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COHOMOLOGY OF THE STRUCTURE SHEAF OF DELIGNE–LUSZTIG
VARIETIES FOR GLn

YINGYING WANG

Abstract. In this paper, we give a description of the cohomology groups of the structure

sheaf on smooth compactifications X(w) of Deligne–Lusztig varieties X(w) for GLn, for

all elements w in the Weyl group. To this end we adapt the double induction on the

presentation and length of w from [Orl18] for `-adic cohomology. Then we use the Artin–

Schreier–Witt sequence to obtain the mod pm and integral p-adic étale cohomology of

X(w). Moreover, using our result for X(w) and a spectral sequence associated to a

stratification of X(w), we deduce the mod pm and integral p-adic étale cohomology with

compact support of X(w).
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Introduction

Deligne–Lusztig varieties were introduced in [DL76] for studying irreducible representa-
tions of finite groups of Lie type. Fix an algebraic closure Fp of Fp and let Fq be the subfield
of Fp with q elements, where q is a power of p. Let G0 be a connected reductive group over
Fq, and let G be the base change of G0 to Fp. Fix a maximal torus and a Borel subgroup
T ⇤ ✓ B⇤ of G. For elements w of the Weyl group W = N(T ⇤)/T ⇤, the Deligne–Lusztig vari-
eties X(w) associated to G are smooth quasi-projective Fp-schemes of finite type. Considered
as subschemes of G/B⇤, they are stable under the action of G0(Fq). Deligne and Lusztig con-
sidered the virtual representations arising from the `-adic cohomology with compact support
of X(w) and their coverings for ` 6= p. Furthermore, they constructed smooth compactifi-
cations X(w) of X(w), for each reduced expression of w, inspired by the Demazure–Hansen
desingularization of Schubert varieties.

In this paper, for G = GLn, we give a description of the coherent cohomology of the
structure sheaf on X(w) as Fp-vector spaces and as GLn(Fq)-representations. In particular,
the higher cohomology groups vanish. Since taking global sections of the structure sheaf
detects the number of irreducible components of X(w), and GLn(Fq) acts on the set of
irreducible components of X(w) transitively, the global sections carry a structure of induced
representations. Moreover, as a consequence of the Artin–Schreier–Witt sequence, we describe
the Z/pmZ- and Zp-cohomology of X(w)ét. On the other hand, X(w) has a stratification,
in which the complement of X(w) is the union of suitable X(v) of lower dimension. Using a
spectral sequence akin to the Mayer–Vietoris sequence with respect to this stratification, we
obtain the Z/pmZ- and Zp-cohomology with compact support of X(w)ét as GLn(Fq)-modules.
Furthermore, for each w, these cohomology groups vanish except at the degree equal to the
Bruhat length of w, and the non-vanishing term affords an induced representation of the
Steinberg module of a Levi subgroup of GLn(Fq).

A prominent example of Deligne–Lusztig varieties in the case of G = GLn is the Drinfeld
half space. It is isomorphic to X(w) (GLn(Fq)-equivariantly), where w = s1 · · · sn�1 is
the standard Coxeter element (under suitable choice of T ⇤ ✓ B⇤), where si corresponds
to the reflection (i, i + 1) in the symmetric group Sn

⇠= W . This construction originated
from the work of Drinfeld in 1973 on the study of the discrete series representations of
SL2(Fq). The Drinfeld half space X(w) can be embedded into the projective space G/P ⇤,
where P ⇤ � B⇤ is the parabolic subgroup corresponding to s2, . . . , sn�1. In fact, this gives
an isomorphism X(w) ⇠= Pn�1

Fp
\ H, where H is the union of all Fq-rational hyperplanes in
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Pn�1
Fp

. The cohomology of the structure sheaf for the smooth compactification X(s1 · · · sn�1)

of X(w) is known [GK05, §2].

Theorem ([GK05]). Let G = GLn and w = s1 · · · sn�1 the standard Coxeter element.

Hk

⇣
X(w),O

X(w)

⌘
=

(
Fp, k = 0,

0, k > 0.

The Drinfeld half space also has analogues when considered over finite extensions of Qp

cf. [SS91].

In [Orl18], Orlik provided a strategy for computing the `-adic cohomology groups with
compact support of Deligne–Lusztig varieties for G = GLn and their realizations as `-adic
representations of GLn(Fq), which we recall here. Let F+ be the free monoid generated by a
fixed set of standard generators of W . The generalized Deligne–Lusztig variety attached to
w 2 F+ were introduced in [DMR07]. The idea of Orlik’s strategy is to study the relation
between cohomology groups of X(w) and X(w0), where w,w0 2 F+ and the set of the
standard generators of W showing up in the presentation of w coincides with that of w0. More
specifically, w and w0 may differ in length or differ by a relation in the group presentation
of W . One may now establish a double induction procedure with respect to the length of w
and the number of relations applied. The base case is the cohomology of X(w) with w 2 F+

having no repeating terms in its expression.

We adapt Orlik’s method of double induction to the cohomology of the structure sheaf on
X(w), w 2 F+, and establish the base case using Grosse-Klönne’s result as stated above.

After preparatory work from Section 1 to 6, we obtain our main theorem:

Theorem (6.1). Let G = GLn and w 2 F+
with w = si1 · · · sir . Let I = {si1 . . . sir} and

PI ◆ B⇤
be the standard parabolic subgroup associated to I, then

Hk

⇣
X(w),O

X(w)

⌘
=

(
indGLd(Fq)

PI(Fq)
1Fp

, k = 0,

0, k > 0,

where 1Fp
is the trivial PI(Fq)-representation with coefficients in Fp.

Moreover, if we consider the sheaf of Witt vectors Wm

⇣
O

X(w)

⌘
of length m on X(w), the

theorem above implies that

H0
⇣
X(w),Wm

⇣
O

X(w)

⌘⌘
= indGLd(Fq)

PI(Fq)
Wm

�
Fp

�
.

Then we can use the Artin–Schreier–Witt sequence to compute the cohomology of the con-
stant sheaves Z/pmZ and Zp on X(w)ét with w 2 F+:

Corollary (6.6, 6.7). Let G = GLn, and w 2 F+
with w = si1 · · · sir . Let R be Z/pmZ,m �

1, or Zp.

Hk

ét
�
X(w), R

�
=

(
indGLn(Fq)

PI(Fq)
1R, k = 0,

0, k > 0,

where 1R is the 1-dimensional trivial PI(Fq)-module with coefficients in R.

In Section 7, we analyze a spectral sequence associated to a stratification of X(w):

Ei,j

1 =
M

u�w

`(u)=`(w)�i

Hj

ét
�
X(u),Z/pmZ

�
) Hi+j

ét,c (X(w),Z/pmZ) .

The corollary above implies that this spectral sequence degenerates at the E2-page. In
particular, it can be computed by the Solomon-Tits complex, which is a simplicial complex
constructed from the group GLn(Fq). This method has been used to study the compactly
supported `-adic cohomology of X(w) [Orl18, §5, §7], c.f. [DOR10, Ch VII].
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Corollary (7.5, 7.6). Let G = GLn and w 2 F+
. Let LI ◆ T ⇤

be the standard Levi

subgroup of GLn such that PI = UI o LI , where UI is the unipotent radical of PI . Let R be

Z/pmZ,m � 1 or Zp. Then

Hk

ét,c (X(w), R) =

(
0, k 6= `(w),

indGLn(Fq)
PI(Fq)

StLI , k = `(w),

where StLI is the Steinberg module for LI with coefficients in R. In particular, when I = S,

we have H`(w)
ét,c (X(w), R) = StGLn .

Finally, it is natural to ask whether the double induction method applies to the case for
X(w) instead of the smooth compactification. One possibility is to adapt the steps directly
to Hk (X(w),O). As the base case, Appendix A contains a description of H0 (X(w),O)
for w  w, analogous to Kuschkowitz’s result for the Drinfeld half space [Kus16, Theorem
2.1.2.1], which gives a filtration on H0 (X(w),O) such that each subquotient fits into an
extension of GLn(Fq)-representations. Another possibility is to adapt the steps of the double
induction to the local cohomology groups Hk

X(v)

�
X(w),O

�
. If all such local cohomology

groups are known for all X(v) in X(w)\X(w), then one could construct a spectral sequence
for these local cohomology groups and examine whether they could help us to understand
Hk (X(w),O). We will give some examples for these local cohomology of X(w) with support
in X(v) in Appendix B.
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interesting problems and projects on the topic of Deligne–Lusztig varieties for GLn, and for
his guidance on my research. Many thanks to Thomas Hudson and Georg Linden for giving
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discussions. Moreover, I wish to thank Pierre Deligne for answering my questions about
constructions used in [DL76].

This project is supported by the research training group GRK 2240: Algebro-Geometric

Methods in Algebra, Arithmetic and Topology, which is funded by the Deutsche Forschungs-
gemeinschaft (DFG).

1. Deligne–Lusztig varieties for GLn

In this section we first fix the notations and conventions for Deligne–Lusztig varieties in
general, and then specifically for the case of G = GLn in Section 1.7. Finally, we will conclude
this section with some examples of Deligne–Lusztig varieties for GLn.

1.1. Notations. Let p be a prime number, and q = pr, r � 1. Fix an algebraic closure Fp

of the finite field Fp that contains the finite field Fq. Here we recall some basic notions from
the theory of reductive groups. The standard references we have used are [DG70], [Jan03],
[Hum75] and [SGA3-I].

Let G be a reductive algebraic Fp-group defined via base change by a connected reductive
Fq-group G0. Let F denote the Frobenius endomorphism on G, obtained by extension from
the Frobenius endomorphism of G0. Denote with GF the fixed points of G by the Frobenius.

Note that the datum of maximal torus, Borel subgroup, and the Weyl group is unique up
to unique isomorphisms (cf. [DL76, §1.1]). Fix a F -stable Borel subgroup B⇤ of G and a
F -stable maximal torus T ⇤ such that T ⇤ ✓ B⇤.

Let W := N(T ⇤)/T ⇤ be the Weyl group, where N(T ⇤) is the normalizer of T ⇤ in G. At
the same time, W is the Weyl group of the root system of T , which contains a set S of
simple roots that are generators of W . In the literature, elements of S are sometimes called
elementary reflections or simple reflections. We denote by `(w) the Bruhat length of w 2W .
It is the minimal number r such that w can be written as the product w = si1 · · · sir , where
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sij 2 S, j = 1, ..., r. Here we call si1 · · · sir a reduced expression of w. The Bruhat order 
on W is defined by: w  v whenever w, v 2 W have reduced expressions w = si1 · · · sir and
v = t1 · · · tk, t1, . . . , tk 2 S such that 1  i1  · · ·  ir  k, and sij = tij for all j = 1, ..., r
cf. [GP00, §1.2.4].

Denote the opposite Borel subgroup by B+, recall that we have decompositions

B⇤ = U⇤T ⇤ = U⇤ o T ⇤ B+ = U+T ⇤ = U+ o T ⇤,

where U⇤ and U+ are the unipotent radicals of B⇤ and B+ respectively.
Since by definition G and B⇤ are Fp-schemes, the quotient G/B⇤ exists in the category of

Fp-schemes [DG70, III §3.5.4]. In particular, G/B⇤ is integral, projective and smooth [Jan03,
§II.13.3]. Since Fp is algebraically closed, then the Fp-rational points on G/B⇤ correspond
bijectively to the elements in G

�
Fp

�
/B⇤ �Fp

�
. Thus by Borel fixed point theorem, we know

that the Borel subgroups of G correspond to the Fp-rational points on G/B⇤ and they are all
conjugate to B⇤. Throughout this text, let X be the set of all Borel subgroups of G on which
G acts by conjugation. In particular, via the set theoretic identification between G/B⇤ and
X given by gB⇤ 7! gB⇤g�1, X obtains a structure of a Fp-scheme with an G-action such that
the identification G/B⇤ ⇠= X is G-equivariant. By abuse of notation, I write gB⇤ 2 G/B⇤,
B 2 X or x 2 X for Fp-rational points on G/B⇤ and X respectively, when there is no
ambiguity.

1.2. Basic Constructions. There is a left G-action on the product X ⇥ X given by the
diagonal action:

G⇥ (X ⇥X) �! X ⇥X
(g, (B1, B2)) 7�!

�
gB1g�1, gB2g�1

�
.

The quotient G\ (X ⇥X) is in bijection with the Weyl group W as a result of the Bruhat de-
composition [BT65, §2.11]. For each w 2W , the orbit O(w) is of the form G.

�
B⇤, ẇB⇤ẇ�1

�
,

where ẇ 2 N(T ⇤) is a representative of w. In particular, the orbit corresponding to the
identity e 2 W is O(e) ⇠= X. We refer to [DL76, §1] for basic properties of the orbits O(w).
Since F : G ! G induces an automorphism on X = G/B, let �F ✓ X ⇥X be the graph of
F .

Definition 1.1. The Deligne–Lusztig variety X(w) for G corresponding to w 2W is defined
as the intersection in X ⇥X of O(w) and the graph of F .

X(w) := O(w)⇥(X⇥X) �.

Remark 1.2. Note that this intersection is transverse. Moreover, the set of (rational) points
of X(w) corresponds to the subset of Borel subgroups B in X such that B and F (B) are in
relative position w.

X(w) = {B 2 X|(B,F (B)) 2 O(w)}.

Additionally, X(w) is a subscheme of X of dimension `(w) that is locally closed and smooth.
Considered as a subscheme of X, the Deligne–Lusztig variety X(w) is stable under the GF -
action. Thus we have a GF -action on X(w).

Deligne–Lusztig varieties may alternatively be defined as follows cf. [DMR07, §2.3].

Definition 1.3. Let w = si1 · · · sir with sij 2 S be a reduced expression. The Deligne–

Lusztig variety associated to the reduced expression si1 · · · sir is defined as:

X(si1 , ..., sir ) :=
�
(B0, ..., Br) 2 Xr+1|(Bj�1, Bj) 2 O(sij ), j = 1, ..., r, FB0 = Br

 
.

Remark 1.4. Let w 2W . For any reduced decomposition si1 · · · sir of w with sij 2 S, there
is an isomorphism X(w)

⇠! X(si1 , ..., sir ). Thus this definition is independent of the reduced
expression of w up to (canonical) isomorphisms.
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1.3. Smooth compactifications. In general, the Zariski closure X(w) of X(w) in X is not
smooth. For each reduced decomposition w = si1 · · · sir of w 2 W with sij 2 S, j = 1, ..., r,
we have a smooth compactification X(w) of X(w) with a normal crossing divisor at infinity
[DL76, §9.10] defined as follows:

Definition 1.5. Let w 2 W , and let w = si1 · · · sir be a reduced expression with sij 2 S,
j = 1, ..., r. We define

O(si1 , ..., sir ) :=
n
(B0, ..., Br) 2 Xr+1|(Bj�1, Bj) 2 O(sij ), j = 1, ..., r

o
,

where O(sij ) = O(sij )
Ṡ
O(e), and

X(si1 , ..., sir ) := O(si1 , ..., sir )⇥(X⇥X) �,

where � ✓ X ⇥X is the graph of the Frobenius and O(si1 , ..., sir )! X ⇥X is the projection
map (B0, ..., Br) 7! (B0, Br).

We also use the notation X(w) for X(si1 , ..., sir ) when the reduced expression w =
si1 · · · sir is specified.

Remark 1.6. In view of [DL76, Lemma 9.11], for each reduced expression si1 · · · sir of w,
the scheme X(si1 , ..., sir ) gives a smooth compactification of X(w) with a normal crossing
divisor X(si1 , ..., sir )\X(w) at infinity. We may also write

X(si1 , ..., sir ) =
n
(B0, ..., Br) 2 Xr+1|(Bj�1, Bj) 2 O(sij ), j = 1, ..., r, FB0 = Br

o
.

1.4. Affiness and Irreducibility.

Affineness. (i) Let G/Fp be any connected reductive group that is defined by G0/Fq. Let h
be the Coxeter number of G, which is the Bruhat length of the Coxeter element W . If q > h,
then X(w) is affine for any w 2W [DL76, Theorem 9.7].

(ii) If w 2W is a Coxeter element, then X(w) is affine [Lus77, Corollary 2.8].

Irreducibility. Whether a Deligne–Lusztig variety is irreducible is completely dependent on
the support of the corresponding Weyl group element.

(i) When w 2W is a Coxeter element, then X(w) is irreducible [Lus77, Proposition 4.8].
(ii) Let w 2W . If

supp(w) := {s 2 S|s  w} = S,

where  is the Bruhat order on W , then X(w) is irreducible. In addition, X(w) has the
same number of irreducible components with its smooth compactification X(w) (when one
fixes a reduced expression of w). There exists many proofs for this statement. Here we refer
to [BR06] and [Gör09].

(iii) Let v, w 2W such that
supp(v) = supp(w),

then X(w) and X(v) have the same number of irreducible components. By [DMR07, Propo-
sition 2.3.8], one may write down the irreducible components, as well as the number of
irreducible components. In Section 5.3, we will see this in more detail for G = GLn.

1.5. Fibrations over X. We recall basic constructions from [DL76, 1.2(b)]. We use the
notations from Section 1.1. We say a morphism of Fp-schemes f : Y1 ! Y2 is a bundle
with fiber E, if Y2 admits an open covering with respect to a topology ⌧ (e.g. Zariski open
covering, fppf open covering) such that all (closed) fibers of f are isomorphic to E and f is
locally trivial with respect to this covering.

Let s 2 S be a simple reflection. Let ⇡ : G! G/B⇤ be the canonical projection map. The
Zariski open covering {ẇU+B⇤}w2W of G gives a Zariski open covering {⇡(ẇU+B⇤)}w2W of
G/B cf. [Jan03, II §1.10].

Lemma 1.7. The projection map pr1 : O(s)! X is an A1
-bundle with respect to the Zariski

open covering {⇡(ẇU+B⇤)}w2W of X.
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Proof. We recall a construction from [Jan03, F.23]. The product B⇤ ⇥ B⇤ acts on G ⇥ G
from the right via (g1, g2).(b1, b2) 7! (g1b1, b

�1
1 g2b2). One may take the quotient and get

G⇥B
⇤
G/B⇤. There is also an isomorphism

' : G⇥B
⇤
G/B⇤ ⇠�!G/B⇤ ⇥G/B⇤

(g1, g2B⇤)B⇤ 7�! (g1B⇤, g1g2B⇤)

of Fp-schemes. We may take the embedding of O(s) into G ⇥B
⇤
G/B⇤ via the inverse of '.

The image of O(s) is isomorphic to G⇥B
⇤
B⇤sB⇤/B⇤. The projection map to the first factor

remains the same for G⇥B
⇤
G/B⇤ by construction. We may easily see that

pr�1
1 (⇡(ẇU+B⇤))

⇠�! ẇU+B⇤ ⇥B
⇤
B⇤sB⇤/B⇤

Since ⇡ : G! G/B⇤ is Zariski locally trivial with respect to the open covering {⇡(ẇU+B⇤)}w2W

, the projection to the first factor pr1 : G ⇥B
⇤
B⇤sB⇤/B⇤ ! G/B⇤ is Zariski locally trivial

with respect to the same open covering {⇡(ẇU+B⇤)}w2W [Jan03, I §5.16]. In other words,
we have an isomorphism

ẇU+B⇤ ⇥B
⇤
B⇤sB⇤/B⇤ = ⇡�1

�
⇡(ẇU+B⇤)

�
⇥B

⇤
B⇤sB⇤/B⇤ ⇠! ⇡(ẇU+B⇤)⇥B⇤sB⇤/B⇤.

Since B⇤sB⇤/B⇤ ⇠= A1, this is an A1-bundle. ⇤
Lemma 1.8. The projection map pr2 : O(s)! X is an A1

-bundle with respect to the Zariski

open covering {⇡(ẇU+B⇤)}w2W of X.

Proof. Via the isomorphism G/B⇤ ⇥ G/B⇤ ! G/B⇤ ⇥ G/B⇤ defined by (g1B⇤, g2B⇤) 7!
(g2B⇤, g1B⇤), the result follows from Lemma 1.7. ⇤
Lemma 1.9. Let pr

i
: O(s) ! X, i = 1, 2, be the projection maps and let ↵ : T ⇤ ! Gm be

the simple root associated s. Then O(s) is isomorphic to a homogeneous G-space, with fibres

isomorphic to B⇤/(B⇤\ ṡB⇤ṡ). Moreover, the B⇤
-action on the fiber B⇤/(B⇤\ ṡB⇤ṡ) is given

by b.y = ↵(b)y+ µ(b), y 2 B⇤/(B⇤ \ ṡB⇤ṡ), where µ : B⇤ ! Ga is defined by µ(ut) = uj,j+1.

Proof. Recall that O(s) is a G-orbit coming from the diagonal G-action on X ⇥X. Thus G
acts transitively on O(s) cf. [Spr09, §2.3]. If we choose a lift ṡ 2 G, then X ! O(s) defined
by B 7! (B, ṡBṡ) gives a section of pr1. (Respectively, B 7! (ṡBṡ, B) gives a section of pr2.)
Thus O(s) is a homogeneous G-space.

Note that StabG(B⇤) = B⇤ and StabG(B⇤, ṡB⇤ṡ) = B⇤ \ ṡB⇤ṡ. There is a G-equivariant
bijection

◆ : O(s) �! G/(B⇤ \ ṡB⇤ṡ),

which is G-equivariant with respect to the diagonal G-action on O(s) and the left G-action
on G/(B⇤ \ ṡB⇤ṡ).

In fact, this is also an isomorphism of Fp-schemes cf. [Jan03, §I.5.6 (8)], and the canonical
projection maps

⇡ : G
⇡2�! G/(B⇤ \ ṡB⇤ṡ)

⇡1�! G/B⇤.

are Zariski locally trivial with respect to the covering {⇡(ẇU+B⇤)}w2W of G/B⇤ [Jan03, §II
1.10]. In particular, G/(B⇤ \ ṡB⇤ṡ) is a homogeneous G-space over G/B⇤ via ⇡1, and the
fibers are isomorphic to B⇤/(B⇤ \ ṡB⇤ṡ).

The G-action that preserves the fiber at B⇤ comes from StabG(B⇤) = B⇤. Note that
B⇤/(B⇤ \ ṡB⇤ṡ) is isomorphic to the unipotent subgroup U�↵ cf. [Jan03, §II. 1. 8, II 13.1],
and U�↵

⇠= A1.
The B⇤-action on U�↵ is given by the following: Let ut 2 B⇤, where u 2 U⇤ and t 2 T ⇤,

and u0 2 U�↵. Then utu0 = u(tu0t�1)t. Conjugation of the matrix u0 by t is multiplication
on the nonzero entry of u0 by an element of Gm

�
Fp

�
. For example, if s acts on T ⇤ by

permuting the (j, j + 1)-th entries, then tu0t�1 is the unipotent matrix of U�↵ with its
nonzero entry on the upper triangular part multiplied by tjt

�1
j+1. Observe that conjugation
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by t 2 T ⇤(Fp) gives a group action on U�↵ whose character coincides with the simple root ↵
associated to s. The action of u 2 U⇤ on tu0t�1 is simply adding the nonzero entry of tu0t�1

on the upper triangular part by the (j, j + 1)-th entry of u, which is an element of Ga(Fp).
⇤

Recall that O(s) is the Zariski closure of O(s) in X ⇥X, and O(s) is the disjoint union of
O(s) and O(e):

O(s) = {(B0, B1) 2 X ⇥X|(B0, B1) 2 O(s), or (B0, B1) 2 O(e)} .

Note that we have an identity section of the projection maps pr
i
: O(s)! X, i = 1, 2, given

by X ⇠= O(e)! O(s). The complement of this section gives us pr
i
: O(s)! X.

Let B ✓ G be a Borel subgroup. Consider the parabolic subgroup P := B [ BsB.
Denote the unipotent radical of P by UP and denote LP := P/UP . The quotient group
LP := LP /Z(LP ) is semisimple of rank 1. Then LP is isomorphic to PGL2 [Mil17, Theorem
20.16].

Similar to X = G/B⇤, we may construct a homogeneous space X
LP

associated to the
reductive group L. In particular, X

LP
is a smooth projective scheme of dimension 1 with a

nontrivial action of LP . Note that it is isomorphic to P1
Fp

.

Lemma 1.10. The projection map pr
i
: O(s) ! X, i = 1, 2, is a P1

-bundle and it is locally

trivial with respect to the Zariski open covering {⇡(ẇU+B⇤)}w2W of X.

Proof. The proof is the same as Lemma 1.7. Let i = 1. The isomorphism of Fp-schemes

' : G⇥B
⇤
G/B⇤ ⇠�!G/B⇤ ⇥G/B⇤

(g1, g2B⇤)B⇤ 7�! (g1B⇤, g1g2B⇤)

gives an isomorphism between O(s) and G ⇥B
⇤
B⇤sB⇤/B⇤. We have B⇤sB⇤/B⇤ ⇠= P1. For

any ⇡(ẇU+B⇤) in the open covering for X, we have an isomorphism

pr�1
1 (⇡(ẇU+B⇤))

⇠�! ẇU+B⇤ ⇥B
⇤
B⇤sB⇤/B⇤.

Since ⇡ : G! G/B⇤ is locally trivial with respect to the open covering {⇡(ẇU+B⇤)}w2W ,
the projection to the first factor pr1 : G ⇥B

⇤
B⇤sB⇤/B⇤ ! G/B⇤ is Zariski locally trivial

with respect to the same open covering {⇡(ẇU+B⇤)}w2W [Jan03, I §5.16]. In other words,
we have an isomorphism

ẇU+B⇤ ⇥B
⇤
B⇤sB⇤/B⇤ ⇠�! ⇡(ẇU+B⇤)⇥B⇤sB⇤/B⇤

The case for i = 2 is symmetric. ⇤
Remark 1.11. Let P ⇤ := B⇤sB⇤ [ B⇤. Then pr

i
: O(s)! G/B⇤ is the base change of the

homogeneous G-space G/B⇤ ! G/P ⇤ via the projection map ⇡P : G/B⇤ ! G/P ⇤.
Indeed, let (g1B⇤, g2B⇤) 2 O(s), then we have g�1

1 g2 2 P ⇤. Thus we have g1P ⇤ =
g2P ⇤ in G/P ⇤. We have the canonical projection map ⇡P : G/B⇤ ! G/P ⇤. Observe that
(g1B⇤, g2B⇤) 2 G/B⇤ ⇥ G/B⇤ is in O(s) if and only if ⇡P (g1B⇤) = ⇡P (g2B⇤). Thus O(s)
can be identified with G/B⇤ ⇥G/P⇤ G/B⇤. In other words, we have a cartesian diagram of
Fp-schemes:

O(s) G/B⇤

G/B⇤ G/P ⇤,

pr2

pr1 ⇡P

⇡P

(1.1)

where all maps are G-equivariant.
Let ⇡0 : G ! G/P ⇤ be the canonical projection map, and since ⇡0 is locally trivial with

respect to the the (Zariski) open cover {⇡0(ẇU+B⇤)}w2W of G/P ⇤ [Jan03, §II.1.10 (5)], we
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see that ⇡P is also locally trivial with respect to this cover. As a result, pr
i
, i = 1, 2, is locally

trivial with respect to the Zariski open covering {⇡(ẇU+B⇤)}w2W of G/B⇤.
In particular, the fibers of pr

i
are isomorphic to P ⇤/B⇤. The fiber at B⇤ is precisely

P ⇤/B⇤ and has a P ⇤-action. Note that P ⇤/B⇤ ⇠= P1 and the P ⇤-action on P ⇤/B⇤ induces
the natural PGL2-action on P1 cf. [Dem74, §2.5 Lemma 3].
1.6. The induced GF -action on the cohomology groups. Let G be as in Section 1.1,
and let Y be a Fp-scheme with GF -action. Recall that GF = G0(Fq), so it is in particular a
finite group. Following [MFK94, Definition 1.6], we explain how GF acts on the cohomology
groups of GF -equivariant OY -modules.
Definition 1.12. Let Y be a Fp-scheme with GF -action � : GF ⇥ Y ! Y , and let V be an
invertible sheaf of OY -modules. Denote by µ : GF ⇥ GF ! GF the multiplication. A GF

-

linearization of V constists of the datum of an isomorphism of sheaves of OGF⇥Y -modules,

� : �⇤V ⇠�! pr⇤2V,
such that �|{1}⇥Y

is the identity and the cocycle condition on GF ⇥GF ⇥ Y
�
pr⇤2,3�

�
� ((idGF ⇥ �)⇤�) = (µ⇥ idY )

⇤�

is satisfied.

We say that V is GF -equivariant if it possesses a GF -linearization.
Example 1.13. (i) For V = OY , we naturally have �⇤OY

⇠= OGF⇥Y and pr⇤2OY
⇠= OGF⇥Y .

Thus � is given by the composition of these two isomorphisms. The cocycle condition follows
because the pullback of the structure sheaf is the structure sheaf. Thus OY is GF -equivariant.

(ii) There is a natural morphisms of sheaves of OGF⇥Y -modules:

�⇤⌦1
Y
�! ⌦1

GF⇥Y
.

Note that the projection map induces a projection map of sheaves of OGF⇥Y -modules:

⌦1
GF⇥Y

�! pr⇤2⌦
1
Y
.

The composition yields a morphism of OGF⇥Y -modules � : �⇤⌦1
Y
! pr⇤2⌦1

Y
. By checking on

the level of stalk, one sees that � is an isomorphism and the cocycle condition is satisfied.
(iii) Let dimFp

Y = r. Let ⌦r

Y
be the canonical sheaf of Y . One shows that ⌦r

Y
is GF -

equivariant by following the steps above and taking r-th exterior powers. Note that exterior
powers commute with taking the inverse image.
Lemma 1.14. Let Y be a Fp-scheme with GF

-action, and let V be a GF
-equivariant sheaf

of OY -modules. Then the cohomology groups

Hk (Y,V)
are GF

-modules.

Proof. For each g 2 GF , the map g : Y ! Y induces isomorphisms of

Hk(Y, g⇤V) ⇠�! Hk(Y,V)
by functoriality. For any g, g0 2 GF , the isomorphism � induces an isomorphism �g : g⇤V ⇠�!
V such that the cocycle condition implies that �gg0 = �g0 � g0⇤(�g). Thus Hk(Y,V) are GF -
modules. ⇤
Lemma 1.15. Let Y be a Fp-scheme together with a GF

-action. Suppose H0(Y,OY ) = Fp.

Then H0(Y,OY ) is the trivial GF
-representation.

Proof. Let g 2 GF . We have an isomorphism OY

⇠! g⇤OY . Let ' 2 OY (Y ), for all y 2 Y ,
g.'(y) = '(g�1.y).

As we have OY (Y ) = Fp, any ' 2 OY (Y ) is constant, and so g.' = '. Therefore GF acts on
H0(Y,OY ) trivially.

⇤
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1.7. Conventions for G = GLn. In the following, we will specifically consider the case
G = GLn. In this case, we have GF (Fp) = GLn(Fq). Fix a maximal torus T ⇤ ✓ GLn such
that T ⇤(Fp) corresponds to the diagonal matrices in GLn(Fp). We also fix a Borel subgroup
B⇤ ✓ GLn whose Fp-rational points correspond to the upper triangular matrices in GLn(Fp)
cf. [Jan03, §II.1.8].

There is a canonical isomorphism between the Weyl group W associated to T ⇤ ✓ B⇤ as
above and the symmetric group Sn, in the sense that the elements of W acts on T ⇤(Fp) by
permuting the diagonal entries. We fix a set of generators S := {s1, ..., sn�1} of W such that
si acts on the elements of T ⇤(Fp) by permuting the i-th and (i+ 1)-th entries. Any product
of the si’s in W such that each si shows up exactly once is called a Coxeter element. In
particular, we call the product s1 · · · sn�1 the standard Coxeter element, which we denote
by w. Let {↵1, ...,↵n�1} be the simple roots with each ↵i corresponding to si. The the
unipotent subgroup U�↵i has Fp-rational points consisting of matrices whose only nonzero
entries lie on the diagonal and the (i, i+ 1)-th entry, with the entries on the diagonal all 1’s.
Moreover, each U�↵i is isomorphic to the additive group Ga.

For any subset I ✓ S, denote WI the subgroup of W generated by I. We define the
associated standard parabolic subgroup cf. [Hum75, Theorem 29.2]:

PI = B⇤WIB
⇤ :=

[

w2WI

B⇤ẇB⇤.

Let LI be the standard Levi subgroup containing T ⇤ such that we have a Levi decomposition

PI

⇠�! UI o LI ,

where UI is the unipotent radical of PI .
Finally, recall that the Frobenius endomorphism F acts as the identity on W in this case

cf.[DM20, Example 2.3.13].

1.8. Examples of Deligne–Lusztig varieties for GLn. Let G = GLn. Note that the
standard Coxeter element w corresponds to the n-cycle (1, ..., n) in the symmetric group on
n-elements. Recall from [DL76, §2] that X(w) can be identified with the following subspace
of of the complete flag variety X:

8
<

:D•

����� dimFp
Di = i, D0 = {0}, Di =

iM

j=1

F j�1D1, i = 1, ..., n� 1, Dn = Fn

p

9
=

; .

Via the projection D• 7! D1, one obtains an embedding of X(w) into Pn�1
Fp

. In particular,
X(w) is isomorphic to the Drinfeld half space of dimension n� 1, which is the complement
of all Fq-rational hyperplanes in Pn�1

Fp
. In other words, there is an GLn(Fq)-equivariant

isomorphism
X(w) = X(s1 · · · sn�1)

⇠�! Pn�1
Fp
�H,

where H is the union of all Fq-rational hyperplanes in Pn�1
Fp

.
The smooth compactification X(w) associated to the expression w = s1 · · · sn�1 is iso-

morphic to the successive blow up eY of Pn�1
Fp

along all Fq-rational linear subvarieties [Ito05,
§4.1], cf. [GK05, §1], and [Lin18, §2.5].

eY = Yn�1 �! Yn�2 �! · · · �! Y�1 = Pn�1
Fp

where Yi ! Yi�1 is the blow up of Yi�1 along the strict transform of all Fq-rational linear
subvarieties H ✓ Pn�1

Fp
with dimH = i. The maps Yi ! Yi�1 are GLn(Fq)-equivariant, so

the map eY ! Pn�1
Fp

is equivariant under GLn(Fq)-action.
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Let w 2 W such that w  w. Then XGLn(w) is isomorphic to a disjoint union of
products of Drinfeld half spaces. This isomorphism extends to the corresponding smooth
compactifications. In Section 5.2 and 5.3, we will discuss this example in more detail.

2. The Weyl group of GLn and generalized Deligne–Lusztig varieties

The goal of this section is to recall some constructions related to the Weyl group W of GLn,
and to give the definition of generalized Deligne–Lusztig varieties associated to an element
of the free monoid F+ (resp. F̂+).

2.1. Conjugacy classes and cyclic shifting. We would like to review some definitions
and theorems from [GP00, §3], specifically in the case when W is the Weyl group of GLn.
The conventions of Section 1.7 applies.

Definition 2.1. We say w,w0 2W are conjugated by cyclic shifts when there exists elements
v0, ..., vm 2 W such that v0 = w, vm = w0 and for all i = 1, ...,m, we have xi, yi 2 W such
that vi�1 = xiyi, vi = yixi, and `(vi�1) = `(xi) + `(yi) = `(vi).

Remark 2.2. Note that if w,w0 2W are conjugate by cyclic shift, then `(w) = `(w0).

The following theorem is from [GP00, Theorem 3.1.4].

Theorem 2.3. Any two Coxeter elements of W are conjugated by cyclic shifts.

Let C be a conjugacy class of W . We write Cmin for the subset of C that consists of
elements with the shortest Bruhat length:

Cmin := {v 2 C|`(v)  `(w) for all w 2 C}.

Definition 2.4. Let w, v 2 W . We write w ! v if and only if there exists elements w =
w0, w1, w2, ..., wm = v 2 W , such that wi = siwi�1si and `(wi) � `(wi�1) for i = 1, ...,m,
where si 2W is an elementary reflection.

Now we may present a special case of the theorem from [GP00, Theorem 3.2.9], with
wording adapted to our situation.

Theorem 2.5 (Geck-Pfeifer). (i) Let w 2W , and let C be a conjugacy class of W containing

w. Then there exists w0 2 Cmin such that w ! w0
.

(ii) Let w1, w2 2W be two Coxeter elements, then w1 ! w2 and w2 ! w1.

Corollary 2.6. Let w 2 W , and let C ✓ W be the conjugacy class of w. Then either

w 2 Cmin or there exists s 2 S, v 2W such that sws = v and `(v) + 2 = `(w).

Proof. By the above theorem [GP00, Theorem 3.2.9], we know that w ! w0 for some w0 2
Cmin. If `(w) = `(w0), then by definition of the minimal elements in a conjugacy class,
we know that w 2 Cmin. If w /2 Cmin, then there exists some s 2 S, v 2 W such that
sws = v and `(v) < `(w). It is easy to see that `(v) = `(w)� 1 is impossible. Thus we have
`(v) + 2 = `(w). ⇤

2.2. Height. Corollary 2.6 allows us to define the height of any w 2W . This definition was
first presented in [Orl18, Definition 5.1].

Definition 2.7. Let W be the Weyl group (for GLn). Let w 2W and denote the conjugacy
class of w in W by C. We define the height for w inductively as follows:

i. If w 2 Cmin, then we define ht(w) = 0,
ii. If w /2 Cmin, then there exists v 2W and s 2 S such that w = svs and `(w) = `(v)+2.

We define the height ht(w) = ht(v) + 1.

Example 2.8. Let G = GLn, W be the Weyl group, S a set of generators for W . Take
w 2W and denote the conjugacy class of w in W by C.
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i. By [GP00, Example 3.1.16], w 2 Cmin if and only if w is the Coxeter element for some
WJ ✓ W . Thus any height 0 element in W is a Coxeter element for some parabolic
subgroup WJ of W .

ii. Let w0 = s1 · · · si�1si+1 · · · sn�1 and w := siw0si. As w0 is the Coxeter element of
the subgroup of W generated by the set {s1, ..., si�1, si+1, ..., sn�1}, we know that
w0 2 Cmin, where C is the conjugacy class in W containing w0. Thus ht(w0) = 0 and
ht(w) = 1.

2.3. Support.

Definition 2.9. Let w 2W . The support of w is
supp(w) := {s 2 S|s  w}.

Note that |supp(w)|  `(w) and that the equality holds when w has a reduced expression
w = si1 · · · sir with sij 2 S all distinct.

Let G = GLn and w 2 W . Set I := supp(w), and let C be the conjugacy class of w in
W . Let WI ✓ W be the subgroup generated by I. Then there exists w0 2 Cmin such that
w ! w0 and w0 is a Coxeter element in WI .

2.4. The free monoid associated to the Weyl group. Let us introduce the free monoid
F+, cf. [DMR07] and [Orl18, §2].

Definition 2.10. We define F+ as the free monoid generated by s1, . . . , sn:
F+ := hs1, ..., sn�1i

Remark 2.11. (i) There is a natural surjective morphism of monoids:
↵ : F+ �!W

with kernel generated by the relations in the group presentation of W .
(ii) There is a partial order 4 on F+ defined by: w0 4 w whenever w0 = si1 · · · sir and

w = t1 · · · tk, t1, . . . , tk 2 S such that 1  i1  · · ·  ir  k, and sij = tij for all j = 1, ..., r.
We call this the Bruhat order on F+. Note that this is not entirely compatible with the
Bruhat order on W .

(iii) There is a Bruhat length function on F+, not compatible with the Bruhat length on
W . When w = si1 · · · sir 2 F+, we have `(w) = r.

(iv) For w, v 2 F+, we always have `(wv) = `(w) + `(v).

There is also a variant of F+ defined in [Orl18, p. 22].

Definition 2.12. Let cW be a copy of W . Define F̂+ as the free monoid generated by S[̇T 0,
where

T 0 :=
n
csts 2 cW

��� st 6= ts in W, s, t 2 S
o
.

Remark 2.13. Note that T 0 and S are forced to be disjoint in F̂+.
We define the Bruhat length function on F̂+ as the function counting the number of

elements of S and bS showing up in the expression, where bS is the set of generators in cW
corresponding to S, instead of counting the number of generators.

2.5. Constructing generalized Deligne–Lusztig varieties. As in Section 1, we may
define generalized Deligne–Lusztig varieties for elements of the free monoids F+ and F̂+. We
only recall the definitions and properties here. Refer to [DMR07, §2.2.11] and [Orl18, end of
§3] for more detailed discussions.

Definition 2.14. Let w = si1 · · · sir 2 F+. We define the Deligne–Lusztig variety corre-

sponding to si1 · · · sir as follows:

X(si1 , ..., sir ) := {(B0, ..., Br) 2 Xr+1|(Bj�1, Bj) 2 O(sij ), 8j = 1, ..., r, Br = F (B0)}.

This variety is a smooth Fp-variety with a GF -action.
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Remark 2.15. For sij 2 F+ with ↵(sij ) 2 S. We set O(sij ) := O(↵(sij )). However, note
that for all a, b 2 F+, we have O(a) ⇥X O(b)

⇠! O(a, b), reflecting the structure of F+ as a
free monoid.

Let w = si1 · · · sir 2 F+. If `(w) = `(↵(w)), then there is a GF -equivariant isomorphism

X(si1 , ..., sir )
⇠�! X(↵(w))

(B0, ..., Br) 7�! B0

of Fp-schemes. Note that if we consider w 2W , then for each reduced expression si1 · · · sir of
w with sij 2 S, we get an element of F+ and a corresponding (generalized) Deligne–Lusztig
variety.

Similarly, we define the (generalized) Deligne–Lusztig variety corresponding to elements
in F̂+. After post composing with the isomorphism W ⇠= Ŵ , we may extend the surjective
map ↵ to ↵̂ : F̂+ !W .

Definition 2.16. Let w = t1 · · · tr 2 F̂+. We define the Deligne–Lusztig variety correspond-

ing to w as follows:
X(t1, ..., tr) :=

�
(B0, ..., Br) 2 Xr+1

�� (Bj�1, Bj) 2 O(tj), 8j = 1, ..., r, Br = F (B0)
 
.

Remark 2.17. This variety is a smooth Fp-variety with a GF -action. Note that there
could be some tj in the expression of w such that tj = csts for some s, t 2 S, st 6= ts.
For csts 2 F̂+, we set O(csts) := O(↵̂(csts)). Similarly, we have for all a, b 2 F̂+, we have
O(a)⇥X O(b)

⇠! O(a, b). Thus X(t1, . . . , tr) has dimension `(w) � r.

2.6. Smooth compactification of generalized Deligne–Lusztig varieties. We write
down the smooth compactifications for Deligne–Lusztig varieties corresponding to w 2 F+

and w 2 F̂+. They are the same as the construction in [DL76, §9] when w 2 F+ or w 2 F̂+

is the reduced expression for some w0 2W .

Definition 2.18. Let w = si1 · · · sir 2 F+. The smooth compactification of X(si1 , ..., sir ) is
defined as:

X(si1 , ..., sir ) :=
n
(B0, ..., Br) 2 Xr+1

�� (Bj�1, Bj) 2 O(sij ), 8j = 1, ..., r, Br = F (B0)
o
.

Remark 2.19. Let w 2 W , and let w = si1 · · · sir be a reduced expression with sij 2 S.
Then X(si1 , ..., sir ) can be identified with X(w), corresponding to the reduced expression w =
si1 · · · sir , constructed in Definition 1.5. Moreover, the smooth compactification X(si1 , ..., sir )
is a smooth projective Fp-variety with GF -action cf. [DL76, §9], [Orl18, Proposition 3.17].

Similarly, we have the following definition for w 2 F̂+.

Definition 2.20. Let w = t1 · · · tr 2 F̂+. We define the following Fp-scheme containing
X(t1, ..., tr):

X(t1, ..., tr) :=
n
(B0, ..., Br) 2 Xr+1

�� (Bj�1, Bj) 2 O(tj), 8j = 1, ..., r, Br = F (B0)
o
.

Lemma 2.21. Let w = t1 · · · tr 2 F̂+
, then X(t1, ..., tr) is projective and smooth.

Proof. Since O(tj) is projective for all j = 1, ..., r, it follows from [DMR07, Proposition 2.3.6
(iv)] that X(t1, ..., tr) is projective.

Note that O(t) are smooth for all t 2 S. We may have tj , j = 1, ..., r to be of the form
tj = csts, where st 6= ts, s, t,2 W . Since st 6= ts, we see that s and t do not correspond to
non-adjacent simple reflections in Sn. Now let I = {s, t}, the parabolic subgroup WI of the
Weyl group W is thus isomorphic to the symmetric group S3. In particular, sts is a reduced
expression of the longest element in WI . By [DMR07, Corollary 2.2.10], we see that O(sts)
is a smooth Fp-scheme.

Hence for all j = 1, ..., r, O(tj) is smooth. By [DMR07, Proposition 2.3.5], we may conclude
that X(t1, ..., tr) is smooth. ⇤
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2.7. Stratifications of X(w) and X(w). Let w1, w2 2 W such that `(w1w2) = `(w1) +
`(w2), recall that we have an isomorphism of schemes O(w1)⇥X O(w2)

⇠�! O(w1w2). Hence
for w,w0 2W , w0  w if and only if O(w0) ✓ O(w). This implies that we have a stratification
as follows for any w 2W , cf. [DL76, §1.2], [Jan03, §II.13.7],

O(w) =
[

w0w

O(w0).

By intersecting with the graph of the Frobenius � transversally in X ⇥X, we get a similar
stratification for any w 2W ,

X(w) =
[

w0w

X(w0).

Let w 2 F+ or F̂+, with the expression si1 · · · sir , then for all w0 � w a subword, we know
that X(w0) is isomorphic to a locally closed subscheme of X(w), thus we have the following
stratification, cf. [Orl18, §3],

X(w) =
[

w0�w

X(w0).

Example 2.22. Recall that we assume G = GLn. Let m  n� 1 be a positive integer and
w 2W with a reduced expression si1 · · · sim such that all sij , j = 1, ...,m, are distinct. Recall
from [DL76, Lemma 9.11] that

D =
[

w0�w

X(w0),

with each w0 � w considered as a subword of si1 · · · sim 2 F+, is the normal crossing divisor
of X(w) at infinity.

Note that the projection map

Xm �!X

(B0, ..., Bm�1) 7�!B0

induces an isomorphism on the open subschemes

X(w)\D �! X(w).

This map extends to the Zariski closure of X(w) in X, and so we have a surjective morphism

X(w) �! X(w)

Since w = si1 · · · sim with all sij distinct, X(w) and X(w) have stratifications indexed by
the same set, and each corresponding strata is isomorphic. In fact, they are isomorphic as
Fp-schemes [Han99, Lemma 1.9].

3. Geometry of Deligne–Lusztig varieties via P1-bundles

From now on let G = GLn. In this section, we consider P1-bunldes ⇡1 : X(sws)! X(ws)
and ⇡2 : X(sws)! X(sw) constructed from the morphism O(s)! X from Section 1.5.

3.1. The structure of certain morphisms as P1-bundles. Let w = t1 · · · tr 2 F̂+ and
s 2 S. Consider the following smooth compactification of the Deligne–Lusztig varieties
X(sws), X(ws):

X(sws) =

⇢
(B0, ..., Br+2) 2 Xr+3

����
(Bj , Bj+1) 2 O(tj), j = 1, ..., r,
(B0, B1) 2 O(s), (Br+1, Br+2) 2 O(s), Br+2 = FB0

�
,

X(ws) =

⇢
(B0

0, ..., B
0
r+1) 2 Xr+2

����
(B0

j�1, B
0
j
) 2 O(tj), j = 1, ..., r,

(B0
r
, B0

r+1) 2 O(s), B0
r+1 = FB0

0

�
.
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Lemma 3.1. The map ⇡1 : X(sws)! X(ws) defined by

(B0, B1, ..., Br+1, FB0) 7! (B1, B2, ..., Br+1, FB1)

is a P1
-bundle over X(ws) locally trivial with respect to a Zariski covering of X(ws). Fur-

thermore, ⇡1 has a section � : X(ws)! X(sws) defined by

(B0
0, ..., B

0
r
, FB0

0) 7! (B0
0, B

0
0, ..., B

0
r
, FB0

0)

with ⇡1 � � = id
X(ws).

Proof. Let us first check the well-definedness of ⇡1. Take (B0, B1, ..., Br+1, FB0) 2 X(sws).
Since (B0, B1) 2 O(s), and F fixes any s 2 S, we know that (FB0, FB1) 2 O(s). As we
also have (Br+1, FB0) 2 O(s), by [DL76, §1.2 (b1)], we have (Br+1, FB1) 2 O(s). Thus
(B1, B2, ..., Br+1, FB1) 2 X(ws).

To see that ⇡1 gives a P1-bundle, take any (B0
0, ..., B

0
r
, FB0

0) 2 X(ws), and take any B0 2 X
such that (B0, B0

0) 2 O(s). Since F fixes s, we have (FB0, FB0
0) 2 O(s). As (B0

r
, FB0

0) 2
O(s), we know by [DL76, §1.2 (b1)] that (FB0, B0

r
) 2 O(s). Thus (B0, B0

0, ..., B
0
r
, FB0) 2

X(sws), and the preimage of (B0
0, ..., B

0
r
, FB0

0) under ⇡1 is
n
(B0, B

0
0, ..., B

0
r
, FB0) 2 X(sws)

���(B0, B
0
0) 2 O(s)

o
.

Thus the fibre of ⇡1 at any (B0
0, ..., B

0
r
, FB0

0) is isomorphic to the fibre of O(s)! X at B0
0.

Let pr2,...,r+3 : O(s) ⇥ Xr+1 ! Xr+2 be the projection map to the 2nd to (r + 3)-th
component. If we take the embedding of X(ws) into Xr+2, we find that X(sws) is isomorphic
to the fibre product of X(ws) ,! Xr+2 and pr2,...,r+3.

X(sws) O(s)⇥Xr+1

X(ws) Xr+2.

⇡1 pr2,...,r+3

Let ⇡G : G! G/B⇤ be the canonical projection map for X = G/B⇤. By Lemma 1.8, we know
that pr2 : O(s)! X is locally trivial with respect to the Zariski covering {⇡G(ẇU+B⇤)}w2W

of X. Thus pr2,...,r+3 is locally trivial with respect to the Zariski covering {⇡G(ẇU+B⇤) ⇥
Xr+1}w2W of Xr+2. Via embedding X(ws) into Xr+2, we see that ⇡1 is locally trivial with
respect to a Zariski open covering of X(ws). Therefore X(sws) is a P1-bundle over X(ws).

Finally, the statement ⇡1 � � = id
X(ws) can be easily verified. ⇤

Remark 3.2. Note that our construction of ⇡1 is dependent on the fact that G = GLn is
a split group and we have fixed suitable T ⇤ ✓ B⇤ such that every w 2 W is fixed by the
Frobenius endomorphism F .

We also have a smooth compactification of the Deligne–Lusztig variety X(sw):

X(sw) =

⇢
(B0

0, ..., B
0
r+1) 2 Xr+2

����
(B0

j
, B0

j+1) 2 O(tj), j = 1, ..., r,

(B0
0, B

0
1) 2 O(s), B0

r+1 = FB0
0

�
.

Lemma 3.3. The map ⇡2 : X(sws)! X(sw) defined by

(B0, B1, ..., Br+1, FB0) 7! (Br+1, FB1, ..., FBr+1)

is a P1
-bundle over X(sw) locally trivial with respect to an fppf-covering of X(sw).

Proof. We first check the well-definedness of ⇡2. Take (B0, B1, ..., Br+1, FB0) 2 X(sws).
Since (Br+1, FB0) 2 O(s) and (FB0, FB1) 2 O(s), we know that (Br+1, FB1) 2 O(s). Thus
(Br+1, FB1, ..., FBr+1) 2 X(sw).

Note that F : X(sw) ! X(sw) is a flat and finite morphism. Via flat base change by
F : X(sw) ! X(sw), X(sws) becomes a fppf P1-bundle over X(sw). More precisely, we
have a cartesian square:
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Y X(sws)

X(sw) X(sw),

pr01

⇡
0
2 ⇡2

F

(3.1)

where
Y := {(B,B0) 2 X(sws)⇥X(sw)|FB0 = ⇡2(B)},

and ⇡0
2 is projection to the second component cf. [DL76, Theorem 1.6]. Moreover, ⇡0

2 fits
into another cartesian square:

Y O(s)

X(sw) X.

◆

⇡
0
2 pr2

pr0

Let B = (B0, ..., Br+1, FB0) and B0 = (B0
0, B

0
1, ..., B

0
r
, FB0

0) such that (B,B0) 2 Y . The map
pr0 is given by

(B0
0, B

0
1, ..., B

0
r
, FB0

0) 7! B0
0.

Also note that ◆ is the map defined by

((B0, ..., Br+1, FB0), (B
0
0, B

0
1, ..., B

0
r
, FB0

0)) 7! (B0, B
0
0).

Since F (s) = s, we know that (B0, B0
0) and (FB0, FB0

0) must belong to the same orbit in
X ⇥X. The condition FB0

0 = Br+1 implies that (FB0, FB0
0) 2 O(s), so (B0, B0

0) 2 O(s).
For all B0 = (B0

0, B
0
1, ..., B

0
r
, FB0

0) 2 X(sw), we have by the condition FB0 = ⇡2(B)
that ⇡0�1

2 (B0) = (B,B0) where B = (B0, ..., Br+1, FB0) such that FB0
0 = Br+1. In par-

ticular, (B0, B0
1) 2 O(s). Conversely, for any B0 2 X such that (B0, B0

0) 2 O(s), we have
(FB0, FB0

0) 2 O(s) and (B0, B0
1) 2 O(s). Thus (B0, B0

1, ..., B
0
r
, FB0

0, FB0) 2 X(sws). In
particular,

((B0, B
0
1, ..., B

0
r
, FB0

0, FB0), (B
0
0, B

0
1, ..., B

0
r
, FB0

0)) 2 ⇡0�1
2 (B0

0, B
0
1, ..., B

0
r
, FB0

0)

Hence via this cartesian square, we know that ⇡0
2 is a P1-bundle over X(sw). The argument

that ⇡0
2 is locally trivial with respect to the Zariski topology is analogous to the one used in

Lemma 3.1.
Finally, we return to the cartesian diagram (3.1). Since X(sw) is a Fp-scheme of finite

type, we know that the Frobenius endomorphism F : X(sw) ! X(sw) is flat, and is a
universal homeomorphism. Thus the base change pr01 of F is also flat, and is a universal
homeomorphism. Since ⇡0

2 gives a Zariski locally trivial P1-bundle, and the fppf topology is
finer than the Zariski topology, there exists a fppf open covering U := {fi : Ui ! X(sw)}i
such that ⇡0

2 is locally trivial with respect to ⇡0
2. We get a composition of cartesian diagrams

for each i:

Ui ⇥ P1 Y X(sws)

Ui X(sw) X(sw).

pr01

⇡
0
2 ⇡2

fi F

Since F is flat and surjective, we see that the composition morphism F � fi is flat, locally of
finite presentation for all i and

[

i

(F � fi(Ui)) = X(sws).

Thus U 0 := {F � fi : Ui ! X(sw)} gives a fppf covering for X(sw) such that ⇡2 is locally
trivial with respect to U 0. ⇤
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Remark 3.4. Recall that proper morphisms are preserved under fpqc (hence fppf) base
change and descent [SGA1, Exposé VIII, Corollary 4.8]. We see that the map ⇡1 and ⇡2 in
Lemma 3.1 and 3.3 are also proper morphisms of Fp-schemes.

Lemma 3.5. The maps ⇡1 : X(sws)! X(ws) and ⇡2 : X(sws)! X(sw) defined above are

GLn(Fq)-equivariant.

Proof. Take (B0, B1, ..., Br+1, FB0) 2 X(sws). Recall that GLn(Fq) acts on X(sws) via
conjugation in each component. Let g 2 GLn(Fq).

⇡1

�
gB0g

�1, ..., gBr+1g
�1, g(FB0)g

�1
�
=
�
gB1g

�1, ..., gBr+1g
�1, F (gB1g

�1)
�

Since any g 2 GLn(Fq) is fixed by F , we have F (gB1g�1) = g(FB1)g�1 and thus

⇡1

�
gB0g

�1, ..., gBr+1g
�1, g(FB0)g

�1
�
= g.⇡1 (B0, B1, ..., Br+1, FB0) .

For ⇡2, let (B0, B1, ..., Br+1, FB0) 2 X(sws), and g 2 GLn(Fq). Consider the following:

⇡2

�
gB0g

�1, gB1g
�1, ..., g(FB0)g

�1
�
=
�
gBr+1g

�1, F (gB1g
�1), ..., F (gBr+1g

�1)
�
.

Since F fixes g and g�1, we have F (g�1Big) = Bi for all i. Thus

⇡2

�
gB0g

�1, gB1g
�1, ..., g(FB0)g

�1
�
= g.⇡2 (B0, B1, ..., Br+1, FB0) .

⇤

3.2. Cohomology of the structure sheaf of the P1-bundles. Recall that the smooth
compactifications of Deligne–Lusztig varieties are smooth, separated scheme of finite type
over Fp.

Proposition 3.6. Let w 2 F̂+
, s 2 S. Then for all k � 0, there are isomorphisms of

Fp-vector spaces:

Hk

⇣
X(ws),O

X(ws)

⌘
⇠�! Hk

⇣
X(sws),O

X(sws)

⌘

and

Hk

⇣
X(sw),O

X(sw)

⌘
⇠�! Hk

⇣
X(sws),O

X(sws)

⌘
.

Proof. To simplify notation, we use X := X(sws), Y := X(ws) (resp. Y := X(sw)). Let ⇡
be as in Lemma 3.1 (resp. Lemma 3.3), and consider the Leray spectral sequence for OX :

Ep,q

2 = Hp (Y,Rq⇡⇤OX) =) Hp+q (X,OX) . (3.2)

Note that X,Y are smooth schemes of finite type over Fp. Since the (closed) fibres of ⇡ are
equidimentional and dimFp

X = dimFp
Y + dimFp

P1
Fp

, by miracle flatness [Mat89, Theorem
23.1], we know that ⇡ : X ! Y is a flat morphism. Since the fibres are isomorphic to P1

Fp
,

they are geometrically connected and geometrically reduced. By [Fan+05, §9.3.11], we know
that ⇡⇤OX

⇠= OY .
Note that X is geometrically reduced and ⇡ has connected fibres. By [EGAIII-1, Prop

1.4.10], we know that for q > 0, Rq⇡⇤(OX) are coherent OY -modules. For q � 0, let Fq

fppf be
the presheaf on Yfppf defined by

('V : V ! Y ) 7! �(V,'⇤
V
Rq⇡⇤(OX)), (3.3)

s where 'V : V ! Y is any flat morphism of finite presentation. Let U := {'Ui : Ui ! Y }i
be a fppf open covering for Y such that for each i, we have a cartesian diagram

X ⇥Y Ui X

Ui Y ,

'i,X

⇡Ui ⇡

'Ui
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with X ⇥Y Ui

⇠! P1
Ui

. By [SGA7-II, Exposé XI, Theorem 1.1], we have Rq⇡Ui,⇤(OX⇥Y Ui) =
0 for all q > 0. Since OX⇥Y Ui

⇠= '⇤
i,X

OX , we see by [Har77, Proposition III.9.3] that
'⇤
Ui
Rq⇡⇤(OX) = 0 for all q > 0. Thus for all q > 0, we have Fq

fppf = 0.
Since quasi-coherent sheaves satisfy fpqc descent [SGA1, Exposé VIII, Corollary 1.3] and

thus fppf descent, we know that for q � 0, there is an isomorphism

Hp
�
Y,Fq

fppf
� ⇠�! Hp (Y,Rq⇡⇤(OX)) .

Therefore the Leray spectral sequence (3.2) degenerates and we have

Hp(Y,OY )
⇠�! Hp(X,OX).

⇤

Remark 3.7. Since ⇡ is a GLn(Fq)-equivariant morphism, the isomorphisms of cohomology
groups

Hk(Y,OY )
⇠�! Hk(X,OX)

are also equivariant under the GLn(Fq)-action for all k � 0.

4. Towards induction steps

We now set the stage for the (double) induction. Our goal is to reduce the problem of
computing the cohomology groups of coherent sheaves on the smooth compactifications of
Deligne–Lusztig varieties to those corresponding to a Coxeter element of W or a Coxeter
element corresponding to a parabolic subgroup P ✓ GLn.

In loose terms, we may describe the strategy as follows: Let w be an element of the free
monoid F+ or F̂+. Its expression may contain a repeating s 2 S. We introduce operations
C,K,R on F+ and F̂+ so that after applying finitely many such operations on w, we may
obtain a word of the form sw0s. The operations C,K,R preserve the length of w, so we will
still have `(w) = `(sw0s) = `(w0) + 2. Then Section 3 helps us to reduce this to the case
of sw0 and thus removing one of the repeating s. This process has finitely many steps and
we will eventually reduce it to the case of v 2 W being a product of non-repeating simple
reflections with `(v) = |supp(w)|.

We will introduce each of the operations C,K,R and discuss how they affect the cohomol-
ogy groups of the corresponding smooth compactifications of Deligne–Lusztig varieties.

One can find the original definitions of these operations and the double induction strategy
in [Orl18, before Proposition 7.9] for the case of `-adic cohomology with compact support.

4.1. The Cyclic shifting operation. The elements sw0, w0s 2W are conjugated by s 2 S.
Recall from Definition 2.1 and 2.4 that this can be generalized to elements of W being
conjugated by cyclic shifts. The following operator is constructed to impose the concept of
elements being conjugated by cyclic shifts on F+ and F̂+.

Definition 4.1. Let w 2 F+
�
resp. F̂+

�
. If w = sw0, where w0 2 F+

�
resp. F̂+

�
and s 2 S,

we define the operator C on F+
�
resp. F̂+

�
by C(w) := w0s.

Proposition 4.2. Let w 2 F̂+
, such that w = sw0

with s 2 S. Then we have isomorphisms

of Fp-vector spaces for all k � 0:

Hk

⇣
X(w),O

X(w)

⌘
⇠�! Hk

⇣
X(C(w)),O

X(C(w))

⌘
.

Furthermore, the isomorphism is GLn(Fq)-equivariant.

Proof. Let w 2 F̂+, such that w = sw0 with s 2 S and w0 2 F̂+. Consider the product ws =
sw0s in F̂+. We consider from Section 3.1 the surjective morphisms ⇡1 : X(sw0s)! X(w0s)
and ⇡2 : X(sw0s) ! X(sw0) that make X(sw0s) a fppf P1-bundle over X(w0s) and X(sw0)
respectively.

By Proposition 3.6, we have GLn(Fq)-equivariant isomorphisms for all k � 0,
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Hk

⇣
X(sw0),O

X(sw0)

⌘
⇠= Hk

⇣
X(sw0s),O

X(sw0s)

⌘
⇠= Hk

⇣
X(w0s),O

X(w0s)

⌘
.

Thus
Hk

⇣
X(w),O

X(w)

⌘
⇠= Hk

⇣
X(C(w)),O

X(C(w))

⌘
.

⇤

4.2. Operations corresponding to relations. Recall from Definition 2.12 that F̂+ is
generated by S q T 0.

Definition 4.3. Let w 2 F̂+, such that w = w1stw2 with w1, w2 2 F̂+, s, t 2 S and st = ts
in W . Define the operator K on F̂+ by K(w) := w1tsw2.

Let w 2 F̂+, such that w = w1stsw2 with w1, w2 2 F̂+, s, t 2 S and sts = tst in W .
Define the operator R on F̂+ by R(w) := w1tstw2.

Remark 4.4. We clearly have K(w), R(w) 2 F̂+. Also observe that the operators K and R
are analogous to two of the relations in the presentation of the symmetric group Sn.

Proposition 4.5. (i) Let w = w1stw2 such that w1, w2 2 F̂+
and s, t 2 S with st = ts in

W . Then for all i � 0, we have isomorphisms of Fp-vector spaces:

Hi

⇣
X(w),O

X(w)

⌘
⇠�! Hi

⇣
X(K(w)),O

X(K(w))

⌘
.

(ii) Let w = w1stsw2 such that w1, w2 2 F̂+
and s, t 2 S with sts = tst in W . For all

i � 0, we have isomorphisms of Fp-vector spaces:

Hi

⇣
X(w),O

X(w)

⌘
⇠�! Hi

⇣
X(R(w)),O

X(R(w))

⌘
.

Proof. Let w be as in the assumption of (ii). Recall that X(w) is smooth and projective
over Fp. Recall from Definition 2.12 that we have csts 2 T 0 because st 6= ts. The Fp-scheme
X(w1cstsw2) is projective and smooth by Lemma 2.21. In particular, elements of X(w1cstsw2)
are of the form (B0

0, ..., B
0
j
, B0

j+1, ..., FB0
0), where (B0

j
, B0

j+1) 2 O(sts) for some j. Now we
have a cartesian square:

X(w) O(s, t, s)

X(w1cstsw2) O(sts),

f

where the horizontal maps are projections, and the vertical map on the right is the resolution
of singularities from [DL76, §9.1]. Thus the projection map f is proper.

Observe that the open subscheme X(w) of X(w) is also contained in X(w1cstsw2) such
that the restriction of f to X(w) is the identity. Hence f is a birational morphism.

By [CR11, Theorem 3.2.8], we have for all i � 0, an isomorphism of Fp-vector spaces:

Hi

⇣
X(w),O

X(w)

⌘
⇠�! Hi

⇣
X(w1cstsw2),OX(w1 cstsw2)

⌘
.

For ctst 2 T 0, we use the same argument as above to construct a proper birational morphism
f 0 : X(R(w)) ! X(w1cstsw2). The key observation is that as sts = tst in W , st 6= ts, the
scheme O(t, s, t) gives a smooth compactification of O(sts).

By [CR11, Theorem 3.2.8], we have for all i � 0, an isomorphism of Fp-vector spaces:

Hi

⇣
X(w1cstsw2),OX(w1 cstsw2)

⌘
⇠�! Hi

⇣
X(R(w)),O

X(R(w))

⌘
.

This concludes (ii).
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Let w be as in the assumption of (i), and set `(w1) = r1 and `(w2) = r2. For this proof,
we define the following projective Fp-scheme:

Y :=
n
(B0

0, ..., B
0
r1
, B0

r1+1, ..., B
0
r1+r2

, FB0)
0|(B0

r1
, B0

r1+1) 2 O(st),

(B0
0, ..., B

0
r1
) 2 O(w1), (B

0
r1+1, ..., B

0
r1+r2

, FB0) 2 O(w2),
 
.

Since st = ts, we see that they are associated to non-adjacent simple reflections. By [DMR07,
Proposition 2.2.16 (iii), (iv)], there exists an isomorphism O(s, t) ! O(st) such that the
restriction to the open subschemes O(s, t) ! O(st) remains an isomorphism. Then O(st) is
smooth and thus Y is smooth.

We have an cartesian square:

X(w) O(s, t)

Y O(st).

f

Thus the projection map f on the left is proper. As the restriction of f to X(w) is the
identity morphism, we see that f is birational. By [CR11, Theorem 3.2.8], for all i � 0, there
is an isomorphism of Fp-vector spaces:

Hi

⇣
X(w),O

X(w)

⌘
⇠�! Hi (Y,OY ) .

On the other hand, since st = ts, we have O(st) = O(ts) and thus O(st) = O(ts). As in
[DL76, §9.1], there is a resolution of singularity O(t, s) ! O(ts). Hence we have a proper
birational morphism O(t, s)! O(st). Thus we have a cartesian square with horizontal maps
being projections:

X(K(w)) O(t, s)

Y O(st).

f
0

Thus f 0 is proper. Note that the restriction of f 0 to X(w1tsw2) gives an isomorphism between
the respective open subschemes X(w1tsw2) and X(w1stw2) of X(K(w)) and Y . Thus f 0 is
birational. By [CR11, Theorem 3.2.8], for all i � 0, there is an isomorphism of Fp-vector
spaces:

Hi (Y,OY )
⇠�! Hi

⇣
X(K(w)),O

X(K(w))

⌘
.

This concludes the proof of (i).
⇤

5. The base case

Let G = GLn. Sections 3 and 4 have reduced the study of Hk
�
X(w),O

X(w)

�
to the case

in which w is a Coxeter element or a Coxeter element corresponding to a parabolic subgroup
P ✓ GLn. We shall now treat the cases introduced in Section 1.8.

5.1. Cohomology of X(w) for w a Coxeter element. We use the notations of Section
1.7 and 1.8. Recall that w denotes the standard Coxeter element s1 · · · sn�1.

Proposition 5.1. For k > 0, we have Hk
�
X(w),O

X(w)

�
= 0. Then the space of global

section

H0
⇣
X(w),O

X(w)

⌘
= Fp

is the trivial GLn(Fq)-representation.
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Proof. Recall that X(w) is isomorphic to the successive blow up Ỹ of Pn�1
Fp

along all Fq-

rational linear subvarieties [Ito05, §4.1]. Thus there exists a birational morphism of Fp-
schemes X(w) ! Pn�1

Fp
. Thus by [CR11, Theorem 3.2.8], for all k � 0, there is an isomor-

phism of Fp-vector spaces:

Hk

⇣
X(w),O

X(w)

⌘
⇠�! Hk

⇣
Pn�1
Fp

,O
X(w)

⌘
.

Thus we have

Hk

⇣
X(w),O

X(w)

⌘
=

(
Fp, k = 0

0, k > 0.

Finally, it follows from Lemma 1.15 that GLn(Fq) acts on H0
�
X(w),O

X(w)

�
trivially. ⇤

Remark 5.2. The above Proposition also follows from [GK05, Theorem 2.3].

Corollary 5.3. Let w 2W be an arbitrary Coxeter element. Then the cohomology of X(w)
is as follows:

Hk

⇣
X(w),O

X(w)

⌘
=

(
Fp, k = 0

0, k > 0.

In particular, H0
�
X(w),O

X(w)

�
is the trivial GLn(Fq)-representation.

Proof. After fixing a reduced expression of w, we have a corresponding element w0 of F̂+

with ↵̂(w0) = w and X(w0) ⇠= X(w). By [GP00, Theorem 3.1.4], any two Coxeter elements
in W are conjugate through a cyclic shift. Thus we have Ck(w0) = w for some integer k � 0.
We may apply Proposition 4.2 to reduce to the case when w is a standard Coxeter element.
Use Proposition 5.1 to get the result on the cohomology groups, and it follows from Lemma
1.15 that H0

�
X(w),O

X(w)

�
is a trivial GLn(Fq)-representation. ⇤

5.2. Cohomology of XLI (w) for w  w and LI ✓ GLn a standard Levi subgroup.

Lemma 5.4. Let w 2 W such that w := si1 · · · sim , sij 2 S, and let I = supp(w). Then we

have an isomorphism of Fp-schemes compatible with LI(Fq)-action:

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr),

where wa is an element of the Weyl group of GLna , a = 1, ..., r and n1 + · · ·+ nr = n.

When the sij ’s do not repeat, wa is a Coxeter element in the Weyl group of GLna for all

a. In particular, when w  w, w1 · · ·wr = w.

Proof. For a = 1, ..., r, denote the Weyl group of GLna by Wa. The intersection LI \ B⇤ is
a Borel subgroup of LI , and it is a product B1 ⇥ · · ·⇥ Br, where Ba is a Borel subgroup of
GLna . Then we have the homogeneous spaces Xa := GLna/Ba, and the orbit of v 2 Wa in
Xa ⇥Xa is Oa(v).

Note that the Weyl group WI of LI is isomorphic to the product of symmetric groups
Sn1 ⇥ · · · ⇥ Snr . Hence the Bruhat decomposition of LI is compatible with the Bruhat
decomposition of each GLna , and thus the orbit OLI (w) is the product O1(w1)⇥ · · ·⇥Or(wr)
over Spec Fp. Thus by construction, when sij are all distinct, they will each show up exactly
once in wa for exactly one a. When w � w, we have w1 · · ·wr = w.

The restriction of the Frobenius endomorphism from GLn to LI respects the product as
well. To finish the proof, it suffices to go through the definitions of Deligne–Lusztig varieties
with respect to products over Spec Fp. ⇤

The same applies to the corresponding smooth compactifications with respect to the ex-
pression w = si1 · · · sim .
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Lemma 5.5. Using the same notations as in Lemma 5.4, we have an isomorphism of Fp-

schemes equivariant under LI(Fq)-action.

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr)

Proof. It suffices check the definitions of smooth compactifications for Deligne–Lusztig vari-
eties with respect product of reductive groups. ⇤

Remark 5.6. If supp(w) is a proper subset of S, then sometimes we could have GLni =
GL1 for some i, thus XGLni

(e) is the point corresponding to the only Borel subgroup 1 2
GL1(Fq) = F⇥

q
.

Proposition 5.7. Let w 2W such that w  w. Let I = supp(w). Then

Hk

⇣
XLI (w),OXLI

(w)

⌘
= 0,

for k > 0, and

H0
⇣
XLI (w),OXLI

(w)

⌘
= Fp

is the trivial LI(Fq)-representation.

Proof. By Lemma 5.5, we may compute the cohomology for XGLn1
(w1) ⇥ · · · ⇥XGLnr

(wr),
with notations as before. To simplify the notation, set

Vj := XGLn1
(w1)⇥ · · ·⇥XGLnj

(wj).

By applying induction on the Künneth formula for coherent sheaves [EGAIII-2, Theorem
6.7.8], we have

Hk
�
Vj ,OVj

�
=
M

p+q=k

Hp
�
Vj�1,OVj�1

�
⌦Fp

Hq

✓
XGLnj

(wj),OXGLnj
(wj)

◆
.

By Proposition 5.1, we know that for all j = 1, ..., r,

Hk

✓
XGLnj

(wj),OXGLnj
(wj)

◆
=

(
Fp, k = 0

0, k > 0.

Thus,
Hk
�
Vj ,OVj

�
= Hk

�
Vj�1,OVj�1

�
⌦Fp

Fp.

Hence by induction on j we know that for any j,

Hk
�
Vj ,OVj

�
=

(
Fp, k = 0

0, k > 0.

The case j = r yields the desired result. It follows from

H0
⇣
XLI (w),OXLI

(w)

⌘
= Fp,

that H0
�
XLI (w),OXLI

(w)

�
is the trivial LI(Fq)-representation by Lemma 1.15. ⇤

Corollary 5.8. Let w 2 W , w = si1 · · · sim and I = supp(w), such that the sij ’s are all

distinct. Then

Hk

⇣
XLI (w),OXLI

(w)

⌘
=

(
Fp, k = 0

0, k > 0.

Furthermore, H0
⇣
XLI (w),OXLI

(w)

⌘
is the trivial LI(Fq)-representation.

Proof. Repeat the proof of Proposition 5.7 and use Corollary 5.3. ⇤
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5.3. Construction of XGLn(w) for w a Coxeter element in a Levi subgroup WI of
W . The constructions in this section apply to general G as in Section 1.1, but here we treat
G = GLn as in Section 1.7.

Let I ✓ S, t1, ..., tk 2 WI . Recall that we have the standard parabolic subgroup PI
⇠=

UI o LI . Consider the product schemes

GF /UF

I
⇥Spec Fp

XLI (t1, ..., tk)

and
GF /UF

I
⇥Spec Fp

XLI (t1, ..., tk).

When there is no ambiguity, a product of Fp-schemes will be assumed to be taken over
Spec Fp.

There are natural LF

I
-actions on GF /UF

I
. Here we consider a right LF

I
-action. Since

PI
⇠= UI oLI , we know that UI is a normal subgroup of PI , and so lUI = UI l for any l 2 LI .

Similarly, PF

I
⇠= UF

I
o LF

I
yields: for any l 2 LF

I
,

lUF

I
= UF

I
l.

For any xUF

I
2 G/UI and l 2 LF

I
, we consider the following right action

l · xUF

I
= xl�1UF

i

Note that this action is free.
By the definition of Deligne–Lusztig varieties, there is a left LF

I
-action on XLI (t1, ..., tk)

(resp. XLI (t1, ..., tk)). For any l 2 LF

I
and (B0, ..., Bk) 2 XLI (t1, ..., tk), the action is

l · (B0, ..., Bk) =
�
lB0l

�1, ..., lBkl
�1
�
.

We now describe a LF

I
-action on the product of GF /UF

I
and XLI (t1, ..., tk) (resp. XLI (t1, ..., tk)).

For any
�
xUF

I
, (B0, ..., Bk)

�
2 GF /UF

I
⇥XLI (t1, ..., tk) and l 2 LF

I
, we have

l ·
�
xUF

I
, (B0, ..., Bk)

�
=
�
xl�1UF

I
,
�
lB0l

�1, ..., lBkl
�1
��

.

Since LF

I
is a finite group, and GF /UF

I
⇥XLI (t1, ..., tk) (resp. GF /UF

I
⇥XLI (t1, ..., tk)) is a

Fp-scheme, the quotient of the LF

I
-action exists in the category of Fp-schemes. We recall the

standard proof for any quasi-projective schemes with a finite group action.

Lemma 5.9. Any orbit of the LF

I
-action on GF /UF

I
⇥ XLI (t1, ..., tk) (resp. GF /UF

I
⇥

XLI (t1, ..., tk)) is contained in some affine open subset of GF /UF

I
⇥ XLI (t1, ..., tk) (resp.

GF /UF

I
⇥XLI (t1, ..., tk)).

Proof. This lemma is standard for any quasi-projective scheme with a suitable finite group
action. See [Sta20, Tag 09NV] for a proof.

⇤

Proposition 5.10. The quotients

�
GF /UF

I
⇥XLI (t1, ..., tk)

�
/LF

I

and �
GF /UF

I
⇥XLI (t1, ..., tk)

�
/LF

I

exists in the category of Fp-schemes.

Proof. This follows from [SGA1, Exposé V, Proposition 1.8] and Lemma 5.9. ⇤

Remark 5.11. We will write

GF /UF

I
⇥L

F
I XLI (t1, ..., tk) and GF /UF

I
⇥L

F
I XLI (t1, ..., tk)

for the quotients
�
GF /UF

I
⇥XLI (t1, ..., tk)

�
/LF

I
and

�
GF /UF

I
⇥XLI (t1, ..., tk)

�
/LF

I
.
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There is an associated fibration of the quotient scheme GF /UF

I
⇥L

F
I XLI (t1, ..., tk) (resp.

GF /UF

I
⇥L

F
I XLI (t1, ..., tk)), and we will now discuss its construction following the steps of

[Jan03, §I.5.14]. Once again we only state this for GF /UF

I
⇥L

F
I XLI (t1, ..., tk) because the

case for GF /UF

I
⇥L

F
I XLI (t1, ..., tk) is identical.

Let

⇡ : GF /UF

I
�! GF /PF

I

be the projection map, which is also a quotient of GF /UF

I
by LF

I
. Now by composing with

the projection to the fist factor, we obtain the following morphism of Fp-schemes.

f : GF /UF

I
⇥XLI (t1, ..., tk)�!GF /PF

I

�
xUF

I
, (B0, ..., Bk)

�
7�! ⇡(xUF

I
)

Observe that f is invariant under LF

I
-action. In other words, for (xUF

I
, y) 2 GF /UF

I
⇥

XLI (t1, ..., tk), and any l 2 LI(Fq),

f(xl�1UF

I
, l · y) = ⇡(xl�1UF

I
) = ⇡(xUF

I
),

because l�1 2 PI(Fq). Now we have an induced morphism

⇡I : GF /UF

I
⇥L

F
I XLI (t1, ..., tk)�!GF /PF

I

�
xUF

I
, (B0, ..., Bk)

�
7�! ⇡(xUF

I
),

(5.1)

which is equivariant under the GF -action and constant under the PF

I
-action. We know that

⇡I is surjective. For any x 2 GF /UF

I
, we have

⇡�1
I

(⇡(x))
⇠�! XLI (t1, ..., tk).

Hence GF /UF

I
⇥L

F
I XLI (t1, ..., tk) together with ⇡I is a fibration over GF /PF

I
, with fibres

XLI (t1, ..., tk).

Lemma 5.12. Let w 2W such that w := si1 · · · sik , and I = supp(w). Then the irreducible

components of X(w) (resp. X(w)) are |G(Fq)/PI(Fq)| isomorphic copies of XLI (si1 , ..., sik)
(resp. XLI (si1 , ..., sik)).

Proof. By [DMR07, Proposition 2.3.8] and [DMR07, §2.3.4], we have isomorphisms of Fp-
schemes

GF /UF

I
⇥L

F
I XLI (si1 , ..., sik)

⇠�! XG(si1 , ..., sik)

and

GF /UF

I
⇥L

F
I XLI (si1 , ..., sik)

⇠�! XG(si1 , ..., sik),

which are equivariant under the action of GF . The fibres of the maps cf. (5.1)

⇡0
I
: GF /UF

I
⇥L

F
I XLI (si1 , ..., sik) �! GF /PF

I

and

⇡I : GF /UF

I
⇥L

F
I XLI (si1 , ..., sik) �! GF /PF

I

are irreducible as supp(w) generates the Weyl group WI of LI cf. [BR06] and [Gör09]. The
proof is concluded by the discussion about the morphism ⇡I above. ⇤

Remark 5.13. In the above lemma, for any w 2W , we can see that the number of irreducible
components X(w) and X(w) (if one fix a reduced expression of w) depends only on supp(w).
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5.4. Cohomology of XGLn(w) for w a Coxeter element in a Levi subgroup WI of
W . We will now compute the cohomology with respect to the structure sheaf in this case for
G = GLn.

Proposition 5.14. Let w 2 W with w = si1 · · · sim such that sij 2 S are all distinct. Then

for I = supp(w), one has

H0
⇣
X(w),O

X(w)

⌘
= indGLn(Fq)

PI(Fq)
1Fp

,

where 1Fp
is the trivial PI(Fq)-representation. For all k > 0,

Hk

⇣
X(w),O

X(w)

⌘
= 0.

Proof. By [DMR07, Proposition 2.3.8], we have an GLn(Fq)-equivariant isomorphism of Fp-
schemes:

GLF

n
/UF

I
⇥L

F
I XLI (si1 , ..., sim)

⇠�! X(si1 , ..., sim).

Observe that the PF

I
-action on GLF

n
/UF

I
⇥L

F
I XLI (si1 , ..., sim) amounts to an UF

I
-action,

but UF

I
acts trivially on this scheme by construction. Hence PF

I
acts trivially on GLF

n
/UF

I
⇥L

F
I

XLI (si1 , ..., sim).
On the other hand, since the morphism

⇡I : GLF

n
/UF

I
⇥L

F
I XLI (si1 , ..., sim) �! GLF

n
/PF

I

as defined in (5.1) is GLn(Fq)-equivariant, we see that GLn(Fq) acts on the set of fibers of
⇡I transitively, and that the stablizer of each fibre corresponds to a conjugate of PF

I
in GLF

n
.

The induced GLn(Fq)-action on the global sections gives us

H0
⇣
X(w),O

X(w)

⌘
= indGLd(Fq)

PI(Fq)
H0
⇣
XLI (w),OXLI

(w)

⌘
.

By Lemma 5.5, we know that

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr),

is an isomorphism of Fp-schemes equivariant under GLn(Fq)-action, where n1 + · · ·+ nr = n
and wa is an element in the Weyl group of GLna , a = 1, ..., r. This gives an isomorphism of
GLn(Fq)-modules:

H0
⇣
XLI (w),OXLI

(w)

⌘
⇠�! H0

⇣
XGLn1

(w1),OXGLn1
(w1)

⌘
⌦· · ·⌦H0

⇣
XGLnr

(wr),OXGLnr
(wr)

⌘
.

Since w has full support in WI , we know that wa has full support in Wa for all a = 1, ..., r,
where Wa is the Weyl group of GLna . Since we have already shown in Corollary 5.3 that

H0
⇣
XGLna

(wa),OXGLna
(wa)

⌘
= Fp

is the trivial representation for GLna(Fq), we know that

H0
⇣
XLI (w),OXLI

(w)

⌘
= Fp

gives the trivial LI(Fq)-representation. Therefore

H0
⇣
X(w),O

X(w)

⌘
= indGLd(Fq)

PI(Fq)
1Fp

,

where 1Fp
is the trivial PI(Fq)-representation with coefficients in Fp.

⇤

Remark 5.15. The scheme X(si1 , ..., sim) as in the proof above may also be written as a
disjoint union cf. [Lus77, (1.17)]:

X(si1 , ..., sim)
⇠�!

·[

gP
F
I 2GLF

n /P
F
I

gPF

I
.XLI (si1 , ..., sim).
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6. The main Theorem

6.1. Cohomology of the structure sheaf on X(w).

Theorem 6.1. Let G = GLn and w 2 F+
. Let I = supp(w) and PI = B⇤WIB⇤

, then

Hk

⇣
X(w),O

X(w)

⌘
=

(
indGLn(Fq)

PI(Fq)
1Fp

, k = 0

0, k > 0,

where 1Fp
is the trivial PI(Fq)-representation with coefficients in Fp.

Proof. Denote w = si1 · · · sim 2 F+. First, suppose that supp(w) = S. If w is a Coxeter
element, we apply Proposition 5.1 and Corollary 5.3.

If the sij ’s are not all distinct, we apply the three operators C,K,R and apply Proposition
4.2 and Proposition 4.5 to transform w into the shape sw0s with s 2 S, so that we may apply
Proposition 3.6. After repeating this procedure finitely many times, we have for all k � 0,
an isomorphism of Fp-vector spaces:

Hk

⇣
X(w),O

X(w)

⌘
⇠�! Hk

⇣
X(v),O

X(v)

⌘
,

where v is a Coxeter element such that v has no repeating sij 2 S in its expression and
supp(v) = supp(w). By Corollary 5.3, we know that for k > 0, Hk

�
X(w),O

X(w)

�
vanish,

and
H0
⇣
X(w),O

X(w)

⌘
= Fp.

Thus by Lemma 1.15, we know that H0
�
X(w),O

X(w)

�
is the trivial GLn(Fq)-representation.

Next let w to not have full support and we denote I = supp(w). If the sij ’s are all distinct,
then we apply Proposition 5.14.

If sij ’s are not all distinct, we again apply C,K,R and Proposition 4.2 and 4.5 to transform
w into the shape sw0s with s 2 S, so that we may apply Proposition 3.6. After repeating this
procedure finitely many times, we have for all k � 0, an isomorphism of Fp-vector spaces:

Hk

⇣
X(w),O

X(w)

⌘
⇠�! Hk

⇣
X(v),O

X(v)

⌘
,

where v has no repeating sij ’s in its expression, and supp(v) = supp(w). By Proposition
5.14, we have the vanishing

Hk

⇣
X(w),O

X(w)

⌘
= 0,

for all k > 0.
In order to analyze the global section as a GLn(Fq)-representation, observe that the con-

struction in the proof of Proposition 5.14 carries over. Note that the result of Proposition 5.14
does not directly apply as we only have isomorphism of Fp-vector spaces Hk

�
X(w),O

X(w)

� ⇠=
Hk
�
X(v),O

X(v)

�
from above.

We have a GLn(Fq)-equivariant morphism of Fp-schemes:

GLF

n
/UF

I
⇥L

F
I XLI (si1 , ..., sim) �! GLF

n
/PF

I
,

such that GLn(Fq) acts on the set of fibres of this morphism transitively and the stablizer of
each fibre corresponds to a conjugate of PI(Fq) in GLn(Fq). By [DMR07, Proposition 2.3.8],
we have an GLn(Fq)-equivariant isomorphism of Fp-schemes:

GLF

n
/UF

I
⇥L

F
I XLI (si1 , ..., sim)

⇠�! X(si1 , ..., sim)

The induced GLn(Fq)-action on the global sections thus gives us

H0
⇣
X(w),O

X(w)

⌘
= indGLn(Fq)

PI(Fq)
H0
⇣
XLI (w),OXLI

(w)

⌘
.

By Lemma 5.5, we know that

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr),
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is an isomorphism of Fp-schemes equivariant under LI(Fq)-action, where n1 + · · · + nr = n
and wa is an element in the Weyl group of GLna , a = 1, ..., r. This gives an isomorphism of
GLn(Fq)-modules:

H0
⇣
XLI (w),OXLI

(w)

⌘
⇠�! H0

⇣
XGLn1

(w1),OXGLn1
(w1)

⌘
⌦· · ·⌦H0

⇣
XGLnr

(wr),OXGLnr
(wr)

⌘
.

Since w has full support in WI , we know that wa has full support in Wa for all a = 1, ..., r,
where Wa is the Weyl group of GLna . Since we have already shown above that

H0
⇣
XGLna

(wa),OXGLna
(wa)

⌘
= Fp

is the trivial representation for GLna(Fq), we know that

H0
⇣
XLI (w),OXLI

(w)

⌘
= Fp

gives the trivial LI(Fq)-representation. Therefore

H0
⇣
X(w),O

X(w)

⌘
= indGLn(Fq)

PI(Fq)
1Fp

,

where 1Fp
is the trivial PI(Fq)-representation with coefficients in Fp. ⇤

Remark 6.2. For w 2 W , if we fix a reduced expression w = si1 · · · sim with sij 2 S, then
si1 · · · sim can be considered as an element of F+ and X(si1 , ..., sim) ⇠= X(w). Thus Theorem
6.1 can be applied to X(w).

6.2. The mod pm and Zp étale cohomology of X(w). For the rest of this paper, for
any ring R and any finite group H, we fix the notation 1R for the free 1-dimensional trivial
H-module with coefficients in R.

Let X be a k-scheme with k being a field of characteristic p > 0. We have the constant
sheaf Z/pZ on Xét. Note that the associated presheaf of the group scheme Ga is a sheaf on
both Xét and XZar [Mil80, p. 52]. In particular, it gives the structure sheaf on XZar. Recall
the Artin–Schreier sequence [Mil80, p. 67].

Lemma/Definition 6.3. Let X be a k-scheme with k being a field of characteristic p > 0.
Let Fp be the p-Frobenius on OX sending x 7! xp. There exists a short exact sequence of
sheaves on Xét:

0! Z/pZ �! Ga

Fp�1�! Ga ! 0.

We call this the Artin–Schreier sequence.

Note that by [Mil80, p. 114], the cohomology of Ga on Xét and XZar are isomorphic.

Remark 6.4. Recall that for G = GLn, we have

H0
⇣
X(w),O

X(w)

⌘
= indGLn(Fq)

PI(Fq)
Fp,

where I = supp(w) and PI = B⇤WIB⇤. Note that p-Frobenius Fp on X(w) is given by the
identity on the topological space and p-power map on sections of O

X(w). Thus the p-power
map given by Fp on the global section H0

�
X(w),O

X(w)

�
on the left hand side is the same as

the p-power map on Fp on the right hand side.

Proposition 6.5. Let G = GLn and w 2 F+
. Consider the constant sheaf Z/pZ on X(w)ét.

Let I = supp(w) and PI = B⇤WIB⇤
then we have

Hk

ét

⇣
X(w),Z/pZ

⌘
=

(
indGLn(Fq)

PI(Fq)
1Z/pZ, k = 0,

0, k > 0.
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Proof. Consider the long exact sequence associated to the Artin–Schreier sequence on X(w).

0! H0
ét
�
X(w),Z/pZ

�
! H0

�
X(w),O

X(w)

� Fp�1�! H0
�
X(w),O

X(w)

�
!

! H1
ét
�
X(w),Z/pZ

�
! H1

�
X(w),O

X(w)

� Fp�1�! H1
�
X(w),O

X(w)

�
! · · ·

By Theorem 6.1, we know that

Hk
�
X(w),O

X(w)

�
= 0,

for all k > 0, and
H0
�
X(w),O

X(w)

�
= indGLn(Fq)

PI(Fq)
Fp.

As a consequence, the long exact sequence above becomes

0! H0
ét
�
X(w),Z/pZ

�
! H0

�
X(w),O

X(w)

� Fp�1�! H0
�
X(w),O

X(w)

�
! H1

ét
�
X(w),Z/pZ

�
! 0.

Since Fp is algebraically closed, the polynomial xp � x 2 Fp[x] always splits. Note that
indGLn(Fq)

PI(Fq)
Fp is a finite dimensional Fp-vector space, so Fp�1 is the map x 7! xp�x on each

coordinate. Hence Fp � 1 is surjective. Therefore H1
ét
�
X(w),Z/pZ

�
= 0.

By Fermat’s little theorem, we have that ker(Fp � 1) = Fp when supp(w) = S. Since
H0
�
X(w),O

X(w)

�
is the trivial GLn(Fq)-representation, its subring ker(Fp�1) automatically

inherit a trivial GLn(Fq)-module structure. Thus we have

H0
ét

⇣
X(w),Z/pZ

⌘
= 1Z/pZ,

when supp(w) = S. When w 2W is arbitrary, let I = supp(w). Recall from Section 5.3 and
[DMR07, Proposition 2.3.8] that we have GLn(Fq)-equivariant surjective morphism

X(w) �! GLF

n
/PF

I
,

whose fibers are all isomorphic to XLI (w). In particular, GLn(Fq) acts on the set of fibres
transitively and the stablizer of each fibre corresponds to a conjugate of PI(Fq) in GLn(Fq).
Then the long exact sequence associated to the Artin–Schreier sequence gives us:

0! indGLn(Fq)
PI(Fq)

H0
ét
�
XLI (w),Z/pZ

�
! indGLn(Fq)

PI(Fq)
H0
�
XLI (w),OX(w)

� Fp�1�!

�! indGLn(Fq)
PI(Fq)

H0
�
XLI (w),OX(w)

�
! 0.

We see in the proof of Theorem 6.1 that

H0
�
XLI (w),OX(w)

�
= Fp.

Then H0
�
XLI (w),OX(w)

�
is a trivial PI(Fq)-representation and so H0

ét
�
XLI (w),Z/pZ

�
is a

trivial PI(Fq)-representation. Hence we have ker(Fp � 1) = indGLn(Fq)
PI(Fq)

Fp. Therefore

H0
ét

⇣
X(w),Z/pZ

⌘
= indGLn(Fq)

PI(Fq)
1Fp

⇤

Corollary 6.6. Let G = GLn, and w 2 F+
with I = supp(w) and PI = B⇤WIB⇤

. For any

integer m > 0, we have

Hk

ét
�
X(w),Z/pmZ

�
=

(
indGLn(Fq)

PI(Fq)
1Z/pmZ, k = 0,

0, k > 0.
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Proof. For every integer m � 2, we have the short exact sequence

0! Z/pm�1Z ↵�! Z/pmZ ��! Z/pZ! 0,

where
↵ : a mod pm�1 7�! pa mod pm

� : b mod pm 7�! b mod p.

There are also constant sheaves Z/pmZ on X(w)ét. Thus we get an induced long exact
sequence for every integer m � 2,

0! H0
ét
�
X(w),Z/pm�1Z

�
! H0

ét
�
X(w),Z/pmZ

�
! H0

ét
�
X(w),Z/pZ

�
! · · ·

· · ·! Hk

ét
�
X(w),Z/pm�1Z

�
! Hk

ét
�
X(w),Z/pmZ

�
! Hk

ét
�
X(w),Z/pZ

�
! · · · .

By Proposition 6.5, we know that Hk

ét
�
X(w),Z/pZ

�
= 0 for all k > 0. By induction on m,

assume that Hk

ét
�
X(w),Z/pm�1Z

�
= 0 for all k > 0, so the long exact sequence gives that

Hk

ét
�
X(w),Z/pmZ

�
= 0 for all k > 0. Therefore for any integer m > 0, we have

Hk

ét
�
X(w),Z/pmZ

�
= 0

for all k > 0.
For any commutative ring A of characteristic p, denote Wj(A) to be the ring of Witt

vectors of length j with coefficients in A. Recall that Wj(A) is set-theoretically in bijection
with the product Aj , but the bijection is not an isomorphism of rings when j > 1. However,
the p-Frobenius Fp on Wj(A) is compatible with the p-Frobenius on A, in the sense that Fp

on Wj(A) is the map x 7! xp on each coordinate. See [Ill79, §0.1] for an introduction on the
ring of Witt vectors.

Let Wm

⇣
O

X(w)

⌘
be the sheaf of Witt vectors of length m on X(w) [Ill79, §0.1.5]. The stalk

of Wm

⇣
O

X(w)

⌘
at a point x 2 X is Wm

⇣
O

X(w),x

⌘
[Ill79, (01.5.6)]. Note that Wm

⇣
O

X(w)

⌘

are coherent sheaves on X(w) [Ser58, §2]. Similar to the ring of Witt vectors, the sections
of the coherent sheaf Wm

⇣
O

X(w)

⌘
are set-theoretically in bijection with the corresponding

sections of Om

X(w)
, but the bijection is not an isomorphism of rings when m > 1. Again, the

p-Frobenius Fp on Wm

⇣
O

X(w)

⌘
is compatible with the p-Frobenius on O

X(w), in the sense
that it is x 7! xp on each coordinate.

On X(w)ét, we have the Artin–Schreier–Witt exact sequence, cf. [Ill79, Proposition 3.28],

0 �! Z/pmZ!Wm

⇣
O

X(w)

⌘
Fp�1�! Wm

⇣
O

X(w)

⌘
! 0.

One attains the long exact sequence

0 �! H0
�
X(w),Z/pmZ

�
! H0

⇣
X(w),Wm

⇣
O

X(w)

⌘⌘
Fp�1�! H0

⇣
X(w),Wm

⇣
O

X(w)

⌘⌘
! · · · .

We see that H0
�
X(w),Z/pjZ

�
= ker(Fp � 1).

First, let supp(w) = S. Since X(w) is smooth projective over Fp and

H0
⇣
X(w),O

X(w)

⌘
= Fp,

we know that H0
⇣
X(w),Wm

⇣
O

X(w)

⌘⌘
= Wm

�
Fp

�
. Note that the p-Frobenius Fp on

Wm

⇣
O

X(w)

⌘
is compatible with taking sections, so it is compatible with the Frobenius on

Wm

�
Fp

�
. Thus we have

ker(Fp � 1) = Wm(Fp)
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for all j > 1. We know that Wm(Fp) = Z/pmZ for all m > 1. Again, since GLn(Fq) acts
trivially on H0

⇣
X(w),O

X(w)

⌘
= Fp, Wm

�
Fp

�
inherits a trivial GLn(Fq)-action because

GLn(Fq)-acts trivially on each of the coordinate of Wm

�
Fp

�
.

Now let w 2 W be an arbitrary element and set I = supp(w). Via Section 5.3 and
[DMR07, Proposition 2.3.8] we have a GLn(Fq)-equivariant surjective morphism

X(w) �! GLF

n
/PF

I

such that the fibres are XLI (w). In particular, GLn(Fq) acts on the set of fibres transitively
and the stablizer of each fibre corresponds to a conjugate of PI(Fq) in GLn(Fq).

By definition one has

Wm

⇣
O

X(w)

⌘ �
X(w)

�
= Wm

⇣
O

X(w)

�
X(w)

�⌘
,

and since the functor Wm is a finite limit, we have

Wm

⇣
O

X(w)

�
X(w)

�⌘
= indGLn(Fq)

PI(Fq)
Wm

⇣
O

XLI
(w)

�
XLI (w)

�⌘
.

It follows from the proof of Theorem 6.1 that O
XLI

(w)

�
XLI (w)

�
= Fp, so O

XLI
(w)

�
XLI (w)

�

is the trivial PI(Fq)-representation. As before, this makes Wm

⇣
O

XLI
(w)

�
XLI (w)

�⌘
the 1-

dimensional trivial PI(Fq)-module. Thus we have

ker(Fp � 1) = indGLn(Fq)
PI(Fq)

Wm(Fp) = indGLn(Fq)
PI(Fq)

1Z/pmZ

where 1Z/pmZ is the trivial PI(Fq)-representation with coefficients in Z/pmZ. This finishes
the proof. ⇤
Corollary 6.7. Let G = GLn, and w 2 F+

with I = supp(w). Let PI = B⇤WIB⇤
. Then

one has

Hk

ét
�
X(w),Zp

�
=

(
indGLn(Fq)

PI(Fq)
1Zp , k = 0,

0, k > 0.

Proof. By Corollary 6.6, since for all k > 0 and m > 0, we have Hk

ét
�
X(w),Z/pmZ

�
= 0, the

tower
�
Hk

ét
�
X(w),Z/pmZ

� 
m

of abelian groups satisfy the Mittag–Leffler condition trivially.
Thus for all k > 0, we have

Hk

ét
�
X(w),Zp

�
= lim �

m

Hk

ét
�
X(w),Z/pmZ

�
= 0.

On the other hand, the higher vanishing implies that whenever we have m > l and a mod pl

map
Z/pmZ�! Z/plZ

b mod pm 7�! b mod pl,

Take the induced short exact sequence of sheaves on X(w):

0! Z/pm�lZ! Z/pmZ! Z/plZ! 0.

Take the associated long exact sequence of cohomology groups

· · ·! H0
ét
�
X(w),Z/pmZ

�
! H0

ét
�
X(w),Z/plZ

�
! H1

ét
�
X(w),Z/pm�lZ

�
! · · · .

By the higher vanishing from Corollary 6.6, we see that the morphism

H0
ét
�
X(w),Z/pmZ

�
�! H0

ét
�
X(w),Z/plZ

�

is surjective. Therefore the tower {H0
ét
�
X(w),Z/pmZ

�
}m of abelian groups satisfies the

Mittag–Leffler condition. Thus we have

H0
ét
�
X(w),Zp

�
= lim �

m

H0
ét
�
X(w),Z/pmZ

�
,
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and the identification
H0

ét
�
X(w),Zp

�
= indGLn(Fq)

PI(Fq)
Zp.

⇤
6.3. Cohomology of ⌦`(w) on X(w). Let G = GLn and w 2 W . Recall that X(w) is
smooth projective of dimension `(w). Let ⌦ be the sheaf of differentials on X(w) and write
⌦p = ^p⌦ for the sheaf of differential p-forms. In particular, ! := ^`(w)⌦ = ⌦`(w) is the
dualizing sheaf on X(w).

Proposition 6.8. Let G = GLn, w 2 F+
, I = supp(w) and PI = B⇤WIB⇤

, then

Hk

⇣
X(w),⌦`(w)

⌘
=

(
indGLd(Fq)

PI(Fq)
1Fp

, k = `(w)

0, k 6= `(w).

Proof. Since X(w) is a smooth projective Fp-scheme of dimension `(w), Serre duality implies
that there is an isomorphism of Fp-schemes

Hq
�
X(w),⌦p

� ⇠�! H`(w)�q
�
X(w),⌦`(w)�p

�_

for all p, q � 0. Fix p = 0 and we may apply Theorem 6.1 to get

Hk
�
X(w),⌦`(w)

�
= 0,

when k 6= `(w). Setting p = 0 and q = 0, we get by Theorem 6.1 that

H0
�
X(w),O

X(w)

� ⇠�! H`(w)
�
X(w),⌦`(w)

�_
.

This isomorphism is equivariant under GLn(Fq)-action by [Has09, Theorem 29.5]. Finally,
recall that since GLn(Fq) is a finite group, the induction functor commutes with taking the
dual of a representation. ⇤

7. The compactly supported mod pm and Zp étale cohomology of X(w)

Throughout this section, let G = GLn and w 2W . Fix a reduced expression w = t1 · · · tr,
tj 2 S. This reduced expression determines a smooth compactification X(w) for X(w). We
also have an isomorphism X (t1, . . . , tr)

⇠! X(w) cf. Remark 2.15. By [DMR07, Proposition
3.2.2], we have the following disjoint union:

X(w) := X (t1, . . . , tr) = X (t1, . . . , tr)
·[
0

B@
[

v�w

`(v)=`(w)�1

X(v)

1

CA ,

where � is the Bruhat order on F+. Let us denote Y := X(w)
/
X (t1, . . . , tr) in this section.

We want to make use of this stratification to compute the Z/pmZ-cohomology of X(w).
Denote j : X (t1, . . . , tr) ,! X(w) the obvious open immersion and i : Y ,! X(w) the

closed immersion. For m � 1, let Z/pmZ be the constant sheaf on X(w)ét defined by the
ring Z/pmZ.

Recall that by the definition of the cohomology with compact support, we have

Hk

ét,c (X (t1, . . . , tr) ,Z/pmZ) ⇠�! Hk
�
X(w), j!Z/pmZ

�

for all k. Furthermore, since X(w) is stable under the GLn(Fq)-action, the identification of
the cohomology groups above is equivariant under the GLn(Fq)-action. Since i⇤ is exact, for
all k > 0, we have Rki⇤Z/pmZ = 0. As a consequence, the Leray spectral sequence

Er,s

1 = Hr
�
X(w)ét, R

si⇤Z/pmZ
�

=) Hr+s (Yét,Z/pmZ)

collapses and we have Hr

ét (Y,Z/pmZ) = Hr

ét
�
X(w), i⇤Z/pmZ

�
for all r. Note that this

identification is also equivariant under the GLn(Fq)-action.
Note that these sheaves fit into a short exact sequence on X(w)ét:

0! j!Z/pmZ �! Z/pmZ �! i⇤Z/pmZ! 0
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which has the following associated long exact sequence

0! H0
ét,c (X(w),Z/pmZ) �! H0

ét
�
X(w),Z/pmZ

�
�! H0

ét (Y,Z/pmZ)! · · ·
· · ·! Hk

ét,c (X(w),Z/pmZ) �! Hk

ét
�
X(w),Z/pmZ

�
�! Hk

ét (Y,Z/pmZ)! · · · .

We already know the Z/pmZ-cohomology for X(w), so this gives us some information about
the cohomology groups Hk

ét,c (X(w),Z/pmZ). In particular, we already have for k > 0,

H0
ét,c (X(w),Z/pmZ) = 0 and Hk

ét,c (X(w),Z/pmZ) ⇠�! Hk�1
ét (Y,Z/pmZ) .

Furthermore, in order to compute exactly Hk

ét,c (X(w),Z/pmZ), we may construct an exact
sequence similar to Mayer–Vietoris spectral sequence with respect to the stratification of Y .
The method has been used to compute the compactly supported `-adic cohomology groups
of X(w) in [Orl18, §5, §7]. We shall adapt this for our case.

7.1. An acyclic resolution for the Steinberg module for a Levi subgroup of GLn.
Let w 2 W such that w = t1 · · · tr with tj 2 S are all distinct from one another. We have
the associated parabolic subgroup PI = B⇤WIB⇤, where I = supp(w). Set Iu = supp(u) for
u � w. Consider the following sequence:

indGLn(Fq)
PI(Fq)

1Z/pmZ
d0�!

M

u�w

`(u)=`(w)�1

indGLn(Fq)
PIu (Fq)

1Z/pmZ ! · · ·

M

u�w

`(u)=`(w)�i+1

indGLn(Fq)
PIu (Fq)

1Z/pmZ
di�1!

M

u�w

`(u)=`(w)�i

indGLn(Fq)
PIu (Fq)

1Z/pmZ
di!

M

u�w

`(u)=`(w)�i�1

indGLn(Fq)
PIu (Fq)

1Z/pmZ

· · ·!
M

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Z/pmZ
d`(w)�1�! indGLn(Fq)

B(Fq)
1Z/pmZ. (7.1)

For all ui+1 � ui � w with `(ui+1) = `(ui)� 1, let

◆ui+1
ui

: indGLn(Fq)
Pui (Fq)

1Z/pmZ ! indGLn(Fq)
Pui+1 (Fq)

1Z/pmZ

be the inclusion map, where Pui := Psupp(ui). Then the map di is defined by

(fui)ui 7!
 
X

ui

(�1)↵(ui!ui+1)◆ui+1
ui

(fui)

!

ui+1

,

where ↵(ui ! ui+1) is a map defined as follows: if ui+1 is obtained from ui by deleting the
r-th s 2 S in its product expression, then ↵(ui ! ui+1) = r.

We will see in the following Proposition that this sequence is an acyclic complex. In
particular, if w 2W is a Coxeter element, then (up to augmentation) the complex (7.1) gives
a resolution for the Steinberg module:

StGLn := indGLn(Fq)
B(Fq)

1Z/pmZ
. X

P)B

indGLn(Fq)
P (Fq)

1Z/pmZ.

Proposition 7.1. Let w = t1 · · · tr such that tj are all distinct. Let PI = B⇤WIB⇤
, where

I = supp(w). Set Iu = supp(u) for u � w. Then the sequence (7.1) is an acyclic complex.

Furthermore, d0 is injective and the cokernel of d`(w)�1 is

indGLn(Fq)
B(Fq)

1Z/pmZ

,
X

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Z/pmZ.

Proof. We denote indG(Fq)
H(Fq)

1Z/pmZ by iG
H

for any subgroup H of a group G when there is no
ambiguity. Recall that we have PI = LI n UI , where LI is a Levi subgroup of GLn. In
particular, LI is a reductive algebraic group over Fp defined over Fq. Note that the Weyl
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group of LI is exactly WI . Since LI is reductive, by [Sol69, Theorem 1] cf. [CLT80, §7], the
following sequence

M

u�w

`(u)=`(w)�1

iLI
PIu\LI

! · · ·!
M

u�w

`(u)=1

iLI
PIu\LI

d`(w)�1�! iLI
B\LI

(7.2)

identifies with the combinatorial Tits complex � of LI tensored with Z/pmZ. In particular,

H0(�,Z) = Z and H`(w)(�,Z) = Z|ULI
(Fq)|,

where ULI is a maximal Fq-split unipotent subgroup of LI , and Hj(�,Z) = 0 otherwise. By
the Universal Coefficients Theorem, we know that the complex (7.2) extends to the following
acyclic complex:

0! iLI
LI
!

M

u�w

`(u)=`(w)�1

iLI
PIu\LI

! · · ·!
M

u�w

`(u)=1

iLI
PIu\LI

d`(w)�1�! iLI
B\LI

! StLI ! 0, (7.3)

where
StLI := indLI(Fq)

(B\LI)(Fq)
1Z/pmZ

. X

(P\LI))(B\LI)

indLI(Fq)
(P\LI)(Fq)

1Z/pmZ.

For any parabolic subgroup P ✓ GLn with P = UP oLP , where LP is the Levi subgroup
corresponding to P , we have the identification

indP (Fq)
H(Fq)

1Z/pmZ = indLP (Fq)
(H\LP )(Fq)

1Z/pmZ

for all subgroups H ✓ P . Hence may rewrite the acyclic complex (7.3) as follows:

0! iPI
PI
�!

M

u�w

`(u)=`(w)�1

iPI
PIu
! · · ·! iPI

B
! indPI(Fq)

B(Fq)
1Z/pmZ

. X

P)B

indPI(Fq)
P (Fq)

1Z/pmZ ! 0.

(7.4)
Recall that since PI(Fq) is a finite subgroup of GLn(Fq), the functor indGLn(Fq)

PI(Fq)
is exact.

Thus we may apply the functor indGLn(Fq)
PI(Fq)

to the acyclic complex (7.4) and obtain the complex
(7.1). Therefore the complex (7.1) is acyclic and d`(w)�1 has the cokernel as desired. ⇤

We can also prove Proposition 7.1 algebraically.

Alternate proof. Denote representation with coefficients in Q by iG
H
(Q). Set Ak = iLI

Puk
\LI

(Q)

with k = 1, ..., `(w) such that uk � w, `(uk) = `(w)� 1 and Puk = Psupp(uk). It is verified in
[DOR10, Theorem 3.2.5] that for any subsets I, J ✓ {1, ..., `(w)},

 
X

i2I

Ai

!
\

0

@
\

j2J

Aj

1

A =
X

i2I

0

@Ai \

0

@
\

j2J

Aj

1

A

1

A . (7.5)

Note that loc.cit. was proved for generalized Steinberg representations, but it does apply
for the scenario of the Steinberg representation itself. By [SS91, Proposition 2.6], one obtains
an acyclic complex:

0! iLI
LI

(Q)!
M

u�w

`(u)=`(w)�1

iLI
PIu\LI

(Q)! · · ·! iLI
B\LI

(Q)! StLI (Q)! 0, (7.6)

where StLI (Q) is the Steinberg representation with coefficients in Q. The complex (7.6) gives
a basis for iLI

B\LI
(Q) such that for all P � B, the subrepresentation iLI

P\LI
(Q) is generated by a

subset of this basis. More precisely, one start with fixing a basis for iLI
LI

(Q) and inductively fix
bases for each constituent of the next term in the complex. This ensures that the intersections
would still be free modules generated by a basis element.
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Taking the Z-lattice with respect to this basis yields the sub-representations iLI
P\LI

(Z). In
particular, the equality (7.5) holds after intersecting with the Z-lattice and the intersections
are free Z-modules generated by basis elements. Thus we can tensor this Z-lattice with
Z/pmZ to obtain Bk := iLI

Puk
\LI

(Z/pmZ), such that Bk’s satisfy the condition (7.5). Thus by
[SS91, Proposition 2.6], we obtain the acyclic complex as desired.

⇤

7.2. A spectral sequence associated to the stratification. Denote the category of
sheaves on X(w)ét by Sh(X(w)ét). For any closed subscheme Z of X(w) with the inclu-
sion map ◆ : Z ! X(w), we denote ◆⇤Z/pmZ by (Z/pmZ)

Z
. Again, since ◆⇤ is exact, we have

an isomorphism of Z/pmZ-modules:

Hr

ét (Z,Z/pmZ) ⇠�! Hr

ét
�
X(w), (Z/pmZ)

Z

�
.

In addition, if we assume that Z is stable under GLn(Fq)-action, then the above isomorphism
is GLn(Fq)-equivariant.

We have a sequence of constant sheaves on X(w)ét, where R = Z/pmZ, for any m > 0.
For u � w, we denote the constant sheaf R on X(u) by R

X(u).

R
X(w) !

M

u�w

`(u)=`(w)�1

R
X(u) !

M

u�w

`(u)=`(w)�2

R
X(u) ! · · ·

· · ·!
M

u�w

`(u)=`(w)�i

R
X(u) ! · · ·!

M

u�w

`(u)=1

R
X(u) ! RX(e) (7.7)

Let {U↵ ! X(w)}↵ be an étale cover of X(w), and consider the i� 1, i, i+1-th terms of this
complex

M

u�w

`(u)=`(w)�i+1

R
X(u)(U↵)

di�1�!
M

u�w

`(u)=`(w)�i

R
X(u)(U↵)

di�!
M

u�w

`(u)=`(w)�i�1

R
X(u)(U↵).

We now describe the maps di. Label each summand of the i-th term in the complex by ui,
by abuse of notation. Let

(fui)ui 2
M

u�w

`(u)=`(w)�i

R
X(u)(U↵)

be a section, then we have

di ((fui)ui) =

 
X

ui

(�1)↵(ui!ui+1) fui |X(ui+1)

!

ui+1

.

Here we define ↵ as follows: when X(ui) contains X(ui+1), if ui+1 is obtained from ui by
deleting the r-th term in the product expression of ui, then ↵(ui ! ui+1) = r, otherwise
↵ takes value in 0. Here the restriction of fui to X(ui+1) can be nonzero if and only if
X(ui+1) ✓ X(ui).

When we fix ui+1 � ui�1 � w, as `(ui�1) = `(ui+1) � 2, there are only two ways to take
restrictions from X(ui�1) to X(ui+1) via X(u0

i
) for some ui�1 � u0

i
� ui+1. Thus by the

definition of the function ↵, we may conclude that di �di�1 = 0. Therefore (7.7) is a complex.

Lemma 7.2. Let w = t1 · · · tr such that tj are all distinct. Then the complex (7.7) of sheaves

on X(w)ét is acyclic.
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Proof. It suffices to check the acyclicity of the complex (7.7) on the stalks. Let x 2 X(w),
then the complex would simplify depending on which closed subvariety x lives in.

M

u�w

`(u)=`(w)�i+1

R
X(u),x

di�1�!
M

u�w

`(u)=`(w)�i

R
X(u),x

di�!
M

u�w

`(u)=`(w)�i�1

R
X(u),x (7.8)

If we have x 2 X(ui�1) for some ui�1 � w, `(ui�1) = `(w) � i + 1. Then we know that
x /2 X(u) for all u � w with `(u)  i and thus R

X(u),x = 0. Then the complex 7.8 is trivially
exact at the i-th term.

If we have x 2 X(ui) for some ui � w, `(ui) = `(w) � i. Then for all R
X(u),x = 0 for

u � w, `(u)  i� 1. The complex 7.8 becomes

M

ui�u�w

`(u)=`(w)�i+1

R
X(u),x

di�1�! R
X(ui),x

�! 0.

Since di�1 is obviously surjective, this complex is exact at the i-th term in this case.
If x 2 X(ui+1), then for any f 2 Ker(di), all the summand of di(f) are 0. Now if f = (ft)t,

then for each summand of di(f), there exists an even number of nonzero ft’s that maps to
it. Each such pair of ft, f 0

t
would have the property ft = �f 0

t
or ft = f 0

t
. This is because

all summands of di(f) are 0. Now by the definition of di�1, we may build an element of the
i� 1-th term of below using the nonzero terms of ft.

M

u�w

`(u)=`(w)�i+1

R
X(u),x

di�1�!
M

u�w

`(u)=`(w)�i

R
X(u),x

di�!
M

u�w

`(u)=`(w)�i�1

R
X(u),x

⇤

Corollary 7.3. Let j : X(w) ,! X(w) be the open immersion. Then the complex (7.7) gives

a resolution for j!Z/pmZ.

Proof. We need to verify that the following complex is exact at R:

0! j!R
d�1�! R

d0�!
M

u�w

`(u)=`(w)�1

R
X(u).

We verify on the stalks. When x 2 X(w), we have j!Rx
⇠= Rx. When x 2 X(w)\X(w), then

Rx

d0�!
M

u�w

`(u)=`(w)�1

R
X(u),x

is injective. ⇤

Since the category Shét(X(w)) has enough injective objects, by Corollary 7.3, the complex
(7.7) is quasi-isomorphic to an injective resolution of j!Z/pmZ. Take the spectral sequence
associated to the complex (7.7), we have

Ei,j

1 =
M

u�w

`(u)=`(w)�i

Hj

ét
�
X(u),Z/pmZ

�
) Hi+j

ét,c (X(w),Z/pmZ) . (7.9)

Proposition 7.4. The spectral sequence 7.9 degenerates at the E2-page.

Proof. By Corollary 6.6, we have for all j > 0 and u � w,

Hj
�
X(u),Z/pmZ

�
= 0.

Hence there is no nonzero terms at Ei,j

1 when j 6= 0. By Proposition 7.1, we know that
E2 = E1.

⇤
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7.3. The étale cohomology with compact support for X(w) with coefficients in
Z/pmZ and Zp.

Theorem 7.5. Let G = GLn, and w = t1 · · · tr 2 W such that tj 2 S are distinct from

one another. Set I = supp(w), Iu = supp(u) and PI = B⇤WIB⇤ = UI o LI . Then for

k 6= `(w),m > 0,

Hk

ét,c (X(w),Z/pmZ) = 0,

and

H`(w)
ét,c (X(w),Z/pmZ) ⇠= indGLn(Fq)

B(Fq)
1Z/pmZ

,
X

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Z/pmZ,

In particular,

H`(w)
ét,c (X(w),Z/pmZ) ⇠= indGLn(Fq)

PI(Fq)
StLI ,

where StLI is the Steinberg module for LI(Fq) with coefficients in Z/pmZ.

Proof. By Proposition 7.4, we have for all i � 0,

Ei,0
2
⇠= Hi

ét, c (X(w),Z/pmZ) .
It follows from Proposition 7.1 that

E`(w),0
2

⇠= indGLn(Fq)
B(Fq)

1Z/pmZ

,
X

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Z/pmZ,

and Ei,j

2 = 0 otherwise. ⇤

Corollary 7.6. Let G = GLn, and w = t1 · · · tr 2 W such that the tj’s are distinct from

one another. Denote I = supp(w), Iu = supp(u), u � w and PI = B⇤WIB⇤
. Then for

k 6= `(w),m > 0,

Hk

ét,c (X(w),Zp) = 0,

and

H`(w)
ét,c (X(w),Zp) ⇠= indGLn(Fq)

B(Fq)
1Zp

,
X

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Zp .

In particular,

H`(w)
ét,c (X(w),Zp) ⇠= indGLn(Fq)

PI(Fq)
StLI ,

where StLI is the Steinberg module for LI(Fq) with coefficients in Zp.

Proof. By Theorem 7.5, we have for all k 6= `(w) and m > 0, Hk

ét,c (X(w),Z/pmZ) = 0. Thus
the tower

�
Hk

ét,c (X(w),Z/pmZ)
 
m

of abelian groups satisfy the Mittag–Leffler condition.
Thus for all k 6= `(w), we have

Hk

ét,c (X(w),Zp) = lim �
m

Hk

ét,c (X(w),Z/pmZ) = 0.

On the other hand, whenever we have m > l and a mod pl map

Z/pmZ�! Z/plZ

b mod pm 7�! b mod pl,

there is a short exact sequence of sheaves on X(w)ét:

0! Z/pm�lZ! Z/pmZ! Z/plZ! 0.
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By [Mil13, Corollary 8.14], since j : X(w)! X(w) is an open immersion, we know that j! is
an exact functor, so there is a short exact sequence

0! j!Z/pm�lZ! j!Z/pmZ! j!Z/plZ! 0.

Taking the associated long exact sequence yields

· · ·! H`(w)
ét

�
X(w), j!Z/pmZ

�
! H`(w)

ét
�
X(w), j!Z/plZ

�
! H`(w)+1

ét
�
X(w), j!Z/pm�lZ

�
! · · · .

The vanishing result for k 6= `(w) from Theorem 7.5 implies that

H`(w)
ét,c (X(w),Z/pmZ)! H`(w)

ét,c
�
X(w),Z/plZ

�

is surjective. Hence the tower of abelian groups
n
H`(w)

ét,c (X(w),Z/pmZ)
o

m

satisfies the
Mittag–Leffler condition. Therefore

H`(w)
ét,c (X(w),Zp) = lim �

m

H`(w)
ét,c (X(w),Z/pmZ) ,

and

H`(w)
ét,c (X(w),Zp) ⇠= indGLn(Fq)

B(Fq)
1Zp

,
X

u�w

`(u)=1

indGLn(Fq)
PIu (Fq)

1Zp .

⇤

Corollary 7.7. Let G = GLn and w 2 F+
. Let v 2 F+

such that supp(v) = supp(w)
and v = s↵1 · · · s↵r 2 W with s↵t all distinct. Let R = Z/pmZ or Zp, m > 0. Set I =
supp(w), Iu = supp(u), and PI = B⇤WIB⇤

. Then for k 6= `(w),

Hk

ét,c (X(w), R) = 0

and

H`(w)
ét,c (X(w), R) ⇠= H`(v)

ét,c (X(v), R) ⇠= indGLn(Fq)
B(Fq)

1R

,
X

u�v

`(u)=1

indGLn(Fq)
PIu (Fq)

1R.

In particular,

H`(w)
ét,c (X(w), R) ⇠= indGLn(Fq)

PI(Fq)
StLI ,

where StLI is the Steinberg module for LI(Fq) with coefficients in R.

Proof. Analogous to [Orl18, Proposition 2.11], by induction on `(w) � `(v), the complex
(7.1) we get for w 2 F+ is homotopic to the complex (7.1) for any v 2 F+ such that
supp(v) = supp(w). The rest follows from Theorem 7.5 and Corollary 7.6. ⇤

Appendix A. Filtrations on the global section of OX(w)

We are interested in the cohomology groups Hk
�
X(w),OX(w)

�
, k � 0 for w 2 W in

the case of G = GLn. We would also like to understand their structure as GLn(Fq)-
representations. In view of the double induction procedure in [Orl18], one would like to
study the relation between the cohomology groups of Deligne–Lusztig varieties correspond-
ing to Weyl group elements with the same support. For example, between X(sws) and
X(ws), or between X(w) and X(K(w)). If one could deduce all the relevant relations, then
the determination of the cohomology groups Hk

�
X(w),OX(w)

�
for arbitrary w 2W depends

on the case for the Coxeter elements (of a parabolic subgroup WI ✓W ).
As a first step in the base case of the strategy above, we consider in this section the

cohomology of GLn(Fq)-equivariant vector bundles E on X(w) when w  w. Since the
Deligne–Lusztig varieties X(w) are all affine Fp-schemes in this case, the only non-vanishing
cohomology group is at degree 0. Moreover, we will consider filtrations on E(X(w)).
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A.1. Background for the case of the Drinfeld half space. In [Orl08, Theorem 2.2.8],
Orlik has given a filtration for H0

�
Xn�1

K
, E
�
, where K is a finite extension of Qp, and Xn�1

K

is the Drinfeld half space and E is a GLn-equivariant homogeneous vector bundle on Xn�1
K

.
Kuschkowitz has adapted Orlik’s result for the Drinfeld half space defined over a finite field.
We recall the result of [Kus16, Theorem 2.1.2.1] after base change to the algebraic closure
Fp.

Theorem A.1 (Kuschkowitz ’16). Let E be a GLn(Fq)-equivariant homogeneous vector
bundle on Pn�1

Fp
. Then there is a filtration on H0(X(w), E) =: E(X(w))0:

E(X(w))0 � E(X(w))1 � · · · � E(X(w))n�2 � E(X(w))n�1 = H0
⇣
Pn�1
Fp

, E
⌘

such that each subquotient of this filtration fits into an extension of GLn(Fq)-representations

0! indGLn(Fq)
P(j+1,n�1�j)(Fq)

✓
H̃n�1�j

Pj

Fp

⇣
Pn�1
Fp

, E
⌘
⌦ Stn�j

◆
! E(X(w))j/E(X(w))j+1 !

! v
GLn(Fq)
P(j+1,1,...,1)(Fq)

⌦Hn�1�j

⇣
Pn�1
Fp

, E
⌘
! 0 (A.1)

for j = 0, ..., n � 2, where Pd, for a partition d of n, is the standard parabolic subgroup of
GLn corresponding to d in the obvious way, and v

GLn(Fq)
P(j+1,1,...,1)(Fq)

is a generalized Steinberg
representation. Also,

H̃n�1�j

Pj

Fp

⇣
Pn�1
Fp

, E
⌘
:= ker

✓
Hn�1�j

Pj

Fp

⇣
Pn�1
Fp

, E
⌘
! Hn�1�j

⇣
Pn�1
Fp

, E
⌘◆

.

The representations arising from Kuschkowitz’ theorem are studied in the preprint [Orl21].

A.2. Notations and constructions. We fix some notations for the rest of this section. Let
w  w. Denote I = supp(w), PI = B⇤WIB⇤, where WI ✓ W is the subgroup generated
by I. We have a decomposition PI = UI o LI , where UI is the unipotent radical of PI and
LI ◆ T ⇤ is the standard Levi subgroup of GLn associated to PI . Recall that

LI

⇠�! GLn1 ⇥ · · ·⇥GLnr ,

where n1 + · · ·+ nr = n and wi is a Coxeter element for GLni such that w = w1 · · ·wr. Note
that the homogeneous space for GL1 is just a point Spec Fp and the Deligne–Lusztig variety
for GL1 is Spec Fp.

For GLm, the projective space Pm�1
Fp

is isomorphic to the quotient GLm/PJ , where PJ is
the parabolic subgroup generated by J = {s2, ..., sm�1}. Now for any PJ(Fq)-module M that
is also a Fp-vector space, there is an associated vector bundle

E := GLm ⇥PJ M

over GLm/PJ . Note that we have the identification (gp,m) ⇠ (g, p.m). The map ⇡ : E !
GLm/PJ is locally trivial with respect to a Zariski cover cf. [Jan03, §I 5, §II 1]. We may take
the associated sheaf of OGLm/PJ

-module E defined by
E(U) := �(U,E) = {s : U ! E|⇡ � s = idU},

for all U ✓ GLm/PJ open. As we have identified GLm/PJ with Pm�1
Fp

, we call such E homo-
geneous vector bundles on Pm�1

Fp
. In particular, E is GLm(Fq)-equivariant by construction.

Let Y1, Y2 be two Drinfeld half spaces over Fp defined over Fq, of dimension m1 � 1 and
m2 � 1 respectively. Let E1 and E2 be homogeneous vector bundles on Pm1�1

Fp
and Pm2�1

Fp

respectively. Denote their restrictions to Y1 and Y2 also by E1 and E2 . Then pr⇤1Ei, i = 1, 2,
is a GLn(Fq)-equivariant locally free OY1⇥Y2 -module on Y1 ⇥ Y2. Thus pr⇤1E1 ⌦ pr⇤2E2 gives a
GLn(Fq)-equivariant locally free OY1⇥Y2 -module on Y1 ⇥ Y2, which we denote by E . Now we
have an isomorphism of Fp-vector spaces:

E(Y1 ⇥ Y2)
⇠�! E1(Y1)⌦ E2(Y2). (A.2)
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Hence the filtrations for E1(Y1) and E2(Y2) would carry over to a filtration for E(Y1 ⇥ Y2).
The natural GLm1(Fq)-action (resp. GLm2(Fq)-action) on Y1 (resp. Y2) yields a GLm1 ⇥
GLm2(Fq)-action on the product scheme Y1 ⇥ Y2. Observe that the isomorphism (A.2) is in
fact also GLm1 ⇥GLm2(Fq)-equivariant.

A.3. Filtrations of vector bundles on X(w) with w  w.

Lemma A.2. Let G = GLn and w  w. The Deligne–Lusztig variety XGLn(w) is affine.

Proof. Using the notations defined above, we have an LI(Fq)-equivariant isomorphism of
Fp-schemes:

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr).

By construction, we know that XGLni
(wi) is the Drinfeld half space of dimension `(wi) for

each i = 1, .., r. Each XGLni
(wi) is affine by [Lus77, Corollary 2.8]. Thus XLI (w) is affine.

Recall that
XGLn(w) = GLF

n
/UF

I
⇥L

F
I XLI (w)

is a fibration over GLF

n
/PF

I
with fibres XLI (w). Thus XGLn(w) is affine. ⇤

Lemma A.3. Let Ei be GLni(Fq)-equivariant locally free O-modules on XGLni
(wi) each

coming from a homogeneous vector bundle on Pni�1
Fp

. Let

EI :=
rO

i=1

pr
⇤
i
Ei and E :=

M

gP
F
I 2GLF

n /P
F
I

◆
gP

F
I⇤ EI ,

where ◆gP
F
I :

�
gPF

I

 
⇥ XLI (w) ! XGLn(w) is the inclusion for each irreducible component

of XGLn(w). Then there is a GLn(Fq)-equivariant isomorphism of cohomology groups:

H0 (XGLn(w), E)
⇠�! indGLF

n

P
F
I

H0 (XLI (w), EI) .

Proof. This follows directly from the construction mentioned in the previous lemma. As
justified in Section A.2, we know that EI is a LI(Fq)-equivariant OXLI

(w)-module. The
construction of E follow from the construction of sheaves on disjoint unions of schemes. In
particular, E is a GLn(Fq)-equivariant OX(w)-module. ⇤

Lemma A.4. We have a filtration

H0 (XLI (w), EI) =: M0
LI
�M1

LI
� · · · �M

Pr
i=1(ni�1)

LI
=

rO

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘

such that for

⇣P
t�1
i=1 (ni � 1)

⌘
 j 

⇣P
t

i=1 (ni � 1)
⌘
, t = 1, ..., r,

M j

LI
=

 
t�1O

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘!
⌦N j

0
⌦
 

rO

i=t+1

H0
�
XGLni

(wi), Ei
�
!

where N j
0

is the j0-th term in Kuschkowitz’ filtration for H0
�
XGLnt

(wt), Et
�

with j0 = j ��P
t�1
i=1 ni � 1

�
.

Furthermore, when

⇣P
t�1
i=1 (ni � 1)

⌘
 j 

⇣P
t

i=1 (ni � 1)
⌘
, for t = 1, ..., r, there is an

extension of LI(Fq)-representations:

0! At ⌦ ind
GLF

nt

P
F
(j0+1,nt�1�j0)

⇣
H̃nt�1�j

0

Pj0

⇣
Pnt�1
Fp

, Et
⌘
⌦ Stnt�j0

⌘
⌦Bt !M j

LI
/M j+1

LI
!

! At ⌦ v
GLF

nt

P
F
(j0+1,1,...,1)

⌦Hnt�1�j
0
⇣
Pnt�1
Fp

, Et
⌘
⌦Bt ! 0, (A.3)
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where j0 = j �
�P

t�1
i=1 ni � 1

�
, and

At :=
t�1O

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘

Bt :=
rO

i=t+1

H0
�
XGLni

(wi), Ei
�
.

Proof. This lemma follows from [Kus16, Theorem 2.1.2.1] and the following LI(Fq)-equivariant
isomorphism of Fp-schemes:

XLI (w)
⇠�! XGLn1

(w1)⇥ · · ·⇥XGLnr
(wr).

Since At and Bt are Fp-vector spaces for all t = 1, . . . , r, taking tensor products with At and
Bt is exact. Thus extensions in (A.1) for N j

0
/N j

0+1 yields the extensions in (A.3). ⇤
Proposition A.5. Let w  w, such that w = w1 · · ·wr, with wi being the standard Coxeter

elment for GLni , i = 1, ..., r, n1 + · · ·nr = n. Denote I = supp(w). For each i, let Ei
be a GLni(Fq)-equivariant locally free O-modules on XGLni

(wi) coming from a homogeneous

vector bundle on Pni�1
Fp

. Let

EI :=
rO

i=1

pr
⇤
i
Ei and E :=

M

gP
F
I 2GLF

n /P
F
I

◆
gP

F
I⇤ EI ,

where ◆gP
F
I :

�
gPF

I

 
⇥ XLI (w) ! XGLn(w) is the inclusion for each irreducible component

of XGLn(w). Then

H0 (XGLn(w), E) = indGLF
n

P
F
I

H0 (XLI (w), E)
has a filtration

H0 (XGLn(w), E) =: M0 �M1 � · · · �M
Pr

i=1(ni�1) = indGLF
n

P
F
I

 
rO

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘!

such that when

⇣P
t�1
i=1(ni � 1)

⌘
 j 

⇣P
t

i=1(ni � 1)
⌘
, for t = 1, ..., r, there is an extension

GLn(Fq)-representations:

0! indGLF
n

P
F
I

✓
At ⌦ ind

GLF
nt

P
F
(j0+1,nt�1�j0)

⇣
H̃nt�1�j

0

Pj0

⇣
Pnt�1
Fp

, Et
⌘
⌦ Stnt�j0

⌘
⌦Bt

◆
!M j/M j+1 !

! indGLF
n

P
F
I

✓
At ⌦ v

GLF
nt

P
F
(j0+1,1,...,1)

⌦Hnt�1�j
0
⇣
Pnt�1
Fp

, Et
⌘
⌦Bt

◆
! 0, (A.4)

where j0 = j �
�P

t�1
i=1 ni � 1

�
and

At :=
t�1O

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘

Bt :=
rO

i=t+1

H0
�
XGLni

(wi), Ei
�
.

In particular, when Ei are the structure sheaf for all i, then the sequence (A.4) is also exact

on the left.

Proof. Since GLF

n
= GLn(Fq) and PF

I
= PI(Fq) are finite groups, indGLF

n

P
F
I

is an exact functor.

Thus indGLF
n

P
F
I

preserves injective maps as well as short exact sequences. ⇤

It is also possible to rewrite this filtration in a different way to resemble the Hodge filtration.
Proposition A.6. Let w  w, such that w = w1 · · ·wr, with wi being the standard Coxeter

elment for GLni , i = 1, ..., r. Denote I = supp(w). For each i, let Ei be a GLni(Fq)-
equivariant locally free O-modules on XGLni

(wi) coming from a homogeneous vector bundle

on Pni�1
Fp

. Let

EI :=
rO

i=1

pr
⇤
i
Ei and E :=

M

gP
F
I 2GLF

n /P
F
I

◆
gP

F
I⇤ EI ,
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where ◆gP
F
I :

�
gPF

I

 
⇥ XLI (w) ! XGLn(w) is the inclusion for each irreducible component

of XGLn(w). Then

H0 (XGLn(w), E) = indGLF
n

P
F
I

H0 (XLI (w), E)
has a filtration

H0 (XGLn(w), E) =: M0 �M1 � · · · �M
Pr

i=1(ni�1) = indGLF
n

P
F
I

 
rO

i=1

H0
⇣
Pni�1
Fp

, Ei
⌘!

with graded terms being GLn(Fq)-representations:

Mk/Mk+1 =
M

↵1+···+↵r=k

�
(N↵1

n1
/N↵1+1

n1
)⌦ · · ·⌦ (N↵r

nr
/N↵r+1

nr
)
�
,

where N↵t
nt

is the ↵t-th term in the filtration of H0
�
XGLnt

(wt), Et
�
.

Proof. When r = 2, this follows from the observation that the graded terms of a tensor
product come from the direct sum of tensor products of the graded terms of the two filtrations,
similar to Hodge filtrations. For r > 2 it follows by induction. ⇤
A.4. Examples. (a) Let w  w such that w = s1 · · · sn�2. Let I = supp(w), so in this case
we have LI

⇠= GLn�1 ⇥GL1. Thus we have

H0
�
XGLn(w),OX(w)

�
= indGLF

n

P
F
I

H0
⇣
XGLn�1(w),OXGLn�1 (w)

⌘
.

If N0 ◆ · · · ◆ Nn�2 is the GLF

n�1-equivariant filtration for H0
�
XGLn�1(w),O

�
as in [Kus16,

Theorem 2.1.2.1], then

indGLF
n

P
F
I

N0 ◆ · · · ◆ indGLF
n

P
F
I

Nn�2 = indGLF
n

P
F
I

H0

✓
Pn�2
Fp

,OPn�2

Fp

◆

gives a GLF

n
-equivariant filtration for H0

�
XGLn(w),O

�
.

(b) Let w  w such that w = s1 · · · sf�1sf+1 · · · sn�1, 1 < f < n�1. In this case, we have

XLI (w)
⇠�! XGLn1

(w1)⇥XGLn2
(w2),

where w1 = s1 · · · sf�1, w2 = sf+1 · · · sn�1. Hence

H0
�
XGLn(w),OX(w)

�
= indGLF

n

P
F
I

⇣
H0
⇣
XGLn1

(w1),OXGLn1
(w1)

⌘
⌦H0

⇣
XGLn2

(w2),OXGLn2
(w2)

⌘⌘
.

If N0
n1
◆ · · · ◆ Nn1�1

n1
(resp. N0

n2
◆ · · · ◆ Nn2�1

n2
) is the GLF

n1
-equivariant (resp.GLn2 -

equivariant) filtration for H0
�
XGLn1

(w1),OXGLn1
(w1)

�
(resp. H0

�
XGLn2

(w2),OXGLn2
(w2)

�
)

as in [Kus16, Theorem 2.1.2.1], then

indGLF
n

P
F
I

�
N0

n1
⌦N0

n2

�
� indGLF

n

P
F
I

�
N1

n1
⌦N0

n2

�
� · · · � indGLF

n

P
F
I

�
Nn1�1

n1
⌦N0

n2

�
�

� indGLF
n

P
F
I

�
Nn1�1

n1
⌦N1

n2

�
� · · · � indGLF

n

P
F
I

�
Nn1�1

n1
⌦Nn2�1

n2

�

gives a filtration for H0
�
XGLn(w),OX(w)

�
. Note that

indGLF
n

P
F
I

�
Nn1�1

n1
⌦Nn2�1

n2

�
= indGLF

n

P
F
I

✓
H0

✓
Pn1�1
Fp

,OPn1�1

Fp

◆
⌦H0

✓
Pn2�1
Fp

,OPn2�1

Fp

◆◆
.

We have extensions of GLF

n
-representations

0! indGLF
n

P
F
I

✓
ind

GLF
n1

P
F
(j0+1,n1�1�j0)

✓
H̃nt�1�j

0

Pj0

✓
Pn1�1
Fp

,OPn1�1

Fp

◆
⌦ Stn1�j0

◆
⌦H0(XGLn2

(w2),OXGLn2
(w2))

◆
!

! indGLF
n

P
F
I

⇣
N j

0

n1
⌦N0

n2

⌘
/indGLF

n

P
F
I

⇣
N j

0+1
n1

⌦N0
n2

⌘
!

! indGLF
n

P
F
I

✓
v
GLF

n1

P
F
(j0+1,1,...,1)

⌦Hn1�1�j
0
✓
Pn1�1
Fp

,OPn1�1

Fp

◆
⌦H0(XGLn2

(w2),OXGLn2
(w2))

◆
! 0
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for j0 = 0, ..., n1 � 1 and

0! indGLF
n

P
F
I

✓
H0

✓
Pn1

Fp
,OPn1

Fp

◆
⌦ ind

GLF
n2

P
F
(j0+1,n2�1�j0)

✓
H̃n2�1�j

0

Pj0

✓
Pn2�1
Fp

,OPn2�1

Fp

◆
⌦ Stn2�j0

◆◆
!

! indGLF
n

P
F
I

⇣
Nn1�1

n1
⌦N j

0

n2

⌘
/indGLF

n

P
F
I

⇣
Nn1�1

n1
⌦N j

0+1
n2

⌘
!

! indGLF
n

P
F
I

✓
H0

✓
Pn1

Fp
,OPn1

Fp

◆
⌦ v

GLF
n2

P
F
(j0+1,1,...,1)

⌦Hn2�1�j
0
✓
Pn2�1
Fp

,OPn2�1

Fp

◆◆
! 0

for j0 = 0, ..., n2 � 1.

Appendix B. Examples of local cohomology of X(w) with support in X(v)

As mentioned in Appendix A, we are interested in Hk(X(w),OX(w)), k � 0. Another
possible approach would be via the computation of local cohomology groups on X(w). In
particular, one could study the terms in the spectral sequence

Ei,j

1 =
M

v�w

`(v)=`(w)�i

Hj

X(v)

⇣
X(w),O

X(w)

⌘
.

In this case, we are interested in how the local cohomology groups are related when we
replace the locally closed subscheme X(v) with another locally closed subscheme X(v0) with
supp(v) = supp(v0).

We will examine some examples of local cohomology of X(w) in this section.

B.1. Examples of computations of local cohomology of X(w) with support in X(v).
We recall some definitions and lemmas from [SGA2, Exposé I].

Denote X := X(w), U := X(w), Z := X(w)\X(w). By [SGA2, Exposé I, Theorem 2.8],
we have the following long exact sequence

0! �
X(w)\X(w)

�
X(w),O

�
�! �

�
X(w),O

�
�! � (X(w),O) �! H1

X(w)\X(w)

�
X(w),O

�
! · · ·

· · ·! Hk

X(w)\X(w)

�
X(w),O

�
�! Hk

�
X(w),O

�
�! Hk (X(w),O)! · · · .

By Theorem 6.1, we know Hk
�
X(w),O

X(w)

�
for all k � 0. If we also know the local coho-

mology groups Hk

X(w)\X(w)

�
X(w),O

X(w)

�
, then we will be able to deduce Hk

�
X(w),OX(w)

�

from the long exact sequence.

Example B.1. Let G = GLn, w 2 W . Fix a reduced expression w = si1 · · · sir . Denote
X(w) := X(si1 , ..., sir ). We want to study Hk

X(v)

�
X(w),O

X(w)

�
and Hk

X(v)

�
X(w),O

X(w)

�
,

for v � w a subword of si1 · · · sir 2 F+.
i. Let v = e be the identity element in F+, then X(e) = (GLn/B⇤) (Fq). For X(e) ✓

X(w), we have for all k � 0,

Hk

X(e)

⇣
X(w),O

X(w)

⌘
=

M

x2(GLn/B
⇤)(Fq)

Hk

x

⇣
X(w),O

X(w)

⌘
= IndGLn(Fq)

B⇤(Fq)
Hk

x

⇣
X(w),O

X(w)

⌘
,

for any fixed x 2 (GLn/B⇤) (Fq).
ii. Note that X(e) is a finite disjoint union of the Fq-rational points of GLn/B⇤, so

X(e) = X(e). Then

Hk

X(e)

⇣
X(w),O

X(w)

⌘
=

M

x2(GLn/B
⇤)(Fq)

Hk

x

⇣
X(w),O

X(w)

⌘
= IndGLn(Fq)

B⇤(Fq)
Hk

x

⇣
X(w),O

X(w)

⌘
.
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iii. Now if n = 2, w = s, then we have

X(s) = X(s) [̇ X(e).

Computing as above and we get

Hk

X(e)

⇣
X(s),O

X(s)

⌘
=

M

x2(GL2/B
⇤)(Fq)

Hk

x

⇣
X(s),O

X(s)

⌘
= IndGL2(Fq)

B⇤(Fq)
Hk

x

⇣
X(s),O

X(s)

⌘
.

The computation of the local cohomology with support in X(e) is now reduced to
the computation of Hk

x

�
X(s),O

X(s)

�
for x 2 (GL2/B⇤) (Fq).

B.2. Local cohomology and some P1-bundles. Let G = GLn, w 2W .

Lemma B.2. Let v, w, s 2W and let v be a subword of w in F+
. Then ⇡1 : X(sws)! X(ws)

restricts to ⇡0
1 : X(svs) ! X(vs), and ⇡2 : X(sws) ! X(sw) restricts to ⇡0

2 : X(svs) !
X(sv).

Proof. Let `(w) = r. Recall that  is the Bruhat order on W . We have X(svs) and
X(sv), together with a morphism ⇡0

1 : X(svs) ! X(vs) defined by (B0, ..., Br+1, FB0) 7!
(B1, ..., Br+1, FB1). Thus it agrees with ⇡1 and identifies with its restriction to X(svs).

Similarly, define ⇡0
2 : X(svs) ! X(sv) by (B0, ..., Br+1, FB0) 7! (Br+1, FB1, ..., FBr+1).

This also agrees with ⇡2 and identifies with its restriction to X(svs). ⇤
Lemma B.3. There are GLn(Fq)-equivariant isomorphisms:

Hk

X(vs)

⇣
X(ws),O

X(ws)

⌘
⇠= Hk

X(vs)

⇣
X(sws),O

X(sws)

⌘

Hk

X(sv)

⇣
X(sw),O

X(sw)

⌘
⇠= Hk

X(sv)

⇣
X(sws),O

X(sws)

⌘
.

Proof. Consider the Grothendieck spectral sequence for the functors �
X(sv) and ⇡2,⇤ for the

sheaf O
X(sws):

Ep,q

2 =
⇣
Rp�

X(sv) �R
q⇡2,⇤

⌘�
O

X(sws)

�
=) Rp+q

⇣
�
X(sv) � ⇡2,⇤

⌘�
O

X(sws)

�
.

By Lemma B.2, the canonical restriction of ⇡2 to X(svs) is ⇡0
2. Hence �

X(sv)(X(sw),�) �
⇡2,⇤ identifies with the functor �

X(sv)(X(sws),�). Thus the spectral sequence becomes

Ep,q

2 =
⇣
Rp�

X(sv) �R
q⇡2,⇤

⌘�
O

X(sws)

�
=) Rp+q�

X(sv)

�
O

X(sws)

�
.

As in Proposition 3.6, we have ⇡2,⇤OX(sws) = O
X(sw) and Rq⇡2,⇤OX(sws) = 0 for q > 0.

Thus we have
Rp�

X(sv)

�
⇡2,⇤OX(sws)

� ⇠�! Rp�
X(sv)

�
O

X(sws)

�
.

and
Hk

X(sv)

⇣
X(sw),O

X(sw)

⌘
⇠= Hk

X(sv)

⇣
X(sws),O

X(sws)

⌘
.

The case of �
X(vs) uses the same argument. ⇤

Remark B.4. Let w 2 F̂+. Recall that X(w) and X(Ri(w)), i = 1, 2, are birationally
equivalent. We would like to know whether local cohomology groups for the structure sheaf
are birational invariants. One would then require a generalization of [CR11, Theorem 3.2.8]
for local cohomology groups.

Finally, if one can apply the operators C,K,R to local cohomology functors and obtain a
formula for local cohomology groups of X(w) for arbitrary w 2W with a reduced expression
t1 · · · tr, tj 2 S, then it could be possible to use the stratification

X(w) = X (t1, . . . , tr)
·[
0

B@
[

v�w

`(v)=`(w)�1

X(v)

1

CA .



44 YINGYING WANG

We may construct a sequence of local cohomology sheaves on X(w):

0! O
X(w) !

M

v�w

`(v)=`(w)�1

�
X(v)

⇣
O

X(w)

⌘
! · · ·

· · ·!
M

v�w

`(v)=`(w)�i

�
X(v)

⇣
O

X(w)

⌘
! · · ·! �

X(e)

⇣
O

X(w)

⌘
! 0. (B.1)

The associated spectral sequence would be

Ei,j

1 =
M

v�w

`(v)=`(w)�i

Hj

X(v)

⇣
X(w),O

X(w)

⌘
. (B.2)

If we denote
Y :=

[

v�w

`(v)=`(w)�1

X(v),

then there is a canonical immersion

�
Y

⇣
O

X(w)

⌘
,! O

X(w).

Thus if the sequence (B.1) is an acyclic complex, then the spectral sequence (B.2) would
compute the local cohomology with support in Y , and therefore would give a description for
the cohomology groups Hk(X(w),OX(w)). This strategy is used in [Orl08] for Drinfeld half
space over a finite extension K of Qp.
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