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1 Introduction

One of the major goals in the representation theory of quivers is the classification
of isomorphism classes of representations of arbitrary quivers and the homomorphism
spaces between them. Except for representations of quivers of Dynkin type, which
were first classified by Gabriel in [24], and those of extended Dynkin type, which
were independently classified by Nazarova in [48] as well as by Donovan and Freislich
in [16], the classification problem of the remaining so-called wild quivers is generally
regarded as hopeless. Nevertheless, in [34], Kac could show that the dimension vectors
which appear as those of indecomposable representations are precisely the positive
roots of the associated Kac-Moody Lie algebra. In [35], he was even able to express the
number of parameters which parametrize the isomorphism classes of indecomposable
representations in terms of the Euler form of the root. For a fixed root of the quiver,
he also showed that the number of absolutely indecomposable representations over a
finite field is given by a polynomial with integer coefficients. By now, Hausel, Letellier
and Rodriguez-Villegas were able to prove in [31] that all these integers are positive
which generalizes a former result of Crawley-Boevey and van den Bergh for coprime
dimension vectors, see [15]. The main ingredient in proving this former conjecture of
Kac is to write the counting polynomial as the Poincaré polynomial (resp. a related
polynomial) of a moduli space associated with the fixed root. This emphasizes the
importance of moduli spaces of stable quiver representations as treated in King’s work
[37] and results concerning their cohomology as obtained by Reineke [52].

There are also several results which deal with the classification problem itself and
which help to understand the nature of indecomposable representations at least par-
tially. A powerful tool is the reflection functor of Bernstein, Gelfand and Ponomarev
introduced in [3] which can be used to restrict the classification problem to a smaller
number of roots. Apart from this functor, there are plenty of others which can be
applied to construct indecomposable representations recursively. In [62], Schofield es-
tablished an induction which can be used to describe the perpendicular subcategories
coming along with a fixed exceptional sequence as the representation category of a
smaller quiver. But also the reflection functor introduced by Ringel in [57], which
can especially be used to construct non-Schurian indecomposable representations by
extending a given representation by a certain number of copies of an exceptional rep-
resentation, is a famous example. As we see, exceptional representations play an im-
portant role in this field. This underlines the significance of both Ringel’s theorem
[58], which says that every exceptional representation is a tree module, and Schofield
induction, which can be used to construct them explicitly.

Apart from the question of the classification of indecomposable representations, an-
other problem has been of growing interest throughout the last years. For a fixed
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representation of a quiver, one can ask for the subset of subrepresentations of a fixed
dimension which is in fact a subvariety of a certain product of Grassmannians. These
so-called quiver Grassmannians are insofar particularly interesting as their cohomol-
ogy was discovered to be strongly linked to the cluster variables of the cluster algebra
associated with the quiver, see [6]. But quiver Grassmannians are clearly interesting
in their own right. For instance, it is remarkable that the mentioned finite-tame-wild
trichotomy seems to extend to quiver Grassmannians. More precisely, quiver Grass-
mannians attached to indecomposable representations of Dynkin quivers are smooth,
those attached to extended Dynkin quivers seem to admit a cell decomposition into
affine spaces while those attached to wild quivers are generally neither smooth nor
admit a cell decomposition into affine spaces. We should point out that the case of
quiver Grassmannians of quivers of type Ẽ has not been investigated in detail until
now.

Therefore, despite this disillusioning prediction of being hopeless, lots of statements
concerning the representation theory of wild quivers can be made. One of the main
goals of this habilitation is to make a contribution to the representation theory of wild
quivers focusing on the mentioned issues. In order to achieve this, we mainly try to give
a geometric description of the objects under consideration, or we investigate geometric
objects which naturally appear in the representation theory of quivers. Thereby, tree
structures happen to play an important role, for instance as tree modules, which are
hoped to serve as a starting point for a normal form of certain isomorphism classes of
indecomposable representations, but also as torus fixed points of moduli spaces. But
also the Euler characteristic of quiver Grassmannians of representations of extended
Dynkin quivers of type Ãn and D̃n turns out to be determined by the number of certain
subgraphs of the coefficient quiver of the representation which is a tree in this case. So
we take this as an opportunity to analyze tree structures in the representation theory
of quivers in greater detail. Since these tree structures can be described very explicitly,
it turns out that it is often very promising trying to understand certain tree structures
in a first step and to generalize the obtained results in a second one.

In the second chapter, we introduce notation and recall several results, which we
use frequently throughout the paper. Afterwards, we focus on three aspects. The first
one contributes to the mentioned classification problem in such a way that we intro-
duce methods which can be used to construct isomorphism classes of indecomposable
representations which can be described by as many parameters as predicted by Kac’s
Theorem. Often tree modules serve as a skeleton in this construction and the investi-
gations raise hope that, at least for a certain class of roots, further considerations can
lead to a normal form for indecomposable quiver representations. Thereby, tree mod-
ules should play the role of nilpotent endomorphisms in the theory of Jordan normal
forms for endomorphisms of vector spaces. Another advantage of tree modules is that
they are given very explicitly in terms of their coefficient quiver. Furthermore, it is
straightforward to write down a basis of the groups of extensions of two tree modules.

Since we are interested in the recursive construction of indecomposable representa-
tions, it is of advantage to know the groups of extensions explicitly. The basic idea is
to fix a sequence of representations of a fixed quiver and to consider the quiver whose
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vertices correspond to the representations and whose arrows correspond to the bases
of the groups of extensions. Now representations of the new quiver give rise to those
of the original one. This can be described very explicitly in terms of a functor whose
properties we study in the third chapter. More precisely, we investigate under which
conditions it is fully faithful or at least preserves indecomposability. This setup admits
lots of applications: for instance, we can generalize Schofield induction and Ringel’s
reflection functor. This recursive construction is described in detail in [71]. We also
use the introduced language in order to describe the main results of [68] implying the
existence of indecomposable tree modules for every imaginary Schur root.

But we also focus on new aspects as we use the results of [71] in the case of Schur roots
in order to construct as many isomorphism classes of indecomposable representations
as predicted by Kac’s Theorem. Furthermore, we see that it is possible to show that
the number of indecomposable tree modules grows exponentially in this case. In turn,
we can use this fact to show that the value of the Kac polynomial at one, which is
attached to a root of the Kronecker quiver, grows exponentially with the dimension
vector. To obtain this, it is fundamental to establish a connection between (cover-thin)
tree modules and torus fixed points of moduli spaces of stable representations of the
corresponding preprojective algebra.

Another approach to tackle the classification problem is to combine arguments from
intersection theory with this recursive construction as done in [23]. In the case of non-
Schurian roots of quivers with three vertices, this turns out to be a very powerful tool.
In fact, the points of the intersection of two subvarieties of a Grassmannian, which
are prescribed by a fixed root, are in correspondence to those representations which
can be constructed by Ringel’s reflection functor. Thereby, it is substantial that the
dimension of each irreducible component of this intersection is exactly as predicted by
Kac’s Theorem as soon as it contains a Schur representation. It also turns out that,
under certain extra conditions, we can glue Schur representations which are contained
in two different intersections in order to obtain Schur representations of a third one.

The Kac polynomial and geometric considerations are also the starting point of the
fourth chapter and build the bridge to the second, cohomological, aspect of our inves-
tigation. A generalization of a conjecture of Douglas to the case of the Kac polynomial
at one serves as an additional motivation. The main focus of our considerations is on
the (singular) cohomology of various moduli spaces of quiver representations. As far
as the Euler characteristic is concerned, tree structures again play a very important
role. Actually, (iterated) torus fixed points are representations of the universal cover-
ing quiver which is a tree. In turn, stable tree modules are already torus fixed points.
Since the odd cohomology of the moduli spaces under investigation vanishes, counting
them yields at least a lower bound for the Euler characteristic, but also exact formulae
in many cases.

Maybe the main knowledge gained in this theory throughout the last years is that
the Euler characteristic can be obtained in a purely combinatorial way when counting
certain trees. This observation is obtained when combining the MPS degeneration
formula of [45] and the localization theorem of [69]. More precisely, the first result
reduces the determination of the Poincaré polynomial to the case of dimension vectors
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of type one. Now we can use the second result in order to show that there are only
finitely many torus fixed points in this case. In [70] and [55], this is used to show
that the Euler characteristic of Kronecker moduli spaces grows exponentially with the
dimension vector and, moreover, to obtain certain exact formulae which include several
cases where the Euler characteristic vanishes. We recall some of these formulae, but
also focus on a new instance of vanishing Euler characteristics which seems to be very
useful for future considerations.

But this is not the end of the story as there is an equivalent formula in the the-
ory of Gromov-Witten invariants, see [29]. In order to derive this equivalence which
is established in [54], the so-called refined GW/Kronecker correspondence of [55] is
fundamental as it discloses an identity between Euler characteristics of quiver moduli
spaces of refined Kronecker quivers and Gromov-Witten invariants counting rational
curves on weighted projective planes. In a sense, it turns out that in the theory of the
afore mentioned Gromov-Witten invariants certain tropical curves, whose underlying
graphs are also trees, play the role of torus fixed points. This clearly raises the question
if there is a direct link between these two kinds of objects. Actually, it can be answered
positively in several cases. In this work, we outline the main results of [55, 54], but also
give an alternative proof of the equivalence where the notion of scattering diagrams is
not needed.

In the last chapter, we focus on the third aspect and investigate quiver Grassmanni-
ans attached to representations of extended Dynkin quivers of type D̃n. This is done
by giving an overview of the main results of [43, 44] extended by an analysis of torus
actions on quiver Grassmannians. In a first step, we show that every quiver Grassman-
nian admits a cell decomposition into affine spaces. This is not only a contribution
to the above conjectured trichotomy as it turns out that the cells are in one-to-one
correspondence to so-called non-contradictory subquivers of certain coefficient quivers,
which happen to be trees in the case of real roots. This means that the Euler char-
acteristic is already given by their number. The upshot is that we obtain an explicit
description of the generating functions of the Euler characteristics. These generating
functions are then again important in the theory of cluster algebras as they can be
used to determine the corresponding cluster variables.

Apart from the applications to generalized Kronecker quivers, quivers of type D̃4,
imaginary Schur roots and especially Theorem 3.1.7, the results of Section 3.1 already
appeared in [71, 68]. Except for Theorems 3.2.2 and 3.2.3 and the counterexample in
Section 3.2.3, which appeared in the articles indicated at the respective places of this
paper, as far as I know, the results of Section 3.2 did not appear in literature before.
The results of Section 3.3 are collected from [23].

Section 4.1 is supposed to motivate the subsequent considerations by recalling and
generalizing a conjecture of Michael Douglas. Section 4.2 can be understood as a
revised version of [54, Section 5]. In Section 4.3, the results of [70] are summarized
while, in Section 4.4, an overview of the formulae obtained in [55, 70] is given. But also
a new formula is derived in Theorem 4.4.12. Finally, in Section 4.5, some of the main
results of [54] and [55] are reviewed including an alternative proof of [54, Proposition
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4.3].
The results of Sections 5.1 and 5.2 already appeared in the preprints [43, 44] while

Section 5.3 gives a new perspective on torus actions on quiver Grassmannians.
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2 Basic definitions and results

In this chapter, we fix most of the notation and, furthermore, important results which
are used frequently. Throughout this work, we fix an algebraically closed ground field
k which is of characteristic zero unless otherwise stated. In the last two chapters, we
even assume that k is the field of complex numbers. Actually, several results, especially
many of those of the third chapter, remain valid when passing to arbitrary algebraically
closed fields. We refer to the particular references for more details.

2.1 Quiver representations

For a detailed introduction to the representation theory of quivers we refer to [1]. A
quiver Q consists of vertices Q0 and arrows Q1 which we denote by ρ : p→ q. For an
arrow ρ : p→ q, let s(ρ) = p be its head and t(ρ) = q its tail. Moreover, let a(p, q) be
the number of arrows from p to q and let Nq be the set of neighbors of q. We denote
by Qop the quiver obtained from Q when turning around all arrows.

Let Rep(Q) be the category of finite-dimensional k-representations of Q whose ob-
jects are tuples

M = ((Mq)q∈Q0 , (Mρ : Ms(ρ) →Mt(ρ))ρ∈Q1)

consisting of finite-dimensional k-vectors spaces Mq and k-linear maps Mρ. Taking
dual vector spaces and adjoint linear maps, we obtain the dual representation M∗ ∈
Rep(Qop) of a representation M ∈ Rep(Q). The dimension vector dimM ∈ NQ0 of
a representation M is given by dimM =

∑
q∈Q0

dimMq · q. Sometimes it is more
convenient to use the notation dimM = (dimMq)q∈Q0 . We say that a representation
M is of type one if dimMq ∈ {0, 1} for every q ∈ Q0. Let Rα(Q) denote the affine
space of representations of dimension α.

On ZQ0 we have a non-symmetric bilinear form, the Euler form, which is defined by

〈α, β〉 =
∑
q∈Q0

αqβq −
∑
ρ∈Q1

αs(ρ)βt(ρ)

for α, β ∈ ZQ0. The antisymmetrization of the Euler form is defined by {α, β} =
〈α, β〉 − 〈β, α〉.

Let M and N be two representations of a quiver Q. We consider the linear map

dM,N :
⊕
q∈Q0

Homk(Mq, Nq)→
⊕
ρ∈Q1

Homk(Ms(ρ), Nt(ρ))
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defined by dM,N((fq)q∈Q0) = (Nρfs(ρ) − ft(ρ)Mρ)ρ∈Q1 . Then we have ker(dM,N) =
Hom(M,N) and coker(dM,N) = Ext(M,N), see [56, Section 2.1]. If Q has no ori-
ented cycles, following [56, Section 2.2], we have

〈dimM, dimN〉 = dimk Hom(M,N)− dimk Ext(M,N)

and Exti(M,N) = 0 for i ≥ 2 and any two representations M and N of Q.
Recall that every morphism g ∈

⊕
ρ∈Q1

Homk(Ms(ρ), Nt(ρ)) defines a short exact
sequence E(g) ∈ Ext(M,N) by

0→ N → ((Nq ⊕Mq)q∈Q0 , (

(
Nρ gρ
0 Mρ

)
)ρ∈Q1)→M → 0

with the canonical inclusion on the left hand side and the canonical projection on the
right hand side. Then it is straightforward to check that two short exact sequences
E(g) and E(h) are equivalent if and only if g − h ∈ Im(dM,N).

A dimension vector α is called a root if there exists an indecomposable represen-
tation of this dimension. We distinguish between real, isotropic and imaginary roots
corresponding to the cases 〈α, α〉 = 1, 〈α, α〉 = 0 and 〈α, α〉 ≤ 0. A root is called
Schur root if there exists a representation of dimension α with trivial endomorphism
ring which we call Schur representation. An indecomposable representation M is called
exceptional if we have Ext(M,M) = 0. A representation M is exceptional if and only if
dimM is a real Schur root which we also call exceptional. If α is a real root, it follows
from [35] that there only exists one indecomposable representation M of dimension
α up to isomorphism which we denote by Mα. Let Sq be the simple representation
corresponding to the vertex q and sq its dimension vector.

If some property is independent of the point chosen in some open subset U of Rα(Q),
following [61], we say that this property is true for a general representation of dimension
vector α. Since the function λ : Rα(Q) × Rβ(Q) → N, (M,N) 7→ dim Hom(M,N), is
upper semi-continuous, see for instance [61, Section 1], we can define hom(α, β) to be
the minimal, and therefore general, value of this function. In particular, if α is a Schur
root of a quiver, it follows that a general representation of dimension α is Schurian.
Finally, we define ext(α, β) := hom(α, β)− 〈α, β〉.

2.2 Subcategories of representation categories and
functors between them

There are plenty of subcategories of representations of quivers which play an impor-
tant role throughout this work. They can often be identified with the representation
category of other quivers.

A sequence E = (E1, . . . , Er) of representations of Q is called exceptional if every
representation Ei is exceptional and, moreover, Hom(Ei, Ej) = Ext(Ei, Ej) = 0 if i < j.
If, in addition, Hom(Ej, Ei) = 0 if i < j, we call such a sequence reduced. For two
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roots α and β we denote by β ∈ α⊥ if hom(α, β) = ext(α, β) = 0. In this way, we can
also refer to exceptional sequences of roots.

For a set M = {M1, . . . ,Mr} of representations of Q, we define its perpendicular
categories

⊥M = {X ∈ Rep(Q) | Hom(X,Mj) = Ext(X,Mj) = 0 for j = 1, . . . , r},

M⊥ = {X ∈ Rep(Q) | Hom(Mj, X) = Ext(Mj, X) = 0 for j = 1, . . . , r}.

It is straightforward to check that these categories are closed under direct sums,
direct summands, extensions, images, kernels and cokernels.

Theorem 2.2.1 ([62, Theorems 2.3 and 2.4]). Let Q be a quiver with n vertices and
E = (E1, . . . , Er) be an exceptional sequence.

i) The categories ⊥E and E⊥ are equivalent to the categories of representations of
quivers Q(⊥E) and Q(E⊥) respectively such that these quivers have n−r vertices
and no oriented cycles.

ii) There is an isometry with respect to the Euler form between the dimension vectors
of Q(⊥E) (resp. Q(E⊥)) and the dimension vectors of ⊥E (resp. E⊥) given by
Φ((d1, . . . , dn−r)) =

∑n−r
i=1 diαi where α1, . . . , αn−r are the dimension vectors of

the simple representations of the perpendicular categories.

For an exceptional sequence E = (E1, . . . , Er) with dimEi = αi, let C(E1, . . . , Er)
be the full subcategory of Rep(Q) which contains E1, . . . , Er and which is closed under
extensions, kernels of epimorphisms and cokernels of monomorphisms. Suppose that
E = (E1, . . . , Er) is a reduced exceptional sequence. Then by [19, Lemma 2.35], we have
that E1, . . . , Er are the simple objects of C(E1, . . . , Er). Moreover, by Theorem 2.2.1, it
follows that the category C(E1, . . . , Er) is equivalent to the category of representations
of the quiver Q(E) which has vertices Q(E)0 = {q1, . . . , qr} and nij := dim Ext(Ei, Ej)
arrows from qi to qj if i 6= j. Thus, an immediate consequence of Theorem 2.2.1 is the
following, see also [62, Section 2] and [19, Theorem 2.38]:

Corollary 2.2.2. Let E = (E1, . . . , Er) with dimEi = αi be a reduced exceptional
sequence. Then α =

∑r
i=1 diαi is a root of Q if and only if (d1, . . . , dr) is a root of

Q(E).

BGP-reflection functor

Since we frequently use the reflection functor introduced by Bernstein, Gelfand and
Ponomarev in [3], we shortly review its definition. For a quiver Q, consider the matrix
A = (ap,q)p,q∈Q0 with ap,p = 2 and ap,q = aq,p for p 6= q, in which ap,q = a(p, q) + a(q, p).
For a fixed q ∈ Q0, we define σq : ZQ0 → ZQ0 as

σq(p) = p− ap,qq.
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Let q ∈ Q0 be a sink (resp. a source). Then by σqQ we denote the quiver which is
obtained from Q by turning around all arrows with head (resp. tail) q. If M is a
representation of Q and q is a sink (resp. a source), we consider the linear maps

φMq :
⊕
ρ:p→q

Mp
Mρ−−→Mq (resp. φMq : Mq

Mρ−−→
⊕
ρ:p→q

Mp).

Now in both cases, we define (σqM)p = Mp if p 6= q. Moreover, we define (σqM)q =
ker(φMq ) (resp. (σqM)q = coker(φMq )). Moreover, the linear maps (σqM)ρ∗ for ρ : p→ q
(resp. (σqM)ρ∗ for ρ : q → p) are the natural ones while the maps Mρ′ for the
remaining arrows ρ′ ∈ Q1 do not change. In both cases, we obtain an additive functor
σq : Rep(Q)→ Rep(σqQ) which is called (BGP-)reflection functor. It has the following
properties:

i) If M ∼= Sq, then σq(Sq) = 0.

ii) If M � Sq is indecomposable, then σq(M) is indecomposable such that σ2
q (M) ∼=

M and dimσq(M) = σq(dimM).

Ringel’s reflection functor

We review some of the results of [57, Section 1]. For a fixed exceptional representation
S and a full subcategory C of Rep(Q), we denote by C/S the category which has the
same objects as C and the same morphisms modulo those factorizing through

⊕n
i=1 S

for some n ∈ N. We define the following full subcategories of Rep(Q):

i) M−S = {M ∈ Rep(Q) | Hom(M,S) = 0}

ii) M−S = {M ∈ Rep(Q) | Hom(S,M) = 0}.

iii) MS as the category of representations M ∈ Rep(Q) with Ext(S,M) = 0 such
that, moreover, there does not exist a direct summand of M which can be em-
bedded into a direct sum of copies of S.

iv) MS as the category of representations M ∈ Rep(Q) with Ext(M,S) = 0 such
that, moreover, no direct summand of M is a quotient of a direct sum of copies
of S.

Let M ∈MS and B := {ϕ1, . . . , ϕn} be a basis of Hom(M,S). Following [57, Lemma
2], there exists a short exact sequence

0→M−S →M →
n⊕
i=1

S → 0

induced by B such that the induced sequences e1, . . . , en form a basis of Ext(S,M−S).
Moreover, we have M−S ∈M−S. The other way around, if N ∈M−S and {e1, . . . , en}
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is a basis of Ext(S,N), we have an induced short exact sequence

0→ N → NS →
n⊕
i=1

S → 0

such that NS ∈MS. We can proceed similarly for M ∈MS and N ∈M−S. Then we
have the following theorem summarizing the results of [57, Section 1]:

Theorem 2.2.3.

i) There exists an equivalence of categories given by the functor F : MS/S →
M−S, M 7→M−S.

ii) There exists an equivalence of categories given by the functor G :MS/S →M−S,
M 7→M−S.

iii) There exist equivalences Ψ : MS
−S → M−S

S and Φ : MS
S/S → M−S

−S induced by
composing the functors from above.

2.3 Coefficient quivers and tree modules

We introduce coefficient quivers and tree modules following [58]. Let M with dimM =
α be a representation of Q. A basis of M is a subset B of

⊕
q∈Q0

Mq such that

Bq := B ∩Mq

is a basis of Mq for every vertex q ∈ Q0. For every arrow ρ : p→ q, we may write Mρ

as a (αq × αp)-matrix Mρ,B with coefficients in k such that the rows and columns are
indexed by Bq and Bp respectively.

Definition 2.3.1. The coefficient quiver Γ(M,B) of a representation M with a fixed
basis B has vertex set B and arrows between vertices are defined by the following
condition: if (Mρ,B)b′,b 6= 0, there exists an arrow (ρ, b, b′) : b→ b′ where b ∈ Bp, b′ ∈ Bq
and ρ : p→ q.

A representation M is called a tree module if there exists a basis B for M such that
the corresponding coefficient quiver is a tree.

There exists a natural map Γ(M,B) → Q which we denote by FΓ(M,B). In Chapter
5, we assume the bases Bq for every q ∈ Q0 to be linearly ordered. In this case, we
call B ordered. In order to shorten notation, we mostly denote the arrows (ρ, b, b′)
by ρ. In the following considerations, all matrix representations of linear maps are
with respect to B. Let Mm,n(k) be the set of (m × n)-matrices with coefficients in
k. For A ∈ Mm,n(k), let Ai,j be the (i, j)-entry. We denote by E(s, t) ∈ Mm,n(k)
the matrix with E(s, t)i,j = δi,sδj,t. If M,N are representations of Q, we call a basis
{E(f1), . . . , E(fn)} of Ext(M,N) tree-shaped if, for all i = 1, . . . , n, there exists s, t
such that we have (fi)ρ = E(s, t) for exactly one ρ ∈ Q1 and (fi)ρ′ = 0 if ρ′ 6= ρ. Since
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we can clearly choose a tree-shaped basis C of
⊕

ρ∈Q1
Homk(Ms(ρ), Nt(ρ)), we can choose

a tree-shaped basis of Ext(M,N) consisting of elements of the form b+ Im(dM,N) with
b ∈ C, see also the proof of [72, Lemma 3.16].

For a quiver Q, we denote by Q̃ its universal covering quiver given by the vertex set

Q̃0 = {(q, w) | q ∈ Q0, w ∈ W (Q)}

and the arrow set

Q̃1 = {α(p,w) : (p, w)→ (q, wρ) | ρ : p→ q ∈ Q1, w ∈ W (Q)}.

Here W (Q) denotes the set of words of Q where we refer to [69, Section 3.4] for a
precise definition.

Remark 2.3.2. Since tree modules are already representations of Q̃, it is often conve-
nient to work with the universal covering quiver from the beginning when investigating
tree modules. Recall that, the other way around, every representation of Q̃ naturally
defines a representation of the original quiver in such a way that indecomposability is
preserved, see [25, Lemma 3.5].

A special feature of tree modules (or more generally of representations with a coef-
ficient quiver which is almost a tree) is that one can read off certain sub- and factor
representations. This gives the motivation to call a full subquiver Q′ of a quiver Q of
sink-type if we have t(ρ) ∈ Q′0 for all arrows ρ ∈ Q1 with s(ρ) ∈ Q′0. Analogously, we
use the term source-type. As far as coefficient quivers are concerned, every subquiver of
sink-type (resp. source-type) defines a subrepresentation (resp. factor representation)
in the natural way.

2.4 Moduli spaces of stable representations and their
cohomology

In the last three sections of this chapter, we assume that k = C. We choose a level
l : Q0 → N+ on the set of vertices and Θ ∈ ZQ0. Define two linear forms Θ, κ ∈
Hom(ZQ0,Z) by Θ(α) =

∑
q∈Q0

Θqαq, κ(α) =
∑

q∈Q0
l(q)αq and a slope function

µ : NQ0\{0} → Q by

µ(α) =
Θ(α)

κ(α)
.

For µ ∈ Q, we denote by ′Λ+
µ ⊂ NQ0 the set of dimension vectors of slope µ and

define Λ+
µ = ′Λ+

µ ∪ {0}. This is a subsemigroup of NQ0.
For a representation M of the quiver Q, we define µ(M) := µ(dimM). The repre-

sentation M is called (semi-)stable if the slope (weakly) decreases on proper non-zero
subrepresentations. For a fixed slope function as above, we denote by RΘ−sst

α (Q) the set
of semistable points and by RΘ−st

α (Q) the set of stable points in Rα(Q). Following [37],
there exist moduli spaces MΘ−st

α (Q) (resp. MΘ−sst
α (Q)) of stable (resp. semistable)
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representations parametrizing isomorphism classes of stable (resp. polystable) rep-
resentations. If Q is acyclic and MΘ−st

α (Q) is non-empty, it is a smooth irreducible
variety of dimension 1− 〈α, α〉. Moreover, it is projective if semistability and stability
coincide. Recall that this is the case if α is Θ-coprime, i.e. if we have µ(β) 6= µ(α) for
all dimension vectors 0 6= β < α. In the remaining part of this section, we assume that
k = C. The following result of Reineke enables us to compute the Poincaré polynomial
(in singular cohomology) of these moduli spaces:

Theorem 2.4.1 ([52, Corollary 6.8]). For Θ-coprime α, we have

∑
i

dimH i(MΘ−st
α (Q))qi/2 = (q − 1)

∑
α∗

(−1)s−1q−
∑
k≤l〈αl,αk〉

s∏
k=1

∏
i∈Q0

αki∏
j=1

(1− q−j)−1,

where the sum ranges over all decompositions α = α1 + . . . + αs of α such that all αk

are non-zero, and µ(α1 + . . .+ αk) > µ(α) for all k < s.

We also recall the notion of moduli spaces of framed representations called smooth
models in [21]. We choose complex vector spaces Vq of dimension nq where 0 6= n ∈
NQ0. Then there exists a moduli space MΘ−st

α,n (Q) which parametrizes equivalence
classes of tuples (M, f) consisting of a Θ-semistable representation M of dimension α
and a tuple f = (fq : Vq →Mq)q∈Q0 of linear maps such that for all subrepresentations
U ⊂ M with f(Vq) ⊂ Uq we have µ(U) < µ(M). Here we call (M, f) and (M ′, f ′)
equivalent if there exists an isomorphism ϕ : M →M ′ such that f ′ = ϕ ◦ f . If it is not
empty, MΘ−st

α,n (Q) is a smooth irreducible variety of dimension n · α − 〈α, α〉, see [21,
Proposition 3.6].

Later the generating function of the Euler characteristics

Q(n)
µ (x) =

∑
α∈Λ+

µ

χ(MΘ−st
α,n (Q))xα ∈ ZJΛ+

µ K

will be important for us. Moreover, for η ∈ (QQ0)∗, let Qη
µ(x) =

∏
q∈Q0

Q
(q)
µ (x)η(q).

Then it can be shown that Qn·
µ (x) = Q

(n)
µ (x), see [51, Theorem 3.4].

In the case when Q is acyclic, we can order the vertices {q1, . . . , qr} of Q in such a
way that k > l provided there exists an arrow qk → ql. Following [53], we define a
Poisson algebra B(Q) = QJxq | q ∈ Q0K with Poisson bracket {xα, xβ} = {α, β}xα+β.
For a vertex q ∈ Q0, we can define a Poisson automorphism Tq ∈ Aut(B(Q)) by
Tq(x

α) = xα(1 + xq)
{q,α}. Then we have:

Theorem 2.4.2 ([53, Theorem 2.1]). In Aut(B(Q)), there exists the following factor-
ization:

Tq1 ◦ . . . ◦ Tqr =
←∏
µ∈Q

Tµ,

where
Tµ(xα) = xα

∏
q∈Q0

Q(q)
µ (x){q,α}.
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Moreover, we have:

Lemma 2.4.3 ([53, Lemma 3.6]). The series QΘ−µ dim
µ equals 1.

Finally, the main result of [51] is important for us:

Theorem 2.4.4 ([51, Theorem 3.4]). The series Q
(n)
µ (x) is given by

Q(n)
µ (x) =

∏
α∈′Λ+

µ

Rα(x)χ(MΘ−st
α (Q))(n·α),

where the series Rα(x) ∈ ZJΛ+
µ K, α ∈ ′Λ+

µ , is uniquely determined by the system of
functional equations defined by

Rα(x) =

1− xα ·
∏
β∈′Λ+

µ

Rβ(x)−χ(MΘ−st
β (Q))〈α,β〉

−1

for all α ∈ ′Λ+
µ .

We obtain the double Q of a quiver Q by adding an arrow ρ∗ : q → p for every arrow
ρ : p→ q ∈ Q1. For λ ∈ CQ0, we consider the deformed preprojective algebra

Πλ(Q) = CQ/
∑
ρ∈Q1

[ρ, ρ∗]−
∑
q∈Q0

λqeq

and the closed subset Rep(Πλ(Q), α) of Rep(Q,α). For a fixed dimension vector α ∈
NQ0, we fix a linear form Θ : ZQ0 → Z. If α is coprime, we can choose Θ such that
Θ(α) = 0 and Θ(β) 6= 0 for all dimension vectors 0 < β < α. Also with this setup,
we obtain moduli spaces M0,Θ−st

α (Q) of stable representations of Π0(Q) of dimension α
where we set κ = dim.

For a dimension vector α, we denote by aα(q) the number of absolutely indecom-
posable representations of Q of dimension α over Fq. It was proved by Kac in [36]
that aα(q) is a polynomial in q with integral coefficients. As conjectured by Kac, it
was proved in [15] for coprime dimension vectors and in [31] in full generality that aα
actually has positive coefficients. If α is coprime, by [15], we have

aα(q) =
d∑
i=0

dimH2d−2i(M0,Θ−st
α (Q),C)qi

where we consider singular cohomology and where d = 1
2

dimM0,Θ−st
α (Q).
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2.5 The tropical vertex

We briefly review the definition of the tropical vertex group following [29, Section
0]. It is insofar interesting as it reveals a connection between two seemingly unrelated
invariants which is the Euler characteristic of quiver moduli spaces and Gromov-Witten
invariants counting rational curves on weighted projective planes.

We fix non-negative integers l1, l2 ≥ 1 and define R as the formal power series ring
R = QJs1, . . . , sl1 , t1, . . . , tl2K with maximal ideal m. Let B be the R-algebra

B = Q[x±1, y±1]Js1, . . . , sl1 , t1, . . . , tl2K = Q[x±1, y±1]⊗̂R

(i.e. a suitable completion of the tensor product). For (d, e) ∈ Z2 and a series

f ∈ 1 + xdyeQ[xdye]⊗̂m,

we consider the R-linear automorphism of B defined by

θ(d,e),f :

{
x 7→ xf−e

y 7→ yfd.

Note that these automorphisms respect the symplectic form dx
x
∧ dy

y
.

Definition 2.5.1. The tropical vertex group VR ⊂ AutR(B) is defined as the comple-
tion with respect to m of the subgroup of AutR(B) generated by all elements θ(d,e),f as
above.

We recall that, by [40] (see also [29, Section 1.3]), there exists a unique infinite
ordered product factorization in VR which is of the form

θ(1,0),
∏
k(1+skx)θ(0,1),

∏
l(1+tly) =

∏
e/d decreasing

θ(d,e),f(d,e)
,

the product ranging over all coprime pairs (d, e) ∈ N2. One of the main issues of [29]
is to describe the series f(d,e).

We introduce Gromov-Witten invariants on projective planes following [29, Section
0.4]. Following the main result of [29], we will see later that the series f(d,e) can be
expressed in terms of these Gromov-Witten invariants. Denote by Σ ⊂ Z2 the fan
with rays generated by −(1, 0),−(0, 1) and (d, e). Let Xd,e be the toric surface over C
associated to Σ with corresponding toric divisors D1, D2, Dout. It is isomorphic to the
weighted projective plane (C3 \ {0})/C∗ for the action t(x, y, z) = (tdx, tey, tz). Let
Xo
d,e ⊂ Xd,e be the open surface obtained by removing the torus fixed points and let

Do
1, D

o
2, D

o
out be the restrictions of the toric divisors to Xo

d,e.
We consider pairs (P1,P2) of ordered partitions of length l1 and l2 respectively which

we write as
P1 = p1,1 + . . .+ p1,l1 , P2 = p2,1 + . . .+ p2,l2
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where we allow parts to be zero. Assume that |P1| =
∑l1

l=1 p1,l = kd and |P2| =∑l2
l=1 p2,l = ke for some k ≥ 1. Let ν : Xd,e[(P1,P2)] → Xd,e be the blow-up of Xd,e

along l1 (resp. l2) points of Do
1 (resp. Do

2) and define Xo
d,e[(P1,P2)] = ν−1(Xo

d,e). Let
βk ∈ H2(Xd,e,Z) be the unique cohomology class with intersection numbers

β1 ·D1 = kd, β2 ·D2 = ke, βk ·Dout = k.

Define a cohomology class βk[(P1,P2)] ∈ H2(Xd,e[(P1,P2)],Z) by

βk[(P1,P2)] = ν∗(βk)−
l1∑
j=1

p1,j[E1,k]−
l2∑
l=1

p2,l[E2,l],

where Ei,j for j = 1, . . . , li denotes the j-th exceptional divisor over Do
i for i = 1, 2.

The moduli space M(Xo
d,e[(P1,P2)]/Do

out) of genus 0 maps to Xo
d,e[(P1,P2)] in class

βk[(P1,P2)] with full contact order k at an unspecified point of Do
out is proper and

of virtual dimension 0. This means that a corresponding Gromov-Witten invariant
N(d,e)[(P1,P2)] ∈ Q is well-defined, see [29, Section 4]. We refer to [29, Section 6.4] for
examples.

Theorem 2.5.2 ([29, Theorem 5.4]). For all coprime (d, e), we have

log f(d,e) =
∑
k≥1

∑
|P1|=kd,
|P2|=ke

kN(d,e)[(P1,P2)]sP1tP2(xdye)k.

2.6 Quiver Grassmannians and F -polynomials

For a representation M with α = dimM , the quiver Grassmannian Gre(M) is the set
of subrepresentations U of M with dimU = e. It is a closed subvariety of the product∏

q∈Q0
Greq(αq) of the usual Grassmannians Greq(αq).

Let Q[x±1
q | q ∈ Q0] be the Q-algebra of Laurent polynomials in the variables xq.

Denoting by χ the Euler characteristic in singular cohomology, as in [5], we set

XM =
∑
e∈NQ0

χ(Gre(M))
∏
q∈Q0

x−〈e, sq〉−〈sq , α−e〉q .

With Q we can associate a cluster algebra A(Q), which were introduced by [22], and
its cluster category CQ introduced in [4].

Theorem 2.6.1 ([6, Theorem 4]). The correspondence M 7→ XM provides a bijection
between the set of indecomposable objects of CQ without self-extensions and the set of
cluster variables of A(Q).

Actually, this bijection restricts to a bijection between exceptional representations
of Q and cluster variables of A(Q) excluding the initial variables. In [7, Theorem 2],
which generalizes [5, Proposition 3.10], the following multiplication formula is shown:
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Theorem 2.6.2. Let M and N be two indecomposable objects of CQ such that we have
dim ExtCQ(M,N) = 1. Then we have

XMXN = XB +X ′B

where B and B′ are up to isomorphism the unique middle terms of the non-split trian-
gles

N → B →M → SN, M → B′ → N → SM.

Note that we have

dim ExtCQ(M,N) = dim Ext(M,N) + dim Ext(N,M),

see [4]. Moreover, if Ext(M,N) = k, the middle term B is the one induced by the
non-splitting sequence in the module category. But since Ext(N,M) = 0 in this case,
using the terminology of [6], the middle term B′ is just an object of CQ. But it actually
has a corresponding representation in the module category which can be determined
explicitly.

In this work, we are interested in the generating function FM of the Euler characteris-
tics of the corresponding quiver Grassmannians of M , which we also call F -polynomial
due to its name in the theory of cluster algebras. It is defined by

FM(x) =
∑
e∈NQ0

χ(Gre(X))xe.

It is closely related to the cluster variables XM . Indeed, setting

α′q =
∑
p∈Q0

a(q, p)αp − αq

and considering the variable transformation xq 7→ x′q defined by

x′q =
∏
p∈Q0

xa(q,p)−a(p,q)
p ,

it is straightforward to check that we have

XM = xα
′
FM(x′).
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3 Indecomposable representations and
tree modules

As already mentioned in the introduction, a major goal in the representation theory
of quivers is the classification of indecomposable representations and of the homo-
morphisms between them. This problem is far from being solved in full generality.
But there are plenty of tuples of quivers and roots for which this problem can be
tackled. In this chapter, we consider approaches yielding a recursive construction of
indecomposable representations coming along with certain decompositions of a fixed
root. For roots which allow such a decomposition, it is mostly possible to construct
sets of isomorphism classes of indecomposable representations which can be described
by as many parameters as predicted by Kac’s Theorem. In all cases, tree modules can
be constructed by imposing conditions on the glued representations and on the bases
of the corresponding groups of extensions.

Tree modules are therefore very interesting as there is hope that they play an impor-
tant role as far as the question of normal forms is concerned (under the hypothesis such
a normal form exists for a fixed root). The idea is that they can be seen as the skeleton
for it. The most famous example is probably the case of the quiver with one vertex
and one loop where the nilpotent matrices consisting of only one Jordan block are
exactly the indecomposable tree modules. As is known, the remaining indecomposable
representations can be obtained by adding a multiple of the identity matrix.

In the first section of this chapter, we introduce a functor which builds the basis
for the recursive construction investigated later on where we follow the presentation of
[71]. We recall the generalizations of Schofield induction and Ringel’s reflection functor
established there. But we also obtain a new result showing that we can construct a
(1 − 〈α, α〉)-parameter family of indecomposable representations with the introduced
methods and for every imaginary Schur root α. Finally, we consider several conditions
for decompositions of roots which are sufficient to construct indecomposable represen-
tations.

In the second section, we concentrate on tree modules. We actually deal with three
basic questions concerning them. The first was stated by Ringel in [59, Problem 9]:
Does there exist an indecomposable tree module for every wild hereditary quiver and
every root? In particular, Ringel conjectured that there should be more than one
isomorphism class for imaginary roots. We use the language of the first section in order
to re-obtain the main result of [68] which shows that there exists an indecomposable
tree module for every imaginary Schur root. But we also concentrate on a second
question which is the one for the number of indecomposable tree modules and which
was somewhat neglected in research before. In the case of imaginary Schur roots, it
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turns out that it grows exponentially with the dimension vector. In the case of the
generalized Kronecker quivers, this has a consequence for the Kac polynomial at one
as it can be shown that it also grows exponentially.

If there is a positive answer to the first question, a natural third one is how the
existence of tree modules can be used to construct families of indecomposable rep-
resentations. Actually, investigation in this direction is in early stages and was only
carried out in special cases.

In the third section, we follow [23] and focus on Ringel’s reflection functor in the case
of quivers with three vertices. For non-Schurian roots, the canonical decomposition sug-
gests that there exist indecomposable representations which can be constructed in this
way. We tackle this problem geometrically in terms of subvarieties of Grassmannians.
More precisely, we investigate a subvariety whose points correspond to representations
which can be constructed by Ringel’s functor. Finally, we combine this construction
with the recursive construction of the first section.

3.1 Recursive construction of indecomposable
representations

A naive approach to construct an indecomposable (tree) module is to write down a
coefficient quiver (which is a tree) and to determine the endomorphism ring. This is
only promising in cases of very small roots. A more encouraging approach is a recur-
sive construction which means to find a decomposition of a fixed root α into smaller
roots α1, . . . , αn in such a way that every tuple of representations M ∈

∏n
i=1 Repαi(Q)

gives rise to representations of dimension α when glueing them. In order to make this
approach successful, it is necessary to impose conditions on the decomposition. We
investigate several conditions which can be used to construct indecomposable repre-
sentations. Under some extra conditions, it turns out that the resulting representations
are even tree modules.

3.1.1 A functor between categories of quiver representations

Following [71, Section 2.2], it is convenient to describe this glueing in terms of a faith-
ful functor between categories of quiver representations. Actually, we can define the
functor for every fixed sequence of representations of a fixed quiver Q. It turns out
that this functor does not have any nice properties in general as it does not preserve
indecomposability or homomorphism spaces. Nevertheless, if the fixed sequence of rep-
resentations does satisfy certain extra conditions, it has these nice properties or it at
least preserves indecomposability. Thus, the main aim is to work out these conditions.

Let Q be a quiver without oriented cycles and fix a sequence M = (M1, . . . ,Mr) of
representations of Q. Then we consider the quiver Q(M) which has vertices Q(M)0 =
{m1, . . . ,mr} and nij := dim Ext(Mi,Mj) arrows from mi to mj if i 6= j and no loops.
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For each pair i, j with i 6= j, we also fix a basis

Bij = {χij1 , . . . , χijnij} ⊆
⊕
ρ∈Q1

Homk((Mi)s(ρ), (Mj)t(ρ))

such that the corresponding residue classes are a basis of Ext(Mi,Mj). Since the arrows
of Q(M) are in correspondence with these basis elements, we also denote the arrows
of Q(M) by χijl . Finally, for a representation X of Q(M) define X̃i,q := (Mi)q ⊗k Xmi

where q ∈ Q0 and i ∈ {1, . . . , r}.
This gives rise to a functor FM : Rep(Q(M))→ Rep(Q): we define a representation

FMX of Q by the vector spaces

(FMX)q =
r⊕
i=1

X̃i,q for all q ∈ Q0

and for ρ : p→ q we define linear maps (FMX)ρ =
⊕r

i=1 X̃i,p →
⊕r

i=1 X̃i,q by

((FMX)ρ)i,i = (Mi)ρ ⊗k idXmi : X̃i,p → X̃i,q

and

((FMX)ρ)i,j =

nji∑
l=1

(χjil )ρ ⊗k Xχjil
: X̃j,p → X̃i,q

for i 6= j.
Let f = (fmi)i=1,...,r : X → X ′ be a morphism. Then we define FMf : FMX → FMX

′

by

((FMf)q)i,j =

{
id(Mj)q ⊗k fmj : X̃j,q → X̃ ′i,q if i = j

0 : X̃j,q → X̃ ′i,q if i 6= j
.

In abuse of notation, we will often skip the M in FM . Note that F indeed defines a
functor because, for a morphism f : X → X ′, we have that

((FX ′)ρ ◦ (Ff)p)i,j =
r∑
l=1

((FX ′)ρ)i,l ◦ ((Ff)p)l,j = ((FX ′)ρ)i,j ◦ ((Ff)p)j,j

=

(
nji∑
l=1

(χjil )ρ ⊗k X ′χjil

)
◦ id(Mj)p ⊗k fmj

= id(Mi)q ⊗k fmi ◦

(
nji∑
l=1

(χjil )ρ ⊗k Xχjil

)
= ((Ff)q ◦ (FX)ρ)i,j

for i 6= j. Since this identity is also true if i = j, it follows that (FX ′)ρ ◦ (Ff)p =
(Ff)q ◦ (FX)ρ for all ρ : p → q. In summary, every vertex of Q(M) corresponds to
a representation of M and every arrow of Q(M) corresponds to a basis element of
the group of extensions of the representations corresponding to the tail and the head
of the arrow. The representation of Q(M) then describes how to glue the original
representations. We should point out that Q(M) is allowed to have oriented cycles.

22



Remark 3.1.1. In order to construct tree modules, it is necessary that all representa-
tions Mi are tree modules and, moreover, to choose tree-shaped Ext-bases as defined in
Section 2.3. In this case, every tree module of Q(M) gives rise to a tree module of Q.
The construction can be made very explicit in these cases because glueing translates
to drawing extra arrows between the corresponding coefficient quivers of the different
tree modules.

3.1.2 Schofield induction and generalizations

The most encouraging instance of this functor so far is a generalization of Schofield
induction [62]. As a starting point, we fix a sequence of Schur representations M =
(M1, . . . ,Mr) with Hom(Mi,Mj) = 0 for i 6= j. In [71], this is called an elementary
sequence (of Schur representations). Keeping in mind the notion of general represen-
tations introduced by Schofield, we also speak about elementary sequences of Schur
roots.

In comparison, Schofield induction deals with exceptional sequences which can be
without loss of generality assumed to be reduced, which means that they satisfy
Hom(Mi,Mj) = 0 for i > j. Thus, the main generalization is that we allow exten-
sions in both directions and, moreover, Schur representations rather than exceptional
ones. The first main result of [71] is the following:

Theorem 3.1.2 ([71, Theorem 3.3]). Let M = (M1, . . . ,Mr) be an elementary sequence
of Schur representations. Then FM is a fully faithful embedding. In particular, FMX
is indecomposable if and only if X is indecomposable.

This immediately raises the following question:

Question 3.1.3. For which roots α of a quiver Q does there exist a non-trivial decom-
position into Schur roots α =

⊕n
i=1 α

n
i such that hom(αi, αj) = 0 for i 6= j?

By non-trivial, we mean that the decomposition neither consists of the root itself
nor consists only of simple roots. There are plenty of examples where this is the case.
But unfortunately, a structured approach which tries to answer this question in full
generality is missing. Actually, it would be interesting to tackle this problem because
the answer to it would be very helpful when dealing with the question of the existence
of tree modules, but also for the construction of indecomposable representations in
general.

Even for non-Schurian roots of the quiver with three vertices, it is not clear how to
approach this problem. In comparison to the canonical decomposition of a root, such
a decomposition is also not unique as the following example shows.

Example 3.1.4. Consider the quiver

q1

q2

77 EE

q3

``

kkss
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and the root α = (1, 4, 1). Then it admits the following decompositions into exceptional
roots

α = (0, 1, 0)4 ⊕ (1, 0, 1), α = (1, 2, 0)⊕ (0, 2, 1)

yielding quivers (and dimension vectors)

4 ** $$ 1jjdd 1 ** 1jj

Thus, the functor can be used to construct representations of dimensions (0, 1, 0)m+
(1, 0, 1)n and (1, 2, 0)m + (0, 2, 1)n.

Let us investigate two more cases in which such a decomposition exists.

Generalized Kronecker quivers

We denote the generalized Kronecker quivers by K(m). Moreover, we denote their
vertices by K(m)0 = {q0, q1} and their arrows by K(m)1 = {ρi : q0 → q1 | i =
1, . . . ,m}. Let (d, e) ∈ NK(m)0 be a root.

Following the considerations of [23, Section 2.3] which are based on [69, Section 4],
every imaginary Schur root decomposes into roots (d, e) = (ds, es) + l(d′, e′) such that
hom((d′, e′), (ds + kd′, es + ke′)) = hom((ds + kd′, es + ke′), (d′, e′)) = 0 for all k ≥ 0.
Thus, in the respective representation spaces exist open subsets of Schur representations
such that we have Hom(M,N) = Hom(N,M) = 0 for every pair (M,N) of dimensions
(d′, e′) and (ds, es) + k(d′, e′) respectively such that M and N are contained in these
open subsets. By Theorem 3.1.2, this ensures that F(M,N) : Rep(Q(M,N))→ Rep(Q)
is a fully faithful embedding. In particular, every indecomposable representation of
dimension (a, b) of Q(M,N) gives rise to an indecomposable representation of K(m)
of dimension a(d′, e′) + b((ds, es) + k(d′, e′)).

We can without loss of generality assume that k = 0. In the special case (a, b) =
(1, 1), we can construct a (1−〈(d, e), (d, e)〉)-parameter family of isomorphism classes of
indecomposable representations with this method. This is actually true because (d′, e′)
and (ds, es) are Schur roots satisfying hom((d′, e′), (ds, es)) = hom((ds, es), (d

′, e′)) =
0. Thus, there exist open subsets U1 of R(d′,e′)(K(m)) of dimension md′e′ and U2 of
R(ds,es)(K(m)) of dimension mdses respectively such that Hom(M,N) = Hom(N,M) =
0 for all pairs (M,N) ∈ U1×U2. Moreover, for every such pair there exist open subsets
V1 of

⊕m
i=1 Hom(Mq0 , Nq1) and V2 of

⊕m
i=1 Hom(Nq0 ,Mq1) such that every pair (e1, e2) ∈

V1 × V2 gives rise to a pair of short exact sequences (e1, e2) ∈ Ext(M,N)×Ext(N,M)
and thus to a representation X of Q(M,N) such that F(M,N)X is Schurian. This is
because (1, 1) is a Schur root of Q(M,N). Thus, without taking care of isomorphisms
between the constructed representations, we have constructed a mde-parameter family
of Schurian (!) representations contained in R(d,e)(K(m)). Indeed, we have mde =
md′e′ + mdses + md′es + mdse

′. In turn, this yields a (1 − 〈(d, e), (d, e)〉)-parameter
family of isomorphism classes of Schur representations of dimension (d, e). Note that
we have

1−〈(d, e), (d, e)〉 = 1−〈(ds, es), (ds, es)〉+1−〈(d′, e′), (d′, e′)〉+(1−〈(1, 1), (1, 1)〉Q(M).
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Let m ≥ 3. Then the easiest example is the case of the dimension vectors (ds, es) =
(1, 2) and (d′, e′) = (1, 1). Then we have

ext((1, 1), (1, 2)) = 2m− 3, ext((1, 2), (1, 1)) = m− 3.

All indecomposable tree modules are of the form

•
M(1,2) = •

mi1
77

mi2

((

M(1,1) = •
mj // •

•

If the three arrows mi1 ,mi2 and mj correspond to three different arrows of K(m), it is
ensured that the homomorphism spaces vanish. In this case, a tree-shaped Ext-basis
of Ext(M(1,2),M(1,1)) is induced by the arrows K(m)1\{mi1 ,mi2 ,mj}. A tree-shaped
basis of Ext(M(1,1),M(1,2)) is given by the maps connecting the source on the right hand
side to one of the two sinks on the left hand side via an arrow K(m)\{mj} additionally
excluding one of the maps corresponding to mik .

Extended Dynkin quivers

The case of Ãn is very similar to the case of the quiver K(2). In this case, the real
roots and the corresponding representations can be explicitly determined in terms of
coefficient quivers. For instance, the real root representation of dimension (2, 3) is
given by

•
ρ1

||
ρ2

""

•
ρ1

||
ρ2

""• • •
All other real root representations of dimension (d, d+ 1) are of the same shape, those
of dimension (d + 1, d) are obtained by turning around all arrows in the coefficient
quiver. The classification of the indecomposable representations of the imaginary roots
(d, d) can be obtained analogously to the classification of endomorphisms of kd or of
indecomposable representations of the one-loop quiver.

Let us concentrate on D̃n where the unique imaginary Schur root is denoted by
δ. For the defect of preprojective roots α, we have δ(α) := 〈δ, α〉 ∈ {−1,−2}. For
simplicity, we assume that n = 4 and that D̃n is in subspace orientation with vertices
q0, . . . , q4. By slight modifications, one can straightforwardly generalize the following
observations to general n. Up to permutation, the roots with δ(α) = −1 are of the
form α = (2n + 1, n + 1, n, n, n) and those with δ(α) = −2 are (2n + 1, n, n, n, n).
Thus, roots with δ(α) = −1 admit a decomposition of the form α = βn+1 + γn where
β = (1, 1, 0, 0, 0), γ = (1, 0, 1, 1, 1), ext(γ, β) = 2 and ext(β, γ) = 0. Furthermore, it is
easy to check that the roots with δ(α) = −2 admit a decomposition into two smaller
preprojective roots β and τ−1β because the corresponding representation appears as
the single middle term of the respective Auslander-Reiten sequence. In particular, we
have τ−1β ∈ β⊥ and ext(τ−1β, β) = 1.
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Also the indecomposable representations in the tubes can be obtained using the
functor. For two quasi-simple representations M and N from one exceptional tube,
say of dimensions (1, 1, 1, 0, 0) and (1, 0, 0, 1, 1), we have Ext(M,N) = Ext(N,M) = k
and Hom(M,N) = Hom(N,M) = 0. It is easy to see that every indecomposable
representation in the tube containing M and N can be obtained by glueing M and
N . But it is also straightforward to check that we obtain all representations of the
homogeneous tubes by glueing two quasi-simples of this shape.

Thus, since the preinjective and the preprojective representations are dual to each
other, it turns out that representations of D̃n are easy to describe using this method.
Moreover, this strategy is indeed very useful when constructing explicit coefficient
quivers as needed in Chapter 5.

Even if the case of quivers of extended Dynkin type Ẽn for n = 6, 7, 8 was not studied
in detail, it seems likely that every root admits a decomposition into exceptional roots
such that the corresponding sequence of roots is either elementary or even reduced.

Imaginary Schur roots

The case of imaginary Schur roots is studied in [68] using a slightly different language.
But also the construction introduced there fits into this setup. Actually, the main
aim of [68] was to construct indecomposable tree modules for every imaginary Schur
root. A particular investigation shows that we can actually construct a (1 − 〈α, α〉)-
parameter family of isomorphism classes of indecomposable representations using this
method. This is insofar very interesting as this is, by Kac’s Theorem [35, Theorem
C], the number of parameters describing the isomorphism classes of indecomposable
representations.

The key observation is that there is a positive answer to Question 3.1.3 in the case of
imaginary Schur roots. This is actually the case because the canonical decomposition
of Schur roots only consists of the root itself. More precisely, based on the algorithm
of Derksen and Weyman established in [18, Section 4], we obtain the following:

Proposition 3.1.5 ([68, Proposition 3.15]). Let α be a Schur root. Then at least one
the following cases holds:

i) There exist a real Schur root β and a real or isotropic Schur root γ and d, e ∈ N+

such that α = βd + γe. Moreover, we have β ∈ γ⊥ and hom(β, γ) = 0 or β ∈⊥γ
and hom(γ, β) = 0 and (d, e) is a root of K(ext(β, γ)) or K(ext(γ, β)).

ii) There exist a real Schur root β, an imaginary Schur root γ and t ≤ ext(β, γ) +
ext(γ, β) such that α = β + tγ. Moreover, we have β ∈ γ⊥ and hom(β, γ) = 0 or
β ∈⊥γ and hom(γ, β) = 0.

iii) There exist two imaginary Schur roots β and γ such that α = β + γ. Moreover,
we have γ ∈ β⊥ and hom(γ, β) = 0.

In the next section, we will use this proposition to construct indecomposable tree
modules for every Schur root. While doing the respective considerations to construct
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the mentioned (1 − 〈α, α〉)-parameter family of indecomposable representations, we
should keep in mind the snake lemma. More detailed, we should keep in mind the
following lemma induced by it:

Lemma 3.1.6. Assume that 0→ L→M → N → 0 and 0→ L′ →M ′ → N ′ → 0 are
two short exact sequences with dimL = dimL′ and dimN = dimN ′. Then M and M ′

are isomorphic if and only if both L and L′, and N and N ′ are isomorphic.

Now we are ready to prove the following:

Theorem 3.1.7. For every Schur root α, there exists a (1− 〈α, α〉)-parameter family
Iα of isomorphism classes of indecomposable representations of dimension α and a
non-trivial decomposition α = βd + γe into Schur roots such that

� γ ∈ β⊥ and hom(γ, β) = 0;

� (d, e) is a root of K(ext(γ, β));

� For every representation M ∈ Iα, there exist two Schur representations L ∈
Rβ(Q), N ∈ Rγ(Q) ∩ L⊥ and a representation X ∈ R(d,e)(Q(L,N)) such that
M ∼= F(L,N)X.

Proof. First note that we have Q(L,N) = K(ext(γ, β)). We consider the three different
cases of Proposition 3.1.5. In the first case we have

〈α, α〉 = 〈βd + γe, βd + γe〉 = d2 + e2 − ext(γ, β)de = 〈(d, e), (d, e)〉

if β and γ are real. Thereby, we have to keep in mind that the Euler form depends
on the quiver. Since F is a fully faithful embedding in this case, we can construct a
(1− 〈(d, e), (d, e)〉)-parameter family of indecomposable representations. If one of the
roots β and γ is an isotropic Schur root, we can combine these observations with those
we make in the following.

In the case α = β + γl decomposes into an imaginary Schur root and a multiple of
an exceptional root, every tuple consisting of a Schur representation of K(ext(γ, β)) of
dimension (1, l) and a Schur representation L ∈ ⊥γ gives rise to a Schur representation
of dimension α. Since there exists a (1 − 〈β, β〉)-parameter family of Schur represen-
tations in ⊥γ, keeping in mind Lemma 3.1.6, we can construct a family which can be
described by

1− 〈β, β〉+ 1− 〈(1, l), (1, l)〉 = 1− 〈α, α〉
parameters with these methods.

In the case α decomposes into two imaginary Schur roots of dimension β and γ,
we have to keep in mind that γ ∈ β⊥ means that there exist open subsets Iβ and Iγ
of Schur representations in Rβ(Q) and Rγ(Q) respectively such that hom(γ, β) = 0.
Thus, every triple consisting of an indecomposable representation of K(ext(γ, β)) and
Schur representations contained in Iβ and Iγ gives rise to a Schur representation of
dimension α. Therefore, the claim follows analogously to the last one because

〈α, α〉 = 〈β, β〉+ 〈γ, γ〉+ 〈γ, β〉

and ext(γ, β) = −〈γ, β〉.
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3.1.3 Ringel’s reflection functor and generalizations

We can also translate the first two instances of Ringel’s reflection functor into the
introduced language. Following [71, Section 3.2], we fix a sequence M = (M1, . . . ,Mr)
of indecomposable representations such that the following conditions are satisfied:

i) The representations Mj, j ≥ 2, are Schurian;

ii) We have Hom(Mi,Mj) = Ext(Mi,Mj) = 0 for i < j;

iii) If i, j 6= 1, we have Hom(Mj,Mi) = 0 for i < j.

This means that we allow homomorphisms Mj → M1 for j > 1. In comparison to
the last section, the second condition assures that Q(M) has no oriented cycles. For a
representation X of Q(M), we denote by X2 the corresponding representation of the
full subquiver Q(M)\{m1}. Moreover, we denote by SiX the semisimple representation

(SiX)mj =

{
Xmi if j = i
0 otherwise

.

Then we have FSiX = M
dimXmi
i . Let

Θji
X,X′ :

nji⊕
l=1

Homk(SjX,SiX
′) ∼= Ext(M

dimXmj
j ,M

dimX′mi
i )

denote the natural isomorphisms induced by (φl)l 7→ (
∑nji

l=1(χjil )ρ⊗k φl)ρ∈Q1 = F ((φl)l)
if i 6= j. It is straightforward to check that Θji is functorial in X and X ′. Define
Θ1
X := (Θi,1

X,X)i=2,...,r. The following statement is the second main result of [71]:

Theorem 3.1.8 ([71, Theorem 3.8]). Let M be a sequence of indecomposable repre-
sentations satisfying conditions i)-iii). If X is a representation of Q(M) such that
dimXm1 = 1 and such that Θ1

X induces an isomorphism

r⊕
i=2

Ext(M
dimXmi
i ,M1) ∼= Ext(FX2,M1),

we have that FMX is indecomposable whenever X is indecomposable.

The rather technical condition that Θ1
X induces the mentioned isomorphism is very

important. This is because otherwise we could have

dim Ext(FX2,M1) < dim Ext(
r⊕
i=2

M
dimXmi
i ,M1)

which means that FX might be decomposable. This condition is for instance satisfied
if Hom(Mi,M1) = 0 for all i = 2, . . . , r or if we have a decomposition of {2, . . . , r} into
disjoint sets I1 and I2 such that Hom(Mi,M1) = 0 for i ∈ I2 and Ext(Mi,Mj) = 0 for
i ∈ I1 or j ∈ I1, i 6= j and i, j ≥ 2. This is clearly satisfied if r = 2 or if Ext(Mi,Mj) = 0
for i 6= j and i, j ≥ 2.
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Remark 3.1.9. Note that there is a dual statement when considering sequences M =
(M1, . . . ,Mr) of indecomposable representations satisfying the following conditions:

i) The representations Mj, j ≤ r − 1, are Schurian;

ii) We have Hom(Mi,Mj) = Ext(Mi,Mj) = 0 for i < j;

iii) If i, j 6= r, we have Hom(Mj,Mi) = 0 for i < j.

Thus, we allow homomorphisms Mr →Mi for i ∈ {1, . . . , r−1}. The proof in this case
is obtained by a slight modification of the arguments or when considering the opposite
quiver obtained when turning around all arrows.

Since this construction includes the first two instances of Ringel’s reflection functor,
this also serves as our first example. For a fixed representation S, every representation
M ∈ M−S (resp. M ∈ M−S) gives rise to a sequence of representations (M,S)
(resp. (S,M)) satisfying the three required conditions. Thus, every representation
X of K(dim Ext(S,M)) of dimension (1, l) gives rise to a representation FX of the
original quiver of dimension dimM + l · dimS. In this special case, the representation
FX can be obtained as the middle term of a short exact sequence

0→M → FX → Sl → 0.

If l = dim Ext(S,M) and if X is the respective real root representation, using the
notation of Section 2.2, we have FX ∼= MS. If l ≤ dim Ext(S,M), we obtain another
proof of the following result:

Lemma 3.1.10 ([68, Lemma 3.12]). Let M and S be indecomposable representations
such that Ext(S, S) = 0. Let e1, . . . , en be a basis of Ext(S,M). Consider the exact
sequence induced by this basis:

0→M →MS →
n⊕
i=1

S → 0.

Moreover, consider

0→M → NS →
l⊕

i=1

S → 0

induced by e1, . . . , el. If MS is indecomposable, then NS is indecomposable.
The dual statement of this lemma also holds.

In terms of the quiver K(dim Ext(S,M)), the representation NS just corresponds to
an indecomposable factor representation of dimension (1, l) of the real root represen-
tation.

Also the combination of both, the functor Φ−1 : M−S
−S → MS

S/S, can be obtained
in this way. To see this, let M be a representation of Q and S an exceptional
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representation such that Hom(M,S) = Hom(S,M) = 0, dim Ext(M,S) = n1 and
dim Ext(S,M) = n2. Then every indecomposable representation of

n2

ρ1

))

ρn2

33
... 1

with dimension vector as indicated yields an indecomposable representation of dimen-
sion dimM + n2 · dimS. In particular, we can construct the indecomposable represen-
tation obtained in Theorem 2.2.3 in this way, i.e. the middle term of the short exact
sequence

0→M →MS →
n2⊕
i=1

S → 0.

Now we have Ext(S,MS) = Hom(S,MS) = 0 and since we have Hom(M,S) ∼=
Ext(MS, S), every indecomposable representation of the quiver

1

ρ1

))

ρn1

33
... n1

gives rise to an indecomposable representation of Q of dimension dimMS + n1 · dimS.
In particular, we can construct the representation MS

S from Theorem 2.2.3.

3.2 Existence and number of indecomposable tree
modules

In this section, we concentrate on indecomposable tree modules. To do so, we consider
the methods introduced in the last section in this special case. More precisely, we
fix a sequence M = (M1, . . . ,Mr) of tree modules of a fixed quiver Q with coefficient
quivers ΓMi

. Moreover, for every pair (Mi,Mj) with i 6= j, we fix a tree-shaped basis
of Ext(Mi,Mj). This means that we assume that every basis element corresponds to a
triple (p, q, ρ) where p ∈ (ΓMi

)0, q ∈ (ΓMj
)0 and ρ ∈ Q1. Then the following statement

is straightforward:

Lemma 3.2.1. If X ∈ Rep(Q(M)) is a tree module, FMX is also a tree module.

This suggests to start a recursion on quivers which can be used to answer the question
of the existence of tree modules. Even if not all roots are covered by it, a rather huge
class can. We use the following two results in order to get the recursion started:

Theorem 3.2.2 ([58],[67, Theorem 3.9]). We have:

i) Every exceptional representation is a tree module.

ii) For every root of the Kronecker quiver, there exists an indecomposable tree mod-
ule.
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Thus, additionally using Proposition 3.1.5 and the considerations from Section 3.1.1,
we obtain the main result of [68]:

Theorem 3.2.3 ([68, Theorem 3.18]). Let α be an imaginary Schur root. Then there
exists more than one isomorphism class of indecomposable tree modules of dimension
α.

It is worth mentioning that the introduced methods give a very explicit recursive
construction of tree modules. In particular, having constructed the exceptional tree
modules of the generalized Kronecker quivers explicitly, they can be used to construct
the exceptional representations of arbitrary quivers.

It is natural to ask for the number of indecomposable tree modules. In the case of
imaginary Schur roots, one can show that the number of indecomposable tree modules
grows exponentially with the dimension vector using the introduced methods. This is
our next topic.

3.2.1 Exponential growth of the number of tree modules

In this section, we show that the number of indecomposable tree modules for imaginary
Schur roots grows exponentially with the dimension vector. This can be used to show
that the Kac polynomial at one grows exponentially in the case of the Kronecker quiver.

Recall that a tree module of Q is already a representation of the universal covering
quiver Q̃ of Q. Following [60], we call a tree module of Q cover-thin if its dimension
vector is of type one as a representation of Q̃.

Lemma 3.2.4. Every indecomposable tree module M which is cover-thin is exceptional
as a representation of the universal covering quiver. In particular, we have that σqM
is also an indecomposable tree module for any sink (resp. source) q ∈ Q0.

Proof. The first part follows because M is Schurian and because of 〈dimM, dimM〉 =
dimk Hom(M,M) − dimk Ext(M,M) = 1. In particular, σqM is also exceptional as a
representation of the universal covering quiver and thus a tree module by the second
part of Theorem 3.2.2.

Let Q = K(m). Note that, for roots (d, e) with d ≤ e, there only exist cover-thin
tree modules if e ≤ (m − 1)d + 1. The next aim is to count them. This can be done
exactly as, up to translation, the indecomposable cover-thin tree modules are exactly
the connected subtrees of Q̃ with d sources and e sinks. Or equivalently, they can be
described as certain colored spanning trees of the full bipartite graph with d sources
and e sinks. Recall that spanning trees are by definition connected. We make use of
the multivariate Lagrangian Inversion formula, see [26] for a combinatorial proof and
a collection of references:

Theorem 3.2.5. Let h, g1, . . . , gd ∈ kJx1, . . . , xdK such that every gi has a non-zero
constant term. Then there exist unique formal power series fi ∈ kJx1, . . . , xdK such
that

fi(x) = xigi(f)
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for i = 1, . . . , d. We have

[xn]h(f) = [tn]h(t)g(t)n det

(
δi,j −

ti
gi(t)

∂gi(t)

∂tj

)
.

Now we use this result to prove the following:

Proposition 3.2.6. Let n := m − 1. The number of indecomposable cover-thin tree
modules of K(m) which are of dimension (d, e) is

1

d

m∑
i=1

(
m

i

)(
ne

d− 1

)(
n(d− 1)

e− i

)
i

e
.

Proof. Let td,e be the number of indecomposable cover-thin tree modules of dimension
(d, e) and let

T (x1, x2) =
∑
(d,e)

t(d,e)x
d
1x

e
2

be the generating function. All connected subtrees with d sources and e sinks of Q̃0

can be obtained recursively by glueing subquivers of type (1, i) for some i = 1, . . . ,m
which are called simple (of type i) in what follows. In turn, every such subtree has
d simple subtrees. Thus, we have d choices to fix one of them. Now the whole tree
module is obtained recursively by glueing up to n simple subquivers to each sink of a
simple subquiver. In turn, the number of possibilities to glue ki simple subquivers of
type i for i = 1, . . . ,m to a fixed sink is

zk :=
m∏
i=1

(
n−

∑i−1
j=1 kj

ki

) m∏
i=1

(
n

i− 1

)ki
.

In terms of generating functions, the simple subquivers of type i correspond to the
monomials x1x

i
2. The following identities hold∑

∑
ki=a∑

(i−1)ki=b

zk =

(
n

a

)(
na

b

)
= [xa1x

b
2](1 + x1(1 + x2)n)n

where the first one can be seen as follows: in order to glue a subquiver with a sources
and b sinks to a fixed sink, we glue n subquivers of type (1, n) to this fixed sink in a
first step. Taking colorings into account, we have exactly one possibility to do this. In
a second step, we obtain a subquiver with a sources and b sinks when choosing a out
of the n glued subquivers and afterwards b out of the remaining na sinks. The second
identity follows from the subsequent considerations.

Let z(x1, x2) = 1+x1(1+x2)n, g1(x1, x2) = 1, g2(x1, x2) = z(x1, x2)n and hi(x1, x2) =
xi2. Let f2 be the generating function counting the number of subtrees which can be
glued to a fixed sink. Then f2 satisfies the function equation

f2(x1, x2) = x2g2(x1, f2(x1, x2)).
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Note that f i2(x1, x2) counts the number of subtrees which can be glued to i fixed sinks.
We have

[xa1x
b
2]z(x1, x2)ne = [xa1x

b
2]

ne∑
i=0

(
ne

i

)
(x1(1 + x2)n)i

= [xa1x
b
2]

ne∑
i=0

(
ne

i

)
xi1

ni∑
j=0

(
ni

j

)
xj2

=

(
ne

a

)(
na

b

)
.

Using

(1 + x2)−1 =
∞∑
i=0

(−1)ixi2,

we can similarly show that

[xa1x
b
2]z(x1, x2)ne(1 + x2)−1 =

(
ne

a

) e∑
j=0

(−1)j
(
na

e− j

)
.

Thus, by Theorem 3.2.5, we have

[td1t
e
2]f i2(t1, t2) = [xd1x

e
2]xi2g

e
2(1− x2

g2

∂g2(x)

∂x2

)

= [xd1x
e
2]xi2z

ne − [xd1x
e
2]x1x

i+1
2 n2(1 + x2)n−1zne−1

= [xd1x
e−i
2 ]zne − [xd−1

1 x
e−(i+1)
2 ]n2(1 + x2)n−1zne−1

=

(
ne

d

)(
nd

e− i

)
− n2

(
ne− 1

d− 1

) e−(i+1)∑
j=0

(−1)j
(

nd

e− (i+ 1)− j

)
=

(
ne

d

)(
nd

e− i

)
− n2

(
ne− 1

d− 1

)(
nd− 1

e− (i+ 1)

)
=

(ne)!(nd)!− n2(ne− 1)!(nd− 1)!d(e− i)
(ne− d)!(nd− (e− i))!d!(e− i)!

=
n2(ne− 1)!(nd− 1)!id

(ne− d)!(nd− (e− i))!d!(e− i)!

=

(
ne

d

)(
nd

e− i

)
i

e
.

Taking into account that there are
(
m
i

)
simple subtrees of type i and that every subtree

of dimension (d, e) has d sources, we have

t(d,e) =
1

d

m∑
i=1

(
m

i

)
[xd−1

1 xe2]f i2(x1, x2)
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=
1

d

m∑
i=1

(
m

i

)(
ne

d− 1

)(
n(d− 1)

e− i

)
i

e
.

Applying Lemma 3.2.4, we thus obtain:

Corollary 3.2.7. The number of indecomposable tree modules of K(m) grows (at least)
exponentially with the dimension vector, i.e. for every imaginary Schur root (d, e) of
K(m) there exists a real number Kd,e > 1 such that tn(d,e) > Kn

d,e.

For a fixed dimension vector α of any quiver Q, we denote by Tα the number of
indecomposable tree modules of dimension α. Now we are ready to prove the following
result:

Theorem 3.2.8. If α is an imaginary Schur root, then the number of indecomposable
tree modules grows exponentially with the dimension vector. More precisely, for every
imaginary Schur root α, there exists a real number Kα > 1 such that Tn·α > Kn

α.

Proof. Since α is an imaginary Schur root, by Proposition 3.1.5 and up to ordering, we
have that it decomposes in one of the following ways:

i) α = βd + γe and β, γ are exceptional or isotropic Schur roots such that γ ∈ β⊥
and (d, e) is an imaginary Schur root of K(ext(γ, β));

ii) α = β + γe, β is an imaginary Schur root and γ exceptional. Moreover, we have
β ∈ ⊥γ;

iii) α = β + γ and β, γ are imaginary Schur roots such that γ ∈ β⊥.

The first case is a consequence of Corollary 3.2.7. In the second case, we can actually
construct tree modules in two different ways. Firstly, every indecomposable tree module
M of dimension nβ such that M ∈ ⊥γ gives rise to short exact sequences of the form
0 → M → N → Mne

γ → 0 where dimN = nα. Now we can argue by induction
that the number of indecomposable tree modules of dimension nβ grows exponentially
with n. Thus, the same is true for the number of indecomposable tree modules of
dimension nα. Alternatively, we can fix an indecomposable tree moduleM of dimension
β. Then we can consider representations of the form N = F(M,Mγ)(X) where X ∈
R(n,nl)(K(ext(γ, β))). Clearly, N is a tree module if X is a tree module. Now we can
again use Corollary 3.2.7.

In the last case, the claim follows because we already know that Tnβ and Tnγ grow
exponentially.

Example 3.2.9. If m = 3 and (d, e) = (d, d + 1), it is straightforward to check that
we have

t(d,d+1) =
3

(d+ 2)(d+ 3)

(
2d

d

)(
2(d+ 1)

d+ 1

)
.

The respective sequence of natural numbers appears as sequence A186266 in [49]. It
seems that there was no combinatorial interpretation of this sequence before.
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3.2.2 Kac polynomial and tree modules

The considerations of Section 3.2.1 have a consequence for the Kac polynomials eval-
uated at one which we investigate in the case of the Kronecker quiver. As already
mentioned, if α is coprime, by [15], we have

aα(q) =
d∑
i=0

dimH2d−2i(M0,Θ−st
α (Q),C)qi

where we consider singular cohomology and where d = 1
2

dimM0,Θ−st
α (Q). Since

M0,Θ−st
α (Q) is cohomological pure, the existence of a polynomial with integer coeffi-

cients which counts the rational points yields that the odd cohomology vanishes, see
[15, Appendix A]. In particular, we obtain aα(1) = χ(M0,Θ−st

α (Q)). By a well-known
result, we have χ(X) = χ(XT ) for any complex variety with a torus action, see for
instance [9, Section 2.5]. Here XT denotes the fixed point set. It is straightforward
to transfer the results of [69] to the case of the moduli spaces M0,Θ−st

α (Q). This en-
ables us to understand the corresponding fixed point components as moduli spaces
attached to the universal abelian covering of Q. More precisely, let T := (C∗)|Q1| act
on Rep(Π0(Q), α) by

(tρ)ρ ∗ (Mρ,Mρ∗)ρ∈Q1 = (tρMρ, t
−1
ρ Mρ∗).

This indeed defines an action on Rep(Π0(Q), α) which commutes with the usual base
change action of

∏
q∈Q0

Glαq(C). Now the same proofs as those of [69, Section 3] apply
to show the following:

Theorem 3.2.10. The set of torus fixed points M0,Θ−st
α (Q)T is isomorphic to the dis-

joint union of moduli spaces ⋃
α̂

M0,Θ̂−st
α̂ (Q̂)

where α̂ ranges over all equivalence classes of dimension vectors compatible with α.

Here Q̂ denotes the universal abelian covering quiver as defined in [69, Section 3.1].

Note that the moduli spaces M0,Θ̂−st
α̂ (Q̂) consist of representations of Π0(Q̂) which

are stable with respect to the slope function induced by Θ̂ where Θ̂(q,χ) = Θq for all
q ∈ Q0, χ ∈ Z|Q0|.

Analogously to the case of acyclic quivers and their moduli spaces, the fixed points
remaining after iterated localization are stable representations of Π0(Q̃). The main
advantage is that the connected components of Q̃ are trees which makes the counting
of fixed points very easy in many cases. This has the following consequence for the
Euler characteristic in singular cohomology and the Kac polynomial at one:

Corollary 3.2.11. For a coprime dimension vector α, we have

aα(1) = χ(M0,Θ−st
α (Q)) = χ(M0,Θ−st

α (Q)T ) =
∑
α̃

χ(M0,Θ̃−st
α̃ (Q̃)) =

∑
α̃

aα̃(1)

where α̃ ranges over all equivalence classes which are compatible with α.
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Remark 3.2.12. In an unpublished note, Ryan Kinser sketched a proof, which he
worked out with Harm Derksen, showing that Corollary 3.2.11 is true for arbitrary
dimension vectors. Actually, their proof uses completely different methods as prepro-
jective algebras and the corresponding moduli spaces do not play any role.

This natural generalization of considering torus fixed of the moduli spacesM0,Θ−st
α (Q)

has plenty of interesting consequences which are closely related to several results of this
paper. Some of them are due to the fact that we have χ(M0,Θ−st

α (Q)) = 1 if α is a real
root or if the moduli space is a point.

Corollary 3.2.13. Let α be a coprime dimension vector such that all equivalence
classes of compatible dimension vectors consist of exceptional roots. Then the number
of indecomposable tree modules is equal to the Kac polynomial at one.

Proof. By the main result of [58], every exceptional representation is an indecomposable
tree module and thus a representation of the universal covering quiver, say of dimension
α̃. For the Kac polynomial of a real root α̃, we have aα̃(q) = aα̃(1) = 1.

The other way around, every stable representation of M0,Θ̃−st
α̃ (Q̃) yields a dimension

vector α̃ of Q̃ which is compatible with α. Since α̃ is exceptional by assumption, it
yields a tree module of dimension α.

Example 3.2.14. Consider the generalized Kronecker quiver K(3) and the dimension
vector (2, 3). By use of Hua’s formula, we obtain

a(2,3) = q6 + q5 + 3q4 + 4q3 + 5q2 + 3q + 2

and thus a(2,3)(1) = 19, see [33, Section 5]. There are 18 cover-thin tree modules of
K(3) of dimension (2, 3) which are given by

• • m1 // •
•

m1 55

m2

)) • • m3 //

m2

;;

m4

##

•
•

m3 55

m4

)) • •

Here the arrows mi ∈ {ρ1, ρ2, ρ3} satisfy the conditions m1 6= m2 6= m3 6= m4 in the
first case and the conditions m1 6= m2 and m2,m3,m4 pairwise disjoint in the second
case. Finally, there is one tree module which is not cover-thin and whose coefficient
quiver is the one on the left hand side in the case when m2 = m3 and m1,m2,m4

are pairwise disjoint. Note that, as a representation of K̃(3), this is just the real root
representation of D4 of dimension (2, 1, 1, 1). Thus, the number of indecomposable tree
modules is 19.

We also re-obtain the following result:
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Corollary 3.2.15 ([47, Corollary 4.4]). If α is a dimension vector of Q such that
αq = 1 for all q ∈ Q0, the Kac polynomial at one is equal to the number of spanning
trees of Q.

Corollary 3.2.7 immediately yields the following:

Corollary 3.2.16. Let (d, e) be a coprime root of the generalized Kronecker quiver
K(m). Then the Kac polynomial at one grows exponentially with the dimension vector,
i.e. there exists a real number K(d,e) > 0 such that

lim
n→∞

a(ds,es)+n(d,e)(1) > Kn
(d,e).

Here (ds, es) is the root obtained by the considerations of Section 3.1.2.

We conclude this section with several open questions. Our observations raise the
following natural question, which was for instance posed in [38, Question 7], but also
posed to the author by W. Crawley-Boevey and A. Hubery:

Question 3.2.17. Do we always have Tα ≥ aα(1)?

The considerations of this section yield that this needs to be checked only for quivers
which are trees. But actually, similar to the question of the existence of tree modules,
it seems that this does not make things much easier. Many examples which can be
found in the literature suggest that this true. In the case of extended Dynkin quivers
of type D̃n, this can be checked by hand. We also conjecture that equality holds if and
only if the assumptions of Corollary 3.2.13 hold.

Question 3.2.18. Does Corollary 3.2.11 also hold for quivers with loops?

In this case, the results of [15] do not apply. But examples suggest that this is true.
For instance, for the quiver with only one vertex q and g loops, one can check by hand
that this is true for αq ≤ 6. The only non-trivial moduli space appears for αq = 6.

There we need to consider the moduli space M0,Θ−st
δ (D̃4) for the imaginary Schur root

δ = (2, 1, 1, 1, 1) of D̃4 (for generic Θ). Note that we have aδ(q) = q + 4. Moreover,
there exist six indecomposable tree modules of dimension δ. Taking into account the
different possibilities of coloring the arrows of D̃4 with the colors {1, . . . , g}, one checks
that this indeed fills the gap between a6(1), see [32, Section 1], and the number of
indecomposable tree modules of dimension α = 6, see [38, Section 4.1].

Question 3.2.19. What can we say if α is not coprime?

Also in this case, the considerations of Crawley-Boevey and van den Bergh do not
apply. For non-coprime roots, the Kac polynomial is not described by the cohomology
of the moduli space introduced in this section. Actually, one needs to deal with the
setup of [31]. There it is shown that the coefficients of the Kac polynomial are given by
the dimensions of the sign-isotypical components of the cohomology groups of certain
moduli spaces and not by the dimensions of the whole group. Thus, one of the first
things to study would be how the torus action agrees with the decomposition into
isotypical components.
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3.2.3 Tree modules as skeleton

As already mentioned, the hope is that indecomposable tree modules serve as skeleton
for a certain normal form. A step into this direction could be that tree modules give
rise to torus fixed points of the torus action introduced in Section 3.2.2. But there
are several problems to deal with. Actually, one would like to consider a Bialynicki-
Birula decomposition, see [2], coming along with the torus action. But because of the
definition of the torus action the attracting sets are not well-defined and the limits
limt→0 t ∗M might not exist respectively. Actually, there is hope that further investi-
gation in this direction yields interesting results.

Another direction which could be promising is to take self-extensions of the inde-
composable tree modules into account. As the next example shows, this is not as
straightforward as it might seem on first sight. But there is the feeling that one needs
to consider only a certain subspace of the space of self-extensions instead of the whole
space. This would also fit better to results coming along with Bialynicki-Birula decom-
positions.

Investigations in this direction are only just beginning. There are some promising
examples as the one at the end of this section, but also some counterexamples as the
following one which was first considered in [71, Section 5].

As far as the functor from Section 3.1.1 is concerned, taking self-extensions into
account, should translate to adding n loops to a vertex which corresponds to a Schur
representation M with dim Ext(M,M) = n. Even if there is a natural generalization of
the functor to this case, it can be shown that it is not full. Let L(n) be the quiver having
one vertex denoted bym and n loops. LetM be a representation ofQ with End(M) = k
and dim Ext(M,M) = n. Fix a tree-shaped basis {b1, . . . , bn} of Ext(M,M). Let
X = (Xm, (Xl)l=1,...,n) be a representation of L(n) and define X̃q := Mq ⊗k Xm for
q ∈ Q0. Then we can define a representation FX of Q by the vector spaces

(FX)q = X̃q for all q ∈ Q0

and by the linear maps (FX)ρ = X̃p → X̃q where

(FX)ρ = Mρ ⊗k idXm +
n∑
l=1

(bl)ρ ⊗k Xl : X̃p → X̃q

for every ρ : p→ q.
Let f : X → X ′ be a morphism. Then we define Ff : FX → FX ′ by

(Ff)q := idMq ⊗k fm : X̃p → X̃ ′q.

It is checked in [71, Section 5] that F is a faithful functor. But the following example
given there also shows that it is not full, even for Schur representation (resp. for stable
representations). Let M be the representation of dimension (2, 3) of K(3) defined by
the matrices

Mρ1 =

0 0
0 0
0 1

 , Mρ2 =

1 0
0 1
0 0

 , Mρ3 =

0 0
1 0
0 0

 .
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The corresponding coefficient quiver is given by

q1

p1

ρ2 55

ρ3

))
q2

p2

ρ2 55

ρ1

))
q3

Now it is easy to check that M is even stable with respect to the standard stability.
Every arrow of the set {ρ : p → q | ρ ∈ K(3)1, p ∈ {p1, p2}, q ∈ {q1, q2, q3}} defines
an element of

⊕
ρ∈K(3)1

Homk(Ms(ρ),Mt(ρ)) in the natural way. Using this notation, a

tree-shaped bases of Ext(M,M) is given by the arrows

p1
ρ1−−→ q1, p1

ρ1−−→ q2, p2
ρ2−−→ q1, p2

ρ2−−→ q3, p2
ρ3−−→ q1, p2

ρ3−−→ q3.

Thus, the representation M ′ defined by the matrices

M ′
ρ1

=

1 0
1 0
0 1

 , M ′
ρ2

=

1 0
0 1
0 1

 , M ′
ρ3

=

0 1
1 0
0 1


can be constructed using the functor from above. But since

gp =

(
0 1
0 1

)
, gq =

0 0 1
0 0 1
0 0 1


is a non-trivial idempotent of End(M ′), the representation M ′ is not indecomposable.

Example 3.2.20. Let us consider the n-subspace quiver S(n) with sink q0, sources
q1, . . . , qn and arrows ρ1, . . . , ρn. Let α be the root with αq0 = 2 and αqi = 1 for i ≥ 1
and let M be the tree module defined by

Mρ1 = e1 + e2, Mρ2 = e2 and Mρi = e1 for i ≥ 3.

Now it is easy to write down the coefficient quiver whose sources we denote by the
original sources and whose sinks we denote by q1

0 and q2
0. We have dim Ext(M,M) =

n − 3 and a tree-shaped basis is induced by the arrows qi
ρi−→ q2

0 for i ≥ 4. Now it is
straightforward that every representation X of dimension one of the (n−3)-loop quiver
gives rise to an indecomposable (!) representation FX of S(n) of the same dimension.
The indecomposability simply follows because the first three subspaces are pairwise
disjoint for all representations FX.

Finally, note that in this manner we can construct a (1−〈α, α〉)-parameter family of
isomorphism classes of indecomposable representations. Moreover, it is straightforward
that we can construct all indecomposable representations of dimension α starting with
an appropriate tree module.
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3.3 Non-Schurian indecomposables via intersection
theory

In this section, we review the main constructions and results of [23] where represen-
tations of quivers with three vertices are considered which have non-Schurian roots as
dimension vector. The canonical decomposition of such roots consists of an imaginary
root and a multiple of a real Schur root. This setup suggests that there exist inde-
composable representations of this dimension which can be constructed using Ringel’s
reflection functor. In general, it is not clear if such representations exist and how to
characterize them, see [73] and [68, Section 4] for counterexamples. In the case of an
acyclic quiver with three vertices, this problem can be approached geometrically.

3.3.1 Intersection of subvarieties of Grassmannians

For a fixed vector m := (m12,m13,m23) ∈ N3, we denote by Q(m) the quiver

q1

q2

(m12)
>>

q3

(m13)
``

(m23)
oo

where mij in brackets indicates the number of arrows between the corresponding ver-
tices. We denote the arrows by ρi1 : q2 → q1 for i = 1, . . . ,m12, ρi2 : q3 → q1 for
i = 1, . . . ,m13 and ρi3 : q3 → q2 for i = 1, . . . ,m23. If α is a non-Schurian root of
Q(m), we can without loss of generality assume that the canonical decomposition of α
is α = αd1

1 ⊕ α̂ where α̂ is an imaginary root and α1 is a real Schur root, see also [18,
Section 6]. Note that α̂ is Schurian if it is not isotropic. Then we have α̂ = αd2

2 + αd3
3

where α2 and α3 are the two simple roots in α⊥1 which are also exceptional. In particu-
lar, α̂ corresponds to a root of the generalized Kronecker quiver K(ext(α3, α2)). As in
[23], we call the unique decomposition of α into exceptional roots α = αd1

1 +αd2
2 +αd3

3 ,
which is obtained in this way, the canonical exceptional decomposition of α. Define

l := hom(α2, α1), m := ext(α3, α1), n := ext(α3, α2)

where it can be checked that in this setup l > 0 always holds if α is a root. We recall
the following lemma:

Lemma 3.3.1 ([23, Lemmas 3.3, 3.4]).

i) We have hom(α3, α2) = hom(α3, α1) = ext(α2, α1) = 0.

ii) For an exceptional root α, we have Grsα(M r
α) ∼= Grs(r) for 0 ≤ s ≤ r.

The basic question of [23] is if and how it is possible to classify and construct in-
decomposable representations Mα̂ of dimension α̂ such that Mα̂ ∈ M⊥

α1
and such that

dim Hom(Mα̂,Mα1) ≥ 〈α̂, α1〉 + d1. Then we have dim Ext(Mα̂,Mα1) ≥ d1 and, by
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Lemma 3.1.10, every such representation gives rise to short exact sequences of the
form

e : 0→Md1
α1
→M →Mα̂ → 0

in such a way that the middle term is indecomposable if and only if e corresponds to
an indecomposable representation of K(dim Ext(Mα̂,Mα1)) of dimension (1, d1).

The most important things when constructing such representations can be found in
commutative diagrams of the form

0 //M r
α2

fp

!!

i1 //

f1

��

Md3
δ

f2

��

π1 //Mα̂
//

f3

��

0

0 //M t
α1

i2 //M s
α1

π2 //M s−t
α1

// 0

where r = nd3 − d2 and s = dim Hom(Md3
δ ,Mα1). Here Mδ and Mα2 are the indecom-

posable projective representations in the category M⊥
α1

which means that the upper row
is a minimal projective resolution of Mα̂. In the case when d3 = 1, the representation
Mα̂ is automatically indecomposable. In this regard, the case d3 ≥ 2 turns out to be
more difficult.

Now the main question is what kind of conditions ensure that such a diagram ex-
ists and that the morphisms fi are of maximal rank. In particular, f3 would be
of maximal rank which would ensure that dim Hom(Mα̂,Mα1) ≥ s − t. Thus, if
s − t ≥ 〈α̂, α1〉 + d1, we would have constructed a representation Mα̂ of dimension
α̂ with dim Ext(Mα̂,Mα1) ≥ d1.

We follow the considerations of [23] and answer this question geometrically. For
simplicity, we assume that s − t = 〈α̂, α1〉 + d1. This can be obtained if we set
r = nd3 − d2 and t = (nl − m)d3 − d1 − 〈α̂, α1〉 in the commutative diagram under
consideration. Then we additionally have that Mα̂ is of dimension α̂.

Moreover, we only consider non-Schurian roots α of type one, i.e. we assume that
r ≤ lt and r ≤ nd3 ≤ ls. Special cases where at least one of these conditions is violated
can be found in [23, Section 4]. Even if a detailed analysis of roots which violate one
of these inequalities is missing, it seems that this is very rarely the case.

It turns out that our considerations ensure that we get “the maximal rank”-property
for free. Thus, we have to deal with the question in which case a fixed morphism of
maximal rank fp ∈ Hom(M r

α2
,M s

α1
) factors through both Md3

δ and M t
α1

. This can be
formulated in terms of two subvarieties of Grr(V ) where V := Hom(Mα2 ,M

ls
α2

) and the
question whether they intersect or not. We recall their construction from [23, Section
3.2].

For a fixed k-vector space V of dimension n and natural numbers 1 ≤ d1 < . . . <
dk ≤ n with k ≤ n, we denote the corresponding (partial) flag variety by

Fl(d1,...,dk)(V ) := {U1 ⊂ . . . ⊂ Uk ⊂ V | dimUi = di}.

Every r-dimensional subspace of V as defined above, i.e. every point of the usual Grass-
mannian Grr(V ), defines an injection M r

α2
↪→ M ls

α2
. Moreover, every basis (φ1, . . . , φl)
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of Hom(Mα2 ,Mα1) induces a morphism φ : M l
α2
→ Mα1 . In turn, we get an injective

map
Hom(M r

α1
,M t

α1
) ↪→ Hom((M l

α2
)r,M t

α1
) ∼= Hom((M l

α2
)r, (M l

α2
)t).

This embedding induces a closed embedding ∆ : Grt(V0) → Grlt(V ), U 7→ U l, where
V0 = Hom(Mα1 ,M

s
α1

) ∼= Hom(Mα2 ,M
s
α2

). By Lemma 3.3.1, this also yields an inclusion

Grt(k
s) ∼= Grtα1(M s

α1
) ⊂ Grt(lα2)((M

l
α2

)s)

induced by commutative diagrams of the form

(M l
α2

)t �
� //

φt��

(M l
α2

)s

φs
��

M t
α1

� � //M s
α1

Thus, morphisms fp : M r
α2
→ M s

α1
of maximal possible rank factoring through M t

α1

are in one-to-one correspondence to certain morphisms f̂p : M r
α2
→ (M l

α2
)s factoring

through (M l
α2

)t. But these morphisms can be described in terms of subvarieties of the
Grassmannian Grr(V ). The flag variety Fl(r,lt)(V ) comes along with projections

Grr(V )
ψ1←− Fl(r,lt)(V )

ψ2−→ Grlt(V ).

Every point in the image of ψ1 defines a morphism M r
α2
→ (M l

α2
)s factoring through

(M l
α2

)t. But since we are only interested in morphisms h : M r
α2
→ M s

α1
factoring

through M t
α1

, we need to restrict ψ1 to the subvariety

Y := ψ−1
2 ∆(Grt(V0)) = {(U1, U2) ∈ Fl(r,lt)(V ) | U2 ∈ ∆(Grt(V0))}.

We denote the subvariety ψ1(Y ) of Grr(V ) by Xα
1 . The considerations of [23, Section

3.3] yield that

dimXα
1 = dim Grr(k

ls) + dim Grt(k
s) = r(ls− r) + t(s− t).

In order to define the second subvariety, we first note that, since hom(α̂, α1) ≥ 0
and since (d2, d3) is a root of K(n), we have m ≤ n · l and thus ext(δ, α1) = 0. Thus,
(α1, δ) is again an exceptional sequence, and we get a morphism Md3

δ → M s
α1

induced

by a basis of Hom(Md3
δ ,Mα1). This induces a linear map

Hom(Mα2 ,M
d3
δ )→ Hom(Mα2 ,M

s
α1

) ∼= Hom(Mα2 , (M
l
α2

)s) = V.

This already means that every r-dimensional subspace which is contained in W :=
Hom(Mα2 ,M

d3
δ ) defines a point of the Grassmannian Grr(V ) which corresponds to an

injection of M r
α2
→ (M l

α2
)s factoring through Md3

δ . In turn, such morphisms correspond
to points of the subvariety

Xα
2 = {U ∈ Grr(V ) | U ⊂ W} ∼= Grr(W ).
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Clearly, we have dimXα
2 = r(dimW − r).

In summary, fixing a non-Schurian root α of type one we get two subvarieties Xα
i of

Grr(V ) such that every point in their intersection Iα defines a morphism of maximal
rank M r

α2
↪→ M s

α1
which factors through Md3

δ and M t
α1

. A priori, it is not clear that
Xα

1 and Xα
2 intersect, even if the dimensions of Xα

i at least sum up to the dimension of
Grr(V ). But it can be shown using intersection theory that this particular subvarieties
do always intersect. More precisely we have:

Theorem 3.3.2 ([23, Theorems 3.6, 3.15, Corollary 3.21]). Let α be a non-Schurian
root of Q(m) which is of type one. Then we have:

i) Every morphism fp induced by a point p ∈ Iα gives rise to a commutative diagram

0 //M r
α2

fp

!!

i1 //

f1

��

Md3
δ

f2

��

π1 //Mα̂
//

f3

��

0

0 //M t
α1

i2 //M s
α1

π2 //M s−t
α1

// 0

such that f3 is of maximal rank. Moreover, if d3 = 1 the cokernel of π1 is
indecomposable.

ii) The subvarieties Xα
1 and Xα

2 always intersect in such a way that every irreducible
component of Xα

1 ∩Xα
2 has at least dimension d2

3 − 〈α, α〉.

Remark 3.3.3. We have that P := Mδ ⊕ Mα2 is a partial tilting module. More-
over, End(P ) is isomorphic to the path algebra of K(hom(α2, δ)) where hom(α2, δ) =
ext(α3, α2). This implies that the representations Mα̂ obtained as the cokernel of an
exact sequence of the form

0→M r
α2
→Md3

δ →Mα̂ → 0

are in one-to-one correspondence to representations X of K(n) of dimension d := (r, d3)
such that Hom(X,Sq1) = 0. Here Sq1 denotes the simple representation corresponding
to q1 ∈ K(n)0. As already mentioned, Mα2 and Mδ are the indecomposable projective
representations in M⊥

α1
which means that the exact sequence yields a minimal projective

resolution of Mα̂ in M⊥
α1

. Now the natural group action of Glr(k)×Gld3(k) on Rd(K(n))
corresponds to diagrams

0 //M r
α2

i1 //

g1

��

Md3
δ

g2

��

π1 //Mα̂
//

g3

��

0

0 //M r
α2

i2 //Md3
δ

π2 //M ′
α̂

// 0

where the maps gi are isomorphisms. It is straightforward that, on the Grassmannian
side, the Glr(k)-action corresponds to the usual base change action. Thus, if we want
to classify representations in Iα up to isomorphism, we only need to consider the
Gld3(k)-action.
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Remark 3.3.4. Since we have dim Iα ≥ d2
3 − 〈α, α〉, taking into account the Gld3(k)-

action, there exists at least a (1− 〈α, α〉)-parameter family of isomorphism classes of
representations in Iα. By Kac’s Theorem [35, Theorem C], this is also an upper bound
if all representations in Iα are indecomposable. The same is true for an irreducible
component U of Iα if one representation in U , and thus an open subset of representa-
tions in U , is Schurian. Here we have to keep in mind that there is a trivial k∗-action
on R(d2,d3)(K(n)).

The following corollary establishes the connection to Ringel’s reflection functor:

Corollary 3.3.5 ([23, Corollary 3.10]). Let α be of type one and let t and r be defined
as above. Then the points of Iα correspond to those representations Mα̂ which can be
written as the cokernel of short exact sequences

0→Md1
α1
→Mα →Mα̂ → 0

such that Mα is of dimension α with Hom(Mα1 ,Mα) = d1 and such that Mα has no
direct summand which is isomorphic to Mα1 or Mα2.

Proof. We include the proof for the convenience of the reader. By construction, for
every representation Mα̂ corresponding to a point of Iα, we have Mα̂ ∈ M⊥

α1
and

dim Ext(Mα̂,Mα1) ≥ d1. Moreover, Mα̂ has no direct summand which is isomorphic to
Mα1 or Mα2 . Thus, there exist short exact sequences 0→Md1

α1
→Mα →Mα̂ → 0 such

that the middle terms satisfy the claimed properties.
The other way around let Mα be of dimension α such that dim Hom(Mα1 ,Mα) =

d1 and such that Mα1 and Mα2 are no direct summands of Mα. Then we have
Ext(Mα1 ,Mα) = 0 and thus there exists a short exact sequence 0 → Md1

α1
→ Mα →

Mα̂ → 0 such that Mα̂ ∈ M⊥
α1

and dim Ext(Mα̂,Mα1) ≥ d1. It follows that we have
dim Hom(Mα̂,Mα1) ≥ 〈α̂, α1〉 + d1. Since Mα has no direct summand isomorphic to
Mα2 , the same is true for Mα̂ because Ext(Mα2 ,Mα1) = 0. In particular, Mα̂ fits into
a commutative diagram as in Theorem 3.3.2.

3.3.2 Glueing representations

The next step is to investigate which points in Iα correspond to indecomposable rep-
resentations. We have already seen that all representations in Iα are indecomposable
if d3 = 1. In general, this is not easy to decide and needs further investigation. But
in many cases, we are at least able to give a recipe how to construct (1 − 〈α, α〉)-
parameter families of isomorphism classes of indecomposables in Iα recursively. It is
very interesting that the decomposition of roots of the generalized Kronecker quiver
obtained in Section 3.1.2 again plays an important role. In the following, we recall the
basic ideas of [23, Section 3.5].

With every non-Schurian root α = αd1
1 + α̂, we can associate an imaginary Schur

α̂ which, in turn, defines a root (d, e) := (d2, d3) of the generalized Kronecker quiver
K(ext(α3, α2)). Initially, we assume that (d, e) is coprime because the general case
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only needs a slight generalization. Thus, we can decompose (d, e) into smaller coprime
roots (d, e) = (ds, es) + b(d′, e′) for some b ≥ 1 yielding two Schur roots β̂ and γ̂ of
Q(m) which correspond to the Schur roots (ds, es)+(b−1)(d′, e′) and (d′, e′). The basic
question is whether there exists a decomposition d1 = cs + c such that αcs1 + β̂ and
αc1 + γ̂ are again roots of Q(m). If this is the case, we know that the varieties Iβ and
Iγ are not empty and we can ask for a method of glueing representations of dimension

β̂ and γ̂ such that the glued representation are indecomposable representations which
are contained in Iα. Since we have hom(β̂, γ̂) = hom(γ̂, β̂) = 0, this suggests to apply
Theorem 3.1.2. But there are two things we have to bear in mind. On the one hand,
we have to ensure that the glueing is additive on Hom- and Ext-spaces, i.e. for fixed
Mβ̂ ∈ Iβ and Mγ̂ ∈ Iγ, we would like to have

dim Hom(Mα̂,Mα1) = dim Hom(Mβ̂,Mα1) + dim Hom(Mγ̂,Mα1),

dim Ext(Mα̂,Mα1) = dim Ext(Mβ̂,Mα1) + dim Ext(Mγ̂,Mα1).

Here we have Mα̂ = F(Mβ̂ ,Mγ̂)(X) for a representation X of Q(Mβ̂,Mγ̂) of dimension

(1, 1). On the other hand, we need two Schur representations Mβ̂ and Mγ̂ satisfying
Hom(Mβ̂,Mγ̂) = Hom(Mγ̂,Mβ̂) = 0.

Let hβ := dim Hom(Mβ̂,Mα1). Every Mβ̂ ∈ Iβ induces a natural projection Mβ̂ →
M

hβ
α1 . The analogous statement is clearly true for Mγ̂ ∈ Iγ. Now the additivity is

ensured when restricting to exact sequences which are contained in the kernels of the

natural surjections Ext(Mβ̂,Mγ̂)→ Ext(Mβ̂,M
hγ
α1 ) and Ext(Mγ̂,Mβ̂)→ Ext(Mγ̂,M

hβ
α1 )

respectively, keeping in mind the following easy lemma:

Lemma 3.3.6 ([23, Lemma 3.22]). Let M,N be two representations such that M is
exceptional with coefficient quiver ΓM . Then we have:

i) If Mn is a subrepresentation of N , there exists a coefficient quiver ΓN of N such
that ΓN has n subquivers ΓiM of sink-type where ΓiM = ΓM for all i = 1, . . . , n.

ii) If N has a coefficient quiver ΓN which has n subquivers ΓiM of sink-type such that
ΓiM = ΓM for all i = 1, . . . , n and such that ΓiM ∩ ΓjM = ∅ for i 6= j, we have
dim Hom(M,N) ≥ n.

The analogous statements hold if Mn is a factor of N and for quivers of source-type
respectively.

As far as the existence of Schur representations with vanishing homomorphism spaces
is concerned, it is very useful that the semi-continuity of dim Homk on Rβ̂(Q(m)) ×
Rγ̂(Q(m)), see [61, Section 1], transfers when considering dim Homk on Iβ × Iγ. On
the one hand, this ensures that the existence of one Schur representation in Iβ (resp.
Iγ) implies the existence of an open subset of Schur representations. On the other
hand, this means that the existence of a tuple of Schur representations (Mβ̂,Mγ̂) with
Hom(Mβ̂,Mγ̂) = 0 already ensures that there exist non-empty open subsets of Schur
representations in Iβ and Iγ respectively satisfying this property. Note that these
subsets are not necessarily dense because Iβ and Iγ might be reducible.

45



For the non-coprime case, we need a slight generalization. Assume that we have
(d2, d3) = n(d̂2, d̂3) with n = gcd(d2, d3). Then we can decompose (d̂2, d̂3) as done
before. Moreover, a general representation of dimension (d̂2, d̂3) is Schurian. Since
(d̂2, d̂3) is also imaginary, by [61, Theorem 3.5], we have hom((d̂2, d̂3), (d̂2, d̂3)) = 0.
Therefore, we obtain hom(k(d̂2, d̂3), l(d̂2, d̂3)) = 0 for k, l ≥ 1. Taking into account the
considerations of Section 3.1.2, we obtain the following result:

Theorem 3.3.7 ([23, Theorem 3.29]). Let α be a non-Schurian root of type one. Then
we have:

i) Every pair consisting of a representation Mα̂ corresponding to a point of Iα and
a point e ∈ Grd1(Ext(Mα̂,Mα1)) gives rise to a short exact sequence 0→Md1

α1
→

Mα →Mα̂ → 0 such that Mα is indecomposable if and only if Mα̂ is indecompos-
able.

ii) For two pairs (p, e), (p′, e′) ∈ Iα × Grd1(Ext(Mα̂,Mα1)) and their corresponding
short exact sequences 0 → Md1

α1
→ Mα → Mα̂ → 0 and 0 → Md1

α1
→ M ′

α →
M ′

α̂ → 0, the following are equivalent:

� Mα and M ′
α are isomorphic;

� Mα̂ and M ′
α̂ are isomorphic and e and e′ are equivalent;

� p and p′ lie in the same Gld3(k)-orbit and e and e′ are equivalent.

iii) The closed subset Iα is non-empty and each of its irreducible components has
dimension at least d2

3 − 〈α, α〉.

iv) If Iα contains one Schur representation Mα̂, then the corresponding irreducible
component is of dimension d2

3 − 〈α, α〉 and contains an open subset of Schur
representations. In this case, there exists a (1 − 〈α, α〉)-parameter family of
isomorphism classes of Schur representations of dimension α̂ with Mα̂ ∈ M⊥

α1

and dim Ext(Mα̂,Mα1) ≥ d1.

v) If there exists a decomposition into roots α = β+γ, which is induced by the glueing
conditions, and such that Iβ and Iγ both contain one Schur representation such
that the corresponding homomorphism spaces vanish, then there exists an open
subset of Schur representations in Iα which can be constructed by glueing Schur
representations of dimension β and γ respectively.
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4 On the Euler characteristic of
moduli spaces of stable
representations

Tree quivers, tree modules and more generally tree structures also play an important
role in geometric representation theory and related topics. For instance, torus fixed
points of moduli spaces of stable representations are representations of the universal
covering quiver which is a tree. In turn, stable tree modules are torus fixed point as they
are representations of the universal covering quiver. More general, indecomposable tree
modules give rise to torus fixed points of the moduli spaces obtained when passing to
the preprojective algebra. Thus, we can make use of this to make statements concerning
the Euler characteristic of the respective moduli spaces.

But there is also a seemingly unrelated topic which is connected to all this which
is the Gromov-Witten theory of rational curves on weighted projective planes. Here
Gromov-Witten invariants play the role of Euler characteristics and tropical curves
play the one of torus fixed points. Also here tree structures show up as the underlying
graphs of rational tropical curves are trees.

The main knowledge gained in this theory throughout the last years is that the cor-
responding invariants, i.e. Euler characteristics and Gromov-Witten invariants, can be
obtained in a purely combinatorial way when counting certain trees. On the quiver
side, this is encoded when combining the degeneration formula of Manschot, Pioline
and Sen [45] with the localization theorem of [69]. On the Gromov-Witten side, the re-
spective results were obtained by Gross, Pandharipande and Siebert [28, 29] (including
an analogous degeneration formula). The upshot is that, via the refined GW/Kronecker
correspondence developed in [54, 55], it can be shown that the two degeneration for-
mulae are equivalent.

In the first section of this chapter, we focus on new aspects and generalize a conjecture
of Douglas concerning the Euler characteristic of moduli spaces which leads to an
analogous version for the Kac polynomial at one. In the case of generalized Kronecker
quivers, the number of cover-thin tree modules as obtained in Proposition 3.2.6 gives
a lower bound for the function induced by the conjecture. This section is also meant
to serve as a motivation for further investigations of the presented material in the case
of moduli spaces coming along with preprojective algebras.

In the second section, we recall how the MPS degeneration formula and the localiza-
tion theorem can be combined. This is also described in [54]. As already mentioned,
this makes the determination of the Euler characteristics to a purely combinatorial
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problem of counting trees.
In the third section, we recall the main results of [70] and apply the introduced

methods to the case of generalized Kronecker quivers which yields an upper bound for
the Euler characteristic of Kronecker moduli spaces. In particular, we can confirm that
it grows exponentially as implied by the conjecture of Douglas.

As a further example of the combination of the MPS degeneration formula and the
localization theorem, we derive several formulae for Euler characteristics in the fourth
section which are, apart from one new formula, derived in [70, 55]. In particular,
those cases where it vanishes are very helpful when determining the corresponding
Gromov-Witten invariants. Furthermore, since it is in general easier to compute Euler
characteristics than Gromov-Witten invariants, the explicit formulae can be used to
give formulae for Gromov-Witten invariants which were unknown before.

Finally, the refined GW/Kronecker correspondence established in [55] is reviewed in
the fifth section. In there, we also consider the Gromov-Witten analogue of the MPS
degeneration formula and recall that the two formulae are indeed equivalent where we
mainly follow [54]. As already mentioned, the Gromov-Witten analogue of torus fixed
points turns out to be certain tropical curves. This motivates the attempt of giving
a direct correspondence between them. Actually, we deal with examples where such a
correspondence can be written down explicitly. In general, it is not clear how such a
correspondence can be obtained and further investigation is needed.

4.1 (Generalized) Douglas conjecture on the Euler
characteristic of moduli spaces

Throughout this chapter, we only consider quivers without oriented cycles, and we fix
the field of complex numbers as our ground field. Moreover, we fix a level l : Q0 → N+

and a stability induced by a fixed linear form Θ ∈ Hom(ZQ0,Z).
We begin this chapter with motivating considerations concerning the Euler charac-

teristic of moduli spaces and the Kac polynomial at one. Assume that κ = dim which
means that we have l(q) = 1 for all vertices q ∈ Q0. We start with the following ques-
tion, which is based on a conjecture of Michael Douglas, concerning moduli spaces of
stable representations, see [69, Section 6.1]. Initially, only the case of stable represen-
tations of the Kronecker quiver was considered, but actually there is a straightforward
generalization:

Conjecture 4.1.1. Assume that Θ is chosen in such a way that every coprime dimen-
sion vector is already Θ-coprime. Then there exists a continuous function f : RQ0 → R
such that

f(α) = lim
n→∞

ln(χ(MΘ−st
αs+nα(Q)))

n

for all coprime roots α ∈ NQ0. Here αs is a fixed root chosen in such a way that
αs + nα is a coprime root for all n ≥ 1.
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But this does not seem to be the end of the story because Proposition 3.2.6 suggests
that we can extend this result to more general moduli spaces and thus to the Kac
polynomial at one.

Conjecture 4.1.2. There exists a continuous function f : RQ0 → R such that

f(α) = lim
n→∞

ln(aαs+nα(1))

n

for all coprime roots α ∈ NQ0. Here αs is a fixed root chosen in such a way that
αs + nα is a coprime root for all n ≥ 1.

Note that, for a fixed coprime dimension vector α, the existence of a coprime dimen-
sion vector αs such that αs + nα is coprime for all n ≥ 0 can be proved by induction
on the number of vertices. For n = 2, we are faced with the Kronecker quiver. In
particular, the dimension vector αs is obtained as in Section 3.1.2.

If a function as predicted in Conjecture 4.1.2 exists, Proposition 3.2.6 immediately
yields a lower bound in the case of the Kronecker quiver and for coprime dimension
vectors (d, e) such that d ≤ e ≤ (m− 1)d+ 1.

Lemma 4.1.3. Let (d, e) be a coprime root of the Kronecker quiver such that d ≤ e ≤
(m− 1)d+ 1 and define k := e/d and n := m− 1. Then we have

lim
d→∞

a(ds,es)+(d,kd)(1)

d
≥ lim

d→∞

t(ds,es)+(d,kd)

d
= n(k + 1) lnn+ k(n− 1) ln k − (nk − 1) ln(nk − 1)

−(n− k) ln(n− k).

Proof. Obviously, we only have to consider one of the m summands of the formula
obtained in Proposition 3.2.6. Then the claim follows straightforwardly when applying
the Stirling formula.

Note that the numbers t(d,e) are not invariant under the reflection functor. Neverthe-
less, the reflection functor can clearly be used to obtain a lower bound for a(d,e)(1) for
every coprime dimension vector (d, e). Furthermore, it would be interesting to know if
there are tuples (d, e) for which equality holds or to know more about the contribution
of cover-thin tree modules to the Kac polynomial at one.

This considerations motivate asking for techniques which can be used to determine
the Euler characteristic of moduli spaces or the Kac polynomial at one. Actually, in
the first case much more is known and possible generalizations to the Kac polynomial
need to be investigated in greater detail. Throughout the next sections, we mostly
restrict to the case of Euler characteristics.

4.2 Combining the MPS degeneration formula with the
localization theorem

The good news is that, in the case of Θ-coprime dimension vectors, the Euler charac-
teristic of the moduli spaces MΘ−st

α (Q) can be obtained in a purely combinatorial way
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by counting certain trees. Indeed, we can combine the MPS degeneration formula of
[45] with the localization theorem of [69]. We shortly recall this fact which has plenty
of applications as we will see.

4.2.1 Euler characteristic of moduli spaces via counting trees

For a vertex r ∈ Q0, we denote by Ar ⊆ Q1 the set of arrows ρ such that r is the head
or tail of ρ. Moreover, let Q(r) be the quiver which has vertices

Q(r)0 = Q0\{r} ∪ {rl,m | (l,m) ∈ N2
+}

and arrows

Q(r)1 = Q1\Ar ∪ {α1, . . . , αl : p→ rl,m | α : p→ r, m ∈ N+}
∪{α1, . . . , αl : rl,m → q | α : r → q, m ∈ N+}.

The level on Q induces a level l : Q(r)0 → N by

l(q) =

{
l if q = rl,m

l(q) if q ∈ Q0\{r}
.

If we fix a dimension vector α ∈ NQ0 and a weighted partition αr =
∑t

l=1 lkl, this
induces a dimension vector ᾱ of Q(r) in the following way: we set ᾱq = αq for all q 6= r
and ᾱrl,m = 1 for 1 ≤ l ≤ t and 1 ≤ m ≤ kl and ᾱrl,m = 0 otherwise. If we think of
a dimension vector of Q(r), it is convenient to think of a tuple α(k∗) := (α, k∗) where
k∗ ` αr is a weighted partition of αr. We call Q(r) the MPS-quiver of Q with respect
to r. Clearly, we can inductively apply this construction to all vertices of Q and obtain
the full MPS-quiver of Q which we denote by QF .

We define a linear form Θr ∈ Hom(ZQ(r)0,Z) by (Θr)q = Θq for all q 6= r and
(Θr)rl,m = lΘr for all l,m ≥ 1. We denote the corresponding linear form on QF by ΘF
or just by Θ in order to shorten notation.

Now we can formulate the following result concerning the Poincaré polynomial and
the Euler characteristic of moduli spaces of stable representations, see [45, Appendix
D] and also [54, Sections 3.2, 3.3] for a more general setting:

Theorem 4.2.1. If α is Θ-coprime, we have

tαr(αr−1)P (MΘ−st
α (Q), t) =

∑
k∗`αr

∏
l≥1

1

kl!

(
(−1)l−1

l[l]t2

)kl
P (MΘr−st

α(k∗)
(Q(r)), t)

and

χ(MΘ−st
α (Q)) =

∑
k∗`αr

∏
l≥1

1

kl!

(
(−1)l−1

l2

)kl
χ(MΘr−st

α(k∗)
(Q(r)))

where the sums are over all weighted partitions of αr and where [l]t2 = (t2l−1)/(t−1).
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As far as the full MPS-quiver is concerned, every tuple k∗ := (kq∗)q of weighted
partitions of α, denoted by k∗ ` α defines a dimension vector α(k∗) of the full MPS-
quiver QF . Moreover, every such tuple corresponds to a summand

∏
q∈Q0

∏
l≥1

1

kql !

(
(−1)l−1

l2

)kql
χ(MΘF−st

α(k∗)
(QF)) =: κ(k∗)χ(MΘF−st

α(k∗)
(QF)).

in the formula for the Euler characteristic. The aim is to combine the second part of
Theorem 4.2.1 with the localization theorem which is particularly powerful in the case
of dimension vectors of type one. We recall the localization theorem:

Theorem 4.2.2 ([69, Corollary 3.14]). We have

χ(MΘ−st
α (Q)) =

∑
α̃

χ(M Θ̃−st
α̃ (Q̃)),

where α̃ ranges over all equivalence classes being compatible with α, and where the
stability considered on Q̃ is the one naturally induced by the stability fixed on Q.

We call a tuple (Q, α̃) consisting of a finite subquiver Q of Q̃ and a dimension vector

α̃ ∈ NQ0 a localization datum if M Θ̃−st
α̃ (Q) 6= ∅.

Remark 4.2.3. Each localization datum comes along with two maps c1 : Q1 → Q1

and c2 : Q0 → Q0 which we will call coloring and labelling in what follows. In
order to determine the Euler characteristic of certain moduli spaces explicitly with
the localization theorem, it is often convenient to consider so-called uncolored or even
unlabelled localization data and to count the number of possible colorings in a second
step. Note that every coloring already induces a labelling. In other words, we consider
tuples (Q, α̃) of quivers and dimension vectors such that Q can be embedded into
Q̃ and, moreover, α̃ is compatible with α under this embedding. Then the number of
embeddings is the same as the number of colorings. In order to be clear, when forgetting
the coloring, we call a localization datum uncolored; when additionally forgetting the
labelling, we call it unlabelled. Clearly, all embeddings into Q̃ are considered up to
translation.

It is very important for us that, in the case of dimension vectors of type one, every
compatible dimension vector is the original dimension vector itself. Thus, every local-
ization datum defines a spanning tree of Q and, therefore, the corresponding moduli
space is a point. We call a spanning tree stable if the corresponding moduli space is not
empty. We denote the set of stable spanning trees with respect to the chosen stability
by NΘ(Q).

Corollary 4.2.4. Let Q be quiver and α ∈ NQ0 defined by αq = 1 for all q ∈ Q0.
Then we have

χ(MΘ−st
α (Q)) = |NΘ(Q)|.
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For α ∈ NQ0, let supp(α) be its support, i.e. the full subquiver of Q which has
vertices {q ∈ Q0 | αq 6= 0}. Applying the MPS degeneration formula to all vertices and
the localization theorem afterwards, we end up with the following formula:

Theorem 4.2.5 ([54, Corollary 5.3]). Let α be a Θ-coprime dimension vector of an
acyclic quiver Q. Then we have

χ(MΘ−st
α (Q)) =

∑
k∗`α

κ(k∗)|NΘ(supp(α(k∗)))|.

4.2.2 Application to bipartite quivers

We mainly restrict to bipartite quivers as the generalized Kronecker quivers K(m), the
full bipartite quivers K(l1, l2) with l1 sources and l2 sinks and, finally, the quiver N (m)
which is defined by the vertices

N (m)0 = {i(l,k) | (l, k) ∈ N2
+} ∪ {j(l,k) | (l, k) ∈ N2

+}

and the arrows

N (m)1 = {ρ1, . . . , ρl·l′·m : i(l,k) → j(l′,k′) | l, l′, k, k′ ∈ N+}.

Note that N (m) is the full MPS-quiver of K(m) and N (1) is (isomorphic to) the
full MPS-quiver of K(l1, l2). We consider the usual stability on K(m) and K(l1, l2)
respectively, i.e. we set Θq = 1 if q is a source, Θq = 0 if q is a sink while we consider
the level defined by l(q) = 1 for all q ∈ Q0. Hence, the level on N (m) is given by
l(q(l,k)) = l for q ∈ {i, j}, k ∈ N+ and the respective stability is obtained as described
in Section 4.2.

Every pair of ordered partitions

(P1,P2) =

(
l1∑
i=1

p1i,

l2∑
j=1

p2j

)

defines a dimension vector of K(l1, l2). In turn, every refinement of (k1, k2) ` (P1,P2),
i.e. every pair of sets of integers

(k1, k2) = ({k1
wi}, {k2

wj})

such that, for i = 1, . . . , l1 and j = 1, . . . , l2, we have

p1i =
∑
w

wk1
wi, p2j =

∑
w

wk2
wj,

defines a dimension vector of N (1). For p = 1, 2, the number of entries of weight w in
kp is defined by

mw(kp) =

lp∑
j=1

kpwj.
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Now a fixed refinement (k1, k2) induces a dimension vector α of N (1) by setting

αq(w,m)
=

{
1 for m = 1, . . . ,mw(kp),
0 for m > mw(kp),

for (q, p) ∈ {(i, 1), (j, 2)}. With this notation in place, the MPS degeneration formula
at the level of Euler characteristics can be expressed by

χ(MΘ−st
(P1,P2)(K(l1, l2))) =

∑
(k1,k2)`(P1,P2)

χ(MΘ−st
(k1,k2)(N (1)))

2∏
i=1

li∏
j=1

∏
w

(−1)k
i
w,j(w−1)

kiw,j!w
2kiw,j

.

(4.2.1)

4.3 An upper bound for the Euler characteristic of
Kronecker moduli spaces

In the case of the Kronecker quiver, the choice of the linear form Θ = (1, 0) implies
that Θ-coprime dimension vectors are precisely the coprime dimension vectors. If the
conjecture of Douglas is true, it implies an exceptional growth of the Euler character-
istic. In [69], it could be shown that it grows at least exponentially by constructing
a lower bound for the Euler characteristic. Together with the results of [70], which
yield an upper bound and which we review in this section, this shows that the Euler
characteristic of Kronecker moduli spaces indeed grows exponentially.

We use the abbreviation Mm
d,e := MΘ−st

(d,e) (K(m)). The BGP-reflection functor and
taking transpose representations respectively yield isomorphisms

Mm
d,e
∼= Mm

d,md−e and Mm
d,e
∼= Mm

e,d

which we use frequently. For a fixed weighted partition
∑
ldl = d also denoted by

d∗ ` d, we define d̂ =
∑

l dl and d̃ = d − d̂. The considerations of the last two
subsections yield

χ(Mm
d,e) =

∑
(d∗,e∗)`(d,e)

χ(MΘF−st
d∗,e∗

(N (m)))
∏
l

(−1)(dl+el)(l−1)

dl!el!l2(dl+el)
.

Thus, it remains to determine the number of stable spanning trees NΘ(supp(d∗, e∗))

for every weighted partition of (d, e). For a quiver Q, let Q̂ be the quiver obtained from
Q when replacing multiple arrows between any two vertices by single arrows. Then, as

a quiver, N̂ (m) is just the full bipartite quiver with infinitely many sources and sinks.

But we have to keep in mind that the level function is not constant on N̂ (m)0.
Instead of counting the number of stable spanning trees of supp(d∗, e∗) ⊂ N (m) for

(d∗, e∗) ` (d, e), we can also proceed as pointed out in Remark 4.2.3. This means that

we count the number of stable spanning trees of ̂supp(d∗, e∗) ⊂ N̂ (m) in a first step.
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In a second step, we determine the number of colorings of each stable spanning tree.

Every spanning tree of ̂supp(d∗, e∗) has d̂ + ê − 1 arrows. Thus, taking into account
that there are mll′ arrows between il,k and jl′,k′ , for a fixed stable spanning tree T of
̂supp(d∗, e∗), there are

md̂+ê−1
∏
ρ∈T1

l(s(ρ))l(t(ρ))

possibilities to color the arrows. We define

v(T ) :=
∏
ρ∈T1

l(s(ρ))l(t(ρ)).

In summary, we obtain

χ(MΘ−st
(d∗,e∗)

(N (m))) = md̂+ê−1
∑

T ∈NΘ( ̂supp(d∗,e∗))

v(T ).

As usual, the degree of a vertex is simply the number of its incident edges. There are
several results concerning the number τ of spanning trees of (multi)graphs. We make
use of the following two, see [63] and [66]:

Theorem 4.3.1. We have:

i) Let Kd,e := (I + J,E) be the complete bipartite graph with |I| = d and |J | = e.
Then for the number of spanning trees, we have τ(Kd,e) = de−1ed−1.

ii) For the number of spanning trees of a multigraph G with vertices q1, . . . , qn of
degrees d1, . . . , dn we have τ(G) ≤ d1 . . . dn−1.

Clearly, we have Kd,e = ̂supp(1 · d, 1 · e) ⊂ N̂ (m). Since also |NΘ( ̂supp(d∗, e∗))| ≤
τ(Kd,e) is satisfied, the following result is immediate:

Corollary 4.3.2 ([70, Corollary 3.6]). Let (d∗, e∗) = (
∑

l ldl,
∑

l lel) be a pair of
weighted partitions. Then we have

χ(MΘ−st
(1·d,1·e)(N (m))) ≤ md+e−1de−1ed−1

and
χ(MΘ−st

(d∗,e∗)
(N (m))) ≤ md̂+ê−1ed̂dê

∏
l

ldl+el .

As far as an upper bound is concerned, we are left with the coefficients κ(d∗, e∗)
appearing in the MPS degeneration formula. We recall the following lemma:

Lemma 4.3.3 ([70, Lemma 3.9]). Let 1
m
d ≤ e ≤ md for d, e ∈ N. Then we have

1

d̂!ê!
∏

l l
dl+el

(
d

d̃

)(
e

ẽ

)
≤ 2d+e(de)

1
2

1

d!e!
ed̃dẽmd̃+ẽ.
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Now we can use that the number of partitions of a natural number n is bounded by
exp(π

√
2n/3), see [39, Section 6], in order to prove the main results of [70]:

Theorem 4.3.4 ([70, Theorem 3.12, Corollary 3.14]). Let (d, e) be a coprime dimension
vector of K(m) such that e ≈ kd.

i) We have

χ(Mm
d,e) ≤

1

d!e!
2d+emd+e−1 exp(π

√
2

3
(
√
d+
√
e))ed+1/2de+1/2.

ii) We have

lim
d→∞

1

d
lnχ(Mm

d,e) ≤ (k + 1)(ln(m) + ln 2 + 1)− (k − 1) ln k.

In particular, the Euler characteristic of Kronecker moduli spaces grows exponen-
tially with the dimension vector.

4.4 Exact formulae for the Euler characteristic of
moduli spaces

Sometimes it is possible to determine the Euler characteristic of certain moduli spaces
of stable representations exactly. In most of these cases, the idea of the derivation of a
formula is similar. Initially, one has to identify the stable spanning trees. If this turns
out to follow a certain recursion, there is hope to find a generating function for these
trees whose coefficients can be determined explicitly. As already noticed in Remark
4.2.3, it is often convenient to forget the coloring or even the labelling of the spanning
trees, i.e. to count only the possible underlying graphs up to automorphism.

As far as the determination of the coefficients is concerned, one can often proceed
analogously to Section 3.2.1. In particular, the number of trees we are looking for is
given by the respective coefficient of the generating function which can be obtained by
the Lagrangian Inversion Theorem. In a possible further step, one has to count the
number of colorings in order to obtain a formula for the Euler characteristic which is
of the following shape:

χ(MΘ−st
(d∗,e∗)

(supp(d∗, e∗))) =
∑

T ∈NΘ( ̂supp(d∗,e∗))

c(T )

|Aut(T )|
(4.4.1)

where c(T ) denotes the number of colorings of a fixed spanning tree.

4.4.1 The trivial partition of N (m)

If we consider the quiverN (m) with the trivial partition (1·d, 1·e) ` (d, e), by Theorem
4.2.5, we have

χ(MΘ−st
(1·d,1·e)(N (m))) = |NΘ(supp(1 · d, 1 · e))|.
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Thus, we are left with the problem of counting stable spanning trees of supp(1 ·d, 1 ·e).
In some particular cases, one even gets a formula for this counting problem. Let us
consider the case where e = kd + 1 for some k ∈ N+. We make use of the following
lemma and also include the proof in order to give an idea for the derivation of certain
formulae for Euler characteristics:

Lemma 4.4.1 ([70, Lemma 5.1]). Every source of a stable spanning tree T of supp(1 ·
d, 1 · (kd+ 1)) ⊂ N (m) has exactly k + 1 neighbors.

Proof. The stability condition yields that every source i ∈ T0 has at least k + 1 neigh-
bors. Now we can be proceed by induction on the number of sources d. Since T is a
tree, it has a subquiver (i, j1, . . . , jn) such that Njs = {i} for all but one s ∈ {1, . . . , n}.
If we had n ≥ k + 2, the remaining part of the induced localization datum would
contradict the stability condition because

k(d+ 1) + 1− (k + 1) = kd <
k(d+ 1) + 1

d+ 1
d = kd+

d

d+ 1
.

This means that n = k+1. Deleting this subquiver except the sink js with |Njs| > 1, it
is straightforward to check that we obtain a stable spanning tree of supp(1·d, 1·(kd+1))
because

k(d+ 1) + 1

d+ 1
d′ < e′ ⇔ kd+ 1

d
d′ < e′

for all d′ < d and e′ ∈ N. Thus, the claim follows by the induction hypothesis.

For the proof to work, it is very important that we get a stable spanning tree of
the same shape after we have removed a subquiver. This does not hold for general
dimension vectors. Since all sinks and sources have level one, the number of colorings
is constant along the unlabelled stable spanning trees. More precisely, we have

c(T ) = d!(kd+ 1)!m(k+1)d

because we have d sources, kd + 1 sinks and thus (k + 1)d arrows where we have m
possible colors for each of them. Thus, we are left with the task of counting the number
of stable spanning trees of supp(1·d, 1·(kd+1)) taking into account its automorphisms.
Therefore, keeping in mind (4.4.1), we need to determine

S(d, kd+ 1) :=
∑
T

1

Aut(T )

where the sum is taken over all unlabelled stable spanning trees of supp(1·d, 1·(kd+1)).

Proposition 4.4.2 ([70, Proposition 5.2]). We have

S(d, kd+ 1) =
1

(kd+ 1)2

1

d!

(
(kd+ 1)

k!

)d
.
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Proof. We only sketch the proof because it is similar to the proof of Proposition 3.2.6.
Let y(x) be the generating function of rooted (!) unlabelled spanning trees of dimension
(1 · d, 1 · (kd + 1)) taking into account quiver automorphism. Then y(x) satisfies the
functional equation y(x) = xΦ(y(x)) where

Φ(x) := exp

(
xk

k!

)
=
∞∑
n=0

1

n!

(
xk

k!

)n
.

By the usual Lagrangian inversion formula, see for instance [64, Section 5.4], we thus
have:

[xt]y(x) =
1

t
[ut−1]Φ(u)t =

1

t
[ut−1]

∞∑
n=0

1

n!

(
t
uk

k!

)n
=

1

t

{
1

( t−1
k )!

(
t
k!

) t−1
k if k|(t− 1)

0 otherwise
.

In particular, we have

[xkd+1]y(x) =
1

(kd+ 1)

1

d!

(
(kd+ 1)

k!

)d
.

Since every graph has kd + 1 sinks which can be assigned to be the root, the result
follows.

Thus, we obtain the following result:

Theorem 4.4.3 ([70, Theorem 5.4, Corollary 5.5]). We have:

i)

χ(MΘ−st
(1·d,1·(kd+1))(N (m))) = m(k+1)d (kd)!

kd+ 1

(
kd+ 1

k!

)d
.

ii)

lim
d→∞

1

d
ln

(
χ(MΘ−st

(1·d,1·(kd+1))(N (m)))

d!(kd+ 1)!

)
= ln(m)(k + 1) + 1− ln((k − 1)!).

By [69, Theorem 6.6], we have

lim
d→∞

ln(χ(Mm
d,d+1))

d
= (m− 1)2 ln(m− 1)2 − (m2 − 2m) ln(m2 − 2m).

Comparing this to Theorem 4.4.3, we see that we have

lim
d→∞

1

d
ln

(
χ(MΘ−st

(1·d,1·(d+1))(N (m)))

d!(d+ 1)!

)
− lim

d→∞

ln(χ(Mm
d,d+1))

d
> 0

already for small m. As far as the MPS degeneration formula is concerned, this means
that it does not suffice to consider the summand corresponding to the trivial partition
in order to investigate the asymptotic behavior of the Euler characteristic.
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4.4.2 Formulae for the Euler characteristic of moduli spaces of
K(l1, l2)

In [55, Section 15], several formulae for Euler characteristics of moduli spaces associated
with the quiver K(l1, l2) are derived. They are particularly interesting as they can be
used to determine certain Gromov-Witten invariants. Notice that in almost all cases
it is easier to determine Euler characteristics than Gromov-Witten invariants. Thus,
this formulae turn out to be very helpful in Gromov-Witten theory as we will see later
in this work.

We denote the sources of K(l1, l2) by I and its sinks by J . Every pair of partitions
(P1,P2) of length l1 and l2 respectively defines a dimension vector of K(l1, l2). We
call (d, e) := (|P1|, |P2|) the Kronecker type of the partition. Again the case where
|P2| = (l2−1)|P1|+1 is special because all localization data are known in this case and,
moreover, the corresponding moduli spaces are points. Analogous to Lemma 4.4.1, one
can show the following:

Lemma 4.4.4. Let (Q, (P̃1, P̃2)) be a localization datum of K(l1, l2) with sources I
and sinks J such that |P̃1| = d and |P̃2| = (l2−1)d+1. Then the partitions P̃1 and P̃2

are trivial and for every i ∈ I we have |Ni| = l2. The other way around, every subtree

of K̃(l1, l2) such that every source has l2 neighbors defines a localization datum.

Proceeding similar to Theorem 4.4.3, we obtain:

Theorem 4.4.5 ([55, Theorem 15.3]). We have∑
|P1|=d,|P2|=(l2−1)d+1

χ(MΘ−st
(P1,P2)(K(l1, l2)) =

l1l2
d((l2 − 1)d+ 1)

(
(l1 − 1)(l2 − 1)d+ l1 − 1

d− 1

)
.

Reflecting at each sink, this covers also the case |P1| = d− 1, |P2| = d of K(l2, l1).
Actually, this formula has the same shape as the one obtained in [69, Theorem 6.6]
for χ(Mm

d,d+1). This is no coincidence and the reason for this lies in the fact that unla-
belled localization data of K(l1, l2) induce unlabelled localization data of the Kronecker
quiver. In terms of quiver homomorphisms this just means that we get an embedding

K̃(l1, l2) ↪→ K̃(m) where m = max{l1, l2}.
These ideas can also be used to prove the next statement for which we need some

more notation. We assume that l2 ≥ l1. Denote the set of uncolored localization data
of dimension (P1,P2) by LP1,P2(K(l1, l2)) and define

L(d,e)(K(l1, l2)) :=
⋃

|P1|=d,|P2|=e

LP1,P2(K(l1, l2)).

Since there only exists at most one arrow between any two vertices, this coincides with
the set of localization data of dimension type (P1,P2). Moreover, for the Kronecker
quiver K(l2) we denote by Ll1(d,e)(K(l2)) those uncolored localization data (Q, α̃) such

that |Nj| ≤ l1 for all sinks j ∈ Q0. Keeping in mind Remark 4.2.3, the following lemma
can be proved:
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Lemma 4.4.6 ([55, Lemma 15.1]). There exists a one-to-one correspondence between
the set of localization data L(d,e)(K(l1, l2)) and tuples (Q, α̃, c : Q1 → K(l1, l2)1) where

(Q, α̃) ∈ Ll1(d,e)(K(l2)) and c : Q1 → K(l1, l2)1 is a coloring such that arrows which
have the same sink or source are colored differently.

Using this lemma and, moreover, an induction on the sources, the following can be
shown:

Theorem 4.4.7 ([55, Theorem 15.2]). Fix a Kronecker type (d, e) of K(l1, l2). Then
we have ∑

|P1|=d,|P2|=e

χ(MΘ−st
(P1,P2)(K(l1, l2))) =

∑
(Q,α̃)∈Ll1

(d,e)
(K(l2))

CK(l1,l2)(Q)χ(MΘ−st
α̃ (Q))

where CK(l1,l2)(Q) is the number of colorings c : Q1 → K(l1, l2)1. If m := l1 = l2,
we thus have CK(m,m)(Q) = mCK(m)(Q) for all uncolored localization data (Q, α̃). In
particular, we have ∑

|P1|=d,|P2|=e

χ(MΘ−st
(P1,P2)(K(m,m))) = mχ(Mm

d,e).

4.4.3 Vanishing of the Euler characteristic

To prove that the Euler characteristic of a certain moduli space vanishes, is one of the
major applications of iterated localization. The key observation is that the quivers
belonging to localization data of a certain dimension type are forced to have cycles
which they are not allowed to have (respectively which do not remain after iterated
localization). It turns out that this can be used to prove certain conjectures in Gromov-
Witten theory via the refined GW/Kronecker correspondence which is reviewed in
Section 4.5. Most of the material presented in this section can be found in [55, Section
16].

Let Q be a bipartite quiver with vertices I ∪ J , a(i, j) arrows from i to j and a level
l : Q0 → N+. Then we consider Θ, κ ∈ Hom(ZQ0,Z) defined by

Θ(α) =
∑
i∈I

l(i)αi, κ(α) =
∑
q∈Q0

l(q)αq

and the corresponding slope denoted by µ. If I and J are finite, we denote the vertices
by I = {i1, . . . , im} and J = {j1, . . . , jn}. It can be checked that a representation
M ∈ Rep(Q) is stable if and only if

∑
j∈J

l(j)βj >

∑
j∈J l(j)αj∑
i∈I l(i)αi

∑
i∈I

l(i)βi (4.4.2)

for all 0, α 6= β ∈ NQ0 where Grβ(M) 6= ∅.
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Let K ∈ Q such that α satisfies

K
∑
i∈I

l(i)αi =
∑
j∈J

l(j)αj

and let (Q, α̃) be a localization datum with sources I and sinks J. Every source i ∈ I
gives rise to a subrepresentation of dimension i+

∑
j∈Ni j. Similarly, every sink j ∈ J

gives rise to a factor representation of dimension j +
∑

i∈Nj i. Using inequality (4.4.2),

this yields conditions for the level of i and j respectively, see also [55, Proposition 16.2],
which are

Kl(i) <
∑
j∈Ni

l(j), l(j) < K
∑
i∈Nj

l(i).

Here we assume that the above subrepresentations are proper subrepresentations. If
this is the case and if the level is constant on the sources and sinks, say that we have
l(i) = λ1 and l(j) = λ2 for all i ∈ I and j ∈ J , and if K = λ2

λ1
, these inequalities

become
λ2

λ1

λ1 < |Ni|λ2, λ2 <
λ2

λ1

|Nj|λ1.

This simply means that every source and every sink has at least two neighbors. This
observation can be used to obtain the first instances of vanishing Euler characteristics:

Theorem 4.4.8 ([55, Theorem 16.3, Theorem 16.5]). Let α ∈ NQ0 be a dimension
vector such that

∑
i∈I αi 6= 1 and

∑
j∈J αj 6= 1. Moreover, let

K
∑
i∈I

l(i)αi =
∑
j∈J

l(j)αj

i) If l(i) = λ1 for all i ∈ I, l(j) = λ2 for all j ∈ J and K = λ2

λ1
, there does not exist

any localization datum of this dimension type.

ii) If there exists a sink j ∈ J such that

l(j) ≥ K
∑
i∈Nj

a(i, j)l(i)

or if there exists a source i ∈ I such that

l(i) ≥ 1

K

∑
j∈Ni

a(i, j)l(j),

there does not exist any localization datum of this dimension type.

In particular, the Euler characteristic of the corresponding moduli space vanishes in
both cases.

The most important application for us is the following generalization of [69, Corollary
6.14]:
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Corollary 4.4.9 ([55, Corollary 16.4]). Let l(q) = 1 for all q ∈ Q0, K = 1 and let
α ∈ NQ0 be a dimension vector such that∑

i∈I

αi =
∑
j∈J

αj.

If
∑

i∈I αi = 1, there exists exactly one i ∈ I and j ∈ J such that αi = αj = 1 and we
have χ(MΘ−st

α (Q)) = a(i, j). If
∑

i∈I αi 6= 1, we have χ(MΘ−st
α (Q)) = 0.

Let us for completeness point out that there is another generalization of [69, Corollary
6.14]. Actually, this is the most important special case of [55, Theorem 16.7]:

Theorem 4.4.10 ([55, Corollary 16.8]). Assume that l(q) = 1 for all vertices of the
quiver Q and assume that

K
∑
i∈I

αi =
∑
j∈J

αj

where
∑

i∈I αi 6= 1 and K ∈ N+. If we have
∑

j∈J a(i, j) ≤ K + 1 for all i ∈ I, there
exists no localization data of dimension type α. In particular, the Euler characteristic
of the corresponding moduli space vanishes.

If we have I = {i} and J = {j}, the quiver Q is a generalized Kronecker quiver
K(m) and the condition we obtain simplifies to K ≥ m−1. In this case, the statement
is only non-trivial for K = m − 1, and it can also be obtained from Corollary 4.4.9
when applying BGP-reflections.

Remark 4.4.11.

i) In [55, Section 16], the no-peak condition plays an important role. Since it is
rather straightforward to check that it is automatically satisfied in the cases we
treat here, we do not need to take care of it.

ii) The most famous example for a non-empty moduli space with vanishing Euler
characteristic is probably the case of the dimension vectors (d, d) of the general-
ized Kronecker quiver K(m) for d ≥ 2. Since this is true for d ≥ 2 and general
m, the question for a reason and generalizations arises. One explanation might
be that (d, d) is an isotropic root for m = 2, i.e. 〈(d, d), (d, d)〉 = 0. Thus, we
have M2

d,d = ∅ for d ≥ 2. This is actually not true for m ≥ 3 where the Euler
characteristic vanishes even if the moduli space is not empty. In all cases, there
do not exist stable representations of the universal covering of dimension type
(d, d), but only semi-stable ones. Further investigation in this direction could be
very interesting.

Let us consider a final case which could also be a starting point for generalizations:
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Theorem 4.4.12. Assume that the level l : Q0 → N+ satisfies l(j) = 1 for all j ∈ J
and that α ∈ NQ0 satisfies αi = 1 for all i ∈ I. If, moreover,

K
∑
i∈I

l(i)αi =
∑
j∈J

l(j)αj

for some K ∈ N+, we have χ(MΘ−st
α (Q)) = 0 if |I| ≥ 2. If I = {i} and supp(α) =

Q0, we have χ(MΘ−st
α (Q)) =

∏
j∈J a(i, j) if, in addition, αj = 1 for all j ∈ J and

χ(MΘ−st
α (Q)) = 0 otherwise.

Proof. Let I = {i1, . . . , im}. If |I| = 1, α is a root if and only if αj ∈ {0, 1} for all
j ∈ J . Thus, if supp(α) = Q0, there is actually exactly one uncolored localization
datum which is given by (Q,α). In particular, we have

χ(MΘ−st
α (Q)) =

∏
j∈J

a(i1, j).

We proceed by induction on |I|. If |I| = 2, since αi = 1 and since there need to exist
stable representations, an uncolored localization datum (Q, α̃) would need to have the
form

i1

|| ##

i2

{{ %%
j1 . . . js+1 . . . js+t+1

with α̃il = α̃jl = 1. By assumption, we have K(l(i1) + l(i2)) = s + t + 1. But the
stability condition yields

s+ 1 > Kl(i1), t+ 1 > Kl(i2),

and thus it also yields a contradiction.
The induction step follows a common argument. More precisely, we consider a

subquiver S of a localization datum (Q, α̃) which has only one common sink with the
remainder of the quiver. Let S have vertices {i1, j1 . . . , jn} and let jn be the common
vertex. Since (Q, α̃) is forced to admit stable representations, we have α̃jl = 1 for
l = 1, . . . , n− 1 and thus

∑n−1
l=1 α̃jl = n− 1. Moreover, we have Kl(i1) < n. We claim

that Kl(i1) = n− 1. Indeed, if Kl(i1) < n− 1, we had

K
∑

i∈I\{i1}

l(i) =
∑
j∈J

α̃j −Kl(i1) >
∑

j∈J\{j1,...,jn−1}

α̃j

which yields a contradiction to the stability condition. This means that, after removing
the subquiver with vertices {i1, j1, . . . , jn−1}, we obtain a localization datum with

K
∑

i∈I\{i1}

l(i) =
∑

j∈J\{j1,...,jn−1}

α̃j.

Since there does not exist such a localization datum, the claim follows.
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Let us conclude this section with the following remark:

Remark 4.4.13.

i) The former result could be indeed very helpful for future considerations, partic-
ularly if there were a certain generalization of the MPS degeneration formula to
non-coprime dimension vectors. As an example, consider the quiver K(m)(q0),
i.e. the MPS-quiver of K(m) with respect to the source of K(m). In this case,
all localization data (Q, α) would satisfy αi = 1 and l(j) = 1 for all i ∈ I and
j ∈ J. The dimension vectors considered in the preceding theorem would then
correspond to the dimension vector (d,Kd) of the Kronecker quiver where K is
a natural number. Thus, there were hope to make statements concerning the
Euler characteristics of the corresponding moduli spaces. Note that they do not
vanish in general. An example for this is χ(M4

2,4) = −1. Also note that here the
no-peak condition comes into play.

ii) In [12], a (non-explicit) formula for the Euler characteristic of the Kronecker
moduli spaces Mm

d,Kd+1 is obtained when applying the MPS degeneration formula
only to the source of K(m). In there, after applying more involved methods
coming from theoretical physics, one is again left with counting certain trees.
Without checking the details, it is likely that this trees precisely correspond to
the respective torus fixed points (obtained after applying the MPS degeneration
formula to the source). Moreover, it seems that in this case there are only finitely
many torus fixed points.

4.5 Refined GW/Kronecker correspondence

It was noted in [29] and [53] that there is a numerical correspondence between the
Euler characteristic of moduli spaces of stable quiver representations and Gromov-
Witten invariants coming along with weighted projective planes. This was explained
in detail in [28] leading to the following result:

Theorem 4.5.1 ([28, Corollary 3]). For every natural number m > 0 and coprime
(d, e) ∈ N2

+, we have

exp

 ∞∑
k=1

∑
|P1|=kd,|P2|=ke

kN(d,e)[(P1,P2)](tx)kd(ty)ke



=

(
∞∑
k=0

χ(MΘ−st
(kd,ke),(1,0)(K(m)))(tx)kd(ty)ke

)m/d

=

(
∞∑
k=0

χ(MΘ−st
(kd,ke),(0,1)(K(m)))(tx)kd(ty)ke

)m/e
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where the second sum in the first line is over all ordered partitions of length m permit-
ting zero entries.

Note that the moduli spaces which appear in the formulae are framed moduli spaces
as defined in Section 2.4. Apparently, the partitions of kd and ke play only a role on
the Gromov-Witten side of the formula. One major motivation in [55] was to find a
correspondence which takes care of the partitions on the quiver side as well. This can
be achieved when replacing the generalized Kronecker quivers by the quivers K(l1, l2)
and leads to the so-called refined GW/Kronecker correspondence which we investigate
in the following.

4.5.1 Gromov-Witten invariants vs. Euler characteristics

The main observation is that both the generating function of Gromov-Witten invari-
ants and the one of the Euler characteristic of moduli spaces are linked to the series
f(d,e) appearing in the tropical vertex via Theorems 2.5.2 and 2.4.2. This refined corre-
spondence enables us to determine several Gromov-Witten invariants explicitly which
were unknown before. This is due to the already mentioned fact that Euler charac-
teristics are often easier to compute than Gromov-Witten invariants. In turn, we can
prove several conjectures of [28, 29] concerning the invariants

N(d,e)[k] :=
∑

|P1|=kd,|P2|=ke

N(d,e)[(P1,P2)]

with the help of the invariants

χ(d,e)(k) :=
∑

|P1|=kd,|P2|=ke

χ(MΘ−st
(P1,P2)(K(l1, l2))).

More detailed, using the factorization of Theorem 2.4.2, the following is obtained in
[55]:

Theorem 4.5.2 ([55, Theorem 6.1]). For all coprime (d, e) we have

f(d,e) =

∑
k≥0

∑
|P1|=kd,|P2|=ke

χ(MΘ−st
(P1,P2),f (K(l1, l2)))(tx)kd(ty)ke

1/e

=

∑
k≥0

∑
|P1|=kd,|P2|=ke

χ(MΘ−st
(P1,P2),b(K(l1, l2)))(tx)kd(ty)ke

1/d

where the functionals b and f are defined by b(i) = 1, b(j) = 0, f(i) = 0 and f(j) = 1
for all sources i ∈ K(l1, l2)0 and all sinks j ∈ K(l1, l2)0.

This immediately yields the following refined version of Corollary 4.5.1:
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Corollary 4.5.3 ([55, Corollary 6.2]). For all coprime (d, e), we have

exp

 ∞∑
k=1

∑
|P1|=kd,|P2|=ke

kN(d,e)[(P1,P2)]sP1tP2xkdyke



=

 ∞∑
k=0

∑
|P1|=kd,|P2|=ke

χ(MΘ−st
(P1,P2),f (K(l1, l2)))sP1tP2xkdyke

1/e

=

 ∞∑
k=0

∑
|P1|=kd,|P2|=ke

χ(MΘ−st
(P1,P2),b(K(l1, l2)))sP1tP2xkdyke

1/d

where the sums are over all ordered partitions of kd and ke of length l1 and l2 respec-
tively.

In a next step, we can apply Theorem 2.4.4 in order to determine both the series
f(d,e) and its specialization f(d,e)(t) which shows up when specializing all variables sk, tl
to one variable t. This is done in [55, Sections 7, 8] and leads to the following result:

Theorem 4.5.4 ([55, Theorem 7.1, Theorem 8.1, Corollary 8.2]). For coprime (d, e),
the series f(d,e) is given by

f(d,e) =
∏
k≥1

∏
|P1|=kd
|P2|=ke

(RP1,P2)
kχ(MΘ−st

(P1,P2)
(K(l1,l2)))

,

where the series RP1,P2 ∈ B are determined by the following system of functional
equations:
For all pairs of ordered partitions (P1,P2) as above, we have

RP1,P2 =

1− sP1tP2(xdye)k
∏
k′≥1

∏
|P′1|=k′d
|P′2|=k′e

(RP′1,P
′
2)
−〈(P1,P2),(P′1,P

′
2)〉χ(MΘ−st

(P′1,P
′
2)

(K(l1,l2)))


−1

.

Specializing, the series f(d,e)(t) is determined by the single functional equation

f(d,e)(t) =
∏
k≥1

(
1− ((tx)d(ty)ef(d,e)(t)

E)k
)−kχ(d,e)(k)

where

E =
l1l2de− l2d2 − l1e2

l1l2
∈ Q

which, in turn, yields

N(d,e)[k] =
1

Ek2

∑
r`k

∏
l

(
Eklχ(d,e)(l) + rl − 1

rl

)
,

where the sum runs over all ordered partitions
∑

l lrl = k.
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The results of this section also yield the following corollary:

Corollary 4.5.5 ([55, Corollary 9.1]). For coprime (d, e) and a pair of ordered parti-
tions (P1,P2) such that |P1| = d and |P2| = e, we have

N(d,e)[(P1,P2)] =
1

d
· χ(MΘ−st

(P1,P2),b(K(l1, l2))) =
1

e
· χ(MΘ−st

(P1,P2),f (K(l1, l2)))

= χ(MΘ−st
(P1,P2)(K(l1, l2))).

Example 4.5.6. We can use Corollary 4.5.5 to determine several Gromov-Witten
invariants explicitly. For instance, when applying Theorem 4.4.5, we obtain the explicit
formula

N(d−1,d)[1] = χ(d−1,d)(1) =
l1l2

d((l1 − 1)d+ 1)

(
(l1 − 1)(l2 − 1)d+ l2 − 1

d− 1

)
.

One can also work out that N(3,5)[1] = 204 if l1 = l2 = 3. This is done in [55, Section
15].

Obviously, the functional equations of Theorem 4.5.4 simplify in the case when cer-
tain Euler characteristics vanish. This is the case when d = e = 1 and k ≥ 2. If k = 1,
the appearing moduli spaces are points and we obtain χ(d,d)[k] = l1l2. Since we have

E =
l1l2 − l1 − l2

l1l2

in this case, we obtain

f(1,1) =

l1∏
k=1

l2∏
l=1

Rk,l,

where the series Rk,l are determined by the system of functional equations

Rk,l = 1 + sktlxy
∏
k′ 6=k

∏
l′ 6=l

Rk′,l′ .

This system can be solved using multivariate Lagrange inversion, but this is not very
explicit. When specializing the variables sk, tl to one variable t, the system of functional
equations simplifies further so that only one equation remains. More detailed, we obtain

f(1,1)(t) = H(t)l1l2

where the series H is determined by the single functional equation

H(t) = (1− t2xyH(t)l1l2−l1−l2)−1.

But then it follows immediately from [50, Theorem 1.4] that:

66



Corollary 4.5.7 ([55, Corollary 11.2]). We have

f(1,1)(t) =

(∑
k≥0

1

(l1l2 − l1 − l2)k + 1

(
(l1 − 1)(l2 − 1)k

k

)
(t2xy)k

)l1l2

,

confirming [28, Conjecture 1.4].

We can also apply the last formula of Theorem 4.5.4 and obtain:

Corollary 4.5.8 ([55, Corollary 11.3]). We have

N(1,1)[k] =
l1l2
k2

(
(l1 − 1)(l2 − 1)k − 1

k − 1

)
.

Finally, we apply Theorem 4.4.7 to the specialized case under the additional assump-
tion that l1 = l2 = m. Actually, we can confirm a variant of [29, Conjecture 6.2] in the
balanced case and for specialized variables as already indicated in [28, Section 6]:

Corollary 4.5.9 ([55, Corollary 12.2]). If l1 = m = l2, every specialized series f(d,e)(t)
admits a product factorization

f(d,e)(t) =
∏
k≥1

(
1− ((−1)mde−d

2−e2t)k
)−kd(d,e,k)

for integral d(d, e, k).

Proof. Applying Theorem 4.5.4 and using Theorem 4.4.7, the series f(d,e)(t)
1/m is de-

termined by the functional equation

f(d,e)(t)
1/m =

∏
k≥1

(
1−

(
(tx)d(ty)e(f

1/m
(d,e))

mde−d2−e2
)k)−kχ(MΘ−st

(kd,ke)
(K(l1,l2)))

.

Applying [51, Theorem 4.9], the statement follows.

4.5.2 Comparison of degeneration formulae: GPS vs. MPS

We again restrict to dimension vectors of the quiver K(l1, l2) which are of coprime
Kronecker type. We already treated the MPS degeneration formula in Section 4.2
which expresses the Euler characteristic of moduli spaces as an alternating sum of Euler
characteristics of the full MPS-quiver. Due to Gross, Pandharipande and Siebert, there
is a comparable formula on the Gromov-Witten side. In [54, Section 4], it is shown that
these formulae are equivalent using the notion of scattering diagrams. In this work,
we reprove this result inductively starting with the identity established in Corollary
4.5.5. In order to understand this equivalence in more detail, we need the basic notion
of tropical curves as introduced in [29, Section 2.1].

Let Γ be a weighted, connected tree with only 1-valent and 3-valent vertices. When
embedding Γ into R2, we can think of it as a compact topological space. The graph Γ
is obtained from Γ when removing the 1-valent vertices. The non-compact edges are
called unbounded edges. We denote the weight function on the edges of Γ by wΓ.
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Definition 4.5.10.

i) A parametrized rational tropical curve in R2 is a proper map h : Γ → R2 such
that:

� the restriction of h to an edge is an embedding whose image is contained in
an affine line of rational slope;

� the following balancing condition holds at the vertices: denoting by mi the
primitive integral vector emanating from the image of a vertex h(V ) in the
direction of an edge h(Ei), we have

3∑
i=1

wΓ(Ei)mi = 0,

where the sum runs over all edges which are adjacent to V .

ii) A (rational) tropical curve is the equivalence class of a rational parametrized
tropical curve under reparametrizations which respect wΓ.

iii) The multiplicity at a vertex V is defined as

multV (h) = wΓ(E1)wΓ(E2)|m1 ∧m2|.

iv) The total multiplicity of h is defined as

mult(h) =
∏
V

multV (h).

Note that, due to the balancing condition, in iii) we can choose E1, E2 to be any
two out of the three edges adjacent to V . We define a weight vector wi as a sequence
of non-negative integers (wi1, . . . , witi) satisfying wij ≤ wij+1. For a fixed partition Pi

together with a refinement ki, we can define a weight vector w(ki) = (wi1, . . . , witi) of
length ti =

∑
wmw(ki) by

wij = w for all j =
w−1∑
r=1

mr(k
i) + 1, . . . ,

w∑
r=1

mr(k
i).

Of course the weight vector w(ki) only depends on ki through {mw(ki)}w. With every
pair of weight vectors (w1,w2), we can associate a tropical invariant which counts
rational tropical curves h satisfying the following conditions:

� the unbounded edges of Γ are Eij for 1 ≤ i ≤ 2, 1 ≤ j ≤ ti, and a single
“outgoing” edge Eout;

� the image h(Eij) is contained in a line eij + Rei for some fixed vectors eij, and
its unbounded direction is −ei;
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� wΓ(Eij) = wij.

Note that the balancing condition implies that h(Eout) lies on an affine line with
direction (|w1|, |w2|). The set of such tropical tropical curves h is finite, and it follows
from the general theory that, when we count curves h taking into account the multi-
plicity mult(h), we get an integer N trop[(w1,w2)] which is independent of the (generic)
choice of the vectors eij. Here refer to [27] and [46] for the general theory on tropical
counts.

Using the degeneration formula for Gromov-Witten invariants [29, Proposition 5.3],
[29, Theorem 3.4, Theorem 4.4] together with [54, Lemma 4.2], we obtain the following
variant of the degeneration formula for the Gromov-Witten invariant N(d,e)[P1,P2] in
terms of tropical invariants:

Theorem 4.5.11. We have

N(d,e)[(P1,P2)] =
∑

(k1,k2)`(P1,P2)

N trop[(w(k1),w(k2))]
2∏
i=1

li∏
j=1

∏
w

(−1)k
i
w,j(w−1)

kiw,j!w
2kiw,j

.

Now we have the following result:

Proposition 4.5.12 ([54, Proposition 4.3]). We have an equality of Euler character-
istics and tropical counts

N trop[(w(k1),w(k2))] = χ(MΘ−st
(k1,k2)(N (1))). (4.5.1)

Proof. A direct proof using scattering diagrams is given in [54, Proposition 4.3]. But,
as already indicated in [54, Remark 4.4], it is also possible to prove the result by
induction on |pij| using the refined GW/Kronecker correspondence N(d,e)[(P1,P2)] =
χ(MΘ−st

(P1,P2)(K(l1, l2))) established in Corollary 4.5.5. More precisely, we fix a coprime

tuple (d, e). Then we start our induction with the trivial partition (P1,P2). In this
case, there exists only one refinement (k1, k2) which is the partition itself, and we have

N trop[(w(k1),w(k2))] = N(d,e)[(P1,P2)] = χ(MΘ−st
(P1,P2)(K(l1, l2))) = χ(MΘ−st

(k1,k2)(N (1))).

In order to get the induction started, we have to keep in mind that there exists a
canonical refinement (c1, c2) of every partition (P1,P2) which is given by p1i = p1i · 1
and p2j = p2j · 1 for every i, j. Let

Ck∗ :=
2∏
i=1

li∏
j=1

∏
w

(−1)k
i
w,j(w−1)

kiw,j!w
2kiw,j

.

By induction hypothesis together with Corollary 4.5.5, we obtain

N trop[(w(c1),w(c2))] = N(d,e)[(P1,P2)]−
∑

(k1,k2)`(P1,P2)
(k1,k2)6=(c1,c2)

Ck∗N
trop[(w(k1),w(k2))]

= χ(MΘ−st
(P1,P2)(K(l1, l2)))−

∑
(k1,k2)`(P1,P2)
(k1,k2)6=(c1,c2)

Ck∗χ(MΘ−st
(k1,k2)(N (1)))

= χ(MΘ−st
(c1,c2)(N (1))).
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Indeed, every refinement (k1, k2) 6= (c1, c2) already appears as a refinement of a parti-
tion covered by the induction hypothesis.

This proves the following result:

Theorem 4.5.13 ([54, Theorem 4.1]). Let P1,P2 be coprime. Then the MPS degene-
ration formula for Euler characteristics of moduli spaces of quiver representations estab-
lished in (4.2.1) and the degeneration formula for Gromov-Witten invariants (Theorem
4.5.11) are equivalent.

4.5.3 Tropical curves vs. localization data

In [28], [53], Gross and Pandharipande and Reineke respectively posed the question
if there is a more or less direct correspondence between rational (tropical) curves
and quiver representations. Also Proposition 4.5.12, Theorem 4.5.1 and Corollary
4.5.5 suggest such a relationship. Motivated by Theorem 4.5.1, in [65] Stoppa tried

to construct a tropical curve from a stable representation of K̃(m). It turned out
that this is unrewarding and that it is more promising to consider stable representa-
tions of the refined Kronecker quivers K(l1, l2). This is also suggested by the identity
N trop[(w(k1),w(k2))] = χ(MΘ−st

(k1,k2)(N (1))). Indeed, on the one hand, the Gromov-

Witten invariant N trop[(w(k1),w(k2))] counts rational tropical curves, and, on the
other hand, also the Euler characteristic counts representations because there exist
only finitely many torus fixed points in MΘ−st

(k1,k2)(N (1)). Even if there is no general

recipe which is applicable for all partitions (resp. refinements), in [54, Section 6],
examples were worked out where an explicit correspondence exists. Besides these ex-
amples, we review two similar recursive constructions which can be used to construct
tropical curves and torus fixed points respectively.

Recursive construction of curves

Throughout this section, we fix a coprime Kronecker type (d, e) and a weight vector
(w1,w2) of length (t1, t2) such that |w1| = d and |w2| = e. The key observation which
is needed for this recursive construction is that we can choose the lines h(Eij) in such a
(still generic) way that, after removing the last edge E2t2 , the tropical curve decomposes
into smaller ones such their corresponding slopes define a wt2-admissible decomposition
as defined below. The other way around, we can glue n tropical curves, whose slopes
define a wt2-admissible decomposition, obtaining a curve which is compatible with the
fixed weight vector.

We shortly recall the construction of [54, Section 6.1]. Let Pi be a partition of
length li and wi be a weight vector such that |wi| = |Pi|. A set partition I• of wi is a
decomposition of the index set

I1 ∪ · · · ∪ Ili = {1, . . . , ti}
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into li disjoint, possibly empty parts. We say that I• is compatible with Pi if we have

pij =
∑
r∈Ij

wir

for all j. We say that it is proper if all parts are not empty.
We denote a vector x ∈ R2 by (x1, x2). Let h : Γ→ R2 be a connected parametrized

rational tropical curve where the unbounded edges Eij have weight wij. Moreover, we
assume that h(Eij) ⊂ eij + Rei. Let V (E) be the unique vertex which is adjacent to
an unbounded edge E, and V1(E), V2(E) those vertices adjacent to a compact edge
E where we choose the numbering such that h(V1(E))1 < h(V2(E))1. Using general
methods of tropical geometry as treated for instance in [27] and [29, Proposition 2.7],
it can be seen that the invariant N trop[(w1,w2)] does not depend on the generic choice
of the vectors eij. In particular, we can assume that e1

2j > e1
2j−1 and e2

1j > e2
1j−1. With

every compact edge E, we can associate a slope

µ(E) =
wΓ(E)m2

wΓ(E)m1

of h(E) where m = (m1,m2) denotes the primitive vector emanating from h(V1(E))
in the direction of h(V2(E)). It is straightforward that the balancing condition implies
m1,m2 > 0.

Definition 4.5.14. Let Fk for k = 1, . . . , n be those compact edges which satisfy
h(V1(Fk))

1 < e1
2t2
≤ h(V2(Fk))

1. We call a rational tropical curve slope ordered if we
can order the Fk in such a way that

µ(Fk) ≤ µ(Fl) and h(V2(Fk))
i < h(V2(Fl))

i

for i = 1, 2 whenever k < l. Moreover, we call the edges Fk glueing edges.

Lemma 4.5.15 ([54, Lemmas 6.1 and 6.2]).

i) We can choose the lines h(Eij) in such a way that every tropical curve is slope
ordered.

ii) Let h : Γ→ R2 be a slope ordered tropical curve with glueing edges F1, . . . Fn where
µ(Fk) = ek/dk. Then there exist edges G0, G1, . . . , Gn and vertices V1, . . . , Vn such
that Vk is adjacent to Fk, Gk−1 and Gk and such that

µ(Gk) =
w2,t2 +

∑k
i=1 ei∑k

i=1 di
>
ek+1

dk+1

for k = 1, . . . , n− 1. Moreover, we have G0 = E2t2 and Gn = Eout.

Note that these conditions are part of the glueing conditions of [69, Section 4.3]. The
Lemma shows that every slope ordered tropical curve is glued by n connected tropical
curves with outgoing arrows Fk of increasing slopes ek/dk such that
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w2t2 +
n∑
i=1

ei =: e,
n∑
i=1

di =: d,
ei
di
≤ ei+1

di+1

and
w2t2 +

∑k
i=1 ei∑k

i=1 di
>
ek+1

dk+1

. (4.5.2)

We call such a decomposition a w2t2-admissible decomposition of (d, e).
The other way around, in [54, Section 6.1] it is shown that n tropical curves hi : Γi →

R2, such that their slopes µ(Ei,out) = ei/di define a w2,t2-admissible decomposition of
(d, e), can be glued in the natural way such that a connected tropical curve h : Γ→ R2

of slope e/d is obtained. In order to compute the tropical invariants, we have to take the
number of possibilities for choosing the unbounded edges into account. More detailed,
we fix a weight vector (w1,w2) with d =

∑t1
j=1w1j and e =

∑t2
j=1 w2j satisfying wij ≤

wi(j+1). Every w2,t2-admissible decomposition of (d, e) defines two ordered partitions
of d and e − w2,t2 respectively. Then every tuple of set partitions of {1, . . . , t1} and
{1, . . . , t2 − 1} respectively which is compatible with (di, ei)i=1,...,n defines n tuples of
weight vectors (w(i)1,w(i)2) with di =

∑
j w(i)1j and ei =

∑
j w(i)2j. This means that

every compatible set partition can be thought of as a way of assigning the unbound
edges of the tropical curves hi to those of the curve h.

Considering all w2t2-admissible decompositions and all tuples of tropical curves (em-
bedded into the chosen line arrangement) as above at once, we can assume that all
tropical curves under consideration are slope ordered and obtained by glueing smaller
ones. This leads to the following result:

Theorem 4.5.16 ([54, Theorem 6.4]). We have

N trop[(w1,w2)] =
∑

(di,ei)i

∑
I•

n∏
i=1

N trop[(w(i)1,w(i)2)]

∣∣∣∣∣
n∏
k=1

(
ek

k−1∑
i=1

di − dk(
k−1∑
i=1

ei + w2,t2)

)∣∣∣∣∣
where we first sum over all wt2-admissible decompositions of (d, e) and then over
all proper set partitions I• which are compatible with the partitions (d, e − w2,t2) =
(
∑n

i=1 di,
∑n

i=1 ei).

Proof. We just need to determine the multiplicities of the vertices where the original
curves are glued. For their multiplicities, we get

MultVk(h) =

∣∣∣∣( ∑k−1
i=1 di dk∑k−1

i=1 ei + w2,t2 ek

)∣∣∣∣
for k = 1, . . . , n.

This formula gives also a recursive formula for the Euler characteristic of moduli
spaces. Indeed, even for w-admissible decompositions of (d, e) involving non-coprime
vectors (di, ei), one ends up with coprime vectors after finitely many steps.
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Recursive construction of localization data

We have a similar construction on the quiver side. We again fix a coprime tuple (d, e)
and a w-admissible decomposition (di, ei)i=1,...,n of (d, e). Furthermore, we fix tuples
(Q1, α1), . . . , (Qn, αn) consisting of disjoint subquivers Qi ⊂ N (1) and dimension vec-
tors αi of type one such that MΘ−sst

αi
(Qi) 6= ∅ and such that∑

q∈Qi(I)

l(q) = di and
∑

q∈Qi(J)

l(q) = ei.

Here Qi(I) denotes the set of sources of Qi and Qi(J) the set of sinks. Consider the
tuple (Q, α) consisting of the quiver Q defined by the vertices Q0 =

⋃n
i=1(Qi)0 ∪ {q}

with l(q) = w and the arrows Q1 =
⋃n
i=1(Qi)1 ∪ {ρ : p → q | p ∈ Qi(I), i = 1, . . . , n}

and the dimension vector α obtained by setting αq = 1.

Theorem 4.5.17 ([54, Theorem 6.6]). We have MΘ−st
α (Q) 6= ∅. In particular, every

torus fixed point of MΘ−st
α (Q) defines a torus fixed point of MΘ−st

α (N (1)) of type (d, e).

There exists a dual version of this theorem which is obtained when turning around
all arrows. In this case, the quivers are glued in a source. Note that, in comparison
to the tropical analogue, it is an open question if all localization data of type (d, e)
can be obtained by Theorem 4.5.17. Moreover, there is no notion of multiplicity for
a localization datum. This leads to the task of associating m localization data with a
tropical curve of multiplicity m. Up to now, no general statement in this direction is
known, but promising examples are. In this section, we recall the example in which
(d, e) = (2, 2n + 1). This case also illustrates the introduced recursions. Another
example is given in [54, Section 6.3.2] where the case (d, d+ 1) is treated.

The case (2, 2n+ 1)

Analogously to [54, Section 6.3.1], we consider the example of 2n + 1 points in the
projective plane, i.e. (P1,P2) = (12n+1, 2). There exist two refined partitions which
are the partition itself and (k1, k2) = (12n+1, 1 + 1). In the first case, the only tree to
consider is

j

i1

66

. . . . . . . . . i2n+1

ii

with l(j) = 2 and l(ik) = 1. In the second case, the only tree to consider is

j1 j2

i1

>>

. . . in+1

bb <<

. . . i2n+1

cc

Now it is easy to check that we have 22n+1 different colorings in the first case and(
2n+ 1

n

)(
n+ 1

n

)
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different colorings in the second case.
Thus, by MPS degeneration formula 4.2.1, we get

χ(MΘ−st
(12n+1,2)(K(2n+ 1, 1))) =

1

2

(
2n+ 1

n

)(
n+ 1

n

)
− 1

4
22n+1. (4.5.3)

Since there is also exactly one tropical curve of weight 22n+1 for the weight vector
(12n+1, 2), we are left with constructing a correspondence in the second case. On the
curve side, we consider a line arrangement with 2n + 1 vertical legs of the following
shape:

. . . . . .

In order to apply the construction of the last section, we have to decompose the
vector (2n + 1, 2) into a 1-admissible tuple (di, ei). It is easy to see that the only two
possibilities are

(d1, e1) = (d2, e2) = (n, 1) and (d1, e1) = (2n, 2).

In turn, the only 1-admissible decomposition of (2n, 2) is (d1, e1) = (2n − 1, 2). The
first case corresponds to picking the two corresponding localization data of type (n, 1)
and glue them in a source i2n+1. It can be checked straightforwardly that there are(

2n
n

)
localization data of this form. In order to determine the corresponding tropical

curves, we first consider the tropical curve of weight one for the partition (1n, 1) (here
for n = 3), i.e.:

��
�
�
�
�
�
�
���

For general n, we have
(

2n
n

)
possibilities to embed the curves corresponding to the

partition (1n, 1) into the upper row of the line arrangement above and another curve of
the same shape into the lower row. Then we can glue them as described above. Note
that all curves obtained in this way have multiplicity one.
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In the second case, assume that we have already constructed the curves corresponding
to (2n− 1, 2). The only way to obtain a curve corresponding to (2n+ 1, 2) from such a
curve is to glue twice a curve of slope (1, 0) to it. If m is the multiplicity of the tropical
curve of slope (2n− 1, 2), the multiplicity of the resulting curve is 4m.

On the quiver side this means that we have to construct four localization data of type
(2n + 1, 2) from every localization datum of type (2n − 1, 2). Consider the uncolored
localization datum

j1 j2

ik1

==

. . . ikn

aa ==

. . . ik2n−1

cc

with 1 ≤ kj ≤ 2n− 1. Thus, we can construct the following stable tuple of type (2n, 2)
starting with this one

i2n

!!}}
j1 j2

ik1

==

. . . ikn

aa ==

. . . ik2n−1

cc

This leads to four semistable tuples by deleting one of the four arrows with source ikn
or i2n. But now it is easy to check that we have exactly one possibility to obtain a
localization datum from this by glueing the source i2n+1.

Since in the case of the partition itself we get one curve of weight 22n+1, in total we
get

N(2n+1,2)[(1
2n+1, 2)] =

1

2
(

(
2n

n

)
+ 4

(
n

n− 1

)(
2n− 1

n− 1

)
)− 1

4
22n+1

which is easily seen to be the same as the expression (4.5.3).
For n = 1, we get the following localization data and the following curves of multi-

plicity four, one and one respectively:

j1

j2

i1 i2 i3

�
�
�

��

�
�
�









�

jk1

�
���

���

HH
HH

HHY

jk2

�
���

���

HH
HH

HHY

im3

im2

im1
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with m2 ∈ {1, 2} and k1, k2 ∈ {1, 2} and m1,m3 ∈ {1, 2, 3} which are four localization
data. For the curves

j1

j2

i1 i2 i3

�
�
�
�
�
�

�
�
�




�

j1

j2

i1 i2 i3

��

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�




�

we get the same quiver colored by k1 = 1, k2 = 2, m1 = 2, m2 = 3, m3 = 1 and
k1 = 1, k2 = 2, m1 = 1, m2 = 3, m3 = 2 respectively.

Let us close this section with a negative example showing that our construction does
not always give a canonical correspondence. Consider the data

1
1

66

(( 1 1oo // 1
1

66

(( 1

with a fixed coloring. Glueing an additional sink, we get the data

1

1
1

@@

66

(( 1 1

YY

oo // 1
1

33

66

(( 1

which has six subdata defining localization data, obtained by deleting two arrows in
an appropriate way. But on the tropical curve side, we only get three new curves in
this way (taking multiplicities into account) because we glue a curve of slope (3, 4) and
one of slope (0, 1).
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5 Quiver Grassmannians and
F -polynomials of representations of
quivers of extended Dynkin type D̃n

Quiver Grassmannians are certainly interesting in their own right as they parametrize
subrepresentations of a fixed dimension of a fixed quiver representations. Around 25
years ago, they first appeared in Schofield’s paper [61] where he used them to make
statements concerning subrepresentations of general representations of quivers and the
canonical decomposition of roots. Nowadays they, additionally, attract attention be-
cause of their relevance for cluster algebras. As already indicated in Section 2.6, the
generating function of the Euler characteristics of quiver Grassmannians of a fixed
representation determines a cluster variable and vice versa.

In the case of quivers of extended Dynkin type Ãn and D̃n, a key observation is
that every real root representation is a tree module. It turns out that an appropriate
coefficient quiver can be chosen such that the Euler characteristic of their quiver Grass-
mannians is given by the number of certain subgraphs of the respective dimension type.
Hence, it is given in a purely combinatorial way. For type Ãn, the Euler characteristics
were determined in [10] and [30]. In this chapter, we review the main results of [43, 44]
and try to motivate possible future considerations which are based on the introduced
or related methods. In there, the case of quivers of extended Dynkin type D̃n is treated
which turns out to be by far more considerable than the case of quivers of type Ãn.
To deal with it, the notion of Schubert decompositions introduced in [41, 42] is needed
which happens to be a cell decomposition into affine spaces for a certain basis.

The first step is to show this for indecomposable representations of small defect.
The second one is to generalize methods of Caldero and Chapoton [5] to the present
case. This can be used to obtain a cell decomposition of quiver Grassmannians of
representations of large defect. This is treated and reviewed in the first section of this
chapter.

In the second section, we derive an explicit description of the F -polynomials of rep-
resentations of quivers of extended Dynkin type D̃n. We present several methods which
can be used to restrict our observations to subspace orientation and to n ≤ 6 respec-
tively. For subspace orientation and indecomposable preprojective representations of
small defect, the Euler characteristic is given by the number of so-called admissible
subsets of the respective coefficient quiver. The upshot is that the corresponding gen-
erating function can be determined explicitly. Moreover, we can use a formula similar
to the multiplication formula of Theorem 2.6.2 in order to obtain the generating func-
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tions for representations of large defect. The remaining cases, i.e. all representations
lying in the tubes, are also covered by one of the methods pointed out.

In the final section, we concentrate on an aspect which was not treated in [43, 44] and
consider torus actions on quiver Grassmannians. It turns out that, for representations
which are not cover-thin, there rarely exists a well-defined and non-trivial action. This
is also a reason why the methods used in [10, 30] cannot be generalized to type D̃n. But
actually, in many cases there exists a non-trivial torus action on the particular Schubert
cells. We investigate it for D̃4 in subspace orientation and end up with the formula
for the Euler characteristic also obtained with the methods of the preceding sections.
This section should also be understood as a motivation for future considerations.

We should note that it is likely, but still not investigated in detail, that there are
similar results for quivers of type Ẽ.

5.1 Decomposition into affine spaces

Throughout this chapter, we fix the field of complex numbers. Moreover, we fix a
quiver of extended Dynkin type D̃n unless otherwise stated.

In this section, we construct cell decompositions into affine spaces of quiver Grass-
mannians of representations of quivers of extended Dynkin type D̃n. We first introduce
the notion of Schubert decompositions and describe the coefficient quivers which need
to be considered for our purposes. This turns out to be a cell decomposition for
representations of small defect. This is also the starting point for constructing cell
decompositions for representations of large defect as considered in the last subsection.

5.1.1 Schubert decomposition of quiver Grassmannians

We review some of the results of [41] and [42] which can be used to transfer the Schubert
decomposition of the usual Grassmannians to a decomposition of quiver Grassmanni-
ans.

A point of the Grassmannian Gre(d) is an e-dimensional subspace V of Cd. If V
is spanned by vectors w1, . . . , we ∈ Cd, we may write w = (wi,j)i=1...d,j=1...,e for the
matrix of all coordinates of w1, . . . , we. For a subset β ⊂ {1, . . . , d} of cardinality e,
the Plücker coordinates

∆β(V ) = det(wi,j)i∈β,j=1...,e

define a point (∆β(V ))β in P
(
ΛeCd

)
. For two ordered subsets β = {i1, . . . , ie} and

β′ = {j1, . . . , je} of {1, . . . , d}, we define β ≤ β′ if il ≤ jl for all l = 1 . . . , e. The
Schubert cell Cβ(d) of Gre(d) is defined as the locally closed subvariety of all subspaces
V such that ∆β(V ) 6= 0 and ∆β′(V ) = 0 for all β′ > β.

For a complex representation M with a fixed basis B, this motivates to define the
Schubert cell

CM
β = Cβ(d) ∩Gre(M) ⊂

∏
q∈Q0

Greq(dimMq) ⊂ Gre(d)
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where d =
∑

q∈Q0
dimMq, e ∈ NQ0 and β is of cardinality e =

∑
q∈Q0

eq. This yields
the so-called Schubert decomposition of the quiver Grassmannian

Gre(M) =
∐
β⊂B

of type e

CM
β .

Note that the cells are in general no affine spaces. The next step is to describe the
Schubert cells by explicit equations. For a subset β of B, let N be a point of CM

β .
For every p ∈ Q0, the vector space Np has a basis (wj)j∈βp where wj = (wi,j)i∈Bp are
column vectors in Mp with respect to the coordinates given by Bp. If we define wi,j = 0
for i, j ∈ B whenever j /∈ β, or i ∈ Bp and j ∈ Bq with p 6= q, then we obtain a matrix
w = (wi,j)i,j∈B. We call such a matrix w a matrix representation of N . A matrix
w ∈ MatB×B is said to be in β-normal form if it satisfies

i) wi,i = 1 for all i ∈ β;

ii) wi,j = 0 for all i, j ∈ β with j 6= i;

iii) wi,j = 0 for all i ∈ B and j ∈ β with j < i;

iv) wi,j = 0 for all i ∈ B and j ∈ B − β;

v) wi,j = 0 for all i ∈ Bp and j ∈ βq with p 6= q.

We say that wi,j is a constant coefficient (with respect to β) if it appears in i)-v);
otherwise we say that wi,j is a free coefficient (with respect to β), which is the case if
and only if there is a p ∈ Q0 such that i ∈ Bp − βp, j ∈ βp and i < j. The following
lemma is crucial for our studies:

Lemma 5.1.1 ([42, Lemmas 2.1, 2.2], [41, Section 4.1]). Let M be a complex repre-
sentation with coefficient quiver Γ(M,B) with matrix coefficients denoted by µρ,s,t.

i) Every N ∈ CM
β has a unique matrix representation w = (wi,j)i,j∈B in β-normal

form.

ii) There is a natural embedding ιβ : CM
β → MatB×B such that its image is the

intersection of the solution set of i)-v) and the vanishing set of the polynomials

E(ρ, t, s) =
∑

(ρ,s′,t′)∈Γ1

µρ,s′,t′wt,t′ws′,s −
∑

(ρ,s′,t)∈Γ1

µρ,s′,tws′,s (5.1.1)

for all arrows ρ : p→ q in Q1 and all vertices s ∈ F−1(p) and t ∈ F−1(q). Here
F : Γ(M,B)→ Q is the natural morphism.

Our major question is whether the Schubert decomposition is a decomposition into
affine spaces. If this is the case, the closures of the non-empty Schubert cells form
an additive basis for the singular cohomology ring of Gre(M), and they show that
the cohomology is concentrated in even degree. Therefore, we can compute the Euler
characteristic of Gre(M) as

χ(Gre(M)) = #{β ⊂ (ΓM)0 of type e such that CM
β is not empty}.
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5.1.2 Representations of small defect

For a quiver of extended Dynkin type with imaginary Schur root δ, let δ(M) :=
〈δ, dimM〉 be the defect of M . We have |δ(M)| ≤ 2 if M is indecomposable, see
for instance [13, Sections 7-9]. We say that an indecomposable representation M is of
small defect if it lies not in an homogeneous tube and if it satisfies |δ(M)| ≤ 1. If Q is
of type D̃n, the underlying graph is given by

qb qc

qa

q0 q1 . . . qn−5 qn−4

qd

b

a

v0 vn−5
c

d

where we use the indicated notation. In order to shorten notation, we write Pa instead
of Pqa etc. for the indecomposable projective representations. For our investigations, it
is crucial that the coefficient quivers of representations of small defect are of a special
shape. To do so, we consider preprojective representations rather than preinjective
ones. Since the cases are dual, it is straightforward to transfer our methods to the case
of preinjective representations.

In the following diagrams, the dashed arrows are only contained in Γ if the orientation
of the corresponding arrow of Q is as indicated. Moreover, a dotted arrow is not
contained in the coefficient quiver, and it is only displayed to indicate the orientation
of the corresponding arrow of Q. Moreover, we assume without loss of generality that
the coefficients corresponding to the arrows of a tree-shaped coefficient quiver of a tree
module are one.

Theorem 5.1.2 ([43, Appendix B]). Up to automorphism of the underlying Dynkin

diagram of the quiver D̃n, an indecomposable preprojective representation M with
δ(M) = −1 has an ordered basis such that the coefficient quiver Γ = Γ(M,B) is given
by

•◦•••••◦

•◦

•◦

•◦

•◦

•◦

• • •• •◦

•◦•• • • •

• •

•◦

•◦

d

c

vn−5v0

b

a

b

a

a

v0

d

d

vn−5

vn−5

d

c

vn−5v0

where the bottom row ends in one of the following situations

• •
v v′

• • •
v′ v

•◦ • •

•◦

a v0

b

• • •◦

•◦

dvn−5

c
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where v ∈ {v0, . . . , vn−5} and v′ ∈ {b, v0, . . . , vn−5, c}.
Up to an automorphism of D̃n, the coefficient quivers of indecomposable representa-

tions in the tubes of rank 2 are recursively given by

•◦

•◦ • • . . . • • •◦

••◦

•◦ • • . . . • • •◦

b

a

v0 vn−5 d

c

d

b

a

v0 vn−5

and
•◦

•◦ • • . . . • • •◦

••◦

•◦ • • . . . • •

••◦

•◦ • • . . . • • •◦

b

a

v0 vn−5 d

c

c

b

a

v0 vn−5

db

a

v0 vn−5

when glueing an appropriate number of copies of the coefficient quiver

••◦

•◦ • • . . . • •

••◦

•◦ • • . . . • •

b

a

v0 vn−5

db

a

v0 vn−5

c

between the first and the second row of one of the above quivers.
Up to an automorphism of D̃n, the coefficient quivers of indecomposable representa-

tions in the tubes of rank n− 2 are recursively given by

•◦••

•◦

•◦

•◦

•◦

• • •• •◦

• •

d

c

vn−5

b

a

a

v0

d

vn−5

v0

where the top row ends in one of the following situations

• •
v v′

• • •
v′ v

•◦ • •

•◦

a v0

b

• • •◦

•◦

dvn−5

c

and the bottom row ends in one of the following situations

• •
v v′

• • •
v′ v

•◦ • •

•◦

a v0

b

• • •◦

•◦

dvn−5

c
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where v ∈ {v0, . . . , vn−5} and v′ ∈ {b, v0, . . . , vn−5, c}.

The ordering on the considered basis B can be deduced from the following rule:
if a vertex i is drawn on top of another vertex j, then we have i < j. Since the
Schubert decomposition Gre(M) =

∐
CM
β depends only on the ordering on each fibre

of FΓ : Γ→ Q, we can extend this partial order arbitrarily to a linear order of B.
For coefficient quivers of this shape, it turns out that the system of equations given

by (5.1.1) can be solved recursively. Moreover, it can be shown that the solution set
is either an empty set or isomorphic to an affine space. This depends on the subgraph
described by β ⊂ B. Actually, there are two kinds of subsets β which lead to empty
vanishing sets and which are called contradictory. The first one is rather easy to
identify because we only need the notion of extremal arrows and extremal successor
closed subsets β. The second one depends on the orientation of the arrows a, b, c, d
and is slightly more complicated. But it is still possible to identify these subsets
straightforwardly because the conditions for being contradictory are local conditions
involving only a small number of arrows and vertices.

Definition 5.1.3. An arrow (v, s, t) ∈ Γ1 is called extremal if for all arrows (v, s′, t′) ∈
Γ1 either s < s′ or t′ < t holds. A subset β of B = Γ0 is called extremal successor closed
if for all extremal arrows (v, s, t) ∈ Γ1, s ∈ β implies t ∈ β. Let M be a representation
of Q with ordered basis B. We say that β is contradictory of the first kind if it is not
extremal successor closed.

A subset β of B is contradictory of the second kind if it satisfies the following con-
ditions:

i) β is not contradictory of the first kind;

ii) There is a subgraph Γ′ of Γ of the form

k

i0 . . . ir

j0 . . . jr
l

x, µ0

x, µ1

z0

z0

zr−1

zr−1

y, ν0

y, ν1

where ie < je for e = 0, . . . , r, the arrows x, y, z0, . . . , zr−1 ∈ Q1 are pairwise
distinct and of arbitrary orientation, and one of the weights µ0, µ1, ν0, ν1 ∈ C is
allowed to be zero, which means that the corresponding arrow is not part of Γ′;

iii) If both k and l are sinks or both are sources of Γ′, then µ0ν1 6= µ1ν0. If one of k
and l is a sink and the other vertex is a source, then µ0ν0 6= −µ1ν1;

iv) i0, . . . , ir /∈ β, j0, . . . , jr ∈ β; we have k ∈ β if and only if k is a source in Γ′; we
have l ∈ β if and only if l is a source in Γ′;

v) If (v, s, t) is an arrow of Γ that is not contained in Γ′ with v ∈ FΓ(Γ′)1, FΓ(s) =
FΓ(j) and FΓ(t) = FΓ(i) where j ∈ {k, j0, . . . , jr, l} and i ∈ {k, i0, . . . , ir, l}, then
s < j or i < t.
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In general, it is convenient to use the following lemma in order to pass to a much
simpler system of equations (called reduced Schubert system in [43]):

Lemma 5.1.4 ([43, Lemma 2.8]). Let M be a representation of Q. If β is not extremal
successor closed, the Schubert cell CM

β is empty.

This means that we can restrict to subsets β ⊂ B which are extremal successor closed.
In particular, we can substitute wii by one or zero. Moreover, it is straightforward to
check that the equations E(v, t, s) are trivial if t ∈ β or s /∈ β which means that we
only need to consider the equations E(v, t, s) in which t /∈ β and s ∈ β, see also [42,
Lemma 2.2]. Under the assumption that M is a tree module with coefficient quiver
Γ, as already mentioned, the coefficients µv,s,t can be assumed to be one or zero. The
reduced equations have the following shape:

i) If (v, s, t) is an extremal arrow in ΓM and β is extremal successor closed, the
equation E(v, t, s) is constant zero;

ii) If t /∈ β and s ∈ β, we obtain the reduced form

E(v, t, s) =
∑

(v,s,t′)∈Γ1

t<t′

wtt′ +
∑

(v,s′,t′)∈Γ1

t<t′,s′<s

ws′swtt′ −
∑

(v,s′,t)∈Γ1

s′<s

ws′s − µv,s,t

where µv,s,t = 1 if (v, s, t) is an arrow of Γ and µv,s,t = 0 otherwise.

This simplification is crucial in the case of representations treated in Theorem 5.1.2
as this makes it possible to use the theory of Schubert systems. In a first step, the
following can be shown:

Proposition 5.1.5 ([43, Proposition 4.2]). If β is contradictory of the first or of the
second kind, the Schubert cell CM

β is empty.

Now in a second step, this result can be used to show that every cell CM
β is isomorphic

to an affine space if the corresponding subset β is neither contradictory of the first nor
of the second kind. In [43], this is obtained by solving the equations, which are not
trivial, recursively. One major reason for this to be possible is the orientation of the
dotted arrows of the coefficient quivers under consideration. Roughly speaking, this
ensures that there are no additional equations induced by the tail of the dotted arrow.
The other reason is the recursive construction of the coefficient quivers. In fact, for
a fixed coefficient quiver as above, it is possible to glue a coefficient quiver, whose
corresponding representation has the imaginary root as dimension vector, in order to
obtain a new coefficient quiver whose top and end row remain the same.

Theorem 5.1.6 ([43, Theorem 4.4]). Let e be a dimension vector of Q, let M be one
of the indecomposable representations considered in Theorem 5.1.2 and let Γ(M,B) be
the respective coefficient quiver. Then the Schubert decomposition

Gre(M) =
∐
β⊂B

of type e

CM
β
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with respect to B is a decomposition into affine spaces. A Schubert cell CM
β is empty if

and only if β is contradictory of the first or of the second kind.

Note that the dimension of the affine cells is also explicitly given by [43, Theorem
4.4].

Corollary 5.1.7 ([43, Corollary 4.5]). The Euler characteristic of Gre(M) is

χ(Gre(M)) = #

{
β ⊂ B

∣∣∣∣ β of type e and not contradictory
of the first or of the second kind

}
.

In the case of representations of large defect, this approach fails (at least for those
coefficient quivers we considered during our investigation) because the arrows, which
correspond to the dotted arrows in the present situation, are partially oriented the
other way around. This leads to additional equations while the number of variables
remain the same. But still the corresponding quiver Grassmannians do have a cell
decomposition into affine spaces as we will see in the next section.

5.1.3 Representations of large defect

For two representations M,N , we define [M,N ] := dim Hom(M,N). For a fixed short
exact sequence

0→M
i−−→ B

π−−→ N → 0,

we consider the following morphism of algebraic varieties

Ψe : Gre(B)→
∐

f+g=e

Grf (M)×Grg(N), U 7→ (i−1(U), π(U))

as introduced in [5, Section 3]. Note that we have i−1(U) ∼= U ∩ M and π(U) ∼=
(U +M)/M ∼= U/U ∩M .

It is crucial for us that the proof of [5, Lemma 3.11] applies in a more general setup
and can be used to show that the fibres of the morphism are either empty or affine
spaces:

Lemma 5.1.8. If Ψ−1
e (A, V ) is not empty, we have Ψ−1

e (A, V ) = A[V,M/A].

In the case of almost split sequences, [5, Lemma 3.11] and [8, Proposition 2] re-
spectively, show that the fibre of (A, V ) ∈ Grf (M) × Grg(N) is only empty for
(A, V ) = (0, N) and only depends on the dimension vectors dimA and dimV other-
wise. This can be used to show that cell decompositions into affine spaces are preserved
by almost split sequences. In our situation, we are faced with two major problems.
In general, preprojective representations of D̃n with n ≥ 6 cannot be written as the
middle term of an almost split sequence. Furthermore, it is by far more difficult to
identify empty fibres and their dimensions respectively in the case of general short
exact sequences. This also means that a cell decomposition might not be preserved.
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Our first step is to write a preprojective representation of large defect as the middle
term of a short exact sequence between representations of small defect which is closed
to almost split. In a second step, it is possible to combine Theorem 5.1.6 and general-
izations of the methods of Caldero and Chapoton, which are developed in [5], in order
to show that every quiver Grassmannian of type D̃n has a decomposition into affine
spaces.

With every pair of preprojective representations (τ−mPa, τ
−mPb), we can recursively

associate the tuple (ρlτ−mPa, ρ
lτ−mPb) when defining

(ρτ−mPa, ρτ
−mPb) := (τ−(m+1)Pb, τ

−(m+1)Pa).

Moreover, we define

(κlτ−mPa, κ
lτ−mPb) :=

{
(τ−(m+l)Pa, τ

−(m+l)Pb) if l is odd

(τ−(m+l)Pb, τ
−(m+l)Pa) if l is even

.

As already mentioned, a representation of large defect cannot be written as the
middle term of an almost split sequence. But it turns out that, for an indecompos-
able preprojective representation B with δ(B) = −2, the following subquiver of the
Auslander-Reiten quiver induces a substitute for it:

M � r

$$

κM � s

&&

. . . . . . . . . κl−1M� t

&&

N = κlM

•

99 99

� r

$$

// // ρM �
� // • . . . •

77 77

// // ρl−1M �
� // •

66 66

. . . � s

&&

• � s

%%

. .
.+ �

99

•+
�

99

� t

''

•*



77

B
* 


77

Here M and N are two indecomposable preprojective representations of D̃n of defect
−1. More precisely, we have:

Lemma 5.1.9 ([44, Lemma 1.10]). Every indecomposable preprojective representation
B with δ(B) = −2 is obtained as the middle term of a short exact sequence

0→M → B → N → 0

such that N = κlM ∈M⊥ with l ≤ n− 3, Ext(N,M) = k and Hom(N,M) = 0.

In the following, we refer to the indecomposable representations lying properly in the
above triangle or corresponding to a point T 6= B on the path from B to N as (M,N)-
inner representation. The remaining ones, i.e. those which are outside the triangle or
on the path from M to B, as (M,N)-outer representations. We drop (M,N) if it is
clear which representations are considered. Finally, if a (M,N)-inner (resp. (M,N)-
outer) representation is also a subrepresentation of N , we call it inner (resp. outer)
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subrepresentation of N if we fixed a triangle before. In order to investigate such a
triangle, the Auslander-Reiten formulae assure that we can mostly without loss of
generality assume that M = Pa and N = κlM .

The next step is supposed to investigate the morphism Ψe in the present situation.
In particular, we need to study which fibres are empty, and we have to determine the
dimensions of the non-empty fibres. This is done in [44, Section 1.6]. A key step is the
following lemma:

Lemma 5.1.10 ([44, Lemma 1.12]).

i) The inner subrepresentations C of N are precisely the representations C = κiM
for i = 1, . . . , l.

ii) If A is a non-zero subrepresentation of M and V is any subrepresentation of N ,
we have Ext(V,M/A) = 0.

iii) If 0 6= V ⊆ N , the corresponding injection either factors through B or V ∼= C⊕L
where C is an inner subrepresentation of N with Hom(C,B) = Hom(C,M) = 0.

iv) If C ⊕L ⊆ N such that C is an inner subrepresentation, we have that L ⊆ N/C
is preprojective, and, moreover, we have that

{V ′ ∈ GrdimC+dimL(N) | V ′ ∼= C⊕L′, L′ prep.} ∼= {L′ ∈ GrdimL(N/C) | L′ prep.}

is a union of cells CN
β of the cell decomposition of GrdimC+dimL(N) into affine

spaces obtained in Theorem 5.1.6.

Combining the methods of [5, Lemma 3.11] with Lemmas 5.1.8 and 5.1.10, it is
possible to prove the following essential proposition:

Proposition 5.1.11 ([44, Proposition 1.14]).

i) The fibre Ψ−1
e (A, V ) is empty if and only if A = 0 and V ∼= C ⊕L where C is an

inner subrepresentation and L = 0 or L ⊂ N/C is preprojective.

ii) If Ψ−1
e (A, V ) is not empty, we have Ψ−1

e (A, V ) = A[V,M/A].

iii) For all subrepresentations V ⊆ N and A ⊆ M of a fixed dimension, we have
[V,M/A] = 〈dimV, dimM/A〉. In particular, the dimensions of the non-empty
fibres of Ψe only depend on the dimension vectors of V and A respectively.

The considerations of this section together with [43, Theorem 4.4] now yield that
there exists a cell decomposition for every quiver Grassmannian attached to preprojec-
tive representations (resp. preinjective representations).

Theorem 5.1.12 ([44, Theorem 1.15]). Let B ∈ Rep(Q) be an indecomposable pre-
projective representation with δ(B) = −2. Then there exist two preprojective represen-
tations M and N = κlM with δ(M) = δ(N) = −1 and a short exact sequence

0→M → B → N → 0
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such that we have

Ψ−1
e (A, V ) =

{
∅ if A = 0, V ∼= C ⊕ L, C an (M,N)-inner subrepresentation

A〈dimV, dimM/A〉 otherwise
.

For the bases fixed in Theorem 5.1.2, we have that Ψ−1
e (A, V ) is constant on CM

β ×CN
β′ ⊆

GrdimA(M) × GrdimV (N) for each pair (β, β′) of type (dimA, dimV ). In particular,
Gre(B) has a cell decomposition into affine spaces.

The results of this section can now be used to obtain the F -polynomials of indecom-
posable representations of large defect. It is straightforward to check that, in terms of
cluster variables, this corresponds to the multiplication formula of Theorem 2.6.2:

Theorem 5.1.13 ([44, Theorem 1.17]). Let B be an indecomposable representation
with δ(B) = −2. If 0 → M → B → N → 0 is a short exact sequence as in Theorem
5.1.12, we have

FB = FNFM − xdim τ−1MFN/τ−1M .

Proof. We include the proof for the convenience of the reader. It is straightforward to
check that GrdimC(N) = {pt} for every inner subrepresentation of N . Every regular
subrepresentation V of N/C gives rise to an inner subrepresentation C ′ of N obtained
as the middle term of the unique exact sequence between C and V . Also the fibre of
(0, C ′) is empty. Moreover, every preprojective subrepresentation V of N/C gives rise
to a subrepresentation C ⊕ V of N such that the fibre of (0, C ⊕ V ) is empty. We can
also combine both cases in the natural way. Choosing C = τ−1M , these observations
can be summarized to

χ(Gre(B)) =
∑
f+g=e

χ(Grf (M))χ(Grg(N))−
∑

f=e−dim τ−1M

χ(Grf (N/τ
−1M)).

Now it is straightforward that, in terms of F -polynomials, this translates to the claim.

5.1.4 Representations of the homogeneous tubes

Quiver Grassmannians of representations of dimension rδ of the homogeneous tubes
are independent of the chosen tube. This was already shown in [20, Lemma 5.3], but
follows also from the independence for r = 1 together with the observations of [44,
Section 1.7] which we review in what follows. These investigations additionally show
that each quiver Grassmannian associated with a representation of a homogeneous tube
has a cell decomposition into affine spaces.

Let us fix a homogeneous tube and let Mrδ be the representation of dimension rδ in
this tube. Then there are non-splitting sequences of the form

0→M(r−1)δ
ir−→Mrδ

πr−→Mδ → 0
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where ir is irreducible. We again consider the morphism

Ψr
e : Gre(Mrδ)→

∐
f+g=e

Grf (M(r−1)δ)×Grg(Mδ), U 7→ (i−1
r (U), πr(U)).

Similar to the case of preprojective representations of large defect, the idea is to identify
the empty fibres in a first step and to show that the non-empty fibres only depend on
the dimension vectors of the subrepresentations in a second one. Actually, it turns out
that the empty fibres can be described recursively.

Lemma 5.1.14 ([44, Lemmas 1.20, 1.21]).

i) The fibre (Ψr
e)
−1(A, V ) is empty if and only if V = Mδ and i−1

r−1(A) ∼= A, i.e. A
is already a subrepresentation of M(r−2)δ.

ii) If (Ψr
e)
−1(A, V ) 6= ∅, we have (Ψr

e)
−1(A, V ) = A〈dimV,dimM(r−1)δ/A〉.

This enables us to prove the main result of [44, Section 1.7].

Theorem 5.1.15 ([44, Theorem 1.22]). Every quiver Grassmannian Gre(Mrδ) has a
cell decomposition into affine spaces. Moreover, this decomposition is compatible with
the decomposition

Gre(Mrδ) = {U ∈ Gre(Mrδ) | πr(U) = 0} ∪ {U ∈ Gre(Mrδ) | πr(U) 6= 0}. (5.1.2)

Proof. We include the proof for the convenience of the reader. We proceed by induction
on r. If r = 1, the claim follows for instance by [44, Theorem 4.4], but can also be
checked by hand. Since we clearly have π1(U) 6= 0 for every subrepresentation U ⊂Mδ,
also the compatibility follows.

Thus, let r ≥ 2. By Lemma 5.1.14, the fibre of (A, V ) is empty if and only if A is a
subrepresentation of M(r−2)δ and V = Mδ. Since Grf (M(r−1)δ) and Grg(Mδ) have cell
decompositions, by Lemma 5.1.14, it follows that

(Ψr
e)
−1(Grf (M(r−1)δ)×Grg(Mδ))

has a cell decomposition if g 6= δ. If g = δ, the fibre is empty if πr−1(A) = 0. Since
the cell decompositions of the quiver Grassmannians Grf (M(r−1)δ) are compatible with
the decomposition (5.1.2) by induction hypothesis, the claim follows in this case in the
same way.

Since we have πr((Ψ
r
e)
−1(A, V )) = 0 if and only if V = 0, it follows that

{U ∈ Gre(Mrδ) | πr(U) = 0} = (Ψr
e)
−1(Gre(M(r−1)δ)× {0})

and

{U ∈ Gre(Mrδ) | πr(U) 6= 0} = (Ψr
e)
−1(

∐
f+g=e
g 6=0

Grf (M(r−1)δ)×Grg(Mδ)).

This already shows that the cell decompositions of the quiver Grassmannians Gre(Mrδ)
are also compatible with decomposition (5.1.2).
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We define Frδ := FMrδ
. Now the following corollary is straightforward:

Corollary 5.1.16 ([44, Corollary 1.23]). We have

Frδ = FδF(r−1)δ − xδF(r−2)δ

for r ≥ 1 where F0 = 1 and F−δ := 0.

5.2 F -polynomials

The determination of the generating functions (resp. F -polynomials) relies on two
ingredients. Firstly, we need the connections between quiver Grassmannians and F -
polynomials of a representation M and those of its BGP-reflections σM as studied in
[17, Section 5] and [74, Section 5]. This can be used to restrict our considerations
to D̃n in subspace orientation. Secondly, we can use that most of the linear maps of
indecomposable representations of D̃n are isomorphisms. In turn, this can be used to
restrict our considerations to the quivers D̃4, D̃5 and D̃6.

5.2.1 F -polynomials and BGP-reflections

We review some of the results of [74] and [17] where in the latter paper the more
general case of mutations is treated. For a fixed representation M of dimension α and
a dimension vector e, we consider the subvarieties

Gre(M, qr) = {U ∈ Gre(M) | dim Hom(U, Sq) = r}

and
Gre(q

r,M) = {U ∈ Gre(M) | dim Hom(Sq, U) = r}.

If q is a sink, we consider the map

πrq : Gre(M, qr)→ Gre−rsq(M, q0)

where πrq is defined by πrq(U)q = ImφUq and πrq(U)p = Up if p 6= q. Here φUq is the linear
map which is used to define the BGP-reflection functor in Section 2.2. Note that πrq(U)
is indeed a subrepresentation of dimension e− rsq of M such that Hom(U, Sq) = 0.

Theorem 5.2.1 ([74, Theorem 5.11]). The morphism πrq is surjective with fibres iso-
morphic to Grr(αq − eq + r). Moreover, there exists an isomorphism of varieties

σq : Gre(M, q0)→ Grσqe(q
0, σqM), U 7→ σqU.

The analogous statement holds if q is a source.
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Now it can be checked that there exists an eq ∈ N such that Gre(M) = Gre(M, q0).
If we fix such an eq, together with Theorem 5.2.1, [44, Proposition 3.2] shows that we
have

χ(Gre+msq(M, q0)) =
m∑
i=0

(−1)m−i
(
αq − eq − i
m− i

)
χ(Gre+isq(M)).

Using the identities of (sums of) binomial coefficients of [44, Lemma 3.3], it is more or
less straightforward to prove the following:

Theorem 5.2.2 ([44, Theorem 3.4]). Let M be a representation of dimension α. Let q
be a sink and e ∈ NQ0 such that Gre(M) = Gre(M, q0). Let n := (σqe)q and t := αq−eq.
Then we have

χ(Grσqe−msq(σqM)) =
m∑
j=0

χ(Gre+jsq(M))

(
n− t
m− j

)
.

In terms of F -polynomials, this can be used to re-obtain [17, Lemma 5.2] in the
special case of BGP-reflections as done in [44, Theorem 3.5]. We again consider the
case where Gre(M) = Gre(M, q0). By Theorem 5.2.2, we know that

χ(Gre+rsq(M))

(
n− t
i

)
contributes to the coefficient of xσq(e)−(r+i)sq for r = 0, . . . , t and i = 0, . . . n − t. In
other words, for the coefficient of xσq(e)−(r+i)sq in FσqM(x), we get

n−t∑
i=0

(
n− t
i

)
χ(Gre+rsq(M))xσq(e)−(r+i)sq = xσq(e+rsq)χ(Gre+rsq(M))(1 + x−1

q )n−t.

Define σq(x
e) := xσq(e)(1+x−1

q )σq(e)q+eq . Now we can formulate the following statement:

Theorem 5.2.3 ([17, Lemma 5.2]). Let M be a representation of dimension α.

i) Let q be a sink. Then we have

FσqM(x) = (1 + x−1
q )− dimMq

∑
e∈NQ0

χ(Gre(M))σq(x
e) = (1 + x−1

q )− dimMqFM(x′)

where

x′i =

{
x−1
i if i = q

xix
a(i,q)
q (1 + x−1

q )a(i,q) if i 6= q
.

ii) Let q be a source. Then we have

FσqM(x) = (1 + x−1
q )(σqdimM)qFM(x′)

where

x′i =

{
x−1
i if i = q

xix
a(q,i)
q (1 + xq)

−a(q,i) if i 6= q
.
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5.2.2 Reduction of type one

We shortly recall the basic results of [44, Section 2.1] which lead to the so-called
reductions of quiver Grassmannians of type one. Actually, this kind of reduction works
for any quiver Q which has a full subquiver of the form

q2
ρ2−→ q1

ρ1−→ q0

and for any representation M of dimension α such that the linear maps Mρi are of
maximal rank. By [72], this is for instance true for real root representations.

If we additionally have that αq2 ≤ αq1 = αq0 , we have Gre(M) 6= ∅ only in the case
if eq2 ≤ eq1 ≤ eq0 . Then we can consider the quiver Q(q1) obtained when deleting
the vertex q1 and the two corresponding arrows while adding an extra arrow q2 → q0.
Let M̂ and ê be the induced representation and the induced dimension vector. The
maximal rank property now yields that

Gre(M) ∼= Greq1−eq2 (eq0 − eq2)×Grê(M̂).

Clearly, we obtain a dual version of this statement when turning around the arrows.
We want to consider a similar case and assume that we are faced with the following

situation
keq0 kαq0

keq1

OO

⊆ kαq1

keq2

::

keq3

dd

kαq2
, �

99

kαq3
2 R

ee

(with injective linear maps). Moreover, we assume that αq2 + αq3 ≤ αq1 = αq0 , e ≤ α
and kαq2 ∩ kαq3 = {0}. Here we think of these two vector spaces as subspaces of kαq1 .

Since all maps in the diagram are injective, similar to the preceding case, we can
consider the reduction

keq0 kαq0

keq2

99

keq3

ee

kαq2

99

kαq3

ee

and obtain
Gre(M) ∼= Grê(M̂)×Greq1−eq2−eq3 (eq0 − eq2 − eq3).

Note that there is again a dual case obtained when turning around all arrows. In terms
of F -polynomials, this leads to the following result:

Lemma 5.2.4 ([44, Lemma 4.4]). Let M be a representation of Q which can be reduced
to a representation M̂ by the first instance of reduction of type one. Then we have

FM(x) =
∑
ê∈NQ0

χ(Grê(M̂))xêx
êq2
q1 (1 + xq1)êq0−êq2 .
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In other words, considering the variable transformation xq 7→ x′q where

x′q0 := xq0(1 + xq1), x′q2 := xq1xq2(1 + xq1)−1, x′q = xq for all q′ /∈ {q0, q2},

we have FM(x) = FM̂(x′).
Moreover, we obtain an analogous statement for the second instance of reduction of

type one.

5.2.3 F -polynomials of representations of the homogeneous tubes

Later it turns out that the F -polynomials of representations of the homogeneous tubes
play an important role in the description of F -polynomials of indecomposable repre-
sentations of D̃n. We make use of the recursion obtained in Corollary 5.1.16 in order to
develop an explicit formula for these F -polynomials. To do so, we use methods which
are similar to those used when solving the recursion of the Fibonacci numbers and
which are recalled in detail in [44, Section 4.2]. More detailed, we consider a recursion
of the following shape where f0, f1 ∈ k[xi | i ∈ I] and where fj for j ≥ 2 is recursively
defined by (

f2n

f2n+1

)
=

(
a b
c d

)(
f2n−2

f2n−1

)
for some a, b, c, d ∈ k[xi | i ∈ I] and where n ≥ 1. Then the following holds:

f2n =
1

2z
((a(λn+ − λn−)− (ad− bc)(λn−1

+ − λn−1
− ))f0 − b(λn− − λn+)f1), (5.2.1)

f2n+1 =
−1

2bz
((a− λ+)(a− λ−)(λn+ − λn−)f0 + b(λn+(a− λ+)− λn−(a− λ−))f1) (5.2.2)

where

λ± =
a+ d

2
±
√

(a+ d)2

4
− ad+ bc.

Now the recursion of Corollary 5.1.16 can be rewritten as(
Frδ

F(r+1)δ

)
=

(
0 1
−xδ Fδ

)r+1(
0
1

)
.

Defining

z =
1

2

√
F 2
δ − 4xδ, λ± =

Fδ
2
± z,

the following explicit formula can be obtained:

Corollary 5.2.5 ([44, Corollary 4.12]). We have

Frδ =
1

2z
(λr+1

+ − λr+1
− ).
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Remark 5.2.6. For r ≥ 1, we can also consider the almost split sequences

0→Mrδ →M(r−1)δ ⊕M(r+1)δ →Mrδ → 0

where M0δ = M0 := 0 and FM0 = 1. By [5, Lemma 3.11], we thus obtain the recursive
description

F(r+1)δF(r−1)δ = F 2
rδ − xrδ

for r ≥ 1.

5.2.4 Admissible subsets

In order to determine the Euler characteristics of quiver Grassmannians Gre(M), it
suffices to count the number of subsets β ⊂ B of type e which are not contradictory of
the first and second kind. It turns out that, even if Definition 5.1.3 might look com-
plicated, for a fixed orientation it is actually easy to check if a subset is contradictory
of the first or second kind. In the following, we restrict to subspace orientation which
is sufficient for the determination of F -polynomials.

The involved combinatorics can be described in terms of so-called admissible subsets
of the following snake-shaped coefficient quiver which defines a preprojective represen-
tation. The F -polynomials of representations in the tubes can be obtained by slight
modifications as we will see in Section 5.2.5. Let Q(s, n) (where t := 2n − 2) be the
following coefficient quiver where we omit the vertices and only state the numbering:

012n− 4n− 3

n− 2

n− 1 n n+ 1 2n− 42n− 5

2n− 3

2n− 22n− 1

st+ n− 4st+ n− 3

st+ n− 2

st+ n− 1 st+ n

d

vn−5v0

a

a

b

v0

c

d

c

vn−5

v0

a

a

b

We denote the corresponding preprojective representation by M(s, n). By a ramifi-
cation subgraph, we mean a subgraph of the form

l

l + 1

l + 2 l + 3

x

x

y
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Note that in our case we have x ∈ {a, c} and y ∈ {b, d}. Moreover, the extremal
arrows of Q(s, n) are all arrows but those of the form l + 1

x−−→ l contained in the
ramification subgraphs.

Definition 5.2.7. We call a subset G0 of Q(s, n)0 admissible if the following holds:

i) G0 is extremal successor closed, i.e. if the tail of an extremal arrow is contained
in G0, the head is also contained in G0;

ii) For all ramification subgraphs, we have: if l+1, l+2 ∈ G0, it follows that l ∈ G0.

Note that we automatically have l+3 ∈ G0 if G is extremal successor closed and if l+
1 ∈ G0 or l+2 ∈ G0. Every such subset G0 induces a dimension vector e ∈ NQ0, called
the type of G0 in what follows. The next step is to determine the number of admissible
subsets of Q(s, n)0 of a fixed type e because it is precisely the Euler characteristic of the
corresponding quiver Grassmannian. More precisely, using Theorem 5.1.6, we obtain:

Theorem 5.2.8 ([44, Theorem 4.8]). Let e ∈ NQ0. Then χ(Gre(M(s, n))) coincides
with the number of admissible subsets of Q(s, n)0 of type e.

Consider I := {0, . . . , 2s + 1} and J := {0, . . . , n − 4}. If we delete the sources of
Q(s, n) corresponding to the ramification subgraphs, we can think of the remaining
graph as a matrix having entries which are vertices, i.e. with every index (i, j) we
associate the vertex in the ith row and jth column of the remaining graph. Note that
we start the indexing by (0, 0).

For (i, j) ∈ I × J , let G(i, j) be the full (connected) subgraph of Q(s, n) which has
vertices {(0, n − 4), (0, n − 5), ..., (i, j)} and where we add the subgraph 1 ← 0 and
also all sources of ramification subgraphs whose remaining vertices are all contained in
{(0, n− 4), (0, n− 5), ..., (i, j)}. Let

F ji =
∑
e∈NQ0

χ(i, j, e)xe

be the generating function counting the number χ(i, j, e) of admissible subsets of
G(i, j)0 of type e. We define Fn−4

−1 := 1 and Fn−4
0 := 1 + xn−4 + xn−4xd. The fol-

lowing lemma can be checked straightforwardly:

Lemma 5.2.9 ([44, Lemma 4.9]). We have the following recursive relations:

i) For all m ≥ 0, j = n− 5, . . . , 0, we have F j2m = xjF j+1
2m + Fn−4

2m−1.

ii) For all m ≥ 0, we have

F0
2m+1 = (1 + x0 + x0xa + x0xb + x0xaxb)F0

2m − x0xaxbFn−4
2m−1.

iii) For all m ≥ 0, we have F1
2m+1 = (x1 + 1)F0

2m+1 − x1F0
2m.

iv) For all m ≥ 0, j = 2, . . . , n− 4, we have F j2m+1 = (xj + 1)F j−1
2m+1 − xjF

j−2
2m .
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v) For all m ≥ 1, we have

Fn−4
2m = (1 + xn−4 + xn−4xc + xn−4xd + xn−4xcxd)Fn−4

2m−1 − xn−4xcxdFn−5
2m−1.

Let H(x, y, z) = 1 + x+ xy+ xz + xyz. Together with the formulae obtained in [44,
Lemma 4.6], one immediately obtains the following recursion:

Corollary 5.2.10 ([44, Corollary 4.10]). We have(
Fn−4

2m+1

Fn−4
2m+2

)
=

(
0 1

−xn−4xcxd H(xn−4, xc, xd)

)(
−F1,n−5 + 1 F1,n−5

−F1,n−4 + 1 F1,n−4

)
(

0 1
−x0xaxb H(x0, xa, xb)

)(
1 0

Fn−6

∏n−5
i=0 xi

)(
Fn−4

2m−1

Fn−4
2m

)
where Fm :=

∑m
i=−1

∏i
j=0 xj and F1,m :=

∑m
i=0

∏i
j=1 xj. Thus, for n = 4, we get(

F0
2m+1

F0
2m+2

)
=

(
0 1

−x0xcxd H(x0, xc, xd)

)(
0 1

−x0xaxb H(x0, xa, xb)

)(
F0

2m−1

F0
2m

)
This turns out to be the essential recursion which can actually be solved as we will

see in the subsequent section.

5.2.5 The main theorem concerning F -polynomials

We introduce some more notation. For a real root representation Mα, we denote by Fα
the corresponding F -polynomial. In a tube of rank t, there exist t chains of irreducible
morphisms

M0,1 ↪→M0,2 ↪→ . . . ↪→M0,t−1 ↪→M1,0 := Mδ ↪→M1,1 ↪→ . . .

where the ml(r) := dimMr,l are real roots and the imaginary root representations
Mr,0 := Mrδ are uniquely determined by this chain. Furthermore, for every real root α
in the tube of rank t, there exists an exceptional root ml(0) such that α = rδ +ml(0).
Under the convention that Fα = 0 if α ∈ ZQ0 has at least one negative component,
setting mt(0) := δ, we can summarize the main results of [44, Section 4] as follows:

Theorem 5.2.11 ([44, Theorems 1.17, 4.14, 4.18 and 4.25]).

i) For the representations Mml(r) lying in an exceptional tube of rank t and l =
0, . . . , t− 1, we have

Fml(r) = Fml(0)Frδ + xml+1(0)Fmt−1(0)−ml+1(0)F(r−1)δ.

ii) Let M be preprojective of defect −1 such that tM := dimM − rδ ≤ δ. If δ − tM
is an injective root, we have

FM = FtMFrδ − xδF(r−1)δ.

If δ − tM is no injective root, we have

FM = FtMFrδ − xτ
−1tMFδ−τ−1tMF(r−1)δ.
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iii) Let B be an indecomposable representation of defect −2. Then there exist inde-
composable representations M and N of defect −1 such that

FB = FNFM − xdim τ−1MFN/τ−1M .

iv) Passing to the dual, we obtain analogous formulae for indecomposable represen-
tations of positive defect.

The third result was already obtained in Theorem 5.1.13. As already mentioned,
the idea to prove the first two results is the same. Firstly, one proves the identities
for D̃4 in subspace orientation using the notion of admissible subsets and by solving
the recursion obtained in Corollary 5.2.10. Using (inverse) reduction of type one, we
can show the identities for D̃n in subspace orientation for arbitrary n. Finally, one
can show that the identities are preserved under BGP-reflections. To give an idea, we
review the proof in the case of representations lying in the homogeneous tubes of rank
two. For more details, we refer to [44, Section 4]. We should point out that in the case
of preprojective representations of small defect, the only difference is that we start our

glueing process with the coefficient quiver • d←−− • while, in the present situation, we
start with the empty coefficient quiver, cf. Section 5.2.4. This leads to the fact that
combinatorics are slightly easier.

Similar to the case of representations of defect −1, we obtain all coefficient quivers
of representations lying in the exceptional tube of rank two by glueing the coefficient
quivers

• •

•
��
c

__ a •
��
b

__ d

• •
in turns. We denote the representation on the left hand side by T1 and the represen-
tation on the right hand side by T2. The generating functions are

FT1 = 1 + x0 + x0xa + x0xc + x0xaxc, FT2 = 1 + x0 + x0xb + x0xd + x0xbxd.

Without loss of generality, we can assume that we start our glueing process with the
coefficient quiver of T1. We set f−1 = 0, f0 = 1 and

f2r+1 = FT1f2r − x0xaxcf2r−1, f2r+2 = FT2f2r+1 − x0xbxdf2r.

Then f2r+1 is the generating function of the unique indecomposable of dimension t(r) :=
dimT1 +r ·δ and f2r+2 is the generating function of the unique indecomposable M1

(r+1)δ

of dimension (r+ 1) · δ such that T1 ⊂M1
(r+1)δ. Note that if n = 4, all tubes have rank

two so that this construction applies for all exceptional tubes in this case. Now using
the methods of Section 5.2.3, we obtain the following statement:

Proposition 5.2.12 ([44, Propostition 4.13]). For r ≥ 0, we have

Ft(r) = f2r+1 = FT1Frδ = Ft(0)Frδ,

FM1
(r+1)δ

= f2r+2 = F(r+1)δ + x0xaxcFrδ.
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Proof. We include the proof for the convenience of the reader. Using the notation from
Section 5.2.3, we have

a = −x0xaxc, b = FT1 , c = −x0xaxcFT2 , d = −x0xbxd + FT1FT2 .

Then it is easy to check that we have

a+ d = Fδ, z =
1

2

√
F 2
δ − 4xδ, ad− bc = λ+λ− = xδ.

Moreover, we get

λ+ =
1

2

(
Fδ +

√
F 2
δ − 4xδ

)
, λ− =

1

2

(
Fδ −

√
F 2
δ − 4xδ

)
.

Since f−1 = 0 and f0 = 1, Equation (5.2.1) yields

f2r+1 =
1

2z
(FT1(λr+1

+ − λr+1
− )).

Thus, it remains to show that

Frδ =
1

2z
(λr+1

+ − λr+1
− ). (5.2.3)

For r = 0, this is clearly true. Since a+ d = Fδ, this is also true for r = 1. By Remark
5.2.6, it suffices to show that(

λr+1
+ − λr+1

−

2z

)(
λr−1

+ − λr−1
−

2z

)
=

(
λr+ − λr−

2z

)2

− x(r−1)δ

for r ≥ 1, what follows from

2z = λ+ − λ−, λ+λ− = xδ.

Using Equation (5.2.2), we have

f2r+2 =
1

2z
(λr+1
− (−x0xaxc − λ−)− (λr+1

+ (−x0xaxc − λ+)))

=
1

2z
(λr+2

+ − λr+2
− ) +

1

2z
x0xaxc(λ

r+1
+ − λr+1

− )

= F(r+1)δ + x0xaxcFrδ,

which completes the proof of the proposition.

Let us consider the tubes of rank two for general n with arbitrary orientation. For a
fixed tube, we denote by t1(0) and t2(0) the quasi-simple roots. The real roots in this
tube are given by ti(r) = ti(0)+ rδ. Finally, we denote the representation of dimension
rδ with subrepresentation Mti(0) by M i

rδ.
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Theorem 5.2.13 ([44, Theorem 4.14]). For the indecomposable representations Mti(r)

and M i
rδ lying in one of the exceptional tubes of rank two of D̃n, we have:

i) Fti(r) = Fti(0)Frδ.

ii) FM i
rδ

= Frδ + xti(0)F(r−1)δ.

Proof. We include the proof for the convenience of the reader. Under consideration of
Lemma 5.2.4, it is straightforward to generalize Proposition 5.2.12 to arbitrary D̃n in
subspace orientation.

Assume that M with dimM = ti(r) + rδ lies in one of the exceptional tubes of rank
two of D̃n (with arbitrary orientation) and satisfies FM = Fti(0)Frδ. Applying Theorem
5.2.3, we have

FσqM = Fσqti(0)Frδ.

Thus, the first statement follows by induction.
For a fixed sink q of D̃n (with arbitrary orientation), it is straightforward to check

that ∑
p∈Q0

a(p, q)ti(0)p = δq.

Indeed, if q ∈ {qa, qb, qc, qd}, both sides are one. Otherwise both sides are two. Assume
that FM i

rδ
= Frδ + xti(0)F(r−1)δ. Then, again by Theorem 5.2.3, we have

FσqM i
rδ

= Frδ +xσqti(0)(1 +x−1
q )

∑
p∈Q0

a(p,q)ti(0)p(1 +x−1
q )−δqF(r−1)δ = Frδ +xσqti(0)F(r−1)δ.

Thus, the second statement also follows by induction.

5.3 Torus actions on quiver Grassmannians

In this section, we consider torus actions on quiver Grassmannians. As already in-
vestigated in this work, a torus action can be used to reduce the determination of
the Euler characteristic of a complex variety to the one of the fixed point set. This
approach was already investigated by Cerulli Irelli and Esposito in [10] and [11] for
representations of the Kronecker quiver and so-called string modules. The fixed point
sets of the torus action considered there are finite. Thus, if the quiver Grassmannian
is smooth, the corresponding Bialynicki-Birula decomposition is a decomposition into
affine spaces. In general, such a nice torus action does not exist and, in addition to it, it
is not straightforward to find any non-trivial torus action on the whole Grassmannian.
This leads to the idea to define a torus action only on the cells CM

β and to study in
which cases it is not trivial. With the help of these methods, it is possible to give a
short proof of Corollary 5.1.7 for preprojective representations of small defect of D̃4 in
subspace orientation.
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5.3.1 A condition for torus actions on Schubert cells

Let T = C∗ be the one-dimensional torus and M be a representation of an arbitrary
acyclic quiver Q of dimension α. We fix a basis Bq = (bqi )i=1,...,αq for every q ∈ Q0 and a

map d :
⋃
q∈Q0
Bq → Z called degree in what follows. We define λ.bqi = λd(bqi )bqi for every

λ ∈ T and extend this definition to Mq taking linearity into account. This induces an
action of T on

⊕
q∈Q0

Mq. This raises the question under which conditions such an
action defines a (non-trivial) action on a quiver Grassmannian Gre(M) for a fixed
dimension vector e ∈ NQ0 . If U ∈ Gre(M), this yields the condition λ.U ∈ Gre(M) for
every λ ∈ T which means

Mρ(λ.u) ∈ λ.Ut(ρ) (5.3.1)

for every u ∈ Us(ρ), λ ∈ T , ρ ∈ Q1. Under no further conditions, this is rarely the
case. Thus, assume that M is a tree module with respect to the fixed basis B and let
ΓM be the corresponding ordered coefficient quiver. In particular, we have an injection
B ↪→ N. Even in this case it seems that we only get an induced torus action on the
whole quiver Grassmannian if M is cover-thin.

But actually, we may consider the Schubert decomposition Gre(M) =
∐

β⊂B C
M
β and

investigate under which conditions there exists a torus action on some fixed locally
closed subset CM

β . Let w ∈ CM
β be in β-normal form. Thus, the equations E(ρ, t, s)

are satisfied for ρ : s→ t ∈ (ΓM)1. The equations E(ρ, t, s) can be reduced to∑
s′∈B\β∪{s}
s′≤s, s′

ρ−→t

ws′s =
∑

s′∈B\β∪{s}
t′∈β, s′

ρ−→t′

s′≤s, t<t′

ws′swtt′

where we can assume that t /∈ β and s ∈ β, see also [42, Section 2].
Now for w in β-normal form and i, j ∈ F−1(q), we have that (λ.w)ij = λd(bqi )wij is,

in general, not in β-normal form. Recall that for i 6= j the inequality wij 6= 0 can only
hold if i /∈ β and j ∈ β. Now we can easily obtain the corresponding β-normal form of
λ.w when multiplying the jth column of w with λ−d(bqj ) for each q ∈ Q0 and j ∈ β.

This means that Equation (5.3.1) translates to the condition∑
s′∈B\β∪{s}
s′≤s, s′

ρ−→t

λd(s′)−d(s)ws′s =
∑

s′∈B\β∪{s}
t′∈β, s′

ρ−→t′

s′≤s, t<t′

λd(s′)−d(s)ws′sλ
d(t)−d(t′)wtt′

which is equivalent to∑
s′∈B\β∪{s}
s′≤s, s′

ρ−→t

λd(s′)−d(t)ws′s =
∑

s′∈B\β∪{s}
t′∈β, s′

ρ−→t′

s′≤s, t<t′

λd(s′)−d(t′)ws′swtt′ .

We refer to this equation as λ.E(ρ, t, s). This leads to the following observation:
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Lemma 5.3.1. The degree d defines a torus action on CM
β if we have

d(ρ, s, t) := d(s′)− d(t) = d(s′)− d(t′)

for all s′
ρ−→ t with s′ ≤ s, s′ ∈ B\β ∪{s} and for all s′

ρ−→ t′ with t′ ∈ β, s′ ∈ B\β ∪{s}
and s′ ≤ s, t < t′ where t /∈ β, s ∈ β.

This raises the question under which conditions the torus action is non-trivial, by
what we mean that not all points are fixed points. The torus action is easily seen to
be trivial if we have d(bqi ) = dq for all q ∈ Q0 and some fixed dq ∈ Z. But, as we will
see, there are cases with a non-trivial torus action.

Remark 5.3.2. Roughly speaking, the idea is the following: assume that the degree
d induces a torus action. If q′ ≤ q are vertices of the same color, then T can be seen to
act on wq′q via scalar multiplication by λd(q′)−d(q). By the considerations from above,
we see the following: if w was in β-normal form, λ.w is also in β-normal form. If
d(q) 6= d(q′), by the uniqueness of the β-normal form, we are forced to have wq′q = 0
for a torus fixed point under the assumption that the degree is chosen generically.

Since ΓM is a tree, there exists a unique path p(q, q′) between each two vertices q
and q′ of ΓM . In order to shorten notation, let F = FΓM .

Definition 5.3.3. Let s, s′, s′′, t, t′, t′′, q, q′ ∈ (ΓM)0 such that F (s) = F (s′) = F (s′′),
F (t) = F (t′) = F (t′′) and F (q) = F (q′).

i) We say that an arrow ρ : s′ → t′ is β-fixed if ws′swtt′ appears in a non-trivial
equation E(ρ, t, s) where t /∈ β, s ∈ β. Otherwise, we say that ρ is β-free.

ii) We say that ws′s′′ is β-free if there is at least one arrow ρ : s → t in p(s′, s′′)
which is β-free.

iii) We say that wt′t′′ is β-free if there is at least one arrow ρ : s→ t in p(t′, t′′) which
is β-free.

iv) If wq,q′ is not β-free, we say that it is β-fixed.

Note that if wq,q′ is β-fixed, q and q′ are forced to have the same degree. Later it
turns out that torus fixed points have vanishing β-free variables.

Lemma 5.3.4. Let ρ : s′ → t′ be an arrow of the coefficient quiver ΓM .

i) If s′ ∈ β, t′ ∈ β, then ρ : s′ → t′ is β-fixed if and only if there exists a vertex
t ∈ B\β with F (t) = F (t′) such that t < t′.

ii) If s′ /∈ β, t′ /∈ β, then ρ : s′ → t′ is β-fixed if and only if there exists a vertex
s ∈ β with F (s) = F (s′) such that s′ < s.

iii) If s′ /∈ β, t′ ∈ β, then ρ : s′ → t′ is β-fixed if and only if there exists a vertex
s ∈ β with F (s) = F (s′) and a vertex t ∈ B\β with F (t) = F (t′) such that s′ < s
and t < t′.
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iv) If s′ ∈ β, t′ /∈ β, then ρ : s′ → t′ is β-fixed.

Proof. In the first case, we have that λd(s′)−d(t′)ws′s′wtt′ appears in λ.E(ρ, t, s′). In the
second case, λd(s′)−d(t′)ws′s appears in λ.E(ρ, t′, s). In the third case, λd(s′)−d(t′)ws′swt′t
appears in λ.E(ρ, t, s). Finally, in the last case, λd(s′)−d(t′)ws′s′ appears in λ.E(ρ, t′, s′).

We can reformulate the preceding lemma in terms of β-free variables and arrows:

Lemma 5.3.5.

i) Let s′ /∈ β. If we have s /∈ β for all s ≥ s′ with F (s′) = F (s), then all arrows
ρ : s′ → t′ are β-free.

ii) Let t′ ∈ β. If we have t ∈ β for all t ≤ t′ with F (t) = F (t′), then all arrows
ρ : s′ → t′ are β-free.

Fix integers d(ρ) for all ρ ∈ Q0. Then we set d(ρ, s, t) = d(ρ) for every β-non-trivial
equation E(ρ, t, s). We introduce a sequence of subquivers Γ1, . . . ,Γn of the coefficient
quiver by saying that two β-fixed arrows ρ, ρ′ (including head and tail) belong to
the same subquiver if and only if there is a path of β-fixed arrows in ΓM to which
ρ and ρ′ belong. In each subquiver Γi, we fix a vertex qi ∈ (Γi)0 and degrees d(qi).
This recursively determines the degrees d(q′) of all vertices q′ in Γi by the formula
d(s) + d(ρ) = d(t) if ρ : s → t ∈ (Γi)1. Clearly, we can assume that d(q) 6= d(q′) for
all q ∈ (Γi)0, q′ ∈ (Γj)0 with i 6= j. Let (Γ0)0 be the set of vertices q with q /∈ (Γi)0

for all i = 1, . . . , n. We also fix a degree for every vertex q in this set where we assume
that d(q) 6= d(q′) whenever q′ 6= q. In the following, we refer to such a degree as
β-compatible. Then we have the following statement:

Theorem 5.3.6. Let M be a tree module with coefficient quiver ΓM . Let β ∈ (ΓM)0 be
a subset of type e and d a degree which is β-compatible. Then d defines a torus action
on CM

β ⊂ Gre(M) in such a way that w ∈ (CM
β )T if and only if

wqq′ = 0 for all pairs of vertices (q, q′) with q ∈ (Γk)0, q
′ ∈ (Γl)0

and k 6= l or q 6= q′ if k = l = 0.

Proof. By construction, d defines a torus action on CM
β . As already mentioned in

Remark 5.3.2, the variable wq,q′ is multiplied by λd(q)−d(q′). Since q and q′ have different
degrees, by the uniqueness of the β-normal form, we have wq,q′ = 0 if w is a torus fixed
point.

5.3.2 Application to preprojective representations of D̃4 of small
defect

Let Q = D̃4 be in subspace orientation where we use the notation from Section 5.1.2.
If ΓM is a coefficient quiver of a representation M and q ∈ Q0, define (ΓM)0(q) = {q′ ∈
(ΓM)0 | F (q′) = q}.
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Moreover, we consider the representation Mn given by the coefficient quiver Γn with
vertices

(Γn)0(q0) = {3k + 1 | k = 0, . . . , 2n}, (Γn)0(qd) = {6k + 2 | k = 0, . . . , n},

(Γn)0(qb) = {6k + 3 | k = 0, . . . , n− 1}, (Γn)0(qa) = {6k + 5 | k = 0, . . . , n− 1},

(Γn)0(qc) = {6k | k = 1, . . . , n}

and arrows

(Γn)1 = {6k + 2
d−→ 6k + 1, 6k + 3

b−→ 6k + 1, 6k + 3
b−→ 6k + 4, 6k + 5

a−→ 6k + 4,

6k
c−→ 6k + 1, 6k

c−→ 6k − 2},

which is up to automorphism and a slight reordering the same as the one considered
in Section 5.2.4. The root corresponding to it is (2n + 1, n, n, n, n + 1). A coefficient
quiver for the indecomposable representation of dimension (2n+2, n+1, n, n+1, n+1),
which we denote by Sn+1, is obtained by glueing the subquiver N defined by

6n+ 3
b−−→ 6n+ 4

a←−− 6n+ 5.

In turn, we obtain a coefficient quiver for Mn+1 by glueing the subquiver

6(n+ 1)
c−−→ 6(n+ 1) + 1

d←−− 6(n+ 1) + 2.

Here we add extra arrows 6n + 3
b−−→ 6n + 1 and 6(n + 1)

c−−→ 6n + 4 respectively.
Note that all preprojective representations can be obtained in this way. We use the
definition of admissible subsets introduced in Definition 5.2.7. The aim of this section
is to determine the Euler characteristic, partially with the help of the introduced torus
action, but also using a recursion which relies on the recursive construction of the
coefficient quivers for this fixed orientation. More precisely, we give a short proof of
the following statement which clearly also follows from Theorem 5.1.6:

Theorem 5.3.7. Let M be an indecomposable preprojective representation of D̃4 in
subspace orientation and consider its coefficient quiver ΓM as defined above. Then
χ(Gre(M)) coincides with the number of admissible subsets of ΓM of type e.

Proof. We proceed by induction and prove that

χ(CM
β ) =

{
1 if β is admissible

0 otherwise
.

The claim is easily checked to be true for M0 and N respectively. Now consider the
representation Sn+1 and let β1 ∪ β2 = β ⊂ (Sn+1)0 with β1 ⊆ {6n + 3, 6n + 4, 6n + 5}
and β2 ⊆ (ΓMn)0. We proceed by a case-by-case analysis considering the different
possibilities for β1.
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First assume that 6n + 3
b−→ 6n + 1 is β-free, which is by Lemma 5.3.5 the cases

if 6n + 3 /∈ β. Applying Theorem 5.3.6, we can define a torus action such that for
w ∈ (C

Sn+1

β )T we have wqq′ = 0 whenever q′ ∈ {6n + 3, 6n + 4, 6n + 5} and q ∈ β2. In

particular, the fixed points decompose into w1+w2 with w1 ∈ (CN
β1

)T and w2 ∈ (CMn
β2

)T .
This implies that

(C
Sn+1

β )T = (CMn
β2

)T × (CN
β1

)T .

Thus, it follows that

χ(C
Sn+1

β ) = χ((C
Sn+1

β )T ) = χ((CMn
β2

)T ) · χ((CN
β1

)T ) = χ(CMn
β2

) · χ(CN
β1

).

By induction hypothesis, it follows that χ(C
Sn+1

β ) = 1 if both β1 and β2 are admissible.
But since 6n+ 3 /∈ β, this is equivalent to the requirement that β is admissible.

Moreover, if 6n + 3 ∈ β and 6n + 4 /∈ β, we have that β is not extremal successor
closed which means that E(b, 6n+ 4, 6n+ 3) already yields the contradiction 1 = 0. It

follows that χ(C
Sn+1

β ) = 0.
Thus, it remains to consider the cases in which {6n+3, 6n+4} ⊆ β1 what we assume

from now on. The strategy is to consider and investigate the additional (non-trivial)
equations and variables arising when glueing the subquiver N in the different cases.
It turns out that the solution set of the original equations is not affected by the new
equations and variables. Moreover, the solution set of the new equations can be seen
to be an affine space when fixing the variables appearing in the original equations.
Consider the subquiver

6n+ 1

6n+ 3

b 66

b
((
6n+ 4 6n+ 5a

oo

First assume that 6n + 5 /∈ β. Then we get additional equations E(b, t, 6n + 3)
for t /∈ β and F (t) = q0. Moreover, we get additional variables ws,6n+3 for s /∈ β
with F (s) = qb and wt,6n+4 for t /∈ β with F (t) = q0. More detailed, we consider the
following subquivers

t− 1 c // t t+ 1doo t− 1 b // t t+ 1aoo

t+ 2

b
77

b
''

t+ 2

c
77

c
''

t+ 3 t+ 4aoo t+ 3 t+ 4doo

with t /∈ β. Then we have t−1 /∈ β because β is forced to be extremal successor closed.
In the case of the subquiver on the right hand side, E(b, t, 6n+ 3) becomes

wt−1,6n+3 = wt,6n+4 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′ .
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Note that since t /∈ β, we have that t < 6n + 4. Moreover, wt,6n+1 = 0 is possible.
Nevertheless, we can solve this equation for wt,6n+4. In the case of the second subquiver,
E(b, t, 6n+ 3) becomes

wt+2,6n = wt,6n+4 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′

which can again be solved for wt,6n+4. Since the equations and variables corresponding
to the subquiver Mn do not change, we obtain that

C
Sn+1

β = CMn
β2
× Ar

for some r ≥ 0. Thus, the claim follows also for this choice of β.
Secondly, assume that 6n+ 5 ∈ β. Then, in addition to the equations E(b, t, 6n+ 3)

from above, we get the equations E(a, t, 6n + 5) for t /∈ β with F (t) = q0. Then it is
straightforward that we have 6n+ 1 ∈ β. Indeed, otherwise E(a, 6n+ 1, 6n+ 5) would
yield w6n+1,6n+4 = 0 while E(b, 6n+ 1, 6n+ 3) would yield w6n+1,6n+4 = 1.

In addition to the variables ws,6n+3 for s /∈ β with F (s) = qb and wt,6n+4 for t /∈ β
with F (t) = q0 we get the variables ws,6n+5 for s /∈ β and F (s) = qa. We again consider
the two subquivers from above. In the case of the subquiver on the right hand side,
E(a, t, 6n+ 5) becomes

wt+1,6n+5 = wt,6n+4 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
a−→t′

ws′,6n+5wtt′ .

Now we can solve this equation for wt+1,6n+5 and, as before, we can solve E(b, t, 6n+3)
for wt,6n+4. Note that this is possible because these two variables do not appear in the
sum which consists of the quadratic terms.

The instance of the subquiver on the left hand side happens to be the most compli-
cated one: In this case, E(a, t, 6n+ 5) becomes

0 = wt,6n+4 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
a−→t′

ws′,6n+5wtt′ .

Moreover, for E(b, t, 6n+ 3), we obtain

wt+2,6n+3 = wt,6n+4 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′ .

We need a further case-by-case analysis:
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i) Let t+ 2 ∈ β. In this case, E(b, t, t+ 2) becomes

wt+2,t+2 = wt+2,t+2wt,t+3 + wt+2,t+2wt,t = wt+2,t+2wt,t+3.

Since t+ 2 ∈ β, we have t+ 3 ∈ β. In particular, we have wt,t+3 = 1. Moreover,
we have t + 4 /∈ β because t /∈ β which follows by the same argument as above.
Thus, for E(a, t, 6n+ 5), we have

0 = wt,6n+4 + wt+4,6n+5 +
∑

s′ /∈β, t′∈β
s′<s, t+3<t′

s′
a−→t′

ws′,6n+5wtt′ .

Moreover, for E(b, t, 6n+ 3), we have

0 = wt,6n+4 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′ .

In particular, we can solve the first equation for wt+4,6n+5 and the second for
wt,6n+4.

ii) t+ 2 /∈ β, t+ 3 /∈ β. Then we can solve E(b, t, 6n+ 3) which becomes

wt+2,6n+3 = wt,6n+4 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′

for wt+2,6n+3 because wt,t+3 = 0. This means that wt+2,6n+3 does not appear on
the right hand side. Moreover, we can solve E(a, t, 6n+ 5) for wt,6n+4.

iii) t+ 2 /∈ β, t+ 3 ∈ β, t+ 4 ∈ β. Then we have wt+4,q = 0 for every q 6= t+ 4 and
wt,t+3 6= 0 so that we cannot simply solve E(b, t, 6n + 3) for wt+2,6n+3. In this
case, we make a variable transformation:

wt,6n+4 7→ w̃t,6n+4 := wt,6n+4 + wt,t+3wt+2,6n+3.

Thus, E(b, t, 6n+ 3) becomes

wt+2,6n+3 = w̃t,6n+4 − wt,t+3wt+2,6n+3 + wt,6n+1 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
b−→t′

ws′,6n+3wtt′

which means that −wt,t+3wt+2,6n+3 cancels with wt,t+3wt+2,6n+3 as it also appears
in the sum of quadratic terms. Finally, E(a, t, 6n+ 5) becomes

0 = w̃t,6n+4 − wt,t+3wt+2,6n+3 +
∑

s′ /∈β, t′∈β
s′<s, t<t′

s′
a−→t′

ws′,6n+5wtt′ .
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In particular, we can solve the first equation for wt+2,6n+3 and the second for
w̃t,6n+4.

iv) t + 2 /∈ β, t + 3 ∈ β, t + 4 /∈ β. Then the only difference to the preceding
case is that wt+4,6n+5 is a free variable which appears in a quadratic term of
E(a, t, 6n + 5). But this does not bother us as we can make the same variable
transformation as before. We can again solve the first equation for wt+2,6n+3 and
the second for w̃t,6n+4.

Summarizing, also in all cases coming along with the condition 6n+ 5 ∈ β, we obtain

C
Sn+1

β = CMn
β2
× Ar

and the claim follows.

Remark 5.3.8. It does not seem to be clear (or at least a further check is needed) if
the proof can be used to prove that the Schubert cells CM

β are affine spaces (what they
are as we know). One problem is that the classical theorem of Bialynicki-Birula from
[2] does not apply. Indeed, we a priori do not know if the Schubert cells are smooth
and, moreover, they are definitely not projective. In particular, if we know that (CM

β )T

is an affine space, we still do not know if CM
β is an affine space.

But it seems that the consideration of a torus action on the Schubert cells can often
be used to simplify the determination of the Euler characteristic; especially if there is
no torus action on the whole quiver Grassmannian.
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