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Abstract

This thesis is about uncertainty quantification and its applications for multimodal
semantic segmentation in the area of automated driving. The first main contri-
bution is a new active learning method. The annotation of images for semantic
segmentation is very costly. Active learning describes an iterative process in which
data is annotated based on a selection criterion. This criterion is usually based
on image predictions that are considered uncertain. The active learning method
presented here does not select whole images, but only image regions that have poor
estimated segmentation quality and are estimated to be labeled with low costs. The
second main contribution is about a method for semantic segmentation of point
clouds to detect false positive segments as well as a segment-wise prediction quality
estimation. For this purpose, point cloud data is projected onto an image representa-
tion. Based on this representation, uncertainty measures are defined per pixel and
aggregated at predicted segment level. The aggregated data is used to train two
machine learning models, the first model for detecting false positive segments and
the second for estimating the prediction quality per predicted segment. The third
main contribution is the automated generation of high definition (HD) maps. HD
maps are becoming increasingly important in the field of automated driving and
represent a semantic segmentation of the road environment. For the automated HD
map generation method, other road users are tracked. The tracks as well as the
driving path of the recording vehicle are aggregated and the information for the HD
map such as lanes is extracted. It is assumed that multiple recordings are taken for
a given region. This results in numerous observations of the lanes by the tracked
road users. By processing many road users from multiple recordings, uncertainty is
reduced and reliable HD maps are generated.



Zusammenfassung

Die vorliegende Arbeit behandelt Quantifizierung von Unsicherheit und ihre Anwen-
dungen fiir multimodale semantische Segmentierung. Der Fokus der Anwendungen
liegt im Bereich des automatisierten Fahrens. Der erste Hauptbeitrag ist eine neue
Methode des Aktiven Lernens. Die Annotation von Bildern fiir die semantische Seg-
mentierung ist sehr aufwendig. Aktives Lernen beschreibt einen iterativen Prozess,
bei dem Daten auf Basis eines Auswahlkriteriums annotiert werden. Dieses Kriterium
basiert meist auf Bildvorhersagen, die als unsicher gelten. Die hier vorgestellte Meth-
ode des Aktiven Lernens wahlt keine ganzen Bilder, sondern nur Bildregionen aus,
die zu einem eine schlechte Segmentierungsqualitidt aufweisen und zum anderen
nicht aufwendig zu annotieren sind — beide Kriteren werden geschéatzt. Der zweite
Hauptbeitrag entwickelt eine Methode fiir die semantische Segmentierung von
Punktwolken fiir die Erkennung von falsch préddizierten Segmenten sowie eine
Qualitéatsschatzung, ebefalls pro pradiziertem Segment. Dazu werden die Daten
der Punktwolke auf eine Bilddarstellung projiziert. Auf Basis dieser Darstellung
werden Unsicherheitsmalde pro Pixel definiert und auf Ebene des pridizierten Seg-
ments aggregiert. Die aggregierten Daten werden genutzt, um zwei Modelle des
Maschinellen Lernens zu trainieren, das erste Model fiir die Erkennung von falsch
pradizierten Segmenten und das zweite zur Einschatzung der Vorhersagequalitat
pro pradiziertem Segment. Der dritte Hauptbeitrag ist die automatisierte Erstellung
von hochauflésenden (HD) Karten. HD Karten werden im Bereich des automa-
tisierten Fahrens immer wichtiger und stellen eine semantische Segmentierung
der Stralenumgebung dar. Fiir die Methode der automatisierten HD Kartenerstel-
lung werden andere Verkehrsteilnehmer detektiert und getrackt. Die getrackten
Verkehrsteilnehmer sowie die Fahrspur des Aufnahmefahrzeugs werden aggregiert
und die Informationen fiir die HD Karte wie Fahrbahnspuren werden extrahiert. Es
wird angenommen, dass fiir eine gegebene Region mehrere Aufnahmen gemacht
werden. Daraus ergibt sich eine Vielzahl an Beobachtungen der Fahrspuren durch die
detektierten Verkehrsteilnehmer. Durch die Verarbeitung vieler Verkehrsteilnehmer
aus mehreren Aufnahmen wird die Unsicherheit reduziert und zuverlassige HD
Karten werden erstellt.
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Introduction

In 2012, Alex Krizhevsky achieved outstanding performance on the ImageNet Large
Scale Visual Recognition Challenge (ILSVR) [36]. An achievement which brought
increased attention to the (now very popular) field of deep learning (DL). The
used DL model, a convolutional neural network (CNN) named AlexNet [73] had
an error that was 10.8 percentage points lower than that of the runner-up. Even
if the foundations and concepts of artificial intelligence (AI) and DL go back to
the 1950s [87], AlexNet marks the start of a new DL era. Novel models motivated
by AlexNet have been developed and the areas of application have increased and
become more intensive. This also includes applications in the automotive industry.
Advanced driver assistant systems (ADAS) support the driver and make driving
safer. Such systems are for example adaptive cruise control, blind spot monitor,
collision avoidance system, lane centering and traffic sign recognition [65]. Most of
such systems are based on DL models that detect lane markings or objects such as
vehicles and humans from camera images as well as object detection and distance
measurement with radar data. Automotive manufacturer and suppliers are working
towards automated driving (AD) in which those ADAS come together with additional
future developments. Further object recognition tasks which are studied for AD are
semantic segmentation of images and lidar point clouds, for instance. In summary,
many recognition tasks for multiple sensors modalities are considered in AD. For the
remainder of this thesis, AD is referred to ADAS and AD, for simplicity.

Although DL models achieve outstanding performance, they still tend to prediction
errors. Furthermore, DL models are referred to as black boxes [9] i.e., they are often
non-transparent and their predictions are not traceable by humans. This is even
worse in safety relevant applications such as AD. In addition to a high accuracy of DL
models, uncertainty quantification (UQ) [1, 62] is essential. UQ has an important
role in decision-making and during optimization of the DL model. It is important in
several aspects: using DL models in a real-time system of AD requires UQ to identify
prediction errors that can occur. Furthermore, it is highly desirable to represent
uncertainty in any Al-based system in a trustworthy manner. When developing or
training a new DL model, UQ helps to identify specific classes, samples or scenarios
that are not really learned yet. UQ helps to optimize the model training. One



particular example is active learning, where a query function is often based on
uncertainties, i.e., data is queried with the highest uncertainty.

Semantic segmentation of images is the task of the pixel-wise classification. A
predicted segment is then an area of neighboring pixels that belong to the same
predicted class. The method presented in [24, 113] called MetaSeg, is a method to
detect false positive segments and to estimate the prediction quality segment-wise.
A false positive segment is a predicted segment, that does not overlap with a ground
truth segment of the same class. Prediction quality estimation is the estimation of the
segment-wise intersection over union (/oU)[63] between a predicted and a ground
truth segment of the same class. The /oU is a commonly used evaluation metric
in semantic segmentation. Based on the CNN’s prediction of an image, MetaSeg
computes pixel-wise uncertainty measures and aggregates them on a predicted
segment level. The aggregated data is then used to train a classification and a
regression model for false positive detection and prediction quality estimation,
respectively. MetaSeg was one of the first works providing uncertainty quantification
in semantic segmentation of images and also goes a step beyond other approaches
(cf. [68, 58] for instance) by processing uncertainty measures and meta data from
the prediction to detect false positive segments and to have a general segment-wise
prediction quality estimation.

The possibility of false positive detection and prediction quality estimation as well
as using uncertainty measures and meta data of a prediction, i.e., additional infor-
mation that can be derived from a prediction, motivates the investigation in several
aspects. To be more precise, this includes DL models and aspects in and for semantic
segmentation in AD. This leads to the main contributions of this work as follows.

The first main contribution is using the prediction quality estimation of MetaSeg in
an active learning (AL) [120] strategy for semantic segmentation of images. Since
DL models learn from annotated data, in general a large amount of annotated and
varying data is required to achieve high accuracy of DL models. The annotation
of data is time consuming and expensive, especially for semantic segmentation of
images. The heart of an AL strategy consist of a query function, that selects the
data to be labeled. Query functions are mostly based on the CNN’s predictions
and are uncertainty-based [140, 46, 114, 54, 4]. By defining a query function
based on prediction quality estimation, this goes a step further, since the prediction
quality estimation includes processed uncertainty measures to identify prediction
errors. Thus, the query function aims to select images that the network cannot
predict correctly. Apart from this, a new and simple cost estimation approach is
incorporated to be cost efficient, which is an important role in real-world applications.
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Moreover, the novel AL strategy queries only image regions for annotation, to be
even more cost efficient. For evaluation of the method, exhaustive experiments
have been made and new evaluation metrics are introduced. This yields a novel AL
strategy for achieving high accuracy with low costs by selecting image regions where
the highest prediction errors occur while having low estimated annotation costs.

Another application of MetaSeg and the second main contribution is an adaptation
of MetaSeg by extending and further developing it for semantic segmentation of
lidar point cloud data. First models for semantic segmentation in this area go back
to 2017 [108, 109, 144], while the first publicly available data set for semantic
segmentation of lidar point clouds was released in 2019 [35]. Since then, models
with higher accuracy have continuously been developed and published e.g., [91,
30, 151, 146] but there are only a very few works about uncertainty quantification
[30]. To this end, the adaptation of MetaSeg to lidar data presents one of the first
approaches for UQ in lidar point cloud segmentation. In addition, it should be
emphasized that this new approach goes significantly beyond other approaches [30]
by detecting false positive segments and providing a segment-wise prediction quality
estimation. For this purpose, the point cloud data is projected to a 2D representation.
An adaptation of MetaSeg is applied to the 2D representations, while the features
of the point cloud are taken into account. Finally, the results of the false positive
detection and prediction quality estimation are re-projected to the point cloud.

To enable real-time recognition of the environment in AD, other recognition tasks
are used in addition to semantic segmentation. This includes object detection i.e.,
the task of detecting road users such as vehicles or pedestrians in lidar point clouds.
However, segmentation or detection may still fail because, for example, errors or
uncertainties are detected in the prediction, the sensors fail for a short time or
are occluded. Regarding such scenarios, high definition (HD) maps are becoming
increasingly important [5, 106]. These maps include accurate information about the
road system and semantic information. By localizing the vehicle and the availability
of an HD map of the current location, it is still possible to localize the vehicle in the
environment. That means, even if a sensor fails or is occluded, the position of the
vehicle w.r.t. the environment is known. Thus, HD maps provide a backup solution
and are often referred to as an additional sensor information. Generation of HD
maps is a challenging task. In order to have them available almost everywhere, an
automated method based on sensor data is required, where the sensor system can
be equipped in production series vehicles. Current approaches [89, 88, 59, 153]
do not take this fact into account or lack of the application in real-world scenarios.
Furthermore, most approaches work only in specific scenarios. A fully automated
procedure for HD map creation is presented and is the third main contribution in this



thesis. For this purpose, vehicles detected and tracked by a DL model are aggregated
w.r.t. to uncertainty measures that can be derived from detection and tracking.
By aggregating data from multiple object detection and tracking predictions and
processing this data, further possible detection errors can be filtered out. Applying
a novel extraction method from the aggregated data yields HD maps including
lanes.

In summary, the main contributions of this thesis are an active learning method
based on prediction quality and annotation cost estimation, a method for false
positive detection and prediction quality estimation in segmented point clouds as
well as a procedure to create HD maps based on the predictions of DL models w.r.t.
uncertainty measures.

The structure of this thesis is as follows. The fundamentals in chapter 2 give an
overview of the basic material that is employed in the remainder of that thesis.
That includes the sensor modalities, a review of neural networks and a presentation
of DL models that are used in this thesis: semantic segmentation of images and
lidar point clouds as well as object detection and tracking, also for lidar point
clouds. The fundamentals conclude with a review of uncertainty quantification
and MetaSeg. The first main chapter, chapter 3 is about the new active learning
method for semantic segmentation of images. After reviewing the concept of AL
and the annotation process of images for semantic segmentation, the related work
is provided. Afterwards, the new active learning method that employs MetaSeg
and includes an annotation effort estimation is given, followed by experiments and
result. The adaptation and extension of MetaSeg to lidar point cloud semantic
segmentation is presented in chapter 4. After the introduction and reviewing related
work, the method for false positive detection and prediction quality estimation
for segmented point clouds is presented. Numerical experiments with in-depth
studies to several aspects of the method are provided. Chapter 5 is about the new
procedure for HD lane map generation. First, the need of HD maps and state-of-
the-art methods are shown. The details for the procedure to create HD maps based
on detected and tracked vehicles are provided, followed by numerical experiments.
Moreover, an outlook to future work for a next generation HD map creation and
update system is presented. The thesis ends with a conclusion and discussion of the
findings in chapter 6. The main contributions of this work and the related results
are summarized. Future work and how the new methods can be combined and how
they improve each other, is pointed out.

Chapter 1



2.1

Fundamentals

This chapter gives an overview of basic material that is employed in the remainder
of this thesis. The fundamentals start with section 2.1, a presentation of sensor
and data types that are commonly used in AD. These are camera, lidar, radar
and HD maps. Afterwards, in section 2.2, the concept of neural networks will be
explained. Thereafter, in section 2.3, the recognition tasks to be solved by means of
neural networks are presented: semantic segmentation of camera and lidar data as
well as lidar-based object detection and tracking. Section 2.4 is about uncertainty
quantification and presents MetaSeg, a method to detect prediction errors and to
estimate the prediction quality of semantic segmentation of images.

In AD, multiple sensor and data types are of interest, such as camera, lidar and
radar, which will be explained in the following. A survey about sensor modalities is
for instance given in [142]. Furthermore, the environment can also be represented
in HD maps, which are basically a top-down view of a location (birds-eye-view)
containing information about specific classes given in a global coordinate system,
accurate up to a few centimeters.

Camera. Cameras are widely known and are one of the most commonly used
types of sensors in AD. An image captures the semantic environment, similar to
how humans see it. They have some disadvantages under bad weather conditions
like rain or fog as well as at night. Their widespread application in AD is also
supported by their comparably low price and ease of processing. A colored image is
a three dimensional matrix w x h x 3, where w and h define the image width and
height, respectively, as well as the intensity of elementary colors red, green and blue,
represented in the name red-green-blue (RGB) image. The higher the resolution of
a camera, the more details can be captured in an image. Other types of cameras
might record gray-scale, red-pixel or depth images. In this thesis, only RGB images



The top part shows a camera image while the lower part shows multiple views
of the corresponding lidar point cloud: on the left site, the ego perspective is
shown, where in the upper part the intensity is visualized and in the lower part
the range as euclidean distance to the ego vehicle. In both figures, the values
are normalized to 1 w.r.t. to their highest values. Higher values are represented
in red and lower ones in blue. The bottom right part shows the whole point
cloud to this example, colored by the intensity values.

are considered. An example of an image from the ego perspective from the vehicle
is shown in figure 2.1 (top).

Lidar. Lidar, short for light detection and ranging is a method that uses light in form
of a pulsed laser to measure range. There exist mainly two types of lidar sensors
in AD: rotating and solid state lidar sensors. Here only rotating lidar sensors are
considered that are characterized by the following:

e number of laser beams, also known as channels or scan lines, which are
arranged vertically,

* vertical field of view (FOV), given in degree ¢: alignment of the scan lines,
split into in the upper ¢, and lower 145, FOV, with ¢ = ¥y, + Ydown,

* horizontal angular resolution ¢ in degree: angle within the rotation between
time ¢ and ¢ + 1 of the laser scans,

Chapter 2
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lustration of a rotating lidar sensor. Left: the side view of a lidar sensor,
consisting of 8 scan lines. Right: the top-down view to illustrate the rotation.

* frequency (Hz) : defines the number of frames per second, a frame consists of
the recorded points by a 360° rotation.

By means of vertical and horizontal alignment of a scan line as well as the required
time until the pulsed laser is reflected, the range and thus the point p; of the scan
line can be determined in Cartesian coordinates (z;,y;, z;). In addition, most lidar
sensors measure the intensity or remission i; of the reflection. The range r; of each
point w.r.t. to the sensor is determined as the euclidean distance, i.e.,

rj =5 +yi+ 27, 2.1)

for point p;. Thus, each point p;, j = 1,...,n of a point cloud p is given as
pj = (x,y5, 25,15, ;) with z;,y;,2; € R and i;,7; € Ry while n is the number of
points in the point cloud. An example of a point cloud is given figure 2.1 (bottom).
Furthermore, an illustration of a lidar sensor is shown in figure 2.2.

The higher the number of scan lines and the smaller the angular resolution ¢ are,
the higher the resolution of the lidar sensor. Similar to cameras, lidar sensors are
affected by some weather conditions. Rain, wet ground or fog affect the pulsed
laser beams yielding scatter points in those regions. High resolution lidar sensors
are too expensive to equip them in production vehicles, as they usually cost several
thousand dollars. Compared to images, point clouds are sparse but provide highly
accurate range information. They also provide intensity values which indicate the
material, e.g., a vehicle reflected points have higher intensity values than those of a
wall.

Radar. Radar, short for radio detection and ranging works by emitting electromag-
netic (EM) radio waves that are reflected when they hit an obstacle. Since the
emitted radio waves are larger compared to the EM waves of the lidar, a radar sensor

2.1



2.2

BUW L N

—e— Lane boundaries
p —e— Lane centers

HD map containing information about lanes in terms of lane boundaries and
lane centers. The left panel shows an HD map near and around the University
of Wuppertal (BUW). The right panel shows the highlighted sub-region (red)
from the left panel.

works even in bad weather e.g., rain or fog and by night. Advantages are to measure
the velocity of objects by the Doppler effect and to achieve longer detection ranges
than other sensors. Moreover, a radar sensor is cheap, similar to camera sensors.
More information is given in [37, 132].

High Definition Maps. Compared to common maps e.g., standard definition (SD)
maps or maps from Google (Google Maps), HD maps are highly accurate and precise
at a centimeter level [5, 106]. HD maps contain features such as the road shape and
lanes, lane markings, traffic signs and other important features. These features in
general are given and available in a structured data format. An example of an HD
map including lane information is shown in figure 2.3.

Artificial neural networks or neural networks (NN) are machine learning (ML)
models, while in turn ML is a sub-field of artificial intelligence (AI). Al is the theory
and development of computer systems able to perform tasks in general requiring
human intelligence. ML basically describes an algorithm that improves through

Chapter 2



2.2.1

experience and by the use of data. Thus, also neural networks do so and require
annotated data to learn from. NN will be considered in more detail in the following.
It is assumed that the reader is familiar with the main concept of ML. Additional
material is for instance given in [121] which is also the work this section follows. It
attempts to explain the core concepts and the elements used in this work.

Artificial neural networks are inspired by neural networks in the brain. Simplified, a
neural network in the brain consists of many neurons that are interconnected in a
complex network. NN aim to imitate the functional patterns of a brain and to make
decisions based on learned patterns from data.

An artificial neural network is a computational model, that can be described as a
graph G = (V, F) whose nodes v € V correspond to neurons and edges e¢ € F to
the connection between the neurons. Furthermore, the edges are weighted with
a function w : F — R. Here, only feedforward networks are considered, which
means the underlying graph does not contain cycles. In general, a neural network is
organized in layers. That means, the set of nodes can be decomposed into a union
of non-empty disjoint subsets, i.e., V = Ufzovk, such that every edge in F connects
some node in Vj;_; to some node in V}, for some k = 1,..., K.

The signal or also named output at each neuron is modeled as a scalar function
o : R — R, called activation function. More details about the activation function will
be given later.

The first layer V; is the input layer, consisting of m( neurons. The input of the NN is
X = (1,...,Zm,)! € R™ which is also the output of the first layer, i.e., the output
of neuron i € {1,...,mp} is ;. The i-th neuron in layer k is denoted by vy, ; and its
output oy ;(x). In layer k, mj, € N is the number of neurons or nodes. Furthermore,
every layer k,1 < k < K contains a bias node, whose output is a constant, for
brevity this constant is 1. A bias node in layer k is connected to every node in layer
k+ 1.

Suppose the outputs of the neurons of a deeper layer k—1, k > 1 are calculated, then
the outputs of the neurons in layer k are calculated as follows. For a node vy, ; € Vj,
i.e., neuron ¢ in layer k, the input is denoted with a;, ;(x) when the network is fed
with the input vector x. Moreover, wy,_1 ; j is the weight of edge (vr_1 5, vk,), so the
edge weight from neuron j to considered neuron . If an edge (v,_1 j, vk,;) does not
exist, a phantom edge with wy_; ; ; = 0 is added for brevity. Then,
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Input Hidden Hidden Ouput
layer Vj layer V4 layer Vo layer V3

z1

An illustration of a neural network of depth 3, size 12 and width 5.

mE—1

g (X) = Y Wp_1,i; Op—1,5(X) (2.2)
=1

and
o,i(x) = o(ag,i(x)). 2.3)

Thus, the input a;; to a neuron ¢ in layer k£ (node vy ;) is a weighted sum of the
outputs o,_; ; of the neurons j € {1,...,m;_;} in the previous layer £ — 1 (nodes
vr—1,; € Vi—1) that are connected to v ;. Finally, the output oy ;(x) of the node is
determined by applying the activation function o to the weighted sum. Note, the
activation function can be different in every layer.

Layers Vi, ..., Vi _ are called hidden layers. The last layer Vi is called the output
layer. The output of the last layer is also the output of the neural network and
defined as vector y € R™~. K is referred to as the number of layers in the network
(excluding V), or the depth of the network. The size of the network is defined by the
number of nodes, i.e., |V|. The width of the network is maxy, |Vi|. An illustration of a
neural network of depth 3, size 12 and width 5 is given in figure 2.4. Note that there
are neurons in both hidden layers that have no incoming edges. These neurons,
the bias nodes, will output the constant values 1. In the case where every node is
connected to all neurons of the next layer, then this structure is called fully-connected
feedforward network. Note, a neural network with a high depth (i.e., a high number
of hidden layers) is referred to as a deep learning model.
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Activation functions. The z-axis corresponds to the input of an activation
function and the y-axis to the output.

The structure of NN has been presented. The weights over the edges w (see equa-
tion (2.2)) can be modified. In the following, the weights are denoted by w. In
applications, a structure of a NN is assumed to be given, and the weights w have
to be fitted to a given data set since, as already mentioned, NN learn from data.
In application and when these weights have been fitted, then an input x is fed
into the NN and forwarded through all layers and an output or prediction y is
made. Outstanding is how the best weights w are calculated and what ‘best’ means
in this sense. This requires first some more details about the activation function
and a repetition of basics in learning theory and statistics. Then, the methods for
computing the weights w, the gradient descent and backpropagation algorithm, are
presented in details.

Activation Function. As presented previously, the activation or output of a neuron
is based on applying the activation function (see equation (2.3)) to the weighted
sum of the neuron’s input (see equation (2.2)). First activation functions go back
to the threshold function oy, (a) = 1,50y and the sigmoid function ogigmeia(a) =

a

& —<—. For the mentioned

gradient descent algorithm, the chosen activation function must be differentiable.

1/(1+ exp(—a)) as well as hyperbolic tangent oann (a) =

Furthermore, the derivative should be easy to compute since the gradients are
required. Both requirements are met by the rectified linear unit (ReLU) function [57]

oRreLU(a) = max{0,a} (2.4)

when setting the derivative for ¢ = 0 to 0. The activation functions are shown in
figure 2.5. The figure illustrates that the ReLU function consist of two piece-wise
linear functions, which make the computation of the derivative easy.

2.2
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Another activation function, that is especially often used in the last layer (for
classification tasks), is the softmax function. Assuming, the class label ¢ € C =
{1,...,q} of an input x has to be predicted, i.e., x has to be classified. Then the
output of the NN consists of ¢ neurons, while every neuron indicates the class
probability to which the input x belongs to. The corresponding label is given by
a one-hot vector y = (y1 = 0,92 = 0,...,9. = 1,...,y, = 0)T. For a € RY the
corresponding softmax values are given by

e%i

Usoftmax(a)j =0 a. (2.5)

=167
Thus, it is o(a); € [0,1] and Z?Zl o(a); = 1, which meets the properties of a
probability distribution of the prediction.

Empirical Risk Minimization and Maximum Likelihood Estimation. The main princi-
ples of learning theory, known as empirical risk minimization is presented, followed
by showing the similarities to maximum likelihood estimation, which is a parameter
estimation method in statistics. Finally, the transition back to NN will be made.

Given is a set of input samples X and a set of labels C. The training set is S =
(xM,yM), ..., (x(™) (™)) with m samples in X x C. Every input sample x(*) has
alabel y» € C for i = 1,...,m. Furthermore, the training set is generated by a
probability distribution D over X representing the environment. Now, a learner is
requested to output a prediction rule hs : X — C based on the training set S, which
is also named hypothesis or classifier. It is assumed that a correct labeling function
f*: X — Cexists, ie., y® = f*(x(?), i = 1,...,m. The error of the prediction
rule hg is the probability of randomly picking a sample x generated by D, such that
hs(x) # f*(x). More precisely,

Lp j(hs) = P _[hs(x) £ [*(x)] = D({x: hs(x) £ (X)) . (26)

The probability distribution D and the labeling function f* are unknown to the
learner. The task is to find a prediction rule based on the training data S that
minimizes the error. The training error or empirical error of a learner is defined as

Clie{l,...,m}: hs(x(@) #£ y@)|

m

Ls(hs) (2.7)

The learning paradigm in which a prediction rule hs minimizes the empirical risk
Ls(hg) is called empirical risk minimization (ERM).
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Minimizing the empirical risk might lead to overfitting. That means, the hypothesis
is excellent on the training data but very poor on unseen data. A solution to this is
to apply the ERM learning rule over a restricted search space, more precisely over a
hypothesis class ‘H. Every hypothesis h € H is a mapping function h : X — C. For a
given hypothesis class # and training samples S, the ERMy, learner uses the ERM
rule to choose h € H with the lowest error, i.e.,

ERMy (S) € argmin Lg(h). (2.8)
heH
Since the prediction rule (or ‘hypothesis’) is restricted or biased to the hypothesis
class, this is called inductive bias.

Maximum likelihood estimation is a method of estimating the parameters of a
probability distribution, based on observed data from a training set S [2]. This
is achieved by maximizing a likelihood function so that the observed data from S
are most probable under the assumed statistical model. As it will be shown, the
maximum likelihood estimator is an empirical risk minimizer. For given parameters
# and a sample x the loss is defined as

0(0,x) = —log(Py(x)), (2.9)

which is the negative log likelihood of x assuming the data is distributed according
to Py. Based on this definition it follows, that minimizing the empirical risk is
equivalent to maximizing the log likelihood:

argmlnz log(Pp(x¥))) = argmaxz log(Py(x™)), (2.10)
o =1

for x(1), ..., x(™ independent and identically distributed, which also means ERM is
equivalent to maximum likelihood principles.

Then, the true risk (or errors) of 6 becomes

Z P(x) log(Py(x)) (2.11)
1
= 1 1 — . 2.12
%:P(X) og(PG(X)>+zx:77(x) 0g<7D(X)) ( )
D1, (P(x)|Po(x)) H(P(x))

It is assumed that the data is distributed according to distribution P(x) and not
necessarily to Py(x). The true risk as presented in equation (2.12) consist of the
Kullback-Leibler divergence (first term) which measures the distance between two
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probabilities and the (Shannon) entropy [122] (second term). For discrete variables,
the Kullback-Leibler (KL) divergence is always non-negative and is equal to 0 if the
two distributions are equal. It follows that the true risk is minimal when Py = P

The functional behavior of a NN is denoted by fy(x), where w are the weights
and x is the input. The task is to classify the input x. In the output layer, the
softmax function (equation (2.5)) is the activation function of every neuron. Thus,
the prediction of x is given in probabilities y7™° € [0, 1]9, where ¢ is the number of
possible classes. The true label is y € {0,1}7 i.e., one-hot encoded. As stated above,
a loss function is required to determine the loss or error between the prediction
y € {0,1}? and the label y. By choosing the cross-entropy as loss function for
pred1ct1ng the probabilities of x by the NN f,, with $77°* = f,,(x) and true class
label y, i.e.,

Lee(3,y) Zyc log(§2"") , (2.13)

which is a generalization of equation (2.11), this yields the best weights w in terms
of an optimal parameter to maximize the likelihood of observed data under the
model fy. The softmax outputs are the probabilities and the Bayesian rule is applied
to get the final prediction, i.e., applying the argmax to the probabilities

fw(x) = argrr(ljax yrTob . (2.14)
ce

In short summary, under the above assumption, the NN can be seen as statistical
model [119] and it is optimized by minimizing the weights w under the loss function
and using Bayesian rule. It remains to compute the optimal weights w by minimizing
the loss function and using the gradient descent algorithm.

Stochastic Gradient Descent and Backpropagation. The triple (V| F, o) is the ar-
chitecture of the neural network. The function of the neural network is fy : R™0 —
R™k where my is the input, my is the output dimension and weights w. In order to
fit the neural network to a data set X x ) with (x,y) € X x ), x € R™0 |y € R™¥
the weights w have to be determined over the edges. In practice, this is done with
the stochastic gradient descent (SGD) algorithm. The loss of predicting fw(x) =§
with target label y is denoted by A( fw(x),y). For the following explanation of the
SGD, A is the squared loss, i.e.,

1 1
Alfw(x)y) = 5llfwx) — ylz = S llox = vl (2.15)
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Note, the output of the NN f(x) = y can be written as the output of the last layer
ox . However, any differentiable loss function can be used. The training process of
the weights w of neural networks with SGD consists of the following two steps: first,
a forward pass by applying the function f(x) of the neural network to input data
x and computing the loss A( fw(x),y) to the target y and second, a backward pass

Algorithm 1: SGD for Neural Networks
Input: Layered graph (V, E), differentiable o : R — R
1 Set wl) € RIZI close to 0, learning rate > 0 and i = 1

2 while Stopping condition is not met do
3 Sample (x,y) € X x Y
4 Calculate gradient v(*) = backpropagation(x,y,w?, (V, E), o)
5 Update w(t1) = w(®) — py(9)
6 Seti=17+1
7 end
Output: Best performing weights w* on a validation set

Algorithm 2: Backpropagation

Input: Example (x,y), weights w, layered graph (V, E), activation function
c:R—=>R
Define: Graph layers Vy, ..., Vi where Vi, = {vp1,. .., vm, }, weight wy; ; of
(Ve jir Ukt1,:) With wy; 5 = 0 if (vg 5, vp114) € E
// Forward pass

1 Setopg =x

2 fork=1,...,K do

3 fori=1,...,my do

4 Set ay; = Z;n:kfl Wk—1,i,j Ok—1,j
5 Set Ok = U(ak,i)

6 end

7 end

// Backward pass
8 SetéK:oKfy
9 fork=K—-1,K—-2,...,1do

10 forj=1,...,m; do
Mk /
11 Set (5ij =3, Wk, 4,5 5k+17i 9 (ak+1,i)
12 end
13 end

Output: Partial derivatives d;; o' (ay;) op—1,; V edges (vg_1;, vpi) € E

2.2
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where the gradient v of the loss is backpropagated through the network to update
the weights w. This is usually done until the accuracy of the network on validation
data saturates. Gradient descent is an iterative optimization algorithm to find a
local minimum of a differentiable function. The idea of minimizing a function (here
the loss function) with gradient descent is to make iteratively steps in the opposite
direction of the gradient of the loss function at the current point, because this is
the direction of the steepest descent. The length of the step is controlled with the
learning rate 7. ‘Stochastic’ in this sense means, that the loss for predicting one
input sample x is computed and not for all samples of the training set as it is done in
gradient descent algorithm. The SGD and the backpropagation algorithm are given
in algorithm 1 and algorithm 2, respectively.

Before the calculation of the gradient v in the backpropagation algorithm 2 is
explained, a repetition of some vector calculus and the definition of partial derivative
is needed. Moreover, in the following part the sigmoid activation function is used,
ie., o(a) =1/(1+ exp(—a)).

Given an arbitrary function f : R™ — R, the partial derivative w.r.t. the i-th variable
at w is obtained by fixing the values of all w;, j # i which yields a scalar function
g : R — R defined by g(a) = f((w1,...,wi—1,w;+a, w;t1,...,w,)), and then taking
the derivative of g at 0. For a function with multiple outputs, f : R” — R™, the
Jacobian of f at w € R", denoted by Jy (f), is the m x n matrix whose (i, j) element
is the partial derivative of f; : R — R w.r.t. its j-th variable at w i.e., g i Z] Form =1
the Jacobian matrix is the gradient of the function (represented as a row vector).
Then it holds:

* Let f(w) = Aw for A € R™*", then

Jw(f) = A. (2.16)

* For every n, the function o : R” — R" applies the sigmoid function element-
wise. That is, a = o (0), with

1
i=0(0) = ——— 2.1
for every i = 1,...,n. Then, the Jacobian matrix Jy(o) is a diagonal matrix
whose (i,4) entry is o/ (6;) i.e., the derivative function of the scalar sigmoid
function .
a'(6;) = =o(0;)o(—6;). (2.18)

(1+ ef)(1 + e )
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In the following the notation
diag(o’'(0)) = Jg(o) (2.19)

will be used.

* The chain rule is applied to determine the partial derivatives of a composition
of functions and can be written in terms of the Jacobian as follows. Given
two function f : R” — R™ and g : R¥ — R", the Jacobian of the composition
function (f o g) : R¥ — R™ at w is

Jw(f ° g) = Jg(w) (f) o Jw(g) : (2.20)

Applying the chain rule to Jy (o o g) with g(w) = Aw, A € R"** and using
equation (2.16) and equation (2.19) it is

JW(G o g) = Jg(w) (U)Jw(g)

(2.21)
= diag(o’(Aw))A.

For the description of the backpropagation algorithm, the set of nodes V" is considered
to be decomposed in layers V = Uff:OVk. For every k, Vi, = {vg.1,. ..,V m, } is the
set of nodes with my = |Vj|.

For every layer k, the matrix W, € R™#+1*" gives a weight to every potential edge
between Vj, and Vj,;. If the edge exists in F then wy; ; is the weight, according to
w, of the edge (vy ;, vk+1,;). Otherwise, a phantom edge is added with weight 0, i.e.,
w7 = 0. The phantom edge does not have an effect on the partial derivative w.r.t.
the existing edge since all other weights are fixed. Thus, it can be assumed, that all
edges existi.e., E = [J, (Vi X Vi41).

Next, the partial derivatives w.r.t. to W_; i.e., the weights of the edges from V},_;
to Vj, will be discussed. The outputs o;_; of all neurons in V;_; not depending on
W ,._; are fixed numbers since all other values are fixed. In addition, ¢, : R™* — R
is the loss function of the sub-network defined by layers V;, ..., Vi as a function of
the outputs of the neurons in V. The input of the neurons of V}, can be written as

a = Wg_1051 (2.22)
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and the output of the neurons of V}, is o, = o(a). That is oy ; = o(ay ;) for every

j=1,...,m. Then the loss is obtained as a function g, of W_;, written as
9k(Wy—1) = li(o) (2.23)
= &c(a(ak)) (224)
= Ek(U(Wk—lok—l)) . (2.25)

‘W _ can be rewritten as vector wy_; € R™#—1" by transposing the concatenated
rows of W_;. Furthermore the matrix O;_; € R™*("—1m%) is defined as

ol , 0 0
0 o, -+ 0
Op1=| . o o (2.26)
0 0 ol |

Then Wy_10,_1 = Op_1wy_1 and equation (2.25) can also be rewritten as

gk(Wi—1) = (0 (Op_1Wi—1)) - (2.27)

Applying the chain rule (see equation (2.21)) and using the notation from above
results in

Jwi1 (9k) = Jo(0,_1wy_1) (k) diag(o” (Or_1Wi_1))Or_1 (2.28)
= Jo (o) (lk)diag(a”’ (ar)) Op—1 - (2.29)
With defining d;, := Jo, (¢x), the equation can be written as

kafl(gk) = (5k710’(ak,1)0£_1, ey (5k7mk0,(ak7mk)0£_1) . (230)

To this end, the gradient d;, = J,, (¢;) of ¢ at oy, for every k has to be calculated,
which will be done in a recursive manner.

For the last layer K, the squared loss is

lk(ok) = Aok, y) (2.31)
1
= llox v (232)
This results in
6K == JOK(EK) = (OK — y) . (2.33)
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For k < K it holds
ék(ok) = £k+1(o-(Wkok)) . (2.34)

Applying the chain rule yields the gradient

8 = Jo (0r) (2.35)
= Jo(Wyop) (Lrt1) diag(o’ (Wiop) ) W, (2.36)
= Jogy1 (lkt1) diag(o” (ag41)) Wi (2.37)
= Op+1 diag(o” (ag+1)) Wi . (2.38)

In summary, first the network outputs ay and oy are calculated by forward passing
the input sample x. Then the gradients {d; }s—1,. x are calculated and backpropa-
gated in recursive manner, see equation (2.30). Thus, it is shown that algorithm 2
indeed calculates the gradient. Then, the gradients are used to update the weights,
see algorithm 1 (line 5).

Neural networks are capable to approximate almost any function f : R™ — R. This is
proven by universal approximation theorem. There exist several proofs, most of them
refer to a specific assumption. It is proven that any continuous function on a closed
and bounded subset of R"™ can be approximated [60]. This requires at least one
hidden layer, the accuracy of the approximation depends on the number of neurons
in the hidden layer. The work [31] and [77] have proven a universal approximation
theorem for sigmoid activation function and ReLU activation function, respectively,
the last one is commonly used in state-of-the art neural networks. Apart from that,
the expressive power of neural networks have yield impressive advances in practical
applications.

Overfitting and Regularization. NN tend to overfitting [148], that means they tend
to learn details and noise of the training data. NN and ML methods shall be able to
generalize i.e., the ability to apply what is learned to elsewhere, i.e., to unseen data
with a high accuracy. Regularization aims to prevent overfitting.

A common method to prevent overfitting is early stopping [107]. The training data
is used to train the model. After each epoch, i.e., the NN was fed with every training
sample once, the NN is evaluated on validation data. The training process stops
when the accuracy of the NN saturates or starts decreasing on the validation data.
Otherwise, if the training process would continue, the NN could potentially lose
generalization by learning the noise and details present in the training data.
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Other regularization techniques are L2-regularization, also called weight decay [74]
and L'-regularization [135, 138], also named lasso regression. Both techniques add a
penalty term to the loss function, which prevents the weights from becoming too
large. For L2-regularization that means, the new loss function ¢ : R” — R of a NN is

Uw) = b(w) + %kug. (2.39)

Using the squared loss function (see equation (2.15)) and replacing the derivative
of the new weight update step yields:

wltD = w® — (v 1 qw®) (2.40)

with learning rate n > 0, regularization factor a > 0 and gradient v(), see algo-
rithm 1. Adding the L?-norm of the weights to the loss function prevents the weights
from becoming too large. Besides that, the L!-regularization includes the L'-norm of
the weights as penalty term to the loss function:

U(w) =L(w) + o |w]|: (2.42)
=l(w) + a|w]|. (2.43)

While L2-regularization prevents the weights from becoming too large, L!-regulari-
zation aims to set weights with very little activation to 0. This can be seen as a
selection of the most important nodes.

An other regularization technique is dropout [129]. Dropout is applied during
training and randomly sets the activation, i.e., the output of a neuron to 0, in the
forward but also in the backward pass. The proportion of neurons on which dropout
is applied is determined by the dropout rate A € [0, 1]. Moreover, dropout is applied
layer-wise. By dropping-out the activations of randomly picked neurons, this imitates
the training of similar but different neural network architectures.

In the previous section, the main concepts of neural networks have been presented.
Now, convolutional neural networks (CNN) will be introduced, which are commonly
used in computer vision and object recognition tasks. In the previous section, it
was mentioned that neural networks (under some assumptions) are capable to
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approximate any function f. The work in [150] shows that (also under some
assumptions) this is also possible for a CNN.

CNN [76], having their name from the convolutional layer or convolutions simplified,
are commonly used for visual data like images or point clouds. Compared to fully-
connected feedforward networks, in CNNss filters with shared weight are used in
order to capture the spatial or temporal dependencies of the input data and therefore
reducing the number of parameters (weights).

In the field of computer vision, a CNN can be divided into two main parts:

1. encoder, feature extractor or backbone: the first part of the network, that
extracts or encodes features from the input,

2. head or remaining architecture: has to be specified for the recognition task,
e.g., if an image has to be classified or specific objects like vehicles should be
detected.

Since the head or the rest of the network architecture depends on the specified task,
more details will be given in the section 2.3.

Typically, convolutions are used with further components, defining convolutional
blocks. These are pooling and activation function, while the latter have been
discussed in section 2.2.1. Remaining are convolutions and pooling.

Convolution. A convolutional operation [49, 40] of two functions g : R — R and
h : R — R is defined by

(g h)(t) = / g()h(t — 7)dr (2.44)

R

or simplified in the discrete case with g : Z - Rand h: Z — R

(gxh)(t) = Z g(T)h(t —71). (2.45)
TEZ
A convolutional operation is denoted with * and expresses how the shape of the
one function, here ¢ is modified by the other function, here h. In a convolutional
operation in neural networks, the function g refers to the input and the function h
as the filter or also called kernel, yielding the feature map.

For a two-dimensional input g and using a two-dimensional filter h, the convolution
is given by
(gxh)i; => > grim-hierjor Vi, jEL. (2.46)

T1 T2
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giahin + | 912k + || 91,3h11 +
91,1 91,2 91,3 91,4 gr2h12 + |l 91,3h12 + || 91,4h12 +
hii | hi2 g21h21 + || 922h21 + || 92,3h21 +
. g2.2h22 g2,.4h22
g2.1 92,2 923 924 * - g21h11 + | g22h11+ | 923h11 +
haa ha, g22h12+ | g23h12+ | 924h12 +
931 932 933 934 g31h21 + | g32ho1+ | g33hen +
g32h22 93,3h22 g3,4h22

Mlustration of a convolution. Input (left), filter (center) and the resulting feature
map (right).

Due to the commutativity of the convolution, this can be rewritten as

(h*g)ij =YY Gi—rijrs brim Vi, jEL. (2.47)

T1 T2

The commutative property arises by kernel flipping, relative to the input. This is
interesting from a theoretical point of view. In applications and in most libraries of
computer languages, the cross-correlation without kernel flipping is used

(h*g)ij =Y Gitrijtrs  Prim Vi jEL. (2.48)

T1 T2

An illustration of a convolution is shown in figure 2.6. Convolutions aim to extract
features from the input, giving the feature map (output of a convolution) its name. In
a CNN, the kernel values to be fitted are the weights w. CNNs extract in the first layer
low level features such as lines and curves. These features become more complex in
deeper layers. Important parameters that are not included in the formulas above
are stride s € N and zero padding p € Ny. The stride defines the step size with
which the filter h moves over the input g. Zero padding adds zero values around the
input, where p defines how often zero borders are added to the input. Depending
on the convolution’s parameters i.e., kernel size and stride, the feature map has a
lower dimension than the layer input. In order to retain the dimension, the input is
enlarged with zero values.

Let be g, x g5, the input size, h,, x hj the kernel size, stride s and zero padding p.
Then the dimension of the feature map is

w + P + 2 hy, + 2
<9+S+P+1>X<%+;+P+1>, (2.49)

while the values shall be chosen, such that both terms are integer values. Figure 2.6
shows an example with stride s = 1 and no zero padding. In figure 2.7 a) an
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[lustration of different convolutional layers. The input is given in blue colors,
the filter in yellow and the feature map in green. Zero padding or added zero
values are white colored.

4 2 8 4 max pooling 7 || 8

4 1 5 6 9 6

Ilustration of max pooling.

example with stride s = 1 and zero padding p = 1 is shown, where the dimension of
the feature map is equal to the input dimension.

A variant of convolutions are atrous convolutions [16] (also named dilated convolu-
tions). They work similar to a convolution, but with an additional parameter, the
atrous rate r € N that introduces » — 1 zeros between consecutive filter values. Thus,
the filter size is enlarged from size h, X hy, to hy+ (hy—1)(r—1) X b+ (hp— 1) (r—1).
The added zeros are fixed. Thus, the computational effort does not change compared
to a standard convolution. An example of an atrous convolution with r = 2, stride
s =1 (and no zero padding) is shown in figure 2.7 b).

Pooling. A CNN tries to reduce the size of the input sample and to extract more
and more features. Usually, the convolution is chosen such that the input and feature
map dimension are equal. In order to reduce the size and to aggregate the most
important features, a pooling layer [40, 48] is applied. There are multiple versions
of pooling layers, for instance maximum (max) pooling, where the maximum value
of the considered area is taken or the mean pooling, where the mean is computed.
Note, a pooling layer does not have learnable weights w as a convolution. The max
pooling is shown in figure 2.8. A review of pooling methods is presented in [48].
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Ilustration of two deconvolutions. The input is given in blue color, the filter in
yellow and the output in green. Added zero values are white colored.

Deconvolution. In some applications, the dimension of a CNN’s input and output
shall be equal. Convolutional and pooling layers reduce the input dimension and
extract features — the input is downsampled. Deconvolutional layers or deconvolutions
(sometimes called transposed convolutions) [40, 99] upsample an input and increase
the dimension. A deconvolution is the inverse of a convolution. Two examples of
a deconvolution are depicted in figure 2.9. In the left panel, zero padding is used
to increase the output dimension, while in the right panel, zero values are added
between the input values. Note, in deep learning, the terms deconvolution and trans-
posed convolution are used equally. Technically, this is not correct. Deconvolution is
the inverse operation of a convolution, while a transposed convolution reconstruct
the spatial dimension.

In computer vision, object recognition includes for instance classification, detection,
and segmentation. In classification, the input e.g., an image has to be assigned to
a class out of a pre-defined set of classes, in object detection an object of interest
has to detected and localized using a bounding box and in segmentation each entry
of the input e.g., each pixel of an image or each point of a point cloud has to be
classified. In this section the focus is on semantic segmentation of images and point
clouds as well as object detection and tracking in point clouds; visual examples
are shown in figure 2.10. This section reviews CNNs for the aforementioned object
recognition tasks. Furthermore, the CNNs presented in the following are also the
ones used in the experiments in this thesis.

Semantic segmentation is the task of assigning a class label § € C to each pixel or
point z from a pre-defined label space C. Thus, the input, i.e., in the following an
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Semantic segmentation of an image (left) and a point cloud (center) as well
as point cloud object detection (right).

image or a point cloud, is divided into areas of the same class. If two instances
of the same class are next to each other, they are considered as one segment.
Further segmentation tasks are instance and panoptic segmentation: in instance
segmentation [101, 98, 78], only objects of interest are separably segmented while
panoptic segmentation [94, 18] is a combination of both: it is similar to semantic
segmentation but in addition, single objects are separated. In the following, the
term segmentation is only used for semantic segmentation for brevity.

Image Segmentation

FCN. The first state-of-the art image segmentation network is the so-called fully
convolutional network (FCN) [82] and goes back to 2015. The idea of this network
is to employ solely locally connected layers, such as convolution, pooling and
upsampling. The authors propose to adapt contemporary classification networks,
i.e., a CNN, here referred to as backbones. An example is the VGG16 [128] network
that is shown as backbone of the FCN in figure 2.11. The input of the FCN is an
image x € [0, 1]**"*3, The ground truth is y € C**" and the task is to predict the
pixel-wise class labels, i.e., ¥ € C**". As it can be seen in figure 2.11, the first part
of the networks — the encoder — consist mainly of convolutions (‘Conv’) and max
pooling (‘Max Pooling’). The input features are extracted and aggregated and thus,
the input dimension is reduced and downsampled. Since the pixel-wise classification
is required, the downsampled features have to be upsampled such that the size
(w, h) of the input x and output y are the same. Upsamling layers can be learnable
e.g., using deconvolutional layer or can be fixed by using bilinear interpolation,
for instance. Both approaches are proposed in the work of the FCN model. The
upsamling layers define here the segmentation head. The upsamling part is also
referred to as decoder.

The FCN model also includes skip connections (‘Add’) in order to fuse the output of a
convolutional layer from the encoder part with the corresponding upsampling layer
in the decoder part by adding them up. In newer architectures, the skip connection
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FCN architecture. The model shows an FCN architecture with VGG16 back-
bone. The VGG16 consist of convolutions with ReLU activation function,
followed by max pooling. In total, 16 convolutions are applied. In the decoder
part, the features of the decoder are summed up with the upsampling layers.
In the end, a softmax layer is applied. The output is the semantic segmentation
of the input image.

employ concatenation instead of adding up. Skip connections allow the upsampling
layers to re-use the representation of the encoder part in order to maintain more
features, which can lead to a higher accuracy. In order to prevent overfitting, to the
end of the encoder part, FCN employ dropout. After the last upsampling layer, the
feature map is of size (w, h, q). A softmax layer follows, i.e., the application of the
softmax function to every feature entry (i,5), i = 1,...,w, j = 1,...,h, yielding
the probabilities y77°°. For the remainder of this thesis, the output of the softmax
is referred to the term probabilities since it represents the class-wise probabilities,
provided by the CNN. If a segmentation model does not contain a softmax layer, this
can always be incorporated without changing the segmentation results. The output
or prediction y of the FCN is the segmentation, i.e., applying the argmax function to
the softmax values, see equation (2.14).

Deeplab. In recent years, newer architectures and techniques have followed, often
building on each other. One of them is the model Deeplab, which was first published
in 2015 [16] (v1) and has been continuously developed and improved [15, 17,
19] (v2, v3, v3+). In what follows the term Deeplab is used as a short term for
the newest version v3+ for brevity. Compared to FCN, the Deeplab consists of
some new and advanced components, which will be outlined next. This includes
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DeeplabV3+ architecture. The DeeplabV3+ model consists of a CNN backbone
including atrous convolutions in which the input image is fed. The next part
in the encoder is the ASPP module. In the decoder, the output of the ASPP
module is concatenated with the low-level features of the backbone. In the
end, a convolution and upsampling is applied.

atrous convolutions (see section 2.2.2), depthwise separable convolutions and atrous
spatial pyramid pooling.

A depthwise separable convolutions consists of two layer operations. First, a depthwise
convolution is applied, in which a single filter per depth or channel is applied.
Second, to the resulting feature map of the depthwise convolution, a point-wise
convolution is applied. A point-wise convolution is a 1 x 1 convolution while the
depth of the filter is equal to the number of channels of the input. Thus, and
compared to a standard convolution, the operation is separated. Furthermore, a
depthwise separable convolution has fewer parameters (weights to be trained) and
is therefore more computationally efficient without losing performance. Analogously,
an atrous separable convolution is a depthwise atrous convolution, followed by a
point-wise convolution.

The Deeplab(v3+) architecture, shown in figure 2.12, consists of a backbone (en-
coder) that uses atrous convolutions (Atrous Conv’). Two common backbones are
MobileNet [118] and Xception [23]. MobileNet requires little computing power and
has a fast inference time. As the name suggests, it was developed for use on mobile
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devices. Xception requires more computational power and inference time, but it
achieves higher accuracy than MobileNet. The output of the backbone is followed
by atrous spatial pyramid pooling (ASPP). ASPP is basically a module that consists of
one 1 x 1 convolution, three atrous convolutions with different atrous rates (6, 12, 18)
and image pooling, finally followed by a point-wise convolution. ASPP was first
introduced in [15] to take multiple scales of objects into account. In the decoder
part, low level features from the backbone as well upsampled results from the ASPP
module are concatenated. Finally, a convolution and upsampling layer is applied.

Lidar Point Cloud Segmentation

In lidar point cloud segmentation, the network architectures can be divided into
projection-based and non-projection-based networks. In the following RangeNet+ +
[91], SalsaNext [30], and Cylinder3D [151] will be explained in more details.
Compared to images, point clouds are sparse and given in an unstructured format.
To this end, a lot of approaches pre-process the point cloud data to an image-like
representation.

RangeNet++. The architecture of RangeNet++ [91] is shown in figure 2.13. As
it can be seen, it has a typical encoder-decoder structure and looks similar to the
FCN architecture, cf. figure 2.11. The network uses a 2D representation of the point
cloud, called range image as input and the target i.e., the labels are also in an image
representation. The projection of a point cloud to a range image representation
follows two steps: a transformation from Cartesian to spherical coordinates, and then
a transformation from spherical to image coordinates. For a point p; = (x;,y;, 2;) in
Cartesian coordinate, the spherical coordinate is given as (r;, 0}, ¢;) with range r;,
polar angle #; and azimuth angle ¢;. The transformation from Cartesian to spherical
coordinate is given by

r; = |Ipjll2, 6 = arcsin <Zj> and ¢; = arctan (%) . (2.50)

’I”j Jjj

Based on the spherical coordinate, the range image coordinate (u;, v;) is given as

()= (e ) s
vj [1 = (8 + Yup)~ '] R

with (w, h) the width and height of the image and ¢ = 1, + ¥ 4oun the vertical field
of view (FOV) of the lidar sensor, see also figure 2.2. The described projection has
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RangeNet++ architecture. The network processes the point cloud in an image-
like representation. The architecture is an encoder-decoder structure. Finally,
the network output is re-projected to the point cloud.

to be done for all points p;, j = 1,...,n. The range image of size (w, h,5) where
each entry or pixel (for brevity) (u;,v;) is a vector (z;,y;, 2;,7;,%;) consisting of the
original features Cartesian coordinates, range and intensity, respectively. Figure 2.14
shows the panorama view from the lidar sensor, the range image as well as the point
cloud.

As shown in figure 2.13, the architecture of RangeNet+ + consists mainly of three
blocks: residual blocks (‘Residual Block’), downsample blocks (‘Downsampling’)
and deconvolutions (‘Deconvolution’) for upsampling. In general and introduced
by [56], a residual block contains one or up to a few convolutional layers with a
skip connection that maps the input (identity, i.e., id(x) = z) from the beginning
to the end - the identity is skipped over those values. Residual blocks aim to
avoid the problem of vanishing gradient [6]. For very deep CNNs it can occur
that gradients during backpropagation become too small. Here, a residual block
consist of two convolutions, batch normalization and ReLU activation function, see
(‘Residual Block’). Batch normalization (BN) [8] normalizes the feature map or input
between two layers. BN forces the activation functions to take a stable distribution.
Therefore, the learning rate of the neural network can be increased, the training is
more stable and faster. More details are also given in [111]; on which the backbone
of RangeNet+ + is based on. For downsampling, a convolution with a stride of 2
in the horizontal and a stride of 1 in the vertical is used. RangeNet+ + has skip
connection (adding up, no concatenation) between mirrored blocks. Furthermore, a
residual block follows an upsampling convolution. The output of the network is a
prediction of the range image of the same shape (w, h). For the segmentation of the
point cloud, the prediction (on image level) is re-projected to the point cloud. In
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order to refine the re-projected results and to clean the point cloud from undesired
discretization and inference artifacts, a k-nearest neighbor (KNN) post-processing is
applied [91].

Spherical or panorama view from lidar sensor (a), range image (b) and the
corresponding point cloud (c). The ground truth data is shown.
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SalsaNext architecture. The network is projection-based and takes a range
image as input. SalsaNext has an encoder-decoder structure whose layer
compositions are defined in blocks. In the end, the network output is re-
projected to the point cloud.

SalsaNext. The network SalsaNext [30] is a projection-based network with an
encoder-decoder structure, as can be seen in figure 2.15. The authors define blocks,
which consist mostly of layers that have already been presented. The ‘Context Block’
as well as ‘Block 1’ and ‘Block 5 are residual blocks, containing convolutions and
atrous convolutions, often followed by BN. ‘Block 2’ represents the downsamling
part and includes average pooling. For upsamling, SalsaNext includes pixel-shuffle,
see ‘Block 3’. Pixel-shuffle [124] leverages the learned feature maps to produce
the upsampled features by shuffling the pixels from the channel dimension to the
spatial dimension. Similar to the previous presented networks, SalsaNext includes
also skip connections between mirrored blocks. Moreover, SalsaNext employs the
kNN post-processing step after re-projecting the range image prediction to the point
cloud, as it is done and introduced by RangeNet+ +. SalsaNext provides the option
of additional uncertainty quantification. More details about this will be given later
in section 4.2.
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Cylinder3D architecture. The input consists of point clouds. In the first part,
each point cloud is partitioned into cylindrical coordinates, followed by a
cylinder feature extraction part. The remaining architecture in an encoder-
decoder structure. The output is provided on point cloud level.

Cylinder3D. The last network architecture is non-projection-based. This network is
called Cylinder3D [151] and its essential feature is that it processes the point cloud
in a cylinder partition from which cylinder features are extracted. An illustration of
Cylinder3D is shown in figure 2.16. In general, point clouds are given in Cartesian
coordinate system. First, the points are transformed from Cartesian (z;, y;, z;) to
cylinder coordinates (p;, 8, z;) with

pj = m, arctan (g?f) and z; = z;. (2.52)

J

In the cylinder partition, the three dimension height, width and depth are split
uniformly, yielding a cylinder grid representation including the projected points. A
voxelization of this is fed into a multilayer perceptron (MLP)-based PointNet [108]
to get cylinder features. MLP are feedforward neural networks, see also figure 2.4.
PointNet is a network architecture that directly uses the point cloud as input without
any pre-processing or projections. This means that the points from their cylinder
partition are first transformed to a voxel partition. Then a MLP is applied to the
points of each voxel to extract features, which are then concatenated to every point.
The feature extraction based on voxel representation is described in more details in
[152]. Apart from the cylinder partition, the remaining architecture consist of down-
and upsampling blocks as depicted in figure 2.16, consisting of convolutions and
deconvolutions.
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2.3.2

A lidar sensor provides point clouds of the environment including range information
w.r.t. the mounting position as well as intensity values. Additionally, lidar data can
be recorded at high frequency, usually 10 Hz. Thus, this sensor data is particularly
well suited for 3D bounding box detection and tracking. First, 3D bounding box
detection is explained using two networks, namely PointPillars [75] and Part-AZ2
[123]. Second, a brief introduction to tracking methods using a Kalman-Filter [70]
is given.

Detection

The task of object detection is to detect objects that belong to a pre-defined set of
classes, e.g., vehicles, pedestrians or traffic signs. Here, the objects are detected by
3D bounding boxes.

PointPillars. PointPillars [75] is one of the first DL-based methods for object de-
tection from point clouds and was published in late 2018. The network, depicted
in figure 2.17 consist of three components: a pillar features net that processes
the point cloud to an image-like representation, called pseudo-image. The next
component is a CNN (backbone) and the last component is a detection head. As
it will be shown, the pseudo-image is different to the range image. However, the
idea of pre-processing the point cloud to a 2D image representation is the same. The
pillar feature net which gives the network its name, converts the point cloud to a
pseudo-image. First, the point cloud is divided into a grid in the z — y plane - the z
coordinate defines the height. Each grid cell in the z — y plane represents a pillar.
Each point p; = (z;,y;, 2, ;) is augmented to a D = 9 dimensional point,

D .
pg = (J}j,yj,Zj,Zj,l‘;,yjc-,Z]C-,fE?,yJP) 5 (253)

where the superscript ¢ denotes the distance to the arithmetic mean of all points in
the pillar and p denotes the distance of the point from the center of the pillar w.r.t.
x; and y;. Due to the sparsity of the point cloud, most of the pillars will be empty,
i.e., do not include points. This sparsity will be utilized by imposing a limit on the
number of non-empty pillars P and on the number of points per pillar N to create a
dense tensor of size

(D, P,N), (2.54)
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PointPillars architecture. The main part is the pillar feature net in which the
point cloud is transformed to a pseudo-image, which is the input for the CNN.
For detection, a SSD head is used. Finally, the bounding boxes and their scores
are provided as output.

see ‘Stacked Pillars’. If a pillar contains more than N points, N points are randomly
sampled. That means, the tensor consist of P pillars, while each pillar has a
maximum of N points and each point is of dimension D, given as in equation (2.53).
Then, a simplified version of PointNet [108] is applied to every point ij . That
means, a linear layer, followed by BN and ReLU is applied. The output dimension by
applying the simplified PointNet version is C. This yields a tensor of size

(C,P,N). (2.55)

Afterwards, a maximum operation is used over the channels (points per pillars) to
create an output tensor of size
(C,P), (2.56)

that presents a feature vector of dimension C for every pillar (‘Learned Features’).
Finally, the encoded features in the (C, P) tensor are scattered back to its original
pillar location to create the pseudo-image of size

(C,H,W), (2.57)

with height H and width W, see ‘Pseudo Image’. Simplified, H and W depend
on the rectangular region around the lidar sensor and the choice of pillar size.
For example, the rasterized region is of size 80 x 60m? and each pillar is of size
0.5 x 0.5m?, then is H = 80/0.5 = 160 and W = 60/0.5 = 120. The pillar feature
net is visualized in figure 2.17. The backbone has an encoder-decoder structure
and consist of convolutions and deconvolutions. The last part of PointPillars is the
detection head. In PointPillars a Single Shot Detector (SSD) [81] is used as detection
head. In short terms, that means, that data is rasterized in anchor boxes. Each
anchor box will be assigned with a probability for covering a target, i.e., an object
that has to be detected. With non-maximum suppression [96], the boxes are filtered
and the size and orientation of the box are regressed.
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Part-A? architecture. A description is given in the text.

Part-A2. Another network architecture for 3D object detection is Part-A? [123],
which was first published mid of 2019, while the components that will be presented
next are from the latest version from the beginning of 2020. Part-A? consists of
two stages: first, a part-aware stage, in which the locations of objects of interest
are predicted and 3D proposals are generated. The second stage consist of a part-
aggregation stage that applies pooling and aggregates the outcome in order to refine
the locations of the previous stage. The network architecture of Part-A? is shown
in figure 2.18. First, the point cloud is fed into a sparse CNN [79] that outputs the
relative location of each foreground point w.r.t. the object box that it belongs to, by
the authors called intra-object parts. Furthermore, the sparse CNN outputs semantic
segmentation of foreground objects. The relative locations of foreground points
provide strong cues for box scoring and localization. Moreover, the network provides
two options for box proposals: anchor-based and anchor-free. Anchor-based is what
has been presented with the SSD above. Anchor-free means, that the center point
of a location is estimated and the corresponding box in terms of dimension and
orientation is regressed. More details about anchor-based and anchor-free methods
are given in [80]. The intra-object proposals, the semantic segmentation as well
as the 3D proposals — as outcome of the part-aware stage — are the input for the
part-aggregation stage. In the next part — ‘Region of Interest (ROI) point cloud
pooling’ — maximum and average pooling are applied to conduct box scoring and
refinement. This is achieved by aggregating the learned features of all points within
the same proposals given by the previous network part. Afterwards, a feature fusion
is done. Thereafter, mainly sparse convolutions are applied. The outcome of the
last sparse convolution is vectorized and a fully connected layer is applied. Finally,
the box refinement and the confidence of the predictions are given. A detailed
description is provided by [123].
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Object Tracking

The task of object tracking is to identify and track objects over multiple frames of
sequential data. A common method for that is using a Kalman filter.

The Kalman filter [70, 143] is a recursive estimation algorithm to provide the (esti-
mated) state x; € R” of a linear system at discrete timestamp ¢. The state estimation
is based on an initial estimate xq and a series of measurements z1, zo, ..., z; € R™.
Furthermore, the information of the system is described by

* F € R™*" state transition model, applied to the previous state x;_1,
¢ B € R™*! control input model, will be applied to a control vector u € R/,

* H € R"™*" observation model, to map the true state space to the measured
space,

* Q € R™ " covariance of the process noise,
* R ¢ R™*™ covariance of the measurement noise,

while it is assumed that F, B, H, Q and R are invariant over time. If they are not
to be assumed invariant, they also depend on timestamp ¢. The covariances Q and
R are assumed to be zero-mean Gaussian. Furthermore, n is the number of states,
m the number of measurements and [ the number of control values. The iterative
process consists of two steps: a prediction step in which the state estimate X, and
error covariance P; are predicted and an update step in which both are updated
(corrected).

The prediction for ¢ > 0 is:

%, =F& | +Bu_q, (2.58)
P, =FP/ FT 1 Q. (2.59)

The operator " denotes an estimate. The superscript — denotes predicted (prior)

estimates and + denotes updated (posterior) estimates.

Before updating both, the measurement residual y; and the Kalman gain K; have to
be calculated:

yi =z — Hx, , (2.60)
K, =P, H' (R +HP,H")"!. (2.61)
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2.3.3

The Kalman gain determines how much the difference between the previous estimate
and the current measurement is included in the next estimate. In particular, the
update step is given as:

% =% + Ky, (2.62)
P/ = (I -KH)P; . (2.63)

In order to use the Kalman filter in object detection, a separate Kalman filter is used
for every object. For example, the state x could consist of the center of the object,
the size, the yaw rate, the velocity and the acceleration. For initialization, the above
values have to be set. An example is provided in [70].

The presented Kalman filter is a well established approach in tracking. There exist
some extensions, e.g., the extended Kalman filter which is used for non-linear
systems. Some further approaches can be used for tracking, such as a Particle filter
[22] or DL tracking methods [103, 86]. Since only the Kalman filter is used in this
thesis, no more details will be given on those approaches.

Next, the commonly used evaluation metrics for segmentation, object detection and
tracking are presented.

Semantic Segmentation. In the following, the evaluation metrics will be given for
image segmentation. However, all presented metrics can be evaluated with points
instead of pixels, analogously. The evaluation metric for semantic segmentation is
the intersection over union (loU) [63], more precisely the mean intersection over
union (mloU) over all classes c € C = {1,...,q}. Let g, € C be the predicted class
label of pixel z and y. € C the ground truth label. Then the prediction of pixel z is a
true positive if §, = y. and a false positive if §, # y.. The true and false positives
evaluate the accuracy w.r.t. the prediction. In order to evaluate the miss classified
pixel w.r.t. the ground truth label, a false negative is if y. # 7,. For every class
¢ € C, the pixel counts true positives TP,, false positives F'P. and false negatives
FN. of the segmentation results are computed. Then the class-wise IoU,. € [0, 1]
is the number of TP, (intersection) divided (over) by the sum of TP., FP. and
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FN. (union). Finally, mIoU € [0, 1] is the arithmetic mean over all class-wise IoU.,
values, i.e.,
1 < TP,

IoU = — . 2.6
mloV = 2 Tp kP, T FN @69

The higher the mloU, the better the performance of the segmentation model. By
taking the arithmetic mean over all class-wise [oU. all classes are weighted equally.
This is important to note since most segmentation data sets are highly imbalanced.

Object Detection. The most common evaluation metric for object detection is the
(mean) average precision [102]. In object detection methods, every predicted box
is associated with a confidence value between 0 and 1, generated by the detector.
The final predictions depend on a threshold conf,, € [0, 1] which has to be set. The
ground truth and predicted objects are represented by boxes. In order to evaluate
the accuracy of a predicted box, the intersection over union loU, is computed, by
dividing the intersection of the predicted and the ground truth box by their union.
Then, a predicted box is a true positive if the IoU, is above a defined threshold,
usually this is 0.5, i.e., IoU;, > 0.5. Analogously, a prediction is a false positive if
IoU, < 0.5 and a false negative if a ground truth object is not detected, i.e, no
box (with the same class) overlaps enough with the ground truth box. Then TP,
denotes the number of all true positives, F'P;, of all false positives and F'N,, of all
false negatives. Based on these quantities, precision P and recall R are

TP,
P=——— 2.
TPb—i-FPb’ (2.65)
TPy,
= 2.66
TPy + FNy ( )
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Computing precision and recall for varying confidence thresholds conf,,, yields
the precision-recall curve. A common evaluation metric is the area under curve, in
particular the area under precision-recall curve (AUPRC). In many practical cases,
the precision-recall curve is a zigzag-like curve, as depicted in figure 2.19 (left). To
avoid this zigzag behavior, the precision-recall curve is interpolated and the area
under this interpolated precision recall-curve is the average precision (AP)

n—1
AP = (Rit1 — Ri)Ptp(Riv1) (2.67)
i—1
where
Piip(Rit1) = max  P(R), (2.68)
R:RzRﬂ,l

with n precision-recall values. Figure 2.19 (right) shows the interpolation, the AP
corresponds to the sum of the four blue areas. Computing the average precision

AP, for every class c € C = {1,...,q} and taking the mean, yields the mean average
precision (mAP)
1 q
mAP ==Y AP,. (2.69)
c=1

Object Tracking. Two commonly used evaluation metrics for object tracking are
multiple object tracking precision (MOTP) and multiple object tracking accuracy
(MOTA) [7]. Let FN, be the number of false negatives and F'P; the number of false
positives at time ¢. Furthermore, mme; is the number of mismatches and g¢t, the
number of ground truth object. Then it is

ST FNy + FP; 4 mme;

MOTA =1— !
>oi=1 9t

(2.70)
Note, false negative and false positive objects are defined as above (by means of
IoU). The range of MOTA is (—o0, 1]; the higher the value, the better is the tracking
accuracy. One can also define a correct detection by measuring the distance d
between the center point of a predicted and a ground truth object’s bounding box.
Then, the distance d' must not be greater than a given threshold for the prediction
to be considered correct i.e., a true positive.

The MOTP is defined as

MOTP =

T nt 7
Zt:lTZZZI dt ’ (271)

t=1Ct
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Ilustration of tracking for three objects. o?™*? is the prediction by a detector
and the connection between the corresponding markers, is the tracker output.
09t is the ground truth object. The mismatch between object 1 and 2 is
highlighted.

where ¢, is the number of matches found at time ¢ and di the distance between
predicted and ground truth box i at time ¢. The number of matches at time ¢ is n;.
The lower MOTP € R, the better is the tracking precision. When using the loU
for the distance between a predicted and a ground truth object, it is di = 1 — IoU".
Figure 2.20 illustrates tracking of three objects, including one mismatch.

In almost every real-world application where neural networks are used, it is not
only important to have a high accuracy, it is also important to quantify uncertainty.
Uncertainty quantification (UQ) has an important role in decision-making, e.g., using
NN in real-world applications such as automated driving or during optimization of
the model e.g., in active learning strategies where the acquisition function is often
uncertainty-based. In general, a distinction is made between epistemic and aleatoric
uncertainty [62]. Epistemic uncertainty is referred to the model uncertainty and
is caused by the lack of knowledge. It can be reduced by adding more training
data. Besides that, aleatoric uncertainty is referred to observation uncertainty. It is
not reducible, since it captures noise or internal randomness of the phenomena in
the training data. Suppose a model is trained to classify images of cats and dogs.
With too little or unbalanced training data, the model makes most likely prediction
errors and the prediction includes uncertainty. This is epistemic uncertainty that
can be reduced by adding more training data such that it is balanced or includes
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more varying images of cats and dogs. An example for aleatoric uncertainty is coin
flipping. Even the best model is not able to predict the outcome with high accuracy,
since there is always a fifty-fifty chance for head or tail. In addition to [62], the
work [1] presents a detailed review about techniques, applications and challenges
in UQ. In section 2.2.1 NN were introduced, and it was shown that they can be
considered as statistical models, whose weights become optimal by minimizing the
loss function and using the Bayesian rule. Since the hypothesis class H is limited
by the architecture of the NN and the SGD can end up in a local and not a global
optimum, prediction errors will occur. The method presented in [113, 24], called
MetaSeg quantifies the uncertainty of semantically segmented images per predicted
segment and will be presented in the following.

MetaSeg is a post-processing tool for semantic segmentation of images. Semantic
segmentation models are evaluated using the /oU. Computing the /o U per predicted
segment with the ground truth yields a segment-wise [oU. MetaSeg includes a meta
classification model to detect false positive segments, i.e., predicted segments with
IoU = 0 as well as a meta regression model to estimate the segment-wise prediction
quality in terms of JoU € [0,1]. Both meta models, i.e., meta classification and
regression model, are fitted on aggregated dispersion measures, here defined as
meta data, based on pixel-wise probabilities. In what follows MetaSeg is explained
in detail. Furthermore, since MetaSeg was used in other works [115, 13, 83],
additional meta data is presented as well.

A segmentation network with a pixel-wise softmax output can be seen as a statistical
model. For each image pixel z, a probability distribution

Y = fo.(x) € [0,1]7 (2.72)

over the ¢ class labels ¢ € C = {1,...,¢} is provided, with given weights w and
image x; the subscript for weights w in the left part is omitted for brevity. The
predicted class of pixel z is then given by

i, = argmax yg”’” . (2.73)
ceC

The true class label of pixel z is y, € C. Thus, 27" is the probability distribution
and §27°" the probability for class ¢ € C and pixel z.

,C
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Based on 2™, the dispersion measures entropy E., probability difference D, and
variation ratio V,, are defined as:

B~ it ZW log (72") @74)
— b rob

D,=1- max gy’ + angg{(q o s (2.75)

V:=1—max grmor., (2.76)

The set of dispersion measures for a pixel z is defined as M, = {E., D,, V.}.

Representing the above definitions and dispersion measures on image level, i.e., for
all pixels z of an image x, this is defined for the reminder of this thesis as:

e image x € [0, 1]w*">3,
e ground truth y € C¥*",
* probabilities 77 € [0, 1]w*"x4,

e prediction § € CV*",

* entropy E € [0, 1]w*",
e probability difference D € [0, 1]*",

* variation ratio V € [0, 1]¥*",

while E, D and V are also referred to as (dispersion) heatmaps. Furthermore, it is
M={E,D,V}. 2.77)

For a given image x the set K, denotes the set of connected components (segments)
of the (predicted) segmentation y. Analogously, X denotes the set of connected
components in the ground truth y. For each predicted segment & € Ky the following
quantities are defined:

* the interior k;,, C k where a pixel z is an element of k;,, if all eight neighboring
pixels are an element of £,

* the boundary kyg = k \ kin,

* the size S = |k|, Sin = |kinl, Sba = |kbdl-
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Based on the above quantities and the pixel-wise dispersion measures, the aggregated

dispersion measures for a predicted segment k are defined as:

* the mean p and variance v metrics

My = pu(My) = }:Mm
ZGku

My = v(My) = p(M7) — p(My)?,

fort € {_,in,bd} and M, € M.,
o the relative sizes S = S/Spq, Sin = Sin/Shd

¢ the relative mean and variance metrics

™™ = 71(M)S,
™My == 7(M)Sip
for 7 € {u,v}and all M € M,

* the ratio of the neighborhood’s correct predictions of each class

C

Z]l{c ye} VeeC,

| nb| z€kpq

with k,,; the set of neighbors of segment k, i.e., k,, = {2’ € [u£1] x

{1,...,w} x{1,...,h}: (u,v) € k, 2" ¢ k},
* the mean class probabilities

Z ypmb YeeC.

zek

Furthermore, the definition of the target variables is as follows:

(2.78)

(2.79)

(2.80)
(2.81)

(2.82)

[v+1] C

(2.83)

e IoU: let K| be the set of all £’ € K that have non-trivial intersection with k

and whose class label equals the predicted class for &, then

|k N K'| , ,
I k)= K = k
OU( ) |kUK,|7 lc’eng Ik 7
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¢ the adjusted JoU ,q; does not count pixels in the overlapping ground truth seg-
ment that are covered by predicted segments, but in other predicted segments
of the same class: let Q = {q € Kx : ¢N K’ # (0}, then

|k N K'|

=1 ! 2.85
U (K Q)] (2.85)

IoUqi(k)

In cases where a ground truth segment is covered by more than one predicted
segment of the same class, each predicted segment would have a low loU, while the
predicted segments represent the ground truth quite well. The adjusted JoU ,q; does
not punish this situation. The adjusted JoU,q; is more suitable for the task of meta
regression. For the meta classification it holds JoU = 0,> 0 < IoU,q; = 0,> 0.

Typically, the dispersion measures F,, D,, V, are large for z € kj4. This motivates the
separate treatment of interior and boundary measures. Furthermore a correlation
between fractal segment shapes and a bad or wrong prediction can be observed,
which motivates the relative sizes S, Sj,.

The above definitions lead to a total of 35 + 2¢ metrics: the (relative) mean and
variance metrics M, T M;y,, T Myq, M, TM;, Y7 € {u,v}, VM € M, the (relative)
size metrics S, Sin, Spa, S, Sin as well as N, P, Vc € C.

Except for the segment-wise JoU and IoU,q; values, all quantities defined above
can be computed without the knowledge of the ground truth. The task of meta
classification is to predict whether a predicted segment has an JoU greater or equal
to 0. A segment with a JoU = 0 is called a false positive segment. Thus, meta
classification is in this work also referred to false positive detection. Besides that,
the task of meta regression is to predict the value of the IoU € [0, 1]. The higher the
segment-wise JoU the more does a predicted segment overlap with its ground truth
segment.

The classification and regression models that are chosen in [113] are logistic and
linear regression, respectively. However, any classification and regression model can
be used, e.g., neural networks or tree based ensemble methods [42]. As shown in
[83], gradient boosting leads to the best results. Gradient boosting [43, 44, 20] is
an ensemble method consisting of weak learners for classification and regression
tasks. Typically, and assumed for the following, the weak learners are decision
trees. Taking the decision trees as an ensemble makes gradient boosting to a strong
prediction model. Note, gradient boosting is one of the most powerful methods for
classification and regression tasks of structured data [126].
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Algorithm 3: Gradient boosting with decision trees
Input: Data {x;,y; }i=1,...n, differentiable loss function L(y, g(x)), number
estimators M, maximum tree depth d, learning rate 7
Output: Prediction model g/ (x)
1 go(x) = argming 32i*y L(y;, )
2 form=1,...,M do

// Compute pseudo-residuals for all samples

3 fori=1,...,ndo
o OL(¥igm—1(xi)
4 ‘ T = T T g 1 (%)
end

6 Fit decision tree for pseudo-residuals r; ,, and create terminal regions
Rim Vi=1,....Jm
7 forj=1,...,J, do
8 ‘ Uj,m = argming ineRi,j L(yi, gm—1(xi) + )
9 end
// Update prediction model
Jm 5
10 | gm(x) = gm-1(%) + 12252 GjmI(x € Rjm)
11 end

Gradient boosting, see algorithm 3, works as follows. Given is a data set {x;, ; }i—1,...n
with n samples and x € RP. The loss function of predicting x by model ¢g(x) = g is
L(y, g(x)). Furthermore, M is the maximum number of weak prediction models,
in particular the maximum number of decision trees with maximum depth d. The
learning rate is € [0,1]. First, an initial prediction model go(x) is computed,
i.e., finding a value for § that minimizes the loss value over all samples. This is
a constant, see line 1. For a regression problem, this is basically the mean over
all labels y;, i = 1, ..., n. Starting with the first iteration, the pseudo-residuals for
every sample x; are computed, by taking the negative gradient of the loss function
w.r.t. x; (line 3-5). Then, a decision tree is fitted to the data set, predicting the
pseudo-residuals. This yields in terminal regions R; ,,, or end leafs of the tree (line 6).
Similar to line 1, the loss function is minimized to find the best values §; ,,, for every
terminal region (line 7-9). As the last step of the iteration, the prediction model
gm(x) is updated by adding the weighted decision of the decision tree to the previous
prediction model g,,_1(x). This reduces the loss, i.e., the prediction error and in
the next iteration, a new decision tree is fitted to predict the residual-gradient and
the process continues as described. Extensions of the presented gradient boosting
aim to improve the algorithm in terms of runtime and accuracy. For example, the
stochastic gradient boosting [44] does not iterate over all samples of the data set
(cf. algorithm 3 line 1, 3 — 5), only over a randomly sampled subset. XGBoost [20],
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short for extreme gradient boosting, is an optimized library of gradient boosting to
work in parallel or include some regularization techniques, for instance.

The meta classification model outputs a probability for a predicted segment having
an JoU = 0. For all probabilities equal or greater than 0.5, it is predicted that the
IoU is equal to 0, i.e., it is a false positive segment. Then the accuracy ACC € [0, 1]
is the ratio of correct predictions to all predictions. The accuracy corresponds to
a single decision threshold. In contrast to that, the area under receiver operating
curve (AUROC) and area under precision-recall curve (AUPRC) are obtained by
varying the decision threshold of the classification output [34]. AUROC takes the
true positives (7'P) and false positives (F/P) in terms of their rates into account and
thus, essentially measures the overlap of distributions corresponding to negative
and positive samples; this score does not place more emphasis on one class over the
other in case of class imbalance. AUPRC ignores true negatives and emphasizes the
detection of the positive class, i.e., here a correct detected false positive is a true
positive in terms of classification.

For the evaluation of the meta regression model, the coefficient of determination
R? is used. R? is a typical evaluation metric for regression tasks and is defined
as follows. For the definition of R?, let be v;, i = 1,...,n the true observations,
4i, i = 1,...,n the corresponding regression results and 7 = % > iv1 7vi the mean of
observations. Then the coefficient of determination is

n

" A2
R2:1—M. (2.86)

e (vi —7i)?
For a perfect fitted model, that always predicts the correct values, it is R> = 1. A
model that always predicts the mean, has a coefficient of determination of zero, i.e.,
R? = 0. Theoretically, R? can be negative if the model has worse predictions.

Numerical experiments are presented in [113]. The performance of MetaSeg is
demonstrated on semantic segmentations of street scenes with the Deeplab model.
For meta classification, an accuracy of ACC = 81.91% and AUROC of 87.71% on a
validation set is achieved. For meta regression the coefficient of determination is
R? = 74.97%, also on a validation set. The performance of meta regression, i.e., the
prediction quality estimation is shown in figure 2.21.
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Two demonstrations (top and bottom four panels) of MetaSeg’s performance of
predicting JoU,q;. Each visualization contains the ground truth (bottom left),
the semantic segmentation (bottom right), the true loU for every predicted
segment (top left) and the estimated loU for every segment (top right). The
colorbar at the top is for the segment-wise IoU values.
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3.1

Region-Based Active Learning using
Priority Maps for Image
Segmentation

In order to achieve a high accuracy of DL models, it is important, among other things,
to have a large amount of annotated and varying training data. The annotation of
data is time consuming and costly, especially for the task of semantic segmentation
it requires very high human annotation effort. In this chapter, a method is presented
to reduce the annotation effort and at the same time maintaining a high model
accuracy. The method uses the prediction quality estimation of MetaSeg to select
image regions to be labeled, i.e., unseen image regions where it is assumed that
the segmentation model is not able to infer them correctly. In addition, this will be
combined with a cost estimation to be even more cost efficient in terms of annotation
effort.

In recent years, semantic segmentation, the pixel-wise classification of the semantic
content of images, has become a standard method to solve problems in image and
scene understanding. Examples of applications are advanced driver assistant systems
(ADAS), automated driving (AD) and environment understanding [149, 19, 139],
biomedical analyses [112] and further computer visions tasks. CNNs are commonly
used in semantic segmentation, see section 2.3.1. In order to maximize the accu-
racy of a CNN, a large amount of annotated and varying data is required, since
with an increasing number of samples the accuracy increases only logarithmically
[130]. For instance, in the field of AD, fully and precisely annotated street scenes
require an enormous and tiring annotation effort. Also biomedical applications, in
general domains that require expert knowledge for annotation, suffer from high
annotation costs. Hence, from multiple perspectives (annotation) cost reduction

while maintaining model accuracy is highly desirable.
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Active Learning. One possible approach to solve this problem is active learning
(AL), which basically consists of alternatingly annotating data and training a model
with the currently available annotations. The key component in this algorithm that
can substantially leverage the learning process is the so-called query or acquisition
strategy. The ultimate goal is to label the data that leverages the model accuracy
most, while paying with as small labeling costs as possible. A typical AL process is as
follows: it is assumed that a model and a data pool with unlabeled data is given.
First, a small subset of samples of the data pool is labeled, which is then used to
train the CNN. The model infers all the unlabeled data and based on an acquisition
function, a pre-defined number of samples are labeled. An example for acquisition is
to label the data that has the highest uncertainties in terms of the highest entropy of
a predicted sample. The iterative process ends when a stopping condition is reached,
e.g., if the model achieves a pre-defined accuracy or the annotations effort becomes
too high. For an introduction to AL methods, see e.g., [120].

Image Annotation. The annotation effort of images depends on the task they will
be used for. For classification, only one label must be assigned for the whole image.
For object detection, simplified, the boxes of relevant object classes as well as their
respective class need to be set. For semantic segmentation each pixel requires
a label. Semantic segmentation data sets are generally labeled with a polygon-
based annotation tool, i.e., the objects are described by a finite number of vertices
connected by edges such that the latter form a closed loop [29], [97]. In tools such as
labelme [117], the human annotator defines a segment as closed polygon by clicking
around the edges of the object. Additionally, the class of the segment has to be
assigned. Figure 3.1 shows a visualization of image segmentation ground truth and
clicks for annotation. As it can be seen, the number of clicks for annotation depends
on the number of ground truth objects, the complexity of the scene, i.e., how many
class objects are given and the shape of the contours. Objects with curve structures
require more clicks to approximate the shape with a polygon compared to objects
without curve structures like a bus which is approximately a rectangle; a straight
line requires only the start and end coordinate and thus only two clicks. However,
it is also obvious that some image regions require more clicks for annotation than
other e.g., in figure 3.1 the image center — mainly consisting of pixels belonging to
class ‘street’ — requires significantly fewer clicks than the right or upper part of the
image. The image from figure 3.1 is from the Cityscapes data set [29] which is a
common data set for semantic segmentation. The annotation of an image (from the
Cityscapes data set) takes in average 1,590 clicks and up to two hours. Furthermore,
an image has on average 95 ground truth segments. Thus, for the remainder of this
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Visualization of an image and the corresponding ground truth. Each color rep-
resents a class. The right part illustrates the annotation clicks of the pedestrians.
The segment boundaries are shown in white, the clicks are shown as black dots.

chapter, the annotation effort or costs are associated with the number of clicks for
annotating an image. In section 3.4 more details for an evaluation of costs in terms
of clicks will be presented.

In this chapter, a new region-based active learning method is presented. Due to the
motivation above, only image regions, in what follows called boxes, are queried.
The meta regression of MetaSeg for prediction quality estimation is used to identify
predicted image regions with a low estimated quality in terms of segment-wise loU.
Furthermore, a click estimation method is introduced and incorporated in order
to take the estimated annotation costs into account. Both selection criterions are
aggregated and combined. This outlined procedure is called MetaBox+.

The contributions are summarized as follows:

* defining a new region-based active learning method that queries image regions
for annotation based on one or multiple combined selection criterions called
priority maps,

* using the segment-wise prediction quality estimation by MetaSeg as priority
map, in order to select poorly predicted image regions,

* using a new and practical method to estimate the annotation costs in terms of
clicks and combining this with the priority map via MetaSeg, which yields the
novel AL method MetaBox+,

* exhausting numerical experiments on the Cityscapes data set [29] with two
models, namely FCN8 [82] and Deeplab [19], and defining new evaluation
metrics for region-based active learning and an in depth-study of the experi-
ments.

3.1

51



3.2

52

The first section gave an introduction into the topic and active learning. Furthermore,
details about the annotation process of images have been presented. In section 3.2,
the related work is reviewed. Afterwards, in section 3.3, a new AL method is
presented that prioritizes image regions to be labeled. Experiments and results are
given in section 3.4, where the new method is evaluated and compared to baseline
methods. The chapter ends with a discussion in section 3.5.

First AL approaches (before the deep learning era) for semantic segmentation, for
instance based on conditional random fields, go back to [137, 72, 64, 95]. In general,
uncertainty sampling is one of the most common query strategies [140, 46, 114, 54,
4], besides that there also exist approaches on expected model change [137] and
reinforcement learning-based AL [12]. In recent years, approaches to deep AL for
semantic segmentation have been introduced, primarily for two applications, i.e.,
biomedical image segmentation and semantic street scene segmentation. The ap-
proaches in [147, 51, 100, 85], are specifically designed for medical and biomedical
applications, mostly focusing on foreground-background segmentation. Due to the
underlying nature of the data, these approaches refer to annotation costs in terms
of the number of labeled images. The methods presented in [84, 127, 66, 12] use
region-based proposals. All of them evaluate the model accuracy with mIoU (cf.
equation (2.64)).

The method in [127] is designed for multi-view semantic segmentation data sets, in
which objects are observed from multiple viewpoints. The authors introduce two
new uncertainty-based metrics and aggregate them on superpixel (SP) level (SPs
can be viewed as visually uniform clusters of pixels). They measure the costs by the
number of labeled pixels. Furthermore, they have shown that labeling on SP level
can reduce the annotation time by up to 25%. However, in applications of semantic
street scene segmentation the scenes are not given from multiple views.

In [66] a new uncertainty metric on SP level is defined, which includes the informa-
tion of the (Shannon) entropy [122], combined with information about the contours
in the original image and a class-similarity metric to put emphasis on rare classes.
The queried regions consist of neighboring SPs and are not in a pre-defined (equal)
shape or size. In [66], the number of labeled pixels define the costs. As already
motivated, the annotation costs in terms of labeled pixels do not reflect the human
annotation effort as good as the number of required clicks — this will also be shown
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in section 3.4 in detail. Furthermore, the human annotation effort of labeling image
regions of varying shapes and sizes is not studied properly. The click estimation
approach in MetaBox+ also takes contours into account, but not those of the image,
but those of the segmentation, as will be explained in the next section. Moreover,
this chapter analyzes the annotation effort in a real-world scenario.

The authors of [12] utilize the same cost metric, i.e., the number of pixels as it is done
in [66]. The latter work uses reinforcement learning to find the most informative
regions, which are given in quadratic format of fixed size. This procedure aims at
finding regions containing instances of rare classes.

The method in [84] queries quadratic regions of fixed size from images. In contrast to
the methods discussed before, the costs are measured by annotation clicks. They use
a combination of uncertainty measure (Vote [32] and Shannon entropy[122]) and a
clicks-per-polygon-based cost estimation, which is regressed by a second DL model.
However, instead of using an uncertainty measure to identify high informational
regions, MetaBox+ uses information about the estimated segmentation quality in
terms of the segment-wise IoU (see section 2.4). Entropy is a common measure
to quantify uncertainty. However, in semantic segmentation, one can observe
increased uncertainty on segment boundaries, while uncertainty in the interior is
often low. This is in line with the observation that, neural networks in general provide
overconfident predictions [50, 57]. The new region-based active learning method
solves this problem by evaluating the segmentation quality of whole predicted
segments. Furthermore, also the cost estimation method differs substantially from
the one presented in [84]. While the authors of [84] use another DL model to
regress on the number of clicks per image region, here the estimate of number of
clicks are inferred directly from the prediction of the segmentation network.

This section first describes a region-based AL method which queries fixed size
and quadratic image regions by means of priority measures and priority maps.
Afterwards, the priority measures based on MetaSeg and a cost estimation are
described, which leads to the new AL method. This method is subdivided into
a process of two steps: first, the segmentation quality is estimated by using the
segment-wise meta regression of MetaSeg. Second, a cost estimation of the click
number required to label a region is incorporated. At the end of this section, baseline
methods are presented.

3.3
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For the AL method, a CNN is assumed as semantic segmentation model with pixel-
wise softmax probabilities as output. The corresponding segmentation mask is the
pixel-wise application of the argmax function to the softmax probabilities. The data
set is given as data pool P. The set of all labeled data is denoted by £ and the set of
unlabeled data by ¢/. At the beginning, no data is labeled, i.e., £ = (). The pixel-wise
labels to be set are over a given number of classes c € C = {1,...,q},q¢ > 2.

A generic AL method can be summarized as follows: Initially, a small set of data
from U is labeled and added to £. Then, two steps are executed alternatingly in a
loop. First, the segmentation model is trained on L. Thereafter, a chosen amount of
unlabeled data from U/ is queried according to a query strategy, labeled and added
to L. In region-based AL, newly labeled regions are added to £ instead of whole
images. An image x remains in I/ as long as it is not entirely labeled. In order to
avoid multiple queries of the same region, a region that is contained in both ¢/ and
L is tagged with a query priority equal to 0. In the remainder of this section, the
query function is described in detail and the appropriate concept of priority in the
given context is introduced.

Region-Based Queries. The query strategy is a key ingredient of an AL method.
In general, most query function designs strive for maximally leveraging training
progress, i.e., achieving high validation accuracy after short time with reduced
labeling costs. Thus, it is aimed for querying regions of images, leading to a region-
specific concept of query priority. In what follows, only measures of priority are
computed by means of the softmax output of the CNN. To this end, let

f 2 [0, 1]wxhx3 5 [0, 1]wxhxa (3.1

be a function given by a segmentation network providing softmax probabilities for
a given input image x, where w denotes the image width, h the height and ¢ the
number of classes. This can also be written as f(x) = y7™%, which is the softmax
(probability) output.

A priority map can be viewed as another function
g : [0, 1]wXhxa — [0, 1]wxh (3.2)

that outputs one priority score per image pixel. The output of g can be viewed
as a heatmap that indicates priority. A higher score of priority should presumably
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correlate with the attractiveness of the corresponding ground truth. A typical
example for ¢ is the pixel-wise entropy E which for a chosen pixel (i, 7) is given by

q q
5P10b | (PTOb
B(0:4) = ~ fog(q) 2 2= Ui 085 (3.3)

where gfg(’f = f(x)ijc € [0,1] for a given input x € [0, 1]**"*3. Note that, if an

image pixel has already been labeled, the corresponding pixel value of the priority
map is overwritten by 0.

The AL method queries regions that are square-shaped (boxes) and of fixed width
b € N. A box-wise overall priority score is obtained via aggregation. To this end, the
scores are summed up. That is, given a box B C [0, 1]**", the aggregated score is
given by

gagg prob Z gz prob (34)
(i.5)eB

Given the set B of all possible boxes of width b € [0, 1]“*", the aggregated priority
map is defined as
95(37"*") = {9agy(9""*", B) : B € B}, (3.5)

which can be viewed as another heatmap resulting from a convolution operation

with a constant filter. Given ¢ aggregated priority maps, for the sake of brevity

named AV (377 B), ..., hM) (377" B), a joint aggregated priority map is defined by
t

h(y?™", B) = [ h9(3"", B), (3.6)

s=1
where all aggregated priority maps are normalized. However, in what follows
no distinction is made between joint (aggregated) priority maps and singleton
(aggregated) priority maps as this follows from the context. Furthermore, it will
be only referred to priority maps while performing calculations on priority score
level.

Algorithm. In summary, the AL method proceeds as follows. Initially, a randomly
chosen set of m,;; entire images from I/ is labeled and then moved to L. Afterwards,

the AL method proceeds as previously described in the introduction of this section.

Defining the set of all candidate boxes as

= {(3"",B) :== f(x), x €U, B € B}, (3.7)
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Ilustration of the region-based AL method. Based on the network probabili-
ties for a predicted image, the priority maps are computed, followed by the
aggregation and joining. The candidate boxes are selected by their highest
priority scores. After labeling the image regions, the data pool is updated and
the process continues by predicting unlabeled images to select the next regions

to be labeled.

in each iteration a chosen number m, of non-overlapping boxes @ = {(gg’jmb, B;j) :
j=1,...,m,} C C are queried, with the highest scores h(37™", B), i.e.,

(ypTOb,B) c Q, (ypmb”B/) ¢ Q

(3.8)

— h(ypTOb,B) > h(ypmb’Bl) or (B N B ?é @ and yprob — yprob/) ‘

A sketch of the whole AL loop is depicted by figure 3.2.

For the new active learning method MetaBox+, it remains to specify the priority
maps h®) (377 B),s = 1,2 defined in the previous section. For the prediction
quality estimation, the method MetaSeg is used which provides a quality estimate
in [0, 1] for each segment predicted by f, see section 2.4. This aims at querying
ground truth for image regions that presumably have been predicted badly. Mapping
predicted qualities back to each pixel of a given segment and thereafter aggregating
the values over boxes, yields to the priority map h() (327, B).

On the other hand, queried image regions shall be easy or cheap to label. Therefore,
the required clicks to annotate a box B are estimated. From this, another prior-
ity map h(? (37", B) is defined which contains high values for regions with low

estimated numbers of clicks and vice versa.
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Finally, the boxes are queried according to the product of priorities, i.e.,
(™", B) = k(37" B) - ) (577", B) . (3.9)

In what follows, the priority maps ¢! (§77%) and ¢(®)(§*7") are described more
precisely, where the aggregated priority maps 2(1)(y77°, B) and h(®) (377, B) are
constructed as in section 3.3.1.

Priority via MetaSeg. For the prediction quality estimation, the meta regression
model in MetaSeg has to be trained, see section 2.4. Since MetaSeg is based on
metrics that take the prediction’s dispersion measures into account, only data with

ground truth should be used, that has not been used in training the neural network.

Therefore, an initial data set M of n,,.;, samples is selected. At least, it should
contain ground truth segments of every class ¢ € C. Otherwise, MetaSeg would not
be able or even trained to make estimations for those classes. This data set is fixed
for the whole AL process. Since the network f is trained after each update of the
data pool P, the predictions change and the meta regression model for MetaSeg is
re-trained as well.

To predict the quality of network predictions via MetaSeg, the following steps are
performed after updating the semantic segmentation model:

1. infer the current CNN’s predictions for all images in M,

2. compute the metrics for each predicted segment (from 1.),

3. train MetaSeg to predict the JoU by means of the metrics (from 2.),

4. infer the current CNN’s predictions for the unlabeled data i/,

5. compute the metrics for each predicted segment that belongs to ¢/ (from 4.),

6. apply MetaSeg in inference mode (from 3.) to each predicted segment from U
(from 4.) and its metrics (from 5.) to predict the IoU.

For each unlabeled, i.e., not entirely labeled image, MetaSeg provides a segmentation
quality heatmap ((y7™%) by registering the predicted IoU values of the predicted
segments for each of their corresponding pixels. An example of the segmentation
quality heatmap is given in figure 3.3. The corresponding priority map, as defined
in equation (3.2), is obtained via g(M (y77°) = 1 — ¢(y?™"). Hence, regions of
g (y77b) containing relatively high values are considered as being attractive for
acquisition.
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e) Ground truth

" e

a) Predicted IoU values b) Priority map via MetaSeg

Prediction of the IoU values and priority map via MetaSeg. The figure consists
of the predicted IoU values for the predicted segments (a), the corresponding
aggregated priority map (b), the true IoU values for the predicted segments
(), the predicted segments (d) and the ground truth (e). Low IoU values are
visualized in red, middle ones in yellow and high values in green. In the priority
map, darker regions correspond to higher priority for acquisition. Overall, for
white regions no ground truth is available.

Note, the main contribution of this chapter is the AL method MetaBox+, that takes
the here presented quality estimation into account as well as the following presented
click estimation. However, only taking the priority map via MetaSeg into account is
referred to the AL method MetaBox.

Priority via Estimated Number of Clicks. The second priority map ¢ (y77°%) is an
estimation of the annotations costs. Multi-class semantic segmentation data sets are
generally labeled with a polygon-based annotation tool, i.e., the objects are described
by a finite number of vertices connected by edges such that the latter form a closed
loop [29, 97]. If the ground truth is given only pixel-wise, an estimate of the number
of required clicks can be approximated by applying the Ramer-Douglas-Peucker
(RDP) algorithm [38, 110], to the segmentation contours. The RDP algorithm
transforms a curve consisting of line segments into a similar curve with fewer points.
The maximum distance between the original and approximated curve is controlled
by a parameter ¢, the lower ¢ the smaller is the maximum distance.

To estimate the true number of clicks required for annotation in the AL process, this
number is correlated with how many clicks it approximately requires annotating the
predicted segmentation (provided by the current CNN) using the RDP algorithm.
The approximation accuracy of the RDP algorithm is controlled by a parameter e.
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¢) Ground truth

d) Segmentation e) Priority map via true clicks

a) Contours and estimated clicks b) Priority map via estimated clicks

Click estimation and priority map via estimated number of clicks. The figure
consists of the predicted segment’s contours (white) and estimated clicks (black)
(a), the corresponding aggregated priority map (b), the ground truth (c), the
predicted segments (d) and the priority map of true annotation clicks for
visualization purposes (e). In the priority maps, darker regions correspond to
higher priority for acquisition. In ¢) and d) for white regions no ground truth is
available.

For this purpose, a cost map £(y77°?) is defined via ¢ (97 ;Ob) = 1 if there is a polygon

vertex in pixel (i,7) and & (g;’j;”b) = 0 else. Since regions with low estimated costs
are prioritized, the priority map is given by ¢(® (377°%) = 1 — £(§*™"). Following
the construction in section 3.3.1 yields the aggregated priority map h(? (y7°*, B). A

visual example of the cost estimation is given in figure 3.4.

Tests with the RDP algorithm applied to ground truth segmentations have shown
that on average, the estimated number of clicks is fairly close to the true number
of clicks provided by the Cityscapes data set. Therefore, it is assumed that over
the course of AL iterations, the model accuracy increases, approaching a level of
segmentation quality that is close to ground truth, then the described cost estimation
on average will approach the click numbers in the ground truth.

As already mentioned, MetaBox uses only the priority via MetaSeg and MetaBox+
uses both the joint priority of MetaSeg and the estimated number of clicks. An
overview of the different steps of the new AL method is given by figure 3.2 and an
exemplary visualization of the different stages of MetaBox+ is shown in figure 3.5.

Further Priority Maps and Baseline Methods. For the sake of comparison, a priority
map based on the pixel-wise entropy as in equation (3.3) is defined. Analogously to
MetaBox and MetaBox+, the methods EntropyBox and EntropyBox+ are introduced:
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d) Predicted ToU values e) Priority map via MetaSeg f) Priority map via estimated clicks g) Ground truth

a) Segmentation b) Joined priority map ¢) Annotation

The figure consists of the predicted segments (a), the joined priority map (b)
and the acquired annotation (c). The joined priority map (b) is based on the
priority map via MetaSeg (e) and the priority map via estimated number of clicks
(f). High values represent prioritized regions for labeling: in e) regions with
low predicted IoU values are of interest and in f) regions with low estimated
clicks. Additionally, d) shows the predicted IoU values via MetaSeg and g) the
ground truth. Low JoU values are visualized in red, middle ones in yellow and
high values in green. In the priority map, darker regions correspond to higher
priority for acquisition. Overall, for white regions no ground truth is available.

EntropyBox uses only the priority via entropy and EntropyBox+ uses the joint
priority of the entropy and the estimated number of clicks. The method EntropyBox+
is similar to the method presented in [84]. The corresponding authors also use
a combination of the entropy and a cost estimation, but the cost estimation is
computed by a second DL model. Furthermore, as a naive baseline, a random query
function is considered that performs queries by means of random priority maps. This
is called RandomBox.

This section first introduces new evaluation metrics for region-based AL or rather
region-based annotation. To this end, different types of clicks required for labeling
are discussed and how they can be taken into account for defining annotation costs.
Afterwards, the experiment settings are described. Finally, the numerical results are
presented and different query strategies as introduced in the previous section are
compared w.r.t. accuracy and robustness.
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3.4.1

In semantic segmentation, annotation is usually generated with a polygon-based
annotation tool. A segment of a given class is represented by a polygon, i.e., a
closed path of edges. This path is constructed by a human labeler clicking at the

corresponding vertices. Here, these vertices polygon clicks are termed as ¢, € N.

These are the clicks that have been motivated in section 3.1. Since quadratic image
regions (boxes) are queried, the following additional types of clicks are introduced:

* intersection clicks ¢;(B) € Ny, occur due to the intersection between the
contours of a segment and the box boundary,

* box clicks ¢,(B) € Ny, specify the quadratic box itself,
* class clicks c.(B) € N, specify the class of the annotated segment.

For an annotated image, the class clicks correspond to the number of segments. Just
like the polygon clicks, they can also be considered for the cost evaluation of fully
annotated images.

For the evaluation of a data set P (with fully labeled images), ¢,(P) € N is the total
number of polygon clicks and ¢.(P) € N the total number of class clicks. Let £y
be the initially annotated data set (with fully labeled images) and () the set of all
queried and annotated boxes, then the cost metrics are defined as:

Cp(‘CO) + CC(‘CU) =+ CP(Q) + Cz(Q) + CC(Q)

costa = o (P) £ e (P) , (3.10)
oty = A LD 4@ +(Q) G
with ¢4(Q) = Y «(Bj), € {pi,bc}.
BjeQ
In addition to that,
costp (3.12)

defines the costs as amount of labeled pixels w.r.t. the whole data set.

The amount of required clicks depends on the annotation tool. The box clicks
¢p(B) are not necessarily required: with a suitable tool, the chosen image regions
(boxes) are suggested and the annotation process restricted accordingly. Required
are the polygon clicks ¢,(B) and the intersections clicks ¢;(B) to define the segment
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Ilustration of possible click types that can be taken into account for a cost
definition. The black squares depict true annotation clicks obtained from the
data (here 3 polygon clicks within the box). The other ones represent additional
types of clicks: the ones required for annotating intersection points of segment
contour (white squares, here 2 intersection clicks), the ones for defining the
box itself (white circles, 4 box clicks, one for each corner) and one click per
segment to specify the class of the segment (black circles, here 2 class clicks:
for car and vegetation).

contours as well as the class clicks c.(B) to define the class of the annotated segment.
Cost metric cost 4 (equation (3.10)) is based on this consideration.

Cost metric costp (equation (3.11)) is introduced in [84]. Cost metric cost g is mostly
in accordance with cost4, except for two modifications. The box clicks ¢;(B) = 4
are taken into account, while the class clicks c¢.(B) are omitted. Theoretically,
both metrics can become greater than 1. First, fully labeled images do not require
intersection clicks ¢;. Second, ground truth segments that are labeled by more than
one box produce multiple class clicks c. to specify the class. In the following, the
cost metrics costa, costp, costp are given in percent of the costs for labeling the
full data set without considering regions. An illustration of the click types is shown
in figure 3.6.

For the experiments, the Cityscapes [29] data set has been used. It contains images
of urban street scenes with 19 classes for the task of semantic segmentation. Fur-
thermore, the polygons and annotation clicks are given. The training set with 2,975
samples has been chosen as data pool P. For all model and experiment evaluations,
the validation set containing 500 samples has been used.

The two CNN models FCN8 [82] (with width multiplier 0.25 introduced in [118])
and Deeplabv3+ [19] with an Xception65 [23] backbone, (short: Deeplab) have
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been used. More details to both networks are given in section 2.3.1. Note, FCN8 is
the same architecture as FCN, but with fewer filters to reduce the training time.

Using all training data, also referred to as full set, yields to an accuracy of mloU =
60.50% on the validation data set with the FCN8 model and a mloU = 76.11% for
the Deeplab model. The images ares not resized, i.e., the original resolution of
height h = 1,024 and width w = 2,048 were taken. In each AL iteration, the CNN
model is trained from scratch. The training is stopped, if no improvement in terms
of validation mIoU is achieved over 10 consecutive epochs. All experiments started
from an initial data set of 50 samples. For experiments with MetaSeg-based queries
(MetaBox, MetaBox+), 30 additional samples were taken to train MetaSeg. In each
AL iteration, 6,400 boxes were queried with a width of b = 128, which corresponds
to 50 full images in terms of the number of pixels.

Each experiment was repeated three times. For each method, in the following the
average of the mIoU and the mean over the cost metrics (costa, costp, costp) of
each AL iteration are presented. All CNN trainings were performed on NVIDIA
Quadro P6000 GPUs. In total, the Deeplab model was trained 180 times, which
required approximately 8,000 GPU hours and the FCN8 model 290 times, which
required approximately 3,500 GPU hours. This amounts to 11,500 GPU hours in total.
On top of that, a few additional GPU hours were consumed for the inference, as well
as a moderate amount of CPU hours for the query process.

To train the CNN models with only parts of the images, the labels of the unlabeled
regions were set to ignore values. Both models (FCN8 and Deeplab) are initialized
with pre-trained weights of Imagenet [36]. For training the FCN8 model, the Adam
optimizer [71] was used with learning rate, alpha and beta set to 0.0001, 0.99, and
0.999, respectively. The batch size was 1; no data augmentation was used. For the
training of the Deeplab model, it was proceeded as in [19]: the decoder output
stride was set to 4, train crop size to 769 x 769, atrous rate to 6, 12, 18 and output
stride to 16. To consume less GPU memory resources, a batch size of 4 was used, and
the batch norm parameters were not fine-tuned. For the training in the AL iterations,
a polynomial decay learning rate policy was taken:

, (@)
77(1) = Mbase * (1 - jtot)p’

where (9 is the learning rate in step s) = i, 1545 = 0.001 the base learning rate,
p = 0.8 the learning power and s;,; = 150,000 the total number of steps. For training
with the full set the same learning rate policy with a base learning rate 7,45, = 0.003
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was used. Following these settings, an accuracy of mlIoU = 76.11% (mean of 5 runs)
is achieved. The original model achieves a mIoU of 78.79% (with batch size of 8).

As meta regression model, a gradient boosting was used with 100 estimators, max
depth 4 and learning rate 0.1, see section 2.4.1. MetaSeg was trained with the
predictions of 30 images. Tests have shown, this is sufficient to achieve results
ins terms of R? ~ 0.75 similar to those presented in [113]. Using more images
to incorporate into the training of MetaSeg would increase the initial costs of
annotation.

In what follows, the results of the MetaSeg-based methods MetaBox and MetaBox+,
the entropy-based methods EntropyBox and EntropyBox+ as well as the random
method RandomBox are compared. EntropyBox+ is a similar method as presented
in the best performing region-based active learning method in [84]. Note, this is a
similar re-implementation; the code for the original method is not available.

Comparison of MetaBox and EntropyBox. First, the methods that do not include
the cost estimation are compared. As can be seen in figure 3.7, MetaBox outperforms
EntropyBox in terms of annotation costs required to achieve 95% full set mIoU: for
the FCN8 model, MetaBox produces click costs of cost4 = 38.63% while EntropyBox
produces costs of cost4 = 44.60%. For analogous experiments with the Deeplab
model, MetaBox produces click costs of cost4 = 14.48% while EntropyBox produces
costs of cost 4 = 19.61%. Furthermore, for the Deeplab model both methods perform
better compared to RandomBox, which requires costs of cost 4 = 22.04%. However,
for the FCN8 model RandomBox produces the least click costs of cost4 = 34.54%.
Beyond the 95% (full set mIoU) frontier, all three methods perform very similar
on the FCN8 model. For the Deeplab model, RandomBox does not significantly
gain accuracy while MetaBox and EntropyBox achieve the full set mloU requiring
approximately the same costs of costa ~ 36.56%.

Figure 3.8 shows a visualization of prioritized regions for annotation. In general, high
entropy values are observed on the boundaries of predicted segments. Therefore,
EntropyBox queries boxes, which overlap with the contours of predicted segments.
Since MetaBox prioritizes regions with low predicted Io U values, queried boxes often
lie in the interior of predicted segments. Furthermore, EntropyBox produces higher
costs in each AL iteration compared to MetaBox and RandomBox. RandomBox
produces relatively small but very consistent costs per AL iteration.
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Results of the AL experiments for MetaBox, EntropyBox and RandomBox. Costs
are given in terms of cost metric cost4. The vertical lines indicate where
a corresponding method achieves 95% full set mIoU. Each method’s curve
represents the mean over three runs.

Comparison of query strategies based on MetaSeg and entropy. In the MetaSeg
priority map (top left), low estimated IoU values are colored red and high ones
green. Accordingly, in the entropy priority map (bottom left) low confidence is
colored red and high confidence is colored green. The (line-wise) corresponding
aggregations are given in the right-hand column. The higher the priority, the
darker the color.

Comparison of MetaBox+ and EntropyBox+. Incorporating the estimated number
of clicks improves both methods MetaBox and EntropyBox, see figure 3.9. For the
FCN8 model, EntropyBox+ still produces more clicks cost4 = 40.06% compared
to RandomBox. On the other hand, MetaBox+ requires the lowest costs with
costy = 32.01%. For the Deeplab model, EntropyBox+ and MetaBox+ produce
almost the same click costs (costy = 10.25% and cost4 = 10.47%, respectively)
for achieving 95% full set mIoU. By taking the estimated costs into account, the
produced costs per AL iteration are lower for both methods. Although, in comparison

3.4 Experiments and Results
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Results of the AL experiments for MetaBox+ and EntropyBox+. Costs are given
in terms of cost metric cost 4. The vertical lines indicate where a corresponding
method achieves 95% full set mloU. Each method’s curve represents the mean
over 3 runs.

with EntropyBox and MetaBox, the methods EntropyBox+ and MetaBox+ require
more AL iterations, both methods perform better in terms of required clicks to
achieve 95% full set mIoU. Due to the incorporation of cost estimation, both
EntropyBox+ and MetaBox+ query regions with lower costs and, as indicated by
the results, with more efficiency. Segmentation results based on using MetaBox+
are shown in figure 3.10.

In general, one can observe that the Deeplab model gains accuracy quicker than the
FCN8 model. This can be attributed to the fact that the FCN8 framework does not
incorporate any data augmentation [125], while the Deeplab framework uses state-
of-the-art data augmentation and provides a more elaborate network architecture,
cf. section 2.3.1.

Robustness and Variance. Considering figure 3.11, where the experiments for
each CNN model are shown in one plot, it can be observed that all methods show
a clear dependence on the CNN model. Note that EntropyBox+* and MetaBox+*
refer to methods that are equipped with the true costs from the Cityscapes data set.
Incorporating true instead of estimated clicks is elaborated in a paragraph in the
following. In the experiments with the FCN8 it can be observed that results show
only insignificant standard deviation over the different trainings, see figure 3.7 and
figure 3.9.

For the Deeplab model, the methods show a significant standard deviation over
trainings, especially the methods MetaBox, MetaBox+ and RandomBox, see fig-
ure 3.12. In the first AL iterations, RandomBox rapidly gains accuracy at low costs.
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Deeplab

b) Full set

¢) MetaBox+

d) RandomBox

Comparison of segmentation results for FCN8 (left) and Deeplab (right). The
ground truth is shown in a), results by using the full set for training in b). In c)
the results of the segmentation models by using MetaBox+ are shown, and in
d) the results for using RandomBox. In c) the segmentation models are used
that achieve 95% full set mIoU with an annotation effort of only 32.01% for
the FCN8 model and 10.47% for the Deeplab model. The segmentation results
for RandomBox are taken from models, producing the same annotation effort
as MetaBox+. Annotation effort is stated in terms of the click-based metric
cost 4.
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Summary of the results of the AL experiments with the FCN8 model (left)
and the Deeplab model (right). The costs are given in cost metric cost 4. The
vertical lines display where the 95% full set mIoU are achieved. MetaSeg-
based method’s have more initial costs due to the data M required for training
MetaSeg. Each method’s curve represents the mean over 3 runs.

However, in the range of 95% full set mlIoU it rather fluctuates and only slightly
gains accuracy. Beyond the 95% full set mIoU frontier, the methods MetaBox(+)
and EntropyBox(+) still improve at a decent pace. MetaBox+ and EntropyBox+
nearly achieve the full set mIoU with approximately the same costs.

Furthermore, when investigating the variation of results w.r.t. two different CNN
models, it can be observed that the discrepancy between the FCN8 and the Deeplab
model is roughly 8 percentage points (pp) smaller for MetaBox+ than for Entropy-
Box+. This shows that MetaBox+ tends to be more robust w.r.t. the choice of CNN
model.

Comparison of Cost Metrics. In the previous evaluation, only the cost metric cost g
is considered. A comparison of cost metrics for both CNN models is given in table 3.1.
Except for RandomBox, the required costs to achieve 95% full set mloU is up to 3
pp lower when considering costp instead of cost4. Considering the proportion of
labeled pixels costp makes the costs seem significantly lower. Noteworthily, for the
FCN8 model EntropyBox requires only costs of costp = 10.08% while RandomBox
does require costs of costp = 28.57%, which is roughly a factor of 3 higher. Com-
paring this with cost4 = 44.60% it becomes clear, that these 10% of the pixels in the
data set constitute to almost half of the actually required click work. This comparison
highlights the importance of cost measurement (definition of a cost metric) and that
the annotation of image regions requires different human annotation effort.
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Results of single AL experiments (consisting of 3 runs each) for each AL method
with the Deeplab model. Costs are given in terms of cost metric cost 4. In each
plot, the single runs are given as dotted lines, the mean (over costs and mloU)

as a solid line. The vertical lines show where each run achieves 95% full set
mloU.
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CNN Cost | RandomBox EntropyBox MetaBox

model | metric | + [ + | + | +
costy 34.54 44.60 | 40.06 | 19.82 | 38.63 | 32.01 | 26.61
FCN8 costp 35.76 40.74 | 37.55 | 18.87 | 35.58 | 30.85 | 25.74
costp 28.57 10.08 | 1345 | 10.08 | 12.77 | 1781 | 16.18
costa 22.04 19.61 | 10.25 | 10.95 | 14.48 | 10.47 | 16.21
Deeplab | costp 22.77 1792 | 9.85 | 10.60 | 13.56 | 10.43 | 15.85
costp 18.49 5.04 5.04 6.72 | 6.05 773 | 11.09

Annotation costs in % (row) produced by each method (column) to achieve 95%
full set mIoU. Cost metrics costa (equation (3.10)) and costp (equation (3.11))
are based on annotation clicks while cost metric costp (equation (3.12)) in-
dicates the amount of labeled pixels. The costs w.r.t. the cost metric of the
best performing methods are highlighted. The strategies EntropyBox+* and
MetaBox+* represent a hypothetical ‘optimum’ by knowing the true costs. Each
value was obtained as the mean over 3 runs.

Click Estimation. To evaluate the here presented cost estimation method (sec-
tion 3.3.2), this is compared to the provided clicks in the Cityscapes data set by
considering the latter as a ‘perfect’ cost estimation. That is, EntropyBox and MetaBox
are supplied with the true costs and these methods are termed EntropyBox+* and
MetaBox+*. A comparison of the different click estimations and the true clicks is
given in table 3.1 as well as in figure 3.11. For the FCN8 model, the experiments
show that knowing the true costs in most cases improves the results: EntropyBox+*
produces costs of costy4 = 19.82%. This is the half of the costs of EntropyBox+.
MetaBox+* produces costs of cost4 = 26.61, which is 6 pp fewer costs compared
to MetaBox+. For the Deeplab model, using true rather than estimated costs does
not lead to better results. However, in terms of cost metric cost 4, EntropyBox+*
produces 1 pp more costs than EntropyBox+. MetaBox+* produces even 6 pp more
costs than MetaBox+. Similarly, such an increase can also be seen w.r.t. the other
cost metrics costg and costp, see table 3.1.

In this chapter a novel AL method MetaBox+ was introduced, which is based on
the estimated segmentation quality, combined with a practical cost estimation. The
methods MetaBox and MetaBox+ were compared to entropy-based methods. Using
a combination of entropy and the presented cost estimation shows also remarkable
results. The experiments include in-depth studies for two different CNN models,
comparisons of cost metrics in terms of annotation click estimates, three different
query types (Random, Entropy, MetaSeg) as well as a study on the robustness. The
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new method MetaBox+ leads to robust reductions in annotation cost, resulting in
requiring 10-30% annotation costs for achieving 95% full set mIoU. The presented
experiments were conducted using a query function that minimizes the product of
two targets, i.e., minimizing the annotation effort and minimizing the estimated

segmentation quality for a given query region.

It is still an open question, whether a weighted sum of priorities instead of a product
(cf. equation (3.6)) or any other function for joining would lead to additional
improvements of the methods. Furthermore, it would be interesting to vary the
number of queried boxes per AL iteration, since each method produces different
annotation costs for a fixed number of box queries. Moreover, further priority maps
can be defined and incorporated.

Another approach to improve the method is to incorporate pseudo-labels, i.e., to
label regions of high estimated quality with the predictions of the CNN model. Some
experiments have been done on this idea: in each AL iteration, predicted segments
with a high predicted IoU > 0.90 were pseudo-labeled, i.e., the segments were
added to the ground truth. Furthermore, only object-like and rare classes have been
pseudo-labeled such as pedestrians, traffic signs or bicyclists. Apart from this, once
pseudo-labels have been set, those were fixed for the remaining AL iteration or in
each AL iteration the pseudo-labels were queried again, i.e., no pseudo-labels were
taken from the previous AL iteration. Both variants were tested, but in these initial
experiments, no significant accuracy gain was observed. One guess is that segments
with a high predicted IoU only reinforce the network in what it has already learned,
or that the predicted /oU values were not as high as the true ones. Nevertheless,
this semi-supervised approach is interesting but needs more investigation.

It was shown that MetaSeg and the prediction quality estimation is a valuable in-
gredient in region-based active learning. This motivates to do further studies as
motivated above. However, semantic segmentation is costly in terms of computa-
tional run time, especially in the study of active learning. Besides the here presented
use of MetaSeg, it was used in further applications [115, 13, 83]. Noteworthily, all
the works are related to image data. The question is, if these concepts can be applied
to other sensor data such as lidar? This requires a method similar to MetaSeg for
lidar data, which is presented in the next chapter and is named LidarMetaSeg.
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False Positive Detection and
Prediction Quality Estimation for
Point Cloud Segmentation

Semantic segmentation has become as standard method for scene understanding.
Much has happened in the field of lidar point cloud segmentation in recent years, and
the accuracy of new network architectures and models is continuously improving.
However, the literature lacks methods for uncertainty quantification and reliability
measures in this field. In applications of ADAS and AD, safety and reliable models are
just as important as their accuracy. In this chapter, a method for prediction quality
estimation and false positive detection of lidar point cloud semantic segmentation
is presented. The method is an extension and adaptation of the (image-based)
MetaSeg to lidar point cloud data.

In the field of AD, scene understanding is essential. One possible solution for the
semantic interpretation of scenes captured by multiple sensor modalities is lidar
point cloud segmentation [91, 30, 151, 146] (in the following lidar segmentation
for brevity) where each point of the point cloud is assigned to a class of a given set.
A segment is an area of points of the same class. Compared to camera images, a
lidar point cloud is relatively sparse, but provides accurate range information, cf.
figure 2.1. Furthermore, since the lidar sensor in general is rotating, 360 degrees of
the environment are considered. In recent years, the performance of lidar segmenta-
tion networks has increased enormously [108, 91, 30, 151, 146], but there are only
few works on uncertainty quantification [30]. To tackle this problem, in this chapter
a new post-processing tool, called LidarMetaSeg is introduced, which estimates
the segment-wise (i.e., per connected component of the predicted segmentation)
prediction quality in terms of segment-wise intersection over union [63] (IoU) of
the lidar segmentation model, see also figure 4.1. This provides not only uncertainty
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a) Classes b) Categories

Visualizations of LidarMetaSeg on classes (a) and categories (b). Each visual-
ization contains the ground truth (bottom left), the lidar segmentation (bottom
right), the lidar segmentation quality (top left) as the IoU of prediction and
ground truth and its estimation obtained by LidarMetaSeg (top right). The
higher the IoU, the better the prediction quality.

quantification per predicted segment, but also an online assessment of prediction
quality.

The method LidarMetaSeg works as follow: first, the point cloud and the cor-
responding softmax probabilities of the network are projected to a spherical 2D
image representation, which are then used to compute different types of dispersion
measures resulting in different dispersion heatmaps. To estimate uncertainty on
segment level, the dispersion measures are aggregated w.r.t. each predicted segment.
For each predicted segment, the /oU with the ground truth is computed, which is
called segment-wise IoU. Hence, the aggregated dispersion measures with additional
information from the point cloud input are used to create a set of handcrafted
features. The latter are used in post-processing manner as input for training a meta
classification model to detect false positive segments, i.e., classify between IoU equal
or greater than 0 and a meta regression model to estimate segment-wise IoU. Thus,
this yields not only point-wise uncertainty quantification, given by the dispersion
heatmaps, but also a false positive detection as well as a segmentation quality esti-
mation on segment level. The method is evaluated in an in-depth study in which
the performance of meta regression and meta classification is provided class-wise
and category-wise. Categories are groups or sets of pre-defined classes. For example,
the classes ‘person’ and ‘bicyclist’ belong to the category ‘human’. The difference
between predicted and ground truth segment classes and the corresponding segment
categories are shown figure 4.1. Class-wise evaluation is motivated by the fact that in
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real-world applications and from a safety point of view, reliability is more important
for some predicted classes than for others. Also, in some scenarios, it may be less
critical to incorrectly predict a class if it belongs to the same category. For example,
the classes ‘person’ and ‘cyclist’ belong to the same category ‘human’. A reasonable
assumption is that prediction quality estimation is easier for categories instead of
classes.

The contributions are summarized as follows:

* introducing a new method for segment-wise uncertainty quantification in the
lidar segmentation domain to detect false positive segments and to have a pre-
diction quality estimation per predicted segment, by adapting and extending
MetaSeg to point cloud data,

* numerical experiments on the SemanticKITTI data set [3] and nuScenes data
set [10] with three models, namely RangeNet++ [91], SalsaNext [30] and
Cylinder3D [151],

* presenting an in-depth evaluation of the metrics as well as studies of the meta
regression and meta classification performance class-wise and category-wise.

First, in this section an introduction into the topic was given. A review of related
work is given in section 4.2. Afterwards, in section 4.3, the new method for false
positive detection and prediction quality estimation is presented. Experiments and
results to evaluate the new method are given in section 4.4. This chapter concludes
with a discussion in section 4.5.

As already explained in section 2.3, state-of-the-art lidar segmentation models are
based on CNNs and can be grouped into two main approaches: projection-based
(2D) and non-projection-based (3D) networks, cf. [53]. Projection-based networks
like [145, 91, 30] use a spherical (2D) image representation of the point cloud.
The predicted semantic classes on the image are thereafter reinserted along the
spherical rays into the 3D point cloud. This may contain some post-processing steps,
like the k-nearest neighbor (KNN) approach, see [91]. Due to the representation
of point clouds as projected images, the networks employed for lidar segmentation
have architectures that often resemble image segmentation architectures. The non-
projection-based networks, e.g., [109, 134, 151], process the point cloud directly
in 3D space with or without different 3D representation approaches. For example,
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in [134], the network operates on the 3D point cloud without introducing an
additional representation while in [151] the authors perform a 3D cylinder partition.
A combination of a 2D and 3D representation of the point cloud is used in [146].
All current architectures, using a 2D or 3D representation or a combination of both,
provide the segmentation of the point cloud. Therefore, it is also possible to output
the probabilities, which is the only requirement for LidarMetaSeg.

Concerning uncertainty quantification in deep learning, Bayesian approaches like
Monte Carlo (MC) dropout [45] are commonly used, e.g., in image-based object
detection [101], image semantic segmentation [67] and also in lidar object detection
[41]. In object detection and instance segmentation, so-called scores containing
(un)certainty information are used, while this is not the case for semantic segmenta-
tion. The network SalsaNext [30] is for lidar segmentation and makes use of MC
dropout to output the model (epistemic) and observation (aleatoric) uncertainty.
For epistemic uncertainty, a sample is predicted n. € N (e.g., n. = 30) times and the
average of the variances is taken for every prediction of a point. Aleatoric uncertainty
is computed based on propagated noise though the network via assumed density
filtering, see [47].

The idea of meta classification and regression to detect false positives and to estimate
the segment-wise prediction quality was first introduced in the field of semantic
segmentation of images [113], called MetaSeg. MetaSeg is described in section 2.4.
The work presented in [116] goes in a similar direction, but for brain tumor segmen-
tation. MetaSeg was further extended in other directions, i.e., for controlled false
negative reduction [13], for time dynamic uncertainty estimates for video data [83],
for taking resolution-dependent uncertainties into account [115] and as part of an
active learning method, see chapter 3. Inspired by the possibility of representing the
point could as a 2D image, the method LidarMetaSeg is an extension and further de-
velopment of the original work. Therefore, MetaSeg [113] is the most related work
to the here presented approach LidarMetaSeg, which is together with SalsaNext [30]
the only work in the direction of uncertainty quantification in lidar segmentation.

With MC dropout, SalsaNext follows a Bayesian approach to quantifying the model
and the observation uncertainty. The uncertainty output is point-based and not
segment-based, as in the here presented approach. Also for MC dropout, the model
has to infer one point cloud multiple times. LidarMetaSeg requires only a single
network inference and estimates uncertainties by means of the network’s class
probabilities. In a 2D representation, these pixel-wise uncertainty estimates can be
viewed as uncertainty heatmaps. From those heatmaps, aggregated uncertainties
are computed for each predicted segment, therefore clearly going beyond the stage
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4.3.1

of pixel-wise uncertainty estimation. In contrast to MetaSeg for image segmentation,
LidarMetaSeg not only use the network’s output but also utilize information from
the point cloud input, such as the intensity and range features provided for each
point of the point cloud.

LidarMetaSeg is a post-processing method for lidar semantic segmentation for false
positive detection and to estimate the segment-wise prediction quality. It consists of
a meta classification and a meta regression model that for each predicted segment
classifies whether it has an JoU equal to or greater than 0 with the ground truth
and predicts the segment-wise /o U with the ground truth, respectively. The method
works as follows: in a pre-processing step, each sample, i.e., the point cloud data,
the corresponding network probabilities and the labels are projected to a spherical
2D image representation. In a next step and based on the projected data, dispersion
measures and other features are computed like it is done for image data in [113,
115, 13], see also section 2.4. Afterwards, the segments of a given semantic class are
identified and the pixel-wise values from the previous step on a segment level are
aggregated. In addition, the JoU of each predicted segment with the ground truth of
the same class is computed. This results in a structured data set, which consist of the
coefficients of the aggregated dispersion measures as well as additional features and
of the target variable — the JoU € |0, 1] for the task of meta regression or the binary
variable ToU = 0,> 0 (IoU = 0 as indicator for a false positive) for the task of meta
classification — for each segment. A classification and a regression model is fitted to
this data set. In the end, the results are re-projected from the image representation
to the point cloud.

A sample of input data for LidarMetaSeg is assumed to be given on point cloud level
and contains the following:

* point cloud p € R, p; = (xj,vj,2j,1;,7;) With z;,y;,2; € R Cartesian
coordinates, intensity i; € R, and range r; € Ry for j = 1,...,n with n the
number of points in the lidar point cloud,
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* ground truth or labels y, € C" with C = {1, ..., ¢} the set of ¢ given classes,

* probabilities ygmb = f(p) € [0, 1]™*7 of a lidar segmentation network f, given
as softmax probabilities,

* prediction ¥, = argrréax ygmb, yp €C™
ce

In order to have a spherical 2D image representation of the point cloud, the trans-
formations from equation (2.50) and equation (2.51) are applied, see section 2.3.1.
To get an image representation where each point correspond to one pixel and vice
versa, the number of channels, the angular resolution and the horizontal FOV of
the lidar sensor are needed. To this end, the height / is defined as the number of
channels and the width w as the quotient of the horizontal FOV ¢ and the angular
resolution ¢, i.e.,

w = Lﬁ-‘ , 4.1)

see section 2.3.1 and figure 2.2. Thus, the image representation — using the explicit
sensor information — has as many entries or pixels as the point cloud can have
maximum number of points. Unfortunately, there are still some technical reasons,
due to which it can happen that multiple points are projected to the same pixel, e.g.,
ego-motion compensation or overlapping channel angles. More details concerning
such projection errors can be found in [136]. With the projection proposed above
this happens rarely enough, so that this event is negligible.

The projected 2D representation is defined as:

* image representation of point cloud p
F = (F*,FY,F*,F F"), F € RW"5,

e ground truth or labels y € C***,
e probabilities §77°° € [0, 1]w*"x4,
* prediction § € C**".

Note, apart from the image representation F, this is the same notation as defined in
section 2.4.

The proposed image projection yields a sparse image representation. However, the
post-processing approach LidarMetaSeg is based on connected components of the
segmentation. In order to identify connected components (segments) of pixels in the
2D image resulting from the projection, these gaps are filled by setting any empty
entry z := (uj,v;) (entries without a corresponding point in the point cloud) to a
value of one of its nearest neighbors that received a value from the projection. An
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example of such a filled image representation is shown in figure 4.2 (left). In the
following, only filled image representations are considered. The information which
pixel received its value via projection and which one via fill-in is stored in a binary
mask of width w and height 4 denoted by § where 1 represents a projected point
and 0 a filled entry; i.e.,

1, z corresponds to a projected point,
5, = { p p1Oj % (4.2)

0, else.

For simplicity, the filled image representations F (that are input quantities for
the segmentation network) are referred as feature measures / feature measure
heatmaps.

The pixel-wise dispersion measures, i.e., for a pixel or entry on image representa-
tion z = (uj;,v;) are entropy E. (equation (2.74)), probability difference D, (equa-
tion (2.75)) and variation ratio V, (equation (2.76)).

Additionally, the feature measures coordinates, intensity and range at position z are
given by the image representation

thi7 te{x,y, 2,1} 4.3)

In summary, this yields to the set of dispersion and feature measure heatmaps

M ={E,D,V,F* FY F* F' F"}. (4.4)

The segment-wise aggregation follows section 2.4. In order to take the underlying
point cloud data into account, the point cloud segment size SP = |k|s for a predicted
segment k is added as metric. Furthermore, the JoU and adjusted IoU ,q; is restricted
to the original point cloud data and thus restricted by §:

e IoU: let K| be the set of all £’ € K that have non-trivial intersection with k
and whose class label equals the predicted class for &, then

. ’k‘ﬂK"g

_[OU(k) = m,

K'= |J ¥, (4.5)
K elx|p
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e) True ToU values f) Predicted IoU values
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a) Ground truth b) Segmentation [ | A
E

Visual examples from LidarMetaSeg. Ground truth (a) and segmentation (b)
are shown from the pre-possessing part: point cloud (top), the corresponding
sparse (center) and filled (bottom) image representations. Feature and dis-
persion measure heatmaps are visualized in c) and d), respectively. The true
and predicted segmentation quality in terms of segment-wise [oU values are
depicted in e) and f), respectively - in the bottom part for the image representa-
tion and in the top part the corresponding visualizations after the re-projection
to the point cloud. The prediction of the point cloud and the corresponding
prediction quality estimation is highlighted. Note, for a better visualization,
the colormap for predicted classes differs to the colormaps of the remaining
visualizations in this chapter.

c) Feature measures

d) Dispersion measures

¢ the adjusted /o U,q; does not count pixels in the ground truth segment that are

not contained in the predicted segments, but in other predicted segments of

the same class: let Q@ = {q € Kx:qNK'# (0}, then

In summary, 86 + 2¢ metrics are defined: the (relative) mean and variance met-

|kﬂK/’5

T RUE N\ Qs

(4.6)

rics 7M., 7 My, T Myg, TM, 7 M, Y7 € {p, v}, VM € M, the (relative) size metrics

S, Sin, Spd, S, Sin, SP as well as N, P. V¢ € C. An example of the pixel-wise disper-
sion measures as well as the segment-wise JoU ,q; values and its prediction is shown

in figure 4.2.
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For numerical experiments, two data sets have been used: SemanticKITTI [3] and
nuScenes [10]. For meta classification and regression, XGBoost is employed. Due
to the reason mentioned in section 2.4, the target variable for the meta regression
(and classification) is the adjusted JoU ,q;.

First, the settings of the experiments for both data sets are described. Next, the
results for the false positive detection and the segment-wise prediction quality
estimation when using all metrics presented in the previous section are evaluated.
Afterwards, an analysis of the metrics is conducted. Thereafter, a class-wise and
category-wise evaluation for the meta regression is presented. The section ends with
an analysis of the meta classification model.

The SemanticKITTI data set [3] contains street scenes from and around Karlsruhe,
Germany:. It provides 11 sequences with about 23 K samples for training and valida-
tion, consisting of 19 classes from 6 categories as follows:

» ground: road, parking, sidewalk, other-ground,

* structure: building,

vehicle: car, bicycle, motorcycle, truck, other-vehicle,
* nature: vegetation, trunk, terrain,

* human: person, bicyclist, motorcyclist,

object: fence, pole, traffic-sign.

The data is recorded with a Velodyne HDL-64E lidar sensor, which has 64 channels
and a (horizontal) angular resolution ¢ =0.08°. Furthermore, the data is recorded
and annotated with 10 Hz and each point cloud contains about 120K points. The
authors of the data set recommend using all sequences to train the lidar segmentation
model, except sequence 08, which should be used for validation.

For the experiments three pre-trained lidar segmentation models have been used, two
projection-based models, i.e., RangeNet++ [91] and SalsaNext [30], and one non-
projection-based model, i.e., Cylinder3D [151], which followed the recommended
data split. All three models are reviewed in section 2.3.1. For RangeNet++ and
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SalsaNext, the softmax probabilities are given for the 2D image representation
prediction. Since it assumed that softmax probabilities are given on point cloud level,
this representation is considered as the starting point and the softmax probabilities
are re-projected to the point cloud.

After the re-projection from the 2D image representation prediction to the point
cloud, both models have an additional kNN post-processing step to clean the point
cloud from undesired discretization and inference artifacts [91], which may results
in changing the semantic class of a few points. To take this post-processing step into
account, the values of the cleaned points in the corresponding softmax probabilities
of the point cloud are set to 1 and all other values to 0. Therefore, the softmax
condition (the sum of all probability values of a point is equal to 1 and all values are
between 0 and 1, cf. equation (2.5)) is met and the adjusted prediction is equal to
the argmax of the probabilities. Other approaches are not expected to significantly
change the results since the dispersion measures are aggregated and the number
of modified points is small. For Cylinder3D the probabilities and predictions are
directly provided on point cloud level. Pre-requird steps as for RangeNet+ + and
SalsaNext are not necessary.

Following the method from section 4.3, the image representation of the point cloud
data is of size (w, h) = (4,500, 64), cf. equation (4.1). Most deep learning models
tend to overfit. Therefore, only samples for LidarMetaSeg are used, which are
not part of the training data of the segmentation network, as overfitted models
affect the dispersion measures. Thus, only sequence 08 is used for the experiments.
Computing the connected components and metrics yields approx. 3.4 M segments
for each network. Most of the segments are very small. Therefore, a similar segment
exclusion rule as in MetaSeg [113] is done, where segments with empty interior,
Sin = 0, are excluded. Here, segments consisting of less than 10 lidar points, i.e.,
SP < 10, are excluded, also shown in gray color in figure 4.2. Hence, the number of
segments to approx. 0.45M is reduced but with retaining 99% of the data measured
in terms of the number of points. The dependence of the results under variation of
the exclusion size SP was tested. The results were very similar to the results which
will be presented in the following.

The performance of LidarMetaSeg on predicted categories is also evaluated. To this
end, for every predicted point, the probabilities corresponding to a given category
are summed up. Thus, the probabilities ygmb are in [0,1]"*?, ¢’ < ¢ with ¢ number
of categories. The ground truth is treated analogously. Excluding the predicted
segments with SP < 10 reduces the number of segments from approx. 2.9M to
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[ RangeNet++ SalsaNext | Cylinder3D
| training | validation training | validation I training [ validation
Classification JoUag; = 0,> 0

LMS 02.26%(0.25%) | 85.500%(£3.12%) || 92.43%(+£0.21%) | 86.26%(£2.75%) | 92.07%(+0.21%) | 88.37%(£2.80%)

LMS w/o features | 90.64%(£0.30%) | 85.10%(£3.21%) | 90.77%(£0.23%) | 86.02%(£2.86%) || 91.68%(£0.27%) | 88.22%(£2.93%)
S | Entropy 79.37%(£0.37%) | 79.21%(£3.17%) | 80.14%(+0.33%) | 80.06%(£2.75%) || 85.35%(£0.30%) | 85.24%(+2.78%)
= | LMS UMcDO 92.48%(+0.20%) |  86.26%(£2.78%)

LMS Categories | 95.88%(0.13%) | 89.84%(£2.42%) || 95.42%(£1.33%) | 89.52%(2.05%) | 96.04%(0.13%) | 91.76%(£1.94%)

naive baseline 78.42% (85.11%) 79.36% (82.34%) 84.53% (88.46%)
—Ms 97.19%(£0.12%) | 90.58%(E1.89%) || 97.22%(£0.10%) | 9L.16%(£1.75%) || 96.86%(0.10%) | 90.78%(£2.36%)
S | LMS w/o features | 95.97%(0.13%) | 89.85%(£1.96%) | 95.95%(+0.10%) | 90.81%(+1.80%) | 95.52%(+0.18%) | 90.57%(%2.46%)
£ | Entropy S1AB%(+0.22%) | 79.21%(+3.17%) || 80.74%(£0.31%) | 80.84%(£2.35%) | 83.52%(£0.34%) | 83.80%(+2.91%)
< | LMS U MCDO 97.25%(£0.09%) | 91.17%(+1.75%)

LMS Categories 98.971%(£0.05%) | 93.85%(+1.68%) || 98.79%(+0.01%) | 94.07%(+1.51%) || 98.66%(+0.01%) | 93.85%(+1.95%)

LMS 91.29%(£0.23%) | 73.47%(+2.52%) 90.98%(£0.25%) 74.35%(£2.69%) 86.09%(£0.31%) | 64.54%(+5.38%)
é.-‘? LMS w/o features 87.73%(£0.20%) 72.00%(£2.67%) 87.34%(£0.27%) 73.70%(£2.91%) 81.11%(£0.51%) | 64.29%(+5.38%)
é Entropy 49.16%(£0.59%) 48.48%(£5.75%) 48.16%(+0.61%) 48.24%(£5.99%) 47.25%(£0.48%) | 47.91%(+4.53%)
= | LMs uMcDO 91.04%(£0.04%) | 74.39%(2.62%)

LMS Categories | 95.58%(1.69%) | 78.28%(3.66%) || 95.02%(£0.19%) | 79.01%(£4.54%) || 91.10%(£0.34%) | 67.31%(%6.01%)

Regression JoU ,q;

LMS 79.34%(+0.19%) | 66.69%(+2.06%) 78.19%(+0.16%) 66.08%(£2.23%) 74.04%(+0.31%) | 61.57%(£2.94%)

LMS w/o features | 75.78%(£0.18%) | 64.91%(+1.87%) | 74.91%(+0.18%) | 65.31%(£2.21%) || 70.78%(+0.30%) | 61.51%(2.96%)
% | Entropy 51A5%(£0.37%) | 50.88%(£2.74%) || 48.54%(+0.57%) | 48.21%(£4.25%) | 50.90%(£0.45%) | 50.30%(%3.27%)

LMS U MCDO 78.26%(£0.14%) | 66.13%(+2.27%)

LMS Categories 83.83%(£0.17%) | 67.58%(£2.66%) || 81.99%(x£0.19%) | 68.65%(x£2.71%) || 77.29%(x£0.25%) | 62.89%(£2.64%)

Results for meta classification and regression, averaged over 10 runs for Se-
manticKITTI. The numbers in the brackets denote standard deviations of the
computed mean values. LMS Categories as well as the values in brackets of naive
baseline are the results using the categories. The best results in terms of ACC,
AUROC, AUPRC and R? on the validation data are highlighted, LMS Categories
are excluded in this consideration.

approx. 0.29 M, also retaining about 99% of the data points. In the following, and
unless highlighted, the evaluation is presented w.r.t. predicted classes.

For training and validation of LidarMetaSeg the connected components and metrics
from the predictions of sequence 08 are split into 10 disjoint sub-sequences. These
sub-sequences are used for a 10-fold cross validation. A cross validation over all
samples would yield highly correlated training and validation splits as all sequences
are recorded with 10 Hz. The results for the meta classification and regression are
given in table 4.1. For evaluation, the metrics from section 2.4.2 are used. For
meta classification and regression, XGBoost was used with 750 estimators, maximum
depth of 6 and learning rate 0.05. For all three models, a validation accuracy between
85.50% and 88.37% is achieved, see row ‘ACC LMS’ (short for LidarMetaSeg). The
accuracy of random guessing (‘ACC naive baseline’) is between 78.42% and 84.53%
which directly amounts to percentage of segments with an IoU,q; > 0.

For predicted categories, see ‘LMS Categories’ a validation accuracy between 89.52%
and 91.76% is achieved while the naive baseline is between 82.34% and 88.46%.
This observation already hints at a heterogeneity in class-wise performance which is
studied later in this section.

Using the metrics of the previous section (LMS) for the meta classification yields
AUROC values above 90% and AUPRC up to 74.35%. For predicted categories, the
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True IoU ,q4; vs predicted IoU ,q4; for RangeNet+ +, SalsaNext, Cylinder3D on
SemanticKITTI as well as Cylinder3D on nuScenes, from left to right.

AUROC and AUPRC values are up to 94.07% and 79.01%, respectively. For the
meta regression R? values between 61.57 — 66.69% are achieved and 62.89 — 68.65%
for predicted categories. Evaluating the results w.r.t. categories instead of classes
yields always higher values — up to 3 pp — in terms of ACC, AUROC and AUPRC
for meta classification and R? for meta classification, see columns ‘LMS Categories’.
Figure 4.3 depicts the quality of predicting the IoU,q;. A visualization of estimating
the JoU ,q; is shown in figure 4.1 and in the video!l.

The nuScenes data set [10] contains street scenes from two cities, Boston (US) and
Singapore. It provides 700 sequences for training and 150 sequences for validation.
Each sequence contains about 40 samples which amounts to a total of 34K key
frames. The dataset has 16 classes from 5 categories as follows:

* movable-object: barrier, traffic-cone,

* vehicle: bicycle, bus, car, construction-vehicle, motorcycle, trailer, truck,
* human: pedestrian,

* flat: drivable-surface, other-flat, sidewalk, terrain,

* static: manmade, vegetation.

The data is recorded and annotated with 2 Hz. The lidar sensor has 32 channels
and an angular resolution of 0.33°. Every point cloud contains roughly 35K points.
For the experiments the pre-trained Cylinder3D was used with the recommended
data split. RangeNet++ and SalsaNext were not tested since the corresponding
pre-trained models are not available.

https://youtu.be/907jISRgHUk
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Cylinder3D
training [ validation
Classification JoU,g; = 0,> 0

LMS 92.96%(+0.08%) | 91.00%(£0.60%)
© | LMS w/o features | 92.31%(£0.13%) | 90.62%(+1.16%)
< | Entropy 89.91%(+0.14%) | 89.86%(+1.17%)

LMS Categories 97.88%(£0.01%) | 95.48%(£0.09%)

naive baseline 89.85% (95.08%)
o | LMS 94.81%(£0.10%) | 90.05%(+1.11%)
S LMS w/o features 93.47%(£0.10%) 89.09%(+1.29%)
S | Entropy 82.83%(£0.18%) | 82.81%(£1.44%)
= | LMs Categories 99.16%(+0.01%) | 94.43%(+1.05%)
o | LMS 70.82%(%£0.54%) | 50.25%(+2.97%)
E:, LMS w/o features | 65.49%(+0.42%) 48 26%(+£3.31%)
EC Entropy 35.16%(£0.33%) | 35.29%(+£2.88%)

LMS Categories 89.15%(£5.97%) 48 16%(£6.54%)

Regression JoU,q;

LMS 57.93%(£0.37%) | 48.84%(+1.81%)
o | LMS w/o features | 54.73%(£0.19%) | 47.62%(£1.64%)
= | Entropy 30.51%(0.28%) | 30.33%(+2.57%)

LMS Categories 68.73%(£0.42%) | 50.19%(+3.91%)

Results for meta classification and regression, averaged over 10 runs for nuScenes.
The numbers in the brackets denote standard deviations of the computed mean
values. LMS Categories as well as the values in brackets of naive baseline are the
results using the categories. The best results in terms of ACC, AUROC, AUPRC
and R? on the validation data are highlighted, LMS Categories are excluded in
this consideration.

The image projection is of size (w,h) = (1,090, 32).

components for all samples of the 150 validation sequences yields approx. 1.5 M

Computing the connected

segments. Excluding all small segments containing less than 10 points, i.e., SP < 10,
reduces that number to 0.34 M. Still, this retains 99% of the data in terms of points.
For predicted categories, the same exclusion reduces the number of segments from
approx. 0.75M to approx. 0.11 M, also retaining about 99% of the data points. A
10-fold cross validation was performed where always 90% of the 150 sequences were
taken i.e., 135 sequences, for training and the remaining 10%, i.e., 15 sequences
for validation of the meta models. The results are presented in table 4.2. For meta
classification and regression a XGBoost was used with 200 estimators, maximum
depth of 6 and learning rate 0.1. 89.85% of all segments have an JoU,q; > 0. With
the meta classification, an accuracy of 91.00%, AUROC of 90.00% and AUPRC of
50.25% is achieved, see ‘LMS’ rows. For the meta regression, it is R? = 49.19% on
validation data. The quality of predicting the JoU ,q4; is shown in figure 4.3 (right).
Overall, the evaluation metrics are 2 — 4 pp higher for predicted categories compared
to predicted classes, see columns ‘LMS Categories’.

4.4

85



4.4.3

86

So far, results based on all metrics from section 4.3 have been presented, indicated by
LMS in table 4.1 and table 4.2. To analyze the effects of the metrics on performance,
the experiments were repeated for several sets of metrics.

Feature Measures. First tested were the performance of the meta classification and
regression model without the feature measures, i.e., the metrics based on the point
cloud input features, see row ‘LMS w/o features’. The performance in terms of ACC,
AUROC, AUPRC and R? for all experiments are up to 2 pp lower compared to
when incorporating feature measures.

Entropy. Since the entropy is commonly used in uncertainty quantification, all
experiments were tested with only using the mean entropy uF, see ‘Entropy’ rows.
The performance for the meta classification is up to 12 pp lower compared to LMS,
for the meta regression R? decreases by up to 18 pp. These results hint that using
multiple uncertainty measures significantly improve the performance in terms of
ACC and R?.

Bayesian Uncertainties. The projection-based model SalsaNext model follows a
Bayesian approach as already mentioned in section 4.1: the lidar model provides
a model (epistemic) and observation (aleatoric) uncertainty output for the point
cloud’s 2D image representation prediction, estimated by MC dropout (MCDO).
Following the procedure from [30] yields those uncertainties. This ends up in
epistemic epi, and aleatoric ale, uncertainty values for each pixel position z. The
same aggregated measures are computed as for the measures M € M. Adding
these new metrics to the previous metrics LMS is referred to as ‘LMS U MCDO'.
The additional uncertainties do not improve the meta classification and regression
performance significantly, see table 4.1. SalsaNext were not tested on nuScenes since
the pre-trained model is not available. For comparability of results, only publicly
available pre-trained models were used.

Greedy Heuristic. Inspired by forward-stepwise selection for linear regression, dif-
ferent subsets of metrics by performing a greedy heuristic are analyzed: starting
with an empty set of metrics and iteratively adding a single metric that maximally
improves the performance — ACC for the false positive detection and R? for the
prediction quality estimation. This greedy heuristic is performed for both, meta
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#metris ] 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 ] 11 [ 12 7] 138 14 ] 15 [[124
RangeNet++
ACC S1.13 | 82.56 | 83.35 | 83.69 | 83.96 | 84.22 | 84.40 | 84.62 | 84.78 | 84.91 | 85.01 | 85.09 | 85.09 | 85.18 | 85.25 || 85.50
Added wW | P | vFi | Pu | Pis | vFY | Pis | pFL | pF' | oFF | Ny Py | oF' | uDyg | Py all
R 56.74 | 58.20 | 59.01 | 59.87 | 60.72 | 61.57 | 62.07 | 62.69 | 63.24 | 63.70 | 64.06 | 64.43 | 64.72 | 64.91 | 65.15 || 66.69
= | Added w | Py | P | Py | Ps | Py |vF) | vF* | uF' | P3| Py | 0F* | uF" | Nig | SP all
E SalsaNext
g AcC 82.05 | 83.49 | 84.10 | 84.70 | 84.93 | 85.16 | 85.35 | 85.52 | 85.65 | 85.76 | 85.86 | 85.96 | 85.96 | 86.03 | 86.11 || 86.26
S | Added nv P Pys Py UF,;% Py3 uD vEF* N, Py HVJI Py Py '“Flfd vF* all
EIR 56.18 | 58.56 | 59.59 | 60.71 | 61.67 | 62.35 | 62.87 | 63.36 | 63.77 | 64.11 | 64.40 | 64.62 | 64.86 | 65.02 | 65.21 || 66.08
@ | Added uD | Py | Py | Pis | Pi3z | oF" | oF* | Py P Py Py | pVi | wFY | Ny | pV*? all
Cylinder3D
ACC 86.13 | 86.76 | 87.19 | 87.41 | 87.60 | 87.75 | 87.84 | 87.93 | 88.02 | 88.08 | 88.17 | 88.26 | 88.26 | 88.29 | 88.33 || 88.37
Added uD | Pis | oF" | Pz | Py | vD | Pz | Pgo | vF* | N; SP | pFl | Nis | Pu | pF all
R 53.10 | 54.54 | 55.71 | 56.76 | 57.64 | 58.36 | 58.90 | 59.31 | 59.68 | 60.03 | 60.32 | 60.66 | 60.95 | 61.12 | 61.33 || 61.57
Added Py | pEw | Pir Pis SP vF* | uF! Ps vFY Ny Pyo vD Pi3 Ps S all
#metris ] 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 ] 11 [ 12 ] 138 ] 14 ] 15 [[118
b5 Cylinder3D
§ | 4cT 90.06 | 90.27 | 90.44 | 90.53 | 90.61 | 90.67 | 90.73 | 90.8 | 90.85 | 90.87 | 90.89 | 90.91 | 90.91 [ 90.93 | 90.95 || 91.00
2 | Added uD | uV' | Py Pig | pFg | oF" | Pio Py wE | uV' | Nu | P | uFy | Py | vEy all
SR 40.88 | 43.25 | 44.27 | 45.14 | 45.79 | 46.32 | 46.80 | 47.16 | 47.4 | 47.62 | 47.79 | 48.02 | 48.1 | 48.24 | 48.33 || 48.84
Added 1Vha Pyg vF" Ps Pys nE" Py WF* MFIZi nFy | Nu Ny vF* Py Py all

Metric selection using a greedy method that in each step adds one metric that
maximizes the meta classification / regression performance in terms of ACC /
R? in %. All results, SemanticKITTI (top) and nuScenes (bottom) are calculated
on the data set’s metrics’ validation set.

—e— Rangenet++ SalsaNext =~ —+— Cylinder3D
0.891 0.651 —
0.87 1 W o
8 0.851 P
I a 0.59 1
0.831 0561 ¥
0.81 1 0.53
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

Number metrics

Performance of the meta classification (left) and the meta regression (right)
model on SemanticKITT depending on the number of metrics, which are selected
by the greedy approach.

classification and meta regression. The results in terms of ACC and R? are shown in
table 4.3 and figure 4.4 (for SemanticKITTI). For the meta classification, one can ob-
serve a comparatively big accuracy gain during adding the first five metrics, then the
accuracy increases rather moderately. For the meta regression, this performance gain
in terms of R? spreads wider across the first ten iterations, before the improvement
per iteration becomes moderate. Furthermore, the results show that a small subset
of metrics is sufficient for good meta models. Nearly the same performance can be
achieved for both tasks with 15 metrics selected by the greedy heuristic compared to
when using all metrics (LMS). Considering table 4.3, the mean variation ratio uV’
and the mean probability difference ;D in most cases constitute the initial choices.
Moreover, the mean probabilities P., ¢ € C, are also frequently subject to early
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incorporation. In addition to only using the mean entropy for meta classification
and regression as shown above, the results clearly show that using multiple metrics
increases the performance significantly.

In this section, an in-depth study of the performance of the method is presented.
The different numbers of ground truth instances and points per class affect the
performance of the segmentation model w.r.t. a given class [104]. Hence, a class-
wise and category-wise evaluation of meta regression performance is presented.
It will be shown that these performances of LidarMetaSeg are affected by this
imbalance as well.

Evaluations per class and category for the meta regression, i.e., the prediction quality
estimation, are given in table 4.4. Figure 4.5 a) visualizes the class-wise results
for the SalsaNext network and the SemanticKITTI data set. The figure consist of
R? values, the distribution over predicted segments and points per class and the
distribution. The figure shows a high correlation between the R? values and each of
both distributions. Figure 4.5 a) reveals that classes with higher number of predicted
segments and points have in general higher R? values, see e.g., ‘car’ or ‘road’. On
the other hand, predicted segments belonging to classes underrepresented in the
prediction, such as ‘bicycle’, ‘motorcycle’ or ‘person’ (most classes listed in the upper
part of the figure), have lower R? values. For the class ‘motorcyclist’ with the fewest
predicted segments and points, R? = 0 is obtained, i.e., a reliable prediction quality
estimation for this class is not possible. However, for the class ‘other-ground’, a
moderate number of predicted segments and points are available, but the R? is still
0. A closer look at table 4.4 shows that there exists a few predictions of the class
‘other-ground’. In comparison to other classes belonging to the same category, that
number of predictions is substantially lower. Indeed, ‘other-ground’ is difficult to
distinguish from the other classes in the same category. Also the model’s IoU, for
that class is only about 4% (not listed here), which is one of the lowest class-wise lo U
values for that network and data set. For its ground truth points, the model mostly
predicts in favor of other classes of the same category. Analogously to the class-wise
evaluation in figure 4.5 a), figure 4.5 b) depicts the category-wise evaluation, also
for SalsaNext and SemanticKITTI. The heterogeneity of the category-wise R? values
is lower compared to the class-wise R? values. All R? values are between 47.70%
(‘human’) and 69.73% (‘ground’), which correspond to a range of about 17 pp. Even
when excluding the class-wise R? values of 0, the range of the class-wise R? values
is about 48 pp. More precisely, the values are enveloped by 27.54% for ‘traffic-sign’
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Barplot of predicted classes (a) and categories (b) of R? values, number of
segments w.r.t. all segments and number of points w.r.t. all points. Values
for number of segments and points are given in %; the x-axes are scaled
logarithmically. The visualizations are from SalsaNext and SemanticKITTI.

and 75.75% for ‘road’. In the here presented experiments, higher category-wise
mean JoU values than class-wise mean [oU are observed. This hints that the classes
may potentially be confused with other classes of the same category, while the
confusion of classes across different categories is less likely. This is in accordance
with typical segmentation benchmarks or [90], and is also reflected in the meta
regression R? values. For example, for category ‘object’, it is R? = 63.92%, while the
mean over its classes yields R? = 39.41%, which is substantially lower. Figure 4.6
and figure 4.7 show the quality of predicting the class-wise and category-wise IoU ,q;
for SalsaNext and SemanticKITTI. Almost the same observations as discussed up to
now can be made for the models RangeNet+ + and Cylinder3D on SemanticKITTI,
see table 4.4. Also, the R? values for the classes ‘motorcyclist’ and ‘other-ground’
are 0. For RangeNet++ and class ‘truck’ the R? is equal to 0 as well. Similar
observations as discussed previously can be made for Cylinder3D and nuScenes. No
class-wise R? values of 0 are obtained. The class ‘bicycle’ has the lowest number
of predicted segments and points, but also the lowest R? value. In summary, the
results show a clear correlation between predicted class and category distributions
to the performance of the meta regression. Thus, higher class- and category-wise R?
values can be expected when more predicted segments and points of these classes or
categories are available.
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RangeNet+ + SalsaNext Cylinder3D

R? | % segments | % points R? | % segments | % points R? | % segments | % points
ground 66.89 11.09 34.09 || 69.82 11.84 34.38 | 57.97 12.11 34.33
road 72.03 5.07 19.55 75.75 5.23 19.42 66.85 5.55 19.49
parking 52.97 1.55 0.78 52.86 1.65 0.77 55.92 1.89 0.77
sidewalk 60.83 9.22 13.77 63.18 9.88 14.18 51.86 9.98 14.12
other-ground 0.00 0.32 0.04 0.00 0.32 0.05 0.00 0.25 0.01
structure 52.40 14.99 11.29 || 56.02 15.07 11.52 || 51.95 14.80 11.49
building 52.40 14.99 11.29 56.02 15.07 11.52 51.95 14.8 11.49
vehicle 69.73 17.20 7.31 || 66.87 17.18 7.38 || 64.10 18.29 7.33
car 68.54 10.60 6.98 69.32 10.50 6.91 58.53 10.03 6.68
bicycle 36.04 0.26 0.03 41.56 0.50 0.04 || 35.44 0.74 0.06
motorcycle 58.13 0.20 0.06 36.51 0.20 0.06 50.00 0.30 0.08
truck 0.00 0.13 0.10 32.94 0.12 0.11 44.34 0.16 0.10
other-vehicle | 53.27 0.43 0.17 || 46.44 0.50 0.26 || 43.04 0.96 0.43
nature 58.63 26.11 44.19 || 58.13 25.21 43.58 || 56.87 24.59 43.89
vegetation 60.64 21.28 30.31 58.82 20.24 30.87 || 64.00 19.79 30.95
trunk 54.99 8.30 1.06 41.06 7.45 1.16 || 30.44 7.43 1.05
terrain 50.81 11.75 12.69 50.10 11.74 11.43 || 45.99 13.74 11.73
human 64.76 1.22 0.14 || 47.70 1.40 0.16 || 53.54 1.95 0.17
person 59.27 0.53 0.08 46.20 0.57 0.10 || 48.76 0.85 0.11
bicyclist 42.38 0.32 0.06 40.94 0.34 0.06 46.53 0.35 0.07
motorcyclist 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00
object 63.94 18.03 2.97 || 63.92 18.49 2.99 || 61.88 19.07 2.85
fence 50.47 6.66 2.60 45.31 7.34 2.61 48.02 7.14 2.49
pole 55.13 5.49 0.34 45.38 5.31 0.35 33.85 4.95 0.32
traffic-sign 34.69 1.03 0.04 27.54 1.10 0.05 17.21 1.10 0.05

a) SemanticKITTI

Cylinder3D

R? | % segments | % points
movable-object 26.34 6.47 1.11
barrier 26.95 1.82 1.07
traffic-cone 15.22 0.64 0.05
vehicle 40.40 29.03 6.42
bicycle 12.70 0.12 0.01
bus 48.83 0.63 0.54
car 38.53 7.44 3.79
construction-vehicle | 36.52 0.37 0.09
motorcycle 40.25 0.21 0.05
trailer 42.35 0.70 0.24
truck 36.00 1.94 1.74
human 30.73 1.80 0.22
pedestrian 30.73 1.80 0.22
flat 53.15 21.33 56.98
drivable-surface 58.96 9.12 38.24
other-flat 47.61 2.26 1.26
sidewalk 38.97 13.25 8.33
terrain 37.15 13.76 9.34
static 56.77 37.86 35.27
manmade 48.12 27.82 20.90
vegetation 51.39 18.11 14.13

b) nuScenes

Results for class-wise and category-wise meta regression, averaged over 10 runs.
The categories are given in bold face. The corresponding classes of a category
are listed below. For every network, the R? values, the number of predicted
segments per class and category w.r.t. to all predicted segments and the number
of points per class and category w.r.t. to all predicted points are given. All values
are given in %.
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True IoU ,q4; vs predicted IoU ,4; for categories of SemanticKITTI and SalsaNext.
The marker size represents the predicted segment size.

The false positive detection is based on a meta classification model, which classifies
whether the predicted IoU,q; is equal or greater than 0. In order to demonstrate
the reliability of the classification model, it is shown that the confidences are well
calibrated. Confidence scores are called calibrated, if the confidence is representative
for the probability of correct classification, cf. [52].

The meta classification model estimates for each predicted segment k the probability
gf’;‘;f € [0,1] for being false positive, i.e., for ygr = 1 (and ygp = 0 else, ie.,
IoU > 0). The probabilities for all meta classified segments of the validation data

are grouped into M = 10 interval bins I,,, = (%=1, ™] B, is the set of indices of

M M
segments whose confidence falls into the interval I,,, = (%L, 22]. The accuracy of a
bin B, is the relative amount of true predictions, i.e.,
1
ACC(By,) = Bl kZB: Lige w=yipi) » 4.7)
€Bm

where gg, 1, € {0,1} is the predicted binary meta class label for & being a false
positive segment. Besides, the average confidence within bin B,, is the mean of its

probabilities
1 ~prob

- 5 X i (4.8)
M1 k€Bm

CONF(B,,)
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Reliability diagrams with MCE and ECE for the meta classification model:
RangeNet++, SalsaNext, Cylinder3D on SemanticKITTI as well as Cylinder3D
on nuScenes, from left to right. MCFE and ECE are given in %.

The closer the accuracy ACC(B,,) and the confidence CONF(B,,) are to each other,
the more probabilistically reliable is the corresponding classification model. This is
visualized in a so-called reliability diagram. For the evaluation of calibration, the
maximum calibration errors (MCE) is defined as

MCE = ?%ax }|ACC(Bm) — CONF(B,,)|. 4.9
mel,....m

It is the maximum absolute difference between the accuracy and the confidence over

all bins. The expected calibration errors (FCE) is

M
BCE=Y “BT:”"ACC(Bm) — CONF(B,,)|, (4.10)
m=1

where n is total number of segments.

The reliability diagrams and the M CF as well as the FCFE for all previously discussed
meta classification models are computed for segments with SP > 10 and shown in
figure 4.8. The smaller the gaps, i.e., the closer the outputs are to the diagonal, the
more reliable and well calibrated is the model. The MCFE and ECFE are between
5.26 — 10.68 and 0.62 — 1.63, respectively. For predicted categories, the values are
almost the same: for MCE, the deviation is in a range of =1 pp and for ECE in a
range of +0.1 pp. The results indicate well calibrated and reliable meta classification
models.
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In this chapter, the method MetaSeg was adapted and extended to lidar point cloud
segmentation. LidarMetaSeg is one of the first works of uncertainty quantification
in the field of lidar segmentation. It allows detecting false positive segments and
to estimate the prediction quality estimation. LidarMetaSeg is applicable to any
state-of-the-art lidar segmentation model. First, the point cloud data is projected
on image level. Then dispersion and features measures per pixel are aggregated
on predicted segment level and used to train a meta classification and regression
model. The performance of both meta tasks was presented. The evaluation has
shown that the use of more metrics always yields to the best results. This holds for
all considered evaluation metrics — ACC, AUROC, AUPRC and R?. The results
also show that adding epistemic and aleatoric uncertainties on top of the dispersion
measures based on the softmax probabilities improves neither meta classification nor
meta regression performance. Moreover, an in depth-study per class and category
of predicted segments was presented, which clearly showing a correlation between
meta regression performance and the predicted class and category distributions. In
future work, augmentation methods such as presented in [55] can be used, that
combines different point clouds or injects objects such as persons / pedestrians or
vehicles from the one point cloud into another one. Thus, more training data for
LidarMetaSeg can be generated, especially for underrepresented classes or categories,
in order to improve the performance of meta classification and meta regression.

The effectiveness of LidarMetaSeg was demonstrated on street scene scenarios, and
it can be assumed that this method can be adapted to other lidar segmentation tasks
and applications, e.g., indoor segmentation or panoptic segmentation.

As already mentioned, the (image-based) MetaSeg was used or extended in further
directions. Such usages or extensions of LidarMetaSeg into further directions are
also possible. With regard to the previous chapter 3, it would be interesting to
incorporate LidarMetaSeg into an active learning method for lidar point cloud
segmentation. The annotation of point clouds is even more complex than for images
[3, 10].
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HD Lane Map Creation based on
Trail Map Aggregation

In addition to the real-time perception of the environment, high definition (HD)
maps are playing an increasingly important role of ADAS and AD. HD maps provide
information about the road system and are referred to as backup solution when
the perception system is occluded or fails. In the context of AD, HD maps have
to exist for almost everywhere. This requires an automated process for creating
HD maps. This chapter presents a procedure to create HD maps of lanes based on
detected and tracked vehicles from perception sensor data as well as the own ego
vehicle, using multiple observations of the same location. This procedure — named
map aggregation — is fully automated, applicable for every environment and does
not require any prior map information. Moreover, further ideas how to extend the
map aggregation system are presented, aiming for the next ADAS map aggregation
system.

In automated driving (AD), HD maps play an important role. While the sensor
system, e.g., consisting of camera or radar, is responsible for the real-time perception
of the environment, HD maps provide information about the road system, the
geometry ahead and the functional meaning of driving lanes. For example, they
allow understanding that a certain lane is a dedicated bus lane. Thus, they define
where the vehicle is allowed to drive, where traffic signs are located and what is the
speed limit, for instance. Furthermore, HD maps are often referred to as a backup
solution when a sensor is occluded or fails.

Creating an HD map is a challenging task. Usually, map providers utilize multiple
surveillance vehicles equipped with high-cost sensors, e.g., high resolution camera
and lidar. Then they drive all roads in the relevant area to map and aggregate this
data in an offline process. Sometimes, even additional information is annotated
manually by a human labeler. Another issue arises due to the dynamic nature of
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Example of an HD lane map provided by the novel procedure. The number of
vehicle trajectories are visualized from yellow (low numbers) to red (high num-
bers). The lane centers with direction indicator of lane (center) segments are
shown in blue. Forks and merges are marked with blue circles. For visualization
purposes, the lane boundaries (black dashed) from ground truth are added.

the road environment, in which static HD maps are frequently outdated by road
geometry changes over time. It is also a challenging task to keep them up-to-date.

Creation or generation of HD maps can be done in multiple ways. They can be
annotated manually, which is in general very costly due to the human annotation
effort. Thus, this manual approach is not scalable, since HD maps for ADAS and AD
are needed almost everywhere and have to be kept up-to-date.

The procedure to create HD maps in this chapter is based on detected and tracked
vehicles, i.e., estimated trajectories of observed road users, called road users trails as
well as the driving path of the ego vehicle, called ego vehicles’ trails. The data of the
trails is obtained by multiple recordings, i.e., it assumed that locations are recorded
more than once. The procedure consists mainly of two steps: an aggregation part
wherein the trails are aggregated in a map representation and an extraction part
in which the lanes are extracted as lane centers. A visualization of the outcome of
the new method is shown in figure 5.1. The method presented in this chapter, is
developed for the following scenario: a whole fleet or production series vehicles
are equipped with a low-cost sensor system, e.g., radar that allows object detection.
Road user (vehicles) are detected by an object detection and tracking model. Real-
time object detection works with radar data [39, 33] and lidar data [75, 92, 141].
Furthermore, the detections are defined as bounding boxes and require little memory,
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which makes a remote transition possible. With an over-the-air (OTA) connection,
the trails, i.e., detected and tracked vehicles are sent to a cloud server in which
the data is collected. In this scenario, a single vehicle that is equipped with the
aforementioned system is able to detect multiple other road users, that enables
to derive lane information. By having a whole fleet of those vehicles, a bunch of
trails per lane are given and highly precise lanes can be provided. Furthermore, by
incorporating uncertainty quantification methods, this becomes even more reliable.
Then an algorithm such as the following presented HD map generation procedure is
executed to create HD maps. Through the OTA connection, the HD maps can then
be transmitted to the vehicles.

The contribution is summarized as follows:

* presenting a new procedure that post-processes ego-car’s GPS data together
with DL-based perception detection and tracking to aggregate this data in a
map format,

* introducing an extraction algorithm that is developed to extract the lane
centers from the aggregated data in a structured data format,

* an evaluation on real-world data on an own created data set and an analysis
of multiple factors that affect the procedure,

* an outlook presenting the steps towards a next generation map aggregation
system, including methods to improve and enrich the HD map data.

This chapter is organized as follows: after the given introduction in this section,
related work is reviewed in the next section, section 5.2. The procedure to create HD
maps is presented is section 5.3. Experiments and results are given in section 5.4.
This chapter concludes with a discussion in section 5.5, also including an outlook to
future work.

Some approaches of generating HD maps go back to using GPS signals from multiple
devices as kind of crowd sourcing data [11, 133]. For a map provider, this approach
is difficult with regard to data protection and the availability of this data. Further
information on whether the signal comes from a vehicle may be missing. Other
approaches train DL models on various sensor data to predict the road geometry
[59, 153]. In [59], a DL model is trained on lidar data, especially the intensity
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values are used to predict the road geometry in terms of lane boundaries as well as
forks and merges. The approach is demonstrated on highways. The approach in
[153] uses different partially processed sensor input data to infer the road geometry
in a graph representation. As input for the DL model, birds-eye-view images of
the lidar intensity values, RGB images and the semantic segmentation as well as
detected vehicles are used. The methods presented in [89, 88] use the trajectories
of detected and tracked road users for lane intersection estimation. The authors do
not use a DNN, they use probabilistic generative models, more precisely a two-stage
Markov chain Monte Carlo [21] sampling approach. This sampling approach is
used to estimate the coarse intersection parameters in terms of number of lanes
and arms of the intersection. Different intersection models are sampled from a
Markov chain. The authors of [89] extend their work in [88] by a non-linear least
square formulation to refine the results. They argue that the trajectories in terms of
detected and tracked vehicles can be based on camera, radar or lidar. Noteworthily,
the evaluation is mostly done on simulated data and the trajectories are purely based
on simulated vehicles. It is not only important to create HD maps but also keep them
up-to-date. Possible solutions for this are presented for instance in [105, 69].

The procedure to create HD maps in this chapter is based on trails of detected road
users as well as the ego vehicles trails. Data from multiple recordings of a location is
used, i.e., it is assumed that locations are recorded more than once. Here, the trails
from road users are detected and tracked vehicles from lidar point cloud data, but
any other sensor data could be provided, that yields 3D detections. Compared to
the other methods reviewed above, the method presented here is scalable, since not
only the driving paths as GPS signals are used as the approaches in [11, 133] do;
also other road users observed and detected via the perception sensors of the ego
vehicle are taken into account. Thus, a single ego vehicle can provide data about
multiple lanes and all that information can be aggregated to create the HD map. By
deriving the lanes from trails, a DL model for this is not required. Furthermore, HD
map ground truth data (for training a DL model) is not required as in [59, 153].
Moreover, in high traffic scenarios, the road properties such as lane markings are not
visible and the presented procedure benefits from the traffic participants in terms
of more trails. Besides that, on many roads there are no lane markings, or due to a
poor condition of the road, they are hardly visible or not at all. The related works
closest to the procedure in this chapter are the approaches [89] and [88] that make
use of generative modeling in order to estimate lane intersections. The HD map
generation procedure presented in this chapter uses trajectories of detected and
tracked road users as well. However, the procedure is based on map aggregation
and not on probabilistic generative models as in [89, 88]. Compared to their work,
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5.3.1

here multiple recordings are taken into account. Furthermore, also the driving path
of the ego vehicle is taken into account. Moreover, an in-depth study on real-world
data and not on simulated data is presented. The new approach is also suitable for
intersections, but also for other scenarios such as forks and merges on highways or
inner city roundabouts. The presented procedure is not restricted to any scenario or
environment and is designed to be used anywhere.

This section describes the procedure for HD lane map creation based on trail map
aggregation. First, 3D object detection and tracking is applied to sensor data.
The detections represented by cuboids are transformed into the global coordinate
system (GCS). The cuboids are then aggregated in a map representation. Next, an
extraction algorithm is applied to this aggregated data to get the lane information
in a structured data set, resulting in the final HD lane maps. In what follows, a
lane center line or for the sake of brevity lane center represents a lane between two
forks and merges (or the start and end of a lane) by its sequence of lane center
coordinates. The section between two coordinates in the sequence (not necessarily
equidistant for different coordinates) is given by a line segment, which is here called
lane (center) segment. Thus, the collection of all lane centers can be viewed as a
directed graph, where the lane segments are the edges and their connection points,
their start and end points as well forks and merges are the nodes, see figure 5.1. For
the procedure, it is assumed that the ego vehicle is equipped with a sensor system
e.g., camera, radar or lidar, that allows for performing 3D object detection and
tracking. Furthermore, the ego car’s location at the time of recording in terms of
GPS is required. In the following, the outlined steps of the procedure are described
in detail.

The trails of road users are based on tracked detections of vehicles. Therefore, the
availability of a 3D bounding box detection and a tracker is assumed, to identify the
road users over multiple frames. It is also assumed that the orientation of the cuboids
is given, i.e., having access to a prediction indicating which side of the bounding
box belongs to the front side of the corresponding vehicle. A tracker confidence and
a flag signaling whether the tracked vehicles are stationary or moving are required,
too.
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Example of a lidar point cloud (left) and lidar point cloud including detected
objects (right). The ego vehicle is located in the center (gray) and detected
vehicles are shown by cuboids (green).

Once other road users are detected, the position and orientation can be derived from
the GPS position of the ego vehicle and the calibration of the sensor system. For
example, if using a lidar sensor, which provides dense and spatial data with range
information, the cuboids from the local coordinate system can be transformed to the
global coordinate system. Figure 5.2 shows a point cloud and detected vehicles by

cuboids.
A track or trail t is defined as a trajectory of cuboids ¢;, j = 1,...,p, i.e,, t =
{c1,...,¢p}. Each trail ¢ is enriched with additional meta information:

* teons € [0,1] tracker confidence,
* t,. € R? the euclidean distance from the ego vehicle to every cuboid,

* tien € R the euclidean distance between the center points of the first and last
cuboid of a trail.

Cuboids and trails will be aggregated depending on their meta information, aiming
for aggregating less uncertain data. Own experiments have shown, that in long
range more objects are not detected, i.e., more false negatives occur. Besides that,
even if an object is detected in long range, the IoU with the ground truth is lower
compared to detected objects in near range. That means, the localization in long
range is less accurate. In addition, tracking of an object over multiple frames is
generally more reliable than tracking an object over a few frames because more
prior knowledge is included. For example, using a Kalman filter for tracking, a
longer track gets a better approximation of the covariance prediction P, for the
measurement accuracy, see section 2.3.2.

The ego vehicle’s trail is defined as well, which is provided by the localization and
the dimension of the vehicle.
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For the aggregation of a given location, a density map D € N;**" is defined and
supposed to accumulate the road users trails as well as the one of the ego vehicle in
terms of a density, projected from a birds-eye-view onto the 2D plane, cf. figure 5.3.
Each element of D corresponds to a region of 10 x 10 cm? in the GCS. Initially, all
values of D are 0. For every trail ¢ that covers the given location, it will proceed as
follows. For every cuboid c; of a trail ¢ of a road user in motion and depending on
thresholds for the meta information ¢.ons, tr, tien, defined as aggregation parameters,
the cuboids are projected into the density map and the values of D are incremented
that overlap with the cuboids. A value in D is incremented only once per trail. After
processing the cuboids of the first trail, a value in D can either be 0 or 1.

As already mentioned, the orientation of the cuboids is required. The orientation is
used to construct direction-dependent density maps, for the sake of brevity direction
density maps that are used in the sub-sequent extraction part and are vital for
the method. When constructing the graph representation, the consideration of the
density map D (and not the direction density maps) can lead to connecting lanes with
opposite driving direction once they cross each other. The orientation in GCS can be
represented by the yaw rate ¢ € [0,360] (deg). The orientation is discretized into
four classes and used to define four direction density maps D, € Nj"*",d = 1,...,4.
Iteratively all trails and cuboids w.r.t. to the orientation of the cuboids are mapped
to the corresponding direction density maps such that D, contains the cuboids with
¢ as follows:

D;: ¢ € [0,90) (north to east / top to right),

Dsy: ¢ € [90, 180) (east to south / bottom to right),

D3: ¢ € [180,270) (south to west / bottom to left),

Dy: ¢ € [270,360) (west to north / top to left).

For the later extraction part, each direction density map has an opposite one. Dy
and D3 are opposite to each other as well as D, and D,. Examples of (direction)
density maps are given in figure 5.3.

Cuboids and trails are aggregated only if their meta information are above or below
certain values, the aggregation parameters. For example, only the cuboids and trails
are aggregated that are close to the ego vehicle, i.e., ¢, < 50m, requiring a high
tracker confidence ¢.,,s > 0.75 and having a minimal length i.e., ¢, > 20 m. These
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a) Density map D b) Smoothed density map s(D) c) Smoothed direction density map s(Dg)

Density map visualizations from aggregation part. The density map D and the
corresponding smoothed density map s(D) are shown in a) and b), respectively.
In ¢) the four direction density maps s(Dg) are shown. Additionally, density
map s(D) is added in gray to all direction density maps s(D ) for a better
visualization.

particular aggregation parameters are termed as ‘conservative’. More details on
aggregation parameters and studies on them are given in section 5.4.

After mapping the trails of road users, also the cuboids of the ego vehicle’s trails
are mapped and aggregated to the (direction) density maps D and Dy, d=1...,4
without any meta information, but with double increment weight, since the own
trails are obviously more reliable than the detected road users’ trails.

The present procedure argues to generate reliable HD maps by having a high
number of observation, i.e., trails. As pre-processing of the extraction, the values
in Dy, d=1,...,4 are set to 0 where the values are not greater or equal to a given
minimal number of trails num; € N. This parameter is intended to avoid false
positive lanes or unwanted detections. For example, if a specific location is recorded
with moderate traffic ten times and in a specific area there is only one detection
out of ten recordings, then this might be a false positive. To this end, the minimal
number of trails num; ensures a certain number of detections in relation to the
recordings.

An additional pre-processing of the extraction is a smoothing of the density map
D and the direction density maps D,. This is done by applying a convolution with
stride s = 1, kernel size & = 20, fixed kernel weights of 1 and zero padding. The
(direction) density maps D, D, and the smoothed (direction) density maps s(D),
s(Dg) have the same dimensions. The smoothed density maps are more suitable for
the sub-sequent extraction of lane centers than the density maps. For example, if
having only the trail of one vehicle, then the corresponding values in the density
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Ilustration of candidates from whose values are to be chosen from actual
position w.r.t. to the direction d of the density map.

map D are equal to 1. In the smoothed density map s(D) the values would be
different: the values in the corresponding center of the trail are higher than the
values to the side of the trail. Thus, the center of the trail can be interpreted as a
collection of local maxima in affine sub-spaces orthogonal to the trail. Examples of
D and s(D) are given in figure 5.3. In what follows, only the smoothed maps will
be used. Therefore, the term ‘smoothed’ is omitted.

For the extraction of lane centers, first a pre-extraction algorithm on each direction
density map is employed, second a cutting process and third a connection step.

The pre-extraction as first part is an iterative process. For every direction density map
s(Dg), d=1,...,4 it is proceeded as follows: The highest value in s(D,) is picked
as starting point. From this position, the next highest value from the candidates in
the current direction is chosen, as depicted in figure 5.4.

For example, if density map D3 (south to west / bottom to left) is processed,
then the candidate with the highest value to left, bottom left or bottom is chosen.
Pre-extracting w.r.t. to the discretized orientation / direction d is called forward
extraction. After the forward extraction, a backward extraction is performed where
it is proceeded as in the forward process with the same starting point, but in the
opposite direction (not opposite density map!) of d, see figure 5.4. In the mentioned
example, the values to the top, top right and right from the actual position are
candidates to be checked. The forward and backward extraction stops if

1) the actual position is at the end of the map,

2) the next candidates’ values are 0 which means there is no trail information,
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Ilustrations of the first part of the extraction. Iteratively, the lane centers are
extracted from the direction density maps. Here, D) illustrates the forward
and @) the backward extraction. After extracting the first lane center of the
highlighted area (first illustration and zoom in second and third illustration), the
values around the extracted lane center are set to 0 as indicator for ‘processed’.
The method continues with the next lane center extraction by picking the
highest value on the updated map that lies in the highlighted region of the last
illustration.

3) the next highest candidate value is much smaller than the mean of the already
extracted values.

The idea of the last stopping condition 3) is to avoid lane mixing in case of parallel
lanes with same direction. After the pre-extraction of the first lane center, the values
close to the extracted values, i.e., in a radius corresponding to 2m are explicitly
set to 0 and it is continued with picking the highest value on the updated density
map s(Dg). This iterative process ends when all values in s(D,) are 0. Figure 5.5
illustrates the first iteration of the pre-extraction. Pending is the motivation of the
backward extraction. Without the backward extraction, it will often happen that the
next highest value on the updated density map is just behind (in terms of driving
direction) the last picked one from the previous iteration. This would yield more
iterations and short lane centers. The backward extraction avoids this and makes
the extraction in this chapter faster and yields better results.

After performing the previously defined steps, the following intermediate observation
can be made: due to the pre-extraction, where the values of the region around
extracted lane centers are set to 0, the start and end coordinates of extracted lane
centers are not connected to the start or end coordinates of adjacent lane centers, see
figure 5.6 (left). To overcome this, a cutting (second) and a connection (third) step
is applied. In the cutting part, the start and end coordinates of all unconnected lane
centers are checked if their values are within the region’s (e.g., radius corresponding
to 0.5m) highest values of their corresponding direction density map. If not, they
are cut off, see figure 5.6 (center). In order to have a directed graph representation,
adjacent lane centers have to be connected. In the connection part, the previously
described pre-extraction part is applied to every position of a lane center start or
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lustrations of the second and third part of the extraction. The results of the
pre-extraction is shown on the left side. The lane centers are not connected.
The centered illustration shows the outcome of the cutting part. The values of
the lane center start and end coordinates do not lie in the range of the neighbors
highest values. The last illustration on the right side shows the results of the
third, the connection part. The start or end coordinates of all three lane centers
in the highlighted region are the same and represent a fork and merge node in
a graph representation.

end coordinate that is unconnected. However, now it is operated on the density map
s(D) without distinguishing the direction of the density map. Furthermore and in
addition to the stopping conditions 1) — 3) above, the process stops if

4) in the very near range of the current position (e.g., radius corresponding to
0.5m) there is a plausible lane center.

A lane center in near range is plausible, if its direction is not the opposite direction
of the trail seeking a connection. The results of the connection part is shown in
figure 5.6 (right).

Finally, each lane center is given as a list with its coordinates, ordered w.r.t. to the
driving direction. Due to the above extraction method, the coordinates are connected
and may contain redundant coordinates for the lane center representation. In order
to reduce the complexity of the graph, redundant coordinates are removed with
a Ramer-Douglas-Peucker (RDP) algorithm [110, 38]. The remaining coordinates
for each lane center define the lane segments. The connection of lane segments as
well as forks and merges represent nodes and the lane segments represent edges
in a graph representation. The whole procedure for aggregation and extraction is
summarized in algorithm 4.
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Algorithm 4: Procedure for HD lane map generation

Input: Set of trails {t!,...,t7} with ¢! = {c; ..., ¢,} with meta information
onf> b len and aggregation parameters as well as num}, i =1,...,T

// Aggregation
1 Create (direction) density maps D and D,—; 4 depending on aggregation
parameters
2 Set all value in D, Dy < num; to 0
3 Get s(D), s(Dg=1,...4) by smoothing D, Dy

// Pre-extraction

4 ford=1,...,4do

5 while s(Dy;) # 0 do

6 Get max s(Dy) and corresponding position pos = argmax s(Dy )
7 while Stopping condition 1) — 3) is not met do

8 ‘ Forward extraction w.r.t. d starting at pos

9 end
10 while Stopping condition 1) — 3) is not met do

11 \ Backward extraction w.r.t. d starting at pos
12 end
13 Update s(Dy) by setting values around extracted coordinates to 0
14 end
15 end
// Cutting

16 for every unconnected lane center start coordinate do

17 Follow lane center forward and stop when the value of current position is
one of the highest in near range and delete coordinates up to the actual
position

18 end

19 for every unconnected lane center end coordinate do

20 Follow lane center backward and stop when the value of current position
is on of the highest in near range and delete coordinates up to the actual
position

21 end
// Connection
22 for every unconnected lane center end coordinate pos,

23 do

24 while Stopping condition 1) — 4) is not met do

25 ‘ Forward extraction w.r.t. d on s(D) starting at pos,
26 end

27 end

28 for every unconnected lane center start coordinate pos,

29 do

30 while Stopping condition 1) — 4) is not met do

31 ‘ Backward extraction w.r.t. d on s(D) starting at pos,
32 end

33 end

34 Apply RDP algorithm
Output: Lane centers
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5.4.1

For the experiments, an own data set was created. Public data sets such as Argoverse
[14], nuScenes [10], Lyft Level 5 [61] or Waymo Open Motion [131] provide HD
maps but do not provide multiple recordings per location as needed here. The own
created data set covers a region of 1 x 2.5km? in Wuppertal, Germany, including
urban and sub-urban environment as well as highway. Each street w.r.t. to driving
direction is recorded up to 5 times. The ego (recording) vehicle is equipped with a
Velodyne Alpha Prime lidar sensor and an Applanix, providing the dGPS information.
In order to evaluate the HD map generation procedure, an HD map covering the
region of the created data set is used as ground truth. The ground truth provides
information about the lane boundaries as well as the lane centers. In total, 18 km
of lanes are evaluated. The region of the data set is shown in figure 5.8 (bottom
right).

For object detection an ensemble of two networks has been used, namely PointPillars
[75] and Part-A? [123], see section 2.3.2. Both networks are trained on an internal,
proprietary data set. For tracking detected 3D bounding boxes a Kalman filter [70] is
used. The tracker confidence ., is defined as the mean of the underlying bounding
box confidence scores.

The experiments aim to answer the following questions.

a) How do different aggregation parameters affect the overall quality and quantity
of the lane center estimates?

b) What is the impact on the lane center quality and quantity when using only
the trails of the ego vehicle, only the trails of other road users and when using
both?

¢) How does the quality and quantity of the lane center estimates develop when
increasing the number of recordings?

For evaluation, the given task of lane center detection is considered from a classifica-
tion and a regression perspective. The estimated lane centers are adjusted, such that
the coordinates have a fixed euclidean distance of 1 m to each other, i.e., they are
equidistant. The same is done for the ground truth (gt) lane centers.
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For classification, an estimated lane center coordinate is considered correct and
counted as true positive (¢p) if it lies between the gt lane boundaries. Otherwise,
it is considered incorrect and counted as false positive (fp). The gt lane center
coordinates that do not match with estimated lane center coordinates between the
lane boundaries are false negatives (fn). Based on that, precision P is computed as
P= i ) (5.1)
- mi mo ’ .
(Zjl tp]d +Zj2 fpj2)

with m1 + mo number of estimated lane center coordinates and recall

m
Ejll tpjl
(25 oy, + 2200 fngy)

R = (5.2)

with m; +mgs number of gt lane center coordinates. Precision is a measure of quality
indicating how much of the estimates are correct. Recall is a measure of quantity
and implies the proportion of estimated (detected) lane centers.

Viewing the lane center estimation as a regression task, the mean absolute error
MAF and root mean squared error RMSE are computed as:

(5.3)

with m = my + mg where the error ¢; is the distance between an estimated lane
center coordinate to the gt lane center. Furthermore, the MAE rp and RMSE 7p is
defined only for correct estimated lane centers, i.e., for true positives coordinates:

1 &
MAE 1p = — > ej, RMSErp= (5.4)

J

In order to evaluate an experiment with n sets of parameters, the average precision
AP is used, see section 2.3.3.

In the following, the aggregation parameters are defined as:
* ‘conservative’: t.ons > 0.75, ¢, < 50m,
e ‘normal’: ¢.,,s > 0.50, ¢, < 100m,

* ‘aggressive’: toonr > 0.25, ¢, < 150m.
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In all experiments, it is ¢, > 20 m. With a lower value ., there would be more
false positives in the detection and tracking. A higher value does not lead to a
significant difference in the following presented results.

Aggregation Parameters. Figure 5.7 (top) shows the results using different pa-
rameters for aggregation ‘aggressive’, ‘normal’ and ‘conservative’ as well different
minimal number of trails num; € {1,2,5,10}. The numerical results are presented
in table 5.1.

Comparing the results in terms of precision and recall for ‘aggressive’, ‘normal’
and ‘conservative’ and for a given num,, the values are in the same range but
‘conservative’ has a little higher precision and a lower recall than ‘aggressive’, cf.
figure 5.7. The parameter num; has a higher impact on the results than the other
ones (tcons,tr). For example, when considering the ‘normal’ aggregations, the
precision and recall goes from 0.9280 and 0.8153 for num; = 1 to 0.9799 and 0.4087
for num; = 10, respectively. This is a difference of about 0.05 for precision and 0.40
for recall, which shows that the impact on recall is much higher than on precision.
However, the results show that with a minimal number of trails num; = 2, a precision
and recall of 0.9596 and 0.7703 is achieved, respectively. This indicates that the
procedure does not require a large number of trails.

Furthermore, it can be observed that the higher the precision, the lower are MAFE
and RMSE due to lower numbers of false positives. For correct detected lane
centers, MAE p is about 0.23 m and RMSE 7p is about 0.37 m. The errors in terms
of regression are mainly caused by parking areas or curves. In areas where vehicles
are parking to the side of a road, the vehicles tend to drive more to the inner of the
street. In curves, the vehicle tend to drive more to the inside as well, cf. figure 5.1.
Overall and evaluating all parameter sets, an average precision of AP = 0.8085 is
achieved.

Ego Vehicle vs. Road Users. The same experiments as in the previous paragraph
were repeated for only using the trails of the road users and only using the trails of
the ego vehicle. Since there are no defined parameters for the ego vehicle and weight
is double incremented, the plot of the ego vehicle in the aggregation, figure 5.7
shows only three precision-recall values (num; = 2,5,10) for the ego vehicle. It
was previously shown, that the impact of the thresholds to the tracker confidence
tcons and range t, are not as high as the minimal number of trails num,. Therefore,
the numerical results are only given for ‘normal’ aggregations, see table 5.2. The
results show that the ego vehicle achieves the best results in terms of precision
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Results of the HD lane map creation procedure. Top: results depending on using
only the trails of road users, only the ego vehicle’s trail and using both. Bottom:
results depending on the number of observations i.e., how often every road is
recorded. The lines represent an approximation of the results. The markers
in both plots show the parameters of aggregation: left arrow ‘conservative’,
circle ‘normal’, right arrow ‘aggressive’. The brighter the markers, the lower the
minimal of trails is assumed to be. The minimal number of trails num; is also
shown in the markers (only in top part). The average precision (AP) for each
experiment is given in brackets in the legends.
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[ Aggregation Parameters | num | Precision | Recall | MAE | RMSE | MAErp | RMSE1p |

> 0.95 1 0.9151 [ 0.8302 | 0.5494 | 1.6531 | 0.2295 0.3698
;”"i I50.m 2 0.9452 | 0.7814 | 0.4542 | 1.3892 | 0.2251 0.3657
‘; et 5 0.9651 | 0.6522 | 0.3758 | 1.1110 | 0.2249 0.3653

ggressive
10 0.9752 | 0.4329 | 0.3193 | 0.7962 | 0.2293 0.3656
> 050 1 0.9280 | 0.8153 | 0.4950 | 1.4947 | 0.2291 0.3675
f"i IOO.m 2 0.9496 | 0.7703 | 0.4482 | 1.3637 | 0.2253 0.3643
/anrmal, 5 0.9702 | 0.6072 | 0.3597 | 0.9872 | 0.2324 0.3696
10 0.9799 | 0.4087 | 0.2997 | 0.6599 | 0.2329 0.3698
1 0.9442 | 0.7721 | 0.4437 | 1.3233 | 0.2354 0.3737

tconf >0.75
b < 50m 2 0.9641 | 0.7162 | 0.3839 | 1.1066 | 0.2327 0.3697
‘conservative’ 5 0.9759 | 0.5279 | 0.3338 | 0.8022 | 0.2414 0.3818
10 0.9883 | 0.3264 | 0.2720 | 0.4774 | 0.2454 0.3768

Results depending on aggregation parameters. To compare the results when
using only the trails of the ego vehicle and only of the road users see column
‘normal’ in table 5.2.

| Aggregation Parameters | num; | Precision | Recall | MAE | RMSE | MAErp | RMSErp |

1 0.9763 | 0.6113 | 0.3243 | 0.8375 | 0.2450 0.3798

Ego Vehicle 2 0.9763 | 0.6113 | 0.3243 | 0.8375 | 0.2450 0.3798
‘normal’ 5 0.9854 | 0.4498 | 0.3060 | 0.5818 | 0.2615 0.3975
10 0.9994 | 0.1599 | 0.2742 | 0.3915 | 0.2733 0.3896

1 0.9280 | 0.7748 | 0.5300 | 1.5423 | 0.2508 0.3983

Road Users 2 0.9466 | 0.6478 | 0.4772 | 1.4051 | 0.2349 0.3829
‘normal’ 5 0.9550 | 0.3653 | 0.4188 | 1.2197 | 0.2170 0.3604
10 0.9715 | 0.1293 | 0.3065 | 0.7682 | 0.2122 0.3579

Results depending on using only the trails of the ego vehicle and only the trails
of road users.

0.9736 — 0.9994, but the recall achieves a maximum of 0.6113. This means, only
about 61% of all lanes are detected. The data sets consists of roads with up to three
lanes in each driving direction. During recordings, no care was taken to drive on
each lane at least once. Otherwise, i.e., having a recording and thus, having an ego
vehicle trail for every lane would yield a baseline to the procedure. The precision
for using the trails of the road users is up to 0.05 lower than the precision of ‘ego
vehicle’ but the maximum recall is 0.7721 and thus, about 0.16 higher, cf. table 5.1
and table 5.2. The average precision (over all aggregations) is AP = 0.6031 for the
ego vehicle and AP = 0.7525 for the road users. This clearly shows that the use of
road users leads to more lane detections and make the approach scalable. The best
results are still achieved in terms of average precision when using both: the ego
vehicle and the road users where the average precision is AP = 0.8085.

Number Recordings. The results for a varying number of recordings per location
are shown in figure 5.7 (bottom). In general, one can observe that the more
recordings are available, the better are the results in terms of precision and recall.
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Region of the created data set and visual examples of HD lane maps by the
new map aggregation procedure. Part ()—3) shows results of different param-
eters for aggregation for a roundabout: (I) ‘conservative’, 2) ‘normal’ and Q)
‘aggressive’. In part (4), a highway scenario is shown as the outcome of ‘normal’
parameters. Part (5) shows the corresponding area of figure 5.3, figure 5.5 and
figure 5.6.

The values for average precision are APy = 0.6542 < APy = 0.7497 < AP35 =
0.7732 < AP, = 0.7857 < AP5; = 0.8085 where the subscript represents the
number of recording. This shows also the improvements with increasing number
of recordings. While the increase from one to two recordings is high, this increase
saturates with the number of recordings and there are only minor improvements.

The experiments show a general trade-off between precision and recall, depending
on the parameters. If they are too conservative, this leads to a very high precision
but a low recall. If they are too aggressive, the results have a high recall but a little
lower precision. The ‘normal’ aggregation parameters are a good trade-off between
both. Visual results of different scenes are shown in figure 5.8.
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5.5

A novel approach of HD lane map generation based on trail map aggregation was
presented. A procedure was shown, consisting of an aggregation and extraction
method that is build on a 3D bounding box detection and tracking. The impact of
different aggregation parameters on the performance were studied, the impact of
number of recordings as well as only using the trails of the ego vehicle, only the
trails of road users and the combination of both. Real-world data was used for all
experiments. With a low number of recordings, 77% of all lanes can be detected
with a high precision of 0.95. The lane centers are on average accurate up to 23 cm.
Taking other road users into account makes the procedure scalable. On top of that,
the procedure is not restricted to any environment or street scenarios, which is a
clear advantage over related work. For future work, it is planned to add the lane
width and/or to determine the lane boundaries. In addition, specific environments
will be studied in more detail and the procedure will be compared with related work
in specific environments.

The procedure has shown promising results of automated HD map generation.
In order to make this procedure scalable and applicable in AD and ADAS, more
work has to be done. Companies like Mobileye which are also working on map
aggregation systems [93], have several teams working on this topic. Thus, the
presented procedure is a starting point of a future map aggregation system that is as
follows.

Map Aggregation System. In order to get trails in terms of detected and tracked
vehicles from almost everywhere in the world, it is assumed that production series
vehicles are equipped with low-cost perception and localization sensor systems.
Furthermore, these vehicles require an OTA connection to a cloud service of the map
aggregation provider. Low-cost perception and localization systems mean that for
the recognition of the surrounding cheap sensors such as radar or cameras are used
as well as a GPS for the localization. The here presented procedure was evaluated
with an expensive lidar and dGPS sensor. However, the procedure only requires a
localization and a 3D bounding box detection which can also be provided by GPS
and a radar and/or camera system, respectively. In such a future map aggregation
system, the tracks are sent OTA to the cloud service, in which the data is collected
and processed as described in this chapter. Besides the HD lane map generating,
the cloud service should also be able to provide an HD map update method or only
provide HD lane maps based on the actual data in order to continuously provide
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up-to-date map data. Furthermore, not only lanes can be provided but also more
map features such as sidewalks based on detected pedestrians. Moreover, the
HD map data can be enriched with additional meta information such as average
and standard deviation of the traffic, the velocity or acceleration. The procedure
presented in this chapter as well as these presented possibilities (future work) are
already incorporated into the filled patent application [27].

Classification of Points of Interest and Road Types. Another future work is to
enrich the HD map data with classified and detected points-of-interest (POI) such as
roundabouts or zebra crossing and classified road types such as highway, rural road
or city, both based on aggregated map data. Examples of road types are illustrated
in figure 5.9. The knowledge of POI or road types is used in ADAS such as intelligent
speed control. In this example, the information of a roundabout in a few hundred
meters w.r.t. to the actual location of the vehicle, provides the system the information
to decrease the velocity. A lot of use cases in which such information about ROI
or road types are useful and make AD safer are obvious. The idea of POI and road
type classification based on map aggregation is incorporated into the filled patent
application [28] and is as follows.

It is assumed that 3D object detection, e.g., with radar sensor can be employed to get
the trails of multiple classes such as vehicles (v) and pedestrians (p) in GCS using a
GPS. Then those trails are aggregated as described in the beginning of section 5.3.2
but per class ¢, i.e., D?, D?, with a lower grid resolution e.g., 2 x 2m? (instead of
10 x 10cm?) and in more than four direction density maps, e.g., ng = 8

d—1

d
g = *360,*360),dzl,...,nd,ce{v,p}.
nq nq

The direction density maps are normalized to [0, 1] w.r.t. the number of recordings.
Anolougysly, velocity maps V§ are created by taking the average velocity per grid
cell. An example for the aggregated data in terms of ratio and average velocity of
vehicles and pedestrians per cell are shown in figure 5.10. Stacking the data in
this particular example yields a 4 x 8 = 32 dimensional feature vector per cell. A
region of m x n cells is then represented as an aggregated feature map F € R™*"*32,
Based on that, the idea is to train a CNN that learns to predict the presence of these
POIs and the road types. Each cell can be classified or POIs and road types can be
detected.

The following examples motivate the assumption that this approach would work;
therefore see figure 5.9. For a rural road (b), one would only expect a single trail
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Four examples of road types. A highway (a) has generally at least two lanes in
each direction and no sidewalks. Rural roads (b) have mostly only one lane in
each direction, and sidewalks for pedestrians mostly do not exist. In urban roads

(c), (d) pedestrians and sidewalks are assumed to be present. Furthermore,

zebra crossings (POI) as depicted in d) can occur.

>
Lane Direction A > V| VX <X
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The highlighted region in green (center) represents a grid cell. The correspond-
ing aggregated features ratio and average velocity for vehicles and pedestrians
for eight discretized directions are shown right.

going in each direction. Also, the distance between both directions will be smaller
compared to a highway scenario (a). For a city road, additional movement patterns
for pedestrians will likely occur, see d) and figure 5.10. Moreover, the aggregated
velocity will provide a clear indicator. The average velocity on highways and rural
roads is generally significantly higher than in the city.

Lane Map Aggregation from Lane Markings and Trails. An other idea to improve
the lane estimates is to take detected lane markings into account and combine this

information with trails, see figure 5.11.

Trails are based on dynamic objects, i.e., moving vehicles. The higher the traffic is,
the more trails will be given. Lane markings are static objects which might be hard
to detect in high traffic. However, once lane markings are detected they define the
lane boundaries, what is actually missing in the HD lane map generation process.
Estimating lanes based on trails and lane markings is a promising approach to
improve the presented procedure. The following description focuses on two slightly
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different approaches. In the first one, a cross-check is focused, in which the lane
information coming from vehicles (trails) and lane markings is compared. This is
already claimed in the filled patent application [25]. The second approach deals
with a low-cost sensor system and proposes a method to get reliable lane information
from lane markings and trails in the GCS. The second approach is claimed in the
filled patent application [26].

In general, both ideas follow a similar procedure, see figure 5.11. Sensor data
is recorded with one or more recording vehicles. The sensor data should allow
performing lane marking detection e.g., with camera or lidar data and to perform
object detection — here vehicles — e.g., with camera, lidar or radar data. Furthermore,
a localization system is required. Based on the detected lane markings and vehicles
for both, tracking and aggregation is applied. This yields lane estimates from
lane markings and trails in GCS. In the next part, both estimates are fused and
cross-checked to output reliable lane estimates.

The main idea of [25] is the cross-check part to get drivable lanes. The lane marking-
based lanes indicate where lanes are according to the available information about
lane markings. Lane markings do not necessarily have to coincide with drivable
lanes. In many situations, lane markings could be visible, but the lane would still not
be drivable because there is an obstacle, a construction area, or a prohibition to use
the lane. The trail-based lanes give indication on where other road users have driven
and thereby a hint on which lane might actually be usable. However, the detection
of the lanes itself based on trails might not be as reliable. By combining the two
methods, one can receive the accurate position of lanes by lane markings together
with the information whether these lanes can actually be used. In addition, the lane
estimates can be overall made more robust by combining a lane marking detection
algorithm based on one sensor with a trail detection algorithm based on another
sensor with another working principle. For example, the lane marking detection
could be based on camera while the trail detection could be based on lidar. Those
sensors have different failure modes. When this is combined in the described system,
reliable lanes can be obtained in most circumstances.

The main idea of [26] is to create reliable lanes with a low-cost sensor system such
as camera for lane marking detection, radar for object detection and a normal GPS
for localization. Reliable lane estimates from low-cost sensors with potentially noisy
data include following physical checks. Physical checks for trails: jitter introduced
from the sub-optimal localization system can be filtered out when aggregating the
trails in the map. This is done by making reasonable physical assumptions about the
driving behavior of other vehicles, such as maximum accelerations, braking’s, yaw
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Diagram of getting reliable and drivable lanes from lane markings and trails
by aggregating detections of lane markings and vehicles. Both lane estimates
are cross-checked / fused to get reliable lanes.

rates and similar. Additionally, the trails of other vehicles coming out of the detection
algorithm can be first transformed into the GCS (using the simple localization info
available) and then tracked in this coordinate frame using a tracker. The use of the
tracker after the data is transformed in the global map coordinate system smooths
and reduces the introduced jitter. Physical checks for lane markings: again, jitter
is filtered out from the localization system when aggregating the lane markings in
GCS. Reasonable physical assumptions are made about the driving behavior of the
ego-vehicle (using information such as ego-vehicle velocity and yaw rate). This
allows to propagate the lane markings using a tracker to the expected next position
and thereby reduce the introduces jitter. Note that the above proposed tracking
is different from a simple tracking, as the physical constraints are applied on the
ensemble of trails, i.e., by aggregation, rather than individual trajectories. This is
different from just applying a tracker with an underlying physical model for each
tracked object. The same applies for the aggregation of lane markings, where again
physical sanity checks are applied on the ensemble of lane markings to aggregate, in
addition to any tracking of individual lane markers.
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Conclusion & Outlook

In this thesis, uncertainty quantification and its applications for multimodal semantic
segmentation have been presented. In particular, this includes uncertainty quantifi-
cation and its applications in terms of active learning for semantic segmentation of
images and uncertainty quantification for lidar point clouds as well the application
of uncertainty quantification for 3D object detection to create semantic HD maps.

First, a new region-based active learning method for image semantic segmentation
was presented. This new method queries image regions by means of priority maps
consisting of priority scores that are based on the prediction and probabilities of the
images. The first priority map and selection criterion is the segment-wise prediction
quality estimation of unlabeled inferred images to identify poorly predicted image
regions. By these means and compared to related work — which is commonly
based on uncertainty quantities such as entropy — the information about what
the segmentation model is estimated to predict correctly and especially what it
is estimated to predicted falsely is used. An other priority map consists of a cost
estimation. In general, the annotation effort to label data for semantic segmentation
of images is high, and it was shown that measuring the costs in terms of annotation
clicks is a reasonable approximation of true human annotation effort. To this end, a
practical cost estimation approach was introduced that is based on the borders of
the segmentation masks. In numerical experiments with two different segmentation
models, the new proposed AL method MetaBox+ were evaluated and compared
to baseline methods that are based on the entropy with and without a combined
cost estimation as well as randomly picking image regions for labeling. By applying
MetaBox+, 95% of the full set mIoU was achieved with annotation costs of only
32.01% for FCN8 and 10.47% for Deeplab. Combined to the baseline methods,
MetaBox+ showed the best results in terms of required costs to achieve 95% of the
full set mIoU.

In the second part of this thesis, a new method for uncertainty quantification on
predicted segment level for lidar point cloud segmentation was presented. In
particular, the new method called LidarMetaSeg detects false positive segments and
provides a segment-wise prediction quality estimation in terms of segment-wise
IoU. LidarMetaSeg is an adaptation and extension of MetaSeg to lidar point cloud
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segmentation. LidarMetaSeg first projects the point cloud data meaning the point
cloud itself, the ground truth, the prediction and the probabilities to a 2D image
representation. With some adjustments w.r.t. to the point cloud representation and
the enrichment of feature measures in addition to dispersion measures that are based
on input point cloud features, MetaSeg can be applied. In numerical experiments,
the performance of false positive detection and prediction quality estimation were
shown. To this end, three different networks and two data sets were used. For meta
classification and meta regression, values up to AUROC = 91.16% and R? = 66.13%
were achieved, respectively. Furthermore, a class-wise and category-wise evaluation
were presented that clearly show a correlation between predicted class and category
distributions and the meta regression performance.

The last presented method in this thesis is a procedure to create HD maps. The
underlying method does not process image or lidar point cloud segmentation as
the previous here presented methods. But it uses DL object detection and tracking
methods from lidar point cloud data in order to create HD maps, which can be
seen as a segmented fine-grained grid map. The procedure aggregates detected
and tracked road users as well as the driving path of the ego vehicle from multiple
recordings in a map representation. In order to reduce possible detection errors
in the aggregation, uncertainty measures were taken into account. Furthermore, a
high number of observation in terms of trails correlate with the true lane. Thus, by a
high number of trails, uncertainties are reduced. In the second part of the procedure
for generating HD maps, the lane centers are extracted from the aggregated data.
The resulting HD map contains lane centers. The procedure was evaluated on an
internal data set. In terms of a trade-off between precision and recall, 77% of all
lanes were detected with a precision of 95%. Several ideas how to improve and
enrich the map aggregation system were presented. However, these ideas have not
been tested yet, but promising results are expected here.

In conclusion, the respective results and findings of the presented methods of un-
certainty quantification and its applications motivate suggestions and ideas for
improvement and further development of the respective methods. A class-wise
(or category-wise) evaluation of MetaSeg similar to what were presented for Li-
darMetaSeg can be incorporated to the priority maps or will be helpful to the
outlined semi-supervised approach. In the mentioned semi-supervised approach,
it sounds reasonable to pseudo-label segments with a high predicted loU. This
requires not only a powerful meta regression model, but also a knowledge about the
class-wise performance.

Chapter 6



Apart from that, an active learning method for lidar point cloud segmentation is of
interest. The incorporation of the prediction quality estimation into the presented
AL method MetaBox+ has shown remarkable results. Therefore, incorporating the
estimated prediction quality estimation via LidarMetaSeg into an AL method for
lidar data is expected to yield promising results.

In the HD map generation, only object detection and tracking is used. In future
work, segmented lidar point clouds could be incorporated. Furthermore, in this
scenario, the aggregation of data can depend on the meta classification and regres-
sion information e.g., only segments with a predicted JoU over given threshold will
be aggregated. Aggregating reliable road segments (using LidarMetaSeg) provides
a prior knowledge about the streets and lanes. Object detection networks are not
trained on predicting the street, since it is not an obvious object. Moreover, the
segmented point clouds can be used to enrich the HD map with further classes
e.g., static classes like buildings or sidewalks. On the other hand, the provided
HD map data can be incorporated into detection and segmentation models. This
incorporation provides prior knowledge and might improve the accuracy.
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Throughout this thesis, scalars, parameters or variables representing a single value

are denoted by lower-case or upper-case letters e.g., a, A. Vectors or matrices

are given in bold face e.g., a, A. Unless otherwise indicated, the notation is as

follows.
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LidarMetaSeg
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10) horizontal field of view (lidar sensor)
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F feature measure heatmap
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HD map generation
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ToUyrue true IoU per predicted segment
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