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ABSTRACT

Abstract

The detection of soil surface temperatures allows various statements to be made

about soil microbial activity. Such activity can be expressed as catabolic activity in

form of heat generation, which is already used as an equivalent to microbial growth

rates in established measurement methods (e.g., microcalorimetry). Accordingly,

passive infrared thermography (IRT) that measures heat from measurement object

surfaces is a promising technique for the non-contact and non-invasive detection of

soil microbial activity. Passive IRT records the heat generation on surfaces in tem-

poral and spatial high resolution. Therefore, high-resolution thermal imaging can

be used to map the dynamics of microbial growth rates.

The goal of the present thesis is the development of a non-invasive measurement

approach of microbial heat production in soils. Accordingly, the systematic devel-

opment of a laboratory analytical and data processing procedure to capture spatial

and temporal variability of catabolic heat generation on soil surfaces is addressed.

A component of the method development includes undisturbed soil samples in ad-

dition to the conventionally used disturbed samples. The results show that passive

IRT has great potential and multiple possibilities of application in microbiological

soil research, hence, it can be used to predict energy and metabolic turnover, espe-

cially of carbon. After substrate application, a temperature increase of more than

1 K was detected, which can be attributed to hot spots and hot moments of micro-

bial activity, in so-called hot movements. Furthermore, IRT offers the possibility to

approximate soil surface moisture and its change over time in an active measure-

ment procedure so that soil physical properties can be considered in addition to the

microbiological component. The simultaneous detection of moisture and other soil

surface properties using established measurement methods is used to evaluate and

explain passive IRT derived data.
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ABSTRACT

The results of this thesis make a decisive contribution to the research of microbial

dynamics in soil and provide future studies with a technical basis to map microbio-

logical and physical energy fluxes in soil. The thesis contributes to obtaining deeper

insights into metabolic processes in soils.

Keywords: Passive infrared thermography, heat production, catabolism, microbial

activity, spatio-temporal analysis
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KURZFASSUNG

Kurzfassung

Die Erfassung der Bodenoberflächentemperatur ermöglicht es eine Vielzahl an Aus-

sagen über mikrobielle Aktivität im Boden zu treffen. Diese Aktivität kann als

katabolische Aktivität in Form von Wärmeentwicklung ausgedrückt werden, die in

etablierten Messverfahren (z.B. Mikrokalorimetrie) bereits als Äquivalent zur mikro-

biellen Wachstumsrate verwendet wird. Daher ist die passive Infrarot-Thermografie

(IRT), die die Wärme von Messobjektoberflächen misst, eine vielversprechende Tech-

nik für die berührungslose und nicht-invasive Erfassung der mikrobiellen Aktivität

im Boden. Die passive IRT erfasst die Wärmeentwicklung von Oberflächen in zeitlich

und räumlich hoher Auflösung. Daher kann die hochauflösende Wärmebildtechnik

genutzt werden, um die Dynamik der mikrobiellen Wachstumsraten abzubilden.

Das Ziel der vorliegenden Arbeit ist die Entwicklung einer nicht-invasiven Mess-

methodik der mikrobiellen Wärmeproduktion in Böden. Dementsprechend wird die

systematische Entwicklung eines laboranalytischen und datenverarbeitenden Ver-

fahrens zur Erfassung der räumlichen und zeitlichen Variabilität der katabolischen

Wärmeentwicklung auf Bodenoberflächen angestrebt. Ein Bestandteil der Verfah-

rensentwicklung ist neben den konventionell verwendeten gestörten Proben auch

ungestörte Bodenproben. Die Ergebnisse zeigen, dass die passive IRT ein großes

Potential und zahlreiche Einsatzmöglichkeiten in der mikrobiologischen Bodenfor-

schung zur Vorhersage von Energie- und Stoffumsätzen, insbesondere von Kohlen-

stoff, bietet. Nach der Substratapplikation wurde ein Temperaturanstieg von mehr

als 1 K erfasst, der auf hot spots und hot moments der mikrobiellen Aktivität, in

sogenannten hot movements, zurückgeführt werden kann. Darüber hinaus bietet

die IRT die Möglichkeit, die Feuchtigkeit der Bodenoberflächen und deren zeitli-

che Veränderung in einem aktiven Messverfahren anzunähern, so dass neben der

mikrobiologischen Komponente auch bodenphysikalische Eigenschaften berücksich-

tigt werden können. Die gleichzeitige Erfassung der Bodenfeuchtigkeit und weiterer
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Bodenoberflächeneigenschaften mittels etablierter Messverfahren werden zur Aus-

wertung und Erklärung der Messdaten der passiven IRT herangezogen.

Die Ergebnisse dieser Arbeit leisten einen entscheidenden Beitrag zur Erfor-

schung der mikrobiellen Dynamik im Boden und bieten zukünftigen Studien eine

technische Grundlage, um mikrobiologische und physikalische Energieflüsse im Bo-

den abzubilden. Die Arbeit trägt dazu bei, tiefere Einblicke in Stoffwechselvorgänge

in Böden zu erhalten.

Schlagworte: Passive Infrarot-Thermography, Wärmeentwicklung, Katabolismus,

mikrobielle Aktivtät, räumlich-zeitliche Analyse
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INTRODUCTION

1 Introduction

1.1 General Motivation

The pedosphere is a place of diverse processes and dynamics that occur predomi-

nantly at the microscale and initially appear invisible. These microscale processes

include soil organic matter (SOM) decomposition, transformation, and sequestra-

tion in soils and contribute to biogeochemical cycling, climate change, and ecosystem

sustainability (Lal, 2004; Liang et al., 2017). Since soil biomass carbon (C) stocks

exceed atmospheric C by significantly more than three times, SOM decomposition

is of great significance in light of climate change prediction (Ciais et al., 2014; Lal,

2004; Lützow et al., 2006). In this context, metabolic processes by microorganisms

cannot be neglected because SOM decomposition and soil C cycling are a product

of microbial growth and activity (Bölscher et al., 2016; Liang et al., 2017; Schimel

and Schaeffer, 2012). Microbial processes have two crucial, opposing functions in

regulating terrestrial C dynamics: releasing C to the atmosphere via their catabolic

activities but also preventing C release by stabilizing it into forms that are not eas-

ily decomposable (Chakrawal et al., 2020; Liang et al., 2017; Schimel and Schaeffer,

2012). These processes occur at the microscale and are embedded in a complex and

dynamic system that makes an enormous and overarching contribution to the global

C cycle (Ciais et al., 2014; Lal, 2004; Schlesinger and Andrews, 2000).

The degradation of SOM has a significant effect on the surface and subsurface

physical, biological, and chemical soil properties (LaRowe and Van Cappellen, 2011;

Tecon and Or, 2017). However, microorganisms require an adequate amount of

SOM, in which soil organic carbon (SOC) is also included, to maintain microbial

functioning and physiological processes (Billings and Ballantyne Iv, 2013; Liang

et al., 2017). Therefore, microbial activity is strongly linked to the availability

and quality of C. Nevertheless, C limitations are widespread in soils restricting
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biotic factors in soils, as the composition of microbial communities (Drotz et al.,

2010; Kuzyakov and Blagodatskaya, 2015). In addition to the influence of C, abi-

otic factors, such as soil moisture, oxygen availability, soil or ambient temperature,

chemical soil reactions (e.g., pH) are restricting microbial activity and process rates

(Kuzyakov and Blagodatskaya, 2015; Tecon and Or, 2017; Vos et al., 2013). The

tremendous dynamic nature of soil processes and the rapid changes in microbial

community function are the consequence of such abiotic and biotic factors resulting

in great diversity and ecological functioning of soil microbes (Tecon and Or, 2017;

Torsvik et al., 1996). Thus, microbiological and physical soil processes cannot be

separated from each other in studies on microbial dynamics as they are mutually

dependent.

In order to record the microbial dynamics in the soil, Hesselink van Suchtelen

(1931) already carried out a variety of calorimetric studies in the late 1920s and

highlighted the relationship between heat development in soils and microbial activ-

ity. Calorimetry provides heat flow information on microbial metabolic processes

to study very accurately microbial involvement in soil carbon dynamics (Barros

et al., 1995; Herrmann et al., 2014; Sparling, 1981), and has been applied to micro-

bial biomass detection, microbial behavior, and substrates conversion in soil sciences

(Barros et al., 1995; Critter et al., 1994; Ljungholm et al., 1979; Sparling, 1981). The

technique enables non-destructive measurement (of disturbed soil samples), analy-

ses of small volumes of soil material, high reproducibility and sensitivity, and the

chance to study different simultaneous processes without including further measure-

ment methods (Vor et al., 2002). Nevertheless, calorimetry neglects spatial dynam-

ics and diversity in soil processes (Kluge et al., 2013; Kuzyakov and Blagodatskaya,

2015). However, measuring the heat generated by a soil has proven to be a promis-

ing approach to gain deep insights into the metabolic processes of microorganisms

(Kuzyakov and Blagodatskaya, 2015; Vor et al., 2002).
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Nowadays, non-visible parts of soil processes, such as heat generation, can be de-

tected and analyzed using spectroscopic analysis techniques using the infrared part

of electromagnetic spectrum (Meola and Carlomagno, 2004; Usamentiaga et al.,

2014). These parts of the spectrum conceal a wealth of information and properties

of processes that provide deeper insights into the characteristics of our dynamic envi-

ronment, especially of soil characteristics (Lehmann et al., 2008; Schmidt et al., 2011;

Viscarra Rossel and Webster, 2012). Infrared thermography (IRT) offers promising

potential in the longwave range of the spectrum to record thermal energy generated

in the soil in a high spatial and temporal resolution. In addition to the advantages

of calorimetry, this technique, as a proximal sensing elaboration method, offers the

possibility to analyze undisturbed soil samples and observe full dynamics even in

real-time (Bagavathiappan et al., 2013; Meola and Carlomagno, 2004).

This thesis recognizes the importance of determining microbial activity and ad-

ditional physical and biological soil properties in a high spatial and temporal per-

spective. It aims to advance the scientific understanding of the relationship between

soil properties by using IRT as a state-of the-art and non-contact measurement

approach. Exploiting the potential of observing soil surface temperatures as an ap-

proximation of soil microbial activity is one of the main challenges of the thesis.

Fig. 1.1 illustrates the structure of this thesis. The following section 1.2 gives a

detailed overview of the current state of the art and the scientific basis. In section

1.2.1, the physical basis of IRT is introduced concerning detecting heat on measure-

ment object surfaces and necessary physical equations and units, which need to be

considered for detecting soil properties. In section 1.2.2, the microbiological aspects

and processes producing heat are clarified regarding the processes in soils. In sec-

tion 1.2.3, the essential influencing parameters are described and how they affect

the measured surface temperature and the physical properties of soils. These need
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to be considered for a complete discussion of the functionality of IRT as a measure-

ment approach for soil biological properties, as microbial activity. Open research

questions are identified in section 1.3, from which the scope and specific aims of the

thesis are derived.

Figure 1.1: The outline of section 1.2. The red outlined boxes are referring to the
subsections, respectively. In section 1.2.1, the physical basis of the IRT technique is
introduced, answering the question, how infrared thermography works and what exactly is
measured. The processes generating heat in soils are addressed in section 1.2.2, and in
section 1.2.3, the soil properties and ambient conditions are discussed regarding how they
affect the measured surface temperature of soils.
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1.2 State of the Art

1.2.1 How infrared thermography works and what exactly is measured

Over the last two decades, IRT has become a technically advanced and versatile

measurement method for detecting longwave thermal radiation (Bagavathiappan

et al., 2013; Theodorakeas et al., 2015). The surface temperature, i.e., the recorded

outgoing surface radiation of an objects surface, can be used to investigate various

issues – these range from building inspections over medical applications to scientific

questions. Modern IRT systems allow image series and subsequent data analyses;

they are no longer purely image recording equipment (Grudzielanek and Cermak,

2015; Meola and Carlomagno, 2004; Usamentiaga et al., 2014). Thus, dynamic pro-

cesses can be analyzed and examined and described by statistical methods.

IRT is based on the measurement of thermal radiation from measurement ob-

jects surfaces. All objects with a temperature above absolute zero (absolute zero

= 0 K = temperature at which no more molecular movement occurs) emit thermal

radiation. Thermal radiation is classified in the infrared part of the electromagnetic

radiation spectrum. The IRT system, used in this work, measures in the longwave

infrared (LIR), from 7.5 µm to 14 µm (Fokaides and Kalogirou, 2011; Grudzielanek

and Cermak, 2015; Ranjit et al., 2015). IRT cameras do not measure the surface

temperature of measurement object surfaces directly but determine it indirectly

without contact by measuring the intensity of the outgoing thermal radiation. The

measurement of the intensity of the outgoing thermal radiation [λ] is calculated us-

ing the Stefan-Boltzmann formula, where σ is constant (5.670 W m−2 K−4) and T

is the absolute temperature [K] of the measurement object (Balaras and Argiriou,

2002; Usamentiaga et al., 2014):

λ = σ ∗ T 4 (1.1)
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The intensity of the longwave thermal radiation of objects thus depends directly

on their absolute temperature.

The properties of the radiation of longwave thermal radiation vary significantly

for different surfaces. These differences must be considered for the comparability of

radiation measurements on different surfaces. Usually, the model of a black body is

used for this purpose. A black body has a constant absolute temperature, and the

radiant power absorbed by it is equal to the radiant power emitted by itself (αλ = 1)

(Balaras and Argiriou, 2002; Usamentiaga et al., 2014). The specific emissivity (ε) of

a real object in relation to that of the black body (λb) is called the substance-specific

emissivity ε:

ε =
λ

λb
(1.2)

The emissivity thus expresses how great the capacity of a body to emit longwave

thermal radiation is. It depends on various factors, such as color, surface properties,

and physical properties of the body’s material (Balaras and Argiriou, 2002).

The change in the measured radiated longwave radiation can also be expressed

in terms of heat ∆Q (J) by considering the mass m (kg) to be heated and the ma-

terial properties, considering the specific heat capacity c (J k−1 K−1). In contrast

to temperature as a static variable, heat describes the amount of energy released,

which is needed for temperature change (∆T ) (Avdelidis et al., 2004; Bristow, 1998;

Grinzato et al., 1998):

∆Q = c×m×∆T (1.3)
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Thereby, the specific heat capacity strongly depends on the soil properties. On

the one hand, the water content of the soil has a significant influence on the proper-

ties of the soil. With increasing water content, the specific heat capacity increases

to the soil’s saturation point (Abu-Hamdeh, 2003; Abu-Hamdeh and Reeder, 2000).

On the other hand, the density and the composition of the soil in terms of sand, clay,

and silt content affect the specific heat capacity (Abu-Hamdeh, 2003; Ochsner et al.,

2001; Ren et al., 2003). Since the specific heat capacity decreases with increasing

sand content and increases with higher silt or clay content (Ochsner et al., 2001;

Ren et al., 2003).

In the context of soil science research, the soil texture differences (Abu-Hamdeh

and Reeder, 2000; Ochsner et al., 2001; Ren et al., 2003), surface structure (An

et al., 2017; Ranjit et al., 2015), SOC contents (An et al., 2017; Ochsner et al.,

2001; Sanchez et al., 2011), but also soil moisture (Antonucci et al., 2011; Sanchez

et al., 2011; Villaseñor-Mora and González-Vega, 2015) have an impact on emissivity

and specific heat capacity. Thus, information about these soil properties can also

be obtained by IRT if a constant emissivity is chosen for a soil surface, but espe-

cially if temperature changes are caused by active heating of the surface (Antonucci

et al., 2011). It is important to distinguish between heat production by metaboliza-

tion processes (section 1.2.2) and the physical properties of the soils (section 1.2.3),

which influence the measured surface temperature with varying emissivity and spe-

cific heat capacity.

1.2.2 What processes generate heat in soils

Soil heat production as a proxy for soil microbial activity has increasingly come into

focus over recent decades (Chakrawal et al., 2020). The measurement of the effects

of substrate addition on heat dissipated in soils was one of the earliest examples by
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Ljungholm et al. (1979) using heat as a surrogate for microbial activity. After years

of trying, a method of measuring soil calorimetry has emerged as a valuable tool be-

cause of its non-destructive measurements (Barros et al., 2007; Braissant et al., 2010;

Critter et al., 1994; Sparling, 1981). The key force that generates heat is the metab-

olization of SOM and the resulting release of energy from microbial and enzymatic

activity. Here, the catabolic breakdown of the substrate has the primary influence,

and anabolic reactions contribute little to overall equilibrium (Barros et al., 1995).

In fact, catabolic processes release energy by breaking down complex molecules in

the soil. This energy can then be measured as heat energy (Barros et al., 1995; Drotz

et al., 2010; Liang et al., 2017). Whereas in anabolic processes, energy is consumed

when substances are broken down, and cannot be measured thermally or by soil

respiration. However, these processes can then be captured, e.g., by the synthesis

of microbial biomass (Drotz et al., 2010).

However, the heat generation in soils is involved in all phases of soil C turnover

(Barros et al., 2011). The magnitude of soil C storage is largely influenced by the

equilibrium between the C consuming microbial activity, indicated by CO2 release,

and the anabolism, contributing to aged biomass (Liang et al., 2017). Here, the

turnover of the substrate, especially of C, distinguishes between the fast-growing

microorganisms that use readily available substrates and the slow-growing ones that

use the available resources more efficiently, even without substrate limitation in the

soil (Blagodatskaya et al., 2007; Ekschmitt et al., 2005; Herrmann et al., 2014).

Since both types, r- (high reproduction rate) and K-strategists (low reproduction

rate), are abundant in soil, changes in the growth rate of the entire population, fol-

lowing the addition of easily available substrate (e.g., glucose), can indicate the shift

in dominance of both types. The fast-growing r-strategists have a highly variable

population size depending on substrate availability. This particularly addresses mi-

croorganisms that are dormant at substrate limited soil conditions (Blagodatskaya

8



INTRODUCTION

and Kuzyakov, 2013) which use various survival strategies to become active again

after environmental conditions were improved (Heitkötter and Marschner, 2018a; Jo-

ergensen and Wichern, 2018). In fact, microorganisms can only grow rapidly when

substrate availability is high, especially easily available substrates, and can thus ac-

quire a dominant population size. In contrast, the slow-growing K-strategists have a

more constant population size. They dominate microbial communities in population,

especially in substrate-limited environments (Barnard et al., 2013; Fierer et al., 2007;

Herrmann et al., 2014). Consequently, r-strategists can react quickly to new organic

inputs or rapid increase of water content in dry soils. Their growth increases based

on the availability of easily available substrates from dead biomass (Blagodatskaya

and Kuzyakov, 2008; Unger et al., 2010), because their metabolic contribution is

stimulated (Blagodatskaya and Kuzyakov, 2008; Rousk et al., 2015). By adding

easily available C, such as glucose, to the soil, metabolization by r-strategists will

dominate in the first hours and days (Blagodatskaya et al., 2007). The addition

of water to dry soils results in the so-called Birch effect (Birch, 1958) which leads

to increased microbial activity for only a few hours, as the labile substrates are

rapidly consumed (Borken et al., 2003; Kieft et al., 1987; Unger et al., 2010). Both

substrate addition and rewetting lead to a heat pulse in the soil as an indication

of the catabolic activity, which is caused in particular by the strong growth of the

r-strategists.

However, the fact that soil microbial activity is not distributed uniformly in the

soil matrix but concentrates on spatially isolated hot spots is generally accepted

(Ekschmitt et al., 2005; Heitkötter and Marschner, 2018a; Nunan et al., 2003; Tecon

and Or, 2017). While hot spots are usually characterized by high process and mi-

crobial growth rates at a spatial perspective, the microbial group structure between

and in hot spots is highly variable (Kuzyakov and Blagodatskaya, 2015; Tecon and

Or, 2017). Thus, the heat production from spatially distinct hot spots cannot be

9



INTRODUCTION

linked to various microbial hot spot communities using the common calorimetric

approaches for bulk soil samples. This results in an incomplete and incorrect deter-

mination of the relationship between the metabolic activity and related heat produc-

tion of the various microbial hot spot populations (Heitkötter and Marschner, 2018a;

Ruamps et al., 2011). Besides the spatial detection of these aggregated microbial

colonies, their dynamics may be of great significance if the increased microbial ac-

tivity is further restricted to hot moments for short-term events (Blagodatskaya and

Kuzyakov, 2013; Kuzyakov and Blagodatskaya, 2015; Tecon and Or, 2017). The

main drivers of biotic hot moments are root exudation, litterfall and root death,

root ingrowth in a new soil volume, and activities of burrowing animals (Kuzyakov

and Blagodatskaya, 2015). Consistent with the theory that r-strategists exhibit a

rapid response of a few hours to a few days when readily degradable substrates

are available, these are the main drivers at hot moments. This temporal aspect

can then be measured as heat due to the catabolic activity by calorimetry. How-

ever, the spatial analysis is completely omitted so that hot spots cannot be detected.

Nevertheless, hot spots are able to form out of hot moments but do not neces-

sarily vanish at the end of these; they can persist due to higher levels of microbial

activity compared to ambient soil conditions (Blagodatskaya and Kuzyakov, 2013;

Kuzyakov and Blagodatskaya, 2015). Biotic hot moments, which form due to la-

bile C input, always lead to the formation or maintenance of hot spots (Kuzyakov

and Blagodatskaya, 2015). These can then be determined by zymography which

determines enzyme activity. However, the spatial and temporal combination of in-

formation is strongly limited (Heitkötter and Marschner, 2018b,a; Spohn et al., 2013;

Spohn and Kuzyakov, 2014). To capture temporal and spatial aspects of microbial

activity, techniques such as calorimetry and zymography are used in combination

(Zhang et al., 2020). However, these methods are still in their early stages and

neglect small-scale processes and short-term microbial activity changes. The het-
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erogeneity in the soil environment is the main reason determining the microbial

degradation of the organic substrates is limited so far, and the technical challenges

are great.

A first technical approach to meet this challenge and fulfill the technical require-

ments is offered by IRT. The high temporal and spatial resolution of this measure-

ment technique allows the detection of the heat generated on soil surfaces by the

catabolic activity in the soil, which is caused in particular by r-strategists. Kluge

et al. (2013) have shown first promising results in this regard, where microbial activ-

ity was recorded in both temporal and spatial perspectives. Temperature differences

of up to 0.5 K were recorded due to microbial growth after substrate application and

then compared with measurement techniques such as respirometry and calorimetry.

However, physical influences induced by spatial emissivity and specific heat capacity

variations must be considered (Abu-Hamdeh, 2003; Abu-Hamdeh and Reeder, 2000;

Alnefaie and Abu-Hamdeh, 2013; Mira et al., 2007) but have not been so far. It

must be taken into account that the water content of the soil also influences microbi-

ological processes. The microbial activity has a demonstrable relationship with soil

moisture because in a dry regime microbial activity is significantly lower compared

to a moist regime (Barnard et al., 2013; Borken and Matzner, 2008). The same effect

applies to the ambient temperature. With increasing temperature and additional

high soil moisture, increased microbial growth rates occur, which is clearly reflected

in the catabolic heat development (Rey et al., 2005; Steinweg et al., 2012).

1.2.3 How soil properties and ambient conditions affect the measured

surface temperature

Differences in soil physical properties affect the measured surface temperature by

techniques, such as IRT. Spatial differences in texture, soil color, soil density, sur-
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face structure, but also temporal changes in soil moisture content, the emissivity,

and the specific heat capacity influence the measured surface temperature, as well

(Abu-Hamdeh, 2003; An et al., 2017; Antonucci et al., 2011; Barreira and Almeida,

2015; Wallbrink et al., 2007). In addition, changes in the ambient conditions, such

as humidity or air temperature, have a strong influence on the surface temperature

(Bagavathiappan et al., 2013; Fokaides and Kalogirou, 2011).

The texture of a soil significantly changes its specific heat capacity. Particle

size matters because heat can be transferred depending on the contact areas be-

tween the individual soil particles. For this purAbu-Hamdeh (2003) has studied the

determination of soil thermal properties and examined how the thermal properties

change with different soil textures, depending on soil water content. They found

that soils with higher clay content, and therefore smaller particle size, have a higher

specific heat capacity than sandy soils independent of water content. These findings

result from the adsorption of water, which appears to form thicker coatings around

particles in clayey soils compared to sandier ones containing quartz (Abu-Hamdeh,

2003; Bristow, 1998; Ren et al., 2003). In laboratory studies, Alnefaie and Abu-

Hamdeh (2013) investigated the specific heat capacity of soils as an effect of bulk

density and further considering soil texture. According to their results, the specific

heat capacity increases with increasing density due to the larger contact areas and,

therefore, higher heat transfer between the individual soil particles (Abu-Hamdeh

and Reeder, 2000; Alnefaie and Abu-Hamdeh, 2013; Ochsner et al., 2001). Thus,

the temperature of soils is kept at a constant level for a longer time with a higher

specific heat capacity and warm up or cool down more slowly if internal or external

influences on soil temperature change.

In the case of methods for the spatial detection of thermal surface properties of

soils, the structure is also decisive. Such structures can include cavities but also ele-
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vations, which cause diffuse reflection of thermal radiation. Within cavity structures,

incoming thermal radiation gets more adsorbed by higher reflectivity (Quinn, 1967;

Usamentiaga et al., 2014). Quinn (1967) researched cavity emissivity and pointed

out that the deeper the cavity, the higher the emissivity, causing near-black-body

radiation. Thus, the emissivity would be almost 1 and, therefore, the surface would

be characterized by higher apparent temperature.

Another factor influencing the measured surface temperature is soil color, which

changes the emissivity of soils (An et al., 2017). The hypothesis about soil color-

ing is that the color of a soil is essentially determined by the sum of the following

key soil constituents: SOC content, iron oxides, silicates, and carbonate minerals

(Heil et al., 2020; Sánchez-Marañón et al., 2004). Here, the brightness of the color

is decisive and determines the emissivity (An et al., 2017). The darker the color,

e.g., at high organic carbon contents, the higher the emissivity (Heil et al., 2020;

Schwertmann, 1993). As a result, the apparent surface temperature also increases

with, e.g., higher SOC contents.

However, soil moisture has the most significant impact on thermal soil properties.

Different water contents lead to variations in the specific heat capacity. Thus, with

increasing soil moisture, the physical soil properties are affected, but additionally

soil color, which influences the emissivity. Zanetti et al. (2015) investigated the rela-

tionship between soil moisture and soil color. They determined that the color of the

soil tends to become darker with increasing water content. This changes the emissiv-

ity, and one would assume a higher apparent soil temperature. However, opposing

effects are overriding the impact of emissivity change, such as evaporative cooling

(Kerridge et al., 2013), which provides cooling of the soil surface by removing the en-

ergy required for evaporation (An et al., 2017; Benasher et al., 1983). In contrast to

dry soils, moist soils are characterized by cooler surfaces in thermal images (Qiu and
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Ben-Asher, 2010). Therefore, the surface temperature of soils changes at different

soil moisture levels. When soils dry out, the surface temperature increases because

the evaporative cooling decreases or is absent when the soil is dry (Antonucci et al.,

2011; Kerridge et al., 2013).

Another influence of increased water content in soil samples is the change in spe-

cific heat capacity. A higher water content buffers the temperature change, which

might be caused by internal or external processes and state changes. The buffer

effect results from the high specific heat capacity of water, leading to a higher need

for energy to heat moist soil (Antonucci et al., 2011; Bagavathiappan et al., 2013;

Bristow, 1998). Internal effects and processes are caused by microbial activity and

the corresponding catabolic processes that produce heat (see section 1.2.2), and ex-

ternal influences can be the change in ambient temperature, e.g., induced by the

diurnal cycle of air temperature.

Changes in the ambient environmental conditions impact measured surface tem-

peratures since IRT is sensitive towards their variations. A rise in ambient air

temperature contributes to a higher measured temperature of the objects under

investigation. The intensity of the change depends on the measured object’s sur-

face properties, particularly on the specific heat storage capacity. The lower the

heat capacity, the higher the susceptibility to changes in the ambient environment

(Grudzielanek and Cermak, 2015). Thus, air drafts and direct heat radiation affect

the measured temperature values of the objects (Bagavathiappan et al., 2013). A

change in ambient air temperature also affects relative humidity. The higher the

temperature increases, the lower the relative humidity becomes. With regard to the

investigation of moist soils, it should be noted that with decreasing relative humid-

ity, the drying out of the moist soil progresses more quickly. If the air humidity is

constantly high, a constantly low drying of the soil can be assumed. Consequently,
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the evaporative cooling and, as a result, the measured surface temperature are af-

fected by the stability and air humidity level (Barreira and Almeida, 2015; Grinzato

et al., 1998; Jones, 1999).

In summary, numerous influences affect the thermal properties of soils. Espe-

cially for temporal and spatial measurements of the surface temperature, as is the

case with infrared thermography, these factors must be included to avoid misinter-

pretations. It is expected that hot spots and hot moments in thermal images will

be measured as temperature increases in time and space. However, these can be

over- or under-interpreted by the influencing factors mentioned above. Therefore,

it is always important to know and consider as many influencing variables as possible.

IRT was only used in a few cases as a measurement technique in the context of

soil science research. There are many open questions and challenges in non-contact

sensing of soil thermal properties caused by physical processes and conditions on

the one hand and soil biological metabolic processes on the other hand.

1.3 Open Questions, Aims and Outline

As outlined in the previous sections, IRT is a promising tool for the detection of

heat production in soils induced by microbial activity. The main knowledge gaps

concerning the application of IRT can be ascribed to three sources of uncertainty:

a. Can IRT be applied for the detection of microbial hot spots and hot moments

in soils?

b. Does IRT enable the possibility to record physical soil properties?
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c. Is passive IRT capable of detecting microbial characteristics in undisturbed

samples?

In this dissertation, those open research questions will be addressed. The focus

is on a method development with regard to the general applicability of the tech-

nique with different soil treatment and the use of disturbed and undisturbed soil

samples, the comparison with established methods in terms of time (respirometry)

and space (zymography), but also the recording of physical soil surface properties

such as moisture or physical structure. In the following, the method development

is divided into three studies addressing each fulfilling technical requirements and

challenges:

I What technical requirements are needed to detect physical and biological soil

properties and can IRT be used to determine a short-term effect of microbial

activity after rewetting events?

Understanding thermal images obtained by IRT and untangling key deter-

minants regarding the physical soil properties is one of the major challenges

concerning IRT as a measurement approach for microbial activity. As out-

lined in section 1.2.3, soil properties such as moisture and its distribution in

the soil matrix or surface structural patterns affect the physical properties as

well as the measured temperature. In section 2, this issue is addressed using

an active heating approach, known as active IRT, to detect the heating and

cooling phase of rewetted soil surfaces. Depending on the soil moisture, the

specific heat capacity of the samples differs (c.f. section 1.2.1 & 1.2.3), so it

can be assumed that the heat signal can be used as an approximation for soil

water content.

16



INTRODUCTION

As outlined in section 1.2.2, metabolization processes in soils increase at labile

substrate availability, which produces heat due to catabolic activity by mi-

croorganisms. Rewetting dry soils can achieve such an effect. So far, IRT has

not been used to detect microbial activity after rewetting. Nevertheless, the

rapid growth of microorganisms due to soil rewetting is expected to generate

heat that can be made visible thermally. In section 2, this objective is accom-

plished by running a selected number of samples in a passive IRT approach

after rewetting.

II What environmental conditions and data preprocessing need to be considered

to detect substrate-induced increases in microbial activity in the form of hot

spots and hot moments in disturbed soil samples?

It has already been investigated that substrate-induced increase in microbial

activity is detectable in disturbed soil samples using passive IRT (Kluge et al.,

2013). However, no systematic study on the influence of ambient environ-

mental conditions has been conducted that identifies an optimal incubation

procedure for determining microbial activity with a further linkage to the

data preprocessing to extract such influences from the time series of the ther-

mal acquisition (c.f. section 1.2.3). In section 3, these gaps in methodological

structure and procedure are addressed using variations in ambient conditions

regarding relative air humidity and a sequence of data preparation steps to ob-

tain a temperature profile caused by microbial activity that is as unaffected as

possible. The amount of heat energy released by microbial activity is validated

by including soil respiration data and considering the combined temporal and

spatial aspects of the thermal images.

III Can infrared thermography be used for the temporally and spatially coupled
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observation of the substrate-induced increase in microbial activity on undis-

turbed samples, and what are the main determinants?

Microbial activity in undisturbed soil samples is frequently studied by relating

hot spots to spatial enzyme activity determined by zymography (Heitkötter

and Marschner, 2018b,a; Spohn et al., 2013). However, hot moments in a high-

temporal resolution (maximum of 30 minutes) (Spohn and Kuzyakov, 2014)

and the methodical combination with hot spots is limited and not captured

in its full complexity (Kuzyakov and Blagodatskaya, 2015). In section 4, hot

spots and hot moments are addressed by the detection of surface temperature

using passive IRT under stable ambient conditions. Since bivariate statistics

do not enable comparing the magnitude and relevance of hot spots and hot

moments to those of spatial physical and biological soil properties, multivariate

statistics were applied to investigate the spatio-temporal complexity of the

soil matrix and the internal processes. To include influencing factors that

control both the thermal properties of soils and biological processes, as outlined

in section 1.2.3, measurements from zymography, photography, and active

infrared thermography were included.

The three work packages build the frame of the work and are addressed in the

following three sections (2 - 4). In the final section (section 5), an overall discussion

and suggestions for future research are discussed. The framework and the outlined

scientific agenda of this thesis are summed up schematically in Fig. 1.2. The re-

search discussed in this study has already been published in a scientific journal or

submitted for publication. (c.f. Appendix 5.3 List of publications).
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Figure 1.2: The flowchart diagram represents the structure of the thesis to cover the
outlined topic of each section. Arrows indicate the direction of information flow for each
section. The upper part represents the introduction of the thesis with sections and
subsections. The center part refers to the main part with focus on the three studies with
the corresponding approaches applied in each one. The bottom part represents the final
conclusions of the thesis with sections.
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RESEARCH STUDY I

2.1 Introduction

The spatial and temporal heterogeneity of soil properties at the microscale have

increasingly moved into the focus of many studies, since the microscale has a great

potential to reveal new insights into soil processes (Dechesne et al., 2007; Grund-

mann and Debouzie, 2000; Nunan et al., 2003; Vos et al., 2013; Young and Crawford,

2004). However, while soil physical properties have been intensively studied at the

microscale (Heeraman et al., 1997; Heng et al., 2010; Hirmas et al., 2016; Hummel

et al., 2001; Lehmann et al., 2008; Moran et al., 2000; Pierret et al., 2003), the

soil microbial heterogeneity at this scale is only poorly understood (Kuzyakov and

Blagodatskaya, 2015; Tecon and Or, 2017; Vos et al., 2013). This is mainly due to

methodical limitations, since it is much more challenging to develop mapping tools

that display microbial activities (Kluge et al., 2013; Kuzyakov and Blagodatskaya,

2015; Pausch and Kuzyakov, 2011; Schmidt and Eickhorst, 2014). Especially real-

time methods that can simultaneously describe soil physical as well as biological

parameters and dynamics are not available at the microscale.

In this context, infrared thermography (IRT) seems to be a promising tool (Kluge

et al., 2013). IRT measures thermal energy radiated from object surfaces. The emit-

ted energy detected by an IRT camera is mainly a function of surface temperature,

which is transformed into a visible image (Meola and Carlomagno, 2004). Passive

and active IRT are the two basic approaches of the IRT technique (Bagavathiappan

et al., 2013; Theodorakeas et al., 2015). Passive IRT monitors the thermal radiation

emitted by the surface of the test body under natural condition whereas, for active

IRT, the test body is thermally irradiated by an external energy source to produce

an intensive thermal contrast on the test body surface.

During the past decade, both passive and active infrared thermography tech-

niques have become powerful and effective tools in a wide range of applications,
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since these techniques show numerous advantages. One of the main advantages of

IRT is that it only requires an infrared camera with little other instrumentation.

Other important advantages are that infrared thermography, as a remote sensing

technique, can be used without physical contact to the test objects and their de-

struction (Bagavathiappan et al., 2013; Usamentiaga et al., 2014). Additionally, IRT

provides a real-time temperature map of the test surfaces with a scan speed of up

to 1600 Hz in a high thermal and spatial resolution. Modern IRT systems show

a thermal sensitivity better than 0.02 K and a spatial image resolution with >1.5

megapixels (Meola and Carlomagno, 2004).

Based on these benefits, passive and active IRT have a broad range of applica-

tions ranging from life sciences and medicine to engineering and industry (Meola

and Carlomagno, 2004). Most common industrial applications for passive IRT are

building insulation diagnostics as well as mechanical and electrical inspections for

locating defects (Bagavathiappan et al., 2013; Fokaides and Kalogirou, 2011; Utne

et al., 2012). For example, IRT inspections of buildings can be used to detect heat

losses and missing or damaged thermal insulations in walls and roofs (Fokaides and

Kalogirou, 2011; Grinzato et al., 2011). The most common application of active

IRT is industrial material testing for the detection of defects and fine cracks (Busse

et al., 1992; Hain et al., 2009; Huth et al., 2002; Ranjit et al., 2015; Theodorakeas

et al., 2015; Wu and Busse, 1998).

Although IRT has been used for many environmental investigations (Antonucci

et al., 2013; Grudzielanek and Cermak, 2015; Jones, 1999), it has rarely been used

in soil science, especially at the microscale. Generally, all soil properties associated

with thermal surface radiation can potentially be assessed with IRT approaches.

Thus, especially water content and microbial activity may be detectable using IRT

techniques in soils due to increasing volumetric heat capacities with increasing wa-
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ter contents (Abu-Hamdeh, 2003; Antonucci et al., 2011) and to heat production of

microorganisms during respiration (Barros et al., 2011; Kluge et al., 2013; Sparling,

1981), respectively.

Concerning the soil water content, there are many studies using passive IRT as a

remote sensing tool to identify water content of landscapes at large scales (Bittelli,

2011; Njoku et al., 2003; Verstraeten et al., 2006). So far, only Antonucci et al.

(2011) showed that active IRT is also a useful technique for assessing soil water

contents at smaller scales. In their laboratory study, they used active IRT to heat

various soil samples with different initial temperatures and water contents. Total

water contents of the soil samples were calibrated against the temperature variations

with correlation coefficients of up to 0.74. However, the study of Antonucci et al.

(2011) did not consider the possibility of active IRT to detect the spatial distribution

as well as the dynamics of soil water content on the soil surfaces.

The possibility of using IRT approaches for detecting the microbial activity of

soil samples has only been assessed by Kluge et al. (2013). The authors used the pas-

sive IRT approach to determine the spatial distribution of soil microbial activity on

soil sample surfaces after glucose application. They showed that a substrate-induced

increase of the surface temperature from the stimulated microbial activity was de-

tectable. However, they did not determine the spatial distribution of soil moisture.

Soil moisture will not only influence the measured surface temperatures but also

alters the process rates of microbial activity (Baldrian et al., 2010; Barros et al.,

1995; Skopp et al., 1990). Thus, for a better understanding of interactions between

soil physical properties and biological processes at the microscale, the simultaneous

determination of soil moisture and microbial activity dynamics is of special interest.

The present study evaluated the potential of active and passive IRT for the de-

tection of soil surface temperatures with the aim to obtain soil surface properties at
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high spatial and temporal resolution. The detection and calibration of soil moisture

were performed with active IRT and the determination of microbial activity with

passive IRT. In the first part of the study, the potential and accuracy of active IRT

to determine soil moisture contents and detect structural patterns of the soil surface

was investigated. In the second part, the rewetting effect of soil samples and the

resulting increase in microbial activity was examined using passive IRT. Finally, ac-

tive and passive IRT approaches were combined for evaluating the potential of IRT

to assess microbiological and microphysical soil properties and for analyzing surface

temperature changes from different perspectives.

2.2 Material and Methods

2.2.1 Soil sampling

For this study, a pool of 48 soil samples was used from different sites across North

Rhine-Westphalia (Germany). The top- and subsoil samples (0–30 and 30–60 cm)

cover a wide range of chemical, physical, and biological soil properties (Appendix

Table A1.1). All soils were air-dried after sampling and sieved to < 2 mm.

In addition to this sample set, two samples from agricultural topsoils (A and B)

and one from a forest subsoil (C), were selected for the longterm incubation experi-

ments described in detail below. Soil properties of these samples are listed in Table

2.1. In order to obtain sterile samples of these soils A, B, and C, subsamples were

exposed to a total dose of 75 kGy of γ-irradiation during three 24-hour irradiation

intervals, which is considered sufficient to achieve sterility (McNamara et al., 2003;

Trevors, 1996).
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Table 2.1: Phsyical and chemical characteristics of the soil samples for the incubation experiments.

Soil Sample pHa C/Nb SOCb WHCc Sandd Siltd Clayd Ce
mic Basal respirationf

[-] [%] [µg g−1] [CO2 mg h−1]
A 6.1 14 2.5 50.9 38 54 8 126.7 2.18
B 7.1 13 3.0 61.5 7 85 8 171.9 4.10
C 3.7 10 0.4 50.6 12 68 20 32.2 0.29

a 0.01 M CaCl2
b Vario EL Elementar Analyser (Elementar Analysesysteme GmbH, Hanau, Germany)
c After DIN EN ISO 11267 (2014-07)
d Analysette (Fritsch GmbH, Idar-Oberstein, Germany)
e after Vance et al. (1987)
f Respicond (Nordgren Innovations AB, Bygdeå, Sweden)
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A high definition IRT camera (Variocam HD research, InfraTec, Dresden, Ger-

many) combined with the associated standard lens (30 mm focal length) was used

to obtain thermal images of the soil surfaces. The IRT camera has an image reso-

lution of 1024×768 pixels. The camera distance to the soil sample surfaces was set

to 50 cm resulting in a pixel resolution of 0.283 mm. The IRT camera detected the

spectral range in the far infrared (FIR) of 7–14 µm with a temperature accuracy

of ± 30 mK. In all experimental designs, an overall emissivity of 0.95 [−] was as-

sumed for the soil surfaces (Axelsson, 1988; Benasher et al., 1983; Kluge et al., 2013).

2.2.2 Active and passive infrared thermography

For active IRT, a halogen spotlight (1500 W) was used as an external heat source to

induce a clear thermal contrast on the object surfaces. The spotlight was placed at a

distance of 50 cm from the object surface. Active IRT was conducted in the lock-in

mode as described in Ibarra-Castanedo et al. (2009). Briefly, the halogen spotlight

was illuminated with a lock-in frequency of 0.5 Hz and a 30 Hz frame rate. The

thermal response of the soil surfaces was recorded during the heating and transient

cooling phase. The thermal response of the heating and cooling phase of each pixel

was noise corrected using a Fourier Transformation. The resulting sinusoidal waves

are characterized by their amplitude and phase values (Huth et al., 2002; Vollmer

and Möllmann, 2010; Wu and Busse, 1998). To calculate the amplitude A and phase

σ, four equidistant data points (S1, S2, S3, S4) in a complete period of the waves

are used as described in the Eqs. (2.1) and (2.2) (Busse et al., 1992; Ranjit et al.,

2015):

A =
√

(S1 − S3)2 + (S2 − S4)2 (2.1)
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σ = tan−1 × (
S1 − S3

S2 − S4

) (2.2)

The amplitude describes the intensity of the thermal response during the heating

and cooling cycle (Ranjit et al., 2015; Wallbrink et al., 2007). The water contents

of the surface modify the intensity of the thermal response due to its high spe-

cific heat capacity (De Vries, 1963; Wiggenhauser, 2002). Accordingly, increasing

temperature amplitudes of the soil surface indicate decreasing soil moisture contents.

The phase represents the velocity of temperature change on the specimen surface

(Meola et al., 2006; Ranjit et al., 2015). Structural differences of the object influence

the velocity of the thermal response. Therefore, in material science and material

testing, phase angle information is commonly used to identify the depth of material

defects (Busse et al., 1992; Hain et al., 2009; Huth et al., 2002; Ranjit et al., 2015;

Theodorakeas et al., 2015; Wu and Busse, 1998). In this study, the phase angle [°]

was used as an approximation to the soil surface structure and density. High vari-

ances in the phase image indicate high structural differences of the soil surface, as

well as differences in soil density. Hence, the percentage deviations from the mean

values are calculated to address the structural diversity of the soil surfaces. For

example, values below the mean value indicate a high bulk density, due to the de-

creased velocity of temperature adjustment, which is induced by the higher specific

heat capacity at denser soil samples (Abu-Hamdeh, 2003; Bristow, 1998). Values

above the mean value indicate voids, pores or cavities. The thermal conductivity

and density of the material decreases (Avdelidis et al., 2004; Usamentiaga et al.,

2014) and thus the contrary effect can be observed, leading to higher phase angle

values. Due to the possibility of mixed structures, the phase angle values cannot be

assigned precisely to a specific type of structure, as high densities or elevations, to
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correct the amplitude image. Therefore, the standard deviation is calculated from

the deviations of the phase angle values to get a measure of the structural richness of

each phase image. The phase image is widely unaffected by the surface emissivity;

thus, a moisture-independent image is extracted (Huth et al., 2002; Meola et al.,

2006).

Passive IRT does not require an external energy heat source since natural heat

emission from surfaces is detected (Vollmer and Möllmann, 2010). Thus, passive

IRT directly displays the surface temperature of an object in Kelvin [K]. In this

study, passive IRT techniques were used to detect natural thermal contrast on soil

surfaces which then were linked to temporal and spatial variations of microbial ac-

tivity, similar to the approach of Kluge et al. (2013). In our study, microbial activity

dynamics were monitored using passive IRT thermal radiation at a temporal reso-

lution of 1 min.

The detection of thermal radiation by IRT cameras is highly sensitive towards

ambient environmental influences, like air drafts or relative humidity changes (De Vries,

1958, 1963). Thus, all IRT experiments were conducted in a gas-tight glovebox to

reduce ambient environmental influences. Inside the glovebox, relative humidity was

adjusted to 92% using a saturated sodium chloride solution (Rockland, 1960; Young,

1967) to reduce soil drying, at a given air temperature of 22 °C, both being moni-

tored continuously by wireless data loggers (M-Log5W-HUMIDITY, Geoprecision,

Ettlingen, Germany).

2.2.3 Determination of soil moisture using active infrared thermography

In a first step (Experiment A1), the relationship between soil surface moisture con-

tents and emitted heat energy using active IRT of the soil surface was evaluated.
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Soils A, B, and C were rewetted to 16 different moisture contents between 15 and

75% of their maximum Water Holding Capacity (WHC). The other 48 samples were

all uniformly rewetted to a gravimetric water content of 23%. A fixed water volume

ensures a wide range of volumetric water contents (VWC) due to the varying soil

properties (Abu-Hamdeh, 2003; Abu-Hamdeh and Reeder, 2000; Alnefaie and Abu-

Hamdeh, 2013). After rewetting and thorough homogenization with a spatula, the

samples were filled into vessels (2 cm diameter, 1 cm height) and the surfaces were

scanned immediately via active IRT in three replicates. For each soil surface, the

mean temperature amplitude was calculated and calibrated against the correspond-

ing VWC. To evaluate the relationship between the mean temperature amplitude

and the soil water content, the data were fitted using a supervised least square

regression analysis from which the goodness of fit was calculated. Histograms of

the surface temperature amplitude values from all pixels were computed in order

to evaluate the spatial variance of the temperature amplitude values of each soil

surface. The associated phase images are also depicted for the consideration of the

surface structure and bulk density.

In a second step (Experiment A2), the active IRT was used to detect spatio-

temporal dynamics of the surface soil moisture contents. For this, a continuous

drying experiment was conducted to induce spatial and temporal variations of the

surface soil moisture. For the drying experiment, 20 g of soils A, B, and C were

rewetted to 40% WHC and incubated over a period of one week. Immediately after

rewetting, the changes of the pixelwise temperature amplitudes were monitored via

active IRT at regular time intervals. Based on the calibration functions for soils A,

B, and C from experiment A1, the spatial distribution of the VWCs was then cal-

culated for the corresponding soil surfaces. Changes in the driest and wettest areas

of the soil surface were extracted using the 5th and 95th percentile of the surface

water contents to identify extreme values of the spatio-temporal variability during
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soil drying. The corresponding phase images are considered for further explanations

by structural dependencies.

2.2.4 Determination of microbial activity using passive infrared ther-

mography

In a first step (Experiment P1), microbial activities on soil surfaces were linked

to surface temperatures. For this, the non-sterile soil samples A, B, and C were

rewetted to 40% WHC, filled into vessels (6 cm diameter, 1 cm height), and then

incubated for one week. A pre-incubation phase was avoided so that the so-called

“Birch effect” of strongly stimulated microbial activity immediately upon rewetting

could be observed (Birch, 1958; Kieft et al., 1987). As controls, the sterile A, B,

and C soil samples were incubated. Autoclaved water was used for rewetting of the

sterile samples and the equipment like spatulas, vessels, and pipettes were rinsed

with ethanol in order to maintain sterile conditions. Before rewetting, water and soil

samples were adjusted to 22 °C to avoid temperature artifacts induced by interac-

tions of rewetted soil and the ambient environment. Immediately after the start of

the soil incubation, scanning of the soil surfaces with passive IRT started. For each

measurement, the surface temperature mean value of each sample was calculated.

In order to relate temperature increases to microbial activity, differences between

the surface mean values of the sterile and non-sterile samples were tested for signif-

icance using the two-sample t-test for each time step with a significance level of 95%.

In a second step (Experiment P2), the data set of experiment P1 was used to iden-

tify spatio-temporal dynamics of microbial activity on soil surfaces. Thus, so-called

Hovmöller diagrams were created for visualizing and analyzing surface temperature

changes over time. For each sample, transects through the center of the surfaces

were selected. The temporal changes in surface temperature along these transects

were plotted during the first 4 h of incubation according to Hovmöller (1949).
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In a third step (Experiment P3), the influence of surface soil moisture on the spa-

tial pattern of microbial activity was quantified in further incubation experiments

using a combined active and passive IRT approach. For this experimental design,

the sterile and the non-sterile soil samples A, B, and C were incubated for one week

as described for experiment P1. The passive IRT procedure started immediately

after rewetting. The active IRT procedure started 30 min after rewetting and was

repeated only once a day to avoid effects of the external heating energy on the mi-

crobial dynamics on the soil surfaces as far as possible. A linear regression analysis

was performed to explain microbial activity indicated by soil surface temperature

together with surface moisture contents represented by the temperature amplitude.

2.2.5 Software

IRBIS3 professional (InfraTec, Dresden, Germany) was used for the camera connec-

tion, data conversion, and data export. The data preparations, calculations, and

statistical analyses were performed with Python 2.7.

2.3 Results and discussion

2.3.1 Determination of soil moisture using active infrared thermography

(A)

2.3.1.1 Soil moisture calibration

Fig. 2.1a shows the relationship between the mean temperature amplitude and the

mean VWC of all soil samples (Experiment A1). The mean temperature amplitude

decreased non-linearly with decreasing VWC of the samples. An exponential func-

tion gave the best fit for the data (R2 = 0.72) since the mean temperature amplitude

showed a large decrease for VWCs between 0 and 30% while remaining more or less
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constant at a level of 100 to 120 mK for VWCs above 30%. Thus, the mean tem-

perature amplitude was a good approximation for VWCs of up to 30% but failed to

predict VWCs above 30%. Previous studies observed that the specific heat capacity

of soil tends to increase to the specific heat of water at high water contents (Alne-

faie and Abu-Hamdeh, 2013; Antonucci et al., 2011; Bristow, 1998; De Vries, 1963;

Ochsner et al., 2001). Thus, an increase of the temperature amplitude at lower soil

water contents was explained by a decreasing specific heat capacity with lower water

contents (Antonucci et al., 2011). Constant specific heat capacity at higher soil wa-

ter contents was discussed by Bristow (1998). The authors argued that higher soil

water contents increase the connectivity between soil particles so that the specific

heat capacity becomes nearly constant.

2.3.1.2 Spatial surface moisture distribution

The relationship between the mean temperature amplitude and the VWC of the soil

surfaces for soils A, B, and C were also fitted separately with individual exponential

functions (Fig. 2.1b, c, and d). Compared to Fig. 2.1a, the R2 values increased

up to 0.89 using single soil samples for the calibration, which indicated that soil

properties influence the temperature amplitude. Also, differences in the tempera-

ture amplitude values between soil sample A, B, and C (Fig. 2.1b–d) indicated that

the specific heat capacity varies with soil texture; the clay-rich soil C is less sensitive

towards temperature changes, resulting in lower temperature amplitudes at low wa-

ter contents compared to soils A and B. Within this context, Abu-Hamdeh (2003)

investigated the thermal properties of soils depending on density and water content

under consideration of varying soil textures. Similar to our results, Abu-Hamdeh

(2003) concluded that clayey soils have a higher specific heat capacity than sandy

soils. The adsorption of water tends to form thicker coatings around loam particles

in clayey soils leading to a higher specific heat capacity compared to quartz con-
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taining sandy soils (Abu-Hamdeh, 2003; Alnefaie and Abu-Hamdeh, 2013; Bristow,

1998; Ghuman and Lal, 1985). Abu-Hamdeh and Reeder (2000) discussed that the

thermal conductivity of same water contents is higher with smaller particles than

with larger particles. This led to a higher impact on the thermal properties of clayey

soils resulting in a lower temperature amplitude at the same water contents in clayey

soils compared to sandy soils in this study (Fig. 2.1b, d).

Figure 2.1: The relationship of the mean temperature amplitude [mK] as function of the
VWC [%]; (a) all soil samples, (b) soil sample A, (c) soil sample B, and (d) soil sample
C. The red lines represent the fitted curves. The calibration functions with associated R2

are depicted in the white boxes.
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However, 11 to 17% of the variance of the mean temperature amplitude values

remained unexplained (Fig. 2.1b–d). We attribute this to the higher variability of

soil moisture distribution at lower water contents so that the mean values of the

temperature amplitude are less representative when the soil water content was low

(Fig. 2.1b–d). It can be assumed that small amounts of water could not be mixed

homogeneously into the soil samples resulting in inhomogeneous spatial distribution

of soil moisture. For verification, Fig. 2.2 visualizes the spatial distribution of the

temperature amplitude after rewetting to 15% (Fig. 2.2a) and 45% (Fig. 2.2d)

WHC. According to both rewetting levels, histograms were plotted (Fig. 2.2b and

e), quantifying the spatial variance of the temperature amplitude values. The dis-

tribution of the 15% WHC sample varied between 200 and 600 mK, while the 45%

WHC sample varied at a lower range between 50 and 300 mK (Fig. 2.2b and e).

Thus, higher variances in the temperature amplitude were observed for the drier 15%

VWC soil sample, due to the inhomogeneous soil wetting. The rewetting procedure

limited the prediction accuracy of the mean VWC at low water contents. Neverthe-

less, the relative differences in the spatial variation of temperature amplitude can

predict the relative variations in the soil water content to some degree. Although

active IRT has never been used to detect the spatial distribution of soil moisture,

it has been used for moisture detection in building structures in civil engineering

applications, e.g., during thermographic inspection (Grinzato et al., 2011; Ludwig

et al., 2004; Wiggenhauser, 2002). Comparable to our results, Grinzato et al. (2011)

concluded that active IRT is useful to describe the spatial distribution of moisture

contents since lower surface temperatures were observed for unsaturated materials

with increasing moisture contents. Antonucci et al. (2011) also confirmed these find-

ings for moist soil samples.

The surface structure and density of the investigated soils also had to be con-

sidered when analyzing the spatial distribution of the temperature amplitude. Soil
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areas with cavities within the soil structure are characterized by a higher reflec-

tivity of incoming thermal radiation, and therefore more radiation gets absorbed.

Consequently, the emitted thermal radiation is higher and the surface emissivity

increases in such cavities and cumulates in near black-body radiation (Mollmann

and Vollmer, 2007; Quinn, 1967; Usamentiaga et al., 2014). Since we used a fixed

emissivity of 0.95 in this study, the temperature amplitude was overestimated in cav-

ities. Moreover, soil areas with a high density are characterized by a lower thermal

diffusivity (Abu-Hamdeh, 2003; Hain et al., 2009). These areas will show lower sur-

face temperature amplitudes compared to lower dense soil areas, and consequently,

soil moisture contents will be underestimated. To consider these effects concerning

the spatial distribution of the temperature amplitudes, the phase angle was used as

an approximation of soil surface structure and density, as described in section 2.2.2.

Thus, the corresponding phase images (Fig. 2.2c and f) are visualized corresponding

to the spatial distribution of the temperature amplitudes (Fig.2.2a and d) to find

direct links between both images. For example, a semicircular structure in Fig. 2.2a

and c (Position D/E 4/5), and a circular structure in Fig. 2.2d and f (Position D/E

1/2) were observed. Nevertheless, the phase angle cannot be used directly to correct

the temperature amplitude, since they contain information about soil density, as well

as information about soil structure, as detailed explained in section 2.2.2. Thus, the

standard deviation was calculated for the phase images of Fig. 2.2c and f to assess

the maximum error rate of the temperature amplitudes. The drier soil (Fig. 2.2c)

revealed a lower standard deviation (6.2%) than the more moist soil (12.4%; Fig.

2.2f). The higher value of the more moist soil was the result of the aggregation of

soil particles induced by water addition. This led to a higher structural diversity

of the surface in comparison to the drier soil. Therefore, structurally richer soil

surfaces are subject to higher insecurities in the spatial detection of soil moisture.

However, the phase image can be taken into account to estimate these uncertainties.
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Figure 2.2: Spatial variance of the temperature amplitude [mK] (a), (b) histogram of
(a), (c) the percentage deviation of the phase image corresponding to (a) for 15% WHC.
Spatial variance of the temperature amplitude [mK] (d), (e) histogram of (d), (f) the
percentage deviation of the phase image corresponding to (d) for 45% WHC. The grid size
of a, c, e, and f is 2.8 × 2.8cm.

2.3.1.3 Spatial and temporal variability of surface moisture contents

Additionally, we analyzed the potential of active IRT for detecting temporal dy-

namics in spatial patterns of surface soil moisture, performing a continuous drying

event (Experiment A2). Fig. 2.3a and d show the VWCs on the surface of soil

A after 0 and 48 h of soil sample rewetting. The VWCs were calculated from the

temperature amplitude values using the calibration function shown in Fig. 2.1b, c,

and d. A general decrease of the spatial soil surface moisture during soil drying was

detected. For verification, the differences between the time intervals (∆ 48/0h) were

calculated for each image pixel >99% of the differences were negative indicating

a drying of the soil surface. To evaluate the potential of active IRT for measuring

spatio-temporal changes of soil moisture, the driest and wettest areas were extracted

using the 5th and 95th percentile for both time steps (Fig. 2.3b and e). In general,
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structural patterns of the driest and wettest areas remained unchanged, which could

be explained by a uniform drying of the soil surface at stable ambient environmen-

tal conditions as in this experiment. Size and shape of individual structures were

changing marginally, e.g., in position C-F 6, at which a wet belt was detected (Fig.

2.3a and c). The wet belt can be attributed to a depression by the phase image

(Fig. 2.3c and f). After 48 h, the size of this wet belt increased (Fig. 2.3b and

e) indicating slower drying-out processes compared to surrounding soil areas. We

assumed that soil moisture was kept more stable in depressions or cavities because

the influence of ambient conditions was lower than on elevations. In comparison to

the amplitude images, the phase images remained more or less unaffected by soil

drying and thus were useful for interpretation of the temperature amplitude images.

Figure 2.3: Spatio-temporal patterns of soil surface drying for soil A; (a) calculated
VWC [%] immediately after rewetting, (b) 5th (blue) and 95th (red) percentile of (a), (c)
the percentage deviation of the phase image corresponding to (a), (d) calculated VWC [%]
after 48 h, (e) 5th (blue) and 95th (red) percentile of (d), and (f) the percentage deviation
of the phase image corresponding to (d). The grid size is 2.2 × 2.2 cm.
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2.3.2 Determination of soil microbial activity using passive infrared

thermography (P)

2.3.2.1 Temporal course of mean surface temperatures

Fig. 2.4 shows the relative changes of the mean surface soil temperatures after

rewetting of the sterile and non-sterile soil samples A (Fig. 2.4a), B (Fig. 2.4b),

and C (Fig. 2.4c) within the first 12 h of incubation (Experiment P1). Immediately

after rewetting, the mean surface temperature of the non-sterile samples increased

by up to 0.5 K compared to the sterile samples, which showed no heat production.

When testing these differences with two sample t-tests for each 1 min time interval,

significant differences (p < 0.05) were only detected within the first 2 h of incu-

bation. For soils A, B, and C, these comprised of 97%, 84%, and 99% of all time

intervals. After 2 h of incubation, temperature differences between the sterile and

non-sterile soil samples were no longer detectable and surface temperatures declined

steadily in all samples. We attribute the initial heat pulse in the non-sterile samples

to the so-called “Birch effect”, first described by Birch (1958) as a pulse of microbial

CO2-release after rewetting dry soil samples. Thus, the observed thermal pulse of

the non-sterile soils is likely associated with the rapid regrowth of the microbial pop-

ulation due to the high availability of easily available substrates from dead biomass

resulting from drying (Birch, 1958; Kieft et al., 1987; Unger et al., 2010). This pulse

of activity only lasts for a few hours because the labile substrates are rapidly de-

pleted (Borken et al., 2003; Jones et al., 2005; Kuzyakov and Blagodatskaya, 2015).

This is consistent with the duration of the observed thermal response thus showing

that this pulse in metabolic activity produced enough heat to become detectable

with passive IRT.

However, passive IRT can only detect the initial increased heat production from

the growth of the microbial population and not the following energy production

from basal respiration in the non-sterile samples compared to the sterile samples.
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Figure 2.4: Temporal course of the deviation of the mean surface temperature [K] of
sterile as well as non-sterile soil surfaces after rewetting; (a) soil sample A, (b) soil
sample B, and (c) soil sample C.

39



RESEARCH STUDY I

Similarly, Kluge et al. (2013) detected substrate-induced heat evolution using pas-

sive IRT only for 20 h after adding glucose to soil samples. These results indicate

that basal microbial respiration does not produce enough heat to become detectable

with our IRT technique, possibly also due to small variations of ambient temper-

atures in the glove box. The gradual decrease of surface temperatures throughout

the incubation period is attributed to evaporation as this induced cooling of the soil

surface (Benasher et al., 1983; Han and Zhou, 2013; Kerridge et al., 2013). Differ-

ences in microbial activity between the three test soils were not reflected in their

surface temperatures. Thus, the mean values of surface soil temperatures were not

representative of their soil properties, but the spatial temperature variability could

indicate differences in microbial activity by hot or cold spots. Therefore, the main

advantage of the passive IRT method is that it allows monitoring at high spatial and

temporal resolution of short-term events with greatly increased microbial activity

such as the “Birch effect” (Fig. 2.4) or substrate induced mineralization processes

(Barros et al., 1995; Kluge et al., 2013).

2.3.2.2 Spatial and temporal variability of surface temperatures

These spatio-temporal temperature dynamics of the non-sterile and sterile soil sam-

ple A are illustrated in Fig. 2.5 (Experiment P2). Immediately after rewetting,

the surface temperature of the non-sterile soil showed rather high heterogeneity,

ranging from 294.4 to 295.1 K, with a mean of 294.9 K (Fig. 2.5a). At the same

time, the surface temperatures of the sterile sample ranged from 293.9 to 294.8 K

(Fig. 2.5d), with a significantly lower mean value of 294.2 K compared to the non-

sterile sample (Fig. 2.5d). Four hours later, the mean temperature in the non-sterile

sample dropped to 294.5 K, which was not different from the sterile sample. Inter-

estingly, the surface temperature of the non-sterile sample was more homogeneously

distributed than at the beginning, ranging only from 294.5 to 294.7 K, with very few
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spots >294.8K (Fig. 2.5b). The temporal temperature dynamics of the non-sterile

sample along the transect marked in 2.5a and 2.5b is illustrated in Fig. 2.5c with

a so-called Hovmöller diagram. Much of the cooling occurs within the first 2 h but

with an irregular spatial distribution as seen in a longer lasting heat production

within the upper part of the transect. The spatio-temporal heterogeneity of the

surface temperature distribution can be discussed in the context of hot spots and

hot moments (Kuzyakov and Blagodatskaya, 2015). Most soil microorganisms were

in a dormant state (Joergensen et al., 2010; Kuzyakov and Blagodatskaya, 2015)

since their activity is mainly limited by substrate availability (Hodge et al., 2000;

Joergensen and Wichern, 2018). The limitations can be removed by feeding with

fresh organic substrates resulting in an activation of dormant microorganisms (Jo-

ergensen and Wichern, 2018; Kuzyakov and Blagodatskaya, 2015) leading to the

formation of hot moments which are time-limited enhanced microbial processes as

compared to the average soil conditions (Kuzyakov and Blagodatskaya, 2015; Mc-

Clain et al., 2003). Hot moments mainly occur in hot spots when high process rates

occur over short sequences. Hot spots result from the non-uniform distribution of

dead and easily available substrates (Blagodatskaya and Kuzyakov, 2013; Kuzyakov

and Blagodatskaya, 2015; McClain et al., 2003). The highly variable temperature

pattern on the surface of the non-sterile sample immediately after rewetting indi-

cated these phenomena (Fig. 2.5a). For sterile samples, neither temporal variation

nor spatial differentiation of the surface temperatures was expected. While the ini-

tial spatial temperature variability was indeed lower than in the non-sterile sample

(Fig. 2.5d), an unexpected temperature increase by a mean value of 0.2 K occurred

during the following 4 h, illustrated by both the overall surface temperature (Fig.

2.5e) as well as by the high-resolution temporal temperature dynamics along the

transect (Fig. 2.5f). This phenomenon seemed to be likely due to non-sterile condi-

tions in the glovebox resulting in microbial contamination and increasing microbial

activation of the sterile samples over time.
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Figure 2.5: Spatio-temporal dynamics of the surface temperature [K] for the non-sterile
(top row) and sterile (bottom row) soil A: (a, d) surface temperature immediately after
rewetting, (b, e) surface temperature after 4 h, (c, f) Hovmöller diagram taken from the
transects (dashed line) in (a, b) and (d, e) during the first 4 h of incubation. The grid
size is 5.5 × 5.5 cm.

As observed from the gradual temperature decrease in all samples over time (Fig.

2.4), surface temperatures were also affected by evaporation and therefore by soil

moisture. However, this cooling effect decreased with decreasing soil moisture (Ker-

ridge et al., 2013). Additionally, emissivity varied with water content due to water

films on the soil particles, which influenced the reflectivity and therefore the amount

emitted infrared radiation (Mira et al., 2007). The effects of emissivity and evapo-

ration rate changes were also subject to the temporal temperature variations of the

non-sterile soil sample (Fig. 2.5c). In the beginning, when the heat production of

the microbial activity was highest, described as the “Birch”-CO2-pulse, the cooling

by evaporation was also highest (Han and Zhou, 2013; Kerridge et al., 2013), leading

to an underestimation of the initial microbial activity. Later on, heat production
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decreased due to lower microbial activity, while at the same time, the emissivity

change of the drying soil led to lower apparent surface temperatures (Mira et al.,

2007), which might lead to an overestimation of heat production from microbial

activity at the beginning compared to the consecutive measurements.

2.3.2.3 Combination of surface temperature, soil moisture, and surface

structure

Besides C limitation, abiotic factors, such as soil moisture, are known to affect

microbial activity as well as microbial process rates (Borken and Matzner, 2008;

Kuzyakov and Blagodatskaya, 2015). Therefore, the inhomogeneity of soil surface

temperatures has to be considered. In unsaturated soils, microbial activity increases

with increasing water content (Rey et al., 2005; Tecon and Or, 2017) so that spatial

variations in soil moisture can affect the spatial variability of microbial process rates.

The influence of soil surface moisture on the spatial pattern of microbial activity was

quantified in further incubation experiments using combined active and passive IRT

approaches (Experiment P3). Fig. 2.6a shows the change in surface temperature

distribution during the first 30min after rewetting and Fig. 2.6b the corresponding

distribution of surface soil moisture 30min after rewetting. Interestingly, the areas

of highest temperature decreases were partly linked to areas with higher water con-

tents (i.e., Position G/H 1–8 in Fig. 2.6a and b). A linear regression analysis of

surface temperature changes and VWC was conducted to quantify this relationship.

About 35% of the surface temperature change variability is significantly (p < 0.01)

explained by soil surface moisture. For precise interpretation of microbial activity

patterns using passive IRT measurements, the soil moisture distribution, calculated

from active IRT measurements, has to be considered.

Soil surface structure also influenced passive IRT measurements. For example,

cavity structures and depressions were characterized by higher apparent surface tem-
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Figure 2.6: Soil surface properties derived from passive and active IRT; (a) soil surface
temperature change [K] during the first 30 min after rewetting, (b) the corresponding
VWC [%], and (c) the percentage deviation of the mean phase angles corresponding to
(a). The grid size is 2.2 × 2.2 cm.

peratures. Incoming thermal radiation is reflected within cavities and depressions

before the IRT sensor can detect the signal. Thus, more radiation gets absorbed

and therefore emitted from these structures leading to higher emissivity (Mollmann

and Vollmer, 2007; Quinn, 1967; Usamentiaga et al., 2014). Quinn (1967) analyzed

the influence of cylindrical cavities on the emissivity and showed that the deeper a

cavity, the higher the emissivity, cumulating in near black body radiation. For our

study, this meant that using a fixed emissivity of 0.95 led to an overestimation of

the surface temperature in cavities and depressions. Therefore, information about

the surface structural properties could help in analyzing spatial surface tempera-

tures patterns. Fig. 2.6c shows the phase image as an approximation of the surface

soil structure and density in relation to the surface temperature pattern of soil A

(Fig. 2.6a). Cavities in the surface structure can be detected, e.g., in Position A

1–2 in Fig. 2.6c. At the same position in Fig. 6a, an intermediate temperature

change was detected, although a high temperature decrease was suspected due to

the also high moisture content (Fig. 2.6b). In cavity structures, soil moisture was

more stable (Fig. 2.3), and thus, microbial heat production could longer retain at

a higher state (Kuzyakov and Blagodatskaya, 2015; Rey et al., 2005; Tecon and Or,

2017). This resulted in a lower temperature decrease. According to these findings,

a more neutral surface structure in Fig. 2.5c at Position H 4 was characterized by
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a higher temperature decrease at the same moisture content of 17.3% compared to

16.8% at Position A 1–2. Thus, the interpretation of passive IRT measurements can

be improved by considering the active IRT measurements referring to the moisture

contents and structural patterns.

2.4 Conclusions

In this study, we presented IRT as a promising technique to get temperature based

information of the soil surface in a high spatial and temporal resolution. Active

IRT proved to be a reliable method for measuring moisture content on soil surfaces

with good accuracy. However, the calibration of soil moisture was only reliable at

VWCs up to 30%, limited by the rewetting procedure. In addition, the relative

residual errors for the separated soil calibrations were between 12 and 17% because

soil texture influenced the thermal properties of soils so that a separate calibration

of soil moisture for different soil samples is recommended for more precise results.

Soil surface structure and density can affect the reflectivity of thermal radiation as

well as the strength of soil drying. Thus, the phase image has to be considered for

interpretation of soil surface moisture. The passive IRT technique enables the detec-

tion of increased microbial activity events as the “Birch effect” or substrate induced

respiration. Temperature increases induced by microbial activity were detected up

to 0.5 K at a camera accuracy at ± 20 mK. Basal respiration could not be measured

due to influences of the surrounding ambient environment and evaporation. Espe-

cially spatial information about soil moisture content and soil surface structure are

crucial for understanding various microbial processes, which were detectable with

passive IRT.

Active and passive IRT approaches can be improved and validated to get more

precise temperature based information. For example, the accuracy of spatial soil
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surface moisture detection using active IRT can be validated by X-ray imaging. To

quantify microbial activity on soil surfaces with passive IRT, the combination with

14C imaging or zymography seem to be very promising. Also, the detection of micro-

bial activity in situ would be an interesting application for IRT techniques. However,

before IRT can be tested in field applications, further studies should focus on the

potential of IRT techniques to analyze undisturbed soil samples for soil moisture

contents and soil microbial activity under laboratory conditions. It can be con-

cluded that active and passive IRT, as non-contact techniques, are highly promising

mapping tools for surface properties since they characterize intact soil structures on

a microscale in a high spatial and temporal resolution. Moreover, these techniques

can be used for real-time detection of three factors microbial activity, soil moisture,

as well as soil structure, simultaneously.
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3.1 Introduction

In recent years, the spatial and temporal heterogeneity of soil microbial activity

at the microscale has been acknowledged to be an important but often neglected

aspect for understanding and quantifying microbial mediated soil processes, such

as nutrient cycling or C turnover (Heitkötter and Marschner, 2018a; Kuzyakov and

Blagodatskaya, 2015). Such microsites termed “hot spots” can develop due to lo-

cally improved environmental conditions, such as soil moisture or aeration and due

to substrate inputs as in the rhizosphere (Kuzyakov and Blagodatskaya, 2015; Tecon

and Or, 2017) or the drilosphere (Don et al., 2008). However, hot spots have also

been detected in soil domains not visibly different from the surrounding bulk soil

(Heitkötter and Marschner, 2018a). Apart from the spatial identification of such

aggregated microbial colonies, their temporal dynamics may be of great relevance,

when increased microbial activity is additionally limited to only short-term “hot mo-

ments”, as it was termed by Kuzyakov and Blagodatskaya (2015). However, up to

now, the dynamic nature of hot spots and hot moments was rarely analyzed in soils

because only very few experimental approaches are available for determining soil

microbial activity at a sufficiently high spatial and temporal resolution. Until now,

the spatio-temporal detection of hot spots and/or hot moments has been determined

with techniques like zymography, phosphor imaging, or planar optodes (Heitkötter

and Marschner, 2018a; Pausch and Kuzyakov, 2011; Rubol et al., 2016).

Soil zymography allows determining enzyme activities on intact soil surfaces

at a spatial resolution < 1 mm (Heitkötter and Marschner, 2018b; Kuzyakov and

Blagodatskaya, 2015; Spohn et al., 2013). Although repeated measurements are

possible, the minimum temporal resolution is about 30 min, due to the needed

contact time of the substrate soaked gel with the soil surface (Spohn and Kuzyakov,

2014). Thus, short-term dynamics can only be mapped to a limited extent with

a comparable long preparation time of the experimental procedure (Heitkötter and

Marschner, 2018a).
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Phosphor imaging of β-radiation has been used to identify spatial and tempo-

ral variations in 14C-activity from root exudation of labeled plants (Pausch and

Kuzyakov, 2011; Spohn and Kuzyakov, 2013) or also from surface-applied 14C-

glucose at a spatial resolution of about 0.1 mm (Heitkötter and Marschner, 2018a).

With this technique, the mapping of temporal dynamics is only possible at a low

resolution because the exposure time of the phosphor plates is relatively long (> 3h

up to 22 h) (Heitkötter and Marschner, 2018a; Pausch and Kuzyakov, 2011). Short-

term dynamics can therefore not be determined but rather accumulated values over

longer periods. This technique allows contactless detection of C consumption on

the soil surface, but can only be used after addition of, e.g., 14C labeled substrates.

The detection of β-radiation is additionally limited by its low energy, which is easily

shielded by soil particles or aggregates (Heitkötter and Marschner, 2018a).

Lastly, planar optodes have been used to image CO2 production or O2 consump-

tion at soil surfaces which are in contact with a membrane over several days, allowing

a spatial resolution of up to 10 µm per pixel, depending on camera distance (Holst

and Grunwald, 2001; Rubol et al., 2016). Although planar optodes allow continuous

and highly resolved real-time measurements with a resolution < 1 min, the accu-

racy is restricted by the measurement requirements. Contact and non-contact areas

result in lateral oxygen diffusion affecting the accuracy of O2 or CO2 measurements

(Askaer et al., 2010; Gansert and Blossfeld, 2008; Holst and Grunwald, 2001). Addi-

tionally, the samples must be water-saturated, which reduces the respiratory activity

of microorganisms, which also affects the results and complicates the recording of

microbial activity, especially in undisturbed soil samples (Barros et al., 1995; Skopp

et al., 1990).

In contrast to these techniques, passive infrared thermography (IRT) allows de-

tecting surface temperature changes induced by the energy released from microbial

catabolism at high spatial and temporal resolution (Kluge et al., 2013; Schwarz

et al., 2018), enabling the combined real-time evaluation of hot moments and hot
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spots. This combination of phenomena is termed “hot movements” in this study.

The advantage of the IRT technique is the non-invasive and non-contact approach

for detecting hot moments on undisturbed soil sample surfaces at temporal resolu-

tions of maximum 60 records per second and hot spots at spatial resolutions < 1

mm depending on camera distance.

Although the IRT approach has been applied for monitoring increased soil mi-

crobial activity after rewetting events (Schwarz et al., 2018) or measuring substrate-

induced heat production (Kluge et al., 2013), no standardized methodical procedure

exists. The IRT technique is highly sensitive towards ambient environmental condi-

tions, like changes in air temperature, which are reflected on moist soil surfaces or

relative air humidity (Schwarz et al., 2018). The relative air humidity determines

the intensity of soil drying (Schwarz et al., 2018), which thus influences the evap-

orative cooling and specific heat capacity of moist soil samples (Antonucci et al.,

2011; Schwarz et al., 2018). These influences overlay temperature effects (> 0.03

K), which are triggered by microbial activity. Thus, there is a need for the develop-

ment of a standardized method for comparing microbial activity levels in different

studies and experiments. A standard IRT method can be a powerful and innova-

tive tool for obtaining deeper insights into soil microbial processes at the microscale.

Consequently, the objective of the present study was to optimize the passive IRT

technique regarding sensitivity and stability for the reliable detection of substrate-

induced respiration at high spatial and temporal resolution on soil surfaces. We

further developed the method by optimizing (i) the glucose application rates and

techniques, (ii) incubation air humidity and temperature, and (iii) the data prepro-

cessing procedure. For data validation, the microbial activity determined by IRT

was compared to soil respiration determined with conventional CO2 measurements.

Finally, the optimized method was applied for mapping microbial hot spots and hot

moments in so-called hot movements on soil surfaces.
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3.2 Material and Methods

3.2.1 Soil samples

Two topsoil samples (0–20 cm) were collected from two sites in North Rhine-Westphalia

(Germany). One soil sample was collected from an arable field in Witten and the

other from a pasture near Kalkar. The soils were air-dried and sieved to < 2 mm

after sampling. As shown in Table 3.1, both samples had a similar texture but dif-

fered in pH, soil organic carbon (SOC) contents, and microbial properties. Since the

primary goal of this study was to develop a methodical approach and not to make

a direct comparison between soils with different properties, only two soil samples

varying in their characteristics were considered. With this first test series, possible

sources of errors and limitations should be uncovered and discussed, leading to fur-

ther methodological improvements.

3.2.2 Analytical techniques

3.2.2.1 Infrared thermography

A high definition IRT camera (Variocam HD research, InfraTec, Dresden, Germany)

with an image resolution of 1024 × 768 pixels was used to determine soil surface

temperatures. The camera distance from the soil sample surfaces was 50 cm in all

experiments, which resulted in a pixel resolution of 0.283 × 0.283 mm per pixel.

Within the far-infrared spectral range of 7–14 µm, a temperature accuracy of ±

30 mK can be achieved with this camera. The emissivity of the soil surfaces was

set to 0.95 in all experiments (Kluge et al., 2013; Schwarz et al., 2018). Although

a maximum temporal resolution of 60 records per second could be achieved using

passive IRT, it was set to one minute for all experiments.
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Table 3.1: Characteristics of the pasture and arable soil used for the incubation experiments.

Soil Sample pHa SOCb WHCc Sandd Siltd Clayd Cmic
e Basal respirationf

[-] [%] [ug g−1] [CO2 mg g−1 h−1]
Pasture Soil 5.9 1.7 46.3 13 82 5 5 0.11
Arable Soil 7.1 3.0 61.5 7 85 8 51 1.27
a 0.01 M CaCl2
b Vario EL Elementar Analyser (Elementar Analysesysteme GmbH, Hanau, Germany)
c After DIN EN ISO 11267 (2014-07)
d Analysette (Fritsch GmbH, Idar-Oberstein, Germany)
e after Anderson and Domsch (1978)
f Respicond (Nordgren Innovations AB, Bygdeå, Sweden)
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3.2.2.2 Respirometry

To relate surface temperature to microbial activity, a Respicond System (Nordgren

Innovations AB, Bygdeå, Sweden) was used to determine soil microbial respiration.

For this purpose, incubation studies were conducted with 30 g soil samples placed

into 250 mL vessels. The evolved CO2 was trapped in KOH-solution placed inside

the incubation vessel. By recording changes in electrical conductivity in the KOH-

solution, the amount of CO2 was determined hourly (Nordgren, 1988; Stumpe and

Marschner, 2009). However, this method measures accumulated values over time for

a specific soil volume and does not provide any information about spatial variations.

3.2.3 Incubation experiments

3.2.3.1 Incubation experiments for thermal imaging

Passive IRT is able to measure real-time surface temperatures of soils. Since the

energy released during microbial catabolic activity results in temperature increase,

the thermal contrast can be linked to spatial and temporal variations of microbial

activity (Kluge et al., 2013; Schwarz et al., 2018). Thus, to detect microbial activity

in high spatial and temporal resolution, incubation experiments for thermal imag-

ing were performed using the passive IRT technique. For this, both soil samples

were rewetted to 45% of their Water Holding Capacity (WHC), corresponding to

the study of Schwarz et al. (2018), and pre-incubated for one week to avoid the

“Birch”–CO2-pulse (Birch, 1958; Schwarz et al., 2018). After pre-incubation, the

equivalent of 12 g dry soil was filled into incubation vessels with a volume of 15.625

cm3 and a surface of 2.5 × 2.5 cm. The ambient air temperature during the pre-

incubation period and the experiments was about 20 °C in the laboratory and the

incubation vessel. The monitoring of the surface temperature during incubation

was carried out over a period of one week because the substrate-induced increase of
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microbial activity or the so-called glucose effect lasts up to a maximum of five days

(Anderson and Domsch, 1978; Stumpe and Marschner, 2009). For developing the

method, the experiments were separated into three steps: (i) effect of glucose ap-

plication, (ii) glucose application methods, and (iii) influence of ambient incubation

conditions.

3.2.3.1.1 Effect of glucose application

Passive IRT is not able to detect basal microbial activity (Schwarz et al., 2018), and,

therefore, microbial activity was stimulated by the application of glucose (Kluge

et al., 2013). In a first screening setup, the sensitivity of the passive IRT approach

for the detection of substrate-induced respiration was evaluated by applying differ-

ent glucose concentrations. Those were chosen on the basis of other studies, e.g.,

140 µg glucose-C cm2 (Heitkötter and Marschner, 2018b) or one weight percent of

substrate mixture containing 80% glucose (Kluge et al., 2013). By recalculating the

glucose mass of both studies to the sample size in this study, glucose levels of ≈0.24

mg glucose cm2 and ≈0.96 mg glucose cm2 were achieved. To evaluate the sensitivity

of the method, we also considered intermediate steps as well as higher application

rates. Therefore, the following nine glucose application rates were tested: 0.24, 0.48,

0.72, 0.96, 1.20, 1.44, 1.68, 1.92, and 2.16 mg cm2 by preparing glucose solutions

corresponding to the application of five drops of 10 µL cm2 per treatment. For the

control samples, only deionized water was added at the same amount. Three repli-

cates of each treatment were used. The mean values of the replicates are presented

in the results section, because all had the same initial conditions and comparable

values. The temperature curves of the individual replicates with mean values can

be found in the Appendix (Appendix Fig. A2.1).
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After screening, three application rates (0.24, 0.96, and 1.68 mg cm2) were se-

lected for all further experiments to cover a range of concentrations and to induce

different microbial response levels to evaluate the sensitivity of passive IRT.

3.2.3.1.2 Glucose application methods

To develop an IRT method for disturbed as well as for undisturbed soil samples,

glucose solution was pipetted (GP ) on the surface of potentially undisturbed soil

samples and, on the other hand, mixed into disturbed soil sample (GM).

For GP , the glucose solution was pipetted on the soil surface with 10 µL each

on five spatially separated spots since a homogeneous application of glucose on the

surface was technically not possible. The drops were placed in four corners and into

the center of the surface, avoiding overlaps of the drops to cover most of the surface

area of the soil sample. Thus, added glucose is expressed in mg per cm2, taking the

complete surface area of 6.25 cm2 into account. Since the diffusion into depth is

unknown, the concentration is only an estimate.

In contrast to GP , GM allows a nearly homogeneous distribution of the glucose in

the soil sample and on the soil sample surface. Using GM , 1 mL of glucose solutions

(1.4, 7.0, and 14.0 mg g1) was carefully stirred in the pre-incubated soil samples

to maintain soil aggregates. Three replicates were used for every treatment. The

addition of glucose is given in mg per g, as this application method refers to the

total soil volume and not only to the surface. For the controls, deionized water was

used to consider the impact of enhanced soil moisture on microbial activity.
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3.2.3.1.3 Influence of ambient incubation condition

The effect of environmental influence factors should be avoided or minimized as

much as possible to develop a reliable IRT method for the detection of microbial

activity since surface temperature is highly sensitive towards ambient environmen-

tal conditions (Schwarz et al., 2018). Thus, the following conditions and influence

factors were taken into account in our experiments: Relative air humidity and air

temperature.

3.2.3.1.3.1 Relative air humidity

Controlling the relative air humidity is necessary since soil samples lose moisture

at low relative air humidity due to increased evaporation. Relative air humidity of

< 100% will result in soil drying, which affects the soil surface temperature, e.g.,

due to evaporating cooling processes. This effect would depress a thermal increase

from increased microbial activity. In addition, soil drying will result in emissivity

changes (Axelsson, 1988) and decreased microbial activity (Barros et al., 1995). Soil

drying cannot be fully corrected mathematically, because not only do the physical

soil properties change, but microbial activity is also affected. While changes in the

relative water content of soils can be determined by active infrared thermography

and then used as a correction factor for the physical soil properties (Schwarz et al.,

2018), moisture-dependent changes in microbial activity cannot be accounted for. In

order to test this, experiments under different ambient humidity levels were carried

out.

The incubation experiments were conducted in three approaches: at ambient

laboratory conditions (ALC), at ALC with samples covered by an IR-transparent

polypropylene foil (PPF), and uncovered samples placed in a gas-tight glovebox with

controlled air humidity conditions (CHC). During all three approaches, relative air

humidity was monitored inside and outside the glovebox at 1-minute temporal reso-
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lution using wireless data loggers (M-Log5W-HUMIDITY, Geoprecision, Ettlingen,

Germany). For the ALC approach, the relative humidity was about 35% during

the experiments. In the PPF approach, the air space of 0.625 cm3 between the soil

sample surface and PP foil had a microclimate with a relative humidity of about

100%, avoiding evaporation from the soil sample. This approach has already been

used by Kluge et al. (2013).

For the CHC approach, incubation experiments were performed in a gas-tight

glovebox. The glovebox was made of a stainless steel body and plexiglass windows.

Inside the box, the relative humidity was adjusted to over 80% by using two methods:

using a water-filled bowl (resulting in about 80% relative humidity) or a saturated

salt solution (Rockland, 1960; Young, 1967) combined with a ventilation system.

Saturated salt solutions have the ability to adjust a level of relative humidity in a

closed system depending on the salt. Further information is given in Young (1967).

We used a sodium chloride solution resulting in a relative humidity of about 85%

and potassium chloride resulting in a relative humidity of about 95%.

3.2.3.1.3.2 Air temperature

As the surface temperature of wet soil samples is sensitive to variations in air tem-

perature (Schwarz et al., 2018), the air temperature was monitored in all humidity

approaches minutely by wireless data loggers (M-Log5W-HUMIDITY). The loggers

were placed inside and outside the glovebox to capture the differences and variations

in air temperature. Thus, the variations in the measured surface temperatures were

corrected for the course of the air temperature to eliminate, e.g., diurnal cycles. Al-

though all experiments were conducted under laboratory conditions, a diurnal cycle

in air temperature could not be avoided completely.
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3.2.3.1.4 Data preprocessing

Conducting the experiments in a closed system enabled minimization of the influ-

encing environmental factors. Since those could not be removed entirely, processing

of the raw data was necessary to minimize small temperature effects and to increase

thermal contrasts for the sensitivity of the IRT identification of microbial activity.

As slight temperature increases could be detected, high microbial response rates

were measurable without preprocessing (Kluge et al., 2013; Schwarz et al., 2018).

As a first step, outliers were corrected from the time series by using the 5% and

95% quantiles to eliminate measurement errors. Second, a low pass filter was ap-

plied to reduce the noise of the raw thermal time series and to get more comparable

variances, as shown by Grudzielanek and Cermak (2015). In the third step, the tem-

perature time series were linearly detrended (Antonucci et al., 2011) to correct for

soil drying, which would result in a temperature increase over time (Schwarz et al.,

2018). The camera accuracy of ± 30 mK and surface structural patterns might

produce scattering effects that result in sloping and shifting of the starting point

of the thermal time series (Schwarz et al., 2018; Usamentiaga et al., 2014), which

need to be corrected. Thus, in a fourth step, an offset correction was applied to fit

the start points of each time series to each other. In a final step, the temperature

of the control samples was subtracted from the temperatures of the glucose treated

samples to remove ambient environmental temperature changes. Another advantage

of subtracting was that only differences in the temperature trends were considered

and the data focused on thermal contrasts (Kluge et al., 2013).

All surface temperature evaluations were performed after preprocessing. In or-

der to evaluate the soil surface temperature, mean values were calculated over the

soil surfaces for each treatment, and the temporal courses were compared to each

other qualitatively. In addition, thermograms were used from the start time and the
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time of the highest temperature increase induced by microbial activity to assess the

spatial patterns of temperature change.

3.2.3.2 Respirometry incubation experiments

Incubation experiments using a respirometer were performed to validate the mea-

surements of the surface temperature by passive IRT. According to the other exper-

iments, the soil samples (30 g per vessel) were pre-incubated for one week at 20 °C

to create equal conditions compared to the IRT experiments. After pre-incubation,

glucose was added at application rates corresponding to those of the IRT experi-

ments (GM). The incubation experiments were carried out over a period of one week.

For qualitative evaluation and validation of the IRT measurements, the time-

dependent course of the substrate-induced soil respiration was compared with the

temporal changes of the mean temperature on the soil surfaces. For a quantitative

evaluation and validation, the accumulated energy release was calculated for both

the IRT and the respirometry incubation experiments.

For the calculation of the thermal energy release measured by passive IRT, the

integral of the mean temperature curve was calculated and inserted into the formula

for thermal energy, where Q [J min] is the amount of thermal energy release as a

function of time t [h], m is mass [kg], and c is specific heat capacity [J/(g * K)]:

∫ t

0

Q(t) = m× c×
∫ t

0

T (t) (3.1)

We assumed a uniform specific heat capacity (c) for the moist soil of 2000

J × kg−1K−1 (Abu-Hamdeh, 2003). In terms of simplification, small-scale differ-
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ences, as variations in texture, density, or soil moisture, on the soil surface could

not be considered. Thus, Eq. (3.1) was used as an approximation to the current

thermal energy release.

On basis of the respiration curves (QR [kJ]), the energy release was calculated by

using the accumulated CO2, which is related to the caloric equivalent of 20.2 kJ/l

(Critter et al., 1994) using the following equation:

QR =

∑t
0R(t)

1960mg
× 20.2kJ (3.2)

Here, 1960 mg refers to the density of CO2 and R is the mineralized amount of CO2

[mg] at each time step. The energy releases calculated for the temperature curves

and the respiration rates can be compared to each other. Additionally, the energy

was calculated per gram soil in order to compare the energy release Q(t) of the mean

surface temperature of 12 g soil to the accumulated energy release QR, referring to

30 g soil.

In a further step, we calculated the pixelwise energy release of the surface tem-

perature for each thermogram, referring to the calculation of Q(t) using Eq. (3.1).

With this approach, spatio-temporal dependencies, such as microbial hot spots, can

be detected.

3.2.3.3 The potential of hot movement identification on soil surface us-

ing IRT

In order to identify and characterize microbial hot movements, the combination of

hot spots and hot moments, on the soil sample surface, the surface temperature of

the incubated and substrate-induced soil samples were examined using time-lapses.
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For this purpose, both soil samples were incubated under the optimal incubation

conditions. After soil sample pre-incubation, the highest application rates of glu-

cose (1.68 mg cm−2 for pipetting and 14 mg g1 for mixing) were pipetted (GP ) or

mixed (GM) into the soil samples. Afterwards, thermal images were preprocessed as

described above (section 3.2.3.1.4) and switched into an image sequence with a tem-

poral resolution of 15 min. These time-lapses visualized spatio-temporal patterns,

i.d., microbial hot spots, in combination with hot moments. Additionally, periods

of maximum activity in space and time were quantitatively assessed and compared

to the average soil conditions.

3.2.4 Software

The thermal images were converted and exported using IRBIS3 professional (In-

fraTec). The data preprocessing, calculations, and image creation were done using

Python 3.7.

3.3 Results and discussion

3.3.1 Incubation experiments for thermal imaging

3.3.1.1 Effect of glucose application

Fig. 3.1 shows the effects of different glucose application rates on the mean soil

surface temperature during the first 30 h of incubation of the pasture soil (GP ).

After about 8 h, mean ∆T increased on all soil surfaces until a temperature peak

was achieved after 15 to 20 h, depending on glucose application rate. Addition-

ally, the temperature increase was larger and the duration of the peak lasted longer

with increasing glucose application. The highest temperature increase of 0.15 K was

reached with a glucose application of 1.68 mg cm2 after about 20 h. The lowest

temperature increase of 0.05 K after about 15 h was detected for the glucose addi-

tion of 0.24 mg cm2. After reaching the peak, the surface temperature decreased,
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indicating declining microbial activity. The intensity and duration of the thermal

signal were related to the amount of applied substrate. At the three highest glucose

application rates, the temperature effect was not completed after 30 h of incubation.

The data after 30 h was not available due to a measurement gap. Nevertheless, other

experiments in this study showed that the temperature always leveled down to zero,

so reliable measurements could be assumed here as well. Interestingly, ∆T of the

samples with low glucose application rates decreased to below 0 K after about 25 h

of incubation. The replicates showed similar temperature curves without significant

deviations in mean values or standard deviation (paired t-test, p > 0.05, Appendix

Fig. A2.1).

Figure 3.1: Mean ∆T [K] of the pasture soil after application of nine glucose
concentrations (GP ) under controlled humidity conditions using water.

The temperature increase over time can be explained by the substrate-induced

increase in microbial activity. Jones and Murphy (2007) showed in their study on

microbial response to glucose addition to soils that the initial increase of respiration

and, thus, microbial activation already occurs at least half an hour after substrate

addition. Further, Anderson and Domsch (1973) showed that the response intensity
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depends on the amount of added substrate. The progressive time lag of the high-

est microbial response with increasing glucose addition has already been shown in

various studies (Anderson and Domsch, 1986; Griffiths et al., 1999; Reischke et al.,

2014). The rates of labile C input affect microbial and fungal growth rates signifi-

cantly (Blagodatskaya and Kuzyakov, 2013; Griffiths et al., 1999). The increasing

amount of substrate input has an impact on the resulting microbial community.

Thus, community structure changes consistently with increasing substrate addition,

which affects the microbial response rates and duration (Griffiths et al., 1999). The

temperature decrease below 0 of mean ∆T was possibly an artifact from the offset

correction by which the initial thermal response was eliminated.

To identify the reliability of this technique, the relationship between glucose

application and the corresponding maximum temperature increase was modeled with

linear regression. This resulted in a significant relationship (∗p < 0.05) with an R2

of 0.84 (Appendix Fig. A2.2). Despite the high explaining variance, the linear

regression did not reflect the slightly lower temperature peak at glucose applications

above 1.68 mg cm2 (Fig. 3.1). This corresponds to observations made by Beare et al.

(1990), who found that microbial activity response increased with higher amounts of

added glucose but was suppressed at high concentrations. Likely, the high glucose

additions caused anaerobic conditions in the soil due to rapid oxygen depletion

and/or through pore-clogging, which might lower the heat production (Barros et al.,

1995; Vor et al., 2002). Another reason could be suppressed microbial growth by

nitrogen limitation at high glucose application rates. As known, response rates to

substrate addition by microorganisms depend on the amount of added glucose and

the available nutrients such as nitrogen (Blagodatskaya et al., 2007). Adding glucose

combined with nitrogen to soil samples resulted in significantly higher respiration

rates (Blagodatskaya et al., 2007; Tian et al., 2016). If only glucose is added, nitrogen

limitation may occur so that no further microbial growth can take place, and thus

might also lead to lower temperature increases for very high glucose concentrations.
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Still, those results showed that the IRT technique reflected total microbial ac-

tivity in soil samples within a certain range of added amounts of glucose reliably.

Therefore, three glucose concentrations were selected for all following experiments.

To cover a range of concentrations and to provoke different microbial response levels

without risking anaerobic conditions, the glucose application rates of 0.24, 0.96, and

1.68 mg cm2 were chosen.

3.3.1.2 Glucose application methods

Fig. 3.2 shows the course of ∆T of the two glucose application methods mixing

(GM) and pipetting (GP ) at the highest glucose application rate for both soils. In

both soils, the temperature effect was significantly greater when glucose was pipet-

ted on the surfaces compared to mixing it into the soil (paired t-test, ∗p < 0.05).

This effect was more pronounced for the pasture soil with a maximum ∆T for GP

of 0.51 K and GM of only 0.25 K. Differences for the arable soil were smaller, but

the thermal peak in GP was broader than in GM .

Mixing the glucose solution into the soil samples diluted the substrate concen-

tration over the whole soil volume, thus concentrations at the surface were lower

compared to glucose application with a pipette. Since five drops of glucose solution

were pipetted on the soil surfaces, a spatially selective substrate enrichment was

induced, resulting in a higher local temperature increases at the soil surface. Dur-

ing the experiments, the pipetting procedure was not changed in order to maintain

uniform conditions during the experiments for the method development and the

comparability of the results. For further IRT studies, this method can be improved

by using a spray system, which provides the possibility to apply liquids, like glu-

cose solutions, evenly on surfaces (Heitkötter and Marschner, 2018a; Stoeckli et al.,

2014). Such a spray system would enable to analyze the spatio-temporal microbial

activity on undisturbed soil samples surfaces using passive IRT.
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Figure 3.2: Temporal course of ∆T of the three replicates (light colors) and their mean
values (bold) of pasture soil (a), and arable soil (b), after glucose pipetting procedure (GP ,
1.68 mg cm2), and glucose mixing procedure (GM , 14.0 mg g1) at CHC.

3.3.1.3 Influence of ambient incubation conditions

Relative air humidity

Fig. 3.3 shows the temporal course of ∆T for the pasture soil after glucose appli-

cation (GP ) at 1.68 mg cm2 in four experimental setups with varying relative air

humidity. In the left column, ∆T of the experiments PPF and CHC are depicted

for the first 70 h after glucose application. The results of the ALC experiment are

not shown because the soil had already dried out before the glucose peak occurred.

In the PPF experiment, in which an IRT transparent PP-foil covered the soil

sample, ∆T increased slightly up to a maximum of 0.04 K after 20 h of incubation

and decreased afterward, with a steady noise (Fig. 3.3a). The neglectable surface

temperature increase (paired t-test, p > 0.05) suggested that the evaporation of the

water from the soil increased the relative humidity to 100% in the small air space

between the soil surface and PP-film and caused condensation on the PP-film, thus

shielding IR rays from detection. Although Kluge et al. (2013) used a similar ex-

perimental setup in their study, it could not be replicated here. Likely, perforation

of the covering foil could help with ventilation so that the microclimate is counter-

acted. Another possibility would be to choose a larger airspace between soil surfaces
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and the foil cover since we used only 1 mm distance a microclimate with condensing

conditions formed very quickly.

In the CHC experiment, in which the humidity inside the glovebox was adjusted

to about 80%, a more intense but not significant (paired t- test, p > 0.05) increase

of ∆T up to 0.08 K was detectable after 36 h (Fig. 3.3b). The increase started

after about 20 h and continued until 50 h after substrate addition. The associated

thermograms show that there was a general rise in temperature on the entire soil

surface. Due to the comparably low relative humidity of 80%, it can be assumed

that evaporation occurred on the whole soil surface and thus superimposed the effect

of glucose, resulting in an underestimated temperature increase on the entire soil

surface.

In Fig. 3.3c and 3.3d, the results of the CHC experiment using a saturated salt

solution are presented. In Fig. 3.3c, an increase of ∆T started 10 h after glucose

application up to a maximum of 0.14 K after 32 h (paired t-test, ∗p < 0.05) using

an adjusted relative humidity of 85% (sodium chloride). With an adjusted relative

humidity of 95% (potassium chloride), the most pronounced increase of ∆T occurred

with up to 0.51 K after 37 h incubation time (Fig. 3.3d; paired t-test, ∗p < 0.05).

The efficiency of this setup is also reflected in the corresponding thermograms

(Fig. 3.3d). At the peak of ∆T , the temperature increased highly inhomogeneously

on the soil surface, with areas of hardly any difference compared to the control

and areas with up to 0.7 K increase. This was clearly related to the non-uniform

punctual application of the glucose solution on the soil surface. Apparently, the

relative humidity level of about 95% prevented soil drying and evaporation with the

associated thermal interferences of the biological heat production. Thus, an overlay

caused by these physical processes could be minimized for the determination of mi-

crobial activity.
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Figure 3.3: Effects of air humidity control measures on soil surface temperatures of the
pasture soil after glucose addition (1.68 mg cm 2). The left column shows the temporal
course of ∆T [K] in the four experimental setups: polypropylene foil (PPF) (a),
controlled humidity conditions (CHC) using water (b), sodium chloride (c), and
potassium chloride (d). Corresponding to the experimental setups, in the middle column,
the initial thermograms of each experiment and in the right column, the thermograms of
the time of highest temperature increase are presented, with mean values (T) and SD
(σT) depicted above each panel.
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These results clearly showed that the ambient relative humidity is a highly im-

portant interference factor for the identification of microbial activity using passive

IRT. Thus, the relative humidity should be kept constant at close to 100% to min-

imize soil dehydration and to be able to identify a maximum temperature effect

by microbial activity on soil surfaces. Such restrictions must also be considered in

other approaches for the detection of microbial activity. Looking at the example of

respirometry or isothermal microcalorimetry, the samples have to be kept as evenly

moist and at constant temperatures as possible (Barros et al., 2011; Herrmann et al.,

2014; Vor et al., 2002).

Air temperature

Fig. 3.4 shows the mean temperature course of the rewetted pasture soil (GP ,

control) in combination with the temperature course of the ambient air using the

experimental setup CHC (sodium chloride). Two important factors can be observed:

the daily fluctuations of the air temperature and cooling effects by evaporation pro-

cesses. The air temperature in the glovebox fluctuated between 20.8 and 21.3 °C

in a more or less regular 24-hour rhythm. This diurnal cycle was conveyed to the

mean soil surface temperature, with a slight time lag. Thus, the surface temperature

clearly reflected the ambient temperature, as already shown by Kluge et al. (2013).

Therefore, small surface temperature changes are overlaid and underestimated by

this effect.

The mean soil surface temperature showed a mean temperature difference of

about 0.04 K to the air temperature (Fig. 3.4), which was attributed to evaporative

cooling. Due to the cooling effect of the moist soil, which evaporates when the air

humidity is not fully saturated, the soil surface temperature is always below the

air temperature (Barreira and Almeida, 2015; Grinzato et al., 1998). Our results

showed that the ambient air temperature greatly affected soil surface temperatures,
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as already discussed by Schwarz et al. (2018). However, different from the effects

of the relative humidity, these temperature effects can be mathematically corrected

by, e.g., calculating ∆T described in the data preprocessing.

Figure 3.4: Temporal course of the mean soil surface temperature [°C] of the three
replicates (light green) and their mean values (bold green) and the air temperature [°C].

3.3.1.4 Data processing

Fig. 3.5 shows the mean temperature courses for the raw thermal data and the time

series after preprocessing procedure. The mean temperature of the treated sample

was higher than that of the control sample (Fig. 3.5a). The course of ∆T showed

a peak after about 20 h, which was likely caused by substrate increased microbial

activity (Kluge et al., 2013). In addition, there was a second slow increase in ∆T

after about 50 h. The corresponding histogram (Fig. 3.5c) shows a multimodal

distribution of ∆T , which is left skewed. The lowest values of ∆T were all above

0.0, indicating a general overestimation of the peak.

In general, large fluctuations caused by variations in the ambient air tempera-

ture dominated the temperature courses (Fig. 3.5a). Nevertheless, measurement
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errors were found in the time series. Large outliers have to be considered, but also

small effects as the scattering in the surface temperature caused, e.g., by camera

noise, which was a result of the camera accuracy of ± 30mK. In Fig. 3.5a, a general

increase in the surface temperature was detected, which might be a result of soil

drying over time. However, slow soil drying processes could not be avoided techni-

cally. In the experimental setup CHC, high relative humidity with a maximum of

95% was achieved. Nevertheless, as far as the relative humidity is not fully satu-

rated at 100%, soil drying processes will occur and can influence the temperature

course of ∆T . Soil drying results in a temperature increase, as emissivity increases

with decreasing soil moisture (Axelsson, 1988). The emissivity in this study was

assumed to be a constant of 0.95, which led to an apparent temperature increase.

Additionally, the evaporative cooling also decreases with decreasing soil moisture

(Kerridge et al., 2013; Schwarz et al., 2018), so that there is no additional cooling

effect that counteracts the apparent rise in temperature. This further increases the

temperature effect.

Due to possible inhomogeneous starting conditions of the samples, a temperature

trend in ∆T could also occur. Still, ∆T showed a higher temperature increase in the

glucose treatment over time, indicating different temporal trends between glucose

treated and the control samples, probably caused by differences in soil drying. Most

likely, evaporation was reduced by the relatively high glucose concentration leading

to an increased osmotic potential or salinity of the soil solution (Al-Shammiri, 2002)

and the associated cooling effect. Further, the mean difference of both samples was

about 0.2 K (Fig. 3.5a), which can be an artifact from the pretreatment of the

soil samples induced by, e.g., inhomogeneous soil rewetting before pre-incubation,

but also by scattering effects induced by the camera noise or structural patterns of

the soil sample. Finally, the large fluctuations caused by variations in the ambient

air temperature were apparent. Although the experiments were conducted under
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laboratory conditions, diurnal variations in air temperature could not be avoided

completely.

Figure 3.5: In the left column, the mean surface temperature [K] at CHC of the control
and the glucose (1.68 mg cm−2) treated arable soil (GP ), and the corresponding ∆T are
shown as raw data (a) and after mathematical preprocessing procedure (b). In the right
column, the corresponding histograms of T are demonstrated (c and d).

To avoid those errors, the data was preprocessed. As first step, outliers were

corrected from the time series by using the 5% and 95% quantile to reduce major

deviations due to measurement errors. Small effects, which were superimposed by

the noise of the camera, were highlighted by applying a low pass filter to minimize

noise as described by Grudzielanek and Cermak (2015). Temperature trends in ∆T

by soil drying and changes in evaporation were corrected by a linear detrending of

the time series. The shift in mean ∆T of 0.2 K was corrected by subtracting the

offset of the start points from the time series.
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The corrected time series of surface temperatures with ∆T after preprocessing

are presented in Fig. 3.5b. The described errors were corrected as far as possible

and the temperature peak of ∆T was strengthened. After this correction, even small

effects caused by microbial activity were detectable using passive IRT as the external

factors have been corrected for. Nevertheless, some limitations due to the processing

must be considered. An offset correction is conducted to equate the start conditions

and, thus, to pronounce the peak in ∆T caused by microbial activity. However, this

correction may lead to a possible underestimation of the peak of ∆T . The applica-

tion of water and glucose solution to the soil samples and the subsequent placement

under the camera was accompanied by a time offset of half an hour. Within this

time, an initial glucose-induced temperature increase may already occur, which is

eliminated by this correction. Variations in the temperature trends of glucose treated

and untreated soil samples may also occur by differences in microbial activity and

may not exclusively be a result of increasing the osmotic potential or salinity of the

soil solution. The correction ignored this effect. However, with the same treatment

of the soil samples and the same preprocessing of the time series, the same error can

be assumed for all samples and, thus, the data were reliably prepared and can be

used for comparative analysis. Finally, ∆T was adjusted through this preprocessing

procedure so that temperature increases induced by glucose are pronounced (Fig.

3.5b). Thus, all following data series were subjected to this procedure. ∆T was used

to focus directly on the glucose effect on the soil surface temperature. In addition,

the histograms show that an approximation to a normal distribution of the data is

achieved by the preprocessing (Fig. 3.5d) and, thus, the data is also better suited

for further statistical analysis.

To sum up, good results can be obtained even with less strict protocols due to

the effective mathematical preprocessing procedure of the raw data. The most im-

portant factor is to keep the soil moist, as it is also the case for other measuring
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methods, such as for zymography (Spohn et al., 2013). This, of course, complicates

the application of the technique, e.g., in field experiments, but this technique has a

very high potential to map spatio-temporal changes of microbial activity and espe-

cially energy fluxes in undisturbed soils.

3.3.2 Respirometry incubation experiments

In order to evaluate the passive IRT measurements regarding their applicability

for the detection of substrate-induced microbial activity, IRT measurements were

compared to soil respiration. In Fig. 3.6, the courses of the respiration rates are

plotted together with the mean ∆T (GM) for the first 70 h of incubation after glu-

cose application for both soils and with three glucose application rates. Generally,

the temporal course, as well as the shape of ∆T and the soil respiration curves, are

quite similar. At the lowest glucose application, the thermal signal for the pasture

soil seemed to be more sensitive than the CO2-detection. For the medium glucose

concentrations (Fig. 3.6b & e), the respiration peaks were a few h later than those

of ∆T . Nevertheless, for the highest glucose concentration, the peaks were more

or less overlapping (Fig. 3.6c & f). The time of the maximum peak of ∆T was

similar to the results of Kluge et al. (2013), who detected a maximum temperature

increase of 0.35 K after about 39 h. In addition, the authors also compared surface

temperature with respiration rates. At a clearly lower respiration rate of 0.36 mg

g−1 h−1, they were able to measure a comparably high temperature increase.

In addition, the results showed that the peak heights of ∆T and the respiration

rates were related to the applied glucose concentration (see Table 3.2, Fig. 3.6).

Interestingly, the thermal peak from the different glucose application rates reflected

the different substrate availabilities better than the CO2 peak in both soils. While

doubling the glucose additions from 7 and 14 mg g−1, peak heights for CO2 in-

creased by 23 and 10% only for the pasture and arable soil, respectively, the ∆T
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peak heights almost double corresponding to glucose increase (Table 3.2). Similarly,

the fivefold increase in glucose application rates from 1.4 mg g−1 to 7.0 mg g−1 was

better reflected in the peak height of ∆T than that of CO2 (Table 3.2).

Figure 3.6: Temporal course of mean ∆T [K] of the replicates (light orange) and their
mean values (bold orange) at CHC and respiration rates [CO2 mg g−1 h−1] of the
replicates (light blue) and their mean values (bold blue) for pasture soil (a–c) and arable
soil (d–f) for three mixed glucose concentrations (GM ): 1.4 mg g−1 (a, d), 7.0 mg g−1 (b,
e), and 14 mg g−1 (c, f).
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A direct comparison of the two different soil microbial activity parameters is

possible by calculating the energy release from the soil surfaces based on the mean

surface temperature (Eq. (1)) and the respiration rates (Eq. (2)). For both param-

eters, the energy release increased at higher glucose application rates.

When comparing the energy release between IRT and respirometry, similar val-

ues were determined for both samples (Table 3.2). For the pasture soil, the match

between IRT and respirometry energy values was much better than for the arable

soil, for which the calculated energy release based on CO2 production was always

much lower than calculated from IRT, especially at the two higher concentrations

(Table 3.2). These deviations were probably a result of the different reference val-

ues. While the respirometry refers to the entire soil volume, IRT is based on the soil

surfaces only. Additionally, respirometry records accumulated values over a specific

time and not the actual respiration rate at a particular time, as with thermography

(Kluge et al., 2013; Schwarz et al., 2018). Further, substrate utilization or CO2

release might have an impact on the measured values for respirometry, since there

could be a limitation within the soil matrix compared to the surface, e.g., by O2

depletion in finer pores at high respiration rates or a lag in CO2 diffusion from lower

parts of the sample (Angert et al., 2015). In contrast, heat is conducted to the sur-

face via soil particles (Abu-Hamdeh and Reeder, 2000; Critter et al., 2001), which

is detectable for the IRT camera. However, the methodological limitations probably

had a greater influence on the comparability of the data than the fact that there

are chemical factors that significantly influence the system. Still, the increases in

heat and CO2 release occurred more or less simultaneously so that the heat flux can

clearly be attributed to soil microbial activity. The linear relation- ship between

glucose application and thermal energy release also showed that IRT is a sensitive

and reliable method for recording microbial activity at soil surfaces (Table 3.2).
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Table 3.2: Peak heights of ∆T [K] and the respiration rate [CO2 mg g−1 h−1], and corresponding cumulative energy release calculated using
Eqs. (1) and (2) for both soil samples using one glucose application method (GM ).

Soil Sample Glucose Concentration Maximum Peak Cumulative Energy Release
GM ∆T Soil Respiration ∆T Soil Respiration

[mg g−1] [K] [CO2 mg g−1 h−1] [J min] [J]

Pasture Soil
1.4 0.02 0.16 37.73 44.59
7.0 0.09 1.31 206.50 287.88
14.0 0.24 1.68 470.12 395.85

Arable Soil
1.4 0.05 0.27 138.99 106.44
7.0 0.23 1.55 490.93 346.64
14.0 0.38 1.72 736.59 385.44
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3.3.3 The potential of hot movements identification on soil surface using

IRT

Previous results showed that IRT offers the opportunity for determining spatial as

well as temporal dynamics of microbial activities on soil surfaces. Thus, the spatio-

temporal patterns of temperature changes are evaluated in the following. Fig. 3.7

shows the spatial distribution of cumulative energy release from the surface of both

soils calculated with Eq. (1). Among the four energy maps, the pasture soil with

glucose surface application (GP ) showed the highest heat production with a mean

of 1.35 kJ with a standard deviation of 0.44 kJ and a maximum of 2.73 kJ for the

whole surface (Fig. 3.7a). The pattern of the five drops applied to the soil surface

is clearly visible at the corners and the center on the soil surface indicated by par-

tially higher energy releases. The drops at the corners are partly outside the image

section because the edges of the sample were cut off to avoid interfering thermal

effects from the margins. Due to diffusion, the droplet size had increased, so that

not the whole effect can be seen at the corners. In the arable soil (GP ), this pattern

was not recognizable (Fig. 3.7c), possibly due to a more homogeneous distribution

of glucose on the surface because of the surface structure. Here, the mean energy

release was 0.89 kJ and the standard deviation was 0.34 kJ, with a maximum of

1.94 kJ.

The maximum thermal energy release from the pasture soil was higher than from

the arable soil (GP , Fig. 3.7a and c), although the microbial biomass content and

basal respiration of the pasture soil were initially much lower than that of the arable

soil (Table 3.1). Apparently, microorganisms in the pasture soil utilized the added

glucose to a greater extent for energy production (catabolism), indicating the pres-

ence of a microbial community that is strongly limited by substrate availability in

this slightly acidic and SOC-poor soil (Blagodatskaya and Kuzyakov, 2013; Blago-

datskaya and Anderson, 1998; Kuzyakov and Blagodatskaya, 2015). The arable soil
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originated from an organically managed field, thus, the inherent substrate availabil-

ity was potentially higher. The lower thermal response may also be due to a more

efficient diffusion of glucose solution into soil domains below the surface. Glucose

infiltration might also be a reason for the energy release differences since both soil

samples vary in SOC content and water holding capacity. The arable soil could

absorb more water due to higher SOC contents (Franzluebbers, 2002; Rawls et al.,

2003). Thus, more glucose solution might remain at the surface and affect the tem-

perature production by microorganisms.

When mixing glucose into the soil sample (GM), the thermal signals of the two

soils were more similar but not as homogeneously distributed as expected (Fig. 3.7b

and d). Indeed, very distinct hot spots with an energy release of about 2.5 kJ min1

occurred on the surface of both samples, which were very different from the mean

thermal signals of 0.34 kJ min1 with a standard deviation of 0.51 kJ and 0.63 kJ

min1 with a standard deviation of 0.45 kJ for the pasture and arable soils, respec-

tively. Those results clearly showed that a homogeneous distribution of the glucose

in the soil samples could not be achieved with our mixing procedure since the results

in section 3.3.2 showed that the mean surface temperature was a reliable measure

for total microbial activity.

Nevertheless, the mapped spatial patterns showed that IRT is able to detect and

visualize microbial hot spots in a very strict sense. Generally, hot spots are con-

sidered to be soil volumes, which are characterized by higher mineralization rates

compared to the conditions in the mean bulk soil (Kuzyakov and Blagodatskaya,

2015; Schwarz et al., 2018). With our approach, hot spots can actually be identified

as areas with high thermal energy release at the soil surface (Fig. 3.7).
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Figure 3.7: Cumulative thermal energy release [J min] from the surfaces of pasture soil
(a, b), and arable soil (c, d) using two glucose application methods GP (a, c), and GM (b,
d) for the concentration of 1.68 mg cm2 (GP ), and 14.0 mg g1 (GM ) at CHC.

In this investigation, we artificially created hot spots by glucose application that

were unevenly distributed across the sample surfaces. Working with disturbed sam-

ples, no natural hot spots were expected, as the natural aggregate structure of

the soil had been destroyed (Kuzyakov and Blagodatskaya, 2015; Ruamps et al.,

2011). However, the results indicated that substrate-induced mineralization differ-

ences could be detected by IRT, which could therefore be applied to undisturbed

soil samples, similar to the approach of Heitkötter and Marschner (2018b)), who

determined hot spots of enzyme activities on undisturbed soil samples using zymog-

raphy. They also showed that the distribution of the microbial hot spots drastically

changed after adding substrate evenly on soil surfaces.
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In addition to the spatial perspective, IRT also allows recording the temporal

dimension. This temporal dimension is an important perspective for the concept of

hot moments. Such hot moments are short-term events of increased mineralization

rates after removing limitations by, e.g., adding substrate to soil samples (Kuzyakov

and Blagodatskaya, 2015; Schwarz et al., 2018). Thus, they consider the temporal

change of microbial activity in the soil. Until now, the temporal perspective was

mostly considered by monitoring mean values on soil surfaces (Kluge et al., 2013) or

accumulated values from a bulk soil sample, even if spatial information is available

(Pausch and Kuzyakov, 2011; Spohn and Kuzyakov, 2014). In Fig. 3.7, the temporal

perspective is considered as an accumulated energy release value, but the temporal

dynamics are not represented here. A first approach to a spatio-temporal analysis

of microbial activity can be found in the study by Schwarz et al. (2018), where a

Hovmöller diagram was used to observe the change in microbial activity along a

transect on the soil surface over time. However, this approach neglects much infor-

mation on soil processes in the spatial domain, as it does not capture the full size

of potential hot spots. So far, the spatio-temporal dynamics of microbial activity

parameters could not be determined.

Here, IRT offers a unique opportunity for recording changes in microbial activity

parameters spatially over time by imaging the time-lapse of ∆T for a 70 h incuba-

tion period (Video 3.8). It is interesting to see that different sized and shaped hot

spots appear and disappear as hot moments at various locations and time periods.

For the pasture soil (GP ), a temperature increase starting after about 20 h incu-

bation and lasting until 55 h was recorded (a). A maximum increase of up to 1.1 K

occurred after 35.5 h (Video 3.8a), whereas the temporal mean values had their peak

after 37 h with only 0.51 K (Fig. 3.3a). When glucose was mixed into the pasture

soil (GM), only a small area was characterized by heating (Video 3.8b). This began
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after about 8 h incubation time and lasted comparatively long until about 60 h. In

this sample, the temperature increase was primarily limited to the lower third of the

surface, whereas the rest remained at the initial level.

Figure 3.8: Video. [Link: http://gofile.me/4xIyV/uMDXTbcog]

For the arable soil (Video 3.8c and d), temporal shifts in the thermal signals were

also detected. When glucose was mixed into the arable soil using the GM approach,

the temperature started to increase after 15 h (Video 3.8d), while for the samples

using the GP approach, the initial temperature effect was detected only after 25 h.

For both samples, the initial temperature level was again reached after about 50 h.

Here, it can be seen that there were deviations from the time of the highest ∆T

comparing mean values to the spatial values. For the arable soil GP , the highest
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mean temperature occurred after 19 h with a maximum increase up to 0.43 K (Fig.

3.3b), but locally the highest thermal signal of 0.9 K was recorded after 33 h (Video

3.8c). Similarly, the maximum response of mean T was reached for GM after 21 h

with 0.38 K (Fig. 3.3b), but on the spatial perspective, 1.0 K was reached after 26.5

h (Video 3.8d).

In addition, there were also inhomogeneities regarding spatio-temporal tempera-

ture developments, so that the hot moments and hot spots within a sample not only

differed in location but also in start and end times. They showed an apparent move-

ment of the location characterized by higher temperatures over time. We therefore

called it “hot movement”. This clearly showed that neither a purely temporal nor a

purely spatial view is sufficient to evaluate those dynamics. However, a combined

view, e.g., time-lapses, gives the most accurate information on the temporal and

spatial variability of hot spots and hot moments of microbial activity.

3.4 Conclusions

This study showed that after method optimization, microbial activity stimulated

by glucose addition could be assessed on soil surfaces using passive IRT at a high

spatial (< 1 mm) and temporal (< 1 min) resolution. Depending on the glucose

application rate, the increased microbial activity produced a mean soil surface tem-

perature increase of up to 0.5 K and an absolute soil surface temperature increase

of up to 1 K per pixel at a camera accuracy of ± 30 mK.

After optimizing the methodological approach, the following factors were iden-

tified as crucial for reliable measurements with passive IRT:

• Data preprocessing procedure using data smoothing, detrending, and offset

correction is highly important for the calculation of statistically significant
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∆T . Thus, we recommend using a standardized data preprocessing procedure

when dealing with thermal soil data.

• The intensity and duration of the thermal signal were related to the amount

of applied substrate (R2 = 0.84, ∗p < 0.05). From this, we can conclude that

IRT is sensitive towards varying microbial response levels.

• Homogeneous glucose application to the bulk soil results in a homogeneous

distributed thermal response that corresponds well with total soil respiration

rates. Thus, this procedure is only recommended when hot moments should

be monitored in disturbed soil samples at high temporal resolution.

• Pipetting glucose on the soil surfaces produces artificial hot spots on soil sur-

faces, with significantly higher local temperature profiles. It is therefore sug-

gested to use a homogeneous glucose lamination procedure to monitor hot

spots on potentially undisturbed soil surfaces at high temporal and spatial

resolution.

• For a reliable determination of microbial activity with passive IRT, relative

humidity needs to be stabilized above 95%, air temperature needs to be mon-

itored for mathematical correction, and the experimental environment should

not contain any highly reflective surfaces to minimize diffuse reflectances on

the soil surface.

Thus, after experimental and mathematical optimization, the detection of mi-

crobial hot spots and hot moments on soil surfaces using IRT has the potential to

be non-invasive as well as contact-free approach. Additionally, the high temporal

and spatial resolution makes this approach highly attractive, since this enables the

simultaneous study of hot spots and hot moments in so-called “hot movements”.
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Nevertheless, many boundary conditions need to be controlled for obtaining ac-

curate results. Considering the fact that established laboratory methods, which deal

with the detection of microbial activity, have similar restrictions, a general appli-

cation of IRT to detect microbial activity is conceivable. In our current studies,

the spatio-temporal variability of microbial activity in undisturbed samples taken

from different vertical profiles is investigated. Glucose is applied uniformly to the

soil sample surface to avoid artificial hot spots. This allows equal conditions on the

entire soil surface as a prerequisite for detecting hot movements.

With the help of such extensions of the measurement setup, the rhizosphere could

also be examined more closely. As known, microbial activity increases in the rhizo-

sphere in the proximity of dead or living roots. Hot spots of those strongly depend

on carbon inputs such as rhizodeposits and root detritus (Spohn and Kuzyakov,

2014). Since we were able to measure increased microbial activity and changes over

time using an IRT-camera, it strongly suggests that even diurnal variations in activ-

ity and root exudation can be detected. This would enhance our understanding of

the controls and dynamics of soil microbial processes at the millimeter to centimeter

scale.

Furthermore, our IRT approach offers the possibility to record energy fluxes at

soil-atmosphere interfaces at high temporal and spatial resolution and relating this

to soil microstructures and associated interactions of living and non-living soil com-

ponents on a process level or regarding carbon and energy use efficiency. Since

microbial activity is linked to thermodynamic soil processes, IRT can contribute to

a more systematic understanding of microbially induced energy fluxes from a high

spatial and temporal perspective.
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4.1 Introduction

Soil microbial activity is one of the major drivers for metabolization processes and

the carbon (C) cycle in the pedosphere (Bölscher et al., 2016; Schimel and Schaeffer,

2012). Thereby, organic matter is converted into other forms of energy by using the

energy in organic compounds. The metabolic energy generated by energy-dense or-

ganic matter degradation processes is accompanied by a corresponding heat release

from the soil surface (Chakrawal et al., 2020; Drotz et al., 2010; Liang et al., 2017).

Thus, thermodynamic processes by metabolic activity in soils were researched inten-

sively in the past decades (Barros et al., 2007; Critter et al., 2001; Ljungholm et al.,

1979; Sparling, 1981). Until now, the systemic understanding of catabolic heat pro-

duction and soil functional microbial diversity is missing. The technical challenges

in analyzing metabolization processes in their spatial and temporal complexity and

dynamic, especially in undisturbed soil samples, were not untangled so far.

However, considering undisturbed soil samples in their natural complexity, it

comes to light that the soil matrix is highly structured and a complex growth medium

for microorganisms. Thus, soil microbial activity cannot be found homogeneously

distributed in the soil matrix, but in distinct hot spots which are characterized

by high concentrations of microorganisms in regions of high substrate availability

(Heitkötter and Marschner, 2018a; Kuzyakov and Blagodatskaya, 2015; Nunan et al.,

2003).

While hot spots exhibit elevated process and microbial activities, especially tem-

porally in hot moments, on the microscale, there is considerable variation in the

microbial structure (Kuzyakov and Blagodatskaya, 2015; Nunan et al., 2003). Cap-

turing microbial hot spots and hot moments has become an increasing focus with

innovative techniques since microbial activity is subject to large dynamics and is

not evenly distributed in the soil (Heitkötter and Marschner, 2018a; Kuzyakov and

86



RESEARCH STUDY III

Blagodatskaya, 2015; Schwarz et al., 2021). In particular, the detection of these

in temporal and spatial perspectives is with conventional measurement techniques,

such as calorimetry, only strongly limited possible since these techniques refer to

bulk soil samples. Here, the measured heat release from soil surface cannot be as-

sociated with distinct hot spots (Kluge et al., 2013; Kuzyakov and Blagodatskaya,

2015; Sparling, 1981). Soil heat production measurements as a proxy for soil micro-

bial activity have gained increasing attention as there is the possibility to determine

the energy conversions in the soil matrix (Chakrawal et al., 2020).

Passive infrared thermography (IRT) has proved its usefulness as a measure-

ment technique for mapping spatio-temporal dynamics of microbial activity in hot

spots and hot moments since heat evolves through metabolic processes, which is de-

tectable in substrate-induced approaches (Kluge et al., 2013; Schwarz et al., 2021).

Passive IRT enables the high-resolution detection of heat development in soils at a

spatial resolution of < 1 mm and a temporal resolution of < 1 min. (Schwarz et al.,

2021, 2018). In recent studies, the passive IRT approach was developed considering

the influences of the ambient conditions (Schwarz et al., 2021), but also including

internal effects by soil physical properties (Schwarz et al., 2018). Both the spatial

and temporal patterns of hot spots and hot moments have not been elucidated and

described in detail, although these are linked to structural and functional microbial

diversity, heat flux, and the spatial distribution of soil organic carbon (SOC). While

passive IRT is now revised in the context of soil investigations to detect microbial

activity, there is still a lack of knowledge on how to interpret the measured surface

temperature to contextualize it in catabolic heat production. This knowledge gap

can be filled in combination with other mapping techniques.

A variety of technical approaches allow for the combination of temporal and

spatial information regarding soil microbiological properties that can fill this knowl-
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edge gap, especially in undisturbed soil samples on the mm-scale. In this context,

techniques such as photography or zymography are promising mapping tools to map

spatial soil properties (Heil et al., 2020; Heitkötter and Marschner, 2018a,b).

Photography has been successfully applied to map surface color parameters and

link them to SOC and further soil properties like iron or soil moisture (Heil et al.,

2020; Viscarra Rossel et al., 2008; Zanetti et al., 2015). Heil et al. (2020) showed

that using the color space CIELa∗b∗, SOC could be reliably predicted with an R2

of 0.94 using a multiple linear regression model in dependence on soil treatment.

Since SOC contents are linked to the availability of easily degradable substrates

for microorganisms, higher basal microbial activity is expected in regions of high

SOC contents (Anderson, 2003). Thus, fundamental changes in temperature due to

varying microbial activity could be predicted via the content of SOC. Therefore, soil

color parameters should be considered for spatial characterization of undisturbed

soil samples with an inhomogeneous SOC distribution.

Soil zymography is an established mapping tool for spatial soil microbial activity

parameters under consideration of a variety of soil enzymes, e.g., β-glucosidase, acid

phosphatase, or chitinase (Heitkötter and Marschner, 2018a,b; Spohn et al., 2013).

Since heat development is connected to C turnover in soils (Barros et al., 2016;

Critter et al., 1994), mapping β-glucosidase enables the spatial validation from a

microbiological perspective because it offers the opportunity to record the activated

enzymes by the turnover of C in the soil (Heitkötter et al., 2017; Zhang et al., 2020).

Thus, this technique is promising as a validation of passive IRT in the sense that

differences in the turnover of C can be detected on soil surfaces, which also release

heat during catabolic processes (Chakrawal et al., 2020; Heitkötter and Marschner,

2018a; Zhang et al., 2020).
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Further, active IRT was also applied for mapping soil surface moisture contents in

different development approaches (Antonucci et al., 2011; Axelsson, 1988; Schwarz

et al., 2018) but was also used for surface structure detection by Schwarz et al.

(2018). As moisture changes the specific heat capacity of soil material, active heat-

ing of moist samples enables the detection of relative differences in the distribution

of soil moisture contents. Schwarz et al. (2018) had shown that volumetric water

contents could be explained up to 88% using active IRT. Since soil moisture deter-

mines the heat production by microbial activity (Baldrian et al., 2010; Barros et al.,

1995), the spatial distribution of soil moisture needs to be considered for the further

analysis of soil surface heat production.

To our knowledge, no published studies are combining such technical approaches

for deeper insights into the metabolic characterization of microbial hot spots. Thus,

this study aims to explain the surface heat production on undisturbed soil sample

surface measured by passive IRT in a sequential recording. On the one hand, the

results should show the possibilities of spatio-temporal intersection of soil property

data sets. On the other hand, they should contribute to a deeper understanding of

microbial heat generation.

Thus, we investigated the potential of spatial surface soil property mapping un-

der consideration of zymography, photography, but also passive and active IRT to

determine spatio-temporal microbial activity patterns and get further deeper in-

sights into the connection between surface soil properties and heat development.

For this, glucose and water treated undisturbed sub- and topsoil samples were used

to cover the microbial diversity in soils. In addition, we treated the soil samples

as homogeneously as possible, especially when glucose was applied, to create equal

soil conditions to avoid distinct artificial hot spots. As Schwarz et al. (2021), the

experiments were conducted in a stable ambient environment to avoid interfering

signals during the thermal acquisition of the soil surface temperatures.
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In the first part of the study, the temporal and spatial patterns of heat develop-

ment on soil surfaces after evenly glucose application concerning substrate-induced

stimulation of microorganisms are spatially and temporally characterized regard-

ing hot spots and hot moments. The temporal characteristics of the hot moments

are first worked out mathematically. On this basis, the spatial dependencies are

analyzed using geostatistical methods. The second part of the study focuses on

the spatial surface soil properties mapping techniques superimposed on the thermal

passive IRT images. For this purpose, active IRT, photography and zymography

were used to determine soil moisture contents, surface color parameters as proxy

for SOC contents, and initial β-glucosidase activity, respectively. Multiple regres-

sion analyses were applied to find explanatory variables of the heat development on

undisturbed soil surfaces. Since regression analyses were not able not handle the

temporal variability of temperature evolution, in a third part hierarchical k-means

cluster analyses were used. These analyses based on the sequential thermal images

referring to the hot moments in order to highlight spatio-temporal heat development

characteristics on the soil sample surfaces. The clustered thermograms, in combina-

tion with the corresponding surface properties, namely active IRT images, surface

color parameters, and initial β-glucosidase activity, were statistically analyzed to

establish contextual references to each other.

4.2 Material and methods

4.2.1 Soil sampling

For this study, two pairs of undisturbed top- and subsoil samples were collected from

two forest sites in Germany from the depths listed in Table 4.1. One pair was taken

from the "Grinderwald" beech forest near Hannover (Lower Saxony, Germany). This

site is part of a long-term monitoring program within the SUBSOM research unit
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(Heinze et al., 2018) and characterized by a Dystric Cambisol (WRB) from quater-

nary glacial till which is sandy with some loamy bands. The other pair was taken

from the "Kalwes" beech forest in Bochum (North-Rhine Westphalia, Germany)

stocks on a Dystric Luvisol (WRB) from quaternary loess with a very homogeneous

loamy texture in the top 50 cm. A custom-made steel box with sharpened edges

(127.76 × 85.48 mm) was pressed into the soil matrix and carefully removed for

obtaining vertical raw undisturbed samples for sample collection. After collection,

the samples were wrapped in cling film to prevent drying and stored at -20 °C for

about four weeks.

4.2.2 Analytical techniques

4.2.2.1 Determination of microbial activity using passive IRT

Passive IRT was used to get spatial information about thermal soil surface properties

that are highly associated with substrate-induced microbial activity, as described by

Schwarz et al. (2018). Briefly, a high definition IRT camera (Variocam HD research,

InfraTec, Dresden, Germany) with an image resolution of 1024 × 768 pixels was used

to obtain thermal images of the undisturbed soil surfaces. The camera distance to

the soil sample surfaces was set to 30 cm, resulting in a pixel resolution of 0.17 mm.

The IRT camera detected the spectral range in the far infrared of 7-14 µm with a

temperature accuracy of ± 30 mK. In all experimental designs, an overall emissivity

of 0.95 [-] was assumed for the soil surfaces (Kluge et al., 2013; Schwarz et al., 2021,

2018).

Passive IRT detects the outgoing long-wave radiation from soil surfaces in a

temporal resolution of up to 60 Hz. Thus, using substrate-induced respiration tech-

niques, temporal and spatial temperature changes can be attributed to microbial

hot spots and hot moments, as described by Schwarz et al. (2021).
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Table 4.1: Characteristics of the sampling sites and the soil samples used for the incubation experiments.

Sampling site Soil type Texture Vegetation Depth Name pH SOC Bulk
density

Water
content

Water
loss

% g m−3 % %
Grinderwald

(G)
Dystric
Cambisol

Loam
Sand

Fagus
Sylvatica L.

Topsoil (T ) 10 - 23 cm GT 3.5 1.2 1.18 13.59 -11.96
Subsoil (S) 30 - 43 cm GS 4.2 0.2 1.24 22.57 -18.41

Kalwes
(K) Luvisol Silt Luzulo-

Fagetum
Topsoil (T ) 13 - 26 cm KT 3.4 1.3 1.23 10.25 -9.30
Subsoil (S) 35 - 48 cm KS 3.7 0.4 1.35 27.01 -21.27
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The passive IRT images were preprocessed according to Schwarz et al. (2021),

where a sequence of mathematical correction methods was applied. First, a low-pass

filter was used to reduce the scatter of the data originating from the camera’s noise.

A detrending of the time series was then made to remove any temperature increases

resulting from the drying of the soil surface. Finally, an offset correction was applied

to standardize the starting points of the time series.

4.2.2.2 Determination of soil surface moisture and structure using active

IRT

Active IRT techniques were used to detect soil surface moisture content and soil

surface structure, according to Schwarz et al. (2018). A halogen spotlight (1,500

W) was used as an external heat source to induce a clear thermal contrast on the

object surfaces. The spotlight was placed at a distance of 30 cm from the object

surface, and active IRT was conducted in lock-in mode. The halogen spotlight was

illuminated with a lock-in frequency of 0.5 Hz and a 30 Hz frame rate. The thermal

response of the soil surfaces was recorded during the heating and transient cooling

phase.

Active IRT uses the measured temperature profile of the heating and cooling

phase to obtain the temperature amplitudes and phase angles (Ranjit et al., 2015;

Schwarz et al., 2018). The temperature amplitude refers to soil moisture contents

since the specific heat capacity of soil samples is determined by water contents. A

high temperature amplitude indicates dry soil and, due to the buffering of water, a

low temperature amplitude indicates moist soil (Schwarz et al., 2018). The phase

angle approximates the surface structure. Due to the change in the reaction rate

with different soil properties, statements can be made about the density, roughness

of the surface or cavities. High variances in the phase image indicate high structural

differences in the surfaces or bulk density (Bristow, 1998; Schwarz et al., 2018;

Usamentiaga et al., 2014). Further information is given by Schwarz et al. (2018).
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4.2.2.3 Determination of surface β-glucosidase using zymography

For obtaining an additional spatially resolved microbial activity parameter from the

soil sample surface, the activity of the enzyme beta-glucosidase was using soil zy-

mography according to Spohn and Kuzyakov (2014), and Heitkötter and Marschner

(2018a). Briefly, polyamide membranes (Sartorius Stedim, Göttingen, Germany)

were soaked in a 12 mM fluorescent 4-Methylumbelliferyl-β-D-Glucopyranoside (MUF)

solution, which were placed on 1 mm thick agarose gels (1% agarose) and incubated

for 1 h at 25°C on top of the soil samples. After incubation, photographs of the now

fluorescent membranes were taken in a gel documentation system (Biostep GmbH,

Burkhardtsdorf, Germany) under epi-UV lighting at 365 nm using a Canon EOS-

700D with an image resolution of 2592 × 1728 pixels. The camera was fitted with

a fixed focal lens (f/1.8) and a 420 nm filter. To gather information on autofluo-

rescence, 1 mm thick agarose gel on a steel plate was covered with a MUF soaked

membrane and further treated matching to the soil samples and their respective

membranes.

Image processing was done similar to Heitkötter and Marschner (2018a), with

georeferencing, subtraction of autofluorescence, reducing image noise via a Gaussian

blur algorithm, and pixelwise conversion of gray values to enzyme activities with the

help of a calibration line. The β-glucosidase activity values were extracted from the

enzyme images using Fiji ImageJ, as described by Heitkötter and Marschner (2018a)

and Schindelin et al. (2012).

4.2.2.4 SOC distribution accessed using surface color parameters

To have an indicator for the spatial distribution of SOC on the undisturbed soil sur-

faces, RGB information gained by digital photographs had been used accordingly

to Heil et al. (2020). A Canon EOS 5DS digital single-lens reflex (DSLR) camera
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(Canon Inc., Tokyo, Japan) with a pixel resolution of 8688 × 5792 pixels equipped

with a Canon EF 50 mm f/1.8 STM (Canon Inc.) prime lens was used. The cam-

era setup, lighting, and data handling were adopted from Heil et al. (2020). For the

photographs, moist soil samples were used so that the contrasts would be prominent

for further evaluating the surface properties. The RGB colors are extracted from

the photographs and transferred to CieLa∗b∗ color space using the custom function

by Heil et al. (2020) based on the equation given in Viscarra Rossel et al. (2006).

Heil et al. (2020) already showed that SOC can be predicted very well using the

CieLa∗b∗ color space. The achromatic vector L showed the highest correlation to

SOC, and using multiple regression analysis, also good predictions of SOC contents

were obtained combining L, a∗, and b∗ values. Therefore, all three raw color values

were used in this study to get an approximation of the surface SOC contents.

4.2.3 Soil sample incubation setup and procedure

The soil samples were taken from the freezer for each series of incubation experi-

ments. The samples were thawed for five days, still wrapped in cling film to avoid

soil drying. Immediately before the experiments started, the samples were removed

from the cling film, and the excess soil extending over the steel box’s edges was

carefully cut off with a spatula, resulting in a fresh flat undisturbed sample surface.

After soil preparation, β-glucosidase activity was determined by zymography us-

ing the procedure described in section 4.2.2.3. After zymography, the fresh weight

of the sample was recorded with a conventional balance as an approximation to soil

moisture contents.

Following this, the entire surface was sprayed with water (5 µl cm−2) to in-

crease soil moisture homogeneously. Then, one vertical half of the sample surface
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was sprayed with 5 µl cm−2 glucose solution at 140 µg C cm−2 (Heitkötter and

Marschner, 2018a) to encourage substrate induced microbial activity increase. As

a control, the same amount of water (5 µl cm−2) was applied to the other vertical

side of the soil sample. The control and the glucose solution were applied with a

spray system (iMatrix Spray instrument, tardo GmbH, Subingen, Switzerland) for

the uniform application of liquids (Stoeckli et al., 2014).

Then, the undisturbed soil samples were passed to active IRT imaging, which

was used to get the initial moisture of the undisturbed soil surface as described in

section 4.2.2.2. For this purpose, the samples were then placed in styrofoam box,

which is integrated into the IRT measurement setup used for active and passive IRT.

Immediately after active IRT imaging, soil surface temperature monitoring with

IRT started and continued for 5 days at a temporal resolution of 10 min, as described

in section 4.2.2.1 so that about 720 recordings of each soil sample were made. For

the passive IRT approach, the styrofoam box was closed, and a thermally insulated

room was created at a constant ambient temperature of 21 °C and 85% relative hu-

midity during soil incubation, according to Schwarz et al. (2021) since passive IRT is

sensitive to ambient environmental condition changes (Schwarz et al., 2021, 2018).

The box had a precisely fitting recess for the camera lens on the top to create a

closed climatic system. The temperature and relative humidity inside the box were

continuously recorded using wireless data loggers (M-Log5W-HUMIDITY, Geopre-

cision, Ettlingen, Germany). During thermal imaging, the styrofoam box was not

opened to maintain an undisturbed system so that the surface temperatures of the

soil samples would be as unaffected as possible.

Directly after incubation, samples were weighed again to record water loss and

then left to air-dry for dry weight determination.
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As a last step, digital photographs were taken according to the setup described in

section 4.2.2.4. For this purpose, the air-dried undisturbed samples were uniformly

rewetted using the spray system (iMatrix Spray) for a uniform application of 30 µL

cm−2 of water to increase the color contrast for a more accurate evaluation of the

surface properties.

Figure 4.1: Spatial characteristics of surface soil properties for soil sample KT

considering RGB image (a, and h), T (hm) (b, and i), pixelwise variance of T referring to
the hot moment (c, and j), temperature amplitude (d, and k), phase angle (e, and l),
surface color parameter L (f and m), as well as initial β-glucosidase activity (g and n)
with control samples in the upper row and glucose-treated samples in the lower row.
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4.2.4 Georeferencing and scaling of the data

All spatial data sets have to be superimposed and spatially adjusted by moving the

sample from the gel documentation system during zymography into the closed IRT

system; there was a displacement of the sample in the images. For this purpose,

the georeferencing tool of QGIS (Version 3.16 Hannover, 2020 QGIS Development

Team) was used. Zymography and surface color parameter images were placed on

top of the IRT images since passive and active IRT were recorded without moving

the sample, and thus, these images are an optimal database. Fixed points in the

database were searched for, such as the corner points of the steel box. The entire

images were scaled and rotated according to the database automatically based on

the selected points. Afterwards, all soil surface images were cut out in longitu-

dinal cross-sections separately for water application and glucose application to get

distinct data sets. All further analyzes of the data were performed using Python 3.8.

The preprocessed thermal images were then reduced by a factor of 25 from a res-

olution of 590 × 136 pixels to 118 × 27 pixels in order to reduce the two-dimensional

image noise resulting from the camera accuracy, but also to facilitate the following

calculations. At a 25× reduction, the image noise was corrected visually satisfac-

torily, and the duration of the calculations using Python were reduced sufficiently.

The downscaling was done using weighted averages of the values to be scaled (Yscale)

from the raw thermal image size to the new thermal image grid, calculated in the

following equation based on Odgers et al. (2012):

Yscale =
1

n

n∑
i,j=1

wi,jYi,j (4.1)

Y(i, j) is the given value and w(i, j) the areal proportion of each pixel of values

to be scaled to the passive IRT grid. n is the number of pixels that lie within one
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IRT pixel. The calculation is performed for each pixel of the IRT grid.

After all data had been collected, there was a variety of spatial datasets. β-

glucosidase activity and CIELa∗b∗ images had a different spatial resolution than

passive and active IRT images. The spatial resolution of the β-glucosidase activity

images (1101 × 241 pixels) as well as L, a∗, and b∗ images (4248 × 992 pixels) were

also larger than the new IRT grid of 118 × 27 pixels. Thus, they were downscaled

using equation 4.1.

The scaled data sets of all measurement techniques are shown as an example for

the Kalwes soil in Fig. 4.1.

4.2.5 Mathematical quantification and delineation of hot moments and

hot spots

4.2.5.1 Temporal delimitations characterization of hot moments

To delineate the start and endpoint of the glucose-induced increases in surface tem-

perature dynamics (hot moments), the thermal time series of each undisturbed sur-

face was subjected to a series of mathematical extraction steps. First, the tem-

perature differences (∆T ) of the time series of the surface temperature (T ) of

glucose-treated and water-treated samples were calculated, according to Schwarz

et al. (2021). These difference curves can be used to determine the intensity of the

temperature increase because of glucose induced increased microbial activity.

For a detailed hot moment characterization, the exact start and endpoints of in-

creased surface temperature induced by microbial activity were captured. Therefore,

the second derivative of ∆T was determined. For this, a curve fitting of ∆T must

first be made. The following Gaussian function was used as the best approximation
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of the course of ∆T , where µ is the mean and σ2 the variance of the time series:

ϕµ,σ(x) =
1√

2πσ2
× e−

(x−µ)2

2σ2 (4.2)

From these fitted functions, the second derivatives were calculated, since it de-

scribes the turning points of the first derivative as local maxima. Before and after

the peak, these local maxima describe the start and endpoints of the hot moment.

These time points were used to characterize the temporal component of increased

microbial activity from glucose application. When ∆T is greatest, this point is also

determined as the time of maximum microbial activity. Based on the pixelwise cal-

culation of these temporal parameters, the means and standard deviations of the

time points and the entire period were calculated to characterize the soil samples

with respect to their glucose-induced temporal variations in surface temperature.

4.2.5.2 Spatial relationship and characterization of hot spots

To characterize the hot spot distribution during the hot moment period, the mean

temperature values referring to the hot moment (T (hm)) were calculated for each

pixel of the thermal data grid. These thermograms have been calculated for each

undisturbed soil sample separately for the spatial glucose and water application.

Geostatistical analyzes were performed to describe the spatial relationships of

surface temperature development regarding the inner pixel distance (Nunan et al.,

2003). The semivariance was calculated for mean T (hm) using the Gaussian model

due to the minor prediction error when used to analyze soil properties (Obroślak and

Dorozhynskyy, 2017; Slaets et al., 2021). With the calculation of the semivariance,
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spatial correlations of the measured values over the distance can be described via

the sill, range, and nugget effect. They give information about the total variability

in the dataset (sill), the average distance over which a variable is spatially auto-

correlated (range), and the irregular distribution of values at very small distances

(nugget effect) (Boeddinghaus et al., 2015; Grundmann and Debouzie, 2000; Nunan

et al., 2003).

4.2.6 Analysis of soil surface temperature and further soil properties

4.2.6.1 Relating soil properties pixelwise to surface temperature

For finding explanatory variables for the surface temperature development of the

hot moments, stepwise forward regression analyzes were performed with the mean

T (hm) as the dependent variable. Pixelwise information gained from the active

IRT (temperature amplitude, and phase angle), zymography (β-glucosidase activ-

ity), photography (surface color parameters L, a∗, and b∗) were used as independent

variables. All parameters were standardized with a mean 0 and variance 1 for obtain-

ing standardized β-coefficients. This approach was applied to each glucose-treated

soil sample separately (4), and to all glucose-treated samples (1), resulting in 5 re-

gression equations. For each regression analysis, the R2 is determined as the quality

parameter of the prediction.

4.2.6.2 Cluster analysis of hot moments and hot spots

As a last step, for a more detailed analysis of the spatio-temporal temperature

dynamic, a cluster analysis was performed for dividing the data set into groups

of similar thermal characteristics. The k-means algorithm was used as one of the

most commonly used methods for complex data sets (Altdorff and Dietrich, 2012;

Heil et al., 2019). For this purpose, the temperature curves T referring to the hot
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moment (∆T (hm)) were used. The type of hot spot is determined, which is char-

acterized by the temperature course.

Initially, the Shapiro Wilk and Levene tests confirmed the residual normality and

the homogeneity of variance between treatments (Heitkötter and Marschner, 2018b;

Herrmann et al., 2014; Zhang et al., 2017). Therefore, T (hm) was standardized

with a mean 0 and variance 1 (Ye and Wright, 2010), and the hierarchical k-means

cluster analysis was then performed to compare the soil microbiological attributes

in glucose-treated samples. In order to find the optimal number of clusters, the par-

tition coefficient (CP ) and the partition entropy (EP ) were used (Heil et al., 2019;

Martz et al., 2019). The number of clusters reaches its optimum when EP is maxi-

mized, representing the maximum variance within one class, and CP is minimized,

referring to the minimum variance in between the cluster groups (Heil et al., 2019;

Viscarra Rossel et al., 2016).

The cluster groups of the thermal data were spatially assigned to the further data

sets of active thermography (temperature amplitude and phase angle), zymography

(β-glucosidase activity), and photography (surface color parameters L, a∗, and b∗)

to verify whether the thermally differentiated clusters also differed significantly in

their parameters. For this purpose, an ANOVA was calculated between the cluster

groups within each data set, followed by Tukey’s HSD test (Bölscher et al., 2017;

McDowell et al., 2006). In this way, the individual cluster groups are characterized

in terms of their soil properties.
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4.3 Results and discussion

4.3.1 Mathematical quantification and delineation of hot moments and

hot spots

4.3.1.1 Temporal delimitations characterization of hot moments

Fig. 4.2 shows the effects of glucose and water application on the mean surface tem-

perature (T ) during the incubation of the four soil samples and the respective air

temperature. T of each sample showed similar courses independent of the incuba-

tion series (Fig. 4.2a, b, c, and d). In the first hours, the T increased in all samples,

regardless of soil type and treatment, because of the temperature adaptation to the

ambient conditions inside the closed styrofoam box, until a plateau is reached after

about 8 to 15 h. From this point on, temperature curves differentiated depending

on their treatment. The mean T of the glucose-treated samples increased above

the level of the water-treated samples. After about 70 h, T of the glucose-treated

samples decreased again to the same temperature level as the water-treated samples.

The trends in the time series were characterized by increasing (Fig. 4.1b), stagnat-

ing (Fig. 4.2c and 2d), or decreasing T (Fig. 4.2a) since those were products of the

respective ambient conditions. Increasing surface temperatures over time indicated

that the air temperature was also increasing and vice versa. This assumption was

confirmed with the data loggers’ temperature curves (Fig. 4.2a, b, c, and d).

Fig. 4.2 (e f, g, and h) shows the mean temperature differences (∆T ) to focus on

the temperature alteration characteristics between the glucose and water amended

soil surfaces. ∆T was unaffected by the temperature trends of the air temperature.

Since a clear peak could be observed in each ∆T curve, the application of glucose

accounted for a temperature effect on the surfaces of the soil samples. After about

8 h to 15 h, the mean ∆T increased on all soil surfaces until a temperature peak

was achieved after 35 to 45 h with an afterward decrease.
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Figure 4.2: Temporal mean surface temperature (T ) of soil sample GT (a, and e), GS

(b, and f), KT (c, and g), and KS (d, and h) referring to the incubation period after
glucose application. The left column shows the courses of the mean temperature of the
glucose-treated samples (red line), the control sample (blue line), and the air temperature
measured by the data loggers (gray line). The right column shows the temperature
difference (∆T ) between glucose-treated and control samples of the corresponding sample
on the right side.

Between the Grinderwald and Kalwes soils, there were only a few differences

regarding the course of ∆T after the hot moment’s end at about 70 h (Fig. 4.2e, f,

g, and h). The negative ∆T of soil K is striking (Fig. 4.2g and h) since the temper-
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ature dropped to a lower level here. This could be due to potential measurement

errors, as T showed erratic changes after 70 to 80 h (Fig. 4.2c and d), which might

also affect ∆T . It could also be an artifact of the preprocessing and the camera

accuracy of ± 30 mK.

For a more detailed characterization of the temporal and temperature character-

istics of the hot moment, Table 4.2 shows the concise time points referring to the

hot moment and the associated mean ∆T . The general duration of the hot moment

of soil G was longer with 63.5 h for GT and 57.8 h for GS compared to soil K with

54.0 h for KT and 48.2 h for KS. GS remained significantly warmer for almost 10 h

compared to the KS but with similar temperature increase. The hot moment start

time for soil K was also significantly later, at over 11 h, compared to less than 11

h for soil G. However, no particular differences could be observed in the mean ∆T

values.

The differences between soils G and K might result from differences in SOC con-

tents. While soil KT has 1.3% SOC, soil GT has only 1.2% (Table 4.1). Jílková et al.

(2021) have also shown that soils with lower SOC contents had a more prominent

microbial growth effect by adding labile C to the soil, compared to high-SOC soils.

The addition of easily available C, such as glucose, rapidly overcomes this limit-

ing effect by low SOC-contents and ensures an increase in microbial growth rates,

which might lead to greater effects, especially with stronger substrate limitations

(Heitkötter et al., 2017; Heitkötter and Marschner, 2018a; Jílková et al., 2021). This

might also result in a delay in the glucose effect in soil K that lasted for a shorter

period (Table 4.2). Regarding the fact that lower SOC contents characterized GS

compared to KS (Table 4.1), it can be assumed that a stronger substrate limitation

prevailed here, which may cause the longer duration of the hot moment of GS due

to the higher catabolic activity.
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Table 4.2: Time and temperature characteristics of the hot moment of each soil sample.

Time Hot moment Start hot moment Max End hot moment
Soil sample Start [h] Max [h] Duration [h] ∆T (hm) ∆T (start) ∆T (max) ∆T (end)

GT 8.0 45.8 63.5 0.09 0.02 0.14 0.11
GS 11.0 35.0 57.8 0.12 0.03 0.20 0.13
KT 11.8 38.7 54.0 0.09 0.03 0.14 0.09
KS 15.0 44.3 48.2 0.12 0.05 0.18 0.10
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When comparing the course of ∆T for top- and subsoils (Fig. 4.2e, f, g, and h),

apparent differences in T could be highlighted. The peak heights differed depending

on the soil depth, as a maximum peak was achieved after 35 to 45 h of about 0.14 K

in the topsoils (Fig. 4.2b and f) and up to 0.2 K in the subsoils (Fig. 4.2d and h).

After about 70 h, ∆T decreased to its initial level in all soil samples. The shape of

∆T differed depending on soil depth, since the courses of the subsoil samples GS and

KS were characterized by a clearer temperature peak, compared to the topsoil sam-

ples GT and KT , characterized by flattened curves. Table 4.2 also shows that the hot

moment duration was longer lasting for the topsoils (GT & KT ). However, a higher

mean ∆T (hm) was recorded for the subsoil samples than the corresponding topsoils.

The course of ∆T can be attributed to increased microbial activity due to me-

tabolization processes in the soil, which causes a release of heat energy (Chakrawal

et al., 2020; Kluge et al., 2013; Schwarz et al., 2021). ∆T increased until a peak of

maximum microbial growth is reached at ∆T (max). Subsequently, ∆T decreased

again with declining microbial growth as the amount of released heat energy is re-

duced. This could be attributed to an initial growth of the microbial population

by adding easily available substrates to the soil matrix, and an afterward decline

in microbial growth rate when the substrate has been completely consumed (Blago-

datskaya and Kuzyakov, 2013; Blagodatskaya et al., 2007).

The thermal signal’s intensity and duration were also connected to soil depth

since top-, and subsoil samples had similar effects in height and duration of tem-

perature rise of ∆T after glucose and water application, respectively. The topsoils,

GT and KT , were characterized by a longer heating duration, and the subsoils, GS

and KS, by a more intense increase of ∆T (max) which could also be associated with

the more substantial substrate limitation in the subsoil (Heitkötter and Marschner,

2018a; Kuzyakov and Blagodatskaya, 2015). The availability of easily available sub-
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strates in the soil is crucial for microbial growth. In soil regions that are highly

substrate-limited, microorganisms are in a dormant state (Joergensen and Wichern,

2018; Kuzyakov and Blagodatskaya, 2015). Activation of these microorganisms is

coupled to overcoming substrate limitation by adding fresh, easily available sub-

strate to the soil (Blagodatskaya and Kuzyakov, 2013; Heitkötter and Marschner,

2018a). Due to the stronger limitation in the subsoil, more microorganisms are stim-

ulated to grow than in the topsoil, where the basal activity is already higher due to

higher substrate availability resulting in a slower microbial growth compared to the

subsoil. The faster and more extensive the growth, the greater was the temperature

effect that could be observed (Fierer et al., 2003; Griffiths et al., 1999; Heitkötter

and Marschner, 2018b). This caused the flattened temperature profile in the topsoils

compared to the clear peak in the subsoils (Fig. 4.2). Another influencing factor

may be the slightly stronger acidity of soil KT compared to GT (Table 4.1), which is

accompanied by also lower mean ∆T (max) (Table 4.2). Aciego Pietri and Brookes

(2009) investigated substrate addition to soils of different pH. The results showed

that the lower the pH, the lower the microbial activity after substrate addition.

These findings correspond well to the results shown in Table 4.2.

4.3.1.2 Spatial relationship and characterization of hot spots

The spatial distribution of mean T referring to the hot moment (T (hm)) is shown

in Fig. 4.1 for topsoil KT (Fig. 4.1b) and subsoil KS (Fig. 4.1n), respectively. KS

was characterized by a vertical temperature gradient with decreasing temperature

with soil depth (Fig. 4.1b). Small-scale areas with slightly elevated or slightly lower

T (hm) could also be visually identified but are of secondary importance for the

distribution compared to the temperature gradient. KT is characterized by a hor-

izontal temperature gradient (Fig. 4.1n). T (hm) increased from left to right with

predominantly higher T (hm) in the upper region of the soil profile section. Again,
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small-scale patterns were of secondary importance. The other soils were also char-

acterized by large-scale gradients in T (hm) rather than showing small-scale spatial

temperature variations (Appendix Fig. A3.2).

Figure 4.3: Semivariance of mean T (hm) using the Gaussian model for soil samples GT

(a, and e), GS (b, and f), KT (c, and g), and KS (d, and h) up to a lag distance of 35
(about 6 mm). The right column refers to the control samples and the left column to the
glucose-treated samples.
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The distribution of T (hm) is described and evaluated in more detail using geo-

static analysis in Fig. 4.2. The semivariance increased consistently in all samples,

but no plateau was reached. The prediction quality of the Gaussian model was very

good (R2 up to 0.9), but due to not reaching the sill, the prediction was limited with

increasing distance. When comparing the two soils, it can be seen that soil G had

flatter semivariance curves (Fig. 4.3a and b) compared to soil K (Fig. 4.3c and d).

Soil G exhibited a semivariance up to 0.0015 at a lag distance of 35 (Fig. 4.3b), but

it did not reach the sill in any sample. Flatter slopes of the fit were found in the

glucose-treated samples G+
T (Fig. 4.3e) and G+

S (Fig. 4.3f). For soil K, significantly

higher semivariances with a distance of 35 could be assessed with values up to 0.0035

in the variant K+
S (Fig. 4.3h).

Soil K exhibited higher semivariances with increasing lag distance, which might

result from the more prominent variability in SOC content (Table 4.1). The SOC

content had a demonstrable effect on active microorganisms, contributing to the

temperature changes on the soil surface (Schwarz et al., 2021). In particular, areas

characterized by a stronger substrate limitation, such as the SOC-poorer areas in

the lower part of the soil K, benefited from the glucose application (Blagodatskaya

and Kuzyakov, 2013; Jílková et al., 2021). From higher spatial variability of soil K

compared to soil G (Fig. 4.1a and k, Appendix Fig. A3.1), a larger variance of

temperature was expected (Appendix Fig. A3.3), which was reflected in increasing

semivariances with increasing lag distance (Fig. 4.3c, d, g, and h).

When differentiating the semivariances by soil depth, no striking differences could

be identified. In soil G, the differences were not differentiated by soil depth but by

treatment (Fig. 4.3a, b, e, and f). In soil K, however, a significantly higher semivari-

ance was detected in the glucose-treated subsoil sample (K+
S , Fig. 4.3h) compared

to the water-treated sample (K−
S , Fig. 4.3d), which only showed a semivariance
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of 0.002. It can be assumed that the variability of surface characteristics was of

the same magnitude. The more significant increase in semivariance of soil K+
S can

probably be attributed to the activation of dormant microorganisms by glucose ap-

plication (Blagodatskaya and Kuzyakov, 2013; Heitkötter and Marschner, 2018a).

The activation did not lead to the highest mean T (max) (Table 4.2), but was char-

acterized by a greater spatial variability, which could be confirmed based on the

spatial variance of T (hm) (Fig. 4.1m).

No sill was reached in all soils and treatments so that an increasing semivari-

ance could be assumed over the lag distance of 35, a distance of nearly 6 mm. The

range reflects the average distance over which a variable is spatially autocorrelated

(Boeddinghaus et al., 2015; Grundmann and Debouzie, 2000; Nunan et al., 2003);

thus, there was autocorrelation of the data with increasing distance. The nugget

effect resulted in values around 0 in all variants so that there was no or only a

minimal dependence in spatial terms with increasing distance (Cambardella et al.,

1994; Zhang et al., 2017). This showed that the selected soil sections from each soil

profile were not representative of the depth section they were taken from.

Microbial activity takes place on a smaller scale, thus, smaller sections with a

larger image resolution would have to be chosen, similar to Nunan et al. (2003),

who used thin sections on a scale up to 1 mm. This would allow a more focused

view of microbial activity and allow spatial dependencies to be highlighted. When

looking at the cm-scale with IRT, processes and soil properties on a larger scale

are considered, such as large-scale SOC distribution, water content, soil pH, or even

ambient conditions, which has an influence here (Aciego Pietri and Brookes, 2009;

Barros et al., 1995; Blagodatskaya et al., 2007; Schwarz et al., 2021).

Small-scale variabilities could be highlighted when considering the soil surface

and its variance in the hot moment (Fig. 4.1c and m). Since microbial activity is
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recorded on a very small scale in the range from µm to mm (Kuzyakov and Blago-

datskaya, 2015), it was not of relevance for this study. The large-scale gradients

of T overlaid the small-scale effects of microbial activity so that the semivariance

could not be used to represent their spatial dependencies. Therefore, the influence of

the individual surface properties, which relate to both microbiological and physical

properties, should be considered in order to make more accurate statements.

4.3.2 Analysis of soil surface temperature and further soil properties

4.3.2.1 Relating soil properties pixelwise to surface temperature

An overview of the spatial mean surface properties with their corresponding coeffi-

cients of variation (CV) is shown in Table 4.3. The values are referring to the tem-

perature amplitude (Appendix A3.4), phase angle (Appendix A3.5), surface color

parameters L, a∗, and b∗ (Appendix A3.6, A3.7, and A3.8, respectively), and β-

glucosidase activity (Appendix A3.9). The mean values showed the values differed

in terms of soil type and depth, but in terms of treatment with glucose or control,

properties were very similar when the respective CVs are considered. Only soil KS

showed significant differences in temperature amplitude and the L color parameter

between the two sections of the sample. Interestingly, the higher soil moisture con-

tent (= low temperature amplitude) of K+
S is associated with high L values, which

indicate lower SOC contents.

Since all parameters describing the physical properties of the soil samples initially

showed no differences between the control and glucose treatment sides, any changes

in heat release in response to the glucose application must be related to increased

microbial metabolic activity. Since these heat release patterns are distributed het-

erogeneously on the sample surface, their controlling factors will be analyzed in more

detail using the stepwise backward regressions.
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Table 4.3: Characterization of the soil surfaces using spatial mean properties (ø) and corresponding variation coefficient (CV) of
temperature amplitude [K], phase angle [°], surface color parameters (L, a∗, and b∗) [%], and β-glucosidase activity [pM mm−2 h−1].

Soil sample Active IRT Surface color parameters Zymography
Temperatur
amplitude [K] Phase angle [°] L a∗ b∗ β-glucosidase activity

[pM mm−2 h−1]
ø CV ø CV ø CV ø CV ø CV ø CV

G−
T 1.75 0.05 1.13 0.03 58.32 0.11 11.08 0.10 23.09 0.17 14.29 0.46

G+
T 1.77 0.05 1.12 0.03 56.55 0.13 10.85 0.09 21.87 0.20 19.55 0.35

G−
S 2.13 0.08 1.08 0.02 63.74 0.07 11.40 0.14 31.46 0.08 7.20 0.20

G+
S 2.19 0.07 1.07 0.02 62.40 0.06 11.81 0.08 31.98 0.06 7.72 0.26

K−
T 2.11 0.17 1.12 0.03 58.51 0.16 10.65 0.17 23.19 0.25 19.20 0.26

K+
T 2.47 0.30 1.14 0.02 50.89 0.30 9.02 0.29 19.02 0.41 20.27 0.26

K−
S 2.19 0.11 1.07 0.03 55.23 0.12 10.67 0.12 24.07 0.16 18.00 0.44

K+
S 1.76 0.09 1.08 0.02 64.27 0.07 11.07 0.06 26.89 0.08 19.92 0.30
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As shown in Table 4.4, the prediction quality of the regression models for the

measured T (hm) showed by the R2 was highest (0.71 and 0.70) for the Grinderwald

topsoil (G+
T ) and subsoils (G+

S ). In contrast, much lower prediction accuracies of

only 44% were got for both Kalwes soil samples, K+
T and K+

S . When considering all

glucose-treated soil samples, the associated regression model reached an R2 of 0.33,

thus clearly showing that the factors controlling the glucose-induced temperature

increases were quite distinct between the soil samples. The strengths of the influ-

ence of the individual independent variables on T (hm) were considered separately

for each soil sample in the following.

The temperature amplitude obtained from active IRT describes the soil surface

moisture contents, with high values related to a low soil surface moisture content and

vice versa (Schwarz et al., 2018)(Schwarz et al., 2018). As shown in Table 4.4, the

standardized β-coefficients were negative for all samples, indicating that T (hm) was

positively related to soil moisture content. Apparently, higher soil moisture contents

contributed to increased T (hm) and thus increased microbial growth rates (Barnard

et al., 2013; Barros et al., 1995; Rey et al., 2005). Similarly, Barros et al. (1995)

found a positive correlation between soil moisture contents and heat production. In

our samples, the greatest influence of the temperature amplitude was found for G+
S

with a standardized β-coefficient of -0.79 and the lowest of -0.06 for K+
S , which may

be attributed to the rather high moisture content of this sample (Table 4.3).

The phase angle describes surface structural richness, with high values standing

for lower densities and cavities (Ranjit et al., 2015; Schwarz et al., 2018). The

standardized β-coefficients showed negative and positive influences of the phase angle

on T (hm) (Table 4.4). The strongest contribution of this parameter to explain

T (hm) was found for the topsoils G+
T with a β-coefficient of -0.65, followed by a

value of 0.20 for K+
T , indicating an opposing influence in these two samples. If this

is due to textural (sand vs. silt) or structural differences between the two samples

is not known.
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Table 4.4: Regression analysis of surface parameters for predicting T (hm) of the glucose-treated soil samples G+
T , G

+
S , K

+
T , and K+

S , as well
as all glucose-treated samples combined (+) with each the standardized β-coefficients.

Soil sample R2 Active IRT Soil color parameters Zymography
Temperature amplitude Phase angle L a∗ b∗ β-glucosidase activity

G+
T 0.71 -0.26 -0.65 -0.31 0.37 -0.99 n.s.

G+
S 0.70 -0.79 0.12 -0.05 0.18 0.14 0.17

KT1+ 0.44 -0.32 0.20 1.11 0.85 -0.55 n.s
K+
S 0.44 -0.06 -0.11 0.51 0.32 -0.47 0.12
+ 0.33 -0.30 0.06 -0.12 0.47 -0.34 0.14
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The soil color parameters L, a∗, and b∗ were derived from the photographs, and

each refer to different color values. The color value L described the brightness, where

high values indicated bright areas, a∗ represents the gradient from -100 red to +100

green, and b∗ describes the gradient from -100 blue to +100 yellow (Heil et al., 2020;

Khan et al., 2009; Viscarra Rossel et al., 2006). The value L is negatively related to

the SOC content of the soil (Heil et al., 2020). In Table 4.4, negative β-coefficients

were found for both Grinderwald soils, G+
T (-0.31) and G+

S (-0.05), thus indicating

that SOC positively contributed to the observed temperature increases. Since mi-

croorganisms are closely associated with SOC as their primary source of substrates

(Barros et al., 2011; Chakrawal et al., 2020; Zhou et al., 2021), the observed rela-

tionship indicates that glucose is metabolized most at such sites of higher microbial

densities. However, for the Kalwes samples K+
T and K+

S , the L parameter contributes

with positive β-coefficients (1.11 and 0.51) to both regression models (Table 4.4).

Thus, the glucose-induced temperature increases appear to be negatively related to

SOC content. One could expect this to occur if SOC-associated microorganisms

are not substrate limited and therefore do not respond to additional substrate or

their growth response is limited by the availability of other nutrients, such as N

(Blagodatskaya et al., 2007; Kuzyakov and Blagodatskaya, 2015). In consequence,

sites with lower SOC content would be less nutrient-depleted and therefore more

responsive to substrate additions, as also observed with enzymatic reactions to glu-

cose additions (Heitkötter and Marschner, 2018a).

The green color value a* can be interpreted as an inverse indicator of iron oxide

contents since a high proportion of red tones indicates a high iron oxide content while

green tones are associated with microbially induced reducing conditions (Schwert-

mann, 1993). In Table 4.4, the β-coefficients of a∗ showed throughout positive values

ranging from 0.18 to 0.85. Such positive β-coefficients for a∗ show that T (hm) de-

creases with increasing iron oxide contents. This relationship, therefore, indicates

that the microbial utilization of glucose for growth is limited in the presence of iron

oxides, possibly due to their high sorption capacity for enzymes and SOC, especially
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in acidic soils (Gu et al., 1994; Saidy et al., 2013; Yan et al., 2010). Similar results

were obtained by Heil et al. (2020) who found a positive relationship between red

tones and SOC content, so that the combination of L and a* in multiple linear re-

gression analyses provided excellent predictability of SOC, with R2 up to 0.90.

The color value b* refers to blue and yellow tones on the soil surface and therefore

is also inversely related to iron oxides and SOC (Heil et al., 2020; Viscarra Rossel

et al., 2006). In Table 4.4, the β-coefficients showed a generally negative impact on

the measured T (hm) with values ranging between -0.47 to -0.99, except for G+
S with

a β-coefficient of 0.14. These negative β-coefficients, therefore, indicate that T (hm)

is generally positively related to SOC content.

β-glucosidase activity is a measure for the microbial potential to degrade cellu-

lose into glucose compounds and thus provide energy for microbial activity (Chen

et al., 2014; Sinsabaugh et al., 2008; Zhang et al., 2020). In general, β-glucosidase

activity is closely linked to organic matter contents (Sinsabaugh and Follstad Shah,

2011; Sinsabaugh et al., 2008). While for the topsoils K+
T and G+

T , no significant con-

tribution to the regression could be observed, positive β-coefficients with 0.17 and

0.12 were determined for the subsoils G+
S and KS+, respectively (Table 4.4). These

positive β-coefficients indicate that a high initial β-glucosidase activity resulted in

an increase in measured T (hm). Thus, areas with the initially high provision of

energy as a contribution for microbial activity were confirmed to have, during the

incubation experiments, higher increases in the surface temperature, independently

from subsequent glucose application (Salgado et al., 2018; Zhang et al., 2020). As

Zhang et al. (2020) had discussed, a high enzyme activity increased the substrate

use efficiency, which led to a higher heat production by microbial activity.

The results of these regression analyses show that the spatially resolved mean

heat production during the hot moments T (hm) can, at least partly, be explained by
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other soil surface properties. However, the contribution of these properties strongly

varies between the samples and the predictability of T (hm) for the Kalwes soils K+
T

and K+
S was very poor. Since the observed hot moments not only differed in the

magnitude of T (hm) but also in their temporal temperature dynamics, this data is

additionally considered in the following cluster analysis.

4.3.2.2 Cluster analysis of hot moments and hot spots

The temperature development T (hm) was classified in spatio-temporal terms using

the hierarchical k-means cluster algorithm with an optimal number of four groups.

In Fig. 4.4, the spatial T (hm) for the glucose-treated samples is shown (Fig. 4.4a

- 4.4d) with the corresponding distribution of the assigned surface clusters of each

pixel to the four cluster groups (Fig. 4.4e – 4.4h). The clusters were formed based

on the temporal course of the heat evolution from the pixels in order to differen-

tiate between groups of similar temperature curves. In a next step, each cluster is

further characterized by its mean temperature amplitude, phase angle, surface color

parameters (L, a∗, and b∗), and β-glucosidase activity (Table 4.5).

The cluster assignment was mainly dominated by cluster differences in T (hm)

since the mean T (hm) of the clusters is increasing from cluster 1 to cluster 4. These

differences were significant within each soil sample (ANOVA, ∗p < 0.05), showing

that the absolute temperature and not the temperature time course dominate the

pixel grouping. The assumption is obvious that the overall temporal courses did not

play an important role because they were co-determined by the ambient air tem-

perature and therefore showed very strong similarities, as can also be seen in Fig.

4.2 based on the logger data (gray lines). Corresponding to the increasing mean

T (hm), from cluster 1 to 4, the mean temperature amplitudes in the clusters de-

creased, except in sample K+
T (Table 4.5). Significant differences between the cluster

groups could be found for all samples, except for K+
S , where the mean temperature

amplitudes did not differ with values between 1.74 to 1.79 K.
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Figure 4.4: Surface temperature T (hm) for soil samples G+
T (a), K+

T (b), G+
S (c), and

KS+ (d) with the corresponding hierarchical k-means cluster group assignments for
samples G+

T (e), K+
T (f), G+

S (g), and K+
S (h).
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Since low temperature amplitudes indicate higher soil moisture (Antonucci et al.,

2011; Schwarz et al., 2018), higher mean T (hm) of a cluster are associated with ini-

tially higher soil moisture. This shows that microbial activity is somewhat moisture

limited, as it is generally assumed that microbial activity will increase until the soil

is saturated with water (Baldrian et al., 2010; Barros et al., 1995; Brockett et al.,

2012). Another possible reason could be that the diffusion of the dissolved glucose

to the consumers is promoted in soil regions where more pores are filled with water.

Interestingly, K+
T showed a contrasting relationship, with increasing temperature

amplitudes from 2.19 to 3.02 K with increasing T (hm) from cluster 1 to cluster

4. This sample showed the highest values for the mean temperature amplitudes of

the clusters. Since high temperature amplitudes mean low soil moisture contents,

the evolution of T (hm) might result from suppressed microbial activity at lower

soil moisture contents. As Barros et al. (1995) showed, there is a high correlation

between soil moisture contents and heat development induced by microbial activity.

In addition, the darker soil was characterized by a higher emissivity and, thus, could

also absorb more thermal radiation when heated by an active signal (Mira et al.,

2007; Usamentiaga et al., 2014). This could amplify the described temperature ef-

fect.

The mean phase angles of each cluster group differed only slightly within one soil

sample, with significant differences only for soil K+
T with values ranging from 1.13° to

1.16°, increasing with increasing T (hm) (Table 4.5). Great differences in the phase

angles could also be detected for topsoil G+
T with values ranging from 1.11° to 1.15°

with partly significant differences but with decreasing values with increasing T (hm).
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Table 4.5: Temporal pixelwise cluster groups assigned to mean T (hm) and the corresponding mean soil surface properties of each cluster
group. Different letters indicate significant differences in between the cluster groups within one soil sample (ANOVA, Tukey’s HSD post hoc
test (∗p < 0.05)).

Passive IRT Active IRT Surface color parameters Zymography

Mean T (hm) [K]
Temperatur

Amplitude [K]
Phase Angle [°] L [%] a∗ [%] b∗ [%]

β-glucosidase activity

[pM mm−2 h−1]

G+
T

k 1 0.86a 1.84a 1.15a 63.22a 10.70a 25.40a 15.76a

k 2 0.90b 1.77b 1.15a 62.38a 11.14c 25.00a 16.26a

k 3 0.93c 1.78b 1.12b 54.52b 10.74b 20.93b 20.53b

k 4 0.95d 1.74c 1.11c 52.62c 10.86b 19.70c 21.87c

G+
S

k 1 1.57a 2.43a 1.06a 64.90a 10.85a 31.21a 7.11a

k 2 1.61b 2.27b 1.06b 62.09b 11.82b 32.07b 6.97a

k 3 1.64c 2.19c 1.06b 62.44b 11.75b 31.91b 8.05b

k 4 1.67d 2.06d 1.09c 61.48c 12.23c 32.29c 8.20b

Continued on next page
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Passive IRT Active IRT Surface color parameters Zymography

Mean T (hm) [K]
Temperatur

Amplitude [K]
Phase Angle [°] L [%] a∗ [%] b∗ [%]

β-glucosidase activity

[pM mm−2 h−1]

K+
T

k 1 1.04a 2.19a 1.13a 56.48a 10.55d 23.58a 17.93a

k 2 1.07b 2.31b 1.14b 55.41a 9.65c 21.25b 20.02b

k 3 1.09c 2.59c 1.15c 48.14b 8.25b 16.58c 22.37d

k 4 1.12d 3.02d 1.16d 36.97c 6.53a 11.11d 21.15c

K+
S

k 1 0.88a 1.79a 1.09a 64.47a 11.11a 28.16a 17.41a

k 2 0.91b 1.75bc 1.08b 65.11b 11.08bc 27.52b 19.16b

k 3 0.95c 1.76b 1.08b 64.13a 11.05bd 26.34c 21.86d

k 4 0.99d 1.74c 1.09a 62.99c 11.07cd 25.54d 20.66c
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The influence of the SOC content could contribute to the phase angle variations

as an indicator of the structural richness of the soil surface. SOC caused a stronger

aggregate structure of the soil (Liu et al., 2014). Since high SOC contents charac-

terized the topsoils, the differences between the cluster groups for the topsoils were

greater with significant differences, which could not be observed for the subsoils.

Thus, this assumption could be confirmed. Further, the subsoils were characterized

by a higher bulk density (Table 4.1), which also impacted the homogeneity of the

phase angles since high bulk density resulted in lower phase angles (Ranjit et al.,

2015; Schwarz et al., 2018).

Most prominently, the surface color parameters showed a clear differentiation

between the cluster groups (Table 4.5). With increasing T (hm), L and b∗ values

decreased, except for G+
S where b∗ increased from 31.21 to 32.29%. For a∗, no dif-

ferences in the values could be detected since the values were very similar. Only

for K+
T , sorting in a∗ with values from 10.55 to 6.53% with increasing T (hm) were

observed.

The relationship of the cluster order to the surface color parameters L and b∗

can be attributed to the proportion of SOC in the soil matrix. These two values are

significantly influenced by the SOC content (Heil et al., 2020; Viscarra Rossel et al.,

2006). The sorting according to mean T (hm) has to be considered here on two levels.

First, SOC content affected the presence of easily available material for microbial

activity (Bhogal et al., 2009; Blagodatskaya and Kuzyakov, 2008; Zhou et al., 2021).

It can be clearly seen that with the increasing availability of SOC, the temperature

increase is significantly higher (Barros et al., 2011; Bhogal et al., 2009; Chakrawal

et al., 2020). Thus, the SOC content was assumed to influence T (hm) positively and,

therefore, microbial activity. Another influencing factor is the physical conditions

related to color differences. The soil color influences the emissivity of the surface.
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The darker the soil, the higher is the emissivity (Mira et al., 2007; Sánchez-Marañón

et al., 2004; Schwertmann, 1993). Since a uniform emissivity of 0.95 was used for

all passive IRT measurements, especially dark areas in the profile sections could

be overestimated with assumed equal temperatures of the surfaces with different

brightness as a result of the SOC content. Therefore, these two effects are mutually

dependent so that an increase in the measured surface temperature could be related

to higher microbial activity as well as to higher emissivity of the darker soil sections.

The parameter a∗ showed little differentiation between the clusters. Only in

sample K+
T , the sorting of a∗ is clearly inversely related to T (hm) among the four

clusters (Table 4.5). This relationship could also be based on the SOC content since

the red content in the soil is also often used for predicting the SOC content (Heil

et al., 2020; Viscarra Rossel et al., 2008). Khan et al. (2009) also showed that a∗

decreased significantly during a composting experiment where SOC decreased over

time. However, it is unclear why similar relationships were not observed for other

samples.

The distribution of the β-glucosidase activity among the cluster groups showed

similar relationships to those of mean T (hm). With increasing mean T (hm) within

the cluster groups, the mean β-glucosidase activity also increased with generally

significant differences between the clusters, except in sample G+
S where the lowest

β-glucosidase activity was for cluster group 2 with 6.97 pM mm−2 h−1 and clus-

ter group 1 with 7.11 pM mm−2 h−1 (Table 4.5). The results indicate that the

areas in the profile section that had the highest enzyme activity at the beginning

also showed the highest temperature increase after glucose addition. In general,

β-glucosidase activity indicates the production of enzymes in the breakdown of soil-

borne cellobiose to glucose, which thus provides energy for microbial activity (Chen

et al., 2014; Sinsabaugh and Follstad Shah, 2011). Therefore, in areas in the profile
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sections, the increased amount of provided energy, indicated by high β-glucosidase

activity, then positively affected microbial growth expressed as increased heat pro-

duction (Salgado et al., 2018; Sinsabaugh et al., 2008; Zhang et al., 2020).

While it was difficult to establish clear relationships between mean T (hm) and

the other surface properties of the samples, such as temperature amplitude, sur-

face color parameters (L, a∗, and b∗) or β-glucosidase activity, when considering

the entire surfaces (section 4.3.2.1), more evident relationships could be established

by dividing the samples into cluster groups. These indicate in particular influences

by the SOC content in the soil, which played an important role revealed by the

surface color parameters and regarding the formation of a crumbly structure also

by the phase angle. In addition, a clear positive relationship between mean T (hm)

and soil moisture contents was confirmed. The β-glucosidase activity in the cluster

groups indicated that initially high values were followed by a higher T (hm), which

is associated with increased microbial activity. The results suggest that a combined

consideration of mapping techniques had much potential to explain the temperature

evolution on undisturbed soil samples and to show relationships concerning spatio-

temporal dynamics of microbial activity.

4.4 Conclusions

In this study, heat production on undisturbed soil samples was evaluated by passive

IRT in a high spatial resolution of < 1 mm and a high temporal resolution in a

10-min interval in a substrate-induced approach using glucose for the stimulation

of microbial activity. The heat development on the soil surfaces was examined

in more detail using mathematical and geostatistical methods. However, the main

objective was to capture the spatio-temporal variability of microbial heat production

and describe and interpret it in detail using high-resolution mapping techniques.
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The main findings of this study using passive IRT as spatio-temporal mapping tool

of heat production, and active IRT, zymography, and photography for the spatial

characterization of undisturbed soil samples are summed up in the following bullet

points:

• The mean surface temperature increased up to a ∆T (hm) of 0.2 K after uni-

form glucose application on undisturbed subsoil samples and up to 0.14 K on

undisturbed topsoil samples with a maximum hot moment duration of nearly

46 h.

• The spatial variability of the considered profile sections could not represent

the variance of the individual soils using geostatistical methods since microbial

activity takes place on the µm- to mm-scale, and this study focuses on the

mm-scale.

• The spatial variability of the Kalwes soil was higher compared to the Grinder-

wald soil, independent from treatment with glucose or water. No differences

between top- and subsoils could be determined.

• Multiple regression analyzes revealed significant relationships between glucose-

treated soil surface temperature and pixelwise temperature amplitude as an

indicator of soil moisture (low temperature amplitude equals high soil mois-

ture), surface color parameters as an indicator of surface SOC contents, and

initial β-glucosidase activity for the subsoils.

• Higher R2 were obtained for the Grinderwald soil with values up to 0.71 for

the topsoil compares to the Kalwes soil with values up to 0.44 for top- and

subsoils. The R2 considering all soil samples was lowest at 0.33 due to the high

variability of soil surface characteristics. Thus, not all surface temperature

characteristics could be explained entirely.
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• A hierarchical k-means clustering based on the spatio-temporal heat produc-

tion revealed that the temporal characteristics had no influence on the group-

ing, but the mean surface temperature was decisive.

• A clear connection to soil moisture contents could be estimated, since the high

mean surface temperature was associated with high soil moisture contents. It

can also be assumed that soil color parameters as a proxy for SOC contents in-

fluenced temperature development because of the varying soil-borne substrate

availability. The results of the β-glucosidase activity showed that the initial

biotic state of the soil contributed to the temperature increase concerning the

provision of energy for microbial activity.

Thus, the combined use of the applied mapping techniques showed an increased

ability to clarify spatio-temporal developments in microbial behavior on undisturbed

soil samples when small-scale dependencies are considered. The surface temperature

characteristics during the hot moments could not be fully explained with the help of

the other soil surface properties, including the spatio-temporal clustering method.

Considering that such an approach with the intersection of different surface mea-

surement techniques related to abiotic and biotic soil properties had not been used

before, the results of this study are promising. Therefore, more research needs to

be done regarding microbial dynamics considering spatio-temporal soil information

to fill outstanding knowledge gaps.

It is recommended to validate the passive IRT using mapping tools and test

correlations, e.g., by other enzymes using zymography (e.g., chitinase or acid phos-

phatase) or using planar optodes that can capture CO2 evolution in a spatio-

temporal manner. The IRT approach offers the possibility to record soil surface

heat development induced by microbial activity and dynamics. A resolution en-

hancement should be taken into consideration for further studies. Since microbial
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activity occurs on the µm- to mm-scale, the resolution of 0.17 mm in this study

might not be sufficient to refer to the small-scalic dynamics of microbial growth

rates in detail. Microbial activity is linked to thermodynamic soil processes, which

could be detected by applying passive IRT. A further systematic enhancement of the

measurement approach could help to contribute to a more systematic understanding

of microbial activity dynamics from spatial and temporal perspectives.
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5 Synopsis

5.1 Concluding Discussion

The present dissertation aimed to evaluate the potential of passive IRT as a tech-

nique to investigate microbial activity in soils. It concentrated on the development

of a laboratory and data processing method to detect microbial growth rates accu-

rately. This aim is pursued by evaluating thermal images to identify regions of the

soil surface with higher mineralization rates indicated by increased heat. The anal-

ysis of spatial and temporal patterns was carried out on a micro, process scale. The

method development concerning the detection of microbial activity in soils using

passive IRT and the evaluation of the thermal images was improved by addressing

three overarching open research questions, identified in section 1.3:

a. Can IRT be applied for the detection of microbial hot spots and hot moments

in soils?

b. Does IRT enable the possibility to record physical soil properties?

c. Is passive IRT capable of detecting microbial characteristics in undisturbed

samples?

The most important results and contributions of this thesis, answering these re-

search questions, are summarized and addressed in the next section.

a. Detection of hot spots and hot moments

The three studies in sections 2-4 addressed the detection of microbial hot spots

and hot moments in top- and subsoils at different stages of processing. Section 2

considered the general applicability of passive IRT and the evaluation of measured

temperature variability in temporal and spatial terms of disturbed samples while
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observing the rewetting effect. In section 3, a deeper look into the process level of

hot spots and hot moments was given. In a targeted laboratory method develop-

ment and data preparation procedure, an evaluation of the thermal properties of

the disturbed soil samples was made. This was done for the most accurate detection

of hot spots and hot moments, referred to as hot movements. Section 4 addressed

hot spots and hot moments on a small-scale and stepwise explanatory approach.

The surface temperature change was explained by various measurement techniques

referring to the soil surface. Detailed statements were made about the thermally

recorded spatio-temporal heat production.

All studies showed that in a controlled environment with constant air temper-

ature and relative air humidity conditions, microscale temperature changes were

recorded in spatio-temporal terms. These temperature changes were attributed to

microbial activity.

In the first study, a comparison was made between sterile and non-sterile dis-

turbed soil samples. It was demonstrated that the non-sterile soil samples exhibited

a distinct temperature peak after rewetting, which was not found in the sterile

samples. This hot moment was caused by the Birch effect, which was caused by

the activation of dormant microorganisms within a few hours after rewetting. In

a substrate-induced approach in the second study, temporal matches of microbial

growth with soil respiration data were observed. The hot moment was recorded in

a time window of 20 to 60 h after substrate addition under constant ambient condi-

tions (relative air humidity > 95%).

From a spatial perspective, differences in temperature development could be

highlighted. Those differences corresponded to a temperature increase of up to 1 K.

The temperature changes were not homogeneously distributed on the soil surface
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but were pronounced in hot spots, which also changed in time. These are shown

in particular in the time-lapse in study 2. In study 3, those spatial changes were

matched using further imaging techniques. In particular, photography was used

to highlight the relationship to the SOC content of the soil. Temperature changes

grouped by mean could also be attributed to the change in enzyme activity imaged

by β-glucosidase activity. Areas of soil samples taken from a profile, which were

characterized by high initial β-glucosidase activity, showed the greatest increase in

mean surface temperatures (Table 4.5 on page 124-125).

The results of this thesis support findings of previous studies focusing on heat

production in soils. Wadsö et al. (2013) found that heat production detected by

isothermal calorimetry was moisture-dependent with less heat production at low

moisture contents and more heat production at high moisture contents. A sudden

increase in the soil moisture content, especially in dry soil samples, removed the

limitation of the microorganisms and stimulated sudden growth, especially of the

r-strategists (Borken et al., 2003; Kieft et al., 1987). This release of energy through

catabolism was also measurable as heat increase using passive IRT. In the second

study, glucose was used to remove the limitation of readily degradable C, which

also caused an increase in microbial activity. The increased microbial activity can

be attributed to the growth of r-strategists and was also recorded as catabolic heat

energy (Blagodatskaya et al., 2007; Chakrawal et al., 2020). This heat energy de-

velopment was mapped over space and time.

From a spatial point of view, mapping enzyme activity, e.g., β-glucosidase activ-

ity, is an appropriate measure to validate the detected heat production by passive

IRT. Zhang et al. (2020) discussed in their study that enzyme activity increases at

high C inputs and also contributes to heat production during metabolization pro-

cesses. These findings can also be applied to study 3. In particular, areas with
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initial high enzyme activity also turned out to be thermal hot spots as shown by the

results of a k-mean cluster analysis.

A decisive point that can be derived from the analyzes presented in sections 2-4.

Applying passive IRT to detect microbial hot spots and hot moments from catabolic

heat generation with high resolution is highly promising. The focus is on the contri-

bution of r-strategists, which cause the largest heat effect because of rapid growth.

The major results show that the analysis of thermal soil dynamics contributes sig-

nificantly to the study of energy turnover in the soil by metabolization processes.

b. Recording physical soil properties

The results of the first study (section 2), in which the application of active IRT was

examined to detect physical soil properties with a focus on soil moisture contents,

were then included as an additional characterization of the soil samples in study

3 (section 4). A supervised partial least square regression applying an exponential

function was used to approximate and calibrate soil moisture content to the tem-

perature amplitude calculated from the temperature profile using the active IRT

Lock-In mode. The main findings of the study were:

I) soil moisture contents, expressed as volumetric water content (VWC), could be

explained by the temperature amplitude (R2 up to 0.88) up to 30% VWC (Fig.

2.1),

II) different default moisture levels of one soil type could be observed accurately

with small-scale spatial variations (Fig. 2.2), and

III) in a sequential recording of temperature amplitudes over time, soil drying could

be determined until the soil was completely dry, and the dynamics of desiccation

were captured in spatio-temporal perspective (Fig. 2.3).

Another physical quantity that was determined using active IRT was the phase

angle, which can be used to approximate the structural richness of a soil surface.
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Larger phase angles and high variability of it show a more diverse surface structure.

With this measure, statements can be made about the density, texture, and evenness

of the surface (Fig. 2.3 and Fig. 2.6).

The findings of the study presented in section 2 agree with and extend the results

of multiple independent studies showing a strong correlation between soil physical

and thermal properties (Abu-Hamdeh, 2003; Antonucci et al., 2011; Ochsner et al.,

2001; Ren et al., 2003). However, these studies did not analyze the dynamics in soil

drying or moisture change and did not explicitly consider soil types to evaluate the

overall transferability of the results. While Antonucci et al. (2011) found in a sys-

tematic approach that the longer active IRT detection time was, the more accurate

the results were. Detailed information on different soil types with varying texture,

density, or SOC contents were not presented in their study and spatio-temporal

dynamics not considered. Abu-Hamdeh (2003) found that the volumetric heat ca-

pacity of soils dictated the storage and movement of heat in soils and thus influenced

the temperature heat flux in soils. It increased with higher soil moisture contents

and soil density in dependence of soil texture. However, their study was limited

in space (point measurement of specific soil volume) and neglected the temporal

perspective. The systematic application of active IRT within section 2 enables a

profound view of soil physical properties, considering their thermal properties. On

this basis, observational evidence could be presented that soil moisture content and

the structural conditions of the soil surface influenced the thermal properties of soils.

These findings strengthen the relevance of passive IRT approaches, especially

regarding the detection of catabolic heat production, as Barros et al. (1995) had al-

ready shown the relationship between microbial activity and soil moisture contents.

The results were also included in the subsequent study 3 in section 4.
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c. Microbial activity in undisturbed soil samples

In section 4, the spatial and temporal characteristics of heat production in undis-

turbed soil samples captured by passive IRT and determinants like soil moisture

contents, surface color, enzyme activity, were analyzed at different levels of obser-

vation and from different perspectives. The undisturbed soil samples were analyzed

concerning their temporal component of a substrate-induced increase in microbial

activity. The spatial component was evaluated geostatistically by calculating the

semivariance. Based on this, the relationship of further surface properties was

statistically assessed using regression models and k-means clustering. The clus-

ter groups of each surface property were analyzed by utilizing a subsequent ANOVA

with Tukey’s HSD post-hoc test within the glucose-treated samples. The thermal

images were shown to capture hot spots and hot moments of microbial activity in

spatial and temporal perspectives (c.f. Fig. 4.2 and Fig. 4.4 on pages 106 and 121,

respectively). Geostatistically, however, no small-scale hot spots could be detected

since large-scale effects overlay them (c.f. Fig. 4.3 on page 113). When considering

the explanatory surface properties, such as temperature amplitude, phase angle, soil

color parameters, and β-glucosidase activity, soil color parameters determined heat

production. The temperature amplitude also showed a uniform relationship by ap-

plying a stepwise backward regression (c.f. Table 4.4). Since the explanatory power

of the regression results was not sufficient, deeper correlations were sought using a

cluster analysis on the passive IRT thermograms, which were also applied to the

explanatory parameters. Temperature amplitude and soil color parameters had the

expected effects on heat production (c.f. Table 4.4). The patterns on the millime-

ter and centimeter scale, like SOC contents, soil moisture, and surface structure,

determined the measured surface temperatures by passive IRT. The β-glucosidase

activity also indicated a connection to the pixelwise mean surface temperature.

The study builds on the findings of 2 and 3, as well as numerous other studies

showing how heat is produced in soil samples and what determinants have an im-
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pact on the measured surface temperatures (Abu-Hamdeh, 2003; Antonucci et al.,

2011; Ochsner et al., 2001; Sanchez et al., 2011). It supports the findings of mul-

tiple studies that show a strong dependence of soil thermal properties and their

characteristics on heat production (Barros et al., 1995; Zhang et al., 2020). How-

ever, these findings were based on point measurements of a specific soil volume

that may not capture spatio-temporal soil dynamics of undisturbed soil samples

and thus the entire complexity of the system. Kluge et al. (2013) applied passive

IRT as a non-contact approach to detect soil microbial activity, but in disturbed

soil samples. However, none of the recent studies on microbial activity enabled the

spatio-temporal detection of heat production induced by catabolic activity by mi-

croorganisms in undisturbed soil samples. They showed the relationship to further

spatial soil surface characteristics. This is the strength and novelty of the study

presented in section 4.

The study is conducted on the microscale that enables high-resolution imaging

in spatial and temporal perspectives. The application of passive IRT shows promise

as an approach to monitor the microbial activity of undisturbed soil samples that

produce heat, particularly in the turnover of readily available soil material. It un-

derlines the usefulness of spatio-temporal approaches and multivariate statistics to

predict soil microbial activity and possibly initiates a positive trend of their appli-

cation frequency.

5.2 Outlook

The results of this thesis showed that the detection of microbial activity in hot spots

and hot moments is possible using a passive IRT approach under consideration of

specific ambient conditions. Influencing factors due to the physical properties of

the soil, as well as the environment, affect the thermal capture of heat production
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in the soil, which are attributed to catabolic activity. Comparative measurements

using active IRT, soil color parameters, or zymography increased the understanding

of soil surface thermograms. Advanced process and system understanding allows a

better parameterization of soil microbial activity, and thus more accurate predic-

tions of heat production in hot spots and hot moments. However, not all processes

and advances in their understanding could be obtained in the studies in sections

2–4, and thus not all knowledge gaps could be filled concerning heat production in

soils. Future observational studies may focus on improving comparability with ad-

ditional spatial, temporal, and spatio-temporal data sets to facilitate the detection

of dynamic processes in the soil on the centimeter scale. This may be achieved by

adjusting the spatial and temporal scales of the passive IRT measurements by in-

creasing the temporal resolution up to its maximum of 60 Hz and applying a higher

spatial resolution by, e.g., using a macro lens for a resolution up to 17 µm. These

scales could allow more accurate detection of microbial activity, as found on the

micrometer to millimeter scale (Kuzyakov and Blagodatskaya, 2015; Nunan et al.,

2003), and currently used resolutions had no sufficiently detailed output. This would

allow a more focused view of microbial activity and allow spatial dependencies to

be highlighted, as Nunan et al. (2003) had shown in a microscopic approach.

A complete scientific understanding of heat production detected by passive IRT

requires knowledge on interactions between various microscale processes, as well

as feedbacks with dynamical components of the system. As these processes may

buffer or amplify each other, improved understanding of the individual processes

might be obtained by applying further measurement techniques for understanding

the influence of the diversity of microbial community structure and their dynamical

system (Chakrawal et al., 2020; Kuzyakov and Blagodatskaya, 2015; Tecon and Or,

2017). A promising path forward could be the determination of spatio-temporal

CO2 evolution on soil surface using the PreSens-System (PreSens Precision Sensing
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GmbH, Regensburg, Germany). Fluorescence imaging enables the detection of high-

resolution CO2 evolution to intersect fast SOM turnover rates with catabolic heat

production (Blossfeld et al., 2013; Rubol et al., 2016). Analysis of further enzymes

associated with the N- or C-cycle, e.g., xylosidase, chitinase, or acid phosphatase,

in a zymography approach is also an essential advance to get direct insights into

the microbial community composition producing heat (Boeddinghaus et al., 2015;

Heitkötter and Marschner, 2018a). Zymography can be combined with a subsequent

quantitative polymerase chain reaction (qPCR) analysis to get information on the

abundance of genes and transcripts of microbial community structure in hot spot

and non-hot spot areas of soil profile sections (Barnard et al., 2013).

Such studies aim to understand in detail the evolution of heat in the soil and

quantify microorganisms using passive IRT and assign them to groups according

to functionality. The use of different substrates apart from glucose, such as citric

acid, glucose combined with N, as done by Heitkötter et al. (2017), or the addition

of pollutants, as shown by Kluge et al. (2013), can help evaluate the inhibition of

microbial life by passive IRT as a holistic approach to the non-invasive detection of

microbial activity in undisturbed soil samples.

5.3 Summary

Heat production is a critical component of organic matter decomposition as a mea-

sure for microbial activity in the soil C turnover. Yet, it contributes the largest

uncertainty to estimate spatio-temporal dynamics of metabolic and energetic pro-

cesses in the pedosphere due to technical and methodical limitations. The high

complexity of the processes involved, complex linkages to microbiological processes

and conditions, temporal and spatial variations, and the microscale perspective on

which the processes occur are major contributors to this uncertainty. Reducing this
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uncertainty is critical to improve the accuracy of future process understanding of

soil metabolism.

The central aim of this thesis was to advance the application of passive IRT

as a measurement technique to capture soil microbial activity by spatio-temporal

analysis of heat production, the statistical implications, and the determinants of

heat production. Three overarching open research questions were identified and

addressed within this thesis:

a. Can IRT be applied for the detection of microbial hot spots and hot moments

in soils?

b. Does IRT enable the possibility to record physical soil properties?

c. Is passive IRT capable of detecting microbial characteristics in undisturbed

samples?

Three studies were presented that addressed these research questions at different

stages of methodological development, with a particular emphasis on spatial and

temporal patterns. The following are the major results of the thesis:

a. Microbial hot spots and hot moments are determined by heat production and

are detectable by passive IRT under certain ambient conditions

• In a closed system with high relative air humidity (above 95%) with

constant ambient air temperature, increased microbial heat production

could be determined. At these ambient conditions, evaporation from the

ground surfaces is the lowest, and thus the measured surface temperature

is the least affected.

• Increased microbial activity was detectable since the primary microbial

activity was superimposed by physical properties, like evapotranspira-

tion, in terms of the Birch effect in the first hours after soil rewetting
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or in a substrate-induced approach applying glucose to soil surfaces with

temperature increase between 20 and 60 h after application.

• Microbial hot spots and hot moments were made visible in temporal

and spatial perspectives. Temperature increases up to 1 K could be de-

termined on a millimeter-scale in a period of about 1 h in a minutely

sequential recording.

• Comparative measurements referring to the temporal perspective had

shown a good agreement of the periods of increased temperature de-

velopment and increased metabolization rates using respiration curves.

From a spatial perspective, color parameters and enzyme activity showed

that physical and biological properties also determined the temperature

development spatially.

b. Soil physical properties are detectable using active IRT

• The active IRT approach (Lock-In mode) explained up to 88% of the soil

moisture variations at moisture content up to 30% VWC. It was possible

to record spatial differences in soil moisture content and changes over

time due to, e.g., drying of the soil surface.

• Using active IRT, the phase angle, as a measure of the surface structure,

could be calculated. This measure helps to interpret the surface temper-

ature since the bulk density, texture, and evenness of the surface could

be approximated.

c. Detecting hot spots and hot moments in undisturbed soil samples

• Temporal characteristics of increased microbial activity could be mea-

sured with temperature increased up to 0.2 K between 35 and 46 h after

glucose application on undisturbed soil samples under controlled ambient

conditions with a relative air humidity above 95%.
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• Spatial soil moisture contents, indicated by the temperature amplitude,

showed that moister soil profile sections contributed to a higher temper-

ature increase on the soil surface.

• Soil color revealed a connection between SOC content and distribution

and surface temperature development. However, the microbiological rela-

tionships came to light, but the physical properties were also influenced.

• Soil profile sections characterized by high initial β-glucosidase activity

showed higher temperature increases, revealing a connection between en-

zymatic soil properties and the subsequent catabolic activity.

The findings of this thesis advanced the scientific understanding of heat produc-

tion in soils and enabled by the application of passive IRT, high-resolution analysis

of spatio-temporal patterns of microbial activity on the millimeter scale. Future

research may also profit from the technical insights of this thesis:

• Multivariate analysis utilizing advanced comparative measurements in spatial,

temporal, but also spatio-temporal perspective related to both physical and

microbiological properties

• Increase of the temporal and spatial resolution of the thermal imaging

• Determining the microbial community structure and its functioning

Based on this outline, a promising path forward for future advances in the sci-

entific understanding of microbial activity and catabolic heat production through

passive IRT was presented (see also Fig. 5.1). Results of a preliminary study showed

that direct analysis of the key drivers of soil thermal properties in multivariate ap-

proaches might untangle the measured surface temperature regarding metabolism

in soils and give quantitative estimates of microbial community structure and their

dynamics in the pedosphere.
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Figure 5.1: Summary of major results of the thesis regarding the application of passive
IRT. Ambient environmental conditions and effects on surface temperature were fully
evaluated and discussed. Influences due to physical soil properties, such as soil moisture,
but also surface structure were assessed. Heat production in microbial hot spots and hot
moments were analyzed and evaluated. Some knowledge gaps have emerged from this
research. Approaches to answer open questions about microbial heat production are
summarized in section 5.2.
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Appendix

Appendix I

Table A1.1: Relevant properties of soil samples used for the soil moisture calibration
(experiment A1).

Soil Sample SOCa Sandb Siltb Clayb

[%]

A 2.5 38 54 8

B 3.0 7 85 8

C 0.4 12 68 20

1 1.5 87 7 6

2 0.8 93 2 5

3 0.2 95 2 3

4 1.1 90 5 5

5 1.2 94 1 5

6 0.1 90 3 7

7 1.4 78 12 10

8 0.2 92 4 4

9 0.1 87 5 8

10 0.1 83 8 9

11 0.3 90 8 2

12 0.2 95 2 3

13 2.8 39 34 27

14 1.2 17 36 47

15 0.7 17 71 12

16 0.2 10 77 13

17 0.1 91 4 5

Continued on next page
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Table A1.1: Relevant properties of soil samples used for the soil moisture calibration
(experiment A1).

Soil Sample SOCa Sandb Siltb Clayb

[%]

18 0.2 92 7 1

19 0.4 91 7 2

20 0.3 97 1 2

21 0.2 98 1 1

22 3.2 85 7 8

23 1.1 93 3 4

24 1.0 9 69 22

25 0.3 60 21 19

26 0.2 55 30 15

27 0.4 56 29 15

28 0.6 91 6 3

29 0.9 88 7 5

30 1.4 94 1 5

31 0.4 98 1 1

32 0.4 47 30 23

33 0.3 44 32 24

34 0.1 51 21 28

35 2.3 49 46 5

36 0.2 45 50 5

37 1.0 3 83 14

38 0.3 1 77 22

39 0.2 2 82 16

40 0.2 2 75 23

Continued on next page
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Table A1.1: Relevant properties of soil samples used for the soil moisture calibration
(experiment A1).

Soil Sample SOCa Sandb Siltb Clayb

[%]

41 1.5 55 30 15

42 1.1 43 35 22

43 0.6 27 45 28

44 0.3 48 32 20

45 1.4 73 10 17

46 0.2 69 17 14

47 1.4 43 38 19

48 0.4 48 31 21

49 1.8 38 32 30
a Vario EL Elementar Analyser (Elementar

Analysesysteme GmbH, Hanau, Germany
b Analysette (Fritsch GmbH, Idar-Oberstein,

Germany)
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Appendix II

Figure A2.1: Temporal courses of mean ∆T of the replicates and their mean values [K]
of soil P after application of nine glucose concentrations (GP ) at CHC (Extension of
Figure 2.1).
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Figure A2.2: Linear relationship between the nine glucose concentrations [mg cm−2]
and maximum increase of ∆T [K] corresponding to the data in Figure 2.1.
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Appendix III

Figure A3.1: RGB images of rewetted glucose-treated soil surfaces with a) Grinderwald
topsoil (G+

T ), b) Kalwes topsoil (K+
T ), c) Grinderwald subsoil (G+

S ), and d) Kalwes
subsoil (K+

S ).
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Figure A3.2: Pixelwise mean values of passive IRT images of rewetted glucose-treated
soil surfaces considering the time period of the hot moment (T (hm)) referring to
Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b), Grinderwald subsoil (G+

S ) (c),
and Kalwes subsoil (K+

S ) (d).
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Figure A3.3: Pixelwise variance of passive IRT images of rewetted glucose-treated soil
surfaces considering the time period of the hot moment (T (hm)) referring to Grinderwald
topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b), Grinderwald subsoil (G+

S ) (c), and Kalwes
subsoil (K+

S ) (d).
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Figure A3.4: Initial temperature amplitude of glucose-treated soil surfaces captured with
the active IRT approach referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T )

(b), Grinderwald subsoil (G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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Figure A3.5: Initial phase angle of glucose-treated soil surfaces captured with the active
IRT approach referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b),

Grinderwald subsoil (G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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Figure A3.6: Color value L of glucose-treated soil surfaces gained from photography
referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b), Grinderwald subsoil

(G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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Figure A3.7: Color value a∗ of glucose-treated soil surfaces gained from photography
referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b), Grinderwald subsoil

(G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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Figure A3.8: Color value b∗ of glucose-treated soil surfaces gained from photography
referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b), Grinderwald subsoil

(G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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Figure A3.9: Initial β-glucosidase activity of glucose-treated soil surfaces measured by
zymography referring to Grinderwald topsoil (G+

T ) (a), Kalwes topsoil (K+
T ) (b),

Grinderwald subsoil (G+
S ) (c), and Kalwes subsoil (K+

S ) (d).
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"If A is a success in life, then A equals x plus y plus z. Work is x; y is play; and z

is keeping your mouth shut"

Albert Einstein

"I have studied these things - you have not."
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