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Preface

Eight years have passed since the day I handed in my doctoral thesis, eight years in
which I had time to do a lot of interesting research, teach and advise a handful of
gifted students. I feel privileged to be able to spend my time doing mathematical
research and teaching classes at the university, while also finding time to spend with
my family. What started as a chance encounter evolved into a deep love of algebraic
multigrid and some fruitful, as I hope, advances in both theory and application.

My work in the past couple of years can be characterized by a large number
of cooperations with various people of different backgrounds. There are two main
reasons for my preference of collaborative research. On one hand, I very much enjoy
discussing new, radical ideas with peers, which often leads to publications. On
the other hand, I consider discussions inevitable in my work conduct. They are of
utmost importance to me to reflect and refine my ideas as well as to find the right
reference frame for them.

I am grateful to all my collaborators for their positive feedback, and in particular
to James Brannick. I first met James during the late stages of my Diplomarbeit.
Over the years he not only aquainted me with some of the leading scientists in
the United States in the field, but also became the main reflector for my ideas on
algebraic multigrid. In frequent discussions we freely share our ideas and develop
the main line of our research, the bootstrap algebraic multigrid framework, together.

A second source of collaborations comes from the field of theoretical physics.
Being part of the Sonderforschungsbereich “Hadron Physics from Lattice QCD” as
an applied mathematician has honed my skills of transdisciplinary research. While
we were able to drastically advance the code base of our collaborators, the trans-
disciplinarity has been very fruitful for my own research as well. The confrontation
with the numerical challenges of lattice gauge theory led to new insights in adaptive
algebraic multigrid methods and a general broadening of my research interests.

The third and final source of collaborative work originates from my advisory
work of students at all stages of their studies. Seeing myself as equal part researcher
and teacher I put large effort in the supervision of Bachelor and Master theses as well
as a substantial investment of time to accompany doctoral students in their work.
Confronting an unprepossessed mind with one of my current research problems has
led to some remarkable theses, which also resulted in joint publications.

I would like to thank all my co-workers at Bergische Universität Wuppertal
who make the work in the Arbeitsgruppe Angewandte Informatik such an enjoyable
everyday experience. Especially I would like to thank my mentor Andreas Frommer
for his counsel, his trust and his undying faith in my work. Last but not least I
would like to thank my family and friends for their patience and support.

July 2018 Karsten Kahl
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Figure 1: Multigrid in a nutshell.

1 Introduction

Multigrid methods can be viewed as the ultimate answer to the question how one
should solve linear systems of equations

Ax = b, A ∈ Cn×n,

which originate from the discretization of particular partial differential equations.
This perspective is justified by their potential for optimal asymptotic complexity
O(n) as well as their numerical robustness. This unparalleled efficiency of multgrid
methods is obtained by a multi-scale resolution of the iterative process, such that
only local computations need to be done on each scale.

Generically, multigrid methods consist of two components. First, a local re-
laxation process that can be formulated independent of scale, which “smoothes”
an arbitrary error. Second, a way to transfer information between scales that is
accurate on “smoothed” data and, in addition, a representation of the problem on
different scales. In fig. 1 the multigrid principle is illustrated and the aforementioned
effectiveness of the multigrid cycle to resolve an arbitrary error is demonstrated. It
is worth noting that neither of the two components of a multigrid method would
result in an efficient method on its own. What makes multigrid methods so effective
is the complementarity of its two components.

The essential observation of a smoothing property of certain relaxation schemes
for elliptic problems dates back at least to Southwell [61], but it took decades to
complement this observation with suitable descriptions of the problem at different
scales to formulate a multigrid method. This is surprising, as the formulation of
the problem at different scales is readily available in the discretization of partial
differential equations. It lies in the very nature of a discretization that a partial
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differential equation can be approximated on different scales. Nevertheless, the
realization that the essential difference between discretizations on two different scales
is comprised of local information and is thus amenable to smoothing occured only
in works by Fedorenko [30] and Bakhvalov [4]. Shortly after these first works, the
topic of multgrid methods gained traction by the seminal works of Brandt [9, 10]
and Hackbusch [34] and the first conferences dedicated to multigrid methods [35].
Around the same time, starting with Nicolaides [49, 50], multigrid methods were
also introduced in the framework of finite element discretizations. This again is a
quite natural process due to the fact that finite element methods not only provide
descriptions of the continuous problem on different scales, but also readily provide
projection and interpolation operators between finite dimensional spaces of functions
at different scales.

All these early works on multigrid methods had one feature in common. The
construction of the multigrid hierarchy is essentially based on the underlying dis-
cretization scheme and thus intimately coupled to it. Thus, to incorporate multigrid
solvers in simulation packages requires changes in the core routines and deepest lay-
ers of the implementation, a task that often is deemed too daunting or expensive to
be considered. This problem has been the main motivation for the introduction of
algebraic multigrid methods [7, 13, 60, 68].

The essential difference of geometric and algebraic multigrid methods is outlined
in fig. 2. On one hand, geometric multigrid methods are intimitely tied to the partial
differential equation and an appropriate discretization scheme, so that the multigrid
hierarchy can be automatically generated, and transfer operators between scales can
be easily derived. In this context, one has to find a suitable relaxation scheme, which
is complementary to the given multigrid hierarchy. On the other hand, algebraic
multigrid methods do not (want to) make any assumption on the origin of the linear
system of equations, but only assume that a (convergent) relaxation process can be
constructed. It is the task of the method to construct a suitable multigrid hierarchy
and scale-bridging transfer operators based on this information alone. Clearly, one
would expect that, applied to the same problem, a geometric multigrid construction
is superior to an algebraic one as it uses a lot more information on the underlying
problem than the algebraic construction can possibly do. While this is indeed often
true, the algebraic construction offers more flexibility in terms of independence from
the actual discretization process and is thus much easier to incorporate into existing
codes. It can also be applied to problems where geometric multigrid constructions
are (not yet) available (e.g. lattice gauge theories) or might be used as a proof-of-
concept to motivate the development of geometric approaches or a reimplementation
of the code-base, where a geometric multigrid method is built in from the start.
Furthermore, algebraic multigrid methods can readily be applied to discretizations
of systems of partial differential equations.

Given the prominent role in my work, let us now take a closer look at the
components of algebraic multigrid methods and the challenges in their construction.
As sketched in fig. 2, algebraic multigrid methods start with the algebraic description
of the sparse linear system of equations

Ax = b, A ∈ Cn×n. (1)

Generically, the error propagator of an algebraic two-grid method is given by

E2g = (I −MpostA)(I − PA−1c RA)(I −MpreA) , (2)
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Figure 2: Illustration of the difference of geometric and algebraic multigrid methods
(cf. [69, p. 416]).

where M. defines a simple, i.e., cheap, relaxation process and I − PA−1c RA denotes
the coarse-grid correction. In here, Ac can be thought of as the coarse representation
of A, and P denotes the interpolation, R the restriction operator. A “true”, i.e.,
multi-level, algebraic multigrid method is then obtained by simply recursing on the
two-grid construction.

Most of the time the coarse representation Ac is chosen variationally, i.e., Ac =
RAP even though deviations from this rule have been considered in the literature,
e.g., in [2, 28, 71], mainly motivated to reduce fill-in in Ac. Assuming that the coarse
representation Ac of A is chosen variationally, the problem of defining a multigrid
hierarchy in the algebraic approach reduces to constructing P and R. In case A is
Hermitian, R is typically chosen as PH in order to preserve Hermiticity in Ac. This
further reduces the problem to only requiring a suitable definition of interpolation
P . The general appeal of the variational construction can be seen when considering
positive definiteness of A. In this case the coarse grid correction

I − P (RAP )−1RA,

with R = PH and Ac = PHAP becomes an A-orthogonal projection.
Now that we boiled down the construction of an algebraic multigrid method to

the construction of P , let us consider the general design goals in its definition from
a high-level point of view. First, in order to obtain an efficient method, the range of
interpolation has to be chosen complementary to the space where the smoother is
efficient. That is, it needs to represent the space where the smoother is inefficient.
Note that in the case that Ac is chosen variationally, the range of P uniquely defines
the action of the coarse-grid correction as any change of basis P → P · G, G non-
singular, cancels out in eq. (2). Choosing G−1 := PC, i.e., the inverse of the square
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Figure 3: Algebraic coarsening in a nutshell: (left) adjacency graph of A; (middle)
choice of C, i.e., coarse variables ; (right) interpolation relations, ingoing arrows
for correspond to Ci.

submatrix of P corresponding to a subset C of variables, we can always transform P
such that PC = idC. That is, interpolation is the identity on C, the so-called coarse
degrees of freedom, and the remainder of P can be interpreted as interpolation from
variables in C to variables not in C. While this transformation can be unpractical
due to fill-in in P , it allows us to treat coarsening on the basis of a variable splitting,
which is convenient for this presentation. Specifying a suitable set C that allows for
the accurate representation of the aforementioned space is thus part of the construc-
tion of interpolation P as well as the computation of suitable entries of P . In here,
sparsity of P and with it sparsity of Ac = PHAP is beneficial in order to be able to
recursively apply the construction to obtain a multigrid hierarchy of operators, to
reduce communication in parallel implementations and also to obtain a significant
reduction in complexity along the multigrid hierarchy.

Achieving these goals is typically split into two parts. Finding C and the sparsity
pattern of P is often referred to as the coarsening problem, while determining the
entries of P , and thus defining its range, is known as the interpolation problem.
These terms will become clear when we go into more detail in section 2. Often,
an artificial geometric interpretation of the algebraic equations (1) in terms of the
corresponding adjacency graph

GA = {V,E}, V = {1, . . . , n}, E = {(i, j) ∈ V × V | aij 6= 0}

is used in the setup process of the algebraic multigrid method. Guided by the graph
of the matrix GA a set of coarse variables C is chosen and sets Ci ⊂ C are determined
to define interpolating variables for every variable i /∈ C. In fig. 3 the process from
GA to C and finally Ci, i /∈ C is depicted.

The earliest constructions that fit into this framework of an algebraic solution to
either the coarsening or interpolation problem are aggregation approaches [6, 23],
reduction-based approaches [58, 59], which use approximations of Schur comple-
ments to construct a multigrid hierarchy for the problem, and the classical “Ruge-
Stüben” algebraic multigrid method [13, 7, 60, 68]. While the early aggregation
approaches mainly focus on the construction of suitable coarsenings, as the entries
of P are known from context, i.e., based on knowledge about the underlying partial
differential equations, the classical algebraic multigrid method can be seen as the
first approach to tackle the algebraic multigrid construction in its entirety.
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In the classical approach both the coarsening and the interpolation problem
are solved using the entries of A, and its convergence analysis shows that this is
appropriate as long as A is an M -matrix.1 While this classical approach to algebraic
multigrid can be extended to some degree [21, 24, 27, 38], its applicability is limited
due to implicit assumptions on the underlying problem, in particular, the importance
of the constant vector, which is exactly interpolated. Since then, many attempts
have been made to further extend the applicability of algebraic multigrid methods
beyond their initial limitations.

An important step in this direction has been the introduction of adaptivity to
construct multigrid hierarchies, which is discussed in detail in section 2. Developing
adaptive ideas for the construction of efficient algebraic multigrid methods has been
a central topic of my work. As such, I use section 2 to reflect on my contribu-
tions as well. These contributions to algebraic multigrid methods have been fueled
by the collaborations with theoretical physicists working on lattice gauge theories.
Due to the inherent randomness in the considered models, no geometric multigrid
construction is known up to date, but my collaborators and I were able to show
that efficient methods can be constructed using adaptive algebraic multigrid meth-
ods. One crucial aspect that came up in this exploration has been the importance
of structure preservation. Systems of partial differential equations typically pos-
sess peculiar symmetry structures that need to be considered in the construction
of multigrid methods to ensure robustness, the preservation of spectral properties
and thus recursive applicability. I review the topic of structure preserving multigrid
methods in general and specifically the development of methods for the operators
of lattice gauge theory in detail in section 3. I conclude with a statement about
my contributions to the publications which comprise this cumulative Habilitation
in section 4.

1M -matrices arise naturally in the finite difference discretization of elliptic partial differential
equations.
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2 Adaptive algebraic multigrid methods

In the context of algebraic multigrid methods, adaptivity is understood as an ability
of the method to adapt itself to the problem at hand. Based on the fundamental
assumption of algebraic multigrid, i.e., that a smoother is given and a complementary
coarse grid has to be constructed, first adaptive approaches have been introduced
shortly after formulating the concept of algebraic multigrid itself.

Early works that use adaptivity [13] to improve the performance of an algebraic
multigrid method modify classical algebraic multigrid interpolation by introducing
a representative of algebraically smooth error, i.e., error components that cannot
be effectively treated by relaxation. Motivated by the observation that the error
components that are not effectively reduced by the relaxation process oftentimes
strongly correlate to the lower part of the spectrum of the system operator A, early
works also advocate the use of spectral information to adapt algebraic multigrid
methods [47, 60]. The development gained momentum in the first decade of the
21st century with the introduction of adaptive smoothed aggregation (αSA) in [19,
20] and adaptive algebraic multigrid (αAMG) in [18], which is an adaptive extension
of the classical algebraic multigrid method. Many of these approaches add adap-
tivity specifically to solve the interpolation problem, i.e., to adaptively adjust the
space spanned by interpolation, without touching the coarsening problem. Another
approach to solve the interpolation problem that relies on energy minimizing coarse
grid basis functions and is thus related to the (smoothed) aggregation approch has
been developed in [15, 45, 54, 70, 72]. To some degree these methods can be viewed
as solving the interpolation and coarsening problem at the same time by obtain-
ing suitable basis functions of the coarse grid without having to rely on particular
coarsening strategies.

In recent years, adaptivity has also been used in new ways to solve the coarsening
problem. This has been done either by replacing the definition of strength of con-
nection in a classical algebraic multigrid sense by an adaptive measure of strength as
in [55, 57], by using compatible relaxation [8, 14] or by considering binary relations
of variables to construct suitable matchings in GA as in [17, 42, 48, 52]. Almost all
of these approaches make use of the concept that the given smoother reveals the
coarse subspace due to the need of complementarity. That is, what is not reduced
by the smoother needs to be in the coarse space.

Together with my collaborators, I was substantially involved in developing the
bootstrap algebraic multigrid framework which tries to solve both the interpolation
and coarsening problem by leveraging a similarity of the construction of a suitable
coarse space to a statistical learning process. While I will focus in the following on
publications that I have been involved in, other groups have picked up and developed
components of the bootstrap algebraic multigrid framework as well (cf. [22, 46, 62]).

The bootstrap algebraic multigrid framework

The bootstrap algebraic multigrid framework is comprised of two main ideas. The
first of them is to use statistical information of algebraically smooth error in least
squares interpolation. In order to get a good approximation of algebraically smooth
error, least squares interpolation uses local weighted least squares fits to define the
entries of the interpolation operator based on stochastic samples of algebraically
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smooth error. Assuming that no a priori information about algebraically smooth
error is available, the least squares interpolation approach can be interpreted as
building a local model of the nature of algebraically smooth error by using samples
that are initiated with random values and smoothed afterwards. Combined with
a weighting that favors global algebraic smoothness, we showed in [K1, K2] that
least squares interpolation yields a robust method for the adaptive computation of
interpolation operators in algebraic multigrid methods. In addition we demonstrated
in [K5, K11] how the concept of least squares interpolation can be used to find
solutions to the coarsening problem.

The second concept, introduced in the bootstrap algebraic multigrid framework
is the bootstrap setup cycle. Its main idea is the computation of global samples of
algebraically smooth error by exploiting the evolving multigrid hierarchy. Based on
the observation that the formulation of global algebraic smoothness can be trans-
ferred to coarse grids, we demonstrated that samples of globally algebraic smooth
error can efficiently be obtained and fed back into the subsequent setup iterations.
True to its name, our proposed bootstrap setup is able to start from scratch and
use the currently best available method and information to improve itself.

My contribution to the development of the bootstrap algebraic multigrid frame-
work has been published in the following four papers, each of which is summarized
shortly.

[K2] Bootstrap AMG. Achi Brandt described a rough outline of a bootstrap
setup cycle and least squares interpolation for algebraic multigrid methods in his
seminal work [11]. In [K2] we elaborate this outline and discuss the two main ideas
of the bootstrap algebraic multigrid framework, least squares interpolation and the
bootstrap setup cycle, in detail.

Given a set of test vectors v(1), . . . , v(K), which are samples of algebraically
smooth error, i.e., either stochastic samples (initially random smoothed vectors),
a priori known information on algebraically smooth error or samples computed in
the booststrap setup cycle, the entries of pij of the interpolation operator P are
defined by the local weighted least squares fits

min
pi,·

K∑
k=1

ωk

(
v
(k)
i −

∑
j∈Ci

pijv
(k)
j

)2

for all i /∈ C.

In here ωk is chosen such that vectors which are algebraically smooth globally, i.e.,
||Av|| � ||v||, get a larger weight in the least squares fit.

The bootstrap setup cycle is motivated by the observation that for a given multi-
grid hierarchy, defined by interpolation operators P i

i+1, i = 0, 1, . . . , L−1 and coarse
grid operators Ai+1 = (P i

i+1)
HAiP

i
i+1, A0 = A, we find with Pi := P 0

1 ·P 1
2 · . . . ·P i−1

i

that
〈Aix, x〉2
〈x, x〉2

=
〈APix, Pix〉2
〈Pix, Pix〉2

.

That is, eigenvectors to small eigenvalues of the generalized eigenvalue problem

PH
L (λPLx− APLx) = 0 ⇐⇒ ALx = λPH

L PLx

are good candidates of algebraically smooth errors that can be computed or ap-
proximated on coarse grids. Leveraging this spectral connection of the multigrid
hierarchy allows us to formulate the bootstrap setup cycle depicted in fig. 4.
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Compute W , s.t., Aw = λTw,w ∈ W

Relax on Av = 0, v ∈ V and (A− λT )w = 0, w ∈ WRelax on (A− λT )w = 0, w ∈ W

Relax on Av = 0, v ∈ V

Figure 4: Bootstrap AMG V 2-cycle and W-cycle setup schemes (cf. [K2]).

Finally, we demonstrate the effectiveness and robustness of the bootstrap setup
cycle and least squares interpolation in numerical experiments.

[K1] A bootstrap algebraic multilevel method for Markov chains. Moti-
vated by the success of the bootstrap algebraic multigrid method and the numerous
publications that dealt with the construction of algebraic multigrid methods for dis-
crete time Markov chain problems at that time (cf. [64, 65, 66, 67]), we apply and
adapt the bootstrap algebraic multigrid framework to the non-symmetric singular
operators arising in discrete time Markov chain modelling in [K1].

Discrete time Markov chains describe the behaviour of a random process by tran-
sition probabilities between distinct states of the system. Due to the probabilistic
nature of the model, the resulting matrix A ∈ Rn×n, where n denotes the number
of possible states, is column stochastic, i.e., 1TA = 1T . In order to calculate the
steady-state distribution (the probability distribution of long-term behaviour) we
have to solve the eigenvalue problem

Ax = x ⇐⇒ (I − A)x = 0

for its (up to a scale factor) unique solution x. Due to the non-symmetric nature
of the problem, the algebraic multigrid method has to consider the construction of
restriction R independently of interpolation P . While we are able to apply least-
squares interpolation with only miniscule modifications (mainly in the choice of
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weights) to the construction of P , the construction of R has to be reconsidered. We
show in this work that it is necessary to preserve the column-stochastic nature of
the system matrix on coarser grids in order to guarantee consistency of the singular
coarse grid systems. This can be enforced by constructing R such that 1TR = 1T ,
e.g., by using classical algebraic multigrid recipes.

By combining this construction of R with least squares interpolation P , the
bootstrap algebraic multigrid cycle and compatible relaxation coarsening, we are
able to show scalability of the approach for Markov chains on random planar graphs
based on Delaunay triangulation and other, uniform, Markov chain models. Due to
the fact that the presented approach makes use not only of multiplicative updates
from the bootstrap cycle, but also from additive updates by preconditioned GMRES
it outperforms state-of-the-art algebraic multigrid methods for this application.

[K5] Algebraic distance for anisotropic diffusion problems: Multilevel re-
sults. While the interpolation problem and overall setup are well developed within
the bootstrap algebraic multigrid framework, the proper solution of the coarsening
problem within the framework has been an open problem up to this point. Thus,
motivated by yet another remark in [11] and the overall good performance of least
squares interpolation we explore the idea of algebraic distances in this paper. The
concept of algebraic distance solves the coarsening problem by defining an algebraic
strength measure

µij :=

(
min
pij

K∑
k=1

ωk

(
v
(k)
i +

1

aii
r
(k)
i − pijv

(k)
j

))−2
,

which is simply least squares interpolation with an additional local residual correc-
tion (cf. [22]) restricted to pairs of variables. Measuring algebraic distance in a local
neighborhood of each variable yields a strength graph that is used in a compati-
ble relaxation based coarsening algorithm [14]. By limiting the problem to pairs of
variables the cost of this algebraic strength measure scales linearly with the number
of variables and the size of the local neighborhoods. Due to the fact that the test
vectors of the bootstrap setup cycle can be used to define the algebraic strength
measure it can be seamlessly integrated into the bootstrap framework.

In numerical experiments with anisotropic diffusion problems we are able to show
that the bootstrap algebraic multigrid method, using algebraic distances to solve
the coarsening problem, yields scalable convergence for a large range of anisotropy
strength and different angles of anisotropy with respect to the orientation of the
underlying uniform grid. This is largely due to the fact that the algebraic distance
measure is able to detect the direction of anisotropy even at long range, thus enabling
coarsening in that direction as depicted in fig. 5.

[K11] Least angle regression coarsening in bootstrap algebraic multigrid.
Considering the current explosion of techniques for machine learning, it is interesting
to understand that the bootstrap algebraic multigrid framework can be interpreted
as a statistical learning method. The observation that least squares interpolation
learns a local model of algebraically smooth error by examining samples of it is at
the heart of the development of another solution ansatz for the coarsening problem
within the bootstrap algebraic multigrid framework that we develop in [K11].
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Figure 5: Coarse grids and caliber c = 2 interpolation patterns resulting from
algebraic distance coarsening for anistotropic diffusion problems with anisotropy
angle α = π

4
(left) and α = π

8
(right) (cf. [K5]).

Due to the fact that the model of algebraically smooth error built by least squares
interpolation (in terms of the calculated coefficients) reflects correlations of variables,
i.e., how well one or more variables are able to describe others, it can be considered
natural to use this information to define interpolation relations in the bootstrap al-
gebraic multigrid framework. However, the brute-force application of this approach,
e.g., to check all possible sets of three variables in the (local) neighborhood of a vari-
able in order to find the best set of three variables to interpolate from, is clearly too
costly. In this paper we find an elegant solution to this problem by first generalizing
the notion of locality in least squares interpolation and then introducing a natural
sparsification modification to least squares interpolation to resolve the combinatorial
complexity problem.

The first contribution of this paper is the generalization of the notion of locality in
least squares interpolation by the introduction of a kernel function Kη that penalizes
distance (e.g. graph distance) in a flexible manner. The resulting least squares
problems that are used to determine the correlations between variable i and its
neighboring variables read

min
pi,·

K∑
k=1

ωk

(
v
(k)
i −

∑
j 6=i

pijKη(i, j)v
(k)
j

)2

.

Typically, |{j | Kη(i, j) 6= 0}| by far exceeds the number of test vectors K used in the
bootstrap framework which poses a serious threat of over-fitting if one is unwilling
to increase K. That is, without further limiting the number of calculated coefficients
or increasing the number of test vectors K, the coefficients should not be trusted in
the decision making process. Due to the fact that the number of test vectors largely
influences the cost of the boostrap framework, we are rather unwilling to increase
their number, especially when a small number of test vectors is enough to achieve
accurate interpolation once the coarsening problem is solved.

In order to deal with this problem, i.e., the reduction of the number of coefficients
that need to be calculated, we introduce yet another tool from statistical learning,
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Figure 6: Illustration of the local behaviour of least angle regression applied to
Poisson’s equation, i.e., in a situation where no directionality of correlation is to be
expected. Least angle regression is able to determine the “expected” triangular set
of variables as highly correlated (as a set) (cf. [K11]).

an `1 constraint, to automatically sparsify the least squares coefficients,

min
pi,·

K∑
k=1

ωk

(
v
(k)
i −

∑
j 6=i

pijKη(i, j)v
(k)
j

)2

+ λ‖pi,·‖1 .

Fortunately, this modification, which turns the least squares problems into a non-
linear optimization problem, does not pose a complexity threat as it can be solved
by least angle regression for all λ ∈ [0,∞) that correspond to switching points of
coefficients pi,·, i.e., where either a coefficient that has been zero becomes non-zero
or vice versa.

The most remarkable property of this approach is the ability to determine ap-
propriate strength relations of sets of points in situations where no preference is
given on the basis of pairs of points as depicted in fig. 6. In addition the approach
is able to automatically determine the necessary number of interpolatory variables
and thus reduces operator complexity of the resulting multigrid hierarchy.

In combination with a weighted independent set ansatz and some additional
post-processing in the coarsening routine we are able to obtain scalable multigrid
results for discretizations of anisotropic diffusion problems on unstructured meshes
for both point-smoothers such as Gauss-Seidel, but also for domain decomposition
smoothers, where the nature of the smoother is reflected in the coarsening as can
be seen in fig. 7.
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Poisson’s equation with anisotropy, Gauss-Seidel smoothing
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Poisson’s equation, block Gauss-Seidel smoothing
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Figure 7: Illustration of the interpolation coupling structure computed by least angle
regression coarsening for two different cases. (top) Poisson with anisotropy (α = π

4
,

ε = 0.01); (bottom) Poisson w/o anisotropy, block Gauss-Seidel (6 blocks, 4 colors)
(cf. [K11]).

Other advances in multigrid methods

It has been the long standing mantra, which I have cited many times in this
manuscript already, that

adaptive algebraic multigrid methods have to construct coarse grid cor-
rections that are able to reduce error that cannot be efficiently reduced
by the smoother

without having a thorough theoretical backing for it. While the mantra is certainly
well motivated and ultimately also theoretically founded, the theory could not reflect
it for a long time due to the fact that a fundamental assumption has been to neglect
the influence of the smoother in the construction of coarse grids and interpolation.
This assumption has been postulated and used in almost all algebraic multigrid con-
structions. That is, it is assumed that the spectral information of A can be used to
construct efficient algebraic multigrid methods. While this assumption is valid for
simple smoothers applied to simple problems (e.g., Jacobi iteration applied to an
elliptic problem with constant coefficients) it is no longer appropriate when consid-
ering more complex problems and/or smoothers, e.g. block smoothers. Adaptivity
has been able to hide this flaw of the original algebraic multigrid construction to
some degree due to the “correct” source of information (algebraically smooth er-
ror, i.e., not efficiently reduced by the smoother) used in the construction of coarse
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spaces, but the constructions and setup heuristics were still largely founded on the
simplified assumption. In [K9] we were able to derive a formula for the optimal
interpolation in algebraic multigrid for any given smoother. This formula encodes
the relationship between the role of interpolation and smoothing and is a precise
statement on the required complementarity of smoother and coarse grid correction.
While not of immediate practical use, it is an important result for the understanding
and advancement of (adaptive) algebraic multigrid methods and backs the general
mantra of adaptive algebraic multigrid methods.

An important tool in the quantitative analysis of multigrid methods on struc-
tured grids is the so-called local Fourier Analysis introduced in [10, 12]. In case an
operator, defined on a lattice, can be described locally due to shift-invariance, it is
block diagonalized by the Fourier transform. Utilizing this block diagonalization for
all components of a multi-level method allows for precise bounds on the convergence
speed of these methods as has been demonstrated in countless works, e.g. [31, 32,
33, 36, 37, 44, 73]. In [K10] we contributed to the literature on local Fourier anal-
ysis by adding a geometric multigrid method for the tight-binding Hamiltonian of
graphene, which is a maximally indefinite2 operator. Most interestingly the defini-
tion of interpolation is solely guided by findings made using local Fourier analysis.

In the following I want to review these two contributions to the bigger landscape
of multigrid methods in more detail.

[K9] Optimal interpolation and compatible relaxation in classical alge-
braic multigrid. Complementarity of smoother and coarse grid correction have
been established and analyzed for a long time using the simplifying assumption that
algebraically smooth error is represented by eigenvectors corresponding to small
eigenvalues of A, i.e., neglecting the potential influence of the smoother when ana-
lyzing complementarity. In many situations this assumption turns out to be “good
enough”, but especially when considering complex problems or complex smoothers
it can be outright misleading in the sense that while the number of small eigenvalues
of A is large, the number of dominant vectors in algebraically smooth error is small.

In this work we present a precise statement about the relation between smoothing
and coarse grid correction. We formulate the representation of optimal interpolation
for a given smoother M , defined by its error propagator

I −M−1A

and its symmetrized version M̃ := M
(
M +MH − A

)
MH . In [29] the convergence

of a two-grid method with pre-smoothing by M and post-smoothing by MH has
been shown to fulfill

‖E2g(P )‖2A = 1− 1

supv κ(P, v)
, κ(P, v) :=

‖
(
I − πM̃(P )

)
v‖2

M̃

‖v‖2A
,

where πM̃(P ) denotes the M̃ -orthogonal projection onto range(P ). Based on this
result we show that the optimal interpolation of an algebraic multigrid method,
which minimizes the A-norm of the corresponding two-grid error propagator, is
given by

Popt =
[
v1 v2 . . . vnc

]
,

2Having the same number of negative and positive eigenvalues
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where v1, v2, . . . , vnc are the eigenvectors corresponding to the smallest eigenvalues
of the generalized eigenvalue problem

Avi = λiM̃vi .

Note that, assuming non-singularity of M̃ , this generalized eigenvalue problem can
be rewritten as (

I − M̃−1A
)
vi = (1− λi)vi .

That is, algebraically smooth vectors vi correspond precisely to the eigenvectors of
the error propagator of the (symmetrized) smoother belonging to eigenvalues close
to one, i.e., they parametrize the space where the symmetrized smoother is slowest
to converge.

This observation not only justifies the mantra of adaptive algebraic multigrid,
but also yields a lower bound on the convergence speed of any (adaptive) algebraic
multigrid method using the smoother M , as we obtain

‖E2g(Popt)‖2A = 1− λnc+1 .

Furthermore, we show by introducing the concept of a maximal volume basis for
the coarse space, that the optimal interpolation can give us information about the
existence of a sparse interpolation operator that achieves near optimal convergence
rates. To illustrate the potential of this result for adaptive algebraic multigrid
methods we describe how to build it into the bootstrap framework, especially its
setup cycle and present some fairly preliminary results of this method. A more
extensive study on how to incorporate the result into the bootstrap framework is in
progress.

[K10] Geometric multigrid for the tight-binding Hamiltonian of graphene.
The carbon-allotrope graphene consists of carbon atoms arranged in a hexagonal
lattice, which can be described as a triangular lattice LT generated by the lattice
vectors

a1 =
[
3a
2

√
3a
2

]
and a1 =

[
3a
2
−
√
3a
2

]
with lattice spacing a and a unit cell attached to each lattice site defined by

LG := {x+ δτ | x ∈ LT , δ ∈ {0, 1}} , τ =
[
a 0

]
.

a1

a
2

τ

A commonly used tool to simulate electron movement in solid state physics is
the so-called tight-binding Hamiltonian. In short, it simply formulates the energy
that it takes for an electron at one site of the material to hop to a neighboring
site. In case of graphene, due to the highly symmetric lattice structure, the simplest
tight-binding Hamiltonian takes the form:
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· −2.7eV

−2.7eV

−2.7eV

or ·−2.7eV

−2.7eV

−2.7eV

It is known that this operator is maximally indefinite with two double-zeroes at the
so-called Dirac points, which are located in phase space at

K1 =
2π

9a

[
1

√
3
3

]
and K2 =

2π

9a

[
1 −

√
3
3

]
.

Close to these points the tight-binding Hamiltonian has a linear dispersion relation,
which is largely responsible for the interesting properties of graphene.

Figure 8: Illustration of interpolation using weights ws ( ) and w` ( ) [K10].

In order to formulate a geometric multigrid method for this operator we introduce
a coarsening that results in a coarse hexagonal lattice at a coarsening rate of 1

4
.

Further we specify interpolation that preserves the spectral structure of the operator
at the Dirac points as depicted in fig. 8. Denoting the short range interpolation
weights by ωs and long range interpolation weights ω`, we show that preserving the
Dirac points requires

ωs = 2ω` − 1

and a stable coarse grid operator is obtained for ω` ∈ (1
6
, 1
3
).

Using a generalized version of local Fourier analysis we are able to prove conver-
gence and scalability of this approach when using Kaczmarz relaxation. As a follow-
up of this work a further generalization of local Fourier analysis is in preparation.
This work constructs local Fourier analysis solely on position space information, i.e.,
in terms of shift-invariance of operators. Using this approach, we are able to use
local Fourier analysis for operators that live on arbitrary crystal structures with a
minimal amount of required user input. This allows us to analyze complex opera-
tors, e.g., (overlapping) block smoothers or systems of partial differential equations,
in a unified framework.
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3 Structure preserving algebraic multigrid

The preservation of structure, be it in terms of symmetries, geometry or quite lit-
erally structure, is a recurring topic in numerical analysis. Modelling physical, bi-
ological and mechanical processes in mathematical terms usually involves special
treatment of important structures of the problem. Sometimes these can be used to
simplify the model, sometimes they have to be carefully integrated into the model to
ensure that the obtained numerical solution bears resemblance with the actual real
world and sometimes structure is automatically encoded in the model. In the latter
two cases it is advisable that the inherent structure of the model is not lost in the
successive numerical treatment, i.e., in linearization and discretization. Not abiding
to this advice might result in anything from catastrophic failure due to numerical
instabilities to a poorer quality of the obtained solution or no detrimental effect at
all.

While ignoring structure on the subsequent and last level of simulation, i.e.,
at the level of numerical linear algebra that follows linearization and discretization
seldomly has catastrophic effects, trying to preserve structure on this last and most
basic level of a simulation seems obvious for the aforementioned reasons. Using
as much of the information and structure of a model might be beneficial and can
potentially reduce time-to-solution of the resulting linear algebra problems, which
make up a large chunk of computing time in many simulation packages.

In my research I have largely explored structure preservation in algebraic multi-
grid methods in terms of lattice gauge theory, e.g., lattice Quantumchromodynamics,
but many of the arguments developed for this particular application can possibly
be extended to other applications as well, such as systems of partial differential
equations with special symmetries or problems with structure that originate in the
geometry of the problem.

I also explored another, completely different, venue of structure preservation in
nature of tensor approximations, where the preserved tensor structure is of artificial
nature. That is, rather than being a natural choice, tensor approximations are
rather a tool to make simulation of the presented interacting systems viable in the
first place. This is due to what is known as the curse of dimensionality. In models
which describe the interaction of many submodels, the size of the overall system
grows exponentially with the number of submodels. This in turn renders a full
solution of these models impossible due limited storage and computing resources.
However due to their particular structure approximations in a tensor-format are
widely accepted to be the method of choice. Structure preservation, i.e., its tensor-
format, in algebraic multigrid methods for such models is thus not an option, but a
neccessity.

Symmetry preservation in lattice gauge theory

The Dirac equation of Quantumchromodynamics that is simulated in lattice gauge
theory is a system of first order partial differential equations, which depends on a
mass m and gauge field Aµ ∈ su(3), i.e., the Lie algebra of the special unitary group
SU(3), by

D = m+
3∑

µ=0

γµ ⊗ (∂µ + Aµ) .
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In here, the matrices γµ ∈ C4×4, µ = 0, . . . , 3 fulfill the anticommutation relations
γµγν+γνγµ = 2δµνI, i.e., they generate a matrix representation of a Clifford algebra.
In abstract terms one can think of the Dirac equation as the formal square root of
the Klein-Gordon equation. Based on the structure of the γ-matrices and defining
γ5 := iγ0γ1γ2γ3 such that γµγ5 + γ5γµ = 0, there are two immediate and important
symmetries of the Dirac equation. The γ5-symmetry, which reads

γ5Dγ5 = D∗

and in addition chiral symmetry in the case m = 0, defined by

eiαγ5Deiαγ5 = D .

Due to its origin in the structure of the system of partial differential equations,
the γ5 symmetry can be easily preserved in the discretization using finite covariant
differences, i.e., approximating ∂µ + Aµ by

(∂µ + Aµ)ψ(x) =
1

2a

(
Ux−a
µ

)H
ψ(x− aeµ)− Ux

µψ(x+ aeµ) +O(a2) ,

where Ux
µ ≈

∫ x+aeµ
x

eAµ(x)dx. This so-called naive discretization is numerically un-
stable as it has kernel vectors that have no physical meaning. In order to get rid of
the numerical instability it has been proposed to add a stabilizing term of second
order to obtain what is known as the Wilson formulation

3∑
µ=0

γµ ⊗ (∂µ + Aµ) −→
3∑

µ=0

γµ ⊗ (∂µ + Aµ) + a∂µµ .

While this discretization is numerically stable, it explicitely breaks chiral symmetry
even for m = 0. As according to the infamous no-go theorem [51] there exists no
local discretization of the Dirac operator that is at the same time numerically stable
and preserves chiral symmetry, this is the discretization that is widely used in lattice
gauge simulations.

Over the years there have been numerous attempts at finding a multigrid method
for the solution of the systems arising in simulations of lattice gauge theories, but
none had lasting effect [5, 39, 40, 41]. That is, until the development of adaptive al-
gebraic multigrid methods [3, 16, 43] made a huge impact and structure preservation
played a major role in this.

My contributions to the development of structure preserving adaptive algebraic
multigrid methods for operators of lattice gauge theory have been published in the
following three papers, each of which is summarized shortly.

[K3] Bootstrap algebraic multigrid for the 2D Wilson Dirac operator. In
order to reduce the computational overhead of the 4-dimensional lattice gauge theory
of Quantumchromodynamics we first considered a 2-dimensional variant associated
with Quantumelectrodynamics in [K3].

In this publication we first generalize the bootstrap algebraic multigrid frame-
work for non Hermitian matrices, i.e., we consider and develop the Petrov-Galerkin
case where R is not equal to PH anymore. This generalization is based on the
singular value decomposition A = UΣV H and the assumption that interpolation
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P should capture the nature of right-singular vectors to small singular values and
restriction R the corresponding left singular vectors. The bootstrap method is then
constructed using the equivalence of the singular value decomposition with a Her-
mitian eigenvalue problem of twice the dimension[

0 A
AH 0

]
︸ ︷︷ ︸

Â

[
U U
V −V

]
=

[
U U
V −V

] [
Σ 0
0 −Σ

]
.

Applying the Galerkin bootstrap construction to the Hermitian matrix Â immedi-
ately implies that smoothing for interpolation test vectors should be based on A
for interpolation test vectors and AH for restriction test vectors and the weighting
of these test vectors in least squares interpolation has to be adjusted accordingly.
Furthermore, the coarsest grid generalized eigenvalue problem that is used in the
bootstrap setup cycle becomes[

0 AL
AHL 0

]
︸ ︷︷ ︸

Â

[
UL UL
VL −VL

]
=

[
RL 0
0 PL

] [
UL UL
VL −VL

] [
ΣL 0
0 −ΣL

]
,

where RL = RL
1 (RL

1 )H , PL = (P 1
L)HP 1

L with R1
L = RL

L−1 · RL−1
L−2 · . . . · R2

1 and P 1
L =

P 1
2 · P 2

3 · . . . · PL−1
L .

If on the other hand interpolation is constructed such that it preserves Γ5-
symmetry, i.e.,

Γ5P = P Γ̃5, Γ5 =

[
I 0
0 I

]
= Γ̃5,

we are able to show that the Petrov-Galerkin generalization of the bootstrap setup
cycle is equivalent to a Galerkin bootstrap setup cycle for the Hermitian (indefinite)
operator Γ5A. Thus preserving the Γ5-structure reduces the bootstrap algebraic
multigrid setup again to just finding a suitable interpolation operator and eliminates
the requirement of using two sets of test vectors.

Finally, we show that both the generalized non Hermitian and the structure pre-
serving Hermitian bootstrap algebraic multigrid methods yield robust and scalable
solvers for the operators of 2-dimensional lattice gauge theory.

[K4] Adaptive aggregation-based domain decomposition multigrid for the
Wilson Dirac operator. Partly based on the findings of [K3] and the previous
work in [3, 16] we develop an aggregation based multigrid method with domain
decomposition smoother for the 4-dimensional Wilson Dirac operator in [K4].

Due to the 4-dimensional lattice structure and the fact that 12 variables3 exist
at each lattice site the size of the resulting operator grows rapidly and particular
care has to be taken in terms of parallelizability of the proposed method. This focus
on parallelism leads us to choose a rather simple structure for interpolation that,
given vectors of algebraically smooth error, constructs the interpolation operator by

3All combinations of 4 spin and 3 color components.
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splitting these vectors according to aggregates

[
v1 . . . vK

]
= −→ P =

A1

A2

...

Am

.

In here structure preservation, i.e., preserving the Γ5-symmetry, is guaranteed by
grouping spin components accordingly. The main benefit of the use of an aggregation
based coarsening approach is the exact replication of the operator structure on the
coarse grid with minimal fill-in.

A similar argument based on the potential of parallelism leads us to choose a
simple domain decomposition smoother. While this smoother is not guaranteed to
converge on its own, we are able to numerically demonstrate its smoothing property.
The setup is done using a multigrid inverse iteration, where the evolving algebraic
multigrid method is used to approximate the inverse, such that it resembles the
bootstrap algebraic setup cycle. Using numerous optimizations in the implementa-
tion (e.g., vectorization, single-precision) and a K-cycle strategy [53] for the resulting
solver we are able to show that the developed method is able to outperform standard
Krylov subspace methods by a large margin and edge out state-of-the-art two- and
multilevel methods. Our algebraic multigrid approach is especially well performing
with respect to the measure of core hours per solution, an important energy effi-
ciency measure, due to its ability to employ many coarse levels thanks to symmetry
preservation.

In contrast to the multilevel method developed in [3, 16] we opt to choose a more
powerful smoother, that in addition can be parallelized more efficiently, by using a
domain decomposition method instead of a polynomial smoother. This, combined
with a different setup routine, leads to improvements in performance. On the other
hand, based on our discussion of the fundamental differences between our method
and the deflation ansatz developed in [43], this method has been changed to a true
two-grid method, but it does not use structure preserving interpolation, which does
not impair its efficiency due to its limitation to a purely two-grid structure.

Nowadays, almost all big research collaborations make use of one of the adaptive
algebraic two- or multilevel methods [3, K4, 43] due to their demonstrated potential
to speed up simulations in the field of lattice gauge theories. A high performance im-
plementation of our approach is publically available on GitHub4. Other open source
high performance implementations that include an algebraic multigrid solver have
been developed by Nvidia (QUDA5) and the OpenQCD6 collaboration. In addition,
the algebraic multigrid approach has been extended to other fermion formulations
such as twisted-mass fermions [1], domain wall fermions [25]. Further extensions to
staggered fermions and beyond the standard model physics like super symmetry are
under investigation.

4github.com/DDalphaAMG
5github.com/lattice/quda
6luscher.web.cern.ch/luscher/openQCD
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[K7] Multigrid preconditioning for the overlap operator in lattice QCD.
A special operator in lattice gauge theory is the overlap operator as it preserves a
discrete version of the chiral symmetry of the Dirac equation. More precisely, it is
a solution to the Ginsparg Wilson relation

Γ5D +DΓ5 = aDΓ5D

and can be expressed based on a kernel operator (e.g., the Wilson Dirac operator
DW ) by

D = ρI + Γ5 sign (Γ5DW (mker)) .

Thus, in comparison to simulations with the kernel operator itself, simulations with
the overlap operator are much more expensive due to the requirement to evaluate
the matrix sign function.

In this paper we show that the overlap operator can be effectively preconditioned
by a shifted version of its kernel operator. We develop the theoretical foundation for
this approach in three steps. First, we show that the overlap operator is indeed a
discretization of the Dirac equation in the numerical sense, which, by the argument
of auxiliary space preconditioners, makes it plausible that it can be preconditioned
by another discretization (in this case the Wilson discretization). Second, under the
assumption that the kernel operator is normal, we are able to show a precise bound
on the spectrum of the preconditioned operator. Assuming DW (0) = XΛXH we
find

D = X (ρI + csign (Λ +mI))X ,

i.e., DW and D share the same eigenvectors and thus

spec(DDW (mprec)
−1) =

{
ρ+ csign(λ+mker)

λ+mprec

, λ ∈ spec(DW (0))

}
.

Although DW is not normal, we are able to show in the third part of the theoretical
justification of the preconditioner that its deviation from normality is proportional
to the pure gauge action, i.e.,

‖DWD
H
W −DH

WDW‖2F = 16
∑
x

∑
µ<ν

Re (tr (I −Qµ,ν
x )) ,

where Qµ,ν
x = (Ux

ν )H(Ux+eν
µ )HU

x+eµ
ν Ux

µ denotes the so-called plaquette. 7 This
implies that frequently used gauge smearing techniques, which are known to reduce
the pure gauge action, also improve normality of the Wilson Dirac operator. This in
turn implies an improved accuracy of our theory and in turn improved performance
of the preconditioner when using smeared configurations.

In extensive numerical studies we are able to verify all theoretical arguments that
show the connection between the overlap and its kernel operator, which motivated
the idea of preconditioning. Using our adaptive algebraic multigrid method as the
preconditioner that implementsD−1W , we are able to demonstrate great improvements
over the state-of-the-art methods for overlap simulations.

7A product of gauge links around a 2 dimensional face of the 4 dimensional lattice.
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Structure preservation for tensor structures

Interacting Markov chain models, although they might appear not overly complex
at first sight, e.g., a system of a handful of consecutive queues, are very difficult
to simulate due to the staggeringly large number of different states that have to be
considered. Assuming that each queue has K slots and there are d queues in total,
the number of states of the whole system of queues is Kd, which rapidly exceeds the
domain of possible complete simulation. This explosion of the number of states is
one occurence of what is known as the curse of dimensionality.

Leveraging that the description of such systems can be cast into a sum of tensor-
product operators, the approximation of the solution in a tensor approximation
format like the tensor train format [56] is the only way to simulate such systems. Of
particular interest is the long term behaviour of such Markov-chain models which
is encoded in its steady-state vector. Typically methods based on alternating least-
squares, e.g., the alternating minimal energy method [26], are employed to compute
tensor approximations to the steady-state vector. In [63] an algebraic multigrid
method has been considered to accelerate the alternating least squares approach.

In two papers, which I will review in the following, we developed a stand-alone
algebraic multigrid method for the approximation of the steady state vector, which
is then supplemented by a coarsest grid solver based on the alternating minimal
energy method.

[K6] Multigrid methods for tensor structured Markov chains with low
rank approximation. Tensor structured Markov chains arise when describing
models where Markov chain submodels are synchronised by transitions between the
submodels. The generator matrix A can then be written as

A =
T∑
t=1

J⊗
j=1

Et
j ,

where Ej
j ∈ Rnj×nj describe the local transitions within the j-th submodel and

Et
j, j 6= t the synchronised transitions between two submodels. Instead of calculat-

ing the full steady-state vector x ∈ R
∏J
j=1 nj , which has a prohibitive large memory

footprint, one approximates it by a tensor approximation, e.g., in canonical tensor
format given by

x =
R∑
r=1

J⊗
j=1

xrj .

Due to the fact that preserving the tensor structure is of utmost importance in order
to be able to carry out any computation at all for these problems, the construction
of the algebraic multigrid method has to preserve it by all means. This is achieved
by considering interpolation and restriction operators of the form

P =
J⊗
j=1

Pj and R =
J⊗
j=1

Rj ,

respectively. That is, coarsening and interpolation are essentially built for and
motivated by the structure and properties of the J submodels. The corresponding
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coarse grid operator is then given by

Ac = RAP =
T∑
t=1

J⊗
j=1

RjE
t
jPj .

Depending on the structure and properties of the submodels and transitions we
construct Pj and Rj using the whole arsenal of algebraic multigrid constructions
available, ranging from aggregation based and classical “Ruge-Stüben” algebraic
multigrid approaches to adaptive algebraic multigrid constructions. Aside from their
structure preserving nature, the particular structure of interpolation and restriction
has the added benefit of not increasing the tensor rank of a vector represented in
tensor format, when applied to it.

In numerical experiments we are able to show that, especially in the situation
where the size nj of the submodels is large and the number J of submodels is only
of moderate size, the algebraic multigrid method outperforms the commonly used
ALS method. In addition we are able to show scalability of the approach as a
preconditioner to a tensorized GMRES iteration.

[K8] Multigrid methods combined with low-rank approximation for ten-
sor structured Markov chains. A remaining drawback of the algebraic multi-
grid method developed in [K6] is its lower bound on the coarsest level dimension.
Due to the fact that fast convergence requires coarsest levels in each submodel di-
mension of at least 2, the curse of dimensionality is only offset, but not completely
removed. For large numbers of dimensions (i.e., submodels) the method slows down
as the solution of the coarsest grid becomes too expensive.

The alternating minimal energy method [26], which is a gradient-enriched ver-
sion of alternating least squares for the tensor-train format, is limited by large sub-
model dimensions. It thus seems attractive to employ our algebraic multigrid con-
struction and replace the solver on the coarsest grid, which has small submodel di-
mension but still contains all submodels, by the alternating minimal energy method.

In the numerical tests we consider a wide range of problems ranging from chem-
istry to network modelling, that the complementary nature of the algebraic multigrid
construction and the alternating minimal energy coarsest grid solver yields solver
performances that eclipse both methods individually in the case of both large num-
ber of submodels J and large submodel size nj. Thus drastically extending the range
of models that can be efficiently simulated.

25





4 Contributions to the publications by the author

Due to the fact that all publications of this cumulative habilitation are collaborative
pieces of work, where all authors contributed to the success of the paper, I want to
briefly reflect on my perceived personal contribution to these publications.

The bootstrap algebraic multigrid framework

[K2] Bootstrap AMG

• Development of the algorithm and setup cycle based on remark in [11]

• Idea to formulate coarse grid generalized eigenvalue problem to be used in
bootstrap setup

• Implementation and numerical tests

[K1] A bootstrap algebraic multilevel Method For Markov Chains

• Idea to apply bootstrap AMG to Markov chain problems

• Design of coarsening and restrictions for particular problems

• Implementation and numerical tests

[K5] Algebraic distance for anisotropic diffusion problems: Multilevel
results

• Idea to use least squares interpolation to determine strength of connection
motivated by remark in [8]

• Implementation and numerical tests

[K11] Least angle regression coarsening in bootstrap algebraic multigrid

• Idea to use `1-norm penalty term to sparsify least squares interpolation and
to solve with least angle regression

• Design of the coarsening algorithm

• Joint implementation and numerical tests

Advances in multigrid methods

[K9] Optimal interpolation and compatible relaxation in classical alge-
braic multigrid

• Joint development of the proof of optimality

• Joint proof of equivalence with ideal interpolation in case of F -smoothing

• Idea to use max-vol algorithm for sparsification/localization of optimal inter-
polation

• Implementation and numerical tests
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[K10] Geometric multigrid for the tight-binding Hamiltonian of graphene

• Idea to construct geometric multigrid method for graphene operator

• Joint development of theory and algorithm

• Idea to generalize theory to arbitrary grid/crystal operators

Symmetry preservation in lattice gauge theory

[K3] Bootstrap algebraic multigrid for the 2D Wilson Dirac operator

• Idea to derive non-Hermitian algebraic multigrid based on twice-as-large Her-
mitian problem

• Joint development of the theoretical foundation

• Implementation and numerical tests

[K4] Adaptive aggregation-based domain decomposition multigrid for the
Wilson Dirac operator

• Outline of the algebraic multigrid method

• Design of the algorithm

[K7] Multigrid preconditioning for the overlap operator in lattice QCD

• Idea to use Wilson Dirac operator to precondition overlap operator

• Proof of spectral relation between Wilson Dirac and overlap operator

• Proof that deviation from normality of Wilson Dirac operator is proportional
to pure gauge action

• Joint development of algorithm and implementation

Structure preserving algebraic multigrid for tensor structures

[K6] Structure preservation for tensor structures

• Conceptual development and design (in terms of interpolation and restriction)
of structure preserving algebraic multigrid methods for tensor-structured prob-
lems

• Joint development of implementation

[K8] Multigrid methods combined with low-rank approximation for ten-
sor structured Markov chains

• Idea to combine algebraic multigrid with AMEn as a coarsest grid solver

• Joint design of algebraic multigrid methods for various problems

• Joint development of implementation
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