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Abstract

In this thesis, I present the results obtained during the course of the Ph.D. project Algorithms
for Relativistic Lattice Boltzmann, one of the projects created in the framework of the
European network of Joint Doctorates STIMULATE.

The main focus of the project has been the algorithmic refinement and extension of
existent lattice kinetic solvers for the simulation of relativistic hydrodynamics and their
applications in the fields of astrophysics, condensed matter, nuclear physics.

The first achievement reported in the thesis is the generalization of the method to a
generic number of spatial dimensions, particularly instrumental to the correct simulation of
condensed matter systems, which are typically laid out in bidimensional fashion.

This process involves the proper calibration of transport coefficients indipendently of
the spatial dimension, as this is a crucial aspect when trying to reproduce relativistic fluids
with the desired dissipative properties.

Next, I present the benchmarking results obtained by the method in the simulation
of two popular systems in relativistic hydrodynamics, namely the Bjorken flow and the
relativistic Riemann problem, showing that the numerical results are compatible with both
analytic solutions and data from other numerical solvers.

A technique for the extension of the numerical scheme to ballistic regimes is then
discussed. The extension is performed by adopting of product quadrature rules in the
discretization of the radial and angular variables in the momentum space. Results of
improvements in the solution of the Riemann problem in the ballistic regime are shown.

Lastly, I present a new Lattice Boltzmann inspired kinetic scheme for the simulation of
radiative transfer. This scheme draws from the structural similarities of the main equation
of Radiative Transfer with the Boltzmann equation, and is able to correctly reproduce
radiation dynamics both in the optically thin and optically thick limit.



Contents

Introduction 1
1 Relativistic Hydrodynamics 5
1.1 Relativistic Kinetic Theory . . . . . . . . . . .. . ... ... ... .. 5
1.1.1 Model Equations . . . . . . . ... ... ... ... 7

1.2 Ideal Relativistic Hydrodynamics . . . . . . .. . ... ... ... .. ... 8
1.2.1 Fields at Equilibrium . . . . . .. ... ... ... ... ... .. .. 10

1.2.2  Equilibrium distribution function . . . . . .. ... ... ... ... 12

1.2.3 Ideal Equation of State . . . . . . . .. . ... ... L. 13

1.3 Dissipative Effects . . . . . . .. o 15
1.3.1 Eckart Decomposition . . . . .. .. ... ... ... ... ... 16

1.3.2 Landau-Lifshitz Decomposition . . . . . .. ... ... ... .... 17

1.3.3 Transport Equations . . . . . . . .. ... ... ... ... ... 18

2 Lattice Kinetic Schemes 20
2.1 Non relativistic Lattice Boltzmann Methods . . . . . . . .. ... ... .. 21
2.2 Relativistic Lattice Boltzmann Methods . . . . . . . . ... ... ... .. 24
2.2.1 Expansion of the Maxwell-Jiittner distribution . . . . . . . . .. .. 26

2.2.2  Quadrature Rule for momentum discretization . . . . . . . . . . .. 28

2.2.3 Forcing Scheme . . . . . . . .. oL 30

2.2.4 Conversion to Lattice Units . . . . . . . ... .. ... ... .... 32

2.2.5 Algorithm . . . . . . ... 34

3 Derivation and Calibration of Transport Coefficients 36
3.1 Chapman-Enskog expansion . . . . . . .. ... .. ... .. ........ 37
3.2 Grad’s Method of Moments . . . . . . .. ... ... ... ... ...... 38
3.3 Calibration of Transport Coefficients . . . . . . .. .. ... ... .. ... 42
3.3.1 Thermal Conductivity . . . . . . .. ... ... ... ... ... 43

3.3.2 Bulk Viscosity . . . . . . ... 44

3.3.3 Shear Viscosity . . . . . .. .. 45

4 Numerical Benchmarks 48
4.1 Bjorken Flow . . . . . . . . . . . 48
4.1.1 Milne coordinates . . . . . . . . . ... 48

4.1.2  Analytic Solution (ideal ultra-relativistic fluid) . . . . . . .. .. .. 50

41.3 RLBMresults . . . . . .. . .. 51

4.2 Mono-dimensional Shock Wave . . . . . ... ... ... ... ... ... 53
4.2.1 Analytic Solution (ideal ultra-relativistic fluid) . . . . . . .. . . .. 54

422 RLBMresults . . . . . . . .. 58



5 Extension of the model to Weakly Interacting Regimes
5.1 Momentum Space Discretization . . . . . . . .. . . ... ...
5.1.1  (241) dimensions . . . . ...
5.1.2  (341) dimensions . . . . . ...
5.1.3 Decoupling of radial and angular quadratures . . . . .. ... ...
5.2  Mono-dimensional Shock wave . . . . . . .. .. ... ... L.
5.2.1 Analytic Solution (free streaming ultra-relativistic fluid) . . . . . .
522 RLBMresults . . . . . . . . .

6 Relativistic Lattice Boltzmann Method for Radiative Transfer
6.1 Theoretical Background . . . . . . .. ... ... ... ... ..
6.2 RLBM method . . . . . . . . . .

6.3 Simulation of a relativistic jet . . . . .. ...
Conclusions and Outlook
Appendices
A Projector A%’

B Integrals of the Maxwell-Jiittner distribution
B.1 Integrals Zot =% . . . .
B.2 Integrals K@t~ .

List of Figures

Bibliography

75
76
7
8
80
82
83

85
35
37

89

91






Introduction

Relativistic hydrodynamics is concerned with the study of fluids which move at velocities
close to the speed of light, and as such it has been historically developed to be applied to
astrophysical and cosmological contexts .

In these frameworks, a non dissipative theory is formulated as the zeroth-order expansion
of relativistic kinetic theory (a treatment of classical kinetic theory of gases within the
language of special relativity), that leads to the development of the so called Relativistic
Euler equations.

In the last years, new applications in fields other than astrophysics and cosmology (look
for example at the dynamic of Quark Gluon Plasma for high energy nuclear physics
and the study of electron flows in graphene for condensed matter |1]) have made clear the
necessity for a solid and structured theory of dissipative relativistic hydrodynamics, i.e. for
a relativistic equivalent of the Navier-Stokes Equations, on which to build upon for reliable
numerical simulations.

In fact, Relativistic Navier-Stokes equations have historically been plagued by theoretical
shortcomings (the presence of second order space derivatives and first order time deriva-
tive implies super-luminal propagation) and show numerical instabilities in simulations.
Although multiple steps have been made to overcome these shortcomings , , , a
definitive flawless theory has yet to be formulated.

An alternative approach to the problem consists in exploiting the dynamic at the kinetic
scale to resolve the evolution at the hydrodynamic scale. The relativistic Boltzmann
equation in fact does not suffer from the same theoretical shortcomings of the relativistic
Navier-Stokes equations, since due to the hyperbolic structure of kinetic equations the
emergence of viscous effects does not break causality.

In the non relativistic scenario, this bottom-up approach can be numerically achieved via
the so called Lattice Boltzmann Methods, that evolve a seminal version of the Boltzmann
equation to get the solution of the Navier-Stokes equations. So the extension of Lattice
Boltzmann Methods to the relativistic regime (from now on called Relativistic Lattice
Boltzmann Methods, RLBM) appears only natural.

In the past years, there have been several attempts in this direction. In ,
Mendoza et al. developed a scheme using Grad’s moment matching technique, while in
Romatschke et al. established a scheme for an ultra-relativistic gas of particles via
Laguerre polynomials expansion of the Maxwell-Jiittner distribution, at the expense of the
loss of perfect streaming and therefore the need for an interpolation scheme.

An attempt at multi-time relaxation schemes has been done in [80], with the implicit
goal of the independent tuning of shear viscosity and bulk viscosity, and with the additional
positive effect of retaining perfect streaming on a Cartesian lattice. In [94] it has been
shown that it is possible to avoid multi-time relaxation schemes, still using a Cartesian
lattice and properly tuning the bulk viscosity for ultra-relativistic flows, so as to recover
only the conservation of the momentum energy tensor, but still lacking the capability of
recovering higher order moments. A further improvement has been obtained in , where
an ultra relativistic scheme is developed with perfect streaming on a Cartesian grid, and
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with the ability to recover, in principle, higher order moments of the Maxwell-Juttner
distribution. In practice, such an improvement would require velocity stencils too big to be
be practical.

Blaga and Ambrus , have developed a class of off-lattice quadrature based models
capable of including arbitrarily high order moments, thus supporting simulations well
beyond the hydrodynamic regime, spanning in principle between the inviscid regime all the
way to the ballistic regime. Most of these previous schemes are focused on the simulation
of (3 + 1) dimensional ultra-relativistic systems. Through the years several attempts at (2
+ 1) dimensional schemes for the study of condensed matter systems have been realized
, , , , and attempts at bridging the gap between ultra-relativistic and non
relativistic schemes were made as well [46].

This Ph.D program has been focused on the extension and generalization of to a
unified, dimension independent, kinematically wide Relativistic Lattice Boltzmann Method
capable of simulating the whole mass spectrum, (from the ultra-relativistic to non-relativistic
regime), the whole rarefaction spectrum, (from ideal flows to free streaming flows), and
systems in every number of spatial dimensions, with particular focus on the most common
cases (d =2 and d = 3).

In the last part of the program the new techniques applied to extend the validity of
RLBM to rarefied regimes have also been employed to describe radiation dynamics, a
problem with relevant applications in astrophysical contexts [6, 27, [67]. A new special
relativistic numerical scheme, capable of bridging the gap between optically thin regimes
(when radiation weakly interacts with matter) to optically thick regimes (strong radiation-
matter interaction) has been realized.

This thesis is organized as follows, with chapters from 2 to 6 representing original work:

e In Ch. 1 an account on the theory of Relativistic Kinetic Theory and Relativistic
Hydrodynamics is given, starting from a brief derivation of Relativistic Boltzmann’s
Equation, with an introduction on two popular models for the approximation of the
Collision Integral. Next, a dimension-independent treatment of Ideal Relativistic
Hydrodynamics is provided, together with a description of the equilibrium distribution
function and an ideal Equation of State. Lastly, dissipative effects are taken into
account with the two most popular decompositions for the dissipative contributions
to particle flow and energy momentum tensor.

The content of this Chapter closely follows generalizing the discussion to (d+1)
dimensions, giving in particular d-dimensional expressions for the Ideal Equation of
State, the equilibrium distribution function, and non equilibrium components of the
energy-momentum tensor.

o In Ch. 2, after a quick introduction on non-relativistic Lattice Boltzmann Methods, the
derivation of the Relativistic Lattice Boltzmann Method (RLBM), a numerical scheme
capable of exploring all relativistic regimes and expressed in a (d+1) dimensional
language, is provided. Particular focus is given to the truncated expansion of the
equilibrium distribution function, to momentum discretization, and to the conversion
from Physical to Lattice units. Lastly, a step by step description of the algorithm is
provided.

-2—



Contents 4y BERCISCHE
UNIVERSITAT
S’ WUPPERTAL

An extensive discussion of the method can be found in [51], where a detailed explana-
tion of the velocity discretization procedure, together with additional benchmarks of
the method and an application to (241) electron dynamics is given.

e In Ch. 3 the link between kinetic and macroscopic layer is established, by means of
the Chapman-Enskog expansion and Grad’s method of moments. Next, RLBM is
used to discern which of the two methods provides the correct link to relativistic
hydrodynamics, and three different test flows are considered in order to provide a
calibration for the transport coeficients of the fluid.

Further details on the (2+1) picture and on Bulk viscosity can be found respectively
in [49] and [50], and again a general discussion is present in [51].

e In Ch. 4 two benchmarks for the RLBM scheme are presented: the Bjorken flow, a
toy model used in Particle Physics to mimic the hydrodynamic behavior of Quark
Gluon Plasma, and the Relativistic Sod Shock Tube, a benchmark commonly used in
hydrodynamics to evaluate the quality of a numerical scheme in the presence of strong
velocity gradients. In particular, it is evidenced how the previously exposed RLBM
struggles in correctly reproducing the dynamic in the presence of weakly interacting

fluids.

An in depth discussion of the RLBM testing in the presence of Shock Waves can also
be found in [4§].

e In Ch. 5 I present an extension of RLBM that enables the simulation of flows at
high Knudsen number (characterizing the level of interaction bewteen particles in the
fluid), correcting the issues of the previous scheme by means of a new momentum
space discretization. In this new procedure, the perfect streaming nature of the earlier
iteration is sacrificed for more capillary and isotropic velocity stencils, that cure the
issues previously evidenced in the Relativistic Sod Shock Tube benchmark.

Further details on the new momentum discretization can be found for the (2+1)
ultra-relativistic case in [7]. An article extending the method to (3+1) dimensions is
in preparation.

e In Ch. 6, a brief introduction on a new lattice kinetic scheme, based on the improved
stencil discretization exposed in Ch. 5, is exposed. The method is tasked with the
reproduction of radiation dynamics in both the optically thick and thin regime.

As in this thesis work only few details on the algorithmic development are presented,
the interested reader will find an in depth description of the method in [142].

Additionally, I present an application of the method to relativistic jets, systems that

are encountered in astrophysics contexts [105 114).

Additionally, a list of the publications produced through the years by the author is
given below:
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1 Relativistic Hydrodynamics

Here I give a brief description on the main principles of the theory behind Relativistic
Kinetic Theory and Hydrodynamics, since the numerical method at the base of this thesis
work is based on the first and resolves the second. The derivations included in these chapter
closely follow , but are often enriched with additional original considerations that are
meant to generalize the theory to (d+1)-dimensional systems, whereas often focuses on
the (341)-dimensional case.

This chapter is divided as follows: In Sec: 1.1 1T give a review on Relativistic Kinetic
Theory, a special relativistic extension of Boltzmann’s kinetic theory of gases. Then in
Sec: 1.2 and Sec: 1.3 the main theoretical concepts of relativistic hydrodynamics are given,
respectively for fluids at equilibrium and outside equilibrium.

In this thesis I consider a gas of particles with mass m in a (d+1)-dimensional Flat space-
time. The metric tensor is given by n* = diag(+, —). Einstein’s summation convention
is in place, with Greek indexes running from 0 to d, and latin indexes running from 1 to
d (d-dimensional vectors are represented in bold). In the next sections the projector on
the orthogonal velocity space A*? will be largely used. Its definition and properties are
summed up in Appendix. A.

1.1 Relativistic Kinetic Theory

The starting point in the development of a relativistic kinetic theory is the single-particle
distribution function f(z®,p®), where x® = (ct, ) are space-time coordinates, and p® =
(p°, p) is relativistic momentum, that accounts for the number of particles contained at
time ¢ in the 2d-dimensional phase space of initesimal volume du(t) = dedp,

N(t) = f(z®,p*)dp(t) . (1.1)

It can be shown that the distribution function is invariant with respect to Lorentz
transformations, since the number of particles is obviously invariant, and du(t) can be
proved to be invariant as well .

It can be verified that the invariant equation that determines the change in the
number of particles with respect to proper time is

AN(t) | ,Of a

m

with K¢ = % the so called Minkowsky Force, here supposed to not directly depend on
momentum.

The term at first member accounts for the change in the number of particles due
to collisions, and can be derived pretty much by following the rules of non-relativistic
Boltzmann Theory, provided that the language of special relativity is used to describe

—5-



%& BERGISCHE Relativistic Hydrodynamics

UNIVERSITAT R . .
S WUPPERTAL Relativistic Kinetic Theory

Figure 1.1 Representation of an elastic collision between two particles of the fluid. The momenta of the
particles before collision are denoted by (p, p.), while the momenta after collision are denoted by (p’, p’,).

Consequently denote f = f(z,p,t), f« = f(x,px,t), ' = f(z,p',t), fl. = f(z, P, 1)

collisions, and that the following assumptions (the same taken in classical kinetic theory)
are taken:

o The gas is dilute enough that only binary elastic collisions are considered, and collisions
involving more than two particles are ignored.

e Molecular Chaos Hypothesis: The momenta of the particles involved in the collisions
are not correlated among each other.

o The time scales over which f changes significantly are bigger with respect to collision
times, but smaller than times between two collisions. Same apply for length scales.

Following these hypothesis, and considering the binary collision depicted in Fig. 1.1,
one derives this form for the LHS of Eq. 1.2:

AN(t) _ p°

m= = B[ = o Dgaod0dp.] dutt) (1.3)

with g, the so called Mgller speed, a measure of the relative speed between the particles,
o the differential cross section of the scattering process. By defining the invariant flux

p°p!

c

F =g, =\ (07pg)? — mic? (1.4)

one can finally write down the final form of the Relativistic Boltzmann Equation for
non degenerate relativistic gases

aaf aaf o ! pl dp*
P mK W_/(f*f ~ fof)Fod0 (1.5)

Note here that this equation is invariant with respect to Lorentz transformations, as in
its derivation only invariant quantities have been used. Further, note that although particle
mass is present into Eq. 1.5, equivalent formulations can be proposed that are perfectly
well defined also for mass-less particles (dividing everything by p® does in fact get rid of
the mass, but also doesn’t manifestly show the coordinate invariance of the equation).

=6
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1.1 Model Equations

Eq. 1.5 is a complicated integro-differential equation, and its complications derive mainly
from the quadratic nature of its collision integral, on the RHS of the equation (from now
on said term will be denoted as )

(1.6)

0= ()~ f.0)Foa0 P

p

In the next sections, (specifically Sec. 1.2) it will be shown that 2 satisfies among the
others two main properties:

o For any collisional invariant ¢ (introduced in the next section) the following equality
must hold:

d
/prf ~0. (1.7)

e The H-theorem holds, meaning that the one particle distribution function f tends
in time toward an equilibrium value f** (its description is given in Sec. 1.2.2), or
equivalently that

d
/mogfpf <0 : (1.8)

the entropy production rate (introduced later on in this chapter) is bigger than zero
and equals zero only when it is computed at equilibrium (f = f*¢). More on this at
the end of Sec. 1.2

In order to simplify Eq. 1.5, approximated and simplified collision models are often
introduced in place of €2, especially when one develops Lattice Kinetic schemes or approaches
analytical solutions of the Boltzmann equation. A sufficient conditions for the validity of
said models is that they satisfy the conditions mentioned above (Eq. 1.7 and Eq. 1.8).

The most common Collision model for the classical non-relativistic case is given by the
widely known Bhatnagar-Gross-Krook relaxation time approximation ﬂgﬂ (which is in fact
at the base of the development of the classical Lattice Boltzmann scheme, see Sec. 2.1),
but other collision models have been used in the past .

As for relativistic theories, two main models have been used in the literature, both
extensions of the BGK model to special relativity: Marle’s model [82} [83) and Anderson-
Witting’s model [5].

Marle’s model is introduced by the following approximation:

Q~ —?(f—fe‘*) , (1.9)
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with 7 a typical relaxation time, i.e. the typical time needed to f to approach its
equilibrium value f°*. This model exhibits problems for mass-less particles, since in this case
space homogeneous solutions of the relativistic Boltzmann equation relax to equilibrium in
infinite time.

This argument was the reason why Anderson and Witting proposed their collision
model:

p*Uq
2T

O~ —

(f=r), (1.10)

where U is the macroscopic velocity of the fluid in the Landau-Lifshitz decomposition
(see Sec. 1.3.2 for more details). This collision model does not exhibit the problems
highlighted in Marle’s model, therefore it has been selected for the development of the
Relativistic Lattice Boltzmann Method presented in Chapter 2.

1.2 Ideal Relativistic Hydrodynamics

Eq. 1.5 is the base to work out the whole theory of relativistic hydrodynamics. As a starter,
one can use it to obtain balance equations for macroscopic thermodynamic quantities,
obtained as moments of the distribution function.

Consider a generic function ¥(z®,p®) of space, time and momentum, and multiply

Eq. 1.5 by it. Then integrate over the invariant momentum space %2
p

a of a df | dp _ Y, dp*d£
[l g ammeZh) 92— fuirr - opeaad®.

Further manipulations of Eq. 1.11 lead to the so called Generalized Transfer Equation

0 d 9 o] d
axa/wpafpzo?—/f lp"‘a;i +mK“a§; pf (1.12)
1 o
:4/(¢+¢*—w’—wi)(fif’—f*f)FadQ;; pfo’,

that is basically a balance equation for the macroscopic quantity [ ¥p®f f)—%;, with
production term due to collisions given by the RHS, and diffusive term given by the second
bit in the LHS. The primed/star notation on the 1 is self explanatory, and it is immediately

evident that quantities such that

Y+ Y=Y = =0 (1.13)

identify a particular class of functions, that are called Summational Invariants or also
Collision Invariants. For such quantities it is possible to verify the following theorem

(proofs can be found in [20} [14] 24]):

w8
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Theorem: 1 Any continuous and differentiable (at least € C?) function of momentum
W(p®) is a summational invariant if and only if it has the following form:

Y(p) = a+bap™, (1.14)
with a/b, any scalar/vector quantity that does not depend on p“.

Choosing 1 = ¢, cp® one obtains balance equations for the most important quantities in
relativistic fluid dynamics (in the second case assume for the moment external forces to be
7€ero):

0 o AP
0—@[0/19 fﬂ’ (1.15)
_ 0 a8 AP
0—%[C/ppfp—0]a (1.16)

where we define the Particle Flow N® and the Energy Momentum-Tensor T as
respectively the first and second moment of the one-particle distribution:

d
Ne — c/pafp—f , (1.17)
d
T8 = c/papﬂfp—g . (1.18)

so that Eq. 1.15 and Eq. 1.16 become

ON*=0 , 0,7 =0. (1.19)

Another interesting macroscopic quantity that can be introduced by setting i =
—kpcflog f (not a summational invariant!) is the Entropy flow S®.

d
S — —ch/pO‘flog fp—f , (1.20)
_ kBC ! el f/fi dp* dp
¢ = e (fof' = fof)log <E> Fod{ D0 F ) (1.21)

so that Eq. 1.12 becomes in this case the balance equation

0aS® =< . (1.22)

The entropy production rate ¢ here gives the rate at which entropy rises due to collisions.
By introducing

—9-
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go— 2 _ /0‘1 op 1.23
bo=c vl s L (1.23)

¢ ¢ I'F dp. dp
5:_7:,/ ) o ( *)FJdQ P 1.24

Eq. 1.22 becomes

0, H*=S5". (1.25)

The following two important theorems can be proven and the result goes under the
name of H-theorem:

Theorem: 2 If H(t) = C%HO‘UQ s a continuous and differentiable function of time, and
satisfies the following:

H
8—§0 H>Hp=H(f)
ot
and if both f and fp@“fdp are uniformly bounded (f being also equicontinuous 1@/)
then
lim H(t) = Hg

t—o00

Theorem: 3 If one has tli)m H(t) = HE} then Lli)m f(t) = feq}

2.1 Fields at Equilibrium

Goal of this section will be to describe in more detail the particle flow N defined in Eq. 1.17
and the energy-momentum tensor 7 defined in Eq. 1.18, when considering a fluid at
equilibrium. It is useful to consider these quantities in a local Lorentz rest frame, i.e. the
frame of an observer which is moving with the fluid and thus measures its macroscopic
velocity U® at rest:

Ug = (¢,0) (1.26)

Since one has the following physical understanding of the various components of the
particle flow and energy momentum tensor

T = internal energy density
%N Y = particle number density cT% = energy flux density
N? = particle flux density ’ LT = momentum density

T% = momentum flux density

once the following quantities are introduced,
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n: particle number density

P: isotropic pressure

e: internal energy density

T: temperature

s: entropy per particle

it is possible to specify N and 7’ gﬂ , since in a fluid at rest there is no particle/energy
flux going on, and the only momentum contribution is given by hydrostatic pressure:

T =¢
NY =cn TV =
Np =0 " |T° =0
T4 = P§

At this point, the equilibrium versions in a generic reference frame can be identified
just by considering an inverse Lorentz boost from the rest frame to the frame where the
fluid has velocity U*:

N2 — A@ Nﬂ
U =A%Up =5 AR (1.27)
TE — AauAﬁyTg
therefore
Ng =nU", (1.28)
Uueys
T2 = (P +¢) o Py (1.29)

Once the equilibrium distribution moments are defined, it is possible to derive the
Constitutive Equations of an Ideal Fluid, which are the relativistic version of Euler equations.
By imposing Eq. 1.19 on the equilibrium quantities N and Tgﬁ , one gets:

0 =0.Ng Mass Conservation
0 =Uz0,T" Energy Conservation : (1.30)
0 = A39, 78" Momentum Conservation

Then, taking Eq. 1.28 and Eq. 1.29, and by employing the decomposition of the gradient
0, into U parallel-orthogonal components (more on this decomposition in Appendix A) one
can recover the conservation equations in a form similar to their non relativistic equivalents:
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0 = Dn-+nA*U,
0 = De+ (P+6)V ue . (1.31)
0 =DU*+ £-V*P

P+e

2.2 Equilibrium distribution function

Having derived the equilibrium thermodynamic quantities, it is also possible to derive a
functional form for the equilibrium distribution function f°¢ that leads to said quantities.
The first to derive such a functional form was Jittner in [70], and therefore the relativistic
counterpart of Maxwell-Boltzmann equilibrium distribution is called Maxwell- Jiittner
distribution. It is easy to see that taking the non relativistic limit one recovers the usual
Maxwell-Boltzmann statistics.

At equilibrium, the entropy production rate ¢ has to vanish, meaning that the distribution
function f°* has to satisfy (look at Eq. 1.20)

Jo e — frofen = (132)

or, taking logarithms,

log f:* + log f* = log f* + log f** (1.33)

meaning that ¢ = log f°* is a summational invariant, and therefore according to Eq. 1.14
has to be written as

log f** = a + byp™ = [ = exp(a+ b.p®) . (1.34)

By resorting at the equilibrium quantities defined in Eq. 1.28 and Eq. 1.29, one can
work out the values for a and b,, and therefore write down explicitly Eq. 1.34:

for = B(n’T)e.ITp(—Z;CaB(;?) , (1.35)

with B(n,T) a normalization coefficient that can be determined by using Eq. 1.35 into
Eq. 1.17 and setting B in order to satisfy the definition Eq. 1.28:

s d
Ng_c/feqpap_cB/ G e _ B 7o — U (1.36)
Po

12
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so that together with the analytical expression for the integral Z¢ (see Appendix B for
details), the correct normalization factor for the equilibrium distribution function can be
determined:

B(n,T) = < < )d o (1.37)
’ kgT Q%W%C%K%(o ’ '

where K;(C) is the modified Bessel function of the second kind of index i.
The relativistic parameter ¢ = me named Relativistic Coldness, is the ratio between

kT’
the rest energy of a particle mc? and kgT', which gives the order of magnitude of the thermal
energy in the gas. This is the parameter that quantifies the level of 'relativity’ of the gas:

( <<1 = ultra-relativistic regime (mass-less particles)
( ~1 = mildly-relativistic regime

¢ >>1 = classical (non-relativistic) regime

2.3 Ideal Equation of State

The closure for the conservation equations is given by an appropriate Equation of State
(EOS). In order to derive the EOS for a perfect gas in (d + 1) space-time coordinates in a
relativistic regime, one can compute Eq. 1.18 using the definition in Eq. 1.35, together with
the analytical expression for Z% (see again Appendix B):

d Ueu®
Tgﬂ — C/feqpapﬂj =c B Zaﬁ = PGd 3 — nkBTnO‘B s (138)
Po c
where the dimensionless parameter (G4 has been introduced:
P Kas(Q)
G =t S (1.39)

P K (Q)

In order to identify the EOS it is then sufficient to match the terms with the same
tensor structure in Eq. 1.38 and Eq. 1.29; one finally obtains:

€ = P(Gd—l),

P = nkgT. (1.40)

It is interesting to check whether the formulation appearing in Eq. 1.40 is compatible to

the known ideal EOSs of the ultra-relativistic and non-relativistic cases. First, it is easy to
verify that for ( — 0 one gets the expected result:

€ur = dP . (1.41)
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For the classical case one has instead to first define a kinetic energy density €, = € —nmc?
by subtracting the rest energy density to . Then the limit ( — oo provides the known
result:

d
lim e, = hm P(Gy—1—-()==-P. (1.42)
(—o0 2
In Fig. 1.2 the ratio *= shows the behavior of the EOS for different spatial dimensions,

and provides also the results for the two limiting cases.

0 1 2 3 45 10 20 30 40 50 100

Figure 1.2 Ratio of kinetic energy density to ultra-relativistic energy density for a gas obeying an ideal
gas law, for different values of the spatial dimension d. One can appreciate that the limiting cases are well
recovered.

From the EOS one can obtain a few more thermodynamic quantities which will be
useful in the coming sections, such as the heat capacity at constant volume c,:

cp = a(;;”) = ks |2+ d)Ga+ - Gi—1] , (1.43)

the heat capacity at constant pressure cp ( he = (¢ + P)/n is the relativistic enthalpy
per particle) :

Oh,
cp= o7 = hn 2+ d)Ga+ -G, (1.44)
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and the adiabatic sound speed c,:

P [@rdcic-cioi
_ &% _ . 14
© c\/; CJ Ga(2+d)Gy+ 2 —G7) (149)

1.3 Dissipative Effects

The following explanation is a summary and d-dimensional generalization of the contribu-
tions that can be found in 20}, [53).

When considering non ideal fluids, dissipative effects have to be taken into account.
Energy and momentum are transferred between infinitesimal parcels of fluid, and additional
non equilibrium components enter in the definitions of N and 7.

In order to identify these values, it is necessary to understand that N and 7% have
respectively (d+ 1) and $(d + 1)(d + 2) idependent terms (from Eq. 1.18 it is possible to
see in fact that T is symmetric)

(d+1) N

sd+1)(d+2) 1T (1.46)

;(d+ 1)(d + 4) = {

These fields have to be indentified with corresponding physical quantities, with some of
them already defined in Sec. 1.2.1. With the help of the decompositions Eq. A.8, Eq. A.9
and Eq. A.14 defined in Appendix A, one has

N =nU*+qy , (1.47)
T = e +g(qTUﬂ+q§U>+ﬂ< 7> (P +wm)A (1.48)

The physical quantities appearing above are summed up in the following table

field nr. of terms | eq/neq formula

Fluid Velocity U® (d+1) eq. -

Particle density n 1 eq. n = C%NQU @

Energy density e 1 eq. €= C%UaU 5T

Temperature T’ 1 eq. EOS
hydrostatic pressure P 1 eq. EOS
dynamic pressure w 1 neq. w=—P— éAa[gT af

Pressure deviator 7 4(d+3) neq. | 7<= (A:Af — %AaﬂAW;) T
Heat flow ¢® = ¢3 — ¢% (d+1) neq. a5 = EEA 5N

47 = ARUTH

and count a total of %(14 + 7d + d?) indipendent elements, that are reduced to the
expected value Eq. 1.46 once the conditions
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1 P =nkpgT
1 e=P(Gy—1)
d+5=<1 Ut =¢? (1.49)
1 OuN*
d+1 9,7

are taken into account.

Unfortunately, it is evident from the table 1.3 that all the non equilibrium components
appearing in dissipative hydrodynamics depend on the definition of the macroscopic velocity
U*, and therefore are not uniquely defined.

Two main definitions have been identified in the theory:

o Eckart Decomposition In this frame, the macroscopic velocity is directly
connected to the particle flux, meaning that the particle flow N is formally defined
as its equilibrium counterpart Ng. This frame is also called Particle frame.

o Landau-Lifshitz Decomposition In this frame, the macroscopic velocity is
directly connected to the energy flux, meaning that the energy momentum tensor has
only additional components that are Minkowsky-orthogonal to U®. This frame is also
called Energy frame.

3.1 Eckart Decomposition

In the Eckart decomposition (every quantity in this frame will be denoted using a subscript
¢) the macroscopic velocity is chosen to be parallel to the particle flow:

2
[o n.c

© ~ NeN,

Ne | (1.50)

With this prescription, it is easy to show that

v =0—=q¢"=q¢7 =¢" (1.51)

Therefore N® and T%? are defined as follows:

N® =nU* (1.52)
[e% UeaUeﬂ (0% (0% 1 (6% o
T 5:597—(Pe+we)Acﬂ+7rc< ﬁ>+g(Uc @@ +U) (1.53)

Another quantity that can be decomposed is the entropy flow S = s, U* 4 ¢2,
« entropy density: s, = C%SQUQO‘
e entropy flux: ¢¢ = fﬂSﬁ
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3.2 Landau-Lifshitz Decomposition

The Landau decomposition (denoted by the subscript ¢) proposes instead the following
implicit definition of U;*:

U= —7— 1.54
T UpUn T o

which implies
Gr=0—q"=—qy =4, (1.55)

and the following decomposition for the particle low and the energy-momentum tensor:

N® = U + A* (1.56)

veuy
2

T =, — (P w ) AP + 75> (1.57)

where A® is an additional, U%-orthogonal term to be determined. In order to do so, one
defines as V¢ the difference between the macroscopic velocities in the two decompositions:

Ue =U"+ Ve . (1.58)

Obviously, at equilibrium both descriptions are equivalent, so V¢ represents a non-
equilibrium quantity. Assuming to be close to equilibrium, so that quadratic terms can be
ignored, one can determine some useful properties by imposing U*U,, = U*U,, = c¢*:

e

VU =UU,, = 0. (1.59)

Then, by imposing the equality of N* among the two decompositions,

N® = nU" = n,U* + A , (1.60)

one can determine (by taking the scalar product by U%) that n, = n, = n. Further, it
is easy to then verify that

Aa
V= ——| 1.61
~ (161)
and by applying the same procedure to the energy momentum tensor, (equate Eq. 1.53
to Eq. 1.57, use Eq. 1.61, and ignore all non linear terms) and entropy density, it is possible

to verify that
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7T_e<o¢ﬁ3> — 7T1_,<a6> = 7T<ozﬂ>7
P.=P =P,
w, = W, = w, (1.62)
€. = €, = €,
Se =8, =S

and all these relationships hold as long as one stays close to equilibrium. In the end,
the Landau-Lifshitz decomposition for N® and T reads as

n
N =nUS — o 1.63
n 4 P+€q ) ( )
UozUﬁ
T = e L — (P4 w)A 4 7<oF> (1.64)

c2

and the relationship between the two decompositions is given by

n
ur=u0" o 1.65
£ e +P+Eq ( )

In the following, unless explicitly stated, the Landau-Lifshitz decomposition will be
used, so the subscript ¢« will be from now on omitted. All formulas defined in Tab. 1.3 are
used.

3.3 Transport Equations

Once a decomposition among the ones previously presented is chosen, one can work out the
conservation equations for a dissipative fluid just like it was previously done for an ideal
fluid at the end of Sec. 1.2.1 (Eq. 1.31). For Landau-Lifshitz, for example, one can take
Eq. 1.63 and Eq. 1.64 and insert them into Eq. 1.19.

In this way one would get the relativistic versions of Navier-Stokes and Fourier equations.
The problem is that, just like in the classical case one has to specify a form for the shear
stress tensor, here the obtained conservation equations would not be of relevant use if one
does not specify a functional form for w, 7<%>, and ¢°.

Traditionally, the most straight forward way of building such constitutive equations
is the thermodynamic theory of irreversible processes, that assumes a linear relationships
between the thermodynamic forces and fluxes:

w=—pV,U", (1.66)

pP> = opv<eyh> (1.67)
T

¢ = A (V”‘T - CQDU“) . (1.68)
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i, n, and A are respectively known as Bulk Viscosity, Shear Viscosity, and Thermal
Conductivity. The three quantities are collectively called Transport Coefficients, and Eq. 1.66,
Eq. 1.67 and Eq. 1.68 are known as First Order Transport Equations.

When considering non relativistic velocities, these equations assume the classical non-
relativistic forms (since U* = (¢, w), with 7 the Lorentz Factor, the non relativistic limit
is represented by v ~ 1+ O((u/c)?)):

w = pouy
7T<ij> = n(@zuj + ajui — %(5Z]akuk) (169)
q = -\, T

0 = 700> — p<0> _ p<i0> _ o0

By comparing Eq. 1.68 with the last of Eq. 1.69, one notes that a completely relativistic
effect occurs: even when considering isothermal flows, there is a heat flux due to pressure
gradient (as it can be seen by transforming the second term of Eq. 1.68 with the help of
Eq. 1.31).

Also, a problematic property of the first order transport equations is that they are
not causal, meaning that if one inserts them into balance equations Eq. 1.19, the second
order derivatives would make them parabolic equations and therefore would imply that
information travels faster than light (see for a detailed explanation).

First order theories are not compatible with special relativity, therefore second order
theories have been proposed through the years that try to restore causality: the
most successful among those, known as Israel-Stewart theory (IS), encapsulates Maxwell-
Cattaneo’s relaxation formulation [17] into a theory of dissipative hydrodynamics [62] [64]
63]. Reviews on second order theories are available in [97, [68].

ToDw +w = —uV,U", (1.70)

TASA DTSR 4 g=of> = opv=eUr” (1.71)
T

BASDg" + " = \ (V“T - CQDU“) . (1.72)

However, in recent years it has been shown that IS formulation exhibits some theoretical
shortcomings as well as poor agreement with numerical solutions of the Boltzmann
equation , . In practice, there is still some work to do in order to obtain an efficient,
stable and causal theory of dissipative hydrodynamics.

For this reason resorting to a kinetic description to detail relativistic hydrodynamics
sounds appealing. In fact the basic equation of relativistic kinetic theory, Eq. 1.5, does
not present second order derivatives and is thus hyperbolic: it does not show causality
problems. This is in fact one of the main advantages of relativistic lattice kinetic schemes:
dissipation arises naturally from the dynamics, without posing theoretical shortcomings.



2 Lattice Kinetic Schemes

In this chapter I will describe in detail all the algorithmic steps that have to be taken
in order to derive a Relativistic Lattice Boltzmann Method (RLBM), 7.e. a Lattice
Boltzmann Method (LBM) compatible with the special relativistic formulation of kinetic
theory and hydrodynamics detailed in Ch. 1.

What will be obtained is a fully fledged numerical scheme capable to simulate fluids
ranging from the ultra-relativistic regime to the non-relativistic one, with a firm control
on the transport coefficients, and within d = 1, 2, 3 spatial dimensions. More detail on the
derivation of the method presented in this chapter can be found in [51].

The first RLBM has been derived at the start of the past decade , as a natural
extension of the classical LBM. It focused on the description of gases made up of mass-less
relativistic particles, and described (341) dimensional fluids. The first model developed
using an expansion of the Maxwell-Jiittner distribution, like traditional LBMs, was derived
in . The model sacrifices perfect streaming for a more straightforward discretization
procedure, but can be formulated using coordinates different than Cartesian ones and
can be extended to work with non ideal EOS (an ideal continuation of this work
can be represented by , that extends the off-lattice approach to also work with beyond
hydrodynamic regimes).

Subsequent development to , (that is based on the use of classical LBM stencils)
are represented by , that implemented a multi-relaxation time scheme, but was not
extensible to higher order moments, and by [94], that cured some difficulties of the original
model in the energy-momentum tensor by opportunely tuning the transport coefficients.

All of these improvements were finalized into [90], a (3+1) lattice kinetic scheme for
ultra-relativistic flows capable of correctly reproducing the hydrodynamic moments and
with perfect streaming implemented.

All the models mentioned so far only tackle ultra-relativistic flows, and a scheme that
bridges the gap between these flows and non-relativistic flows has been presented in [46].
The RLBM presented in this thesis is an algorithmic refinement of this last scheme, that
generalizes the method to a generic number of spatial dimensions, and is also equipped
with tunable macroscopic transport coefficients. Said scheme has been presented in detail
in [51).

The chapter is divided as follows: in Sec: 2.1 I give a review of the algorithmic steps
needed to derive a classical (non relativistic) LBM. In Sec: 2.2 the RLBM in its generic
(d+1) dimensional formulation is presented.
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2.1 Non relativistic Lattice Boltzmann Meth-
ods

The Relativistic Lattice Boltzmann Method presented in the next sections will naturally
build on classical (non-relativistic) Lattice Boltzmann Method (LBM) for its development,
therefore a basic knowledge of classical lattice kinetic schemes is advised. In this section I
will therefore provide a brief summary on the main features of LBM, in order to ease the
understanding of the next sections. The interested reader will be able to find a detailed
description of the method in the literature 76].

LBM is a computational scheme that was realized in the past decades to tackle the
simulation of classical hydrodynamics. It is powerful, highly parallelizable, and an alternative
to the more traditional Computational Fluid Dynamic solvers, that directly solve the
macroscopic conservation equations of the fluid flow. LBM relies instead on a statistical
description at the mesoscopic scale (which is an intermediate step between the molecular
scale, of the order of the nm, and the macroscopic scale, beyond the mm), and is therefore
strongly bonded to the kinetic theory of gases [1§].

The origins of the method date back to the pioneering work made in the 80s on Lattice
Gas Cellular Automata , , . Subsequent developments established a background for
LBM as a self contained theory , , to the point of its complete formulation with
mathematical foundations grounded in the Hermite Quadrature , .

As already stated, LBM is theoretically based on the kinetic theory, and therefore has
at its core the so called Boltzmann Equation

0 F
—+4+v-V —-V x,v,t) = 2.1
(5o Tet 29, sl =2, 1)

where the distribution function f(x,w,t) is the phase space number density of mass m
particles with velocity v, position @, at time t, that are subject to the volume body force
F.

The right hand side of Eq. 2.1, that accounts for inter-particle collisions, is a complicated
integral in the velocity space, that makes Eq. 2.1 an integro-differential Partial Differential
Equation. Therefore this term is replaced with the customary Bhatnagar-Gross-Krook
(BGK) relaxation time approximation ﬂgﬂ:

Q~ —i flx,v,t) — f(x,v,t)| . (2.2)

This approximation is physically motivated by the natural tendency of f to reach, in
a typical time 7, the equilibrium distribution f represented for classical fluids by the
Maxwell-Boltzmann distribution
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with d the dimensionality of the system, kg the Boltzmann constant and p, T, and u
respectively the mass density, the temperature, and the macroscopic velocity fields of the
fluid (note that fe¢ depends on space and time trhough these quantities). These fields can
be computed as the first moments of the distribution function (7" is computed with the aid
of an equation of state, and here we use an ideal EOS):

pl@.t) = [ f(@,v,0)d0, (2.4)
1

u(x,t) = @D /f(:c,'v,t)d'v, (2.5)

T(,1) = W [ 10— e, )P f (@, t)v (2.6)

The algorithmic development of LBM starts, after the variables are made dimensionless,
from realizing that both f and f°* can be expanded as a series of orthonormal polynomials,
and specifically the rank n tensors Hermite polynomials H™ (v) (the reason for the choice
of such orthonormal basis will become clear afterwards)

f@ v, t) = w(®)y ;a(")(w,t) CH™(v) (2.7)
Fi (@0, 1) = () ;ag:;)(m,t) CHO (v) | (2.8)

n

with the expansion coefficients given by

a™(x,t) = /f(a:,v,t)H(")(v)dv, (2.9)

al(z,t) = /feq(w,v,t)H(")('v)dv, (2.10)

and the weight function w(v) given by

N

w(v) = (273)61/2@—”2 : (2.11)

Note that a key aspect of the whole procedure is the following equality

£ = g (”]T“) 7 (2.12)

since it gives a way to directly compute Eq. 2.10 and provides a direct link between the
coefficients @™ and the hydrodynamic quantities of interest

22
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al) =p (2.13)

agcll) = pu (2.14)

a? =p(u@u+ (T - 1)) (2.15)

This, together with the property of the collision invariants ([¢Qdv = 0 for ¢ =
1,v,v?, |v — u|?), guarantees the following

ol = [ frav =p = [ fav = a® (2.16)
al!) = [wfdv —pu = [vfdv = a® (2.17)

Tr [agz)} + p(d —u?) = / |v —u|?fldv = pdT = / lv —ul*fdv = Tr [a@)} + p(d — u?)

This has two main consequences: 1), since one is interested only in the first conserved
N moments of f, Eq. 2.7 can be truncated up to N, with no fear of losing information on
the quantities of interest

S A N S
f:w;ma"'H", feq:w;aan~H”, (2.18)

and 2), Gauss quadrature rules can be employed for the discretization of the velocity
space.

In fact since Eq. 2.18 guarantees that f/w is at most a polynomial of order N, from
Eq. 2.10 one sees that in order to correctly compute the expansion coefficients up to the
desired order quadrature rules that exactly integrate 2N order polynomials are needed.
This means that one needs a rule to choose a set of Ny, discrete velocities ¢; and related
weights w;, so that the integrals of Eq. 2.10 can be exactly turned into discrete sums without
loss of information:

a™(x, 1) :/f(w,v,t)H(”)(v)d'v

Npop
Yl o

Obviously, Eq. 2.13 and Eq. 2.16 guarantee that quadratures working for the expansion
coefficients are also preserving the thermodynamic quantities p, w and 7', which in the end
are exactly the quantities one wants to obtain:

23 mm
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p= Z w; () (2.20)
Npop
pu = XZ: wlf(fécc:)’ 2 c (2.21)
Npop .
pdT = Z win ~uf? (2.22)

The determination of minimal sets [wi, cz} has been studied in the past, and to this
day the sets for d = 1, 2,3 and the first values of N are well established in the literature
|125] (while the case d = 1 can be solved analytically by employing the classical formulas
for the Gauss-Hermite quadrature rule , the higher dimensional cases have to be solved
numerically, by resorting to the so called method of prescribed abscissae [106]).

Once discretization in the velocity space is done, one is left with a group of Ny, values
filx,t) = f(x, ¢;,t), which are commonly called populations.

By integrating Eq. 2.1 through characteristics, and with the help of a second order
explicit Euler forward scheme for the approximation of the subsequent integral (more details
on this are available in , Ch. 3.5), one can derive the Lattice Boltzmann Equation, that
dictates how populations f; evolve in time:

fil@ + ¢ At t+ At) = fi(z,t) — Af (filz.t) = (1)) (2.23)
2.2 Relativistic Lattice Boltzmann Methods

In this section a review on the main logical steps needed to develop a Relativistic Lattice
Boltzmann Method will be given. It will be immediately evident that although the procedure
to define a RLBM stems directly from the one presented in the previous section for LBM,
there are complications in the development of the method caused by the request of Lorentz
invariance. In particular, the different functional dependency of the equilibrium distribution
function (Maxwell-Jiittner versus Maxwell-Boltzmann) on particle’s velocities makes it
impossible to adopt Hermite polynomials for the truncated expansion of the equilibrium,
and to use Gauss-Hermite quadratures for the velocity space discretization.

The procedure used to define this RLBM has its roots in the schemes used for ultra-
relativistic gases in , , and has been developed though the years by the author’s
research group , . Then a final, comprehensive generalization of the method to (d+1)
dimensions has been presented in . This is exactly the RLBM that will be described in
this section.

The starting equation for the algorithmic development is the relativistic Boltzmann
equation in the Anderson-Witting approximation

of of pUq
> K~ = — — fe1) . 2.24
P oz tm op~ 2T (f / ) ( )

- 24
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As already stated, the derivation is similar to that of a LBM and can be summarized
in the following steps (from now on, unless explicitly stated, natural units will be used:
Cc = kB = 1)

1. The first step consists in writing down Eq. 2.24 in a more appropriate form by dividing
it for p:
g jé?f'_'_mKa af _ p°Us

ot v oxd po Opr  pd

(f=r=), (2.25)

where v/ = p?/p° is particles’ velocity. In this form the equation resembles its
non-relativistic counterpart.

2. Then, an appropriate polynomial expansion of the Maxwell-Jittner f has to be
produced. Since the functional dependency of f° on the microscopic velocity v* is
not quadratic, Hermite polynomials are not suited for the job.

A proper set of rank n tensor polynomials J™ (p*) is therefore built by means of
a Gram-Schmidt orthogonalization procedure on the set {1,p* p*p®, ...} (here -
represents full tensor contraction).

P U T) = w(p?) S a® (U, T) - T () (2.26)

k=0
with w(p”) a weight function, and a® (U*, T') the tensor expansion coefficients

d
(U T) = [ fo U 1)IO ) (2.27)
Just like in the LBM, the weight function w(p®) is chosen in such a way that the
expansion coefficient of k-th order coincides with the k-th moment of the distribution
function, so that truncating Eq. 2.26 to order N preserves its first N moments.

RE"UMT) = w(’) % a® (U, T) - TR (p) (2.28)
k=0

3. A quadrature rule has now to be found. By resorting to the method of prescribed
abscissae [106], one identifies a set of N,,, discrete momenta p!' (with the additional
caveat of the corresponding discrete velocities having to sit on the nodes of a Cartesian

Grid in order to preserve Perfect Streaming) and related weights w;. Then one has a

set of N,,, distribution functions f; = f(p!',2*), N,., discrete versions of Eq. 2.25,
N,,, equilibrium distribution functions f;y
N
[y =wi - a® U, T) - TP () (2:29)
k=0
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4. Very much like it is done in the non-relativistic LBM, the discretization in space and
time is done by integrating over characteristics and approximating the integral via a
second order Euler scheme, leading to

PiUq

fi(x +v' At t + At) = fi(x,t) — .

(folm.t) = fi%) + B¢ (2.30)

with F* the discretized version of the external forcing term appearing in Eq. 2.25.
Of course, this term has to be properly treated as well, and a description of its
discretization will be given in the following pages.

2.1 Expansion of the Maxwell-Jiittner distribution

Before detailing how the expansion of the equilibrium distribution is performed, variables
have to be made dimensionless. By considering a reference temperature Ty, (note here that
in natural units ¢ = kg = 1, temperature, mass, energy and momentum have the same
physical units, and velocity is adimensional), one introduces the following variables:

- T m P

o =g =g (2.31)

Then one selects a weight function w(p®) to later define a scalar product on Hilbert
space of distribution functions

=0

w(p) = C(m, Ty)e ? . (2.32)

The weight function is selected as the Maxwell-Jiittner distribution in the fluid’s rest
frame. This choice is crucial as it provides a direct link between the expansion coefficients
of the distribution function and its moments. C'is a normalization constant selected in
such a way that

/ w<ﬁ°>f£ —1y | w(ﬁo)(jf —1, (2.33)

implying

(2.34)

1 d—1
O(m,To) - (%) 2d+1 d—1

This normalization is chosen in order to simplify the process of searching for a quadrature,
as it will be shown in the next section.
One then can define a scalar product (-,-) on the Hilbert space of distribution functions
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()= [wO0D. (2.35)

in order be able to build the polynomials {J® (p#),i = 0,..., N} via Gram-Schmidt pro-
cedure on the set {by,k=1,---, (NJF]\U,{H)} = {1,p*,p*p”,...}. The well known algorithm
reads as follow:

k=1(p. c.
R R 11| PSS S (2.36)
i (e, ¢) (ks cx)

where e, stands for every single independent component of the tensors {J® (pH),i =
0,...,N}. During the application of the Gram-Schmidt algorithm, the results for the
integrals from App. B are used.

Then, using the definition given in Eq. 2.27 one can compute the coefficients of the
expansion up to the desired order IV, again using the results from App. B. The expressions
of both the polynomials and coefficients are rather bulky and therefore are given in the
appendices.

As an example the first order (N = 1) expansion of the (d+1) distribution function is
here given:

eq cn 0 1 (7 — Ga_2) ( o Gas ) 1 >
= w = + —= = U" — — — = Uz s
1 k}BTQ (p ) (Gd_QT Gd_g(d - Gd_g) + m2 TGd—2 Gd—2p

where G5 = Gg4_2(m). In general, the dimensional information is carried by the
expansion coefficients, that are always a product of n/Ty and adimensional terms depending
on p*, U, T. Polynomials are instead written in terms of 7 and p*.

In Fig. 2.1 a graphical comparison between the truncations at various orders N and the
original Maxwell-Jiittner distribution is provided for the case at (241) dimensions. It is
possible to observe that already with N = 2 the truncated expansion well reproduces the
complete distribution.

Before moving on, one final remark has to be done: the whole procedure highlighted so
far has to be modified for the ultra-relativistic case in (141) dimensions. In this case in
fact the expressions become ill-defined (polynomials and coefficients become divergent in
the limit m — 0) if C' is computed like Eq. 2.34.

Only in this case then the normalization is chosen to be equal to the physical normal-
ization B used in Eq. 1.37. When one does so, a structure like the one given previously
appears, but without ill-defined ultra-relativistic limits.
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Figure 2.1  Comparison of the truncated expansions of the equilibrium distribution function for various
orders of truncation N against the complete form of the Maxwell-Jiittner distribution. (2+1) dimensional
case. The various settingsare I'=1, m =0, p, =p, =0, UY =U* =0, and 3 = UI/U(J = 0.25.

2.2 Quadrature Rule for momentum discretization

The discretization of the momentum-velocity space has a pivotal role in any Lattice
Boltzmann scheme, since it allows for the ezact calculation of the hydrodynamic moments
as finite sums over the discrete nodes of the quadrature.

In the framework of RLBM , , these quadratures are designed to retain one of
the main LBM fratures, perfect streaming, i.e. it is requested that all quadrature points lie
on the nodes of a Cartesian grid, so that at every time step information is propagated from
one grid cell to the neighboring one. This has two desirable side-effects: i) super luminal
propagation is ruled out by construction, and ii) no artificial dissipative effects emerge,
since there is no need of interpolation.

It will be seen in the next chapters though that this is not the only possible choice:
relaxing the perfect streaming condition brings a number of positive effects in the simulation
of rarefied flows.

For the moment, the method selected in the creation of Gauss-Quadratures is the one
of prescribed abscissae , that enforces the discretization through the selection of sets
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of weights w; satysfing the orthonormality conditions between the polynomials J @ (p*)

n m ~ n ~ m ~ dp
(70, T) = [0, )T, ()55 = nmﬂéakﬁk, (237)

This condition becomes discrete after a set of N*» momenta {p!} has been selected:

NPop n
(T, Ty = 3w, ) (7T () = O [T et - (2.38)
i k=1

This last condition provides a set of linear equations for the weights w;, that have to be
numerically identified. In order to enforce the condition of perfect streaming, the following
parametrization has to be considered for the discrete momenta:

where n; € Z¢ represents vectors joining the nodes of a Cartesian grid, and vy is a free
parameter that has to be chosen in such a way that all discrete velocities v; = von; are less
than one (i.e. the speed of light in natural units). Additionally, p? is given as

P

The whole quadrature process can be summarized in the following steps:

(2.40)

1. A value for m is chosen.
2. A value for vy is chosen.

3. A set of discrete vectors n; € Z? is chosen. The vectors are organized in fully
symmetric subgroups, each containing vectors of the same length. Any one of these
subsets identifies an unknown weight, and therefore one has to be sure to include
enough subgroups in the set in order to have enough unknowns to satisfy the linear
independent conditions represented by Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding weights w;. If
no solution is found, then a new value of vy is chosen and the procedure starts again.
The weights have to be non-negative in order to guarantee numerical stability.

For the ultra-relativistic case a different parametrization has to be used: in fact Eq. 2.39
is not well defined. One thus considers

Py = (1, vomy) | (2.41)
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where the ]59 are now free parameters and v, is a parameter chosen such as the vectors
vomn; all have lenght one. The sets n,; are identified by considering the intersections between
the surface of a d — sphere and the nodes of the grid. vy is then the reciprocal of their
common length.

Again, the mass-less quadrature procedure is summarized by the steps:

1. A value for 7 is chosen.
2. A d—sphere with radius R is considered. In this case we set vy = 1/R.

3. The set of discrete vectors € Z9 that have length R is considered. Again, the number
of velocities in the set has to be enough to fulfill the independent conditions present
in Eq. 2.38.

4. The system of equations Eq. 2.38 is then numerically solved by finding non negative
weights w; and energy shells ]3?. If no solution is found, then a new radius is chosen
and the procedure starts again.

In general it is possible to find many different solutions (v, {p!', w;}) to the quadrature
problem, and some of them are valid for a wide range of m. In this way one can cover the
whole spectrum of particle masses, from the ultra-relativistic to the classical limit. Fig. 2.2
shows examples of stencils for different dimensions, and different relativistic regimes.

2.3 Forcing Scheme

In Lattice Boltzmann Methods, definition of Forcing Schemes are nothing more than
algorithmic recipes for the discretization of the term in the Boltzmann’s Equation describing
the volume forces acting on the fluid. In the literature, many different forcing schemes are
available for classical LBM , , , (see for comparisons), with each of
them showing both advantages and disadvantages.

Within RLBM, the forcing scheme is simply derived by taking the forcing term in
Eq. 2.24

o Of

cht — K s
m 8p0‘ 3

(2.42)

and by assuming processes close to equilibrium, so that f ~ f°¢, and by taking the
analytic form of the Maxwell-Jiittner distribution, Eq. 1.35, one gets

af ~ mKaafeq _ _TKaUafeq ’ (243)

Fext — Kozi
" op” op~ T

and therefore one can easily discretized F** by simply resorting to the discretization
procedure of the equilibrium distribution function. The only thing left to do is to give
a proper definition of the Minkowsky force. Following , and calling F' the classical
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Figure 2.2  Examples of stencils for the cases . = 0 (left column) and /m = 4 (right column) in
(141) dimensions (top row), (2+1) dimensions (middle row), and (3+1) dimensions (bottom row). In the
ultra-relativistic case, the stencil intersects the surface of a circle (d=2) and a sphere (d=3). The colored
dots represent different energy shells. The quadrature order is N = 3 for all cases, and NP ranges from 6 in
the (141) ultra relativistic case to 182 in the (3+1) massive case.
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not-relativistic force, one has that K is defined by the following two equations (v being
the Lorentz Factor)

K- p
0
K =~F (2.45)

K%, =0— K=

(2.44)

2.4 Conversion to Lattice Units

The last thing left to discuss is a process that is often overlooked when dealing with LBMs:
the determination of proper and clear rules for the passage between physical units to lattice
units. Some details on the conversions are already been given, but will now be summarized.

In general, every physical quantity can be rendered dimentionless and then brought on
the lattice by recurring to some conversion factors C'; which are typical parameters of the
simulation. Any given quantity x is converted from physical to lattice in the following way:

Xo = Oy Xe - (2.46)

The first and most obvious step one has to discuss is the conversion of length and time
scales. The conversion factor for lengths is provided by the physical distance between two
grid nodes in the lattice, computed as the ratio between a typical length scale of the system
L and the number N of grid nodes in the lattice

L
C,=Ax, = —, 2.47
7, = = (247
as a consequence, one has
Ax
Ar,= ——=1. 2.48
Ly Cz ( )
For velocities, one chooses C, = vy
v, = Cyv, = vov, . (2.49)

Then the time scaling factor comes straightforward as C; = % = va.

Space and Time steps are directly linked by characteristics used in Eq. 2.30, that require
pseudo-particles to move from locations x to & + v*At. Additionally, these jumps have to

be performed between an integer number of grid nodes, implying the following relationship

Az, = voAt, . (2.50)
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With these choices, one has

At, Az, ArC,

At, = = =
‘ C, 9 Cy voCy

—=1. (2.51)

Lastly thermal energy, temperature, momentum and mass are all converted using the
same conversion factor Cr = Ty, as already stated in Eq. 2.31

With these prescriptions, one can derive every other single conversion factor. Some of
them are given as an example in the following summary table:

Lenght C,=L/N
Velocity C, = 1o
Temperature Cr=1,
Time Cy=C,/C,
Number Density C,=1/(C,)*
Pressure (dynamic, static, deviator) | Cp = C7C?*C,,
Energy density C. = CrC,C?
Shear and Bulk viscosity C,=0C,=CCp
Thermal Conductivity Cy\ = C,C,

As a final remark, it can be useful to introduce the lattice values for a couple of
adimensional numbers that are commonly encountered in hydrodynamics.

First, we introduce the Knudsen Number Kn, the ratio between the mean free path
between collisions A and a typical length L of the system. In relativistic systems, the mean
free path between collisions is computed as the time relaxation time 7 times a relative
mean velocity < v >, that can be selected as the Mgller speed g, or the velocity of sound
¢s (they all have the same order of magnitude)

A=1<v> (2.52)

Therefore, considering that < v >,~ 1, one has

T, <U> T,
Kn=2*>—"%2=— 2.53
n 7 N (2.53)

This last formula will be used extensively in the next chapters, as the Knudsen number
is used to evaluate the level of rarefaction in the fluid.
Another important value is the Reynolds number, that is defined as

_ pUL
yR

Re

where p, = m_n, is the mass density of the fluid. Then one has:



}fy BERGISCHE Lattice Kinetic Schemes

UNIVERSITAT L. .
“Z"  \WUPPERTAL Relativistic Lattice Boltzmann Methods

~ myn, UL mnUN

P PP

np e

Re (2.55)

where n,, U,, m and N are typical values chosen at the start of the simulation, and 7,
can be obtained thanks to the estimates given by the Chapman-Enskog expansion.

2.5 Algorithm

Having illustrated all the required passages needed to derive a RLBM, I will describe in
this section the algorithmic steps that are needed to perform a simulation.
At the start of the simulation, once some initial conditions for the macroscopic fields

* Ti, and ny, are chosen,

in’

U(x,ty) = US(x) ,

n(x,ty) = nn(x) , (2.56)
T(x,tg) = Tin(x) ,

the populations f;(x,ty) are initialized at equilibrium, i.e.

fil,to) = [ (nin(x), U (x), Tin(2)) - (2.57)
For each time step, at every point of the grid, the following set of operations is performed:

1. Particle flow and energy-momentum tensor are computed as discrete sums over the
set of discrete momenta p§*. If the quadrature has been correctly performed, the sums
recover ezactly the integrals of Eq. 1.17 and Eq. 1.18

NPOP

N = Z fzﬁ? )
Taﬁ = Z fiﬁ?ﬁiﬂ :
2. All thermodynamic quantities are obtained and eventually stored on disk, using the
relationships of 3.7.
e ¢ and U® are obtained solving the eigenvalue problem
U™ = T*Uy .
e nis given by n = U,N*

o Temperature T and hydrostatic pressure P are obtained from EOS Eq. 1.40
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o Non equilibrium quantities are obtained from

P
qa = — + EAQBNIB 5
n
1
w = —P — C—ZAQBTQB y

a « 1 «a §
R — (8547 = SAWAL) T
3. At this point the truncated equilibrium distribution function f;3 can be computed
using the thermodynamic quantities previously obtained.
4. If there is the need, the discrete forcing term is computed (Sec. 2.2.3).

5. The value for the relaxation time 7 is provided at every grid node. This value can be
chosen to be constant or calculated in such a way that one of the transport coefficients
obtained in the Chapman-Enskog expansion (see Ch. 3) is constant.

6. The system is evolved through the Lattice Boltzmann Eq. 2.30
7 pZaUa e ext
fil® + v AL+ At) = fi(z, 1) — ?(fi(m,t) — i)+ E

Such a process is usually divided into two steps, according to the Streaming & Collide
paradigm:

streaming  fi(x,t) = fi(x — v'At,t — At)

£ t) = fi%) + Fe

(e}
2

collide fi(x,t) = fi(x,t) — QUOC(
AT



3 Derivation and Calibration of Trans-
port Coefficients

This chapter describes two independent analytic procedures that can be employed for
the derivation of a macroscopic dissipative relativistic theory. These alternative methods
build directly on the description of the fluid at the kinetic layer, and expand it to the
hydrodynamic layer by means of perturbations of the distribution function f. It will be seen
how these two procedures, that in classical non-relativistic theories give coherent results,
are discordant in the relativistic framework.

Also, these techniques are important calibration tools for numerical schemes based on
the kinetic layer, since they provide a description of the transport coefficients A, n, p in
terms of the parameters at the mesoscopic layer, which at that point can opportunely be
tuned to describe fluids with the desired macroscopic properties.

Traditionally, two methods have been used to derive hydrodynamics from a kinetic
description of a fluid: Chapman-Enskog’s expansion [22] (CE) and Grad’s method of
moments . In non-relativistic theories both these two methods provide a theoretical
link between the Navier-Stokes-Fourier equations and Boltzmann’s equation, giving at the
same time an equivalent description of the transport coefficients of a fluid.

Everything is more complicated when moving to relativistic regimes: not only the
hydrodynamic layer is not well defined, but also CE and Grad give different results for
the transport coefficients, this last detail posing not only a theoretical problem but also a
serious obstacle to the development of a relativistic kinetic scheme.

While theoretical shortcomings have been highlighted in Grad’s method also in non-
relativistic theories [101], |131] |141] [L3§], the main aspect that makes the method less reliable
is the fact that it consists in an arbitrary truncation of distribution function’s expansion
around its equilibrium value, without resorting to any control parameter, while CE is a
method that is controlled by powers of the Knudsen number, that carefully controls the
validity of the hydrodynamic description.

CE on the other hand does not cure the causality problems highlighted in the previous
section, but nevertheless seems to be the correct approach at determining the transport
coefficients. It has been shown, in fact, that the same results obtained in CE can be also
obtained with Grad once its core expansion is truncated with more than the canonical 14
moments 33], or when it is augmented with entropic arguments [66]. Furthermore,
totally different approaches also present results equal to those of CE expansion , ,
73, [74).

It is also worth to point out that different approaches other than the one considered here
for Grad’s method could be considered, namely exspansions of the distribution function
based on irriducible tensors of momenta . Here I mantain the more semplicistic procedure
also used in [20].

In the next sections the main steps of CE and Grad methods are presented according
to the derivation shown in [20]. For what follows, the Anderson-Witting relaxation time
approximation introduced in Eq. 1.10 is used.
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The results of this chapter have already been shown in 126], and presented in
their most general form in . Here I just give a brief account on the material of .

3.1 Chapman-Enskog expansion

The Chapman-Enskog expansion stems from a perturbation in the Knudsen number Kn
(the ratio between the mean free path ¢ of particles between two subsequent collisions and
a typical length scale L of the system) of the distribution function around its equilibrium
value:

f= i fM e = ¢(Kn) , (3.1)
n=0

where f®© = fe Since hydrodynamics is the theory of fluids which are close to
equilibrium, I will be considering perturbations only up to the first order in Kn. Once the
order 1 parameter ¢ = e(fV)/f©) is defined, one has

f o fr o, (3.2)

An intermediate goal is to determine the deviation from equilibrium ¢. To do so, take
Eq. 1.5 without forcing terms and using the Anderson-Witting collision model (Eq. 1.10):

pol — (- ) 39

The first step is to insert Eq. 3.2 into Eq. 3.3, and ignore all O(¢?) contributions:

9feq pal ]a
* = — ofe. 4
ox® 2T / (3-4)

This yields ¢ in terms of the derivative of the Maxwell-Jiittner (Eq. 1.35) distribution,
that can be expressed in the following way after some lengthy calculations

cAr
¢ =- PO, [ =
(p*Up) fe
At on o,T prtU .0, U
=— I (1= Gy)—= o,T — 1~ 3.5
U,)? [ n TU G T T (35)
Then one can use the above equation to compute the macroscopic fields:
8 8 pea op ap o f foa op
e L = S A BT RO S ()

37 w=
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and by inserting Eq. 3.5 into the macroscopic fields one gets

o,n 9, T o,T 9,Us
N8 =¢BZP — &3 [ K" 4+ (1— VRV 4 - _pgPv KW]
¢ ¢ +(1-Ga) 7 T e kT ’
an a T o,T o,U.
Tozﬂ — BZaB | { v KVaB 1— Kvaﬁ BZz/aB 5]{61/0:6}
¢ ‘Tl + (1= Ga) 7 t RT? knT !

where the integrals Z®1%» K% are given in Appendix B (the formula for asy and
a4z are also given in the Appendix).
By resorting to equations given in 3.7 for Landau-Lifshitz decomposition

1
w = —P — *AQBTQB 3

i
1
wees = (A0A] - SAYAL) T (3.7)
P
= — +€AO"BNﬂ,
n

one can then determine the non equilibrium fluxes ¢®, @ and 7<**> and confront them
with the transport equations Eq. 1.66, Eq. 1.67 and Eq. 1.68, obtaining a formula for the
transport coefficients A, p and 7 (check for more detailed calculations)

A= —CsznTGd ((Igng + 1) ,
2 =G+ (d+2)Gy
=P 1+—-) — .
a Tl“‘“”( +d) G2 (d+r2)Ga—1]" (38)

n:PT&43.

The ultra relativistic limit reads as follow:

d+1
2k w =0 = —— P71 . 3.9
Chpnt,  pe=0,  nw= P (3.9)

d+1
d

3.2 Grad’s Method of Moments

Also in Grad’s method the distribution function f is expanded around its equilibrium value
fea. This time, however, the expansion is theoretically thought as a generic expansion in
Hilbert’s space of momenta

/\ur -

=1+ Aap™ + Aapp™” + .0 ) (3.10)

We remark here that better expansions, built on irreducible tensors of the momenta,
might be preferable in order to derive more detailed expressions of the transport coefficients

[31].
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Since the order of the expansion is not controlled by any parameter (contrary to CE), a
somewhat arbitrary truncation has to be performed on this expansion. Usually, the order
of the truncation is given by the number of constrains one manages to get using the known
conditions on the fields n, Uy, T, qu, @, 7<%~ so that one obtains a closed system of
equations for the unknowns A, A,3, etc.

In the derivation I follow, based on , a 14 unknowns truncation of Eq. 3.10 is obtained
by means of constraints derived by the integral definitions of N, 7% and the third order
moment of the distribution function 7%%7.

The starting point in the derivation is given by the definition of the entropy density
s (combine Eq. 1.20, Eq. 1.3.1 and Eq. 1.62), the moment defining equations Eq. 1.17,
Eq. 1.18, and the definition of the third order moment of the distribution function (here
taken trace-less, symmetric, U orthogonal for simplicity)

sif] = —fUa / paflogf— (3.11)
_ a « d£
glf] = UuN" = U, [ e (3.12)
9l = UaT = U, / p"‘pﬁfd—p : (3.13)
<YB>T4] a<By> _ oy <Bpyr> d£
g f] = U T — U, /p Y (3.14)

Then, according to Lagrange’s multipliers method, one defines the functional

F[f] = s[f]+ Aglf] + Asg[f] + Mg =" [f] (3.15)

and minimizes it putting

kp dp
Oz—:—/ WU [ == (In f+1) + ¢ (A + Xap” + Aypp™ 5>] :
af p [C(f )+ (A4 Aap Bpp)po

f=exp < 1-— kf()\ + )\5]9 +A /3p<'ypﬁ>)> . (3.16)
B
By splitting all the unknowns into an equilibrium and non equilibrium part, one realizes
that the equilibrium part has to be equal to the Maxwell-Jiittner distribution, and therefore
3.16 can be written as

2

f= feqexp< " ()\“eq+)\“eqp + Agp <Y ﬂ>)>

2

~ e [— (A Agp” 4 Asp ﬁ>)] , (3.17)
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where the Taylor approximation of the exponential in the last equality has been carried
since one assumes to have processes close to equilibrium. With this definition, the distri-
bution function is not yet defined. The A coefficients can be written in terms of the non
equilibrium fields by inserting Eq. 3.17 into the definitions Eq. 1.17 and Eq. 1.18 of N¢
and T°%, and by computing Eq. 3.7.

All the expressions are rather cumbersome, and therefore are not shown here. We
refer to for the full calculations. Suffice to say that with a complete expression of the
distribution function f in terms of ¢, @ and 7<**>, one can derive the third order moment

d
T = C/p“pﬁp” - (3.18)
p

and insert it into the relativistic Boltzmann equation, multiplied by ¢ = ¢p®p” and
integrated in momentum space, leading to:

Uo(T = TO9) = 270,77 (3.19)

and use the Maxwellian iteration method so that only the equilibrium part of 7% is left
in the derivative:

Ua(TP = TP = 270, T2 . (3.20)

Note that the third order moment at the equilibrium, ij”, can be obtained directly
from 7?7 by setting to zero the non-equilibrium quantities ¢® = 0, @ = 0 and 7<*%> = 0.

By multiplying Eq. 3.20 by respectively A% v Apy, and A/(;Aif) — %AMA&, one can
determine the non equilibrium fluxes ¢%, @ and 7<**> and confront them with the transport
equations Eq. 1.66, Eq. 1.67 and Eq. 1.68, obtaining a formula for the transport coefficients
A, i and n:

((d+2)CGa+ ¢~ G3)°
—GZ(d+ P +2)+ (d+2)(?Ga+ ¢* 7
1
d(Gald—Gar2)+2—1) "
(C3(d = 2Gq) + Ga(—d + Gg —1)(—d + 2G4 — 2))°
G2 (P 4+8d—2¢2+12) — Gg(d> +d (5 —3¢?) —10¢2 +6) + (2 (—d +2¢> = 2) — (d + 6)G3 ’

\ = —PkgntGy

(3.21)

p=Pr (3.22)

G2Pt
T=d+3)Gy+c2 (3.23)
The ultra-relativistic limit (¢ — 0) of the above expressions writes as:
d+1, d+1
ur == k ) ur = 0 9 ur - P . 3.24
7o Tk o e = 5507 (3.24)

In Fig. 3.1 the behavior of 1, © and A with respect to the Relativistic Coldness ¢
is shown for both Chapman-Enskog’s expansion and Grad’s method of moments. It is
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Figure 3.1 Comparison of the transport coefficients in 1,2, 3-dimensions obtained using CE and Grad's
method of moments within the Anderson-Witting relaxation time approximation. From top to bottom, one has

thermal conductivity A, bulk viscosity 1, shear viscosity 7. All quantities are opportunely made dimensionless.
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possible to appreciate that the two procedures give sensibly different results (with Grad
underestimating all values), with differences that are bigger toward the ultra-relativistic
regime, and disappear in the non-relativistic regime. Later in this thesis it will be seen how
to address this problem of identifying what’s the correct analysis among the two.

Two additional remarks have to be done: (1), it is worth to note that there is a ¢ region
where the bulk viscosity is unexpectedly different than zero. This is a result that could
explain some behaviors in mildly relativistic gases, like those encountered in relativistic
heavy ion collisions [72} 32} 34} 98] [71]. (2), the thermal conductivity, as it is evident by
looking at Fig. 3.1, goes to zero in the non-relativistic limit ({ — oo, even though one
would expect to have a non zero value in classical fluids.

This is due to the fact that when one takes the non-relativistic limit A\ has to be correctly
made non dimensional:

A = lim [enkarf(Q)] = lim [CQ"C’“BTMO]
Pk Pkptd

Which is exactly the well-known non-relativistic value.

3.3 Calibration of Transport Coefficients

In the previous two sections it has been shown that there is a discrepancy in the connection of
the macroscopic transport coefficients to the kinetic parameters: the analytical expressions
for A\,  and n as a function of the relativistic coldness ¢ come out differently depending on
the expansion method used to derive hydrodynamics starting from the kinetic layer.

This poses a theoretical problem, and more than that, in Lattice Boltzmann simulations
a firm grasp and control on the transport coefficients is strongly advised in order to be able
to reproduce dynamical systems with the desired macroscopic properties by simply tuning
the kinetic parameters of the simulation.

For this reason a numerical approach to the determination of the correct expansion
method has been adopted through the years , , . In this context, a RLBM (like
the ones discussed in Ch. 2) is used to numerically evaluate the transport coefficients with
a number of different benchmarks.

In the next sections the results presented in the previous articles have been summarized
and extended to 1,2, 3 spatial dimensions, using third order quadratures for the velocity
stencils and truncation of equilibrium distribution function.



Derivation and Calibration of Transport Coefficients }g@ BERGISCHE

Calibration of Transport Coefficients S’ WUPPERTAL

3.1 Thermal Conductivity

(1+1) dimensions (2+1) dimensions (3+1) dimensions
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Figure 3.2 Numerical estimate of the (non-dimensional) thermal viscosity for a relativistic gas in (1 + 1),
(2 + 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in agreement with CE
analysis.

First, the thermal conductivity A has been measured. The chosen benchmark, inspired
by , consists in considering the following initial conditions along one single space
coordinates x:

T(0,t9) = Ty
T(L,ty) =Ty (3.26)
T(x,ty) =0 x €]0,L[,
The macroscopic velocity U® is set at rest, and the particle density n is set to a fixed
costant value. Through time, a thermal flux develops from one end of the domain to the

other. If AT = T, —Ty is chosen sufficiently small, then Eq. 1.68 becomes the non-relativistic
Fourier equation

¢" = A\V'T | (3.27)

and the system reaches a steady state where the temperature gradient becomes almost
constant and the heat flux (also almost constant) is evaluated from the formula provided in
2.2.5:

¢“ = —h ANy . (3.28)

Therefore by performing spatial averages over the whole spatial domain one is able to
measure the thermal conductivity A
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<q" >,

=——, 3.29
< V2T >, ( )

By performing several simulations, each time taking different values for the relativistic
coldness ¢, it is possible to extract functional dependencies A = A(¢) for every number of
spatial dimensions d. The results shown in Fig. 3.2 show once again that the numerical
data are compatible with the CE analysis.

3.2 Bulk Viscosity

(1+1) dimensions (2+1) dimensions (3+1) dimensions
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Figure 3.3 Numerical estimate of the (non-dimensional) bulk viscosity for a relativistic gas in (1 + 1), (2
+ 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in agreement with CE
analysis.

In order to provide a numerical measure of the bulk viscosity, a particular benchmark
considering a simple flow describing a mono-dimensional time-decaying sinusoidal wave in a
d dimensional periodic domain is considered; this flow is characterized by sizeable velocity
gradients, i.e. tangible compressibility effects, that allow for the detection of bulk viscosity
effects.

The initial conditions for such flow are the following: along one single space coordinate
x one considers

U:L‘

= T = U sin <> zel0,L], (3.30)

L

Uy

and all other components of the macroscopic velocity are initialized to 0. Temperature
and density are provided a constant initial value.

With such initial conditions, the sinusoidal wave decays with time, until the fluid goes
at rest.

At an intermediate time step in the evolution, a measure of the dynamic pressure is
obtained according to the formula provided in 2.2.5



Derivation and Calibration of Transport Coefficients }g@ BERGISCHE

Calibration of Transport Coefficients S’ WUPPERTAL

1
w=—-P— EAQBTW : (3.31)

Then, provided that sufficiently low velocities are considered (by properly setting the
value vy in Eq. 3.30), the relativistic divergence appearing in Eq. 1.66 can be replaced with
its non-relativistic counterpart, that can be evaluated via finite differences methods

w = —uV U ~ —udiu; = —puou, . (3.32)

It follows that at each time step of the simulation p can be estimated with good accuracy
by taking spatial averages over the whole domain

< W >,

_ 3.33
< Oplly >4 ( )

M —_=

By performing several simulations, each time taking different values for the relativistic

coldness (, it is possible to extract functional dependencies 1 = p(¢) for every number of

spatial dimensions d. The results shown in Fig. 3.3 show once again that the numerical
data are compatible with the CE analysis.

3.3 Shear Viscosity
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Figure 3.4 Numerical estimate of the (non-dimensional) shear viscosity for a relativistic gas in (1 + 1),
(2 + 1) and (3 + 1) dimensions, shown respectively from left to right. The results are in agreement with CE
analysis. The results for the (141) dimensional case are not available since the Taylor-Green benchmark is
expressed on a bi-dimensional domain.

Lastly, one can turn the attention to the shear viscosity n. The exercise that follows is
directly inspired by the one found in , and the benchmark adopted in this case is an
iteration of the Taylor-Green vortexes [135], that is a well known test for hydrodynamic
solvers in the non-relativistic regime as well.

45 =



ﬁy BERGISCHE Derivation and Calibration of Transport Coefficients
= UNIVERSITAT

S’ WUPPERTAL Calibration of Transport Coefficients

Once a periodic bi-dimensional domain (x,y) € [0, L|x[0, L] is taken, the initial conditions
for such flow read as

U~ 2nx\ . [(27my
ug(x,y,tg) = oo = “+ug coS (L) sin (L) ;

Y 2 2
uy(x,y,to) = g,o = —up sin (Zx) cos (Zy) : (3.34)

with all the other components of the macroscopic velocity U® equal to zero, density n
and temperature 7' set to a constant fixed value. If ug is taken sufficiently small, the flux is
almost non-relativistic, and the solution can be taken similar to the classical one:

Uy = F(t)ua(z,y,t0) (3.35)
Uy = F(t)uy(x, Y, tO) ) (336)

The task is now the determination of the time dependency F'(t). If the flow is almost
non-relativistic, then it is divergence-free (A*U, = O(u?)) and the dynamic pressure gives
no contribution to the energy-momentum tensor. 7% can then be written as

T = (P + e)UUP — PP 4 g=> (3.37)

Then, by setting the balance equation Eq. 1.19

0,T% =0, (3.38)

one derives the following differential equation (for sufficiently small ug, one can ignore
all terms that are O(u3))

2nF(t)+ F'(t)(P+¢€) =0, (3.39)

that has solution

F(t) = exp (— (3.40)

—t
P+e )

considering that P + € stays approximately constant through time. Omne can then
integrate over the spatial domain to obtain the averaged quantity < u® >,,= u2 + ui
(obtained combining Eq. 3.35 and Eq. 3.40) in order to get

2 | A R ug 4n
< U >py= ﬁ/o /0 (uz + u,)dxdy = ~ ©XP <_P+€t> (3.41)
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which gives a way to compute the shear viscosity

P+e u?
= 1 — | . 3.42
7 ( At > o8 <2<u2 >xy> (3.42)

By performing several simulations, each time taking different values for the relativistic
coldness (, it is possible to extract functional dependencies n = 1(() for every number of
spatial dimensions d. The results shown in Fig. 3.4 show once again that the numerical
data are compliant with the CE analysis.
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Figure 3.5 Comparison between the dimensionless bulk viscosity and the Knudsen number Kn. As soon
as K'n Z 1072, the linear relationships forecast by CE and Grad's analysis breaks down, and there is not
anymore a firm connection to the transport coefficients.

As a final remark, one can also point out that the previous analysis can be used to
also evaluate the range of validity of the hydrodynamic approximation. The forecast made
by both CE and Grad is valid as long as the small Knudsen number hypothesis remain
valid, i.e. as long as the hydrodynamic regime is valid (Kn < 1072). As already seen, Kn
is computed on the lattice by setting the value of the relaxation time 7 (Eq. 2.53), and
therefore this highlights an important factor to keep in mind when doing simulations.

Evidence of what has been said is visible in Fig. 3.5, where the dimensionless bulk
viscosity p/ Pt has been plotted against the Knudsen number Kn, as computed in Eq. 2.53.
The value of the relativistic coldness ( is set at a fixed value ¢ = 10, and the measure is
performed for different values of the relaxation time. It is immediately evident that the
functional dependency on ( departs from linearity as soon as one abandons hydrodynamic
values of the Knudsen number.



4 Numerical Benchmarks

In this section we provide a couple of numerical benchmarks for the verification of the
scheme shown in Ch. 2. The first is a popular iteration of the Bjorken flow, also called the
mono-dimensional boost invariant expansion model [10]. This benchmark is common in the
community of Heavy-Ion collisions, because it mimics in a basic way the hydrodynamic
evolution of the Quark-Gluon Plasma (QGP) that are formed during said collisions, and that
at a set stage of the evolution can be described by recurring to relativistic hydrodynamics.

In this thesis work it is the first time that RLBM is shown to correctly repo

In Sec. 4.1, after introducing the curvilinear Milne coordinates, I give a brief introduction
on the analytical solution of the benchmark (discussed in [4] and here extended and
generalized), discuss how said solution has to be adapted in Cartesian coordinates, and then
show the comparison with the results provided by RLBM, in the case of ultra-relativistic
inviscid gases in (d+1) dimensions. The verification of RLBM on such flow is shown in this
thesis work for the first time.

The second benchmark is the relativistic iteration of the Riemann problem, also called
Sod’s Shock Tube or mono-dimensional shock wave. This test is widely used in computational
fluid dynamics to benchmark solvers in the presence of strong gradients and discontinuities,
both in the classical case [130] and in the relativistic one , . The results shown here

can also be found in [51] [4§].
4.1 Bjorken Flow

The Bjorken flow is a toy model realized to mimic the behavior of QGP in experiments of
heavy-ion collisions, where two rays of heavy ions are made to collide with each other. The
collision develops a hot soup of unconfined quarks, that can be described via hydrodynamics
at a set stage of the evolution.

1.1 Milne coordinates

In flat space-time the most natural set of coordinates to describe the space is the Cartesian
one, which is used for the development of the RLBM. A generic position vector is therefore
described as (only one spatial coordinates z is highlighted since only one coordinate is
interested in the dynamics, namely the longitudinal coordinate along which the two rays of
particles travel)

ot =(t,2) . (4.1)

The boost invariant flow is usually described in the literature by recurring to Milne
coordinates , as the flow is at rest in said curvilinear coordinates, and therefore the
solution can be more easily found. From now on, every tilded quantity will be considered
as expressed within the Milne basis:

- 48



Numerical Benchmarks ﬁ!’ BERGISCHE
A3

. UNIVERSITAT
Bjorken Flow S WUPPERTAL

= (1,w) (4.2)

The change of coordinates from Cartesian to Milne is given by the following transforma-
tion rule (No change is implied on the transverse space coordinates):

{T SR {t = 7 cosh (w) (4.3)

w = arctanh (f) z = 7sinh (w)

One can therefore obtain the transformation matrix A*, = g’% between the two reference
frames, which among other things will provide an expression for the metric in the new basis:

o = (A1) (A7) 1 = diag (+1, —72) (4.4)
1
7" = Ay Ay 9. = diag (+1, —§> (4.5)

Additionally, the curvilinear coordinates define connection coefficients ', and the
usual derivative has to be replaced with the covariant derivative:

= 0gA% + 15 A™. (4.6)
Milne’s connection coefficients are defined by

Mo

1 ~ ~
By = 'l “(OsTluy + Oyiigy — Ouflys) (4.7)

~ ~ 1 ~ 1
I Ify== T9=- 4.8
dd — T 0d = do = ( )

all other connections are zero.
The Bjorken flow is the description of a fluid which is expanding along one spatial
dimension (the z-axis) with velocity 3 = # for |z| < ¢, starting from an initial time .
The Cartesian macroscopic velocity U® can then be written as

o 1

One can then use the transformation matrix A*, to obtain the corresponding Milne
macroscopic velocity U*:

Ut =AU = (c,0) . (4.10)

This prescription dictates how to solve for the particle number density n, the energy
density €, and the temperature 7.



&&y BERGISCHE
s 3

UNIVERSITAT
=" WUPPERTAL

Numerical Benchmarks

Bjorken Flow

1.2 Analytic Solution (ideal ultra-relativistic fluid)

In the inviscid regime, no dissipative contribution is given to the particle flow N¢ and

energy-momentum tensor 7%° (meaning that the non-equilibrium quantities in the two
moments are set to zero). Note that in the Milne framework, one has:

N® =nU", (4.11)
7% = (e + P)UU" — Pi*” . (4.12)
The balance equations 1.19 in Milne coordinates assume the form

0=N®, =0,N*+T5 N,

(4.13)
0="T", =0,7° + 4,10 + 12, T" . (4.14)
By imposing such conservation equations, considering Eq. 4.10 and Eq. 4.11 one gets:
0=0;(n71),
0=0(c)+ P;re, (4.15)
0= 0y,(P),

that has to be solved once the initial conditions

ng = TL(T()) s €p = 6(7’0) s PO = P(To) s TO = T(To) s

(4.16)
are provided. In the ultra-relativistic case, Eqs. 4.15 can be solved analytically by

coupling them with the ideal EOS (Eq. 1.40), since in the ultra-relativistic limit one has
Gg=d+1:

P=nT,
e=dP, (4.17)
and one then obtains the solution
To
n(1) = ng —
o\ 4
€(T) =€ <O> ) (4.18)
T
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On the other hand, in the more general case of massive particles, the additional
dependency of the ideal EOS on temperature (¢ = P(G4(T) — 1)) does not make the system
of equations analytically solvable. One can though solve numerically for temperature, by
expressing the second equation in 4.15 as

0, (T(Ga(T) — 1)) + :: —0. (4.19)

The particle density stays unchanged, and therefore once the temperature is obtained
the energy density and the pressure can be derived from the EOS.

1.3 RLBM results

In order to simulate the (ultrarelativistic) Bjorken flow within the framework of the RLBM,
the initial conditions given previously in Milne coordinates have to be expressed back into
Cartesian coordinates. Once a domain z € [—%, %] and an initial time ¢ = ¢y are selected,

the initial value 7y is given by

0= \[t2 — = . (4.20)

Therefore to set the initial thermodynamic quantities at ¢ = ¢, for all the points
—% <z< % (that give values of 7 > 1) one will have to refer to Eq. 4.18. The populations
are initialized at equilibrium f° as usual. The solution Eq. 4.18 reads in Cartesian
coordinates as

n(t, z) = ng (’%‘W‘) (4.21)

2 — 22
12— 12/4) %
P(t, z) = B (tz_zg)
1
tg—L?/4\ %
T(t,Z):T()( 2 _ 2
z
ﬁ(t,z):—

No further trick has to be taken, except for an implementation of boundary conditions.
In fact, while in the Milne coordinate system the dynamic is periodic in space (all thermo-
dynamic variables are constant with respect to the space coordinate w, and the macroscopic
velocity U is always at rest), in Cartesian coordinates there is the need for a prescription
for the ghost nodes immediately outside of the domain.

At every time step the populations in the left ghost node and right ghost node are set to
be composed of two parts: the equilibrium part is simply the Maxwell-Jittner equilibrium
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Figure 4.1 Comparison of numerical results for the Bjorken flow of an ultra relativistic inviscid gas of
particles in (2+1) and (3+1) dimensions with the analytic solutions Eq. 4.18 and Eq. 4.21. The initial settings
of the flow are to = 1.0fm/c, L = 0.5fm, N = 1000. On the top panel, four snapshots at ¢t = 1.1fm/c are
shown against the spatial coordinate z. In the bottom panel the values of the thermodynamic quantities
taken at z = 0 are plotted against 7, and in both cases there is a perfect match with the analytic solutions.
As density and velocity do not depend on dimension, all the curves in the respective plots are overlapped.
The purple and brown marker identify the same points in the two different coordinate systems.
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computed using the thermodynamic quantities in Eq. 4.18, while the non equilibrium part
is computed using a linear interpolation with the nearest inner nodes.

Lastly, one final remark on the simulation has to be provided. In order to compare the
thermodynamics quantities against the value of 7, at every time step t one picks the values
of the thermodynamic quantities at z = 0, so that 7(z = 0,t) =t and w(z = 0,t) = 0.

In Fig. 4.1 the results of the simulations in Cartesian and Milne coordinates are provided,
and a perfect matching with the analytic solutions Eq. 4.18 and Eq. 4.21 is shown.

4.2  Mono-dimensional Shock Wave

A second test for the validity of the RLBM scheme is provided by the popular Sod’s shock
tube, or mono-dimensional shock wave (also known as Riemann Problem). This test is
widely used in computational fluid dynamics to benchmark solvers in the presence of strong
gradients and discontinuities, both in the classical case and in the relativistic one ,
136].

The dynamic develops along one spatial dimension, characterized by the coordinate
x € [-L/2,L/2]. At x = 0, a layer splits the fluid, initially at rest, into two different
thermodynamical states

(PnTﬁzUx): (Pr, ng, T, 0) <0 (4.22)
o Uo (PR, ngr, Ig, 0) x>0 ’ ‘

where the left quantities are taken bigger than the right ones.

Once the layer is removed, the discontinuity at 2 = 0 develops into a shock/rarefaction
wave, that travels through the medium decaying with time. An analytical solution for
the problem exists for ultra relativistic gases, in the inviscid regime (Kn — 0) or in the
free-streaming regime (Kn — o0). In order to characterize the regime - in addition to Kn -
it is customary to introduce the quantity 7/s, the shear viscosity to entropy density ratio,
where s is usually computed as

s=n (Gd —log (:q)) (4.23)
net = / feqif)’ — B(n,T)Z (4.24)

(with the usual definition of the integral Z given in App.B and the coefficient B(n,T)
defined in Eq. 1.37). In what follows both the two methods will be used to classify the
regime.

As the iteration of RLBM shown in the previous chapters has been thought as a solver
for hydrodynamics, no perfect results are expected for this benchmark in the free-streaming
regime. Nonetheless, in Ch.5 an extension of RLBM specifically realized to treat this regime
will be discussed.
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For the moment though only the hydrodynamic regime is examined, meaning that only
low values of 7/s are considered, and the other case is left for later treatment.

In the inviscid case as the wave travels through the medium different zones with
distinctive features appear:

« In the unperturbed zones (L) and (R), all fields keep their initial values.

o In the zone (*) a rarefaction wave with head at coordinate xy and tail at coordinate
xr travels to the left.

« In the shock zone (C), characterized by the presence of the shock wave, there is the
presence of a discontinuity at x = x¢ for density and temperature, that will therefore
be labelled with I and I1. Pressure and velocity, that do not exhibit a discontinuity,
are instead labelled as P; = P;; = P and 87 = B = Be.

An example of the dynamics is provided in Fig. 4.2, and in Sec. 4.2.1 the analytic
solution for the ultra-relativistic regime is presented.

When considering viscous flows this same scenario appears only with profiles that are
smoothed due to dissipation. As the solutions of the viscid and/or massive cases would be
semi-analytical, and require expensive numerical work, RLBM results are compared against
another numerical solver that is though based on different working principles:

+ Relativistic Boltzmann Equation - Test Particle (RLB-TP) [109, [108| |107, [112] 120|
121}, [123, [124], a Monte Carlo-enabled solution of the full kernel of the Boltzmann
equation based on test particles method.

2.1 Analytic Solution (ideal ultra-relativistic fluid)

The starting step for the derivation of the solution in the rarefaction zone * are the
constitutive equations for an ideal fluid, Euler’s equations Eq. 1.31, that are greatly
simplified in the case of massless particles (¢ = 0). By introducing the variable w = ¥, one
writes these equations as

n

(3= w) =~ (1= Bu) 85 (4.25)
a2

(5= w) 0,5 =~ (1= ) 0,P. (4.26)

(B w) O P — _11:})52 (1= Bw)dud (4.27)

where



Numerical Benchmarks % BERGISCHE

. . UNIVERSITAT
Mono-dimensional Shock Wave “Z"  WUPPERTAL

ciny R R
nr
nr —
xy g T o Ts TR Xy Ty xT zs TR
ciy R R
Ty,
Tr =
rL g xT rc Is TR Xy g X7 zs TR

T T

Figure 4.2 Example of the dynamic of a shock/rarefaction wave for a inviscid fluid, when the initial
conditions considered are the ones in Eq. 4.22 (here represented by the dashed blue line). A later stage of the
evolution is shown by the green line, and the various zones presented in the main text are clearly visible.

is the ultra-relativistic adiabatic index. Combining the Eq. 4.26 and Eq. 4.27, and using
the ideal EOS, it is possible to eliminate the pressure derivative

B-w?=010-pw), c=1/Vd, (4.28)

and to get as a solution

we = (fjcj%) . (4.29)

In what follows only w, is considered, as it represents a rarefaction wave traveling to
the left. By inserting w, into equations Eq. 4.25 and Eq. 4.27 one derives equations for n
and P that when are integrated in w give out the following Riemann invariants:

Vi
n <%> = cost. , (4.30)
P (%)m = cost. . (4.31)
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By computing these invariants at the coordinate xy, the values for density and pressure
in the rarefaction zone are readily obtained

o

1 — B,
. = , 4.32
e = (Hﬂ*) (4.32)
1— B, v
— 2vd
P =P . , A
- <1+B*> (4.33)
with
'LU_|.+CS
= —————— . 4.34
5 [ (4.34)

In order to determine the solution in the shock zone C, the Rankine-Hugoniot conditions
are applied on the interface between zones C'(I1) and R. These conditions express
the continuity of the normal component of the energy momentum-tensor, and after some
manipulations write as

niBe  neby

(4.35)
Pe (1+ p3d) P (1+ B2d)
R B e (4.36)
P03 Prf3;
Cﬂc _ R/BR (437)

where all the primed quantities are given in a reference frame where the shock front is
at rest. By applying a Lorentz boost from this frame to the lab frame one gets

’_50_55 L
CT 1B Br=—Ps . (4.38)

Where f; is the shock front velocity in the lab frame. By inserting this into Eq. 4.35,
Eq. 4.36 and Eq. 4.37 one obtains

 [Pa+dPc - d(Po — Py)?
b=\ P v dpy PO J Pr + dPo)[Po + dPe] (4.39)

B Pc[Pr + dPc]
nrir = TLRJ PR[PC i dPR] . (440)

B

and
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Next, by considering the interface between zones x and C'(I) and Eq. 4.33, the contact

point wr = x7/t is found.

V]

1—03—(1+Cs>(%>d

ey

+

wrm =
L—co+ (1+c) (5¢)

N[N

[lIS%

+

(4.41)

The pressure on the central plateau Po can be found by numerically solving the equation

Be(wr) = Pe, thus:

p\
(7)™ -1 B d(Pc—Fr)?  _
2vd [P + dPc|[Pc + dPg|

Finally, the density field n; can be obtained from Eq. 4.32:

nr= n*(wT) =nL <F
L

A summary of the presented solution is given below.

xH:_CSt) l’T:Mt, xrc =
1-— /BCCS

BL

/3* — 1w++cs
CcsW

/B(x7t) = ,8 o d(Pc—Pgr)?
C = \/ [Pr+dPc][Pc+dPg]
Br

n(x,t) =
Pg[Pr+dP,

nir =y ir o

nR

P

) (1—cs)(1—w) ) 5va

_ —Cs —w 2v/d

Ple,t)={ =1t (Fs)

Pc

Pr

PC) dil

Bct, rg = f[Bs t

r < TH
rg < T < 2T

7 < x < X3

T > IS

r < TH

rgH < T < 2T
rr < x < xCQ
ro < x < T3

T > IS

(4.42)

(4.43)
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where w = 7, B is

B, = Pr +dPc
5 d[Pc + dPgR)

and the pressure value Pc can be found by numerically solving the equation:

IS 2vd
P )d+t
(Pc> L \/ d(Pc — Pr)?
2vd -
P\ 7 [Pr + dPc][Pc + dPR]
o +1
1.0 1.0 = analyticd =3
analyticd = 2
0.8 4 0.8 = analyticd =1
n —: RLBMd=3
10 0.6 1 \ Py 064 —- RLBMd =2
\ —- RLBMd=1
0.4 041 ‘\
0.2 1
0.2 1
04 02 00 02 04 04 02 00 02 04
x /L x /L
1.0 I
! \
0.9 1 ) l
Ty 081 i
0.7 1
| i
0.6 ] H
] |
054 L\ 3
04 02 00 02 04 04 02 00 02 04
x /L x/L

Figure 4.3 Comparison of RLBM with the analytic solution of the ideal ultra-relativistic Sod shock tube,
for different spatial dimensions. The fields of density (top-left panel), pressure (top-right panel), temperature
(bottom-left panel) and velocity (bottom-right panel) are shown. All quantities are opportunely made
dimensionless. The RLBM agrees nicely with the analytic solution.

2.2 RLBM results

As a first result of RLBM, a comparison against the analytical solution for ideal ultra
relativistic fluids is provided in Fig. 4.3, for different values of the spatial dimensions d.
The initial conditions for the flow are the following:

(P T, ) = {(5.4 GeV/fmd, 400 MeV, 0 2 <0

(0.3 GeV/fm?, 200 MeV, 0 >0
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Figure 4.4 RLBM results (dots) for different masses versus the ideal ultra-relativistic analytic solution
of the Relativistic Riemann problem (m = 0) and RLB-TP results (m # 0) in (3+1) spatial dimensions
(represented by the lines). The setup is the same used for the fig. 4.3 (Eq. 4.44 and following), and the
value of 7/s is set to 0.1. For the whole set of particle masses considered, the agreement with the reference
solutions is good.

and density is chosen accordingly to EOS (the reference values for P, T and n are taken
to be the values of the unperturbed left zone). All simulations are conducted on a grid with
N = 6400 lattice points, representing a domain of L = 6.4 fm. The presented snapshots
are taken at t = 3.0 fm/c, and the value of the lattice relaxation time is chosen reasonably
small, so that the value of the Knudsen number computed as of Eq. 2.53 is reasonably small
(for stability reason the Lattice Boltzmann method can not simulate completely inviscid
flows, as the lattice relaxation time 7 can not be chosen < 1/2). The value chosen for 7
is 2, and with the chosen spatial discretization that translates to Kn= 7/N ~ 3 x 1074,
which is an acceptable value for an almost inviscid flow.

There is a good match between the numerics and the analytical solutions, showing
that RLBM is capable of reproducing the dynamics with these parameters at every spatial
dimension.

In Fig. 4.4 different masses are considered in the (3+1) dimensional case. In this case
the comparison is performed against other numerical solvers, namely the previously cited
RLB-TP. In this case the parameter that characterizes the viscous regime is the shear
viscosity to entropy ratio 7/s, as this is the usual quantity employed to characterize flows
in QGP simulations. The setting for the flows are the ones previously stated, and the value
of /s is chosen at n/s = 0.1, that represents a value for Kn well into the hydrodynamic
regime. Again, good agreement between RLBM and the reference results is found.

Lastly, I show in Fig. 4.5 the results for RLBM when changing the regime of the flow,
from ideal to free-streaming. As the Knudsen number (here again represented by the
value of 1/s) increases, RLBM struggles to reproduce the solution, and even though the
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Figure 4.5 Comparison of RLBM results (dash-dotted) against reference results (analytic in the inviscid
case in blue, and RLB-TP otherwise) across all ranges of the Knudsen number, from ideal to the free-streaming
regime. The value of the rest mass is set to zero. For large values of Kn, i.e. beyond the hydrodynamic
regime, RLBM struggles to reproduce the solution (because it has been designed for the hydrodynamic
regime), but still shows its general behaviour.

general behavior of the curves is reproduced, a staircase effect appears. This is the main
motivation for the development of an extension of RLBM that is suited to the reproduction
of beyond-hydrodynamic flows and that will be detailed in the next chapter.



5 Extension of the model to Weakly
Interacting Regimes

Beyond-hydro regimes (characterized by values of the Knudsen number beyond 0.1) are very
relevant for QGP, especially with regard to their long-time evolution after the hydrodynamic
epoch . Furthermore, electron conduction in pure enough materials is almost ballistic
, and therefore more attuned to beyond-hydrodynamic descriptions.

As it has been seen in Ch. 4, the RLBM method presented in Ch. 2 fails in reproducing
the dynamics whenever interactions are not strong enough to ensure the hydrodynamic
condition Kn < 1. In this regime (beyond hydrodynamics), the increasing range of
interactions between particles (represented by the decrease in the relative magnitude of
the RHS in Eq. 1.5) does not correct eventual errors in the streaming dynamics along the
(pseudo-)particle trajectories selected by the discrete velocity stencils.

All in all, being the previously shown RLBM based on a kinetic description of relativistic
gases (which in principle is valid across the whole Knudsen spectrum), an extension of
the algorithm to simulate beyond hydrodynamic regimes should in theory be possible,
and indeed it will be shown in the remaining part of this chapter that by modifying the
momentum space discretization this task can be achieved.

The final goal of the optimized discretization is the implementation of a more isotropic
velocity stencil, capable of covering homogeneously the momentum space. This goal is
achieved at the expense of a very desirable property of lattice kinetic schemes: perfect
streaming, namely the fact that the discrete streaming along trajectories has to connect
the nodes of a Cartesian Grid.

This tradeoff enables though the realization of the aforementioned velocity stencils, and
opens the possibility of simulating weakly interacting regimes up to the free-streaming
phase (Kn — o), also called ballistic regime.

This extension of RLBM to the study of high Knudsen flows is inspired by the work
of Ambrus and Blaga , and consists in employing off-lattice product-based quadrature
rules in the momentum space discretization, instead of the on-lattice quadrature process
described in 2.2.2. All the other algorithmic steps of RLBM remain untouched, and
therefore in Sec. 5.1 only this new procedure will be detailed. Next, in section 5.2 results
with this new iteration of the scheme will be presented on the mono-dimensional shock
wave benchmark. In [7] there is a detailed explanation of the technique employed for the
momentum discretization in the ultrarelativistic (2+41)-dimensional case, and in the next
sections I will be generalizing the discussion to the massive case, as well as the (3+1)
dimensional case.
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Figure 5.1 The Knudsen Spectrum and the ranges of validity of the different fluid descriptions. As RLBM
is a kinetic numerical scheme based on a description of the dynamics at the Boltzmann level, it should in
principle be able to reproduce the whole Knudsen spectrum. On the other hand, the RLBM iteration described
in Ch. 2 has been designed to resolve the hydrodynamic picture (Kn << 1) and therefore has to be modified
in order to work at high Kn regimes.

1 Momentum Space Discretization

In this section a detailed discussion of the new momentum space discretization is provided
to open the possibility of handling beyond hydrodynamic regimes via the development of
off-lattice isotropic stencils that better cover the momentum space.

The starting point of the new development is the orthogonality condition, Eq. 2.37, that
has to be correctly conserved when moving from continuous integrals to discrete sums. As
the J{n) are polynomials of the momentum variable p*, this means that proper quadrature
rules have to discretize exactly the integrals

e = [ L6 5 6.1

with Vk < 2N (N being the order of the quadrature, equal or bigger than the truncation
order of the equilibrium distribution function expansion). At this point it is beneficial to
focus on the (2 + 1) and (3 + 1) dimensional cases separately, as the procedures, while
similar in theory, differ for some practical aspects.

We note here that the following procedure is not immediately extended to the (1 + 1)
dimensional case, while it should in principle be working for all dimensions higher than 3.
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1.1 (2+41) dimensions

By switching to polar coordinates, and by considering the mass-shell condition p° =
VP? +m?, the integral in Eq. 5.1 can be decomposed into a product of two different
integrals, which are named radial integral /5" ** and angular integral /5" **:

Jor-on — Igfl-nak % [gl“~ak , (52)
“+o00 k

[or-on = /0 w(p)(P* + m2) T prethudp (5.3)
2m

[31...0% — / (COS H)kx (Sln e)kyde , (54)
0

with

w(p) = ﬁw(— VP? +m?) (5.5)
and ko, k, and k, accounting for the number of occurrences of the various degrees of
freedom in 1% with ko + k, + ky, = k.

This splitting suggests that a possible strategy might be represented by the adoption
of a Gauss-product rule between a radial quadrature discretizing /5", and an angular
quadrature discretizing 15",

The radial quadrature can be obtained by considering the change of variables y =
VD? + m? — m, that sets the radial integral to

LG = /O+OO W (y)Q(y)dy , (5.6)

with the new weight function

W(y) = wly +m) = 5 (57)
2T
and Q(y) a polynomial of degree k if the value k, + k, is even. If it is odd, then for
symmetry reason the angular integral is zero, therefore in this case one does not have to
consider the radial discretization.
As the new weight function is just a rescaled exponential, it is immediately evident that

the correct named quadrature to adopt in this case is the Gauss-Laguerre quadrature of
order 2N:

abscissae ; roots of Lyia(y) =0 (5.8)
: ) Yi

weights w; 5.9
; 22N + 2 Liva(wi) )
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Figure 5.2 Some example for the off-lattice stencils depicted in the previous pages. The quadrature values
chosen are N = 3, K = 10, and /m = 0.0, 2.0 and 10.0 (from left to right).

The corresponding values for p; and p? can be obtained from y; with back substitution
(Ph = y; +m, p; = \/Di¥ —m?). The total number of radial nodes comes out to be N + 1.

The angular integral (independent of the mass) is promptly discretized by considering
that the integrand can be recast into a sum of circular functions of maximum degree k, + k,.
Any circular function of degree K is exactly integrated on the circle by employing K equally
spaced absicissae and fixed weights:

2m
bsci 6, — 5.10
abscissae 6, I% (5.10)
2
weights w!” % L j=1...K . (5.11)

Since the maximum value of k, + k, is 2N, one needs to have at least K > 2N + 1. The
quadrature rule can thus be built as the following product:

Py = | Dicos0; ; (5.12)
ﬁi sinej
- 1=1...N+1

w;; = w§p)w§9) : (5.13)

j=1...K

with total number of populations N*** = K(N + 1). In Fig.5.2 the stencils for a set of
different mass values are depicted.

As these stencils require the perfect streaming condition to be relaxed, the usual stream
& collide paradigm has to be modified in order to collect information from the nodes of the
Cartesian grid. In two dimensions, a simple bilinear interpolation is adopted:
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i 1
filx —v' At t — At) = AxAy{

filx — 7 —ry,t—At)< At

Az —
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an(
filx —ry gt — At) (
I

filx b — At)| Ax —

vy ) } (5.14)

with

ry = sgn(vl) Az

(3
—
ot
—_
Ut

ry = sgn(v,) Ay

<>
—~
ot
—_
D

1.2 (3+1) dimensions

The procedure in (3+1) dimensions starts from the same steps: by switching to spherical
coordinates, and by employing the mass-shell condition, one writes

Jor-ok = [310h Igl ok (5.17)
“+o00
qu Neys :/ p +m )Iﬂzlﬁkz‘i'ky“"%df) , (518)
I o =/ (sin @ cos ©)*= (sin 6 cos ¢)*¥ (cos §)*<d€2 (5.19)
Q
with
o ow(VPE+m2
w(p) = pz—(\/ﬁ ). (5.20)
pe+m
Going through the same change of variable of before, one finds
+oo
[one _/ y)dy (5.21)

with the new weight function

W(y) = wly + )/ + 2my) = Y2 v (5.22)
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This time though the shape of the new weight function does not suggest any kind of
named quadrature to be adopted, therefore one has to create from scratch the rule. Such
task is possible once a set of polynomials Py (y) orthogonal with respect to the weight
function W (y) is found. It turns out that such polynomials are the 0...0 entries of the set
of polynomials J®| that depend only on i, meaning that

Py(y)=J% =1 (5.23)

Pyia(y) = IS (g +m)

From which one builds the following quadrature rule:

abscissae y; roots of Pyi1(y) =0 (5.24)
. (p) e Py i1(y)
weights w, / W(y) dy (5.25)
0 (¥ = ¥i) Py (vi)

The angular quadrature is more complicated. The integrand in I5'** can be recast into
a sum of spherical harmonics Y;" (6, ¢) of maximum degree ¢4, = k; + ky + k., therefore
one has now to exactly discretize the integral

NPUP

/Q Y0,0)d2 = 3 wiY™ (0, 0) V0 < Ly < 2N . (5.26)

k=1

There is a number of different discretizations to be adopted in order to exactly integrate
the spherical harmonics on the sphere. Here I describe three of them: the Gauss-Legendre
rule, the Lebedev rule, and the spherical-design rule, all needing a quadrature order of
degree K > 2N.

o In the Gauss-Legendre quadrature, the integration over the solid angle is split in
the coordinates # and ¢, and while the integration over the ¢ variable is discretized
using a simple mid-point rule, the integration over the 6 variable gets discretized
using a Gauss-Legendre quadrature. In this way one does not obtain minimal sets of
abscissae, and moreover the nodes are not distributed uniformly on the surface of the
sphere.

o The Lebedev quadrature relies instead on the rotational symmetries of the ochtaedral
and ichosaedral 3| group, that if imposed on the final stencil greatly reduce the
number of non linear equations to be solved to determine nodes and weights. These
stencils are a great improvement over Gauss-Legendre, but still show some overlaps.
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e The spherical-design quadrature , that is the rule that has been used in this work,
is instead built on the numerical solution of Eq. 5.26, once the weights are all taken
to be equal. Here the set of stencils freely available in [144] has been used.

All in all, after the set {6;, ¢;, wj(e"p)} has been selected, the stencil reads as

5 131 Sl.Il 0; CQS ©; 7 (5.27)
J Di sin 0; sin ¢,
Di cos b
5 it=1...N+1
wiy = wPw™ (5.28)

where N is the number of nodes in the angular quadrature, dependent on the order K
chosen. The total number of points in the quadrature is N**® = Ny (N + 1).

Also in this case the scheme has to be modified at the streaming step with the addition
of a trilinear interpolation scheme:

Z. 1

fi(w_rw_ry_rz,t—At>< At

fi(z —ry — 1.t —At) | Az — At

.

filx — 7y — 7t — At) At|v;,

(
(
| (
fil@ =7y it At)( Atlvt
(
(
(

i <Ay—Am;>(Az—Am;>
filx -ry, t—At) Ax—Atvi)( Atvé)(Az—Atvi)
fi(@ N Aaz—AtU;)(Ay—Am;)( Ami)
fi(a = Al Ax—Am;)(Ay—mv;)(Az—Am;)}
with
ry = sgn(vh) ArE (5.30)
ry = sgn(v,) Ayd (5.31)
r, = sgn(vi)Az2 (5.32)
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Figure 5.3 Some example for the off-lattice stencils depicted in the previous pages. The quadrature values
chosen are N = 3, K = 8, and m = 0.0, 2.0 and 10.0 (from left to right).

1.3 Decoupling of radial and angular quadratures

With the procedures explained in the previous sections, one opens the possibility of increasing
the isotropy of the stencil by individually tuning the parameters N, K or Ng. This is
crucial when moving to regimes characterized by high values of the Knudsen number, since
as the gas becomes more and more rarefied, even small errors in the velocities space become
increasingly detrimental to the numerical solution.

Increases in the isotropy can also be achieved by decoupling the radial and the angular
abscissae; this means that when building the product rule, one can rotate with different
angles the sub-stencils related to different energy shells.

In (2 + 1) dimensions this can be easily done by replacing the angular nodes in Eq. 5.10
with the following:

0, = <j+ Nil) 2[? . (5.33)

In Fig. 5.3 various stencils decoupled with this technique are shown.

The task is less trivial in (3 4+ 1) dimensions, as in this case there is a lot more freedom
when specifying the rotations between the sub-stencils.

In fact, having considered an initial velocity set derived using the spherical design
quadrature rule described above, then one has, for a radial quadrature of order N, N + 1
overlapped shells of vectors GG; belonging to the set G = U, G;.

Then one has to determine the set of angles {a;,7;}, with i = 1... N + 1, that defines
the rotation matrix

Ccos ay; COs7y; —sinay cos a;sin-y;
R(a;,7y;) = | sina;cosy;  cosa;  sina;sin7y ) (5.34)
—siny; 0 COS

The new stencil G’ is then defined as G' = U; R(«;, i) - G;.
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The approach used to devise this operation can be defined in multiple ways. In this
thesis work the following two methods are considered:

o The different rotation matrices R(c;,~;) can be determined by numerically solving
the Thomson problem , that consists in the determination of the position on the
surface of a sphere of electrons such that the electrostatic energy is minimized. By
taking the nodes of the quadrature as the positions of the electrons, the matrices
R(ay, ;) are iteratively determined by joining the substencils G; and solving the
associated Thomson problem. As an example, we propose the iterative process that
solves the case N = 3:

1. the substencils Gy, G5, G5 are identified using the spherical design quadrature
rule, and are represented by the overlapping set of points on the sphere.

2. G, is rotated using a rotation R(ag,72), with (ag,72) parameters to be deter-
mined.

3. The set G’ = G; U Gy is considered, and the parameters (ay,y2) are determined
by numerically solving the Thomson problem (7.e. by minimizing the electrostatic
energy between the electrons sitting on the sphere at the positions given by G’).

4. (3 is rotated using a rotation R(as,73), with (as,v3) parameters to be deter-
mined.

5. The set G” = G’ U G is considered, and the parameters (as,7y3) are determined
by numerically solving the Thomson problem (7.e. by minimizing the electrostatic
energy between the electrons sitting on the sphere at the positions given by G”).
G" is the desired stencil.

e The second method is available only for shell numbers that are equal to vertexes of
platonic solids (VN +1 = (4,6,8,12,20)), consists in finding the rotation matrices that
map one vertex of the solid (one node of a single substencil) to its other vertexes (the
corresponding node on the other substencils).

For the case N = 3 one has for example 4 energy shells, and therefore one considers
a tetrahedron (that has four vertexes, dubbed as A,B,C,D). One identifies then the
rotation matrices R as the ones that move one vertex to the other:

1. R(ag,72) = moves A into B
2. R(as,7y3) = moves A into C
3. R(ay,74) = moves A into D

When N + 1 # (4,6,8,12,20), this method can be used by identifying as fictitious
Platonic solids with N + 1 vertexes the results of a N + 1 Thomson problem. For
example, if N = 5 one can numerically solve the Thomson problem with five electrons,
and then identify the rotations that move from one vertex to all the other four.



}—gy BERGISCHE Extension of the model to Weakly Interacting Regimes
= UNIVERSITAT

“Z”  WUPPERTAL Mono-dimensional Shock wave

5.2  Mono-dimensional Shock wave

In this section the previously shown quadrature rules are tested on the same mono-
dimensional shock wave problem of Ch. 4. I confront the RLBM results with an analytic
solution of the ultra-relativistic free-streaming Boltzmann Equation, derived in Sec. 5.2.1,
and resort to LBE-TP for the other viscous regimes.

2.1 Analytic Solution (free streaming ultra-relativistic
fluid)

The calculations here presented are a generalization of the procedures highlighted in [4] for
the three-dimensional case to a generic number of spatial dimensions.

In order to find the analytic solution of the Mono-dimensional shock wave for an
ultra-relativistic fluid in the free-streaming regime (Kn — 00), one starts by considering
the relativistic Boltzmann equation Eq. 2.25 in the absence of external forces, and in the
free-streaming regime:

P 0af=0. (5.35)

In the mono-dimensional shock wave, the dynamics develop along one single direction,

say along the & axis, therefore the distribution function f(x,v,t) will be symmetric over
the other degrees of freedoms, i.e. depend only on the x coordinates.

PO + aOuf = Ouf + 120, f =0 (5.36)

Additionally, the initial conditions already presented in Eq. 4.22, i.e.

P Ty, 0 <0
(P, n, T, p)= P e T 0) < (5.37)
(PR, ne, TR, 0) x>0
translate on the distribution function f as
fo=0(=z)f1" +0(z)f% , (5.38)

where f;? and fg! are the equilibrium distribution Eq. 1.35 respectively computed on
the left and right unperturbed zones. By recurring to the method of characteristics one
finds that the solution of Eq. 5.36 is

f(xvpv t) - '9(_1: + th) zq + 9('1: - Umt) I%q ) (539)
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and by introducing w = x/t one can write Eq. 5.39 by distinguishing two different
regions, respectively the unperturbed one for |w| > 1, and the perturbed one at |w| < 1:

b w < —1
flw,p,vg) = it +0(w —v)(fg* = i) |w[ <1 (5.40)
Pe{q w > 1

In order to define the macroscopic profiles in the perturbed region, one needs to calculate
integrals in the form of Eq. 1.17 and Eq. 1.18. The full form for N® and 7% in the perturbed
region is given by:

N® = N& + @'a(w)% (5.41)
To8 = 708 4 jof (w)% (5.42)
with = Ff(l;fj;) d
i(w) = /Qe(wx v, )d$2
i"(w) = /QUJCQ(wx — v,)dQ
i"(w) = ) v20(w, — v,)dQ
i (w) = i (w)
i (w) = °(w)
i"(w) = ﬁ(im(w) —i"(w))  Vi#ax (5.43)

and all other integrals equal to zero. The quantities :°(w), :°(w), and **(w) assume
different values depending on the dimension d. Here I give results for the most common
casesd =2 and d =3

(0 _J2m -2 arccos(w) d=2
#w) = {27r(w +1) d=3 (5.44)

Z(x w) — —2\/1—’11}2 d=2
)(w) {n(uﬂ ) g3 (5.45)
;@) (w) _ {72;?113—\/;3)— w2 — arCCOS(w) Z z 2 (5_46)

From the above relations, the thermodynamic quantities can be obtained:

7] w=
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(24 1) dimensions:

NO =g, + (1 - w) (ng — nr) (5.47)

N = ——”;“’2<nR ) (5.48)

T — ¢ + (1 - M) (er — e1) (5.49)

o — ——”;“’Q(ER —a) (5.50)

T _ ps (1 _wy 17T— w’ amc;s(w)) (Po — P) (5.51)

TW_p 4 (_1 N w/ 17T— w? arcc;)rs(w)> (Pn— P1) (5.52)
(34 1) dimensions:

N°=np+ (1 +w)(ng —ng) (5.53)

NT = i(wQ (g — ) (5.54)

ToozeL—F%(l—i—w)(eR—eL) (5.55)

70 _ %1(“)2 —1)(eq — €1) (5.56)

T = Pp, + %(1 +w*)(Pg — Pp) (5.57)

TV = T% = P, + i(—w?’ fw+2)(Py— P) (5.58)

2.2 RLBM results

In this section I show the improved results that can be obtained on the mono-dimensional
shock wave benchmark by employing the new quadrature rules Fig. 5.4. The comparison
of RLBM results is provided in the free streaming regime against the ultra-relativistic
ideal solution given in 5.2.1, and for intermediate viscous regimes RLB-TP is used. The
comparison is provided in (341) dimensions.

The off-lattice stencil adopted for the comparison has N*® = 480 populations, and
settings for the quadratures are as follows:
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Figure 5.4 Comparison of RLBM results against RLB-TP and analytics across all ranges of the Knudsen
number, from ideal to the free-streaming regime. The value of the rest mass is set to zero. With the new
off-lattice stencils (N = 3 and Nx = 120), RLBM is more than capable to recover the correct solution even
in the free-streaming regime. The comparison with the old on-lattice stencils can be performed by confronting
this figure with Fig. 4.5.

N=3, (5.59)
K =16,
Ny = 120,

Obviously this level of discretization is not needed for all viscous regimes, as in the
hydrodynamic regime velocity stencils with less nodes are still sufficient to reproduce the
dynamics. In order to give a feeling of the scaling of the number of populations with respect
to the regime of the flow, in Fig. 5.5 I have reproduced the relative error on the pressure
field, computed as

P_Pre
o P = Palls
|| Pret] |2

where P, is a RLBM numerical solution performed with improved spatial and momen-
tum resolution with respect to the previously examined case. It is possible to appreciate
that as one transitions from the hydrodynamic picture to the free streaming regime, the
error goes scales with N*°? until a saturation point is reached around the value N*°* ~ 480.

(5.60)
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Figure 5.5 As Kn increases, the number of populations needed to correctly reproduce the dynamics
increases as well. Here | show the dependency on the relative error of the solution A with respect to NP°P,
showing that after a certain threshold increases in the resolution of the momentum space are not needed
anymore. All X values are rescaled with respect to their asymptotic value Ao computed at NP°® ~ 5000 for
better readability.



6 Relativistic Lattice Boltzmann Method
for Radiative Transfer

In numerical astrophysics, the study of radiation transfer is of determinant importance
when dealing with phenomena such as neutron stars mergers @, core-collapses supernovae
, and accretion disks in black holes, where numerical simulations are vital to compare
with experimental findings [38].

Through the years, the need for the study of these phenomena has given rise to a number

of numerical schemes [103] (91} 69} [09, [78], [145] [102] [116] [133] [86], which can be grouped in

two main different categories:

e Hydrodynamic schemes, that solve the "macroscopic" equations for the first order
moments of the radiative distribution function, typically the radiation energy density
and momentum density. These methods generally resolve only the low order moments,
and some of them rely on some assumption to close the set of equations (leakage

scheme , , flux limited diffusion , and M1 scheme , , )

e Monte-Carlo methods that solve directly the Boltzmann equation for photons, which
suffer from the typical numerical noise [40} [93].

All in all, the fact that radiation (in the form of photons or neutrinos) interacts with
a (dynamic) background fluid via emission, absorption and scattering, makes it so that
its evolution can be considered at the kinetic level by a Boltzmann equation with said
phenomena in place of particle collisions .

This opens the possibility for a third approach different than the ones given above: a
Relativistic Lattice Boltzmann Method that relies on the scale of the Boltzmann equation
and provides solutions for the moments of the radiative distribution function.

The techniques shown in Ch. 5 come into play as radiation has to be correctly handled
by the scheme both in the optically thin regimes (when radiation weakly interacts with
matter) and in optically thick regimes (strong radiation-matter interaction). Therefore the
developments of Ch. 5 are central in this kind of scheme, because in optically thin regimes
the radiation is freely streaming, and in order to reproduce the correct behavior in this
regime it is important to have isotropically defined stencils.

In this thesis work only a general review on the method is provided, with highlights on
where the developments of Ch. 5 have been used: in Sec. 6.1 a brief theoretical background
is provided on Radiation Transfer, then the Lattice Boltzmann Method is described in
Sec. 6.2. Then an application of the method to the study of relativistic jets is discussed.

A more in depth description can be found in [142], where numerous test cases that
highlight the features of the method are considered.
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6.1 Theoretical Background

The governing equation in radiation dynamics is given by the Radiative Transfer Equation
(RTE) that can be described through the Boltzmann equation for a gas of massless particles
i.e. photons or neutrinos moving at the speed of light .

Fields are expressed in terms of the distribution function f,(x, 7, t) that accounts for
the energy density carried by photons-neutrinos through an infinitesimal surface located at
x, in the solid angle df) in direction 71, and in the frequency band dv; the RTE expresses
its evolution in time:

19/,
c Ot

+'ﬁ"v.fV:_K'a,ufy+77y+Cs, (61)

where £, is the coefficient of the absorption interaction with the background fluid, n,
is the coefficient regulating emission, and C represents the scattering term.

After approximating C with the first two terms of a Legendre expansion (E, and F,
are respectively the energy and momentum density and kg1, are the frequency dependent
opacities)

CS ~ —:‘io’l/f,/ + HO’VE,/ + 3/‘43171,7,1 . F,, . (62)

Integration of Eq. 6.1 into the frequency domain (gray approximation) yields

101

*a—i—’ﬁ,-VI:—Iia]—f—n—f—lio(E—I)—f—?)lilﬁ'F. (6.3)
c

This is an evolution equation for the specific intensity

+oo
I(x,n,t) = / Vf,dr, (6.4)
0
and its moments
Radiation Energy density F(x,t) = / I(x, 7, t)dQ (6.5)
0
Radiation Momentum density F'(x,t) = / I(x, 7, t)Rd (6.6)
Q

(all quantities appearing in Eq. 6.3 are frequency integrated). Note that Eq. 6.3 is
functionally similar to the dynamic equations which are at the base of lattice kinetic solvers
such as RLBM, and therefore the same methodologies used for LBM can be applied to this
case study.
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6.2 RLBM method

In order to recover a form of Eq. 6.3 more prone to an LB treatment, contributions from
absorption and emission are grouped into a source term S, while the scattering terms not
containing the specific intensity make up a fictitious equilibrium intensity 7°:

S =—kod +17, (6.7)
[“—E+ (3’“) A-F (6.8)
Ro
one has then
101
EE"‘TL'VI:—K()(I—IW)—FS, (69)

with k¢ having the role of a relaxation time in a BGK-like approximation. At this
point, a discretization of the "velocity space" (the space where vectors 71, the direction of
propagation of the radiation, live) has to be performed.

In order to do so, one has just to realize that the specific intensity [ is a function only
depending on angles, and that the directions 72 are nothing more than points on the surface
of a sphere (in 3d) or a circle (in 2d). Therefore the angular quadratures described in
Sec. 5.1.1 and Sec. 5.1.2 can be employed.

One has then a set of N** weights and abscissae (w;, ;) to define the discretized
version of specific intensity

Ii(z,t) = I(x, N, t) , (6.10)

to discretize the equilibrium and source term

Sj = —I'ian +n, (611)
[ =B+ <3F”1> #, F (6.12)
Ko

and to compute as discretized sums the energy and momentum density

NPop
E~ Y I, (6.13)
J
N Pop

At this point the usual space and time discretization can be used, and an evolution
equation for I; is obtained:
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Ij(a + civyAt,t + At) = Ii(m, 1) — croAt [Ii(a,t) — (@, )| + cALS;(a,t) . (6.15)

This equation can be evolved in the algorithm using the usual Stream & Collide paradigm,
together with the interpolation schemes shown in Sec. 5.1.1 and Sec. 5.1.2 in order to
recover information from the Cartesian nodes of the grid.

6.3 Simulation of a relativistic jet

While many test cases are examined in , I want to discuss here a test application
based on a realistic astrophysical scenario, namely a simulation of a relativistic jet as it
propagates through the interstellar medium.

Such simulations are important in the study of active galactic nuclei, where they are
produced during the formation of supermassive black holes 7 , and in magnetized
neutron star mergers, where they appear together with gamma-ray bursts .

The simulation is set up by coupling the LB scheme previously exposed, that solves for
radiation, to the Relativistic Magneto-Hydrodynamic (RMHD) Solver BHAC [110], that
solves for the fluid.

The coupling is performed in the following way:

1. At every iteration, fluid’s rest mass density p, temperature T and three velocity u
are used to compute absorption &, and emission 7 coefficients, and the scattering
opacities &y and & in the fluid rest frame (where they are more easily defined [92]),
according to the following:

o Rq = p*T 35 according to Rosseland mean opacity for thermal bremsstrahlung
29

o 7] =04, /TR, T, which is emissivity obtained from Kirchhoff’s law upon assuming
black-body radiation. o, = 0.1 is chosen to ensure a moderate amount of
radiation production.

e fo=10"3p and &; = 0, to simulate Thomson’s scattering which is proportional
to the number of scatters in the medium (hence to the density of fluid particles)
and has no preferred direction.

2. The coefficients are computed in the Eulerian lab frame where the Lattice Boltzmann
method performs the evolution of radiation. The transformation between the two

frames is the following [92] [142]:

v l—u-n ‘. n:(l—(u/c)2)3/2
1— (u/c)?® (1—u-)

o — l—u-n - Kl:(l—(u/cf)?’/?/{
1—(ufc)? (1—u-n)?




Relativistic Lattice Boltzmann Method for Radiative Transfer
Simulation of a relativistic jet

BERGISCHE
UNIVERSITAT
WUPPERTAL

60 2ure hydro hydro + LB hydro + M1

0 g
b

40
-

20

LW . Y

50 5 50 5 -50 5 U

T/ Tet T/ Tiet T/ Tiet

Figure 6.1 Cut through the (z,z) plane for the relativistic jet after ¢ = 125¢rje;. Shown is the mass

density for the pure-hydro (left) and the coupled hydro-radiation using LB (center) and M1 (right), over a
reference value out of the jet pump
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3. The LB code is now ready to perform a simulation step for every one of the N,
radiation specific intensities, I;. After collision and streaming are performed, the
macroscopic radiation quantities (the energy E and momentum densities F') are
computed according to 6.13.

4. From theese quantities one computes all the radiative contributions to the energy-
momentum tensor that are needed to evolve the fluid in BHAC. BHAC then performs
a simulation step, and the process starts again from the first item in this list.

The simulation is arranged following : the jet is injected from the bottom border
of the computational domain imposing a costant inlet velocity in a circular nozzle, and
propagates along the z-axis coordinate. The grid has size 160 x 160 x 640 grid cells, where
the jet is injected at z = 0 through a nozzle with radius rj; = 10 lattice nodes.

The results of the simulation are compared with a similar one that instead of the
presented LB method uses the M1 code already cited to solve for the radiative part .
In Fig. 6.1 the fluid mass density is shown for three different iterations: on the left, a pure
Relativistic Magneto Hydrodynamic simulation, without radiation dynamics, is presented.
The other two snapshots show instead the iterations with radiation solved through LB
(center) and the M1 scheme (right).

It is possible to appreciate that both the simulations look structurally similar to the
pure RMHD one, with the exception of the LB one being considerably shorter than the M1.
More than being an indication of the fact that the LB scheme might have some problems,
this is due to known errors in the M1 scheme, that assumes a closure relation
for the evolution equation for the first moment of the specific intensity, and therefore can
only track the average direction of radiation momentum.

In particular, they clearly show the ability of the LB method to handle correctly scenarios
with physical conditions that are very close to those encountered in relativistic astrophysical
phenomena.



Conclusions

In this thesis a new framework for the simulation of relativistic fluids has been presented.
The method first proposed in has been expanded and generalized into a mature
tool, able to simulate relativistic flows in all relativistic regimes, from ultra-relativistic to
non-relativistic, and across the whole Knudsen spectrum.

The algorithmic description has been purposely kept indipendent of the spatial dimension,
so that the scheme can be adapted to bi-dimensional or three-dimensional flows with no
particular efforts.

I summarize here the main results presented in this work:

» Extension and generalization of the (3+1)-dimensional Relativistic Lattice Boltzmann
Method proposed in to a generic number of spatial dimensions. The scheme is
tailored for the simulation of flows at every relativistic regime via the definition of a
particle mass-tailored discrete velocity set. The scheme preserves the main advantages
of classical Lattice schemes, such as Perfect Streaming, or ease of implementation
and parallelization.

e Derivation of a link between the kinetic and the hydrodynamic layer, through an
analytic expression for all transport coefficients in all spatial dimensions, using both
Chapman-Enskog expansion and Grad’s method of moments. Then, RLBM has been
used to numerically discern between the two methods. The obtained results suggest
that the Chapman-Enskog expansion is the correct way of linking the mesoscopic
description to hydrodynamics.

Furthermore, these expansion methods provide a calibration procedure for the Trans-
port Coefficients in the RLBM framework. These are crucial in order to reproduce
the desired dissipative properties in the simulated flows.

o Verification of the method in the form of two different test-cases, the Bjorken flow
and the mono-dimensional Relativistic Sod Shock Tube. The numerical data have
been confronted to analytical results when possible, or to other numerical solvers
otherwise.

Such results have been given for different values of rest masses, spatial dimensions,
and viscous regimes.

o Extension of RLBM to cure the incorrect behavior of the scheme when simulating
flows in weakly interacting regimes. The extension is based on the implementation
of a new discretization procedure for the pseudo-particles’ momenta, that results in
more isotropic and better distributed velocity vectors.

e Development and test of a new Lattice Kinetic Scheme for the simulation of radiative
transfer in astrophysical contexts. The scheme draws from the improvements consid-
ered for RLBM and is actually able to reproduce the dynamic of radiation in both
the optically thick or thin regime.
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This RLBM method can potentially been used now for the simulation of a wealth
of different relativistic fluid problems across scales from astrophysics and cosmology to
high-energy physics and material science.

There is space for futhure methodological improvements, e.g. on boundary conditions,
which have specific importance in the framework of bi-dimensional flows (the electron
flows studied in laboratories are always physically bounded). Also, when approaching
high macroscopic velocities, LB methods suffer from compressibility effects, so algorithmic
developments are expected in this regard.

Furthermore, a careful analysis of the computational costs associated with the new
off-lattice discretization is needed, in order to be able to employ this technique on large scale
problems. In this context, it would be also interesting to consider equilibrium distributions
other than the Jittner one, in order to implement quantum effects into the flow dynamics.

As to applications, the customization of the RLBM scheme to the detailed study of
quark-gluon plasmas dynamics in current and future high-energy experiments, appears a
very appealing topic for future research.

With regards to the LB for Radiative Transfer, a natural prospect is the extension of
the method to General Relativistic framework. This process is complicated by the curved
nature of the Space Time, and by the fact that in this case the collision step would happen
in a different frame with respect to the streaming step (the radiation-matter interaction
parameters are defined in the co-moving lab frame, while streaming has to be operated on
Eulerian lab frames).



A Projector A%’

In this appendix the properties of the Minkowski-orthogonal projector to the fluid velocity
U®, defined as

a « 1 a
1
Aab’ = MNap — C—2UaUB . (AQ)

are summarized. In particular, once this tensor introduced, the decompositions of vectors
and tensors in U® parallel-orthogonal components are straightforward.
By construction, the product of A,s with the velocity U? is therefore equal to zero, and
its trace equals the number of spatial dimensions:
AUz = AUP =0, (A.3)
AS=d. (A.4)

It is useful to introduce the short-hand notation
(03 (03 1 «
AL = AYNg, =57 — 20Uy, (A.5)
together with the following easily verifiable properties:

AGAs = Dag (A.6)
ACAL = AG (A7)

These projectors can be applied to express a generic vector A® as the sum of two terms,
respectively orthogonal and parallel to U*:

(A.8)

Ue —1ysA
oo g [0 A
C Gy =A Aﬂ

Likewise, any generic tensor 7% can be decomposed into different parts by combining
it with all possible combinations of U® and the projector A®?:

T =t Uzgﬂ + t;%ﬂ + t@ + 157 (A.9)
t = %U“U”Tm, (A.10)
ts = AU, T (A.11)
ty = AP, T (A.12)

t37 = ACALTH (A.13)
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Additionally, one can decompose any U®-orthogonal tensor (like tf{ﬁ ) into symmetric,
antyisimmetric, and simmetric traceless:

yeb — yledl 4 y@B) — ylaBl 4 yy<eB> 4 . (A.14)
where:

1
V(B — 5 (AmAﬂé + ABWAa(s) Vis | (A.15)

1
ylasl — 5 (AMAﬁ5 _ AMAC“‘S) Vis | (A.16)

1

veer = Ve —Tr o with Tr= SATAVT (A.17)

The following properties naturally follow from the definitions above:

UV =0 MoV = A,V AagVD = AV (A1)
Uav[aﬁ] =0 naﬁv[aﬁ] =0 Aaﬁv[aﬁ] =0, (Alg)
U, V<eP> = NV <> = 0 ANagV=2 = 0. (A.20)

It is at times useful to introduce a decomposition also for the gradient d,, by defining
the convective time derivative D and its orthogonal component V*:

(63 Q, ]' (0% (0% ]' (0%
0” = A 5aﬁ+—czU U0y =V +3U°D, (A.21)
with the following useful properties:

UV =0, (A.22
VU, = 0°U, . (A.23

~— ~—



B Integrals of the Maxwell-Jiittner dis-
tribution

Computed here are some integrals often used in the development of the numerical methods
presented in this work and in the definition of the transport coefficients.

Define

ntq
Z :/e kT —p (B.1)

P U“ d
g — [y pen P (B.2)
Po

All integrals Z®“" can be obtained by subsequent derivations of Z with respect to
macroscopic velocity

0z

zutn = (k) g5
s OU,,

(B.3)

therefore one will only have to correctly compute this quantity in order to obtain all the
required structures. Z is a Lorentz-invariant quantity which depends only on U,U% = 2,
and therefore can be computed in every frame of reference. Choosing fluid’s rest frame is of
course the best option. Further, since one needs to compute the derivatives in Eq. B.3, one
first derive Z for an unconstrained U,U® and, after performing the derivatives, evaluate
the result for U, U® = ¢*:

d d
7= pOiEiU“d -/ o __d LA (B.4)
vmiet +p

and then switch to spherical coordinates:

1\3\&

d%p = pLdp d) with / a0 =

w\&
~—

giving

,_ drs /+oo T frr g ptdp
) 0 Vm2e +p?

=
/N

—_

+
(MW
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Changing integration variable p = mcy/t?2 — 1 and defining ¢ = mc?/kgT, one has

d - )
Z = dﬁ—Z(mc)”{’1 /+ (t* — 1)%’%6_ e VU Ut
r(1+9) 1
Recalling one useful definition of the modified Bessel function of the second kind :
Tl /2(z)2)7 oo
K, (2) = / —at(p2 _ y-1/2
O =toryy i ¢ TE DT

one finally obtains:

Z ¢$2%?¢i¥-(kBT)d_lkﬁﬁl(%vL”L@)
= — )
Ve (UrU,) T
All integrals can now be obtained using Eq. B.3; tedious but straightforward manipula-
tions yield a nice and regular structure. Indeed, defining the coefficients A,,:

A= 2T 7 TV, 0 (0), (B.5)
one obtains:
d—1
k
Z:<€T> A
d
k U~
o () A
c c
d+1
k Ueyr
()
Zm:deﬂAWWW_A7WW+WW+WW
c S 2 c
fpT\ T L2 < Upoli >
e T
c = c
Where
< Up_opny == n1e2 . no2k-192k [JO2k1[J%2k+2 - [J% 4 permutations of indexes.
k terms (n-2k) terms

In the above, terms like n°?, n* and UU?, UPU® are counted only once. To give an
example, for n =4, k = 1, we have:

=< UQTI]. pa— ,)7041062 UQS Ua4 + ,'7041013 UOéQ Ua4 _|_ ,)7052@3 Ual UOé4
+ ,r]ala4 Ua3 UO¢2 _|_ T]Oé4043 UOQ Ual _|_ ,’7042044 UUél UQB .
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5.2 Integrals K1~

In the derivation of the Chapman-Enskog expansion, the integrals defined as

_puU”

e T dp
puUM Po ’

Ut o1 pan
o1-an — B(TL,T)/(:’ _kBLTu_p , (B?)
puU“ Po

K = B(n,T)/ (B.6)

have been encountered. The tensorial structure of said integrals has to be similar to the
one of the Z*1--®» therefore one can write down:

n U«
K% = — -
k}BTaH C
n Uey”
ooy _ MhRT [ UCUPUY (U 4 U 4 g0
2 31 3 32 c
—2 3]
a1...0m n(kBT>n 22 < Un—ank ~
K™ - en—1 (_1)kan(k+1)cn7

k=0

where the 1 + ng coefficients a,(.41) are to be determined. From the definition, one
gets the following property
Uy, K" = B(n,T)Z 1 (B.8)

that gives ["THJ equations for the unknown coefficients, obtained by matching equal
tensorial terms in both U,, K* " and B(n,T)Z% 1.

k1. A
An(k4+1) . Qn (k+2) 0 ( E _1— k) _ 2%k! n—1-k B.9
(n—2k—1)!  (n—2k—2)! L2J (n—1! A 7’ (B.9)

which is valid for 0 < k < L”T’lj The remaining condition to close the system of
equations (needed only for even values of n) is given by observing that

Kal...ana — (mC)QKa1...an—2 . (BlO)

n

By applying multiple times this property, one gets for the case n even:
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[(m...ocn/2almoén/2 — (mc)"K ’ (B.ll)

that means that one has to be able to correctly compute the integral K to be able to
define all the K*'*" with n even. To do so, one can proceed in the same way employed
for the integral Z

Z’/J.UH —
— ST dg2d 0o p—Ct(12 _ 1)%+
K= B(n,T)/e Pt dp ndm _ / G Gl ) IR (B.12)
puU" po cAi(me)’T(145) 1 t

and go on with the calculation by splitting the cases d even and odd, using Newton’s
binomial rule, and re-expressing everything in term of a single formula

d—1

m2c? Cldrs 2! | &1 d—1
= K=—"-—— 2 ) (=T B.13
Ik 2 () e . e

with

E1on(Q) = J7° £t d

Loa(¢) =4 " 2(0) = ) & e even : (B.14)
Kirox(C) = i° g=iyp=dt  dodd

which are respectively the Generalized Exponential Integral Function and the Bickley-
Naylor Function.
We give here the first coefficients, already factorized in terms of the previously defined

value G4 = ‘2—?
1
ay = e (Gg—(d+1))
1 1

a21:1+3(X_1) 022=E(X—1)
az1 = Ggq+2 azs =1

~ 3dGq —3¢*x +3¢? 2 _d(Bd+T)Gq— Cx +¢?  Ga—Cx+¢?
as = aqd+2) +(d+6)Gqg+ ¢ as2 = Ad+2) a43—w

Note here that in order to get the transport coefficients in the Chapman-Enskog
procedure only ass and a3 are needed.
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From top to bottom, one has thermal conductivity A, bulk viscosity u, shear viscosity 7.

All quantities are opportunely made dimensionless. . . . . . . . . . . . .. .. .. 41

3.2 Numerical estimate of the (non-dimensional) thermal viscosity for a relativistic gas in (1
+ 1), (24 1) and (3 + 1) dimensions, shown respectively from left to right. The results
are in agreement with CE analysis. . . . . . . . . . . . . . . . ... ... ... 43

3.3  Numerical estimate of the (non-dimensional) bulk viscosity for a relativistic gas in (1 +
1), (2 4+ 1) and (3 + 1) dimensions, shown respectively from left to right. The results are

in agreement with CE analysis. . . . . . . . . . . . ..o 44

3.4 Numerical estimate of the (non-dimensional) shear viscosity for a relativistic gas in (1 +
1), (2 + 1) and (3 4+ 1) dimensions, shown respectively from left to right. The results
are in agreement with CE analysis. The results for the (1+1) dimensional case are not

available since the Taylor-Green benchmark is expressed on a bi-dimensional domain. . 49

3.5 Comparison between the dimensionless bulk viscosity and the Knudsen number Kn. As
soon as Kn Z 1072, the linear relationships forecast by CE and Grad’s analysis breaks

down, and there is not anymore a firm connection to the transport coefficients. . . . . 47
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4.1 Comparison of numerical results for the Bjorken flow of an ultra relativistic inviscid gas of
particles in (2+1) and (341) dimensions with the analytic solutions Eq. 4.18 and Eq. 4.21.
The initial settings of the flow are to = 1.0fm/c, L = 0.5fm, N = 1000. On the top panel,
four snapshots at ¢ = 1.1fm/c are shown against the spatial coordinate z. In the bottom
panel the values of the thermodynamic quantities taken at z = 0 are plotted against 7,
and in both cases there is a perfect match with the analytic solutions. As density and
velocity do not depend on dimension, all the curves in the respective plots are overlapped.
The purple and brown marker identify the same points in the two different coordinate
SYSEEINS. . . . . e e e e e e 92

4.2 Example of the dynamic of a shock/rarefaction wave for a inviscid fluid, when the initial
conditions considered are the ones in Eq. 4.22 (here represented by the dashed blue line).
A later stage of the evolution is shown by the green line, and the various zones presented

in the main text are clearly visible. . . . . . . . . . . . . ... .. ... .. 59

4.3 Comparison of RLBM with the analytic solution of the ideal ultra-relativistic Sod shock
tube, for different spatial dimensions. The fields of density (top-left panel), pressure
(top-right panel), temperature (bottom-left panel) and velocity (bottom-right panel) are
shown. All quantities are opportunely made dimensionless. The RLBM agrees nicely with
the analytic solution. . . . . . . . . . . . L. 58

4.4  RLBM results (dots) for different masses versus the ideal ultra-relativistic analytic solution
of the Relativistic Riemann problem (m = 0) and RLB-TP results (m # 0) in (3+1)
spatial dimensions (represented by the lines). The setup is the same used for the fig. 4.3
(Eq. 4.44 and following), and the value of 7/s is set to 0.1. For the whole set of particle

masses considered, the agreement with the reference solutions is good. . . . . . . . . 59

4.5 Comparison of RLBM results (dash-dotted) against reference results (analytic in the
inviscid case in blue, and RLB-TP otherwise) across all ranges of the Knudsen number,
from ideal to the free-streaming regime. The value of the rest mass is set to zero. For
large values of Kn, 7.e. beyond the hydrodynamic regime, RLBM struggles to reproduce
the solution (because it has been designed for the hydrodynamic regime), but still shows

its general behaviour. . . . . . . . L L L L L L e e e e e e 60

5.1 The Knudsen Spectrum and the ranges of validity of the different fluid descriptions. As
RLBM is a kinetic numerical scheme based on a description of the dynamics at the
Boltzmann level, it should in principle be able to reproduce the whole Knudsen spectrum.

On the other hand, the RLBM iteration described in Ch. 2 has been designed to resolve
the hydrodynamic picture (Kn << 1) and therefore has to be modified in order to work
at high Kn regimes. . . . . . . . . . . . . .. 62

5.2  Some example for the off-lattice stencils depicted in the previous pages. The quadrature
values chosen are N = 3, K = 10, and m = 0.0, 2.0 and 10.0 (from left to right). . . . 64

9.3 Some example for the off-lattice stencils depicted in the previous pages. The quadrature
values chosen are N = 3, K = 8, and 7 = 0.0, 2.0 and 10.0 (from left to right). . . . . 68



5.4 Comparison of RLBM results against RLB-TP and analytics across all ranges of the
Knudsen number, from ideal to the free-streaming regime. The value of the rest mass is
set to zero. With the new off-lattice stencils (N = 3 and Nx = 120), RLBM is more than
capable to recover the correct solution even in the free-streaming regime. The comparison
with the old on-lattice stencils can be performed by confronting this figure with Fig. 4.5. 73
5.5 As Kn increases, the number of populations needed to correctly reproduce the dynamics
increases as well. Here I show the dependency on the relative error of the solution A\ with
respect to NP°P  showing that after a certain threshold increases in the resolution of the
momentum space are not needed anymore. All A values are rescaled with respect to their
asymptotic value \g computed at NP°P ~ 5000 for better readability. . . . . . . . . . 4

6.1 Cut through the (x, z) plane for the relativistic jet after ¢ = 125¢rje;. Shown is the mass
density for the pure-hydro (left) and the coupled hydro-radiation using LB (center) and
M1 (right), over a reference value out of the jet pams - - - « o « o . . oL 79
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