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Abstract

Thermally driven flows - fluid flows which are driven by temperature fluctuations
- are abundant in nature and their dynamics, especially convection, plays an im-
portant role in several systems, including the atmosphere of the earth as well as
other planets, oceans, the mantle and even several industrial processes. The best
known and widely studied prototype thermal flow is the Rayleigh-Bénard convec-
tion. The precise nature of the correlation between the temperature and velocity
fields that drives such flows is a subject of active research and is crucial to the un-
derstanding of thermal flows of all stripes. In particular, the question of whether
when given a temperature field, the velocity field can be inferred and the methods
to do so is of crucial importance to numerical weather prediction. In this thesis,
multiple approaches to study this general theme are discussed. The method of data
assimilation, which is a technique of enhancement of a numerical model using ob-
servational measurements is used to assimilate sparse temperature measurements
of Rayleigh Bénard flows for varying degrees of turbulence. This proves suc-
cessful in reconstructing Rayleigh-Bénard convection upto a moderate level of
turbulence while for highly turbulent cases, tt is found that the temperature field
mainly sets the large-scale structure of the velocity field while the small-scale
fluctuations are independent of the local temperature field. Thermally forcing
particles in a flow system are considered to understand the small-scale as well as
large-scale effects of local thermal forcing on the velocity field, with the choice of
particle temperature completely left to the experimenter. The choice of a particle
temperature that depends on the dynamics of the particle, with upward moving
particles being hot and vice-versa, leads to either a quiscent, stable system, or a
self-sustaining convective system with a sharp transition between the two. The
system gives physical insight to the dynamics of convection and the non-trivial
relationship between temperature fields and the injection of heat. Finally, the pos-
sibility of alternate approaches to study and recreate the correlation between the
temperature and velocity fields via neural networks is discussed.
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Chapter 1

A Summary of the Doctoral Work

1.1 Outline
This thesis contains an account of the work conducted by the author, Lokahith
Narendra Agasthya, over the course of his doctoral work while jointly enrolled
at the University of Rome “Tor Vergata” (UTOV), the University of Wupper-
tal (BUW) and The Cyprus Institute (CyI) starting from November 1st 2018.
The work was jointly supervised by Prof. Luca Biferale, Prof. Matthias Ehrhardt
and Prof. Giannis Koutsou with crucial inputs from and collaboration with Prof.
Andreas Bartel, Prof. Federico Toschi and Dr. Patricio Clark Di Leoni. The
PhD was a part of the STIMULATE European Joint-doctorate program (http:
//www.stimulate-ejd.eu/) under the Marie Skłodowska-Curie Actions
program. All simulations were performed on the NEWTURB cluster at UTOV.
Unless otherwise specified, all figures in the thesis are created by the author and
data is based on the author’s own simulations.

The outline of the thesis is as follows. In the first chapter, a short summary
of the main topics studied during the completion of the thesis work is provided,
along with a brief description of the novel research conducted by the author. Other
activities conducted during the doctorate are also mentioned, including workshops
attended, conference presentations and research articles.

In the succeeding chapters, the topics are greatly expanded upon and explained
in detail, in the author’s own words and to the best of his understanding. The
novel investigation and research conducted is also described fully, with the re-
sults clearly specified along with the potential applications. The physical insights
gained and the outlook for future investigations is also detailed. Finally, a con-
cluding chapter is presented which brings together the various topics and ties them
together to present an overall picture of the research conducted as part of the thesis
work followed by a bibliography of the scientific literature consulted in preparing
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the thesis.

1.2 Fluids and Turbulence
Fluid dynamics is the study of the macroscopic behaviour of gases and liquids,
substances that flow. Most fluid flows are known to obey the Navier-Stokes equa-
tions, which for a fluid with fixed density ρ, having velocity field u(x, t), is given
by

∇ · u = 0, (1.1)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+ ν∇2u (1.2)

where p is the pressure of the fluid, and ν is the kinematic viscosity of the
fluid, a measure of the internal resistance of the fluid to motion. The equations are
subject to boundary conditions and initial conditions which determine the nature
and geometry of the fluid domain.

Turbulence is a widely occurring feature in fluid flows. A fluid flow is gen-
erally considered turbulent when it shows some characteristics including but not
limited to a high degree of chaoticity, large number of degrees of freedom, the
presence of features at all scales and the phenomenon of vortex formation and
break-up. Laminar flows are flows which lack turbulence and instead show regu-
lar flow patterns and highly predictable behaviour.

Turbulence is considered as one of the last unsolved problems of classical
physics, not only because there exist very known few analytical solutions for even
the simplest flows, but also because of the vast separation of scales, wherein turbu-
lent flows show features at all scales which play an important role in the dynamics,
thus making even numerical simulations of turbulence extremely expensive. The
much celebrated 1941 theory of turbulence by Andrey Kolmogorov (K41 theory)
is perhaps the most successful attempt at a universal description of the behaviour
of turbulent flows. However, even K41 suffers from drawbacks and has shown to
be invalid in experiments.

In Chapter 2, we start with a discussion on the Navier-Stokes equations and
the dissipation of energy by viscosity. Following this, we discuss the phenomenol-
ogy of Richardson to describe a turbulent flow, followed by a discussion of Kol-
mogorov’s 1941 theory of turbulence and his universal similarity laws. Here we
also introduce ways to characterise the small-scale structure of turbulence. Fi-
nally, we end with a short note on the difficulties of simulating turbulence and
why it remains an open problem. The notes are taken mainly from the textbook
by Davidson titled “Turbulence: An Introduction for Scientists and Engineers”
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(see reference [1]) and the textbook by Frisch title “Turbulence: The legacy of
A.N. Kolmogorov” (see reference [2]).

1.3 Thermal flows
The heating or cooling of a fluid causes the density of the fluid to vary and this
subjects the fluid to buoyancy forces. Such non-isothermal fluid systems are par-
ticularly interesting as it is perhaps the most widely found and studied case of the
transport of an active scalar in fluids which modify the underlying fluid flow in
which they are being transported. Such feedback is often highly non-linear and
complex leading to several phenomenon such as wind, convection, chaos, pattern
formation and fully developed turbulence in the underlying fluid.

Fluid flows driven by temperature variations, known as thermal flows, are stud-
ied in various forms, very often via idealised model systems. Thermally driven
flows are usually studied under the Boussinesq approximation [3], where the den-
sity fluctuations of the fluid are considered small enough that the fluid can still be
represented by the incompressible Navier-Stokes equation. For a fluid with den-
sity ρ0 at temperature T0, the density ρ at temperature T where |T − T0| is small
is given by

ρ(T ) = ρ0β(T0 − T ) (1.3)

where β is defined as the thermal expansion coefficient of the fluid at T0. β is
assumed constant for small variations in temperature. The full equations, known
as the Oberbeck-Boussinesq equations, are

∇ · u = 0, (1.4)
∂u

∂t
+ (u ·∇)u = −∇p

ρ0
+ ν∇2u− β(T − T0)g, (1.5)

∂T

∂t
+ u ·∇T = κ∇2T (1.6)

where g is the acceleration due to gravity and κ is the thermal diffusivity of
the fluid.

1.3.1 Rayleigh-Bénard Convection
A widely studied thermal fluid system is the Rayleigh-Bénard system where a
layer of fluid is kept between two plates maintained at a constant temperature,
with the bottom plate having a higher temperature than the top plate. For a small

6



(a) (b)

(c) (d)

Figure 1.1: Visualisations of the temperature field of four different
Rayleigh-Bénard Convection flows showing the transition from a purely
conductive state with Ra < Rac and u = 0 everywhere in (a) to a highly
turbulent state in (d) with Ra ∼ 108 with an abundance of fine-scale structures
and vortices. (b) visualises a flow with Ra ⪆ Rac which shows a convective,
laminar flow. (c) visualises a flow with Ra ∼ 106, which is well in the convective
regime with the first signs of smaller scale structure but still not turbulent. Shown
is the normalised temperature field with maximum of 1 (red) and minimum of
−1 (blue).
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difference in temperature ∆T between the two plates, the fluid remains at rest. On
increasing ∆T beyond a threshold value however, the fluid is set into motion, first
in the form of convective rolls with two, four or more convective rolls, and even-
tually, to more and more chaotic forms until it reaches a state of fully developed
turbulence.

This phenomenon was first observed by Bénard in his experiments of 1900
[4]. Lord Rayleigh in his foundational paper [5] was the first to provide a theoret-
ical understanding of the instability and showed that the non-dimensional number
deciding the stability is the Rayleigh number Ra given by

Ra =
gβ∆T

νκ
L3
z (1.7)

where ∆T = Td−Tu is the temperature difference maintained between the top and
bottom walls and Lz is the vertical height of the domain. The Rayleigh-Bénard
instability occurs when for a flow, Ra > Rac where Rac is the critical Rayleigh
number with a theoretical value of Rac = 1708 [6].

An important response parameter of the Rayleigh-Bénard convective system
is the widely studied Nusselt number Nu given by

Nu(z) =
⟨vT − κ∂zT ⟩A,t

κ∆T
Lz

, (1.8)

where ⟨·⟩A,t indicates the time and spatial averages at a given height z and v is the
vertical component of the velocity. In Chapter 3, we introduce again and discuss
the advection-diffusion equation and the heat equations in the Boussinesq approx-
imation. Following this, we introduce in full detail the Rayleigh-Bénard system,
the onset of convection on increasing Ra and the transition to turbulence, along
with the various flow features observed. We also state the known exact relations
which establish the fundamental importance of the Nusselt number in studying
the dynamics of the system and explore in more detail the form of the instability
caused by the inverted temperature configuration. The notes are taken mainly from
the textbook on Hydrodynamic and Hydromagnetic Stability by Chandrashekhar,
the textbook on the same subject by P.G. Drazin and lastly, the monograph on
Rayleigh-Bénard Convection by Emily S.C. Ching. (see References [6, 7, 8] re-
spectively).

1.4 Lattice-Boltzmann Method
The Lattice-Boltzmann method is a mesoscale method to solve for the equa-
tions of fluid dynamics. The method is simple, easy to implement even for non-
trivial geometries and highly parallelisable, leading to its recent popularity. In
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(a) D2Q9 scheme

(b) D3Q19 scheme

Figure 1.2: Lattice vectors for the D2Q9 and D3Q19 Lattice Boltzmann
schemes. Image taken from [9] with permission of the author.

the Lattice Boltzmann method, the fluid flow is idealised as a set of populations
fi, i = 0, 1, . . . k defined at each grid point with associated Lattice vectors ci

fi(x+ ci∆t, t+∆t) = fi(x, t) +
fi(x, t)− f eq(x, t)

τf
∆t, (1.9)

where the second term on the right is the BGK collision operator with f eq

being an equilibrium population distribution and τf is a relaxation time that is
set by the viscosity of the fluid. There exist various schemes with varying lattice
vectors ci and number of lattice vectors k for solving different kinds of fluid prob-
lems. They are generally referred to by DnQk, where n is the number of spatial
dimensions and k is the number of Lattice vectors. For 2D and 3D fluid flows
respectively, D2Q9 and D3Q27 are among the most widely used schemes. The
fluid hydrodynamic quantities at each point in space and time are obtained from
the various moments of the populations as

ρ =
X

i

fi; (1.10)

u =
1

ρ

X

i

fici; (1.11)

The specific details of setting the equilibrium population and obtaining the
hydrodynamic quantities depend on the choice of Lattice-Boltzmann scheme and
other considerations such as the presence of a bulk-forcing.

In Chapter 4, the basic theoretical details underlying the Lattice Boltzmann
equation as well as the method of discretising it in space and time is discussed.
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(a) Reference Flow (b) Nudging Field (c) Reconstructed Flow

Figure 1.3: A schematic overview of nudging applied to the temperature field of
Rayleigh-Bénard convection. The reference flow is a Rayleigh-Bénard
convection system, from which are extracted point-wise data from temperature
probes placed on a regular array. These point-wise data are then expanded to
cover a small finite square to construct the nudging field Tn. Tn is only defined in
the immediate vicinity of the probes. Using Tn, a new reconstructed system is
nudged according to equation (??) to give a reconstructed flow.

The modification of the Lattice Boltzmann equation to incorporate body forces
is also described. Further, the use of a second set of populations to simulate
the diffusion of a scalar by the fluid is also detailed, including the addition of
a scalar source-term and the handling of scalar boundary conditions. Finally, the
specific advantages of the Lattice Boltzmann algorithm and the high degree of
parallelisability are discussed, along with a few drawbacks. The foundational
textbook by Krüger et. al. [10] is the main reference for this chapter.

1.5 Nudging applied to the Rayleigh-Bénard Con-
vection

1.5.1 Data Assimilation and Nudging
Data Assimilation is a family of techniques to combine computational models
along with observational data to produce an optimal analysis, that is, a prediction
for the state of a complex system whose equations are known [11]. The main idea
is to leverage as much available knowledge of the system as possible. Given ac-
curate observational data and realistic numerical models, the use of both together
should provide a superior estimate compared to the use of either method individu-
ally. Data Assimilation techniques are widely used in the study of the atmosphere
and weather modelling. (see [12] and references within).

While there exist several known methods of data assimilation, in this study we
use the simple technique of nudging [13, 14], where a nudging term proportional
to the difference between the observational data and the obtained dynamical model
output is added to the evolution equation.

10



1.5.2 Nudging the temperature field of Rayleigh-Bénard Con-
vection

As introduced above, nudging is a data assimilation technique to incorporate ob-
servational data into numerical models. In this thesis, I describe a study to assess
the technique of nudging applied solely to the temperature field of the Rayleigh-
Bénard convection, ie., assuming availability of data on the temperature field only.
The study was conducted at the University of Rome “Tor Vergata” in collabora-
tion with Dr. Patricio Clark Di Leoni (currently at Universidad de Buenos Aires,
Argentina) and Prof. Luca Biferale. Details of the study have been published
under the title “Reconstructing Rayleigh-Bénard flows out of temperature-only
measurements using nudging” [15].

Understanding the reconstruction of the velocity field from the temperature
field serves to lend deeper physical insight into the role played by the temperature
field in setting the dynamics of the Rayleigh-Bénard convection. Does the tem-
perature field alone determine the velocity field at every point? Or does it only set
some statistical quantities of the velocity field, the velocity field at a certain scale?
These are fundamental questions that are answered in this study.

It is assumed that sparse spatial measurements of the temperature field at fixed
intervals of time are available. These temperature measurements are interpolated
and modified according to a given protocol to construct a temperature Tn, or the
nudging temperature field.

In Chapter 5, we start by defining data assimilation more precisely and provid-
ing a brief overview of the basic terminology and equations of data assimilation.
The nudging method is described in more detail, placing it in the context of a
wider family of data assimilation techniques. The notes are taken mainly from
the book “Data Assimilation - Making sense of Observations” edited by Lahoz
et. al (Reference [16]) and the ECMWF lecture notes by Bouttier and Courtier
(Reference [17]).

Following this brief introduction, the study applying nudging to the Rayleigh-
Bénard convection is presented in complete detail in Chapter 5 with the specific
results regarding the spatial as well as scale-by-scale reconstruction of the tem-
perature and velocity fields, along with discussion on the accuracy of the method
with varying Rayleigh number. The chapter is concluded with a discussion on the
main findings of the study, the physical insight provided by it and lastly, ways to
improve or build upon the study for future work is suggested.
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Figure 1.4: An overview of the study with virtual non-isothermal particles
reported in this thesis. Upward moving particles with positive velocity are set to
a positive temperature T+ while downward moving particles are set to a negative
temperature −T+. The top and bottom walls of the 2D domain are adiabatic
while the lateral walls are periodic. The heat injection into the fluid is directly
proportional to the temperature difference between the particle and the fluid and
also proportional to the coupling strength αi which has a value α0 at the particle
location and falls off as a Gaussian with increasing distance |r − ri| from the
particles.
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1.6 Particles in Turbulence
Turbulence, as we have already seen, is a multi-scale, chaotic problem that is ex-
tremely hard to parametrize and requiring extensive computational resources to
solve. When the fluid acts as a carrier for particles suspended in the fluid, it leads
to several interesting phenomenon. The most significant of these is preferential
concentration, or the tendency of heavy particles suspended in a turbulent fluid
flow to exclusively sample the regions of the flow characterised by low vorticity
or the stretching regions [18, 19]. Preferential concentration occurs due to the
ejection of particles from vortical regions. Particle collisions are also enhanced
due to preferential concentration and ejection from vortices, which plays an im-
portant role in initiation of warm rain in clouds [20] and in the formation of planets
[21].

Particles with a temperature different from the local fluid temperature induce
temperature fluctuations in the fluids. These interactions are highly non-linear
and show complex dynamics [22]. In this thesis, we consider a 2D fluid domain
with adiabatic top and bottom walls and periodic lateral boundaries. In this fluid,
thermally interacting particles are introduced that absorb or release heat in their
immediate vicinity. The particles are idealised to have infinite heat capacity and a
temperature that depends on their vertical motion. An overview of this system is
shown in Figure 1.4. The system thus initialised shows several interesting charac-
teristics, with a sharp transition from a quiescent, stable flow to turbulent thermal
convection.

In Chapter 6, an introduction and overview of the dynamics of particles in
turbulent flows is provided. Following this, the study on thermally interacting
particles introduced above is described in detail, including the results regarding
the stationary end-state, the characteristics of the flows and its dependence on
various input parameters. The study was conducted at the University of Rome
“Tor Vergata”, Italy (UTOV) and the Bergische Universität Wuppertal, Germany
(BUW) in collaboration with Prof. Luca Biferale (UTOV), Prof. Andreas Bartel,
Prof. Matthias Ehrhardt and Prof. Federico Toschi (Eindhoven University of Tech-
nology) and the results are in an as yet unpublished manuscript titled “Lagrangian
instabilities in turbulent convection with stable temperature profiles” which is to
be submitted to a peer-reviewed scientific journal soon.

1.7 Physics-Informed Neural Networks
Neural networks, inspired by biological neurons, are a system consisting of nodes,
weights and biases along with activation functions and other components [23].
Neural networks are used to train systems using training data and the training is
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tested on validation data. Neural networks are a function that takes as input, the
independent variables of the system and produce as output the dependent variables
while the training fine-tunes the function by adjusting the weights and biiases.
Neural networks have emerged as a field of active research in the past decade and
are being used to replace several traditional computational methods [24].

Physics-Informed Neural Networks (Or PINNs) have recently been introduced
[25] as a data-driven method to solve partial differential equations such as the
Navier-Stokes equations using neural networks. The method has even proved
successful [26] in reconstructing flows where information on one or more state-
variables is completely absent, such as reconstructing the velocity and pressure
of a thermal flow given only temperature data. In PINNs, in addition to the use
of training data to train a system, the system is also constrained to be consistent
with the model equations of the system as an additional input. In Chapter 7,
an introduction to neural networks is provided along with an introduction to and
application and working of Physics Informed Neural Networks.

1.8 Activities during the doctoral programme

Scientific Publications
• Lokahith Agasthya, Luca Biferale, Andreas Bartel, Matthias Ehrhardt, and

Federico Toschi, “Lagrangian instabilities in turbulent convection with sta-
ble temperature profiles”, Manuscript in Preparation

• Lokahith Agasthya, Patricio Clark Di Leoni and, Luca Biferale, “Recon-
structing Rayleigh-Bénard flows out of temperature-only measurements us-
ing nudging”, Physics of Fluids 34 (1) (2022) 015128, arxiv:2201.02306

Conference Presentations
• Lokahith Agasthya, Patricio Clark Di Leoni and, Luca Biferale, “Data As-

similation of Rayleigh-Bénard Convection using solely thermal measure-
ments”, Bulletin of the American Physical Society (2021)

• Lokahith Agasthya, Luca Biferale, Andreas Bartel, Matthias Ehrhardt,
and Federico Toschi, “Modulation of Rayleigh-Benard Convection by La-
grangian Thermal Forcing.”, Bulletin of the American Physical Society (2020)

• Lokahith Agasthya, Patricio Clark Di Leoni and, Luca Biferale, “Lattice
Boltzmann based Langrangian Nudging in Rayleigh-Benard Convection”,
29th International Conference on Discrete Simulation of Fluid Dynamics
(2020)
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Coursework Completed
• Frontiers and Methodologies in Computational Science, Spring 2021 semester,

The Cyprus Institute

• Fundamentals of Data Science and Statistics, Fall 2020 semester, The Cyprus
Institute

Workshops Completed
• School on Machine and Reinforcement Learning, Rare Events and Ten-

sor Networks at the University of Rome “Tor Vergata” - Held Online (Sep
2020)

• Workshop on Multiscale, multilevel algorithms and uncertainty quan-
tification at the University of Wüppertal (Jun - July 2019).

• School on Mathematical Modeling and Numerical Analysis for Exascale
at the Humboldt University of Berlin (Apr 2019).

• School on Fundamentals of Data Science at the University of Ferrara (Feb
2019).

• Workshop on High performance computing and simulation at Forschungszen-
trum Jülich (Nov - Dec 2018).
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Chapter 2

Fluid Dynamics and Turbulence

Summary The reader is introduced briefly to fluid flows and a brief qualita-
tive description of laminar flows as well as turbulent flows. The incompressible
Navier-Stokes equations are introduced in their dimensional as well as dimen-
sionless form, the latter of which leads naturally to the definition of the important
Reynolds number. The expression for the rate of dissipation of mechanical energy
into heat via viscosity is derived from the Navier-Stokes equations. Following
this, the phenomenology of turbulent flows as a cascade of energy from the larger-
scales to smaller-scales via vortex break-up, also known as the Richardson energy
cascade is described, and this in turn leads to a discussion of Kolmogorov’s 1941
theory of turbulence (K41) and the two hypotheses of the universal similarity of
turbulent flows which were proposed by him. The Kolmogorov microscales are
derived, various measures to quantify the small-scale structure of a flow are de-
fined and the specific expressions for the small-scale velocity increments in highly
turbulent flows are derived for a K41 scenario. The drawbacks and experimental
refutations of Kolmogorov’s theory are briefly discussed and finally the chapter
ends with a discussion on the intractibility of the Navier-Stokes equations and
turbulent flows.

2.1 Introduction
Fluid dynamics is the study of all objects that flow. However, different fluids flow
differently, with some fluids showing a greater propensity to be set into motion
while other fluids show a greater tendency to resist flow. For example, most gases
and liquids such as oils and lubricants flow easily while thick liquids such as
honey or syrups flow sluggishly. This difference is quantified by viscosity, which
measures the resistance offered by the fluid to motion. This resistance is analogous
to a frictional force between two layers of fluid moving relative to each other.
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Viscosity causes the mechanical energy of the fluid motion to be dissipated in the
form of heat.

Fluids with a high viscosity as well as fluids flowing with a very slow ve-
locity generally show laminar flow, a state of flow which is smooth and regular.
In a laminar flow, the fluid velocity at a point in space x remains unchanged.
Thus, parcels of fluids (or tracers, such as a dye injected into the fluid) follow
identical, predictable trajectories from a given starting point at all times. Further,
two parcels of fluid starting from two nearby points at the same time follow very
similar trajectories to each other. Some examples of such a flow are specially de-
signed water fountains, water slowly flowing from a partially open tap or the rise
of smoke immediately above the source of the smoke. However, laminar flows are
generally rare in nature.

In contrast, in fluids with a low viscosity or fluids flowing flowing at high ve-
locity, the flow ceases to be smooth and regular. The fluid velocity at a fixed point
in space x is a rapidly fluctuating function of time. Two parcels of fluid starting
at the same point in space but at different times show widely different trajecto-
ries from each other. Similarly, parcels of fluid even infinitesimally close to each
other at a given time separate rapidly and follow vastly different trajectories. The
consequence of these properties is that turbulent flows are extremely sensitive to
their initial configuration. If two identical turbulent systems are considered at a
given time with initial configuration that varies infinitesimally, the realised state
of the system deviates rapidly. Nearly all fluid flows found in various settings and
nearly all natural settings are turbulent in nature. The best known examples of
turbulent flows are the air flow in clouds, airflow over aircraft wings, solar flares.
The atmosphere of all planets are turbulent, with the Giant Red Spot of Jupiter
being a spectacular example of a turbulent vortex. They are all characterised by
high chaoticity and are very hard to predict.

A popular story goes that the great physicist Werner Heisenberg once said
that if he had the chance to ask God two questions, he would ask “Why quantum
mechanics?” and “Why turbulence?”. And he was quite sure that God would be
able to answer the first question [27]. While the origin of the story is uncertain,
it is most certain that turbulence has befuddled scientists and philosophers alike
for over a hundred years. Considered to be one of the last unsolved problems in
classical physics, the phenomenon of turbulence is ubiquitous in nature - in fact
the absence of turbulence, or laminarity, is very much the exception.

2.2 Reynolds Number and Energy Dissipation
While we have already seen a short description of some characteristics of a tur-
bulent flow, we still haven’t introduced a quantitative measure for understanding
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when a flow remains laminar and when it can turn turbulent. We start with the
incompressible Navier-Stokes equation, where the fluid velocity u(x, t) follows

∇ · u = 0, (2.1)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+ ν∇2u. (2.2)

The derivation of the Navier-Stokes equation is well-known and can easily be
looked up from any introductory text on fluid dynamics, such as Davidson’s text-
book. It involves applying Newton’s Second law of Motion on a small parcel of
fluid and considering the conservation of mass and momentum. To recap, p(x, t)
is the fluid pressure, ρ is the fixed density of the fluid and ν is the kinematic viscos-
ity of the fluid. Equation (2.1) imposes the conservation of mass while Equation
(2.2) imposes the conservation of momentum. The operator ∂

∂t
+ (u ·∇) is often

written simply as D
Dt

and is known as the convectional derivative or the material
derivative.

The behaviour of a fluid is consistent with the Navier-Stokes equations within
the continuum approximation, wherein it is assumed that the various properties of
the fluid such as density, pressure, velocity etc. are smooth and continuous func-
tions in space, even for an infinitesimal fluid element. This approximation ignores
the discrete, molecular nature of the fluid and is valid when the characteristic
length scale of the fluid system is much larger compared to the inter-molecular
distance between the fluid molecules or the molecular mean free path. The con-
tinuum assumption breaks down when considering fluid flows with length scale
comparable to nano-scales (∼ 10−9m), rarefied gas flows, etc. where either the
length scale of the fluid system is small or the inter-molecular distance is large,
hence the system is in the regime of molecular dynamics rather than continuum
mechanics.

The Navier-Stokes equations are valid for Newtonian fluids where the viscous
stresses τij are given by

τij = 2ρνSij, (2.3)

where

Sij =
1

2

�
∂ui

∂xj

+
∂uj

∂xi

�
. (2.4)

The viscous stresses are defined so that the net viscous force Fi acting in the
direction i per unit volume is given by

Fi =
∂τij
∂xj

, (2.5)
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Figure 2.1: Stress Tensors.

and the Navier-Stokes equations can also be written as

∇ · u = 0, (2.6)

ρ
Du

Dt
= −∇p+

∂τij
∂xj

. (2.7)

They are accompanied by appropriate boundary conditions and initial con-
ditions and are perfectly deterministic, even if the solutions thereof are highly
chaotic and possess large degrees of freedom.

Consider a typical length scale L and a velocity scale U of a fluid system under
consideration. The fluid can be described in terms of a dimensionless velocity u⋆,
non-dimensional length x⋆, non-dimensional pressure p⋆ and non-dimensional
time t⋆ such that

u⋆ = u/U, x⋆ = x/L, t⋆ = t/(L/U), p⋆ = p/(ρU 2).

It can be easily verified that non-dimensionalising equation (2.2) leads to

∂u⋆

∂t⋆
+ (u⋆ ·∇⋆)u⋆ = −∇⋆p⋆ +

ν

UL
(∇⋆)2u⋆. (2.8)
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where ∂/∂t⋆ and ∇⋆ are the non-dimensional time derivative and gradient
respectively. The single non-dimensional parameter then that determines the sys-
tem is the ratio ν/(UL), which is the inverse of the very important dimensionless
number for turbulent flows, the Reynolds number, given by

Re =
UL

ν
. (2.9)

where ν as we have already seen is the kinematic viscosity of the fluid. Re is
the ratio of the inertial forces to the viscous forces acting on the fluid. The greater
the length scale of the system, the faster the characteristic flow velocity of the fluid
or the less viscous the fluid, the more turbulent the fluid flow. At larger Re, it is
the inertial forces that dominates the fluid while at lower Re, viscous dissipation
is most significant.

The most suitable choice for L and U is not always immediately apparent, but
it is well established for certain widely studied systems such as flow in a cylin-
drical pipe, where L is simply the diameter of the pipe. There exists a threshold
Reynolds number Rec below which a given system is laminar, while for greater
Re, the system is unstable to infinitesimal perturbations and turns turbulent. In
the experiments of Reynolds considering the flow of a fluid in a channel with an
inlet at one end, he rightly concluded that the flow turns turbulent due to small
perturbations at the inlet of the fluid [28]. For Re > Rec, the flow is increas-
ingly sensitive to disturbances at the inlet while for Re < Rec, the flow is always
laminar.

A turbulent fluid dissipates mechanical energy in the form of heat due to vis-
cosity, which is described by the viscous term ν∇2u. To understand the amount
of energy dissipated by the viscous forces acting on the fluid, we simply multiply
equation (2.2) with u and use ∇ · u = 0 giving

D

Dt

� |u|2
2

�
= −∇ ·

�
p

ρ
u

�
+ νu · (∇2u) (2.10)

Simplifying the final term on the right as

νu · (∇2u) = ui
∂

∂xj

[τij/ρ] =
∂

∂xj

[uiτij/ρ]− 2νSijSij, (2.11)

we get

∂(u2/2)

∂t
= −∇ · [(|u|2/2)u]−∇ · [(p/ρ)u] + ∂

∂xj

[uiτij/ρ]− 2νSijSij. (2.12)

Considering a small volume dV and integrating the above equation over this
volume, the various terms are interpreted in the following way - the term on the

20



left hand side represents the rate of change of kinetic energy in the volume of fluid.
The first, second and third terms on the right hand side respectively represent the
rate of transport of kinetic energy across the boundary by convection, the rate of
work done by the pressure forces on the boundary and the rate of work done by
the viscous forces on the boundary. The final term −2νSijSij thus represents the
internal loss of mechanical energy in the form of heat due to viscosity. Thus, the
rate of dissipation of energy by viscosity per unit volume ϵ is given by simply

ϵ = 2νSijSij, (2.13)

or explicitly,

ϵ =
1

2
ν
X

i,j

�
∂ui

∂xj

+
∂uj

∂xi

�2
. (2.14)

2.3 Vortex Break-up
Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.
- Lewis F. Richardson

A commonly observed characteristic of turbulent flows is the presence of
structures at all scales. These structures are usually small vortical structures,
known as eddies. The characteristic length scale of the largest eddies in a tur-
bulent flow are comparable to the length scale L of the fluid system while the size
of the smallest eddies depend on the degree of turbulence of the system, with a
continuous distribution of eddy sizes in between these extremes. The largest ed-
dies of the system are created out of instabilities in the large-scale or mean flow
of the system. These large eddies are in turn unstable and have very short typical
lifespans - they break up into smaller eddies which further break-up into smaller
vortices. It is found that most of the dissipation of kinetic energy happens via the
smallest eddies, where viscous dissipation acts most strongly leading to the eddies
breaking-up completely.

This cycle of creation of large eddies, break-up into smaller ones until they
finally dissipate with the concurrent existence of eddies of all scales in a turbu-
lent flow was first introduced by Richardson as the energy cascade [29], wherein
kinetic energy is transferred by the process of vortex break-up from the largest
scales, where viscosity is not significant, to the smallest scales, where viscous
dissipation is dominant.
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Figure 2.2: A diagram showing the break-up of eddies from the largest sized
eddies in the system to the smallest due to inertial instabilities. Viscosity begins
to play a more and more dominant role at smaller length scales and thus the
smallest eddies dissipate rapidly. Image created by author based on Figure 1.14
in [1]
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The next question that would arise naturally is - how does one estimate the size
of the smallest eddies where dissipation is dominant? And how does this depend
on the degree of turbulence quantified by Re? Henceforth we denote η to be the
length scale of the smallest eddy in the energy cascade. It is known experimentally
that the break-up time associated with an eddy of size L and with typical velocity
U is given by U/L. Thus, the rate of energy transfer to smaller scales by vortex
break-up is given by

Π ∼ U2/(L/U) = U3/L. (2.15)

Assuming a statistically stationary situation where the rate of energy dissipa-
tion by viscosity via the smallest vortices is equal to the rate at which energy is
passed to these smallest scales, we would have

ϵ = U3/L (2.16)

where ϵ ∼ νSijSij where Sij is the strain-rate tensor already defined. Assum-
ing all the viscous energy dissipation occurs at the smallest scales, we write

ϵ ∼ ν(v2/η2), (2.17)

where v is the velocity associated with the smallest eddies with length-scale
η. Finally, this gives

U3/L ∼ ν(v2/η) (2.18)

By noting that Re = UL/ν for the largest eddies, this gives

η ∼ LRe−3/4 (2.19)

Thus, the larger the Reynolds number and the more turbulent the flow, the
smaller is η, the typical size of the smallest eddy. Thus, a more turbulent flow
leads to the production of finer and finer scale structures. The length and velocity
scales η and v respectively associated with the smallest eddies are known as the
Kolmogorov micro-scale after the Soviet mathematician Andrey Kolmogorov.

An important note here is that the above derivation of the Kolmogorov mi-
croscales is heuristic in nature. The precise nature of the eddies and vortex break-
up have not been given, nor have any of the assertions been justified, neither any
way to validate this phenomenology by experiment has been provided. The mi-
croscales have been assumed to be uniform and isotropic, and is lacking a univer-
sal theoretical foundation or framework.
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2.4 Kolmogorov’s 1941 Theory
Thus far we have given a phenomenological description some processes such
as vortex break-up and the Richardson cascade which are observed in turbulent
flows. It still remains to understand the quantitative, measurable features of a
turbulent flow. While the behaviour of the instantaneous velocity field of a turbu-
lent flow is highly chaotic, its statistical properties vary smoothly and in a highly
predictable manner. We have already seen that the equations describing a turbu-
lent flow are the incompressible Navier-Stokes, which are purely deterministic in
nature.

As a first step towards understanding the velocity field, for a given turbulent
flow we distinguish between the mean flow and the fluctuations about this mean
flow. For example, in a flow through a pipe as in Reynolds’ experiment, the mean-
flow is the steady flow along the length of the pipe while the small eddies formed
in the turbulent regime represent the fluctuations. For any turbulent flow, we can
express the instantaneous velocity field u(x, t) as

u(x, t) = u(x) + u′(x, t), (2.20)

where u(x) represents the time-averaged flow velocity at x. Thus, u′ is the
instantaneous deviation of the velocity from the mean flow velocity with the prop-
erty u′ = 0. The eddies of varying sizes and other flow features are contained
in the term u′ rather than the mean flow, which is usually composed of a regular,
large-scale pattern. The chaotic nature of turbulence is such that for two iden-
tical systems, minute variations in initial conditions lead to completely different
realisations of the fluctuating component u′ while having the same mean flow u.

One of the most fundamental quantitative measure of a turbulent flow is the
velocity correlation function Qij defined as

Qij = ⟨u′
i(x)u

′
j(x+ r)⟩ (2.21)

where u′
i are the individual components of the velocity u′. ⟨·⟩ represents the

average over the entire fluid domain. The velocity correlation is a measure of
how closely the fluid is related to itself in space and depends on x, r and t. In the
statistically stationary situation that we mostly deal with, we have Qij independent
of time. It is apparent that Q → 0 for large r, as the velocity of two points well
separated from each other do not influence each other and hence we expect them
to behave independently of each other for a turbulent flow. This is the case, for
example, when r ≫ L where L is the length-scale of the largest vortices in the
Richardson cascade.

When r → 0, we get simply Qij = ⟨u′
iu

′
j⟩. The horizontal correlation func-

tion Qxx is given by ⟨u′2⟩ where u′ is the horizontal component of the turbulent
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fluctuations.
The case of homogeneous turbulence is when Q is independent of x while

isotropic turbulence is when Q does not depend on the direction of r, instead
depends solely on the magnitude |r|.

While the correlation function describes the local structure of the velocity
field, it does not encode information about the precise nature of the flow and
does not provide precise information on the distribution of the vortices of differ-
ent sizes, which is one of the defining features of a turbulent flow. Two closely
related and important quantities are the longitudinal velocity structure function
and the kinetic energy spectrum or simply the energy spectrum. The structure
function of order p, Sp is defined as

Sp(r) = ⟨[δu(r)]p⟩ = ⟨[u(x+ rêx)− u(x)]p⟩ . (2.22)

Notice that Sp → 0 for r → 0 for all p. It is the second-order structure function
S2(r) that is most widely used in the literature and is considered a measure of the
energy contained in vortices with size ≤ r.

The energy spectrum is defined as

E(k) =
1

2π

Z ∞

−∞
R(r)e−ikrdr, (2.23)

where R(r) is given by

R(r) =
1

2
⟨u(x) · u(x+ r)⟩, (2.24)

which is closely related to the trace of Qij . Notice that for r → 0, we have

1

2
⟨u2⟩ =

Z ∞

−∞
E(k)dk. (2.25)

Here, equation (2.23) defines the Fourier Transform of R(r), which is a convo-
lution in space on u. Thus, the energy spectrum captures the energy as a function
of different wavenumbers. E(k) is usually interpreted as the energy contained in
the eddies with size corresponding to the wavenumber interval k → k + dk with
k ∼ π/r and helps to understand the distribution of eddy sizes in a turbulent flow.
This is also used to establish whether it is consistent with the Richardson picture
of an energy cascade through vortex break-up. Crucially, the Richardson cascade
relies on the existence of vortices with length-scale L where viscosity ν is not
significant, as discussed above.

Andrey Kolmogorov in 1941 proposed two hypotheses to explain the small-
scale structure of turbulent flows at high Re. His theory of turbulence is known
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as the K41 theory of turbulence [30, 31]. Firstly, he hypothesised that the small-
scale motions of a turbulent flow are isotropic in nature - that is while the largest
scale eddies of the flow which are influenced by the average motion u are not
necessarily isotropic given the inherent anisotropies often present at the bound-
aries, the smaller scale features do not contain this directional information and
hence are statistically isotropic. Given that the smallest-scales are isotropic, the
Kolmogorov microscales introduced earlier by assuming a balance of the rate of
energy cascading from the larger scales to the smaller scales and the viscous dissi-
pation, must be universal in nature as the small-scales are universal in nature. That
is, independent of the geometry of the flow and the boundary conditions, there ex-
ist small-scale turbulent velocity fluctuations whose structure depends solely on ν
and ϵ. When the small-scales are isotropic, the balance of the rate of energy that
is passed down from the larger scales to the smaller scales and the formulation of
the Kolmogorov microscales, η and v, derived above, is elevated from a heuristic
exercise to a universal feature of all turbulent flows. These microscales could also
have been inferred by simple dimensional analysis using Kolmogorov’s similarity
hypothesis as the starting point.

For a flow with high enough Re, consider eddies of length-scale r which is
large enough so that r ≫ η and the viscous dissipation does not affect their
dynamics, while at the same time L ≫ r and they remain unaffected by the
anisotropy of the largest scales. The dynamics of these eddies are thus determined
solely by the dissipation ϵ and are independent of ν. We can write the structure
function for an eddy of scale r that takes the form

⟨[δu]2⟩ = βϵarb, η ≪ r ≪ L, (2.26)

where β is the Kolmogorov constant. This yields from dimensional analysis,

⟨[δu]2⟩ = βϵ
2
3 r

2
3 , η ≪ r ≪ L. (2.27)

The universal existence of this intermediate length-scale, known as the inertial
subrange, is the third hypothesis of Kolmogorov’s 1941 theory and it is known as
Kolmogorov’s two-thirds law. It also introduces another length-scale l, known
as the inertial scale, where l is the largest length-scale that follows the above
relation. Thus, l < L and l must be far enough down the energy cascade that any
information on the anisotropy of the largest scales is lost at length-scale l.

A necessary condition for the existence of such an intermediate length-scale
is that η should be small enough compared to L. We have already seen that η ∼
Re−3/4. Thus, only flows with a high enough Reynolds number show the universal
behaviour associated with the inertial sub-range. It is straight-forward to show that
⟨[δu]2⟩ ∼ r

2
3 corresponds to an energy spectrum with E(k) ∼ k− 5

3 . The existence
of the inertial subrange can thus be inferred from experimental measurements,
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either by measuring the energy spectrum or the structure function. Experimental
measurements of the structure function have repeatedly validated Kolmogorov’s
hypothesis of universal similarity in both limits, r ≪ L as well as η ≪ r ≪ L
(see [32] and experiments cited within).

However, it is important to note that Kolmogorov’s hypothesis is a general
statement about the small-scale velocity increments δu - not only the second order
structure function, but for Sp in general. In the spirit of Kolmogorov, we would
have by dimensional analysis

⟨[δu]p⟩ = βpϵ
p
3 r

p
3 , η ≪ r ≪ l, (2.28)

where βp is the p-th order Kolmogorov constant. Experimental measurements
of the higher-order structure functions with p > 3 start to deviate from the above
expression and show larger and larger discrepancy for increasing p. The first ob-
jections against the universal similarity hypothesis of Kolmogorov were raised
by Landau [33], who argued insightfully that the local structure function should
depend on the local rather than global energy dissipation, given that even the en-
ergy dissipation has a spatial structure and is not uniform. Understanding the
reasons for the breakdown of Kolmogorov’s similarity hypotheses for higher or-
der structure functions and understanding the universal nature of the small-scale
turbulent fluctuations, if such exists, is an area of active research. Kolmogorov
himself suggested the so-called refined similarity hypothesis, with an exponent of
p
3
+ µ

18
(3p − p2) for r. A detailed discussion on corrections to the K41 theory is

beyond the scope of this thesis.

2.5 Why Turbulence is hard to solve
Thus far we have noted several features of turbulence which make it a particu-
larly hard problem to solve. Despite arising from a deterministic equation, the
velocity field of a turbulent flow is highly chaotic with rapid fluctuations with an
extreme sensitivity to initial conditions. The presence of structures and vortices
at all scales down to the smallest scale η coupled with the chaoticity necessitates
resolving any direct numerical simulations down to the smallest scales, which get
progressively smaller for increasing Re. While the instantaneous velocity field has
all the above features, the statistical properties of a turbulent flow vary smoothly
in space and time. However, a deterministic equation for these statistical proper-
ties is impossible to obtain without making certain assumptions or simplification
which must necessarily be wholly empirical in nature.

Consider the Navier-Stokes equation of the form

ρ
∂ui

∂t
+ ρ(u ·∇)ui = − ∂p

∂xi

+
∂τij
∂xj

. (2.29)
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Time averaging the above yields

ρ
h
(u ·∇)ui + (u ·∇)ui

i
= − ∂p

∂xi

+
∂τ ij
∂xj

, (2.30)

which can be re-written as

ρ(u ·∇)ui = − ∂p

∂xi

+
∂

∂xj

h
τ ij − ρu′

iu
′
j

i
. (2.31)

This is an equation of statistical quantities - u and p. However, as we can see,
this involves a new term of the form ρu′

iu
′
j which are also statistical quantities

not directly derivable from the Navier-Stokes equation. These are known as the
Reynolds stresses and they represent momentum fluxes due to the turbulent fluc-
tuations. We note that in the presence of a simple mean flow (ie., a laminar flow)
where u(t) = u with no turbulent fluxes, the equation for the statistical averages
are deterministic as well.

We could attempt to manipulate the equations to find an expression for the
Reynolds stresses in terms of the other known quantities. However, this exercise is
known to be futile and the Reynolds stresses can be found only in terms of terms of
the form ρu′

iu
′
ju

′
k which in turn depend on the fourth-order products of the velocity

fluctuations and so on. This is known as the closure problem of turbulence. Thus,
the only way to understand the statistical measures of a turbulent system is either
by experimental measurements or by a full-scale direct numerical simulation.

Further, turbulent flows show intermittency, that is, the probability distribution
functions (PDF) of the velocity field and the vorticity field (gradients of u) show
non-Gaussian statistics with a sharp peak and fatter tails. What this means is that
while the magnitude of these fields is close to 0 over most of the domain, there
exists intense patches of high velocity and vorticity which come alive from time to
time and thus the PDFs of these variables is significant even for larger magnitudes
far away from the mean. Thus, these intermittent turbulent fluctuations are not
only chaotic, but their contribution to the statistical averages of the system relative
to the mean-flow cannot be neglected.

Given these characteristics, the problem of turbulence is often found to be
intractable, where every scale and every fluctuation playing an important role in
the overall dynamics. This makes turbulent flows impossible to predict, even for
simple flow systems.
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Chapter 3

Rayleigh-Bénard Convection

Summary The advection-diffusion equation for the transport of a scalar in a
fluid is introduced in dimensional and non-dimensional form along with the di-
mensionless Peclet number. Heat, or temperature, is then introduced as an active
scalar and the Boussinesq approximation for small temperature fluctuations of
a mildly compressible fluid is detailed, giving the Oberbeck-Boussinesq equa-
tion for thermal flows. The equations and boundary conditions describing the
Rayleigh-Bénard system are introduced along with the important dimensionless
quantities, the Rayleigh number, the Prandtl number and the Nusselt number. Fol-
lowing this, several typical qualitative features of Rayleigh-Bénard convection are
explained, including the onset of convection, formation of plumes and transition
to turbulence. Finally, well-known exact relations are derived which show the
fundamental role of the Nusselt number and a brief account of the small-scale
structure of turbulent Rayleigh-Bénard convection is given.

3.1 The Advection-Diffusion Equation
The concentration of a passive scalar C in a fluid follows the equation

∂C

∂t
+ (u ·∇)C = D∇2C (3.1)

where D with dimension [length2/time] is the diffusivity of the scalar, a mea-
sure of how the scalar diffuses through the system in the absence of a flow.
The term (u · ∇)C is the advection term or the convection term which repre-
sents the transport of the scalar due to the motion of the fluid. Scalars gener-
ally take the form of dyes, smoke, pollutants, pollen etc. Equation (3.1) can be
non-dimensionalised using the length scale L and velocity scale U similar to the
Navier-Stokes equation in addition to a scalar concentration scale C0, giving
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∂C⋆

∂t⋆
+ (u⋆ ·∇⋆)C⋆ =

D

UL
(∇⋆)2C⋆. (3.2)

where C⋆ = C/C0 is the dimensionless scalar concentration. Analagous to
the Reynolds number, the Peclet number is defined as

Pe =
UL

D
, (3.3)

and it measures the ratio of the advective scalar transport (transport due to the
motion of the carrier fluid) to the diffusive scalar transport. Large Peclet number
(Pe ≫ 1) indicates that the time scale of diffusion is far slower compared to the
large scale flow of the fluid. Thus, the scalar only follows the fluid trajectories and
behaves similar to a marker. Diffusion becomes more significant at smaller Peclet
number. Given that the length-scale of the largest eddies of the flow is similar to
the length-scale of the flow L, diffusion acts only in the regime of smaller eddies
which have Pe ∼ 1. When UL/D ≫ 1 and UL/ν ≫ 1, diffusion is restricted to
the small-scale turbulent fluctuations of the flow alone.

3.2 Thermal Flows
A frequently encountered example of a scalar transported by turbulent fluids is
heat or temperature. In a non-isothermal fluid with temperature variations, the
temperature behaves like a passive scalar following equation (3.1) and D is re-
placed instead by κ which is the thermal diffusivity of the fluid. This is known
as the heat equation. The advection of temperature by a fluid is particularly in-
teresting to study as the temperature fluctuations in turn act on the fluid indirectly
through a buoyancy force. Such thermal effects on fluids due to buoyancy are
myriad and important across several natural as well as industrial systems, from
ocean circulation and convection [34], to the atmosphere and clouds [35], from
the mantle and core of the earth [36] and other planets and stars to the melting
process of metals [37].

To be more precise, the change of temperature T of a region of fluid is accom-
panied by a change in density ρ. A region of lighter fluid surrounded by heavier,
denser fluid is subject to a buoyancy force in the presence of gravity. This force
goes as f b ∝ (ρ(T )− ρ(T0)) g where g is the acceleration due to the gravity and
ρ(T ) is the density of the fluid at temperature T while T0 is the average steady
fluid temperature. This modifies the Navier-Stokes equation as

∂u

∂t
+ (u ·∇)u = −∇p

ρ
+ ν∇2u+ f b. (3.4)
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There exists a seeming contradiction in the above statements - the buoyancy
force is said to arise from fluctuations in density which arise from temperature
fluctuations. However, the above is the incompressible Navier-Stokes equation
which implies that the fluid has a fixed density ρ. This is resolved by considering
the Boussinesq approximation. The Boussinesq approximation is a widely used
approximation in the study of natural as well as industrial flows which are ther-
mally driven. Here, the compressibility is ignored in all terms except the force
term where it is multiplied by g. The Boussinesq approximation is suitable for
flows which show only small temperature variations or whose density varies very
slowly for variations in temperature. For such systems, the density can be as-
sumed to vary linearly with changing temperature. For a fluid with density ρ0 at
temperature T0, the density ρ at temperature T is given by

ρ(T ) = ρ0 [1 + β(T − T0)] (3.5)

where β is the coefficient of thermal expansion, which is also assumed to
be constant for the small variations in temperature. Considering the Boussinesq
approximation, the final fluid equations for a thermal flow are given by

∇ · u = 0, (3.6)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+ ν∇2u− β(T − T0)g, (3.7)

∂T

∂t
+ u ·∇T = κ∇2T. (3.8)

known as the Oberbeck-Boussinesq equations. This system of coupled equa-
tions describes the transport of heat advected by an incompressible fluid flow. The
flow responds to the temperature fluctuations which locally drives hotter fluid in
the vertically upward direction and colder fluid in the downward direction.

3.3 The Rayleigh-Bénard system
Thermal flows are abundant in nature, the most prominent being the atmosphere
that is driven in large part by the heated land surface. The Rayleigh-Bénard con-
vection is among the most widely studied model thermal flows. It consists of a
layer of fluid held between two horizontal walls, with the lower wall at a uni-
form temperature Td and the upper wall held at a uniform temperature Tu with
Td − Tu = ∆T > 0. The heating of the fluid in the lower half of the domain and
the accompanying cooling of the upper half of the domain leads to an unstable
configuration where denser, heavier fluid lies on top of less dense, lighter fluid.
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This is known as the Rayleigh-Bénard instability. It is a non-linear system that
shows several types of pattern formation and allows researchers to studies the var-
ious mechanisms of pattern formation. It has been described as the “granddaddy
of canonical examples used to study pattern formation and behavior in spatially
extended systems” [38]. The Rayleigh-Bénard convection is often studied as a
model convective flow - A primary reason for this is that the Rayleigh-Bénard
type instability leading to an overturning circulation and convective patterns is
observed widely across geophysical flows. Thus, the Rayleigh-Bénard flow is
considered a prototype of these geophysical flows.

The equations governing the Rayleigh-Bénard convection are the Oberbeck-
Boussinesq equations (eqns. (3.6) - (3.8)) with the boundary conditions

T (z = 0) = Td, T (z = Lz) = Tu, (3.9)

where Lz is the height of the fluid layer, for the temperature. The velocity is
usually set to 0 at the vertical boundaries, known as the no-slip boundary condi-
tion. The main parameters of the flow are therefore the kinematic viscosity of the
fluid ν, the thermal diffusivity of the fluid κ, the thermal expansion coefficient of
the fluid β, the acceleration due to gravity g, the applied temperature gradient ∆T
and the vertical height Lz. The characteristic velocity scale of the system u0 is
defined as

u0 =
p
|g|β(∆T )Lz. (3.10)

Further using Lz as the characteristic length-scale, ∆T as the characteristic
temperature scale and Lz/u0 as the characteristic time scale and using these to
non-dimensionalise the equations gives

∇⋆ · u⋆ = 0, (3.11)

∂u⋆

∂t⋆
+ (u⋆ ·∇⋆)u⋆ = −∇⋆p⋆ +

r
Pr

Ra
(∇⋆)2u⋆ + T ⋆ez, (3.12)

∂T ⋆

∂t⋆
+ u⋆ ·∇⋆T ⋆ =

1√
PrRa

(∇⋆)2T ⋆, (3.13)

where the starred quantities represented the non-dimensional variables and
derivatives as usual. Here Ra and Pr are the Rayleigh number and Prandtl number
respectively, two non-dimensionless numbers characterising the system, given by

Ra = |g|β (∆T )L3
z

νκ
, (3.14)

Pr =
ν

κ
. (3.15)
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Figure 3.1: A sketch of turbulent 2D Rayleigh-Bénard convection at
Ra = 3.6× 108 showing the hotter bottom wall, the cooler top wall, the thermal
plumes which are detached from the thermal boundary layers and the well-mixed
bulk layer with T = 0 on average.

The Rayleigh number measures the ratio of the buoyancy forces to the viscous,
dissipative forces. In other words, the Rayleigh number measures the ratio of the
forces which are setting the fluid into motion by increasing the degree of instabil-
ity to the forces which resist the motion of the fluid. Thus, the Rayleigh number
is a measure of the stability of the fluid system. The larger the Rayleigh number,
the more unstable the system. The Prandt number on the other hand measures the
ratio of the viscous dissipation to the thermal dissipation.

The Rayleigh-Bénard system is stable at low Rayleigh numbers. The stable
state is characterised by a linear vertical temperature profile given by

T (z) = Td −
∆T

Lz

z. (3.16)

The fluid remains at rest (u = 0) and the transfer of heat from the bottom wall
to the top wall occurs exclusively through conduction through the fluid. This is
the simplest solution for the Rayleigh-Bénard (RB) system and is known as the
conductive solution. The fluid is stable to small perturbations, ie., small fluctua-
tions applied on the fluid dissipative away and the fluid returns to the conductive
solution state.

This is the situation until a critical Rayleigh number Rac = 1708. For Ra >
Rac, the fluid ceases to be at rest. The temperature profile is linear only near
the vertical boundaries upto a certain distance characterising the thermal bound-
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ary while the temperature is uniform in the bulk. An overturning circulation is
established, usually characterised by several plumes arising from adjacent large
counter-rotating vortices which occupy almost the entire domain. Plumes are of
two kinds - hot and cold. Hot (cold) plumes are characterised by a large region of
hot rising (cold falling) fluid, often with a characteristic mushroom cloud shape.
They are formed as a detachment of the thermal boundary layer. Plumes have a
large contribution in driving the flow and form a significant fraction of the heat
transfer, which is dominated by convection rather than conduction for larger Ra.

On increasing Ra above Rac, the flow still remains smooth and laminar. At
around Ra = 107, the flow starts to transition to a turbulent state, characterised
by the usual features of a turbulent flow. Further, the plumes, which are well-
defined and smooth for the laminar regime start to lose their mushroom like shape
and become irregular shaped and harder to distinguish from the background flow.
The thermal boundaries become narrower and narrower as the turbulence ensures
effective mixing of the temperature field, leading to a large bulk region with a
uniform temperature (on average).

An important parameter for the Rayleigh-Bénard system is the aspect ratio Γ,
which is the ratio of the larger horizontal dimension to the height Lz, which plays
an important role in determining the patterns formed for various ranges of Ra and
Pr. The discussions of the variation in the patterns observed for varying aspect
ratio is beyond the scope of this thesis.

3.4 Nusselt Number
There are still open problems in the understanding of RB convection, the chief
being the scaling of the Nusselt number as a function of Ra and Pr. The Nusselt
number Nu is a dimensionless response parameter of the RB system defined as

Nu = Nu(z) =
⟨vT − κ∂zT ⟩A,t

κ∆T
Lz

. (3.17)

For the RB convection, Nu does not vary with height and it has a constant
value. This can be easily verified by integrating equation (3.8) over any horizontal
plane and taking a time average, which leads to

⟨v∂zT − κ∂2
zT ⟩A,t = 0,

that is, ∂z(Nu) = 0. The denominator of the Nusselt number is a non-
dimensionalisation factor.

Notice that for the conductive solution, u = 0, while ∂zT = −(∆T )/Lz,
which leads to Nu = 1. When u ̸= 0 and the fluid is set into motion, Nu attains a
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value greater than 1. It is important to note that the vT term has a positive value
since hotter regions of the fluid are associated with updrafts and vice-versa for the
colder regions of the fluid. Thus, this is a heat transport term, with −κ∂zT being
the term that measures the conductive heat transport in the positive z direction.
The Nusselt number measures how significant the convective heat transport is
compared to the conductive heat transport.

The respective contribution from each term varies with height z. In the bulk
region, the average vertical temperature profile is uniform. Due to the imposed no-
slip boundary conditions, it is only the second term which contributes significantly
to the Nusselt number and the temperature profile here is nearly linear until z
approaches the bulk and T approaches T0 = Td + (∆T )/2. Thus we can write

Nu ∼ κ(∆T )/ℓTB

κ(∆T )/Lz

, (3.18)

where ℓTB is the length of the thermal boundary region where the temperature
profile is nearly linear. Thus, the Nusselt is closely related to the thermal boundary
thickness and ℓTB = Lz/Nu is often used in the literature as a characteristic
length-scale of the thermal boundary. Further, when ∆T (or equivalently, Ra) is
increased, the net heat transfer from the bottom wall to the top wall increases in a
commensurate way, leading to an increase in Nu as well. The degree of turbulence
and associated small-scale fluctuations also increase the net heat transfer.

Several theories have been suggested to account for the vast experimental
and numerical data on the scaling of Nu with Ra and Pr, that is Nu(Ra,Pr) ∼
RaγPrλ. While a detailed account of the experimental and numerical studies try-
ing to ascertain the exact nature of this scaling is beyond the scope of this thesis,
the interested reader may refer to the work of Ahlers et. al, 2009 [39] and refer-
ences therein. It is generally accepted that for a wide range of Ra, Nu scales as
Nu ∼ Ra0.3. It is also theorised that there exists an ultimate regime of turbulent
RB convection at very high Ra (≥ 1014) where the scaling exponent is closer to
1/2 [40, 41].

3.4.1 Exact Relations
There exist two important and fundamental exact relations (see [42, 43]) relating
the viscous dissipation and the thermal dissipation to the Nusselt number and
other parameters of the RB flow. We first derive the exact relation between the
volume averaged viscous dissipation ϵ and the Nusselt number. Consider the fluid
evolution equation

∂tu+ (u ·∇)u = −∇p+ ν∇2u− βTg. (3.19)
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Taking the dot product of eq. (3.19) with u and averaging over the whole
volume, we get

1

2

d

dt



(u · u)

�
V,t

+
1

2



u ·∇(u · u)

�
V,t

= −


u ·∇p

�
V,t

+ ν


u ·∇2u

�
V,t

+ βg


uzT

�
V,t
. (3.20)

In the stationary state, the terms of the form d⟨·⟩V,t

dt
vanish. Using in addition the

incompressibility condition (∇ · u = 0), we have



u ·∇(u · u)

�
V
=

D
∇ ·

�
u(u · u)

�E
V
= 0 (3.21)

⟨u ·∇p⟩V =

∇ · (up)

�
V
= 0 (3.22)
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V
−
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∂xi
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V

= −
X
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��∂uj

∂xi
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V

= −1

2

X

i,j

��∂ui

∂xj

+
∂uj
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�2
�

V

.

(3.23)

So, equation (3.20) becomes

ν

2

X

i,j

��∂ui

∂xj

+
∂uj

∂xi

�2
�

V,t

= βg⟨uzT ⟩V,t, (3.24)

or

ϵ ≡ ν

2

X

i,j

��∂ui

∂xj

+
∂uj

∂xi

�2
�

V,t

= βg⟨uzT ⟩V,t. (3.25)

Using

Nu =
⟨vT ⟩V,t

κ∆T
Lz

+ 1, (3.26)

we get

ϵ =
ν3

L4
z

(Nu− 1)RaPr−2. (3.27)

For the thermal dissipation given by

ϵθ ≡ κ


(∂iT (x, t))

2
�
V
, (3.28)
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We have the heat equation given by

∂T

∂t
+ u∇T = κ∇2T. (3.29)

Similar to above, we now take the product of T with equation (3.29) and av-
erage it over the entire domain and time to give

1

2

d⟨T 2⟩V,t
dt

+
1

2



u ·∇(T 2)

�
V,t

= κ


T∇2T

�
V,t

= κ

∇ · (T∇T )

�
V,t

− κ


|∇T |2

�
V,t
. (3.30)

Using once again the stationary condition and the incompressibility condition to
give 


u ·∇(T 2)
�
V
=


∇ · (uT 2)
�
V
= 0. (3.31)

Then, equation (3.30) becomes

κ


|∇T |2

�
V,t

= κ

∇ · (T∇T )

�
V,t
. (3.32)

Or
ϵθ = κ


∇ · (T∇T )
�
V,t
. (3.33)

This can further be simplified using the Gauss theorem and writing it in terms
of a surface integral

κ

∇ · (T∇T )

�
V,t

=
κ

Lz

�D
T
∂T

∂z

E
z=Lz

−
D
T
∂T

∂z

E
z=0

�
. (3.34)

Noting that at z = 0, T = Td, at z = Lz, T = Tu with ∆T = Tu − Td and
further for both the top and bottom boundaries u = 0, we get

− κ

∂T
∂z

�
z=0

= κ
∆T

Lz

Nu (3.35)

finally leading to

ϵθ = κ
(∆T )2

L2
z

Nu. (3.36)

These exact relations and the monotonic scaling of Nu with Ra show that the
Nusselt number is an extremely crucial and important response parameter that
captures several dynamical features of the flow such as the magnitude of convec-
tive heat transfer, the degree of turbulence, the degree of turbulent mixing of the
temperature field. Finally, the Nusselt number is also a measure of the correla-
tion between the vertical velocity v and the temperature field T in the bulk of the
domain.
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3.5 Scaling in the Rayleigh-Bénard Convection
The small scale structure of the velocity field in a turbulent Rayleigh-Bénard con-
vective system shows scaling compatible with Kolmogorov’s K41 theory, with the
second order structure function S2, the case of p = 2 in equation (2.22) scaling as

S2(r) ∼ (ϵr)2/3 (3.37)

in the inertial subrange. Similar to the structure function for the velocity field,
a second-order structure function for the temperature field Sθ

2 can also be defined
as

Sθ
2 = ⟨(θ(x+ r)− θ(x)2)⟩ (3.38)

.
The scaling of Sθ

2 for an advected passive scalar in the inertial range of a tur-
bulent flow was deduced by Obukhov [44] and Corrsin [45]. Generalising the
arguments of Kolmogorov, they assumed that the temperature depend on the ther-
mal dissipation ϵθ in addition to the viscous dissipation, giving a scaling of

Sθ
2(r) ∼ ϵθϵ

−1/3r2/3. (3.39)

However, this is based on arguments for passive scalars, whereas temperature
is an example of an active scalar that modifies the underlying fluid flow. Assuming
that the buoyancy forcing plays an important role at all scales and the small-scale
structure depends on β|g| and ϵθ, the form of the structure function suggested by
Bolgiano and Obukhov [46, 47] is obtained, given by,

S2(r) ∼ ϵ
2/5
θ (β|g|)4/5r6/5, (3.40)

Sθ
2(r) ∼ ϵ

4/5
θ (β|g|)−2/5r2/5. (3.41)

This is known as the Bolgiano-Obukhov scaling, or BO59. Comparing equa-
tions (3.39) and (3.41) gives the so-called Bolgiano crossover length-scale LB

between the K41 scaling and BO59 scaling

LB = ϵ5/4u ϵ
−3/4
θ (β|g|)−3/2. (3.42)

For length-scales smaller than the integral length scale L while still larger
than LB, the BO59 scaling is expected. At smaller scales so that η ≪ r ≪
LB, K41 scaling is still expected. However the BO59 scaling, which implies an
energy spectrum ∼ k−11/5 has not been conclusively identified in experiments or
simulations. For a complete survey of the small-scale structure of the velocity and
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the temperature fields in Rayleigh-Bénard convection and the experimental and
numerical attempts to identify the BO59 type scaling, the reader may refer to the
review of Lohse et. al [48].
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Chapter 4

The Lattice Boltzmann Method

Summary An overview of the Lattice Boltzmann method is provided, first by mo-
tivating the equations of the kinetic theory of gases and the Maxwell-Boltzmann
distribution. Following this, the Boltzmann equation is studied. The Boltzmann
equation is discretised in velocity-space using Hermite polynomial expansions
followed by the application of the Gauss-Hermite quadrature rule. Similarly,
a brief account of the space-discretisation is given to finally derive the Lattice
Boltzmann equation. The Chapman-Enskog analysis is reproduced to show that
the moments of the discrete populations that solve the Lattice Boltzmann equation
are a solution to the Navier-Stokes equation, accurate up to second order. The im-
plementation of the Lattice Boltzmann algorithm is then described in a nutshell,
along with the calculation of the hydrodynamic quantities. The modifications to
the equation to include a body-force term is described followed finally by the
extensions of the Lattice Boltzmann algorithm to include scalar transport by the
fluid. This chapter is meant to present an overview of the mathematical back-
ground for the design of the Lattice-Boltzmann algorithm rather than a rigorous
mathematical derivation of the same.

4.1 Introduction
The Lattice Boltzmann method is a mesoscopic method to solve the equations of
fluid dynamics (Navier-Stokes equations) numerically. The mesoscopic scale is
an intermediate regime where the length-scale is large enough that the dynamics
of individual molecules is not significant but still small enough that the continuum
approximation is invalid. In principle, every fluid system can be solved by solv-
ing the microscopic dynamics. However, that would prove to be computationally
extremely expensive and with a resolution far greater than necessary. The Lattice
Boltzmann approach uses the kinetic theory of gases that describes the distribu-
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tion and statistics of particles in a gas with time-scales corresponding to tmfp, the
mean collision time between the gas particles.

4.2 Kinetic Theory

4.2.1 The Distribution Function
The basis of all kinetic theory is the distribution function f(x, ξ, t) where which
represents the density of particles with position x and moving with velocity ξ =
(ξx, ξy, ξz) at time t, having units of [mass][time]3/[length]6. Thus the distribution
function contains all the dynamic information about the gas particles and hence,
the macroscopic information on the gas as well. For example, the mass density of
the gas ρ(x, t) can be obtained by integration over the velocity space as

ρ(x, t) =

Z
f(x, ξ, t)d3ξ. (4.1)

Similarly, the energy density is obtained by integrating the product of |ξ|2 and
f over the velocity space. This expression for energy contains both, the internal
energy of the gas particles as well as the kinetic energy due to the translation of
the particles with velocity u. For polyatomic gases, the internal energy comprises
additional motions such as rotations and vibrations. Here we define the relative
velocity v as

v(x, t) = ξ(x, t)− u(x, t), (4.2)

where u is the mean local velocity of the gas particles. While the total kinetic
energy of the gas is due to u, the internal energy including thermal fluctuations is
due to the relative velocities v.

4.2.2 The equilibrium distribution
When a gas is left alone for a long time (t ≫ tmfp), the gas is described by the
equilibrium distribution function f eq. When considered in a reference frame
moving along with the gas with velocity u, the equilibrium distribution function
can be assumed to be isotropic in velocity space - any anisotropy in the motion
of the gas particles can be assumed to have been evened out by collisions among
gas particles. Thus, the equilibrium distribution function depends only on the
magnitude of the relative velocity |v| as f eq(x, |v|, t).

One further assumption is made about the equilibrium distribution function -
we assume that f eq(|v|2) has a separable form and the 3D equilibrium distribution
is simply the product of 3 individual 1D equilibrium distributions f1D, ie.,
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f eq(|v|2) = f eq(v2x + v2y + v2Z) = f eq
1D(v

2
x)f

eq
1D(v

2
y)f

eq
1D(v

2
z). (4.3)

For a given |v|2, we have f eq(|v|2) = const, thus

ln f eq
1D(v

2
x) + ln f eq

1D(v
2
y) + ln f eq

1D(v
2
z) = const. (4.4)

A (not necessarily unique) solution that satisfies this condition is of the form
ln f eq

1D(v
2
x) = a+ bv2x where a and b are generic constants, since

ln f eq
1D(v

2
x) + ln f eq

1D(v
2
y) + ln f eq

1D(v
2
z) = 3a+ b(v2x + v2y + v2z) (4.5)

which is a constant when |v|2 = v2x + v2y + v2z is a constant. Thus, we finally
obtain the equilibrium distribution function of the form

f eq(|v|) = e3aeb|v|
2

. (4.6)

For a mono-atomic gas with temperature T , the precise form of the equilibrium
distribution is given by

f eq(x, |v|, t) = ρ

�
1

2πRT

�3/2

e−|v|2/(2RT ). (4.7)

R here is the universal gas constant. The above detailed derivation gives a
possible equilibrium distribution that satisfies all the conditions placed on it and
is similar to Maxwell’s procedure to obtain the equilibrium distribution function.
The same can also be obtained through the method of Boltzmann using arguments
from statistical mechanics [49]. This form is known as the Maxwell-Boltzmann
distribution.

4.2.3 The Boltzmann equation
Given a distribution function f(x, ξ, t), we are interested in the evolution of this
function, or df/dt. We can write

df

dt
=

�
∂f

∂t

�
dt

dt
+

�
∂f

∂xi

�
dxi

dt
+

�
∂f

∂ξi

�
dξi
dt

(4.8)

to be the total change in f . Notice that dxi

dt
= ξi and dξi

dt
= Fi/ρ is a force

per unit mass applied on the gas. Denoting df
dt

as Ω(f), we have the Boltzmann
equation

∂f

∂t
+ ξi

∂f

∂xi

+
Fi

ρ

∂f

∂ξi
= Ω(f) (4.9)
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The form of the equation resembles an advection equation, wherein the distri-
bution function is advected with velocity ξ, with forces that modify this velocity
in the form of F . Ω(f) is analogous to a source term representing the local mod-
ification of f , due to collisions between the particles. Ω(f) is thus known as the
collision operator.

For monoatomic gases, collisions conserve mass, momentum as well as trans-
lational energy. This can be expressed in terms of Ω(f) as

Z
Ω(f)d3ξ = 0, (4.10)

Z
ξΩ(f)d3ξ = 0, (4.11)

Z
|ξ|2Ω(f)d3ξ = 0, (4.12)

Z
|v|2Ω(f)d3ξ = 0. (4.13)

The constraints respectively represent the conservation of mass, conservation
of momentum, conservation of total energy and the conservation of internal en-
ergy. Lattice Boltzmann methods generally use the collision operator of the form

Ω(f) = −1

τ
(f − f eq) (4.14)

where τ is a relaxation time parameter. This form of the collision operator
is known as the BGK collision operator after Bhatnagar, Gross and Krook and
it assumes that a gas with distribution function f has a natural tendency to relax
to the equilibrium distribution f eq with a characteristic time scale τ . The BGK
operator is particularly popular due to its simplicity and ease of implementation.

At first sight, the mesoscopic equations involving f seem more complicated
than the Navier-Stokes equations - f depends on 7 quantities for a three-dimensional
system viz., three components of space xi, three components of velocity ξi and
time t. Further, the distribution function and the Boltzmann equation describe
mesoscale dynamics of a gas with no apparent connection to the flow of a fluid.
As it turns out, the Navier-Stokes equation describing macroscopic fluid behaviour
can be obtained directly from the Boltzmann equation. However, this first requires
a way to estimate the distribution function f as well as the equilibrium distribution
function f eq. This will be done in the next section, where we appropriately dis-
cretise the Boltzmann equation to make it amenable to numerical implementation
and finally after that we will show how the discretised Boltzmann equation, or the
Lattice Boltzmann equation leads to the Navier-Stokes equation.
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4.2.4 Discretisation of the Velocity
As noted, the Boltzmann equation is seemingly more complex than the Navier-
Stokes equation. However, it is important to note here that the specific physics and
details underlying the Boltzmann equation is not important to the problem at hand.
Instead, we are interested in obtaining the correct macroscopic or hydrodynamic
quantities, which we accomplish through a simplified equilibrium function f eq

and a discrete velocity space.
First, we non-dimensionalise the Boltzmann equation (equation (4.9)) by defin-

ing a characteristic length ℓ, velocity V , time t0 = ℓ/V and density ρ0. This gives

∂f∗

∂t∗
+ ξ∗α

∂f∗

∂x∗
α

+
F ∗
α

ρ∗
∂f∗

∂ξ∗α
= Ω∗(f∗), (4.15)

where f∗ = fV d/ρ0, F ∗
α = Fαℓ/(ρ0V

2), ρ∗ = ρ/ρ0, Ω∗ = ΩℓV 2/ρ0 and the
derivatives are non-dimensionalised as

∂

∂t∗
=

ℓ

V

∂

∂t
, (4.16)

∂

∂x∗ = l
∂

∂x
, (4.17)

∂

∂ξ∗
= V

∂

∂ξ
. (4.18)

This gives the equilibrium function

f eq∗ =
ρ∗

(2πθ∗)d/2
e−(ξ∗−u∗)2/(2θ∗) (4.19)

with θ∗ = RT/V 2 being the non-dimensional temperature. Henceforth, the ∗

symbol will be dropped and we will continue to work only with the non-dimensional
equation.

Here we will give a brief introduction to the Hermite polynomials along with
some basic properties of these polynomials. A more substantive mathematical
account of the same can be found in References [50, 51]. Hermite polynomials
arise naturally in quantum mechanics as wave functions for harmonic potentials.
They are generated in their 1D form via the weight function ω given by

ω(x) =
1√
2π

e−x2/2. (4.20)

The Hermite polynomial H(n)(x) of n-th order is given by

H(n)(x) = (−1)n
1

ω(x)

dn

dxn
ω(x), (4.21)
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where n is a positive integer. In d dimensions, the corresponding Hermite
polynomial H(n) and weight function ω are

H(n)(x) = (−1)n
1

ω(x)
∇(n)ω(x), ω(x) =

1

(2π)d/2
e−x2/2, (4.22)

where both H(n) and ∇(n) are tensors of rank n. To be precise,

∇(n)
α1...αn

=
∂

∂xα1

. . .
∂

∂xαn

(4.23)

where the αi run from 1 to d. For the d = 3 case, αi ∈ {x, y, z}. Hermite
Polynomials in 1 dimension are orthogonal with respect to ω(x):

Z ∞

∞
ω(x)H(n)(x)H(m)(x)dx = n!δ(2)nm (4.24)

where δ
(2)
nm is the Kronecker delta function which has δ

(2)
nm = 1 when n = m

and δ
(2)
nm = 0 otherwise. The orthogonality extended to d dimensions is expressed

as

Z
ω(x)H (n)

α H
(m)
β (x)ddx =

dY

i=1

ni!δ
(2)
nmδ

(n+m)
αβ (4.25)

where δ
(n+m)
αβ = 1 if and only if α = (α1, . . . ,αn) is a permutation of β =

(β1, . . . , βn). For d = 3, this reads
Z

ω(x)H (n)
α H

(m)
β (x)d3x = nx!ny!nz!δ

(2)
nmδ

(n+m)
αβ . (4.26)

Further, the Hermite Polynomials form a complete basis in Rd and any contin-
uous, smooth function in d dimensions can be expressed as

f(x) = ω(x)
∞X

n=0

1

n!
a(n) ·H(n)(x), a(n) =

Z
f(x)H (n)(x)ddx. (4.27)

Here, the dot product a(n) · H (n)(x) is defined as the summation over all
indices a(n)α1...αnH

(n)
α1...αn . This is known as the Hermite series expansion while the

tensors a(n) are known as the Hermite expansion coefficients.
We first note a very important point - the equilibrium distribution function has

an identical form to the weight function.
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f eq(ρ,u, θ, ξ) =
ρ

(2πθ)d/2
e−(ξ−u)2/(2θ) =

ρ

θd/2
ω

�
ξ − u√

θ

�
. (4.28)

Now we apply the Hermite series expansions to f eq in ξ-space:

f eq(ρ,u, θ, ξ) = ω(ξ)
∞X

n=0

1

n!
a(n),eq(ρ,u, θ) ·H(n)(ξ) (4.29)

and

a(n),eq(ρ,u, θ) =

Z
f eq(ρ,u, θ, ξ)H (n)(ξddξ). (4.30)

Using the relation in equation (4.28), we can calculate the series coefficients
for the equilibrium distribution function.

a(n),eq =
ρ

θd/2

Z
ω

�
ξ − u√

θ

�
H(n)(ξ)ddξ. (4.31)

Substituting η = ξ − u gives

a(n),eq = ρ

Z
ω(η)H (n)(

√
θη + u)ddη (4.32)

Calculating these yields

a(0),eq = 1, (4.33a)

a(1),eqα = ρuα, (4.33b)

a
(2),eq
αβ = ρ(uαuβ + (θ − 1)δαβ), (4.33c)

a
(3),eq
αβγ = ρ [uαuβuγ + (θ − 1)(δαβuγ + δβγuα + δγαuβ)] (4.33d)

It is clear that the first 3 coefficients in the Hermite series expansion of f eq are
related to the density, momentum and energy respectively. Further, the conserved
quantities can be expressed in terms of the Hermite series coefficients of the (non-
equilibrium) particle distribution function f :

a(0),eq =

Z
f eqddξ = ρ =

Z
fddξ = a(0), (4.34a)

a(1),eqα =

Z
f eqξαd

dξ = ρuα =

Z
fξαd

dξ = a(1)α (4.34b)

a
(2),eq
αα + ρd

2
=

Z
f eq |ξ|2

2
ddξ = ρE =

Z
f
|ξ|2
2

ddξ =
a
(2)
αα + ρd

2
. (4.34c)
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Thus we see that the coefficients of the Hermite series expansion of the equi-
librium distribution are directly related to the macroscopic conserved quantities.
Importantly, obtaining the correct macroscropic quantities of interest requires only
3 terms rather than evaluating the full function. Finally, we write

f eq(ξ) ≈ ω(ξ)
NX

i=0

1

n!
a(n),eq ·H(n)(ξ) (4.35)

and

f(ξ) ≈ ω(ξ)
NX

i=0

1

n!
a(n) ·H(n)(ξ) (4.36)

where the ≈ indicates that the series is truncated at N terms. Setting N = 2
gives for the equilibrium function

f eq(ρ,u, θ, ξ) ≈ ω(ξ)ρ [1 + ξαuα + (uαuβ + (θ − 1)δαβ)(ξαξβ − δαβ)] (4.37)
= ω(ξ)ρQ(u, θ, ξ) (4.38)

While we have obtained an appropriate series expansion for the equilibrium
distribution function where the moments are related to the conserved macroscopic
quantities, it is still not appropriately discretised. In this regard Hermite polyno-
mials have a property that makes them ideal for discretisation - the existence of
abscissae. The integral of the some polynomials can be calcualated by simply
calculating the integral at some discrete points xi as

Z −∞

∞
ω(x)P (N)(x)ddx =

nX

i=1

wiP
(N)(xi) (4.39)

where P (N) is an N -th order polynomial and the n values of xi are roots of
the n-th order 1D Hermite polynomial (H(n)(xiα) = 0). This is called the Gauss-
Hermite quadrature rule. Applying the Gauss-Hermite quadrature rule, it can be
verified that after a little algebra, we obtain

a(n),eq = ρ

Z
ω(ξ)R(ξ)ddξ = ρ

nX

i=1

wiR(ξi) (4.40)

where R(ξ) = Q(ξ)H (n)(ξ) is the polynomial to which the rule is applied.
This lends a discretisation of the Hermite series expansion where n is the num-
ber of abscissae. Thus, instead of a continuous equilibrium function of the form
shown in equation (4.37), we have n equilibrium functions of the form f eq

i =
f eq(ξi) given by
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f eq
i = wiρ

�
1 + ξiαuα +

1

2
(uαuβ + (θ − 1)δαβ) (ξiαξiβ − δαβ)

�
(4.41)

whose first three moments satisfy the same conservation laws as the contin-
uous equilibrium distribution function. Substituting ci = ξi/

√
3 as the discrete

velocities, the final discrete equilibrium function (see Appendix A.4. of [10] for
more details) is given by

f eq
i = wiρ

�
1 +

ciαuα

c2s
+

uαuβ (ciαciβ − c2sδαβ)

2c4s

�
(4.42)

where cs is the speed of sound of the chosen velocity set which generally has
the value 1/

√
3.

Repeating the discretisation process for the distribution function f , the Her-
mite expansion coefficients are

(a)(n)(x, t) =

qX

i=1

fi(x, t)H
(n)(ci). (4.43)

Finally, the (force-free) Boltzmann equation with discretised sets of velocity
is given by

∂fi
∂t

+ ciα
∂fi
∂xα

= Ω(fi), (4.44)

with the density and momentum given by

ρ =
X

i

fi =
X

i

f eq
i , (4.45)

ρu =
X

i

fici =
X

i

f eq
i ci. (4.46)

4.2.5 Discretisation of space and time
The Lattice Boltzmann algorithm involves populations of fi at each point on a
grid moving with velocity ci. After each time-step ∆t, the population must reach
a neighbouring grid point. Thus, the grid must be uniform with spacing ∆x such
that if a population starts at a grid point at x, there must also be grid points at
x + ci∆t for all the discrete velocities ci and any spatio-temporal discretisation
of the Boltzmann equation must adhere to this constraint.

Consider the total derivation of fi with respect to an arbitrary parameter ψ as
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dfi
dψ

= Ωi(x(ψ), t(ψ))
dt

dψ
=

�
∂fi
∂t

�
dt

dψ
+

�
∂fi
∂xα

�
dxα

dψ
. (4.47)

Comparing with equation (4.44) imposes the condition

dt

dψ
= 1,

dxα

dψ
= ciα. (4.48)

This is variable transformation t → ψ which serves the purpose of converting
the Boltzmann equation, which is a partial differential equation, to an ordinary
differential equation form. For a given point (x0, t0) such that t(ψ = 0) = t0 and
x(ψ = 0) = x0, integrating from ψ = 0 to ψ = ∆t gives

fi(x0 + ci∆t, t0 +∆t)− fi(x0, t0) =

Z ∆t

0

Ωi(x0 + ciψ, t0 + ψ)dψ, (4.49)

This can be generalised to any arbitrary point (x, t). The LHS is exact, but the
RHS still needs to be estimated. To the first order in ∆t, the simplest approxima-
tion of the integral can be made by simply considering the value of the integrand
at a single point, also known as a rectangular discretisation, that is,

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆tΩi(x, t). (4.50)

This simplest approximation is in fact the most widely used form of the Lat-
tice Boltzmann equation, which forms the bedrock of the Lattice Boltzmann
method to solve fluid equations. This still requires the specification of the form of
the collision operator, such as the BGK collision operator already introduced.

The unique reason that the first order approximation suffices is that even a
second order approximation, in the form of,

fi(x0 + ci∆t, t0 +∆t)− fi(x0, t0) = ∆t
Ωi(x, t) + Ωi(x+ ci∆t, t+∆t)

2
,

(4.51)
also returns the same expression. For example, with the BGK collision opera-

tor given by Ωi = −(fi − f eq
i )/τ , the above equation returns equation (4.49) with

a redefined relaxation time τ → τ +∆t/2 [52].

4.3 The Lattice Boltzmann Equation
Thus, given a form of the collision operator, we have the Lattice Boltzmann equa-
tion, given by
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fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
(fi(x, t)− f eq

i (x, t)) , (4.52)

where the equilibrium population distribution is given by

f eq
i (x, t) = wiρ

�
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

�
. (4.53)

This is a discretised version of the Boltzmann equation, with the discrete popu-
lations fi describing the distribution function f of the kinetic theory of gases. The
various moments of the populations are related to the density, momentum, energy,
stress tensor, etc. The next step is to show that the Lattice Boltzmann equation
solves the Navier-Stokes equation. This is shown via the Chapman-Enskog anal-
ysis, which is described in the following session.

4.3.1 Chapman-Enskog Analysis
We assume that the distribution function fi is given by

fi = f
(0)
i + ϵf

(1)
i + ϵ2f

(2)
i + . . . (4.54)

where the 0-th order term f
(0)
i is nothing but the equilibrium distribution func-

tion f eq
i . Here, ϵ is an appropriate positive scale parameter with ϵ ≪ 1. ϵ is usually

identified to be of the same order as the Knudsen number Kn, given by

Kn =
ℓmfp

ℓ
, (4.55)

where ℓmfp and ℓ are respectively the mean free path of the gas molecules and
the characteristic length scale of the problem, already discussed in the introduction
to the kinetic theory of gases. Problems in which the continuum approximation of
the fluid and the Navier-Stokes equation are valid are characterised by Kn ≪ 1.

Returning to the distribution function f , consider the Lattice Boltzmann equa-
tion

fi(x+ ci∆t, t+∆t)− fi(x, t) = −∆t

τ
(fi(x, t)− f eq

i (x, t)) . (4.56)

Writing a Taylor expansion of the above leads to

∆t(∂t + ciα)fi +
(∆t)2

2
(∂t + ciα∂α)

2fi +O
�
(∆t)3

�
= −∆t

τ
fneq
i , (4.57)
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with fneq
i given by fi − f eq

i retaining only the higher order terms of equation
(4.54). Multiplying equation (4.57) with (δt/2)(∂t + ciα∂α) and subtracting it by
itself leads to

δt(∂t + ciα∂α)fi = −∆t

τ
fneq
i +∆t(∂t + ciα∂α)

∆t

2τ
fneq
i (4.58)

after neglecting the higher-order terms. Another ansatz is made where the time
derivative is expanded as

∆t∂tfi = ∆t
�
ϵ∂

(1)
t fi + ϵ2∂

(2)
t fi + . . .

�
, (4.59)

∆tciα∂αfi = ∆t
�
ϵciα∂

(1)
α

�
fi. (4.60)

Such an expansion of the time derivative is known as multiple scale expansion.
Separating the terms of different orders, we get for terms of order O(ϵ)

�
∂
(1)
t + ciα∂

(1)
α

�
f eq
i = −1

τ
f
(1)
i , (4.61)

and for terms of order O(ϵ2) we obtain

∂
(2)
t f eq

i +
�
∂
(1)
t + ciα∂

(1)
α

��
1− ∆t

2τ

�
f
(1)
i = −1

τ
f
(2)
i . (4.62)

The moments of the O(ϵ) equation gives

∂
(1)
t ρ+ ρ(1)γ (ρuγ) = 0, (4.63a)

∂
(1)
t (ρuα) + ∂

(1)
β Πeq

αβ = 0, (4.63b)

∂
(1)
t Πeq

αβ + ∂(1)
γ Πeq

αβγ = −1

τ
Π

(1)
αβ (4.63c)

with the moments defined as

Πeq
αβ =

X

i

ciαciβf
eq
i = ρuαuβ + ρc2sδαβ, (4.64a)

Πeq
αβγ =

X

i

ciαciβciγf
eq
i = ρc2s (uαδβγ + uβδαγ) + uγδαβ) , (4.64b)

Π
(1)
αβ =

X

i

ciαciβf
(1)
i . (4.64c)

Thus, while the equilibrium moments given above are known, the third mo-
ment Π(1)

αβ is unknown. Now taking the moments of equation (4.60), we have
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∂
(2)
t ρ = 0, (4.65a)

∂
(2)
t (ρuα) + ∂

(1)
β

�
1− ∆t

2τ

�
Π

(1)
αβ = 0. (4.65b)

Combining these equations gives finally

�
ϵ∂

(1)
t + ϵ2∂

(2)
t

�
ρ+ ϵ∂(1)

γ (ρuγ) = 0, (4.66a)
�
ϵ∂

(1)
t + ϵ2∂

(2)
t

�
(ρuα) + ϵ∂

(1)
β Πeq

αβ = −ϵ2∂
(1)
β

�
1− ∆t

2τ

�
Π

(1)
αβ . (4.66b)

Using the isothermal equation of state p = ρc2s, we obtain (see Appendix
A.2.2. of [10])

Π
(1)
αβ = −ρc2sτ

�
∂
(1)
β uα + ∂(1)

α uβ

�
+ τ∂(1)

γ (ρuαuβuγ). (4.67)

Using equation (4.67) and plugging back the time derivatives into equations
(4.66a) and (4.66b) and neglecting the O(u3) term ρuαuβuγ , we finally get the
Navier-Stokes equations

∂tρ+ ∂γ(ρuγ) = 0, (4.68)
∂t(ρuα) + ∂β(ρuαuβ) = −∂αp+ ∂β [η(∂βuα + ∂αuβ)] (4.69)

with the following relations -

p = ρc2s, η = ρc2s

�
τ − ∆t

2

�
. (4.70)

It is important to note that the equation of state is required to close the system
of equations. While the incompressible Navier-Stokes equations are a closed sys-
tem of equations, the Lattice Boltzmann equations solve the compressible Navier-
Stokes equations and hence ρ is also an unknown. The Lattice Boltzmann equation
is valid only in the limit of small Mach number where the Mach number Ma is
given by

Ma =
u

cs
(4.71)

where u is the characteristic velocity of the system. In the limit of small Mach
number Ma ≤ 0.1, the fluid is said to be in the weakly compressible limit, where
variations in ρ are small and the continuity equation can still be approximate to be
of the form ∇ · u = 0. Thus, the Lattice Boltzmann equation is used to simulate
incompressible fluids.
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4.3.2 The Lattice Boltzmann Algorithm
We have already seen and derived from scratch the Lattice Boltzmann equation
given by

fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
(fi(x, t)− f eq

i (x, t)) . (4.72)

This is implemented in two steps, known as collision and streaming. The
collision step is a local algebraic step and is given by

f ⋆
i (x, t) = fi(x, t)−

∆t

τ
(fi(x, t)− f eq

i (x, t)) . (4.73)

Here, f ⋆
i is the value of the distribution function post-collision. The equilib-

rium distribution function can be calculated given the values of the macroscopic
quantities, ρ and u along with the set of velocity vectors. The next step is stream-
ing, where the populations are transported to their respectively neighbouring lat-
tice sets according to the lattice velocity vectors, that is,

fi(x+ ci∆t, t+∆t) = f ⋆
i (x, t). (4.74)

Following the streaming step, the various moments of f are calculated to ob-
tain the macroscopic hydrodynamic quantities. To recap, the density and the ve-
locity are respectively calculated as

ρ(x, t) =
X

i

fi(x, t), u(x, t) =
1

ρ

X

i

cifi(x, t). (4.75)

These are used to calculate the new equilibrium functions which in turn are
used in the succeeding collision step. Note that this Lattice Boltzmann algorithm
is valid only in the bulk. At the boundary, that is the edge of the lattice grid,
the streaming step fails as the populations arriving from neighbouring sites in one
direction are missing. Thus, appropriate boundary conditions have to be imposed
which provide the missing populations to the boundary grid points.

4.4 Forcing in Lattice Boltzmann
In the presence of a force acting on a fluid, the Navier-Stokes equation is modified
by adding a forcing-term F to the momentum conservation equation. It can be
shown by Chapman-Enskog analysis again that the Lattice Boltzmann equation is
modified in turn by the addition of source-term as
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fi(x+ ci∆t, t+∆t) = fi(x, t) + (Ωi + Si)∆t, (4.76)

where Ωi = − 1
τ
(fi − f eq

i ) is the usual collision operator while the additional
source term is given by

Si =

�
1− ∆t

2τ

�
wi

�
ciα
c2s

+
(ciαciβ − c2sδαβ)uβ

c4s

�
Fα. (4.77)

The form of the additional term for forcing was proposed by Guo et. al [53]
and is thus known widely as the Guo-forcing scheme and it is among the most
widely used forcing schemes in Lattice Boltzmann algorithms.

Defining Fi = (1− 1
2τ
)−1Si, the moments are given by

X

i

Fi = 0, (4.78a)

X

i

Ficiα = Fα, (4.78b)

X

i

Ficiαciβ = Fαuβ + uαFβ. (4.78c)

It can be shown by performing the Chapman-Enskog analysis again that the
calculation of the velocity moment is modified by a correction factor given by

u =
1

ρ

X

i

fici +
F∆t

2ρ
. (4.79)

The forcing term in fluids usually takes the form of a buoyancy force that is
proportional to the gravitational acceleration g.

4.5 Two Population Lattice Boltzmann for Advected
Scalar

The advection-diffusion equation (ADE) for a scalar C has already been intro-
duced in chapter 3.1 and is given by

∂C

∂t
+ (u ·∇)C = D∇2C. (4.80)

The ADE shares several similarities with the Navier-Stokes equation and thus
the Lattice Boltzmann method can be easily adapted to solve problems of the
transport of a scalar in a fluid. Introducing another set of population gi which
solve the Lattice Boltzmann equation [54]
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gi(x+ ci∆t, t+∆t) = gi(x, t)−
∆t

τg
(gi(x, t)− geqi (x, t)) , (4.81)

solves the ADE for scalar concentration C =
P

i gi. The diffusivity D is given
by

D = c2s

�
τg −

∆t

2

�
. (4.82)

The equilibrium distribution geqi is given by

geqi = wiC

�
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

�
. (4.83)

The easy adaptability of the Lattice Boltzmann method to the ADE arises
from the fact that the Navier-Stokes equation itself is of the form of an advection-
diffusion equation for the momentum ρu. The equilibrium functions geqi depends
on the u, thus the velocity is imposed externally. Once again, the link between
the equation for gi and the ADE is shown by a repeat of the Chapman-Enskog
analysis

In several applications of the ADE, there is often an added source term Q on
the RHS, which represents either release or absorption of the scalar. The form of
the Lattice Boltzmann equation for the set of populations gi is then modified as
[55]

gi(x+ ci∆t, t+∆t) = gi(x, t)−
∆t

τg
(gi(x, t)− geqi (x, t))+

�
1− 1

2τg

�
wiQ (4.84)

The concentration of the scalar C is then obtained by the modified moment

C =
X

i

gi +

�
1− 1

2τg

�
Q. (4.85)

Other methods to represent the scalar in the Lattice Boltzmann algorithm in-
clude using additional lattice velocities in the velocity, among others. The two-
population method for simulating an advected scalar in a fluid has one crucial
advantage over other methods - the choice of setting the fluid LB relaxation time
τ and the advection LB relaxation time τg independently allows ν and D to be set
independently of each other.
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Chapter 5

Nudging applied to Turbulent
Rayleigh-Bénard Convection

Summary First, the chapter motivates an understanding of data assimilation and
in particular, the technique of nudging. Following this, the details of the study
on nudging applied to Rayleigh-Bénard convection conducted as part of the the-
sis work are described fully. Nudging, a data assimilation technique is applied to
the temperature field of Rayleigh-Bénard convection flows of varying degrees of
turbulence (changing Rayleigh number). The equations of the model system are
described along with an account of the various numerical experiments performed.
It is assumed that partial temperature measurements from the Rayleigh-Bénard
convection are available via some immersed passive probes. The quantity of infor-
mation is varied by varying the number of probes and the efficacy of the nudging
technique in reconstructing the flows are assessed as a function of the quantity of
information. Local, global as well as scale-by-scale reconstruction errors are stud-
ied for the various cases. The results are analysed in terms of the complexity of
the solution at various Rayleigh numbers. Finally, the conclusions and the physi-
cal insights gained from the study regarding the correlation between the velocity
and temperature fields are listed as well as possible directions for future research
to build upon the study.

5.1 Introduction to Data Assimilation
Several systems in nature can be described accurately and realistically by numer-
ical models which can predict the behaviour of the system, provided the initial
state of the system is well known. However, it is rare to obtain complete informa-
tion about a given system at a given point of time. Further, both observations and
models may contain errors, either due to intrinsic reasons and constraints (in case
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of models) or due to disturbances and random errors (in case of observations).
Data Assimilation is a family of techniques to combine computational models

along with observational data to produce an optimal analysis. An Analysis is a
rendering or estimate of the true state of a system (usually the atmosphere) at a
given time. Such an analysis is used to either study and understand the atmosphere
itself, to test the accuracy of models or as an initial state to be fed into another
model or system. An analysis is usually performed given only partial/sparse ob-
servational data, and data assimilation is the way to incorporate observations to
improve the analysis.

It is important at this point to precisely define some terms that will be used
in the rest of this chapter. The Truth is the true state of the system attained and
consists of a set of numbers describing the system accurately. The background
information consists of an a prior estimate of the system, usually obtained via nu-
merical simulations using a realistic model. The background can also be a trivial
state of the system or it could be the output of a previous model run. Observations
are physical measurements of the system. These observations are often incom-
plete, with measurements conducted only of sparse regions in space, or only of a
subset of the state variables. Often, observations of state variables are not avail-
able directly and instead must be estimated indirectly by measurements of other
quantities. A prominent example of such a situation is the use of outgoing infrared
radiation to measure the temperature of the atmosphere or a land surface. Thus,
the directly observed quantity is the radiation, which provides an estimate of the
state variable of temperature, for which the equations are known.

The concept of data assimilation is the following - for well-behaved systems
with known dynamics and physical properties, the constraints imposed by the
physical laws can be exploited so that observations are incorporated into the back-
ground (a priori model, usually numerical) to produce an improved, more accurate
analysis. Thus, in pure modelling,

Analysis = Background

,
whereas in data assimilation,

Analysis = Background + Observations

.
Given an already existing background state vector xb which contains all the

information of all the state variables such as velocity, pressure, temperature, den-
sity, humidity, etc., the problem of data assimilation is to find the right increment
vector δx to obtain a more accurate analysis xa that is closer to the truth state
vector xt.
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xa = xb + δx. (5.1)

For this, the observations y are used. To correctly estimate the errors with
respect to the observations, an observation operator H(x) is needed which maps
the model state to the observation space. That is to say, given a model state x,
the operator H applied on this state gives the observation (or measurement) that
would arise if the model state were the truth. If we assume an observation y with
no error, then y ̸= H(x) indicates that x is not the true state and needs to be
updated. The departure y −H(x) can also be used as a measure of the efficacy
of the data assimilation method.

5.2 The need for Data Assimilation
There are several reasons for observations to be incorporated into models. Most
importantly, models simulating complex, chaotic systems rely on extremely accu-
rate initial conditions. This initial condition can come from either observations or
a previous model run - in which case finding an optimal way to combine the two
leads to superior initial conditions for subsequent model runs. Further, as men-
tioned, observations tend to be sparse and they alone cannot provide a complete
analysis - in this situation leveraging known physical laws to estimate the state of
the system where observations are absent is crucial. If observations of all state
variables are available everywhere, then analysis is reduced to mere interpolation.

Further, both models and observations are characterised by intrinsic errors.
Observational errors can arise from instrumental errors or disturbances. Even if
the observations are assumed to be perfect, model errors are inescapable due to
the finite resolution of an numerical model of a system. These are known as
representativeness errors.

5.3 Nudging
The simplest of the data assimilation techniques are the so-called Cressman anal-
ysis schemes [56]. Given a background state xb and a set of n finite observations
yi, i = 1 . . . . . . n, an update is performed at each grid point j according to

xa(j) = xb(j) +

Pn
i=1 w(i, j)[yi − xb(i)]Pn

i=1 w(i, j)
, (5.2)

where w(i, j) is a weight function that is a decreasing function of the distance
between the grid point j and the point i at which the measurement yi is made,
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Figure 5.1: A schematic of the Cressman method applied to a state x. The light
solid line represents the model output or background while the stars represent the
observations. The analysis is obtained by applying a correction to the
background in the vicinity of the observations. When observations are extremely
sparse, the analysis deviates from the truth. Image taken from [17].

denoted di,j . It often also involves some cut-off distance R so that w(i, j) = 0
when di,j > R.

While the above analysis is performed at a single time step to apply one δx to
the analysis, one can make use of continuous measurements which are sparse in
space while working with a time evolution equation. This is a technique known
as nudging where, in addition to the weighted data relaxation term related to the
distance as above, there is also a factor α = 1/τ multiplied which is a time relax-
ation factor. This enables to make use of a stream of data from fixed or moving
points in space to be assimilated when the model equations are known.

Given a state variable a evolving according to the equation [57, 58]

da

dt
= F (a;λ), (5.3)

where λ are the various parameters of the system with initial condition a(t0) =
a0. Given the measurements in space yi(t), first we define an interpolation opera-
tor Ih(yi(t)) which appropriately interpolates the observational data in time and/or
space. A nudging term is calculated similar to the term in the Cressman analysis
scheme as the difference between the interpolated observational data and the dy-
namic model output. Thus, nudging involves applying of Cressman analysis like
correction terms sequentially. For the system a, we define a new system b, called
the nudged system or the reconstructed system which follows

db

dt
= F (b;λ)− α(b− Ih(yi)), (5.4)

with a different initial condition
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b(t0) = b0. (5.5)

Along with the initial conditions, the boundary conditions of the system a
might differ from those of b as well. If one is interested solely in the bulk be-
haviour of a system far from the boundaries, this factor may not be important and
can lead to a local synchronisation of a and b.

The weight term from equation (5.2) is absorbed in the function α, which
sets the strength of the nudging, that is, the coupling between the model state
variable and the observational values. α in general varies with space and time
and has several features similar to the weights w(i, j). It is also a decreasing
function with increasing distance from the site of the observation and α too is often
defined with a cut-off length to ensure that only points in the immediate vicinity
of the observations are forced and α = 0 at points far away from the points where
observations are made. Setting the value and shape of α is non-trivial as when
the observations are sparse and α is large, it may lead to overcorrection or force
the system b to attain different values from the original system a when Ih is not
designed correctly.

It is important to note the strength of the nudging method of data assimilation.
It involves only the addition of a single forcing term, which can be made smooth
by allowing α to be smooth. Further, at the points where observational data is not
available, the reconstructed system still follows the same equations as the origi-
nal system from which data is obtained. Thus, in the spirit of data assimilation,
nudging leverages both, the knowledge about the physics and dynamics of the
system as well as forcing the system to be as close as possible to the observational
measurements wherever they are available.

The Cressman Analysis and nudging are examples of sequential data assim-
ilation schemes, wherein observations are dynamically fed-back into the model
wherever and whenever they are available to align the model output more closely
with the observation. This does not take a global view of all the observations. No-
tice that if observations are not sparse and are available everywhere, the analysis
reduces to merely an exercise of interpolation without any need for the back-
ground.

5.4 Introduction to the study
As we have already seen, thermal flows are of fundamental importance in several
geophysical as well as industrial settings. They offer a rich variety of dynamical
behaviours, pattern formation, transition to chaos and fully developed turbulence.
The Rayleigh-Bénard convection is a model thermal flow already introduced and
discussed in Chapter 3. In the rest of the chapter, a study is described wherein
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only partial temperature measurements on turbulent Rayleigh-Bénard convection
flows are used to reconstruct the original flow by the technique of nudging. Here,
we directly apply the ideas of data assimilation to reconstruct a thermal flow given
only sparse measurements on the most important state variable driving the flow -
the temperature. The study is envisioned as a first step towards understanding
the feasibility of applying data assimilation techniques on single state variables
with completely missing data on other state variables, which are reconstructed
indirectly via the model equations. This has already been done for the Rayleigh-
Bénard convection using velocity data [59] as well as vorticity data [60], but to
the best of our knowledge, nudging has not been applied only to the temperature
field for a turbulent Rayleigh-Bénard convection.

5.5 Temperature-Velocity correlations in thermal flows
Despite their omnipresence, several facts about convective flows remain unsettled
and continue to be areas of active research. For example, in the Rayleigh-Bénard
convection, there is still considerable debate whether the turbulent flow shows
the Bolgiano-Obukhov (BO59) scaling or shows only scaling compatible with
the K41 theory. In the BO59 case, temperature is strongly active at all scales
and kinetic energy cascades to the small scales via interactions with the thermal
component, while in K41, kinetic energy is mainly injected by buoyancy in the
bulk and transferred to high wavenumbers via the nonlinear Navier-Stokes terms.
The interaction between large-scale thermal plumes and small-scale, intermittent
turbulent fluctuations is also not entirely understood [2].

The Charney conjecture, first introduced by Charney in 1969 [58], states that
temperature information alone is sufficient to know the entire state of the atmo-
sphere. The conjecture was shown to be true in some simple systems, but has
been found to be invalid for more complex, turbulent flows [61, 62]. In turbulent
scenarios, correlations between temperature and velocity at the smaller scales are
often not strong enough for the temperature to fully enslave the evolution of the
velocity field. In recent years with greater and greater computational resources
available to weather forecasters, with centres able to fully resolve the scales of
three dimensional turbulence, this conjecture has started to gain more prominence.
The general question of how much information on which fields or components al-
low reconstruction of the entire state of a system is central to Data Assimilation
algorithms.
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5.6 Partial Temperature Observations
The focus in this study is on turbulent 2D Rayleigh Bénard Convection where
simulations are performed to understand the quantity of information as well as the
quality of information on the temperature field that needs to be provided for an
accurate reconstruction of the temperature field. Further, given a reconstruction
of the temperature field, we also study the accuracy of the resulting reconstruction
of the velocity field, which is reconstructed indirectly via the interaction and cor-
relation between the temperature field and velocity field. We further study how
this varies for varying Rayleigh number, that is, varying degrees of turbulence.

The study is thus a step towards understanding the feasibility of data assimila-
tion techniques on real-world observational data when information on one or more
state variables are missing. Our main result concerns the limit up to which the ve-
locity field can be inferred from the temperature field. In particular, we show that
there exist a transition for some characteristic Rayleigh number, Ra ∼ 107 where
the capability to construct the whole velocity configuration deteriorates suddenly.

5.7 Experimental set-up
We start with a two-dimensional Rayleigh-Bénard convection system under the
Boussinesq approximation with velocity u = (u, v), temperature T , and pressure
p with the equations taking the well-known form

∂tu+ (u ·∇)u = −∇p+ ν∇2u− βTg, (5.6)
∂T

∂t
+ u ·∇T = κ∇2T, (5.7)

∇ · u = 0, (5.8)

where the average temperature of the fluid is set to zero and the density to
unity. As usual, β is the thermal expansion coefficient of the fluid at temperature
T0 = 0, ν is the kinematic viscosity of the fluid, κ is the thermal conductivity
of the fluid and g is the acceleration due to gravity. The domain is a rectangle
with horizontal and vertical length Lx and Lz, respectively, and is periodic in the
horizontal x direction. The vertical temperature and velocity boundary conditions
are given, respectively, by

T (z = 0) = Td, T (z = Lz) = −Td,

u(z = 0) = u(z = Lz) = 0.
(5.9)

where Td is positive. We also define the usual velocity scale u0 =
p
|g|Lzβ∆T ,

where ∆T = 2Td is the temperature difference between the top and bottom walls,
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and a turnover time scale τ0 = 2Lz/u0. Non-dimensionalising the equations with
these scales yields the Rayleigh number Ra and the Prandtl number Pr as the two
dimensionless numbers characterising the system and the Nusselt number defined
in the usual way.

We also define the Kolmogorov length scale as ηκ = (ν3/ϵ)
1
4 , where ϵ =

(νκ2/L4
z)Ra(⟨Nu⟩−1) is the the average rate of energy dissipation already derived

in Chapter 3.
We assume to have a set of passive probes at positions X i(t), with i =

1, . . . , Np, suspended in a reference Rayleigh-Bénard flow. The probes make pe-
riodic measurements of the fluid temperature T i(t) = T (X i(t), t) with constant
sampling frequency f = 1/τ where τ is the time difference between two suc-
cessive temperature measurements by the probes. We set f high enough so that
a simple linear interpolation in time results in negligible errors and f is chosen
as the smallest value so the sampling was smooth and faster than the fastest time
scale of the system. This way additional complexities of errors arising from tem-
poral interpolation are avoided and we can assume to know T i(t) associated with
each particle at every time-step. The probes considered are of two types. Eulerian
probes have their locations X i(t) kept fixed in the laboratory reference frame.
Lagrangian probes do not remain fixed in time but follow trajectories of tracers
particles in the reference flow instead.

As already detailed above, the idea behind nudging is to run a new system
where the evolution of the flow is steered onto the path set by the data. This new
flow is known as the nudged or the reconstructed flow. A nudging field Tn(r, t) is
constructed using the measurements T i(t) and another Rayleigh-Bénard system
is run, denoted by velocity U = (U ,V) and temperature T , where an extra heat
source term −α(T − Tn) is added to the the evolution equation for T . This term
penalizes the nudged temperature when it deviates from the reference values -
if the temperature is higher (lower) than the nudging field, you locally absorb
(release) heat. For each probe, a nudging square Si is defined with centre at X i

and fixed side length χ typically chosen of the same order as ηκ, (see also Table
5.2) and we nudge only in regions belonging to the sub-domain S := ∪Np

i=1Si,
thus ensuring that nudging is applied only locally near the measurement probes
while the regions in between the probes are left to simply evolve according to the
dynamic equations. We do this by defining α as

α(r, t) =

(
α0, for r ∈ S,
0, otherwise,

(5.10)

and the nudging field is defined as

Tn(r, t) = T i(t), for r ∈ Si, (5.11)
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that is, the measured temperature T i(t) = T (X i(t), t) is set as the nudging tem-
perature uniformly in a square of length χ centred at the probe-location.

The full equations for the nudged fields read

∇ · U = 0, (5.12)
∂tU + (U ·∇)U = −∇P + ν∇2U − βT g, (5.13)

∂T
∂t

+ U ·∇T = κ∇2T − α(T − Tn), (5.14)

where α(r, t) sets the strength of the coupling between the reconstructed flow
and the nudging field and has dimension 1/t. It is very important to stress that the
only energy input into the nudged system is via the nudging field, i.e. we impose
adiabatic boundary conditions at the top and bottom walls.

∂zT |z=0 = ∂zT |z=Lz = 0. (5.15)

In other words, the basic line for the reconstruction has no prior - if Tn = 0,
the flow is zero everywhere. Since the Rayleigh number of the Rayleigh-Bénard
convection is set by the temperature boundaries, it is likely that sampling prefer-
entially from near the walls near the thermal boundary would result in the most
accurate reconstruction. However, in the interest of a fair assessment of the nudg-
ing protocol, we consider only temperature probes on a uniform array without
supposing we know anything about the nature of the thermal boundary. As a re-
sult the only information about the Ra available is that which is encoded in the
probe measurements.

The spatial density of the probes is quantified by a characteristic wavenumber
kl given by

kl =
∆r

l
, (5.16)

where ∆r = 1 is the grid-spacing in the Lattice Boltzmann algorithm to evolve
the flow and l is the typical distance between the nearest probes. As the number
of probes increases, l decreases and kl increases as kl ∼

p
Np. The case of kl = 1

corresponds to the situation where we have complete information, since there are
probes located at every grid-point.

Fig. 5.2 shows the temperature snapshot of a temperature field as well as the
nudging fields Tn(r, t) constructed from this field for three different values of kl.
From the figures, it is clear that for kl ≳ 0.1 the density of point measurements
should be enough to be able to accurately interpolate the temperature field while
for kl ≲ 0.03 or smaller, the input information is rather limited. The problem then
is two-fold — to understand how much information about the temperature field is
needed to reconstruct it to a given degree of accuracy and to investigate the extent
up to which the velocity field can be reconstructed from temperature data.
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Figure 5.2: Snapshots of the temperature fields for the reconstruction
experiments for flow with Ra = 7.2× 107. Panel (a) shows the ground-truth
while (b), (c), and (d) show the constructed nudging field Tn(r, t) with
kl = 1/14, kl = 1/31 and 1/97, respectively. The temperatures are normalised to
range between −1 (blue) and +1 (red) by dividing by Td. The individual squares
here correspond to the nudging squares Si with side length χ = 6. The typical
length l between the probes is shown in panel (d).
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Reference Flows
Ra 7.206 × 107 36.27 × 107

Pr 1.0 1.0
Grid 864× 432 1200× 600

ν 6.67× 10−4 6.67× 10−4

Re 2091 6092
⟨Nu⟩ 24.835 38.802
ηκ 2.12 1.75
Td 0.025 0.015
f 164 1130

Table 5.1: The parameters used for the reference flows. Frequency of sampling f
is in units of probes measurements per turnover time τ0 while all other
parameters are in simulation units. Re is defined as Re = urmsLz/ν where urms

is the root mean square velocity of the flow.

5.8 Numerical Experiments
Equations (5.6) - (5.8) are evolved using the Lattice-Boltzmann method until the
average kinetic energy of the flow becomes statistically stationary. Once this sta-
tionary state is reached, the Np passive probes are initialised in the domain on a
uniform and equally spaced grid and the data from the probes, that is the fluid tem-
peratures T i(t) at X i(t), is obtained for ∼ 250 turn-over times τ0. We consider
the results first for the Eulerian probes. The results from the Lagrangian probes
do not vary greatly from the Eulerian case and a brief overview is provided later.

This measured data by the probes is used to construct the nudging field Tn as
detailed earlier. The flows studied have Pr = 1 and Ra between 107 - 109, which
is the well-known transition to turbulence regime in Rayleigh-Bénard convection.
Two flows in particular, one with a moderate value of Ra = 7.2 × 107 and a
second one with a higher value of Ra = 36.3 × 107 (see Table. 5.1) are studied
and presented in more detail.

We define two important spectral quantities to understand the small-scale struc-
ture of the flow better. First, the time-averaged spectrum (all spectra in this study
are measured only in the horizontal direction in a narrow band about the line
z = z0 = Lz/2) of the velocity field u, or the kinetic energy spectrum, given by

Eu(kx) =
1

2



|û(kx, z0, t)|2

�
t
, (5.17)

where û(kx, z0, t) are the Fourier coefficients of the field u and ⟨.⟩t denotes the
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Figure 5.3: (a) Eu and (b) ET for the two reference flows. Panel (c) shows
v(x, z0, t) at various times during the run for the lower Ra reference flow with
Ra = 7.2× 107 where each curve represents a particular instant of time. Panel
(d) shows the same for the higher Ra reference flow with Ra = 36.3× 107.

time averaging. Similarly, the spectrum of the temperature field is defined as

ET (kx) =
D
|T̂ (kx, z0, t)|2

E
t
, (5.18)

where T̂ (kx, z0, t) are the Fourier coefficients of the field T .
The magnitude of the problem is made clear by looking at the reference flow

characteristics shown in Figure 5.3 Eu, ET and instantaneous horizontal cuts of
the vertical velocity at z = z0, that is, v(x, z0, t), are shown for both reference
flows. Panel (b) shows the spectrum of the temperature field becomes steeper
when increasing Rayleigh number, indicating the presence of less well defined
temperature plumes when turbulence increases. The slope of the temperature
spectrum for the moderate Ra case shows that the temperature field is better cor-
related over a broader range of scales compared to the higher Ra flow. The energy
spectra for both flows are close to a power law as shown in panel (a). On closer
inspection, one can see that the spectrum for the lower Ra flow is indeed flatter
much like the temperature spectrum. A large contrast can also be seen in the en-
ergy contained in the first few Fourier modes, where for the lower Ra flow, the
first mode contains far greater energy compared to the successive modes. In the
higher Ra flow, the first mode is still the most energetic, but the successive modes
still contain a significant amount of energy. This contrast is borne out more clearly
in the horizontal cuts of the vertical velocity for both the flow. In the lower Ra
flow (panel (c)), even the instantaneous velocity field is smooth and highly struc-
tured with a regular, large-scale pattern with only small fluctuations whereas for
the higher Ra flow (panel (d)), the velocity field in the bulk is far more chaotic
and rugged, with a large-scale flow pattern not immediately discernible.

Once Tn is obtained, another flow is initialised with velocity U(r, t) = 0 and
temperature T (r, t) = 0 everywhere and evolved according to equations (5.12)
– (5.14). As already described, the thermal boundary conditions at the top and
bottom walls are set to a no-thermal flux boundary condition so that the only
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Reconstructions
Ra = 7.206 × 107 Ra = 36.27 × 107

Np kl χ α0 Np kl χ α0

3.7× 105 1 - 0.01 7.2× 105 1 - 0.01
7688 1/7 6 0.01 14792 1/7 6 0.08
3872 1/10 6 0.01 7442 1/10 6 0.08
1922 1/14 6 0.01 3698 1/14 6 0.08
800 1/22 6 0.01 1485 1/22 6 0.08
392 1/31 6 0.01 735 1/31 6 0.08
162 1/48 6 0.01 300 1/49 6 0.08
81 1/68 6 0.01 150 1/69 6 0.08
40 1/97 6 0.01 72 1/100 6 0.08
- - - - 36 1/141 6 0.08

Table 5.2: The parameters used for the reconstructed (nudged) flows in
simulation units.

energy inputs into the nudged system arise from the nudging term. The case
of kl = 1 is a special case scenario where it is assumed that the temperature
data is available on every point at every time-step. In this case we use the fixed
temperature boundary conditions of the Rayleigh-Bénard equations and we set
Tn(r, t) = T (r, t) everywhere.

The nudged simulations are evolved until they attain a statistically stationary
kinetic energy. All measurements and further analysis are made in this stationary
state. Identically to the spectra already defined for the reference flows (eqns.
(5.17) - (5.18)), we define the kinetic energy spectra EU and the thermal energy
spectra ET for the nudged simulations as well.

Corresponding to each reference flow, several nudging experiments are per-
formed by varying kl, α0 and χ (see Table 5.1). Henceforth, we focus only on the
effects of varying kl and how these are affected by varying the Rayleigh number
of the reference flow. The effects of varying χ and α0 are discussed later.

5.9 Error quantification
To compare the reconstructed configurations from the nudging experiments with
the ground-truth, we use various measures to quantify the efficacy of the nudging
technique applied here. First, we define a point-wise error for temperature and
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vertical velocity given by

T∆(r, t) = T (r, t)− T (r, t), (5.19)

and
v∆(r, t) = V(r, t)− v(r, t). (5.20)

Next, we define the global L2-error on the temperature and vertical velocity
respectively given by

∆T =
⟨T 2

∆(r, t)⟩
⟨T 2(r, t)⟩ , (5.21)

and

∆v =
⟨v2∆(r, t)⟩
⟨v2(r, t)⟩ , (5.22)

where ⟨·⟩ indicates the average over the entire domain and the entire (sta-
tionary) run-time. We note that perfect synchronisation would lead to a value
of ∆ ∼ 0 while if the reconstructed flow is statistically correct but uncorrelated
with the ground truth, we would have ∆ ∼ 2. ∆T for the reconstructed flows is
compared with a “Baseline Reconstruction” where we calculate ∆T by assuming
T (r, t) = Tn(r, t) for r ∈ S, and setting uniformly ∆T = 1 otherwise - that is
setting the temperature uniformly identical to the nudged field where the flow is
nudged and equal to the mean temperature, T (r, t) = 0, every where else.

To visualise the local errors at each instant, we also define an instantaneous
L2-error on the temperature and vertical velocity given by

δT (r, t) =
T 2
∆(r, t)

⟨T 2(r, t)⟩x,t
, (5.23)

δv(r, t) =
v2∆(r, t)

⟨v2(r, t)⟩x,t
(5.24)

respectively where ⟨·⟩x,t indicates the time and spatial averages at a given
height z.

For a comparison of the scale-by-scale reconstruction, we also define the spec-
trum of the errors of temperature and vertical velocity respectively given by

E∆
T (kx) =

D
|T̂∆(kx, z0, t)|2

E
t
, (5.25)

and
E∆

v (kx) =


|v̂∆(kx, z0, t)|2

�
t
, (5.26)

where T̂∆(k, t) and v̂∆(k, t) are respectively the fourier coefficients of the
fields T∆ and v∆.
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5.10 Results

5.10.1 Visualising the fields and errors
We start by showing visualizations of the reference temperature field T , the nudged
temperature field T and the temperature error field δT at one given instant for both
the flows in Fig. 5.4 and likewise for v, V and δv in Fig. 5.5. Further, the vertical
time-averaged profile of the errors, that is ⟨δT ⟩x,t and ⟨δv⟩x,t are also overlaid on
the snapshots of the instantaneous errors (right-most panels, solid yellow line).
The nudged fields correspond to a case with kl = 1/14, i.e., a high density of
probes as seen in Fig. 5.2(b). Both reference flows are characterised by a rising
hot plume and a falling cold plume and two large-scale counter-rotating vortices.
The visualisations show clearly that the higher Ra flow (bottom row) shows an
abundance of fine-scale structure and further, the plumes are poorly-defined, in
contrast to the moderate Ra flow, where while the flow is not completely laminar,
the plumes are clearly demarcated. The nudging protocol is able to accurately
reconstruct the temperature field, even at higher Rayleigh number. In this case
the maximum error is of the order of 10% and is concentrated on the plume and
vortex structures while the thermal boundary layers show larger errors as clear
from the average profile. This profile for the moderate Ra case is smooth and the
value of the error doesn’t change very sharply depending on whether the partic-
ular region is nudged or not (that is, whether r ∈ S or not). In contrast, in the
reconstruction of the higher Ra flow, the profile of the error shows highly oscilla-
tory behaviour, indicating that while errors are lower in the nudged regions, they
are relatively higher even in adjoining regions which are not nudged. This is a
manifestation of the ruggedness of the temperature field when the flow is more
turbulent. This is an indication that the low magnitude of error is solely due to the
high density of probes in the system and not due to a complete synchronization
of the reconstruction with the reference flows. Closer inspection of this averaged
profile (yellow curves) near the top and bottom walls for both the flows shows that
the error reaches the highest value close to the thermal boundaries. The large error
near the thermal boundary is due to the relatively small thickness of the thermal
boundary layer and the steep temperature gradient away from the wall. It is clear
that to capture the precise behaviour of the temperature near the boundary walls
needs a higher density of probes immersed near the walls.

The situation is different for the velocity field, which is reconstructed indi-
rectly through the thermal forcing and depends on the response of the velocity
field to the temperature field. It is seen from the reference velocity fields (Panels
(a) and (d) in Fig. 5.5), the regions with rising fluid (red) and falling fluid (blue)
are more clearly delineated in the lower Ra flow unlike in the higher Ra flow. The
nudged field is in good agreement with the truth for the lower Rayleigh number
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Figure 5.4: Snapshots of the (a) normalised ground truth field T/Td for
Ra = 7.2× 107, (b) the normalised reconstructed temperature field, T /Td for
kl = 1/14 corresponding to a distance between probes l ∼ 7ηκ and (c) the error,
δT (r, t) at a given instant of time. The yellow curve in panel (c) shows the
time-averaged vertical profile of δT with the scale shown on the top right. The
lower panels show the same quantities for the higher Ra flow with
Ra = 36.3× 107.
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Figure 5.5: Snapshots of the (a) normalised ground truth field v/u0 for
Ra = 7.2× 107, (b) the normalised reconstructed field, V/u0 for kl = 1/14 and
(c) the error, δv(r, t) at a given instant of time. The yellow curve in panel (c)
shows the time-averaged vertical profile of δv with scale shown on the top right.
The lower panels show the same quantities for the higher Ra flow with
Ra = 36.3× 107.
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Figure 5.6: The global reconstruction errors (a) ∆T , and (b) ∆v for
reconstructions of the two reference flows are varying kl. Also shown is the
baseline reconstruction error (black) for the higher Ra flow. The arrows indicate
the value of kl presented in detail in this study and whose corresponding nudging
fields Tn for the moderate Ra case are shown in Figure 5.2.

case (top row) while large systematic errors on the whole volume develop for the
higher Ra flow (bottom row) where the reconstructed velocity fails to capture the
precise instantaneous shape of the reference while still broadly capturing the re-
gions of rising and falling fluid accurately. The average profile of the errors for
both cases are smooth. The invisibility of the nudging squares to the velocity field
is a clear indication that the velocity field is not set locally by the local tempera-
ture but rather by the large-scale interplay between the temperature and velocity
field. The reconstruction of the vertical velocity is most accurate in the bulk. No-
tice that due to the no-slip boundary condition (u = 0) imposed at the top and
bottom walls for the reference as well as reconstructed flows, the particular form
of L2-error chosen here ceases to be well-defined at the vertical boundaries.

5.10.2 Global Errors
In Fig. 5.6 is shown the main quantitative summary of the study, where ∆T and
∆v are plotted as a function of kl for the reconstructions of both flows. As seen
in panel (a), the reconstruction error for temperature decreases when increasing
the number of probes. A transition to synchronization-to-data can be seen at kl ∼
1/14, corresponding to a typical wavenumber kx ∼ 0.036 or 1/28 in Fig. 5.3.
Equivalently, this corresponds to providing information at a separation of ∼ 7ηκ
for the moderate Ra flow and ∼ 8ηκ for the higher Ra flow. The transition to
perfect synchronization of the temperature fields occurs at similar scales in the
two flows studied, and is similar to that observed in homogeneous and isotropic
flows [63, 64]. The baseline reconstruction error approaches 0 for kl = 1/7, the
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Figure 5.7: Energy and temperature spectra for the higher Ra reference flow with
Ra = 36.3× 107 and the reconstructions at various kl - (a) Eu(kx) (black) and
EU(kx). (b) ET (kx) (black) and ET (kx). The dotted vertical line shows the
wavenumber corresponding to the length χ of the nudging squares.

scale at which for the chosen χ, the nudging squares cover the entire domain and
thus, the baseline error includes only the small-scale temperature errors introduced
by the application of a constant nudging temperature within each nudging square.
Setting χ to be larger would cause these small-scale errors to be far larger while
setting χ too small would lead to a reconstructed flow with significantly smaller
kinetic energy and increase the effective distance between the probes, thus leading
to larger global errors.

As for the reconstruction of the velocity field shown in panel (b), while the
velocity field can be accurately reconstructed in the lower Rayleigh number case,
the higher Rayleigh number case does not synchronize even for full information
on the temperature (kl = 1), showing a plateau at close to 40% for the average
minimum error committed, the plateau being reached already at kl = 1/48. The
result is not completely surprising, indicating that for high Rayleigh number the
slaving of the velocity field is less and less effective, and the imposition of more
and more information on the forcing field (here the temperature) is not sufficient
to recover full synchronization when turbulence is intense enough.

5.10.3 Scale-by-scale spectral properties and spectral errors
Figure 5.7 shows the statistical reconstruction of the flow properties by plotting the
spectra for the reconstructed higher Ra flows - EU and ET - the same quantities
as shown in the first two panels of Fig. (5.3) - for various kl along with the ground
truth in black. Panel (a) shows that the nudging experiments retrieve a flow with
a velocity field with similar dynamic properties as the reference at all scales. In
panel (b) showing the spectrum of the thermal energy, as expected the case with
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Figure 5.8: The spectra of the errors (a) E∆
v and (b) E∆

T for various kl for
reconstructions of the higher Ra flow with Ra = 36.3× 107. For comparison, the
reference spectra (a) Ev and (b) ET are also shown (black squares). The inset in
panel (a) shows Ev for the moderate Ra reference flow with Ra = 7.2× 107 and
E∆

v for the corresponding nudging experiments. The dotted vertical line shows
the wavenumber corresponding to the length χ of the nudging squares.

kl = 1 follows the ground truth exactly while the case with kl = 1/14 captures the
correct large-scale dynamics and at the same time introduces spurious correlations
at smaller scales. This is due to the finite sizes of the nudging squares within
which the nudging temperature is imposed uniformly, leading to systematic errors
of small magnitudes for points close to X i.

Further insight into the scale-wise behaviour is provided in Fig. 5.8, which
shows the error spectra E∆

v and E∆
T and the corresponding reference spectra ET

and Ev. The scale-wise relative error can be gauged by the vertical displacement
between the reference spectrum (black) and the reconstructed spectra. In panel
(b) the error spectrum is nearly flat at large-scales with a value strongly depen-
dent on kl while ET falls off gradually, indicating an increasing relative error for
increasing kx with the lowest relative errors at the largest scales. For larger kx
(smaller length-scales) we see a clear manifestation of the errors introduced by
the finite nudging squares for kl = 1/14 and kl = 1/31. The error-spectrum for
kl = 1/100 is identical to the temperature spectrum of the ground truth, a result of
the fact that the probes are extremely sparse and hence the reconstructed temper-
ature field is nearly 0 everywhere. The black curve in panel (a) is the spectrum of
the vertical velocity Ev(kx). The relative error is smallest at the largest scale and
at smaller scales (larger kx), we see that the error spectra and reference spectrum
decay almost identically and hence shows a nearly constant relative error. It is in
this aspect that we see the greatest contrast between the two Ra flows. The inset
shows that reconstructions of the moderate Ra flow has far smaller relative error
at the largest scales and this even persists for larger values of kx. The small-scale
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Figure 5.9: Profile of the Nusselt number for the ground truth and the
reconstructions of the reference flow for (a) moderate Ra flow with
Ra = 7.2× 107 and (b) higher Ra flow with Ra = 36.3× 107. The reference
Nusselt number Nu(z) and the reconstructed Nusselt number Nu(z) are divided
by the corresponding reference Nusselt number ⟨Nu⟩ with magnitude (a)
⟨Nu⟩ = 24.835 and (b) ⟨Nu⟩ = 38.802 respectively.

behaviour is similar to what is observed for the higher Ra case in the main panel.
Another important point to note is that the value of the error spectrum E∆

v

shows little dependence on kl and that the only scales of the velocity field that
truly synchronize are the largest ones. The largest scale structure present are the
hot and cold thermal plumes, which are captured correctly by the reconstruction.
When the degree of turbulence is lower, there is a relative absence of fine-scale
structures in the flow and most of the energy is contained in the large-scale alone
- this large-scale synchronisation persists at some mid-range and smaller scales
as well. For more turbulent flows where the plumes are less well-defined and the
velocity field is more rugged, the synchronisation at the largest scales exists but
to a smaller degree and it does not persist at smaller scales. This leads eventually
to a much larger global error. These observations are explored in further detail
below.

5.10.4 Inferring Nusselt Number
The Nusselt number defined in equation (1.8) measures the heat transfer due to
convection relative to that due to conduction in the Rayleigh-Bénard system. Sim-
ilarly, for the reconstructed flows we define the Nusselt number as

Nu(z) =
VT − κ∂zT

κ∆T
Lz

, (5.27)

where ∆T is the temperature difference between the horizontal walls for the cor-
responding reference flow. As already noticed, given only a set of temperature
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(b) Relative scale-wise error E∆

v /Ev for the reconstructed flows.

measurements it would be impossible to infer neither the Rayleigh number nor
the Nusselt number. In Fig. 5.9 we show the average profile of the Nusselt num-
ber as a function of the distance from the wall for the reference as well as the
reconstructed flows for the moderate Ra flow and the higher Ra flow in panels
(a) and (b) respectively for different kl. As expected, for the moderate Rayleigh
number flow, the Nusselt number is perfectly reconstructed as soon as we are
close to the transition to perfect synchronization, except at the walls where we
force Nu → 0 by setting an adiabatic boundary condition. In the kl = 1 case
where the walls have fixed temperature identical to the reference, the Nusselt pro-
file is reconstructed perfectly. In the higher Ra case on the other hand, even when
the temperature field is perfectly synchronised, there is a large discrepancy be-
tween the reconstructed and the reference values. It is interesting to notice that
the main source of errors comes from the region just after the thermal boundary
layer, where the correlation between plumes and vertical velocity drafts are partic-
ularly important. In the bulk the reconstruction is accurate when the probes reach
a high enough density (kl ≥ 1/14).

5.10.5 Varying Rayleigh Number
To further corroborate our findings reported thus far regarding the large-scale syn-
chronization of the reconstructed flows with the reference flows, we conduct an-
other series of nudging experiments for varying values of Ra with kl = 1, that is,
complete information on temperature. For all the flows, we have ∆T ≲ 10−3. We
show the corresponding values of ∆v as a function Ra in Fig. 5.10(a). The inset
of the Figure shows the same but in the semilog scale. In Fig. 5.10(b) we show
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the spectra of the errors E∆
v compensated by the spectra of the reference Ev for

a selection of cases. At Ra ∼ 107 the velocity field is reconstructed correctly by
the nudging protocol, but at around Ra ∼ 108 a transition occurs, and the nudged
flow is not able to synchronize to the reference flow anymore.

In order to get a better understanding of this phenomenon, we calculate the
strength of the Large Scale Circulation (LSC) by looking at the ratio of the energy
in the lowest wavenumber (first Fourier mode) E1 and the energy ELS contained
in the first four Fourier modes [65] given by

ELS = E1 + E2 + E3 + E4, (5.28)

where Ei is the average energy contained in the i-th Fourier mode. In Fig. 5.10(a),
we plot (blue triangles) the deviations from the LSC strength for the various ref-
erence flows, i.e. 1 − E1/ELS. At low Ra most of the energy is contained in
the largest mode, something that is suggested by Fig. 5.3(c), while when Ra is
increased, the flow becomes more turbulent and disordered, as seen in Figs. 5.3(a)
and (d) and the energy contained in the smaller scales is more and more signifi-
cant. We see that the deviations from the LSC scale similarly as ∆v. The results
are qualitatively the same even if we consider ELS as the sum of all Fourier modes
of the energy instead of just the first four, with the mean of 1 − E1/ELS merely
shifted upward.

Further, we consider a continuous saw-tooth function λ with period Lx and
translated by a distance a given by

λ(x, a) =





4
Lx
(x− a), 0 ≤ x ≤ Lx

4
+ a

− 4
Lx
(x− a) + 2, Lx

4
+ a < x ≤ 3Lx

4
− a

4
Lx
(x− a)− 4, 3Lx

4
− a < x ≤ Lx

(5.29)

with a chosen at each instant such that
Z x=Lx

x=0

v(x, Lz/2, t) · λ(x, a)dx

is maximum. The similarity between the saw-tooth function and the vertical ve-
locity signal is then calculated as the time-averaged Pearson Correlation Coeffi-
cient, denoted Cs.t. In Fig. 5.10(a) we also show the value 1−Cs.t which quantifies
the deviations from the saw-tooth mode for the vertical velocity. We see again that
∆v scales similar to the deviations from the saw-tooth function.

This picture indicates that at low Ra supplying the location of the hot and
cold plumes is enough to reconstruct the flow accurately, as the plumes set the
structure of the largest scales with a single dominant mode that can be approx-
imated as a cosine or a saw-tooth. When the flow becomes more turbulent the
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Figure 5.11: The global reconstruction error ∆T as a function of kl with Eulerian
and Lagrangian nudging for reconstructions of the lower Ra flow with
Ra = 7.2× 107

number of structures that can exist in the flow increases and, thus, information on
the plumes positions alone cannot uniquely determine the proper solution. This,
further coupled with the fact that there exist several features of the flow at smaller
scales leads to a poor reconstruction of the Rayleigh-Bénard Convection at larger
Rayleigh numbers.

5.11 Lagrangian Nudging
Apart from nudging using fixed temperature probes on a uniform grid as shown in
figure 5.2, another novel approach to nudging is to nudge along the trajectories of
tracer particles as in [66], which in our case is the same as having probes as passive
tracer particles. Thus, the probe locations X i(t) for i = 1, 2, . . . , Np satisfy

dX i(t)

dt
= u(X i(t), t) (5.30)

Consecutive measurements of temperature and position are made with the same
frequency f as the Eulerian case and both quantities are again interpolated linearly
to obtain a reading at each time-step. Off-grid temperatures are obtained using a
bi-linear interpolation. The nudging-squares for each probe is constructed with the
nearest grid point to the interpolated probe location as the centre. In the regions
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where the nudging squares of multiple probes intersect, Tn(r, t) is set as the mean
of the T i(t) of the intersecting probes while α(r, t) is set to be nα0, where n is
the number of probes whose nudging squares intersect at r.

As shown in Figure. 5.11, the Lagrangian approach to nudging shows only
a marginal improvement in reconstruction of the temperature field for smaller kl
when compared to the Eulerian approach while the reconstruction of the velocity
field remains unchanged and identical to the Eulerian case for the corresponding
kl.

5.12 Selection of the Parameters
The results presented in the main text have fixed χ = 6 and α0τ = 4. These
results are representative of results for a larger family of parameters. The main
quantitative result of the study - once ∆T reaches a low enough value for a given
flow, ∆v reaches a saturation value - still holds true. Here we report the effect of
changing the two parameters, namely the value of α and the size of the nudging
squares χ. The results are summarized in Figure 5.12. In panel (a) we see that
∆T is far larger for smaller values of α0 with a transition to a saturation value of
∆T ∼ 0.1 at α0τ ∼ 0.4. In panel (b) we see the variation of ∆T for changing
size of the nudging squares χ. Additionally, the “Gaussian” case refers a nudging
experiment where we set

α(r, t) = α0 exp

�
− |r −X i(t)|2

2

�
, for r ∈ Si (5.31)

to examine whether the discontinuity of the forcing term has a significant im-
pact on the reconstruction of the temperature field. There exists an optimum value
of χ for the given flow, but the change in ∆T is not very significant. On one
hand, increasing the size of nudging squares introduces more temperature errors
at the smallest scale while on the other hand, very small nudging squares lead to
large regions between probes which aren’t nudged and hence decorrelate from the
known temperature of the probe location. The reconstruction error in velocity for
changing α0 as well as changing χ behaves as anticipated already in figure 5.6 -
∆v decreases with decrease in ∆T up to a certain point and then saturates. This
behaviour is qualitatively similar for the higher Ra flow as well.

5.13 Conclusions and Discussions
A study of nudging applied to a thermally driven fluid in the presence of a bulk
external forcing (gravity), where the only control variable is the temperature was
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Figure 5.12: (a) ∆T for reconstructions of the lower Ra flow with
Ra = 7.2× 107 for kl = 1/14 as a function of α0τ , where only α0 is varied. (b)
∆T for reconstructions of the lower Ra flow for different configurations of the
nudging squares for kl = 1/14 . The blue arrows in both panels indicate the
value chosen for more detailed analysis for this study.

presented. The quantity of information as well as the quality of information to
be used was varied and it has been have shown that given a greater quantity of
information on the temperature, the nudging method used here yields a superior
reconstruction of the temperature field, with a transition to full-synchronisation
around kl ∼ 0.07 corresponding to a distance between probes of around 7ηκ for
both flows. The reconstruction of the velocity field on the other hand saturates
from a relatively lower kl and supplying more information, even the full tempera-
ture field with near-perfect reconstruction of temperature fails to further improve
the velocity reconstruction. The degree of synchronisation between the recon-
structed and the reference velocity fields depend on the Rayleigh number and the
degree of turbulence in the reference flow, with the largest scales of the flow syn-
chronising the most effectively while at smaller scales, the velocity fields remain
largely asynchronous.

The quality of information was varied by following a Lagrangian approach
as well as an Eulerian approach and in the construction of the nudging field Tn

given the information on the temperature. While the different approaches yielded
slightly different reconstructions of the temperature field, the accuracy of the re-
construction of the velocity field remains nearly the same.

Rayleigh Bénard convection is driven by the response of the vertical velocity
to the local temperature. The correlation between these two fields however mani-
fests first at the largest scales in the velocity and local temperature measurements
alone fails to predict the local velocity. Providing sufficient information on the
temperature provides information of these largest scale features - the plumes - and
hence the large-scale flow. This study thus helps to understand the fundamental
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role played by the temperature field alone in the Rayleigh-Bénard convection and
answers the question – how much does the velocity field depend on the quan-
tity and quality of information available on the temperature field? The accurate
reconstruction of the velocity field at lower Rayleigh numbers is a result of the
relative absence of smaller and fine scale structure in such flows. At higher Ra,
when the thermal flow is more turbulent, richer in small-scale structures, with
thermal plumes less well-defined and rapidly fluctuating velocity field, the indi-
rect reconstruction of the velocity field reproduces the correct flow dynamics and
synchronises relatively poorly even at the largest scale, though the relative error
on the first Fourier mode is still of the order ∼ 10−1 for the flow with Ra ∼ 109

and highly turbulent. To accurately reconstruct the smaller and smaller scales
would require additional inputs into the system - it is conceivable, for example,
that even a small amount of data on the velocity field could drastically improve
the accuracy of the reconstructed velocity field and that there exists an optimum
way to supply a combination of temperature and velocity data. In this study the
focus was exclusively on the reconstructions using the temperature field alone and
the possibility of using a combination of temperature and velocity fields has been
left for future work.
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Chapter 6

Study on Two-way thermally
coupled Particles

Summary The chapter briefly introduces the reader to the dynamics of particles
suspended in turbulent flows and the phenomenon of preferential concentration.
Studies on non-isothermal particles which interact thermally with the fluid are in-
troduced, along with a motivation to study internally heated system. Following
this, details of the study conducted as part of the thesis work on thermally inter-
acting particles suspended in a fluid are described. The equations describing the
dynamics of the fluid and the response of the particles to fluid are given and the
numerical set-up along with the various parameters of the system are described.
Virtual tracer particles are considered whose temperature depends on their verti-
cal velocity and an interesting effect is reported - when the particle temperature
depends on the direction of the vertical motion, a stable temperature gradient is
obtained and two clearly divergent end-states (stable configuration vs. convective
motion) are observed and a sharp transition occurs. The results from the novel
system for varying parameters are presented, including the magnitude of the tur-
bulent kinetic energy, the nature of the energy spectra and the temperature profiles
as well as the heat transfer across the domain. The particle system is also com-
pared with a Eulerian system where an identical thermal forcing is applied. The
chapter is concluded with a section summarising the results and a discussion on
the key physical insights gained from the study as well as the possibility for future
work building on it.

6.1 Particles in Turbulence
Particles suspended in turbulent flows show highly complex, non-linear interac-
tions with the carrier phase. The trajectories of the particles are determined by the
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local flow velocity at the particle location and the mass, or inertia of the particle.
When the volume fraction of the domain occupied by the particles is negligible
(dilute suspension) and the particle sizes are small, the particles can be assumed
to have no feedback on the fluid flow and the fluid flow can be assumed to remain
unchanged by the presence of the particles. When the volume fraction of particles
is significant or the particle sizes are comparable to or larger than the smallest
flow features of the fluid (of order η), then particle effects on the fluid cannot be
ignored and a two-way coupled system has to be considered where the flow acts
on the particles to determine their trajectory while the particles in return affect the
flow.

Examples of systems with particles suspended in turbulent flows are extremely
common. The dispersal of aerosols in the atmosphere, which includes smoke,
dust, pollen, pollutants, etc is one such example. Aerosols of appropriate chemical
composition may also act as condensation centres for water vapour and thus be-
come nucleii for cloud droplets in the atmosphere. The response of cloud droplets
to the turbulence present in clouds is known to have a significant impact in the ini-
tiation of rain, where the collisions of millions of cloud droplets eventually leads
to their aggregation and formation of rain droplets. The rapidity of this process in
natural settings is explained by intense turbulence of cloud flows. The formation
of planets by the aggregation of planetesimals is also an example of a turbulent
flow with particles suspended - a special case where the turbulent flow itself is
significantly affected by the feedback from the suspended planetesimals.

Tracer particles are particles which follow the local flow exactly - ie., the
particle velocity ui of the i-th particle is given by

ui(t) = u(xi(t), t) (6.1)

where xi is the location of the particle and u(x, t) is the fluid velocity field.
Tracer particles are of two kinds - either they are particles which are extremely
light and small, and hence relax to the local fluid velocity instantaneously. Or, they
are particles whose density is identical to the fluid density. Tracer particles, such
as dyes injected into the fluid, help experimenters to visualise flow trajectories
and indirectly measure flow statistics as well. This is also exploited in Particle
tracking velocimetry, where the particles are often fluorescent under illumination
by certain types of light, allowing clear visualisation of the flow by tracking these
injected particles.

Heavier particles which do not exactly follow the flow trajectory are known as
inertial particles. The simplest dynamics for heavy inertial particles, in the limit of
dilute suspensions and small particle size, is given by the simplified Maxey-Riley
equation [67] -
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ui(t) = − 1

τp
[ui(t)− u(xi(t), t)] , (6.2)

that is, the particle velocity relaxes to the local fluid velocity with a time-lag
of order τp, where τp depends on the particle size, the fluid viscosity ν and the rel-
ative density of the particle with respect to the fluid. An important dimensionless
parameter is the Stokes number St, given by

St =
τp
τη
, (6.3)

which is a ratio of the timescale of the particle reponse to the flows to the
fastest intrinsic timescale of the flow, the Kolmogorov time-scale. When St ≪ 1,
the particle behaves like a tracer, while when St ≫ 1, the particle is extremely
heavy and remains nearly unaffected by the flow.

6.2 Preferential Concentration
An important and widely studied dynamic effect of inertial particles is preferential
concentration, the tendency of particles to aggregate outside the vortical regions
of the flow, which correpond to regions with relatively higher shear. Thus occurs
due to the ejection of inertial particles from vortical regions. The Stokes number
captures the average response of the particle to the flow - however, in rapidly ro-
tating, highly dissipative vortical regions of the flow, the effective time-scale of
the fluctuations of the velocity field of the fluid is far smaller (quicker) than on
average, and thus if we consider an effective, local St, then the particle behaves
like a heavy particle and rather than being entrained in the vortical region, it is
ejected so that on average, particles spend less time in these regions of high vor-
ticity. Thus, preferential concentration is a direct result of the finite response time
of the particle to the flow.

While very light particles (St ≪ 1) or very heavy particles (St ≫ 1) do not
show preferential concentration, the concentration of particles outside the vortical
regions is most enhanced for particles with St ∼ 1.

6.3 Non-isothermal Particles in Thermal Flows and
Internal Heating

Suspended particles which are non-istothermal and thermally coupled to the flow,
that is, there is exchange of heat between the particle and the flow, create local
temperature fluctuations in the fluid, which in turn can further modify a turbulent,
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thermal flow. The modification can be due to the thermal action alone or due to
a combination of thermal coupling and two-way momentum coupling [22]. Even
in case of thermally uncoupled particles, the modification of the flow by two-way
momentum coupling with the particles can alter the heat-transfer dynamics of a
thermal flow [68].

Thermally coupled particles suspended in a flow are a form of internal heating,
wherein the flow is driven by heat injected into the bulk of the system rather
than via boundary conditions, as in the Rayleigh-Bénard convection and several
atmospheric flows. The convection and dynamics arising from internal heating
is relevant to specific natural settings as well, such as the driving of convection
in the earth’s mantle [69]. The thick atmosphere of Venus rich in sulphurous
gases directly absorbs heat from the sun through radiation and this is the dominant
mode of heat input into the system, in contrast with the earth’s atmosphere where
radiative heating of the ground which in turn acts as a hot boundary layer for
the atmosphere is the dominant mode of heating [70]. Internal heating is also
seen in industrial applications such as in liquid-metal batteries [71]. Thus, the
convection and flows induced by internal heating mechanisms have a wide range
of applications. An idealised system of internal heating was studied by Wang et. al
[72] to formulate a unifying theory of internal heating under idealised conditions
(constant bulk heating with fixed temperature boundary conditions) and establish
a theoretical foundation for future studies on internally heated flows.

Concerning thermally interacting particles, individual heated particles is iso-
lation merely form small localised plumes or temperature fluctuations which are
dissipated away in short times. When particles are inertial, their concentration
away from vortical regions (preferential concentration) causes an aggregate ef-
fect with significant alteration to the large-scale flow. This has been observed in
Rayleigh-Bénard convection [73], where the enhancement of heat transfer by the
seeding of hot particles has been found to be maximum for particles with St of
order 1, or the particles with the greatest tendency towards preferential concen-
tration. In studies with no large-scale driving thermal boundary [74, 75], parti-
cles constantly heated uniformly by incident radiation were found to activate the
flow and even induce a self-sustaining turbulent thermal convection, which again
showed the highest degree of turbulence for particles with St = 1.

6.4 Study on virtual non-isothermal particles
The above described numerical experiments all make several idealisations and as-
sumptions, in the interest of first understanding the dynamics of model systems
before proceeding to natural systems. A common feature of these systems is that
the temperature is constantly increasing on average. In the idealised bulk internal
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heating study, it is ensured the temperature doesn’t rise by imposing fixed temper-
ature boundaries. However, this ceases to be a purely internally heated system.

To further understand the dynamics of an internally heated, convective system,
we perform a numerical study of an idealised system with a fixed average temper-
ature. In this study, we envisage as a first step a system with suspended “virtual”
tracer particles in a fluid which interact only thermally with the fluid, i.e., they do
not affect the local momentum of the fluid. In this proposed idealisation, the parti-
cles are either hot (release heat) or cold (absorb heat) and the temperature of these
particles is set by an internal mechanism rather than any uniform external heating.
In such a scenario, the system is internally heated as well as cooled by these virtual
particles so that the average heating term Φ is statistically zero and hence the av-
erage attained by the fluid is thus zero as well. The heat injection by the particles
are the only energy source for the 2D system, since the horizontal boundary walls
are periodic and the top and bottom walls are adiabatic. In this phenomenologi-
cal study, we investigate the attained stationary end-states when such a system is
initialised and allowed to evolve according to the above properties, finding a pro-
tocol that can induce and sustain large-scale thermal convection under the right
conditions while also leading to a quiescent stationary state without convection
otherwise. The method serves to add a novel possibility of conditioning the spe-
cific particle coupling on the dynamics of the particles and understanding ways to
achieve control or modulation through Lagrangian approaches.

6.5 Methods and Equations of Motion
The particle forcing protocol in this study is as follows - virtual tracer particles
are initially seeded randomly in a 2D domain of length Lx and height Lz with a
fluid at rest. The initial temperature of the fluid is set to an unstable configuration
with hotter temperatures at the bottom of the domain and colder temperature at
the top of the domain. The particles are idealised to have infinite heat capacity
and a temperature determined by an imposed temperature protocol where rising,
vertically upward moving particles are warm with a positive temperature T+ while
the temperature of falling particles (v < 0) is set to −T+. The temperature of the
fluid in the vicinity of the particle relaxes to the temperature of the particle at a
rate proportional to the difference between the local fluid temperature T and the
particle temperature T with a relaxation time τ = 1/α, where the value of α(r, t)
depends on the distance of the point r from the locations of the particles.
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The fluid velocity u = (u,v) and temperature T follow the equations

∇ · u = 0, (6.4)
∂tu+ (u ·∇)u = −∇p+ ν∇2u− βTg, (6.5)

∂T

∂t
+ u∇T = κ∇2T − α(T − Tp), (6.6)

where equations (6.4) and (6.5) are the incompressible Navier-Stokes equations
for a fluid of unit density and average temperature T = 0 with a buoyancy-force
term following the Boussinesq approximation, where density variations are small
and enter the equations only through the gravity-force term. Here, p is the fluid
pressure, ν is the kinematic viscosity of the fluid, β is the thermal expansion
coefficient of the fluid. Equation (6.6) is the advection-diffusion equation for the
heat with κ the thermal conductivity and Φ = −α(T − Tp) is a heat-source term
(i.e., a thermal forcing term) that depends on the virtual thermal particles, with Tp

being the effective particle temperature defined later.
The domain is periodic in the horizontal x direction while the top and bottom

walls at z = 0 and z = Lz are adiabatic with u = 0, that is

∂T

∂z

���
z=0

=
∂T

∂z

���
z=Lz

= 0, (6.7)

u(z = 0) = u(z = Lz) = 0. (6.8)

Note that the only source of energy injection into the system is via the particle
heat injection.

6.5.1 Equations of Particle Motion
The Np tracer particles with positions R = {r1, r2, . . . , rNp} and temperatures
T = {T1, T2, . . . , TNp} are initially seeded randomly. The particles have the same
velocity as the fluid at the particle location, that is

ui(t) = u(ri(t), t), (6.9)

where ui is the velocity of the i-th particle and u is the fluid velocity.
Each particle exerts a thermal forcing on the fluid in its immediate vicinity up

to a distance η. The feedback of the particle is defined as a local heat injection term
that is proportional to the difference between the underlying fluid temperature at
the location of the particle and the set temperature of the particle. The strength of
the coupling α between the i-th particle and the fluid (with dimension 1/t) at time
t has the form of a Gaussian with a peak at ri(t), given by

αi(r, t) =

(
α0 exp

�
− |r−ri(t)|2

2c2

�
, if |r − ri| ≤ η

0, if |r − ri| > η
, (6.10)
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where α0 is the coupling strength at the particle location and c is the size of the
virtual particle and defines the sharpness of the peak for the function αi. The
thermal forcing due to the i-th particle at r is thus

Φi(r, t) = −αi(r, t)
�
T (r, t)− Ti(t)

�
, (6.11)

and so the total thermal forcing at a given location r is

Φ(r, t) = −
i=NpX

i=1

�
αi(r, t)

�
T (r, t)− Ti(t)

��
. (6.12)

This can be rewritten as

Φ(r, t) = −α(r, t)
�
T (r, t)− Tp(r, t)

�
, (6.13)

where

α(r, t) =

i=NpX

i=1

αi(r, t) (6.14)

is the effective coupling strength and

Tp(r, t) =

i=NpP
i=1

αi(r, t)Ti(t)

i=NpP
i=1

αi(r, t)

(6.15)

is the effective particle temperature at r. Each particle influences a fixed region
surrounding it and when two particles are within distance 2η, their effects are
additive.

6.5.2 Particle Temperature Policy
The temperatures of the particles T(t) = {T1(t), T2(t), . . . , TNp(t)} is set by a
policy wherein the i-th particle either has a positive value T+ or a negative value
−T+ depending on the sign of the fluid vertical velocity v(r, t). Since the particle
is a tracer, we have

Ti =

(
T+, if vi > 0

−T+, if vi < 0
, (6.16)

where vi is the vertical velocity of the i-th particle. T+ is a parameter that sets the
temperature scale of the system. By heating the regions of fluid moving upward
and vice-versa for the downward moving regions, this policy would be expected
to enhance thermal convection by strengthening any updrafts or downdrafts, if
such exist. The particles and the fluid are coupled to each other since the particles
follow the fluid velocity as tracers, which is in turn affected by the temperature
field.
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6.5.3 Numerical Experiments
With an initial unstable vertical temperature profile of

T (z) = tanh
�Lz

2
− z

�
T+, (6.17)

the fluid equations (6.4) - (1.6) are solved by the Lattice-Boltzmann method along
with the particle evolution as tracers given by equation (6.9). The two-way cou-
pled particle-fluid system is evolved until the flow attains a statistically stationary
kinetic energy. All measurements and analysis are performed in this stationary
state for various sets of parameters, varying T+,Np, α0 and c. The radius of the
particle η is kept fixed throughout this study.

We define an important quantity, namely the typical vertical velocity of each
particle u0 given by

u0 =

r
cgβ

α0

α0 +
κ
2c2

T+ (6.18)

where c is the size of the particle as defined in equation (6.10) and κ is the thermal
conductivity of the fluid. The fluid in the vicinity of the particle relaxes to the
temperature of the particle, and this relatively hotter (or cooler) fluid rises (or
falls). The tracer particle in turn responds to the fluid and the accelerates at a
rate depending on the temperature anomaly, thus depending on g and β, similar to
other thermal flows such as the Rayleigh-Bénard convection. The local heating is
greater for greater c as a larger area surrounding each particle is thermally forced.
The quantity

Ta =
α0

α0 +
κ
2c2

T+ (6.19)

is an effective temperature attained in the vicinity of each particle. The pre-factor
multiplying T+ is a constant quantifying the rate of relaxation of the fluid temper-
ature to the particle temperature α0 relative to the rate at which heat is diffused
away from the particle by conduction proportional to κ/(2c2). We see that when
α0 → 0, Ta → 0, as the system is no longer forced thermally and there is no en-
ergy input into the system. When α0 → ∞, Ta → T+, ie., the fluid immediately
relaxes to the particle temperature. For large κ, the heat is conducted away from
the particle rapidly and thus the effective temperature of the particle is lower while
the case of small κ is similar to having large α0. The particular form of the expres-
sion of the typical velocity is verified by considering an ensemble of systems with
Np = 1 and varying α0 and c. The r.m.s mean of the particle vertical velocity vi is
found to scale as equation 6.18. In particular, it is verified that the particle velocity
statistics remain independent of domain height Lz, thus justifying the choice of c
as the length scale of the system. Further, the normalised turbulent kinetic energy
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Ek(t) of the system is defined as

Ek(t) =
1

2

⟨|u(t)|2⟩V
u2
0Np

, (6.20)

where ⟨·⟩V represents the average over the whole domain at a given instant of
time. We also define with an over-line Ek as the average normalised turbulent
kinetic energy (TKE), that is

Ek = ⟨Ek(t)⟩t, (6.21)

where ⟨·⟩t denotes the time average after the flow has attained a statistically sta-
tionary kinetic energy. When the particles are sparse and their motion is inde-
pendent of each other, the kinetic energy of the system would simply be a sum
of the motion of the individual particles and we expect Ek to remain constant.
If however the motion of the particles are not merely additive but they induce a
larger-scale flow in the system, we would expect Ek to increase as a function of
Np.

6.6 Results

6.6.1 Stable and Convective Configurations
We start by showing in Figure 6.1 for a given rising particle temperature T+,
particle-fluid coupling strength α0 and particle size c, visualisations of the temper-
ature fields for varying the number of virtual particles Np. The visualisations show
a snapshot of the flows after they have attained a statistically stationary kinetic en-
ergy. The figure indicates that there are two distinct stationary end-states for the
system. The first end-state, which we term Stable and show in the top panels of
the figure, is a low kinetic energy, quiescent state where a large scale circulation
is absent. Particles are either nearly still and close to the top and bottom walls
or they execute a slow vertical motion, propelled by their higher or lower tem-
perature compared to the bulk. When the particle concentration reaches beyond a
certain threshold, which in the case of the Figure 6.1 lies between Np = 140 and
Np = 160, the individual thermal effect of the particles aggregates and triggers a
transition to a second end-state, which we term Convective and show in the bottom
panels of the figure. The Convective state shows large scale circulation, the clear
presence of a rising plume and a falling plume and particles themselves following
trajectories along the large counter-rotating vortices.

While the transition from the Stable state to Convective state is shown qualita-
tively in the snapshots of Figure 6.1, Figure 6.2 shows the magnitude of increase in
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Figure 6.1: Snapshots of the temperature field T (r, t)/T+ at a given instant of
time for T+ = 0.1, α0 = 0.005 and varying Np where red indicates T = T+ and
blue indicates T = −T+. The top panels show a Stable end-state configuration
while the bottom panels show a Convective end-state configuration. The
transition is triggered by increasing Np.

the turbulent kinetic energy (TKE) of the flow at the transition. The figure shows
in panels (a), (b) and (c) respectively the evolution of the normalised TKE defined
in equation (6.20) for flows with T+ = 0.02, T+ = 0.1 and T+ = 1.0 respectively
for a fixed α0 and c. The blue curves represent Stable configurations while the red
curves represent Convective configurations. The kinetic energy first increases due
to the unstable temperature gradient imposed on the flow initially with the vertical
temperature profile given by equation (6.17). At larger times, the effect of the
virtual particles is dominant and the flows attains a statistically stationary kinetic
energy, where the Ek(t) either shows a value > 10−1 (red curves), corresponding
to the Convective flows seen qualitatively in Figure 6.1 or Ek(t) < 10−1 (blue)
corresponding to the Stable flows.

Two further points are note-worthy about the transition from Figure 6.2. Firstly,
the sharpness of the transition, where for adding very few particles, the normalised
kinetic energy increases by a factor of ≳ 5. It should be noted that the expression
of Ek(t) has Np in the denominator, so the absolute increase in kinetic energy
is even greater. Secondly, the Np of transition depends on T+, where for larger
T+, the transition occurs at a slightly larger Np. We see that in panel (a) with
T+ = 0.02, the transition lies between Np = 120 and Np = 140 while in panel
(c) with T+ = 1.0, the transition lies between Np = 160 and Np = 180, with the
case of T+ = 0.1 in panel (b) showing an intermediate behaviour. This is a weak
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Figure 6.2: Time evolution of Ek(t) for flows with T+ = (a) 0.02, (b) 0.1 and (c)
1.0. Stable end-state configurations are plotted in blue while Convective
end-state configurations are plotted in red. The time is in simulation time units.

Figure 6.3: Time-averaged vertical temperature profile divided by T+ plotted
against the vertical height for various Np close to the transition Np for (a)
T+ = 0.02, (b) T+ = 0.1 and (c) T+ = 1.0. Stable configurations are plotted in
blue while Convective configurations are shown in red.

dependence on T+.
In Figure 6.3, we show a comparison of the normalised time-averaged vertical

temperature profiles T (z) for the same set of flows given by

T (z) =
⟨T (r, t)⟩x,t

T+

(6.22)

where ⟨·⟩x,t represents the time-average at a given height z. Notice that the
temperature gradients for the Stable flows (blue) show a strongly stable profile
(∂zT > 0) while the Convective flows still show a stable temperature profile but
with weaker gradients so that the temperature difference between the top and the
bottom adiabatic walls are much smaller. The reason for this is that in the presence
of a large-scale circulation, the temperature field is more effectively transported
and mixed throughout the domain. We also see that with increase in T+, the
Stable configurations show a flatter temperature profile for the corresponding Np

of lower T+ flows, i.e., for example, the red curves in panel (c) are much flatter
than those in panel (a). The dual-nature of the effect of the virtual particles is
observed here - the particles tend to make the flow more stable by carrying heat
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Figure 6.4: Time averaged normalized TKE as a function of Np for various T+

(shown in legend). Inset shows behaviour of flows with T+ = 0.1 very close to
the transition Np. Also shown are instantaneous snapshots of the temperature
field for a Stable configuration (bottom left) and a Convective configuration (top
right).

away from the lower half of the domain while carrying heat towards the upper
half of the domain. Thus, the larger T+ is, the more stable the system. However,
when a certain threshold of particles is reached, the situation changes - the virtual
particles together create a persistent large-scale flow and now the convection is
strong enough to overcome the stable temperature gradient.

In Figure 6.4 we take a closer look at the transition by plotting the average
normalised TKE of the flows as defined in equation (6.21) against Np for the
same α0 as above for various T+. The sharp increase of TKE at a transition Np is
once again clearly visible. We empirically define a value of E0

k = 0.225 indicated
by the horizontal red line as the transition point where for Stable end-states, Ek <
E0

k and vice-versa for the Convection end-state. The sharpness of the transition
is examined more closely in the inset of the figure for a given T+. It is seen
that the transition occurs for an increase of just a single virtual particle. The
dependence on T+ is weak as evidenced by the fact that for T+ varying over 2
orders of magnitude (10−2 − 100), the transition occurs at nearly the same Np.
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6.6.2 Large-scale Circulation and Heat Transfer
While the existence of the large-scale circulation is apparent from the visualisa-
tions of the temperature field, it is possible to infer its presence quantitatively
from the fluid energy spectrum. In particular, we consider the spectrum in the
horizontal direction taken at the mid-plane z = Lz/2, given by

Eu(kx) =
1

2



|û(kx, z0, t)|2

�
t
, (6.23)

where z0 = Lz/2 and û(kx, z0, t) are the Fourier coefficients of the field u and
⟨·⟩t denotes the time averaging. We denote E1 to be the energy contained in the
first Fourier mode, E2 for the second mode, and so on and define

Etot =
∞X

i=1

Ei. (6.24)

The strength of the large-scale circulation with a rising plume and a falling
plume can be measured by the value E1/Etot [65], which measures the fraction of
energy contained in the first mode, that is the smallest wavenumber. This corre-
sponds to a cosine mode for the velocity field in the bulk, which is a close approx-
imation of the form of the velocity field when there exist two plumes and the bulk
of the kinetic energy is contained in the large-scale flow of two counter-rotating
vortices. When such a large-scale flow is present, we would have E1/Etot ≫ 0,
while if the flow lacks large-scale convection, we would have a flatter energy
spectrum with E1/Etot → 0 and E1 ∼ E2.

In Figure 6.5(a), we plot the strength of the large-scale circulation E1/Etot for
varying Np. We see clearly here that corresponding to a jump in the magnitude
of the TKE seen in Figure 6.4, there is also a similar large increase in the ratio
of kinetic energy contained in the largest-scale. This is a clear demonstration that
the main difference between the Stable and the Convective states is the existence
of the large scale flow. Given that the kinetic energy shown is normalised by the
typical velocity of a single particle and the number of particles, the excess kinetic
energy comes from the large-scale circulation that arises after the transition, a
cumulative particle effect.

Panel (b) of the same figure shows the dimensionless Nusselt number, defined
as

Nu =
⟨vT − κ∂T

∂z
⟩V,t

κ∆T
Lz

(6.25)

where ⟨·⟩V,t represents average over the entire domain and time and ∆T is the
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(a) (b)

(c)

Figure 6.5: (a) E1/Etot for varying Np for various values of T+. (b) Nu for
varying Np for various values of T+. The black solid line shows a linear scaling
with Np. (c) Plot of the average normalised Nusselt number NuΦ against the
average normalised thermal energy injection ϵT for flows with varying
parameters. Stable flows are marked with blue filled circles, Convective with red
filled triangles and the two black lines scale as (ϵT )1.2
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average temperature difference between the top and bottom walls given by

∆T = T (Lz)− T (0). (6.26)

The Nusselt number is defined here analogous to the definition for the Rayleigh-
Bénard convection and is the ratio of heat transfer due to convection to the heat
transfer by conduction. We see that the increase in Nu increases with increase in
Np followed by a large increase around the transition Np and then settling to a
roughly linear increase with Np in the Convective regime.

The effective temperature Ta defined in equation (6.19) was introduced as a
typical value of the temperature attained by the fluid in the vicinity of the particle
with an associated length-scale c for each particle. In a similar vein, α0(T+ − Ta)
is the typical thermal forcing acting on the fluid. We can thus define two important
dimensionless response parameters of the system. First, we define the normalised
Nusselt number NuΦ given by

NuΦ =
⟨vT − κ∂T

∂z
⟩V,t

cα0(T+ − Ta)
. (6.27)

NuΦ measures the heat transfer by convection relative to the input typical thermal
forcing multiplied by the length scale of the system, similar to the Nusselt number
defined by [76].

The thermal energy injection ϵT given by ⟨ΦT ⟩V,t is normalised as

ϵT =
⟨ΦT ⟩V,t

α0(T+ − Ta)T+

. (6.28)

In panel (c) we plot the normalised Nusselt number NuΦ against the nor-
malised heat injection ϵT , quantifying the measured convective response of the
fluid to the measured input thermal forcing for varying T+, c, α0 and Np. It is
seen that there exists a global scaling of these two quantities for both the flow
regimes, Stable and Convective with a rough scaling of NuΦ ∝ (ϵT )

1.2. However,
the higher magnitude of the normalised Nusselt number in the Convective case
differentiates it from the Stable flows.

The above findings are consistent with a situation that can be described as
such - individual particles thermally coupled to the fluid have a small zone of in-
fluence and release or absorb heat in their immediate vicinity. Thus, each particle
contributes to the thermal injection into the domain as well as the vertical heat
transfer across the domain. The heat injection as well as vertical heat transfer
increase with the increase in number of particles. In the Stable regime, the main
effect of the particles is to maintain the strongly stable temperature gradient. At
the transition to the Convective regime, the development of the large-scale con-
vective flow patterns and more turbulent flow leads to a large increase in the heat
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Figure 6.6: The measured value of the average vertical profile of thermal forcing
Φ = −α(T − Tp) for a stable flow (a) and for a convective flow (b) compared to
the imposed vertical profile of the thermal forcing.

transfer relative even to the thermal energy injection, while also seeing a weaker
vertical temperature gradient across the domain.

6.6.3 Exact Relations
Two exact relations have been derived for the Rayleigh-Bénard convection in Sec-
tion 3.4.1. The system under consideration here varies from the Rayleigh-Bénard
convection in two crucial respects. Firstly, the temperature boundary conditions
in the RB convection have walls with fixed temperature while those in the study
here have adiabatic walls. Further, the heat-equation contains the additional term
Φ. It is easy to hence verify that for the viscous dissipation ϵ,

ϵ = βg(Nu − 1)
κ∆Tf

Lz

. (6.29)

For the thermal dissipation, we have

ϵθ = ⟨ΦT ⟩V,t, (6.30)

as the top and bottom walls are adiabatic with no heat-flux, hence the ∇2T
term has no contribution to the dissipation equation.

6.6.4 Comparison with Eulerian imposed thermal forcing
We consider a thermal fluid system with a thermal forcing ϕ(z) uniformly applied
at all times. The forcing is a close approximation of the forcing Φ measured
in the Lagrangian system with the virtual particles in the domain as shown in
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(a) (b)

Figure 6.7: (a) The normalised temperature profile for a stable Lagrangian flow
(blue) compared with the measured temperature profile of a flow with an
imposed profile of thermal forcing. (b) The normalised temperature profile for a
convective Lagrangian flow (red) compared with the measured temperature
profile of a flow with an imposed profile of thermal forcing

Figure 6.8: Snapshots of the temperature fields (a) a Stable Lagrangian flow, (c) a
Convective Lagrangian flow and the two uniformly forced flows to mimic the (b)
stable and (d) convective flows. The temperature fields T are dived by the
respective T+.
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Figure 6.6. Defining Q(z), the numerator of the Nusselt number, as the average
net heat transfer in the positive z direction at height z given by

Q(z) =

�
v(r, t)T (r, t)− κ

∂T

∂z

���
(r,t)

�

x,t

, (6.31)

where ⟨·⟩x,t indicates the time and spatial averages at a given height z, notice that
averaging equation (1.6) over time gives

Φ(z) =
∂Q

∂z
(z) (6.32)

The comparison is made for two flows, one Stable flow and one Convective
flow. Given identical vertical profiles of thermal forcing (see Figure 6.6), one
would expect that the resulting temperature profile and hence the nature of the
flows would remain identical. However, as shown in Figure 6.7, the temperature
profiles show a dramatic difference, with the Eulerian flows showing an unstable
temperature profile similar to the Rayleigh-Bénard Convection. Further, as shown
in Figure 6.8, even when the thermal forcing matches the measured value from
a Stable configuration, the Eulerian flow with uniform thermal forcing shows a
Convective behaviour with clear, well-defined hot and cold plumes and an unsta-
ble temperature gradient. Even in the Convective case, the corresponding Eulerian
flow is convective.Thus, the presence of the stable temperature gradients, the two
clear end-state configurations with very different characteristics with a sharp tran-
sition already outlined previously in the text is not merely a result of the net ther-
mal forcing applied on the system but is the result of the particular Lagrangian
nature of the virtual thermal tracer particles and the two-way coupling with the
fluid. In the uniformly forced case, there never develops Stable configuration so
to speak.

6.6.5 Anomalous behaviour for small T+

We have already noted in previous sections there is weak dependence of the tran-
sition of the system on the value of T+. In particular, it was observed that for
larger T+, the transition occurs at a larger Np and the Stable configurations for
larger T+ have relatively flatter temperature gradients. One would conclude then
that for any given Np, there exists a T+ small enough such that the system is Con-
vective. However, at very small T+, the behaviour of the system begins to diverge
from the Stable-Convective binary and attains a third end-state, a Columnar end-
state where the temperature profile is still stable (∂zT > 0) and the system has a
weak convective flow with two pairs of counter-rotating vortices and the associ-
ated plumes (see snapshot in Figure 6.9(b)). In Figure 6.9(a), we plot the fraction
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(a) (b)

Figure 6.9: (a) The ratio of kinetic energy contained in the first Fourier mode
E1/Etot (solid lines) and E2/Etot (dashed lines) to the total energy contained in
all modes for Np = 140 and Np = 240 plotted against T+. Inset shows the
averaged normalised TKE Ek for the same parameters and the horizontal line
represents Ek = E0

k . (b) A snapshot of the temperature field for a Columnar flow
with Np = 240 and T+ = 10−5.

of energy contained in the first Fourier mode (E1/Etot) as well as the second
Fourier mode (E2/Etot) to understand the large-scale behaviour of the flow. We
can see clearly that for smaller T+, the second mode dominates the kinetic energy
while the energy contained in the first mode approaches 0. This is the case until a
transition T+ where now the flow turns Convective from Columnar. At larger T+

for Np = 240 (orange, filled symbols), we see that while E2/Etot remains small,
the value of E1/Etot shows a decreasing trend. This is because as T+ is increased,
the flow also becomes more turbulent and thus along with the large-scale circula-
tion, smaller scale features begin to appear, thus increasing the energy contained
at higher modes as is characteristic of a turbulent flow. For Np = 140 (cyan,
empty symbols), the flow is Columnar for T+ ≲ 10−3 and transitions to convec-
tive for T+ ∼ 0.02, as evidenced by the values of E1/Etot and E2/Etot. However,
on increasing T+ further, the flow again moves to a Stable configuration. This
is due to the effect already observed, that for increasing T+, the Np of transition
from Stable to Convective is greater. We also see that the Stable configuration is
characterised by E1 ∼ E2.

The inset of panel (a) shows the normalised TKE plotted for the two given Np

and varying T+. Notice that at small T+, when the flow is Columnar, it is char-
acterised by a smaller normalised TKE and kinetic energy smoothly approaches 0
as T+ → 0.

100



(a) (b)

Figure 6.10: (a) Normalised vertical temperature profiles for T+ = 0.01,
Np = 180 for different α. The red curves correspond to Convective flows while
the blue curves represent the stable flows. (b) Normalised TKE for T+ = 0.02
plotted against Np for 3 values of α0. Horizontal red line represents E0

k = 0.225.

6.6.6 Effects of varying α0 and c

It is clear from the above results that an increase in the number of particles Np

strongly pushes the system towards the Convective configuration while increasing
T+ weakly causes the system to tend towards stability. The other ways a phase
change from a Stable configuration to a Convective configuration can be triggered
is by increasing the fluid-particle coupling strength α0 or the size of the particle c.

The former effect can be gauged in Figure 6.10. In panel (a), we see the be-
haviour of the temperature profile for varying α0. It has already been seen that
the Stable regime is characterised by a strongly stable temperature profile while
the Convective regime is characterised by a weakly stable temperature gradient.
The temperature profile remains nearly identical for changing values of α0 except
when the flow changes from Stable (blue curves) to Convective (red curves). We
also note that the time taken for the flow to relax from the initial unstable config-
uration (see equation (6.17)) to the eventual stationary state is larger for smaller
α0. It indicates that for a given temperature scale T+ and Np, there exists a tem-
perature difference ∆T for which the flow is stable independent of α0. Panel
(b) of the same figure where we plot the average normalised TKE Ek shows the
transition from Stable to Convective for 3 different α0. That the increase in TKE
corresponds to the transition from Stable to Convective was verified from visual-
isations of the flow field as well as the strength of the large-scale circulation as
already discussed in Section 6.6.2. We see that decreasing α0 increases the Np of
the transition and still note that the empirical value of E0

k for the transition holds.
Increasing c too shows a similar effect, as clear in Figure 6.11 where keeping
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Figure 6.11: Normalised TKE for varying virtual particle size c for two different
α0.

the other parameters fixed, a transition to Convective configuration is triggered by
enlarging the size of the individual virtual particle.

6.7 Conclusions and Discussion
In this study we have performed numerical simulations of an idealized non-isothermal
2D fluid system under the Boussinesq approximation with suspended virtual tracer
particles. The particles act as heat sources or sinks depending on the vertical ve-
locity of the tracer via a relaxation term with time-scale 1/α0. The particles are
coupled to the fluid only thermally and the effect of particles following this spe-
cific protocol and the stationary end-state this leads to is studied. Individually,
each particle carries heat away from the bottom of the domain towards the top
of the domain, thus working to create a thermally more stable system. However,
under certain conditions, the cumulative effect of the particles overpowers the
tendency towards stability and the result is a system with a large-scale convective
flow pattern with increased turbulent kinetic energy, larger heat transfer across
the domain, maximum energy in the largest Fourier modes and a weakly stable
vertical temperature gradient compared to the more quiescent Stable state. The
main parameters of the system are the temperature of the hot, rising particles T+,
the number of particles Np, the strength of the thermal coupling between the fluid
phase and the particles α0 and the size of the particle c. Increasing Np, c and
α0 makes the increasingly convective while increasing weakly T+ contributes to
making the flow more stable.

This Lagrangian protocol is compared with a system with a uniform thermal
forcing identical to the measured Lagrangian forcing and it is found that the tem-
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perature profiles of the Eulerian system is unstable rather than stable and a con-
vective flow develops even when the forcing is chosen to be identical to a Stable
Lagrangian flow for which a convective flow does not develop. Thus, it is the
unique non-linear coupling between the particle trajectory and the temperature
that leads to the Stable end-state configuration in the Lagrangian case. Further,
the behaviour at small T+ is also explored, where it is found that for very small
T+, the temperature gradients are too weak to produce a turbulent convective flow
and instead a weakly convective flow is seen with characterised by a low turbulent
kinetic energy.

The novel temperature protocol chosen for the particle was novel - at first
glance while it seems that the particle exclusively aids the formation of convec-
tive plumes by enhancing any updrafts that might exist, the protocol also meant
that heat is transferred in the positive z direction while the downward moving par-
ticles and upward moving particles necessarily balance out each other on average
to maintain a neutral temperature for the domain. While the model system might
not be exactly physically realisable, it certainly lends a first insight into analo-
gous systems where upward moving particles tend to be hotter and vice-versa. A
real-world example would be a cloud droplet moving along with an updraft - the
droplet remains uniformly hotter than the surroundings due to condensation of
water onto its surface and similarly, falling cloud droplets constantly lose water to
the atmosphere thus remaining cooler while moving downward.

The study also opens several further interesting avenues for investigation in-
cluding but not limited to the formulation of similar simple protocols where the
properties of the suspended particles depend on the instantaneous dynamics of the
particle itself to attain theoretical or even experimental control and modulation
of fluid flows. Further, the study can be extended to include inertial point parti-
cles which do not immediately respond to the local fluid velocity as opposed to
tracers. Further, the numerical experiments can be performed while taking into
consideration the force applied by the particle phase on the fluid, which leads
to attenuation of the kinetic energy and can have interesting implications on any
large scale convection, if such a convection develops.
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Chapter 7

Physics Informed Neural Networks

Summary The chapter contains a brief introduction to Neural Networks, its main
components and the main method to train a neural network using data. Next,
Physics Informed Neural Networks (PINN) are introduced as a method to solve
partial differential equations and recent studies which have successfully used this
technique are mentioned. The chapter ends with an outlook on the use of PINNs
to tackle problems described earlier in the thesis.

7.1 Introduction
Data assimilation in the form of nudging of the temperature field applied to Rayleigh-
Bénard convection has proved to be successful in reconstructing the velocity field
for low Rayleigh number flows. However, this data-driven method fared poorly
in higher Rayleigh number flows where the degree of turbulence is significant and
the small-scale fluctuations of the velocity field are much harder to reconstruct,
even given exact data on the temperature everywhere. Mounting experimental
and numerical data suggests that Charney’s conjecture remains unrealistic and re-
constructing missing state variables is an extremely hard, perhaps insurmountable
problem.

However, recently a new data driven technique based on neural networks has
shown to be successful in inferring velocity and pressure fields of thermal flows
with remarkable accuracy given limited data on temperature fields for certain sim-
ple flows. In this thesis, we give a brief introduction and account of this technique,
using Physics informed neural networks.
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Figure 7.1: The basic structure of a neural network. Image taken from
https://www.jeremyjordan.me/intro-to-neural-networks/.

7.2 Basics of Neural Networks
An artificial neural network, or simply a neural network, is a connected graph of
nodes and edges where each node is known as a neuron and has a value. Their
design is inspired by biological neurons and the neurons are arranged in consecu-
tive layers. The other components of neural networks are the weights associated
with the edges, while each neural is also associated with a value known as a bias.
Another crucial component of a neural network is an activation function.

The most basic function performed by a neural network is a series of matrix
multiplications. For a given set of n neurons x1, x2 . . . xn in a given layer and
m neurons y1, y2, . . . ym in a subsequent layer, each node xi is connected to the
m neurons of the next layer by edges with weights wi,1, wi,2 . . . wi,m. Associated
with each of the neurons yi is a bias bi, with the value of the layer of neurons
y = (y1, y2, . . . ym) given by




y1
...
...
yn



= A







w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
... . . . ...

wm,1 wm,2 . . . wm,n







x1

...

...
xn



+




b1
...
...
bn







(7.1)

where A is the activation function. In short, for each neuron from a given layer,
a set of weights and biases are applied followed by the activation function, while
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the output of this operation forms the input for the succeding layer of the neural
network, until the final layer of the network. Neural networks are often made up
of several such layers of neurons, each with their associated sets of weights and
biases. The first layer of neurons of the entire neural network is known as the input
layer. The neural network thus acts as a function of these input variables, with
the outputs being the values of the final layer of neurons. The layers of neurons
apart from the output and the input layer are often known as hidden layers and
neural networks with such hidden layers are often called deep neural networks.
The matrix multplication is a purely linear operation - any non-linearity in the
resulting neural network function is thus a result of the activation function which
acts on the output of the matrix multiplication.

7.2.1 Training a neural network
We have thus far presented the simplest structure of a neural network. Neural
networks often include other features such as convolutions, recurrence loops, etc.,
which perform specialised functions. However, the aim here is to provide only a
fundamental introduction to the method of using neural networks.

The most important step of using neural network (NN) based methods is the
training step. Given a set of data on some (output) dependent variables as a func-
tion of independent (input) variables, the main aim of NN based methods is to
train the NN using this available data to predict the output from data-sets in the
future. This is achieved via a training process. Let us consider first the case of
a single dependent variable, easily generalisable to the case of finite number of
dependent variables. Let the variable y depend on a set of independent variables
x = (x1, x2, . . . , x3) as y = y(x). And let us assume to have measurements of y
at several points yi = y(xi). Firstly the network is initialised with some appropri-
ately chosen (usually random) weights and biases. With these weights and biases,
xi is used as the input to the neural network to generate output zi. A loss function
L is then constructed as

L =
X

i

L(yi, zi|). (7.2)

The loss function is the quantity that is sought to be minimised by the training
process. Thus, it must represent the deviations of the neural network output from
the available data and quantify the error. The loss function must be unbiased and
represent the entire data set as well. An example of such a function is simply the
L2-norm of the error |yi − zi|2.

Once an appropriate loss function has been defined, the next step is the min-
imisation of this loss, so the neural network represents the data more accurately.
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This is achieved via the process of gradient descent, which makes use of the fact
that a function decreases fastest in the direction of its negative gradient.

Consider a neural network with k layers, where the j-th layer has nj elements
a1,j, a2,j, . . . , anj ,j and with weights w

(j)
a,b going from element a of the j-th layer

to element b of the j + 1-th layer. The first layer is the input layer while the k-th
layer is the output layer. Thus, each weight w(j)

a,b is updated numerically according
to the formula

w
(j)
a,b = w

(j)
a,b − γ

dL
dw

(j)
a,b

(7.3)

where the derivative of the loss function with respect to the individual weights
is calculated according to the chain-rule via a backward propagation. γ here is
the learning rate and is usually kept fixed. For example, the derivative of the
loss with respect to the weights associated with the neurons of the output layer is
straightforward to calculate as

dL
dw

(k−1)
a,b

.

The term dL
dw

(k−2)
a,b

is then calculated as

dL
dw

(k−2)
a,b

=
dL

dw
(k−1)
a,b

dw
(k−1)
a,b

dw
(k−2)
a,b

(7.4)

and so on until the derivative of the loss function is calculated with respect to
each weight. The derivatives of the loss function are rarely calculated with re-
spect to every single available data point. Instead, certain optimisations are made.
The gradient is instead calculated with respect to a batch of data. Other methods
include stochastic gradient descent and mini-batch gradient descent.

Thus, the neural network is trained on the data by the optimisation of the
weights to minimise the loss function, making the neural network predict the out-
puts of the input data more and more accurately with respect to the available data
over multiple iterations. The data is usually split into a training set and a test
set, wherein the training steps are performed multiple times over the training data
set. It is important to ensure that the neural network actually learns the structure
of the data and the dependence of the variables on each other rather than merely
minimising the loss function by overcorrection, where the loss function is min-
imised very effectively but performs poorly with new data points that the neural
network has not been trained on. To ensure that this isn’t occuring, the network
is not trained on the test set and the loss function is calculated with respect to the

107



test set at regular intervals in a validation step. This is a crucial step and is used
as a measure of the neural network’s predictive power.

7.3 Physics Informed Neural Networks
While a neural network is effective at predicting and learning from data, this does
not make use of other known details of the data, in particular the contraints of
the equations of motion or other dynamical equations of the system being studied
do not play a role in the training of the neural network. This is similar to the
motivation behind data assimilation techniques.

If the dynamical equations of a system for which data is available is known,
given by

ut +N [u;λ] = 0 (7.5)

where N is a general, non-linear operator while λ is the set of known pa-
rameters of the system, the loss function is modified to take the equation into
consideration. Defining the residual on the equation f as

f := ut +N [u;λ], (7.6)

the loss function is modified as

L = LNN + Lf (7.7)

where the first term LNN is the usual neural network loss function on the
known data while Lf is the residual of the equation at other appropriately chosen
points, known as collocation points which are chosen to enforce the dynamical
equations. For example,

Lf =
1

n

nX

i=1

|f(tu, xu)|2 (7.8)

where (tu, xu) are the form of the n collocation points. This was first sug-
gested in 1992, [77] and has recently made a comeback. A key innovation that
ensures the ease of implementation of this method is the technique of automatic
differentiation to calculate partial derivatives of the residual with respect to the
input variables, similar to the backward propagation employed to calculate the
derivative with respect to the weights during gradient descent in the training steps
of neural networks. It is defined as a “Family of techniques that compute deriva-
tives through accumulation of values during code execution to generate numerical
derivative evaluations rather than derivative expressions” [25].

108



7.4 Applcations of PINNs
Physics Informed Neural Networks have recently found application across dif-
ferent types of systems. In [25], PINNs were used to obtain solutions of multiple
simple PDE systems, including the 1D-Schrodinger equation with given boundary
conditions, the Allen-Cahn equation and even the backward problem of the two-
dimensional Navier-Stokes equations wherein given boundary conditions and ex-
tremely sparse bulk data, the neural network correctly predicted the parameters of
the system. Further, the neural network was also able to reconstruct the pressure
field despite not having any pressure data.

Often, velocity measurements are hard to obtain. It is far easier to obtain
measurements and visualisation on an advected scalar, such as dyes or biological
agents, which are injected or present in the fluid. In another study by Raissi et.
al. [26], the ability of physics informed neural networks to learn the hidden states
of the system, ie., the scalar velocity of the fluid when only data on the scalar is
provided, was shown for several simple systems.

Thus, these neural networks have shown the potential to be a powerful tool to
solve PDEs, which could save huge computational resources in the future. Further,
the possibility of reconstructing hidden state variables, which has been a recurring
theme across this thesis, is also of huge consequence. However, whether such a
system can resolve the small scales of a highly turbulent flow given sparse data
or further, reconstruct a fluid flow given data on not a passive scalar but an active
scalar, is an open topic for future research. As part of this thesis, efforts are
also underway to explore some of these possibilities. In particular, whether the
nudging experiment using solely temperature measurements can be repeated using
PINNs and whether they would be more or less successful than nudging for similar
quantities of data and for flows with similar degrees of turbulence. This work is
being conducted in collaboration again with Dr. Patricio Clark Di Leoni and Prof.
Luca Biferale.
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Chapter 8

Conclusions and Discussion

Turbulent thermal flows are an area of active research with several open questions
left unanswered and various avenues to explore. Several of the complexities are
intrinsic to turbulent fluid flows themselves. The large number of degrees of free-
dom present in turbulent flows make their temporal and spatial behaviour highly
unpredictable. This makes accurately reconstructing or effectively modulating
turbulent flows very hard to achieve. When the temperature field is present as an
active scalar, it leads to multiple other possible directions of investigation, chiefly
regarding the precise role of the temperature field in driving the flow, the correla-
tion between the temperature field and the velocity field and the importance of not
only the overall heat input into the system but the precise structure of the input
mechanism. In the course of work relating to this thesis, several topics relevant to
turbulent thermal flows have been explored in varying detail. The basic features of
turbulent fluid flows was understood along with the widely accepted hypotheses
of universal similarity of turbulent flows first proposed by Kolmogorov in 1941
regarding the nature of the scaling and small-scale structure of turbulent flows.

The focus in this thesis is on the Rayleigh-Bénard convection, a model ther-
mal flow widely used to study several dynamical features of naturally occurring
thermal flows and having an important place in the study of thermal instabilities.
The first study detailed in the thesis, on the reconstruction of turbulent Rayleigh-
Bénard convection should be seen in context of the difficulty of predicting and re-
constructing turbulent flows and the several uncertainties regarding the role played
by the temperature field in a turbulent thermal flow. The study adds to the under-
standing of the way the temperature field drives the velocity field. The flows
reconstructed via the technique of nudging are flows which have either very sim-
ilar or identical temperature fields to the respective reference flows - measuring
how much the reconstructed velocity field then varies from the reference veloc-
ity fields, both in a global sense and a scale-by-scale sense, helps to clearly and
independently ascertain to what degree the dynamics of the velocity field is set
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by the temperature field and further, establishes how well correlated the velocity
and temperature fields are to each other for varying degrees of turbulence. This
investigation also serves to understand the feasibility of the nudging technique for
the reconstruction of thermal flows.

Apart from a fundamental knowledge of fluid dynamics and turbulent flows,
the study also required an understanding of the fundamentals of data assimila-
tion to understand the context in which nudging arises as a tool for continuous
data assimilation and to identify potential applications to other systems, mostly
atmospheric flows and problems involving weather forecasting where the use of
observational data in conjunction with models is widespread. The study described
in this thesis can be considered a first step to understand the feasibility of applying
data assimilation techniques using temperature data alone. The Rayleigh-Bénard
convection is an ideal testing ground for later application to atmospheric flows
given the several dynamic similarities between the two.

Numerically, the chief novelty of the nudging study involved the use of the
thermal forcing term for the Lagrangian nudging case, where the application of
this heat source-term was done along the trajectory of tracer particles. While this
did not involve the creation of any new algorithms, it was the application of an ex-
isting algorithm to a problem for the first time, to the best of the author’s knowl-
edge. It could be said that the addition of the heat source-term is the common
thread that runs throughout the research work conducted as part of this thesis.

While nudging was performed by adding such a heat-source term, where the
temperature relaxes to the measured probe temperatures from the reference flow,
in the second study, involving the virtual tracer particles, the heat source term
forces the temperature to relax towards the particle temperature, with the com-
plete freedom to choose this particle temperature. It can even be said that both
studies involve the modulation and modification of a thermal turbulent flow - the
first aimed to drive the flow towards a pre-defined flow (the reference flow), thus
indirectly setting the source term. In the second study, there is no pre-defined
goal towards which the flow must be driven. Thus, it was an investigation into the
effects of choosing different forms of this heat source term.

Eventually, the findings reported were for a form of particle temperature which
depends on the particle velocity. It is the natural tendency for heat to be trans-
ported in the upward direction in the presence of gravity, leading to a stable tem-
perature gradient. Thus, the continuation of the upward heat transport requires
continuous injection of heat near the bottom of the fluid to maintain the unstable
condition and the upward heat transport continues in the form of the convective
flow that is set up. We have seen that when the upward moving particles are
set to a hot temperature, this condition is satisfied only beyond a threshold Np,
failing which it is the stable temperature gradient that sets the dynamics of the
system. Crucially, we have seen that this dynamic does not depend merely on the
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net heat injection at each height. The same on-average injection of heat can lead
to extremely different systems, where the uniform, Eulerian approach leads to a
convective configuration with an unstable temperature gradient, ie., a more clas-
sically convective flow, the Lagrangian approach followed in this study produces
a stable temperature gradient and distinct end-states, one quiescent and stable, the
other turbulent and convective. This is a unique insight into the redistribution and
mixing of heat and temperature stratification, with two flows having identical pro-
files of thermal forcing, and thus the same net heat transport, but they have very
different temperature profiles.

The idea of conditioning the particle feedback on the flow dynamics or the
particle dynamics has several potential applications in trying to design novel tur-
bulent convective flows that can be modified in a predictable manner by a simple
set of parameters. Ideas from reinforcement and machine learning could also be
applied to these particles so as to drive the flow in a desired way.

Lastly, the potential application of Physics Informed Neural Networks (PINNs)
to reconstruct the entire Rayleigh-Bénard convection using temperature data rep-
resents a novel and exciting possibility to use a cutting-edge tool to understand
if Charney’s conjecture, which as yet has found no convincing experimental evi-
dence in support, can be revived. The possibility of being able to predict the exact
small-scale structure of a turbulent velocity field given the temperature field rep-
resents a sort of final frontier in reconstruction of thermal flows, with potential
applications in several domains, most specifically in atmospheric flows.
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