysis icon with left 
mouse button. The SPI_Analysis title screen is shown in figure A.1. Once the program 
is started, the main screen appears. In the File-menu the user can select the option “Load 
Data” by one click on the button “Load Data”. Then the user has to select a data file 
(figure A.2) which must satisfy the required format. The requirements for a data series 
to be analyzed and the required format of the input file are presented in section A.4. 
 

 

Figure A.1: SPI_Analysis initial screen 
 



A.4 Required information content of data series                                                                                                                    209   

  
 

 

Figure A.2: SPI_Analysis title screen to select type of data 
 

A.4. Required Information Content of Data Series 

Each data series in the input file must satisfy the requirements in order to avoid any 
error. The requirements are:  

The SPI_Analysis can only read data series in Microsoft Excel (.xls) 

Each precipitation data series consists of two columns. The first one is the date with the 
required format “yyyymmdd”(see figure A.3) and the second one is the observed data 
(mm) 

Missing data are not allowed, any missing data leads to an error. 

The accepted data are daily or monthly observations. 

Above requirements must be satisfied for all data series which the user wants to 
analyze. 

 

Menu at top of screen 

Load data 
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Figure A.3: Sample of input data 

A.5 Calculation of the SPI Index 

A.5.1. Define Input Data Series 

After choosing the precipitation data series, the button “Start Calculation” will be 
available as shown in figure A.4. One click on this button and all calculations required 
for SPI analysis will be done and the pop-up menu” Select time scale” will be available 
as shown in figure A.5. The user has two options: the first one is to analyze the SPI 
index for the total period (consecutive months) or for a specified month. 

A.5.2. SPI Index for Consecutive Months 

From the pop-up menu “Select time scale” under the title ”SPI values for the total 
period “the user can choose one of six time scales, namely SPI_1, SPI_3, SPI_6 and 
SPI_9, SPI_12 and SPI_24 as shown in figure A.6. After selection of time scale, all 
calculation will be done for the selected time scale and then the user can plot the results 
by one click on the button “Plot Results”. For example if the user selects the SPI_3 time 
scale the results will be as shown in figure A.7. Also the user can save the obtained 
results by clicking the button” Save Results” then will get message with the location of 
the saved results. A sample of saved results is shown in figure A.9. The first column 
presents the years, the second one presents the months and the third one presents the 
SPI values. 
 

Date Obsereved data 

Year Month Day 
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Figure A.4: Start calculations of the SP index 

 

Figure A.5: Pop-up menu to select time scale 

 

Figure A.6: Pop-up menu to select time scale (consecutive months) 
 

Consecutive months 

A specified month 
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Figure A.7: SPI time series based (Three months time step – SPI_3) 

 

Figure A.8: Results of SPI calculations (Three months time step – SPI_3)

Note that:                 
SPI_3 values start at 

the third month 



A.5 Calculation of the SPI Index for a Specified Month                                                                                                          213 

 

A.5.3. SPI Index for a Specified Month 

From the pop-up menu “Select time scale” under the title” SPI values for a specified 
month“ the user can choose one of 72 scales i.e. 6 time scales for each month (figure 
A.9). After selection of time scale, all calculation will be done for the selected time 
scale and then the user can plot the results by one click on the button “Plot Results”. For 
example if the user selects the SPI_3_Jan time scale (SPI_3 for the month January) the 
results will be as shown in figure A.10. The user also can save the obtained results by 
clicking the button” Save Results” then will get message with the location of the saved 
results. A sample of saved results is shown in figure A.11. The first column presents the 
years; the second one presents the corresponding SPI values. 
 

 

Figure A.9: Pop-up menu to select time scale (A specified month) 
 

One of these time scales 
could be selected 
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Figure A.10: Drought severity index values representative based on three months SPI 
values SPI-3-Jan.  (November, December and January) 

 

Figure A.11: Results  of SPI calculations(Three months time step – SPI_3_Jan)
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A.5.4 Detection of Extreme Events 

The classification of drought events based on the SPI index. Under the title “Extreme 
Events” the user has to select one of the time scales. Once the user selects the required 
time scale, the three radio buttons (Moderately Dry- Severely Dry –Extremely Dry) will 
be available and the user has to check one of it in order to active the button “Find 
Extremes”. Once the user clicks the button “Find Extremes”, the results will be saved 
automatically and a message contains the location of the saved results will appear. A 
sample of results is shown in figure A.12. The first column presents the years, the 
second one presents the month in which the selected event happened and the third 
column presents the corresponding SPI value. 
 

 

            

Figure A.12: Detection of drought events 



 

 

                 



 

  
 

Appendix B 

Software Package for Meteorological Drought Forecasting 
Using Stochastic Models  

B.1 Introduction 

Occurrences of droughts all over the world are natural phenomena. Droughts represent 
an increasing hazard in many countries. Consequently, it is of the utmost importance to 
utilize efficient methods for drought events forecasting in order to assess and reduce 
such natural water hazards to the minimal or manageable level. In this study a software 
package named Drought_Forecasting has been developed. 

The linear stochastic models ARIMA and multiplicative Seasonal Auto Regressive 
Integrated Moving Average (SARIMA) model have been used to forecast droughts 
based on the procedure of model development. The models have been applied to 
forecast droughts using standardized precipitation index (SPI) series in Ruhr river basin. 
The predicted results using the best models have been compared with the observed data 
and with the predicted results obtained by using the well known software SPSS. The 
predicted results show reasonably good agreement with the actual data with reasonably 
accuracy. 

B.2 Possibilities of Drought_Forecasting 

As presented in chapter 5, the forecasting of the standardized precipitation index (SPI) 
using stochastic models is not so easy to be done with several SPI data series. There are 
many software packages which are used for time series forecasting. One of these 
programs is the SPSS package which was used in drought forecasting in the previous 
chapter. The SPSS package has many tools, not only time series forecasting, which need 
an experienced user. However one of the advantages of the developed program, which 
named Drought_Forecasting, is its simplicity. The main objectives of the program are: 

Forecasting of the SPI values for a given SPI data series using ARIMA model. 

Forecasting of the SPI values for a given SPI data series using SARIMA model.  

The program is easy to use; the user needs only to prepare the data series to meet the 
required format.  
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B.3 Mathematical Core of the developed program 

The Drought_forecasting program contains mainly tow models; the Auto Regressive 
Integrated Moving Average (ARIMA) model and the Seasonal Auto Regressive 
Integrated Moving Average (SARIMA) model. Both of the two models assume the time 
series is stationary. With the appropriate modification, nonstationary series can also be 
studied with the two models (See chapter 4). Details about ARIMA and SARIMA 
model are presented in chapter 4. 

B.4 Applications of the Program 

The Drought_forecasting is valid for applying to any SPI data series. The user can start 
the model by double clicking the Drought_forecasting icon with lift mouse button. The 
Drought_forecasting title screen is shown figure B.1. In the File-menu the user can 
select the option “Load Data” by one click on the button “Load Data”. Then the user has 
to select a data file which must have the required format. Section B.5 presents the 
requirements for a data series to be analyzed and the required format of the input file. 
 

 

Figure B.1: Drought_Forecasting initial screen 
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B.5. Required Information Content of Data Series 

Each data series in the input file must satisfy the requirements in order to avoid any 
error. The requirements are:  

The Drought_forecasting can only read data series in Microsoft Excel (.xls),  

Each SPI data series consists of one column, 

Missing data are not allowed and any missing data leads to an error. 

Above requirements must be satisfied for all data series which the user wants to 
analyze. 

In the following section an illustration will be presented using SPI_6 time series which 
has been used in the previous chapter. As presented before in the previous chapter, the 
ARIMA model has been applied to SPI_3, however for SPI_6 time series the SARIMA 
model has been applied. 

B.6 Model Identification (SPI_6) 

After loading the data series (SPI_6), the ACF and PACF buttons will be visible then 
the user can plot both ACF and PACF. The next step is to determine whether the series 
is stationary or not by considering the graph of ACF (figure B.2). If a graph of ACF of 
the time series values either cuts off fairly quickly or dies down fairly quickly, then the 
time series values should be considered stationary. If a graph of ACF dies down 
extremely slowly, then the time series values should be considered non-stationary. If the 
series is not stationary, it can often be converted to a stationary series by differencing. 
That is, the original series is replaced by a series of differences. The next step is to 
check the PACF diagram (figure B.3) to find out the significant spikes which could give 
an initial estimation for the suitable model. If the significant spikes are for n consecutive 
lags only, then ARIMA model could be applied. If these significant spikes for n 
consecutive lags and there are another significant spikes at lags k, 2k, …., ik then this is 
an indication to apply seasonal ARIMA model (SARIMA). 

 

Figure B.2: ACF plot used for the selection of candidate models for SPI_6 series 



220                                                                                                                                    B.7 Estimation of the Parameters 

 

 

 

 

Figure B.3: PACF plot used for the selection of candidate models for SPI_6 series 

B.7 Estimation and Optimization of the Parameters (Non-Seasonal 
and Seasonal Parameters, p, q, and P, Q) 

As shown in figure B.2, the ACF is damping out with mixture of sine and exponential 
curve. The first value is significant in PACF which indicates an AR (1) as non-seasonal 
part of model. Also in the PACF, there are significant spikes presented near lag 6, 12 
and 18 which indicates a SARIMA model. Alternative SARIMA models were identified 
by considering the ACF and PACF graphs of the SPI series. This indicates a possible 
SARIMA (p, d, q)(P,D,Q)s models with p = 1:5 , d = 0:1, q = 1:5, P =1:5, D = 0:1 and  
Q = 1:5. All the combinations were examined to determine the best model out of these 
candidate models. 

One of the most famous problems in the use of stochastic models, such as ARIMA or 
SARIMA, is that of the optimization of its parameters, i.e. the finding of the best model.  
This always is done by trial and error, i.e. to try several models with different 
parameters to find the model with minimum Low Akaike Information Criteria (AIC). In 
the developed software, an optimization method was applied to find out the best model 
for a given range for each parameter as shown in the following section. 

B.7.1 Seasonal Model SARMA (p, q) (P, Q)s 

After selecting SARIMA model from the pop-up menu “select a model” the button 
“start simulation” will be visible (figure B.4). One click to this button, an input dialog 
will appear as shown in figure B.4. The user could easily put range for each parameter 
of the following parameter: 

The auto regressive parameter p from 1 to 5, the moving average parameter q from 1 to 
5, the seasonal auto regressive parameter P from 1 to 5, the seasonal moving average 
parameter Q from 1to 5 and the seasonal period S=6 

The SARIMA model must contain at least one non-zero parameter in the seasonal part. 
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B.7.2 Estimation of the Model Parameters 

When the user clicks the button “save results” all results will be automatically saved 
and the user get a message defines the location of the saved results. All results saved in 
one file (.xls). This file contains the best values of the parameters (p,q,P,Q, AIC) and 
also contains the obtained residuals of the model as shown in figure B.5. Results 
showed that the model SARIMA (1,0,5)(1,0,1)6 , with AIC=557, is the best one for the 
selected input range of the model’s parameters. 

 

Figure B.4:  Model Parameters – SARIMA Model 

 

Figure B.5:  Results of SARIMA model- Model Parameters.
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B.8 Diagnostic Checking 

Once the appropriate model has been fitted, the user can examine the goodness of fit. If 
the fitted model is adequate, the residuals should be approximately white noise. The 
theoretical ACF and PACF of white noise processes take value zero for lags J ≠ 0, so if 
the model is appropriate most of the coefficients of the sample ACF and PACF should 
be close to zero. In practice, we require that about the 95 % of these coefficients should 
fall within the non-significance bounds as shown in figure B.5 and figure B.6 
respectively. For an adequate model, the histogram of residuals should show that the 
residuals are normally distributed. This signifies residuals to be white noise (figure B.7). 
Also one of the important tests is the cumulative distribution for the residual data. For 
an adequate model, the graph of the cumulative distribution for the residual data 
normally appears as a straight line when plotted on normal probability paper as shown 
in figure B.8 (Chow et al., 1988; Durbin, 1960). 
 

 

Figure B.5: ACF plot used for Diagnostic Check of the selected model  
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Figure B.6: PACF plot used for Diagnostic Check of the selected model  
 

 

Figure B.7: Histogram of the residuals of the selected model  
 

 

Figure B.8: Normal probability plot of the residuals of the selected model 
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B.9 Forecasting of the SPI Index from Selected Models 

After finishing the previous steps, the user can easily forecast SPI values by clicking the 
button “Forecasting of SPI values”. Then the user has to put the number of the required 
forecasted values. The forecasted values could be plot by clicking the button “Plot SPI 
values”(figure B.9). Also the user can compare between the observed and the forecasted 
values of selected model by clicking the button “comparison between observed & 
forecasted” (figure B.10). 

 

Figure B.9: Comparison of calculated SPI with forecasted SPI   

 

Figure B.10: Comparison of calculated SPI with forecasted SPI   
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B.10 Calibration and Accuracy of the Developed program 
(Drought_Forecasting) 

B.10.1 Models Verification &Validation 

Drought_Forecasting program contains two models, namely ARIMA model and 
SARIMA model. Model verification and validation (V&V) are essential parts of the 
model development process if models to be accepted and used to support decision 
making (Macal, 2005). It is the testing of the calibrated model against the additional set 
of field data preferably under different to further examine the range of validity of the 
calibrated model and this was done for the two models. Verification is done to ensure 
that (Macal, 2005); the model is programmed correctly; the algorithms have been 
implemented properly; the model does not contain errors, oversights, or bugs; the 
specification is complete and mistakes have not been made in implementing the model  

But now becomes the critical question; is the program itself has a degree of accuracy or 
not. And this will be discussed in details in the following section. 

B.10.2 Accuracy of the Developed program 

Study of the accuracy of developed program (Drought_Forecasting) is very important to 
develop meaningful judgment. The extent of decision maker being wrong or right with 
regards to the obtained results of the program is greatly influenced by the accuracy of 
the program. In this section the relative accuracy has been examined by comparing the 
results of the program by the results of the well known computer program SPSS. The 
two models (ARIMA & SARIMA) have been investigated.  

B.10.2.1 Comparison between the results of the ARIMA Model obtained by 
Drought_Forecasting& SPSS. 

The ARIMA model has been fitted to the SPI_3 data series by using the developed 
program Drought_Forecasting and the software SPSS. In order to find the best model by 
using the software SPSS several trials must be done (See chapter 7), but by using the 
Drought_Forecasting the user can get directly the best model. 

After several trails using SPSS program, the ARIMA (3, 0, 2) model has been found to 
the best one from the examined models. By using the Drought_Forecasting considering 
the same data series, the ARIMA (1, 0, 6) model has been found to be the best model. 
Table B.1 presents the estimated statistical parameter of the two models, table B.2 
presents a comparison between the Statistical properties of the results obtained by the 
two models.   

 
 

 



B.10 Calibration and Accuracy of the Developed program                                                                                                    227 

 

Table B.1: Comparison between statistical parameters  

Model AIC 
Auto 

regressive 
parameters 

Moving 
average 

parameters 

Residual 
Sum of 
Squares 

Residual 
Variance 

-SPSS- 
ARIMA (3,0,2) 

 
1055.48 

 

0.07437 
- 0.0258 
0.1217 

- 0.8832 
- 0.8548 

 

 
206.98 

 

 
0.3627 

 

Drought_Forecasting 
ARIMA (1, 0, 6) 

 
1047.143 

 

0.90 

-0.02 
-0.06 
0.65 

0 
0.03 
0.06 

202.628 0.3536 

 

Table B.2: Comparison between Statistical properties  

Model 
Mean of the 

Calculated  SPI 
Mean of the 

forecasted  SPI 

Standard 
deviation 

of the 
Calculated  

SPI 

Standard 
deviation 

of the 
forecasted  

SPI 

-SPSS- 
ARIMA (3,0,2) 

-2.6132e-005 -3.3537e-005 1.0009 0.7996 

Drought_Forecasting 
ARIMA (1,0,6) 

-2.6132e-005 -0.0030 1.0009 0.7998 

 

 

Figure B.11: Comparison of forecasted SPI_3 values using the SPSS program and 
forecasted SPI_3 values using the developed program “Drought_Forecasting” 
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B.10.2.2 Comparison between the results of the SARIMA Model obtained by 
Drought_Forecasting& SPSS. 

The ARIMA model has been fitted to the SPI_6 data series by using the developed 
program Drought_Forecasting and the software SPSS. After several trails using SPSS 
program (See chapter 5), the SARIMA (1,0,3)(1,0,3)6 model has been found to the best 
one from the examined models. By using the Drought_Forecasting considering the same 
data series, the SARIMA (1,0,5)(1,0,1)6 model was found to be the best model. Table 
B.3 presents the estimated statistical parameter of the two models and table B.4 presents 
a comparison between the statistical properties of the results obtained by the two 
models.   

Table B.3: Statistical parameters of ARIMA model  

Model AIC 
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-SPSS- 
SARIMA 

(1,0,3)(1,0,3)6 

 
581.33 

 
 

0.9533 
- 0.0495 
- 0.0227 
- 0.1879 

 

-0.9376 
 

- 0.231 
0.7747 
0.0114 

89.66 
 

0.155 
 

Drought_Forecasting 
SARIMA 

(1,0,5)(1,0,1)6 
557.92 1.124 

o.1511 
0.1531 
-0.0199 
0.2218 
0.1403 

-0.1124 0.804 86.067 0.1517 

 

Table B.4: Statistical properties of ARIMA (3, 0, 2), and ARIMA (1, 0, 6) Results 

Model 
Mean of the 

Calculated  SPI 
Mean of the 

forecasted  SPI 

Standard 
deviation of 

the 
Calculated  SPI 

Standard 
deviation of 

the 
forecasted  SPI 

-SPSS- 
SARIMA (1,0,3)(1,0,3)6 

  1.9264e-004 -8.7054e-004     1.0010   0.9151 

Drought_Forecasting 
SARIMA 

(1,0,5)(1,0,1)6 
  1.9264e-004    -0.0195     1.0010     0.9164 
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Figure B.12: Comparison of forecasted SPI_6 values using the SPSS program and 

forecasted SPI_6 values using the developed program “Drought_Forecasting” 
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Appendix C: Results of SPI Forecasting (SPI_12 and SPI_24) 

C.1 SPI_12 

 

Figure C.1.1: ACF plot used for the selection of candidate models for SPI_12 series 

 

Figure C.1.2: ACF plot used for the selection of candidate models for SPI_12 series 

 

Figure C.1.3: ACF plot used for Diagnostic Check of the model                                         
SARIMA (1, 0, 3)(1,0,3)12 

 

Figure C.1.4: PACF plot used for Diagnostic Check of the model                                         
SARIMA (1, 0, 3)(1,0,3)12 
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Figure C.1.5: Histogram of the residuals – SARIMA (1, 0, 3)(1,0,3)12 

 

 Figure C.1.6: Normal probability plot of the residuals– SARIMA (1, 0, 3)(1,0,3)12  

 

Table C.1.1: Statistical parameters of  the model SARIMA (1, 0, 3)(1,0,3)12 

Model 
Mean of the 
Calculated 

SPI 

Mean of the 
forecasted 

SPI 

Standard 
deviation of 

the calculated 
SPI 

Standard 
deviation of 

the forecasted 
SPI 

RMSE 

SARIMA                           
(1, 0, 3)(1,0,3)12 

-1.7699e-005 -2.9264e-004 1.0010 0.9418 0.273 

 

Figure C.1.7: Comparison of calculated SPI with forecasted SPI                                 
SARIMA (1, 0, 3)(1,0,3)12 
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C.2 SPI_24 

                                                                                                                                                                                                                                                                                                                                                                                                                                        

Figure C.2.1: ACF plot used for the selection of candidate models for SPI_12 series 

 

Figure C.2.2: ACF plot used for the selection of candidate models for SPI_12 series 

 

Figure C.2.3: ACF plot used for Diagnostic Check of the model                                         
SARIMA (1, 0, 0)(6,0,0)24 

 

Figure C.2.4: PACF plot used for Diagnostic Check of the model                                         
SARIMA (1, 0, 0)(6,0,0)24 
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Figure C.2.5: Histogram of the residuals – SARIMA (1, 0, 0)(6,0,0)24 

  

Figure C.2.6: Normal probability plot of the residuals– SARIMA (1, 0, 0)(6,0,0)24  

 

Table C.2.1: Statistical parameters of  the model SARIMA (1, 0, 3)(1,0,3)24 

Model 
Mean of the 
Calculated 

SPI 

Mean of the 
forecasted SPI 

Standard 
deviation of 

the calculated 
SPI 

Standard 
deviation of 

the forecasted 
SPI 

RMSE 

SARIMA                           
(1, 0, 3)(1,0,3)24 

3.6166e-005 6.0101e-004 1.0009 0.9684 0.2029 

 

 

Figure C.2.7: Comparison of calculated SPI with forecasted SPI                        
SARIMA (1, 0, 0)(6,0,0)24
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Appendix D: Sample of Input Data of Scenario Number 1 in the Optimization Model 

Month 
Inflow 
M.m3 

RT_max1             

M.m3 
RT_max2               

M.m3 
RT_max3              

M.m3 
RT_max4               

M.m3 
S                 

M.m3 
Smin 

M.m3 
Smax           

M.m3 
Demand 

M.m3 
Emax 

MkWh 

1 41.58 25.92 25.92 25.92 3.89 137.00 80.00 138.00 15.00 11.39 

2 28.56 25.92 25.92 25.92 3.89  80.00 150.00 15.00 11.39 

3 32.07 25.92 25.92 25.92 3.89  80.00 160.00 15.00 11.39 

4 15.29 25.92 25.92 25.92 3.89  80.00 170.00 15.00 11.39 

5 9.69 25.92 25.92 25.92 3.89  80.00 170.00 15.00 11.39 

6 6.54 25.92 25.92 25.92 3.89  80.00 170.00 15.00 11.39 

7 7.68 25.92 25.92 25.92 3.89  80.00 170.00 15.00 11.39 

8 8.70 25.92 25.92 25.92 3.89  80.00 170.00 15.00 11.39 

9 11.04 25.92 25.92 25.92 3.89  80.00 160.00 15.00 11.39 

10 17.15 25.92 25.92 25.92 3.89  80.00 150.00 15.00 11.39 

11 27.71 25.92 25.92 25.92 3.89  80.00 138.00 15.00 11.39 

12 34.50 25.92 25.92 25.92 3.89  80.00 138.00 15.00 11.39 

1      137.00     
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