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9.1 Basic mathematical concepts . . . . . . . . . . . . . . . . . . . 188

9.1.1 Lagrangian subspace . . . . . . . . . . . . . . . . . . . 188

9.1.2 Submanifolds of a Symplectic Manifold . . . . . . . . . 189

9.1.3 About the Name: Lagrangian Subspaces . . . . . . . . 190

9.1.4 Symplectomorphisms . . . . . . . . . . . . . . . . . . . 191

9.2 Strasbourg 1953 . . . . . . . . . . . . . . . . . . . . . . . . . . 192
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Introduction

Symplectic Geometry

Currently, symplectic geometry refers to the study of symplectic manifolds.

A symplectic manifold is an even dimensional manifold endowed with a closed

non-degenerated 2-form. This 2-form is called a symplectic form or structure.

Some examples of symplectic manifolds are given in chapter 5.2.

In euclidean geometry, for example, the concepts of distance can be ob-

tained from the inner product, which is a symmetric bilinear form. In sym-

plectic geometry, an even-dimensional euclidean space is endowed with an

antisymmetric bilinear form. ω0 = (v, w) = vtJw where v, w ∈ R2n and

J =

 0 Id

−Id 0

 .

If the dimension is equal 2, i.e. a two dimensional euclidean plane, the

antisymmetric bilinear form is

ω0(v, w) = vtJw = v1w2 − v2w2

where v, w ∈ R2 and

J =

 0 1

−1 0

 .

1



2 INTRODUCTION

This antisymmetric bilinear form is the symplectic form on the plane, and it

gives the area of the parallelogram formed by the vectors v and w, therefore,

the symplectic form on the plane represents an area. In symplectic geometry

the length of every vector in the plane is zero, and every vector is orthogonal

to itself.

In symplectic geometry there are no local invariant results in Darboux’s

theorem, which states that every symplectic structure on a manifold is locally

diffeomorphic to the standard symplectic structure

ω0 =
n∑
j=1

dxj ∧ dyj on R2n.

The diffeomorphisms that preserve the symplectic form are called sym-

plectomorphisms. The linear symplectomorphisms of a symplectic vector

space form a group called the symplectic group of the symplectic vector

space.

On the plane a symplectomorphism sends any region of finite volume into

one of the same volume.

The symplectic group of degree 2n over a field F is denoted by Sp(2n, (F ),

it consists of all 2n× 2n matrices

M =

 A B

C D


with A, B, C and D n× n-matrices, which satisfy M tJM = J i.e.

AtC = CtA, BtD = DtB, AtD − CtB = Id.

The set of symplectomorphisms of the plane is the symplectic group Sp(2,R).

Before 1938, the symplectic group was known as the complex group or

Abelian linear group. In 1938, Hermann Weyl proposed to change the name
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and named it symplectic to avoid confusion of the complex group with com-

plex numbers. The adjective “symplectic” is the Greek adjective for complex.

Historically another type of geometry has been called ”symplectic geom-

etry” and I will be deal twith in this tesis in Siegel’s work on (even dimen-

sional) hyperbolic spaces on chapter 2.

Nowadays, symplectic geometry is related to classical mechanics. This re-

lation comes because the structure of Hamilton’s equations can be described

through the symplectic form. The matrices that map a Hamiltonian system

into a Hamiltonian system are symplectic, and, in Hamilton mechanics, if

the configuration space is an n-dimensional manifold, the momentum phase

space is a symplectic manifold of dimension 2n.1

State of the Art

At the end of the 1960s, the study of non-degenerate 2-differential forms

over a differential manifold attracted the interest of many mathematicians

and physicists, including Jean-Marie Souriau, Ralph H. Abraham, Jerrold

E. Marsden, Alan Weinstein and Vladimir Igorevich Arnold. This interest

arose from the fact that symplectic geometry can be seen as a mathemati-

cal and geometrical formulation of classical mechanics. Currently, some of

the textbooks about symplectic geometry and topology start with classical

mechanics as a motivation.2

Patrick Iglesias, Souriau’s student, wrote in 2002,

La géométrie symplectique est devenue le cadre par excellence

1See (Abraham & Marsden 1978, p.178)
2See (Berndt 1998, McDuff & Salamon 1995).
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de la mécanique à tel point que l’on peut dire aujourd’hui que ces

théories se confondent.3

(Iglesias 2002, p.2)

The Hamilton’s equations can be described through a symplectic form,

therefore, many mathematicians date the origin of symplectic structures to

the work “Analytical Mechanics” of Lagrange (Lagrange 1811). One of these

mathematicians was Souriau, who published an article entitled La structure

symplectique de la mécanique décrite par Lagrange en 1811 in 1986.4 The

same claim was made later by Iglesias.5 It must be said that Souriau and

Iglesias formulated their claim carefully, and they did not say that this was

the genesis of symplectic geometry, but it is difficult to support their hy-

pothesis that the symplectic structure can be found in the work of Lagrange.

The symplectic structure is a 2-form which is closed, and it was not already

defined in Lagrange’s work of 1811. The calculus of differential forms was

developed by Élie Cartan at the end of the 19th century and at the beginning

of the 20th century.6

The transformation of the Euler-Lagrange equations to the Hamiltonian

equations can be derived through a Legendre transformation. This was

known in the 19th century, and, therefore, one might think that the symplec-

tic form can be found in the work of Lagrange and in the classical mechanics

of the 19th century.

Something similar happens with symplectic manifolds. Nowadays, if you

look in some popular science articles or in Wikipedia, there they claim, “sym-

3Symplectic geometry has become the frame par excellence of mechanics, to a point

that it can be said that these theories have been mixed.
4The symplectic structure in mechanics described by Lagrange in 1811. (Souriau 1986).
5See (Iglesias 2002, Iglesias 1995b).
6See (Katz 1981, Katz 1985).
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plectic manifolds arise from classical mechanics, in particular they are gener-

alizations of the phase space of a closed system.”7 This claim arises because,

as Iglesias said, “symplectic geometry has become the frame par excellence of

mechanics” and mathematicians know the use of symplectic geometry in clas-

sical mechanics; moreover, they see it as part of the language of mechanics.

The claim that symplectic manifolds arose from classical mechanics is not

at all correct because the first manifolds endowed with a symplectic struc-

ture were the Kähler manifolds. Kähler manifolds are complex manifolds

endowed with a closed 2-form which is known as a Kähler form, and they

were defined by Erich Kähler in 1933. But, even though all Kähler manifolds

are symplectic manifolds, the symplectic manifolds were not defined until

1950 by Charles Ehresmann.8 Ehresmann’s motivation to define the notion

of a symplectic manifold was to find out whether any 2n real dimensional

manifolds admit a complex structure, but then he found out that not all even

real dimensional spheres admit a complex structure.

Concerning Darboux’s theorem, it is said that the theorem for symplectic

manifolds was given by Darboux in 1882, but again, the symplectic manifolds

were not defined until the middle of the 20th century.

These claims and assertions about the origin of symplectic structure and

Darboux’s theorem, and the fact that symplectic geometry can be seen as a

mathematical formulation of classical mechanics, means that many mathe-

maticians think that the origins and the development of symplectic geometry

took place in the 19th century.

But if it was not during the 19th century:

7See Wikipedia, Symplectic manifold, [on-line], available from:

https://en.wikipedia.org/wiki/Symplectic manifold, 29.01.2019
8See chapter 5.
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• Where is the origin of the symplectic form and symplectic manifolds?

• When was Darboux’s theorem understood as stating that locally two

symplectic manifolds of the same dimension are isomorphic?

• When did the symplectic group become associated with describing the

diffeomorphisms over a symplectic manifold?

• When did symplectic geometry become the frame of classical mechan-

ics?

• Where, how and why all this development took place?

The combination “symplectic geometry” appeared for the first time in

history in 1943. The first time that the adjective “symplectic” was used

to denoted a geometry was in 1943 by Carl Ludwig Siegel. In 1943, Siegel

published his article “Symplectic Geometry” (Siegel 1943b). In his article he

generalized the theory of automorphic functions to the case of m complex

variables, investigated the invariant geometric properties of a simple domain

called E, identified the discontinuous subgroups operating on E and con-

structed their fundamental domains. An example of a simple domain is the

Siegel half space. Siegel’s half space Hn = {Z ∈ Mn(C)|Z = Zt, ImZ > 0}

where Z = X + iY is a complex symplectic matrix with Y > 0 and Z is a

symmetric matrix Z = (zkl). The group of all analytic transformations that

map a simple domain E with dimension m into itself is a group of symplectic

tranformations.9 This is the reason why Siegel used symplectic to character-

ize this geometry. Siegel did not endow Siegel’s half space with a symplectic

structure, but Siegel’s half space is a symplectic space. For Siegel, symplectic

9(Siegel 1943b, p. 3).
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geometry is a generalization of hyperbolic geometry to 1
2
n(n + 1) complex

dimensions.

The symplectic group is used in celestial mechanics, and Siegel use explic-

itly the symplectic group to describe the transformations of a Hamiltonian

system into a Hamiltonian system.10 Celestial mechanics is a field that Siegel

used to teach since he was appointed as a professor in Frankfurt am Main

in 1922 (Siegel 1956). Siegel’s publications in this field are (Siegel 1941) and

(Siegel 1956). The latter one are his lecture notes on celestial mechanics for

a course he gave in Göttingen during the winter-semester 1951-1952. Jürgen

K. Moser compiled the notes for the book four years later (Siegel 1956, p. i).

Three years before the publication of Siegel’s lectures notes, Jean-Marie

Souriau gave a conference in Strasbourg at the Colloques Internationaux

du Centre National de la Recherche Scientifique with the title “Géométrie

symplectique différentielle” (Souriau 1953). It seems that after these two

events, the publication of Souriau’s presentation and Siegel’s lecture, sym-

plectic geometry became fully linked to the study of classical mechanics and

the calculus of variations. Fields, which have been of interest to many math-

ematicians for a long time.

It is to be noted that Siegel’s article (Siegel 1943b) is quoted by some

textbooks on symplectic geometry and mathematical methods of mechan-

ics. 11 However, between these publications and Siegel’s article, beside the

symplectic group and Siegel’s half space, what is understood as symplectic

geometry seems not to be the same field.

But as Rolf Berndt said:

The study of the geometry of these manifolds [Siegel’s half

10See chapter 8.
11See (Abraham & Marsden 1967, Arnold 1989, Berndt 1998, Da Silva 2000).
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space] and the holomorphic, as well as the meromorphic, func-

tions onHn [Siegel’s half space] with known invariant or covariant

properties under the operation of the group Sp(2n,Z) or its sub-

groups was [sic] initiated by Siegel; for some time it was exactly

these topics introduced by Siegel that formed the subject of sym-

plectic geometry. [...] Nowadays, however, symplectic geometry

refers to a much broader range of topics.[...]

(Berndt 2001, p.34)

The topics that Berndt refers to are the study of symplectic manifolds which

are spaces endowed with a symplectic form, and symplectic geometry as the

geometrical interpretation of classical mechanics.

I will argue that the field of symplectic geometry emerged after some

mathematical objects of symplectic geometry were defined and developed in

an explicit way, as the symplectic group, symplectic structure, symplectic

manifold and Darboux’s theorem.

As well, I will state that Siegel and Souriau are the authors who intro-

duced the concept of symplectic structures into Hamilton mechanics, and it

seems possible that they applied it independently of each other. After the

introduction of the concept of symplectic structures into Hamilton mechan-

ics, symplectic geometry is linked to Hamilton mechanics and to the study

of even dimensional manifolds endowed with a symplectic structure.

To prove these hypothesis I will follow the development of the above

mentioned mathematical objects in the field of symplectic geometry during

the 1930s to the 1950s. I will show the context in which these objects were

developed, and not only the mathematical context but as well the social and

biographical context of the mathematicians who developed these ideas. For
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the second assumption, I will present the work that Siegel and Souriau did

when they exposed symplectic geometry as a field of study.

A short summary of the history of symplectic geometry was given by

Yvette Kosmann-Schwarzbach in her book “Simeon-Denis Poisson : Les

mathématiques au service de la science” published in 2013.

About this work

This work has ten chapters. They are set in an almost chronological order.

First I give a short chapter on the history of the symplectic group and a

short biography of Marius Souphous Lie and Hermann Weyl. Nor Lie or

Weyl were direct actor to the development of symplectic geometry but they

describe the symplectic group and its properties. Even though Weyl was not a

direct actor in the field of symplectic geometry, his personal network provided

the connections between the different mathematicians and institutions being

involved in the development of symplectic geometry.

The objective of the second chapter is to describe the achievements of

Carl Ludwig Siegel during the middle of the 1930s and the beginning of the

1940s by generalizing the theory of automorphic functions to the case of an

arbitrary number of variables.

The chapter starts with some biographical notes on Siegel to provide the

historical context.

Then there is a short description of Siegel’s number theoretical work, on

which Siegel extended the theorem of Hasse-Minkowski for quadratic forms

and gave an analytical interpretation in 1935. This interpretation led him to

develop the theory of modular functions of degree n.

Through this result Siegel was able to made another generalization about
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hyperbolic geometry on the 1
2
n(n+1) dimensional space to the space of sym-

metric complex matrices. This generalization was published in 1943 in the

American Journal of Mathematics under the name “Symplectic Geometry”.

It is the first time that the words “symplectic” and “geometry” appeared

together to characterize a mathematical field.

Siegel generalized the half plane to the half space of dimension 1
2
n(n+1).

Nowadays, this half space is known as Siegel’s half space. The group that

acts biholomorphically on Siegel’s half space is the symplectic group, and,

therefore, the generalization of hyperbolic geometry was named “Symplec-

tic Geometry” by Siegel. Siegel proved that on the upper half space, the

group that acts biholomorphically is the modular group, SL(2,R), which is

isomorphic to the symplectic group Sp(2,R).

Siegel’s half space is as well a symplectic vector space, but Siegel did not

define the symplectic vector space, and, therefore, the Siegel half space is not

defined as a symplectic vector space.

At the end of the second chapter a parallel work is described. This work

was done in 1943 by Hua Loo-Keng (*1910, †1985), a Chinese mathematician,

who at that time lived in China but studied in England with Hardy from

1936 to 1938. In 1943 Hua worked at the National Tsing Hua University of

China, at the Institute of Mathematics at the Academia Sinica. In 1943 Weyl

qualified Hua’s work as a double of Siegel’s article Symplectic Geometry. In

this chapter there is as well a short biography of Hua and the story of this

doubling.

In Chapter three, a short passage of how the theory of exterior differ-

ential forms was developed by Élie Cartan is presented. The development

of the theory of exterior differential forms was done by Cartan in his work

and research on the Pfaffoan Problem. He had developed the theory of the
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exterior calculus of differential forms in (Cartan 1896), (Cartan 1899) and

(Cartan 1901). Élie Cartan, like Weyl, had an important personal network.

Even more, many of Cartan’s students developed what is nowadays under-

stood as symplectic geometry.

Chapter 4 deals with the genesis of the studies on Kähler manifolds and

the biography of Erich Kähler. Kähler manifolds were defined by Erich

Kähler in 1933 before symplectic manifolds were defined. Today, it is known

that Kähler manifold are symplectic manifolds. Therefore, the genesis of

Kähler manifolds can be considered as part of the development of symplectic

manifolds and as part of the early history of symplectic geometry.

Kähler manifolds are n-dimensional complex manifolds with an Hermitian

metric endowed with a Kähler form, which is a closed and non degenerated

2-form. Kähler noticed that there is a relationship between the Hermitian

metric and its associated differential form if the 2-form is closed and non

degenerated. If a differential 2-form is closed and non degenerated over an

even dimensional manifold, then it is a symplectic manifold. This differential

form is a symplectic form and in the case of complex manifolds it is known

as “Kähler form”.

The last part of the chapter deals with the reception of Kähler manifolds

in the work of Eckmann and Guggenheimer at the end of the 1940s. At that

time the name “Kähler manifold” was established.

Chapter 5 describes the development provided by Charles Ehresmann,

who gave the first definition of the notion “symplectic manifolds” in 1950.

The context of this definition is the development of fibre bundles, fields to

which Ehresmann and Jacques Feldbau contributed at the beginning of the

1940s.

Ehresmann showed that on a real even dimensional differential manifold
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the existence of an almost complex structure is equivalent to the existence of

a differential 2-form of rank 2n in all points over the manifold. Ehresmann

proved that the four-dimensional real sphere does not admit a complex struc-

ture, and later he asked himself: “Do all real even dimensional differential

manifolds admit a complex structure?”12 The question was rhetorical be-

cause he knew at that time that not all real even differential manifolds admit

a complex structure. The actual question was: Which real even-dimensional

differential manifolds admit a complex structure? This led to the definition

of symplectic manifolds because the real even dimensional manifold, which

admits a complex structure, admits a 2-form in all points over the manifold,

and if the form is closed and non-degenerated, it is a symplectic form. In

this context the symplectic structure arose as a necessary condition for the

existence of a complex structure.

After Ehresmann’s definition of symplectic manifolds, other mathemati-

cians such as Guggenheimer and Eckmann used it for their studies on Kähler

manifolds. At that time, all symplectic manifolds were Kähler manifolds, and

it was like this until 1976 when William Thurston (*1946, †2012) showed that

there exist symplectic manifolds which are not Kähler manifolds.

Chapter 6 is about the development of Darboux’s theorem. In symplectic

geometry the Darboux theorem states that every symplectic structure on a

manifold is locally diffeomorphic to the canonical symplectic structure. First,

I look at the development done by Darboux when he solved Pfaff’s problem

at the end of the 19th century. At the end of the 19th century to solve

Pfaff’s problem was understood as to find a suitable change of variables for

12(Ehresmann 1950a, p. 412)
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the differential equation

ω =
n∑
i=1

ai(x)dxi = 0, (x = (x1, ..., xn)),

such that it could be expressed through a minimal number of variables, i.e.

to find the canonical form of the differential equation. The solution that

Darboux gave in 1882 was named Darboux’s theorem by Shalomo Sternberg

in 1964 in his book Lectures on Differential Geometry. Sternberg discussed

the problem of finding the canonical form for a Pfaffian differential form, i.e. a

1-form, which is the translation of Darboux’s theorem of differential equations

to the theory of differential form. Darboux theorem in Sternberg’s book

states how to find the canonical form of a 1-form on a differential manifold

and by using an exterior differentiation he obtained the canonical form for a

closed 2-form with rank p everywhere on an n-dimensional manifold. For the

case the manifold is even dimensional it becomes the theorem of Darboux of

symplectic geometry.

This last result was given by Paulette Libermann at the end of the 1940s

and published on her PhD thesis. Paulette Libermann was a student of

Ehresmann. In her PhD thesis she studied the equivalent problem of Cartan.

The equivalent problem of Cartan was expressed in 1953 as the problem of

local equivalence between infinitesimal structures, i.e. between differential

forms. Libermann formulated this in relation to fibre spaces. In her thesis

she stated Darboux’s theorem for symplectic geometry, which shows that all

symplectic manifolds with the same dimension are local isomorphic between

them, and they are local isomorphic to a symplectic vector space of the same

dimension. Therefore, in symplectic geometry they are not local invariants,

and all points on the symplectic manifold are equivalent.

Chapter 7 is an excursus because it explores the work done by the Chi-

nese mathematician Lee Hwa-Chung during the 1940s. Lee’s work is not well
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known within the scientific community. Lee Hwa-Chung worked in China on

differential geometry, and some of the work he did in the 1940s was the

differential geometry over even dimensional spaces endowed with a closed

2-form. In chapter 7 Lee’s work on even dimensional geometry is presented,

which is the name he gave to symplectic geometry. In this work he defined

an even dimensional flat space, which is the actual definition of symplec-

tic manifolds, he found the automorphisms over symplectic manifolds, and

stated the diffeomorphisms between even dimensional flat manifolds, i.e. be-

tween symplectic manifolds. Lee also used his even dimensional geometry on

classical mechanics.

Although Lee endowed an even dimensional manifold with a closed 2-

form before Ehresmann did, but Lee’s work and Ehresmann’s work were

independent of each other. Ehresmann knew about Lee’s first article (Lee

1943) in 1950 but it is clear that Ehresmann did not take the ideas from Lee’s

article, and when Ehresmann defined a symplectic manifold it was because he

was interested in finding the conditions when a space and a manifold accept

a complex structure.

The work of Lee was and is not well known by the mathematical com-

munity, even though he published in the American Journal of Mathematics.

Not only is his work not known, Lee’s life is also not known, and it was only

possible to track the places where he worked through his articles he published

in western journals.

The moment when symplectic geometry can be seen as a mathematical

and geometrical formulation of classical mechanics is described in chapter 8.

The chapter starts with short introduction to classical mechanics and Hamil-

tonian mechanicsan exposition. It continues with the work of Aurel Wintner

in 1941 about classical mechanics and the use of symplectic matrices. Wint-
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ner noticed that the matrix of a linear canonical transformation between

Hamiltonian functions belongs to the symplectic group. But it was not until

1956 in Siegel’s lecture notes that the canonical transformation was explic-

itly identified as belonging to the symplectic group. In 1952 Georges Reeb

identified the connection between the phase space and symplectic manifolds.

The definitions of Lagrangian submanifolds and symplectomorphisms will

be presented in chapter 9. This development was done by Souriau at the be-

ginning of the 1950s. In Souriau’s work the Lagrangian submanifolds were

called isotropic stature manifolds. The name Lagrangian submanifold was

given by Vladimir Arnold in 1967. The first time when Souriau presented the

Lagrangian submanifolds was in 1953 at the Colloque International

de Géométrie Différentielle, which took place at the University of

Strasbourg. Souriau’s presentation had the title Géométrie symplectique

differentielle-Applications.

In his presentation Souriau defined the symplectic vector space, devel-

oped what nowadays is known as Lagrangian submanifolds, and gave some

applications to classical mechanics.

To close this work about the early history of symplectic geometry, the

moment of symplectic geometry took off is introduced. It took place with

the publication of Abraham and Marsden’s book Foundation of Mechanics

in 1967. In this publication Abraham and Marsden called explicitly the field

symplectic geometry the study of symplectic manifolds, and they linked it

almost inseparably to the study of symplectic manifolds with classical me-

chanics. In 1973 and 1974, two international conference about symplectic

geometry took place. The first one was in Rome, where not so many math-

ematicians and physicists participated, and one year later near Marseille,

where Souriau had a position, a bigger conference about symplectic geome-
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try took place.

After these conferences the number of publications about symplectic ge-

ometry increased and it can be said that it became established as a field at

that moment.



Chapter 1

Symplectic group

Introduction

In this chapter a brief introduction to the development of the sympletic

group will be given. The study of symplectic groups goes back to the work of

Souphous Lie, Felix Klein and Wilhelm Karl Killing about 1870s and 1880s.

Élie Cartan called it complex groups and finally Hermann Weyl change the

terminology to symplectic groups.

At first I define the symplectic group, and then there is a short passage

on the historical development of it. A biography of the mathematicians who

acted in this development is also given. The biography of Élie Cartan is given

in chapter 3.

17
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1.1 Symplectic group

The symplectic group is defined as the set of linear transformations of a 2n-

dimensional vector space over a field F, which is denote by Sp(2n,F). The

symplectic group over the a field F consists of all matrices

M =

 A B

C D

 (1.1)

with A, B, C and D square matrices of order n, so that M tJM = J with

J =

 0 Id

−Id 0

 .

This is true if

AtC = CtA, BtD = DtB, AtD − CtB = Id. (1.2)

1.1.1 Marius Souphous Lie

Marius Souphous Lie was born in December 17th, 1842 in Norway and died

in February 18, 1899. He studied science at the University of Christiana

(Oslo) and ended this studies in 1965. He was thinking to become an obser-

vational astronomer and he gave lectures on astronomy targeted at a wide

audience. After graduating, Lie began teaching natural science at a school

and also gave private lessons in mathematics to support himself financially. It

might be possible that the private instruction gave him the impulse to study

the geometrical work of Poncelet and Plücker and finally to gain interest in

mathematics and to develop his own theories in the area of line geometry.1

Early in 1869 he wrote the article “Repräsentation der Imaginären der Plan-

geometrie”2, which is concerned about the real representation of imaginary

1See (Fritzsche et al. 1999) and (Hawkins 2012).
2Representation of Imaginaries in Plane Geometry.
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quantities in projective geometry being published in the Journal für die reine

und angewandte Mathematik.3 This publication caught the attention of some

mathematicians and therefore Lie got a fellowship to study at the university

of Berlin for one year (1869-1870). In Berlin he participated in the seminar

of Ernst Kummer (*1810, †1893) and became a friend of Felix Klein (*1849,

†1925). With Klein, who was student of Plücker, Lie discussed about line

geometry and both started to apply the concept of a group.4 Later Klein

developed what is known as the Erlange Programm, where the concept of

group applied in a geometric context, derived in the classification of different

geometries via their respective transformation groups.5

1.1.2 Emergence of Symplectic Groups

The symplectic group was known as the “complex” group, since Lie described

this group from the transformations that occurred within line geometry in

the so-called line complexes.

Following (Hawkins 2012), line geometry uses the straight lines as the

basic elements to research geometrical objects. Therefore, the study of ge-

ometry consists of studying the configuration composed by lines. This con-

figuration of lines where called as “line complex” by Plücker.6 A description

of a line complex on a 3 dimensional complex projective spaces P3(C) is the

following: Let l be a line in P3(C) defined by two points in homogeneous

3See (Hawkins 2012, p. 2).
4See (Fritzsche et al. 1999, p. 3).
5See (Rowe 1989).
6See (Hawkins 2012, p. 4).
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coordinates (x1, x2, x3, x4) and (y1, y2, y3, y4).7 For i 6= j, let

pij =

∣∣∣∣∣∣ xi xj

yi yj

∣∣∣∣∣∣ = xiyj − xjyi. (1.3)

So a complex line is defined by a linear relation

Ω = p1 2p2 4 + p1 3p4 2 + p1 4p2 3 = 0. 8 (1.4)

The group of symplectic transformations appears through Lie’s discovery of

a correspondence between the geometry of line complex and the geometry of

spheres in a 3 dimensional space. Lie establishes a correspondence between

the group of projective transformations that leave a complex line invariant

defined by (1.4) and the 10-dimensional conformal group of a 3-dimensional

space.9 So, there is a relation between a projective transformation which

leaves the line complexes invariant and a contact transformation10 which

leaves the canonical symmetric bilinear form invariant of (1.3).11 The group

to which the protective transformations belongs is the protective version of

the symplectic group Sp(2,C).12 Around 1884, Lie studied contact transfor-

mations of dimension n, as he was interested in studying the solutions for

differential equations. He found that the simple groups of dimension n(2n+1)

7This homogeneous coordinates can be called as “Plücker” coordinates, see (Kosmann-

Schwarzbach 2013, p. 135).
8See (Hawkins 2012, p. 4).
9See (Kosmann-Schwarzbach 2013, p.135).

10The term ”contact transformation” was first used for transformations which maps a

contact element in R3 in to a contact element onto another contact element. A contact

element was defined as a point in R3 together with a plane passing through that point.

The general theory of contact transformations was introduced by Lie in his studies of the

reduction of Pfaffian forms.” See (Aa.Vv. 1991a, p. 372).
11See (Kosmann-Schwarzbach 2013, p. 135) and (Hawkins 2012, p. 30 and pp. 96-99).
12See (Kosmann-Schwarzbach 2013, p. 135).
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which are symplectic groups of C2n, for n > 2 are different from the orthog-

onal special group of the same dimension SO(2n + 1,C). 13 Wilhelm Karl

Killing (*1847, †1923) classified the different simple groups into types. For

example, type Cn for the nowadays called symplectic groups Sp(2n,C). An

is the type for the linear special group family SL(n + 1,C) and Bn is the

type for the orthogonal special group family S0(2n+1,C). This classification

allowed Lie to realize that the contact transformations of dimension n are

the groups of the Cn family. The name “complex” groups was given by Élie

Cartan (*1869, †1951) because the symplectic groups has its origins by the

study of the line complex.14

The symplectic group was also called as Abelian linear group. This ter-

minology goes back to Camille Jordan, who, “introduced the analogue of

the symplectic groups for the coefficient field of the integers modulo a prime

p” in 1869.15 The symplectic group did not have a name at that moment.

Jordan noticed that the symplectic groups are subgroups of the group of all

transformations T ∈ GL(2n,F) leaving a line complex invariant (1.4).16

1.2 Hermann Weyl and the symplectic group

Before 1938, the symplectic group was known as complex or abelian linear

group. In 1938, Hermann Weyl proposed to change the name and named it

symplectic.

Hermann Weyl was born on November 9, 1885 in Elmshorn, Germany,

and died on December 8, 1955 in Zürich, Switzerland. In 1904, Weyl started

13See (Kosmann-Schwarzbach 2013, p. 135).
14See (Kosmann-Schwarzbach 2013, pp. 135-136).
15(Hawkins 2012, p. 98).
16See (Hawkins 2012, p. 99).
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to study mathematics and physics at the University of Göttingen. At the time

Weyl was studying, Felix Klein (*1849, †1925), Hermann Minkowski (*1864,

†1909) and David Hilbert (*1862, †1943) were teaching at the Mathematical

Institute of Göttingen. David Hilbert was Weyl’s doctoral advisor. Weyl

received his mathematical doctoral degree in 1908.

Three years later in 1910 Weyl became lecturer at the Mathematical Insti-

tute in Göttingen, where he taught for the next three years. In 1913, he left

Göttingen for a position as a professor of mathematics at the Eidgenössische

Technische Hochschule Zürich17 (ETH Zürich).

When Hilbert retired in 1930, Weyl went back to Göttingen to become his

successor. Weyl taught in Göttingen for the next three years until 1933 when

the Nazis seized power in Germany. Weyl and his wife Helene Weyl18, who

was born into a Jewish family, decided to emigrate to the United States. They

made this decision before the laws restricting professions for Jewish people

were enacted and before the persecution of families with Jewish members

began. Their early decision made their emigration relatively easy. Weyl

accepted a position at the Institute for Advanced Study in Princeton19 (IAS)

where he stayed until his retirement in 1951 when he moved to Zürich.20

The different places where Hermann Weyl taught and the academical

recognition he had in the international mathematical and physicists commu-

nity allowed him to build a network of contacts.

During his time in Zürich, Weyl has been the colleague of Albert Einstein

17Swiss Federal Institute of Technology in Zürich.
18Helene Weyl was born in 1893 as Helene Joseph and died in 1948 in Princeton. She

was a German writer and translated the philosophical work of José Ortega y Gasset into

German.
19The Institute was founded in 1930.
20Helene died before Hermann Weyl’s retirement and their children stayed in the United

States.
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(*1879, †1955) and Erwin Schrödinger (*1887, †1961), and he corresponded

with Élie Cartan about infinitesimal geometry.21 Later, during his second

period in Göttingen, some mathematicians, for example Charles Ehresmann,

went to study with him.22

Hermann Weyl was an important connection between mathematicians in

the United States because he invited many mathematicians to spend research

periods at the IAS from all over the world.

During the Nazi persecution against the Jewish and opponents of the

regime, Hermann Weyl used and activated his personal network to help a

lot of the persecuted mathematicians to emigrate to the United States.23

Furthermore, he helped to organise funding from the Rockefeller Foundation

with the help of Richard Courant.24

Weyl’s scientific contributions are related to mathematics, physics, phi-

losophy and the foundations of mathematics. In mathematics he contributed

to different fields such as real and complex analysis, geometry and topology,

number theory and mathematical physics.

Weyl’s contributions to group theory are collected in his book The classi-

cal groups: their invariants and representations (Weyl 1939), which contains

his work about representation theory of Lie groups from the 1920s, and his

later lectures given in the IAS Princeton in the 1930s.25 Striktly speaking,

Weyl’s contribution to symplectic geometry “was only” the denotation of it

as “symplectic” because his contributions had no direct impact on the genesis

21See (Scholz 2011).
22Charles Ehresmann was in Göttingen between 1930 and 1931.
23See (Siegmund-Schultze 2009, Siegmund-Schultze 2012).
24Richard Courant was born in Germany in 1888 and died in New York in 1972. He was

a Jewish mathematician who left Göttingen at the same time as Weyl. Later, he lived in

New York City and from there helped others to emigrate to the United States.
25See (Eckes 2011).
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and the development of the field of symplectic geometry.

The word “symplectic” appears for the first time in a mathematical con-

text in Weyl’s book The classical groups, which was published in 1939. Her-

mann Weyl proposed a change of name for the complex group to the sym-

plectic group. The word “symplectic” is the Greek word for “complex” and

Weyl considered that the word “complex” led to confusion with the complex

numbers. The arguments for this change were given by Weyl in the footnote

as transcribed as follows:

The name “complex group” formerly advocated by me in al-

lusion to line complexes, as these are defined by the vanishing of

antisymmetric bilinear forms, has become more and more embar-

rassing through collision with the word “complex” in the conno-

tation of complex number. I therefore propose to replace it by

the corresponding Greek adjective “symplectic.” Dickson calls

the group the “Abelian linear group” in homage to Abel who

first studied it.

(Weyl 1939, p. 165)

The term “symplectic” to describe this group was accepted and used by

the mathematical community. In 1941, Aurel Wintner (*1903, †1958) used

in his work The Analytical Foundation of Celestial Mechanics on brackets

the term symplectic as an alternative denotation for the complex group.26 In

1943 Carl Ludwig Siegel (*1896, †1981) used it for the group that operates

on the Siegel half space and in his article “Symplectic Geometry” (Siegel

1943b).27 Later from 1950 to 1953, Charles Ehresmann and Libermann used

the adjective symplectic for a manifold that is endowed with a skewsymmetric

26See chapter 8.
27See chapter 2.
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non-degenerate 2-differential form, i.e. a symplectic form.28 In 1953, Jean-

Marie Souriau (*1922, †2012) called the vector space endowed with a 2-

differential form, which is non-degenerate, a symplectic vector space.29

28The terms 2-differential form, 2-form and two form are equivalent.
29See chapter 9.
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Chapter 2

Symplectic Geometry by Carl

Ludwig Siegel

Introduction

The focus of this chapter is to describe the achievements of Carl Ludwig

Siegel (*1896 ,†1981) during the middle of the 1930s and the beginning of

the 1940s in generalizing the theory of automorphic functions to the case of

an arbitrary number of variables, which is the generalization of hyperbolic

geometry on the 1
2
n(n + 1) complex dimensional space, named by Siegel as

“symplectic geometry”.

At first, some biographical notes on Siegel will be given to provide the

historical context.

In 1935 Siegel extended the theorem of Hasse-Minkowski for quadratic

forms. For the extension, Siegel gave an analytically interpretation which

led him to developing the theory of modular functions of degree n. With

these results, Siegel achieved the generalization of hyperbolic geometry on

the 1
2
n(n+ 1) dimensional space. The generalization of hyperbolic geometry

27
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was published in 1943 in the American Journal of Mathematics under the

name “Symplectic Geometry”.1

Siegel generalized the half plane to the half space of dimension 1
2
n(n+1),

which is a bounded simple domain. The half space is nowadays known as

Siegel’s half space. The group that acts biholomorphically on Siegel’s half

space is the symplectic group, and, therefore, the generalization of hyperbolic

geometry was named “Symplectic Geometry” by Siegel.

In 1943 after Siegel’s publication, a similar work was done by Hua Loo-

Keng (*1910, †1985). Hua Loo-Keng was a Chinese mathematician who

worked in the National Tsing Hua University of China in 1943, at the institute

of mathematics Academia Sinica. A short biography of Hua will be given

and, as well, the story of this doubling.

2.1 Carl Ludwig Siegel

Carl Ludwig Siegel was born in Berlin on December 31 in 1896. He died

in Göttingen on April 4 in 1981. Siegel was a specialist in number theory.

However, he also made contributions to other mathematical fields such as

complex analysis and celestial mechanics.

Although he wanted to study mathematics at first, in 1915 Siegel started

his studies in astronomy. This decision resulted from the fact that in 1914 the

first World War began, which was a threat to Siegel, who was at that time 17

years old. He was a pacifist and against the recruitment of people for the war.

Because of his rejection of the war, he decided to dissociate himself from it as

much as possible, not only physically but also professionally. Therefore, he

1During 1941 to 1945 Hermann Weyl was one of the editors of the American Journal

of Mathematics.
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decided to study astronomy, which moreover complied with his mathematical

interests.2

Thus, in 1915 Siegel started his studies in astronomy at the university of

Berlin, but the lectures on astronomy were delayed by two weeks. Therefore,

Siegel decided to attend the lecture on number theory given by Frobenius.3

Frobenius’ lecture had an important influence on Siegel’s career. Because of

this lecture, Siegel decided to study mathematics, although the risk being

recruited was high, and developed his interest in number theory, for which

he became an expert.

But although he changed his studies to mathematics, he never fully aban-

doned astronomy. During his life, Siegel published some articles about ce-

lestial mechanics and gave lectures on celestial mechanics at the universities

where he was active.

In 1918 Siegel’s fears to be recruited became true and he had to interrupt

his studies in order to serve in the German army in Strasbourg. Neither the

fact that he was studying mathematics, nor the effort of some professors who

were impressed by Siegel’s skills in mathematics, were able to release him

from military service.4

In Strasbourg, Egon Schaffeld was in charge of organizing the papers of

the new recruits. Before Egon Schaffeld5 was recruited and sent to Stras-

bourg, he also studied mathematics. When he read Siegel’s documents he

was impressed by the professors’ references and decided to help Siegel in

2(Frobenius 1968, iv-vi).
3(Frobenius 1968, iv-vi).
4It is not clear who wrote the letters requesting the release of Siegel from military

service. It is an assertion made by Hel Braun in her memories when she wrote about

Siegel and Siegel’s friend Schaffeld. (Braun 1990, p.20).
5Hel Braun mentioned in her memories (Braun 1990, p.20) that Siegel always said that

Schaffeld saved his life.
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Strasbourg so Siegel could have some privileges during his military service.

Siegel even asked Schaffeld if it was possible to leave his military service, but

this proved impossible. For Siegel the army was terrible, and after six weeks

in Strasbourg, Siegel had a psychological break down. Siegel was interned

in the psychiatric hospital in Strasbourg, and his father asked his neighbor

Dr. Leopold Landau for medical help. Leopold Landau treated Siegel in

Strasbourg.

Leopold Landau was the father of Edmund Landau,6 who was the profes-

sor of mathematics at the University of Göttingen and worked in the field of

number theory and complex analysis. Through Leopold Landau, Siegel came

into contact with Edmund Landau, who invited him to continue his studies

in Göttingen.7

In 1919 Siegel left Berlin and enrolled at the Georg-August University of

Göttingen. In Göttingen he achieved his doctoral degree in 1920 with his

thesis on algebraic number theory, “Approximation algebraischer Zahlen”8

under the supervision of Edmund Landau.

After his doctoral degree, Siegel continued his academic life in Göttingen

by giving lectures and working as Richard Courant’s9 research assistant from

1920 to 1922.10 During this period, Siegel started his habilitation in which

6Edmund Landau was born on February 14, 1877 and died on February 19, 1938. He

studied mathematics in Berlin and received his Ph.D. In 1899, he wrote his thesis on

number theory under the supervision of Frobenius and Fuchs.
7See (Braun 1990, p. 20).
8“Approximation of algebraic numbers”
9Richard Courant was born on January 8, 1888 and died on January 27, 1972. He

was a German mathematician mainly dealing with differential calculus and calculus of

variations.
10Siegel’s friendship with Courant helped him to obtain a scholarship for the Institute

of Advanced Studies (IAS) in Princeton in 1935 and in 1940. See (Brühne 2003).
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he used analytical methods developed by Hardy (*1877, †1947), Littelwood

(*1885, †1977) and Ramanujan (*1887, †1920)11 and developed an interest in

analytical number theory and in complex analysis. Complex analysis served

as a tool for solving number theoretical problems. This interest was expressed

in his habilitation request on August of 1921:

Zuerst interessierte mich mehr die algebraische Richtung der

Zahlentheorie, sowie der Gruppentheorie. Als ich dann durch

eingehende Beschäftigung mit Funktionentheorie die mächtigen

Hilfsmittel kennen gelernt hatte, mit denen sie insbesondere die

Theorie der algebraischen Zahlkörper fördert, wandte ich mich

mehr der analytischen Zahlentheorie zu.12

Siegel 1921 quotation by (Schneider 1983, pp.151-152)

Siegel achieved his “habilitation” at the end of 1921 with the “Habilita-

tionschrift: Zur additiven Theorie der Zahlkörper”.13

In 1922 Siegel obtained his habilitation qualification and afterwards, in

the winter semester 1922, Siegel went to the Johann-Wolfgang Goethe Uni-

versity of Frankfurt to work as a professor as Arthur Moritz Schönflies14

successor.15

11(Schneider 1983, p.152).
12First, I was more interested in the algebraic branch of number theory, as well as on

group theory. I started to work with complex analysis, and I realized the powerful tool it

was for the theory of algebraic number fields, so I started to work more in analytic number

theory.
13“Additive theory of number fields.”
14Arthur Moritz Schönflies was a German mathematician born on April 17, 1853 and

died on May 5, 1928. He made contributions to the application of group theory to crys-

tallography, and he worked on topology as well.
15See (Brühne 2003).
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In Frankfurt, Siegel attended the history of mathematics seminar with

Ernst Hellinger (*1883, †1950), Max Dehn (*1878, †1952), Paul Epstein

(*1871, †1939), and Otto Szász (*1884, †1952), with whom he built a strong

friendship. Siegel recalled the period between 1922 and 1934 in Frankfurt as

the most beautiful years in his life.16

With the seizure of power by the Nazi Party and its allies in 1933, Siegel

became worried about the danger of the Nazi-regime for the peace in Europe

and the danger for his Jewish colleagues and friends in the mathematical

seminar. Then, in 1933 Otto Szász was expelled from Frankfurt University;

in 1934, Epstein was expelled as well, and, one year later in 1935, Dehn

and Hellinger were prematurely retired, all of them because of their Jewish

roots.17

In 1935 Siegel went for a sabbatical year to the Institute of Advanced

Study (IAS) in Princeton in the United States of America.18

It was during Siegel’s Sabbatical year that he published two works about

analytical number theory (Siegel 1935b) and (Siegel 1936) in which he pre-

sented the modular functions of degree n. The first one (Siegel 1935b) was

finished before he went on his sabbatical year in 1935 as he sent it in Novem-

ber of 1934. Siegel dedicated it to Hellinger. The second one (Siegel 1936)

was written during his sabbatical year.

In January 1938 Siegel went to Göttingen for a professorship with the

16See (Siegel 1965).
17See (Schwarz, Wolfgang and Wolfart, Jürgen 1988), and, for more information about

the Nazi persecution of Jewish German mathematician see (Szabó 2000), (Bergmann,

Epple & Ungar 2012).
18During this time, Weyl and Courant asked Siegel to stay but he refused and gave some

excuses about not understanding the moral of US society, and that he wanted to go back

because of his father and because he wanted to support his friend Hellinger. Instead, he

asked for a Scholarship for Max Dehn.
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aspiration for an academic exchange with Helmut Hasse (*1898, †1979), but

Siegel was disappointed because Hasse’s political position, and his pride of

having served in the Navy during the First World War were intolerable for

Siegel, as Hel Braun described.19

In 1940 Siegel went into exile to the United States. He stayed there from

1940 to 1951. Siegel went into exile without being persecuted like his Jewish

colleagues. He did it because of his rejection of the Nazi government. He

made clear his opposition in his actions and comments. For example, after

Hellinger and Dehn were expelled from the Mathematische Seminar in Frank-

furt, Siegel wanted them to attend at least the mathematical colloquium.

Es gehörte immer mehr Mut dazu Kontakte mit jüdischen Kol-

legen aufrecht zu erhalten.20

(Braun 1990, p. 42)

An incident occurred when Siegel went to Paris to give some lectures for

a couple of weeks at the Sorbonne University in Paris in 1937. Siegel, as

a German professor, was requested to visit the “Deutscher Akademischer

Austauschdienst” (DAAD, German Academic Exchange Service) and the

representative of the “Nationalsozialistische Deutsche Arbeiterpartei” (NS-

DAP, National Socialist German Workers’ Party) in Paris. Siegel visited the

DAAD but he did not visit the representatives of the NSDAP. He argued:

[...] konnte ich zu meinem größten Bedauern den Pariser

Leiter der Auslandsstelle der NSDAP [...] nicht erreichen, da

die Sprechstunden dieses Herrn in die Zeit meiner Vorlesungen

19(Braun 1990, p. 46).
20It took courage to keep contact with the Jewish colleagues.
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und wissenschaftlichen Besprechungen fielen.21

(Schwarz, Wolfgang and Wolfart, Jürgen 1988, p. 87)

In 1940 Siegel did not want to live in Germany under the control of the

Nazis anymore, and therefore, he went into exile as his personal opposition

against the Nazis regime.

With the help of Weyl and Courant, Siegel gained a scholarship for the

first five years at the Institute of Advanced Study (IAS) in Princeton, New

Jersey. Later, in the middle of the 1940s, Siegel obtained his U.S. nationality

and a chair at the IAS.

Because of Jewish persecution in Germany, the IAS started to be an im-

portant center for the development of mathematics and physic research. A lot

of Jewish mathematicians and physicists who were persecuted by the fascists

in Europe went into exile to the United States, and some of them entered the

IAS in Princeton. Therefore, there were some of Siegel’s European colleagues

at the IAS.

Siegel returned to Göttingen to give lectures as an invited professor in

the winter semester of 1946/1947, and in 1951 he returned there for good

until his retirement.

2.2 Symplectic geometry by Siegel

In 1943 Carl Ludwig Siegel published his article “Symplectic Geometry” in

the American Journal of Mathematics.22 There, he continued with the gen-

eralization of the theory of automorphic functions of degree n started by Élie

21[...] to my great regret, I could not meet the director of the representation of the

NSDAP in Paris [...], because the office hours were at the same time as my lectures and

my academic activity.
22See (Siegel 1943b).
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Cartan (Cartan 1936) and the work done by himself during last half of the

1930s.23

The focus of this work is absolutely geometrical, as the name of the

article suggests. In the article Siegel studied a bounded simple domain E on

Cn which are homogeneous symmetric spaces of the group Ω of analytical

transformations, its discret subgroups 4 of Ω and the fundamental domains,

with the objective to studied the automorphic functions over E/4.24

In Siegel’s article (Siegel 1943b) the real symplectic group Sp(2n,R) is

the generalization of the special linear group SL(2,R) and he showed that

Sp(2n,R) operated on the upper half space

Hn = {Z ∈Mn(C)|Z = Zt, ImZ > 0}. (2.1)

This domain is nowadays known as Siegel’s half space and as it can be seen,

is a generalization of the Poincaré half plane to n- dimensinal case. There-

fore, following Klein’s classification of geometries as given in the “Erlangen

Programm” Siegel called this geometry “symplectic geometry”. Siegel gen-

eralized, as well, the unit disk. This generalization consist of all complex

symmetric matrices W of n× n, for which the Hermitian Matrix Id−W is

positive definite, i.e.

En = {W ∈Mn×n(C) |W t = W, Id−WW > 0}. (2.2)

Analog to the way is done between the Poincaré half plane Hn and unit disk

E1 = {z ∈ C| |z| < 1} and Siegel used a Cayley transformation he maps this

unit ball 2.2 onto the Siegel’s half space.

23See (Siegel 1935b), (Siegel 1935a), (Siegel 1936), (Siegel 1937c), (Siegel 1937a), (Siegel

1937b), (Siegel 1939).
24(Kosmann-Schwarzbach 2013, p. 137)
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In his article of symplectic geometry, he generalized some properties of the

Poincaré model of non-euclidean geometry and find the fundamental domains

of the modular group of degree n. Therefore, Siegel’s symplectic geometry is

a generalization of hyperbolic geometry to the complex space of dimension

1
2
n(n+ 1).

This development was the consequence of the work done by Siegel about

number theory in the 1930s, where Siegel found a generalization of the the-

ory of modular forms, functions, automorphic functions. and he constructed

the fundamental domain of the modular group of degree n. The step from a

generalized hyperbolic geometry to 1
2
n(n+ 1) was not far from the develop-

ment that Siegel achieved concerning modular functions of degree n in the

1930s. Siegels works is similar to Poincarés works on Fuchsian functions in

the 1880s.25

In the next sections I will show Siegel’s work about modular forms in the

1930s, which contributed to the developed of Siegel’s symplectic geometry.

2.2.1 Modular forms of degree n

The findings of Siegel on modular functions of degree n theory helps for

the development of the theory of automorphic functions of several variables,

because the theory of modular functions of several variables is a special case

of the theory of automorphic function of several variables. One result was

that Siegel was able to give the generalization of hyperbolic geometry.

In 1934 Siegel was working on analytical number theory. As a result

of this research, he published the article “Über die analytische Theorie der

quadratischen Formen”26 in which he presented a connection between the

25See (Gray 2000).
26“About the analytic theory of the quadratic forms”, See (Siegel 1935b).
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analytical theory of quadratic forms and automorphic functions in several

complex variables. The automorphic functions that Siegel discovered are the

modular functions which are known as the Siegel modular functions.27

Siegel discovered that definite quadratic forms lead to a construction of

modular forms of degree n through the generalization of the Eisenstein series,

and the Theta series is a special case of the Siegel modular form.28 This is

similar to Poincarés series of works on Fuchsian functions in the 1880.29 Siegel

find as well the fundamental domain for the modular group of degree n.30

A modular form of weight k (k ∈ N) for the modular group PSL(2,Z) is

a complex valued function f on the upper half plane which satisfies that f is

a holomorphic function on the upper half plane, for any z in the upper half

plane, and for any matrix in PSL(2,Z) the equation f(γ(z)) = (cz+d)kf(z)

holds with γ ∈ PSL(2,Z), i.e. γ(z) = az+b
cz+d

with a, b, c, d ∈ Z and f is

required to be holomorphic as z → i∞.

A modular form of degree n and weight k for the symplectic group

Sp(2n,Z) is a complex valued function f defined on Siegel’s half space. The

Siegel half space of degree n consists of all n-rowed complex symmetric ma-

trices Z, with positive definite imaginery parts.31 The function f satisfies

that is holomophic, and the equation f(γ(Z)) = (CZ+D)kf(Z) holds for all

γ’s in Sp(2n,Z), i.e. γ(Z) = (AZ+B)(CZ+D)−1 with A,B,C,D satisfying

(1.2), for any matrix Z in Siegel’s half space, and f is bounded on a Siegel

27A modular function f of degree n is a meromorphic function on the “Siegel” half space

of dimension n which is invariant under the action of the modular group Sp(2n,Z).(Klingen

1990, p.130).
28(Klingen 1983, p.161).
29See (Gray 2000).
30See (Siegel 1935a).
31See equation (2.13).
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fundamental domain.32 The group Sp(2n,Z)/{±Id} is currently known as

Siegel modular group. A fundamental domain of it, is called Siegel funda-

mental domain, is a closed subset of Siegel half space bounded by finitely

many algebraic surfaces.33

In 1936 Siegel presented his work on modular functions at the Interna-

tional Congress of Mathematics in Oslo.34 Oslo was one of the few

congresses where Siegel participated and gave a talk.35

In 1939 Siegel published “Einführung in die Theorie der Modulfunktionen

n-ten Grades”36 which is a special case of the study on automorphic functions

in a domain with a discontinuous group.

The developed on the theory of the modular functions of degree n is a

result of Siegel’s work about the analytic theory of quadratic forms, where

he find a connection to the modular functions. This work was published in

three parts over three years.37

Siegel’s main result on the analytic theory of quadratic forms can be inter-

preted in analytically through the Eisenstein series and he find out that the

modular forms of degree n can be constructed through the Eisenstein series.38

This turned Siegel’s attention to complex analysis in several variables.

In the next section I will give an overview about Siegel’s work on the

analytic theory of quadratic forms.

32(Klingen 1990, p.43).
33(Klingen 1990, p. 31).
34See (Siegel 1937a).
35See (Klingen, Rüssmann & Schneider 1983).
36Introduction to the modular functions of degree n
37See (Siegel 1935b, Siegel 1936, Siegel 1937c).
38See (Siegel 1935b)
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2.2.2 Analytic theory of quadratic forms

Siegel’s research on automorphic functions of several complex variables started

when he extended the Hasse theorem, which he called Legendre-Hasse theo-

rem.39

Helmut Hasse40 gave the generalization of the Legendre theorem (Hasse

1923), and the Legendre theorem states that a quadratic equation

ax2 + bxy + cy2 = d a, b, c, d ∈ Z (2.3)

can be solved with rational solutions if and only if the congruence

ax2 + bxy + cy2 ≡ d mod q (2.4)

has a rational solution for every module q, q ∈ N.41

The Hasse theorem solves the problem how to represent a quadratic form

R with n variable by a quadratic form Q of m variables. So, if S is the

symmetric matrix that represents the quadratic form Q with m variables, T

the symmetric matrix for the quadratic form R with n variables and X the

matrix of the linear transformation, the equation

X tSX = T. (2.5)

39It was not possible to find an actual mathematical publication where the name

Legendre-Hasse theorem is used. Instead for the same theorem the name Hasse-Minkowski

is used. It seems that only Siegel’s students called this theorem as Siegel named it. (See

(Klingen et al. 1983)). Here the name Hasse Theorem is going to be used for the theorem.
40Helmut Hasse was born on August 25, 1898 and died on December 26, 1979. He worked

on and developed the field number theory. Hasse and Siegel were together, as students,

form 1919 to 1920. After 1920, Hasse went to Magdeburg to finish his doctoral degree.

Hasse went back to Göttingen when he replaced Weyl in 1934, after Weyl’s emigration to

the USA (Princeton).
41Two rational numbers are congruent module q to each other if the difference a− b is

an integer number divisible by q. For example: 16
5 ≡

1
5 mod 3.
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is the generalization of (2.3). Hasse compared the last equation with the

rational solvability of the congruence

X tSX ≡ T mod q (2.6)

for each module q and proved that from the rational solvability of the congru-

ence (2.6) for each module q follows the rational solvability of the equation

(2.5).42

The Legendre theorem fulfills the case if the quadratic form Q has m = 2

variables and the quadratic form R has n = 1 variables. Then Q has the

form

au2
1 + 2bu1u2 + cu2

2,

and the quadratic form is represented by the symmetric matrix S, which has

the form  a b

b c

 .

The quadratic from R has the form dv2
1 and is represented by the matrix T of

the form (d). The homogeneous linear substitution is u1 = xv1 and u2 = yv1

and the substitution matrix is X =

 x

y

 .

The equation (2.5) is

(x, y)

 a b

b c

 x

y

 = (d). (2.7)

By multiplying the left side of equation (2.7), equation (2.3) is obtained,

which is the case of the Legendre theorem. The case m = n was considered

by Minkowski.43

42Two matrices A and B are congruent module q, i.e. A ≡ Bmod q, if all elements of

the matrix A−B are divisible by q.
43(Siegel 1937b, p.334).
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The Hasse theorem gives a qualitative result, i.e. existence of the rational

solutions of the equation. Siegel generalized it to be a quantitative result,

finding the numbers of solutions for (2.5). He mentioned that if the equation

(2.5) has rational solutions, there is an infinite number of solutions. To

obtain a finite number of solutions, Siegel considered only the cases in which

the solutions are integers, i.e. that all the elements xij of the matrix X are

integers and so are the elements of the matrices S and T .44 The number of

integer solutions of the equation (2.5) is denoted by A(S, T ). The number of

integer solutions of the congruence (2.6) is denoted by Aq(S, T ). This means

that the number of solutions X for the congruence (2.6) are integer and not

congruent with respect to module q. For the quadratic transformation itself,

the number of solutions is denoted by A(S, S) = E(S).

Siegel showed the relationship between the number of solutions of the

equation (2.5) and the number of solutions of the congruence (2.6). To show

this relationship, Siegel defined the notion of class and genus.45

Two quadratic forms Q and Q1 belong to the same class, i.e. are equiv-

alent if Q1 can be represented by Q and vice versa. For example, if S is

a representation matrix of the quadratic form Q and S1 is a representation

matrix of Q1, then the two equations

X tSX = S1

and

X t
1S1X1 = S

can be solved for integer matrices X and X1. A(S, T ) is invariant if one

substitutes the quadratic form Q with matrix S by the quadratic form Q1

with matrix S1. It is said the quadratic forms are equivalent.

44(Siegel 1937b, p. 334).
45(Klingen et al. 1983, p.159).
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Two quadratic forms belong to the same genus if the congruence relations

X tSX ≡ S1 mod q

and

X t
1S1X1 ≡ Smod q

can be solved for integer matrices X and X1 for each q, and the numbers

Aq(S, T ) and Aq(S1, T ) are identical.

Siegel gave a simple example of two quadratic forms

Q = x2 + 55y2

and

Q1 = 5x2 + 11y2.

belonging to the same genus, but not to the same class. Both have the same

number of solutions for the congruence

x2 + 55y2 ≡ 1 mod q

and

5x2 + 11y2 ≡ 1 mod q,

but x2 + 55y2 = 1 has integer solutions and 5x2 + 11y2 = 1 does not, i.e. Q

and Q1 are not equivalent.46

Siegel used a theorem stated by Charles Hermite (*1822, †1901), which

says that to each genus there only exist a finite number of classes. 47

For the relationship between Aq(S, T ) and A(S, T ), Siegel defined, what

he called, the average value of Aq(S, T ) and A(S, T ). For the average value

of Aq(S, T ), Siegel took the number of integer solutions X of the congruence

X tSX ≡ T mod q

46See (Siegel 1935b, p.528).
47(Siegel 1935b, p.554).
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that are not congruent module q. Then, for each element xkl of X with value

1, ..., q, all matrices X can be obtained that are incongruent with module q.

Because X is an integer matrix with m rows and n columns, the matrix has

mn elements and there are q possibilities for each element of X. Then, X

runs through all the module q incongruent matrices and not only through

the solutions of the congruency. Therefore, there exist qmn matrices X.

For all these matrices X, the matrix X tSX = Y will be an integer

symmetric matrix of n×n. Y can only have 1
2
n(n+1) independent elements.

This means that there can only be q
1
2
n(n+1) possible integer matrices for Y ,

which are incongruent module q; therefore,∑
Ymod q

Aq(S, Y ) = qmn

and ∑
Ymod q

1 = q
1
2
n(n+1)

while Y runs through all the incongruent matrices with module q. The num-

ber qmn−
1
2
n(n+1) can be named as the average value of the number Aq(S, T ).

For the average value of A(S, T ), Siegel considered the independent ele-

ments of the symmetric matrices T , which can be interpreted as Cartesian

coordinates of a point in the 1
2
n(n+1) dimensional space. Then, he lets y be

a domain in the space, which includes the point T and which has a volume.

He looked for all real matrices X which satisfy the equation X tSX = Y ,

where Y is any point of the domain y. If Y runs through all the points of y,

the real elements of the matrix X run through the mn Cartesian coordinates

of points of the domain x, which is a mn-dimensional space.

Siegel calculated the volume for the domains y and x and built the quo-

tient of these volumes. The average value of A(S, T ) is the limit of the

quotient of the volumes when the domain y converges to Y , where Y is any
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point of the domain y, i.e. the limit of the volume quotient

lim
y→Y

∫
x
dX∫

y
dY

= A∞(S, Y )

exists if the domain y converges to any point Y of y. Then, he concluded the

relationship ∫
y

A∞(S, Y )dY =

∫
x

dX. (2.8)

Moreover, if the matrices X run through the integer matrices located in the

domain x and Y are the integer matrices located in the domain y, the relation∑
Y ∈y

A(S, Y ) =
∑
X∈x

1, (2.9)

is true because the number A(S, Y ) of integer matrices X corresponds to the

same matrices Y = X tSX.

Therefore, the average value of A(S, T ) is the volume quotient

A∞(S, T ) = lim
y→T

∫
x
dX∫

y
dY

.48 (2.10)

After he defined the classes, the genus, and average values, Siegel was able

to give the fundamental theorem of his work which consists of the formula

A(S1,T )
E(S1)

+ ...+ A(Sh,T )
E(Sh)

A∞(S1,T )
E(S1)

+ ...+ A∞(Sh,T )
E(Sh)

= lim
q→∞

Aq(S, T )

qmn−
1
2
n(n+1)

(m > n+ 1) (2.11)

where q tends suitably to infinity, for example, q can be the sequence of the

factorial numbers, as Siegel mentioned.49

For the case m ≤ n+ 1, Siegel added to the right side of the equation the

factor 2−1. If m = n, he added the factor 2ω(q) to the denominator of the

right side, where ω(q) are the numbers of the prime divisors of q. Both sides

48(Siegel 1937b, p.338).
49(Siegel 1937b, p.338).
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of the equation (2.11) are divided by their average values.50 The matrices

S1, S2, ..., Sh are the representatives of the different classes of the genus of

S.51

Siegel rewrote the right side of the equation (2.11) as an infinite product

and through this change he could give an analytical interpretation of the

main theorem. For this Siegel found out that if q and r are relative primes,

then

Aqr(S, T ) = Aq(S, T )Ar(S, T );

moreover, for a power q = pa with p being prime and for a being sufficiently

large, the quotient

Aq(S, T )

qmn−
1
2
n(n+1)

= αp(S, T )

is constant with S and T fixed. Siegel identified αp(S, T ) as the density of the

rational solution of X tSX = T in the p-adic field numbers.52 The expression

can be written as an infinite product of the densities of the rational solutions

over all prime numbers, i.e.

∏
p

αp(S, T ) = lim
q→∞

Aq(S, T )

qmn−
n(n+1)

2

.53

Siegel rewrote the equation (2.11) as follows

A(S1,T )
E(S1)

+ ...+ A(Sh,T )
E(Sh)

1
E(S1)

+ ...+ 1
E(Sh)

= A∞(S, T )
∏
p

αp(S, T ), (2.12)

using the fact that the genus is invariant, i.e.

A∞(S1, T ) = ... = A∞(Sh, T ) = A∞(S, T ).

50(Siegel 1935b, p.529).
51(Siegel 1937a, p.107).
52(Siegel 1935b, p.552).
53(Siegel 1935b, p.555).
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2.2.3 Analytical interpretation

For the analytical interpretation of the main theorem (2.12), Siegel used

the relation that exists between some analytic functions of n
2
(n+1) variables

and the 2n periodic meromorphic functions, which is the same relation as the

one between the modular function and the elliptic functions.54 An elliptic

function is a meromorphic function that is periodic in two directions and

every modular function can be expressed as a rational function of an elliptic

function.55

Siegel noticed that there is a relationship between the Riemann Theta

function56 and the generalization of the Eisenstein series.57

First, Siegel established a relationship with the number of solutionsA(S, T )

and gave an interpretation for the left side of equation (2.12). For this, Siegel

constructed the Theta series for a real positive definite square matrix S of

order m and a symmetric matrix Z of order n with complex elements and

the imaginary part of Z being positive definite, i.e. ImZ > 1. Siegel let all

integer matrices G with m rows and n columns run through to get an infinite

54(Siegel 1937b, p.109).
55(Apostol 2012, p.40).
56A Theta series is a series of functions used in the representation of automophic forms

and functions (E.D. Solomentsev 2017). The Theta series of a lattice is the generating

function for the number of vectors with norm n in the lattice (Weisstein 2017). The

Riemann Theta function is defined in the Siegel half space (see 2.13) for Z and τ in the

complex n dimensional space and the function is as the following:

F (τ, Z) =
∑

m∈Zn

exp

(
2πi(

1

2
mtZm+mtτ)

)

57(Siegel 1935b, p.601).
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series

f(S,Z) =
∑

G∈Mm×n(Z)

eπi tr(GtSGZ).

This series is the Theta series. All the matrices M = GtSGZ are located in

a domain

Hn = {Z ∈Mn(C)|Z = Zt, ImZ > 0}. (2.13)

of the space of 1
2
n(n+1) complex variables zkl. This domain is the half space,

which was defined by Siegel in (Siegel 1935b, p.572), and is nowadays known

as Siegel’s half space.

Siegel proved that the series f(S,Z) is uniformly convergent in all finite

parts of the domain Hn.58 Therefore, it is holomorphic in the domain Hn.59

The number of solutions of GtSG = T , where T is a symmetric matrix, is

then A(S, T ). Siegel obtained the relation

f(S,Z) =
∑
T

A(S, T )eπi tr(TZ) (2.14)

through the Fourier development.

The left side of the equation (2.12) can be written for all T by the genus

invariant as

F (S,Z) =

f(S1,T )
E(S1)

+ ...+ f(Sh,T )
E(Sh)

1
E(S1)

+ ...+ 1
E(Sh)

where S1, ..., S2 represent all the classes of the genus of S and the analytical

function F (S,Z) is determined by the genus of S, which Siegel called the

analytical invariant of genus and with (2.14), F (S,Z) can be rewritten as

F (S,Z) =
∑
T

A(S1,T )
E(S1)

+ ...+ A(Sh,T )
E(Sh)

1
E(S1)

+ ...+ 1
E(Sh)

.60 (2.15)

58Hel Braun exposed this in details in her PhD thesis (Braun 1938).
59See (Siegel 1937b).
60(Siegel 1937c, p. 345).
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Through some identities of the Fourier series and through the analytical

invariant genus, Siegel transformed the right side of (2.15) into a series of

simple fractions, i.e.

F (S,Z) =
∑
C,D

γ(S,C,D)det(CZ +D)−
m
2 , (2.16)

m > 2(n+ 1), while C and D run through a system of n×n integer matrices

as follows: C and D are symmetric to each other. They are primitive, i.e.

if for any matrix M the matrices MC and MD are integer then M is itself

integer. C and D are not associated, i.e. for any two pairs C1, D1 and C2,

D2 of the system C, D, C1D
t
2 6= D1C

t
2.

The coefficient γ(S,C,D) does not depend on the variable Z, it only

depends on C and D. If the determinant of S is equal 1, has a even number

of elements in its diagonal and the elements of S are integers numbers, the

coefficients γ(S,C,D) = 1. and so

F (S,Z) =
∑
C,D

det(CZ +D)−
m
2 .

Siegel did not mention, in 1937, when the simplification (2.16) occurs, but

he gave two examples for it that may be an indication that he knew that the

simplification of equation only occurs if the grade m if the quadratic form

holds m ≡ 0 mod 8. Nowadays this is know.61 Through this generalization

and simplification, Siegel developed the modular forms of degree n.

The classical Eisenstein series are defined by

G2k(z) =
∑

m,n∈Z−{0}

1

(m+ nz)2k
(2.17)

where z ∈ H1 and 2k is the weight, k ≥ 2. The Eisenstein series are ab-

solutely convergent to a holomorphic function of z in the upper half plane,

61See (Klingen 1983).
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and are holomorphic as z → i∞. For any modular matrix M ∈ SL(2,Z) the

equation

G2k

(
az + b

cz + d

)
= (cz + d)2kG2k(z)

is satisfy. 62

For the case n = 1, the modular form of weight k, with k ∈ N0 and k

being a pair, is a complex value function f on the upper half plane

H1 = {z ∈ C | Im(z) > 0}. (2.18)

The function f is an holomorphic function on H1. It satisfies for any z ∈ H1

and any matrix in the modular group, i.e. A ∈ PSL(2,Z) the equation

f

(
az + b

cz + d

)
= (cz + d)kf(z), (2.19)

and f is holomorphic as z → i∞. So, an example for n = 1 of modular forms

are the Eisenstein series.

The generalization of the Eisenstein series is

F (S,Z) =
∑
C,D

det(CZ +D)−
m
2 .

Siegel’s two examples of the generalization of the Eisenstein series are.

for m = 8 and the symmetric matrix that represents the quadratic form is

the identity matrix S = E8.63

The first example that Siegel gave of the generalization of the Eisenstein

series is for m = 8 and n = 1. The resulting matrix S = E8 is symmetric,

and, therefore, the classes of the genus equal 1. Z is a complex number z.

The Theta series is

F (E8, z) = f(E8, z) =
−∞∑

κ1,...,κ2=+∞

eπiz(κ
2
1+...+κ28) =

(
+∞∑

κ=−∞

eπizκ
2z

)8

.

62(Apostol 2012, p.113).
63See (Siegel 1937b).
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Siegel calculated γ(S,C,D), and ascertained that it is equal 1 or equal 0.

Therefore, (
+∞∑

κ=−∞

eπizκ
2z

)8

=
∑
c,d

(cz + d)−4 (2.20)

and c, d runs through all integer numbers with the properties that they are

relative primes, cd being a pair number; c > 0 or c = 0, d > 0. So, in the left

side of the equation (2.20), a Jacobi theta function to power eight is equal to

an Eisenstein series. Therefore, equation (2.20) shows the relation between

the Theta functions and the Eisenstein series.64

The second example is for m = 8, n = 2 and

Z =

 x y

y x

 .

The second example is analogue to the first one.

F (E8, Z) =

(
+∞∑

a,b=−∞

eπi(xa
2+2yab+zb2)

)8

and (
+∞∑

a,b=−∞

eπi(xa
2+2yab+zb2)

)8

=
∑
C,D

det(CZ +D)−4, (2.21)

where C, D have the properties described above.

The left side of the equation (2.21) is a Riemann Theta function of power

eight. Siegel noticed that the Riemann Theta function corresponds to an

algebraic curve of genus two.65 The second member of equation (2.21) is

a generalization of the Eisenstein series, which is related to the theory of

automorphic functions of several variables.

With the last example, Siegel linked the result of his fundamental theorem

on quadratic forms to the theory of algebraic curves.66

64(Siegel 1937b, p.346).
65See (Siegel 1937b).
66See (Siegel 1937b).
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Siegel used the fact that the Riemann Theta function corresponds to

an algebraic curve and an algebraic curve is a compact Riemann surface to

obtain the modular functions of degree n.

2.2.4 Siegel modular functions of degree n

For the construction of the modular functions of degree n, Siegel searched

first for the modular group. After finding the modular group which left

invariant the Siegel upper half space Hn. He find the fundamental domain

of the modular group on Hn and so he was able to constructed the modular

functions of degree n as the quotient of modular forms, with the modular

forms being holomorphic in Hn.

Modular group

To gain the modular functions of degree n, Siegel started with a compact

Riemann surface of genus n. On the Riemann surface, Siegel fixed a set of

2n simple closed curves inducing a canonical homology base. A canonical

homology base is a cut-class system {αi, βi}ni=1.67 Siegel called this “ein

canonisches Schnittsystem von 2n Schnitten”.68 The simple closed curves are

cuts on the Riemann surface, and a 2n canonical homology base is a cut-class

system. In the cut-class system {αi, βi}ni=1, the intersections are between the

path αi and βi, so that

αi · αj = 0; βi · βj = 0; αi · βj = δi,j = −βi · αj (2.22)

i = 1, ..., n; j = 1, ..., n.

In the case that αi cuts in the same direction as βi, the intersection num-

ber is 1, otherwise it would be−1. These relations produce the antisymmetric

67See (Siegel 1935b, p. 595).
68A canonical cut-class system of 2n cuts. See (Siegel 1935b).
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matrix J , 

α1

.

.

αn

β1

.

.

βn



(α1, ..., αn, β1, ..., βn) =

 0 Id

−Id 0

 = J.

Siegel did not mention that the compact Riemann surface most be oriented,

but is needed to be oriented so it is possible to give the cuts a directions.

On a Riemann surface of genus n, Siegel defined a system of independent

abelian differentials of the first kind. An abelian differential is a meromorphic

1-form on an open subset of a Riemann surface. If the abelian differential is

holomorphic everywhere on the Riemann surface, it is of the first kind.69

A period of an integral of an abelian differential of the first kind belongs

to a simple closed curve on a Riemann surface, i.e.∫
αi

dwj = pij

∫
βi

dwj = qij,

where dwj is an independent system of differentials of first kind and (pij) = P ,

(qij) = Q are matrices. If Q 6= 0 then PQ−1 = Z = X + iY is a symmetric

matrix with a positive definite imaginary part, i.e. Y > 0.70

Siegel showed how to change the canonical homology base {αi, βi}ni=1 to

a different canonical homology base using a linear matrix M = GL(2n,Z)

M =

 A B

C D


69See (Forster 1999).
70(Siegel 1935b, p.602).
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where A, B, C, D are symmetric matrices of n× n each.

The change of the canonical homology base is then

α′1

.

.

α′n

β′1

.

.

β′n



= M



α1

.

.

αn

β1

.

.

βn



.

The basis is exactly canonical if, and only if,

α′1

.

.

α′n

β′1

.

.

β′n



(α′1, ..., α
′
n, β

′
1, ..., β

′
n) = J,

i.e. M tJM = J . Siegel called the matrix M the canonical matrix because

M tJM = J , which it means that M is a symplectic matrix with integer

entries, i.e. M ∈ Sp(2n,Z). So, the matrix J is defined using the homology

basis {α′1, ..., α′n, β′1, ..., βn′} and in this way the compact Riemann surface get

the structure of a symplectic module, then Siegel is working over Z. Siegel in-

troduced the terminology canonical group then in 1935 the symplectic group

did not have that name at that time.71

71See chapter 1.
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With this linear transformation, Siegel was able to map the Z matrix

onto another matrix Z ′ with positive a definite imaginary part. He defined

the Siegel half space Hn,

Bedeutet H das Gebiet aller symmetrischen [Matrizen] X mit pos-

itivem Imaginärteil.72

(Siegel 1935b, p. 597)

Currenly is describe as:

Hn = {Z ∈Mn(C)|Z = Zt, ImZ > 0}. (2.23)

So, he showed that the symplectic group operates on the half space Hn.73

This means that the symplectic matrix M operates on the Siegel half space,

i.e. a symmetric matrix Z = (zkl), where Z = X + iY with Y > 0 is

mapped into another symmetric matrix Z ′ = X ′+ iY ′ that is as well positive

definite. In a current terminology it means that the transformation maps the

half space onto itself, and the automorphic group of Hn is described by the

operation:

Sp(2n,Z)×Hn −→ Hn, (µ, Z) 7→ Z ′ = µ〈Z〉 := (AZ +B)(CZ +D)−1

(2.24)

In the case that the matrix M is symplectic, or in Siegel’s notation, the

matrix is canonical, the matrices M and −M provide the same substitution

and the Modular group of degree n arises as a factor group of the group of

all canonical matrices, i.e. Sp(2n,Z)/{±Id}. We used the current notation

for the modular group of degree n, i.e.

Γn = Sp(2n,Z)/{±Id}. (2.25)

72Means H the area of all symmetric [matrices] X with positive imaginary part.
73This half space, as is mention in sec 2.2, is currently known as the Siegel half space.
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If n = 1, the symplectic group is the modular group, i.e.

Sp(2,Z)/{±Id} ∼= PSL(2,Z).

As mentioned before, the modular group of degree n > 1 is today known as

the Siegel modular group.74

Fundamental domain of the Modular Group of degree n

Siegel constructed the fundamental domain in Hn for the modular group of

degree n operating on it.75

A fundamental domain for a discontinuous group is a domain Fn in Hn,

if the images of Fn under the discontinuous group cover Hn without gaps

and overlaps. A group is discontinuous on Hn if no set of equivalent points

has a limit point in Hn. The discontinuous group is the modular group of

degree n.

Siegel proved that a subset Fn of Hn which fulfills the conditions

1) det(CZ +D) ≥ 1 for all M ∈ Γn.

2) Y fulfill the Minkowski reduction.

3) |xij| ≤ 1
2

for i ≤ j and i, j ∈ {1, ..., n}.

is a fundamental domain of the modular group Γn.

Modular Functions of degree n

After giving the fundamental regions, Siegel had the tools to give the modular

functions of degree n.76 The modular functions of degree n are meromorphic

74Currently some mathematicians called the modular group of degree n as

Γn = Sp(2n,Z). See (Klingen 1990).
75(Siegel 1935b, p.598 ff) and (Siegel 1939, p.625 ff).
76See (Siegel 1935b, Siegel 1939).
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functions on the half space Hn and are invariant under the action of the

modular group of degree n, i.e.

f(M(Z)) = f(Z) for all Z ∈ Hn and for all M ∈ Sp(2n,Z).77 (2.26)

Siegel constructed the modular function as the quotient of modular forms,

with the modular forms being holomorphic in Hn. The modular function is

frs(Z) = ψsr(Z)ψ−rs (Z)

where the modular forms are ψsr and ψ−rs . A modular form of degree n

and weight k is a complex valued function ψr defined on the half space and

satisfies

• ψr is holomorphic,

• ψr is bounded on the fundamental domain of the modular group,

• ψr(M〈Z〉) = det(CZ +D)rψr for all M ∈ Sp(2n,Z), M =

 A B

C D


satisfying AtC = CtA, BtD = DtB, AtD − CtB = Id.

Siegel used the generalization of the Eisenstein series (2.16) for the con-

struction of the modular form:

ψr(Z) =
∑
C,D

det(CZ +D)−r

where r = m
2

(r = 2, 4, 6, ...) and m > 2(n+ 1). The quotient function

frs(Z) = ψsr(Z)ψ−rs (Z)

is a modular function of degree n, and all the modular functions are expressed

as a ratio of a generalization of Eisenstein series.78

77See (2.24).
78See (Siegel 1935b).
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2.2.5 Symplectic geometry 1943

As mentioned above, Siegel discovers the modular forms of degree n and thus

obtains the objects, such as the modular group and its fundamental regions

and the Siegel half space, to carry out a generalization of the hyperbolic

geometry in n
2
(n+ 1)-dimensions which he had done in 1943.

Siegel exposed this generalization, as is said at the beginning of this chap-

ter the article ”Symplectic Geometry” , which is linked to the generalization

of the theory of automorphic functions of degree n. As the title of the article

already suggests, the focus of it is absolutely geometrical.

For the generalization of the automorphic functions of degree n, Siegel

mentions the steps that are needed in his article ”Symplectic Geometry” of

1943.:

A generalization of the theory of automorphic functions to the

case of an arbitrary number of variables requires the following

three steps:

1. To determine all bounded simple domains E in the space

of m complex variables, which are symmetric spaces with

respect to a group Ω of analytic mappings.

2. To investigate the invariant geometric properties of E, to

find the discontinuous subgroups ∆ of Ω and construct their

fundamental domains.

3. To study the field of automophic functions in E with the

group ∆.

(Siegel 1943b, p. 1)

In the quotation, Siegel used the name symmetric space which nowadays

would be called a bounded homogeneous symmetric domain. A bounded
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domain in the complex space can be Siegel’s half space (2.13). A bounded

domain is called symmetric if to each point there exists an involution in

the group of biholomorphic automorphisms with the given point as a single

fixed point. A bounded domain is called homogeneous if the group of bi-

holomorphic automorphisms acts transitively.79 A group action G×X → X

is transitive if for every pair of elements x and y, there is g ∈ G such that

gx = y. The space X, with a transitive group operation, is called a homoge-

neous space if the group is a Lie group.80

Siegel considered that the first step was already done by Élie Cartan.81

In 1936 Cartan obtained six irreducible bounded symmetric domains and

noticed that all other bounded symmetric domains can be derived by biholo-

morphic transformations.

If a domain is bounded and symmetric, the existence of other biholo-

morphical automorphisms that operate on the domain besides the identity is

garantueed.

That the domain is irreducible means that the domain cannot be decom-

posed into the products of two domains of the same kind.82

As Siegel said, and as it is shown in the last sections, the third step for

the generalization of the theory of automophic functions had been done by

Siegel in 1939 for the special case of the modular group of degree n.83

In 1943 Siegel worked out the second step, he found the invariant proper-

ties of a bounded symmetric domain, as the metric, the volume. Siegel found

the discontinuous groups and constructs their fundamental domains.84 Siegel

79(Klingen 1990, p.4).
80See (Rowland n.d.).
81See (Cartan 1936).
82(Klingen 1990, p.4).
83See (Siegel 1939).
84See (Siegel 1943b).
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reorganized the results he gave in the articles about the modular group and

showed that Siegel’s half space is one of the six Cartan bounded symmetric

domains, because through a Calyey transformation, which Siegel had done,

the Siegel half space can be map to the generalization of the unit disk, a unit

ball.85 So, Siegel restricted his work to one bounded symmetric domain, the

unit ball of degree n > 1, which is a generalization of the unit disk.

The generalization of the unit disk for n > 1 consists of all complex

symmetric matrices W of n× n, for which the Hermitian matrix Id−WW

is positive definite, i.e.

En = {W ∈Mn×n(C) |W t = W, Id−WW̄ > 0}. (2.27)

The unit ball can be mapped onto Siegel’s half space (2.13) through a Cayley

transformation K : En −→ Hn,

W 7→ Z := K〈W 〉 = i(Id+W )(Id−W )−1. (2.28)

Siegel did this and gave the inverse transformation

Z 7→ W := L〈Z〉 = (Z − iId)(Z + iId)−1. (2.29)

The Cayley transformation and the inverse transformation are analogue to

the case n = 1, i.e. the Cayley transformation that maps the unit disk on

the upper half plane, K : E1 −→ H1. On the unit ball and Siegel’s half space,

Siegel found the metric, the volume, the discontinuous subgroups that are

operate on them, and their fundamental domains. It is to be remembered

that Z ∈ Hn is a Hermitian matrix, i.e. Z = X + iY where X is the real

part of Z and Y the imaginary part of Z.

85(Siegel 1943b, p.10).
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Siegel generalized the transformation from the upper half to the upper

half plane, which belongs to the group of biholomorphic automorphisms:

µ(z) =
az + b

cz + d

with a, b, c, d ∈ R and ac− bd = 1.

The generalization of the transformation from Siegel’s half space to itself

µ : Sp(2n,R)×Hn → Hn, (2.30)

is then

(µ, Z) 7→ µ〈Z〉 := (AZ +B)(CZ +D)−1. (2.31)

For the generalization Siegel introduced the symplectic group of all real ma-

trices, i.e. Sp(2n,R). The transformations µ form the symplectic group

obtained by identifying the symplectic matrices M with −M .86 The sym-

plectic group Sp(2n,R) operates on Hn as a group of automorphisms. This

is the reason Siegel called this geometry Symplectic geometry because then

the group of automorphisms operating on Siegel’s half space is the symplectic

group.

To find the metric on Hn, Siegel generalized the way it can be found on

Poincarés model of the hyperbolic geometry, through the cross-ration.87

So, Siegel first generalized the theorem which says that there exists a

Möbius transformation µ ∈ PSL(2,R) mapping two given points z, z1 on

the upper half plane H1 onto two other given points w, w1 on the upper half

plane for an arbitrary n, if, and only if, the cross-ratio of z, z1 ∈ H

R(z, z1) =
z − z1

z − z1

z − z1

z − z1

is equal to the cross-ratio of w, w1, i.e. R(z, z1) = R(w,w1).

86For the case n = 1 then PSL(2,R) ∼= Sp1(R).
87See (Gray 2000).
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For the generalization Siegel considered the cross-ratio for Z,Z1 ∈ Hn

which are any two “points” on Siegel’s half space:

R(Z,Z1) = (Z − Z1)(Z − Z1)−1(Z − Z1)(Z − Z1)−1. (2.32)

The generalization of the cross-ratio is a matrix. So, the generalization of

the theorem for hyperbolic geometry is:

Theorem 2. There exists a symplectic transformation map-

ping a given pair Z,Z1 of Hn into [sic] another given pair W,W1

of Hn, if, and only if, the two matrices R(Z,Z1) and R(W,W1)

have the same characteristic roots.

(Siegel 1943b, p. 3)

The trace of the cross-ratio tr(R(Z,Z1)) is invariant under any symplectic

transformation of the points Z and Z1, for any pair of points in Siegel’s half

spaces.

Siegel derived R twice at the point Z = Z1 and obtained the value

d2R = 2dZ(Z − Z)−1dZ(Z − Z)−1 =
1

2
dZY −1dZY −1. (2.33)

where Y denotes the imaginary part of Z = X + iY

So tr(d2R) = d2(tr(R)) is invariant with respect to the operation of the

symplectic group Sp(2n,R). He defines a quadratic differential form

ds2 = tr(Y −1dZY −1dZ). (2.34)

which is as well invariant with respect to the operation of Sp(2n,R). By

introducing X = (xkl) and Y = (ykl) he obtain

ds2 = tr(Y −1dX Y −1 dX + Y −1dY Y −1 dY ) (2.35)
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and for Z = i Id,

ds2 =
n∑
k=1

(dx2
kk + dy2

kk) + 2
∑
k<l

(dx2
kl + dy2

kl). (2.36)

The quadratic differential form (2.34) was called by Siegel as an hermitian

differential form and he proved that it defines a Riemannian metric on Hn.

He showed that it is positive definite everywhere on Hn using that Sp(2n,R)

is transitive in Hn.88

Through this result Siegel was able to find the shortest arc connecting

two arbitrary points Z and Z1 of Siegel’s half space Hn, i.e. he found the

geodesics for the symplectic metric (2.34) so that there exists exactly one

geodesic arc connecting two arbitrary points89.

Using the results for the geodesic and the cross-ratio, Siegel was able to

give the length on Siegel’s half space

ρ2 = σ

(
log2 1 +R

1
2

1−R 1
2

)
(2.37)

with R being the cross-ratio between Z and Z1 and

log2 1 +R
1
2

1−R 1
2

= 4R

(
∞∑
k=0

Rk

2k + 1

)2

.90

The volume element for the symplectic metric is

2
1
2
n(n−1)dv. (2.38)

Siegel showed that the Gauss curvature for Siegel’s half space is less or

equal zero. The Gauss curvature is characterized by Siegel through the equa-

tion

K = −1

4
tr(Y −1F Y −1(F

t
)−1) ≤ 0 (2.39)

88See (Siegel 1943b, p. 17). Henri Cartan showed in 1957 that this Hermitian differential

form is a Kähler form, this will be shown in chapter 5.2.5.
89(Siegel 1943b, pp.20-21).
90(Siegel 1943b, p. 20).
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where

F = δ1Z Y
−1δ2Z − δ2Z Y

−1δ1Z

is a matrix and δ1Z, δ2Z are two arbitrary different directions at the point

Z ∈ Hn. K = 0 for F = 0 and the curvature is negative for

δ1Z Y
−1δcZ 6= δ2Z Y

−1δ1Z,

and 0 otherwise.91

Siegel also generalized the Euler characteristic

Theorem 5. The Euler characteristic of a closed manifold F

with the metric (2.34) is

χ = cn(−π)
1
2
n(n+1)

∫
F

dv

where cn denotes a positive rational number depending only upon

n; in particular, c1 = 1
2
, c2 = 3

8
, c3 = 45

256
.

(Siegel 1943b, p. 4)

After having generalized the geometrical properties of Siegel’s half space

Hn, Siegel continued with the generalization of the Fuchsian groups and their

fundamental domains.

Part of this work was done before, in the case of the modular group of

degree n which is a discontinuous subgroup first kind of the symplectic group,

Sp(2n,Z) < Sp(2n,R)

A discontinuous group of first kind is defined as:

A discontinuous group ∆ is called of first kind, if there ex-

ists a normal fundamental domain Fn having the following three

properties:

91See (Siegel 1943b, p. 23).



64 CHAPTER 2. SYMPLECTIC GEOMETRY BY SIEGEL

1. Every compact domain Hn is covered by a finite number of

images of Fn;

2. only a finite number of images of Fn are neighbours of Fn;

3. the integral

V (∆) =

∫
Fn

dv

converges.

(Siegel 1943b, p.4)

These properties were used for the Minkowski reduction to find the fun-

damental domain of the modular group of degree n in his previous work.

2.2.6 Reception of Siegel’s paper 1943

In 1943, Siegel reorganized his previous results from the 1930s and generalized

them for other discontinuous groups. As a result of this reorganization, Siegel

gave the generalization of hyperbolic geometry, which is called symplectic

geometry by Siegle, because the group that operates on Siegel’s half space is

a symplectic group.

Siegel’s article from 1943 is quoted by authors of textbooks about sym-

plectic geometry (See e.g. (Da Silva 2000) or (Berndt 1998)). These text-

books deal with the study of symplectic manifolds and not with the gener-

alization of hyperbolic geometry. Siegel’s article is quoted as well in books

about classical mechanics (See e.g. (Abraham & Marsden 1978) or (Arnold

1989)). The relationship between classical mechanics and the study of sym-

plectic manifolds is that the phase space has a structure of a symplectic

manifold.

Today, there exist mathematicians working in the field of modular forms

recognize Siegel’s geometrical investigations of the upper half space, and the
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field of research is called the field of Siegel modular forms as Klingen or Van

Der Geer,.92

Furthermore, the research that Siegel started about discontinuous groups

that operate on the Siegel half spaces has continued. Siegel himself published

in May of 1943 an article with the title “Discontinuous groups”.93

It seems that there was interest in Siegel’s article “Symplectic Geometry”

because the American Journal of Mathematics reprinted it as a book in 1964.

Siegel wrote in the preface:

There still seems to be considerable interest in my paper on

Symplectic Geometry which appeared 21 years ago in the Ameri-

can Journal of Mathematics. Since copies are no longer available.

I am grateful to the editors of Academic Press for this new pub-

lication.

(Siegel 1964)

In the 1950s mathematicians started to call the modular group of degree

n Siegel modular form, and the 1
2
n(n + 1) dimensional half space the Siegel

half space. This can be seen in the work of Ichiro Satake94, who published

his article “On the compactification of the Siegel space”, i.e. the Siegel half

space.95

In the 1950s, the mathematician Henri Cartan96 continued with the ge-

ometric work of Siegel. In 1957, Henri Cartan published his work “Ouverts

92See (Klingen 1990), (Van Der Geer 2008).
93See (Siegel 1943a).
94Ichifo Satake was born in Japan in 1927 and died on October 10, 2014. He was mostly

active as a mathematician in the United States at the IAS and Berkeley
95See (Satake 1956).
96Henri Cartan was the son of Élie Cartan. He was born on July 8, 1904 and died on

August 13, 2008.
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fondamentaux pour le groupe modulaire”97 in which he found a fundamental

open domain for the modular group of degree n and he found that Siegel’s

half space is a Kähler manifold, therefore Siegel’s half space is a symplectic

manifold.98 This development will be discussed in chapter 5.2.4. In this work

Cartan used the denotation espace de Siegel for Hn.

In the 1950s mathematicians used Siegel’s name to refer to the half space

and to the modular forms of degree n, but they did not use the name sym-

plectic geometry to refer to the field that they were investigating.

Nowadays, symplectic geometry refers to another field of study which is

not a generalization of hyperbolic geometry to the Siegel’s half space.

Nevertheless, some textbooks about symplectic geometry and about clas-

sical mechanics have a bibliographical reference to Siegel’s article “Symplectic

Geometry” even though they did not address the generalization Siegel made.

However, they use the Siegel half space, because is a symplectic manifold,

as an example of a symplectic space, where the symplectic group acts as a

group of automorphisms.99 In this case, the symplectic group is the group of

the symplectomophism of the Siegel half space into itself.100

Siegel’s students seems to be the only ones that used the name “Symplec-

tic Geometry” to refer to this generalization.101

2.3 Siegel’s and Hua’s parallel works

In the history of science it often happens that more than one person or

research group find or discover similar results or theories. This seems to be

97Foundamental open regions for the modular group.
98See (Cartan 1957).
99See (McDuff & Salamon 1995) or (Berndt 1998).

100For the definition of symplectomophism see section 9.1.4.
101See (Klingen et al. 1983).
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the case for the generalization of hyperbolic geometry given by Siegel, because

on the other side of the world, in Kunming in the province of Yunna,102

China, the mathematician Hua Loo-Keng was working in the same field and

found similar results as Siegel gave in his article “Symplectic Geometry”. The

results were so similar that Hermann Weyl, who read Hua’s draft, qualified

it as a double of Siegel’s article.103 This can be read in his letter that he sent

to some professors in March 1943:

Professor Alexander, Einstein, Morse, Veblen

March 24, 1943

In my opinion, the two outstanding Chinese mathematicians

are Chern and Hua Loo-Keng (National Tsing Hua University,

Kunming). The latter has made a number of profound contribu-

tions to the Hardy–Littlewood–Vinogradoff line of analytic num-

ber theory, and in a manuscript which he recently sent me dupli-

cated a considerable part of Siegel’s results in his big paper on

symplectic geometry. It would be of the greatest value to him to

get into closer contact with Siegel; [...]

Hermann Weyl

Hermann Weyl in (Richard & Serme 2013, p. 75)

It seems unrealistic that two mathematicians that work far away from

each other during a period of war come to the same results, but it is important

to consider the context and the involved researchers.

102Yunna is located in the south west of the country and Kunming is the capital of the

province. The province borders Myanmar, Laos, and Vietnam.
103Weyl and Hua had an exchange of correspondence during the 1940s; this story was

written by Richard and Serme in 2013. See (Richard & Serme 2013).
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Hua, indeed, claimed that the works were absolutely different.104 How-

ever, Hua was trained in mathematics in China and England. Moreover, the

exchange of letters with Hermann Weyl during the 1940s show that Hua was

not isolated at all, and he used to have contact with mathematicians outside

China during politically difficult times.

China in the context of the 20th century

At the beginning of the 20th century the exchange between Chinese and

Western mathematicians had increased.

In 1928 the Academia Sinica was founded in Mainland China. It was not

only a mathematical institute but also an academy of science. It shows the

interest of the Chinese in developing and promoting the exchange of scientific

work between European and North American scientists.

During the 1920s and the 1930s China invited some Western mathemati-

cians to give lessons at the arithmetical institutes, which were later renamed

mathematical institutes.105 Through this contact Chinese students were in-

vited as well to study in the USA or in Europe, and in the 1920s several

Chinese mathematicians started to publish in Western Journals.106 This was

the case for Hua Loo-Keng and Shiing-Shen Chern (*1911, †2004), two of

the mathematicians that Weyl mentioned in his letter.

2.3.1 Hua Loo-Keng

Hua Loo-Keng was born on November 12, 1910 in the town Jintan in the

province of Jiangsu, China.107 Several articles written about his live claim

104(Richard & Serme 2013, p.76).
105See (Salaff 1972).
106(Salaff 1972, p.145).
107Jintan is a town 200 km west from Shanghai.
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that Hua was the founder of modern mathematics in China.108

The biography of Hua provides an example of a person who managed

to work in mathematics and made contributions to mathematical research

despite disadvantaged conditions. Hua did not achieve an academic degree,

and he only finished junior middle school because his family was not able to

afford education for their children. Therefore, Hua could not attend senior

middle school after finishing middle school.

In 1924 Hua gained admission to the Shanghai Chung-Hua Vocational

School. In Shanghai Hua showed some mathematical skills and won the na-

tional abacus competition. Unfortunately, he was forced to leave six months

before he finished his education because Hua had to return to his family

to work with his father in their store. During his free time Hua dedicated

himself to reading and learning modern mathematics.109

In December of 1929 Hua published his first article “Some Researches on

the Theorem of Sturm”110 in the Shanghai Journal Science .

A year later Hua made another contribution in the same Journal by hand-

ing in a commentary in which he showed that a paper published in 1926,

which claimed to have solved the quintic, was wrong.

Through this commentary Hua attracted the attention of professor Hsi-

ung Qin-Lai, who was the chairman of the department of Arithmetic at the

Tsinghua University in Beijing. In 1930 the department for mathematics at

the Tsinghua University in Beijing was called department of Arithmetic.111

108See (Salaff 1972).
109See (Salaff 1972, p.144).
110Sturm’s theorem expresses the number of distinct real roots of a polynomial in an

interval in terms of the number of changes of signs of Sturm’s sequence of a polynomial.

Sturm’s sequence is a sequence of polynomials associated to the polynomial and its deriva-

tive by a variant of Euclidean algorithm for polynomial.
111See (Chern 2001).
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Hsiung wanted to contact Hua, and he thought that Hua was a student or

a graduate student. However, neither the assistants nor the professors in the

department of Arithmetics in Beijing had ever heard about a student named

Hua Loo-Keng. Eventually a teacher called Tang, who was born in Jintan,

informed Hsiung that Hua Loo-Keng was born in his home town, and that

he had not even finished senior middle school.112

Hsiung contacted Hua and offered him a job in the department of Arith-

metics in Beijing. Hua accepted and went to Beijing in the summer of 1931.

He was an employee at the library. During this time Hua attended some

lectures in the department. Later, this gave Hua the opportunity to start an

assistantship in the department.113

It was here that he met Chern for the first time because the two men had

to share a desk. Hua and Chern did not only share desk, they also became

friends.114

In 1934 Hua was promoted to the rank of lecturer, despite his lack of an

academic degree. Hua’s initial research was in the field of number theory

on the Waring problem. The Waring problem is to find for a given natural

number k the least positive integer s, so that every natural number n is the

sum of at most s kth power of natural numbers, i.e. the equation

n = xk1 + xk2 + ...+ xks

is solvable for every natural number n.

The theme was encouraged by Hsiung, who had done his PhD thesis in

additive number theory at the University of Chicago.115

112See (Gong 2001).
113(Halberstam 1988, p.99).
114See (Chern 2001).
115(Salaff 1972, p.145).
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During 1935 and 1936 Jacques Hadamard116 and Norbert Wiener117 vis-

ited the Arithmetic department at Beijing University and gave lectures there,

which Hua attended.

Wiener’s visit was important for the development of Hua’s mathematical

career because after his stay at Beijing University, Wiener went to Cam-

bridge, England. There, he recommended Hua to Godfrey Harold Hardy.118

In 1936, Hua received and accepted an invitation and a scholarship to go

to Cambridge.

2.3.2 Hua’s time in Europe 1936-1938

In the summer of 1936 Hua made his way to Cambridge with the Trans-

Siberian Railway from Beijing to Berlin to meet Chern. They went together

to see the Olympic Games, which took place in the first two weeks of August.

Chern was at that time at the University of Hamburg. After the games, Hua

and Chern went to Cambridge, England together, where Hua spent two years

working and attending lessons with Hardy.119

Hardy offered Hua to do his PhD in Cambridge, but this was not possible

for Hua because, again, he could not afford the registration fee, and so he

declined the offer.

116Jacques Salomon Hadamard was born on December 8, 1865, in France and died on

October 17, 1963. His scientific contributions are in number theory, complex function

theory, differential geometry, and partial differential equations.
117Norbert Wiener was born on November 26, 1894, in the United States and died on

March 18, 1964. At the time, Wiener was a professor of mathematics at Massachusetts

Institute of Technology (MIT).
118Godfrey Harold Hardy (born in England in 1877 and died in 1947) was the mentor of

the Indian mathematician Srinivasa Ramanujan, who also could not follow the usual path

for an academic career.
119See (Chern 2001).
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In Cambridge, Hua had the possibility to come into contact with other

mathematicians, and he became friends with Harold Davenport and Hans

Heilbronn.120

Hua spent two years in Cambridge. During this time, he published eigh-

teen papers in number theory.121

Hua’s return to China was earlier than expected. Hua returned to China

in 1938, as in 1937 Japan invaded China, and Hua wanted to see if he could

help.122 One may think that Hua did not have enough money to stay in Eng-

land, but it seems that throughout this live, Hua always wished to return

to China when there was a historical turning point. Another instance that

leads to this impression was in 1950, two years after getting a chair at the

University of Illinois. Hua preferred to return to China because he wanted

to participate in the revolutionary activities of the Chinese Communist Rev-

olution.123

2.3.3 Remarks on Siegel’s and Hua’s parallel work

During Hua’s time in England he continued to work on the Waring problem

and, in addition, worked on Goldbach’s conjecture. The Goldbach conjecture

says that every even integer greater than 2 can be expressed as the sum of

two primes.

In Cambridge Hua learned from Hardy the analytical techniques for num-

120Harold Davenport was born on October 30, 1907 in England and died on June 9,

1969. His field of studies was number theory and he worked, as well, on Waring’s problem.

Heilbronn was the last assistant Landau’s in Göttingen. See (Rogers 1971, Halberstam

2002, Salaff 1972).
121See (Halberstam 1988).
122See (Schweigman & Zhang 1994).
123(Salaff 1972, p. 149).
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ber theory and used them to try the Waring problem.124

In 1938 Hua returned to China. He went back as a professor at the South

West Associated University in the city of Kunming.125 The South West

Associated University was founded by the Tsing Hua University of Beijing

and the University of Nanka. In 1938 both universities went into exile during

the Japanese invasion.126 Hua and his family stayed in Kunming until 1945.

In Kunming, Hua finished his manuscript “Additive Prime Number The-

ory” in 1941 in which he unified the results of previous papers about the

Waring problem and Goldbach’s conjecture and improved them.127

Hua claimed that in the same year, he started to work on the theory

of several complex variables, automorphic functions, and the geometry of

matrices. This field is the same field that Siegel presented in Symplectic

Geometry.

In 1943 Hua sent the draft of his paper On the Theory of Automorphic

Functions of a Matrix Variable, I - Geometrical Basis128 to Weyl for revision,

who classified it as a double of Siegel’s paper, but Hua denied being influenced

by Siegel in his work129.

One year later, Hua’s article was published in the American Journal of

Mathematics. The article was split into two parts. The first part (Hua

1944a) gave results, which doubled Siegel’s results, and in the second part

(Hua 1944b) he presented some new results.

This fact is mentioned by Hua in the introduction:

The present paper is a revised form of another manuscript

124See (Salaff 1972, p.146).
125Kunming is the capital of the Yunnan Province in southwest China
126(Fairbank & Feuerwerker 1986, p. 564).
127See (Salaff 1972).
128See (Hua 1944a).
129See (Richard & Serme 2013).
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which the author had previously submitted for publication. The

revision was necessary because the original manuscript contained

some results (found independently by the author in some research

begun in 1941) that have been recently published in Prof. C.

L. Siegel’s paper on Symplectic Geometry. It is the aim of this

paper to give a brief account of those results which are interfluent

with Siegel’s contributions. The remaining part of the author’s

research will be given later separately.

(Hua 1944a, p.470)

Hua added thanks to Weyl, who was his interlocutor for sending a copy

of Siegel’s paper Symplectic Geometry, and remarked on the fact that he did

not know about Siegel’s publication.

It shows that Hua had been working on the same generalization as Siegel

before the publication of Siegel’s article (Siegel 1943b).

Another remark was made by the editor, who wrote how difficult the

communication had been between China and the USA, and, therefore, the

paper was corrected by Hua’s friend Dr. Hsio-Fu Tuan and by Siegel:

Because of the poor mail service between the U. S. and China,

a number of minor changes in this paper have been made here,

with the consent of the editors, by Prof. Hua’s friend Dr. Hsio-Fu

Tuan and Prof. C. L. Siegel.

(Hua 1944a)

The question is if Hua had had some access to Siegel’s work between 1935

and 1938 or, afterwards, between 1938 and 1943.
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It is to discard that Hua attended the conference about the analytic theory

of the quadratic forms given by Siegel at the International Mathemati-

cal Congress in Oslo in 1936. This is because Hua arrived in Europe with

the Trans Siberia Railway from Beijing to Berlin in the first two weeks of

August, 1936 to see the Olympic Games. The International Congress took

place from 13-18 July. However, maybe Hua read Congress Reports later.

If Hua had knew Siegel’s work on modular forms of the 1930s, it is possible

that Hua could have reorganized Siegel’s results to research the geometric

properties, as well.

Hua knew Siegel’s work when he was in Cambridge. In Hua’s work (Hua

1938) giving some results on additive prime number theory, he quoted Siegel’s

from 1935. Later, he published a note about quadratic forms.130

In 1943, Weyl invited Hua for a stay at the IAS in Princeton, which Hua

rejected. Hua argued that he wanted to work on his ideas by himself, and he

did not want to be influenced by Siegel.131 On 15 March 1943 Hua changed

his mind and expressed his interest to go to the IAS and study with Weyl

and Siegel.132

When the second world war ended, Hua received an invitation to the

USSR to visit the Soviet Academy of Science by Ivan Vinogradov133, which

he accepted, and, after that he went to Princeton to the IAS.

In Princeton Hua continued to work about automorphic functions and

developed the theory of the Geometry of Matrices.134 In an article from 1947

130See (Hua 1941).
131See(Halberstam 2002, p.144).
132(Richard & Serme 2013, p. 74).
133Ivan Matveevich Vinogradov (*1891, †1983) was a Soviet mathematician. He worked

on analytic number theory, and he provided a partial solution to the Goldbach conjecture

(of Encyclopædia Britannica 2017). See (Salaff 1972).
134Geometry of Matrices is the geometry of rectangular alternate, symmetric and hermi-
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Hua presented his results about this topic.135 In this work Hua presented

the automorphism of the generalization of the elliptic space and called this

generalization Elliptic Geometry.136 He again included some results that

Siegel gave in 1943 and remarked on the importance of Siegel’s Symplectic

Geometry, as can be read in the next quotation:

[...] with a result due to the author (Hua 1946), we solved

also the corresponding problem for the group of automorphism of

the elliptic space. It should be remarked that the corresponding

problem for hyperbolic space was solved by C. L. Siegel in a recent

important paper.

(Hua 1947, p. 229)

Hua did not only find the same results as Siegel and continued to develop

the field. The letters and Hua’s own assertion show that he did not know

Siegel’s work (Siegel 1943b). Unfortunately, no evidence was found to ensure

that Hua was aware of Siegel’s work.

Remarks about Hua

Hua did not have fortunate conditions in his early life, but he seized the

opportunities that occurred. Hua had to take the hard way to work on

mathematics, without all the opportunities that other mathematicians had

at that time. Nevertheless without any academical degree in the 1940s, Hua

gained the recognizion of the international mathematical society as a great

mathematician, as can be read in Weyl’s letters.137

tian matrices over a division ring or over a field.
135See (Hua 1947).
136(Hua 1947, p. 250).
137See (Richard & Serme 2013).
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During the wars in China in the 1930s and 1940s, i.e. Japan’s invasion

of China, and the second world war, mathematical exchange was difficult

for Hua, but it was not impossible. Hua was able to exchange letters with

Hermann Weyl, which enabled him to continue his mathematical research.

In 1950 Hua returned to China to work on the reform of the educational

system in mathematics for the Peoples Republic of China. In 1952 he became

the first director of the Mathematical Institute of the Academia Sinica.138

During the cultural revolution from 1966 to 1976 Hua Loo-keng had a

hard time, and he was not able to work and publish on mathematics or have

any influence on the educational system.139

After the cultural revolution, Hua became vice-president of the Academia

Sinica and science advisor for the Chinese government, and in 1980 he ob-

tained an honorary doctorate from the University of Nancy.140

Hua died of a heart attack at the end of a lecture he gave in Tokyo on

June 12, 1985.

Finally, the recognition of Hua’s mathematical skills are shown in the

remarks that Derrick Lehme made about Hua in 1970:

Something that was seen in Hua as Hua had the uncanny

ability of taking the best work of others and finding the exact

points where their results could be sharpened. He had many tricks

of his own, too. He read widely and commanded an overview of

all of twentieth-century number theory. His chief interest was to

improve upon the whole field; he would have, if left to himself,

tried to generalize every result he came upon. His work was in

some respects like that of [I] Schur, or even [Norbert] Wiener,

138See (Salaff 1972).
139See (Gong 2001).
140See (Gong 2001).
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both of whom made deep contributions to number theory, but

also branched off to other fields.

(Derrick Lehme in (Salaff 1972, p.151))



Chapter 3

Differential forms

Introduction

Élie Cartan developed the theory of differential forms, and, like Weyl, he

also had an important personal network. Even more important, many of his

students developed what is nowadays understood as symplectic geometry. It

can be said that Élie Cartan established the basis for the development of

symplectic geometry with his theory of integral invariant.

A symplectic form on a finite dimensional vector space V over a field R

is a non-degenerate two form ω on V . A 2-form over V is a bilinear form

on V . A symplectic form on a smooth manifold is a closed non-degenerate

differential 2-form.

The first part of the chapter provides the definition of a symplectic form

and a symplectic vector space. Then a short passage on how the theory of

exterior differential forms was developed by Élie Cartan is presented and it

contains a short biography of Élie Cartan.

79
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3.1 Symplectic form and symplectic space

A symplectic form on a finite dimensional vector space V over a field R is a

non-degenerate two form ω on V . A 2-form over V is a bilinear form on V ,

i.e.

ω : V × V → R,

which is antisymmetric, so that

ω(v, v) = 0 for all v ∈ V

holds. Non-degenerate means that

ω(v, w) = 0 for all v ∈ V implies w = 0.

A vector space provided with a symplectic form is called a symplectic vector

space.1 Therefore, if V is a symplectic vector space with dimension r = 2n,

i.e. V ' R2n, the standard symplectic form is defined by

ω(v, w) = vtJw =
n∑
k=0

vkwn+k − vn+kwk, v, w ∈ V (3.1)

with

J =

 0 Id

−Id 0

 .

J belongs to the symplectic group, i.e. J ∈ Sp(2n,R).

A symplectic manifold (M,ω) is a 2n-dimensional differentiable manifold

M with ω as symplectic form.2

A symplectic form on a 2n-dimensional differentiable manifold M is a

closed and non-degenerate differential 2-form. ω is called closed if the exterior

1The vector space could be over any commutative field K with characteristic zero.
2(Abraham & Marsden 1978, p. 176).
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differential is equal to zero. ω is called non-degenerate if on each tangent

space TpM , with p ∈M , it holds that

ω(ξ, η) = 0 for all ξ ∈ TpM implies η = 0.

Locally the symplectic manifold can be seen as symplectic vector space.

3.2 Differential forms

Because a symplectic form is a differential 2-form, and in the case of a sym-

plectic manifold the 2-form is closed, the next section will track the devel-

opments on differential forms made by Élie Cartan. Before dealing with

the development of differentiable forms by Élie Cartan a brief biography of

Cartan is given below.

3.2.1 Élie Cartan

Élie Cartan was born in Dolomic, France, on April 9, 1869 and he died in

Paris, on May 6, 1951. Some of his fundamental contributions were on the

theory of Lie groups, Lie algebras, differential equations, differential geometry

and topology.

In 1888 he started his studies in Paris at the École Normal Supérieure

and obtained his doctor degree in 1894 under the supervision of Jean-Gaston

Darboux (*1842, †1917). After having graduated, Cartan gave lectures at

the University of Montpellier from 1894 to 1896. Later on, during 1896 to

1903, he also worked as a lecturer in Faculty of Sciences at the University of

Lyon. In 1903 he obtained a position as a Professor in the Faculty of Sciences

at the University of Nancy. He left Nancy in 1909 and moved to Paris to

give lectures at the Sorbonne in Paris. In 1912, with the support of Henri
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Poincaré (*1854, †1912), he became a Professor at the Sorbonne.3

In his doctoral thesis Cartan gave a complete treatment of the classi-

fication of finite-dimensional, semi-simple and complex Lie algebras, which

at the time were called the infinitesimal groups. 4 After having finished

his doctoral thesis, Cartan worked on the theory of partial differential equa-

tions (Cartan 1896), in which he exposed the systems of partial differential

equations whose solutions only depend on arbitrary constants.5

In 1899 he formalized the notion of a differential form and developed

the theory of exterior differential forms. Before Cartan’s formalization, the

differential forms were seen as “the things under integral signs”.6 In 1922

Cartan published his lecture notes about this theory, and in 1936 Cartan

gave a lecture about the application of differential forms to geometry, which

was published in 1945.7

The genesis of the symplectic form correlates with the development of the

theory on differential forms and their applications in geometry.8

Élie Cartan had an active influence on the development as he was the per-

son who fostered the communication between the mathematicians. Among

his students were André Lichnerowicz (*1915, †1998), André Weil (*1906,

†1998) and Charles Ehresmann (*1905, †1979).9

He participated in many International Congresses of Mathematics be-

3(Akivis & Rosenfeld 2011, p. 7-9).
4A Lie algebra is a vector space g over a field F together with a binary operation

[·, ·] : g× g→ g called the Lie brackets, which is bilinear, alternating on g and satisfy the

Jacobi identity.
5See (Cogliati 2011).
6(Katz 1985, p. 322).
7See (Cartan 1945).
8For a more detailed historical description of the development of the differential form

the reader may consult (Katz 1981), (Katz 1985) and (Hawkins 2005).
9See (Akivis & Rosenfeld 2011).
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tween 1920 and 1936.10 During his life Élie Cartan had many international

students, such as the German mathematician Ernst August Weisse (*1900,

†1942), who spend two semesters with Cartan in Paris; or as Shiing-Shen

Chern, who went to Paris to study with Cartan in 1936.11 Another interna-

tional student of Cartan was Mohand Hashtroudi (*1908, †1976) from Iran,

who finished his PhD in 1936.

Cartan maintained intense relations with Soviet mathematicians such as

Serge P. Finikov (*1883, †1964), who attended Cartan’s lectures in Paris

from 1926 to 1927 and later founded a Soviet differential geometric school.12

In 1934 Cartan went to the International Conference on Tensor Differential

Geometry in Moscow. At this conference he came into in contact and became

friends with Erich Kähler (*1906, †2000). Kähler had come to Moscow with

the research group of Wilhelm Blaschke (*1885, †1962).13

Later in 1931 Cartan was elected to the French Academy of Sciences. In

1945 he became vice-president of the Academy and in 1946 its president.14

There, Cartan presented reports of other mathematicians work in progress

in the fields differential geometry and topology. These reports were short

contributions of two pages. They gave the possibility to exchange ideas and

to see what other mathematicians were researching. These publications were

important because they provided a medium through which mathematicians

could communicate their new results; they also provide historians with the

possibility to track the developments that were taking place.

10See (Akivis & Rosenfeld 2011) and (Gispert & Leloup 2009).
11See (Akivis & Rosenfeld 2011, p. 28) and appendix A.
12(Akivis & Rosenfeld 2011, p.30).
13See (Berndt & Riemenschneider 2003).
14See (Chern, Chevalley et al. 1952) and (Gispert & Leloup 2009).
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3.2.2 Cartan differential form

Cartan was primarily interested in the problem of equivalences between sys-

tems of differential equations and looked for conditions under which these

can be equivalent. One of his first publications about this problem was pub-

lished in 1899 when he worked on the problem of Pfaff and developed the

theory of exterior calculus of differential forms.15 He introduced the idea of a

differential 1-form and its multiplication rules. Later, Cartan wrote another

publication about the Pfaff problem (Cartan 1901), in which he introduced

differential forms of higher degrees.

Pfaff’s problem is a problem in the field of differential equations and has

its roots in the theory of first order partial differential equations in the work

of Euler (*1707- †1783) and Monge (*1746- †1818).16 Currently, in the theory

of differential forms, Pfaff’s problem is concerned with the conditions under

which the number of variables in a 1-form can be reduced by a change of

variables.17

During the 19th century some mathematicians such as Lagrange (*1736,

†1813), Pfaff (*1765, †1825), Jacobi (*1804, †1851), Clebsch (*1837, †1872),

Grassmann (*1809, †1877), Frobenius (*1849, †1917) and Darboux (*1841,

†1917) worked on the problem.

In the 18th century and at the beginning of the 19th century the problem

was the following: has the differential equation

ω = a1(x)dx1 + a2(x)dx2 + ...+ an(x)dxn = 0 (x = x1, ..., xn), 18 (3.2)

a meaning, when there does not exist any function f so that df = ω? Euler

15See (Cartan 1899).
16See (Katz 1985).
17(Katz 1981, p. 185).
18The equation (3.2) was later known as the Pfaffian equation.
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argued that such a differential equation was meaningless, but Monge noticed

that it can be a system of integral equations which form an integral equivalent

to the equation (3.2).19

In 1815 Johann Friedrich Pfaff20 made the assertion that the integral

equivalent of (3.2) can be satisfied by a system of n
2

integral equations in the

case that n is even and a system of n+1
2

integral equations, if n is odd.21

To find this result Pfaff extended some results of Lagrange on the theory

of differential equations. Lagrange found out how to obtain a general solution

for a first order differential equation with any number of variables m.

Lagrange was able to integrate any first order partial differential equation

for two independent variables m = 2. In 1815, Pfaff was able to integrate

non-linear partial differential equations of m > 2 variables.22

In modern notation a first order partial differential equation can be ex-

pressed as

F

(
x1, ..., xm, u,

∂u

∂x1

, ...,
∂u

∂xm

)
= 0, (3.3)

with solution u = u(x1, ..., xm, C1, ..., Cm), where Ci are arbitrary constants.23

Pfaff found out that any system of first order partial differential equations

with m variables can be reduced to one system of differential equations with

n = 2m variables of the form (3.2).24, and that this reduction led to a solution

of equation (3.2).25

19(Katz 1985, p. 324).
20Johann Friedrich Pfaff who worked on differential equations was born on December

22, 1765 in Stuttgart, Germany and died on April 21, 1825 in Halle, Germany.
21(Katz 1985, p.324).
22(Hawkins 2005, p. 387).
23(Hawkins 2005, p.386).
24(Hawkins 2005, p.387). For more information about the Pfaffian problem see chapter

6.2.1
25In modern terms the solution can be characterized by a submanifold of co-dimension

m in R, i.e. the “integral variety”.
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At the end of the 19th century mathematicians identified that the problem

of Pfaff was to find a suitable change of variables such that the Pfaffian

equation ω could be expressed through a minimal number of variables, i.e.

to find a canonical form of the Pfaffian form ω.

This problem was solved by Frobenius in (Frobenius 1877) and later by

Darboux (Darboux 1882). Darboux’s solution for Pfaff’s problem is known

as Darboux’s theorem and also became an important theorem in symplectic

geometry. This will be discussed in chapter 6.

In 1899 Cartan gave an exposition of the Pfaffian problem in his work

(Cartan 1899). He defined a differential “expression” ω with n variables

as a homogeneous expression formed by a finite number of additions and

alternating multiplications of the n differentials dx1, ..., dxn.26

A differential expression was called a differential form after the publica-

tion of the lecture notes of Weyl about Lie groups in 1935.27

A Pfaffian expression was defined as a differential expression of degree

one, i.e.

ω =
n∑
i=1

aidxi. (3.4)

In 1901 Cartan introduced the exterior differential forms of higher degree,

i.e.

ω =
∑

aij...kdxi ∧ dxj ∧ ... ∧ dxk. (3.5)

Cartan did not introduce the actual notation of the wedge product ∧, his

notation for the differential expression was

ω =
∑

aij...kdxidxj...dxk.

In 1899, Cartan had introduced the idea of the value of a form. For

the value of the differential “expression” ω of degree h, Cartan considered

26(Cartan 1899, p.7), (Katz 1985, p.322).
27(Katz 1985, p.333).
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x1, ..., xn to be functions of h indeterminate parameters α1, ..., αh. He as-

sumed that the parameters have a rank in a certain order which he called

the natural order. The total value of the differential form ω of degree h is

defined by Cartan as the sum over all h! permutations of arbitrary param-

eters α1, ..., αh of the variables x1, ..., xn. The value that corresponds to a

permutation β1, ..., βh is the value that ω takes if the differentials dx of each

term of ω are replaced on the ith position by the corresponding derivative of

x1, ..., xn.28

Cartan gave an example for the value of the differential form in the case

a1dx2 ∧ dx1 + a2dx3 ∧ dx2

The value is

a1
∂x2

∂α1

∂x1

∂α2

+ a2
∂x3

∂α1

∂x2

∂α2

− a1
∂x2

∂α2

∂x1

∂α1

− a2
∂x3

∂α2

∂x2

∂α1

.

If two or more differential forms of degree h have the same value, inde-

pendent of the choice of the parameters α1, ..., α2, Cartan defined them as

equivalent.29

With the value and the equivalence of the differential forms, Cartan was

able to establish Grassmann’s multiplication rules because there is no dis-

tinction between differential forms with the same value.30

Grassmann’s multiplication rule for two Pfaffian expressions or, in mod-

ern terms, of two differential 1-forms is

dxi ∧ dxj = −dxj ∧ dxi or dxi ∧ dxi = 0,

which is a differential expression of degree 2, i.e. a 2-form.31

28See (Cartan 1899, p.246) and (Katz 1985, p. 323).
29(Cartan 1899, p. 246).
30(Katz 1985, p.323).
31Nowadays, the set of all differential 1-forms on a manifold is a vector space denoted
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Cartan introduced the exterior derivative for differential forms such that

for a Pfaffian form

a1dx + ...+ andxn

the derived expression of degree two is

dω =
n∑
i=1

dai ∧ dxi

with

dai =
∑(

∂ai
∂xj

)
dxj.

It should be noted that Cartan used for the exterior derivative the notation

ω′ and not the current notation dω.32

Cartan noticed that dω = 0 if, and only if, ω = df , when the function f

is well defined in a simple-connected domain. The fundamental property of

the operation of the exterior derivative is that it is invariant with respect to

any change of variables.

3.2.3 Closed differential forms

The symplectic form is a closed form, so a differential form is called closed if

its exterior derivative is equal to zero. This terminology was introduced by

De Rham33 in his dissertation (De Rham 1931) on cohomology, in which he

used Cartan’s theory of differential forms. Cartan was the president in the

jury of the defense of de Rham’s PhD thesis.34

by Ω1, for the k-forms the vector space is denoted by Ωk. So, the exterior multiplication

of a k-form with an l-form belongs to the vector space Ωk+l.
32The current notation was introduced by Erich Kähler in (Kähler 1934).
33Georges de Rham was born on September 10, 1903 and died on October 9, 1990. He

was a Swiss mathematician who contributed to the field of differential topology. De Rham

developed in his dissertation the theory of cohomology. For further information about this

development the reader can consult (Katz 1985) and (Dieudonné 1989).
34(de Rham 1980, p. 25).
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In his dissertation De Rham completed the generalization of Poincaré’s

Lemma, which is known as De Rham’s theorem.35 In this generalization, De

Rham considered the relation of differential forms to algebraic topology.36

De Rham defined a closed form as:

Une forme régulière de degré p, ω, sera dite fermée, si sa

dérivée extérieure est nulle: ω′ = 0. On dira encore que ω est

homologue à zéro, ω ∼ 0, s’il existe une forme régulière ω̃ telle

que ω̃′ = ω.37

(De Rham 1931, p.176)

De Rham defined the objects over which differential q-forms are to be

integrated in a variety V as the the i-chain. An i-chain which is the home-

omorphic image in the variety of an i-dimensional hypertetrahedron is an

elementary i-chain and an arbitrary i-chain is the linear combination of el-

ementary chains. An i-dimensional hypertetrahedron is as well known as

i-simplex.38

The term“closed” came about when De Rham made an explicit analogy

between forms and chains in homology theory using the generalization of

Stoke’s theorem

∫
∂C

ω =

∫
C

dω. (3.6)

35Poincaré lemma: For an arbitrary manifold M , every point has an open neighbourhood

U in which for every k-form ω and dω = 0, there exists a k − 1-form α with dα = ω|U .

(Janich & Kay 2001, p.204).
36(Katz 1985, p.332).
37“ω is called closed, if the exterior derivative is zero: ω′ = 0. It is also said that ω is

homolog to zero, ω ∼ 0 if there exists a closed regular form ω̃ so that ω̃′ = ω.”
38(Katz 1985, p.332).
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The analogy was made by introducing the definition of the forms such a

way that they fit to the definition of the chains.

A closed chain is homologous to zero, so a chain c is closed if the boundary

is zero while a differential form is closed if its exterior derivative dω = 0.

La formule de Stokes montre que l’intégrale d’une forme ho-

mologue a zéro étendue à un champ fermè est nulle, et que l’intégrale

d’une forme fermée étendue à un champ homologue à zèro est

nulle.39

(De Rham 1931, p. 176)

3.3 Early applications of differential forms

Cartan used the theory of differential forms in the three body problem. This

was done in Cartan’s book Leçons sur les invariants intégraux in 1922. This

book contains lecture notes about theory of exterior calculus of differential

forms.40 In this lectures Cartan used exterior algebra and added the time to

the invariants integral of Poincaré.41 So, Cartan introduced a Pfaffian form

known currently as Cartan integral invariant

ω =
n∑
i=1

pidqi −Hdt,

39“Stokes’s formula shows that the integral of a form homologous to zero, extended to

a closed domain is zero and that the integral of a closed form extended to a domain is

homologous to zero.”
40See (Cartan 1922).
41Poincaré introduced the concept of invariant integrals in 1886. An invariant integral

of a system of differential equations is an expression which maintains a constant value at

all times. This development is linked to the three body problem in celestial mechanics.

For the history of Poincaré and the three body problem, the reader may consult the book

by (Barrow-Green 1997).
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where qi are the coordinates on R2n, t is the time, pi are the momenta of the

system and H is the energy.42

Erich Kähler applied exterior differentials in his paper “Einführung in die

Theorie der Systeme von Differentialgleichungen” in 1934 in which the theory

of exterior differential forms is applied to the problem of solving systems of

partial differential equations.43

In Cartan’s lectures of 1936, which were published in 1945, he gave some

application of the differential forms to differential geometry. He introduced

the algebra of the differential forms over a manifold.44

During the 1940s the theory of differential forms was used for the theory

of fibre bundle by Charles Ehresmann, and this lead to the definition of the

symplectic manifold discussed in chapter 5.

42(Libermann 2005, p.194).
43See (Kähler 1934).
44See (Cartan 1945).
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Chapter 4

Kähler form - Symplectic form

Introduction

This chapter deals with the genesis of the studies on Kähler manifolds.

Kähler manifolds were defined by Erich Kähler in 1933 before symplectic

manifolds were defined. Today, we know that the Kähler manifold are sym-

plectic manifolds. Therefore, the genesis of Kähler manifolds must be con-

sidered as a part of the development of symplectic manifolds and as a part

of the early history of symplectic geometry.

The genesis of symplectic forms took place when mathematicians, such as

Erich Kähler, applied the theory of differential forms to complex manifolds.

Kähler used this to find new invariants on complex manifolds.

This chapter deals with the reception of Kähler manifolds in the work

of Eckmann and Guggenheimer at the end of the 1940s, and how the name

Kähler manifold was established.

93
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4.1 Erich Kähler

Erich Kähler was born on January 16, 1906 in Leipzig and died on May

31, 2000. Since his early school days, Erich Kähler was interested in sci-

ence, in particular in astronomy and mathematics. During his time at the

Gymnasium1, Kähler read some lecture notes provided of Karl Weierstrass

(*1815, †1897) by the school principal, who had realized Kähler’s mathemat-

ical skills.2

Weierstrass’s notes encouraged Kähler to write a “doctoral thesis” on

mathematics. Kähler’s so called first “doctoral thesis” was about fractional

differentiation. He submitted his “doctoral thesis” to professor Otto Hölder

at the University of Leipzig expecting to gain his PhD degree.3 Hölder replied

to Kähler that the requirements for obtaining a doctoral title include studies

of at least six semester at the University.4 Consequently, after Kähler finished

his education at the Gymnasium, Kähler enrolled at the University of Leipzig

in 1924 to study mathematics.

Four years later in 1928 Kähler obtained his doctoral degree under the

supervision of Leon Lichtenstein.5 His dissertation was titled “Über die Exis-

tenz von Gleichgewichtsfiguren rotierender Flüssigkeiten, die sich aus gewis-

1High school. The Gymnasium, is a secondary school in German speaking countries.

It prepares the student for higher education.
2The lecture notes were about elliptic functions, Abelian function and Gauß surveying.

(Berndt 2000, p. 179).
3Otto Hölder (*1857, †1937) was one of the developers of group theory and Galois

theory. (See (Nicholson 1993).
4(Berndt 2000, p. 179)
5Leon Lichtenstein (*1878, †1933) researched on differential equations, conformal map-

ping, and potential theory. He was also interested in theoretical physics, publishing re-

search in hydrodynamics and astronomy. See (Anonymous 1934).
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sen Lösungen des n-Körperproblems ableiten”.6

Kähler went to Hamburg in 1929 to have an interview with Emil Artin

looking for a position at the University of Hamburg. Artin was, as well, a

former student of Lichtenstein.7 After the interview, Artin proposed to Wil-

hem Blaschke, who also worked at the Mathematische Seminar in Hamburg,

to hire Kähler as Blaschke’s scientific assistant.8 Blaschke hired Kähler in

1929, and in 1930 Kähler finished his Habilitation about integrals of algebraic

differential equations.9

Although Blaschke recommended Kähler for a full professorship in Ro-

stock in 1931, Kähler declined Blaschke’s support and stayed in Hamburg.

Kähler considered Hamburg as a good place for mathematical exchange.10

In the same year Kähler received a Rockefeller scholarship to spend a year

in Italy, where he studied differential and algebraic geometry with Enriques,

Castelnuovo, Levi-Civita, Serveri and Beniamino Segre.11 In 1932 he pub-

lished “Forme differenziali et funzioni algebriche” in which he applied the

theory of differential forms to

[...], den eleganten Kalkül der symbolischen Differentialformen.12

(Kähler 1933, 173)

6See (Kähler 1928). The existence of equilibrium figures of rotate fluids that are derived

from certain solutions of the n-body problem.
7Emil Artin (*1898, †1962) was an Austrian mathematician, who worked in number

theory.
8Wilhem Blaschke (*1885, †1962) worked at that time on differential geometry.
9(Berndt 2000, p. 179).

10(Berndt 2000, p. 179).
11For more information about the Italian school of algebraic geometry the reader can

consult (Guerraggio & Nastasi 2005).
12[...], the elegant calculation of symbolic differential forms.
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In the same year Kähler finished the article in which he introduced the notion

of the Kähler metrics, which led to the notion of Kähler manifold: “Über eine

bemerkenswerte Hermitesche Metrik”.13 The article was published in 1933

by the University of Hamburg.14

In 1935 Erich Kähler went to the University of Königsberg for a professor-

ship. The focus of his research was on mathematical physics. During his stay

in Königsberg, he rewrote the Maxwell equations with the help of differential

forms.15

In 1939, when the Second World War started, Kähler enrolled in the Ger-

man navy. During the war, Kähler did not conduct mathematical research.

He started again when he was a prisoner of war in France from 1945 to 1947

because as a naval officer he did not have to work. Therefore, Kähler resumed

his work in mathematics using his contacts with French mathematicians such

as Élie Cartan and his son Henri Cartan.16 Kähler had met Élie Cartan in

Moscow in 1934 during a conference about systems of differential equations.17

After two years in prison, Kähler went to Leipzig for a professorship in

1947. Later, he moved to Berlin which was a stopover before he returned to

the University of Hamburg, where he stayed until his retirement.

After the war, Kähler’s work focused on mathematical physics and no

longer on differential geometry. Therefore, his contributions to differential

geometry can be referred to the 1930s. As a consequence, some mathemati-

cians who were working on differentials and Kähler geometry at the end of

the 20th century, did not know that Erich Kähler was still alive in the 1980s

as Jean-Pierre Bourgouignon mentioned:

13“On a remarkable Hermitian metric.”
14See (Kähler 1933).
15(Berndt 2000, p. 180).
16(Berndt 2000, p. 180).
17(Berndt 2000, p. 179).
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Many of the specialist in the field of Kählerian Geometry liv-

ing in the last third of the 20th century did not even imagine that

Erich Kähler was still alive in 1980s, [...] the author of this note

is one of them.

(Bourguignon 2003, p.745)

Bourguignon mentioned, as well, that some of the mathematicians consid-

ered the Kähler geometry as a “classical” geometry, i.e. as the Riemannian

Geometry and they thought that Kähler made his developments in geometry

at the beginning of the 20th century and not in the 1930s.

4.2 Kähler metric over a Hermitian manifold

Kähler wrote the article “Über eine bemerkenswerte Hermitesche Metrik”

during the time he was in Italy studying differential and algebraic geome-

try with the Italian mathematicians (Kähler 1933). In this article Kähler

introduced the Kähler metric, Kähler potential and Kähler manifolds.

A Hermitian manifold is a complex manifold M with a Hermitian metric,

ds2 =
∑

hj,k̄dzjdz̄k (4.1)

where H = (hj,k̄) is a positive definite Hermitian matrix.

A Hermitian matrix is a complex matrix so that H = H
t
. It is positive

definite, if and only if
∑

i,k̄ hj,k̄dzjdz̄k ≥ 0 and it is equal zero only for z = 0.

The Hermitian matrix can be split into H = A+iB, A being a real symmetric

matrix and B a real antisymmetric matrix. In the case that the manifold

is a C-vector space W , the Hermitian metric is a Hermitian bilinear form

h : W ×W → C where h(v, w) = g(v, w) − iω(v, w) with g : W ×W → R
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is a symmetric bilinear form and ω : W ×W → R the antisymmetric form.

The real part g of the Hermitian metric h induce a Rimannian metric.

An almost complex structure J on a complex manifold M is a linear map

J : TM → TM (4.2)

such that J2 = −Id. For all vector fields X, Y and an almost complex

structure J on a complex manifold M , a Hermitian form defines on M a

differential 2-form

ω(X, Y ) = g(X, JY ) (4.3)

which is called the canonical 2-form of the Hermitian manifold.

A Riemannian metric g(·, ·) is compatible with a corresponding complex

structure J over the complex manifold M , if

g(JX, JY ) = g(X, Y ) (4.4)

for all vector fields X, Y on M .

It can be said that a Hermitian manifold is a complex manifold M to-

gether with a compatible Riemannian metric g = g(·, ·).

The first and main result of Kähler’s article (Kähler 1933) is the relation

between a Hermitian metric and a 2-form. If the canonical 2-form is closed,

then the Hermitian metric can be derived from the local existence of a smooth

real function called Kähler potential. Nowadays, a closed 2-form over a

complex manifold is called the Kähler form.

This relation was important for the studies of Hermitian manifolds, as

Kähler noticed, and, therefore, he used the adjective “bemerkenswert” which

means remarkable in the title of the article (Kähler 1933).

Nowadays, the fact that a manifold has a closed non-degenerate differen-

tial 2-form means that the manifold is a symplectic manifold. Kähler did not
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define the symplectic manifold, but he defined what later would be known

as Kähler manifolds.

This does not mean that Kähler started the research on symplectic geom-

etry; the results that Kähler presented were part of the development of dif-

ferential geometry on complex manifolds. Today, the study of complex man-

ifolds with a Hermitian metric and an associated closed 2-form, i.e. that the

complex manifold has a Kähler metric, is part of the field named Kählerian

geometry.18

In 1933 Kähler considered a complex manifold M with 2n real dimension.

The complex manifold is covered by a family of systems of local coordinates

z1, ..., zn. The relation between two such complex coordinate systems in the

intersection of their existence domains is given by holomorphic functions.19

Nowadays, the system of local coordinates are known as an Atlas.

In addition to the Hermitian metric, Kähler found its associated antisym-

metric quadratic differential form

ω =
∑

hj,k̄dzj ∧ dz̄k. (4.5)

If the exterior derivative of a differential quadratic form is closed, it is equiv-

alent to the local existence of a smooth real function U in a neighborhood of

a point p0 in the Hermitian manifold M . Therefore, the Hermitian matrix of

(4.5) is

hj,k̄ =
∂2U

∂zj∂z̄k
. (4.6)

So, the Hermitian metric will be

ds2 =
∑ ∂2U

∂zj∂z̄k
dzjdz̄k, (4.7)

18(Bourguignon 2003, p. 739)
19See (Kähler 1933)
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and the differential form will be

ω =
∑ ∂2U

∂zj∂z̄k
dzj ∧ dz̄k. (4.8)

The function U is called the potential by Kähler. This potential is nowadays

called Kähler potential.

Currently, if a quadratic differential form is closed and non-degenerate

over a Hermitian manifold, the Hermitian metric is called Kähler metric,

and the manifold is called Kähler manifold.

Every Kähler manifold is a symplectic manifold, but not every symplectic

manifold is a Kähler manifold. This result was proved by William Paul

Thurston (*1946, †2012) in 1976.20

Examples of a Kähler metric over a Hermitian manifold

Kähler gave two examples of a Kähler metric and remarked that this ariese

in the theory of automorphic functions.21 The first example is the kähler

metric with potential

U =
n∑
ν=1

k log(1−
∑

zν z̄ν) (k constant), (4.9)

which is invariant under a discontinous group of transformations

z′i =
αi0 + αi1z1 + ...+ αinzn
α00 + α01z1 + ...+ α0nzn

, (4.10)

which transform the unit hypersphere

1−
n∑
i=1

ziz̄i = 0 (4.11)

20See (Thurston 1976)
21See (Kähler 1933).
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into itself.22 Kähler called the transformations (4.10) as the “hyperfuchsian”

transformations using the name that Picard gave to it.23

The second example is analogue to the first one. The metric satisfies the

condition dω = 0 and has the potential

U =
n∑
i=1

kilog(1− ziz̄i), ki constant. (4.12)

which is defined in the ”Einheitskreise”

1− ziz̄i = 0. (4.13)

The group of transformations that leaves the metric invariant is the auto-

morphic group of the form

z′i =
αizi + βi
γizi + δi

, i = 1, ..., n, (4.14)

which Kähler named the group of hyperabelian transformations.24

Kähler mentioned that the combination of the two metrics given in his

examples may be used for the algebraic studies on automorphic functions.

Kähler found other properties if the differential form of the complex man-

ifold is closed, for example that the metric (4.7) is an Einstein metric but

these properties are not embedded in the development of symplectic geom-

etry, but they are important for the study of Kähler geometry.25 Currently,

Kähler geometry is considered to be “at the crossroads between Riemannian,

symplectic and complex geometry.”26

22See (Kähler 1933).
23See (Goldstein 2018, p. 15).
24See (Kähler 1933).
25See (Kähler 1933, p. 175).
26(Bourguignon 2003, p. 740)
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4.3 Reception of Kähler manifolds

After the publication of Kähler’s article (Kähler 1933), the research on com-

plex manifolds continued, as can be seen in the work of Élie Cartan (Cartan

1936). The interest in this closed 2-form and in Kähler manifolds was not

immediate. In the 1940s the use of the theory of differential forms was com-

bined with other mathematical tools such as the homology group and the de

Rham cohomology.

The notion of homology had been introduced by Poincaré in 1895. Georges

De Rham (*1903, †1990) treated the analogies between chains and forms in

his dissertation (De Rham 1931), and the notion of cohomology without this

name was introduced by Kähler in his publications (Kähler 1932, Kähler

1934).27

Also in the 1940s Kähler manifolds were researched and developed, by

among others, William V. D. Hodge28, Shiing-Shen Chern, André Weil29,

Beno Eckmann and Heinrich Guggenheimer.

At the end of the 1940s some mathematicians such as André Weil and

Beno Eckmann started to call the Hermitian metric associated with a closed

differential form a Kähler metric.30

During the 1930s and 1940s the research on complex manifolds continued

27See (Katz 1985, p.333)
28William Vallance Douglas Hodge was born on June 17, 1903 in Edinburgh and died

on July 7, 1975. He was a Scottish mathematician and researched in the field of alge-

braic geometry. Hodge held the Lowndean Professorship of Astronomy and Geometry at

Cambridge until his retirement in 1970.
29André Weil was born in Paris on May 6, 1906 and died on August 6, 1998. His work

was fundamental in number theory and algebraic geometry. He was, as well, a student

and friend of Carl Ludwig Siegel. He lived in the United States from 1941 to 1945 because

of the persecution against the Jews in Europe.
30See (Weil 1947, Eckmann & Guggenheimer 1949c).
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and Chern was one of the mathematicians who developed this research with

Weil. Chern was a student of Kähler, and he used the Hermitian manifolds

to prove the generalization of the Gauss-Bonnet Theorem.31

4.3.1 Eckmann and Guggenheimer

Beno Eckmann, with his student Heinrich Guggenheimer, contributed to the

study of Kähler manifolds at the end of 1940s. He was born on March

31, 1917 in Bern and died on November 25, 2008 in Zürich. He attended

the Eidgenössische Technische Hochschule Zürich (ETH) from 1935 to 1939,

where he studied mathematics and obtained his Dr. Sc. math. in 1941

under the supervision of Professor Heinz Hopf.32 He received his habilitation

qualification in 1942 at the ETH. Eckmann’s interest was in topology and

its relation to algebra. In his article (Eckmann 1941), he worked on the

homotopy theory of fibre spaces and in his following work (Eckmann 1942).

In 1942 he worked as a lecturer at the University of Lausanne, where

Georges de Rham had been working as a professor since 1931, as well. Eck-

mann and de Rham exchanged mathematical ideas about homology theory

in Lausanne.33 In 1943 he received a professorship in Lausanne, and in May,

1943 he received a full professorship at the ETH Zürich. In his inaugural

lecture (Eckmann 1944), he discussed the relation between topology and al-

gebra. Later in 1947, Eckmann went to the IAS in Princeton for a research

31See (Wu 2008).
32Heinz Hopf was born on November 19, 1894, in Gäbschen (At that time Germany

and nowadays Poland) and died on June 3, 1971, in Zillikon, Switzerland. He worked on

topology. In his doctoral thesis he classified simply connected Riemannian 3-manifolds

of constant curvature. In 1931 he went to ETH Zürich to take up the chair of Hermann

Weyl.
33See (Eckmann 1992).
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year. 34He returned to Zürich in 1948 and started to work on what later would

be known as Kähler manifolds with his student Heinrich Guggenheimer.

Heinrich Guggenheimer was born on July 21, 1924 in Nuremberg, Ger-

many. Guggenheimer immigrated to Jerusalem in 1954, there he taught at

the Hebrew University from 1954 to 1956, and later from 1956 to 1959, he

taught at the Bar-Ilan University in Tel Aviv.35 In 1959 he immigrated to

the United States, where he taught at different universities, and continued

his work on differential geometry, topology, and algebraic geometry.

Currently, Guggenheimer is Professor Emeritus of the Polytechnic Insti-

tute of Brooklyn.

4.3.2 Eckmann and Guggenheimer’s work on Kähler

manifolds

In 1949 Eckmann and Guggenheimer were working on Kähler manifolds.36

The first reviews about this research were published in Comptes Rendus

de l’Académie de Sciences. These reviews were Eckmann’s work in progress

(Eckmann 1952), and Guggenheimer’s dissertation “Über komplex-analytische

Mannigfaltigkeiten mit Kählerscher Metrik”, (Guggenheimer 1951c).37

Eckmann’s and Guggenheimer’s first two reports, are classified within the

field of differential geometry because they dealt with local properties.38 The

last note (Eckmann & Guggenheimer 1949c) was classified within the field

34See (Hopf 2001).
35Heinrich Guggenheimer is Jewish and in 1992 he published with his wife the Dictionary,

Jewish Family Names and Their Origins: An Etymological Dictionary.
36See (Eckmann & Guggenheimer 1949a, Eckmann & Guggenheimer 1949b, Eckmann

& Guggenheimer 1949c).
37“On complex analytic manifolds with Kähler metric.”
38See (Eckmann & Guggenheimer 1949a, Eckmann & Guggenheimer 1949b).
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of topology because they researched the global properties.

Dans cette Note nous appliquerons à des variétés complexes

closes les considérations purement locales de deux Note antérieures

sur la structure complexe et la métrique hermitienne, et nous en

déduirons des propiétés globales.39

(Eckmann & Guggenheimer 1949c, p.503)

Eckmann’s and Guggenheimer’s research during 1949 was on Hodge’s

theory about homology structures over algebraic manifolds.

In 1932 Hodge started to developed his theory about harmonic integrals.

This work was published in 1941.40 Hodge showed that in the Kähler mani-

folds the complex harmonic differential forms have special properties.41

Eckmann’s and Guggenheimer’s research simplified Hodge’s theory, as

mentioned in the introduction to their first note in 1949:

Dans cette Note et une Note suivante nous indiquerons une

série de formules et de relations de caractère purement local con-

cernant les formes différentielles dans un espace à metrique her-

mitienne sans torsion (1). Ces résultats seront utilisés dans des

39In these notes, we apply to the closed complex manifolds the purely local consideration

of the last two notes on the complex structure and the Hermitian metric, and we deduce

the global properties.
40See (Hodge 1941). The book of Hodge was last re-issued in 1989 and the digital

re-issue of it in 2008.
41These properties are not addressed in this work. The reader can consult Dieudonne

for the development of Hodge’s theory (Dieudonné 1989)
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Notes ultérieures pour établir des propriétés topologiques qu’entrâıne

l’existence et simplifierons ainsi la théorie de Hodge (2) sur la

structure homologique des variétés algébriques. Les détails des

énoncés et des démonstrations seront publiés dans un Mémoire

en préparation.42

(Eckmann & Guggenheimer 1949a, p.464)

A Hermitian metric without torsion is a Kähler metric. Eckmann and Guggen-

heimer used this term because a Hermitian manifold is a Kähler manifold if

and only if the canonical Hermitian connection has no torsion. Later they

defined what is a Hermitian metric without torsion as a Kähler metric. In

the footnote (1) of (Eckmann & Guggenheimer 1949a), they specified that

Hermitian metrics without torsion had been examined by E. Kähler.43 In the

footnote (2) they quoted the work of Hodge (Hodge 1941). The “future” notes

mentioned in the quotation are (Eckmann & Guggenheimer 1949b, Eckmann

& Guggenheimer 1949c), and the “memoir in preparation” is Guggenheimer’s

thesis (Guggenheimer 1951c), and Eckmann’s publication (Eckmann 1952).

In (Eckmann & Guggenheimer 1949a), Eckmann and Guggenheimer gave

the definitions of Hodge theory and its operators on the Euclidean space R2n

with 2n real variables, which is considered as the En space of n complex

variables. They considered the Hermitian metric on the R2n space with

42In this note, and in a following note, we indicate a series of formulas and relations

with a purely local character concerning the differential forms in a space with Hermitian

metric without torsion (1). These results will be used in future notes to establish the

topological properties that involve the existence and will simplify Hodge’s theory (2) about

the homology structure of algebraic manifolds. The details of the theorems and the proofs

will be published in a memoir in preparation.
43(Eckmann & Guggenheimer 1949a, p.464).
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complex structure of which the associated 2-form to the Hermitian metric is

a Kähler form. They defined the linear vector space of all differential p-forms.

The note (Eckmann & Guggenheimer 1949c), was the last note that Beno

Eckmann and Heinrich Guggenheimer published together in the Comptes

Rendus de l’Académie de Sciences in 1949. It is classified within the field

of topology, as they announced in their first report. In this note they had

applied to a complex manifolds local considerations of two previous notes

and they have deduced the global priorities. So, on a complex manifold V

of dimension 2n, they showed that all the notions and results persented in

the two previous notes, which are related to complex structure, have a global

meaning, if they are applied to defined differential forms over the whole

manifold V .

One of the results shown was the existence of an isomorphism between

the linear space of all the harmonic forms of degree p with the cohomology

group of a complex manifold V . As well as that the range of the linear space

of all the harmonic forms of degree p is equal to the p-number of Betti of

that complex manifold.

In this note they explicitely called the complex 2n-dimensional oriented

manifolds endowed with a Kähler metric as variétés kählérienne.44

Eckmann presented the results of his research published in 1949 with

Guggenheimer in 1950, at the International Mathematical Congress

(IMA) in Cambridge, Massachusetts, USA.45 In the proceerdings of the

congress of the IMA in 1952, Eckmann noticed that some of his results,

such as the existence problem of a complex structure on a given manifold M ,

and the properties of M that are implied by a complex structure, overlap

44(Eckmann & Guggenheimer 1949c, p. 504)
45The date of the publication of the IMA proceerdings was in 1952. See (Eckmann 1952).
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with the presentation Charles Ehresmann gave at the same congress.46

In November 1950, Heinrich Guggenheimer delivered his dissertation about

complex analytical manifolds with a Kähler metric, and in January 1951 he

gave a talk in the topology colloquium directed by Ehresmann in Strasbourg

with the title “Varietes symplectiques”. There he discussed his results on

”Hodge theory”. At the time Guggenheimer participated in Ehresmann’s

colloquium, Ehresmann had already defined symplectic manifolds. This de-

velopment will be discussed in chapter 5.

46See (Eckmann 1952)



Chapter 5

Symplectic Manifolds

Introduction

The first definition of symplectic manifolds was given by Charles Ehresmann

in 1950. It was given within the context of fibre bundles, which Ehresmann’s

and Jacques Feldbau’s contribution to the development at the beginning of

the 1940s.

First, Ehresmann showed that on an even-dimensional real differential

manifold the existence of an almost complex structure is equivalent to the

existence of a differential 2-form of rank 2n in all points over the mani-

fold. Ehresmann showed that the four dimensional real sphere does not

admit an almost complex structure. Therefore, he asked himself: which

even-dimensional real differential manifolds admits an almost complex struc-

ture? This led to the definition of symplectic manifolds because the even-

dimensional real manifold, which admits an almost complex structure, admits

a 2-form in all points over the manifold, and if the form is closed and non-

degenerated, it is a symplectic form. In this context the symplectic structure

arose as a necessary and sufficient condition for the existence of an almost

109
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complex structure.

After Ehresmann’s definition of symplectic manifolds, other mathemati-

cians, such as Guggenheimer, noticed that Kähler manifolds are symplectic

manifolds.1

5.1 Charles Ehresmann and Jacques Feldbau

Charles Ehresmann was born on April 19, 1905 in Strasbourg, France2 and

died on September 22, 1979.

In 1924 Ehresmann entered the École Normale Supérieure. After his

graduation in 1928, he worked for a year as a teacher at a French Lycée in

Rabat, Morocco.

From 1930 to 1931 he went to Göttingen to study with Hermann Weyl,

and from 1932 to 1934 he went to the IAS in Princeton. In Princeton, he

worked on his doctoral thesis on the topology of homogeneous spaces, and

although Élie Cartan was in Paris, Cartan was his doctoral advisor.3 Most

probably Ehresmann exchanged ideas with Weyl.

After his graduation in 1934, Ehresmann worked in the Centre Nationale

de la Recherché Scientifique.4 During this period he made his first contribu-

tions to the topological properties of differentiable manifolds. He described

the homology of classical types of homogeneous manifolds.

In July, 1935 Ehresmann was invited to participate in the Bourbaki

1See (Guggenheimer 1951a).
2In 1905 Strasbourg was part of Germany, and after the first war the city returned to

France.
3See (Dieudonné 1984, p.xxi).
4See (Ehresmann 1984, p.xix).
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group.5 In 1939 he became professor at the University of Strasbourg and

stayed there until 1955 when he was appointed as professor for topology at

the University of Paris. The chair for topology was created for Ehresmann.6

During Ehresmann’s first year in Strasbourg, the Second World War broke

out, and in September 1939 the city of Strasbourg was evacuated. The Uni-

versity of Strasbourg and its employees were relocated to Clermont-Ferrand,

where Ehresmann continued his mathematical work.

His first doctoral student, out of 76 he supervised in total, was Jacques

Feldbau in Strasbourg in 1939 and during this time the University of Stras-

bourg moved to Clermont-Ferrand.

From 1939 to 1943 Ehresmann and Feldbau developed the theory of fibre

spaces.7 The theory of fibre spaces was the context in which symplectic

manifolds were defined.

5.1.1 Jacques Feldbau

Jacques Feldbau played an important role in the development of fibre spaces.

He was born into a Jewish family in Strasbourg on October 22, 1914.8 In

1943 Feldbau was arrested by the Gestapo and was sent to Auschwitz and

died on April 22, 1945, in the Ganacker concentration camp a few days before

it was liberated by the red army.9

As mentioned above, Feldbau was Ehresmann’s first doctoral student and

worked on the theory of fibre spaces, but he could not finish his doctoral

5See (Mashaal 2002, p. 6).
6See (Dieudonné 1984, p.xxi).
7(Zisman 1999), (Audin 2010) and (Kosmann-Schwarzbach 2013).
8For a more detailed biography of Feldbau, the reader may consult the book “Jacques

Feldbau, Das Schicksal eines jüischen Mathematikers (1914-1945)” (Audin 2010).
9See (Audin 2010).
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thesis because he was taken as a prisoner by the Vichy regime10 in 1943.

Audin claimed it was possible that Feldbau had finished his doctoral thesis

at that time, but he was not able to present his work. During his time in the

Auschwitz concentration camp, he was not able to do mathematics, although

he was in contact with Henri Cartan.11

During his life Feldbau published three notes in the Comptes Rendus

de l’Académie des Sciences (Feldbau 1939, Ehresmann & Feldbau 1941,

Ehresmann 1941), two on the Bulletin de la Société Mathématique de France

(Laboureur 1941, Laboureur 1943), and there is a posthumous publication on

the “Séminaire Ehresmann, Topologie et géométrie différentielle” (Feldbau

1958-60). The third publication in the Comptes Rendus de l’Académie des

Sciences is only signed by Charles Ehresmann. In Michèle Audin’s biography

of Feldbau, she reproduces the manuscript of the note, on which the authors

of the note were scratched-out and the name Charles Ehresmann was writ-

ten on the edge of the page with pencil.12 The scratched-out names were

Charles Ehresmann and Jacques Feldbau. This was a consequence of the

anti-semitic legislation by the Vichy regime, and the Académie de Sciences

could not tolerate publishing something signed by a Jewish person during

this time. Therefore, Feldbau adopted the pseudonymous Laboureur to be

able to publish his results during the time of occupation.13

His last publication of 1958 was a posthumous publication, which is a

10The Vichy regime governed unoccupied France from 1940 to 1944. Its official name

was French State, and it was an authoritarian state, which promulgated laws against Jews.

It collaborated with Nazi-Germany and helped in the detention and deportation of many

Jews and political opponents to concentration camps. For further information about the

Vichy regime see (Jackson 2003).
11See (Audin 2010).
12See (Audin 2010, p.8).
13See (Audin 2010).
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tribute to Feldbau by Ehresmann. Ehresmann printed the article in his

seminar publication although many of the results contained in it were not new

any more. In the introduction Ehresmann wrote a small review of Feldbau’s

contributions to the theory of fibre spaces and mentioned that the article,

which was written by Feldbau in 1941, was recovered in 1945.14

5.2 Symplectic Manifolds

A symplectic manifold is an even-dimensional differentiable manifold M en-

dowed with a closed non-degenerate 2-form. Let 2n be the dimension of M

endowed with a symplectic form ω, then the top exterior power ωn = ω∧...∧ω

is a volume form. The volume form does not vanish because ω is non-

degenerate. A volume form, is equivalent to ω not been degenerate. That any

symplectic manifold has a volume form, implies that any symplectic manifold

is an orientable manifold.15

Some examples of a symplectic manifold are:

• The vector space R2n, with coordinates (x1, ..., xn, y1, ..., yn), endowed

with the 2-form ω0 =
∑
dxi ∧ dyi.

• The Kähler manifolds.

• The 2-sphere S2 with its standard area form.

• Any oriented Riemann surface with its area form.

• The cotangent bundle over a Riemannian manifold with the Liouville

form.

14See (Audin 2010, p. 12).
15See (Abraham & Marsden 1978, p. 165).
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A Kähler manifold is a complex n-dimensional manifold endowed with a

Kähler metric. A Kähler metric is a hermitian metric, and its associated

2-form is closed. Therefore, the 2-form is symplectic.

The 2-sphere embedded in R3 has a symplectic form defined by

ωp(u, v) := 〈p, u× v〉 (5.1)

where p ∈ S2 , u, v ∈ TpS2 and “×” is the vector product in R3. This is the

standard area form of S2 with total area 4π.

The last example is applied in classical mechanics.16 The cotangent bun-

dle is the phase space of a Hamiltonian dynamical system. The Riemannian

manifold is the configuration space. The symplectic form is ω = −dα, where

α is the canonical 1-form defined by

n∑
i=1

ξdxi (5.2)

and where the local cotangent bundle coordinates are (x, ξ). The (5.2) is

called the Liouville form.

5.2.1 Fibre Spaces, Fibre Bundle

Modernly speaking, a fibre bundle is a structure (E, p,B, F ) where E, B, F

are topological spaces, and p is a continuous surjective map. E is called

the total space, B the base space, F the (generic) fibre, p is the projection

p : E → B, and for any point x ∈ B, p−1(x) is called the fibre over x.

The projection p must be a locally trivial map that means that for every

point x ∈ B there exists an open neighborhood U ⊂ B such that there is a

homeomorphism .

ϕ : p−1(U) −→ U × F
16See chapter 8.
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so that the diagram

ϕ : p−1(U) −→ U × F

p↘ ↙ proj1

U

commutes. The proj1 : U × F → U is the natural projection onto the first

component.

Fibre spaces were proposed and considered by Hopf, Herbert Karl Jo-

hannes Seifert17 and Hassler Whitney18 in their articles.19

In 1934 Whitney wrote the article “Sphere space” (Whitney 1934), in

which he researched a sphere bundle which is a fibre bundle whose fibre is

a n-sphere. There he introduced the terminology of base space, total space

and the coordinate system for the fibre space, and he used, as well, the

terminology tangent space of a differentiable manifold and the normal space

of an embedded manifold.20

A year after Whitney’s publication in 1935, Hopf published “Über die

Abbildungen von Sphären auf Sphären niedriger Dimension” (Hopf 1935).21

He gave a description of the families of fibrations where the fibres are spheres.

The total space is a sphere, and the base spaces are projective spaces.22

From 1939 to 1943 Feldbau and Ehresmann were working on Whitney’s

theory of fibre bundle on spheres.

17Herbert Karl Johannes Seifert was born on May 27, 1907, in Bernstadt, Germany and

died on October 1, 1996, in Heidelberg. He worked on topology.
18Hassler Whitney was born on March 23, 1907, in New York City and died on May

10, 1989, in Switzerland. He was a topologist and participated in the development of

differential topology. See (Chern 1994).
19See (Seifert 1933, Whitney 1934, Hopf 1935, Whitney 1937).
20(Zisman 1999, p.609).
21About transformations between spheres into spheres with low dimension.
22See (James 1999).



116 CHAPTER 5. SYMPLECTIC MANIFOLDS

In Feldbau’s work (Feldbau 1939), he extended the theory of fibrations,

so that the total space and the base space are manifolds, and the fibres are

compact manifolds. Feldbau introduced a family of homeomorphisms from

the fibre over x in the base into the generic fibre, i.e.

H : Fx → F.23

In (Ehresmann & Feldbau 1941, Ehresmann 1941), Ehresmann and Feld-

bau gave a method to construct a fibre bundle. A bundle is constructed with

a given base space B, a generic fibre F , the automorphismus of F are given

by G of the generic fibre, and an open covering of the base spaces.

To defined an automorphisms of generic fibre F it is needed an open

covering U = (Ui)i∈I of the base space B and homeomorphisms

ϕi : p−1(Ui)→ Ui × F. (5.3)

For any given any x ∈ Ui ∩ Uj the equation

gij(x)(y) = ϕj ◦ ϕ−1
i , (x, y) y ∈ F (5.4)

defines an automorphism gij(x) of F satisfying the relation

gjk = gjk(x) ◦ gij(x) for x ∈ Ui ∩ Uj ∩ Uk. (5.5)

The group of automorphism G of F is called a structure group of the fibre

bundle if G is a topological group and gij ∈ G maps gij : Ui ∩ Uj → G

continuously. So, the collection (E, p,B, F,G) is called a fibre bundle with

structure group G.24

Ehresmann discussed how to reduce the structure group G of the fibre

bundle, when the reduction is a fibre bundle with a structure group G′,

23(Zisman 1999, p.611).
24(Zisman 1999, p.605).
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which is a subgroup of the original structure group G.25 This problem can

be reduced to the existence of a section in the associated fibre of typ G/G′,

which gave Ehresmann the necessary and sufficient conditions when an even

dimensional manifold accepts an almost complex structure.26

Later in 1943 he gave the tangent bundle of a differentiable manifold.

A toute variété differentiable V n on peut associer un espace fibré

appelé variété des vecteurs tangents à V n.27

(Ehresmann 1943, p. 628)

V n is Ehresmann’s notation for an n-dimensional manifold, and the fibre

space is what is currently called tangent bundle. Ehresmann defined the

differentiable manifolds using local charts and atlases. So, if the transition

maps are differentiable, then the manifold is called differentiable; and he

mentioned that if the base space of the tangent bundle is an n-dimensional a

differentiable manifold M , the total space TM is a 2n-dimensional manifold.

Ehresmann showed that the structure group of the tangent bundle is

the linear group GL(n,R). Therefore, the tangent bundle of a differentiable

manifold is a collection (TM, p,M,R, GL(n,R)).

After giving the tangent bundle, he asked himself if the structural group

of the tangent bundle has a reduction:

La structure V̆ n(V n,Rn, L,H) contient-elle des structures plus

précises V̆ n(V n,Rn, L′, H ′) où L′ est un sous-groupe de L? 28

25See (Ehresmann 1942).
26See section (5.2.2).
27All differentiable manifolds V n can be associated to a fibre space called the manifold

of tangent vectors of V n.
28Does the structure V̆ n(V n,Rn, L,H) have a more precise structure

V̆ n(V n,Rn, L′, H ′)?
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(Ehresmann 1943, p. 629)

Ehresmann used V̆ to denote the tangent bundle, V n the n-dimensional man-

ifold, L the linear group GL(n,R), and H the homeomorphism between the

fibre Rn
x over x and the generic fiber Rn. The reduction is a subgroup of

GL(n,R).

Ehresmann proved that the reduction ofGL(n,R) to the orthogonal group

O(n, re) is always possible and, consequently, the existence of a “forme dif-

ferentielle quadratique définie positive” (2-form) over the differentiable mani-

fold.29 He showed that the reduction for non-definite signatures is not always

possible but depends on the topology of the base space.30

5.2.2 Almost Complex Structure on 2n Dimensional

Manifolds

In the middle of the 1940s Ehresmann continued his research on the tangent

bundle of a differentiable manifold and the reduction of its structure group,

which led him to research the almost complex structures over 2n-dimensional

orientable real differentiable manifolds.

In current terminology, an almost complex structure on a 2n-dimensional

real manifold M is a complex structure J on the tangent bundle TM , i.e.

an almost complex structure on M is a section J of the bundle such that

J2
x = −IdTxM for every point x in the manifold M .31

Ehresmann found out that there exist orientable 2n real differentiable

29(Ehresmann 1943, p. 629).
30The signature of a non-degenerate quadratic form Q(x) = x21 + ...+x2p−x2p+1− ...−x2n

of rank n is the ordered pair (p, q) = (p, n − p) of the numbers of positive or negative,

respectively squared terms in its reduced form.
31(Audin & Lafontaine 1994, p.42).
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manifolds which do no admit an almost complex structure, for example the

2n dimensional sphere for n 6= 1 and n 6= 3.32 Ehresmann proved this

assertion for the 4 dimensional sphere in (Ehresmann 1947, sec. 10).

Ehresmann’s first publication about the conditions for an even-dimensional

real manifold to admit complex structure was (Ehresmann 1947). This pub-

lication is based on a conference at the Séminaire N. Bourbaki in Paris

at the beginning of 1947.33

He researched the conditions over a 2n real dimensional manifold M for

the existence of a 2-form of rank 2n on every point of the manifold.

L’existence d’une telle forme différentielle est équivalente à

l’existence, dans l’espace vectoriel tangent à V2n au point x, d’une

structure d’espace vectoriel complexe de dimension n dépendant

d’une façon continue de x. Nous dirons que V2n est muni d’une

structure presque complexe lorsqu’on a défini, d’une façon con-

tinue par rapport à x, une structure d’espace vectoriel complexe

dans l’espace tangent en x. L’existence sur V2n d’une struc-

ture presque complexe est nécessaire, mais probablement non suff-

isante, pour qu’on puisse définir sur V2n une structure analytique

complexe, subordonnée à la structure différentiable réelle.34

(Ehresmann 1947, p. 133)
32See (Audin & Lafontaine 1994, McDuff & Salamon 1995).
33See the footnote (1) in (Ehresmann 1947).
34The existence of such a differential form is equivalent to the existence, in the tangent

space of V2n at a point x, of a structure of the n-dimensional complex vector space, which

is dependent of a continuous function of x. We say that V2n is equipped with an almost

complex structure when one has defined, in a continuous way with respect to x, a structure

of a complex vector space into the tangent space over x. For the existence of an almost

complex structure over V2n it is necessary, but may be it is not sufficient, to define over

V2n an analytical complex structure, subordinated to the differential real structure.
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Ehresmann provided to the fibre R2n a complex structure through a linear

transformation I : x 7→ ix for x in R2n so that i(ix) = −x. With a complex

structure, the even-dimensional real space can be identified with the complex

space Cn.35 On the complex space Cn, the complex linear group GL(n,C) is

a subgroup of the linear group GL(2n,R). The space of complex structures

on a tangent space is

GL(2n,R)/GL(n,C). (5.6)

A section in the reduced bundle corresponds to an almost complex structure

on the base manifold.36

He used a previous result that says if the reduced structure group is

connected it determines an orientation of the manifold. Because GL(n,C) is

connected it determines an orientation of the manifold M .37

Ehresmann showed that the complex structures of GL(2n,R)/GL(n,C)

leaves the quadratic form

F (x, x) = x2
1 + x2

2 + ...+ x2
2n (x ∈ R2n) (5.7)

invariant on a fibre R2n, which is equivalent to F (x, Jx) = 0 where J is an

almost complex structure of M . As well, the complex structures leaves the

Hermitian form

Φ(z, z) = z1z̄1 + z2z̄2 + ...+ znz̄n, z ∈ Cn, (5.8)

invariant.38

35(Ehresmann 1947, p.140).
36(Ehresmann 1947, p.140).
37(Ehresmann 1947, p.140).
38(Ehresmann 1947, p. 141).
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Ehresmann considers at first a fibre and comperes the reductions, i.e.

GL(2n,R) −→ GL(2n,R)/GL(n,C)

and

O(2n,R) −→ O(2n,R)/U(n,C)

with U(n,C) the group of unitary trasnformations leaving (5.8) invariant.

He argues that the connected complement of J for O(2n,R)/U(n,C) and

GL(2n,R)/GL(n,C) are ”isomorphe”, i.e. topologically equivalent. There-

fore the reduction problems are equivalent.

As was mentioned before in (5.7), Ehresmann noticed that an almost

complex structure leaves the quadratic form invariant because it is equivalent

to

g(x, Jx) = 0

and the symmetric bilinear form g is associated to a skew-symmetric form ω

of rank 2n if

ω(x, y) = g(Jx, y).

The hermitian form is positive definite with respect to the complex structure

defined by J .39

He showed that the existence of an almost complex structure on a 2n-

dimensional differentiable manifold M is equivalent to the existence of a

differential 2-form of rank 2n in all points over the manifold M .

Pour qu’il existe sur V2n une structure presque complexe ou

presque hermitienne, il faut et il suffit qu’il existe sur V2n une

39See (Ehresmann 1950a, p.414).
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forme différentielle extérieure de degré 2 et en tout point de rang

2n.40

(Ehresmann 1947, p.141)

To prove that the 4-sphere S4 does not admit an almost complex struc-

ture, Ehresmann started with a connected subgroup of GL(2n,R), which left

invariant the quadratic form called by him as Ω and the subgroup of GL(n,C)

that left the Hermitian form invariant, called by him as Ω′. He noticed that to

determine the associated fibre boundle of a fiber bundle E(V2n,R2n,Ω, H1),

which associated fiber boundle is E(V2n,Cn,Ω′, H ′), is equivalent to deter-

mine the sections of the associated fiber bundle E(V2n,Γ(n),ΩΓ, HΓ) where

Γ(n) is the quotient space Ω/Ω′.41

Ehresmann proved that for the existence of an almost complex structure

or a 2-form of rank 2 on a S2n sphere, it is necessary and sufficient that a

continuous map σ′ : S2n−1 −→ Γ(n), in this case Γ(n) ≈ S3 −→ S3×P 3R, has

non-vanishing homotopy invariants. Therefore, the 4-sphere does not admit

an almost complex structure.42

Currently, it is known that the only spheres that admit an almost complex

structure are the 2-sphere and the 6-sphere.43 This result was proved by

Armand Borel (*1923, †2003) and Jean-Pierre Serre (*1926) in 1953.44

40For the existence on V2n of an almost complex structure or an almost Hermitian, it is

necessary and sufficient that there exists on V2n an exterior differential form of degree 2

and in any point with rank 2n.
41Ehresmann notation (Ehresmann 1947, p. 141).
42(Ehresmann 1947, p.143).
43For the proof see (Banyaga 1994).
44See (Borel & Serre 1953).
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5.2.3 Ehresmann: Symplectic Manifolds

The current definition of a symplectic manifold was given in March 1950 at

the Séminaire N. Bourbaki at Ehresmann’s conference “Sur les variétés

presque complexes”.45 He presented again the same work at the ICM in

Cambridge, United States, in 1950.

Ehresmann started the report of his conference with some questions:

Etant donnée una variété topologique V2n, de dimension 2n,

existe-t-il sur V2n une structure analytique complexe? Plus abor-

dable parâıt la question suivante:

Etant donnée une variété différentiable V2n, existe-t-il sur V2n une

structure analytique complexe subordonnée à sa structure différen-

tiable? 46

(Ehresmann 1950a, p.412)

These questions were results from his previous work (Ehresmann 1947).

Ehresmann noticed that a consequence of his last work is the existence

of an almost complex structure on an oriented manifold, which is equivalent

to the existence of a differential exterior quadratic form ω of rank 2n over

all points of the manifold M . This manifold is orientable if ωn 6= 0, where

the orientation is defined by ωn, ωn is nowhere zero is equivalent to the

non-degenerateness of the 2-form.

45See (Ehresmann 1948-1950b).
46Given a topological manifold V2n of dimension 2n, does there exist a complex analytical

structure on V2n? More proper seems the question: given a differentiable manifold V2n,

does a complex analytical structure subordinated to its differantiable structure exist on

V2n?
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He defined an almost symplectic structure as a 2-form over an even di-

mensional differentiable manifold which is non-degenerate but not closed.

Ehresmann proved that an even-dimensional differentiable manifold M

admits an almost complex structure if and only if M admits an almost

symplectic structure. After this Ehresmann gave the definition of a sym-

plectic manifold as when the manifold is endowed with a 2-form which is

non-degenerate and closed:

Appelons variété symplectique une variété V2n muni d’une forme

fermée Ω telle que Ωn 6= 0 en chaque point.47

(Ehresmann 1950a, p. 415)

As mentioned at the beginning of section (5.2), ωn 6= 0 is equivalent to ω not

being degenerat. Ehresmann never stated that the 2-form has to be closed

in this article. But at that time, Paulette Libermann was his student, and

she researched on the equivalence of structures over manifolds. The reason

for preferring a closed 2-form is because the symplectic manifold is locally

isomorphic to a symplectic vector space. Moreover, all symplectic manifolds

with the same dimension are locally isomorphic to a symplectic vector space

with the same dimension. This result is known as Darboux’s theorem, which

was stated by Libermann during her research for her PhD thesis.48

Ehresmann stated that if a symplectic manifold is compact i.e. without

boundaries and with a finite number of neighborhood that covers all the

manifold, then its even dimensional Betti numbers are different of zero.49

As a remark, Ehresmann previous result about the 4-sphere which does not

47We call a symplectic manifold a manifold V2n with a closed form Ω so that Ωn 6= 0 in

all points.
48This development will be discussed in chapter 6.
49(Ehresmann 1950a, p. 150).
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admit an almost complex structure implies, as well, that it does not admit a

symplectic structure. In other words Ehresman stated that 2n-dimensional

compact manifolds with a trivial even cohomology group H2k(M ;R), (with

k = 0, 1, ..., n) such as spheres S2n with n > 1, can never be symplectic.50

The S2 is the only sphere that admits a symplectic structure.51

5.2.4 The first reception and the relation between sym-

plectic manifolds and Kähler manifolds

Henrick Guggenheimer immediately started to call an even-dimensional dif-

ferential manifold endowed with a closed non-degenerate differential 2-form

a symplectic manifold.

In January 1951, Guggenheimer presented his results about Hodge’s the-

ory over closed symplectic manifolds at Ehresmann’s seminar in Strasbourg,

the Colloque de Topologie de Strasbourg. As mentioned in section

4.3.2, the talk was called “Varietes symplectiques”.52

In April of the same year, Guggenheimer published a note in the Comptes

Rendus de l’Académie de Sciences with the title “Sur les variété qui possèdent

une forme extérieure quadratique fermée”.53 There Guggenheimer claimed

that a closed symplectic manifold has the property that its odd dimensional

Betti numbers are even, as is the case for closed Kähler manifolds. But in

1956 Libermann noticed that the proof was incomplete.54 It was not until

1976 that William Paul Thurston55 denied Gugggenheimer’s assertion and

50(Da Silva 2000, p. 7).
51See example (5.1).
52See (Guggenheimer 1951b).
53About the manifolds which have a exterior quadratic closed form. See (Guggenheimer

1951a).
54See (Libermann 1956).
55William Paul Thurston was born on October 30, 1946 in Washington, D.C and died
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constructed some counterexamples in his publication “Some Simple Examples

of Symplectic Manifolds”.56 On the basis of these examples, Thurston proved,

as well, that not every closed symplectic manifold has also a Kähler structure,

and therefore, not all symplectic manifolds are Kähler manifolds too. A

method to find symplectic manifolds that are not Kähler was developed by

Robert Gompf57 in 1995.58

5.2.5 Siegel’s Half Space is a Symplectic Manifold

In 1957, Henri Cartan59 (*1904, †2008) published his article entitled ”Ou-

vert Fondamentaux par le groupe modulaire”60 (Cartan 1957) where one of

the results is that a Siegel’s half-space is a Kähler manifold and therefore

symplectic manifold.

As part of the context it should be mentioned that in the 1930s Cartan

began working on the theory of functions in several variables, which coincided

with Siegel’s research interests. This can also be seen in the bibliography of

(Cartan 1957). The bibliography of this article consists of three papers, the

first one is written by his father Élie Cartan. In this case Henri Cartan cited

his father’s complete works, but the work that he used was (Cartan 1936),

on August 21, 2012 in Rochester, New York. In 1982 he received the Fields Medal for his

research and contributions to the study of 3-manifolds.
56See (Thurston 1976).
57Robert Ernest Gompf was born in 1957 in the United States. He works at the Uni-

versity of Texas at Austin.
58See (Gompf 1995).
59Henri Cartan was the son of Élie Cartan. He was a founding member of the Nico-

las Bourbaki collective (*1934) along with André Weil (*1906, †1998), Claude Chevalley

(*1909, †1984), Jean Delsarte (*1903, †1992), Jean Dieudonné (*1906, †1992) and René

de Possel (*1905, †1974).
60‘Open Fundamentals by the modular group.”
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as mentioned earlier in chapter 2, in this work Élie Cartan obtained six

irreducible bounded symmetric domains. The other two articles cited are

the works of Carl Ludwig Siegel about modular functions of several variables

(Siegel 1939) and the article “Symplectic Geometry” (Siegel 1943b).

In the article (Cartan 1957) the research on the generalization of hy-

perbolic geometry given by Siegel in (Siegel 1943b) is extended where one

of the results is that the Siegel half-space is a Kähler manifold. The first

thing Cartan did in his article (Cartan 1957) is very similar to the work of

Siegel (Siegel 1943b). Cartan proved that the symplectic group Sp(2n,R)

operates on the Siegel’s half-space. Then he searched for differential invari-

ant. For this, as Siegel, he found the hermitian differential form over Siegel’s

half-space

ds2 = tr(Y −1dZ Y −1 dZ). (5.9)

To prove that it is a Kähler metric, Cartan considered the exterior quadratic

form associated with the metric ds2, i.e.

ω =
1

2i
tr(Y −1dZ ∧ Y −1 dZ) = tr(Y −1 dY Y −1 ∧ dX) (5.10)

where Y −1 dX Y −1 = −dY −1 and so

ω = tr(dX ∧ dY −1) (5.11)

and dω = 0.61 Thus he proved that the metric is a Kähler metric. So Siegel’s

half-space is a Kähler manifold and therefore is a symplectic manifold.

Henri Cartan later dealt with other results that are part of Siegel’s gen-

eralization of hyperbolic geometry.

The result that Siegel’s half-space is a symplectic manifold gives the link

between these two geometries that bear the same name but are not the same

61See (Cartan 1957, p.5-6).
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field. In any case it can be said that Siegel’s half space is a symplectic

manifold and therefore can be considered as an object to be studied by the

currently discipline understood as symplectic geometry.



Chapter 6

Darboux’s theorem

Introduction

This chapter is about the development of Darboux’s theorem in the context

of the Pfaff problem at the end of the 19th century. In 1882 Darboux de-

veloped a theorem to reduce a system of linear differential equations. The

current formulation is stated in terms of differential forms which is known as

Darboux’s theorem on Pfaffian forms or on 1-forms. In 1953, Paulette Liber-

mann. developed the version of Darboux’s theorem over an even-dimensional

manifold, which shows that all symplectic manifolds with the same dimension

are locally isomorphic to a symplectic vector space of the same dimension.

In this chapter Darboux’s theorem on 1-forms will be referred as the

“classical Darboux theorem” its historical formulation as Darboux (1882) and

“Darboux’s theorem” as used in symplectic geometry as Darboux’s theorem.

129
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6.1 Two versions of Darboux’s theorem

6.1.1 The form used in symplectic geometry

An important theorem for symplectic geometry is Darboux’s theorem, which

is explained in the following.

For any point x of a symplectic manifold M , the tangent space TxM is

provided with a symplectic bilinear form, i.e. the tangent space TxM is a

symplectic vector space.

Darboux’s theorem states that for every point x on the symplectic mani-

fold M , there exists an open neighborhood U of x in M so that the symplectic

form ω can be transformed into the canonical form, i.e.

ω0 =
n∑
i=1

dxi ∧ dyi.

Theorem 6.1.1. For each point m of the symplectic manifold (M,ω) with

dimension 2n, there exists an open neighborhood U of m and a smooth trans-

formation

F : U → R2n

with

F ∗ω0 = ω|U

where ω0 is the canonical symplectic form on R2n.

Therefore, there are no local invariants and all points on the symplec-

tic manifold are equivalent in symplectic geometry. This differs from Rie-

mannian geometry, where the metric, which is a bilinear positive definite

symmetric form, can always be brought to the canonical form for any given

point x of a Riemannian manifold. However, it is not always possible in a

neighborhood U around the point x.
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6.1.2 The classical form

Before classical Darboux’s theorem, it is necessary to give some definitions

and results at first.

A Pfaffian form is one differential form

α = a1(x)dx1 + ...+ an(x)dxn, (6.1)

defined on an open subset U of a manifold M .1

A Pfaffian equation has the form

α ≡ a1(x)dx1 + ...+ an(x)dxn = 0, (6.2)

where x is an element of a domain D which is a subset of R2n, α is a Pfaffian

form and the functions ai(x) i = 1, ..., n are real-value functions.2

An integral manifold of the Pfaffian equation is a k-dimensional manifold

M ⊂ R2n, where k ≥ 1 and the manifold is of class C1, if α ≡ 0 on the

manifold M . If there is one and only one integral manifold of maximum

possible dimension n−1 through each point of the domain, then the Pfaffian

equation is said to be completely integrable. The necessary and sufficient

condition for the Pfaffian equation to be completely integrable is that

dα ∧ α ≡ 0. (6.3)

This is known as Frobenius’ theorem.3

The next result was proved by Darboux in 1882. This is discussed in the

section 6.2.3. The following theorem is what we call the classical Darboux

theorem and is currently it is called Darboux’s theorem on Pfaffian equation

and it states in modernized notation:

1(Aa.Vv. 1991b, p. 147).
2(Aa.Vv. 1991b, p. 145).
3(Aa.Vv. 1991b, p. 145).
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Theorem 6.1.2. Let α be a 1-form on an n-dimensional manifold M , so

that dα has rank p everywhere. If α 6= 0 and α∧ (dα)p ≡ 0, about every point

it can be found coordinates x1, ..., xn−p, y1, ..., yp such that

α = x1dy1 + ...+ xpdyp. (6.4)

If α∧ (dα)p 6= 0 everywhere, about every point it can be introduce coordinates

x1, ..., xn−p, y1, ..., yp so that

α = x1dy1 + ...+ xpdyp + dxp+1.
4 (6.5)

This last theorem is the one that Darboux stated in 1882 in the context of

systems of linear differential equation in his work about the Pfaffian problem.

and which we will discuss in the next section.

6.2 A look back to the late 19th century

6.2.1 Pfaffian’s Problem

As mentioned in chapter 3, the Pfaffian problem is a problem which has

its origins in the theory of partial differential equations. Because the Pfaf-

fian problem was the basis for Darboux to state the “classical” Darboux’s

theorem, this section will provide a short review of Pfaffian’s problem.

At the end of the 18th century Lagrange provided a method of integrating

a general first order partial differential equation

F

(
x1, ..., xn, u,

∂u

∂x1

, ...,
∂u

∂xn

)
= 0 (6.6)

u = ϕ(x1, ..., xn, C1, ..., Cn) where Ci are arbitrary constants in two indepen-

dent variables.5 But Lagrange did not succeed in the case when there are

4See (Sternberg 1964).
5(Hawkins 2005, p.386).
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more than two independent variables.6 In 1815 Pfaff solved the problem and

even more he solved how to integrate a non-linear partial differential equation

with n > 2 variables.7 To integrate a non-linear partial differential equation

with n > 2, Pfaff worked on a problem that had been discussed by Euler and

Monge8 at the end of the 18th century.9 Euler and Monge discussed if there

exists an integral function ϕ such that dϕ = α, where α = 0 is a Pfaffian

equation (6.2).10 Monge found out that there is no single integral equation

ϕ = C equivalent to the given differential equation, but it could be two or

more integral equations and together they form an integral equivalent to the

differential equation.11

Pfaff considered Monge’s statement that two or more simultaneous equa-

tions could be an integral of the Pfaffian equation (6.2).12 Pfaff stated that

an equation,

α ≡ a1(x)dx1 + ...+ an(x)dxn = 0,

in any number of variables x = (x1, ..., xn) is possible to integrate through a

change of variables xi = ψi(y1, ..., yn), i = 1, ..., n such that

α = b1(y)dy1 + ...+ bp(y)dyp, (6.7)

where p = n
2

if n is even and p = n+1
2

if n is odd.13 Pfaff’s result provides the

existence of solutions to an equation (6.2).14 At the beginning of the 19th

6(Hawkins 1991, p. 203).
7(Hawkins 2005, p. 387).
8Gaspard Monge (*1746, †1818) was a French mathematician. He invented the descrip-

tive geometry and founder of the École Polytechnique.
9(Katz 1985, p.324).

10The Pfaffian equation was called as a total integral equation. See (Hawkins 1991,

Hawkins 2005).
11(Katz 1985, p.324).
12(Hawkins 1991, p. 203).
13(Hawkins 1991, p. 203).
14(Hawkins 1991, p. 204).
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century this was known as the Pfaffian problem. A solution to a Pfaffian

equation (6.2) is established if yi = ϕi(x1, ..., xn), i = 1, ..., n, and C1, ..., Cp

are constants, so the solution are the p equations

ϕj(x1, ..., xn) = Cj, j = 1, ..., p,

which implies dyj = 0 for all j = 1, ..., p.15 Pfaff was not able to completely

prove his result. It was Jacobi who proved it in 1827.16

At the end of the 19th century mathematicians understood the problem

of Pfaff as challenge to find a suitable change of variables so that the Pfaffian

equation (6.1) could be expressed through a minimal number of variables,

i.e. to find a canonical form of the Pfaffian form α.17 To solve this problem

mathematicians tried to find the canonical expression for a partial differential

equation (6.1) by trying to find integrals. To find integrals of the Pfaffian

equation means to find a finite number of relation ϕj(x1, ..., xn) = 0 with

j = 1, ..., p, between the independent variables x1, ..., xn so that the Pfaffian

equation vanishes as a consequence of the 2p equations

ϕj(x1, ..., xn) = 0 and dϕj =
∑n

k=1
∂ϕj

∂xk
dxk = 0 j = 1, ..., p. (6.8)

Geometrically, ϕj(x1, ..., xn) = 0 can be interpreted as a condition for a

hypersurface. In this way the integrals that are found define, in modern

terminology, an integral manifold of dimension n−p, given by the intersection

of the p hypersurfaces.18

The Pfaffian problem was treated by Frobenius and Gaston Darboux in

the second half of the 19th century. As mentioned in chapter 3.2.2, the

15(Hawkins 1991, p. 204).
16(Katz 1985, p. 324).
17See (Cogliati 2011, Hawkins 2005, Katz 1981).
18(Cogliati 2011, p.399, 400).
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Pfaffian problem was, as well, treated by Élie Cartan in 1899 and this lead

to the development of the theory of differential forms. 19

Darboux’s work of 1882 led to the theorem in terms of systems of linear

differential equations.

6.2.2 Gaston Darboux

Jean Gaston Darboux was born on August 14, 1842 in Nimes, France and

died in Paris, France on February 23, 1917. Darboux took the entrance ex-

amination for the École Polytechnique and for the École Normale Supérieure.

He decided to begin his studies at the École Normale Supérieure, which at

that time started to gain prestige and to offer high teaching standard under

the direction of Louis Pasteur.

He obtained his doctorate in 1866 with his thesis “Sur les surfaces or-

thogonales”.

After his graduation, Darboux worked as a teacher in Paris at the Lycée

Louis-le-Grand until 1872.20

From 1872 to 1881 he taught at the École Normale Supérieure and from

1872 to 1878 he substituted Liouville’s (*1809, †1882) post at the Sorbonne.21

In 1878 Darboux replaced his doctoral advisor Michel Chasles (*1793,

†1880) at the Sorbonne. Chasles held the chair of higher geometry at that

time. After Chasles’s death in 1880, Darboux succeeded him at the Sorbonne.

Darboux held this chair until his death in 1917.22

19See chaper 3.
20The Lycée Louis-le-Grand has been a prestigious secondary school since its foundation

in 1550. See (Dupont-Ferrier 1925).
21(Lützen 1990, p. 248).
22See (Picard 1917, Croizat 2016).
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Darboux’s contributions were in geometry of surfaces and infinitesimal

geometry. He wrote four volumes about infinitesimal geometry “Leçons sur

la théorie général des surfaces et les applications géométriques du calcul in-

finitésimal” which were published between 1887 and 1896.23

6.2.3 The classical theorem of Darboux

In 1882 Darboux published his solution for Pfaff’s Problem. Earlier in 1877,

Frobenius published a solution for the problem of Pfaff. Although Frobenius

had solved the problem of Pfaff, six years later Darboux published his own

solution.24 Darboux knew about Frobenius’ publication in 1876. This can

be read in a footnote on Darboux’s publication:

La première Partie de ce travail a été écrite en 1876 et com-

muniquée à M. Bertrand, qui enseignait alors au Collège de France

la théorie des équations aux dérivées partielles. M. Bertrand a

bien voulu exposer la méthode que je lui avais soumise, dans sa

première leçon de janvier 1877.

Quelque temps après paraissait dans le Journal de Borchardt

un beau Mémoire de M. Forbenius qui porte d’ailleurs une date

antérieure á celle de janvier 1877 (septembre 1876) et où ce sa-

vant géomètre suit une marche assez analogue á celle que j’ai com-

muniquée à M. Bertrand, en ce sens qu’elle repose sur l’emploi

de invariants et du covariant bilinéaire de M. Lipschitz. En

revenant dans ces derniers temps sur mon travail, il m’a semblé

que mon exposition était plus affranchie de calcul et que, par suite

de l’importance que la méthode de Pfaff est appelée à prendre, il

23See (Darboux 1887, Darboux 1889, Darboux 1894, Darboux 1896).
24See (Frobenius 1877).
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y avaint intérèt à la faire connâıtre.25

(Darboux 1882, p.15)

With this footnote, Darboux justified the publication of his solution in 1882.

He expressed that his solution of Pfaff’s Problem does not use the theory of

partial differential equations. Instead, he used the properties of invariants.

Darboux’s solution of Pfaff’s Problem starts with the following

Θd = a1(x)dx1 + ...+ an(x)dxn. (6.9)

which is called expression differentielle by Darboux. Currently, the expres-

sion differentielle may be reinterpreted as a differential form, but as it was

mentioned before the theory of differential forms was developed, Darboux

stated that his solution was for Pfaff’s problem. The differential expression

(6.9) has a “direction” expressed by dx1, ..., dxn. Darboux constructed a pfaf-

fian system. For this he needed a differential in another “direction” δ so he

used the differential expression

Θδ = a1(x)δx1 + ...+ an(x)δxn. (6.10)

Darboux differentiated the differential expressions crossing the differential d

25The first part of this work was written in 1876 and communicated to Mr. Bertrand,

who taught at the Collège de France the theory of partial differential equations. Mr.

Bertrand provided the method, that I submitted, in his first lecture on January 1877. Some

time later, in the Journal de Borchardt, a beautiful memoir by Mr. Forbenius appeared,

which showed an earlier date than that of January 1877 (September 1876), and in which

the learned geometer followed a manner, which fits quite well to the work I communicated

to Mr. Bertrand, in the sense that this article responded to the application of invariants

and bilinear covariants of M. Lipschitz. Upon returning recently to my work, it seemed

to me that my exposition was more calculation-free and, in view of the importance, that

the method of Pfaff has assumed that it would be of interest to make it known.
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and δ and subtracted them, leading to the next expression

δΘd − dΘδ =
∑
i<k

aik(dxiδxk − dxkδxi), (6.11)

where

aik =
∂ai
∂xk
− ∂ak
∂xi

,

aik + aki = 0, and aii = 0. The expression (6.11) is a system of n(n−1)
2

terms.

He made a change of variables in the expression (6.9), with xi = ψ(y1, ..., yn)

given by

dxi =
∑
k

∂ψi
∂yk

dyk

and the expression Θd has the form

Θd =
n∑
i=1

bi(y) dyi. (6.12)

Hence,

δΘd − dΘδ =
∑
i<k

bik dyi δyk, (6.13)

bik =
∂bi
∂yk
− ∂bk
∂yi

,

where bik + bki = 0, and bii = 0, he proved that expressions (6.11) and (6.13)

are equal, i.e. ∑
aik dxi δxk =

∑
bik dyi δyk, (6.14)

because

bik =
∑
l<m

alm

(
∂ψl
∂yi

∂ψm
∂yk
− ∂ψl
∂yk

∂ψm
∂yi

)
Through this equation Darboux showed the invariant properties by a change

of variables. Using this property Darboux showed the equivalents of two

systems of linear differential equations. He started with the system associated

to the differential expression (6.9)
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a11(x)dx1 + ...+ a1n(x)dxn = λa1(x)dt
...

...

an1(x)dx1 + ...+ ann(x)dxn = λan(x)dt

(6.15)

where λ “would be a quantity, which could arbitrarily chosen 0, a constant

or a function of t depending on the case”.26 The system (6.15) is equivalent

to

b11(y)dy1 + ...+ b1n(y)dyn = λb1(y)dt
...

...

bn1(y)dy1 + ...+ bnn(y)dyn = λbn(y)dt.

(6.16)

Darboux replaced the system (6.15) with the equation

δΘd − dΘδ = λΘδdt. (6.17)

To find the canonical form for the Pfaffian system, i.e. to reduce the

number of variables of the system so the new system is equivalent to the

original one, Darboux established the minimal number of differential terms

into which the differential expression Θd can be transformed. He did this by

looking at the rank of the system and by changing the variables x to y and

z. Thereby, Darboux stated and proved the theorem

Theorem 6.2.1. Une forme Θd peut toujours être ramenée à l’un des deux

types suivants:

dy − z1dy1 − z2dy2 − ...− zpdyp (6.18)

z1dy1 + z2dy2 + ...+ zpdyp (6.19)

où les fonctions y, y1, ..., zk constituent un système de variables indépendantes,

26(Darboux 1882, p.19).
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c’est-à-dire sont des fonctions indépendantes de toutes les variables qui en-

trent dans la forme Θd.
27

(Darboux 1882, p.26)

The next problem solved by Darboux was the value of p. To solve this Dar-

boux used the last theorem, knowing that the differential expression Θd is

invariant under a change of variables y, z. First, he assumed that the differ-

ential expression can be reduced to the case (6.18) of the theorem (6.2.2),

i.e. Θd = dy − z1dy1 − z2dy2 − ...− zpdyp. So, the equation (6.17) becomes

δΘd − dΘδ = dz1δy1 − dy1δz1 + ...+ dzpδyp − dypδzp = λΘδdt. (6.20)

where

δΘd = δdy − δz1dy1 − δz2dy2 − ...− δzpdyp, (6.21)

dΘδ = dδy − dz1δy1 − dz2δy2 − ...− dzpδyp (6.22)

and

λΘδdt = λ(δy − z1δy1 − z2δy2...− zpδyp)dt. (6.23)

Because

δΘd − dΘδ = dz1δy1 − dy1δz1 + ...+ dzpδyp − dypδzp,

and

λΘδdt = λδydt− λz1δy1dt− λz2δy2dt− ...− λzpδypdt,
27One form Θd can always be reduced to one equation of the following ones:

dy − z1dy1 − z2dy2 − ...− zpdyp

z1dy1 + z2dy2 + ...+ zpdyp

where the variables y, y1, ..., zk constitute a system of independent variables, i.e. they are

functions independent of all variables that enter into the form Θd.
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the system (6.15) associated to the differential expression becomes

dy1 = 0, dz1dt = −λz1dt,
...

...

dyp = 0, dzpdt = −λzpdt,

0 = λdt.

(6.24)

This new system has only solutions for λ = 0, and the system is reduced to

a system of 2p equations (6.24), which is completely integrable.28 Here the

change of variables can be given by yi = φi(x), and zi = ψi(x), when the

solutions are φi = Ci and ψi = Di.
29

If the differential expression Θd can be reduced to the case (6.19), i.e.

Θd = z1dy1 + ...+ zpdyp, (6.25)

then

δΘd = δz1dy1 + ...+ δzpdyp (6.26)

and

dΘδ = dz1δy1 + ...+ dzpδyp. (6.27)

Because

δΘd − dΘδ = δz1dy1 − dz1δy1 + ...+ δzpdyp − dzpδyp,

and

λΘδdt = λz1δy1dt+ ...+ λzpδypdt (6.28)

the system (6.15) is equivalent to the equations

dy1 = 0, dz1(y)dt = λz1dt,
...

...

dyp = 0, dzp(y)dt = λzpdt,

(6.29)

28(Darboux 1882, p. 28).
29(Hawkins 2005, p.422).
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In this case λ is not zero, and it is a constant.30 The equations admit 2p− 1

independent integrals of t, and the solutions are yi = Ci (i = 1, ..., p) and

zi/z1 = C ′i (i = 2, ..., p) upon elimination of t.31 So, Darboux was able

to state (Darboux 1882, p.27-28) the theorem known as Darboux’s theorem

(classical Darboux’s theorem), which can be rewritten as:

Theorem 6.2.2 (Darboux (1882)). If the system of differential equations

[6.15] associated to a differential expression Θd has solutions only when

λ = 0, a variable change x→ y, z is possible so that

Θd = dy − z1dy1 − ...− zpdyp (6.30)

and hence the number of distinct equations to which the system [6.15 ] is

reduced if λ = 0 is 2p and the number is 2p+ 1 for λ = 1.

If the system [6.15] has solutions for λ 6= 0, the differential expression Θd

may be put in the form

Θd = z1dy1 + ...+ zpdyp (6.31)

and the number of equations to which system [6.15] reduces is 2p.32

Darboux’s solution deduced the canonical form of a Pfaffian equation.

This later helped Élie Cartan to develop the theory of differential forms in

1899 (See chapter 3). After Cartan’s theory about differential forms, the

differential expression can be seen as a differential form.

Darboux’s theorem of 1882 is currently formulated in terms of differential

forms over a n-dimensional manifold, see Darboux’s theorem (6.1.2). It leads

to the same reduced forms as given by Darboux, although the distinguishing

criteria are stated in differential forms. A special case is the following:

30(Darboux 1882, p.28).
31(Darboux 1882, p.28).
32(Hawkins 2005, p.422).
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If ω is a closed non-degenerate 2-form on an n-dimensional manifold M ,

with n even, then in a neighborhood of each point of the manifold M , it

is possible to find a 1-form α so that dα = ω.33 If α satisfies that dα has

exactly rank p everywhere on the manifold M and 2p = n, then coordinates

x1, ..., xn−p, y1, ..., yp can be locally introduced so that

ω = dx1 ∧ dy1 + ...+ dxp ∧ dyp.34 (6.32)

The coordinates are canonical coordinates for the symplectic form. Dar-

boux’s theorem in symplectic geometry was first stated in 1953 by Paulette

Libermann. At the time she was working on her PhD thesis on the local

equivalence structures over manifolds.35

6.3 The perspective of symplectic manifolds

6.3.1 Paulette Libermann

Paulette Libermann was a student of Élie Cartan and wrote her thesis under

the supervision of Charles Ehresmann.

Paulette Libermann was born on November 14, 1919 in Paris and died on

July 10, 2007. She was born into a Jewish family with Russian and Ukranian

roots.

In 1939 Paulette Libermann entered the École Normale Supérieure de Je-

unes Filles de Sèvres. At the time Paulette Libermann entered this school, it

was run by Eugénie Cotton, a physicist and communist militant, who wanted

to raise the level of the school to that of the École Normale Supérieure of

33This is possible by Poincaré lemma, see (Sternberg 1964, p. 121).
34(Sternberg 1964, p.140).
35See (Libermann 1953b).
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Ulm.36 For this reason, Eugénie Cotton invited Élie Cartan, Andre Lich-

nerowicz and Jacqueline Ferrand (*1918, †2014) to teach at the École Nor-

male Supérieure de Jeunes Filles de Sèrves.

At the end of 1940 Paulette Libermann was studying for the agrégation.37

Libermann was not able to take the examination because the Vichy Regime,

which controlled the country during the German occupation of France, es-

tablished laws that forbade Jewish persons to practice certain professions,

one of which was teaching. This meant that Paulette Libermann could not

take the agrégation. Nevertheless, Eugénie Cotton managed that her Jewish

students received a scholarship for one year in the school. During this year

Paulette Libermann started her research on mathematics under the supervi-

sion of Élie Cartan, and she obtained the “diplôme d’etudes supérieures de

mathématiques” in 1942.

In the same year the Jewish persecution was intensified in France, and

Paulette Libermann’s family fled to Lyon.38 During that period Libermann’s

family had to live clandestine, using fake names. To survive, Paulette Liber-

mann gave private lessons.

Paulette Libermann survived the Jewish persecution and France was

liberated in 1944. She was able to return to Paris to the École Normale

Supérieure de Jeunes Filles de Sèrves where she finally took the agrégation

examination.

Paulette Libermann became a secondary school teacher. First, she was

sent to the south of Lille, but she went to Strasbourg to teach at a secondary

36In 1987, the École Normale Supérieure de Jeunes Filles de Sèrves and the École

Normale Supérieure of Ulm were combined.
37In France, the agrégation is a competitive examination for some positions in the public

education system.
38See (Kosmann-Schwarzbach 2013).
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school in 1945.

In Strasbourg Paulette Libermann established contact with Charles Ehres-

mann, as suggested by Élie Cartan, and in 1947 Paulette Libermann became

Ehresmann’s student.

Parallel to her work as a secondary teacher, she started to work on her

thesis on Cartan’s equivalence problem, and she finished it in 1953.39 Car-

tan’s equivalence problem is to determine whether two geometrical structures

are equal.

6.3.2 Equivalence between differential forms

In 1948 Libermann exposed on a 2n-dimensional manifold M endowed with

a 2-form ω the conditions to reduce this 2-form ω to its equivalent canonical

form. This first result appeared in the Comptes Rendus de l’Académie de

Sciences in 1948, which her advisor Ehresmann coauthored.40 They studied

the 2-forms with rank 2n on a manifold that is 2n-dimensional and n−1-times

differentiable. They wrote the 2-form as

ω = α1 ∧ α1 + ...+ αn ∧ αn (6.33)

where αi, αi are independent 2n Pfaffian forms. They argued the 2-forms are

completely integrable if, and only if, dω = α ∧ ω, and therefore, the exterior

derivative is dα ∧ ω = 0 implying that dα = 0.41

One of the results of the article was a theorem which stats the local

equivalence of a complete integrable 2-form on a 2n-dimensional manifold.

39See (Audin 2008).
40See (Ehresmann & Libermann 1948).
41(Ehresmann & Libermann 1948, p. 420).
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Theorem 6.3.1. [Soit V2n une varietété n fois différentiable de dimension

2n. Sur V2n soit Ω une forme différentiable extérieure de degree 2.] Pour

n > 2, toute forme Ω complètement intégrable, de rank 2n et n − 1 fois

différentiable, est localement équivalente à l’une des formes suivantes:

a. dx1 ∧ dy1 + ...+ dxn ∧ dyn si DΩ = 0 en tout point.

b. y1(dx1 ∧ dy1 + ...+ dxn ∧ dyn) au voisinage d’un point oú DΩ 6= 0.42

(Ehresmann & Libermann 1948, p.421)

Here, it should be remarked that Libermann and Ehresmann used the nota-

tion DΩ as the exterior derivation of the differential form. Item a. of the

quotation can be reformulated as Darboux’s theorem on symplectic geom-

etry. This was not possible at that time because Ehresmann had not yet

defined what a symplectic manifold is.43

On Mai 21, 1953, Paulette Libermann submitted her doctoral thesis in

which she used the current Darboux’s theorem for symplectic manifolds to

prove a theorem about 2-forms admitting an integral factor.44 Here is the

statement she made given as a theorem:

42[Let V2n be a manifold n times differentiable with dimension 2n and n − 1 times

differentiable. Over V2n let Ω be a exterior differential of degree 2.] For n > 2, every

differential form Ω of range 2 is completely integrable, and n − 1 times differentiable is

locally equivalent to one of the next two forms:

a. dx1 ∧ dy1 + ...+ dxn ∧ dyn if the exterior derivative of the differential form is equal to

zero in every point.

b. y1(dx1 ∧ dy1 + ...+ dxn ∧ dyn) if on a point, the exterior derivative is not equal to zero.

43See Chapter 5.
44See (Libermann 1953b, p. 50).
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Theorem 6.3.2. Sur une variété V2n si la forme différentielle extérieure

quadratique Ω de rang 2n en tout point x ∈ V2n est fermée, il existe dans le

voisinage U de tout point de V2n des systèmes de coordonnées locales

x1, ..., xn, y1, ..., yn

tels que cette forme puisse s’escrire:

Ω = dx1 ∧ dy1 + ...+ dxn ∧ dyn.45 (6.34)

(Libermann 1953b, p.51)

V2n is a symplectic manifold. The 2-form Ω is closed. Therefore, it can be

written as Ω = dα on a neighborhood U where α is a 1-form and, as shown in

the last part of section (6.2.3), the “classical” Darboux theorem of 1882 can

be applied. To prove the last statement, Libermann did not quote Darboux’s

article of 1882 but, instead, she quoted the book by Joseph Miller Thomas46

from 1937 about differential systems. Thomas stated and proved how to

reduce a Pfaffian form to its canonical form, but he did not quote Darboux’s

publication of 1882 either.47 This is probably because the use of the results

of the classical Darboux theorem was a well-known result. This can be seen

in the publication of (Goursat 1922).

45On a manifold V2n if the form Ω is closed, there exists on an open neighborhood U

for every point of V2n a system of local coordinates x1, ..., xn, y1, ..., yn so that the form

can be written:

Ω = dx1 ∧ dy1 + ...+ dxn ∧ dyn.

46Joseph Miller Thomas was born in 1898 in the United States of America and died in

1979. He was a mathematician and became professor at Duke University in North Carolina

in 1941.
47(Thomas 1937, p. 44).
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Later in 1953 Libermann published an article called Forme canonique

d’une forme différentielle extérieure quadratique fermée, in which she proved

the result of item a. of theorem (6.3.1), i.e. Darboux’s Theorem.48

It was the third publication in which she addressed the problem of finding

the conditions that are needed to reduce a closed 2-form on a neighborhood

of an even-dimensional manifold to its canonical form.

In 1955 Libermann published work on almost complex structures and

other infinitesimal regular structures. She restricted herself to Riemannian

structures and Kähler structures. In this work Darboux’s Theorem was again

presented because it is essential for finding the canonical form on a neigh-

borhood of a closed 2-form over an even-dimensional manifold.49

At first look, the link between Darboux’s classical theorem and Darboux’s

theorem is that both problems concern to reduce a differential forms to its

canonical expression. However, the two theorems have a stronger bound,

since a symplectic manifold has a closed 2-form ω, i.e. dω = 0. This 2-form

can be locally integrated and get ω = dα with α a differential 1-form. On α

it can be applied the classical Darboux theorem. Then under the conditions

mentioned above α can be written as α =
p∑
i

dyi. Then ω = dα =
p∑
i

dxidyi.

6.3.3 About the name of Darboux’s Theorem

Between 1953 and 1955 Libermann proved and used Darboux’s theorem in

her publications, but she never called it like this.

During the 1950s mathematicians did not use the name Darboux in con-

nection with finding the canonical form of a closed differential 2-form on a

neighborhood over an even-dimensional manifold or in the case of finding the

48See (Libermann 1953a).
49See (Libermann 1955).
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canonical form of a Pfaffian form.

A publication in which the name of Darboux’s Theorem appeared can

be found in in the text book by Shlomo Sternberg50 Lectures on Differential

Geometry in 1964. Sternberg addressed a section of his textbook on Differ-

ential Geometry to Darboux’s theorem in the chapter of Integral Calculus on

Manifolds, in which he discussed the problem of finding the canonical form

for linear differential forms.51 Sternberg called the canonical form the normal

form. This is a translation of Darboux’s theorem of 1882 from differential

equations into the theory of differential forms. Before he stated Darboux’s

Theorem, he stated an analogous theorem that Libermann and Ehresmann

gave in their notes (Ehresmann & Libermann 1948). For Sternberg, Dar-

boux’s Theorem was about how to reduce a Pfaffian form to its canonical

form.

In the first edition of The Foundations of Mechanics written by Ralph

H. Abraham52 and Jerrold E. Marsden53, the theorem called Darboux’s The-

orem referred to the conditions for the reduction of a closed 2-form on a

neighborhood over a even dimensional manifold to its canonical form.54 In

this work it appeared in the explicit context of symplectic geometry and

classical mechanics.

50Shlomo Sternberg was born in 1936 in the United States of America and is a professor

of mathematics at Harvard University. He was student of Aurel Wintner. For Aurel

Wintner see Chapter (8.2).
51(Sternberg 1964, p.137).
52Ralph H. Abraham was born on July 4, 1936. He is a professor of mathematics at the

University of California Santa Cruz.
53Jerrold E. Marsden was born on August 17, 1942 and died on September 21, 2010.

He was a professor of Control and Dynamical Systems at the California Institute of Tech-

nology.
54See (Abraham & Marsden 1967).
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Abraham and Marsden referred to Sternberg’s Darboux’s theorem.55 Af-

ter Abraham’s and Marsden’s publication of 1967, the name of Darboux’s

theorem started to be in use in the field of symplectic geometry.

55In the edition of 1964 of the Foundations of Mechanics, there is a small bibliographic

mistake. It quoted the article written by Sternberg in 1961 for Darboux’s theorem, but it

actually refers to (Sternberg 1964).



Chapter 7

Lee’s work on flat manifolds in

the 1940s.

Introduction

This chapter presents the work done in China during the 1940’s by the math-

ematician Lee Hwa-Chung. The work presented here is restricted to even

dimensional spaces endowed with a closed 2-form. These even dimensional

spaces and even dimensional manifolds were called later by Ehersmann sym-

plectic spaces and symplectic manifolds, as shown in chapter (5.1).

Even though Lee had published on the American Journal of Mathematics

during the 1940s, his work was and is not well known by the mathematical

community. Not only is his work not well known, but Lee’s live is also not

well known, although it was possible to track the places where he worked

through the articles he published in western journals.

The first part of this chapter will try to reconstruct where Lee worked

during the 1930’s to the 1940’s.

The second part will present Lee’s work about even dimensional geom-

151
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etry, which is the name he gave to symplectic geometry. In his work he

defined an even dimensional flat space, which is the actual definition of sym-

plectic manifolds, found the automorphisms over symplectic manifolds and

stated Darboux’s theorem as well. Lee noticed that the theory about “even

dimensional geometry” can be applied to classical mechanics.

7.1 About Lee Hwa-Chung Live

Lee Hwa-Chung was or is a Chinese mathematician, who published in 1943

his work: “A kind of even-dimensional geometry and its applications to ex-

terior calculus”.1 In it Lee defined what would later be called by Ehresmann

symplectic manifolds.

It was difficult to track Lee’s biography as if there exists more informa-

tion about Lee’s biography, then maybe it is written in Chinese, and not in

English, German, French or Spanish. Nevertheless, it is possible to track the

institutions where Lee worked during the late 1930s, in the 1940s and later

until the 1960s through the publications he made in the western journals.

Lee must have lived for a few years in Europe because he obtained his

PhD at the University of Edinburgh, as it is mention in his publication of

1945.2

In 1938 Lee published an article in the “Comptes Rendus de l’Académie

de Sciences”. The article is presented by Élie Cartan in the field of dif-

ferential geometry, and the title “Sur les transformations des congruences

hamiltoniennes”3. In 1939 Lee published his article “On the projective the-

1See (Lee 1943).
2See (Lee 1945).
3On the Hamiltonian congruences transformations. See (Lee 1938).
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ory of spinors”4 in the Dutch journal Composition Mathematica, which has

signed in Paris.5

Therefore, Lee spent time in Paris in 1938, but it is not clear with whom

he worked there with. He used to quote the work of the French mathematician

Edouard Goursat (*1858, †1936) Leçons sur le probleme de Pfaff 6 in his work

about even dimensional geometry, and also Élie Cartan’s publications, but

this does not give a clear hint with whom he was working with in Paris. or

if he was in Paris working at all. In 1939, when the article (Lee 1938) was

published, Goursat was already dead, but it is possible that Lee worked with

Élie Cartan, but this is only speculation.

During the 1940s Lee was back in China. In 1941 Lee was working at the

National Sywchwan University when he submitted the draft of his work “A

kind of even-dimensional geometry and its applications to exterior calculus”

to the American Journal of Mathematics (Lee 1943).7

Lee published two more publications in the American Journal of Math-

ematics in the 1940s. The first one in 1945, “On Even-Dimensional Skew-

Metric Spaces and Their Groups of Transformations”8. It was signed at the

Academia Sinica, which at that time was part of the National Tsing Hua

University of China.9 The second publication in 1947 was signed as well at

4See (Lee 1939).
5The journal Composition Mathematica was founded in the 1930s by the Dutch math-

ematician Luitzen Egbertus Jan Brouwer (*1881, †1966).
6See (Goursat 1922).
7It was signed in the National Szechwan University, China. The name Szechwan can

as well be written as Sichuan which is a province in the south-west of China.
8See (Lee 1945).
9During the Second Sino-Japanese War (1937-1945), many Chinese universities moved

to the west of China, leaving Japanese occupied territory. See (Fairbank & Feuerwerker

1986, p. 564).
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the Academia Sinica.10

The last publication during the 1940s was in 1947 at the Proceedings

of the Royal Society of Edinburgh. Section A. Mathematical and Physical

Sciences with the title “The Universal Integral Invariants of Hamiltonian

Systems and Application to the Theory of Canonical Transformations”. The

article was received by the editors in October 1945 and Lee signed it from

Wuhan University in China.11

After 1960s it was possible to track other publications in the field of

mathematical physics. The last article in Western Journals was published

in 1978. This publication was received in 1977, and Lee signed from the

Chungshan University of Taiwan.12 Through this information we know that

Lee moved to Taiwan.

7.2 Even dimensional geometry

(Symplectic geometry)

The first publication in the field of even dimensional differential geometry

was tracked through a footnote in Ehresmann and Libermann’s publication

in 1949.In this publication Libermann and Ehresmann were working on the

problem of equivalence between quadratic exterior differential forms on a

even dimensional differential manifold. They wrote in the footnote:

Hwa-Chung Lee, A kind of even-dimensional geometry and its

10See (Lee 1947a).
11The city of Wuhan is the capital of Hubei province, People’s Republic of China, and

nowadays it has about ten million inhabitants and is located in the Central China region.

It lies in the eastern Jianghan Plain at the intersection of the middle reaches of the Yangtze

and Han rivers.
12See (Wu Yong-Shi & Ting-Chang 1978).
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applications to exterior calculus (Am. Journal of Math., 1943, p.

433-438). Cet article, qui nous a été signalé par M. Yen Chin-Ta

après la parution de notre Note (1), contient déjà sous une autre

forme plusieurs résultats énoncés par nous.13

(Ehresmann & Libermann 1949, p. 698)

Lee’s article was not mentioned or quoted in any other publication that

contributed to the development of symplectic geometry during the late 1940s

and 1950’s. Some references were found during this research to this article,

but they were after the 1970s. One of them was given in the textbook about

symplectic geometry written by Libermann and Marle in 1987.14

A more resent reference can be found in a publication written by Mark J.

Gotay and James A. Isenberg. There, they consider Lee’s work as not well

known. They wrote:

But symplectic geometry, as a distinct mathematical disci-

pline, did not really appear until 1940s with the (little-known)

work of Hwa-Chung Lee in China.

(Gotay & Isenberg 1992, p. 16)

Lee’s article (Lee 1943) was published in the American Journal of Mathe-

matics during the Second World War. At that time China was resisting the

Japanese invasion, east China was occupied by Japan and the United States

were helping the Republic of China in the war.15 So, there was communica-

tion between China and the United States, but maybe the communication

13[...]. This article, was reported to us by M. Yen Chin-Ta after the publication of our

note (1), [the article of Lee] contains another possible form of the results exposed by us.
14(Libermann & Marle 1987).
15See (Fairbank & Feuerwerker 1986).
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between China and France was not so good. One has to remember that be-

tween 1940 and 1942 part of France was occupied by the Germans and the

“independent part” was a fascist regime known as the Vichy regime.16 In

1943, all France was occupied. However, this contradicts the communication

that existed at the time between Élie Cartan and Chern. 17

7.2.1 Even dimensional manifolds endowed with a non-

singular closed 2-form (Symplectic manifold)

In 1943 Lee published the first part of his work on even dimensional geom-

etry, “A kind of even-dimensional geometry and its applications to exterior

calculus”. It is the first of three articles on Even-Dimensional Geometry and

Skew-Metric Spaces published in the American Journal of Mathematics. The

manuscript was send to the American Journal in 1941.

Lee studied differential geometry on an even dimensional space. The

even dimensional spaces are even dimensional manifolds. Lee endowed the

even dimensional manifolds with a “nonsingular skewsymmetric matrix” as

a fundamental tensor.

Using Lee’s notation, an even dimensional manifold endowed with a fun-

damental tensor is denoted by Lee as L2n. Each point of the manifold is

described by a system of coordinates denoted as xα, where (α, β, γ, ρ, σ, τ) =

(1, ..., 2n). The covariant tensor or fundamental tensor is denoted as aαβ.

The fundamental tensor is defined as a nonsingular skewsymmetric covariant

tensor, i.e. non degenerate antisymmetric matrix. The components of the

fundamental tensor are analytical function of the x’s. He defined a “curva-

16See (Jackson 2003).
17See appendix A.
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ture” tensor of the manifold as the differential form

Kαβγ =
∂

∂xα
aβγ +

∂

∂xβ
aγα +

∂

∂xγ
aαβ (7.1)

which satisfies the identity

∂

∂xρ
Kαβγ −

∂

∂xα
Kρβγ −

∂

∂xβ
Kαργ −

∂

∂xγ
Kαβρ = 0 (7.2)

“which is a tensorial equation that holds for all coördinates [sic] systems”.18

Lee’s “fundamental tensor” aαβ is associated with 2-form

Ω =
∑

aαβdx
α ∧ dxβ, (7.3)

which Lee calls the fundamental form of the even dimensional manifold L2n,

and because the fundamental tensor is non degenerate, then the 2-form is

non degenerate too. The exterior derivative of Ω is

dΩ =
1

3

∑
Kαβγdx

α ∧ dxβ (7.4)

and Lee mentioned that the identity (7.2) is equivalent to ddΩ = 0.

Lee called the equation (7.1) as “curvature tensor”. When the “curvature

tensor vanishes”, i.e. Kαβγ = 0, the even dimensional manifold is flat. If

the exterior derivative of (7.4) is zero because Kαβγ = 0, then the 2-form

associated to the fundamental tensor aαβ is closed, i.e. dΩ = 0.19

Lee’s definition of a flat manifold L2n is what would later be the definition

for symplectic manifolds. A flat manifold is an even dimensional manifold

endowed with a closed 2-form which is non degenerate. Today, this even

dimensional manifold would be called a symplectic manifold.

Lee wrote the 2-form in canonical coordinates

Ω =
n∑
i=1

dxi ∧ dxn+i, (7.5)

18(Lee 1943, p.433).
19(Lee 1943, pp. 433-434).
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and therefore, in the new coordinate system the fundamental tensor has the

form

aαβ =

 0 Id

−Id 0,

 , (7.6)

so he stated a theorem for “flat manifolds”:

Theorem: An L2n is flat if, and only if, there exist a coördinate

[sic] system for which the components of the fundamental tensor

aαβ are constants.

(Lee 1943, p.434)

Lee’s definition of a flat 2n dimensional manifold raises the question,

as to whether Ehresmann used Lee’s definition of symplectic manifolds, or

if Ehresmann was inspired by Lee’s work when he defined the symplectic

manifolds.

The answer to this question is that Ehresmann did not use Lee’s definition

or was inspired by Lee’s work, then Ehresmann constructed the symplectic

manifolds in another way.20 Ehresmann’s definition arose from the question

of which even dimensional manifold admits an almost complex structure as

shown in chapter 5.

7.2.2 Conformal flat manifolds

Lee defined that L2n and L′2n, are conformal to each other if the fundamental

tensors aαβ of L2n and a′αβ of L′2n, which refer to the same coordinate system,

are connected by the relation

a′αβ = φaαβ

20See chapter 5.
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where φ is a scalar function of the coordinates. He remarked that the man-

ifold L2n is conformal to itself. In this context, Lee proposed that all flat

manifolds of the same dimension have locally the same skew symmetric form.

Currently known as a local symplectomorphism. A symplectomorphisms is a

diffeomorphism between symplectic manifolds, which preserves the symplec-

tic structure. In the case that one of the two manifolds is (R2n, ω0), then

Darboux’s theorem is obtained.

7.2.3 Automorphisms

In 1945 Lee published the second part of his work on even dimensional ge-

ometry. Lee continued working on even dimensional flat manifolds endowed

with a nonsingular skewsymmetric tensor; i.e. symplectic manifolds; and he

described the “analytic point-transformation” group and their subgroups on

a symplectic manifold, as the subgroup of conformal transformation which

leaved the “fundamental tensor invariant save for a non-vanishing factor.”21

Lee defined “for an arbitrary chosen coordinate system a conformal point

transformation x 7→ y as”22:

ψaαβ(x) = aρσ(y)
∂yρ

∂xα
∂yσ

∂xβ
(ψ 6= 0), (7.7)

where ψ is a factor. The conformal point transformation forms a group.

When ψ is a constant factor, the transformation belongs to a subgroup

of the conformal point transformations which is the group of special con-

formal transformations, and if ψ = 1 then it is a subgroup of the special

conformal transformation. This subgroup Lee called the group of automor-

phisms.23 This group is the symplectic group Sp(2n,R). This can be seen,

21(Lee 1945, p.321).
22(Lee 1945, p.321).
23(Lee 1945, p.321).
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since Lee shows that for n = 1 the group of automorphisms is the unimodular

group which is the group SL(2,R) which is equal to the symplectic group

Sp(2n,R).24 For a general n it is “the group of canonical transformations in

2n varialbles” is the symplectic group Sp(2n,R).25 Currently, the canonical

transformations are known as symplectomorphisms.

7.2.4 Poisson bracket

Lee introduced the Poisson bracket. For two differentiable functions of posi-

tion f and g on a manifold, he formed the expression

{f, g} = aαβ
∂f

∂xα
∂g

∂xβ
. (7.8)

where aαβ is like above..

Lee shows that for a symplectic manifold L2n there exists a coordinate

system where the components of the fundamental tensor are constant. This

system was called by him as preferred.26 He called a preferred coordinate

system canonical when

aαβ =

 0 −Id

Id 0

 ,

aαβ =

 0 Id

−Id 0

 .

The equation (7.8) is the same the equation (7.7). The brackets (7.8) are

antisymmetric, i.e.

{f, g} = −{g, f}.

24See (Lee 1945, p. 322).
25See (Lee 1945, p. 325).
26(Lee 1945, p. 324).
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Lee noticed that if the Kα,β,γ is equal zero in the identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = Kα,β,γ ∂f

∂xα
∂g

∂xβ
∂h

∂xγ
, (7.9)

then it is the Jacobi identity.27

Lee was able to introduce the Poisson bracket on the symplectic manifolds

{f, g} :=
n∑
i=1

∂f

∂xn−i
∂g

∂xi
− ∂f

∂xi
∂g

∂xn+i
.28 (7.10)

A manifold with a Poisson bracket is nowadays known as a Poisson mani-

fold, this manifold is a generalization of a symplectic manifold.29 Lichnerow-

icz defined Poisson manifolds in 1973.30

7.2.5 Hamilton’s equations

In 1945 Lee considered a system of curve in the manifold L2n. The system

of curve is defined by a system of ordinary differential equations of the form

dxα

dt
+ aαβ(x)

∂H(x, t)

∂xβ
= 0. (7.11)

Lee mentioned that H is a Hamiltonian function, and the system of curve is

a Hamiltonian congruence.31 If the manifold L2n is a symplectic manifold,

then the equation (7.11) can be rewritten as a Hamiltonian equation

dxi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

(i = 1, ..., n). (7.12)

The group of conformal transformation on a manifold L2n is the spe-

cial group of conformal transformations, which consist of the “Hamiltonian

27Lee called it a contravariant curvature tensor of (7.1).
28(Lee 1945, p. 325).
29(Libermann & Marle 1987, p. 105).
30(Kosmann-Schwarzbach 2013, p. 160).
31For the definition of Hamiltonian function see chapter 8.
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transformations”32, i.e. the transformations that transforms every Hamilto-

nian congruence into a Hamiltonian congruence. The later terminology for

Hamiltonian congruence is Hamiltonian flow. Lee make clear that the group

of Hamiltonian transformation is larger than Sp(2n,R).

By rewriting the ordinary differential equations of the form (7.11) of a

system of curves on a symplectic manifold as Hamilton’s equations (7.12), Lee

finds the relationship between symplectic geometry and classical mechanics.

The article (Lee 1945) is linked to his work in the 1930’s. Lee published a

note (Lee 1938) on the weekly review of the sessions of the French Academy

of Science (Comptes rendus hebdomadoires des séances de l’Academie des

Sciences) in 1938. In the publication Lee presented his work in progress.

The title of the note was “Sur les transformations des congruences halmil-

toniennes.”33

7.2.6 Equivalence of flat spaces

In the third article about even dimensional spaces, Lee noticed that two

symplectic manifolds are equivalent if the 2-form of one can be transformed

into the 2-form of the other by a change of coordinates.

Theorem. Two flat spaces Lm are equivalent if and only if

they are of the same rank.

(Lee 1947a, p. 795)

The dimension of Lm must be even. In this theorem, Lee presents the dif-

fiomorphisms between two symplectic manifolds. Which as mentioned above

32See (Lee 1945, p. 326).
33About the Hamiltonian congruence transformation.
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are symplectomorphisms and in the case that these are local symplectomor-

phisms between a symplectic manifold and the symplectic manifold (R2n, ω0)

then it is the theorem of Darboux.

7.2.7 Lee Hwa Chung Theorem

There is currently a symplectic geometry theorem named after Lee. This

theorem was stated by Lee in his paper (Lee 1947b). In its current form it

statement is as follows:

Theorem Lee Hwa Chung: Let M be a symplectic manifold

with symplectic form ω. Let α be a differential k-form on M which

is invariant for all Hamiltonian vector fields. Then:

• If k is odd, α = 0.

• If k is even, α = c× ω∧ k
2 , where c ∈ R .

It appears in the context of dynamical systems, for example, in publication

like (Gomis, Llosa & Roman 1984), (Llosa & Roy 1988), and (Kozlov 1995).

The theorem appears, as well, in textbooks of analytical mechanics, for exam-

ple, in (Gantmacher 1970), or later in the textbook (Tiwari & Thakur 2007).

The context in which Lee formulates the theorem is in the context of

Hamiltonian systems. Here one can see the current link between symplectic

geometry and classical mechanics. Which Lee had done before, as seen above,

but in his work (Lee 1947b) this link is not explicit, since he worked on

Hamiltonian systems only and did not use the symplectic manifolds as in his

paper (Lee 1945).

Lee stated the theorem for the relative integral invariant:
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Theorem 5. There is no universal absolute integral invariant

of any odd order, and apart form an arbitrary constant factor

there is only one universal absolute integral invariant of every

even order 2s, namely∫ ∑
δpi1δqi1 . . . δpisδqis .

(Lee 1947b, p.241)

An relative integral invariant is a differential form of degree k whose exterior

differential is an absolute integral invariant of degree k + 1.34

7.3 The reception of Lee’s work

At the beginning of this research on the early history of symplectic geometry,

it was amazing to find Chinese mathematicians developing symplectic geom-

etry, but after reading them and tracking part of their lives, it is clear that

these Chinese mathematicians were in close contact with mathematicians in

Europe and in the United States. For example, in the case of Hua, it was not

so difficult to find information about his live and the contacts he had, but in

the case of Lee, even though he had published in the American Journal of

Mathematics, his live and his contact with the mathematical community in

the West are still not clear. A few footnotes in the articles of Lee hint with

whom he was in contact:

34D.V. Anosov (originator), Encyclopaedia of Mathematics
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The author [Lee] wishes to express his thanks to Professor

J. M. Thomas for reading the manuscript and giving valuable

criticisms.

(Lee 1943, p.433)

Joseph Miller Thomas is the mathematician that Libermann quoted in her

PhD Thesis.35 He published during 1933 and 1934 two articles about Pfaffian

systems.36 But the fact that Lee referenced J. M. Thomas does not mean

that he had contact with Thomas. It might have been a sporadic contact

because Thomas corrected Lee’s article. Therefore, it is difficult to make the

assertion that Lee was in direct contact with western mathematicians. But

that he knew and worked with some scientists outside China can be seen

through his publication of 1947, in which Lee coauthor an article on physics

named “The Theory of Wedge Indentation of Ductile Materials”, published

in the Proceedings of the Royal Society in 1947.37 The article was presented

by Neville Francis Mott (*1905 - †1996), who was an English physicist and

the coauthors were R. Hill and S. J. Tupper, who were working on plastic

deformations and problems of elasticity. But the coauthors were physicists

and not mathematicians.

Although Lee spent some years in Europe, his whole work on even di-

mensional spaces (Lee 1943, Lee 1945, Lee 1947a) was not well known in

France, where important development in the study of symplectic manifolds

took place. This could be because Lee published in the American Journal of

Mathematics during the Second World War. Therefore, it might have been

difficult to get all the journals during and short time after the Second World

35See section 6.3.2.
36See (Thomas 1933, Thomas 1934).
37See (Hill 1947).
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War in France, and maybe this was one of the reasons why nobody knew Lee

in France in the 1940s.

At least it is clear that Ehresmann and Libermann knew Lee’s first work,

in which he defined “Flat spaces”, but they did not use Lee’s work to develop

the definition of symplectic manifolds or Darboux’s theorem. Ehresmann

and Libermann’s footnote remarked that “[the article of Lee, (Lee 1943)]

contains another possible form of the results exposed.”38 By reading both

Lee’s article and the note of Ehresmann and Libermann’s note it is clear that

they developed this independently of each other.

Regarding the three articles “Even dimensional manifolds”, it most be

noted that in them Lee defined symplectic manifolds, defined the symplec-

tomorphisms on symplectic manifolds and linked the studied of symplectic

manifolds with the study of Hamiltonian systems and, therefore, with clas-

sical mechanics. Lee presented what nowadays is known as the field of sym-

plectic geometry but the reception did not take place because nobody used

his results to develop the field.

38(Ehresmann & Libermann 1949, p. 698).



Chapter 8

Symplectic Geometry and

Classical Mechanics

Introduction

This chapter expose the explicit use of symplectic matrices in classical me-

chanics for canonical transformations, which map a Hamiltonian system into

another one. Not only did symplectic matrices start to be used in classical

mechanics, but it was also found that symplectic manifolds could represent

a phase space of a configuration space. These results were stated by Lee in

the 1940s, but as already, his work was not well known.

The first part of the chapter provides a short introduction to classical

mechanics and Hamiltonian mechanics. It continues with Aurel Wintner’s

work on classical mechanics and the use of symplectic matrices. Wintner

noticed that the matrix of linear canonical transformations between Hamil-

tonian functions belongs to the symplectic group.1

In 1951 Siegel gave a course about celestial mechanics in Göttingen and

1(Wintner 1941).

167
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his notes were published in 1956. He explicitly mention the canonical trans-

formation between Hamilton systems to be a transformation which belong

to the symplectic group.

The last part of the chapter deals with Georges Reeb’s work identifying

the connection between the phase space and symplectic manifolds in 1952.

8.1 Classical Mechanics

Nowadays, symplectic geometry is related to classical mechanics. Indeed,

some of the textbooks on symplectic geometry and symplectic topology start

with classical mechanics as a motivation (for example in (Berndt 1998, Mc-

Duff & Salamon 1995)). The structure of Hamilton’s equations, which are

a system of ordinary differential equations, can be described through the

symplectic form.

8.1.1 Lagrangian and Hamiltonian Mechanics

There are two equivalent formulation for classical mechanics: Lagrangian me-

chanics and Hamiltonian mechanics. Lagrangian mechanics was introduced

by Joseph-Louis Lagrange (*1736, †1813) at the beginning of the 19th cen-

tury in his work on calculus of variation, which was published in the second

edition of his book Mécanique analytique.2

Hamiltonian mechanics was developed by the Irish mathematician and

physicist William Rowan Hamilton (*1805, †1865) in 1834.3 For this histor-

ical development, please refer to June Barrow-Green’s book, “Poincaré and

the Three Body Problem”.4

2See (Lagrange 1811).
3See (Hamilton 1834).
4(Barrow-Green 1997).
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Lagrangian

The variational problem arises from the n-body problem in celestial me-

chanics where a number of celestial bodies in a mechanical system move in

space under their mutual gravitational attraction. If the initial conditions

are given, their subsequent motions have to be determined. The solution of

the n-body problem can be solved for n = 1, 2 with elementary functions,

but for n ≥ 3 it is a non-linear problem and can not easily be solved.5

In Lagrangian mechanics, the development of a mechanical system is

described by the solutions of the Euler-Lagrange equation, which is a motion

equation. The Euler-Lagrange equation is a second-order partial differential

equation and is derived from the variational principle of least action.

The motion of an object can be described by a curve γ(t) = P on a

configuration space Q, with t as time. The configuration space is an n-

dimensional real manifold and the point P is fixed through local coordinates

q1, ..., qn. The local coordinates are named as position variables.

The principle of least action allows to give the curve as a solution to a

differential equation if it is assumed that the system has a Lagrange Function.

The Lagrange Function is also called Lagrangian. The Lagrangian has the

form

L = L(q, q̇, t). (8.1)

L is a twice continuously differentiable function of 2n+ 1 variables, q is the

position variable, q̇ the velocity and t the time. The Lagrangian function L

can be defined by

L = T − V. (8.2)

5In 1890 Henri Poincaré (*1854, †1912) tried to find a solution for the three body

problem using the theory of asymptotic solutions, Les méthodes nouvelles de la mécanique

céleste in three volumes. See (Barrow-Green 1997).
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where T is the total kinetic energy and V is the potential energy of the

system.

The principle of least action states that the change in the mechanical

system proceeds in such a way that the curve γ, which describes that change,

minimizes the path integral

Φ(q) =

∫ t1

t0

L(q, q̇, t)dt. (8.3)

The variational principle states that for the minimal curve γ the mechanical

system satisfies the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (8.4)

The system of Euler-Lagrange equations is as Lagrangian system, which is

a system of second-order differential equations on the 2n-dimensional tangent

bundle over the configuration space, i.e. TQ.6

Hamiltonian

In Hamiltonian mechanics, the function which corresponds to the total energy

of a closed mechanical system is

H(p, q, t) = T + V (8.5)

and is called the Hamiltonian function, where T is kinetic energy and V is

potential energy. Potential energy is only a function of the position vari-

able q, and kinetic energy is a function of the momentum variable p.7 A

Lagrangian system can be transformed into a Hamiltonian system. A Hamil-

tonian system is a 2n first order differential equation on the cotangent bundle

T ∗Q.

6(Berndt 1998, p. 2)
7In a single particle, its momentum is the product of mass and velocity, i.e. p = mv.
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The transformation of an Euler-Lagrangian system into a Hamiltonian

system can be achieved through the Legendre transformation, which maps

TQ→ T ∗Q,

(q, q̇) 7→ (q, p)

and establishes an equivalence of Euler-Lagrange and Hamilton equations.

Applying the Legendre transformation, the Hamiltonian function is

H(p, q, t) = pq̇ − L(q, q̇, t), (8.6)

and Hamilton’s equations are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (8.7)

A Hamiltonian system of equations is also called a canonical system.

8.1.2 Symplectic Group and Classical Mechanics

The relation between the symplectic group and classical mechanics is that

canonical transformation, which map each Hamiltonian system of differen-

tial equations into another or into itself, belong to the symplectic group,

and therefore, differential equations of mechanics have invariance properties

relative to the symplectic group.

In 1967 Ralph H. Abraham and Jerrold E. Marsden introduced a mathe-

matical model for mechanics. This model consists of a differentiable manifold

provided with a symplectic form, i.e. a symplectic manifold, “together with

a Hamiltonian vector-field or a global system of first order differential equa-

tions preserving the symplectic structure.”8 If the configuration space is an

8(Abraham & Marsden 1967, p. 2).
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n-dimensional manifold, the momentum phase space is its cotangent bun-

dle with a symplectic form, and therefore, the phase space is a symplectic

manifold.9 The configuration space is a differentiable manifold Q, and the

cotangent bundle T ∗Q is the phase space of the configuration, which is a 2n

dimensional manifold.

To define a 1-form on the cotangent bundle T ∗Q, let (q1, ..., qn, p1, ..., pn)

be the system of local coordinate for an open neighborhood U of a point

x ∈ T ∗Q. A 1-form αQ is defined on the tangent bundle by

αQ =
n∑
i=0

pidxi. (8.8)

This form is known as the Liouville form.10

The symplectic form on the cotangent bundle is then

dαQ =
n∑
i=0

dpi ∧ dxi; (8.9)

therefore, the cotangent bundle T ∗Q is a symplectic manifold. The system

(q1, ..., qn, p1, ..., p2) is a system of canonical coordinates for the symplectic

manifold (T ∗Q, dαQ).

A Hamiltonian vector-field XH on a symplectic manifold is a vector-field

defined by an energy function, which is the Hamiltonian function. A Hamil-

tonian function H on a symplectic manifold (M,ω), i.e. on a phase space, is

a smooth function H : R×M → R. A Hamiltonian vector field XH on M in

the canonical coordinates (q, p) is defined by

XH =

(
∂H

∂pi
,−∂H

∂qi

)
= J · dH, (8.10)

where J =

 0 Id

−Id 0

 and dH =

 ∂H
∂pi

∂H
∂qi

 . The vector field XH is

9See (Abraham & Marsden 1978, p.178).
10(Berndt 1998, p. 45).
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determined by the condition

ω(XH , ·) = dH(·) (8.11)

that is, ιXH
ω = dH, which means that an inner product ι of the Hamiltonian

vector field XH and the symplectic form ω on the manifold M is equivalent

to the Hamilton equations (8.7).11

The tupel (M,ω,XH) is called a Hamiltonian system. In a Hamiltonian

system, a curve γ(t) = (q(t), p(t)) is an integral curve for the Hamiltonian

vector field, if, and only if, the Hamilton equation (8.7) holds.12

Poisson Bracket and Hamiltonian Mechanics

The Poisson bracket on a manifold is a bilinear operation of two smooth

functions, i.e. {·, ·} : C∞(M)×C∞(M)→ C∞(M), (f, g) 7→ {f, g}. To be a

Poisson bracket the bilinear operation must be skew symmetry, i.e.

{f, g} = −{g, f}, {f, g} = −{g, f},

must satisfy the Jacobi identity, i.e.

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

and Leibniz’s Rule, i.e.

{fg, h} = f{g, h}+ g{f, h}.13

On any pair of differential functions f, g on the phase space T ∗Q the

Poisson bracket { , } is defined by the equation

11See (Berndt 1998, Abraham & Marsden 1978).
12(Abraham & Marsden 1978, p. 187).
13The pair (M, {·, ·}) is called a Poisson manifold. For the historical development of

the Poisson bracket and Poisson geometry, the reader can consult the work (Kosmann-

Schwarzbach 2013).
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{f, g} :=
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, 14 (8.12)

which is called the canonical Poisson bracket on R2n and is completely char-

acterized by its values on the coordinates functions {qi, qj} = {pi, pj} = 0

and {pi, qj} = δij.
15

Hamilton’s equation can be written with the help of the Poisson bracket.

Let (q, p) be the canonical coordinates for the symplectic manifold T ∗Q and

H a Hamiltonian function, then the Poisson bracket of q and H, and, p and

H are

{q,H} =
n∑
i=1

∂q

∂qi

∂H

∂pi
− ∂q

∂pi

∂H

∂qi
, (8.13)

{p,H} =
n∑
i=1

∂p

∂qi

∂H

∂pi
− ∂p

∂pi

∂H

∂qi
. (8.14)

Therefore, Hamilton’s equation can be written as

q̇ = {q,H}, ṗ = {p,H}.16 (8.15)

Canonical Transformations

In celestial mechanics and classical mechanics, astronomers, physicist and

mathematicians use canonical transformations which result in a change of

coordinates (p, q, t) to (p′, q′, t) and convert each Hamiltonian system of dif-

ferential equations into another Hamiltonian system or into itself. The prob-

lem is to find the canonical transformation and the conditions needed for

this transformation to be canonical. For example, on a mechanical system

14(Berndt 2001, p. 6).
15(Fernandes & Marcut 2014, p. 3).
16See (Berndt 2001, p. 6).
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where the phase space is R2n, the linear canonical transformation is a linear

mapping of R2n to R2n, so that (p, q) 7→ (p′, q′) and the coordinates p′ and q′

satisfy Hamilton’s equations (8.7). Let

x = (p, q), ∇x =

(
∂

∂p
,
∂

∂q

)
, ẋ =

(
dp

dt
,
dq

dt

)
and

J =

 0 Id

−Id 0

 .

the skew-symmetric matrix. Hamilton’s equations will be

ẋ = J∇xH.

Consider a linear transformation x′ = Ax. Then,

ẋ′ = AJAt∇xH

is Hamilton’s equation if, and only if, A ∈ Sp(2n,R).17 Therefore, the next

theorem holds:

Theorem 8.1.1. Sp(2n,R) is the group of linear canonical transformations.

8.2 Aurel Wintner and Canonical Transfor-

mations

The use of a symplectic matrix to transform a Hamiltonian system into an-

other can be found in the work done by Aurel Wintner (Wintner 1941) “The

Analytical Foundations of Celestial Mechanics.”

17See (Brieskom 1983, p.412. ff ).
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8.2.1 Aurel Wintner

Aurel Wintner was born on April 8, 1903 in Budapest, Hungary and died on

January 15, 1958 in Baltimore, the United States of America. He started to

study at the University of Budapest in 1920. In 1927 he went to the Uni-

versity of Leipzig to do his doctoral studies under the supervision of Leon

Lichtenstein (*1878, †1933). In Leipzig he worked as an editor of the Mathe-

matische Zeitschrift and of the Jahrbuch über die Forschritte der Mathematik.

In 1929 Wintner received his Doctorate with the dissertation “Über die

Konvergenzfragen der Mondtheorie”.

In 1930 Wintner emigrated to the United States of America and joined

the mathematics faculty of the Johns Hopkins University in Baltimore, Mary-

land. He worked in Baltimore until his death.

In the United States Wintner became the editor of the American Jour-

nal of Mathematics in 1944. He published articles in the field of analysis,

differential equations, probability, and number theory.18

8.2.2 Canonical Transformations

The first publication, in which Wintner dealt with the theory of canonical

transformations that transform a Hamiltonian system into another or into

itself, was in 1934. In this publication, he worked on the linear case.19

In 1941 he published the book The Analytical Foundations of Celestial

Mechanics, in which he gave a mathematical formalization for celestial me-

chanics.20 Part of this formalization is the theory of canonical transforma-

tions. He also presented the theory for the general case followed by the linear

18See (Hartman 1962).
19See (Wintner 1934).
20See (Wintner 1941).
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case.

Before he addressed the general case of the theory of canonical transfor-

mation, Wintner defined the skew symmetric matrix J , and in the footnote

he wrote:

This skew-symmetric matrix, which will play a fundamental rôle

[sic] in what follows, is known to represent the normal form of an

arbitrary non-singular bilinear form; in the sense that there exists

for every non-singular skew-symmetric matrix S a non-singular

matrix T such that T tST = I.21

(Wintner 1941, p. 17)

Wintner figured out the relation between the skew-symmetric matrix and the

bilinear form.

He showed that a transformation between two Hamiltonian systems is

canonical if, and only if, the matrix relation

MJM t = λJ (8.16)

is fulfilled. In equation (8.16), λ 6= 0 is a constant scalar and M is a 2n

dimensional Jacobian matrix. In this case, the canonical transformation

maps a phase space onto another phase space. This transformation between

two symplectic spaces is currently known as symplectomorphism.22 Wintner

remarked that the set of the canonical transformation forms a group which

generalizes the symplectic group.23

21Wintner denoted the skew-symmetric matrix with I, but in this work it is denoted as

J .
22See chapter 9, subsection 9.1.4
23See section 7.2.3.
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Equation (8.16) is the general problem. Furthermore, he showed that it

is sufficient for the canonical transformation, or, as Wintner called it “com-

pletely canonical transformation,” if the matrix relation

MJM t = J (8.17)

is fulfilled. Then the set of Jacobian matrices of the transformation M forms

a subgroup of the last group of transformations with the condition (8.16).

At the end of the book, Wintner included a section with historical notes

and references:

The linear canonical transformations as derived by A. Wintner

(Ann. di Mat. (4) 13 (1934), 105-112) may also be described as

forming the real subgroup of the “complex” (or “symplectic”)

group.

(Wintner 1941, p. 415)

This shows that Wintner knew Weyl’s new name for the complex group, but

he did not use it in this book.

Nowadays, Wintner’s book is still recognized, and the last reprint was

2014.

8.3 Vorlesungen über Himmelsmechanik by

Carl Ludwig Siegel

In 1956, fifteen years after Aurel Wintner’s The Analytical Foundations of

Celestial Mechanics, Carl Ludwig Siegel published his lecture on celestial
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mechanics, that he gave in Göttingen from 1951 to 1952. These lecture

notes were published in German under the name Vorlesungen über Him-

melsmechanik and in them the name “symplectic group” was explicitly used

to denote the group of canonical transformation which maps a Hamiltonian

system into such a system.

Siegel started his studies in astronomy in Berlin in 1915, but during the

first weeks of his studies he changed to mathematics.24 Even though his

mathematical interest was mainly in number theory, Siegel never left the

field of astronomy behind. He wrote twelve papers on celestial mechanics in

addition to his lecture notes, and he taught lectures on celestial mechanics

during his whole life at universities in Germany and in the United States.25

Über die im folgenden behandelten Fragen der Himmelsmechanik

habe ich in Frankfurt am Main und Baltimore sowie wiederholt

in Göttingen und Princeton gelesen, am ausführlichsten in einem

vierstündigen Göttinger Kolleg des Wintersemesters 1951/52.

Herr Dr. J. Moser, jetzt in New York, hat damals eine sorgfältige

Nachschrift angefertigt, welche dieser Veröffentlichung zugrunde

liegt.26

(Siegel 1956, p.i)

The notes for the book were taken and worked on by Jürgen Kurt Moser27

24See chapter 2.1.
25(Rüssmann 1983, p.176).
26I have lectured on the questions in celestial mechanics treated in this work at Frankfurt

on Main and Baltimore as well as again at Göttingen and Princeton, most fully in a lecture

series during the winter semester of 1951/52 at Göttingen. At the time Dr. J. Moser, now

in New York, prepared a careful set of notes on which this publication is based.(Translation

second edition (Siegel & Moser 1971)).
27Jürgen Kurt Moser was born on July 4, 1928 in Königsberg, Germany and died on
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in 1955. Moser was a doctoral student of Franz Rellich28 at the university

of Göttingen. He participated in Siegel’s lecture during the winter semester

of 1951/1952. The Lecture Notes on Celestial Mechanics became a standard

reference after its first publication in German.

Die “Lectures on Celestial Mechanics” von Siegel und Moser sind

zu eine Standardwerk in der Himmelsmechanik geworden.29

(Rüssmann 1983, p.190)

In 1971 the second edition was published in English with Moser as the co-

author.

Siegel lecture notes related the symplectic group explicitly to the canon-

ical transformation in mechanics, i.e. the elements of the symplectic group

map a Hamiltonian system into such a system.30 As mentioned in section

(8.2.2), Wintner noticed before that the elements of the group are the canon-

ical transformations, but Wintner only mentioned that the canonical trans-

formations belong to the symplectic group in a note.

In the first chapter Siegel’s lectures deal with Das Dreikörperproblem.31.

Siegel developed the transformation theory of the Euler-Lagrange equation

and Hamilton’s equations. He proved that a Lagrangian system can be trans-

formed into a Hamiltonian system through a Legendre transformation.

17 December, 1999 in Zürich. He did his doctorate in 1952 in Göttingen on differential

equations.
28Franz Rellich (*1906, †1955) worked on the field of mathematical physics, quantum

mechanics, and the theory of partial differential equations.
29The Lecture on Celestial Mechanics (the book) of Siegel and Moser became a standard

reference on Celestial Mechanics.
30See (Siegel 1956, p.10).
31The Three Body Problem.
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The second section of the first chapter is about Kanonische Transforma-

tion32. This has been standard knowledge in classical mechanics for the last

century.

Siegel showed that the transformation z = z(ζ, t), which maps a Hamil-

tonian system into such a system, is a canonical transformation “if, and only

if, the Jacobian matrix zζ = M is symplectic identically in ζ, t.”33 In Siegel’s

notation z denotes the 2n coordinates of the Hamiltonian function and ζ are

the coordinates of the other 2n Hamiltonian function. M is a symplectic

matrix of the form:

M =

 A B

C D


with A, B, C and D ∈Mn(R), so that MtJM = J with

J =

 0 Id

−Id 0

 .

where

AtC = CtA, BtD = DtB, AtD − CtB = Id.

Siegel exposed the same results as Wintner, namely that the set of canon-

ical transformations are the symplectic group.34 But even though Siegel ex-

posed the same results as Wintner, he introduced explicitly the symplectic

group to characterize the canonical transformations in classical mechanics. It

may be that the relation between canonical and symplectic transformations

has been generally known at least in the German-speaking mathematical

community. This can be assumed after having read the works of Wintner

32Canonical Transformations
33The original quote is in German (Siegel 1956, pp. 9,10).
34(Siegel 1956, p. 10).
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and Siegel in classical mechanics. This work remains pending as it would in-

volve consulting unpublished material such as correspondence, lecture notes,

etc., but conducting this research in this paper is beyond the borders of the

present work.

Siegel’s lectures are an example of how to organize classical mechanics

lectures. Many mathematicians followed his example not only in classical

mechanics textbooks, but also in textbooks about symplectic geometry and

symplectic topology. In some textbooks about symplectic geometry and sym-

plectic topology, an introduction to classical mechanics is given in order to

show where symplectic geometry is applied.35

8.4 Georges Reeb Systémes Dynamiques

A few months after Siegel gave his lectures on Celestial Mechanics in Göttingen

in 1952, Georges Reeb wrote a small note in the weekly review of the ses-

sions of the French Academy of Science (Comptes rendus hebdomadaires des

séances de l’Académie des Sciences) about dynamical systems, where the

phase space is a 2n-dimensional manifold equipped with a differential struc-

ture.

8.4.1 George Reeb

George Reeb was born on November 12, 1920 and died on November 6, 1993

in Strasbourg. He was the first graduate student of Charles Ehresmann and

obtained his doctoral degree in 1943, when the University of Strasbourg was

located in Clermont-Ferrand. Later on, he taught at the University of Greno-

35See for classical mechanics (Arnold 1989) and for symplectic geometry and topology

(McDuff & Salamon 1995, Berndt 1998).
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ble and Strasbourg. In 1953 Reeb participated in the Colloque Inter-

national de Géométrie Différentielle organized by Ehresmann and

Lichnerowicz in Strasbourg, and in 1954 he spent a year at IAS Princeton.

Reeb’s main topics were differential geometry and topology, and dynam-

ical system theory.

8.4.2 Systèmes Dynamiques

In 1949 Reeb published three notes in the Comptes rendus hebdomadaires

des séances de l’Academie des Sciences. In the first note (Reeb 1949b) he

deals with closed trajectories of a differential system. Reeb used the theory

of fibre bundles.36

First, he considered that a vector field defined over an n-dimensional

smooth manifold M . The differential system over a manifold is

dx = Y (x)dt, (8.18)

where x is a point in the manifold, t ∈ R and Y (x) is a vector of the vector-

field. Reeb studied the case of periodic orbits. In this case, the trajectories of

the differential system (8.18) over a vector field are the fibres of the bundle of

the manifold on a one-dimensional circle. The basespace of the fibre bundle

is a (n− 1)-dimensional manifold.

In the case that the vector field has singular points, Reeb showed that

there exists a finite number of closed trajectories. The objective of the note

was to apply this insight to the qualitative study of dynamical systems.

36As mentioned in chapter 5, the theory of fibre bundle was developed by Ehresmann

and Feldbau at the beginning of the 1940s.
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In his second note Reeb worked with canonical transformations of Hamil-

tonian functions, where the vector fields over a 2n-dimensional manifold are

associated with a Hamiltonian function H(p, q), with p and q being local

coordinates in the 2n-dimensional manifold. This was standard knowledge

in the field of celestial mechanics, but Reeb used the theory of fibre bundles

here, where the base space of the fibre bundle of the manifold is a (2n− 1)-

dimensional space.37

Three years later in 1952 Reeb published another note in which he ex-

plicitly used Ehresmann’s work of 1950 on almost complex structures, and

he applied the results and ideas to the problems of dynamical systems.38

First, Reeb defined an almost complex manifold, and, because the ex-

istence of an almost complex structure is equivalent to the existence of a

2-form of rank 2n, he defined a symplectic manifold.39

He added to a symplectic manifold Ñ , with the dimension 2n, a dimension

which represents the time, i.e. Ñ × R = N , and therefore, the dimension of

N is 2n+ 1.

The manifold N endowed with a differential form of rank 2n is called a

dynamical system by Reeb:

37See (Reeb 1949a).
38See (Reeb 1952).
39See chapter 5.2.3.
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Définition 2. On appelle S.D. [systéme dynamique] le cou-

ple (V2n+1,
∧

), d’une variété V2n+1 et d’une forme differentielle

extérieure
∧

, de degré 2 et de rang 2n, définie sur V2n+1. Un

S.D. vérifiant la condition supplémentaire d
∧

= 0 est appelé un

S.D.I.40

(Reeb 1952, p.776)

The differential form that Reeb used for the S.D.I is the 2-form

ωN =
n∑
i=1

dpi ∧ dqi − dH ∧ dt (8.19)

where H = H(p, q, t) is a Hamiltonian function and dω = 0. It should be

mentioned that Reeb did not explain what the I of S.D.I. means, but it

could mean invariant because if the 2-form (8.19) is closed, it is called by

him l’invariant intègral absolu. The 2n+ 1-dimensional manifold N is called

l’espace phases-temps by Reeb.

One of the properties that Reeb discovered was that on the tangent bundle

of an n-dimensional manifold, it is possible that the cotangent bundle has

the structure of a symplectic manifold.41

Reeb’s work referred to dynamical systems. Therefore, a cotangent bun-

dle of an n-dimensional manifold is a phase space. The n-dimensional mani-

fold in a dynamical system is the configuration space. This is one of the first

exposition of Hamiltonian systems on symplectic manifolds after the work

done by Lee. As already mentioned, Lee’s work on symplectic varieties was

little known, however it may be that Reeb knew about it, although I have

40We called D.S. [Dynamical system] the pair (V2n+1,
∧

), of a manifold V2n+1 and a

differential exterior form
∧

, of degree 2, and rank 2n, defined on V2n+1. A dynamical

system satisfying the extra condition that d
∧

= 0 is called S.D.I.
41See (Reeb 1952)
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not found elements to assure that Reeb knew about Lee’s work. Although

from the notation and terminology it could be intuited that the works are

independent of each other.



Chapter 9

Géométrie Symplectique

Différentielle

Introduction

The first Colloque International de Géométrie Différentielle

took place at the University of Strasbourg in 1953. One of the presen-

tations given by Jean Marie Souriau had the title Géométrie symplectique

differentielle-Applications. In his presentation Souriau defined the symplec-

tic vector space, developed what nowadays is known as Lagrangian subman-

ifolds, defined explicitly symplectomorphisms, and gave some applications to

classical mechanics.

The chapter will begin with a brief presentation of basic mathematical

concepts such as subspaces and subvarieties of symplectic vector space, sym-

plectic subvarieties and symplectomorphisms. Afterwards, Souriau’s devel-

opment will be presented.

187
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9.1 Basic mathematical concepts

9.1.1 Subspaces of a Symplectic Vector Space

Let W be a linear dimensional subspace of dimension k of a symplectic vector

space (V, ω). A 2-form on W is induced by symplectic form on V , and is

denoted by ω|W . The ω-orthogonal space W⊥ is defined as

W⊥ = {v ∈ V | ω(v, w) = 0,∀w ∈ W} (9.1)

where dimW + dimW⊥ = dimV .1 The linear subspace W is said to be:

• Isotropic if W ⊆ W⊥.

• Coisotropic if W⊥ ⊆ W .

• Symplectic if W⊥ ∩W = 0.

• Lagrangian if W = W⊥.2

A Lagrangian vector space is a subspace W of a symplectic vector space

(V, ω), which is ω-orthogonal and equal to its ω-orthogonal space. Lagrangian

vector spaces are the maximal isotropic subspaces of a symplectic vector

space, and therefore, the dimension of the Lagrangian subspace is half the

dimension of the symplectic vector space.

If two Lagrangian subspaces Ln and L′n of the symplectic vector space V

are disjoint, then they are called transversal and then V = Ln ⊕ L′n.3

1The ω-orthogonal space W⊥ of the linear subspace W of a symplectic vector space

(V, ω) is as well called the skew-orthogonal space, orthogonal space or symplectic comple-

ment of W .
2(Weinstein 1977).
3(Banyaga 1994, p.20).
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Let (R2n, ω0) be a symplectic vector spaces, {q1, ..., qn, p1, ..., pn} a canon-

ical basis and ω0 the canonical symplectic form. Let Lk and Mk be two

subspaces of (R2n, ω0) so that they are disjoint to each other. So, let the sub-

space Lk be spanned by {q1, ..., qk} and the subspace Mk by {p1, ..., pk} with

1 ≤ k ≤ n, then they are isotropic subspaces. In the case k = n the subspace

Ln spanned by {q1, ..., qn} and the subspace Mn spanned by {p1, ..., pn} are

Lagrangian subspaces.4

9.1.2 Submanifolds of a Symplectic Manifold

Let N be a differentiable manifold and M a symplectic manifold. A differ-

entiable map ι : N → M is called an isotropic (coisotropic, Lagrangian or

symplectic) immersion at x ∈ N if Txι : TxN → Tι(x)M is injective, and

Txι(TxN) is an isotropic (coisotropic, Lagrangian or symplectic) subspace of

a symplectic vector space (Tι(x)M,ωι(x)).
5

The pair (N, ι) is called isotropic (coisotropic, Lagrangian or symplectic)

immersion if the map ι is an isotropic (coisotropic, Lagrangian or symplectic)

immersion at every point x ∈ N .6

For the case thatN is a submanifold ofM , N is called isotropic (coisotropic,

Lagrangian or symplectic) at a point x ∈ N if TxN is an isotropic (coisotropic,

Lagrangian or symplectic) subspace of (TxM,ωx). N is called an isotropic

(coisotropic, Lagrangian or symplectic) submanifold of M if it is so at every

point.7

Of the last defined submanifolds, the Lagrangian submanifolds are im-

portant in classical mechanics because the behavior of a mechanical system

4(Banyaga 1994, p.20).
5(Libermann & Marle 1987, p. 92).
6(Libermann & Marle 1987, p. 92).
7(Libermann & Marle 1987, p. 92).



190 CHAPTER 9. COLLOQUE DE GÉOMÉTRIE DIFFÉRENTIELLE

can be described in terms of Lagrangian submanifolds. Through the La-

grangian submanifolds, functions for the symplectic maps can be generated

which trivialize a Hamiltonian system. Through Lagrangian submanifolds

it is possible to describe the behavior of the physical system which has an

associated symplectic manifold.8

An example of a Lagrangian immersion is the following: Let N be a

differentiable manifold and T ∗N be a 1-form β on a differentiable manifold

N which is its cotangent bundle endowed with a symplectic form ω = dα,

β : N → T ∗N , is a Lagrangian immersion if, and only if, β is closed.9 Here

α is a 1-form on the cotangent bundle of a manifold M , i.e.

α : M → T ∗M,

called the Liouville form, which canonical coordinates is given by

α =
n∑
i=1

pidqi.

An example of a Lagrangian submanifold of the symplectic manifold

(T ∗N,ω) is the image β(N) of the closed 1-form β on N . This Lagrangian

submanifold is also called as well the graph of β.10

9.1.3 About the Name: Lagrangian Subspaces

In 1967 Vladimir Igorevich Arnold (*1937, †2010) published the article “Char-

acteristic class entering in quantization conditions” in the journal Functional

Analysis and its application.11 He renamed the isotropic saturated spaces as

8See (Abraham & Marsden 1978, sec. 5.3).
9(Libermann & Marle 1987, p. 92).

10(Libermann & Marle 1987, p. 93).
11See (Arnold 1967).
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Lagrangian subspaces, which are ω-orthogonal subspaces. Lagrangian sub-

manifolds were firstly defined under the name Variétés isotropes saturées12

by Jean-Marie Souriau (*1922, †2012). Souriau named the Lagrangian vec-

tor spaces as isotropic saturated vector spaces because they are the maximal

isotropic subspaces of a symplectic vector spaces. Arnold gave the name

Lagrangian subspaces in the following way:

We consider an n-dimensional plane Rn ⊂ R2n. It is called

Lagrangian if the skew-scalar product of any two vectors of Rn

equals zero. For example, the planes p = 0 and q = 0 are La-

grangian. The name comes from the “Lagrange bracket” in clas-

sical mechanics.13

(Arnold 1967, p.1)

Arnold defined the Lagrangian manifolds as followed:

Let M be an n-dimensional submanifold of the phase space

R2n. The manifold M is called Lagrangian if its tangent plane at

each point is Lagrangian. For example, in the case n = 1 every

curve M on the phase plane R2 is Lagrangian.

(Arnold 1967, p.3)

9.1.4 Symplectomorphisms

A symplectomorphism of a symplectic vector space (V, ω) is a vector space

isomorphism f : V → V which preserves the symplectic structure

f ∗ω = ω,

12Isotropic saturated manifold
13The Lagrange bracket is the scalar function [X,Y ] = ω(X,Y ) where X, Y are vector

fields over a symplectic manifold. See (Abraham & Marsden 1978).
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where f ∗ω(v, w) = ω(fv, fw), and v, w ∈ V . The symplectomorphisms of

the symplectic vector space (V, ω) form a group called the symplectic group of

(V, ω) denoted by Sp(V ). On an Euclidean space endowed with the canonical

symplectic structure, (R2n, ω0) the group of symplectomorphisms is denoted

by Sp(2n,R).

More generally, a symplectomorphism is a diffeomorphism between two

symplectic manifolds of the same dimension:

Let (M1, ω1) and (M2, ω2) be two symplectic manifolds of the same di-

mension. The diffeomorphism f : M1 → M2 is called a symplectomorphism

if

f ∗ω2 = ω1. (9.2)

The canonical transformations of classical mechanics are symplectomorphisms.

A local symplectomorphism of a symplectic manifold M1 into a symplectic

manifold M2, with the same dimension is a map f : M1 →M2, so that every

point of M1 has an open neighborhood U1 which satisfies that U2 = f(U1) is

open in M2, and f |U1 is a symplectomorphism of (U1, ω1|U1) onto (U1, ω2|U2).
14

Any symplectic manifold (M,ω) of dimension 2n is locally symplectomorphic

to (R2n, ω0). This is just another way of stating Darboux’s theorem.

9.2 Strasbourg 1953

From May 26 to June 1th 1953, the Colloque International de Géométrie

Différentielle took place at the University of Strasbourg. It was orga-

nized by Charles Ehresmann and André Lichnerowicz15.

14(Libermann & Marle 1987, p.94).
15Lichnerowicz (*1915, †1998) was a French mathematician. He contributed to differ-

ential geometry and mathematical physics, and he was the second doctoral advisor of

Jean-Marie Souriau. See (Aa.Vv. 1976).
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The Colloque of 1953 was conceived as an opportunity to exchange new

ideas and developments in differential geometry. The objective of the Col-

loque was to create a forum for mathematicians, so that they could present

their results and, after the war, to get in contact with other mathematicians

around the world. This can be read in the introduction of the conference

proceedings:

Nous nous sommes surtout efforcés de mettre en évidence

certaines des voies nouvelles où s’engage notre science. Nous

avons voulu aussi que de jeunes mathematiciens puissent mettre

en pleine lumière leurs réflexions et leurs résultats.16

(Ehresmann & Lichneerowicz 1953, p. 10)

Some of the participants were De Rahm, Reeb, Libermann, Guggen-

heimer, Souriau and Eckmann.17

Eckmann, for example, gave a talk about complex structures and al-

most complex structures (Sur les structures complexes et presque complexes).

Ehresmann talked about infinitesimal structures and Lie pseudo groups (In-

troduction à la théorie des structures infinitésimales et des pseudo-groupes

de Lie). Lichnerowicz’ contribution was about Kähler spaces (Espaces ho-

mogènes kählérienns). During the conference, Libermann presented some

results of her doctoral thesis, which at that time had not been defended yet

(Sur certaines structures infinitésimales régulières).

Most significant for the development of symplectic geometry was Souriau’s

16We have tried to bring to light some of the new pathways which our current science

has taken. We also wanted that young mathematicians can show their reflections and their

results in full light.
17The list of all participants in the colloque can be consulted in appendix C.
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presentation with the title “Géométrie symplectique differentielle - Applica-

tions”.18

9.3 Géométrie Symplectique Différentielle -

Applications

9.3.1 Jean-Marie Souriau

Jean-Marie Souriau was born on June 3, 1922 in Paris and died on March

15, 2012 in Aix-en-Provence. In 1942 Souriau started his studies at the École

Normale Supérieure in Paris, and in contrast to the persecution that Jewish

mathematicians in France suffered, such as Feldbaum or Libermann19, his

life as a student during the war in Paris was relatively normal.20

At the École Normale Supérieure, Souriau took lectures with Henri Car-

tan and with the physicist Yves Rocard (*1903, †1992).

After the Libération in 1944, he enlisted in the Army and interrupted

his studies. Souriau continued them in 1945 at the end of the war. In 1945

Souriau took the agrégation21 examination.22

In 1948 Souriau started to work on applied mathematics at the Office Na-

tional d’Etudes et de Recherches Aérospatiales (ONERA).23 There he wrote

his dissertation on the stability of airplanes, “Sur la stabilité des avions”.

During this time Souriau gave a free public lecture in Paris, with the title

18Differential Symplectic Geometry- applications
19See chapter (Audin 2010) and sections 5.1 and 6.3.1
20See (Iglesias 1995a).
21In France, the agrégation is a competitive examination for some positions in the public

education system.
22See (Iglesias 1995a).
23National Aerospace research office. French aerospace research centre.
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“Méthodes nouvelles de la Physique mathématique” where he taught calculus

of variations and matrix calculus to the general public.24

In 1952 Souriau worked as a professor at the Institut des Hautes Études

de Tunis in Tunisia. In Tunesia, Souriau works on classical mechanics and

develops the idea of ”symplectic differential geometry”. This is clear from

his presentation at the colloquium in Strasbourg, but he also mentions it in

an interview he gave to Iglesias in 1995.25

9.3.2 Differential Symplectic Geometry and applica-

tions

Souriau exposed in Strasbourg at the Colloque of 1953, his work about sym-

plectic geometry and gave some of the mathematical methods for classical

mechanics where the symplectic manifold is an important element.

In 1954 he summarized all the details of his presentation given in Stras-

bourg at the Colloque in an article named “Equations canoniques et géométrie

symplectique”.26

The results that Souriau presented, both in (Souriau 1953) and in (Souriau

1954) did not deal with symplectic manifolds in the sense that Ehresmann

did. He studied the submanifolds of a symplectic space.27

Souriau’s presentation (Souriau 1953) in Strasbourg was divided into

three parts. In the first part Souriau defined a vector space with a sym-

metric bilinear form and the vector space with a skew-symmetric bilinear

form. The focus of his work was on the vector space with a skew-symmetric

bilinear form. If the vector space is equipped with a skew-symmetric bilinear

24See (Vallée 2012).
25See (Iglesias 1995a, p.164).
26See (Souriau 1954).
27This can be seen below and was also said in (Kosmann-Schwarzbach 2013, p.143).
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form it is a symplectic vector space. On the symplectic vector space Souriau

classified the subspaces isotropic, coisotropic, symplectic and lagrangian in

which the complement is an orthogonal vector space.28

In the second part, Souriau presented what he called differential sym-

plectic geometry. Here Souriau defined the symplectic gradient of a func-

tion.29 He studied the Lagrangian submanifolds contained in the hypersur-

faces of a symplectic space. At the end of the second part he deduced a

new method for solving first-order partial differential equations generalizing

Jacobi’s method.30

The third part deals with the applications of symplectic geometry to

classical mechanics. He applied the new method for solving first order partial

differential equations to the calculus of variations, which gives a practical

method for finding extremes.31

9.3.3 Vector Space and Symplectic Vector Space

Souriau’s presentation started with the real n-dimensional vector space and

its corresponding dual space. The set of linear maps that defined the dual

space were called covectors by Souriau, and through them he defined the

scalar product on the real n-dimensional vector space. He defined the scalar

product over the vector space, and in the case that the scalar product was

antisymmetric then it was defined as a symplectic vector space.

28See section 9.1.1.
29In case the function is the Hamiltonian function then the symplectic gradient will be

the vector field XH .
30See (Kosmann-Schwarzbach 2013, p. 143) and (Souriau 1953, p. 58).
31See (Kosmann-Schwarzbach 2013, p. 143) and (Souriau 1953, p. 58-59).
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Le cas du produit scalaire antisymétrique,[...], correspond à la

géométrie SYMPLECTIQUE.32

(Souriau 1953, p.55)

After defining the symplectic vector space, Souriau defined its subspaces

and showed that the dimension of Lagrangian subspaces are half the dimen-

sion of its symplectic vector space.

Le nombre de dimensions d’un sous-espace isotrope saturé est

constant et égal à la moitié du nombre de dimension de l’espace.33

(Souriau 1954, p.246)

This implies that symplectic vector spaces are even dimensional spaces.

9.3.4 Phase space

In 1954 Souriau added a section Espace de phase to his Strasbourg presen-

tation. This additional section pointed to the applications of symplectic

geometry in classical mechanics, which, as already seen in chapter 7, Lee had

already done in the 1940s.

Souriau constructed the phase space, a 2n-dimensional vector space through

an n-dimensional vector space V0. Using Souriau’s notation of 1954, the phase

is denoted by z = {p, q} with the following conventions:

z + z′ = {p+ p′, q + q′}
32The case where the scalar product is anti-symmetric,[...], corresponds to SYMPLEC-

TIC geometry.
33“The number of the dimesion of a Isotropic saturated [Lagrangian] subspace is constant

and equal to the half of dimension of the space.”
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g(z, z′) = pq′ − p′q =
N∑
i=1

piq
′
i − p′iqi

where g(z, z′) is the skew-symmetric form and pi are the covariants coordi-

nates of p and q′i are the contravariant coordinates of q of the vector space

V0. The space form by the phase is a 2n-dimensional vector space known as

the phase space associated to an n-dimensional vector space V0 and is called

the configuration space. He remarked that all bases of V0 correspond to the

canonical basis of its phase spaces.

9.3.5 Géométrie Symplectique Différentielle

Souriau added the adjective différentielle because he wanted to obtain a “to-

tale différentielle”34 over a symplectic vector space V to obtain differentiable

manifolds, which in this case are submanifolds of a symplectic space. The

submanifolds that he was looking for were Lagrangian manifolds.

Souriau called these submanifolds Variétés isotropes saturées (V.I.S.),

and in 1954 he defined Lagrangian submanifolds as:

On appelle V.I.S. d’une espace symplectique une variété différentiable

dont l’espace vectoriel tangent est en tout point isotrope saturé.35

(Souriau 1954, p.250)

Souriau noticed that a Lagrangian submanifold can be constructed by

choosing an arbitrary function:

[...], on vérifie que tout V.I.S. s’obtient en choisissant une

fonction arbitraire α des qi et en écrivant la relation

dα =
∑

pi dqi

34total differential
35V.I.S. (Lagrangian) of a symplectic space is called a differentiable manifold where the

vectorial tangent space is at every point isotropic and saturated (Lagrangian vector space).
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les qi étant éventuellement liés par un nombre arbitraire de rela-

tions.36

(Souriau 1953, p.56)

qi is a canonical coordinate of a vector z, and z is a vector on a symplectic

vector space with canonical coordinates (pi, qi). This idea of the construction

of a Lagrangian submanifold is the same idea that was used in the example

of section 9.1.2, which is an example after Souriau’s publication.

Souriau started with an n-dimensional vector space V0. On this vector

space Souriau chose an arbitrary point q. The point q is an element of a

k-dimensional differentiable manifold M0, so that 0 ≤ k ≤ n, and M0 is

immersed in the vector space V0. The vector space V0 was endowed with a

scalar function α.

Souriau constructed the dual space of the tangent vector space of M0 at

the point q with the linear map ∂α
∂q

. The covectors of the dual tangent vector

space are represented by p = ∂α
∂q

and the differential 1-form

dα = p dq (9.3)

depends on n − k parameters. A n-dimensional differentiable manifold M

is created by Souriau through the phase space z = {p, q}, which is bound

by the relations q ∈ M0 and dα = p dq.37 The tangent vectors of M form a

maximally isotropic subspace of a symplectic vector space with the dimension

n, and therefore, the subspace is a Lagrangian subspace. So, every tangent

vector of M is perpendicular to each other, and therefore, the manifold M

is a Lagrangian submanifold.

36It is verifed that all V.I.S. can be obtained by choosing an arbitrary function α of qi

and by writing the relation dα =
∑
pi dqi.

37(Souriau 1954, p.249).
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The importance of the Lagrangian subvarieties for Souriau is that by

means of these it is possible to give a generalization of Jacobi’s method for

solving first order partial differential equations in the calculus of variations.38

9.3.6 Les Transformations Canoniques - Sympleto-

morphisms

In 1954, as mentioned above, Souriau wrote a paper on the results he pre-

sented at the Strassbourg colloquium in 1953. In it, he proves and extends

the results and in particular shows that

Tous les espaces symplectiques à 2N dimensions sont isomor-

phes.39

(Souriau 1954, p.246)

That is, symplectic spaces of dimension 2n are isomorphic by means of canon-

ical transformations, which leave the symplectic form invariant. This result

was exposed among symplectic manifold by Lee in 1947.40 These canonical

transformations are named in 1970 by Souriau symplectomorphisms. In the

case that the symplectomophism is local between a symplectic manifold and

the manifold (R2n, ω0) then it is Darboux’s theorem, as mentioned above.

To obtain the result, Souriau gave the canonical basis of a symplectic vector

space using a canonical projection and transforming the canonical basis into

another canonical basis. This gave the isomorphisms between two symplec-

tic vector spaces with the same dimension. Souriau showed that a canonical

transformation is a diffeomorphism between two symplectic manifolds. The

38See (Souriau 1953, p. 57).
39All the symplectic spaces of 2N [2n] dimension are isomorphic.
40See chapter 7.2.6.
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use of canonical transformations in classical mechanics at that time was in

everyday use and therefore it can be seen that the link between symplectic

geometry and classical mechanics became stronger.

9.3.7 Applications

The last part of each of his articles (Souriau 1953, Souriau 1954) is dedicated

to the applications of symplectic geometry to classical mechanics problems.

Some of the current applications were mentioned in section 9.3.4. Sym-

plectomorphisms are the canonical transformation between two Hamiltonian

systems.

One goal of the application of differential symplectic geometry was to

provide the general solution for a differential equation of first order.

Souriau solved the Cauchy problem. The Cauchy problem asks for solu-

tions of a partial differential equation that satisfies certain conditions which

are given on a hypersurface. The hypersurface is a 2n−1 dimensional surface

on the 2n dimensional symplectic vector space.41

41(Souriau 1954, p.252).
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Chapter 10

A brief outline of the take-off of

symplectic geometry

10.1 Symplectic geometry takes off

The mathematical objects that are part of the field symplectic geometry were

developed mainly during the decades 1930s to 1950s and some of the objects

were explicitly named with the adjective symplectic.

The acceptance of symplectic geometry, like many of the new ideas in

mathematics, took time until 1967. Between 1954 and 1967, the mathemati-

cal community did not consider symplectic geometry as an independent field.

They studied the symplectic manifolds as a part of other fields like Kähler

manifolds.

It was in the late 1960s that the study of symplectic manifolds attracted

the interest of many mathematicians and physicists, at least in the So-

viet Union, France, and the United States, among them Vladimir Igorevich

Arnold, Ralph H. Abraham, Jerrold E. Marsden and Alan Weinstein, and

they used the name symplectic geometry to define this field of studies.
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10.1.1 Foundations of mechanics

In 1967 Ralph H. Abraham and Jerrold E. Marsden published their book

“Foundations of mechanics”. Abraham and Marsden developed a mathe-

matical model for mechanics, in which they translated the structure of clas-

sical Hamiltonian systems into the language of calculus on manifolds and

in which“symplectic manifolds are the setting for Hamiltonian mechanics”.1

It is to be remarked that they did not quote Souriau’s work (Souriau 1953,

Souriau 1954), but they referenced Siegel’s book (Siegel 1956) in the bibli-

ography, and other works by Siegel on celestial mechanics.

First, they exposed concepts of a symplectic vector space and the lin-

ear algebra on them, as locally a symplectic manifold is a symplectic vector

space. They studied symplectic manifolds as “the globalization of the sym-

plectic algebra”2, and this globalization was called symplectic geometry. In

particular, they proved Darboux’s theorem.

After this publication, the mathematical community explicitly considered

the study of symplectic geometry to be the study of symplectic manifolds,

and symplectic geometry was linked to the study of classical mechanics.

In 1969, Alan Weinstein who is a professor at the University of California

in Berkeley and had been a student of Chern, published a note about the

symplectic structure on Banach spaces.3 This article is the first of many other

articles which deals with the symplectic structure in infinite dimensions.

Two year later in 1971, Weinstein gave a generalization of Darboux’s

theorem.4 A year after Weinstein’s publication, Marsden published a paper

on symplectic structure in Banach spaces. In this paper, he defines what is

1(Abraham & Marsden 1967, p.84).
2(Abraham & Marsden 1967, p.92).
3See (Weinstein 1969).
4See (Weinstein 1971).
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a weak bilinear structure and shows that “Darboux’s theorem fails for weak

symplectic forms”.5

So, the research and publications on symplectic geometry with the explicit

name symplectic geometry started to become more frequent, as well as the

use of symplectic geometry as a formulation for classical mechanics. This fact

led some mathematicians such as Souria, Weinstein, Marsden and Iglesias,

to think that symplectic geometry had its origins almost only in classical

mechanics. All of them place the origin of symplectic geometry in Lagrange’s

work (Lagrange 1811).6 In Lagrange’s work, from a modern point of view, one

can think that symplectic geometry originated there, but many of the tools

necessary to say that with Lagrange symplectic geometry was born had not

yet been developed. However, it is very likely, and not only that, it is certain

that Sourian, Marsden, Weinstein and Iglesias were aware, in the late 1960s

and early 1970s, of previous work on symplectic manifolds by Eheresmann

and Liebermann in the 1950s. Libermann was academically very active in

the 1960s. Weinstein was a student of Chern and Chern participated in the

Strassbourg colloquium in 1953.7 Iglesias was a student of Sourian in the

1980s and Sourian was a contemporary of Liebermann and Ehresmann.

10.1.2 Symplectic geometry conferences in 1973 and

1974

At the end of the 1960s and the beginning of the 1970s, more mathematicians

were working on problems of symplectic geometry and classical mechanics,

and this provided the incentive to hold a conference about symplectic ge-

5See (Marsden 1972).
6See (Iglesias 1995b, Souriau 1986, Marsden & Weinstein 2001).
7See Appendix C.
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ometry and classical mechanics. This conference took place in Rome at the

Istituto Nazionale di Alta Matematicia(INDAM) in January 18 to 23, 1973

under the name Geometria simplettica e fisica matematica. It was the first

conference whose topic was symplectic geometry. Some of the significant

speakers were Souriau, Marsden and Weinstein.8

A year later in 1974, Souriau, who was already at the university of Mar-

seilles, organized another conference with the title “Géométrie symplectique

et physique mathématique”9 in Aix-en-Provence, France. The conference has

been well attended.10 Other conferences on symplectic geometry follwed in

the 1980s.11

10.1.3 Textbooks and journals about symplectic geom-

etry

After Abraham and Marsden’s book “Foundations of Mechanics” in the 1970s

there were more publications about dynamical systems, which dealt with

symplectic geometry as the mathematical and geometrical interpretation of

mechanics, such as Souriau’s book in 1970.12 In 1974, Arnold published

Mathemacheskie metody klassischeskoi mekhaniki13 in Russia. The second

edition of the book was translated into English in 1978 by Karen Vogtmann

and Weinstein, and a second edition of the translation was printed in 1989.

In 1977, Weinstein published his lecture notes on symplectic manifolds,

and this is one of the first textbook about symplectic geometry.14

8For the complete list of speakers see appendix D.
9Symplectic geometry and mathematical physics. See (Aa.Vv. 1975).

10See appendix E.
11(Kosmann-Schwarzbach 2013, p.145).
12See (Souriau 1970).
13Mathematical methods of classical mechanics
14See (Weinstein 1977).
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In the 1980s another textbook about symplectic geometry was published

by Libermann and Charles-Michel Marle in 1987 with the title “Symplectic

Geometry and Analytical Mechanics”.15

In all these books symplectic geometry is linked to classical mechanics,

and this link gives the one-sided impression that the exclusive origin of sym-

plectic geometry is classical mechanics.

A Journal about symplectic geometry was founded in 2001 and some of

its co-editors at the beginning were Marsden and Weinstein.

15See (Libermann & Marle 1987).
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Conclusion

In the 1970s, Arnold worked on symplectic geometry and played a key role

together with Abraham, Marsden and Souriau, in the acceptance of the field

of symplectic geometry. All of them used symplectic geometry as a method

for classical mechanics.16

Arnold pointed out that there is a close relation between mathematics and

physics. Therefore, his work on symplectic geometry was linked to physics,

and classical mechanics. This can be read in the obituary of Arnold written

by Gusein-Zade and Varchenko, and remembering that Arnold used to claim:

Mathematics is a part of physics. Physics is an experimental

science, a part of natural sciences. Mathematics is the part of

physics where experiments are cheap.

(S. M. Gusein-Zade 2010, p.28)

The origin of the field of symplectic geometry is not exclusively and even

not primarily classical mechanics. The objects of symplectic geometry were

developed during the 1930s. First by Kähler, who defined the Kählerian

manifolds. Then in 1950, Ehresmann defined the symplectic manifolds, as

a tool for the study of the introduction of a complex structure on even-

dimensional differentiable manifolds. Libermann states Darboux’s theorem

16See (Abraham & Marsden 1967, Souriau 1970, Arnold 1978).
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of symplectic geometry.

The formulation of classical mechanics in terms of symplectic geometry

is first given by Lee in the 1940s, although this work was not transcendent

since it was well not known. At that time and during the 1950s, Wintner and

Siegel introduced the symplectic group to characterize the canonical transfor-

mations of classical mechanics. Reeb contributed by applying Ehresmann’s

results on symplectic varieties to dynamics problems. Souriau’s contribution

to this formulation is the Lagrangian submanifolds that make it possible to

generalize Jacobi’s method to find solutions of first order partial equations

in the calculus of variations.

Siegel’s work (Siegel 1943b) did not contribute to the current development

of symplectic geometry despite the name “Symplectic geometry”. As shown

in Chapter 2, Siegel generalized hyperbolic geometry to an m-dimensional

complex space. This was later known as “Siegel’s half-space”. In 1957, Henri

Cartan shows that the Siegel half-space is a Kähler manifold and therefore

symplectic, but this result remains as one more result in the work of Henri

Cartan in the study of complex functions of several variables. This result also

shows that Siegel’s half-space is an object of study of the current symplectic

geometry.

The acceptance of the field symplectic geometry, as it is known nowadays

and its link with classical mechanics, took place in the late 1960s and in the

1970s with the contributions of Abraham, Marsden, Souriau, Weinstein and

many other mathematicians.

Finally, I would like to mention that I am aware of the existence of the

paper “Differential geometry in symplectic space” by Chern and his student

Hsien-Chung Wang in 1947, which was published in 1947 in the journal of
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Tsing Hua University.17 Kosmann-Schwarzbach mentions that in this article

the term “symplectic” was used only in the study of the group of linear

transformations of a vector space preserving a nondegenerate antisymmetric

bilinear form, the space being necessarily of even dimension. Chern and Wang

call a vector space of this type ”symplectic space”.18 Therefore, it was not

used in this work. However, the possibility of analyzing it and commenting

on the development Chern and Wang carried out remains open.

17(Chern & Wang 1947).
18See (Kosmann-Schwarzbach 2013, p. 137).
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Appendix A

Shiing-Shen Chern

This is a very short excursion on Chern’s biography and his relationship

with Kähler and Cartan. Ending with Chern’s context when he proves the

generalization of the Gauss-Bonnet theorem.

Chern was born on October 28, 1911 in Jiaxing1 China and died in De-

cember 3, 2004. At the age of fifteen he entered the Nankai University to

study mathematics. He was a student of Lifu Jiang2. In 1930 Chern went to

Tsinghua University in Beijing for his graduated studies. In 1932 Blaschke

went to Beijing to gave some lectures on geometry. Chern went to Blaschke’s

lectures and so he decided that he would like to go to Hamburg for his PhD

under Blaschke direction.3

Hamburg started to be a important centre for the mathematicians al-

though University of Hamburg was founded in 1919. As is mention in chapter

1Jiaxing is on the west of China one hundred kilometres south-west form Shanghai.
2Lifu Jiang was one of the mathematicians that went to Harvard in USA to achieve his

PhD.
3At that time China had a exchange program with the USA and not with Germany

and Chern awarded a fellowships for the USA. Chern requested to use his fellowships for

his studies in Germany.
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4 this was a reason why Kähler did not accept the professorship in Rostock.

In 1934 Chern went to Hamburg to achieved his doctor degree under the

supervision of Blaschke. In Hamburg Chern work in the Invariant theory on

a webbof a n-dimensional manifold in a 2n-dimensional space.

A.1 Chern and Erich Kähler

The relationship between Kähler and Chern started when Chern went to

Hamburg to write his thesis. In 1934, Chern attended Kähler’s seminar and

he mentioned:

“[The seminar of Kähler in Hamburg 1934] looked like a kind

of celebration. The classroom was filled, and the book (Kähler

1934) had just come out. Kähler came in with a pile of the books

and gave everybody a copy. But the subject was difficult, so after

a number of times, people didn’t come any more. I think I was

essentially the only one who stayed till the end because I followed

the subject.”

(Jackson & Kotschick 1998, p.860)

Chern developed a good relationship with Kähler that last their hold live.

An example of this friendship is when Kähler was a war prisoner in France,

during the years 1945 and 1947, he wrote to Chern who was at that time in

the Academia Sinica in China, asking for books and some tea.4

4(Yau 2011, p.1238).
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A.2 Chern and Élie Cartan

Chern went to Paris in 1936 to study with Élie Cartan where he spend a

year. Chern remember these meetings with Cartan in the interview he gave

in 1998:

Usually the day after [meeting with Cartan] I would get a

letter form him. He would say, “After you left, I thought more

about your questions [...] I saw him [Élie Cartan] about once

every two weeks,[...]

(Jackson & Kotschick 1998, p.861)

Although Chern did not understand much French and Élie Cartan spoke

only French, both manage to communicated and to work together during

that year.5

In 1937 he went back to China to the South-west Associated University6

as professor of mathematics.

A.3 Gauss-Bonnet Theorem

An example of the used of the Kähler manifolds is the proof that Chern made

of generalization of the Gauss-Bonnet Theorem.

In China, even though the hart times that the war brought Chern contin-

ued reading and researching about some papers that Élie Cartan had send

5Sometime is amazing how people can communicated although the barrier of the lan-

guage
6During the Japanese invasion the Tsing Hua University of Beijing and the University

of Nanka were evacuated to Kunming and there the China government formed the South-

West Associated University
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to him. He continued publishing. His publication gave him the possibility of

being recognized by the mathematician in the international circles. In 1943

he went to the IAS in Princeton for two years, which implied at war time a

very difficult trip. Chern took seven days to arrive to the United States.

In Princeton he met André Weil. In 1942 Weil published a paper with

Carl Barnett Allendoerfer 7 (Allendoerfer & Weil 1943) where they presented

a proof of the generalization of Gauss-Bonnet theorem. Weil mention that

for the proof they followed the steps of Weyl.8 The proof is based on the

fact that a Riemann manifold can be locally isometrically embedded in a

Euclidean space.9

Weil talk with Chern about this proof and Chern proposed an other proof

which is an intrinsic proof of the generalized Gauss-Bonnet theorem. The

generalization states that the Euler characteristic χ(M) of a closed Riemann

manifold M of arbitrary dimension can be express as an integral of the Gauss

curvature over a manifold. Chern proof the generalization for hermitian

manifolds in which are inserted the Kähler manifolds but not for Riemannian

manifolds. For further details about how Chern proof the generalization

and the mathematical impact of this proof the reader can consult (Palais &

Terng 1992) and (Wu 2008).

7Carl Barnett Allendoerfer was an US-American mathematician, he was born on April

4, 1911 in Kansas City and died on September 29, 1974. His field of work was the topol-

ogy and the geometry. He work as well on mathematical education and produced some

mathematical films.
8See (Wu 2008)
9(Jackson & Kotschick 1998, p.7).
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Vladimir Igorevich Arnold and

Arnold’s conjecture

Vladimir Igorevich Arnold was born on June 12, 1937 in Odessa, Soviet

Union and died on June 3, 2010 in Paris. In 1957, he was a student of

Andrey Kolmogorov (*1903, †1987) and he graduated at the Moscow State

University in 1959. Arnold obtained a chair at the Moscow State University

in 1965, where he worked until 1986. From 1965 to 1966, Arnold went to

Paris for a research year. After 1986, he worked at the Steklov Mathematical

Institute in Moscow and in 1993 he obtained a position at the Paris Dauphine

University. He work in both places until his death.

One of Arnold’s fields of studies was on dynamical systems and in 1963

Arnold presented his development which is known as Kolmogorov-Arnold-

Moser theory in a lecture. There he gave an explanation for the stability of

the solar system.1

1See (Khesin & Tabachinikov 2012).

219



220 APPENDIX B. VLADIMIR ARNOLD

B.1 Arnold’s conjecture

In 1965, Arnold stated a conjecture which is the generalization of what is

called by him as the geometric theorem of Poincaré, which stats:

An area-preserving diffeomorphism of an annulus that moves

the two bounding circles in opposite directions has no fewer than

two fixed points.

(Arnold 1986, p. 3)

In 1972 and 1976 he formulated a conjecture which is a multidimensional gen-

eralization of Poincaré’s theorem what is known as the Arnold conjecture.2

The conjecture states:

A symplectomorphism of a compact manifold, homologous

to the identity transformation (Join by a one-parameter family

of symplectomorphisms with single-valued, but time dependent,

Hamiltonians.), has at least as many fixed points as a smooth

function on the manifold has critical points.

(Arnold 1986, p. 4)

The attempts to prove the Arnold conjecture contributed to the develop-

ment symplectic topology.3

2See (Arnold 1986).
3See (Arnold 1986, Audin 2014, Khesin & Tabachinikov 2012, McDuff & Salamon 1995).
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B.2 Arnold’s conjecture and symplectic

topology

This section is a short excursion through the history of symplectic topology.

Michèle Audin published part of the history of symplectic topology in 2014.4

As Ian Stewart defined in a popular sciences publication, symplectic topology

is the study of symplectic mappings of symplectic manifolds, and symplectic

mapping of the plane is thus any transformation that preserves area.5

Arnold contributed to the development not only of symplectic geometry,

but also contributed to the development of the field symplectic topology. The

attempts to prove Arnold’s conjecture lead to the development of symplectic

topology. In 1986 Arnold attributed in his article with title “First steps in

symplectic topology”, proof of the conjecture to Mikhael Gromov.6 Gromov

gave a proof for a special case in 1985 (Gromov 1985), but it was not a

general proof.7

In 1986 Arnold was interested is not only finding in symplectic topology,

but he wanted what he called a symplectization of the whole theory.8 As an

example of this, Arnold asked if a symplectic camel can go through the eye

of a needle? The symplectic mapping for an 2n dimensional space preserves

volume. In the case of a camel, it can be stretched out until it is so thin that

it can go through the needle, but in the case of the symplectic camel, this is

not possible, this was prove by Gromov.9

4See (Audin 2014).
5(Stewart 1987, p.17,18).
6See (Arnold 1986).
7(Audin 2014, p.17).
8(Arnold 1986).
9(Stewart 1987).
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Appendix C

Liste of participants at the

Colloque International de

Géométrie Différentielle,

Strasbourg

Organizers

• Charles Ehresmann, University

of Strassbourg, France.

• André Lichnerowicz, Collège de

France.

Participants

• E. Bampiani, Roma, Italy.

• S. S. Chern, Chicago, United States of America.

• E. T. Davies, Southampton, England.
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• M. Iss, Strassbourg, France.

• F. Jongmans, Liège, Belgium.

• G. Legrand, Paris, France.

• S. Lemoine, Paris, France.

• J. Loiseau, Paris, France.

• M. Lyra, Sao Paolo, Brazil.

• B. Malgrange, Paris, France.
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• J. Milnor, Zürich, Switzerland.

• R. Piedvache, Poitiers, France.

• G. de Rham, Lausanne, Switzerland.

• M. H. Schwartz, Paris, France.

• H. B. Shutrick, Liverpool, England.

• E. H. Spanier, Chicago, United States of America.

• W. Süss, Freiburg, Germany.

• Y. Thiry, Tunis, France.1

1(Aa.Vv. 1953, pp.8-9)
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“Geometria simplettica e fisica

matematica”, Rome, 1973

List of speakers

• Cushman, R.

• Dı́az Miranda, A.

• Elhadad, J.

• Garćıa, P. L.

• Klein, J.

• Konstant, B.

• Kumpera, A.

• Künzle, H. P

• Leray, J.

• Lichnerowicz, A.

• Marsden, J. E.

• Ouzilou, R.

• Pérez-Rendón, A.

• Segal, I.

• Souriau, J. M.

• Streater, R. F.

• Tulczyjew, W. M.

• Weinstein, A.1

1See (Aa.Vv. 1974).
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Appendix E

“Géométrie Symplectique et

Physique Mathématique”,

Aix-en-Provence, France, 1974

List of speakers

• J.W Robbin, University of Wisconsin.

• Carl P. Simon, University of Michigan.

• Charles J. Titus, University of Michigan.

• André Lichnerowicz, Collège de France, Paris.

• Shlomo Sternberg, Harvard University.

• Jean-Marie Souriau, Université de Provence.

• Andrei Iacob, Institut de Mathématique de Bucarest.

• H.P. Kunzle, University of Alberta.

229
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• Anthony Leung, University of Cincinnati.

• Kenneth Meyer, University of Cincinnati.

• Clark Robinson, University of Warwick.

• Enrico Onofri, Università di Parma.

• David Simms, Trinity College, Dublin.

• Robert J. Blattner, University of Massachusetts.

• Bertram Kostant, Massachusetts Institute of Technology.

• K. Gawedzki, Université de Varsovie.

• Victor W. Guillemin, Massachusetts Institute of Technology.

• Jean Leray, Collège de France, Paris.

• A. Voros, Centre d’Etudes Nucléaires de Saclay.

• Alan Weinstein, University of California, Berkeley.

• F.J. Bloore, University of Liverpool

• Wilhelm Klingenberg, Université de Bonn.

• B.R. Chernoff, University of California, Berkeley.

• Jerrold E. Marsden, University of California, Berkeley.

• Arthur E. Fischer, University of California, Berkeley.

• Jerzy Kijowski, Université de Varsovie.

• Wiktor Szczyrba, Université de Varsovie.
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• Dominique-Paul Chevallier, Ecole Nationale des Ponts et Chaussées,

Paris

• Andrés J. Kalnay, Centro de F́ısica, IVIC, Caracas.

• Jean-Pierre Vigier, Institut Henri Poincaré, Paris.1

1See (Aa.Vv. 1975).
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de Mathématiques pures et appliquées pp. 115–200.

de Rham, G. (1980), ‘Quelques souvenirs des années 1925-1950’, Cahiers du
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loques internationaux Centre Paris (52), 53–59.

Souriau, J.-M. (1954), ‘Equations canoniques et géométrie symplectique’,
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