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Vorwort (Hrsg.)

Trockenperioden sind Naturereignisse, welche sich iiber einen ldngeren Zeitraum und eher
schleichend entwickeln. Die frithzeitige Wahrnehmung stellt daher eine wesentliche Voraus-
setzung fiir ein angemessenes Handeln dar. In der vorliegenden Arbeit wird als Beispiel-
region die Ruhr in Nordrhein-Westfalen gewihlt, wobei der Fokus auf den Talsperren des
Ruhrverbandes liegt. Die Ruhr wird seit der Industrialisierung stark zur Wasserversorgung
des Ruhrgebietes genutzt, wobei der saisonale Ausgleich durch die Bewirtschaftung der
Talsperren sichergestellt wird. Trockenperioden kehren, wie die Analyse zeigt, auch an
der Ruhr in regelméfigen Abstdnden wieder und zwingen die Entscheidungstriger die Ab-
gabesteuerung an der saisonalen und witterungsgegebenen Situation, dem Bedarf sowie
dem Speicherfiillungsgrad und der wahrscheinlichen weiteren Entwicklung zu orientieren.

Dies gilt insbesondere fiir extreme Ereignisse.

Die vorliegende Dissertation beschéftigt sich mit der Fragestellung, wie das wasser-
wirtschaftliche Management auf Perioden von Trockenheit bzw. Wassermangel reagieren
kann. Dabei wird eine einfach zu handhabende Methode entwickelt, um auf der einen
Seite die Intensitdt der Trockenheit zu klassifizieren und auf der anderen Seite eine Grund-
lage fiir eine Entscheidungsfindung zu schaffen. Der gewihlte SPI Index (Standardized
Precipitation Index) basiert hierbei ausschliefslich auf den in der Vergangenheit gemessenen
Niederschldgen. Weiterhin wird auf die Vorhersehbarkeit von Trockenheit mittels SPI
Index eingegangen. Eine Vorhersage wird unter Verwendung eines ARMA Modells (Auto
Regressive Moving Average) entwickelt. Zudem wird ein stochastisches Simulationsmodell

fiir monatliche Talsperrenzufliisse aufgestellt.

Die vorliegende Arbeit zeigt, dass der SPI Index iiber mehrere Monate akkumuliert werden
kann, so dass sich der Grad der Trockenheit sowohl auf eine Region als auch auf eine Dauer
beziehen ldsst. Bei der Analyse mittels SPI Index muss allerdings beachtet werden, dass

eine Trockenperiode nur relativ zu der Vorgeschichte in der untersuchten Region als trocken



b Vorwort (Hrsg.)

bezeichnet wird. Die vorgestellte Methode ist unabhéingig von Regionen, da sie auf diesen

Relativbetrachtungen gegeniiber dem langjdhrigen Verlauf basiert.

Wuppertal, April 2011 Andreas Schlenkhoff
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Abstract

During the last decades water resources managers are facing severe challenges all over
the world and the trends of increasing temperature and decreasing precipitation intensify
this situation. Climate change is a magor globa chalenge facing water resources
managers. Rising global temperatures will lead to an intensification of the hydrological
cycle, resulting in dryer dry seasons and wetter rainy seasons, and subsequently
heightened risks of more extreme, longer and frequent floods and droughts. Drought is
considered by many to be the most complex but least understood of all natural hazards,
affecting more people than any other hazard. Drought is a natural hazard temporarily
affecting almost every region in the world. The main target of this thesisis to provide
some analyses and to evolve appropriate and interdisciplinary tools and techniques for
drought characterization and for enhanced management of water resources systems
during drought periods. The proposed methodologies are applied to the Ruhr river basin
as a case study.

In this thesis, the climate change in the Ruhr river basin has been investigated using a
set of data containing precipitation, temperature and inflow. All data series have been
subjected to homogenization procedure. The data homogenization is described in detail.
Yearly and seasona trend analyses have been performed on all data series using the
Mann- Kendall test. The frequency distributions of warm/cold days and very/extremely
wet days have been examined using percentile indices.

Results of the hydrological analysis showed that a significant increase in the mean
temperature is considered over al time scales in the study area. The occurrence of warm
days in both winter and summer has a significant increase while the occurrence of cold
days in both seasons showed a similar proportion of significant decrease. These results
give evidence that the winter becomes warmer and the summer becomes hotter.

Results of the precipitation analysis give evidence on a significant increase in winter
precipitation while the increases in summer and the annual precipitation were
statistically insignificant. The number of consecutive dry days displayed decreasing
tendencies in winter while there is no indication of statistically significant change in the
summer. Analysis of very & extremely wet days showed that the main identified trends
are an increase of the very wet days in the winter. For the inflow analysis, the results
showed that there is a significant increase in winter inflow while the increases in
summer and annua inflow were found to be statistically insignificant. Correlation
calculations, which have been applied to the data series, showed that variations of
streamflow from year to year were much more strongly related to precipitation changes
than to temperature changes; this is corresponding to actual common results in
hydrological research.



Drought is a normal, recurrent feature of climate and is a complex phenomenon and
generaly viewed as a sustainable and regionally extensive occurrence of below-average
natural water availability either in the form of precipitation, river runoff or groundwater.
The meteorological drought in the Ruhr river basin has been investigated using the
Standardized Precipitation Index (SPI). The Standardized Precipitation Index aims to
provide a concise overal picture of drought, regardless of the actua probability
distribution of the observed cumulative amounts of rainfall for a given time scale. By
applying the SPI methodology, the obtained results indicated that the drought randomly
affected the Ruhr river basin and several drought events occurred during the period
under study. Results aso indicated that although the significant positive trend in winter
precipitation drought visited the Ruhr basin in both summer and winter and that the
most severely event was in the winter. Trends in SPI data series have been examined
using the Mann-Kendall test. Results of trend analysis indicated that the proportion of
drought condition has changed insignificantly during the period under study the Ruhr
catchment.

Since the calculations and the analysis of the standardized precipitation index (SPI) are
complex and not so easy to be done with several precipitation time series, software with
a friendly and interactive graphica user interface (GUI) for SPI calculations and
anaysis has been developed in MATLAB environment. The main objectives of the
program are: calculation of the SPI values for a given precipitation data series; detection
whether a drought event exists in a data series using several time steps and
classifications of the drought events according to its intensity (moderate, severe,
extreme). The developed program makes the analysis of the SPI easier compared with
the program which is used by the Nationa Drought Mitigation Center (USA), rather
than the devel oped program has more possibilities.

Drought forecasting is an essential tool for implementing appropriate mitigation
measures in order to reduce negative impacts of drought on water resources systems.
The SPI index has been used as a drought indicator for drought forecasting due to its
many advantages compared to other drought indices. The capability of the Auto
Regressive Integrated Moving Average (ARIMA) model in drought forecasting has
been investigated using the correlation methods of Box and Jenkins and the AIC and
SBC structure selection criteria. ARIMA models are, in theory, the most general class
of models for forecasting a time series which can be stationarized by transformations
such as differencing and logging. Validation of the forecasting models has been carried
out by comparing SPI values computed on observed precipitation and the corresponding
forecasts. Results showed a fairly good agreement between observations and forecasts,
as it has aso been confirmed by the values of some performance indices. Results also
showed that, the good fitting of stochastic models such as ARIMA to hydrologic time
series such as SPI time series could result in better tool that can be used for water
resource planning.
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The forecasting of the standardized precipitation index (SPI) using stochastic models,
such as ARIMA, is a complex procedure to be performed on severa SPI data series.
There are many statistical software packages, like SAS and SPSS, which are used for
time series forecasting. In this thesis, a software package, containing ARIMA and
multiplicative Seasonal Auto Regressive Integrated Moving Average (SARIMA)
models, has been developed. This program has several advantages compared with the
other statistical software, when ARIMA model is considered. First of al is simplicity
compared with other programs which need an experienced user. The user puts limits for
the model’ s parameters then the program optimizes these parameters to detect the best
candidate model. The predicted results using the developed software have been
compared with the observed data and with the predicted values obtained by using the
well known software SPSS in case of ARIMA and SARIMA models. The results of the
calibration showed good agreement between the forecasted values using the devel oped
program and those which were obtained using the software SPSS with reasonable
accuracy.

Stochastic simulation of hydrologic time series has been widely used for solving various
problems associated with the planning, management and operational purposes for
several decades. In this thesis, the stochastic streamflow generation model of Thomas-
Fiering and a Monte Carlo simulation model have been applied to generate synthetic
monthly inflow scenarios for four reservoirs in the Ruhr river basin. New method has
been proposed to preserve the statistical parameters of the random part in the Thomas-
Fiering model. Comparison of the main statistical parameters such as mean, standard
deviation and skewness has been done for both historical and generated data by the
proposed models. The results showed that, the generated data series have successfully
preserved the historical statistical parameters of streamflow. The results showed aso
that, the Thomas-Fiering model has preserved the correlation coefficient between
consecutive months. Thus, the Thomas-Fiering model was suitable to be used for
producing inflow scenarios needed for the optimization model and stochastic simulation
model presented in thisthesis.

Reservoir operation is a complex problem that involves many decision variables,
multiple objectives as well as considerable risk and uncertainty. In addition, the
conflicting objectives lead to significant challenges for operators when making
operational decisions. Reservoir operation for an optimal use of available water during
prolonged periods of drought has always been a primary concern for water
management. Using Genetic Algorithm, Pattern Search and Gradient-Based methods, an
optimization model has been developed for the operation of reservoirs during normal
periods and drought periods as well. The reservoir Bigge has been presented as case
study. Two objective functions have been considered, then a weighted approach has
been adopted to convert the multiple objectives problem into a single objective problem
so that the user can specify the priorities by giving a specified weight for each function.
Several scenarios for low inflow periods have been attempted. Each scenario has its
assumptions for monthly inflow and monthly demand.
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The evaluation of the model has been carried out using the driest year in the available
historical records. The monthly inflow of this year has been considered as an input to
the optimization model. Results of the evaluation demonstrated that, the developed
model is beneficial. Results aso showed that the developed model with its severa
scenarios and the suggested optimization approaches could be helpful for the red life
operation of the reservair.

In reservoir management practices, a simulation model can be used as a vauable
planning tool to evaluate the impact of changes to the system's configuration or
operational objectives. The desired generation or release scheduling can be checked
using inflow forecasting in order to satisfy the entire set of operational constraints. At
real-time operation stage, a simulation tool can be used to quickly check operational
aternatives due to emergency events or planning and real-time incongruence. Fuzzy set
theory plays an important role in dealing with uncertainty when making decisions in
reservoirs operation. In thisthesis, an example of the collective use of stochastic models
and adaptive network-based fuzzy inference system (ANFIS) for reservoir operation and
simulation has been presented. ANFIS provides a method for fuzzy modeling to learn
information about the data set that best allow the associated fuzzy inference system to
trace the given input/output data. The applicability and capability of the ANFIS model
have been investigated through the use of a set of data in the Ruhr reservoirs system.
The historical data are time of year (months), inflow, reservoir storage, SPI index and
reservoir release. The historical data sets have been divided into two independent setsto
train and to test the constructed models.

Two main models have been developed. In both models the set of input include time of
year, storage, inflow and Standardized Precipitation Index (SPI). The output of the first
model is the release during the next month; on the other hand, the output of the second
model is the release of the current month. Predicted release and observed release values
have been evaluated using severa evaluation criteria. Results of the evaluation showed
that the ANFIS models are accurate and consistent in different subsets. In order to
demonstrate that the effect of using SPI index as input, two ANFIS models have been
developed and investigated; one with SPI as input variable, another without. It has been
found that the model which contains SPI as input variable has consistently superior
performance compared with the one without SPI index. The results showed that the
ANFIS models provide reliable reservoir release prediction for the current and the next
month. Results showed aso that the proposed approach could be a good tool for the
evaluation of release for a specified month and could be also a helpful reference guide
to the operator during making decisions.
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Historical records demonstrate that droughts are causing potential impacts. The risk of
these potential impacts depend on the type of water demand, how these demands are
met and the corresponding water supplies available to meet these demands. These
impacts could be categorized into domestical, agricultural, environmental, industrial and
recreational impacts. The Ruhr basin is exposed to drought hazard rather frequently.
Results of drought analysis in the Ruhr basin demonstrate that severe and extreme
events occurred in 1959, 1976, 1996, 2003 and 2007.

Preparing an efficient drought management plan is the best way to reduce drought
impacts. These impacts could be continued to severa weeks or months even after the
drought event. In this thesis, a drought management plan is proposed and the procedures
of this plan have been applied to case studies. The analysis of the case studies showed
that the implementation of the actions of each stage of drought stages is very important
to address drought impacts and to prevent reservoir from being drained. Analysis of the
case studies showed also that the use of a transition probability matrix can be a useful
guide for decision makers during dry periods. In this study the actions which have been
qualified only are monthly release of the Bigge reservoir.






Deutsche Kurzfassung

Wahrend der letzten Dekaden hat die Wasserwirtschaft global mit zunehmend
schwierigeren Herausforderungenin der Wasserbewirtschaftung zu tun. Eine besondere
Herausforderung stellt der klimatische Trend zu abnehmenden Niederschlagen und
steigenden Temperaturen dar, der in einigen bereits heute ariden und semi-ariden
Regionen besonders stark ausgepragt ist. Der als Klimawandel bezeichnete Prozess stellt
damit zusatzliche Anforderungen an die Bewirtschaftung der Wasserressourcen dar.
Generell sollte mit steigenden Temperaturen zwar auch der Wasserkreislauf intensiviert
werden, was aber nicht nur haufigere und hohere Niederschlage bedeutet, sondern auch
Perioden langerer Trockenheit einschliefdt und damit auch das Risiko von Extremen wie
Wassermangel oder Hochwasser erhoht. Trockenheit wird von vielen Forschern und
Wasserwirtschaftlern - auch wegen der unscharfen Genese - als eine der komplexesten
und am wenigsten verstandenen aller Naturgefahren bezeichnet, die zudem weit mehr
Menschen als alle anderen Gefahren betrifft. Trockenheit ist eine Naturgefahr, die
zeitweise in fast allen Regionen der Erde auftreten kann. Das Hauptziel dieser Dissertation
ist es, neben einigen Analysemethoden dem Wasserwirtschaftler, Werkzeuge und
Techniken fiir den Umgang mit Trockenheit zur Verfiigung zu stellen, die es ermdglichen,
auf extreme Ereignisse friihezeitig reagieren zu konnen. Die vorgeschlagene
Vorgehensweise wurde beispielhaft auf das Einzugsgebiet der Ruhr in Nordrhein-
Westfalen angewendet.

In dieser Dissertation wurden zunidchst Klimaidnderungen im Einzugsgebiet der
Ruhr anhand von Datenaufzeichnungen iiber Niederschlag, Temperatur und
Talsperrenzufliissen untersucht. Alle untersuchten Zeitreihen wurden homogenisiert und
die verwendete Methode wurde im Detail beschrieben. Trendanalysen wurden sowohl fiir
jahrliche als auch fiir saisonale Zeitreihen mit Hilfe des Mann-Kendall-Tests
vorgenommen. Dabei wurden Haufigkeitsverteilungen von warmen und kalten Tagen
sowie von feuchten und sehr feuchten Tagen anhand ihrer Perzentile dargestellt. Die
Ergebnisse der hydrologischen Analyse zeigten einen signifikanten Anstieg der mittleren
Temperatur iiber alle Zeitskalen. Das Auftreten von warmen Tagen sowohl im Winter als
auch im Sommer hat ebenfalls einen signifikanten Anstieg zu verzeichnen, wiahrend die
Anzahl der kalten Tage eine signifikante Verringerung erfuhr. Insgesamt kann anhand der
Temperaturaufzeichnungen klar dargelegt werden, dass die Winter wiarmer geworden
sind und die Sommer heif3er.

Die Niederschlagsaufzeichnungen ergaben einen Beleg fiir einen signifikanten Anstieg der
Niederschldge im Winter, wihrend fiir den Sommer keine signifikante Aussage getroffen
werden konnte. Die Anzahl von aufeinanderfolgend trockenen Tage ging im Winter
zurlck, wahrend im Sommer ein statistisch signifikanter Trend nicht festgestellt werden
konnte. Die Analyse von feuchten und sehr feuchten Tagen zeigte hauptsichlich ein
Ansteigen im Winterhalbjahr. Die Zufliisse zu den Talsperren stiegen ebenfalls nur im
Winter, wihrend fiir den Sommer und fiir das hydrologische Jahr keine signifikanten
Anstiege gefunden werden konnten. Korrelationsberechnungen zeigten, dass die Zufliisse
deutlich starker mit den Niederschldgen als mit der Temperatur korrelieren, was den
allgemeinen Erwartungen entspricht.
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Trockenheit ist eine normale, wiederkehrende Eigenschaft des Klimas und wird als eine
zeitlich anhaltende, regional ausgepragte Wasserverfligbarkeit bezeichnet und kann sich
auf Indikatoren wie Niederschlag, Abfluss oder Grundwasservorrat beziehen. Die
meteorologische Trockenheit - auch als Niederschlagsdefizit bezeichnet - wurde fiir das
Einzugsgebiet der Ruhr anhand des Standardized Precipitation Index (SPI) analysiert. Der
SPI stellt ein Maf3 (Index) dar, mit welchem ein zusammenfassendes Urteil iber den Grad
der Trockenheit angegeben werden kann, ohne iiber eine mogliche Verteilungsfunktion
der beobachteten Niederschlagssummen fiir eine Zeitskala Annahmen treffen zu miissen.
Bei der Anwendung der SPI-Methode auf das Einzugsgebiet der Ruhr zeigte sich, dass
Trockenperioden zeitlich zufallig verteilt aufgetreten und dass innerhalb der analysierten
Zeitreihen von 1965 bis 2008 eine Reihe von Trockenperioden aufgetreten sind. Die
Ergebnisse zeigten auch, dass obwohl die Niederschldge im Winter im Laufe der Jahre
zugenommen haben, Trockenperioden sowohl im Sommer als auch im Winter auftreten
und dass die grofdte Trockenheit der letzen 30 Jahre im Winter aufgetreten ist.
Trenduntersuchungen des SPI anhand des Mann-Kendall-Tests zeigten, Keine signifikante
Veranderung.

Da die Berechnung und Interpretation des SPI insbesondere bei der Analyse mehrerer
Zeitskalen recht zeitintensiv ist, wurde ein Softwareprogramm mit graphischer
Eingabemaske (GUI) in der MATLAB-Umgebung (The MathWorks, Inc.) entwickelt. Die
Hauptziele dieser Software waren eine einfache Oberfliche zu schaffen, um folgende
Analysen durchfiihren zu konnen: a) Berechnung des SPI fiir gegebene
Niederschlagszeitreihen, b) Bestimmung, ob die Zeitreihe eine Trockenperiode enthalt
und c) Berechnung und Klassifizierung der Intensitit der Trockenheit. Gegeniiber dem
haufig genutzten Programm des US National Mitigation Center ist die Anwendung des hier
vorgestellten Tools komfortabler.

Die Vorhersehbarkeit von Trockenheit ist eine wesentliche Voraussetzung fiir einen
angemessenen und rechtzeiten Umgang mit solchen Ereignissen. Eine Vorhersage wiirde
insbesondere die Talsperrenbewirtschaftung oder mdgliche landwirtschaftliche
Bewdsserungsstrategien erheblich vereinfachen und optimieren lassen. In dieser
Dissertation wurde der SPI als Indikator fiir eine Vorhersage benutzt. Die Vorhersage
selbst wurde mit Hilfe eines ARIMA-(Auto Regressive Integrated Moving Average) Modells
durchgefiihrt. Die Anpassung des Modells wurde anhand der Korrelationsmethode nach
Box und Jenkins vorgenommen. Die Auswahl des Modells orientierte sich an den beiden
Kriterien AIC und SBC. ARIMA Modelle sind die am meisten eingesetzten Modelle fiir die
Vorhersage von Zeitreihen, wobei die erforderliche Stationaritdt durch Transformationen
wie Differenzieren oder Logarithmieren erreicht werden kann. Die Uberpriifung des so
entwickelten Vorhersagemodells wurde anhand der vorhandenen Zeitreihe
vorgenommen. Des SPI-Vorhersagemodell zeigte dabei eine ausreichend gute Anpassung.
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Die Vorhersage des SPI mittels stochastischer Modelle, wie zum Beispiel mit ARIMA, stellt
einen komplexen Berechnungsvorgang dar. ARIMA-Modelle sind mittlerweile aber in
einigen Standard-Statistik-Programmen wie SAS oder SPSS enthaltet werden. In dieser
Dissertation wurde allerdings ein Softwarepaket entwickelt, welches sowohl ARIMA-
Modelle als auch saisonale ARIMA-Modelle zur Verfiigung stellt und dem Benutzer die
wesentlichen Arbeitsschritte interaktiv bereitstellt.

Stochastische Simulationen von hydrologischen Zeitreihen werden seit vielen Jahren
erfolgreich angewendet. In dieser Dissertation wurde die Generierung von
Zuflusszeitreihen fiir vier Talsperren im Einzugsgebiet der Ruhr auf Basis von
Monatswerten mit Hilfe der Thomas-Fiering Modells und des Monte Carlo-Modells
durchgefiihrt. Dabei wurde ein neuer Ansatz fiir die Erhaltung der statistischen Parameter
bei der Zufallszahlengenerierung verwendet. Damit konnten neben den Hauptmomenten
der Verteilungsfunktion auch die Korrelation zwischen aufeinander folgenden Monaten
erhalten werden, was unter anderem fiir die Analyse von Summenwerten und die
Optimierung der Talsperrenbewirtschaftung unerlasslich ist.

Die Bewirtschaftung von Talsperren ist ein komplexer Prozess, welcher neben
unterschiedlichen Zielen, eine Reihe von Randbedingungen und Unsicherheiten zu
beriicksichtigen hat. In Trockenzeiten stellt die variable Bewirtschaftung von Talsperren
haufig die einzige Option fiir Handlungsalternativen dar. Fiir die Ermittlung einer fiktiven,
aber moglichen optimalen Bewirtschaftung und fiir unterschiedliche Szenarien von
Trockenperioden und Bedarfssituationen wurden die Optimierung Methoden verwendet
Genetic Algorithm, Patterns Search und Gradient-Based und auf die Biggetalsperre
beispielhaft angewendet. Die Ziele wurden in einer gewichteten Funktion
zusammengefiihrt und anschliefiend unter Berticksichtigung der Randbedingungen einer
Optimierung zugefiihrt. Das Ergebnis kann als Referenz fiir die tatsachliche
Bewirtschaftung verwendet werden, bei der die Entscheidung unter unsicherer Prognose
liber den weiteren Verlauf der Trockenheit getroffen werden muss.

Fiir die Talsperrenbewirtschaftung kann ein Simulationsmodell ein sehr hilfreiches
Werkzeug fiir die Entscheidungsfindung sein. Der beabsichtigte Abgabeplan kann zum
Beispiel mit Hilfe der Vorhersagemodelle der Monatszufliisse abgesichert werden. Ebenso
lassen sich unterschiedliche Abgabestrategien zeitnah vergleichen. In dieser Dissertation
wurde die oben beschriebene stochastische Modellierung mit einem Fuzzy-Logic Ansatz
kombiniert. Dieser Ansatz basiert auf adaptiven Netzwerken und wird als ANFIS
bezeichnet. Die Anwendung wird wiederum anhand der Biggetalsperre untersucht. Als
Eingabe wurden der Monat, der Zufluss und die Speicherfiillung sowie der SPI-Index
verwendet. Als Entscheidung wurde die monatliche Abgabe definiert. Fiir die Anpassung
wurden die Zeitreihen in zwei Teile getrennt und als Trainings- und Testdatensatz
benutzt.

Zwei unterschiedliche Modelle wurden dabei entwickelt einmal fiir die Abgabe im
laufenden und zum anderen fiir die Abgabe in den kommenden Monaten. Die Modelle
wurden anhand der historischen Aufzeichnungen validiert. Das so entwickelte Modell war
gut in der Lage, die historische Bewirtschaftung nachzuvollziehen. Zudem wurden die
Modelle sowohl mit, als auch ohne SPI Index entwickelt. Es konnte gezeigt werden, dass
die Nutzung des SPI-Index zu wesentlich realistischeren Entscheidungen fiihrt.
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Historische Aufzeichnungen zeigen, dass Trockenperioden einen erheblichen Einfluss auf
das Einzugsgebiet und die Talsperrenbewirtschaftung haben. Das Risiko von méglichen
negativen  Einflisse steht im Zusammenhang mit den unterschiedlichen
Nutzungsanspriichen. Im Ruhreinzugsgebiet sind die Hauptnutzungen die Trink- und
Brauchwasserversorgung, die Erfiillung von Umweltqualititsnormen im Flief3gewasser,
die Befriedigung von Anspriichen aus touristischen Aktivititen und eingeschrankt die
Landwirtschaft. Die Ruhr war im Untersuchungszeitraum relativ haufig von
Trockenperioden betroffen. Extreme Trockenperioden traten 1959, 1976, 1996, 2003 und
2007 auf.

Die Anfertigung und Vorhaltung von Bewirtschaftungs- und Handlungsoptionen im Falle
einer Trockenheit ist wichtig fiir Entscheidungen liber die Talsperrenbewirtschaftung. In
dieser Arbeit wurden unterschiedliche Teilaspekte der Bewirtschaftung von Talsperren im
Falle von Trockenheit aufgezeigt und beispielhaft fiir die Jahre 1976, 1996 und 2003 in
einem Entscheidungs-Unterstiitzungs-Modell zusammengefiithrt. Es konnte gezeigt
werden, dass der aufgestellte modellhafte Bewirtschaftungsplan die damaligen
Expertenentscheidungen untermauert.
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Chapter 1

Introduction

1.1 General

Water resources play an important role in most of human’s activities. During the last
decades water resources managers are facing severe challenges all over the world and
the trends of increasing temperatures and decreasing precipitation intensify this
situation. Climate change is a magjor global challenge facing water resources managers.
Climate change permeates all aspects of our lives, from the food we eat, to the water we
drink, to the places we can live. Rising globa temperatures will lead to an
intensification of the hydrological cycle, resulting in dryer dry seasons and wetter rainy
seasons, and subsequently heightened risks of more extreme, longer and frequent floods
and droughts.

Drought has been a major concern of mankind for centuries. It is considered by many to
be the most complex but least understood of all natural hazards, affecting more people
than any other hazard. Drought is a complex phenomenon and it is generally viewed as
a sustainable and regionally extensive occurrence of below-average natura water
availability either in the form of precipitation, river runoff or groundwater. Drought may
also be referred as an interaction and combination between physical processes and
human activities (Changnon and Easterling, 1989). Such processes are extremely
stochastic in nature and, thus, problematical for reliable prediction. However,
cumulative experience from scientific investigations of recent decades is indicating that
given a certain period of time in a given locale, the occurrence of an uncertain event
such as drought, becomes a certainty.

Drought is considered as a fruitful field for research in severa science disciplines.
Drought and its consequences must be recognized and estimated in advance for al
planning and management efforts in water resources. Comprehensive planning for
developing optimal strategies to deal with drought situations is becoming an
increasingly important subject of concern to researchers and water manager in order to
protect the affected community from the adverse effects of drought. Drought has direct
impacts on municipal water resources management, thus water resources decision
makers must be prepared to anticipate such situations and accept the challenges and
complications that are involved in dealing with drought related problems.


http://www.wordhippo.com/what-is/another-word-for/consequences.html�

2 1.1 General

Drought monitoring has much to offer to water decision making. Drought monitoring,
the ability to assess the current conditions and predict future drought development are a
key to any water resources management plan during drought periods. The main purpose
of any drought monitoring system is to identify various drought indices to provide
information to resources manager and system operators. The indicators that are used to
derive drought indices are precipitation, snow pack, streamflow and reservoir storage. A
drought index value is typicaly a single number, far more useful than raw data for
decision making (NDMC, 2006). Although none of the maor indices is inherently
superior to the rest in al circumstances, some indices are better suited than others for
certain uses. Some of the widely used drought indices are the Palmer Drought Severity
Index (PDSI), Crop Moisture Index (CMI), Standardized Precipitation Index (SPI) and
Surface Water Supply Index (SWSI).

Drought forecasting plays an important role in the mitigation of impacts of drought on
water resources systems. Traditionally, statistical models based on time series methods
have been used for hydrologic drought forecasting (Kim and Valde's, 2003). One of the
basic deficiencies in mitigating the effects of drought is the inability to forecast drought
conditions reasonably well in advance by either a few months or seasons. Accurate
drought forecasts would enable optimal operation of irrigation systems. Panu (Panu and
Sharma, 2002) reported that the ARMA models, pattern recognition techniques,
physically based models using Palmer drought severity index (PDSI), standardized
precipitation index (SPI), a moisture adequacy index involving Markov chains, or the
notion of conditional probability, seems to offer a potential to develop reliable and
robust forecasts.

Reservoir operation, especialy during drought periods, is a complex problem that
involves many decision variables, multiple objectives as well as considerable risk and
uncertainty. In addition, the conflicting objectives lead to significant challenges for
operators when making operational decisions. Traditionally, reservoir operation is based
on heuristic procedures, embracing rule curves and subjective judgments by the
operator. This provides genera operation strategies for reservoir releases according to
the current reservoir level, hydrological conditions, water demands and the time of the
year (Hakimi-Asiabar et al.). Preparing efficient drought management plan is the best
way to reduce drought impacts which could be continued to several weeks or months
even after drought events. Simulation models become the most commonly used method
for monitoring, planning and managing drought. Simulation models can be used for
evaluating drought plans before a drought’ s onset.
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1.2 Description of the Study Area

The River Ruhr catchment area covers 4485 km? and forms the largest reservoir system
in Germany with a total storage capacity of 464,1 million m3 (Morgenschwels et al.,
2003). The mean annual runoff at the mouth of the Ruhr is 2.4 Billion m®. The Ruhr
basin contains 16 hydroelectric power plants and 110 pumping stations. The name of
this region was derived from the name of the river Ruhr. The Ruhr River Association
(Ruhrverband) is the manager of this reservoir system. The major tasks of the Ruhr
Association are: to provide drinking water; and to supply local industry with process
water within the so-called Ruhr district, which is one of the most densely populated and
industrialized areas in Europe (Morgenschweis et al., 2003). As shown in figure 1.1,
about 50 % of the withdrawal are exported to neighboring catchments.

It is due to this highly densely populated area (about 2.13 million inhabitants) that water
consumption per unit of area is approximately seven times higher than the average
consumption in the Federal Republic of Germany (Khadr et al., 2009). Special measures
are therefore necessary in order to guarantee the supply of drinking water and the
disposal of wastewater (Morgenschwels et a., 2003). Maniak (Maniak and Renz, 1977)
reported that in 1977, 70 % of the water demand of the Rhenish-Westphalian industria
zone was covered by the Ruhr and this percentage increased in dry periods. In times of
extreme droughts it increases up to the 1.6 fold of the annual average.
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Figure 1.1: Water management system in the Ruhr drainage basin.
Source (after (Brudy-Zippelius, 2003)).
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1.3 Objectives and Organization of the Dissertation

The overall objective of this research effort is to evolve appropriate and
interdisciplinary tools and techniques for drought characterization and for enhanced
management of water resources systems during drought periods. The developing tools
will have four magjor: 1) Climate change; 2) Drought monitoring and forecasting; 3)
Reservoir operation during drought and 4) drought management plan. The developed
tools are demonstrated by an application to the Ruhr river basin as case study.

Thethesisis structured into 11 chapters, a reference list and annexes.

In Chapter 1 the introductory background on the main theme, the research, study area
and objectives of the thesis. The various chapters that follow systematically to analyze
different issues on the basis of these objectives.

In Chapter 2, an investigation of climate change in the Ruhr River basin is presented
using a set of measured data containing precipitation, temperature and inflow records.
All data are subjected to a homogenization procedure; the data homogenization is
described in detail. Yearly and seasonal trend analyses are performed on all data series
using the Mann-Kendall test. The frequency distributions of warm & cold days and very
& extremely wet days are also examined using percentile indices.

Chapter 3 deals with the temporal and spatial characteristics of meteorological drought
in the Ruhr river basin using the Standardized Precipitation Index (SPI). The
Standardized Precipitation Index aims to provide a concise overall picture of drought,
regardless to the actual probability distribution of the observed cumulative amounts of
rainfall for agiven time scale.

Chapter 4 deals with drought forecasting, which is an essential tool for implementing
appropriate mitigation measures in order to reduce negative impacts of drought on water
resources systems. The capability of the Auto Regressive Integrated Moving Average
(ARIMA) model in drought forecasting is investigated using the correlation methods of
Box and Jenkins and the AIC and SBC structure selection criteria

Chapter 5 deals with the stochastic simulation of hydrologic time series which has been
widely used for solving various problems associated with the planning and management
and operationa purposes. The stochastic streamflow generation model of Thomas-
Fiering and the Monte Carlo simulation model are applied to synthetically generate
monthly inflow scenarios for four reservoirs in the Ruhr river basin. These scenarios are
then used in the optimization and simulation models of reservoir operation.
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In chapter 6, an optimization model is proposed for reservoir operation during
prolonged periods of drought using Genetic Algorithm, Pattern Search and Gradient-
based method. The Bigge reservair is presented as case study. Severa scenarios for low
inflow period are attempted. Each scenario has its assumptions for monthly inflow and
monthly demand. Evaluation of the developed model has been carried out using the
driest year in the available historical records.

In chapter 7, an example of the collective use of stochastic models and Adaptive Neural
Network-based Fuzzy Inference System (ANFIS) for reservoir operation and simulation
is presented. The applicability and capability of the ANFIS model are investigated by
the use of a set of data in the Ruhr reservoirs system, Germany. The historical data are
inflow, reservoir storage, the SPI index and reservoir release. The historical data are
divided into two independent sets, one set to train and the other to test the constructed
models. Two main models are developed. In both models the set of input includes the
time of the year, storage, inflow and Standardized Precipitation Index (SPI). The output
of the first modd is the release during the next month; on the other hand, the output of
the second model is the release of the current month. Predicted release values and
observed release values are evaluated using several common evaluation criteria.

In chapter 8, a drought management plan is proposed and the procedures of this plan are
applied to the case study.

Chapter 9 presents summaries and conclusions of the research. It aso outlines
recommendations for further research.

The Appendices provide supplementary information to the materials presented above.
Appendix A present a graphical user interface (GUI) to monitor and analyze
meteorological drought using the Standardized Precipitation Index (SPI). Appendix B
presents software with a friendly graphical user interface (GUI) for meteorological
drought forecasting. The developed GUI contains ARIMA and multiplicative Seasona
Autoregressive Integrated Moving Average (SARIMA) model.






Chapter 2

Study of Climate Change in the Ruhr River Basin Concerning
the Occurrence of Drought

2.1 Climate is changing

Climate change is a rea and growing problem for the world. It is a complex
phenomenon that alters the whole environment in which humans live. Global climate
change will have profound implications for the quality of life of hundreds of millions of
people (Hubler et a., 2008). In the last few years, climate change has become one of the
most heavily researched subjects in science. There is no doubt that the increase in mean
global surface temperature by 0.6 + 0.2 °C over the 20™ century (IPCC, 2001)* is not
only aresult of climate variability but of enhanced emission of greenhouse gases due to
human activities (Menzel and Burger, 2002). From the recent Intergovernmental Panel
on Climate Change fourth assessment report (IPCC, 2007), little doubt remains that the
climate system has warmed in recent decade (Steele-Dunne et al., 2008).

Changes in climate variability and extremes of weather have received increased
attention in the last few years. Understanding changes in climate variability and climate
extremes is made difficult by interactions between the changes in the mean and
variability (IPCC, 2001). Such interactions vary from one variable to another one
depending on the statistical distribution of these variables. For example, the distribution
of temperatures often resembles a normal distribution where non-stationarity of the
distribution implies changes in the mean or variance. In such a distribution, an increase
in the mean leads to new record high temperatures (Figure 2.1.a), but a change in the
mean does not imply any changein variability.

Figure 2.1.b shows that the range between the hottest and coldest temperatures does not
change. An increase in variability without a change in the mean implies an increase in
the probability of both hot and cold extremes as well as the absolute value of the
extremes (Figure 2.1.b). Increases in both the mean and the variability are also possible
(Figure 2.1.c), which affects the probability of hot and cold extremes, with more
frequent hot events with more extreme high temperatures and fewer cold events. Other
combinations of changes in both mean and variability would lead to different results.

! Report of the Intergovernmental Panel on Climate Change
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2.2 Background

The average climate experienced over long periods, such as temperature, wind and
rainfall patterns, has changed many times in response to natural variability and natural
causes such as volcanic activity. However, according to the Intergovernmental Panel on
Climate Change (IPCC, 2001), since the industrial revolution, anthropogenic causes are
playing an important role primarily due to the combustion of fossil fuels, agriculture
and land-use changes (e.g. deforestation), which has increased the atmospheric
concentration of aerosols and greenhouse gases. New evidences suggest that most of the
warming observed over the last 50 years is attributable to human activities

Historical records show that climate has been changing on different time scales. During
the last century, a global steady warming trend occurred from the late 1890s through the
1940s followed by a minor cooling trend in the late 1940s and the 1950s (L eemans and
Cmmer, 1991). Precipitation plays an important role in the global energy and water
cycle. Exact information about precipitation amounts reaching the land surface is of
specia importance for fresh water assessment and management related to agriculture
land use, hydrology and risk reduction of flood and drought (Schneider et al., 2008).

The importance of assessing trends in weather extremes is often emphasized. The
principal reason is that extreme weather conditions related to temperature, precipitation,
storms or other aspects of climate, can cause loss of life, severe damage and large
economic and societal losses (Moberg, 2006). Using results from a number of
workshops held in data-sparse regions and high-quality station data supplied by
numerous scientists world wide, seasonal and annual indices for the period 1951-2003
were gridded (Alexander et a., 2006). Widespread significant increase in temperature
extremes for the period 1951-2003, especialy those related to daily minimum
temperatures is evident that warming is apparent in all seasons. Precipitation changes
have been much less coherent than temperature changes, but annual precipitation has
shown a widespread significant increase.

Alexander (Alexander, 2005) studied the variability of temperature and precipitation in
the European aps since 1500, unlike temperature, precipitation variation over the
European Alps showed no significant low-frequency trend and increased uncertainty
back to 1500. Results showed that the years 1540, 1921 and 2003 were very likely the
driest in the context of the last 500 years. Groisman et a (Groisman, 2005) found
disproportionate changes during the past decades in heavy and very heavy precipitation
compared to the change in the annual and/or seasonal precipitation. Their results
indicate an increasing probability of intense precipitation.
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Moberg (Moberg and Jonesa, 2005) reported that, there are some coherent patterns of
climate changes in parts of Europe over the 20th century. The most outstanding feature
for precipitation is that winter precipitation increased significantly at severa stations,
both regarding the mean precipitation intensity and moderately strong events; at the
same time, the length of dry spellsin winters aso generally increased. The length of dry
periods also increased (insignificantly) in summer, but there are few significant changes
in summer precipitation amounts. Warming trends dominate in the study region over the
20th century as a whole, both in winter and summer and both for the cold and warm
tails of the temperature distribution. When analyzing the two century halves separately,
there is evidence for markedly different behavior in the warm and cold tails of the
temperature distribution and also strong differences between winter and summer.
Winter temperatures warmed in the second half of the century, with the largest changes
in the cold tail for daily minimum temperatures. There is much less evidence for
widespread warming in summer in the same period.

Hundexha (Hundexha and Bardossy, 2005) investigated the evolution of daily extreme
precipitation and temperature across Western Germany from 1958 to 2001. The results
obtained indicated that both the daily minimum and maximum extreme temperatures
have increased over the investigation period, with the degree of change showing
seasona variability. On an annual basis, the change in the daily minimum extreme
temperature was found to be greater than that of the daily maximum extreme
temperature. The daily extreme heavy precipitation has shown increasing trends both in
magnitude and frequency of occurrence in all seasons except summer, where it showed
the opposite trend. Beck (Beck et al., 2004) studied the extreme daily precipitation
events and droughts in Germany. Results gave an evidence of an increase in both
frequency and intensity of extreme precipitation events in the 20th century.

Morgenschweis (Morgenschweis et a., 2007) reported that the Ruhr River Association
analyzed long time series (1927-2005) of calculated areal precipitation with the aid of
statistical methods to identify trends. Results showed that there is an increase in the
winter precipitation and no trend was noted for the summer precipitation. Y oumin Chen
(Chen and Buerger) reported that, the mean precipitation in the Ruhr basin will increase,
but its frequency will slightly decrease and its intensity will significantly increase.

The main objective of this chapter is to study the change of climate in the Ruhr river
basin. A set of data, containing precipitation, temperature and inflow records, has been
used to investigate to perform the required hydrological analysis.



2.3 Data and Methodology 11

2.3 Data and Methodology
2.3.1. Data Collection

The database includes 13 stations with mean daily temperature and/or precipitation
series starting at 1961 has been established. The data include 4 stations with mean daily
inflow series. The inflow time series present the inflow to the main reservoirs in the
Ruhr river basin namely, Bigge reservoir, Moehne reservoir, Henne reservoir and Sorpe
reservoir. Source of data isthe Ruhrverband (Ruhr River Association). Figure 2.2 shows
the location of each station used in the study. All time series were checked to find out
all missing data. Table 2.1 and table 2.2 contain information about stations, covered
period and the fraction of missing data.

2.3.2 Analysis of Hydrological Time Series

Records of rainfall and river flow form suitable data sequence can be studied by the
methods of time series analysis. The tools of this specialized topic in mathematical
statistics provide valuable assistance to engineers in solving problems involving the
frequency of occurrences of maor hydrological events (Shaw, 1994). In particular,
when only a relatively short data record is available, the formulation of a time series
model of those data can enable long sequences of comparable data to be generated to
provide the basis for better estimates of hydrological behavior. In addition, the time
series analysis of rainfall, evaporation, runoff and other sequential records of
hydrological variables can assist in the evaluation of any irregularities in those records.
Cross-correlation of different hydrological time series may help in the understanding of
hydrological processes.

Tasks of time series analysis include:
(2) Identification of the several components of atime series,
(2) Mathematical description (modeling) of different components identified.

If a hydrological time series is represented by X, X;, X, ..., X, ..., then symbolicaly,
one can represent the structure of the X by:

X; & [T, Py, El.

Where T; is the trend component, P is the periodic component and E; is the stochastic
component (for more details see chapter 5). The first two components are specific
deterministic features and contain no element of randomness. The third, stochastic,
component contains both random fluctuations and the self-correlated persistence within
the data series. These three components form a basic model for time series analysis.
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2.3.3 Trend Component

This may be caused by long-term climatic change or, in river flow, by gradual changes
in a catchment's response to rainfal owing to land use changes. Sometimes, the
presence of atrend cannot be readily identified.

2.3.3.1 Methods of Trend Identification:

Different statistical methods, both nonparametric tests and parametric tests, for
identifying trend in time-series are available in the literature. Two methods are
commonly used for identifying the trend in the hydrologic time series. These two
methods are The Mann-Kendall test and the Linear Regression Method. In this study the
Mann-Kendall test has been applied to identify the trend in the time series. This method
will be discussed briefly in the following section.

(1) Mann-Kendall Test

The Mann—Kendall nonparametric test is an effective tool for analyzing change trend. It
is one of the most common non-parametric rank-based statistical tests which are used in
hydrological studies (Yue et a., 2002). Mann—Kendall test is simple, robust and can
cope with missing values and values below a detection limit. To identify the change in
temperature, precipitation and streamflow for several time scales (year/season/month),
the probabilistic parameter has been studied at 0.05, 0.10 and 0.20 field significance
level (Storch and Zwiers, 2001).

The Mann-Kendall test is based on the test statistic S defined as follows:
S= Zyz_ll Z}l:iﬂ Sgn(xi - xj) (2.1)

Where x; are the sequential data values, n is the length of the data set and

1 if0>0
sgn(@) =<5 0 if 6 =0 (2.2)
—1 if6<0

Mann (1945) and Kendal (1975) have documented that when, the statistic S is
approximately normally distributed with the mean and the variance as follows:
E(S)=0 (2.3)

-1)2n+5)-37__t,(t,—1)(2t,+5
V(S) — n(n )( n+ ) 211—81 P(P )( P+ ) (24)

Where n = number of data,
t,= the number of tiesfor the p™" value (number of datain the p™ group),
g = the number of tied values (number of groups with equal values/ties).

The standardized Mann-Kendall test statistic Zyk is computed by:
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0 S=0 (2.5)

The standardized MK statistic Z follows the standard normal distribution with mean of
zero and variance of one. The hypothesis that there has not trend will be regected if

IZMKI > Zl—OC/z [26)

Where Z1-« /, is the value read from a standard normal distribution table with o being
the significance level of the test.

2.3.4 Missing Data Calculation

In the used data series there are only missing values in precipitation records. The
calculation of the missing data is performed for the daily time series displaying gaps.
The procedure of calculation considers the linear regression between the series with
gaps (YY) and the reference series (X) (Santos and Henriques, 1999; Simolo et al., 2009).
The correlation coefficient between each two stations is calculated. Then for a data
series 'Y, the higher correlation coefficient is selected, then the corresponding data series
X was selected and finally the missing valuesin the Y series are calculated. Calculations
involved series with larger number of available data where the linear model can give
good estimates of statistical parameters (mean and variance in the extended series). The
equation used to calcul ate the missing valuesis:

Yi=Bo + BiXi (2.7)

Where the regression parameters By and Biwere calculated by the least squares method
asfollow:

(ZXY)/ X7
== Xi 2.8)

BO = Y - le (2.9)



14

2.3 Data and Methodology

Table 2.1: Names of stations, covered period and proportion of missing data of the time series of temperature and precipitation records

Station Ref. No. on | Temperature Temperature missing | Precipitation Precipitation
figure 2.2 covered period data (%) covered period missing data (%)
Biggeta sperre 1 1961-1995 0 1960-2007 8.31
Mohnetal sperre 2 1961-1995 0 1960-2007 8.22
Sorpetal sperre 3 1961-2007 0 1960-2007 8.32
Hennetal sperre 4 1961-1995 0 1960-2007 8.03
Listertalsperre 6 1961-1995 0 1960-2007 0
Drolshagen_Bleche 8 1961-1995 0 1960-2007 0.28
Willertshagen_Volmehof | 9 1961-1995 0 1960-2007 0.28
Ennepetal sperre 14 1961-1995 0 1960-2007 13.68
Neuhaus 23 1961-1995 0 1960-2007 0.46
Essen Kettwig 27 1961-1995 0 1960-2007 0.28
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Station Ref. No. on | Temperature Temperature missing | Precipitation Precipitation
figure 2.2 covered period data (%) covered period missing data (%)
Essen_Steele 30 1961-1995 0 1960-2007 0.82
Hagen 35 1961-1995 0 1960-2007 0.28
Versetal sperre 5 1961-2007 0 1960-2007 0.28
Table 2.2: Names of stations, covered period and proportion of missing data of the time series of inflow records

Station Inflow covered period Inflow missing data (%)

Biggetal sperre 1967-2008 0

M ohnetal sperre 1967-2008 0

Hennetal sperre 1967-2008 0

Sorpetal sperre 1967-2008 0
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2.3.5 Homogeneity testing

Climate data can be used to generate a enormous deal of information about the
atmospheric environment which affects all aspects of human endeavor (Aguilar et al.,
1998). Many factors affect on the quality and reliability of the data obtained from the
meteorological stations. Time series of precipitation are influenced by the location of
the gauge, the tool and method used and the observation quality and the time series
might gain inhomogeneous structure (Dikbas et al., 2010). For this reason, the reliability
and quality of the data to be used in the climate analysis be tested statistically. When the
time series have a homogenous structure, tt can be stated that the observation time series
isareliable climatic series.

A homogeneous climate time series can be defined as one where variations are caused
only by variations in weather and climate (Keiser and Grieffiths, 1997). If a
precipitation or a temperature time series is homogeneous, all variability and changes of
the series can be considered due to the atmospheric processes.

Most long-term climatic time series have been affected by a number of non-climatic
factors that make these data unrepresentative of the actual climate variation occurring
over time (Aguilar et al., 1998). These factors include changes in instruments, observing
practices, station locations, formulae used to calculate means and station environment.
Some changes cause sharp discontinuities while other changes, particularly change in
the environment around the station, can cause gradua biases in the data. All of these
inhomogeneities can bias a time series and lead to misinterpretations of the studied
climate. It is important, therefore, to remove the inhomogeneities or at least determine
the possible error they may cause.

There exist many methodologies for detecting homogeneity of climatological time
series. These methods can be grouped into two categories, direct or indirect methods,
depending on the availability or use of station history files known as metadata. Direct
methods use metadata and indirect methods use a variety of statistical and graphical
techniques to determine inhomogeneities (Peterson et al., 1998). The indirect
homogeneity tests of a climatic time series could be classified into two groups; absolute
tests and relative tests. The absol ute tests depend on the use of a single station’s records,
whereas relative tests depend on the use of neighboring stations data that are
supposedly homogeneous (Karabork et al., 2007). Some relative homogeneity tests
which do not require homogeneous reference series have become available (Albert,
2004; Szentimrey, 1999).

The main purpose of this section is to determine areliable climatic series for the climate
anaysis which is the target of this chapter. First, the missing vaues of the
meteorological time series are completed (see section 2.3.4) , then the homogeneity will
be tested. In this study, the two groups of the indirect method are applied to al data
series to test its homogeneity.


http://www.wordhippo.com/what-is/another-word-for/enormous.html�
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2.3.5.1 Absolute Homogeneity Tests

The most common tests which could be used to test the departure of homogeneity of a
given time series are the Standard Normal Homogeneity Test (SNHT) for a single break
(Alexandersson, 1986), the Buishand range test (Buishand, 1982), the Pettitt test (Pettitt,
1979) and the Von Neumann ratio test (Von Neumann, 1941). All four tests suppose
under the null hypothesis that the annual values X; of the testing variable X are
independent and identically distributed. Under the alternative hypothesis, the SNHT, the
Buishand range and the Pettitt test assume that a step-wise shift in the mean -a break- is
present (Yesilirmak et a., 2009). The fourth test, the Von Neumann ratio test, assumes
under the alternative hypothesis that the series is not randomly distributed. This test is
not location specific, which means that it does not give information on the year of the
break. In this study, the Buishand range test and Von Neumann ratio test have been
applied to all time series for both precipitation and temperature.

2.3.5.1.1 Buishand Range Test:

The Buishand Range test can be used for testing homogeneity of the data (Buishand,
1982). The test is based on the rescaled adjusted partial sums for a time series X as
follow:

S =Yk, - X)? , k=1,2py N, 5520 (2.10)

When atime series is homogeneous the values of S, will fluctuate around zero, because
no systematic deviations of the X; values with respect to their mean will appear. If a
break is present in year K, thenS; reaches a maximum (negative shift) or minimum
(positive shift) near the year k = K. Rescaled adjusted partial sums are obtained by
dividing the Sy by the sample standard deviation:

St ="/ . k=1, 2y N (2.11)
d
Where S, isthe standard deviation,

Sa= X (Xi— X)*/N (2.12)

A statistic which is sensitive to departures from homogeneity is:

Q = o«ken | Sk’ (2.13)

High values of Q are an indication for a change in level. Critical values for the test-
statistic can be found in (Buishand, 1982).
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Figure 2.3 and figure 2.4 present the results of Buishand Range Test for both
precipitation and temperature time series for al stations which have been used in this
study. The results indicate that the precipitation time series at 3 stations are not
homogeneous since the test statistic exceeds the critical value of 1.52 at the 95 %
confidence level (Figure 2.3.a). On the other hand the results of the Buishand Range
Test for temperature and inflow time series show that all stations have homogenous data

series (figure 2.3.b and figure 2.4).
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2.3.5.1.2 Von Neumann ratio test:

The well-known Von Neumann ratio is defined as:

Ny = Z?=_11(Xi — Xiy1 )Z/Z?=1(Xi — X)?

(2.14)

In which X stands for the average of the Xi's. If the sample contains a break, then the
value of N, tends to be lower than this expected value (Buishand, 1982). If the sample
has rapid variations in the mean, then values of N, may rise above 2 (Sahin and
Cigizoglu, 2010). Only this test does not give information on the year of break. The
results of the Von Neumann ratio test (figures 2.5 and 2.6) indicate that the precipitation
time series at 2 stations are not homogeneous since the values of N, are lower than the

critical level.
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2.3.5.2 Relative Homogeneity Tests

In this study, the relative homogeneity of precipitation has been examined using the
double mass curve test which is a commonly used data anaysis approach. The theory
behind double mass curves is that by plotting the cumulation of two quantities, the data
will plot as a straight line and the slope of this line will represent the constant of
proportionality between the two quantities (Albert, 2004). A break in slope indicates a
change in the constant of proportionality (Reddy, 2005). The main purpose of these
curves is to check the consistency of data over time and to identify changes in trends by
changesin the slope as shown in figure 2.7.

For example, let Aand B are two neighboring stations in the same region. Suppose that
in a specific year the amount of precipitation at station A lies above the historical
average. Then it is expected that the annua amount of B is aso higher than the
historical mean. Because of this correlation it is possible that in a specific region the
number of significant values is much larger than the expected nhumber under the null
hypothesis. Figure 2.7 presents a sample of the double mass curve for the precipitation
data series. The X axis presents the reference station (Listertalsperre), Y axis presents
other stations (Biggetalsperre, Hennetalsperre and Drolshagen-Bleche) and Z axis
presents the time in years. Both of Hennetalsperre and Drolshagen-Bleche provided
significant break in slope as Figure 2.7.

The time at which a change occurred is the most significant information that obtained
when a break in slope is provided. Once the date in which the change occurred is
known, one can study the historical record of the gauging station to see if any changes
or sampling methods have been documented. To compare the distributions of the data
series for all stations, the empirical cumulative distribution function plots of the data
have been plotted. Figure 2.8 presents a sample of the distributions of the data series of
Biggetal sperre, Hennetal sperre and Listertalsperre stations. It is notable from Figure 2.8
that the station Hennetal sperre has different distribution. The same approach has been
applied to the temperature data series and results showed that all station did not provide
any break in slope as shown in figure 2.9. The cumulative distributions of temperature
records of all stations (figure 2.10) have approximately the same behavior and seem to
be parallel to each other because all records are strongly correlated but the stations do
not have the same statistical properties.
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2.4 Temperature Analysis

In this study 13 stations (table 2.1) with daily air temperature records have been used to
investigate the trend of the temperature in the Ruhr river basin. Results of correlation
between the stations showed that there is high correlation (=1) among the stations. In
order to analyze the temperature records, several time scaes have been considered
(months, winter, summer and annual) to study the behavior of the temperature trend for
these time scales. Also the temperature records have been classified to mean, minimum
and maximum records for the considered time scales to examine the trends of the
extreme values, occurrence of warm days and occurrence of cold days for both the
winter and the summer. In many climate data series, a trend may be exist only for a
specified part of the time series which is caled local trend. This may be at the
beginning, midst, or at the end of the data series. So, the partia time series approach
was provided to examine the trend for different time periods

2.4.1 Mean Daily Temperature

The mean values of a given temperature data series are basic climatic parameters that
are widely used in the studies of the climate change. The data series of the temperature
as mentioned before are daily records. The mean values of the months, the winter and
the summer have been computed within the study period. The results of the different
time scales have been analyzed by applying the Mann-Kendall trend test. Confidence
levels of 80 %, 90 % and 95 % were taken as thresholds to classify the significance of
positive and negative precipitation trends. Trends at significance below the 80 %
confidence level were not considered.

Figure 2.11 is a plot of the mean monthly temperatures for station Sorpetalsperre. In
general there is an increase in the monthly temperature. The Mann-Kendall test shows
that there is a significant trend in the mean monthly temperature at confidence levels of
95 % and the estimated trend is 0.0036 °C per month. Results of winter data series
(figure 2.12) show that there is a significant positive trend in the winter mean
temperature at confidence levels of 95 % with estimated trend equal to 0.041 °C per
year.

Figure 2.13 illustrates the summer mean temperatures for station Sorpetalsperre. As
shown in the figure, the mean temperature is increasing during the summer. The
increase of the winter mean temperature is more pronounced than the summer mean
temperature. Results of Mann-Kendall test show that there is a significant trend in the
mean summer temperature at confidence levels of 95 % and the estimated trend is 0.037
°C per year. When the annual time scale is considered, the result (figure 2.14) shows
significant increase in the mean annual temperature with an increase of 0.039 °C per
year. Results of the mean temperature analysis showed that for the four examined time
scales (months, winter, summer and annual) there is in genera a significant increase in
the mean temperature within the study period. Table 2.3 presents the results of Mann-
Kendall test of the above mentioned time scales.
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Table 2.3: Result of Mann-Kendall test (Trend analysis) - Mean temperature

Confidence level

Data series T- value Estimated trend
80 % 90 % 95 %
Monthly data series 2.38 +0.0036 °C per month - - Yes
Winter data series 3.48 +0.04146 °C per year - - Yes
Summer data series 4.035 +0.03721 °C per year - - Yes
Annually data series 4.355 +0.03961 °C per year - - Yes
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Figure2.11: Fluctuations and trends of mean daily temperature for station
Sorpetal sperre (Months time scale 1961-2007
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Figure 2.12: Fluctuations and trends of mean daily temperature for station
Sorpetal sperre (Winter time scale 1961-2007).
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Figure 2.13: Fluctuations and trends of mean daily temperature for station
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Figure 2.14: Fluctuations and trends of mean daily temperature for station
Sorpetal sperre (Annual time scale 1961-2007).

2.4.2 Maximum and Minimum Mean Daily Temperature

Results of the min and max of mean daily temperature analysisin the Ruhr basin arein
good agreement with the analysis done by Brazdil in 1994 (see (Heino, 2004)). The
analysis which was performed over the min and max of Tmean (Tmeanmin = Tmeanmax) data
series has detected an increase in in the winter (Figure 2.15). The trend test shows that
this increase is significant at 90 % confidence level. On the other hand, an increase in
Treanmin @d Treanmax iN the summer is detected as shown in Figure 2.16. This increase
iN Treanmax 1S Significant at 95 % confidence level but the increase iN Treanmin 1S
significant at 90 % confidence level. This means that the winter became warmer and the
summer became hotter. Results of the annual analysis (Figure 2.17) show that the
increase Of Tmeanmax 1S More significant than the increase in Tmeanmin. Results of the
Mann-Kendall test are shown in table 2.4.

Table 2.4: Result of Mann-Kendall test (Trend analysis) — 7, ean,min @A Trnean max

Confidence levels
Data series T- value Estimated trend
80 % 90 % 95 %
T mean,min 1.467 +0.0488 °C per year - Yes No
Winter

T mean,max 1.344 +0.0393°C per year - Yes No

Tmeanmin | 1.94 +0.0394 °C per year - Yes No
Summer

Tmean,max 2.73 +0.0472 OC per year - - Yes

Tmeanmin | 0.557 +0.0203 °C per year No - -
Annual

Tmeanmax | 2.54 +0.046 °C per year - - Yes
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Figure 2.15: Fluctuations and trends of 7ean, Tmeanmin @A Trneanmax fOr station
Sorpetal sperre (winter-1961-2007)
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Figure 2.16: Fluctuations and trends of 7 ean, Trmeanmin@Nd TeanmaxfOr station
Sorpetal sperre (summer-1961-2007)
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Figure 2.17: Fluctuations and trends of 7ean, Tmeanmin @A Trneanmax fOr station
Sorpetal sperre (Annual -1961-2007)

2.4.3 Warm and Cold Days

The occurrence of cold and warm days is very useful for the detection of changes of
climate. Trends of the occurrences of cold and warm days in both winter and summer
have been examined based on Percentile indices (Alexander, 2005; Tank et a., 2005).
The Percentile indices are Tw10 %, Tw90 %, Ts10 % and Ts90 % to detect cold/winter,
warm/winter, cold/summer and warm/summer respectively. The result of the Percentile
indices shows a significant positive trend in the occurrence of warm days during
summer (figure 2.18) and negative trend in the occurrence of cold days in the summer
aswell (figure 2.19). On the other hand, a strong positive trend has been detected in the
winter warm days (figure 2.20). And a strong negative trend in the winter cold days has
been also detected (figure 2.21). This means that the number of warm days increased in
both the summer and in the winter as well.
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Figure 2.18: Time series of occurrence of warm days for station Sorpetal sperre
(Summer time scale 1961-2007).
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Figure 2.19: Time series of occurrence of cold days for station Sorpetal sperre
(Summer time scale 1961-2007).
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Figure 2.20: Time series of occurrence of warm days for station Sorpetal sperre
(Winter time scale 1961-2007).
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Figure 2.21: Time series of occurrence of cold days for station Sorpetal sperre
(Winter time scale 1961-2007).
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2.5 Precipitation Analysis

Precipitation over a catchment is the most important climatic factor for hydrological
response. The precipitation data series which have been used in this study are from 1960
to 2007. Table 2.5 displays the correlation coefficient between stations. In order to
study the behavior of the change in the amount of precipitation within the study period,
the amount of precipitation has been caculated over several time scales (months,
winter, summer and annual). The non-parametric Mann-Kendall test has been applied to
the severa time scales to distinguish the significance of the trend and to find the
corresponding estimated trend. In many time series the globa trend within a specified
period isinsignificant, but if the same time series is divided into more than one part the
results might be different. So in this study, the time series of the several time scales was
divided into several parts, then the trend of each part was individually examined to
classify the several periods within the study period.

Table 2.5: Correlation factor between stations. Precipitation (1961-2007)
Station No.

3 4 6 8 9 14 23 27 30 35 39

in Table (1)

1 1

2 072 1

3 0.81 0.86 1

4 0.65 0.72 0.72 1

6 0.96 0.74 0.84 0.67 1

8 0.82 0.81 0.78 0.67 0.86 1

9 0.84 0.7 0.76 0.63 0.86 0.87 1

14 0.82 0.76 0.85 0.64 0.82 0.71 0.82 1

23 0.76 0.9 0.82 0.69 0.79 0.87 0.77 0.73 1

27 0.74 0.68 0.71 0.58 0.75 0.74 0.82 0.77 0.72 1

30 0.75 0.68 0.72 0.59 0.76 0.74 0.82 0.78 0.73 0.94 1
35 0.86 0.78 0.85 0.67 0.87 0.81 0.88 0.88 0.83 0.84 0.86 1

39 0.91 0.76 0.87 0.67 0.92 0.8 0.85 0.88 0.8 0.77 0.78 092 1
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2.5.1 Distribution Changes and Trends

The analysis of precipitation data series shows that different precipitation trend patterns
occurred in the Ruhr basin in the study period. Figure 2.22 displays the fluctuations of
the summation of the monthly precipitation for station Listertalsperre. Trend test shows
a significant positive trend in the monthly precipitation, while the winter, summer and
the annual data series have an insignificant positive trend as shown in Figure 2.23, 2.24,
2.25 respectively. To study the behavior of the trend of each month individualy, the
amount of precipitation for each month was calculated, then the Mann-Kendall test has
been applied. Results of the Mann-Kendall test are shown in table 2.6.

Table 2.6: Result of Mann-Kendall test (Trend analysis)

Estimated trend
Data series Mean (mm)  T-value Confidence level
(mm) per year

Months 100 1.45 0.0194 80 %
Winter (Nov.-Apr.) 650 1.1 1.87 -
Summer (May-Oct.) 550 0.84 1.008 -
Annual 1200 0.825 1.985 -
November 115 -0.346 -0.242 -
December 136 0.142 0.170 -
January 126 1.022 0.903 -
Febraury 91 1.679 1.049 90 %
March 101 1.537 0.774 80 %
April 75 -0.595 -0.290 -
May 77 -0.079 -0.053 -
June 91 -0.951 -0.421 -
July 100 0.488 0.236 -
August 89 -0.231 -0.111 -
September 92 0.951 0.410 -

October 98 0.222 0.122 -
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Figure 2.22: Trend analysis of the monthly precipitation for station Listertalsperre
(Reference period 1960-2007)
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Figure 2.23: Trend analysis of the winter precipitation for station Listertal sperre
(Reference period 1960-2007)
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Figure 2.24: Trend anaysis of the summer precipitation for station Listertal sperre
(Reference period 1960-2007)
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Figure 2.25: Trend analysis of the annually precipitation for station Listertalsperre
(Reference period 1960-2007)
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Morgenschweis (Morgenschweis et al., 2007) examined the trend of the precipitation in
the Ruhr basin in the period 1927-2005. Results obtained show an increase in winter
precipitation with a significant trend at 98 % confidence level (figure 2.26). Results
show also insignificant trend for the summer precipitation. In fact there is no conflict
between these results and the results shown in Figure 2.23 and table 2.7. It is well
known that the length of the hydrological time series has a greet affect on the results of
any trend test and the length of the data series in the two studies is not the same.
Furthermore, it is very clear from figures 2.25 and 2.26 that the frequency of the
precipitation within the period 1961-2005 is more or less the same and this was
expected.

As mentioned before, the global trend for a given data series may present a significant
/insignificant increase/decrease within the study period. But locally, if the data seriesis
divided into several parts the data series may contain local insignificant /significant
decrease/increase and vice versa. Figure 2.27 displays an application for the pervious
approach. When the winter data series was divided into two parts (1960-1995, 1995-
2007), results showed that an significant increase in the winter precipitation has taken
place within the period 1961-1995. Significant positive trend is detected (95 %) in the
first part and an insignificant negative trend in the second part as shown in Figure 2.28.
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Figure 2.26: Trend analysis of the annually precipitation in the Ruhr basin
(Reference period 1927-2005) (Morgenschweis et al., 2007)
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Figure 2.27: Trend analysis of the winter precipitation for station Listertal sperre
(Reference period 1960-1995)
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Figure 2.28: Trend analysis of the winter precipitation for station Listertal sperre
(Reference period (1997-2007)

2.5.2 Days with No Precipitation

Days with no precipitation have been detected and examined and the trend has been
calculated. The days which have been detected are the consecutive days. Five time
scales were examined namely 3 days, 7 days, 14 days, 21 days and 28 days with no
precipitation and this has been applied to the winter and the summer data series. In this
study the day without precipitation is defined as the day within the amount of
precipitation less than 0.10 mm. Results obtained in this part show an indication
towards negative insignificant trends during the winter in the 3 days ,7 days and 14
days data series (figures 2.29, 2.30, 2.31 and table 2.7). Results of 21 days data series
show few individual events within the study periods, also for 28 days data series only
the year 2007 contains this type of consecutive dry days and this event are in April and
May 2007. The month April in this year had an extreme drought event as shown later in
chapter 3.
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Figure 2.29: Time series of occurrence of no precipitation days for station
Listertalsperre (3 days time scale-Winter. 1960-2007).
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Figure 2.30: Time series of occurrence of no precipitation days for station
Listertalsperre (7 days time scale-Winter.1960-2007).
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Figure 2.31: Time series of occurrence of no precipitation days for station
Listertalsperre (14 days time scale-Winter.1960-2007).

Table 2.7: Result of the Mann-Kendall test (Trend analysis)— days with no precipitation

Confidence levels
Data series T- value Estimated trend

80 % 90 % 95 %

3 days -0.972 -0.167 day/year - - -
Winter 7 days -0.883 -0.058 day/year - - -

14 days -0.84 - - - -

3 days 0.017 - - - R
Summer 7 days 0.231 - - - -

14 days 0.328 - - - -
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2.5.3 Frequency Distribution of Very and Extremely Wet Days

The occurrence of very wet and extremely wet days gives evidence about the change in
the intensity of the precipitation during the study period. Very and extremely wet days
have been detected based on the precipitation indices PR95 % and PR99 %. Number of
days (per year/season/month) with precipitation amount above a site specific threshold
value for very and extremely wet days, were calculated as the 95th (PR95 %) and 99th
(PR99 %) percentile of the distribution of daily precipitation amounts at days with 1
mm in the 1961-2007 baseline period. Let PRy be the daily precipitation amount at a
wet day w (precipitatior™ 1 mm) in period j and let PRn95 be the 95th percentile of
precipitation at wet days in the 1961-2007 baseline period. Then the very wet days with
PRw;> PRn95 are counted. The extremely wet days are calculated likewise.

Results of trend analysis for the winter and the summer precipitation show that there are
insignificant trends in vey and extremely wet days in the summer (figures 2.32,
2.33).For the winter, an insignificant trend in the extremely wet days data series is
obtained, while a positive significant trend is detected in the very wet days data series as
shown in figures 2.34and 2.35.
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Figure 2.32: Time series of occurrence of very wet days for station Listertalsperre
(Summer time scale 1960-2007).
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Figure 2.33: Time series of occurrence of extremely wet days for station Listertalsperre
(Summer time scale 1960-2007).
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Figure 2.34: Time series of occurrence (days) of very wet days for station
Listertalsperre (Winter time scale 1960-2007).
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Figure 2.35: Time series of occurrence (days) of extremely wet days for station
Listertalsperre (Winter time scale 1960-2007).

2.6 Inflow Analysis

In this section, trends in inflow, that integrates the influence of atmospheric variables
over a watershed, at the annual, seasonal and monthly time scales for the periods of
records 1967-2008 are analyzed for the Ruhr River basin. Presumably, if consistent
changes are observed in point measurements of precipitation and air temperature, these
should also be reflected to some degree in streamflow at a watershed scale. As a
gpatialy integrated variable streamflow is more appealing for detecting regional trends
than point measurements of precipitation or temperature which is highly variable in
gpace and time (Yan et d., 2007).

Data are daily inflow time series at the main four reservoirs in the Ruhr basin (table
2.2). High correlation between the inflow time series (monthly, seasonally) has been
detected. For the summer and annual time scales (figures 2.37, 2.38) no significant
trends have been detected; however for the winter time scale (Figure 2.36) a significant
positive trend has been detected within the study period at 80 % confidence level. It is
worth mentioning that when the winter data series were divided, a significant trend has
been detected within the period 1967-1994 at 90 % confidence level. Results of the
Mann-Kendall test are shown in table 2.8.
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Table 2.8: Result of Mann-Kendall test (Trend analysis) - inflow

Confidence levels
Data series T- value Estimated trend
80 % 90 % 95 %
Months 0.61 0.00208 M.m? per year - - -
Winter 1.314 0.764 M.m’ per year Yes No No
Summer -0.2817 -0.067 M.m’ per year - - -
Annual 0.64 0.77 M.m® per year - - -
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Figure 2.36: Fluctuations and trends of the inflow in the Ruhr basin
(Bigge Reservoir- Winter time scale. 1967-2008)
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Figure 2.37: Fluctuations and trends of the inflow in the Ruhr basin
(Blgge Reservoir- Summer time scale. 1967- 2008)
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Figure 2.38: Fluctuations and trends of the inflow in the Ruhr basin
(Bigge Reservoir-Annual time scale. 1967-2008)



38 2.7 Correlation Coefficients

2.7 Correlation between Precipitation, Temperature and Inflow

Temperature for station Sorpetalsperre, precipitation for station Listertalsperre and
inflow into the Bigge reservoir (Biggetal sperre) have been correlated together for daily,
monthly, winter, summer and annually time scales. Coefficients of correlation are
shown in Figure 2.39. The daily correlation between the precipitation and the inflow are
calculated with different lags and one-lag correlation is the best one.

The correlation coefficient between temperature and precipitation is negative and
relatively low except the coefficient correlation in the winter which is positive and
relatively low. This would indicate that through all time scales except the winter as
temperatures increase, precipitation tends to decrease. The positive correlation between
temperature and precipitation could be interpreted as increasing temperatures could
increase atmospheric water vapor, thus producing conditions conducive for increased
rainfall. The correlation between the temperature and the inflow through all time scales
except the winter is negative and relatively high in case of monthly and summer time
scales (-0.56, -0.48 respectively). This may be due to the fact that with high
temperatures, evapotranspiration would increase thus reducing streamflow.

Since precipitation is the driving force for all streamflow in the Ruhr basin, high
positive correlation coefficients between precipitation and inflow through all time scales
are expected. Variation in streamflow from year to year is found to be much strongly
related to precipitation changes than to temperature changes and this is a common result
in hydrological researches (Krasovskaia, 1995; Limbrunner, 2001). Precipitation and
inflow are strongly correlated for winter, summer and annually data series and the
correlation is significant as shown in Figure 2.39. Values of the correlation coefficient
for the winter, the summer and the annual data series are (0.88), (0.92) and (0.90)
respectively.
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2.8 Conclusion

In this chapter, a study of climate change in the Ruhr basin has been presented using a
set of data series for temperature, precipitation and inflow. Homogeneity of data series
has been examined using several homogeneity tests. These tests, which have been used,
included absolute and relative homogeneity tests. Results of homogeneity tests showed
that some individual stations have inhomogeneous time series.

The findings regarding temperature and precipitation analysis are in good agreement
with results obtained by Y eshewatesfa (Hundexha and Bardossy, 2005), Morgenschweis
(Morgenschweis et al., 2007) and (Beck et al., 2004). After examining 68 years of
precipitation and temperature data and 62 years of streamflow data, some statistically
significant trends have been identified. There are dlight increases in all three variables
(streamflow, precipitation, temperature) in the Ruhr River basin.

Between 1961 and 2007, the results showed that a significant increase in the mean
temperature over al time scales. The occurrence of warm days in both winter and
summer has significant increase (95% confidence level) while the occurrence of cold
days in both seasons showed a similar proportion of significant decrease. These results
give evidence that the winter becomes warmer and the summer becomes hotter

Results of precipitation analysis gave evidence of a significant increase in the winter
precipitation while the increases in the summer and the annua precipitation were
statistically insignificant. The number of consecutive dry days displayed decreasing
tendencies in winter while there is no indication of statistically significant change in the
summer. The index PR95 % (very wet days), PR99 % (extremely wet days) have been
introduced in this study to explore the supposed amplified response of the extreme
precipitation events relative to the change in total amount. The main identified trends
are an increase in the very wet days during winter.

For the inflow data series, obtained results showed that there is a significant increase in
the winter inflow while the increases in the summer and the annual inflow were found
to be statistically insignificant. Correlation calculations which have been applied to the
data series showed that variations in streamflow from year to year were much more
strongly related to precipitation changes than to temperature changes and this is a
common result in hydrological researches.






Chapter 3

3. Analysis of Meteorological Drought in the Ruhr Basin by
Using the Standardized Precipitation Index

3.1 Background

Drought is considered by many researchers to be the most complex but least understood
of all natural hazards, affecting more people than any other hazard (Sivakumar et al.,
2005). Drought is one of the major weather related disasters which is persisting over
months or years. It can affect large areas and may have serious environmental, social
and economic impacts. These impacts depend on the severity, duration, and spatia
extent of the precipitation deficit, but also and to a large extent on the socio-economic
and environmental vulnerability of affected regions (European Commission, 2008b).
When thinking of natural hazards, droughts are often perceived by society to play aless
dominant role compared to floods. Unlike the effects of a flood which can be
immediately seen and felt, droughts build up rather slowly, creeping and steadily
growing (Lehner et a., 2001).

Asdrought is a slowly developing phenomenon, only indirectly affecting human life, its
impacts are often underestimated in financially well off regions such as Europe (Stahl,
2001). Droughts often result in heavy crop damage and livestock losses, disrupt energy
production and hurt ecosystems. Drought mortality is concentrated in developing
countries, while absolute economic losses are largest in developed regions. Drought is a
major natural hazard affecting large areas and millions of people every year. The World
Meteorological Organization (WMO) reported that in the 25 years from 1967 to 1991
about 1.4 hillion people were affected by drought and 1.3 million people were killed
due to the direct and indirect cause of drought (Obasi, 1994).

Drought differs from other natural hazards based on severa specific features such as
(Wilhite, 2005) :

e its unpredictability, due to its medium to long time scale of occurrence, while
seasonal weather forecasts still present low levels of confidence and accuracy;

e its slow and progressive onset, cumulative through time, with events being
detectable only when they are already occurring and impacts identified when
drought has already become quite severe;

e itswiddy distributed impacts, affecting several components of the hydrological
cycle and many economic sectors of human activity and persisting for a
considerable period after the event itself has terminated.
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The severe heat wave which started in Europe in June 2003 and continued through July
until mid-August, raising summer temperatures up to 30 % higher than the seasona
mean in Celsius degrees over alarge portion of the continent, extending from the Czech
Republic to northern Spain and from Italy to Germany (UNEP, 2004). Extreme
maximum temperatures of 35°C to 40°C were repeatedly recorded in July and to a
larger extent in August in most of the southern and central countries from Germany to
Turkey. A recent commonly study performed by the European Commission and
Member States estimates the costs of droughts in Europe over the last thirty years to at
least 100 billion Euro. The drought of 2003 in Central and Western Europe has been
responsible for an estimated economic damage of more than 12 billion Euro (European
Commission, 2008b). Table 3.1 presents some details about European droughts since
1970.

Table 3.1: Drought eventsin Europe 1970-2003. after (LIoyd-Hughes, 2002)).

Y ear Region Characteristics

Extremely dry year. The minimum rainfall in Spain during
1971 Most of Europe 30 years. Anintensive summer drought in Poland. The
water level in the Rhine reached lowest value since 1818.

1972 USSR Lowest river levelsfor 50-80 years.
1973 North and east Very dry spring in eastern UK;; low winter rain/snowfall in
Europe Austria, Germany and Czechoslovakia.
ra | SN S an o ranfal Ap-Aut i
France, Holland pring 9 P 9
France.
Dry winter in eastern Europe. Summer rainfall in Sweden
1975 North and east the lowest on record; October rainfall in Belgium lowest on
Europe
record.
Severe drought in SE England, some partsin France and
UK. Hot dry summer following adry winter. Record rainfall
Northern and

1976 deficits. Surface water and groundwater deficits. Low

eastern Europe rainfall in Netherlands, Denmark, Norway, Sweden, and
Scotland. Severe drought in some parts of Germany.
Y ear Region Characteristics

Dry summer from May to August. Scotland (mid) — driest
1977 UK summer since 1868.N Ireland - seventh successive summer
with below average rainfall.

1988-92 Most of Europe Anomalous circul ation pattern caused rainfall deficits over a
large area interspersed with short wet periods. Insured
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| osses due to subsidence estimated at £600 m for UK alone

Prolonged drought across the entire Iberian peninsular.
Water suppliesin Seville were cut for up

1990-95 | Spain, Portugal
to 12 hours per day during 92-93. Hydroel ectric power
suspended 94-95.
Very hot, dry summer 1992.Continued with below average
: rainfall to October 1993.Severe |loss of agricultural
1992-93 | Bul H . . :
wigaria, Hungary production in Bulgaria. Worst drought in USSR for 10
years.
1995 Hot, dry summer and autumn. Dry soil. Impact on surface
Ireland, UK, . .
water supplies but not groundwater. Low temperature, little
Norway, Sweden . . . )
winter snow in Nordic countries.
1995-96 | Germany Extremely dry winter in some parts of Germany
1996 Bulgaria Hot, dry summer across whole country.
1999 Finland Hot, fjry.summer in southern Finland. Yery low water levels
both in rivers and groundwater formations.
2003 Much of Many deaths from unusually prolonged high temperatures.

continental Europe

Forest fires, subsidence, power cuts and agricultural losses.
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3.2 Drought Definitions

Drought has no universal definition. Drought definitions reflect many disciplinary
perspectives and therefore incorporate different biological, physicall and socioeconomic
variables in their definitions. Most of drought definitions are region specific, reflecting
differences in climatic characteristics. For this reason, it is usually difficult to transfer
definitions derived for one region to another (AMS, 2009). Labedzki reported that
Wilhite uncovered in the early 1980s more than 150 published definitions of drought
(Labedzki, 2007; NDMC, 2006). The definitions reflect differences in regions, needs
and disciplinary approaches.

Beran (Beran and Rodier, 1985) summarized that, in any case it is evident that the
notion of drought is relative but its chief characteristic is a decrease of water availability
in a particular period and over a particular area rather than a general decrease of water
availability. Drought affects al components of the water cycle from a deficit in soil
moisture reduced groundwater recharge and levels and to low streamflow or dried up
rivers. It is a reoccurring and worldwide phenomenon, with spatial and tempora
characteristics that vary significantly from one region to another (Khadr et a., 2009).

In general, drought gives an impression of water scarcity due to insufficient
precipitation, high evapotranspiration and over-exploitation of water resources or
combination of these parameters (Bhuiyan, 2004). The primary cause of a drought is the
lack of precipitation over a large area and an extensive period of time; this type is
called meteorological drought (Tallaksen and Lanen, 2004). This water deficit
propagates to the hydrological cycle and givesrise to different types of droughts.

3.3 Classification of Drought

All types of drought originate from a deficiency of precipitation (Wilhite and Glantz,
1985). Droughts can be classified in four major categories:

3.3.1 Meteorological Drought

Meteorological drought, also termed climatological drought, is commonly based on
precipitation’s departure from normal average over a certain period of time and region,
since deficiency of precipitation is highly variable from region to region.

3.3.2 Hydrological Drought

This type is associated with the deficiency of water on surface or subsurface due to
shortfall in precipitation. Although all droughts have their origin from deficiency in
precipitation, hydrological drought is mainly concerned about how this deficiency
affects components of the hydrological system such as soil streamflow, moisture,
groundwater and reservoir levels.
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3.3.3 Agricultural Drought

This links several characteristics of both meteorological and hydrological drought to
agricultural impacts, focusing on precipitation shortages, differences between actua
potential evapotranspiration, soil, soil water deficits and reduced groundwater or
reservoir levels. Plant water demand depends on prevailing weather conditions,
biological characteristics of the specific plant, its stage of growth and the physical and
biological properties of the soil.

3.3.4 Socio-Economical Drought

It is associated with the demand and supply aspect of economic goods together with
elements of meteorological, hydrological and agricultural drought. This type of drought
mainly occurs when the demand for an economic good exceeds its supply due to
weather related shortfall in water supply.

3.4 Time Sequence of Drought Impacts

The sequence of impacts associated with meteorological, agricultural and hydrological
droughts highlights its differences. When drought event begins, the first to suffer is
usually the agricultural sector because of it is heavily dependence on stored soil water
(Hisdal and Tallaksen, 2000). The latter can be rapidly depleted over extended dry
periods. If no precipitation period continues, then people will begin to fed the effects of
the shortage. Those who rely on surface water (i.e., reservoirs and lakes) will suffer first
and those who rely on subsurface water (i.e., groundwater) are usually the last to be
affected. Although, groundwater users, often the last to be affected by drought during its
onset, they are the last to experience a return to normal water supply levels. Obvioudly,
the length of the recovery period is a function of the intensity of the drought, its
duration and the quantity of precipitation received following the drought period.

As schematically illustrated in figure 3.1, a drought event is caused by a certain
meteorological situation, for instance a persisting anticyclone/ high pressure system.
Associated with the prevailing dry and warm weather, a meteorological drought with a
rainfall deficit develops. The rainfall deficit and the high evapotranspiration reduce the
soil water content, which might cause an agricultural drought if it occurs during the
growing season. Due to the precipitation deficit in the catchment, streamflow decreases
until it is only fed by groundwater and finally the groundwater reservoirs will also
deplete. Consequently, hydrological droughts lag the occurrence of atmospheric
droughts and depending on the season and the crop also the occurrence of agricultura
drought. Water in hydrological storage systems such as surface and groundwater
reservoirs is often used for multiple and competing purposes, e.g. flood control,
irrigation, recreation, hydropower, navigation or wildlife habitat, further complicating
the sequence and quantification of impacts (Wilhite, 2005). When the demand exceeds
the supply, a socio-economic drought occurs.
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Figure 3.1: The sequence of drought impacts associated with meteorological,
agricultural and hydrological drought. After (Wilhite, 2009).
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3.5 Drought Indices

Drought indices assimilate thousands of data on rainfall, snowpack, streamflow and

other water supply indicators into a comprehensible big picture. A drought index value

istypicaly asingle number, far more useful than raw data for decision making (NDMC,
2006). There are several indices that measure how much precipitation for a given period
of time has deviated from historically established norms. Although none of the magjor
indices is inherently superior to the rest in all circumstances, some indices are better

suited than others for certain uses. Table 3.2 presents some of the widely used drought

indices including Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI),
Standardized Precipitation Index (SPI) and Surface Water Supply Index (SWSI).

Table 3.2: Different drought indices and their pros and cons (after (Awass, 2009))

Index | Pros Cons Developed by
PDSI/ | Non-dimensional, widely Arbitrary threshold, Palmer 1965
PHDI | accepted specialy in USA may lag emerging
droughts by several
months less well suited
for mountainous or of
frequent climatic
extremes
SPI Identifies emerging droughts Arbitrary threshold, McKeeet al.
months sooner than the PDSI, 1995
Limited datainput, can provide
early warning of drought and help
assess drought severity
CMI | Identifies potential agricultura Not agood long-term Palmer 1965
droughts. drought monitoring tool
SWSI | Representative measure of water | It isdifficult to Shafer and
availability acrossabasin, region, | compare SWSI values | Dezman 1982

between basins or
regions
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3.5.1 Standardized Precipitation Index
3.5.1.1 Definition of the Standardized Precipitation Index (SPI)

Standardized precipitation index (SPI) is based on an equi-probability transformation of
aggregated monthly precipitation into a standard normal variable. In practice,
computation of the index requires the fitting of a probability distribution to aggregated
monthly precipitation series (e.g. k= 3, 6, 12, 24 months, etc), computing the non-
exceedance probability related to such aggregated values and defining the
corresponding standard normal quantile as the SPl. McKee (McKee et al., 1993)
assumed an aggregated precipitation gamma distribution and used a maximum
likelihood method to estimate the parameters of the distribution. SPI has advantages of
statistical consistency and the ability to describe both short-term and long-term drought
impacts through the different time scales of precipitation anomalies (Cancelliere et dl.,
2007). Its limitation is that it relies on one input. In general, different studies have
indicated the usefulness of the SPI to quantify different drought types (Vicente-Serrano
and L opez-Moreno, 2005).

Precipitation is a climatological phenomenon more difficult to study than temperature,
because it is discontinuous with some days receiving no precipitation, while other days
receive abundant amounts of precipitation. For this reason, the basic measurement
period for many precipitation studies is the total precipitation for each month. The
Standardized Precipitation Index (SPI) is a tool developed by McKee (McKee et d.,
1993) for the purpose of defining and monitoring local droughts. It was conceived to
identify drought periods and the severity of droughts, at multiple time scales. Shorter or
longer time scales may reflect lags in the response of different water resources to
precipitation anomalies.

McKee (McKee et a., 1993) reported that a drought event occurs if the SPI is
continuously negative and reaches an intensity of -1.0 or less. The event ends when the
SPI becomes positive. Each drought event, therefore, has a duration defined by its
beginning and the end, and an intensity for each month the event continues. The
accumulated magnitude of the negative values of the SPI during a drought event can be
considered as drought magnitude. The Standardized Precipitation Index (SPI) is an
index widely used for drought monitoring purposes. Since its computation requires the
preliminary fitting of a probability distribution to monthly precipitation aggregated at
different time scales, the SPI value for a given year and a given month will depend on
the particular sample of observed precipitation data adopted for its estimation and in
particular on the sample size. Furthermore, the presence of a trend in the underlying
precipitation will adversely affect the estimation of parameters and the computation of
SPI (Cancelliere and Bonaccorso, 2009).
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The calculation of SPI requires that there is no missing data in the time series. The data
record length is required to be at least 30 years (Wu et a., 2001). A number of
advantages arises from the use of the SPI index (Cacciamani et al., 2007). First of all,
the index is ssmple and is only based on the amount of precipitation so that its
evaluation is rather easy. Also the SPI index can be computed for multiple time scales
(e, 1, 2, 3, ... 72 months), thus allowing the comparison between different time
periods. This can be an excellent communication tool to the public and to policy makers
(Wilhite et a., 2000). In addition, these various time scales can be useful in assessing
effects on different components of the hydrologic system (e.g., streamflow, reservoir
levels and groundwater levels). McKee (McKee et al., 1993) used the classification
system shown in table 3.3 to define dry and wet events.

The Standardized Precipitation Index aims to provide a concise overal picture of
drought, regardless to the actua probability distribution of the observed cumulative
amounts of rainfall for a given time scale (Gbete and Soumaila, 2007). It consists in
realizations of standard Gaussian distribution with mean zero and variance one obtained
by applying appropriate transformation to each of the observed cumulative amount of
precipitation. But one should notice that applying the inverse of the cumulative
probability function of the standard Gaussian distribution to the actual cumulative
probability function of each observed amount of precipitation fails to give Gaussian
deviates as precipitation data may include many zeros corresponding to period with no
precipitation. In this study, there is no zero monthly precipitation for the covered period.
SPI was applied on 1, 3, 6, 9, 12and 24 month time scales.

Table 3.3: Classification of drought based on the SPI index

SPI Classification

2 or more Extremely wet
1.5t01.99 Very wet
1t01.49 Moderately wet
0.9910-0.99 Near normal
-1t0-1.49 Moderately dry
-1.5t0-1.99 Severely dry

-2 and less Extremely dry
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3.5.1.2 Computation of the SPI Index

McKee (McKee et a., 1993) developed the Standardized Precipitation Index (SPI) for
the purpose of defining and monitoring drought. Among others, the Colorado Climate
Center, the Western Regional Climate Center and the National Drought Mitigation
Center use the SPI to monitor current states of drought in the United States. The nature
of the SPI alows an analyst to determine the rarity of a drought or an anomalously wet
event at a particular time scale for any location in the world that has a precipitation
record.

In the most cases, the Gamma distribution is the distribution that best models observed
precipitation data. The density probability function for the Gamma distribution is given
by the expression (Cacciamani et a., 2007):

—-X

1

g(x) = T x%le s For x>0 (3.1)
Where:
a>0 IS a shape parameter
£ >0 is a scale parameter
x>0 X is the precipitation amount

I'(a) isthe Gamma function and defined by:

r(a)= [ y* " e™dy (32)

Computation of the SPI involves the fitting of a gamma probability density function to a
given frequency distribution of precipitation totals for a station. The apha and beta
parameters of the gamma probability density function are estimated for each station, for
each time scale of interest (Imonth, 3 months, 12 months, 48 months, etc.) and for each
month of the year.

After estimating coefficient alpha and beta the density of probability function g(x) is
integrated with respect to x and we obtain an expression for cumulative probability G(x)
that a certain amount of rain has been observed for a given month and for a specific
time scale.

—-X

! fox x* le B dx (3.3)

Ber(a)

Gx) = [, glx)dx =

The Gamma function is not defined by x= 0 and since there may be no precipitation the
cumulative probability becomes:

H(x)=q+ (1 -q9)G(x) B4
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Where g is the probability of no precipitation. The cumulative probability is then
transformed into a normal standardized distribution with null average and unit variance
from which we obtain the SPI index. The above approach, however, is neither practica
nor numerically ssmple to use if there are many grid points or many station on which to
calculate the SPI index. In this case, an aternative method was described in (M.V K.
Sivakumar) using the technique that converts the cumulative probability into a standard
variable Z.

The SPI Index isthen defined as:

z=5PI=—(t - 1+2:::1;Z-t:3t3) for 0< H(x) < 0.5 (3.5)
2=5Pi=+ (£ - 1+;j:j;;§f;t3) for 0.5 < H(x) <1 (3.6)
Where:

t In{ 1 } for 0<H(x) <05 (3.7)

= or < X) < U .
(HO)P

t=_[In 1 for 0.5<H(x)<1 (3.8)

= — .~ or o< X) < .
(L-HE)Y

Where x is precipitation, H(x) is the cumulative probability of precipitation observed
and ¢y, ¢y, Cy, di, d2 and ds are constants with the following values:

Co= 2.515517 ¢y = 0.802853 c;=0.010328

d; = 1.432788 d; = 0.189269 ds; = 0.001308

3.6 Data Collection and Methodology

The data set which has been used in this chapter is the same data which has been used in
chapter 2. For more details, please see chapter 2, section 2.3.

In this study a program called “SPI_Analysis’ was used to calculate and analyze the SPI
values. This program has been developed by the author as a part of this thesis. Details
about this program are presented in appendix A.
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3.7 Drought Occurrences and Analysis
3.7.1 SPI Index of Consecutivel Months

In this study the overall meteorological drought vulnerability in the Ruhr river basin has
been assessed by reconstructing historical occurrences of droughts at varying time steps
and drought categories with the SPI approach. The basic ideais that this can be a guide
to the decision makers in the Ruhr basin to develop strategies of water resources
management in the context of drought. The SPI index is applied to long-term
precipitation data at 13 stations for the period 1960-2007 (January 1960 to December
2007) (See chapter 2 for more details).

The occurrences in varying drought categories at 1, 3, 6, 9, 12 and 24 month time steps
have been analyzed. The SPI values have been calculated for the total period and also
for a specific month. Figure 3.2 through figure 3.4 illustrate the SPI values based on 1,
3, and 6 months time steps respectively. Appearance of drought is defined when SPI is
negative and its intensity comes -1.0 or lower. Several drought events have been
detected. These events have aso different durations. As mentioned before the duration
of an event is defined as the time between the zero crossings that bound the events.

N

SPI

\ \ \ \ \ \ \ \
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Al | |

Time-Months 2007

Figure 3.2: SPI time series based on the total monthly precipitation in the Ruhr River
Basin (1960-2007) (One month time step — SPI_1) (Station Sorpetal sperre)
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Figure 3.3: SPI time series based on the total monthly precipitation in the Ruhr River
Basin (1960-2007) (Three months time step — SPI_3) (Station Sorpetal sperre)
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Figure 3.4: SPI time series based on the total monthly precipitation in the Ruhr River
Basin (1960-2007) (Six months time step — SPI_6) (Station Sorpetal sperre)

Figure 3.5 illustrates the accumulated magnitude of the negative values of the SPI based
on 1, 3 and 6 months time scale. The figure can be used as a guide for the selection of
the driest years and to compare also between different droughts. As shown in the figure,
several years (such as 1964, 1976 and 1996) exposed to sever drought.

Based on an analysis of stations across the Ruhr basin, results showed that SPI defines
mild drought in 31.9 % of the time, moderate drought in 8.33 % of the time, severe
drought in 5.5 % of the time and extreme drought in 1.3 % of the time. Because the SPI
is standardized, these percentages are expected from a normal distribution of SPI. The
1.3 % of SPI values within the “extreme drought” category is a percentage that is
typically expected for an “extreme” event (NDMC, 2006). This standardization allows
determining the rarity of a current drought, as well as the probability of the precipitation
necessary to end the current drought. Figure 3.6 shows that the probability of the
occurrence of a dry or a wet event, according to the category, is approximately the
same. The percentage of an event is the sum of the percentage of al similar events
through the covered period (1960-2007).
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3.7.2 SPI Index of a Specified Month

The SPI values for the months January and April have been calculated based on 1
month time step as shown in figure 3.7 and figure 3.8. SPI values based on 3 months
time step (quarter of a hydrological year) as shown in figure 3.19 through figure 3.12.
Results show that drought occurred in both summer and winter athough there is a
significant increase in the winter precipitation as reported by Morgenschweis
(Morgenschweis et al., 2007) (figure 2.26). The most extremely drought event in the
basin was during winter as shown in figures 3.9 and 3.13. Figures 3.13 and 3.14 present
the time series of SPI data values based on 6 months time step (winter and summer of a
hydrological year). It is clear from the two figures that several severely and extremely
drought events occurred in the Ruhr basin and the drought event in the winter of the
hydrological year 1995-1996 was the most extremely event.
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Figure 3.7: Drought severity index values representative of the Ruhr River Basin based
on one month SPI values (SPI_1 January) (Station Sorpetal sperre)
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Figure 3.8: Drought severity index values representative of the Ruhr River Basin based
on one month SPI values (SPI_1_April) (Station Sorpetalsperre)
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Figure 3.9: Drought severity index values representative of the Ruhr River Basin
based on SPI values of Nov., Dec. and Jan. (SPI_3_Jan) (Station Sorpetal sperre)
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Figure 3.10: Drought severity index values representative of the Ruhr River Basin
based on SPI values of Feb., Mar. and Apr. (SPI_3 Apr) (Station Sorpetalsperre)
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Figure 3.11: Drought severity index values representative of the Ruhr River Basin
based on SPI values of May, Jun. and Jul. (SPI_3 Jul) (Station Sorpetalsperre)
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Figure 3.12: Drought severity index values representative of the Ruhr River Basin
based on SPI values of Aug., Sep. and Oct. (SPI_3_Oct) (Station Sorpetal sperre)
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Figure 3.13 : Drought severity index values representative of the Ruhr River Basin
based on SPI values of Nov., Dec., Jan., Feb., Mar. and Apr. (SPI_6_April) (Winter)
(Station Sorpetal sperre)
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Figure 3.14: Drought severity index values representative of the Ruhr River Basin
based on SPI values of May, Jun., Jul., Aug., Sep. and Oct. (SPI_6_Oct) (Summer)
(Station Sorpetalsperre)
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3.7.3 Probability of Drought Occurrence in the Ruhr Basin

The occurrence in varying drought categories at 3, 6, 9, 12-month and 2-year time steps
has been analyzed. The aim was to identify drought events at comparable time steps
based on their occurrence frequencies. Figure 3.15 (a through d) presents percentages
of drought occurrence expressed at multiple-time steps for varying drought severity
categories. Each percentage is obtained by taking the ratio of drought occurrence in
each time step to the total drought occurrence in the same time step and drought
category.
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Figure 3.15: Drought occurrence in the Ruhr basin (Station Sorpetalsperre) at different
drought categories and time steps:

(3 SPI_3 (b) SPI_6 (©) SPI_9 (d) SPI_12



3.7 Drought Occurrences and Analysis 59

3.7.4 Trend of SPI Index

To examine the trends in the SPI data series the Mann-Kendall test has been applied to
SPI_3, SPI.6, SPI_9, SPI_12, SPI_3 Jan, SPI_3 Apr, SPI_3 Jul, SPI_3 Oct,
SPI_ 6 Apr and SPI_6 Oct. Table 3.4 summarizes the results of the Mann-Kendall test.
It shows that there, is a positive significant trend in the data series of SPI_3 for the
months April and October and insignificant trend in SPI_3 for the month July. The
significant positive trend in the SPI_3 for months April and October can be explained as
due to the decrease of the number of drought events. This can be clearly noticed from
figures 3.10 and 3.12 that from 1986 to 2007 the number of drought events is small
compare with wet events. Conversaly, for the month July (negative trend near 80 %
confidence level) during the same period the number of wet events is small compared
with drought events

Table 3.4: Results of Mann-Kendall test (1961-2007)

SPI Category | T-value Type of trend

SPI_3 1.0024 Insignificant

SPI 6 0.899 Insignificant

SPI 9 0.876 Insignificant

SPI_12 1.057 Insignificant

SPI_3 Jan -0.165 Insignificant

SPI_3 Apr 1.67 Significant at confidence level of 90 %
SPI_3 Jul -1.27 Insignificant

SPI_3 Oct 2.05 Significant at confidence level of 95 %
SPI_6 _Apr 0.59 Insignificant

SPI 6 Oct -0.22 Insignificant
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3.7.5 Number of Drought Events

Many drought events which occurred in the Ruhr river basin have been detected. Table
3.5 table and 3.6 present the severely and the extremely drought events respectively
based on 1, 3, 6, 9, 12 and 24 months of SPI values. The two tables show the advantage
of using severa time steps when applying the SPI approach. For example if the SPI
values are calculated based on one month time step, the detected event might be a
drought event which cannot be detected if the SPI is calculated based on 3 months time
step and vice versa. A practical example for thisis shown in table 3.6, when SPI_1 has
been applied; the drought event which occurred in April 2007, which was a very dry
month, has been detected. But with SPI_3 this even has not been detected. Also as
shown in table 3.6 there was an extremely drought event in the winter of the
hydrological year 1996 (SPI_3 for month February), this event has been detected by
using SPI based on 3 months time step and did not appear in the results of SPI based on
one month time step. The results in tables 3.5 and 3.6 show that the Ruhr river basin
received severely and extremely drought eventsin the period 1960-2007.

3.8 Conclusion

The aim of the chapter was to assess the overall meteorological drought vulnerability in
the Ruhr basin by reconstructing historical occurrences of drought at severa time steps
and drought categories with the SPI approach. By applying the SPI approach, the
obtained results indicated that the drought randomly affect the Ruhr river basin. Severa
drought events occurred during the period under study. Results also indicate that inspite
of a significant positive trend in winter precipitation drought visited the Ruhr basin in
both summer and winter and that the most severe event was in the winter. Trends in SPI
data series indicated that the proportion of the Ruhr catchment drought condition has
changed insignificantly during the period under study.

Results and the conclusion reached in this study can be an essentia step toward
addressing the issue to drought vulnerability in the Ruhr river basin and will be used as
aguide for water resources management in the Ruhr river basin during droughts.

At the end it is worth to be mentioned that in reality extreme drought events in the last
decades presented no severe challenges to the water supply of the Ruhr district due to
the reservoir system existing in the Ruhr catchment basin.



Severe Drought Events

Table 3.5: Severe drought events according to several time steps Severely Drought Events (Station Sorpetal sperre)
Severe drought events
SPI_1 SPI_3 SPI_6 SPI_9 SPI_12

Year Month Value | Year Month Value | Year Month Value | Year Month Value | Year Month

1962 10 -1.58 | 1964 1 -1.52 | 1963 3 -1.84 | 1963 4 -1.94 | 1963 5 -1.61
1962 11 -1.98 | 1964 3 -1.65 | 1963 4 -1.69 | 1963 6 -1.71 | 1963 7 -1.76
1963 2 -1.64 | 1964 5 -1.91 | 1963 6 -1.69 | 1964 4 -1.55 | 1963 8 -1.61
1964 1 -1.62 | 1964 6 -1.72 | 1964 3 -1.50 | 1964 5 -1.98 | 1963 9 -1.53
1964 7 -1.53 | 1964 8 -1.61 | 1964 4 -1.85 | 1964 6 -1.99 | 1963 12 -1.56
1968 4 -1.86 | 1969 1 -1.51 | 1964 9 -1.93 | 1964 10 -1.76 | 1964 1 -1.56
1969 9 -1.85 | 1971 10 -1.63 | 1964 10 -1.54 | 1964 11 -1.91 | 1964 6 -1.92
1971 9 -1.63 | 1972 12 -1.54 | 1971 9 -1.53 | 1964 12 -1.52 | 1964 12 -1.98
1972 12 -1.54 | 1973 1 -1.56 | 1971 10 -1.96 | 1971 9 -151 | 1971 10 -1.77
1973 6 -1.97 | 1973 2 -1.56 | 1972 3 -1.78 | 1971 10 -1.80 | 1971 11 -1.55
1973 8 -1.61 | 1973 8 -1.98 | 1973 2 -1.53 | 1971 11 -1.60 | 1971 12 -1.72
1974 4 -1.78 | 1973 9 -1.54 | 1973 3 -1.68 | 1971 12 -1.74 | 1972 5 -1.80
1975 2 -1.57 | 1975 12 -1.66 | 1976 10 -1.78 | 1972 4 -1.86 | 1972 6 -1.79
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SPI_1 SPI_3 SPI 6 SPI_9 SPI_12
Year Month Value | Year Month Value | Year Month Value | Year Month Value | Year Month  Value
1975 12 -1.66 | 1976 5 -1.86 | 1976 11 -1.55 | 1972 5 -1.64 | 1973 8 -1.89
1976 4 -1.98 | 1976 6 -1.98 | 1977 1 -1.58 | 1973 8 -1.76 | 1973 9 -1.95
1976 8 -1.77 | 1976 8 -1.61 | 1983 12 -1.63 | 1973 9 -1.54 | 1976 7 -1.53
1980 5 -1.72 | 1982 9 -1.78 | 1989 9 -1.56 | 1976 6 -1.51 | 1976 8 -1.68
1982 7 -1.88 | 1983 9 -1.64 | 1989 10 -1.59 | 1977 1 -1.61 | 1976 9 -1.87
1982 9 -1.69 | 1985 2 -1.53 | 1991 7 -1.65 | 1977 2 -1.58 | 1976 10 -1.81
1985 10 -1.53 | 1989 6 -1.85 | 1991 8 -1.58 | 1977 3 -1.55 | 1976 11 -1.58
1989 6 -1.65 | 1989 8 -1.58 | 1991 9 -1.53 | 1989 11 -1.51 | 1976 12 -1.52
1989 11 -1.50 | 1990 5 -1.57 | 1993 8 -1.49 | 1991 9 -1.81 | 1977 5 -1.65
1990 5 -1.58 | 1991 4 -1.83 | 1995 12 -1.79 | 1995 12 -1.77 | 1977 7 -1.56
1990 7 -1.59 | 1991 5 -1.72 | 1996 7 -1.62 | 1996 9 -1.90 | 1992 1 -1.60
1992 5 -1.72 | 1996 4 -1.83 | 1997 11 -1.76 | 1998 2 -1.63 | 1996 2 -1.87
1995 10 -1.73 | 1996 6 -1.97 | 1997 12 -1.53 1996 11 -1.67
1996 3 -1.82 | 1997 1 -1.67 1996 12 -1.57
1997 11 -1.54 | 1999 7 -1.56 1997 1 -1.55
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SPI_1 SPI_3 SPI_6 SPI_9 SPI_12
Year Month Value | Year Month Value | Year Month Value Year Month Value Year Month Value
2000 6 -1.54 1997 11 -1.56




Extreme Drought Events

Table 3.6: Extreme drought events according to several time steps (Station Sorpetal sperre)

Extremely Drought Events

SPI_1 SPI_3 SPI_6 SPI_9 SPI_12
Year Month Value | Year Month  Value | Year Month Value | Year Month Value | Year Month Value
1960 3 -2.03 | 1962 11 -2.20 | 1963 2 -2.06 | 1963 5 -2.21 | 1964 7 -2.16
1968 11 -2.18 | 1963 3 -2.01 | 1964 5 -2.64 | 1964 7 -2.40 | 1964 8 -2.39
1971 7 -2.63 | 1964 2 -2.08 | 1964 6 -2.32 | 1964 8 -2.81 | 1964 9 -2.23
1972 1 -2.14 | 1964 7 -2.06 | 1964 7 -2.01 | 1964 9 -2.34 | 1964 10 -2.21
1978 11 -2.01 | 1971 9 -2.04 | 1964 8 -2.22 | 1972 1 -2.25 | 1964 11 -2.53
1984 3 -2.02 | 1972 2 -2.83 | 1971 12 -2.02 | 1972 2 -245 | 1972 1 -2.10
1986 2 -2.17 | 1972 3 -2.26 | 1972 1 -2.03 | 1972 3 -2.72 | 1972 2 -2.49
1988 5 -2.10 | 1976 4 -2.76 | 1972 2 -2.45 | 1976 10 -2.78 | 1972 3 -2.35
1989 5 -2.58 | 1976 10 -2.03 | 1976 7 -2.21 | 1976 11 -2.12 | 1972 4 -2.16
1993 3 -2.36 | 1988 6 -2.07 | 1976 8 -2.19 | 1976 12 -2.08 | 1977 1 -2.45
1995 11 -2.15 | 1989 7 -2.02 | 1976 9 -2.17 | 1991 10 -2.02 | 1977 2 -2.00
1995 12 -3.20 | 1995 12 -3.20 | 1996 1 -2.50 | 1996 1 -2.30 | 1977 3 -2.06
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SPI_1 SPI_3 SPI_6 SPI_9 SPI_12

Year Month Value | Year Month  Value | Year Month Value | Year Month Value | Year Month Value
1996 1 -2.33 | 1996 1 -3.43 | 1996 2 -2.17 | 1996 2 -2.39 | 1996 3 -2.41
1997 1 -2.78 | 1996 2 -2.32 | 1996 3 -3.42 | 1996 3 -2.56 | 1996 4 -2.86
1997 9 -2.32 | 1996 3 -2.33 | 1996 4 -3.78 | 1996 4 -3.03 | 1996 5 -2.98
2006 6 -2.11 | 1996 5 -2.29 | 1996 5 -3.02 | 1996 5 -2.90 | 1996 6 -3.00
2007 4 -2.99 | 1997 9 -2.30 | 1996 6 -2.96 | 1996 6 -3.64 | 1996 7 -2.72
1996 7 -2.97 | 1996 8 -2.43

1996 8 -2.23 | 1996 9 -2.82

1996 10 -2.07







Chapter 4

Meteorological Drought Forecasting Using Stochastic Models

4.1 Theoretical Basis of Time Series Analysis
4.1.1 Definition of Time Series

A Time Series is a sequence of observations taken sequentiadly in time (Box et 4.,
2008). Mostly these observations are collected at equally spaced and discrete time
intervals. A single time series or more specifically a univariate time series is the time
series that has only one variable upon which observations are made then. A basic
assumption in any time series analysis or modeling is that some aspects of the past
pattern will continue to remain in the future. Also under this set up, often the time series
process is assumed to be based on past values of the main variable but not on
explanatory variables which may affect the variable system. So the system acts as a
black box and we may only be able to know about ‘what’ will happen rather than ‘why’
it happens. Thus, if time series models are put to use, say, for instance for forecasting
purposes, then they are especially applicable in the ‘short term’. Here it is tacitly
assumed that information about the past is available in the form of numerical data.

4.1.2 Missing Data

If some values are missing, they should be replaced by a theoretically defensible
algorithm. If the time series have too much missing data, it may not be amenable to time
series analysis (Y affee and Magee, 2000). If the series does not have too much missing
observations, it may be possible to perform some missing data analysis, estimation and
replacement.

4.1.3 Sample Size

Asarule, the series should contain enough observations for proper parameter estimation
(Yaffee and Magee, 2000). There seems to be no hard and fast rule about the minimum
Size. Some authors say that at least 30 observations are needed; others 50 and others
indicate that there should be at least 60 observations. Idedly, at least 50 observations
should be available for performing time series analysis as propounded by Box and
Jenkins who were pioneers in time series modeling.
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4.1.4 Stationarity

Time series may be stationary or non-stationary. A time series is said to be stationary
when its statistical properties such as mean, variance, autocorrelation, etc. are all
constant over time. Most statistical forecasting methods are based on the assumption
that the time series can be rendered approximately stationary (i.e., "stationarized")
through the use of mathematical transformations.

Non-stationary time series are characterized by random walk, drift, trend or changing
variance. It should be prepared for statistical modeling; series are transformed to
stationary either by taking the natural log or by taking a difference, or by taking residua
from a regression. If the series can be transformed to stationarity by differencing, it is
known as difference-stationary. If the series can be transformed to stationarity by
detrending it, then we say that the seriesis trend-stationary.

4.2 The Nature and Use of Forecasts
4.2.1 Forecasting Definitions and Objectives

Forecasting can be defined as estimation of future trends by examining and analyzing
available data. Making good forecasting is not aways easy (Montgomery et a., 2008).
Forecasting is an important problem that covers severa fields including business,
industry, government, economics, environmental science, medicine, socia science,
politics and finance. The importance of forecasting is well understood (Y affee and
Magee, 2000). Forecasting problems could be classified into three groups, short-term,
medium-term and long-term forecasting. Short-term forecasting problems involve
predicting events only a few time periods (days, weeks, months) into the future.
Medium-term forecasts extend from one to two years into the future and long-term
forecasts extend beyond that by many years. Short-term forecasting is usually applied to
time series which do not change dramatically very quickly and the statistical methods
arevery useful in this case.

4.2.2 Basic Methodology of Forecasting

Despite the wide range of problems that require forecasts, there are two general types of
forecasting techniques as reported in (Yaffee and Magee, 2000). The first is the
qualitative method and the second is the quantitative method. Qualitative forecasts are
often used in situations where there is little or no historical data on which to base the
forecast. Quantitative forecasting methods use historical data and the forecasting model
summarizes patterns in the data to express a statistical relationship between the previous
and current values of the variable. Then the model is used to project the patterns in the
data into the future. The most formal and widely known quantitative forecasting
techniques are: forecasting based on historical data (naive methods- moving average,
exponential smoothing, trend analysis and decomposition of time series) and associative
forecasting (simple regression-multiple regression-econometric modeling)
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4.3 Forecasting Using Stochastic Models
4.3.1 Definition of Stochastic Models

In probability theory, a stochastic processis the counterpart to a deterministic process or
deterministic system. Instead of dealing with only one possible "redlity" of how the
process might evolve under time, in a stochastic or random process there is some
indeterminacy in its future evolution described by probability distributions (Saglam,
2008). This means that even if the initia condition is known, there are many
possibilities the process might go to, but some paths are more probable and others | ess.

A model that describes the probability structure of a sequence of observationsiscalled a
stochastic process (Box et al., 2008). Stochastic models, which are often known as time
series models, have been used in scientific, economic and engineering applications for
the analysis of time series. Time series modeling techniques have been shown to
provide a systematic empirica method for simulating and forecasting the behavior of
uncertain hydrologic systems and for quantifying the expected accuracy of the forecasts.
In this study, linear stochastic models known as ARIMA and multiplicative Seasonal
Auto Regressive Integrated Moving Average (SARIMA) models are used to forecast
meteorological droughts.

4.4 Forecasting of the SPI Index Using ARIMA and SARIMA Models
4.4.1 Background Information on Drought Forecasting

The SPI has been developed for the purpose of defining and monitoring droughts. The
global climate change in recent years is likely to enhance the frequency of droughts.
While much of the weather that we experience is brief and short-lived, drought is a
more gradual phenomenon, slowly affecting an area and tightening its grip with time. In
severe cases, drought can last for many years, and can have devastating effects on
agriculture and water supplies. It is very difficult to determine when a drought begins or
ends. A drought can be short, lasting for just a few months, or it may persist for years
before climatic conditions return to normal.

Drought forecasting plays an important role in the mitigation of impacts of drought on
water resources systems. Traditionally, statistical models have been used for hydrologic
drought forecasting based on time series methods (Kim and Valde’s, 2003). One of the
basic deficiencies in mitigating the effects of drought is the inability to forecast drought
conditions reasonably well in advance by either few months or seasons. Yevjevich as
reported in (Dracup, 1991) was among the first at attempting a prediction of properties
of droughts using the geometric probability distribution, defining a drought of k years as
k consecutive years when there are no adequate water resources. Saldariaga (Saldariaga
and Y evjevich, 1970) continued the development of run theory, incorporating concepts
of time series analysis in formulations to predict drought occurrence.
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Rao, and G. P. (Rao and Padmanabhan, 1984) investigated the stochastic nature of
yearly and monthly Palmer's drought index (PDI) series and to characterize them via
valid stochastic models which may be used to forecast and to simulate the PDI series.
The monthly and annual PDI series were analyzed in their study. Sen (Sen, 1990)
derived exact probability distribution functions of critical droughts in stationary second
order Markov chains for finite sample lengths on the basis of the enumeration technique
and predicted the possible critical drought durations that may result from any
hydrologic phenomenon. Kendall (Kendall and Dracup, 1992) proposed a drought event
generator using aternating renewal—+eward model.

Moye (Moyeé and Kapadia, 1994) developed a pertinent probability distribution based
on difference equations to forecast drought of prespecified duration and average drought
length of desired period. Loaiciga (Loaiciga and Leipnik, 1996) modeled the occurrence
of drought events by the renewal processes. Lohani (Lohani and Loganathan, 1997)
used PDSI in a non-homogenous Markov chain model to characterize the stochastic
behavior of drought and based on these drought characterizations an early warning
system was used for drought management. Chung (Chung and Salas, 2000) used |ow-
order Discrete Auto Regressive Moving Average (DARMA) models for estimating the
occurrence probabilities of drought events.

Kim (Kim and Valde's, 2003) used PDSI as drought parameter to forecast drought in
the Conchos River basin in Mexico using conjunction of dyadic wavelet transforms and
neural network. There has been considerable research on modeling for various aspects
of drought, such as the identification and prediction of its duration and severity.

It is rather easy to sense that a drought has set in, particularly during a cropping season.
There is a need to develop methods and techniques to forecast the initiation/ termination
point of droughts. The ARMA models, pattern recognition techniques, physically based
models using Paimer drought severity index (PDSI), standardized precipitation index
(SP1), a moisture adequacy index involving Markov chains, or the notion of conditional
probability, seems to offer a potential to develop reliable and robust forecasts towards
this goa (Panu and Sharma, 2002).

Such research efforts would be of considerable importance in mitigating the impacts of
droughts. The stochastic models presented in this paper are based on SPI as drought
index. The SPI is used in this study because of severa reasons. The primary reason is
that SPI is based on rainfall aone, so that drought assessment is possible even if other
hydro-meteorological measurements are not available. The SPI is also not adversely
affected by topography, it is defined over various timescales and this allows it to
describe drought conditions over a range of meteorological, hydrological and
agricultural applications.
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4.4.2 ARIMA Model
4.4.2.1 Definition of ARIMA Model

Auto Regressive Integrated Moving Average (ARIMA) model was advanced by Box
and Jenkins in 1960s for forecasting a variable (Box and Jenkins, 1970), hence this
model is also known as Box-Jenkins model. Its appropriate use requires long time series
data. Box and Jenkins introduced the concept of seasona non-seasonal ARIMA models
for describing a seasonal time series and also provided an iterative procedure for
devel oping such models.

ARIMA models are, in theory, the most general class of models for forecasting a time
series which can be stationarized by transformations such as differencing and logging.
In fact, the easiest way to think of ARIMA models is as fine-tuned versions of random-
wak and random-trend models. The fine-tuning consists of adding lags of the
differenced series and/or lags of the forecast errors to the prediction equation, as needed
to remove any last traces of autocorrelation from the forecast errors.

The acronym ARIMA stands for "Auto-Regressive Integrated Moving Average’. Lags
of the differenced series appearing in the forecasting equation are called "auto-
regressive” terms, lags of the forecast errors are called "moving average”" terms and a
time series which needs to be differenced to be made stationary is said to be an
"integrated” version of a stationary series (Ghafoor and Hanif, 2005). Random-walk and
random-trend models, autoregressive models and exponential smoothing models (i.e.,
exponential weighted moving averages) are al special cases of ARIMA models.

4.4.2.2 Description of ARIMA Representation

In general, a non-seasonal ARIMA model is characterized by the notation ARIMA (p,
d, g), where “p” is the number of autoregressive terms, “d” is the number of non-
seasonal differences and “q” is the number of lagged forecast errors in the prediction
equation.

In ARIMA parlance, TS is a linear function of past actual values and random shocks.
For instance, given a time series process (Y;), a first order auto-regressive process is
denoted by ARIMA (1,0,0) or smply AR(1) and is given by:

Ye=pu+@1*Yer + & (4.1)
where the auto regressive coefficient is denoted by ¢ "phi".

and a first order moving average process is denoted by ARIMA (0,0,1) or simply
MA(1) and is given by:
Y: = M - 01 *er.1 + & (42]

Where 6, the coefficient of the lagged forecast error, is denoted by the Greek letter
"theta".
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Alternatively, the model ultimately derived, may be a mixture of these processes and of
higher orders as well. Thus a stationary ARMA (p, d, g) process is defined by the
eguation:

0, (B)VYY, = 6, (B)e; (4.3)
Where &5 are independently and normally distributed with zero mean and constant
variances? fort=1, 2,.....n.

4.4.2.3 Description of Seasonal ARIMA Representation

Identification of relevant models and inclusion of suitable seasona variables are
necessary for seasonal. The Seasonal ARIMA i.e. ARIMA (p, d, g) (P, D, Q)s model, as
reported in (Shumway and Stoffer, 2000), is defined by:

@p (B) @p (Bs) VAVP Y= 0q (Bs) 64 (B) & (4.4)
Where:

@p(B)=1-@1B-...-op BP (4.5)

0q (B) = 1-01 B-...-04 Bt (4.6)

Op (Bs) = 1- 71 B5-...-dp Bs?, (4.7)

Oq (B%) = 1- 01 B-...-0¢ B¢ (4.8)

Where B is the backshift operator (i.e. B yi= Vi.1, BVt = Vi» and so on),’s’ is the seasonal
lag and ‘& is the sequence of independent normal error variables with mean 0 and
variance o°>. @ and ¢ are respectively the seasona and non-seasona auto regressive
parameters. @ and 6 are respectively seasonal and non-seasonal moving average
parameters. p and g are orders of non-seasonal auto regression and moving average
parameters respectively whereas P and Q are that of the seasona auto regression and
moving average parameters respectively. Also d and D denote non-seasonal and
seasonal differences respectively.
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4.4.2.4 The Art of ARIMA Model Building
(i) Identification

Identification of the general form of a univariate model involves two steps. Within the
first step the data series is analyzed for stationarity and normality (Brocklebank and
Dickey, 2003). There are two kinds of stationarity, viz., stationarity in ‘mean’ and
stationarity in ‘variance’. A cursory look at the graph of the data and structure of
autocorrelation and partial correlation coefficients may provide clues for the presence of
stationarity. Appropriate differencing of the series is performed (if necessary) to
achieve stationarity and normality. Stationarity in variance could be achieved by some
modes of transformation, say, log transformation. This is applicable for both seasonal
and non-seasonal stationarity. Thus, if ‘Y, denotes the original series, the non-seasonal
difference of first order is:

th Yt— Yt-l (49)

Followed by the seasonal differencing (if needed)
Ze=Xe—Xe—s=(Ye- Ye1) = (Yes - Yes1) (4.10)

In the second step the temporal correlation structure of the transformed data is
identified by examining its autocorrelation (ACF) and partial autocorrelation (PACF)
functions (Box and Jenkins 1976) and to find the initial values for the orders of non-
seasonal and seasonal parameters, p, g, and P, Q.

They could be obtained by looking for significant autocorrelation and partial auto-
correlation coefficients. If second order autocorrelation coefficient is significant, then an
AR (2), or MA (2) or ARMA (2) model could be tried to start with. Thisis not a hard
and fast rule, as sample autocorrelation coefficients are  poor estimates of population
autocorrelation coefficients. Still they can be used as initia vaues while the fina
models are achieved after going through the stages repeatedly. Usually up to order 2 for
p, d, or g are sufficient for developing a good model in practice.

(i) Estimation

At the identification stage several models are tentatively chosen that seem to provide
statistically adequate representations of the available data. Then precise estimates of
parameters of the model are to be obtained by least squares as advocated by Box and
Jenkins. Standard computer packages like SAS, SPSS are available for finding the
estimates of relevant parameters using iterative procedures.

(iii) Diagnostics

Different models can be obtained for various combinations of AR and MA individualy
and collectively (Khattree and Rao, 2003). The best model is obtained with following
diagnostics:
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(@) Low Akaike Information Criteria (AIC)/ Bayesian Information Criteria (BIC)/
Schwarz-Bayesian Information Criteria (SBC)

AlC isgiven by:

AIC=(-2log L +2 m) (4.12)

Where m = p + g+ P + Q and L is the likelihood function. Since -2 logL is
approximately equal to {n (I+log 2rr) + n log 6°} where ¢° is the model MSE, and AIC
can be written as AIC={n (I+log 2r) + n log o + 2 mtand because the first term in this
equation is a constant, it is usually omitted while comparing between models. As an
aternative to AIC, sometimes SBC is aso used which is given by:

SBC = log 02 + (m log n) /n. (4.13)
(b) Plot of residual’s ACF

Once the appropriate ARIMA model has been fitted, one can examine the goodness of
fit. If the fitted model is adequate, the residuals should be approximately white noise.
So, we should check if the residuals have zero mean and if they are uncorrelated. The
key instruments are the time plot, the ACF and the PACF of the residuas. The
theoretical ACF and PACF of white noise processes take value zero for lags J # 0, so if
the model is appropriate most of the coefficients of the sasmple ACF and PACF should
be close to zero. In practice, we require that about the 95 % of these coefficients should
fall within the non-significance bounds.

(c) Testsfor Residual Normality

Any graph suitable for displaying the distribution of a set of data is suitable for judging
the normality of the distribution of a group of residuals. The most common types are;
Histogram and Normal probability plots.

The histogram is a frequency plot obtained by placing the data in regularly spaced cells
and plotting each cell frequency versus the center of the cell. The histogram is not be
the best choice for judging the distribution of residuals If the sample sizes of residuals
are generally small (<50). The normal probability plot should produce an approximately
straight line if the points come from a normal distribution. Small departures from the
straight line in the normal probability plot are common, but a clearly "S" shaped curve
on this graph suggests a bimodal distribution of residuals. Breaks near the middle of this
graph are aso indications of abnormalities in the residual distribution. Figure 4.1
illustrate the steps o the ARIMA model.
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Figure 4.1: Box-Jenkins modeling approach
after (Box and Jenkins, 1970)
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4.4.3 Development of an ARIMA Model to fit the SPI _3 Time Series

4.4.3.1 Computation of the Standardized Precipitation Index SPI_3

The frequency of drought events was calculated using the Standardized Precipitation
Index (SPI). Figure 4.2 shows a sample of calculated SPI_3 time series. All detals
about the methodology and the results were presented in chapter 3

—— SPI Time Series

;MM MW' ﬁ.MAM ML T et L)
Y |

Months

Figure4.2: A sample of SPI time series

Time series model development consists of three stages identification, estimation, and
diagnostic checking (Box and Jenkins, 1970). The identification stage involves
transforming the data (if necessary) to improve the normality and the stationarity of the
time series and determining the general form of the model to be estimated. During the
estimation stage the model parameters are calculated. Finally, diagnostic checks of the
model are performed to revea possible model inadequacies and to assist in selecting the
best mode.

The data set from 1961 to 2007 were used for model development for SPI_3, SPI_6, and
SPI_ 9, SPI_12 and SPI_24 series. The models have been developed for SPI_3, SPI 6,
SPI 9, SPI 12, and SPI 24. For illustration, two examples are described briefly for SPI_3
and SPI_6. Details about SPI_9, SPI_12 and SPI_24 are presented in Appendices. The
mode! identified for SPI_3is ARIMA modd, and for SPI_6, SPI 9, SPI 12 and SPI 24
isSARIMA model.
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4.4.3.2 Model Identification

The ACF and PACF have been estimated for SPI_3, as shown in figure 4.3, and figure
4.4 respectively. The ACF and PACF show the seriesis stationary. The ACF is damping
out in sinewave manner with significant spikes at the first two lags. The first four
values are significant in PACF, which indicates the process can be modeled as a
combination of both AR and MA processes. Alternative ARIMA models have been
identified by considering the ACF and PACF graphs of the SPI series. This indicates a
possible ARIMA (p, 0, g) model with p = 1-4 and q = 1-3. All the combination have
been tried to determine the best model out of these candidate models. The model with
the minimum Akaike Information Criterion (AIC) and minimum Schwarz Bayesian
Criterion (SBC) was selected as best fit model. Usually the model with the smallest AIC
has residuals, which resemble white noise (Makridakis and Wheelwright, 1978). Table
4.1 presents a Comparison of AIC and SBC for the selected candidate models. It is
clearly from table 4.1 that the model ARIMA(3,0,2) is the one with min AIC, but the
two models ARIMA(1,0,3) and ARIMA(3,0,2) are examined to compare between the
results of the two models.
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Figure4.3: ACF plot used for the selection of candidate modelsfor SPI_3 series
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Figure 4.4: PACF plot used for the selection of candidate models for SPI_3 series
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Table 4.1: Comparison of AIC and SBC for the selected candidate models

SPI series Model AIC SBC
ARIMA(1,0,2) 1056.32 1073.73
ARIMA(1,0,3) 1056.11 1077.88
ARIMA(3,0,1) 1144.70 1166.47
ARIMA(3,0,2) 1055.48 1081.59
ARIMA(3,0,2) 1058.20 1088.67
ARIMA(4,0,0) 1110.23 1131.99
SPI-3 ARIMA(4,0,1) 1111.87 1137.98
ARIMA(4,0,2) 1057.04 1087.52
ARIMA(4,0,3) 1058.93 1093.75
ARIMA(4,1,2) 1150.93 1181.39
ARIMA(5,0,0) 1111.58 1137.70
ARIMA(5,0,1) 1112.72 1143.19
ARIMA(5,0,2) 1058.96 1093.79

4.4.3.3 Parameters Estimation

After the identification of the model using the AIC and SBC criteria, estimation of
parameters is done. During the estimation stage, model estimates were calculated
simultaneously for AR and MA parameters. Model estimates were made using the
procedure outlined by Box and Jenkins (Box and Jenkins, 1970). Preliminary estimates
of the parameters were computed from the ACF of the series developed in the
identification stage. These preliminary estimates were then used as the starting valuesin
an optimization agorithm for nonlinear least squares that minimize the residual sum of
squares. The values of the parameters are shown in table 4.2. Model parameters have
been calculated using a licensed software package of the statistical program SPSS.

Table 4.2: Statistical parameters of ARIMA (1,0,3), and ARIMA (3,0,2)

Auto regressive Moving Residual sum of . .
average Residual variance
parameters squares
parameters
0.8271 -0.1069
ARIMA (1,0,3) -0.1418 207.94 0.3638
0.6135
0.07437 -0.8832
ARIMA (3,0,2) -0.0258 -0.8548 206.98 0.3627
0.1217
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4.4.3.4 Diagnostic Check

As mentioned before two models have been selected to compare between their results,
namely ARIMA (1, 0, 3) and ARIMA (3, 0, 2). The models have been identified and the
parameters have been estimated, then the model verification is concerned with checking
the residuals of the model to see if they contain any systematic pattern which still can be
removed to improve on the chosen ARIMA. For a good forecasting model, the residuals
left over after fitting the model should be white noise. This is done through examining
the autocorrelations and partial autocorrelations of the residuals of various orders. For
this purpose, the various correlations up to 70 lags have been computed. Also the
histogram and the normal probability plot of the residuals have been drawn to check if
the residual came from normal distribution or not.

The Ljung—-Box test, which is commonly used in auto regressive integrated moving
average (ARIMA) modeling, has been applied to the residuals of the fitted ARIMA
models. The Ljung-Box test is a type of statistical test of whether any of a group of
autocorrelations of atime series is different from zero. Instead of testing randomness at
each distinct lag, it tests the "overal” randomness based on a number of lags, and is
therefore a portmanteau test.

I.  ARIMA (1,0, 3)

(RACEF) the residual ACF function and (RPACF) the residual PACF function should be
calculated to determine whether residuals are white noise. If some of the RACF or some
of the RPACF are significantly different from zero, this may indicate that the present
mode! is inadequate. The ACF and PACF of residuals of the model ARIMA (1,0,3) are
shown in figure 4.5 and 4.6 respectively. As shown in figures 4.5 and 4.6, most of the
values of the RACF and RPACF are within confidence limits except very few
individual correlations appear large compared with the confidence limits, which is
expected among 70 lags.

The figures indicate no significant correlation between residuals. Histogram of residuals
for SPI_3 is shown in Figure 4.7. The histogram shows that the residuals are normally
distributed. This signifies residuals to be white noise. The graph of the cumulative
distribution for the residual data normally appears as a straight line when plotted on
normal probability paper as shown in figure 4.8 (Chow et a. 1988). The figure shows
that, the normal probability plot of the residuals look fairly linear thus the normality
assumptions of the residuals hold (Durbin 1960).

All results of the Ljung—Box test indicated a failure to reject the null hypothesis that a
series of residual's exhibits no autocorrel ation.


http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics�
http://en.wikipedia.org/wiki/Statistical_test�
http://en.wikipedia.org/wiki/Autocorrelation�
http://en.wikipedia.org/wiki/Time_series�
http://en.wikipedia.org/wiki/Randomness�
http://en.wikipedia.org/wiki/Lag�
http://en.wikipedia.org/wiki/Portmanteau_test�
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Figure 4.5: ACF plot used for diagnostic check of the model ARIMA (1, O, 3)
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Figure 4.6: PACF plot used for Diagnostic Check of the model ARIMA (1, 0, 3)
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Figure4.7: Histogram of theresiduals— ARIMA (1, 0, 3)
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Figure4.8: Normal probability plot of the residuals- ARIMA (1, 0, 3)
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Il.  ARIMA (3,0,2)

(RACEF) the residual ACF function and (RPACF) the residual PACF function of the
model ARIMA (3,0,2) are shown figure 4.9 and 4.10 respectively. There is no big
difference between the plots of the model ARIMA (1,0,3) and the model ARIMA
(3,0,2). Also as shown in figures 4.9 and 4.10, most of the values of the RACF and
RPACF are within confidence limits except very few individual correlations appear
large compared with the confidence limits. The figures indicate no significant
correlation between residuals. Histogram of residuals for SPI_3 in figure 4.11 shows
that the residuas are normally distributed. This signifies residuals to be white noise.
The graph of the cumulative distribution for the residual data normally appears as a
straight line as shown in figure 4.12.
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Figure 4.10: PACF plot used for Diagnostic Check of the model ARIMA (3, 0, 2)
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Figure4.12: Normal probability plot of theresiduas- ARIMA (3, 0, 2)

4.4.3.5 Drought Forecasting From Selected Models

ARIMA models are developed basically to forecast the corresponding variable. There
are two groups of forecasts, namely the sample period forecasts and post-sample period
forecasts. The first group is used to develop confidence in the model and the second to
generate genuine forecasts for use in planning and other purposes. The ARIMA model
can be used to yield both groups of forecasts. The forecast has been done for 1-month
lead-time using the best models from historical data. Results of forecasting of the
ARIMA model (1, 0, 3) are shown in figures 4.13, and figure 4.14. Figure 4.14 is a
zoom window for the months from 550 to the end of the SPI time series, and this zoom
window was taken from figure 4.13. Results of forecasting of the ARIMA model (3, 0,
2) are shown in figures 4.15, and figure 4.16. Figure 4.16 is a zoom window for the
months from 550 to the end of the SPI time series. It can be clearly observed that the
forecasted values of the SPI follow the calculated values closely. To evaluate the model,
basic statistical properties have been compared between observed and forecasted data.
The results, as shown in table 4.3, show that predicted values preserve the basic
statistical properties of the observed series.
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Table 4.3: Statistical properties of ARIMA (1,0,3), and ARIMA (3,0,2) Results

Standard Standard deviation
Mean of the Mean of the e
Model Calculated SPI | forecasted SPI deviation of the of the RMSE
Calculated SPI forecasted SPI
?flol\g'? -2.6132e-005 -1.9711e-004 1.0009 0.8056 0.6023
?3R|0M2'? -2.6132e-005 -3.3537e-005 1.0009 0.7996 0.6009
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Figure 4.13: Comparison of calculated SPI with forecasted SPI using ARIMA (1, 0, 3)
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Figure 4.14: Comparison of calculated SPI with forecasted SPI using ARIMA (1, 0, 3)
(From month 550 to the end of the time series)
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Figure4.15: Comparison of calculated SPI with forecasted SPI using ARIMA (3, 0, 2)
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Figure 4.16: Comparison of calculated SPI with forecasted SPI using ARIMA (3, 0, 2)
(From month 550 to the end of the time series)

Table 4.4 presents a comparison of calculated SPI with forecasted SPI for both ARIMA
(1,0,3) and ARIMA(3,0,2). Because of the long length of the SPI time series, only the
last 21 months have been selected as shown in table 4.4. For illustration, for examplein
ARIMA (1,0,3), the SPI_3 in the second column is the calculated SPI for the total
period. The second column was used to estimate the statistical parameters of the model
(see table 4.3) then the forecasted values have been calculated which are in the third
column. In the fourth column the new SPI time series has been selected. Thistime series
is the same as the one which is in the second column except the last three values. This
was done to forecast these three values to compare between the results. In this case new
statistical parameters were estimated, then the forecasted values have been calculated as
shown in fifth column in the table. It is clear from the fourth and the fifth columns that
there is no big difference between the calculated and the forecasted values of the last
three months. Comparison of the two models ARIMA (1,0,3) and ARIMA (3,0,2)
demonstrated that there is no clear difference between the results of the two models.



4.4 SPI_3 Model — Comparison of calculated SPI with forecasted SPI

85

As shown in table 4.4, the last three values in the 5" column which have been
forecasted based on the datain the 4"column are very closely to the observed datain the
second column. It is worth mentioning that thisis not a special feature for the last three
values and this has been confirmed by applying the ARIMA model to different lengths
of the SPI time series.

Table 4.4: Comparison of calculated SPI with forecasted SPI

ARIMA(1,0,3) ARIMA(3,0,2)
spi3 | Forecmsted | oy 5 | PO |y | Forecasted | ) o | orecastec
values
554 | 1.187 | 0.8851 | 1.187 1.187 89597 | 1.187
555 | 1.442 | 1.0576 | 1.442 1.442 1.07650 | 1.442
55 | -078 | 0.6938 | -.078 -.078 70360 | -.078
557 | -132 | -0.2769 | -.132 -132 -27598 | -.132
5sg | .181 | -0.4388 | .181 181 -37286 | .181
559 | 740 | 0.7102 | .740 740 61969 740
560 | 424 | 0.6148 | .424 424 61423 424
561 | -440 | -0.0456 | -.440 -.440 -03075 | -.440
562 | -428 | -0.4519 | -.428 -.428 -47829 | -.428
563 | 269 | -0.2899 | .269 269 -27457 | .269
564 | 455 | 0.5279 | .455 455 .50029 455
565 | 1.088 | 0.4330 | 1.088 1.088 39878 | 1.088
566 | -047 | 0.6170 | -.047 -.047 67127 | -.047
567 | 726 | 0.0286 | .726 726 -02137 | .726
568 | 480 | 0.1797 | .480 480 23417 480
560 | 1.283 | 0.9356 | 1.283 1.283 86749 | 1.283
570 | 2331 | 07128 | 2331 2.331 74812 | 2.331
571 | 2776 | 1.9661 | 2.776 2.776 1.95123 | 2.776
577 | 2.447 | 2.4000 23997 | 2.447 2.38402 2.38303
573 | 1.082 | 1.1514 1.1084 | 1.082 1.15480 1.09348
574 | 0.382 | 0.3971 0.4207 | 0.382 0.34435 0.35730
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4.4.4 Development of an ARIMA Model to Fit the SPI _6 Time Series
4.4.4.1 Model Identification

Figure 4.17 shows the SPI_6 time series. The ACF and PACF have been estimated for
SPI-6, as shown in figure 4.18, and figure 4.19 respectively. The ACF is damping out
with mixture of sine and exponentia curve. Thefirst value is significant in PACF which
indicates an AR (1) as non-seasonal part of the model. Also in the PACF, there are
significant spikes presented near lag 6, 12 and 18 which indicates a SARIMA model.

Alternative SARIMA models were identified by considering the ACF and PACF graphs
of the SPI series. This indicates a possible SARIMA (p, d, g)(P,D,Q)s models with p =
1:4 ,d=0:1, g = 1.4, P=1:4, D=0:1 and Q=1:4. All the combinations were examined to
determine the best model out of these candidate models. The model that gives the
minimum Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (SBC)
is selected as best fit model. Table 4.5 presents a Comparison of AIC and SBC for the
selected candidate models. It is clearly from table 4.5 that the model SARIMA (1, O,
3)(1,0,3)sisthe one with min AIC .
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Figure4.18: ACF plot used for the selection of candidate modelsfor SPI_6 series
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Figure 4.19: PACF plot used for the selection of candidate models for SPI_6 series

Table 4.5: Comparison of AIC and SBC for the selected candidate models

SPI series Model AIC SBC

SPI-6 ARIMA(1,0,0) 812.51 821.20
ARIMA(1,0,1) 812.82 825.86
ARIMA(1,0,0) (1,0,0)e 704.38 717.42
ARIMA(1,0,0) (2,0,0)e 645.53 662.92
ARIMA(1,0,0) (3,0,0)6 635.47 657.21
ARIMA(1,0,0) (4,0,0)e 621.32 647.40
ARIMA(1,0,0) (1,0,1)6 598.44 615.83
ARIMA(1,0,0) (2,0,1)6 600.33 622.06
ARIMA(1,0,0) (3,0,1)¢ 600.65 626.74
ARIMA(1,0,0) (4,0,1)¢ 601.37 631.80
ARIMA(1,0,0) (1,1,1)e 739.11 756.46
ARIMA(1,0,0) (2,1,1)6 680.64 702.32
ARIMA(1,0,0) (3,1,1)e 674.92 700.94
ARIMA(1,0,0) (4,1,1)¢ 657.58 787.94
ARIMA(1,0,1) (1,1,1)e 738.508 760.19
ARIMA(1,0,3) (1,0,3)6 581.33 620.46
ARIMA(2,0,0) (0,0,0)¢ 812.45 825.50
ARIMA(2,0,0) (1,0,0)e 705.56 722.95
ARIMA(2,0,0) (1,0,1)¢ 600.93 622.12
ARIMA(2,0,1) (2,0,2)¢ 593.34 628.11
ARIMA(2,0,2) (2,0,2)¢ 622.42 661.55
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4.4.3.2 Parameters Estimation

After the identification of the model using the AIC and SBC criteria, estimation of
parameters was done. During the estimation stage, the auto regressive and moving
average parameters have been calculated simultaneously for the nonseasonal part of the
model (AR and MA) and also for the seasonal part of the model (SAR and SMA) as
well. The values of the parameters are shown in table 4.6.

Table 4.6: Statistical parameters of the model SARIMA (1,0,3)(1,0,3)s

Non-seasonal Seasond Zign?l;?l Residud
parameters parameters Variance
Squares

AR1 =0.9533 SAR1 =-0.9376

MA1= -0.0495 SMA1=-0.2314

1%A3RIJMOA3 89.66 0.155
(1.0.3)(1.0,3)s MA2= -0.0227 SMA2=0.7747

MA3= -0.1879 SMA3=0.0114
4.4.4.3 Diagnostic Check

As mentioned before in table 4.5 the model SARIMA (1, 0, 3)(1,0,3)s has been selected
as the one with min AIC. The model has been identified and the parameters have been
estimated, the model verification is concerned with checking the residuals of the model.
As mentioned before in the SPI_3 ARIMA models, for a good forecasting model, the
residuals left over after fitting the model should be white noise. This is done through
examining the autocorrelations and partial autocorrelations of the residuals of various
orders. For this purpose, the various correlations up to 70 lags have been computed. The
histogram Also and the normal probability plot of the residuals have been drawn to
check if the residual came from normal distribution or not.

The ACF and PACF of residuals of the model SARIMA (1, 0, 3)(1,0,3)s are shown in
figure 4.20 and 4.21 respectively. As shown in figures 4.20 and 4.21, most of the values
of the RACF and RPACF lies within confidence limits except very few individud
correlations appear large compared with the confidence limits, which is expected among
70 lags. The figures indicate no significant correlation between residuals. Histogram  of
residuals for SPI_6 is shown in Figure 4.22. The histogram shows that the residuals are
normally distributed. This signifies residuals to be white noise. The graph of the
cumulative distribution for the residual data normally appears as a straight line as shown
in figure 4.23. The figure show the normal probability plot of the residuals look fairly
linear, the normality assumptions of the residuals hold (Durbin 1960).
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Figure 4.20: ACF plot used for Diagnostic Check of the model
SARIMA (1, 0, 3)(1,0,3)s
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SARIMA (1, 0, 3)(1,0,3)s

80- 1

Freguency

20 1

| | | | |
-1.5 -1 -0.5 0 05 1 15
Residuals

Figure 4.22: Histogram of the residuals— SARIMA (1, 0, 3)(1,0,3)s
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4.4.4.4 Drought Forecasting with Selected Models

Results of forecasting of the SARIMA (1, 0, 3)(1,0,3)s are shown in figures 4.24 and
figure 4.25. Figure 4.25 is a zoom window for the months from 550 to the end of the
SPI time series, and this zoom window was taken from figure 4.24.

It is observed that, the forecasted values of the SPI follow the calculated values very
closely. Basic statistical properties are compared between observed and forecasted data
for one month ahead time. The results show that forecasted values preserves the basic
statistical properties of the observed series (table 4.7).

Table4.7: Statistical parameters of the model SARIMA (1, 0, 3)(1,0,3)s

Standard Standard deviation
Mean of the Mean of the o
Model deviation of the of the forecasted RMSE
Calculated SPI | forecasted SPI
calculated SPI SPI
SARIMA
1.9264e-004 | -8.7054e-004 1.0010 0.9151 0.398

(1,0, 3)(1,0,3)s




4.4 SPI_6 Model 91

N

—— Observed
3- — Forecasted
1 I | 0 ( i
1\‘ “"f‘\ ' I ( L 1 4' "" \“ W ]
ni ! Y Vi l“w'\l Vi [ M ‘\r | | )‘ i
(l) 0" | }‘ ! 1‘ ‘ I | “\“"‘\“““ "“‘ | ( ] \ “ 1 I ““ ‘}\ ) | (
85 -7 { J | J [ bl T \‘ ] |
r \ I ‘ ‘ \ |
2 I ‘ 4
|
-3~ ‘ —
0 150 250 350 450 550 600
Months
Figure 4.24: Comparison of calculated SPI with forecasted SPI using
SARIMA (1, 0, 3)(1,0,3)s
37
2,
_Z,
Q
5 T
'.Z*
.27
.37 -
440 430 4!90 550 520 5‘40 530 580

Months

Figure 4.25: Comparison of calculated SPI with forecasted SPI using
SARIMA (1, 0, 3)(1,0,3)s (From month 550 to the end of the time series)

Table 4.8 presents a comparison of calculated SPI_6 with forecasted SPI_6 for the
model SARIMA (1, 0, 3)(1,0,3)s. Because of the long length of the SPI time series, only
the last 21 months were. The first column in the table is the number of months and the
second column is the calculated SPI_6 for the total period. The second column was used
to estimate the statistical parameters of the model (see table 4.7), then the forecasted
values have been calculated as in third column. In the fourth column the new SPI_6
time series was selected. This time series is the same as the one which was used in the
second column except the last three values. This means that the length of the new series
is shorter than the original one by three months. This was done to forecast these three
values to compare the results. In this case new statistical parameters were estimated then
the forecasted values have been calculated as shown in fifth column in the table. It is
clear from the fourth and the fifth columns that there is no big difference between the
calculated and the forecasted values of the last three months.
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Table 4.8: Comparison of calculated SPI with forecasted SPI

SARIMA (1, 0, 3)(1,0,3)s

SPI 6 Forecasted SPl 6 Forecasted
- values - values
552 0.51 -16295 0.51
553 0.25 61353 0.25
554 0.70 80345 0.70
555 0.93 76410 0.93
556 0.46 44820 0.46
557 0.16 -29139 0.16
558 -0.18 -.15362 0.18
559 0.15 .00975 0.15
560 0.48 01814 0.48
561 0.06 14788 0.06
562 0.36 -14961 0.36
563 0.10 62072 0.10
564 0.69 06699 0.69
565 1.06 63987 1.06
566 0.80 81163 0.80
567 2.02 1.07914 2.02
569 2.44 2.53403 2.54764
570 2.34 2.09435 2.18563
571 224 1.95113 1.78978




4.5 Conclusion

Drought monitoring and forecasting are essential tools for implementing appropriate
mitigation measures in order to reduce negative impacts. Drought forecasting remains a
difficult but vitally important task for hydrometeorologists and water resources managers.
The availability of forecasts of drought indices, and of the related confidence intervals for a
given site, could be a helpful tool to the decision making process for drought mitigation.

In this Study, the SPI index has been used as a drought indicator for drought forecasting due
to its many advantages over other drought indices. This study has investigated the capability
of ARIMA and SARIMA modelsin drought forecasting using the correlation methods of Box
and Jenkins and the AIC and SBC structure selection criteria. Validation of the forecasting
models has been carried out by comparing SPI values computed on observed precipitation
and the corresponding forecasts. The results showed a fairly good agreement between
observations and forecasts, as it has also been confirmed by the values of some performance
indices. Evaluation of models showed that the results seem to be better for higher SPI series
(SPI 6, SPI 9,..., and SPI 24) and this may be due to increase in filter length which reduces
the noise more effectively. Finally, the good fitting of stochastic models such as ARIMA and
SARIMA models to hydrologic time series such as SPI time series will result in a better tool
that could be used for water resource planning within the basin.






Chapter 5

Stochastic Simulation of Monthly Streamflow

5.1 Introduction

Stochastic simulation of hydrologic time series has been widely used for solving various
problems associated with the planning and management of water resources systems for
several decades (Kim et al., 2004). Typica examples are the determination of a
reservoir capacity, evauations of adequacy and reliability of a reservoir for a given
capacity, evaluation of adequacy of a water resource management strategy under
various potential hydrologic scenario, and evaluation of the performance of an irrigation
system under uncertain irrigation water distributions (Salas and Frevert). Stochastic
simulation of hydrologic time series such as streamflow is typically based on
mathematica models and a number of models have been suggested in (Singh and
Frevert, 2001). Using one type of model or another for a particular case at hand depends
on several factors such as, physical and statistical characteristics of the process under
consideration, data availability, the complexity of the system and the overall purpose of
the simulation study. Given the historical record, one would like the model to reproduce
the historical statistics. This is why, a standard step in streamflow simulation studies is
to determine the historical statistics. Once a model has been selected, the next step isto
estimate the model parameters, then to test whether the model represents reasonably
well the process under consideration and finally to carry out the needed ssimulation
study (Singh and Frevert, 2001).

Time series of streamflow is an essential information for planning, design and operation
of many water resources systems. However, in most instances, time series of flow
records at the location of interest are limited. Therefore, the use of available historic
streamflow may be insufficient for obtaining reliable estimate of flow statistics (Juran
and Arup, 2007). In the event of non availability of a long series of historica
streamflow record, generation of the data series is of utmost importance. Classica
stochastic models, such as the Thomas-Fiering model (Altunkaynak et al., 2005; Phien
and Ruksasilp, 1981), auto regressive moving average (ARMA) models (Box and
Jenkins, 1970) are generally used for synthetic streamflow generation. Water resource
planners must consider streamflow variability to provide effective long-term planning
and management. Incorporating this variability has traditionally been achieved through
generation of stochastic streamflow. Stochastic simulation of streamflow represents
reasonabl e aternate streamflow comparable to observed data available in ariver basin.
These observed data are typically limited in time, limiting variability in the stochastic
streamflow, particularly concerning the frequency of extremes (Prairie and Rajagopalan,
2007).



96 5.2 Description of Models

In analyzing streamflow and rainfall sequences many hydrologists regard it as a
realization of a stochastic process (Ismail et a., 2004). The generated data sequences,
particularly monthly time series such as streamflow or rainfall are widely used in water
resources planning and management to understand the variability of future system
performance. Stochastic data generation aimed at generating synthetic data sequences
that are statistically similar to the observed data sequences. Therefore, the generated
data is important for more accurate solutions of various complex planning, design and
operational problemsin water resources devel opment.

Methods for design and operation of water supply reservoirs are usualy dea with the
basis of time intervals of one month which keeps the computing work within reasonable
limits and appears to produce results of reasonable accuracy (Treiber and Schultz, 1976).
By replacement of the observed time series by synthetically generated time series of a
predetermined length, which are used for reservoir design, it became possible to make
statistical statements on the reliability of the reservair to fulfill a certain demand.

In this study two models have been used to generate monthly inflow time series, namely
the Thomas-Fiering model and the Monte-Carlo simulation model. The following
section presents some details about these models.

5.2. Description of Models
5.2.1 Thomas-Fiering Model

The first model that appeared in the hydrology literature for the generation of synthetic
monthly flow sequences isthat due to Thomas & Fiering in 1962 (Sen, 1978). Basically,
this model is of a markovian nature with periodic parameters, namely, the monthly
means, standard deviations and the lag-zero cross correlations between successive
months. In its simplest form the model consists of twelve regression equations, one for
each month. The method of Thomas and Fiering implicitly alows for the non-
Stationarity observed in monthly inflow data (Singhal et al., 1980).

For the Thomas-Fiering model, synthetic monthly series is generated with the following
recursive relationship:

Qit1= Q1+ b (Q —Q;)+¢t;*Sjp1x (1— 7”;'2)1/2 (5.1
Where:
Q; =theinflow during the i month record from the start of the synthetic sequence.
Q ;+1 =theinflow during the (i+1) month.

Q ; = the mean monthly inflow during the j month with arepetitive cycle of 12 months.

0 j+1 = the mean monthly inflow during the month (j+1).
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b; = the regression coefficient for estimating the flow in the month j+1 from the month j.
t; = anormal random deviate with mean equal to zero and unit variance.

S;+1= the standard deviation of the inflow in the month j+1.

r; = the correlation coefficient between the inflows of the j and j+1 month.

Equation 5.1 is a linear regression model where the inflow in any month is a linear
function of the inflow in the preceding month. The sequence of the inflow generated by
Equation 5.1 possesses the same general statistical properties as those representing
natural inflow.

The log transformed historical monthly streamflow data could be used to generate
synthetic monthly streamflow using the Thomas-Fiering model, as the log-transformed
data were found to be normally distributed. The use of log transformed streamflow data
has the advantage of eliminating the negative flows that occur occasionaly when
untransformed streamflow are used in the model (Juran and Arup, 2007; Maass et a.,
1970).

5.2.2 Monte Carlo Simulation

Simulation is a technique of performing sampling experiments on the model of the
system (Ubeda and Allan, 1994). Stochastic simulation is experimenting with the model
over time and includes sampling stochastic variates from probability distributions.
Monte Carlo Simulation is a technique which has had a great impact in many different
fields of computational science (Huber, 1997). The Monte Carlo method is any method
which solves a problem by generating suitable random numbers and observing that
fraction of the numbers obeying some property or properties (Weissteinl). The method
is useful for obtaining numerical solutions to problems which are too complicated to
solve analytically.

Monte Carlo methods use random numbers generated from a variety of distributions.
Efficient generators have been developed for the most commonly used distributions
(e.g. uniform, Gaussian, and exponential) and general techniques (e.g. inversion) are
available for arbitrary distributions (Garcia and Wagner, 2006). In many simulation
applications, it would be necessary to generate random values that are similar to
existing data. This can be done by resampling from the origina data. Another method is
to fit a parametric distribution from one of the families of the most common
distributions, and then generate random values from the selected distribution. However,
choosing a suitable family can sometimes be difficult. In this study, three statistical
distributions have been used, namely Gamma distribution, Pearson distribution and
Johnson system of distributions.
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5.2.2.1 Gamma Distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of
continuous probability distributions. It has a scale parameter € and a shape parameter k.
If kisan integer then the distribution represents the sum of k independent exponentialy
distributed random variables, each of which has a mean of 9 (which is equivalent to a
rate parameter of ') (Wikipedial). When used to describe the sum of a series of
exponentially distributed variables, the shape factor represents the number of variables
and the scale factor is the mean of the exponential distribution. This is apparent when
the profile of an exponential distribution with mean set to one is compared to a gamma
distribution with a shape factor of one and a mean of one.

A random variable X that is gamma-distributed with scale § and shape k is denoted:
X~I'(k,0) or X~ Gamma (k, 9) (5.2)

The probability density function of the gamma distribution can be expressed in terms of
the gamma function parameterized in terms of a shape parameter k and scale parameter
0. Both k and 6 are positive values. The equation defining the probability density
function of a gamma-distributed random variable x is

~x/,
. — ~k—1_€
[k, 0) = xF71 2

forx>0and k,0 >0 (5.3)

The gamma distribution has long been used to model many natura phenomena,
including daily, monthly and annual streamflow as well as flood flows (Bobée and
Ashkar, 1991). In order to generate monthly inflow using Gamma distribution, the first
step is to fit a gamma distribution to a given data series using the maximum likelihood
estimation and then find the parameters of the selected distribution. Once one gets the
parameters of gamma distribution, a new data series could be generated.

5.2.2.2 Pearson and Johnson Systems of Distribution

The statistician Karl Pearson devised a system, or family, of distributions that includes a
unique distribution corresponding to every valid combination of mean, standard
deviation, skewness, and kurtosis. If the sample values for each of these moments from
data are computed, it is easy to find the distribution in the Pearson system that matches
these four moments and to generate a random sample (Mathworksl).The Pearson
system embeds seven basic types of distribution together in a single parametric
framework (Weisstein3). It includes common distributions such as the normal and t
distributions, simple transformations of standard distributions such as a shifted and
scaled beta distribution and the inverse gamma distribution. Statistician Norman
Johnson devised a different system of distributions that also includes a unique
distribution for every valid combination of mean, standard deviation, skewness, and
kurtosis.
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5.3 Application to Actual Streamflow Data
5.3.1 Applications and Data

For testing the performance of the models which have been used in this study, the
historical records of monthly inflow of four reservoirs have been used. Inflow data
series used in this study were obtained from Ruhr River Association (Ruhrverband).
The inflow time series present the inflow to the main reservoirs in the Ruhr river basin
namely, Bigge reservoir (Biggetasperre), Moehne reservoir (Mohnetalsperre), Henne
reservoir (Hennetalsperre), and Sorpe reservoir (Sorpetalsperre). The considered period
is from January 1967 to December 2008. All time series were checked to find out all
missing data.

Figure 5.1 presents the monthly inflow data series used in this study. Figure 5.2 shows
another important graph, called a box plot with the statistics of a given data series. It
shows, on a graph, the minimum and maximum values, the median value and the top
and bottom quartiles for a given set of data. They consist of a box, which surrounds the
middle half of the data, containing a line where the median value is. In addition, there
are two lines stretching from each end of the box. The extents of these lines are the
minimum and maximum data values of the set. Also the mean was added as a small
sguare inside the box.
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Figure 5.1: Observed monthly inflow (M. cu.m) - Bigge Reservoir
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Figure5.2: Box plot of monthly inflow time series (M. cu.m) - Bigge Reservoir
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5.3.2 Stochastic Generation of Streamflow Series

5.3.2.1 Generation of monthly streamflow series Using Thomas-Fiering
Simulation

Monthly streamflow data have been generated by using Thomas-Fiering model. Initialy
a known streamflow of any month (say, December) along with the mean and standard
deviation of historical streamflow for that month were fed to equation 5.1. The output
produced by this equation is the streamflow of the succeeding month.

As shown in equation 5.1, this equation contains a random part which has a great effect
on the statistics of the generated streamflow especially the skewness of the generated
inflow (figure 5.3).
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Figure5.3: Comparison between skewness of observed and generated inflow (with a
non specific random part)

The primary model did not preserve the skewness coefficient, and it should be modified
to meet the statistical requirement. The preservation could be ensured by several ways.
In this study a new method was developed to preserve the statistical parameters of the
historical data. The idea behind that, is to generate random numbers (random part in the
model) that have the same statistical properties of the random part in the observed
streamflow data series and this method has been applied using Monte Carlo model.
After adjusting of the random part in the model, the basic statistics such as mean,
standard deviation, skewness and correlation coefficient etc. between the historical and
generated streamflow have been computed and compared. Obtained results show a
harmonization between statistical properties of observed and generated inflow time
series as shown in figure 5.4 and table 5.1.

In this study 1000 years of synthetic streamflow has been generated using the selected
model. It is worth to be mentioned that if the generated streamflow became negative,
then it was replaced with the minimum observed streamflow the month. Another way to
avoid negative values could be done by using log transformation (Maass et al., 1970).



5.3 Thomas & Fiering Model 101

40 T I
- [ mean-observed.
= M [ Imean-predicted.
o
"_E 30+ B -
>
<
S 20- .
=
©
& 10- i
o}
=
0 Q o < $ N X
S FF @@ YRS
Months
@
25
[ std-observed
[ Istd-predicted
20f — |
3
E = _
> 15- A
<
IS
S
= 10} _
B
kel
B s -
0 Y (¢] S N N X
S F @@ YRS
Months
(b)
3.5 | ;
= [ skewness-observed
3 3- [ Jskewness-predicted
E
> 25 . . i
= _
E o |
=
5 1.5+ -
g 17 |
0.5+ -
%

S F @ @S Y
Months

(©)

Figure5.4: Comparison of the statistics of historical and synthetic monthly streamflow
using Thomas Fiering Model. (Bigge Reservoir)
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Table5.1: The basic statistics of historical and synthetic annual streamflow using Thomas Fiering model-(Bigge Reservoir)

Month
o o -~ > - o .
e £ 5 g = = z ¢ | = 2 = £
o ) s 5 © =3 s S S &0 @ 9
> O < ] S << = - 3 ey 8}
. o 9] 8 S o
Properties =z a - A
Obs. 25.09 35.00 37.13 28.31 31.70 18.02 10.24 8.27 9.88 7.80 9.59 16.38
mean
Pred. 26.41 36.10 36.88 30.03 32.47 19.35 10.46 7.65 10.12 8.09 9.07 16.38
Obs. 14.04 17.10 19.86 16.23 16.90 11.01 6.28 6.44 11.23 8.13 9.31 14.20
std.
Pred. 13.75 17.80 20.15 16.77 17.97 11.31 6.24 5.88 11.58 7.89 9.06 14.18
Obs. 0.51 0.88 0.16 0.83 0.64 0.84 1.05 1.66 2.55 3.20 2.13 2.00
skewness
Pred. 0.75 1.06 0.22 0.67 0.58 0.87 0.99 1.96 2.38 1.87 2.49 1.33
Obs. 22.92 32.03 36.40 24.69 30.68 16.13 8.43 6.31 5.97 6.36 6.70 12.69
median
Pred. 24.65 33.11 35.78 27.27 28.96 17.91 8.80 5.60 4.95 5.19 5.70 13.48
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Month E E & - < + E )
; e |5 |§ |8 |5 & |t |z |% |5 |2
. ] = +—
Properties 2 S § 2 s < = 3 = 3 = 5
Z =) - &
Obs. 243 3.87 2.10 3.29 2.78 3.77 3.22 5.33 10.03 16.55 7.31 8.19
kurtosis
Pred. 3.36 4.19 2.07 2.82 2.41 3.83 3.51 6.99 8.63 7.41 9.82 5.01
Obs. 13.36 24.00 20.83 16.47 17.36 9.22 5.42 3.84 3.75 2.57 4.00 7.60
1stQ
Pred. 16.00 22.77 19.32 16.29 17.10 10.48 5.82 3.74 3.51 241 3.56 4.87
Obs. 35.48 43.48 48.90 | 37.32 45.23 25.71 12.70 11.06 | 11.06 10.80 11.14 22.21
3rdQ
Pred. 34.55 45.56 52.13 39.98 44,98 26.47 13.92 9.23 10.78 10.89 10.38 23.09
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Figure 5.5 presents a comparison between the observed and the generated monthly
inflow for Bigge reservoir. The empirical cumulative distribution function plots of the
data are shown in figure 5.6. It is notable from figure 5.6 that the observed and the
generated monthly inflow have the same distribution.
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Figure5.5: Comparison of the observed and generated monthly inflow using
Thomas-Fiering model (Bigge Reservoir)
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Figure5.6: Empirical cumulative distribution function (CDF) for the observed and
generated monthly inflow using Thomas-Fiering model (Bigge Reservoir)
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5.3.2.2 Generation of monthly streamflow series using Monte Carlo Simulation.

Monthly streamflow data have been generated using Monte Carlo Simulation by
applying several approaches namely Gamma distribution, Pearson distribution, and
Johnson system of distributions. The Gamma distribution was fitted to the observed
monthly time series then the parameters of the distribution were calculated then a 1000
year of synthetic streamflow has been generated. Results of this approach show that,
this method preserves the mean and the standard deviation but it does not preserve the

skewness coefficient as shown in figure 5.8.
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Figure 5.7: Comparison between mean of observed and generated Inflow
(Gamma Distribution) (Bigge Reservoir)
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(Gamma Distribution) (Bigge Reservoir)
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For adequately modeling, one must have a distribution which would appropriately
preserve the skewness inherent in the hydrologic data series. The result of the Pearson
system showed that this approach is more capable than the other suggested approaches
(Gamma distribution and Johnson Systems) to preserve the statistical properties of the
observed data series because it covers a wide range of distribution shapes, including
both symmetric and skewed distributions.

To generate a synthetic streamflow from the Pearson distribution that closely matches
the observed data, simply four sample moments have been computed (mean, standard
deviation, skewness, kurtosis) and those moments have been treated as distribution
parameters. Then one of the distributions within the Pearson system which matches the
combination was selected.

Streamflow series generated have been compared with the observed series on the basis
of statistics properties (figure 5.9 and table 5.2). Figure 5.10 present a comparison
between the observed and the generated monthly inflow for Bigge reservoir. The
empirical cumulative distribution function plots of the data are shown in figure 5.11. It
is notable from figure 5.11 that the observed and the generated monthly inflow have
the same distribution.

In this study, several run tests have been carried out. The sequences of the same length
as the historical data series at each reservoir have been also generated and the three
main descriptors, i.e. the mean, standard deviation and skewness coefficient for each
month have been computed for each sequence. It was found that the values of these
descriptors were closer to those of the historical sequence when only one sequence with
larger sample was generated. A size of 1000 was found to produce satisfactory results,
and that is the reason for its use.
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Figure5.9: Comparison of the statistics of historical and synthetic monthly streamflow
using Monte Carlo simulation (Bigge Reservoir)
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Table5.2: The basic statistics of historical and synthetic annual streamflow using Monte Carlo simulation (Bigge Reservoir)

Month
o o -~ > - o .
£ £ |§ |5 | £ |z : | g |z | & |E |3
] O 2 5 © Q s S S 8o o 8
> O < < S < = - 3 e O
i o 7] = ) (@]
Properties =z a - A
Obs. 25.09 35.00 37.13 28.31 31.70 18.02 10.24 8.27 9.88 7.80 9.59 16.38
mean
Pred. 24.38 34.88 36.58 27.92 32.08 18.66 10.12 8.01 9.59 7.89 9.67 16.18
Obs. 14.04 17.10 19.86 16.23 16.90 11.01 6.28 6.44 11.23 8.13 9.31 14.20
std.
Pred. 13.39 17.01 19.65 16.04 16.75 11.22 6.12 6.32 10.98 8.79 9.09 14.64
Obs. 0.51 0.88 0.16 0.83 0.64 0.84 1.05 1.66 2.55 3.20 2.13 2.00
skewness
Pred. 0.56 0.87 0.19 0.83 0.54 0.92 1.09 1.73 2.70 3.49 2.04 2.25
Obs. 22.92 32.03 36.40 24.69 30.68 16.13 8.43 6.31 5.97 6.36 6.70 12.69
median
Pred. 22.36 31.98 35.85 24.79 29.43 16.79 8.16 5.25 4.38 4.21 5.28 10.79
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Month g g > > c = 2 o]
s |5 |f |2 |8 |E | &§ |8 |z |8 |§8 |8
Properties % § § S S < > 3 3 3 2 g
=2 o L g
Obs. 2.43 3.87 2.10 3.29 2.78 3.77 3.22 5.33 10.03 16.55 7.31 8.19
kurtosis
Pred. 2.54 3.70 2.12 3.28 2.53 3.73 3.30 5.38 11.08 17.86 6.96 9.73
Obs. 13.36 24.00 20.83 16.47 17.36 9.22 5.42 3.84 3.75 2.57 4.00 7.60
1st Q
Pred. 13.53 21.83 20.80 15.15 18.24 10.26 5.08 3.55 3.53 3.39 3.89 6.30
Obs. 35.48 43.48 48.90 37.32 45.23 25.71 12.70 11.06 | 11.06 10.80 11.14 22.21
3rd Q
Pred. 33.04 45.37 51.02 37.16 43.92 24.82 13.22 9.82 10.42 8.20 11.68 20.73
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Figure5.10: Comparison of the observed and generated monthly inflow using Monte
Carlo simulation - (Bigge Reservoir)
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Figure5.11: Empirical cumulative distribution function (CDF) for the observed and
generated monthly inflow Monte Carlo simulation (Bigge Reservoir)
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5.3.3 Comparison between the Results of theThomas-Fiering Model and
the Monte Carlo Simulation Model.

To assess the performance of each model, the negative values, correlation between
consecutive months and Skewness coefficient of the twelve monthly streamflow have
been examined. These are shown in table 5.3 and table 5.4. All these parameters have
been calculated for the historical data series and from a 1000-year generated sequence
(the generated sequence in a month consisted of 1000 values representing the
streamflow for that month in 1000 consecutive years). The values presented in table 5.3
are average values of 10 runs.

Table 5.3: Comparison of model performance based on 1000-years generated
sequences. (Skewness & negative values) (Bigge reservoir)

Skewness coefficient
Month . . Thomass Fering Monte Carlo
Historical data model simulation model
Jan. 0.16 0.239 0.173
Feb. 0.828 0.783 0.757
Mar. 0.644 0.631 0.671
Apr. 0.836 0.879 0.882
May. 1.051 0.893 1.025
Jun. 1.663 1.759 1.726
Jul. 2.55 2.499 2.29
Aug. 3.203 2.513 3.357
Sep. 2.135 2.365 1.898
Oct. 2 1.208 2.02
Nov. 0.51 0.737 0.49
Dec 0.88 0.987 0.9
Number of negative
values 103 9
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Table 5.4: Comparison of model performance based on 1000-years generated
sequences. (Correlation coefficient) (Bigge reservoir)

Correlation coefficient between consecutive months
Month . ) Thomass Fering Monte Carlo simulation

Historical data model model

Jan. 0.102 0.107 0.019
Feb. 0.013 -0.026 0.01
Mar. 0.014 0.067 -0.013
Apr. 0.076 0.06 -0.004
May. 0.043 0.031 0.025
Jun. 0.328 0.323 0.082
Jul. 0.215 0.244 0.041
Aug. 0.079 0.107 -0.01
Sep. 0.336 0.279 -0.014
Oct. 0.261 0.285 0.02
Nov. 0.681 0.696 -0.01
Dec 0.321 0.33 0.012

By inspecting the results shown in tables 5.3 and 5.4, it appeared that the model of
Thomas-Fiering, with modifications to account for the preservation of the monthly
skewness coefficients, and Monte Carlo simulation model, both seem to perform very
well as far as the mean, standard deviation and skewness coefficient are to be
reproduced. However, it should be noted that the model of Thomas-Fiering preserve the
correlation coefficient between consecutive months. In the other hand the number of
negative values obtained by Thomas-Fiering model is more than those by Monte Carlo
simulation model. These negative data can be avoided using log transformation. But
when a transformation is applied to the historical record to make it normal or to get
avoid occurrence of negative values in generated sequences, then the model preserves
the parameters of the transformed data, but not those of the historical sequence (Phien
and Ruksasilp, 1981).
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5.4 Detection of Dry Periods

As mentioned in previous chapters, the main goa of this thesis is to manage water
resources during drought periods. So the next step after generating the monthly inflow
is to detect dry periods. Several time steps have been applied, namely one year, two
years, three years, four years and five years. In each time step the minimum summation
of monthly inflow has been detected through the 1000 years of synthetic inflow. To
illustrate this approach, a time step of three years is taken as an example. A moving
window with 36 months width has been used to calculate the summation of generated
monthly inflow. This window moves from the beginning to the end of the data series
with one month lag. After that the minimum summation, i.e. the window with minimum
summation, has been selected as the driest period. Results of this approach (figure 5.12)
could be used as input to the Optimal Reservoirs Operation model presented in the next
chapter.
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Figure5.12: An example for detection of driest period using generated monthly inflow

5.5 Conclusion

Generating of streamflow using stochastic models is a very important process for water
resources planning and operational purposes. In this study, the stochastic streamflow
generation model of Thomas-Fiering and Monte Carlo simulation model have been
applied to synthetically generate monthly inflow scenarios for four reservoirs in the
Ruhr river basin. A new method has been applied to Thomas-Fiering model to preserve
the statistical parameters of the historical data. Comparison of statistical parameters
such as means, standard deviation and skewness for observed data and generated data
from the used approaches were presented. The results showed that generated data have
successfully preserved the historical statistical parameters of streamflow. Results also
showed that, the Thomas-Fiering model has preserved the correlation coefficient
between consecutive months. Thus, it can be said that the Thomas-Fiering model is
suitable to be used for producing inflow scenarios needed for the optimization model
presented in chapter 6 and stochastic simulation model presented in chapter 7.






Chapter 6

Reservoir System Optimization during Drought Events

6.1 Background

Reservoir operations involve flood control and drought management with the goal of
minimizing adverse environmental impacts and securing water supply for a wide range
of purposes and a diverse set of water (Tu et a., 2008). Optimizing reservoir operations
may take into account many factors, such as water allocation, streamflow regulation,
and real-time decision making regarding advanced scheduling of water releases and
hydropower generation (Tu et al., 2008). Reservoir operating rules are used to
determine water yield from a single-reservoir system or a multireservoir system under
various hydrologic conditions. Reservoir operation involves many decision variables,
multiple objectives as well as considerable risk and uncertainty (Wang et a., 2010).
Various techniques are applied to improve the performance of reservoirs operation.
These techniques include Linear Programming (LP), Nonlinear Programming (NLP),
Dynamic Programming (DP), and Heuristic Programming such as Genetic agorithms,
Fuzzy logic, and Neural Networks (Adeyem, 2009). The method chosen for any
particular case depends mainly on: (i) the character of the objective function and
whether it is known explicitly; (ii) the nature of the constraints; and (iii) the number of
independent and dependent variables (Babu and Angira, 2001).

One of the simplest methods of optimization techniquesis the linear programming (LP),
which had been widely applied to several cases of reservoir operation problems. Some
of the applications of LP in reservoir operation are suggested in Dorfman (Dorfman,
1962), Martin (Martin, 1987), Palmer (Palmer and Holmes, 1988), Randall (Randall et
a., 1990), Mohan (Mohan and Raipure, 1992) and Mujumdar (Mujumdar and
Teegavarapu, 1998). In the Dynamic Programming method (DP), multidecision
problems are broken down into a sequence of separate, but interrelated, single-decision
sub-problems. thus, complex problems can be solved by combining the solutions of the
sub-problems to obtain the solution of the entire problem (Ferreira et a., 1996). It is
well suited to deal with short-term operation (hourly or daily) when the hydrologic
inputs and water demands are generally considered deterministic. In case of
optimization of real-time operations for reservoir systems, the objective functions often
consist of benefits and costs expressed as non-linear functions of storage and discharge.
The two approaches used in the solution of non-linear programming (NLP) are direct or
pattern search method and gradient-based optimization. However, as compared to linear
programming and dynamic programming, the number of applications of nonlinear
programming methods in water resources studiesisrelatively small (Reddy, 2006).

Pattern search finds a local minimum of an objective function by a method called
polling (MathWorks9). The search starts at an initial point, which is taken as the initia
point in the first step. Then the algorithm generate a pattern of points, typically plus and
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minus the coordinate directions, times a mesh size, and center this pattern on the current
point. An evaluation of the objective function at every point in the pattern is then
provided, if the minimum objective in the pattern is lower than the value at the current
point, then the poll is successful and the minimum point found becomes the current
point. Then the mesh size is doubled and the algorithm proceeds to the first step. If the
poll is not successful, then the mesh sizeis halved. If the mesh size is below athreshold,
the iterations stop otherwise, the current point is retained and the algorithm proceeds at
first Step.

In recent years, Genetic Algorithms (GAS) have become popular among researchers as a
robust and general optimization technique (Namchaiswadwong et a., 2006). The results
of employment of GAs to a wide variety of problems have indicated their potential in
the application to water resource management. The genetic algorithm (GA) is one of the
most promising techniques in that domain and has received a great deal of attention
with regard to optimizing complex systems (Chen, 2003). GAs handle nonlinear
optimization problems in efficient manner and it differs from traditional methods in
number of ways (Goldberg, 1989). The concept of GAs was developed by Holland and
his colleagues in the 1960s and 1970s (Konak et al., 2006). In GAs terminology, a
solution vector is called an individual or chromosome. Chromosomes are made of
discrete units called gens. Each gene controls one or more features of the chromosome.
GAs operate with a collection of chromosomes called a population. The population is
normally randomly initialized. As search evolves, the population includes fitter and
fitter solutions, and eventually it converges, meaning that it is dominated by a single
solution (Konak et al., 2006). GAs use two operators to generate new solutions from
existing ones. crossover and mutation. The crossover operator is the most important
operator of GAs.

The objective of this chapter is to build a model, which utilizes maximum available
information, for optimization of reservoir operation by applying Genetic Algorithm,
Pattern Search and gradient-based Approaches to the Ruhr reservoirs system in which
utilization of multipurpose reservoirs are considered. The specific objectives of this
chapter are:

1. To apply the suggested approaches to the multipurpose reservoir operation in the
study area;

2. To compare between the outputs of the developed model and the historical
records especially in case of drought events,

3. To evaluate GA performance against that of pattern search and gradient-based
Approaches.
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6.2 Development of a Reservoir Optimization Model in the Context of
Drought

Optimization is a procedure of finding and comparing feasible solutions until no better
solution can be found (Deb, 2001). In general, optimization problems can be classified
into two groups; single objective and multiobjective problems. The main goa of single
objective optimization problems is to define the minimum or the maximum value of an
objective function, depending on the goa. The procedures for solving this kind of
problem are gradient-based and heuristic-based search techniques.

Multiobjective optimization problems represent an important class of real-world search
and optimization problems. Multi-objective optimization (MOP) refers to problems
which includes several objectives that are expected to be fulfilled ssmultaneously. Burke
(Burke and Landa Silva, 2006) reported that for multiobjective optimization problems,
three broad typical approaches can be identified to deal with multiple objectives as
follow:

1. Optimizing one objective at a time while imposing constraints on the other
objectives,

2. Combining all objectivesinto asingle objective,
3. Optimizing all objectives simultaneoudly.

Frequently in the first approach one objective is chosen as the dominating objective and
the rest of the objectives are treated as constraints. In the second approach preferences
for the objectives are established a priori while and the vector of objectivesis scalarized
into one objective by averaging the objectives using a weight vector. In the last
approach, no preference information is considered or is available before the search. In
terms of the number of solutions needed, it may be that only one solution is required or
that a set of solutions should be presented to the decision-makers so that one of the
solutions can be chosen. In the last case, this set of solutions should represent a trade-of f
among the different objectives. It is aso commonly required that this set of solutions be
as diverse as possible. Such diversity may be in terms of the solution space, the
objective space or both, depending upon the problem domain.

In this study the approach of combining all objectives into a single objective has been
used for developing the optimization model. Detalls about the procedures of the
developed model are presented in the following section with an illustration to the
reservoir Bigge.
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6.2.1 Objective Functions

In order to dea with multiple objectives of the reservoir system, the approach of
combining all objectives into a single objective is adopted to convert the multiple
objectives problem into a single objective problem. The objective functions of the
model are to maximize hydropower production subject to flood restrictions and to
minimize the sum of sguared deviations of releases from demands under release
constraints and other physical and technical constraints. The model is formulated for
monthly operation, as follows:

1) Minimize Sum of Squared Deviation of Releases from Demands,

Minimize SQDV=52,(£ D¢ — ¥ Rps)’ (6.1)
Where;
DV  : The sum of squared deviation of releases from demands,
Dnt : The demands in period tin Mm®, n=1,....... ,n number of demands;

Rt : Thereleases inperiodtinMm® m=1,....... ,m number of releases

2) Maximize Annua Energy Production
Maximize E= Y12, (%(Py * Ryt * Hit)) (6.2)

Where;
E : The annual energy produced in MkWHh;
Pm  : The power production coefficient (number of turbines=1,..., m)

Hnt :Thenet heads available to turbines (number of turbines=1,..., m)

The objective functions presented in equations 6.1 and 6.2 are subject to some
constraints asillustrated in the following section.
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6.2.2 Constraints

The objective functions expressed by equations 6.1 and 6.2 are subjected to the
following constraints:

a) Statetransformation equation: continuity of inflow, storage, release and losses.

St+1 =S¢ + It — X Rt — Q¢ — Qross Forallt (6.3)
S : Active reservoir storage at the beginning of period tin Mm®;
l¢ : Theinflow to the reservoir during period t in Mm®;

O, 0,5 : Overflow and Losses from the reservoir in period t in Mm?® .

The storage of the reservoir varies from the dead storage capacity to the maximum
storage capacity according to the month under consideration. Also during the flood risk
period between 1 November and 1 February, aflood control storage space of 32 million
cubic meters is kept available, which is then released for refilling in the period between
1 February and 1 May.

Smintg < St < Smaxt (see appendix D) (6.4)

b) Maximum power production limits
Ppn*Rye* Hye < Enaxm Forallm,t (seeappendix D) (6.5)

Where, Eqaxm is the maximum amounts of power in MkWh that can be produced by a
turbinemin atime period t.

c¢) Demands constraint
Dyt min < Rmt < Dntmax (see appendix D) (6.6)

Where, Dt min @and D max @re the minimum and maximum demandsin atime periodt .

Water quality requirement constraint
Y(Rmnt) = MRWQ (6.7)

Where Z(Rm,t) is the summation of releases in atime period t, MRWQ is the minimum
rel eases to meet downstream water quality requirement in Mm?®

d) Steady state storage constraint
S13=51 (6.8)

Under steady-state conditions for the storage, the storage at the end of last month of a
year isto be equal to theinitia storage at the beginning of first month of that year.
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As mentioned before, in this study a weighted approach is adopted to convert the
multiple objectives problem into a single objective problem. The user can specify the
priorities by giving a specified weight for each function. As presented in equations 6.1
and 6.2, the two objective functions do not have the same units. To bring both the
objectives into same units, the hydropower objective and SQDV objective are non-
dimensionalized and the final fitness function for the model is as follow:

2
— Wiy % 12 (Z Em,max_z Pm*Rm,t*Hm,t) W % 12 (Z Dn,t_z Rm,t) (6 9)
wi+w,  ~t=1 Y. Emmax witw,  “=1 sp,, '

Where W; and W, are constant weights to be chosen based on priority. So the final
model isto minimize F in the above equation in duly satisfying the constraints.

6.2.3 Model Application Using Genetic Algorithm

To apply the optimization approaches to the formula presented in equation 6.9, severd
scenarios have been analyzed. The suggested scenarios are focused especially on dry
periods as shown in table 6.1. The driest two years in the historical records are
presented by scenariosl3 and 14. Thomas-Fiering model has been used to generate
inflow of 1000 years, and then the year with minimum summation of monthly inflow
has been sel ected to be scenario number 15 in table 6.1.

The parameters used in applying the optimization model using GA have been selected
after studying of how the variation in the output of the optimization model can be
apportioned to these parameters in the input of the model. In the developed model, the
GA parameters have been fixed for all scenarios. Crossover probability of 0.8;
population size of 500 and generation size of infinity have been selected.

Once the GA parameters are fixed the model is run for any scenario of the selected
scenarios in table 6.1. The optimization model has been applied to all scenarios for two
sets of priority; hydropower as the priority and only SQDV as the priority. Figure 6.1
presents the results of scenario 1 (Base Case) and the priority is for the hydropower.
The optimal annual hydropower is E = 25.70 MkWh and sum of squared deviation of
releases from demands, SQDV, equals 1984. It is worth mentioning that the annua
power produced by the reservoir Bigge is 22.60 MkWh (Ruhrverband-online-Report).

In case of the priority for SQDV, the obtained hydropower is E = 22.97 MkWh and
DV= 387.24 (figure 6.2). It can be clearly observed for figures 6.1 and 6.3 that, if the
reservoir is having SQDV as the only priority, it tends to keep the storage in the
reservoir at high level and this due to the relatively small downstream demands,
whereas for priority for hydropower this is reversed, which requires higher releases to
produce optimal hydropower. As shown in figures 6.1 and 6.2, the storage in the
beginning and the end of the optimization processes is the same. Figure 6.3 presents
results of applying scenario 12 in case of the hydropower is the only priority.


http://www.google.de/search?q=are+focused+on&hl=de&client=firefox-a&hs=qDr&rls=org.mozilla:en-GB:official&prmd=n&source=univ&tbs=nws:1&tbo=u&ei=_R-7TLu1FM-Lswb1t7TFDQ&sa=X&oi=news_group&ct=title&resnum=4&ved=0CDkQqAIwAw�
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Table6.1: Description of the scenarios which are used in the optimization model
Scenario (1) Base Case - Mean monthly inflow and initial storage=mean storage

Scenario (2) Mean monthly inflow and initial storage=90 % of mean storage

Scenario (3) Mean monthly inflow and initial storage=80 % of mean storage

Scenario (4) Mean monthly inflow and initial Storage=70 % of mean storage

Scenario (5) Mean monthly inflow-0.25 * std and mean Initial Storage

Scenario (6) Mean monthly inflow-0.25 * std and initial storage=90% of mean storage

Scenario (7) Mean monthly inflow-0.25 * std and initial storage=80 % of mean storage

Scenario (8) Mean monthly inflow-0.25 * std and initial Storage=70 % of mean storage

Scenario (9) Mean monthly inflow-0.50 * std and mean initial Storage

Scenario (10) | Mean monthly inflow-0.50 * std and initial storage=90 % of mean storage

Scenario (11) | Mean monthly inflow-0.50 * std and initial storage=80 % of mean storage

Scenario (12) | Mean monthly inflow-0.50 * std and initial storage=70 % of mean storage

Scenario (13) | Monthly inflow of the calendar year 1996

Scenario (14) | Monthly inflow of the calendar year 2003

Scenario (15) | The Year with minimum summation of monthly inflow generated using
Thomas-Fiering model
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Figure 6.1: Optimal release policy - hydropower isthe only priority (Scenario 1)
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Results of scenario 15 for the two priorities are shown in figure 6.4 and 6.5 respectively.
Result indicates that, there is no clear difference between the two priorities. Thisis due
to the low inflow of this scenario, 101.46 M.m?>, which presents the driest year of 1000
generated years using Thomas-Fiering model. In this case the constraint of demand
governs the model and this leads to a relatively low storage accompanied with small
releases and thus the result are the same if either hydropower or SQDV is selected as the
only priority.
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Figure 6.4: Optimal release policy - hydropower is the only priority (Scenario 15)
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6.2.3.1 Comparison between the Results of the Developed Model and Actual
Historical Data

To evaluate the output of the developed model, the driest year (the year with minimum
summation of monthly inflow) in the available historical data series has been detected
then the set of output of the optimization model was compared with those of historical
data. The calendar year 1996 is the driest year in the available historical records with
annual inflow 155.3 M.m° while for the reservoir Bigge, the mean annual inflow is
240.51 M.m? (figure 6.6).

[ Mean monthly inflow
[ Caaender year 1996

Mean Monthly Inflow M cu.m

Jan Apr Jul Oct
Months

Figure 6.6: Comparison between mean monthly inflow and the monthly inflow of the
calendar year 1996

For the historical calendar year 1996, inflow, storage of reservoir and releases are
known variables. Using these data the monthly energy produced in MkWh for this year
has been calculated. Then the historical inflow of the year 1996 and the initial storage
was taken as an input for the optimization model. Both of monthly target release from
the reservoir and target storage has been estimated based on the monthly demand to be
met from the reservoir. The developed model in this study is designed so that demands
in dry period are reduced up to 70 % of mean monthly demands and always there will
be a 3 months of demands reserve in the reservoir in additional to the minimum storage
required to meet water quality requirements downstream. For thisinflow scenario, if the
hydropower is selected as the only priority, then the optimal release polices obtained are
shown infigure 6.7.

The optimal annual hydropower obtained using the optimization model is 15.36 MkWh,
however the actual annual energy produced in this year is 13.24 MkWh. If the SQDV is
selected as the only priority, then the annual hydropower is 13.67 MkWh.
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It can be clearly observed from figure 6.7 that for the developed model, the storage at
the end of optimization period is the same as the initial storage however the historical
data does not satisfy this constraint. The constraint related to the final storage was
modified so that the fina storage in the model equals this one in the historical data to
investigate the effect of the final storage at the end of optimization period on results and
also to present accurate comparison between the developed model and historical data.
The optimal annual hydropower obtained using the modified model is 12.80 MkWh.
But still there is a mgjor difference between the modified model and historical data,
which is the minimum monthly release. As shown in figure 6.7, historical releases
during several months are less than 4 M.m°, however in the developed model the
allowable minimum release in case of dry periods is 7.5 M.m°. After modifying this
constraint in the model, the hydropower obtained using the modified model is 13.41
MkWh (figure 6.8).
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Figure 6.8: Comparison between results of the optimization model and historical
records (scenario 13 after modification of final storage constraint)
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6.2.3.2 Comparison between Alternative Optimization Methods

Optimization results presented in previous sections obtained using GA approach. In this
section another two methods are performed, namely pattern search and gradient-based
optimization. The two models are subject to the same constraints and optimize the same
objective function with the same possibilities. Results of GA, pattern search and
gradient-based optimization have been compared to those of historical data as shown in
figures 6.9 and table 6.1. Results indicate that, when the priority is for the hydropower,
the optimal annual hydropower E in case of using GA equals 15.36 MkWh, in case of
using pattern search equals 16.58 MkWh and in case of using gradient-based
optimization equals 13.81 MkWh
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Figure 6.9: Comparison between Alternative Optimization Methods (scenario 13)
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Comparison between Alternative Optimization Methods

Table 6.2: Comparison between Alternative Optimization Methods (scenario 13)

Storage Release Energy Production M kWh
GA Gradient- | Pattern Historical GA Gradient- | Pattern Historical GA Gradient- | Pattern Historical
based search based search based search

January 113.89 113.89 | 113.89 113.89 7.63 7.50 8.89 14.85 0.73 0.72 0.85 1.43
February 110.87 111.00 | 109.61 103.65 7.67 7.50 12.14 10.55 0.73 0.71 1.15 0.97
March 113.83 114.13 108.10 103.72 7.50 7.50 11.41 3.70 0.72 0.72 1.07 0.34
April 120.30 120.60 | 110.66 114.00 7.79 7.50 8.35 3.27 0.76 0.74 0.79 0.31
May 116.89 117.49 | 106.69 115.11 7.59 7.50 11.05 3.81 0.74 0.73 1.03 0.37
June 113.93 114.61 100.27 115.92 7.92 7.50 8.39 4.65 0.76 0.72 0.76 0.45
July 109.09 110.19 94.96 114.36 8.00 7.50 11.33 6.44 0.75 0.71 1.00 0.62
August 107.36 108.97 89.90 114.20 7.74 7.50 10.13 9.43 0.73 0.71 0.87 0.91
September | 111.88 113.73 92.03 117.04 7.58 7.50 17.62 5.26 0.72 0.72 1.54 0.51
October 116.42 118.35 86.53 123.89 49.36 7.50 22.98 9.57 5.58 0.73 1.95 0.95
November 87.36 131.15 83.85 134.62 27.26 26.85 25.36 29.23 2.32 2.72 2.12 3.00
December 93.81 138.00 92.20 139.10 9.29 53.47 7.67 32.38 0.82 6.65 0.67 3.39
Total 155.33 155.33 155.33 133.14 15.36 16.58 13.81 13.24
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6.3 Conclusion

Reservoir operation for an optimum use of available water during prolonged periods of
drought has always been a primary concern for water management. Using Genetic
Algorithm, Pattern Search and Gradient-based method, optimization model has been
developed for the operation of reservoir during normal periods and drought periods as
well. The reservoir Bigge has been presented as the case study . Two objective functions
have been considered then a weighted approach has been adopted to convert the
multiple objectives problem into a single objective problem so that user can specify the
priorities by giving a specified weight for each function. Severa scenarios for low
inflow period have been attempted. Each scenario has its assumptions for monthly
inflow and monthly demand.

The optimization model developed in this study has been carried out using Genetic
Algorithm and Direct Search toolbox and Optimization Toolboxes in MATLAB
software. The obtained results showed that both of GA approach and Gradient-based
approach provides higher benefits more than Pattern Search approach. Evaluation of the
developed model has been carried out using the driest year in the available historical
records. The monthly inflow of this year has been considered as an input to the
optimization model. Results of evaluation demonstrated that the developed model with
its severa scenarios and the suggested optimization approaches could be a helpful guide
for the real operation of the reservoir during drought events.






Chapter 7

Stochastic Simulation of Reservoir Operation Using Adaptive
Neuro-Fuzzy Inference Systems

7.1 Background

In reservoir management practices, a simulation model can be used as a vauable
planning tool to evaluate the impact of changes to the system's configuration or
operational objectives. The desired generation or release scheduling can be checked
using inflow forecasting in order to satisfy the entire set of operational constraints
(Cicognaet a., 2009). At the real time operation stage, a sSimulation tool can be used to
quickly check operational alternatives due to emergency events or planning and real-
time incongruence (Cicogna et a., 2009).

McMahon (McMahon, 2009) reported that operational models have been broadly
categorized as descriptive simulation, prescriptive optimization and hybrid simulation
/optimization models involving elements of both. These categories can be classified as
follows:

i. Descriptive models which are used to simulate reservoir release decisions
following predefined logical “if-then-else” operating rules, driven by input
hydrologic data and subject to multiple constraints,

ii.  Prescriptive optimization models employ mathematical programming techniques
to solve for decision variables which maximize or minimize the value of an
objective function which is subject to multiple constraints.

iii.  Hybrid models which are primarily descriptive simulation models with
piecewise optimization of specific aspects of predefined operating rules.

Each type of the described model has strengths and weaknesses with respect to specific
operational planning and real-time water control applications. Descriptive simulation
models are most useful for detailed analysis and evauation of predefined operating
rules. Several approaches that use fuzzy set theory to simulate reservoir operation have
been described in the literature. These include fuzzy optimization techniques, fuzzy rule
base systems, and combinations of the fuzzy approach with other techniques (Dubrovin
et al., 2002) .
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The fuzzy logic approach may provide a promising alternative to the methods used for
reservoir operation modeling because the approach is more flexible and allows
incorporation of expert opinions, which could make it more acceptable to operators
(Panigrahi and Mujumdar, 2000). Applications can be found in the work of Chuntian
(Chuntian, 1999), Panigrahi (Panigrahi and Mujumdar, 2000), and Shrestha (Shrestha
et a., 1996). The fuzzy rule base could be constructed on the basis of expert knowledge
or observed data. Approaches for deriving a rule base from observed data have been
presented by Mohan (S.Mohan and Prasad, 2006), and Panigrahi (Panigrahi and
Mujumdar, 2000).

Fuzzy Logic was initiated in 1965 by Lotfi A. Zadeh, professor for computer science at
the University of Californiain Berkeley (Zadeh, 1973). Basically, Fuzzy Logic (FL) isa
multivalued logic that allows intermediate values to be defined between conventiona
evaluations like true/false, yes/no, high/low, etc. Fuzzy logic variables may have a truth
value that ranges between 0 and 1 and is not constrained to the two truth values of
classic propositional logic notions like rather tall or very fast can be formulated
mathematically and processed by computers, in order to apply a more human-like way
of thinking in the programming of computers (Zadeh, 1973).

Fuzzy logic models, called fuzzy inference systems, consist of a number of conditional
"if-then" rules. For the designer who understands the system, these rules are easy to
write, and as many rules as necessary can be supplied to describe the system adequately.
In fuzzy logic technique, unlike standard conditional logic, the truth of any statement is
a matter of degree (Metaxiotis et a., 2003). Fuzzy inference systems rely on
membership functions to explain to the computer how to calculate the correct value
between 0 and 1. The degree to which any fuzzy statement is true is denoted by a value
between 0 and 1.

The advantages of fuzzy logic are that calculation is straightforward and the model easy
for the operator to understand due to its structure, which is based on human thinking.
The system can also be easily modified when necessary (Dubrovin et al., 2002). The
fuzzy rule based system utilizes the knowledge of a reservoir operator and avoids
complex optimization procedure hence it may be more acceptable to the reservoir
managers (S.Mohan and Prasad, 2006). The present study is aimed to present a new
approach for long-term and short-term reservoir operation based on Artificia Neuro-
Fuzzy Inference Systems (ANFIS). Different models have been developed for
simulation of reservoirs operation. The procedure is illustrated through a case study of
the system of Ruhr reservoirsin Germany.
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7.2 Fundamental Fuzzy System for Reservoir Operation Model

In modeling of reservoir operation with fuzzy logic, the following distinct steps are
followed (Panigrahi and Mujumdar, 2000 ; Shah, 2009):

» Selection and fuzzification of inputs, where the crisp inputs such as the inflow,
reservoir storage and release are transformed into fuzzy variables,

» Fuzziness procedure and formulation of the fuzzy rule set, based on an expert
knowledge base,

> Application of afuzzy operator, to obtain one number representing the premise
of each rule,

» Shaping of the consequence of the rule by implication,
» De-fuzzificationprocedure.

Details about these steps can be found in (Dubrovin et al., 2002; Panigrahi and
Mujumdar, 2000; S.Mohan and Prasad, 2006; Shrestha et al., 1996).

7.3 Adaptive Neuro-Fuzzy Inference System

In recent years, there has been a growing trend in the use of fuzzy logic in combination
with neuro-computing and genetic algorithms in many of the industrial and research
applications because of their ability to dea with ill-posed and uncertain systems
(Yegireddi and Kumar, 2008). An adaptive neuro-fuzzy inference system (ANFIS) is a
fuzzy inference system formulated as a feed-forward neural network. Hence, the
advantages of afuzzy system can be combined with alearning agorithm (Venugopal et
al., 2010).

Fuzzy systems present particular problems to a developer then rules have to be
determined somehow. This is usually done by ‘knowledge acquisition’ from an expert.
It is atime consuming process that is weighed down by many problems. A fuzzy set is
fully determined by its membership function (Kablan, 2009). This has to be determined,
for exampleif it is Gaussian then what are the parameters. The ANFIS approach learns
the rules and membership functions from data. ANFIS is an adaptive network of nodes
and directional links with associated learning rules. It is called adaptive because some,
or all, of the nodes have parameters which affect the output of the node. These networks
identify and learn relationships between inputs and has been the adaptive network of
choice to be investigated in detail and used for high frequency forecasting and trading
due to its high learning capability and membership function definition properties
(Kablan, 2009).
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The Sugeno model makes use of if rules to produce an output for each rule. It is similar
to the Mamdani method in many respects. The first two parts of the fuzzy inference
process, fuzzifying the inputs and applying the fuzzy operator, are exactly the same. The
main difference between Mamdani and Sugeno is that in the Sugeno type rule outputs
consist of the linear combination of the input variables plus a constant term; the fina
output is the weighted average of each rule’s output. Adaptive neuro-fuzzy inference
system mimics the operation of a Takagi—Sugeno—Kang (TSK) fuzzy system (Tang et
al., 2005).

Fuzzy inference systems are composed of five functional blocks as given in Figure 7.1
as shown in the figure, the ANFIS model contains (Venugopal et al., 2010):

1. A rule base containing a number of if-then rules,
2. A database which defines the membership function,
3. A decision making interface that operates the given rules,

4. A fuzzification interface that converts the crisp inputs into “degree of match
“with thelinguistic values like high or low etc.,

5. A defuzzification interface that reconverts to a crisp output.

The rule base in the Sugeno model has of the form:

IfxisAjandyis By then fi=pi1*x+qi*y +r; (7.1)

IfxisAzandyisBzthen f2=pz *x+qz*y + 12 (7.2)

Where x and y are predefined membership functions, A; and B; are membership
values, pi, ¢, and r; are the consequent parameters that are updated in the forward pass
in the learning algorithm, and f; is the outputs within the fuzzy region specified by the
fuzzy rule.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 7.1: An ANFIS architecture for atwo rule Sugeno system
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Let the membership functions of fuzzy sets A and Bj, be p,, and pg, respectively. The
five layersthat integrate ANFIS are as follow:

Let the output of thei™ nodein layer | is denoted as Oy ; then,

Layer 1: Every nodei inthislayer is an adaptive node with node function
Q1,i = Ma,(x) fori=1,2,0r Qy;=up,_,(y) fori=34 (7.3)
where x (or y) isthe input to theith node and A; (or Bi-2) isalinguistic labels.

Layer 2: This layer consists of the nodes labeled which multiply incoming signals and
send the product out. Each node output represents the firing strength of arule.
O2i= Wi = pp, () up, (y) fori=1,2 (7.4)

Layer 3: In this layer, the nodes labeled N acts to scale the firing strengths to provide
normalized firing strengths.

Oz =w; =——,i=12 (7.5)

wi1t+w;

Layer 4: The output of layer 4 is comprised of linear combination of inputs multiplied
by normalized firing strengths. Thislayer’ s nodes are adaptive with node functions.

Og=w;fi=w; (px+qy+r) (7.6)

Where, w; isthe output of layer 3, and {p;,q;, ri} are the parameter set. Parameters of this
layer are referred to as consequent parameters.

Layer 5. This layer consists of a single node, computes the fina output as the
summation of all incoming signals

Osi= i1 W, fi = Z;—lwwf (7.7)
Layers represented by squares are adaptive and their values are adjusted when carrying
out the system training. Layers represented by circles remain invariable before, during
and after the training (Kablan, 2009).
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7.4 Simulation of Reservoir Operation Using Adaptive Neuro-Fuzzy
Inference Systems -ANFIS

7.4.1 Data Used in this Study

The methodology discussed in sections 7.3 and 7.4 has been used for modeling of
operation of the system of Ruhr reservoirs. A database having monthly inflow, storage,
release series starting at 1991 has been established. The time series of inflow present the
inflow to the main reservoirs in the Ruhr river basin namely, Bigge reservoir, Moehne
reservoir, Henne reservoir and Sorpe reservoir. Source of datais the Ruhrverband (Ruhr
River Association). All time series were checked to find out all missing data. Table 7.1
presents a typical data sample of one year of the data which have been used in this
study.

Table7.1: Typical data sample for one year of used data

Y ear Month Inflow Storage Release
1990 11 38.27 102.12 11.73
1990 12 32.53 128.66 15.71
1991 1 38.94 145.47 52.33
1991 2 6.64 132.08 10.59
1991 3 16.99 128.12 6.33
1991 4 5.54 138.78 8.86
1991 5 5.85 135.46 7.88
1991 6 11.062 133.43 8.33
1991 7 7.250 136.15 11.96
1991 8 2.57 131.44 16.80
1991 9 2.15 117.21 16.15
1991 10 4.40 103.20 12.24
7.4.2 Methodology

In reservoir operation, a direct method for making a decision is to look at the historical
data for similar cases and make a decision similar to the decision that was mad in those
cases. One of the main operational goals in the management of reservoirs is to
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determine a suitable release based on observation data and other conditions.
Applications of fuzzy logic system which presented in the literature used storage and
inflow as input to the fuzzy system and the output make a similar decision is the release
during the same period.

In this study a new approach using Adaptive neuro-fuzyy inference system approach
“ANFIS’ has been applied. ANFIS has been used to extract the relation of time of year
(months), storage, inflow, and Standardized Precipitation Index (SPI) and release
variables and represent them as fuzzy if-then rules. The premise part of fuzzy if-then
rules is months, inflow, storage, and SPI. The consequent part is the release. The SPI
has been calculated based on streamflow data series which means that the drought index
from the streamflow series has been used as one of measures for streamflow deficit. The
distinctive feature of this method is that the drought management and monitoring would
be effective because of the more realistic judgment on the drought severity (Yoo et al.).

Also in this study two main models for the simulation of reservoir operation have been
developed using ANFIS. Each main model contains a set of sub-models. The set of
input into the two main models contains time of year, storage, inflow, and Standardized
Precipitation Index (SPI) with Alternative arrangement. The output of the first model is
the release during the next month, which could be a helpful reference guide to the
operator during dealing with decisions. On the other hand, the output of the second
model is the release of the current month which could be a good tool for the evaluation
of release for a specified month.

Each moddl from the two main models consists of two stages. At the first stage,
operation rules are devel oped using fuzzy approach, then the devel oped fuzzy inference
system “FIS” is an input to the ANFIS system. ANFIS uses a hybrid learning algorithm
to identify parameters of Sugeno-type fuzzy inference systems. It applies a combination
of the least-squares method and the back propagation gradient descent method for
training FIS membership function parameters to emulate a given training data set.

At second stage, the operation of reservoirs is simulated for any required number of
years using the fina FIS developed by using ANFIS. Thomas-Fiering model is used to
generate monthly inflow, and a Markov model is developed to forecast SPI index. The
entire methodology applied in this study is shown in figure 7.2.
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7.4.3 Modeling of Reservoir Operation - Casel: Release of next Month

The goal of this section is to describe and analyze the main models presented in figure
7.2. Thefirst case is the case of release of the next month. In this case a main modd is
developed for reservoir operation and this model has been applied to the Ruhr reservoirs
system. In order to illustrate the methodology, an application to Bigge reservoir will be
presented in following sub sections.

7.4.3.1 Selection of Input Data

Input data consists basically of four variables, namely time of year (month), inflow into
reservoir, storage volume, and the SPI index. As mentioned in section 7.4.2, in this
study the SPI index is calculated based on streamflow data series. More details about
the methodology of SPI index calculation has been presented in chapter 3. SPI index is
calculated for different time scales (3, 6, 9, and 12 months). At this stage, Selection of
Input Data, the SPI time scale is identified before going to the next stage. A sample of
input data for Bigge reservoir is shown in figure 7.3.

7.4.3.2 Selection of ANFIS Model

After selection of SPI time scale, aternative sub-models have been identified by
considering the input data series. In this study a set of six models for each SPI time
scale has been developed as shown in table 7.2. Thisindicates that 24 models have been
actually tested. All the combination have been tried to determine the best model out of
these candidate models. In table 7.2, the letter | is an abbreviation for inflow, and S for
storage volume. For illustration, atypical sample of input/output data of the model M_3
isshownin table 7.3.

Table 7.2: Description of the input of ANFIS-based |earning models
Casel: Release of next month

Model Input data of the selected model

M_1 | Month() | I Si) | SPI(i) | SPIG+1)

M_2 | Month() | 1) S(i) | SPI-1) | SPI() | SPIG+1)

M_3 | Month() | I Si-1) | S() | S(+1) | SPI(-1) | SPIG) | SPI(i+1)
M_4 | Month() | 1) Si-1) | S() | SPI-1) | SPI() | SPI(i+1)

M 5 | Month() | IG) | S(+1) | SPI-1) | SPI) | SPI(i+1)

M_6 | Month() | IG) | S(+1) | SPI() | SPI(i+1) | SPI(i+2)
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Table 7.3: Typical sample of input and output data of the model M_3

Input Output
Month (i) Inflow (i) Storage (i-1) | Storage (i) | Storage (i+1) SPI (i-1) SPI (i) SPI (i+1) Release (i+1)
11 46.05 103.21 95.36 131.16 -1.43 0.23 0.67 30.51
12 43.48 95.36 131.16 144.13 0.23 0.67 0.46 25.99
1 20.83 131.16 144.13 138.97 0.67 0.46 -0.47 7.27
2 17.17 144.13 138.97 148.87 0.46 -0.47 -0.66 18.23
3 35.20 138.97 148.87 165.84 -0.47 -0.66 -0.30 12.53
4 14.19 148.87 165.84 167.50 -0.66 -0.30 0.18 14.00
5 11.64 165.84 167.50 165.14 -0.30 0.18 0.02 17.60
6 8.60 167.50 165.14 156.15 0.18 0.02 -0.09 15.39
7 4.19 165.14 156.15 144.95 0.02 -0.09 -0.04 19.59
8 9.20 156.15 144.95 134.56 -0.09 -0.04 0.02 12.47
9 9.99 144.95 134.56 132.07 -0.04 0.02 0.29 16.11
10 16.17 134.56 132.07 132.13 0.02 0.29 1.12 42.62
11 55.37 132.07 132.13 144.88 0.29 1.12 0.88 35.92
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7.4.3.3 Fuzzification of Inputs and ANFIS-Based Learning Models

The degree to which a particular measurement of inflow or storage is high, low or
medium depends on how the fuzzy sets of high inflow/low storage are defined. This
definition may arise from statistical data or neura clustering of historical data. In order
to begin the training using ANFIS, an initia fuzzy inference system “FIS’ is needed
first. In the present study 42 years of historical data of inflow and 18 years of historical
data of storage and release have been collected. From this data, 14 years of data have
been used for building (training) the model and 4 years of data have been used to test
the model on monthly basis. The long time series of monthly inflow has been used to
perform the calculation of the standardized SPI because the calculation of SPI index
should have at least 30 years of historical data (see chapter 3).

As shown in table 7.3, we have a set of input data and one output (reservoir release).
FIS, fuzzy inference system, has been generated using fuzzy subtractive clustering to
develop a set of rules and membership functions that models the data behavior. Then the
generated FIS has been used as an initia FIS, initial conditions, for ANFIS training. The
FIS has been then evaluated to obtained output data which is the predicted value of the
release for the particular model. Figure 7.4 presents the developed FIS system using
ANFIS system. Forecasted release values and observed release values for training
period and test period are shown in figure 7.5, 7.6 respectively.
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7.4.3.4 Model Evaluation

In order to evaluate and compare the forecasting performance of the ANFIS system, it is
necessary to introduce forecasting evaluation criteria. In this study, four criteriainclude;
Mean Absolute Deviations (MAD), R-squared, Root Mean Square Error and correlation
coefficient have been used.

i.  Mean Absolute Deviations (MAD)

The MAD measures the average magnitude of the errors in a set of forecasts, without
considering their direction. It measures accuracy for continuous variables. Expressed the
MAD iscalculated as follow:

MAD = Zi=1|RZi—Rfi| (7.8)

Where Ro and Rf are the observed and forecasted reservoir releases, and n is the
number of observations.
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ii. R-sguared

In statistics, the coefficient of determination, R? is used in the context of statistical
models whose main purpose is the prediction of future outcomes on the basis of other
related information. The absolute fraction of variance, R?, is calculated as follow:

2 _ 1 _ Ziz1(Roi—Rfy)?
ke=1 Y1, (Roy)? (7.9)
iii.  Root mean squared error (RMSE)

The RMSE is the square root of the variance of the residuals. It indicates the absolute fit
of the model to the data—how close the observed data points are to the model’ s predicted
values. Whereas R-squared is a relative measure of fit, RMSE is an absolute measure of
fit. Lower values of RMSE indicate better fit. RMSE is calcul ated as follow:

Y (Ro;j—Rf)?
n

RMSE = (7.10)

iv.  Correlation coefficient (Cr)

The correlation coefficient a concept from statistics is a measure of how well trends in
the forecasted values follow trends in past actual values (historical releases). The
correlation coefficient is calculated as follow:

Yii. Ro; Rf; - (ZRoinM

n polV N2
\/[( ?=1R0i2—(2i=1nR 0 ><2?21Rfi2_(21=1an1) )l

The MAD and the RMSE can be used together to diagnose the variation in the errorsin a
set of forecasts. The RMSE will always be larger or equal to the MAD; the greater
difference between them, the greater the variance in the individual errorsin the sample.
If the RMSE = MAE, then all the errors are of the same magnitude.

C, =

(7.12)

The results of model evaluation for training data sets and test data sets are summarized
in Table 7.4 and 7.5 respectively. It appears that the ANFIS models are accurate and
consistent in different subsets, where most of the values of RMSE and MAE are smaller,
and most of correlation coefficients and R? are also very close to unity. Results also
indicate that for each time scale of SPI index, there is one model which has a minimum
MAE and RMSE, and maximum R? and C.. The model which has these advantages
would be more accurate. It should be noted that the ranges of historical data which have
been used for model development has clear effect on the model performance. The
results of models evaluation might also suggest that the ANFIS has a great ability to
learn from input—output patterns. The results demonstrate that the ANFIS can be
successfully applied to establish models that could provide reliable release for the
selected reservoirs.
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Table7.4: Model evaluation criteriain case of release of next month (training period)

SPI_3 SPI_6 SPI_9 SPI_12

Model
RMSE R | MAD | C RMSE R’ MAD o RMSE R° | MAD o RMSE R° | MAD o

M 1 6.52 093 | 447 | 090 | 6.27 | 0993 | 441 | 0.89 | 6.17 | 094 | 415 | 0.90 7.5 091 | 51 | 0.83
M 2 6.24 093 | 443 | 089 | 6.28 | 0.934 | 4.56 | 0.90 7.5 091 | 516 | 0.92 768 | 090 | 5.19 | 0.85
M 3 5.17 095 | 3.92 | 0.93 5 0956 | 3.69 | 093 | 515 | 095 | 3.34 | 091 559 | 095 | 4.12 | 0.92
M 4 6.27 093 | 4.46 | 0.89 6.4 093 | 4.69 | 0.89 7.9 0.89 | 556 | 0.90 7.9 0.89 | 55 | 0.87
M 5 5.9 094 | 431 | 093 | 592 | 094 | 439 | 091 | 847 | 088 | 638 | 091 | 809 | 0.89 6 0.82
M 6 5.24 095 | 3.81 | 093 | 559 | 095 | 419 | 092 | 582 | 094 | 3.98 | 091 788 | 0.89 | 576 | 0.89
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Table 7.5: Model evauation criteriain case of release of next month (test period)

SPI_3 SPI_6 SPI_9 SPI_12

Model
RMSE R | MAD | C RMSE R’ MAD o RMSE R° | MAD o RMSE R° | MAD o

M 1 7.13 092 | 536 | 081 | 895 | 0.86 65 | 073 | 821 | 089 | 57 |077| 888 | 087 | 660 | 0.72
M 2 7.57 091 | 563 | 081 | 840 | 0.88 | 6.213 | 0.76 | 8189 | 089 | 571 | 070 | 891 | 0.87 | 6.72 | 0.73
M 3 7.82 090 | 575 | 079 | 9.14 | 0.865| 7.12 | 072 | 7.04 | 092 | 5209 | 084 | 731 | 091 | 565 | 0.83
M 4 7.59 091 | 593 | 081 | 880 | 0.875| 6.609 | 0.75 | 888 | 087 | 627 | 074 | 882 | 088 | 6.75 | 0.73
M 5 7.31 091 | 566 | 082 | 840 | 0.88 | 660 | 077 | 805 | 089 | 564 | 080 | 759 | 091 | 580 | 0.81
M_6 6.82 093 | 510 | 086 | 813 | 0.89 | 637 | 078 | 7.72 | 0.90 | 5.492 | 0.82 7.82 | 0.90 | 6.048 | 0.81
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7.4.3.5 Simulation of the Reservoir Operation Using the Selected Model

After development and evaluation of the selected model, the FIS system could be used
for smulation of reservoir operation for any required number of years (figure 7.7). In
order to illustrate the mechanism of the simulation process, we will take the model M_3
as an example and the process will be illustrated step by step as follow:

> Inthe model M_3, the set of input consists of 8 variables (see table 7.3). At any
month t, it isrequired to predict reservoir release at the next month t+1.

» The inflow of month t+1 is unknown, and it could be generated by several
models. In this study Thomas-Fiering Model has been used as an inflow
generator (see chapter 7). Thomas-Fiering model is used to generate monthly
inflow for the month t+1; this means that there are two known inputs (month,
and inflow).

» From historical data, storages of previous, current, and next month are known.
As mentioned before, the storage volume is the storage at the beginning of any
month so storage at monthst-1, t, and t+1 are known.

> After holding the previous steps, three input variables are remaining unknown,
namely SPI index for monthst-1, t, and t+1. SPI for month t-1 is calculated from
historical data, and SPI for month t is calculated based on the generated inflow
from Thomas-Fiering Model. SPI index for month t+1 is predicted using
transition probability matrix.

Once the input data are available, the developed FIS system predicts the release and this
process could be repeated for any number of months. The simulation model of a
reservoir system is based on water balance of reservoirs. The output of the model
(release) must satisfy the constraints of storage and demands. The simulation model
subject to the following constraints:

Storage Continuity

St+1=Se# It - Re-O¢  forallt (7.12)
Where,
S : Active reservoir storage at the beginning of period t in Mm?;
l; : Theinflow to the reservoir during period tin Mm>;
O : Overflow from the reservoir during period t in Mm>;

R: : Reservoir release during period t in Mm®.
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» Storage Limits

Smin_<St_<Smax fOT‘ allt (7.13)

Where, Siin and Snax are the minimum and maximum active storage of the reservoir and
these storage limits depend on the month i.e. each month has its storage limits.

» Demands constraint

Rpin < R, (7.14)

Where, R, is the minimum demand in a time period t and this minimum demand is
identified by the reservoir operator.

Figure 7.8 presents historical data compared with the results of simulation for a period
of 15 years. In order to study the behavior of the reservoir storage, a period of 100 year
has been simulated using the model M_4 and SPI_3.

In order to present long records, a data series of 500 years has been simulated using
model M_4 & SPI_9. This process has been executed using CPU 3.0 GHz with 1 GB of
Ram, and the required time needed to perform this process was 44 hours. Table 7.6
presents a sample data of the simulated records and this sample data contains the driest
year in the simulated period. Results of simulation during the period of 500 simulated
years, using the proposed model, showed that the minimum reservoir storage was 64
M.m°. During the simulated period, the reservoir storage reached values less than 85
M.m?® 903 times with a percentage of 15 % of the simulated months and the minimum
release was 5.0 M.m>. It is worth to be mentioned that, in the available historical data,
the minimum reservoir storage in was 53.1 M.m® in month December-1976 and the
minimum release from the Bigge reservoir was 0.535 M.m? in month April-1979.
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7.4 Decision Making about Release of Next Month
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Table 7.6: Sample of simulated data contains the driest year in 500 simulated years
using model M_4 and SPI_9

Month (i) | Inflow(i) | Storage(i-1) | Storage(i) | SPI(i-1) SPI(i) SPI(i+1) Releas(i+1)
1.00 33.03 124.93 138.00 0.24 0.16 0.00 20.17
2.00 8.52 138.00 131.71 0.16 -0.48 0.32 20.88
3.00 10.48 131.71 120.06 -0.48 -0.84 -0.56 12.47
4.00 5.91 120.06 109.67 -0.84 -0.99 -0.40 10.75
5.00 4.62 109.67 103.10 -0.99 -0.99 0.08 9.71
6.00 3.36 103.10 96.97 -0.99 -1.22 -1.39 11.99
7.00 1.89 96.97 90.61 -1.22 -1.32 -1.27 17.12
8.00 151 90.61 80.52 -1.32 -1.86 -1.77 12.17
9.00 6.66 80.52 75.00 -1.86 -2.51 -2.62 5.00
10.00 4.40 75.00 75.00 -2.51 -2.80 -2.10 5.70
11.00 12.12 75.00 74.40 -2.80 -2.60 -2.30 7.08
12.00 26.51 74.40 80.82 -2.60 -2.11 -2.34 12.50
1.00 16.15 80.82 100.25 -2.11 -2.29 -2.60 6.27
2.00 12.95 100.25 103.90 -2.29 -2.42 -2.44 9.05
3.00 25.52 103.90 110.58 -2.42 -2.30 -2.26 9.70
4.00 4.22 110.58 127.05 -2.30 -2.47 -2.80 6.80
5.00 28.27 127.05 121.57 -2.47 -1.80 -1.77 6.53
6.00 16.96 121.57 143.03 -1.80 -1.59 -1.67 12.14
7.00 19.71 143.03 153.46 -1.59 -1.02 -1.31 13.60
8.00 7.97 153.46 161.02 -1.02 -0.72 -0.08 19.60
9.00 7.60 161.02 155.39 -0.72 -0.61 -0.16 22.57
10.00 14.46 155.39 143.38 -0.61 -0.04 0.16 43.35
11.00 37.97 143.38 135.28 -0.04 0.59 -0.24 52.61
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7.4.3.6 Decision Making about the Release of the Next Month

Real-time reservoir operation requires a quick system response for calculation and
rational decision making using available monitored data (Khattree and Rao, 2003). A
quick response to an operator request is of utmost importance for a real-time decision
support system. Fuzzy inference system gives the best assistance for these issues by
comparing the similarities of the current events and the historical data. One of the
important features of the developed models is the ability to forecast the release of next
month based on the inflow of current month, storage of next month and considering the
accuracy of SPI forecasting using transition matrix probability.

In the present study, by using any model from the developed models in case of release
of next month, the user need only to load the historical data, to identify inflow of
current month and to identify storage (according to the selected model). Based on
historical inflow data, the SPI is forecasted using transition matrix probability then the
FIS system predicts the release of next month. By considering the value of the release
confidence factor, the operator can decide on the actual release and the starting time for
operation.

7.4.4 Modeling of Reservoir Operation-Case2: Release of Current
Month

In this main model, assumptions and procedures are the same as the model in case 1,
case of release of next month, except some differences. The main difference between
this main model and the one presented in section 7.4.3 is the output. Also set of four
models for each SPI time scale is developed as shown in table 7.7. Results of training
and test of models, which presented in table 7.7, are shown in figure 7.9 and figure 7.10
respectively. Tables 7.8& 7.9 present result of model evaluation for both training and
test period.

Table 7.7: Description of the input of ANFIS-based |earning models
Case2: Release of current month

Model Input data of the selected model

M_1_1 | Month(i) (i) s(i) SPI(i) | SPI(i+1)

M_2_1 | Month(i) (i) s(i) SPI(i-1) SPI(i) | SPI(i+1)

M_4_1 | Month(i) (i) S(i-1) S(i) SPI(i-1) | SPI(i) | SPI(i+1)
M_7_1 | Month(i) (i) s(i) SPI(i) | SPI(i+1) | SPI(i+2)




7.4 Modeling of Reservoir Operation-Case2: Release of current Month 153

—+— Training Data

S0 = ANFIS Output |

7a- .
% 60 _
T 50 _
x % )
> z
= 40— ! u
= . i
c ‘ i
[e] H H 1
s 30 . .

20 : 0 t : : ) i e’ '

10° X R | . N

| | | | | | | |

| | | | | |
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Time

Figure 7.9 ANFIS output for reservoir rel ease (training period).
Case2: Release of current month- Model M_1 1/SPI_3

[ Testing Data
80~ [_JANFISOutput |

70 .
0

%5
T 5 | i
x % )

>
< 40 n

Aot ahiriy i A0

2004 2005 2006 2007
Time

|

Figure 7.10: ANFIS output for reservoir release (test period). Case2: Release of current
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7.4 Model Evaluation -Case2: Release of current Month

Table 7.8: Model evaluation criteria- case of release of current month (training period)

SPI 3 SPI 6 SPI 9 SPI 12
Model
RMSE| R |[MAD | C |[RME| R |MAD | C | RMSE | R |[MAD| C |RMSE| R | MAD | C
M1 397 |097| 288 | 096 | 344 | 098 | 246 | 095| 346 |098| 245 | 096 | 345 | 098 | 242 | 092
M21 | 301 [097| 200 | 096 | 537 |095| 411 |093| 507 |095| 38 | 093 | 552 | 095 | 438 | 0.92
M4l 360 |098| 275 | 097 | 362 | 098 | 27 |097| 558 |095| 471 | 092 | 547 | 095 | 422 | 092
M_71 | 438 |097| 338 | 095 | 536 | 095 | 416 | 093 | 522 |095| 409 | 093 | 54 | 095 | 433 | 093
Table7.9: Mode evaluation criteria- case of release of current month (test period)
SPI 3 SPI 6 SPI 9 SPI 12
Model
RMSE R MAD C RMSE R MAD C RMSE R MAD C |RME| R | MAD | C
M 11| 547 |09 | 416 | 091 | 571 | 095 | 429 | 091 5.9 094 | 429 | 090 | 63 | 094 | 459 | 0.88
M 21| 568 |095| 398 | 091 | 548 | 095 | 406 [ 092 | 649 | 093 | 462 | 087 | 57 | 095 | 44 | 092
M 41| 528 |094| 38 | 093 | 646 | 095 | 474 | 088 | 591 | 094 | 443 | 089 | 597 | 094 | 4.48 | 0.90
M 71| 623 | 094 | 48 | 090 | 569 | 095 | 44 | 091 5.3 095 | 401 | 091 | 576 | 094 | 449 | 091
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7.4.6 Studying the effect of using SPI index on Performance
enhancement of Simulation Models

As mentioned before, the approach used in this study is a new approach. A set of
models with different assumption have been applied. In order to investigate the effect of
using SPI index, al suggested models have been applied to historical data but without
using SPI index. Results of models evaluation indicate that using of SPI index has
enhanced the performance of ssmulation models. Figure 7.11 and table 7.10 presents a
comparison between candidate models for the two cases with and without SPI index.
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Figure 7.11: Comparison between evaluation criteria of candidate models for the two
cases with& without SPI index - Casel” Release of next month”



156 7.4 Studying the effect of Using SPI index on Performance enhancement of Simulation Models

Table 7.10: Comparison between evaluation criteria of candidate models for the two cases with& without SPI index
Casel” Release of next month” (test period).

SPI_3 SPI_9 SPI_12 Without SPI
Model

RMSE R MAD RMSE R MAD RMSE R MAD RMSE R MAD
M_1 7.13 0.916 5.36 8.21 0.889 5.7 8.88 0.87 6.60 11.80 0.77 8.2
M_2 7.57 0.9077 5.63 8.189 0.889 5.71 8.91 0.87 6.72 11.34 0.79 8.02
M_3 7.82 0.902 5.75 7.04 0.9203 | 5.209 7.31 0.914 5.65 11.55 0.78 8.25
M_4 7.59 0.9073 5.93 8.88 0.87 6.27 8.82 0.875 6.75 10.58 0.82 7.81
M_5 7.31 0.914 5.66 8.05 0.89 5.64 7.59 0.9073 5.80 11.21 0.79 7.86
M_6 6.82 0.925 5.10 7.72 0904 | 5492 782 | 09016 | 6048 | 1084 | 081 7.98
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7.5 Conclusion

In this study, an example of the collective use of stochastic models and ANFIS has been
presented. Fuzzy set theory plays an important role in dealing with uncertainty when
making decisions in reservoirs operation. ANFIS is a powerful fuzzy logic neura
network, which provides a method for fuzzy modeling to learn information about the
data set that best allow the associated fuzzy inference system to trace the given
input/output data. In this study, the use of the adaptive network-based fuzzy inference
system (ANFIS), to construct a model for reservoir operation, simulation of reservoir
operation and decision making about reservoir release has been proposed. The
applicability and capability of the ANFIS model have been investigated through the use
of a set of data in the Ruhr reservoirs system, Germany. The historical data are inflow,
storage, SPI index and release. The historical data sets have been divided into two
independent setsto train and to test the constructed models.

Two main models have been developed. In both models the set of input include time of
year, storage, inflow and Standardized Precipitation Index (SPI). The output of the first
model is the release during the next month; on the other hand, the output of the second
model is the release of the current month. Fuzzy Inference System has been prepared
using Fuzzy logic toolbox in MATLAB and this system has been used as an input to
ANFIS to obtain the final FIS. The FIS has been evaluated to obtained output data
which is the predicted value of the reservoir release for the particular model. Predicted
release values and observed release have been then evaluated using several evaluation
criteria. Results of evaluation showed that the ANFIS models are accurate and
consistent in different subsets, where most of the values of RMSE and MAE are
smaller, and most of correlation coefficients and R? are also very close to unity.

In order to demonstrate the effect of using SPI index as input, two ANFIS models have
been developed and investigated; one with SPI as input variable and another without. It
has been found that, the model which contains SPI as input variable has consistently
superior performance compared with the one without SPI index. Results obtained in this
study showed that, the ANFIS models provide reliable reservoir release prediction for
current and next month. Results aso showed that the proposed approach could be a
good tool for evaluation of release for a specified month and could be also a helpful
reference guide to the operator during dealing with decisions.






Chapter 8

8. Drought Management Plan

8.1 Introduction

Water is one of the most important natural resources we need. There are several reasons
for short supply of water. Some of these causes are over-allocation, over-use of water
sources or a prolonged period of below normal precipitation, more commonly referred
to as adrought. Drought is a natural hazard temporarily affecting almost every region in
the world. The temporary shortage of water poses a great threat on nature, quality of life
and economy. As drought is a slowly devel oping phenomenon, only indirectly affecting
human life, its impacts are often underestimated in financially well off regions such as
Europe (Stahl, 2001). Droughts often result in heavy crop damage and livestock losses,
disrupt energy production and hurt ecosystems. Drought mortality is concentrated in
devel oping countries, while absolute economic losses are largest in developed regions

Drought is a magjor natural hazard affecting large areas and millions of people every
year. The World Meteorological Organization (WMO) estimated that in the 25 years
from 1967 to 1991 about 1.4 billion people were affected by drought and 1.3 million
people were killed due to the direct and indirect cause of drought (Obasi, 1994).

A recent study performed by the European Commission and Member States estimates
the costs of droughts in Europe over the last thirty years to at least 100 billion Euro
(European Commission 2007). The drought of 2003 in Central and Western Europe has
alone been responsible for an estimated economic damage of more than 12 billion Euro
(European Commission, 2008Db).

Many countries and local municipalities have a drought plan or participate in a drought
planning effort. The actual implementation of the plans varies, as soon as the drought
begins to lessen, most efforts get shelved until the next drought happens. There should
be a more concerted effort to keep the drought planning, preparation and mitigation
going, especialy during the wetter periods.

Historical records demonstrate that droughts are also causing potential impacts in
Europe. The risks of these potential impacts depend on the type of water demands, how
these demands are met and the corresponding water supplies available to meet these
demands. These impacts could be categorized into environmental, social and economic
impacts .


http://ec.europa.eu/environment/water/quantity/scarcity_en.htm�
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Analysis of meteorological drought in the Ruhr basin shows that the Ruhr basin is
exposed to drought events rather frequently. Historica records of meteorological
drought in the Ruhr basin demonstrate that several severe and extreme events occurred
in 1932/34, 1947, 1959, 1976, 1996, 2003 and 2007. It is worth to be mentioned that in
reality extreme drought events in the last decades presented no severe challenges to the
water supply of the Ruhr district due to the reservoir system existing in the Ruhr
catchment basin (Khadr et al., 2009). In this study a drought management plan was
proposed for the Ruhr river basin in order to reduce the impacts of drought events.

8.2 Classification of Drought Impacts

Drought produces a complex combination of impacts that exten over many sectors.
Drought impacts can be classified as follow (European Commission, 2008a; Rossi €t al.,
2007):

» Environmental impacts
e Lack of feed and drinking water,
e Mortality of fish species,
e Damagestoriver life (flora, fauna),
e Lossof biodiversity in terrestrial areas depending on the aguatic system,

e Damage to landscape quality (dust, soil erosion and reduce vegetation
coverage),

e Forest firesrisk,

e Increase of salt concentration in streams, underground layers and irrigated
areas.

» Socia impacts
e Inconveniences due to water system rationing,

e Risk for hedth connected with increase of pollution concentration and
discontinuous water system,

e Impacts on way of living (unemployment, reduced saving capability,
difficulty in personal care, reuse of water at home, street and cars washing
prohibition, doubt on future),

e Risks on public security due to more frequent fires (forests, pasture).
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» Economic impacts
e Damage to agricultural production,
e Damageto forest production,
e Damageto fishing,
e Damage to industries connected with agricultural production,
e Damage toindustries affected by hydroelectric energy reduction,
e Damage to reduced navigability of streams, rivers and canals,

e Damage to tourism sector due to the reduced water availability in water
supply and water bodies.

8.3 Drought and Water Scarcity

The two terms ‘water scarcity’ and ‘drought’ are commonly used aternately, while they
are quite different phenomena affected by water management practices and natura
causes respectively (European Commission 2007). Water-scarcity is both a natural and a
human-made phenomenon. It is defined as a situation where insufficient water resources
are available to satisfy long-term average requirements. It refers to long-term water
imbalances, where the availability islow compared to the demand for water, and means
that water demand is more than the water resources exploitable under sustainable
aspects. On the other hand, droughts represent the relevant temporary decrease of the
average water availability, refer to important deviations from the average level of
natura water availability and are considered natura phenomena (European
Commission, 2008b). It is not possible to control the occurrence of droughts although
the resulting impacts may be mitigated to a certain degree, namely through appropriate
surveillance and management strategies previously planned in a Drought Management
Plan “DMP".

8.4 Drought Management in the European Union (EU)

Drought is an issue affecting all EU countries in different ways. severe droughts were
identified that have affected more than 800.000 km? of the EU’ s territory (37 %) and at
least 100 million inhabitants (20 %) in recent years with different degrees of intensity
(European Commission, 2008a). Austria, Belgium, Cyprus, Finland, France, Germany,
Hungary, Italy, Lithuania, Malta, the Netherlands, Norway, Portugal, Spain and the
United Kingdom have al been hit, but other European countries have also been severely
affected by droughts (e.g. Slovenia, Greece and Romania). As for the economic impacts
of drought at the EU level estimates suggest losses of 100 billion Euros over the past 30
years (European Commission, 2008a).


http://www.wordhippo.com/what-is/another-word-for/alternately.html�
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The European Commission (European Commission, 2008a) reported that it is difficult
to establish common European indicators to describe droughts and define prolonged
drought due to the complexity of drought variability according to climatic and
geographic conditions. Therefore the European Commission mentioned that it is better
to work on different parameters to be included in local or national indicators that could
be calibrated and compared, when sufficient data is available. The presence or not of
these parametersin local indicators will depend on their local relevance.

The member states of EU are using several indicators to identify and manage droughts.
Spain, UK, Portugal, Italy, Finland Netherlands and France have presented drought
indicators to describe droughts and identify prolonged drought. According to the
examples of indicators presented by these Member States, there are two main types of
indicators. The first type is used to prepare for an event and the second type is used to
characterize the event when it happens (European Commission, 2008a). Each Member
State uses the first, the second or a combination of both, according to its needs. In
general, drinking water supply is the priority usage in most EU countries and a
minimum volume should be provided to the population whatever the climatic conditions
are. This priority could become an aggravating factor for drought during summer
seasons. Its importance compared to drought issues should be evaluated on the
following factors: number of inhabitants supplied, volume, amount of abstraction from
surface waters as part of total drinking water abstraction etc. In the following section an
example of the indicators and management plan, that are used in EU, is presented.

8.4.1 Drought Management in Spain

The Spanish indicator system has been recognized to assess the quantitative status of
water resources in the different exploitation systems existing in each river basin district
(Rossi et a., 2007). The Hydrological Indicators System (HIS) was elaborated using
different parameters (inflow, outflow and storage of reservoir, streamflow river gauges
and aquifer water level) for each exploitation system. These parameters are used to
assess the quantitative status of water resources in each system, comparing the record
achieved in adetermined period that has a historical and representative mean value.

As an example for drought indicators in Spain, the status indicator “l¢” that is used in
the Jucar river basin is calculated as follow:

1 Vi—Vme .
le=1 [1 n —d] iFV, = Vg (8.1)

Vimax—Vmin

— Vi—Vmin
€ Z(Vmed_Vmin)

if Vi < Vmed (8-2)
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where;

le

Vi

Status indicator,

Measured mean value for the analyzed period (one month, 3 accumulated months

or 12 accumulated months)

Vmeds Mean value for the historical period,

Vmax Maximum vaue for the historical period,

Vmi n

Minimum value for the historical period.

The following four levels are used to characterize a drought situation:

Green level (stable situation) le >0.50
Yellow level (pre-aert situation) 0.50>1¢ >0.30
Orange level (aert situation) 0.30>1, >0.15
Red level (emergency situation) 015> 1,

The bases for the drought in Spain plans were established as follow :

Present indicators that will provide a quick drought status early enough to act
according to the forecasts of the Plan,

Provide knowledge of the resources system and its elements capability to be
strained during scarcity situations,

Present structural and non-structural alternatives to reduce drought impacts, and
adaptation according to the status indicator,

Measure the cost of implementing measures,

Adapt the administrative structure for its follow-up and coordination among the
different  Administrations involved (Ministry, regional  governments,
municipalities...),

Discuss Plans, results and follow-ups with al interested parties, ensuring full public
participation to avoid socia conflicts.

Basin authorities have been able to particularize plans according to their specificities,
declare the drought status according to the Hydrological Indicators System “HIS’
threshold, and initiate measures included in the plan depending on the gravity of the
phenomenon. Based on the HIS thresholds, monthly maps of the drought situation in the
different management units within each Spanish basin are being developed (European
Commission, 2008a). Other examples of drought plans and drought indicators for EU
states, such as Portugal and France, are found in the report published by European
Commission (European Commission, 2008a).


http://www.wordhippo.com/what-is/another-word-for/particularize.html�
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8.5 Developing a Drought Management Plan for the Ruhr Basin

8.5.1 Definition of a Drought Management Plan (DMP)

Drought preparedness and mitigation actions should be carried out by attempting to
answer some key questions such as:

How do the managers when there is a drought?
Which institution isin charge to manage drought related problems?
What type of measures have to be implemented and when?

What type of tools can be adopted to assess the effectiveness of the implemented
measures?

A drought management plan (DMP) is a document required to be prepared by a drought
management setting out how to minimize the impact on communities of water shortages
caused by drought. It should detail (Rossi et a., 2007)

The principal activities and groups at risk,
Criteriato identify drought vulnerable areas,

Mitigation actions and programs that address the vulnerability faced by the
service provider in continuing to provide water services during drought
conditions,

Criteriato compare alternative drought mitigation measures,
Drought indicators for calamity declaration,

Definition of the priority in water allocation under shortage conditions among
different users (municipal, agricultural and industrial),

Tools to improve stakeholders' participation and public awareness,

List of actionsto recover drought damage.

8.5.2 Stages of a Drought Management Plan

The drought management plan proposed in this study has three phases, which are
sequentially invoked as conditions dictate. These three phases are Drought Watch,
Drought Warning and Drought Emergency.
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8.5.2.1 Drought Watch

Rainfall data functions as a preliminary indicator for all phases of drought conditions.
There are severa indices that measure how much precipitation for a given period of
time has deviated from historical norms. The National Drought Mitigation Center in
U.S. is using the Standardized Precipitation Index (SPI) to monitor moisture supply
conditions. Many drought planners appreciate the SPI’s versatility. Distinguishing traits
of this index are that it identifies emerging droughts months sooner than the Palmer
Index and that it is computed on various time scales. In this study the SPI index and the
percentile indices are used to assess the drought severity. The percentile indices are
applied to reservoir storage as shown in table 8.2-a. The percentile indices of each
month are presented in table 8.2-b. Details about the methodology of the SPI index are
presented in chapter 3. Table 8.1 defines drought intensities resulting from the SPI
index. A drought watch is declared when any of the indices indicate a drought watch;
however indication of oneindex alone does not mandate a declaration.

Table8.1: Classification of drought stages based on the SPI index

Stages 1 2 3 4 5 6 7
SP| 59 1.5to 1to 0.99to -1to -1.5to -2 and
1.99 1.49 -0.99 -1.49 -1.99 less
Classification Extremely | Very | Moderately | Near | Moderately | Severely | Extremely
wet wet wet normal dry dry dry
Table8.2-a: Storage Triggers
. . . Drought
stable situation Drought Watch Drought Warning
Emergency
Storage range . . ) less than 10
> 45 Percentile 25-45 Percentile 10-25 Percentile )
from Percentile
Green level Yellow level Orange level Red level
DMP class
(1) (2) (3) (4)
Table8.2-b: Storage Percentiles (Bigge reservoir)
Storage Percentiles (M.m°)
Month
45 Percentile 25 Percentile 10 Percentile 5 Percentile
January 138.97 133.20 118.79 89.76
February 137.74 133.38 123.62 103.18
March 146.43 139.71 127.37 112.67
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Storage Percentiles (M.m?)
Month
45 Percentile 25 Percentile 10 Percentile 5 Percentile

April 160.16 154.15 139.40 124.61
May 163.92 156.32 141.50 122.40
June 161.54 153.60 135.26 128.44
July 155.41 144.43 135.22 120.99
August 145.14 136.93 125.67 110.95
September 134.64 122.76 116.93 100.42
October 127.85 117.25 102.32 92.47
November 132.13 112.68 96.30 86.24
December 131.79 118.10 100.23 82.49
8.5.2.2 Drought Warning

With perfect forecasting abilities, water managers exactly know when and what type of
restrictions to implement (if that is the management option of choice) to minimize
drought impacts. Several models are used for drought forecasting. One of these models
is presented in chapter 4 with a reasonable accuracy. In this study the transition matrix
is used as a tool for drought assessment. In this study it is supposed that a drought
warning is declared when one of the following conditions is met;

e Thedrought event according to SPI values extended for more than one month,

e There is more than a 30 % probability that the SPI index of the next month lies
between -1.5 and -2. This probability is calculated using Markov model as
explained in the next section,

e Thereservoir storageisless than the 25 percentile.
8.5.2.2.1 Transition matrix

Modern probability theory studies chance processes for which the knowledge of
previous outcomes influences predictions for future experiments (Grinstead and Snell,
1997). In principle, when we observe a sequence of chance experiments, all of the past
outcomes could influence our predictions for the next experiment. In 1907, A. A.
Markov began the study of an important new type of chance process. In this process, the
outcome of a given experiment can affect the outcome of the next experiment. Thistype
of processis called aMarkov chain.
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A Markov chain can be defined as follows. We have a set of states, S= {S;, $,.... S}.
The process starts in one of these states and successively moves from one state to
another. Each move is called a step. If the chain is currently in state S, then it moves to
state § at the next step with a probability denoted by pj;, and this probability does not
depend upon which states the chain was before the current state. The probabilities p; are
called transition probabilities. The process can remain in the same state and this occurs
with the probability pii. An initial probability distribution, defined on S specifies the
starting state. Usually thisis done by specifying a particular state as the starting state.

In general, the size of this transition probability matrix depends on the total number of
possible outcomes. For the SPI index, the possible outcomes are the 7 condition states
as shown in table 8.1, thus the size of the matrix is 7 x 7 for each month (table 8.3).
These transition probabilities can be more conveniently arranged in the matrix form P
asfollows:

To state at the next month t+1
1 2 3 4 5 6 7
From
1 P11 P12 Pl3 P14 P15 P16 P17
state
2 P21 P22 P23 P24 P25 P26 P27
at
3 P31 P32 P33 P34 P35 P36 P37
P= any
4 Py P, Pus Py Pys Pus P4y
month
5 P51 P52 P53 P54 P55 P56 P57
t
6 P61 P62 P63 P64 P65 P66 P67
7 P71 P72 P73 P74 P75 P76 P77
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Table 8.3: Transition probability matrix for months based on SPI_3

Febraury March
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 1.000 0.000 0.000 0.000 0.000 0.000
- 3 0.000 | 0.125 | 0.375 | 0500 | 0.000 | 0.000 | 0.000 > 3 0.000 0.000 0.286 0.714 0.000 0.000 0.000
T >
g 4 0.000 0.000 0.129 0.839 0.032 0.000 0.000 _% 4 0.029 0.000 0.147 0.794 0.029 0.000 0.000
LL
5 0.000 0.000 0.000 0.500 0.000 0.250 0.250 5 0.000 0.000 0.000 0.000 0.000 0.000 1.000
6 0.000 | 0.000 | 0.000 | 0500 | 0.000 | 0.250 | 0.250 6 0.000 0.000 0.000 0.000 1.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 7 0.000 0.000 0.000 0.000 0.000 0.333 0.667
April May
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1 0.000 1.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2 0.000 0.000 0.000 1.000 0.000 0.000 0.000
:_—35 3 0.143 | 0.000 | 0.286 | 0571 | 0.000 | 0.000 | 0.000 E 3 0.000 0.000 0.333 0.667 0.000 0.000 0.000
= 4 0.000 0.000 0.031 0.844 0.094 0.000 0.031 < 4 0.000 0.056 0.139 0.722 0.028 0.056 0.000
5 0.000 | 0.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.000 5 0.000 0.000 0.000 0.500 0.500 0.000 0.000
6 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 6 0.000 0.000 0.000 0.000 0.000 0.500 0.500

7 0.000 | 0.000 | 0.000 0.333 0.333 0.333 0.000 7 0.000 0.000 0.000 0.000 0.000 1.000 0.000
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June July
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 | 0.333 | 0.333 | 0.333 | 0.000 | 0.000 | 0.000 2 0.000 0.667 0.000 0.333 0.000 0.000 0.000
3 0.333 | 0.167 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 . 3 0.000 0.500 0.500 0.000 0.000 0.000 0.000
>
g 4 0.000 | 0032 | 0.032 | 0.839 | 0.000 | 0.065 | 0.032 -% 4 0.000 0.000 0.086 0.800 0.086 0.029 0.000
5 0.000 | 0.000 | 0.000 1.000 | 0.000 | 0.000 | 0.000 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 | 0.000 | 0.000 | 0.500 | 0.000 | 0.500 | 0.000 6 0.000 0.000 0.000 0.600 0.000 0.000 0.400
7 0.000 | 0.000 | 0.000 | 0.000 | 0.000 1.000 | 0.000 7 0.000 0.000 0.000 1.000 0.000 0.000 0.000
August September
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 0500 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 1 0.500 0.000 0.500 0.000 0.000 0.000 0.000
2 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 2 0.000 0.000 0.000 1.000 0.000 0.000 0.000
% 3 0.250 | 0.000 | 0.250 | 0.500 | 0.000 | 0.000 | 0.000 %’ 3 0.000 0.000 0.375 0.625 0.000 0.000 0.000
5
K 4 0.000 | 0.000 | 0.121 | 0.727 | 0.121 | 0.030 | 0.000 < 4 0.000 0.000 0.071 0.786 0.071 0.036 0.036
5 0.000 | 0.000 | 0.000 | 0.667 | 0.000 | 0.333 | 0.000 5 0.000 0.000 0.000 0.600 0.000 0.200 0.200
6 0.000 | 0.000 | 0.000 | 0.000 1.000 | 0.000 | 0.000 6 0.000 0.000 0.000 0.250 0.500 0.250 0.000
7 0.000 | 0.000 | 0.000 | 0.000 | 0.000 1.000 | 0.000 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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October November
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.500 0.000 0.500 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
% 3 0.167 0.167 0.000 0.667 0.000 0.000 0.000 _g 3 0.000 0.000 1.000 0.000 0.000 0.000 0.000
% 4 0.000 0.000 0.031 0.906 0.063 0.000 0.000 8 4 0.000 0.028 0.111 0.750 0.083 0.000 0.028
5 0.000 0.000 0.000 0.500 0.250 0.000 0.250 5 0.000 | 0.000 | 0.000 | 0.600 | 0.400 | 0.000 | 0.000
6 0.000 0.000 0.000 0.667 0.333 0.000 0.000 6 0.000 0.000 0.000 1.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.500 0.500 0.000 7 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
December January
Stage 1 2 3 4 5 6 7 Stage 1 2 3 4 5 6 7
1 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
o 2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 B 2 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
§ 3 0.000 0.000 0.333 0.667 0.000 0.000 0.000 % 3 0.000 0.000 0.500 0.500 0.000 0.000 0.000
“ 4 0.000 0.030 0.030 0.818 0.030 0.061 0.030 ° 4 0.000 | 0000 | 0.118 | 0.706 | 0.088 | 0.088 | 0.000
5 0.000 0.000 0.000 0.600 0.400 0.000 0.000 5 0.000 | 0.000 | 0.000 | 0.750 | 0.250 | 0.000 | 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6 0.000 0.000 0.000 0.500 0.000 0.500 0.000
7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 7 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
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8.5.2.3 Drought Emergency

A drought emergency is declared when there is a reasonable probability that, without
the implementation of predefined measures to reduce water consumption, a prolonged
drought period would cause the reservoirs to be drained. Historical records show that
there are no two droughts which have identical characteristics; therefore no single
probability profile could be identified in advance that would be applied to the
declaration of drought emergency. The estimation of this probability is based on severa
items such as analysis of historical records, the pattern of dry period months, reservoirs
system storage balances, water supply system, precipitation patterns and forecasting
models.

8.5.3 Drought Response

In this section several rules are proposed for each phase of drought phases. Certain
actions are to be implemented according to each phase of the successive phases.

8.5.3.1 Drought Watch

When a drought watch is declared, the following actions are to be implemented to
prevent and prepare for avery dry stage. These actions are as follow:

e Toincrease public attention and to clarify the situation to consumers and request
their cooperation in water conservation efforts,

e To reduce the water use; hotels and restaurants are urged to provide water only
upon request,

e To prevent washing vehicles except at station with water recycling,

e To establish direct drought communication between the industrial sectors and
the drought management planners,

e To implement industrial water reduction opportunities which are previously
identified and to identify alternative water sources for emergency use for water
dependent industries.

8.5.3.2 Drought Warning

When drought warning is declared, additional actions are to be implemented to prevent
and prepare for extremely drought as follow:

e To make an appeal to the public not to abuse drinking water and to increase the
water conservation efforts,
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e To reduce the lega constraints in severa steps to reduce the additional water
supply from reservoirs (e.g. -10 %, -20 %, -25 % depending on economical and
ecological restrictions),

e Toforbid water use for washing vehicles and the filling of swimming pools,

e To eliminate the filling of public fountains and watering of public parks, gardens
and other similar areas and to increase outdoor water restrictions such as street
cleaning and other outdoor water uses.

8.5.3.3 Drought Emergency

When drought emergency is declared, additional actions to those in the previous two
phases are to be implemented to prevent and prepare for possible loss of supplies and
maximum reductions for all sectors. These actions are as follow:

e Toreduce central water supply on some hours per day,

e To close high water consuming industries

e To maximize the use of alternative sources such as pumping stations,
e Toimport drinking water from other regions,

e To follow the steps of the emergency drought plan including the coordination
between all sectors and the disaster preparedness commission.

8.5.4 Case Study

The main objective of this section is to present an illustration of the proposed drought
management plan by applying it to an actual drought event from historical records. The
negative values of the SPI have been aggregated, based on SPI_3 and SPI_6, to be used
as an indicator for dry years during the period 1969-2007 as shown in table 8.4. From
the values shown in table 8.4, the three hydrological years 1976, 1996 and 2003 have
been selected as the driest years. For the selected years precipitation and storage data
are available. The SPI index, based on one and three months time step, and storage
percentiles for the reservoir Bigge have been calculated and shown in table 8.5. The
SPI index has been calculated using two time steps because sometimes a drought event
could be detected using a specified time step, but the same event could not be detected
using another time step. Thus, using several time steps could be useful when applying
the drought management plan. It is worth to mention that, the status indicator that is
used in the Spanish DMP has been applied to the storage records then the results have
been compared to the storage percentiles as shown in figure 8.1. Results of the
comparison showed reasonable agreement between the two indicators. In the following
sections the drought event in selected dry years will be discussed.
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Table 8.4: Summation of negative values of the SPI (1969-2007) (Bigge reservoir)

Summation of Summation of Summation of Summation of

Year | negative values of | negative values Year negative values | negative values
SPI_3 of SPI_6 of SPI_3 of SPI_6

1969 -6.37 -4.83 1989 -8.19 -8.91
1970 -0.98 -1.60 1990 -4.76 -4.31
1971 -11.23 -11.94 1991 -10.37 -11.73
1972 -8.85 -10.14 1992 -1.28 -2.09
1973 -10.07 -13.24 1993 -5.38 -4.25
1974 -2.12 -1.96 1994 -1.28 -0.37
1975 -6.50 -2.34 1995 -6.93 -4.82
1976 -13.52 -15.62 1996 -14.98 -21.81
1977 -4.82 -8.29 1997 -9.55 -9.42
1978 -3.91 -2.65 1998 -1.10 -2.28
1979 -6.10 -6.97 1999 -5.48 -4.93
1980 -2.90 -3.30 2000 -3.86 -1.52
1981 -0.69 -0.18 2001 -2.71 -3.14
1982 -4.72 -3.38 2002 -0.71 0.00
1983 -5.50 -3.54 2003 -6.14 -6.94
1984 -1.48 -1.37 2004 -1.77 -0.82
1985 -7.49 -4.32 2005 -1.97 -0.37
1986 0.00 -1.01 2006 -2.41 -2.36
1987 -0.21 -0.13 2007 -0.13 0.00
1988 -3.27 -1.74




174 8.5 Case study
Table 8.5: Description of the drought eventsin the year 1976 (Bigge Reservair)
SPI_3 SPI_1
< Storage DMP
o = — — 3 Storage range
9 S | o | DMP | Probability of the stage of the | _, o | DMP Probability of the stage of M.m class
= I 0o I 0o
= < | class next month = < | class the next month
(%] 2] (%) %]
1976 2 01| 4 79 % to stage 4 -1.46 | 5 2 28%to2,57% to 4, 15% to 5 148.70 > 45 Percentile
1976 3 0.24 | 4 84 % to stage 4 -1.07 | 5 3 25%t03,50% to4,25%to6 | 153.30 > 45 Percentile
1976 | 4 | -2.76 | 7 100 % to stage 6 -1.98 | 6 2 100% to stage 4 158.10 | <45 & > 25 Percentile 2
1976 | 5 | -1.86 | 6 50 % to stage 4, 50 % to 6 0.06 | 4 - 57 %tostage 4,23 %to5 | 152.80 | <25 & > 10 Percentile 3
1976 6 | -198 | 6 60 % to stage 4,40 % to 7 -1.45 | 5 2 22 % to stage 3,67 % to 4 138.00 | <25 & > 10 Percentile 3
1976 | 7 | 078 | 4 72 % to stage 4 0.04 | 4 - 52 %tostage 4, 17 %to5 | 122.90 <10 Percentile
1976 | 8 | -1.61 | 6 3 25%to4,50%to5,25%to6 | -1.77 | 6 2 50 % to stage 4,50 % to 5 103.20 <10 Percentile
1976 9 | -1.29 | 5 3 50%to4,25%1to5,25%to7 09| 4 70 % to stage 4, 10 % to 5 86.90 < 5 Percentile
1976 | 10 | -2.03 | 7 3 100 % to stage 4 -0.68 | 4 72 % to stage 4 71.50 < 5 Percentile
1976 | 11 | -0.62 | 4 82 % to stage 4 0.74 | 4 67 % to stage 4 58.00 < 5 Percentile
1976 | 12 | -059 | 4 70 % to stage 4 -0.74 | 4 20 % to stage 3,65 % to 4 53.10 < 5 Percentile
1977 1 -036 | 4 84 % to stage 4 -0.21 | 4 62 % to stage 3,16 % to 5 69.40 < 5 Percentile
1977 | 2 | 068 | 4 0.28 | 4 102.80 < 10 Percentile
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Figure 8.1: Comparison of the status indicator (Spanish DMP) and the storage
percentile indicator which is proposed in this study (Bigge reservoir) (month December)

8.5.4.1 Case Study year 1976
8.5.4.1.1 Drought Watch

A shown in table 8.5, a drought watch is declared during the month February in 1976
using SPI_1 However, the storage percentiles and SPI_3 for the same month did not
indicate a drought watch. With the declaration of drought watch (using SPI_1), al
actions of this stage are to be implemented to prevent and prepare for very dry stage.

8.5.4.1.2 Drought Warning

The probabilities of transition from a specified stage during the current month to a
specified stage in the next month are presented in table 8.5. When SPI_1 is considered
for the month March in 1976, where drought watch is also declared, there is a
probability that the stage of the next month will be also dry (25 % to stage 6) but this
probability is less than 33 % and this indicates yellow level. The storage range and
SPI_3 indicate non-drought condition (green level). According to the DMP, the drought
warning is declared because the drought event extended to more than one month. All
actions of this stage are to be applied to prepare for extremely drought.

8.5.4.1.3 Drought Emergency

As shown in table 8.5, the SPI_1 index indicates that the month April is a severe dry
event (SPI_1 = - 1.98) and SPI__ 3 indicates an extreme dry event (SPI_3=-2.76). The
storage percentile also indicates yellow level. SPI_3 stages show that there is high
probability (100 % to stage 6) that next month will be extremely dry. These indicators
lead to the declaration of the drought emergency. It is worth to mention that the
probability value (100 %) was obtained because this type of drought only happened one
time during this month through the study period, but the value of probability is not the
only reason of drought emergency declaration. The drought emergency is declared
because the drought event is continuing and there is a reasonable probability that
without the implementation of predefined actions to reduce water consumption, a
prolonged drought period would cause the reservoirs to be drained and this can be
clearly notable from the storage data of the following months (table 8.5).
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The beginning of a normal period (according to SPI_3) was in November 1976 where
the SPI_3 started to be positive. The impacts of drought on the reservoir storage
continued until March 1977 as shown in tables 8.5 and 8.6. Table 8.6 presents the
actions that have been implemented during this period related to reservoir release. A
comparison of the dry period 1976 with mean historical records is presented in figure

8.2.
Table 8.6: Comparison of the dry period 1976 with normal periods (Bigge reservoir)
Dry period Mean Values (1969-
- (Case Study- year 1976) 2008) E
: B g
s | 2% 8% [$F |3% [$T |BE 2°
9 tTs |93 |ss |Es |esS [ss ||
- < n = x — - = n — x —
1 1976 67.46 101.80 | 20.57 | 36.52 | 135.45 | 36.34 | 13.56
2 1976 14.35 148.70 9.75 28.76 | 135.77 | 20.64 | 9.68
3 1976 10.42 153.30 5.62 31.35 | 143.67 | 18.78 | 2.90
. 4 1976 6.40 158.10 | 11.70 | 18.25 | 156.60 | 15.08 | 4.51
g 5 1976 2.66 152.80 | 17.46 | 10.58 | 159.86 | 12.40 | 7.89
5> 6 1976 2.59 138.00 | 17.69 8.08 | 157.88 | 14.08 | 7.81
7 1976 1.36 122.90 | 21.06 | 10.18 | 151.77 | 16.93 | 10.49
8 1976 1.26 103.20 | 17.56 7.70 | 144.86 | 17.89 | 11.22
9 1976 1.43 86.90 16.83 9.00 | 134.65 | 15.82 | 9.56
10 1976 2.39 71.50 15.89 | 15.62 | 127.84 | 18.80 | 10.40
g 11 1976 7.66 58.00 12.56 | 25.77 | 124.99 | 22.90 | 11.54
% 12 1976 20.09 53.10 3.79 35.26 | 127.87 | 27.50 | 10.66
E 1 1977 35.88 69.40 2.48 36.52 | 135.45 | 36.34 | 13.56
2 1977 44.30 102.80 0.70 28.76 | 135.77 | 20.64 | 9.68
T 3 1977 11.10 146.40 2.90 31.35 | 143.67 | 18.78 | 2.90
@g 4 1977 26.67 154.60 | 10.37 | 18.25 | 156.60 | 15.08 | 4.51
§ 5 1977 9.93 170.90 | 10.53 | 10.58 | 159.86 | 12.40 | 7.89
6 1977 7.68 170.30 7.48 8.08 | 157.88 | 14.08 | 7.81
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8.5.4.2 Case Study year 1996
8.5.4.2.1 Drought Watch

A shown in table 8.7, a drought watch is declared during the month October in 1995
using SPI_1 and the storage percentiles. However, SPI_3 for the same month did not
indicate a drought watch. For this reason, the use of the transition probability matrix
could be influential and effective when severa time steps are used for SPI calculations.
With the declaration of drought watch, all actions of this stage are to be implemented to
prevent and prepare for very dry stages.

8.5.4.2.2 Drought Warning

The probabilities of transition from a specified stage during the current month to a
specified stage in the next month are presented in table 8.7. When SPI_1 is considered
for the month October, where drought watch was declared, there is a probability that the
stage of the next month will be also dry (33 % to stage 6 + 33 % to stage 7) in addition
to the storage range which indicates the warning case (yellow level). By this result the
drought warning is declared. All actions of this stage are to be applied to prepare for
extreme drought. This can be clearly noticed in table 8.8, the release of the reservoir
during the month November was 14.04 M.m°. Thisrelease is relatively small compared
to the releases of the previous year (42.79 M.m?) and the mean release of this month
through the study period (22.90 M.m>).

8.5.4.2.3 Drought Emergency

As shown in table 8.7, the SPI 1 index indicates that the month November has
extremely dry event (SPI_1 = - 2.15) and there is high probability to the occurrence of
this event as mentioned in the previous section. By using the SPI_1 and SPI_3 indices
simultaneously in addition to the storage percentiles, the emergency stage will continue
until the month May in 1996. When the SPI_1 is considered, the individual normal
events which were in between dry periods were not an indication of the end of the dry
period because normal rainfall of one month does not have notable effect on drought
impacts.

This can be illustrated by the month February in the year 1996, SPI_1 indicates normal
event but SPI_3 indicates an extremely dry event. The storage of this month was also
less than 10 percentile. That reveals the importance of using SPI index with more than
one time step. The emergency state ends when both SPI_1 and SPI_3 became positive
in addition to a high probability that the next month will not have a dry event (table
8.7). The beginning of normal stateis at the month July in 1996 where the SPI_1 started
to be positive, the probability of a dry event during the next month became small and
the type of state reached normal stage by September 1996.
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Table 8.7: Description of the drought eventsin the year 1996 (Bigge reservoir)

SPI_3 SPI_1
< g . DMP
© 1S — — o £ Storage range
9 S| m o | DMP | Probability of the stage of the | _, o DMP | Probability of the stage of the | 5 < class
= [ 0o [ 0o 2 =
= < | class next month = s class next month n
(%] 7] (%] %)
1995 | 10 | -0.20 | 4 1 75 % to stage 4 -1.73 6 3 33%t04,33%t06,33%to7 | 124.2 <45 & > 25 Percentile 2
1995 | 11| -099 | 4 1 82 % to stage 4 -2.15 7 67 %to4,33%to6 118.5 <45 & > 25 Percentile 2
1995 | 12 | -3.20 | 7 100% to stage 7 -1.85 6 50%to 5,50 %to7 112.4 < 25 & > 10 Percentile 3
1996 1 -3.43 7 100 % to stage 7 -2.33 7 33%t03,33%to4,33%to5 113.8 < 10 Percentile
1996 2 -2.32 7 33 % to stage 6,67 % to 7 0.18 4 67 %to4, 10%to7,3%to6 103.6 < 10 Percentile
1996 3 -2.33 7 33%to4,33%t05,33%to6 | -1.82 6 100 % to stage 6 103.7 <10 Percentile
1996 | 4 | -1.83 6 50 % to stage 6, 50 % to 7 -1.94 6 100 % to stage 4 114.0 < 10 Percentile
1996 | 5 | -2.29 | 7 100 % to stage 6 0.01 4 57 % to stage 4,23 % to 5 115.1 < 10 Percentile
1996 6 -1.97 6 60 % to stage 4,40 % to 7 -1.37 5 2 22 % to stage 3,67 % to 4 115.9 < 10 Percentile
1996 7 | -0.60 | 4 72 % to stage 4,12 % to 5 0.30 4 1 52 % to stage 4,17 % to 5 114.3 < 10 Percentile
1996 8 | -0.20 | 4 1 78 % to stage 4 0.61 4 1 73 % to stage 4 114.2 < 10 Percentile
1996 | 9 0.14 4 1 90 % to stage 4 -0.53 4 1 70 % to stage 4, 10 to stage 5 117.0 < 25 & > 10 Percentile
1996 | 10 | 066 | 4 1 75 % tos tage 4 1.04 3 1 72 % to stage 4 123.89 | <45 &>25 Percentile 2
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Table 8.8 presents the actions that have been implemented during this period related to
reservoir release. The Releases were reduced compared to mean values and this
reduction is notable for month 3, 4, 5, 6, 7, and 8 in 1996. Releases during this months
reached valus less than the 10 percentile of release as shown in table 8.8. To investigate
the effect of this reduction on the storage, another scenario has been assumed for the
relase during this dry period. the assumed releases equal to the difference between mean
values and standard deviation of monthly releases( table 8.8). Results show that the the
minimu storage using this scenario is 102 M.m? during August 1996.

Table 8.8: Comparison of the dry period 1996 with normal periods (Bigge reservoir)

Dry period (Case Study) Mean Values (1969- 2008) o 'mcli
< 24 (82
5 e e BE S
= |5 BT |2% |8% |3% |¥%F [§%F &% |5
> E=z |82 (g2 |E=2 |22 g2 |2 |§
=
10 | 1995 | 762 | 12424 | 13.28 | 1562 | 127.84 | 18.80 | 10.40 | 13.28
11 | 1995 | 7.88 | 118.58 | 14.04 | 25.77 | 124.99 | 22.90 | 11.54 | 14.04
q 12 | 1995 | 14.05 | 112.41 | 12.57 | 35.26 | 127.87 | 27.50 | 10.66 | 12.57
';22 1 | 1996 | 461 | 113.89 | 14.85 | 36.52 | 135.45 | 36.34 | 13.56 | 14.85
5> 2 | 1996 | 10.63 | 103.65 | 10.55 | 28.76 | 135.77 | 20.64 | 9.68 | 10.55
3 | 1996 | 13.97 | 103.72 | 3.70 | 31.35 | 143.67 | 18.78 | 2.90 | 2.84
4 | 1996 | 438 | 114.00 | 3.27 | 18.25 | 156.60 | 15.08 | 4.51 | 5.01
- 5 | 199 | 462 | 11511 | 3.81 | 1058 | 159.86 | 1240 | 7389 | 7.58
o
F 6 | 1996 | 3.08 | 115.92 | 4.65 8.08 | 157.88 | 14.08 | 7.81 | 8.87
c
:% 7 | 1996 | 6.27 | 11436 | 6.44 | 10.18 | 151.77 | 16.93 | 10.49 | 9.70
E 8 | 1996 | 12.26 | 114.20 | 9.43 7.70 | 144.86 | 17.89 | 11.22 | 9.31
9 | 199 |12.12| 117.04 | 5.26 9.00 | 13465 | 1582 | 956 | 9.15
o
EQ 10 | 1996 | 20.30 | 123.89 | 9.57 | 15.62 | 127.84 | 18.80 | 10.40 | 8.15
g 11 | 1996 | 33.71| 134.62 | 29.23 | 25.77 | 124.99 | 22.90 | 11.54 | 9.24
o
< 12 | 1996 | 29.37 | 139.10 | 32.38 | 35.26 | 127.87 | 27.50 | 10.66 | 9.01
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8.5.4.3 Case Study year 2003
8.5.4.3.1 Drought Watch

Table 8.9 shows that the drought watch is declared during the month February in 2003
using SPI_1 and the storage percentiles. However SPI_3 did not indicate a drought
watch for the same month. The storage of this month is less than 25 percentilewhich
declares drough warning.

8.5.4.3.2 Drought Warning and drought emergency

As shown in table 8.9, the storage percentile of month March 2003 declares the drought
emergency (red level) and this DMP class continues until December 2003. SPI_3 of
month April 2003 (-1.49) shows that there is a 50 % probability that the stage of the
next month will be also dry. Stages of SPI_3 show that May 2003 was last month with
drought stage, but it is clearly notable that some months have negative SPI_3 values that
are more than -1. When SPI_1 is considered, only two months (August and November)
provided moderately drought stage. Also when SPI_6 is considered, both July and
August provided moderately drought stage. The values of SPI during this year show that
there is no existence for severe or extremely drought but the negative values of SPI
continued for several month. Also releases from reservoir were relatively high
compared with the inflow during this year (table 8.10), thus the storage percentile
declared the drought emergency.
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Table 8.9: Description of the drought eventsin the year 2003 (Bigge reservoir)

SPI_3 SPI_1
o < Storage st DMP
= orage range
;_3 é " © DMP Probability of the stage of o o | DMP | Probability of the stage of the M.m’ 8 8 class
EI Ep class the next month EI Ep class next month
wm (%] wm (%]
2003 2 -0.15 4 14 % to stage 3,79 % to 4 -1.02 5 2 28 % t0 2,57 %to4, 14 % to 5 133.2 < 25 & > 10 Percentile 3
2003 | 3 | -0.42 4 3%to3,84%to4,9%to5 | -0.64 | 4 12%1t02,69%t03,9%to4 126.8 < 10 Percentile
2003 4 -1.49 5 3 50%to4,50%to5 -0.48 4 6%t03,72%to4,9%to6 137.5 < 10 Percentile
2003 5 -1.27 5 3 100 % to 4 -0.45 4 11%t03,57%to4,23%to5 131.3 < 10 Percentile
2003 6 -0.76 4 8%1to3,80%to4 0.01 4 7%t02,71%to4,7%to5 128.6 < 10 Percentile
2003 | 7 | -0.67 4 12%t03,72%to 4 -048 | 4 11%to3,53%to4,17 %to5 | 119.4 < 5 Percentile
2003 8 -0.89 4 7%to3,78t0 4 -0.98 4 10%to3,73%to4 108.3 < 5 Percentile
2003 9 -0.47 4 3%to3,90% to 4 0.67 4 9%to3,69%to4 93.8 < 5 Percentile
2003 | 10 | 0.29 4 11%to3,75%to 4 0.79 4 71%t02,9%to3,3%to5 85.1 < 5 Percentile
2003 | 11| 0.23 4 3%to3,82%to4 -1.32 | 5 100 % to 4 91.3 < 10 Percentile
2003 | 12 | -0.03 4 12%to3,70% to 4 -0.03 4 20%to0 3,65 % to 4 93.8 < 10 Percentile
2004 1 0.34 4 13%to03,84%to4 1.15 3 14%to02,71%to 4 126.1 < 25 & > 10 Percentile
2004 | 2 | 082 | 4 15%1t0 3,79 % to 4 034 | 4 10%to0 3,67 % to 4 136.10 | <45 &> 25 Percentile 2
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Table 8.10: Comparison of the dry period 2003 with normal periods (Bigge reservoir)

Dry period (Case Study) Mean Values (1969- 2008) %
T
= S
< Q@
§ —~ |0 —~ o — — o~ o — b=
= 3% (2% |8% |3% | ¥FE 8% | B
£ €S |gs |ssS |ES Ss |vs | @
- < | £ x = - = hnh = x — p
—
b 11 | 2002 | 3941 | 122.63 | 40.93 | 25.77 124.99 22.90 | 11.54
o
= 12 | 2002 | 41.94 | 121.11 | 15.16 | 35.26 127.87 27.50 | 10.66
£
S 1 | 2003 | 48.90 | 147.88 | 63.58 | 36.52 135.45 36.34 | 13.56
2 | 2003 | 10.95 | 133.21 | 17.28 | 28.76 135.77 20.64 | 9.68
3 | 2003 | 2453 | 126.87 | 13.82 | 31.35 143.67 18.78 | 2.90
4 | 2003 | 471 | 13759 | 10.99 | 18.25 156.60 15.08 | 4.51
5 | 2003 | 6.90 | 131.31 | 9.60 | 10.58 159.86 12.40 | 7.89
6 | 2003 | 391 | 128.61 | 13.08 8.08 157.88 14.08 7.81
©
o
5 7 | 2003 | 2.56 | 119.44 | 13.70 | 10.18 151.77 16.93 | 10.49
o
>
a 8 | 2003 | 1.58 | 10830 | 15.99 | 7.70 144.86 17.89 | 11.22
9 | 2003 | 310 | 93.88 | 11.90 | 9.00 134.65 15.82 | 9.56
10 | 2003 | 15.74 | 85.09 9.52 15.62 127.84 18.80 | 10.40
11 | 2003 | 9.81 | 91.31 | 7.28 | 25.77 124.99 22,90 | 11.54
12 | 2003 | 38.78 | 93.84 | 6.49 | 35.26 127.87 27.50 | 10.66
1 | 2004 | 42.03 | 126.13 | 32.06 | 36.52 135.45 36.34 | 13.56
©
g 2 | 2004 | 32.26 | 136.10 | 20.83 | 28.76 135.77 20.64 | 9.68
o
= 3 | 2004 | 17.36 | 147.54 | 10.60 | 31.35 143.67 18.78 | 2.90
9]
= 4 | 2004 | 11.77 | 15430 | 7.36 | 18.25 156.60 15.08 | 4.51
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8.5.4.4 Comparative Analysis of Droughts of the years 1976, 1996 and 2003

As mentioned before, the accumulated magnitude of negative values of SPI have been
calculated to be used as a measure for the selection of the driest years within the study
period. The hydrologica year 1996 was found to be the most critical year followed by
1976. The year 2003 was not so critical compared to 1976 and 1996. The drought events
during 1976 and 2003 were in summer but in 1996 drought event was in winter.

Table 8.11 illustrates that inspite of the small sum of the monthly inflow during 1976
(only 20 % higher than 1996), the releases during 1976 exceeded those of 1996 (80 %
higher than releases during 1996). The main reason behind this is that the water
abstraction during 1976 was more than this of 1996 as shown in figure 8.5.

In 1976 the situation (summer drought) was not the same as in 1996 (winter drought).
The releases were not decreased (to satisfy water demand), thus the storage of the
reservoir reached minimum value of 53 M.m?® in December 1976. On the other hand, the
situation during 2003 was totally different. According to data of this year, as shown in
table 8.10, table 8.11 and figure 8.6, the initial storage of this year was approximately as
this of 1996 and the summation of the inflow was 1.79 times that of 1996, but despite
thisthe reservoir reached a storage less than 1996 as shown in table 8.11.

Million m>/year
1400

]
o A1 W]
[\\/‘rr‘Ir Ab;t;ta:i;ed V\
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Figure 8.5: Annual abstracted and exported water in the Ruhr catchement area
between 1900 and 2009

Source(http://www.talsperrenleitzentrale-ruhr.de/veroeffentlichungen.html)
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Table 8.11: Comparison of Drought between hydrological year 1976, 1996 and 2003

Hydrological
Year

1976

(Summer drought)

1996

(Winter drought)

2003

(Summer drought)

Historical Mean

(1969-2008)

Summation of
monthly inflow
(November:
October)

(Million.m?)

137.39

114.17

204.23

237

Summation of
monthly release
(November:
October)
(Million.m?)

177.09

98.14

235.55

237

Difference
between inflow
and release.

D=Inflow_Release
(Million.m?)

-39.19

16.03

-31.32

Percentage of

the difference

between inflow
and release

(D/inflow) %

-28.9 %

14 %

153 %

0%

Minimum
Storage

(Million.m?)

71.50
(reached a value
of 53.1 in Dec. 76)

103.65

85.09

124.99
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Figure 8.6: Comparison of Drought between year 1976, 1996 and 2003
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8.6 Conclusion

Drought differs from other natural hazards in several important points. Drought is a slow-
onset and creeping phenomenon that makes it difficult to determine the onset and end of the
event, its duration may range from months to years. The first and important evidence of
drought is usually stated in precipitation records. The effects of a drought on streamflow
and reservoirs may not be noticed for several weeks or months. Balancing the needs of all
users of water supply during a drought periods can be difficult. Drought impacts mitigation
represents one of the most challenging issues in water resources management, which can be
successfully carried out by developing an efficient strategy in a Drought Management Plan
(DMP). The DMP consists of planning, monitoring and implementation of planned and
emergency actions to recover drought damage. Preparing an efficient drought management
plan is the best way to reduce drought impacts. These impacts can continue to several
weeks or months even after a drought event.

In this study a drought management plan “DMP” has been proposed for the monitoring and
mitigation of drought in the Ruhr river basin. The proposed DMP consists of three stages
namely Drought Watch, Drought Warning and Drought Emergency with severa actions to
be implemented during each stage. In the developed DMP, the indicators proposed to
classify the drought classes are the SPI index and the storage percentiles in addition to the
transition matrix of probability of the SPI index. In order to select a case study period from
the historical records, the negative values of the SPI index have been aggregated based on
one and three months time scale. The dry periods in 1976, 1996 and 2003 have been
selected as case studies. The procedures of the developed DMP have been applied to the
case studies. The proposed indicators, the SPI index and the storage percentiles, have been
calculated during each month for the period under consideration. By applying the proposed
DMP to the case studies, results showed the successful use of the SPI index based on
several time scales smultaneously with the storage percentile in classifying the drought
situation. Results al'so showed that the transition matrix of probability of the SPI index can
be a useful guide for decision making during dry periods.

One of the main findings of this chapter is to emphasize that drought is a natura
phenomenon, while water scarcity is both a natural and a human-made phenomenon. From
that point the analysis of the three case studies 1976, 1996 and 2003 demonstrated that
although 1996 was more critical than the 1976, the year 1995 was better managed. The
reservoir storage during the year 1976 reached a value of 53.1 M.m* while the minimum
storage of reservoir during the year 1996 was 103.65 M.m?>. On the other hand, the annual
amount of water that was released from the reservoir in 1996 was 98.14 M.m? and 114.05
M.m?in 1976. These results emphasi ze the importance of implementing the actions of each
stage of drought stages to address drought impacts and to prevent reservoir from being
drained.

Finally, in order to assess risk and respond to drought, water suppliers have to establish a
local drought management team. The drought management team needs to focus on three
main goals: get to know the water supplies, improve water use efficiency and communicate,
educate, and participate.






Chapter 9

Conclusions and Recommendations

In this chapter the main summaries and important conclusions are stated. It aso
provides some recommendations, poses open questions and suggests areas of future
research.

9.1 Summary and Conclusions

The overall objective of this research effort was to study the change of climate in the
Ruhr river basin and to evolve appropriate techniques and tools for drought
characterization and for enhanced management of water resources systems during
drought periods. The developing tools have four major components: 1) Climate change;
2) Drought monitoring and forecasting; 3) Reservoir operation during drought and 4)
drought management plan. The developed tools have been demonstrated through an
application to the Ruhr river basin as case study.

The major findings of this research are summarized as follows:

» After examining 68 years of precipitation and temperature data and 62 years of
streamflow data, some statistically significant trends have been identified. There
are gdlight increases in all three variables (streamflow, precipitation, temperature)
in the Ruhr River basin. Between 1961 and 2007 results showed that over the
study area a significant increase in the mean temperature over all time scaes is
considered. The occurrence of warm days in both winter and summer has a
significant increase, while the occurrence of cold days in both seasons showed a
similar proportion of significant decrease which is evident that the winter becomes
warmer and the summer becomes hotter. Significant increase in the winter
precipitation has been detected while the increases in the summer and the annual
precipitation were statistically insignificant. The number of consecutive dry days
displayed decreasing tendencies in winter while there is no indication of a
statistically significant change in the summer. The index PR95 % (very wet days),
PR99 % (extremely wet days) have been introduced in this study to explore the
supposed amplified response of extreme precipitation events relative to the change
in total amount. The main identified trends of very & extreme wet days were an
increase in the very wet days in the winter. Results of inflow analysis showed that
there is a significant increase in the winter inflow while the increases in summer
and the annual inflow were found to be statistically insignificant.
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» By applying the SPI methodology for drought monitoring, the obtained results

indicated that the drought randomly affect the Ruhr river basin. Several drought
events occurred during the period under study. Results indicated also that inspite
of the significant positive trend in winter precipitation, drought visited the Ruhr
basin in both summer and winter and that the most severely event was in the
winter. Trends in SPl data series indicated that the proportion of the Ruhr
catchment drought condition has insignificantly changed during the period under
study. It is worth to be mentioned that in reality extreme drought eventsin the last
decades presented no severe challenges to the water supply of the Ruhr district due
to the reservoir system existing in the Ruhr catchment basin.

The SPI index has been used as a drought indicator for drought forecasting due to
its advantages over other drought indices. The capability of the ARIMA and
SARIMA models in drought forecasting has been investigated using the
correlation methods of Box and Jenkins and the AIC and SBC structure selection
criteria. Results of the model evaluation showed a fairly good agreement between
observations and forecasts, as it has also been confirmed by the values of some
performance indices. The evaluation of the models showed that the results seem to
be better for higher SPI series (SPI_6, SPI_9,..., and SPI_24) and this may be due
to the increase in filter length which reduces the noise more effective. Results
showed also that the good fitting of stochastic models such as ARIMA and
SARIMA to hydrologic time series, such as SPI time series, could result in a better
tool which can be used for water resource planning within the basin.

A software package for meteorological drought forecasting has been devel oped.
This package contains two main stochastic models, namely the Auto Regressive
Moving Average (ARIMA) model and the Seasonal Auto Regressive Moving
Average (SARIMA) model. The developed software has severa advantages
compared with other programs that are used for time series forecasting, such asits
simplicity and ease of use. One of the advantages of the developed program is that
the user does not need to try several candidate models in order to get the best
model. The user needs only to put limits for the model’s parameters then the
program optimizes these parameters to detect the best model. The developed
program has been calibrated using the well known software SPSS. Results of the
calibration showed good agreement between the forecasted vaues using the
developed program and those which obtained using the SPSS software with
reasonabl e accuracy. The developed model has some limitationsin order to obtain
results with reasonable accuracy. Using of SPI model requires that there is no
missing data in the time series and length data record is required to be at least 30
years. The developed model can be applied to any precipitataion records
worldwide.
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» The stochastic streamflow generation model of Thomas-Fiering and the Monte
Carlo ssimulation model have been applied to generate monthly inflow data for
four reservoirs in the Ruhr river basin. The statistical parameters such as means,
standard deviation and skewness of the observed data and the generated data of the
used approaches has been compared. The results showed that the generated data
have successfully preserved the historical statistical parameters of streamflow. The
results showed that the Thomas-Fiering model has also preserved the correlation
coefficient between consecutive months. Thus, the Thomas-Fiering model has
been used for producing inflow data needed for reservoir optimization and
simulation models presented in this thesis.

» An optimization model has been developed using Genetic Algorithm (GA),
Pattern Search and Gradient-based method for reservoir operation during normal
periods and drought periods as well. The Bigge reservoir has been presented as
case study. Two objective functions have been considered, then a weighted
approach has been adopted to convert the multiple objectives problem into asingle
objective problem, so that the user can specify the priorities by giving a specified
weight for each function. Several scenarios for low inflow periods have been
attempted. The obtained results showed that both the GA approach and Gradient-
based approach provide higher benefits than the Pattern Search approach. The
evaluation of the developed model has been carried out using the the driest years
in the available historical records. The monthly inflow of this year has been
considered as input to the optimization model. Results of the evaluation
demonstrated that the optimization model is beneficial. Results also showed that
the developed model with its severa scenarios and the suggested optimization
approaches could be a helpful guide for the real operation of the reservoir.

» An example of the collective use of stochastic models has been presented. The use
of the adaptive network-based fuzzy inference system (ANFIS) to construct a
model for reservoir operation, simulation of reservoir operation and decision
making about reservoir release has been proposed. The applicability and capability
of the ANFIS model have been investigated by using a set of data of the Ruhr
reservoir system, Germany. The used data are time of year (months), inflow,
storage, Standardized Precipitation Index (SPI) and release. The historical data
sets have been divided into two independent sets to train and test the constructed
models. Two main models have been developed. The output of the first model is
the release during the next month; on the other hand, the output of the second
model is the release of the current month. Predicted release values and observed
release have been evaluated using several evaluation criteria.
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Results of the evaluation showed that the ANFIS models are accurate and
consistent in different subsets, where most of the values of RMSE and MAE are
smaller and most of the correlation coefficients and R? are also very close to
unity. The effect of using the SPI index as input has been examined using two
ANFIS models; one with SPI as input variable, another without. It has been found
that the model which contains SPI as input variable has consistently superior
performance compared with the one without SPI index. Results obtained in this
study showed that the ANFIS models provide reliable reservoir release prediction
for the current and the next month, and the proposed approach could be a good
tool for the evaluation of the release for a specified month and could aso be a
helpful reference guide to the operator during decision making.

» Preparing an efficient drought management plan is the best way to reduce

drought impacts. These impacts can continue several weeks or months even after
a drought event. A drought management plan (DMP) has been proposed for
monitoring and mitigation of drought in the Ruhr river basin. The proposed
DMP consists of three stages namely Drought Watch, Drought Warning and
Drought Emergency with severa actions to be implemented during each stage.
The proposed DMP has been applied to three years as case studies. The analysis
of the case studies showed that the implementation of the actions of each stage
of the drought management plan is very important to address drought impacts
and to prevent reservoirs from being drained. The analysis of the case studies
also showed, that the use of transition probability matrix can be an useful guide
for decision makers during dry periods.



9 Conclusions and Recommendations 195

9.2 Recommendations for Further Study

To conclude this thesis, the following recommendations are made for further work that
could lead to enhanced drought management performance:

To develop a drought mapping system to monitor meteorological drought using

the Standardized Precipitation Index (SPI) and interpolation methods.

To study the occurrence probabilities, return periods and risk of meteorological

drought events in the Ruhr river basin.

To develop a drought early warning system using the Standardized Precipitation
Index (SPI) as tool where this is the approach that the European Commission,

Joint Research Centre proposed for drought forecasting over Europe.

To develop amodel for predicting the transition from a drought class of severity

to another using the Standardized Precipitation Index (SPI) as drought indicator.

To use the optimization model proposed in this study to develop a model for

optimal multipurpose-multireservoir operation during drought in the Ruhr basin.

To develop a ssimulation model for operating a multireservoir system during

drought in the Ruhr basin using the approach proposed in this study

To develop a drought management decision support system for short-term and

long-term management.
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Appendix A

Software for the calculation and Analysis of the Standardized
Precipitation Index

A.1 Possibilities of SPI _Analysis

As presented in chapter 3, the calculation and the analysis of the standardized
precipitation index (SPI) are complex and not so easy to be done with severa
precipitation time series. The developed program named “SPI_Anaysis’ is a program
to calculate and analyze the standardized precipitation index (SPI). The main objectives
of the program are:

Calculation of the SPI values for a given precipitation data series of alength of least 30
years with daily records.

Detection whether a drought event exists in data series.

Classification of the drought events according to its intensity (moderate- severe-
extreme).

The program is easy to use for a given data series. The user only needs to prepare the
data series to meet the required format.

A.2 Mathematical Core of SPI_Analysis

McKee (McKee et a., 1993) developed the Standardized Precipitation Index (SPI) for
the purpose of defining and monitoring drought. Among others, the Colorado Climate
Center, the Western Regional Climate Center and the National Drought Mitigation
Center use the SPI to monitor current states of drought in the United States. The nature
of the SPI alows an analyst to determine the rarity of a drought or an anomalously wet
event at a particular time scale for any location in the world that has precipitation
records. In most cases, the Gamma distribution best models observational precipitation
data. Details about the SPI methodology are presented in chapter 3.
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A.3 How to Start an Application

The SPI_Analysis program is valid for applying to any precipitation data series in any
basin. User can start the program by double clicking the SPI_Analysis icon with left
mouse button. The SPI_Analysis title screen is shown in figure A.1. Once the program
is started, the main screen appears. In the File-menu the user can select the option “Load
Data’ by one click on the button “Load Data’. Then the user has to select a data file
(figure A.2) which must satisfy the required format. The requirements for a data series
to be analyzed and the required format of the input file are presented in section A.4.

I

| R R——— e i

File Help o

Calculation and Analysis of the Standardized Precipitation Index - [SPI]

(£ 2010 Hydraulic Engineering Section, University of Wuppertal
Developed by M.5c. Mosasd Khadr, snd Prof. Andreas Schlenkhoff
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FigureA.l: SPI_Anaysisinitia screen
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FigureA.2: SPI_Analysistitle screen to select type of data

A.4. Required Information Content of Data Series

Each data series in the input file must satisfy the requirements in order to avoid any
error. The requirements are:

The SPI_Analysis can only read data seriesin Microsoft Excel (.x|s)

Each precipitation data series consists of two columns. The first one is the date with the
required format “yyyymmdd” (see figure A.3) and the second one is the observed data

(mm)

Missing data are not allowed, any missing data leads to an error.

The accepted data are daily or monthly observations.

Above requirements must be satisfied for all data series which the user wants to

analyze.
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A B C 5
19600101
2 19600102 107
i Eggg}g,ﬁ 3 Obsereved data
5 19600105 0
b 19600106 15 1
7 19600107 A
6 19600108 5 2
9 19600109 g 5
10 19600110 0
N

Figure A.3: Sample of input data

A.5 Calculation of the SPI Index
A.5.1. Define Input Data Series

After choosing the precipitation data series, the button “Start Calculation” will be
available as shown in figure A.4. One click on this button and all calculations required
for SPI analysis will be done and the pop-up menu” Select time scale” will be available
as shown in figure A.5. The user has two options. the first one is to analyze the SPI
index for the total period (consecutive months) or for a specified month.

A.5.2. SPI Index for Consecutive Months

From the pop-up menu “Select time scale” under the title "SPI vaues for the total
period “the user can choose one of six time scales, namely SPI_1, SPI_3, SPI 6 and
SPI 9, SPI_12 and SPI_24 as shown in figure A.6. After selection of time scae, dl
calculation will be done for the selected time scale and then the user can plot the results
by one click on the button “Plot Results’. For example if the user selectsthe SPI_3 time
scale the results will be as shown in figure A.7. Also the user can save the obtained
results by clicking the button” Save Results’ then will get message with the location of
the saved results. A sample of saved results is shown in figure A.9. The first column
presents the years, the second one presents the months and the third one presents the
SPI values.
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Figure A.5: Pop-up menu to select time scale
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Figure A.6: Pop-up menu to select time scal e (consecutive months)
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Figure A.7: SPI time series based (Three months time step — SPI_3)

o B L D
1 | Standardized Precipitation Index |
2 Year Month SPlwvalue
3 1960 1 -99399.00
4 1960 2 -99399.00
5 1360 3 -0.90
5] 1960 4 -1.29
T 1960 5 -0.68
8 1960 5 -0.20
9 1960 r -0.53
10| 1980 8 0.46 Note that:
11| 1960 9 0.29 SPI_3 values start at
12 1960 10 2.10 q
= v 11 e the third month
14 1960 12 1.50
15 1961 1 0.52
16 1961 2 0.23
17 1961 3 0.10
18 1961 4 0.97
19 1961 5 1.37
20 1961 6 1.87
21 1961 ra 1.65
22 1961 8 1.35
23 1961 9 0.50
24 1961 10 -0.33
25 1961 11 -0.57
26 1961 12 0.45
27 1962 1 0.54
4 4 » M| SPI Totale results . Sheet? . Sheet3 . v

Figure A.8: Results of SPI calculations (Three months time step — SPI_3)
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A.5.3. SPI Index for a Specified Month

From the pop-up menu “Select time scale” under the title” SPI values for a specified
month® the user can choose one of 72 scales i.e. 6 time scales for each month (figure
A.9). After selection of time scale, all calculation will be done for the selected time
scale and then the user can plot the results by one click on the button “Plot Results’. For
example if the user selects the SPI_3 Jan time scale (SPI_3 for the month January) the
results will be as shown in figure A.10. The user aso can save the obtained results by
clicking the button” Save Results’ then will get message with the location of the saved
results. A sample of saved resultsis shown in figure A.11. The first column presents the
years; the second one presents the corresponding SPI values.

Calculation and Analysis of the Standardized Precipitation Index - [SPI]
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" g SO b B R R EE! EETEE PEPEEEEEE ChE -4
Select time scale m
Select time scale g‘
SPI_1_Jan =7, ) S S R R S RS R AU R PRSRSPRRRRpR RPRRI ISUSUpRSRY .
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— B SPI_T _May
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SPI_1_Oct
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SPI_3_Jan 0 2000 4000 6000 000 10000 12000 14000 18000 18000
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One of these time scales
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Figure A.9: Pop-up menu to select time scale (A specified month)
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Calculation and Analysis of the Standardized Precipitation Index - [SPI]
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Figure A.10: Drought severity index values representative based on three months SPI
values SPI-3-Jan. (November, December and January)

n | B | C | D |
1 Standardized Precipitation Index
2 Year SPl wvalue
= 1960 -99999
4 1961 .53 1400997
5 1962 0.543157961
L+ 1963 -0.993585325
i 1964 -1.5231612
5 1965 0.643897552
9 1966 1.420802947
10 1967 1.37AA26832
11 1968 1. 108964852
12 1969 -1.5104030271
13 1970 -0.9755579906
14 1971 -0.5817564415
15 1972 -1.083558923
16 1973 -1.556864904
17 1974 0.282912934
18 1975 1.307392169
19 1976 2. 4741T76254
20 1977 -.35925773
21 1978 0.374928215
22 1979 -0. 700221068
23 1980 Q. 109531734
249 1981 Q.6783298374
25 1982 0. 873068025
26 1983 Q.652520039
27 19584 0. 2932233482
4 4 » ]| SPI_Details results .~ Sheet2 . Sheet3 . ¥

Figure A.11: Results of SPI calculations(Three monthstime step — SPI_3 Jan)
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A.5.4 Detection of Extreme Events

The classification of drought events based on the SPI index. Under the title “Extreme
Events’ the user has to select one of the time scales. Once the user selects the required
time scale, the three radio buttons (Moderately Dry- Severely Dry —Extremely Dry) will
be available and the user has to check one of it in order to active the button “Find
Extremes’. Once the user clicks the button “Find Extremes’, the results will be saved
automatically and a message contains the location of the saved results will appear. A
sample of results is shown in figure A.12. The first column presents the years, the
second one presents the month in which the selected event happened and the third
column presents the corresponding SPI value.

o B L D
Drought Events
Year rMonth SPI value
= 1960 “q -1.29
e 19562 12 -1.02
= 1953 2 -1.11
= 1963 . | -1.32
rd 19649 = -1.17
= 1965 10 -1.22
9 1967 b= -1.19
10 19569 11 -1.29
11 19569 12 -1.37
12 1971 5 -1.22
13 1971 e -1.236
143 1972 1 -1.08
15 1973 3 -1.131
16 1973 ra -1.28
irs 1975 L -1.03
18 1976 b= -1.29
19 1979 10 -1.30
20 1979 11 -1.34
21 19833 = -1.45
22 1983 10 -1.37F
23 1985 1 -1.06
2 1985 3 -A1.30
25 1985 11 -1.12
26 1985 12> -1.12
27 1990 Fa -1.39

4 4 » vl | Drought ewvents .~ Sheetz2 .~ Sheet3 . +d

Figure A.12: Detection of drought events






Appendix B

Software Package for Meteorological Drought Forecasting
Using Stochastic Models

B.1 Introduction

Occurrences of droughts al over the world are natural phenomena. Droughts represent
an increasing hazard in many countries. Consequently, it is of the utmost importance to
utilize efficient methods for drought events forecasting in order to assess and reduce
such natural water hazards to the minimal or manageable level. In this study a software
package named Drought_Forecasting has been devel oped.

The linear stochastic models ARIMA and multiplicative Seasonal Auto Regressive
Integrated Moving Average (SARIMA) model have been used to forecast droughts
based on the procedure of model development. The models have been applied to
forecast droughts using standardized precipitation index (SPI) seriesin Ruhr river basin.
The predicted results using the best models have been compared with the observed data
and with the predicted results obtained by using the well known software SPSS. The
predicted results show reasonably good agreement with the actual data with reasonably
accuracy.

B.2 Possibilities of Drought_Forecasting

As presented in chapter 5, the forecasting of the standardized precipitation index (SPI)
using stochastic models is not so easy to be done with several SPI data series. There are
many software packages which are used for time series forecasting. One of these
programs is the SPSS package which was used in drought forecasting in the previous
chapter. The SPSS package has many tools, not only time series forecasting, which need
an experienced user. However one of the advantages of the developed program, which
named Drought_Forecasting, isits simplicity. The main objectives of the program are:

Forecasting of the SPI values for a given SPI data series using ARIMA model.
Forecasting of the SPI values for a given SPI data series using SARIMA model.

The program is easy to use; the user needs only to prepare the data series to meet the
required format.
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B.3 Mathematical Core of the developed program

The Drought_forecasting program contains mainly tow models; the Auto Regressive
Integrated Moving Average (ARIMA) model and the Seasonal Auto Regressive
Integrated Moving Average (SARIMA) model. Both of the two models assume the time
series is stationary. With the appropriate modification, nonstationary series can also be
studied with the two models (See chapter 4). Details about ARIMA and SARIMA
model are presented in chapter 4.

B.4 Applications of the Program

The Drought_forecasting is valid for applying to any SPI data series. The user can start
the model by double clicking the Drought_forecasting icon with lift mouse button. The
Drought_forecasting title screen is shown figure B.1. In the File-menu the user can
select the option “Load Data” by one click on the button “Load Data’. Then the user has
to select a data file which must have the required format. Section B.5 presents the
requirements for a data series to be analyzed and the required format of the input file.

, ! .1
B ARIMA_Model s e [t |

File Help N

Meteorological Drought Forecasting in the Ruhr Basin
Using Stochastic Models

— Input Dataldentification I 2] 2010 Hydraulic Engineering Section, University of Wuppertal
Load Data | Developed by M.Sc. Mosaad Khadr, and Prof. Andreas Schlenkhoff

ACF of the Input Data |

PACF of the Input Data |

— FParameters Estimation

Select a Madel L. |

Start Simulation |

Save Results |

— Diagnostic Checking

ACF of the Residulas

PACF ofthe Residuals |
Histogram of the Residuals |

Mormal Probakiity of the Residuals |

— Forecasting

Forecasting of SPI Valuss

Plat 5Pl values (observed&forecasted) |
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Figure B.1: Drought_Forecasting initial screen
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B.5. Required Information Content of Data Series

Each data series in the input file must satisfy the requirements in order to avoid any
error. The requirements are:

The Drought_forecasting can only read data series in Microsoft Excel (.xIs),
Each SPI data series consists of one column,
Missing data are not allowed and any missing data leads to an error.

Above requirements must be satisfied for all data series which the user wants to
analyze.

In the following section an illustration will be presented using SPI_6 time series which
has been used in the previous chapter. As presented before in the previous chapter, the
ARIMA model has been applied to SPI_3, however for SPI_6 time series the SARIMA
model has been applied.

B.6 Model Identification (SPI_6)

After loading the data series (SPI_6), the ACF and PACF buttons will be visible then
the user can plot both ACF and PACF. The next step is to determine whether the series
is stationary or not by considering the graph of ACF (figure B.2). If a graph of ACF of
the time series values either cuts off fairly quickly or dies down fairly quickly, then the
time series values should be considered stationary. If a graph of ACF dies down
extremely slowly, then the time series values should be considered non-stationary. If the
series is not stationary, it can often be converted to a stationary series by differencing.
That is, the original series is replaced by a series of differences. The next step is to
check the PACF diagram (figure B.3) to find out the significant spikes which could give
an initial estimation for the suitable model. If the significant spikes are for n consecutive
lags only, then ARIMA model could be applied. If these significant spikes for n
consecutive lags and there are another significant spikes at lags k, 2k, ...., ik then thisis

s L e

Paramators Estimatian

Ribagsy 4 :
T ; d Y
! LT 7| | |14 :
| 4 3 ad i |
02 I 1 1% | I L
| a 10 20 s0 40 S0 40 0
Lag

FigureB.2: ACF plot used for the selection of candidate models for SPI_6 series
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Figure B.3: PACF plot used for the selection of candidate models for SPI_6 series

B.7 Estimation and Optimization of the Parameters (Non-Seasonal
and Seasonal Parameters, p, q, and P, Q)

As shown in figure B.2, the ACF is damping out with mixture of sine and exponential
curve. Thefirst value is significant in PACF which indicates an AR (1) as non-seasonal
part of model. Also in the PACF, there are significant spikes presented near lag 6, 12
and 18 which indicates a SARIMA model. Alternative SARIMA models were identified
by considering the ACF and PACF graphs of the SPI series. This indicates a possible
SARIMA (p, d, 9)(P,D,Q)s modelswithp=1:5,d =0:1, q=1:5, P =1.5, D = 0:1 and
Q = 1:5. All the combinations were examined to determine the best model out of these
candidate models.

One of the most famous problems in the use of stochastic models, such as ARIMA or
SARIMA, isthat of the optimization of its parameters, i.e. the finding of the best model.
This always is done by trial and error, i.e. to try severa models with different
parameters to find the model with minimum Low Akaike Information Criteria (AIC). In
the developed software, an optimization method was applied to find out the best model
for agiven range for each parameter as shown in the following section.

B.7.1 Seasonal Model SARMA (p, q) (P, Q)s

After selecting SARIMA model from the pop-up menu “select a model” the button
“start simulation” will be visible (figure B.4). One click to this button, an input dialog
will appear as shown in figure B.4. The user could easily put range for each parameter
of the following parameter:

The auto regressive parameter p from 1 to 5, the moving average parameter g from 1 to
5, the seasonal auto regressive parameter P from 1 to 5, the seasonal moving average
parameter Q from 1to 5 and the seasonal period S=6

The SARIMA model must contain at least one non-zero parameter in the seasonal part.
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B.7.2 Estimation of the Model Parameters

When the user clicks the button “save results’ al results will be automatically saved
and the user get a message defines the location of the saved results. All results saved in
one file (.xIs). This file contains the best values of the parameters (p,q,P,Q, AIC) and
also contains the obtained residuals of the model as shown in figure B.5. Results
showed that the model SARIMA (1,0,5)(1,0,1)s, with AIC=557, is the best one for the

selected input range of the model’ s parameters.
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B.8 Diagnostic Checking

Once the appropriate model has been fitted, the user can examine the goodness of fit. If
the fitted model is adequate, the residuals should be approximately white noise. The
theoretical ACF and PACF of white noise processes take value zero for lags J # 0, so if
the model is appropriate most of the coefficients of the sasmple ACF and PACF should
be close to zero. In practice, we require that about the 95 % of these coefficients should
fall within the non-significance bounds as shown in figure B.5 and figure B.6
respectively. For an adequate model, the histogram of residuals should show that the
residuals are normally distributed. This signifies residuals to be white noise (figure B.7).
Also one of the important tests is the cumulative distribution for the residual data. For
an adequate model, the graph of the cumulative distribution for the residual data
normally appears as a straight line when plotted on normal probability paper as shown
in figure B.8 (Chow et al., 1988; Durbin, 1960).
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FigureB.5: ACF plot used for Diagnostic Check of the selected model
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Figure B.6: PACF plot used for Diagnostic Check of the selected model
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Figure B.7: Histogram of the residuals of the selected model
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B.9 Forecasting of the SPI Index from Selected Models

After finishing the previous steps, the user can easily forecast SPI values by clicking the
button “ Forecasting of SPI values’. Then the user has to put the number of the required
forecasted values. The forecasted values could be plot by clicking the button “Plot SPI
values’ (figure B.9). Also the user can compare between the observed and the forecasted
values of selected model by clicking the button “comparison between observed &

forecasted” (figure B.10).
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Figure B.9: Comparison of calculated SPI with forecasted SPI
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B.10 Calibration and Accuracy of the Developed program
(Drought_Forecasting)

B.10.1 Models Verification &Validation

Drought_Forecasting program contains two models, namely ARIMA model and
SARIMA model. Modd verification and validation (V&V) are essentia parts of the
model development process if models to be accepted and used to support decision
making (Macal, 2005). It is the testing of the calibrated model against the additional set
of field data preferably under different to further examine the range of validity of the
calibrated model and this was done for the two models. Verification is done to ensure
that (Macal, 2005); the model is programmed correctly; the agorithms have been
implemented properly; the model does not contain errors, oversights, or bugs, the
specification is complete and mistakes have not been made in implementing the model

But now becomes the critical question; is the program itself has a degree of accuracy or
not. And thiswill be discussed in details in the following section.

B.10.2 Accuracy of the Developed program

Study of the accuracy of developed program (Drought_Forecasting) is very important to
develop meaningful judgment. The extent of decision maker being wrong or right with
regards to the obtained results of the program is greatly influenced by the accuracy of
the program. In this section the relative accuracy has been examined by comparing the
results of the program by the results of the well known computer program SPSS. The
two models (ARIMA & SARIMA) have been investigated.

B.10.2.1 Comparison between the results of the ARIMA Model obtained by
Drought_Forecasting& SPSS.

The ARIMA model has been fitted to the SPI_3 data series by using the developed
program Drought_Forecasting and the software SPSS. In order to find the best model by
using the software SPSS severa trials must be done (See chapter 7), but by using the
Drought_Forecasting the user can get directly the best model.

After severad trails using SPSS program, the ARIMA (3, 0, 2) model has been found to
the best one from the examined models. By using the Drought_Forecasting considering
the same data series, the ARIMA (1, 0, 6) model has been found to be the best model.
Table B.1 presents the estimated statistical parameter of the two models, table B.2
presents a comparison between the Statistical properties of the results obtained by the
two models.
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Table B.1: Comparison between statistical parameters
Auto Moving Residual .
. Residual
Model AlC regressive average Sum of .
Variance
parameters parameters Squares
0.07437
-0.8832
-SPSS- -0.0258
ARIMA (3,0,2) 1055.48 0.1217 -0.8548 206.98 0.3627
-0.02
-0.06
Drought_Forecasting 0.90 0.65
— . 202.62 .
ARIMA (1, 0, 6) 1047.143 0 02.628 0.3536
0.03
0.06
Table B.2: Comparison between Statistical properties
Standard Standard
Mean of the Mean of the deviation deviation
Model Calculated SPI forecasted SPI of the of the
Calculated | forecasted
SPI SPI
SPSS- -2.6132e-005 -3.3537e-005 1.0009 0.7996
ARIMA (3,0,2) ' ' ' '
Drought_Forecasting
ARIMA (1,0,6) 2.6132e-005 0.0030 1.0009 0.7998
= O Forecasted values
Q — Full Agreement
g i
o
L RMSE= 0.089487
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Figure B.11: Comparison of forecasted SPI_3 values using the SPSS program and
forecasted SPI_3 values using the developed program “Drought_Forecasting”
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B.10.2.2 Comparison between the results of the SARIMA Model obtained by
Drought_Forecasting& SPSS.

The ARIMA model has been fitted to the SPI_6 data series by using the developed
program Drought_Forecasting and the software SPSS. After severa trails using SPSS
program (See chapter 5), the SARIMA (1,0,3)(1,0,3)s model has been found to the best
one from the examined models. By using the Drought_Forecasting considering the same
data series, the SARIMA (1,0,5)(1,0,1)s model was found to be the best model. Table
B.3 presents the estimated statistical parameter of the two models and table B.4 presents
a comparison between the statistical properties of the results obtained by the two
models.

TableB.3: Statistical parameters of ARIMA model

(%]
v ) 20 E 4 8
ze | Br |[84p| T | ¢ g
o B v 3 <=2 25 59 o
- Q % Q = & Q 2 fa v o >
Model AlC e o £ c o E T 3 = S =
=0 c g O mp O c g S T o
2c s © c 9 ® S w T wn 32
S o o Qa g o 8 E $ 5
< = & ¢ [ K
©
- 0.0495
-SPSS- -0.231
SARIMA 581.33 0.9533 8(1)2% 0.9376 0.7747 89.66 | 0.155
(1,0,3)(1,0,3)s ’ 0.0114
0.1511
Drought_Forecasting 0.1531
SARIMA 557.92 1.124 -0.0199 | -0.1124 | 0.804 | 86.067 | 0.1517
(1,0,5)(1,0,1)¢ 0.2218
0.1403

Table B.4: Statistical properties of ARIMA (3, 0, 2), and ARIMA (1, 0, 6) Results

Standard Standard
Model Mean of the Mean of the deviation of deviation of
Calculated SPI | forecasted SPI the the
Calculated SPI | forecasted SPI

“SPSS- 1.9264e-004 | -8.7054e-004 1.0010 0.9151
SARIMA (1,0,3)(1,0,3)s ' ' ' '
Drought_Forecasting

SARIMA 1.9264e-004 -0.0195 1.0010 0.9164

(11015)(11011)6
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Figure B.12: Comparison of forecasted SPI_6 values using the SPSS program and
forecasted SPI_6 values using the developed program “Drought_Forecasting”
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Appendix C: Resultsof SPI Forecasting (SPI_12 and SPI_24)
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Figure C.1.1: ACF plot used for the selection of candidate models for SPI_12 series
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Figure C.1.2: ACF plot used for the selection of candidate models for SPI_12 series

Sample Autocorrelation

Sample Partial Autocorrelations

-02

-0.2

0.8
0.6r
04r
0.2

Lag

Figure C.1.3: ACF plot used for Diagnostic Check of the model
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Figure C.1.4: PACF plot used for Diagnostic Check of the model
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Figure C.1.6: Normal probability plot of the residuas—- SARIMA (1, 0, 3)(1,0,3)12

Table C.1.1: Statistical parameters of the model SARIMA (1, 0, 3)(1,0,3)12

Standard Standard
Mean of the Mean of the o o
deviation of deviation of
Model Calculated forecasted RMSE
the calculated | the forecasted
SPI SPI
SPI SPI
SARIMA
-1.7699e-005 | -2.9264e-004 1.0010 0.9418 0.273
(1,0,3)(1,0,3)12
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Figure C.1.7: Comparison of calculated SPI with forecasted SPI
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Figure C.2.2: ACF plot used for the selection of candidate models for SPI_12 series
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Figure C.2.3: ACF plot used for Diagnostic Check of the model
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Figure C.2.6: Normal probability plot of the residuals—- SARIMA (1, 0, 0)(6,0,0)24

Table C.2.1: Statistical parameters of the model SARIMA (1, 0, 3)(1,0,3)24

Standard Standard
Mean of the o o
Mean of the deviation of deviation of
Model Calculated RMSE
sp| forecasted SPI | the calculated | the forecasted
SPI SPI
SARIMA
3.6166e-005 6.0101e-004 1.0009 0.9684 0.2029
(1,0,3)(1,0,3)24
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Figure C.2.7: Comparison of calculated SPI with forecasted SPI
SARIMA (1, 0, 0)(6,0,0)24
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Appendix D: Sample of Input Data of Scenario Number 1 in the Optimization Model

Inflow Rr masa Rr mase Rr maa Rr maxa S Shin Srax Demand Enax
Month M.m? M.m? M.m? M.m? M.m? M.m? M.m? M.m? M.m? MkWh

1 41.58 25.92 25.92 25.92 3.89 137.00 80.00 138.00 15.00 11.39
2 28.56 25.92 25.92 25.92 3.89 80.00 150.00 15.00 11.39
3 32.07 25.92 25.92 25.92 3.89 80.00 160.00 15.00 11.39
4 15.29 25.92 25.92 25.92 3.89 80.00 170.00 15.00 11.39
5 9.69 25.92 25.92 25.92 3.89 80.00 170.00 15.00 11.39
6 6.54 25.92 25.92 25.92 3.89 80.00 170.00 15.00 11.39
7 7.68 25.92 25.92 25.92 3.89 80.00 170.00 15.00 11.39
8 8.70 25.92 25.92 25.92 3.89 80.00 170.00 15.00 11.39
9 11.04 25.92 25.92 25.92 3.89 80.00 160.00 15.00 11.39
10 17.15 25.92 25.92 25.92 3.89 80.00 150.00 15.00 11.39
11 27.71 25.92 25.92 25.92 3.89 80.00 138.00 15.00 11.39
12 34.50 25.92 25.92 25.92 3.89 80.00 138.00 15.00 11.39
1 137.00
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