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Vorwort (Hrsg.)

Die Bewirtschaftung von wasserwirtschaftlichen Systemen basiert ganz wesentlich auf einer

fundierten Analyse vergangener Zeitreihen und der anschlieÿenden Prognose über die Fort-

setzung der Zeitreihe in der Zukunft. Modelle wie von Thomas und Fiering sind in der

Hydrologie weit verbreitet und seit langem im Einsatz. Später wurde diese Art von Mod-

ellen zunehmend komplexer und allgemein zu sogenannten FARIMA Modellen (Fractional

Auto Regressive Integrated Moving Average Modellen) zusammen gefasst. Während bei de-

terministischen Modellen umfangreiche physikalische Daten über das wasserwirtschaftliche

System verfügbar sein oder erhoben werden müssen, werden stochastische Modelle anhand

weniger und leicht zu beobachtenden Zeitreihen wie Niederschlag, Temperatur und Ab�uss

aufgebaut. Dafür müssen die Zeitreihen (Daten) aber eine entsprechend hohe Qualität und

ausreichende Länge aufweisen. Die vorliegende Arbeit stellt anhand einer Reihe von An-

wendungsbeispielen die Grundlagen und Möglichkeiten verschiedener stochastischer Mod-

elle dar und diskutiert deren Anpassung für den beispielhaften Einsatz für die Talsperren

im Einzugsgebiet der Ruhr.

Für die Zeitreihenanalyse oder die Generierung stochastischer Daten werden mittlerweile

sehr komplexe mathematische Ansätze verwendet, die weit in die Mathematik und Informa-

tionstechnologie hineinreichen, in der Regel über die allgemeinen Kenntnisse der Wasser-

wirtschaftler hinausgehen und auf Ansätzen wie Künstliche Neuronale Netzwerke, Fuzzy

Logic Methoden und Genetische Algorithmen basieren und teilweise auch in Kombination

verwendet werden. Zudem sind entsprechend aufwendige Tests und Parameteranpassungen

vorzunehmen, um die Modelleigenschaften zu beschreiben und an die Beobachtungen anzu-

passen. Hier liefert die vorliegende Arbeit einen Beitrag, die Lücke zwischen theoretisch

formulierten mathematischen Ansätzen und den pragmatisch ausgerichteten Anwender mit

Expertenwissen der wasserwirtschaftlichen Praxis zu schlieÿen.Unter anderem wird die viel

diskutierte Persistenz in den Zeitreihen (long memory) auf unterschiedliche Art und Weise

dargestellt. Seit Hurst Anfang der 50ziger Jahre diesen E�ekt beschrieben hat, wird über

die Bestimmung und die Auswirkung für die Wasserwirtschaft diskutiert. Die wichtigste
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aufgegri�ene Frage lautet dabei, wie dieser innere Zusammenhang bei der Generierung von

künstlichen Zeitreihen berücksichtigt werden kann. Schlieÿlich werden noch zwei gängige

Verfahren zur Untersuchung der Stationarität vorgestellt. Ebenso interessant sind die Un-

tersuchungen zur Zeitreihengenerierung mit Erhaltung der Hauptmomente der Häu�gkeits-

verteilung und unter Berücksichtigung der zeitlichen Abfolge des Auftretens, also der Ko-

rrelation. Es ergeben sich zahlreiche Ansätze, die Möglichkeiten der Zeitreihenanalyse für

die Wasserwirtschaft stärker nutzbar zu machen.

Wuppertal, Januar 2011 Andreas Schlenkho�
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Kurzfassung

Die Anwendung von stochastischen Methoden und datenbasierten Modellen zur Analyse

und Prognose von Zeitreihen natürlicher Prozesse hat bei der Bewirtschaftung und Ver-

waltung von Wasserressourcen eine lange Tradition. In der vorliegenden Dissertation wird

aufbauend auf den grundlegenden statistischen Methoden eine Reihe von gebräuchlichen

stochastischen und datenbasierten Modellen auf die wasserwirtschaftlichen Fragestellungen

angewendet. Die Modelle werden gegebenenfalls an die wasserwirtschaftlichen Fragestel-

lungen angepasst oder bezüglich der Periodizität weiterentwickelt. Nach der theoretis-

chen Beschreibung werden die Eignung und die Anwendbarkeit der untersuchten Modelle

beispielhaft für die Zu�ussdaten einiger Talsperren im Einzugsgebiet der Ruhr dargestellt

(Bigge, Henne, Möhne und Sorpe). Hierbei stehen die Methoden und Modelle im Vorder-

grund der Betrachtung. Eine unmittelbare betriebliche Anwendung ist nicht Gegenstand

der Untersuchung.

Diese Arbeit konzentriert sich auf die folgenden Themen:

1. Untersuchung stochastischer Eigenschaften von Zu�üssen

Die stochastischen Eigenschaften der Zu�üsse der Talsperren werden untersucht. Die Zu-

�üsse werden in Bezug auf die Saisonabhängigkeit, die Trendentwicklung, die Korrela-

tion und die Stationarität betrachtet. Die Ergebnisse der saisonalen Betrachtung der

untersuchten Zeitreihen der täglich, 10-täglich und monatlich gemittelten Werte werden

dargestellt und zeigen, dass:

� die Saisonalität stark ausgeprägt ist und sich nicht nur auf die Mittelwerte, sondern

auf alle statistischen Werte auswirkt,

� der Variationskoe�zient in trockenen Zeiten höhere Werte hat,

� der Schiefekoe�zient ebenfalls höhere Werte in trockenen Zeiten aufweist und

umgekehrt,
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� die Autokorrelationskoe�zienten bei allen Zu�usszeitreihen in Jahreszeiten mit einem

hohen Zu�uss niedrig und in Jahreszeiten mit einem geringen Zu�uss relativ hoch

sind. Dies tri�t allerdings nicht für die Zeitreihen der Tagesab�üsse zu, die eine

starke Korrelation über die Länge eines Tages aufweisen.

Trenduntersuchungen auf der Basis des saisonabhängigen Mann-Kendall Tests zeigen, dass

nur bei der Sorpe ein Abwärtstrend bei allen untersuchten Zu�usszeitreihen mit einem

Signi�kanzniveau von 5 % angenommen werden kann.

Die erweiterten (Augmented) Dickey-Fuller und Phillips-Perron Unit-Root-Tests werden

zur Prüfung der Stationarität, ebenfalls mit einem Signi�kanzniveau von 5 %, benutzt. Hi-

erzu werden die logarithmierten und standardisierten Werte der aggregierten (täglichen, 10-

täglichen, monatlichen, dreimonatlichen, sechsmonatlichen und jährlichen) Zu�usszeitrei-

hen verwendet. Die Ergebnisse dieser Tests zeigen, dass alle Zu�usszeitreihen stationär zu

sein scheinen.

2. Vorhersage täglicher Zu�üsse

Für die Vorhersage der täglichen Zu�üsse zu den Talsperren für den nächsten und übernäch-

sten Tag werden folgende Modellgruppen verwendet: BPNN (Back Propagation Neural

Network), ANFIS (Adaptive Neuro-Fuzzy Interference Systems), ARMA (Autoregressive

Moving Average) und ARFIMA (Autoregressive Fractionally Integrated Moving Average).

Diese Modelle basieren zum Teil auf einer erweiterten Kombination von Autoregression und

Moving Average Verfahren sowie auf Methoden von Neuronalen Netzwerken und Ansätzen

nach der Methode der Fuzzy Logic. Die Simulationsmodelle werden nach der angenomme-

nen Verfügbarkeit von Eingangsdaten (Zu�uss bzw. Zu�uss und Niederschlag) in zwei

Modellgruppen unterteilt:

Univariate Modelle (Gruppe M1-1 and Gruppe M1-2)

� Verwendete Modellgruppen: BPNN, ANFIS, ARMA und ARFIMA.

Multivariate Modelle (Gruppe 2)

� Verwendete Modellgruppen: BPNN und ANFIS.

Die in dieser Dissertation für das BPNN Modell verwendeten "Trainingsalgorithmen"

basieren auf einem Ansatz nach Levenberg-Marquardt. Als Aktivierungsfunktionen wer-

den tan-sigmoid Funktionen für die Neuronen im "Hidden-Layer" und lineare Funktionen

für die Output Neuronen verwendet. Der Problematik der parametrischen Überbestim-

mung wird sowohl bei den BPNN- als auch bei den ANFIS-Modellen durch ein de�niertes
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Abbruchkriterium (early stopping procedure) begegnet. Die BPNN-Modelle werden im

Trainingsstatus mit "nur" einem "hidden layer" ausgestattet. Die Anzahl der Neuronen

und der set der �besten� Eingangsvariablen werden mittels einer "trial-and-error" Routine

ermittelt. Die beste Anpassung für das ANFIS-Modell wird mit einer weiteren "trial-and-

error" Routine ermittelt, wobei die Anfangsparameter aus dem BPNN-Model übernommen

werden. Die jeweilige Ordnung für die Ansatzfunktion von "Autoregressiv" und "Moving

Average" für die ARMA- und ARFIMA-Modelle wird bis zur fünften Ordnung formuliert.

Als Bewertung der Modellgüte wird das AIK-Kriterium (Akaike Information Criterion)

verwendet. Die Prognosegüte der ARMA- und ARFIMA-Modelle wird mit dem "Ljung-

Box-Test" mit einem Signi�kanzniveau von 5 % getestet. Dieser Test zeigt, dass die Nullhy-

pothese (die Annahme eines geeigneten Modellsatzes) nur für die Simulation des täglichen

Zu�usses zu der Henne- und Möhnetalsperre bei Verwendung des ARFIMA-Modells ver-

worfen wird. Um die Modellgüten miteinander zu vergleichen, werden folgende Krite-

rien verwendet: Korrelationskoe�zient, Fehlerquadratmethode, mittlerer relativer Fehler

(AREP), Index of Agreement, Nash-Sutcli�e-Koe�zient. Der Vergleich zeigt, dass die ver-

wendeten univariaten Modelle mit Ausnahme des AREP ähnliche Leistungen aufweisen.

BPNN- und ANFIS-Modelle sind dabei für die Prognose der täglichen Zu�üsse geringfügig

besser einzuschätzen.

3. Ergänzung und Schlieÿung von Datenlücken in Zu�usszeitreihen

Unterschiedliche, aber gebräuchliche Modellansätze, wie BPNN, ANFIS und GLM (Gener-

alized Linear Model) werden auf ihre Eignung zum Füllen von Datenlücken in den täglichen

Zu�usszeitreihen der Talsperren bewertet. Grundlage hierfür ist die hohe Korrelation in

den untersuchten Zeitreihen. Der Zu�uss zu einer Talsperre wird hierbei anhand der Zu-

�üsse der drei anderen Talsperren geschätzt, die im Sinne einer Regionalisierung ähnliche

Eigenschaften aufweisen. In Bezug auf die vorgeschlagenen Werte weisen BPNN-Modelle

kleinere Gesamtabweichungen, gemessen als Fehlerquadrat, zum tatsächlichen Wert auf.

Das BPNN-Modell wird daher beispielhaft verwendet, um monatliche Zu�üsse zur Bigge-

talsperre zu generieren.

4. Generierung monatlicher Zu�üsse

Zum Generieren monatlicher Zu�ussdaten werden weiterhin folgende Modelle verwendet:

T-F (Thomas-Fiering), Gamma T-F, MC (Monte Carlo) und PHMM (Periodic Hidden

Markov Model). Hierbei werden die Zufallszahlen über eine inverse Transformation gener-

iert. Für die Gamma T-F-Modelle muss zudem die Schiefe der Verteilungsfunktion mittels

Wilson-Hilferty Transformation abgebildet werden. Die Persistenz der Monatsab�üsse,

soweit vorhanden, wird optional über eine Cholesky Decompostion erhalten. Mit diesen
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Modellen werden Zeitreihen von 100, 300 und 500 Jahren Länge generiert. Die oben er-

wähnten statistischen Parameter werden mit denen der beobachteten Zeitreihen verglichen.

T-F-, MC- und PHMM-Modelle stellen die statistischen Parameter Mittelwert, Standard-

abweichung und Schiefekoe�zienten gut bis sehr gut dar und deutlich besser als das Gamma

T-F-Modell.

PHMM ist eine in dieser Dissertation neu entwickelte Methode, welche mit Ausnahme

der Persistenz alle statistischen Parameter sehr gut abbilden kann. Dies wird beson-

ders gut anhand einer graphischen Auswertung deutlich. Hierfür werden die Methode

der Quantil-zu-Quantil-Darstellung und die �Survivor Function Plot�-Methode verwendet.

Diese Darstellungen zeigen, dass die MC- und PHMM-Modelle die Verteilungsfunktio-

nen sehr gut wiedergeben können. Dies betri�t auch den Bereich der Extremwerte, wo

die PHMM-Methode allerdings besonders überzeugt. Bezüglich der Persistenz bedarf die

PHMM-Methode einer Weiterentwicklung.

Aus den so erzeugten Zeitreihen wird beispielhaft ein konsekutiver Satz von fünf Jahren so

bestimmt, dass die Zu�usssumme minimal wird und weiteren Untersuchungen zugeführt

werden kann.

5. Vorhersage der Flieÿzeit der Wasserabgaben aus Talsperren

Historische Ab�ussdaten (15 Minutenzeitreihen) werden zur Abschätzung der Flieÿzeit der

Wasserabgaben aus den Talsperren bis zu einigen Kontrollpegeln �ussabwärts benutzt.

Die Flieÿzeit wird zunächst in einem Nicht-Linearen Regressionsmodell (NLR) mit dem

Ab�uss an dem Kontrollpegel in Relation gestellt. Die geschätzten Flieÿzeitwerte und

die entsprechende Ab�ussmenge an den Abgabepegeln und an den Kontrollpegeln �ussab-

wärts werden weiterhin in die Modelle ANFIS, BPNN und MLR (Multi Linear Regression)

als Datenbasis eingegeben. Wegen der begrenzten Anzahl an auswertbaren Ereignissen

werden die Daten sowohl bei der Anpassung als auch bei der Validierung genutzt. Hier-

für werden die beiden folgenden Verfahren verwendet: �k-Fold-Cross-Validation (KFCV)�

und �Leave-One-Out-Cross-Validation (LOOCV)�. Als Ergebnis werden ANFIS-Modelle als

eine geeignete Methode für die Flieÿzeitvorhersage für die Talsperren im Ruhreinzugsgebiet

vorgeschlagen.

Der obere und mittlere Flussabschnitt der Ruhr wird zudem mit einem eindimensionalen

instationären hydrodynamischen Modell (HEC-RAS) simuliert. Die Ergebnisse werden mit

denen des NLR-Modells verglichen und erreichen für mittlere Ab�üsse gute Ergebnisse.

Bei kleineren Ab�üssen versagen beide Modelle bzw. die Standardabweichung erreicht

unakzeptable Werte.
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Für die Bereitstellung der Datengrundlage, ohne die eine solche Arbeit nicht möglich

gewesen wäre, wird dem Ruhrverband besonders gedankt. Für die in dieser Disserta-

tion beschriebenen Modelle wurden Codes und GUIs in MatLab (The MathWorks, Inc.)

erstellt.





Summary

Application of stochastic methods and data-driven models to time series analysis and

reservoir operation has been a major focus of water resources planning and management.

The aim of this study is to investigate the suitability of applying these models in water

resources planning and management. Stochastic analysis and data-driven models are ap-

plied to the management and operation of reservoirs (case study, the Bigge, Henne, Möhne

and Sorpe reservoirs in the Ruhr River basin). The ability of these models to accurately

simulate water resources management problems is the �rst priority of this study. However,

an operational application is not the main object.

This thesis is focused on the following topics:

1. The stochastic properties of in�ow processes

The stochastic characteristics of the in�ow processes of the reservoirs are examined. The

in�ow processes are investigated for seasonality, trend, long memory and stationarity. The

results of the seasonality test of the daily, 10-days and monthly in�ow time series show

that:

� The in�ow time series have a clear seasonality in the mean and standard deviation.

Seasons with high mean values have also high standard deviations.

� The coe�cient of variation has higher values in the dry periods.

� The higher values of the skewness occur in seasons with low �ow and vice versa.

� The autocorrelation coe�cients are low for high in�ow seasons and high for seasons

with low in�ow for all in�ow time series, except daily in�ow time series at lag of one

day.

The results of the seasonal Mann-Kendall test at 5 % signi�cance level indicate that a

downward trend is only detected for all tested in�ow time series of the Sorpe reservoir.

The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests are used

ix
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to test the stationarity of the log-transformed and standardized daily, 10-days, monthly,

3-months, 6-months and annual in�ow time series at 5 % signi�cance level. The results

show that all in�ow time series appear to be stationary by applying log-transformation

and standardization to them.

2. Forecasting of daily in�ow

The applicability of the backpropagation neural network (BPNN), adaptive neuro-fuzzy

inference system (ANFIS), autoregressive moving average (ARMA) and the autoregres-

sive fractional integrated moving average (ARFIMA) models are explored to one-step and

two-steps ahead forecasting of the daily in�ow into the Bigge, Henne, Möhne and Sorpe

reservoirs. These models are divided into two groups according to the potential input

variables:

Univariate models (group M1-1 and group M1-2)

� The simulation models are the BPNN, ANFIS, ARMA and ARFIMA.

� The potential input variables are the average daily in�ow.

Multivariate models (group M2)

� The simulation models are the BPNN and ANFIS.

� The potential input variables are the average daily in�ow and the daily rainfall.

The training algorithm that is utilized for all the BPNN models in the dissertation is

Levenberg-Marquardt algorithm and the used activation functions are tan-sigmoid and

linear functions for the hidden layer neurons and for the output one respectively. The

over�tting problem is suppressed in the BPNN and ANFIS models by applying the early

stopping procedure. The BPNN models are trained using one hidden layer. The number

of neurons in the hidden layer and the optimal input variables in the BPNN models are

determined using a trial-and-error procedure. Starting with the input variables of the

optimum BPNN models, another trial-and-error procedure is developed to �nd the ANFIS

models which have the best performance. The orders of the autoregressive (AR) and

moving average (MA) components in the ARMA and ARFIMA models are determined by

trying di�erent values between 0 and 5. The Akaike Information Criterion (AIC) is used

to select the best ARMA and ARFIMA models (the models with minimum AIC). The

diagnostic of the ARMA and ARFIMA models are tested by applying the Ljung-Box test

at 5 % signi�cance level and the results show that the null hypothesis of model adequacy is

rejected only for the simulated daily in�ow time series of the Henne and Möhne reservoirs

using the ARFIMA model.
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Di�erent e�ciency criteria (correlation coe�cient, root mean square error, average relative

error percentage, index of agreement and Nash-Sutcli�e coe�cient) are used to compare the

performance of the models. The comparison shows that the performances of the models,

group M1-1 and the models, group M1-2, don't have signi�cantly di�erent performance

except for the average relative error percentage (AREP). The BPNN and ANFIS models

have the minimum values of the AREP for all daily in�ow time series. The models, group

M2, are found to outperform the models group M1-2, in respect of all used e�ciency

criteria.

3. Filling missing values in daily in�ow time series

The e�ciency of the BPNN and ANFIS models and the generalized linear model (GLM)

for �lling the missing values in the daily in�ow time series of the Bigge, Henne, Möhne and

Sorpe reservoirs are explored. High correlation values between the daily in�ow time series

are detected. Therefore, the in�ow of each reservoir is estimated using the in�ow data of

the other reservoirs as input variables. The BPNN models are trained using one hidden

layer with three neurons. ANFIS models with three membership functions (Gaussian

type) associated with each input variable are used. The link function and distribution of

the response for GLM are selected using a trial-and-error procedure. In respect of the

estimated values of the root mean square error (rmse), the BPNN models have better

performances for �lling the missing data. The BPNN model is employed to extend the

time series of the monthly in�ow into the Bigge reservoir in the period from 11/1960 to

10/1965.

4. Generation of the monthly in�ow data

The Thomas-Fiering (T-F), Gamma Thomas-Fiering (Gamma T-F), Monte Carlo (MC)

and periodic hidden Markov (PHMM) models are applied to generate monthly in�ow data

into the Bigge, Henne, Möhne and Sorpe reservoirs. The inverse transform method is

used to generate random numbers in the T-F and MC models. However, Wilson-Hilferty

transformation is proposed to reproduce skewed noises in the Gamma T-F model. The

Cholesky decomposition method is used to preserve month-to-month correlation in the

generated monthly in�ow data by the MC model. Three monthly in�ow time series with

lengths 100, 300 and 500 years are generated using T-F, Gamma T-F, MC and PHMM.

The statistical parameters (mean, standard deviation, month-to-month correlation and

skewness) of the generated monthly in�ow are compared with those of the observed one.

The results of the comparison show that the T-F, MC and PHMM models reproduce most

of the statistical parameters very well. PHMM is a methodology newly developed within

this thesis to generate monthly in�ow. PHMM has the ability to reproduce all statistical
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parameters (except month-to-month correlation) very well. Finally, using the quantile-

quantile (Q-Q) and the survivor function plots, the observed and the simulated monthly

distributions are graphically compared. These plots indicate the ability of the MC and

PHMM models to reproduce the statistical distribution of the observations, in particular

the extreme values with superiority of the PHMM. More research is needed to improve

the performance of PHMM in preserving month-to-month correlation. A procedure is

developed to detect the expected consecutive 5 years that have minimum total in�ow

using the MC model. The generated monthly in�ow time series during the 5 years can be

adopted as an in�ow scenario for optimization of the reservoir operation.

5. Prediction of the travel time of reservoirs' releases along the Ruhr

Historical �ow data (15 minute time series) are used to estimate the travel time of the

released �ow from the Bigge, Sorpe, Möhne and Henne reservoirs to some downstream

gauges. The estimated travel time values are used to build the nonlinear regression (NLR)

models to detect the relation between travel time and the �ow at each downstream gauge.

These NLR models can be easily used to predict the travel time when knowing the �ow

at the downstream gauge. The estimated travel time values along the reach from gauge

Ahausen to gauge Hagen-Hohenlimburg are simulated using the ANFIS, BPNN and mul-

tiple linear regression (MLR) models. Due to the limited amounts of the travel time data,

k-fold cross validation (KFCV) and leave-one-out cross validation (LOOCV) are used to

estimate the generalization errors in the ANFIS, BPNN and MLR models. The values of

the generalization error show that the ANFIS model A5 outperforms the other models.

The ANFIS model A5 has the following input variables:

1. The increase in the reservoir release (∆QR) with two membership functions (Gaussian

type).

2. The discharge at the downstream gauge (QD) with three membership functions

(Gaussian type).

The upper and middle reaches of the Ruhr River are simulated using the Hydrologic En-

gineering Center River Analysis System (HEC-RAS) and the results are compared with

those of the NLR model. The comparison shows a moderate agreement between the results

of the two models.

A graphical user interface (Fliesszeit GUI) is developed using Matlab (The MathWorks,

Inc). For any 15 minutes historical �ow data this GUI can be used to:
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1. Determine the jump points in the �ow at the release gauge and the corresponding

downstream gauges.

2. Plot the hydrographs at each jump point. These hydrographs can be used to estimate

the travel time.

3. The estimated travel time value can be manually entered to update the travel time

values that have been estimated previously.

4. The simulation models can be trained using the updated travel time values.

Especially thanks to the Ruhr authority for providing us with data basis without which

this work would not have been possible.
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ACF autocorrelation function

ACV F autocovariance function

ADF augmented Dickey-Fuller unit root test

AIC Akaike information criterion

ANFIS adaptive neuro-fuzzy inference system

ANN arti�cial neural network

AR autoregressive model

AREP relative average error percentage

ARFIMA autoregressive fractional integrated moving average model

ARMA autoregressive moving average model

BLPs best linear predictors

BPNN backpropagation neural network model

cdf cumulative distribution function

CI con�dence interval

DDM data-driven modeling

DF Dickey-Fuller distribution

DP dynamic programming

EA evolutionary algorithms

ENSO El Niño Southern Oscillation

fBm fractional Brownian motion

fGn fractional Gaussian noise

FI fractionally integrated part in the ARFIMA model

FIS fuzzy inference system

FL Fuzzy logic

Gamma T-F Gamma Thomas-Fiering model
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Chapter 1

Introduction

1.1 Introduction

1.1.1 The Ruhr River basin

Introduction

The Ruhr is a right tributary of the Rhine in North Rhine-Westphalia, with a catchment

area of 4485 km2 and length of 219.50 km. An important economic signi�cance of the Ruhr

is now in the drinking water supply of the Ruhr district, as well as in power generation.

The Ruhr is also a lifeline to industry and municipalities in North Rhine-Westphalia. The

Ruhr valley is a major recreation area for the metropolitan area Rhein-Ruhr. The long-

term average discharge of the Ruhr is 79 m3/s at Mülheim near its mouth. The layout of

the Ruhr River basin is displayed in �gure 1.1. The �gure shows also the main gauges and

reservoirs in the basin.

1.1.2 Runo� and water demand

As mentioned before, the average �ow rate of the Ruhr at the point of in�ow into the

Rhine is approximately 80 m3/s. However, in dry periods, the Ruhr's �ow rate can sink to

3.5 m3/s. By contrast, the Ruhr can increase its �ow to a maximum of about 2000 m3/s

during a �ood. In contrast to some other districts in Germany, the public water supply

in the Ruhr district is not taken directly from the reservoirs by pipelines, but indirectly

transported by the Ruhr River to water works (Renz, 1983). The water discharged from

1
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reservoirs is used for a variety of purposes. The water demand can be covered from the

natural runo� except in the dry periods in which the minimum runo� is guaranteed by water

discharged from the reservoirs. The Ruhr River basin contains 15 reservoirs. Table 1.1 lists

the data of the main reservoirs (Bigge, Henne, Möhne, Sorpe, Ennepe and Verse). The

Ruhr River supplies not only the Ruhr River basin but also the adjacent basins (i.e. the

drainage basins of the Emscher, Lippe and Wupper Rivers). About 50 % of the abstracted

water is exported to neighboring catchments. Figure 1.2 gives the values of the exported

and the total abstracted water from the Ruhr River basin in the time from 1900 to 2005.
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Figure 1.1: Layout of the Ruhr River
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Figure 1.2: Annual abstracted and exported water in the Ruhr catchment area between 1900 and

2005 (Ruhrverband, 2005)
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Table 1.1: Data of the main reservoirs in the Ruhr River basin

Möhne Henne Sorpe Bigge* Ennepe Verse Total

Catchment area (km2) 436.37 98.5 100.3 287.43 48.2 24.1 994.9

Gross storage capacity

(million m3)

134.5 38.4 70.37 171.7 12.6 32.8 460.37

Dead storage capacity

(million m3)

6.7 2 3.5 7.5 0 2 21.7

Net storage capacity (mil-

lion m3)

127.8 36.4 66.87 164.2 12.6 30.8 438.67

Mean annual in�ow (mil-

lion m3) **

193 58.11 42.28 238.97 40.02 21.79 594.17

* Lister and Bigge reservoir system.

** see table 2.1 for more details.

1.2 Hydrology versus water resources management

Hydrology and water resources management have a strong impact on the other. Hydrology,

economic and political are considered as inputs to water resources management. Compar-

ing with the other factors, the relative importance of hydrology seems to be decreasing. In

the face of this, hydrological information plays the most important role in water resources

system design and management. Water resources projects need hydrological data for use

in their planning, design, construction and optimization. Due to the growing demand

for water, it is required to apply an integrated approach to water resources management,

incorporating surface and underground water, including return �ows and taking into con-

sideration all potential uses: industrial, river navigation, irrigation, municipal and envi-

ronmental. For this reason, to be able to manage water resources we must know in what

quantity, quality and variation they are likely to be in the foreseeable future. The optimum

results in the planning and management of water resources systems can be best achieved

by an integrated cooperation between those involved in hydrology, water management and

water use with those versed in economics, ecology and the social sciences.



4 1 Introduction

1.3 Data driven modeling

1.3.1 Introduction

Di�erent types of models are used in hydrology such as physical models, mathematical

models, empirical models, etc. The area of empirical modeling received an important

boost due to the availability of data and the development in the area of machine learning.

Such models can be called data-driven models. Data-driven modeling (DDM) is based on

the analysis of all the data characterizing the system under study (Solomatine and Ostfeld,

2008). A data-driven model of a system can be de�ned as the model which connects the

system state variables (input, internal and output variables) with only a limited knowledge

of the details about the "physical" behavior of the system. Hybrid models combine both

of data-driven models and physical models. Arti�cial intelligence, data mining, machine

learning, etc. have contributed to develop DDM. Statistical methods, arti�cial neural

networks and fuzzy rule-based systems are the most popular methods used in data-driven

modeling of hydrological systems.

1.3.2 Machine learning

Machine learning is the basis of data-driven modeling. It can be de�ned as the algorithm

in which an unknown dependency between a system's inputs and its outputs is determined

from the available data (Mitchell, 1998), see �gure 1.3. The discovered dependency can

be used to predict the system's outputs from the known input values. The learning tasks

in data-driven modeling can be divided into the following four types (Solomatine, 2002):

Classi�cation: to �nd a way of classifying unseen examples.

Association: to identify the association between variables characterizing the system.

Clustering: this process is used to classify objects into relatively larger and

meaningful categories.

Regression: where the task constitutes of predicting a real value associated with an

input data point.
The task of learning can be classi�ed into two categories: supervised learning and un-

supervised learning. Supervised learning requires a set of input-output data values. In

contrast to supervised learning, in unsupervised learning there are no target outputs

available.
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Figure 1.3: Learning in data driven modeling (Solomatine, 2002)

1.3.3 Data sets

The available data is usually split into three data sets (training, testing and validation data

sets). These data sets should have identical statistical distributions to ensure that these

three data sets come from the same population. The training data set is used to train

the model (to determine the optimal parameters). The testing procedure is a procedure

during which the predictive capability of the model is tested with the testing data set.

The validation data set is used to validate the generalization ability of the model and to

avoid the over�tting phenomenon. The generalization ability of the models and how the

validation data set can be used to avoid the over�tting phenomenon are discussed in detail

in chapter 3, section 3.3.4.

1.3.4 Popular data-driven methods and typical application

Data-driven models have proven their applicability to various problems related to river

basin management: modeling short-term forecasting and classi�cation of hydrology-related

data (Solomatine and Ostfeld, 2008). They gained more popularity in the last decade due

to the following advantages (Wang, 2006):

� They can represent arbitrarily complex processes based on mathematical criteria.

� They are easy to apply for di�erent conditions because the modeling and forecasting

procedure is usually analogous.

� The analysis of the structure and parameters of data-driven models can sometimes

provide useful information on the dynamics of phenomenon of interest.
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In the following, some of the popular data-driven approaches are presented:

Regression model

Regression analysis was developed to detect the presence of a mathematical relation be-

tween two or more variables subject to random variation. Regression analysis is widely

used for prediction and forecasting.

Time series model

Time series analysis became a major tool in di�erent applications in hydrology and water

management �elds. Time series models can be divided into two sets according to the

number of time series in the model as follows:

i) Univariate time series models.

ii) Multivariate time series models.

They are used for building mathematical models to generate synthetic hydrologic records,

to forecast hydrologic events, to detect trends and other changes in hydrologic records and

to �ll in missing data and extend records.

Arti�cial neural network model

Arti�cial Neural Network (ANN) is an information processing system that is inspired by the

way the brain processes information. Mathematically, ANN can be de�ned as a complex

nonlinear function with many parameters that are adjusted (trained) in such a way that

the ANN output becomes similar to the measured output on a known data set.

Fuzzy logic model

Fuzzy logic model (FL) was originally identi�ed by Zadeh (1965). Fuzzy logic is applied

in system control and analysis design, because it shortens the time for engineering devel-

opment. In the case of highly complex systems, fuzzy logic is sometimes the only way to

solve the problem.
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1.4 Objectives of the research

The objectives of this research are:

1. Investigate the in�ow processes of the reservoirs Bigge, Henne, Möhne and Sorpe for

trend, seasonality, stationarity and long memory for di�erent timescales (e.g., daily

time series; 10-days time series; ...). This is very important to understand the in�ow

processes, also it is an important task in hydrological modelling.

2. Forecast one-day and two-days ahead daily in�ow for short-term operation of the

reservoirs.

3. Fill the missing data in the daily in�ow time series and extend the daily in�ow time

series of the Bigge reservoir in the period from 1/11/1960 to 31/10/1965.

4. Generate the monthly in�ow process which plays an important role in the optimal

operation of the reservoirs. As an application, the generated consecutive 5 years with

minimum mean in�ow are detected and can be used as an in�ow scenario for optimal

operation of the reservoirs during the dry periods.

5. Predict travel time to add the users in approximating the time that release from

reservoirs (water) may become available to them.

1.5 Outline of the thesis

This thesis consists of seven chapters including the introduction as chapter 1 (the present

chapter). The other six chapters can be summarized as follows:

� Chapter 2 discusses the stochastic properties of the in�ow time series of the Bigge,

Henne, Möhne and Sorpe reservoirs.

� In chapter 3, BPNN, ANFIS, ARMA and ARFIMA are used to forecast the daily

in�ow into the Bigge, Henne, Möhne and Sorpe reservoirs.

� In chapter 4, BPNN, ANFIS and GLM are applied for �lling in the missing values

in the in�ow time series of the Bigge, Henne, Möhne and Sorpe reservoirs. The best

model is used to extend the monthly in�ow time series of the Bigge reservoir.

� In chapter 5, we use T-F, Gamma T-F, MC and PHMM models to generate the

monthly in�ow data into the Bigge, Henne, Möhne and Sorpe reservoirs.
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� Chapter 6 discusses the applicability of using ANFIS, BPNN and MLR models for

predicting the travel time of reservoirs releases along the Ruhr and Lenne Rivers.

� Chapter 7 summarizes the most relevant conclusions of this dissertation. Future work

is also identi�ed.

Each chapter is self-sustained and includes its own references and conclusions.

Four Matlab/GUI (graphical user interface) based simulation tools were developed to im-

plement stochastic analysis and simulate the di�erent models as follows (see appendix A,

�gures A.1 through A.11):

Vorhersage GUI

To implement the stochastic analysis of the time series and to simulate T-F, Gamma T-F,

MC and PHMM models for monthly in�ow generation.

Fehlende Daten GUI

To simulate BPNN, ANFIS and GLM models for �lling in missing values.

Zu�ussprognose GUI

To simulate BPNN, ANFIS, ARMA and ARFIMA models for daily in�ow forecasting.

Fliesszeit GUI

To detect the changes in reservoir releases and to simulate ANFIS, BPNN and MLR models

for travel time prediction.
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Chapter 2

Stochastic properties of reservoirs in�ow pro-

cesses

2.1 Introduction

The objective of the stochastic analysis of stream�ow processes is to identify and analyze

the di�erent components of a given time series. To do this, it is necessary to conduct the

following analyses:

� Trend analysis.

� Stationarity analysis.

� Seasonality/Periodicity analysis.

� Long memory analysis.

In this chapter, we investigated the stochastic characteristics of the in�ow processes of the

Bigge, Henne, Möhne and Sorpe reservoirs for di�erent timescales (e.g., daily time series;

10-days time series; ...)

2.2 Data used

The historical records of the daily in�ow of the Bigge (1/11/1966 - 31/10/2006), Henne

(1/11/1960 - 31/10/2006), Möhne (1/11/1960 - 31/10/2008) and Sorpe (1/11/1960 -

31/10/2006) reservoirs are used in the present study. The daily in�ow time series are

11
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compiled in the water year system, which covers the period from 1 November to 31 Octo-

ber. Figures 2.1.a, b, c and d show the plots of the daily in�ow time series of the Bigge,

Henne, Möhne and Sorpe reservoirs respectively.

2.3 Seasonality analysis

Many time series in ecology, hydrology, economic, etc., display seasonality (periodic �uc-

tuation). Hydrological time series often exhibit annual variation. The season may denote

a day, a 10-days, a month, etc. In the present study, the available daily in�ow data are

aggregated to 10-days (36 seasons), monthly (12 seasons), 3-months (4 seasons), 6-months

(2 seasons) and annual series by taking the average of the in�ow during each timescale. For

10-days in�ow time series, all months are assumed to have a length of 30 days (the 31th

day is neglected if it exists) and the assumed in�ow during the days 29 and 30 February

are assumed to be equal to the in�ow during the previous day (28 February). Table 2.1

gives the statistical characteristics (mean, x̄, standard deviation, SD, skewness, g and lag

one autocorrelation function, ACF ) for the di�erent timescales for each reservoir.

The following approach is used for the analysis of seasonality in the daily in�ow time series,

Z, of length, N (e.g., Mitosek, 2000; Martins et al., 2008):

1. Delete the day 29 Feb. of the leap year.

2. Fill in the missing values in the daily in�ow time series (see chapter 4).

3. Rewrite the daily in�ow time series, Z, in a matrix form as given by matrix X in

equation (2.1). This matrix contains 365 columns, each column presents one day and

n rows (years), each row represents a year (according to matrix X, n = N/365).

X =

∣∣∣∣∣∣∣∣∣∣∣

x1,1 x1,2 x1,i x1,365

x2,1 x2,2 x2,i x2,365

xj,1 xj,2 xj,i xj,365

xn,1 xn,2 xn,i xn,365

∣∣∣∣∣∣∣∣∣∣∣
(2.1)
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Figure 2.1: Average daily in�ow into the Bigge, Henne, Möhne and Sorpe reservoirs
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Table 2.1: Statistical characteristics of the raw in�ow time series for di�erent timescales

Reservoir Period Timescale x̄ SD g ACF

m3/s m3/s lag 1

Bigge 1/11/1966 - 31/10/2006 daily 7.571 11.465 4.421 0.839

10-days 7.569 8.706 2.218 0.445

monthly 7.587 6.649 1.301 0.424

3-months 7.592 5.156 0.685 0.057

6-months 7.602 4.538 0.274 -0.671

annual 7.571 1.766 -0.284 0.09

Henne 1/11/1960 - 31/10/2006 daily 1.833 2.629 3.589 0.906

10-days 1.833 2.158 2.209 0.52

monthly 1.837 1.696 1.363 0.392

3-months 1.84 1.295 0.595 0.052

6-months 1.841 1.136 0.333 -0.609

annual 1.833 0.477 -0.25 0.133

Möhne 1/11/1960 - 31/10/2008 daily 6.149 6.995 3.975 0.87

10-days 6.153 5.654 2.114 0.563

monthly 6.161 4.609 1.313 0.433

3-months 6.17 3.587 0.588 0.131

6-months 6.167 3.091 0.278 -0.417

annual 6.149 1.552 -0.197 0.182

Sorpe 1/11/1960 - 31/10/2006 daily 1.344 1.968 3.801 0.894

10-days 1.345 1.623 2.267 0.546

monthly 1.348 1.296 1.587 0.437

3-months 1.349 1.016 0.873 0.121

6-months 1.35 0.906 0.606 -0.463

annual 1.344 0.462 0.445 0.331
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4. The mean (x̄i), standard deviation (SDi), the coe�cient of variation (CVi) and the

skewness (gi) for each i
th column (day), can be calculated as follows:

Mean:

x̄i =
1

n

n∑
j=1

xj,i (2.2)

Standard deviation:

SDi =

 1

n

n∑
j=1

x2j,i − x̄2i

1/2

(2.3)

Coe�cient of variation:

CVi =
SDi

x̄i
(2.4)

Skewness:

gi =
1
n

∑n
j=1(xj,i − x̄i)

3(
1
n

∑n
j=1(xj,i − x̄i)2

)3/2 (2.5)

Given a time series xt = x1, x2, ..., xN , Box and Jenkins (1976) gave a formula to estimate

the autocorrelation function (ACF) as follows:

ρ̂(k) = ck/co (2.6)

where k = 0, 1, 2, . . . and ck = 1
N−k

∑N−k
s (xs − x̄)(xs+k − x̄) in which x̄ = 1

N

∑N
s xs.

Taking into consideration the annual cyclicity, Mitosek (2000) used the following formula to

estimate the autocorrelation function of the daily in�ow (matrix X) between column (sea-

son) xi and column (season) xi+k, where i = 1, 2, . . . , 365 and k = 0, 1, 2, . . . , kmax ≤ 365):
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ρ̂i(k) =



1
n

∑n

j=1
(xj,i−x̄i)(xj,i+k−x̄i+k)

SDiSDi+k
, for i+ k ≤ 365

1
n−1

∑n−1

j=1
(xj,i−x̄i)(xj+1,i+k−365−x̄i+k−365)

SDiSDi+k−365
, for i+ k>365

(2.7)

where

x̄i =
1

n

n∑
j=1

xj,i,

SDi =

 1

n

n∑
j=1

x2j,i − x̄2i

1/2

,

x̄i+k−365 =
1

n− 1

n∑
j=1

xj+1,i+k−365,

and

SDi+k−365 =

 1

n− 1

n−1∑
j=1

x2j+1,i+k−365 − x̄2i+k−365

1/2

The previous procedure is applied also to estimate the seasonal statistical parameters of

the 10-days, monthly, 3-months and 6-months in�ow time series. Seasonal autocorrelation

coe�cients are estimated after log-transforming and deseasonalizing the raw time series

(see section, 2.4).

2.3.1 Results of the seasonality analysis

Figures 2.2, 2.5 and 2.8 (a, b, c and d) show the variation in the mean, standard deviation

and coe�cient of variation of the daily, 10-days and monthly in�ow time series respectively.

From these �gures, it is obvious that all of these time series (daily, 10-days and monthly)

have a clear seasonality in the mean and standard deviation. Higher values of the mean

and standard deviation occur at the same time. For all time series, the coe�cient of

variation has higher values in the dry periods. The seasonally variations of the skewness

coe�cient are shown in �gures 2.3, 2.6 and 2.9 (a, b, c and d). It is clear that for all

time series the higher values of the skewness occur in the seasons with low �ows and vice

versa. The �gures also show that all time series have positive skewness, which indicates a

tendency for low �ow years to outnumber high �ow years. The autocorrelation coe�cients

of the daily, 10-days and monthly in�ow time series are estimated at di�erent lags and the
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results are plotted in �gures 2.4, 2.7 and 2.10 respectively. These results indicate that the

autocorrelation coe�cients are low for high in�ow seasons and high for seasons with low

in�ow for all in�ow time series except for daily in�ow time series at lag of one day. For

daily in�ow time series the lag one day-to-day autocorrelation coe�cients are high for all

days (seasons).

2.4 Normalization and standardization

The results given in table 2.1, show that all seasonal in�ow time series are generally posi-

tively skewed (g > 0). We used log-transformation to normalize the in�ow time series by

taking its logarithm. The log-transformed in�ow time series are approximately normal.

The seasonality in the mean (x̄i) and standard deviation (SDi) which is also known as

standardization are removed as follows:

xj,i =
xj,i − x̄i
SDi

(2.8)
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Figure 2.2: Seasonal variation in the mean (x̄), standard deviation (SD) and coe�cient of varia-

tion (CV) of the daily in�ow time series
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Figure 2.3: Seasonal variation in the skewness (g) of the daily in�ow time series

2.5 Testing for trend

For a series of observations of a random variable a trend analysis is necessary to determine

if their values generally increase or decrease with time. In statistical terms this is a deter-

mination of whether the probability distribution from which they arise has changed over

time (Helsel and Hirsch, 1992). We used three di�erent test methods to determine the

presence of trends in the 10-days, monthly, 3-months, 6-months and annual in�ow time

series to detect the e�ect of the climate change and human activities. The linear regression

and Mann-Kendall methods are used to detect the presence of trend in each season in the

10-days, monthly, 3-months and 6-months in�ow time series also to detect the presence of

trend in annual time series. Moreover, 10-days, monthly, 3-months and 6-months in�ow

time series are tested against the existence of trend using the seasonal Mann-Kendall test.
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Figure 2.4: Seasonal variation in the season-to-season autocorrelation coe�cient of the daily in-

�ow time series at di�erent lags
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Figure 2.5: Seasonal variation in the x̄ , standard deviation (SD) and coe�cient of variation (CV)

of the 10-days in�ow time series
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Figure 2.6: Seasonal variation in the skewness (g) of the 10-days in�ow time series
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Figure 2.7: Seasonal variation in the season-to-season autocorrelation coe�cient of the 10-days

in�ow time series at di�erent lags
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Figure 2.8: Seasonal variation in the x̄ , standard deviation (SD) and coe�cient of variation (CV)

of the monthly in�ow time
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Figure 2.9: Seasonal variation in the skewness (g) of the monthly in�ow time series
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Figure 2.10: Seasonal variation in the season-to-season autocorrelation coe�cient of the monthly

in�ow time series at di�erent lags
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2.5.1 Linear regression method

Maidment (1993) introduced a procedure to detect the linear trend in time series. Given a

time series xt, t = 1, 2, . . . , N and N is the sample size, he presents the following equation

to introduce a simple linear trend in xt,

xt = a+ bt (2.9)

where a and b are the parameters of the regression model. The hypothesis H0 (there is no

trend) is rejected if

Tc =

∣∣∣∣∣
√
N − 2

r
√
1− r2

∣∣∣∣∣ >T1−α/2,υ (2.10)

in which r is the cross-correlation coe�cient between the sequences x1, x2, . . . , xN and

1, 2, . . . , N and T1−α/2,ν is the 1−α/2 quantile of the student distribution with ν = N − 2

degrees of freedom.

2.5.2 Mann-Kendall test

The Mann-Kendall test was originally devised by Mann (1945) as a non-parametric test for

trend. Kendall (1975) derived the exact distribution of the test statistic. This test can be

used for any form of the distribution function of the data. To compute the Mann-Kendall

test statistic S for a time series xt, t = 1, 2, . . . , N , where N is the sample size, each value

xi, i = 1, ..., j − 1 is compared with all the subsequent values xj , j = 2, ..., N as follows:

S =
N−1∑
i=1

N∑
j=i+1

sgn(xj − xi) (2.11)

where N is the length of the data set and

sgn(xj − xi) =


1 if xj > xi

0 if xj = xi

−1 if xj < xi

(2.12)

Kendall (1975) documented that the statistic (S) is approximately normally distributed

for N ≥ 8. He gave the following formulas to estimate the mean E(S) and the variance

Var(S):

E(S) = 0 (2.13)



2.5 Testing for trend 25

V ar(S) =
N(N − 1)(2N + 5)−

∑nt
p=1 tp(tp − 1)(2tp + 5)

18
(2.14)

where
tp = the number of data points in the pth group.

nt = the number of tied groups (a tied group is a set of sample data having

the same value).

The standardized Mann-Kendall test statistic ZMK is computed by

ZMK =


S−1√
V ar(S)

S > 0

0 S = 0
S+1√
V ar(S)

S < 0

(2.15)

The statistic ZMK follows the standard normal distribution with mean of zero and variance

of one. The hypothesis H0 that there is no trend is rejected if

|ZMK |>Z1−α/2 (2.16)

where Z1−α/2 is the value read from a standard normal distribution and α is the signi�cance

level of the test.

Mann-Kendall test for autocorrelated time series

The presence of positive serial correlation (autocorrelation) in�ates the variance Var(S)

of the Mann-Kendall statistic (e.g., Hamed and Rao, 1998; Wang, 2006; Martins et al.,

2008). Increasing Var(S) will increase the possibility of rejecting the null hypothesis which

indicates signi�cant trend (actually there is no trend). On the other hand, the presence

of the negative autocorrelation decreases Var(S) and hence decreasing the possibility of

rejecting the null hypothesis.

Pre-whitening is used by many researchers to transform the autocorrelated time series

into an uncorrelated one (e.g., Fleming and Clarke, 2002; Yue et al., 2002). Donald et

al. (2004) gave a modi�ed version of the trend-free pre-whitening (TFPW) which was

originally developed by Yue et al. (2002). The modi�ed TFPW is given in the following

steps for applying the Mann-Kendall test:

1. Estimate the Mann-Kendall statistic (S) and the monotonic trend (B)
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B = Median

(
xi − xj
i− j

)
for all j<i, in which 1 < j < i < N (2.17)

2. Remove the monotonic trend (B), using yt = xt � B×t, t = 1, 2, . . . , N.

3. Estimate the lag-one autocorrelation (r1) of the de-trended series yt.

4. If r1 is not statistically signi�cant at level 5% (the Ljung-Box Q-statistic lack-of-�t

hypothesis test is used in the present study), complete the analysis using the results

from step 1.

5. If r1 is statistically signi�cant at level 5%, the de-trended series yt is pre-whitened

through:

y′t = yt − r1yt−1 (2.18)

6. Add B to the residual series through:

y′′t = y′t +Bt (2.19)

7. Calculate the Mann-Kendall statistic for the series y′′t .

2.5.3 Seasonal Mann-Kendall trend test

Presence of seasonal cycles in time series required special tests for trend. One of these

tests is the seasonal Mann-Kendall test which was developed by Hirsch et al. (1982). This

test may be used when missing data or tied are present in the time series. The validity

of the test does not depend on the data being normally distributed. To use the seasonal

Mann-Kendall test, compute the Mann-Kendall test statistic S (equation, 2.11) for each

season separately. The estimated values of the Mann-Kendall test statistic are then used

to compute the overall statistic (S′) as �ows:

S′ =
ps∑
j=1

Sj (2.20)

where Sj is the Mann-Kendall statistic of the season j (j = 1, 2, 3, . . . .., ps) and ps is the

number of seasons. The variance of S′ can be estimated as:

V ar(S′) =
ps∑
j=1

V ar(Sj) (2.21)
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Hirsch and Slack (1984) used the seasonal Mann-Kendall test with autocorrelated time

series and suggested using the following formula to estimate the variance of S′:

V ar(S′) =
ps∑
j=1

V ar(Sj) +
ps−1∑
g=1

ps∑
h=g+1

σgh (2.22)

where σgh is the covariance between the Mann-Kendall test statistic for season g and that

for season h. The covariance σgh can be estimated as in the following procedure:

Assume two matrices X and R which give the sequences of observations over ps seasons

for n years and ranks corresponding to the observations in X respectively.

X =

∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x1j x1ps

x21 x22 x2j x2ps

xi1 xi2 xij xips

xn1 xn2 xnj xnps

∣∣∣∣∣∣∣∣∣∣∣
R =

∣∣∣∣∣∣∣∣∣∣∣

R11 R12 R1j R1ps

R21 R22 R2j R2ps

Ri1 Ri2 Rij Rips

Rn1 Rn2 Rnj Rnps

∣∣∣∣∣∣∣∣∣∣∣
The ranking is performed among n observations within each season separately. For season

j and year i the rank Rij can be expressed as:

Rij =
n+ 1 +

∑n
k=1 sgn(xij − xkj)

2
(2.23)

In the case of no missing values, σgh can be given as follows:

σgh =
kgh + 4

∑n
i=1RigRih − n(n+ 1)2

3
(2.24)

where

kgh =
n−1∑
i=1

n∑
o=i+1

sgn(xog − xig)(xoh − xih) (2.25)

Using equations (2.20) and (2.22) the standardized seasonal statistic Z
′
which follows the

standard normal distribution with mean of zero and variance of one can be de�ned as

follows:

Z ′ =



S′−1√
V ar(S′)

S′> 0

0 S′ = 0

S′+1√
V ar(S′)

S′< 0

(2.26)
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2.5.4 Results of the linear regression and Mann-Kendall tests

The results of both of the linear regression and Mann-Kendall tests at 5 % signi�cance

level for the 10-days, monthly, 3-months, 6-months and annual in�ow time series are given

in tables 2.2, 2.3 and 2.4. The computed values of the linear regression test statistic (Tc)

and the Mann-Kendall test statistic (ZMK) which are within the range ±1.96 mean that

the hypothesis H0 cannot be rejected (there is no trend). The other values of Tc and Zc

which are out of the range mean that the hypothesis H0 is rejected (presence of a trend).

Table 2.3 shows that using the linear regression test the hypothesis H0 is rejected for the

months April and May for the Henne reservoir, June and July for the Möhne reservoir

and April, May, June, July and August for the Sorpe reservoir. The results of the Mann-

Kendall test show that the hypothesis H0 is rejected for the months July for the Henne

and Möhne reservoirs and April, June, July and August for the Sorpe reservoir as given in

table 2.3. Using both of the linear regression and Mann-Kendall tests, a trend is detected

in the 3-months in�ow time series in the third season (months May, June and July) for the

Henne, Möhne and Sorpe reservoirs (table 2.4). For the 6-months in�ow time series (using

both of the linear regression and Mann-Kendall tests) and the mean annual in�ow time

series (using the linear regression test) a downward trend is exhibited only for the Sorpe

reservoir as given in table 2.4.
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The results of the linear regression test and Mann-Kendall test for monthly and annual

in�ow time series for all reservoirs are visually examined using �gures 2.11 through 2.14

for monthly in�ow time series and �gures 2.15 through 2.18 for annual in�ow time series.

Visual inspections of the monthly in�ow time series show that the months April and May

for the Henne reservoir, July for the Möhne reservoir and April, May and August for the

Sorpe reservoir exhibit downward trend. Also, the annual in�ow time series are visually

inspected and no trend was detected except in the mean in�ow time series of the Sorpe

reservoir (�gure 2.18.b) which exhibits a downward trend or shift (shift occurred in 1970).

Mann-whitney test is used for testing shift and the null hypothesis of the test is rejected

which means presence of shift. The shift is removed using the procedure introduced in

Maidment (1993) and the mean in�ow time series of the Sorpe reservoir is tested against

trend and no trend is detected after removing the shift.

2.5.5 Results of the seasonal Mann-Kendall test

The computed values of the seasonal Mann-Kendall test statistic (Z
′
) are given in table

2.5. The results show that the hypothesis H0 is rejected only for all tested in�ow time

series of the Sorpe reservoir. All seasons in the 10-days, monthly, 3-months and 6-months

in�ow times of Sorpe reservoir are tested against shift and the detected shifts are removed.

These seasonal time series are tested against trend after removing the detected shifts and

the results are given also in table 2.5. It is clear that after removing the detected shifts no

trend is detected except in the 10-days in�ow time series.

Table 2.3: Values of the statistics Tc and ZMK for the monthly mean in�ow time series of the

Bigge, Henne, Möhne and Sorpe reservoirs

Season Bigge reservoir Henne reservoir Möhne reservoir Sorpe reservoir

Tc H0 ZMK H0 Tc H0 ZMK H0 Tc H0 ZMK H0 Tc H0 ZMK H0

Nov. 0.385 0 0.524 0 0.713 0 0.625 0 1.381 0 0.827 0 -0.419 0 -0.341 0

Dec. -0.029 0 0.618 0 -0.552 0 0.189 0 -1.026 0 -0.062 0 -1.548 0 -0.492 0

Jan. 1.034 0 1.317 0 1.08 0 1.079 0 0.625 0 0.773 0 0.265 0 0.246 0

Feb. 0.668 0 0.384 0 0.871 0 0.568 0 0.895 0 0.862 0 0.071 0 0.114 0

March 0.674 0 0.781 0 1.368 0 1.363 0 1.848 0 1.929 0 0.397 0 0.454 0

April -1.445 0 -0.92 0 -2.155 1 -1.932 0 -1.258 0 -1.022 0 -3.097 1 -2.367 1

May 0.198 0 0.408 0 -2.119 1 -1.534 0 -1.715 0 -1.449 0 -2.23 1 -1.458 0

June -1.614 0 -1.363 0 -1.796 0 -1.647 0 -1.972 1 -1.484 0 -2.318 1 -2.159 1

July -1.479 0 -0.897 0 -1.941 0 -2.178 1 -2.93 1 -2.231 1 -2.312 1 -2.575 1

Aug. -1.166 0 -0.548 0 -1.188 0 -1.231 0 0.288 0 -1.431 0 -2.845 1 -2.178 1

Sept. 0.521 0 0.711 0 1.436 0 1.231 0 0.982 0 0.649 0 -0.342 0 0.151 0

Oct. 0.003 0 0.408 0 0.497 0 0.776 0 0.443 0 0.755 0 0.497 0 0.17 0
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Figure 2.11: Monthly in�ow into the Bigge reservoir (Nov. 1966 - Oct. 2006)
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Figure 2.12: Monthly in�ow into the Henne reservoir (Nov. 1960 - Oct. 2006)
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Figure 2.13: Monthly in�ow into the Möhne reservoir (Nov. 1960 - Oct. 2008)
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Figure 2.14: Monthly in�ow into the Sorpe reservoir (Nov. 1960 - Oct. 2006)
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Figure 2.15: Annual in�ow into the Bigge reservoir (1966 - 2006)
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Figure 2.16: Annual in�ow into the Henne reservoir (Nov. 1960 - Oct. 2006)
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Figure 2.17: Annual in�ow into the Möhne reservoir (Nov. 1960 - Oct
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Figure 2.18: Annual in�ow into the Sorpe reservoir (Nov. 1960 - Oct. 2006)
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Table 2.4: Values of the statistics Tc and ZMK for the 3-months, 6-months and annual in�ow

time series of the Bigge, Henne, Möhne and Sorpe reservoirs

Season Bigge reservoir Henne reservoir Möhne reservoir Sorpe reservoir

Tc H0 ZMK H0 Tc H0 ZMK H0 Tc H0 ZMK H0 Tc H0 ZMK H0

3-months 

1 0.708 0 1.014 0 0.526 0 0.814 0 0.256 0 0.4 0 -0.941 0 -0.322 0

2 0.244 0 0.827 0 0.302 0 0.53 0 0.98 0 1.36 0 -1.061 0 -0.985 0

3 -1.695 0 -1.13 0 -2.66 1 -2.045 1 -3.056 1 -2.32 1 -3.027 1 -2.216 1

4 -0.034 0 0.175 0 0.543 0 0.379 0 0.666 0 -0.062 0 -1.013 0 -0.985 0

6-months 

1 0.719 0 0.711 0 0.583 0 0.473 0 0.77 0 0.684 0 -1.287 0 -1.023 0

2 -0.803 0 -0.711 0 -1.354 0 -1.344 0 -1.296 0 -1.395 0 -2.633 1 -1.988 1

annual 

Min. 0.446 0 0.044 0 1.032 0 1.231 0 -0.673 0 -0.684 0 -0.528 0 -0.616 0

Mean 0.12 0 0.058 0 -0.273 0 -0.379 0 -0.211 0 -0.169 0 -2.172 1 -1.61 0

Max. 1.095 0 1.014 0 1.041 0 1.004 0 0.065 0 0.08 0 -1.099 0 -0.464 0

Table 2.5: Values of the seasonal Mann-Kendall test statistic, Z′ for the 10-days, monthly, 3-

months and 6-months in�ow time series of the Bigge, Henne, Möhne and Sorpe reser-

voirs

Time-scale Bigge Henne Möhne Sorpe

Z
′ H0 Z

′ H0 Z
′ H0 original data after removing shifts

Z
′ H0 Z

′ H0

10-days 0.43 0 1.3 0 -1.39 0 -3.82 1 -2.16 1

monthly 0.41 0 -0.78 0 -0.54 0 -3.01 1 -1.55 0

3-months 0.44 0 -0.16 0 -0.31 0 -2.25 1 -0.69 0

6-months 0 0 -0.62 0 -0.5 0 -2.14 1 -0.92 0

2.6 Testing for long memory

2.6.1 Introduction

A time series xt exhibits long memory if the absolute values of autocorrelation are not

summable. For a process xt with autocorrelation function (ACF) denoted as ρk at lag k,

McLeod and Hipel (1978) showed that the processes possess a long memory if

∞∑
p=−∞

|ρk| = ∞ (2.27)

and the processes are called long-range dependent (LRD), long-range correlated or long-

memory processes. For some stochastic processes, such as autoregressive and moving av-

erage type models the ACF decays exponentially and

∞∑
p=−∞

|ρk| = constant <∞ (2.28)
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In other words the ACF, ρ(k) decays to zero exponentially fast as k → ∞. These processes

are called short-range dependent (SRD) or short-range correlated.

The �rst work in the subject of long memory was originally documented by Hurst (1951).

Hurst (1951, 1956) analyzed a large number of geophysical time series such as stream-�ow,

precipitation, temperature and tree-ring series and concluded that the values of the Hurst

parameter (H) obtained for the di�erent time series gave a mean of about 0.73.

Since Hurst's work the subject of long-memory time series has subsequently received ex-

tensive attention in many diverse �elds of application, such as �nancial time series (e.g.,

Barkoulas et al., 1999; Teyssière and Abry, 2006), in internet tra�c (e.g., Leland et al.,

1994; Karagiannis et al., 2004), hydrology and etc.

Eltahir (1996) showed that the change of convergence of atmospheric moisture in the

Ethiopian source region of the Nile River due to the El Niño Southern Oscillation (ENSO)

is causing a nonstationarity of the mean annual �ow of the Nile River. Lohre et al. (2003)

discussed long-memory for the �ow of Rhine River. The presence of the long-memory in

the stream�ow time series for the Yellow, Danube, Rhine, Ocmulgee, Umpqua Rivers was

detected by Van Gelder et al. (2007).

2.6.2 Presence of long memory

Three measures are commonly used to estimate the strength of long-memory (the presence

of long memory):

1. The parameter H, which is also known as the Hurst or self-similarity parameter.

2. The fractional di�erencing parameter (d), of the autoregressive fractionally inte-

grated moving average, ARFIMA(p,d,q).

3. The power exponent (β) of the power spectrum function 1/f β in the spectral analysis.

Table 2.6 summarizes the relationships between H, d and β (Stroe-Kunold et al., 2009).

There are many available methods to test the existence of long-memory and also estimateH,

d and β. We used three heuristic methods (the aggregated variance, residuals of regression

and rescaled adjusted range R/S methods) to estimate Hurst parameter (H) for the daily,

10-days and monthly in�ow time series of the Bigge, Henne, Möhne and Sorpe reservoirs.

Furthermore, two semiparametric methods are used to test the existence of long-memory

for the same data (the Lo's modi�ed R/S statistic and the GPH test).
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Table 2.6: Relationships between parameters that capturing long-range dependence.

β H d

Random walk

(ordinary Brownian 2.0 0.5 1.0

motion)

White noise

(ordinary Gaussian 0 0.5 0

noise)

Fractional [-1.0,1.0] [0,1.0] [-0.5,0.5]

Gaussian [-1.0,0] [0,0.5] [-0.5,0]

noise antipersistent antipersistent antipersistent

(fGn) [0,1.0] persistent [0.5,1.0] persistent [0,0.5] persistent

H = β+1
2 H = 2d+1

2 β = 2d

Fractional [1,3.0] [0,1.0] [0.5,1.5]

Brownian [1.0,2.0] [0,0.5] [0.5,1.5]

motion antipersistent antipersistent antipersistent

(fBm) [2.0,3.0] persistent [0.5,1.0] persistent [1.0,1.5] persistent

H = β−1
2 H = 2d−1

2 β = 2d

2.6.3 Methods for estimation of H and d

Aggregated Variance Method

For a time series xt = x1, x2, ..., xN , Beran (1994) proved that in the presence of long-

memory the variance of the sample mean could be expressed as:

V ar(x̄) ≈ cN2H−2 (2.29)

where c > 0 and H is the Hurst parameter. He gave the following procedure to estimate

H :

1. Divide the original time series xt into m subseries each of length k (2 ≤ k ≤ N/2).

2. Calculate the mean of each subseries x1(k), x2(k), . . . , xm(k) and the overall mean

x̄(k) = m−1
m∑
j=1

x̄j(k) (2.30)

where x̄j(k) is the mean of the subseries j, j = 1, 2, . . . , m.
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3. Calculate the sample variance, V ar(k)of the m samples

V ar(k) = (m− 1)−1
m∑
j=1

(x̄j(k)− x̄(k))2 (2.31)

4. Repeat steps from 1 to 3 using successive values of m.

5. For each value of k, plot V ar(k) against log k.

6. The plotted points from step 5 are expected to be scattered around a straight line

with negative slope 2H � 2.

Residuals of Regression method

One of the more recent methods for estimating the strength of long-memory is the residuals

of regression method due to Peng et al. (1994). For time series xt = {xi, i = 1, 2, . . . , N},

the residuals of regression method comprises the following steps (Taqqu et al., 1995):

1. Divide the time series xt into blocks of size n.

2. Compute the partial sums within each of the blocks. Call the partial sums within a

block, Yt, t = 1, 2, . . . , n.

3. Fit a least square line a + bt to these partial sums.

4. Compute the sample variance of residualsV ar(re)

V ar(re) =
1

n

n∑
t=1

(Yt − a− bt)2 (2.32)

5. Repeat steps 2, 3 and 4 for all blocks.

6. Compute the average variance V ar(re).

7. Repeat all previous steps for di�erent values of n.

8. Plot V ar(re) versus n on log-log plot.

9. The result from step 8 is a straight line with slope 2H.

The rescaled adjusted range (R/S) method

The R/S statistic was developed by Hurst (1951) and discussed in details in Mandelbrot

and Wallis (1969), Mandelbrot (1975) and Mandelbrot and Taqqu (1979). For a time series

xt = {xi, i = 1, 2, . . . , N}, the following steps can be used to estimate H using R/S statistic

(Taqqu et al., 1995; Alptekin, 2006):
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1. Divide the time series xt = {xi, i = 1, 2, . . . , N} into m subperiods, each of size n

= N/m. Then any element in each subperiod can be de�ned as xi,j , where i = 1, 2,

. . . , n which denotes the number of the elements in each subperiod and j = 1, 2, . . . ,

m denotes the index of the subperiod.

2. The mean of each subperiod is estimated as x̄j = 1
n

∑n
i=1 xi,j . Estimation of the

deviation from the mean, Yi,j = xi,j − x̄j with standard deviation

Sj =

√√√√ 1

n

n∑
i=1

Y 2
i,j (2.33)

3. For each subperiod j, the R/S statistic is estimated as follows:

(
R

S

)
j
=

1

Sj

[
max
1≤k≤n

k∑
i=1

Yi,j − min
1≤k≤n

k∑
i=1

Yi,j

]
(2.34)

4. For fractional Gaussian noise or fractional ARIMA,

E

[
R

S
(n)

]
∼ CHn

H (2.35)

as n → ∞, where (R/S)n is the average of the estimated (R/S)j and CH is another

positive, �nite constant dependent on n.

5. Plot log[(R/S)n] versus log n.

6. Repeat steps from 1 to 6 by increasing n to the next integer value until n = N/2.

7. The Hurst parameter (H) is the slope of the �tted line of the plotted points from

step 3.

To check the e�ectiveness of the R/S test, Wang (2006) generated ten simulations

of an AR(1) model, ten simulations of an ARFIMA(0,d,0) and ten simulations of an

ARFIMA(1,d,0). The results indicated that the R/S analysis is not a very reliable method

in the presence of short-range dependence.

Lo's modi�ed R/S statistic

Lo (1991) discussed the robustness of the R/S statistic and concluded that the R/S statistic

is not robust to short memory dependence. For a time series, xt with length N, Lo (1991)

estimated the statistic VN (q) which is a modi�cation to the R/S statistic as follows:

VN (q) = N−1/2QN (q) (2.36)



2.6 Testing for long memory 41

where q is the truncation lag and

QN (q) =
1

Sq

[
max

1≤k≤N

k∑
i=1

(xi − x̄)− min
1≤k≤N

k∑
i=1

(xi − x̄)

]
(2.37)

in which

Sq =

 1

N

N∑
j=1

(xj − x̄)2 +
2

N

q∑
j=1

wj(q)

 N∑
i=j+1

(xi − x̄)(xi−j − x̄)

1/2

, q < N (2.38)

where x̄ is the sample mean of the time series and the weights wj(q) can be de�ned as

wj(q) = 1− j
(q+1) q<N .

In the case of no long-memory, Lo (1991) showed that given the right value of q, the

distribution of VN (q)is asymptotic to that of

W1 = max
0≤t≤1

W0(t)− min
0≤t≤1

W0(t) (2.39)

where W0 is the standard Brownian bridge (W0(t) = B(t) − tB(1), in which B denotes

the standard Brownian motion). The distribution of the random variable W 1 is given by

(Kennedy, 1976) as:

P (W1 ≤ a) = 1 + 2
∞∑
i=1

(
1− 4a2i2

)
e−2a2i2 , a ≥ 0 (2.40)

which follows that P {W1 ∈ [0.809, 1.862]} = 0.95.

Lo used the interval [0.809, 1.862] as the 95% (asymptotic) acceptance region for testing the

null hypothesis, H0 = {no long-memory, i.e., H = 0.5} against the long memory alternative

H1 = {there is long-memory, i.e., 0.5 < H < 1.0}.

In the present work, the truncation lag (q) was estimated using the formula given by Lo

(1991) as follows:

q =

(3N
2

)1/3
 2

⌢
ρ

1−
⌢
ρ
2

2/3
 (2.41)

where
⌢
ρ is the lag one autocorrelation function.
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GPH test

The GPH estimator is proposed by Geweke and Porter-Hudak (1983) and it is probably the

most used estimator of the long memory parameter. GPH estimator is based on the autore-

gressive fractionally integrated moving average (ARFIMA) model. The ARFIMA(p,d,q)

model is discussed in details in chapter 3, section 3.6. Given a fractionally integrated

process {xt} its spectral density is given by:

f(ω, d) = [2 sin(ω/2)]−2d fu(ω) (2.42)

where ω is the Fourier frequency, fu(ω)is the spectral density corresponding to a stationary

short memory disturbance (ut) with zero mean and ωj = 2πj/N, j = 1, 2, ..., N/2, where

N is the sample size. Taking the logarithm of the spectral density (equation, 2.42), the

following equation can be obtained:

ln f(ωj , d) = ln fu(0)− d ln
[
4 sin2(ωj/2)

]
+ ln [fu(ωj)/fu(0)] (2.43)

The fractional di�erence parameter (d) can be estimated by the regression equations con-

structed from equation (2.43). Using a periodogram estimate of f(ωj , d), Geweke Porter-

Hudak (1983) showed that if the number of frequencies used in the regression equation

(2.43) is a function g(N) (a positive integer) of the sample size N where g(N) = Nα with

0 < α < 1, the least squares estimate of d̂ using the above regression is asymptotically nor-

mally distributed in large samples. Under the null hypothesis of no long-memory (d = 0),

the t-statistic

td=0 = d̂×

 π2

6×
∑g(N)

j=1 (Uj − Ū)2

−1/2

(2.44)

has limiting standard normal distribution where Uj = ln
[
4 sin2(ωj/2)

]
and Ū is the sample

mean of Uj , j = 1, 2, ..., g(N).

Results of long memory estimation methods

Before conducting the long memory analysis, we seek to remove the trend (if exists) out of

the original in�ow time series. We removed the existing trend in the time series by �tting

a trend line to the data and subtract the calculated trend component at each time out

of the original time series. The results of the aggregate variance, residuals of regression

and R/S methods (heuristic methods) are plotted in �gures B.1, B.2 and B.3 (appendix B)

respectively. The results of the heuristic methods and semiparametric tests are summarized

in table 2.7 and can be concluded in the following points:
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� The daily in�ow time series of all reservoirs exhibit long-memory (H > 0.5) using

the aggregate variance, residuals of regression and R/S methods.

� The 10-days in�ow time series of the Möhne and Sorpe reservoirs are found to be

long-memory process using the aggregate variance, residuals of regression and R/S

methods.

� Long-memory is detected in the monthly in�ow time series of all reservoirs using the

R/S method.

� According to the results of the Lo's modi�ed R/S test, the null hypothesis of no

long-memory is rejected only for daily and 10-days in�ow time series of the Bigge

and Henne reservoirs, also for the monthly in�ow time series of Henne reservoir.

� The results of the GPH test show that the null hypothesis of no long-memory is

rejected only for daily in�ow time series of the Bigge, Möhne and Sorpe reservoirs.

Long memory detection using autocorrelation function

If the time series exhibits long-memory, the autocorrelation function decreases to be zero at

long lags (Gil-Alana, 2006), see equation (2.27). Figures 2.19, 2.20, 2.21 and 2.22 show the

autocorrelation function of the in�ow time series (daily, 10-days and monthly) of the Bigge,

Henne, Möhne and Sorpe reservoirs respectively. It is obvious that for all reservoirs the

autocorrelation function of the daily in�ow time series decay more slowly than the 10-days

and monthly in�ow time series. As mentioned before slowly decaying of the autocorrelation

function is an indication of the presence of long-memory which consistents with the results

of the GPH test except those for the daily in�ow time series of the Henne reservoir.

Table 2.7: Results of the long-memory detection methods of the original in�ow time series

Reservoir Time series Hurst parameter (H) Lo′s test GPH test

Aggregate Residuals of R/S lag V td=0 d

variance regression

Bigge daily 0.743 0.87 0.672 88 0.793 2.525* 0.159

10-days 0.417 0.677 0.492 13 0.739 0.272 0.034

monthly 0.337 0.34 0.522 9 0.985 -0.145 -0.025

Henne daily 0.761 0.871 0.68 135 0.679 0.858 0.052

10-days 0.415 0.642 0.543 17 0.69 -0.173 -0.02

monthly 0.337 0.418 0.603 8 0.805 -0.501 -0.083

Möhne daily 0.771 0.885 0.728 110 0.822 2.155* 0.128

10-days 0.546 0.704 0.609 19 0.809 0.188 0.022

monthly 0.492 0.555 0.704 9 0.878 -0.081 -0.013

Sorpe** daily 0.775 0.883 0.71 125 1.008 2.507 0.151

10-days 0.501 0.658 0.567 18 0.893 0.267 0.031

monthly 0.462 0.487 0.64 9 0.943 -0.323 -0.053

* t-statistic in the GPH test is not contained in the interval [-1,960, 1.960] which means rejection

of the null hypothesis of no long memory.

** the detected shifts are removed from the 10-days and monthly in�ow time series of the Sorpe

reservoir before applying this test.
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Figure 2.19: Autocorrelation functions of the in�ow time series of the Bigge reservoir

-0.5

0

0.5

1

0 20 40 60 80 100 120A
u

to
c
o

rr
e
la

ti
o
n

 

Lag  

daily time series

10-days time series

monthly time series

Figure 2.20: Autocorrelation functions of the in�ow time series of the Henne reservoir
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Figure 2.21: Autocorrelation functions of the in�ow time series of the Möhne reservoir
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Figure 2.22: Autocorrelation functions of the in�ow time series of the Sorpe reservoir
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2.7 Testing for stationarity

2.7.1 Introduction

According to Shumway and Sto�er (2006) a strictly stationary time series, {xt}, t = 1,

2, . . . , N is de�ned as the time series for which the probabilistic behavior of every set of

values {xt1, xt2, . . . , xtk} is identical to that of the time shifted set {xt1+h, xt2+h, . . . ,

xtk+h}. That is,

P (xt1 = c1, ..., xtk = ck) = P (xt1+h = c1, ..., xtk+h = ck) (2.45)

for all k = 1, 2, ..., all time points t1, t2, . . . , tk, all numbers c1, c2, . . . , ck and all

time shifts h = 0, ±1, ±2, ... .

Time series process {xt} is assumed to be stationary if one or more of its statistical prop-

erties such as mean, variance, autocorrelation, etc., do not depend on time.

2.7.2 Stationarity test methods

Two groups of methods can be used for testing time series for stationarity. The �rst group

is based on the statistics of the full sequence (Otache et al., 2008; Wang, 2006). The second

group is based on the statistics of di�erent segments of the time series (Chen and Rao,

2002). In the present study, we applied two unit root tests (of the �rst group) for testing

the in�ow time series for stationarity. These tests are the Augmented Dickey-Fuller (ADF)

and Phillips-Perron (PP) unit root tests.

2.7.3 Augmented Dickey-Fuller unit root test (ADF)

The Augmented Dickey-Fuller (ADF) unit root test is �rst proposed by Dickey and Fuller

(1979). It is conducted by estimating the ordinary least square analysis (OLS). Consider a

simple autoregressive model of order one AR(1) for a given time series xt = x1, x2, ..., xN

xt = ϕxt−1 + εt where εt ∼ iid(0, σ2) (2.46)
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The hypotheses of the test are

H0 : ϕ = 1 ⇒ xt ∼ I(1)

H1 : |ϕ| < 1 ⇒ xt ∼ I(0)

If ϕ = 1 the time series xt is nonstationary and known as random walk process. Acceptance

of the alternative hypothesis (|ϕ | < 1) implies that the time series xt is stationary. The

test statistic tϕ for testing the null hypothesis that ϕ = 1 is calculated as:

tϕ =
ϕ̂− 1

σ̂ϕ̂
(2.47)

where ϕ̂ is the least squares estimate and is estimated as:

ϕ̂ =

(
N∑
t=2

x2t−1

)−1 N∑
t=2

xtxt−1 (2.48)

and σ̂ϕ̂ is the usual OLS for the estimated coe�cient, σ̂ϕ̂ = Se
(∑N

t=2 x
2
t−1

)1/2
in which Se

is the standard deviation of the OLS estimate of the residual in the retrogression model of

equation (2.46) and estimated as:

Se =

(
1

N − 2

N∑
t=2

(
x2t − ϕ̂xt−1

)2)1/2

(2.49)

The limiting distribution of the statistic tϕ under ϕ = 1 is called the Dickey-Fuller (DF)

distribution. Fuller (1976) gave a set of tables of the percentiles of the limiting distribu-

tion of tϕ under ϕ = 1. The unit root test which is described above is valid only if the

observed time series xt is well characterized by an AR(1) with white noise errors. Most

of time series have a complicated dynamic structure that cannot be captured by a simple

AR(1) model. Said and Dickey (1984) augmented the basic autoregressive unit root test to

accommodate general ARMA(p,q) models with unknown orders and their test is referred

to as the augmented Dickey-Fuller (ADF) test. The ADF test is based on estimating OLS

regression model which includes a time trend

xt = C + ϕxt−1 + δt+
p∑

j=1

ζj∆xt−j + εt (2.50)
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for some constant C, AR(1) coe�cient ϕ < 1, time trend stationary coe�cient δ and ∆

is the lag operator. Lag p indicates the number of lagged changes or �rst di�erences in xt

that are included in the OLS regression model.

Optimal lag length for the ADF test

In equation (2.50) the lagged di�erences (∆xt−j)are included to ensure that the residuals

(εt) are well behaved. The speci�cation of the lag length (p) is an important practical

issue for the implementation of the ADF test. If p is too small, the size of the test changes

in an unknown manner due to the remaining serial correlation and if too many lags are

included, the power of the test will su�er. Two procedures are used in the present study

to determine the optimum lag p as follows:

1. Set an upper bound pmax for p. Schwert (1989) recommends a maximum lag as

pmax = 12(N/100)1/4 (2.51)

where N is the number of observations.

Select p ≤ pmax that produces the minimum Akaike information criterion, AIC

(Akaike, 1974). The AIC for the estimated model is de�ned by the following equation:

AIC =
2m

N
+ log

(
σ̂2
)

(2.52)

in which N is the number of observations, σ̂2 is the estimated noise variance and m

is the number of parameters.

2. Using the procedure which is suggested by Gallet (2003). First, set an upper bound

pmax for p (e.g., that was suggested by Schwert, 1989). Next, estimate the ADF test

regression with p = pmax. If the last lag term is signi�cant (i.e., the absolute value

of the t-statistic exceeds 1.645), then p remains at pmax and perform the unit root

test. Otherwise, reduce the lag length by one. Stop the process when the coe�cient

of the last lag term is signi�cant or p is set equal to zero.
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2.7.4 Phillips-Perron unit root test (PP)

An approach to detect the presence of unit roots in the data was suggested by Phillips

(1987) and Phillips and Perron (1988). They modi�ed the Dickey�Fuller test by including

additional lagged variables as regressors in the model on which the test is based. In this

approach, the e�ect of autocorrelation present was captured by making a non-parametric

correction to t-test statistic. Considering the time series model which was introduced in

equation (2.46), the PP test-statistic under the null-hypothesis of which the Dickey-Fuller

test is a special case can be given as follows:

tPP = (sε/sNK) tϕ −
(
1

2

)
(s2NK − s2ε)

sNK

[
N−2

N∑
t=1

x2t−1

]1/2
−1

(2.53)

where s2ε = N−1∑N
t=1 ε

2
t , and s2NK = N−1∑N

t=1 ε
2
t + 2N−1∑K

t=1

∑N
t=j+1 εtεt−j , are the

consistent estimators of σ2ε = lim
N→∞

E
[
N−1

(∑N
t=1 ε

2
t

)]
and σ2 = lim

N→∞
N−1∑N

t=1E(ε2t ),

respectively in which K is the truncation lag.

The importance of truncation lag is to ensure that the autocorrelation is fully captured.

The lag truncation (K) is taken to be the integer value of 4(N/100)2/9 (Newey and West,

1987).

2.7.5 Results of the ADF and PP tests

The results of the ADF and PP tests at 5 % signi�cance level for the log-transformed

in�ow time series at di�erent timescales (daily, 10-days, monthly, 3-months, 6-months and

annual) are given in table 2.8 and can be summarized as follows:

daily and 10-days in�ow time series:

1. In favor of the stationarity alternative the null hypothesis is rejected for daily and

10-days in�ow time series of all reservoirs.

monthly, 3-months and 6-months in�ow time series:

2. For all in�ow time series of the Bigge reservoir the null hypothesis of the ADF test

cannot be rejected (lags are estimated using procedure 1, section 2.7.3).
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3. The null hypothesis of the ADF test is rejected for all in�ow time series of the Henne

reservoir except for the 6-months one (lags are estimated using procedure 2 section

2.7.3)

4. The null hypothesis of the ADF test cannot be rejected for all in�ow time series of

the Möhne reservoir.

5. For all in�ow time series of the Sorpe reservoir, the null hypothesis of the ADF and

PP tests are rejected.

annual time series:

6. The null hypothesis of the ADF and PP tests cannot be rejected for all annual in�ow

time series of all reservoirs except that of the Sorpe reservoir.

7. The null hypothesis of the PP test is rejected for the annual in�ow time series of the

Sorpe reservoir.

Table 2.9 gives the results of the ADF and PP tests for the log-transformed and standard-

ized in�ow time series at di�erent timescales. The results show that the null hypothesis is

rejected for all in�ow time series of all reservoirs which means that all in�ow time series

appear to be stationary by applying log-transformation and standardization to them.
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2.8 Conclusions

As a result of the stochastic analysis of the in�ow processes of the Bigge, Henne, Möhne

and Sorpe reservoirs, it can be concluded that:

1. All daily, 10-days and monthly in�ow time series have a clear seasonality in the mean

and standard deviation. Seasons with high mean values have also high standard

deviations. For all time series, the coe�cients of variation and skewness have higher

values in dry periods. The autocorrelation coe�cients are low for high in�ow seasons

and high for seasons with low in�ow for all in�ow time series except for daily in�ow

time series at lag of one day.

2. All in�ow time series are generally positively skewed. Log-transformation is applied

to normalize the in�ow time series.

3. We applied the linear regression, Mann-Kendall and seasonal Mann-Kendall tests

to determine the presence of trend in the in�ow time series at 5 signi�cance level.

The hypothesis H0 of the linear regression test is rejected (presence of trend) for the

in�ow time series of the months:

� April and May for the Henne reservoir.

� June and July for the Möhne reservoir.

� April, May, June, July and August for the Sorpe reservoir.

According to the results of the Mann-Kendall test the hypothesis H0 is rejected for

the in�ow time series of the month July for the Henne and Möhne reservoirs and

the months April, June, July and August for the Sorpe reservoir. The results of the

linear regression and Mann-Kendall tests show that a downward trend is detected

in the 3-months in�ow time series in the third season (months May, June and July)

for the Henne, Möhne and Sorpe reservoirs. A downward trend is exhibited for

the 6-months and annual in�ow time series only for the Sorpe reservoir. Using the

seasonal Mann-Kendall test, a downward trend is detected in all tested in�ow time

series of the Sorpe reservoir only. All seasons in the 10-days, monthly, 3-months and

6-months in�ow times of Sorpe reservoir are test against shift (occurred at 1970) and

the detected shifts are removed. These seasonal time series are tested against trend

after removing the detected shifts and a trend is detected only in the 10-days in�ow

time series.
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4. The results of the GPH test show that the null hypothesis of no long-memory is

rejected for the daily in�ow time series of the Bigge, Möhne and Sorpe reservoirs.

5. The ADF and PP unit root tests are applied for the log-transformed and for the log-

transformed and standardized in�ow time series at di�erent timescales. The results

of ADF and PP tests show that the null hypothesis is rejected for all in�ow time series

of all reservoirs after applying log-transformation and standardization. This means

that all in�ow time series appear to be stationary by applying log-transformation

and standardization to them.
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Chapter 3

Daily in�ow forecasting

3.1 Introduction

The purpose of this chapter is to apply the backpropagation neural network (BPNN) and

adaptive neuro-fuzzy inference system (ANFIS) models to forecast daily in�ow into the

Bigge, Henne, Möhne and Sorpe reservoirs. The autoregressive moving average (ARMA)

and autoregressive fractional integrated moving average (ARFIMA) models are also applied

to forecast the daily in�ow into the same reservoirs and the results of the four models are

compared.

The complex nature of the hydrological systems and the ability of the arti�cial neural

networks (ANN) and the fuzzy logic (FL) to model nonlinear processes lead to use ANNs

and FL in many branches of hydrology.

Coulibaly et al. (2001) compared the performance of the dynamic networks on reservoir

in�ow prediction and showed that all these models demonstrate signi�cant improvement in

prediction accuracy over the traditional multilayer perceptron (MLP) model. Ahmed and

Sarma (2007) developed three synthetic stream�ow generation models, namely, Thomas-

Fiering, ARMA(2,0) and ANN-based models. They used the three models to generate

100 years of synthetic monthly �ow and reported that the ANN-based model outperforms

the other two models. Xu and Li (2002) formulated an ANN model to forecast 1- to 7-

hours ahead in�ow into a hydropower reservoir and concluded that this model forecasted

the small and medium in�ow values satisfactorily. Dawson and Wilby (2001) used MLP

models to predict 6-hours river �ow from precipitation data and the results showed that

the MLP forecasts accurately the medium values of �ow but overestimates the large ones.
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Jain et al. (1999) used ANN models for reservoir in�ow prediction. They compared the

results of the ANN models with those of the classical time series models and found that

the ANN models had better results. Smith and Eli (1995) applied a backpropagation

ANN model to predict discharge and time to peak over a hypothetical watershed. El-

Sha�e et al. (2007) presented an adaptive neuro-fuzzy inference system (ANFIS) model

for the in�ow forecasting of the Nile River at Aswan high dam. Khadangi et al. (2009)

used ANFIS, multi-linear regression (MLR) and arti�cial neural networks with radial base

function (RBF-NN) models to simulate daily river �ow time series of Mahabad River in

northwest of Iran. The results of the ANFIS models are compared with those of the MLR

and RBF-NN models and the results of ANFIS were the more accurate.

Moatmari et al. (1999) introduced a fractionally di�erenced autoregressive moving average

(ARFIMA) model with periodical parameters, for modeling data a�ected by long memory

and seasonal non-stationarity. Wang et al. (2008) applied ARMA and ARFIMA to daily

average discharge series of medium-sized watersheds. They showed that both the ARMA

and the ARFIMA models work well in forecasting short-term daily average discharges and

the performance of the ARFIMA model was generally slightly better than that of the

ARMA model.

3.2 Simulation models

The simulation models are divided into two groups according to the potential input vari-

ables as follows:

Univariate models (group M1-1 and group M1-2):

� The simulation models are BPNN, ANFIS, ARMA and ARFIMA.

� The potential input variables are the average daily in�ow at days t−1, t−2, t−3, t−4

and t− 5 (xt−1, xt−2, xt−3, xt−4 and xt−5 respectively).

� The output variable is the average daily in�ow at day t(xt).

Multivariate models (group M2):

� The simulation models are BPNN and ANFIS.

� The potential input variables are the average daily in�ow at days t−1, t−2, t−3, t−4

and t− 5 (xt−1, xt−2, xt−3, xt−4 and xt−5 respectively) and the daily rainfall at days

t− 1 and t− 2 (Dt−1 and Dt−2 respectively).
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� The output variable is the average daily in�ow at day t(xt).

Table 3.1 gives more details about the simulation models. The performance of the models,

group M1-2 and the models, group M2, will compared in terms of the selected performance

criteria.

Table 3.1: List of the used data for daily in�ow forecasting

Reservoir Models group No. of potential input Used data

variables (m)

Bigge M1-1 5 1 Nov. 1966 - 31 Oct. 2006

M1-2 1 Nov. 1990 - 31 Oct. 2006

M2 7

Henne M1-1 5 1 Nov. 1960 - 31 Oct. 2006

M1-2 1 Nov. 1990 - 31 Oct. 2000

M2 7

Möhne M1-1 5 1 Nov. 1960 - 31 Oct. 2008

M1-2 1 Nov. 1990 - 31 Oct. 2006

M2 7

Sorpe M1-1 5 1 Nov. 1960 - 31 Oct. 2006

M1-2 1 Nov. 1990 - 31 Oct. 2000

M2 7

3.3 Backpropagation neural network (BPNN)

Multilayer perceptron (MLP) backpropagation neural network (BPNN) is applied in the

present work. Figure 3.1 shows a typical three-layer feed forward ANN in which i, j and k

denote nodes input layer, hidden layer and output layer, respectively and w is the weight

of the nodes. Subscripts of w specify the connections between the nodes. For example, wij

is the weight between nodes i and j.

In this network, the input data are fed to input nodes and then they will pass to the hidden

nodes after multiplying by a weight. A hidden layer adds up the weighted input received

from the input nodes, associates it with the bias and then passes the result on through a

nonlinear transfer function (see section 3.3.5). The output node does the same operation

as that of a hidden layer.
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Figure 3.1: A typical three-layer feed forward ANN

3.3.1 Data preprocessing

In data preprocessing, variables are usually scaled so that important variables with small

magnitudes are not overshadowed by those with larger magnitudes, in other words to give

the same importance for all variables. It is also advisable to remove the detected trends

in the data to improve the accuracy of the model (Zahng and Qi, 2005). Any one of the

following methods can be used to scale the inputs and targets (Matlab.a, 2008):

Min-max method

The Min-max method is an approach to scale the inputs and the targets to be in the range

[-1, 1]. For a given data set {xi}, i = 1, 2, . . . , N the min-max method can be applied to

calculate the rescaled data set {yi, i = 1, 2, . . . , N as follows:

yi =
xi − xmin

xmax − xmin
(3.1)

in which xmin and xmax are the minimum and the maximum of {xi} respectively.

Mean-standard deviation method

The second approach for scaling network inputs and targets is to normalize the mean and

standard deviation of the training set. The following equation illustrates the use of this

approach to scale a data set {xi}, i = 1, 2, . . . , N
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yi =
xi − xmean

SDx
(3.2)

where xmean and SDx are the mean and standard deviation of {xi} respectively.

3.3.2 Training of BPNN models

The aim of the training process is to relatively adjust the weights and biases of the net-

work to minimize the network performance function. There are several di�erent training

algorithms for feed forward networks which use the gradient of the performance function

to determine how to adjust the weights to minimize performance. Backpropagation proce-

dure is used to determine the gradient, which involves performing computations backward

through the network. Levenberg�Marquardt backpropagation training algorithm is used

in the present study.

Levenberg�Marquardt backpropagation training algorithm

Assume a network with performance function η(w)as the sum of the nonlinear least squares

between the observed and the predicted outputs, de�ned by (Coulibaly et al., 2000):

η(w) =
1

2

np∑
i=1

F∑
k=1

(xik − x̂ik)
2 (3.3)

where w represents the weights and biases of the network, np is the total number of training

patterns, F is the total number of neurons in the output layer, xik represents the observed

output (target output) for the input i at the output neuron k, x̂ik represents the actual

output for the input i at the output neuron k.

The original Levenberg-Marquardt algorithm is suggested by Levenberg (1944) and later

modi�ed by Marquardt (1963) to solve the nonlinear least squares problems. The follow-

ing steps are involved in training a neural network in batch mode using the Levenberg-

Marquardt algorithm (Coulibaly et al., 2000; Matlab.a, 2008; Ranga Suri and Nagab-

hushan, 2002):

1. Present all inputs to the network and compute the corresponding network outputs,

errors and the mean square error over all inputs, η(w) as in equation (3.3).

2. Compute the Jacobian matrix, J (w) where JT (w)J (w) referred to as the Hessian

matrix.
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3. Estimate∆w using the Levenberg-Marquardt algorithm which uses an approximation

to the Hessian matrix in the following Newton-like update as:

∆w =
[
JT (w)J(w) + µI

]−1
JT (w)e(w) (3.4)

where µ is training parameter, I is the identity matrix, and e(w) is a residual error

vector of size F × np and is calculated as follows:

e(w) =



d11 − a11

d12 − a12

....

d21 − a21

d22 − a22

....

....

dFnp
− aFnp



4. Compute the error using w+∆w. If this new error is smaller than that computed in

step 1, then reduce the training parameter µ by µ−1. Let w = w +∆w and go back

to step 1. If the error is not reduced, then increase µ by µ+1and resume the training

from step 3. The parameters µ−1 and µ+1are prede�ned by the user and typically

set to 0.1 and 10 respectively.

The algorithm is assumed to have converged when the norm of the gradient g = JT e(w)

is less than some predetermined value, or when the error is reduced to some error goal.

3.3.3 Optimum size of neural networks

Choosing the optimum network size is one of the most important challenges that face the

neural network designers. There is no way to determine the best number of hidden units

without training several networks and estimating the generalization error of each network.

Few hidden units, lead to high training error and high generalization error due to under-

�tting and high statistical bias. There are many methods for estimating generalization

error. However too many hidden units produce low training error but still have high gen-

eralization error due to over�tting and high variance. In the following are some of these

methods:
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� Split-sample is the most commonly used method for estimating generalization error.

We divide the available data into three sets (training xtrain, validation xvalidate and

test xtest sets). The training set is then used to train the models and the test set to

test the generalization ability of the model.

� Cross-validation is an improvement on split-sample validation that allows us to use

all of the data for training.

� Bootstrapping is an improvement on cross-validation that often provides better esti-

mates of generalization error.

Larsen (1994) suggested optimizing the architecture by selecting the model with minimal

estimated averaged generalization error. He concluded that the network architecture with

minimal estimated average generalization error is selected as being optimal. Several meth-

ods are available for determining the optimal network size, e.g., the network information

criterion, NIC (Murata, et al., 1994), the generalized �nal prediction error, GPE (Moody,

1992) and the Vapnik-Chervonenkis, VC dimension (Bartlett and Maass, 2003). Lawrence

et al. (1996) preformed a large scale numerical study on the optimal size and they showed

that a solution near the optimal solution is often not obtained. A neural network can

have any number of hidden layers, but in general, one hidden layer is su�cient (Berry and

Lino�, 2004). Wang et al. (2005) conducted systematic numerical experiments to study

the e�ect of the network size on the performance of the neural network and they found

that there is no relationship between the network size and its performance.

3.3.4 Improving generalization of the neural networks

Samarasinghe (2006) discussed the following approaches to avoid under�tting and over-

�tting (improve generalization of Neural Networks) for a given �xed amount of training

data:

Regularization

In regularization, to keep the weights away from getting large, a regularized performance

index (W ) is used instead of the mean square error (mse) by adding a sum of square

weights {wj
2}, j = 1, 2, . . . , m as given in following equation:

W = γ ×mse+ (1− γ)
m∑
j=1

w2
j (3.5)

Where γ is the performance ratio and wj is a weight in the total set of m weights in the

network.
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Early stopping

A model over�ts if it has too much �exibility that is expressed by the number of free

parameters (i.e., weights). At this point the network seems to get better and better, i.e.,

the error on the training set (xtrain) decreases but actually it begins to get worse, i.e., the

error on the validation set (xvalidate) increases as shown in �gure 3.2.

 
Epochs 

Error 
validation error 

training error 

Optimal training point 

Figure 3.2: Early stopping for improving generalization

Early stopping proceeds as follows (Matlab.a, 2008):

� Divide the available data x into three sets, the training set xtrain, the validation set

xvalidate and the test set xtest.

� Use xtrain for computing the gradient and updating the network weights and biases.

� Start the training process and monitor the error of xvalidate. During the initial phase

of training, the error of xvalidate decreases as does the error of xtrain.

� Stop the training processes when the validation error increases (beginning of over�t-

ting).

� Return the weights and biases at the minimum of the validation error.

� Test the generalization of the network using the test data set xtest.

We can get a good approximation of the estimated error, if xtrain, xvalidate and xtest fully

re�ect the probability distribution of the observed data (Rojas, 1996).
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Exhaustive search

This is the simplest way but the most time consuming. It uses a trial-and-error method to

search the optimum number of hidden layers and number of neurons in each hidden layer.

Estimate the error on the validation set (xvalidate) for each trial. The optimum model is

the network that gives the minimum error in the validation set.

3.3.5 Activation Functions

The behavior of an arti�cial neural network (ANN) depends on both the weights and the

input-output function (transfer function) that is speci�ed for the units. This process is

sometimes called as activation function which has two parts as shown in �gure 3.3 (Berry

and Lino�, 2004). The �rst part is the combination function that merges all the inputs into

a single value. Weighted sum is the most common combination function, where each input

is multiplied by its weight and the products are added together to produce wp. A bias is

then added to wp to produce w´j which is the output of the combination function. The bias

is much like a weight except that it has a constant input of 1. The bias is also called the

threshold term and is de�ned as the input to a neuron in the absence of any other inputs

(Detienne et al., 2003). This sum w´j is passed to the transfer function, f (the second part

of the activation function) to get the neuron's output (α). Transfer functions are needed

to introduce nonlinearity into the network to make multilayer networks so powerful. The

most commonly used transfer functions are hard-limit, linear, log-sigmoid and tan-sigmoid

(�gure 3.4).
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Figure 3.3: The unit of an arti�cial neural network
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Figure 3.4: a) Hard-limit b) Linear c) Log-sigmoid d) Tan-sigmoid The hard-limit, linear, log-

sigmoid and tan-sigmoid transfer functions

3.4 Adaptive neuro-fuzzy inference system (ANFIS)

Adaptive neuro-fuzzy inference system (ANFIS) is employed to simulate the daily in�ow

into the Bigge, Henne, Möhne and Sorpe reservoirs. The concept of fuzzy logic was emerged

in the development of the theory of fuzzy sets by Zadeh (1965). Fuzzy logic allows in-

termediate values to be de�ned between conventional evaluations like true/false, yes/no

(Hellmann, 2001). It is a form of multi-valued logic that is derived from fuzzy set theory

to deal with reasoning that is approximate rather than precise. A fuzzy set is any set

that allows its members to have di�erent grades of membership in the interval [0,1]. Fuzzy

inference is the process of formulating the mapping from a given input to an output using

fuzzy logic. Mamdani (Mamdani and Assilian, 1975) and Sugeno (Takagi and Sugeno,

1985) are two types of fuzzy inference systems. The main di�erence between Mamdani

and Sugeno is that the Sugeno output membership functions are either linear or constant.

Jang (1993) described the architecture of adaptive-network-based fuzzy inference system

(ANFIS) based on the Sugeno inference system type. ANFIS is a hybrid intelligent system

which has the ability of fuzzy logic (FL) to reason with neural network (NN) to learn.

The goal of ANFIS is to �nd a model which will simulate correctly the inputs with the

outputs. Fuzzy inference system (FIS) is a knowledge representation where each fuzzy rule

describes a local behavior of the system. ANFIS is the network structure that implements

FIS and employs hybrid-learning rules to train (Loukas, 2001). One of the best features

of ANFIS is that it pre-processes all the data into several membership functions before

mapping the data into an adaptive neuro structure. This pre-processing feature allows

ANFIS to converge faster and better.
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3.4.1 ANFIS structure

For simplicity, a fuzzy inference system has two inputs x and y and one output is assumed.

For a �rst-order Sugeno fuzzy model, a common rule set with two fuzzy if�then rules is

de�ned as:

1. If x is A1 and y is B1, then f 1 = p1x + q1 y + r1

2. If x is A2 and y is B2, then f 2 = p2x + q2 y + r2

in which p1, p2, q1, q2, r1 and r2 are linear parameters (consequent parameters) and A1,

A2, B1 and B2 are nonlinear parameters (premise parameters).

Figure 3.5.a illustrates the reasoning mechanism for this Sugeno model, the corresponding

equivalent ANFIS architecture is shown in �gure 3.5.b, where the nodes of the same layer

have similar functions, as described next (Jang, 1993; Li and et al., 2007):

Layer 1. Is the fuzzy layer, in which x and y are the input of nodes A1, A2, B1 and

B2. The membership relationship between the output and input functions of this layer can

expressed as:

O1,i = µAi(x) i = 1, 2

O1,j = µBj(y) j = 1, 2
(3.6)

where O1,i and O1,j denote the output functions and µAi and µBj denote the membership

functions. The generalized symmetric Gaussian function is used in the present study as

membership function and it is given as follows

µ(z) = e
−(z−c)2

2b2 (3.7)

where b and c are the parameters of the function which determine the shape of the function.

Every node in this layer is an adaptive node. Parameters in this layer are called parameters

or nonlinear parameters.

Layer 2. Every node in this layer is a �xed node labeled Π, whose output is the product

of all the incoming signals. The output w1 and w2 are the weight functions of the next

layer.

Layer 3. Every node in this layer is a �xed node labeled Ω. The i th node calculates the

ratio of the i th rule's �ring strength. Thus the outputs of this layer are called normalized

�ring strengths.
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Layer 4. Every node i in this layer is an adaptive node. Parameters in this layer are

referred to as consequent parameters (linear parameters).

Layer 5. The single node in this layer is a �xed node labeled (Σ) which computes the

overall output as the summation of all incoming signals.

3.4.2 Learning algorithm for ANFIS

The learning algorithm which is used in the present study for ANFIS is a hybrid algorithm,

which is a combination of gradient descent and the least-squares method. More speci�cally,

in the forward pass of the hybrid learning algorithm, node outputs go forward until layer

4 and the consequent parameters are identi�ed by the least-squares method (Jang, 1993).

In the backward pass, the error signals propagate backwards and the premise parameters

(nonlinear parameters) are updated by gradient descent. The consequent parameters are

optimized under the condition that the premise parameters are �xed. The proposed hybrid

approach converges much faster since it reduces the search space dimensions of the original

pure backpropagation method used in neural networks. The overall output can be expressed

as a linear combination of the consequent parameters (see �gure 3.5.a). The error, η, which

is used to train the above-mentioned ANFIS is de�ned as:

η =

np∑
k=1

(xk − x̂k)
2 (3.8)

where xk and x̂k are the k th desired and estimated output, respectively and np is the total

number of pairs (inputs�outputs) of data in the training set.

3.5 Autoregressive moving average ARMA(p,q) processes

3.5.1 Introduction to ARMA models

The autoregressive-moving-average (ARMA) models are mathematical models of the per-

sistence, or autocorrelation, in a time series. They are widely used in hydrology, economics

and many other �elds.

The ARMA model consists of two parts, an autoregressive (AR) part and a moving average

(MA) part. The model is usually then referred to as the ARMA(p,q) model where p is the

order of the autoregressive part and q is the order of the moving average part. Brockwell
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Figure 3.5: a) An illustration of the reasoning mechanism for a Sugeno-type model, b) ANFIS

architecture

and Davis (2002) mentioned that {xt}, t = 1, 2, . . . ,n is an ARMA(p,q) process if {xt} is

stationary and if for every t,

xt − ϕ1xt−1 − · · · − ϕpxt−p = εt + θ1εt−1 + · · ·+ θqεt−q (3.9)

where {εt} is the error term with zero mean and variance σ2. The error term {εt} is

assumed to be identically and independently distributed i.i.d.

The process {xt} is said an ARMA(p,q) process with mean µ if (xt −µ) is an ARMA (p,q)

process. It is convenient to use the more concise form of equation (3.9)

ϕ(B)xt = θ(B)εt (3.10)
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where ϕ(·) and θ(·) are the pth and q th-degree polynomials

ϕ(B) = (1− ϕ1B − ϕ2B
2 · · · − ϕpB

p) (3.11)

and

θ(B) = (1 + θ1B + θ2B
2 · · ·+ θqB

q) (3.12)

and B is the backward shift operator (Bjxt = xt−j , B
jεt = εt−j , j = 0, ±1, · · ·). The time

series {xt} is said to be an autoregressive process of order p or AR(p) if θ(B) ≡ 1, and

moving�average process of order q or MA(q) if ϕ(B) ≡ 1. When neither p nor q is zero,

an ARMA(p,q) model is sometimes referred to as a "mixed model". The main stages in

setting up an ARMA forecasting model are as follows (Box and Jenkins, 1976):

1. ARMA model identi�cation

2. Model parameters estimation

3. Diagnostic checking

3.5.2 ARMA model identi�cation

There are various methods and criteria for selecting the orders p and q of an ARMA(p,q).

Autocorrelation function (ACF ) and partial autocorrelation function (PACF ) can provide

powerful tools to determine the order of a pure autoregressive (AR) or moving average

(MA) process. Another method to select the orders p and q is using the so-called informa-

tion criteria. Two information criteria for statistical model identi�cation are proposed by

Akaike (1974) and (1979). These two information criteria are known as Akaike information

criteria, AIC (Akaike, 1974) and Bayseian information criteria, BIC (Akaike, 1979) and

are de�ned as follows:

AIC =
2m

n
+ log

(
σ̂2
)

(3.13)

in which n is the number of observations, σ̂2 is the estimated noise variance which is usually

obtained from maximum likelihood and m is the number of parameters.

BIC =
m logn

n
+ log

(
σ̂2
)

(3.14)
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The aim of using AIC or BIC is to balance the risks of under�tting (selecting orders

smaller than the true orders) and over�tting (selecting orders larger than the true orders)

by minimizing the estimated value of AIC or BIC (Mathimatica, 2007). It is di�cult to

compare the relative performance of the two criteria (Wang and Langari, 1995), however

Wang and Libert (1994) suggested that the BIC is superior to the AIC in identifying the

ARMA models in some aspects.

3.5.3 Estimation of the parameters of ARMA model

We used the maximum likelihood estimation method to estimate the parameters of the

ARMA models. Maximum likelihood estimation aims to �nd the most likely values of

distribution parameters for a set of data by maximizing the value of what is called the

likelihood function. This likelihood function is largely based on the probability density

function (pdf ) for a given distribution. An ARMA(p,q) model simulates an observed data

{xt} t = 1, 2, . . . , n as follows:

xt = µ+ ϕ1xt−1 + · · · + ϕpxt−p − εt + θ1εt−1 + · · ·+ θqεt−q (3.15)

where εt∼i.i.d. N
(
0, σ2

)
.

The goal is to estimate population parameters Φ where

Φ = (µ, ϕ1, ϕ2, · · · , ϕp, θ1, · · · θ2, θq, σ2) (3.16)

The maximum likelihood estimate of Φ is the value that maximize the probability density

fxn,xn−1,...,x2,x1(xn, xn−1, ..., x2, x1; Φ) (3.17)

The approximation to the likelihood functions for an autoregressive and moving average

processes conditions on the initial values of the x 's and the ϵ's respectively (Hamilton,

1994). Take the initial values for x o ≡ (x o, x−1, . . . , x−p+1) to be equal to their actual

values and estimate the initial values ϵo ≡ (ϵo, ϵ−1, . . . , ϵ−q+1), the sequence {ϵ1, ϵ2, . . . ,

ϵn} can be calculated from {x 1, x 2, . . . , xn} using the following formula:

εt = xt − ϕ1xt−1 − · · · − ϕpxt−p − θ1εt−1 − · · · − θqεt−q (3.18)
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for t = 1, 2, 3, . . . , n. If ϵt is Gaussian, the conditional log-likelihood function (LLF ) is

then

LLF = log fxn, xn−1,..., x1|x0, ε0(xn, xn−1, ..., x1|x0, ε0; Φ)

= −n
2 log(2π) − n

2 log(σ
2)−

∑n
t=1

ε2t
2σ2

(3.19)

Evaluation of the log-likelihood function is conditioned, or based on a set of pre-sample

observations. For this reason, the log-likelihood objective functions shown here are referred

to as conditional log-likelihood functions. The iterative numerical optimization method can

be used to estimate the optimum Φ.

3.5.4 Diagnostic checking

The model selection criterion (AIC ) is used to choose the �best� ARMA models. The

AIC penalizes the models for their complexity; therefore, diagnostic checking is needed to

ensure that the residuals of the models are random. Based on the expected properties of

the residuals, εt(t =1, 2, . . . , n) we used the following diagnostic checks (Brockwell and

Davis, 2002):

The sample autocorrelation function (ACF) of the residuals

If the ARMA model e�ectively describes the persistence of the data, then the model residu-

als should be random or uncorrelated in time. The ACF of the residuals can be examined

by scanning it to see if any individual coe�cients fall outside some speci�ed con�dence

interval (CI ) around zero. Assume rk is the autocorrelation coe�cient of the residuals at

lag k. The appropriate CI for rk can be found by referring to a normal distribution cdf,

then the 95% con�dence interval for rk is ±1.96/n0.5. The noise hypothesis that observed

residuals are consistent with i.i.d. noise can be rejected if more than two or three out of

40 fall outside the bounds ±1.96/n0.5 (nout/m = 2/40 or 3/40) where nout is the number

of the estimated ACF which fall out the bounds and m is the number of coe�cients to

test autocorrelation. We can also reject the noise hypothesis if one of the estimated ACF

of the residuals falls far outside the bounds.

Test for Randomness of the Residuals

Instead of looking at the residual autocorrelations one at a time, it is possible to carry out

what is called a portmanteau lack-of-�t test (Chat�eld, 2004). The classical portmanteau

test statistic is the one proposed by Box and Pierce (1970)

QBP = n
m∑
k=1

r2k (3.20)
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where n is the number of observations, m is the number of coe�cients to test autocor-

relation (25 is a reasonable number for many time series, Li, 2004) and rk is the sample

autocorrelation of order k of residual. Under the null hypothesis that the ARMA model is

adequate, QBPis distributed as a χ2with (m− p− q)degrees of freedom. We reject the null

hypothesis at level α if QBP > χ2
1−α(m− p− q),where χ2

1−α(m− p− q)is the 1−α quantile

of the chi-squared distribution with (m− p− q)degrees of freedom. Ljung and Box (1978)

suggested an alternative formula in which QBPis replaced by

QLB = n(n+ 2)
m∑
k=1

r2k/(n−m) (3.21)

Choice of m equal to 20 is somewhat arbitrary, 25 is a reasonable number for many series.

3.6 Fractionally integrated ARMA processes (ARFIMA)

3.6.1 Introduction to ARFIMA models

The autocorrelation function ρ(.) of an ARMA process at lag h converges rapidly to zero

as h→ ∞ in the sense that there exists C > 1 such that (Brockwell and Davis, 2002):

chρ(h) → 0 as h→ ∞ (3.22)

Fractionally integrated ARMA processes (ARFIMA) are stationary processes with much

more slowly decreasing autocorrelation function. Brockwell and Davis (2002) de�ned

ARFIMA processes as autoregressive integrated moving-average ARIMA(p,d,q) processes

with −0.5 ≤ d ≤ 0.5, satisfy di�erence equations of the form

ϕ(B)(1−B)dXt = θ(B)εt (3.23)

where ϕ(·) ,θ(·) and B are prede�ned in section 3.5.1 and {εt} is an i.i.d. process with

mean 0 and variance σ2. The operator (1−B)dis de�ned by binomial expansion

(1−B)d =
∞∑
j=0

πjB
j (3.24)

where πj = Π
0<k≤j

k−1−d
k , j = 1, 2, · · ·.

If the parameter d is in the range [-0.5, 0], the process is said to be antipersistent; if d = 0

the process is either a short memory process or a white noise; �nally for d in the range

[0,0.5] the process exhibits long memory (Coli et al., 2005).
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3.6.2 Estimation of an ARFIMA(p,d,q) model

Maximum likelihood estimation may be used to estimate the parameters ϕ, θ, and dof

ARFIMA (p,d,q) process. Haslett and Raftery (1989) proposed a fast and accurate method

to calculate the exact maximum likelihood estimate (MLE). Sowell (1992) described how to

compute the exact maximum likelihood estimate (MLE) for a stationary ARFIMA model

with −0.5 ≤ d ≤ 0.5. Brockwell and Davis (2002) suggested that it is much simpler to

estimate the parameters of the of ARFIMA (p,d,q) process by maximizing the Whittle

approximation instead of maximizing the exact Gaussian likelihood.

ARFIMA(p,d,q) process can be regarded as an ARMA(p,q) process driven by fractional

integrated noise (Brockwell and Davis, 2002). The process de�ned in equation (3.23) can

be replaced by the following two equations

ϕ(B)Xt = θ(B)Wt (3.25)

and

(1−B)dWt = εt (3.26)

Reisen et al. (2001) gave the following procedure to build an ARFIMA(p,d,q) for the {Xt}
process de�ned in equation (3.23):

1. Estimation of d in ARFIMA(p,d,q) using the GPH method given in chapter 2, section

2.6.3 or any other method and denote the estimate by d̂.

2. Calculation of Ût = (1−B)d̂Xt.

3. Identi�cation and estimation of ϕ and θ in the ARMA(p,q) process ϕ(B)Ût = θ(B)εt,

using Box-Jenkins modeling (Box et al., 1976) or the maximum likelihood estimation

method (section, 3.5.3).

4. Calculation of Ŵt = ϕ̂(B)

θ̂(B)
Xt, in which ϕ̂(B) and θ̂(B) are the estimated values of

ϕ(B) and θ(B) from the previous step.

5. Re-estimation of d using in the ARFIMA(p,d,q) model (1−B)d̂Ŵt = εt.

6. Using the new estimate of d, repeat steps 2 to 5 until the estimates of parameters

d, ϕ and θ converge.
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We wrote a Matlab code to estimate the parameters of ARFIMA(p,d,q) using the previous

procedure.

3.7 Forecasting using ARMA models

The goal of the forecasting process is to predict future values of a time series, xn+m, m = 1,

2, . . . , based on the data collected to the present, x = {xn, xn−1, . . . , x 1}. Let {xt} be

a stationary process with expectation, E [{xt}]=0 and autocovariance function (γ). An

observation xn+1 beyond the end of a series can be estimated as linear combination of x 1,

x 2, . . . , xn, i.e.,

x̂n+1 =
n∑

j=1

Φnjxj (3.27)

such that the expectation of the mean squared error is given as:

E |xn+1 − x̂n+1|2 (3.28)

Best linear predictors (BLPs) of equation (3.27) are the predictors that minimize the mean

square prediction error (equation, 3.28). Using the projection theorem, we can rewrite

equation (3.28) as (Shumway and Sto�er, 2006)

E

xn+1 −
n∑

j=1

Φnjxn+1−j

xn+1−k

 = 0, k = 1, 2, ..., n (3.29)

which can be written as

n∑
j=1

Φnjγ (k − j) = γ (k) , k = 1, 2, ..., n (3.30)

Combining all the equations of the autocovariances in a matrix form, we have

γn =MnΦn (3.31)

Due to the projection theorem, if Mn is nonsingular, the elements of Φnare unique and are

given by

Φn =M−1
n γn (3.32)
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The mean square one-step-ahead prediction error is

Pn
n+1 = E(xn+1 − xnn+1)

2 = γ(0)− γ′′nM
−1
n γn (3.33)

Shumway and Sto�er (2006) used the Durbin-Levinson algorithm to solve equations (3.32)

and (3.33) iteratively as follows:

Φ00 = 0, p01 = γ(0) (3.34)

For n ≥ 1,

Φnn =
ρ(n)−

∑n−1
k=1 Φn−1,kρ(n− k)

1−
∑n−1

k=1 Φn−1,kρ(k)
, pnn+1 = pn−1

n (1− Φ2
nn), (3.35)

where for n ≥ 2, Φnk = Φn−1,k − ΦnnΦn−1,n−k, k = 1, 2, · · · , n− 1 and ρ(n) = γ(n)
γ(0) , is

the autocorrelation.

Estimation of autocovariances (ACVF )

The calculation of the ACVF of an ARIMA and ARFIMA processes is a crucial aspect in

the implementation of the Durbin-Levinson algorithms (Palma, 2007). The method used

to estimate autocovariances γ(.) of ARMA(p, q) follows Brockwell and Davis (1991). By

multiplying both sides of equation (3.9) by xt−k and taking the expectations we obtained

γ(k)− ϕ1γ(k − 1)− · · · − ϕpγ(k − p) = σ2
∑

k≤i≤q θiψi−k,

0 ≤ k< max(p,q + 1)

(3.36)

and

γ(k)− ϕ1γ(k − 1)− · · · − ϕpγ(k − p) = 0

k ≥ max(p,q + 1)

(3.37)

where

ψj −
∑

0<s≤j

ϕsψj−s = θj , 0 ≤ j< max(p,q + 1) (3.38)

and

ψj −
∑

0<s≤p

ϕsψj−s = 0, j ≥ max(p,q + 1) (3.39)
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Sowell (1992) derived an expression for the computation of ACVF of an ARFIMA process

which involves hypergeometric functions. Palma (2007) used the so-called splitting method

to estimate ACVF of an ARFIMA process. He decomposed the ARFIMA model into its

ARMA and its fractionally integrated (FI) parts. Then, the ACVF of the corresponding

ARFIMA process is given by

γ(k) ≈
m∑

h=−m

γ0(h)γARMA(k − h) (3.40)

where γ0(.) is the ACVF of the fractional noise ARFIMA(0,d,0) and γARMA(.) is the

ACVF of the ARMA component. ACVF of ARFIMA(0,d,0) process is given by

γ0(h) = σ2
Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(1 + h− d)
(3.41)

where Γ(.) is the gamma function.

3.8 Models e�ciency criteria

We used the following e�ciency criteria as a mathematical estimate of the error between

the predicted and observed daily in�ow data to evaluate the performances of the models:

3.8.1 Average relative error percentage (AREP)

AREP = 100× 1

n

n∑
j=1

|(xj − x̂j)/xj | (3.42)

in which n is the total number of the observed data and xjand x̂j are the observed and

predicted daily in�ow respectively.

3.8.2 Cross correlation coe�cient (R)

R =

∑n
j=1(xj − x̄)(x̂j − ¯̂x)√∑n

j=1(xj − x̄)2
√∑n

j=1(x̂j − ¯̂x)2
(3.43)

where x̄ and ¯̂x are the means of the observed and predicted daily in�ow data respectively.
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3.8.3 Nash�Sutcli�e model e�ciency coe�cient (NSC)

Nash and Sutcli�e (1970) proposed a coe�cient, NSC to estimate the e�ciency of the �t

which takes values from 1 (best �t) to -∞. Values of NSC lower than zero indicate that the

mean of the observed data are as accurate as the model predictions. The disadvantage of

using the e�ciency coe�cient (NSC ) is that the larger values in a time series are strongly

overestimated whereas lower values are neglected (Krause et al., 2005). To reduce the

problem of the squared di�erences, Krause et al. (2005) suggested estimating the e�ciency

coe�cient (NSC ) using the log-transformed values of the observed xj and the predicted x̂j

in�ow data as follows

NSC = 1−
∑n

j=1(xj − x̂j)
2∑n

j=1(xj − x̄)2
(3.44)

They have also estimated another form of the e�ciency coe�cient (NSC ) using the dif-

ferences between the observed and predicted values as relative deviations to reduce the

in�uence of high and low values as follows:

NSCrel = 1−
∑n

j=1

(
xj−x̂
xj

)2
∑n

j=1

(
xj−x̄
x̄

)2 (3.45)

3.8.4 Index of agreement (g)

The index of agreement (g) was proposed by Willmot (1981) to overcome the insensitivity

of NSC to di�erences in the observed and predicted means and variances. The range of g

lies between 0 (no correlation) and 1 (perfect �t) and is de�ned as:

g = 1−
∑n

j=1(xj − x̂j)
2∑n

j=1(|xj − x̄|+ |x̂j − x̄|)2
(3.46)
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3.9 Building of the models

3.9.1 BPNN models

The Levenberg-Marquardt is used as training algorithm and tan-sigmoid and linear func-

tions as transfer functions for the hidden layer neurons and for the output one respectively.

Early stopping procedure is employed to prevent over�tting of the BPNNs in the present

work by dividing the available data xt into three sets xtrain, xvaidate and xtest with 60 %,

20 % and 20 % percents from available data respectively. One hidden layer is assumed to

be su�cient to simulate the training data (Berry and Lino�, 2004). We used trial-and-error

procedure to determine the optimum number of neurons in the hidden layer and to select

the input variables that give the best performance. Selection of input variables for the

BPNN model has been done after making extensive trials with di�erent combinations of

input variables as in the following procedure:

1. Train the BPNN model using each input variables combination with number of neu-

rons (F ), ms ≤ F ≤ 1.5×ms where ms is the number of the input variables in each

combination. The number of combinations (Ns) is equal to m!×2-1 where m is the

number of the potential input variables (see table 3.1).

2. Use the previous step to determine the optimum F corresponds to the each input

variables combination.

3. Now, choose the BPNN model with the best performance as the optimal one.

Table 3.2 gives a list of the input-output variables and the number of neurons in the hidden

layer for the optimum models for each reservoir.

3.9.2 ANFIS models

Selection of the ANFIS model with best performance is the aim of this section. Starting

with the input variables of the optimum BPNN models, the following procedure is assumed

to �nd out the optimum ANFIS models:

1. Use the input variables of the best BPNN models (table 3.2) as potential input

variables of the ANFIS models. Take the number of membership functions for each

input variable to be 2 except for input variables at day t-1 (if exist) for which three

membership functions are used.
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2. Train the model using each input variables combination and estimate its performance

η (equation, 3.8).

3. Compare between the performances of the di�erent trained models and choose the

model with the best performance to be the optimum one.

Early stopping criteria provided by the validation data sets are used to prevent over�tting

of the ANFIS models. A list of the input-output variables and the number of membership

functions for each input variable for the best ANFIS models is given in table 3.3. Both the

BPNN and ANFIS models are trained and simulated using Matlab 7.5 developed by the

Math Works Inc, Natick, Massachusetts.

Table 3.2: Parameters of the BPNN models

Reservoir Models group Optimum inputs Optimum no. of neurons Output

Bigge M1-1 xt−1, xt−2, xt−3 4 xt

M1-2 xt−1, xt−2, xt−3, xt−4 6 xt

M2 xt−1, xt−2, Dt−1, Dt−2 5 xt

Henne M1-1 xt−1, xt−2 7 xt

M1-2 xt−1, xt−2, xt−3 5 xt

M2 xt−1, xt−2, xt−3, Dt−1, Dt−2 9 xt

Möhne M1-1 xt−1, xt−2, xt−3 6 xt

M1-2 xt−1, xt−2, xt−3 5 xt

M2 xt−1, xt−2, Dt−1 4 xt

Sorpe M1-1 xt−1, xt−2, xt−33, xt−4 3 xt

M1-2 xt−1, xt−2, xt−3, xt−4 5 xt

M2 xt−1, xt−2, Dt−1 6 xt

3.9.3 ARMA models

For mixed models it is often di�cult to determine the exact orders of the ARMA. In the

present work, we assumed that neither the AR nor MA component has a higher order than

5 (0 ≤ p ≤ 5 and 0 ≤ q ≤ 5).

We tried di�erent ARMA models with di�erent orders of AR and MA components for

each data series and compared the AIC values of the models. The ARMA models with

the minimum AIC are assumed to be the best models. Table 3.4 gives the parameters of

the best ARMA models (models, group M1-1 and models, group M1-2) for each reservoir.
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Table 3.3: Parameters of the ANFIS models

Reservoir Models group Inputs No. of membership functions Output

Bigge M1-1 xt−1, xt−2, xt−3 3 - 2 - 2* xt

M1-2 xt-1, xt−2, xt−3, xt−4 3 - 2 - 2 - 2 xt

M2 xt−1, xt−2, Dt−1, Dt−2 3 - 2 - 3 - 2 xt

Henne M1-1 xt−1, xt−2 3 - 2 xt

M1-2 xt−1, xt−2, xt−3 3 - 2 - 2 xt

M2 xt−1, xt−2, xt−3, Dt−1, Dt−2 3 - 2 - 2 - 3 - 2 xt

Möhne M1-1 xt−1, xt−2, xt−3 3 - 2 - 2 xt

M1-2 xt−1, xt−2, xt−3 3 - 2 - 2 xt

M2 xt−1, xt−2, Dt−1 3 - 2 - 3 xt

Sorpe M1-1 xt−1, xt−2, xt−3, xt−4 3 - 2 - 2 - 2 xt

M1-2 xt−1, xt−2, xt−3, xt−4 3 - 2 - 2 - 2 xt

M2 xt−1, xt−2, Dt−1 3 - 2 - 3 xt

* the number of membership functions for input variables xt−1, xt−2, xt−3 are 3, 2 and 2 respectively.

Table 3.4: Parameters of the best autoregressivge moving average ARMA(p,q) models

Reservoir Models group Parameters of the model

Bigge M1-1 ϕ -0.859 - - - -

θ 0.258 -0.084 -0.047 -0.051 -0.036

M1-2 ϕ -1.092 0.334 -0.142 0.044 -

θ -0.003 - - - -

Henne M1-1 ϕ -1.626 0.861 -0.221 0.062 -0.029

θ -0.339 -0.145 - - -

M1-2 ϕ 0.52 -0.949 -0.465 0.162 -

θ 1.714 0.763 -0.01 - -

Möhne M1-1 ϕ -2.058 1.716 -1.34 0.929 -0.244

θ -1.097 0.445 -0.594 0.188 0.085

M1-2 ϕ -1.363 0.041 0.327 -0.03 0.03

θ -0.477 -0.465 - - -

Sorpe M1-1 ϕ -0.884 - - - -

θ 0.314 -0.124 -0.073 -0.024 -

M1-2 ϕ 0.073 -0.881 0.032 - -

θ 1.237 0.266 0.071 0.048 -

3.9.4 ARFIMA models

The procedure described in section 3.6.2 is used to estimate the parameters of the

ARFIMA model. The procedure is repeated for di�erent orders of AR and MA com-

ponents (0 ≤ p ≤ 5) and (0 ≤ q ≤ 5).
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The model with the minimum AIC is assumed as the best ARFIMA model. Table 3.5

gives the estimated parameters of the best ARFIMA models.

Table 3.5: Parameters of the best autoregresssivge fractional integrated moving average

ARFIMA(p,d,q) models

Reservoir Models group Parameters of the model

Bigge ϕ -0.663 - - - -

M1-1 θ 0.286 - - - -

d 0.173

M1-2 ϕ -0.777 0.018 - - -

θ 0.184 -0.066 - - -

d 0.126

Henne ϕ -0.6479 - - - -

M1-1 θ 0.3842 - - - -

d 0.2576

M1-2 ϕ -0.648 - - - -

θ 0.3842 - - - -

d 0.1896

Möhne ϕ -0.685 0.129 -0.072 - -

M1-1 θ - - - - -

d 0.278

M1-2 ϕ -0.5 - - - -

θ - - - - -

d 0.3948

Sorpe ϕ -0.7584 - - - -

M1-1 θ 0.2228 -0.1535 -0.0471 - -

d 0.2141

M1-2 ϕ -0.774 - - - -

θ 0.166 - - - -

d 0.2238

3.9.5 Results of diagnostic checks for ARMA and ARFIMA models

We tested the diagnostic of the ARMA(p,q) and ARFIMA(p, d,q) models using the the

Ljung-Box test and the ACF of the residuals. The results of the Ljung-Box test at 5% sig-

ni�cance level are given in table 3.6. The results show that except for the ARFIMA models

for the daily in�ow into the Henne and Möhne reservoirs, all p-values are greater than 0.05,

then the null hypothesis of models adequacy cannot be rejected at this signi�cance level.



3.10 Forecasting performance assessment 83

Figures 3.6 and 3.7 plot the ACF of the residuals obtained from the ARMA and ARFIMA

models (models, group M1-1) respectively for daily in�ow into the Bigge, Henne, Möhne

and Sorpe reservoirs. The plots of the ACF for the ARMA and ARFIMA models (models

group M1-2), are shown in �gure 3.8 and 3.9 respectively. The estimated nout/m values

are displayed on the plots of ACF of the residuals. The graphs and the estimated nout/m

values show that on the basis of the autocorrelation function there is no cause to reject

the �tted models in the following cases:

1. The ARMA(p,q) and ARFIMA(p,d,q) models for the daily in�ow into the Bigge and

Sorpe reservoirs (models, group M1-1 and models, group M1-2).

2. The ARMA(p,q) model for the daily in�ow into the Henne reservoir (models, group

M1-1).

3.10 Forecasting performance assessment

In the present section we investigate the forecasting ability of the BPNN, ANFIS, ARMA

and ARFIMA models by assessing their forecasting performances using the models ef-

�ciency criteria discussed in section 3.8. The forecasting performances of the di�erent

models are compared and the results may be summarized as follows:

3.10.1 Univariate models (group M1-1 and group M1-2)

The e�ciency criteria for the models, group M1-1 and group M1-2 (one-day-ahead and

two-days-ahead forecasting) are given in tables 3.7 and 3.8 respectively. The results show

that in terms of all e�ciency criteria except the AREP, the BPNN, ANFIS, ARMA and

ARFIMA models have similar performances but the �rst two are slightly better. The

BPNN and ANFIS models have the minimum AREP values in forecasting one-day-ahead

of all daily in�ow time series (except for this of the Sorpe reservoir, group M1-2). According

to the values of the AREP, the ANFIS models outperform BPNN models in forecasting

one-day-ahead of all daily in�ow time series except:

� The daily in�ow time series of the Bigge and Henne reservoirs (the models, group

M1-1).

� The daily in�ow time series of the Henne reservoir (the models, group M1-2).
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Plots of observed daily in�ow and one-day-ahead and two-days-ahead forecast hydrographs

for period from 1-11-1999 to 31-10-2000 for the models, group M1-1 are shown in �gures

3.10 and 3.11 respectively. To save space, only the plots for the Bigge reservoir are displayed

here.

3.10.2 Multivariate models (group M2)

Table 3.9 lists the e�ciency criteria for the models, group M2. The results show that

the BPNN and ANFIS models don't have signi�cant di�erence in the performances except

the AREP. The values of the AREP show that the ANFIS models outperform the BPNN

models in forecasting of:

1. One-day-ahead daily in�ow into the Henne and Sorpe reservoirs.

2. Two-days-ahead daily in�ow into the Bigge and Sorpe reservoirs.

3.10.3 Univariate vs. multivariate models

The performances of the models, group M1-2 are compared with those of the models,

group M2. The results of the comparison show a clear superiority of the models, group M2

for one-day-ahead forecasting. For two-days-ahead forecasting, the performances of the

models, group M2 are slightly better. The following procedure is used to compare between

the performances of the BPNN model, (the models group M1-2) and the BPNN model

(the models, group M2):

1. Sort the observed and the one-day-ahead forecasted daily in�ow data in ascending

order according to observed one.

2. Divide the data into sets with equal size.

3. Estimate the performance for each daily in�ow group.

Figures 3.12, 3.13, 3.14 and 3.15 show the values of the e�ciency criteria vs. the forecasted

daily in�ow into the Bigge, Henne, Möhne and Sorpe reservoirs respectively. It is clear that

the models, group M2 outperform the models, group M1-2 in forecasting daily in�ow with

values more than average daily in�ow (the dotted vertical line) for all e�ciency criteria

(especially the rmse and AREP). These �gures can be used to guess the expected e�ciency

criteria for the forecasted daily in�ow.
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Figure 3.6: The ACF of the residuals from the ARMA models (models, group M1-1) for daily

in�ow into the a) Bigge, b) Henne, c) Möhne and d) Sorpe reservoirs
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Figure 3.7: The ACF of the residuals from the ARFIMA models (models, group M1-1) for daily

in�ow into the a) Bigge, b) Henne, c) Möhne and d) Sorpe reservoirs
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Figure 3.8: The ACF of the residuals from the ARMA models (models, group M1-2) for daily

in�ow into the a) Bigge, b) Henne, c) Möhne and d) Sorpe reservoirs
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Figure 3.9: The ACF of the residuals from the ARFIMA models (models, group M1-2) for daily

in�ow into the a) Bigge, b) Henne, c) Möhne and d) Sorpe reservoirs



3.10 Forecasting performance assessment 87

Table 3.6: Results of the Ljung-Box Q-test

Reservoirs Models group M1-1 Models group M1-2

ARMA ARFIMA ARMA ARFIMA

p-value Q statistic* p-value Q statistic* p-value Q statistic* p-value Q statistic*

Bigge 0.1665 31.71 0.2374 29.66 0.1219 33.38 0.1739 31.47

Henne 0.5021 24.3 0.0235 40.9 0.0718 35.99 0.004 47.67

Möhne 0.0624 36.64 0.0078 45.28 0.1489 32.32 0.0158 42.5

Sorpe 0.0743 35.83 0.5105 24.154 0.9441 14.88 0.9427 14.94

* critical value of Q statistic is 37.70.

Table 3.7: Values of the e�ciency criterion parameters for the models, group M1-1

Lead time Reservoir Model R rmse AREP g NSC NSCrel

one-day-ahead Bigge BPNN 0.878 5.486 22.873 0.942 0.881 0.932

ANFIS 0.868 5.672 24.975 0.938 0.883 0.924

ARMA 0.863 5.832 30.694 0.936 0.887 0.929

ARFIMA 0.83 6.515 47.028 0.92 0.812 0.836

Henne BPNN 0.935 0.984 15.249 0.968 0.935 0.969

ANFIS 0.928 1.031 17.827 0.965 0.951 0.975

ARMA 0.929 1.025 25.583 0.966 0.929 0.949

ARFIMA* 0.916 1.113 30.47 0.96 0.914 0.934

Möhne BPNN 0.886 3.071 22.662 0.946 0.883 0.916

ANFIS 0.887 3.047 19.497 0.947 0.899 0.939

ARMA 0.897 2.93 22.61 0.951 0.888 0.93

ARFIMA* 0.896 2.93 22.153 0.951 0.89 0.932

Sorpe BPNN 0.936 0.605 22.204 0.969 0.91 0.942

ANFIS 0.933 0.622 17.765 0.967 0.924 0.956

ARMA 0.931 0.625 25.784 0.967 0.913 0.941

ARFIMA 0.906 0.727 25.609 0.955 0.914 0.946

two-days-ahead Bigge BPNN 0.703 8.126 46.773 0.874 0.757 0.799

ANFIS 0.702 8.144 46.809 0.873 0.746 0.799

ARMA 0.682 8.476 56.149 0.865 0.734 0.765

ARFIMA 0.669 8.571 69.618 0.862 0.659 0.626

Henne BPNN 0.805 1.643 42.068 0.912 0.838 0.86

ANFIS 0.803 1.65 35.51 0.911 0.863 0.911

ARMA 0.788 1.704 51.522 0.905 0.804 0.803

ARFIMA* 0.775 1.748 54.49 0.9 0.79 0.789

Möhne BPNN 0.756 4.336 32.821 0.893 0.785 0.847

ANFIS 0.756 4.336 32.304 0.893 0.791 0.865

ARMA 0.76 4.3 37.293 0.894 0.768 0.827

ARFIMA* 0.759 4.305 36.386 0.894 0.773 0.837

Sorpe BPNN 0.823 0.977 39.308 0.919 0.808 0.844

ANFIS 0.821 0.983 35.377 0.918 0.822 0.881

ARMA 0.806 1.016 49.404 0.912 0.783 0.797

ARFIMA 0.792 1.056 41.237 0.905 0.818 0.863

* the �tted model is rejected in the diagnostic checking step.
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Table 3.8: Values of the e�ciency criterion parameters for the models, group M1-2

Lead time Reservoir Model R rmse AREP g NSC NSCrel

one-day-ahead Bigge BPNN 0.901 4.197 32.434 0.953 0.86 0.895

ANFIS 0.897 4.257 27.328 0.952 0.877 0.929

ARMA 0.887 4.447 33.549 0.947 0.855 0.905

ARFIMA 0.846 5.142 39.581 0.929 0.827 0.874

Henne BPNN 0.946 0.966 24.319 0.974 0.949 0.94

ANFIS 0.939 1.02 27.435 0.971 0.943 0.931

ARMA 0.946 0.993 24.083 0.974 0.951 0.934

ARFIMA* 0.931 1.126 29.983 0.967 0.936 0.903

Möhne BPNN 0.894 2.532 21.536 0.95 0.887 0.926

ANFIS 0.892 2.551 19.385 0.949 0.892 0.936

ARMA 0.896 2.502 22.35 0.951 0.88 0.918

ARFIMA* 0.897 2.5 22.014 0.951 0.881 0.921

Sorpe BPNN 0.947 0.619 18.775 0.975 0.95 0.961

ANFIS 0.937 0.682 14.904 0.969 0.953 0.969

ARMA 0.954 0.593 14.78 0.978 0.958 0.97

ARFIMA 0.944 0.655 17.033 0.973 0.951 0.962

two-days-ahead Bigge BPNN 0.664 7.318 50.577 0.857 0.713 0.799

ANFIS 0.659 7.419 47.814 0.853 0.696 0.793

ARMA 0.655 7.399 62.822 0.854 0.658 0.659

ARFIMA 0.634 7.557 63.652 0.847 0.649 0.657

Henne BPNN 0.83 1.671 34.759 0.923 0.903 0.889

ANFIS 0.817 1.73 44.732 0.917 0.884 0.849

ARMA 0.836 1.695 44.983 0.925 0.878 0.757

ARFIMA* 0.825 1.743 50.41 0.921 0.863 0.712

Möhne BPNN 0.749 3.789 37.785 0.888 0.749 0.813

ANFIS 0.755 3.722 32.505 0.892 0.771 0.855

ARMA 0.768 3.628 37.333 0.897 0.753 0.773

ARFIMA* 0.763 3.653 35.903 0.896 0.758 0.802

Sorpe BPNN 0.839 1.055 23.561 0.926 0.9 0.927

ANFIS 0.83 1.09 29.452 0.921 0.877 0.898

ARMA 0.867 0.992 24.979 0.938 0.903 0.92

ARFIMA 0.859 1.019 27.901 0.935 0.892 0.901

* the �tted model is rejected in the diagnostic checking step.

Table 3.9: Values of the e�ciency criterion parameters for the models, group M2

Lead time Reservoir Model R rmse AREP g NSC NSCrel

one-day-ahead Bigge BPNN 0.944 3.253 18.787 0.972 0.907 0.936

ANFIS 0.928 3.633 22.944 0.965 0.883 0.623

Henne BPNN 0.966 0.767 20.466 0.984 0.94 0.936

ANFIS 0.951 1.009 19.505 0.972 0.962 0.929

Möhne BPNN 0.939 1.948 13.602 0.97 0.938 0.95

ANFIS 0.928 2.112 14.03 0.965 0.933 0.93

Sorpe BPNN 0.973 0.439 13.998 0.987 0.965 0.97

ANFIS 0.968 0.485 11.428 0.984 0.97 0.978

two-days-ahead Bigge BPNN 0.707 6.908 49.258 0.872 0.665 0.74

ANFIS 0.694 7.071 43.775 0.866 0.736 0.709

Henne BPNN 0.838 1.631 34.259 0.926 0.881 0.827

ANFIS 0.834 1.653 38.798 0.924 0.895 0.836

Möhne BPNN 0.786 3.499 28.849 0.904 0.79 0.851

ANFIS 0.78 3.573 29.714 0.9 0.797 0.833

Sorpe BPNN 0.851 1.021 32.118 0.931 0.85 0.766

ANFIS 0.844 1.04 24.475 0.928 0.891 0.91
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Figure 3.10: Comparative one-day-ahead forecasting of the daily in�ow into Bigge reservoir (mod-

els, group M1-1)
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Figure 3.11: Comparative two-days-ahead forecasting of the daily in�ow into the Bigge reservoir

(models, group M1-1)
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Figure 3.12: Values of the e�ciency criteria vs. the predicted daily in�ow (Bigge reservoir)
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Figure 3.13: Values of the e�ciency criteria vs. the predicted daily in�ow (Henne reservoir)
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Figure 3.14: Values of the e�ciency criteria vs. the predicted daily in�ow (Möhne reservoir)
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Figure 3.15: Values of the e�ciency criteria vs. the predicted daily in�ow (Sorpe reservoir)
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3.11 Conclusions

The BPNN, ANFIS, ARMA and ARFIMA models are used to forecast daily in�ow into

the Bigge, Henne, Möhne and Sorpe reservoirs. The models are divided into univariate

models (the models group M1-1 and group M1-2) and multivariate models (the models

group M2) according to the potential input variables. The BPNN, ANFIS, ARMA and

ARFIMA are the simulation models in the models, group M1-1 and group M1-2 and the

average daily in�ow are the potential input variables, however in the models, group M2

the BPNN and ANFIS are the simulation models and the average daily in�ow and rainfall

are the potential input variables.

Early stopping procedure is applied to prevent over�tting in the BPNN and ANFIS models.

One hidden layer is assumed to be su�cient to simulate the training data using the BPNN

models. A trial-and-error procedure is employed to determine the number of neurons in the

hidden layer and to select the input variables that give the best performance. Starting with

the input variables of the optimum BPNN models, di�erent ANFIS models are trained to

�nd out the best one.

Di�erent ARMA and ARFIMA models are tried with di�erent orders (0 ≤ p ≤ 5 and 0 ≤ q

≤ 5) of the AR and MA components for each data series and the AIC values of the models

are compared to select the best models. The ACF of the residuals and the Ljung-Box

test are used to test the diagnostic of the ARMA(p,q) and ARFIMA(p,d,q) models. The

results of the Ljung-Box test at 5 % signi�cance level show that the null hypothesis of

model adequacy cannot be rejected for all simulated daily in�ow time series except that of

the Henne and Möhne reservoirs which are simulated using the ARFIMA models.

The performances of the models group M1-1 and group M1-2 show that these models

don't have signi�cant di�erence in the performances except for the average relative error

percentage (AREP). The BPNN and ANFIS models have the minimum values of the AREP

for all daily in�ow time series.

The models, group M2, outperform the models, group M1-2 in respect of all used e�ciency

criteria.
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Chapter 4

Filling in missing data

4.1 Introduction

We proposed three models to �ll in the missing data in the daily in�ow time series of the

Bigge, Henne, Möhne and Sorpe reservoirs. These models are the backpropagation neural

networks (BPNN), the adaptive neuro-fuzzy inference system (ANFIS) and the generalized

linear model (GLM). The performances of the models are compared and the model with

the best performance is also applied to extend the daily in�ow into the Bigge reservoir in

the period from 1/11/1960 to 31/10/1965.

Machine learning techniques such as arti�cial neural network (ANN) and adaptive neuro-

fuzzy inference system (ANFIS) models have been used to solve di�erent hydrology and

water resources problems. Some of these applications were presented in the previous chap-

ter. Only a limited number of reports and researches related to the use of ANN and ANFIS

in �lling in missing data are available. An ANN- based model for estimating missing values

in a multivariate data set was reported by Gupta and Lam (1996). He found that the per-

formances of the ANN-based models are better than those obtained by iterative regression

analysis. Khalil et al. (2001) investigated the concepts of ANN and seasonal groups and

their characteristics for the estimation of missing data values in monthly stream�ow.

Dastorani and Wright (2003) completed a research project on �ow estimation for ungauged

catchments using neural networks. Dastorani and Wright (2004) employed ANN to opti-

mize the results of a hydrodynamic approach for river �ow prediction. Based on correlation

factors, Petersen et al. (2008) used rainfall time series and torrent �ows to calculate dis-
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charges at Mongalla, Sudan. The results provided a near reality �ow time series extending

the available Mongalla data for the period from 1984 to 1996.

Dastorani et al. (2009) investigated the capabilities of ANN and ANFIS to �ll in the gaps

of hydrological data series measured in some stations in Iran. The ANFIS model showed

superiority in the accuracy of estimation the missing data. The results of the ANN models

also showed a good level of accuracy.

No reports or researches related to the use of GLM for �lling in missing data are available.

GLM are widely used for rainfall simulation (e.g., Chandler and Wheater, 2002; Yang et

al., 2005; Little et al., 2009).

4.2 Data used

The average daily in�ow data of the Henne, Möhne and Sorpe reservoirs in the period from

1-11-1960 to 1-10-2006 and of the Bigge reservoir in the period from 1-11-1965 to 1-10-2006

are used to train the models. The available in�ow data are divided into two sets. The �rst

set is used to train the models and the second to validate them.

4.3 Selection of the inputs

We denoted the average daily in�ow time series of the Bigge, Henne, Möhne and Sorpe

reservoirs as QB, QH, QM and QS respectively. The cross correlation between the in�ow

time series (QB, QH, QM and QS ) are shown in �gure 4.1. The �gure shows a high

correlation between the in�ow time series of all reservoirs (ranges from 0.865 to 0.964).

High cross correlations between the in�ow time series of all reservoirs indicate that they

are related to each other. Due to that the missing data in an in�ow time series is estimated

using the other in�ow time series as input variables. For example, to estimate the missing

data in QB, we used QH, QM and QS as inputs.
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Figure 4.1: Cross correlation between the in�ow data of each two stations

4.4 Missing data estimation models

4.4.1 BPNN and ANFIS models

Both backpropagation neural networks (BPNN) and adaptive neuro-fuzzy inference system

(ANFIS) models are discussed in detail in the previous chapter. BPNN models with

one hidden layer of three neurons and ANFIS models with three Gaussian membership

functions associated with each input variable are used in the present study.

4.4.2 Generalized linear model (GLM)

The generalized linear models were de�ned by Nelder and Wedderburn (1972) and Wed-

derburn (1974) as an extension of the traditional linear regression model to data with

non-normal responses. The monograph by McCullagh and Nelder (1989) was the �rst

monograph on this topic.

Assume the observations yi,i = 1, 2, . . . , N, the traditional linear regression model is of

the form

yi = βXi + εi, i = 1, 2, · · · , N (4.1)

where yi is the response variable for Xi, X (N by k) is the model matrix,β (k by 1) is

a vector of coe�cients and the residuals ε (N by 1) are i.i.d. N(0,σ2). The vector of

coe�cient β is estimated by least squares �t to the data. The response yi has a normal

distribution with mean µ.
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In GLM, at each set of values for the predictors, the response yi has a distribution that

may be normal, binomial, Poisson, gamma, or inverse Gaussian, with parameters including

a mean µ. There are three components that are common to all GLM (Agresti 2002):

The random component which refers to the probability distribution of the response yi is

assumed to be a member of the exponential family of distributions.

The systematic component is a linear predictor similar to that in the linear models,

ηi = βXi (4.2)

The third component of GLM is a monotonic link function g(·) that connects the random
and systematic components. Let µi = E(yi), i = 1, 2, · · · , N,the model links µito ηi by

g(µi) = ηi. Thus, the mean can be expressed as the inversely linked linear predictor,

µi = g−1(ηi) (4.3)

The commonly used link functions g(µ) are given in table 4.1. If g(µ) = θ then g is called

the canonical link corresponding to a(θ).

Table 4.1: Commonly used link functions (De Jong and Heller, 2008).

Link function g(µ) Canonical link for

identity µ normal

log ln µ Poission

power µp Gamma (p=-1)

inverse Gaussian (p=-2)

logit ln µ
1−µ binomial

The choice of the link function is very important to �nd an appropriate generalized linear

model (GLM).

The optimal distributions of the responses and the corresponding link functions are de-

tected using a trial-and-error procedure. Table 4.2 lists the type of the distribution of the

response yi for each daily in�ow time series and the corresponding link function.
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Table 4.2: Types of the distribution of the responses and the corresponding link functions

Reservoir Distribution function Link function

Bigge gamma identity

Henne gamma identity

Möhne normal identity

Sorpe gamma identity

Maximum likelihood estimation of GLM

Nelder and Wedderburn (1972) proposed an iteratively reweighted least squares method

for maximum likelihood estimation of the GLM parameters. Dobson (2002) obtained

maximum likelihood estimators of the parameters of generalized linear models (GLM) by

an iterative weighted least squares procedure (see also, Charnes et al., 1976). He suggested

solving the following equation iteratively to estimate the parameters of the GLMs

XTWXb(m) = XTWz (4.4)

where W is the N×N diagonal matrix with elements

wii =
1

var(yi)

(
∂µi
∂ηi

)2

(4.5)

and b(m) is the vector of estimates of the parameters β1, ..., βk at the mth iteration and z

has elements

zi =
k∑

j=1

xijb
(m−1)
j

+ (yi − µi)

(
∂ηi
∂µi

)2

(4.6)

with µiand
∂ηi
∂µi

evaluated at b(m−1).

The following procedure can be used to solve equation, 4.4 (Dobson, 2002):

1. Use some initial approximation b(0) to evaluate z and W.

2. Solve equation (4.4) to give b(1).

3. Use b(1) to obtain better approximations for z and W.

4. Repeat step 3 until adequate convergence is achieved. In other words when the

di�erence between successive approximations b(m−1) and b(m) is su�ciently small,

b(m) is taken as the maximum likelihood estimate.
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Table 4.3: The performances of the missing data estimation models

Bigge Möhne Henne Sorpe

R rmse R rmse R rmse R rmse

BPNN 0.889 5.327 0.953 0.789 0.932 2.28 0.974 0.402

ANFIS 0.88 5.531 0.941 0.868 0.933 2.283 0.971 0.417

GLM 0.881 5.398 0.953 0.8 0.928 2.346 0.968 0.432

4.5 Evaluation of the models

The performances of the BPNN and ANFIS and GLM are evaluated by estimating the

correlation coe�cient (R) and the root mean square error (rmse). The root mean square

error is calculated as follows:

rmse =

√√√√ 1

m

i=m∑
i=1

(xi − x̂i)2 (4.7)

where m is the number of observations in the validation data set, xi is the observed daily

in�ow and x̂i is the estimated daily in�ow.

The estimated values of R and rmse for the validation data sets are given in table 4.3. The

results indicate that there is no signi�cant di�erence in the estimated R and rmse values

among all the estimated daily in�ow time series using the three models but BPNN models

are slightly better. Due to that we assumed the BPNN model is better than the ANFIS

and GLM to �ll in the missing data. Figure 4.2 shows the observed vs. the estimated daily

in�ow using the BPNN models.

4.6 Extension of the monthly in�ow data

We used the BPNN model to estimate daily in�ow into the Bigge reservoir in the period

from 1/11/1965 to 31/10/2006. The monthly in�ow is computed by estimating the average

value of the daily average in�ow during each month. The statistical parameters (mean,

standard deviation, skeweness and lag one month-to-month correlation) of the estimated

monthly in�ow time series are compared to those of the observed one and the results are

shown in �gure 4.3. By inspecting the results of �gure 4.3, it can be seen that the BPNN

model was found to produce satisfactory results. It preserves well the monthly mean,

standard deviation and skewness coe�cient of the observed monthly in�ow time series as

well as the lag one month-to-month correlation.
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Figure 4.2: Comparison between the observed and estimated (using the BPNN models) daily

in�ow time series
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Figure 4.4: The observed and extended monthly in�ow of the Bigge reservoir

From the above mentioned results, it is clear that the BPNN model can be used to extend

the daily in�ow data of the Bigge reservoir in the period from 1/11/1960 to 31/10/1965.

The extended monthly in�ow in the period from 11/1960 to 10/1965 and the observed one

are plotted in �gure 4.4.

4.7 Conclusions

We explored the e�ciency of the BPNN and ANFIS models and the GLM for �lling in the

missing values in the daily in�ow time series. High correlations between the in�ow time

series (QA, QH, QM and QS ) are detected. The in�ow of each reservoir is estimated using

the in�ow of the other reservoirs as input variables.

The BPNN models are trained using one hidden layer with three neurons. The ANFIS

models with three membership functions (with Gaussian type) associated with each input

are used. Trial-and-error procedure is applied to select the link function and the distribu-

tion of the response for the GLM.

Two e�ciency criteria (R and rmse) are used to compare the performances of the models.

The results show that there is no signi�cant di�erence in the performances of the models

however the BPNN models have slightly better performances in �lling in missing data.

To ensure the ability of the BPNN model to extend the monthly in�ow data of the Bigge

reservoir in the period from 11/1960 to 10/1965, the BPNN model is used to estimate

the daily in�ow into the Bigge reservoir in the period from 1/11/1965 to 31/10/2006.

The mean, standard deviation, skeweness and lag one month-to-month correlation of the
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estimated monthly in�ow time series are compared to those of the observed one and the

results show that the BPNN model produce satisfactory results.
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Chapter 5

Monthly in�ow generation

5.1 Introduction

Time series of in�ow data are essential for proper planning, design and operation of many

water resources systems. However, presently for most of the reservoirs, the measured

length of in�ow data is limited. Stream�ow generation procedures play an important role

for obtaining reliable estimate of �ow statistics.

In this chapter, we apply four models to generate monthly in�ow data into the Bigge,

Henne, Möhne and Sorpe reservoirs. These models are the Thomas-Fiering (T-F) model,

the Gamma Thomas-Fiering (Gamma T-F) model, the Monte Carlo (MC) model and the

hidden Markov model with periodic states (PHMM). The results of the T-F, Gamma T-F,

MC and PHMM models are discussed and compared to choose the best model for monthly

in�ow generation. We developed a procedure to detect the consecutive 5 years that have

minimum total in�ow. The predicted critical consecutive 5 years monthly in�ow time series

can be used as an in�ow scenario for optimal operation of the reservoirs.

Several stochastic models have been proposed for modeling hydrological time series and

generating synthetic stream�ows. This synthetic �ow should resemble the historical time

series. Selection of the appropriate model needs to consider the hydrologic characteris-

tics, data availability and the statistical properties (Kim and et al., 2004). Phien and

Khan (1981) used Thomas-Fiering (T-F) and Spolia-Chander (S-C) models for monthly

stream�ow generation. They compared the results of the two models based on the repro-

duction of the historical record in terms of several important statistics such as the mean,

standard deviation, skewness coe�cient, correlation coe�cient and the reservoir storage
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components and they proved that the Thomas-Fiering model is superior to the Spolia-

Chander model. Alhassoun et al. (1997) generated the monthly evaporation sequences

for ten selected stations in the Saudi-Arabia. They used three autoregressive models for

generating: method of fragments (M-F), Thomas-Fiering (T-F) model and Two-Tier (T-T)

model. The performances of the models were evaluated by comparing the statistical pa-

rameters of the generated sequences with those of the historical data. The T-F model gave

the best representation of the mean, standard deviation, skewness and lags one autocorre-

lation of the monthly evaporation sequences. Raman and Sunilkumar (1995) employed an

arti�cial neural network (ANN) models and autoregressive moving average (ARMA) model

for the synthesis of monthly in�ow for two reservoirs in the Bharathapuzha basin in south

India. They concluded that the results obtained using the neural network model compared

well in the mean with those obtained using the autoregressive model. Ochoa-Riveria et

al. (2002) presented an ANN based model for multivariate stream�ow generation. The

model consists of two components, the neural network (NN) deterministic component and

a random component which is assumed to be normally distributed. They compared the

results of the ANN based models to those of a lag two autoregressive AR(2) and concluded

that the ANN represents a promising modeling alternative for simulation purposes. Sarma

and Ahmed (2002) and (2004) used an ANN model for synthetic stream�ow generation

of a Himalayan River called Pagladia. However, the model could not able to generate a

good synthetic stream�ow series. Kim and et al. (2004) used Monte Carlo (MC), lag-

one autoregressive AR(1) and Thomas-Fiering (T-F) models for the annual and monthly

stream�ow simulations. They repeated the simulation using stochastic models by boot-

strap resampling scheme (bootstrapped MC, AR(1) and T-F models) and showed that

the bootstrapped stochastic models are much better than the stochastic models for the

simulation study. The simulated series by the bootstrapped stochastic models reproduced

the skewness coe�cient and the probability density function of observed series very well.

Celeste et al. (2004) used T-F model to determine monthly in�ow scenarios for the water-

shed of the reservoir that supplies the city of Matsuyama, Japan. They used the generated

scenarios for optimal operation of the reservoir. A periodic autoregressive moving average

(PARMA) model was adapted and applied by Mendes et al. (2007) for monthly synthetic

stream�ow generation. They assumed that the stream�ow of a certain month depends

explicitly on the stream�ow of the prior month, the stream�ow of the same month in the

previous year and in the preceding year, as well as on a random noise. They concluded that

the adopted model reproduces properly annual and periodic statistics values of generated

series.



5.2 Data used 113

The interest in HMM application has increased in the recent years. They are applied by

many researches to stochastic hydrology, particularly in climate variability application.

Zucchini and Guttorp (1991) applied a hidden Markov model (HMM) for the analysis

of rainfall occurrences at several sites. Charles et al. (1999) and Bellone et al. (2000)

extended the work of Zucchini and Guttorp (1991) to rainfall amounts by relating local

precipitation to atmospheric circulation. They used atmospheric data to modify the transi-

tion probabilities of the Markov process. Betrò et al. (2008) applied a homogeneous HMM

to daily rainfall data collected at four pluviometric stations in Central-East Sardinia. They

introduced mixtures of Weibull distributions to model positive rainfall amounts.

5.2 Data used

The historical records of the monthly in�ow into the Bigge (after extending the data, see

chapter 4), Henne, Möhne and Sorpe reservoirs in the period from 1961 to 2006 are used

to train the models. The monthly in�ow is computed by estimating the average value of

the average daily in�ow during each month. Figures 5.1.a, b, c and d show the plots of the

monthly in�ow time series of the Bigge, Henne, Möhne and Sorpe reservoirs respectively.

5.3 Thomas-Fiering model

Autoregressive (AR) models were used by many researchers to reproduce the statistical

properties of the hydrologic time series. An autoregressive model of order p model is given

as:

yt = µ+
p∑

j=1

ϕj(yt−j−µ) + εt (5.1)

in which ϕ1, ϕ2, · · · , ϕpare the parameters of the model, µ is the mean and ϵt is an un-

correlated normal variable with mean zero and variance σ2(ϵ). Uncorrelated means there

is no correlation between ϵt and yt−1,yt−2,. . . , yt−−p(Maidment, 1993). A periodic time

series model with a periodic hydrologic process yν ,τ inwhich ν is the year and τ is the

season, τ = 1, 2, ..., ω and ω is the number of seasons in the year (for example ω = 12

months) can be de�ned as:

yν,τ = µτ +
p∑

j=1

ϕj,τ (yν,τ−j−µτ−j) + εν,τ (5.2)
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and the model is often denoted as PAR(p). The PAR(1) model arises by making p = 1 in

equation (5.2) as:

yν,τ = µτ + ϕ1,τ (yν,τ−1−µτ−1) + εν,τ (5.3)

Thomas and Fiering (1962) used this model to simulate monthly stream�ow. We used the

Thomas-Fiering (T-F) model in the present study to generate monthly in�ow time series.

The T-F model presents a set of 12 regression equations which can be expressed as follows

(Phien and Ruksasilp, 1981):

qν,τ = q′τ +
rτSτ (qν,τ−1 − q′τ−1)

Sτ−1
+ Zν,τSτ

√
(1− r2τ ) (5.4)

where

qν,τ−1 is the i− 1th value for the τ − 1th month,

qν,τ is the ith simulated value for the τ th month,

q′τ and q′τ−1 are the mean monthly values during the τ and τ − 1th months

respectively,

rτ is the cross correlation between the monthly values during the

τ − 1 and τ th months respectively,

Sτ−1 and Sτ are the standard deviations of monthly values during the τ − 1

and τ th months respectively and

Zν,τ is a random Normal deviate N(0,1).

In the T-F model, the e�ects of seasonality on the variability of the data are accounted

for by considering month-to-month variation in the average value and month-to-month

coe�cient of correlation.

5.4 Gamma Thomas-Fiering model (Gamma T-F)

Wilson and Hilferty (1931) gave the following transformation to estimate the skewed de-

viate (Zrν ,τ ), from the normal deviate (Zν ,τ ) to deal with skewed data

Zrν,τ =
2

gtτ

[
1 +

gtτZν,τ

6
+
gt2τ
36

]
− 2

gtτ
(5.5)

where gtτ = the coe�cient of skewness of the random skewed deviate during the τ th month.
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Thomas and Burden (1963) derived the following formula to estimate gtτ

gtτ =
gτ − r3τgτ−1

(1− r2τ )
3/2

(5.6)

where gτ and gτ−1 are the seasonal coe�cients of skewness during the τ th and τ -1thmonths

respectively.

By replacing Zν ,τ in equation (5.4) with Zrν ,τ ,the Gamma T-F model can be presented as

follows:

qν,τ = q′τ +
rτSτ (qν,τ−1 − q′τ−1)

Sτ−1
+ Zrν,τSτ

√
(1− r2τ ) (5.7)

5.5 Monte Carlo model

The Monte Carlo simulation is a method for obtaining the probability distribution of

an output given the probability distribution of one ore more inputs (Maidment, 1993).

Equation (5.8) is assumed here to introduce the monthly in�ow as a function of q′τ and Sτ

qν,τ = q′τ +Rν,τSτ (5.8)

where

qν,τ is the simulated value for the τ th month,

q′τ is the mean monthly value during the τ th month,

Rν,τ is a random value, and

Sτ is the standard deviation of monthly value during the τ th month.

5.6 Random values generation

As previously presented in chapter 2, the skewness values of the monthly in�ow time series

into the Bigge, Henne, Möhne and Sorpe reservoirs are positive (see �gure 2.9). Positive

values of skewness indicate that these time series are not normally distributed. Non-

normality of time series means non-normality of the distributions of Z and R (equations,

5.4 and 5.8 respectively). We assumed the following procedure to generate Z and R in the

T-F and MC models respectively:
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Figure 5.1: Plots of the monthly in�ow
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1. Estimate the random values Z and R from the observed data and denote them by

Zobs and Robs respectively.

2. Use the inverse transform method to generate random values from Zobs or Robs.

The previous procedure is employed to generate the random values Z and R in the T-F and

MC models respectively. The random value in the Gamma T-F model Zr is generated from

the normal distribution and then the Wilson-Hilferty transformation is applied (equation,

5.5) .

Inverse transform method

The inverse transform method is a method for generating random numbers from any prob-

ability distribution given its cumulative distribution function (cdf ). As shown in �gure 5.2

suppose X = (x1, x 2, . . . , xn) where x1 < x 2 < . . .< xn then the cumulative distribution

function (cdf ) of X, F (x ) can be given as

F (xi) =


0 xi<x1∑i

j=1 P (X = xj) xi ≤ xi+1, i ≤ n− 1

1 xi ≥ xn

(5.9)

The following algorithm is used to generate a discrete random number y from X (Hisashi,

2004):

1. Generate a random number u (0 ≤ u ≤ 1)from the uniform distribution.

2. The random draw of X is given by xi if F (xi−1) ≤ u < F (xi)

where F (xi) =
∑i

j=1 P (X = xj) and F (x o) = 0 (see �gure 5.2) .

3. The generated random number y is equal to xi.

5.7 Lag one month-to-month correlation

Generation of monthly in�ow data using the Monte Carlo model depends on the generated

random values Rν ,τ . Month-to-month correlations are not considered in equation, 5.8 (the

MC model), which means that the generated random values must be correlated to preserve

the correlation in the generated in�ow data. The Cholesky decomposition method is used

to preserve the month-to-month correlation in the generated in�ow data.
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Figure 5.2: Cumulative distribution function of a variable X (Gentle, 2003)

Generating multiple sequences of correlated random values

Generation of correlated random numbers with a given correlation matrix, C (month-to-

month correlation) is done by �nding a matrix F such that:

F TF = C (5.10)

The Cholesky decomposition of the correlation matrix is the most common methods to

solve equation 5.10. Correlated random numbers, Rc can be generated from uncorrelated

numbers R by multiplying R with F

Rc = RF (5.11)

To preserve the lag one month-to-month correlation, the random value R in the MC model

(equation, 5.8) is replaced by the correlated random value Rc as follows:

qν,τ = q′τ +Rcν,τSτ (5.12)

The MC model is applied to generate 300 years monthly in�ow data of the Bigge, Henne,

Möhne and Sorpe reservoirs. Figures 5.3.a, b, c and d show the lag one month-to-month

correlation of the observed and the generated monthly in�ow data of the Bigge, Henne,

Möhne and Sorpe reservoirs respectively. It is obvious that there is no signi�cance lag one

month-to-month correlation (the values are nearly equal to zero) for the generated in�ow

data by using the MC model with random values R (without using Cholesky decomposi-

tion). In contrast, the values of lag one month-to-month correlation of the generated in�ow

data by using the MC model with random value Rc (after using Cholesky decomposition)
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are very close to those of the observed data. The Monte Carlo models with random values

Rc are used in the present study to preserve the lag one month-to month correlation.

5.8 Hidden Markov models (HMM)

5.8.1 Introduction to HMM

The Hidden Markov model (HMM) is the model with a sequence of observed emissions

(E ) and unobserved sequences of states (S ). Moving from one state to another depends

on the matrix of transition probabilities (A). The probability to move from state Si to Sj

is denoted by aij . The outcome emitted by each state depends on the matrix of emission

probabilities (B).

To de�ne an HMM we have to know (Rabiner, 1989):

1. The hidden states are S 1, S 2, . . . , SN where N is the number of states in the model.

2. The hidden state transition matrix (A) of size N×N. The sum of the entries of each

row of A is equal to 1. Each element of A is denoted as:

aij = P [dt+1 = Sj |dt = Si] , 1 ≤ i, j ≤ N (5.13)

where dt is the hidden state at time t.

3. The set of distinct observations per state G = {g1, g2, . . . , gM} where M is number

of observations.

4. The observation probability distribution in state j, B = {bj(k)},where

bj(k) = P [gk at t |dt = Sj ] 1 ≤ j ≤ N, 1 ≤ k ≤M (5.14)

5. The initial state distribution π = {πi}where

πi = P [d1 = Si] , 1 ≤ i ≤ N (5.15)

Given appropriate values of N, M, A, B and π, the following procedure is introduced by

Rabiner (1989) to use HMM as a generator to give an observation sequence {Ot} , t =
1, 2, ..., Twhere T is the number of observations in the sequence and Ot ∈ G:
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Figure 5.3: The lag one month-to-month correlation of the observed and generated (using the

MC model) monthly in�ow
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1. Assume an initial state distribution π and choose the corresponding initial state

d1 = Si, 1 ≤ i ≤ N.

2. Set t = 1 and choose Ot = gk according to the observation probability distribution

in state Si, i.e., bi(k), 1 ≤ k ≤M .

3. Go to new state dt+1= Sj according to the state transition probability for state Si,

i.e., aij .

4. Set t = t +1; return to step 3 if t < T ; otherwise terminate the procedure.

5.8.2 HMM for monthly in�ow generation

We classi�ed the observed monthly in�ow time series in 12 states (11, 12, 1, 2, . . . , 9,

10) each state corresponds to a speci�c month. The transition diagram and the transition

matrix for monthly in�ow generation HMM model are shown in �gures 5.4.a and 5.4.b

respectively. From �gure 5.4.a it is clear that each state i has 12 periods which means

that the model returns to state i in multiples of 12 time steps. We denoted our model by

periodic hidden Markov model (PHMM).
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Figure 5.4: a) The transition diagram and b) The transition matrix, for monthly in�ow generation

HMM

HMM codes are available in the Statistical toolbox, Matlab.b (2008). We used a Matlab

code hmmdestimate to estimate the transition and emission matrices and a modi�ed version

of hmmgenerate (monthly_�ow_hm) to generate simulated sequences as follows:
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1. The code generates a set of random numbers {Rni}, i = 1, 2,...,T from an uniform

distribution.

2. The �rst generated random number Rn1 is compared to the emission probability

matrix of the state 11. The code emits an observation gk if b11(k−1) < b11(k) < Rn1

and then transits to the next state.

3. Repeat step 2 for all values of {Rni} to generate T values of monthly in�ow.

5.9 Validation of the models

The synthetic stream�ow generation models should preserve the statistical parameters of

the observed data. Model validation is the most important step in the model building

sequence to check ability of the model to reproduce the important statistical parameters

of the observed data. Two methods are used in the present study to validate the models

as follows:

1. Comparing the statistical parameters (mean, standard deviation, month-to-month

correlation and skewness) of the generated monthly in�ow with those of the observed

one (Alhassoun et al., 1997; Kim and et al., 2004; Ahmad and Sarma 2007).

2. Using visual validation, we �tted the quantile-quantile (Q-Q) and survivor function

plots of the observed in�ow data against the corresponding generated one.

5.9.1 Statistical parameters of the monthly in�ow time series

The performances of the models are evaluated using the following statistical parameters:

q′ is the monthly mean in�ow,

SD is the standard deviation in the monthly in�ow,

r is the lag one month-to-month correlation, and

g is the skewness.

The average relative error percentage (AREP) is used to test the ability of the models

to reproduce the statistical parameters of the observed data. The AREP is the average

value of the estimated relative error percentage (REP) for the 12 months of the year. For
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example, the REP in the mean q′ during the τ th month is estimated as follows:

REPτ = 100×
∣∣∣∣q′τ − q̂τ

q′τ

∣∣∣∣ (5.16)

where q′τ and q̂τare the mean monthly value during the τ th month of the observed and

generated in�ow data respectively. Then the AREP is given by

AREP =
1

12

12∑
τ=1

REP (5.17)

We generated three monthly in�ow time series with lengths 100, 300 and 500 years using

T-F, Gamma T-F, MC and PHMM. The synthetic monthly in�ow time series are com-

pared with the observed one using the AREP in the statistical parameters mean, standard

deviation, month-to-month correlation and skewness. Figures 5.5, 5.6, 5.7 and 5.8 show

the statistical parameters of the observed and the 300 years generated monthly in�ow into

the Bigge, Henne, Möhne and Sorpe reservoirs respectively. Table 5.1 lists the estimated

values of AREP in each statistic for each model. In respect of the estimated AREP, we

observe the following for most synthetically generated series:

1. In respect of the mean value of the monthly in�ow, the series generated by the T-F,

MC and PHMM models are found to be quite closer to the observed series.

2. The MC and PHMM models reproduce the monthly standard deviation better than

the other models.

3. The T-F and MC models are superior to the other models in terms of the monthly

month-to-month correlation.

4. Compared with the other models, the PHMM model preserves the monthly skewness

very well.

From the above results, it is clear that most of the statistics of the simulated series by the

T-F model, MC model and PHMM reproduce those of observed one fairly well, especially,

the MC model. PHMM preserves the mean, standard deviation and skewness very well

however it cannot preserve month-to-month correlation.

5.9.2 Q-Q and survivor function plots for models validation

Quantile-quantile (Q-Q) and survivor function plots are used to check the ability of the

T-F, Gamma T-F, MC and PHMM models to generate realistic monthly in�ow data.
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Quantile-Quantile Plot

Quantile-quantile (Q-Q) plot is a visualization technique to determine whether two samples

come from the same distribution family. They are scatter plots of quantiles computed from

each sample, with a line drawn between the �rst and third quartiles (the 25 percentile and

75 percentile respectively). If the data falls near the line, it is reasonable to assume that

the two samples come from the same distribution.

Survivor function plot

The empirical survivor function is a non-parametric tool for analyzing survival data. The

empirical survivor function is an estimate of the probability of survival past time y, which

does not depend on distributional assumption.

The most common way to estimate the survivor function is the Kaplan-Meier method. This

method was �rst proposed by Kaplan and Meier (1958). To use this method, the survival

times are assumed to be independent. This method can be presented in the following steps

(Tableman and Kim, 2004):

1. Order the k observed survival times by increasing magnitude,

0 ≤ y(1) ≤ y(2) ≤ ... ≤ y(k).

2. De�ne ti as the ith unique value in the series 0, y(1), y(2), ...y(k), i = 1, 2, ...,m.

3. De�ne ni, as the number of subjects at risk until just before time ti, i = 1, 2, ...,m.

4. De�ne li as the number of subjects which fail at time ti, i = 1, 2, ...,m.

5. For each i = 1, 2, ...,m compute

⌢
S i=

(
ni − li
ni

)
⌢
S i−1 fori > 1 (5.18)

6. The estimate of the survivor function is then

⌢
SY (y) =

⌢
S i ti ≤ y ≤ ti+1 (5.19)

Results of the visual validation methods

We used Q-Q and survivor function plots to compare the distribution of the 300 years

generated monthly in�ow time series with the distribution of the observed one. Figures

5.9, 5.10, 5.11 and 5.12 show the Q-Q plots of the observed versus the generated in�ow data

for the Bigge, Henne, Möhne and Sorpe reservoirs respectively. It is clear that the Q-Q

plots show a clear superiority of the MC and PHMM models for all reservoirs especially in

generating high in�ow events.



5.10 Consecutive 5 years with minimum in�ow 125

The survivor function plots of the observed versus the generated in�ow data for the Bigge,

Henne, Möhne and Sorpe reservoirs are shown in �gures 5.13, 5.14, 5.15 and 5.16 respec-

tively. It is to be seen that the survivor function plots for the generated in�ow by the

PMHH model are very close to those of the observed one. Also, the plots show that the

series generated by the MC models are found to be better than that generated by the T-F

and Gamma T-F models in respect of the survivor function plots.

Table 5.1: List of the AREP in the tested statistical parameters

100 years 300 years 500 years

Bigge Henne Möhne Sorpe Bigge Henne Möhne Sorpe Bigge Henne Möhne Sorpe

T-F q´ 2.5 2.93 1.49 1.91 2.41 2.52 1.07 2.41 2.14 2.42 1.09 2.38

s 11.08 10.97 14.69 16.16 11.51 10.06 13.25 15.58 11.12 10.67 14.47 15.43

r 14.11 15.52 11.72 18.71 12.12 13.59 13.34 15.74 14.89 16.05 11.68 13.31

g 22.12 16.26 16.63 22.69 24.06 15.42 14.56 22.71 21.85 15.87 15.78 23.95

Gamma q´ 14.03 12.78 7.42 16.26 14.4 12.75 8.04 17.14 14.85 13.61 7.94 16.87

T-F s 7.81 5.18 5.9 8.65 7.43 4.22 4.11 8.57 6.89 4.8 4.02 7.94

r 30.82 32.43 23.24 28.16 32.82 35.05 23.11 30.29 33.52 30.03 23.03 30

g 34.76 20.56 14.58 24.97 32.39 23.4 12.41 24.36 35.68 20.24 14.11 27.28

MC q´ 1.18 2.39 3.07 3.7 1.19 1.76 2.35 3.59 2.18 2.52 1.62 3.04

s 5.22 3.72 3.75 4.31 3.92 4.33 3.9 3.8 3.06 3.38 3.87 4.22

r 16.5 16.41 15.9 20.2 16.71 17.76 12.57 15.95 18.36 16.57 12.22 15.7

g 20.58 15.3 21.17 20.68 16.76 11.66 17.32 16.42 17.2 12.39 14.71 16.32

PHMM q´ 2 2.07 2.37 3.39 1.32 3.09 0.88 2.82 0.77 3.7 0.97 3.37

s 2.6 6.72 4.22 4.68 2.19 7.09 1.75 4.05 1.52 6.57 1.43 4.56

r 100.66 92.3 100.66 97.1 99.72 99.94 98.96 100.02 101.63 101.77 98.83 99.11

g 12.06 26.21 7.17 9.34 5.63 26.86 3.46 8.1 4.48 28.51 2.55 8.24

5.10 Consecutive 5 years with minimum in�ow

Selection of the best monthly in�ow generation model is an important requirement for

improving the operation of the reservoirs in the Ruhr River basin. As mentioned in the

previous section, the Monte Carlo MC is assumed to be better than the other models (the

T-F, Gamma T-F and PHMM models) for monthly in�ow generation. We used the simple

moving average (SMA) to determine the critical consecutive 5 years with minimum SMA

as follows:

1. Generate 1000 years of monthly in�ow using the MC model.

2. Estimate the 5 years SMA of the generated monthly in�ow

SMA5 =
i∑

i−4

Qi i = 5, 6, · · · , 1000 (5.20)

where Q is the total annual in�ow (million m3).

3. Determine the minimum value of SMA5 and denote it as minSMA5(j ), j = 1, 2,

. . . ,10000.
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Figure 5.5: Plots of the a) monthly mean, b) standard deviation, c) lag-1 month-to-month cor-

relation and d) skewness of the observed and 300 years generated monthly in�ow of

the Bigge reservoir
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Figure 5.6: Plots of the a) monthly mean, b) standard deviation, c) lag-1 month-to-month cor-

relation and d) skewness of the observed and 300 years generated monthly in�ow of

the Henne reservoir
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Figure 5.7: Plots of the a) monthly mean, b) standard deviation, c) lag-1 month-to-month cor-

relation and d) skewness of the observed and 300 years generated monthly in�ow of

the Möhne reservoir
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Figure 5.8: Plots of the a) monthly mean, b) standard deviation, c) lag-1 month-to-month cor-

relation and d) skewness of the observed and 300 years generated monthly in�ow of

the Sorpe reservoir
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4. Repeat steps from 1 to 3, 10000 times.

The critical consecutive 5 years are the consecutive 5 years with the minimum {minSMA5}.

The monthly in�ow during the critical consecutive 5 years can be used as an in�ow scenario

for optimal operation of the reservoirs during the dry periods. The observed monthly

in�ow and the generated during the critical consecutive 5 years (the 5 years with minimum

minSMA5) for the Bigge, Henne, Möhne and Sorpe reservoirs are shown in �gures 5.17.a,

b, c and d respectively.

Figure 5.9: The Q-Q plots for the observed and 300 years generated monthly in�ow of the Bigge

reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM models

5.11 Conclusions

T-F, Gamma T-F, MC and PHMM are used to generate 100, 300 and 500 years of monthly

in�ow into the Bigge, Henne, Möhne and Sorpe reservoirs. The inverse transform method

is applied to generate random numbers in the Thomas- Fiering and Monte Carlo models

to deal with skewed data however Wilson-Hilferty transformation is proposed to reproduce

skewed noises in the Gamma Thomas-Fiering model. The month-to-month correlation in

the generated in�ow data is preserved in the MC model by applying the Cholesky decompo-

sition method. The statistical parameters (the mean, standard deviation, month-to-month
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Figure 5.10: The Q-Q plots for the observed and 300 years generated monthly in�ow of the Henne

reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM models

Figure 5.11: The Q-Q plots for the observed and 300 years generated monthly in�ow of the

Möhne reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM models
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Figure 5.12: The Q-Q plots for the observed and 300 years generated monthly in�ow of the Sorpe

reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM models

correlation and skewness) of the generated monthly in�ow time series are compared with

those of the observed one and the results of the comparison show that:

1. Using of the inverse transform method to generate random values improves the per-

formance of the T-F model comparing with those of the Gamma T-F.

2. The T-F, MC and PHMM models reproduce the mean of the monthly in�ow very

well.

3. The MC and PHMM models reproduce the monthly standard deviation better than

the other models.

4. The T-F and MC models are superior to the other models in terms of the monthly

month-to-month correlation.

5. The PHMM model preserves the monthly skewness very well.

The abilities of the models to reproduce monthly in�ow are also evaluated using the Q-

Q and survivor function plots. The Q-Q plots show that the MC and PHMM models

outperform the other models especially for generating high in�ow events. The survivor

function plots for the generated in�ow by the PMHH are very close to those of the observed
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Figure 5.13: The survivor function plots for the observed and 300 years generated monthly in�ow

of the Bigge reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMMmodels

Figure 5.14: The survivor function plots for the observed and 300 years generated monthly in�ow

of the Henne reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM

models
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Figure 5.15: The survivor function plots for the observed and 300 years generated monthly in�ow

of the Möhne reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMM

models

Figure 5.16: The survivor function plots for the observed and 300 years generated monthly in�ow

of the Sorpe reservoir using the a) T-F, b) Gamma T-F, c) MC and d) PHMMmodels
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one. We assumed that the MC model is better than the other models (the T-F, Gamma

T-F and PHMM) in monthly in�ow generation. A procedure is developed to detect the

consecutive 5 years that have minimum total in�ow. The generated monthly in�ow during

the critical consecutive 5 years can be used as an in�ow scenario for optimal operation of

the reservoirs during the dry periods.
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Chapter 6

Prediction of the travel time of the reser-

voirs' releases along the Ruhr and the Lenne

6.1 Introduction

Travel time estimation of the reservoirs' releases is very important to aid the users in ap-

proximating the time that water may become available to them. In this chapter, historical

�ow data (15 minute time series) are used to estimate the travel time of the released �ow

from the Bigge, Sorpe, Möhne and Henne reservoirs to some downstream gauges. This

procedure was �rst used by Budach (1993) to determine the travel time of the reservoirs'

releases along the Ruhr and Lenne.

The estimated travel time values and the corresponding discharges at the release and down-

stream gauges are used to build the nonlinear regression (NLR), multiple linear regression

(MLR), ANFIS and BPNN models. The models are applied to predict the travel time of

the reservoirs' releases along the Ruhr and Lenne Rivers. The performances of the ANFIS,

BPNN and MLR models are compared to select the best one. Also, the HEC-RAS model

is employed to predict the travel time along the upper and middle reaches of the Ruhr.

Fluorescent dye was used to determine the time of travel time along the Ruhr (Morgen-

schweis and Nusch, 1990). Jobson (1997) used soluble tracer method to predict travel time

and dispersion in rivers. He concluded that the travel time of the leading edge averages

89 % of the travel time of the peak concentration. Hydraulic characteristics can also be

used to predict travel time. A study that provides guidance on extrapolating travel-time

information using wave speed and hydraulic characteristics from one within bank discharge

to another was done by Jobson (2001). Samuels et al. (2001) developed a GIS-based tool

139
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Table 6.1: Data of the main reservoirs in the Ruhr River basin
Reservoir Release gauge Downstream gauge Case study Time series

Bigge Ahausen Altena case 1 1992 - 2007

Hagen-Hohenlimburg case 2

Rönkhausen case 3

Sorpe Langscheid Bachum case 4 1992 - 2007

Möhne Günne Bachum case 5 1993 - 2007

Henne Meschede-Henne Oeventrop case 6 1992 - 2007

Meschede-Rhur case 7

to calculate the time of travel (based on real-time stream �ow measurements), decay and

dispersion of a pollutant introduced into surface water. Abida et al. (2005) routed the

released �ows from the Sidi Salem Dam Reservoir on the Medjerda River, Tunisia, using

hydrologic and hydraulic �ood routing techniques. They used the hydrologic �ood routing

method of Muskingum and numerical model for hydraulic �ood routing. The numerical

model was based on the complete numerical solution of Saint-Venant equations.

Di�erent arti�cial intelligence methods have been applied successfully in many water re-

sources problems. Some of these works are introduced in chapter 3.

6.2 Travel time estimation

A Matlab graphical user interface (Fliesszeit GUI) is created to determine the jump points

(jump point means increase in the reservoir release) at the release gauge for each reservoir

using the 15 minutes historical �ow time series {X }. The times of travel from release gauge

to the gauges downstream it are estimated for each determined jump point (if possible).

The main reservoirs, discharge stations and the studied reaches (7 case studies) in the

Ruhr River basin are shown in �gure 6.1. Table 6.1 gives a list of the release gauges and

the corresponding downstream gauges for the Bigge, Henne, Möhne and Sorpe reservoirs.

The table lists also the length of the time series which are used to estimate the travel time

along each reach. The �rst and most important step in estimating the time of travel is to

detect the jump points at the release gauge (TRi) and the corresponding jump points at

the downstream gauge (TDi), i = 1, 2, ..., n where n is the number of the total observed

jump points. Figure 6.2 shows the di�erent variables at each upstream jump point TRi

and at the corresponding downstream one TDi. The variables QR and QD (see �gure 6.2)

can be de�ned as:
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Figure 6.2: Determination of the jump points TRi at the release gauge and TRi at the down-

stream gauge

� QR in m3/s is the reservoir release just before TRi and ∆tR is the time which the

�ow takes to increase from QR to QR + ∆QR.

� QD in m3/s is the discharge at the downstream gauge just before TDi and ∆tD is

the time which the �ow takes to increase from QD to QD + ∆QD.

After determination of the jump points TRi and the corresponding TDi, a time series (ts140)

with 20 observations before and 120 observations after the jump point TRi respectively is

extracted from {X } for each jump point. The length of this series (ts140) is checked to

cover an interval of 35 hrs which is more than the maximum observed ∆tR+ t + ∆tD

(see �gure 6.2). Second, the hydrographs at the release gauge and at the corresponding

downstream gauges are plotted for each jump point using the corresponding ts140. The

plotted hydrographs are used to estimate the travel time corresponding to each jump point.

Figures 6.3, 6.4, 6.5 and 6.6 show how to estimate travel time from the hydrographs. The

values of the estimated travel time and the corresponding downstream �ow for each case

study are divided into classes as given in table 6.2 which can be used to guess travel time

value by knowing QD.

6.3 Nonlinear regression analysis

The correlation coe�cients between the travel time (t) and QR, ∆QR, QD and ∆QD for all

case studies are estimated and the results are given in table 6.3. Values of the correlation

coe�cient between the estimated travel time t and QR, ∆QR, QD and ∆QD for case study
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2 (see table 6.1) are plotted in �gure 6.7. According to table 6.3 it is obvious that the

correlation between travel time (t) and downstream �ow (QD) have the maximum values

for case studies 1 through 6.

The NLR models are built to detect the relation between travel time (t) from the reservoirs

to the downstream gauges and the �ow at the downstream gauge (QD). The results of the

nonlinear regression analysis are shown in �gure 6.8. The nonlinear regression equation

corresponds to each case study is also presented. This �gure can be used to predict the

expected travel time (t) by knowing the downstream discharge (QD).
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Table 6.2: Expected travel time values for di�erent values of the downstream discharges (QD)

Reservoir Case study QD (m3/s) t (hrs)

Range Average

< 20 8.0 -11.0 (10)

20 - 40 6.75 - 9.75 (9)

40 - 60 6.25 - 9.25 (7.75)

case 1 60 - 80 5.75 - 9.00 (7.25)

80 - 100 5.25 - 8.50 (6.5)

100 - 160 4.75 - 7.75 (6.25)

> 160 4.0 -7.50 (5.5)

Bigge < 20 13.0-17.0 (15.5)

20 - 40 10.5-14.25 (12.5)

40 - 60 9.25-11.0 (11.25)

case 2 60 - 80 8.50-12 (10)

80 - 100 8-11.5 (9.5)

100 - 140 7.50-11 (8.75)

> 140 6.5-10 (8)

< 20 2.5-3.5 (2.75)

20 -30 3-Feb (2.5)

case 3 30 - 50 1.75-2.75 (2.25)

50 - 80 1.5-2.5 (2)

> 80 1.25-2.25 (1.75)

< 20 3-4.75 (4)

20 - 30 2.25-4 (3.25)

Sorpe case 4 30 - 50 2.-3.75 (2.75)

50 - 70 1.5-3.5 (2.5)

> 70 1.25-3.25 (2.25)

< 20 3.75-6.25 (6.25)

20 - 40 2.75-5 (3.75)

40 - 60 2.25-4.50 (3.5)

Möhne case 5 60 - 80 1.75-4.25 (3.25)

80 - 100 1.75-4 (3)

100 - 160 1.25-3.5 (2.5)

> 160 1-3.25 (2)

< 10 4..25 - 6.75 (5.5)

10 - 20 3.75 - 6.0 (4.5)

20 - 30 3.0 - 5.25 (4.25)

Henne case 6 30 - 40 2.75 - 5.0 (4)

60 - 70 2.0 - 4.5 (3)

> 80 1.0 - 4.0 (2.75)

case 7 t = (0.25 - 1.0) hour
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Table 6.3: Cross correlation between the travel time (t) and QR, ∆QR, QD and ∆QD

Case study Flow reach QR ∆QR QD QD

case 1 �ow from gauge Ahausen to gauge Altena -0.699 -0.322 -0.757 -0.319

case 2 �ow from gauge Ahausen to gauge -0.7 -0.403 -0.817 -0.257

Hagen-Hohenlimburg

case 3 �ow from gauge Ahausen to gauge Rönkhausen -0.58 -0.041 -0.638 0.102

case 4 �ow from gauge Langscheid to gauge Bachum 0.11 0.036 -0.819 0.356

case 5 �ow from gauge Günne to gauge Bachum -0.612 -0.278 -0.65 -0.239

case 6 �ow from gauge Meschede-Henne to gauge -0.113 0.062 -0.837 0.409

Oeventrop

case 7 �ow from gauge Meschede-Henne to gauge -0.039 -0.07 -0.046 -0.046

Meschede-Ruhr

6.4 Travel time estimation using multivariate models

The observed travel time values from gauge Ahausen to gauge Hagen-Hohenlimburg (case

study 2) and the corresponding QR, ∆QR and QD are simulated using three multivariate

models. These models are:

1. The adaptive neuro-fuzzy inference system (ANFIS).

2. The backpropagation neural network (BPNN).

3. The multiple linear regression (MLR).

A real challenge for using these models is the limited amount of the estimated travel time

data. In the next subsection, we will discuss how to improve the generalization ability of

these models in case of limited amount of data.

6.4.1 Model generalization

In chapter 3, we used an early stopping procedure to prevent over�tting and to improve

the generalization ability of the BPNN and ANFIS models. To use an early stopping

procedure, we need enough data which is not available in the estimated travel time data.

Statisticians developed several techniques for dealing with limited amounts of data. These

techniques can be also used by the neural networks designers to choose the neural network

architecture, the number of hidden neurons, select input variables, training parameters

(Priddy and Keller, 2005). The most common techniques are the cross-validation methods
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(the k -fold and leave-one-out cross validation methods) and the jackknife and bootstrap

resampling.

The cross-validation is a technique for estimating the generalization error to improve the

generalization ability of the models. It is the most frequently used method for small number

of observations (Hu and Hwang, 2002). In this method, the available data is to be divided

into two subsets: the training set and the validation or test set. We used the k -fold cross

validation (KFCV) and leave-one-out cross validation (LOOCV) to select the best ANFIS,

BPNN and MLR models. We assumed the model with the minimum average relative error

percentage (AREP) to be the best model.

k-fold cross-validation

The algorithm for the k -fold cross-validation is as follows (Good, 2006):

1. Split the original data into k subsets of equal size.

2. Use a single subset for testing the model (validation data) and the remaining k -1

subsets to train the model (training data).

3. Repeat the cross-validation process k times to ensure that each of the k subsets is

used exactly once as the validation data.

4. Take the average of the k results from the folds to produce a single estimation for

the AREP.

Leave one-out cross-validation

The Leave-one-out cross-validation (LOOCV) involves using a single observation from the

original sample as the validation data and the remaining observations as the training data.

This is repeated such that each observation in the sample is used once as the validation

data.

6.4.2 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is discussed in details in chapter 3. Ten ANFIS models are trained, �ve of them

have ∆QR and QD as input variables and the other models have QR, ∆QR and QD as

input variables (see table 6.4). Table 6.4 gives the number of membership functions for

each input variable. Figure 6.9 shows ANFIS architecture of the input�output system for

the ANFIS model, A5.
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The ANFIS models are trained using two input-output data sets as follows:

data1: the determined travel time data are arranged according to date.

data2: the determined travel time data are arranged randomly.

As mentioned before, we used the KFCV and LOOCV methods to estimate the general-

ization error of the ANFIS, BPNN and MLR models. Three values of k are used (k = 4, 8

and 16) in the KFCV and the average AREP values correspond to each k are estimated.

The average values of the estimated AREP using the KFCV method for data1 and data2

are plotted in �gures 6.10 and 6.11 respectively. The average values of AREP for data1 are

estimated using the LOOCV method and the results are shown in �gure 6.12 (the average

values of the AREP are equal in both data1 and data2).

Table 6.4: The number of membership functions corresponds to QR, ∆QR and QD in the ANFIS

models

Group A Group B

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

QR - - - - - 2 3 4 5 6

∆QR 2 2 2 2 2 2 2 2 2 2

QD 7 6 5 4 3 3 3 3 3 3
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  low     medium      high 

Figure 6.9: The ANFIS architecture of the input-output system (model A5)
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Figure 6.10: The values of the AREP for the ANFIS models (data1 - KFCV)
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Figure 6.11: The values of the AREP for the ANFIS models (data2 - KFCV)
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Figure 6.12: The values of the AREP for the ANFIS models (data1 & data2 - LOOCV)
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Removing of the outliers

In statistics, an outlier is an observation that is numerically distant from the rest of the

data. The models which are derived from data sets that include outliers will often be

misleading. To know the e�ect of the outliers on the performances of the models, we

removed the outliers and then retrained the ANFIS models. The following procedure is

assumed to detect and remove the outliers:

1. The ANFIS model A5 is trained with the total observations (data1) and the predicted

travel time values are denoted as t̂.

2. The deviation of the estimated travel time (t̂i) from the observed one (ti) is

∆ti =
∣∣∣ti − t̂i

∣∣∣ , where i = 1, 2, . . . , n where n is the number of observed travel

time values.

3. The average deviation is∆tav = 1
n

∑n
i=1

∣∣∣ti − t̂i
∣∣∣ = 0.51. The observations which have

∆t ≥ 2∆tav,are assumed to be outliers and deleted.

The outliers are deleted from data1 and data2 to get data3 and data4 respectively. The

ANFIS models (table 6.4) are retrained using the data3 and data4 and the average AREP

are estimated using the KFCV and LOOCVmethods. Figures 6.13 to 6.14 show the average

estimated values of the AREP for data3 and data4 using the KFCV method. Figure 6.15

shows the average estimated values of the AREP for data3 using the LOOCV method (the

average values of the AREP are equal in both data3 and data4).

Analysis of the results of ANFIS models for travel time prediction

We used the estimated AREP in the validation data sets to test the performances of the

models. As given in table 6.4, we divided the ANFIS models into two groups according

to the number of input variables. The ANFIS models, group A, with two input variables

(∆QR and QD) and the models, group B, with three input variables (QR, ∆QR and QD).

ANFIS models (group A)

Figures 6.10 through 6.15 show that there is no signi�cant di�erence in the performances

of the models, group A, except for k = 4 (the KFCV method). For k = 4, the performance

of the ANFIS models improves by decreasing the number of membership functions corre-

sponding to QD from 7 (model A1) to 2 (model A5). This improvement in the performances

is due to the decrease in the total number of parameters (linear and nonlinear parameters)

in the ANFIS model with respect to the size of the training data set (Anuradha et al.,

2008).
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ANFIS models (group B)

Figures 6.10 through 6.15 also show that the ANFIS models, group B, have performances

worse than those of the models, group A, because the models, group B, have total number

of parameters more than those in the models, group A.

From the above results we recommend A5 to be the best ANFIS model that can be used

with limited observations. The ANFIS models, group B, may produce good performances

with more observations.
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Figure 6.13: The values of the AREP for the ANFIS models (data3 - KFCV)
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Figure 6.14: The values of the AREP for the ANFIS models (data4 - KFCV)
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Figure 6.15: TThe values of the AREP for the ANFIS models (data3 - LOOCV)
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6.4.3 Backpropagation neural network (BPNN)

Two-layer multilayer perceptron (MLP) backpropagation neural network (BPNN) is ap-

plied to simulate case study 2 (see chapter 3 for more details about BPNN). In the present

study, the BPNN models are trained and simulated using Matlab 7.5 developed by the

Math Works Inc, Natick, Massachusetts.

In section 6.4.2, the ANFIS models are trained using di�erent input variables and dif-

ferent number of membership functions. Ten BPNN models which have the same input

variables are trained using di�erent number of neurons in the hidden layer. We used the

Levenberg-Marquardt as training algorithm and tan-sigmoid and linear functions as acti-

vation functions for the hidden layer neurons and for the output one respectively. Table

6.5 lists the input variables and the number of neurons in the hidden layer for each model.

The architecture of BPNN model, D5 for travel time forecasting is shown in �gure 6.16.

The BPNN models are trained using data1, data2, data3 and data4 and the average AREP

are estimated. Figures 6.17, 6.18, 6.19 and 6.20 display the estimated average values of

the AREP (using the KFCV method) in data1, data2, data3 and data4 respectively. The

estimated average values of the AREP in data1 and data3 using the LOOCV method are

plotted in �gures 6.21 and 6.22 respectively.

Analysis of the results of BPNN models for travel time prediction

We have two groups of the BPNN models as given in table 6.5. The BPNN models, group

C, with two input variables (∆QR and QD) and BPNN models, group D, with three input

variables (QR, ∆QR and QD). From �gures 6.17 through 6.22, it is clear that there is no

signi�cant di�erence between the performances of the models, group C and the models,

group D, with respect to the values of the estimated AREP in the validation data sets.

The �gures also show that the performance of the model C5 is slightly better than the

performances of the other models.

Table 6.5: The number of neurons in the hidden layer for the BPNN models

Model Group C Group D

C1 C2 C3 C4 C5 D1 D2 D3 D4 D5

Inputs ∆QR and QD QR, ∆QD and QD

No. of 6 5 4 3 2 2 3 4 5 6

neurons
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Figure 6.16: Architecture of the Backpropagation Neural Network (BPNN) for travel time pre-

diction (model, D5)
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Figure 6.17: The values of the AREP for the BPNN models (data1 - KFCV)
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Figure 6.18: The values of the AREP for the BPNN models (data2 - KFCV)
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Figure 6.19: The values of the AREP for the BPNN models (data3 - KFCV)
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Figure 6.20: The values of the AREP for the BPNN models (data4 - KFCV)
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Figure 6.21: The values of AREP for BPNN models (data1 - LOOCV)
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Figure 6.22: The values of AREP for BPNN models (data3 - LOOCV)



6.4 Travel time estimation using multivariate models 159

6.4.4 Multiple linear regression (MLR)

Two MLR models (E and F) with di�erent input variables are assumed for travel time

prediction, the model E with two input variables (∆QR andQD) and the model F with three

input variables (QR, ∆QR and QD). The general forms of the multiple linear regression

MLR models E and F are given in equations, 6.1 and 6.2 respectively.

t̂ = a+ b×∆QR + c×QD (6.1)

t̂ = d+ e×QR + f ×∆QR + g ×QD (6.2)

t̂ is the predicted travel time and a, b, c, d, e, f and g are the parameters of the multiple

linear regression.

The predicted travel time values are compared with the observed one for both training and

validation data sets and the corresponding AREP values are estimated. The average values

of the estimated AREP in data1, data2, data3 and data4 are given in table 6.6. Table

6.6 shows that the model E is slightly superior to the model F according to the average

AREP in the validation data using LOOCV method. Comparing the performances of the

MLR models with those of the ANFIS and BPNN models, it is clear that both the ANFIS

model (A5) and the BPNN model (C5) outperform the MLR model (E).

Table 6.6: The average values of the AREP for the MLR models

Model Training data Validation data

KFCV LOOCV KFCV LOOCV

k = 4 k = 8 k = 16 k = 4 k = 8 k = 16

data1

E 7.57 7.59 7.6 7.6 7.81 7.76 7.82 7.89

F 7.53 7.81 7.59 7.76 7.6 7.82 7.6 7.97

data2

E 7.58 7.81 7.59 7.6 7.6 7.82 7.6 7.89

F 7.51 7.54 7.56 7.76 7.89 8.04 7.97 7.97

data3

E 6.27 6.26 6.27 6.29 6.43 6.58 6.66 6.56

F 6.27 6.25 6.27 6.29 6.44 6.72 6.79 6.66

data4

E 6.27 6.3 6.29 6.29 6.43 6.3 6.35 6.56

F 6.25 6.3 6.29 6.29 6.65 6.37 6.39 6.66
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Table 6.7 gives the values of the average the AREP in validation data set for the models

A5 and model C5. The values of the AREP indicate that the ANFIS model A5 is superior

to the BPNN model C5 except for data1 (LOOCV) and for data3 (KFCV with k = 4).

With respect to the estimated values of the AREP, we select the ANFIS model (A5) to be

the best model for travel time prediction.

Table 6.7: The average values of the AREP for the models A5 and C5
Model data1 data2 data3 data4

KFCV KFCV KFCV KFCV

k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16

L
O
O
C
V

L
O
O
C
V

A5 5.66 5.61 4.54 6.32 5.5 5.51 4.59 4.84 4.62 4.32 4.65 4.73 4.6 4.31

C5 5.91 5.7 5.81 5.84 5.63 5.76 5.79 4.72 4.69 4.71 4.9 4.94 4.76 4.68

6.5 HEC-RAS for travel time prediction

6.5.1 Introduction to HEC-RAS

HEC-RAS is a software system that is designed to perform three one-dimensional hydraulic

analysis components (HEC, 2006):

1. Steady �ow river calculations.

2. Unsteady �ow simulation.

3. Movable boundary sediment transport computations.

Barkau (1992) developed an Unsteady NETwork (UNET) model, to simulate one-

dimensional unsteady �ow through a full NETwork of open channels. HEC (1997) modi�ed

UNET to perform the unsteady �ow computations in HEC-RAS by solving the full dy-

namic Saint-Venant equations using an implicit �nite di�erence method. Saint-Venant

equations are derived from the equations of conservation of mass (continuity equation)

and conservation of momentum (momentum equation). The equations of continuity and

momentum can be de�ned as (Haestad Methods, 2003):

The continuity equation

∂Q

∂x
+
∂A

∂T
− ql = 0 (6.3)
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Figure 6.23: The Geometric data of the HEC-RAS model

The momentum equation

∂Q

∂T
+
∂QV

∂l
+ gA

∂z

∂l
− gA(So − Sf ) = 0 (6.4)

where Q is the �ow rate, A is the cross-sectional area, T is the time, l is the distance along

the channel, ql is the lateral in�ow per unit length, g is the acceleration gravity, ∂z/∂l is

the water surface slope, So is the bed slope and Sf is the frictional slope. Equation (6.4)

consists of �ve terms which known as local acceleration, connective acceleration, pressure

force, gravity force and friction force terms.

6.5.2 Description of the HEC-RAS geometry model

The upper and middle reaches of the Ruhr are simulated with HEC-RAS to predict the

travel time from the release gauges to the downstream gauges. The upper reach �ows from

km 179370 (Meschede-Henne) to Km 137525 (mouth of the Möhne) and the middle one

�ows from Km 137525 to Km 93006. The main tributaries which �ow into these reaches

of the Ruhr are the Wenne, Röhr, Möhne and Hönne Rivers. The �ows from Wenne and

Hönne Rivers are entered into HEC-RAS as lateral �ows. Figure 6.23 shows the geometric

data of the HEC-RAS model. Table 6.8 gives the main stations along the upper and middle

reaches of the Ruhr and along the Röhr and Möhne Rivers.
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6.5.3 Flow scenarios

We assumed seven �ow scenarios to estimate the travel time of the releases from the

Sorpe, Möhne and Henne reservoirs along the Ruhr using HEC-RAS. Table 6.9 lists the

values of the �ow at the release gauges and the �ow from the tributaries for each scenario.

The table gives also, the predicted values of travel time from the release gauge to the

downstream gauges for each scenario. Figure 6.24 shows the hydrographs at the release

and the downstream gauges for the scenario Meschede-Henne_3.

Table 6.8: The main �ow stations along the upper and middle reaches of the Ruhr River

Station River Kilometer

-along the Ruhr River

Meschede-Henne 179370

The mouth of the Wenne 175046

Oeventrop 159500

The mouth of the Röhr 143200

The mouth of the Möhne 137525

Bachum 133830

The mouth of the Hönne 112904

Villigst 100150

-along the Möhne River

Günne 11366

-along the Röhr River

Langscheid 28900

6.5.4 Comparison between HEC-RAS and NLR for travel time predic-

tion

From tables 6.1 and 6.9, it is obvious that reach 1 for the Henne reservoir (table 6.9)

corresponds case study 6 (table 6.1) and reach 2 for the Sorpe and Möhne reservoirs (table

6.9) correspond case studies 4 and 5 (table 6.1) respectively. The predicted travel times

from the HEC-RAS simulation and the NLR models are plotted versus the values of the

�ow at the downstream gauges (QD) as shown in �gures 6.25, 6.26 and 6.27 for case studies

6, 4 and 5 respectively. Figures 6.25 and 6.27 show a moderate agreement between the

predicted travel time using the HEC-RAS and that using the NLR model for case studies

6 and 5 respectively. Figure 6.26 shows that for case study 4, the predicted values of t

using the HEC-RAS simulation deviate from that by the NLR model by 37 % for QD =

20 m3/s and deviate by large amount for QD < 20 m3/s (more than 100 %).
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Table 6.9: List of the �ow at the release gauges and the �ow from tributaries and the predicted

travel time values for each scenario
Scenario Flow at di�erent gauges along the Ruhr (m3/s) Travel time (hrs)

Meschede- Wenne1 Langscheid Günne Hönne1 reach 12 reach 22 reach 32

Henne

Henne reservoir

Meschede-Henne_1 3_83 1.7 1.5 2 1.7 6.3 13.75 23.45

Meschede-Henne_2 10_15 6 5 7 6 6.15 8.25 15.25

Meschede-Henne_3 20_25 12 10 14 12 3.35 6.95 11.23

Meschede-Henne_4 30_35 17 15 20 17 2.7 5.75 10.35

Meschede-Henne_5 40_45 24 20 28 24 2.75 5.35 10.1

Meschede-Henne_6 60_65 36 30 42 36 2.6 5.35 10

Meschede-Henne_7 80_85 48 40 56 48 2.1 4.85 9.65

Sorpe reservoir

Langscheid_1 3 1.7 1.5_6.50 2 1.7 �� 10.7 20.95

Langscheid_2 7.2 4.1 3.6_8.60 4.8 4.1 �� 6.4 13.8

Langscheid_3 10 6 5_10 7 6 �� 3.8 10.6

Langscheid_4 20 12 10_15 14 12 �� 3.25 9.9

Langscheid_5 30 17 15_20 20 17 �� 3.35 8.25

Langscheid_6 40 24 20_25 28 24 �� 3.08 7.95

Langscheid_7 60 36 30_35 42 36 �� 2.75 7.75

Möhne reservoir

Günne_1 3 1.7 1.5 2_7 1.7 �� 8.15 19.15

Günne_2 10 6 5 7_12 6 �� 4.5 11.35

Günne_3 20 12 10 14_19 12 �� 3.85 8.95

Günne_4 30 17 15 20_25 17 �� 3.5 8.25

Günne_5 40 24 20 28_33 24 �� 3.05 7.6

Günne_6 60 36 30 42_47 36 �� 2.6 7.25

Günne_7 80 48 40 56_61 48 �� 2.35 7.05

1 the �ows from Wenne and Hönne are entered into the HEC-RAS simulations as lateral �ows

2 reach 1, reach 2 and reach 3 are the reaches from the release gauges to gauges Oeventrop, Bachum and Villigst respecktively.

3 the �ow is 3 m3/s and it will be increase to reach 8 m3/s in 1 hour then decrease to its original value in 1 hour.
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Figure 6.24: The �ow at the release gauges and the predicted �ow (from the HEC-RAS simula-

tion) at the downstream gauges (scenario Meschede-Henne_3)
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Figure 6.25: Travel time from Henne reservoir to the gauge Oeventrop versus QD
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Figure 6.26: Travel time from Sorpe reservoir to the gauge Bachum versus QD
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Figure 6.27: Travel time from Möhne reservoir to the gauge Bachum versus QD
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6.6 Conclusions

Historical �ow data (15 minute time series) are used to estimate the travel time of the

reservoirs releases along the Ruhr and the Lenne Rivers. Using the estimated travel time

values, the NLR models are built to detect a relation between travel time (t) from the

reservoirs to some downstream gauges and the �ow at each downstream gauge (QD).

The estimated travel time values along the reach from gauge Ahausen to gauge Hagen-

Hohenlimburg (case study 2) are simulated using the ANFIS, BPNN and MLR models.

With respect to the estimated AREP, we suggested A5, C5 and E as the best ANFIS,

BPNN and MLR models respectively with clear superiority of the A5 and C5 over E. The

performances of the models A5 and C5 are compared based on the average values of the

AREP and the ANFIS model (A5) is selected as the best model for travel time prediction.

HEC-RAS is used to simulate the upper and middle reaches of the Ruhr River. Seven

�ow scenarios are assumed to estimate the travel time of the releases along the Ruhr using

the HEC-RAS simulation. The results of the NLR models for case studies 4, 5 and 6 are

compared with those of the HEC-RAS simulation and the results of the comparison show

a moderate agreement for case studies 6 and 5. For case study 4, the predicted values of

travel time using the HEC-RAS simulation deviate from that by the NLR model by 37 %

for QD ≥ 20 m3/s and by large amount for QD < 20 m3/s.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The thesis employs stochastic analysis and data-driven models into the Bigge, Henne,

Möhne and Sorpe reservoirs in the Ruhr River basin. The in�ow processes were investigated

for seasonality, trend, long memory and stationarity at several characteristic timescales

(e.g., one day; 10 days; one month; 3 months; . . . ). A clear seasonality is detected for dif-

ferent statistical characteristics (mean, standard deviation, skewness and season-to-season

correlation). The linear regression, Mann-Kendall and seasonal Mann-Kendall tests are

used to test for the presence of trend in the in�ow time series at 5 % signi�cance level.

A downward trend is detected in the in�ow time series of the Sorpe reservoir at di�erent

timescales. The 10-days, monthly, 3-months and 6-months in�ow times of Sorpe reser-

voir are test against shift (occurred at 1970) and the detected shifts are removed. These

seasonal time series (after removing the detected shifts) are tested against trend using

seasonal Mann-Kendall test and a trend is detected only in the 10-days in�ow time series.

The ADF and PP tests are used to test the stationarity of the in�ow time series and the

results show that all log-transformed standardized time series are found to be stationary

at 5 % signi�cance level.

The BPNN, ANFIS, ARMA and ARFIMA models are developed for daily in�ow forecast-

ing. These models are divided into two groups, univariate models, group M1-1 and group

M1-2 (the simulation models are BPNN, ANFIS, ARMA and ARFIMA) and multivariate

models, group M2 (the simulation models are BPNN and ANFIS). The estimated values

of the e�ciency criteria of the univariate models show that all models have similar perfor-

mance but the BPNN and ANFIS models are slightly better however. The multivariate
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models, group M2, are found to outperform the univariate models, group M1-2, in respect

of all used e�ciency criteria.

The BPNN and ANFIS and GLM models are used for �lling in the missing values in

the in�ow time series. The estimated values of the rmse show that the BPNN model

outperforms the other models. The BPNN model is applied to extend the daily in�ow into

the Bigge reservoir in the period from 1/11/1960 to 31/10/1965.

We developed four models (the T-F, Gamma T-F, MC and PHMM) for generating monthly

in�ow. The statistical parameters of the generated data are compared to those of the

observed one and the results show that except the Gamma T-F each model preserves at

least two statistical parameters. The Q-Q plot and the survivor function plot are used

for visual validation of the models. The results of the Q-Q plot show superiority of the

MC and PHMM models, however the PHMM outperforms the other models according to

the results of the survivor function plot. The MC model is applied to detect the expected

consecutive 5 years that have minimum total in�ow.

Historical �ow data (15 minute time series) are used to estimate the travel time of the

released �ow from the release gauges to some downstream gauges. Using the estimated

travel time values, the ANFIS, BPNN and MLR are trained to predict travel time. The

ANFIS model (A5) is proposed as the best model for travel time prediction.

HEC-RAS is applied to simulate the upper and middle reaches of the Ruhr River and the

results of the HEC-RAS simulation are compared with those of the NLR model and the

results of the comparison show a moderate agreement for case studies 6 and 5.

7.2 Future work

For e�cient planning and management of water resources in the Ruhr River basin, it is

recommended that further research be undertaken in the following areas:

� Improving the performance of the PHMM in preserving month-to-month correlation.

� Developing a multi-site in�ow forecasting model to forecast daily in�ow into multiple

reservoir systems.

� Synthetic generation of the seasonal in�ow into multiple reservoir systems using a

multivariate, seasonal in�ow generation model.



Appendix A

Graphical user interfaces

A.1 Vorhersage GUI

Vorhersage GUI is a graphical user interface which is developed by using Matlab. Figure

A.1 shows a general overview of the Vorhersage GUI. This GUI can be used for statistical

analysis of the in�ow time series at di�erent timescales, for monthly in�ow generation and

for many other applications. Some of these applications will not be discussed here.

Figure A.1: General overview of the Vorhersage GUI
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A.1.1 Statistical analysis

Di�erent statistical analysis can be applied using Vorhersage GUI. In the following is a list

of these statistical analyses:

� Trend analysis.

� Autocorrelation analysis.

� Seasonality analysis.

� Stationarity analysis.

� Long memory analysis.

Select the reservoir and then press the button corresponding to the statistical analysis that

you want to start. Each statistical analysis can be done for di�erent time scales (daily,

10-days, monthly ...). Figure A.2 shows the seasonal variation in the standard deviation

for monthly in�ow time series of the Bigge reservoir.

Figure A.2: Vorhersage GUI for seasonality analysis
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A.1.2 Monthly in�ow generation

One of the other applications of the Vorhersage GUI is to generate the monthly in�ow into

the Bigge, Henen, Möhne and Sorpe reservoirs. Four models can be implemented using

this GUI:

� Thomas-Fiering model (T-F).

� Monte-Carlo model (MC).

� Gamma Thomas-Fiering model (Gamma T-F).

� Periodic hidden Markov model (PHMM).

The following steps have to be followed to generate the monthly in�ow into the selected

reservoir (see �gure A.3):

1. Select the reservoir and the model from the corresponding Popup Menus.

2. Insert the number of years to which you want to generate the monthly in�ow.

3. Press Start Button.

4. Once this Button is pressed, the generated in�ow data will be plotted against dates.

Also, the statistics of the generated and the observed in�ow data can be plotted

against months.

Figure A.3.a shows the 100 years generated monthly in�ow into the Bigge reservoir. It

shows also a comparison between the standard deviations of the 100 years generated

monthly in�ow and the observed one (see �gure A.3.b).
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Figure A.3: Vorhersage GUI for monthly in�ow generation

A.1.3 Critical moving sum

Vorhersage GUI can be also used to �nd the consecutive n years which have the critical

total in�ow (minimum or maximum). The following steps have to be followed to �nd the

consecutive n years which have the critical sum (see �gure A.4):

1. Select the reservoir and the model.

2. Insert the number of generations.

3. Give the number of the consecutive years (is denoted by, Lag) for which you want to

�nd the critical value.

4. Press Find Button.

5. A Dialog Box will appear and ask about the number of years to be generated each

time.
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A plot which shows the values of the critical sum vs. generations will appear as shown in

�gure A.4.a. The monthly in�ow during the critical period is plotted in �gure A.4.b.

Figure A.4: Vorhersage GUI for determination of the critical moving sum

A.2 Fehlende Daten GUI

Fehlende Daten GUI can be used estimate the missing data in the daily in�ow time series

using BPNN, ANFIS or GLM models. It can be also used to re-train these models using

di�erent input variables and training parameters. The main features of the Fehlende Daten

GUI are summarized as follows (see �gure A.5):

1. to select the gauge at which you want to estimate the missing data.

2. to select the model which you want to use.

3. to insert the values of the input variables at which the missing data to be estimated.
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4. another method to insert the value of the input variables is to load them as .xls �le.

Select the corresponding Check Box to activate this feature.

5. press Start Button to estimate the missing data.

6. to display the estimated data.

7. to display the performance of the used model in terms of the correlation coe�cient

between the estimated data and the observed one.

Figure A.5: General overview of the Fehelend Daten GUI

8. to display the performance of the used model in terms of the root mean square error

of the estimated data.

9. to display the input variables which are used to train the model.

10. to select the input variables to train the model. Input index of nonzero value means

the corresponding input variable will be used to train the model otherwise it will not

be used to train the model.

11. press Train Button to re-train the model with di�erent input variables or di�erent

parameters.

12. to display the correlation coe�cient between the estimated data using the re-trained

model and the observed data.
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13. to display the root mean square error of the estimated data using the re-trained

model.

14. to display the estimated and the observed data vs. date and

15. press Help Button to open a �le in PDF format. This �le describes the di�erent

features of the GUI.

A.3 Zu�ussprognose GUI

Zu�ussprognose GUI is a graphical user interface which is used to train the di�erent models

for daily in�ow forecasting. This GUI can be also used to forecast the daily in�ow using

these models. In the following are the main features of the Zu�ussprognose GUI (see �gure

A.6): Features 1 through 15 are the same as in the Fehlende Daten GUI.

16. to select the models group.

17. press this Button to apply the diagnostic checking to the ARMA and ARFIMA

model.

18. to plot the autocorrelation and the partial autocorrelation function of the selected

in�ow process.

Figure A.6: General overview of the Zu�ussprognose GUI
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A.4 Fliesszeit GUI

Fliesszeit is a Graphical User Interface which can be used to (see �gure A.7):

1. Prediction of the travel time (t).

2. Updating of training models.

3. Determination of jump points.

A.4.1 Prediction of the travel time

To predict the travel time (t) and the increase in the downstream �ow (∆Qd), the following

steps should to be followed (see �gure A.8):

1. Choose the river reach.

2. Choose the model.

3. Enter the values of Qr (if it will be used as input variable), ∆Qr and Qd. The

recommended range for each input variable will appear next to the corresponding

Edit Text Box.

4. Press Start Button.

5. The predicted values of t and ∆Qd will appear in the corresponding Text Boxes; also

a �gure which shows the relation between t and Qd will appear. This �gure shows

the relation between t and Qd using nonlinear regression analysis.
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Figure A.7: General overview of the Fliesszeit GUI

Figure A.8: Prediction of the travel time
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A.4.2 Updating of training models

Using Fliesszeit GUI the decision maker can add training samples and try di�erent training

parameters. If the decision maker evaluates the performance of the model and decides that

the new training samples or/and the new training parameters improve the performance of

the model, he can update the training data (see �gure A.9).

To update the training models (add training samples and try di�erent training parameters),

the following steps should to be followed:

1. Choose the river reach.

2. Press Retrain Button.

3. A question dialog will appear and asks about the password.

4. After entering the password another question dialog will appear and asks if you want

to add new training sets or not. Press yes to add new training sets or no to continue.

If you press yes an Input Dialog will appear and asks about the values of Qr, ∆Qr,

Qd, ∆Qd and t.

5. A Question Dialog will appear and asks if you want to replace the existing training

sets with the new or not, press yes to replace the existing training sets or no to add

the new one.

6. Then you have the ability to try di�erent training parameters:

BPNN model

� number of neurons in the hidden layer.

� maximum number of epochs.

ANFIS model

� number of membership functions corresponding to the input variables Qr, ∆Qr and

Qd.

� maximum number of epochs.

7. After entering the training parameters press ok to start the training process (it can

take few minutes).
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8. After �nishing the training process a Question Dialog will appear and asks if you

want to update the training model. Compare between the e�ciency criteria in the

Models performance Group and that in the Models performance-Updating training

data Group (see �gure A.10).

9. If the performance of the model is improved press ok to update the training model

otherwise press no will delete the new training sets and return to the previous model.

Models performances

Three e�ciency criteria (ARPE, RPE10 and R) are used to measure the performance

each model where:

ARPE is the average relative percentage error.

RE10 is the percentage of the observations which have RPE less than 10, for

example if the total number of observations is 50 and the number of

observations which have RPE ≤ 10 = 43 then RE10 = 43/50 = 0.86).

R is the average value of the correlation between the observed values and the

predicted one.

A.4.3 Estimation of travel time

Other application of the Fliesszeit GUI is to estimate the travel time between two gauges

using the �ow time series at each gauge. The following two steps can be used to estimate

the travel time using Fliesszeit GUI (see �gure A.11):

1. Load �ow data

Fliesszeit GUI has the ability to load the �ow time series from Edit Text Box, as .csv �le

or as .xls �le. One of these methods can be used to load the �ow data at the release gauge

(gauage1) and at the downstream gauges (gauage2, gauage3, gauage4).
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Figure A.9: Updating of the training models

Figure A.10: Performance of the models
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2. Determination of the jump points

Determination of the jump points is the next step after loading the �ow data. The

following two parameters are required to determine the jump point at the release gauge

(see �gure A.11):

∆QR the increase in the �ow at gauge 1 (release gauge)

∆tR the assumed rise time at gauge 1 (di�erent values can assumed 45min, 60min,

75min ...)

After entering the values of the required parameters press on the Push Button (Find

jump points). The total number of the determined jump points will appear. The

�ow hydrographs at each jump point can be drawn using the Popup Menu (Plot �ow

hydrographs at jump point). This plot can be used to estimate the travel time at this

jump point manually (if possible) as shown in �gure A.11.

Figure A.11: Estimation of the travel time
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Appendix B

Graphical presentation of the long memory

detection methods
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B.1 Aggregated variance method

Hurst parameter (H ) is estimated as H = 0.5 e+ 1,where e is slope of the trend line.

Figure B.1: Logarithmic plot of the variance versus the aggregate level (the aggregate variance

method)
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B.2 Residuals of regression method

Hurst parameter (H ) is estimated as H = 0.5 e,where e is slope of the trend line.

Figure B.2: Logarithmic plot of the residual variance versus the aggregate level (the residuals of

regression method)
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B.3 The rescaled adjusted range (R/S) method

Hurst parameter (H ) is estimated as H = e,where e is slope of the trend line.

Figure B.3: Logarithmic plot of the R/S variance versus the size of block m (the R/S method)
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