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been a constant source of strength, reassurance and joy of my life.

I



II



Contents

1. Introduction 1

1.1. Path Dependent Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Damage Driven Localization and Fracture . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Temperature Effects on Damage Driven Localization and Fracture . . . . . . . . 5

1.4. Experimental Approaches for Mechanical Characterization of Plasticity and Damage 6

1.5. A Word on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I. Path Dependent Hardening 9

2. Inherent and Induced Anisotropy 11

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Material Model - Small Strain Formulation . . . . . . . . . . . . . . . . . 14

2.2.2. Extension to Finite Strains . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Parameter Identification for DC06 . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1. Single Element Tests and Sensitivity Analyses . . . . . . . . . . . . . . . . 19

2.4.2. An Industrial Process Simulation . . . . . . . . . . . . . . . . . . . . . . . 23

2.5. Conclusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.A. Details of Vumat Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.A.1. Voigt Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.A.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Yield Surface Curvature and Localization 33

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1. Material Model - Tensor Notation . . . . . . . . . . . . . . . . . . . . . . 35

3.3. Reduced Plane-Stress Formulation - Vector Notation . . . . . . . . . . . . . . . . 37

3.4. Algorithmic Formulation and Verification of the Implementation . . . . . . . . . 40

3.4.1. Verification of the Implementation . . . . . . . . . . . . . . . . . . . . . . 41

III



IV Contents

3.4.1.1. Finite Strain In-Plane Loading with Non-rotating Axes of Defor-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1.2. Small Strain In-Plane Shear Loading . . . . . . . . . . . . . . . . 41

3.5. Applications - Formability Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1. Marciniak-Kuczyński test simulations . . . . . . . . . . . . . . . . . . . . 43

3.5.2. Nakazima Test Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A. Voigt and Mandel Vector Notations - A Comparison . . . . . . . . . . . . . . . . 54

3.B. Extension to Finite Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.C. Correlated Random Field Generation . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Levkovitch–Svendsen Model Modification 57

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2. Generalization of Levkovitch–Svendsen Evolving Yield Locus . . . . . . . . . . . 58

4.2.1. The Case for Proportional Strain Path with ng ≡ np = ε̇p/| ε̇p | with
Plane Stress State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2. The Case for Proportional Stress Path with ng ≡ ns = S/|S | with Plane
Stress State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3. Discussion: Simple Tension Test . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4. The Case for ng ≡ np and ng ≡ ns with Plane Stress State Including
Kinematic Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3. Further Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1. Examples Neglecting Kinematic Hardening . . . . . . . . . . . . . . . . . 65

4.3.2. Examples Including Kinematic Hardening . . . . . . . . . . . . . . . . . . 66

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.A. Loss of Ellipticity of the Yield Locus . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.B. Determination of the Continuum Elastoplastic Moduli . . . . . . . . . . . . . . . 70

4.C. Eighth-Order Identity Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II. Damage Driven Localization and Fracture 75

5. Bending Fractures in AHSS 77

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2. Shear Enhanced GTN Damage Model . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1. Chemical Composition and Microstructure Observation of DP1000 Steel . 84

5.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3. Observations at Macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Contents V

5.3.4. Observations at Microscale . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1. 2D Plane Strain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1.1. The Effect of Mesh Size . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1.2. The Effect of kw . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1.3. The Effects of f0, fc, and ff . . . . . . . . . . . . . . . . . . . . 97

5.4.1.4. The Effect of Nielsen and Tvergaard’s Modification . . . . . . . 98

5.4.2. 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.2.1. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.A. Hypoelastic-Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.B. Numerical Implementation of GTN Model . . . . . . . . . . . . . . . . . . . . . . 104

6. Ductile Fracture - Large-scale Yielding Conditions 107

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1. Fundamental Kinematical Assumptions and Hypoelastic Plasticity . . . . 109

6.2.2. Shear Modified GTN Porous Plasticity - Local Formulation . . . . . . . . 109

6.2.2.1. Integral-Type Nonlocal Extension . . . . . . . . . . . . . . . . . 111

6.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1. Material Employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.3. Crack Propagation and Fracture Surfaces . . . . . . . . . . . . . . . . . . 113

6.4. Material Parameters for P91 Steel . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.1. Comparison with Experimentally Determined Results . . . . . . . . . . . 120

6.6. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.A. Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.B. Verification of Implementation through Benchmark Problems . . . . . . . . . . . 126

6.B.1. Dilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.B.2. Simple Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.C. Analysis of the Effectiveness of Delocalization . . . . . . . . . . . . . . . . . . . . 127



VI Contents

7. Variants of Lemaitre’s Damage Model 129

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.1. Lemaitre’s Damage Model Coupled to Isotropic Hardening Plasticity -
Theory of State Kinetic Coupling . . . . . . . . . . . . . . . . . . . . . . . 131

7.3. Model L1: A Lemaitre Model Based Fracture Criterion . . . . . . . . . . . . . . . 133

7.3.1. Isochronous Fracture Surface Representations at Various Spaces . . . . . 135

7.3.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf ) . . . . . . . 135

7.3.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3, p) . . . . . . . . . . 136

7.3.1.3. State of Plane Stress and Planar Plots for the Fracture Loci . . 139

7.4. Model L2: Extension to Quasi-Unilateral Damage Evolution . . . . . . . . . . . . 141

7.4.1. Isochronous Fracture Surface Representations at Various Spaces . . . . . 141

7.4.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf ) . . . . . . . 141

7.4.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3, p) . . . . . . . . . . 142

7.4.1.3. State of Plane Stress and Planar Plots for the Fracture Loci . . 144

7.5. Model L3: Extension to Shear Modification . . . . . . . . . . . . . . . . . . . . . 146

7.5.1. Isochronous Fracture Surface Representations at Various Spaces . . . . . 146

7.5.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf ) . . . . . . . 146

7.5.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3) . . . . . . . . . . . 147

7.5.1.3. State of Plane Stress and Planar Plots for the Fracture Loci . . 148

7.6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.6.1. Model L2 and the Secondary Tensile Stresses . . . . . . . . . . . . . . . . 149

7.6.2. Model L3 and Experimental Validation . . . . . . . . . . . . . . . . . . . 151

7.6.2.1. Calibration of The Model Parameters for Bao and Wierzbicki
[2005] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.6.2.2. Calibration of The Model Parameters for Bai and Wierzbicki [2010]154

7.6.2.3. Fracture Development During Rectangular Deep Drawing of a
TRIP690 Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.7. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.A. Stress States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.B. Non-rotating Principal Axes of Deformation . . . . . . . . . . . . . . . . . . . . . 160

III. Temperature Effects on Damage Driven Localization and Fracture 163



Contents VII

8. Ductile–Brittle Transition 165

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2.1. Hypoelastic-plastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2.2. Model for Ductile Fracture - Gurson’s Porous Plasticity - Local Formula-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2.2.1. Integral-Type Nonlocal Regularization . . . . . . . . . . . . . . . 170

8.2.3. Model for Brittle Fracture: The Ritchie–Knott–Rice Maximum Stress Cri-
terion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3.1. Chemical Composition and Microstructure Observation of P91 Steel . . . 171

8.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3.3. Observations at Macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3.4. Observations at Microscale . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3.5. Crack Propagation Direction . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4. Thermomechanical Material Parameters for P91 Steel . . . . . . . . . . . . . . . 176

8.5. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.5.1. Small Scale Yielding Condition . . . . . . . . . . . . . . . . . . . . . . . . 181

8.5.2. Small- and Large-Scale Yielding Conditions . . . . . . . . . . . . . . . . . 189

8.6. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.A. Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.A.1. Local Integration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.A.2. Nonlocal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.B. Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9. Thermomechanics of Ductile Damage 197

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.2. Mathematical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.2.1. Fundamental Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.2.2. Extension of the Thermodynamic Approach Represented in [275] . . . . 199

9.3. Specification of Constitutive Functions for Metals . . . . . . . . . . . . . . . . . . 204

9.4. Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.4.1. Finite Element Formulation of the Coupled Initial Boundary Value Problem209

9.4.1.1. Staggered Solution Scheme . . . . . . . . . . . . . . . . . . . . . 209

9.4.2. Return Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.4.2.1. Solution of Equations of Local Integration . . . . . . . . . . . . 213

9.4.3. Algorithmic Tangent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.5. Application Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



VIII Contents

9.5.1. Monotonic Uniaxial Tension . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9.5.2. Necking of an Axisymmetric Bar . . . . . . . . . . . . . . . . . . . . . . . 220

9.5.3. Localization of Rectangular Bar . . . . . . . . . . . . . . . . . . . . . . . 223

9.6. Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.A. Auxiliary Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.Micro-Void and/or Micro-Crack Driven Failure 233

10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.2. Fundamental Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10.3. Thermodynamical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.3.1. General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.3.2. Specification of the Constitutive Forms . . . . . . . . . . . . . . . . . . . 238

10.4. Application - Uniaxial Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.4.1. Specification of Equations for Uniaxial Tensile State of Stress . . . . . . . 242

10.4.2. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

IV. Experimental Approaches for Mechanical Characterization of Plasticity and
Damage 251

11.Characterization of Anisotropy 253

11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

11.2. Material Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 255

11.3. Material and the Conventional Characterization . . . . . . . . . . . . . . . . . . . 257

11.4. Selection of the Specimen Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 258

11.5. Inverse Parameter Identification Scheme . . . . . . . . . . . . . . . . . . . . . . . 260

11.6. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.6.1. Numerical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.6.1.1. Case 1: Specimen in 0◦ to Rolling Direction . . . . . . . . . . . 263

11.6.1.2. Case 2: Specimen in 90◦ to Rolling Direction . . . . . . . . . . . 264

11.6.1.3. Case 3: Specimens in 0◦ and 90◦ to Rolling Direction Simulta-
neously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11.6.1.4. Case 4: Specimen in 45◦ to Rolling Direction . . . . . . . . . . . 265

11.6.1.5. Case 5: Specimen in 45◦ to Rolling Direction without Contribu-
tion of Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11.6.1.6. Case 5: Specimen in 45◦ to Rolling Direction without Contribu-
tion of Equibiaxial Stress Value, σb . . . . . . . . . . . . . . . . 265

11.6.2. Experimental Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

11.6.3. Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

11.6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



Contents IX

12.Identification of Kinematic Hardening Parameters 271

12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

12.2. A Critical Overview of Sheet Metal Tests . . . . . . . . . . . . . . . . . . . . . . 273

12.3. Twin Bridge Shear Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12.4. Inverse Parameter Identification Scheme . . . . . . . . . . . . . . . . . . . . . . . 280

12.5. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

12.6. Conclusion and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 286

12.A.Armstrong-Frederick Kinematic Hardening Model . . . . . . . . . . . . . . . . . . 286

12.B.Analytical Solution for Uniform Simple Shear . . . . . . . . . . . . . . . . . . . 288

13.A Test for Shear Fracture in Sheet Materials 291

13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

13.2. Current State Of Shear Fracture Testing For Sheet Materials . . . . . . . . . . . 292

13.2.1. Shear and Torsion Tests for Characterization of Plastic Hardening . . . . 292

13.2.2. Shear Tests for Fracture and Formability Testing of Sheets . . . . . . . . 294

13.2.3. Requirements for an Ideal Shear Test for Fracture . . . . . . . . . . . . . 294

13.3. Theory - Enhanced Shear Fracture Approaches Accounting for Shear Fracture . . 295

13.3.1. Characterization of the Stress State . . . . . . . . . . . . . . . . . . . . . 296

13.3.2. Fracture Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

13.4. Design of Test Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

13.4.1. Expected Advantages of the New Specimen . . . . . . . . . . . . . . . . . 299

13.4.2. Test Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

13.4.3. Specimen Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

13.4.4. Experimental Results and Repeatability . . . . . . . . . . . . . . . . . . . 303

13.4.5. FEA in Evaluation of the Test Results . . . . . . . . . . . . . . . . . . . . 304

13.4.6. Disadvantages and Limits of the New Specimen . . . . . . . . . . . . . . . 306

13.5. Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

13.6. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

14.Conclusions 313

. Literature 316



X Contents



Kurzfassung

In dieser Arbeit werden phänomenologische Modellierungsansätze zur Beschreibung konstitu-
tiver Gesetze von sich entwickelnden Mikrostrukturen metallischer Materialien untersucht. Die
Arbeit gliedert sich in vier Teile. Der erste Teil befasst sich mit dem Levkovitch - Svendsen
Querverfestigungsmodell als Repräsentant eines pfadabhängigen Verfestigungsansatzes. Dabei
erfolgt eine Erweiterung des bestehenden Modells in Form eines ratenabhängigen Johnson-Cook
Formalismusses. Mittels Finite Elemente Simulationen stochastischer Marciniak-Kuczyński Ver-
suche und Nakazima Versuche wird eine Verbesserung der materiellen Stabilität der Berechnun-
gen aufgezeigt. Diese Stabilität rührt von einer verringerten lokalen Krümmung der Fließfläche
im Belastungspunkt mit Querverfestigung her. Eine Modifikation durch die Verfestigungs-
beschreibung in radialen Richtungen mittels parallelen und orthogonalen Projektionen des sich
entwickelnden plastischen, anisotropen Verfestigungstensors 4. Ordnung wird vorgeschlagen.
Diese Modifikation behebt das Problem eines verschränkten Verfestigungsverhaltens des origi-
nalen Models.

In Teil zwei werden die Phänomene der Dehnungslokalisierung und des Bruchs induziert durch
duktile Schädigung bei Raumtemperatur untersucht. Das poröse Gurson Plastizitätsmodell mit
Schermodifikation wird verwendet um gemischte Modus I und Modus II Beanspruchung zu mod-
ellieren. Insbesondere wird der Fall der freien Biegung sowie des kleinen Stempel-Tests für ver-
schiedene Probendicken untersucht. Dabei kommt eine nichtlokale Formulierung mit einem ma-
terialabhängigen Längenparameter, der mit der duktilen Schädigung assoziiert ist, zum Einsatz.
Dies ermöglicht nicht nur die Berücksichtigung werkstoffcharakteristischer Größeneffekte, son-
dern beseitigt auch die pathologische Netzabhängigkeit der numerischen Berechnungen, die typ-
isch für eine schädigungsindutzierte Entfestigung ist. Zwei empirische Erweiterungen des klassis-
chen Schädigungsmodells nach Lemaitre in Form von quasi-unilateraler Schädigungsentwicklung
und Lode Parameterabhängigkeit werden mit einer minimalen Anzahl von zusätzlichen Materi-
alparameter vorgestellt. Die Modifikationen erweisen sich als nützlich, da sie eine Grenzdehnung
unter einachsiger Kompression liefern und Flexibilität bei der Modellierung von Bruchvorgängen
bei generalisierter Scherung ermöglichen.

Teil drei dieser Arbeit befasst sich mit dem Einfluss der Temperatur auf die Dehnungslokalisierung,
Schädigung und auf Bruchvorgänge. Simulationen des temperaturgetriebenen Übergangsprozesses
von duktilem Bruch zu Sprödbruch in kleinen Stempel-Test mit gekerbten (kleinskaliges plas-
tisches Fließen) und ungekerbten (großskaliges plastisches Fließen) Proben nachgewiesen. Diese
Simulationen verwenden ein generalisiertes thermoplastisches Konstitutivmodell, das nichtlokale
RKR Sprödschädigung mit dem porösen Gurson-Plastizitätsmodell kombiniert. Schlüsselkom-
ponente des Models ist die Temperaturabhängigkeit der Fließspannung. Darüber hinaus werden
zwei thermo-mechanische Modellansätze vorgestellt. Diese verwenden im Rahmen der Ther-
modynamik das Konzept der internen Variablen für schädigungsgekoppelte finite Plastizität.
Das erste Modell verwendet eine einzige Schädigungsvariable während das zweite Modell zwei
Schädigungsvariablen benutzt, die mit spröder und duktiler Schädigung verknüpft sind. Diese
Wahl erweist sich als brauchbar um den Übergang von duktiler zu spröder Schädigung in ther-
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modynamisch konsistenter Weise zu modellieren. Schließlich konzentriert sich Teil vier dieser
Arbeit auf Versuche zur mechanischen Materialcharakterisierung von Metallblechen. Zunächst
wird der Einsatz von optischen Dehnungsfeldmessungen bei Zugversuchen von stumpf gekerbten
Proben mit einem breiten Dehnungspfadspektrum bei inversen Parameteridentifikationen und
plastischer Anisotropie rezensiert. Diese Versuche ermöglichen die Identifizierung von Parame-
tern komplexer plastischer Anisotropiemodelle, wobei die Anzahl der erforderlichen Charakter-
isierungsversuche in einem angemessenen Rahmen bleiben.

Der letzten Teil von Abschnitt vier dieser Arbeit befasst sich mit verschiedenen Varianten von
ebenen Torsionsversuchen. Zum Zweck der kinematischen Verfestigungscharakterisierung wer-
den zyklische Doppelbrücken-Scherversuche mit geschlitzten Scheibenproben als erstes und als
zweites, monotone ebene Torsionsversuche mit runden, radial genuteten Scheiben für Scher-
bruch betrachtet. Durch die Eliminierung von Knickung ist die erste Versuchsanordnung dem
zyklischen einachsigen Zug-Druckversuch für dünne Bleche überlegen. Der zweite Versuch liefert
nicht nur Scherbruch unter idealen Scherbedingungen, d.h. verschwindende Spannungsdreiach-
sigkeit mit η = 0 und einen Lode Parameter von θ = 0, sondern ermöglicht auch eine in
situ Identifizierung der Bruchdehnung in der Bruchzone der Nut durch die Verwendung digi-
taler Bildkorrelationssysteme. Obwohl die Anwendbarkeit der konstitutiven Modelle nicht auf
spezielle Materialien limitiert ist, befasst sich diese Arbeit vor allem mit Stahl und Aluminium-
legierungen wie z.B.: interstitiellfreier (IF) Stahl DC06, Dualphasenstähle DP600 und DP1000,
P91 Stahl, die umwandlungsbewirkten Plastizitätsstähle (TRIP-Stahl) TRIP690 und TRIP700
sowie den Aluminiumlegierungen AA6016-T4 und Al2024. An entsprechender Stelle werden die
algorithmische Umsetzung der lokalen Return-Mapping-Strategien der vorgestellten konstitu-
tiven Modelle ausgeführt.



Abstract

In this thesis, phenomenological constitutive modeling approaches to evolving microstructure in
metallic materials are explored in four parts. In Part I, Levkovitch–Svendsen cross hardening
model as a path dependent hardening model is considered. An extension to rate dependence
in a Johnson–Cook formalism is introduced. Through finite element simulations of stochastic
Marciniak-Kuczyński tests and Nakazima tests, the stability increase due to decreased local cur-
vature of the yield locus at the loading point by cross hardening is demonstrated. A modification
by using the radial direction in parallel and orthogonal projections of the fourth-order evolving
plastic anisotropy tensor is proposed. In doing so, the hardening entanglement problem in the
original model is remedied. In Part II, ductile damage driven localization and fracture at room
temperature is investigated. To this end, Gurson’s porous plasticity model with shear modi-
fication is used in modeling blended Mode I Mode II fracture in both free bending and small
punch tests for various specimen thicknesses. A nonlocal formulation incorporating material
length parameter associated with ductile damage is devised. This not only allowed reflecting
characteristic size effects but also remedied pathological mesh dependence problem associated
with damage driven softening. Moreover, two empirical extensions to the classical Lemaitre’s
damage model is introduced with least number of additional material parameters. The first one
of these extensions considers quasi-unilateral damage evolution and the second one Lode pa-
rameter dependence. The modifications prove useful by providing cut-off strain under uniaxial
compression and flexibility to model fracture under generalized shear. In Part III, the role of
temperature on damage, localization and fracture is examined. Predictive simulations of tem-
perature driven ductile-brittle transition in small punch test with notched (small-scale yielding)
and unnotched (large-scale yielding) specimens are demonstrated. These make use of a uni-
fied thermo-plastic constitutive model by combining the nonlocal RKR brittle damage model
with the nonlocal Gurson’s porous plasticity. It is shown that temperature dependence of the
yield stress constitutes the key ingredient. Moreover, two thermomechanical model frameworks,
which make use of the internal variable theory of thermodynamics for damage-coupled finite
plasticity, are established. The first model uses a single damage variable, whereas the second
model considers two damage variables associated with brittle and ductile damage, respectively.
Such a choice is shown to prove useful in modeling ductile-brittle transition in a thermody-
namically consistent setting. Finally in Part IV, mechanical material characterization tests for
metallic sheets are focused on. First the use of optical strain field measurements over tensile
tests of smoothly notched specimens, spanning a wide strain path spectrum, in inverse parame-
ter identification of plastic anisotropy is investigated. This allows identification of parameters of
complex plastic anisotropy models, while keeping the number of required characterization tests
at a reasonable limit. In the rest of the thesis, variants of in-plane torsion test are explored.
Cyclic twin bridge shear test with slitted disk specimens is considered for kinematic hardening
characterization and monotonic in-plane torsion test. Radial grooves are considered for testing
shear fracture. The former test is superior to cyclic uniaxial tension-compressive tests for thin
sheets, for it eliminates the risk of buckling. On the other hand, the latter test delivers shear
fracture under ideal shear conditions, i.e., vanishing stress triaxiality η = 0 and Lode parameter
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θ = 0. Furthermore, it allows in situ identification of fracture strain through digital image
correlation systems by trapping fracture zone within the groove. This work collects applications
mainly to steels and aluminum alloys such as: interstitial free (IF) steel DC06, dual phase steels
DP600 and DP1000, P91 steel, transformation induced plasticity steels TRIP690 and TRIP700;
aluminum alloys AA6016-T4 and Al2024. However, the applicability of the constitutive models
is not limited to these materials. Finally, algorithmic treatment of local return mapping for
presented constitutive models is elaborated when necessary.
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1. Introduction

High specific structural strength, flexibility, high manufacturability, weldability, toughness, cor-
rosion resistance, cost and reparability are some of their unique and valuable properties1 that
make some metals and metal alloys indispensable for many industrial industries such as ma-
rine/ship building industry (e.g., hull structure of ships, high-speed sea and river vessels, hydro-
foil ships, aerostatic crafts), construction industry (e.g., high-rise buildings, bridges), automotive
industry (e.g., pistons, cylinders, power screws, suspension assemblies, car doors, hoods), air-
craft industry (e.g., landing gear parts, aircraft wheel, wings, fuselage), aerospace industry (e.g.,
rockets, launch vehicles, space vehicles), home appliances industry (e.g., sinks, freezers), food in-
dustry (e.g., cooking pots, canned goods). This immense demand on metals and alloys creates an
exhaustive interest on their physical, chemical and mechanical properties which are not invariant.

Metallic materials possess crystalline structure which makes up their unique behavior. When
subjected to sufficiently intense load levels various microstructural changes occur: new disloca-
tions nucleate in addition to the existing ones, they gain mobility and interact with barriers, e.g.,
grain boundaries, inclusions, solid solutions, as well as each other, micro-voids and/or micro-
cracks nucleate, grow and coalesce causing localization into deformation bands, as a precursor
to fracture. The way these interactions occur closely depends on the mechanical and thermal
loading history and identifies the macroscopic response of the material.

Various approaches are developed so far in order to undertake the mathematical modeling of
various phenomena pertaining to the deformation and failure mechanisms of metallic materials.
To name some, in an ascending time- and lengthscale order, one can mention quantum me-
chanics, molecular mechanics, discrete dislocation dynamics. As compared to the experimental
sample sizes in usual engineering practice and/or mechanical process loading rates, the specified
methods are often limited to specific length- and timescales and hence mostly not applicable. To
overcome these drawbacks, the theory of continuum mechanics has served as a good basis for the
modeling of solid materials over several length and timescales. Continuum dynamics equations
are continuous representation of balance of linear momentum equations and they make no ref-
erence to the underlying material material behaviour observed. Constitutive models, which can
be postulated at any scale, by relating deformations and forces, complete the definition of the
boundary value problem. Phenomenological constitutive assumptions, traditionally established
experimentally, in description of geometric state of a deformed body with structural transfor-
mations2 are indispensable for phenomenological realism and help obtaining new insight into
relevant physical mechanisms at relevant scales.

1Unfortunately, all of these properties are not always possessed by a single metal or its alloy.
2More specifically, phenomenological constitutive approaches aim at modeling meso- or macroscale material

response through state and evolutionary equations of mathematical constructs which can relate to physically
measurable quantities (strain, temperature,time) or those that are not directly measurable, often referred to
as internal state variables representing smeared definitions of microstructural phenomena.
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2 1.1. Path Dependent Hardening

Once the emerging set of equations is not tractable, any constitutive model remains out of
reach. Their inherent complexity does not allow for the analytical solution to many initial
boundary value problems together with the constitutive models. For this purpose, numerical
solution methods which rely on temporal and spatial discretization schemes where the unknown
continuous fields are replaced with their discrete counterparts are used. With the advent of
powerful computers, these computations are made possible to be conducted over large systems.
One of the most widely used methods of this kind in the field of nonlinear solid and structural
mechanics is the finite element method which is also made available for large scale computa-
tions through commercial softwares, such as Abaqus. This gives the user chance to concentrate
purely on the stress update routines making up the constitutive model updates whereas many
complicated phenomena such as contact handling, global data management, assembly operations
and solution of global system of equations are carried out by the code. With these properties
finite element method constitutes an efficient way to predict the material and structural behav-
ior and it is nowadays standard in industrial practice. Hence, only the implementation of the
postulated frameworks makes the models accessible for the solution of industrial scale problems.

The parameters making up the mathematical models must be identified through characteriza-
tion experiments. This is not an easy task, especially considering the complexity of the material
model and technological limitations against investigation of a specific material response and/or
limitations of the specimens, e.g., buckling of thin plates. Hence,

� postulation of micromechanically informed phenomenological constitutive models,

� their implementation into existing simulation software,

� development of experimental procedures for mechanical material characterization

constitute complementary integral directions that process design for functional yet lightweight
components with exploitation of the material potential, accurate prediction of post-manufacturing
material and geometrical properties in reasonable computational times, the service life or per-
formance under extreme operating conditions require.

The current work collects the studies which the author contributed, to fulfill these challeng-
ing requirements. The thesis consists of mainly four parts each of which includes three papers.
Part I, composed of [49, 283, 282], is after outlining a path dependent hardening model for
metallic sheets. Part II, composed of [280, 68, 285], is after outlining room temperature local-
ization and fracture making use of Gurson’s porous plasticity model as well as Lemaitre’s damage
model including low triaxiality shear fracture enhancements. Here, nonlocal extensions of Gur-
son’s porous plasticity model is also discussed. Part III, composed of [281, 279, 289], is after
outlining the role of temperature in localization and fracture of metallic materials. Specifically
ductile-brittle transition is studied in which each brittle and ductile damage processes shows
their corresponding length-scales, hence, necessitates a nonlocal formulation. Finally, Part IV,
composed of [109, 342, 343], summarizes experimental approaches used in identification of ma-
terial parameters for anisotropy, path dependent hardening and finally low triaxiality ductile
fracture in metallic sheets.

1.1. Path Dependent Hardening

Anisotropic mechanical response of materials can be sourced from geometry or material. The
former is purely due to the microstructural form, whereas the latter is due to lattice system in
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metals or chain orientations or damage in polymers. The material-sourced anisotropy can be
either inherent or induced, e.g., by damage or additional dislocation motion driven by loading
path changes. The Bauschinger effect is a path dependent (kinematic) hardening which occurs
by partial dissolution of dislocation pile-ups upon load reversals causing early reyielding [44].
Cross hardening, on the other hand, is sensitivity to orthogonal loading path changes by which
the slip on the newly activated slip systems is hindered by prevailing dislocations resulting in a
latent resistance to yielding and hardening rate increase [104, 257, 258, 231, 96].

Levkovitch and Svendsen proposed a phenomenological model through evolving fourth-order
structural tensor associated with the form of plastic anisotropy [181]. In accordance with the
dynamics of dislocation structures, the evolution is considered in two parts such as dynamic and
latent. The former is the strength evolution associated with the currently active slip systems
whereas the latter is the cross hardening linked to the latent slip systems. Mathematically, the
split is carried out elegantly through parallel and orthogonal projections to a selected direction.
In the original work of Levkovitch and Svendsen this direction is selected as the unit plastic flow
direction np = ε̇p/| ε̇p |.

This part starts with examination of the application of a consistency-type viscoplastic extension
of the model in an industrial forming process materializing interstitial-free (IF) steel sheets in
Chapter 2. The rate extension is motivated by the relatively high strain rate sensitivity of this
steel class compared to others used in automotive industries [168]. The initial plastic anisotropy
anisotropy of the sheet is described by the quadratic Hill-48 model [122]. Bauschinger effect
is also considered. The finite strain extension of the model is realized through Green–Naghdi–
McInnis-type hypo-elastic plastic formulation which uses additivity of the rate of deformation
tensor into elastic and plastic parts in the rotationally neutralized configuration. Making use of
the developed subroutine and a set of experiments involving monotonic shear, uniaxial tension,
forward to reverse shear and plane strain tension followed by shear tests the model parameters
are identified. As an application, the channel forming process is studied where a good agreement
with the experimental findings is reported.

Formability describes the capability of a material to undergo plastic deformation to a given
shape without defects [24]. Uniaxial tension tests under monotonic loading which is generally
used in mechanical characterization studies fall short to reflect the complexity inherent to the
real forming processes which involve a number of strain path changes and associated formability
of the material [323]. This gains further importance for hardening models with path dependence.
Thus, in Chapter 3, the additional formability gained by the choice of cross hardening plasticity
with reduction in yield locus curvature is clarified quantitatively. In absence of dynamic hard-
ening contribution, the selected formulation for the cross hardening plasticity does not result in
any difference under strictly proportional loading paths. Hence a Marciniak-Kuczyński-based
finite element modeling approach is followed with spatially correlated random defect distribu-
tion as localization triggering mechanism in numerical determination of the first quadrants of
forming limit diagrams. This allows modeling gained expansion of the yield locus with latent
hardening and consequent reduction of the sensitivity to small loading path changes which re-
sults in increased stability as compared to the non-cross hardening model. For the applications
thin shell elements, reduced plane-stress vector formulations are elaborated. It is shown that
although for plane strain loading path there occurs no difference in localization predictions
of the models with and without cross hardening, for biaxial strain paths a delayed localization
is observed in the cross hardening model as compared to the one without cross hardening effects.



4 1.2. Damage Driven Localization and Fracture

In Chapter 4, an undesired feature of the original Levkovitch-Svendsen model is brought to
the attention of the reader: For materials with initial plastic anisotropy, the material model pre-
dicts additional strengthening in loading direction due to latent hardening even if the dynamic
hardening component is bypassed. First, the source of this hardening entanglement problem
is identified as the broken coaxiality of the stress deviator and plastic strain rate tensor with
initial anisotropy. A simple solution is then proposed through the use of the so–called radial
direction ns = [S −X]/|S −X | in parallel and orthogonal projections used in the evolution
equation of the fourth-order structural tensorH where S = dev(σ). This modification, through
resolving the hardening entanglement problem with isolation of each dynamic and latent hard-
ening source, expedites the parameter identification stage. The findings are complemented with
analytical and numerical derivations for various material model combinations.

1.2. Damage Driven Localization and Fracture

Cavitation as a source of the localization into deformation bands as a precursor to fracture
shows strong dependence on the stress state during plastic flow. An exponential growth of voids
is observed under triaxial tensile stress states whereas shear stress state promotes void sheet-
ing, void nucleation, void distortion and void interaction with material rotation and associated
degradation of stiffness and strength of the material. In mathematical modeling of this phe-
nomenon, dependence on the Lode parameter or third invariant of the deviatoric Cauchy (true)
stress tensor is proposed in [339] and [224], respectively. In this part ductile damage at room
temperature is studied.

In Chapters 5 and 6, fracture initiation by progressive material deterioration due to cavita-
tion, i.e. nucleation, growth, and coalescence of micro-voids, see e.g. [340, 228, 265, 305] during
free bending of a class of ferritic-martensitic DP1000 steel and during small punch testing of
P91 steel (unnotched) disks are investigated, respectively. Free bending is a frequently used
manufacturing process whereas small punch testing is an almost non-destructive test used to
investigate fracture properties such as yield stress, ultimate stress or fracture toughness which
requires small specimen sizes as compared to standard mechanical tests. In both tests rather
large-scale yielding prevails as compared to tests utilizing notched samples. Both experimen-
tal and numerical studies are accounted for. Simulations are realized using Gurson’s dilatant
plasticity model with a recent shear modification, strain-based void nucleation, and coalescence
effects. An integral-type nonlocal formulation is also introduced in Chapter 6. This formula-
tion requires a characteristic length hence allowing incorporating the size effect in the model.
Various parametric studies are presented depicting the effect of certain material parameters
(initial porosity, damage at coalescence and failure, shear modification term, etc.), plane strain
constraint and mesh size on the localization and the fracture behavior. The parametric studies
show that in absence of sufficient softening, a cleavage-type brittle fracture pattern orthogonal
to the maximum stress direction is carried out. With sufficient softening, on the other hand,
fracture pattern follows plastic localization bands which are oriented approximately 45◦ to the
maximum stress direction, in agreement with the observations presented in, e.g., [339, 185].

Lemaitre’s damage model constitutes one of the widely used continuum damage mechanics
approaches [175]. In Chapter 7 two successive enhancements of Lemaitre’s model and the impli-
cations of their use in formability prediction of today’s modern steels are presented. These are
quasi-unilateral damage evolution and shear stress dependence. The former, by scaling the elas-
tic energy release rate due to compressive principal stress, allows controlling fracture under low
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and negative stress triaxialities whereas the latter accounts for nonmonotonic dependence of the
fracture strain on the stress triaxiality ratio especially modifying generalized shear points. This
section introduces closed form expressions for the isochronous fracture surfaces of deformation
decoupled versions of the proposed models variants for linear strain paths. The performance of
each model is demonstrated with providing parameter identification studies for the given test
data from the literature. Also, an application with prediction of crack formation in deep-drawing
punch tests is presented.

1.3. Temperature Effects on Damage Driven Localization and
Fracture

Thermal expansion, temperature induced elastic softening with temperature dependence of elas-
tic material properties, temperature induced plastic softening with yield locus shrinkage are ex-
amples for the influence of temperature on mechanical fields. Geometric coupling on heat flux,
heat generation by inelastic dissipation, structural elastic heating: the Gough-Joule effect, on
the other hand constitute examples for the influence of of the mechanical field on the thermal
field. In this part, investigation of the influence of temperature on material damage and fracture
is aimed at.

One typical example of this type is the ductile–brittle transition, typically seen in bcc and
hcp metals. Mechanistically, nucleation, growth and coalescence of microvoids define ductile
fracture whereas inter- or intra-granular cleavage with microcrack nucleation, growth and coa-
lescence causes brittle fracture, [11]. In Chapter 8, the small punch test is revisited but this time
for temperatures varying from −196◦C to 25◦C and for notched and unnotched specimens of P91
steel representative for small- and large-scale yielding conditions, respectively, in order to inves-
tigate ductile-brittle transition phenomenon. A combined experimental-numerical is presented
on temperature dependent fracture mode change. The conducted experiments reveal fracture by
cleavage at −196◦C whereas at 25◦C shear localization with voidage precursor to ductile fracture
was observed where the observed deformation energy to fracture for the former is considerably
lower than the latter. Moreover, for brittle fracture the crack propagation direction is normal to
the maximum tensile principal stress whereas for ductile fracture, fracture pattern follows that
of shear localization patterns parallel to the punch displacement. In numerical simulations, a
thermo-inelastic constitutive approach is used with Gurson’s porous metal plasticity accounting
for the ductile damage. A temperature dependent flow stress is considered. For brittle frac-
ture, Ritchie–Knott–Rice’s maximum principal stress criterion is used. Each ductile and brittle
damage models are formulated with nonlocal manner incorporating corresponding length scales
which are computed based on the average inclusion distance and average grain size, respectively.
This allowed capturing a good agreement with the experimentally obtained fracture modes, pat-
terns and corresponding deformation energies up to fracture. One crucial output of this part is
the role of stress gradients in identification of the length scales and critical fracture thresholds
associated with brittle fracture.

Chapters 9 and 10 focus on development of isotropic damage coupled finite strain plasticity
frameworks through a systematic use of the internal variable theory of thermodynamics and
multiplicative kinematics. In Chapters 9, a single damage variable is used with a viscous plas-
ticity model. Following [275], inelastic entropy rate is derived to be additively composed of
plastic and damage parts through a temperature dependent damage dissipation potential. A
staggered solution scheme is applied for the thermomechanical problem with a so-called isother-



6 1.4. Experimental Approaches for Mechanical Characterization of Plasticity and Damage

mal split. Corresponding subroutine implementations allowed simulation of a set of 2D and 3D
problems which demonstrate the mutual effects of damage localization and inelastic heating on
each other. In Chapters 10, in the spirit of Chaboche and coworkers [71], Gurson’s porous plas-
ticity model is blended with Lemaitre’s continuum damage mechanics to result in a two damage
variable formulation. The first brittle damage variable d is responsible for cleavage-type of dam-
age in absence of any volume change whereas the second ductile one f responsible for ductile
damage due to plastic growth of microvoids as the void volume fraction in Gurson’s model. It is
shown that the evolution of d requires postulation of an appropriate damage dissipation poten-
tial in terms of its conjugate variable, the elastic energy release rate. On the other hand, since
the evolution of f is formulated through the conservation of mass, any resultant dissipation with
microvoid growth encapsulated in the plastic flow. It is shown through application problems
that, the developed model framework is capable to model ductile-brittle fracture through use of
a temperature dependent flow stress is considered.

1.4. Experimental Approaches for Mechanical Characterization of
Plasticity and Damage

According to [7], rational formulation of constitutive theories necessitate three types of experi-
ments: exploratory tests, characterization tests and validation tests. Exploratory tests are after
clarification of significant features of material response such as loading path dependence, rate
dependence, sensitivity to Lode parameter and stress triaxiality, etc, where these ingredients
shape the mathematical structure of the model. Hence such tests are indispensable for devel-
opment of phenomenological constitutive theories. Characterization tests aim at an accurate
identification of the constants used in the mathematical model usually under specific conditions,
e.g., uniaxial state of stress. Only through properly identified set of material parameters, one
can use the constitutive models in structural analysis or engineering design. Finally, validation
tests enable corroboration of a constitutive model by comparing the predictions with the struc-
tural response under multiaxial states of stress and strain. At this stage, a disagreement means
an imperative need for reconsideration or tailoring of certain parts of the mathematical structure.

In this last part of the thesis, mechanical material characterization tests for path dependent
hardening, directional plastic response and fracture for metallic sheets are considered. As com-
pared to bulk metals, metallic sheets are thinner and hence more sensitive to geometrical in-
stability mechanisms such as buckling. Hence, most tests that are readily available for bulk
materials, e.g. uniaxial compression test, cannot be applied to the sheets easily. Moreover,
sheet metals exhibit a certain texture which leads to directional dependence in their planar
plastic behavior. For plane stress space, various yield functions are defined to define the plastic
anisotropy of metallic sheets. The 3 parameter quadratic Hill’48 model [122], the 7 parameter
BBC2000 model [27], 8 parameter Yld2000-2D [34] and 17 parameter Vegter model [317] are
just to mention some. Identification of the increased number of parameters requires various test
set ups including uniaxial tensile test, shear test, biaxial tension test, plane strain tensile test,
layer compressions test, etc. [163]. From an industrial point of view keeping the number of
required tests is crucial.

In Chapter 11 a characterization methodology for identification of the plastic anisotropy of
sheets is proposed. Unlike classical tensile tests which aim at development of strain uniformity
at the gauge length, the proposed scheme uses tensile tests which intends nonuniform strain
field development through use of smoothly notched specimens. Emergent nonuniform fields are
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then measured with optically to form a database. Through repetitive finite element simulations,
which aim at minimizing the gap between predictions and the experimental database, the ma-
terial set controlling plastic anisotropy is identified through a Levenberg-Marquardt algorithm.
In the tests, deformation states from uniaxial tension to plane strain tension prevail. This wide
coverage of deformation space allows reduction of the number of material tests conventionally
required for identification of constants for complex anisotropy models. In the applications, tests
performed on sheets made of aluminum alloy AA6016-T4 is used. Yld2000-2D model, a non-
quadratic plane stress yield function having 8 material parameters, which is implemented as
a Vumat subroutine for Abaqus/Explicit, is selected to define the initial anisotropy of the
material. The results showing the agreement between the yield loci and r−values obtaioned
with the proposed methodology and those obtained with conventional methodologies making
use of higher number of tests confirm the effectiveness of the proposed methodology.

The main focus of the Chapters 12 and 13 is the so called in-plane torsion test. In the test,
a circular sheet is clamped internally and externally. In plane torsion is provided rotating the
external clamping device whereas keeping the internal clamping device fixed. In retrospect, this
test was proposed for investigation of the work hardening and fracture of the metallic sheets
by [200] a decade before the Miyauchi test. This test set up is used for stress and strain curve
determination in [297]. Since the test proves practical and insensitive to geometrical instability
mechanisms such as buckling or necking, up to date, many variants have been proposed through
changing the specimen geometry. In particular, so-called twin bridge specimen with slitted cir-
cular disk geometry was introduced in [61]. The introduced cuts limit the deformation zone
and the effect of anisotropy as compared to a continuous specimen. This also reduces the load
demand from the experimental device. Still the shear region should be kept sufficiently wide
to reduced edge effects. In Chapter 12 identification of kinematic hardening parameters using
a twin bridge cyclic shear test specimen is considered. Tests are conducted for three different
steel sheet materials: mild steel DC06, dual phase steel DP600 transformation induced plas-
ticity steel TRIP700. Since an analytical form for the solution of the initial value problem is
not available for the test, an inverse parameter identification methodology is used in determina-
tion of the hardening parameters. This way, the identification of the parameters of a combined
Voce-type nonlinear isotropic and Armstrong-Frederick-type kinematic hardening model is re-
alized, where the model is made available through implementation as a Vumat subroutine for
Abaqus/Explicit. The results illuminate salient kinematic hardening response of advanced
high strength steels DP600 and TRIP700 for which Armstrong-Frederick model falls short.

Finally, Chapter 13 is concerned with monotonic in plane torsion test with radially grooved
specimens in order to characterize shear fracture in sheet materials. Radial continuity in the
specimen material [200] avoids edge cracks whereas the radial groove controls the fracture zone
and keeps it away from the clamping area. The emergent fracture in the groove zone occurs
under vanishing triaxiality η = 0 and Lode parameter θ = 0 to be qualified as a shear fracture
as desired. Moreover, since the fracture occurs in the visible region, the test makes a direct
determination of the equivalent strain at fracture from digital image correlation (DIC) system
possible. Hence, the test is ideal for identification of the recent shear extended damage and
fracture models. Moreover it is possible to use the test as an exploratory test to illuminate the
shear fracture sensitivity of the material. As an application, the fracture behavior of DP1000
steel is investigated.
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1.5. A Word on Notation

In this work, unless otherwise stated, the following notation will be used. Assuming a, b,
and c as three second-order tensors, together with the Einstein’s summation convention on
repeated indices, c = a · b represents the product with cik = aijbjk. d = a : b = aijbij
represents the inner product with where d is a scalar. E = a ⊗ b, F = a ⊕ b and G = a 	 b
represent the tensor products with Eijkl = aijbkl, Fijkl = aikbjl and Gijkl = ailbjk, where
E, F and G represent fourth-order tensors. dev (•) = [•] − 1/3 tr(•) 1 and tr (•) stand for
the deviatoric part of and trace of [•], respectively, with 1 denoting the second-order identity
tensor. sym (•) and skw (•) denote symmetric and skew-symmetric parts of [•]. ˙[•] gives the
material time derivative of [•]. [•]> and [•]−1 denote the transpose and the inverse of [•],
respectively. The norm of a is denoted by |a| = √a : a. Moreover, [•̂] gives any [•] represented
at the rotationally neutralized, i.e. corotational, configuration. Div(•) and div(•) respectively
designate the divergence operators with respect to the coordinates in the reference and current
configurations. Analogously, Grad(•) and grad(•) respectively designate the gradient operators
with respect to the coordinates in the reference and current configurations. 〈•〉 stands for the
ramp function with 〈•〉 = 1/2 [ • + | • | ]. log (•) represents natural logarithm. Square brackets
[. . .] are used to collect mathematical expressions, row-ordered vector components whereas round
brackets (. . .) collect function arguments. Otherwise they respectively represent closed and open
interval boundaries in a real space.
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2. Inherent and Induced Anisotropic Finite
Visco-Plasticity with Applications to the
Forming of DC06 Sheets

In this chapter, a finite visco-plasticity model accounting for inherent and induced plastic
anisotropy as well as Bauschinger effect for the interstitial free (IF) steels is presented with
an application to a forming process simulation of DC06 sheets. The inherent plastic anisotropy
uses a Hill-48 type structural tensor whereas the induced anisotropy is modeled via its evolu-
tion accounting for dynamic (active) and latent (inactive) parts. The latter appears to be an
eminent requirement for predicting the qualitative effect of the evolving dislocation microstruc-
tures under orthogonal loading path changes, i.e., the cross hardening. A nonlinear isotropic
and Armstrong–Frederick type kinematic hardening is also involved. Finally, the rate depen-
dence of the plastic response is incorporated using Johnson–Cook type formulation. The model
is implemented as Vumat user defined material subroutine for Abaqus and used in a set of
sensitivity analyses to present mentioned model features. The model parameters are identified
based on a set of experiments involving monotonic shear, uniaxial tension, forward to reverse
shear and plane strain tension followed by shear tests. Finally, the channel forming process of a
DC06 sheet is simulated. A good agreement with the experimental findings is observed, in both
the tool response history curves and the extent of spring-back which is conclusive on the final
product geometry.

2.1. Introduction

The macroscopic behavior of the polycrystalline metals is closely linked to the underlying mi-
crostructure and its evolution. Under sufficiently intense load levels, new dislocations nucleate
in addition to the existing ones: they gain mobility and interact with barriers, e.g., grain bound-
aries, inclusions, solid solutions, as well as each other. The way how these interactions occur,
depends on the loading history, i.e., the loading path being monotonic, reverse or, e.g., or-
thogonal. Under monotonic loading paths dislocations accumulate in front of barriers to form
pile-ups. The consequent increase in the resistance to flow is referred to as strain hardening.
Once the load is reversed at proceeding stages, the pile-ups are partially dissolved, with the
dislocations departing from the barriers. This early re-yielding at load reversals is referred to
as the Bauschinger effect [44]. On the other hand, if instead of a complete load reversal, an
orthogonal loading is pursued, prevailing dislocations hinder the slip on the newly activated slip
systems. Resultant latent resistance to yielding and hardening rate increase is named as cross
hardening, see, e.g., Ghosh and Backofen [104] for one of the pioneering reports and Rauch
and Schmitt [257] as well as Rauch and Thuillier [258] who reported dislocation microstructure
alterations under tension followed by shear as subsequently orthogonal loading paths. Nesterova
et al. [231] investigated the microstructure under two strain path changes (simple-shear/simple-
shear and uniaxial-tension/simple-shear) in an interstitial free (IF) steel where the influence of
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the grain orientation is discussed as well. Gardey et al. [96] studied the dislocation structures
in dual-phase steel under different loading paths, including orthogonal loading and the effect of
the different strain paths on the dislocation structure is discussed in detail.

Mathematical modeling approaches associated with such micro-macro interactions differ by the
scale at which the mathematical constructs and their emerging relations are formulated. The
microscale based mechanistic approaches use mathematical entities in direct association with
corresponding microstructural phenomena. Within the current context, glide-system level res-
olutions with crystal plasticity (e.g., [147, 203, 125] and for a recent overview see Roters et
al. [262]) as well as gradient extended crystal plasticity ([9, 31, 32, 89, 130, 236]) were pre-
sented. These approaches, while supplying higher accuracy with less approximations require
relatively high computational cost as compared to their phenomenological counterparts which
base their formulations at the meso- or macroscale using smeared microstructural properties.
Since the current chapter aims at simulation of a metal forming process of DC06 steel sheets at
the macroscale, a phenomenological modeling approach is adopted here.

The phenomenological approaches account for the micromechanical phenomena mentioned above
through subjecting the yield surface to various transformations, such as proportional expansion,
translation, rotation and distortion [162]. Standard models involving combined isotropic and
kinematic hardening effects are limited to modeling only proportional expansion and translation
which might not be sufficient in accurate modeling of multistage metal forming processes involv-
ing strong load path changes. Baltov and Sawczuk [23] represent one of the early works that
takes into account the shape change of the yield surface during deformation known as distor-
tional hardening. The frameworks of Baltov and Sawczuk [23], Levkovitch and Svendsen [181],
Clausmeyer et al. [77], Pietryga et al. [245], Barthel et al. [40] and Barlat et al. [36] account for
the texture evolution due to the interaction of dislocation structures using evolving structural
tensors besides initial anisotropy and combined isotropic and kinematic hardening. The models
of the Teodosiu group, e.g., [298, 124, 113, 182] with modifications proposed by Wang et al.
[324] constitute other phenomenological approaches for modeling distortional hardening effects
which, as opposed to the formerly listed models, involve strong coupling between the kinematic
hardening and distortional hardening formulation. This makes basic model interpretation and
parameter identification relatively tough. Uenishi and Teodosiu [310] presented an extension of
the previous model of the Teodosiu group to include the rate effects to describe the behavior of
IF steel in crash analysis correctly. Finally, the works of Feigenbaum and Dafalias [90, 91] and
Plesek et al. [249] represent thermodynamically consistent distortional hardening models where
the yield surface curvature at the vicinity of the loading and flattening at the opposing region
can be modeled.

In the present chapter, following in the footsteps of the approaches proposed by Levkovitch
and Svendsen [181] and Barthel et al. [40], a framework for rate-dependent plasticity account-
ing for inherent and induced plastic anisotropy as well as Bauschinger effect is presented aiming
at modeling of the interstitial free (IF) steel behavior, specifically for DC06. For this purpose
an anisotropic yield function of Hill-48 type is devised (cf. [122]). The fourth-order structural
tensor is not taken as an invariant. However, it is assumed to evolve, where its evolution is
formulated in two parts such as dynamic and latent parts in accordance with the dynamics of
dislocation structures. In this way, the strength evolution associated not only with the currently
active slip systems but also with the latent slip systems is taken into account, the latter of
which is also known as cross hardening. The geometrical implications of the current formulation
are determined by the quadratic structure of the yield locus which is preserved even during
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its evolution. Within this limit, e.g., rotation of the axes and the change of the aspect ratio
of the ellipse representing the yield locus at the plane stress space is captured. The uniform
extension of the yield locus and its shift are taken into account using a combined nonlinear
isotropic and Armstrong–Frederick type kinematic hardening. This way the early re-yielding at
the load reversals, i.e., the Bauschinger effect, and successive transient hardening is incorporated
in the model as an eminent requirement for DC06. The IF steel DC06 is reported as the most
strain rate sensitive IF steel among those being applied in automotive industries [168]. A strain
rate dependent model is formulated in the current chapter in terms of a Johnson–Cook type
formulation. The experimental curves for DC06 at different strain rates reported by van Riel
[314] as well as the experimental data from [77, 76, 131] are used to identify the corresponding
material parameters. The Teodosiu and Hu model [298] and the Levkovich model [181] both are
capable of predicting the cross hardening behavior, however the strain rate effect is not included
in the Levkovich model. The Teodosiu and Hu model on the other hand is also considers strain
rate effects however at a cost of totally 7 parameters devoted to the cross hardening(cf. [314]).
In the current model, as compared to Teodosiu and Hu only 4 parameters are used for this
purpose. Finally, possible change of the Young’s modulus due to plastic strain or anisotropy is
not accounted for in this work.

The finite strain formulation is based on a Green–Naghdi–McInnis-type hypo-elastic plastic
formulation. Accordingly, additivity of the rate of deformation tensor into elastic and plastic
parts is assumed. By expressing the yield function in terms of the rotated Cauchy (true) stresses
the material frame indifference is naturally satisfied. The developed framework is implemented
as a Vumat user defined material subroutine for Abaqus/Explicit. First, sensitivity anal-
yses are performed using single finite element tests. Hereby, plane strain tension followed by
simple shear, cyclic simple shear with varying amplitudes and cyclic simple shear with varying
loading rates are realized in a strain controlled fashion. These analyses show that the proposed
model appropriately reflects the targeted features such as cross hardening at orthogonal loading
path changes, early re-yielding and transient hardening with reversed cyclic loading paths and
positive rate dependence of the plastic hardening. Finally, following the corresponding material
characterization studies the model is used in the simulation of a channel forming process of
DC06 steel sheet. Comparisons of the simulation results with the experimental observations
show very good agreement in both the tool response, i.e., the punch force demand history curve,
such as the extent of the spring-back which is conclusive on the final product geometry.The key
features in the current approach can be listed as follows:

� Inclusion of rate dependence using a Johnson–Cook type formulation with parameter iden-
tification.

� Consistent implementation in Abaqus/Explicit as Vumat.

� Sensitivity analysis of the material model with respect to different hardening effects.

� Application of the model to an actual metal forming experimental process.
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2.2. Theory

2.2.1. Material Model - Small Strain Formulation

The stage is set by assuming the additivity of the total strain tensor ε into elastic εe and plastic
εp parts viz.

ε = εe + εp . (2.2.1)

The stress tensor S is computed from the quadratic elastic strain energy Ψe = [1/2] [εe : Ce : εe]
with Ce denoting the elastic constitutive tensor with

Ce :=

[
κ− 2µ

3

]
[1⊗ 1] + µ [1⊗1 + 1⊗1] , (2.2.2)

where κ and µ are the elastic bulk and the shear moduli which are treated as constants. Hence,
the time rate of change of S reads

Ṡ = Ce : ε̇e = κ tr(ε̇e)1 + 2µ dev(ε̇e) . (2.2.3)

The material behavior of polycrystalline sheet metals during forming processes is predominantly
determined by a changing dislocation microstructure and attendant evolving anisotropic yield
behavior. In addition to the shift of the yield surface and its proportional expansion as in
the case of conventional combined hardening, the current model also accounts for an evolving
yield surface shape, i.e., cross hardening. Under these effects the plastic flow potential φp is
represented by

φp :=

√
[σeq]2 + [S −X] :H : [S −X]− σy (ep, ėp) ≤ 0 , (2.2.4)

Here, σeq denotes an equivalent stress measure of any kind, e.g., Hill-48 [122], Hosford [126],
Karafillis and Boyce [148], or Barlat [37]. Since in the current application a Hill-48 type initial
anisotropy is aimed at, the condition [σeq]2 = [S −X] : A : [S −X] is made use of. Thus,
Equation (2.2.4) is rearranged to give

φp :=
√

[S −X] : [A+H] : [S −X]− σy (ep, ėp) ≤ 0 , (2.2.5)

In above the initial (Hill-48-type) and the evolving fourth-order flow anisotropy tensors are
respectively denoted byA andH. X is the back stress tensor. σy (ep, ėp) denotes the flow stress
accounting for the isotropic hardening of the material with strain and strain rate effects. Hence,
letting ep denote the equivalent plastic strain and ėp its rate, σy (ep, ėp) follows a Johnson–Cook
type, [142], multiplicative form in which thermal effects are omitted

σy (ep, ėp) := hy (ep) ry (ėp) . (2.2.6)

Here, hy (ep) and ryry (ėp) denote the functions of strain hardening and strain rate hardening
which are defined as

hy (ep) := h ep + b− [b− σy0] exp (−m [ep]n) ,
ry (ėp) := 1 + c log (ėp/ėp0) ,

}
(2.2.7)

where σy0, b, c, n and m are material parameters. The reference rate is denoted by ėp0. During
fully developed plastic flow the consistency condition is satisfied, i.e., φp = 0. Hence, the current
visco-plastic formulation is referred to as a consistency type visco-plastic formulation, see, e.g.,
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[326]. Thus, the proposed model is capable of reflecting strain rate effects in contrast to similar
models, e.g., [181, 77]. An associative form is selected for the evolution of the plastic flow

ε̇p/ėp = ∂Sφ
p =

[A+H] : [S −X]√
[S −X] : [A+H] : [S −X]

. (2.2.8)

For definition of the equivalent plastic strain rate, following [173] the rate of plastic work ẇp is
defined as

ẇp = S : ε̇p = [S −X] : ε̇p︸ ︷︷ ︸
=:ẇpstationary

+ X : ε̇p︸ ︷︷ ︸
=:ẇptranslation

. (2.2.9)

Using Hill-48 type σeq, [S −X] : [A+H] : [S −X] is degree-one homogeneous with respect to
[S −X]. Thus, substituting Equation (2.2.8) into Equation (2.2.9), with an abuse of notation
σy = σy (ep, ėp), one has

ẇpstationary = [S −X] : ε̇p = ėp
[S −X] : [A+H] : [S −X]√
[S −X] : [A+H] : [S −X]

= ėpσy . (2.2.10)

Hence,

ėp =
[S −X] : ε̇p

σy
. (2.2.11)

The kinematic hardening behavior is modeled via a variant of the Armstrong–Frederick form

Ẋ/ėp = cx [sxN
p −X] , (2.2.12)

where cx and sx are associated with the saturation rate and magnitude with the back stress tensor
X, respectively. Np denotes the unit direction of the inelastic deformation with Np = ε̇p/|ε̇p|
where Np : Np = 1. The evolution of the flow anisotropy tensor determines the shape changes
in the yield surface due to the microstructure evolution and is modeled introducing the following
evolutionary relation (see, e.g., [181])

Ḣ/ėp = cd

[
sdN

p ⊗Np −Hd
]

+ cl

[
sl

[
Np ⊗Np − Idev

]
−Hl

]
. (2.2.13)

Idev is the deviatoric part of the fourth-order symmetric identity tensor, Isym = 1/2 [1⊗1 + 1⊗1],
with Idev = Isym − 1/3 [1⊗ 1]. Hd = [Np :H : Np] [Np ⊗Np] and Hl = H −Hd represent
the projections of H parallel and orthogonal to Np, respectively. This form is based on the
idea of growth and saturation of the dynamic (Hd) and latent (Hl) parts of the flow anisotropy
tensor H. Here, cd and sd represent the saturation rate and magnitude associated with Hd,
respectively. Analogously, cl and sl are the saturation rate and magnitude associated with Hl.

2.2.2. Extension to Finite Strains

Let X and x := ϕ(X, t) denote the particle positions at the reference (undeformed) config-
uration Ω0 and current (deformed) configuration Ω respectively. F := ∂Xϕ(X, t) defines the
deformation gradient of the nonlinear map ϕ : Ω0 × R→ R3. Any infinitesimal material vector
dX at the reference configuration is transformed to its final setting dx at the current configu-
ration via

dx := F · dX . (2.2.14)

Let l := Ḟ · F−1 = ∂xv denote the spatial velocity gradient, with v = ẋ. Various forms of rate
additive splits can be recovered through a multiplicative decomposition of F into elastic F e and
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plastic F p parts with F := F e·F p making use of Ḟ = Ḟ e·F p+F e·Ḟ p and [F ]−1 = [F p]−1·[F e]−1.
Accordingly one has l = le + lp where lp → F e · Lp · [F e]−1 with le := Ḟ e · [F e]−1 and
Lp := Ḟ p · [F p]−1. For small elastic strains and rigid body rotations with F e ' 1 one governs
lp → Lp. Using F e := Re · U e and assuming small elastic strains but finite rotations, i.e.,
U e ' 1, supplies lp → Re ·Lp · [Re]−1. Taking the symmetric part of both sides one reaches the
following additive split from a multiplicative split

d = de + dp . (2.2.15)

This forms the basis of hypoelastic-plastic formulations which rely on certain objective rates of
the selected stress measures. Abaqus/Vumat convention uses the Green–Naghdi–McInnis rate
of the Cauchy (true) stress σ which requires the rotationally neutralized rate of deformation
tensor ˙̂ε which is defined as

˙̂ε = R> · [de + dp] ·R = ˙̂ε
e

+ ˙̂ε
p
, (2.2.16)

with ˙̂ε
e

:= R> ·de ·R, ˙̂ε
p

:= R> ·dp ·R. Here, R denotes the rotation tensor, carried out by the
polar decomposition of the deformation gradient, F := R ·U , with U representing the symmet-
ric right stretch tensor. Similarly, a pull back operation on the Cauchy (true) stress tensor σ
with the rotation tensor gives its rotationally neutralized counterpart viz σ̂ := R> ·σ ·R whose
material time derivative ˙̂σ can be objectively integrated. Hence, the finite strain extension of
the presented framework is simply realized using the replacements Ṡ  ˙̂σ and ε̇  ˙̂ε and rep-
resenting the expressions at the rotationally neutralized configuration.

The developed material model is implemented as an Abaqus/Vumat subroutine and used
in the simulations given in the subsequent sections. The details of the implementation using the
Voigt notation can be found in the Appendix.

2.3. Parameter Identification for DC06

Cold-rolled steel sheet DC06 is an interstitial free steel type commonly applied for forming
processes. Many difficult automotive parts such as oil pans, side panels and interior door parts
are manufactured through forming DC06 sheets. As DC06 shows high strain path sensitivity,
it is known as a material with a complex anisotropic hardening behavior. The evolution of
dislocation microstructure during plastic deformation determines the hardening behavior of this
material. A cellular structure is formed by dislocations after inducing plastic deformation and
the dislocation density will increase at the cell boundaries when more plastic strain is induced.
The microstructural evolution of a DC06 sample under uniaxial tensile deformation (captured
by TEM) is shown in Figure 2.1. Cold-rolled steel sheet DC06 is an interstitial free steel type
commonly applied for forming processes. Many difficult automotive parts such as oil pans, side
panels and interior door parts are manufactured through forming DC06 sheets. As DC06 shows
high strain path sensitivity, it is known as a material with a complex anisotropic hardening
behavior. The evolution of dislocation microstructure during plastic deformation determines
the hardening behavior of this material. A cellular structure is formed by dislocations after
inducing plastic deformation and the dislocation density will increase at the cell boundaries
when more plastic strain is induced. The microstructural evolution of a DC06 sample under
uniaxial tensile deformation (captured by TEM) is shown in Figure 2.1.

Cross hardening is one of the observed hardening modes of this material that evolves during
orthogonal loading path changes. This phenomenon is dominated by the evolutionary changes in
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3. Parameter Identification for DC06

Cold-rolled steel sheet DC06 is an interstitial free steel type commonly applied for forming
processes. Many difficult automotive parts such as oil pans, side panels and interior door
parts are manufactured through forming DC06 sheets. As DC06 shows high strain path
sensitivity, it is known as a material with a complex anisotropic hardening behavior. The
evolution of dislocation microstructure during plastic deformation determines the hardening
behavior of this material. A cellular structure is formed by dislocations after inducing plastic
deformation and the dislocation density will increase at the cell boundaries when more plastic
strain is induced. The microstructural evolution of a DC06 sample under uniaxial tensile
deformation (captured by TEM) is shown in Figure 1. Cold-rolled steel sheet DC06 is an
interstitial free steel type commonly applied for forming processes. Many difficult automotive
parts such as oil pans, side panels and interior door parts are manufactured through forming
DC06 sheets. As DC06 shows high strain path sensitivity, it is known as a material with a
complex anisotropic hardening behavior. The evolution of dislocation microstructure during
plastic deformation determines the hardening behavior of this material. A cellular structure
is formed by dislocations after inducing plastic deformation and the dislocation density will
increase at the cell boundaries when more plastic strain is induced. The microstructural
evolution of a DC06 sample under uniaxial tensile deformation (captured by TEM) is shown
in Figure 1. Cross hardening is one of the observed hardening modes of this material that

Figure 1: TEM-images of DC06. Left: initial state. Grain boundaries at the triple point are clearly visible.
Right: dislocations structure after 5% uniaxial tension. Cell walls inside a grain can be seen.

evolves during orthogonal loading path changes. This phenomenon is dominated by the
evolutionary changes in dislocation microstructures. In general, such phenomena are not
captured in classical material models. As a consequence, materials like DC06, that show
complex microstructure behavior, are challenging ones to predict the material behavior
correctly. The DC06 sheets used in this study are prepared by cold rolling followed by
annealing and finishing by skin pass process. The steel sheets in this work are of 1.0 mm
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Figure 2.1.: TEM-images of DC06. Left: initial state. Grain boundaries at the triple point are
clearly visible. Right: dislocations structure after 5% uniaxial tension. Cell walls inside a grain
can be seen.

dislocation microstructures. In general, such phenomena are not captured in classical material
models. As a consequence, materials like DC06, that show complex microstructure behavior,
are challenging ones to predict the material behavior correctly. The DC06 sheets used in this
study are prepared by cold rolling followed by annealing and finishing by skin pass process.
The steel sheets in this work are of 1.0 mm thickness and provided and chemically analyzed by
ThyssenKrupp Steel Europe AG (cf. [77, 76]) . The material specifications are obtained from the
performed test on the DC06 sheet. The average Lankford’s coefficients in 0◦, 45◦ and 90◦ with
respect to the rolling direction are determined as r0=2.31, r45=1.95 and r90=2.77, respectively
[77]. Their relation with the Hill-48 constants, F , G, H, L, M , and N are given below,

F =
r0

r90[1 + r0]
, G =

1

[1 + r0]
, H =

r0

[1 + r0]
, L =

1

2

[r0 + r90] [1 + 2r45]

r90[1 + r0]
. (2.3.1)

with M = N = L.

Table 2.1.: Chemical composition of DC06. All values are given as multiples of 10−5 mass
fraction. The data set is determined by ThyssenKrupp Steel Europe AG [77, 76].

alloying component C Si Mn P S Al N Ti

10−5 mass fraction 3 18 137 13 10 35 2.7 79

To identify the material parameters in the formulated material model, experimental data for
monotonic shear, uniaxial tension, forward to reverse shear and plane strain tension followed
by shear tests are used (cf. [314, 77, 76, 131]). The simple shear tests and the combined plane
strain tension to shear tests were conducted on a biaxial tester (equipped with two axes which
can be moved independently) at Applied Mechanics Group, Faculty of Engineering Technology,
University of Twente, Netherlands (cf. [315, 314]).

The isotropic hardening parameters in the Johnson–Cook model (σy0, b, m and n) in Equation
(3.2.4) are identified based on the monotonic shear and the plane strain tension results. The
plane strain tension followed by shear test is used to identify the model parameters associated
with cross hardening (sd, cd, sl and cl). The simulation results of the presented model are
compared with the experimental data for monotonic shear and the plane strain tension followed
by the shear tests in Fig. 2.2. The Frederick–Armstrong kinematic hardening parameters are
adopted as the ones in Clausmeyer et al. [77].
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Figure 2: Comparison of the model response to the monotonic shear test and the plane strain tension
followed by shear test with the experiments data from [35, 20].

Afterwards, by simulation of an experimentally performed drawing process, the applica-
bility of the model to industrial problems is tested. The description and results of each case
study are represented in the next subsections.

4.1. Single Element Tests and Sensitivity Analyses

The one element tests are performed with a cubic 8 node element C3D8 element with
unity size. To concentrate on the effect of the induced anisotropy only, an initial yield surface
of von-Mises type is assumed in this section. Three sets of numerical tests are performed
to investigate the models performance. First, the simulations are run for a combined plane
strain tension and simple shear loading path. The displacement in x−direction is constrained
and the uniaxial displacement in y−direction is applied in the plane strain load case. The
simple shear loading is examined by inducing the shear deformation in the xy−plane. The
effect of each single hardening mode (isotropic, kinematic and cross) as well as combinations
of them are presented in Figures 4 and 5. For this purpose, single hardening models are
turned off by setting the corresponding material parameters accordingly.

The Cauchy shear stress component σ12 versus the sum of the deformation gradient
components F11 + F12 − 1 are depicted in Figure 4. The share of each hardening mode
is clearly observable. In addition, the Cauchy stress component σ22 during the considered
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Figure 2.2.: Comparison of the model response to the monotonic shear test and the plane strain
tension followed by shear test with the experiments data from [314, 77].
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Figure 3: Identification of strain rate sensitivity in Johnson–Cook model using the experimental results
represented in [35].
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Figure 4: Plane strain tension followed by simple shear test. Cauchy stress σ12 versus sum of deformation
gradient components F11 + F12 − 1 for different hardening contributions active: Iso, Kin and Cro refer to
isotropic, kinematic, and cross hardening, respectively.

loading path is shown in Figure 5.
The results show that the isotropic, kinematic and cross hardening contributions are

11

Figure 2.3.: Identification of strain rate sensitivity in Johnson–Cook model using the experimen-
tal results represented in [314].

The strain rate parameters in Johnson–Cook model (ėp0 and c) in Equation (3.2.4) are identified
using the experimental stress-strain curves represented in van Riel [314] for the strain rates ė =
[0.005 s−1, 0.011 s−1, 0.065 s−1]. The reference strain rate parameter ėp0 is identified to 0.005 s−1

and the strain rate sensitivity parameter c as 0.0857. In Fig. 2.3 the strain rate sensitivity of
the model is compared to the corresponding experimental curves in plane strain tensile loading
[314]. The identified material parameters for DC06 are summarized in Table 2.2.
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Table 2.2.: Identified material parameters for interstitial free DC06. Parameter values de-
termined from uniaxial tension, monotonic shear, cyclic shear, and orthogonal tension-shear
experimental test data, see [315, 77].

Parameter Symbol Value Dimension

Elastic constants
κ 150.833 [GPa]
µ 69.615 [GPa]

Johnson–Cook constants

σy0 108.0 [MPa]
b 320.0 [MPa]
m 7.60 [−]
n 1.18 [−]
ėp0 0.005 [s-1]
c 0.086 [−]

Hill-48 constants

F 0.252 [−]
G 0.302 [−]
H 0.698 [−]
L 1.357 [−]
M 1.357 [−]
N 1.357 [−]

Kinematic hardening constants
sx 56.0 [MPa]
cx 33.1 [−]

Cross hardening constants

sd 0 [−]
cd 23.90 [−]
sl 0.83 [−]
cl 87.30 [−]

2.4. Applications

In order to assess the presented material model two sets of numerical simulation have been used.
First, in a one element test the capability of the model in capturing different aspects of material
hardening under strain path changes is investigated. The response of each single hardening
mode in terms of a sensitivity analysis is represented at first.

Afterwards, by simulation of an experimentally performed drawing process, the applicability
of the model to industrial problems is tested. The description and results of each case study are
represented in the next subsections.

2.4.1. Single Element Tests and Sensitivity Analyses

The one element tests are performed with a cubic 8 node element C3D8 element with unity size.
To concentrate on the effect of the induced anisotropy only, an initial yield surface of von-Mises
type is assumed in this section. Three sets of numerical tests are performed to investigate the
model’s performance. First, the simulations are run for a combined plane strain tension and
simple shear loading path. The displacement in x−direction is constrained and the uniaxial
displacement in y−direction is applied in the plane strain load case. The simple shear loading
is examined by inducing the shear deformation in the xy−plane. The effect of each single
hardening mode (isotropic, kinematic and cross) as well as combinations of them are presented
in Figures 2.4 and 2.5. For this purpose, single hardening models are turned off by setting the



20 2.4. Applications

corresponding material parameters accordingly.
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Figure 3: Identification of strain rate sensitivity in Johnson–Cook model using the experimental results
represented in [35].
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Figure 4: Plane strain tension followed by simple shear test. Cauchy stress σ12 versus sum of deformation
gradient components F11 + F12 − 1 for different hardening contributions active: Iso, Kin and Cro refer to
isotropic, kinematic, and cross hardening, respectively.

loading path is shown in Figure 5.
The results show that the isotropic, kinematic and cross hardening contributions are
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Figure 2.4.: Plane strain tension followed by simple shear test. Cauchy stress σ12 versus sum
of deformation gradient components F11 + F12 − 1 for different hardening contributions active:
Iso, Kin and Cro refer to isotropic, kinematic, and cross hardening, respectively.

The Cauchy shear stress component σ12 versus the sum of the deformation gradient components
F11 +F12−1 are depicted in Figure 2.4. The share of each hardening mode is clearly observable.
In addition, the Cauchy stress component σ22 during the considered loading path is shown in
Figure 2.5.
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Figure 5: Plane strain tension test. Cauchy stress σ22 versus strain F12 + F22 − 1 for different hardening
contributions active. As expected, cross hardening does not play a role. Iso, Kin and Cro refer to isotropic,
kinematic, and cross hardening, respectively.
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Figure 6: Three simple shear loading cycles with different strain amplitudes. Cauchy stress component σ12

versus strain F12. The Bauschinger effect and its saturation are observable.

loading followed by the simple shear loading for the different values of sl parameter. The
results show the flexibility of the material model in reflecting the cross hardening behavior
in other materials with different sensitivities to load path changes.
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Figure 2.5.: Plane strain tension test. Cauchy stress σ22 versus strain F12 +F22−1 for different
hardening contributions active. As expected, cross hardening does not play a role. Iso, Kin and
Cro refer to isotropic, kinematic, and cross hardening, respectively.

The results show that the isotropic, kinematic and cross hardening contributions are accounted
for in the proposed model formulation. In the first part of the loading path (plane strain ten-
sion), the full model (Iso+Kin+Cro) yields the same stress response as combined isotropic and
kinematic hardening (Iso+Kin). As expected, the cross hardening mode does not contribute to
the stress in the first part of the applied loading path. Conversely, a significant stress overshoot
in the Cauchy stress component σ12 is observable in the full hardening model at the beginning
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of simple shear loading (cf. Figure 2.4). This is not captured in the combined isotropic and
kinematic hardening model due to the evolved cross hardening. The Bauschinger effect and its
saturation at higher strain amplitudes are observable.

To illustrate the effect of kinematic hardening in more detail, the model is analyzed for three sim-
ple shear loading cycles of different strain amplitudes as shown in Figure 2.6. The Bauschinger
effect, i.e., a reduction of the yield stress after reversal loading, is clearly observed.
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Figure 5: Plane strain tension test. Cauchy stress σ22 versus strain F12 + F22 − 1 for different hardening
contributions active. As expected, cross hardening does not play a role. Iso, Kin and Cro refer to isotropic,
kinematic, and cross hardening, respectively.
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Figure 6: Three simple shear loading cycles with different strain amplitudes. Cauchy stress component σ12

versus strain F12. The Bauschinger effect and its saturation are observable.

loading followed by the simple shear loading for the different values of sl parameter. The
results show the flexibility of the material model in reflecting the cross hardening behavior
in other materials with different sensitivities to load path changes.
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Figure 2.6.: Three simple shear loading cycles with different strain amplitudes. Cauchy stress
component σ12 versus strain F12. The Bauschinger effect and its saturation are observable.

In addition to the obtained results for DC06, further numerical investigations of the proposed
model with different set of model parameters associated with flow anisotropy tensor have been
performed. The results showed that a wide range of cross hardening sensitivity was covered by
the model. The results of the sensitivity analysis with respect to the magnitude of the latent
hardening part sl under plane strain followed by simple shear loading are shown in Figure 2.7.
The represented curves in this figure show the material response in the plane strain loading
followed by the simple shear loading for the different values of sl parameter. The results show
the flexibility of the material model in reflecting the cross hardening behavior in other materials
with different sensitivities to load path changes.

The capability of the material model to predict the evolving yield surface in the considered
loading path is demonstrated in Figures 2.8.(a) and 2.8.(b). The evolution of yield surface at
the end of each part of loading path as well as its initial state is depicted in Figure 2.8.(a) for the
full hardening model. Comparing the yield surface at the end of plane strain tension with the
initial yield surface clearly shows the shift in center of the curve due to the kinematic hardening.
The cross hardening effect is reflected in this figure through orientation change of the yield
surface. The change in the aspect ratio of the yield surface is observable as well. According to
the definition of the cross hardening part in the formulation of the material model, it is expected
to see the expansion of yield surface in the parallel and perpendicular directions respect to the
loading direction due to the dynamic and latent parts of induced anisotropy, respectively. In
the first loading phase (plane strain tension), the projection of loading direction on the major
axis of the yield ellipse is greater than that on the minor axis. In this regard, if the contribution
of the cross hardening mode is focused on, the expansion of the yield surface toward its minor
axis is mainly the effect of the latent part. In the second loading path, the direction of loading
is toward the minor axis of the initial yield surface and the effect of the latent part due to cross
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Figure 7: Sensitivity analysis with respect to sl for the plane strain tension followed by the simple shear
loading (σ11, σ22 and σ12 versus strain F12 + F22 − 1).

The capability of the material model to predict the evolving yield surface in the consid-
ered loading path is demonstrated in Figures 8.a and 8.b. The evolution of yield surface at
the end of each part of loading path as well as its initial state is depicted in Figure 8.a for the
full hardening model. Comparing the yield surface at the end of plane strain tension with
the initial yield surface clearly shows the shift in center of the curve due to the kinematic
hardening. The cross hardening effect is reflected in this figure through orientation change
of the yield surface. The change in the aspect ratio of the yield surface is observable as well.
According to the definition of the cross hardening part in the formulation of the material
model, it is expected to see the expansion of yield surface in the parallel and perpendicular
directions respect to the loading direction due to the dynamic and latent parts of induced
anisotropy, respectively. In the first loading phase (plane strain tension), the projection of
loading direction on the major axis of the yield ellipse is greater than that on the minor axis.
In this regard, if we focus on the contribution of the cross hardening mode, the expansion of
the yield surface toward its minor axis is mainly the effect of the latent part. In the second
loading path, the direction of loading is toward the minor axis of the initial yield surface
and the effect of the latent part due to cross hardening is the growth of the yield surface in
the direction of the major axis of initial yield surface. The growth of the yield surface in
this direction at the end of second part of the loading path is clearly observable in Figure
8.a, as anticipated. Finally, inspecting the normals to the yield loci at uniaxial stress points,
the evolution of the in-plane anisotropy, i.e., the Lankford’s coefficients, is observable.

To investigate the effect of cross hardening to the yield surface evolution, the yield
surface at the end of the first part of loading path (plane strain tension) is plotted in Figure
8.b for two combination of hardening modes: one for the complete model considering the
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Figure 2.7.: Sensitivity analysis with respect to sl for the plane strain tension followed by the
simple shear loading (σ11, σ22 and σ12 versus strain F12 + F22 − 1).

hardening is the growth of the yield surface in the direction of the major axis of initial yield
surface. The growth of the yield surface in this direction at the end of second part of the loading
path is clearly observable in Figure 2.8.(a), as anticipated. Finally, inspecting the normals to the
yield loci at uniaxial stress points, the evolution of the in-plane anisotropy, i.e., the Lankford’s
coefficients, is observable.
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Figure 8: a) Yield loci at the initial condition, the end of plane strain tension loading and the end of simple
shear loading. b) Yield loci at the initial condition and at the end of plane strain tension for Iso+Kin and
Iso+Kin+Cro model.

effect of isotropic, kinematic and cross hardening and the other without the cross hardening
contribution. Both combinations predict the same yield points on the loading path. That
is in agreement with the depicted curves in Figure 5 for the first part of the loading path.
Moreover, the effect of cross hardening in determining the orientation and the expansion of
yield surface is obviously reflected in this figure. Further, it is seen for a following orthogonal
loading path, the full model predicts higher yield that is in accordance with the shear stress
curve in Figure 4 at the beginning of the simple shear loading. Accordingly, the latent slip
system orthogonal to the current loading direction is taken into account in the proposed
model. In addition, to reflect the cross hardening effect in predicting the yield surface, the
investigation of the yield surface evolution after orthogonal loading change shows that the
orientation of the yield surface returns to its initial one after a slight loading. Further, shear
loading results in the expansion of the yield surface in this orientation (cf. Figure 8.a).
According to the above results, the introduced model captures all the target features well,
but the feasibility investigation of the model for the real sheet forming process remains -
this is done in the following.

4.2. An Industrial Process Simulation

An open section channel (cf. Figure 9) is selected for the experimental drawing process
and the results are recorded to verify the simulation results. As the selected geometry
comprises different complex curves, different plastic strain paths occur in different zones of
the DC06 sheet during the forming process. Consequently, the various hardening modes
such as isotropic, kinematic and cross hardening take part during the deformation. The
forming processes were performed at the Institute of Forming Technology and Lightweight
Construction, Technical University of Dortmund, Germany, on a double acting hydraulic
press with maximum 1000 kN capacity. The die components comprising punch, matrix and
blank-holder are made of tool steel C60 according to DIN EN 10027-2. The blank-holder
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Figure 2.8.: (a) Yield loci at the initial condition, the end of plane strain tension loading and
the end of simple shear loading. (b) Yield loci at the initial condition and at the end of plane
strain tension for Iso+Kin and Iso+Kin+Cro model.

To investigate the effect of cross hardening to the yield surface evolution, the yield surface at
the end of the first part of loading path (plane strain tension) is plotted in Figure 2.8.(b) for two
combination of hardening modes: one for the complete model considering the effect of isotropic,
kinematic and cross hardening and the other without the cross hardening contribution. Both
combinations predict the same yield points on the loading path. That is in agreement with
the depicted curves in Figure 2.5 for the first part of the loading path. Moreover, the effect of
cross hardening in determining the orientation and the expansion of yield surface is obviously
reflected in this figure. Further, it is seen for a following orthogonal loading path, the full
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model predicts higher yield that is in accordance with the shear stress curve in Figure 2.4 at
the beginning of the simple shear loading. Accordingly, the latent slip system orthogonal to the
current loading direction is taken into account in the proposed model. In addition, to reflect
the cross hardening effect in predicting the yield surface, the investigation of the yield surface
evolution after orthogonal loading change shows that the orientation of the yield surface returns
to its initial one after a slight loading. Further, shear loading results in the expansion of the yield
surface in this orientation (cf. Figure 2.8.(a)). According to the above results, the introduced
model captures all the target features well, but the feasibility investigation of the model for the
real sheet forming process remains - this is done in the following.

2.4.2. An Industrial Process Simulation

An open section channel (cf. Figure 2.9) is selected for the experimental drawing process and the
results are recorded to verify the simulation results. As the selected geometry comprises different
complex curves, different plastic strain paths occur in different zones of the DC06 sheet during
the forming process. Consequently, the various hardening modes such as isotropic, kinematic
and cross hardening take part during the deformation. The forming processes were performed
at the Institute of Forming Technology and Lightweight Construction, Technical University of
Dortmund, Germany, on a double acting hydraulic press with maximum 1000 kN capacity. The
die components comprising punch, matrix and blank-holder are made of tool steel C60 according
to DIN EN 10027-2. The blank-holder force is provided hydraulically at the constant value of
200 kN during loading step. However, due to the hydraulic oscillation, this was not completely
achieved (see Figure 2.10). Contacting surfaces are covered by a lubrication formulated on
solvent refined mineral oil with a viscosity of 67 mm2/s at 40◦C. To determine the Coulomb
friction coefficient, the contact conditions in the channel forming process are simulated in several
simple experimental tests (cf. [332]). For each contact test, rectangular metal strips (300 mm×
400 mm) are prepared and lubricated corresponding to the contact conditions of the considered
contact set. The prepared strips are pressed against each other with a definite force and the
required pulling force for each test is measured. The friction coefficient has experimentally been
identified as µ=0.15. During the forming process, the die displacement, the blank-holder force
and the force acting on the die are recorded with a frequency of 50 Hz. For homogeneous load
distribution, avoiding dynamic effect and geometry precision, the forming process is performed
at the low rate of loading about 4 mm/s. Moreover, the final geometry is measured by ATOS
machine to compare to the obtained final geometry from process simulation. Three tests with
the identical conditions are carried out to check the test repeatability. Comparing the force-
time recorded results and the final geometry of workpiece obtained from each repetition shows
no considerable differences.

In the following, the above experimental forming process is modeled and the numerical results
are compared to the experimental data. The meshed parts of the channel forming process in the
simulation are shown in Figure 2.11. The die parts are meshed by rigid shell elements R3D4 and
the blank is meshed by 8-node elements C3D8R with reduced integration and 1 mm approximate
element size. Five layers of elements are used with the total number of 75030 elements for the
blank mesh. The simulation is performed using a Vumat subroutine in Abaqus/Explicit.
The initial anisotropy is considered using the Hill-48 constants listed in Table 2.2.

The load is applied according to the experimental time scale. In accordance to the measured
value during the experiment, the blank-holder force is approximated as 200 kN and kept un-
changed during the following forming process. The blank-holder force measured in the exper-
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force is provided hydraulically at the constant value of 200 kN during loading step. However,
due to the hydraulic oscillation, this was not completely achieved (see Figure 10). Contacting
surfaces are covered by a lubrication formulated on solvent rened mineral oil with a viscosity
of 67 mm2/s at 40◦ C. To determine the Coulomb friction coefficient, the contact conditions in
the channel forming process are simulated in several simple experimental tests (cf. [45]). For
each contact test, rectangular metal strips (300 mm × 400 mm) are prepared and lubricated
corresponding to the contact conditions of the considered contact set. The prepared strips
are pressed against each other with a definite force and the required pulling force for each test
is measured. The friction coefficient has experimentally been identified as µ=0.15. During
the forming process, the die displacement, the blank-holder force and the force acting on
the die are recorded with a frequency of 50 Hz. For homogeneous load distribution, avoiding
dynamic effect and geometry precision, the forming process is performed at the low rate
of loading about 4 mm/s. Moreover, the final geometry is measured by ATOS machine
to compare to the obtained final geometry from process simulation. Three tests with the
identical conditions are carried out to check the test repeatability. Comparing the force-time
recorded results and the final geometry of workpiece obtained from each repetition shows
no considerable differences.

Figure 9: Undeformed blank (left) and channel die geometry after forming (right).

In the following, the above experimental forming process is modeled and the numerical
results are compared to the experimental data. The meshed parts of the channel forming
process in the simulation are shown in Figure 11. The die parts are meshed by rigid shell
elements R3D4 and the blank is meshed by 8-node elements C3D8R with reduced integration
and 1 mm approximate element size. Five layers of elements are used with the total number
of 75030 elements for the blank mesh. The simulation is performed as Explicit using a
VUMAT subroutine in ABAQUS/Explicit. The initial anisotropy is considered using the
Hill-48 constants listed in Table 2.
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Figure 2.9.: Undeformed blank (left) and channel die geometry after forming (right).

Displacement [mm]

B
la

n
k
h
ol

d
er

fo
rc

e
[k

N
]

Experiment
Simulation

0 10 20 30 40 50 60
0

50

100

150

200

250

Figure 10: Experimentally determined blank-holder force in channel forming process. The applied force in
the simulation is approximated as a constant value of 200 kN.

The load is applied according to the experimental time scale. In accordance to the
measured value during the experiment, the blank-holder force is approximated as 200 kN
and kept unchanged during the following forming process. The blank-holder force measured
in the experiment as well as the one from the simulation are plotted in Figure 10. Tangential
contact behavior is defined by Coulomb friction law with the friction coefficient of µ = 0.15.

Figure 11: Simulation set up of channel forming process.
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Figure 2.10.: Experimentally determined blank-holder force in channel forming process. The
applied force in the simulation is approximated as a constant value of 200 kN.

iment as well as the one from the simulation are plotted in Figure 2.10. Tangential contact
behavior is defined by Coulomb friction law with the friction coefficient of µ = 0.15.

The simulation results of the channel forming process are shown in Figures 2.12-2.16. First, the
die force from the finite element simulation is compared to the recorded die force during the
experiment (cf. Figure 2.12). These two curves represent the die force versus punch displacement
and an acceptable downstream following the experimental curve is observed. A local increase
in the experimental die force is seen at the end of loading in Figure 2.12. The tapered shape of
the die may be a reason for such an increase due to the blank clamping at the end of the punch
course at the upper region. This local increase of the die force is captured in the simulation,
but it is less pronounced.

The geometry of the workpiece before and after spring-back, obtained from simulation is com-
pared to the measured experimental one in Figures 2.13 and 2.14. An acceptable agreement
between the simulation and experiment is achieved in the curved areas and the flange angles.
The comparisons are presented for the both ends of the channel.
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Figure 10: Experimentally determined blank-holder force in channel forming process. The applied force in
the simulation is approximated as a constant value of 200 kN.

The load is applied according to the experimental time scale. In accordance to the
measured value during the experiment, the blank-holder force is approximated as 200 kN
and kept unchanged during the following forming process. The blank-holder force measured
in the experiment as well as the one from the simulation are plotted in Figure 10. Tangential
contact behavior is defined by Coulomb friction law with the friction coefficient of µ = 0.15.

Figure 11: Simulation set up of channel forming process.
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Figure 2.11.: Simulation set up of channel forming process.

The simulation results of the channel forming process are shown in Figures 12-17. First,
the die force from the finite element simulation is compared to the recorded die force during
the experiment (cf. Figure 12). These two curves represent the die force versus punch
displacement and an acceptable downstream following the experimental curve is observed.
A local increase in the experimental die force is seen at the end of loading in Figure 12. The
tapered shape of the die may be a reason for such an increase due to the blank clamping
at the end of the punch course at the upper region. This local increase of the die force is
captured in the simulation, but it is less pronounced.
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Figure 12: Die force (kN) in the channel forming process determined in experiment and simulation.

The geometry of the workpiece before and after spring-back, obtained from simulation is
compared to the measured experimental one in Figures 13 and 14. An acceptable agreement
between the simulation and experiment is achieved in the curved areas and the flange angles.
The comparisons are presented for the both ends of the channel.

The final flange shapes, obtained from simulation and experiment, are compared in
Figure 15. Here, a small difference is seen between the two geometries. In spite of the
homogeneous flange widths in the simulated one, the experimental flange shape has varying
flange width especially at both ends. The non-uniform distribution of the blank-holder force
in experimental process could be one reason of such difference in the flange widths. In
conventional industrial problems, the main target in blank shape design is having the equal
flange width all over the final part. This target decreases the required blank-holder force for
controlling the wrinkling effect as well as the wasted material in final cutting.

The strain rate distribution in the workpiece at the 60% of the total forming process is
shown in Figure 16. It is observable that the strain rates in some areas (especially at the die
edges) are considerably high - leading to a strain rate hardening effect in the material. As
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Figure 2.12.: Die force (kN) in the channel forming process determined in experiment and
simulation.

10 mm

Simulation-Before Springback

Simulation-After Springback

Experiment-After Springback

Figure 13: Comparison of the obtained final shapes before and after spring-back from simulation with the
final shapes after spring-back from experiment at wider opening end. The numerical result agrees well with
the experimental data.
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Figure 14: Comparison of the obtained final shapes before and after spring-back from simulation with the
final shapes after spring-back from experiment at narrower opening end. The numerical result is in good
accordance to the experimental data.

the sheet suddenly bends at the die edges during draw-in process, it is expected that high
strain rates occur in such areas. In this regard, the strain rate values strongly depend on
the die radii as well as the loading speed. The strain rate distribution shows that the strain
rate effect is a phenomenon in the selected forming process which should not be neglected.

The induced anisotropy is not only affecting the material behavior in non-proportional
loading paths but also the product characteristics in the post production investigations
(e.g., crashworthiness [46]). Therefore, even for the areas that do not experience a non-
proportional loading, the induced anisotropy might be important. The Frobenius norm of
the fourth-order induced anisotropy tensor, that is |H| =

√
HijklHijkl, at the final product

is shown in Figure 17. It is seen that the side walls and the curved areas of the product have
higher accumulated induced anisotropy. This means that in these areas the microstructure
of the material potentially shows higher resistance to the plastic deformation in definite
directions compared to the regions with lower accumulated one.

In total, the proposed model is well applicable for simulating real sheet forming processes.

5. Conclusion:
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Figure 2.13.: Comparison of the obtained final shapes before and after spring-back from simula-
tion with the final shapes after spring-back from experiment at wider opening end. The numerical
result agrees well with the experimental data.

The final flange shapes, obtained from simulation and experiment, are compared in Figure 2.15.
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Figure 13: Comparison of the obtained final shapes before and after spring-back from simulation with the
final shapes after spring-back from experiment at wider opening end. The numerical result agrees well with
the experimental data.
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Figure 14: Comparison of the obtained final shapes before and after spring-back from simulation with the
final shapes after spring-back from experiment at narrower opening end. The numerical result is in good
accordance to the experimental data.

the sheet suddenly bends at the die edges during draw-in process, it is expected that high
strain rates occur in such areas. In this regard, the strain rate values strongly depend on
the die radii as well as the loading speed. The strain rate distribution shows that the strain
rate effect is a phenomenon in the selected forming process which should not be neglected.

The induced anisotropy is not only affecting the material behavior in non-proportional
loading paths but also the product characteristics in the post production investigations
(e.g., crashworthiness [46]). Therefore, even for the areas that do not experience a non-
proportional loading, the induced anisotropy might be important. The Frobenius norm of
the fourth-order induced anisotropy tensor, that is |H| =

√
HijklHijkl, at the final product

is shown in Figure 17. It is seen that the side walls and the curved areas of the product have
higher accumulated induced anisotropy. This means that in these areas the microstructure
of the material potentially shows higher resistance to the plastic deformation in definite
directions compared to the regions with lower accumulated one.

In total, the proposed model is well applicable for simulating real sheet forming processes.

5. Conclusion:
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Figure 2.14.: Comparison of the obtained final shapes before and after spring-back from sim-
ulation with the final shapes after spring-back from experiment at narrower opening end. The
numerical result is in good accordance to the experimental data.

Here, a small difference is seen between the two geometries. In spite of the homogeneous flange
widths in the simulated one, the experimental flange shape has varying flange width especially
at both ends. The non-uniform distribution of the blank-holder force in experimental process
could be one reason of such difference in the flange widths. In conventional industrial problems,
the main target in blank shape design is having the equal flange width all over the final part.
This target decreases the required blank-holder force for controlling the wrinkling effect as well
as the wasted material in final cutting.

[mm]

-2.0

-61.1

Figure 15: Comparison of the flange shape after spring-back in the final workpiece obtained from experiment
and simulation. The displacement [mm] in z−direction is plotted.

A micromechanically motivated visco-plastic material model is applied to interstitial
free DC06 steel. The microstructure evolution of the material during plastic deformation
is mapped via the flow potential function by an evolutionary approach. This evolutionary
approach implements the change of dislocation structures parallel and orthogonal to the
direction of inelastic deformation as the dynamic and the latent part of hardening via an
the induced anisotropy tensor of fourth-order. This model is implemented into a VUMAT
subroutine and its capabilities for taking into account the isotropic, kinematic hardening
and cross hardening modes are investigated.

Considering the presented results in the one element simulation tests, the isotropic and
kinematic hardening modes are successfully captured by the proposed material model. In
addition, cross hardening in orthogonal loading paths is correctly predicted by the model as
well. The evolution of the yield surface under the applied orthogonal loading path is depicted
and the reflection of each hardening mode is well observed. In addition, the results are
consistent with the microstructural hypothesis of plastic deformation in the active and the
non-active slip systems, so that the cross hardening effect is clearly observed in the obtained
results. The strain rate effect is successfully considered in the model via the Johnson–Cook
formulation and fitted to the experimental stress-strain curves of the considered material
DC06. The strain rate effect in the channel forming case study is reflected as well.

Furthermore, its applicability to an experimental channel forming process is shown. The
sheet undergoes a wide range of strain paths at different locations, during the selected
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Figure 2.15.: Comparison of the flange shape after spring-back in the final workpiece obtained
from experiment and simulation. The displacement [mm] in z−direction is plotted.

The strain rate distribution in the workpiece at the 60% of the total forming process is shown
in Figure 2.16. It is observable that the strain rates in some areas (especially at the die edges)
are considerably high - leading to a strain rate hardening effect in the material. As the sheet
suddenly bends at the die edges during draw-in process, it is expected that high strain rates
occur in such areas. In this regard, the strain rate values strongly depend on the die radii as
well as the loading speed. The strain rate distribution shows that the strain rate effect is a
phenomenon in the selected forming process which should not be neglected.
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Figure 16: Strain rate distribution after 60% of loading. The strain rates at the die edges are considerably
high leading to a strain rate hardening effect in the material. Thus, the strain rate effect should be accounted
for in the simulations.

channel forming process with non-homogeneous section. The simulation of the selected
industrial (case study) process has been carried out successfully and the obtained results are
in very good agreement with the measured experimental results. Satisfactory coincidence
of the spring-back shape between the simulation and experiment shows that the material
behavior is succeeded in modeling effective hardening mechanisms in different strain paths
during the forming process.

According to the presented results the strain rate effect is an active phenomenon in the
selected process and material, although the selected process is not perfect to investigate
the strain rate effect in detail. The cross hardening evolution also shows the importance
of the induced anisotropy during the process and the mechanical characteristics of the final
product. Making use of this material model via the commercial finite element software
Abaqus is a practical way for precise simulating the industrial sheet forming processes. In
this way, different modes of hardening consisting isotropic, kinematic and cross hardening
as well as the strain rate effect are considered in the simulation of forming processes.
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Figure 2.16.: Strain rate distribution after 60% of loading. The strain rates at the die edges are
considerably high leading to a strain rate hardening effect in the material. Thus, the strain rate
effect should be accounted for in the simulations.

2.5. Conclusion:

A micromechanically motivated visco-plastic material model is applied to interstitial free DC06
steel. The microstructure evolution of the material during plastic deformation is mapped via the
flow potential function by an evolutionary approach. This evolutionary approach implements
the change of dislocation structures parallel and orthogonal to the direction of inelastic defor-
mation as the dynamic and the latent part of hardening via an the induced anisotropy tensor of
fourth-order. This model is implemented into a Vumat subroutine and its capabilities for taking
into account the isotropic, kinematic hardening and cross hardening modes are investigated.

Considering the presented results in the one element simulation tests, the isotropic and kine-
matic hardening modes are successfully captured by the proposed material model. In addition,
cross hardening in orthogonal loading paths is correctly predicted by the model as well. The
evolution of the yield surface under the applied orthogonal loading path is depicted and the re-
flection of each hardening mode is well observed. In addition, the results are consistent with the
microstructural hypothesis of plastic deformation in the active and the non-active slip systems,
so that the cross hardening effect is clearly observed in the obtained results. The strain rate
effect is successfully considered in the model via the Johnson–Cook formulation and fitted to
the experimental stress-strain curves of the considered material DC06. The strain rate effect in
the channel forming case study is reflected as well.

Furthermore, its applicability to an experimental channel forming process is shown. The sheet
undergoes a wide range of strain paths at different locations, during the selected channel forming
process with non-homogeneous section. The simulation of the selected industrial (case study)
process has been carried out successfully and the obtained results are in very good agreement
with the measured experimental results. Satisfactory coincidence of the spring-back shape be-
tween the simulation and experiment shows that the material behavior is succeeded in modeling
effective hardening mechanisms in different strain paths during the forming process.

According to the presented results the strain rate effect is an active phenomenon in the se-
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lected process and material, although the selected process is not perfect to investigate the strain
rate effect in detail. The cross hardening evolution also shows the importance of the induced
anisotropy during the process and the mechanical characteristics of the final product. Making
use of this material model via the commercial finite element software Abaqus is a practical
way for precise simulating the industrial sheet forming processes. In this way, different modes of
hardening consisting isotropic, kinematic and cross hardening as well as the strain rate effect are
considered in the simulation of forming processes. A final word is that, the induced anisotropy is
not only affecting the material behavior in non-proportional loading paths but also the product
characteristics in the post production investigations (e.g., crashworthiness [290]). Therefore,
even for the areas that do not experience a non-proportional loading during production, the
induced anisotropy might gain importance during service-life.

2.A. Details of Vumat Implementation

2.A.1. Voigt Notation

Implementation of the material models preserving tensorial forms often result in inefficient codes.
For a three-dimensional application this can be remedied by the use of Voigt notation, i.e., using
6 × 1 vectors and 6 × 6 matrices for the representation of symmetric second-order tensors and
fourth-order tensors with at least minor-symmetries. This allows application of standard matrix
algebra.

The 6 × 1 vector representations for the strain tensor is ε = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε13]> .
where the strain tensor norm |ε| = √εijεij is computed using |ε| =

√
ε>Q ε , with

Q =
1

2




2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



. (2.A.1)

All the strain and strain-like tensors follow the stencil
[

1 2
]>

, where the shear components
are multiplied by two
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13]
>
,
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33, 2N

p
12, 2N
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23, 2N
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13]
>
.





(2.A.2)

The 6×1 vector representations for the stress and stress-like tensors follow the stencil
[

1 1
]>

,
where the shear components are multiplied by unity

S = [S11, S22, S33, S12, S23, S13]> ,
X = [X11, X22, X33, X12, X23, X13]> ,

}
(2.A.3)

where the tensor norm, e.g., |S| =
√
SijSij , is computed using |S| =

√
S>Q−1 S . A similar

distinction also applies for the 6 × 6 matrix representations of the fourth-order tensors acting
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on the stress-like or strain-like tensors. Hence while representing εe : Ce : εe as [εe]> Ce εe, the
matrix form of Ce reads

Ce =




Ce1111 Ce1122 Ce1133 Ce1112 Ce1123 Ce1113

Ce2211 Ce2222 Ce2233 Ce2212 Ce2223 Ce2213

Ce3311 Ce3322 Ce3333 Ce3312 Ce3323 Ce3313

Ce1211 Ce1222 Ce1233 Ce1212 Ce1223 Ce1213

Ce2311 Ce2322 Ce2333 Ce2312 Ce2323 Ce2313

Ce1311 Ce1322 Ce1333 Ce1312 Ce1323 Ce1313



. (2.A.4)

Hence, the stencil

[
1 1

1 1

]
is used over the continuum components. Note that with Equa-

tions (2.A.3) and (3.3.4), the stress definition in Equation (2.2.3) naturally replaces with its
corresponding Voigt form

S = Ce εe , (2.A.5)

and hence [εe]> Ce εe = [εe]> S = [Se]> εe. The matrix representation of [S −X] : [A+H] :
[S −X] reads [S −X]> [A+H] [S −X]. The matrix form of A and H, which preserve both
major- and minor-symmetries with Aijkl = Ajikl = Aijlk = Aklij and Hijkl = Hjikl = Hijlk =
Hklij , read

A =




A1111 A1122 A1133 2A1112 2A1123 2A1113

A2211 A2222 A2233 2A2212 2A2223 2A2213

A3311 A3322 A3333 2A3312 2A3323 2A3313

2A1211 2A1222 2A1233 4A1212 4A1223 4A1213

2A2311 2A2322 2A2333 4A2312 4A2323 4A2313

2A1311 2A1322 2A1333 4A1312 4A1323 4A1313




(2.A.6)

and

H =




H1111 H1122 H1133 2H1112 2H1123 2H1113

H2211 H2222 H2233 2H2212 2H2223 2H2213

H3311 H3322 H3333 2H3312 2H3323 2H3313

2H1211 2H1222 2H1233 4H1212 4H1223 4H1213

2H2311 2H2322 2H2333 4H2312 4H2323 4H2313

2H1311 2H1322 2H1333 4H1312 4H1323 4H1313




(2.A.7)

Hence, the stencil

[
1 2

2 4

]
applies over the continuum components. This notation leads to the

following matrix form of the Hill-48-type structural tensor

A =




G+H −H −G 0 0 0
−H F +H −F 0 0 0
−G −F F +G 0 0 0
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M



. (2.A.8)

Note that with Equations (3.3.7) and (3.3.6), the flow rule in Equation (2.2.8) naturally replaces
with its corresponding Voigt form

ε̇p/ėp =
[A+H] [S −X]√

[S −X]> [A+H] [S −X]
. (2.A.9)
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The Voigt representation of the tensorial expressions which uses different types in each side of
the equation, like in Equation (2.2.12), needs additional transformation operators. For example
the Voigt form of Equation (2.2.12) reads Ẋ/ėp = cx [sxQNp −X] , where Np = ε̇p/|ε̇p|.
Finally, the Voigt representation of Equation (3.3.10) is given as

Ḣ/ėp = cd

[
sdN

p [Np]> −Hd
]

+ cl

[
sl

[
Np [Np]> − Idev

]
−Hl

]
, (2.A.10)

where

Np [Np]> =



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11N

p
11 Np

11N
p
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p
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13
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p
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p
13
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

, (2.A.11)

and

Idev =
1

3




2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6



. (2.A.12)

Finally, the Voigt form of Hd reads Hd =
[
[QNp]> H [QNp]

] [
Np [Np]>

]
.

2.A.2. Algorithm

The staggered algorithmic treatment of the material model implementation is summarized in
Algorithm 1. This approach shows required accuracy with sufficiently small stable time steps
adapted in the dynamic-explicit finite element code.



Chapter 2. Inherent and Induced Anisotropy 31

Algorithm 1 Algorithmic treatment of the framework.

1. Initialize the matrix form of the structural tensor for the induced anisotropy with the 6×6
zero matrix O:

O −→H .

2. For the given strain increment ∆ε compute the elastic trial state:

∆ε −→ ∆εe ,

S + Ce ∆εe −→ S ,
√

[S −X]> [A−H] [S −X]− σy (ep, ėp) −→ φp.

3.
IF φp < 0 THEN GOTO 4.
ELSE GOTO 5.

4. Elastic Step: Trial step does not need correction. GOTO 2.

5. Elasto-Plastic Step: Trial step needs correction. Apply the cutting-plane return map-
ping algorithm to update the elastic and inelastic solution dependent state variables in-
cluding the equivalent plastic strain increment ∆ep and the plastic strain increment ∆εp

for Ḣ = O.

6. Compute the normal Np in the plastic flow direction:

∆εp/|∆εp| −→Np.

7. Integrate H with the incremental form of Equation (2.A.10):

[QNp]> H [QNp] −→Hd

H−Hd −→Hl

cd

[
sdN

p [Np]> −Hd
]

∆ep −→ ∆Hd,

cl

[
sl

[
Np [Np]> − Idev

]
−Hl

]
∆ep −→ ∆Hl,

∆Hd + ∆Hl −→ ∆H,
H+ ∆H −→H.

8. GOTO 2.
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3. The effect of yield surface curvature change
by cross hardening on forming limit diagrams
of sheets

In this chapter, clarification of the role of reduction in yield locus curvature on forming limit
diagrams is aimed at. To this end, a cross-hardening model showing a reduction of yield sur-
face curvature is used which accounts for dynamic and latent hardening effects associated with
dislocation motion during loading. The model’s three-dimensional tensorial as well as reduced
plane-stress vector formulations are given. The first quadrants of forming limit diagrams are
numerically produced using finite element models of the Marciniak-Kuczyński test with spatially
correlated random defect distribution as localization triggering mechanism. The effect of cross
hardening is investigated in detail. It is demonstrated that for plane strain loading path there
occurs no difference in localization predictions of the models with and without cross hardening
whereas for biaxial strain paths a delayed localization is observed in the cross hardening model
as compared to the one without cross hardening effects. This is in accordance with the relative
bluntness of the yield surface at the points of load path change towards localization. These
results are complemented by Nakazima test simulations where similar observations are made.

3.1. Introduction

Process design for functional yet lightweight components requires an accurate description of the
material behavior during deformation in order to fully exploit the potential of materials and
processes. The finite-element-based modeling has proven to be an efficient way to predict the
material and structural behavior and is nowadays standard in industrial practice. However, the
applicability and benefits of simulation strongly depends on the accuracy of the underlying con-
stitutive material model. With regard to complex forming simulations, the efficient modeling of
sheet metals is of special interest. There exists a number of phenomenological models, e.g., ac-
counting for isotropic and kinematic hardening, which accurately describe the material behavior
of sheet metals under uniaxial deformation conditions. However, as stated by Wagoner et al.
[323], the deformation in real forming processes involves a number of strain path changes re-
quiring special attention which is more complex than a uniaxial strain or stress state. Therefore
more complicated models are required to accurately model the loading-path dependent behav-
ior of sheet metals in forming simulations. In this regard, the present or emergent underlying
microstructure plays a crucial role. Physical based models are developed accounting for mi-
crostructural changes during complex deformation states, in particular orthogonal loading-path
changes [298, 181, 254]. These, still phenomenological models, are often based on the evolution
and distortion of one or two yield surfaces [173, 35]. A particular class of material models,
interesting for this work, model the loading path dependent microstructure changes with one
yield surface determined by an evolving anisotropy tensor [90, 181, 77, 245, 40, 36, 49].

33
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Of particular interest for the design and optimization of forming processes is the formability
limit1. Following the definition of Banabic [24], the formability describes the capability of a
material to undergo plastic deformation to a given shape without defects. The probably mostly
used theory is based on the early work by Marciniak and Kuczyński [201], where on basis of
a geometrical inhomogeneity (e.g., thickness variation in a distinct region), the onset of strain
localization, representing the initiation point of failure or necking, is obtained. The model by
Marciniak and Kuczyński has been widely applied as well as modified to improve its applicability
[133, 227, 150, 101, 152, 151, 193]. In addition to process parameters, formability inevitably
depends on the material properties. For instance, in associative plasticity yield locus curvature
affects the formability limits of the material. The over-stiffness of the associative J2 plasticity
theory in prediction of plastic instabilities under distinctly nonproportional stress histories is
well known [303]. Tvergaard [303] shows that a better agreement with the experimental necking
strains is obtained using pure kinematic hardening in which the yield surface curvature remains
constant. The reason is linked to the yield surface curvature, which is reduced in isotropic
hardening. In crystal plasticity the overall yield surface forms as an envelope of individual glide
yield surfaces. Vertices and corners then naturally arise at the loading point due to sliding on
favorably oriented glide planes. Unlike smooth yield theories, where a tangential component of
the stress loading dσtangent does not cause a plastic flow, plastic flow occurs in vertex theories.
For a given finite, nonproportional stress change, more strain change occurs for a yield surface
with high curvature at the loading point than that occurs for the yield surface with lower
curvature. A demonstration of the yield loci evolution for various plastic hardening models are
given in Figure 3.1.

a) b)

c) d)

e)

CH

IH

KH

CT

Figure 1: A schematic depiction of yield locus evolution with different continuum theories a) corner theory
(CT), b) kinematic hardening (KH), c) isotropic hardening (IH), d) cross hardening (CH), e) A closer look
at the yield locus curvature at the point of loading. The red dashed line represents the limit ρ→∞ where
ρ is the radius of curvature. As seen from corner theories to cross hardening the yield locus curvature
systematically decreases. The gray dashed lines represent the initial yield loci whereas the red dashed lines
are the reference isotropic hardening yield loci. Further combinations of theories are also possible which are
not elaborated further for brevity.

As demonstrated in Figure 1, the cross hardening theory of Levkovitch and Svendsen [20]
results in reduced yield locus curvature. This macroscopic response of the polycrystal is
physically linked to the evolution of dislocation microstructure during plastic deformation.
For IF (interstitial free) steels, e.g., DC06, a cellular structure is formed by dislocations accu-
mulating at cell boundaries under monotonic loading paths. In subsequent orthogonal paths,
these dislocations structures act as obstacles for the newly activated slip systems resulting
in latent resistance to yielding and the hardening rate increase is named as cross harden-
ing [5]. Contrary to Tvergaard’s observations, which suggests a requirement for yield locus
curvature increase in order to meet experimental necking strains, Levkovitch and Svend-
sen’s model signals an additional stiffness over the associative J2 plasticity theory. Among
the yield surface curvature, the strain rate sensitivity of the material strongly influence the
formability as well. The works [11, 8, 12] are probably the first ones which investigated
the effect of material strain-rate sensitivity on forming limit curves (FLCs). These studies
show that already a small strain-rate sensitivity shift the forming limit to larger strains
which lead to better accordance with experiments. Inal et al. [13] employed a rate-sensitive
polycrystal plasticity model to obtain FLDs based on the Marciniak-Kuczynski approach.
Although the model allows the investigation of the strain-rate sensitivity, this study concen-

3

Figure 3.1.: A schematic depiction of yield locus evolution with different continuum theories:
(a) corner theory (CT), (b) kinematic hardening (KH), (c) isotropic hardening (IH), (d) cross
hardening (CH). (e) closer look at the yield locus curvature at the point of loading. As seen from
corner theories to cross hardening the yield locus curvature systematically decreases. Gray dashed
circles represent initial yield loci. Red dashed circles represent reference isotropic hardening yield
loci. Red dashed line represents the limit ρ→∞ where ρ is the radius of curvature.

1Different types of forming limit diagrams exist, depending on the stress procedure [149, 201, 105, 227] and on
the measure of limiting strain measures, e.g., necking or fracture.
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As illustrated in Figure 3.1, cross hardening results in reduced yield locus curvature. This
macroscopic response of the polycrystal is physically linked to the evolution of dislocation mi-
crostructure during plastic deformation [181]. For IF (interstitial free) steels, e.g., DC06, a
cellular structure is formed by dislocations accumulating at cell boundaries under monotonic
loading paths. In subsequent orthogonal paths, these dislocations structures act as obstacles
for newly activated slip systems resulting in latent resistance to yielding and the hardening rate
increase is named as cross hardening [49]. Contrary to Tvergaard’s observations, which suggests
a requirement for yield locus curvature increase in order to meet experimental necking strains,
Levkovitch and Svendsen’s cross-hardening model [181] signals an additional stiffness over the
associative J2 plasticity theory. Apart from the yield surface curvature, the strain rate sensitiv-
ity of the material strongly influences the formability as well. The studies [132, 103, 133] show
that already a small strain-rate sensitivity shift the forming limit to larger strains which lead to
better accordance with experiments. Inal et al. [136] employed a rate-sensitive polycrystal plas-
ticity model to obtain FLDs based on the Marciniak-Kuczyński approach. Although the model
allows the investigation of the strain-rate sensitivity, this study concentrates on the differences
between face-centered-cubic (fcc) and body-centered-cubic (bcc) type slip systems. For fcc type
materials a lower forming limit curvature is obtained due to a sharper yield locus compared to
bcc type materials. Additionally, it is shown that texture evolution has a negligible effect. The
study of Zhang et al. [353] clearly reveals that the formability is increasing for a rate-sensitive
material, however, that the forming speed does not influence the material formability for the
same rate-sensitive material. In a subsequent study of the same authors [354] two different
approaches, one theoretical based on the Marciniak-Kuczyński model and one numerical based
on the Marciniak test, are investigated with regard to strain hardening as well as strain rate
sensitivity. An increasing formability is observed for an increase of both mechanisms.

With these motivations, in this study quantification of the gained stiffness with the change
of the yield surface curvature is aimed at by investigating the stabilizing effect of the cross
hardening on the flow localization predictions, a topic which is not documented in the literature
so far. To this end, a reduced plane-stress viscoplastic formulation of Levkovitch-Svendsen’s
cross-hardening model is developed for thin shells and implemented as a user defined material
subroutine into Abaqus. Verification of the code is realized for finite-strain normal and small-
strain shear loading scenarios for which analytical derivations are made available (see also [282]).
The first quadrant of the forming limit diagram is numerically produced using a two-dimensional
finite element model with a spatially correlated random defect distribution in the form of a
reduction in yield strength reproducing the classical results by Marciniak and Kuczyński [201]
(see also [227]). Additionally, the forming limit capabilities of the material are analyzed based
on the Nakazima test [226]. These demonstrate the enhanced formability of the material with
decreasing yield locus curvature with cross hardening relative to the classical J2 flow theory.

3.2. Theory

3.2.1. Material Model - Tensor Notation

Considering small deformations, let the total strain tensor ε = 1/2 [Gradu + [Gradu]>] be
additively split into elastic εe and plastic εp parts with u denoting the displacement vector. The
stress σ is then computed from the stored elastic strain energy density W = 1

2 [ε− εp] : Ce :
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[ε− εp] viz.

σ =
∂W (ε− εp)

∂ε
= Ce : [ε− εp] , (3.2.1)

where Ce denotes the elastic constitutive tensor with

Ce :=
∂2W (ε− εp)

∂ε2
= K 1⊗ 1 + 2µIdev = constant. (3.2.2)

K represents the bulk modulus whereas µ is the shear modulus. Idev is the deviatoric part
of the fourth-order symmetric identity tensor, Isym = 1/2 [1⊗1 + 1⊗1], with Idev = Isym −
1/3 [1⊗ 1]. The flow stress of the material σy (ep, ėp) depends on the equivalent plastic strain
ep and its rate ėp. The contributions hy (ep) and ry (ėp) which are respectively associated with
strain hardening and strain rate hardening are multiplied to give the total hardening following
a Johnson–Cook type formulation [142]:

σy (ep, ėp) = hy (ep) ry (ėp) . (3.2.3)

The multiplicative strain hy (ep) and strain rate ry (ėp) hardening components are defined as

hy (ep) := σ∞ − [σ∞ − σy0] exp (−m [ep]n) ,
ry (ėp) := 1 + c log (ėp/ėp0) ,

(3.2.4)

with σy0, σ∞, c, n, m and ėp0 denoting material parameters. A single-surface elastic domain in
the stress space

Eσ = {[σ,χ,H, ep, ėp] ∈ S× S× B× R+ × R+ : φp(σ,χ,H, ep, ėp) ≤ 0} , (3.2.5)

with the flow potential

φp(σ,χ,H, ep, ėp) =
√

[σ − χ ] : [A+H ] : [σ − χ ]− σy (ep, ėp) (3.2.6)

accounts for combined effects of isotropic, kinematic as well as cross hardening. Here, S denotes
the vector space of symmetric second-order tensors with dim(S) = 6. Letting D denote the
vector space of symmetric (major and minor) fourth-order tensors and dim(D) = 21 with Fijkl =
Fjikl = Fijlk = Fklij for F ∈ D, the vector space of symmetric fourth-order tensors which are
also deviatoric projections is represented by B with dim(B) = 15 with F ′iikl = 0 for F ′ ∈ B.
While χ denotes the back-stress controlling the translation of the yield surface, the fourth-
order structural tensors (constant) A and (nonconstant) H are associated with its initial and
evolving form, respectively. The current visco-plastic formulation is referred to as a consistency
type visco-plastic formulation, see, e.g., [326], hence during fully developed plastic flow the
consistency condition is satisfied, i.e., φp = 0.

The plastic flow rule is assumed to be associative and hence it reads

ε̇p = ėp
∂φp

∂σ
. (3.2.7)

The kinematic hardening evolution is modeled with a variant of the Armstrong–Frederick form
via

χ̇ = cx ė
p [sxn

p − χ] , (3.2.8)
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where cx and sx are associated with the saturation rate and magnitude with the back-stress
tensor χ. Here, np denotes the direction of plastic flow with np = ε̇p/|ε̇p|. A generalized plastic
work equivalence defines the equivalent plastic strain rate via

ėp =
[σ − χ] : ε̇p

σy
. (3.2.9)

The shape change of the yield surface is controlled by using the projections of H parallel (Hd)
and orthogonal (Hl) to np in the rate expression of H viz.

Ḣ/ėp = cd

[
sdn

p ⊗ np −Hd
]

+ cl

[
sl

[
Idev − np ⊗ np

]
−Hl

]
, (3.2.10)

where

Hd = [np :H : np] [np ⊗ np] and Hl =H−Hd . (3.2.11)

The former accounts for growth due to dynamic and the latter due to latent hardening effects.
Here, cd and sd represent the saturation rate and magnitude associated with Hd, respectively.
Analogously, cl and sl are the saturation rate and magnitude associated with Hl. For the sake
of completeness, Kuhn-Tucker loading/unloading (complementarity) conditions read

ėp ≥ 0, φp(σ,χ,H, ep, ėp) ≤ 0, ėpφp(σ,χ,H, ep, ėp) = 0 , (3.2.12)

and the consistency condition is given as

ėpφ̇p(σ,χ,H, ep, ėp) = 0 . (3.2.13)

3.3. Reduced Plane-Stress Formulation - Vector Notation

In this part, constrained plane-stress equations are presented in the sense that the plane-stress
condition is automatically enforced. To this end, the plane-stress subspace Ŝ ⊂ S is defined as

Ŝ := {σ ∈ S : σ13 = σ23 = σ33 ≡ 0} , (3.3.1)

with dim(Ŝ) = 3. In addition, the subspace of deviatoric symmetric second-order tensors Ŝdev ⊂
S with dim(Ŝdev) = 3 is defined as

Ŝdev := {σ ∈ S : σ13 = σ23 ≡ 0, tr(σ) ≡ 0} . (3.3.2)

In reduced plane-stress space implementation, 3× 1 vectors and 3× 3 matrices are used for the
representation of symmetric second-order tensors and fourth-order tensors with at least minor-
symmetries. The vector form of the reduced plane-stress space representation of the stress tensor

σ̂ reads σ̂ =
[
σ11, σ22,

√
2σ12

]>
. The mapping Îdev

: Ŝ→ Ŝdev links the stress tensor σ̂ ∈ Ŝ and

its deviator dev(σ̂) ∈ Ŝdev with dev(σ̂) = Îdev · σ̂ where

Îdev
=

1

3




2 −1 0
2 0

sym. 3


 . (3.3.3)

Note that Îdev 6= [Îdev
]n for n > 1 and Îdev

is invertable, i.e., det(Îdev
) 6= 0. Let ε̂ ∈ S

denote the strain vector which only collects the in-plane components with ε̂ =
[
ε11, ε22,

√
2ε12

]>
.
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Additivity of the total strain tensor into elastic ε̂e and plastic ε̂p parts viz. ε̂ = ε̂e+ε̂p is assumed.
For both ε̂e and plastic ε̂p the same stencil applies. The rate of stress tensor is then computed
by ˙̂σ = Ĉe · ˙̂ε

e
where for the plane-stress case Ĉe reads

Ĉe =
E

1− ν2




1 ν 0
1 0

sym. 1− ν


 . (3.3.4)

χ̂ =
[
χ11, χ22,

√
2χ12

]>
constitutes the vector representation for the kinematic hardening stress-

like tensor χ̂ ∈ Sdev. The definition ξ̂ := σ̂ − χ is introduced, noting that χ = [Îdev
]−1 · χ̂ ∈ Ŝ.

Accordingly, the plastic flow potential φp which accounts for isotropic-, kinematic- and cross-
hardening is given as

φp :=

√
ξ̂ · [ Â+ Ĥ ] · ξ̂ − σy (ep, ėp) ≤ 0 . (3.3.5)

In above, Â and Ĥ denote the reduced plane-stress versions of the initial Hill-48-type [122] and
the evolving 3× 3 flow anisotropy matrices, respectively, with

Â =



A1111 A1122

√
2A1112

A2222

√
2A2212

sym. 2A1212


 and Ĥ =



H1111 H1122

√
2H1112

H2222

√
2H2212

sym. 2H1212


 . (3.3.6)

This notation leads to the following matrix form of the Hill-48-type structural tensor

Â =



G+H −H 0

F +H 0
sym. N


 , (3.3.7)

where F , G, H and N are parameters associated with plastic anisotropy which are related to
the Lankford’s coefficients r0, r45 and r90 with

F =
r0

r90[1 + r0]
, G =

1

[1 + r0]
, H =

r0

[1 + r0]
, N =

1

2

[r0 + r90][1 + 2r45]

r90[1 + r0]
. (3.3.8)

In reduced plane-stress space, the vector norm of deviatoric tensors should be treated with care
due to possible nonzero out-of-plane components. For the reduced deviatoric ε̂p the following
identities hold for the quadratic forms in between the tensor and vector notations

εp : εp = εp · Îdev · εp = ε̂p · [Îdev
]−1 · ε̂p and np :H : np = np · Ĥ · np , (3.3.9)

where εp = [Îdev
]−1 · ε̂p and np = [Îdev

]−1 · n̂p. The reduced evolution equation of the flow
anisotropy tensor reads

˙̂H/ėp = cd[ sd n̂
p ⊗ n̂p − Ĥd

] + cl[ sl[ Î
dev − n̂p ⊗ n̂p ]− Ĥl

] , (3.3.10)

with

n̂p ⊗ n̂p =



np11n

p
11 np11n

p
22

√
2np11n

p
12

np22n
p
22

√
2np22n

p
12

sym. 2np12n
p
12


 , (3.3.11)

where
Ĥd

= [np · Ĥ · np ] [n̂p ⊗ n̂p] and Ĥl
= Ĥ− Ĥd

. (3.3.12)
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In Figure 3.2 the evolution of the yield loci for various strain paths for an initially isotropic
material are given using the presented theory for the case of plane-stress. In this analysis any
further hardening source except latent hardening are switched off. It is clearly seen that for each
case the yield locus curvature at the point of loading decreases. This behavior is contrary to
what is generally observed in metallic materials showing vertex formation, which gives relatively
reduced formability limits [292, 219, 218]. In the subsequent pages the influence of this curvature
decrease on material stability is investigated making use of basic formability tests.

σ22 σ22 σ22

σ22 σ22 σ22

σ11 σ11 σ11

σ11 σ11 σ11

a) b) c)

d) e) f)

Figure 2: Plane-stress yield loci evolution for various loading paths. The dashed curves refer to the initial
yield loci whereas the black curves refer to the current one after deformation under a linear strain (stress)
path marked by the dashed red line. a) pure shear, b) uniaxial tension-compression, c) plane strain tension-
compression, d) equibiaxial tension-compression, e) plane strain tension-compression, f) uniaxial tension-
compression. In all cases the yield locus curvature at the point of loading decreases. This is governed
principally by the rotation and the aspect ratio change of the representing ellipse. For the pure shear and
equibiaxial stress paths, no rotation of the ellipse axes takes place.

where fcl(γ) = 1 − exp(−cl γ). In this xy−plane loading, the shear component H1212 also
evolves with

H1212 (γ) =
sl
2

[1− exp (−clγ)] , (37)

for sd = 0. A comparison of the analytical derivation and the numerical result of a single
element test is given in Figure 3 where a perfect agreement is observed.

4.1.2. Small Strain In-Plane Shear Loading

Assuming small shear strains in the xy−plane, the only nonzero strain components become
εp12 = εp21. This allows deriving the following expression for H1212 for sd 6= 0 through
integration

H1212 (γ) =
sd
2

[1− exp (−cdγ)] . (38)

A comparison of the analytical derivation and the numerical result of a single element test
is given in Figure 3. A perfect agreement is observed.

10

Figure 3.2.: Plane-stress yield loci evolution for various loading paths. Dashed curves refer
to the initial yield loci whereas black curves refer to the current one after deformation un-
der a linear strain (stress) path marked by the dashed red line; (a) pure shear, (b) uniaxial
tension-compression, (c) plane strain tension-compression, (d) equibiaxial tension-compression,
(e) plane strain tension-compression, (f) uniaxial tension-compression. In all cases the yield
locus curvature at the point of loading decreases. This is governed principally by the rotation
and the aspect ratio change of the representing ellipses. For the pure shear and equibiaxial stress
paths, no rotation of the ellipse axes takes place.
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3.4. Algorithmic Formulation and Verification of the
Implementation

In this part, the return mapping algorithm used to define the state variables at the end of loading
step n+ 1, that is [•]〈n+1〉, using the state variables at the end of loading step n, that is [•]〈n〉,
through a strain driven framework using a cutting plane algorithm is summarized [239]. To this
end, the flow potential is linearize around the current values of variables viz.

φ̇p〈k+1〉 ' φ̇
p
〈k〉 + r̂〈k〉 · δσ̂〈k〉 + s〈k〉 · δχ〈k〉 + D̂〈k〉 : δĤ〈k〉 + ς〈k〉δe

p
〈k〉 + ϑ〈k〉δė

p
〈k〉 , (3.4.1)

with k denoting the iteration number and r̂ = ∂φp/∂σ̂, s = ∂φp/∂χ, D̂ = ∂φp/∂Ĥ, ς = ∂φp/∂ep

and ϑ = ∂φp/∂ėp where

σy r̂ = [ Â+ Ĥ ] · ξ̂ , (3.4.2)

s = −r̂ , (3.4.3)

σy D̂ = [ Îdev · ξ̂ ]⊗ [ Îdev · ξ̂ ] = [ dev(σ̂)− χ̂ ]⊗ [ dev(σ̂)− χ̂ ] , (3.4.4)

ς = −h′yry , (3.4.5)

ϑ = −hyr′y . (3.4.6)

Using n̂〈k〉 = r̂〈k〉/
√
r̂〈k〉 · [Î

dev
]−1 · r̂〈k〉, the increments within iterations read

δσ̂〈k〉/δe
p
〈k〉 = −Ĉe · r̂〈k〉 , (3.4.7)

δχ〈k〉/δe
p
〈k〉 = cx [Îdev

]−1 · [sxn̂p〈k〉 − χ̂〈k〉] , (3.4.8)

δĤ〈k〉/δep〈k〉 = cd

[
sdn̂

p
〈k〉 ⊗ n̂

p
〈k〉 − Ĥ

d

〈k〉
]

+ cl

[
sl

[
Îdev − n̂p〈k〉 ⊗ n̂

p
〈k〉

]
− Ĥl〈k〉

]
, (3.4.9)

δėp〈k〉/δe
p
〈k〉 ' 1/∆t . (3.4.10)

Iterations are started by defining [•]〈0〉 = [•]〈n〉. Using the notation ĝ〈k〉 := cx [sxn̂
p
〈k〉 − χ̂〈k〉]

and Ŷ〈k〉 := δĤ〈k〉/[δep〈k〉σy 〈k〉] the increment of equivalent plastic strain is computed at each
iteration by

δep〈k〉 =
φ̇p〈k〉

r̂〈k〉 · Ĉ
e · r̂〈k〉 + r̂〈k〉 · [Îdev]−1 · ĝ〈k〉 − D̂〈k〉 : Ŷ〈k〉 − ς〈k〉 − ϑ〈k〉/∆t

. (3.4.11)

Iterations are continued to update the state variables using [•]〈k+1〉 = [•]〈k〉 + δ[•]〈k〉 until φp ≤
TOL. The converged state gives the solution at the end of the loading step n+ 1 with [•]〈n+1〉 =
[•]〈k+1〉 where the increments read ∆[•] = [•]〈n+1〉 − [•]〈n〉. The out-of-plane strain increment is
then defined using ∆ε̂33 ≡ ∆ε̂e33 + ∆ε̂p33 and ∆ε̂p = ∆ep r̂ viz.

∆ε̂e33 = − ν

1− ν [∆ε̂e11 + ∆ε̂e22] , and ∆ε̂p33 = − [∆ε̂p11 + ∆ε̂p22] . (3.4.12)

Here ν denotes elastic Poisson’s ratio. The developed algorithm is implemented as a Vumat
user defined material subroutine in Abaqus. A comparison of the implementation via Voigt
and Mandel vector notation are given in Appendix 3.A. Appendix 3.B presents the extension
to finite strains of the presented small strain theory.
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3.4.1. Verification of the Implementation

The implementation is verified using two problems: finite strain in-plane loading with non-
rotating principal axes of deformation and small strain in-plane shear loading. The numerical
solutions with single element tests are compared with fully analytical derivations which appear
in the literature for the first time.

3.4.1.1. Finite Strain In-Plane Loading with Non-rotating Axes of Deformation

Rigid plasticity is assumed with [ε11, ε22, ε33]> ' [εp11, ε
p
22, ε

p
33]>. Strain controlled loading is

applied where the in-plane strains in x− and y−directions are defined and the out-of-plane
strain is found using the other two using the assumptions of isochoric plastic flow. Only strictly
proportional strain paths are considered, that is α = dε11/dε22 = ε11/ε22. Hence, the total
strain vector ε reads ε = [α, 1,−1 − α]>. The mentioned in-plane loading condition with non-
rotating axis of deformation allows an immediate integration of the structural tensor to give the
following normal components for sd = 0 (see [282] for more details)

H1111 (γ) = slfcl

[
2

3
− α2

2[1 + α+ α2]

]
, (3.4.13)

H1122 (γ) = slfcl

[
−1

3
− α

2[1 + α+ α2]

]
, (3.4.14)

H2222 (γ) = slfcl

[
2

3
− 1

2[1 + α+ α2]

]
, (3.4.15)

where fcl(γ) = 1−exp(−cl γ). In this xy−plane loading, the shear component H1212 also evolves
with

H1212 (γ) =
sl
2

[1− exp (−clγ)] , (3.4.16)

for sd = 0. A comparison of the analytical derivation and the numerical result of a single element
test is given in Figure 3.3 where a perfect agreement is observed.

3.4.1.2. Small Strain In-Plane Shear Loading

Assuming small shear strains in the xy−plane, the only nonzero strain components become
εp12 = εp21. This allows deriving the following expression for H1212 for sd 6= 0 through integration

H1212 (γ) =
sd
2

[1− exp (−cdγ)] . (3.4.17)

A perfect agreement is observed for the comparison of the analytical derivation and the numerical
result of a single element test in Figure 3.3.
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which gives

H1212 (γ) =
sd

2
[1− exp (−cdγ)]

Hence the corresponding matrix component becomes

4H1212 (γ) = 2sd [1− exp (−cdγ)]

In figure
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Figure 14: Comparison of analytical and simulation results for anisotropic tensor H on the example of one
shear component for a simple shear test.
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Figure 3.3.: Comparison of analytical and numerical results for the evolving structural tensor
H components for (a) normal loading case with finite strain assumption, (b) shear loading case
with small strain assumption. Both the normal loading and shear loading cases used parameters
are listed in Table 8.3 with one exception that in the shear test sd = 0.5 is used.
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3.5. Applications - Formability Analyses

In this section the formability prediction of cross hardening plasticity in comparison to non-cross
hardening material models is presented. The section starts with a Marciniak-Kuczyński-type of
analyses where a biaxial loading of a defected rectangular plate is analyzed under various strain
paths to form the first quadrant of the forming limit diagram. Unlike conventional Marciniak-
Kuczyński test which uses an oriented groove in the model, randomly distributed and spatially
correlated defects are considered to trigger localization. The second application problem consists
of the Nakazima test where a sheet with various cut geometries is stretched with a punch moving
perpendicular to the plane of the sheet. Both formability analyses are realized using the finite
element method. Both analyses show that with the decrease of yield locus curvature, cross
hardening plasticity predicts a later localization and therefore an increase in formability.

In the analyses, the parameter set listed in Table 8.3 is used unless otherwise stated. In order
to purely concentrate on the cross hardening effects, the rate parameter is chosen to yield
vanishing rate dependence. With selecting Lankford’s coefficients as r0 = r45 = r90 = 1 initial
plastic isotropy is assumed.

Table 3.1.: Material parameters, representing approximately steel.

Parameter Symbol Value Dimension

Elastic constants
µ 69.6 [GPa]
K 150.8 [GPa]

Isotropic hardening constants
σy0 132.2 [MPa]
σ∞ 324.0 [MPa]
m 6.6 [−]
n 1 [−]
ry (ėp) 1 [−]

Kinematic hardening constants
sx 56.0 [MPa]
cx 33.1 [−]

Lankford’s coeffcients
r0 1 [−]
r45 1 [−]
r90 1 [−]

Cross hardening constants

sd 0.0 [−]
cd 23.9 [−]
sl −0.9 [−]
cl 87.3 [−]

3.5.1. Marciniak-Kuczyński test simulations

The formability of the metallic sheets is determined by a localized through-thickness neck for-
mation along a zero-extension direction which is often preceded by a diffuse neck. For the
loading states involving two positive in-plane strains, however, no zero extension direction ex-
ists. Based on experimental results regarding strain localization, it was concluded by Marciniak
and Kuczyński [201] that failure or necking is mostly initiated by geometrical or structural in-
homogeneities. Hence, for the localization to develop in the first quadrant of the forming limit
diagram, presence of imperfections was postulated to be responsible in Marciniak-Kuczyński
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Figure 3.4.: Finite element analysis of the Marciniak-Kuczyński test: Simulation set-up rep-
resenting the metal sheet/plate, a 2-dimensional [0, L] × [0, L] domain. True strain rates (ε̇1,
ε̇2) are applied to load the plate under biaxial in-plane loading conditions. The strain rates are
adjusted according to the investigated strain paths. The sample is subdivided into 100 cells with
aspect ratio of 1:1. For each of these cells the average major, minor and equivalent plastic strain
rates (ε̇2, ε̇1, ėp) are calculated which are used for evaluation of the different formability criteria.

theory. The original Marciniak-Kuczyński analysis is, in order to allow fast analytical or semi-
analytical solutions, based on two simplifying assumptions: 1) The defect considered is infinite
in length. 2) Boundary conditions are assigned considering constant bulk stress paths [322]. A
joint use ofthe finite element method with stochastically generated material defect distribution
makes it possible to avoid these over-simplifications, hence allow a more realistic production
of the forming limit diagrams. Figure 3.4.(a) shows the simulation set-up for the Marciniak-
Kuczyński test. The plate is loaded under biaxial in-plane loading conditions considering totally
six true strain (rate) ratios ε̇2/ε̇1 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} which allows plotting forming limit
diagram points corresponding to the first quadrant (ε̇2 serves as major strain rate.). For post
processing reasons the specimen is subdivided into 10× 10 different cells with aspect ratio 1 : 1.
The chosen discretization and subdivision prevent any sensitivity of the FEM results (see [227]).

In the model proposed by Marciniak and co-workers [201, 202], a thickness variation in a distinct
region as geometrical inhomogeneity is introduced. The necking or failure behavior is analyzed
on basis of the principal strains in these two regions of different thicknesses of the specimen
subjected to a biaxial stress state. Using finite element analysis, Narasimhan and Wagoner [227]
suggested three simple criteria to identify the point of failure of such specimens to determine
the formability capabilities of the material on basis of the ratio of the major or minor principal
strain rates or the effective strain rates of both regions. A random initial yield stress distribution
is accounted for with a given correlation where the total yield stress distribution function is
assumed to be

σy0(r) = σy0,u + σ X̃r , (3.5.1)

where σ is the standard deviation of the yield stress which is superimposed over the base uniform
yield stress distribution σy0,u. {X̃r} represents a stationary Gaussian random field with zero
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mean and unit variance generated on each of the grid points {(i, j)/n, i = 0, 1, . . . , n − 1, j =
0, 1, . . . , n− 1} corresponding to a Gaussian covariance function of the form

Cov(X̃r, X̃s) = φ(r − s) = exp

(−|r − s|2
L2
c

)
. (3.5.2)

Here, r and s represent position vectors with |r − s|2 = [r1 − s1]2 + [r2 − s2]2 and with Lc
corresponding to the (isotropic) correlation length. Using Lc = L/10, 12 realizations of the
stationary Gaussian random field {X̃r} with N [0, 1] are produced as shown in Figure 3.5. The
statistics of each realization is given in Table 3.2. Details of the method of generation the
random field distribution with a given correlation are given in the Appendices.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 1: 12 realizations of the stationary Gaussian random field {X̃r} with N [0, 1], i.e., zero mean and unit variance. Here
the correlation length of Lc = L/10 for the 2-dimensional [0, L]× [0, L] domain is used. The yield stress distributions are then

computed using σ0(r) = σ0,u +σ× X̃r where σ0,u = 132.19 MPa and σ = 2.5%×σ0,u ' 3.305 MPa as the standard deviation
of the yield stress distribution. The statistics of each realization is given in Table 1. In the plots (max,min)=(3.25,−3.25).

Table 1: Statistics of each realization given in Figure 1.

ID mean std.dev.=[variance]1/2

1 0.0041 0.9873
2 −0.0107 0.9908
3 −0.0010 1.0122
4 −0.0018 1.0105
5 0.0077 0.1003
6 0.0104 0.9869
7 0.0101 0.9888
8 0.0159 1.0075
9 −0.0006 1.0153

10 0.0244 0.9778
11 −0.0119 0.9873
12 −0.0209 1.0027

3

Figure 3.5.: 12 realizations of the stationary Gaussian random field {X̃r} with N [0, 1], i.e., zero
mean and unit variance. Correlation length of Lc = L/10 for the 2-dimensional [0, L] × [0, L]
domain. (max,min)=(3.25,−3.25). Yield stress distributions are then computed using σy0(r) =

σy0,u + σ X̃r, Equation (3.5.1), with σy0,u = 132.19 MPa and σ = 2.5% × σy0,u ' 3.305 MPa
as the standard deviation of the yield stress distribution. The statistics of each realization are
given in Table 3.2.

The previous described discretization into cells of the finite element model (see Figure 3.4.(b) is
advantageous for the post-calculation of an appropriate failure criteria in stochastic simulations
as the results no longer depend on the choice of one specific element for the evaluation of the
failure criteria. For the following criteria, the different strain rates are averaged for each cell.
Following Narasimhan and Wagoner[227], three criteria on basis of different strain rates are
adopted. Additionally a criterion on basis of the stress is introduced. The first criterion, the
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Table 3.2.: Statistics of each realization shown in Figure 3.5.

ID mean std.dev.=[variance]1/2

1 0.0041 0.9873
2 −0.0107 0.9908
3 −0.0010 1.0122
4 −0.0018 1.0105
5 0.0077 0.1003
6 0.0104 0.9869
7 0.0101 0.9888
8 0.0159 1.0075
9 −0.0006 1.0153

10 0.0244 0.9778
11 −0.0119 0.9873
12 −0.0209 1.0027

major strain rate criterion cε̇2 ,

cε̇2 =
largest major strain rate (ε̇2) in one cell

smallest major strain rate (ε̇2) in one cell
≥ 10 = cε̇2,threshold , (3.5.3)

calculates the ratio of largest major strain rate to smallest major strain rate in one of the
different cells. As strain localization occurs very localized in one or only a few cells, the largest
major strain rate is present in the cell of localization. This is usually happening in the weakest
point of the sheet, here determined by the lowest yield strength within the specimen. On the
other hand, a strain rate similar to the smallest strain rate is found in the remaining cells. As
soon as a characteristic threshold cε̇2,threshold is reached, the point of flow localization can be
identified. The second criterion, the minor strain criterion cε̇1 , reads as:

cε̇1 =
largest minor strain rate (ε̇1) in one cell

smallest minor strain rate (ε̇1) in one cell
≥ 10 = cε̇1,threshold . (3.5.4)

This criterion fails under plane strain loading as ε̇1,min = 0. The third strain rate criterion (cėp)
is based on the equivalent plastic strain rate:

cėp =
largest equivalent plastic strain rate (ėp) in one cell

smallest equivalent plastic strain rate (ėp) in one cell
≥ 4 = cėp,threshold . (3.5.5)

As noted by [227], these three criteria show typically little variance of identifying the corre-
sponding strains at strain localization. In addition to these three criteria, a new effective stress
criterion, cσ, is proposed which does not require local information of the structure, rather the
information at the boundary. This criterion reads:

cσ = true effective stress

(√
σ2

1 + σ2
2

)
≤ cσ,threshold = 0.98σmax and σ̇ ≤ 0 . (3.5.6)

It identifies the strain localization on basis of a negative stress rate in combination with a
reduction of the stress by a certain percentage, here 2%, from its maximum value.
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Calculations with the 12 realizations of the stationary Gaussian random field {X̃r} with N [0, 1]
as shown in Figure 3.5 were performed for each of the strain ratios for the cross-hardening
plasticity model. Figures 3.6 and 3.7 show, for a selected random initial yield stress distribution,
the evolution of localized equivalent plastic strains under two strain paths: plane strain tension
and equibiaxial tension. Both localization patterns are strongly influenced by the underyling
initial yield stress distribution. In both cases the deformation bands initiate at points where
the hardening source is exhausted. These correspond to regions with relatively lower initial
yield stresses, the so-called defected regions. The responses for both strain paths show different
characteristics. In plane strain tension, localization initiates at much earlier strains and the band
develops orthogonal to the loading direction. Since localized neck occurs along a zero extension
direction, this shows that in plane strain tension no path change occurs in the band during
loading. Hence, in absence of loading path change, there is no effect of yield locus curvature on
the localization. In the biaxial loading case, this is not the case. Prior to localized necking, the
loading path is characterized by two positive in-plane strains. During neck development, there
occurs a continuous strain path change from equibiaxial to plane strain to create a zero extension
direction along the localization band. For an associated plastic flow, the local curvature of the
yield locus at the loading point, thus, affects the response of the sheet. For lower local curvature
due to cross hardening plasticity then leads to a more stable material response where the rotation
of the normal becomes relatively harder. This observation is valid for all biaxial tensile loading
paths with ε̇2/ε̇1 > 0. Moreover, as compared to the plane strain loading path the point of
localization initiation is delayed. The final pattern does not emerge as a single band which
traverses the whole domain but rather branches into secondary bands.

(a) (b) (c) (d)

ep [−]

Figure 3.6.: Marciniak-Kuczyński test simulations, cross-hardening plasticity model: Evolution
of localized plastic strain ep in metal sheet with random defect distribution realization 5 (see
Figure 3.5) at strains (a) ε2 = 0.116, (b) ε2 = 0.127, (c) ε2 = 0.133, (d) ε2 = 0.191, under plane
strain loading. In the plane strain loading condition the band emerges orthogonal to the loading
direction.

The response of the different criteria, normalized w.r.t. to the corresponding threshold value is
shown in Figure 3.8. As for plane strain loading, the minor strain criterion fails as expected. All
remaining three criteria predict a fairly similar value for the localization strain ε2. For equibiaxial
stretching, the equivalent strain rate predicts localization as first, followed by the major strain
rate criteria and minor strain rate criterion. The stress criteria detects the localization at last.
However, the differences are still rather small, all four criteria are acceptable for the identification
of the material formability. In the following, the results are shown for the equivalent plastic strain
rate criterion cėp .

Figure 3.9 summarizes emerging localization patterns for different loading conditions. Due to the
stochastic defect distribution, the resulting localization patterns are complex as the nucleation
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Figure 3.7.: Marciniak-Kuczyński test simulations, cross-hardening plasticity model: Evolution
of localized equivalent plastic strain ep in metal sheet with random defect distribution realization
5 (see Figure 3.5) at strains (a) ε2 = 0.405, (b) ε2 = 0.462, (c) ε2 = 0.477, (d) ε2 = 0.507, under
equibiaxial stretching. In the equibiaxial loading condition, a diagonal band initiation is followed
by band branching/merging. Considerably higher strain values at localization are observed as
compared to plane strain loading.
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Figure 7: Marciniak-Kuczyńsky test simulations, cross-hardening plasticity model: Evolution of localized
equivalent plastic strain ep in metal sheet with random defect distribution realization 5 (see Figure 5)
at strains a) ε2 = 0.405, b) ε2 = 0.462, c) ε2 = 0.477, d) ε2 = 0.507, under equibiaxial stretching.
In the equibiaxial loading condition, a diagonal band initiation is followed by band branching/merging.
Considerably higher strain values at localization are observed as compared to plane strain loading.

the localization at last. However, the differences are still rather small, all four criteria are
acceptable for the identification of the material formability. In the following, the results are
shown for the equivalent plastic strain rate criterion cėp .
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Figure 7: Marciniak-Kuczyńsky test simulations, cross-hardening plasticity model: Evolution of localized
equivalent plastic strain ep in metal sheet with random defect distribution realization 5 (see Figure 5)
at strains a) ε2 = 0.405, b) ε2 = 0.462, c) ε2 = 0.477, d) ε2 = 0.507, under equibiaxial stretching.
In the equibiaxial loading condition, a diagonal band initiation is followed by band branching/merging.
Considerably higher strain values at localization are observed as compared to plane strain loading.

the localization at last. However, the differences are still rather small, all four criteria are
acceptable for the identification of the material formability. In the following, the results are
shown for the equivalent plastic strain rate criterion cėp .
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Figure 8: Marciniak-Kuczyńsky test simulations, cross-hardening plasticity model: Normalized prediction of
material formability by major strain rate criterion (cε̇2), minor strain rate criterion (cε̇1), equivalent plastic
strain rate criterion cε̇p and stress criterion cσ for a) plane strain loading and b) equibiaxial stretching. All
criteria are normalized by its corresponding threshold value c•,threshold. The minor strain criterion fails for
plane strain loading. Otherwise, all four criteria predict a similar formability.

Figure 9 summarizes emerging localization patterns for different loading conditions. Due
to the stochastic defect distribution, the resulting localization patterns are complex as the
nucleation might simultaneously occur at several positions in the specimen. The figures
clearly show the relative localization tolerance of the plate to the applied loading path: least
formability is observed in the plane strain loading case whereas most formability is recorded
for the case of equibiaxial loading. Also, as anticipated, in the absence of loading path
change in the band, there is no effect of yield locus curvature on the localization for plane
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Figure 7: Marciniak-Kuczyńsky test simulations, cross-hardening plasticity model: Evolution of localized
equivalent plastic strain ep in metal sheet with random defect distribution realization 5 (see Figure 5)
at strains a) ε2 = 0.405, b) ε2 = 0.462, c) ε2 = 0.477, d) ε2 = 0.507, under equibiaxial stretching.
In the equibiaxial loading condition, a diagonal band initiation is followed by band branching/merging.
Considerably higher strain values at localization are observed as compared to plane strain loading.

the localization at last. However, the differences are still rather small, all four criteria are
acceptable for the identification of the material formability. In the following, the results are
shown for the equivalent plastic strain rate criterion cėp .
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Figure 8: Marciniak-Kuczyńsky test simulations, cross-hardening plasticity model: Normalized prediction of
material formability by major strain rate criterion (cε̇2), minor strain rate criterion (cε̇1), equivalent plastic
strain rate criterion cε̇p and stress criterion cσ for a) plane strain loading and b) equibiaxial stretching. All
criteria are normalized by its corresponding threshold value c•,threshold. The minor strain criterion fails for
plane strain loading. Otherwise, all four criteria predict a similar formability.

Figure 9 summarizes emerging localization patterns for different loading conditions. Due
to the stochastic defect distribution, the resulting localization patterns are complex as the
nucleation might simultaneously occur at several positions in the specimen. The figures
clearly show the relative localization tolerance of the plate to the applied loading path: least
formability is observed in the plane strain loading case whereas most formability is recorded
for the case of equibiaxial loading. Also, as anticipated, in the absence of loading path
change in the band, there is no effect of yield locus curvature on the localization for plane
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criteria are normalized by its corresponding threshold value c•,threshold. The minor strain criterion fails for
plane strain loading. Otherwise, all four criteria predict a similar formability.

Figure 9 summarizes emerging localization patterns for different loading conditions. Due
to the stochastic defect distribution, the resulting localization patterns are complex as the
nucleation might simultaneously occur at several positions in the specimen. The figures
clearly show the relative localization tolerance of the plate to the applied loading path: least
formability is observed in the plane strain loading case whereas most formability is recorded
for the case of equibiaxial loading. Also, as anticipated, in the absence of loading path
change in the band, there is no effect of yield locus curvature on the localization for plane
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Figure 3.8.: Marciniak-Kuczyński test simulations, cross-hardening plasticity model: Normalized
prediction of material formability by major strain rate criterion (cε̇2), minor strain rate criterion
(cε̇1), equivalent plastic strain rate criterion cε̇p and stress criterion cσ for (a) plane strain
loading and (b) equibiaxial stretching. All criteria are normalized by its corresponding threshold
value c•,threshold. The minor strain criterion fails for plane strain loading. Otherwise, all four
criteria predict a similar formability.

might simultaneously occur at several positions in the specimen. The figures clearly show the
relative localization tolerance of the plate to the applied loading path: least formability is
observed in the plane strain loading case whereas most formability is recorded for the case of
equibiaxial loading. Also, as anticipated, in the absence of loading path change in the band,
there is no effect of yield locus curvature on the localization for plane strain loading case. Thus,
in plane strain loading path, identical responses for the models with and without cross hardening
are recorded.

The resulting first quadrant of the forming limit diagram obtained from the Marciniak-Kuczyński
test for different simulation cases are displayed in Figure 3.10. Results for cross hardening
plasticity and non-cross hardening material models are shown for 12 realizations for each loading
path. In total, the figure includes the results of 12× 6× 2 = 144 simulations. A critical amount
of localization needs to be recorded in the stochastic simulations before the criteria detect the
material formability limit. The results with cross-hardening (cross) and non-cross-hardening
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Figure 3.9.: Marciniak-Kuczyński test simulations, cross-hardening plasticity model: Final plas-
tic strain ep localization patterns in metal sheet with random defect distribution realization 5
(see Figure 3.5) under various loading conditions: (a) Strain ratio of ε̇2/ε̇1 = 0 at ε2 = 0.191;
(b) Strain ratio of ε̇2/ε̇1 = 0.2, at ε2 = 0.209; (c) Strain ratio of ε̇2/ε̇1 = 0.4, at ε2 = 0.284;
(d) Strain ratio of ε̇2/ε̇1 = 0.6, at ε2 = 0.391; (e) Strain ratio of ε̇2/ε̇1 = 0.8, at ε2 = 0.484;
(f) Strain ratio of ε̇2/ε̇1 = 1.0, at ε2 = 0.507. The results show the effect of the stochastic
distribution of defects. With increasing strain rate ratio, the formability increases.

(non-cross) material models have overlaps due to the effect of varying defect sizes in different
realizations, however, the mean curves show a clear separation. For the plane strain path,
both models predict the same formability as anticipated. For all other strain paths, the results
demonstrate the improved formability due to cross-hardening. The explanation is the local
curvature of the yield locus at the loading point whose decrease impedes the rotation of the
normal for associated plastic flow and thus increases the stability. Figure 3.10 shows that for
all biaxial tensile loading paths with ε̇2/ε̇1 > 0 this observation preserves validity where the
curvature effect of the cross hardening plasticity gets more prononunced as the ratio ε̇2/ε̇1 ≤ 1
gets higher.
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Figure 3.10.: Marciniak-Kuczyński test simulations: First quadrant of forming limit diagram
for Marciniak-Kuczyński test with stochastic distribution of defects (12 distributions for each
loading path) with cross-hardening (cross) as well as without cross-hardening plasticity model
(non-cross). The markers (black circles and red squares) show the obtained single values on the
forming limit diagram curve in the different stochastic simulations. The scattering is increasing
from plane strain tension to equibiaxial stretching for both model responses where the direction
of the scattering is related to the loading path only. The mean curve represents the average of all
stochastic simulations. For a stochastic distribution a critical amount of local localization has
to be present in one cell before these are recognized globally as formability limit. The simulated
strains of the forming limit diagram are compared with experimental results for IF tailor welded
blanks from [264] indicating that the numerical results are at the correct order of formability of
such steels.
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3.5.2. Nakazima Test Simulations

As a second application problem, Nakazima tests are performed to identify the formability of
the material for different stress states [226]. The test set-up is similar to deep-drawing where the
metal sheet is deformed using a hemispherical punch moving perpendicular to the plane of the
sheet. Different stress states are achieved by using metal sheets with different cut geometries.
The geometry of the metal sheet is shown in Figure 3.11a) where circles of different radii are
cut from the entire blank leading to strongly waisted blanks (see Figure 3.12). Depending on
the cutting radius, loading conditions reaching from a equibiaxial stretching to a uniaxial tensile
loading are achievable.

5.2. Nakajima Test Simulations

As second application problem, tests according to Nakajima are performed to identify
the formability of the material for different stress states. The test set-up is similar to
deep-drawing where the metal sheet is deformed using a hemispherical punch moving per-
pendicular to the plane of the sheet. Different stress states are achieved by using metal
sheets with different cut geometries. The geometry of the metal sheet is shown in Figure
9a) where circles of different radii are cut from the entire blank leading to strongly waisted
blanks (see Figure 10). Depending on the cutting radius, loading conditions reaching from
a biaxial stretching to a uniaxial tensile loading are achievable.

a)

radius r

radius r

∅ 200

[mm] b)
punch
��

blank holder
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die
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Figure 9: Nakajima Test Simulations: a) Geometry of the sheet. From the circular blank, radii of different
radius r are cut out. Different radii are used to achieve different stress states. b) Complete simulation
set-up of Nakajima Test, involving hemispherical punch, blank holder and die. The contact between punch
and blank is assumed to be as frictionless where the contact between blank and die as well as blank holder
is modeled via Coulomb friction with a friction coefficient µ = 0.1. In a first step the blank holder is
pressed against the die to clamp the blank between die and blank holder. In the next step, the punch moves
perpendicular to the blank plane at a constant velocity.

The full simulation set-up is illustrated in Figure 9b). The contact conditions play a
crucial role in the Nakajima test. Coulomb friction with a friction coefficient µ = 0.1
is assumed between blank and die as well as blank and blank holder where the contact
between punch and blank is modeled frictionless to minimize the influence on the formability
prediction. The simulation consists of two consecutive steps. First, the blank is clamped
by pressing the blank holder against the die. Afterwards, the punch moves at a constant
velocity perpendicular to the blank plane. The investigated specimen geometries with its
mesh discretizations are illustrated in Figure 10. The specimen with r = 0 mm represents a
biaxial loading case where for r = 85 mm a uniaxial tensile loading is achieved.

Figure 11 shows exemplary for these four specimen geometries the distribution of equiv-
alent plastic strain after strain localization occurred. The different loading cases are clearly
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Figure 3.11.: Nakazima test simulations: (a) Geometry of the sheet. From the circular blank,
radii of different radius r are cut out. Different radii are used to achieve different stress states.
(b) Complete simulation set-up of Nakazima Test, involving hemispherical punch, blank holder
and die. The contact between punch and blank is assumed to be as frictionless where the contact
between blank and die as well as blank holder is modeled via Coulomb friction with a friction
coefficient µ = 0.1. In a first step, the blank holder is pressed against the die to clamp the blank
between die and blank holder. In the next step, the punch moves perpendicular to the blank plane
at a constant velocity.

The full simulation set-up is illustrated in Figure 3.11.(b). The contact conditions play a crucial
role in the Nakazima test. Coulomb friction with a friction coefficient µ = 0.1 is assumed
between blank and die as well as blank and blank holder where the contact between punch and
blank is modeled frictionless to minimize the influence on the formability prediction. The sliding
motion of the sheet is prevented using a draw-bead which is located at R = 66 mm and which
has a radius of rd = 1.5 mm. The simulation consists of two consecutive steps. First, the blank
is clamped by pressing the blank holder against the die. Afterwards, the punch moves at a
constant velocity perpendicular to the blank plane. The investigated specimen geometries with
its mesh discretizations are illustrated in Figure 3.12. The specimen with r = 0 mm represents
a equibiaxial loading case where for r = 85 mm a uniaxial tensile loading is achieved. Since
uniformity of the emerging fields is not the case, there is no need for an additional localization
triggering mechanism, hence material parameters are assumed to be uniformly distributed. Thus,
no additional defects are present in the metal sheet.

Figure 3.13 exemplary shows the distribution of equivalent plastic strain after strain localization
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r = 0 mm r = 45 mm r = 65 mm r = 85 mm

Figure 10: Nakajima Test Simulations: Mesh discretization of sheets with different cut geometries used in
the Nakajima test simulations. The full blank represents a biaxial loading case where the most waisted
blank is representative for simple tensile loading.

captured by the localization patterns. As expected, the reduction of material and in this
connection resulting more uniaxial loading stage leads to an earlier localization phenomena
at the center region of the specimen.

To analyze the behavior of the different specimens and material models (cross-hardening
vs. non-cross-hardening model) quantitatively, Figure 12 displays the punch force over the
punch displacement of the different simulation cases. Strain localization goes along with
the decrease of the required punch force in loading direction. The punch force increases
with decreasing cutting radius r as well as localization occurs at a larger displacement.
The difference between both material models is significant for smaller cutting radii where
the cross-hardening model predicts a significant improved formability. For r = 85 mm no
difference is notable which perfectly fits with the theoretical expectation. As seen already
from the MK results (see Figure 8), for plane strain loading no deviation between both
material models is notable as the yield curvature is the same for this point of loading
(see results in Soyarslan et al.[58] as well). The case of uniaxial tensile is located in the
second quadrant of the FLD for which both models are predicting identical values as cross-
hardening is only relevant for loading paths orthogonal to the primary loading direction due
to the evolving dislocation structure perpendicular to the loading (latent hardening). For
more biaxial loading conditions the difference in the formability increases which is visible in
the Nakajima test simulations as well.
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Figure 3.12.: Nakazima test simulations: Mesh discretization of sheets with different cut geome-
tries used in the Nakazima test simulations. The full blank represents equibiaxial loading case
where the most waisted blank is representative for simple tensile loading.

u = 46.2 mm u = 31.4 mm
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Figure 11: Nakajima Test Simulations: Distribution of equivalent plastic strain for sheets with different cut
geometries. The distribution of the plastic strain ep shows the fully developed localization patterns which
form depending on the stress stage / loading path invoked by the cut geometries. A more uniaxial loading
stage (d) results in an earlier localization. The force drop in the simulation, indicating the formability
capabilities, is observed at an earlier displacement.
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Figure 3.13.: Nakazima test simulations: Distribution of equivalent plastic strain for sheets
with different cut geometries. The distribution of the plastic strain ep shows the fully developed
localization patterns which form depending on the stress stage/loading path invoked by the cut
geometries. A more uniaxial loading stage (d) results in an earlier localization. The force drop
in the simulation, indicating the formability capabilities, is observed at an earlier displacement.

occurred in the different investigated specimens. The different loading cases are clearly captured
by the localization patterns. As expected, the reduction of material and more uniaxial loading
leads to an earlier localization phenomena at the center region of the specimen.

To analyze the behavior of the different specimens and material models (cross-hardening vs.
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Figure 12: Nakajima Test Simulations: Punch force f vs. punch displacement u for four different cut
geometries with radii r (see Figure 10). The force and displacement are only representing the component in
vertical direction, perpendicular to the plane of the sheet. The force drop indicates the start of localization
and the corresponding strain represents the formability limit. For uniaxial tensile loading, both material
models predict the same behavior, as cross-hardening is not influencing yield surface curvature in this loading
direction.
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Figure 3.14.: Nakazima test simulations: Punch force f vs. punch displacement u for four
different cut geometries with radii r (see Figure 3.12). The force and displacement are only
representing the component in vertical direction, perpendicular to the plane of the sheet. The
force drop indicates the start of localization and the corresponding strain represents the forma-
bility limit. For uniaxial tensile loading, both material models predict the same behavior, as
cross-hardening is not influencing yield surface curvature in this loading direction.

non-cross-hardening model) quantitatively, Figure 3.14 displays the punch force over the punch
displacement of the different simulation cases. Strain localization goes along with the decrease of
the required punch force in loading direction. The punch force increases with decreasing cutting
radius r as well as localization occurs at a larger displacement. The difference between both
material models is significant for smaller cutting radii where the cross-hardening model predicts
a significant improved formability. For r = 85 mm no difference is notable which perfectly fits
with the theoretical expectation. As seen already from the Marciniak-Kuczyński results (see
Figure 3.10), for plane strain loading no deviation between both material models is notable as
the yield curvature is the same for this point of loading (see results in Soyarslan et al. [282]
as well). The case of uniaxial tension is located in the second quadrant of the forming limit
diagram for which both models are predicting identical values as cross-hardening is only relevant
for loading paths orthogonal to the primary loading direction due to the evolving dislocation
structure perpendicular to the loading (latent hardening). As the biaxiality of the loading
increases the difference in the formability predictions increases which is visible in the Nakazima
test simulations as well.

3.6. Conclusion

In this chapter the role of reduction in the yield locus curvature associated with cross hardening
on the shape of the forming limit diagrams in the first quadrant is investigated. For this purpose,
Levkovitch-Svendsen’s cross-hardening model is used [181] with an assumption of initial material
isotropy. A reduced plane-stress formulation is developed and implemented as a user defined
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material subroutine into Abaqus. The implementation is verified for finite-strain normal and
small-strain shear loading scenarios for which analytical derivations are presented. The forma-
bility analyses use finite element models of the stochastic Marciniak-Kuczyński and Nakazima
tests. As anticipated, decrease of the yield locus curvature with cross hardening relative to the
classical J2 flow theory results in an enhanced formability of the material. More specifically,
observed major and minor strains at localization in the Marciniak-Kuczyński tests are higher in
the first quadrant except for the plane strain path where there is no path change on the course
of localization. For the Nakazima tests, recorded punch displacements at maximum recorded
punch forces, which could be identified as the point of localization, are higher with cross hard-
ening plasticity as compared to J2 flow theory. This strongly hints towards a significant increase
of formability for cross hardening steel sheets in process chains.

3.A. Voigt and Mandel Vector Notations - A Comparison

In Chapter 1, and [49], the Voigt notation was introduced in formulation of the framework.
Voigt notation vectorizes strain-like and stress-like tensors differently. Vector forms of strain-

like tensors use the stencil
[

1 2
]>

whereas for stress-like tensors the stencil
[

1 1
]>

is used.
Relating strain-like and stress-like vectors, as in the case of Armstrong-Frederick-type rate form,
then requires a transformation operator Q which for the case of 3D reads

Q =
1

2




2 0 0 0 0 0
2 0 0 0 0

2 0 0 0
1 0 0

1 0
sym. 1



. (3.A.1)

Similar to vectors, the matrix forms of the fourth-order tensors used in the quadratic forms

x : C : x differ. If x is of type strain, the matrix form of C uses the stencil

[
1 1

1 1

]
. Otherwise

[
1 2

2 4

]
is used.

In this chapter the Mandel notation is utilized since it allows a more elegant and transparent
scheme through a unique mapping in between vector and tensor forms. The most important
point is that one does not have to distinguish in between the strain-like and stress-like variables

since in the current formulation both uses the stencil
[

1
√

2
]>

. This is especially important
where rates of strain-like variables are functions of stress-like variables, e.g., as in the case of the
Armstrong-Frederic evolution equation for the kinematic hardening strain-like variable. Coming

to the matrix notation for fourth-order tensors one has to use a single stencil

[
1
√

2√
2 2

]
. This

gives a direct consequence where the current notation does not require additional operators such
as Q.

3.B. Extension to Finite Strains

Let X and x := ϕ(X, t) denote the particle positions at the reference (undeformed) config-
uration Ω0 and current (deformed) configuration Ω respectively. F := ∂Xϕ(X, t) defines the
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deformation gradient of the nonlinear map ϕ : Ω0 × R → R3 with detF > 0. Any infinitesimal
material vector dX at the reference configuration is transformed to its final setting dx at the
current configuration via dx := F · dX. Let l := Ḟ · F−1 = ∂xv denote the spatial velocity
gradient with v = ẋ. The symmetric part of l gives the spatial rate of deformation tensor
d := sym (l). The following rate additive split is assumed

d = de + dp , (3.B.1)

with de := sym (le), dp := sym (lp). This forms the basis of hypoelastic-plastic formulations
which rely on certain objective rates of the selected stress measures. Abaqus/Vumat con-
vention uses the Green–Naghdi–McInnis rate of the Cauchy (true) stress σ which requires the
rotationally neutralized rate of deformation tensor ˙̃ε which is defined as

˙̃ε = R> · [de + dp] ·R = ˙̃εe + ˙̃εp , (3.B.2)

with ˙̃εe := R> ·de ·R, ˙̃εp := R> ·dp ·R. Here, R denotes the rotation tensor, carried out by the
polar decomposition of the deformation gradient, F := R·U , with U representing the symmetric
right stretch tensor. Similarly, a pull back operation on the Cauchy (true) stress tensor σ with
the rotation tensor gives its rotationally neutralized counterpart viz σ̃ := R> · σ · R whose
material time derivative ˙̃σ can be objectively integrated. Hence, the finite strain extension of
the presented framework is realized using the replacements σ̇  ˙̃σ and ε̇ ˙̃ε and representing
the expressions at the rotationally neutralized configuration.

3.C. Correlated Random Field Generation

In development of the correlated random fields, the method of circular embedding is used closely
following the work of Kroese and Botev [158] and the Matlab code listed therein is adapted.
For the sake of completeness, the method is summarized in the following. For further details,
the reader is referred to the work of [158] and the references therein. A random field is a
spatial stochastic process which consists of a collection of random variables {Xr, r ∈ D} where
D ⊂ Rd represents a d-dimensional domain andXr is a random quantity associated with a spatial
position r. In the current case only 2-dimensional domains are of interest, that is D ⊂ R2. The
set of possible values of Xr is called the state space of the spatial process. A discrete number of
material points is considered in the domain which are assigned a continuous material property,
hence this stands for a process with a discrete index set and a continuous state space. It is
assumed that the random field {X̃r, r ∈ R2} is Gaussian such that the multivariate normal
vector X has the property X = [X̃1, X̃2, . . . , X̃n]> = [X̃r1 , X̃r2 , . . . , X̃rn ]> ∼ N (µ,Σ) where µ
and Σ denote expectation vector and covariance matrix, respectively. The Gaussian random field
is determined completely by its expectation function µ̃r = EX̃r and covariance function Σ̃r,s =

Cov(X̃r, X̃s) with r, s ∈ D. With the stationarity of the Gaussian process, one has a constant
EX̃r and invariant Cov(X̃r, X̃s) under translations, with Cov(X̃r+d, X̃s+d) = Cov(X̃r, X̃s) for
an arbitrary vector d.

A zero-mean stationary Gaussian random field {X̃r} is generated on each of the grid points
{(i, j)/n, i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 1} corresponding to a Gaussian covariance function
of the form

Cov(X̃r, X̃s) = φ(r − s) = exp

(−|r − s|2
L2
c

)
, (3.C.1)
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where |r − s|2 = [r1 − s1]2 + [r2 − s2]2 and Lc corresponds to the correlation length. Thus, the
process is also isotropic, i.e. it does not depend on the selected orientation. Over the grid, the
values of the Gaussian process are gathered in an n2×1 column vectorX. The covariance matrix
Ωij = φ(ri − sj), i, j = 1, 2, . . . n2 has a symmetric block-Toeplitz2 structure and Ω is uniquely
characterized by its first block row [R1,R2, . . . ,Rn] where each block is an n × n Toeplitz
matrix, which is not necessarily symmetric. Each Rk is embedded in the upper left corner of the
circulant matrix Ck. The entries of the the first block row [C1,C2, . . . ,Cn,C

>
n ,C

>
n−1, . . . ,C

>
2 ]

of the [2n− 1]2× [2n− 1]2 block circulant matrix Σ are stored in a [2n− 1]× [2n− 1] matrix G.

After completing the embedding in block circulant matrix it is diagonalized with Σ = P ? ·
diag(γ)·P , where P is the [2n−1]2×[2n−1]2 two-dimensional discrete Fourier transform matrix
with P = F ⊗ F , where Fjk = exp(−2πijk/n)/

√
n with j, k = 0, 1, . . . , n − 1. [•]? represents

the complex conjugate transpose of [•]. Ordering the eigenvalue vector γ = [γ1, γ2, . . . , γ[2n−1]2 ]
one reaches a [2n − 1] × [2n − 1] matrix Γ which is the (appropriately scaled) two-dimensional
Fast Fourier Transform (FFT2) of G. Denoting the component-wise square root operation with√

[•], one defines the matrix B = P ? · diag(
√
γ) where Σ = B? ·B.

Finally, letting the components Zjk = Ujk + iVjk where Ujk, Vjk ∼ N (0, 1) make up the [2n −
1]× [2n−1] complex Gaussian matrix Z, one reaches reach realizations of a correlated stationary
Gaussian field on the grid through the first n×n sub-blocks of the real and the imaginary parts
of the FFT2 of the array

√
Γ�Z where � represents element by element multiplication.

2If its components along each diagonal are the same, an N ×N matrix is referred to as Toeplitz.



4. A Directional Modification of the
Levkovitch–Svendsen Cross–Hardening
Model Based on the Stress Deviator

In the original Levkovitch–Svendsen cross–hardening model parallel and orthogonal projections
required for the yield surface evolution with respective dynamic and latent hardening effects
are associated with the unit plastic flow direction np = ε̇p/| ε̇p |. This chapter gives a detailed
investigation regarding the consequences and proposes the use of the so–called radial direction
ns = [S −X]/|S −X | instead where S = dev(σ). It is shown that for an initially plastically
anisotropic material under load paths with proportional stresses the original model brings a
continuous directional change in the plastic strains. Eventually, even if the dynamic hardening
component is bypassed, the material model predicts additional strengthening in loading direc-
tion due to latent hardening. In this undesired response, the broken coaxiality of the stress
deviator and plastic strain rate tensor with initial anisotropy is the cause. This entanglement
of isotropic/kinematic hardening and latent hardening creates difficulties – especially in the pa-
rameter identification even for the simplest uniaxial loading. The introduced modification to
the model remedies this undesired feature and, hence, makes it possible to isolate the hardening
sourced during parameter identification stage. The discussions are supported by analytically
and numerically derived yield loci for various scenarios. The analytical studies allow definition
of critical material parameter limits for the latent hardening parameter sl in terms of the initial
anisotropy and the constant stress deviator ratio.

4.1. Introduction

The macroscopic material behavior of crystalline solids is strongly related to a present or emer-
gent underlying microstructure. The microstructure itself is a result of different physical mech-
anisms at lower length scales. As the level of deformation gets large enough, microstructural
defects are permanently reconfigured to some characteristic dislocation patterns, i.e., labyrinth-
type dislocation structure [141] or dislocation cell structures [293], to name but a few. As the
attention in this chapter is restricted to phenomenological plasticity models which are applica-
ble to forming processes, the evolution of the microstructure is accounted for by an evolving
anisotropy tensor of the material [90, 324, 245, 269, 40, 49]. One aspect of this anisotropy is the
appearance of cross–hardening effects for orthogonal loading-path changes [58].

Let Φ =
√

[σ −X]>B [σ −X]− h(γ) ≤ 0 denote the flow potential with γ representing the
equivalent plastic strain and h(γ) the associated flow stress. B = A + H is the structural
tensor where the additive component A encapsulates material’s inherent anisotropy, whereas
H, the anisotropy induced by plastic flow with the initial value H0 = O for the loading time
t = 0. Hence, along with these definitions, it is assumed that Ȧ = O, Ḣ 6= O where O

57
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represents the fourth-order zero tensor. In associated plasticity theory, the direction of plas-
tic flow coincides with the normal to the yield locus at the point of loading as defined by
np = ε̇p/| ε̇p | = ∂σΦ/| ∂σΦ | = B [σ − X]/|B [σ − X] |, where ε̇p denotes the plastic strain
rate tensor. Additionally, one may define a so–called radial direction ns = [S −X]/|S −X|
as a normalized difference of the stress deviator S = dev(σ) and the back stress tensor X. In
Levkovitch–Svendsen cross–hardening model [181] parallel and orthogonal projections used in
definition of Ḣ with respective dynamic and latent hardening effects require a certain direction.
In retrospect, the original model formulation of Levkovitch–Svendsen [181] as well as the subse-
quent model formulations and extensions [41, 313, 77, 269, 40, 49], this direction is selected as
the plastic flow direction np. One exception in this context is the work by Pietryga et al. [245],
where the evolution of the original anisotropic flow tensor is formulated based on the radial
direction ns. However, the authors name this direction as the plastic flow direction without
pointing out its difference from the previous model formulations as well as the consequences of
such a usage.

In this chapter, restricting the current analysis to the Levkovitch–Svendsen model, the con-
sequences of the use of these two distinct directions in the definition of the evolution of the
fourth-order structural tensor H is investigated for materials with initial plastic anisotropy.
This analysis reveals a drawback, hereby named as the hardening entanglement, in the orig-
inal model formulation based on the direction of plastic flow np. For an initially plastically
anisotropic material under loading paths with proportional stresses, the original model brings a
continuous directional change in the rate of plastic strain tensor, hence, in the associated nor-
mal np. Eventually, even if the dynamic hardening component is bypassed, the material model
predicts additional hardening in loading direction. Under uniaxial stresses, as a consequence,
a continuous change in the Lankford’s coefficient r0 is observed. Here, the broken coaxiality in
between np and ns is the cause. Note that only for the case of von Mises isotropic plasticity one
has np ≡ ns. This entanglement of isotropic/kinematic hardening and latent hardening creates
difficulties – especially in the parameter identification even for the simplest uniaxial loading by
precluding the isolation of the hardening sources. It is shown that the proposed modification by
using the radial direction ns remedies these undesired features and support this statement by
analytical as well as numerical examples.

4.2. Generalization of Levkovitch–Svendsen Evolving Yield Locus

Assuming that the initial orthotropy axes are aligned with the loading directions, the principal
axes of deformation do not rotate and in order to simplify the context the influence of the
backstress is neglected. Thus, the Levkovitch–Svendsen yield locus reads

Φ =
√
σ>Bσ − h(γ) ≤ 0 . (4.2.1)

In absence of shear components, σ is regarded as a 3×1 vector with σ = (σ11, σ22, σ33)> aligned
with principal axes. Here, a simple isotropic hardening function is assumed of the form

h(γ) = σ∞ − [σ∞ − σy0] exp(−mγ) , (4.2.2)

where σy0 and σ∞ denotes the initial and saturated yield stresses, respectively, and m represents
the saturation rate. Moreover, B = A+H. Here bothA andH represent 3×3 matrices with the
former being the Hill’48-type structural matrix. For Ḣ the following generalization is proposed

Ḣ = γ̇cd [sdN g −Hd] + γ̇cl

{
sl

[
Idev −N g

]
− [H−Hd]

}
, (4.2.3)
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where N g := ng ⊗ ng with ng defining the unit tensor used for parallel and orthogonal pro-
jections. The term generalization is used, since unlike Levkovitch –Svendsen original model
which fixes ng as the unit direction of plastic flow with ng ≡ np, a specific choice for ng is not
specified. Idev is the 3× 3 matrix representation (considering the normal components only) of
the fourth-order deviatoric projection (idempotent), that is [Idev]n = Idev for n ≥ 1 with

Idev =
1

3




2 −1 −1
−1 2 −1
−1 −1 2


 , (4.2.4)

and Hd is defined by

Hd =
[
n>g Hng

]
ng ⊗ ng . (4.2.5)

An immediate integration of Equation (4.2.3) is possible for constant ng, thus constant N g, no
matter which direction it represents, giving an additive form H =Hd +Hl where 1

Hd = sdfcd(γ)N g and Hl = slfcl(γ)
[
Idev −N g

]
, (4.2.6)

where the following abbreviations are used

fcl(γ) = 1− exp(−clγ) and fcd(γ) = 1− exp(−cdγ) . (4.2.7)

Here, cd and sd denote the saturation rate and magnitude associated with the dynamic part
Hd, where cl and sl are the saturation rate and magnitude associated with the latent part
Hl := H −Hd, respectively2. Hd accounts for the strength of the dislocation structures asso-
ciated with the slip systems which are currently active whereas the strength of the dislocation
structures of currently inactive slip systems is encapsulated inHl. Hence, for sd = 0 until a load
path change occurs one expects that the material response will be dictated purely by isotropic
hardening. For γ = 0 one has H0 = O as required.

Assumption of plane stress state lets one deal with only 2 × 1 and 2 × 2 sub-vectors and sub-
matrices denoted as (•̂) in the following. Additionally, a plane stress investigation allows a
straightforward geometric interpretation. Eventually, the reduced plane stress version of Equa-
tion (4.2.1) reads

Φ̂ =
√
σ̂> B̂ σ̂ − h(γ) ≤ 0 , (4.2.8)

with B̂ = Â+ Ĥ and the reduced stress vector σ̂ = (σ11, σ22)>.

Coming to Â, assuming Hill’48-type flow potential, one has

Â =

(
G\ +H\ = 1 −H\

−H\ F\ +H\

)
, (4.2.9)

where F\, G\ and H\ are non-negative, non-dimensional material parameters. Hence, Equation

(4.2.9) together with Equation (4.2.13) gives B̂(γ) = Â+ Ĥ(γ).

1In the presence of kinematic hardening evolving in direction of plastic flow np, ns is not constant in general.
2Both Hd and Hl have distortional effects which cannot be represented by isotropic or kinematic hardening.
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4.2.1. The Case for Proportional Strain Path with ng ≡ np = ε̇p/| ε̇p | with Plane
Stress State

In this part, the generalized direction is specified as ng ≡ np. The integration for Ĥ(γ) com-
puted for the generalized form of the plastic flow potential which leaves the choice ng free
is valid for np as well, provided that np is constant. Hence, rigid plasticity is assumed with
(Ep,11, Ep,22, Ep,33)→ (E11, E22, E33). Strain controlled loading is applied where in–plane strains
in x− and y−directions are defined and out–of–plane strain is found using the other two using
the isochoric plastic flow condition. Moreover, strictly proportional strain paths are considered:
αE = dE11/dE22 = E11/E22. With these assumptions, the total strain vector ε and its normal
np, respectively, read

ε = E22




αE
1

−[1 + αE ]


 and np =

1√
2[1 + αE + α2

E ]




αE
1

−[1 + αE ]


 . (4.2.10)

This lets one compute N g =N p = np ⊗ np as

N p =
1

2[1 + αE + α2
E ]




α2
E αE −αE [1 + αE ]
αE 1 −[1 + αE ]

−αE [1 + αE ] −[1 + αE ] [1 + αE ]2


 . (4.2.11)

Collecting the terms and reducing to 2 × 2 sub-matrices of N p and Idev, respectively, the
evolving structural matrix in Equation (4.2.6) as a function of the equivalent plastic strain γ
reads

Ĥ(γ) =
sdfcd(γ)

2[1 + αE + α2
E ]

(
α2
E αE
αE 1

)

+ slfcl(γ)




2

3
− α2

E

2[1 + αE + α2
E ]
−1

3
− αE

2[1 + αE + α2
E ]

−1

3
− αE

2[1 + αE + α2
E ]

2

3
− 1

2[1 + αE + α2
E ]


 .

(4.2.12)

Now, assuming that only the latent part of the cross–hardening is active with sd = 0 one obtains

Ĥ(γ) = slfcl(γ)




2

3
− α2

E

2[1 + αE + α2
E ]
−1

3
− αE

2[1 + αE + α2
E ]

−1

3
− αE

2[1 + αE + α2
E ]

2

3
− 1

2[1 + αE + α2
E ]


 . (4.2.13)

For large plastic deformation, i.e., γ →∞ one has3 fcl(γ)→ 1. Hence

Ĥ(γ)→ sl




2

3
− α2

E

2[1 + αE + α2
E ]
−1

3
− αE

2[1 + αE + α2
E ]

−1

3
− αE

2[1 + αE + α2
E ]

2

3
− 1

2[1 + αE + α2
E ]


 as γ →∞ . (4.2.14)

4.2.2. The Case for Proportional Stress Path with ng ≡ ns = S/|S | with Plane
Stress State

In this part, the generalized direction is specified as ng ≡ ns. The integration for Ĥ(γ) computed
for the generalized form of the plastic flow potential which leaves the choice ng free is valid for

3Although not used here one also has fcd(γ)→ 1 for γ →∞.
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ns as well, provided that ns is constant. Hence, stress controlled loading is applied where the
in–plane stresses in x− and y−directions are defined and the out–of–plane stress vanishes with
the plane stress assumption σ33 = 0. Moreover, strictly proportional stress paths are considered
β = σ11/σ22. Now, to catch accordance with previously derived forms for the deviatoric stress
tensor component ratio, use is made of αS = S11/S22 = [2β−1]/[2−β]. Thus, following similar
steps as previous, for the current case Equation (4.2.12) holds by simply replacing αE with αS

Ĥ(γ) =
sdfcd(γ)

2[1 + αE + α2
E ]

(
α2
S αS
αS 1

)

+ slfcl(γ)




2

3
− α2

S

2[1 + αS + α2
S ]
−1

3
− αS

2[1 + αS + α2
S ]

−1

3
− αS

2[1 + αS + α2
S ]

2

3
− 1

2[1 + αS + α2
S ]


 ,

(4.2.15)

where for sd = 0 one obtains

Ĥ(γ) = slfcl(γ)




2

3
− α2

S

2[1 + αS + α2
S ]
−1

3
− αS

2[1 + αS + α2
S ]

−1

3
− αS

2[1 + αS + α2
S ]

2

3
− 1

2[1 + αS + α2
S ]


 . (4.2.16)

4.2.3. Discussion: Simple Tension Test

Simple tension test is one of the fundamental materials science tests where a sample is extended
slowly under a uniaxial state of stress. For a test conducted in x−direction the only nonzero
component of the stress tensor is σ1. Assume that for t > 0, one has the symmetric cross–
hardening structural tensor as

Ĥ(γ) =

(
Ĥ11 Ĥ12

Ĥ12 Ĥ22

)
. (4.2.17)

Substituting Equation (4.2.17) and σ̂ = (σ1, 0)> in the expression

√
σ̂> B̂ σ̂ =

√
σ̂> Â σ̂ + σ̂> Ĥ(γ) σ̂

and using Equation (4.2.9), for the fully developed plastic flow reads

√
σ̂> B̂ σ̂ =

√
G\ +H\ + Ĥ11 σ1 =

√
1 + Ĥ11 σ1 = h(γ) . (4.2.18)

Using the flow rule ε̇p = γ̇ B̂ σ̂/
√
σ̂> B̂ σ̂ and making necessary substitutions render

(
ε̇p,11

ε̇p,22

)
= γ̇

1√
1 + Ĥ11

(
1 + Ĥ11

−H\ + Ĥ12

)
, (4.2.19)

with G\ +H\ = 1. The Lankford’s coefficient r0 is computed using the plastic incompressibility
condition ε̇p,11 + ε̇p,22 + ε̇p,33 = 0 viz.

r0 =
ε̇p,22

ε̇p,33
=

ε̇p,22

−[ε̇p,11 + ε̇p,22]
=

H\ − Ĥ12

G\ + Ĥ11 + Ĥ12

. (4.2.20)
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Equations (4.2.18) and (4.2.20) show that the stress response as well as r0 depends on the
cross hardening structural tensor components Ĥ11 and Ĥ12. If only latent hardening effects
are considered by omitting the dynamic hardening contribution with sd = 0, one should expect
that these dependencies vanish in the active loading path. This is only possible by satisfying
Ĥ11 = Ĥ12 = 0.

Indeed the analyzed test corresponds to a proportional stress path with αS = −2. Hence,
exploiting the invariance of ns, ng ≡ ns is used and the substitution αS = −2 into the right–
hand side of Equation (4.2.16) is applied

Ĥ(γ) = slfcl(γ)

(
0 0
0 ξ(γ)

)
with ξ(γ) =

1

2
sl fcl(γ). (4.2.21)

satisfies the desired condition Ĥ11 = Ĥ12 = 0 and in view of Equations (4.2.18) and (4.2.20)
gives

σ1 = h(γ) and r0 =
H\

G\
. (4.2.22)

Thus, for ng ≡ ns the hardening entanglement in loading direction is not observed and the
invariance of r0 is guaranteed. This is not the case, however, if one uses ng ≡ np for the same
loading path for an initially anisotropic material. First of all, due to initial anisotropy np 6= ns
and with constant evolution of Ĥ, the invariance of np is lost. Hence, the main assumption
rendering the integration in Equation (4.2.12) is not satisfied. Under these circumstances the
non-vanishing Ĥ11 and Ĥ12 components result in hardening entanglement as well as variation
of r0, see Figure 4.1. As a direct effect, this creates difficulties in the identification of hardening
parameters since a clear isolation of the hardening sources is not possible.
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Figure 1: Numerically obtained Lankford’s coefficient r0 for plastic flow directionng ≡ np, including cross-hardening effects and no kinematic

hardening in a uniaxial tensile test. The Figure shows the change of the Lankford coefficient r0 with loading. For the modelng ≡ ns, the Lankford

coefficient is constantr0 = 2 as analytically shown as well, see Eq.(22). The results areobtained with the material parameters listed in Table 1,

omitting kinematic hardening.

Extending the discussion to biaxial states of stress, we have β = σ11/σ22 hence useng ≡ ns. We define the loading

direction in stress space with the unit vectorv = (v1, v2)⊤ with v1 = β/
√

1+ β2 andv2 = 1/
√

1+ β2. RotatingĤ in

Eq. (16) withĤv(γ) = R ĤR⊤ renders

Ĥv(γ) =


 0 0

0 ξ(γ)


 , with ξ(γ) = sl fcl (γ)

[
5
6
+

αS

2[1+ αS + α
2
S ]

]
, (23)

where

R =


 v1 v2

−v2 v1


 . (24)

In view of previous discussions this shows that the modification correctly inhibits any additional hardening component

in direction of loading, which is the main premise of the cross–hardening model where the dynamic loading effects

are bypassed. Again, this observation is not possible, in general, forng ≡ np.

2.4. The case for ng ≡ np and ng ≡ ns with plane stress state including kinematic hardening

In the presence of kinematic hardening, the Levkovitch–Svendsen yield locus is given as

Φ =
√

[σ − X]⊤ B [σ − X] − h(γ) ≤ 0. (25)

Here,X denotes the back stress which is modeled via a variant of the Armstrong-Frederick form

Ẋ = γ̇ cx [sxnk − X] , (26)

7

Figure 4.1.: Numerically obtained Lankford’s coefficient r0 for plastic flow direction ng ≡ np,
including cross-hardening effects and no kinematic hardening in a uniaxial tensile test. The
Figure shows the change of the Lankford coefficient r0 with loading. For the model ng ≡ ns,
the Lankford coefficient is constant r0 = 2 as analytically shown as well, see Equation(4.2.22).
The results are obtained with the material parameters listed in Table 4.1, omitting kinematic
hardening.

Extending the discussion to biaxial states of stress, one has β = σ11/σ22 hence ng ≡ ns.
The loading direction in stress space is defined with the unit vector v = (v1, v2)> with v1 =

β/
√

1 + β2 and v2 = 1/
√

1 + β2. Rotating Ĥ in Equation (4.2.16) with Ĥv(γ) = RĤR>
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renders

Ĥv(γ) =

(
0 0
0 ξ(γ)

)
with ξ(γ) = sl fcl(γ)

[
5

6
+

αS
2[1 + αS + α2

S ]

]
, (4.2.23)

where

R =

(
v1 v2

−v2 v1

)
. (4.2.24)

In view of previous discussions this shows that the modification correctly inhibits any additional
hardening component in direction of loading, which is the main premise of the cross–hardening
model where the dynamic loading effects are bypassed. Again, this observation is not possible,
in general, for ng ≡ np.

4.2.4. The Case for ng ≡ np and ng ≡ ns with Plane Stress State Including
Kinematic Hardening

In the presence of kinematic hardening, the Levkovitch–Svendsen yield locus is given as

Φ =
√

[σ −X]>B [σ −X]− h(γ) ≤ 0. (4.2.25)

Here, X denotes the back stress which is modeled via a variant of the Armstrong-Frederick form

Ẋ = γ̇ cx [sxnk −X] , (4.2.26)

where nk denotes the unit normal direction of the kinematic hardening evolution. The material
parameters cx and sx denote the saturation rate and magnitude of the back stress X, respec-
tively. In the original model formulation, kinematic hardening is evolving in direction of plastic
flow nk ≡ np. Again, in absence of shear components, the back stress tensor can be given as
vector in the form X = (X11, X22, X33)> aligned with principal axes. The reduced plane stress
version of Equation (4.2.8) reads

Φ̂ =

√
[σ̂ − [Îdev

]−1X̂]> B̂ [σ̂ − [Îdev
]−1X̂]− h(γ) ≤ 0 . (4.2.27)

Here, the back stress is given in the 2 × 1 reduced vector form as X̂ = (X11, X22)> and the
following definition is used

Îdev
=

1

3

(
2 −1
−1 2

)
with [Îdev

]−1 =

(
2 1
1 2

)
. (4.2.28)

For proportional strain paths the invariance of np allows the integration of Ḣ as in Equation
(4.2.3). Hence, the results of Section 4.2.1 with ng ≡ np even hold if kinematic hardening
is accounted for. The situation for the model based on the radial direction (stress deviator)
ng ≡ ns := [S−X]/|S−X | is different, however, as the direction ns can no longer be assumed
as constant as soon as kinematic hardening evolves in direction of plastic flow. Figure 4.2 dis-
plays the results of a numerical analysis giving the ratio of the normal direction components in a
uniaxial tensile test under plane stress conditions 4. As anticipated the variations of ng,11/ng,22

for ng ≡ np ,nk ≡ np and ng ≡ ns ,nk ≡ np render a maximum rate at the beginning of the
loading path and ceases with the saturation of kinematic and cross hardening contributions,

4Note that for this loading conditions, the model based on ng ≡ np is not integrable since the normal is not
constant for this loading situation, see Figure 4.2.
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wherenk denotes the unit normal direction of the kinematic hardening evolution. The material parameterscx and

sx denote the saturation rate and magnitude of the back stressX, respectively. In the original model formulation,

kinematic hardening is evolving in direction of plastic flownk ≡ np. Again, in absence of shear components, the back

stress tensor can be given as vector in the formX = (X11, X22, X33)⊤ aligned with principal axes. The reduced plane

stress version of Eq. (8) reads

Φ̂ =

√
[σ̂ − Î−1

devX̂]⊤ B̂ [σ̂ − Î−1
devX̂] − h(γ) ≤ 0 . (27)

Here, the back stress is given in the 2× 1 reduced vector form aŝX = (X11, X22)⊤ and we define

Îdev =
1
3


 2 −1

−1 2


 with Î−1

dev =


 2 1

1 2


 . (28)
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Figure 2: Analysis of the ratio of the normal direction componentsng,11/ng,22, including cross–hardening effects and (a) no kinematic hardening as

well as (b) kinematic hardening in a uniaxial tensile test. The Figure shows the evolution of the plastic flow normal rationp,11/np,22 = Ep,11/Ep,22

in the original model formulation in comparison to the deviatoric stress ratio in the two model extensionsns,11/ns,22 = [S 11− X11]/[S 22− X22]. In

(b) the effect of kinematic hardening is shown forng ≡ nk ≡ np andng ≡ ns with nk ≡ np andng ≡ ns with nk ≡ ns, respectively. The results are

obtained with the material parameters listed in Table 1.

For proportional strain paths the invariance ofnp allows the integration oḟH as in Eq. (3). Hence, the results of

Section 2.1 withng ≡ np even hold if kinematic hardening is accounted for. The situation for the model based on the

radial direction (stress deviator)ng ≡ ns := [S− X]/|S− X | is different, however, as the directionns can no longer be

assumed as constant as soon as kinematic hardening evolves in direction of plastic flow. Figure 2 displays the results

of a numerical analysis giving the ratio of the normal direction components in a uniaxial tensile test under plane stress

conditions4. As anticipated the variations ofng,11/ng,22 for ng ≡ np , nk ≡ np andng ≡ ns , nk ≡ np render a maximum

4Note that for this loading conditions, the model based onng ≡ np is not integrable since the normal is not constant for this loading situation,

see Figure 2.
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Figure 4.2.: Analysis of the ratio of the normal direction components ng,11/ng,22, including
cross–hardening effects and (a) no kinematic hardening as well as (b) kinematic hardening in a
uniaxial tensile test. The Figure shows the evolution of the plastic flow normal ratio np,11/np,22 =
Ep,11/Ep,22 in the original model formulation in comparison to the deviatoric stress ratio in the
two model extensions ns,11/ns,22 = [S11 − X11]/[S22 − X22]. In (b) the effect of kinematic
hardening is shown for ng ≡ nk ≡ np and ng ≡ ns with nk ≡ np and ng ≡ ns with nk ≡ ns,
respectively. The results are obtained with the material parameters listed in Table 4.1.

which, for the latter model takes place more quickly. Due to kinematic hardening in direction
of plastic flow nk ≡ np, the normal ns is no longer constant in general which violates the fun-
damental assumption of the analytical solution. That is, the hardening entanglement problem
remains. Nevertheless, the current numerical investigations show that the stress response dif-
ference between the analysis for a combined kinematic-isotropic hardening material with and
without latent hardening for the simple tension test is marginal for kinematic hardening pa-
rameters within reasonable intervals of common engineering practice. This is mainly due to the
relative magnitude of the back stress as compared to the total stress as well as its saturation rate.

This observed problem in the model (ng ≡ ns ,nk ≡ np) could be remedied by introducing
another modification in the model which is formulating kinematic hardening with nk ≡ ns, i.e.,
letting the kinematic hardening evolution in the radial direction. This extension of the original
model formulation leads to invariance of the normal ns justified by the constant ratio ng,11/ng,22

in Figure 4.2 allowing an exact integration Ḣ in Equation (4.2.3) with ng ≡ ns. Eventually,
the problems pertaining to the hardening entanglement, although small, are resolved. In the
following, in order to gain further insight regarding the model behavior, the consequences of
the choice the selected normal in definition of the structural tensor evolution associated with
selected material parameters are numerically investigated.

4.3. Further Numerical Results

To extend the current discussion further numerical examples are presented for typical loading
situations used in parameter identification. All simulations are performed under plane stress
conditions. First, results are presented for the case without kinematic hardening, followed by an
illustration of the effect of kinematic hardening on the cross–hardening behavior. The material
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parameters used in this study are summarized in Table 4.1. All numerical results are carried out
with an initially anisotropic yield locus as in view of the previous discussions for initial isotropic
behavior no differences in the model formulations are observable.

Table 4.1.: Material parameters, representing approximately steel.

Parameter Symbol Value Dimension

Elastic constants
E 210 [GPa]
ν 0.3 [−]

Lankford’s Coefficients
r0 2.0 [−]
r45 1.5 [−]
r90 2.5 [−]

isotropic hardening constants
σy0 250.0 [MPa]
σ∞ 500.0 [MPa]
m 10 [−]

Kinematic hardening constants
sx 100.0 [MPa]
cx 75.0 [MPa]

Cross hardening constants

sd 0.0 [−]
cd 75.0 [−]
sl −0.5 [−]
cl 75.0 [−]

4.3.1. Examples Neglecting Kinematic Hardening

The first numerical example considers plane strain tension loading, Figure 4.3(a). Although
this situation represents a proportional loading path, the result based on the plastic flow normal
ng ≡ np shows a notable difference to the results without evolving cross–hardening. In contrast,
the original approach based on the radial direction ng ≡ ns predicts identical response under
proportional loading as without cross–hardening. In the situation of an orthogonal load path
change, the models based on np as well as ns shows a nearly identical stress overshoot due to
latent hardening contribution. This clearly reveals, that the model change to ng ≡ ns still maps
the required cross–hardening behavior as experimentally observed [see, e.g., 58, 315, 324], and
it additionally heals the artificial offset in the stress response for proportional loading paths.

The stress offset can be interpreted from an analysis of the yield loci after plane strain tensile
loading, Figure 4.4. The model based on the plastic flow normal ng ≡ np leads to a distortion of
the yield locus as desired but additionally to a shift of the loading point. Therefore, the stress–
strain behaviors are not identical for the case with and without cross–hardening. The model
based on the stress deviator ng = ns equivalently distorts the yield locus, however, without
shifting the point of loading. For an initially isotropic yield locus, both models predict the same
response.

Next, the loading situation of uniaxial tension is analyzed numerically, Figure 4.5. As analyti-
cally already shown for this specific loading condition, the model based on the plastic flow normal
ng ≡ np predicts a higher stress level as without cross–hardening. The loading conditions lead
to a strong stretch of the initially anisotropic yield loci, Figure 4.6. Here, differences of the yield
loci are notable, leading to different loading points in stress space afterwards. Additionally, for
ng = ns the primary axis of the ellipse seems to be rotating more, Figure 4.6(b).
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Table 1: Material parameters, representing approximatelysteel.

Symbol Value Unit

Elastic constants
E 210 GPa

ν 0.3

Lankford’s Coefficients

r0 2.0

r45 1.5

r90 2.5

isotropic hardening constants

σy0 250.0 MPa

σ∞ 500.0 MPa

m 10

Kinematic hardening constants
sx 100.0 MPa

cx 75.0

Cross hardening constants

sd 0.0

cd 75.0

sl -0.5

cl 75.0
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Figure 3: Comparison of two model responses under (a) proportional (plane strain tension) and (b) non-proportional loading paths (plane strain

tension followed by shear) neglecting kinematic hardening. The reference solution represents the solution obtained for isotropic hardening only (

this reference solution is identical for both models). For the modelng ≡ ns an identical response to the reference solution is observedunder plane

strain loading conditions as latent–hardening does affect the material response. Forng ≡ np a deviation is observed. Both models show a stress

overshoot in the subsequent shear loading due to cross–hardening. The stress level is slightly lower forng ≡ ns as forng ≡ np where additional

dynamic hardening is occurring in the proportional loadingpath.

The stress offset can be interpreted from an analysis of the yield loci after plane strain tensile loading, Figure 4. The

model based on the plastic flow normalng ≡ np leads to a distortion of the yield locus as desired but additionally to a
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Figure 4.3.: Comparison of two model responses under (a) proportional (plane strain tension)
and (b) non-proportional loading paths (plane strain tension followed by shear) neglecting kine-
matic hardening. The reference solution represents the solution obtained for isotropic hardening
only ( this reference solution is identical for both models). For the model ng ≡ ns an identical
response to the reference solution is observed under plane strain loading conditions as latent–
hardening does affect the material response. For ng ≡ np a deviation is observed. Both models
show a stress overshoot in the subsequent shear loading due to cross–hardening. The stress level
is slightly lower for ng ≡ ns as for ng ≡ np where additional dynamic hardening is occurring
in the proportional loading path.
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Figure 4: Yield loci before as well as after a plane strain tensile test atF22−1 = 0.1, neglecting kinematic hardening. The initial yield locushas the

form of Hill’48. The reference solution represents the solution obtained for isotropic hardening only. The model responses, based (a) on the plastic

flow direction ng ≡ np and (b) on the stress deviator normal relatively to the center ng ≡ ns, are shown. The point of loading atF22 − 1 = 0.1 is

additionally presented, which clearly shows the difference between the models for a proportional loading path.

shift of the loading point. Therefore, the stress–strain behaviors are not identical for the case with and without cross–

hardening. The model based on the stress deviatorng = ns equivalently distorts the yield locus, however, without

shifting the point of loading. For an initially isotropic yield locus, both models predict the same response.

Next, the loading situation of uniaxial tension is analyzednumerically, Figure 5. As analytically already shown for

this specific loading condition, the model based on the plastic flow normal ng ≡ np predicts a higher stress level

as without cross–hardening. The loading conditions lead toa strong stretch of the initially anisotropic yield loci,

Figure 6. Here, differences of the yield loci are notable, leading to different loading points in stress space afterwards.

Additionally, for ng = ns the primary axis of the ellipse seems to be rotating more, Figure 6(b).

3.2. Numerical results including kinematic hardening

As mentioned earlier the consideration of kinematic hardening leads to an additional difficulty for ng ≡ ns. This

section aims at investigating the consequences of selecting ng ≡ np , nk ≡ np, ng ≡ ns , nk ≡ np as well asng ≡

ns , nk ≡ ns as the proposed remedy. Figure 7 displays the yield loci the models render once loaded under uniaxial

stress. The shift of the center of the yield locus due to kinematic hardening in loading direction is clearly observed

for all three models. The models based on the stress deviator(ng ≡ ns) exhibit an additional rotation to the present

stretching of the yield locus. Here, the model based on the kinematic hardening withnk ≡ ns = [S− X]/|S− X |

features a stretching between the other two models. At loading pointF11−1 = 0.1, this model predicts a slightly lower

stress level compared to the other one, Figure 8(a). Numerically, the reference solution without cross–hardening for

the kinematic hardening model based on the plastic flow direction (nk ≡ np) possesses a sufficiently close response

11

Figure 4.4.: Yield loci before as well as after a plane strain tensile test at F22 − 1 = 0.1,
neglecting kinematic hardening. The initial yield locus has the form of Hill’48. The reference
solution represents the solution obtained for isotropic hardening only. The model responses,
based (a) on the plastic flow direction ng ≡ np and (b) on the stress deviator normal relatively
to the center ng ≡ ns, are shown. The point of loading at F22−1 = 0.1 is additionally presented,
which clearly shows the difference between the models for a proportional loading path.

4.3.2. Examples Including Kinematic Hardening

As mentioned earlier the consideration of kinematic hardening leads to an additional difficulty
for ng ≡ ns. This section aims at investigating the consequences of selecting ng ≡ np ,nk ≡ np,
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Figure 5: Comparison of model responses under uniaxial tensile loading, neglecting kinematic hardening. The reference solution represents the

solution obtained for isotropic hardening only. For the model based on the stress deviatorng ≡ ns an identical response to the reference solution

is observed, for the original model formulation based on theplastic flow normalng ≡ np a deviation is observed. For an initially isotropic yield

locus, both model predictions are identical to the reference solution.
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Figure 6: Yield loci initially as well as after uniaxial tensile loading atF11−1 = 0.1, neglecting kinematic hardening. The initial yield locushas the

form of Hill’48. The reference solution represents the solution obtained for isotropic hardening only. The model responses, based (a) on the plastic

flow direction ng ≡ np and (b) on the stress deviator normal relatively to the center ng ≡ ns, are shown. The point of loading atF11 − 1 = 0.1 is

additionally presented. The original formulation based onthe plastic flow direction shows a more extreme expansion of the yield locus which is

reduced by the adjusted formulation based on the stress deviator.

to the second model (ng ≡ ns , nk ≡ np). Although small, a stress offset is measured whereas this gap is completely
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Figure 4.5.: Comparison of model responses under uniaxial tensile loading, neglecting kinematic
hardening. The reference solution represents the solution obtained for isotropic hardening only.
For the model based on the stress deviator ng ≡ ns an identical response to the reference solution
is observed, for the original model formulation based on the plastic flow normal ng ≡ np a
deviation is observed. For an initially isotropic yield locus, both model predictions are identical
to the reference solution.
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Figure 5: Comparison of model responses under uniaxial tensile loading, neglecting kinematic hardening. The reference solution represents the

solution obtained for isotropic hardening only. For the model based on the stress deviatorng ≡ ns an identical response to the reference solution

is observed, for the original model formulation based on theplastic flow normalng ≡ np a deviation is observed. For an initially isotropic yield

locus, both model predictions are identical to the reference solution.
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Figure 6: Yield loci initially as well as after uniaxial tensile loading atF11−1 = 0.1, neglecting kinematic hardening. The initial yield locushas the

form of Hill’48. The reference solution represents the solution obtained for isotropic hardening only. The model responses, based (a) on the plastic

flow direction ng ≡ np and (b) on the stress deviator normal relatively to the center ng ≡ ns, are shown. The point of loading atF11 − 1 = 0.1 is

additionally presented. The original formulation based onthe plastic flow direction shows a more extreme expansion of the yield locus which is

reduced by the adjusted formulation based on the stress deviator.

to the second model (ng ≡ ns , nk ≡ np). Although small, a stress offset is measured whereas this gap is completely
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Figure 4.6.: Yield loci initially as well as after uniaxial tensile loading at F11−1 = 0.1, neglecting
kinematic hardening. The initial yield locus has the form of Hill’48. The reference solution
represents the solution obtained for isotropic hardening only. The model responses, based (a)
on the plastic flow direction ng ≡ np and (b) on the stress deviator normal relatively to the
center ng ≡ ns, are shown. The point of loading at F11− 1 = 0.1 is additionally presented. The
original formulation based on the plastic flow direction shows a more extreme expansion of the
yield locus which is reduced by the adjusted formulation based on the stress deviator.

ng ≡ ns ,nk ≡ np as well as ng ≡ ns ,nk ≡ ns as the proposed remedy. Figure 4.7 displays
the yield loci the models render once loaded under uniaxial stress. The shift of the center of
the yield locus due to kinematic hardening in loading direction is clearly observed for all three
models. The models based on the stress deviator (ng ≡ ns) exhibit an additional rotation to the
present stretching of the yield locus. Here, the model based on the kinematic hardening with
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nk ≡ ns = [S −X]/|S −X | features a stretching between the other two models. At loading
point F11 − 1 = 0.1, this model predicts a slightly lower stress level compared to the other one,
Figure 4.8(a). Numerically, the reference solution without cross–hardening for the kinematic
hardening model based on the plastic flow direction (nk ≡ np) possesses a sufficiently close
response to the second model (ng ≡ ns ,nk ≡ np). Although small, a stress offset is measured
whereas this gap is completely avoided by the third model (ng ≡ ns ,nk ≡ ns) 5. For the case
of plane strain loading, a similar behavior is seen.avoided by the third model (ng ≡ ns , nk ≡ ns) 5. For the case of plane strain loading, a similar behavior is seen.
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Figure 7: Yield loci before as well as after uniaxial tensileloading for three different model formulations including kinematic hardening are shown

at F11 − 1 = 0.1. The model responses are based on the plastic flow directionng ≡ np where kinematic hardening evolves in direction of plastic

flow as wellnk ≡ np. Furthermore, models based on the stress deviator normal relatively to the centerng ≡ ns where (i) kinematic hardening is

still in direction of plastic flownk ≡ np and (ii) kinematic hardening is in radial directionnk ≡ ns. (a) Full yield loci clearly show the shift of the

center due to kinematic hardening; (b) detailed view of the first quadrant.

Figure 8(b) shows the stress response after an orthogonal loading path change. The results indicate even in the present

of kinematic hardening that no (significant) differences in the cross–hardening behavior are present between all three

model formulations. In summary, the numerical results withkinematic hardening confirm the previous implications.

4. Conclusion

Within this work the consequences of the use of the radial direction ns = [S− X]/|S− X | in the evolution of the

cross–hardening tensor in the Levkovitch–Svendsen model is discussed. In the original model parallel and orthogonal

projections are based on the unit plastic flow directionnp = Ėp/| Ėp |. For initially anisotropic plasticity under

proportional loading, even in the absence of dynamic hardening with properly modified parameters the original model

shows additional strength gain in direction of the active loading path. This phenomenon is called as the hardening

entanglement in the current paper. This effect is due to a continuous directional change in the plastic strains during

the loading path which does not comply with the stress direction in the presence of inherent material anisotropy.

Supported by analytically and numerically handled results, it is shown that this hardening entanglement, which affects

especially the parameter identification by precluding a clear identification of the hardening sources, is bypassed by

using the radial directionns rather than plastic flow directionnp.

5In comparison to the solution without cross–hardening for the kinematic hardening model based on the stress deviator (nk ≡ ns).
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Figure 4.7.: Yield loci before as well as after uniaxial tensile loading for three different model
formulations including kinematic hardening are shown at F11 − 1 = 0.1. The model responses
are based on the plastic flow direction ng ≡ np where kinematic hardening evolves in direction of
plastic flow as well nk ≡ np. Furthermore, models based on the stress deviator normal relatively
to the center ng ≡ ns where (i) kinematic hardening is still in direction of plastic flow nk ≡ np
and (ii) kinematic hardening is in radial direction nk ≡ ns. (a) Full yield loci clearly show the
shift of the center due to kinematic hardening; (b) detailed view of the first quadrant.

Figure 4.8(b) shows the stress response after an orthogonal loading path change. The results
indicate even in the present of kinematic hardening that no (significant) differences in the cross–
hardening behavior are present between all three model formulations. In summary, the numerical
results with kinematic hardening confirm the previous implications.

4.4. Conclusion

Within this chapter the consequences of the use of the radial direction ns = [S−X]/|S−X | in
the evolution of the cross–hardening tensor in the Levkovitch–Svendsen model is discussed. In
the original model parallel and orthogonal projections are based on the unit plastic flow direction
np = ε̇p/| ε̇p |. For initially anisotropic plasticity under proportional loading, even in the absence
of dynamic hardening with properly modified parameters the original model shows additional
strength gain in direction of the active loading path. This phenomenon is called as the hardening
entanglement in the current work. This effect is due to a continuous directional change in the

5In comparison to the solution without cross–hardening for the kinematic hardening model based on the stress
deviator (nk ≡ ns).
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Figure 8: Comparison of the three model responses under (a) uniaxial loading and (b) non-proportional loading path (plane strain tension followed

by shear) including kinematic hardening. All models show nearly identical cross–hardening behavior after the load path change. Under uniaxial

tensile loading, differences are observed between the models. For the model basedon the plastic flow directionng ≡ np these are identical to

the case without kinematic hardening (see Figure 5). Furthermore, the models based on the stress deviatorng ≡ ns, although fornk = np an

improvement is observed, only for the model including kinematic hardening in direction of the stress deviatornk = ns an exactly identical result

to the case without cross–hardening is obtained. Due to the different models for kinematic hardening, both models based on the stress deviator

show a stress difference as well. Relatively less pronounced softening region in the shear stress response as compared to Figure 3 is due torapid

strengthening with kinematic hardening.
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Appendix A. Loss of ellipticity of the yield locus

The stretching and, therefore, the aspect ratio of the yieldloci, strongly depends on the choice of material parameters.

For the current model, this is analyzed based on the cross–hardening saturation magnitudesl, Figure A.9. For moderate

values ofsl, the yield loci in both models show a reasonable expansion. However, for larger absolute values ofsl,

the yield loci tend to loose ellipticity. This effect happens at a higher value for the model based on the stressdeviator

normal ng = ns. This shows that the model improvement,ng ≡ ns, solves not only the difficulty in identification

processes of the material parameters, it additionally stabilizes the material response against loss of ellipticity.

Using Eqs. (9) and (14), it is possible to find rigorous boundsfor sl, sayscritical
l , associated with the model withng ≡ ns,

for which the yield locus for the projected plane stress state looses ellipticity with det(̂B(γ)) = det(̂A + Ĥ(γ)) = 0,

that is if Â + Ĥ(γ) ceases to be positive definite forγ → ∞. The analyses show that for the case of anisotropy the

critical bound forscritical
l depends on Hill’s anisotropy parameters as well as loading path applied encapsulated in
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Figure 4.8.: Comparison of the three model responses under (a) uniaxial loading and (b) non-
proportional loading path (plane strain tension followed by shear) including kinematic hardening.
All models show nearly identical cross–hardening behavior after the load path change. Under
uniaxial tensile loading, differences are observed between the models. For the model based on the
plastic flow direction ng ≡ np these are identical to the case without kinematic hardening (see
Figure 4.5). Furthermore, the models based on the stress deviator ng ≡ ns, although for nk = np
an improvement is observed, only for the model including kinematic hardening in direction of
the stress deviator nk = ns an exactly identical result to the case without cross–hardening is
obtained. Due to the different models for kinematic hardening, both models based on the stress
deviator show a stress difference as well. Relatively less pronounced softening region in the shear
stress response as compared to Figure 4.3 is due to rapid strengthening with kinematic hardening.

plastic strains during the loading path which does not comply with the stress direction in the
presence of inherent material anisotropy. Supported by analytically and numerically handled
results, it is shown that this hardening entanglement, which affects especially the parameter
identification by precluding a clear identification of the hardening sources, is bypassed by using
the radial direction ns rather than plastic flow direction np.

4.A. Loss of Ellipticity of the Yield Locus

The stretching and, therefore, the aspect ratio of the yield loci, strongly depends on the choice
of material parameters. For the current model, this is analyzed based on the cross–hardening
saturation magnitude sl, Figure 4.9. For moderate values of sl, the yield loci in both models
show a reasonable expansion. However, for larger absolute values of sl, the yield loci tend
to loose ellipticity. This effect happens at a higher value for the model based on the stress
deviator normal ng = ns. This shows that the model improvement, ng ≡ ns, solves not only
the difficulty in identification processes of the material parameters, it additionally stabilizes the
material response against loss of ellipticity.

Using Equations (4.2.9) and (4.2.14), it is possible to find rigorous bounds for sl, say scritical
l ,

associated with the model with ng ≡ ns, for which the yield locus for the projected plane stress

state looses ellipticity with det(B̂(γ)) = det(Â + Ĥ(γ)) = 0, that is if Â + Ĥ(γ) ceases to be
positive definite for γ →∞. The analyses show that for the case of anisotropy the critical bound
for scritical

l depends on Hill’s anisotropy parameters as well as loading path applied encapsulated
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Figure A.9: Yield loci before as well as after uniaxial tensile loading atF11 − 1 = 0.1 for different values of the cross–hardening saturation

magnitudesl, neglecting kinematic hardening. Both models show for highvalues ofsl an extreme (unrealistic) expansion of the yield loci. The (a)

original model based on the plastic flow direction (np) loses ellipticity at lowersl values than (b) the one on the stress deviator (ns).

αS = S 11/S 22 with the expression

scritical
l = −

6[1+ αS + α
2
S ] [ F♯G♯ + F♯H♯ +G♯H♯]

F♯ [4 + 4αS + α
2
S ] +G♯ [1 + 4αS + 4α2

S ] + H♯ [1 − 2αS + α
2
S ]
, (A.1)

Figure A.10 depicts the variation ofscritical
l for the given set of anisotropy parameters in Table 1. It is noteworthy that

for the case of isotropy, that isF♯ = G♯ = H♯ = 1/2, scritical
l simplifies toscritical

l = −3/2. Hence, its dependence on the

loading path vanishes. For a given loading path, as long assl is chosen to obey|sl| < |scritical
l | any loss of ellipticity is

avoided.

References

[1] C. Barthel, B. Klusemann, R. Denzer, and B. Svendsen. Modeling of a thermomechanical process chain for sheet steels.International Journal

of Mechanical Sciences, 74:46–54, 2013.

[2] C. Barthel, V. Levkovitch, and B. Svendsen. Modeling of sheet metal forming processes taking into account distortional hardening.Interna-

tional Journal of Material Forming, 1:105–108, 2008.

[3] A. Behrouzi, C. Soyarslan, B. Klusemann, and S. Bargmann. Inherent and induced anisotropic finite visco-plasticitywith applications to the

forming of DC06 sheets.International Journal of Mechanical Sciences, 89:101–111, 2014.

[4] S. Bouvier, H. Haddadi, P. Levee, and C. Teodosiu. Simpleshear tests: Experimental techniques and characterization of the plastic anisotropy

of rolled sheets at large strains.Journal of Materials Processing Technology, 172:96–103, 2006.

[5] T. Clausmeyer, H. van den Boogaard, M. Noman, M. Gershteyn, M. Schaper, B. Svendsen, and S. Bargmann. Phenomenological modeling

of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale.International Journal of Material

Forming, 4(2):141–154, 2011.

[6] H. P. Feigenbaum and Y. F. Dafalias. Directional distortional hardening in metal plasticity within thermodynamics. International Journal of

Solids and Structures, 44:7526–7542, 2007.

15

Figure 4.9.: Yield loci before as well as after uniaxial tensile loading at F11 − 1 = 0.1 for
different values of the cross–hardening saturation magnitude sl, neglecting kinematic hardening.
Both models show for high values of sl an extreme (unrealistic) expansion of the yield loci. The
(a) original model based on the plastic flow direction (np) loses ellipticity at lower sl values than
(b) the one on the stress deviator (ns).

in αS = S11/S22 with the expression

scritical
l = − 6[1 + αS + α2

S ] [F]G] + F]H] +G]H]]

F] [4 + 4αS + α2
S ] +G] [1 + 4αS + 4α2

S ] +H] [1− 2αS + α2
S ]
, (4.A.1)

Figure 4.10 depicts the variation of scritical
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4.B. Determination of the Continuum Elastoplastic Moduli

Small strains are assumed with the use of tensor notation rather than vector notation. In
order to define the continuum elasto-plastic moduli first one has to take the rate of the yield
function which is written in classical form, in absence of kinematic hardening, as Φ(σ,B, q) =√
σ : B : σ − σy,11, where B = A + H, σy,11 = σ0,11 + q with q representing the isotropic

hardening stress like variable and σ0,11 representing the initial yield stress in the direction of
loading. Now, let Φ̇ = 0 with

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂H :: Ḣ+
∂Φ

∂q
q̇ = 0 . (4.B.1)

Here :: represents the fourth-order contraction product where for two fourth-order tensors E and
F one has E :: F = EijklFijkl. Except for the standard derivatives with respect to the zeroth-
and the second-order tensors, the linearization of the yield function involves derivatives with
respect to the fourth-order structural tensor H. Now, since

Φ =
√
σ : [A+H] : σ − [σ0 + q] = 0 , (4.B.2)
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Figure 4.10.: scriticall which gives det(B̂(γ)) = 0 for γ → ∞ according to the parameter set
given in Table 4.1 for the conditions of initial isotropy and anisotropy for ng ≡ ns. As seen
for isotropy scriticall = −3/2 is invariant whereas for the case of anisotropy it varies with αS
according to Equation (4.A.1).

the derivative ∂Φ/∂H can be represented in indicial notation as ∂Φ/∂Hmnpq with

∂Φ

∂Hmnpq
=

1

2

1√
σij [Aijkl +Hijkl]σkl

σij
∂Hijkl
∂Hmnpq

σkl . (4.B.3)

Noting that
∂Hijkl
∂Hmnpq

= I sS,dev
ijklmnpq , (4.B.4)

where the details are given in Section 4.C, and

σijI
sS,dev
ijklmnpqσkl = σdev

mnσ
dev
pq , (4.B.5)

where σdev = dev(σ) one obtains

∂Φ

∂H =
1

2

σdev ⊗ σdev

√
σ : [A+H] : σ

. (4.B.6)

Now, using σ̇ = Ce : [ε̇− ε̇p] and rp = ∂Φ/∂σ with

rp =
B : σ√
σ : B : σ

=
B : σ

σy,11
, (4.B.7)

the associated flow rule reads ε̇p = γ̇ rp. Hence one obtains

∂Φ

∂σ
: σ̇ = rp : Ce : ε̇− γ̇ rp : Ce : rp . (4.B.8)

Coming to the derivative with respect to the structural tensor, using the condition of fully
developed plastic flow with σy,11 =

√
σ : B : σ and with above definitions leading to [σdev ⊗

σdev] :: Ḣ = σdev : Ḣ : σdev one has

∂Φ

∂H :: Ḣ =
1

2

σdev : Ḣ : σdev

σy,11
. (4.B.9)
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Using the solution for the rate of the structural tensor for linear stress paths one has

Ḣ/γ̇ = clslgclIdev + [cdsdgcd − clslgcl ]Nσdev ⊗Nσdev . (4.B.10)

Substituting this back into (4.B.9) and noting that σdev : Idev : σdev = σdev : σdev = |σdev|2
and σdev : Nσdev = Nσdev : σdev = |σdev| one obtains

∂Φ

∂H :: Ḣ = γ̇
1

2σy,11

[
clslgcl |σdev|2 + [cdsdgcd − clslgcl ] |σdev|2

]
. (4.B.11)

Rearranging the terms one reaches

∂Φ

∂H :: Ḣ = γ̇
cdsdgcd |σdev|2

2σy,11
. (4.B.12)

Finally,
∂Φ

∂q
q̇ = −γ̇f2

,qq
′ = −γ̇q′ . (4.B.13)

Collecting all terms one has

Φ̇ = rp : Ce : ε̇− γ̇ rp : Ce : rp + γ̇
cdsdgcd |σdev|2

2σy,11
− γ̇q′ = 0 . (4.B.14)

Hence the plastic multiplier is

γ̇ =
rp : Ce : ε̇

rp : Ce : rp + q′ − cdsdgcd |σdev|2
2σy,11

. (4.B.15)

Substituting this expression into the stress rate relation σ̇ = Ce : [ε̇ − ε̇p] = Ce : [ε̇ − γ̇rp] one
obtains

σ̇ = Ce :


ε̇−

rp : Ce : ε̇

rp : Ce : rp + q′ − cdsdgcd |σdev|2
2σy,11

rp


 . (4.B.16)

This can be rearranged to give σ̇ = Cep : ε̇ with

Cep = Ce − rp : Ce ⊗ Ce : rp

rp : Ce : rp + q′ − cdsdgcd |σdev|2
2σy,11

. (4.B.17)

In the absence of dynamic hardening, as it is usually used in the literature, one has

Cep = Ce − rp : Ce ⊗ Ce : rp
rp : Ce : rp + q′

. (4.B.18)

4.C. Eighth-Order Identity Tensors

For a fourth-order tensor A the self-derivative ∂A/∂A gives the following eighth-order identity
tensor I = Iijklmnpqεi ⊗ εj ⊗ εk ⊗ εl ⊗ εm ⊗ εn ⊗ εp ⊗ εq with

Iijklmnpq = δimδjnδkpδlq . (4.C.1)
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IfA has major but no minor symmetry, that is ifAijkl = Aklij , the self-derivative gives ∂A/∂A =
I S with

I S
ijklmnpq =

1

2
[δimδjnδkpδlq + δkmδlnδipδjq] . (4.C.2)

IfA has minor but no major symmetry, that is ifAijkl = Ajikl = Aijlk = Ajilk, the self-derivative
gives ∂A/∂A = I s with

I s
ijklmnpq =

1

4
[δimδjnδkpδlq + δjmδinδkpδlq + δimδjnδlpδkq + δjmδinδlpδkq] . (4.C.3)

Now, if A has super-symmetry, that is it has both major and minor symmetries, with Aijkl =
Ajikl = Aijlk = Ajilk = Aklij = Aklji = Alkij = Alkji, the self-derivative gives ∂A/∂A = I sS

with

I sS
ijklmnpq =

1

8

[
δimδjnδkpδlq + δjmδinδkpδlq + δimδjnδlpδkq + δjmδinδlpδkq

+δkmδlnδipδjq + δlmδknδipδjq + δkmδlnδjpδiq + δlmδknδjpδiq

]
. (4.C.4)

Finally, if in addition to super-symmetry A is deviatoric, that is Aiikl = Aijkk = 0 the self-
derivative gives ∂A/∂A = I sS,dev with

I sS,dev
ijklmnpq =

1

8

[
δimδjnδkpδlq + δimδjnδlpδkq + δjmδinδkpδlq + δjmδinδlpδkq

+δkmδlnδipδjq + δkmδlnδjpδiq + δlmδknδipδjq + δlmδknδjpδiq

]

− 1

12

[
δklδimδjnδpq + δklδjmδinδpq + δijδkpδlqδnm + δijδlpδkqδnm

+δijδkmδlnδpq + δijδlmδknδpq + δklδipδjqδmn + δklδjpδiqδmn

]

+
1

9
[δijδklδmnδpq] .

(4.C.5)
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5. A combined experimental-numerical
investigation of ductile fracture in bending of
a class of ferritic-martensitic steel

In this chapter, a combined experimental-numerical study on fracture initiation at the convex
surface and its propagation during bending of a class of ferritic-martensitic steel are presented.
On the experimental side, so-called free bending experiments are conducted on DP1000 steel
sheets until fracture, realizing optical and scanning electron microscopy analyses on the post
mortem specimens for fracture characterization. A blended Mode I - Mode II fracture pattern,
which is driven by cavitation at non-metallic inclusions as well as martensitic islands and resul-
tant softening-based intense strain localization, is observed. Phenomena like crack zig-zagging
and crack alternation at the bend apex along the bending axis are introduced and discussed. On
the numerical side, based on this physical motivation, the process is simulated in 2D plane strain
and 3D, using Gurson’s dilatant plasticity model with a recent shear modification, strain-based
void nucleation, and coalescence effects. The effect of certain material parameters (initial poros-
ity, damage at coalescence and failure, shear modification term, etc.), plane strain constraint
and mesh size on the localization and the fracture behavior are investigated in detail.

5.1. Introduction

In metallic materials, the localization into deformation bands, as a precursor to fracture, is
sourced from two strongly microstructure-dependent constitutive features, (1) path dependence
of strain hardening and (2) softening mechanism, [16]. The former is caused by destabilizing
effects of the existence of a vertex or a region of sharp curvature at the loading point of the
yield surface, which are implied by the stiffness reduction with respect to non-proportional load
increments, [16, 47]. Such vertex formations are natural outcomes of the underlying physics of
single crystals with the existence of discrete slip systems and accordingly resolved shear stresses.
The latter may be due to the effect of temperature on mechanical properties, see e.g. [179], or
progressive material deterioration due to cavitation, i.e. nucleation, growth, and coalescence of
micro-voids, see e.g. [340, 228, 265] also [305].

Experiments reveal that fracture development in bending of modern alloys and polycrystals usu-
ally occurs with intense strain localization starting at the free convex surface, which is preceded
by orange peels and gradually growing undulations parallel to the bend axis, [8, 266, 85, 185].
Numerical studies invariably use the finite element method in investigations on bendability.
In accordance with the mentioned constitutive strain localization sources, previous numerical
studies on bending will be classified under the following categories:

� Path-Dependent Strain Hardening,
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Table 5.1.: Studies on localization and fracture in bending of metallic sheets.

ID Reference Model Material Crack Prop.

1. Tvergaard [1981] GTN Al 6000 X
2. Triantafyllidis et al. [1982] Corner Theory Hypothetical -
3. Tvergaard [1987] GTN+Kin. Hard. Hypothetical -
4. Becker [1992] Crystal Plasticity Polycrystal Al X
5. Kuroda & Tvergaard [2001] Non-associative Flow Hypothetical -
6. Dao & Lie [2001] Crystal Plasticity Hypothetical -
7. Hambli et al. [2003] CDM Hypothetical -
8. Lievers et al. [2003a] GTN+Kin. Hard. AA6111 -
9. Lievers et al. [2003b] GTN+Kin. Hard. Hypothetical X
10. Hambli et al. [2004] CDM 0.6% C-Steel X
11. Wisselink & Huetink [2007] Nonlocal CDM Hypothetical X
12. Wisselink & Huetink [2008] Nonlocal CDM Al 6016 X
13. Xue & Wierzbicki [2008] CDM Al 2014-T351 X
14. Le Maout et al. [2009] GTN Al 6000 X
15. Kim et al. [2010] Thermal Softening DP 780 -
16. Bettaieb et al. [2010] GTN+Kin. Hard. DP 600 -

� Softening,

� Combined Path-Dependent Strain Hardening and Softening,

with a brief summary of approaches is given below. For convenience reasons, these studies are
also listed in historical order in Table 5.1.

[47] investigates pure bending of a polycrystalline sheet using a slip-based Taylor-like polycrys-
tal model. The effect of inherent inhomogeneity with incompatibility of neighboring grains by
different sets of crystal orientations at each grain and its effect on the shear band initiation at
the free surface and its propagation toward the neutral axis is studied. Using a crystal plasticity-
based model, [85] investigate the localization and fracture initiation (generally in a transgranular
fashion) during bending of aluminum alloy sheets. Like in [301, 47, 161] the localizations are
observed at both convex and concave surfaces. It is shown that without constituent particles in-
tense shear bands initiate from wave bottoms whereas a localization in the form of shear bending
can start beneath the free surface with the inhomogeneity effect of second-phase particles. The
most important factors affecting bending of aluminum sheets are found to be strain hardening,
texture, second phase particle position, and distribution, where high strain hardening is found
to reduce the susceptibility to localization. Finally, using a generalized Taylor type polycrystal
model, bending localizations are modeled in [161]. In [301] localization and shear band develop-
ment in pure bending of elastoplastic solids with sharp and blunt vertices is studied using the
J2 corner theory presented in [74]. Wavelength imperfections are applied which focus on the de-
formation into shear bands starting from the free surface. It is notable that initial localizations
are captured in the concave surface rather than the convex one in this study. Finally, in [160]
plane strain bending localizations with a material model involving non-associative plastic flow
as given in [159] is presented.

Coming to softening-based models, in [153] thermo-mechanical coupling is used to model draw-
bending where adiabatic thermal softening acts as the localization agent, with the condition of
a maximum tensile force, i.e. dF = 0, being set as the condition of localization. This study does
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not investigate crack modes and crack patterns.

Damage softening is taken into account through internal variables which phenomenologically
reflect the stiffness and strength loss of the matter, as in the case of Continuum Damage Me-
chanics (CDM) models, or via dilatancy of macroscopic plasticity and cavitation, as in the case
of Gurson’s plasticity.

Starting with the former, using a (gradient type) nonlocally enhanced CDM model, [330] and
[331] present mesh objective softening-induced strain localization (where bifurcation into two
crossing shear bands occurs) and crack trajectories in bending. The effect of pre-strain is in-
vestigated where the prestrained specimens are shown to fail earlier, [331]. [339] investigates
the bendability of 2024-T351 Al alloys using a phenomenological model where the plane strain
(shear) effects are involved through the utilization of load angle dependence. For sheets having
different width-thickness-ratios it is experimentally and numerically shown that cracks start with
shear localization at the central zone with the plane strain constraint. [115] uses a Lemaitre type
CDM model for the L-bending process with plane strain assumption. Unlike in previously men-
tioned studies damage development is seen at both convex and concave sides of the bend at the
same orders of magnitude. These questionable results stem from the utilized tension-compression
invariant damage growth formulation which does not involve quasi-unilateral effects. This study
does not involve localization due to a relatively coarse adapted mesh which acts as a length
scale. Identical comments apply to [116] in which another CDM model with the damage evolu-
tion relying on equivalent plastic strain and its rate is used to evaluate bending defects. Since
this study focuses on a variant of Gurson’s plasticity, theoretical details of the CDM models are
beyond the current scope. Interested readers can refer to the texts of [175, 177] for fundamentals
or the manuscripts, and [63, 64, 56, 210, 57, 248, 288, 287, 19] and more recently [100] for certain
developed advanced finite strain frameworks and various applications.

Coming to the latter, [305] investigates shear band localization in pure bending with cavita-
tion under the effect of surface waviness and material inhomogeneity through concentrated local
sub-surface void nucleating particles. In the progressively cavitating model localization occurs
faster at the apex of the bend as opposed to [301] since the void growth is hindered on the
compressive side of the neutral axis. Without specific reference to localization modes or fracture
patterns, [198] investigates a hemming process for 6000 series aluminum alloys using Gurson’s
damage model with Hill’48-type plastic anisotropy.

For the combined effects of path-dependent strain hardening and cavitation [307] constitutes
an example where shear cracks developed from void sheets inside the localization bands are
modeled with Gurson’s porous plasticity which gives account for progressive cavitation with
combined effects of kinematic and isotropic hardening on the yield surface curvature follow-
ing [209]. Kinematic hardening, by introducing an increased curvature compared to a merely
isotropic hardening one, adds imperfection sensitivity to the constitutive model due to slight
additional load path changes.The degree of non-uniformity of the strain field by an enforcement
of the surface waviness causes a shear band formation at the wave bottoms. As noted by [307],
the results admit a length-scale where strong mesh-dependence is due. For smaller element
sizes narrower yet earlier localization bands are carried out. [185] studies bendability of AA6111
sheets for different Fe concentrations using Gurson’s model with isotropic and kinematic harden-
ing effects where the surface roughness effect is also investigated. Together with an alternative
formulation of kinematic hardening [186] investigates the localization in bending using Gur-
son’s damage model on the same problem example as [307]. A systematic sensitivity analysis is
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followed through many material parameters related to yield surface curvature, material gradi-
ent, and failure mode. Again, it is also shown that geometric imperfections amplify the strain
gradients and act as strain concentrators. Finally, [51], using Gurson’s damage model with kine-
matic hardening effects and Thomason type void coalescence developed in [54], study bending
fractures by means of finite element analyses, also studying the effect of geometric imperfections.

This study aims at presenting a combined experimental and numerical analysis on bending of
a class of ferritic-martensitic steel. Ferritic-martensitic steels are commonly utilized in automo-
tive industry due to their lightweight characteristics and good stretching performance. However,
their formability is limited by fracture originating from voidage with growth and the coalescence
of micro-voids which nucleate with decohesion at matrix non-metallic inclusions (∼5-30 microns
in diameter) or ferrite-martensite interfaces as well as inclusions or dispersed martensite particle
(∼0.5 microns in diameter) cracking. This cavitation history strongly depends on the stress
state during plastic flow. The triaxial tensile (compressive) stress states give account for ex-
ponential void growth (shrinkage), whereas void sheeting, void nucleation, void distortion and
void interaction with material rotation promotes a degradation of stiffness and strength under
the shear stress states.

On the experimental part, a fractography analysis of a set of DP1000 steel sheets which are
bent until fracture with the free bending process is presented. At certain loading levels Light
Optical Microscopy (LOM) investigations are realized on the convex surface of the bend in order
to capture surface undulations which, as aforementioned, motivate strain localization through-
out the rest of the loading. Similar mechanisms until incipient fracture at the wave bottom,
observed by [8] and [266], are captured for this class of advanced high strength steels as well.
Once the apex of the bent and cracked specimens is investigated it is seen that the crack follows
alternate patterns which are discontinuous on the bending axis. Such a pattern which cannot
be captured in a plane strain analysis is linked to local material inhomogeneities throughout
the bending axis. Coming to the fracture patterns at planes orthogonal to the bend axis, the
observations invariably show crack initiation with an angle to the maximum tensile loading di-
rection which holds the sign of a developed shear localization at the incipient fracture. It is
observed that the cracks tend to evolve following a zig-zag pattern in the form of periodic ridges
and valleys, which are characteristic for fracture surfaces separated by homogeneous micro-void
fracture, [46]. An elucidation of this phenomenon based on different sources is given. In order to
clarify the mode of the fracture, SEM analyses are conducted focusing on post-mortem fractured
surfaces. Considerable evidence for cavitation, as a sign of void sheeting and resulting local-
ization, is observed where the parabolic dimples, taking into account the macroscopic loading
conditions, give a sign of a blended condition of the transgranular fracture of Mode I and Mode
II (using the elastic fracture mechanics notion), with a domination of Mode II.

On the numerical part, bending is simulated using 2D plane strain and 3D finite element models
which aim at capturing not only initial localization into shear bands at the convex free surface,
but also the crack propagation and the crack path. For this purpose, a finite strain hypoelastic-
plasticity framework with Gurson’s porous model including a recent shear modification, [224],
is developed and algorithmic steps for local integrations, which use a class of cutting plane al-
gorithms, [239], are derived. Since DP1000 shows a relatively weak anisotropy due to rolling,
this study is limited to the plastic isotropy. To this end, the derivations are implemented as
a Vumat subroutine for Abaqus/Explicit. The current motivation regarding the selection
of a porous plasticity model, where softening is the prime localization source, stems from the
aforementioned experimental evidence of cavitation on fracture surfaces. With this model, in
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accordance with [305] and [307], the localization is captured on the convex surface of the bend
under tension since the concave surface does not give account for void growth due to compressive
hydrostatic stress. It should be noted that without sufficient softening a localization pattern
cannot be captured according to [339]. Under generalized plane strain conditions (pure shear
plus hydrostatic stress) materials are more susceptible to fracturing compared to generalized
compressive or tensile stress states on the Π plane, i.e. for equal pressure values, [339]. This
experimental fact is resolved by [339] by making use of Lode parameter dependence, which
distinguishes generalized plane strain states from axisymmetric stress states, of void growth in
Gurson’s damage model. [224]uses a third invariant of the deviatoric Cauchy (true) stress tensor
for this purpose. A number of sensitivity analyses based on mesh size and damage-related ma-
terial parameters are presented. It is observed that selected mesh size acts as a length scale and
manipulates localization time and width, in accordance with the findings of [307]. Moreover,
it is shown that a small damage threshold for fracture results in a fracture pattern orthogonal
to the principal tensile stress direction which occurs prior to shear band development resem-
bling a brittle cleavage type separation, see also [185]. Regarding the crack pattern, zig-zagging
is qualitatively captured which, on numerical grounds, is attributed to the combined effect of
macroscopic loading conditions and the shear band crossing, where the physical motivations are
attributed to different phenomena.

5.2. Shear Enhanced GTN Damage Model

For the hydrostatic stress-independent classical von Mises plasticity one has Φp = Φp(dev(σ), ep),
with ep denoting the equivalent plastic strain. The current formulation is based on the Gurson’s
generic scalar valued isotropic yield function, [110], taking as a basis the response of a represen-
tative volume element containing a matrix of an incompressible ideal plasticity and a spherical
void whose homogenization results in a macroscopically compressible plasticity model. Assum-
ing σy and ep denote the virgin yield stress and the equivalent plastic strain of the undamaged
material matrix with

σy = σ0 + q(ep) , (5.2.1)

where q(ep) represents the matrix material hardening function. Allowing f to represent the void
volume fraction, one has Φp = Φp(dev(σ), tr(σ), f, ep) with

Φp =

[
σeq
σy

]2

+ 2q1f
∗ cosh

(
3

2

q2σm
σy

)
− [1 + q3f

∗2] = 0 , (5.2.2)

where σeq = σeq(dev(σ)) is the (macroscopic) equivalent von Mises stress, a function of Cauchy
stress tensor, σ. q1, q2, and q3 are the material parameters, see e.g. [304] and [306]. For
q1 = q2 = q3 = 1 Gurson’s original model, [110], is recovered. For q1 = q3 = 0 the porous
structure is lost, e.g. the pressure dependence is precluded and conventional isochoric-isotropic
plasticity is recovered. f∗ denotes the modified void volume fraction, giving account for the
accelerating effects of the void coalescence, [308],

f∗ =





f f ≤ fc ,
fc +

f∗u − fc
ff − fc

[f − fc] f > fc .
(5.2.3)

Here, fc is the critical void volume fraction at incipient coalescence. ff is the fraction at fail-
ure. The material parameter f∗u is defined by f∗u = 1/q1. The coalescence phase can be linked to
an effective plastic strain rate, as seen in [240]. A Thomason type void coalescence is used in [54].
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The plastic strain rate follows a conventional normality postulate,

ε̇p = γ̇∂σΦp , (5.2.4)

where γ̇ is the plastic multiplier which is computed by the consistency condition. The hydrostatic
stress-dependent yield function dictates a non-vanishing trace of ε̇p, i.e. tr(ε̇p) 6= 0. The rate ėp

is defined by the following generalized plastic work equivalence relation via [1− f ]σy ė
p = σ : ε̇p

ėp =
σ : ε̇p

[1− f ]σy
. (5.2.5)

The void volume fraction is assumed to evolve in two phases, namely nucleation and growth,
where the resulting form reads

ḟ = ḟn + ḟg , (5.2.6)

with the superscripts; n and g stand for nucleation and growth, respectively. The void volume
fraction due to nucleation depends on the equivalent plastic strain by

ḟn = AN ė
p with AN = AN (ep) =

fN

SN
√

2π
exp

(
− [ep − epN ]2

2[SN ]2

)
, (5.2.7)

where fN and SN are the nucleated void volume fraction and Gaussian standard deviation,
respectively. epN denotes the mean equivalent plastic strain at the incipient nucleation. fN , SN
and epN are typical material parameters. In the classical Gurson’s damage model the time rate
of change of void volume fraction due to void growth is linked to the plastic dilatation under
hydrostatic stress using ḟg = ḟgnormal where

ḟgnormal = [1− f ]tr(ε̇p) . (5.2.8)

Unless the mean stress is positive, this expression does not predict any damage development,
subsequent localization with softening and fracture which is not in correlation with the experi-
mental findings reported in e.g. [29] and [39]. [224] modified ḟg to give account for fracture for
low and negative stress triaxialities to give ḟg = ḟgnormal + ḟgshear . Here, ḟgshear relates to the effect
of shear in damage growth and is defined as the following form scaled by the material parameter
kw

ḟgshear = kwf w (dev(σ))
ε̇p : dev(σ)

σeq
. (5.2.9)

Accordingly, besides the exponential dependence of the void growth on triaxiality, softening
and localization with mechanisms such as void distortion and void interaction with material
rotation under shear is taken into account. A simple illustration of these two distinct stress
state dependent microstructural mechanisms is given in Figure 5.1. Note that although in the
original Gurson’s damage model f corresponds to a micro-mechanical variable, i.e. an average
volumetric fraction of voids reflecting configurational changes, in the current extension it is a
purely phenomenological one since fgshear does not denote an actual void growth but a qualitative
indicator of the weakening under shear. To emphasize this fact, in the following pages, f and
regarding components will be named as damage rather than void volume fraction.

The modification of [224] proposes the dependence of void growth on the third invariant of
the deviatoric stress tensor, which distinguishes the axisymmetric stress states from generalized
plane strain states. The scalar valued tensor function w (dev(σ)) is defined as

w (dev(σ)) = 1−
[

27J3

2σ3
eq

]2

, (5.2.10)
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defined as the following form scaled by the material parameter kw

∂tf
g
shr=kwf

w (dev [T])

σeq
dev [T] . (9)

Accordingly, besides the exponential dependence of the void growth on triaxiality, softening and

localization with mechanisms such as void distortion and void interaction with material rotation

under shear is taken into account. A simple illustration of these two distinct stress state dependent

microstructural mechanisms is given in Figure 1. Note that although in the original Gurson’s damage

model f corresponds to a micro-mechanical variable, i.e. an average volumetric fraction of voids

reflecting configurational changes, in the current extension it is a purely phenomenological one since

f gshr does not denote an actual void growth but a qualitative indicator of the weakening under

shear. To emphasize this fact, in the following pages, f and regarding components will be named as

”damage” rather than void volume fraction.

(a) Void growth under hydro-
static stress state.

(b) Void distortion and inter-
void linking with material rota-
tion under shear stress state.

Figure 1: Damage development under different stress states and characteristic fracture surface evi-
dences.

The modification of Nahshon & Hutchinson [2008] proposes the dependence of void growth

on the third invariant of the deviatoric stress tensor, which distinguishes the axisymmetric stress

states from generalized plane strain states. The scalar valued tensor function w (dev [T]) is defined

12

Figure 5.1.: Damage development under different stress states and characteristic fracture surface
evidences.

where J3 = [1/3][dev(σ)]ij [dev(σ)]jk[dev(σ)]ki is the third invariant of the deviatoric stress
tensor. For all axisymmetric stress states (which include the hydrostatic stress states) w vanishes
where the classical Gurson’s model is recovered. Depending on the relative success of classical
Gurson’s model for modeling localization and fracture under moderate to high stress triaxialities
[232] and [233] introduced a triaxiality-dependent correction to w as follows,

w = χ(η)× w(dev(σ)) , where χ(η) =





1 for η < η1 ,
η − η2

η1 − η2
for η1 < η < η2 ,

0 for η > η2 ,

(5.2.11)

where the correction applies only for the triaxiality values over η1. From η1 to η2 the shear
damage effect is linearly reduced whereas after η2 it is completely eliminated. [232] proposes
two possible correction intervals, (η1, η2), as (0, 0.5) and (0.2, 0.7). It should be noted that both
shear modifications of [224] and correction terms of [232] have strong effects on the evaluation
of damage accumulation in plane strain bending. Following [224] for plane strain states, where
η ' 0.577, shear damage growth to is fully active since w ' 1. With the presented corrections,
for the interval (0, 0.5), one has w = 0 and for (0.2, 0.7) one has w ' 0.244. For the former case
shear modification is completely suppressed, whereas for the latter case it is reduced nearly to
one fourth. As noted earlier due to the hydrostatic stress dependence of the yield function as
opposed to the Levy-Mises flow rule current framework results in a dilatant plastic flow. Ac-
cordingly the stress triaxiality ratio is not necessarily constant for constant strain paths where
deviations depend mainly on the level of porosity and hydrostatic stress. Since for the high
strength steel sheets initial porosity is considerably small, deviation of the stress triaxiality un-
der constant strain paths (in which damage development is due) become dominant only at latter
stages of loading.

This concludes the theoretical background regarding the shear modified Gurson’s damage model.
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Eventually, the complete set of equations to be solved reads

ε̇ = ε̇e + ε̇p ,
σ̇ = Ce : ε̇e ,
ε̇p = γ̇∂σΦp ,
ėp = γ̇η : ∂σΦp,

ḟ = γ̇ [ANη +BG] : ∂σΦp .





(5.2.12)

Here, η := σ/[[1− f ]σy]. In above the evolution of void growth is shortly represented as

ḟg = BG : ε̇p , (5.2.13)

where the second-order operator, BG = BG(f, dev(σ)), is defined as

BG = [1− f ]1 + kwf
w (dev(σ))

σeq
dev(σ) . (5.2.14)

Using the definition of the plastic flow one can add up the damage contributions to end up with
the following expression

ḟ = γ̇

[
AN

σ

[1− f ]σy
+BG

]
: ∂σΦp. (5.2.15)

An algorithmic treatment of the given framework is enclosed in the appendices.

5.3. Experiments

Free bending (or air bending) is a widely used brakebending operation where the blank is
supported at the outer edges without being forced into a female cavity (as opposed to die
bending). Thus, the bending angle is determined by the ramstroke, not by the die shape, see
[157]. This reduces the force demand for forming. However, at the same time it gives rise to free
surface cracks and, if not, to relatively high springback. An analysis of springback is beyond
the aim of this study. In the following, first the chemical composition and the microstructure
of the utilized material are given. Then, the experimental setup and outcomes of the tests are
explained.

5.3.1. Chemical Composition and Microstructure Observation of DP1000 Steel

The investigated sheet material used within the scope of this chapter is a cold-rolled ferritic-
martensitic steel, so-called DP1000. In order to figure out the chemical compositions, a chemical
analysis with Optical Emission Spectroscopy (OES) is carried out. The results are summarized
in Table 5.2.

Table 5.2.: Chemical composition for DP1000 in wt%.

C Si Mn P S Cr Ni Al Co

0.161 0.499 1.546 0.011 0.002 0.44 0.035 0.043 0.016

The slag morphology as well as the amount and the size of slag inclusions were assessed using
the slag inclusion evaluation method. Important information regarding inclusion quantity and
size is depicted in Figure 5.2.
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Figure 2: Slag assessment of DP1000.

Energy dispersive spectrometry analysis showed that the inclusions consisted mainly of man-

ganese sulfide or calcium aluminate. Despite the fact that the cracks usually initiate near complex

macro slag, in this case manganese sulfide or calcium aluminate, the martensitic islands act as po-

tential microvoid initiation zones, respectively. Especially for ferritic-martensitic steels consisting of

relatively brittle martensite surrounded by ductile ferrite, this idea gains more importance.
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Figure 5.2.: Slag assessment of DP1000.

Energy dispersive spectrometry analysis showed that the inclusions consisted mainly of man-
ganese sulfide or calcium aluminate. Despite the fact that the cracks usually initiate near
complex macro slag, in this case manganese sulfide or calcium aluminate, the martensitic is-
lands act as potential microvoid initiation zones, respectively. Especially for ferritic-martensitic
steels consisting of relatively brittle martensite surrounded by ductile ferrite, this idea gains
more importance.

5.3.2. Experimental Setup

Air bending tests are realized on universal testing machine, type Zwick 250. With reference to
Figure 5.3, the radii of the punch, rp, and the dies, rd, are 1 mm, whereas the die width, dd, is
24 mm. The sheet has a length of 100 mm, b, a width of 50 mm, w, and a thickness of 1.55 mm
t. The punch moves downwards while the dies are stationary.

3.2 Experimental Setup

Air bending tests are realized on universal testing machine, type Zwick 250. With reference to Figure

3, the radii of the punch, rp, and the dies, rd, are 1 mm, whereas the die width, dd, is 24 mm. The

sheet has a length of 100 mm, b, a width of 50 mm, w, and a thickness of 1.55 mm t. The punch

moves downwards while the dies are stationary.

Figure 3: Essential geometrical dimensions of the bending problem.

As noted in [ASM Handbook, 2000, pp. 403–415], bending occurs at plane strain conditions

at w/t > 8, where ε2 = 0 and σ2/σ1 = 0.5. If w/t < 8, bending occurs under plane stress conditions

with σ2/σ1 < 0.5 and plasticity occurs in all principal directions. For the former bend ductility is

independent of the width-to-thickness ratio, whereas for the latter, bend ductility strongly depends

on this ratio as given in Figure 4. Generally, tests are performed in width-to-thickness ratios larger

than 8 to 1. In the current case the width-to-thickness ratio is w/t = 35.48 > 8, where the plane

strain assumption is validated.

(a) Stress and strain nota-
tion for the problem.

(b) Fracture strain (at the convex surface) versus width-to-
thickness ratio, (w/t).

Figure 4: Problem of bendability (adapted from [ASM Handbook, 2000, pp. 403–415]).
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Figure 5.3.: Essential geometrical dimensions of the bending problem.

As noted in [2, pp. 403–415], bending occurs at plane strain conditions at w/t > 8, where ε2 = 0
and σ2/σ1 = 0.5. If w/t < 8, bending occurs under plane stress conditions with σ2/σ1 < 0.5 and
plasticity occurs in all principal directions. For the former bend ductility is independent of the
width-to-thickness ratio, whereas for the latter, bend ductility strongly depends on this ratio as
given in Figure 5.4. Generally, tests are performed in width-to-thickness ratios larger than 8 to
1. In the current case the width-to-thickness ratio is w/t = 35.48 > 8, where the plane strain
assumption is validated.

5.3.3. Observations at Macroscale

The experiments carried out until a fracture on the convex surface of the specimen was observed.
The emanation of cracks is observed at the central portions where the plane strain effect is higher
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at w/t > 8, where ε2 = 0 and σ2/σ1 = 0.5. If w/t < 8, bending occurs under plane stress conditions

with σ2/σ1 < 0.5 and plasticity occurs in all principal directions. For the former bend ductility is

independent of the width-to-thickness ratio, whereas for the latter, bend ductility strongly depends

on this ratio as given in Figure 4. Generally, tests are performed in width-to-thickness ratios larger

than 8 to 1. In the current case the width-to-thickness ratio is w/t = 35.48 > 8, where the plane

strain assumption is validated.

(a) Stress and strain nota-
tion for the problem.

(b) Fracture strain (at the convex surface) versus width-to-
thickness ratio, (w/t).

Figure 4: Problem of bendability (adapted from [ASM Handbook, 2000, pp. 403–415]).
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Figure 5.4.: Problem of bendability (adapted from [2, pp. 403–415]).

rather than at the edges in accordance with the definitions given in [2, pp. 403–415]. Figure 5.5
show bent specimens at different stages of the ram-stroke.

3.3 Observations at Macroscale

The experiments carried out until a fracture on the convex surface of the specimen was observed.

The emanation of cracks is observed at the central portions where the plane strain effect is higher

rather than at the edges in accordance with the definitions given in [ASM Handbook, 2000, pp.

403–415]. Figure 5 show bent specimens at different stages of the ram-stroke.

(a) 80◦ (b) 90◦ (c) 100◦ (d) 110◦

Figure 5: Bent specimens for different levels of deformation measured in terms of bending angle.

According to the test evaluation procedure presented in [ASM Handbook, 2000, pp. 403–

415], surface examinations for cracks are conducted on the convex surface with magnifications up

to 20X where surface wrinkles or orange peeling are not considered as unacceptable defects. Figure

6 shows the stages of cracking at the apex of the bend. With a growing extent of deformation

orange peels and accompanying slight surface waviness (so-called undulation) is observed on the

outer surface in the bending zone in the form of bulges and dents (or extrusions and intrusions). As

explained in Dao & Lie [2001], these grooves increase the strain and plastic flow inhomogeneity

at the micrometer scale and the deformation is confined to narrow localized slip bands. In general,

these slip bands, act as sources of extrusions and intrusions when intersect a free surface. Cracks

emanate from intrusions, which is in correlation with the observations made in bending where the

intruded portions of undulations (or waviness) are the crack emanation zones.

These outcomes are in accordance with those obtained by Sarkar, Kutty, Conlon, Wilkin-

son, Embury & Lloyd [2001], where observed phenomena of bending defects in AA5754 Al alloys

for low and high Fe content are listed as: 1) Strain localization at various length scales, 2) Undula-

tions at the surface, 3) Damage acceleration in localization bands in Fe rich microstructures, which

are linked to surface grooves and fracture occurs inclined to the surface. The sequence and relation
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Figure 5.5.: Bent specimens for different levels of deformation measured in terms of bending
angle.

According to the test evaluation procedure presented in [2, pp. 403–415], surface examinations
for cracks are conducted on the convex surface with magnifications up to 20X where surface
wrinkles or orange peeling are not considered as unacceptable defects. Figure 5.6 shows the
stages of cracking at the apex of the bend. With a growing extent of deformation orange peels
and accompanying slight surface waviness (so-called undulation) is observed on the outer surface
in the bending zone in the form of bulges and dents (or extrusions and intrusions). As explained
in [85], these grooves increase the strain and plastic flow inhomogeneity at the micrometer scale
and the deformation is confined to narrow localized slip bands. In general, these slip bands,
act as sources of extrusions and intrusions when intersect a free surface. Cracks emanate from
intrusions, which is in correlation with the observations made in bending where the intruded
portions of undulations (or waviness) are the crack emanation zones.

These outcomes are in accordance with those obtained by [266], where observed phenomena
of bending defects in AA5754 Al alloys for low and high Fe content are listed as: 1) Strain
localization at various length scales, 2) Undulations at the surface, 3) Damage acceleration in
localization bands in Fe rich microstructures, which are linked to surface grooves and fracture
occurs inclined to the surface. The sequence and relation of these events are linked to a second
phase particle content (Fe), where the degree of material inhomogeneity and spacing of particles
gain importance. Accordingly, small interparticle spacing in high Fe alloys promotes the linking
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(a) (b) (c) (d)

Figure 6: Development of surface undulations by the extent of deformation.

of these events are linked to a second phase particle content (Fe), where the degree of material in-

homogeneity and spacing of particles gain importance. Accordingly, small interparticle spacing in

high Fe alloys promotes the linking of voids where the failure occurs in the form of void sheeting.

It is shown that high Fe alloys show lower bendability. Cavity formation in the particles interacting

with slip lines under the influence of shearing is clearly shown by SEM images. It is also shown that

the prestrained materials show lower strain hardening rates, under loading due to their decreased

hardening capacity; thus, undulations and associated localizations occur earlier, which initiates a

softening effect again. Lievers, Pilkey & Lloyd [2003] investigate the bendability of AA6111

sheets for different Fe concentrations using a combined experimental numerical procedure.

Crack alternation at the bend apex is shown in Figure 7. As will be further clarified by means of

a section analysis and post-mortem surface fractographs, phenomena like alternating cracks at the

apex along the central bending line, incipient cracks under free surface, crack trajectories, i.e. the size

and orientation of crack tip evolution are strongly linked to the local material inhomogeneities. Our

observations show that the cracks tend to alternate from one localization band to another under the

effect of cavitation, i.e. inclusion type, size, shape, and distribution. Once the local inhomogeneities

are insufficient, the post-mortem fracture surfaces show less clues regarding parabolic dimples, which

shows that plastic slip mechanisms dominate compared to void sheet mechanisms. Thus, the cracks

alternate from a less critical localization condition to a more critical one, following maximum damage

paths, comparable with the observations of Sarkar, Kutty, Conlon, Wilkinson, Embury &

Lloyd [2001] where it is detected that damage accelerates in localization bands in inclusion rich

(Fe) microstructures.

Once the crack paths at random sections orthogonal to the bending axis, as seen in Figure 8,

18

Figure 5.6.: Development of surface undulations by the extent of deformation.

of voids where the failure occurs in the form of void sheeting. It is shown that high Fe alloys
show lower bendability. Cavity formation in the particles interacting with slip lines under the
influence of shearing is clearly shown by SEM images. It is also shown that the prestrained
materials show lower strain hardening rates, under loading due to their decreased hardening
capacity; thus, undulations and associated localizations occur earlier, which initiates a softening
effect again. [185] investigate the bendability of AA6111 sheets for different Fe concentrations
using a combined experimental numerical procedure.

Crack alternation at the bend apex is shown in Figure 5.7. As will be further clarified by
means of a section analysis and post-mortem surface fractographs, phenomena like alternating
cracks at the apex along the central bending line, incipient cracks under free surface, crack
trajectories, i.e. the size and orientation of crack tip evolution are strongly linked to the local
material inhomogeneities. The observations show that the cracks tend to alternate from one
localization band to another under the effect of cavitation, i.e. inclusion type, size, shape, and
distribution. Once the local inhomogeneities are insufficient, the post-mortem fracture surfaces
show less clues regarding parabolic dimples, which shows that plastic slip mechanisms dominate
compared to void sheet mechanisms. Thus, the cracks alternate from a less critical localization
condition to a more critical one, following maximum damage paths, comparable with the obser-
vations of [266] where it is detected that damage accelerates in localization bands in inclusion
rich (Fe) microstructures.

Figure 7: Crack alternation along the bending axis at the bend apex.

are analyzed, three characteristics are observed: 1) It can be noted that when the bending axis

is orthogonal to the rolling direction cracking at the outer fiber occurs later than in transverse

direction due to elongated inclusions, also noted in [Meyers & Chawla, 2009, p. 233]. 2) The

cracks emanate from the free surface along the slip bands with maximum plastic straining at an angle

of approximately 45◦ to the principal stress direction which is due to the tension of the outermost

fiber. This structure is compatible with a combined Mode I Mode II fracture where the opening and

shearing modes act. 3) After the cracks have reached a certain length they change direction to form

a zig-zag pattern.

(a) Bending axis orthogo-
nal to rolling axis, bend-
ing angle 90◦.

(b) Bending axis orthogo-
nal to rolling axis, bend-
ing angle 110◦.

(c) Bending axis parallel
to rolling axis, bending
angle 90◦.

(d) Bending axis parallel
to rolling axis, bending
angle 110◦.

Figure 8: Observed crack patterns on the bend section.

For a transgranular brittle fracture a slight zig-zag pattern can be handled with the crack arrest

at grain boundaries where the preferred splitting plane from grain to grain may differ in orientation,

resulting in faceted fracture surfaces. For the current ductile pattern this may be attributed to a

blending of two alternative mechanisms:

[Broek, 1982, p. 13] links this behavior to the bimodal particle distributions. Localized defor-

mations in the form of shear bands occur between large particles which generally break or get loose

19

Figure 5.7.: Crack alternation along the bending axis at the bend apex.

Once the crack paths at random sections orthogonal to the bending axis, as seen in Figure 5.8,
are analyzed, three characteristics are observed: 1) It can be noted that when the bending axis
is orthogonal to the rolling direction cracking at the outer fiber occurs later than in transverse
direction due to elongated inclusions, also noted in [213, p. 233]. 2) The cracks emanate from the
free surface along the slip bands with maximum plastic straining at an angle of approximately
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45◦ to the principal stress direction which is due to the tension of the outermost fiber. This
structure is compatible with a combined Mode I Mode II fracture where the opening and shearing
modes act. 3) After the cracks have reached a certain length they change direction to form a
zig-zag pattern.

Figure 7: Crack alternation along the bending axis at the bend apex.

are analyzed, three characteristics are observed: 1) It can be noted that when the bending axis

is orthogonal to the rolling direction cracking at the outer fiber occurs later than in transverse

direction due to elongated inclusions, also noted in [Meyers & Chawla, 2009, p. 233]. 2) The

cracks emanate from the free surface along the slip bands with maximum plastic straining at an angle

of approximately 45◦ to the principal stress direction which is due to the tension of the outermost

fiber. This structure is compatible with a combined Mode I Mode II fracture where the opening and

shearing modes act. 3) After the cracks have reached a certain length they change direction to form

a zig-zag pattern.

(a) Bending axis orthogo-
nal to rolling axis, bend-
ing angle 90◦.

(b) Bending axis orthogo-
nal to rolling axis, bend-
ing angle 110◦.

(c) Bending axis parallel
to rolling axis, bending
angle 90◦.

(d) Bending axis parallel
to rolling axis, bending
angle 110◦.

Figure 8: Observed crack patterns on the bend section.

For a transgranular brittle fracture a slight zig-zag pattern can be handled with the crack arrest

at grain boundaries where the preferred splitting plane from grain to grain may differ in orientation,

resulting in faceted fracture surfaces. For the current ductile pattern this may be attributed to a

blending of two alternative mechanisms:

[Broek, 1982, p. 13] links this behavior to the bimodal particle distributions. Localized defor-

mations in the form of shear bands occur between large particles which generally break or get loose
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Figure 5.8.: Observed crack patterns on the bend section.

For a transgranular brittle fracture a slight zig-zag pattern can be handled with the crack ar-
rest at grain boundaries where the preferred splitting plane from grain to grain may differ in
orientation, resulting in faceted fracture surfaces. For the current ductile pattern this may be
attributed to a blending of two alternative mechanisms:

[60, p. 13] links this behavior to the bimodal particle distributions. Localized deformations
in the form of shear bands occur between large particles which generally break or get loose
earlier to form widely spaced holes in the vicinity of the crack tip. These join up by void linking
and shearing through micro-void coalescence in smaller secondary particles. Accordingly, the
crack changes direction in between the large particles. Due to this mechanism, the fracture
surface includes both the dimples of smaller and larger particles.

According to [11], any crack subjected to Mode I loading tends to propagate through the pre-
ferred path of void coalescence which is the maximum plastic strain i.e. plastic localization path
at 45◦ to the principal tensile stress. This determines the crack direction at the local level,
whereas the global constraints tend to hold the crack on the plane orthogonal to the maximum
stress. The resulting conciliatory path has a zig-zag pattern. These observations are in ac-
cordance with similar ideas proposed in [46] which, while investigating zig-zag ductile fracture
patterns in the form of periodic ridges and valleys, link the size of ridges and valleys to fracture
toughness.

Finally, the average punch force-punch displacement curve is given in Figure 5.9 since the mate-
rial does not have strong anisotropy, [100]. No large gap in between the level of maximum forces
for specimens bent at different orientations (0◦ and 90◦) with respect to their rolling directions
is observed. Comparisons with the simulations are stated in the following sections.

5.3.4. Observations at Microscale

Surface fractography is a powerful tool when determining the character and type of fracture. In
the following, post-mortem surface fractography analyses by SEM with different magnifications
as evidence for ductile fracturing mechanisms which occur under the influence of intense local-
ization with void sheeting are summarized.
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earlier to form widely spaced holes in the vicinity of the crack tip. These join up by void linking

and shearing through micro-void coalescence in smaller secondary particles. Accordingly, the crack

changes direction in between the large particles. Due to this mechanism, the fracture surface includes

both the dimples of smaller and larger particles.

According to Anderson [2004], any crack subjected to Mode I loading tends to propagate

through the preferred path of void coalescence which is the maximum plastic strain i.e. plastic

localization path at 45◦ to the principal tensile stress. This determines the crack direction at the

local level, whereas the global constraints tend to hold the crack on the plane orthogonal to the

maximum stress. The resulting conciliatory path has a zig-zag pattern. These observations are in

accordance with similar ideas proposed in Beachem & Yoder [1973] which, while investigating

zig-zag ductile fracture patterns in the form of periodic ridges and valleys, link the size of ridges and

valleys to fracture toughness.

Finally, the average punch force-punch displacement curve is given in Figure 9 since the material

does not have strong anisotropy, Malekipour Gharbi, Labergere, Badreddine, Soyarslan,

Weinrich, Hermes, Chatti, Sulaiman, Saanouni & Tekkaya [2011]. No large gap in between

the level of maximum forces for specimens bent at different orientations (0◦ and 90◦) with respect

to their rolling directions is observed. Comparisons with the simulations are stated in the following

sections.

Figure 9: Experimentally handled load-displacement curve for the punch.
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Figure 5.9.: Experimentally handled load-displacement curve for the punch.

Figure 5.10.(a) shows the region where the SEM analyses are conducted. The upper free surface
shows the apex of the bend. In general, the dimple formations at the fracture surface constitute
a clear sign for the ductility of fracture. However, the surface features are relatively complicated,
so the analysis is divided into certain regions. Two regions are mainly concentrated on, where
Figure 5.10.(b) (namely region A2) shows the fracture surface in the vicinity of crack emanation
at the free surface at the bending apex and Figure 5.10.(c) (namely region A6) shows a relatively
inner region closer to the neutral axis of the bend.

3.4 Observations at Microscale

Surface fractography is a powerful tool when determining the character and type of fracture. In the

following, we summarize post-mortem surface fractography analyses by SEM with different magni-

fications as evidence for ductile fracturing mechanisms which occur under the influence of intense

localization with void sheeting.

Figure 10.a shows the region where the SEM analyses are conducted. The upper free surface

shows the apex of the bend. In general, the dimple formations at the fracture surface constitute a

clear sign for the ductility of fracture. However, the surface features are relatively complicated, so

the analysis is divided into certain regions. We concentrate on two regions, mainly where Figure

10.b (namely region A2) shows the fracture surface in the vicinity of crack emanation at the free

surface at the bending apex and 10.c (namely region A6) shows a relatively inner region closer to

the neutral axis of the bend.

(a) Region A1 (b) Region A2 (c) Region A6

Figure 10: SEM fractographs from fracture surfaces, Part I.

Region A3 is divided into two finer scale regions, namely region A4 and A5, for dimple pattern

observations, as seen in Figure 11. Region A5 is closer to the crack alternation zone, whereas region

A4 is relatively remote from this region. A5 shows relatively flat surface characteristics where the

shearing direction is slightly oriented towards to a possible effect of crack alternation. As opposed,

region A4 includes more obvious dimples forming a relatively rough surface where the shear loading

has, as expected, a vertical direction. In both A4 and A5 the type of dimples is parabolic which

shows the slantness of the fracture surface, see e.g. [Hull, 1999, p. 238], where the Mode II fracture

is dominates among a blended Mode I and Mode II type fracture. The local change of fracture surface

characteristics, such as increased surface flatness and reduced parabolic dimples in the vicinity of
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Figure 5.10.: SEM fractographs from fracture surfaces, Part I.

Region A3 is divided into two finer scale regions, namely region A4 and A5, for dimple pattern
observations, as seen in Figure 5.11. Region A5 is closer to the crack alternation zone, whereas
region A4 is relatively remote from this region. A5 shows relatively flat surface characteristics
where the shearing direction is slightly oriented towards to a possible effect of crack alternation.
As opposed, region A4 includes more obvious dimples forming a relatively rough surface where
the shear loading has, as expected, a vertical direction. In both A4 and A5 the type of dimples is
parabolic which shows the slantness of the fracture surface, see e.g. [129, p. 238], where the Mode
II fracture is dominates among a blended Mode I and Mode II type fracture. The local change of
fracture surface characteristics, such as increased surface flatness and reduced parabolic dimples
in the vicinity of crack alternation, might be responsible for the crack’s bifurcation into a less
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stiff or more developed localization band.

crack alternation, might be responsible for the crack’s bifurcation into a less stiff or more developed

localization band.

(a) Region A3 (b) Region A4 (c) Region A5

Figure 11: SEM fractographs from fracture surfaces, Part II.

Figure 12 shows the surface features observed in region A6 with a finer scale SEM fractograph,

which gives A7, and a further refined region A8. These coincide with the region where crack zig-

zagging occurs. An evident observation is the relatively coarse surface characteristics compared to

region A2. In region A7 the dimples are more remarkable and a blend of larger and smaller dimples

is observed. As seen in more detail in region A8, the dimple types are still parabolic. Again, the

shear loading is dominant and the direction of loading is apparent from the fractographs.

(a) Region A6 (b) Region A7 (c) Region A8

Figure 12: SEM fractographs from fracture surfaces, Part III.

4 Simulations

The presented theoretical framework is implemented into VUMAT subroutines for ABAQUS/EXPLICIT

where the algorithmic forms can be found in the appendices. Simulations are conducted in both 2D
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Figure 5.11.: SEM fractographs from fracture surfaces, Part II.

Figure 5.12 shows the surface features observed in region A6 with a finer scale SEM fracto-
graph, which gives A7, and a further refined region A8. These coincide with the region where
crack zig-zagging occurs. An evident observation is the relatively coarse surface characteristics
compared to region A2. In region A7 the dimples are more remarkable and a blend of larger
and smaller dimples is observed. As seen in more detail in region A8, the dimple types are still
parabolic. Again, the shear loading is dominant and the direction of loading is apparent from
the fractographs.

crack alternation, might be responsible for the crack’s bifurcation into a less stiff or more developed

localization band.

(a) Region A3 (b) Region A4 (c) Region A5

Figure 11: SEM fractographs from fracture surfaces, Part II.

Figure 12 shows the surface features observed in region A6 with a finer scale SEM fractograph,

which gives A7, and a further refined region A8. These coincide with the region where crack zig-

zagging occurs. An evident observation is the relatively coarse surface characteristics compared to

region A2. In region A7 the dimples are more remarkable and a blend of larger and smaller dimples

is observed. As seen in more detail in region A8, the dimple types are still parabolic. Again, the

shear loading is dominant and the direction of loading is apparent from the fractographs.

(a) Region A6 (b) Region A7 (c) Region A8

Figure 12: SEM fractographs from fracture surfaces, Part III.

4 Simulations

The presented theoretical framework is implemented into VUMAT subroutines for ABAQUS/EXPLICIT

where the algorithmic forms can be found in the appendices. Simulations are conducted in both 2D
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Figure 5.12.: SEM fractographs from fracture surfaces, Part III.

5.4. Simulations

The presented theoretical framework is implemented into Vumat subroutines for Abaqus/Explicit
where the algorithmic forms can be found in the appendices. Simulations are conducted in both
2D plane strain and 3D with double precision. A solution of quasi-static problems with a
dynamic-explicit solution procedure generally involves a very large number of time steps. In or-
der to reduce the computational cost, mass scaling is applied with a target time step of 2.5×10−7

over the whole analysis. Based on the statics of all elements the mean stable time increment
estimate without mass scaling is 3 × 10−9 . Accordingly, the mass scaling applied corresponds
to nearly 104. On this rather conservative selection local integration method based on cutting
plane algorithms was also conclusive. The material has a modulus of elasticity, E, of E =210000
MPa and the Poisson’s ratio, ν, is ν = 0.3. The hardening curve is constructed by fitting data
until the necking point and using extrapolation for the the post-neck. The extrapolated flow
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curve is given in Figure 5.13. The anisotropy due to the rolling process is not taken into account.

It is desirable that a chemical analysis and/or quantitative metallography is used in order to
estimate the initial porosity where constituents dominating the ductile fracture mechanism by
acting as damage nucleation sites are taken into account, [138]. The Franklin’s formula, [93],
serves as an estimate for f0 where manganese sulphide inclusions are the critical particles in
fracture:

f0 =
0.054

√
dxdy

dz

[
S (%)− 0.001

Mn (%)

]
, (5.4.1)

where dx, dy, and dz denote average inclusion diameters in the respective directions. S (%) and
Mn (%) represents the weight percentages of sulphide and manganese in the matrix.

plane strain and 3D with double precision. A solution of quasi-static problems with a dynamic-

explicit solution procedure generally involves a very large number of time steps. In order to reduce

the computational cost, mass scaling is applied with a target time step of 2.5e-7 over the whole

analysis. Based on the statics of all elements the mean stable time increment estimate without mass

scaling is 3.0e-9. Accordingly, the mass scaling applied corresponds to nearly 1.0e4. On this rather

conservative selection local integration method based on cutting plane algorithms was also conclusive.

The material has a modulus of elasticity, E, of E =210000 MPa and the Poisson’s ratio, ν, is ν = 0.3.

The hardening curve is constructed by fitting data until the necking point and using extrapolation

for the the post-neck. The extrapolated flow curve is given in Figure 13. The anisotropy due to the

rolling process is not taken into account.

Figure 13: Flow curve for DP1000.

It is desirable that a chemical analysis and/or quantitative metallography is used in order to

estimate the initial porosity where constituents dominating the ductile fracture mechanism by acting

as damage nucleation sites are taken into account, Jackiewicz [2009]. The Franklin’s formula,

Franklin [1969], serves as an estimate for f0 where manganese sulphide inclusions are the critical

particles in fracture:

f0 =
0.054

√
dxdy

dz

(
S (%)− 0.001

Mn (%)

)
, (16)

where dx, dy, and dz denote average inclusion diameters in the respective directions. S (%) and
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Figure 5.13.: Flow curve for DP1000.

Details on the usage of this relation
can be found in [93]. Since this
form relies on the quantitative met-
allography of materials where man-
ganese sulphide inclusions dominate
the fracture, a modification for the
case of advanced high strength steels
(DP, CP, and TRIP) is required im-
plying a combined effect of inclu-
sions and secondary phases on frac-
ture. In DP steels hard marten-
sitic islands have 5 − 20 vol% which
controls the ultimate tensile strength.
Typical compositions of cold-rolled DP
steels involve (wt.%) 0.08-0.15% C, 1.6-
2.2% Mn, 0.4% (Cr+Mo), [213, p.
590]. So this procedure is not fol-
lowed.

In this class of steels the void nucleation depends on the non-metallic inclusions (∼5-30 mi-
crons in diameter) as well as dispersed martensite particles (∼0.5 microns in diameter), see
e.g. [295]. Accordingly, the orders of magnitudes of respective particle sizes differ. The volume
fraction shows an opposing trend where non-metallic inclusions constitute 0.01 − 0.05 vol%,
whereas martensitic islands reach 5 − 20 vol%. Experimental investigations of [251] show that
void nucleation at inclusions, either with particle cracking or inclusion-matrix decohesion, oc-
curs at relatively low strains (∼0.2) due to pre-existing cracks and weakly bonded interfaces.
In comparison, the void nucleation strain is higher (∼0.9) due to a relative coherence of the
ferrite-martensite interface at martensite particles. It is noted that the fracture is controlled by
growth and coalescence of martensitic void nucleation sources which is attributed to the higher
volumetric fraction of martensite compared to non-metallic inclusions.

For the base shear enhanced Gurson parameters reported values in the literature are followed
where in the analysis the effect of variations of certain ones are also investigated. These are
summarized in Table 5.3. The parameters q1, q2, q3 are chosen following [304] and [306]. [233]
and [51] use similar parameters for the Gurson’s damage model for DP600 and DP1000, respec-
tively. fc and fF are selected following [12], [62], [225]. kw is selected as 2 which lies in the
proposed range for structural alloys, 1 < kw < 3, [224]. Selected f0 is also due to [51]. For f0, fc,
fF and kw a parametric study is also followed to investigate their relative effects on localization
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and fracture.

Table 5.3.: Base Gurson’s parameters for DP1000.

q1 = 1/f∗U q2 q3 f0 fN sN εN fc fF kw
1.500 1.000 2.250 0.002 0.020 0.110 0.350 0.150 0.250 2.000

5.4.1. 2D Plane Strain Models

Plane strain state is assumed. The dies and the punch are modeled as rigid curves, whereas
the blank is modeled as a deformable body, as seen in Figure 5.14. In the following, a set
of sensitivity analyses which investigate the effect of process parameters on localization, crack
pattern, and load-displacement curves are summarized.

Table 3: Base Gurson’s parameters for DP1000.

q1 = 1/f ∗U q2 q3 f0 fN sN εN fc fF kw
1.500 1.000 2.250 0.002 0.020 0.110 0.350 0.150 0.250 2.000

4.1 2D Plane Strain Models

Plane strain state is assumed. The dies and the punch are modeled as rigid curves, whereas the

blank is modeled as a deformable body, as seen in Figure 14. In the following, a set of sensitivity

analyses which investigate the effect of process parameters on localization, crack pattern, and load-

displacement curves are summarized.

Figure 14: 2D plane strain model for free bending.

4.1.1 The Effect of Mesh Size

Capturing correct deformation and localization patterns requires fine meshes as noted by Becker &

Needleman [1986], on modeling cup-cone fracture mode in axisymmetric tension, see also Tver-

gaard & Needleman [1984]. In bending, highly inhomogeneous plastic flow localization is observed

at micrometer scales until crack occurrence. In order to capture the size of localization or the phys-

ical crack size, we start by testing three different mesh refinement levels at the bend region which

are 0.04 mm, 0.03 mm and 0.02 mm, see in Figure 15.a, b and c, respectively, for the selection of a

proper mesh size at the bending region. The total number of elements is, as a consequence, 5265,

7017 and 10767, respectively, using CPE4R, i.e. 4-node bilinear plane strain quadrilateral, reduced

integration elements with hourglass control. It is noteworthy to say that once insufficiently refined
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Figure 5.14.: 2D plane strain model for free bending.

5.4.1.1. The Effect of Mesh Size

Capturing correct deformation and localization patterns requires fine meshes as noted by [48],
on modeling cup-cone fracture mode in axisymmetric tension, see also [308]. In bending, highly
inhomogeneous plastic flow localization is observed at micrometer scales until crack occurrence.
In order to capture the size of localization or the physical crack size, the presented studies start
with testing three different mesh refinement levels at the bend region which are 0.04 mm, 0.03
mm and 0.02 mm, see in Figures 5.15.(a), (b) and (c), respectively, for the selection of a proper
mesh size at the bending region. The total number of elements is, as a consequence, 5265, 7017
and 10767, respectively, using CPE4R, i.e. 4-node bilinear plane strain quadrilateral, reduced
integration elements with hourglass control. It is noteworthy to say that once insufficiently
refined meshes are supplied, the physically observed inclined localizations and cracks are not
captured properly. The mesh is also refined in the contact regions in the vicinity of the dies
for a smooth node to surface contact treatment. Otherwise large scatters on the punch force-
displacement diagram can be observed.

Resultant damage distributions prior to crack occurrence are given in Figure 5.16. The mesh
dependence of localization is seen in the plots where the localization bands occur with an orienta-
tion of approximately 45◦ with respect to the principal stress direction. The time of localization,
number of localization bands, and the damage intensities within the bands differ for each mesh.
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meshes are supplied, the physically observed inclined localizations and cracks are not captured prop-

erly. The mesh is also refined in the contact regions in the vicinity of the dies for a smooth node to

surface contact treatment. Otherwise large scatters on the punch force-displacement diagram can be

observed.

(a) lelem=0.04 mm. (b) lelem=0.03 mm. (c) lelem=0.02 mm.

Figure 15: Mesh refinement in the bending region for the 2D model.

Resultant damage distributions prior to crack occurrence are given in Figure 16. The mesh

dependence of localization is seen in the plots where the localization bands occur with an orientation

of approximately 45◦ with respect to the principal stress direction. The time of localization, number

of localization bands, and the damage intensities within the bands differ for each mesh. As noted by

Tvergaard [1987], the results admit a length scale where a strong mesh dependence occurs. For

smaller element sizes narrower localization bands are carried out. Moreover, the localization occurs

earlier. A finite band width is enforced in materials by involving of inherent length scales, such as

grain, inclusion, or void size. A natural length scale which limits the banding is not supplied in

conventional continuum mechanics formulations. In finite element simulations, when not explicitly

involved, the element size acts as a length scale. Accordingly, a general trend in literature is to use

the mesh size as a material parameter and to fix it during the material characterization phase. More

general methods, named nonlocal approaches, involve an explicit definition of the length scale, which

falls beyond the aim of this study.

The cracks are modeled using element deletion technique which serves as a standard procedure

of ABAQUS/EXPLICIT. Accordingly, the reduced integration elements, whose Gauss point’s dam-

age value reaches ff , are excluded from the computational stack. Element deletion technique is

also used in Wisselink & Huetink [2007], Wisselink & Huetink [2008], and Wisselink &

Huetink [2009]. Similar methods are used in Tvergaard [1982a], Tvergaard [1987], and Liev-

ers, Pilkey & Worswick [2003] where a final fracture is created by a progressive stiffness and
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Figure 5.15.: Mesh refinement in the bending region for the 2D model.

As noted by [307], the results admit a length scale where a strong mesh dependence occurs.
For smaller element sizes narrower localization bands are carried out. Moreover, the localiza-
tion occurs earlier. A finite band width is enforced in materials by involving of inherent length
scales, such as grain, inclusion, or void size. A natural length scale which limits the banding is
not supplied in conventional continuum mechanics formulations. In finite element simulations,
when not explicitly involved, the element size acts as a length scale. Accordingly, a general trend
in literature is to use the mesh size as a material parameter and to fix it during the material
characterization phase. More general methods, named nonlocal approaches, involve an explicit
definition of the length scale, which falls beyond the aim of this study.

(a) lelem=0.04 mm. (b) lelem=0.03 mm. (c) lelem=0.02 mm.

Figure 16: The effect of mesh size on damage localization, punch displacement=10.2 mm.

strength degradation, the so-called crack smearing technique. Resultant cracks, which occur with bi-

furcation into one of the developed bands, are given in Figure 17 for identical punch displacements.

The size of the cracks change with the mesh size. For the mesh with 0.04 mm element size the

crack is not developed yet due to an insufficient damage development, whereas for 0.02 mm element

size the crack initiates. For both 0.03 mm and 0.02 mm meshes the cracks change direction after

a certain crack length. Although this is attributed to different micro-mechanical phenomena, as

explained earlier, in the simulations the results can be ascribed to overlapping localization patterns

and macroscopic loading conditions which force the cracks to stay on the symmetry axis.

(a) lelem=0.04 mm. (b) lelem=0.03 mm. (c) lelem=0.02 mm.

Figure 17: The effect of mesh size on fracture pattern, punch displacement=13.0 mm.

The punch force-displacement curves are given in Figure 18. The points of steep decrease at the

load levels are the incipient cracking points. In accordance with the localization analysis the loss of

load carrying capacity is first observed in the model with the finest mesh. Prior to this cracking point
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Figure 5.16.: The effect of mesh size on damage localization, punch displacement=10.2 mm.

The cracks are modeled using element deletion technique which serves as a standard procedure of
Abaqus/Explicit. Accordingly, the reduced integration elements, whose Gauss point’s damage
value reaches ff , are excluded from the computational stack. Element deletion technique is also
used in [330] and [331]. Similar methods are used in [306], [307], and [186] where a final fracture
is created by a progressive stiffness and strength degradation, the so-called crack smearing
technique. Resultant cracks, which occur with bifurcation into one of the developed bands,
are given in Figure 5.17 for identical punch displacements. The size of the cracks change with
the mesh size. For the mesh with 0.04 mm element size the crack is not developed yet due to
an insufficient damage development, whereas for 0.02 mm element size the crack initiates. For
both 0.03 mm and 0.02 mm meshes the cracks change direction after a certain crack length.
Although this is attributed to different micro-mechanical phenomena, as explained earlier, in
the simulations the results can be ascribed to overlapping localization patterns and macroscopic
loading conditions which force the cracks to stay on the symmetry axis.

The punch force-displacement curves are given in Figure 5.18. The points of steep decrease at
the load levels are the incipient cracking points. In accordance with the localization analysis the
loss of load carrying capacity is first observed in the model with the finest mesh. Prior to this
cracking point no remarkable difference is observed in the load displacement diagrams. This
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(a) lelem=0.04 mm. (b) lelem=0.03 mm. (c) lelem=0.02 mm.

Figure 16: The effect of mesh size on damage localization, punch displacement=10.2 mm.

strength degradation, the so-called crack smearing technique. Resultant cracks, which occur with bi-

furcation into one of the developed bands, are given in Figure 17 for identical punch displacements.

The size of the cracks change with the mesh size. For the mesh with 0.04 mm element size the

crack is not developed yet due to an insufficient damage development, whereas for 0.02 mm element

size the crack initiates. For both 0.03 mm and 0.02 mm meshes the cracks change direction after

a certain crack length. Although this is attributed to different micro-mechanical phenomena, as

explained earlier, in the simulations the results can be ascribed to overlapping localization patterns

and macroscopic loading conditions which force the cracks to stay on the symmetry axis.

(a) lelem=0.04 mm. (b) lelem=0.03 mm. (c) lelem=0.02 mm.

Figure 17: The effect of mesh size on fracture pattern, punch displacement=13.0 mm.

The punch force-displacement curves are given in Figure 18. The points of steep decrease at the

load levels are the incipient cracking points. In accordance with the localization analysis the loss of

load carrying capacity is first observed in the model with the finest mesh. Prior to this cracking point
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Figure 5.17.: The effect of mesh size on fracture pattern, punch displacement=13 mm.

may be attributed to the fact that until the fracture occurrence with localization the damage
values reached are relatively small in magnitude and the damage spread only appears as a small
scale phenomenon. Eventually, its distribution throughout the section of interest is limited in
both intensity and extent.

no remarkable difference is observed in the load displacement diagrams. This may be attributed to

the fact that until the fracture occurrence with localization the damage values reached are relatively

small in magnitude and the damage spread only appears as a small scale phenomenon. Eventually,

its distribution throughout the section of interest is limited in both intensity and extent.

Figure 18: The effect of mesh size on force-displacement curves.

The damage over the bend region, which reaches a maximum at the convex surface to create

localization, is formed by three contributions, namely void nucleation, damage growth due to tri-

axiality, and damage growth due to shear. Figure 19 shows the individual distributions of these

components for the analysis with 0.030 mm mesh size at an intermediate analysis step. Since void

nucleation is assumed not to occur under negative hydrostatic stress states it acts only at the ten-

sile portion below the neutral axis. On the convex surface however at this level of deformation all

void nucleation source, which is 0.020, is reached. Coming to damage growth, we see a maximum

growth at the convex surface as anticipated. On the concave surface damage reduction (in classical

terminology this corresponds to void shrinkage) is observed with an absolute maximum value in the

region which is in contact with the punch.

Figure 20 shows that damge growth due to shear is in the same order of magnitude as the damage

growth due to triaxiality at the convex face. This is primarily due to the previously mentioned plane

strain constraint which supplies w ≈ 1. A relatively large triaxiality ratio η ≈ 0.577 creates the

hydrostatic stress-dependent void growth. Although damage growth due to shear occurs at the

concave face and above the neutral axis it does not suffice to overcome damage reduction due to
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Figure 5.18.: The effect of mesh size on force-displacement curves.

The damage over the bend region, which reaches a maximum at the convex surface to create
localization, is formed by three contributions, namely void nucleation, damage growth due to
triaxiality, and damage growth due to shear. Figure 5.19 shows the individual distributions of
these components for the analysis with 0.030 mm mesh size at an intermediate analysis step.
Since void nucleation is assumed not to occur under negative hydrostatic stress states it acts
only at the tensile portion below the neutral axis. On the convex surface however at this level
of deformation all void nucleation source, which is 0.020, is reached. Coming to damage growth,
a maximum growth at the convex surface is observed, as anticipated. On the concave surface
damage reduction (in classical terminology this corresponds to void shrinkage) is observed with
an absolute maximum value in the region which is in contact with the punch.

Figure 5.20 shows that damage growth due to shear is in the same order of magnitude as the
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(a) fn. (b) fg. (c) fg.

Figure 19: Individual contributions of damage components in the bend region, punch displace-
ment=8.0 mm.

a compressive hydrostatic stress state to give f g < 0. Under these conditions, a ductile damage

mechanism with growth of voids is not possible at the concave surface, which is in correlation with

the proposed fracture cut-off triaxiality as η = −1/3, Bao & Wierzbicki [2005], since at the

concave free surface, plane strain compression results in η ≈ −0.577 whereas under the punch this

reduces further due to compressive contact loads.

(a) fgshr. (b) fgshr. (c) fghyd. (d) fghyd.

Figure 20: Individual contributions of damage growth components at the bend region, punch dis-
placement=8.0 mm. As respectively seen in (c) and (d) there is negative damage growth (i.e. damage
reduction) above neutral axis and positive damage growth below neutral axis.

The authors’ experience shows that once the initial porosity is taken as f0 = 0 the compressive

region above the neutral axis experiences no damage evolution, although shear damage growth might

be expected due to the underlying physical mechanisms. This stems from the combined conditions

where 1) the void nucleation requires a positive hydrostatic stress state, 2) already precluded damage

reduction (void shrinkage) with completely eliminated porosity, and 3) the necessity of shear damage

growth for an initial damage, which is seen from its evolutionary equation. Once an initial non-

zero porosity is supplied, the current formulation gives rise to both void shrinkage due to negative

triaxiality and damage growth due to shear. The summation of the damage growth rate may be
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Figure 5.19.: Individual contributions of damage components in the bend region, punch displace-
ment=8 mm.

damage growth due to triaxiality at the convex face. This is primarily due to the previously
mentioned plane strain constraint which supplies w ' 1. A relatively large triaxiality ratio
η ' 0.577 creates the hydrostatic stress-dependent void growth. Although damage growth due
to shear occurs at the concave face and above the neutral axis it does not suffice to overcome
damage reduction due to a compressive hydrostatic stress state to give fg < 0. Under these
conditions, a ductile damage mechanism with growth of voids is not possible at the concave
surface, which is in correlation with the proposed fracture cut-off triaxiality as η = −1/3, [30],
since at the concave free surface, plane strain compression results in η ' −0.577 whereas under
the punch this reduces further due to compressive contact loads.

(a) fn. (b) fg. (c) fg.

Figure 19: Individual contributions of damage components in the bend region, punch displace-
ment=8.0 mm.

a compressive hydrostatic stress state to give f g < 0. Under these conditions, a ductile damage

mechanism with growth of voids is not possible at the concave surface, which is in correlation with

the proposed fracture cut-off triaxiality as η = −1/3, Bao & Wierzbicki [2005], since at the

concave free surface, plane strain compression results in η ≈ −0.577 whereas under the punch this

reduces further due to compressive contact loads.

(a) fgshr. (b) fgshr. (c) fghyd. (d) fghyd.

Figure 20: Individual contributions of damage growth components at the bend region, punch dis-
placement=8.0 mm. As respectively seen in (c) and (d) there is negative damage growth (i.e. damage
reduction) above neutral axis and positive damage growth below neutral axis.

The authors’ experience shows that once the initial porosity is taken as f0 = 0 the compressive

region above the neutral axis experiences no damage evolution, although shear damage growth might

be expected due to the underlying physical mechanisms. This stems from the combined conditions

where 1) the void nucleation requires a positive hydrostatic stress state, 2) already precluded damage

reduction (void shrinkage) with completely eliminated porosity, and 3) the necessity of shear damage

growth for an initial damage, which is seen from its evolutionary equation. Once an initial non-

zero porosity is supplied, the current formulation gives rise to both void shrinkage due to negative

triaxiality and damage growth due to shear. The summation of the damage growth rate may be
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Figure 5.20.: Individual contributions of damage growth components at the bend region, punch
displacement=8 mm. As respectively seen in (c) and (d) there is negative damage growth (i.e.
damage reduction) above neutral axis and positive damage growth below neutral axis.

The authors’ experience shows that once the initial porosity is taken as f0 = 0 the compressive
region above the neutral axis experiences no damage evolution, although shear damage growth
might be expected due to the underlying physical mechanisms. This stems from the combined
conditions where 1) the void nucleation requires a positive hydrostatic stress state, 2) already
precluded damage reduction (void shrinkage) with completely eliminated porosity, and 3) the
necessity of shear damage growth for an initial damage, which is seen from its evolutionary
equation. Once an initial non-zero porosity is supplied, the current formulation gives rise to both
void shrinkage due to negative triaxiality and damage growth due to shear. The summation of
the damage growth rate may be negative, as it is seen in the current problem, depending on the
loading conditions which will be a statement of void shrinkage beyond initial porosity. With an
alternative formulation, [53] proposes the following modified potential

Φ̂p =

[
σeq
σy

]2

+ 2q1f
∗ cosh

(
θ

3

2

q2σm
σy

)
− [1 + q3f

∗2] = 0 , (5.4.2)
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where

θ =

{
1 if fg > 0 or σm ≥ 0 ,
0 if fg = 0 ,

(5.4.3)

which supplies fg ≥ 0 even for negative hydrostatic stresses. This approach, also used by
[51], clearly hinders void shrinkage beyond initial porosity. This, of course, affects the damage
evolution at the concave free surface of the bend and the compressive region above the natural
axis.

5.4.1.2. The Effect of kw

For the following studies, the mesh size is selected to be 0.03 mm due to the correlation in between
experimentally and numerically captured fracture time and size as well as the computational cost.
Figure 5.21 shows the damage distributions and deformation localization patterns for various
kw values. At identical step sizes, loss of adequate softening results in no localization for kw = 0
and kw = 1. In the current simulations a sufficient damage accumulation for localization with
softening is around %10-%15. For kw = 2 and kw = 3 one observes well-developed deformation
bands.

negative, as it is seen in the current problem, depending on the loading conditions which will be a

statement of void shrinkage beyond initial porosity. With an alternative formulation, Besson [2009]

proposes the following modified potential

Φ̂p =

(
σeq
σy

)2

+ 2q1f
∗ cosh

[
θ

3

2

q2σm
σy

]
−
(
1 + q3f

∗2) = 0, (17)

where

θ =





1 if f g > 0 or σm ≥ 0 and

0 if f g = 0.
(18)

which supplies f g ≥ 0 even for negative hydrostatic stresses. This approach, also used by Bettaieb,

Lemoine, Bouaziz, Duchêne & Habraken [2010], clearly hinders void shrinkage beyond initial

porosity. This, of course, affects the damage evolution at the concave free surface of the bend and

the compressive region above the natural axis.

4.1.2 The Effect of kw

For the following studies, the mesh size is selected to be 0.03 mm due to the correlation in between

experimentally and numerically captured fracture time and size as well as the computational cost.

Figure 21 shows the damage distributions and deformation localization patterns for various kw values.

At identical step sizes, loss of adequate softening results in no localization for kw = 0 and kw = 1.

In the current simulations a sufficient damage accumulation for localization with softening is around

%10-%15. For kw = 2 and kw = 3 one observes well-developed deformation bands.

(a) kw=0. (b) kw=1. (c) kw=2. (d) kw=3.

Figure 21: The effect of mesh size on damage localization, punch displacement=10.2 mm.
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Figure 5.21.: The effect of mesh size on damage localization, punch displacement=10.2 mm.

Figure 5.22 gives crack paths for an identical ram stroke. For kw = 0 and kw = 1 no cracks
are developed yet. For kw = 2 and kw = 3 there are crack occurrences when the crack size
depends on kw. This is anticipated since kw controls the damage accumulation till fracture.
Crack kinking is observed in both of the cases as well for which similar comments made for the
mesh size effect apply.

Figure 22 gives crack paths for an identical ram stroke. For kw = 0 and kw = 1 no cracks are

developed yet. For kw = 2 and kw = 3 there are crack occurrences when the crack size depends on

kw. This is anticipated since kw controls the damage accumulation till fracture. Crack kinking is

observed in both of the cases as well for which similar comments made for the mesh size effect apply.

(a) kw=0. (b) kw=1. (c) kw=2. (d) kw=3.

Figure 22: The effect of kw on fracture pattern, punch displacement=13.0 mm.

The punch force-displacement curves are given in Figure 23. As it can be seen the earliest loss

of load carrying capacity is observed for kw = 3, whereas for kw = 0 and kw = 1 no steep decrease

arises since no crack occurrence is captured within the selected loading interval. There is only a

slight difference between the curves with different kw values.

Figure 23: The effect of kw on force-displacement curves.

A comparison of the force-displacement curves for kw = 2 and kw = 3 with experimental data is

given in Figure 24. The simulation results agree qualitatively with the experimentally investigated
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Figure 5.22.: The effect of kw on fracture pattern, punch displacement=13 mm.

The punch force-displacement curves are given in Figure 5.23. As it can be seen the earliest
loss of load carrying capacity is observed for kw = 3, whereas for kw = 0 and kw = 1 no steep
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decrease arises since no crack occurrence is captured within the selected loading interval. There
is only a slight difference between the curves with different kw values.

Figure 22 gives crack paths for an identical ram stroke. For kw = 0 and kw = 1 no cracks are

developed yet. For kw = 2 and kw = 3 there are crack occurrences when the crack size depends on

kw. This is anticipated since kw controls the damage accumulation till fracture. Crack kinking is

observed in both of the cases as well for which similar comments made for the mesh size effect apply.

(a) kw=0. (b) kw=1. (c) kw=2. (d) kw=3.

Figure 22: The effect of kw on fracture pattern, punch displacement=13.0 mm.

The punch force-displacement curves are given in Figure 23. As it can be seen the earliest loss

of load carrying capacity is observed for kw = 3, whereas for kw = 0 and kw = 1 no steep decrease

arises since no crack occurrence is captured within the selected loading interval. There is only a

slight difference between the curves with different kw values.

Figure 23: The effect of kw on force-displacement curves.

A comparison of the force-displacement curves for kw = 2 and kw = 3 with experimental data is

given in Figure 24. The simulation results agree qualitatively with the experimentally investigated
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Figure 5.23.: The effect of kw on force-displacement curves.

A comparison of the force-displacement curves for kw = 2 and kw = 3 with experimental data
is given in Figure 5.24. The simulation results agree qualitatively with the experimentally
investigated ones for kw = 2. The unloading portions in the plane strain analysis give a steeper
drop compared to the experimental results in which the overall section is not cracked, but the
crack gradually propagates from the central plane strain regions to the edges. Further comments
on this issue are included in the 3D model simulations section.

ones for kw = 2. The unloading portions in the plane strain analysis give a steeper drop compared

to the experimental results in which the overall section is not cracked, but the crack gradually

propagates from the central plane strain regions to the edges. We further comment on this issue in

the 3D model simulations section.

Figure 24: Comparison of experimental and numerical (2D plane strain) force displacement curves.

4.1.3 The Effects of f0, fc, and ff

A set of analyses is run for different values of f0, fc, and ff . The results are summarized in Figure 25.

In correlation with the findings of Lievers, Pilkey & Worswick [2003] inclined crack patterns

are only considered when the incipient crack is accompanied by a localization band. As seen in

Figure 25.c and d, once the critical limit for coalescence and final fracture is kept too low, the crack

emanates at the center and propagates orthogonal to the maximum principal stress direction as it

is in the case of tensile stress controlled cleavage-type brittle fracture. However, in the current case

plastic flow is the driving mechanism together with tensile stress, although the fracture occurs at

relatively smaller fracture strains. Figure 25.a, b, e and f shows the effect of initial void volume

fraction on the final fracture patterns for the same punch displacement where fc and ff are kept

constant. As seen large f0 gives account for an accelerated damage development at successive loading

stages which finally results in earlier fracture. Additionally, it can be seen that in general the crack

experiences at least one kink and changes direction.
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Figure 5.24.: Comparison of experimental and numerical (2D plane strain) force-displacement
curves.

5.4.1.3. The Effects of f0, fc, and ff

A set of analyses is run for different values of f0, fc, and ff . The results are summarized in
Figure 5.25. In correlation with the findings of [186] inclined crack patterns are only considered
when the incipient crack is accompanied by a localization band. As seen in Figure 5.25.(c) and
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(d), once the critical limit for coalescence and final fracture is kept too low, the crack emanates
at the center and propagates orthogonal to the maximum principal stress direction as it is in
the case of tensile stress controlled cleavage-type brittle fracture. However, in the current case
plastic flow is the driving mechanism together with tensile stress, although the fracture occurs
at relatively smaller fracture strains. Figures 5.25.(a), (b), (e) and (f) show the effect of initial
void volume fraction on the final fracture patterns for the same punch displacement where fc
and ff are kept constant. As seen large f0 gives account for an accelerated damage development
at successive loading stages which finally results in earlier fracture. Additionally, it can be seen
that in general the crack experiences at least one kink and changes direction.

(a) f0=0, fc=0.08, ff=0.15. (b) f0=0.01, fc=0.15, ff=0.25. (c) f0=0.002, fc=0.01, ff=0.02.

(d) f0=0.002, fc=0.04, ff=0.05. (e) f0=0.02, fc=0.15, ff=0.25. (f) f0=0.05, fc=0.15, ff=0.25.

Figure 25: The effect of process parameters on final fracture patterns, punch displacement=11.0
mm..

4.1.4 The Effect of Nielsen and Tvergaard’s Modification

Plane strain state dominates the current bending problem for the selected width-to-thickness ratio.

As mentioned before, under these conditions the shear damage effect is fully involved since w ≈ 1,

although triaxiality, η ≈ 0.577, is not low. With the motivation that the original Gurson’s damage

model works sufficiently well for moderate to high stress triaxialities Nielsen & Tvergaard [2010]

introduce an additional triaxiality-dependent scaling parameter for the shear modification which is

given in Equation 11. In this part of the study we present the effect of this correction, selecting the

triaxiality correction interval as (η1, η2) = (0.2, 0.7) which is one of the proposed intervals in Nielsen

& Tvergaard [2010]. As aforementioned for the other proposed interval, i.e. (η1, η2) = (0, 0.5),

shear modification will be completely suppressed for the current problem.

Figure 26 represents the extent of modification for the bending problem. As an inherent property

the region above the neutral axis experiences negative triaxialities in bending, i.e. η < 0. This region

is not effected by shear correction, which can be seen in Figure 26.c where the correction factor is

χ (η) = 1. Coming to the tensile zone, although for Nahshon and Hutchinson’s original form, w ≈ 1

dominates the section, depending on the gradual increase of triaxiality towards the convex surface

where it has a value of η ≈ 0.577 due to plane strain tension conditions w gradually drops down to

w ≈ 0.244., its minimum value occurring at the free surface.
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Figure 5.25.: The effect of process parameters on final fracture patterns, punch displacement=11
mm.

5.4.1.4. The Effect of Nielsen and Tvergaard’s Modification

Plane strain state dominates the current bending problem for the selected width-to-thickness
ratio. As mentioned before, under these conditions the shear damage effect is fully involved
since w ' 1, although triaxiality, η ' 0.577, is not low. With the motivation that the original
Gurson’s damage model works sufficiently well for moderate to high stress triaxialities [233] in-
troduce an additional triaxiality-dependent scaling parameter for the shear modification which
is given in Equation (5.2.11). In this part of the study, the effect of this correction is presented,
selecting the triaxiality correction interval as (η1, η2) = (0.2, 0.7) which is one of the proposed
intervals in [233]. As aforementioned for the other proposed interval, i.e. (η1, η2) = (0, 0.5),
shear modification will be completely suppressed for the current problem.

Figure 5.26 represents the extent of modification for the bending problem. As an inherent
property the region above the neutral axis experiences negative triaxialities in bending, i.e.
η < 0. This region is not effected by shear correction, which can be seen in Figure 5.26.(c)
where the correction factor is χ (η) = 1. Coming to the tensile zone, although for Nahshon and
Hutchinson’s original form, w ' 1 dominates the section, depending on the gradual increase
of triaxiality towards the convex surface where it has a value of η ' 0.577 due to plane strain
tension conditions w gradually drops down to w ' 0.244., its minimum value occurring at the
free surface.
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(a) w for Nahshon and Hutchin-
son.

(b) w for Nielsen and
Tvergaard’s correction with
(η1, η2) = (0.2, 0.7).

(c) Correction factor, χ (η).

Figure 26: Effect of Nielsen and Tvergaard’s modification on w, punch displacement=10.0 mm.

In order to support the picture given in the previous paragraph, Figure 27 shows the evolution

of triaxiality over the section in the bend zone at different time steps. The triaxiality distribution

over the section is close to being axi-symmetric at the initial deformation levels, whereas with the

extent of deformation it involves waviness. It should be noted that the process is not a pure bending

process. Above the neutral axis, negative hydrostatic stress develops which suppresses the correction

effect, as seen in Figure 26.

(a) Punch displacement=3.0
mm.

(b) Punch displacement=6.0
mm.

(c) Punch displacement=8.0
mm.

Figure 27: The positive portion of the triaxiality distribution over the section at the bending zone.

This modification has crucial effects on the localization behavior. Since the intensity of shear-

driven damage growth drops down to a quarter of its initial value, localization does not occur in the

strain range of interest. Eventually, since a developed deformation band cannot be handled, using

Nielsen and Tvergaard’s correction together with the selected parameter set, one cannot observe

crack occurrence. These results are summarized in Figure 28.
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Figure 5.26.: Effect of Nielsen and Tvergaard’s modification on w, punch displacement=10 mm.

In order to support the picture given in the previous paragraph, Figure 5.27 shows the evolution
of triaxiality over the section in the bend zone at different time steps. The triaxiality distribution
over the section is close to being axi-symmetric at the initial deformation levels, whereas with
the extent of deformation it involves waviness. It should be noted that the process is not a pure
bending process. Above the neutral axis, negative hydrostatic stress develops which suppresses
the correction effect, as seen in Figure 5.26.

(a) w for Nahshon and Hutchin-
son.

(b) w for Nielsen and
Tvergaard’s correction with
(η1, η2) = (0.2, 0.7).

(c) Correction factor, χ (η).

Figure 26: Effect of Nielsen and Tvergaard’s modification on w, punch displacement=10.0 mm.

In order to support the picture given in the previous paragraph, Figure 27 shows the evolution

of triaxiality over the section in the bend zone at different time steps. The triaxiality distribution

over the section is close to being axi-symmetric at the initial deformation levels, whereas with the

extent of deformation it involves waviness. It should be noted that the process is not a pure bending

process. Above the neutral axis, negative hydrostatic stress develops which suppresses the correction

effect, as seen in Figure 26.

(a) Punch displacement=3.0
mm.

(b) Punch displacement=6.0
mm.

(c) Punch displacement=8.0
mm.

Figure 27: The positive portion of the triaxiality distribution over the section at the bending zone.

This modification has crucial effects on the localization behavior. Since the intensity of shear-

driven damage growth drops down to a quarter of its initial value, localization does not occur in the

strain range of interest. Eventually, since a developed deformation band cannot be handled, using

Nielsen and Tvergaard’s correction together with the selected parameter set, one cannot observe

crack occurrence. These results are summarized in Figure 28.
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Figure 5.27.: The positive portion of the triaxiality distribution over the section at the bending
zone.

This modification has crucial effects on the localization behavior. Since the intensity of shear-
driven damage growth drops down to a quarter of its initial value, localization does not occur in
the strain range of interest. Eventually, since a developed deformation band cannot be handled,
using Nielsen and Tvergaard’s correction together with the selected parameter set, one cannot
observe crack occurrence. These results are summarized in Figure 5.28.

5.4.2. 3D Model

The dies and the punch are modeled as rigid surfaces, whereas the blank is modeled as a
deformable body. The dies and punch radius is 1 mm. The sheet has a length of 100 mm, a
width of 50 mm, and a thickness of 1.55 mm. For a reduction in computation time, half of
the sheet is modeled exploiting one symmetry plane. In Figure 5.29 free surface of the cross
section belongs to the symmetry plane, which is also shown in Figure 5.31. Mesh selection is
done following the outputs of the 2D analysis. Accordingly, a 0.030 mm element size at the
section bending zone is selected where the element has a relatively large aspect ratio throughout
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(a) Deformed mesh. (b) Total damage, f .

Figure 28: Effect of Nielsen and Tvergaard’s approach on damage accumulations, punch displace-
ment=8.0 mm, a) Deformed mesh, b) Total damage, f .

4.2 3D Model

The dies and the punch are modeled as rigid surfaces, whereas the blank is modeled as a deformable

body. The dies and punch radius is 1 mm. The sheet has a length of 100 mm, a width of 50 mm, and

a thickness of 1.55 mm. For a reduction in computation time, half of the sheet is modeled exploiting

one symmetry plane. In Figure 29 free surface of the cross section belongs to the symmetry plane,

which is also shown in Figure 31. Mesh selection is done following the outputs of the 2D analysis.

Accordingly, a 0.030 mm element size at the section bending zone is selected where the element

has a relatively large aspect ratio throughout the width for computational reasons. In the die

contact regions the mesh is relatively coarse compared to the 2D analysis in order to reduce time for

computations. For the blank 108000 C3D8R 8-node linear brick elements with reduced integration

and hourglass control are used.

4.2.1 Simulation Results

Figure 30 gives damage accumulation and consequent localization bands prior to crack occurrence.

In accordance with the ASM Handbook remarks and Figure 4, strong plane strain constraint forces

incipient localization at the symmetry plane. At the edges a plane strain constraint is no longer

valid and the stress mode changes to a plane stress one at the surfaces and a uniaxial one at the

vertices where the η and w values reduce compared to the central portions. A gradual increase in the

developed damage from the edges to the interior is seen which reaches an approximately steady state

after nearly three to four thickness distance from the edges. Besides, damage distribution covers a
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Figure 5.28.: Effect of Nielsen and Tvergaard’s approach on damage accumulations, punch
displacement=8 mm, (a) Deformed mesh, (b) Total damage, f .

the width for computational reasons. In the die contact regions the mesh is relatively coarse
compared to the 2D analysis in order to reduce time for computations. For the blank 108000
C3D8R 8-node linear brick elements with reduced integration and hourglass control are used.

5.4.2.1. Simulation Results

Figure 5.30 gives damage accumulation and consequent localization bands prior to crack oc-
currence. In accordance with the ASM Handbook remarks and Figure 5.4, strong plane strain
constraint forces incipient localization at the symmetry plane. At the edges a plane strain con-
straint is no longer valid and the stress mode changes to a plane stress one at the surfaces and a
uniaxial one at the vertices where the η and w values reduce compared to the central portions. A
gradual increase in the developed damage from the edges to the interior is seen which reaches an
approximately steady state after nearly three to four thickness distance from the edges. Besides,
damage distribution covers a wider area at the symmetry plane as compared to the relatively
narrow distribution at the edges. Accordingly, deformation bands at the symmetry plane dif-
fuses approaching to the edges for the same loading step. An anticlastic deformation pattern is
also observed due to fibers under compression and tension at the opposing sides of the neutral
axis.

The final fracture pattern is given in Figure 5.31. Following the localization, an inclined crack
having an orientation of approx 45◦ with respect to the tensile stress direction starts from the
central line and propagates towards the edges. The crack direction change is clearly seen which
occurs approximately at the same distance as the plane strain analysis results. The reduction
of band sizes is just a consequence of this mechanism. Clearly, the crack alternation cannot
be modeled in the current case. However, once an inhomogeneously distributed initial porosity
is implemented, such path alternations can be anticipated due to local heterogeneity effects.
Besides the effects of random porosity distribution, those of width to thickness ratio of the sheet
and the strain history effects on the edge fractures are of specific importance within the reach
of 3D models in bending.

As seen in Figure 5.32, the load-displacement curves do not follow a sharp decrease due to
gradual cracking towards the bending axis and a redistribution of load carrying capacity of the
sheet. As noted before, cracks in the bent region emanate at the center and propagate to the
sides. Thus, unlike plane strain simulations, the load carrying capacity progressively drops down.
On the contrary, in plane strain simulations the section’s load carrying capacity reduces with the
occurrence of the first crack where the plane of interest represents the through-thickness plane.
Accordingly, the plane strain analysis computes a steep drop of the punch force-displacement
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Figure 29: 3D model for free bending. Enlarged section belongs to the plane of symmetry.

wider area at the symmetry plane as compared to the relatively narrow distribution at the edges.

Accordingly, deformation bands at the symmetry plane diffuses approaching to the edges for the same

loading step. An anticlastic deformation pattern is also observed due to fibers under compression

and tension at the opposing sides of the neutral axis.

The final fracture pattern is given in Figure 31. Following the localization, an inclined crack

having an orientation of approx 45◦ with respect to the tensile stress direction starts from the central

line and propagates towards the edges. The crack direction change is clearly seen which occurs

approximately at the same distance as the plane strain analysis results. The reduction of band sizes

is just a consequence of this mechanism. Clearly, the crack alternation cannot be modeled in the

current case. However, once an inhomogeneously distributed initial porosity is implemented, such

path alternations can be anticipated due to local heterogeneity effects. Besides the effects of random
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Figure 5.29.: 3D model for free bending. Enlarged section belongs to the plane of symmetry.

diagram. Another remark can be made on the scatters at the post-peak portion of the load-
displacement curve. Unlike in the 2D analysis, these scatters are larger due to the relatively
coarser mesh resolution in the contact region.

5.5. Conclusion and Outlook

A detailed experimental numerical investigation of fracturing of DP1000 class advanced high
strength steel under bending conditions is presented. Optical microscopy applied to the bend
apex and cracked section and scanning electron microscopy applied to fracture surfaces show
that the incipient fracture is mainly caused by cavitation and void shearing motivated strain
localization. This ductile fracture mode is of a blended Mode I Mode II type. Characteristic
steps such as nucleation and growth of undulations are recorded. Observations at the bend apex
and various bending sections reveal that the cracks tends to alternate patterns where a shift
from one localization band to another one is due. These are attributed to the local material
inhomogeneities as well as general equilibrium requirements.

Based on these experimental evidences in the numerical analyses, Gurson’s porous plasticity
model is selected with recent enhancements to encounter shear-dominated failure modes. Simu-
lations are conducted in both 2D plane strain and 3D. It is shown that 2D plane strain assump-
tion sufficiently reflects the 3D response thanks to the sufficiently large width to thickness ratio.
A detailed parameter sensitivity analysis is conducted where the effects of mesh size, shear dam-
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Figure 30: Damage accumulation and localization at the plane of symmetry and the apex, punch
displacement=12.2 mm.

porosity distribution, those of width to thickness ratio of the sheet and the strain history effects on

the edge fractures are of specific importance within the reach of 3D models in bending.

As seen in Figure 32, the load-displacement curves do not follow a sharp decrease due to gradual

cracking towards the bending axis and a redistribution of load carrying capacity of the sheet. As

noted before, cracks in the bent region emanate at the center and propagate to the sides. Thus, unlike

plane strain simulations, the load carrying capacity progressively drops down. On the contrary, in

plane strain simulations the section’s load carrying capacity reduces with the occurrence of the first

crack where the plane of interest represents the through-thickness plane. Accordingly, the plane

strain analysis computes a steep drop of the punch force-displacement diagram. Another remark can

be made on the scatters at the post-peak portion of the load-displacement curve. Unlike in the 2D

analysis, these scatters are larger due to the relatively coarser mesh resolution in the contact region.

5 Conclusion and Outlook

A detailed experimental numerical investigation of fracturing of DP1000 class advanced high strength

steel under bending conditions is presented. Optical microscopy applied to the bend apex and cracked

section and scanning electron microscopy applied to fracture surfaces show that the incipient fracture
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Figure 5.30.: Damage accumulation and localization at the plane of symmetry and the apex,
punch displacement=12.2 mm.

(a) Punch displacement=13.0 mm. (b) Punch displacement=13.6 mm.

Figure 31: Crack initiation and propagation from the central plane at the apex in 3D simulations.
Top figures show the apex of the bend and bottom figures show the crack formation at the plane of
symmetry.

is mainly caused by cavitation and void shearing motivated strain localization. This ductile fracture

mode is of a blended Mode I Mode II type. Characteristic steps such as nucleation and growth

of undulations are recorded. Observations at the bend apex and various bending sections reveal

that the cracks tends to alternate patterns where a shift from one localization band to another one

is due. These are attributed to the local material inhomogeneities as well as general equilibrium

requirements.

Based on these experimental evidences in the numerical analyses, Gurson’s porous plasticity

model is selected with recent enhancements to encounter shear-dominated failure modes. Simulations

are conducted in both 2D plane strain and 3D. It is shown that 2D plane strain assumption sufficiently

reflects the 3D response thanks to the sufficiently large width to thickness ratio. A detailed parameter

sensitivity analysis is conducted where the effects of mesh size, shear damage parameter, initial,

critical and fracture porosities and finally the Nielsen and Tvergaard’s modification on the localization

and fracture patters are investigated. It is shown that the size of the localization band is controlled

by the selected mesh size which acts as an additional material parameter due to softening material

response. Since the regularization of this inherent mesh size dependence is beyond the aim of this

study, based on the observed localization and fracture sizes, a computationally reasonable mesh

size is selected for the further sensitivity analysis. It is concluded that different variants of shear
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Figure 5.31.: Crack initiation and propagation from the central plane at the apex in 3D simula-
tions. Top figures show the apex of the bend and bottom figures show the crack formation at the
plane of symmetry.

age parameter, initial, critical and fracture porosities and finally the Nielsen and Tvergaard’s
modification on the localization and fracture patters are investigated. It is shown that the size of
the localization band is controlled by the selected mesh size which acts as an additional material
parameter due to softening material response. Since the regularization of this inherent mesh
size dependence is beyond the aim of this study, based on the observed localization and fracture
sizes, a computationally reasonable mesh size is selected for the further sensitivity analysis. It is
concluded that different variants of shear modification of Gurson’s porous plasticity has direct
consequences on the damage accumulation and localization deformations. This is due to the
plane strain constraint inherent to the problem which indeed includes moderate triaxiality ac-
cumulation, which is around 0.577. Coming to the effect of initial porosity, critical and fracture
damage values it is shown that relatively small critical damage and fracture damage parame-
ters supply cleavage like vertical fracture patterns due to insufficient damage accumulation to
localization emanation.
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Figure 32: Comparison of experimental and numerical (3D) load-displacement curves.

modification of Gurson’s porous plasticity has direct consequences on the damage accumulation and

localization deformations. This is due to the plane strain constraint inherent to the problem which

indeed includes moderate triaxiality accumulation, which is around 0.577. Coming to the effect of

initial porosity, critical and fracture damage values it is shown that relatively small critical damage

and fracture damage parameters supply cleavage like vertical fracture patterns due to insufficient

damage accumulation to localization emanation.
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Figure 5.32.: Comparison of experimental and numerical (3D) load-displacement curves.

5.A. Hypoelastic-Plasticity

To set the stage, particle positions at the reference (undeformed), Ω0 , and current (deformed)
configurations, Ω, respectively are denoted by X and x := ϕ(X,t) and F :=∂Xx define the
deformation gradient of the nonlinear map ϕ : Ω0 × R → R3. Any infinitesimal material
vector dX at the reference configuration is transformed to its final setting dx at the current
configuration via

dx := F · dX . (5.A.1)

Small strain plasticity is based on the additivity of the total strain tensor into elastic and
plastic portions where the computation of the stress tensor utilizes a conventional elastic stress
definition. In the finite strain regimes, however, the following rate additive form1 is postulated,

d = de + dp . (5.A.2)

This forms the basis of hypoelastic-plastic formulations which rely on certain objective rates of
the selected stress measures. Abaqus/Vumat convention is based on a corotational formulation
where corotated rate of deformation tensor d̂ is defined as

d̂ = R> · [de + dp] ·R = d̂e + d̂p , (5.A.3)

with d̂e = R> · de · R and d̂p = R> · dp · R. R denotes the rotation tensor, carried out by
the polar decomposition of the deformation gradient, F := R · U , with U representing the
symmetric right stretch tensor. Similarly, a pull back operation on σ with the rotation tensor
gives the corotated Cauchy stress tensor, σ̂,

σ̂ = R> · σ ·R , (5.A.4)

whose material time derivative, ˙̂σ, can be objectively integrated. Together with the definition
of hardening one has

˙̂σ = Ce : d̂e ,
q(α) = Kα+ [Y∞ − Y 0][1− exp(−δα)] ,

}
(5.A.5)

1Further details of this split were represented in Chapter 1.
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where Ce denotes the elastic constitutive tensor with

Ce = K [1⊗ 1] + 2µIdev , (5.A.6)

in which K denotes the bulk modulus and µ the shear modulus. Idev = Isym − 1/3 [1⊗ 1] is
the deviatoric part of the fourth-order symmetric identity tensor, Isym = 1/2 [1⊗1 + 1⊗1].

5.B. Numerical Implementation of GTN Model

Letting Φ̂p represent the yield function defined on corotational stress space with

Φ̂p = Φ̂p(dev(σ̂), tr(σ̂), f, ep) ,

complete set of equations to be solved can be collected as follows,

d̂ = d̂e + d̂p 6= 0 ,
˙̂σ = Ce : d̂e ,

d̂p = γ̇∂σ̂Φ̂p ,

ėp = γ̇η̂ : ∂σ̂Φ̂p ,

ḟ = γ̇[AN η̂ + B̂G] : ∂σ̂Φ̂p ,





(5.B.1)

where η̂ := σ̂/[(1− f)σy]. The rotated second-order operator, B̂G, is defined as

B̂G = B̂G(f,dev[σ̂]) = [1− f ]1 + kwf
w (dev (σ̂))

σeq
dev(σ̂) . (5.B.2)

The algorithms utilized in this study fall in the class of cutting plane algorithms. The methods
rely on the elastic predictor plastic corrector type operator split. It is assumed that for a typical
time step ∆t = tn+1 − tn the solution at tn is known as {σ̂n, epn, fn} and the solution at tn+1

is sought for as {σ̂n+1, e
p
n+1, fn+1}. Following abbreviations will be utilized in the formulations

for brevity reasons,
r̂ := ∂σ̂Φ̂p, ξ := ∂epΦ̂

p, ς := ∂f Φ̂p . (5.B.3)

Overall equations will be solved with the operator-split methodology given in Table 5.4.

Table 5.4.: Elastic predictor-plastic corrector type operator split.

Total Elastic predictor Plastic corrector



d̂ = d̂e + d̂p 6= 0 ,
˙̂σ = Ce : d̂e ,

d̂p 6= 0 ,
ėp 6= 0 ,

ḟ 6= 0 .





=





d̂ = d̂e + d̂p 6= 0,
˙̂σ = Ce : d̂ ,

d̂p = 0 ,
ėp = 0 ,

ḟ = 0 .





+





d̂ = d̂e + d̂p = 0 ,
˙̂σ = −Ce : d̂p ,

d̂p = γ̇∂σ̂Φ̂p ,

ėp = γ̇η̂ : ∂σ̂Φ̂p ,

ḟ = γ̇(AN η̂ + B̂G) : ∂σ̂Φ̂p .





.

Elastic Prediction. The elastic prediction for the corotated Cauchy stress σ̂trial
n+1 reads

σ̂trial
n+1 = σ̂n + ∆t ˙̂σ

trial

n+1 , (5.B.4)

which relies on integration at the corotational configuration using

˙̂σ
trial

n+1 = λ tr(d̂e,trial
n+1 )1 + 2µ d̂e,trial

n+1 , (5.B.5)
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with
d̂e,trial
n+1 = d̂n+1 , ep,trial

n+1 = epn , f trial
n+1 = fn . (5.B.6)

Within the time step the elastic or plastic character of the status is checked by inserting the
trial stress into the yield function,

Φ̂p,trial
n+1 = Φ̂p(dev(σ̂trial

n+1), tr(σ̂trial
n+1), f trial

n+1 , e
p,trial
n+1 ),

{
≤ 0 =⇒ elastic ,
> 0 =⇒ plastic/damage .

(5.B.7)

Once Φ̂p,trial
n+1 ≤ 0 is satisfied, an elastic state at tn+1 is defined and the trial values come out to

be admissible which do not require any correction. Otherwise, a plastic correction state, named
return mapping, is realized to fulfill the yield condition.

Plastic Correction - Cutting Plane Algorithms. For the plastic correction with d̂ = 0,
one has ˙̂σ = −γ̇ Ce : ∂σ̂Φ̂p. This supplies

∂γ̇ [ ˙̂σ] = −Ce : ∂σ̂Φ̂p ,

∂γ̇ [ėp] = η̂ : ∂σ̂Φ̂p ,

∂γ̇ [ḟ ] = [AN η̂ + B̂G] : ∂σ̂Φ̂p .





(5.B.8)

The algorithm utilized in the following falls in the class of cutting plane algorithms, [239],
taking advantage of the great generality and implementation convenience proposed. Linearizing
the yield function around the current values of variables, calling

Φ̂
p〈i+1〉
n+1 = Φ̂p(dev(σ̂

〈i+1〉
n+1 ), tr(σ̂

〈i+1〉
n+1 ), f

〈i+1〉
n+1 , e

p,〈i+1〉
n+1 ) ,

one has,

Φ̂
p〈i+1〉
n+1 ' Φ̂

p〈i〉
n+1 + r̂

〈i〉
n+1 : [σ̂

〈i+1〉
n+1 − σ̂

〈i〉
n+1] + ξ

〈i〉
n+1[e

p〈i+1〉
n+1 − ep〈i〉n+1] + ς

〈i〉
n+1[f

〈i+1〉
n+1 − f

〈i〉
n+1] , (5.B.9)

The increments read,

σ̂
〈i+1〉
n+1 − σ̂

〈i〉
n+1 = −δγ〈i〉n+1Ce : r̂

〈i〉
n+1 ,

e
p〈i+1〉
n+1 − ep〈i〉n+1 = δγ

〈i〉
n+1η̂

〈i〉
n+1 : r̂

〈i〉
n+1 ,

f
〈i+1〉
n+1 − f

〈i〉
n+1 = δγ

〈i〉
n+1[A

〈i〉
N,n+1η̂

〈i〉
n+1 + B̂

〈i〉
G,n+1] : r̂

〈i〉
n+1 .





(5.B.10)

The incremental plasticity parameter δγ
〈i〉
n+1 is computed using

δγ
〈i〉
n+1 =

Φ̂
p〈i〉
n+1

r̂
〈i〉
n+1 : Ce : r̂

〈i〉
n+1 − ξ

〈i〉
n+1η̂

〈i〉
n+1 : r̂

〈i〉
n+1 − ς

〈i〉
n+1[A

〈i〉
N,n+1η̂

〈i〉
n+1 + B̂

〈i〉
G,n+1] : r̂

〈i〉
n+1

. (5.B.11)

This is used in the computation of the new variable updates and the total plasticity parameter

∆γ at the step end through iterations ∆γ
〈i+1〉
n+1 = ∆γ

〈i〉
n+1 + δγ

〈i〉
n+1 with ∆γ

〈0〉
n+1 = 0. For the

update of damage components ∆f
〈i〉
n+1 = ∆f

〈i〉
n,n+1 + ∆f

〈i〉
g,n+1 one has

∆f
〈i〉
n,n+1 = δγ

〈i〉
n+1A

〈i〉
N,n+1η̂

〈i〉
n+1 : r̂

〈i〉
n+1 ,

∆f
〈i〉
g,n+1 = δγ

〈i〉
n+1B̂

〈i〉
G,n+1 : r̂

〈i〉
n+1 .

}
(5.B.12)

Iterations are continued until Φ̂p(σ̂
〈i+1〉
n+1 , e

p〈i+1〉
n+1 , f

〈i+1〉
n+1 ) ≤TOL. Finally, the converged corota-

tional stress tensor σ̂n+1 should be rotated back to the current configuration using σn+1 =
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Rn+1 · σ̂n+1 ·R>n+1
2. As remarked in [239], above algorithm merely requires essential response

function derivations. That is, unlike closest point projection type algorithms, this method does
not require a derivation of the Hessian of the yield function. However, as noted in [273, p. 252],
unlike closest point projection algorithms significant errors may be introduced for large time
steps. Thus, the method should better be used only with explicit transient simulations, where
the Courant stability condition severely limits the allowable time steps.

2In Vumat implementation, it should be noted that pre- and post- corotational transformations of tensors are
automatically handled by Abaqus.



6. Ductile Fracture under Large-scale Yielding
Conditions: Experimental and Computational
Study of the Small Punch

In this chapter, a unified experimental-numerical study on ductile fracture initiation and prop-
agation during small punch testing is presented. Tests are carried out at room temperature
with unnotched disks of different thicknesses where large-scale yielding prevails. For thinner
specimens fracture occurs with severe necking under membrane tension whereas for thicker ones
a through thickness shearing mode prevails which changes the crack orientation relative to the
loading direction. Numerical studies involve finite element simulations using a shear modified
Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formula-
tion. The predicted punch load-displacement curves and deformed profiles are in good agreement
with the experimental results.

6.1. Introduction

Small punch testing is used at high homologous temperatures for investigation of creep prop-
erties such as rupture time and minimum creep rate or at low homologous temperatures for
investigation of fracture properties such as yield stress, ultimate stress or fracture toughness.
The test requires smaller specimen sizes as compared to standard mechanical tests, hence it
allows investigations of regions with gradients properly, such as heat affected zones [107, 108].
Due to its small size the test is almost non-destructive. Thus it eliminates the need for repair-
ing the component after sample removal, which is another advantage of the small punch (SP)
test compared to the standard tests. During a small punch test the sample deforms by differ-
ent deformation mechanisms initially by elastic and plastic bending and followed by membrane
stretching. Hence, a rather complex multiaxial stress state, evolving with puncher displace-
ment, occurs inside the sample. The sample thickness closely affects the occurrence of these
deformation modes. If the thickness is increased then shearing mode becomes more dominant
as compared to membrane stretching. In a recent work [281], the authors applied GTN/RKR
(Ritchie-Knott-Rice) approach to plain and notched SP disks for a wide temperature range.
The current study aims at a detailed investigation of deformation mechanisms including crack
initiation and propagation at room temperature small punch test of P91 steels exploiting the
effect of disk thickness. To this end, the problem is studied by experimental and numerical
analyses in order to:

� further exploit multiaxial SP testing for numerical model validation,

� consolidate the parameter identification through application of the model to a wide range
of disk thicknesses,

107
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� elucidate the effects of shear and initial porosity on damage progression and failure,

� derive robust predictions for the yield stress (YS) and ultimate tensile stress (UTS) for
future applications.

On the experimental side small punch tests are carried out using disks of 8 mm diameter and
varying thicknesses from 0.2 to 1 mm up to complete fracture. At all thicknesses, due to lack of
notch large scale yielding conditions prevail (at least before intense localization with voidage)
and the observed consequent fracture mode is ductile. For smaller thicknesses the fracture is led
by diffuse necking followed by an intense localization throughout the section. For larger thick-
nesses on the other hand an initial diffuse necking pattern is not observed since shear deformation
prevails rather than membrane stretching. Unlike a simple tension test where the cracks start
inside the specimen, the crack initiates from the bottom surface at a distance where thinning
takes place. From the recorded force displacement curves it is seen that with increasing thick-
ness the fracture occurs at larger punch displacements. Scanning electron microscope (SEM)
studies of the fracture surfaces show signs of a mixed mode I (normal) mode II (shear) fracture
with relatively flat dimple walls elongated along the fracture surface. Fracture is primarily due
to voidage nucleated at M23C6 carbides and/or MX precipitates coalesced under severe shearing.

On the numerical side, finite element simulations are carried out for the given thickness range.
To this end a shear modified GTN model with strain hardening and strain rate hardening is
implemented to model the ductile fracture based on void nucleation, growth and coalescence.
The origin of the model goes back to Gurson [110] and later modifications were introduced
by Tvergaard and Needleman to better account for cavity growth [304, 306, 308]. More re-
cently, a shear modification has been proposed in [224] to accommodate softening by inter-void
linking under low stress triaxiality conditions which is not accounted for in the original formu-
lation. Pathological mesh sensitivity pertaining to softening is remedied by an integral-type
nonlocal formulation applied to each additive void volume fraction rate component similar to
[229]. This formulation requires a characteristic length hence allowing incorporating the size
effect in the model. This model is implemented as a Vumat user defined material subrou-
tine for Abaqus/Explicit. Prior to applications to the small punch test, the implementation
is validated using single element tests under dilatation and simple shear conditions for which
analytical solutions exist. The effectiveness of the implemented delocalization scheme is also
demonstrated by plane strain tensile tests with different mesh sizes. These studies are followed
by small punch simulations with 2D axisymmetric models. Model parameters for P91 steel in-
cluding the associated length scale are identified using quantitative metallurgy as well as inverse
methods relying on experimentally determined force-displacement curves. A good agreement
of not only the force-displacement curves but also the deformed profiles of the failed samples
in between the numerically and experimentally determined results was obtained. A parameter
sensitivity analysis is also conducted where the influence of shear damage parameter kw and the
initial porosity f0 are investigated. Since the gradient of solution dependent fields are relatively
low during the tests in these investigations, the effect of nonlocal regularisation is not observed
until the onset of localization. It is believed that the nonlocal modeling framework developed will
be helpful to further analyze the effects of strain rate, specimen size, puncher head geometries
and especially notched specimens where higher gradients of field variables could prevail.
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6.2. Theory

6.2.1. Fundamental Kinematical Assumptions and Hypoelastic Plasticity

Let F := ∂Xx define the deformation gradient of the nonlinear map ϕ : Ω0 × R → R3 where
X and x := ϕ(X, t) denote the particle positions at the reference (undeformed) configuration
Ω0 and current (deformed) configuration Ω respectively. Then l := Ḟ · F−1 = ∂xv denotes the
spatial velocity gradient, with v = ẋ. An additive split of d := sym (l) into elastic and plastic
parts is hypothesised to reach

d = de + dp. (6.2.1)

One then introduces the rotationally neutralized rate of deformation tensor ˙̂ε defined as

˙̂ε = ˙̂ε
e

+ ˙̂ε
p
, (6.2.2)

with ˙̂ε
e

:= R> · de · R and ˙̂ε
p

:= R> · dp · R. Here, R is the rotation tensor found through
the polar decomposition of the deformation gradient with F = R · U . Similarly, a pull back
operation on the Cauchy stress tensor σ with the rotation tensor gives its rotationally neutralized
counterpart viz σ̂ := R> · σ · R whose material time derivative ˙̂σ is postulated to obey the
following hypoelastic relation

˙̂σ = Ce : ˙̂ε
e
, (6.2.3)

with Ce := [K − 2µ/3] [1⊗ 1] + µ [1⊗1 + 1⊗1] where K and µ denote the bulk and the shear
modulus, respectively.

6.2.2. Shear Modified GTN Porous Plasticity - Local Formulation

The model used here is Gurson’s dilatant plasticity model [110], which is extended by parameters
q1, q2 and q3 in [304, 306] to account for a better agreement with the numerical analyses of
various void distributions, and by the bilinear function f∗(f) in [308] to account for rapid
void coalescence prior to failure. The hydrostatic stress dependent flow potential Φp is then
formulated as

Φp =

[
σeq
σy

]2

+ 2q1f
∗ cosh

(
3

2

q2σm
σy

)
−
[
1 + q3f

∗2] = 0 . (6.2.4)

with

f∗(f) =

{
f f ≤ fc ,
fc + [f∗u − fc] [f − fc] / [ff − fc] f > fc .

(6.2.5)

where f is the void volume fraction, σeq is the (macroscopic) equivalent von Mises stress and
q1, q2 and q3 are material parameters. fc denotes the critical void volume fraction at incipient
coalescence, ff the fraction at failure and f∗u = 1/q1.

The viscoplastic hardening of the material matrix is described by σy which accounts for strain
and strain rate dependence. Hence, letting ep denote the equivalent plastic strain and ėp its
rate, the following multiplicative form is assumed

σy (ep, ėp, θ) = hy (ep) ry (ėp) , (6.2.6)

where hy and ry respectively denote the functions of strain hardening and strain rate hardening

hy (ep) =

{
σy0 + h0e

p , ep ≤ ep0 ,
h1e

p + σy∞ − [σy∞ − σy1]exp(−m[ep]n) , ep > ep0 ,
ry (ėp) = 1 + C log (ėp/ėp0) ,



 (6.2.7)
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where σy0, σy1, σy∞, h0, h1, m, n and ep0 are plastic strain hardening parameters. C and ėp0, on
the other hand, are parameters controlling the rate dependence.

Associated plastic flow rule gives the plastic rate of deformation tensor at the rotationally
neutralized configuration as

˙̂ε
p

= γ̇∂σ̂Φp , (6.2.8)

where γ̇ denotes the plastic multiplier. The equivalent plastic strain rate, using the plastic work
equivalence with [1− f ]σy ė

p = σ̂ : ˙̂ε
p
, reads

ėp =
σ̂ : ˙̂ε

p

[1− f ]σy
. (6.2.9)

The void volume fraction evolution involves nucleation and growth. The rate of the total void
volume fraction is formulated additively in terms of void nucleation rate ḟn and void growth
rate ḟg

ḟ = ḟn + ḟg. (6.2.10)

For ḟn a strain dependent void nucleation is assumed [75]

ḟn = AN ė
p where AN = AN (ep) =

fN

SN
√

2π
exp

(
−
[
ep − epN

]2

2 [SN ]2

)
, (6.2.11)

where epN and SN respectively denote the mean equivalent plastic strain at the incipient nu-
cleation and its standard deviation. fN denotes the total source for void volume fraction of
nucleation.

ḟg is further split into two parts, namely normal ḟgnormal and shear ḟgshear, [224]

ḟg = ḟgnormal + ḟgshear , (6.2.12)

where ḟgnormal accounts for the void growth under hydrostatic stresses whose formulation simply
uses the mass conservation viz.

ḟgnormal = [1− f ] tr( ˙̂ε
p
) , (6.2.13)

whereas ḟgshear accounts for softening effects associated with void distortion and void interaction
with material rotation under shear stress states where

ḟgshear = kwf w(devσ̂)
˙̂ε
p

: dev σ̂

σeq
. (6.2.14)

Here, kw is a material parameter with a suggested interval 0 ≤ kw ≤ 3, [224]. w(dev σ̂) =

1 −
[
27J3/2σ

3
eq

]2
with 0 ≤ w ≤ 1 distinguishes the states of axisymmetric stress from those of

generalized shear on the Π−plane. Here, w = 0 through J3 = ±[2/27]σ3
eq for all axisymmetric

stress states, whereas w = 1 through J3 = 0 for the states of generalized shear. This modifica-
tion due to [224] is motivated by the reported experimental evidence for low triaxiality fracture
development in, e.g., [29] and [39], for which the original GTN model falls short in predictive
capability.

The fracture responses for the shear modified Gurson model are given in Figure 6.1 for lin-
ear and uniform strain paths. As the figure clearly depicts the monotonic dependence of the
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fracture strain on the stress triaxiality is suppressed for kw 6= 0. Further, there occurs consid-
erable shrinkage in the admissible range of deformation for generalized plane strain paths, i.e.,
pure shear and plane strain loading paths with vanishing stress triaxiality ratio σm/σy → 0. On
the other hand, strain paths associated with the axisymmetric stress states, i.e., uniaxial and
biaxial loading paths respectively with σm/σy = 1/3 and σm/σy = 2/3, are not affected by the
shear correction since for these paths the shear fracture controlling parameter w(dev σ̂) becomes
zero with vanishing third invariant of the deviatoric stress tensor: J3 = 0. An application of the
model to the problem of severe plastic localization bands initiated at free surfaces during free
bending is given in [280].
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Figure 6.1.: Isochronous fracture surfaces at planar strain and stress spaces for the shear en-
hanced Gurson’s model for linear (uniform) in plane stress paths with linear hardening matrix.

6.2.2.1. Integral-Type Nonlocal Extension

The motivation behind integral-type nonlocal formulations is twofold. On the mechanical side,
with micro-void and micro-crack interactions being their micromechanical motivation, integral-
type nonlocal formulations constitute distributed damage models1 capable of reproducing size
effects. In view of finite element analysis with damage models, they remedy the pathological
mesh dependence of the local solution where the size of the process zone and associated energy
dissipation per unit volume is dictated by the discretization. With this motivation, in the
current study an integral-type nonlocal formulation is adopted which relies on the following
delocalization operation

vnonlocal (x) =

∫

V
ω̃ (x,y) v (y) dV (y) . (6.2.15)

Here y represents the location vector and V the volume at the current coordinates. If ω (x,y)
denotes the bell-shaped nonlocal weight function

ω (x,y) =

{ [
1− |x− y|2/R2

]2
if |x− y| ≤ R ,

0 otherwise ,
(6.2.16)

the normalized weight function ω̃ (x,y), which remedies any inconsistency pertaining to the
unrestricted averaging domains extending over the problem boundary, reads

ω̃ (x,y) =
ω (x,y)∫

V ω (x,y) dV (y)
. (6.2.17)

1Other powerful models in this context are gradient localization limiters.
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As long as the boundaries are not violated
∫
V ω (x,y) dV (y) is a constant. R in (6.2.16) denotes

the interaction radius which constitutes the characteristic length. For R→ 0 a local formulation
is recovered. In practical applications, R is related to the material microstructure, e.g., four
times void size or half void spacing for ductile fracture mechanism [309]. Delocalization could
be applied either directly to the kinematic fields; see, e.g., [352], or to the damage variables which
control softening, see, e.g., [246], [169], [309] and [229]. In the current study, delocalization of
each additive rate component of the void volume fraction is applied. Hence, v in (8.2.20) is
substituted by the damage rate component as follows

ḟnnonlocal (x) =
∫
V ω̃ (x,y) ḟn (y) dV (y) ,

ḟgnormal, nonlocal (x) =
∫
V ω̃ (x,y) ḟgnormal (y) dV (y) ,

ḟgshear, nonlocal (x) =
∫
V ω̃ (x,y) ḟgshear (y) dV (y) ,





(6.2.18)

which finally adds up to the total nonlocal porosity rate ḟnonlocal, viz.

ḟnonlocal = ḟnnonlocal + ḟgnormal, nonlocal + ḟgshear, nonlocal. (6.2.19)

One notes that for spatially uniform porosity rate distributions delocalization is not effective.
Hence, local and nonlocal theories differ only if field gradients exist. The material model is
implemented as a Vumat material subroutine for Abaqus/Explicit. The algorithmic details
are given in the appendices.

6.3. Experiments

6.3.1. Material Employed

The material used in this study is modified P91 which has a tempered martensitic microstructure.
An optical image revealing the microstructure is given in Figure 6.2. The prior austenite grain
size was approximately 14-25 µm. The chemical composition of the material is (wt%) 0.10 C,
0.27 Si, 0.53 Mn, 0.007 P, 0.01 S, 8.76 Cr, 0.91 Mo, 0.2 V, 0.35 Ni, 0.04 Nb, 0.038 N. Conventional
disk shaped SP specimens with a diameter of 8 mm and initial thickness in the range of 0.2 to
1 mm were used. Attention was paid not to violate the tolerances stated for disk thicknesses
(±1% of nominal thickness) during the polishing process.

Figure 6.2.: Optical micrograph of the tempered martensitic structure of P91 steel.
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6.3.2. Experimental Setup

Small punch tests were performed using the experimental setup in Figure 6.3. The major
components of the set up are a specimen holder to ensure the tight clamping of the SP disk, a
puncher with a hemispherical head of 2.5 mm diameter for the central loading of the disk and two
Linear Variable Displacement Transducers (LVDT) to measure the displacement of the puncher.
The SP specimens were circumferentially clamped to prevent slippage of the SP specimen during
the test. The aperture of the receiving die was 4 mm in diameter with an edge chamfer of 0.2
mm. The crosshead displacement rate was 0.005 mm/s. All the tests were carried out at room
temperature (25◦C) in accordance with the Code of Practice for Small Punch Testing [69]. The
typical output from an SP test is a force-displacement curve.

Figure 6.3.: Experimental setup for small punch testing.

6.3.3. Crack Propagation and Fracture Surfaces

During SP testing at room temperature, the fracture is ductile and proceeded by uniform neck-
ing. The crack initiates from the bottom surface at a distance where necking takes place. Then
it propagates in direction of the maximum equivalent plastic strain through the thickness and
follows a circumferential path along this necking region [197] and [112]. This is valid regardless
of disk thickness.

For most metals, voids nucleate from inclusions and secondary phase particles by particle crack-
ing or interface decohesion with increasing plastic strain. If particles are not large like MnS
inclusions, the voids nucleate by debonding of the particle-matrix interface and grow with the
plastic deformation in the matrix. The resulting fracture surface exhibits a dimpled structure
with many microvoids. In Figure 6.4 the fracture surface of the SP disk with 0.5 mm thickness
is presented. This image reveals a dimpled fracture surface consisting of high density of small
microvoids and lower density of relatively large and deep ones. The approximate distance be-
tween the large dimples was found to be 30-35 µm whereas the distance was 2-5 µm for the small
dimples. The initiation of small microvoids is attributed to MX precipitates distributed in the
matrix which are higher in density. The larger microvoids presumably are initiated by larger
M23C6 carbides which are mainly precipitated on the grain and lath boundaries. The alignment
of the dimple walls shows that fracture does not take place with void growth under Mode I, in
which one would expect dimple wall elongation orthogonal to the surface, but a mixed Mode I
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and Mode II, where shearing is incorporated. The shearing direction acutely angled with the
vertical is distinguishable from the fractograph of Figure 6.4.

Figure 6.4.: Fracture surface of the unnotched 0.5mm thick SP disk showing the dimpled struc-
ture.

6.4. Material Parameters for P91 Steel

The elastic bulk modulus of P91 at room temperature is K = 175000 MPa and the shear modulus
is G = 80769 MPa. The isotropic plastic hardening parameters are given in Table 6.1. Since no
rate sensitivity is observed for P91 in the conditions of interest, the corresponding parameters
are arranged to suppress the rate effect.

Table 6.1.: Flow curve data of P91 at room temperature.

σy0 [MPa] σy1 [MPa] σy∞ [MPa] h0 [MPa] h1 [MPa] m [-] n [-] ep0 [-]

520 376 831 123.31 75 6.14 0.541 0.006

Letting dx, dy, and dz denote average inclusion diameters in the respective directions and S(%)
and Mn(%) represent the weight percentages of sulphide and manganese in the matrix, respec-
tively, the initial porosity can be estimated using quantitative metallography from Franklin’s
formula [93]

f0 =
0.054

√
dxdy

dz

[
S (%)− 0.001

Mn (%)

]
. (6.4.1)

Assuming approximately spherical inclusions (dx = dy = dz), the initial porosity is calculated as
f0 = 0.00044, based on the previously given chemical properties of P91. A higher value of f0 was
suggested (f0 = 0.002) in [345] thus in further sections the effect of f0 on simulation results was
investigated by using f0 = 0.00044 and f0 = 0.002. The parameters q1 = 1.5, q2 = 1, q3 = q2

1

of the extended Gurson model are chosen following [304] and [306]. Motivated by the fact that
the volume fraction of the segregated inclusions fN is within a narrow band of 0.01 to 0.03 the
parameters controlling void nucleation are chosen as fN = 0.02, εN = 0.3 and SN = 0.1 [5, 6].
The proposed range of kw for structural alloys is reported as 0 < kw < 3, see, e.g., [224]. In
the current study kw = 0 gives the best results for the predicted fracture strains. Nevertheless,
a sensitivity analysis is performed investigating the effect of kw for various disk thicknesses.
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Pertaining to the void coalescence and final fracture, the European Structural Integrity Society
round robin [1] recommends the slope of the tail of the bilinear coalescence function (6) as 4.
For the final void volume fraction at failure different references give different results, e.g., [172]
takes ff = 0.25 in accordance with [62] whereas ff = 0.2 is used in [5, 6, 334, 336], where the
last two studies refer to steel A533 B. Based on the room temperature parameter fitting studies
for P91 steels the coalescence and failure porosity are taken as fc = 0.1 and ff = 0.25.

When applying a nonlocal regularisation to local formulation of porous plasticity, introduc-
tion of a characteristic length scale is necessary. This length scale has been related to a physical
quantity such as (four times) void size or (half) void spacing for ductile fracture mechanism
[309]. If two populations of second phase particles are present, which is the case for P91, one
should select the population which is dominant in crack initiation and propagation. While Xia
and Shih observed that large inclusions constitute the main contribution to void formation while
small inclusions only assist the hole link-up [335]. Thus, they selected the length scale as the
mean spacing between voids nucleated by large inclusions. As seen from the fracture surface
in Figure 6.4, the small voids nucleated by MX precipitates are dominating in quantity and
the mean distance between them ranges from 1.5 to 2.5 µm. On the other hand, the distance
between large voids nucleated by M23C6 precipitates are between 20 and 30 µm. Regarding the
two studies mentioned, R = 5 µm is used as an average value considering the two population of
precipitates. This value is also validated by the simulations.

6.5. Simulations

2D axisymmetric simulations with CAX4R reduced integration elements for room temperature
are conducted in Abaqus/Explicit with double precision. A solution of quasi-static problems
with a dynamic-explicit solution procedure generally involves a very large number of time steps.
In order to reduce the computational cost, mass scaling is applied with a target time step of
10−3 s over the whole analysis which lasts for 150 s. This supplies acceleration of the simulations
without changing the actual time scale of the process which can affect the other time dependent
phenomena such as viscosity or heat transfer. The dies and the punch are modeled as rigid
bodies and the disk as a deformable body. The interaction in-between the rigid and deformable
bodies is assumed to be constant with a dynamic friction coefficient chosen as µ = 0.25, which
is taken to be temperature independent.

The mesh used for 0.5 mm thickness is given in Figure 6.5. The number of elements for each
model is given in Table 6.2. When using an integral-type nonlocal formulation, the element size
should be below the used characteristic length. For R = 5 µm which is selected depending on
the microstructure of P91, this requirement puts severe restrictions on the selected mesh size.
In order to reduce the computational time non-uniform meshing was used for the model: refined
mesh at the crack location, coarse mesh at the clamped part. Initially, a uniform coarse mesh
is applied which enabled us to identify the approximate crack location then refined meshing is
applied to this region of interest.

Crack propagation is modeled using an element erosion technique where the elements with
Gauss points whose damage reaches the corresponding failure thresholds are removed from the
computational stack. Although the applied nonlocal formulation removes the mesh dependence
of the field distributions to an extent, for the crack propagation this could be limited. Hence,
since element erosion is used, the direction of the crack and the crack propagation size are
controlled by the mesh. Once biased and/or coarse mesh is used, predicted crack paths will be
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Figure 6.5.: Axisymmetric finite element model and the mesh used for 0.5 mm thick disk (min.
element size: 1.5×2.5 µm, number of elements: 59143).The same meshing pattern was applied
to the disks with other thicknesses.

Table 6.2.: Number of elements used in the finite element models of the small punch tests with
different specimen thicknesses.

Model 1.5µm×2.5µm mesh 2.5µm×2.5µm mesh

0.2 mm 41504 28744
0.3 mm 49351 35505
0.5 mm 59140 45254
0.7 mm 78120 58859
0.8 mm 89442 67132

1 mm 111479 84034

inevitably poor. In this study sufficiently small sized elements with irregular distributions are
used. The irregularity of the mesh created by the advancing front quad method accounts for
the microstructural heterogeneity. With the same motivation the number of elements within the
effective radius of each element vary spatially. During SP test as the puncher deforms the SP
specimen, multi-axial stress and strain fields occur which evolve with time. Various deformation
stages take place, respectively, elastic bending, plastic bending and membrane stretching and
eventually crack initiation and failure of the specimen.

The von Mises stress plots (Figure 6.6) of the SP disk with 0.5 mm thickness reveals that
with the onset of contact between the puncher and the disk, high stresses occur underneath
the contact region and this zone expands with the contact region till the crack initiation. Due
to high stresses developed along with the contact, plastic deformation takes place underneath
the contact region at the beginning of the test. As the puncher continues to deform the disk,
maximum plastic deformation moves to the bottom surface and localizes in this region where
crack initiates.

The deformation modes are intimately dependent on the specimen thickness. For thinner spec-
imens, considerable thickness change and stretching occurs during the test until fracture. On
the other hand, indentation caused by the localized plastic yielding underneath the puncher gets
more pronounced with increasing thickness. This is revealed by the plastic strain plots of 0.2,
0.5 and 1 mm disks at the initial stage (at displacement ∼0.08 mm and 0.3 mm) of the test. The
plastically deformed region under the contact area is more pronounced for the 1 mm thick disk



Chapter 6. Ductile Fracture - Large-scale Yielding Conditions 117
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Figure 6.6.: (a) von Mises stress and (b) plastic strain plots of SP disk with 0.5 mm thickness
at various displacements: 0.77 mm ((a) [max 7.69 × 102; min 0], (b) [max 1.24 × 10−1; min
0], 1 mm ((a) [max 8.56 × 102; min 0], (b) [max 6.83 × 10−1; min 0] and 1.65 mm ((a) [max
8.71× 102; min 0], (b) [max 1.12; min 0]).

compared to the thinner disks of 0.2 and 0.5 mm. As the puncher further penetrates through
the disk, the plastically strained region for the 1 mm disk expands in the upper surface and
moves away from the center whereas for 0.2 mm and 0.5 mm it localizes at the bottom surface.

In order to make further evaluations to reveal the influence of the disk thickness, the von Mises
stress, plastic strain and pressure plots of 0.2, 0.5 and 1 mm thick disks prior to crack initiation
are demonstrated in Figure 6.8. For all thicknesses, maximum plastic strain occurs at the
bottom surface of the disk where tensile stresses prevail and promote voidage. For the 1 mm
disk there is also a highly strained region at the upper side close to the clamped region which
occurs under the combined influence of tension and shear. Again for all thicknesses, the crack
initiation starts from the bottom surface where plastic strain is maximum. Practically, the whole
unclamped part of the disk exhibits the high stresses with a slight decrease at the crack initiation
location for all thicknesses. If the hydrostatic stresses are compared (which is the negative of the
pressure plotted in Figure 6.8(c), it is seen that for all thicknesses the unclamped region is under
positive hydrostatic stress except the zone underneath puncher for 1 mm. As the thickness gets
smaller, the distribution of the hydrostatic stress becomes more uniform through the thickness.
Obviously, this has direct consequences on the void nucleation and growth.

Figure 6.9 depicts the damage fields: f , fn, fg. Since in this figure kw is taken as 0, there
is no damage growth due to shear. Hence, f is equal to the summation of f0, fn and fg.
When pressure plots in Figure 6.8c are taken into account, one can see that just before crack
initiation, nucleation mostly reaches its maximum value of 0.02 at the region under positive
hydrostatic stress. Hence, with plastification all the void nucleation sources are exhausted
where the distribution is rather uniform over the positive hydrostatic stress region. With thinner
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Figure 6.7.: Plastic indentation underneath the puncher at the initial stage of the test according
to disk thicknesses: at disp=0.07 mm for h=0.2, 0.5 and 1 mm [max 1.98 × 10−1; min 0], at
disp=0.3 mm for h=0.2 mm [max 2.11× 10−1; min 0], for h=0.5 mm [max 2.64× 10−1; min 0]
and for h=1 mm [max 3.03× 10−1; min 0].

specimens the source of positive hydrostatic stresses is the stretching behavior thus underneath
the punch also there is considerable nucleation. This is not the case for increased thicknesses
where under the punch since the indentation mode is dominant, high compressive stresses with
this confinement allows neither nucleation nor positive growth. fgnormal also occurs in the region
where positive hydrostatic stress prevails and has its maximum value where plastic strain is
also maximal. For the disk with 1 mm thickness, the zone underneath the contact region where
hydrostatic stress is negative fg is also negative. Thus, in this zone void shrinkage takes place
instead of void growth.

For all thicknesses, the crack initiates from the highest strained location underneath the puncher
at the bottom surface and propagates upwards as shown in Figure 6.10, where plots of plastic
strain are given in various stages of crack propagation for disks with thickness of 0.2 mm, 0.5
mm and 1 mm. This reveals the ductile crack propagation in the direction of the maximum
plastic strain. Virtually maximum plastic strain occurs in the path due to localization of voidage
and the crack simply follows this path since the main controlling variable for the crack path is
the porosity. For the 0.2 mm disk, the final crack has an inclined path whereas for 0.5 mm
disk the crack also starts with an inclined path but then kinks away almost half way. Similar
kinking was also observed for this disk in the optical image of the section (see Figure 6.16(c).
As to the 1 mm disk, the crack initiating at the bottom side propagates vertically inside the
shear band. Although there is a highly strained region at the upper side of the disk, both the
maximum strain and damage localization occur at the bottom side where the crack initiates.
In general it can be stated that for thinner specimens the crack propagation direction is less
inclined whereas for the thick ones, vertical crack propagation takes place. It is also seen that
for the thin specimens relatively uniform fields are observed which is not the case for the thick
ones.



Chapter 6. Ductile Fracture - Large-scale Yielding Conditions 119

a) b) c) 

h=0.2 mm

h=0.5 mm

h=1 mm

(a) (b) (c)

min max

Figure 6.8.: Field distributions before crack initiation: (a) von Mises Stress, (b) plastic strain
and (c) pressure for disks with 0.2 mm, 0.5 mm and 1 mm thickness: for h=0.2 mm (a) [max
8.30× 102; min 1.18× 102], (b) [max 1.10; min 0], (c) [max 1.33× 103; min −8.87× 102], for
h=0.5 mm (a) [max 8.70 × 102; min 6.68 × 101], (b) [max 1.14; min 0], (c) [max 1.49 × 103;
min −7.22 × 102], and for h=1 mm (a) [max 9.13 × 102; min 2.18 × 101], (b) [max 1.20; min
0], (c) [max 1.39× 103; min −6.21× 102].

The effect of shear softening due to void distortion and inter-void linking is investigated by using
different values of the parameter kw : kw = 0 representing no shear influence and kw = 1. These
values were investigated for the two extreme thickness values: 0.2 mm and 1 mm. As concluded
from Figure 6.11 increasing kw values results in an earlier loss of load carrying capacity, and
thus, a decrease in the recorded displacements at incipient fracture. As anticipated, in the
thinner disks the membrane stretching mode of deformation governs while shear effects are
much less important. Accordingly, with an increase of thickness shear effects govern and as a
consequence, the shear extension in the GTN model results in a considerable reduction in the
materials ductility.

In Figure 6.12 the damage distribution plot at a displacement of 0.7 mm reveals how the kw
parameter influences the total damage development in a 1 mm thick disk. In agreement with
abovementioned observations, with the increase of kw from 0 to 1, the maximum damage value
increases by 28% at the same displacement.

The effect of f0 on force-displacement curves is investigated by taking f0 as 0.002 from [1] and
0.00044 which was calculated from Franklin’s formula. As anticipated, increased value of f0

results in earlier fracture, while the hardening part of the curve is almost not affected (see
Figure 6.13(a)). In Figure 6.14 the damage development of a 0.5 mm thick disk prior to crack
initiation for f0 = 0.002 and f0 = 0.00044 are presented showing that with higher initial porosity
the damage accumulation also increases.

In conclusion when the shear extension was utilized, a premature fracture occurred, so the kw
parameter had to be taken as 0 to achieve agreement with experimental results. As to the initial
porosity, whilst the effect on force-displacement curves was not so prominent, the f0 = 0.00044



120 6.5. Simulations

a) b) c) 

h=0.2 mm

h=0.5 mm

h=1 mm

(a) (b) (c)

min max

Figure 6.9.: Damage plots (a) f (b) fn (c) fg of disks with 0.2 mm , 0.5 mm and 1 mm
thickness before crack initiation: for h=0.2 mm (a) [max 1.29×10−1; min 2.30×10−4],(b) [max
2.00×10−2; min 0],(c) [max 1.08×10−1; min −2.10×10−4], for h=0.5 mm (a) [max 1.92×10−1;
min 3.43 × 10−5],(b) [max 2.00 × 10−2; min 0],(c) [max 1.72 × 10−1; min −5.96 × 10−4], and
for h=1 mm (a) [max 2.02 × 10−1; min 6.21 × 10−5],(b) [max 2.00 × 10−2; min 0],(c) [max
1.81× 10−1; min −5.90× 10−3].

as calculated from Franklin’s formula gave closer agreement with the experimental curve.

6.5.1. Comparison with Experimentally Determined Results

In Figure 6.15 the numerical and experimental load-displacement curves of SP disks are com-
pared. Experimentally two to three tests were carried out for each thickness. For comparison
with the numerical curves, averages of experimental load-displacement curves were used. The
results show a very good agreement between numerical and experimental curves especially in
terms of hardening. The maximum strengths are slightly underestimated for disks with 0.7 mm,
0.8 mm and 1 mm thickness. Generally speaking, the calculated curves exhibited a steeper force
drop compared to the experiments due to axisymmetry assumption in the simulations which
prevails in both localization and fracture behaviour. It should be noted that for the selected
sample size, shape, loading conditions and selected mesh size/length scale ratio both local and
nonlocal formulation estimations were similar in both force displacement paths, i.e., energy
dissipation during fracture, and fracture patterns which is attributed to the milder stress and
strain gradients. Considering the severe change in element aspect ratios under stretching dur-
ing small punch test simulation, only nonlocal formulations supply spatially invariant material
length. With this property, the developed framework constitutes a unified modeling environ-
ment for problems involving sharp notches where high stress gradients are evident or problems
with smaller specimen sizes where size effects will govern.

In Figure 6.16 a comparison of the deformed profiles obtained from optical microscopy observa-
tions (left) and simulations (right) is given. The fractured SP disks are sectioned by a precision
cutter and images are obtained by an optical microscope. Both crack locations and the paths
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Figure 6.10.: Initiation and propagation of the crack along the maximum plastic strain for disks
with thicknesses of (a) 0.2 mm (b) 0.5 mm (c) 1 mm. For all cases min=0, max=1.5.
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Figure 6.11.: Effect of shear parameter, kw on force-displacement curves: disk thickness of (a)
0.2 mm and (b) 1 mm for values of kw=0 and kw=1.

of the cracks of the numerical results are found to be in good agreement with the experimental
ones. It is noted both from FE results and optical images that the location of crack initiation
slightly moves further away from the center of the disk with increasing thickness.

In 3D, the crack follows approximately a circular path along the maximum plastic strain contour
for all thicknesses (see Figure 6.17) which complies with the axisymmetry assumption applied
in the present modeling.
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Figure 6.12.: Damage development for a disk of 1 mm thickness at a displacement of 0.7 mm
for (a) kw = 0 and (b) kw = 1: [max 2.02× 10−1; min 6.21× 10−5].
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Figure 6.13.: Effect of initial porosity f0 on force-displacement curves of 0.5 mm disk. The red
curve represents f0 = 0.002 whereas the black curve represents f0 = 0.00044.
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Figure 6.14.: Damage development for (a) f0 = 0.002 [max 1.08 × 10−1; min 3.44 × 10−5] (b)
f0 = 0.00044 [max 1.81× 10−1; min 1.51× 10−4] at punch displacement of 1.6 mm.
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Figure 6.15.: Comparison of experimental and numerical force-displacement curves of disks of
varying thicknesses. Discrete circles represent the experimental data and the solid lines represent
the simulations.

6.6. Conclusion and Outlook

In this chapter, a combined experimental and numerical investigation of deformation and frac-
ture during room temperature small punch tests of P91 steel disks has been presented. To this
end tests were conducted on disks with different thicknesses. A void driven ductile fracture
mode is recorded for all cases which is preceded by a diffuse necking with membrane stretching
followed by a localized deformation for smaller thicknesses and shear localization for larger ones.

On the numerical side a rate dependent porous-plastic constitutive model with a non-local
extension is established to predict the deformation and fracture behavior of P91 steel during
small punch testing. The nonlocal formulation allows a natural control of the localization size
through incorporating a material length parameter relating to the inter-particle spacing. With
the developed framework besides a detailed full field investigation of the deformation process
in the small punch test, parameter sensitivity analyses are also realized. The set of material
parameters were identified through a combined quantitative metallurgical and inverse mechan-
ical analysis by comparison of the numerical and experimental force-displacement curves. The
accuracy of the simulation results with the identified parameters were assessed by comparing
experimental and numerical force-displacement curves as well as the deformed sections of disks
obtained from FE and optical images. A good agreement is captured between the experimen-
tally and numerically determined force-displacement curves as well as the deformed sections at
fracture.
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Figure 6.16.: Comparison of experimental (left) and numerical (right) deformed sections of SP
disks of varying thickness: (a) h=0.2 mm, (b) h=0.3 mm, (c) h=0.5 mm, (d) h=0.7 mm, (e)
h=0.8 mm, (f) h=1 mm.
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Figure 6.17.: Circular crack path of disks with thicknesses of (a) 0.5 mm (b) 1 mm: optical
images on the left and simulation on the right.

The parameter sensitivity analysis conducted for the shear damage parameter kw shows that
increasing values of kw result in earlier fracture and this effect got more pronounced with in-
creasing disk thickness due to the influence of shear. To a lesser extent initial porosity, f0, also
affected the force-displacement curves in the same way since with higher values of f0 the damage
development was higher. Finally, it was found that for the selected sample size, shape, loading
conditions and length scale both local and nonlocal formulation estimations were similar in both
fracture pattern and energy dissipation during fracture which was attributed to the milder stress
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and strain gradients unlike a case where a notch is present. Still the developed framework allows
modeling ductile fracture in the presence of sharp stress gradients driven by, e.g., notches. The
model was also found to be efficient in predicting the deformed geometry: necking patterns,
crack initiation location and the crack propagation paths by comparing the sections of the failed
samples obtained through simulations and optical microscopy.

6.A. Numerical Implementation

The complete set of equations to be solved can be reiterated as follows,

˙̂ε
e

= ˙̂ε− ˙̂ε
p
,

˙̂ε
p

= γ̇∂σ̂Φp ,
˙̂σ = Ce : ˙̂ε

e
,

ėp = γ̇η : ∂σ̂Φp ,

ḟ = γ̇ [ANη +BG] : ∂σ̂Φp .





(6.A.1)

η := σ̂/ [[1− f ]σy] and BG = BG (f, dev σ̂) is defined as

BG := [1− f ] 1 + kwf
w (dev σ̂)

σeq
dev σ̂ . (6.A.2)

For solving Equations (8.A.1), an elastic predictor−plastic corrector type of algorithm is used.
Letting ∆ (•) = ∆t × (•̇), the subscript n + 1 denote the (unknown) step at time tn+1 and
n denote the (known) step at time tn, the solution

{
σ̂n+1, e

p
n+1, fn+1

}
is sought for the given

{σ̂n, epn, fn} and the strain increment ∆ε̂ with ∆t = tn+1− tn. The corresponding operator-split
is summarized in Table 6.3.

Table 6.3.: Elastic predictor−plastic corrector type operator split.

Total Elastic predictor Plastic corrector



∆ε̂ 6= 0
∆ε̂p 6= 0
∆σ̂ 6= 0
∆ep 6= 0
∆f 6= 0





=





∆ε̂ 6= 0
∆ε̂p = 0
∆σ̂ = Ce : ∆ε̂
∆ep = 0
∆f = 0





+





∆ε̂ = 0
∆ε̂p 6= 0
∆σ̂ = −Ce : ∆ε̂p

∆ep 6= 0
∆f 6= 0





.

Elastic Predictor. Here, a trial step is realized assuming the strain increment ∆ε̂ is purely
elastic. Once the corresponding value of the flow potential Φp,trial

n+1 is smaller than zero, i.e.

Φp,trial
n+1 < 0, the trial step is assumed to be correct, otherwise a plastic correction is required.

Plastic Corrector. The semi-implicit plastic corrector algorithm relies on exploitation of the
first order Taylor series expansion of the yield potential around a known step 〈i〉

Φ
p〈i+1〉
n+1 ' Φ

p〈i〉
n+1 + r

〈i〉
n+1 : δσ̂

〈i〉
n+1 + ξ

〈i〉
n+1δe

p〈i〉
n+1 + ς

〈i〉
n+1δf

〈i〉
n+1 +$

〈i〉
n+1δė

p,〈i〉
n+1 , (6.A.3)

where
r := ∂σ̂Φp = ∂σeqΦ

p∂σ̂σeq + ∂σmΦp∂σ̂σm ,
ξ := ∂epΦ

p = ∂σyΦ
p∂epσy ,

ς := ∂fΦp = 2q1 cosh ([3/2] [q2σm/σy])− 2fq3 ,
$ := ∂ėpΦ

p = ∂σyΦ
p∂ėσy .





(6.A.4)
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The increments δ (•)〈i〉 = (•)〈i+1〉 − (•)〈i〉 in (8.A.3) read

δσ̂
〈i〉
n+1 = −δγ〈i〉n+1Ce : r

〈i〉
n+1 ,

δe
p〈i〉
n+1 = δγ

〈i〉
n+1η

〈i〉
n+1 : r

〈i〉
n+1 ,

δf
〈i〉
n+1 = δγ

〈i〉
n+1

[
A
〈i〉
N,n+1η

〈i〉
n+1 +B

〈i〉
G,n+1

]
: r
〈i〉
n+1 ,

δė
p,〈i〉
n+1 = δe

p〈i〉
n+1/∆t .





(6.A.5)

Using the condition Φ
p〈i+1〉
n+1 = 0 as required, and substituting (8.A.3) into the right-hand side of

(8.A.5) which allows factoring out the incremental plasticity parameter, one finds δγ
〈i〉
n+1 as

δγ
〈i〉
n+1 =

Φ
p〈i〉
n+1

r
〈i〉
n+1 : Ce : r

〈i〉
n+1 + r

〈i〉
n+1 : D

〈i〉
n+1

, (6.A.6)

where

D
〈i〉
n+1 =

[
ξ
〈i〉
n+1 +

$
〈i〉
n+1

∆t

]
η
〈i〉
n+1 + ς

〈i〉
n+1

[
A
〈i〉
N,n+1η

〈i〉
n+1 +B

〈i〉
G,n+1

]
. (6.A.7)

The iterations are started with an initial guess of plastic multiplier ∆γ
〈0〉
n+1. This depends on the

rate dependence of hardening which is assumed to vanish for ėp < ėp0, that is ry = 1 as ėp < ėp0.
Consequent numerical difficulty pertaining to the hardening discontinuity is remedied following

in the lines of [351]. Consequently, once Φp (∆t× ėp0) > 0 the initial guess of ∆γ
〈0〉
n+1 = ∆t× ėp0,

otherwise ∆γ
〈0〉
n+1 = 0 is used. State variable updates (•)〈i+1〉 = (•)〈i〉 + δ (•)〈i〉 are continued

throughout the iterations 〈i〉 for the computed increment of the plastic multiplier in (8.A.6),

until Φ
p〈i+1〉
n+1 ' 0 with a desired accuracy. The stress tensor is then rotated back to the current

coordinates viz σn+1 = Rn+1 · σ̂n+1 ·R>n+1.

6.B. Verification of Implementation through Benchmark Problems

The verification of the implementation is done using the benchmark studies presented in [225],
where the problems involve uniform field tests conducted on a single finite element with side
length of 1 mm. The first problem uses Gurson’s model without shear extension which agrees
with the solution of the current framework for kw=0. The second problem compares numerical
solutions with analytically handled results for different kw values.

6.B.1. Dilatation

Dilatation in three directions is supplied by loading three faces of a cube by 0.01 m/s in normal
direction while the other three faces are let stationary. In addition, all faces are given expansion
free boundary conditions. The elastic material parameters are selected as E = 200 GPa and
ν =0.3. The elastic limit of the matrix material is defined by σy0 = 200 MPa. A power law
function σy [Eep/σy]

n with n = 0.1 is supplied as the flow curve. Extended Gurson’s model
parameters are selected as q1 = q2 = q3 = 1. The initial void volume fraction is taken as
f0 = 0.005. Strain dependent void nucleation parameters are taken as eN = 0.3, SN = 0.1 and
fN = 0.04. Coalescence parameters are chosen to be fc = 0.15 and ff = 0.25. To create a
comparison basis with the Abaqus implementation where shear extension does not exist, the
shear parameter is set as kw = 0. In Figure 6.18, comparisons are presented between Abaqus



Chapter 6. Ductile Fracture - Large-scale Yielding Conditions 127

built-in Gurson model (Keyword *Porous Plasticity) and current Vumat implementation
using the same input parameters. The results for the modified and original Gurson models are
identical for uniform expansion as the figures reveal.
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Figure 6.18.: Abaqus built-in model and Vumat implementation comparisons for (a) σm/σy0,
(b) void volume fraction histories during the dilatational loading.

6.B.2. Simple Shear

This problem is executed by excluding void nucleation and growth due to triaxiality and coa-
lescence acceleration to facilitate a comparison with the following analytical solutions for f and
σeq which neglect elasticity for simple shear in (e1, e3) plane [225]

f = f0 exp (kwe
p) and

σeq
σy0

=

[
Eep

σY

]n
[1− f0 exp (kwe

p)] . (6.B.1)

The rest of the material parameters selected are identical to the previous problem. Simple
shearing is supplied by loading one face with 0.01 m/s to obtain σ = τ [e1 ⊗ e3 + e3 ⊗ e1].
As given in Figure 6.19 the resulting curves from the Vumat implementations are in complete
agreement with those of the analytical solution. As a conclusion, for kw > 0 damage growth
under shear stresses becomes exponential and increasing kw reduces the localization and fracture
strains that could be reached. For kw = 0 conventional Gurson’s model response is carried out
without an explicit dependence on shear.

6.C. Analysis of the Effectiveness of Delocalization

In order to verify the regularisation property of the developed nonlocal framework, plane strain
tensile tests on imperfect models are realized. The imperfections are introduced as a smoothly
distributed width change by 98% to the initially square domains with edges of 1 mm. Three
cases with different element sizes h = 0.05 mm, h = 0.025 mm and h = 0.0125 mm are run.
Thermal effects as an additional source of softening are switched off. The analysis is conducted
for the ductile interaction radius of R = 0, which corresponds to the local analysis, and for
R = 0.15 mm. As the contour plots for porosity development at the deformed configuration
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Figure 6.19.: Analytical solution and Vumat implementation comparisons for (a) σeq/σy0, (b)
Void volume fraction histories during the shear loading.

given in Figure 6.20 suggests, for the local analysis strong mesh dependence occurs as the mesh
is refined a continuous reduction of the localization size results even at relatively low amounts
of voidage which shows a clear loss of uniqueness. On the simulation results accounting for
nonlocality however, it is seen that the localization band width as well as the magnitude of the
maximum observed porosity could be kept constant. This verifies the desired delocalization and
regularisation property of the developed framework.

(a) (b) (c)

Figure 6.20.: Total damage contours and localization patterns for local (top) and nonlocal (bot-
tom) formulations for three different element sizes, (a) 0.05 mm, (b) 0.025 mm and (c) 0.0125
mm. The rows differ in investigated time steps since they represent different formulations
whereas the columns do not.



7. Variants of Lemaitre’s Damage Model and
Their Use in Formability Prediction of
Metallic Materials

In this chapter, taking Lemaitre’s damage model [J. Lemaitre, A Course on Damage Mechanics,
Springer Verlag, (1996)] as the point of departure, two successive enhancements to meet the
requirements of formability prediction for today’s modern steels are presented. The first exten-
sion is a quasi-unilateral damage evolution which, after a spectral decomposition of the stress
tensor, scales the elastic energy release rate due to compressive principal stress components. The
second one is inspired by a recent multiplicative modification of triaxiality dependent Oyane’s
fracture criterion with a shear stress dependent term, following [Y. Lou, H. Huh, S. Lim, K.
Pack, International Journal of Solids and Structures 49, 3605–3615 (2012)]. For plane stress
states, the former modification allows, besides correcting the pathological symmetry of the frac-
ture strain with respect to vanishing stress triaxiality ratio, i.e. η = 0, hindering fracture under
uniaxial compression since the altered fracture strain curve shows an asymptotic behavior at
η = −1/3. Depending on the selected parameters, the latter modification permits one to fur-
ther modify this curve to give account for two local minima in the vicinity of generalized shear
points within the triaxiality interval [−1/3, 2/3]. From a formability prediction perspective,
as a consequence of the former modification, premature failure prediction of the conventional
Lemaitre’s damage model in many compression dominated metal forming operations is remedied.
The latter modification permits modeling shear dominated fracture. Moreover, for each variant,
closed form expressions for the isochronous fracture surfaces associated with linear strain paths
are derived and resulting surface plots at various spaces are compared. It is shown that only
shear modification together with quasi-unilateral enhancement lets model show enough flexibil-
ity during parameter calibration for the experimental data. Handled calibrations are compared
with those of the existing fracture criteria frequently used in the literature to highlight relative
strengths of the current proposal. Finally, the models are implemented as user subroutines for
Abaqus/Explicit and used in prediction of initiation and propagation of cracks for a series
of deep-drawing punch tests. A good agreement with the outputs reported in the literature is
observed in terms of the shear damage occurrence zones as well as corresponding punch force-
displacement diagrams.

7.1. Introduction

Although not all metal forming defects result from fracture, oftentimes the formability of metallic
materials is hindered by localization of deformation into narrow bands and subsequent fracture.
The sources of localization are classified under two groups, such as path-dependent strain hard-
ening and softening [16], where a blend of these can also arise if conditions are met. While path
dependent hardening occurs due to a sharp curvature of the yield locus [16], softening takes the
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root either from thermal or mechanical grounds [179, 340].

In order to circumvent localization as a precursor to fracture, the metal forming community
mostly calls upon the forming limit curves. These experimentally or analytically handled curves
define the boundary setting apart safe and unsafe in the space of stress, strain or selected pro-
cess parameters. Although being very practical, these approaches are not generalizable (e.g., not
transferable from sheet to bulk metal forming) and fail to supply accurate predictions for condi-
tions involving non-proportional strain paths and strain histories (e.g., hole expansion test), less
ductile materials (e.g., advanced high strength steels), intense shear localization (e.g., blanking)
and through thickness stress and strain gradients (e.g., bending). Moreover, these concepts
only qualify in the context of forming design, thus, product property prediction, service life and
crashworthiness analyses fall beyond their reach.

Advanced constitutive models which monitor local microstructure development and, thus, nat-
urally account for path dependent hardening and softening at a material point on the course of
deformation appear to be strong alternatives. Development of such models helps, in a unified
manner, in the understanding and the resolution of above mentioned obstacles in forming anal-
ysis and design. However, this is not a trivial task for ductile fracture. For today’s technological
steels, strength enhancement is supplied through hindering dislocation motion via introducing
inclusions, solid solutions and additional phases into the material matrix. For such materials
the fracture process is a void driven mechanism with nucleation, growth and coalescence phases.
Even if the material does not involve any secondary phases, dislocation pile-ups can act as void
nucleation zones [111]. In metal forming practice the site of ductile fracture is not known ab
initio. It can happen in many locations simultaneously, if far apart, accompanied by consider-
able micro-structural rotation and plastic flow. Besides, the fracture can happen under a wide
range of hydrostatic stresses [17].

Contrary to the mentioned difficulties, there are constitutive approaches in the literature for
the purpose of quantitative modeling of ductile damage and fracture. This study is limited to
Lemaitre’s damage model, which constitutes one of the widely used continuum damage mechan-
ics approaches. In what follows, the presentation starts with the derivation of the conventional
Lemaitre’s damage model according to the internal variable of thermodynamics. Following the
approach of [175], the effective stress argument of [145] and [255] is used, as well as the strain
equivalence principle with the concrete definition as phrased in [175]. After creating an un-
coupled version of this form, it is shown that this form has critical shortcomings in estimation
of the time and the zone of ductile failure in forming processes which fall out of the tensile
forming class according to the classification of DIN8582. Building upon this basis two successive
empirical enhancements are presented each of which introduces just a single additional material
parameter. The initial formerly known improvement prevents the fracture strains under the
compressive stresses from being underestimated whereas the novel one aims at improving the
fracture strain estimates under generalized shear stress states. The limitations and the predic-
tive capabilities of the base model and the models with introduced enhancements are critically
assessed within the context of metal forming practice. These are complemented by the analyses
of the geometry of the analytically developed isochronous fracture surfaces and curves at various
spaces of stress and strain components for 3D and 2D plane-stress conditions. A point which
has not been studied so far in such detail in the literature, to the authors’ knowledge.
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7.2. Theory

7.2.1. Lemaitre’s Damage Model Coupled to Isotropic Hardening Plasticity -
Theory of State Kinetic Coupling

Let the particles labeled with X in the reference configuration be mapped to their actual po-
sition x by the nonlinear deformation map x = ϕ(X). Now, F = ∂Xϕ with J = detF > 0
defines the deformation gradient which is multiplicatively decomposed into an elastic and plastic
part via F = F e · F p. Then, the elastic Finger tensor is defined at the spatial configuration as
be = F e · [F e]> whose material time derivative reads ḃe = F · ˙[[Cp]−1] · F> + l · be + be · l>
where Cp = [F p]> · F p is the plastic Cauchy-Green tensor in the reference configuration and
l = Ḟ · F−1 represents the spatial velocity gradient which is decomposed additively into sym-
metric d = sym(l) and skewsymmetric w = skw(l) parts, which are respectively named as the
rate of deformation tensor and the spin tensor, with l = d+w.

Now, following Lemaitre [176], let χ and ς denote the vectors of all strain like variables and
their associated dual variables, respectively. Thermodynamic stability of the state is ensured by
the postulated Helmholtz free energy Ψ concave with respect to the temperature T and convex
with respect to its other arguments. With the assumption of purely mechanical theory a specific
choice for Ψ = Ψ(χ) giving account for the fact that the plastic strain variations do not alter
the stored (reversible) energy with χ = [be, αp, D]> reads,

Ψ = Ψ(be, αp, D) , (7.2.1)

where αp denotes the isotropic hardening strain-like variable. D represents the scalar damage
variable, i.e., the phenomenological construct which holds a measure of homogenized microvoids
and microcracks in the material. The limits D = 0 (undamaged material) and D = 1 (rupture)
form the mathematical bounds of D as D ∈ [0, 1]. The second law of thermodynamics dictates
a non-negative dissipation Ω,

0 ≤ Ω = τ : d− Ψ̇ , (7.2.2)

where τ = Jσ is the Kirchhhoff (weighted Cauchy) stress tensor with σ denoting the (true)
Cauchy stress tensor. Arbitrariness of l leads to τ = 2∂beΨ · be. Hence, the complete state
equations for ς = [τ , q, Y ]> read

τ = 2∂beΨ(be, αp, D) · be ,
q = ∂αpΨ(be, αp, D) ,
Y = ∂DΨ(be, αp, D) ,



 (7.2.3)

where q denotes the isotropic hardening stress-like variable. Y represents the dual variable for
damage. Substitution of the state equations back in Equation (7.2.2), the mechanical part of
the reduced dissipation inequality Ωm is carried out,

0 ≤ Ωm = −τ :

[
1

2
F · ˙[[Cp]−1] · F> · [be]−1

]
− qα̇p − Y Ḋ . (7.2.4)

The thermodynamic admissibility of the evolutionary equations for χ̇ are satisfied by postulating
a dissipation potential Φ = Φ(ς;χ). Assuming, Φ = Φ(τ , q, Y ;D), and applying the generalized
normality rule, one has

1

2
F · ˙[[Cp]−1] · F> · [be]−1 = −γ̇ ∂τΦ(τ , q, Y ;D) ,

α̇p = −γ̇ ∂qΦ(τ , q, Y ;D) ,

Ḋ = −γ̇ ∂Y Φ(τ , q, Y ;D) ,





(7.2.5)



132 7.2. Theory

where γ̇ is the so-called plastic multiplier. Explicit forms of the state and evolution equations
require specification of the potentials Φ and Ω. The total Helmholtz free energy is additively
decomposed into elastic Ψe and plastic Ψp parts as follows,

Ψ(be, αp, D) = Ψe(be, D) + Ψp(αp) . (7.2.6)

Following [175] the state coupling with isotropic elasticity and damage is governed using the
damage dependent elastic free energy Ψe(be, D) = [1 − D]Ψ̃e(be) where the effective elastic
free energy Ψ̃e is additively decomposed into volumetric Ψ̃e,vol and deviatoric Ψ̃e,dev parts with
Ψ̃e = Ψ̃e,vol + Ψ̃e,dev where

Ψ̃e,vol(be) =
1

2
κ [log(Je)]2 ,

Ψ̃e,dev(be) = µ

[
1

2
log(b̂e)

]
:

[
1

2
log(b̂e)

]
,





(7.2.7)

where κ and µ respectively denote the bulk and the shear moduli. Je denotes the elastic Jacobi
determinant and b̂e := J−2/3be represents the isochoric elastic Finger tensor. Ψp(αp) represents
the plastic free energy for isotropic hardening with

Ψp(αp) =
C

n+ 1

[
[αp + αp0]n+1 − [αp0]n+1

]
− τ0α

p , (7.2.8)

where αp0, C, n and τ0 are material parameters. Now, letting ee = [1/2] log(be) denote the
elastic spatial logarithmic strain tensor with tr(ee) = log(Je) and dev(ee) = ee− [1/3]tr(ee)1 =
[1/2] log(b̂e) and substituting Equations (7.2.7) and (7.2.8) into Equation (7.2.3) the state equa-
tions for the dual internal variables are found

τ = [1−D] [κ tr(ee)1 + 2µdev(ee)] ,
q = C[αp + αp0]n − τ0 ,

Y = −1

2
κ [tr(ee)]2 − µ [dev(ee) : dev(ee)] .





(7.2.9)

In applications, it is more convenient to represent Y in terms of the stress components

Y = − 1

2[1−D]2

[
1

9κ
[tr(τ )]2 +

1

2µ
[s : s]

]
, (7.2.10)

with the Kirchhoff stress deviator s := dev(τ ), which is modified to give

Y = − 1

4µ[1−D]2

[
[τ : τ ] +

2µ− 3κ

9κ
[tr(τ )]2

]
. (7.2.11)

For the dissipation potential Φ an additive decomposition into plastic Φp,flow and damage Φd

parts are postulated viz.

Φ = Φp,flow(τ , q;D) + Φd(Y ;D) , (7.2.12)

where Φp,flow ≤ 0 is the yield potential which characterizes the elastic domain and sets the stage
for kinematic coupling between plasticity and damage with

Φp,flow(τ , q;D) = τ̃vMises − [τ0 + q] . (7.2.13)

Defining τ̃ = τ/[1−D] as the effective stress tensor, τ̃vMises =
√

3/2 [s̃ : s̃] represents the effec-
tive von Mises equivalent stress with s̃ = dev(τ̃ ). Hence, τ0 corresponds to the initial yield stress.



Chapter 7. Variants of Lemaitre’s Damage Model 133

For the isotropic damage, the following damage dissipation potential is used [175]

Φd =
S

m+ 1

〈−Y − Y0

S

〉m+1 1

[1−D]β
. (7.2.14)

where S, m, Y0 and β are regarding material parameters.

Substituting Equations (7.2.13) and (7.2.14) into Equation (7.2.5) the evolution equations are
derived,

1

2
F · ˙[[Cp]−1] · [F ]> · [be]−1 = γ̇

1

[1−D]

3

2

s̃

τ̃vMises
,

α̇p = γ̇ ,

Ḋ = γ̇

〈−Y − Y0

S

〉m 1

[1−D]β
.





(7.2.15)

With the yield function given in Equation (7.2.13), Equations (7.2.9) and (7.2.15) form the
complete mathematical description of the material model.

7.3. Model L1: A Lemaitre Model Based Fracture Criterion

In this section, a Lemaitre model based fracture criterion, i.e., an uncoupled version of Lemaitre’s
model will be developed. Hence, the state coupling of damage and elasticity, also the kinematic
coupling damage and plasticity is ignored. Thus the concept of effective stress is not required
any more and the von Mises equivalent stress is defined as τvMises =

√
3/2 [s : s]. With this

reduction αp represents the equivalent plastic strain. Denoting the yield stress as τy := τ0 + q
the state and the evolution equations in Equations (7.2.9) and (7.2.15) reduce to

τ = κ tr(ee)1 + 2µ dev(ee) ,
τy = C[αp + αp0]n ,

}
(7.3.1)

and
1

2
F · ˙[[Cp]−1] · F> · [be]−1 = α̇p

3

2

s

τvMises
, (7.3.2)

where for the fully developed plastic flow τy = τvMises. The damage evolution in Equation
(7.2.15) is rewritten

Ḋ = α̇p
〈−Y − Y0

S

〉m 1

[1−D]β
. (7.3.3)

Equation (7.3.3) is integrated to give

D =

∫
ω (τ,D) α̇pdt , (7.3.4)

where using Equation (7.3.3) and the integrand for Lemaitre based fracture criterion ω(τ , D)
for Y0 = 0 reads

ω (τ , D) =

[
Y̌

S

]m
1

[1−D]β
. (7.3.5)

for Y ≥ 0. In the current form Y is the following modified form of Equation (7.2.11)

Y̌ =
1

4µ

[
[τ : τ ] +

2µ− 3κ

9κ
[tr(τ )]2

]
. (7.3.6)
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It is assumed that once the explicit integration for D in Equation (7.3.4) reaches the damage at
fracture Df , the material fails without any progressive softening accounted for.

In demonstration of the behavior of any fracture model, it is convenient to analyze the isochronous
fracture surfaces drawn in different spaces such as the stress triaxiality ratio η and the Lode
parameter θ, θ or L space (η, θ), (η, θ) or (η, L), the principal stress space (τ1, τ2, τ3), the prin-
cipal strain and pressure space (ep1, e

p
2, e

p
3, p); see, e.g., [192, 29, 339] among others where the

definitions of these components and their interrelations are given in 7.A. In order to accom-
plish this analytically three important ingredients are required, non-rotating principal axes of
deformation, proportional strain paths and rigid plasticity.

Non-rotating principal axes of deformation. As explained in 7.B, with the non-rotating
axes of deformation one has the following flow rule in terms of the rate of logarithmic plastic
strain ėp

ėp = α̇p
3

2

s

τvMises
, (7.3.7)

where tr(ėp) = 0. The flow rule or plastic stress-strain relations in Equations (7.3.1) and (7.B.8)
are Prandtl-Reuss relations. If written in terms of total strain rates ė, Levy-Mises relations are
obtained.

Proportional strain paths. For isotropic plasticity with proportional strain paths the ratio
sν/τvMises is constant1 for ν = 1, 2, 3. Hence, using the flow rule in Equation (7.3.2) and the
identity for the equivalent plastic strain rate α̇p =

√
2/3 ėp : ėp which is valid for isotropic

plasticity, and an immediate integration gives the total principal plastic strains

epν = αp
3

2

sν
τvMises

for ν = 1, 2, 3 , (7.3.8)

where τvMises = τy = C[αp + αp0]n with

αp =

√
2/3

[
[ep1]

2
+ [ep2]

2
+ [ep3]

2
]
. (7.3.9)

Equation (7.3.8), due to Hencky [120], allows relating current state of stress with plastic strains
independent of the history of loading. Hence, total or deformation theory of plasticity as a
specific case of the incremental or flow theories is carried out for the case of proportional loading.

Rigid plasticity. This point is important for successive developments where the assumption
for small elastic strains as compared to the plastic ones is used. Hence, for rigid plasticity
assumption one has ep ' e. With this assumption together with plastic incompressibility one
has J = Jp = 1, hence there is no distinction between the Kirchhoff and Cauchy stress tensor.
Consequently, for the rest of the chapter σ is used as the main stress measure.

In the following the isochronous fracture surface, say g = 0, is presented interchangeably in the

1Note that for proportional strain paths for isotropic plasticity one has the principal strain rate ratios equal
to the deviatoric stress ratios, i.e., ėp2/ė

p
1 = s2/s1 = β, where β denotes the constant loading ratio. Hence,

letting s2 = βs1, the traceless property of the deviatoric stress tensor will yield s3 = −[1 + β]s1. Moreover,
the equivalent von Mises stress description gives τvMises =

√
[3/2] [s2

1 + s2
2 + s2

3] = s1

√
3 [1 + β + β2]. Thus,

s1/τvMises = 1/
√

3 [1 + β + β2] is constant. Hence is s1/ [C[αp + αp0]n] for fully developed plastic flow.
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spaces, (η, θ, αpf ), (η, θ, αpf ), (η, L, αpf ), (σ1, σ2, σ3), (ep1, e
p
2, e

p
3, p) using corresponding parametriza-

tions. With an abuse of notation, these representations are respectively denoted by g(η, θ, αpf ),

g(η, θ, αpf ), g(η, L, αpf ), g(σ1, σ2, σ3) and g(ep1, e
p
2, e

p
3, p). The same notation applies to any reparametriza-

tion of a function.

7.3.1. Isochronous Fracture Surface Representations at Various Spaces

For subsequent developments, it is sensible to reiterate the damage driving force in Equation
(7.2.11) in terms of principal Cauchy stresses σν for ν = 1, 2, 3

Y̌ =
1

4µ

[[
σ2

1 + σ2
2 + σ2

3

]
+

[
2µ

κ
− 3

]
p2

]
, (7.3.10)

where p = tr(σ)/3 = [σ1 + σ2 + σ3] /3 represents the hydrostatic stress. In the following, the
fracture surface plots are studied based on hypothetical material parameters for (uniform) radial
stress paths.

7.3.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf )

With these definitions, the damage driving force in Equation (7.3.10) is reiterated which proves
useful for latter developments

Y̌ =
1

4µ
[C[αp + αp0]n]

2
f (η, θ) , (7.3.11)

with the plastic flow condition C[αp + αp0]n = σvMises and

f (η, θ) :=
3∑

ν=1

[
η +

2

3
cos

(
2 [ν − 1]

3
π − θ

)]2

+

[
2µ

κ
− 3

]
η2 . (7.3.12)

Then, for the standard model following simplification applies

3∑

ν=1

[
η +

2

3
cos

(
2 [ν − 1]

3
π − θ

)]2

=
2

3
+ 3η2 . (7.3.13)

Hence,

f (η, θ) =
2

3
+

2µ

κ
η2 . (7.3.14)

That is, in the conventional Lemaitre model, the damage driving force has no Lode parameter
dependence.

Coming to the damage integration, one has

dD = dαp
[
Y̌

S

]m
1

[1−D]β
. (7.3.15)

Substituting Equation (7.3.11) into the right-hand side of Equation (7.3.15), rearranging for the
use of separation of variables during integration and using the condition that triaxiality and the
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Lode parameter is constant thanks to the radial loading paths, one can take f (η, θ) out of the
integral and reach

Df∫

0

[1−D]β dD =

[
C2f (η, θ)

4µS

]m αpf∫

0

[αp + αp0]2mndαp , (7.3.16)

where αpf and Df are equivalent plastic strain and damage at fracture. For Df ≤ 1, one has

[
1− [1−Df ]β+1

]

[β + 1]
=

[
C2f (η, θ)

4µS

]m [αpf + αp0]2mn+1

[2mn+ 1]
, (7.3.17)

where the fracture strain is computed as

αpf =


[2mn+ 1]

[
4µS

C2f (η, θ)

]m
[
1− [1−Df ]β+1

]

[β + 1]




1
2mn+1

− αp0 . (7.3.18)

Now for Df = 1, which is the theoretical damage threshold for coupled damage models, one
reaches

αpf = B [f (η, θ)]
−m

2mn+1 − αp0 , (7.3.19)

using the following notation

B =

[
[2mn+ 1]

[β + 1]

[
4µS

C2

]m] 1
2mn+1

. (7.3.20)

Substituting Equation (7.3.14) into the right-hand side of Equation (7.3.19)

αpf = αpf (η, θ) = B

[
2

3
+

2µ

κ
η2

] −m
2mn+1

− αp0 . (7.3.21)

Since an explicit Lode parameter dependence does not exist, identical contour plots are due for
αpf (η, θ), αpf (η, θ) and αpf (η, L) as given in Figure 7.1. The maximum equivalent strain to fracture
occurs under pure shear stress conditions, whereas it symmetrically decreases further away from
this point. Corresponding fracture surfaces are g(η, θ, αpf ) = 0, g(η, θ, αpf ) = 0 and g(η, L, αpf ) = 0

with g(η, θ, αpf ) = αpf − α
p
f (η, θ), g(η, θ, αpf ) = αpf − α

p
f (η, θ) and g(η, L, αpf ) = αpf − α

p
f (η, L),

respectively.

7.3.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3, p)

The representation of the fracture surface in terms of (σ1, σ2, σ3) requires corresponding repre-
sentations of f and αpf . Using Equation (7.3.14) and η = p/σvMises

f(σ1, σ2, σ3) =
2

3
+

2µ

κ

[
p(σ1, σ2, σ3)

σvMises(σ1, σ2, σ3)

]2

. (7.3.22)

whereas

σvMises(σ1, σ2, σ3) =

√
[σ1 − σ2]2 + [σ2 − σ3]2 + [σ3 − σ1]2

2
. (7.3.23)
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Figure 7.1.: Equivalent fracture strain αpf contours for the damage criterion based on original

Lemaitre’s damage model. Plots are given on spaces (a) (η, θ), (b) (η, θ) and (c) (η, L). Selected
parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500
MPa, αp0 = 0.001, n = 0.15.

Finally,

αpf (σ1, σ2, σ3) =

[
σvMises(σ1, σ2, σ3)

C

] 1
n

− αp0 . (7.3.24)

Hence, using Equations (7.3.22) and (7.3.24) the fracture surface g(σ1, σ2, σ3) = 0 is determined

g(σ1, σ2, σ3) =

[
σvMises(σ1, σ2, σ3)

C

] 1
n

−Bf(σ1, σ2, σ3)
−m

2mn+1 − αp0 . (7.3.25)
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Figure 7.2.: Geometrical representation of the Lode angle θ, α and (a) von Mises yield locus
on the deviatoric-strain plane and (b) the principal deviatoric stress components (ep1, e

p
2, e

p
3) of

point P on the deviatoric-strain plane, note that ep1 + ep2 + ep3 = 0, i.e. linear dependence. Note
that for 3-dimensional representations of the fracture locus in (ep1, e

p
2, e

p
3, p) the transformation

of (ep1, e
p
2, e

p
3) to (epx, e

p
y) is required.

Likewise, the representation of the fracture surface in terms of (ep1, e
p
2, e

p
3, p) as given in Figure

7.2 requires corresponding representations of f and αpf . For the former, the substitution of

σvMises(e
p
1, e

p
2, e

p
3) = C[αpf (ep1, e

p
2, e

p
3) + αp0]n into Equation (7.3.22) is realized to give

f(ep1, e
p
2, e

p
3, p) =

2

3
+

2µ

κ

[
p

σvMises(e
p
1, e

p
2, e

p
3)

]2

, (7.3.26)
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where for αpf = αpf (ep1, e
p
2, e

p
3) Equation (7.3.9) is used. The consequent representation of the

function denoting the fracture surface is

g(ep1, e
p
2, e

p
3, p) = αpf (ep1, e

p
2, e

p
3)−B

[
2

3
+

2µ

κ

[
p

σvMises(e
p
1, e

p
2, e

p
3)

]2
] −m

2mn+1

. (7.3.27)

The sketch of the fracture surface represented by Equation (7.3.27) on the space (ep1, e
p
2, e

p
3, p) is

given in Figure 7.3(b). The derivations in construction of the plot in Figure 7.3(b) uses

ep1 = 1
2

[√
3epx − epy

]
,

ep2 = epy ,

ep3 = 1
2

[
−
√

3epx − epy
]
.



 (7.3.28)

with ep3 = −ep1−ep2. Hence, the triangular coordinates (ep1, e
p
2, e

p
3) are transformed to the Cartesian

coordinates (epx, e
p
y). Using Equation (7.3.25), the sketch of the isochronous fracture surface in

the principal stress space (σ1, σ2, σ3) is given in Figure 7.3(a). Similarly, using Equation (7.3.27)
with the transformations given in Equation (7.3.28) and the axis normal to the (epx, e

p
y)−plane

as the pressure axis, the fracture surface plot is realized as given in Figure 7.3(b). It is seen that
both the stress and strain space plots has the circular sections; hence, the independence from
the Lode parameter is also graphically seen. Also the symmetry with respect to the Π plane,
that is the plane with zero triaxiality, is obvious from both of the plots in stress and strain
spaces. As p→ ±∞ the fracture locus converges to the von Mises type cylindrical yield surface.
For very high values of positive hydrostatic pressure decohesion may precede plastic flow, thus,
direct extrapolation of the plastic response might become at stake. Hence, the ductile character
of fracture. This is remedied in the literature following Galileo hypothesis, i.e. hypothesis of
critical stress, by proposing cut-offs for the normal stress magnitudes which results in sharpened
pencil-like fracture surfaces. It should be noted that in the current chapter assumptions of this
kind are not used.

(a) (b)

Figure 7.3.: Isochronous fracture surfaces on (a) (σ1, σ2, σ3) in MPa, (b) (ep1, e
p
2, e

p
3) space for

the damage criterion based on the quasi-unilateral modification of the Lemaitre’s damage model.
Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa,
C = 500 MPa, αp0 = 0.001, n = 0.15.
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Figure 7.4 depicts the sections of the fracture surfaces plotted on the triangular plastic strain
coordinates. Circular sections mentioned for Figure 7.3 can be clearly seen. Also in agreement
with the observations on Figure 7.3 uniform shrinkage of the fracture surface by increasing pos-
itive hydrostatic stresses or decreasing negative hydrostatic stresses symmetrically with respect
to the zero hydrostatic stress plane is seen.
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Figure 7.4.: Fracture loci projected on the (deviatoric) plastic strain plane from outer to inner
p = 0, 250, 500, 1000 MPa and equivalently p = 0,−250,−500,−1000 MPa. Selected parameters
are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500 MPa,
αp0 = 0.001, n = 0.15.

7.3.1.3. State of Plane Stress and Planar Plots for the Fracture Loci

Equation (7.3.21) gives the stress triaxiality ratio dependence under the state of plane stress
states as well. For the representation in (σ1, σ2), it is sufficient to modify Equation (7.3.25) with
σ3 = 0. For the representation in (ep1, e

p
2), s3 = −p is used and Equation (7.3.8) to obtain

η =
p

σvMises
= − s3

σy
= −2

3

ep3
αp

. (7.3.29)

Substituting Equation (7.3.29) into the right-hand side of Equation (7.3.27) with the plastic
incompressibility condition ep3 = −ep1 − ep2 allows one reach the planar fracture locus. Figure
7.5 shows the fracture loci corresponding to the conventional Lemaitre damage model drawn at
triaxiality, equivalent plastic strain, principal stress and principal strain spaces with the given
derivations. In all similar subsequent figures, the pairs (σ1, σ2) and (ep1, e

p
2) respectively denote

the in-plane principal stress and strain components, which are not necessarily ordered. At the
first glance, a marked fallacy occurs in the symmetry of the fracture behavior with respect
to the pure shear line, i.e., η = 0, i.e., in the triaxiality space. On the stress and the strain
spaces a two-fold symmetry with respect to the pure shear and equi-biaxial stress (or strain)
lines is observed. The symmetry with respect to the equi-biaxial stress (or strain) lines is a
natural outcome of the material isotropy. This means that the fracture strain is affected only
by the magnitude of the components of the pairs (σ1, σ2) and (ep1, e

p
2) but not by their signs.

In other words, tensile and compressive character of the stress components is immaterial. At
the extremes, this is a declaration of equivalence of a tensile-tensile equi-biaxial stress state
with a compressive-compressive one, with equal equivalent stresses, as the strain to fracture is
concerned. Once the void dynamics is taken into account this is not plausible. The voids tend
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to exponentially grow under tensile hydrostatic stresses whereas shrink under compressive ones.
Thus, compressive stress states promote material ductility and eventually formability; see, e.g.,
[59, 253, 286].
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Figure 7.5.: Fracture loci drawn at (a) triaxiality equivalent fracture strain, (b) principal stress
and (c) principal strain spaces for conventional Lemaitre’s damage model for plane stress state.
Inconsistencies are marked with red over the plots at various spaces. Selected parameters are
µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500 MPa, αp0 = 0.001,
n = 0.15.

In order to assess the implications in metal forming practice, it is sensible to review the stress
state based forming process classification, according to DIN8582, given in Figure 7.6. The red
framed process groups involve at least one compressive principal stress components. Accord-
ingly, one would expect that, for these processes, the predictions of the Lemaitre’s model in its
conventional form will be incorrect regarding not only the zone but also the time of fracture.
Same comments are valid for strain paths involving cyclic tensile-compressive load reversals.
This inherently involves the problem of the transferability of the identified damage parameters.
Regarding the service life of the product, one should recall that the crashworthiness analyses
are almost always dominated by compressive stresses.
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Figure 7.6.: Classification of forming processes according to DIN8582. Red framed process
subclasses constitute the ones for which the conventional Lemaitre’s damage model falls short.
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Accordingly, the underlined problems considerably confine the use of conventional Lemaitre’s
damage model to the tensile forming process analyses. These are inevitably complemented by
damage characterization tests which are also of tensile character only as seen in countless studies
in the literature.

7.4. Model L2: Extension to Quasi-Unilateral Damage Evolution

It is possible to cure this pathological symmetry with respect to the pure shear stress state by
modifying the damage driving force Y̌ in Equation (7.3.10) as follows

Y̌ ⊕ =
1

4µ

[[
〈σ1〉2 + 〈σ2〉2 + 〈σ3〉2

]
+

[
2µ

κ
− 3

]
〈p〉2

]
,

+
h

4µ

[[
〈−σ1〉2 + 〈−σ2〉2 + 〈−σ3〉2

]
+

[
2µ

κ
− 3

]
〈−p〉2

]
.

(7.4.1)

In this modification, due to [166], the quasi-unilateral damage evolution parameter h ∈ [0, 1]
acts as a weighting factor which scales the energetic contribution of the compressive principal
stresses and the hydrostatic stress. Accordingly, for only the tensile principal and hydrostatic
stress components contribute to damage development whereas the conventional Lemaitre based
fracture criterion given in Equation (7.3.10) is recovered for h = 1.

7.4.1. Isochronous Fracture Surface Representations at Various Spaces

7.4.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf )

Following similar steps as before while using the quasi-unilateral enhancement in Equation (7.4.1)
results in the following modified form of Equation (7.3.19)

αpf = B
[
f⊕(η, θ)

] −m
2mn+1 − αp0 , (7.4.2)

with

f⊕ (η, θ) = f+ (η, θ) + hf− (η, θ) , (7.4.3)

where f+ (η, θ) and = f− (η, θ) are defined using Equation (7.A.3) and Equation (7.3.11) together
with Equation (7.4.1)

f+ (η, θ) =
∑3

ν=1

〈
η + 2

3 cos
(

2(ν−1)
3 π − θ

)〉2
+
[

2µ
κ − 3

]
〈η〉2 ,

f− (η, θ) =
∑3

ν=1

〈
−η − 2

3 cos
(

2(ν−1)
3 π − θ

)〉2
+
[

2µ
κ − 3

]
〈−η〉2 .



 (7.4.4)

Representation in (η, θ) and (η, L) requires corresponding substitutions with Equation (7.A.1)
and Equation (7.A.7) into the right-hand side of Equation (7.4.1), respectively. The plot of
these αpf contours for a set of selected parameters in the spaces of (η, θ), (η, θ) and (η, L) are
given in Figure 7.7. Once compared to Figure 7.1 unlike the conventional Lemaitre based fracture
strain, which boils down to a mere stress triaxiality ratio dependent expression given in Equation
(7.3.21), Equation (7.4.3) accounts for the Lode angle dependence as well. For h = 0.2, it is
seen that there occurs a steep increase of the fracture strain towards the uniaxial compression
point as anticipated.
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Figure 7.7.: Equivalent fracture strain αpf contours for the damage criterion based on the quasi-
unilateral modification of the Lemaitre’s damage model. Plots are given on spaces (a) (η, θ),
(b) (η, θ) and (c) (η, L). Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1,
m = 1, S = 0.5 MPa, C = 500 MPa, αp0 = 0.001, n = 0.15, h = 0.2.

7.4.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3, p)

In order to represent the fracture surface for criterion with the quasi-unilateral enhancement in
terms of the triad (σ1, σ2, σ3), one starts with using Equation (7.3.11) to reach

f⊕(σ1, σ2, σ3) = 4µ
Y̌ ⊕(σ1, σ2, σ3)

[σvMises(σ1, σ2, σ3)]2
, (7.4.5)

where for Y̌ ⊕(σ1, σ2, σ3) Equation (7.4.1) is used. Hence, replacing f in Equation (7.3.25) with
the enhanced f⊗ (η, θ), one reaches the function g⊕ = 0 representing the fracture surface for the
quasi-unilateral enhancement

g⊕(σ1, σ2, σ3) =

[
σvMises(σ1, σ2, σ3)

C

] 1
n

−Bf⊕(σ1, σ2, σ3)
−m

2mn+1 − αp0 . (7.4.6)

Now, using σν/σvMises = η + sν/σvMises with Equation (7.3.8) to give sν/σvMises = [2/3][epν/αp]
for ν = 1, 2, 3

f+(ep1, e
p
2, e

p
3, p) = 1

[σvMises(e
p
1,e

p
2,e

p
3)]

2

[∑3
ν=1

〈
p+ 2

3
epν

αp(ep1,e
p
2,e

p
3)

〉2
+
[

2µ
κ − 3

]
〈p〉2

]
,

f−(ep1, e
p
2, e

p
3, p) = 1

[σvMises(e
p
1,e

p
2,e

p
3)]

2

[∑3
ν=1

〈
−p− 2

3
epν

αp(ep1,e
p
2,e

p
3)

〉2
+
[

2µ
κ − 3

]
〈−p〉2

]
.





(7.4.7)
Thus, letting f⊕(ep1, e

p
2, e

p
3, p) = f+(ep1, e

p
2, e

p
3, p)+hf−(ep1, e

p
2, e

p
3, p) the consequent representation

of the function denoting the fracture surface is

g⊕(ep1, e
p
2, e

p
3, p) = αpf (ep1, e

p
2, e

p
3)−Bf⊕(ep1, e

p
2, e

p
3, p)

−m
2mn+1 − αp0 . (7.4.8)

The plot of the fracture envelope in principal stress space (σ1, σ2, σ3) is given in Figure 7.8(a).
Using the triangular to Cartesian coordinate transformation as done previously, the plot of the
fracture surface in the space (ep1, e

p
2, e

p
3, p) is realized as given in Figure 7.8(b). One should note

that in the current correction h also controls the symmetry with respect to the Lode parameter.
If h = 1 complete symmetry is due whereas otherwise the symmetry is lost. This time as
p → −∞ the fracture surface expands indefinitely wheres for p → ∞ it converges again to the
von Mises type cylindrical yield surface no matter what the value of h is.



Chapter 7. Variants of Lemaitre’s Damage Model 143

(a) (b)

Figure 7.8.: Isochronous fracture surfaces on (a) (σ1, σ2, σ3) in MPa, (b) (ep1, e
p
2, e

p
3) space for

the damage criterion based on the quasi-unilateral modification of the Lemaitre’s damage model.
Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa,
C = 500 MPa, αp0 = 0.001, n = 0.15, h = 0.

For a more detailed analysis, Figure 7.9 depicts the sections of the fracture surfaces plotted on
the triangular plastic strain coordinates. A comparison with Figure 7.4 shows that as anticipated
the quasi-unilateral damage evolution introduces a (generalized) tension-compression asymmetry
to the fracture response. For the selected range of parameters it is shown that the section
does not necessarily represent a convex shape and as h increases the concavity also increases.
Although still the shapes preserve three direct (rotational) symmetries through 0, π/3 and 2π/3
and three reflectional symmetries through the axes representing axisymmetric stress states, the
Lode parameter dependence added through the introduction of the parameter h is obvious as
also seen in the analytical expressions.
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Figure 7.9.: Fracture loci projected on the (deviatoric) plastic strain plane for p = 0, from outer
to inner h = 0, 0.2, 0.5, 1. Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1,
m = 1, S = 0.5 MPa, C = 500 MPa, αp0 = 0.001, n = 0.15.
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7.4.1.3. State of Plane Stress and Planar Plots for the Fracture Loci

For the state of plane stress, the stress triaxiality ratio is linked to the Lode angle θ with the
following expression

θ =
4

3
π − arccos

(
−3

2
η

)
. (7.4.9)

Hence using Equation (7.4.9), it is possible to represent the fracture surface merely in terms
of triaxiality ratio. For the representations in (σ1, σ2) and (ep1, e

p
2) same methodology given in

the previous section applies. Eventually, corresponding fracture loci are plotted as given in
Figure 7.10 in triaxiality, equivalent plastic strain, principal stress and principal strain spaces.
In Figure 7.10, the curves in black represent the loci for h = 0 whereas the gray coloured regions
represent the area that can be filled for 0 < h < 1. As seen, for h = 0 the symmetry of the
fracture loci with respect to the pure shear line is amended and for the uniaxial compression,
i.e. η = −1/3, the fracture loci show an asymptotic behavior. This behavior, however for the
plane stress state, is in correlation with the studies in the literature which state that ductile
fracture never occurs under the triaxiality ratios smaller than that of the uniaxial compression
i.e. η ≤ −1/3; for a recent study, see, e.g., [192]. As anticipated from the formulation, for all
biaxial stretching states, i.e., the stress states taking place at the first quadrant of the principal
plane-stress space with η ≥ 1/3, there is no distinction between the predictions of the current
modification and the conventional Lemaitre’s model.
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Figure 7.10.: Fracture loci drawn at (a) triaxiality equivalent fracture strain, (b) principal stress
and (c) principal strain spaces for Lemaitre’s damage model with quasi-unilateral damage growth
for plane stress state. Curves are given for different choices of h. h = 1 (thick gray curves),
h = 0.2 (thin black curves) and h = 0 (thick black curves). Gray coloured regions stand for
0 < h < 1. Inconsistencies are marked with red and yellow arrows. Selected parameters are
µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500 MPa, αp0 = 0.001,
n = 0.15.

The results presented show relative superiority of the modification with quasi-unilateral damage
evolution as compared to the conventional Lemaitre model. However, once today’s state of the
art research regarding low and negative triaxiality fracture is concerned, there is still room for
further developments. Pioneering studies on certain aluminum alloys by Wierzbicki and col-
leagues questioned the monotonic dependence of the fracture strain on the triaxiality ratio as
predicted by the fracture criteria relying on void growth computations, as in the case of [259], or
porous plasticity models, as in the case of [111, 110]; see, e.g., [29]. According to these findings,
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low and negative triaxiality as well as plane strain regimes are prone to so-called shear fracture2.
As a consequence, new damage models, or the modifications introduced to the existing ones, be-
sides the stress triaxiality ratio, devise an additional stress dependent parameter in the damage
evolution equation as a measure to distinguish axisymmetric stress states from the generalized
shear stress states. For this purpose Lode parameter, the third invariant of the deviatoric stress
tensor J3 or the maximum shear stress are used3; see, e.g., [29]. Once the fracture loci in these
studies are observed, it is seen that the produced curves account for two local minima in the
vicinity of generalized shear stress points within the interval η ∈ [−1/3, 2/3] for plane stress
states. Taking this behavior as a basis of comparison, one realizes that the current enhancement
falls short in its mathematical flexibility to supply a reduced fracture strain at the plane strain
valley, i.e., the vicinity of η = 1/

√
3, as compared to the biaxial strain state. On Figure 7.10

this weakness is shown with yellow arrows. Once the pure shear stress point is concerned, i.e.,
η = 0, reduction of the fracture equivalent plastic strain is possible by using 0 < h < 1 at the
expense of violating the standpoint which disclaims fracture occurrence for η ≤ −1/

√
3. On

Figure 7.10 pure shear points are marked with red arrows.

Since in sheet metal forming practice the admissible triaxiality interval is limited by the sheet
geometry as well as buckling the concept of shear fracture gains additional importance. 4 Mainly
two characteristic maximum shear stress states can be defined on a thin sheet. As shown on
the rectangular deep drawing process in Figure 7.11, in-plane maximum shear is due in draw-
ing region5 where the pure shear stress state takes place with η ∼ 0. Out-of-plane maximum
shear takes place in bending region where plane strain stress state is observed with η ∼ 1/

√
3.

Depending on this characterization, the former condition, i.e., maximum in-plane shear, stands
for the pure shear stress state and represented by the yellow arrows on Figure 7.10, whereas red
arrows represent, the latter plane strain condition, i.e., maximum out-of-plane shear.

2This point needs a clarification based on the void dynamics, i.e. from a micromechanical point of view. Under
the effect of the hydrostatic stresses the voids grow. Under shear stress state, although an actual growth of the
existing voids is not due, two mechanisms can be effective. First one is the destabilizing effects of inter-void
linking with material rotation under shear and eventual void interaction. The second one is the nucleation of
new voids around secondary phases with inclusion matrix separation; see, e.g., [224]. Mostly a forming process
involves mixed stress states blending hydrostatic and shear stresses.

3In various models proposed in the literature Lode parameter dependence is accounted for in the yield function,
see, e.g., [20] or more recently [66]. Here, the size of the yield surface is controlled by the the hydrostatic
pressure whereas the its shape by the Lode angle. In the current study any dependence of the yield stress on
the hydrostatic pressure and Lode parameter dependence is not assumed.

4In sheet metal forming analysis thin shell elements with vanishing out of plane stresses, i.e. plane stress state,
are used which results in a triaxiality ratio confined to η ∈ [−1/3, 2/3]. Due to lack of the out-of-plane stress
component, such elements show premature necking and fracture under normal loadings. Accordingly, fracture
analysis with thin shell elements is not suggested. Nevertheless, it should be noted that, any free surface
fracture either in bulk or sheet metal forming occurs under plane stress conditions.

5For high strength steels, shear fracture occurrence in the drawing region is shown in, e.g., [183] among others.
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Figure 7.11.: In plane (left) and out of plane (right) shear stress states in deep drawing as a
sheet metal forming process. The letters on the drawn sheet denote the following: B: Bending,
BB: Bending Back, PS: Plane Strain, BBS: Balanced Biaxial Stretching, D: Drawing. Adapted
from [312].

7.5. Model L3: Extension to Shear Modification

This leads to the next enhancement which follows in the lines of empirical multiplicative6 mod-
ification of the Oyane’s fracture criterion, [241] by [192]. Accordingly, using the definition of
maximum shear stress τmax the damage rate is modified by a factor which represents the shear
correction exponent

Ḋ = α̇p
[

2τmax

σvMises

]δ [ Y̌ ⊕
S

]m
1

[1−D]β
. (7.5.1)

In Equation (7.5.1) the exponent δ represents the shear damage parameter. For δ = 0 Lemaitre’s
damage model with quasi-unilateral enhancement is recovered. For integration, one starts by
substituting Equation (7.A.3) into τmax = [σ1 − σ3]/2 with σ1 > σ2 > σ3 which gives

τmax =
1

2

[
σvMises

[
η +

2

3
cos (θ)

]
− σvMises

[
η +

2

3
cos

(
4

3
π − θ

)]]
. (7.5.2)

Normalization with respect to the von Mises equivalent stress gives the following non-dimensional
expression used in Equation (7.5.1)

h(θ) =
2τmax

σvMises
=

2

3

[
cos (θ)− cos

(
4

3
π − θ

)]
. (7.5.3)

7.5.1. Isochronous Fracture Surface Representations at Various Spaces

7.5.1.1. Representations in (η, θ, αpf ), (η, θ, αpf ) and (η, L, αpf )

Since h(θ) in Equation (7.5.3) is constant during radial loading paths, it leads to the following
immediate integration

αpf = B
[
h(θ)δf⊕(η, θ)m

] −1
2mn+1 − αp0 . (7.5.4)

6On the contrary, an additive modification is introduced to the void growth expression in the Gurson’s model by
[224]. Unlike original Gurson’s model, this modification is not micromechanical but rather phenomenological.
In the same sense, unlike original Lemaitre’s damage model, the current extension is empirical and does
not follow the formal steps of internal variables of thermodynamics. Recently, other multiplicative shear
modifications for the Lemaitre model proposing a Lode parameter dependent dissipation potential is given in
[67] also in [195]. Both works propose a Lode parameter dependent damage rate form following the formal steps
of internal variable thermodynamics drived from a Lode parameter dependent damage dissipation potential.
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Like in the previous model, representations in (η, θ) and (η, L) follow standard substitutions
which have to be considered for the function h(θ) also. For δ = 3 and h = 0 the plot of αpf
contours for in the space of (η, θ), (η, θ) and (η, L) are given in Figure 7.12. As compared to
Figure 7.7 it is seen that h(θ) with the selected δ controls the curvature in θ direction. Once
h = 1, this outcome is completely symmetric with respect to θ = π/6, or equivalently with
respect to θ = L = 0.
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Figure 7.12.: Equivalent fracture strain αpf contours for the damage criterion based on the shear
and quasi-unilateral modification of the Lemaitre’s damage model. Plots are given on (a) (η, θ),
(b) (η, θ) and (c) (η, L). Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1,
m = 1, S = 0.5 MPa, C = 500 MPa, αp0 = 0.001, n = 0.15, h = 0.2, δ = 10.

7.5.1.2. Representation in (σ1, σ2, σ3) and (ep1, e
p
2, e

p
3)

g� = 0 representing the fracture surface for the shear and quasi-unilateral enhancement in terms
of stress principals read

g�(σ1, σ2, σ3) =

[
σvMises(σ1, σ2, σ3)

C

] 1
n

−B
[
h(σ1, σ2, σ3)δf⊕(σ1, σ2, σ3)

] −m
2mn+1 − αp0 , (7.5.5)

where for h(σ1, σ2, σ3) the following is used

h(σ1, σ2, σ3) =
σ1 − σ3

σvMises(σ1, σ2, σ3)
. (7.5.6)

Coming to the representation g�(ep1, e
p
2, e

p
3, p) one has

g�(ep1, e
p
2, e

p
3, p) = αpf (ep1, e

p
2, e

p
3)−B

[
h(ep1, e

p
2, e

p
3)δf⊕(ep1, e

p
2, e

p
3, p)

] −m
2mn+1 − αp0 . (7.5.7)

Here, using [σ1 − σ3] = [s1 − s3] and sν/σvMises = [2/3][epν/αp] for ν = 1, 2, 3

h(ep1, e
p
2, e

p
3) =

2

3

e1 − e3

αp(ep1, e
p
2, e

p
3)
, (7.5.8)

with ep1 ≥ ep2 ≥ ep3. Corresponding plots of the isochronous fracture surfaces in principal stress
space (σ1, σ2, σ3) and in the space of (ep1, e

p
2, e

p
3, p) are respectively given in Figures 7.13(a) and

7.13(b). As seen this time instead of a complete smoothness the fracture surface involves kinks
through the planes representing axisymmetric loading points with corresponding shrinkage at the
generalized shear stress planes. As before as p→ −∞ the fracture surface expands indefinitely
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(a) (b)

Figure 7.13.: Isochronous fracture surfaces on (a) (σ1, σ2, σ3) in MPa, (b) (ep1, e
p
2, e

p
3) space

for the damage criterion based on the shear and quasi-unilateral modification of the Lemaitre’s
damage model. Selected parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1,
S = 0.5 MPa, C = 500 MPa, αp0 = 0.001, n = 0.15, h = 0, δ = 10.

whereas for p→∞ it converges again to the von Mises type cylindrical yield surface no matter
what the value of h or δ is.

Figure 7.14 depicts the sections of the fracture surfaces plotted on the triangular plastic strain
coordinates with variations of δ for h = 1 (left) and h = 0 (right). In both of the cases δ
introduces a considerable shrinkage depending on the its magnitude in the fracture loci for
the generalized shear loading paths. A noteworthy fact is that the fracture strains for the
axisymmetric stress axes do not alter by this change. For h = 1, with δ > 0 the fracture loci has
six direct (rotational) and six indirect (reflective) symmetries whereas for h < 1 these reduce to
three direct and three indirect ones. The fracture loci for h = 1 are comparable to those carried
out with the Lode parameter dependent models given in, e.g., [339].

7.5.1.3. State of Plane Stress and Planar Plots for the Fracture Loci

Fracture loci regarding the final enhancement are given in Figure 7.15 for two different δ values.
In the given curves h = 0 is used. It is observed that, on the triaxiality space the fracture
strains become critical as δ is increased at the shear and the plane strain regions. On the other
hand, the uniaxial and the biaxial tensile points with η = 1/3 and η = 2/3, respectively, are
not affected from this modification. For the uniaxial compression, i.e., η = −1/3, the fracture
curves preserve their asymptotic behavior. It should be noted that for h > 0 the fracture loci
in the triaxiality range −1/3 ≤ η ≤ 1/3 can be modeled additionally. This would lead to a
finite fracture strain at uniaxial compression but on the other hand to more flexibility in fitting
experimental results and in modifying the minimum of the fracture curve in the pure stress
area. In both the principal stress and the principal strain plots one can see the shrinkage of the
fracture loci at the generalized shear stress regions accounting for non-convex fracture surfaces.
Note that unlike yield loci the fracture loci do not necessarily admit convexity. The principal
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Figure 7.14.: Fracture loci projected on the (deviatoric) plastic strain plane for (a) h = 1, p = 0,
from outer to inner δ = 0, 2, 5, 10, (b) h = 0, p = 0, from outer to inner δ = 0, 2, 5, 10. Selected
parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500
MPa, αp0 = 0.001, n = 0.15.

in-plane strain space plot shows that, with the shrinkage at the plane strain region, the fracture
locus resembles a forming limit curve, in the range covered from equi-biaxial stress state to
uniaxial stress state. Approaching towards the pure shear point the shear fracture risk adds
an additional critical branching which is not seen in the forming limit curves. This pattern is
in accordance with the findings of [183] constitutes a critical superiority of the proposed model
as compared to forming limit curve based analyses which fall short in modeling shear failure.
Unlike Nahshon and Hutchinson’s additive modification, [224], the current multiplicative one is
incapable of supplying a local minimum fracture strain at the pure shear point in the interval
−1/3 ≤ η ≤ 1/3. The reasons become clear once the behavior of the factor 2τmax/σvMises is
investigated. As seen the current model gives comparable results with the ones proposed in the
literature.

Figure 7.16 shows the plot of the factor 2τmax/σvMises with respect to the triaxiality. As seen,
for generalized shear stress states, i.e., for η = 0 and η = 1/

√
3, at which shear fracture is

critical, this ratio reaches its maxima. This information combined with the symmetry of the
2τmax/σvMises plot in the interval −1/3 ≤ η ≤ 1/3 clearly shows why a local minimum fracture
strain at the pure shear point, i.e., h = 0, in the interval −1/3 ≤ η ≤ 1/3 is not possible.
Coming to the axi-symmetric stress states, i.e., η = −1/3, η = 1/3 and η = 2/3, this ratio gives
2τmax/σvMises = 1 thus it has no effect on the damage rate. This explains why the fracture
points for the uniaxial and the biaxial stress states are not altered by this modification.

7.6. Applications

7.6.1. Model L2 and the Secondary Tensile Stresses

Secondary tensile stresses are principal stresses of unintended tensile character during fully devel-
oped plastic flow which can exhaust the formability of the material considerably. Mannesmann
effect with the formation of a cavity along the longitudinal axis in bars subjected to radial com-
pression in metalworking operations [102], alligatoring defect encountered in hot or cold rolling
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Figure 7.15.: Fracture loci drawn at (a) triaxiality equivalent fracture strain, (b) principal stress
and (c) principal strain spaces for Lemaitre’s damage model with shear modification as well as
quasi-unilateral damage growth for plane stress state. The results are given for different choices
of δ = 0 (thick gray curves), δ = 5 (thin black curves) and δ = 10 (thick black curves). Selected
parameters are µ = 80769.2 MPa, κ = 175000 MPa, β = 1, m = 1, S = 0.5 MPa, C = 500
MPa, αp0 = 0.001, n = 0.15, h = 0.
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Figure 7.16.: Triaxiality dependence of the ratio 2σmax/σvMises for plane stress state.

practice where a slab or rod splits into two halves on a plane parallel to the rolling plane [155],
and chevron cracks, which are central cracks occurring at the longitudinal axis of the extruded
specimens [288], constitute some important examples.

Figure 7.17, illustrating the damage contours computed for two extremes of h, i.e., for h = 0 and
h = 1, for four deformation processes, shows the influence of using quasi-unilateral modification
in the damage analysis. In upsetting of a tapered strip and extrusion of a billet, let alone the
intensities, which are not given over the figures for the sake of brevity, the damage development
zones completely differ. For the upsetting process, taking the point of the maximum damage de-
velopment as the incipient fracture spot, for h = 0 one predicts a surface crack, whereas for h = 1
an internal crack is expected. For the extrusion processes strikingly an opposing observation is
due, i.e., surface and internal cracks are predicted with h = 1 and h = 0, respectively. Both
upsetting and extrusion processes involve the so-called secondary tensile stresses. Although the
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globally applied external loading is compressive, local tensile stresses occur inevitably during
the deformation. For the upsetting test, this happens at the bulging zone, whereas for the extru-
sion at the area reduction zone. The damage development lead by the secondary tensile stresses
meeting the plastic flow at the area reduction zone can cause characteristic internal cracks whose
internal character makes it hard to detect; see, e.g., [288, 287]. For free bending process, both
for h = 1 and h = 0 one predicts the free surface cracks at the bending zone, however this
time the former estimates the concave whereas the latter the convex surface of the bend for the
fracture to emanate. Once the void dynamics is concerned, fracturing above the neutral axis,
where the plane strain compression is due, is highly unlikely. Thus latter prediction is plausible
and in qualitative correlation with the experimental findings given in [280]. A noteworthy fact is
that, the notched tensile test is not affected by h. As a direct consequence, with quasi-unilateral
enhancement, the damage parameter identification is incomplete using merely tensile tests. For
definition of , one should conduct tests at which at least one principal stress component at the
critical zone of fracture becomes compressive. For this purpose shear tests can be realized. With
the assumption of isotropy and small strains, in a simple (in-plane) shear loading, the planar
principal stress components have the same magnitude as the shear stress, however with opposing
signs due to the deviatoric stress state. Besides, the ratio of enhanced and conventional damage
conjugate variable becomes Y +/Y = [1 + h]/2.

(a)

(b)

(c)

(d)

Figure 7.17.: Damage contour plots for h = 1 (results given on the left of figure couples) and
h = 0 (results given on the right of figure couples) for various deformation process simulations:
(a) tapered strip upsetting, (b) axisymmetric bar extrusion, (c) plate bending, (d) tension of an
axisymmetric notched bar. Red color denotes the maximum where the maximum is not necessarily
identical for all processes. For a more information on (a), (c) and (d) the reader is referred to
[287].

7.6.2. Model L3 and Experimental Validation

In this section two parameter identification applications to the material fracture data from the
literature are presented. The first one, [30], includes a data set handled for a wide range of data
set for 2024-T351 aluminum. For the second one, [21], the data is supplied for steel sheets of
TRIP690 provided by ThyssenKrupp Steel, under plane stress conditions, also reported in [183].
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For comparison purposes, the calibrations are realized for the three proposed variants of the
Lemaitre based fracture criteria as well as for a set of selected fracture criteria frequently used
in the literature which are given below and the results are discussed.

Rice–Tracey (RT). Being among the earliest fracture criteria, [259] model considers the growth
of a spherical void in a cubic cell under remote loading field. The Lode angle parameter-
independent equivalent (plastic) fracture strain, αpf , of Rice and Tracey damage model is derived
as a function of only η as

αpf
(
η, θ
)

= c1 + c2e
−c3η . (7.6.1)

Cockcroft–Latham (CL). The model of [78] constitutes an energy-based ductile fracture
criterion considering a critical threshold for the plastic work done by the maximum tensile
principal stress. Corresponding equivalent fracture strain, ϕf , which is a function of both η and
θ, reads

αpf
(
η, θ
)

=
CCL

η + 2
3 cos

(
π
6

[
1− θ

]) . (7.6.2)

The Pressure-Modified Maximum Shear (PMMS). Being among the models proposed by
the MIT Crashworthiness Lab., this damage model is an extension of the maximum shear stress
model by accounting for the effect of stress triaxiality ratio. Corresponding equivalent fracture
strain, αpf , which is a function of both η and θ, reads

αpf
(
η, θ
)

=

[
C

c2

[
c1η +

√
3

3
cos

(
θπ

6

)]]− 1
n

. (7.6.3)

Note that above closed form is made possible assuming a power type hardening, σvMises = Cαpn.

Modified Mohr–Coulomb (MMC). The closed form solution for the equivalent fracture
strain for the empirical modified Mohr–Coulomb fracture criterion [183] assumes a power type
hardening, σvMises = C[αp]n, and results in the following function of both η and θ

αpf
(
η, θ
)

=

[
C

c2

[
c3 +

√
3

2−
√

3
[1− c3]

[
sec

(
θπ

6

)
− 1

]]
×

[√
1 + c2

1

3
cos

(
θπ

6

)
+ c1

[
η +

1

3
sin

(
θπ

6

)]]]− 1
n

.

(7.6.4)

As seen, apart from the hardening variables, this model requires three parameters.

Lou–Huh (LH). This phenomenological model, developed by [192], considers of damage evolu-
tion motivated by the micro-mechanical phenomena of void nucleation, growth and coalescence.
The growth of voids is accounted for materializing the stress triaxiality whereas the effects of
void coalescence are incorporated by normalized maximum shear stress. The equivalent plastic
strain, as a measure of material flow, besides scaling both of the void growth and coalescence,
gives account for continuous nucleation of voids. In its original setting, the model reads

αpf = CLH

[
2τmax

σvMises

]−a [〈1 + 3η〉
2

]−b
, (7.6.5)
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where CLH, a and b are material parameters. Corresponding equivalent fracture strain αpf which

is a function of both η and θ, reads

αpf
(
η, θ
)

= CLH

[
2√
3

cos

(
θπ

6

)]−a [〈1 + 3η〉
2

]−b
. (7.6.6)

One should note that the closed form expression for Lou–Huh fracture criterion does not ex-
plicitly depend on the functional form of the flow curve. This property makes the model more
flexible since sticking to the power form can be highly limiting. Hence the model can be used
for materials showing hardening regimes other than power type hardening.

7.6.2.1. Calibration of The Model Parameters for Bao and Wierzbicki [2005]

In this first calibration example, the collection of fracture experiments composed of 15 types
of tests conducted for a wide range of stress triaxiality and Lode parameter for 2024-T351
aluminum alloy as reported in [30] is used. For Al2024 the shear modulus is µ = 27857.1 MPa
and the bulk modulus is κ = 72647.1 MPa. The plastic hardening of the material is calibrated
using upsetting tests for a power hardening rule where the parameters are found to be C = 740
MPa, αn0 = 0 and n = 0.15. The equivalent plastic strains at fracture are reported in terms

of the average triaxiality and Lode parameter, (ηave, θave) where (•)ave =

[∫ αpf
0 (•)dαp

]
/αpf , as

given in Table 7.1. For more details of the tests, the reader is referred to [30].

Table 7.1.: The fracture test results for Al2024-T351 adapted from [30].

ID Description ηave θave αpf
1. Smooth round bar, tension 0.4014 0.9992 0.4687
2. Round large notched bar, tension 0.6264 0.9992 0.2830
3. Round small notched bar, tension 0.9274 0.9984 0.1665
4. Flat grooved, tension 0.6030 0.0754 0.2100
5. Cylinder, aspect ratio of 0.5, compression −0.2780 −0.8215 0.4505
6. Cylinder, aspect ratio of 0.8, compression −0.2339 −0.6809 0.3800
7. Cylinder, aspect ratio of 1.0, compression −0.2326 −0.6794 0.3563
8. Cylinder, aspect ratio of 1.5, compression −0.2235 −0.6521 0.3410
9. Round notched, compression −0.2476 −0.7141 0.6217

10. Simple shear 0.0124 0.0355 0.2107
11. Combination of shear and tension 0.1173 0.3381 0.2613
12. Plate with a circular hole 0.3431 0.9661 0.3099
13. Dog-bone specimen, tension 0.3570 0.9182 0.4798
14. Pipe, tension 0.3557 0.9286 0.3255
15. Solid square bar, tension 0.3687 0.9992 0.3551

NonlinearModelFit function of Mathematica is used to fit7 the fracture surfaces of damage
models to the data listed in Table 7.2. The results are given in Table 7.1. Here

∑
Res.2 stands for

7Since the plasticity parameters are those reported in the original work, one is left with identifying just the
fracture parameters. Since the fracture criteria has no effect on the elastoplastic response, every experiment
in Table 7.1 represents a single input, that is the equivalent plastic strain to fracture at computed average
triaxiality and Lode parameter. Once the number of experiments is less than the number of ductile fracture
model parameters to be identified the system is underdetermined and it is not possible to define a unique set
of parameters. On the contrary, in the case where the number of parameters is smaller than the experimental
fracture points the system is called overdetermined for which the method of least squares is a standard approach
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the sum of squared residuals and R2 the coefficient of determination. From this table it can be
seen that models L3 shows the best fitting properties. It is followed by PMMS and MMC. Except
for the LH model Lemaitre mod II, and Cao’s modification require power type hardening curve
description. The single parameter CL shows the poorest performance in this calibration study
mainly due to the sensitivity of the material fracture to the Lode angle parameter. It is notable
that L3 has considerable improvement over L2 and L1 which shows that the modifications show
desired flexibility.

Table 7.2.: Determined parameters of the selected fracture criteria for Al2024-T351.

Model Parameters
∑

Res.2 R2

L3 β = 2.2616; m = 2.0345; S = 2.6024; 0.0867 0.9571
h = 0.7477; δ = 8.5562

PMMS c1 = 0.0728; c2 = 339.435; 0.0942 0.9533
MMC (Reprocessed) c1 = 0.0453; c2 = 334.82; c3 = 0.9663 0.0953 0.9528
LH a = 3.5593; b = 0.2166; CLH = 0.3599 0.1099 0.9456
MMC (Published) c1 = 0.03451; c2 = 338.6; c3 = 1 0.1272 0.9370
L2 β = 2.7978; m = 0.1072; S = 7.9433; h = 0 0.1483 0.9266
RT c1 = 0; c2 = 0.3752; c3 = 0.4601 0.1510 0.9252
L1 β = 3.4246; m = 1.1771; S = 3.1088 0.1660 0.9178
CL CCL = 0.0783 0.7329 0.6371

Figure 7.18 depicts the fracture surface plots and their comparison with the experimental fracture
points. The gained additional curvature in θ direction of L3 is clear as compared to L1. Although
an explicit θ dependence is not accounted for, L2 also shows a variation in this direction with
h = 0 in accordance with previous comments. Among the selected models only L1 and RT are
independent of θ as the figures also depict. h 6= 0 in L3 results in a saddle geometry with slight
bending. Hence, this identification process result does not impose a negative triaxiality cut-off
for ductile fracture.

7.6.2.2. Calibration of The Model Parameters for Bai and Wierzbicki [2010]

In this example the material studied falls under the group of Advanced High Strength Steels. As
a product of ThyssenKrupp Steel Europe AG, the sheets are cold rolled Retained Austenite Steel
where the minimum tensile strenght is 690MPa, hence TRIP690. Since the tests are realized
on the sheets the tests are reported as to correspond to the plane stress condition. Anisotropy
of the material in both plasticity and fracture is reported as negligible which makes it possible
to use the current modeling framework. For TRIP690 the shear modulus is µ = 80769.2 MPa
and the bulk modulus is κ = 175000 MPa. For the plastic hardening of the material a power
hardening rule is used with C = 1275.9 MPa, αn0 = 0 and n = 0.2655. The material is assumed
to behave isotropically for both the plasticity and fracture. For fracture calibration, tests are
conducted on five types of specimens: dog-bone specimen, flat specimen with cutouts, punch

in regression analysis. The current least squares problem fall into the category of nonlinear least squares since
the residuals are non-linear in unknowns. Unlike the linear least-squares problem which admits a closed-form
solution, the non-linear problem is usually solved iteratively. In nonlinear least squares, multiple minima can
occur which have equal values of the objective function. That is, uniqueness of the solution is not guaranteed.
Also (false) local minima can occur when the objective function value is greater than its value at the global
minimum. The iterations should be started with widely differing initial estimates of the parameters, to be
certain that the minimum found is the global minimum. If identical parameter set is converged regardless of
starting point, it is likely to be the global minimum. This way is taken in the current identification studies.
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Figure 7.18.: Fracture surface plots and their comparison with the experimental fracture points
for (a) PMMS, (b) MMC, (c) HL, (d) RT, (e) CL, (f) L1, (g) L2, (h) L3.

test, butterfly specimen in tension and butterfly specimen in simple shear. The fracture strains
are computed using finite element analysis with shell elements and like in the previous example
represented in terms of the average triaxiality and Lode parameter, (ηave, θave) , values given in
Table 7.3. For more details of the tests reader is referred to [183] and [21].
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Table 7.3.: The fracture test results for TRIP690 adapted from [21].

ID Description ηave θave αpf
1. Dog-bone, tension 0.379 1.0 0.751
2. Flat specimen with cutouts, tension 0.472 0.496 0.394
3. Disk specimen, equi-biaxial tension 0.667 −0.921 0.950
4. Butterfly specimen, tension 0.577 0 0.460
5. Butterfly specimen, simple shear 0 0 0.645

A summary of the fit to the fracture surfaces of damage models to the data listed in Table 7.3 is
given in Table 7.4. This time MMC, [21], shows the best performance. L3 and LH follows with
good fitting properties. CL shows the poorest performance in this calibration as well. As before
L3 has considerable improvement over L2 and L1 for which identical parameters are found. This
is mainly due to the fact that the crack closure parameter is effective only for η < 1/3 which
excludes the majority of the points. Also the experimentally recorded early shear fracture does
not allow use of h < 1, at least in absence of the shear modification.

Table 7.4.: Determined parameters of the selected fracture criteria for TRIP690.

Model Parameters
∑

Res.2 R2

MMC (Reprocessed) c1 = 0.1361; c2 = 709.894; c3 = 1.0679 0.0503 0.9777
MMC (Published) c1 = 0.12; c2 = 720; c3 = 1.095 0.0694 0.9692
L3 β = 1.0849; m = 0.2132; S = 37.5554; 0.0833 0.9630

h = 0; δ = 4.5788
LH a = 3.9606; b = 0.1581; CLH = 0.8794 0.0862 0.9617
PMMS c1 = 0; c2 = 612.319; 0.0908 0.9597
RT c1 = 0; c2 = 0.6305; c3 = 0 0.2018 0.9103
L1, L2 β = 1; m = 0.0757; S = 50; h = 1 0.2049 0.9089
CL CCL = 0.5473 0.3257 0.8552

A 2D plot of the fracture criteria in η space is possible assuming plane stress conditions. For
the case of plane stress state one has a direct relation between θ and the triaxiality η as

θ = 1− 2

π
arccos

(
−27

2
η

[
η2 − 1

3

])
. (7.6.7)

In Figure 13.14 the equivalent fracture strain is given in the triaxiality space within the range of
−1

3 ≤ η ≤ 2
3 for all used fracture criteria. The experimental points are also shown as red dots.

Except for CL, RT and L1 and L2, it can be said that the rest four curves show considerably close
trends altough their formulations are completely different. With the parameter identification
for L3 in plane stress space, h = 0 imposes −1/3 as the negative triaxiality cut-off for ductile
fracture.

7.6.2.3. Fracture Development During Rectangular Deep Drawing of a TRIP690 Sheet

In this part an application of the shear modified Lemaitre model to a rectangular deep drawing
simulation including shear fracture, which was reported in [284], is shown. To this end, the
model is implemented as a Vusdfld routine into Abaqus/Explicit. The calibrated model
parameters are those listed in Table 7.4, however with slight modifications since β is kept
constant as β = 1 to give m = 0.2132; S = 30.93; h = 0; δ = 4.579. In Figure 13.14 the
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Figure 7.19.: Plot of the fracture locus for TRIP690 for the eight fracture criteria represented at
the triaxiality (η) space for plane stress conditions for the identified parameters. Color mapping
follows: {CL → Dashed Blue}, {RT → Blue}, {MMC → Orange}, {PMMS → Green}, {LH →
Dashed Black}, {L1, L2→ Gray}, {L3→ Black}.

equivalent fracture strain is given in the triaxiality space within the range of −1
3 ≤ η ≤ 2

3 for
the modified Lemaitre fracture criterion with the new parameter set. The experimental points
are also shown as red dots. As seen, even with new parameter set, Lemaitre model modification
II shows a good agreement with the experimental data.

Figure 7.20.: (a) Plot of the fracture locus for TRIP690 for the best four fracture criteria
represented at the triaxiality (η) space for plane stress conditions for the identified parameters.
(b) The finite element model setup of the rectangular deep drawing test.

In Figure 7.21 it is shown that maximum damage indicator takes place in the drawing region
where cracking occurs under in-plane maximum shear stresses using the model with both en-
hancements. Corresponding force-displacement diagram given in the same figure shows that
there is a good agreement between the punch force displacement diagrams handled in the sim-
ulations and experiments reported in [184].
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a) b)

Fig. 3: a) Damage distribution and crack formation in the drawing region due to shear damage accu-
mulation. The small figure shows experimentally determined shear cracks in the same region during
rectangular deep drawing of TRIP690 [5]. b) The comparison of the simulation result with the exper-
imentally determined [5] punch force-displacement diagram.

Conclusions

Building upon the classical Lemaitre's damage model we present two rather empirical enhancements
with the least number of material parameters. The former is the already known quasi-unilateral dam-
age evolution. This enhancement relies on a weighted damage evolution for the compressive principal
stress components which is overestimated by the conventional model. The latter is a novel suggestion
to remedy shear fracture. The blend of quasi-unilateral and shear modification seems to give promis-
ing results as the experimental calibration studies as well as simulation result comparisons with the
experimentally determined ones show.
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Figure 7.21.: (a) Damage distribution and crack formation in the drawing region due to shear
damage accumulation. The small figure shows experimentally determined shear cracks in the
same region during rectangular deep drawing of TRIP690 [184]. (b) The comparison of the
simulation result with the experimentally determined [184] punch force-displacement diagram.

7.7. Conclusions and Outlook

Building upon the classical Lemaitre’s damage model, two rather empirical enhancements with
the least number of material parameters are presented. The former is the already known quasi-
unilateral damage evolution. This enhancement relies on a weighted damage evolution for the
compressive principal stress components which is overestimated by the conventional model. The
latter is a novel suggestion to remedy shear fracture. Although the conventional Lemaitre’s
damage model is derived following internal variable of thermodynamics the enhancements do
not follow these formal steps. The limitations and the predictive capabilities of the models are
critically assessed within the context of metal forming practice. The blend of quasi-unilateral and
shear modification seems to give promising results as the experimental calibration studies with
comparison to other existing models show, with the assumption of proportional strain paths.
Obviously, once nonproportional loading with tension-compression path changes are considered,
the developed model, especially with the quasi-unilateral modification, allows a better modeling
by potentially reducing the damage development under compression. Still, a detailed analysis of
the model performance requires further experimental and numerical studies. Other noteworthy
directions are considering coupling with elastoplasticity and plastic and damage anisotropy.

7.A. Stress States

A point on von Mises yield locus can be represented in terms of different parameterizations the
straightforward one being with the Cartesian coordinates (σ1, σ2, σ3) of the Haigh-Westergaard
stress space. A particularly useful parametrization is with the cylindrical polar coordinates
(r, θ, η). As depicted in Figure 7.22, r =

√
2/3σvMises represents the radius of the circle and the

Lode angle 0 ≤ θ ≤ π/3 is measured from the axis representing axisymmetric tension8. For this
range the stress principals are ordered σ1 ≥ σ2 ≥ σ3. η := p/σvMises is the stress triaxiality ratio
as the coordinate normal to the deviatoric plane.

8As Figure 7.22 shows, the current notation differs from the general notation of the Lode angle θL by π/6 that

is θL = θ − π/6 where θL = arctan
(

1√
3

[
2σ2−σ1−σ3
σ1−σ3

])
.
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Figure 7.22.: Geometrical representation of the Lode angle θ, σy = σvMises and (a) projections
of the von Mises yield locus as well as of point P on the (deviatoric-stress) Π−plane and with
corresponding projected stress components (σ1, σ2, σ3) and (b) the principal deviatoric stress
components (s1, s2, s3) of point P on the Π−plane, note that s1 + s2 + s3 = 0.

Normalization of the Lode angle gives θ with the range −1 ≤ θ ≤ 1

θ = 1− 6θ

π
. (7.A.1)

In the light of these definitions, using Figure 7.22 and using the even function property cos (θ) =
cos (−θ) principal deviatoric Cauchy stress components sA read

sν =
2

3
σvMises cos

(
2 [ν − 1]

3
π − θ

)
for ν = 1, 2, 3 , (7.A.2)

with cos(−θ)+cos([2/3]π−θ)+cos([4/3]π−θ) vanishing identically. The principal Cauchy stress
components using σν = sν + p and the definition of the stress triaxiality ratio η := p/σvMises

read

σν = σvMises

[
η +

2

3
cos

(
2 [ν − 1]

3
π − θ

)]
for ν = 1, 2, 3 . (7.A.3)

σν can also be represented in terms of θ by the substitution of Equation (7.A.1) into Equation
(7.A.3) with sin (π + θ) = − sin (θ)

σν = σvMises

[
η +

2

3
sin

(
[2ν − 1]

3
π +

π

6
θ

)]
for ν = 1, 2, 3 . (7.A.4)

Another notation for the Lode parameter is −1 ≤ L ≤ 1 with

L =
2σ2 − σ1 − σ3

σ1 − σ3
. (7.A.5)

Indeed Equation (7.A.5) is the originally form which appears in [321]. With the ordered set of
principal stresses σ1 ≥ σ2 ≥ σ3, the definition of a shear state of stress can also be most naturally
done through normalized maximum shear stress, 2[τmax/σvMises] where τmax = [1/2][σ1 − σ3].
Note that for pure hydrostatic stress states 2[τmax/σvMises] vanishes whereas for uniaxial tension
and compression 2[τmax/σvMises] has the value of 1 and −1 respectively. Coming to a simple
shear stress state one has 2[τmax/σvMises] = 2/

√
3. 2[τmax/σvMises] could be linked to L using

2τmax

σvMises
=

2√
L2 + 3

. (7.A.6)
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Finally, the following relation bridges the gap between θ and L and allows us to form represen-
tations in terms of the pair (η, θ) consistently

L =
√

3 tan
(
θ − π

6

)
. (7.A.7)

Using Equation (7.A.5) one has, [192]

σν = σvMises

[
η +

2L+ 3 [2− ν]− 3L [2− ν]2

3
√
L2 + 3

]
for ν = 1, 2, 3 . (7.A.8)

Eventually, defined parameters can be given as follows for ten conventional test specimens for
fracture calibration following [20]. In the table, for the expressions of η for the notched round
bars under tension or compression R stands for the radius of a notch and r is the radius of a
round bar at the notch. For the flat grooved plates under tension R stands for the radius of the
groove and t is the thickness of a flat grooved plate at the groove.

Table 7.5.: Analytical expressions representing the ideal state of stress for ten conventional
fracture calibration specimens (adapted from [20]).

ID Type of the specimen η θ θ L

1. Smooth round bar, tension 1/3 0 1 −1

2. Notched round bars, tension, [59] 1/3 +
√

2 log(1 + r/[2R]) 0 1 −1

3. Plastic plane strain, tension 1/
√

3 π/6 0 0

4. Flat grooved plates, tension, [28] 1/
√

3[1 + 2 log(1 + t/[4R])] π/6 0 0
5. Torsion or shear 0 π/6 0 0
6. Cylinders, compression −1/3 π/3 −1 1
7. Equi-biaxial plane stress tension 2/3 π/3 −1 1
8. Equi-biaxial plane stress compression −2/3 0 1 −1

9. Plastic plane strain, compression −1/
√

3 π/6 0 0

10. Notched round bars, compression −1/3−
√

2 log(1 + r/[2R]) π/3 −1 1

7.B. Non-rotating Principal Axes of Deformation

Let (N1,N2,N3) and (n1,n2,n3) respectively denote the orthogonal material and spatial unit
vector triads. Then the two-point tensor F is represented as F =

∑3
ν=1 λν nν⊗Nν whereas the

spatial tensor b =
∑3

ν=1 λ
2
ν nν ⊗ nν and the material tensor C =

∑3
ν=1 λ

2
νNν ⊗Nν . The two-

point rotation tensorR which is found using the polar decomposition of the deformation gradient
with F = R ·U transforms the material vector triad into the spatial vector triad viz nν = R ·Nν

where U = C [1/2] =
∑3

ν=1 λνNν ⊗ Nν . denotes the material stretch tensor. Now, for the
deformation modes with non-rotating principal vector triad one has R = 1. Hence, considering
the principal axes of deformation parallel to the orthogonal unit vectors of the Cartesian axes
(a1,a2,a3) one has nν = Nν = aν for ν = 1, 2, 3 where a1 = (1, 0, 0)>, a2 = (0, 1, 0)> and
a3 = (0, 0, 1)>. Thus, the total stretch components λν are defined as the multiplication of
the elastic λeν and plastic λpν stretches λν = λeνλ

p
ν for ν = 1, 2, 3 and the following matrix

representations are made possible

F =




λe1λ
p
1 0 0

0 λe2λ
p
2 0

0 0 λe3λ
p
3


 where F e =




λe1 0 0
0 λe2 0
0 0 λe3


 and F p =




λp1 0 0
0 λp2 0
0 0 λp3


 .

(7.B.1)
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Since with this assumption F> · F ≡ F · F>, one has

b ≡ C =




[λe1λ
p
1]2 0 0

0 [λe2λ
p
2]2 0

0 0 [λe3λ
p
3]2


 . (7.B.2)

Also be and [be]−1 read

be =




[λe1]2 0 0
0 [λe2]2 0
0 0 [λe3]2


 and [be]−1 =




1/[λe1]2 0 0
0 1/[λe2]2 0
0 0 1/[λe3]2


 . (7.B.3)

Similarly, Cp and [Cp]−1 are derived as

Cp =




[λp1]2 0 0
0 [λp2]2 0
0 0 [λp3]2


 and [Cp]−1 =




1/[λp1]2 0 0
0 1/[λp2]2 0
0 0 1/[λp3]2


 . (7.B.4)

Hence, one has

−1

2
F · ˙[[Cp]−1] · [F ]> · [be]−1 =




λ̇p1/λ
p
1 0 0

0 λ̇p2/λ
p
2 0

0 0 λ̇p3/λ
p
3


 . (7.B.5)

The condition of non-rotating principal axes also sets the stage for the additive decomposition
of the spatial logarithmic strain tensor e = 1/2 log(b) into elastic ee and plastic ep parts with
e = ee + ep where

ee =




log(λe1) 0 0
0 log(λe2) 0
0 0 log(λe3)


 and ep =




log(λp1) 0 0
0 log(λp2) 0
0 0 log(λp3)


 . (7.B.6)

Taking the material time derivative supplies the rate additive form ė = ėe+ ėp. Using l = d+w
with the rate of deformation tensor d = sym(l) and the spin tensor w = skw(l), for current
conditions one has w = 0. Hence, one has ė = d

ė =




λ̇1/λ1 0 0

0 λ̇2/λ2 0

0 0 λ̇3/λ3


 . (7.B.7)

With d = de + dp also de = ėe and dp = ėp one reaches

ėp = −1

2
F · ˙[[Cp]−1] · F> · [be]−1 = α̇p

3

2

s

σvMises
. (7.B.8)
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Part III.

Temperature Effects on Damage Driven
Localization and Fracture
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8. Modeling of Fracture in Small Punch Tests
for Small- and Large-Scale Yielding
Conditions at Various Temperatures

In this chapter, a systematic numerical study on temperature dependent fracture mode change
in small punch tests is presented. Following Needleman-Tvergaard [Needleman and Tvergaard,
Int. J. Frac., 101, 73, (2000)], the material is modeled as thermo-inelastic, where the ductile
fracture mode, by void nucleation, growth and coalescence is accounted for by Gurson’s porous
metal plasticity [Gurson, J. Engng. Mater. Tech., 99, 2, (1977)]. The brittle fracture mode by
cleavage is accounted for by Ritchie–Knott–Rice’s deterministic maximum principal stress crite-
rion [Ritchie, Knott and Rice, J. Mech. Phys. Solids, 21, 395, (1973)]. The well-known problem
of mesh dependence associated with softening material behavior is remedied by using an integral
type nonlocal formulation similar to that presented in [Tvergaard and Needleman, Int. J. Solids
Structures, 32, 1063, (1995)]. Two length scales are incorporated into the constitutive relations:
The ductile fracture length scale is based on the average inclusion distance and associated with
the nonlocal evolution equation for the porosity. The brittle fracture length scale is based on
the average grain size and associated with the material region at which the maximum principal
stress is averaged out. The material model is used to simulate small punch tests at −196◦C,
−158◦C and 25◦C of notched and unnotched specimens of P91 steel representative for small- and
large-scale yielding conditions, respectively. The simulated fracture modes and patterns show a
very good agreement with experiments: for −196◦C brittle fracture propagating normal to the
maximum (tensile) principal stress prevails. For 25◦C ductile fracture is governed by shear lo-
calization with voidage. The simulations also show that the deformation energy is considerably
higher for the upper shelf tests compared to the lower shelf tests.

8.1. Introduction

The ductile–brittle transition, typically seen in bcc and hcp metals, involves a change of fracture
mode as a function of test temperature and/or loading rate. Brittle fracture occurs by cleavage
along specific crystallographic planes at lower temperatures, associated with the lower shelf in
deformation energy, whereas ductile fracture goes along with progressive cavitation until void
coalescence at higher temperatures, associated with the upper shelf. The temperature at which
the prevailing mode of failure changes from brittle to ductile is named ductile–brittle transition
temperature.

At a finer scale this transition is explained by minute energetic requirements for the evolu-
tion of the defect structure. Once certain conditions are met, brittle propagation of a sharp
crack front with free surface development and atomic bond rupture is favored over dislocation
emission and/or mobility and concomitant crack tip blunting. Brittle fracture is referred to as a
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low energy fracture, whereas ductile fracture is a high energy fracture since the overall process
zone is larger due to crack blunting and plastic zone development. Ductile fracture by void
growth occurs under relatively large strains as compared to brittle fracture in which the driving
mechanism is the critical stress over the cleavage grain (see, e.g., [230]). As the flow stress is
temperature and rate dependent, large stresses needed for brittle fracture are achieved only for
low temperatures and/or high strain rates; otherwise ductile fracture at high strains is observed.

In the present chapter, the ductile–brittle transition at the macroscale in small punch tests
is modeled at various temperatures. Small punch testing was first developed in the early 1980’s
for determining the post irradiation mechanical properties including ductile–brittle transition
temperature [196]. The method possesses great advantage over the conventional Charpy test
due to the small amount of material needed. Small punch specimens are usually disk-shaped
with thicknesses in the range of 0.25− 0.5 mm and diameters of 3− 10 mm. Therefore, the test
is virtually non-destructive, and samples can even be extracted from big components in service.
Owing to this reduced material requirement, small punch testing is also applied when sampling
volume is limited, for instance, to the heat affected zone of a weldment [107]. In previous works,
it was reported that the transition temperatures determined by small punch tests were consid-
erably lower than the ones determined by Charpy tests [22, 234, 112, 355]. A linear correlation
between the small punch transition temperature and the conventional ductile–brittle transition
temperature was proposed in the European Code of Practice of small punch testing [69]. Possi-
ble reasons for the discrepancy were attributed to the stress triaxiality, size and strain rate effects.

Despite the wide range of literature on the transition temperature as determined by small
punch testing, there has been no attempt to assess the ductile and brittle crack patterns as
well as the transition temperature in a unified numerical framework. Following the lines of
Needleman and Tvergaard [230], a temperature coupled Gurson-Tvergaard-Needleman porous
metal visco-plasticity is used for modeling the ductile fracture involving progressive cavitation
with the recent shear modification by [224]. The brittle fracture is modeled deterministically
following the Ritchie–Knott–Rice (RKR) model [260]. The motivation for the selection of a
porous metal plasticity model stems from the experimental evidence of cavitation on fracture
surfaces. Physically, ductile and brittle fracture are nonlocal processes with interacting sources
of disorder at various length scales. Thus, a nonlocal formulation is required with incorporation
of length scales. Through that an accurate control of the size of the localization zone (important
in consideration of the size effects) on the course of deformation is supplied. In addition, the
problem of pathological mesh dependence of the numerical simulations is removed.

The model is validated by comparisons between the numerical analysis and experimental re-
sults obtained at −196◦C, −158◦C and 25◦C. Notched and unnotched specimen geometries are
simulated corresponding to the small- and large-scale yielding conditions, respectively. The
experimental evaluation of the J − R (J resistance) curves for P91 shows that the transition
temperature is around −150◦C based on experimental and numerical load-displacement curves
as well as optical and SEM images revealing the crack patterns and fracture surface morpholo-
gies. It is shown that, as anticipated, for both notched and unnotched tests ductile fracture at
the upper shelf follows the plastic localization bands whose sizes are of the order of magnitude
of the utilized length scale. This amounts to a mixed Mode I Mode II fracture. Brittle cracks
propagate under Mode I conditions in the direction normal to the maximum principal stress,
with small-scale yielding prevailing at the crack tip. This is in agreement with the experimental
observation of cleavage facets orthogonal to the maximum principal stress direction.
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The role of stress gradients in identifying the length scale and critical fracture threshold as-
sociated with brittle fracture is investigated by comparing simulation results for the notched
and the unnotched specimens. The simultaneous consideration of the notched and unnotched
cases considerably narrows down the ranges of admissible material parameters associated with
the Ritchie–Rice–Knott criterion.

The effect of temperature is investigated by isothermal analyses with various ambient tem-
peratures. The model developed will be helpful to further analyze the effects of strain rate,
specimen size, different notch and puncher head geometries, etc., on the transition temperature.
Owing to its multi-axiality and loading history, the small punch test is most sensitive as a model
validation tool which is why the present application of a numerical modeling scheme to small
punch testing constitutes a novel approach.

8.2. Theory

8.2.1. Hypoelastic-plastic Model

LetX and x := ϕ(X, t) denote the particle positions in the reference (undeformed) configuration
B0 and current (deformed) configuration B, respectively. F := ∂Xx defines the deformation
gradient of the nonlinear motion map ϕ : B0 × R≥0 → R3. Let l := Ḟ · F−1 = ∂xv denote the
velocity gradient, with v = ẋ. Splitting l into its symmetric d := sym (l) and skewsymmetric
w := skw (l) parts via l = d+w where d denotes the rate of deformation tensor the following
additive decomposition of d is postulated

d = de + dp + dΘ , (8.2.1)

with de, dp and dΘ representing its elastic, plastic and thermal parts, respectively. This forms
the basis of hypoelastic-plastic formulations which rely on certain objective rates of the selected
stress measures. The Green–Naghdi–McInnis rate of the Cauchy (true) stresses is used which
requires the rotationally neutralized rate of the deformation tensor ˙̂ε defined as

˙̂ε = R> · [de + dp + dΘ] ·R = ˙̂εe + ˙̂εp + ˙̂εΘ , (8.2.2)

with ˙̂εe := R> · de ·R, ˙̂εp := R> · dp ·R and ˙̂εΘ := R> · dΘ ·R = dΘ. Here, R denotes the
rotation tensor, carried out by the polar decomposition of the deformation gradient F = R ·U ,
with U representing the symmetric right stretch tensor. Similarly, a pull back operation on the
Cauchy stress tensor σ with the rotation tensor gives its rotationally neutralized counterpart:
σ̂ := R> · σ · R. Its material time derivative ˙̂σ can be objectively integrated. Using the
thermo-elastic constitutive relations one has

˙̂σ = Ce :
[

˙̂ε− ˙̂εp − ˙̂εΘ

]
= Ce : ˙̂εe , (8.2.3)

where Ce denotes the elastic constitutive tensor with, for isotropic materials,

Ce :=
ν E

[1 + ν][1− 2ν]
[1⊗ 1] +

E

2[1 + ν]
[1⊗1 + 1⊗1] . (8.2.4)

E and ν denote Young’s modulus and Poisson’s ratio, respectively. Moreover,

˙̂εΘ = dΘ = αΘΘ̇1 , (8.2.5)

where αΘ denotes the thermal expansion coefficient and Θ the temperature.
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8.2.2. Model for Ductile Fracture - Gurson’s Porous Plasticity - Local
Formulation

The ductile fracture mode by progressive cavitation of a porous solid with a void volume fraction
f is based on Gurson’s dilatant plasticity model [110]. The model is extended by parameters q1,
q2 and q3 in [304, 306] to achieve better agreement with numerical analyses of unit cells, and by
the bilinear function f∗(f) in [308] to account for rapid void coalescence prior to failure. The
hydrostatic stress dependent flow potential Φp is then formulated as

Φp =

[
σeq

σy

]2

+ 2q1f
∗ cosh

(
3

2

q2σm

σy

)
−
[
1 + q3f

∗2] ≤ 0 . (8.2.6)

σeq = 3/2 dev(σ̂) : dev(σ̂) is the equivalent von Mises stress, σm = tr(σ̂)/3 is the hydrostatic
stress and q1, q2 and q3 are material parameters1. When fc denotes the critical void volume
fraction at incipient coalescence, fF the fraction at failure and the material parameter f∗u = 1/q1,
the bilinear function f∗(f) is defined as2

f∗(f) =

{
f f ≤ fc ,
fc + [f∗u − fc] [f − fc] / [fF − fc] f > fc .

(8.2.7)

The thermo-visco-plastic hardening of the material matrix is described by the flow stress σy

which accounts for strain, strain rate and temperature dependences. Hence, letting ep denote
the equivalent plastic strain and ėp its rate, a Johnson–Cook type multiplicative form is assumed

σy (ep, ėp,Θ) = hy (ep) ry (ėp) ty (Θ) , (8.2.8)

where hy, ry and ty denote the functions of strain hardening, strain rate hardening and thermal
softening which are defined as

hy (ep) = σy0 +Benp ,

ry (ėp) = 1 + C log (ėp/ėp0) ,
ty (Θ) = 1− Ωm ,

(8.2.9)

where σy0 is the initial yield stress. The strain hardening is controlled by B and n, whereas
strain rate and temperature dependence of hardening are controlled by C and m, respectively.
The reference strain rate is denoted by ėp0.

Ω = [Θ−Θref] / [Θmelt −Θref] , (8.2.10)

is the homologous temperature with Θref and Θmelt representing the reference and the melting
temperatures, respectively.

Using the normality postulate, the plastic part of the rate of deformation tensor at the ro-
tationally neutralized configuration is defined as

˙̂εp = γ̇∂σ̂Φp , (8.2.11)

which is not traceless due to the hydrostatic stress dependence of Φp. Here, γ̇ denotes the plastic
multiplier3.

1The plastic potential reduces to that of Gurson’s original proposal for q1 = q2 = q3 = 1, and to that of von
Mises isochoric plasticity for q1 = q3 = 0.

2As f → fF, f∗ → f∗u and the material loses its load carrying capacity which defines ductile fracture.
3The eventual framework is a consistency type rather than an over-stress type, see, e.g., [326]. That is, the

computation of the plastic multiplier γ̇ exploits the consistency condition viz. Φ̇p = 0.
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According to the plastic work equivalence [1− f ]σyėp = σ̂ : ˙̂εp, the equivalent plastic strain
rate reads

ėp =
σ̂ : ˙̂εp

[1− f ]σy
. (8.2.12)

The kinetic evolution of the void volume fraction involves nucleation and growth taking place
during fully developed plastic flow. The time rate of change of the total void volume fraction is
formulated additively in terms of void nucleation rate ḟn and void growth rate ḟg

ḟ = ḟn + ḟg . (8.2.13)

Assuming a strain dependent void nucleation [75], ḟn is written as

ḟn = ANėp where AN = AN (ep) =
fN

SN

√
2π

exp

(
− [ep − ep N]2

2S2
N

)
. (8.2.14)

In Equation 8.2.14, ep N and SN denote the mean equivalent plastic strain at the incipient nu-
cleation and its standard deviation, respectively. fN denotes the total source of nucleation for
the void volume fraction.

Following [224], ḟg is further split into

ḟg = ḟg normal + ḟg shear , (8.2.15)

with ḟg normal accounting for the void growth under hydrostatic stresses and reflecting mass
conservation:

ḟg normal = [1− f ] tr ˙̂εp . (8.2.16)

ḟg normal alone falls short to predict fracture modes under low stress triaxiality ratios; see, e.g.,
experimental studies reported in [29] and [39]. Hence, ḟg shear is introduced to account qualita-
tively for the softening effects associated with void distortion, void interaction and with material
rotation under shear stress states, see, e.g. [224]:

ḟg shear = kwf w(devσ̂)
˙̂ε
p

: dev σ̂

σeq
. (8.2.17)

where kw is a material parameter with a suggested interval 0 ≤ kw ≤ 3 [224] and 0 ≤ w ≤ 1
is the function which distinguishes the states of axisymmetric stress from those of generalized
shear, i.e., pure shear plus a hydrostatic stress:

w (dev σ̂) = 1−
[

27

2

J3

σ3
eq

]2

. (8.2.18)

J3 = 1/3 [σij − σm] [σjk − σm] [σki − σm] is the third invariant of the deviatoric stress tensor.
Note that w = 0 for all axisymmetric stress states, whereas w = 1 through J3 = 0 for the states
of generalized shear.

Finally, in absence of elastic-plastic heating related to latent elastic and inelastic structural
changes or any heat source the temperature increase is due to the heat flux q and plastic dissi-
pation including void nucleation and growth

ρcpΘ̇ = −div q + χσ̂ : ˙̂εp . (8.2.19)

ρ and cp denote the density in the current configuration and the specific heat capacity. Fourier’s
law is assumed, q = −k grad Θ, with k denoting the thermal conductivity. χ is the so-called
Taylor–Quinney coefficient denoting the fraction of plastic work converted to heat [296].
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8.2.2.1. Integral-Type Nonlocal Regularization

Numerical solutions for the local material models accounting for softening lose uniqueness and
suffer from a pathological dependence on the applied discretization. Hence, a consistent regular-
ization requires incorporation of a material length scale which controls the width of localization
in the numerical solutions, as demonstrated by, e.g., [45].

The present analysis uses the nonlocal integral type4 regularization scheme presented in [309]
and [229], see also, e.g., [246], [169]. Let ḟ (x) represent the local damage rate at point x defined
at the current configuration. Its delocalization produces ḟnonlocal at x according to

ḟnonlocal (x) =

∫

V
ω̃ductile (x,y) ḟ (y) dV (y) , (8.2.20)

where y represents the location vector at current coordinates and V the volume at the current
configuration. Let ωductile (x,y) denote the bell shaped nonlocal weight function:

ωductile (x,y) =

{ [
1− |x− y|2/R2

ductile

]2
if Rductile ≥ |x− y| ≥ 0,

0 if Rductile < |x− y| .
(8.2.21)

Here Rductile denotes the ductile interaction radius, a parameter proportional to the material
characteristic length associated with ductile fracture. The normalized weight function reads

ω̃ductile (x,y) =
ωductile (x,y)∫

V ωductile (x,y) dV (y)
. (8.2.22)

With ω̃ (x,y) any inconsistency pertaining to unrestricted averaging domains extending over the
problem boundary is remedied. As long as boundaries are not violated,

∫
V ωductile (x,y) dV (y)

is a constant. The local formulation is recovered for Rductile → 0, while for finite Rductile the
nonlocal formulation makes a difference in the presence of spatial gradients in the ductile damage
variable.

8.2.3. Model for Brittle Fracture: The Ritchie–Knott–Rice Maximum Stress
Criterion

There exist numerous approaches for modeling cleavage in metallic materials. Based on the
Weibull weakest link theory, Beremin’s statistical model reflects random nature of brittle frac-
ture and incorporates the effect of plastic flow, see, e.g., [52], [223] or more recently [13]. So-
called energy limiters, which, by enforcing saturation in the strain energy function automatically
bound stresses in the constitutive equations, constitute another approach to brittle fracture [320].
Continuum damage mechanics models, within a thermodynamics of internal variables formalism,
introduce scalar or tensorial damage variables and their conjugate variables which allows not
only modeling of stiffness and strength degradation associated with brittle (as well as ductile)
damage but also determination of associated inelastic dissipation, see, e.g., [175]. Recently, in or-
der to model the brittle fracture phase in ductile-brittle fracture transition the authors proposed
a blend of continuum damage mechanics and Gurson’s plasticity, [289]. For additional recent
developments in brittle fracture modeling and ductile-brittle fracture transition, the reader is
refered to, e.g., [216], [88] and [134], among others. In the current study, following [230] and
aiming at deterministic modeling of crack paths, the simple yet powerful Ritchie–Knott–Rice

4A gradient enhanced nonlocal formulation together with a Gurson-type plastic potential is used in, e.g., [189].
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criterion is used for modeling brittle fracture, [260].

Let σ1(x) represent the local maximum principal stress at point x defined at the current con-
figuration. Its delocalization reads

σ1,nonlocal (x) =

∫

V
ω̃brittle (x,y)σ1 (y) dV (y) , (8.2.23)

where ωbrittle (x,y) denotes the following nonlocal weight function:

ωbrittle (x,y) =

{
1 if Rbrittle ≥ |x− y| ≥ 0 ,
0 if Rbrittle < |x− y| .

(8.2.24)

Here Rbrittle denotes the brittle interaction radius, defining characteristic length associated with
brittle fracture. The normalized weight function reads

ω̃brittle (x,y) =
ωbrittle (x,y)∫

V ωbrittle (x,y) dV (y)
. (8.2.25)

According to the RKR criterion [260] once σ1,nonlocal (x) reaches a critical value σc, brittle
fracture results. The criterion can be formulated as

σ1,nonlocal = σc . (8.2.26)

Following [230], σc is independent of temperature and strain rate. Rbrittle is linked to the size
of the cleavage grain Vcleavage. Hence, the interaction radius of brittle fracture is larger than
that of intragranular ductile fracture. One should note that the RKR criterion does not require
plastic flow. By being non-cumulative, it is different from the nonlocal treatment of Gurson’s
model, as each integration associated with the time step is independent.

8.3. Experiments

In small punch fracture tests a non-deformable hemispherical puncher loads a rigidly clamped
disk-shaped specimen at constant displacement rate deforming it through an aperture in the
lower die. The specimen design recommended in the Code of Practice is a disk with diameter d=8
mm and thickness 0.5 mm [69]. During the test, the puncher force and the central disk deflection
(or puncher displacement) are recorded. Small punch force-deflection (or displacement) curves
are then used to estimate mechanical properties such as yield stress, ultimate tensile strength
and ductile–brittle transition temperature.

8.3.1. Chemical Composition and Microstructure Observation of P91 Steel

In this study, a ferritic/martensitic P91 steel is used for small punch fracture tests over a wide
temperature range. P91 is an advanced steel for high temperature applications, especially, in
power plants where creep resistance is of importance. However, components may be exposed
to loading at lower or intermediate temperatures as well. Thus, toughness and ductile–brittle
transition temperature are important, particularly, if components are subjected to irradiation
which deteriorates those properties. The chemical composition of the P91 steel is given in Table
8.1.
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Table 8.1.: Chemical composition of P91 in wt%.

C Si Mn P S Cr Mo V Ni Nb N

0.10 0.27 0.53 0.007 0.01 8.76 0.91 0.2 0.35 0.04 0.038

The prevailing microstructure of P91 consists of tempered martensite (as shown in the optical
micrograph in Figure 8.1) and secondary phases that precipitate on martensite lath, prior-
austenite grain boundaries and in the ferrite matrix. Precipitates result from the tempering
process which is applied to improve the ductility and toughness of the martensitic structure.
M23C6 (M denotes Cr, Fe, or Mo) carbides mainly precipitate on prior-austenite grain bound-
aries, martensite lath and delta-ferrite boundaries whereas smaller MX (M denotes V or Nb,
and X is C or N) particles precipitate in the matrix [156].
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Figure 1: Optical micrograph showing the tempered martensitic structure of P91 steel.

10

Figure 8.1.: Optical micrograph showing the tempered martensitic structure of P91 steel.

8.3.2. Experimental Setup

The small punch fracture tests were carried out according to the guidelines of the Code of Prac-
tice [69]. The specimen holder (see Figure 8.2(a)) consists of upper and lower dies between
which the specimens were clamped firmly. The receiving aperture of the holder was 4 mm. The
test rig was mounted in a universal testing machine equipped with an environmental chamber
allowing temperature control from −150◦C to +300◦C. The actual test temperature range was
between −196◦C and 25◦C. To achieve the lowest test temperature −196◦C, the specimen holder
was immersed in a vessel (not shown in Figure 2(a)) filled with liquid nitrogen, while the envi-
ronmental chamber remained idle. The temperature was measured by a Type T thermocouple
with an accuracy of ±2◦C. Before starting a test, sufficient time was given to the system to
reach thermal equilibrium, as verified by pre-tests with an additional thermocouple spot-welded
to a dummy specimen. Two Class 2 linear variable displacement transducers mounted to the
puncher rod measured the puncher displacement. The small punch disks were deformed under
a constant velocity of the cross-head of 0.005 mm/s.

For all small punch tests, disks of 8 mm diameter were used: unnotched disks with 0.5 mm
nominal thickness and notched disks with 1 mm thickness. The circular V notches which were
produced by electrical discharge machining had a diameter of 2.5 mm, a notch tip radius of
approximately 5 µm and different notch depths of 0.3, 0.4 and 0.5 mm (Figures 8.2.(b) and (c)).
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Figure 2: Experimental equipment and specimens: (a) instrumented specimen holder of small punch fracture

testing equipment (1: small punch disk, 2: hemispherical ended punch, 3: thermocouple, 4/5: LVDT); (b) small

punch disks with a circular V notch (dotted circle represents the notch) and standard unnotched small punch

disks; (c) cross-sectional view of notch tip.

For all small punch tests, disks of 8 mm diameter were used: unnotched disks with 0.5 mm

nominal thickness and notched disks with 1 mm thickness. The circular V notches which were

produced by electrical discharge machining had a diameter of 2.5 mm, a notch tip radius of

approximately 5 µm and different notch depths of 0.3, 0.4 and 0.5 mm (Figures 2(b) and (c)).
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Figure 8.2.: Experimental equipment and specimens: (a) instrumented specimen holder of small
punch fracture testing equipment (1: small punch disk, 2: hemispherical ended punch, 3: ther-
mocouple, 4/5: LVDT); (b) small punch disks with a circular V notch (dotted circle represents
the notch) and standard unnotched small punch disks; (c) cross-sectional view of notch tip.

8.3.3. Observations at Macroscale

With decreasing temperature reduced bulging and increased cleavage facets (i.e., decreasing
amount of plastic deformation until failure) are noted from the overall appearance of the un-
notched small punch disks (Figure 8.3.(a)–(c)). Figures 8.3(a)–(f) reveal the macroscopic crack
patterns. At 25◦C, where the material fails in a ductile manner, the crack pattern is circular.
This fracture appearance is valid approximately till −100◦C where the ductile–brittle transition
regime starts. The crack initiates where necking takes place on the bottom surface, propagates
through the thickness and follows a circumferential path along this necking region (Figures
8.3(a), (d), see also [197, 112]). In the transition region (Figure 8.3.(b), (e), test temperature
−158◦C) ductile and brittle features are observed to coexist. Radial cracks as indications of brit-
tle behavior develop from the widely open semi-circular crack, see, e.g., [171, 117]. At −196◦C,
disks fail in an almost completely brittle mode with insignificant plastic deformation, exhibiting
a more piecewise linear crack propagation path (Figure 8.3(c), (f)).

8.3.4. Observations at Microscale

The fracture mode at the upper shelf (from 25◦C down to approximately −100◦C) is completely
ductile. The fracture surface features dimples and small microvoids (Figure 8.3(g)) which are
dominant in number and nucleated by fine MX precipitates. Less frequent larger voids are
nucleated by coarser Mo23C6 precipitates. In the transition region, both ductile and brittle
fracture features consisting of transgranular cleavage facets co-exist (Figure 8.3(h)). The amount
of ductile crack growth gradually decreases with decreasing temperature. At the lowest test
temperature, −196◦C, the fracture surfaces are almost completely brittle as depicted in Figure
8.3(i)).

Figure 8.4 presents fractured notched disks tested at temperatures 25◦C,−158◦C and −196◦C.
On the right, the corresponding fracture surfaces are given. For 25◦C, the surface is covered by
microvoids. Ductile tearing ahead of the notch is revealed. For −158◦C, the fracture surface is



174 8.3. Experiments

1 mm

100 µm

20 µm

1 mm

200 µm

20 µm

1 mm

200 µm

10 µm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Fracture appearance of failed unnotched small punch disks tested at different temperatures and the

corresponding fracture surfaces: (a) 25◦C, ductile failure with (d) presenting a close view and (g) its fracture

surface; (b) −158◦C, ductile to brittle transition region, with (e) presenting a close view and (h) its fracture

surface; (c) −196◦C, brittle failure, with (f) presenting a close view and (i) its fracture surface.

SEM images of sections of small punch disks for different temperatures representative of the

upper shelf, lower shelf and transition region were acquired to identify the crack propagation

directions as given in Figure 5. For the ductile case (where void initiation and growth are con-

trolled by plastic strain), the crack propagation was found to follow the direction of the notch

along the maximum equivalent plastic strain. At 25◦C, microvoids nucleated at MX and Mo23C6

in the vicinity of the notch tip grow and coalesce as the strain level increases. Subsequently,

a continuous crack is formed leading to complete fracture. At −196◦C, microcracks form due

to cracking of larger Mo23C6 precipitates [40] in the highly stressed region close to the notch

tip and propagate almost perpendicular to the maximum tensile stress. In the transition region

both ductile and brittle fracture mechanisms compete, while the macrocrack follows an angle in

between the ductile and brittle cases, closer to the brittle case.
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Figure 8.3.: Fracture appearance of failed unnotched small punch disks tested at different tem-
peratures and the corresponding fracture surfaces: (a) 25◦C, ductile failure with (d) presenting
a close view and (g) its fracture surface; (b) −158◦C, ductile to brittle transition region, with
(e) presenting a close view and (h) its fracture surface; (c) −196◦C, brittle failure, with (f)
presenting a close view and (i) its fracture surface.

characteristic of quasi-cleaveage with tear ridges here and there which are the source of plastic
deformation noted for this temperature. To observe the fracture surface of the −196◦C specimen,
the central bulged part was removed to get an SEM image of this zone. Cleavage facets confirmed
the brittle fracture prevailing for this temperature.

8.3.5. Crack Propagation Direction

As stated in [302], the radial symmetry of the notch promotes a plane strain condition. Owing
to the small radius of the notch tip, high stress concentrations could be achieved so that the
initiation of the crack was found to start from the notch tip.

SEM images of sections of small punch disks for different temperatures representative of the
upper shelf, lower shelf and transition region were acquired to identify the crack propagation
directions as given in Figure 8.5. For the ductile case (where void initiation and growth are con-
trolled by plastic strain), the crack propagation was found to follow the direction of the notch
along the maximum equivalent plastic strain. At 25◦C, microvoids nucleated at MX and Mo23C6

in the vicinity of the notch tip grow and coalesce as the strain level increases. Subsequently,
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Figure 4: Fracture appearance at the circular notch: small punch disks with notch depth of 0.5 mm tested at (a)

25◦C, (b) −158◦C and c) −196◦C and the corresponding fracture surfaces given in (d), (e) and (f), respectively.

For the disk tested at 25◦C dimples, and for the disk tested at −196◦C cleavage facets are visible.

Second phase particles which are responsible for void nucleation in ductile fracture mode act

as microcrack initiators in the cleavage fracture mode. As schematically illustrated in Figure

6(a), ahead of the stress concentration provided by the notch, cracking of brittle second phase

particles can take place and microcracks can propagate in the matrix. Cracks may get arrested

at grain boundaries or in neighboring grains, if the driving stress is not high enough. Figure

6 illustrates possible scenarios. In Figure 6(b) the secondary cracks around the main cleavage

crack are visualized according to the sketch given in Figure 6(a). If these cracks are observed

under higher magnification, different mechanisms can be identified. In Figure 6(c) a microcrack

initiated from a secondary phase particle and got arrested in the same grain, whereas in (d)

a microcrack is noted which propagated into the adjacent grains and got arrested at a grain

boundary on one side, and in the matrix on the other side.
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Figure 8.4.: Fracture appearance at the circular notch: small punch disks with notch depth of
0.5 mm tested at (a) 25◦C, (b) −158◦C and (c) −196◦C and the corresponding fracture surfaces
given in (d), (e) and (f), respectively. For the disk tested at 25◦C dimples, and for the disk
tested at −196◦C cleavage facets are visible.

a continuous crack is formed leading to complete fracture. At −196◦C, microcracks form due
to cracking of larger Mo23C6 precipitates [72] in the highly stressed region close to the notch
tip and propagate almost perpendicular to the maximum tensile stress. In the transition region
both ductile and brittle fracture mechanisms compete, while the macrocrack follows an angle in
between the ductile and brittle cases, closer to the brittle case.

Second phase particles which are responsible for void nucleation in ductile fracture mode act
as microcrack initiators in the cleavage fracture mode. As schematically illustrated in Figure
8.6(a), ahead of the stress concentration provided by the notch, cracking of brittle second phase
particles can take place and microcracks can propagate in the matrix. Cracks may get arrested
at grain boundaries or in neighboring grains, if the driving stress is not high enough. Figure 8.6
illustrates possible scenarios. In Figure 8.6.(b) the secondary cracks around the main cleavage
crack are visualized according to the sketch given in Figure 8.6(a). If these cracks are observed
under higher magnification, different mechanisms can be identified. In Figure 8.6(c) a microcrack
initiated from a secondary phase particle and got arrested in the same grain, whereas in (d) a
microcrack is noted which propagated into the adjacent grains and got arrested at a grain
boundary on one side, and in the matrix on the other side.
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Figure 5: SEM images of specimen sections of the notched small punch disks fractured at (a) 25◦C, (b) −158◦C

and (c) −196◦C showing the crack propagation direction from the notch tip, as well as (d) arrested secondary

cracks away from the notch tip at −196◦C [39].

4. Thermomechanical Material Parameters for P91 Steel

Isotropy in both elasticity and plasticity is assumed6 since the disks were extracted from thick-

walled pipes without significant texture. A temperature dependent modulus of elasticity is

assumed, E(Θ) = −0.1127 Θ + 243.6 in GPa with Θ in K (adapted from [41]). This corresponds

to E = 210 GPa, E = 230.6 GPa and E = 234.9 GPa at 25◦C, −158◦C and −196◦C, respec-

tively. Poisson’s ratio is ν = 0.3 for all temperatures. The thermal expansion coefficient is

αΘ = 1.3× 10−5 K−1, the melting temperature and the reference temperature are Θmelt = 1717

K and Θref = 298 K, respectively. The specific heat capacity is cp = 622 m2K−1s−2 accord-

ing to data supplied by the producer. Finally, the Taylor–Quinney coefficient is taken as χ = 0.9.

The plastic hardening behavior is based on tensile tests conducted at constant engineering strain

rate of 5× 10−5 s−1. The data up to maximum tensile force, i.e., the necking point, is used. A

simple power-law hardening in the Johnson–Cook form turned out insufficient. Thus, we adopted

6For convenience, Table 3 compiles the material parameters listed in this section.
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Figure 8.5.: SEM images of specimen sections of the notched small punch disks fractured at (a)
25◦C, (b) −158◦C and (c) −196◦C showing the crack propagation direction from the notch tip,
as well as (d) arrested secondary cracks away from the notch tip at −196◦C [302].

8.4. Thermomechanical Material Parameters for P91 Steel

Isotropy in both elasticity and plasticity is assumed5 since the disks were extracted from thick-
walled pipes without significant texture. A temperature dependent modulus of elasticity is
assumed, E(Θ) = −0.1127 Θ + 243.6 in GPa with Θ in K (adapted from [300]). This corre-
sponds to E = 210 GPa, E = 230.6 GPa and E = 234.9 GPa at 25◦C, −158◦C and −196◦C,
respectively. Poisson’s ratio is ν = 0.3 for all temperatures. The thermal expansion coefficient is
αΘ = 1.3× 10−5 K−1, the melting temperature and the reference temperature are Θmelt = 1717
K and Θref = 298 K, respectively. The specific heat capacity is cp = 622 m2K−1s−2 accord-
ing to data supplied by the producer. Finally, the Taylor–Quinney coefficient is taken as χ = 0.9.

The plastic hardening behavior is based on tensile tests conducted at constant engineering
strain rate of 5 × 10−5 s−1. The data up to maximum tensile force, i.e., the necking point, is
used. A simple power-law hardening in the Johnson–Cook form turned out insufficient. Thus,
the following function is adopted (cf. Equations 13 and 14)

hy(ep) =

{
σy0 + h0ep , ep ≤ ep0 ,
h1ep + σy∞ − [σy∞ − σy1]exp(−menp) , ep > ep0 ,

(8.4.1)

where the associated parameters at room temperature have been identified as h0 = 123 MPa,
h1 = 75 MPa, σy0 = 520 MPa, σy1 = 376 MPa, σy∞ = 831 MPa, m = 6.14, n = 0.541 and
ep0 = 0.006. The experimentally determined data and fitted flow curve are shown in Figure 8.7.

5For convenience, Table 8.3 compiles the material parameters listed in this section.
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Figure 6: Cleavage crack arrest: (a) Scheme showing the arrest mechanisms; (b) SEM image showing main

cleavage crack and secondary cracks in its vicinity (observations performed on a notched disk tested at −196◦C);

(c) microcrack initiated at a precipitate inside the grain and arrested at grain boundaries; (d) higher magnification

SEM image of a secondary crack arrested at a grain boundary and in the matrix (grain boundaries are highlighted).

the following function (cf. Eqs. 13 and 14)

hy(ep) =





σy0 + h0ep ep ≤ ep0

h1ep + σy∞ − [σy∞ − σy1]exp(−menp) ep > ep0,
(27)

where the associated parameters at room temperature have been identified as h0 = 123 MPa,

h1 = 75 MPa, σy0 = 520 MPa, σy1 = 376 MPa, σy∞ = 831 MPa, m = 6.14, n = 0.541 and

ep0 = 0.006. The experimentally determined data and fitted flow curve are shown in Figure 7.

The scaling factor ty(Θ) controls the temperature dependence of the flow curve and is given

in terms of homologous temperature in Figure 8. Assessing the temperature dependence for

a wide range of temperatures including cryogenic and elevated temperatures is not straight-

forward as, in the literature, either low or high temperatures are studied. In the current

study, the temperature dependence of the flow curve was established by merging different re-

sults reported in the literature7 and a best fit was used. It is seen that the distribution of

7A non-dimensional ratio of the actual yield stress with respect to the one reported at room temperature (i.e.,
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Figure 8.6.: Cleavage crack arrest: (a) Scheme showing the arrest mechanisms; (b) SEM image
showing main cleavage crack and secondary cracks in its vicinity (observations performed on a
notched disk tested at −196◦C); (c) microcrack initiated at a precipitate inside the grain and
arrested at grain boundaries; (d) higher magnification SEM image of a secondary crack arrested
at a grain boundary and in the matrix (grain boundaries are highlighted).

The scaling factor ty(Θ) controls the temperature dependence of the flow curve and is given
in terms of homologous temperature in Figure 8.8. Assessing the temperature dependence for
a wide range of temperatures including cryogenic and elevated temperatures is not straight-
forward as, in the literature, either low or high temperatures are studied. In the current
study, the temperature dependence of the flow curve was established by merging different re-
sults reported in the literature6 and a best fit was used. It is seen that the distribution of
the data required a function with an inflection point. Hence, the single curvature model of
Johnson-Cook was not sufficient. The best fit was supplied by the fourth-order polynomial,
42.562Ω4 − 44.846Ω3 + 11.438Ω2 − 1.1021Ω + 1, where Ω = [Θ−Θref] / [Θmelt −Θref]. The
comparison of punch force−displacement simulations with the experiments at the three differ-
ent temperatures (25◦C, −158◦C and −196◦C) required a slight deviation from the best fit of
tensile data, and led us to ty(Θ) equal to 1, 1.24 and 1.54 for 25◦C, −158◦C and −196◦C, re-
spectively. The corresponding points are marked as “used̈ın Figure 8.8. A rate dependence was
not taken into account.

Following [304] and [306], the parameters of the extended Gurson model are chosen as q1 =

6A non-dimensional ratio of the actual yield stress with respect to the one reported at room temperature (i.e.,
reference temperature of each study) is produced.
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Figure 7: Flow curve of P91 at room temperature. The circles represent experimentally recorded points prior to

necking and the solid line is a plot of Eq. 27 for the parameters given.

the data required a function with an inflection point. Hence, the single curvature model of

Johnson-Cook was not sufficient. The best fit was supplied by the fourth order polynomial,

42.562Ω4− 44.846Ω3 + 11.438Ω2− 1.1021Ω + 1, where Ω = [Θ−Θref] / [Θmelt −Θref]. The com-

parison of punch force−displacement simulations with the experiments at the three different

temperatures (25◦C, −158◦C and −196◦C) required a slight deviation from the best fit of tensile

data, and led us to ty(Θ) equal to 1, 1.24 and 1.54 for 25◦C, −158◦C and −196◦C, respectively.

The corresponding points are marked as “used” in Figure 8. A rate dependence was not taken

into account.

Following [12] and [13], the parameters of the extended Gurson model are chosen as q1 = 1.5 =

1/f∗u , q2 = 1, q3 = q2
1 = 2.25. The initial void volume fraction8 is selected as f0 = 0.00044. The

parameters associated with the nucleation mechanism fN = 0.02, εN = 0.3 and SN = 0.1 are

selected, following [46, 47] suggesting that the volume fraction of the segregated inclusions fN is

within a narrow band of 0.01 to 0.03.

reference temperature of each study) is produced.
8Franklin’s formula ([45]) serves as an estimate for the initial void volume fraction f0

f0 =
0.054

√
dxdy

dz

[
S (%)− 0.001

Mn (%)

]
. (28)

Here, dx, dy , and dz denote average inclusion diameters in the respective directions. S% and Mn% represent the

weight percentages of sulphur and manganese in the matrix, respectively. For dx = dy = dz and the chemical

composition of P91 given in Table 1, we have f0 = 0.00044. Although Franklin’s formula is used for materials

where manganese sulphide inclusions are the critical particles for fracture, it supplies a realistic initial value for

porosity for the investigated material whose chemical content also involves S and Mn. Moreover, the authors’

simulations on unnotched disks show that initial porosity estimates within (0.0044, 0.002) resulted in only marginal

differences in the computed failure times.
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Figure 8.7.: Flow curve of P91 at room temperature. The circles represent experimentally
recorded points prior to necking and the solid line is a plot of Equation (8.4.1) for the pa-
rameters given.
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Figure 8: Homologous temperature Ω dependence of the yield stress scaling parameter ty(Θ) after processing three

experimental sources as an initial guess for parameter identification. Comparisons based on force−displacement

response of simulations with experiments of small punch tests at 25◦C, −158◦C and −196◦C . Source 1 is the un-

irradiated T91 from Figure 1 of [42], for temperatures smaller or slightly higher than room temperature. Source 2

is adopted from the true stress–true plastic strain data at various temperatures for 9Cr-1Mo steel tested at a strain

rate of 3.16× 10−4 s−1 from Figure 3 of [43] for temperatures equal or greater than room temperature. Finally,

Source 3 represents data given in Table 1 of [44] which lists the tensile properties of P91 steel for temperatures

equal or greater than room temperature.

Our simulations of notched samples show that the notch induces a strong plane strain effect

with w reaching 1 and increased triaxiality (Eq. 18). This amplifies the effect of the shear mod-

ification. As a consequence, incorporation of the shear modification results in simulated crack

initiation significantly preceding the experimentally observed one. Hence, kw = 0 is selected and

the shear modification is suppressed for simplicity. By this choice the void nucleation rather than

the void growth term incorporates the shear stress effects provided that hydrostatic stresses are

positive. Regarding the uniqueness of the parameter choice, we note that it is also possible to

arrive at reasonable fracture initiation strains with kw 6= 0 and relaxed void nucleation and/or

initial porosity data.

For the final void fraction at failure, different references give somewhat different results, e.g., [48]

takes fF = 0.25 in accordance with [49] whereas fF = 0.2 is used in [50, 51, 46, 47], noting that

the last two references study steel A533 B. In the present work coalescence and failure porosity

were taken as fc = 0.1 and fF = 0.25. The so-called energetic length scale for ductile fracture

has been suggested to be between four times the void size and half the void spacing, see [22].
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Figure 8.8.: Homologous temperature Ω dependence of the yield stress scaling parameter ty(Θ)
after processing three experimental sources as an initial guess for parameter identification. Com-
parisons based on force−displacement response of simulations with experiments of small punch
tests at 25◦C, −158◦C and −196◦C . Source 1 is the un-irradiated T91 from Figure 1 of [140],
for temperatures smaller or slightly higher than room temperature. Source 2 is adopted from
the true stress–true plastic strain data at various temperatures for 9Cr-1Mo steel tested at a
strain rate of 3.16× 10−4 s−1 from Figure 3 of [73] for temperatures equal or greater than room
temperature. Finally, Source 3 represents data given in Table 1 of [268] which lists the tensile
properties of P91 steel for temperatures equal or greater than room temperature.

1.5 = 1/f∗u , q2 = 1, q3 = q2
1 = 2.25. The initial void volume fraction7 is selected as f0 = 0.00044.

7Franklin’s formula [93] serves as an estimate for the initial void volume fraction f0

f0 =
0.054

√
dxdy

dz

[
S (%)− 0.001

Mn (%)

]
. (8.4.2)
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The parameters associated with the nucleation mechanism fN = 0.02, εN = 0.3 and SN = 0.1
are selected, following [5, 6] suggesting that the volume fraction of the segregated inclusions fN

is within a narrow band of 0.01 to 0.03.

Presented simulations of notched samples show that the notch induces a strong plane strain
effect with w reaching 1 and increased triaxiality (Equation (8.2.18)). This amplifies the effect
of the shear modification. As a consequence, incorporation of the shear modification results
in simulated crack initiation significantly preceding the experimentally observed one. Hence,
kw = 0 is selected and the shear modification is suppressed for simplicity. By this choice the
void nucleation rather than the void growth term incorporates the shear stress effects provided
that hydrostatic stresses are positive. Regarding the uniqueness of the parameter choice, it is
notable that it is also possible to arrive at reasonable fracture initiation strains with kw 6= 0 and
relaxed void nucleation and/or initial porosity data.

For the final void fraction at failure, different references give somewhat different results, e.g.,
[172] takes fF = 0.25 in accordance with [62] whereas fF = 0.2 is used in [334, 336, 5, 6], noting
that the last two references study steel A533 B. In the present work coalescence and failure
porosity were taken as fc = 0.1 and fF = 0.25. The so-called energetic length scale for ductile
fracture has been suggested to be between four times the void size and half the void spacing,
see [309]. If two populations of second phase particles are present, which is the case for P91,
one should select the population which is dominant in crack initiation and propagation. In the
fractographic images, fine dimples initiated by small MX particles are noticeable. This precip-
itate type prevails in quantity and is believed to play a significant role in the ductile fracture
(Figure 8.3(g)) in addition to M23C6 precipitates. From the images the relevant length scale
being of the order of the average distance between the MX and the M23C6 precipitates was
identified as 2.5 µm to 5 µm and used to define the lower and upper bounds of Rductile, respec-
tively. These values pose restrictions in selecting the finite element mesh size which scales the
computational cost. One could also use a local formulation where the mesh size constitutes the
characteristic length. This was not pursued in the current study due to the need to vary the mesh
size around the notch tip as well as the relatively large aspect ratio of the elements in this region.

According to the RKR cleavage model, cracks initiate if a critical stress is exceeded over a char-
acteristic distance, associated with the grain size. As previously mentioned, P91 microstructure
is composed of prior austenite grains which are subdivided into packets of fine martensite laths
(Figure 8.9(a)). In order to reveal the microstructure and make prior austenite grain boundaries
distinguishable, Vilela’s reagent (1 g picric acid and 5 mL HCl in 100 mL ethanol) was used
for etching. In Figure 8.9.(b) an SEM image of an etched sample is given. The two types of
precipitates M23C6 (with M identified as Mo by EDX analysis) and MX are apparent in this
image: M23C6 mostly in the prior austenite subgrain boundaries whereas MX distributed in
the matrix. The grain size determined by the intercept method (ASTM E112) was found to be
14− 25 µm which is comparable with values reported in the literature. This was used to define
lower and upper bounds of Rbrittle as 7 µm and 12.5 µm. For the associated critical stress for
brittle fracture, the present numerical computations suggested σc = 2.83σy0 and σc = 2.55σy0.

Here, dx, dy, and dz denote average inclusion diameters in the respective directions. S% and Mn% represent
the weight percentages of sulphur and manganese in the matrix, respectively. For dx = dy = dz and the
chemical composition of P91 given in Table 8.1, one has f0 = 0.00044. Although Franklin’s formula is used for
materials where manganese sulphide inclusions are the critical particles for fracture, it supplies a realistic initial
value for porosity for the investigated material whose chemical content also involves S and Mn. Moreover, the
authors’ simulations on unnotched disks show that initial porosity estimates within (0.0044, 0.002) resulted in
only marginal differences in the computed failure times.
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The latter yielded reasonable results if small-scale yielding conditions prevail. For unnotched
small punch specimens, however, the former gave better results as large-scale yielding conditions
have to be taken into account. No temperature dependence of σc was assumed.

2 µm

(a) (b)

Figure 9: (a) Scheme representing P91 microstructure, (b) SEM image of polished–etched sample revealing this

structure.

with a dynamic-explicit solution procedure generally involves a large number of time steps due

to the Courant stability condition. In order to reduce the computational cost, mass scaling was

applied with a target time step of 10−3 s over the whole analysis which lasted 150 s. This supplies

acceleration of the simulations without changing the actual time scale of the process affecting

other time dependent phenomena such as viscosity or heat transfer.

The heat source is localized at the crack tip. However, since the loading rate is low, this

concentration is effectively lost by diffusion, without significant effect on the material response.

This is the case for ductile fracture with relatively low propagation rate as well as brittle fracture

with high propagation rate but limited plastic flow and accompanying dissipation. Therefore,

we use an isothermal analysis for the three different temperatures.

Crack propagation was modeled using an element erosion technique whereby elements with

Gauss points whose porosity and/or normalized RKR integral reach the corresponding failure

thresholds are removed from the computational stack. Doing so within a nonlocal environment is

possible in different ways as depicted in Figure 10 for brittle fracture. Without loss of generality,

the same scenarios apply for ductile fracture as well. The first method consists in deleting the

whole element set within the interaction radius once the central element’s Gauss point becomes

critical (ductile or brittle failure threshold reached), e.g., [1]. If the internal length associated

with the failure mechanism is large, this can result in a violation of mass conservation. Al-

ternatively, only the central element can be deleted. For virtually ductile crack extension we

applied this method and eroded only the single central element. For brittle fracture with a

larger material length scale, however, our studies showed that this method results in cleavage

crack islands formed by eroded elements ahead of the crack tip. These crack islands can be seen
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Figure 8.9.: (a) Scheme representing P91 microstructure, (b) SEM image of polished–etched
sample revealing this structure.

8.5. Simulations

2D axi-symmetric simulations with CAX4R reduced integration elements for temperatures of
−196◦C, −158◦C and 25◦C were conducted in Abaqus/Explicit with double precision. The
dies and the punch were modeled as rigid bodies and the disk as a deformable body. The inter-
action between the rigid and deformable bodies was assumed to be constant with a temperature
independent friction coefficient chosen as µ = 0.25. A solution of quasi-static problems with a
dynamic-explicit solution procedure generally involves a large number of time steps due to the
Courant stability condition. In order to reduce the computational cost, mass scaling was ap-
plied with a target time step of 10−3 s over the whole analysis which lasted 150 s. This supplies
acceleration of the simulations without changing the actual time scale of the process affecting
other time dependent phenomena such as viscosity or heat transfer.

The heat source is localized at the crack tip. However, since the loading rate is low, this
concentration is effectively lost by diffusion, without significant effect on the material response.
This is the case for ductile fracture with relatively low propagation rate as well as brittle fracture
with high propagation rate but limited plastic flow and accompanying dissipation. Therefore,
isothermal analysis for the three different temperatures is used.

Crack propagation was modeled using an element erosion technique whereby elements with
Gauss points whose porosity and/or normalized RKR integral reach the corresponding failure
thresholds are removed from the computational stack. Doing so within a nonlocal environment
is possible in different ways as depicted in Figure 8.10 for brittle fracture. Without loss of
generality, the same scenarios apply for ductile fracture as well. The first method consists in
deleting the whole element set within the interaction radius once the central element’s Gauss
point becomes critical (ductile or brittle failure threshold reached), e.g., [230]. If the internal
length associated with the failure mechanism is large, this can result in a violation of mass
conservation. Alternatively, only the central element can be deleted. For virtually ductile crack
extension this method is applied and only the single central element is eroded. For brittle frac-
ture with a larger material length scale, however, current studies showed that this method results
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in cleavage crack islands formed by eroded elements ahead of the crack tip. These crack islands
can be seen as computational counterparts of arrested cracks around the crack tip, as found
experimentally, which are then bridged either by ductile or brittle fracturing. Although simple,
this method does not allow any control on the crack propagation direction. However, it is well
known that the principal stress is effective in directing cleavage cracks. Thus, a new method was
implemented: Once the central element’s normalized RKR integral reached the corresponding
failure threshold the element itself, as well as the elements whose Gauss points fell within a
crack band thickness along the direction orthogonal to the maximum tensile principal stress,
were deleted all together.

as computational counterparts of arrested cracks around the crack tip, as found experimentally,

which are then bridged either by ductile or brittle fracturing. Although simple, this method does

not allow any control on the crack propagation direction. However, it is well known that the

principal stress is effective in directing cleavage cracks. Thus, a new method was implemented:

Once the central element’s normalized RKR integral reached the corresponding failure threshold

the element itself, as well as the elements whose Gauss points fell within a crack band thickness

along the direction orthogonal to the maximum tensile principal stress, were deleted all together.

C. Soyarslan, B. Gülcimen, S. Bargmann, P. Hähner 1

Methods Under Investigation

Newly proposed. Involves directional information on the crack 

formation. This could be easily extended to 3D as well.
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Figure 10: Methods of virtual extension of cleavage cracks for the cleavage grain given in (a). (b) deletion of the

whole cleavage grain, e.g., [1]. In this method many elements are deleted without any directional information on

the crack formation. (c) Deletion of central element only: Only the central element is deleted once the criterion is

satisfied. Again this method suffers from ignoring directional information for crack propagation. (d) Deletion of

elements whose GPs fall into a band oriented in the direction orthogonal to the maximum tensile principal stress:

Deletion band size t can be selected according to the finite element size. Hence, xc is the position vector of the

central GP and x is the position vector of the neighboring GP with respect to a common origin and n is the unit

vector in direction of the maximum principal stress (belonging to the central element), then deletion is applied

to elements for which (x− xc) · n ≤ t/2. We observed that the fracture patterns for total deletion (b) and single

deletion (c) resulted in fracture islands and largely deleted regions with considerable mass loss, respectively.

5.1. Small Scale Yielding Condition

This set of simulations concerns the notched small punch tests where the fracture, either ductile

or brittle, emanates from the notch as a result of stress concentration. We use the upper limits

of the brittle and ductile interaction radii where Rductile = 5 µm and Rbrittle = 12.5 µm with

σc = 2.55σy0.

The mesh used in the simulations is given in Figure 11. Due to high stress gradients around

the notch tip the finite element discretization requires special attention in that region. In the
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Figure 8.10.: Methods of virtual extension of cleavage cracks for the cleavage grain given in (a).
(b) deletion of the whole cleavage grain, e.g., [230]. In this method many elements are deleted
without any directional information on the crack formation. (c) Deletion of central element only:
Only the central element is deleted once the criterion is satisfied. Again this method suffers from
ignoring directional information for crack propagation. (d) Deletion of elements whose GPs fall
into a band oriented in the direction orthogonal to the maximum tensile principal stress: Deletion
band size t can be selected according to the finite element size. Hence, xc is the position vector
of the central GP and x is the position vector of the neighboring GP with respect to a common
origin and n is the unit vector in direction of the maximum principal stress (belonging to the
central element), then deletion is applied to elements for which (x−xc) ·n ≤ t/2. It is observed
that the fracture patterns for total deletion (b) and single deletion (c) resulted in fracture islands
and largely deleted regions with considerable mass loss, respectively.

8.5.1. Small Scale Yielding Condition

This set of simulations concerns the notched small punch tests where the fracture, either ductile
or brittle, emanates from the notch as a result of stress concentration. The upper limits of the
brittle and ductile interaction radii are used with Rductile = 5 µm and Rbrittle = 12.5 µm with
σc = 2.55σy0.

The mesh used in the simulations is given in Figure 8.11. Due to high stress gradients around
the notch tip the finite element discretization requires special attention in that region. In the
current study 2 µm mesh size allowed traversing the notch tip with sufficiently fine mesh for a
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reasonable notch tip stress resolution8. This requires the application of a nonlocal theory, since
the emerging element sizes are smaller than the interaction radius identified for ductile failure.
Since the radius of interaction is 5 µm the utilized finite element sizes should be smaller than this
to allow delocalization to be applied. Consequently, with the utilized mesh up to 230 elements
in the vicinity and around 40 elements further away from the notch are supplied within a brittle
interaction radius.

At the notch tip the Arbitrary Lagrangian Eulerian (ALE) remeshing9 was utilized where Vdisp
subroutine interface allowed to track the corresponding element volumes. By morphing the mesh
compatible with the underlying deformation this avoids otherwise extreme element distortion or
aspect ratio change around the notch tip for the ductile fracture. Hence, smooth distributions
of stress and strain fields are obtained which is conclusive in the damage development. Apart
from the notch tip the mesh was created by the advancing front quad method. The number of
elements within the effective radius of each element varied spatially. The size of the ALE region
was determined by a trial and error analysis. Possible self-contact of the notch free surface was
taken into account.

For −196◦C, the main fracture mechanism is cleavage controlled by the stress over the cleavage
grain. In order to shed light on the mechanism, the distribution of the Ritchie–Rice–Knott
(RKR) integral normalized by σy0 is investigated for various stages of loading (Figure 8.12).

In early stages of the process, the RKR integral has its maximum first on the symmetry axis
on the convex surface of the bent region, say the tip of the dome, whose magnitude is far from
critical. With further loading, the critical region is carried away from the center but still stays
on the free surface. At a punch displacement of u = 0.187 mm till the crack initiation the
maximum RKR integral is found on the left-hand side of the notch tip where hydrostatic stress
is tensile. Taking into account the interaction radius for brittle fracture the visibility criterion
(Figure 8.25) gives a reasonable distribution of the RKR integral over the region at the notch
tip. Without visibility criterion the sign change of the maximum principal stresses at either
side of the notch results in smaller values of the RKR integral at the fracture region around the
notch. This unrealistic smoothing affects the threshold value for the RKR integral to be used.
Situations with the maximum RKR integral being at the bottom of the disk can then occur
at the instant of experimentally determined brittle fracture. Hence, the implementation of the
visibility criterion seems to be crucial for the current application, where the interaction radius
is larger than the notch radius.

The cleavage crack starts at the notch root where the RKR integral first reaches the threshold
(Figure 8.13). Fast cleavage crack propagation follows until the complete separation and loss
of load carrying capacity of the disk. Throughout the loading, the RKR integral maintains

8As noted in [223] and [230], for sufficiently smooth stress gradients the finite element size can be adapted to the
grain size in order to circumvent an integration over a number of elements. However, for small–scale yielding
conditions where a sharp notch or crack tip creates high stress gradients or for materials involving secondary
microstructural mechanisms acting at a smaller scale, the maximum finite element sizes are limited by that
smaller scale.

9ALE adaptive remeshing is used to remedy excessive distortion of the elements in the mesh at the notch
vicinity. It consists of two fundamental steps: creation of a new mesh, and solution variable remapping with
advection process. In order to preclude accumulation of numerical errors associated with solution mapping and
delocalization operations and also keeping the computational cost to a reasonable limit, the number of ALE
remeshing increments is kept minimum through a trial and error analyses. Accordingly the selected parameters
are as follows: ALE remeshing frequency: 50 (typically 5–100 without Eulerian boundaries), remeshing sweeps
per increment: 1 (default), Initial remeshing sweeps: default. The remaining ALE adaptive mesh controls are
selected as the default values proposed, see, e.g., [3].
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Figure 11: (a) axisymmetric finite element model for the notched small punch test. In (b) and (c) the mesh

design is depicted where the region in (c) corresponds to the ALE remeshing region.

critical. With further loading, the critical region is carried away from the center but still stays on

the free surface. At a punch displacement of u = 0.187 mm till the crack initiation the maximum

RKR integral is found on the left-hand side of the notch tip where hydrostatic stress is tensile.

Taking into account the interaction radius for brittle fracture the visibility criterion (Figure 25)

gives a reasonable distribution of the RKR integral over the region at the notch tip. Without

visibility criterion the sign change of the maximum principal stresses at either side of the notch

results in smaller values of the RKR integral at the fracture region around the notch. This un-

realistic smoothing affects the threshold value for the RKR integral to be used. Situations with

the maximum RKR integral being at the bottom of the disk can then occur at the instant of

experimentally determined brittle fracture. Hence, the implementation of the visibility criterion

seems to be crucial for the current application, where the interaction radius is larger than the

notch radius.

The cleavage crack starts at the notch root where the RKR integral first reaches the threshold

(Figure 13). Fast cleavage crack propagation follows until the complete separation and loss of

load carrying capacity of the disk. Throughout the loading, the RKR integral maintains the
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Figure 8.11.: (a) axisymmetric finite element model for the notched small punch test. In (b)
and (c) the mesh design is depicted where the region in (c) corresponds to the ALE remeshing
region.

the direction of the crack, while its maximum remains at the advancing crack tip. The crack
propagation is not completely straight but slightly bent due to the redistribution of stresses
induced by the continuous motion of the punch. This is in agreement with experimental findings,
and it shows that the virtual crack propagation methodology is correctly taking into account
the slight rotation of the maximum stress direction ahead of the advancing crack.

Figure 8.14 shows the distribution of various fields around the notch tip just before the initiation
of brittle fracture at punch displacement u =0.23 mm. From (a) to (e), the fields are the
normalized RKR integral, the normalized maximum principal stress, the vector distribution
of the maximum and minimum principal stresses, the total void volume fraction and the von
Mises stress, respectively. The RKR integral considerably smoothens the high gradients of
the underlying principal stress field. As anticipated, the directions of the maximum (tensile)
principal stress define the direction orthogonal to the crack propagation. Thus, fracture is of
Mode I. The dominantly compressive (right) and tensile (left) stress fields separated by the notch
are also apparent. The maximum void volume fraction, unlike the RKR integral, is located ahead
of the notch tip which coincides with the given distribution of the von Mises stress. However,
at this stage of loading its magnitude is far from being critical, in line with the brittle nature of
fracture at −196◦C.

For 25◦C, ductile fracture is mainly controlled by plastic flow and hydrostatic stress with focus
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Figure 12: RKR integral distribution (normalized with respect to σy0) at four stages of loading at −196◦C.

(a) punch displacement u = 0.088 mm, [max 2.075; min −3.185]; (b) punch displacement u = 0.187 mm, [max

2.324; min −2.664]; (c) punch displacement u = 0.187 mm, detail at notch, [max 2.324; min −2.664]; (d) punch

displacement u = 0.23 mm, [max 2.535; min −2.739]. At punch displacement u = 0.187 mm the maximum occurs

at the notch rather than the bottom for the first time.

direction of the crack, while its maximum remains at the advancing crack tip. The crack prop-

agation is not completely straight but slightly bent due to the redistribution of stresses induced

by the continuous motion of the punch. This is in agreement with experimental findings, and it

shows that the virtual crack propagation methodology is correctly taking into account the slight

rotation of the maximum stress direction ahead of the advancing crack.

Figure 14 shows the distribution of various fields around the notch tip just before the initiation

of brittle fracture at punch displacement u =0.23 mm. From (a) to (e), the fields are the nor-

malized RKR integral, the normalized maximum principal stress, the vector distribution of the

maximum and minimum principal stresses, the total void volume fraction and the von Mises

stress, respectively. The RKR integral considerably smoothens the high gradients of the under-

lying principal stress field. As anticipated, the directions of the maximum (tensile) principal

stress define the direction orthogonal to the crack propagation. Thus, fracture is of Mode I. The

dominantly compressive (right) and tensile (left) stress fields separated by the notch are also

apparent. The maximum void volume fraction, unlike the RKR integral, is located ahead of the

notch tip which coincides with the given distribution of the von Mises stress. However, at this

stage of loading its magnitude is far from being critical, in line with the brittle nature of fracture

at −196◦C.

24

Figure 8.12.: RKR integral distribution (normalized with respect to σy0) at four stages of load-
ing at −196◦C. (a) punch displacement u = 0.088 mm, [max 2.075; min −3.185]; (b) punch
displacement u = 0.187 mm, [max 2.324; min −2.664]; (c) punch displacement u = 0.187 mm,
detail at notch, [max 2.324; min −2.664]; (d) punch displacement u = 0.23 mm, [max 2.535;
min −2.739]. At punch displacement u = 0.187 mm the maximum occurs at the notch rather
than the bottom for the first time.

now being on the distribution of the void volume fraction at various stages of loading (Figure
8.15). In the early stages of the process the void volume fraction has its maximum on the
symmetry axis at the apex of the bend, however, with a magnitude far from the failure threshold.
After a punch displacement of u = 0.157 mm till the incipient fracture, the maximum porosity
is located ahead of the notch tip, however, slightly shifted to the left where the hydrostatic
stress is tensile. As the punch travel continues its magnitude and extension get larger, while the
porosity growth tends to align itself along the punch loading direction.

Figure 8.16 shows the crack propagation from its initiation to complete separation. In accordance
with the distribution of the porosity, the crack propagates almost parallel to the punch loading
direction after a slight inflection to the left at the initial stage. This pattern is in good agreement
with experimental findings. The whole process is governed by ductile failure, in the sense that
the element deletion proceeds according to the ductile fracture criterion. The speed of crack
propagation is considerably lower than in the brittle case. The failure process is distributed over
a longer time period with larger energy required. The initiation and propagation of the crack
feature mixing of Mode I and Mode II, noting that during almost vertical propagation Mode II
dominates.

Figure 8.17 displays various fields around the notch tip just before the initiation of ductile frac-
ture at punch displacement u =0.405 mm : normalized RKR integral, the normalized maximum
principal stress, the vector distribution of the maximum and minimum principal stresses, the
total void volume fraction and the von Mises stress, from (a) to (e), respectively. The normalized
RKR integral is considerably smaller than the threshold. Similar to the findings for −196◦C it
deviates from the normalized maximum principal stress due to the high stress gradients at the
notch tip. The principal stress vectors are similar in direction to the ones for −196◦C, however,
with considerably reduced magnitudes. The temperature dependence of the yield stress causes
plastic flow to take place at lower stress levels than for −196◦C. Without brittle fracture in-
tervening, the notch tip experiences sufficient deformation to accumulate a critical amount of
porosity under tensile hydrostatic stresses. Moreover, the von Mises equivalent stress (as driving
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Figure 13: Initiation and evolution of the crack at different stages of loading at −196◦C. RKR integral distribution

(normalized with respect to σy0) at five different successive loading steps: (a) u = 0.230 mm [max 2.535; min

−2.739]; (b) u = 0.231 mm [max 2.359; min −2.731]; (c) u = 0.232 mm [max 2.269; min −2.757]; (d) u = 0.233

mm [max 2.251; min −2.508]; (e) u = 0.234 mm [max 2.351; min −1.420].

(a) (b) (c) (d) (e)

min max

Figure 14: Different field distributions at punch displacement u = 0.23 mm for −196◦C. (a) RKR integral

distribution [max 2.535; min −2.739]; (b) maximum normalized principal stress distribution [max 3.086; min

−4.056]; (c) in-plane principal stresses with associated directions [max=1605 MPa; min=−3631 MPa]; (d) total

void volume fraction [max=0.013; min=3.679×10−7]; (e) von Mises equivalent stress [max=1498 MPa; min=17.74

MPa].

For 25◦C, ductile fracture is mainly controlled by plastic flow and hydrostatic stress with focus

25

Figure 8.13.: Initiation and evolution of the crack at different stages of loading at −196◦C.
RKR integral distribution (normalized with respect to σy0) at five different successive loading
steps: (a) u = 0.230 mm [max 2.535; min −2.739]; (b) u = 0.231 mm [max 2.359; min −2.731];
(c) u = 0.232 mm [max 2.269; min −2.757]; (d) u = 0.233 mm [max 2.251; min −2.508]; (e)
u = 0.234 mm [max 2.351; min −1.420].
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Figure 13: Initiation and evolution of the crack at different stages of loading at −196◦C. RKR integral distribution

(normalized with respect to σy0) at five different successive loading steps: (a) u = 0.230 mm [max 2.535; min

−2.739]; (b) u = 0.231 mm [max 2.359; min −2.731]; (c) u = 0.232 mm [max 2.269; min −2.757]; (d) u = 0.233

mm [max 2.251; min −2.508]; (e) u = 0.234 mm [max 2.351; min −1.420].
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Figure 14: Different field distributions at punch displacement u = 0.23 mm for −196◦C. (a) RKR integral

distribution [max 2.535; min −2.739]; (b) maximum normalized principal stress distribution [max 3.086; min

−4.056]; (c) in-plane principal stresses with associated directions [max=1605 MPa; min=−3631 MPa]; (d) total

void volume fraction [max=0.013; min=3.679×10−7]; (e) von Mises equivalent stress [max=1498 MPa; min=17.74

MPa].

For 25◦C, ductile fracture is mainly controlled by plastic flow and hydrostatic stress with focus

25

Figure 8.14.: Different field distributions at punch displacement u = 0.23 mm for −196◦C. (a)
RKR integral distribution [max 2.535; min −2.739]; (b) maximum normalized principal stress
distribution [max 3.086; min −4.056]; (c) in-plane principal stresses with associated directions
[max=1605 MPa; min=−3631 MPa]; (d) total void volume fraction [max=0.013; min=3.679×
10−7]; (e) von Mises equivalent stress [max=1498 MPa; min=17.74 MPa].
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now being on the distribution of the void volume fraction at various stages of loading (Figure 15).

In the early stages of the process the void volume fraction has its maximum on the symmetry

axis at the apex of the bend, however, with a magnitude far from the failure threshold. After a

punch displacement of u = 0.157 mm till the incipient fracture, the maximum porosity is located

ahead of the notch tip, however, slightly shifted to the left where the hydrostatic stress is tensile.

As the punch travel continues its magnitude and extension get larger, while the porosity growth

tends to align itself along the punch loading direction.

(a)

(b)

(c) (d)

min max

Figure 15: Void volume fraction distribution at four different stages of loading at 25◦C. (a) punch displacement

u = 0.11 mm, [max 9.294 × 10−4]; (b) punch displacement u = 0.157 mm, [max 2.162 × 10−3]; (c) punch

displacement u = 0.157 mm, detail at notch, [max 2.162 × 10−3]; (d) punch displacement u = 0.405 mm, [max

0.2186]. At punch displacement u = 0.157 mm the void density concentrates for the first time at the notch rather

than the bottom. The minimum porosity is set to zero in all these contour plots.

Figure 16 shows the crack propagation from its initiation to complete separation. In accordance

with the distribution of the porosity, the crack propagates almost parallel to the punch loading

direction after a slight inflection to the left at the initial stage. This pattern is in good agreement

with experimental findings. The whole process is governed by ductile failure, in the sense that

the element deletion proceeds according to the ductile fracture criterion. The speed of crack

propagation is considerably lower than in the brittle case. The failure process is distributed over

a longer time period with larger energy required. The initiation and propagation of the crack

feature mixing of Mode I and Mode II, noting that during almost vertical propagation Mode II

dominates.

Figure 17 displays various fields around the notch tip just before the initiation of ductile frac-

ture at punch displacement u =0.405 mm : normalized RKR integral, the normalized maximum

principal stress, the vector distribution of the maximum and minimum principal stresses, the
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Figure 8.15.: Void volume fraction distribution at four different stages of loading at 25◦C. (a)
punch displacement u = 0.11 mm, [max 9.294 × 10−4]; (b) punch displacement u = 0.157 mm,
[max 2.162× 10−3]; (c) punch displacement u = 0.157 mm, detail at notch, [max 2.162× 10−3];
(d) punch displacement u = 0.405 mm, [max 0.2186]. At punch displacement u = 0.157 mm the
void density concentrates for the first time at the notch rather than the bottom. The minimum
porosity is set to zero in all these contour plots.

(a) (b) (c) (d) (e) (f) (g)

min max

Figure 16: Initiation and evolution of the crack at different stages of loading at 25◦C evidenced by contours of

void volume fraction. Maximum void volume fraction is naturally 0.25 and minimum is set to zero.

total void volume fraction and the von Mises stress, from (a) to (e), respectively. The normalized

RKR integral is considerably smaller than the threshold. Similar to the findings for −196◦C it

deviates from the normalized maximum principal stress due to the high stress gradients at the

notch tip. The principal stress vectors are similar in direction to the ones for −196◦C, however,

with considerably reduced magnitudes. The temperature dependence of the yield stress causes

plastic flow to take place at lower stress levels than for −196◦C. Without brittle fracture in-

tervening, the notch tip experiences sufficient deformation to accumulate a critical amount of

porosity under tensile hydrostatic stresses. Moreover, the von Mises equivalent stress (as driving

force for the plastic deformation) has its maximum ahead of the crack tip and the contours orient

themselves along the vertical direction of punch travel.

For −158◦C, fracture initiates at an intermediate punch travel u =0.23 mm, however, with a

brittle mode. Figure 18 displays the fields around the notch tip just before fracture initiation.

While the accumulated porosity is higher than for −196◦C prior to fracture, it still remains

below the coalescence void volume fraction. Thus, ductile fracture does not take place. The

accumulation of sufficiently high stress levels requires more deformation though. Consequently,

hardening takes place at the crack tip.

A comparison of the crack patterns observed in simulations and experiments is given in Figure

19. Obviously, the crack patterns for both 25◦C and −196◦C are in very good agreement. For
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Figure 8.16.: Initiation and evolution of the crack at different stages of loading at 25◦C evi-
denced by contours of void volume fraction. Maximum void volume fraction is naturally 0.25
and minimum is set to zero.

force for the plastic deformation) has its maximum ahead of the crack tip and the contours orient
themselves along the vertical direction of punch travel.

For −158◦C, fracture initiates at an intermediate punch travel u =0.23 mm, however, with a
brittle mode. Figure 8.18 displays the fields around the notch tip just before fracture initiation.
While the accumulated porosity is higher than for −196◦C prior to fracture, it still remains
below the coalescence void volume fraction. Thus, ductile fracture does not take place. The
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Figure 17: Field distributions at punch displacement u = 0.405 mm for 25◦C. (a) RKR integral [max 2.271;

min −1.719]; (b) maximum normalized principal stress [max 2.551; min −2.242]; (c) in-plane principal stresses

with associated directions [max=1362 MPa; min=−2320 MPa]; (d) total void volume fraction [max=0.0219;

min=6.830× 10−5]; (e) von Mises equivalent stress [max=926.6 MPa, min=22.42 MPa].

(a) (b) (c) (d) (e)

min max

Figure 18: Field distributions at punch displacement u = 0.36 mm for −158◦C. (a) RKR integral [max 2.518;

min −1.940]; (b) maximum normalized principal stress [max 3.395; min −2.324]; (c) in plane principal stresses

with associated directions [max=1789 MPa; min=−2412 MPa]; (d) total void volume fraction [max=0.0406;

min=3.934× 10−5]; (e) von Mises equivalent stress [max=1370 MPa, min=22.97 MPa].

25◦C, besides the crack pattern itself, the similarity of the upper face curvatures of the disk is

noteworthy. For −196◦C, although the direction of the crack is well reproduced, axisymmetry

conditions are not preserved during brittle fracture in the experiments. For −158◦C the frac-

ture takes place much later than for −196◦C. The fracture mode is predominantly brittle in

the simulations, while the experimental findings show more mixing of ductile and brittle frac-

ture. Also, it is seen that the steepness of the propagation direction decreases with decreasing

temperature. For −158◦C, the orientation of the crack lies in between those of 25◦C and −196◦C.

Finally, a comparison of the punch force vs. displacement curves is given in Figure 20. A good
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Figure 8.17.: Field distributions at punch displacement u = 0.405 mm for 25◦C. (a) RKR
integral [max 2.271; min −1.719]; (b) maximum normalized principal stress [max 2.551; min
−2.242]; (c) in-plane principal stresses with associated directions [max=1362 MPa; min=−2320
MPa]; (d) total void volume fraction [max=0.0219; min=6.830×10−5]; (e) von Mises equivalent
stress [max=926.6 MPa, min=22.42 MPa].

accumulation of sufficiently high stress levels requires more deformation though. Consequently,
hardening takes place at the crack tip.
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Figure 17: Field distributions at punch displacement u = 0.405 mm for 25◦C. (a) RKR integral [max 2.271;

min −1.719]; (b) maximum normalized principal stress [max 2.551; min −2.242]; (c) in-plane principal stresses

with associated directions [max=1362 MPa; min=−2320 MPa]; (d) total void volume fraction [max=0.0219;

min=6.830× 10−5]; (e) von Mises equivalent stress [max=926.6 MPa, min=22.42 MPa].
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Figure 18: Field distributions at punch displacement u = 0.36 mm for −158◦C. (a) RKR integral [max 2.518;

min −1.940]; (b) maximum normalized principal stress [max 3.395; min −2.324]; (c) in plane principal stresses

with associated directions [max=1789 MPa; min=−2412 MPa]; (d) total void volume fraction [max=0.0406;

min=3.934× 10−5]; (e) von Mises equivalent stress [max=1370 MPa, min=22.97 MPa].

25◦C, besides the crack pattern itself, the similarity of the upper face curvatures of the disk is

noteworthy. For −196◦C, although the direction of the crack is well reproduced, axisymmetry

conditions are not preserved during brittle fracture in the experiments. For −158◦C the frac-

ture takes place much later than for −196◦C. The fracture mode is predominantly brittle in

the simulations, while the experimental findings show more mixing of ductile and brittle frac-

ture. Also, it is seen that the steepness of the propagation direction decreases with decreasing

temperature. For −158◦C, the orientation of the crack lies in between those of 25◦C and −196◦C.

Finally, a comparison of the punch force vs. displacement curves is given in Figure 20. A good
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Figure 8.18.: Field distributions at punch displacement u = 0.36 mm for −158◦C. (a) RKR
integral [max 2.518; min −1.940]; (b) maximum normalized principal stress [max 3.395; min
−2.324]; (c) in plane principal stresses with associated directions [max=1789 MPa; min=−2412
MPa]; (d) total void volume fraction [max=0.0406; min=3.934×10−5]; (e) von Mises equivalent
stress [max=1370 MPa, min=22.97 MPa].

A comparison of the crack patterns observed in simulations and experiments is given in Figure
8.19. Obviously, the crack patterns for both 25◦C and −196◦C are in very good agreement. For
25◦C, besides the crack pattern itself, the similarity of the upper face curvatures of the disk is
noteworthy. For −196◦C, although the direction of the crack is well reproduced, axisymmetry
conditions are not preserved during brittle fracture in the experiments. For −158◦C the fracture
takes place much later than for −196◦C. The fracture mode is predominantly brittle in the sim-
ulations, while the experimental findings show more mixing of ductile and brittle fracture. Also,
it is seen that the steepness of the propagation direction decreases with decreasing temperature.
For −158◦C, the orientation of the crack lies in between those of 25◦C and −196◦C.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Comparison of the crack patterns observed in simulations and experiments. (a) Experiment at 25◦C

(Simulation given in (d)); (b) Experiment at −158◦C (Simulation given in (e)); (c) Experiment at −196◦C

(Simulation given in (f)).

agreement is observed throughout the elastic-plastic deformation phase. At −196◦C, the fracture

strains are also well captured. For 25◦C, a slightly premature failure is obtained with a rather

steep drop of the force response. For −158◦C, although the displacement at fracture is close

to the experimental ones, a more brittle mode of fracture results in a steeper drop of the force

response compared to the experimental findings. This discrepancy is supposed to be emphasized

by the fact that the axisymmetric 2D simulations cannot capture the distributed failure of the

specimen along the circular notch as observed in 3D.

Small punch deformation energies up to fracture are obtained by integrating the total area

under the load–displacement curves. According to the Code of Practice [8], a small punch disk

is defined to fail when a 20% load drop after maximum load is reached. If deformation energies

are plotted as a function of temperature, a sigmoidal increase is revealed similar to an impact

energy vs. temperature graph of Charpy tests. For the experiments average deformation energies

for −196◦C, −158◦C and 25◦C are calculated to be 292 Nmm, 678 Nmm and 703 Nmm, respec-

tively. For the simulations these are 340 Nmm, 549 Nmm and 619 Nmm, respectively. Hence,

quantitatively the energy requirements until brittle or ductile fracture are well captured.

Simulations also allow quantification of the average crack tip speed during crack propagation.
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Figure 8.19.: Comparison of the crack patterns observed in simulations and experiments. (a)
Experiment at 25◦C (Simulation given in (d)); (b) Experiment at −158◦C (Simulation given in
(e)); (c) Experiment at −196◦C (Simulation given in (f)).

Finally, a comparison of the punch force vs. displacement curves is given in Figure 8.20. A
good agreement is observed throughout the elastic-plastic deformation phase. At −196◦C, the
fracture strains are also well captured. For 25◦C, a slightly premature failure is obtained with
a rather steep drop of the force response. For −158◦C, although the displacement at fracture
is close to the experimental ones, a more brittle mode of fracture results in a steeper drop of
the force response compared to the experimental findings. This discrepancy is supposed to be
emphasized by the fact that the axisymmetric 2D simulations cannot capture the distributed
failure of the specimen along the circular notch as observed in 3D.

Small punch deformation energies up to fracture are obtained by integrating the total area
under the load–displacement curves. According to the Code of Practice [69], a small punch
disk is defined to fail when a 20% load drop after maximum load is reached. If deformation
energies are plotted as a function of temperature, a sigmoidal increase is revealed similar to an
impact energy vs. temperature graph of Charpy tests. For the experiments average deformation
energies for −196◦C, −158◦C and 25◦C are calculated to be 292 Nmm, 678 Nmm and 703 Nmm,
respectively. For the simulations these are 340 Nmm, 549 Nmm and 619 Nmm, respectively.
Hence, quantitatively the energy requirements until brittle or ductile fracture are well captured.

Simulations also allow quantification of the average crack tip speed during crack propagation.
For −196◦C, −158◦C and 25◦C, the average crack speeds turned out to be 1.42 mm/s, 1.06
mm/s and 0.037 mm/s, respectively, meaning that for −196◦C the crack speed exceeded that of
25◦C by approximately a factor of 40. The closeness of −196◦C and −158◦C crack speeds also
points at the predominately brittle nature of fracture at −158◦C.
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For −196◦C, −158◦C and 25◦C, the average crack speeds turned out to be 1.42 mm/s, 1.06

mm/s and 0.037 mm/s, respectively, meaning that for −196◦C the crack speed exceeded that of

25◦C by approximately a factor of 40. The closeness of −196◦C and −158◦C crack speeds also

points at the predominately brittle nature of fracture at −158◦C.
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Figure 20: Comparison of experimental and numerical punch force-displacement plots, with two repeat tests at

the lower shelf (−196◦C) and the transition region temperature (−158◦C).

5.2. Small- and Large-Scale Yielding Conditions

The results in the previous section refer to small-scale yielding conditions, which work well for

the notched specimens. Our unnotched specimen simulations with the same interaction radius

of 12.5 µm and σc = 2.55σy0 governing brittle fracture, however, showed premature fracturing,

at about one fourth of the actual fracture displacement observed in the experiments. This is

why we have a closer look at the role of this interaction radius.

For brittle interaction radii even larger than 12.5 µm, the nonlocal operator causes increas-

ing levelling of the notch tip RKR field such that the disk bottom exhibits the maximum RKR

integral in excess of the one at the notch tip. Besides being out of the predefined bounds for the

brittle interaction radius as set by the microstructural observations, the use of a larger interac-

tion radius makes it impossible to obtain the correct location of brittle fracture at the notch tip

at reasonable punch displacements.

On the other hand, interaction radii smaller than 7 µm make the delocalized RKR integral get

closer to the local. In absence of a stress concentrator in the unnotched case, the RKR integral
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Figure 8.20.: Comparison of experimental and numerical punch force-displacement plots, with
two repeat tests at the lower shelf (−196◦C) and the transition region temperature (−158◦C).

8.5.2. Small- and Large-Scale Yielding Conditions

The results in the previous section refer to small-scale yielding conditions, which work well for
the notched specimens. The unnotched specimen simulations with the same interaction radius
of 12.5 µm and σc = 2.55σy0 governing brittle fracture, however, showed premature fracturing,
at about one fourth of the actual fracture displacement observed in the experiments. This is
why a closer look at the role of this interaction radius is required.

For brittle interaction radii even larger than 12.5 µm, the nonlocal operator causes increas-
ing levelling of the notch tip RKR field such that the disk bottom exhibits the maximum RKR
integral in excess of the one at the notch tip. Besides being out of the predefined bounds for the
brittle interaction radius as set by the microstructural observations, the use of a larger interac-
tion radius makes it impossible to obtain the correct location of brittle fracture at the notch tip
at reasonable punch displacements.

On the other hand, interaction radii smaller than 7 µm make the delocalized RKR integral
get closer to the local. In absence of a stress concentrator in the unnotched case, the RKR
integral cannot reach the threshold level, at least not at realistic strains as observed in the ex-
periments. Hence, a set of values within the interval [7µm, 12.5µm] should be used. However,
unlike the previous approach, where, first the length scale and then the critical RKR threshold is
defined. The length can be selected for the unnotched specimens after defining a critical fracture
stress, because gradients are much less pronounced and, therefore, less affected by the selected
length scale.

It is found that Rbrittle = 7.0 µm with σc = 2.83σy0 gave acceptable results for both the notched
and unnotched cases in so far as brittle fracture onset could be predicted reasonably well. One
should note that interaction radii within [7µm, 12.5µm] did not affect the RKR integrals for the
unnotched tests as much as for the notched ones. In order to be consistent with the previous
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analysis, the ductile fracture parameter was also reduced to its lower limit, i.e., Rductile = 2.5
µm. This corresponds to the smallest mesh size in the region with mesh refinement. Hence, at
the notch tip the ductile damage delocalization applies for the finest elements. For the region
away from the notch, fracture development is controlled by the mesh size, the smallest of which
is equal to the interaction radius. Consistently also for the unnotched cases uniform 2.5 µm
elements are used at crack regions.

The effect of the nonlocal operator on the resultant stress gradients is shown in Figure 8.21
where the normalized principal stress distributions before and after delocalization are depicted
for the notched and the unnotched cases for −196◦C and an interaction radius of 7 µm. At the
notch tip, the stress field shows a steep gradient. The delocalization has a strong effect even for
the relatively small interaction radius selected. On the other hand, for the unnotched specimen,
the effect of delocalization is hardly distinguishable.

(a) (b) (c) (d)

min max

Figure 21: Effect of gradients on nonlocal averaging for −196◦C and interaction radius of 7 µm. (a) notched

model, before delocalization, maximum normalized principal stress distribution [max 2.742; min 0]; (b) notched

model, after del., normalized RKR integral distribution [max 2.278; min 0]; (c) unnotched model, before del.,

maximum normalized principal stress distribution [max 2.744; min 0]; (d) unnotched model, after del., normalized

RKR integral distribution [max 2.742; min 0].

total deformation for fracture being considerably lower than at −158◦C and 25◦C. For 25◦C,

fracture takes place only after a considerable reduction in thickness in a ductile manner following

a path parallel to the punch travel. For −158◦C, on the other hand, a kink is observed when the

initially vertical crack takes an inclined direction.

While ductile fracture shows a ring-shaped pattern in the experimental results, brittle frac-

ture propagation is not fully axisymmetric unlike the basic assumption which the current 2D

model is based on. A 3D model with random material property distributions and some inevitable

eccentricity of the puncher loading is expected to reproduce even better the fracture patterns.

Nevertheless, the current modeling framework already provides various insights regarding the

mechanisms of ductile and brittle fracture at much lower computational cost.

(a) (b) (c)

Figure 22: Crack patterns for the unnotched disk test simulations. (a) −196◦C, (b) −158◦C and (c) 25◦C.

Figure 23 illustrates the crack development for −158◦C and 25◦C. In both cases, fracture starts

with a severe strain localization due to void formation in a direction around 45◦ to the maximum

principal stress direction. This ductile mode of fracture is preserved for 25◦C until complete fail-

ure. However, for −158◦C, a transition from initially ductile to brittle fracture is observed with
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Figure 8.21.: Effect of gradients on nonlocal averaging for −196◦C and interaction radius of 7
µm. (a) notched model, before delocalization, maximum normalized principal stress distribution
[max 2.742; min 0]; (b) notched model, after del., normalized RKR integral distribution [max
2.278; min 0]; (c) unnotched model, before del., maximum normalized principal stress distribution
[max 2.744; min 0]; (d) unnotched model, after del., normalized RKR integral distribution [max
2.742; min 0].

Since the underlying mechanisms for the notched specimens are identical to those of the pre-
vious section, this part confines itself to giving the crack patterns for the unnotched tests for
the three temperatures −196◦C, −158◦C and 25◦C as depicted in Figure 8.22. Large stresses
needed for brittle fracture are achieved only at low temperatures. Otherwise, ductile fracture at
high strains is observed. Similar to experimental findings, towards lower temperatures reduced
bulging (i.e., decreasing amount of plastic deformation) is noted from the overall morphology of
the fractured disks. In all cases the cracks start from the bottom surface of the disk and prop-
agate towards the top face until complete separation. For −196◦C, a linear crack orthogonal to
the disk propagates along the direction of maximum in-plane stress. Hence, fracture is of brittle
Mode I with the total deformation for fracture being considerably lower than at −158◦C and
25◦C. For 25◦C, fracture takes place only after a considerable reduction in thickness in a ductile
manner following a path parallel to the punch travel. For −158◦C, on the other hand, a kink is
observed when the initially vertical crack takes an inclined direction.

While ductile fracture shows a ring-shaped pattern in the experimental results, brittle frac-
ture propagation is not fully axisymmetric unlike the basic assumption which the current 2D
model is based on. A 3D model with random material property distributions and some inevitable
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eccentricity of the puncher loading is expected to reproduce even better the fracture patterns.
Nevertheless, the current modeling framework already provides various insights regarding the
mechanisms of ductile and brittle fracture at much lower computational cost.

(a) (b) (c) (d)

min max

Figure 21: Effect of gradients on nonlocal averaging for −196◦C and interaction radius of 7 µm. (a) notched

model, before delocalization, maximum normalized principal stress distribution [max 2.742; min 0]; (b) notched

model, after del., normalized RKR integral distribution [max 2.278; min 0]; (c) unnotched model, before del.,

maximum normalized principal stress distribution [max 2.744; min 0]; (d) unnotched model, after del., normalized

RKR integral distribution [max 2.742; min 0].

total deformation for fracture being considerably lower than at −158◦C and 25◦C. For 25◦C,

fracture takes place only after a considerable reduction in thickness in a ductile manner following

a path parallel to the punch travel. For −158◦C, on the other hand, a kink is observed when the

initially vertical crack takes an inclined direction.

While ductile fracture shows a ring-shaped pattern in the experimental results, brittle frac-

ture propagation is not fully axisymmetric unlike the basic assumption which the current 2D

model is based on. A 3D model with random material property distributions and some inevitable

eccentricity of the puncher loading is expected to reproduce even better the fracture patterns.

Nevertheless, the current modeling framework already provides various insights regarding the

mechanisms of ductile and brittle fracture at much lower computational cost.

(a) (b) (c)

Figure 22: Crack patterns for the unnotched disk test simulations. (a) −196◦C, (b) −158◦C and (c) 25◦C.

Figure 23 illustrates the crack development for −158◦C and 25◦C. In both cases, fracture starts

with a severe strain localization due to void formation in a direction around 45◦ to the maximum

principal stress direction. This ductile mode of fracture is preserved for 25◦C until complete fail-

ure. However, for −158◦C, a transition from initially ductile to brittle fracture is observed with
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Figure 8.22.: Crack patterns for the unnotched disk test simulations. (a) −196◦C, (b) −158◦C
and (c) 25◦C.

Figure 8.23 illustrates the crack development for −158◦C and 25◦C. In both cases, fracture
starts with a severe strain localization due to void formation in a direction around 45◦ to the
maximum principal stress direction. This ductile mode of fracture is preserved for 25◦C until
complete failure. However, for −158◦C, a transition from initially ductile to brittle fracture is
observed with a considerably higher RKR integral at the crack tip as compared to 25◦C. This
transition creates a kink when the crack abruptly deflects to follow the normal of the maximum
principal stress. As seen in Figure 8.23(d) during the brittle cracking phase there is almost no
void formation.

a considerably higher RKR integral at the crack tip as compared to 25◦C. This transition creates

a kink when the crack abruptly deflects to follow the normal of the maximum principal stress.

As seen in Figure 23(d) during the brittle cracking phase there is almost no void formation.

(a) (b) (c) (d)

min max

Figure 23: (a) Normalized RKR integral distribution at 25◦C [max 2.294; min 0]; (b) the same for −158◦C [max

2.784; min 0]; (c) transition from ductile to brittle fracture; (d) corresponding void volume fraction far below

threshold.

The punch force vs. displacement curves are compared with the experimental ones in Figure 24.

For −196◦C, the force-displacement curves as well as displacement to fracture agree reasonably

well with experimental results. For the unnotched tests, there is some overestimation of the

fracture displacements for −158◦C and 25◦C. Both curves show steep drops as a result of abrupt

fracturing. A possible way to better capture ductile fracture strains for different temperatures

might consist in a temperature dependent modification of the void kinetics in addition to the

temperature dependence of plastic flow. However, this is beyond the scope of the current study.

For −158◦C a significant divergence of the forces occurs after a punch displacement of about 0.7

mm. However, it is impossible to identify the source of this discrepancy on the base of a single

experimental result.

The deformation energies for the unnotched tests computed for −196◦C , −158◦C and 25◦C

are 472 Nmm, 2497 Nmm and 2057 Nmm, respectively, while experimental values are 499 Nmm,

1819 Nmm and 1916 Nmm. For the simulations these are , respectively. The unnotched tests are

seen to require considerably higher deformation energy until fracture. While the considerable

differences in the energies required for brittle or ductile fracture are captured by the simulations,

the energy required in the simulation at −158◦C is predicted to exceed that at room temperature.

This relates to the delayed fracture for −158◦C as compared to the experimental findings.
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Figure 8.23.: (a) Normalized RKR integral distribution at 25◦C [max 2.294; min 0]; (b) the same
for −158◦C [max 2.784; min 0]; (c) transition from ductile to brittle fracture; (d) corresponding
void volume fraction far below threshold.

The punch force vs. displacement curves are compared with the experimental ones in Figure 8.24.
For −196◦C, the force-displacement curves as well as displacement to fracture agree reasonably
well with experimental results. For the unnotched tests, there is some overestimation of the
fracture displacements for −158◦C and 25◦C. Both curves show steep drops as a result of abrupt
fracturing. A possible way to better capture ductile fracture strains for different temperatures
might consist in a temperature dependent modification of the void kinetics in addition to the
temperature dependence of plastic flow. However, this is beyond the scope of the current study.
For −158◦C a significant divergence of the forces occurs after a punch displacement of about 0.7
mm. However, it is impossible to identify the source of this discrepancy on the base of a single
experimental result.

The deformation energies for the unnotched tests computed for −196◦C , −158◦C and 25◦C
are 472 Nmm, 2497 Nmm and 2057 Nmm, respectively, while experimental values are 499
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Nmm, 1819 Nmm and 1916 Nmm. For the simulations these are , respectively. The unnotched
tests are seen to require considerably higher deformation energy until fracture. While the con-
siderable differences in the energies required for brittle or ductile fracture are captured by the
simulations, the energy required in the simulation at −158◦C is predicted to exceed that at room
temperature. This relates to the delayed fracture for −158◦C as compared to the experimental
findings.

Unnotched −196◦C Exp.
Unnotched −158◦C Exp.
Unnotched 25◦C Exp.
Unnotched −196◦C Sim.
Unnotched −158◦C Sim.
Unnotched 25◦C Sim.

Figure 24: Comparison of experimental and numerical punch force-displacement plots for notched and unnotched

tests. The unmarked curves belong to the notched tests shown in Figure 20.

6. Conclusion and Outlook

Notwithstanding various experimental studies regarding the ductile–brittle transistion temper-

ature of small punch tests, there has been no attempt to estimate the transition temperature

numerically. In this study, a unified thermo-plastic constitutive model combining the RKR brit-

tle damage approach with Gurson’s porous plasticity was therefore established to predict the

temperature dependent fracture behavior of notched and unnotched small punch specimens. As-

sociated length scales are taken into account for both the ductile and brittle modes of fracture.

A detailed parameter identification has been carried out for the corresponding constitutive be-

haviors. The model was validated by comparing experimental and numerical load-displacement

curves as well as optical and SEM images of the fractured disks revealing the crack patterns and

fracture surface morphologies. The results provide new insight in the application of a non-local

formulation of brittle fracture under small-scale (notched specimens) and large-scale yielding

conditions (unnotched specimens). The model developed will be instrumental in the further

analysis of the effects of strain rate, different notch and puncher head geometries on small punch

transition temperature.

The application of the present numerical modeling scheme to small punch testing constitutes

a novel approach which is expected to impact model validation and calibration in general: as

a matter of fact, the small punch test is most sensitive as a model validation tool owing to its

multi-axiality and loading history. This is even more true as different specimen geometries –

notched and unnotched – are considered. At the same time, from an experimental point of view
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Figure 8.24.: Comparison of experimental and numerical punch force-displacement plots for
notched and unnotched tests. The unmarked curves belong to the notched tests shown in Figure
8.20.

8.6. Conclusion and Outlook

Notwithstanding various experimental studies regarding the ductile–brittle transistion temper-
ature of small punch tests, there has been no attempt to estimate the transition temperature
numerically. In this study, a unified thermo-plastic constitutive model combining the RKR brit-
tle damage approach with Gurson’s porous plasticity was therefore established to predict the
temperature dependent fracture behavior of notched and unnotched small punch specimens. As-
sociated length scales are taken into account for both the ductile and brittle modes of fracture.
A detailed parameter identification has been carried out for the corresponding constitutive be-
haviors. The model was validated by comparing experimental and numerical load-displacement
curves as well as optical and SEM images of the fractured disks revealing the crack patterns
and fracture surface morphologies. The results provide new insight in the application of a
non-local formulation of brittle fracture under small-scale (notched specimens) and large-scale
yielding conditions (unnotched specimens). The model developed will be instrumental in the
further analysis of the effects of strain rate, different notch and puncher head geometries on
small punch transition temperature.

The application of the present numerical modeling scheme to small punch testing constitutes
a novel approach which is expected to impact model validation and calibration in general: as
a matter of fact, the small punch test is most sensitive as a model validation tool owing to its
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multi-axiality and loading history. This is even more true as different specimen geometries –
notched and unnotched – are considered. At the same time, from an experimental point of view
it only requires tiny amounts of material and, therefore, is almost non-destructive. Further,
specimens are easy (and cheap) to manufacture, and the experimental setup is comparatively
simple.

8.A. Numerical Implementation

The Abaqus implementation of the nonlocal framework is handled in two parts. In the first
part a local return mapping algorithm is applied via the Vumat subroutine interface. The
void volume fraction increments and the maximum principal stresses are saved at the end of
the time step. These are then used through the Vusdfld subroutine for the computation of
the nonlocal counterparts. At the beginning of the following time step, the local void volume
fraction increments are replaced by their nonlocal counterparts.

8.A.1. Local Integration Algorithm

Due to the reasons given in Section 5, q = 0 is assumed and the global heat flux problem is not
solved. The remaining system could be solved locally assuming adiabatic conditions. For the
sake of completeness, the adiabatic implementation is given. Isothermal conditions are met for
χ = 0. The complete set of equations reads:

˙̂εe = ˙̂ε− ˙̂εp − ˙̂εΘ ,
˙̂εp = γ̇∂σ̂Φp ,
˙̂εΘ = αΘΘ̇1 ,
˙̂σ = Ce : ˙̂εe ,
ėp = γ̇η : ∂σ̂Φp ,

ḟ = γ̇ [ANη +BG] : ∂σ̂Φp ,

Θ̇ = γ̇ [χ/ρcp] σ̂ : ∂σ̂Φp .





(8.A.1)

η := σ̂/ [[1− f ]σy] and BG = BG (f,σD) is defined as

BG := [1− f ] 1 + kwf
w (σ̂D)

σeq
σ̂D . (8.A.2)

For solving Equations 8.A.1, an elastic predictor−thermo-plastic corrector type of algorithm is
used. Letting ∆ (•) = ∆t× (•̇), the subscript n+1 denotes the (unknown) step at time tn+1 and
n denotes the (known) step at time tn, the solution {σ̂n+1, epn+1, fn+1,Θn+1} is sought for the
given {σ̂n, epn, fn,Θn} and the strain increment ∆ε̂ with ∆t = tn+1 − tn. The corresponding
operator-split is summarized in Table 8.2.

Elastic Predictor. Here, a trial step is realized assuming that the strain increment ∆ε̂ is
purely elastic. Once the corresponding value of the flow potential is smaller than zero, i.e.,
Φp,n+1,trial < 0, the trial step is assumed to be correct, otherwise a thermo-plastic correction is
required.

Thermo-Plastic Corrector. The semi-implicit thermo-plastic corrector algorithm relies on
exploitation of the first-order Taylor series expansion of the yield potential around a known step
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Table 8.2.: Elastic predictor−thermo-plastic corrector type operator split.

total elastic predictor thermo-plastic corrector



∆ε̂ 6= 0
∆ε̂p 6= 0
∆ε̂Θ 6= 0
∆σ̂ 6= 0
∆ep 6= 0
∆f 6= 0
∆Θ 6= 0





=





∆ε̂ 6= 0
∆ε̂p = 0
∆ε̂Θ = 0
∆σ̂ = Ce : ∆ε̂
∆ep = 0
∆f = 0
∆Θ = 0





+





∆ε̂ = 0
∆ε̂p 6= 0
∆ε̂Θ 6= 0
∆σ̂ = −Ce : [∆ε̂p + ∆ε̂Θ]
∆ep 6= 0
∆f 6= 0
∆Θ 6= 0





.

〈i〉

Φp,n+1,〈i+1〉 ' Φp,n+1,〈i〉 + r
〈i〉
n+1 : δσ̂

〈i〉
n+1 + ξ

〈i〉
n+1δep,n+1,〈i〉 + ς

〈i〉
n+1δf

〈i〉
n+1

+$
〈i〉
n+1δėp,n+1,〈i〉 + µ

〈i〉
n+1δΘ

〈i〉
n+1 ,

(8.A.3)

where
r := ∂σ̂Φp = ∂σeqΦp∂σ̂σeq + ∂σmΦp∂σ̂σm ,
ξ := ∂epΦp = ∂σyΦp∂epσy ,
ς := ∂fΦp = 2q1 cosh (3/2 [q2σm/σy])− 2fq3 ,
$ := ∂ėpΦp = ∂σyΦp∂ėpσy ,
µ := ∂ΘΦp = ∂σyΦp∂Θσy .





(8.A.4)

The increments δ (•)〈i〉 = (•)〈i+1〉 − (•)〈i〉 in Equation (8.A.3) read

δσ̂
〈i〉
n+1 = −δγ〈i〉n+1Ce :

[
r
〈i〉
n+1 + αΘχ/ [ρ0cp]

[
σ̂
〈i〉
n+1 : r

〈i〉
n+1

]
1
]
,

δep,n+1,〈i〉 = δγ
〈i〉
n+1η

〈i〉
n+1 : r

〈i〉
n+1 ,

δf
〈i〉
n+1 = δγ

〈i〉
n+1

[
A
〈i〉
N,n+1η

〈i〉
n+1 +B

〈i〉
G,n+1

]
: r
〈i〉
n+1 ,

δėp,n+1,〈i〉 = δep,n+1,〈i〉/∆t

δΘ
〈i〉
n+1 = δγ

〈i〉
n+1χ/ [ρ0cp] σ̂

〈i〉
n+1 : r

〈i〉
n+1 .





(8.A.5)

Using the condition Φp,n+1,〈i+1〉 = 0 as required, and substituting Equation (8.A.3) into the
right-hand side of Equation (8.A.5) which allows factoring out the incremental plasticity param-

eter, one finds δγ
〈i〉
n+1 as

δγ
〈i〉
n+1 =

Φp,n+1,〈i〉

r
〈i〉
n+1 :

[
Ce : A

〈i〉
n+1 +D

〈i〉
n+1

] , (8.A.6)

where
A
〈i〉
n+1 = r

〈i〉
n+1 + αΘχ/ [ρ0cp]

[
σ̂
〈i〉
n+1 : r

〈i〉
n+1

]
1 , (8.A.7)

and

D
〈i〉
n+1 =

[
ξ
〈i〉
n+1 +

$
〈i〉
n+1

∆t

]
η
〈i〉
n+1 + ς

〈i〉
n+1

[
A
〈i〉
N,n+1η

〈i〉
n+1 +B

〈i〉
G,n+1

]
+ µ

〈i〉
n+1

χ

ρ0cp
σ̂
〈i〉
n+1 . (8.A.8)

An initial guess of the plastic multiplier ∆γ
〈0〉
n+1 is assigned while starting the iterations. This

depends on the rate dependence of hardening which is assumed to vanish for ėp < ėp0, that is
ry = 1 as ėp < ėp0. The consequent numerical difficulty pertaining to the hardening discontinuity
is remedied following the lines of [351]. Consequently, once Φp (∆t× ėp0) > 0 the initial guess
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∆γ
〈0〉
n+1 = ∆t×ėp0, otherwise ∆γ

〈0〉
n+1 = 0, is used. State variable updates (•)〈i+1〉 = (•)〈i〉+δ (•)〈i〉

are continued throughout the iterations 〈i〉 for the computed increment of the plastic multiplier
in Equation (8.A.6), until Φp,n+1,〈i+1〉 ' 0 to a desired accuracy. The stress tensor is then

rotated back to the current coordinates: σn+1 = Rn+1 · σ̂n+1 ·R>n+1.

8.A.2. Nonlocal Averaging

The implementation of the nonlocal averaging is realized over the time discrete form of the
void volume fraction rate and the principal stress components using the Vusdfld subroutine
interface of Abaqus. The integration is supplied using Gaussian quadrature over the material
points inside the nonlocal volume of interaction.

A drawback of the nonlocal averaging schemes is associated with the boundary nonconvex-
ity. Nonconvexity can occur due to specimen geometry as well as newly produced surfaces from
crack propagation. Such nonconvexities render the interaction among material points at oppos-
ing sides of the discontinuity questionable due to the long range interactions of the microcracks
with each other related to the high scattering effects of the elastic waves. In order to circumvent
this problem a visibility criterion, similar to the one presented in [50] within the context of
meshless methods, is applied for both brittle and ductile damage processes. Accordingly, Gauss
points blocked by the existence of a free surface either due to an extended crack or nonconvex
boundary surface are excluded from the interaction vector of the receiver Gauss point even if
they are within the interaction radius Equation (8.25).

C. Soyarslan, B. Gülcimen, S. Bargmann, P. Hähner 1

Methods Under Investigation

element containing central Gauss point (GP)

elements with visible GPs in the interaction radius

elements with invisible GPs in the interaction radius

elements with GPs outside the interaction radius

deleted elements representing the crack

Figure 25: A depiction of the visibility method implemented which is motivated by [54]. Besides the free surfaces

produced by element deletion during virtual crack extension, without loss of generality the implementation is

generalized to include any kind of nonconvexities in the problem boundary which naturally arises in the notched

small punch test.
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Figure 8.25.: A depiction of the visibility method implemented which is motivated by [50]. Be-
sides the free surfaces produced by element deletion during virtual crack extension, without loss
of generality the implementation is generalized to include any kind of nonconvexities in the prob-
lem boundary which naturally arises in the notched small punch test.
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8.B. Material Parameters

For convenience, Table 8.3 compiles the material parameters used.

Table 8.3.: Material parameters for small punch disks made of P91 steel. Values are given at
Θ = {−196◦C,−158◦C, 25◦C}.

Parameter Symbol Value Unit Reference

Thermal expansion coef. αΘ 1.3× 10−5 K−1 Equation (8.2.5)
Melting temperature Θmelt 1717 K Equation (9.3.6)
Reference temperature Θref 298 K Equation (9.3.6)
Specific heat capacity cp 622 m2K−1s−2 Equation (8.2.19)
Taylor–Quinney coef. χ 0.9 [−] Equation (8.2.19)

Density (initial) ρ 7.85× 10−9 t mm−3 Equation (8.2.19)

Young’s modulus E {234.9, 230.6, 210} GPa Equation (8.2.4)
Poisson’s ratio ν 0.3 [−] Equation (8.2.4)

Plastic hardening

h0 123 MPa Equation (8.4.1)
h1 75 MPa Equation (8.4.1)
σy0 520 MPa Equation (8.4.1)
σy1 376 MPa Equation (8.4.1)
σy∞ 831 MPa Equation (8.4.1)
m 6.14 [−] Equation (8.4.1)
n 0.541 [−] Equation (8.4.1)
ep0 0.006 [−] Equation (8.4.1)

Temperature effect ty(Θ) {1.54, 1.24, 1} [−] Equation (8.2.8)
Strain rate effect ry(ε̇p) 1 [−] Equation (8.2.8)

Nonlocal GTN model

(q1 = 1/f∗u , q2, q3) (1.5, 1, 2.25) [−] Equation (8.2.6)
f0 0.00044 [−] Equation (8.4.2)
fN 0.02 [−] Equation (8.2.14)
εN 0.3 [−] Equation (8.2.14)
SN 0.1 [−] Equation (8.2.14)
kw 0 [−] Equation (8.2.17)
fc 0.1 [−] Equation (8.2.7)
fF 0.25 [−] Equation (8.2.7)
Rductile [2.5, 5] µm Equation (8.2.21)

Nonlocal RKR model ∗
σc [2.83σy0, 2.55σy0] MPa Equation (8.2.26)
Rbrittle [7, 12.5] µm Equation (8.2.24)

∗For both the notched and unnotched cases the brittle fracture onset can be predicted reasonably well with

(σc, Rbrittle) = (2.83σy0, 7 µm) for which Rductile = 2.5 µm< Rbrittle can be selected.



9. Thermomechanical formulation of ductile
damage coupled to nonlinear isotropic
hardening and multiplicative viscoplasticity

In this chapter, a thermomechanical framework which makes use of the internal variable theory
of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening
is presented. Damage evolution, being an irreversible process, generates heat. In addition to its
direct effect on material’s strength and stiffness, it causes deterioration of the heat conduction.
The formulation, following the footsteps of [Simo, J. C., Miehe, Ch. [1992]: “Associative cou-
pled thermoplasticity at finite strains: Formulation, numerical analysis and implementation”,
Computer Methods in Applied Mechanics and Engineering, Vol. 98, 41–104.], introduces inelas-
tic entropy as an additional state variable. Given a temperature dependent damage dissipation
potential, it is shown that the evolution of inelastic entropy assumes a split form relating to
plastic and damage parts, respectively. The solution of the thermomechanical problem is based
on the so-called isothermal split. This allows the use of the model in 2D and 3D example prob-
lems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally
triggered necking of a 3D rectangular bar. The presented content constitutes an extended and
more systematic treatment (both theoretically and numerically) of the framework that is pre-
sented in [278]. In the current treatment, viscosity is used not for regularization purpose but
for characterizing physical rate effect which makes the treatment more transparent.

9.1. Introduction

Dissipated mechanical work produces heat which is conducted/convected over the problem do-
main. Complicated mutual interactions among fields act in a coupled problem of deformation
and temperature. Without reckoning damage, one can consider a two sided coupling: the in-
fluence of the thermal field on the mechanical field (thermal expansion, temperature induced
elastic softening with temperature dependence of elastic material properties, temperature in-
duced plastic softening with yield locus shrinkage), the influence of the mechanical field on the
thermal field (geometric coupling on heat flux, heat generation by plastic dissipation, structural
elastic heating: the Gough-Joule effect.)

Plasticity and damage are two path dependent irreversible dissipative deformation mechanisms
that differ on micro-mechanical foundations. The former entails crystal slip through disloca-
tion movements, while the latter involves the nucleation, growth and coalescence of micro-voids
and/or micro-cracks. Hence, further conditions that must be analyzed in the presence of damage
include: the action of damage on the other mechanical fields (damage induced elastic softening
with deteriorated elastic stiffness, damage induced plastic softening with yield locus shrinkage),
the influence of damage on the thermal field (heat generation by damage dissipation, damage
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dependent heat flux), and the influence of the thermal field on damage (direct effect through
temperature dependence of the damage dissipation functions, indirect effect through reconstruc-
tion of other damage driving mechanical fields, e.g., triaxiality).

Many studies on damage coupled finite plasticity, e.g., [274, 144, 291, 86, 167, 247], among
others, are limited to purely isothermal conditions. Damage coupled finite strain thermoplastic
frameworks utilizing Gurson and Lemaitre damage models are presented in [84] and [263],
respectively. More recently, a combination of Lemaitre and Gurson damage models, for model-
ing micro-void and/or micro-crack driven failure in metals at finite strains, is presented in [289].
None of the above mentioned works accounts for the effect of damage on heat conduction. How-
ever, micro-void and/or micro-crack nucleation, growth and coalescence creates a discontinuous
porous medium for which the heat transfer is disturbed.

The current chapter aims to develop a thermodynamically consistent framework for damage
coupled finite multiplicative thermoviscoplasticity. The framework for finite thermoplasticity is
set forward along the same lines with [275] whereas the damage is formulated along with the
effective stress concept, [145] and [255], with strain equivalence principle, [174]. Accordingly,
using its extensive property, entropy is postulated to be decomposed into elastic and inelas-
tic parts, where the latter is further additively partitioned into plastic and damage parts as a
consequence of temperature dependent plastic and damage dissipation potentials. Hence this
extends the theoretical framework postulated in [275]to consider not only the plastic structural
changes due to dislocation and lattice defect motion but also the damage structural changes due
to microvoid nucleation, growth and coalescence.

9.2. Mathematical Theory

9.2.1. Fundamental Kinematics

Let ϕ(X, t) denote the invertible nonlinear deformation map which maps points X ∈ B0 of the
reference configuration B0 onto points x ∈ B of the current configuration B at time t ∈ R+ via
x = ϕ(X, t) with X = ϕ−1(x, t). Then F defines the deformation gradient and J its Jacobian
determinant with

F = Gradϕ(X, t) and J := detF > 0 , (9.2.1)

where the latter is due to local impenetrability condition. The volume-preserving part of the
deformation gradient is denoted by F where

F := J−1/3F and detF = 1 . (9.2.2)

The right C and left b Cauchy-Green deformation tensors and their respective volume pre-
serving counterparts C and b read

C := F> · F , C := F
> · F = J−2/3C with detC = J2 and detC = 1 , (9.2.3)

b := F · F> , b := F · F> = J−2/3b with det b = J2 and det b = 1 . (9.2.4)

The following local multiplicative decomposition of the deformation gradient into elastic F e and
viscoplastic F vp parts is used [[170]]

F := F e · F vp with Je := detF e ≡ J and Jvp := detF vp = 1 , (9.2.5)
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which exploits plastic incompressibility. Hence, the volume preserving parts of elastic and plastic
parts of the deformation gradient are defined respectively as

F e := [Je]−1/3F e with F vp := [Jvp]−1/3F vp ≡ F vp . (9.2.6)

The viscoplastic right Cauchy-Green deformation tensor Cvp and elastic left Cauchy-Green
deformation tensor be read

Cvp := [F vp]> · F vp ≡ F−1 · be · [F ]−> and be := F e · [F e]> . (9.2.7)

The volume preserving counterparts Cvp and be can be given as

Cvp := F vp> · F vp ≡ Cvp and be := F e · F e> ≡ [Je]−2/3be . (9.2.8)

The spatial elastic logarithmic strains are denoted by εe with corresponding eigenvalues εeA for
A = 1, 2, 3. Let beA for A = 1, 2, 3 denote the eigenvalues of be, the following connexions apply

εe := 1/2 log be and εeA := log λe
A with λe

A :=
√
beA and λe

1 λ
e
2 λ

e
3 = Je , (9.2.9)

εe := 1/2 log be and εeA := log λe
A with λe

A :=
√
beA and λe

1 λ
e
2 λ

e
3 = 1 . (9.2.10)

Here, εe denotes the volume preserving part of the spatial elastic logarithmic strains with cor-
responding eigenvalues εeA. Similarly, beA for A = 1, 2, 3 denote the eigenvalues of be. λe

A for
A = 1, 2, 3 are referred to as elastic principal stretches, whereas λe

A their isochoric counterparts.
Note that since

tr εe = log λe
1 + log λe

2 + log λe
3 = log(λe

1 λ
e
2 λ

e
3) = log Je , (9.2.11)

tr εe and log Je can be used interchangeably. Finally, the following identity applies

εe ≡ dev εe = εe − 1

3
log Je 1 . (9.2.12)

9.2.2. Extension of the Thermodynamic Approach Represented in [275]

Following the rational thermodynamics approach followed by [275], the internal energy per unit
reference volume is represented by e(F e, ξ, ηe). The elastic entropy ηe is associated with the
lattice and the vector ξ of strain-like internal variables responsible for irreversible mechanisms.
Utilizing its extensive property, an additively decoupled total entropy (per unit reference volume)

η = ηe + ηvpd (9.2.13)

is postulated. ηvpd denotes the inelastic (configurational) entropy, linked to the dissipative
mechanisms such as viscoplasticity, hardening and damage. An additive split ηvpd = ηvp + ηd

follows as a consequence of associative evolutionary equations together with a temperature de-
pendent damage dissipation potential. Here, ηvp is associated with irreversible time dependent
plastic structural changes, such as dislocation motion and lattice defects whereas ηd is associated
with dissipative micro-structural changes accompanied by nucleation, growth and coalescence of
micro-voids and micro-cracks. By this way, the framework given in [275] is extended to account
for damage induced effects.

ξ = [α,D]> defines the vector of strain-like internal variables with α ∈ R+ and D ∈ [0, 1] which



200 9.2. Mathematical Theory

relates to isotropic hardening and damage, respectively. Through the invariance requirements
under arbitrary rigid body rotations on the intermediate configuration e(F e, ξ, ηe) 7→ e(be, ξ, ηe).
Through a Legendre transformation one obtains

e(be, ξ, ηe) = Ψ(be, ξ,Θ) + Θηe , (9.2.14)

where Ψ(be, ξ,Θ) represents the Helmholtz free energy per unit reference volume, as a function
of the absolute temperature Θ ∈ R+. Additive decoupling of Ψ(be, ξ,Θ) gives

Ψ(be, ξ,Θ) := Ψe(be, D) + ΨΘe(Je,Θ, D) + ΨΘ(Θ) + Ψvp(α,Θ) . (9.2.15)

Here, Ψe(be, D) represents the damage affected pure elastic free energy which is stored by the
body and can be recovered in a purely mechanical process1. The thermodilatational potential
ΨΘe(Je,Θ, D) encapsulates the effect of damage on material’s thermal expansion and it is asso-
ciated with elastic structural entropy. ΨΘ(Θ) is linked to the purely thermal entropy. Ψvp(α,Θ)
stands for the viscoplastic free energy blocked in dislocations due to dislocation rearrangement.
Following expressions relate the nominal and the effective2 free energies

Ψe(be, D) = [1−D] Ψ̃e(be) and ΨΘe(Je,Θ, D) = [1−D] Ψ̃Θe(Je,Θ) , (9.2.16)

where [•̃] := [•] /[1−D].

State Equations The second law of thermodynamics supplies the Clausius-Duhem inequality

0 ≤ Ω = Ωconther + Ωthermech , (9.2.17)

where the respective dissipation expressions for the conductive thermal form and the local ther-
momechanical form per unit reference volume are denoted by Ωconther and Ωthermech, with

Ωconther := − 1

Θ
q · grad Θ and Ωthermech := τ : d+ Θη̇ − ė . (9.2.18)

Here, q stands for the Kirchhoff-type heat flux, analogous with the Kirchhoff (weighted
Cauchy) stress tensor τ which is the work conjugate of the spatial rate of deformation tensor
d := sym (l) with l := Ḟ ·F−1 denoting the spatial velocity gradient. Inequality (9.2.17) can be
split into two more restrictive inequalities viz.

Ωconther ≥ 0 and Ωthermech ≥ 0 . (9.2.19)

In view of Equation (9.2.18.1), satisfaction of Ωconther ≥ 0 merely depends upon an appropriately
selected definition for q. The latter inequality Ωthermech ≥ 0 requires more effort. Taking the
material time derivative of the Legendre transform given in Equation (9.2.14), ė = Ψ̇ + Θ̇ηe +
η̇eΘ, the latter inequality Ωthermech ≥ 0 can be represented as

0 ≤ Ωthermech = τ : d+ Θη̇vpd − Ψ̇− Θ̇ηe , (9.2.20)

where η̇vpd := η̇ − η̇e. Computation of Ψ̇ requires the chain rule

Ψ̇ =
∂Ψ

∂be
: ḃe +

∂Ψ

∂ξ
· ξ̇ +

∂Ψ

∂Θ
Θ̇ , (9.2.21)

1Although not pursued in the current study, a thermoplastic framework with temperature dependent elastic
parameters can be found in [316].

2Effective quantities are defined relative to the fictitious undamaged material subscale. Nominal quantities, on
the other hand, reflect the influence of damage through homogenization.



Chapter 9. Thermomechanics of Ductile Damage 201

with
ḃe = Lvbe + l · be + be · [l]> . (9.2.22)

Here, Lv (•) stands for the objective Lie derivative of (•) via

Lvbe = F · Ġvp · [F ]> , (9.2.23)

where Gvp := [Cvp]−1, [205]. Substituting Equations (9.2.21) and (9.2.22) into inequality
(9.2.20) one finds

0 ≤ Ωthermech =

[
τ − 2

∂Ψ

∂be
· be

]
: d+ 2

∂Ψ

∂be
· be :

[
−1

2
Lvbe · [be]−1

]
+ Θη̇vpd

+

[
−∂Ψ

∂ξ

]
· ξ̇ +

[
−∂Ψ

∂Θ
− ηe

]
Θ̇ .

(9.2.24)

Inelastic rates, i.e. −1/2Lvbe · [be]−1, η̇vpd and ξ̇, tend to zero for any reversible process. Hence,
following the arguments of [79], for inequality (9.2.24) to be valid for arbitrary reversible changes
in the observable variables d and Θ̇, the first and the last terms on the right-hand side must
independently vanish to give3

τ = 2
∂Ψ

∂be
· be =

∂Ψ

∂εe
and ηe = −∂Ψ

∂Θ
. (9.2.25)

Hence, elastic entropy is the conjugate variable of the temperature. Analogically, one can devise

ς = −∂Ψ

∂ξ
⇒ q = −∂Ψ

∂α
and Y d = −∂Ψ

∂D
. (9.2.26)

Here, ς is the vector of stress-like internal variables which are dual to ξ with ς =
[
q, Y d

]>
.

q is responsible for isotropic hardening in the form of yield locus expansion whereas Y d is the
thermodynamically formal damage conjugate variable. Additive decomposition of the potentials
postulated in Equations (9.2.15) and (9.2.16) result in explicit representations for the state
equations given in Equations (9.2.25)

τ = 2 [1−D]

[
∂Ψ̃e

∂εe
+
∂Ψ̃Θe

∂εe

]
and ηe = −[1−D]

∂Ψ̃Θe

∂Θ
− ∂ΨΘ

∂Θ
− ∂Ψvp

∂Θ
(9.2.27)

and in Equations (9.2.26)

q = −∂Ψvp

∂α
and Y d = Ψ̃e + Ψ̃Θe . (9.2.28)

The temperature dependent dilatational terms in Kirchhoff stress tensor definition are due
to its dependence on Ψ̃Θe. Moreover, as opposed to the conventional Lemaitre damage model
the damage conjugate variable includes temperature dependent terms. As a consequence of
the temperature dependence of the viscoplastic free energy4, elastic entropy involves the term
∂Ψvp/∂Θ.

3For Equation (9.2.25.1), one uses the chain rule of differentiation

∂Ψ

∂be
=

1

2

∂Ψ

∂εe
:
∂ log(be)

∂be
and

[
∂Ψ

∂εe
:
∂ log(be)

∂be

]
· be =

∂Ψ

∂εe
.

See, e.g., [87].
4In the work of [275] this kind of a coupling at the free energy level is bypassed in the theory, however, used in

the application problems.
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Evolution Equations Substitution of Equations (9.2.25) and (9.2.26) back in inequality (9.2.24)
with an explicit representation of the vectors ξ and ς yields the following reduced dissipation
inequality

0 ≤ Ωthermech = τ :

[
−1

2
Lvbe · [be]−1

]
+ q α̇+ Y d Ḋ + Θη̇vpd . (9.2.29)

The local thermomechanical dissipation Ωthermech can be split into thermal Ωther and mechanical
Ωmech parts [[79]] to give

0 ≤ Ωthermech := Ωther + Ωmech , (9.2.30)

where
Ωther := Θη̇vpd and Ωmech := Ωvp

mech + Ωd
mech , (9.2.31)

with

Ωvp
mech = τ :

[
−1

2
Lvbe · [be]−1

]
+ q α̇ and Ωd

mech = Y d Ḋ . (9.2.32)

Similar to what is done for inequality (9.2.19) one can split inequality (9.2.31) into two stronger
inequalities

Ωther ≥ 0 and Ωmech ≥ 0 . (9.2.33)

Hypothesis of generalized standard materials, which proposes the existence of normality rules,
[207], is followed in definition of the evolution equations. For this purpose, an additively decou-
pled loading function Φ into a temperature dependent viscoplastic potential Φvp and a temper-
ature dependent damage dissipation potential Φd is postulated

Φ(τ , q, Y d,Θ, D) := Φvp(τ̃ , q,Θ) + Φd(Y d,Θ, D) . (9.2.34)

The reason of formulating Φvp in terms of effective Kirchhoff stress tensor is due to the fact
that viscoplastic flow is physically possible at the undamaged material subscale. Extending the
standard normality rule and using Equation (9.2.34) the flow rule is computed viz.

−1

2
Lvbe · [be]−1 = γ̇

∂Φ

∂τ
⇒ Lvbe = −2

γ̇

1−D
∂Φvp

∂τ̃
· be , (9.2.35)

which is coaxial with the Kirchhoff stress due to isotropy. Here, γ̇ represents the viscoplastic
multiplier. The current approach generalizes the viscoplasticity of overstress-type5 by consid-
ering all processes to be viscoplastic for stress states outside the thermoelastic domain, i.e.,
Φvp > 0. Thermoelastic domain, on the other hand, is represented by Φvp < 0. Accordingly, in
spirit of Perzyna the following is postulated6

γ̇ :=





0 Φvp ≤ 0 ,
1

t?
f(Φvp) Φvp > 0 ,

(9.2.36)

where t? is the characteristic relaxation time and the nondimensional function f is a monoton-
ically increasing function of Φvp and it is required that f(Φvp) = 0 for Φvp = 0. As t? → 0

5Viscosity has also a regularizing effect on the mesh dependence of the softening response. In context of damage-
coupled plasticity, using Perzyna-type rate dependence, single surface overstress-type viscous forms are uti-
lized by [83] and [277] among others.

6On the contrary, rate independent theories do not allow the condition Φp > 0. Thus, the definition of the
plastic multiplier γ̇ relies on the Kuhn-Tucker optimality conditions

γ̇ ≥ 0 , Φp(τ̃ , q,Θ) ≤ 0 and γ̇Φp(τ̃ , q,Θ) = 0 .
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rate independent plasticity is recovered whereas t? → ∞ represents the elastic theory since all
inelastic processes cease to evolve. Also for zero elastic limit creep is carried out. Having γ̇
defined, the rates of the scalar internal variables α, D and ηvpd read

α̇ = γ̇
∂Φ

∂q
, Ḋ = γ̇

∂Φ

∂Y d
and η̇vpd = γ̇

∂Φ

∂Θ
. (9.2.37)

In view of Equation (9.2.34), Equations (9.2.37) can be reiterated as

α̇ = γ̇
∂Φvp

∂q
, Ḋ = γ̇

∂Φd

∂Y d
and η̇vpd = γ̇

∂Φvp

∂Θ
+ γ̇

∂Φd

∂Θ
. (9.2.38)

In context of the maximum inelastic dissipation postulate, multi-surface damage-plasticity mod-
els which account for separate viscoplastic and damage multipliers (in form of Lagrange multi-
pliers), damage evolution in absence of plastic flow is possible, [119]. In the current formulation,
on the other hand, damage concurrently occurs with viscoplasticity since the growths of both
α and D depend on the viscoplastic multiplier γ̇ as the consequence of kinematic coupling
between plasticity and damage. Such an application has proven convenient in ductile metal
damage, where the dislocation pile-ups supply as a void nucleation source. This also postulates
that the evolution of the inelastic entropy depends on both the viscoplasticity and the damage
dissipation potentials, which is an extension to [275] where no damage mechanism is taken into
account. One may represent the inelastic entropy production given in Equation (9.2.38.3) in an
additive form in terms of viscoplastic and damage parts

η̇vpd = η̇vp + η̇d with η̇vp = γ̇
∂Φvp

∂Θ
and η̇d = γ̇

∂Φd

∂Θ
. (9.2.39)

Finally, for the temperature evolution equation, following [275], the local energy balance equa-
tion, i.e., the first law of thermodynamics, reads

−Jdiv
(q
J

)
+R = ė− τ : d . (9.2.40)

Here, R represents the heat source. In the first term on the left-hand side, q/J represents
conversion of the heat flux from Kirchhoff- to Cauchy-type whereas the factor J in front of
div (q/J) guarantees that the quantity is computed per unit reference volume. Using Equations
(9.2.13), (9.2.20), (9.2.30) and (9.2.31.2) and the material time derivative of Equation (9.2.25.2)
one carries out

ė− τ : d = −Ωmech + Θ
[
η̇ − η̇vpd

]
= −Ωmech +H+ Θ̇c , (9.2.41)

where H denotes the elastic-plastic-damage structural heating which is related to the latent
elastic and inelastic structural changes and c denotes the heat capacity with

H := −Θ
∂ (τ : d− Ωmech)

∂Θ
and c := −Θ

∂2Ψ

∂Θ2
. (9.2.42)

Substituting Equation (9.2.41) into the right-hand side of Equation (9.2.40) and rearranging,
one reaches the temperature evolution equation

cΘ̇ = Ωmech −H− Jdiv
(q
J

)
+R . (9.2.43)

Note that Equation (9.2.43) is in agreement with [275]. However, in the current context, Ωmech

inherently involves damage effects. Moreover, H is found as

H = −Θ

[
∂

∂Θ

(
∂Ψ

∂be

)
: ḃe +

∂

∂Θ

(
∂Ψ

∂α

)
α̇+

∂

∂Θ

(
∂Ψ

∂D

)
Ḋ

]
. (9.2.44)
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9.3. Specification of Constitutive Functions for Metals

This part aims to derive the explicit representations of state laws and evolutionary equations
through specification of the relevant potentials. For elasticity, a volumetric-isochoric split for
the effective elastic potential is postulated,

Ψ̃e(be) = Ψ̃e
vol(J

e) + Ψ̃e
iso(εe) . (9.3.1)

where Ψ̃e
vol represents the volumetric part and Ψ̃e

iso the isochoric part. With the use of the
principals of the tensor arguments in representation of the isotropic tensor functions one has
Ψ̃e

iso(εe) 7→ Ψ̃e
iso(εeA) for A = 1, 2, 3, and

Ψ̃e
vol(J

e) :=
1

2
H log2 (Je) and Ψ̃e

iso(εeA) := µ
[
εe1

2
+ εe2

2
+ εe3

2
]
. (9.3.2)

Here, H and µ denote the bulk and the shear modulus, respectively7. Denoting the linear co-
efficient of thermal expansion by αΘ and the reference temperature by Θ0 volumetric elastic
deformation is associated with the thermal effects through the following effective thermodilata-
tional potential, see, e.g., [114]

Ψ̃Θe(Je,Θ) := −3H αΘ[Θ−Θ0] log (Je) . (9.3.3)

A combined linear and saturation-type isotropic hardening potential with temperature depen-
dence defines the plastic part Ψvp

Ψvp(α,Θ) :=
1

2
K(Θ)α2 + [τy∞(Θ)− τy0(Θ)]

[
α− 1− exp (−δα)

δ

]
. (9.3.4)

Here, K(Θ) represents the temperature dependent linear hardening coefficient. τy0 and τy∞
denote the initial and the saturation yield stress, respectively. δ is the hardening saturation
exponent. One has Ψvp(α,Θ) → 0 for α → 0, as required. Defining functions gωvp(Θ) and
gωd(Θ) as

gωvp(Θ) := 1− [Λ(Θ)]ω
vp

and gωd(Θ) := 1− [Λ(Θ)]ω
d
, (9.3.5)

where ωvp and ωd denote the viscoplastic and damage thermal softening exponents, respectively,
and Λ(Θ) represents the homologous temperature with

Λ(Θ) =
Θ−Θ0

Θmelt −Θ0
, (9.3.6)

where Θmelt denotes the melting temperature, and using the notation K0 = K(Θ0), τy0,0 =
τy0(Θ0) and τy∞,0 = τy∞(Θ0) one can adopt nonlinear thermoplasticity viz.

K(Θ) := gωvp(Θ)K0 , τy0(Θ) := gωvp(Θ)τy0,0 and τy∞(Θ) := gωvp(Θ)τy∞,0 . (9.3.7)

Finally, letting −c0 = Θ ∂2Ψ̃Θ/∂Θ2 denote the temperature-independent heat capacity of the
material at constant deformation, the following pure thermal potential is postulated

ΨΘ(Θ) := c0

[
[Θ−Θ0]−Θ log

(
Θ

Θ0

)]
, (9.3.8)

7This quadratic form in terms of Hencky measure of elastic strains preserves validity for a large class of materials
up to moderately large deformations, [328], but does not satisfy the polyconvexity condition, [187].
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Hence, using Equation (9.3.1) with Equations (9.3.2), (9.3.3) and (9.3.4) along with Equation
(9.2.42.2), heat capacity c reads

c = c0 −Θg′′ωvpΨvp(α,Θ0) , (9.3.9)

where g′′ωvp = ∂2gωvp/∂Θ2. Note that selecting ωvp = 1, i.e., linear temperature dependence of
the isotropic hardening potential, Equation (9.3.9) reduces to c→ c0 with g′′ωvpΨvp → 0.

The total Kirchhoff stress tensor can be decomposed additively into volumetric p1 and devi-
atoric s parts to give τ = p1 + s where p := 1/3 trτ represents the mean stress and s := dev τ .
Using the connexions p̃ = p/[1−D], s̃ = s/[1−D] and τ̃ = τ/[1−D] this amounts for τ̃ = p̃1+s̃
where p̃ and s̃ represent effective mean (Kirchhoff) stress and the deviatoric stress tensor, re-
spectively. Substituting Equations (9.3.1) with (9.3.2) and (9.3.3) into Equation (9.2.25.1) and
noting that ∂Je/∂εe = 1, p̃ and s̃ are computed as8

p̃ = H log(Je)− 3H αΘ [Θ−Θ0] and s̃ = 2µ εe . (9.3.10)

Using Equations (9.2.28) along with Equations (9.3.1–9.3.4) gives the plastic isotropic hardening
function q with temperature effects

q(α,Θ) = gωvp(Θ)q(α,Θ0) where q(α,Θ0) = −K0 α− [τy∞,0 − τy0,0] [1− exp (−δα)]
(9.3.11)

and the damage conjugate variable Y d associated with the temperature dependent total ther-
moelastic energy release rate

Y d =
1

2
H [log (Je)]2 + µ

[
εe1

2
+ εe2

2
+ εe3

2
]
− 3H αΘ[Θ−Θ0] log (Je) . (9.3.12)

Finally, in view of Equation (9.2.25.2) together with Equations (9.3.3) and (9.3.4) one derives
the following expression for ηe

ηe = [1−D] 3H αΘ log (Je) + c0 log

(
Θ

Θ0

)

− g′ωvp(Θ)

[
1

2
K0 α

2 + [τy∞,0 − τy0,0]

[
δ +

exp (−δα)

δ

]]
.

(9.3.13)

where using Equations (9.3.5), g′ωvp(Θ) = dgωvp(Θ)/dΘ and g′
ωd(Θ) = dgωd(Θ)/dΘ one has

g′ωvp(Θ) = − ωvp

Θmelt −Θ0
Λ(Θ)ω

vp−1 and g′ωd(Θ) = − ωd

Θmelt −Θ0
Λ(Θ)ω

d−1 . (9.3.14)

Plastic incompressibility allows to represent the yield function Φvp in terms of the stress devi-
ator, i.e., Φvp(τ̃ , q; Θ) 7→ Φvp(s̃, q; Θ). Plastic isotropy, on the other hand, concedes a represen-
tation in terms of effective deviatoric stress principals s̃A for A = 1, 2, 3 through Φvp(s̃, q; Θ) 7→
Φvp(s̃A, q; Θ) as in the case of Equation (9.3.2.2). Hence, using a J2 theory for plasticity together
with a four-parameter damage dissipation potential, see, e.g., [175], one has:

Φvp(s̃A, q,Θ) :=
[
s̃2

1 + s̃2
2 + s̃2

3

]1/2 −
√

2

3
y(q,Θ) , (9.3.15)

Φd(Y d,Θ, D) :=
1

s+ 1

a(Θ)

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s+1

. (9.3.16)

8Thanks to elastic isotropy, εe and s̃ are coaxial, and, thus share identical eigenbases: mA = νA ⊗ νA, where
νA represents the corresponding eigenvectors with A = 1, 2, 3.
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Here, y(q,Θ) = [τy0(Θ) − q(α,Θ)] represents the hardening/softening function with thermal

coupling. In fact,
[
s̃2

1 + s̃2
2 + s̃2

3

]1/2
corresponds to a norm of s̃ via ‖s̃‖ :=

[
s̃2

1 + s̃2
2 + s̃2

3

]1/2
. Y d

0

represents the threshold for Y d below which damage ceases to evolve. r, s and a(Θ) represent
other damage related material parameters. Using Equation (9.3.5.2) with a0 = a(Θ0) a nonlinear
temperature dependence is chosen for the damage parameter a(Θ) via

a(Θ) = gωd(Θ) a0 . (9.3.17)

The choice of f(Φvp) is defined using a Norton-type formulation viz.

f(Φvp) :=

[
Φvp(s̃A, q,Θ)

κvp

]1/m

, (9.3.18)

where κvp is the constant drag stress and m the viscoplastic exponent. In view of Equation
(9.3.18), Equation (9.2.36) can be rewritten as

γ̇ =
1

t?

〈
Φvp(s̃A, q,Θ)

κvp

〉1/m

. (9.3.19)

Exploiting the condition nA := sA/ ‖s‖ ≡ ∂Φvp/∂τ̃A ≡ s̃A/ ‖s̃‖ =: ñA as well as the fact that
the eigenbases for the nominal and effective stresses are equivalent, i.e., νA ⊗ νA ≡ ν̃A ⊗ ν̃A,
and using Equation (9.2.35.2) with Equation (9.3.15), the viscoplastic flow rule is derived as

∂Φvp

∂τ̃
=

3∑

A=1

nA ν
A ⊗ νA ⇒ Lvbe = −2

γ̇

1−D

[
3∑

A=1

nA ν
A ⊗ νA

]
· be . (9.3.20)

Coming to the kinetic relations for the scalar strain-like variables α and D, using Equations
(9.2.37) along with Equations (9.3.15) and (9.3.16) gives

∂Φvp

∂q
=

√
2

3
⇒ α̇ = γ̇

√
2

3
, (9.3.21)

∂Φd

∂Y d
=

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
⇒ Ḋ = γ̇

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
. (9.3.22)

Using Equation (9.5.17.1) with Equation (9.3.21), Ωvp
mech yields

Ωvp
mech = γ̇

[
‖s̃‖+

√
2

3
q(α,Θ)

]
. (9.3.23)

Note that at the rate independent limit one has Ωvp
mech = γ̇

√
2/3 τy0(Θ) with γ̇Φvp = 0, in

agreement with [275]. The details of this derivation are found in Appendix D. Via Equations
(9.5.17.2) and (9.3.22) damage dissipation reads

Ωd
mech = γ̇

Y d

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
. (9.3.24)

Using Equation (9.2.31.1) along with Equations (9.3.23) and (9.3.24) the total mechanical dis-
sipation Ωmech, which constitutes the heat source and which is used in linearization of the weak
form of the thermal problem, is derived as9

Ωmech = γ̇

[
‖s̃‖+

√
2

3
q(α,Θ) +

Y d

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s]
. (9.3.25)

9In general, Ωd
mech � Ωvp

mech and one may ommit Ωd
mech to reach Ωmech ' Ωvp

mech.
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Using Equation (9.2.39.2) the growth of the viscoplastic entropy is derived using η̇vp = ∂Φvp/∂Θ
at constant s̃A for A = 1, 2, 3 and q as

η̇vp = −γ̇
√

2

3
g′ωvp(Θ) τy0,0 . (9.3.26)

For the growth of the inelastic entropy associated with damage one reverts to Equation (9.2.39.3)
and use η̇d = ∂Φd/∂Θ at constant D and Y to give

η̇d = −γ̇g′ωd(Θ) a0
s

s+ 1

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s+1

. (9.3.27)

The second law of thermodynamics as given in Equation (9.2.33.2) places the restriction η̇vpd ≥ 0.
Since the expressions in Equations (9.3.26) and (9.3.27) add up to the rate of total inelastic en-
tropy production η̇vpd with Equation (9.2.39.1), one may suggest two stronger inequalities, such
as η̇vp ≥ 0 and η̇d ≥ 0. The former is naturally satisfied, where in view of Equations (9.3.7) and
(9.3.6) thermal softening of the yield stress is addressed. This condition, also named as the yield
locus contraction with temperature, reflects the experimental evidences. The latter inequality,
however, may put an over restriction on the material parameters.

Finally, coming to the time sensitive thermal dissipation analysis an isotropic Eulerian Fourier
law for the effective Kirchhoff heat flux is assumed viz. [215]

q̃ = −k grad Θ , (9.3.28)

where k > 0 is the isotropic heat conduction coefficient in absence of damage effects. The
homogenized flux in the interior of the body is assumed to read [95]

q = [1−D] q̃ . (9.3.29)

With Equation (9.3.29), the negative effect of damage on the ability of the body to transfer
thermal energy from one point to another in presence of temperature gradients is reflected via
the factor [1 −D]. For a completely damaged material point (if D → 1 one has [1 −D]k → 0)
no heat conduction takes place. Substituting Equations (9.3.29) in the conductive thermal
dissipation inequality given in Equation (9.2.18.1) yields

Ωconther = [1−D]
1

Θ
k grad Θ · grad Θ≥ 0 , (9.3.30)

as required10.

10Note that the expression for q can also be derived from the damage affected version of the so-called Fourier
dissipation potential Υ postulated per unit reference volume as

Υ(gradΘ, D) = [1−D] Υ̃(gradΘ) and Υ̃(gradΘ) = −1

2
k gradΘ · gradΘ ,

with q = ∂Υ/∂ [gradΘ].
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BOX 1. A summary of the proposed model for general 3D stress-state.

i. Multiplicative kinematics

F = F e · F vp .

ii. Thermoelastic stress-strain relationship

τ = [1−D][p̃1 + s̃] ,

where

p̃ = Hlog(Je)− 3H αΘ [Θ−Θ0] and s̃ = 2µ εe .

iii. State laws for hardening and damage conjugate variables

q = −gωvp(Θ) [K0 α+ [τy∞,0 − τy0,0] [1− exp (−δα)]] ,

Y d =
1

2
H [log (Je)]2 + µ

[
εe1

2
+ εe2

2
+ εe3

2
]
− 3H αΘ[Θ−Θ0] log (Je) .

iv. Thermoelastic domain in (principal) stress space (single surface)

Eτ = {[s̃A, q,Θ] ∈ R3 × R− × R+ : Φvp(s̃A, q,Θ) ≤ 0} ,

where A = 1, 2, 3 and using y(q,Θ) = τy0(Θ)− q

Φvp(s̃A, q,Θ) =
[
s̃2

1 + s̃2
2 + s̃2

3

]1/2 −
√

2

3
y(q,Θ) .

v. Associative flow rule (Perzyna model)

−1

2
Lvbe · [be]−1 =

γ̇

1−D

[
3∑

A=1

nA ν
A ⊗ νA

]
,

where

γ̇ =
1

t?

〈
Φvp(s̃A, q,Θ)

κvp

〉1/m

, s =

3∑

A=1

sA ν
A ⊗ νA and nA =

sA
‖s‖ .

vi. Evolution equations for hardening and damage

α̇ = γ̇

√
2

3
and Ḋ = γ̇

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
.
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9.4. Numerical Implementation

9.4.1. Finite Element Formulation of the Coupled Initial Boundary Value Problem

Let P := τ · F−> stand for the first Piola-Kirchhoff stress and Q := q · F−> for the heat
flux of equivalent type, analogically. The primary unknowns of the thermomechanical problem
[u,v,Θ]> with u, v and Θ respectively denoting the displacement vector, velocity vector and
temperature, are resolved at the global solution stage by considering the following coupled
differential equation set constructed at the reference configuration





u̇− v
DivP + ζ0 − ρ0v̇

cΘ̇− Ωmech +H+ DivQ−R



 = 0 . (9.4.1)

Apart from the trivial velocity vector definition given in the first row in a residual setting, the
second and third rows stand for the local equation of motion and the heat equation. v̇ is the
acceleration vector and ρ0 is the reference (initial) density which is linked to the mass density
in current configuration ρ by ρ0 = J ρ with the balance of mass principle. ζ0 denotes the body
forces per unit underformed volume where it is linked to the body forces per unit deformed
volume ζ via ζ0 = Jζ. The boundary conditions for the problem can be listed as follows

u = u at ∂Bu
0 ,

Θ = Θ at ∂BΘ
0 ,

T = P ·N at ∂Bσ
0 ,

θ = Q ·N at ∂Bq
0 ,

∂Bu
0 ∩ ∂Bσ

0 = ∅ ,
∂BΘ

0 ∩ ∂Bq
0 = ∅ ,

∂Bu
0 ∪ ∂Bσ

0 = ∂B0 .
∂BΘ

0 ∪ ∂Bq
0 = ∂B0 .

(9.4.2)

Here, N is the outward unit normal to the boundary ∂B0 in the reference configuration. ∂Bu
0 ⊂

∂B0 and ∂BΘ
0 ⊂ ∂B0 denote the parts of the boundary on which the Dirichlet boundary

conditions are specified with the prescribed displacements u and temperatures Θ, respectively.
With the prescribed tractions T and heat flux θ Neumann-type boundary conditions act the
boundary parts ∂Bσ

0 ⊂ ∂B0 and ∂Bq
0 ⊂ ∂B0, respectively. The latter defines the heat flux

entering the body through the boundary and its value can be assigned or defined by a convective
or a radiation relation. In the current context, temperature increase is merely associated with
the mechanical dissipation due to irreversible processes such as viscoplasticity and damage.
Accordingly, the heat source and the temperature variations due to elastic loading are omitted,
by canceling R and H respectively, to give c Θ̇− Ωmech+DivQ = 0.

9.4.1.1. Staggered Solution Scheme

An isothermal staggered solution scheme is followed, where an isothermal mechanical step is
followed by a thermal step on fixed configuration. With ◦ representing a composition Equation
(9.4.1) can be decomposed into the following mechanical (left) and thermal (right) steps







u̇− v
DivP + ζ0

cΘ̇



 = 0


 ◦







v
v̇

c Θ̇− Ωmech + DivQ



 = 0


 . (9.4.3)

Mechanical Step. In this step, for any generic field χ one has the following reduction of
dependence χ(ε,Θ) 7→ χ(ε). The quasi-static limit is considered with ρ0 → 0. Corresponding
mechanical weak statement for the residual DivP + ζ0 is encapsulated in the following scalar
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valued function Gϕ(u, δu) where δu denotes a sufficiently smooth virtual displacement field
(defined in the reference configuration)

Gϕ(u, δu) :=

∫

B0

δu · [DivP + ζ0] dV = 0 . (9.4.4)

Noting that Div (δu · P ) = Grad δu : P + δu · DivP and applying Gauss theorem with T =
P ·N one reaches

∫
B0

Div (δu · P ) dV =
∫
∂Bσ0

T · δudA, since δu = 0 at ∂Bϕ
0 = ∂B0\∂Bσ

0

where \ denotes the complement. Consequently, the total mechanical virtual work expression in
Equation (9.4.4) can be iterated as

Gϕ(u, δu) := Gint
ϕ (u, δu)−Gext

ϕ (u, δu) = 0 . (9.4.5)

Here, the components Gint
ϕ and Gext

ϕ represent internal and external parts of the mechanical

virtual work, respectively. Using P := τ · F−> and the symmetry of τ to give P : Grad δu =
τ : grad δu, these amount to

Gint
ϕ (u, δu) :=

∫

B0

τ : grad δu dV and Gext
ϕ (u, δu) :=

∫

∂Bσ0

T · δudA+

∫

B0

ζ0 · δu dV .

(9.4.6)
An iterative scheme based on Newton’s method is used for the solution of problem (9.4.6) within
the context of the finite element method. Accordingly, a sequence of consistently linearized
problems is solved until the residual vanishes. To continue, the focus is set on the internal
part of the mechanical virtual work. The time discrete form of internal virtual work given in
Equation (9.4.6.1) reads

Gint
ϕ (uin+1, δu) =

∫

B0

τ in+1 : grad δu dV . (9.4.7)

Linearization of Gint
ϕ given in Equation (9.4.7) in direction of the displacement increment ∆uin+1

where i represents the iteration number, i.e., DGint
ϕ (uin+1, δu)[∆uin+1] leads to

DGint
ϕ (uin+1, δu)[∆uin+1] :=

d

dε

∣∣∣∣
ε=0

Gint
ϕ (uin+1 + ε∆uin+1, δu) . (9.4.8)

To save space, in the subsequent expressions, the superscripts i and the subscripts n+ 1 will be
dropped. Note that the virtual displacements δu are not a function of the configuration however
the operator grad is, with grad δu = Grad δu · F−1. Using this substitution for grad δu and
interchanging differentiation and integration in Equation (9.4.8) one derives

DGint
ϕ (u, δu)[∆u] =

∫

B0

d

dε

∣∣∣∣
ε=0

[
τ (u+ ε∆u) : Grad δu · F−1(u+ ε∆u)

]
dV . (9.4.9)

Linearizations of F , F> and F−1 respectively represented by DF (u)[∆u], DF>(u)[∆u] and
DF−1(u)[∆u] prove useful for successive developments and read

d

dε

∣∣∣∣
ε=0

F (u+ ε∆u) = grad ∆u · F ,

d

dε

∣∣∣∣
ε=0

F>(u+ ε∆u) = F> · [grad ∆u]> ,

d

dε

∣∣∣∣
ε=0

F−1(u+ ε∆u) = −F−1 · grad ∆u .

(9.4.10)
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Using τ := F · S · F>, where S = F−1 · τ · F−> denotes the second Piola–Kirchhoff stress
tensor, together with C = F> · F the linearization of τ , i.e., Dτ (u)[∆u], reads

d

dε

∣∣∣∣
ε=0

[τ (u+ ε∆u)] = 2F · F · ∂S
∂C
· F> · F> : sym (grad ∆u) + 2grad ∆u · τ . (9.4.11)

Finally, using J cMM := 2F · F · [∂S/∂C] · F> · F> the linearized mechanical internal virtual
work can be reiterated to give

DGint
ϕ (u, δu)[∆u] =

∫

B0

grad δu : J cMM : sym(grad ∆u) dV

+

∫

B0

grad δu : [grad ∆u · τ ] dV .

(9.4.12)

On the right-hand side, the first term is due to material stiffness and the second term is due to
initial stress stiffness (or geometric stiffness). An explicit representation of cMM is given on the
subsequent pages11. Together with the solution of this step, appropriate updates will be realized
to give [be

n, ξn,Θn] 7→
[̌
ben+1, ξ̌n+1, Θ̌n+1

]
.

Thermal Step. In this step, for any generic field χ one can have the following reduction of
dependence χ(ε,Θ) 7→ χ(Θ). Thermal weak statement for the residual cΘ̇ − Ωmech + DivQ is
encapsulated in the following scalar valued function GΘ(Θ, δΘ) where δΘ denotes a sufficiently
smooth virtual temperature field defined in the reference configuration

GΘ(Θ, δΘ) :=

∫

B0

δΘ
[
c Θ̇− Ωmech + DivQ

]
dV = 0 . (9.4.13)

Noting that Div (δΘQ) = Grad δΘ · Q + δΘ DivQ and applying Gauss theorem with θ =
Q · N one reaches

∫
B0

Div (δΘQ) dV =
∫
∂Bq0

θ δΘ dA, since δΘ = 0 at ∂BΘ
0 = ∂B0\∂Bq

0 .

Consequently, the total virtual work expression in Equation (9.4.13) can be rewritten as

GΘ(Θ, δΘ) := Gint
Θ (Θ, δΘ)−Gext

Θ (Θ, δΘ) = 0 . (9.4.14)

Here, the components Gint
Θ and Gext

Θ represent internal and external part of the thermal virtual
work, respectively. Using Q = q ·F−> to give Grad δΘ ·Q = −[1−D] k grad δΘ · grad Θ with
Fourier heat conduction relation, these amount to

Gint
Θ (Θ, δΘ) :=

∫

B0

δΘ Ωmech dV −
∫

B0

c δΘ Θ̇ dV

+

∫

B0

[1−D] k grad δΘ · grad Θ dV ,

Gext
Θ (Θ, δΘ) :=

∫

∂Bq0

θ δΘ dA .

(9.4.15)

11The spatial constitutive tangent moduli cMM, ijkl can be computed with a push-forward transformation of
Lagrangian constitutive tangent moduli CIJKL viz.

J cMM, ijkl = FiI FjJ FkK FlL CIJKL with CIJKL = 2
∂SIJ
∂CKL

.
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Similar to the mechanical step, the focus is set on the internal part of the thermal virtual work.
The time discrete form of internal virtual work given in Equation(9.4.15.1) reads

Gint
Θ (Θi

n+1, δΘ) :=

∫

B0

δΘ Ωi
mech,n+1 dV −

∫

B0

cin+1 δΘ
∆Θi

n+1

∆t
dV

+

∫

B0

[1−Di
n+1] k grad δΘ · grad Θi

n+1 dV .

(9.4.16)

Linearization ofGint
Θ in direction of the temperature increment ∆Θi

n+1, i.e., DGint
Θ (Θi

n+1, δΘ)[∆Θi
n+1],

leads to

DGint
Θ (Θi

n+1, δΘ)[∆Θ] :=
d

dε

∣∣∣∣
ε=0

Gint
Θ (Θi

n+1 + ε∆Θi
n+1, δΘ) . (9.4.17)

Like before dropping the superscripts i and the subscripts n+ 1, the linearized thermal internal
virtual work expression is given as

DGint
Θ (Θ, δΘ)[∆Θ] =

∫

B0

δΘ

[
cΘΘ −

∂c

∂Θ

∆Θ

∆t
− c

∆t

]
∆Θ dV

+

∫

B0

[1−D] k grad δΘ · grad ∆Θ dV

−
∫

B0

∂D

∂Θ
∆Θ k grad δΘ · grad Θ dV .

(9.4.18)

Here, cΘΘ := ∂Ωmech/∂Θ represents the thermoinelastic modulus. At this step, the variable
update

[
b̌e
n+1, ξ̌n+1, Θ̌n+1

]
7→
[
be
n+1, ξn+1,Θn+1

]
is realized. Accordingly, temperature change

induced by inelastic dissipative mechanisms such as plasticity and damage are taken into account
as well as softening and expansion induced by temperature. Besides, heat conduction is affected
by deformation and damage.

9.4.2. Return Mapping

Update of the state variables with local integration follows a two-step operator-split with a
simultaneous plastic/damage correction for a given elastic prediction. Studying a strain driven
process, one defines an elastic trial left Cauchy-Green deformation tensor be, tri, making use of
relative deformation gradient tensor at current step, i.e. f = F ·F−1

n , and elastic left Cauchy-
Green deformation tensor of the previous step, i.e., be

n, as follows

be, tri = f · be
n · f> where be, tri =

3∑

A=1

[
λe, tri
A

]2
ν tri, A ⊗ ν tri, A . (9.4.19)

For the integration of flow rule given in Equation (9.3.20) exponential mapping approximation
which exploits the coaxiality of the plastic flow and the elastic trial state is used. Accordingly, the
following plastic-damage correction on trial elastic principal strains, where the strain corrections
are in the form of the principal plastic strain increments ∆εvp

A , is carried out

εeA = εe, triA −∆εvp
A where ∆εvp

A =
∆γ

1−D
∂Φvp

∂τ̃A
, (9.4.20)

with ∆γ = ∆t γ̇. Using Equations (9.3.21) and (9.3.22) for α̇ and Ḋ, the implicit backward-
Euler method yields

α = αn +

√
2

3
∆γ and D = Dn + ∆γ

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
. (9.4.21)
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Resultant viscoplastic/damage correction of principal Kirchhoff stresses yields

τ̃A = τ̃ tri
A − 2µ

∆γ

1−D nA with τ̃ tri
A = p̃+ s̃ tri

A . (9.4.22)

Moreover, the viscoplastic potential at step n+ 1 reads

Φvp := ‖s̃‖ −
√

2

3
y (q,Θ) . (9.4.23)

Using Equation (9.3.25), the mechanical dissipation at step n+ 1 is defined as

Ωmech =
∆γ

∆t

[
‖s̃‖+

√
2

3
q(α,Θ) +

Y d

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s]
. (9.4.24)

The backward-Euler method is applied for the integration of the components of the inelastic
entropy. Accordingly, in view of Equation (9.3.26), the viscoplastic part reads

ηvp = ηvp
n −∆γ

√
2

3
g′ωvp(Θ) τy0,0 . (9.4.25)

Applying Equation (9.3.27) the damage entropy is integrated to read

ηd = ηd
n −∆γg′ωd(Θ) a0

s

s+ 1

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s+1

. (9.4.26)

Equations (9.4.25) and (9.4.26) add up to find ηvpd = ηvp + ηd. It is remarkable that the
local integration expressions for ηvp and ηd have explicit representations in ∆γ and D. Thus,
setting the inelastic entropy as an additional internal variable does not alter the local integration
scheme and conventional finite thermoplastic algorithmic structure presented in [275], even for
damage-coupled conditions.

9.4.2.1. Solution of Equations of Local Integration

Following [276], local governing equations collected so far can be reduced, particularly for the
chosen yield criterion, making use of the substitution s̃A = ‖s̃‖ nA and exploiting the condi-
tion of collinear flow and the trial Kirchhoff stress tensor, finally, representing the harden-
ing/softening function definition in terms of the viscoplastic multiplier, to reach

r(x) =





√
2

3

[
τy0(Θ)− q(αn +

√
2

3
∆γ ,Θ)

]
−
∥∥s̃ tri

∥∥+ 2µ
∆γ

1−D + κ
vp

[
t?∆γ

∆t

]m

D −Dn −∆γ
1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s




,

(9.4.27)
where r = r(x) = 0. The array of unknowns is represented by x = [∆γ,D]>. Equations
(9.4.27) can be treated with the standard Newton-Raphson solution scheme. Accordingly,
the linearized version of the equations is given as dr = Γ·dx, where Γ denotes the Jacobian of
the system

Γ =




∂r1

∂∆γ

∂r1

∂D
∂r2

∂∆γ

∂r2

∂D


 , (9.4.28)
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where the component derivations are given in Appendix A. Using Γ−1 · dr = dx, the solution
for x, which constitutes the local return mapping realized at each Gauss point, is found via the
iterative scheme

x(k+1) = x(k) − δ(k) [Γ(k)]−1 · r(k) , (9.4.29)

where k represents the iteration number and δ(k) ∈ (0, 1] is the proper line-search parameter.

9.4.3. Algorithmic Tangent Matrices

For the monolithic solution of the global equilibrium problem of coupled thermomechanical
analysis, one has

r = r(x̂) = 0; x̂ =





εB
Θ

∆γ
D





for B = 1, 2, 3 , (9.4.30)

where ∆γ = ∆γ(ε,Θ) and D = D(ε,Θ). A mechanical-thermal staggered approach introduces
the following simplifications into the solution scheme.

Mechanical Step. For the mechanical step cMM reads

JcMM =
3∑

A=1

3∑

B=1

aevpd
AB Λtri, AABB −

3∑

A=1

2τA Λtri, AAAA

+
3∑

A=1

3∑

B=1
A 6=B

ϑAB
[
Λtri, ABAB + Λtri, ABBA

]
.

(9.4.31)

aevpd
AB corresponds to the following 3× 3 matrix

aevpd
AB =

∂τA
∂εB

≡ ∂τA

∂εe, triB

, (9.4.32)

where the condition ∂[•]/∂εB ≡ ∂[•]/∂εe, triB is exploited. ΛABCD represents a fourth-order tensor
with ΛABCD := νA ⊗ νB ⊗ ν C ⊗ ν D. The designation of ϑAB is given as12

ϑAB =
τA

[
λe, tri
B

]2
− τB

[
λe, tri
A

]2

[
λe, tri
A

]2
−
[
λe, tri
B

]2 . (9.4.33)

Mechanical pass is realized under constant temperature, where Θ = Θ̌ which results in ∆γ =
∆γ(ε)|Θ=Θ̌ and D = D(ε)|Θ=Θ̌. For this stage

r = r(x̂) = 0 where x̂ =





εB
∆γ
D





∣∣∣∣∣∣
Θ=Θ̌

. (9.4.34)

12Equation (9.4.33) suffers from singularity or ill-conditioning for equal or nearly equal eigenvalues, respec-
tively, where λe, tri

A − λe, tri
B → 0. [235, pp. 338–341] includes an analytical treatment of such cases in the

context of finite elasticity materializing L’Hospital rule. In this work, a numerical perturbation as an
efficient substitute for the L’Hospital rule is used. Consequently, equal or numerically close eigenvalues
with λe, tri

A ' λe, tri
B are perturbed with a perturbation factor εper � 1 (εper = 10−12 constitutes a reason-

able choice) which gives λe, tri
A 7→ [1 + εper] λe, tri

A , λe, tri
B 7→ [1− εper] λe, tri

B , and for volumetric consistency
λe, tri
C 7→ 1/ [[1 + εper] [1− εper]] λe, tri

C , [214].
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Hence, the mechanical step in the staggered approach assumes

τ (ε,Θ,∆γ (ε,Θ), D(ε,Θ)) 7→ τ (ε,∆γ (ε), D(ε))|Θ=Θ̌ . (9.4.35)

This allows the computation of aevpd
AB through the chain rule

∂τA

∂εe, triB

=
∂τA

∂εe, triB

∣∣∣∣∣
∆γ,D const.

+
∂τA
∂∆γ

d∆γ

dεe, triB

+
∂τA
∂D

dD

dεe, triB

, (9.4.36)

where determination of d∆γ/dεe, triB and dD/dεe, triB requires the condition dr = 0 with





d∆γ

dεB
dD

dεB





= −Γ−1 ·





∂r1

∂εB
∂r2

∂εB





(9.4.37)

with ∂[•]/∂εB ≡ ∂[•]/∂εe, triB . The details of the derivations are given in Appendix B.

Thermal Step. Equation (9.4.24) is used in computation of the thermoinelastic coupling mod-
ulus cΘΘ viz.

cΘΘ :=
∂Ωmech

∂Θ
. (9.4.38)

During thermal pass the configuration is held fixed εA = ε̌A, which results in ∆γ = ∆γ(Θ)|ε=ε̌
and D = D(Θ)|ε=ε̌. Consequently, one has

r = r(x̂) = 0 where x̂ =





Θ
∆γ
D





∣∣∣∣∣∣
εA=ε̌A

. (9.4.39)

Hence, analogous to mechanical step one has

Ωmech(ε,Θ,∆γ (ε,Θ), D(ε,Θ)) 7→ Ωmech(Θ,∆γ (Θ), D(Θ))|ε=ε̌ . (9.4.40)

This allows the computation of cΘΘ with the following chain rule of differentiation

∂Ωmech

∂Θ
=
∂Ωmech

∂Θ

∣∣∣∣
∆γ,D const.

+
∂Ωmech

∂∆γ

d∆γ

dΘ
+
∂Ωmech

∂D

dD

dΘ
. (9.4.41)

where determination of d∆γ/dΘ and dD/dΘ requires the condition dr = 0 with





d∆γ

dΘ
dD

dΘ





= −Γ−1 ·





∂r1

∂Θ
∂r2

∂Θ




. (9.4.42)

The details of the derivations are given in Appendix C. It should be noted that in both the
mechanical pass and the thermal pass the internal variables are changing. The thermal part
will be due only if there exists plastic flow and induced damage. This concludes the numerical
setup.
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Table 9.1.: Material parameters for a steel-like material at reference temperature.

Parameter Symbol Magnitude Dimension

Referential density ρ0 7.8× 10−9 [Ns2/mm4]
Bulk modulus H 164206.0 [MPa]
Shear modulus µ 80193.8 [MPa]

Linear hardening K0 129.24 [MPa]
Flow stress τy,0 450.0 [MPa]
Saturation stress τy∞,0 715.0 [MPa]
Saturation exponent δ 16.93 [−]

Damage multiplier a0 5.0 [MPa]
Damage exponent 1 s 1.0 [−]
Damage exponent 2 r 2.0 [−]
Threshold for Y Y d

0 0 [MPa]

Rate exponent m 1 [−]
Drag stress κvp 100 [MPa]
Characteristic time t? 1 [s]

Coefficient of thermal expansion αΘ 1.0× 10−5 [K−1]
Specific heat capacity cs 0.46× 109 [mm/s2K]
Heat conductivity k 45.0 [N/sK]
Plastic thermal softening ωvp 1 [−]
Damage thermal softening ωd 1 [−]
Reference temperature Θ0 293 [K]
Melting temperature Θmelt 1700 [K]

9.5. Application Problems

Preceding algorithmic resolutions are implemented as Abaqus subroutines where the implemen-
tation details are included in appendices. Material parameters used in the analyses are given
in Table 9.1, where for mere thermoplasticity the damage deterioration effects are omitted.
Two example problems consisting of necking of an axisymmetric bar and localization in a 3D
rectangular bar are investigated.

9.5.1. Monotonic Uniaxial Tension

In this section, first a systematic reduction of the theory to uniaxial stress state is presented.
Solution of the resultant reduced equation set allows conduction of some parametric studies
which show predictive capabilities of the model. Let e1, e2 and e3 denote orthogonal unit
vectors associated with x−, y− and z−directions. Tensile loading in x−direction is of interest,
where the material motion is free in y− and z−directions. This corresponds to a uniaxial state
of stress and triaxial state of strain with

τ = τe1 ⊗ e1 and F = λ1e1 ⊗ e1 + λ2[e2 ⊗ e2 + e3 ⊗ e3] , (9.5.1)

where λ1 and λ2 represent principal stretches in x− and y− (equivalently z−) directions. With
Equation (10.4.1.1) following equivalences hold

[s2
1 + s2

2 + s2
3]1/2 =

√
2

3
τ and p =

1

3
τ . (9.5.2)
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Using Equation (10.4.1.2) the Jacobian of the deformation gradient becomes J = λ1λ
2
2. In

analogy to Eq. (10.4.1.2), the elastic and viscoplastic parts of the deformation gradient can be
given as

F e = λe
1e1 ⊗ e1 + λe

2[e2 ⊗ e2 + e3 ⊗ e3] ,

F vp = λvp
1 e1 ⊗ e1 + λvp

2 [e2 ⊗ e2 + e3 ⊗ e3] .
(9.5.3)

where Je = detF e = λe
1[λe

2]2 and Jvp = detF vp = λvp
1 [λvp

2 ]2. Using Jvp = 1, Equation (9.5.3.2)
can be written as

F vp = λvp
1 e1 ⊗ e1 + [λvp

1 ]−1/2[e2 ⊗ e2 + e3 ⊗ e3] . (9.5.4)

Hence, the right Cauchy-Green deformation tensor C = F> · F computes

C = [λe
1]2[λvp

1 ]2e1 ⊗ e1 + [λe
2]2[λvp

1 ]−1[e2 ⊗ e2 + e3 ⊗ e3] . (9.5.5)

Now, using the definition of the logarithmic strain ε = 1/2 logC one reaches

ε = εe + εvp , (9.5.6)

where

εe = log λe
1e1 ⊗ e1 + log λe

2[e2 ⊗ e2 + e3 ⊗ e3] ,

εvp = log λvp
1 e1 ⊗ e1 −

1

2
log λvp

1 [e2 ⊗ e2 + e3 ⊗ e3] .
(9.5.7)

Equation (10.4.5) encapsulates an additive decomposition in logarithmic strains carried out from
a multiplicative decomposition of the deformation gradient. The thermoelastic stress definition
given in Equation (9.3.10) and the vanishing stress components in y− and z−directions reveal
log λe

2 = −ν log λe
1 + αΘ[1 + ν][Θ − Θ0]. Hence, using the notation εe = log λe

1, εp = log λp
1 one

has

εe = εee1 ⊗ e1 + [−νεe + αΘ[1 + ν][Θ−Θ0]][e2 ⊗ e2 + e3 ⊗ e3] ,

εvp = εvpe1 ⊗ e1 −
1

2
εvp[e2 ⊗ e2 + e3 ⊗ e3] .

(9.5.8)

Equation (9.5.8.1) lets one compute τ as

τ = [1−D] τ̃ where τ̃ = E [εe − αΘ[Θ−Θ0]] . (9.5.9)

and Y d, using Equation (9.3.12), as

Y d =
1

2
E[εe]2 − EεeαΘ[Θ−Θ0]− 3κ[1 + ν][αΘ]2[Θ−Θ0]2 . (9.5.10)

Note that for the analyzed monotonic uniaxial tensile loading13

3∑

A=1

nA ν
A ⊗ νA =

√
2

3
e1 ⊗ e1 −

1√
6

[e2 ⊗ e2 + e3 ⊗ e3] . (9.5.11)

Now, using G = [Cvp]−1 one reaches

be = [λe
1]2e1 ⊗ e1 + [λe

2]2[e2 ⊗ e2 + e3 ⊗ e3] ,

Cvp = [λvp
1 ]2e1 ⊗ e1 + [λvp

1 ]−1[e2 ⊗ e2 + e3 ⊗ e3] ,

Gvp = [λvp
1 ]−2e1 ⊗ e1 + λvp

1 [e2 ⊗ e2 + e3 ⊗ e3] .

(9.5.12)

13In case of cyclic character this expression should be multiplied by sign(τ).
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Hence Ġ reads
Ġvp = −2[λvp

1 ]−3λ̇vp
1 e1 ⊗ e1 + λ̇vp

1 [e2 ⊗ e2 + e3 ⊗ e3] . (9.5.13)

Now, noting that Lvbe = F · Ġvp · [F ]> one has

−1

2
Lvbe · [be]−1 =

λ̇vp
1

λvp
1

e1 ⊗ e1 −
1

2

λ̇vp
1

λvp
1

[e2 ⊗ e2 + e3 ⊗ e3] ≡ ε̇vp . (9.5.14)

Thus, using Equation (10.4.12) along with Equation (9.5.11) the flow rule given in Equation
(9.3.20) can be reiterated as

ε̇vp =

√
2

3

γ̇

1−D e1 ⊗ e1 −
1√
6

γ̇

1−D [e2 ⊗ e2 + e3 ⊗ e3] , (9.5.15)

where

ε̇vp =

√
2

3

γ̇

1−D . (9.5.16)

For convenience, the complete reformulation of the model under uniaxial tension is given in
BOX 2.
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BOX 2. A reduction of the proposed model for uniaxial stress-state and monotonic tension.

i. Additive kinematics

ε = εe + εvp .

ii. Thermoelastic stress-strain relationship

τ = [1−D] τ̃ where τ̃ = E [εe − αΘ[Θ−Θ0]] .

iii. State laws for hardening and damage conjugate variables

q = −gωvp(Θ) [K0 α+ [τy∞,0 − τy0,0] [1− exp (−δα)]] ,

Y d =
1

2
E[εe]2 − EεeαΘ[Θ−Θ0]− 3κ[1 + ν][αΘ]2[Θ−Θ0]2 .

iv. Thermoelastic domain in stress space (single surface)

Eτ = {[τ̃ , q,Θ] ∈ R+ × R− × R+ : Φvp(τ̃ , q,Θ) ≤ 0} ,

where

Φvp(τ̃ , q,Θ) =

√
2

3
[τ̃ − y(q,Θ)] with y(q,Θ) = τy0(Θ)− q .

v. Associative flow rule (Perzyna model)

ε̇vp =

√
2

3

γ̇

1−D where γ̇ =
1

t?

〈
Φvp(τ̃ , q,Θ)

κvp

〉1/m

.

vi. Evolution equations for hardening and damage

α̇ = γ̇

√
2

3
and Ḋ = γ̇

1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
.

The derivations correspond to a single material point loaded under uniaxial stress state. Hence,
there is no heat conduction. Any heat source, except for inelastic dissipation, is not accounted
for. Hence heat source is composed of viscoplastic and damage dissipation which can be given
using Equation (9.5.17.1) along with Equations (10.4.1) and (9.2.38.1) for the current uniaxial
state of stress as

Ωvp
mech =

√
2

3
γ̇ [τ̃ + q] and Ωd

mech = Y d Ḋ . (9.5.17)

Hence the temperature increase can be locally solved to give

Θ̇ =
1

c
Ωmech =

γ̇

c

[√
2

3
[τ̃ + q] +

Y d

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s]
. (9.5.18)
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Using γ̇ =
√

3/2 α̇ the rate equations that needs to be solved can be given as follows

α̇ =

√
2

3

1

t?

〈
1

κvp

√
2

3
[τ̃ + q(α,Θ)− τy0(Θ)]

〉1/m

,

ε̇vp =
α̇

1−D ,

Ḋ =

√
3

2

α̇

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
,

Θ̇ =
α̇

c

[
τ̃ + q(α,Θ) +

√
3

2

Y d

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s]
.

(9.5.19)

This system of ordinary differential equations are solved using RK4 method implemented in
Matlab where the iterations are run under a desired tolerance. The parameter set is identical
to those listed in Table 9.1, except for the fact that a0 = 0.5 MPa in order to increase rate of
damage evolution. The results are compared with those of Abaqus 3D single element under
tension where the Umat subroutine is devised. The results are collectively given in Figure 9.1
where the agreement between predictions constitutes a means of verification.

9.5.2. Necking of an Axisymmetric Bar

Necking of an axisymmetric bar is investigated in the context of damage-coupled thermoplastic
framework. Contrary to the common idea, in the FE simulations with a typical free contracting
(shear-free grip conditions) tensile test specimen of a certain gauge length, central refinement
of the mesh does not suffice to transform the bifurcation problem, where the necking can em-
anate at any section, to a limit load problem. This is due to the fact that necking emanation
requires the break up of the stress uniformity. For this purpose, two necking triggering methods
widely used in the literature are the geometric imperfection method and the thermal triggering
method. The former requires a reduction of the central area, linearly varied over the half-length
as utilized in [291], [272] and [135], among others. In the latter, fixed temperature boundary
conditions applied at both ends are utilized as a necking triggering mechanism, which was first
studied by [333].

In this first example the former method of introduction of a geometrical imperfection at the
center is used. Only a quarter of the specimen has been discretized by exploiting the symmetry
of the problem. Figure 9.2 shows the geometrical setup and boundary conditions. In the geo-
metrical imperfection method the radius of face B is selected as 98.2% of the radius of face A.
The heat exchange at the surfaces of the specimen are neglected by assuming adiabatic thermal
boundary conditions. A displacement controlled simulation is performed where the displacement
∆u is assigned to face A as seen in Figure 9.2.(b) with a loading rate of 1 mm/s. The elements
are assumed to have a reference absolute temperature of Θ0 =293 K.

In order to evaluate the mesh dependence of the softening mechanism due to temperature and
damage and the effect of viscosity 10 × 20, 20 × 40 and 40 × 80 meshes are used as shown in
Figures 9.3.(a), (b) and (c), respectively. Here 10× 20 refers to 10 elements in radial direction
and 20 elements in longitudinal direction. The meshes are composed of element CAX4T, which
is a 4-node axisymmetric thermally coupled quadrangular element with bilinear displacement
and temperature interpolations. Besides rate independent limit with κvp = 0, rate effects are
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Figure 2.1: Results for criterion dτ/delog < 0 at 10 different temperatures Θ1 . . .Θ10 of equal temperature
steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 = 125◦C: a) stress-strain curves, b) energy
per unit (reference) volume computed using

∫
τdelog, as seen a sharp ductile-brittle transition is observed

in energy density demand until neck where the ductile-brittle transition temperature is around −50◦C, c)
damage d accumulation until neck, d) void volume fraction f accumulation until neck. The markers show
f values reached at each temperature.

Figure 9.1.: Comparison of Abaqus single 3D element with Umat and Matlab results for
implementation verification: (a) α, (b) D, (c) effective and homogenized Kirchhoff stress in the
direction of tension, (d) Θ.

face A face B

q 0=6.413

26.667

�u

Figure 9.2.: Geometry and boundary conditions for tensile tests (all dimensions are in mm).

also investigated taking κvp = 500 MPa and κvp = 1000 MPa14.

Considering damage evolution and mesh with 10×20 discretization, the load-displacement and
the central temperature increment history plots are given in Figures 9.4.(a) and (b) respectively.

14In the most general case, instantaneous elasticity and inviscid plasticity bound the expansion of the damage
affected yield surface with 0 ≤ κvp <∞.
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The initiation of the necking is signaled by the peak of the load deflection curves. The figures
clearly reveal the effect of damage where the in absence of damage the neck is slightly delayed.
Moreover, the abrupt loss in the load carrying capacity together with necking is precluded in
the simulations where rate effects are considered. For the central temperature evolution, more
rapid confinement of the plastic zone to the necked area in the middle of the bar in absence of
rate affects results in a stronger raise in temperature at the specimen center.

Contour plots of temperature Θ, hardening strain-like variable α and damage D distribution
at different displacements for damage-coupled 2D axisymmetric bar tension problem for 10×20
mesh and rate dependent solution are given in Figure 9.5. With neck development there occurs
considerable temperature increase with inelastic dissipation. Also the central damage localiza-
tion is more noticeable as compared to other fields. This is primarily due to the increased stress
triaxiality ratio at the specimen center and it is in agreement with experimentally observed cup
and cone fracture. Since the minimum of the hardening variable and damage ceases to evolve
at latter stages it is understood that elastic unloading takes place in a considerable part of the
specimen.

Figure 9.6 depicts the effect of viscosity on development of inelastic fields and temperature.
In agreement with the given load-displacement plots, inclusion of rate affects delays neck for-
mation and hence associated inelastic dissipation at the center whereas in the inviscid solution
there occurs considerable damage development. Hence, a more concentrated plastic zone and a
sharper curvature of the neck than the viscous results is observed. Together with the inclusion
of viscosity, localized behavior of the rate independent analyses diffuse; that is, the deforma-
tion localized at the elements of the central band is distributed to a wider band. This also
decreases the radius reduction at the center. In the inviscid analyses, intensities of both the
maximum equivalent plastic strain and the temperature are higher than those of viscous analysis.

The mesh dependence of the doubly induced softening mechanism due to temperature and
damage is tested together with considering the effect of viscosity for κvp = 500 MPa. Figures
9.7.(a) and (b) show load-displacement curves for inviscid and viscous solutions, respectively.
Although in both of the cases the mesh effect is considerably small, in the inviscid case, a more
noticeable branching among solutions starting just after the peak is observed. For the rate
dependent solution this branching seems to be further bypassed. This is parallel to the observa-
tions in the literature on viscous regularization, [326]. The difference in responses for 10×20 and
20× 40 meshes could be attributed to the rather coarse nature of 10× 20 mesh, hence classical
mesh dependence of finite element solutions. Further differences with mesh refinement, however,
is due to damage. In the rate independent solution, together with the refined mesh the analy-
sis is terminated earlier at smaller deformations. Besides, the post peak response has a sharper
decrease compared to the rate dependent solution where a rather diffuse localization is observed.

Figures 9.8.(a) and 9.8.(b) show central temperature development for inviscid and viscous solu-
tions for different mesh refinement levels. In agreement with Figure 9.7 the central localization
of temperature with further mesh refinement is for the regularized solution is not as strong as
the regularized one.
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(a)

(b)

(c)

Figure 9.3.: Finite element meshes, (a) 10× 20, (b) 20× 40 and (c) 40× 80.
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Figure 9.4.: History plots for axisymmetric tension problem for 10×20 mesh, (a) Load-
displacement curves, (b) Temperature evolution at the central node. The codes wo D and w
D stand for without and with damage effect, respectively. The codes wo R, w R 500 and w R
1000 stand for without rate effect, with rate effect with κvp = 500 MPa and with rate effect with
κvp = 1000 MPa, respectively.

9.5.3. Localization of Rectangular Bar

In this 3D example, the localization in a rectangular bar with the geometry is investigated:

width/thickness/length=16/4/52 mm

This problem was studied in [275] in absence of damage. Contraction-free boundary conditions
are applied during displacement controlled tensile loading of the bar. Since no geometrical im-
perfections are introduced, these boundary conditions result in a homogeneous state of stress
throughout the loading. In order to trigger neck, thermal boundary conditions are arranged
as to account for convective heat exchange on the entire free surface of the specimen (except
for the symmetry surfaces) given by the expression qn = h [Θ∞ − Θ]. Here, h = 17.5 × 10−3

N/mmsK denotes the convection coefficient and Θ∞ = 293 K represents the temperature of the
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temp

(a) (b) (c) (d)

Figure 9.5.: Contour plots of temperature Θ, hardening strain-like variable α and damage D dis-
tribution at different displacements for damage-coupled 2D axisymmetric bar tension problem for
10×20 mesh and rate independent solution. (a) ∆u = 2× 0.25 mm, min/max Θ = 293.6/294.1,
min/max α = 5.095 × 10−3/9.014 × 10−3, min/max D = 6.387 × 10−4/1.190 × 10−3, (b)
∆u = 2 × 2.00 mm, min/max Θ = 300.3/303.2, min/max α = 5.686 × 10−2/8.368 × 10−2,
min/max D = 1.023 × 10−2/1.707 × 10−2, (c) ∆u = 2 × 3.50 mm, min/max Θ = 301.1/328.8,
min/max α = 6.086 × 10−2/3.741 × 10−1, min/max D = 1.115 × 10−2/1.434 × 10−1, (d)
∆u = 2 × 4.325 mm, min/max Θ = 301.3/347.2, min/max α = 6.086 × 10−2/6.541 × 10−1,
min/max D = 1.115× 10−2/9.872× 10−1.

temp
Step 50 Step 400 Step 700 Step 869

(a) (b) (c)

Figure 9.6.: Contour plots of temperature Θ, hardening strain-like variable α and damage D
distributions at ∆u = 2 × 0.25 mm for damage-coupled 2D axisymmetric bar tension prob-
lem for 10×20 mesh and for κvp = 0 (left), κvp = 500 (center) and κvp = 1000 (right).
(a) min/max (left) Θ = 301.3/347.2, (center) Θ = 306.5/320.4, (right) 309.7/317.0, (b)
min/max (left) α = 6.086× 10−2/6.541× 10−2, (center) α = 9.697× 10−2/2.157× 10−1, (right)
α = 1.173 × 10−2/1.763 × 10−1, (c) min/max (left) D = 1.115 × 10−2/9.872 × 10−1, (center)
D = 2.187× 10−2/6.712× 10−2,(right) D = 3.001× 10−2/5.466× 10−2.

surrounding (infinite) medium. With self-heating by mechanical dissipation, an uneven tem-
perature distribution, and, hence inhomogeneous stress distribution occurs over the specimen.
Thus, necking develops.

Only one-eighth of the specimen is modeled using the symmetry in loading as well as geom-
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Figure 9.7.: Load-displacement curves for 10×20, 20×40 and 40×80 discreatizations. (a) Rate
independent solution with κvp = 0. (b) Rate dependent solution with κvp = 500 MPa.
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Figure 9.8.: Central temperature development with self-heating for 10×20, 20×40 and 40×80
discreatizations. (a) Rate independent solution with κvp = 0. (b) Rate dependent solution with
κvp = 500 MPa.

etry. Discretization of the modeled part consists of 1280 8-node full integration temperature
displacement elements of type C3D8T with trilinear displacement and temperature interpola-
tions. Like before, the loading is applied under constant velocity with 1 mm/s. The analyses are
conducted for damage coupled and uncoupled cases with viscosity parameter κvp = 100 MPa.
Except for this, the material parameters are the ones given in Table 9.1. For comparison reasons
cases without heat convection, i.e., homogeneous solutions are also accounted for.

The load-displacement and the central temperature increment history plots are given in Fig-
ures 9.9.(a) and (b) respectively. It is seen that the models for which convective heat transfer
from the surface is accounted for show a relatively rapid decrease in force response after the
peak which signals the development of the neck. With damage coupling, a considerable soft-
ening is observable. Temperature development at central section of the specimen for the case
with damage coupling and heat convection is given in Figure 9.9.(b). In agreement with the
thermally triggered necking results given in [275], the maximal temperature difference in the
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specimen rapidly increases with the development of the neck at which the deformation as well
as self-heating with dissipative inelastic processes are localized. At the specimen ends, on the
other hand, the temperature remains approximately constant also dictated by the surface heat
convection.

Figure 9.10 depics the temperature development during loading whereas in Figures 9.11 and
9.12 corresponding damage and hardening strain-like variable evolutions are given. Unlike the
homogeneous solution for which the specimen section remains rectangular along the specimen
length, the deformed cross section in the necked zone exhibits double curvature: concave in
direction of the width and convex in direction of the thickness in agreement with [275]. Thus,
although in the homogeneous case the stress triaxiality ratio remains as 1/3, as a result of the
curvature development three-dimensional state of stress prevails at the central section. This in
turn results in amplified damage accumulation and subsequent local failure, i.e., locally damage
reaches 1. For the homogeneous solution, the damage magnitude at ∆u = 2× 5.96 mm is only
D = 5.259 × 10−2 which is far from critical. At the same deformation level the temperature
and hardening development on the other hand are 317.9 K and α = 1.978× 10−1, respectively.
Since heat convection through surface is not allowed, there occurs no temperature gradients and
hence the homogeneous solution is equivalent to an adiabatic analysis.

Finally, Figures 9.13 show temperature and strain hardening variable contour plots, damage
uncoupled case. In absence of damage, this localized deformation problem is transformed into a
diffuse necking problem where the reduction of the central area is less than that of damage cou-
pled analysis. Also the development of temperature as well as plastic flow is noticeably smaller
than those occurring in a damage coupled analysis.
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Figure 9.9.: (a) Load-displacement curves for rate dependent solutions with and without damage
and heat convection at free surfaces. (b) Development of temperature at central node for for rate
dependent solutions with and without damage and heat convection at free surfaces. In (a) and
(b), the identifiers w D and wo D stand for with and without damage, respectively whereas the
identifiers w qn and wo qn respectively denote with and without heat convection at free surface.
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(a) (b) (c) (d) (e)

Figure 9.10.: Contour plots of temperature distribution at different displacements for damage-
coupled 3D rectangular bar tension problem rate dependent solution. At top, distributions over
the central plane along the plate plane are shown. At the bottom, central transverse section
distributions are given. The outer frame denotes the undeformed shape to highlight the amount of
deformation by necking. (a) ∆u = 2×0.25 mm, min/max Θ = 293.1/293.8 K, (b) ∆u = 2×2.75
mm, min/max Θ = 301.4/302.9 K, (c) ∆u = 2 × 4.50 mm, min/max Θ = 304.4/311.5 K,
(d) ∆u = 2 × 5.45 mm, min/max Θ = 303.6/334.8 K, (e) ∆u = 2 × 5.96 mm, min/max
Θ = 303.2/349.9 K.

(a) (b) (c) (d) (e)

Figure 9.11.: Contour plots of hardening strain-like variable α distribution at different dis-
placements for damage-coupled 3D rectangular bar tension problem rate dependent solution.
At top, distributions over central plane along plate plane are shown. At the bottom, central
transverse section distributions are given. The outer frame denotes the undeformed shape
to highlight the amount of deformation by necking. (a) ∆u = 2 × 0.25 mm, min/max
α = 7.199×10−3/7.210×10−3, (b) ∆u = 2×2.75 mm, min/max α = 9.576×10−2/9.650×10−2,
(c) ∆u = 2×4.50 mm, min/max α = 1.330×10−1/1.789×10−1, (d) ∆u = 2×5.45 mm, min/max
α = 1.333×10−1/4.609×10−1, (e) ∆u = 2×5.96 mm, min/max α = 1.333×10−1/7.378×10−1.
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(a) (b) (c) (d) (e)

Figure 9.12.: Contour plots of damage D distribution at different displacements for damage-
coupled 3D rectangular bar tension problem rate dependent solution. At top, distributions over
central plane along plate plane are shown. At the bottom, central transverse section distributions
are given. The outer frame denotes the undeformed shape to highlight the amount of deformation
by necking. (a) ∆u = 2 × 0.25 mm, min/max D = 9.500 × 10−4/9.527 × 10−4, (b) ∆u =
2 × 2.75 mm, min/max D = 2.064 × 10−2/2.086 × 10−2, (c) ∆u = 2 × 4.50 mm, min/max
D = 3.185×10−2/4.686×10−2, (d) ∆u = 2×5.45 mm, min/max D = 3.185×10−2/1.910×10−1,
(e) ∆u = 2× 5.96 mm, min/max D = 3.185× 10−2/9.948× 10−1.

alpha
T

Without damage case step 1191 time 5.955

(a) (b)

Figure 9.13.: Contour plots of (a) hardening strain-like variable α and (b) temperature distri-
bution at ∆u = 2 × 5.96 mm for 3D rectangular bar tension problem rate dependent solution
without damage effects. As seen in absence of damage development, area reduction during neck
development is considerably less. Hence, plastic flow and associated temperature development is
smaller. At top, distributions over central plane along plate plane are shown. At the bottom,
central transverse section distributions are given. The outer frame denotes the undeformed shape
to highlight the amount of deformation by necking. (a) min/max α = 1.571×10−1/3.291×10−1,
(b) min/max Θ = 306.1/326.6 K.
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9.6. Closure

In this chapter, an extension of [275] and its follow up works [14], [15], to rate dependent
damage-coupled thermomechanics is proposed. It is shown that, once the extensive property of
the entropy is exploited, together with a temperature dependent damage dissipation potential,
its decomposition into elastic, viscoplastic and damage parts is possible, with with correspond-
ing structural changes. Besides it is shown that in addition to those mutual interactions of the
mechanical and thermal fields presented in [275], there exist damage induced effects on thermal
and other mechanical fields. The framework utilizes a principal axes formulation where the
stresses are derived utilizing a hyperelastic potential quadratic elastic Hencky strains. This
supplies handiness in derivations and implementation of the framework. The resulting thermo-
mechanical problem is solved for a staggered approach with the isothermal split. The derived
forms are implemented as Abaqus/Umat and Umath subroutines and utilized in a set of ex-
ample problems involving geometrical imperfection triggered necking of an axisymmetric bar
and thermally triggered necking of a 3D rectangular bar. The first problem reveals that, for
a quasi-static analysis, doubly softening mechanism is prone to the problem of spurious mesh
dependence due to the loss of ellipticity of the initial boundary value problem. Especially, in
the absence of rate effects the mesh dependence is higher whereas inclusion of rate effects acts
as a localization limiter. With the second problem, it is shown that triaxiality increase at the
center by necking triggered by surface convection of heat accelerates damage rate considerably
and consequently reduces global total strain to failure as compared to the homogeneous analysis
without surface heat convection (hence without necking).

9.A. Auxiliary Derivations

Derivations for the Local Tangent. Using Equation (9.4.27) and assuming Y d−Y d
0 > 0 the

components for the local Jacobian for the simultaneous local integration scheme can be given
as

∂r1

∂∆γ
= −2

3
q/(α ,Θ) + 2µ

1

1−D +mκ
vp

[
t?
∆t

]m
∆γm−1 , (9.A.1)

∂r1

∂D
= 2µ

∆γ

[1−D]2
, (9.A.2)

∂r2

∂∆γ
= −β −∆γ s β

1

〈Y d − Y d
0 〉

∂Y d

∂∆γ
, (9.A.3)

∂r2

∂D
= 1−∆γ β

[
r

1−D +
s

〈Y d − Y d
0 〉

∂Y d

∂D

]
, (9.A.4)

where q/ = ∂q(α,Θ)/∂α together with

β :=
1

[1−D]r

[〈Y d − Y d
0 〉

a(Θ)

]s
and

∂r2

∂Y d
= −∆γ s β

1

〈Y d − Y d
0 〉

. (9.A.5)

Derivations for the Mechanical Tangent Moduli. Using the viscoplastic/damage correc-
tion given in Equation (9.4.22), for a given principal stress component τA one has

∂τA

∂εe, triB

= [1−D]
∂τ̃ tri

A

∂εe, triB

− 2µ∆γ
∂nA

∂εe, triB

,
∂τA
∂∆γ

= −2µnA and
∂τA
∂D

= −τ̃A . (9.A.6)
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Using δdev
AB = δAB − 1/3, with δAB representing the Kronecker delta which is given as

δAB :=

{
1 if A = B ,
0 otherwise .

(9.A.7)

Accordingly, using Equation (9.3.10) one can find

∂τ̃ tri
A

∂εtriB
= H + 2µδdev

AB and
∂nA
∂εtriB

=
2µ

‖s̃ tri‖
[
δdev
AB − nA nB

]
. (9.A.8)

Derivations for the Thermal Tangent Modulus. In the view of Equation (9.4.24), for
given inelastic dissipation Ωmech using

∂Ωmech

∂Y d
=

∆γ

∆t
β

[
1 + s

Y d

〈Y d − Y d
0 〉

]
, (9.A.9)

and q. = ∂q(α,Θ)/∂Θ one has

∂Ωmech

∂Θ
=

∆γ

∆t

[√
2

3
q.(α,Θ)− s β g′ωd(Θ) a0

Y d

a(Θ)

]
+
∂Ωmech

∂Y d

∂Y d

∂Θ
, (9.A.10)

∂Ωmech

∂∆γ
=

Ωmech

∆γ
+

∆γ

∆t

[
2

3
q/(α,Θ)− 2µ

1−D

]
+
∂Ωmech

∂Y d

∂Y d

∂∆γ
, (9.A.11)

∂Ωmech

∂D
= −∆γ2

∆t

2µ

[1−D]2
+ r β

∆γ

∆t

Y d

1−D +
∂Ωmech

∂Y d

∂Y d

∂D
. (9.A.12)

For the local tangent, additional derivations include the following

∂r1

∂Θ
=

√
2

3
g′ωvp(Θ) [ τy0,0 − q(α,Θ0) ] , (9.A.13)

∂r2

∂Θ
= ∆γ s β

[
g′ωd(Θ)

a0

a(Θ)
− 1

〈Y d − Y d
0 〉

∂Y d

∂Θ

]
. (9.A.14)

Using Equation (9.3.12) one reaches

∂Y d

∂Θ
=
∂Ψ̃Θe(Je,Θ)

∂Θ
= −3H αΘ log(Je) . (9.A.15)

Using ∂(•)/∂εB ≡ ∂(•)/∂εe, triB one reaches

∂r1

∂εB
= −2µnB and

∂r2

∂εB
= −∆γ s β

1

Y d

∂Y d

∂εe, triB

(9.A.16)

where Equation (9.A.16.1) is computed using ‖s̃‖ :=
[
s̃2

1 + s̃2
2 + s̃2

3

]1/2
and

∂
∥∥s̃tri

∥∥
∂εe, triB

= 2µnB . (9.A.17)
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Derivations for the Plastic Dissipation. Using the proposed von Mises yield potential and
degree one homogeneity property of the yield potential, one may derive the following equivalence
for the plastic part of the dissipation expression

Ωvp
mech = τ :

[
−1

2
Lvbe · [be]−1

]
+ q α̇

= [1−D] [s̃+ p̃1] :

[
γ̇

1−D
s̃

‖s̃‖

]
+ q(α,Θ)

[√
2

3
γ̇

]

= γ̇

[
‖s̃‖+

√
2

3
q(α,Θ)

]
(9.A.18)

with τ̃ = τ/[1−D], τ̃ = p̃1 + s̃ and p̃1 : s̃ = 0, and consequently [τ/[1−D]] : s̃ = s̃ : s̃ = ‖s̃‖2.

Derivations for the Damage Conjugate Variable. Derivation of any of

∂Y d

∂εe, triB

,
∂Y d

∂∆γ
and

∂Y d

∂D
(9.A.19)

exploits the chain rule as follows

∂Y d

∂ [•] =
∂Y d

∂Je

∂Je

∂ [•] +

3∑

A=1

∂Y d

∂εeA

∂εeA
∂ [•] , (9.A.20)

where [•] represents one of εtrin+1, B, ∆γ or D. The following relations hold

∂Y d

∂Je
= H

log(Je)

Je
− 3H αΘ [Θ−Θ0]

1

Je
and

∂Y d

∂εeA
= 2µ εeA (9.A.21)

together with
∂Je

∂εe, triB

= Je ,
∂Je

∂∆γ
= 0 and

∂Je

∂D
= 0 . (9.A.22)

Computing the deviator of both sides of Equation (9.4.20) and using the plastic incompressibility
one has

εeA = εe, triA − ∆γ

1−D nA , (9.A.23)

with which one may derive

∂εeA

∂εe, triB

=
∂εe, triA

∂εe, triB

− ∆γ

1−D
∂nA

∂εe, triB

, (9.A.24)

with
∂εe, triA

∂εe, triB

= δdev
AB . (9.A.25)

Finally, the following identities prove useful

∂εeA
∂D

= − ∆γ

[1−D]2
nA and

∂εeA
∂∆γ

= − 1

1−D nA . (9.A.26)
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10. A Thermomechanically Consistent
Constitutive Theory for Modeling
Micro-Void and/or Micro-Crack Driven
Failure in Metals at Finite Strains

In this chapter, within a continuum approximation, a thermomechanical finite strain plasticity
model which incorporates the blended effects of micro-heterogeneities in the form of micro-
cracks and micro-voids is presented. The former accounts for cleavage-type of damage without
any volume change whereas the latter is a consequence of plastic void growth. Limiting the
context to isotropy, for cleavage damage a scalar damage variable d ∈ [0, 1] is incorporated. Its
conjugate variable, the elastic energy release rate, and evolution law follow the formal steps of
thermodynamics of internal variables requiring postulation of an appropriate damage dissipation
potential. The growth of void volume fraction f is incorporated using a Gurson-type porous
plastic potential postulated at the effective stress space following continuum damage mechanics
principles. Since the growth of microvoids is driven by dislocation motion around voids the
dissipative effects corresponding to the void growth are encapsulated in the plastic flow. Thus,
the void volume fraction is used as a dependent variable using the conservation of mass. The
predictive capability of the model is tested through uniaxial tensile tests at various temperatures
Θ ∈ [−125◦C,125◦C]. It is shown, via fracture energy plots, that temperature driven ductile-
brittle transition in fracture mode is well captured. With an observed ductile-brittle transition
temperature around −50◦C, at lower temperatures fracture is brittle dominated by d whereas
at higher temperatures it is ductile dominated by f .

10.1. Introduction

Mechanistically, ductile fracture is explained by nucleation, growth and coalescence of mi-
crovoids. Brittle fracture, on the other hand, stems from the inter- or intra-granular cleavage
with microcrack nucleation, growth and coalescence [11]. Both ductile and brittle fracture is
observed in bcc metals. The transition from one mode to the other is mainly controlled by
temperature1: At lower temperatures fracture is brittle whereas at higher temperatures it is
ductile.

One of the most widely used modeling approach for plasticity with microvoid growth is that
of Gurson, [110]. Derived using homogenization over void-rigid plastic matrix aggregates and
limit analysis, the yield potential of Gurson’s plasticity has hydrostatic stress dependence. A
natural outcome of this formulation is irreversible volume change, i.e., plastic dilatation. This
model is modified by Tvergaard and Needleman, by the introduction of void shape effects as well

1Stress triaxiality ratio and loading rate may also affect fracture mode.
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as acceleration in the void growth during void coalescence, to be named as Gurson-Tvergaard-
Needleman porous plasticity model [308] and by Chu and Needleman to account for void nucle-
ation effects [75] along with other contributors, e.g., [304, 306, 305, 229, 224, 225].

There are various modeling approaches for cleavage in metallic materials. The deterministic
model by Ritchie-Knott-Rice, [260], relies on a temperature and rate independent critical stress
over the cleavage grain. Once the principal stresses averaged out over one or two grain-size
region exceeds this threshold, the brittle fracture emanates. This threshold does not necessitate
the presence of plastic flow. Incorporation of plastic flow is realized in Beremin’s statistical
model which, being based on the Weibull weakest link theory, reflects random nature of brittle
fracture, see, e.g., [52, 223]. Another simple yet powerful approach to brittle fracture is the
so-called energy limiters [318, 319, 320]. By enforcing saturation in the strain energy function,
energy limiters automatically bound stresses in the constitutive equations. Although useful,
none of these models postulate an internal damage variable to account for gradual material
deterioration by microcrack nucleation. Thus, dissipation associated with brittle fracture is not
incorporated. Continuum damage mechanics remedies this gap by introducing scalar or tensorial
damage variables and their conjugate variables which allows not only modeling of stiffness and
strength degradation but also determination of inelastic dissipation, [175, 178]. For the recent
developments in brittle fracture modeling, the reader is refered to [217, 13, 216] and [88].

The present work introduces a thermodynamically consistent continuum approximation of micro-
void and/or micro-crack driven failure at finite strains. To this end, in the spirit of Chaboche and
coworkers [71] Gurson’s porous plasticity model is blended with Lemaitre’s continuum damage
mechanics. The blended constitutive model has two damage variables: the void volume fraction
f and the brittle damage variable d. Material fails by evolution of both damage sources. Since
the growth of microvoids is driven by dislocation motion around voids, dissipative effects corre-
sponding to the void growth are encapsulated in the plastic flow. Thus, the void volume fraction
is a dependent variable using conservation of mass. For cleavage damage, a scalar variable is
incorporated whose conjugate variable, the elastic energy release rate, and evolution law follow
the formal steps of thermodynamics of internal variables requiring postulation of an appropriate
damage dissipation potential. Hence, the brittle damage process is realistically reflected on a
thermomechanically consistent ground. By these properties, the proposed model forms an ap-
propriate basis for modeling fracture with ductile-brittle transitions driven by temperature or
triaxiality.

Among various modeling attempts to the ductile-brittle transition problem in the literature,
see, e.g., [337, 230, 271, 42, 134], the most common one is based on a collective use of Gurson-
type porous plasticity along with either Ritchie-Knott-Rice or Beremin model, see, e.g., [230,
134, 281]. However, these approaches suffer from the mentioned inherent weaknesses pertaining
to brittle fracture models. The noteworthy features of this work can be summarized as follows:

� Since the main motivation stems from modeling temperature driven ductile-brittle transi-
tion of fracture, unlike [71], thermal coupling is considered.

� Unlike [71], finite strains are accounted for making use of a hyperelastic-plastic-type for-
mulation relying on multiplicative decomposition of deformation gradient into recoverable
and irrecoverable parts following [114].

� Although in the current study the focus is set on thermoelastic, plastic and damage
isotropy, incorporation of brittle anisotropic damage is possible within the presented for-
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malism.

� Using the kinematic coupling between plasticity and continuum damage, brittle damage
evolution necessitates plastic flow which is consistent for metallic materials.

� Unlike cited ductile-brittle transition modeling approaches, current modeling approach
accounts for gradual strength and stiffness loss as well as energy dissipation associated
with brittle damage.

� The model framework can also be exploited for fracture development under low triaxiality
regimes for which Gurson model is known to be ineffective.

10.2. Fundamental Kinematics

Let B ∈ R3 be the material (initial), B ∈ R3 the intermediate and Bt ∈ R3 the spatial (current)
configurations of a body. The motion of the body is described by a one-to-one mapping ϕ :
B → Bt ⊂ R3. The deformation gradient F := ∂Xϕ, is defined as the linear mapping of
referential material tangents on their spatial counterparts, in which X defines the material
coordinates in the reference configuration. The Jacobian of the deformation gradient is defined
as J = det (F ) = ρ0/ρ, where ρ0 and ρ are densities at initial and spatial configurations,
respectively. Multiplicative decomposition of the deformation gradient in recoverable F r and
irrecoverable F p parts is postulated such that

F := F r · F p , (10.2.1)

with J r := det(F r) and Jp := det(F p). The recoverable part is associated with distortion of the
crystal and the plastic part of the deformation gradient F p encapsulates the dislocation move-
ments through its isochoric part [H̊akansson et al., 2006]. F r is further partitioned into elastic
and thermal parts using F r := F e · F θ. With this decomposition an additional imagined con-
figuration B̂ is introduced, which corresponds to a stress-free thermoplastic deformation where
thermal expansion (or contraction) is driven by temperature change ∆Θ = Θ−Θ0, where Θ and
Θ0 represent the current and the initial temperature, respectively. The spatial velocity gradient
is given by l := Ḟ · F−1 which is additively decomposed into the rate of deformation tensor
d = sym (l) and the rate of spin tensor w = skw (l) via l = d+w, respectively. The recoverable
and irrecoverable right Cauchy-Green deformation tensors are defined as Cr = [F r]> · F r and
Cp = [F p]> ·F p, respectively. Similar partition, which proves convenient in the following devel-
opments, applies for l as well via l = lr + lp where lr := Ḟ r · [F r]−1 and lp = F r ·Lp · [F r]−1 with
Lp := Ḟ p · [F p]−1. Letting recoverable logarithmic strain tensor defined by er

log := ln (
√
Cr),

its partition into volumetric and isochoric parts reads er
log,vol := 1/3 ln J r 1 = 1/3 tr(er

log)1 and

er
log,iso := ln(

√
J r−2/3Cr) = dev er

log, respectively. Configurations and fundamental mappings
are given in Figure 10.1.

The assumption of a representative volume element with uniformly distributed spherical voids
with a total volume of dV v and plastically incompressible matrix with a total volume of dV m

with dV v + dV m = dV , lets one define the void volume fraction f = dV v/dV . Now, tak-
ing Jv = dV/dV m and letting the initial volume of the matrix be dV m0 one defines Jv0 =
dV 0/dV m0. Since the matrix material is allowed to experience only thermoelastic dilatations
one sets J r = dV m/dV m0. Thus, with J = J rJp = dV/dV 0 one has Jp = Jv/Jv0. Taking



236 10.3. Thermodynamical Formulation

logarithms and the material time derivatives of both sides one reaches
˙

ln(Jp) =
˙

ln(Jv). Using
˙

ln(Jp) = tr(Lp) one concludes that

ḟ = [1− f ] tr(Lp) . (10.2.2)

Hence, being dependent on tr(Lp), f is part of the problem kinematics; in other words, the void
growth is linked to the dislocation motion around the void. In this sense, it is not an independent
state variable. On the other hand, the rather brittle micro-crack and micro-cleavage mechanisms
are not fully accounted for by dislocation glide. Hence, in the current thermodynamic formalism,
their treatment requires the introduction of a new state variable whose evolution necessitates
postulation of an independent dissipation potential. To this end, continuum damage d ∈ [0, 1]
phenomenologically reflects the softening response associated with accumulated micro-cracks.
The interpretation of the envisioned framework is given on the right-hand side of Figure 10.1.
Without loss of generality, independent of the scale hierarchy depicted the void free matrix is
plastically incompressible - hence, above definitions are valid.
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Fig. 1. On the left-hand side, the local multiplicative decomposition of the deformation gradient
F into recoverable Fr := Fe · FΘ and irrecoverable Fp parts and corresponding configurations
are given. One the right-hand side, possible interpretations of the current framework are listed. a)
voids at upper scale and cracks at lower scale, b) voids and cracks at identical scale, c) cracks at
upper scale and voids at lower scale.

inequality represented in the reference configuration (see also [Bargmann and Ekh,

2013])

Dloc = τ : d− ρ0∂Iψ · İ −
J

Θ
q · gradΘ ≥ 0 . (4)

We further assume an additive decomposition into thermomechanical and conduc-

tive parts Dloc = Dthermech
loc +Dcon

loc with

Dthermech
loc := τ : d− ρ0∂Iψ · İ ≥ 0 ,

Dcond
loc := − J

Θ
q · gradΘ ≥ 0 .

(5)

The latter inequality is satisfied by a generalized Fourier law adapted for the heat

flux even in the presence of damage. The fulfillment of the former requires selection

of the set I and its appropriate evolution laws. With I ={Cr, d, α,Θ}, where d is

the scalar isotropic damage variable and α is the plastic hardening variable, Eq.

(5.1) reads

Dthermech
loc =

[
τ − 2ρ0[Fr]> · ∂Crψ · Fr

]
: dr

+ τ : Fr · Lp · [Fr]−1 − [η + ρ0∂Θψ] Θ̇

− ρ0∂dψḋ− ρ0∂αψα̇ ≥ 0 ,

(6)

with Ċr = 2[Fr]> · dr · Fr and τ : w = 0 since w = −w>. The following state laws

are derived in order for inequality (6) to be valid for arbitrary dr and Θ̇

τ := 2ρ0[Fr]> · ∂Crψ · Fr , β := ρ0∂αψ ,

Y := −ρ0∂dψ , η := −ρ0∂Θψ ,
(7)

where Y and β refer to the effective elastic energy release rate and the conjugate

internal force variable of the plastic isotropic hardening. Substituting these back

into the right-hand side of the inequality (6), one has the following reduced purely

Figure 10.1.: On the left-hand side, the local multiplicative decomposition of the deformation
gradient F into recoverable F r := F e ·FΘ and irrecoverable F p parts and corresponding config-
urations are given. One the right-hand side, possible interpretations of the current framework
are listed. (a) voids at upper scale and cracks at lower scale, (b) voids and cracks at identical
scale, (c) cracks at upper scale and voids at lower scale.

10.3. Thermodynamical Formulation

10.3.1. General Theory

Let ψ denote the Helmholtz free energy per unit reference mass. Then, the first law of thermo-
dynamics is expressed in reference configuration as

ρ0Θη̇ = τ : d− ρ0Θ̇η − ρ0ψ̇ − Jdiv q + ρ0r , (10.3.1)

where τ is the Kirchhoff stress tensor, Θ is the absolute temperature, η is the entropy per
unit mass, q is the spatial heat flux and r is the body heat source per unit mass. With an
abuse of notation, let ψ = ψ (I), with I being the set of internal variables, the second law
of thermodynamics supplies the following dissipation inequality represented in the reference
configuration (see also [Bargmann and Ekh, 2013])

Dloc = τ : d− ρ0∂Iψ · İ −
J

Θ
q · grad Θ ≥ 0 . (10.3.2)
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An additive decomposition into thermomechanical and conductive parts is further assumed
Dloc = Dthermech

loc +Dcon
loc with

Dthermech
loc := τ : d− ρ0∂Iψ · İ ≥ 0 ,

Dcond
loc := − J

Θ
q · grad Θ ≥ 0 .

(10.3.3)

The latter inequality is satisfied by a generalized Fourier law adapted for the heat flux even
in the presence of damage. The fulfillment of the former requires selection of the set I and
its appropriate evolution laws. With I ={Cr, d, α,Θ}, where d is the scalar isotropic damage
variable and α is the plastic hardening variable, Equation (10.3.3.1) reads

Dthermech
loc =

[
τ − 2ρ0[F r]> · ∂Crψ · F r

]
: dr

+ τ : F r ·Lp · [F r]−1 − [η + ρ0∂Θψ] Θ̇

− ρ0∂dψḋ− ρ0∂αψα̇ ≥ 0 ,

(10.3.4)

with Ċr = 2[F r]> · dr · F r and τ : w = 0 since w = −w>. The following state laws are derived
in order for inequality (10.3.4) to be valid for arbitrary dr and Θ̇

τ := 2ρ0[F r]> · ∂Crψ · F r , β := ρ0∂αψ ,

Y := −ρ0∂dψ , η := −ρ0∂Θψ ,
(10.3.5)

where Y and β refer to the effective elastic energy release rate and the conjugate internal force
variable of the plastic isotropic hardening. Substituting these back into the right-hand side of
the inequality (10.3.4), one has the following reduced purely mechanical form

Dred
loc = τ : F r ·Lp · F r−1 + Yḋ− βα̇ ≥ 0 . (10.3.6)

Let Σ := [F r]> · τ · [F r]−> denote the Mandel stress tensor. With reference to the intermediate
configuration one has τ : F r ·Lp · [F r]−1 = Σ : Lp and Equation (10.3.6) can be rearranged to
give

Dred
loc = Σ : Lp − βα̇+ Y ḋ ≥ 0 . (10.3.7)

This clearly depicts the work-conjugacy of the plastic part of the velocity gradient Lp defined
at intermediate configuration and the Mandel stress tensor Σ. With the assumption of elastic
isotropy, one has [F r]> · τ · [F r]−> = [Rr]> · τ ·Rr where Rr is the elastic rotation found using
the polar decomposition of the recoverable deformation gradient F r = Rr ·U r with U r =

√
Cr

representing the recoverable stretch tensor. Hence, in the subsequent developments the use
Σ = [Rr]> · τ ·Rr is made. That is, Σ amounts to the rotated Kirchhoff stress tensor. Hence,
both Σ and τ share identical invariants which gains importance while postulating the plastic
potential.

Finally, introducing the dissipation potential Υ as

Υ(Σ, β, Y, d, f) := φp(Σ, β; d, f) + φd(Y ; d) , (10.3.8)

and applying the generalized normality rule one derives the following evolution equations which
satisfy the positiveness of the dissipation along with loading/unloading conditions λ ≥ 0, φp ≤ 0,
λφp = 0

Lp = λ∂ΣΥ = λ∂Σφ
p , α̇ = −λ∂βΥ = −λ∂βφp , ḋ = λ∂Y Υ = λ∂Y φ

d , (10.3.9)
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where λ is the plastic multiplier. This way, through a kinematic coupling, evolution of brittle
damage is linked to plastic flow. This condition expresses the fact that brittle failure can
only occur when plastic deformation occurs which is an appropriate assumption for cleavage in
metallic materials, [Beremin, 1983]. On the contrary, Ritchie-Knott-Rice criterion for brittle
fracture, for instance, does not require plastic flow [Ritchie et al., 1973].

10.3.2. Specification of the Constitutive Forms

The choice of the form of the Helmholtz free energy function ψ constitutes the basis in deriving
the constitutive equations for the representative volume element. In the current treatment, an
additively decomposed Helmholtz free energy into elastic, plastic and thermal parts is selected
via ψ = ψe + ψp + ψΘ. For the elastic part one can further apply a volumetric deviatoric split
using ψe = ψe

vol + ψe
iso and, following a Lemaitre-type formalism, state coupling is applied only

in between micro-crack damage and thermoelasticity using

ρ0 ψ
e
vol = [1− d]κ

[
1

2
[tr(er

log)]2 − 3αΘ[Θ−Θ0]tr(er
log)

]
,

ρ0 ψ
e
iso = [1− d]µ [dev er

log : dev er
log] ,

(10.3.10)

in the reference configuration. κ = E/3[1− 2ν] and µ = E/2[1 + ν] are the elastic bulk modulus
and shear modulus, respectively with E representing the modulus of elasticity and ν denoting
the elastic Poisson’s ratio. For the plastic part one uses

ρ0 ψ
p = [1− f0][τm,∞ − τm,0]

[
α+

1

ωm
[exp(−ωmα)− 1]

]
(10.3.11)

in the reference configuration. Hence, the isotropic plastic hardening of the representative vol-
ume element is taken to obey an exponential behavior, where τm,0 and τm,∞ denote the initial
and saturated Kirchhoff-type matrix yield stresses and ωm is the matrix hardening saturation
rate. The link between the material matrix and the representative volume element is reflected in
the factor [1− f0]. The reason of using [1− f0] rather than [1− f ] is due to the Kirchhoff stress
based hardening formulation which complies with the space of the postulated yield function,
[H̊akansson et al., 2006].

Using the transformation τ = [Rr]>·Σ·Rr, the plastic potential φp(Σ, β; d, f) can be reparametrized
to give φp(τ , β, f) with the effective stress definition τ = τ/[1 − d]. Based on an analysis of
a single spherical void in a spherical shell presented in [110] where the change of void shape is
neglected, the effectively isotropic yield function φp, representing approximate form for the yield
surface of a randomly voided solid containing a volume fraction f of voids is then defined as

φp(τ , β, f) :=
1

2τm

[
τ2

eq + 2f τ2
m cosh

(
tr τ

2τm

)
− τ2

m[1 + f2]

]
≤ 0 , (10.3.12)

where τ eq is introduced as the effective equivalent Kirchhoff stress through τ eq =
√

3/2 [dev τ : dev τ ].

Note that τ eq = M eq :=
√

3/2 [devM : devM ] as well as tr τ = trM . The matrix flow stress

is represented by τm = τm,0 + βm with βm = β/[1− f0] denoting the matrix hardening.

Remark 1. For fully developed plastic flow, i.e., φp(τ , β) = 0, under traceless stress state
with tr τ/2τm → 0 one has cosh (tr τ/2τm) → 1. Hence, τ2

eq = [1− f ]2 τ2
m, which can be rear-

ranged, using the effective stress definition, to give

τeq = [1− d][1− f ]τm .
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This depicts the effect of two distinct damage sources on the material response and the link
between the fictitious effective material subscale free of defects and the mesoscopic behavior as
depicted in the scenarios given in Figure 10.1. �

Remark 2. In the spirit of [H̊akansson et al., 2006], the motivation for the evolution laws
is considered in the absence of micro-voids, however, with micro-cracks. Accordingly, the flow
potential reduces to φp(τ , β) = τ − τm ≤ 0. Following associative plasticity, the evolution laws
for Lp and α are governed by the normality rule

Lp = λ
∂φp

∂M
=

λ

1− d
3

2

devM

τm
and α̇ = −λ∂φ

p

∂β
= λ .

Defining the equivalent plastic strain rate as ε̇p =
√

2/3Lp : Lp and using α̇ = λ one reaches
ε̇p = α̇/[1− d]. Hence, the rate of plastic work wp in the reference configuration reads

wp = devM : Lp = [1− d]τmε̇
p .

Thus, in comparison to [H̊akansson et al., 2006], the effect of the cleavage damage is also involved
in the work equivalence relation. �

In the light of the Remark 2, and following [H̊akansson et al., 2006], the validity of the fol-
lowing definitions is postulated for the porous plasticity model as well

α̇ = λ and ε̇p =
α̇

1− d . (10.3.13)

Hence Equation (10.3.13.1) is replaced with Equation (10.3.9.2) for the definition of α̇ in the
foregoing developments. Also, the following generalization of the plastic work equivalence is
postulated

[1− f0][1− d]ε̇pτm = Σ : Lp , (10.3.14)

which gains importance in definition of the total mechanical dissipation. Note that for a Cauchy-
type matrix yield stress σm = 1/J rτm one has [1− f0][1− d]ε̇pτm = 1/J [1− f ][1− d]ε̇pσm.

Due to the dependence of φp on the trace of the stress tensor, lp is not traceless. Conse-
quently, plastic dilatant effects are incorporated. Hence, the void volume fraction is associated
with the plastic dilatant strains through the mass balance relation ḟ = [1− f ] tr(Lp), also given
in Equation (10.2.2). Thus, unlike the isotropic continuum damage variable d, one does not
need an additional dissipation potential in evaluation of the void volume fraction rate since it
is plastic flow that accounts for the dissipation associated. The rate of d, on the other hand, is
derived using a dissipation potential using Equation (10.3.9.3). φd is selected to take the form
of Lemaitre-type damage dissipation potential [Lemaitre 1996]

φd(Y ) =
S

[1 +m][1− d]n

[〈Y − Y0〉
S

]m+1

, (10.3.15)

where m, n, S and Y0 are associated material parameters. Y0 represents the threshold value of
strain energy release rate governing the initiation of cleavage damage.

Now, using Equations (10.3.5) along with the defined potentials in Equations (10.3.10) and
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(10.3.11), one arrives at explicit forms of the conjugate variables Σ, β and Y as

Σ = [1− d]
[
κtr(er

log)1 + 2µdev er
log − 3καΘ[Θ−Θ0]1

]
,

β = [1− f0][τm,∞ − τm,0] [1− exp(−ωmα)] ,

Y = κ

[
1

2
[tr(er

log)]2 − 3αΘ[Θ−Θ0]tr(er
log)

]
+ µ [dev er

log : dev er
log] ,

(10.3.16)

where the matrix hardening is represented with βm = β/[1−f0] = [τm,∞−τm,0] [1− exp(−ωmα)].

For the plastic flow and the evolution of d, one uses Equations (10.3.9.1) and (10.3.9.3) along
with the dissipation potential components given in Equations (10.3.12) and (10.3.15), respec-
tively. The hardening variable rate α̇ obeys Equation (10.3.13.1). Collectively, the evolution
equations read

Lp =
λ

1− d

[
3

2

devΣ̄

τm
− 1

2
f sinh

(
q2trΣ̄

2τm

)
1

]
,

α̇ = λ ,

ḋ =
λ

[1− d]n

[〈Y − Y0〉
S

]m
,

(10.3.17)

where Σ̄ = Σ/[1− d]. Now, substituting Equations (10.3.16) and (10.3.17) into the right-hand
side of Equation (10.3.7) together with using Equation (10.3.14), the mechanical dissipation
reads

Dred
loc = [1− f0][1− d] ε̇pτm,0 + ε̇p

1

[1− d]n−1
Y

[〈Y − Y0〉
S

]m
. (10.3.18)

The second term reflects the dissipative effect of cleavage-type damage which is not accounted
for in [H̊akansson et al., 2006]. Equation (10.3.18) is always nonzero, hence, the second law of
thermodynamics is fulfilled. For convenience, a summary of the constitutive model is given in
BOX 1.
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BOX 1. A summary of the proposed model for general 3D stress-state.

i. Multiplicative kinematics

F = F r · F p and F r = F e · FΘ .

ii. Thermoelastic stress-strain relationship

Σ = [1− d]
[
κtr(er

log)1 + 2µ dev er
log − 3καΘ[Θ−Θ0]1

]
.

iii. State laws for hardening and damage conjugate variables

β = [1− f0][τm,∞ − τm,0] [1− exp(−ωmα)] ,

Y = κ

[
1

2
[tr(er

log)]2 − 3αΘ[Θ−Θ0]tr(er
log)

]
+ µ [dev er

log : dev er
log] .

iv. Matrix yield stress and hardening

τm = τm,0 + βm and βm =
β

1− f0
.

v. Thermoelastic domain in stress space (single surface)

Eτ = {[τ , β, f ] ∈ S× R+ × R+ : φp(τ , β, f) ≤ 0} ,

where S represents the vector space of symmetric second-order tensors and

φp(τ , β, f) =
1

2τm

[
τ2

eq + 2f τ2
m cosh

(
tr τ

2τm

)
− τ2

m[1 + f2]

]
.

vi. Flow rule (associative model)

Lp =
λ

1− d

[
3

2

devΣ̄

τm
− 1

2
f sinh

(
trΣ̄

2τm

)
1

]
.

vii. Evolution equations for hardening, damage and porosity

α̇ = λ and ε̇p =
λ

1− d ,

ḋ =
λ

[1− d]n

[〈Y − Y0〉
S

]m
,

ḟ = [1− f ]tr(Lp) .

viii. Kuhn-Tucker loading/unloading (complementarity) conditions

λ ≥ 0, φp(τ , β, f) ≤ 0, λφp(τ , β, f) = 0 .

ix. Consistency condition

λφ̇p(τ , β, f) = 0 .
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10.4. Application - Uniaxial Tension

In this section, first a systematic reduction of the theory to monotonic uniaxial tension is pre-
sented. Solution of the resultant reduced equation set allows conduction of some parametric
studies which show predictive capabilities of the model.

10.4.1. Specification of Equations for Uniaxial Tensile State of Stress

Let e1, e2 and e3 denote orthogonal unit vectors associated with x−, y− and z−directions. Ten-
sile loading in x−direction is considered where the material motion is free in y− and z−directions.
This corresponds to a uniaxial state of stress and triaxial state of strain with

τ = τe1 ⊗ e1 and F = λ1e1 ⊗ e1 + λ2[e2 ⊗ e2 + e3 ⊗ e3] , (10.4.1)

where λ1 and λ2 represent principal stretches in x− and y− (equivalently z−) directions. With
Equation (10.4.1.1) following equivalences hold: τeq = τ = tr τ . Also, in absence of rotation, i.e.,
Rr = 1, one has τ ≡M . Using Equation (10.4.1.2) the Jacobian of the deformation gradient
becomes J = λ1λ

2
2. In analogy to Equation (10.4.1.2), the recoverable and irrecoverable parts

of the deformation gradient can be given as

F r = λr
1e1 ⊗ e1 + λr

2[e2 ⊗ e2 + e3 ⊗ e3] ,

F p = λp
1e1 ⊗ e1 + λp

2 [e2 ⊗ e2 + e3 ⊗ e3] .
(10.4.2)

The recoverable part given in Equation (10.4.2.1) is further decomposed into the elastic and
thermal parts viz. F r = F e · FΘ, where, with the assumption of thermally isotropic material
F θ is defined as a spherical tensor with F θ := λΘ 1. Accordingly, in the given orthogonal triad
one has

F e = λe
1e1 ⊗ e1 + λe

2[e2 ⊗ e2 + e3 ⊗ e3] ,

FΘ = λΘ[e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3] .
(10.4.3)

Hence, the right Cauchy Green deformation tensor C = F> · F computes

C = [λe
1]2[λp

1 ]2[λΘ]2e1 ⊗ e1 + [λe
2]2[λp

2 ]2[λΘ]2[e2 ⊗ e2 + e3 ⊗ e3] . (10.4.4)

Now, using the definition of the logarithmic strain elog = 1/2 logC one reaches

elog = ee
log + ep

log + eΘ
log , (10.4.5)

where

ee
log = log λe

1e1 ⊗ e1 + log λe
2[e2 ⊗ e2 + e3 ⊗ e3] ,

ep
log = log λp

1e1 ⊗ e1 + log λp
2 [e2 ⊗ e2 + e3 ⊗ e3] ,

eΘ
log = log λΘ[e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3] .

(10.4.6)

Equation (10.4.5) encapsulates an additive decomposition in logarithmic strains carried out
from a multiplicative decomposition of the deformation gradient. For convenience, the notations
ee

log = log λe
1, ep

log = log λp
1 and eΘ

log = log λΘ are made use of. Letting λΘ := exp
∫ Θ

Θ0
αΘ(θ)dθ and

αΘ(Θ) represent the linear2 thermal expansion coefficient, omitting the dependence of αΘ on the

2The volumetric thermal expansion coefficient, on the other hand, amounts for 3αΘ(Θ) for thermally isotropic
materials.
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temperature one finds JΘ := det(F θ) = [λΘ]3 = exp[3αΘ[Θ−Θ0]] where λΘ = exp[αΘ[Θ−Θ0]].
Thus eΘ

log = αΘ[Θ − Θ0]. The elastic stress definition given in Equation (10.3.16) and the
vanishing stress components in y− and z−directions reveal log λe

2 = −ν log λe
1 and supplies

τ = [1− d]E
[
er

log − αΘ[Θ−Θ0]
]
. (10.4.7)

Also the total recoverable logarithmic strain tensor er
log = ee

log + eΘ
log reads

er
log = [ee

log + eΘ
log]e1 ⊗ e1 + [−νee

log + eΘ
log][e2 ⊗ e2 + e3 ⊗ e3] , (10.4.8)

for which the volumetric and the deviatoric parts are computed as

tr er
log = [1− 2ν]ee

log + 3eΘ
log ,

dev er
log =

2

3
[1 + ν]ee

loge1 ⊗ e1 −
1

3
[1 + ν]ee

log[e2 ⊗ e2 + e3 ⊗ e3] .
(10.4.9)

Using Equation (10.4.9) along with Equation (10.3.16.3) gives the elastic energy release rate ee
log

as

Y =
1

2

[
E[ee

log]2 − 9κ[αΘ]2[Θ−Θ0]2
]
, (10.4.10)

or in terms of er
log as

Y =
1

2
E[er

log]2 − Eer
logαΘ[Θ−Θ0]− 3κ[1 + ν][αΘ]2[Θ−Θ0]2 . (10.4.11)

Finally, using Lp := Ḟ p · [F p]−1 one has

Lp =
λ̇p

1

λp
1

e1 ⊗ e1 +
λ̇p

2

λp
2

[e2 ⊗ e2 + e3 ⊗ e3] ≡ ėp . (10.4.12)

For convenience, the complete reformulation of the model under uniaxial tension is given in
BOX 2. The rate equations together with the given yield function form a differential-algebraic
equation set which is solved semi-explicitly. To this end, the vector of unknowns is represented
by x = {τ, α, f}. Assuming x = x(∆λ), where ∆λ denotes the incremental plastic multiplier,
the yield function is reformulated as a nonlinear function of ∆λ with φp(x(∆λ)). Applying
Taylor series expansion to φp with backward-Euler integration of the unknowns leads to an
iterative solution with ∆λ〈k+1〉 = ∆λ〈k〉− [φp]〈k〉/[∂φp/∂x ·∂x/∂∆λ]〈k〉 where 〈k〉 represents the
iteration index. The iterations are run under a desired tolerance where unknowns updates are
realized at each iteration. The integration of d is realized subsequent to the convergence in a
staggered manner using the converged incremental plastic multiplier.
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BOX 2. A reduction of the proposed model to monotonic uniaxial tension.

i. Additive kinematics

elog = er
log + ep

log and er
log = ee

log + eΘ
log ,

where eΘ
log = αΘ[Θ−Θ0] .

ii. Thermoelastic stress-strain relationship

τ = [1− d]E
[
er

log − αΘ[Θ−Θ0]
]
.

iii. State laws for hardening and damage conjugate variables

β = [1− f0][τm,∞ − τm,0] [1− exp(−ωmα)] ,

Y =
1

2
E[er

log]2 − Eer
logαΘ[Θ−Θ0]− 3κ[1 + ν][αΘ]2[Θ−Θ0]2 .

iv. Matrix yield stress and hardening

τm = τm,0 + βm and βm =
β

1− f0
.

v. Thermoelastic domain in stress space (single surface)

Eτ = {[τ , β, f ] ∈ R+ × R+ × R+ : φp(τ , β, f) ≤ 0} ,

where

φp(τ , β, f) =
1

2τm

[
τ2 + 2f τ2

m cosh

(
τ

2τm

)
− τ2

m[1 + f2]

]
.

vi. Flow rule (associative model)

ėp
log =

λ

1− d

[
τ

τm
− 1

2
f sinh

(
τ

2τm

)]
.

vii. Evolution equations for hardening, damage and porosity

α̇ = λ and ε̇p =
λ

1− d ,

ḋ =
λ

[1− d]n

[〈Y − Y0〉
S

]m
,

ḟ =
3

2

λ[1− f ]

1− d f sinh

(
τ

2τm

)
.

viii. Kuhn-Tucker loading/unloading (complementarity) conditions

λ ≥ 0, φp(τ , β, f) ≤ 0, λφp(τ , β, f) = 0 .

ix. Consistency condition

λφ̇p(τ , β, f) = 0 .
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10.4.2. Results and Discussions

The derivations correspond to a single material point loaded under uniaxial stress state. Hence,
there is no heat conduction. The heat generation by dissipative inelastic processes is also disre-
garded and simulations are conducted at ten different constant temperatures Θ1 . . .Θ10 of equal
temperature steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 = 125◦C. All analyses
start from a stress-free configuration. Since T = T0 throughout the loading, no thermal strains
occur. Moreover, during loading the stress triaxiality ratio η defined as η := trτ/3τeq is constant
and equal to 1/3. Due to lack of sufficient stress triaxiality, void growth occurs slowly. In order
to accelerate void growth and obtain realistic failure strains, a rather high initial void volume
content with f0 = 0.055 is selected. Moreover, following Tvergaard and Needleman [? ], f in
the yield function definition given in Equation (10.3.12) is replaced by f∗ which encapsulates
acceleration of the void growth during the void coalescence via

f∗(f) = f + 〈f − fc〉
f∗u − ff

ff − fc
. (10.4.13)

Here, fc and ff describe the critical void volume fraction at incipient coalescence and the fraction
at failure, respectively. Finally, f∗u = 1/q1. For thermal properties and matrix hardening, steel-
like but hypothetical parameters are selected. For convenience, Table 10.1 compiles the material
parameters used at reference temperature Θref = 25◦C.

Table 10.1.: Selected steel-like material parameters.

Parameter Symbol Value Unit

Thermal expansion coef. αΘ 10−5 K−1

Melting temperature Θmelt 1717 K
Reference temperature Θref 298 K

Young’s modulus E 210 GPa
Poisson’s ratio ν 0.3 [−]

Matrix hardening
τm,∞ 1000 MPa
τm,0 500 MPa
ωm 15 [−]

Gurson model

f0 0.055 [−]
fc 0.075 [−]
ff 0.10 [−]
f∗u 1 [−]

Lemaitre model

Y0 3 MPa
m 1 [−]
n 2 [−]
S 0.25 MPa

The temperature effect on the matrix yield stress is adapted using data available in the lit-
erature [Ritchie et al. 1973]. Accordingly, defining homologous temperature Ω with Ω :=
[Θ − Θref]/[Θmelt − Θref], one computes the matrix yield stress as βm(Ω) = ty(Ω)βm where
ty(Ω) = 1846Ω4− 520.36Ω3 + 50.422Ω2− 1.9124Ω + 1. Figure 10.2 depicts the variation of ty as
a function of Θ.
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Fig. 2. Temperature effect on the yield stress as a scaling factor adapted from [Ritchie et al.
1973]. Room temperature is taken as 25◦C at which the yield stress factor is unity. Beyond room
temperature there occurs only a slight decrease within the range of selected temperature interval.
The curve is represented by a continuous function of the homologous temperature Ω with ty(Ω) =
1846Ω4 − 520.36Ω3 + 50.422Ω2 − 1.9124Ω + 1.
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Figure 10.2.: Temperature effect on the yield stress as a scaling factor adapted from [Ritchie et
al. 1973]. Room temperature is taken as 25◦C at which the yield stress factor is unity. Beyond
room temperature there occurs only a slight decrease within the range of selected temperature
interval. The curve is represented by a continuous function of the homologous temperature Ω
with ty(Ω) = 1846Ω4 − 520.36Ω3 + 50.422Ω2 − 1.9124Ω + 1.

Two conditions are used in decision of the material failure: In the first one local instability condi-
tion is considered with dτ/dε < 0, whereas in the second one a sufficient loss of the stress bearing
capacity of the material point is taken into account with τ < TOL where TOL = 0.01 × τm,0.
The former could be seen as a consequence of Drucker’s stability postulate or more elaborate
discontinuous bifurcation analyses which locates the initiation of localization as a precursor to
fracture through the vanishing determinant of the acoustic tensor. For both failure criteria the
absorbed energy to failure, i.e., the area under the stress-strain curves, are computed and plot-
ted for corresponding temperatures. The results are shown in Figures 10.3 and 10.4. In each
figure the stress, damage and void volume fraction plots as a function of the axial logarithmic
strain are given for Θ1 . . .Θ10. Also the failure energy plots are given. The stress plots for both
criteria show that at higher temperatures plastic strains are considerably larger than those at
lower temperatures. It is seen that, in agreement with the presented results of [Doghri 1995], the
accumulation of damage components d and f at the point of stability loss are lower than that
of loss of complete load carrying capacity. Note that for due to lack of sufficient void volume
fraction accumulation for Θ1 . . .Θ3 with the criterion τ < TOL × τm,0, d reaches close to its
theoretical limit d = 1. The occurrence of a kink and subsequent rather accelerated drop of the
stress response for increased temperatures is due to the enforced void coalescence condition.

It is notable that, although a drastic difference is observed in continuum damage variable evo-
lution for different temperatures the void volume fraction is less sensitive to the yield value
changes. Two main differences are observed in d evolution curves for different temperatures:
First the damage initiation strains and second the damage evolution rates. The former is due
to the fact that the evolution of d requires the damage driving force Y reach the threshold Y0.
Higher yield stress at lower temperatures allows fulfillment of this requirement easily. At higher
temperatures, i.e., Θ5 . . .Θ10, Y never reaches Y0, and thus d ceases to evolve. Then, the whole
softening mechanism is controlled by the void growth, hence failure is ductile. With the same
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token, higher Y observed at lower temperatures results in an increased rate of damage evolution.
Then, the whole softening mechanism is controlled by the evolution of d, hence failure is brittle.

In both material failure assumptions, the failure energy density plots show a sharp increase in the
energy demand with temperature around −50◦C. Hence, the desired ductile-brittle transition
in the failure mode was possible where −50◦C point amounts for the ductile-brittle transition
temperature. The energy demand until complete stress loss is slightly over double the energy
demand until neck, but the main characteristics of the curve is not changed. There results
show that the proposed framework proves useful in modeling temperature driven ductile-brittle
transition of the fracture mode in metallic materials.
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Fig. 3. Results for criterion dτ/delog < 0 at 10 different temperatures Θ1 . . .Θ10 of equal temper-
ature steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 = 125◦C: a) stress-strain curves,
b) energy per unit (reference) volume computed using

∫
τdelog, as seen a sharp ductile-brittle

transition is observed in energy density demand until neck where the ductile-brittle transition
temperature is around −50◦C, c) damage d accumulation until neck, d) void volume fraction f
accumulation until neck. The markers show f values reached at each temperature.

Figure 10.3.: Results for criterion dτ/delog < 0 at 10 different temperatures Θ1 . . .Θ10 of equal
temperature steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 = 125◦C: (a) stress-
strain curves, (b) energy per unit (reference) volume computed using

∫
τdelog, as seen a sharp

ductile-brittle transition is observed in energy density demand until neck where the ductile-brittle
transition temperature is around −50◦C, (c) damage d accumulation until neck, (d) void volume
fraction f accumulation until neck. The markers show f values reached at each temperature.
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Fig. 4. Results for criterion τ < TOL where TOL = 0.01 × τm,0 at 10 different temperatures
Θ1 . . .Θ10 of equal temperature steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 =
125◦C: a) stress-strain curves, b) energy per unit (reference) volume computed using

∫
τdelog,

as seen a sharp ductile-brittle transition is observed in energy density demand until complete
loss of load carrying capacity where the ductile-brittle transition temperature is around −50◦C,
c) damage d accumulation until neck, d) void volume fraction f accumulation until neck. The
markers show f values reached at each temperature.

Figure 10.4.: Results for criterion τ < TOL where TOL = 0.01×τm,0 at 10 different temperatures
Θ1 . . .Θ10 of equal temperature steps from −125◦C to 125◦C where Θ1 = −125◦C and Θ10 =
125◦C: (a) stress-strain curves, (b) energy per unit (reference) volume computed using

∫
τdelog,

as seen a sharp ductile-brittle transition is observed in energy density demand until complete
loss of load carrying capacity where the ductile-brittle transition temperature is around −50◦C,
(c) damage d accumulation until neck, (d) void volume fraction f accumulation until neck. The
markers show f values reached at each temperature.

10.5. Conclusion

A theoretical framework for coupled porous thermoplasticity and continuum damage mechanics
has been formulated preserving isotropy, within a thermodynamic consistency at finite strains.
Multiplicative split of the deformation gradient in elastic, plastic and thermal parts has been
utilized as a basis for finite strain kinematics. The framework aims at modeling blended mech-
anisms of simultaneous micro-void and micro-crack driven material degradation. Hence, the
building blocks are selected as the Gurson-type porous plasticity and Lemaitre-type continuum
damage mechanics. Considering the possible application of the proposed model as the ductile-
to-brittle transition of the fracture mode, the main advantage that the proposed model shows
over the widely-used framework (e.g., porous plasticity for ductile failure and Ritchie-Knott-
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Rice or Beremin local approaches to cleavage) is that the energy dissipation associated with
the cleavage-type of fracture is accounted for within the formalism of continuum damage me-
chanics. The isotropic damage variable d introduced via Lemaitre formalism is able to take
care of the strength and stiffness degradation related to the micro-cracks without volumetric
changes, whereas void volumetric changes are encapsulated in the evolution of the void volume
fraction f . The evolution of d is formulated by a damage dissipation potential which devises the
energy release rate Y0 as a threshold for cleavage damage to initiate at the process zone. The
evolution of f follows the mass conservation relation which does not necessitate an additional
dissipation potential. Extension of the model to anisotropic cleavage damage is possible through
a fully intermediate configuration formulation of the yield function. The predictive capability
of the model is demonstrated through application problems assuming uniaxial state of stress.
It is shown by absorbed energy plots for different temperatures that for the presented parame-
ter set remedying limitations of the limited stress triaxiality conditions, the model predicts the
temperature driven ductile-brittle transition of fracture mode sufficiently well.
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11. Characterization of Anisotropy of Sheet
Metals Employing Inhomogeneous Strain
Fields for Yld2000-2D Yield Function

In this chapter, a method to include the distribution of strains in the identification of the pla-
nar anisotropy of sheet metals is proposed. The method includes the optical measurement of
strains on a flat specimen with a varying cross-section and an inverse parameter identification
scheme which minimizes the differences between the numerical simulation results and the ex-
perimental measurements by using Levenberg-Marquardt algorithm. The main advantage is the
reduction of the needed number of material tests especially for complex material models, under
the assumption of negligible kinematic hardening. The utilized specimen geometry covers a
deformation state between uniaxial tension and plane strain tension cases. In order to supply
additional information to the inverse scheme, the equi-biaxial stress state obtained from layer
compression test is also included in the definition of the objective function. The anisotropy of
the sheet is modeled with the Yld2000-2D model which is implemented as a Vumat subroutine
for Abaqus/Explicit. Numerical tests point out that the orientation of the specimen defines
the quality of the found yield loci. The proposed method is applied to characterize the com-
mercial aluminum alloy AA6016-T4 and the obtained material parameters are used to analyze
a deep drawn car hood geometry. The results show that the use of the strain distribution is a
crucial point in identification of the planar anisotropy. The yield loci obtained with the proposed
method are in accordance with the conventionally obtained yield stresses and r−values.

11.1. Introduction

Sheet metals exhibit a certain texture which leads to differences in the plastic behavior along
different loading directions and stress states. For that reason assumption of isotropy is no longer
applicable in the numerical analyses. Instead the assumption of orthotropic material behavior
is the common practice which postulates symmetry along the rolling, transverse and normal
directions of the sheet metal. The Hill’48 model [122], is a widely used quadratic yield criterion,
which is utilized especially to model anisotropic steel sheets. When reduced to planes stress con-
dition the number of needed material parameters reduces to 3, which can be obtained by uniaxial
tension tests at 0◦, 45◦ and 90◦ to the rolling direction. Hill presented an enhanced version of
this model in order take the equi-biaxial stress state into consideration, which is an improve-
ment aiming accurate modeling of aluminum alloys with an additional material parameter [123].
Barlat and coworkers proposed different sets of yield functions. Yld91 takes the uniaxial yield
stress values at 0◦, 45◦ and 90◦, together with the equi-biaxial yield stress as material param-
eters [37]. This model is followed by Yld94, Yld9Yld96 and Yld2000-2D, [33, 38, 34]. Among
them Yld2000-2D is widely used and is also implemented in a number of commercial codes.
This is a non-quadratic plane stress yield function having 8 material parameters which can be
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identified by the yield stresses and strain ratios in three uniaxial cases, 0◦, 45◦ and 90◦ and one
equi-biaxial tension case. Banabic and coworkers [27], proposed another model, BBC2000 with
7 material parameters. An improvement of this model, BBC2005, is proposed by Banabic and
coworkers in [25, 26] using the same material tests with Yld2000-2D. The yield function pro-
posed by Vegter and van den Boogaard [317] utilizes quadratic Bezier functions that are fitted
to the experimentally obtained strain ratios and stresses at different orientations. This model
requires 17 free material parameters when the experiments are performed at 0◦, 45◦ and 90◦.
The consequence of these complex material models is the need for various test set-ups, such as
uniaxial tensile test, shear test, biaxial tension test, plane strain tensile test, layer compressions
test, etc. [163].

The increasing flexibility and accuracy of the yield conditions leads to an increase in the num-
ber and complexity of the necessary material tests, which are tried to be kept at feasible levels
especially from the industrial point of view. Most of these tests do not have a worldwide stan-
dard, meaning that each laboratory uses its own specimen geometry and testing conditions and
this makes it difficult to transfer and compare the results of different test institutes. A final
disadvantage of the mentioned variety of tests is the need for an assumption of homogeneous
stress and strain states in the plastic zone of the specimens, in order to be able to calculate the
material parameters analytically. This assumption fails for many specimen geometries especially
with increasing deformation.

On the other side, the inverse methods enable the usage of unusual test set-ups or even the form-
ing process itself due to their flexibility in the definition of the objective functions [311]. These
methods use conventionally experimental measures like tool forces and tool displacements for
optimization [97, 98]. However these integral measures are not helpful in identifying the planar
anisotropy of the sheet metals. To gain more information on the specimen, optical measurement
devices capable of capturing strain distributions on the specimen are also employed together
with inverse parameter identification [146, 194, 212, 252]. There are different approaches to
assess this additional information in the characterization framework. One common approach is
the virtual fields method (VFM) which relies on the virtual work principle. The application of
this method to characterization problems with cyclic loads at small strains [244] and extensions
to large plastic deformations with anisotropy [261] reveals that the method is an effective tool
for material characterization. Another common approach is the finite element model updating
method (FEMU). This perspective of parameter identification is based on kinematic full- field
measurements, iterative utilization of the finite element method for the solution of the direct
problem and an optimization algorithm for the minimization of the differences between the ac-
tual and computed measures. A complete overview and comparison of the mentioned approaches
is given by Avril et al. [18].

The present chapter focuses on the identification of the planar anisotropy of sheet metals utilizing
the FEMU approach. A flexible yield condition, Yld2000-2D is selected and material parameters
are identified by using the strain field measurements on specimens with a varying cross-section.
The relation between the supplied information to the inverse scheme and the obtained solutions
is studied and the outcomes of this study are tested numerically and experimentally.
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11.2. Material Model and Implementation

Assuming a, b, and c as three second order tensors, together with the Einstein’s summation con-
vention on repeated indices, c = a ·b represents the single contraction product with cik = aijbjk.

d = a : b represents the double contraction product with d = aijbij where d is a scalar. ˙(•)
denotes the material time derivative.

Let d = sym (l) represent the spatial rate of deformation tensor, where l = Ḟ · F−1 = ∂xv
denotes the spatial velocity gradient, with v = ∂tx. The kinematics of the current framework
relies on the additive decomposition of the symmetric part of the rotated rate of deformation
tensor, which preserves validity in the context of metal plasticity due to infinitesimal elastic
strains compared to the larger plastic strains,

d̂ = d̂e + d̂p , (11.2.1)

with d̂e and d̂p respectively denoting the elastic and plastic rotated rate of deformation tensors
with d̂ = R> · d · R. Here, R denotes the rotation tensor which can be derived from the
deformation gradient using the polar decomposition theorem, F = R ·U = V ·R where U and
V respectively denote the right and left stretch tensors. The Cauchy stress tensor, σ, in this
corotational form gives σ̂ = R> · σ · R where a hypoelastic relation ˙̂σ = Ce : d̂e is assumed
with Ce denoting the elastic constitutive tensor. Due to anisotropy, the yield function Φ̂p(σ̂, q)
is postulated in the rotationally neutralized frame. Let σ denote the equivalent stress and σ0

denote the initial yield stress in rolling direction. First, the following generic form of the yield
function is defined where nonlinear isotropic hardening is taken into account

Φ̂p(σ̂, q) = σ − [σ0 + q] , (11.2.2)

where q(α) represents the expansion of the yield locus due to isotropic hardening where a is the
isotropic hardening strain like variable. A saturation type dependence is selected, which reads

q(α) = Kα+ [σ∞ − σ0][1− exp(−δα)] , (11.2.3)

where K, σ∞ and δ denote material parameters.

For the anisotropic yield function Yld2000-2D, the equivalent stress σ is defined as a degree
one homogeneous function of σ̂ as follows

σ =

[
1

2

]1/a

[|X ′1 −X ′2|+ |2X ′′2 −X ′′1 |+ |2X ′′1 −X ′′2 |]1/a , (11.2.4)

where X ′i and X ′′i , i=1,2,3, respectively denote the principal values of tensors X ′ = L′ · σ̂ and
X ′′ = L′′ · σ̂ where L′ and L′′ are defined in terms of material parameters αi, i = 1, 2, . . . , 8 as
proposed by Barlat et al. [34]. Exponent a reflects the polycrystal structure.

Denoting the plastic multiplier with γ̇, Normality postulate and plastic work identity gives
the following evolutionary equations for d̂p and α̇

d̂p = γ̇ ∂σ̂Φ̂p(σ̂, q) , α̇ = γ̇ , (11.2.5)

In solution of local integration algorithms in a strain driven nature of FEM, it is typical to assume
that for a typical time step ∆t = tn+1 − tn the solution at time tn is known as {σ̂n, ε̂pn, αn} and
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the solution at time tn+1 is sought for {σ̂n+1, ε̂
p
n+1, αn+1}. Following integrations are defined in

the rotationally neutralized coordinates

∆ε̂n+1 =

∫ tn+1

tn

d̂ dt , ∆ε̂en+1 =

∫ tn+1

tn

d̂e dt , ∆ε̂pn+1 =

∫ tn+1

tn

d̂p dt , (11.2.6)

where

ε̂n+1 = ε̂n + ∆ε̂n+1 , ε̂en+1 = ε̂en + ∆ε̂en+1 , ε̂pn+1 = ε̂pn + ∆ε̂pn+1 . (11.2.7)

An elastic predictor-plastic corrector type operator split is pursued, where the elastic predic-
tion is carried out assuming the trial values, where the trial stress and yield surface expansion
respectively read:

σ̂trialn+1 = σ̂n + Ce : ∆ε̂n+1 ,

qtrialn+1 = Kαtrialn+1 + [σ∞ − σ0][1− exp(−δαtrialn+1 )] .
(11.2.8)

In above αtrialn+1 = αn. Within the time step, the elastic or plastic character of the status is

checked by inserting the trial stresses into the yield function, Φ̂p,trial
n+1 = Φ̂p(σ̂trialn+1 , q

trial
n+1 ). Once

Φ̂p,trial
n+1 < 0 is satisfied, an elastic state at time tn+1 is defined and the trial values does not

require any correction. Otherwise, plastic flow is due.

During flow, together with an implicit backward Euler integration and using ∆γn+1 = ∆t×γ̇n+1,
return mapping in the residual form becomes

Rp
n+1 = −ε̂pn+1 + ε̂pn + ∆γn+1∂σ̂Φ̂p

n+1 ,

RΦ
n+1 = Φ̂p

n+1 .
(11.2.9)

Using ∆ε̂
p,(k)
n+1 = Ce,−1 : ∆σ̂

(k)
n+1 where (k) is the iteration index, linearization of the equation set

11.2.9 gives

0 = R
p,(k)
n+1 + Ce,−1 : ∆σ̂

(k)
n+1 + ∆γ

(k)
n+1∂σ̂r̂

(k)
n+1 : ∆σ̂

(k)
n+1 + ∆∆γ

(k)
n+1r̂

(k) ,

0 = R
Φ,(k)
n+1 + r̂

(k)
n+1 : ∆σ̂

(k)
n+1 + [∂∆γn+1Φ̂

p,(k)
n+1 ]∆∆γ

(k)
n+1 .

(11.2.10)

where r̂
(k)
n+1 = ∂σ̂Φ̂

p,(k)
n+1 and using chain rule of differentiation ∂∆γn+1Φ̂

p,(k)
n+1 = −q?,(k)

n+1 with q? =

∂αq denoting the hardening modulus. ∆σ̂
(k)
n+1 and ∆∆γ

(k)
n+1 denote iterative increments of σ̂n+1

and ∆γn+1, respectively. Using Equation (11.2.10), one can iteratively update the incremental

plastic multiplier ∆γ
(k+1)
n+1 with

∆γ
(k+1)
n+1 = ∆γ

(k)
n+1 + ∆∆γ

(k)
n+1 , (11.2.11)

where computation of ∆∆γ
(k)
n+1 requires a simple substitution of ∆σ̂

(k)
n+1 from Equation (11.2.10).1

∆σ̂
(k)
n+1 = −A(k)

n+1 : [R
p,(k)
n+1 + ∆∆γ

(k)
n+1r̂

(k)
n+1] , (11.2.12)

to Equation (11.2.10).2

∆∆γ
(k)
n+1 =

R
Φ,(k)
n+1 − r̂

(k)
n+1 : A(k)

n+1 : R̂
p,(k)
n+1

r̂
(k)
n+1 : A(k)

n+1 : r̂
(k)
n+1 + q

?,(k)
n+1

, (11.2.13)
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where

A(k)
n+1 = [Ce,−1 + ∆γ

(k)
n+1∂σ̂r̂

(k)
n+1]−1 . (11.2.14)

For the analytical forms for first and second derivatives of the yield function for plane stress
state the reader is referred to Yoon et al. [346]. Finally, one can compute the updated plastic
strains or equivalently updated stresses using Equation (11.2.12)

σ̂
(k+1)
n+1 = σ̂

(k)
n+1 + ∆σ̂

(k)
n+1 . (11.2.15)

The iterations will run until the norm of the residuals settle within a desired tolerance. This
ends the backward Euler return mapping scheme for the plastic correction which falls into a
general closest point projection type algorithm, see e.g. [273]. Once the converged stresses are
carried out at the rotationally neutralized configuration, a final transformation to the current
configuration is required using σn+1 = Rn+1 · σ̂n+1 ·R>n+1. This framework is implemented as
a Vumat subroutine for Abaqus/Explicit.

11.3. Material and the Conventional Characterization

Throughout this chapter the aluminum alloy AA6016-T4 with 1.0 mm thickness is used. This
is a heat treatable Al-Mg-Si alloy, which is especially used for autobody panels because of its
good formability, surface appearance and age hardening character.

The flow curve of the material is obtained by uniaxial tension tests in rolling direction. De-
noting initial and stagnation yield stresses as σ0 and σ∞, respectively, letting K and δ denote
two material constants, during plastic flow the flow stress can be represented as

σ = Kα+ σ∞ − [σ∞ − σ0] exp(−δα) , (11.3.1)

The conventional characterization of the sheet material for the Yld2000-2D model requires 3
tensile tests in rolling direction (0), 45 to the rolling direction (45) and transverse direction
(90), and a test for the equi-biaxial stress state [34]. By each test the yield stresses and the
corresponding r-values are obtained. In this study the equi-biaxial stresses are obtained with a
layer compression test. Since the used test set-up does not allow the measurement of the strains
in high strain values, the rb value is taken to be equal to 1.0. The yield stresses, rvalues, the
corresponding Yld2000-2D parameters and the flow curve constants of AA6016-T4 can be seen
in Table 11.1. As recommended in [34] for FCC materials the exponent, a, of the Yld2000-2D
model is taken to be equal to 8.0.

Table 11.1.: Conventionally obtained material parameters of AA6016-T4 (all stresses in MPa).

σ0 σ45 σ90 σb r0 r45 r90 rb σ∞
112.5 107.4 110.0 115.1 0.85 0.48 0.77 1.00 223.3

α1 α2 α3 α4 α5 α6 α7 α8 K δ

0.979 0.998 0.885 1.008 1.001 0.965 0.953 1.242 308.9 20.1
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11.4. Selection of the Specimen Geometry

The main concern in this study is to capture the deformation field on the sheet specimen and
exploit this information for the characterization of the anisotropy of the material. Therefore the
specimen geometry and the type of the loading are of great importance in terms of the supplied
input for the characterization scheme. This work focuses on two main aspects of the specimen
geometry:

� The geometry should enable the generation of an inhomogeneous deformation field which
serves as a cloud of information on yield loci for the parameter identification.

� The density of information captured on the specimen with the optical measurement system
should be identical for different deformation states, rather than favoring a specific type of
deformation.

For the purpose of obtaining inhomogeneity there exist two main perspectives in the literature:
cutting out holes in the specimen and using notched specimens. In the case of holes, the obtained
deformation localizes rapidly in the vicinity of the hole and therefore it is hard to control the
deformation in that region. The abrupt localization can be captured by optical measurement
systems. However this information would be a small portion of the obtained deformation on
the whole specimen and this violates the second aspect mentioned at the beginning. Therefore
specimen with notches is selected in this study and different specimens with a varying cross-
section are analyzed numerically (Figure 11.1). In this analysis, the largest and the smallest
widths, W1 and W2, are kept constant at 20 and 30 mm, respectively. Three different radius
values are used to analyze the usability of the strain distributions. These values represent two
extreme cases with sharp and mild notches and a case in between.

test. By this way the need for extrapolation functions for the flow
curve extensions is avoided and only the actually measured tensile
flow curves are utilized.

Fig. 2(a) presents the equivalent plastic strain distribution on the
horizontal symmetry axis. The specimen with 5 mm radius exceeds
the set value 0.2 with a value of 0.5 around the notches. Therefore
with this geometry it is hard to set a tool displacement, with respect
to a selected maximum strain not to exceed the flow curve limits. If
the tool displacements are to be set with respect to the maximum
strains around the notches, the values for displacements are too
small and it will be hard to analyze the deformation in different
increments. Therefore the specimen with 5 mm radius is elimi-
nated. The other two geometries have the same amount of strain
hardening on the horizontal symmetry axis although the deforma-
tion state is not completely uniaxial tension. The deformation states
on the specimens can be analyzed in the principal strain space
which is widely used for the forming limit analyses. Fig. 2(b) shows
the position of the finite elements in the principal strain space at
the same tool displacements used in Fig. 2(a) for the cases with
25 and 40 mm radii. For the purpose of clearness the 5 mm radius
is not shown in the figure. However, it should be noted that the dif-
ferent deformation states observed on the strain diagram from this
specimen represents a very small portion of the specimen around
the notch and therefore just like the specimens with hole it contra-
dicts to the aspects of this study mentioned before. The specimen
with 40 mm radius shows hardly a deformation gradient. Nearly al-
most all of the elements are in the vicinity of the uniaxial tension
line presented in the figure. On the other hand, the deformation
state of the specimen with 25 mm radius lies between the uniaxial
tension and plane strain tension states and the distribution does not
favor a certain deformation state. Because of these two reasons the
specimen with 25 mm radius is selected for the rest of the study.

Fig. 3 presents the major and minor strains on the specimen
predicted by the finite element simulations for the material
AA6016-T4 in rolling direction at the maximum tool displacement
of 4 mm with the material parameters listed in Table 1. Again this
tool displacement is set by keeping the strain hardening in the lim-
its of the flow curves obtained by the tensile tests.

When the problem is simulated with von Mises yield condition
for an isotropic case (Fig. 3(a)), the deformation is between uniax-
ial tension and plane strain tension states. The material points on
the vertical symmetry line of the specimen lie directly on the uni-
axial tension line on the strain diagram. The deformation state
changes significantly when the material is simulated with
Yld2000-2D material model (Fig. 3(b)). The points are shifted in
the direction of plane strain tension state. This can be visualized
by considering the Lankford‘s coefficients (r-values) of the material
which are all lower than 1.0. In uniaxial tension case the plastic
strain in the thickness direction is larger than the strains in trans-
verse direction. This plastic behavior in uniaxial tension case
shows itself also in this specimen geometry. As compared to the
hypothetical isotropic case, anisotropic material does not flow
much in the width direction. This shifts the strain states on the
specimen closer to the plane strain tension state.

The analysis performed in this section points out three key as-
pects about the used geometry.

(1) The specimen allows different strain states between uniaxial
tension and plane strain tension without losing the control
on the reached highest strain hardening.

(2) The specimen can reflect the anisotropy of the tested mate-
rial with the strain distribution on the surface.

(3) At any instance of the test there exist material points with
different strain hardening level, meaning that they lie on dif-
ferent yield loci.

All of these aspects can be captured with an optical strain mea-
surement system. This information will be used to characterize the
anisotropy of the sheet materials. However in terms of the param-
eter identification, it is not possible to obtain an analytical closed
form formulation utilizing the experimentally measured local
strains and tool forces. Therefore an inverse methodology is applied
to solve this problem and this will be discussed in the next section.

5. Inverse parameter identification scheme

The parameter identification scheme in this work is considered
as an optimization problem, in which all of the parameters are
found simultaneously by minimizing an objective function consist-

Fig. 1. Analyzed specimen geometries and the finite element meshes with varying
notch radii.

Fig. 2. (a) Equivalent plastic strain distribution on the horizontal centerline. (b) Principal strain distribution on the specimens with notches having 25 and 40 mm radius.
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Figure 11.1.: Analyzed specimen geometries and the finite element meshes with varying notch
radii.

Since the main concern here is the analysis of the deformation distribution, the numerical analy-
ses were performed using von Mises yield criterion with isotropic hardening in Abaqus/Explicit.
Due to symmetry, only 1/4 of the specimen is modeled with fully integrated shell elements hav-
ing 7 integration points in the thickness direction. In each model the average element size is
selected to be nearly equal to 0.5 mm after a convergence analysis, leading to approximately 20
elements on the horizontal symmetry axis. The corresponding number of elements varies from
360 to 650 depending on the geometry.
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The tool displacement for each specimen is selected in such a way that an equivalent plastic
strain of 0.20 is obtained at the center of the specimen, i.e. intersection of the horizontal and
vertical symmetry axes. Therefore different tool displacements are used for each specimen. The
value 0.20 for equivalent plastic strain represents a safe value not to exceed the limits of the uni-
axial tensile test. By this way the need for extrapolation functions for the flow curve extensions
is avoided and only the actually measured tensile flow curves are utilized.

Figure 11.2.a presents the equivalent plastic strain distribution on the horizontal symmetry
axis. The specimen with 5 mm radius exceeds the set value 0.2 with a value of 0.5 around the
notches. Therefore with this geometry it is hard to set a tool displacement, with respect to a
selected maximum strain not to exceed the flow curve limits. If the tool displacements are to
be set with respect to the maximum strains around the notches, the values for displacements
are too small and it will be hard to analyze the deformation in different increments. There-
fore the specimen with 5 mm radius is eliminated. The other two geometries have the same
amount of strain hardening on the horizontal symmetry axis although the deformation state is
not completely uniaxial tension. The deformation states on the specimens can be analyzed in the
principal strain space which is widely used for the forming limit analyses. Figure 11.2.b shows
the position of the finite elements in the principal strain space at the same tool displacements
used in Figure 11.2.a for the cases with 25 and 40 mm radii. For the purpose of clearness the 5
mm radius is not shown in the figure. However, it should be noted that the different deformation
states observed on the strain diagram from this specimen represents a very small portion of the
specimen around the notch and therefore just like the specimens with hole it contradicts to the
aspects of this study mentioned before. The specimen with 40 mm radius shows hardly a de-
formation gradient. Nearly almost all of the elements are in the vicinity of the uniaxial tension
line presented in the figure. On the other hand, the deformation state of the specimen with 25
mm radius lies between the uniaxial tension and plane strain tension states and the distribution
does not favor a certain deformation state. Because of these two reasons the specimen with 25
mm radius is selected for the rest of the study.

test. By this way the need for extrapolation functions for the flow
curve extensions is avoided and only the actually measured tensile
flow curves are utilized.

Fig. 2(a) presents the equivalent plastic strain distribution on the
horizontal symmetry axis. The specimen with 5 mm radius exceeds
the set value 0.2 with a value of 0.5 around the notches. Therefore
with this geometry it is hard to set a tool displacement, with respect
to a selected maximum strain not to exceed the flow curve limits. If
the tool displacements are to be set with respect to the maximum
strains around the notches, the values for displacements are too
small and it will be hard to analyze the deformation in different
increments. Therefore the specimen with 5 mm radius is elimi-
nated. The other two geometries have the same amount of strain
hardening on the horizontal symmetry axis although the deforma-
tion state is not completely uniaxial tension. The deformation states
on the specimens can be analyzed in the principal strain space
which is widely used for the forming limit analyses. Fig. 2(b) shows
the position of the finite elements in the principal strain space at
the same tool displacements used in Fig. 2(a) for the cases with
25 and 40 mm radii. For the purpose of clearness the 5 mm radius
is not shown in the figure. However, it should be noted that the dif-
ferent deformation states observed on the strain diagram from this
specimen represents a very small portion of the specimen around
the notch and therefore just like the specimens with hole it contra-
dicts to the aspects of this study mentioned before. The specimen
with 40 mm radius shows hardly a deformation gradient. Nearly al-
most all of the elements are in the vicinity of the uniaxial tension
line presented in the figure. On the other hand, the deformation
state of the specimen with 25 mm radius lies between the uniaxial
tension and plane strain tension states and the distribution does not
favor a certain deformation state. Because of these two reasons the
specimen with 25 mm radius is selected for the rest of the study.

Fig. 3 presents the major and minor strains on the specimen
predicted by the finite element simulations for the material
AA6016-T4 in rolling direction at the maximum tool displacement
of 4 mm with the material parameters listed in Table 1. Again this
tool displacement is set by keeping the strain hardening in the lim-
its of the flow curves obtained by the tensile tests.

When the problem is simulated with von Mises yield condition
for an isotropic case (Fig. 3(a)), the deformation is between uniax-
ial tension and plane strain tension states. The material points on
the vertical symmetry line of the specimen lie directly on the uni-
axial tension line on the strain diagram. The deformation state
changes significantly when the material is simulated with
Yld2000-2D material model (Fig. 3(b)). The points are shifted in
the direction of plane strain tension state. This can be visualized
by considering the Lankford‘s coefficients (r-values) of the material
which are all lower than 1.0. In uniaxial tension case the plastic
strain in the thickness direction is larger than the strains in trans-
verse direction. This plastic behavior in uniaxial tension case
shows itself also in this specimen geometry. As compared to the
hypothetical isotropic case, anisotropic material does not flow
much in the width direction. This shifts the strain states on the
specimen closer to the plane strain tension state.

The analysis performed in this section points out three key as-
pects about the used geometry.

(1) The specimen allows different strain states between uniaxial
tension and plane strain tension without losing the control
on the reached highest strain hardening.

(2) The specimen can reflect the anisotropy of the tested mate-
rial with the strain distribution on the surface.

(3) At any instance of the test there exist material points with
different strain hardening level, meaning that they lie on dif-
ferent yield loci.

All of these aspects can be captured with an optical strain mea-
surement system. This information will be used to characterize the
anisotropy of the sheet materials. However in terms of the param-
eter identification, it is not possible to obtain an analytical closed
form formulation utilizing the experimentally measured local
strains and tool forces. Therefore an inverse methodology is applied
to solve this problem and this will be discussed in the next section.

5. Inverse parameter identification scheme

The parameter identification scheme in this work is considered
as an optimization problem, in which all of the parameters are
found simultaneously by minimizing an objective function consist-

Fig. 1. Analyzed specimen geometries and the finite element meshes with varying
notch radii.

Fig. 2. (a) Equivalent plastic strain distribution on the horizontal centerline. (b) Principal strain distribution on the specimens with notches having 25 and 40 mm radius.
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Figure 11.2.: (a) Equivalent plastic strain distribution on the horizontal centerline, (b) Principal
strain distribution on the specimens with notches having 25 and 40 mm radius.

Figure 11.3 presents the major and minor strains on the specimen predicted by the finite element
simulations for the material AA6016-T4 in rolling direction at the maximum tool displacement
of 4 mm with the material parameters listed in Table 11.1. Again this tool displacement is set
by keeping the strain hardening in the limits of the flow curves obtained by the tensile tests.
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ing of differences between the numerically computed and experi-
mentally measured values of selected material responses. In this
respect, for each increment of the optimization, finite element sim-
ulations should be performed with a new set of predicted material
parameters and the results should be compared with the experi-
mental measurements in an automated manner. In this framework
the selection of the objective function, optimization algorithm and
automated comparison of the results are the crucial elements and
will be discussed here.

The main difficulty in comparing the results is that the discreti-
zation of the optical measurement results is different than the finite
element simulations. In other words, the location, dimension and
number of the facets used for the optical measurement do not
match with the finite elements of the numerical simulations. In or-
der to be able to compare the simulation results with the experi-
ments, simulation results should be obtained at the exact location
of the experimental measurement points. For that reason a param-
eter mapping algorithm is constructed, in which the enclosing finite
element of each experimental measurement point is found accord-
ing to the procedure described by Jayadevan and Narasimhan
(1995) and the local coordinates of the measurement points are
found in these elements. By the help of the shape functions, the no-
dal values are interpolated to the coordinates of the measurement
point. This algorithm is used at each predefined increment of tool
displacement. In the analyses presented in the foregoing sections
4 mm of tool displacement is divided into 8 equal intervals. Hence,
for each 0.5 mm of tool displacement the tool forces and principal
strains are recorded in the experiments. At the same increments
the same responses are also extracted from the simulation results
and for each increment parameter mapping is applied. At the end
of this step, the tool forces and principal strains of the same mate-
rial points are obtained at the same tool displacement increments
from the simulations and the experiment.

For the conventional characterization of the sheets with respect
to Yld2000-2D material model uniaxial tension tests in 0�, 45�, 90�
and a test for the equi-biaxial tension state are needed. In the pre-
vious section it was shown that the deformation obtained from the
specimen lies between the uniaxial tension and plane strain ten-
sion cases. Hence, the region in the vicinity of the equi-biaxial ten-
sion state is not covered by the specimen. For that reason, to enrich
the objective function, the experimentally measured equi-biaxial
stress value is used. In each iteration, the equi-biaxial stress, rb

is calculated analytically with the alpha values predicted by the
optimization algorithm. The difference of this value from the
experimentally measured rb is also added to the definition of the
objective function. At the end, the objective function, U, consisting

of 3 sub-functions having principal strains, forces and rb differ-
ences is defined as follows:

U ¼ UStrain þUForce þUrb
ð19Þ

where

UStrain ¼
XnInc:

i¼1
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j¼1

esim
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where ninc and nelem are the number of tool displacement incre-
ments and number of elements in the optical measurements
respectively. C1 and C2 are defined as follows:

C1 ¼
Uinitial guess

Strain

Uinitial guess
Force

and C2 ¼
Uinitial guess

Strain

Uinitial guess
rb

ð23Þ

In this analysis the relative weighting between strains, forces or
stresses is avoided, meaning that all these variables are equally rel-
evant for the material characterization. For that reason the scaling
factors C1 and C2 in Eq. (23) are used. This scaling is performed in
two steps. First a test run is performed just with the initial guesses
and the contributions of the strains, forces and rb are calculated
once. In this test run there exist orders of magnitude of difference
between these values. Hence, in the second step the values of the
functions of stress and forces are scaled down to the strain contri-
butions by multiplying with a scalar. By this way, in the first incre-
ment performed with the initial guesses, the contribution of strains,
forces and rb to the objective function are all equal and the same
scalar values are used throughout the iterations.

Having formed the objective function, the identification proce-
dure is now a non-linear least-square problem and the function
is minimized using the Levenberg–Marquardt algorithm (Leven-
berg, 1944; Marquardt, 1963). With the introduction of a scalar
controlling the magnitude and direction of the iterations, the algo-
rithm calculates a search direction that is between the Gauss–
Newton direction and steepest descent direction and therefore
eliminates the disadvantages of the Gauss–Newton method espe-
cially in the proximity of the optimum solution. The needed Jaco-
bian matrix is calculated by the finite difference method by a
perturbation of each ak with an absolute value of 0.01. Since the
Levenberg–Marquardt algorithm is a gradient based algorithm,
the required number of simulations to reach the convergence is

Fig. 3. Major and minor strain distribution obtained from the finite element simulations of AA6016-T4 for (a) isotropic and (b) anisotropic cases.
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Figure 11.3.: Major and minor strain distribution obtained from the finite element simulations
of AA6016-T4 for (a) isotropic and (b) anisotropic cases.

When the problem is simulated with von Mises yield condition for an isotropic case (Figure
11.3.a), the deformation is between uniaxial tension and plane strain tension states. The mate-
rial points on the vertical symmetry line of the specimen lie directly on the uniaxial tension line
on the strain diagram. The deformation state changes significantly when the material is simu-
lated with Yld2000-2D material model (Figure 11.3.b). The points are shifted in the direction
of plane strain tension state. This can be visualized by considering the Lankford’s coefficients
(r−values) of the material which are all lower than 1.0. In uniaxial tension case the plastic
strain in the thickness direction is larger than the strains in transverse direction. This plastic
behavior in uniaxial tension case shows itself also in this specimen geometry. As compared to
the hypothetical isotropic case, anisotropic material does not flow much in the width direction.
This shifts the strain states on the specimen closer to the plane strain tension state.

The analysis performed in this section points out three key aspects about the used geometry.

� The specimen allows different strain states between uniaxial tension and plane strain ten-
sion without losing the control on the reached highest strain hardening

� The specimen can reflect the anisotropy of the tested material with the strain distribution
on the surface.

� At any instance of the test there exist material points with different strain hardening level,
meaning that they lie on different yield loci.

All of these aspects can be captured with an optical strain measurement system. This informa-
tion will be used to characterize the anisotropy of the sheet materials. However in terms of the
parameter identification, it is not possible to obtain an analytical closed form formulation utiliz-
ing the experimentally measured local strains and tool forces. Therefore an inverse methodology
is applied to solve this problem and this will be discussed in the next section.

11.5. Inverse Parameter Identification Scheme

The parameter identification scheme in this chapter is considered as an optimization problem,
in which all of the parameters are found simultaneously by minimizing an objective function
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consisting of differences between the numerically computed and experimentally measured values
of selected material responses. In this respect, for each increment of the optimization, finite
element simulations should be performed with a new set of predicted material parameters and
the results should be compared with the experimental measurements in an automated manner.
In this framework the selection of the objective function, optimization algorithm and automated
comparison of the results are the crucial elements and will be discussed here.

The main difficulty in comparing the results is that the discretization of the optical measurement
results is different than the finite element simulations. In other words, the location, dimension
and number of the facets used for the optical measurement do not match with the finite elements
of the numerical simulations. In order to be able to compare the simulation results with the
experiments, simulation results should be obtained at the exact location of the experimental
measurement points. For that reason a parameter mapping algorithm is constructed, in which
the enclosing finite element of each experimental measurement point is found according to the
procedure described by Jayadevan and Narasimhan [139] and the local coordinates of the mea-
surement points are found in these elements. By the help of the shape functions, the nodal
values are interpolated to the coordinates of the measurement point. This algorithm is used
at each predefined increment of tool displacement. In the analyses presented in the foregoing
sections 4 mm of tool displacement is divided into 8 equal intervals. Hence, for each 0.5 mm of
tool displacement the tool forces and principal strains are recorded in the experiments. At the
same increments the same responses are also extracted from the simulation results and for each
increment parameter mapping is applied. At the end of this step, the tool forces and principal
strains of the same material points are obtained at the same tool displacement increments from
the simulations and the experiment.

For the conventional characterization of the sheets with respect to Yld2000-2D material model
uniaxial tension tests in 0◦, 45◦, 90◦ and a test for the equi-biaxial tension state are needed. In
the previous section it was shown that the deformation obtained from the specimen lies between
the uniaxial tension and plane strain tension cases. Hence, the region in the vicinity of the equi-
biaxial tension state is not covered by the specimen. For that reason, to enrich the objective
function, the experimentally measured equi-biaxial stress value is used. In each iteration, the
equi-biaxial stress, σb is calculated analytically with the alpha values predicted by the optimiza-
tion algorithm. The difference of this value from the experimentally measured σb is also added
to the definition of the objective function. At the end, the objective function, Φ, consisting of 3
sub-functions having principal strains, forces and σb differences is defined as follows:

Φ = Φtrain + Φforce + Φσb , (11.5.1)

where

Φtrain =
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i=1
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j=1

[
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(11.5.2)

where ninc and nelem are the number of tool displacement increments and number of elements
in the optical measurements respectively. C1 and C2 are defined as follows:

C1 =
Φinitial guess

strain

Φinitial guess
force

and C2 =
Φinitial guess

strain

Φinitial guess
σb

. (11.5.3)
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In this analysis the relative weighting between strains, forces or stresses is avoided, meaning that
all these variables are equally relevant for the material characterization. For that reason the
scaling factors C1 and C2 in Equation (11.5.3) are used. This scaling is performed in two steps.
First a test run is performed just with the initial guesses and the contributions of the strains,
forces and σb are calculated once. In this test run there exist orders of magnitude of difference
between these values. Hence, in the second step the values of the functions of stress and forces
are scaled down to the strain contributions by multiplying with a scalar. By this way, in the
first increment performed with the initial guesses, the contribution of strains, forces and rb to
the objective function are all equal and the same scalar values are used throughout the iterations.

Having formed the objective function, the identification procedure is now a non-linear least-
square problem and the function is minimized using the Levenberg-Marquardt algorithm [180,
204]. With the introduction of a scalar controlling the magnitude and direction of the itera-
tions, the algorithm calculates a search direction that is between the Gauss-Newton direction
and steepest descent direction and therefore eliminates the disadvantages of the Gauss-Newton
method especially in the proximity of the optimum solution. The needed Jacobian matrix is
calculated by the finite difference method by a perturbation of each αk with an absolute value
of 0.01. Since the Levenberg-Marquardt algorithm is a gradient based algorithm, the required
number of simulations to reach the convergence is not larger than 60 in most of the cases in
this study, which is a considerable value as compared to the generic algorithms where one order
of magnitude larger number of simulations is required. In order to automate the whole inverse
scheme, a Matlab code is written which starts finite element simulations in Abaqus, reads
the outputs of the simulations by calling a Python script, compares the results with the ex-
perimental measurements, builds and minimizes the objective function. The main framework of
this scheme can be seen in Figure 11.4.

not larger than 60 in most of the cases in this study, which is a con-
siderable value as compared to the generic algorithms where one
order of magnitude larger number of simulations is required. In or-
der to automate the whole inverse scheme, a MATLAB code is writ-
ten which starts finite element simulations in ABAQUS, reads the
outputs of the simulations by calling a Python script, compares
the results with the experimental measurements, builds and min-
imizes the objective function. The main framework of this scheme
can be seen in Fig. 4.

As mentioned before the scope of this study is to identify the
planar anisotropy of the sheet metals, rather than the hardening
behavior. Therefore it is assumed that the flow curve is known
and only the coefficients ak are varied throughout the iterations.
However, it should be noted that when all of the 8 parameters
are varied simultaneously without any constraining equation, the
obtained yield loci do not necessarily reflect the yield stress of
the material designated by the flow curve in rolling direction. In
the graphical representation, the predicted yield loci, at the hori-
zontal axis in stress space, do not assume the value of the yield
stress obtained in the rolling direction. In order to avoid this arti-
ficial scaling of the flow curve in rolling direction, following rela-
tion between the material parameters is obtained:

L011 � L021

�� ��8 þ 2L0021 þ L0011

�� ��8 þ 2L0011 þ L0021

�� ��8 ¼ 2; ð24Þ

or in terms of the ak,
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8

þ 2a3 � 2a4

3

����
����
8

þ 4a5 � a6

3

����
����
8

¼ 2; ð25Þ

where the definition of the linear transformation functions L0 and L00

are presented by Barlat et al. (2003). By the help of this relation one
parameter becomes dependent to others and therefore only 7 of the
ak are varied in the parameter identification scheme. As the initial
guess, all of the parameters are set to 1.0, having an isotropic mate-
rial at the beginning.

6. Results and discussion

6.1. Numerical application

In order to study the applicability of the inverse parameter
identification scheme, a numerical framework is constructed. In
this framework, firstly finite element simulations of the proposed
specimen modeled at 0�, 45� and 90� to the rolling direction are
performed using the experimentally obtained Yld2000-2D param-
eters. The tool forces, tool displacements and principal strains on
the specimen are recorded at different increments as if they were
actual experimental results. The identification scheme is then ap-
plied to obtain the fictitious experiment results. Since the main
concern is the planar anisotropy of the sheet, the experimental
flow curve of the material is used in all simulations and it is not
a part of the parameter identification. Therefore only the 7 coeffi-

cients of the Yld2000-2D model are varied throughout the identifi-
cation procedure.

With this numerical framework the results of the inverse
scheme are checked quantitatively by direct comparison with the
input values used for the numerical experiments. As obtained from
the early investigations mentioned in Section 5, a maximum tool
displacement of 4.0 mm is used in order to remain in the limits
of the experimental flow curve. The numerical analysis is con-
ducted with 6 different cases and the results are tabulated in Table
2 in terms of the percentage errors of the predicted material
parameters and the results of these cases will be discussed next.

6.1.1. Case 1: specimen in 0� to rolling direction
This case results in maximum errors of 25% in the predicted al-

phas. This is because of the deformation state of the specimen in 0�,
which is between the uniaxial tension and plane strain tension. In
the stress space this is the region around the x-axis of the yield lo-
cus in the first quadrant that is also coincident with the rolling
direction. Hence, the provided information does not include any
information around the vertical axis in the first quadrant. This lack
of information causes the optimization algorithm to find a solution
that matches around the rolling direction and biaxial point but not
necessarily in the transverse direction. This fact shows itself clearly
when the identification results are compared with the fictitious
experiment results, as in Fig. 5(a). There is almost a one to one
match between the predicted and input yield loci between hori-
zontal axis and biaxial point, rb, whereas around the 90�-tension
region there are discrepancies, as a result of the errors in alphas.

6.1.2. Case 2: specimen in 90� to rolling direction
The results with this specimen show a very similar tendency as

the case 1. Again, because of the supplied information in 90�-ten-
sion region, a total match cannot be obtained for the whole first
quadrant (Fig. 5(b)). The good prediction of the yield stress in roll-
ing direction is because of the dependency of the parameters
which is governed by the Eq. (25). It should be noted that although
the absolute value of this point is analytically correct, the slope at
that point and the predictions in the neighboring plane strain ten-
sion regions are quite unsatisfactory.

6.1.3. Case 3: specimens in 0� and 90� to rolling direction
simultaneously

This case is designed to overcome the disadvantages of the first
two cases by combining them. Using the two specimens simulta-
neously means that at each iteration two simulations are per-
formed, one being in 0� and one in 90�. After the simulations the
elements of the objective function for each case are formed and
they are scaled in such a way the contribution of the strains from
the two orientations equals the contribution of the forces of the
two cases and the contribution of the equi-biaxial point to form
the final objective function. From the Table 2 it can be seen that
maximum errors in this case are two orders of magnitude smaller

Fig. 4. Framework of the inverse scheme used for parameter identification.
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Figure 11.4.: Framework of the inverse scheme used for parameter identification.

As mentioned before the scope of this study is to identify the planar anisotropy of the sheet
metals, rather than the hardening behavior. Therefore it is assumed that the flow curve is known
and only the coefficients αk are varied throughout the iterations. However, it should be noted
that when all of the 8 parameters are varied simultaneously without any constraining equation,
the obtained yield loci do not necessarily reflect the yield stress of the material designated by
the flow curve in rolling direction. In the graphical representation, the predicted yield loci, at
the horizontal axis in stress space, do not assume the value of the yield stress obtained in the
rolling direction. In order to avoid this artificial scaling of the flow curve in rolling direction,
following relation between the material parameters is obtained:

|L′11 − L′21|8 + |2L′′21 + L′′11|8 + |2L′′11 + L′′21|8 = 2 , (11.5.4)
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or in terms of the αk,
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where the definition of the linear transformation functions L′ and L′′ are presented by Barlat et
al. [34]. By the help of this relation one parameter becomes dependent to others and therefore
only 7 of the ak are varied in the parameter identification scheme. As the initial guess, all of
the parameters are set to 1.0, having an isotropic material at the beginning.

11.6. Results and Discussion

11.6.1. Numerical Application

In order to study the applicability of the inverse parameter identification scheme, a numerical
framework is constructed. In this framework, firstly finite element simulations of the proposed
specimen modeled at 0, 45 and 90 to the rolling direction are performed using the experimentally
obtained Yld2000-2D parameters. The tool forces, tool displacements and principal strains on
the specimen are recorded at different increments as if they were actual experimental results.
The identification scheme is then applied to obtain the fictitious experiment results. Since the
main concern is the planar anisotropy of the sheet, the experimental flow curve of the material
is used in all simulations and it is not a part of the parameter identification. Therefore only the
7 coefficients of the Yld2000-2D model are varied throughout the identification procedure.

With this numerical framework the results of the inverse scheme are checked quantitatively
by direct comparison with the input values used for the numerical experiments. As obtained
from the early investigations mentioned in Section 5, a maximum tool displacement of 4.0 mm
is used in order to remain in the limits of the experimental flow curve. The numerical analysis
is conducted with 6 different cases and the results are tabulated in Table 11.2 in terms of the
percentage errors of the predicted material parameters and the results of these cases will be
discussed next.

Table 11.2.: Percentage errors of the obtained material parameters for six cases.

case α1 α2 α3 α4 α5 α6 α7 α8

1. 0◦ 17.47 −24.85 −6.69 −5.51 −0.20 9.08 0.57 −5.60
2. 90◦ 15.42 −9.82 1.69 0.00 −5.09 9.82 −1.92 −1.67
3. 0◦ and 90◦ −0.06 0.06 0.12 −0.01 0.00 −0.03 0.19 0.09
4. 45◦ −0.50 0.94 0.92 0.02 −0.18 −0.64 −0.04 0.01
5. 45◦ w/o strain cont. 12.27 −12.71 −6.56 −0.44 0.32 6.80 0.24 −0.06
6. 45◦ w/o σb cont. 17.47 −19.84 −11.86 0.20 1.40 23.40 1.37 −0.95

11.6.1.1. Case 1: Specimen in 0◦ to Rolling Direction

This case results in maximum errors of 25% in the predicted alphas. This is because of the
deformation state of the specimen in 0, which is between the uniaxial tension and plane strain
tension. In the stress space this is the region around the x−axis of the yield locus in the first
quadrant that is also coincident with the rolling direction. Hence, the provided information
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does not include any information around the vertical axis in the first quadrant. This lack of
information causes the optimization algorithm to find a solution that matches around the rolling
direction and biaxial point but not necessarily in the transverse direction. This fact shows itself
clearly when the identification results are compared with the fictitious experiment results, as in
Figure 11.5.a. There is almost a one to one match between the predicted and input yield loci
between horizontal axis and biaxial point, σb, whereas around the 90◦-tension region there are
discrepancies, as a result of the errors in alphas.

than the first two cases and the sought alphas are found with a
maximum error of 0.2%. Hence, the enrichment of the information
supplied to the inverse scheme with two orientations enabled the
successful prediction of the material parameters.

6.1.4. Case 4: specimen in 45� to rolling direction
This case is analyzed to obtain a deformation state between the

first two cases. It is seen that the maximum error is less than 1% of
the sought parameters. This is again the result of the supplied infor-
mation to the inverse scheme. It should be noted that in the conven-
tional characterization the coefficients a7 and a8 are computed from
the uniaxial tension tests and therefore the predictions of this case
provides the best results for these two parameters among all cases.

6.1.5. Case 5: specimen in 45� to rolling direction without contribution
of strains

This case is performed in order to study the impact of the prin-
cipal strain field in the definition of the objective function. There-

fore, in this case the principal strains are not included in the
objective function. In other words, the whole inverse scheme is
based on the force–displacement curve and the biaxial point. The
specimen in 45� is used as it proved itself as a suitable orientation
in the latter case. The maximum error in this case rises up to 13%.
The direct comparison of the case 4 and 5 shows that the strain
field on the specimen provides information about the planar
anisotropy which helps to identify the material coefficients to-
gether with the tool forces.

6.1.6. Case 6: specimen in 45� without contribution of equibiaxial
stress value, rb

This case is designed in order to study the effect of the equibi-
axial stress state in the definition of the objective function. Hence,
in this case the rb value is not included in the objective function.
The maximum error in material parameters in this case increases
to 23% as compared to case 4. It can be seen in Fig. 5(c) that the
equibiaxial point is not predicted correctly, as expected, with an

Table 2
Percentage errors of the obtained material parameters for six cases.

Case a1 a2 a3 a4 a5 a6 a7 a8

1: Specimen in 0� 17.47 �24.85 �6.69 �5.51 �0.20 9.08 0.57 �5.60
2: Specimen in 90� 15.42 �9.82 1.69 0.00 �5.09 9.82 �1.92 �1.67
3: Specimens in 0� and 90� �0.06 0.06 0.12 �0.01 0.00 �0.03 0.19 0.09
4: Specimen in 45� �0.50 0.94 0.92 0.02 �0.18 �0.64 �0.04 0.01
5: Specimen in 45� without contribution of strains 12.27 �12.71 �6.56 �0.44 0.32 6.80 0.24 �0.06
6: Specimen in 45� without contribution of rb 17.47 �19.84 �11.86 0.20 1.40 23.40 1.37 �0.95

Fig. 5. Comparison of the predicted yield loci with the sought yield loci for the cases (a) specimen in 0� and (b) specimen in 90�, (c) specimen in 45� – without the
contribution of the equibiaxial stresses in the objective function.
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Figure 11.5.: Comparison of the predicted yield loci with the sought yield loci for the cases (a)
specimen in 0◦ and (b) specimen in 90◦, (c) specimen in 45◦ - without the contribution of the
equi-biaxial stresses in the objective function.

11.6.1.2. Case 2: Specimen in 90◦ to Rolling Direction

The results with this specimen show a very similar tendency as the case 1. Again, because of the
supplied information in 90◦-tension region, a total match cannot be obtained for the whole first
quadrant (Figure 11.5.b). The good prediction of the yield stress in rolling direction is because
of the dependency of the parameters which is governed by the Equation (11.5.5). It should be
noted that although the absolute value of this point is analytically correct, the slope at that
point and the predictions in the neighboring plane strain tension regions are quite unsatisfactory.
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11.6.1.3. Case 3: Specimens in 0◦ and 90◦ to Rolling Direction Simultaneously

This case is designed to overcome the disadvantages of the first two cases by combining them.
Using the two specimens simultaneously means that at each iteration two simulations are per-
formed, one being in 0◦ and one in 90◦. After the simulations the elements of the objective
function for each case are formed and they are scaled in such a way the contribution of the
strains from the two orientations equals the contribution of the forces of the two cases and the
contribution of the equi-biaxial point to form the final objective function. From the Table 11.2
it can be seen that maximum errors in this case are two orders of magnitude smaller than the
first two cases and the sought alpha’s are found with a maximum error of 0.2%. Hence, the
enrichment of the information supplied to the inverse scheme with two orientations enabled the
successful prediction of the material parameters.

11.6.1.4. Case 4: Specimen in 45◦ to Rolling Direction

This case is analyzed to obtain a deformation state between the first two cases. It is seen
that the maximum error is less than 1% of the sought parameters. This is again the result of
the supplied information to the inverse scheme. It should be noted that in the conventional
characterization the coefficients α7 and α8 are computed from the uniaxial tension tests and
therefore the predictions of this case provides the best results for these two parameters among
all cases.

11.6.1.5. Case 5: Specimen in 45◦ to Rolling Direction without Contribution of Strains

This case is performed in order to study the impact of the principal strain field in the definition
of the objective function. Therefore, in this case the principal strains are not included in the
objective function. In other words, the whole inverse scheme is based on the force-displacement
curve and the biaxial point. The specimen in 45◦ is used as it proved itself as a suitable
orientation in the latter case. The maximum error in this case rises up to 13%. The direct
comparison of the case 4 and 5 shows that the strain field on the specimen provides information
about the planar anisotropy which helps to identify the material coefficients together with the
tool forces.

11.6.1.6. Case 5: Specimen in 45◦ to Rolling Direction without Contribution of
Equibiaxial Stress Value, σb

This case is designed in order to study the effect of the equibiaxial stress state in the definition
of the objective function. Hence, in this case the σb value is not included in the objective func-
tion. The maximum error in material parameters in this case increases to 23% as compared to
case 4. It can be seen in Figure 11.5.c that the equibiaxial point is not predicted correctly, as
expected, with an error of 5%. It must be noted that the lack of information in the vicinity of
the equibiaxial point also affects the prediction in the neighboring stress states.

The numerical analysis performed in this section does not involve any experimental noise, any
violation of the assumptions like kinematic hardening or any other aspect that may arise in the
experiments, building an ideal environment for characterization. For that reason the objective
function takes the exact value zero, when the characterization is successful. Hence, the errors
obtained in cases 1, 2, 5 and 6 would be more dominant in actual experiments. However, one to
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one correlation between the predicted material parameters and the provided information about
the plastic behavior remains the same. The analysis has shown clearly that it should not be
expected from the inverse scheme to find a solution that covers the regions where no input is
supplied. The last two cases present also the importance of the strain distribution and biaxial
stress state for the characterization of the anisotropy coefficients.

11.6.2. Experimental Application

The outcomes of the previous section will be applied experimentally in this section. For that
reason specimens with the decided geometry are prepared as seen in the Figure 11.6.a. In order
to measure the strains on the specimen, digital image correlation method is used. Therefore a
stochastic pattern is sprayed on each specimen in order to be able to track the material points
with the gray level analysis in the photos taken by digital cameras during the experiment with
1 Hz frequency. The whole optical measurement region is divided into facets having 1 mm edge
length. The tests are performed on a universal tensile testing machine with a tool speed of 1.0
mm/min leading to quasi-static forming rates.

error of 5%. It must be noted that the lack of information in the
vicinity of the equibiaxial point also affects the prediction in the
neighboring stress states.

The numerical analysis performed in this section does not in-
volve any experimental noise, any violation of the assumptions like
kinematic hardening or any other aspect that may arise in the
experiments, building an ideal environment for characterization.
For that reason the objective function takes the exact value zero,
when the characterization is successful. Hence, the errors obtained
in cases 1, 2, 5 and 6 would be more dominant in actual experi-
ments. However, one to one correlation between the predicted
material parameters and the provided information about the plas-
tic behavior remains the same. The analysis has shown clearly that
it should not be expected from the inverse scheme to find a solu-
tion that covers the regions where no input is supplied. The last
two cases present also the importance of the strain distribution
and biaxial stress state for the characterization of the anisotropy
coefficients.

6.2. Experimental application

The outcomes of the previous section will be applied experi-
mentally in this section. For that reason specimens with the
decided geometry are prepared as seen in the Fig. 6(a). In order
to measure the strains on the specimen, digital image correlation
method is used. Therefore a stochastic pattern is sprayed on each
specimen in order to be able to track the material points with
the gray level analysis in the photos taken by digital cameras dur-
ing the experiment with 1 Hz frequency. The whole optical mea-
surement region is divided into facets having 1 mm edge length.
The tests are performed on a universal tensile testing machine with
a tool speed of 1.0 mm/min leading to quasi-static forming rates.

The specimen geometry is modeled with 720 fully integrated
shell elements in ABAQUS-Explicit. Due to the symmetry, only
one half of the geometry is modeled (Fig. 6(b)). As in the previous
analyses, the tool displacement is set as 4.0 mm to remain in the
limits of the experimental flow curve. Since the flow curve is
known, only the material parameters of the Yld2000-2D model
are varied. The relation in Eq. (25) is also used here and only 7 of
the free parameters are varied. The exponent a of the yield function
is taken to be equal to 8.0. As in the previous section, all the param-
eters are set to 1.0 for the initial guess and the two successful cases
in Section 6.1, case 3 and case 4, are applied in the experimental
characterization.

The obtained yield loci with the two cases can be seen in Fig. 7,
together with the numerical values of the material parameters pre-
sented in Table 3. For comparison, yield locus which is obtained
conventionally from the tension tests and layer compression tests

are also plotted. The difference between the absolute stress values
is in both cases less than 5%. There are some dissimilarities in the
slopes that can be observed around the plane strain tension re-
gions. However, both cases can predict the initial anisotropy of
the material. It should be noted that the utilized inverse scheme
does not take the r-values or the yield stress of the material at dif-
ferent orientations as input. Nevertheless the yield stress in 90� or
the slopes of the yield locus at the axes, which eventually reflect
the r-values, are predicted correctly.

The comparison of the force–displacement curves of the exper-
iments and finite element simulations is presented in Fig. 8. In both
cases the numerical force predictions are higher than the experi-
mental forces. Among all, the maximum difference occurs in the
case of the 45� specimen, with a maximum difference of 10%.
The deviations are even lower with the other case utilizing speci-
mens in 0� and 90�. The force–displacement curves are directly re-
lated to the hardening behavior of the material. Hence, the
difference in the force values can be due to the assumption of iso-
tropic hardening in this study. The kinematic or distortional hard-
ening behavior is not included in the characterization scheme. In
reality the changes in the straining path during the experiments,
which is the case for this specimen, can lead to different stress
states and therefore to different force values.

The major strain distributions from the finite element simula-
tions and experiments at a tool displacement of 4 mm can be seen
in Fig. 9 for each specimen orientation. The distribution of the
strains in both cases is in accordance with the experiments. The
values show some discrepancies especially on the outer edge at
the horizontal symmetry axis. The numerical results in those re-
gions are larger than the measurements in all orientations. How-
ever it should be noted that the optical measurements do not
supply information in the vicinity of the free edges because of lack
of material points and therefore it is not possible to compare the
results on the outer edge.

The figures in this section are actually visual interpretations of
the objective function that is used in the characterization, which is
composed of the strain distributions, tool forces and equi-biaxial
stress. Since no relative weighting between these elements are ap-
plied, the inverse scheme tries to find a global minimum by consid-
ering each element equally. Hence the reached solution satisfies
each condition equally as presented in the figures.

6.3. Experimental verification

A representative car hood geometry, which is scaled to a smaller
size, is used for verifying the obtained Yld2000-2D parameters
(Fig. 10(a)). This geometry, which represents an industrial product,
has side walls that flow through the drawbeads and builds a com-

Fig. 6. (a) Specimen with the stochastic pattern, (b) geometry of the selected specimen and the finite element discretization.
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Figure 11.6.: (a) Specimen with the stochastic pattern, (b) geometry of the selected specimen
and the finite element discretization.

The specimen geometry is modeled with 720 fully integrated shell elements in Abaqus/Explicit.
Due to the symmetry, only one half of the geometry is modeled (Figure 11.6.b). As in the previ-
ous analyses, the tool displacement is set as 4.0 mm to remain in the limits of the experimental
flow curve. Since the flow curve is known, only the material parameters of the Yld2000-2D
model are varied. The relation in Equation (11.5.5) is also used here and only 7 of the free
parameters are varied. The exponent a of the yield function is taken to be equal to 8.0. As in
the previous section, all the parameters are set to 1.0 for the initial guess and the two successful
cases in Section 6.1, case 3 and case 4, are applied in the experimental characterization

The obtained yield loci with the two cases can be seen in Figure 11.7, together with the numeri-
cal values of the material parameters presented in Table 11.3. For comparison, yield locus which
is obtained conventionally from the tension tests and layer compression tests are also plotted.
The difference between the absolute stress values is in both cases less than 5%. There are some
dissimilarities in the slopes that can be observed around the plane strain tension regions. How-
ever, both cases can predict the initial anisotropy of the material. It should be noted that the
utilized inverse scheme does not take the r-values or the yield stress of the material at different
orientations as input. Nevertheless the yield stress in 90◦ or the slopes of the yield locus at the
axes, which eventually reflect the r−values, are predicted correctly.
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Table 11.3.: Material parameters obtained with the conventional and inverse methods.

method α1 α2 α3 α4 α5 α6 α7 α8

conventional 0.979 0.998 0.885 1.008 1.001 0.965 0.953 1.242
45◦ 0.973 1.008 0.980 1.010 0.986 0.904 0.960 1.142
0◦ and 90◦ 0.977 0.977 0.987 1.020 0.989 0.900 0.981 1.114

Fig. 7. Comparison of conventionally and inversely obtained yield loci (a) with the specimen in 0� (case 4) and (b) with the specimens in 0� and 90� (case 3).

Table 3
Material parameters obtained with the conventional and inverse methods.

Method a1 a2 a3 a4 a5 a6 a7 a8

Conventional fit 0.979 0.998 0.885 1.008 1.001 0.965 0.953 1.242
Specimen in 45� 0.973 1.008 0.980 1.010 0.986 0.904 0.960 1.142
Specimens in 0� and 90� 0.977 0.977 0.987 1.020 0.989 0.900 0.981 1.114

Fig. 8. Experimental and numerical tool force – displacement diagrams for three orientations.

Fig. 9. Comparison of the experimentally and numerically obtained major strain distributions at a tool displacement of 4.0 mm for the three orientations.
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Figure 11.7.: Comparison of conventionally and inversely obtained yield loci (a) with the speci-
men in 0◦ (case 4) and (b) with the specimens in 0◦ and 90◦ (case 3).

The comparison of the force-displacement curves of the experiments and finite element simu-
lations is presented in Figure 11.8. In both cases the numerical force predictions are higher
than the experimental forces. Among all, the maximum difference occurs in the case of the 45◦

specimen, with a maximum difference of 10%. The deviations are even lower with the other
case utilizing specimens in 0◦ and 90◦. The force-displacement curves are directly related to
the hardening behavior of the material. Hence, the difference in the force values can be due to
the assumption of isotropic hardening in this study. The kinematic or distortional hardening
behavior is not included in the characterization scheme. In reality the changes in the straining
path during the experiments, which is the case for this specimen, can lead to different stress
states and therefore to different force values.

Fig. 7. Comparison of conventionally and inversely obtained yield loci (a) with the specimen in 0� (case 4) and (b) with the specimens in 0� and 90� (case 3).

Table 3
Material parameters obtained with the conventional and inverse methods.

Method a1 a2 a3 a4 a5 a6 a7 a8

Conventional fit 0.979 0.998 0.885 1.008 1.001 0.965 0.953 1.242
Specimen in 45� 0.973 1.008 0.980 1.010 0.986 0.904 0.960 1.142
Specimens in 0� and 90� 0.977 0.977 0.987 1.020 0.989 0.900 0.981 1.114

Fig. 8. Experimental and numerical tool force – displacement diagrams for three orientations.

Fig. 9. Comparison of the experimentally and numerically obtained major strain distributions at a tool displacement of 4.0 mm for the three orientations.
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Figure 11.8.: Experimental and numerical tool force-displacement diagrams for three orienta-
tions.

The major strain distributions from the finite element simulations and experiments at a tool
displacement of 4 mm can be seen in Figure 11.9 for each specimen orientation. The distribution
of the strains in both cases is in accordance with the experiments. The values show some
discrepancies especially on the outer edge at the horizontal symmetry axis. The numerical
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results in those regions are larger than the measurements in all orientations. However it should
be noted that the optical measurements do not supply information in the vicinity of the free
edges because of lack of material points and therefore it is not possible to compare the results
on the outer edge.

Fig. 7. Comparison of conventionally and inversely obtained yield loci (a) with the specimen in 0� (case 4) and (b) with the specimens in 0� and 90� (case 3).

Table 3
Material parameters obtained with the conventional and inverse methods.

Method a1 a2 a3 a4 a5 a6 a7 a8

Conventional fit 0.979 0.998 0.885 1.008 1.001 0.965 0.953 1.242
Specimen in 45� 0.973 1.008 0.980 1.010 0.986 0.904 0.960 1.142
Specimens in 0� and 90� 0.977 0.977 0.987 1.020 0.989 0.900 0.981 1.114

Fig. 8. Experimental and numerical tool force – displacement diagrams for three orientations.

Fig. 9. Comparison of the experimentally and numerically obtained major strain distributions at a tool displacement of 4.0 mm for the three orientations.
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Figure 11.9.: Comparison of the experimentally and numerically obtained major strain distribu-
tions at a tool displacement of 4.0 mm for the three orientations.

The figures in this section are actually visual interpretations of the objective function that is
used in the characterization, which is composed of the strain distributions, tool forces and equi-
biaxial stress. Since no relative weighting between these elements are applied, the inverse scheme
tries to find a global minimum by considering each element equally. Hence the reached solution
satisfies each condition equally as presented in the figures.

11.6.3. Experimental Verification

A representative car hood geometry, which is scaled to a smaller size, is used for verifying the
obtained Yld2000-2D parameters (Figure 11.10.a). This geometry, which represents an industrial
product, has side walls that flow through the drawbeads and builds a complicated pattern of
deformation. All the blanks were cut from the identical charge used for the characterization
section having the rolling direction along the short side of the hood geometry. In the experiments
a blankholder force of 450 kN is used and the punch displacement is set to 130 mm. The strains
on the outer surface of the final product are measured optically with the optical forming analysis
tool, ARGUS System of the company GOM. A grid of circular dots is applied to the blank with an
initial spacing of 2 mm by printing (Figure 11.10.b). These dots undergo the same deformation
of the sheet and therefore the spacing of the dots is changed after the forming process which can
be captured by taking the pictures of the hood by a CCD camera from different angles. The
3D positions of the centers of these dots are obtained using photogrammetric algorithms which
leads to the strain tensor on the sheet surface [267].

The problem is simulated with LS-Dyna using 16000 shell elements with adaptive remeshing.
Besides the Yld2000-2D model the Hill’48 model is also included in the analyses since the model
is still in use as a basic model for anisotropic sheets. The yield loci of the material are shown
in Figure 11.10.c with respect to the two yield conditions. At the equi-biaxial stress state, the



Chapter 11. Characterization of Anisotropy 269

plicated pattern of deformation. All the blanks were cut from the
identical charge used for the characterization section having the
rolling direction along the short side of the hood geometry. In
the experiments a blankholder force of 450 kN is used and the
punch displacement is set to 130 mm. The strains on the outer sur-

face of the final product are measured optically with the optical
forming analysis tool, ARGUS System of the company GOM. A grid
of circular dots is applied to the blank with an initial spacing of
2 mm by printing (Fig. 10(b)). These dots undergo the same defor-
mation of the sheet and therefore the spacing of the dots is chan-

Fig. 10. (a) Scaled car hood geometry, (b) applied grid on the sheet surface, (c) Yield locus of AA6016-T4 according to Hilĺ48 and Yld2000-2D material models.

Fig. 11. The comparison of the thicknesses from the simulation results and the experimental measurements along two different sections.
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Figure 11.10.: (a) Scaled car hood geometry, (b) applied grid on the sheet surface, (c) yield locus
of AA6016-T4 according to Hill’48 and Yld2000-2D material models.

two yield loci diverge from each other, since Hill’48 does not consider this stress state in the
identification of the parameters.

The results of the optical measurement are compared with the numerical results (see Figure
11.11) by taking two different sections as the references. The first section cuts the workpiece
diagonally and the second section goes through the rear side wall at the half height. For com-
parison, the thickness distributions are presented here which are calculated from the major and
minor strains assuming volume constancy

Because of the large dimensions of the workpiece, strain measurements on the whole workpiece
are performed by dividing the geometry in sub-sections. The gaps that are found in the figure are
caused by the measurement gaps between these sections. Both models predict similar thicknesses
where moderate deformations occur. It can be seen that, the plastic behavior of AA6016-T4 is
oversimplified by the Hill’48 model as expected. The thicknesses in the corner regions of the
geometry predicted by this model are 12% lower than the actual measurements. On the other
hand, the predictions of the Yld2000-2D model tend to be closer to the measured thicknesses.
The two yield loci differ from each other especially around the equi-biaxial tension state. This
stress state is observed around the corner of the hood geometry where the sheet is stretched in
two principal directions. The Hill’48 model predicts more thinning around these regions since
the needed stresses for the plastic flow are lower compared to the Yld2000-2D model.
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plicated pattern of deformation. All the blanks were cut from the
identical charge used for the characterization section having the
rolling direction along the short side of the hood geometry. In
the experiments a blankholder force of 450 kN is used and the
punch displacement is set to 130 mm. The strains on the outer sur-

face of the final product are measured optically with the optical
forming analysis tool, ARGUS System of the company GOM. A grid
of circular dots is applied to the blank with an initial spacing of
2 mm by printing (Fig. 10(b)). These dots undergo the same defor-
mation of the sheet and therefore the spacing of the dots is chan-

Fig. 10. (a) Scaled car hood geometry, (b) applied grid on the sheet surface, (c) Yield locus of AA6016-T4 according to Hilĺ48 and Yld2000-2D material models.

Fig. 11. The comparison of the thicknesses from the simulation results and the experimental measurements along two different sections.
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Figure 11.11.: The comparison of the thicknesses from the simulation results and the experi-
mental measurements along two different sections.

11.6.4. Conclusion

The appropriateness of the utilization of strain distributions for identifying the planar anisotropy
is analyzed in this chapter. The utilization of an optically measured strain field together with the
conventionally used integral measures such as force and displacement, improves the quality of
the supplied information for an inverse parameter identification of planar anisotropy. Although
it takes longer computation times, it is shown that, the usage of simultaneous experiments is
possible and meaningful, if there are significant changes of material properties along different
orientations. Since the flexibility of the used yield condition is an important issue, Yld2000-2D
model is also implemented and used in this study. More complex yield functions that have
more material parameters should be tested within this framework. The kinematic hardening
is assumed to be neglected through this study. Consequently the current method cannot give
accurate results, if the considered material shows a pronounced anisotropic hardening behavior.
In such a case, the obtained solution would represent an average between the initial yield locus
and subsequent yield loci. Therefore the proposed method has to be further developed in order
to include isotropic-kinematic hardening models.



12. A Cyclic Twin Bridge Shear Test for
Identification of Kinematic Hardening
Parameters

In this chapter, a twin bridge cyclic shear test with in-plane torsion is proposed for identification
of kinematic hardening parameters for metallic sheets. Besides its practicality, noteworthy
advantages of the test are a) reduced loads on the experimental device as compared to a one-sided
shear test, b) identical orientation of the principal stresses with respect to the rolling direction
in both of the shear bridges, e.g. which cannot be realized by the Miyauchi shear test and c)
no premature termination by instability mechanisms such as buckling or necking. Two main
disadvantages appear to be a) preclusion of the use of analytically solved initial value problem
in parameter identification due to diffusivity of the plastic region around the shear bridges, b)
smeared out anisotropic material response proportional with the width of the shear bridge. As a
remedy for the former, an inverse parameter identification methodology is used to determine the
hardening parameters using an objective function devising the measured moment and rotation
angle. For the latter, an optimum shear bridge width is selected which also minimizes the edge
effect where shear equilibrium is not possible. A combined nonlinear isotropic and kinematic
hardening model respectively based on Voce and Armstrong-Frederick is selected as the material
model, which is implemented as a Vumat subroutine for Abaqus/Explicit. Strain controlled
tests are conducted over three different classes of steel sheet materials, namely a mild steel
DC06, a dual phase steel DP600 and a Transformation Induced Plasticity steel TRIP700. These
tests with one single cycle including a forward shearing and a reverse shearing phase aimed
merely the Bauschinger effect. Variations with different stress and strain based loading cycles
for phenomena like shakedown, ratcheting, mean stress relaxation, cyclic hardening and softening
are not explored and left beyond the scope of the current study. The results, besides showing the
applicability of the test to the kinematic hardening parameter identification purposes also show
that the Armstrong Frederick model falls short to capture the cyclic response of the selected
materials, especially advanced high strength steels DP600 and TRIP700.

12.1. Introduction

Industrial steels show various measures of the Bauschinger effect, i.e. early re-yielding at load
reversal, depending on the microstructural mechanisms playing role. At early stages of defor-
mation, monotonic loads cumulate dislocations in front of barriers to form dislocation pile-ups.
With load reversal, these are dissolved to a certain degree, with the dislocation motion diverging
from the barrier. For steels with multiple phases a load reversal will cause a likely consequence,
this time motivated by relative strength and flow stress of constituent phases, [127, p. 312],
[243]. This kind of path dependence of hardening has a dominating effect on localization into
shear bands, amount of spring-back, punch force demand, wall thickness of the sheet in sheet
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metal forming, see e.g. [237] and [299] among many others, where strain path nonlinearities
are common, e.g. successive bending unbending when the sheet passes the die radius. Phe-
nomenologically this is modeled with kinematic hardening models where a translation of the
yield locus in the direction of plastic loading in the principal stress space is assumed. Models
developed within this context can be classified in two groups: single surface models, for example
the Prager-Ziegler linear hardening rule [356], [94] or [70] and multi- or bounding surface models
such as [222], [99] or [347].

Any material model, which is after prediction of a physical phenomenon comes with a cost
of material constants which need to be defined, a process also known as mechanical material
identification. Cyclic tests with reversed strain and/or stress paths are preferred in the evalua-
tion of the extent of the Bauschinger effect of the material, as well as the predictive capability
of the proposed material model and also in determining regarding material constants. In this
chapter, a twin bridge cyclic shear test for metallic sheets with in-plane torsion is proposed for
this purpose. Some positive features of the test are:

� Very practical during testing ad specimen change,

� Insensitive to geometrical instability mechanisms such as buckling or necking,

� Reduced anisotropy smearing with bridging rather then utilization of a continuous speci-
men,

� Supplied wide shear region with reduced edge effects,

� Reduced loads on the experimental device as compared to a one-sided shear test,

� Orientation equivalence of the principal stress triads in both of the shear bridges, which
is not the case in classical Miyauchi shear test with a continuous specimen,

� Extendible for low triaxiality fracture characterization.

Nevertheless, adaption of an analytical closed form solution in parameter identification is ceased
due to the nonuniform plastic strain distribution which diffuses out of the bridge. As a remedy
an inverse parameter identification methodology, where the direct step is handled with finite
element analysis, is developed with an objective function based on least squares of the measured
and simulated torque differences for controlled tool rotation.

Proposed test and inverse methodology is conducted on three materials, namely a mild steel
DC06, a dual phase steel DP600 and a Transformation Induced Plasticity Steel TRIP700. The
motivation is twofold: Gathering input for parameter identification phase as well as evaluation
of the extent of the Bauschinger effect that the materials show, depending on their distinct
micro-structures. The mild steel DC06 is widely used for automotive components such as hood,
roof or crashboxes. This deep drawing steel has a plain ferrite matrix granting a high forma-
bility. DC06 consists of only one phase and therefore shows the Bauschinger-Effect due to the
dissolving of dislocation pile-ups. The DP600 and the TRIP700, both high strength steels, com-
bine good formability and ductility with a high tensile strength. Recently, numerous research
work are done analyzing these two material grades, i.e. examining the dynamic crash behavior,
see e.g. [82], [238], or the springback behavior, see e.g. [237], [121]. Both steels show multiple
microstructural phases, where the ferrite phase is responsible for the ductility and the martensite
phase provides the high strength [190]. TRIP steels show in addition a retained autenite phase,
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transforming to martensite during deformation and producing additional hardening [327], [206].
For these multiphase steels, the Bauschinger-effect may also be a result of different strengths
of the phases, see e.g. [243], in addition to the relaxation of the dislocation pile-ups at other
barriers. Since theoretical evaluation of these models is beyond the scope of this study, within
this text Armstrong-Frederick nonlinear kinematic hardening model will be used in simulat-
ing path dependence of material hardening and early re-yielding admitting its shortcomings in
predicting certain phenomena like work hardening stagnation and decreased elasticity modulus
with straining.

12.2. A Critical Overview of Sheet Metal Tests for Mechanical
Parameter Identification with a Specific Reference to Their
Availability to Cyclic Testing

Testing techniques to identify hardening behavior of metals and other materials exist in manifold
variants. A classification of these numerous methods can be done according to the loading stress
state and the specimen geometry such as sheet, bulk, profiles etc. Since this chapter is focusing
on sheet metals, material tests for this geometry class will be discussed in detail. In Table 12.1,
several categories of sheet metal tests are listed, according to the stress state.

The most commonly used method is the uniaxial tensile test, standardized for both sheet
and bulk specimen at monotonic loading. A major advantage is the known homogeneous one-
dimensional stress state in the specimen, allowing accurate evaluation of material behavior by
analytical equations. Cyclic testing in terms of alternately applying tension and compression is
an obvious way to identify kinematic hardening behavior in form of the Bauschinger-Effect, [4].
The disadvantages of the tensile test are visible in three effects: necking, changing strain rates
and buckling. Necking limits the achievable strain by tensile loading, the change in the strain
rate can be compensated with some effort if required. A more important issue is the buckling
tendency when compression loads are applied on a thin sheet specimen, making additional sup-
port necessary. Support against buckling can be realized in different ways as demonstrated by
[294], [165], [65] and [348]. Tension-compression tests can also be conducted without supporting
fixtures, when the specimen length is kept small, as shown by [329]. However, the achievable
compression strain is quite low, which makes this method suitable for fatigue analysis, but partly
tedious for straining behavior. In order to obtain higher strains without supporting fixtures,
similar to the uniaxial test, plane-strain tensile tests can also be loaded for compression, as
described by [10] and [92]. To create plane strain tensile deformation in a specimen, the width
has to be designed larger so a horizontal contraction is prohibited. The experimental effort is
higher than the uniaxial test, while a perfect homogeneous plane strain distribution can hardly
be realized. Since the usage of plane strain tensile tests is to identify a specific point or boundary
for the yield locus, this test is usually not chosen for characterizing kinematic hardening.

To identify the first quadrant of the yield locus, especially the equibiaxial-stress state, the
biaxial tensile test, [118], and the hydraulic bulge test, [242], can be used. Similar to the uniax-
ial tensile test, the biaxial tensile and the hydraulic bulge test show changing strain rates. Both
tests are not suitable for a load reversal, because of the buckling tendency in a cruciform speci-
men and the lacking possibility to apply any pressure from the upper side of a bulge specimen.
However, the biaxial tensile test can still realize nonlinear strain paths, if the two tensile arms
are controlled separately, [164].
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Table 12.1.: Overview of sheet tests - Stress state, homogeneity and suitability for cyclic testing.

ID Test method
Principal
stress state

Stress/strain
field uniformity

Reversed
loading

1.
(Uniaxial) Tension-
Compression test



σ 0 0
0 0 0
0 0 0


 Homogeneous

Limited
(buckling)

2.
Biaxial
tensile test



aσ 0 0
0 bσ 0
0 0 0


 Partly

homogeneous
No

3. Hydraulic bulge test



σ 0 0
0 σ 0
0 0 0


 Strain evaluated at

top of specimen
No

4. Bending test



σ 0 0
0 σ/2 0
0 0 0




Stress and strain
changes through the
sheet thickness

Yes

5. Shear test



σ 0 0
0 −σ 0
0 0 0


 Partly

homogeneous
Yes

Another alternative is loading by cyclic bending. [349] introduced a device for uniform bending,
involving a rotating step motor clamping on one side of a sheet strip while the other end of the
specimen is fixed on a slide rail with no degree of freedom in rotation. [99] used a three-point
bending test to identify hardening parameters. To minimize friction effects, [55] suggested a
contactless pure bending device for cyclic testing. A main issue of sheet bending test is the
calculation of stresses, because of the different loading on the material, with higher stresses near
the sheet surface and almost no load at the neutral fiber. Although bending of a narrow strip
will cause a one-dimensional stress state, tension and compression occur depending on the po-
sition relative to the neutral fiber. Therefore, a stress strain curve cannot be directly extracted
from any measured data, which makes inverse methods necessary. This is also the reason why
bending tests are normally not used for monotonic loadings, due to the high effort for calculation
of stresses.

Compared to the previously described testing techniques for cyclic loadings, shear tests have cer-
tain advantages. In-plane shearing is symmetrical for both shear directions which is a pleasant
characteristic for reversed loadings. Usually, the shear deformation is realized by a translational
movement of opposing edges, distorting a rectangular area to a parallelogram. It can be shown,
that a shear test working as described above does have a constant strain rate, because the
sheared area is not changing. This is a general advantage of all shear tests which is very im-
portant when shear tests are carried out at higher temperatures. Despite the above mentioned
convenient characteristics, shear tests have to be carefully designed. The homogeneity of the
shear zone is depending on its dimensions, as discussed by [58]. Due to the inhomogeneous
distribution of stress and strain in the sheared area, the shear bridge width should be signifi-
cantly larger than the height. In Literature, various specimen geometries and test devices were
described [299], [256], [220]. Two opposing shear forces with shifted lines of action cause high
reaction moments which are the reasons for high loadings in the clamps and guides. All shear
tests have to cope with relative movement underneath the clamps and high experimental effort
to compensate undesired reaction moments. For sheet metal characterization, the one-sided
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shear test and the Miyauchi-test with two shear bridges are popular amongst other shear tests.
While the Miyauchi specimen, [220], can avoid a global reaction moment by using two sym-
metrically arranged shear zones, identical behavior of both shear zones cannot be guaranteed
because the principal stress directions are rotated by 90◦. This is particularly relevant when
the yield locus is shifted from the origin, which can be the result of previous plastic deformations.

Another shear test approach can be seen in the ASTM Standard B831-05. This suggested
specimen uses the kinematics of a tensile test and realizes the shear deformation by diagonal
slits in the sample geometry. [211] used a modified geometry based on this specimen for cyclic
shear testing of sheet metals. The experimental effort can be reduced because the clamping
devices are located at the upper and lower ends far away from the shear gauges and therefore
only loaded by normal forces almost without rotation moments. Still, the specimen may show
rotation of the shear gauge at larger deformation and buckling at compression loads, which make
additional supporting devices necessary. Buckling for compression loads can be prevented by
supporting devices without applying friction on the shear zone itself.

The plane torsion test, firstly introduced by [199] and further developed by [250] and [43],
is an alternative way to load a sheet specimen by in plane shearing. Plane torsion is applied
on a round sheet specimen by rotating the inner part against the outer rim. The free area in
between is deformed partly, whereas the highest stress and strains occur near the inner clamps.
To conduct cyclic plane torsion tests, [199] used distorted radial lines to track the deformation
history. [341] proposed a more efficient way to analyze cyclic plane torsion tests using digital
image correlation, which is able to obtain multiple cyclic shear curves from one single specimen
tested. The plane torsion test creates a high information density on every specimen due to the
gradient of stress and strain over the radius. A disadvantage is the distribution of load over the
whole circumference, averaging any effect of the anisotropy.

12.3. Twin Bridge Shear Specimen

Based on the plane torsion test described in the previous section, [61] introduced a modified
geometry with two shear bridges as shown in Figure 12.1(a). Two round slits are cut out of
the material, thus the shear deformation is localized in the two bridges, when the outer grip
is twisted in-plane against the inner grip, as can be seen in Figure 12.2(a). Compared to the
full specimen for the in-plane torsion test, an averaging of the anisotropic behavior over the
whole circumference is avoided. By arranging two identical shear zones on opposing positions,
the specimen can be twisted stably while the shear direction is the same relative to the rolling
direction. Figure 12.2(b) shows the characteristic geometrical features of a shear zone.

The width of the shear zone is defined by the angle and the radius rm of the slits. In the
following, the dimensions of the twin bridge specimen is chosen as:

rm = 21.5 mm, ∆r = 1 mm, ∆ϑ = 20◦, t = 1 mm . (12.3.1)

The radius of the inner clamps is 15 mm, the radius of the outer clamps is 30 mm. A specimen
is shown in Figure 12.1(b). Depending on the arrangement of the slit geometry and slit position,
linearization of the kinematic relations can be applied to receive equations for the shear stress
and shear strain:

γ = tan(α) =
θrm
∆r

, τ =
M

2t∆ϑr2
m

. (12.3.2)
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3. Twin bridge shear specimen

Based on the plane torsion test described in the previous
chapter, a modified geometry with two shear bridges as shown in
Fig. 1(a) was introduced [40]. Two round slits are cut out of the
material, thus the shear deformation is localized in the two
bridges when the outer grip is twisted in-plane against the inner
grip, as can be seen in Fig. 2(a). The clamping forces Fi and Fo are
applied on the inner and outer clamps. Compared to the full
specimen for the in-plane torsion test, an averaging of the
anisotropic behavior over the whole circumference is avoided.
By arranging two identical shear zones on opposing positions, the
specimen can be twisted stably while the shear direction is the
same relative to the rolling direction. Fig. 2(b) shows the char-
acteristic geometrical features of a shear zone.

The width of the shear zone is defined by the angle DW and the
radius rm of the slits. In the decision of the dimensions of the
shear zone, two conditions were taken into consideration: Firstly,
unlike the case in tubes under torsion or complete in-plane
torsion specimens where the shear zone does not involve any
discontinuities, a simple shear stress state cannot be supplied in
the vicinity of edges in twin bridge shear test or Miyauchi test.
Accordingly, in order to supply a dominating simple shearing
region, i.e. reduction of the edge effect in the overall structural
response, one should increase the shearing width of the sample as
far as possible, e.g. Bouvier and coworkers recommend a shear
gauge width to height ratio of 10:1, [30]. In the current test setup
this ratio is limited, which constitutes our second consideration.

Larger widths have a smearing effect over the directional depen-
dent mechanical quantities once persist. In other words, unin-
tended averaging of the anisotropic features of the underlying
material with larger angular bridge coverage might be the case,
which is not desired. Accordingly, depending on the authors’ own
experience, a ratio of 7:1 provides acceptable results. In the
following, the dimensions of the twin bridge specimen is there-
fore chosen as

rm ¼ 21:5 mm, Dr¼ 1 mm, DW¼ 201, t¼ 1 mm: ð1Þ

The sheet thickness t is 1 mm for all tested materials within
this work. The radius of the inner clamps is 15 mm, the radius of
the outer clamps is 30 mm. A specimen is shown in Fig. 1(b).
Relative movement between specimen and clamps would lead to
an error in the measured rotation angle y. To avoid this, a
specially structured clamp surface with small pyramids is used.
For the outer clamps, slippage can be simply prevented by
manually tightened screws, since the moment arm is large.
To ensure sufficient traction underneath the inner clamps,
a clamping force of 40 kN is applied there. The absence of a
notable slipping is confirmed by optically measured displace-
ments. Depending on the arrangement of the slit geometry and
slit position, linearization of the kinematic relations can be
applied to receive equations for the shear stress and theoretical
shear strain:

gtheoretical ¼ tan½a� ¼ yrm

Dr
, t¼ M

2tDWðrmÞ
2
: ð2Þ

Fig. 1. Twin bridge shear specimen based on the in-plane torsion test: (a) geometry; (b) specimen.
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Fig. 2. Schematic design of the twin bridge shear test: (a) clamping situation; (b) shear zone.
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(a) Geometry.

3. Twin bridge shear specimen

Based on the plane torsion test described in the previous
chapter, a modified geometry with two shear bridges as shown in
Fig. 1(a) was introduced [40]. Two round slits are cut out of the
material, thus the shear deformation is localized in the two
bridges when the outer grip is twisted in-plane against the inner
grip, as can be seen in Fig. 2(a). The clamping forces Fi and Fo are
applied on the inner and outer clamps. Compared to the full
specimen for the in-plane torsion test, an averaging of the
anisotropic behavior over the whole circumference is avoided.
By arranging two identical shear zones on opposing positions, the
specimen can be twisted stably while the shear direction is the
same relative to the rolling direction. Fig. 2(b) shows the char-
acteristic geometrical features of a shear zone.
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fore chosen as
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The sheet thickness t is 1 mm for all tested materials within
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the outer clamps is 30 mm. A specimen is shown in Fig. 1(b).
Relative movement between specimen and clamps would lead to
an error in the measured rotation angle y. To avoid this, a
specially structured clamp surface with small pyramids is used.
For the outer clamps, slippage can be simply prevented by
manually tightened screws, since the moment arm is large.
To ensure sufficient traction underneath the inner clamps,
a clamping force of 40 kN is applied there. The absence of a
notable slipping is confirmed by optically measured displace-
ments. Depending on the arrangement of the slit geometry and
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applied to receive equations for the shear stress and theoretical
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(b) Specimen.

Figure 12.1.: Twin bridge shear specimen based on the in-plane torsion test.

3. Twin bridge shear specimen

Based on the plane torsion test described in the previous
chapter, a modified geometry with two shear bridges as shown in
Fig. 1(a) was introduced [40]. Two round slits are cut out of the
material, thus the shear deformation is localized in the two
bridges when the outer grip is twisted in-plane against the inner
grip, as can be seen in Fig. 2(a). The clamping forces Fi and Fo are
applied on the inner and outer clamps. Compared to the full
specimen for the in-plane torsion test, an averaging of the
anisotropic behavior over the whole circumference is avoided.
By arranging two identical shear zones on opposing positions, the
specimen can be twisted stably while the shear direction is the
same relative to the rolling direction. Fig. 2(b) shows the char-
acteristic geometrical features of a shear zone.

The width of the shear zone is defined by the angle DW and the
radius rm of the slits. In the decision of the dimensions of the
shear zone, two conditions were taken into consideration: Firstly,
unlike the case in tubes under torsion or complete in-plane
torsion specimens where the shear zone does not involve any
discontinuities, a simple shear stress state cannot be supplied in
the vicinity of edges in twin bridge shear test or Miyauchi test.
Accordingly, in order to supply a dominating simple shearing
region, i.e. reduction of the edge effect in the overall structural
response, one should increase the shearing width of the sample as
far as possible, e.g. Bouvier and coworkers recommend a shear
gauge width to height ratio of 10:1, [30]. In the current test setup
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material with larger angular bridge coverage might be the case,
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Relative movement between specimen and clamps would lead to
an error in the measured rotation angle y. To avoid this, a
specially structured clamp surface with small pyramids is used.
For the outer clamps, slippage can be simply prevented by
manually tightened screws, since the moment arm is large.
To ensure sufficient traction underneath the inner clamps,
a clamping force of 40 kN is applied there. The absence of a
notable slipping is confirmed by optically measured displace-
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(a) Schematic design of the test.

3. Twin bridge shear specimen

Based on the plane torsion test described in the previous
chapter, a modified geometry with two shear bridges as shown in
Fig. 1(a) was introduced [40]. Two round slits are cut out of the
material, thus the shear deformation is localized in the two
bridges when the outer grip is twisted in-plane against the inner
grip, as can be seen in Fig. 2(a). The clamping forces Fi and Fo are
applied on the inner and outer clamps. Compared to the full
specimen for the in-plane torsion test, an averaging of the
anisotropic behavior over the whole circumference is avoided.
By arranging two identical shear zones on opposing positions, the
specimen can be twisted stably while the shear direction is the
same relative to the rolling direction. Fig. 2(b) shows the char-
acteristic geometrical features of a shear zone.

The width of the shear zone is defined by the angle DW and the
radius rm of the slits. In the decision of the dimensions of the
shear zone, two conditions were taken into consideration: Firstly,
unlike the case in tubes under torsion or complete in-plane
torsion specimens where the shear zone does not involve any
discontinuities, a simple shear stress state cannot be supplied in
the vicinity of edges in twin bridge shear test or Miyauchi test.
Accordingly, in order to supply a dominating simple shearing
region, i.e. reduction of the edge effect in the overall structural
response, one should increase the shearing width of the sample as
far as possible, e.g. Bouvier and coworkers recommend a shear
gauge width to height ratio of 10:1, [30]. In the current test setup
this ratio is limited, which constitutes our second consideration.

Larger widths have a smearing effect over the directional depen-
dent mechanical quantities once persist. In other words, unin-
tended averaging of the anisotropic features of the underlying
material with larger angular bridge coverage might be the case,
which is not desired. Accordingly, depending on the authors’ own
experience, a ratio of 7:1 provides acceptable results. In the
following, the dimensions of the twin bridge specimen is there-
fore chosen as

rm ¼ 21:5 mm, Dr¼ 1 mm, DW¼ 201, t¼ 1 mm: ð1Þ

The sheet thickness t is 1 mm for all tested materials within
this work. The radius of the inner clamps is 15 mm, the radius of
the outer clamps is 30 mm. A specimen is shown in Fig. 1(b).
Relative movement between specimen and clamps would lead to
an error in the measured rotation angle y. To avoid this, a
specially structured clamp surface with small pyramids is used.
For the outer clamps, slippage can be simply prevented by
manually tightened screws, since the moment arm is large.
To ensure sufficient traction underneath the inner clamps,
a clamping force of 40 kN is applied there. The absence of a
notable slipping is confirmed by optically measured displace-
ments. Depending on the arrangement of the slit geometry and
slit position, linearization of the kinematic relations can be
applied to receive equations for the shear stress and theoretical
shear strain:

gtheoretical ¼ tan½a� ¼ yrm

Dr
, t¼ M

2tDWðrmÞ
2
: ð2Þ

Fig. 1. Twin bridge shear specimen based on the in-plane torsion test: (a) geometry; (b) specimen.
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Fig. 2. Schematic design of the twin bridge shear test: (a) clamping situation; (b) shear zone.
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(b) Shear zone.

Figure 12.2.: Clamping of the specimen and shear zone geometry.

In Table 12.2, an overview of the previously described shear tests are given. Compared to
these available tests, the twin bridge shear test avoids the drawbacks for each test. It does not
show unwanted reaction moments because the torque moment is already the applied loading,
it shows identical behavior for both shear zones, it has no limitations in compression load like
the specimen according to the ASTM standard, and it does not average the influence of the
anisotropy like the conventional in-plane torsion test.

In a numerical analysis of the specimen the deformation field is shown in Figures 12.3(a) and
12.4(a) for rotation angles of 0.5◦ and 2.7◦. The regions with an equivalent plastic strain of 0.005
or more is colored. Two issues can be analyzed when considering these figures. Firstly, due to
the inhomogeneous distribution of strains, not all parts of the shear zone is loaded by ideal
shearing. In Figures 12.3(b) and 12.4(b), the strain of each element is drawn in the principal
strain plane. The green area represents the pure shear deformation. As can be seen there, the
major part between the slits can be seen as pure shear, while the deviations at the edges remain
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Table 12.2.: Overview of shear tests.

ID
Shear test
variant

Experimental characteristics
Load characteristics
in shear zone

1. Single-side
High load on clamps,
unwanted rotation moment

Simple shear

2. Miyauchi
Two symmetrical shear zones
provide more stability

Shear zones under
different load directions

3. ASTM B831-05
Conducted like a tensile test,
buckling tendency and
limitations in compression

Rotation of the shear
zone at larger strains

4. In-plane torsion
In-plane rotation of sheet,
high strains achievable

Measured torque is
averaged over whole
circumference for anisotropy

5.
Twin bridge
shear test

Like the in-plane torsion test,
reduced loads, no
unwanted reaction moments

No averaging over anisotropy,
both bridges loaded in
the same direction

small. The second issue is the diffuse outspread of plastic deformation to the surrounding regions
of the shear gauge.

(a) (b)

Figure 12.3.: Development of shear strain at rotation angle θ = 0.5◦: (a) Contours for strain
ratio, (b) Strain components in major principal directions.

As a result, Equation (12.3.2) cannot be applied to obtain correct strain values. The calculated
strains will be larger compared to the real plastic shear strain in the shear zone, as shown in
Figure 12.5(a). For DC06 and DP600, the measured shear strain using digital image correlation
is compared to the theoretical values according to Equation (12.3.2). With increasing rotation
angle θ, significantly lower curves are measured for both materials. In Figure 12.5(b), the
quotient of measured shear strain and calculated shear strain is plotted over θ. Here, the
differences between DC06 and DP600 become visible. While DC06 shows an almost constant
quotient of 0.4, the quotient for DP600 is smoothly increasing until this value due to its different
hardening behavior. It is obvious that a direct calculation of strains cannot be done from the
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(a) (b)

Figure 12.4.: Development of shear strain at rotation angle θ = 2.7◦: (a) Contours for strain
ratio, (b) Strain components in major principal directions.

measured rotation angle. However, Equation (12.3.2) is not affected by the elastic deformation
and thus is applicable for the shear stress τ .

closer to tensile (compressive) uniaxial stress states, with the
assumption of plastic incompressibility. It is notable that green
color covers the majority of the bridge, which shows that the pure
shear mode is dominating in accordance with the intended
loading state. As can be seen there, the major part between the
slits can be seen as pure shear, while the deviations at the edges
remain small. The second issue is the diffuse outspread of plastic
deformation to the surrounding regions of the shear gauge.

As a result, Eq. (2) cannot be applied to obtain correct strain
values. The calculated strains will be larger compared to the real
plastic shear strain in the shear zone, as shown in Fig. 5. For DC06
and DP600, the measured shear strain using digital image corre-
lation is compared to the theoretical values according to Eq. (2).
The resolution of the optical measurements is 0.1 mm. To deter-
mine the strain within the shear zone, the strain values along a
path between the two opposing edges are evaluated and aver-
aged. With increasing rotation angle y, significantly lower curves
are measured for both materials. In Fig. 6, the quotient of
measured shear strain and calculated shear strain is plotted over
y. Here, the differences between DC06 and DP600 become visible.
While DC06 shows an almost constant quotient of 0.4, the quotient
for DP600 is smoothly increasing until this value due to its

different hardening behavior. It is obvious that a direct calculation
of strains cannot be done from the measured rotation angle.
However, the stress calculation in Eq. (2) is not affected by the
elastic deformation, and thus, is applicable for the shear stress t.

There are several possibilities to avoid or minimize errors in
the strain data when conducting the twin bridge test. One
approach can be measuring the shear strain by digital image
correlation. This would provide direct information from the shear
zone without involving the rotation angle but requires higher
experimental effort in specimen preparation and calibration of
the measurement devices. Another way is to position the clamp-
ing in direct proximity of the shear bridges, leaving no free space
around it. This would reduce the diffuse plastic region beneath
the shear bridge, but is not able to completely prevent erroneous
strain calculation using the rotation angle due to slipping under-
neath the clamps. Such a clamping leaving only a small gap would
complicate optical strain measurements during testing. Instead of
clamping the free area to avoid diffuse deformation outspread
next to the shear bridge, a weakening of the shear bridge by
reducing the sheet thickness locally will also lead to a more
concentrated deformation field in the desired region. However,
cutting out material in order to reduce the sheet thickness is an
expensive procedure, increasing the preparation time and cost for
each specimen considerably. A completely different solution
would be an inverse approach to determine material parameters
directly without any measured strain information, only using the
measured data of torque, angle, and a finite element model.
Especially for a model which involves combined isotropic and
kinematic hardening behavior, this strategy would be most
effective since no additional measurement and experimental
devices need to be set up or modified.

The experimental device is identical to the setup of the
standard in-plane torsion test described by [37], as shown in
Fig. 7. A ZWICK universal testing machine realizes the inner
clamping force, while the outer clamps are tightened by screws.
The moment is provided by a servo motor and a worm gear. The
rotation is applied on the outer parts of the device, while the
inner clamps are fixed and loaded by the universal testing
machine. During testing, the rotation angle and the torque are
measured at a sampling rate of 5 Hz.

The experiments were conducted for one single straining cycle,
at first twisting until a certain rotation angle and then twisting
back until the rotation angle is 01 again. The strain rate resulting
from the rotation speed is about _g � 0:01 per second.

4. Inverse parameter identification scheme

As in many sheet metal characterization tests like Miyauchi
test or plane strain tension test, the proposed twin bridge shear
test has a plastic deformation zone which loses its homogeneity
with the increasing deformation. This makes it difficult to apply
analytical methods to calculate the strain and stresses in the
plastic zone from the measured moments and rotation angles. In
addition, the twin bridge shear test shows a diffuse plastic region
around the shear bridge which does not allow the application of
an analytical equation to calculate the strain using the rotation
angle, as described above. Therefore, an inverse parameter iden-
tification scheme is utilized to obtain the material parameters.
Inverse methods enable the usage of unusual test set-ups or even
the forming process itself [41] since the assumption of homo-
geneous deformation fields is not needed anymore. The applica-
tion of this method in the field of metal forming makes use of the
experimental measures like tool forces and tool displacements
[42,43]. The implemented scheme in this work identifies the
material parameters in an iterative way, in which for each

Fig. 5. Comparison of measured to theoretically calculated shear strain, from

Eq. (2).

Fig. 6. Development of the quotient of measured shear strain to theoretically

calculated shear strain, from Eq. (2).
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(a)

closer to tensile (compressive) uniaxial stress states, with the
assumption of plastic incompressibility. It is notable that green
color covers the majority of the bridge, which shows that the pure
shear mode is dominating in accordance with the intended
loading state. As can be seen there, the major part between the
slits can be seen as pure shear, while the deviations at the edges
remain small. The second issue is the diffuse outspread of plastic
deformation to the surrounding regions of the shear gauge.

As a result, Eq. (2) cannot be applied to obtain correct strain
values. The calculated strains will be larger compared to the real
plastic shear strain in the shear zone, as shown in Fig. 5. For DC06
and DP600, the measured shear strain using digital image corre-
lation is compared to the theoretical values according to Eq. (2).
The resolution of the optical measurements is 0.1 mm. To deter-
mine the strain within the shear zone, the strain values along a
path between the two opposing edges are evaluated and aver-
aged. With increasing rotation angle y, significantly lower curves
are measured for both materials. In Fig. 6, the quotient of
measured shear strain and calculated shear strain is plotted over
y. Here, the differences between DC06 and DP600 become visible.
While DC06 shows an almost constant quotient of 0.4, the quotient
for DP600 is smoothly increasing until this value due to its

different hardening behavior. It is obvious that a direct calculation
of strains cannot be done from the measured rotation angle.
However, the stress calculation in Eq. (2) is not affected by the
elastic deformation, and thus, is applicable for the shear stress t.

There are several possibilities to avoid or minimize errors in
the strain data when conducting the twin bridge test. One
approach can be measuring the shear strain by digital image
correlation. This would provide direct information from the shear
zone without involving the rotation angle but requires higher
experimental effort in specimen preparation and calibration of
the measurement devices. Another way is to position the clamp-
ing in direct proximity of the shear bridges, leaving no free space
around it. This would reduce the diffuse plastic region beneath
the shear bridge, but is not able to completely prevent erroneous
strain calculation using the rotation angle due to slipping under-
neath the clamps. Such a clamping leaving only a small gap would
complicate optical strain measurements during testing. Instead of
clamping the free area to avoid diffuse deformation outspread
next to the shear bridge, a weakening of the shear bridge by
reducing the sheet thickness locally will also lead to a more
concentrated deformation field in the desired region. However,
cutting out material in order to reduce the sheet thickness is an
expensive procedure, increasing the preparation time and cost for
each specimen considerably. A completely different solution
would be an inverse approach to determine material parameters
directly without any measured strain information, only using the
measured data of torque, angle, and a finite element model.
Especially for a model which involves combined isotropic and
kinematic hardening behavior, this strategy would be most
effective since no additional measurement and experimental
devices need to be set up or modified.

The experimental device is identical to the setup of the
standard in-plane torsion test described by [37], as shown in
Fig. 7. A ZWICK universal testing machine realizes the inner
clamping force, while the outer clamps are tightened by screws.
The moment is provided by a servo motor and a worm gear. The
rotation is applied on the outer parts of the device, while the
inner clamps are fixed and loaded by the universal testing
machine. During testing, the rotation angle and the torque are
measured at a sampling rate of 5 Hz.

The experiments were conducted for one single straining cycle,
at first twisting until a certain rotation angle and then twisting
back until the rotation angle is 01 again. The strain rate resulting
from the rotation speed is about _g � 0:01 per second.

4. Inverse parameter identification scheme

As in many sheet metal characterization tests like Miyauchi
test or plane strain tension test, the proposed twin bridge shear
test has a plastic deformation zone which loses its homogeneity
with the increasing deformation. This makes it difficult to apply
analytical methods to calculate the strain and stresses in the
plastic zone from the measured moments and rotation angles. In
addition, the twin bridge shear test shows a diffuse plastic region
around the shear bridge which does not allow the application of
an analytical equation to calculate the strain using the rotation
angle, as described above. Therefore, an inverse parameter iden-
tification scheme is utilized to obtain the material parameters.
Inverse methods enable the usage of unusual test set-ups or even
the forming process itself [41] since the assumption of homo-
geneous deformation fields is not needed anymore. The applica-
tion of this method in the field of metal forming makes use of the
experimental measures like tool forces and tool displacements
[42,43]. The implemented scheme in this work identifies the
material parameters in an iterative way, in which for each

Fig. 5. Comparison of measured to theoretically calculated shear strain, from

Eq. (2).

Fig. 6. Development of the quotient of measured shear strain to theoretically

calculated shear strain, from Eq. (2).
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(b)

Figure 12.5.: (a) Comparison of measured to theoretically calculated shear strain, (b) Develop-
ment of the quotient of measured shear strain to calculated shear strain.

There are several possibilities to avoid or minimize errors in the strain data when conducting
the twin bridge test. One approach can be measuring the shear strain by digital image correla-
tion. This would provide direct information from the shear zone without involving the rotation
angle but requires higher experimental effort in specimen preparation and calibration of the
measurement devices. Another way is to position the clamping in direct proximity of the shear
bridges, leaving no free space around it. This would reduce the diffuse plastic region beneath
the shear bridge, but is not able to complectly prevent erroneous strain calculation using the
rotation angle due to slipping underneath the clamps. Such a clamping leaving only a small gap
would complicate optical strain measurements during testing. Instead of clamping the free area
to avoid diffuse deformation outspread next to the shear bridge, a weakening of the shear bridge
by reducing the sheet thickness locally will also lead to a more concentrated deformation field
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in the desired region. However, cutting out material in order to reduce the sheet thickness is an
expensive procedure, increasing the preparation time and cost for each specimen considerably.
A completely different solution would be an inverse approach to determine material parame-
ters directly without any measured strain information, only using the measured data of torque,
angle and a finite element model. Especially for a model which involves combined isotropic
and kinematic hardening behavior, this strategy would be most effective, since no additional
measurement and experimental devices need to be set up or modified.

The experimental device is identical to the setup of the standard in-plane torsion test described
by [341], as shown in Figure 12.6. A ZWICK universal testing machine realizes the inner clamp-
ing force, while the outer clamps are tightened by screws. The moment is provided by a servo
motor and a worm gear. The rotation is applied on the outer parts of the device, while the inner
clamps are fixed and loaded by the universal testing machine. During testing, the rotation angle
and the torque moment are measured at a sampling rate of 5 Hz.

iteration a finite element simulation is run and the numerical
results are compared to the experimental ones.

As reference, the moment–angle curves of the experiments are
used. In order to form the objective function which is minimized
by the optimization algorithm, the experimental and numerical
curves having different discretizations are linearly interpolated at
the same rotation angle values. For each forward and backward
curve 100 integration intervals are used nf and nb, adding up to
200 data points for one cycle. No relative weighting between the
forward and backward curves is applied. The objective function is
then formed by calculating the differences in moments at the
same shear angles and adding the squares of differences. This way

the objective function is formed as follows:

F¼FforwardþFbackward, ð3Þ

where the additive components Fforward and Fbackward are

Fforward ¼
Xnf

i ¼ 1

ðMexp,i�Msim,iÞ
2, ð4Þ

Fbackward ¼
Xnb

i ¼ 1

ðMexp,i�Msim,iÞ
2: ð5Þ

In order to minimize the objective function, the Trust Region
Reflective Method is utilized which suits itself to non-linear least
square optimization problems [44,45]. The optimization process
involves the approximate solution of a large linear system based
on the method of preconditioned conjugate gradients (PCG).

The finite element model that is to be run in each iteration is
constructed in Abaqus-Explicit, see Fig. 8, with 4676 shell ele-
ments with reduced integration. The average element size in the
plastic region is selected as 0.4 mm as a result of a convergence
analysis that is performed according to the moment–rotation
angle diagrams and the resolution of the strain gradient predic-
tions especially along the width of the shear zone. It should be
noted that, at the current strain levels, the inhomogeneous
deformation is rather diffuse and not localized into a narrow
deformation band. In this respect, the selected mesh size, which
for a weak discontinuity or localization phenomena can act as a
length scale, is not decisive on the material response. This might
not be the case when a full deformation history until fracture
preceded by a localization with softening is concerned.

In order to automate the whole optimization process a
MATLAB code is written which starts the ABAQUS simulations,
reads the outputs by calling a Python script, compares the results
with the experimental measurements, builds and minimizes the
objective function, Fig. 9.

The used material model is an Armstrong–Frederick Kinematic
Hardening model whose details are given in the Appendix. The
initial yield stress values, s0, of the analyzed materials are
obtained from the uniaxial tension tests in the rolling direction
and they are set as constants. Only the remaining four material
parameters are varied along the iterations. As the initial guess, the
same values are given for each material. These values are selected
in such a way that they only represent the expected order of
magnitudes of the parameters. Therefore, for the stress-like
measures (s1, C and Q) 100.0 and for the exponent d 10:0 are
given as the initial guess values.

Throughout the analysis the progress of the values of the
objective function and material parameters are tracked in order
to check whether the parameters converge to a stable value.

Rigid surface
under the punch (not modeled)

Fixed
nodes

Element size: 0.4 mm

Nodes with
angular rotation

Fig. 8. Finite element model of the proposed specimen.

Fig. 7. Experimental device for the twin bridge shear test.
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Figure 12.6.: Experimental device for the twin bridge shear test.

The Experiments were conducted for one single straining cycle, at first twisting until a certain
rotation angle and then twisting back until the rotation angle is 0◦ again. The strain rate
resulting from the rotation speed is about γ̇ ' 0.01 per second.
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12.4. Inverse Parameter Identification Scheme

As in many sheet metal characterization tests like Miyauchi test or plane strain tension test,
the proposed twin bridge shear test has a plastic deformation zone which loses its homogeneity
with the increasing deformation. This makes it difficult to apply analytical methods to calculate
the strain and stresses in the plastic zone from the measured moments and rotation angles. In
addition, the twin bridge shear test show a diffuse plastic region around the shear bridge which
does not allow the application of a analytical equation to calculate the strain using the rotation
angle, as described above. Therefore an inverse parameter identification scheme is utilized to
obtain the material parameters. Inverse methods enable the usage of unusual test set-ups or
even the forming process itself [311], since the assumption of homogeneous deformation fields is
not needed anymore. The application of this method in the field of metal forming makes use
of the experimental measures like tool forces and tool displacements, [97] and [98]. The imple-
mented scheme in this chapter identifies the material parameters in an iterative way, in which
for each iteration a finite element simulation is run and the numerical results are compared to
the experimental ones.

As the reference, the moment-angle curves of the experiments are used. In order to form the
objective function which is minimized by the optimization algorithm the experimental and nu-
merical curves having different discretizations are linearly interpolated at the same rotation angle
values. For each forward and backward curve 100 integration intervals are used, adding up to
200 data points for one cycle. No relative weighting between the forward and backward curves
is applied. The objective function is then formed by calculating the differences in moments at
the same shear angles and adding the squares of differences. By this way the objective function
is formed as follows:

Φ = Φforward + Φbackward , (12.4.1)

where the additive components Φforward and Φbackward are

Φforward =
∑nf

i=1

[
Mexp,i −Msim,i

Melastic

]2

and Φbackward =
∑nb

i=1

[
Mexp,i −Msim,i

Melastic

]2

. (12.4.2)

In order to minimize the objective function the Trust Region Reflective Method is utilized
which suits itself to nonlinear least square optimization problems, [80] and [81]. The optimiza-
tion process involves the approximate solution of a large linear system based on the method of
preconditioned conjugate gradients (PCG).

The finite element model that is to be run in each iteration is constructed in Abaqus/Explicit,
see Figure 12.7, with 4676 shell elements with reduced integration.

In order to automate the whole optimization process a Matlab code is written which starts the
Abaqus simulations, reads the outputs by calling a Python script, compares the results with
the experimental measurements, builds and minimizes the objective function, Figure 12.8.

The used material model is an Armstrong-Frederick Kinematic Hardening model whose details
are given in the appendices. Material Parameters are (Voce+AF):

q(α) = Kα+ [σ∞ − σ0][1− exp(−δα)] . (12.4.3)

The initial yield stress values, σ0, of the analyzed materials are obtained from the uniaxial ten-
sion tests in the rolling direction and they are set as constants. Only the remaining 4 material
parameters are varied along the iterations. As the initial guess, the same values are given for
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iteration a finite element simulation is run and the numerical
results are compared to the experimental ones.

As reference, the moment–angle curves of the experiments are
used. In order to form the objective function which is minimized
by the optimization algorithm, the experimental and numerical
curves having different discretizations are linearly interpolated at
the same rotation angle values. For each forward and backward
curve 100 integration intervals are used nf and nb, adding up to
200 data points for one cycle. No relative weighting between the
forward and backward curves is applied. The objective function is
then formed by calculating the differences in moments at the
same shear angles and adding the squares of differences. This way

the objective function is formed as follows:

F¼FforwardþFbackward, ð3Þ

where the additive components Fforward and Fbackward are

Fforward ¼
Xnf

i ¼ 1

ðMexp,i�Msim,iÞ
2, ð4Þ

Fbackward ¼
Xnb

i ¼ 1

ðMexp,i�Msim,iÞ
2: ð5Þ

In order to minimize the objective function, the Trust Region
Reflective Method is utilized which suits itself to non-linear least
square optimization problems [44,45]. The optimization process
involves the approximate solution of a large linear system based
on the method of preconditioned conjugate gradients (PCG).

The finite element model that is to be run in each iteration is
constructed in Abaqus-Explicit, see Fig. 8, with 4676 shell ele-
ments with reduced integration. The average element size in the
plastic region is selected as 0.4 mm as a result of a convergence
analysis that is performed according to the moment–rotation
angle diagrams and the resolution of the strain gradient predic-
tions especially along the width of the shear zone. It should be
noted that, at the current strain levels, the inhomogeneous
deformation is rather diffuse and not localized into a narrow
deformation band. In this respect, the selected mesh size, which
for a weak discontinuity or localization phenomena can act as a
length scale, is not decisive on the material response. This might
not be the case when a full deformation history until fracture
preceded by a localization with softening is concerned.

In order to automate the whole optimization process a
MATLAB code is written which starts the ABAQUS simulations,
reads the outputs by calling a Python script, compares the results
with the experimental measurements, builds and minimizes the
objective function, Fig. 9.

The used material model is an Armstrong–Frederick Kinematic
Hardening model whose details are given in the Appendix. The
initial yield stress values, s0, of the analyzed materials are
obtained from the uniaxial tension tests in the rolling direction
and they are set as constants. Only the remaining four material
parameters are varied along the iterations. As the initial guess, the
same values are given for each material. These values are selected
in such a way that they only represent the expected order of
magnitudes of the parameters. Therefore, for the stress-like
measures (s1, C and Q) 100.0 and for the exponent d 10:0 are
given as the initial guess values.

Throughout the analysis the progress of the values of the
objective function and material parameters are tracked in order
to check whether the parameters converge to a stable value.
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nodes

Element size: 0.4 mm
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angular rotation

Fig. 8. Finite element model of the proposed specimen.

Fig. 7. Experimental device for the twin bridge shear test.
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Figure 12.7.: Finite element model of the proposed specimen.

The normalized values of the material parameters and the
objective function for the case of DP600 can be seen in Fig. 10.
The objective function is reduced drastically after 30 iterations
being equal to 0.4% of the initial value. However, the iterations go
on and after 80 iterations the minimum is reached with 0.2% of
the initial value. After this point the algorithm perturbs the
parameters (peaks in the figure) and go back again to the values
obtained at 80th iteration and the change in the material

parameters is less than 0.1%. The values at that point are used
as the result of the parameter identification procedure. The
development of the material parameters of TRIP700 shows a
similar behavior. In the case of DC06 the objective function is
reduced more rapidly compared to the DP600. Just after 25
iterations the objective function value is reduced to 0.1% of its
initial value. After this point the change in the guessed material
parameters merely consists of the perturbations of the optimiza-
tion algorithm.

5. Results and discussion

The measured results of the cyclic experiments and the
corresponding results from the parameter identification can be
seen in Fig. 11(a)–(c). Each diagram contains three curves show-
ing the moment over the rotation angle. Although the experi-
mental curves are resulting from the measured moment and
rotation angle, they show the same characteristics as a material
stress–strain curve. After a linear increase representing the elastic
zone, the plastic hardening is also reproduced. The elastic unload-
ing and load reversal show smooth transition and a lower
moment measured after the re-yielding.

The experimental results can be compared to the identified
material parameters according to the combined hardening model
and the model showing only pure isotropic hardening. To obtain
the curve for isotropic hardening, the kinematic parts of the
material model was set inactive, while the experimental data is
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Fig. 10. Course of the material parameters and objective functions along the iterations for (a) DP600; (b) DC06; (c) TRIP700.
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Figure 12.8.: Framework of the optimization algorithm.

each material. These values are selected in such a way that they only represent the expected or-
der of magnitudes of the parameters. Therefore for the stress-like measures σ∞ = 100, C = 100
and Q = 100 and for the exponent δ = 10 are selected as the initial guesses.

Throughout the analysis the progress of the values of the objective function and material pa-
rameters are tracked in order to check whether the parameters converge to a stable value. The
normalized values of the material parameters and the objective function for the case of DP600
can be seen in Figure 12.9. The objective function is reduced drastically after 30 iterations
being equal to 0.4% of the initial value. However, the iterations go on and after 80 iterations the
minimum is reached with 0.2% of the initial value. After this point the algorithm perturbates
the parameters (peaks in the figure) and go back again to the values obtained at 80th iteration
and the change in the material parameters is less than 0.1%. The values at that point are
used as the result of the parameter identification procedure.The development of the material
parameters of TRIP700 shows a similar behavior. In the case of DC06 the objective function
is reduced more rapidly compared to the DP600. Just after 25 iterations the objective function
value is reduced to 0.1% of its initial value. After this point the change in the guessed material
parameters merely consists of the perturbations of the optimization algorithm.
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The normalized values of the material parameters and the
objective function for the case of DP600 can be seen in Fig. 10.
The objective function is reduced drastically after 30 iterations
being equal to 0.4% of the initial value. However, the iterations go
on and after 80 iterations the minimum is reached with 0.2% of
the initial value. After this point the algorithm perturbs the
parameters (peaks in the figure) and go back again to the values
obtained at 80th iteration and the change in the material

parameters is less than 0.1%. The values at that point are used
as the result of the parameter identification procedure. The
development of the material parameters of TRIP700 shows a
similar behavior. In the case of DC06 the objective function is
reduced more rapidly compared to the DP600. Just after 25
iterations the objective function value is reduced to 0.1% of its
initial value. After this point the change in the guessed material
parameters merely consists of the perturbations of the optimiza-
tion algorithm.

5. Results and discussion

The measured results of the cyclic experiments and the
corresponding results from the parameter identification can be
seen in Fig. 11(a)–(c). Each diagram contains three curves show-
ing the moment over the rotation angle. Although the experi-
mental curves are resulting from the measured moment and
rotation angle, they show the same characteristics as a material
stress–strain curve. After a linear increase representing the elastic
zone, the plastic hardening is also reproduced. The elastic unload-
ing and load reversal show smooth transition and a lower
moment measured after the re-yielding.

The experimental results can be compared to the identified
material parameters according to the combined hardening model
and the model showing only pure isotropic hardening. To obtain
the curve for isotropic hardening, the kinematic parts of the
material model was set inactive, while the experimental data is
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(a)

The normalized values of the material parameters and the
objective function for the case of DP600 can be seen in Fig. 10.
The objective function is reduced drastically after 30 iterations
being equal to 0.4% of the initial value. However, the iterations go
on and after 80 iterations the minimum is reached with 0.2% of
the initial value. After this point the algorithm perturbs the
parameters (peaks in the figure) and go back again to the values
obtained at 80th iteration and the change in the material

parameters is less than 0.1%. The values at that point are used
as the result of the parameter identification procedure. The
development of the material parameters of TRIP700 shows a
similar behavior. In the case of DC06 the objective function is
reduced more rapidly compared to the DP600. Just after 25
iterations the objective function value is reduced to 0.1% of its
initial value. After this point the change in the guessed material
parameters merely consists of the perturbations of the optimiza-
tion algorithm.

5. Results and discussion

The measured results of the cyclic experiments and the
corresponding results from the parameter identification can be
seen in Fig. 11(a)–(c). Each diagram contains three curves show-
ing the moment over the rotation angle. Although the experi-
mental curves are resulting from the measured moment and
rotation angle, they show the same characteristics as a material
stress–strain curve. After a linear increase representing the elastic
zone, the plastic hardening is also reproduced. The elastic unload-
ing and load reversal show smooth transition and a lower
moment measured after the re-yielding.

The experimental results can be compared to the identified
material parameters according to the combined hardening model
and the model showing only pure isotropic hardening. To obtain
the curve for isotropic hardening, the kinematic parts of the
material model was set inactive, while the experimental data is
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(b)

The normalized values of the material parameters and the
objective function for the case of DP600 can be seen in Fig. 10.
The objective function is reduced drastically after 30 iterations
being equal to 0.4% of the initial value. However, the iterations go
on and after 80 iterations the minimum is reached with 0.2% of
the initial value. After this point the algorithm perturbs the
parameters (peaks in the figure) and go back again to the values
obtained at 80th iteration and the change in the material

parameters is less than 0.1%. The values at that point are used
as the result of the parameter identification procedure. The
development of the material parameters of TRIP700 shows a
similar behavior. In the case of DC06 the objective function is
reduced more rapidly compared to the DP600. Just after 25
iterations the objective function value is reduced to 0.1% of its
initial value. After this point the change in the guessed material
parameters merely consists of the perturbations of the optimiza-
tion algorithm.

5. Results and discussion

The measured results of the cyclic experiments and the
corresponding results from the parameter identification can be
seen in Fig. 11(a)–(c). Each diagram contains three curves show-
ing the moment over the rotation angle. Although the experi-
mental curves are resulting from the measured moment and
rotation angle, they show the same characteristics as a material
stress–strain curve. After a linear increase representing the elastic
zone, the plastic hardening is also reproduced. The elastic unload-
ing and load reversal show smooth transition and a lower
moment measured after the re-yielding.

The experimental results can be compared to the identified
material parameters according to the combined hardening model
and the model showing only pure isotropic hardening. To obtain
the curve for isotropic hardening, the kinematic parts of the
material model was set inactive, while the experimental data is
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(c)

Figure 12.9.: Course of the material parameters and objective functions along the iterations for
DP600, DC06 and TRIP700.

12.5. Results and Discussion

The measured results of the cyclic experiments and the corresponding results from the parameter
identification can be seen in the Figures 12.10(a), 12.10(b) and 12.10(c). Each diagram contains
three curves showing the moment over the rotation angle. Although the experimental curves are
resulting from the measured moment and rotation angle, they show the same characteristics as
a material stress strain curve. After an linear increase representing the elastic zone, the plastic
hardening is also reproduced. The elastic unloading and load reversal show smooth transition
and a lower moment measured after the re-yielding.

The experimental results can be compared to the identified material parameters according to
the combined hardening model and the model showing only pure isotropic hardening. To obtain
the curve for isotropic hardening, the kinematic parts of the material model was set inactive,
while the experimental data is considered for the initial monotonic loading until the point of load
reversal. This would represent the default material model of the common finite element codes,
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considered for the initial monotonic loading until the point of
load reversal. This would represent the default material model of
the common finite element codes when no kinematic hardening is
considered. In the case of the deep drawing steel DC06 the
monotonic hardening can be reproduced correctly by both mod-
els. During load reversal both models miss the smooth transition
which begins at about �10 Nm. The resolved curves stick to a
linear elastic unloading path. However, the combined modeling
is able to fit the material behavior again after a certain amount
of reversed shearing. It is noticeable that the isotropic and
combined kinematic hardening curves are almost parallel after
re-yielding.

The DP600 alloy was not predicted well at the initial hardening
phase. It seems that the first transition between elastic and plastic
deformation is smooth already, which may be the result of the
dual phase structure with different yield strengths. The response
at the load reversal point shows again a much better result by the
combined hardening model, while the isotropic hardening model
clearly overestimates the stress for re-yielding.

TRIP700 was better reproduced at the initial hardening zone
compared to DP600, although it has a multi-phase microstructure,
too. The combined model again is significantly better at the
transition zone at load reversal, however, not perfectly fitting as
for the other materials.

It is obvious that all three steels exhibit a certain portion of
kinematic hardening, showing a smooth transition at re-yielding
and a lower stress level during the reversal of the shear deforma-
tion. As a summary, the obtained parameter values are listed in
Table 3.

Since moment and angle curves are integral values they do not
directly provide any information about the strain distribution

inside the shear zone. However, it can be shown that the strain
distribution is correctly predicted in the numerical simulation
during the parameter identification process. In Fig. 12, the major
strains are compared for DC06 between an optical measurement
and the numerical calculation during the last iteration of the
parameter identification procedure. Fig. 12(c) shows the position
and direction of the longitudinal and transverse cut. In
Fig. 12(a) and (b) the major strain is drawn over the cut length
for the rotation angles y¼ 11 and y¼ 21. Considering the strain
state in Figs. 3 and 4, shear condition can be assumed on the
section cuts, leading to the same but negative values for the
minor strains. For both cuts, a good agreement between simula-
tion and experimental results can be seen. The longitudinal cut
shows lower strains in the center and increasing strain to the
outer regions and a decrease again next to the edges, where the
optical strain measurement cannot provide reliable data anymore.
The transverse cut shows the highest strain in the center and
decreasing values on both sides. Therefore, the proposed method
is capable of correctly predicting the inhomogeneity within the
shear zone, allowing reliable parameter identification only using
moment and angle data.

Fig. 11. Result curves for cyclic shearing: (a) DC06; (b) DP600; (c) TRIP700.

Table 3
Identified material parameters for the combined isotropic-kinematic hardening

model.

ID Material s0 (fixed) (MPa) s1 (MPa) d C Q (MPa)

1. DC06 132 293.31 16.04 12.23 613.51

2. DP600 395 460.35 9.60 30.26 8408.43

3. TRIP700 460 655.85 5.82 22.22 7377.44

Q. Yin et al. / International Journal of Mechanical Sciences 59 (2012) 31–43 39

(a) DC06.

considered for the initial monotonic loading until the point of
load reversal. This would represent the default material model of
the common finite element codes when no kinematic hardening is
considered. In the case of the deep drawing steel DC06 the
monotonic hardening can be reproduced correctly by both mod-
els. During load reversal both models miss the smooth transition
which begins at about �10 Nm. The resolved curves stick to a
linear elastic unloading path. However, the combined modeling
is able to fit the material behavior again after a certain amount
of reversed shearing. It is noticeable that the isotropic and
combined kinematic hardening curves are almost parallel after
re-yielding.

The DP600 alloy was not predicted well at the initial hardening
phase. It seems that the first transition between elastic and plastic
deformation is smooth already, which may be the result of the
dual phase structure with different yield strengths. The response
at the load reversal point shows again a much better result by the
combined hardening model, while the isotropic hardening model
clearly overestimates the stress for re-yielding.

TRIP700 was better reproduced at the initial hardening zone
compared to DP600, although it has a multi-phase microstructure,
too. The combined model again is significantly better at the
transition zone at load reversal, however, not perfectly fitting as
for the other materials.

It is obvious that all three steels exhibit a certain portion of
kinematic hardening, showing a smooth transition at re-yielding
and a lower stress level during the reversal of the shear deforma-
tion. As a summary, the obtained parameter values are listed in
Table 3.

Since moment and angle curves are integral values they do not
directly provide any information about the strain distribution

inside the shear zone. However, it can be shown that the strain
distribution is correctly predicted in the numerical simulation
during the parameter identification process. In Fig. 12, the major
strains are compared for DC06 between an optical measurement
and the numerical calculation during the last iteration of the
parameter identification procedure. Fig. 12(c) shows the position
and direction of the longitudinal and transverse cut. In
Fig. 12(a) and (b) the major strain is drawn over the cut length
for the rotation angles y¼ 11 and y¼ 21. Considering the strain
state in Figs. 3 and 4, shear condition can be assumed on the
section cuts, leading to the same but negative values for the
minor strains. For both cuts, a good agreement between simula-
tion and experimental results can be seen. The longitudinal cut
shows lower strains in the center and increasing strain to the
outer regions and a decrease again next to the edges, where the
optical strain measurement cannot provide reliable data anymore.
The transverse cut shows the highest strain in the center and
decreasing values on both sides. Therefore, the proposed method
is capable of correctly predicting the inhomogeneity within the
shear zone, allowing reliable parameter identification only using
moment and angle data.

Fig. 11. Result curves for cyclic shearing: (a) DC06; (b) DP600; (c) TRIP700.

Table 3
Identified material parameters for the combined isotropic-kinematic hardening

model.

ID Material s0 (fixed) (MPa) s1 (MPa) d C Q (MPa)

1. DC06 132 293.31 16.04 12.23 613.51

2. DP600 395 460.35 9.60 30.26 8408.43

3. TRIP700 460 655.85 5.82 22.22 7377.44

Q. Yin et al. / International Journal of Mechanical Sciences 59 (2012) 31–43 39

(b) DP600.

considered for the initial monotonic loading until the point of
load reversal. This would represent the default material model of
the common finite element codes when no kinematic hardening is
considered. In the case of the deep drawing steel DC06 the
monotonic hardening can be reproduced correctly by both mod-
els. During load reversal both models miss the smooth transition
which begins at about �10 Nm. The resolved curves stick to a
linear elastic unloading path. However, the combined modeling
is able to fit the material behavior again after a certain amount
of reversed shearing. It is noticeable that the isotropic and
combined kinematic hardening curves are almost parallel after
re-yielding.

The DP600 alloy was not predicted well at the initial hardening
phase. It seems that the first transition between elastic and plastic
deformation is smooth already, which may be the result of the
dual phase structure with different yield strengths. The response
at the load reversal point shows again a much better result by the
combined hardening model, while the isotropic hardening model
clearly overestimates the stress for re-yielding.

TRIP700 was better reproduced at the initial hardening zone
compared to DP600, although it has a multi-phase microstructure,
too. The combined model again is significantly better at the
transition zone at load reversal, however, not perfectly fitting as
for the other materials.

It is obvious that all three steels exhibit a certain portion of
kinematic hardening, showing a smooth transition at re-yielding
and a lower stress level during the reversal of the shear deforma-
tion. As a summary, the obtained parameter values are listed in
Table 3.

Since moment and angle curves are integral values they do not
directly provide any information about the strain distribution

inside the shear zone. However, it can be shown that the strain
distribution is correctly predicted in the numerical simulation
during the parameter identification process. In Fig. 12, the major
strains are compared for DC06 between an optical measurement
and the numerical calculation during the last iteration of the
parameter identification procedure. Fig. 12(c) shows the position
and direction of the longitudinal and transverse cut. In
Fig. 12(a) and (b) the major strain is drawn over the cut length
for the rotation angles y¼ 11 and y¼ 21. Considering the strain
state in Figs. 3 and 4, shear condition can be assumed on the
section cuts, leading to the same but negative values for the
minor strains. For both cuts, a good agreement between simula-
tion and experimental results can be seen. The longitudinal cut
shows lower strains in the center and increasing strain to the
outer regions and a decrease again next to the edges, where the
optical strain measurement cannot provide reliable data anymore.
The transverse cut shows the highest strain in the center and
decreasing values on both sides. Therefore, the proposed method
is capable of correctly predicting the inhomogeneity within the
shear zone, allowing reliable parameter identification only using
moment and angle data.

Fig. 11. Result curves for cyclic shearing: (a) DC06; (b) DP600; (c) TRIP700.

Table 3
Identified material parameters for the combined isotropic-kinematic hardening

model.

ID Material s0 (fixed) (MPa) s1 (MPa) d C Q (MPa)

1. DC06 132 293.31 16.04 12.23 613.51

2. DP600 395 460.35 9.60 30.26 8408.43

3. TRIP700 460 655.85 5.82 22.22 7377.44
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(c) TRIP700.

Figure 12.10.: Resultant curves for cyclic shearing.

when no kinematic hardening is considered. In the case of the deep drawing steel DC06 the
monotonic hardening can be reproduced correctly by both models. During load reversal, both
models miss the smooth transition which begins at about −10 Nm. The resolved curves stick
to a linear elastic unloading path. However, the combined modeling is able to fit the material
behavior again after a certain amount of reversed shearing. It is noticeable that the isotropic
and combined kinematic hardening curves are almost parallel after re-yielding.

The DP600 alloy was not predicted well at the initial hardening phase. It seems that the
first transition between elastic and plastic deformation is smooth already, which may be the re-
sult of the dual phase structure with different yield strengths. The response at the load reversal
point shows again a much better result by the combined hardening model, while the isotropic
hardening model clearly overestimates the stress for re-yielding. TRIP700 was better reproduced
at the initial hardening zone compared to DP600, although it has a multiphase microstructure,
too. The combined model again is significantly better at the transition zone at load reversal,
however not perfectly fitting again as for the other materials. It is obvious that all three steels
exhibit a certain portion of kinematic hardening, showing a smooth transition at re-yielding and
a lower stress level during the reversal of the shear deformation. As a summary, the obtained
parameter values are listed in Table 12.3.
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Since moment and angle curves are integral values they do not directly provide any information
about the strain distribution inside the shear zone. However, it can be shown that the strain dis-
tribution is correctly predicted in the numerical simulation during the parameter identification
process. In Fig. 12, the major strains are compared for DC06 between an optical measurement
and the numerical calculation during the last iteration of the parameter identification procedure.
Figure 12.11(c) shows the position and direction of the longitudinal and transverse cut. In Fig-
ures 12.11(a) and 12.11(b) the major strain is drawn over the cut length for the rotation angles
θ = 1◦ and θ = 2◦. Considering the strain state in Figs. 3 and 4, shear condition can be assumed
on the section cuts, leading to the same but negative values for the minor strains. For both cuts,
a good agreement between simulation and experimental results can beseen. The longitudinal cut
shows lower strains in the center and increasing strain to the outer regions and a decrease again
next to the edges, where the optical strain measurement cannot provide reliable data anymore.
The transverse cut shows the highest strain in the center and decreasing values on both sides.
Therefore, the proposed method is capable of correctly predicting the inhomogeneity within the
shear zone, allowing reliable parameter identification only using moment and angle data.

Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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(a)

Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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(c)

Figure 12.11.: Comparison of major strains in the shear zone between optical strain measurement
and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse section cut; (c)
position of sections.

In the Figures 12.12(a), 12.12(b) and 12.12(c), the stress strain curve at monotonic uniaxial
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tensile loading according the identified parameters is drawn and compared to experimental data
obtained by uniaxial tensile tests. It can be seen that good accordance between the curves can be
found for DC06 and DP600. TRIP700 shows less hardening in the experiment, while the initial
hardening zone was predicted correctly. The differences found in the comparison to monotonic
flow curves may be the result of anisotropic yielding of the material and the different hardening
behavior of the sheets at shear and uniaxial tensile loading.

Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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(a) DC06.

Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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(b) DP600.

Fig. 12. Comparison of major strains in the shear zone between optical strain measurement and numerical analysis for DC06. (a) longitudinal section cut; (b) transverse

section cut; (c) position of sections.

Fig. 13. Comparison of calculated monotonic flow curves to experimental flow curves: (a) DC06; (b) DP600; (c) TRIP700.
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(c) TRIP700.

Figure 12.12.: Comparison of calculated monotonic flow curves to experimental flow curves.

The results of these three tested steel sheet materials show the principal suitability of the plane
torsion test to identify material parameters for the kinematic hardening models. However, a
perfect match in the re-yielding phase failed for all materials. The reason can be found in the
limitations of the chosen material model, i.e. by the Armstrong-Frederick hardening rule.

Table 12.3.: Identified material parameters for the combined isotropic-kinematic hardening
model.

ID Material σ0 (fixed) (MPa) σ∞ (MPa) δ C Q

1. DC06 132 293.31 16.04 12.23 613.51
2. DP600 395 460.35 9.60 30.26 8408.43
3. TRIP700 460 283.51 7.37 77.86 5285.62
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12.6. Conclusion and Future Perspectives

A twin bridge cyclic shear test for metallic sheets with in-plane torsion is proposed for path
dependent hardening investigation. With a critical comparison with other known sheet metal
tests including ones with shear state of stress the advantages and the disadvantages of the cur-
rent proposal are explained. Depicted parameter identification methodology follows an inverse
approach where simulations devise finite element method due to intrinsic limitations pertaining
to diffuse structure of plastic flow. Bauschinger effect in three classes of steels with distinct
micro-structures, namely DC06, DP600 and TRIP700, are evaluated by the proposed test and
the parameters for the selected combined (Voce type nonlinear) isotropic (Armstrong Frederick
nonlinear) are quantified. Although the smooth re-yielding cannot be fully reproduced, this
being a limitation of the selected material model, proposed test proves to be an efficient one
for identification of Bauschinger effect and relevant phenomena. Accordingly it is plausible to
expect better fits in combination with a more appropriate material model selection of which
was left beyond the aim of this study. As a future study, the drawback of diffuse plastic flow
pattern can be remedied by mechanically weakening the specimen bridge (relative to the rest of
the specimen) to localize plastic flow. Numerical investigations show that such geometries let
one use accurately the analytically derived closed form solutions, which eliminates the need for
relatively computationally costly finite element analysis. This can be supplied by reducing the
sheet thickness locally with subtractive processes like milling, or stiffening the unclamped area
with e.g. complete tool coverage. At first sight, uncertainties regarding the material mechanical
properties with subtraction processes and slipping in tool-specimen interface seems to be the
problems deserving further attention. The test also constitutes a promising potential for low
triaxiality fracture parameter identification, which is the subject of a growing interest in the
literature, see e.g. [224, 338] and [29].

12.A. Armstrong-Frederick Kinematic Hardening Model

In the following equations pertaining the implemented combined isotropic-kinematic hardening
model is given. Let F := ∂Xx define the deformation gradient of the nonlinear map ϕ : B0×R→
R3. Particle positions at the reference, B0 , and current configurations, B, are respectively
denoted by X and x = ϕ(X, t). d =sym(l) represents the spatial rate of deformation tensor,
where l = Ḟ ·F−1 = ∂Xv denotes the spatial velocity gradient, with v = ∂tx. The small strain
kinematics of the current framework relies on the ansatz of additive decomposition of the total
strain, ε, into elastic, εe, and plastic portions1, εp.

ε = εe + εp. (12.A.2)

Let χ = {εe,A, α}> and ς = {σ,X, q}> denote the vectors of all strain-like variables and
their associated dual variables of a purely mechanical problem, respectively. A(σ) and α(q) re-
spectively denote the kinematic hardening and isotropic hardening strain(stress)-like variables.
Proposing appropriate free energy functions and following standard steps of the second prin-
ciple of thermodynamics which dictates a non-negative mechanical dissipation supplies us the

1For finite strains, a corotational framework is assumed where rate additive forms of the spatial rate of defor-
mation tensor is assumed, with

d = de + dp . (12.A.1)
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following state equations:

σ = λ tr(εe)1 + 2µ εe , X =
2

3
QXA , q = [σ∞ − σ0][1− exp(−δα)] . (12.A.3)

Here, all yet undefined symbols refer to material constants. Postulating the yield potential Φp

Φp := σeq − [σ0 + q(α)] , (12.A.4)

where σeq =
√

[σ −X] : H : [σ −X] and σ0 is the initial yield stress. H is the constant
structural tensor, responsible for the inherent plastic symmetry. For initial plastic isotropy one
has H = 3/2Idev where Idev is the deviatoric part of the fourth-order symmetric identity
tensor, Isym = 1/2 [1⊗1 + 1⊗1], with Idev = Isym − 1/3 [1⊗ 1]. Applying the normality rule
for ε̇p and α̇, gives the following evolution equations χ̇

ε̇p = γ̇
H : [σ −X]

σeq
, Ȧ = γ̇

[
H : [σ −X]

σeq
− CXA

]
, α̇ = γ̇ . (12.A.5)

Here γ̇ is the so-called plastic multiplier. The presented framework results in a differential-
algebraic (DA) set of equations. The evolutionary equations give account for differential forms
whereas the algebraic equation comes from the yield function. In solution of such a system
in a strain driven nature of FEM, it is typical to assume that for a typical time step ∆t =
tn+1 − tn the solution at tn is known as {σn,Xn, ε

p
n,An, αn} and the solution at tn+1 is sought

for
{
σn+1,Xn+1, ε

p
n+1,An+1, αn+1

}
. Utilizing an elastic predictor plastic/damage corrector

type operator split, it is possible to reiterate the total problem. The elastic prediction is made
by,

εp,trial
n+1 = εpn , Atrial

n+1 = An , αtrial
n+1 = αn , (12.A.6)

where the trial state is defined as

σtrial
n+1 = Ce : [εn+1 − εp,trial

n+1 ] , Xtrial
n+1 =

2

3
QXA

trial
n+1 , qtrial

n+1 = q(αtrial
n+1) . (12.A.7)

Within the time step, the elastic or plastic character of the status is checked by inserting the
trial stresses into the yield function,

Φp,trial
n+1 = Φp

(
σtrial
n+1,X

trial
n+1 , q

trial
n+1

)
=

{
≤ 0 =⇒ elastic ,
> 0 =⇒ plastic .

(12.A.8)

Once Φp,trial
n+1 ≤ 0 is satisfied, an elastic state at tn+1 is defined and the trial values does not

require any correction. Otherwise, a plastic state is due, and following corrections named as
return mapping trial state should be realized to fulfill the yield condition at effective stress space.
Using the following abbreviations for brevity

∂σΦp|(k)
n+1 → r

(k)
n+1 , ∂XΦp|(k)

n+1 → −r
(k)
n+1 , ∂qΦ

p|(k)
n+1 → ς

(k)
n+1 , (12.A.9)

the incremental plasticity parameter, δγ
(k)
n+1, can be found using

δγ
(k)
n+1 =

Φ
p,(k)
n+1

r
(k)
n+1 : Ce : r

(k)
n+1 +

2

3
QX [r

(k)
n+1 : s

(k)
n+1]− ς(k)

n+1

, (12.A.10)

which is used through iterations with ∆γ
(k+1)
n+1 = ∆γ

(k)
n+1 + δγ

(k)
n+1 with ∆γ

(0)
n+1 = 0. Iterations

with computation of the variable updates are continued until Φp (σn+1,Xn+1, qn+1) ≤ TOL.
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The algorithm utilized in the following falls in the class of cutting plane algorithms [273], taking
advantage of the great generality and implementation convenience proposed. It is crucial to
note that, as also remarked in [273], the algorithm merely requires essential response function
derivations. However, unlike closest point projection algorithms significant errors may be intro-
duced for large time steps. Thus the method should better be used only with explicit transient
simulations, where the Courant condition severely limits the allowable time steps.

12.B. Analytical Solution for Uniform Simple Shear

Under strain controlled shearing, one has the following total strain and strain rate tensors,

ε =
1

2




0 γ 0
γ 0 0
0 0 0


 and ε̇ =

1

2




0 γ̇ 0
γ̇ 0 0
0 0 0


 . (12.B.1)

With omission of the elastic strains one has under simple shear conditions εp ' ε. Similar
tensorial forms are valid for other strain and stress measures as far as the nonzero terms are
considered due to the proportional nature of the loading. Accordingly the von Mises equivalent
plastic strain rate α̇ reads

α̇ =
1√
3
γ̇ , (12.B.2)

and equivalent von Mises equivalent stress become

σeq =
√

3 |σ12 −X12| . (12.B.3)

The evolution equation set then reads

ε̇p12 =

√
3

2
γ̇ sign(σ12 −X12) ,

Ȧ12 =

√
3

2
γ̇ sign(σ12 −X12)− 3

2

CX
QX

X12 ,

α̇ = γ̇ ,





(12.B.4)

which is subjected to √
3 |σ12 −X12| − [σy + q(α)] = 0 . (12.B.5)

For monotonic loading conditions, i.e. sign(σ12 − X12) = 1, and using the conjugate stress
definition for kinematic hardening and equivalent strain definition, one has

Ẋ12 = γ̇

[
1

3
Q− 1√

3
CXX12

]
. (12.B.6)

Here, immediate integration is possible to give

X12 =
1√
3

Q

CX

[
1− exp

(
−CX

1√
3
γ

)]
, (12.B.7)

which gives kinematic hardening stress like variable. For isotropic hardening stress one has

q(α) = [σ∞ − σ0]

[
1− exp

(
−δ 1√

3
γ

)]
. (12.B.8)
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Eventually one can find σ12, using these definitions by

σ12 = X12 +
1√
3

[σy + q(α)] , (12.B.9)

from which one can compute the moment, for the monotonic loading

M = 2t∆ϑr2
m




1√
3

Q

CX

[
1− exp

(
−CX

1√
3
γ

)]

+
1√
3

[
σy + [σ∞ − σ0]

[
1− exp

(
−δ 1√

3
γ

)]]


 , (12.B.10)

which completes this part.



290 12.B. Analytical Solution for Uniform Simple Shear



13. A Grooved In-Plane Torsion Test for the
Investigation of Shear Fracture in Sheet
Materials

In this chapter, the grooved in-plane torsion test is proposed as a shear fracture test for sheet
materials. Unlike conventional simple shear tests, which are prone to incipient cracking at the
free edges, this test uses radially continuous specimens, as firstly introduced by [200]. In order
to control the fracture position, a radial groove is cut out which allows to keep the fracture
away from the clamping area. Thus, this test is able to create material fracture under ideal
shear conditions i.e., the condition of vanishing triaxiality at the observable region of the test.
Accordingly, the recent shear extended damage and fracture models for the selected material
classes can be validated and/or qualified. With the help of finite element analysis (FEA),
the corresponding fracture strains for the steel DP1000 were investigated using the proposed
shear test and, additionally, three tensile tests conducted on notched specimens which cause
fracture at moderate to high triaxialities. These are used to fit the fracture loci of some shear
enhanced fracture criteria which were recently been proposed in the literature. The FEA shows
that the proposed test provides fracture development under constantly zero triaxiality and zero
Lode parameter conditions. Moreover, among the selected criteria, the model proposed by [192]
delivers the best results for selected experimental set. The developed test is ideally suitable
for fracture parameter identification of sheet materials which do not show pronounced in-plane
anisotropy, e.g. dual phase steels. Furthermore, this test is not limited to metallic materials.

13.1. Introduction

The formability of metallic sheet materials is relatively limited for the loading paths under gen-
eralized shear stress states [154]. Conventional forming limit diagrams, which are mainly based
on the measurement of surface strains till onset of necking, fall short to predict shear governing
failure at vanishing and low stress triaxialities [183]. In [325] it was found that the microscopic
mechanism of fracture depends on the martensitic volume and distribution in DP steels. In the
sheet metal forming practice, the lower limit1 of the admissible stress triaxiality η is assumed to
be −1/3 i.e., buckling under uniaxial compression. Shear fracture is represented by triaxiality
η = 0 and lies within the considered interval of triaxiality for sheet metal forming. Hence, the
determination of the shear fracture limits is required. For this purpose, recent material charac-
terization studies for fracture are reconsidered taking into account the shear mode of fracture.

1Selecting the von Mises equivalent stress, it is conventional to assume the admissible triaxiality interval for
sheet metal forming as − 1

3
≤ η ≤ + 2

3
with the assumption of plane stress due to thin sheets, where η = 2

3

represents the biaxial tensile stress state. The choice of the upper limit of triaxiality is realistic only when
the post-necking response is excluded. Otherwise the state of plane stress is broken and triaxial stress states
develop. A typical consequence is the premature fracture prediction of the FEA, which uses thin shell elements.

291
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The existing mechanical tests for shear fracture have some disadvantages, which are namely

� fracture occurence at the free edges due to inhomogeneous stress distribution, thus failing
to achieve crack initiation under desired shear conditions

� varying triaxiality and Lode parameter during plastic deformation until crack

In the current study, a novel torsional test, the so called grooved in-plane torsion test is presented,
which was developed for the investigation of ductile failure of planar sheets. Unlike in original in-
plane torsion test, grooved specimens free of slits are used. The aim is to achieve shear fracture
in sheet materials supplying ideal shearing conditions of the material points at the fracture zone
throughout the deformation history with vanishing instantaneous (and thus average) triaxiality,
η = 0, and Lode parameter2, θ = 0. This test is free of the mentioned edge effects. Due to the
relatively simple specimen morphology, the test allows a direct determination of the equivalent
strain at fracture from digital image correlation (DIC) results. Hence, an inverse analysis does
not have to be involved for the parameter identification.

13.2. Current State Of Shear Fracture Testing For Sheet Materials

Various shear tests for the characterization of plastic material behavior of sheet metals are
known in literature, however, not all are suitable for the identification of shear fracture. In
Table 13.1, an overview of available shear test approaches is given with corresponding references
and comments on the test characteristics and purposes. Two main aims exist when performing
a shear test: the characterization of plastic hardening (e.g. determination of the flow curve,
identification and partition of isotropic and kinematic hardening) and the characterization of
formability and fracture behavior.

13.2.1. Shear and Torsion Tests for Characterization of Plastic Hardening

Figure 13.1 shows five specimen approaches for the determination of the flow curve in shear tests.
One can distinguish between translational and rotational fixture movements. Typical shear test
kinematics is achieved by a parallel displacement of two opposing edges in opposite directions.
In numerous publications, like [128], this principle is followed by testing a single sided shear
specimen (see Figure 13.1.(b). Basically with the same kinematics but with two symmetrical
shear zones, a specimen design by [220] was suggested in order to avoid the unwanted reaction
moment on the fixtures (Figure 13.1.(a). The ASTM B831 Standard suggests a much simpler
clamping configuration by using the kinematics of tensile tests. The complexity is moved to the
specimen design, involving diagonal cuts in the specimen (see Figure 13.1.(c). The advantage is
the compatibility of this specimen with testing devices designed for tensile tests. However, the
shear zone may rotate during deformation. [211] presented a modified version of this specimen
with additional supporting fixtures in order to stiffen the regions without plastic deformation
as well as allow cyclic loadings.

Torsion tests for sheet materials are still rarely applied. The initial work for the in-plane torsion
test was done by [199], who proposed this test in order to investigate cyclic hardening of cop-
per. A round sheet specimen is clamped concentrically in the center and at the outer rim and

2A detailed summary of these expressions are given on Section 13.3.1.
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Table 13.1.: Shear tests for sheet materials.

Publications Loading Characteristics Purpose

[220] Translational
Planar shear test with
two symmetrical zones

[128], [256], [58] Translational
Planar shear test with
one single shear zone

ASTM B831, [211] Translational
Planar shear test with
slits suitable for tensile
test kinematics

[297] Torsional
In-plane torsion to
reach high strains

[61], [342] Torsional
Modified in-plane tor-
sion test with slits

Plastic harden-
ing

[29], [221] Translational
Grooved shear specimen
geometry (Butterfly)

[270] Translational
Shear specimen with
slits for tensile loading

[137], ASTM D5379 Translational
Shearing of notched
bars

[200] Torsional In-plane torsion test

Formability,
fracture

torsioned in the sheet plane. Shear deformation is created in the free ring-shaped area between
the clamps. Further developments by [297] allow the usage of the in-plane torsion test for the
flow curve determination. The in-plane torsion test is free of edge effects due to the absence
of any edges. Thus, a high deformation can be achieved. Recent developments suggest apply-
ing optical strain measurements in this test [341]. [61] proposed a modification of the torsion
specimen, the so called twin bridge shear test, with round slits in order to obtain a shear test
with specific orientation to the rolling direction. [344] showed that this specimen modification
produces results which are comparable to the Miyauchi specimen and the shear test according
to ASTM B831.

a)

e)

c)

b)

d)

Figure 13.1.: Shear tests for characterization of hardening behavior of sheet materials.
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13.2.2. Shear Tests for Fracture and Formability Testing of Sheets

As the above described approaches are originally designed for the determination of plastic hard-
ening, they are not generally suitable for the characterization of formability limits by fracture.
The shear tests and the twin bridge specimen are affected by edge effects which are explained
in Section 13.1. Moreover, inhomogeneous stress and strain distributions within these tests lead
to stress states which deviate significantly from the simple shear state, especially at both ends
of the shear zone. For flow curve determination, the influence of this effect can be reduced by
increasing the ratio of length to width. [58] suggested a proportion of 10:1. The position of
the incipient fracture is very important for the fracture analysis. For the mentioned shear tests,
which involve discontinuities at the sheared stress carrying zone, the crack tends to emanate at
the edges where the tensile stress state is dominant. Hence, the material failure under shear
conditions cannot be guaranteed. Obviously, the stress states at the crack tip process zone for
a propagating crack has additional complexities. This drawback of edge effects does not exist
for the in-plane torsion test without slits. The application of this test for formability testing
is shown by [200], where failure occurs at the inner clamping. However, the shear stress state
overlaps with the clamping pressure at this position.

Hence, the main challenge for the experimental characterization of sheet metal failure under
simple shear loading is avoiding the crack initiation at free edges, while maintaining a desired
and constant stress triaxility and lode parameter for simple shear. Figure 13.2 shows schemat-
ically four specimen designs which were originally developed with this intention. An early
approach with notched bars was suggested by [137] (Figure 13.2a). A modified version of this
specimen is standardized as ASTM D5379, which aims at fracture testing of composite materials.
The crack initiation is enforced at the sharp notches, however, with huge impact of edge effects.
[270] presented a specimen with cutouts for formability testing (Figure 13.2.(b). It contains
two regions dedicated to shear deformation. The applied tensile load also causes deformation
on three tensile regions, in the center and at the outer edges. Thus, the stress values in the
deformed areas cannot be directly calculated from the applied force. Similar to the conventional
shear tests, the crack is also initiated at the edges, where the stress state cannot be considered
as simple shear. In order to obtain crack initiation inside the material and not at the free edges,
[29] suggested a specimen with locally reduced sheet thickness (Figure 13.2.(c). [221] used a
similar specimen with a groove to reduce the sheet thickness. The result of a detailed analysis
showed that the crack beginning can be located within the material. However, it cannot be
guaranteed that the starting point is at the exact center of the shear zone. In addition, it was
found that the triaxiality is changing during deformation. That means the stress state at the
beginning of plastic deformation has changed when fracture occurs.

In contrast, a low triaxiality test method for tubes does exist, as suggested by [106]. In their
work, the specimen designs according to [188] and [39] are used. These tubular specimen have
notches at the inner and/or outer side, which creates a predetermined shear fracture point when
torsion is applied. Comparable approaches for sheet materials are not known yet.

13.2.3. Requirements for an Ideal Shear Test for Fracture

From the brief review in this section, one can see that the characterization of shear fracture
of sheet material is experimentally challenging. As far as the shear fracture investigation is
concerned, an ideal mechanical test should have the following features:
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a) c)

b) d) Area of reduced thickness

Figure 13.2.: Shear tests for the investigation of fracture and formability of sheet materials by
(a) [137], (b) [270], (c) [29], and (d) [221].

� Ensuring an in-plane traceless shear stress state with vanishing instantaneous stress triax-
iality ratio η = 0 and Lode parameter θ = 0 at the point of incipient cracking throughout
the whole deformation history

� Possibility to control the location of the crack for digital imaging

� Determination of the stress and equivalent strain at fracture without need for reverting to
an inverse procedure

Considering all the above described specimen approaches, none of the yet proposed shear tests
can fulfill all these requirements. If such an ideal shear test were available, it would be possible
to investigate all the proposed fracture criteria and determine parameters under exactly defined
conditions. Thus, in this chapter, a novel shear specimen for sheet materials is introduced which
allows the investigation of shear fracture at exact shear stress conditions.

13.3. Theory - Enhanced Shear Fracture Approaches Accounting
for Shear Fracture

Ductility of metallic materials is defined as the ability of the material to deform preserving its
continuity at the macro scale. After [59] had revealed that increasing the hydrostatic pressure
extends the ductility of metals, the interest shifted to the influence of the stress state on the
formability. However, the mathematical models aiming at fracture prediction in metallic materi-
als had long concentrated merely on the effect of triaxiality, which is the ratio of the hydrostatic
pressure and equivalent stress. The studies of [208] and [259] presented models quantifying
the growth of idealized void structures in a rigid matrix in hydrostatic stress fields. Driven by
numerical and experimental studies on the relations between void mechanisms and ductile frac-
ture, several fracture models have been proposed in the last five decades. Well known examples
are the model by [78] with an energy based approach and the model of [143], which can be
applied for different temperatures and strain rates. The models developed on this track gave
accurate predictions only for moderate to high triaxiality ratios. Low triaxiality ductile fracture
engaged considerable interest in the theoretical and the experimental solid mechanics commu-
nities since the pioneering study of [29], which shows the non-monotonic dependence of the
equivalent fracture strain on triaxiality. On the one side, micro-void dynamics and interaction
based descriptions of the observed phenomena are involved in theoretical developments. On the
other side, new constitutive models [192] or the modification of the existing ones for moderate
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to high triaxiality ratios are proposed [224, 339]. In these proposals, the Lode parameter or an
equivalent measure is frequently devised as an additional degree of freedom in addition to the
triaxiality and equivalent plastic strain rate.

Before proceeding further, the characterization of the stress state of a material point is pre-
sented in detail . In the following section, the notations for triaxiality and lode parameter which
are used in this chapter are also introduced, since various notations with slight differences can
be found in literature, especially for the Lode parameter.

13.3.1. Characterization of the Stress State

Note that the total (true) Cauchy stress tensor σ has the following invariants, Ii, i = 1, 2, 3

I1 = tr (σ) , I2 =
1

2

[
tr (σ)2 − tr

(
σ2
)]
, I3 = det (σ) . (13.3.1)

where tr(•) denotes the trace of (•). Letting σi with i = 1, 2, 3 denote the principal stress
components, the invariants read

I1 = σ1 + σ2 + σ3 , I2 = σ1σ2 + σ1σ3 + σ2σ3 , I3 = σ1σ2σ3 . (13.3.2)

The hydrostatic stress p, then, can be defined in terms of I1

p =
1

3
I1 =

σ1 + σ2 + σ3

3
. (13.3.3)

With this definition, the deviatoric principal stress components S1, S2, and S3 are defined as
S1 = σ1 − p, S2 = σ2 − p, and S3 = σ3 − p. The deviatoric invariants of the stress tensor Ji,
i = 1, 2, 3 can be defined as

J1 = 0 , J2 = S2
1 + S2

2 + S2
3 , J3 = S1S2S3 . (13.3.4)

Using the definition of J2 and the relation between the total and deviatoric components of the
principal stress components, the equivalent von Mises stress σvM =

√
[3/2] J2 can be defined in

terms of the principal stress components as follows

σvM =
1√
2

√
[σ1 − σ2]2 + [σ2 − σ3]2 + [σ3 − σ1]2 . (13.3.5)

The triaxiality η, using η = p/σvM reads

η =

√
2

3

σ1 + σ2 + σ3√
[σ1 − σ2]2 + [σ2 − σ3]2 + [σ3 − σ1]2

. (13.3.6)

For the definition of the shear dependence of damage, the location of the stress point on the
yield locus is best achieved through the use of spherical coordinates and the Lode parameter.
Hence, it is possible to distinguish between axisymmetric stress states and generalized plane
strain stress states. In the literature, different measures are used for this purpose. In the fol-
lowing, the notation used in this chapter is introduced and the fracture criteria in terms of a
consistent set of parameters, that is (η, θ), where the definition of θ is clarified in the following
lines, applying necessary transformations are attempted to be presented.

First, the Lode angle θ is defined in the interval 0 ≤ θ ≤ π
3 , beginning at the tensile stress
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b)

Fig. 1: Geometrical representation of the Lode angle θ, σy = σvMises and a) projections of the von
Mises yield locus as well as of point P on the (deviatoric-stress) Π−plane and with corresponding
projected stress components (σ1, σ2, σ3) and b) the principal deviatoric strain components (ep

1, e
p
2, e

p
3)

of point P on the deviatoric-strain plane, note that ep
1 + ep

2 + ep
3 = 0.

von Mises stress σvMises =
√

[3/2] [s : s] with s = dev(σ) with σ denoting the Cauchy stress tensor.
Denoting the yield stress as σy := σ0 + q with the non-rotating axes of deformation one has the
following flow rule in terms of the rate of logarithmic plastic strain ėp

ėp = α̇p
3

2

s
σvMises

, (5)

with tr(ėp) = 0. Letting αp represent the equivalent plastic strain the evolution of the Lemaitre type
damage indicator D is given as

Ḋ = α̇p

⟨
Y − Y0

S

⟩m
1

[1 − D]β
. (6)

where Y is the damage driving force, i.e. the elastic energy release rate, and Y0 is its threshold. For
isotropic plasticity with proportional strain paths the ratio sν/σvMises is constant and the principal log-
arithmic plastic strains read

ep
ν = αp 3

2

sν

σvMises
for ν = 1, 2, 3, (7)

where σvMises = σy = C[αp + αp
0]

n with

αp =

√
[2/3]

[
[ep

1]
2 + [ep

2]
2 + [ep

3]
2
]
. (8)

With the assumption for small elastic strains as compared to the plastic ones we have ep ≈ e. Repre-
senting the damage driving force in terms of principal Cauchy stresses σν for ν = 1, 2, 3 we have

Y =
1

4µ
[C[αp + αp

0]
n]2 f (η, θ) , (9)

with the plastic flow condition C[αp + αp
0]

n = σvMises and

f (η, θ) :=
3∑

ν=1

[
η +

2

3
cos

(
2 [ν − 1]

3
π − θ

)]2

+

[
2µ

κ
− 3

]
η2. (10)

Figure 13.3.: Definition of the Lode angle on Π−plane. θ = 0 for axisymmetric tension, θ = π/6
for plane stress shear and θ = π/3 for axisymmetric compression.

axis as given in Figure 13.3. For θ = 0 and θ = π
3 , there are uniaxial (axisymmetric) tensile and

compressive stress states, respectively, whereas for θ = π
6 one has shear stress state. A variable

frequently used in the literature is the Lode parameter θ which is linked to the Lode angle by

θ = 1− 6θ

π
. (13.3.7)

Note that the range is −1 ≤ θ ≤ 1, where for for θ = 1 and θ = −1 there are uniaxial
(axisymmetric) tensile and compressive stress states, respectively, whereas for θ = 0 there is
shear stress state. The interpretation of this variable is simple compared to θ due to its simple
limits and the sign of θ which directly gives a sense of the tensile and compressive character of
the stress state. θ can be linked to the so-called normalized third deviatoric invariant of the
stress tensor ξ by the following expressions allows the computation of the Lode parameter θ for
a given stress state

θ = 1− 2

π
arccos(ξ) with ξ =

27

2

J3

σ3
vM

. (13.3.8)

Another interpretation of the Lode parameter as used in the model of [192] is given, for the
range −1 ≤ L ≤ 1, as

L =
2σ2 − σ1 − σ3

σ1 − σ3
. (13.3.9)

Assuming an ordered set of principal stresses σ1 > σ2 > σ3, the definition of a shear state
of stress can also be done through the normalized maximum shear stress 2[τmax/σvM ], where
τmax = [1/2][σ1−σ3]. Note that for pure hydrostatic stress states, 2[τmax/σvM ] vanishes whereas,
for uniaxial tension and compression, 2[τmax/σvM ] has the value of 1 and −1, respectively. In
case of a simple shear stress state, 2[τmax/σvM ] = 2/

√
3 can be found. 2[τmax/σvM ] could be

linked to L using 2[τmax/σvM ] = 2/
√
L2 + 3. Finally, the following relation bridges the gap

between θ and L and allows to represent all the fracture criteria studied in the current chapter
in terms of the pair (η, θ) consistently

sin

(
πθ

6

)
= − L√

L2 + 3
. (13.3.10)
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13.3.2. Fracture Criteria

In the current study, only the models referred to as the fracture criteria where the generic
representation of the ductile fracture criterion can be given as D =

∫
f (T ) dϕ with D and

ϕ denoting the damage indicator and the equivalent plastic strain, respectively, are dealt with
where f (T ) is a generic function of stress. Approaches with coupled fracture and plastic behavior
are not considered here. Using above definitions, the generic form of the fracture criteria can be
reiterated in the following form as D =

∫
f
(
η, θ
)
dϕ. For strictly proportional loading paths,

the pair (η, θ) is constant and so is the integrand. Thus, the equivalent plastic strain at fracture
ϕf is defined as

ϕf =
Df

f
(
η, θ
) , (13.3.11)

where Df is the damage indicator at fracture. Giving such closed form expressions for the
fracture strain in terms of η and θ is only possible for strictly proportional loading cases. Taking
the flow curve definition for the material to be in the power form σvM = Aϕn, a set of fracture
criteria, given in terms of critical equivalent strain to fracture are summarized in the following.

Rice and Tracey Model (RT). Being among the earliest fracture criteria, the model according
to [259] considers the growth of a spherical void in a cubic cell under a remote loading field.
This criterion calculates the equivalent (plastic) fracture strain ϕf as a function of η only, while
the Lode parameter θ is not considered:

ϕf (η) = c1 + c2 exp(−c3η) . (13.3.12)

The Cockcroft Latham Model (CL). The model of [78] constitutes an energy-based ductile
fracture criterion considering a critical threshold for the plastic work done by the maximum
tensile principal stress. The corresponding equivalent fracture strain ϕf , which is a function of
both η and θ, reads

ϕf
(
η, θ
)

=
C

η +
2

3
cos
(π

6
[1− θ]

) . (13.3.13)

The Pressure Modified Maximum Shear Model (PMMS). Being among the models proposed
by the MIT Crashworthiness Lab., this damage model is an extension of the maximum shear
stress model by accounting for the effect of the stress triaxiality ratio. The equivalent fracture
strain ϕf is calculated by

ϕf
(
η, θ
)

=

[
A

c2

[
c1η +

√
3

3
cos

(
θπ

6

)]]− 1
n

. (13.3.14)

Note that above closed form is made possible assuming a power type hardening, σvM = Aϕn.

Modified Mohr Coulomb (MMC). The closed form solution for the equivalent fracture strain
for the empirical Modified Mohr Coulomb fracture criterion [183] assumes a power-type hard-
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ening σvM = Aϕn and results in the following function of both η and θ

ϕf
(
η, θ
)

=

[
A

c2

[
c3 +

√
3

2−
√

3
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[
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[
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1

3
sin

(
θπ

6

)]]]− 1
n

.

(13.3.15)

As seen, apart from the hardening variables, this model requires three parameters.

Model of Lou and Huh (LH). This phenomenological model, developed by [192], considers the
damage evolution motivated by the micro-mechanical phenomena of void nucleation, growth, and
coalescence. The growth of voids is accounted for materializing the stress triaxiality whereas the
effects of void coalescence are incorporated by normalized maximum shear stress. The equivalent
plastic strain takes account of the continuous nucleation of voids as a measure of the material
flow. It also scales both the void growth and coalescence. In its original setting, the model reads

ϕf = C

[
2τmax

σvM

]−a [〈1 + 3η〉
2

]−b
, (13.3.16)

where C, a, and b are material parameters. The corresponding equivalent fracture strain ϕf as
a function of both η and θ reads

ϕf
(
η, θ
)

= C



√[

1

3
sin−2

(
π
θ

6

)
− 1

3

]−1

+ 3



−a [〈1 + 3η〉

2

]−b
. (13.3.17)

It should be noted that the closed form expression for the Lou and Huh fracture criterion does
not explicitly depend on the functional form of the flow curve. This property makes the model
more flexible since sticking to the power form can be highly limiting. Hence the model can be
used for materials showing hardening regimes other than power type hardening.

The above mentioned models are implemented as Vusdfld subroutines for Abaqus/Explicit
and used initially in the mechanical resolution of the developed grooved in plane torsion test for
shear fracture. Then, complementing the shear test results with the results of a set of notched
tensile tests, the identification of the parameters for the listed fracture criteria is attempted.
Based on the comparison of the qualities of the fits, the most appropriate fracture criteria for
the selected class of materials are identified and the corresponding fracture curves are given.
Hence, two aims that are defined in the introduction of the chapter i.e., firstly development of
an ideal shear test, then, validation of the shear extended materials models, are carried out.

13.4. Design of Test Specimen

13.4.1. Expected Advantages of the New Specimen

Considering the proposed requirements for an ideal shear fracture test at the end of Section 13.2,
a new specimen based on the in-plane torsion test is designed. By cutting out a smooth, circular
groove in the whole circumference, the highest loading is located in the bottom of the groove
while no edges and edge effects disturb the ideal shear conditions. With this specimen design,
the following advantages are expected:
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� The specimen is loaded in planar simple shear without edge effects. Triaxiality η and Lode
parameter θ are expected to remain zero during the whole deformation history.

� The incipient crack is trapped at the grooved region, away from the boundaries in contact
with the tools.

� The shear stress can be calculated using the torque loading and the local thickness in the
groove during deformation and at the point of fracture.

� The equivalent strain can also be determined using optical strain measurements based on
digital image correlation.

In the following, the experimental approach is described in detail and the question if the sug-
gested specimen can match these expectations is analyzed.

13.4.2. Test Set-up

For the in-plane torsion testing, the experimental device at the Institute of Forming Technology
and Lightweight Construction is used which was presented in [341] (see Figure 13.4). The test
setup is integrated in a universal testing machine which is used to produce the inner clamping
force. In the experiments of the current study, a clamping force of 50 kN was applied on the inner
fixture with an circular area of 30 mmin diameter. In order to prevent slipping, the clamping
surface is structured by a corrugation with a rectangular grid of small pyramids, as shown in
Figure 13.5. The grid distance is 1.0 mm. In the very center of the inner clamps, a centering pin
is inserted to ensure concentric position of the torsion specimen, which also possesses a center
hole. The outer clamps are applied manually by a clamping ring, which also possesses a surface
corrugation. Transferred through a worm gear, the rotation and the torque are applied on the
outer clamps, while the inner fixture remains stationary during the deformation. The maximum
load of this testing machine is ca. 1500 Nm. A rotary encoder and a torque sensor are integrated
in the setup in order to measure the rotation angle and the moment. The rotation speed was
set to 0.05◦/s.

Optical strain measurements can be conducted since the deformed area is visible during testing.
In this work, a GOM ARAMIS 5 MDIC System is used for 3D optical strain measurement. A
section of ca. 90◦ of the specimen is visible in the measurement area, where the spatial resolution
of about 0.1 mm is achieved.

13.4.3. Specimen Design

Bauer showed that the area next to the inner clamps are affected by the clamping force [? ].
However, the influence vanishes for the rest of the specimen after a radial distance as large as
the sheet thickness. Therefore, a new specimen design based on the in-plane torsion test is
developed in this work using circular grooves. The aim is to generate an ideal shear loading
until fracture without any unwanted edge effects and deviating stress components, as for ex-
ample by the clamping pressure. Figure 13.6 shows the suggested geometry. A round groove
is cut from one side of the in-plane torsion specimen by milling. The groove is defined by the
diameter of the circular milling path db, the groove depth tn, and the groove radius rn. Since
the shear stress can be calculated by τ = M/[2π r2] for each radial position r on the specimen
with the local thickness t, if the torque M is known, the value of the diameter db has tobe chosen
as small as possible without an overlap of groove and inner clamping area. This is necessary
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It should be noted that the closed form expression for the Lou and
Huh fracture criterion does not explicitly depend on the functional
form of the flow curve. This property makes the model more flexible
since sticking to the power form can be highly limiting. Hence the
model can be used for materials showing hardening regimes other
than power type hardening.

The above mentioned models are implemented as VUSDFLD
subroutines for ABAQUS/Explicit and used initially in the mechan-
ical resolution of the developed grooved in plane torsion test for
shear fracture. Then, complementing the shear test results with
the results of a set of notched tensile tests, the identification of
the parameters for the listed fracture criteria is attempted. Based
on the comparison of the qualities of the fits, the most appropriate
fracture criteria for the selected class of materials are identified
and the corresponding fracture curves are given. Hence, two aims
that are defined in the introduction of the paper i.e., firstly devel-
opment of an ideal shear test, then, validation of the shear
extended materials models, are carried out.

4. Design of test specimen

4.1. Expected advantages of the new specimen

Considering the proposed requirements for an ideal shear frac-
ture test at the end of chapter 2, a new specimen based on the
in-plane torsion test is designed. By cutting out a smooth, circular
groove in the whole circumference, the highest loading is located
in the bottom of the groove while no edges and edge effects disturb
the ideal shear conditions. With this specimen design, the follow-
ing advantages are expected:

� The specimen is loaded in planar simple shear without edge
effects. Triaxiality g and Lode parameter �h are expected to
remain zero during the whole deformation history.
� The incipient crack is trapped at the grooved region, away from

the boundaries in contact with the tools.
� The shear stress can be calculated using the torque loading and

the local thickness in the groove during deformation and at the
point of fracture.
� The equivalent strain can also be determined using optical

strain measurements based on digital image correlation.

In the following, the experimental approach is described in detail
and the question if the suggested specimen can match these expec-
tations is analyzed.

4.2. Test set-up

For the in-plane torsion testing, the experimental device at the
Institute of Forming Technology and Lightweight Construction is
used which was presented in Yin et al. (2011) (see Fig. 4). The test
setup is integrated in a universal testing machine which is used to
produce the inner clamping force. In the experiments of the cur-
rent study, a clamping force of 50 kN was applied on the inner fix-
ture with an circular area of 30 mm in diameter. In order to prevent
slipping, the clamping surface is structured by a corrugation with a
rectangular grid of small pyramids, as shown in Fig. 5. The grid dis-
tance is 1.0 mm. In the very center of the inner clamps, a centering
pin is inserted to ensure concentric position of the torsion speci-
men, which also possesses a center hole. The outer clamps are
applied manually by a clamping ring, which also possesses a sur-
face corrugation. Transferred through a worm gear, the rotation
and the torque are applied on the outer clamps, while the inner fix-
ture remains stationary during the deformation. The maximum
load of this testing machine is ca. 1500 Nm. A rotary encoder and

a torque sensor are integrated in the setup in order to measure
the rotation angle and the moment. The rotation speed was set
to 0.05 �/s.

Optical strain measurements can be conducted since the
deformed area is visible during testing. In this work, a GOM
ARAMIS 5 M DIC System is used for 3D optical strain measurement.
A section of ca. 90� of the specimen is visible in the measurement
area, where the spatial resolution of about 0.1 mm is achieved.

4.3. Specimen design

Bauer (1989) showed that the area next to the inner clamps are
affected by the clamping force. However, the influence vanishes for
the rest of the specimen after a radial distance as large as the sheet
thickness. Therefore, a new specimen design based on the in-plane
torsion test is developed in this work using circular grooves. The
aim is to generate an ideal shear loading until fracture without
any unwanted edge effects and deviating stress components, as
for example by the clamping pressure. Fig. 6 shows the suggested
geometry. A round groove is cut from one side of the in-plane tor-
sion specimen by milling. The groove is defined by the diameter of

Fig. 4. In-plane torsion test set-up integrated in a universal tensile testing machine
(Yin et al., 2011).

Fig. 5. Surface corrugation by a rectangular grid of small pyramids on the clamping
devices (Yin, 2014).
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Figure 13.4.: In-plane torsion test set-up integrated in a universal tensile testing machine (Yin
et al., 2011).

It should be noted that the closed form expression for the Lou and
Huh fracture criterion does not explicitly depend on the functional
form of the flow curve. This property makes the model more flexible
since sticking to the power form can be highly limiting. Hence the
model can be used for materials showing hardening regimes other
than power type hardening.

The above mentioned models are implemented as VUSDFLD
subroutines for ABAQUS/Explicit and used initially in the mechan-
ical resolution of the developed grooved in plane torsion test for
shear fracture. Then, complementing the shear test results with
the results of a set of notched tensile tests, the identification of
the parameters for the listed fracture criteria is attempted. Based
on the comparison of the qualities of the fits, the most appropriate
fracture criteria for the selected class of materials are identified
and the corresponding fracture curves are given. Hence, two aims
that are defined in the introduction of the paper i.e., firstly devel-
opment of an ideal shear test, then, validation of the shear
extended materials models, are carried out.

4. Design of test specimen

4.1. Expected advantages of the new specimen

Considering the proposed requirements for an ideal shear frac-
ture test at the end of chapter 2, a new specimen based on the
in-plane torsion test is designed. By cutting out a smooth, circular
groove in the whole circumference, the highest loading is located
in the bottom of the groove while no edges and edge effects disturb
the ideal shear conditions. With this specimen design, the follow-
ing advantages are expected:

� The specimen is loaded in planar simple shear without edge
effects. Triaxiality g and Lode parameter �h are expected to
remain zero during the whole deformation history.
� The incipient crack is trapped at the grooved region, away from

the boundaries in contact with the tools.
� The shear stress can be calculated using the torque loading and

the local thickness in the groove during deformation and at the
point of fracture.
� The equivalent strain can also be determined using optical

strain measurements based on digital image correlation.

In the following, the experimental approach is described in detail
and the question if the suggested specimen can match these expec-
tations is analyzed.

4.2. Test set-up

For the in-plane torsion testing, the experimental device at the
Institute of Forming Technology and Lightweight Construction is
used which was presented in Yin et al. (2011) (see Fig. 4). The test
setup is integrated in a universal testing machine which is used to
produce the inner clamping force. In the experiments of the cur-
rent study, a clamping force of 50 kN was applied on the inner fix-
ture with an circular area of 30 mm in diameter. In order to prevent
slipping, the clamping surface is structured by a corrugation with a
rectangular grid of small pyramids, as shown in Fig. 5. The grid dis-
tance is 1.0 mm. In the very center of the inner clamps, a centering
pin is inserted to ensure concentric position of the torsion speci-
men, which also possesses a center hole. The outer clamps are
applied manually by a clamping ring, which also possesses a sur-
face corrugation. Transferred through a worm gear, the rotation
and the torque are applied on the outer clamps, while the inner fix-
ture remains stationary during the deformation. The maximum
load of this testing machine is ca. 1500 Nm. A rotary encoder and

a torque sensor are integrated in the setup in order to measure
the rotation angle and the moment. The rotation speed was set
to 0.05 �/s.

Optical strain measurements can be conducted since the
deformed area is visible during testing. In this work, a GOM
ARAMIS 5 M DIC System is used for 3D optical strain measurement.
A section of ca. 90� of the specimen is visible in the measurement
area, where the spatial resolution of about 0.1 mm is achieved.

4.3. Specimen design

Bauer (1989) showed that the area next to the inner clamps are
affected by the clamping force. However, the influence vanishes for
the rest of the specimen after a radial distance as large as the sheet
thickness. Therefore, a new specimen design based on the in-plane
torsion test is developed in this work using circular grooves. The
aim is to generate an ideal shear loading until fracture without
any unwanted edge effects and deviating stress components, as
for example by the clamping pressure. Fig. 6 shows the suggested
geometry. A round groove is cut from one side of the in-plane tor-
sion specimen by milling. The groove is defined by the diameter of

Fig. 4. In-plane torsion test set-up integrated in a universal tensile testing machine
(Yin et al., 2011).

Fig. 5. Surface corrugation by a rectangular grid of small pyramids on the clamping
devices (Yin, 2014).
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Figure 13.5.: Surface corrugation by a rectangular grid of small pyramids on the clamping devices
(Yin, 2014).
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to achieve the highest stresses in the groove bottom instead at the area next to the inner clamps.

The groove radius in this study is chosen to be rn = 4 mm according the availability of the
milling tools. Thus, the radius is smooth in order to prevent edge effects. Since the material
properties may vary over the thickness, the specimen is not cut from both sides. Instead, an
optimal cut depth of 50% of the thickness is preferred. This would still provide a representative
material response for all sheet thickness layers. However, the initial production attempts show
that the cut depth has to be controlled after milling due to the accuracy of the cutting process.

A
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Figure 13.6.: Design of grooved in-plane torsion specimen.

For the following work, a DP1000 steel with a thickness of 1.55 mm is tested. The inner and
outer clamping radius of the test set-up is 15.0 mm and 30.0 mm. The blank cutting process
is conducted using a laser cutting device. To create the groove, a spherical ball cutter with a
diameter of 8 mm is used for a milling path diameter of db = 36 mm. The specimen is positioned
using a centering hole during the milling process. The final specimen is shown in Figure 13.7.
The initial thickness is 1.55 mm and the cut depth is 0.85 mm. Thus, the minimum thickness
is 0.7 mm.

 DP1000 

 t = 1,55 mm 
 t  = 0,85 mmn

Figure 13.7.: In-plane torsion specimen made of DP1000 with circular groove.
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13.4.4. Experimental Results and Repeatability

Three specimens made of DP1000 are tested within this study. It is important to ensure a good
repeatability of the results, especially for the load peak representing the point for fracture in the
grooved specimen. Two ways of evaluating the specimen are compared to each other in Figure
13.8. On the left side, the three curves of the specimens show similar initial and hardening
phases. However, the point of fracture seems to occur between a rotation angle of 10◦ and 12◦.
As a remedy, the rotation angle of the specimen can be taken directly from an optical strain
measurement system. On the right side of Figure 13.8, the inner and outer edge of the groove
are tracked optically and the relative angle is recorded. Since the area of interest is exactly in
the groove, this way to obtain the angle avoids any error sources, like slipping of the clamps and
elastic tool deformations, without losing useful information. Furthermore, tracking the groove
edges is both convenient for the optical measurement as well as the finite element simulation
later on for the optimization process, as the edges are well defined and visible. Hence, the
resulting torque-edge-angle curves show quite a good accordance with each other, indicating the
point of fracture at an angle of ' 6.8◦. As a consequence, the second approach to determine the
torque-angle curve is used for the following analysis.
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Figure 13.8.: Comparison of torque-angle curves using (a) the global angle from the incremental
rotary encoder and (b) the local relative distortion of the groove edges.

Taking a look on the resulting strain distribution, Figure 13.9 shows two images of the DIC
result with the strain countour as an overlay on the taken image. The distribution of the equiv-
alent plastic strain according to von Mises is given, proving that the strain is concentrated in a
small circular band in the groove. For the state of 6.6◦, the pattern for the optical strain mea-
surement becomes severely distorted, causing gaps in the measurement. As the color indicates,
the achieved strain reaches almost values of 1.0, which is by far exceeding the measurable strain
in a uniaxial tensile test.

In Figure 13.10, the resulted fracture is shown in a closer view. After reaching the fracture
point, the crack appears and progresses quickly over the full circumference. The specimen is is
separated to an outer ring and an inner part.

Since crack occurence and crack shape are meeting the expectations, the exact crack position
would be interesting for further analysis. By comparison of optically measured strains to the
groove depth in Figure 13.11, one can see that the crack does not occur at the very center of
the groove bottom. The figure shows the strains along a radial cut for the two states at edge
rotation of 4.3◦ and 6.6◦. The groove depth is also measured optically by the same DIC system.
Since the optical strain measurement system is calibrated to measure strains exactly, but not for
the purpose of distance measuring, the precision of the results can be seen critically. However,
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Figure 13.9.: Strain distribution measured by DIC at the stage of 4.3◦ and 6.6◦ groove edge
rotation, showing the circular localization band at the bottom of the groove.

 Crack path

Figure 13.10.: Crack at the bottom of the groove.

it is visible that the maximal deformation is shifted to the rotation center instead of being at
the groove bottom. The shifted position of the maximal stress and strain occurrence should be
taken considering the measured strain and the local sheet thickness which is slightly higher than
at the bottom of the groove.

13.4.5. FEA in Evaluation of the Test Results

For modeling shear test, a full 3D modelis constructed where the minimum mesh size of the
utilized reduced integration elements is around 0.085 mm. Eight reduced integration hexahedral
elements through thickness is used, where the minimum thickness at the bottom of the groove
is 0.7 mm. The hardening of DP1000 is characterized by the flow rule according to the power
law with A = 1370 MPa and n = 0.0752. The equivalent plastic strain distribution over the
section at the incipient cracking time from the experiments, which is defined as the time of rapid
drop in experimental moment angle curves, as a result of the conducted simulations are given
in Figure 13.12.

The material flow is trapped at the grooved section as intended, where the radial location of
the maximum value is close to the bottom of the groove. The element corresponding to the
maximum equivalent plastic strain over the section is selected as the critical element as shown
in Figure 13.12. Once the stress triaxiality ratio and the Lode parameter histories are analyzed
for the critical point to fracture, as given in Figure 13.13, one sees that both values are at
the vicinity of zero throughout the test. This clearly shows that the test supplies desired ideal
conditions for shear fracture parameter identification since the instantaneous values match for
the stress dependent functions triaxiality and Lode parameter. This is to say that the average
values also read zero as aimed at.
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Figure 13.11.: Measured strain distribution using DIC at two different stages, showing the shifted
radial position of the strain localization in good agreement with the theoretically calculated posi-
tion of the stress peak.
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Figure 13.12.: Equivalent plastic strain contours over the specimen section at the failure rotation.
r represents the radius measured from the center of the specimen. The critical element represents
the element with maximum equivalent plastic strain.
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Figure 13.13.: Stress triaxiality ratio and Lode angle parameter histories throughout the shearing
test for the critical elements identified in Figure 13.12.
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13.4.6. Disadvantages and Limits of the New Specimen

Despite the good performance of this specimen for the tested DP1000 material, the disadvantages
and limits of the proposed in-plane torsion specimen should be mentioned in order to ensure
a serious scientific discussion and provide the basis for further improvements. At the current
state, following issues are noted:

� Anisotropy: As a general drawback for in-plane torsion tests, anisotropic yielding of sheet
materials cannot be investigated due to the specimen design. The orientation-dependent
material behavior cannot be distinguished since the measured torque is an average value
for the full circumference of the specimen. High strength dual phase steels exhibit almost
isotropic yielding in the sheet plane, therefore, the error due to anisotropy in the presented
results is negligible.

� Bulging of very ductile, thin sheets: In some piloting tests on different sheet materials,
shear fracture could not be achieved for very ductile deep drawing steel grades like DC04
or DC06. These materials tend to buckle in the groove at larger strains instead of showing
cracks. Further studies may investigate the influence of the groove radial position in order
to evoke fracture before buckling. In addition, the sheet thickness and the groove depth
can play important roles.

� Specimen manufacturing: While the laser cutting process for the round sheet specimen
is simple, the machining of the groove requires more effort. Control of depth and concentric
position of the groove is essential for this test. Due to the small residual material thickness,
a small deviation from the nominal thickness can cause large errors in the stress calculation
afterwards. Repeatability of the machining process and the surface roughness after cutting
are also key aspects. In order to ensure the correct stress calculation, the depth and the
thickness at the groove bottom are measured for each tested specimen by tactile coordinate
measuring before testing.

� Strain measurement: As for all strain measurements using DIC, the strain gradient of
the measurement influences the results. Especially for fracture strains, high strains are
concentrated in a small area where the crack occurs. The reliability of the measurements
depends strongly on the selected resolution, the evaluation algorithm, and the size of the
involved neighboring area. This is a general issue for all fracture tests with optically
measured fracture strain. However, at the current state-of-the-art, no better solutions for
the strain measurement are available.

� Maximum transferable torque of test device: The used device in this work has a
limit of about 1,300 Nm for the maximum torque. This causes a natural limit for the
processable specimen thickness and groove radius. However, the real limit is smaller since
the inner clamps can slip depending on the hardness of the specimen. Although slipping
of the clamps does not cause an error of the stress or strain measurement, the achievement
of fracture may be hindered due to the limited transferable torque at the inner fixtures.

13.5. Parameter Identification

As given before, identified from the moment-angle curves of the conducted in-plane torsion test,
the flow curve of the material can be represented in sufficient accuracy with a power type hard-
ening with σy = Aϕn according to Hollomon where A = 1370 MPa and n = 0.0752. This leaves
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the parameters of the fracture criteria to be identified only. The uncoupled structure of the
fracture criteria allows the identification process at post processing because the damage has no
effect on the flow curve in these models.

Although the developed shear test facilitates optimal conditions for shear fracture development,
mathematically it constitutes an output for a single pair in the (η, θ) space. Each fracture locus,
on the other hand, represents a continuous surface in the same space. Hence the identification
of the parameters of the selected fracture criteria requires additional tests preferably spanning a
broad range of stress triaxiality ratio and Lode parameter values. Since the current study aims
at the promotion and mechanical justification of the proposed shear fracture test and not at a
detailed analysis of an overall parameter identification strategies, the experimental results are
extended by only three additional notched tensile tests with different notch radii. The experi-
mental data of the notched tensile test were taken from [350]. With these additional tests, the
database consists of a total of four points which can be used to identify parameters for at most
four parameter models (in order to preclude an under-determined system). Material parameters
controlling the identified flow curve are already known and do not need to be identified anymore
for the considered models. Following the hybrid experimental numerical parameter identification
strategy proposed in [191], the equivalent fracture strains ϕf and the corresponding averages for
the stress triaxiality ratio ηave, and the Lode angle parameter θave for the selected material are
defined as listed in Table 13.2.

Table 13.2.: Triaxiality (average), Lode angle, and fracture strain measured for the notched
tensile test and the grooved in-plane torsion test.

Test ηave θave ϕf
NT, R = 5 mm 0.660 0.108 0.665
NT, R = 10 mm 0.627 0.249 0.710
NT, R = 20 mm 0.596 0.376 0.784
ST 0 0 0.910

To fit the fracture surfaces of the damage models to the data listed in Table 13.2 the toolbox of
sftool in Matlab is used. A summary of the results is given in Table 13.33 From this table it
can be seen that models of LH and MMC show well fitting properties. In comparison, the LH
model requires fewer parameters than the MMC model which involves also the hardening curve.
The PMMS model also performs well. The RT model does not fit well the listed fracture points
mainly due to the sensitivity of the material fracture to the Lode angle parameter. Finally, the
single parameter CL model gave a negative R2 value, which is a statement of an unacceptable
fit.

In Figure 13.14, the equivalent fracture strain is given in the triaxiality space within the range
of −1

3 ≤ η ≤ 2
3 . All five fracture criteria with the above identified parameters are plotted within

this diagram. The determined shear fracture point with the new proposed grooved specimen can
be directly found in this diagram. However, the notched tensile fracture points with triaxialities
in the range of 0.59 < η < 0.66 are not visible in the plane stress triaxiality plane due to slightly
varying Lode angle values. Nevertheless, the five curves show that the models are more or less
capable of representing the experimental data given. The shear fracture point can be captured
by all models except the CL model. Discrepancies and large differences can be found in the

3Note that the coefficient of determination, R2, a number between 0 and 1, is used to describe how well a
regression line fits a set of data. It being near 1 is an indication of the high quality of the fit of the regression
line, while R2 closer to 0 indicates that the regression line does not fit the data well.
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Table 13.3.: Determined parameters for the fracture criteria.

Model Parameters R2

LH a = 8.0; b = 0.30; C = 2.34 1.0
MMC c1 = 0.021; c2 = 747.8 MPa; c3 = 0.95 1.0
PMMS c1 = 0.026; c2 = 785.1 MPa 0.89
RT c1 = 0; c2 = 0.91; c3 = 0.38 0.89
CL C = 0.68 < 0

area of uniaxial tension around η = π/3 and compressive stress states with η < 0 due to lack
of experimental data at these loading conditions. The PMMS model tends to unrealistic high
fracture strains for uniaxial tension with the data provided. The RT model exhibits an almost
linear behavior in this view despite the flexibility of three parameters. The LH model by [192]
and the MMC model by [183] give similar results.
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Figure 13.14.: Plot of the fracture locus for DP1000 for the five fracture criteria represented at
the triaxiality (η) space for plane stress conditions for the identified parameters.

The rest of the analysis will focus on the outputs of the LH model. For a validation of the
identified damage parameters, the simulations are performed this time with the developed Vus-
dfld subroutine for the LH model using the identified damage parameters. Once the damage
accumulation reaches the critical value at a Gauss point, the corresponding reduced integration
element is eliminated from the computational stack i.e., the so-called element deletion procedure
is devised to create crack propagation. A comparison of the load-displacement curves for the
notched tests are given in Figure 13.15. As seen in this figure, although a variation between the
instant and average triaxialities is unavoidable for the conducted tests and the surface fitting for
the fracture loci are done using average values, the load-displacement curves show acceptable
results, at least for the total elongation at fracture. The load gap between the experimental and
computed curves are mainly related to the form of the yield curve which is identified from the
shear test mainly.

The comparison of the experimental and numerical force-displacement curves for the shear test
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Figure 13.15.: The load-displacement diagram comparison of the experimental outputs and the
simulations for the notched tensile tests by [350] where the LH model is used for determination
of the incipient cracking.

is given in Figure 13.16. Since the flow curve identification relies on this test, there is an overall
agreement between the experimentally and numerically handled plots. As far as the time of
fracture is concerned, there is a slight premature prediction of the Lou and Huh model, which is
acceptable. The reason for the fact that the simulations show a rapid drop after a kink rather
than a smooth transition as seen in the experimental outputs during fracture propagation is that,
in the simulation, the fracture happens suddenly through the whole radius where the elements
are deleted. In the experiments this is not the case due to local heterogeneities. Moreover, the
newly evolved surfaces during fracture might come into contact due to a possible loss of cyclic
symmetry conditions.
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Figure 13.16.: The load-displacement diagram comparison of the experimental outputs and the
simulations for the shear test where the Lou Huh model is used for determination of the incipient
cracking.

The distribution of the damage indicator for the LH model is given in Figure 13.17. This
distribution agrees well with the equivalent plastic strain distributions given in Figure 13.12.
The outcome of this good agreement of the distributions is twofold: Firstly, this justifies once
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more that the aimed ideal shear conditions are present. Secondly, it is understood that the
experimental readings of the maximum shear strain by means of a DIC system at the deformed
specimen surface are sufficient to determine the shear fracture strain. This brings a considerable
feasibility for the determination of the test results and even makes finite element analysis and
an inverse method unnecessary provided the test results could be processed using certain DIC
systems with sufficient resolution. A final note on Figure 13.17 is that the fracture emanates
from the critical element and along the corresponding column of elements. This ends of with a
continuous slit in the form of a ring.

2.31

Damage
indicator

0

Critical element

r

Figure 13.17.: Damage indicator contours over the specimen section at the incipient failure. r
represents the radius measured from the center of the specimen. The critical element represents
the element with maximum damage indicator.

13.6. Conclusion and Outlook

Marciniak’s original intention in using in plane torsion test was to investigate sheet metal forma-
bility [200]. In the current chapter, a return back to these the very roots of the in-plane torsion
test is aimed at. The grooved in-plane torsion test is proposed as a shear fracture test for
metallic sheets. The test uses round planar sheet specimens and in addition, a continuous ra-
dial groove is cut out from one side. With this new specimen, incipient cracking due to edge
effects can be avoided. Furthermore, the location of the shear fracture can be controlled and
positioned away from the boundaries in contact with the tools. This lets one have a clear view
of the fracture process zone using digital image correlation systems for identifying the equivalent
strain at fracture. FEA shows that the test is capable of creating material fracture under ideal
shear conditions i.e., the condition of constantly triaxiality η = 0 and Lode parameter θ = 0
throughout the deformation. Accordingly, it is suitable to validate and/or quantify the recent
shear extended damage and fracture models for the selected material classes. If the knowledge
of material fracture at exact shear loading is required, this test is superior to all other known
tests for sheet materials. As a model study, an attempt for parameter identification for a set
of selected fracture criteria by complementing the currently developed shear test with notched
tensile tests with various notch radii conducted on DP1000 specimens is presented. Among the
selected criteria, the models proposed by [192] and [183] deliver the best results for selected
experimental set.

For the outlook, many aspects are to be mentioned which require additional research work.
This new test specimen needs further development although the model study provides good
results. The process limits have to be found for ductile and thin sheet materials in order to
achieve fracture before bulging. As an alternative to the machining process, the groove can also
be produced by electrical discharging in form of die sinking. The influence of different cutting
processes on the groove surface may also be interesting. Due to averaging effects, the developed
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test is ideally suitable for sheet materials which do not show pronounced in-plane anisotropy,
e.g. dual phase steel sheets. Its application is not limited to metallic materials either. In the
future work, one main advantage of this test can be the ability to combine the characterization
of kinematic hardening and shear fracture since load reversals can be achieved conveniently with
the in-plane torsion test. Moreover, the grooved in-plane torsion specimen can also be used to
characterize (monotonic) shear flow curves for high strength steels up to very high strains. As
seen in the current study, equivalent strains of up to 0.9 were measured for DP1000. No other
known test for sheet materials can reach strains like that for this material class.
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14. Conclusions

The observed behavior of metallic materials in response to thermal and mechanical stimuli
depends on the underlying microstructural changes and can vary greatly depending upon the
magnitude and multiaxiality of loading and the magnitude of homologous temperature. The
current thesis focuses on the phenomenological modeling approaches related to different mi-
crostructural mechanisms responsible for plastic hardening, ductile and brittle damage as well
as complementary experimental mechanical characterization methodologies.

The presentation of the topics are divided in four main parts. In Part I, cross hardening as
a path dependent hardening model for metallic sheets is studied. The model considers a fourth-
order anisotropy tensor whose evolution encapsulates the dynamic and the latent hardening
effects of dislocation structures parallel and orthogonal to the loading direction. Extensions of
the original Levkovitch–Svendsen model, as presented in [181], to rate dependence in a Johnson–
Cook formalism is considered in Chapter 2 together with an application of spring back prediction
in industrial forming process of IF steel DC06 sheets in which the cross hardening effects with
strain path change is evident. The role of reduction in yield locus curvature by cross hardening
on the formability of metallic sheets is studied in Chapter 3 considering the first quadrant of the
in-plane principal strain space. In absence of dynamic hardening component, strictly propor-
tional strain paths give identical results for models with and without cross hardening. Hence,
in order to invoke strain path variations, a stochastic finite element based Marciniak-Kuczyński
and Nakazima tests are considered. A delayed localization with cross hardening is observed for
all considered strain paths except for the plane strain path. This stability increase is linked
to the decreased local curvature of the yield locus at the loading point which impedes the ro-
tation of the normal for associated plastic flow. In the original Levkovitch–Svendsen model
parallel and orthogonal projections used in controlling dynamic and latent hardening are based
on the unit plastic flow direction np = Ėp/| Ėp |. In Chapter 4, the use of the radial direction
ns = [S−X]/|S−X | is proposed instead. It is shown both analytically and numerically that,
this remedies the undesired plastic strengthening in direction of the active proportional loading
path even in the absence of dynamic hardening contribution, as observed in initially anisotropic
materials.

This is followed localization, local and nonlocal fracture modeling approaches including low
triaxiality shear fracture at room temperature, as given in Part II. Chapter 5 gives a detailed
experimental numerical investigation of ductile fracture development in DP1000 steel sheets
during free bending process. Observed fractures emanate at free surfaces at the apex of the
bend. Fractographic studies attest a blended Mode I Mode II fracture driven by cavitation and
subsequent strain localization. The numerical studies materializing a local version of Gurson’s
porous plasticity model with a shear modification made it possible to reproduce experimentally
observed softening induced localization bands under plane strain constraint and consequent frac-
ture patterns. In the local models, the size of the localization band is controlled by the selected
mesh size. In this sense, the mesh size acts as a length scale associated with ductile damage. A

313



314

more powerful mesh objective approach for natural control of the localization size and reflection
of size effects is through nonlocal formulations which incorporate a material length parameter.
For ductile fracture this relates to the inter-particle spacing. In Chapter 6, a non-local extension
of shear modified Gurson’s porous plasticity model is established and used in investigation of the
deformation and fracture behavior of P91 steel during small punch testing of disks with different
thicknesses. The experimental studies demonstrate that for thinner disks diffuse necking with
membrane stretching followed by a localized deformation precedes fracture whereas shear local-
ization prevails for thicker ones. Comparison of the numerically and experimentally determined
results show a considerable agreement in the force-displacement curves as well as the fracture
patterns. Comparing the shear damage controlling parameter kw identified for each DP1000 and
P91 steel, it is observed that shear damage contribution in fracturing of DP1000 steels is more
dominant with higher kw value at corresponding scale of each test. For P91, values of kw as
high as that of DP1000 result in premature fracture, a result which gets more pronounced with
increasing disk thickness. Due to smaller strain and stress gradients emerging in the small punch
test for specimens without notch, similar estimations for different mesh sizes were observed for
local and nonlocal formulations, until the severe localization phase.

In Chapter 7, two empirical extensions of the classical Lemaitre’s damage model are investi-
gated. Weighting damage evolution for the compressive principal stress components, the first
extension considers a quasi-unilateral damage evolution. The second extension adds a shear
stress dependent term in the evolution equation of damage. Material characterization studies
conducted on the available database for proportional strain paths reported in the literature
show that the two introduced modifications makes the model sufficiently flexible especially as
compared to the common fracture criteria used in analysis of many manufacturing simulations.
The implications of the modifications in the metal forming practice are also discussed.

Part III extends the discussion on damage, localization and fracture to account for the role
of temperature. In Chapter 8 a unified thermo-plastic constitutive model combining the non-
local RKR brittle damage model with the nonlocal Gurson’s porous plasticity is established
to predict temperature driven ductile-brittle transition in small punch test of P91 steel disks.
Associated length scales are computed depending on the underlying material microstructure
as well as conducted simulations. Both small- and large-scale yielding conditions are consid-
ered through notched and unnotched specimens, respectively. Comparison of experimental and
numerical load-displacement curves as well as optical and SEM images of the fractured disks
demonstrating the crack patterns and fracture surface morphologies validates the applied mod-
eling strategy whose key ingredient is the temperature dependence of the yield stress.

Chapters 9 and 10, which are rather theoretical in nature, focus on development of thermo-
mechanical frameworks which make use of the internal variable theory of thermodynamics for
damage-coupled finite plasticity with nonlinear isotropic hardening. Underlying kinematics uses
multiplicative decomposition of the deformation gradient into elastic and inelastic parts. In
Chapter 9 an extension of [275] to rate dependent damage-coupled thermomechanics is studied.
This allows modeling damage induced effects on thermal and other mechanical fields, such as
deteriorated head conduction as well as reduction of mechanical stiffness and strength. It is
demonstrated that decomposition of entropy into elastic, viscoplastic and damage parts is possi-
ble through a temperature dependent damage dissipation potential. Developed model is used in
simulation of a set of example problems involving geometrical imperfection triggered necking of
an axisymmetric bar and thermally triggered necking of a 3D rectangular bar. It is shown that
surface convection of heat triggers necking which in turn causes increase of triaxiality at the
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specimen center. This substantially accelerates the emergent damage rate and reduces global
fracture strain of the specimen as compared to the homogeneous solution. The results also reveal
the role of rate effect as a localization limiter for the current doubly softening model, with both
damage and temperature.

In Chapter 10, the problem of ductile-brittle transition is revisited, establishing a thermodynam-
ically consistent constitutive approach which considers both brittle and ductile damage devel-
opment making use of two scalar state variables, d and f . d constitutes brittle damage variable
whose kinetic relation relies on the postulated damage dissipation potential. The evolution of
the void volume fraction f , on the other hand, relies on conservation of mass. Any dissipation
associated with f , is thus that of plastic flows. Absorbed energy plots computed for various
temperatures for uniaxial states of stress show that the model is capable of reflecting ductile-
brittle transition. In agreement with Chapter 1, temperature dependence of the material yield
stress is an indispensable ingredient of the model. Proposed model is advantageous as compared
to the approach presented in Chapter 1 of this part which uses Gurson-type porous plasticity
for ductile failure and Ritchie-Knott-Rice model for brittle fracture, since the energy dissipa-
tion associated with the cleavage-type of fracture is accounted for. Also, extension of the model
to anisotropic brittle damage is possible within the same continuum thermodynamics formalism.

Part IV focuses on mechanical material characterization tests for sheet metals. In Chapter 11
use of optical strain field measurements in inverse parameter identification for plastic anisotropy
is proposed in addition to the conventional force and displacement data. To span a wide strain
path spectrum yet to provide a room for sufficient material deformation, smoothly notched ten-
sile test specimens are used. Applications with 8 parameter Yld2000-2D model show that the
proposed methodology proves useful in identification of model parameters while keeping the
number of required characterization tests at a reasonable limit. This gains more importance
considering time pressure in industrial applications and also more complex yield loci with more
material parameters.

In Chapters 12 and 13 in-plane torsion test is explored with two specimen variants. With
slitted disk specimens, cyclic twin bridge shear test is studied in Chapter 12 in characterization
of kinematic hardening parameters. An inverse approach through finite element simulations
is required due to lack of a closed form solution. Applications to three distinct steel classes,
namely DC06, DP600 and TRIP700, demonstrates the usefulness of the test in characteriza-
tion of Bauschinger effect and relevant phenomena. The last chapter of the thesis, Chapter 13,
focuses on low triaxiality fracture parameter identification, which is the subject of a growing
interest in the literature, see, e.g., [224, 338, 29] among others. To this end monotonic in-plane
torsion tests exploiting radially grooved round planar sheet specimens is considered. Avoiding
slits with continuous radial groove not only helps avoiding edge fracture but also provides control
on the fracture location. This allows in situ identification of fracture strain through digital image
correlation systems. The numerical studies with finite element analysis show that, as intended,
fracture initiates within the groove under ideal shear conditions with vanishing triaxiality η = 0
and Lode parameter θ = 0. Thus, the test is suitable to characterize shear fracture for metallic
sheets.
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[107] B. Gülçimen, A. Durmus., S. Ülkü, R. C. Hurst, K. Turba, and P. Hähner. Mechanical
characterisation of a P91 weldment by means of small punch fracture testing. International
Journal of Pressure Vessels and Piping, 105-106:28–35, 2013.
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[198] N. L. Maoût, S. Thuillier, and P. Y. Manach. Aluminum alloy damage evolution for
different strain paths-application to hemming process. Engineering Fracture Mechanics,
76(9):1202–1214, 2009.



330 Bibliography

[199] Z. Marciniak. Influence of the sign change of the load on the strain hardening curve of a
copper test subject to torsion. Archiwum Mechaniki Stosowanj, (13):743–751, 1961.

[200] Z. Marciniak and J. Ko lodziejski. Assessment of sheet metal failure sensitivity by method
of torsioning the rings. J. Proc. 7th Biennual Congress of the IDDRG, pages 61–64, 1972.
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