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1

Introduction

The main object of investigation of this thesis is Dade’s Projective Conjecture [Dad94, Conjecture
15.5]. This is part of a series of conjectures in representation theory of finite groups aimed at
explaining the so called Global-Local principle, according to which the representation theory of a
finite group should be determined by the representation theory of its p-local subgroups, for p a
varying prime number (see Section[2.4for further details). The statement of Dade’s Projective
Conjecture is somewhat involved and we refer the reader to Section[2.5]for a detailed introduction.
The importance of Dade’s conjecture lies in the fact that it implies many of the other Global-
Local conjectures (such as the McKay, Alperin-McKay, Alperin Weight and Brauer’s Height Zero
conjectures) and unifies them in a single statement. A direct proof of this conjecture seems to be
completely out of reach at the present time and the only hope we have to solve this problem is by
invoking the Classification of Finite Simple Groups. As is well known, the Classification states
that every nonabelian finite simple group falls in one of the following families:

(i) Alternating groups of degree at least 5;
(ii) Finite groups of Lie type;
(iii) Sporadic groups.

The finite groups of Lie type, also known as finite reductive groups, include most of the finite
simple groups and for this reason play a very important role in group theory and in representation
theory of finite groups.

Since every finite group can be constructed by gluing together simple groups, it is often possible
to reduce a group theoretic problem to a question on simple groups. Following this idea, Dade’s
Projective Conjecture has been reduced by Spath to a question on (quasi)simple groups [Spa17].
Unfortunately, this reduction theorem tell us that, in order to obtain Dade’s Projective Conjecture
for arbitrary finite groups, we need to prove a much stronger result for simple groups. This new
statement, called Character Triple Conjecture, will be introduced in Section In simple terms,
this is a version of Dade’s conjecture that is compatible with Clifford theory and with the action of
automorphisms. Using the Character Triple Conjecture, one can formulate the inductive condition



2 Chapter 1. Introduction

for Dade’s Conjecture (see Definition [9.1.3) which, if true for every simple group, implies Dade’s
Projective Conjecture for every finite group (see Theorem[9.1.4).

Although, the Character Triple Conjecture was formulated for simple groups, its statement
makes sense in a general context and is believed to hold for every finite group. Moreover, we
suspect that the Character Triple Conjecture is actually the correct statement to reduce to simple
groups. By this we mean that, supposedly, the Character Triple Conjecture will hold for every
finite group if proved for quasisimple groups. Our first main result provides evidences in this
direction. In Chapter 4| we initiate an analysis of a minimal counterexample to the Character
Triple Conjecture, a fundamental step towards a possible reduction, and obtain as a consequence
a proof for p-solvable groups. This result can be found in [Ros21]].

Theorem 1.1. Let G be a finite group and p a prime number. If G is p-solvable, then the Character
Triple Conjecture holds for G with respect to p.

The next step of the reduction process would require extending some advanced techniques
of Kiilshammer and Puig on nilpotent blocks to include a compatibility with isomorphisms of
character triples. Due to these obstructions, the above result is the best we can achieve at the
moment.

As mentioned at the beginning of this introduction, Dade’s Projective Conjecture implies many
of the other Global-Local conjectures. In particular it has been shown in [Dad94, Theorem 18.14]
that Dade’s Projective Conjecture implies the Alperin-McKay Conjecture. More recently, Navarro
has shown that the nonblockwise version of Dade’s Ordinary Conjecture implies the McKay
Conjecture, while Kessar and Linckelmann proved that Dade’s Ordinary Conjecture implies the
Alperin—McKay conjecture. It is then natural to ask whether similar implications hold between the
inductive conditions for these conjectures. In Chapter |5/ we state a general form of the inductive
Alperin—-McKay condition for arbitrary finite groups (see Conjecture and show that this
statement follows from the Character Triple Conjecture.

Theorem 1.2. Let p be a prime number. If the Character Triple Conjecture holds for every p-block
of every finite group, then the inductive Alperin—-McKay condition (see Conjecture[5.1.1) holds for
every p-block of every finite group.

As a consequence of Theorem [1.1] and Theorem [1.2] it follows that Conjecture holds for
p-solvable groups. This result can also be deduced by the main theorem of [NS14b].

As mentioned above, in order to obtain Dade’s Projective Conjecture via Spath’s reduction theorem,
we need to prove the inductive condition for Dade’s Conjecture for simple groups. In the second
part of this thesis we consider this problem for simple groups of Lie type in the nondefining
characteristic. From now on, let G be a connected reductive group, F' : G - G a Frobenius
endomorphism associated to an F,-structure, with ¢ a prime power, and denote by G the set of
points of G fixed under the action of F'. Let ¢ be a prime not dividing ¢ and e the multiplicative
order of ¢ modulo ¢ (or ¢ modulo 4 if ¢ = 2). In the second part of the thesis blocks will always be
considered with respect to the prime /.

For our purpose, we first need to extend some results on generalized e-Harish-Chandra theory.
This is a powerful tool to deal with modular representation theoretic problems for finite groups



of Lie type in nondefining characteristic. In [[CE99], blocks of finite groups of Lie type have been
classified in terms of e-cuspidal pairs. According to [CE99, Theorem 4.1] (see Theorem[6.2.19),
for ¢ > 7 the ¢-blocks of G are in bijection with the conjugacy classes of e-cuspidal pairs (L, \),
where ) is a so-called #'-character of L. Moreover, if the block B correspond to the pair (L, \),
then we can recover the set of ¢'-characters belonging to B by the knowledge of Deligne-Lusztig
induction from (L, \). However, this result does not tell us how to obtain all characters belonging
to B. In order to fix this problem, in Chapter |7, we extend Cabanes—-Enguehard’s result to
characters lying in rational Lusztig series associated to ¢/-singular semisimple elements and show
that the set of all characters belonging to a block can be recovered, by using Deligne-Lusztig
induction, from a unique set of e-cuspidal pairs (up to conjugation).

Theorem 1.3. Assume Hypothesis and let B be a block of G'. Then there exist unique (up to
conjugation) e-cuspidal pairs (L1, A1), ..., (Ly, \y) such that

Irr(B) = ﬁg (GF, (Ll,)\l)) ;
=1

where (G, (L;, \;)) denotes the e-Harish-Chandra series of G'" associated with (L;, \;).

We refer the reader to Chapter [7]for further details. Moreover, we remark that Hypothesis is
satisfied in most of the cases we are interested in (see Remark|[7.2.8).

Using the above result on e-Harish-Chandra theory, we can then proceed towards our main
problem: proving the inductive condition for Dade’s Conjecture. In a first step, we give a refor-
mulation of the Character Triple Conjecture tailored to finite groups of Lie type (see Proposition
[9.2.10). This extends work of Broué, Fong and Srinivasan on Dade’s Projective Conjecture for
unipotent blocks [BFS14]] which provides a link between /-elementary abelian subgroups and
e-split Levi subgroups. Again inspired by the work of Broué, Fong and Srinivasan, we then show
how the new reformulation reduces to proving the existence of certain bijections predicted by
e-Harish-Chandra theory.

Condition 1.4. Let (L, \) be an e-cuspidal pair of G and denote by Aut(GF)(LM\) its stabilizer.
Then there exists a defect preserving Aut(G* ) (L,))-equivariant bijection

OG. ) € (G, (LX) > Trr (Na (L)™' | A)

that preserves G -block isomorphisms of character triples (see Definition .

The precise statement can be found in Condition (9.1} Notice that, for unipotent 1-cuspidal pairs,
bijections similar to the one required in Condition[1.4can be deduced by [BMM93| Theorem 3.2]
together with [Lus84, Theorem 8.6] and [Gec93| Corollary 2]. Having introduced Condition|[1.4]
we can now state the main result of Chapter[9 as follows (see Theorem[9.2).

Theorem 1.5. Assume Hypothesis[9.2.11 and suppose that Condition[1.4 holds for every irreducible
rational component of every e-split Levi subgroup of G. If G¥JZ(G"") is a nonabelian simple

group with universal covering group G¥', then the inductive condition for Dade’s Conjecture holds
for G¥JZ(GT') and the prime ¢.
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The importance of Theorem [1.5/lies in the fact that the bijections required by Condition [1.4]are
closely related to the bijections considered in the proof of the inductive condition for the McKay,
the Alperin-McKay and the Alperin weight conjectures. Reducing the inductive condition for
Dade’s Conjecture to the existence of such bijections allows us to use the techniques developed to
deal with these more established inductive conditions. See, for instance, [Spa12]], [CS13], [CS15]],
[CS17al), [CS17bl], [CS19]], [BS20b], [CSES|] and [BS20al].

Thanks to Theorem|[1.5] we are now left with the problem of checking Condition[1.4 We consider
this problem in Chapter (10} To start, we prove a criterion for Condition |1.4|similar to the ones
proved in [Spa12|] for the inductive McKay condition, in [CS15] and [BS20b] for the inductive
Alperin-McKay condition and in [BS20a] for the inductive Alperin weight condition. This criterion
(see Theorem is roughly divided into two parts: the first part requires the existence of
a character bijection with good properties (for groups with connected center), the second part
requires some conditions on the extendibility of characters of e-split Levi subgroups. In Chapter 3]
we deal with the first part of the criterion and show that the needed bijections can be constructed
by assuming some further conditions on character extendibility (see Corollary[8.2). Combining
Theorem [10.1.8| with Corollary [8.2| we obtain a final reduction of Condition[1.4]to questions on
character extendibility (see Theorem [10.2). In doing so, we exhaust the theoretic machinery
available at the present time and we are left with certain technical extendibility requirements for
characters of e-split Levi subgroups. We also mention that these requirements are analogous to
certain conditions needed for the proof of the inductive condition for the McKay, the Alperin-
McKay and the Alperin weight conjectures. This last remaining problem is part of an important
ongoing project in representation theory of finite groups of Lie type and has been checked in
some partial cases (see [BS20b] and [Bro]]). Using these results, we finally obtain Condition [1.4]
for some cases in types A, and C,, (see Corollary[10.3]and Corollary [10.4).

First, by applying the main results of [BS20b] we obtain the following corollary.

Corollary 1.6. Let ¢ be a prime, q a prime power and € € {1} such that £ + 3q(q - €). Set
G :=8SL,(F,), G := SLy,(eq) and assume that G is the universal covering group of PSL,,(eq). Let
B be an ¢-block of G such that, either

(i) Out(G)p is abelian, where B is the GL,, (eq)-orbit of B; or
(ii) B is unipotent; or
(iii) B has maximal defect.

Then Condition[1.4 holds for G with respect to every e-cuspidal pair (L, \) of (G, F'), with X an
{'-character, such that bl()\)GF = B via Brauer’s induction, where bl(\) is the (-block of L' to
which X\ belongs.

Since the outer automorphism group of any simple simply connected group of Lie type C,, is
always abelian, we obtain the following corollary by applying the main results of [Bro].

Corollary 1.7. Let £ be a prime and q a prime power such that { + 6q. Set G := Sp,, (F,),
G := Spy,(q) and assume that G is the universal covering group of PSp,,,(q). Then Condition[9.]]
holds for G with respect to every (e, {')-cuspidal pair (L, \) of G.



Although partial, these results show that the path initiated in this thesis towards a proof of the
inductive condition for Dade’s Conjecture is promising and might eventually lead to a proof of
Dade’s Projective Conjecture. Nonetheless, still a lot of work remains to be done and this will be
the focus of the author for years to come.

In addition to the above mentioned work towards the inductive condition for Dade’s Conjecture,
many of the obtained results can also be used to deduce the nonblockwise version of Dade’s
Projective Conjecture for groups of Lie type from certain conditions on character extendibility.
Clearly, the conditions required in this case are much simpler then the ones needed for the
inductive condition for Dade’s Conjecture. Analogous results are obtained in this case: In Chapter
[9 we deduce the nonblockwise version of Dade’s Projective Conjecture from a simplified version
of Condition [1.4](see Theorem and Condition [9.2.22), then in Chapter[10] we give a criterion
for Condition (see Theorem and show how the nonblockwise version of Dade’s
Projective Conjecture reduces to some extendibility conditions (Theorem|[10.1).
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2

Preliminaries

In this chapter, attempting to make this thesis as self-contained as possible, we introduce some
notation and background terminology that will help the reader following the subsequent chapters.
On the other hand, most of the material presented here can be found in standard textbooks such
as [Isa76l, [NT89], [Nav98]. We assume the reader has some familiarity with these basic notions.

2.1 Notation

In this thesis N := {0, 1,2, 3, ... } denotes the set of natural numbers including 0. We denote by Z,
@ and C the ring of integers, the field of rational numbers and the field of complex numbers. For
a prime number p, the field of p-adic numbers is denoted by QQ,,. An algebraic closure of a field K
is denoted by K. The multiplicative group of the field K is denoted by K* and the additive group
by K*. Moreover, for every integral domain R, we denote by Frac(R) the field of fractions of R.
If g is a power of a prime number, then FF, denotes the field with ¢ elements. For n, m € Z, the
greatest common divisor is denoted by ged(m, n) := (m,n) while the lowest common multiple
by lem(m, n) := [m,n]. Moreover, if 7 is a set of primes and n € N, then n, denotes the largest
divisor of n whose prime divisors are contained in m. If n = n, then n is called a m-number.
Recall that 7’ denotes the set of all prime numbers that are not contained in 7. For a matrix
M, we denote by Tr(M) the trace of M. If X and Y are two sets, then we denote by X [[Y
the disjoint union of X and Y. Moreover, if f : X — Y is a map and X' is a subset of X, then
fxr: X' =Y denotes the restriction of f to X'

Standard group theoretic notation is considered. For a group X and a subgroup Y of X we write
Y < X. If Y is normal or characteristic in X, then we write Y 4 X and Y <4, X respectively.
The centralizer and the normalizer of Y in X are denoted by Cx (Y") and N x (Y") respectively.
Moreover Z(X) := Cx(X) is the center of X. Similarly, for an algebra A over a field F, we
denote its center by Z(A). If z € X, then the inner automorphism of X induced by x is denoted
by o,. Notice that for 2,y € X, we define 2 = y lzy and Yz := 2y = yry~!. The conjugacy
class of x is denoted by €lx (z) := {z¥ | y € X }. As is well known, the set of inner automorphisms

7



8 Chapter 2. Preliminaries

Inn(X) is a normal subgroup of the automorphism group Aut(X). The outer automorphism
group is the quotient Out(X') := Aut(X)/Inn(X).

If X is a finite set, we denote the size of X by |X|. When X is a group and Y < X, then | X : Y|
is the index of Y in X. For a set of prime numbers 7, we define O, (X) as the largest normal
m-subgroup of X. If x € X, then we denote by o(x) the order of . This coincides with the size
of the cyclic group (x) generated by x. Recall that there exist unique elements x,, 2, € (x)
such that z = z; 2, and o(x), o(z,) are a T-number and a 7’-number respectively. With this
notation, an element x € X is called m-regular (resp. m-singular) if 2, = 1 (resp. x, # 1).

2.2 Representations and characters

A complex representation of a finite group G is a group homomorphism
X:G - GL,(C),

for some positive integer n called the degree of the representation. Taking the trace function of
a representation, we obtain a character

x:G—-C
g~ Tr(X(g)).

In this case, we say that x is afforded by the representation X. If y is afforded by two represen-
tations X and ¥), then the representations X and 2) are similar, i.e. there exists P € GL,(C)
such that X(g) = P2 (g)P! for every g € G. It follows by the definition that characters are
class functions: these are those maps G — C which are constant on G-conjugacy classes. The
evaluation of x at the neutral element gives the degree of the character x(1) = n. A character is
called irreducible if it cannot be expressed as a sum of two characters. An example of irreducible
characters are the linear characters, that is those characters of degree one. The easiest example
of a (linear) character is the trivial character which we denote by 15. The set of irreducible
characters of G is denoted by Irr(G) and forms a basis for the complex vector space of class
functions. For two class functions ¢, ¢ of G, the usual inner product is denoted by [, ].

Every character is a nonzero N-linear combination of irreducible characters, while an integer linear
combination of irreducible characters is called a generalized character. The set of generalized
characters is therefore denoted by ZIrr(G). Let x € ZIrr(G) and write x = Y; a;¥;, where
9¥; € Irr(G) and «; € Z. The irreducible constituents of x are those irreducible characters
9¥; € Irr (@) for which «; # 0. Notice that «; =[x, ¥;] by the first orthogonality relation. The set
of irreducible constituents of x is denoted by Irr(y).

Let H < G. For every x € Irr(G), the restriction of y to H is a character denoted by x .
On the other hand, if ¢ € Irr(H), then induction yields a character /“ of G. In the latter
case Irr(G | 1) denotes the set of irreducible constituents of 1/“. Of particular interest is the
case of normal subgroups N < G. In this situation the group G acts by conjugation on Irr(N):
set ¥ (x) := ¥(9x) for every ¥ € Irr(N), g € G and = € N. We denote by G the stabilizer of
¥ € Irr(N) in G and by Irr (V) the set of G-invariant irreducible characters of N. If ¢ € Irr (V)
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and x € Irr(G | ¥), then we say that y lies above ¥ and that ¢ lies below x. According to the
Clifford correspondence there exists a bijection

Irr(Gy | 9) - Irr (G | 9)

given by induction of characters. If x € Irr(G | ¥), then the unique character ¢ € Irr(Gy | ¥)
such that 9¢ = y is called the Clifford correspondent of y above ¥

Let  be a character of G. We define the kernel of x as Ker(x) :={g € G| x(g9) = x(1)}. If x is
afforded by the representation X, then Ker(x) = Ker(X) and therefore is a normal subgroup of
G. Let N 4 G such that N < Ker(x). Setting X(Ng) := x(g) for every g € G, we obtain a well
defined character of G/N. Conversely, every character ¥ of G/N defines a character x of G with
N < Ker(x). We will usually identify the characters of G whose kernels contain N with the
characters of G/ N. This process is often referred to as deflation and inflation of characters.

Let CG be the group algebra of GG over C, that is the set of formal sums ¥, o,g, where g
runs over the elements of G' and o, € C. Notice that, over the complex numbers, the study of
characters is tantamount to that of representations or equivalently of CG-modules. This is due
to Maschke’s theorem (see [[sa76, Theorem 1.9]). For every subset S ¢ G, we denote by S* the
sum of its elements in the group algebra CG. Then, the set of elements K*, where K runs over
the conjugacy classes of G, forms a basis for Z(CG). If x € Irr(G), we can define an algebra
homomorphism Z(CG) — C by setting

o 16 Ca@)(@)
ox(@la(a)) = I

for every conjugacy class €l (x) of GG, and then extending it by linearity. Moreover, all the
algebra homomorphism Z(CG) — C are of this form and w,, = wy, if and only if x = ¢. These
morphisms are called central characters and can be used to define blocks.

The action of G on Irr(V) is a special case of a more general construction. For this, suppose
that H < G and let a € Aut(G). If ¢ € Irr(H ), then ¢ € Irr(H®) is the character obtained by
setting ¥ *(a(h)) :=1(h) for every h € H.

We conclude by recalling the Glauberman-Isaacs correspondence. Let A be a finite group
acting via automorphisms on G and such that (|G|,|A|) = 1. If rr 4 (G) denotes the set of
A-invariant characters of G, then there exists a canonical bijection

fa:Irra(G) = Irr(Cg(A)).

If x € Irr s (G), then fa(x) is called the Glauberman-Isaacs correspondent of x over A. Notice
that, by Feit-Thompson’s theorem [FT63]], either G or A must be solvable. The bijection was
proved by Glauberman when A is solvable [Gla68|] and by Isaacs when G is solvable in his
pioneering work [[sa73]]. Whenever A is solvable, we will often refer to this bijection simply as
the Glauberman correspondence.
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2.3 Blocks

Let R be the ring of algebraic integers in C, p a prime and fix a maximal ideal M of R containing
pZ. The quotient F = R /M is a field of prime characteristic equal to p and we denote by * : R - F
the canonical projection.

The group algebra FG admits a decomposition
FG=B1o---&B, (2.3.1)

into twosided indecomposable ideals called the p-blocks of G. We will often omit the prime p
when no confusion arises. This corresponds to a decomposition of the identity element

lpg = €ep, t--+ep,.

The ep,’s are the central primitive idempotents of FG' and are also often referred to as the blocks
of G: in fact the blocks can be recovered from the central primitive idempotents as B; = e, FG.
We denote the set of blocks of G by BI(G) = {B1,...,By}.

Let x € Irr(G) and consider the associated central character w,. By [Isa76l Theorem 3.7], we
know that w, (Clg(x)") € R for every « € G. Then, we can define a morphism of F-algebras

A\ : Z(FG) > F

by setting A, (€lg(z)™) = wy (Clg(x)*)* for every conjugacy class €l (x) of G. This induces an
equivalence relation on Irr(G) defined, for every x, 1 € Irr(G), by x ~ ¢ if and only if A, = Ay.
Notice that, for x, 1 € Irr(G), we have A\, = Ay, if and only if A, (Clg(x)") = Ay (Clg(x)") for
every p-regular element = € G (see the argument of [NT89, Theorem 3.6.24 (i)]).

It turns out that for every equivalence class [x]. there exists a unique block B € BI(G) such
that Ay (ep) # 0 for every 1 € [x].. In this case we say that the character ¢ belongs to the
block B. Conversely, if x, 4 € Irr(G) belong to the same block B, then A, = Ay. Therefore, if we
denote by Irr(B) the set of irreducible characters belonging to B, then Irr(B) coincides with an
equivalence class [x].. Then we write A := Ay, for any ¢ € [x].. Every algebra homomorphism
Z(FG) — F is of the form Ap for some block B € BI(G). It follows from the above discussion
that there exists a partition
Ir(G)= [] Ire(B).
BeBI(G)

For x € Irr(G), we denote by bl(x) the unique block of G to which x belongs. The block
By :=bl(1¢) is called the principal block of G.

Associated to every B € BI(G), there is a G-conjugacy class §(B) of p-subgroups D called the
defect groups of B. The p-defect of B is the nonnegative integer d(B) defined by |D| = p(5),
For a fixed p-subgroup P < G, we denote by BI(G | P) the set of blocks B € BI(G) such that
P € §(B). Next, recalling that x(1) divides |G| for every x € Irr(G), we define the p-defect of
X to be the nonnegative integer d(x) defined by p?®) := |G|,/x(1),. Similarly, the p-residue
of x is the nonnegative integer () defined by r(x) = |G|y /x(1),. It can be shown that
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d(B) = max{d(x) | x € Irr(B)} and the nonnegative integer ht() := d(B) — d() is called the
p-height of y. For a fixed d > 0 we denote by Irr?(B) the set of irreducible character x € Irr(B)
with defect d(x) = d. Moreover, Irro(B) denotes the set of irreducible characters belonging to B
with height zero.

Let H < G and consider ablock b € BI(H ). We define amap \{' : Z(FG) — Fvia \{ (€lg(x)") =
M ((€lg(z) N H)") for every conjugacy class €lg(x) of G. If A is an algebra homomorphism,
then there exists a unique block of G, called the induced block, denoted by b such that A{' = Ayc.
Block induction from H to G is always defined, for instance, when there exists a p-subgroup
D < G such that DCg(D) < H < Ng(D) (see [Nav98| Theorem 4.14]). The First Main Theorem
of Brauer (see [Nav98| Theorem 4.12]) shows that there exists a bijection

BI(N¢(D)| D) - BI(G | D)

given by block induction. This is also known as the Brauer correspondence.

Consider now N 4 G, b € BI(N) and B € BI(G). We say that B covers b (and b is covered
by B) if there exists x € Irr(B) and ¥ € Irr(b) such that x lies above ). Then, we denote by
BI(G | b) the set of blocks of G covering b. As for characters, the group G acts by conjugation
on BI(N) and we denote by G}, the stabilizer of b € BI(/N') under this action. Notice that, if
¥ € Irr(b) and g € G, then 99 € Irr(b?) and hence Gy < Gy. The blockwise analogue to the
Clifford correspondence is the Fong—Reynolds correspondence according to which we have a
bijection
BI(Gy | b) - BI(G | b)

given by induction of blocks. If B € BI(G | b), then the unique block C' € BI(G}, | b) such that
C% = B is called the Fong-Reynolds correspondent of B over b.

The compatibility between blocks covering and the Brauer correspondence was proved by Harris
and Knoérr in [HK85]. According to their theorem, if b € BI(NV | D) has Brauer correspondent b’,
then block induction gives a bijection

BI(Ng(D) | V') - BI(G | b)

such that 6(B’) ¢ §(B'C) for every B’ € BI(Ng(D) | b').

2.3.1 A consequence of the Harris—Knorr theorem

Here, we collect some consequences of the Harris—Knorr theorem that will be used in the sequel.

Lemma 2.3.1. Let N < G and P be a p-subgroup of N. Consider a block b € BI(N | P) and its
Brauer first main correspondent b’ € BI(Ny(P) | P). Let B' e B(Ng(P)) and set B := (B")“.
Then B’ covers b’ if and only if B covers b.

Proof. The result follows from the proof of the Harris—Knorr theorem [HK85]. O]

Next, we apply the above lemma in a particular case given by the Glauberman correspondence.
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Corollary 2.3.2. Let N be a normal p’'-subgroup of G, P be a p-subgroup of G and C(P) < H <
N¢(P). Consider i € Irrp(N) and set i’ := fp(p) € Irr(Cn(P)). If B' € BI(H), then B covers
bl(p") if and only if (B")NH covers bl(i). Moreover, if ju is G-invariant, then B’ covers bl(p') if
and only if (B")¢ covers bl(p).

Proof. Let b’ be the unique block of Ny p(P) that covers bl(x"), b the unique block of NP
that covers bl(u) (see [Nav98, Corollary 9.6]) and notice that b and b’ are Brauer first main
correspondents over P. Now, BI(NH | bl(p)) = BI(NH |b) and BI(H | bl(x)) = BI(H | V')
and, since H = Ny (P), Lemmaimplies that B’ covers bl(y') if and only if (B")NH covers
bl(p). Moreover, if y1 is G-invariant, then bl(p) is covered by (B")V* if and only if it is covered
by (B")C. O

2.4 Global-Local Counting Conjectures

Consider a finite group G and fix a prime number p. The p-structure of G gives rise to a collection
of p-local subgroups: these include the nontrivial p-subgroups of G together with their normalizers
and centralizers as well as their intersections and products. Opposed to the p-local subgroups,
the group G plays the role of a global object. Hinted by many known and conjectural results,
the Global-Local principle in representation theory of finite groups has quickly become the
leading object of investigation in the field comprehending a network of deep and interconnected
statements. In an extremely naive and vague way, according to this principle, the p-representation
theory of G is determined by the p-representation theory of its p-local subgroups. Here, the term
p-representation theory has to be interpreted as any representation theoretic invariant affected
by the choice of the prime p and therefore includes both concepts from p-modular and ordinary
representation theory. For more details on this topic we refer the reader to [Nav18| Chapter 9]
and [Cral9, Chapter 4]. From the group theoretic point of view, the interplay between the group
structure of G and that of its p-local subgroups has been widely investigated and exploited for
a much longer time. As is well known, this was the key to one of the premier achievements of
twentieth century mathematics: the classification of finite simple groups.

In this thesis we restrict our attention to the so called Global-Local counting conjectures. The
first of these statements was proposed by McKay in [McK72]]. In this paper, he observed that
the number of irreducible characters of odd degree of certain simple groups coincided with the
number of irreducible characters of odd degree of the normalizers of Sylow 2-subgroups. After
that, Isaacs proved in [Isa73]] that the same observation was true for groups of odd order and with
respect to every prime. This paper suggested that, perhaps, neither the simplicity of the group
nor the restrictions on the prime were necessary and that a general statement would hold for
every finite group. Recall that, for a finite group X, we denote by Irr,/(X') the set of irreducible
characters of X whose degree is not divisible by p. Then, the McKay Conjecture can be stated as
follows.

Conjecture 2.4.1 (McKay Conjecture). Let G be a finite group and p a prime number. Then

[Trryy (G)] = [y (N (P)),
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where P is a Sylow p-subgroup of G.

A few years later, Alperin introduced a generalization of the McKay Conjecture which involves
p-blocks. For this, notice that a character x € Irr(G) has p’-degree if and only if it belongs to a
block B of maximal defect, i.e. |G|, = p%®), and ht(x) = 0. This observation was used by Alperin
to formulate the Alperin-McKay Conjecture in [Alp76].

Conjecture 2.4.2 (Alperin-McKay Conjecture). Let G be a finite group, p a prime number and
consider a p-block B of G with defect group D. Then

e (B)] = [Trro (b)),
where b € BI(N¢g(D)) is the Brauer correspondent of B.

As mentioned before, the McKay Conjecture follows from the Alperin—-McKay Conjecture by
considering blocks of maximal defect. The Alperin-McKay Conjecture was proved by Olsson for
symmetric groups [[Ols76] and by Okuyama-Wajima [OWS80] and Dade [Dad80]] for p-solvable
groups. However, it appears that the proofs in Dade’s paper contain some gaps.

Alperin also proposed another conjecture of a slightly different flavour. For this, let B be a
block and denote by ¢(B) the number of irreducible FG-modules, up to isomorphism, belonging
to B. Next, define a p-weight of G to be a pair (Q, ) with @ a p-subgroup of G and p €
Irr®(N¢(Q)/Q). We denote by W,(G) the set of p-weights of G. Observe that, for every
weight (Q, 1), the induced block bl(1)€ is defined and we say that (Q, 1) is a p-weight of B if
bl(1)“ = B. The set of p-weights of B is denoted by W, (B). The conjugacy action of G induces
an action on the set of weights and, since B is G-invariant, we also obtain an action of GG on the
set of B-weights. With this in mind, the Alperin Weight Conjecture can be stated as follows (see
[Alp87]]).

Conjecture 2.4.3 (Alperin Weight Conjecture). Let G be a finite group, p a prime number and
consider a p-block B of G. Then
((B) = W,(B)/G,

where W,,(B) /G is the set of G-orbits on W, (B).

The Alperin Weight Conjecture was proved by Cabanes for groups of Lie type in the defining
characteristic [Cab88]] (notice that this was proved before the conjecture was even published) and
by Alperin and Fong for symmetric and general linear groups [[AF90]. For p-solvable groups the
result is attributed to Okuyama, although his proof seems to have some gaps (see the discussion
in [Bar97, p.134]). The first published proof of this result was given by Isaacs and Navarro in
[IN95].

It should now be clear why the above conjectures are called Global-Local counting conjectures: in
all these statements, a certain global numerical invariant is determined by other local numerical
invariants. Although, as we have seen, these conjectures hold in many cases, a general argument
for all finite groups seems to be out of reach at the present time. Nonetheless, as it has been nicely
expressed by Alperin in his review of [Dad94], all these statements are believed to be true:

"Proofs of all these results elude us still but the evidence for them is overwhelming and
includes proofs of special cases and examples, derivation of known results from the
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conjectures as well as connections between all the conjectures. If the subject were physics
and not mathematics all these special conjectures would be accepted truths."

After the proof of the classification of finite simple groups was completed, it seemed clear that
a reduction to simple groups could provide a way of proving these conjectures. This was, for
instance, proposed by Feit in [Fei80] for the (Alperin—)McKay Conjecture. Almost thirty years after
Feit’s comment, a reduction theorem for the McKay Conjecture was proved by Isaacs, Malle and
Navarro [IMNO7]. In their paper, the McKay Conjecture is reduced to a problem on (quasi-)simple
groups. This requires proving a strong version of the McKay conjecture for universal covering
groups of nonabelian finite simple groups called the inductive McKay condition (see [Spal8] and
[Nav18, Chapter 10] for more details). This major breakthrough in the field was followed by
other reduction theorems: for the nonblockwise Alperin Weight Conjecture by Navarro and Tiep
[NT11], for the Alperin-McKay Conjecture by Spath [Spa13al], and for the blockwise Alperin
Weight Conjecture by Spéth [Spa13b].

Since then, the conditions on quasi-simple groups required by these reduction theorems have
been checked for many families of simple groups. As a proof of the validity of this program, using
the reduction theorem in [IMNO7], Malle and Spath proved in [MS16]] that the McKay Conjecture
holds for p = 2. The inductive McKay condition has then been checked in many other cases, see
[Malo08]], [Spa12], [[CS13], [[CS174d], [CS17b]] and [[CS19]). At the present time, it only remains to
prove the case of groups of Lie type D,, for p odd and different from the defining characteristic.

Fewer results have been proved for the inductive Alperin-McKay condition. The condition
has been verified for groups of Lie type when p > 5 coincides with the defining characteristic
[Spai3al Theorem 8.4], for alternating groups and p = 2 [Denl4], for groups of Lie type A,
and blocks of maximal defect (or unipotent) in the nondefining characteristic in [CS15] and for
blocks of quasi-simple groups with cyclic defect in [KS16al] and [KS16bl]. More recently, the
inductive Alperin—McKay condition has been verified for some blocks of groups of Lie type A,
in nondefining characteristic in [BS20b] and, providing a reduction to quasi-isolated blocks, for
all blocks in nondefining characteristic p > 5 in [Ruh21bl]. The techniques used in the latter paper
might lead to a proof of the Alperin-McKay Conjecture for p = 2, this is work in progress by
Brough and Ruhstorfer. We also mention that most of the results of [BS20b]] have been extended
to groups of Lie type C,, in the upcoming paper [Bro]]. These results can be used to verify the
inductive Alperin-McKay condition for simple groups of Lie type C,,.

We conclude this section by mentioning some known results on the inductive Alperin Weight
condition. This condition has been checked for groups of Lie type in the defining characteristic
[Spa13b], for blocks of quasi-simple groups with cyclic defect [KS16al] and [KS16b], for alternating,
Suzuki and Ree groups [Mal14] and for groups of Lie type C,(¢) with ¢ odd and p = 2 [FM].
Many preprints on this topic have recently been uploaded: we mention [AHL21] in which the
condition is checked for groups of Lie type F4 and p odd not equal to the defining characteristic
and a series of papers by Z. Feng, C. Li, Z. Li and J. Zhang trying to adapt the results of [[CS15],
[BS20b] and [Ruh21b] to the inductive Alperin Weight condition (among others, we mention
[FLZ20] and [FLZ21]).
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2.5 Dade’s Projective Conjecture

Although at first sight the Alperin Weight Conjecture and the (Alperin—-)McKay Conjecture
seem unrelated, this is not the case thanks to work of Knorr and Robinson [KR89] where the
Alperin Weight Conjecture was reformulated. To understand this equivalent statement we need
to introduce some more notation. Let () be the set of p-chains of G: these are the chains
D = {Dgy < Dy < -+- < D, } where each D; is a p-subgroup of G. The number |D| := n is called
the length of the chain ID. Observe that the group G acts by conjugation on B(G) and that the
stabilizer G of a p-chain D € B(G) is equal to Gp = N; N (D;). According to [KR89, Lemma
3.2], whenever D € B(G) and b € BI(Gp), the induced block b is defined and we can define the
set

Irr(Bp) = {4 e Irr(Gp) | bl(¥) = B}.

Now, Knorr-Robinson’s reformulation can be stated as follows (see [KR89, Theorem 4.6]).

Theorem 2.5.1 (Knorr-Robinson). The Alperin Weight Conjecture holds for the prime p if and
only if for every finite group G we have

> (-D)Plr(Bp)| =0
DeP(G)/~c

for every p-block B of G with d(B) > 0 and where 3(G)/ ~¢ denotes a G-transversal in PB(G).

Using this reformulation, we can establish a connection between the Alperin—-McKay Conjecture
and the Alperin Weight Conjecture. In fact, by using [KM13| Theorem 1.1], it can be shown that
these two statements are equivalent when considering blocks with abelian defect groups (see
[KR89, Proposition 5.6]). A more far-reaching consequence of the Knorr—Robinson reformulation
is the introduction of a unifying conjecture by Dade. First, define Irr?( Bp) := Irr(Bp) nIrr?(Gp)
forevery D € B(G), B € BI(G) and d > 0. Extending Knorr and Robinson’s idea, Dade introduced
the following statement (see [Dad92, Conjecture 6.3]).

Conjecture 2.5.2 (Dade’s Ordinary Conjecture). Let G be a finite group, p a prime number and B
a block of G with d(B) > 0. If O, (G) = 1, then

> (-)Prd(Bp)| =0
DeR(@)c

for every d > 0 and where B(G)/ ~¢ denotes a G-transversal in B(G).

The importance of Dade’s conjecture is that it implies both the (Alperin—)McKay Conjecture (see
[KL19]]) and the Alperin Weight Conjecture (see [Dad92, Theorem 8.3]). Moreover, long before
the reduction theorem of Isaacs, Malle and Navarro, Dade tried to reduce his conjecture to a
statement on quasisimple groups. In order to do so, in [Dad92], [Dad94] and [Dad97], he proposed
a series of increasingly deeper statements with the aim of finding a version of his conjecture
strong enough to hold for every finite group if proved for quasisimple groups. The candidate for
this role was claimed to be Dade’s Inductive Conjecture [Dad97, 5.8], in Dade’s words:
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"With a great amount of work it can be shown to hold for all finite groups if it holds
whenever G is a nonabelian finite simple group.”

Although his reduction theorem has never been published, Dade deserves credit for foreseeing the
possibility of proving such a result and for all the crucial work he made towards this achievement.
Nowadays, we know that Dade’s claim was in all likelihood correct. In fact, a reduction theorem
for Dade’s conjecture was proved by Spath [Spal7] using a strong form of his conjecture called
the Character Triple Conjecture . This new conjecture is also believed to imply Dade’s Inductive
Conjecture (see Section[3.5|for further details).

For later purpose, we now introduce the most notorious of Dade’s conjectures called Dade’s
Projective Conjecture. Perhaps, this is also the statement which got the most attention amongst
those proposed by Dade. Once more, we need to introduce some notation. Let G be a finite group,
p a prime and consider a normal p-subgroup N < G. We denote by B(G, V) the subset of PB(G)
consisting of those p-chains D whose first term coincide with N. Since IV is normal in G, the
action of G on ‘B(G) restricts to P(G, N). Then, we denote by P(G, N)/ ~¢ a G-transversal
inPB(G, N). Consider now D € PB(G) and suppose that N < Gp. If A € Irr(N), then we define
Irr?(Bp | A) := Irr(Gp | M) nIrr?(Bp) for every B € BI(G) and d > 0. Then, Dade’s Projective
Conjecture can be stated as follows.

Conjecture 2.5.3 (Dade’s Projective Conjecture). Let G be a finite group, p a prime and consider
Z <Z(G) and X € Irx(Z). Set Z, := O,(Z) and consider a block B € BI(G) with defect groups
larger than Z,,. Then
> D)PmY(Bp | A) =0
DeB(G,Zp)/~c

for every d > 0.

Dade’s Projective Conjecture is known for groups of Lie type and unipotent blocks with abelian
defect groups in the nondefining characteristic [BMMO93]], for tame blocks [Uno94], for blocks of
cyclic defect [Dad96]], for symmetric groups [[OU95] and [An98], for GL,(¢) and SL,,(¢) in the
defining characteristic [OU96]] and [Suk99] and for p-solvable groups [Rob00]. The latter paper,
together with [Rob02] and [ER02] provide results on the structure of a minimal counterexample.
Spath’s reduction theorem heavily depends on these fundamental results. Moreover, the conjecture
has been checked for many sporadic groups by An, Dade, O’ Brien and many others.

By considering all blocks at once we obtain the following nonblockwise version of Dade’s Projec-
tive Conjecture (see also [Nav18| Conjecture 9.25]).

Conjecture 2.5.4 (Nonblockwise Dade’s Projective Conjecture). Let G be a finite group, p a prime
and consider Z < Z(G) and X € Irr(Z). Set Z,, := O,(Z) and consider a positive integer d > 0.
Then
> )PG[N =0.
DE"B(szp)/NG

We conclude by introducing some important sets of chains. Let D = {Dy < Dy < -+ < Dy}
be a p-chain of G. We say that D is a normal p-chain if D; 9 D,, for every ¢ < n. The set of
normal p-chains is denoted by 91(G). As before, if NV is a normal p-subgroup of G, then we
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define MI(G, N) := N(G) nP(G, N). Next, recall that a p-subgroup P of G is called p-radical if
P =0,(Ng(P)). Then, we say that D is a p-radical chain if Dy = O,,(G) and D; is p-radical in
Gp,, where D is the subchain of D given by { Dy < D; < --- < D;}. The set of p-radical chains of
G is denoted by 3(G). Finally, we say that D is a p-elementary abelian chain if D is a normal p-
chain and D;/ Dy is a p-elementary abelian group for every i > 0. The set of p-elementary abelian
chains is denoted by &(G). As before we define €(G, N) := ¢(G) n*B(G, N) for any normal
p-subgroup N of GG. Different types of p-chains are suited to different families of groups. For
instance, we will see in the subsequent chapters that working with normal p-chains is convenient
when dealing with p-solvable groups while p-elementary abelian chains are more beneficial when
considering groups of Lie type in the nondefining characteristic. As another example, p-radical
chains are a good choice to tackle groups of Lie type in the defining characteristic (see [OU96])).
Thankfully, all these different kinds of p-chains can be replaced with one another when proving
Dade’s conjectures. This result is due to Knérr-Robinson [[KR89, Proposition 3.3 and Corollary
3.4] and goes back to work of Bouc, Brown, Quillen and Thévenaz on simplicial complexes.
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3

Character Triples

Let G be a finite group and consider N < G. If ¥ € Irr(V) is G-invariant, then we say that
(G, N,¥) is a character triple. This representation theoretic notion plays an important role
in the reduction theorems of the counting Global-Local conjectures. For this purpose, various
relations on character triples have been introduced. Each of these relations has specific features
tailored on the problems arising from a Global-Local conjecture. In this chapter we will introduce
some of these relations on character triples and show their main properties. In order to do so
we first need to introduce the notion of projective representation. For this, we follow [Isa76]],
[Nav18] and [Spd18]]. The results presented here are essential for understanding the arguments
that will be given in the following chapters.

3.1 Character Triple Isomorphisms

Character triples can be used to control the Clifford theory of characters. One of the principal
examples of this fact can be found in the reduction theorems of the Global-Local conjectures. In
Section [3.3] we will see how character triples can be compared. First, in this section, we introduce
isomorphisms of character triples and show some of their properties. The results of this section
can be found in [Isa76, Chapter 11].

Definition 3.1.1. Let (G, N, ) and (H, M, ) be character triples. An isomorphism between
these two character triples is the datum of a group isomorphism ¢ : G/N — H /M and a map

o : Char(J | 9) — Char(J* | ¢)

for every N < J < G and where J/N and J*/M := +(J/M) are isomorphic via ¢, such that
the following properties hold for all N < K < J < G, x, % € Char(J | ¥) and v € Irr(J) with
N < Ker(v).

@) os(x+¥)=0,(x) +0,(¥);
(i) [x,¥]=[os(x),00(¥)];

19
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(it) ox(xx) =[07(X) ]k

(iv) os(xv) = o5(x)v", where /" is the character of J* corresponding to v via the isomorphism
L.

The isomorphism (¢, 0, ) is strong if it satisfies the following additional property:

@) [o7(x)]"@ =04 (x7), where x7 € Char(J9 | ¥) is defined by x9(29) = x(x) for every
g=NgeG/N and x € J.

For more information about isomorphisms of character triples we refer to [[sa76, Chapter 11].
For our purpose we only need some basic properties which we collect in the following lemma.

Lemma 3.1.2. Let (¢,0.) be an isomorphism between (G, N, ) and (H, M, ). Then the following
properties hold for every N < J < G.

(i) x(1)/9(1) = 0;(x)(1)/p(1) for every x € Char(J | 7).

(ii) oy : Char(J | 9¥) - Char(J" | ¢) is a bijection. Moreover, it restricts to oy : Irr(J | ¥) —
Irr(J* | ).

(iii) ¥ extends to J if and only if ¢ extends to J*.
(iv) IfN < K < .J and 1 € Char(K | 9), then o ;(¢”) = [ox (1)]”".

Proof. Sete(x) := x(1)/9(1) and e(n) :=n(1)/p(1) forevery x € Char(J | ) andn € Char(J" |
¢). Since N* = M and oy () = ¢ we have e(0,7(x))p = [07(x) v = on(xn) = on(e(x)V) =
e(x)p. It follows that

X(1)/9(1) = e(x) = e(o5(x)) = o700 (1) /e (1).

Next, by using property (i) of Definition observe that o ; is completely determined by its
image on Irr(J | 9). Then, using (ii), we deduce that the map is injective. In order to prove
surjectivity, it is enough to show that Irr(J* | ¢) is contained in the image of Irr(.J | ¢). Consider
the characters

= > etx, = Y el

xelrr(J|9) nelrr(J4p)

and notice, by evaluating the degrees, that ¥, e(x)* = |J : N| = |[J*: M| = P e(n)?. Since o is
injective, we deduce that ¥, e(x)? = ¥, e(07(x))? < 2, e(n)?* and therefore Irr(J* | ¢) must
be contained in the image of ¢ 7. This proves (ii). The claim on extendibility follows directly by
(iii) of Definition[3.1.1}

Finally, let N < K < J and ¢ € Irr(K | ¢). In order to prove (iv), it’s enough to show
that [o;(¢7),x] = [ox(¥)?",x] for every x € Irr(J* | ¢). By (ii) above, we can write
X =05(). for some £ € Irr(J | ). Then [ (¢”),x] = [0, (v7), 05(§)] = [v7, ] = [¥, k] =
[ok(¥), 0k (Ex)] = [0k (¥),00(E) ] = [ox(¥)”,0(6)] = [0k ()7, x]. This concludes
the proof. O
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3.2 Projective Representations

Let GG be a group. A complex projective representation of G is a map
P:G - GL,(C)

such that
P(z)P(y) = a(z,y)P(zy)

for every z,y € G and some o : G x G — C*. The scalar map « satisfies

a(z,y)a(z,yz) = a(z,yz)a(y, 2)

for every z,y,z € G and is called a factor set of G. In fact this is nothing but a 2-cocyle
o € Z?(G,C*). We denote by Proj(G) the set of projective representations of G. Moreover, for
a fixed factor set «, we denote by Proj(G | «) the set of projective representations of G whose
factor set coincides with «.

Consider two projective representations P and Q of GG. We say that P is similar to Q if there
exists P € GL,,(C) such that P(x) = P~1Q(x) P for every = € G. Then P is irreducible if it’s not
similar to any projective representation in proper block form. We say that P and Q are equivalent
if there exists p : G — C* such that P = 4 Q, where pQ is the projective representation defined
by 1Q(z) := u(x)Q(x) for every x € G.

Projective representations appear often when studying problems in representation theory. Clas-
sical applications of projective representations are in relation with extendibility of characters.
Consider N < G and a G-invariant character ¢ € Irr(/N'). Although it might not be true that ¢
extends to GG, we can always find a projective representation P of GG such that 4 is afforded by
Py. This leads us to the next definition.

Definition 3.2.1. Let (G, N, ) be a character triple. A projective representation P of G is
associated with (G, N, 9) if:

(i) Py is a representation of N affording ¢, and
(i) P(gn) =P(g9)P(n)and P(ng) = P(n)P(g) for everyn € N and g € G.
If no confusion arises, then we simply say that P is associated with ¥.

In order to prove the existence of projective representations associated with a character triple, we
need to recall a result on extendibility in cyclic factors.

Theorem 3.2.2. Let (G, N, V) be a character triple with G/ N cyclic and let X be a representation
affording ). Then there exists an irreducible representation X of G such that Xn = X. In particular
¥ extends to G.

Proof. See [Nav18, Theorem 5.1]. O

The next Lemma can be found in [Nav18| Lemma 5.4].
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Lemma 3.2.3. Let (G, N,v) be a character triple and consider a representation X affording ©). For
z,y € G, let X, X, and X, be extensions of X to (N, z), (N,y) and (N, zy) respectively. Then
there exists o(x,y) € C* such that X, (x)%X,(y) = a(z, y) Xzy(zy).

Proof. First, observe that X, X, and X, exist by Theorem Let n € N and notice that

X (?/ny_l) =Xy (yny_l) = :{y(y):{y(n):{y (y_l) = %y(y)%(n)%y(y)_l (3.2.1)

and similarly
f{(:cyny_la:_l) = %xy(xy)ﬁ{(n)%xy(my)_l. (3.2.2)

If we conjugate by X,(x)7!, then
X0 (2) Xy (1) X(n) (X (2) Xy (1) = X (2) X (yny ™) X (2) ™ = X(zyny 'a™")
and using we obtain
X (2) Xy (1) X (0) (X2 (2) Xy (y) 7" = Xy (29) X () Xy ()"

This shows that (X,(2)%,(y)) !X,y (2y) commutes with X(n) for every n € N. Using Schur’s
lemma [[sa76, Lemma 2.25], we conclude that (X, (2)X,(y)) X4y (zy) is a scalar matrix. O

We can now show the existence of projective representations associated with character triples
(see [Nav18, Theorem 5.5]).

Theorem 3.2.4. Let (G, N, 1) be a character triple and fix a representation X of N affording ¥.
Then there exists a projective representation P € Proj(G) associated with (G, N,v) and with factor
set « such that

(i) Py =X, and
(ii) a(g, h)IENPMD) =1 for every g, h e G.

Proof. For g € G := G/N, using Theorem 3.2.2} fix an extension Xz of X to (N, g). Set P(g) :=
X5(g), for every g € G, and observe that P is a projective representation of G by Lemmam
It’s immediate to show Py = X. Moreover, since g = gn, we deduce that X3 = X3 and therefore

P(g)P(n) = Xg(g)X(n) = Xg(gn) = Xgn(gn) = P(gn)
for every g € G, n € N. Likewise P(n)P(g) = P(ng). For g € Gand m € N, if g™ € N, then
P(g™) =X(g™) = X5(9)™ =P(g)™.

Therefore P(g)/“N = P(1) = Iy(1y and det(P(g))IN = det(P(g)/“*N) = 1 for every g € G,
and it follows that

1= det (P(9)P(h)P(gh) ™)™ = det (a(g, 1) To(1)) ™ = ag, ) ENPD)

for every g, h € G. This completes the proof. O
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Next, we describe some properties of the projective representations associated with character
triples (see [Nav18, Lemma 5.3]).

Proposition 3.2.5. Let P € Proj(G) be a projective representation associated with the character
triple (G, N,v) and with factor set cv. Then:

(i) a(gin1,gans2) = a(g1, g2) = a(nigi,na2go) for everyn; € N and g; € G.
(i) 1=a(1,1) = a(g,n) =a(n,g) foreveryn e N and g € G.
(iii) P(n?) = P(g) *P(n)P(g) for everyn e N and g € G.
(iv) P(z) is a scalar matrix for every x € Cg(N).

() a(g,2) =a(z,q) forevery z € Z(G) and g € G.

Proof. Let g1, g2 € G and ny,ns € N. Using the fact that P(gn) = P(g)P(n), for every g € G
and n € N, we deduce that P(g192)P(n{*n2) = P(g192nn2) = P(gi1n192n2). Then we obtain

a(g1,92)P(g1n1g2n2) = P(g1)P(92) P(n’n2) = P(g1)P(g2n{*n2) = P(g1n1)P(ganz)

and therefore a(g1n1, gon2) = a(gi1, g2). This proves (i) and (ii) follows easily. To prove (iii), just
notice that P(n)P(g) = P(ng) = P(gn?) = P(g)P(n?). Now, take = € C(V) and recall that
X := Py is an irreducible representation of N. Then, for every n € NN, it follows from (iii) that

[P(2),%(n)] = P(x) ' X(n) '"P(x)X(n) = X ((n ™)) X(n) = Lyq).

By Schur’s lemma [[sa76, Lemma 2.25], we obtain (iv). Finally, consider g € G and z € Z(G).
Since z € C5(IV), we deduce from (iv) that P(g)P(z) = P(2)P(g) and thus

a(g,2) = P(9)P(2)P(92) "' = P(2)P(9)P(29)"" = a(z,9).

Now the proof is complete. O

By the above result, if PP is a projective representation associated with a character triple (G, N, )
and with factor set o, we obtain a well defined map @ : G/N xG/N — C givenby a(Ng1, Ngo) =
a(g1,g2) for every g1, 92 € G.

We consider another important feature of projective representations. Let (G, N, 1)) be a character
triple and choose a projective representation P associated with it. This choice allows us to
construct a central extension G of G together with a character ¥ of a subgroup of G, that may
be identified with ©J, that extends to G. This process is often useful to reduce to the case where 7
extends to (G. The next result can be found in [Nav18| Theorem 5.6].

Theorem 3.2.6. Let (G, N, 1) be a character triple and P € Proj(G) a projective representation
of G with factor set v associated with ¥ as in Theorem([3.2.4 Set S := (a(g,h) | g, h € G) the finite
subgroup of C* generated by the values of . Consider the set G = G x S endowed with the group
multiplication

(:L‘a S) ’ (yv t) = (:l:ya OZ(ZL‘, y)St)
for every (z,5), (y,t) € G. Then the following holds.
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(i) G is a central extension of G with projection e : G — G, (x, s) ~ x, with kernel S := {(1, s) |
seS}~S.

(i) For every X < G, set X := ¢ ' (X). Moreover define Yy := {(y,1) |y € Y’} for everyY < N.
ThenY =Yy x Sy (as a group) and Yy is isomorphic toY via e.

(iii) IfY < N withY 4G, thenYy,Y 4G and Y |Yy < Z(G/Yp).

(iv) The irreducible representation

7’5 : @ - GLﬁ(l)((C)
(9:2) = 2P(g)

affords an extension T of ¥y, where ¥ is the character of Ny corresponding to 1} via the
isomorphism e : Ny — N, i.e. ¥9(n,1) :=¥(n) for everyn e N.

() Let 0 := ¥ x 1s,. There exists a bijection Irr (@ ‘ 1/9~) - Irr (G | 9), X~ x. This bijection
preserves the decomposition into blocks: for every x, v € Irr(G | 9), we have bl(x) = bl(¢))
if and only if bl(Y) = bl(¢)).

Proof. Since « is a factor set, the operation defined on Gisa group multiplication. By using the
properties described in Proposition we deduce that (1, 1) is the identity of G and observe
that (z,s)™! = (z7', a(z,27")s™") for every (z,s) € G. Straightforward computations show
that (i), (ii) and (iii) hold (see [Navi8, Theorem 5.6] for more details). The fact that P is an
ordinary representation of G follows from the fact that P has factor set o and by the definition
of the multiplication on G. Furthermore, as Py affords 1}, we deduce that 7y = 9. Finally, for
every x € Irr(G), let { be the inflation to G of the character of G /So corresponding to y via the
isomorphism € : G/Sy — G, i.e. X(g, s) := x(g) for every (g,s) € G. Then we have a bijection
between the set of characters y € Irr(G) and those ¥ of G with Sy < Ker(¥). To conclude notice
that  lies above ¥ if and only if ¥ lies above ¥. The claim on blocks follows by [NT89, Theorem
5.8.8 and Theorem 5.8.11] recalling that Sy is central in G. O

We will refer to the group G constructed above as the central extension of G induced (or defined)
by P. Next, we go one step further and define a central extension of G/N. This construction was
used by Fong in his fundamental paper [Fon61]]. Later we will see some additional properties of
the following bijection (see Section [4.2).

Theorem 3.2.7. Let (G, N,V) be a character triple and P € Proj(G) a projective representation
of G associated with 1 and with factor set . Consider the central extension G of G defined by P
and set X := X No/ Ny for every X < G and where Ny := {(n,1) |ne N}.

(i) G is a central extension of G/N with projection G — G/N, Ny(z,s) — Nz, with kernel
N/No.

(i) Let X be the character ofﬁ defined by /):(n, s) ::~s’1, so that T extends UN~'. Observe that
No < Ker() and denote by i) the character of N' corresponding to A via inflation: that is
J(No(n,s)) = s~L. Then there exists a bijection Irr (G | ) —» Irr (G | '1A9)
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Proof. By Theorem we know that N < Z(G), while it is clear that G/N is isomorphic to
G/N. To prove the second part, let x € Irr(G | ). By Theorem|3.2.6|the character x corresponds
to a unique X € Irr(G | 9). By Gallagher’s theorem [[sa76) Corollary 6.17] there ex1sts a unique
character Y’ € Irr(G ), with Ny < Ker(X'), such that X X = Y. Since 7 lies over A}, we deduce
that ¥ lies above . Denote by X the deflation of X' to G and observe that ¥ lies over JJ. Then we
define the required bijection by y ~ ¥. O

The central extensions constructed in Theorem and Theorem yield isomorphisms of
character triples (see also [[sa76, Theorem 11.28] and [Nav18| Corollary 5.9]).

Corollary 3.2.8. Let P be a projective representation associated with (G, N , ). Consider the
central extensions G of G and G of G|/ N defined by P and let ¥ € Irr(N) and ¥ € Irr(N') as defined
ﬁ

in Theorem 4 and Theorem respectively. Then the character triples (G, N, 9), (G, N,0)
and (G, N, V) are strongly isomorphic.

Proof. By [[sa76, Lemma 11.26] we obtain an isomorphism between the character triples (G, N, 1)
and (@ N, D). Since TN = X!, [[sa76, Lemma 11.27] implies that (G, N, ) is isomorphic to
(G,N )\) Applying once again [[sa76, Lemma 11.26], we conclude that (G,N, ) is isomor-
phic to (G, N 19) Since isomorphism of character triples is an equivalence relation, it follows
that (G, N,9), (G, N,7) and (G, N, ) are isomorphic. Finally, it follows by straightforward
computations that all above mentioned isomorphisms are strong. O

We end this section by recalling the following result on Clifford theory for projective representa-
tions. See [Nav98| Theorem 8.16 and Theorem 8.18] for a proof.

Theorem 3.2.9. Let (G, N,V) be a character triple with associated projective representation P €
Proj(G) with factor set «. Then:

(i) Proj(G/N | a™') » Rep(G | 9), Q = Q ® P is injective, where Rep(G' | 1) is the set of

representations of G whose characters lies over 1.

(ii) For every x € Char(G | ) there exists Q € Proj(G/N | a™') such that x is afforded by
Qe P.

(iii) If Q € Proj(G/N | a™'), then Q is irreducible if and only if Q ® P is irreducible.
(iv) IfQ, Q" € Proj(G/N | 1), then Q is similar to Q' if and only if Q® P is similar to Q' ® P.

(v) Let N < J < G and ) € Irr(J | 9). Set H := Ng(J)y and consider D € Proj(H | §)
associated with (H, J,1) such that

D;j=Q®7Py
for some Q € Proj(J/N | a7k ;). Then there exists Q € Proj(H/N | Baz} ;) such that
D= Q@PH

and@J:Q.
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Proof. The proof of (i)-(iv) can be found in [Nav98| Theorem 8.16 and Theorem 8.18] (see also
[Nav18| Theorem 10.11]). We now consider (v). Since P is associated with (.J, N, 1), by (ii) there
exists Q € Proj(J/N | o ;) such that Q ® P affords 1. Using Theoremwe can find D
associated with (H, J, 1) such that D; = Q ® P;. Then, using the proof of [Nav98, Theorem
8.16] (see also the argument used in [NS14b| Proposition 3.9 (b)]), we can construct 0. O

3.3 Relations on Character Triples

As we already mentioned earlier, character triples can be used as a tool to control Clifford theory.
With this goal in mind, it is useful to introduce partial relations on the set of character triples
in order to be able to compare them. Depending on the problem that we are dealing with, there
could be different aspects of representation theory that we would like to control and this leads
to a variety of relations on character triples (see [Spd18|] and [Nav18, Chapter 10]). For instance,
in the reduction theorem of the McKay Conjecture it is used a relation that allows us to control
the restriction of characters to the center (this is due to the fact that a relative version of the
conjecture needs to be addressed). On the other hand, and not surprisingly, in the reduction
theorem of the Alperin-McKay Conjecture it is used a relation that provides control on the block
theoretic aspects of the problem. In this thesis we consider relations that are tailored to deal with
Dade’s Conjecture. As we will see, these relations offer a general setting that allows us to recover,
as special cases, many of the previously introduced relations. All the results presented in this
section can be found in [NS14b], [Spa17], [Nav18| Chapter 10] or [Spa18]] with the exception of

Proposition (i), Proposition and Proposition

3.3.1 N-central isomorphism

We start by introducing a simpler relation called N-central isomorphism. Then, we will
introduce additional block theoretic requirements and define the N-block isomorphism. In this
way, we will obtain a relation that incorporates all aspects of representation theory needed to
deal with Dade’s conjecture.

Before giving the first definition, we try to motivate what we are doing. Fix a prime p and let D
and [E be two p-chains of the group G. To deal with Dade’s conjecture we consider 9 € Irr(Gp)
and ¢ € Irr(Gg). If G < A, then we wish to compare the character triples (Ap »,Gp, ") and

(AE,<p7 GE? SD)

/A\A

Ap

GD/G\GE

E,p

9 '
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The first natural properties that one might ask is to have GAp y = G A, so that Ap »/Gp is
naturally isomorphic to Ag ,/Gg. Next, we would like to have an isomorphism between the two
character triples (Ap »,Gp, ) and (Ag,,, G, ). To do so, consider projective representations
P € Proj(Ap,y) with factor set v and Q € Proj(Ag,,) with factor set 3 associated with ¥ and ¢
respectively. Notice that, by Proposition [3.2.5]the factor sets « and /3 can be seen as factor sets of
Ap y/Gp and Ag ,/Gg. If @ and 3 coincide via the isomorphism Ap y/Gp = Ag /G, then we
can produce an isomorphism of character triples by applying Theorem [3.2.9] The following result
is [Spa17, Theorem 3.3].

Proposition 3.3.1. Let N < G and consider two character triples (Hy, M,91) and (Ha, M2, 12)
such that G = NHy = NHy, My = Nn Hy and My = N n Hy. Denote by . : Hy /My — Ha /M the
canonical isomorphism and assume there exist projective representations P; € Proj(H;) associated
with ¥; and with factor set o; such that

ay (.%',y) = a?(b(x)a /’(y))

for every x,y € Hy/ My and where @; is the factor set of H;|/M; corresponding to «;. Then there
exists a strong isomorphism of character triples

(L7UO) : (H17M17’l91) g (H27M27192)
such that, for every N < J < G,

o, Irr(Jy | Y1) = Irr(Ja2 | 92)
Tr(Qs, ®Pry) = Tr(Qs, ® P2 )

where J; := J 0 H; and Q € Proj(J/N) is given by Theorem|3.2.9

Proof. Recall that by the definition of isomorphism of character triples it is enough to define the
map o7, on the set of irreducible characters. Fix ¢); € Irr(J; | 91) and consider Q; € Proj(.J; /M |
ailjlx J1) such that v is afforded by Q1 ® P;_;, as in Theorem As usual, we identify a
(projective) representation of a quotient group with its lift. Via the isomorphism H;/M; ~ G/N
we can define a projective representation Q € Proj(J/N) such that Q; = Q,. Since «; and
oy coincides via ¢, we deduce that Q, € Proj(J2/M2) has factor set aglj «J,- 1t follows that
on (W) =Tr(Qy, ® P2 j,) is a character in Irr(Js | ¥2). Using Theorem we conclude that
o0y, is a well defined bijection and by standard computations it can be seen that the requirements
of Definition [3.1.1] are satisfied. O

Definition 3.3.2. Consider N < G and two character triples (Hy, M7,%1) and (Ha, M2, 92)
satisfying the assumptions of Proposition 3.3.1] with respect to the pair (P, P2). Then we say that
the isomorphism (¢, o,) from Proposition is an N-isomorphism between (Hy, M;,v;)
and (Hs, M5, 12) . Moreover we say that (Hy, My,191) and (Hs, Ms,1J2) are N-isomorphic. If
we want to specify a choice of projective representations, then we say that the /NV-isomorphism is
given by (P1, P2) or that the character triples are N-isomorphic via (P1,Ps).

We now go back to our discussion on Dade’s Conjecture. Consider the two character triples
(Apy,Gp, V) and (Ag 4, Gg, ¢). In the statement of Dade’s Projective Conjecture, a subgroup
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Z < Z(Q) is given together with a character \ € Irr(Z). Then, noticing that Z < Gp n Gg, we
wish to control those characters ¢ € Irr(Gp ) and ¢ € Irr(Gp) that lie above the fixed character
A. In particular, we would like to say that ¥ lies above A if and only if so does .

A

Ap Ag,,
G
/ \
GD GE
\ Z /

A

9 4

Consider a pair of projective representations (P, P2 ) giving an N-isomorphism between ( Hy, M1, 91)
and (Ha, Ma,93). For every & € Cp, (M;), we know by Proposition [3.2.5|that the matrix P; ()
is of the form (; () 1y, (1) for some (;(x) € C*. This defines a map

G CHZ(Mz) - C*~.

We refer to this map as the scalar function of P;. In particular, if G := H; N and C¢(N) < H;
for i = 1,2, then Cg(N) < Cpg,(M;) and we can compare the two scalar functions ¢; and (2

on C;(N). The next result can be found in [Spa17, Lemma 3.4] and should be compared with
[NS14b, Lemma 3.3].

Lemma 3.3.3. Let (Hy, My,vY1) and (Hz, My, 92) be N -isomorphic via (P1,P2) and consider the

isomorphism (¢, 04) from Proposition[3.3.1 If C(N) < Hy n Hy for G := N H;, then the following
are equivalent:

(i) the scalar functions of Py and Po coincide on C(N);
(ii) forevery N < J < G and ) € Irr(Jy | ¥1), we have

Irr (wCJ(N)) =Irr (UJl (¢)CJ(N)) ’

where J; := J n H;.

Proof. Consider the scalar function ¢; of P;, for ¢ = 1,2, and assume first that (; ¢, (v) = C2,co (V)
Fix N < J < G and set J; := Jn H; and C := C;(N). Let ¢ € Irr(J1 | ¥1) and write
g = 07, (¢1). Then, there exists Q € Proj(J/N) such that 1; is afforded by Q 5, ® P; j,. Now,
fori=1,2,

vic =91 Tr(Qc),
and therefore Y5 (1)11,c = ¥1(1)12,c. We deduce that Irr (¢ o) = Irr (¢ ¢).

Assume now that (ii) holds. Let ¢ € Cz (V) and set .J := (N, ¢). Notice that C' := C;(N) = Z(J)
is abelian. Let ¢; € Irr(Jy | ¥1), set ¥a := 0,(11) and consider ) € Proj(.JJ/N) such that
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QJ, ® P; j, affords ;. Then, for i = 1,2, we have 9;(c) = ¥;(1)((c) - Tr(Q(c)). However,
from the assumption and since C is abelian, we can find a linear character A € Irr(C') such that

Yi(c) = ;(1)A(c). It follows that Tr(Q(c)) # 0 and therefore

A ()
Ty ny
By Lemma|[3.1.2] we obtain 1 (1)/91(1) = 12(1)/92(1) and we conclude that ¢;(c) = (2(c). O

Definition 3.3.4. For N < (G, we say that two character triples (Hy, M7,91) and (Ha, M2, 92)
are N-central isomorphic, and write

(Hl,Mla’lgl) N?V (H2>M27192) )

if G=NH; = NHy, C5(N) < H; n Hy and there exists a pair of projective representations
(Py,Ps) giving an N-isomorphism (¢, 0, ) and satisfying the equivalent conditions of Lemma
In this case (¢, 0,) is called an N-central isomorphism. As in Definition3.3.2] if we want
to specify a choice of projective representations, then we say that the N-central isomorphism is
given by (P1,P2) or that the character triples are N-central isomorphic via (Py, P2).

3.3.2 N-block isomorphism

We now add one further requirement to the definition of /NV-central isomorphism. To motivate this
requirement we go back to Dade’s Conjecture. Consider the two character triples (Ap y, Gp, )
and (Ag,,, G, ¢). For a fixed block B of G, we want to consider only those ¥ € Irr(Gp) and
@ € Irr(Gg) such that bl(9) = B = bl(¢)®. In this case, we would like to say that, if the two
character triples are isomorphic, then the bijection o : Irr(Jp g | 9) - Irr(Jg,, | ¢) is compatible
with block induction, whenever GG < J < A. This requirement is included in our next definition.

Lemma 3.3.5. Let M <4 Jy < J and 9 € Irr(M). Set b := bl({}) and suppose there exists a defect
group D of b such that C ;(D) < Jo. Then the induced block ¢’ is defined for every block c of Jo
that covers b.

Proof. By [Nav98| Theorem 9.26], there exists a defect group D of c such that D = Q n N. It
follows that C;(Q) < C (D) < Jy and therefore ¢ is admissible with respect to G (see [Nav98|
p. 213]). By the argument preceding [Nav98, Theorem 9.24] we conclude that ¢’ is defined. [

Suppose that (Hq, My,91) and (Hs, Ma,¥2) are two N-isomorphic character triples and let
N < J < G and J; := Jn H;. If there exists a defect group D; of the block bl(1J;) such that
Ca(D;) < H, then it follows by Lemmathat the induced block bl(1);)” is defined for every
¥; € Irr(J; | 9;). Notice that in this case Co(N) < Cg(D;) < H;. The next definition can be
found in [Spa17, Definition 6.3].

Definition 3.3.6. For N < G, we say that two character triples (H1, M1, 91) and (Ha, M2, V2)
are N-block isomorphic, and write

(Hi, My,91) ~n (Ha, M2,92),
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if G = NHy = NH> and, for i = 1,2, there exists a defect group D; of bl(1);) such that
Cq(D;) < Hj, and if there exists a pair of projective representations (P1,P;) giving an N-
central isomorphism (¢, 0,) such that

bl(v)” = bl (o, (1))’

for every N < J < G and ¢ € Irr(J; | 1) where J; := J n Hy. In this case (¢,0,) is called an
N-block isomorphism. If we want to specify a choice of projective representations, then we
say that the N-block isomorphism is given by (P1, P2) or that the character triples are N-block
isomorphic via (P, P2).

Before proceeding further, we give a more explicit list of all the properties that need to be checked
in order to have an N-block isomorphism.

Remark 3.3.7. For N < G and H;, H; < G, two character triples (Hy, My,v1) and (Hy, M2, ¥2)
are N-block isomorphic if the following conditions are satisfied:

(i) N<NHy =NH; =G, M; = H nN and My = Hyn N. We denote the canonical
isomorphisms by I; : H;/M; - G/N and by ¢ := I5' oly : Hy /My — Hy/Ms;

(i) fori = 1,2, there exists a defect group D; € §(bl(1);)) such that C(D;) < H;. In particular
Cq(N) < Hyn Hy;

(iii) For i = 1,2, there exists a projective representation P; € Proj(H;) associated with
(H;, M;,9;) and with factor set «; such that
al(xv y) = aQ(L(:I"L L(y))
for every x,y € Hy/M; and where @; is the factor set of H;/M; corresponding to a;

(iv) the scalar functions (1 of P; and (s of P satisfy
C1,ca(N) = C2,Ca(N);

(v) if (¢, 04) is the N-isomorphism given by (P1, P2), then

bI(¥)” =bl(as, (1))’
for every N < J < G and ¢ € Irr(Jy | ¥1) with J; :== J n Hy.

If we exclude the last condition and we replace (ii) with C;(N) < Hy n Hy, then we have an
N-central isomorphism between the character triples, as defined in

As we mentioned previously, other relations on character triples can be recovered as special cases
of ~%; and ~ . For instance consider the relations >, >. and >; introduced in [Spa18} Definition
2.1, 2.7 and 4.2]. Then, it is immediate to see that (G, N,9) > (H, M, ¢) if and only if (G, N, 9)
and (H, M, ) are N-isomorphic, that (G, N,v) >. (H,M, ) if and only if (G,N,?¥) ~%
(H,M,p) and that (G, N,¥) >, (H, M, ¢) if and only if (G, N,¥) ~n (H, M, ). Moreover,
observe that ~%; and ~ y are equivalence relations. We collect this and other basic properties in
the next lemma (see [Spa17, Lemma 3.8)).
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Lemma 3.3.8. Let N be a finite group.

(i) If(Hy, My1,91) ~n (H2, M2,92) and (Hz, M2,92) ~n (Hs, M3, 03), then (Hy, My1,91) ~n

(Hs, M3, ¥3). An analogue statement holds for ~¢;.

(ii) Suppose that (Hy, My1,91) ~n (Ha, Ms2,92) and consider N < J < G := NH;. Then
(J1, My,91) ~n (J2, Ma,02) where J; := J 0 H;. A similar statement holds for ~;.

(iii) Suppose that (Hy, My,91) ~n (Ha, M2,02) and let v be an automorphism of G = H;N.
Then (H{,M],9]) ~n~ (Hy, M],973). A similar statement holds for ~;.

Proof. All the claims follows directly from the definition of ~y and ~§;. O

In some special cases, the conditions listed in Remark [3.3.7] can be simplified. We consider the
case where the characters ¥; and ¥ extend to H; and Hs respectively. Notice that, in this
case, a projective representation P; associated with ¥; is just a representation of H; affording
an extension of ;. The next result can be found in [Spa17, Lemma 3.10] and applies with minor
changes if we replace N-block with N-central isomorphism.

Lemma 3.3.9. Let N < G and consider two character triples (Hy, My,71) and (Ha, My, 92) with
H,,Hy < G. Fori=1,2, let ¥; be an extension of ¥; to H;. Suppose that the following conditions
are satisfied:

(i) G=NH; = NHy, My = Hn N and My = Hy n N. Moreover, there exists a defect group
D; € §(bl(¥;)) such that Co(D;) < Hy;

(ii) Irr (51,Cg(N)) =Irr ({9,270G(N)); and
(iii) bl (517J1)J = bl(aZJQ)JfOF every N < J < G and where J; := J n H;.

Then
(Hi,My,01) ~n (Ha, M2,92),

via any pair of representations affording U1 and 0.

Proof. We check the requirements of Remark By assumption we already have Remark
|(i) and (ii). Let R; be a representation affording 0;, for i = 1,2, and notice that the factor
sets of R; and Ry are both trivial. In particular Remark (iii) is satisfied. Observe that
Cg(N) < Cu(D;) < H;. By [[sa76, Lemma 2.27] it follows that gi,CG(N) has a unique linear
constituent, say v;. Moreover, by assumption v; = v5 = v. An easy computation shows that,
if ¢; is the scalar function of R, then (; ¢, vy = v. Now Remark (iv) follows. Finally,
consider the N-isomorphism (¢,0,) given by (R1,R2). Let N < J < G and set J; := J n H;. If
1 € Irr(Jp | 91), then by Gallagher’s lemma we can find 7 € Irr(.J/N) such that ¢y = 01 5,1,
Then 1y = oy, (1) = 527&7]]2 and, using the hypothesis and [Spal7, Proposition 2.3], we
conclude that bl(¢1)” = bl(¢)9)”. O

w
w
N

We end this subsection with an elementary but useful observation. Suppose given N-block
isomorphic character triples and consider N < N. Under certain conditions, it is possible to
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deduce that those character triples are in fact N-block isomorphic. A similar result can be stated
for N-central isomorphisms.

Lemma 3.3.10. Let (1, My,91) ~n (Hz, M2,02) with H;N = G. Suppose that G < G and
let N <N <G withG =GN and N = Gn N. If Ca(D;) < G for some D; € §(bl(V;)), then
(H1, My, 01) ~ 5 (Ha, My, U2).

Proof. This follows directly from Definition [3.3.6] O

3.4 Construction of N-central and N-block isomorphism

In this section we introduce some rather technical methods that can be used to construct N-
central and N-block isomorphisms of character triples. The results presented here will be used in
subsequent chapters in order to prove our main theorems. For simplicity, we will only prove these
results for the N-block isomorphisms. However, the reader should observe that all these results
hold, with minor changes, when replacing N-block isomorphisms with N-central isomorphisms.

Let (¢, 04 ) be an N-block isomorphism between (Hy, My, ) and (Hz, M2, 92). Set G := H1 N =
HyN. As shown in the previous section (see Proposition [3.3.1), for every N < .J < G, there exists
a bijection

oy, Irr(Jy | 91) = Irr(Ja | 92),

where J; := J n H;. As we’ve already seen this bijections have many nice features. In the next
proposition, we show that this bijections are compatible with N-block isomorphisms (this should
be compared to [NS14b| Proposition 3.9] and [Spa17} Proposition 3.9]).

Proposition 3.4.1. Let (Hy, My,91) ~n (Ha, My, 92) be given by (P1,P2) and set G := H;N.
Consider N < J < G and define J; := J n H;. Let ¢ € Irr(Jy | ¥1) and set 19 := 07, (¢1), where
(t,04) is the N-block isomorphism given by (P1,Ps). Then:

(1) (N, ()yys J1,901) ~5 (Npy (), J2,12);
(ii) d(1) = d(p2) = d(¥1) - d(J2).

Proof. We first prove (i). As JNg, (J) = Ng(J) = JNpg,(J), we may assume J < G. Moreover,
since (¢, 0, ) is a strong isomorphism of character triples, we know that o 7, (¢1)*? = o7, ()7*) for
every x1 € Hy and x5 € Hy such that «(Mix1) = Moxo. In particular «(Hy y, /M1) = Ha y, [ Ma
and so JH y, = JH; y,. Without loss of generality, we may assume H; = H; ,,.

Using Theorem 9| (v) together with the isomorphisms Hy/.J; ~ G/J ~ Hs/Js, we can find
a projective representatlon Q € Proj(G/J) such that D; := Qp, ® P; is associated with 1;, for
i =1,2. We claim that the pair (D1, D) gives

(Hy, J1,91) ~ 5 (Ha, J2,12) .

Remark [3.3.7)(i) is clearly satisfied. Let D; be a defect group of bl(+J;) such that C(D;) < H;.
Since bl(#;) covers bl(1J);), we can find a defect group @; of bl(1);) such that D; < @;. Then
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Cc(Qi) < Cq(D;) < H; and Remark [3.3.7)(ii) holds. In order to prove Remark [3.3.7](iii), let 3 be
the factor set of Q and set 3; := By, «m,. Then D; has factor set y; = a;3;. Since o and o coincide
via ¢, then 71 and 2 coincide via the canonical isomorphism « : Hy/J; - Hy/Js. Moreover,
since Cg(J) < Cg(N),if x € Cg(J), then both P;(z) and D;(x) are scalar matrices. It follows
that Q() is a scalar matrix and therefore, since the scalar functions of P; and Ps coincide on
C¢(N), we conclude that Remark[3.3.7/holds for (D1, D2). Now, consider the J-isomorphism
(k, p) given by (D1, Ds) according to Proposition [3.3.1} Let J < K < G and set K; := K n H;.
For i = 1,2, observe that Irr(K; | ;) is contained in Irr(K; | ¥;). We claim that ok, and pg,
coincide on Irr( K | v1). Fix x1 € Irr(K7 | ¢1) and let R € Proj(K/J) such that x; is afforded
by RKl ® ,Dl,Kl' Then

pk;(x1) = Tr(Rk, ® D2 k,)
=Tr(Rk, ® Ok, ®P27K2)
=05, (Tr(Ri, ® Qk, ® P1ky))
=0k, (Tr(Rk, ® D1 k,))
=0k, (x1)

and this proves our claim. It follows that

bl (x1)™ = bl (o, (x1))" = bl (pre, (x1))™ -
This proves Remark [3.3.7](v) and therefore the first half of this proposition.

To prove (ii) notice that, since 11 (1) /91 (1) = 12(1)/92(1) by Lemma[3.1.2Jand |.J : J;| = [N : M;
it follows that

5

A =d(w2) _ [J1lp¥2(V)p _ [Milp92(D)p _ ao1)-acos)
[Jalp01(1)p  [Malpd1(1)p

This completes the proof. O

The next proposition can be used to obtain new N-block isomorphic character triples involving
irreducibly induced characters. This is the case, for instance, when we apply the Fong-Reynolds
correspondence or the Clifford correspondence. Before proving this result, we need an easy
lemma.

Lemma 3.4.2. Let N <G and 9 € Irr(N). If9¢ € Irr(G), then Cq(N) < N.

Proof. Set H := NCg(N) and observe that v := 97 ¢ Trr(H). Since ¥ is H-invariant we have
Yy =ed with e = |H : N|. However e = [¢n, 9] = [¢,%] = 1 and therefore C5(N) < N. O
The next result should be compared to [NS14b| Theorem 3.14].

Proposition 3.4.3. Let N 4 G and Gy < G. Fori = 1,2, consider H; < G such that G = N H;
and set M; == N n H;, Hy; = Go n H;, My; := Gon M; and Ny := Gon N <4 Gy. Suppose that
G = GoN, that H; = Hy ;M; and that p; := (@07i)Mi € Irr(MM;), for some @q ; € Irr (Mo ;). If

(i) (Ho,1,Mo1,901) ~n, (Hoz2, Mo2,¢0,2);
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(ii) there exists a defect group D; € §(bl(p;)) such that Cg(D;) < H; and

(iii) induction Indﬁ) i Irr(Jos | o) = Irr(J; | i) defines a bijection for every N < J < G,
where J; := Jn H; and Jo; == J n Hy,

then (Hy, M1, 1) ~n (Hz2, Ma, 2).

PI’OOf. Assume (H071,M071,(p071) ~ No (H072,M072,g00’2) via (P()J,PQQ) and let Q5 be the
factor set of Py;. Consider the canonical isomorphisms ly; : Ho;/Mo; — Go/No and [; :
H;/M; -~ G/N and set ig = [gh o loy and i = Iy o ly. If j : G/N — Go/Ng and j; : H;/M; —
Hy i/ My,; are the canonical isomorphisms, then we have a commutative diagram

i

Hi/M, —5 s GIN 2" Hy/M,

i ! |

Ho1 /Mo o Go/No A Hy /Mo
10
As in [NS14b| Theorem 3.14], consider the projective representation P; := (P ;) € Proj(H;)
with factor set «; defined as follows: let {¢; 1,...,%;,} be an H;-transversal for Hy ; contained in

M;, where n:= |G : Go| = |H; : Hy ;| For every x € H;, let

77071'(75;}13751‘714;), ift;}xtm € H(),i

Pijk(x) = {

0, otherwise
and define
Pita(r) ... Piia(x)
Pi(x) := : :
Pini(x) ... Pipn(x)

Then, P; is a projective representation of H; associated with ¢; = <péwl? with factor set o; satisfying
ai(z,y) = a,i(Ji(z), Ji(y)) for every z,y € H;/M;. Since

a0,1(J1(2),31(y)) = ao,2(io(j1()),i0(1(¥))),

we conclude that oy (x,y) = as(i(x),i(y)), for all z,y € Hy/M;.

We claim that Cg, (M;) < Go. In this case, since Cq(N) < Cq(D;) < H;, we deduce C (V) <
Cq, (No). To prove the claim, fix z € Cy, (M;), set J; := (M;,x) and Jy ; := Go n J; and let ¢; ,
be an extension of ; to J;. Since Indjf” :Irr(Jos | poi) = Irr(J; | i) is a bijection, we can

find an irreducible character ¢g ; , € Irr(Jo; | o,i) such that wgfi’ » = Pie- By Lemma [3.4.2( we
conclude that x € C,(Jo ;) < Jo; < Go. This proves the claim and hence Cg (V) < Cg, (V).
Now, since the scalar functions of Py 1 and Py coincide on Cg, (No) and [¢; ;, Ca(N)] = 1, for
everyi=1,2and j = 1,...,n, then the scalar functions of P; and P5 coincide on Cg (V).
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To conclude, fix N < J <G, set Jy := J NGy, J; := Jn H;and Jy; = J n Hy, and consider the
bijections given by the character triple isomorphisms induced by (Pg 1,Po,2) and (P1, P2):

00,J0, * Irt(Jo1 [ p0,1) = Trr(Jo2 | ¢o,2)
Tr(QO,J0,1 ® PO,LJOJ) e Tr(QO,J0,2 ® P0>27J0,2)

where Q € Proj(Jo/Ny), and

oy Irr(Jr [ 1) = Irr(J2 | 92)
Tr(QJ1 ® 731,]1) > TI'(QJ2 ® 'PQJQ)

where ) € Proj(J/N). Observe that oy, (1/10‘]1) = (UOJM (wo))J2 for every 1o € Irr(Jo,1 | vo,1)-
Let ¢ € Irr(Jy | 1) and write ¢ = 17[}6]1, for some v € Irr(Jo1 | o,1). Since by hypothesis
bl(100)” = bl(0g, 5, , (1)) 7, it follows that bl(1))” = bl(c s, (1)) O

As a consequence of Proposition [3.4.1]and Proposition we obtain one of the most powerful
tools that can be deduced in the presence of N-block isomorphisms. Let N 4 G and H < G with
G = HN. Set M := Hn N and suppose that there exists a bijection between the character sets
S cIlrr(N) and S’ ¢ Irr(M). If (G,N,9) ~n (H, M, ), for every ¥ € S corresponding to
¢ € 8', then we can construct a bijection between the set of characters of G lying above some
character of S and the set of characters of H lying above some character of S’. Moreover this
bijection can be shown to be compatible with N-block isomorphisms. This result will have a
fundamental impact in Chapter [9] (this can be compared to [NS14b, Proposition 4.7 (b)]; see also

Proposition|9.1.5).

Proposition 3.4.4. Let K 4 A, Ag < A with A = KAy and, for every subgroup X < A, set
Xo = X n Ag. Consider Ay-stable subsets of characters S € Irr(K') and Sy ¢ Irr(Ky). Assume
there exists an Ag-equivariant bijection

U:S -8
such that
(Ag, K,9) ~ (Ao, Ko, U (D))
and
CA(D) < Ao

for every ¥ € S and some defect group D of bl(¥(%})). Then, for every K < J < A, there exists an
Ay, j-equivariant bijection
O;:Irr(J|S) - Irr(Jo | So)
such that
(Asp: 4, x) ~g (Ao,gy, Jo, @a(X))
and

CA(Q) < Ao

for every x € Irr(J | ) and some defect group Q of bl(® ;(x)). Moreover ¥ preserves the defect of
characters if and only if so does @ ;.
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Proof. Consider an N 4, (J)-transversal S in S and define Sy := {¥(¥) | ¥ € S}. Since ¥ is Ay-
equivariant, it follows that Sy is an IN 4, (J)-transversal in Sy. For every 9 € S, with J¢ := U(¥) €
So, we fix a pair of projective representations (P(?) Péﬁo)) giving (Ay, K, V) ~k (Ao9, Ko, o).
Now, let T be an N 4, (J)-transversal in Irr(.J | S) such that every character y € T lies above a
character ¥ € S. Moreover, as A = K Ag, we have J = K Jy and therefore every x € T lies over a
unique 9 € S by Clifford’s theorem.

For x € T lying over ¥ € S, let ¢ € Irr(Jy | ¥) be the Clifford correspondent of x over ¥. Set Vg :=
V() € Sp and consider the N 4,(J)yg-equivariant bijection o, : Irr(Jy | ¥) — Irr(Jo 9 | o)
induced by our choice of projective representations (P, 738190)). Let ¢ := 07,(¢). Since ¥
is Ag-equivariant, we deduce that Jy y = Jy 9, and therefore ® ;(x) := ©”0 is irreducible by the
Clifford correspondence. Then, we define

Dy (x") =2,00)"

for every x € T and € N4,(J). This defines an N 4,(.J)-equivariant bijection ¥ : Irr(.J |
S) = Irr(Jy | Sp). Furthermore, using Proposition [3.4.1]it’s clear that ¥ preserves the defect of
characters if and only if so does ® ;.

Next, using the fact that (Ay, K,9) ~ (Aoﬂg, Ky, 190) together with Proposition we have

(Ag,750: J9,%) ~ 15 (A0,9,55.0 Jo.9,%0)
and, because Ay, j < Ay j,, it follows from Lemma3.3.8|that
(A0 J9,0) ~ 5 (A0,9,005 Jo.9,%0) - (3.4.1)

By hypothesis there exists a defect group D of bl(t) such that C4(D) < Ap. Since bl(xo)
covers bl(y) we can find a defect group @) of bl(xo) such that D < Q. It follows that C4(Q) <
C4(D) < Ayp. Finally, we obtain

(A I x) ~ (Ao g Jo, @r(X))

by applying Proposition together with (3.4.1). O

Next, we study the behaviour of N-block isomorphisms with respect to quotients. On one hand,
N-block isomorphisms in a quotient can always be lifted. Although the converse doesn’t hold
in general, some partial results can be shown under additional assumptions. First, we recall a
lemma on block induction in quotient groups.

Lemma3.4.5. Let K < H <G with K 4 G. SetG = G/K and H := H/K and consider B € B1(G)
dominated by B € BI(G) and b € BI(H) dominated by b € BI(H).

(i) Ifl_)G = B, then b¥ is defined and coincides with B.

(ii) Assume that K is a p’-group or K < Z(G) and that 5 is defined. Ifb® = B, then =B



3.4. Construction of N -central and N -block isomorphism 37

Proof. This is [NS14b, Proposition 2.4]. For the second part of the statement notice that, when
K <Z(G), we can write K = O,(K) x O, (K). Then, applying first [NS14b| Proposition 2.4
(b)] with Z := O, (K') and then [NS14b| Proposition 2.4 (c)] with Z := O,(G) we obtain our
result. O

Using the above lemma, we can show that N-block isomorphisms can always be lifted from a
quotient group. The next lemma might be compared to [Spa17, Corollary 4.4].

Lemma 3.4.6. Let K 4 G, N 4 G and, fori = 1,2, consider H; < G such that G = NH; and
K < M; := N n H;. Let 9; € Irr(M;) be H;-invariant with K < Ker(1;) and suppose that

(ﬁl,Ml,El) ~N (EQaM2752) )

where X = XK |K, for every X < G, and ¥; corresponds to ¥; via inflation of characters. Then
(Hy, My,91) ~n (Hz, Ma,J2).

Proof. We check the requirements of Rema£< The group theoretic conditions are satisfied.
By hypothesis, there exists a defect group D; of bl(¢);) such that C~(D;) < H;. Using [Nav98,
Theorem 9.9], we can find a defect group Q; of bl(¥;) such that D; < Q,. Then

Ca(@) < C5(Q.) < C5(Dy) <

and therefore Cq(Q;) < H;. Let (P1,P2) be a pair of projective representations giving the
above N-block isomorphism. For i = 1,2, define the map P;(z) := P;(Kx) for every x € H;.
Then P; is a projective representation associated with (H;, M;, ;). By assumptions the factor
sets of P and P5 coincide via the canonical isomorphism 7 : H, /Ml - Ho /Mg. By definition
and using the third isomorphism theorem, we deduce that the factor sets of P; and P2 coincide
via ¢ : H1/M; — Ha/M>. Moreover, recalling that C;(N) < Cz(N), using the fact that the
scalar functions of P; and P coincide on Ca(ﬁ) it follows that the scalar functions of P; and
P, agree on C¢(N). To finish the proof, we need to check Remark [3.3.7/(v). Let N < J < G
and consider 1 € Irr(Jy | 1), where J; := Hy n J. Observe that K < Ker(1)1) < Ker(11) and
denote by 9, € Irr(.J; | ¥1) the character corresponding to v; via inflation. Let (¢, 0,) be the
N-isomorphism given by (P;,P,) and (7,7, ) be the N-isomorphism given by (P, P2). By
definition, notice that 75, (1p,) coincides with the character o 7, (1) whose inflation is o ;, (7).
By hypothesis we have

—\7 T [ ——\J
bL(1)" = bl (77, (¥1))" = (00 (41))
and it follows by Lemma (i) that bl(11)” = bl(o5, (11)”). Now the proof is complete. [
As mentioned before, under additional requirements, we can show that some partial converse to

the above statement also holds. The next result should be compared to [Spa17, Corollary 4.5].

Lemma 3.4.7. Let (Hl,]\_/.fl,ﬁl) ~n (Hz2,M>s,92) and consider K < G = NH; with K <
Ker(¥1) nKer(J2). Set X := XK/K, for every X < G := NH;, and denote by V; the char-
acter of M; corresponding to ¥; via inflation. If Cg(N) = C5(IN) and there exist defect groups D;
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of bl(V;) such that Cz(D;) < H;, then
(F17M1731) ~N (F27M2752)
provided that K is a p’-group or that K < Z(G).

Proof. By assumptions we already have conditions (i) and (ii) of Remark Let (P1,P2) be a
pair of projective representations giving (Hq, M1,%1) ~n (Haz, M2,72). By Proposition [3.2.5]
(ii) and recalling that K < Ker(v;), we deduce that P; is constant on K -cosets. Hence we can
define a projective representation P; associated with (H;, M;J;). By definition the factor sets of
P, and P, coincide via the natural isomorphism. Moreover, since the scalar functions of P; and
P, coincide on C (V) and using the assumption C¢;(N) = Cz(N), we deduce that the scalar
functions of P; and P, coincide on C#(N). Finally, consider N < J < G and ¢ € Irr(J; | 91),
where .J; := H; n N. Denote by 1, € Irr(.J; | 91) the character corresponding to v; via inflation.
If (1,0) is the N-isomorphism given by (P1,P>) and (z,7) is the N-isomorphism given by
(P1,P2), then 77, (1,) coincides with o 7, (11 ). Since bl(t1)”? = bl(a, (11))”, it follows by

Lemma [3.4.5| that bl(a1 )j = bl(Ej1 (El))j -

In the next result we present a slight variation of the previous lemma. Notice that the group
S < Z(G) introduced in Theorem satisfies the requirements of the following statement.

Lemma 3.4.8. Let (Hy, My,91) ~n (Ha, Ms,92) and consider K < Hy n Hy with K < G and
NnK =1.Set X := XK/K, forevery X <G := N H;, and consider the character 9; corresponding
to 9; via the isomorphism M ; ~ M;. Then

(ﬁ:hMl)El) ~N (H27M2752)
provided that K is a p’-group or that K < Z(G).
Proof. This is [Spa17, Proposition 3.13]. O

The next lemma shows that N-block isomorphisms of character triples are compatible with direct
products.

Lemma 3.4.9. Forj=1,2let (Hj1,M;1,9;1) ~n; (Hjz2,Mj2,9;2). Then
(Hy, My,91) ~N (Hz, Ma,92),
where N := Ny x Ny, H; := Hy ; x Hy j, M; := My ; x My ; and 9; := 91 ; x ¥g; € Irr(M;).
Proof. This is [Spa17, Theorem 5.1]. O

In addition, N-block isomorphisms of character triples are compatible with wreath products.

Lemma 3.4.10. Let r be a positive integer and consider (Hy, My,91) ~n (Ha, M3,75). Then

(H12ST,M{, 7{) ~NT (HQZST,MQT, 5)
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Proof. This is [Spa17, Theorem 5.2]. O

As we have seen in Theorem [3.2.6] we can associate a central extension to any choice of projective
representation associated with a character triple. In this way, it is sometime possible to reduce a
problem on character triples to the case where the character extends. In the next theorem, we
show that this construction is compatible with N-block isomorphisms. Then, whenever we have
an N-isomorphism between the character triples (Hy, M1,%1) and (Hs, M2,92), in order to
check if this is an N-block isomorphism we can assume that 1J; extends to H; and 92 extends to
H. In this situation we can apply Lemma 3.3.9 The next result in [Spa17, Theorem 4.1].

Theorem 3.4.11. Let (1,0) be an N-isomorphism between the character triples (Hy, M1,91) and
(Ha, M3,92) given by (P1,P2). Fori = 1,2, let a; be the factor set of P; and recall that G = N H;.
Since a1 and 042 coincide via i, we can define a factor set « ofG/N such that o; = ap,xp,;. Asin
Theorem | we can define a group multiplication on the set G := G x S given by

(:Ev S) : (yvt) = (xy, stoz(:v,y))

for every (x,5), (y,t) € G and where S is the group generated by the values of . Then G is a
central extension of G with projection € : G — G, (., s) — x with kernel So := {(1,5) | s € S} =~ S.
Set X =€ N(X) and Yy = {(y,1) |y e Y} forevery X <G andY < N. ThenY = Yy x Sy (as a
group) and Yy is isomorphic toY viae.

(i) Fori=1,2, the group H; is the central extension of H; induced by P; (see Theorem.
(ii) If N < J < G and C(J) < H;, then C5(T) = Ci(J).

(iii) There is an No-isomorphism (z,7) between (Hy, M o,91,0) and (Ho, Mo, 92,), where
V0 is the character of M; o := (M;)o corresponding to ¥; via the isomorphism € : M; o - M,;.

(iv) If (7,7) is an Ng-block isomorphism, then (1, 0) is an N-block isomorphism.

Proof. The first part of the statement follows by Theorem[3.2.6] Let N < J < G and notice that

G(C) < Cg(J) On the other hand, if C;(J) < Hy and z € C(J) < Cp, (M), then Pi(c) is
a scalar matrix. Let (c, s) € C(J), with ¢ € C;(J), and consider (y, ) € J, with y € J. We want
to show that (¢, s) commutes with (y, ). For this, it is enough to prove that a(c,y) = a(y, ¢).
If J; := Jn Hy, then J = NJ; and we can write y = ny;, withn € N and y; € J1. Since
« is constant on N-cosets, it is enough to show that a(c,y1) = a(y1,c¢) or equivalently that
a1(¢,y1) = a(y1, ¢). This last equality follows immediately from the fact that P (c) is a scalar
matrix. We conclude that C¢(J) < CG(J ).

Asin Theorem consider the representation P; of H; given by P;(z, s) := sP;(x) for every
(z,s) € H;. The factor sets of P; and P, are trivial and therefore coincide via the canonical
isomorphism 7': ﬁl/Ml,O - ﬁQ/M270. In particular the character triples (ﬁl, M ,701,0) and
(Hy, My,12,) are Ny-isomorphic via (P;, P,). Let (7,7) be the associated Ny-isomorphism.
If (7,7) is an Ny-block isomorphism, then (¢, o) is an N-block isomorphism by Lemma[3.4.8, [

We conclude this section with a fundamental result. Consider a group N and two character triples
(Hy1, My,91) and (Ha, M2, 92) satisfying Remark(i). What is the role of G = NH1 = NHy
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when considering /NV-block isomorphism? According to the Butterfly theorem, what really matters
is not the group G itself but the automorphism group induced by G on N.

Theorem 3.4.12 (Butterfly Theorem). Let (Hy, My,%1) ~n (Ha, My, 92) with G = NH;y =
NHy. Let N < G and consider the canonical maps € : G - Aut(N) and€: G - Aut(N). If
e(G) =&(G), then

(Hy, My,91) ~n (Ha, Ma,95),

where H; =€ '(e(Hy)), fori=1,2.
Proof. The proof of this result is rather technical and can be found in [Spd17, Theorem 5.3] [

The reader might wonder about the origin of the name of the previous result. In order to explain
it, we need to consider a simplified situation: let (G, N,¥) := (Hy, M1,91) and (H, M, ) :=
(Hg, M2,72). Then the setting of Theorem can be described by the following diagram
which resembles a butterfly

I~

q H
\ /
M
here H =€ !(e(H)).

3.5 The Character Triple Conjecture

Having introduced N-block isomorphisms of character triples we can now introduce Spéth’s
Character Triple Conjecture. This is a version of Dade’s Projective Conjecture (see Conjecture
adapted in order to include the possibility of controlling Clifford theory via N-block
isomorphisms of character triples. As we will see, the Character Triple Conjecture works as an
inductive condition for Dade’s Projective Conjecture: namely, it can be used to reduce Dade’s
conjecture to a problem on quasisimple groups. This reduction theorem was proved by Spath in
[Spa17] which is the main reference for the results presented in this section.

Let G be a finite group, Z a central subgroup of G and A € Irr(Z). Set Z,, := O,(Z) and consider
a block B € BI(G) whose defect groups strictly contain Z,,. Then, recall that Dade’s Projective
Conjecture (see Section [2.5) posits that

(-1)Plme? (Bp | A)| =0, (3.5.1)
Dep(G,Zp)/~c

where the sum runs over the set of p-chains of G, with first term equal to Z,, up to G-conjugation
(see Section[2.5)for further details). We want to restate this equality in a more suitable way. To do
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so, let € € {+, -} and consider the subset P(G, Z)). of ‘P(G, Z,) consisting of those p-chains D
that satisfy (=1)/P! = ¢1. Then B(G, Zp)+ is the set of chains of even length and ‘B(G, Z,)- is
the set of chains of odd length. Now, is equivalent to

(-1)Plme? (Bp | V)| = D (-1)Ple? (Bp | ). (3.5.2)
DeP(G,Zp)+/~c DeP(G,Zp)-/~a

Next, we restate the equality (3.5.2) as the existence of a bijection between two sets of finite order.
To see this, for € = +, define

CUB, Zp,N)e = {(D,9) | DeP(G,Zy),9 el (Bp | A)}

and denote by C%(B, Z,,\)/G the corresponding set of G-orbits. Then Dade’s Projective Con-
jecture is equivalent to saying that there exists a bijection

Q:CYB, Zy,\):|G - CYB, Zy,\)-|G. (3.5.3)

Finally, we strengthen Dade’s Projective Conjecture by requiring additional properties on the
bijection (3.5.3). First, if G < A, then we ask that the bijection € is Ap 7z x-equivariant. Moreover,
we want to control Clifford theory via G-block isomorphisms of character triples. For this purpose,
denote by (ID,?)) the G-orbit of any (D,) € C%(B, Z,, \) and notice that we can associate the
character triple (Ap g, Gp,?) to the pair (ID,)). By Lemma [3.3.8] the equivalence class of the
character triple (Ap y, Gp, ") under ~¢ does not depend on the representative of (ID,?) and
therefore we can require that the bijection € satisfies

(Apy,Gp,¥) ~¢ (Agx, GE, X) (3.5.4)

for every (D, ) € C4(B, Z,,\) and (E, x) € Q((D,9)). As a last step we make a minor simplifi-
cation. Define

Ci(B,z,)= ] CUB,Zy,N).
Aelrr(Z)

Then, by using Lemma a bijection Q: C%(B, Z,)+/G — C4(B, Z,)- |G that satisfies
restricts to Qy : C4(B, Z,,\) - C%(B, Z,, \) for every \ € Irr(Z). We are now ready to state
the Character Triple Conjecture (see [Spal7, Conjecture 6.3]).

Conjecture 3.5.1 (Character Triple Conjecture). Let G be a finite group, Z < Z(G) be a p-
subgroup and consider B € BI(G) with defect groups strictly larger than Z. Suppose that G 4 A.
Then, for every d > 0, there exists an Ap_z-equivariant bijection

0:CYB,2),)G—-CYB,Z)_|G

such that
(Ap,9,Gp,Y) ~¢ (Ag,x, Gr,X)

for every (D,9) e CY(B, Z), and (E,x) € Q((D,9)).
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We point out that, by using Theorem [3.4.12] we could have equivalently stated Conjecture [3.5.1]
by considering the group A := G x Aut(G).

By the above argument, the Character Triple Conjecture implies Dade’s Projective Conjecture.
But even more is true, in fact in [Spa17, Proposition 6.4] it was shown that Conjecture3.5.1]implies
Dade’s Extended Projective Conjecture (see [Dad97| 4.10]). It is also suspected that Conjecture
also implies the final version of Dade’s conjecture, i.e. Dade’s Inductive Conjecture (see
[Dad97. 5.8]).

As mentioned previously, the Character Triple Conjecture can be used to reduce Dade’s Projective
Conjecture to a question on quasisimple groups. In fact, in [[Spa17] it is shown that if Conjecture
holds for every quasisimple group, then Dade’s Projective Conjecture holds for every finite
group. Recall that a group X is involved in a group G if there exists H < G and N 4 H such
that H/N ~ X.

Theorem 3.5.2. Let G be a finite group and suppose that every covering group X of a nonabelian
simple group involved in G satisfies Conjecture[3.5.1 with respect to X <9 X » Aut(X ). Then Dade’s
Projective Conjecture holds for G.

Proof. This is [Spal7, Theorem 1.3]. t

In the rest of this section we make some helpful comments and simplifications of Conjecture
We start with a fundamental remark regarding the type of p-chains used in Conjecture
As we have seen in Section [2.5] Dade’s Projective Conjecture can be equivalently stated
by using the set P(G) of all p-chains of G, the set 91(G) of normal p-chains, the set &(G) of
elementary abelian p-chains or the set S3(G) of radical p-chains. This is an important feature
since it allows to work with different sets of p-chains with specific properties depending on the
groups that we are dealing with. For instance, as we will see later on, the set of normal p-chains
is a good choice when working with p-solvable groups while in the case of groups of Lie type
in nondefining characteristic it is preferable to work with the set of elementary abelian chains.
An analogous property is shared by the Character Triple Conjecture. These results can be found
in [Dad94| Proposition 2.10] and [Spa17, Proposition 6.10]. Let Z be a central p-subgroup of G,
consider a block B of G and a nonnegative integer d. For € = + and x € {norm, elem, rad}, define
CH(B, Z). to be the subset of CY( B, Z). consisting of those pairs (ID, 1)) that satisfy D € (G, Z),
De E(G,Z) or D e R(G, Z) respectively.

Lemma 3.5.3. Let G be a finite group, Z < Z(G) be a p-subgroup and consider B € BI(G) with
defect groups strictly larger than Z. Suppose that G < A and fix k € {norm, elem,rad}. Then
Conjecture[3.5.1 holds if and only if, for every d > 0, there exists an Ap, z-equivariant bijection

Q:CYB,2),|G - CYB,2)_|G

such that
(Apy,Gp,Y) ~¢ (Ag,x. GEs X)

for every (D,9) e CX(B, Z), and (E,x) € Q((D,?)).

Proof. This is [Spal7} Proposition 6.10]. O
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The next result tell us that in Conjecture it is no loss of generality to assume O,(G) = Z <
Z(G). For simplicity we will usually denote C%(B,0,(G)). simply by C%(B)..

Lemma 3.5.4. Conjecture[3.5.1 holds whenever Z < O, (G).

Proof. Consider D € M(G, Z) withD = {Dg < D;--- < Dy }. If O,(G) ¢ D, then define D*
to be the p-chain obtained by adding O,(G)D,, to D. Assume O,(G) < D,, and let k be the
unique nonnegative integer such that O,(G) < Dy and O, (G) ¢ Dj_;. If O,(G)Dy_1 = Dy,
then we define D* by deleting the term Dy, from D. If O,(G)Dy-1 < Dy, then we define D*
by adding the term O, (G)Dj_; to D. This defines a self-inverse N 4 (Z)-equivariant bijection
NG, Z) > N(G,Z) such that [D| = |D*| £ 1. In particular Gp = Gp+ and we define
Q((D,?)) = (D*, ) for every (D,?) e CY(B, Z),. O

3.5.1 The nonblockwise Character Triple Conjecture

In the above section we have shown how the Character Triple Conjecture implies Dade’s Pro-
jective Conjecture. Similarly, it can be seen that the following nonblockwise version of the
Character Triple Conjecture implies the nonblockwise version of Dade’s Projective Conjecture

(see Conjecture[2.5.4).
For a finite group G, a p-subgroup Z < Z((G), a nonnegative integer d and € € {+, -} we define
cla,2).= U cUB,2)..
BeBI(G)
As usual G acts on C%(G, Z), and we denote by C%(G, Z)./G the corresponding set of G-orbits.

Conjecture 3.5.5 (Nonblockwise Character Triple Conjecture). Let G be a finite group, Z < Z(G)
be a p-subgroup and suppose that G < A. Then, for every positive integer d > 0, there exists an
Ap, z-equivariant bijection

Q:CUG,2), )G~ CUG,Z)_|G
such that

(Ap,9,Gp,9) ~§ (Ag,x, Gr,X)
for every (D,9) € CH(G, Z), and (E, x) € Q((D,)).

Notice that in the above statement we consider G-central isomorphisms of character triples and
not G-block isomorphisms of character triples. As we will see in Chapter [10] this is a much easier
condition to check.

The argument used in Lemma applies also in this case and shows that Conjecture [3.5.5]
always holds if Z < O, (G). For this reason we will often assume Z = O,(G) < Z(G). Moreover,
in this case we denote C%(G, Z). simply by C%(G)..

We mention that it is natural to expect that Conjecture could be used as an inductive condition
for Conjecture in order to obtain a nonblockwise version of Theorem 3.5.2]
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4

Character Triple Conjecture for
p-Solvable Groups

As mentioned in Chapter [2] Global-Local counting conjectures are amongst the deepest problems
in representation theory of finite groups. At the moment of writing, no conceptual explanation
for any of these conjectures can be provided and the only way of proving them is by brute force,
namely by using the classification of finite simple groups. In his papers [Dad92], [Dad94] and
[Dad97]], Dade introduced a series of increasingly deeper statements with the aim of reducing
his conjecture to finite (quasi)simple groups. In order to do so, he had to find a version of his
conjecture strong enough to hold for every finite group if proved for all (quasi)simple groups.
Such a statement should incorporate aspects of Clifford theory that could be compatibly clued
together when assuming the result for chief factors of an abmient group. The candidate for this
purpose was found in Dade’s Inductive Conjecture [Dad97, 5.8]. In Dade’s words (see [Dad97]))

"With a great amount of work it can be shown to hold for all finite groups if it holds
whenever G' is a nonabelian simple group”

However such a result has never been published. Ten years after Dade’s claim, a fundamental
step towards the solution of the McKay Conjecture has been achieved by Isaacs, Malle and
Navarro in [IMNO7]. In their paper, the McKay Conjecture is reduced to a stronger statement
for (quasi)simple groups. Inspired by this result, other reduction theorems have been proved by
Navarro and Tiep [NT11], by Navarro and Spath [NS14b], by Spath [Spai3al], [Spa13b], [Spal7]
and by Navarro, Spith and Vallejo [NSV20]. However, contrary to Dade’s philosophy, all the
reduction theorems mentioned above reduce a certain statement for arbitrary finite groups to a
much stronger statement for (quasi)simple groups.

Although these stronger statements, known as inductive conditions, have been originally for-
mulated for (quasi)simple groups, they can be stated for all finite groups. Going back to Dade’s
philosophy, it should be possible to obtain, not only the original conjecture, but even the inductive
condition itself, for every finite group, by proving the inductive condition for (quasi)simple groups.
Therefore we now have the need of stronger reduction theorems that might be referred to as
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second generation reductions. In the case of the Alperin—-McKay Conjecture this was achieved
in [NS14b]). For the McKay Conjecture see [Rosl]. The reader should observe that these stronger
inductive conditions are not just mere strengthenings of the Global-Local conjectures. In fact,
very deep consequences can be deduced from them: for instance, as shown in [NS14b], Brauer’s
Height Zero Conjecture follows from the inductive condition for the Alperin-McKay Conjecture.

We now consider the case of Dade’s Projective Conjecture. As we know, the Character Triple
Conjecture plays the role of an inductive condition for Dade’s Projective Conjecture (see [Spa17}
Theorem 1.3]). Following [NS14bl] and [Ros]], we would like to show that the Character Triple
Conjecture holds for every finite group if it holds for all quasisimple groups. This would also
complete Dade’s plan by replacing Dade’s Inductive Conjecture with the Character Triple Con-
jecture. To prove such a reduction theorem, it is necessary to study the structure of a minimal
counterexample to the Character Triple Conjecture. As for all the above mentioned reductions,
the first step in this direction is to show that such a counterexample cannot be p-solvable. This
will be the main result of the present chapter. The results of this chapter can be found in the
preprint [Ros21]].

Theorem 4.1. Let G be a finite p-solvable group with O,(G) < Z(G) and consider a p-block B
of G with noncentral defect groups. Suppose that G 4 A. Then, for every d > 0, there exists an
Ap-equivariant bijection

Q:Cc4B),/G - CYB).|G

such that
(Apy,Gp,Y) ~¢ (Ag,x. GE: X)

for every (D,9) € CY(B), and (E, x) € Q((D,?)).

Next, recall that for x € Irr(G), the p-residue of  is the nonnegative integer r(x) := |G| /x(1)p.
Following ideas of Isaacs and Navarro [IN02], we include the p-residue of characters into the
picture.

Theorem 4.2. There exists a bijection ) satisfying the conditions of Theorem[4.1 and such that

r(¥) = £+r(x) (mod p)
for every (D,9) e C4(B), and some (E, x) € Q((D,)).

As a corollary to our results, we show that Dade’s Extended Projective Conjecture [Dad97, 4.10],
with the Isaacs-Navarro refinement, holds for every p-solvable group.

Corollary 4.3. Dade’s Extended Projective Conjecture with the Isaacs-Navarro refinement holds for
every p-solvable group.

Proof. This follows from Theorem [4.2/and [Spa17, Proposition 6.4]. O

According to Lemma [3.5.3|the Character Triple Conjecture can be equivalently stated considering
various sets of p-chains. It appears that normal p-chains are more suitable when dealing with
p-solvable groups. Therefore, every p-chain ID considered in this chapter will be a normal p-chain,
thatisachainD = {Py <---< P,} with P, 4 P,, forevery i =0, ..., n.
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4.1 N-block isomorphic character triples and Glauberman
correspondence

The aim of this section is to prove Theorem which will be one of the main ingredients
in the proof of Theorem To prove this result, we need to extend the bijection given in
[NS14b, Theorem 5.13] to characters of positive height. This is done in Proposition for the
case where the D-correspondence (see [NS14bl Definition 5.3]) coincides with the Glauberman
correspondence. Moreover, in this situation, we obtain a canonical bijection.

Recall that, for every x € Irr(G), it is defined a linear character det () of G: let X be a represen-
tation affording x and set

det(x)(g) = det(X(g)).

Observe that this definition does not depend on the choice of X. The character det(y) is called
the determinant of . Then, we can define the determinantal order of x as

o(x) :=|G : Ker(det(x))|.

Let N 9 G and ¥ € Irr(NV) be a G-invariant character such that (o(9)9(1),|G : N|) = 1. By
[Isa76l Corollary 8.16], there exists a unique extension ¥° of ¥ to G such that (o(9°),|G : N|) = 1.
The character ¥° is called the canonical extension of ¥ to G. For instance, this happens if
(|G : N|,|NJ) = 1. In order to prove Proposition[4.1.7] we need some results on the extendibility
of the canonical extension.

Lemma 4.1.1. Let H < G and x € Irt(G) such that x g € Irr(H ). Then o(x ) divides o(x).

Proof. Set ¢ := x g and observe that det(¢) = det(x)g. If K := Ker(det(x)), then K n H =
Ker(det(1)) and it follows that o(¢)) = |H : K n H| divides |G : K| = o(x). O

Corollary 4.1.2. Let N, K < G with N < K and (|K : N|,|N|) = 1. Let i € Irr(N') and consider
its canonical extension (1° € Irr(K). Then pu extends to G if and only if 1° extends to G.

Proof. Notice that 1° is G-invariant since p is G-invariant and p° is uniquely determined by p.
Clearly, if 1° extends to G, then so does . Conversely, assume that y has an extension x € Irr(G).
By [[sa76 Corollary 11.31], in order to show that ;° extends to G, it is enough to show that ;1°
extends to H for every H/K € Syl,(G/K) and every prime p. If p does not divide |N|, then
has a canonical extension to H, which is also an extension of ;1 by Lemma

Assume that p divides | N|. By [[saZ6l Corollary 6.17] there exists a linear character A € Irr(K/N)
such that ©® = Ay k. Notice that, as ©° and xx are G-invariant, the character \ is G-invariant.
Since |K : N|and |H : K| are coprime, we deduce that A has a canonical extension A° to H. Then
A°x g is an extension of 1 to H. This concludes the proof. O

If P is a finite group acting via automorphisms on a finite group N with (|N|,|P|) = 1, then as in
Section[2.2] we denote by

fpiTrrp(IN) —» Irr(Cn (P))
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the Glauberman correspondence (see [Isa76, Chapter 13] and [Nav18, Section 2.3]). For the
remainder of this section we consider the following setting. As mentioned already, when necessary,
we denote the normalizer N x (Y") simply by Xy-.

Hypothesis 4.1.3. Let N be anormal p’-subgroup of A and P be a p-subgroup of A such that K :=
NP 4 A. Consider p € Irr4 (V) and its Glauberman correspondent fp(p) € Irr4, (Np). Let
p’ elrg(K) and fp(p)® €Irra, (K p) be the canonical extensions of ;¢ and fp( ) respectively.

Lemma 4.1.4. Assume Hypothesis[4.1.3 and let C' be an abelian normal subgroup of A with
C < C4(K). Suppose that 11° has an extension [i to A. Then there exists an extension fp(u) of
fp(p)® to Ap such that

Irr (fig) = Irr (mc) .

Proof. Write C, := Op(C) and Cpy := Oy (C) and set £ := Jinc,,. Let k% be the canonical
extension of k to K'C. Since k extends to A, there exists an extension % of x° to A by Corollary
Using Lemma[4.1.1] observe that x° extends 1° and so does %. Now, by [[sa76, Corollary
6.17], there exists a linear character € Irr(A/K) such that i = %n. Let A and A\ be the
unique irreducible constituent of Jic and of K¢ respectively. Then A = Ajnc. Next, consider
the Glauberman correspondent fp(x) € Irr((NCpy)p) of k and let fp(x)° be its canonical
extension to (K C')p. Using [Tur08, Theorem 6.5] and [TurQ9, Theorem 7.12], as  extends to
A, we conclude that fp(k) extends to Ap. B Corollary exists an extension fp(x)
of fp(x)° to Ap. As before, using Lemma notice that fp(x) is an extension of fp(1)°.
Define fp(u) == fp(Kk)na,. Since Kp < Ker(na, ), it follows that fp(x) is an extension of

fp(p)°. If X and \| are the unique irreducible constituents of fp (1) and fp(k) respectively,
then \' = A{nc. Therefore, in order to conclude, it is enough to show that \; = \]. Write
A= A1p x Ay and A = Aj o, x Ay, with Ay, Ay € Trr(C) and Ay, Ay € e (Cyy). First,
because fp(x) is an irreducible constituent of k¢, and Cpy < Z(NCyy), it follows that

Irr (ECP,) =1Irr (KCz@) =Irr (fp(/{)cp,) =Irr (mcp,)

and therefore Ay ;y = /\ll,p" Observe that Kyxc, = (RO)Nch = [t X A\1,p. Since p does not divide
0(x°), Lemma [4.1.1]implies that p does not divide o(x x A,). In particular (p,0(),)) = 1 and
therefore \1 , = 1¢,. By the same argument, we obtain A} , = 1¢,. This shows that A\; = \] and
the proof is complete. O

Next, we extend Lemma to the case where C' is not necessarily abelian.
Corollary 4.1.5. Assume Hypothesis[4.1.3 and suppose that pu° has an extension fi to A. Then there
exists an extension fp(u) of fp(u)® to Ap such that

Irr (Fig, (r0y) = Irr (fP(M)cA(K)) :

Proof. Set C:= C4(K),C":=[C,C]and A:= A/C". Since Jif is irreducible, as recalled before
Lemma[3.3.3) we have C < Z () and [[sa76, Lemma 2.27] implies that fic: = f1(1), for some linear
character \ € Irr(C'). In particular C’ < Ker(\) < Ker (7). It follows that C' n K is contained
in Ker(u®) and Ker(fp(1)®) while C' n N is contained in Ker(x) and Ker(fp(p)). Via the
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canonical isomorphism N ~ N/C’' n N, we can identify ;1 with a character i of N. Similarly
we can consider 1° as a character of K, fp(u) as a character of Np and fp(u)° as a character
of K p. Notice that Ap = Zﬁ, Kp= ?ﬁ and Np = Nﬁ. By [NS14b, Lemma 5.10] the character
fp () coincides with the Glauberman correspondent f5(fi) of 7. Moreover 1° and fp()® are
the canonical extensions of iz and of fp(u). Applying Lemma | we find an extension v of
fr(p)° to Af such that Irr ( C) =Irr (%) where i is the character of A corresponding to fi

via inflation. Now the inflation f p( w) € Irr(Ap) of ¢ satisfies the required hypothesis. O

Recall that, if R is the ring of algebraic integers and S is the localization of R at some maximal
ideal containing pR, then * : S — F denotes the canonical epimorphism, where F is the residue
field of characteristic p (see [Nav98|, Chapter 2] for details).

Lemma 4.1.6. Assume Hypothesis[4.1.3 If j1° extends to i € Irr(A), then there exists an extension
Fp(i) of fp(1)° to Ap such that

Irr (ﬁCA(K)) =Irr (fP(M)CA(K))

and
i(x)" = efp(p)(z)”
for every p-regular x € A with P € Syl,(Ck(x)), where e := [N, fr(11)].

Proof. By Corollary [4.1.5]there exists an extension x of fp( 1)° that satisfies the first condition.
In order to conclude, it is enough to find a linear character & € Irr(Ap/C 4(K)Kp) such that
fp(p) := € x satisfies the second condition.

First, we construct the linear character &. Let 2 be a p-regular element of C4(P)Kp, set N(*) :=
N{z), K@ = K(z) and observe that (N™))p = (N,)®) = Kp(z) and (K@) p = (K,)®) :=
Kp(l’)

Since x is p-regular, the subgroup N (*) has order coprime to p and we can consider the Glauberman
correspondent fp ([ y(x)) of Wy (x). Moreover fp (i) )np = fr(p) by [IN91 Theorem A]. Now,

if fp(fin()® is the canonical extension of fp(fiy () ) to K%, then Lemmal4.1.1 implies that
(fr(Fin@ ) ) kp = fr(p)°. Since X is another extension of fp(u)°® to K}, %) it follows that
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there exists a unique linear character £(*) e Irr(KI(f)/Kp) such that §(x)XK(z) = fe(Byw)°.
P
We define the map

§:CA(P)KP—>C

z e @ (1,).

We claim that ¢ is a linear character of C4(P) K p with an extension € to Ap. To show that € is
an irreducible character we apply [Isa76, Corollary 8.12]. Clearly {(1) = 1. Next, in order to show
that ¢ is a class function we check that £*") = (¢(®)" for every n € Ap and every p-regular
x € C4(P)Kp. If this is the case, then

&™) = € ((a)) = €D ((@p)") = (€50) ((2)") = €09 (a) = ()

for every x € C4(P)Kp and n € Ap. In particular ¢ is a class function. To prove the claim, just
notice that (X (=))" = X ;=) and that (fp(fy))®)" is the canonical extension of fp (fiy )" =
P P

fp(finwny) for every n € Ap and every p-regular z € C4(P)Kp. Next, since £(*) = §(z_1) for
every p-regular z € C4(P)Kp, we deduce that £(z71) = £71(z) for every 2 € C4(P)Kp and
therefore [£,€] = 1. Finally, fix S x T'< C4(P)Kp with S a p-group and T a p’-group. Observe
that {s = 1. On the other hand x k7 and fp(fin7)° are both extensions of fp(1)® and we
can find a linear character A € Irr(KpT/Kp) such that Axg,7 = fp(finT)°. Moreover, for
every x € T, we have (fp(ﬁNT)O)K}(f) = fp(Jin))® and therefore {1 = Ap. It follows that

Esx1 € ZIrr(S x T') and hence £ is a linear character by [Isa76 Corollary 8.12].

Next, we show that ¢ extends to Ap. To do so, we use [[sa76, Theorem 6.26]. Let ¢ be a
prime dividing o(§) and consider S;/Ca(P)Kp € Syl,(Ap/Ca(P)Kp). Noticing that every
p-element x of C4(P)Kp is contained in Ker (&), we deduce that p does not divide |C 4 (P)Kp :
Ker(¢)| and hence ¢ # p. Let Q € Syl,(Ap/Np) such that S; = C4(P)KpQ and define
Q1:=QnCy(P)Kp and & = £,. By [Spal0, Lemma 4.1], we deduce that £ extends to Ap
if and only if g, extends to ). We are going to check the latter condition. Because ()1 < Ap
we deduce that N is a P-invariant p’-group and that (NQ1)p = NpQ1 = Q1. We also have
KQ1 = (NQ1) » P and (KQ1)p = KpQ1 = Q1P. Now we can consider the Glauberman
correspondent fp(fing, ) and its canonical extension fp(fing, )¢ to Q1 P. By [IN91, Theorem
A] we have fp(ing, )np = fp(1) and so (fp(Ting,)*Vicp = fp(2)° by Lemma L1} Using
Corollary [4.1.2] we obtain an extension 1 of fp(fing,)°® to (KQ)p = KpQ. By Gallagher’s
theorem there exists a unique linear character v € Irr(KpQ/Kp) such that x g, - v = 9. Finally,

for every = € 1, we have

f(z)XKI(Jz) = [r(fiye)” = (fr(Eng,) ye)”
= (fP(ANG:)®) ko) = (VPQ1) i

=Y (@) = X () V()
K¢ KOV K

and it follows that v, = ;. This shows that v/ is an extension of £; to () and therefore & extends
to S;. We conclude that £ has an extension § to Ap.
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Define fp (1) := £x. By [NSi4a, Theorem 2.6] we deduce that

fi(x)" =iy (2)" = efp(liyw ) (2)" = e(§(2)x(2))" = efp(p)(z)”
for every p-regular x € E such that P € Syl,(Ck(x)).

It remains to show that C':= C4(K) is contained in the kernel of £. First, observe that Ker(&)
contains C' := [C, C] < Ker(&¢). Moreover, Ker(§) contains every p-element of C'. Since C'//C’
is abelian it’s enough to show that every p-regular element x of C' lies in Ker(&). By the Alperin
argument we know that B := bl(fi()) and B’ := bl(fp(fiy(=))®) are Brauer correspondents
with B covering b := bl(fiy)) = {Hiy } and B’ covering b’ := bl(fp(lin@)) = {fP(fixw)}-
According to [Nav98| Theorem 4.14] it follows that A = Aps o Brp. Since x € C4(K ), we have
& < Z(K®)) and hence

Ap(2) = Ap ((zK“))+) “ g ((mK‘“ A CK(J)(P))+) ().

By [Nav98, Theorem 9.5], we conclude that

(565) === (ERE) -(Fo)
As Irr(Jic) = Irr(x¢) and z is p-regular, we obtain
@) @) _ Frm)@)
x(1) m) fe(u)(1)
and, in particular, &(z) = 1. This concludes the proof. 0

Using the above result we are able to extend the bijection given in [NS14b, Theorem 5.13] to
characters of positive height. This is done in the particular case where the group K from [NS14b|
Hypothesis 5.1] has order not divisible by p. In this particular situation we obtain a canonical
bijection.

Proposition 4.1.7. Assume Hypothesis[4.1.3 Then there exists a canonical defect preserving Ap-
equivariant bijection

U p eI (K | i) = Tre (Kp | fp(n))
Wy o fo(i) v,

for every v € Irr (K /N). Moreover
(Aﬁa K7 19) ~K (APA% KP7 \IIM,P(ﬁ))

and
CA(D) <Ap

forevery ¥ e Irr(K | ) and some defect group D of bl(V,, p(?)).
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Proof. Since K = N x P and Kp = Np x P are p-nilpotent groups with Sylow p-subgroup P,
is K-invariant and fp(u) is K p-invariant, we deduce that
Irr(K | p) =Tre(bl(p®)) = {p°v|velrr(K/N)}
and that
Ir(Kp | fp(p)) = er(bI(fp(1)?)) = {fp(1)°v | v e Ir(Kp/Np)}.
Then, we obtain an A p-quivariant defect preserving bijection by setting
Oy p(u®-v) = fr(p)° vi

for every v € Irr(K /N ). Furthermore, as P is a common defect group of the two blocks bl(+)
and bl(¥,,,

Let P € Proj(A) be a projective representation associated with 1° with factor set a and observe
that P is also associated with ;1. Consider the central extension A of A definedby P ande: A - A
the map given by €(z, s) := z, for every x € A and s € S, with kernel S := (a(z,y) | z,y € A).
For H < A, set H := ¢ '(H). By Theoremthe set Hy := {(h,1) | h € H} is a subgroup of
A, whenever H < K. In this case let 9 ¢ Irr( Hy) be the character corresponding to ¢ € Irr(H)
via the isomorphism ey, : Hy — H. Moreover H = Hj x S and we define 0= Yo x1g € Irr(ﬁ).
Notice that (12®) € Irr(Kj) is the canonical extension of 1 and that ;i° € Irr(K) is the canonical
extension of fi. Furthermore fp(u)o = fp,(po) and (fp(1)°)o is its canonical extension. As no
confusion can arise, we just write y (resp. fp(u)q) instead of (1°)o = (o) (resp. (fr(p)®)o =

Jpy (10)°).

Recall that the map defined by P(z, s) := sP(m), for every (z,s) € A, is an irreducible repre-
sentation of A affording an extension 7 of xg. Set S, : O0,(5), Sp := O (S), M := Ng x S,
Q = PyxS, and notice that K = M xQ, M = (Np)oxS rand Ko = Kp. Letp = € Irr 7(M)
and consider its canonical extension ¢° € Irr(K ). By Corollary- there exists an extension o
of p° to A. Lemmalmphes that $k, = p5. Now, if R is an irreducible representation of A
affording @, then R(z) := R(x,1) defines a projective representation of A associated with ;°.
Replacing P with R, it is no loss of generality to assume that 7 extends ¢°.

Now, Lemmaylelds an extension fQ(go) of fo()° to Ag = Ap such that

Irr (&CZ(R)) =TIrr (fQ(SO)CZ(f()) (4.1.1)

and
P(x)" =efq(p)(x)” (4.1.2)
for every p-regular z € A such that Q € Syl,(Cg(x)), where e := [¢nr,, fo(¢)]. Observe that,
by [IN91, Theorem A] and using the fact that S, < Z(A), we have fQ(‘p)(Np)o = fp,(10) and

fQ(‘P)(KP)O = fp (10)°.

Let P’ be an irreducible representation of Ap affording fo(p) and consider the projective
representation P’ of Ap defined by P’(x) := P'(x,1) for every = € Ap. Notice that P’ is
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associated with fp(1)° and that its factor set coincides with a4, x4 ,. Furthermore, as C Z(I? )=

C4(K) (see Theorem3.4.11/(ii)) and by (4.1.1), we deduce that P¢ , (x and PéjA(K) are associated
with the same scalar function. This shows that

(A, K, 1) ~5% (Ap, Kp, fp(1)?).-

Next, let ¥ = p°v € Irr(K | ), with v € Irr(K/N'), and observe that Ay = A,. Let Q be a
projective representation of A, associated with v and notice that Q 4, is a projective repre-
sentation of Ap, associated with v ,. Now S := P4, ® Q is a projective representation of A,
associated with ¥, while S’ := PAP ,®9Q4,, is aprojective representation of Ap,, associated with
U, p(0)=fp(p)vi,. We claim that (Ay, K,9) ~k (Apy,Kp, ¥, p(V)) via (S,S"). By the
previous paragraph, one can easily check that conditions (i)-(iv) of Remark 3.3.7)are satisfied. To
conclude, it remains to check Remark [3.3.7] (v). By the proof of [NS14b| Theorem 4.4] it’s enough

to show that
KIS Kply TS @)
pht('ﬂ)ﬁ(l)pr pht(q}”’P(ﬁ))\I}u,P(ﬁ)(l)P’

for every p-regular x € Apy such that P € Syl (Cg (7)). Fix a p-regular element = € Apy with
P € Syl,(Ck(x)). Then Q € Syl (Cp(z,1)) and implies

Tr (S(2))" = 32, 1) TH(Q(2))” = (efa(@)(2,1)) Tr(Q))* = " Tr (S'(x))".
Ase=[un,, fp(p)] and by [NS14b, Theorem 5.2 (b)], we obtain

|K|p’

D(1)p = (1) = [unp, fr(W]IN = Np|fp(p)(1) = BW‘PH,P(ﬂ)(l)p' (mod p)

and therefore

(mwﬂwu»yZCWWﬁwmwy:( [ ply Tr(S(2)) y
P10 V(i1 P, o) (1), )

Now the proof is complete. O

As a consequence, applying Proposition and Proposition [4.1.7] for every N < J < A we
obtain an Ap j-equivariant defect preserving bijection

®:Iir(J | p) = Ire(Jp | fr(n))

such that
(Asx, J,x) ~7 (Aspy, JP, ®(X))

for every x € Irr(J | i1). Finally, we obtain the main result of this section by considering a normal
p-chain D with last term P and J = NGp.
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Theorem 4.1.8. Let N < G 9 A, with N 4 A a p’-subgroup, and consider a normal p-chain D of G
with final term P. Let i € Irr 4 (N') and fp(p) € Irr(Np) be its Glauberman correspondent. Then
there exists a defect preserving Ap-equivariant bijection

®,p: Irr(NGp | 1) = Ire(Go | fp(1))
such that
(NApy, NGp,X) ~6 (Ap,x, G, @un(x))

for every x e Irr(NGp | ).

Proof. Let K := NP and observe that, without loss of generality, we may assume K < A. Set
S:=Irr(K | p) and 8’ :=Irr(Kp | fp(1)). By Proposition[4.1.7)there exists an Ap-equivariant
defect preserving bijection

\I/M’pIS%S,

such that
(Aﬁa K7 19) ~K (AP,I% KP7 qju,P(ﬁ))

and
Ca(D) < Ap

for every ¥ € Irr(K | u) and some defect group D of bl(¥,, p(?)). Let J := NGp and notice
that, since IV is a p’-group, we have Np = C(P) < G and therefore (NGp) p = Gp. Moreover,
observe that Irr(J | ) = Irr(NGp | ) and Irr(Jp | ") = Irr(Gp | fp(1)). Now, as Ap < Ap, 7,
Proposition [3.4.4] yields an Ap-equivariant defect preserving bijection

P It (NGp | ) = Irr(Go | fr(k))

such that
(Asxs J.X) ~7 (APgxs TP, @up (X))

for every x € Irr(.J | 1). By Lemma3.3.8]it follows that
(NAD,X’JvX) ~J (ADvx’JP’(I)mD(X))
and then, by using Lemma [3.3.10} we obtain
(NAp,, NGp, x) ~c (Apx, Gp, ®,.0(X)) -
Observe that, in order to apply Lemma we need to check that Cga, (D) < NAp,y, for

some D € 6(bl(®,n(x)))- To see this, observe that P < O,(Gp) because D is a normal p-chain
and hence P < D. In particular Cga, (D) < Ap nGApy = Apy < NAp . d
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4.2 N-block isomorphic character triples and Fong
correspondence

In this section, we show that the Fong correspondence [Foné61]] can be used to construct /N-block
isomorphic character triples. For completeness, we state the Fong correspondence in the form we
need.

Hypothesis 4.2.1. Let N be a normal p’-subgroup of A and consider p € Irr4(N). Let P ¢
Proj(A) be a projective representation associated with (A, N, ) and with factor set o such
that a(z, y)|N|2 = 1, for every z,y € A (see [NT89, Theorem 3.5.7]), and denote by A the p'-
central extension of A by S := (a(x,y) | z,y € A) defined by P as in Theorem Let
¢ : A > A be the epimorphism given by €(z, s) := x, for every x € A and s € S, and consider
No:={(n,1) | ne N} 94 A Forevery X < A, set X := ¢ (X) and X := X Ny/Ny. Consider
the irreducible representation P of A defined by P(x,s) = sP(z), for every z € A and s € S,
and denote its character by 7. Let X € Irr(IV) be the linear character defined by X(n,s) := s7%,
for everyn € N and s € S, and set I := g x 1g € Irr(]v), where pio correspond to p via the
isomorphism N =~ Nj. Notice that 7 extends ZA~ . Finally, denote by i the character X viewed
as a character of N = N /Ny, that is 7i(No(n,s)) = s~! for every n € N and s € S (see Theorem
3.2.7).

The following result shows that the bijection given in Theorem is compatible with block
decomposition.

Theorem 4.2.2 (Fong). Assume Hypothesis[4.2.1 If N < H < A, then:
(i) H is ap'-central extension of H|/N by the central p'-subgroup N =~ S;
(ii) There exists a bijection

BI(H | bl(1)) — BI(H | bl(7i))
B~ B

(iii) Let D € 6(B) and consider Q € Sylp(ﬁ) so that D = Q x S. Then QNy/Ny € 6(B). In
particular B and B have isomorphic defect groups;

(iv) For every B € BI(H | bl(1)) corresponding to B € BI(H | bl(fi)) via the bijection in (i),
there exists a defect preserving bijection
Irr(B) - Irr(B)
Yo
such that, if i) is the inflation to H of the character of H/S ~ H corresponding to 1 and ' is
the inflation to H of 1, then 1 = T

(v) For T € A set x := €(T) and T := NoZ. Then ¢ = (J)E and B® = (E)g for every B €
BI(G | bl(1)) and ¥ € Trr(B).
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Proof. Consider v € Irr(H | ) afforded by X. We just show how to construct 9. By [Nav18,
Theorem 10.11], there exists an irreducible projective representation Q € Proj(H/N | azl, 4

such that X = Q ® Py unique up to similarity. Now, O(z, s) := Q(x)s™!, for every = € H and
s € S, defines an irreducible linear representation of H with Ny < Ker(@) and whose character
lies over . If we consider the inflation X to H of the representation of H/S ~ H corresponding
to X, that is X (%) := X(e(Z)) forevery Te H,then X = O ® ’ﬁﬁ Define X to be the irreducible
representation of H=-H /Ny whose inflation is 0, and let ¢ be the character afforded by X. Then
¢ elrr(A | ) and, if w is the inflation to H of the character of H /S ~ H corresponding to ¢ and
¢ is the inflation of ¢ to H, then ¢ = THw The result follows from [Fon61]]. The descrlptlon of
defect groups is a consequence of the proof of [Fon61, 2C]. To conclude, for T € A, set x = =¢(T)
and T := NoZ. Then ¢% = ()7 = (@Z’Tﬁ)f = (J’)fTH = (17;55)'7'17, where 7 is the inflation to H
of the character of H/S ~ H corresponding to ¢/* and (¢)*)’ is the inflation of ¢/” to H. Thus
(¢)7 coincides with ¢® the Fong correspondent of 1. In particular, since 9/* ¢ Irr(B?) and
()7 € Irr(B7), we conclude that B* = B, O

In the situation of Theorem , we refer to B as the Fong correspondent of B and to 1) as
the Fong correspondent of 7). An important feature of the Fong correspondence is that it is
compatible with block induction.

Proposition 4.2.3. Assume Hypothesis[4.2.]and let N < X <Y < A. Letb ¢ BI(X | bI(p)) with
Fong correspondent beBI(X | bI(T)) and suppose that the induced blocks b* and (b)" are defined.
Then bY = (b)Y

Proof. This result has been shown in [Rob00]. It can also be deduced from [Dad94, Theorem
14.3]. O

Now, we prove a rather technical result that shows that Fong’s reduction is compatible with
N-block isomorphism of character triples. More precisely, we have the following.

Theorem 4.2.4. Assume Hypothesis[4.2.1 Fori = 1,2, consider N < L; < H; < A and a H;-
invariant 1; € Irr(L; | 11). Notice that L; 4 H; and that the Fong correspondent ¢; € Irr(L; | i) is
H;-invariant. Let L; < G 9 A and assume

(ﬁlazh&l) ~aG (ﬁ27527{[;2) .

Then
(Hy, Ly,91) ~q (Ha, Lo, vs) .

Proof. The group theoretical conditions are clearly satisfied and without loss of generality we
may assume A = GH,, A= @FIZ and A = (NJHZ Consider B; := bl(1);) and its Fong correspondent
B; = bl(1;). By hypothesis, there exists a defect group D; € §(B;) such that C 1(D;) < H;.
Furthermore by Theorem [4.2.2| (iii) we can find a defect group P; € d(B;) such that, if Q; €
Sylp(P ), then D; = QZNO/NO. In particular

C]{(Qz) < I"L (4.2.1)
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and, noticing that

¢(Cz(Qi)) = Ca(P),
we obtain C4(F;) < H;. Fix a pair of projective representations (R1,Rs) associated with
(H1, Ly, 1/11) ~ (Hz, Lo, wg) and let @; be the factor set of R;. Consider a projective representa-
tion R; € Proj (H ) with factor set «; associated with 1); and define the projective representation
R; € Proj(H;) given by

Ri(h) := Ri(e(h))
for every h € H;. Notice that the factor set @; of 7:%:1 satisfies @; (R, k) = i (e(h), €(k)), for every
h,k € H;, and that R; is associated with 1);. Let R} € Proj(H;) be the projective representation
defined by

Ri(h) := Ri(Noh)
for every h e H;. The factor set @, of R/ satisfies &;(h, k) = &@;(Noh, Nok), for every h, k¢ H;,
and R is associated with @D' AsR; and PA ®R are a projective representations of H; associated
with 77 w i, by [Nav18, Lemma 10.10 (b)] there exists a map & H; /L — C* such that
&R = P ®TRL Let& : Hi/L; — C* corresponds to &; via the isomorphism H;/L; ~ H;/L;.
Replacmg 7?, with &R;, we may assume

Ri=Pg o R;. (4.2.2)

Now;, as the factor sets @&; and @3 coincide under the isomorphism H 1/ El ~ ﬁQ / Zz, we deduce
that o1 and s coincide under the isomorphism Hy/L; ~ Hs/Ls. By hypothesis ﬁl and ﬁg
define the same scalar function on C (C~¥) AsC (@)NO/NO <C (é) and C (@) <H/ nH,
by (4.2.1), the scalar functions defined by R' and R2 on C A(G) coincide. Now Rl C2(D) and

R2 c.(@) e associated with the same scalar function and, since e(CA(G)) = C4(G) (see
Theorem 1](ii)), the same is true for Ry ¢, () and R ¢, ()-

Next, consider G < J < A and set J; := J n H;. Notice that, if x € Irr(.J; | ¢1), then Theorem
-(1v) implies that X € Irr(J; | ¥, ). Write y = Tr(QJ1 ® R1.j, ), for some Q € Proj(J/G). If
we set Q(x) := Q(e(x)) for every z € J, then (&.2.2) implies
1 =Te (05 ®R17jl)
=T1"(Qj ®7€’ 7 ®7/5j‘1)
and therefore Y’ = Tr(QJ ® R' A) Now, let @ € Proj(J/G) correspond to Q via the

isomorphism J / G=~J / G and observe that the Fong correspondent of x can be written as
X = Tr(QJ ®R1 7 ). By definition & G (X) = Tr(QJ ®R2 % ) so that its inflation & 57, X) =

Tr(QJ ® R' 7,)- By Theorem4.2.2|(iv) and (4.2.2) we obtain

7557 (%) = Tr(PA ® 07, ®R’2J2)
=Tr(Qj2®7z2jQ)

=55,(X)

’
=T7R00 (x)
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and therefore
on(x) =07 (X)-

Since by hypothesis bl(o 7, (x) )j = bl(Y) 7. we conclude from Proposition that

bl(a, (x))” =Dbl(x)”.

This completes the proof. O

From now on we consider N < G < A. Since N is a central p’ -subgroup of G, for every p- subgroup
P of G we have a decomposition P = N x O,(P). We write P, := O,(P). Mapping P to P,
induces a length preserving bijection
NG, 2)/G -NG, Z,)|G (4.2.3)
DD
which commutes with the action of A and A. In particular, observe that NGp = éﬁ. Using
Theorem [4.1.8] Theorem [4.2.2]and Theorem [4.2.4 we obtain the following corollaries.

Corollary 4.2.5. Assume Hypothesis[4.2.1 and let N < G 4 A. Consider a normal p-chain D of
G with final term P and let fp(u) € Irr(Np) be the Glauberman correspondent of . Then there
exists a defect preserving bijection

Fyp:Irr (Gp | fp(p)) = Inr (éﬁ ‘ )
commuting with the action of A and A.

Proof. This follows immediately by Theorem and Theorem[4.2.2] O

The bijections described in the previous corollary are compatible with N-block isomorphisms of
character triples in the following sense.

Corollary 4.2.6. Assume Hypothesis[4.2.] and let N < G 9 A. Consider normal p-chains D and
E of G' with final term P and Q) respectively and let ', p and I', g be the corresponding bijections

given by Corollary[4.2.8 Let ) € Irr(Gp | fp(p)) and x € Irr(Gg | fo(p)) and suppose that

(Zﬁ,ru,mw)» G Ly, D(ﬂ)) (AE ros0 O FM,E(X)) -

Then
(Apg,Gp,?Y) ~¢ (Ag,x. GE. X) -

Proof. This is a consequence of Theorem [4.1.8] Theorem and Corollary together with
the fact that ~ is an equivalence relation (see Lemma [3.3.8). O

Finally, by putting together all the results obtained so far in this chapter, we obtain the following
result which will play a fundamental role in the proof of Theorem [4.1]
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Corollary 4.2.7. Assume Hypothesis[4.2.] and let N < G 4 A. Let Z be a central p-subgroup of
G and consider a block B € BI(G | bl(1)) whose defect groups are larger than Z. Then the Fong
correspondent B € BI(G) has defect groups larger than Z,, and there exists a bijection

A:CU(B,2)|G ~ (B, Z,)/C
that preserves the length of the p-chains, commutes with the ation of A and A and such that, if
(265 G5:7) ~a (A %)

then
(A(lll),ﬁ) ) GlD)a 19) ~G (A(lE,X) ) GEv X)

for every (D,9), (E, x) € CHB, Z), (D,J) e A((D,V)) and (E,X) € A((E, x)).

Proof. Let D € M(G, Z) with last term P and consider D € 0(G,Z,). If ¥ € Irr(Gp) and
bl(¥9)¥ = B, then ¥ lies over fp(u) by Corollary Now, there exists a unique ¢ € Irr(NGp
) such that ¥ = ®, p(¢) and I'), p(V) = 1 is the Fong correspondent of ¢. By Theorem @l
we know that bl(19)V > = bl(z)), hence bl(1)“ = B if and only if bl(¢)) = B. Furthermore, by
Propositionit follows that bl(¢))¢ = B if and only if bl(¢))¢ = B. This shows that the set
of characters of Gp whose block induces to B is mapped via I, p to the set of characters of C’v@
whose block induces to B. We define

A (W) = (ﬁ’ru,ﬂ)w))

for every (D,9) € C4(B, Z). By ([@.2.3), Corollaryand Corollary we conclude that A is

a bijection with the required properties. O

4.3 Structure of a minimal counterexample

In this section, we finally prove the Character Triple Conjecture for p-solvable groups. Our proofis
inspired by the argument developed in [Rob00]. As in Robinson’s work, what we are actually going
to show is that a minimal counterexample G to Conjecture satisfies O, (G)Oy (G) < Z(G)
(see Theorem[4.3.2). Since the conjecture trivially holds for abelian groups, Theorem 4.1 will then
follow as a corollary of (the proof of) Theorem[4.3.2] In the follwing proof, we consider subpairs
in the sense of [Ols82], i.e. pairs (P, bp), where P is a p-subgroup of G and bp € BI(PCg(P)).

Proposition 4.3.1. Assume that G 4 A is a minimal counterexample to Conjecture[3.5.1 with
respect to |G : Z(G)| first and then to |A| and consider Z < Z(G), B € BI(G) and d > 0 for which
the conjecture fails to hold. Then every block b € BI(O,/(G)) covered by B is A-invariant.

Proof. Set N := O,/(G) and fix a block b € BI(IV) covered by B. Let 1 be the unique irreducible
ordinary character of b. For every subgroup H < A, set H" := H,, and notice that H" = Hj,. Let
BY € BI(G" | bl(i)) be the Fong-Reynolds correspondent of B over bl(u). Since B and BY
have a common defect group D < GV, by using [Ols82, Theorem 2.1] we can find a B"-Sylow
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subpair (D, bY,) such that (D,bp) is a B-Sylow subpair, where bp := (b},)P€¢(P). We claim
that, for every B-subpair (Q,bg) < (D, bp), the block bg covers bl( fo(u)). To see this, notice
that QCqv(Q)N < G and, as N is a p’-subgroup of GV, that QCqv(Q) = (QCqv(Q)N ). By
[Ols82, Theorem 1.7], there exists a unique block by, of @Cqv (Q) such that (Q,b) < (D, bp)).
Moreover (bé)QCG(Q) = bg. Since (bé)Gv = BY covers the G"-invariant block b, it follows that
(bé)QCGV(Q)N covers b. Now, applying Corollary we obtain that by, covers bl(fo(u)) and
therefore so does by = (bé)QCG(Q). This proves the claim.

Using our claim, we can construct an A-transversal T in C%(B, Z) such that P < G and
¥ e Trr(Gp | fp(u)) for every (D, ) € T with P the last term of . In fact, let (D, 9)) € C%(B, Z)
and P the last term of D. Consider a block bp of PC¢(P) covered by bl(#). By [Nav98| Corollary
9.21] it follows that (bp)“® = bl(¥9) and, since bl(1))“ = B, we deduce that (P, bp) is a B-subpair.
By [Ols82, Theorem 2.2] there exists g € G such that (P,bp)? < (D,bp). Now, by the previous
paragraph we conclude that (DY, 99) satisfies P9 < G" and bl(¥9) covers bl( fps(1)). This shows
that every (ID, ) € C%(B, Z) is G-conjugate to a pair with required properties. In particular we
can find an A-transversal T as above.

Now, consider (D,9) € T and let P be the last term of D. Notice that Gy) = Gp f,,(,,) and let
0" elrr(Gy) | fp(r)) be the Clifford correspondent of ¢ over fp(iu). As A= GAY (recall that B

is A-invariant), we obtain an A"-equivariant bijection

T:CYB,2)|G - CBY,2)|G"

by defining Y((ID,9)") := (D,0")’ for every (D,) ¢ T and y € A”. Since |G¥ : Z(GY)| <

: , if 11 is not A-invariant, then there exists an A"-equivariant bijection
G:Z(G)|if A hen th AY-eq bij

QY :CYBY,2),|G" - CYB",Z)_|G"
such that

( \(/]D)ﬂv)’ G]\I/))7 "9\/) ~GY (A\(/EXV) ) G]\]éa XV)

for every (D,9") € C*(BY, Z), and (E, x") € QV((ID,9V)). Combining Q" with Y and applying
Proposition we obtain an A-equivariant bijection

Q:¢%B,2),/G-CUB,Z)_|G
such that
(Ap.9): Gp,Y) ~c (A®) GEs X)

for every (D,9) € CH(B, Z), and (E, x) € Q((ID,?)). This is a contradiction and therefore
must be A-invariant. O

Theorem 4.3.2. Assume that G 4 A is a minimal counterexample to Conjecture[3.5.1 with respect
to |G : Z(G)| first and then to |A| and consider Z < Z(G), B € BI(G) and d > 0 for which the
conjecture fails to hold. Then O,(G)O0,(G) < Z(G).
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Proof. Set N := O,(G) and fix a block bl(x) € BI(NV) covered by B. Notice that by Lemma
we must have Z = O,(G). Thus it’s enough to show that N is contained in the center. By
Proposition [4.3.1] we know that y is A-invariant and therefore we can apply the results obtained
in Section[4.1]and [4.2] Consider the setting of Hypothesis [4.2.1 corresponding to a choice of a
projective representation P associated with (A4, N, 11). Let B € BI(G) be the Fong correspondent
of B (see Theorem . Since N < Z(G), if N ¢ Z(G), then |G : Z(G)| < |G : NZ(G)| =
|G': NZ(G)| < |G : Z(G)| and we obtain an A-equivariant bijection

ﬁ : Cd(§7 Zp)+/é - Cd(§7 Zp)—/é
such that B L _ _

(A5.5)C5:9) ~& (A C5:X)
for every (D,d) e CY(B,Z,), and (E,X) € Q((D,?)) and where Z,, is defined by (#.2.3). Com-
bining €2 with the bijection A given by Corollary , we obtain an A-equivariant bijection

0:CUB,2), |G~ CYB,Z)-|G

such that
(Am,9),Gp,Y) ~a (AE,x), GE: X)

for every (D, € C4(B, Z), and (E, x) € Q((D,?)). This contradiction shows that N must be
contained in the center of G. O]

Next, we consider the p-residue of characters. We are going to obtain Theorem[4.2]as a consequence
of an analogous study of a minimal counterexample. Namely, Theorem [4.2| will follow from (the
proof of) Theorem We start by comparing the residues of characters that correspond under
the bijection from Corollary [4.2.5]

Lemma 4.3.3. Let ', be the bijection of Corollary[4.2.5 Then
7 (Cpup(9)) IN| = £u(1)r(9)|N] - (mod p)
forevery 9 € Irr(Gp | fr(p)).

Proof. Let P be the last term of the p-chain D and fix ¢ € Irr(Gp | fp(12)). Let x be the unique
character in Irr(NGyp | 1) such that ®,, p(x) = ¥ (see Theorem [4.1.8). Then I",, p(+}) coincides
with the Fong correspondent X € Irr(éﬁ | i) of x (see Theorem and Corollary . First,
we show that

r(¥) =+r(x) (mod p). (4.3.1)

Let 9o be the Clifford correspondent of ¥ over fp(s) and notice that G'p ¢,,(,) = Gp,y. Similarly,
let o be the Clifford correspondent of x over p. Since induction of characters preserves the
p-residue, we deduce that () = r(J9) and r(x) = (o) and it’s enough to show that () =
+7(x0) (mod p). By the definition of ®,, 1y (see the proof of Theorem [4.1.8/and of Proposition
and using Lemma [3.1.2] it follows that ¥ (1) = x0(1) fp(x)(1)/p(1). Then

|Gl |G pulp (1)

W)= 5 Wy~ ey fr () (1)
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By [NS14bl Theorem 5.2 (b)], we have p(1) = £|N : Np|fp(1)(1) (mod p) and so

|Gl (1) _ |G,pulp| N m
oWy )@~ Exo()yNe] 0P

Finally, since N is a p’-subgroup, we have Gp , N N = Cy(P) = Np and therefore

|GD,u|p’|N| _ |NG1D>,u|p’
XO(l)p’|NP| XO(l)p’

This proves (43.1). Next, noticing that x(1) = (1)¥(1) and that [NGp : N| = |G5 : N

=7(X0)-

, we
obtain ]
r(x) =r(X) = : (4.3.2)
[V]u(1)
Now the result follows by combining and (4.3.2). O

For completeness, we state the Character Triple Conjecture with the Isaacs-Navarro refinement.

Conjecture 4.3.4 (Isaacs-Navarro refinement of the Character Triple Conjecture). There exists a
bijection § as in Conjecture such that

r(¥) =+r(x) (mod p)
for every (D,9) e CY(B, Z), and (E,x) € Q((D,?)).

Finally, using the proof of Theorem and Lemma we obtain a similar structure theorem
for a minimal counterexample of Conjecture [4.3.4]

Theorem 4.3.5. Assume that G 4 A is a minimal counterexample to Conjecture(4.3.4 with respect
to |G : Z(G)| first and then to |A| and consider Z < Z(G), B € BI(G) and d > 0 for which the
conjecture fails to hold. Then O,(G)0,(G) < Z(G).

Proof. Set N := O,(G) and fix a block bl(y) € BI(IV) covered by B. By the proof of Lemmal[2.3.1]
we know that Z = O,(G) and it’s enough to show that N < Z(G). Proceeding as in the proof of
Proposition [4.3.1]and noticing that induction of characters preserves the residue of characters,
we deduce that ; must be A-invariant. Then, using Lemma [4.3.3]and adapting the the proof of
Theorem[4.3.2] we obtain N < Z(G). O
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On the Inductive Alperin—-McKay
Condition

It was shown by Dade in [Dad94]] that the projective form of his conjecture (see Conjecture
implies the Alperin-McKay Conjecture (see Conjecture [2.4.2). Later, Navarro [Nav18, Theorem
9.27] proved that the nonblockwise version of Dade’s Ordinary Conjecture (see Conjecture
implies the McKay Conjecture (see Conjecture [2.4.1), while Kessar and Linckelmann [KL19]
extended these results by proving that Dade’s Ordinary Conjecture implies the Alperin-McKay
Conjecture.

By work of Spith [Spa13al], the Alperin-McKay Conjecture has been reduced to the inductive
Alperin-McKay condition for quasisimple groups. Nonetheless, the inductive Alperin-McKay
condition can be formulated for every finite group (see Conjecturr [5.1.1). In this chapter, we
provide further evidence for the validity of the Character Triple Conjecture by showing that it
implies the inductive Alperin-McKay condition for every finite group. Let p be a prime number.
Every block in this chapter will be considered with respect to the prime p.

Theorem 5.1. If the Character Triple Conjecture holds for every p-block of every finite group, then
the inductive Alperin-McKay condition (see Conjecture[5.1.1) holds for every p-block of every finite
group.

By work of Navarro and Spéth, we know that Conjecture holds for every p-solvable group

(this follows from [NS14bl Theorem 7.1]). We obtain another proof of this fact by using the proof
of Theorem|5.1|together with the fact that the Character Triple Conjecture holds for p-solvable

groups (see Theorem [4.1).

5.1 The inductive Alperin-McKay condition

Here, we state the inductive Alperin-McKay condition in a general form adapted to arbitrary
finite groups.

63
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Conjecture 5.1.1 (Inductive Alperin-McKay condition). Let G be a finite group with G 4 A. Let
B € BI(G | D) and consider its Brauer’s first main correspondent b € BI(Ng(D) | D). Then there
exists a N 4 (D) g-equivariant bijection

O : Irrg(B) — Irrp(b)

such that
(Ap,G,x) ~c (Na(D)y,Na(D),0(9)),

for every ¥ € Irro(B).

We point out that, arguing as in the proof of [Spd17, Proposition 6.8], it follows that the inductive
Alperin-McKay condition from [Spa18| Definition 4.12] holds for every universal covering group if
and only if Conjectureholds for every quasisimple group X with respect to X 9 X x Aut(X).
We include here a proof of this fact.

Lemma 5.1.2. Let S be a nonabelian simple group with universal covering group X and consider
B e BI(X). Then B is AM-good (in the sense of | [Spd18, Definition 4.12]) if and only if Conjecture
- 5.1.1 holds for every B € BI(X) with respect to X x Aut(X), where X is a quotient of X by a
central subgroup and B is dominated by B.

Proof. Suppose that Conjecture u 5.1.1/ holds for every B € BI(X) with respect to X x Aut(X),
where X is a quotient of X by a central subgroup and B is dominated by B. Let b € BI(N x (D))
be the Brauer correspondent of B, where D is a defect group of B. We construct a bijection
A : Trrg(B) — Irrg(b) satisfying the requirements of [Spai8| Definition 4.12]. The set Irro(B) can
be partitioned into sets of the form Irro(B | 1), where Z < Z(X). Then, the set Irro(B | 12)
can be identified via inflation with the set Irrq(B), where B is the block of X := X /Z dominated
by B (see [NT89, Theorem 5.8.8 and Theorem 5.8.11]). Similarly the set Irro(b) can be identified
with the set Trro(b), where b is the block of Nx (D) := Nx(D)/Z dominated by b. By [NT89,
Theorem 5.8.8 and Theorem 5.8.11] we know that B has defect group D := DZ/Z and, noticing
that Nx (D) = N(D), we deduce that b is the Brauer correspondent of B. By assumption
there exists a bijection © 4 : Irrg(B) — Irrg(b) satisfying the properties of Conjecture
Then, combining the bijections © 7, where Z runs over the subgroup of Z(X ), we obtain a
bijection A : Irrg(B) — Irrg(b) satisfying the requirements of [Spai8| Definition 4.12]. The other
implication follows by a similar argument. O

Now, the reduction theorem for the Alperin-McKay Conjecture can be stated as follows.

Theorem 5.1.3. Let G be a finite group and suppose that every covering group X of a nonabelian
simple group involved in G satisfies Conjecture[5.1.1 with respect to X 9 X x Aut(X). Then the
Alperin—-McKay Conjecture holds for G.

Proof. This is [Spa13a, Theorem C]. O

A much stronger result has been proved in [NS14b] where the authors proved a reduction of
Conjecture to quasisimple groups.
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Theorem 5.1.4. Let G be a finite group and suppose that every covering group X of a nonabelian
simple group involved in G satisfies Conjecture [5.1.1 with respect to X 4 X x Aut(X). Then

Conjecture[5.1.1 holds for G.

Proof. This is [NS14b, Theorem 7.1]. O

5.2 Proof of Theorem|5.1

We now start working towards a proof of Theorem[5.1] In order to do so, we need to understand
the structure of a minimal counterexample to Conjecture Results in this direction can be
found in [NS14bl]. Here we remark that, although in [NS14b| Section 7] the inductive Alperin-
McKay condition is assumed for quasisimple groups in order to prove [NS14bl Theorem 7.1], this
hypothesis is only used in [NS14b, Proposition 7.7]. In particular the following result can be
deduced by the proof of [NS14b, Proposition 7.4].

Proposition 5.2.1. Let G < A be a minimal counterexample to Conjecture[5.1.1 with respect to
|G : Z(G)|. Then O,(G) < Z(G).

Proof. This follows immediately from [NS14b, Proposition 7.4]. t

Let G 94 A be a minimal counterexample as in Proposition and consider a block B € BI(G)
for which Conjecture [5.1.1fails to hold. Clearly, the defect groups of B are not contained in the
center of G and therefore they properly contain O, (G). For d > 0, we define

C5(B) = {({0p(G)} . 0) e CU(B). }
and
C(B) ={({0,(G) < D},¥) eCY(B)-| Ded(B)}.

Moreover, set G4 := C4(B), \ C3(B) and G? := C%(B)_ \ C{(B). Notice that G acts via conjuga-
tion on G¢ and let G¢/G denote the corresponding set of G-orbits. For any element (I, 9) € G¢
let (D, ) denote its G-orbit.

Corollary 5.2.2. Let G 4 A be a minimal counterexample to Conjecture[5.1.1 with respect to
|G : Z(G)| and let B € BI(G | D) be a block for which the result fails to hold. If d := d(B), then
there exists an N 4 (D) p-equivariant bijection

n:6¢%/Gg - g¢4/G

such that
(A]D),ﬁa G]D)a ?9) ~G (AE,X7 GEa X) ’

for every (D,9) € G¢ and (E, ) e II((D,¥)).
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Proof. For € € {+,-}, consider the set ,C’Zi of p-chains D for which there exists a character
¥ € Irr(Gp) such that (D, ) € GZ. Let G¢/G be the set of G-orbits on G? and denote by D the
G-orbit of D € gg. Notice that, if D € ggf has final term D, then there exists g € G such that

D, < DI <Gp

and DY is a defect group of some block of Gp. In fact, if (ID,) € G and Q is a defect group
of bl(¢), then D,, < O,(Gp) < Q and there exists g € G such that < DY. Moreover, if
do = d(b1(19)), then d = d(¥) < dy < d(b1(9)F) = d(B) =: d and therefore DI = Q < Gyp.

Next, we define an N 4 (D) g-equivariant bijection

i:gl/G - '/

by setting II(D) := D \ {D,,}, if the last term D,, of I is a defect group of B and where D~ {D,,}
is defined to be the p-chains obtained by removing D,, from I, and II(D) := D u { D9}, if the
last term D,, of D is properly contained in some defect group of B and g € GG is an element such
that DY is a defect group of some block of Gy, here D U { D9} denotes the p-chain obtained by
adding DY to D. Notice that the above definition does not depend on the choice of DY, but only
on its Gp-conjugacy class, nor on the representative ID in ID. Furthermore, as DY < Gp we deduce
that the map sends normal chains to normal chains. To conclude that II is well defined we need
to check that, for every E € II(ID), there exists x € G such that (E, ) € G% Without loss of
generality, assume that [ is the chain obtain from I by adding D as a final term. Notice that

Gp < G since the last term of D properly contains O, (G). Then |Gp : Z(Gp)| < |G : Z(G)| and
G satisfies Conjecture [5.1.1} Therefore, there exists an Ag-equivariant bijection

Ip : Irr(Gyp | D) - Irr(Gg | D)

such that
(Apy,Gp,Y) ~cy (AR, Gr, IIn(9))

for every ¥ € Irr(Gp | D). Noticing that C Ap.o-G(D) < Ap ¢ and applying Lemma we

obtain

(Apy,Gp,Y) ~¢ (Ag9, Gr,Ip(V)),

for every ¥ € Irr(Gp | D). In particular, (D, 9) € G¢ if and only if (E, IIp(¢9)) € G and so 1T is
well defined. Moreover, it’s clear that II is a bijection (the inverse map is defined analogously)
and that it is N 4 (D) p-equivariant.

To conclude, using the character bijections obtained in the previous paragraph, we immediately
obtain a bijection II with the required properties by defining II((ID, ?)) := (E, (1)), for every
(D,?) € G¢ and where E = TI(D). O

We can now prove Theorem 5.1

Theorem 5.2.3. Let G <4 A be finite groups and consider B € BI(G | D) with Brauer correspondent
b € BI(Ng(D) | D). If Conjecture[3.5.1 holds for every p-block of every finite group, then there
exists an N 4 (D) p-equivariant bijection

O : Irrg(B) — Irrg(b)
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such that
(Aﬂa Ga 19) ~G (NA(D)ﬁv NG(D)v @(19)) )

for every ¥ € Irro(B).

Proof. Suppose the result is false and let G be a minimal counterexample with respect to |G : Z(G)|.
Consider Z := O,(G) and d := d(B). By Proposition[5.2.1|we have Z < Z(G). Clearly Z < D, as
otherwise D would be central. Now, since by assumption Conjecture holds for GG, we can
find an Ap-equivariant bijection

Q:c%B),/G - C%(B)_/G,
with the required properties. Consider the sets CJ(B) and C¢(B) defined above and notice that
Ci(B)G = {({0,(G)},9) | ¥ eTrrg(B)}

and that

c(B)/G = {{0,(G) <D} | xelrro(h)}-

If Q(C{(B)/G) = C{(B)/G, then we obtain a bijection © : Trrg(B) — Irrg(b) satisfying the
required properties by defining ©(x) := ¥ whenever Q(({O0,(G)},7)) = ({O,(G) < D}, x).
This would contradict the choice of our counterexample.

Let IT: G¢/G — G?/G be the bijection given by Proposition and observe that

C8(B)/G| =c*(B)./G| - |G}/G| = |c*(B)-/G| - 16%|G| = |c{(B) /Gl

Since Q(CI(B)/G) # C{(B)/G, there exists (D, ¥g) € CI(B) such that Q((Dg, p)) ¢ CL(B)/G.
We now proceed as follows: as Q((Dg,Jg)) € G¢/G, we can define

o0y = 11(2 (5o 00)).
If Q((D1,91)) € C4(B)/G, then we stop. Otherwise we define
(©2.72) =11 (2((D1.1)).
Continuing this way, for ¢ > 1, we define
ooy =11(0(Br o).

if Q((D;_1,9:-1)) ¢ C4(B)/G. It is important to observe that, for every i > 1, the pair (ID;, ;)
does not lie in C4(B) and satisfies

(ADO’GDO’IQO) ~G (ADiaGDiaﬁi)- (5.2.1)

We claim that there exists some n > 1 such that Q((D,,,9,)) € C{(B)/G. If this is not the case,
then the set ‘
= {(Me Q) ((o,d0)) | i20} cc(B)./G
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is well defined, 2(S) ¢ G4 /G and, as S is finite, it satisfies
Mo Q(S) =S.
Since (Do, Vo) € S N Cd(B)/G, we obtain

|81 = 1€2(S)]

= 2(S) nG%/a|

= [I((8) n¢2/G) |

= [I((S)) nI(G2/@)|

= |8ng:/Gl

<I|S|-1.
This contradiction proves our claim. Now, since C{(B) is N 4(D)p-stable and Q and IT are
N 4 (D) p-equivariant, the pairs (IDg,J9) and (D, ,,) are not N 4(D) p-conjugate. Then, we

can find a N 4 (D) g-transversal 7 in C%(B), /G containing (Dy, o) and (D,,, 9, ). We define a
new N 4 (D) p-equivariant bijection Q' : C*(B), /G — C%(B)_/G by setting

Q(@9)), i ®9) T {0, %), Bn, 0n)}
Y (D,9)")=12(®n9)"), i (D,9) = Do, 90) :
Q((Do,00)"), i (D, V) = (D, V)

for every (D,9) € T and x € N 4(D) p. Using (5.2.1), we deduce that )’ satisfies the conditions of
Conjecture Noticing that (D,,9,,) ¢ C3(B), we conclude that a multiple application of the
previous argument yields a bijection 2" satisfying the conditions of Conjecture and such that
Q"(CY(B)/G) = C{(B)/G. As remarked at the beginning of the proof this is a contradiction. []



6

Representation Theory of Finite
Groups of Lie Type

In this chapter we introduce some preliminary results on the representation theory of finite
groups of Lie type. Our presentation follows [DM91]], [CE04]] and [[GM20]]. In order to make this
thesis self-contained we also give a brief introduction to the main definitions and results in the
structure theory of linear algebraic groups and finite groups of Lie type. For this group theoretic
part we follow [MT11]].

6.1 Finite groups of Lie type

6.1.1 Linear algebraic groups

Let p be a prime, q a power of p and set I := E where I, is a finite field with ¢ elements. Recall
that, for an ideal I of the polynomial ring F[x1,...,z,], the set V(I) := {x ¢ F" | f(z) =
0 for every f € I} is called an algebraic set. Taking algebraic sets as closed subsets defines a
topology on the set F"* called the Zariski topology. An affine algebraic variety (defined over
F) is an algebraic set with the induced Zariski topology.

A linear algebraic group is an affine variety G endowed with a group structure in such a way
that multiplication and inversion are morphisms of varieties. The simplest examples of algebraic
groups are G, and G, these are defined as the additive group F and the multiplicative group F*
respectively, endowed with the Zariski topology. It can be shown that linear algebraic groups are
exactly the (Zariski) closed subgroups of GL,,(IF). For an algebraic group G, we denote by G°
the connected component containing the identity element. In the following, we will often write

Z2°(G):=Z(G)? and C(z) := Cg(z)° for any z € G.

An element g € G is called unipotent (resp. semisimple) if, given any embedding of algebraic
groups p : G - GL,,(F), the matrix p(g) is unipotent (resp. semisimple). Then, we have a Jordan
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decomposition of elements as g = g,9s = gsgu, Where g, is unipotent and g, is semisimple.
This does not depend on the choice of the embedding. A group G is called unipotent if all of
its elements are unipotent. The set of semisimple elements of G is denoted by Ggs. A closed
subgroup T of G isomorphic to the direct product of a finite number of copies of Gy, is called a
torus. All maximal tori are G-conjugate and any semisimple element is contained in a maximal
torus.

An algebraic group G is (algebraically) simple if it has no proper nontrivial closed connected nor-
mal subgroup. We define the unipotent radical R, (G) of G to be the largest closed connected
normal unipotent subgroup of G. Then G is reductive if R,(G) = 1. If G is connected and
reductive, then G = Z°(G)[G, G] and [G,G] = G; ... G,, for some simple algebraic groups
G, (see [MT11], Theorem 8.21 and Corollary 8.22]). Notice that Z°(G) is a torus. A connected
reductive group is called semisimple if Z°(G) = 1.

Semisimple algebraic groups are classified in terms of root data. A root system of a finite
dimensional real vector space E endowed with the standard scalar product (-, —) is a finite subset
® c E such that 0 ¢ , E is generated by ® and the following conditions are satisfied:

(R1) if a,c- v €  with ¢ € R, then ¢ = £1;
(R2) for every « € ® there exists a reflection s, € GL(E) along « that stabilizes ®;
(R3) for a, B € @, the element s, () — 3 is an integral multiple of a.

Then we can define a root datum as a quadruple (X, ®,Y, ®") where:

(RD1) X and Y are free abelian groups of the same rank with a perfect pairing (—, ) : X xY > Z
inducing isomorphisms Y ~ Hom(X,Z) and X ~ Hom(Y,Z);

(RD2) ® ¢ X and ¥ € Y are root systems of Z® ®7 R and ZP" ®7 R respectively;
(RD3) there exists a bijection ® - ®¥, a — o such that (a, o) = 2;

(RD4) for every a € ® and a” € ® we have s,(x) =z — (z,a")a and s4v (y) =y — (o, y)a" for
everyre X andyeY.

Given a connected reductive group G with maximal torus T, we obtain a root datum as follows:
let X := X(T) := Hom(T, Gy,) be the group of characters of T, Y := Y(T) := Hom(G,,, T)
the group of cocarachters of T, ® := ®(G, T) the set of roots arising from the action of T on the
Lie algebra of G and ®" := ®(G, T)" the corresponding set of coroots (see [MT11] Proposition
9.11] for a more detailed description). Then semisimple algebraic groups are classified by the
following theorem of Chevalley

Theorem 6.1.1 (Chevalley). Two connected algebraic groups are isomorphic if and only if they
have isomorphic root data. Moreover, for every root datum there exists a connected reductive group
with such a root datum.

Proof. See [Spr09, Theorem 9.6.2 and Theorem 10.1.1]. O
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An *—eo—0o—o
B, ee+-e -
Dn 0—0—4—<

—l..
Br eeloees
By oolboees

Figure 6.1: Dynkin diagrams of indecomposable root systems

To describe all the possible root data, we need to introduce one further object. Set €2 :=
Hom(Z®",Z) and notice that restriction to Z®" < ZY induces an injection

X ~Hom(Y,Z) = Hom(Z®",Z) =: Q.

Then, we obtain an inclusion of groups Z® < X < Q. The quotient 2/Z® is a finite group
called the fundamental group of the root system ®. The root data with fixed root system & are
determined by the subgroups of 2/Z®. Moreover, the possible indecomposable root systems are
classified by the Dynkin diagrams listed in Figure

If G is a semisimple algebraic group with root datum (X, ®,Y, ®") corresponding to the choice
of a maximal torus T, then we say that G is simply connected if 2 = X and that it is adjoint if
X =7%. Given a semisimple algebraic group G with root system ®, we denote by G (resp. Gaq)
a simply connected (resp. adjoint) group with the same root system. Notice that Z(G,q) = 1 (see
[GM20, Example 1.5.3 (a)]). If G is connected reductive, then we say that G is simply connected
(resp. adjoint) if the semisimple group [G, G| is simply connected (resp. adjoint).

A Borel subgroup of G is any maximal closed connected solvable subgroup. If T is a maximal
torus contained in a Borel subgroup B, then B = R, (B) x T. A parabolic subgroup of G
is any closed subgroup P < G containing a Borel subgroup. For any parabolic subgroup P
of G there exists a closed subgroup L < P such that P = R,,(P) x L. The group L is called
a Levi complement of P. It can be shown that the centralizer Cg(S) of a torus S is a Levi
subgroup of G (see [DM91, Proposition 1.22]). On the other hand, if L is a Levi subgroup of
G, then L = Cg(Z°(L)) (see [DM91] Proposition 1.21]). Recalling that Z°(L) is a torus, it
follows that the Levi subgroups of G are exactly the centralizers of tori. As a consequence, [DM91]
Proposition 0.32 (ii)] implies that every Levi subgroup of a connected reductive group is connected
and reductive. Notice that maximal tori, being self-centralizing, are Levi subgroups (see [DM91|
Proposition 0.32 (iii)]).



72 Chapter 6. Representation Theory of Finite Groups of Lie Type

6.1.2 Finite groups of Lie type

Let g be a power of p, consider a finite field [F, with g elements and set IF := IFT]. An affine variety
V has an F,-structure if there exists an isomorphism of varieties ¢ : V — V' where V' c F" is a
Zariski closed subset stable under the standard Frobenius map

Fy:F o B (&, &) o (€0, 0, 0).

In this case there exists a unique endomorphism F': V' — V such that o F' = Fj; 01. The morphism
F is often referred to as the Frobenius endomorphism defining an IF,-structure on V. Notice
that F, is a bijective morphism with fixed points set ;. In particular the set

VE—{veV |F@)=v}
is finite.

Let G be a linear algebraic group. An endomorphism F': G — G is called a Steinberg endo-
morphism if there exists a nonnegative integer m such that /" : G - G is the Frobenius
endomorphism corresponding to an [F-structure on G. The set of fixed points G is a finite
group. If G is connected and reductive, then we say that G!" is a finite group of Lie type or a
finite reductive group.

Let G be a connected linear algebraic group. By the Lang—Steinberg theorem, the Lang map
G-G
g9 "' F(g)

is surjective. One of the main consequences of this result is the existence of a maximal torus and a
Borel subgroup T < B that are stable under the action of F'. Such a maximal torus is called 1-split
or maximally split. Although not all F-stable maximal tori are G¥"-conjugate, it can be shown
that 1-split tori are all conjugate under the action of G¥'. Similarly, one can show that there exists
an F'-stable Levi subgroup in any F'-stable parabolic subgroup. These are called 1-split Levi
subgroups. Another important consequence of the Lang—Steinberg theorem is the following.
Suppose that H is a closed F-stable subgroup of G. If H is connected, then (G/H)¥ = G¥' /HF".
To conclude this subsection, observe that Cq(G!') = Z(G) (see [DM20, Proposition 12.2.17])
and hence Z(G'') = Z(G)F". This fact will often be used in the sequel without further reference.

6.1.3 Duality

Let G be a connected reductive group with root datum (X (T),®(G,T),Y(T),®(G,T)")
with respect to a maximal torus T. By replacing roots with coroots, we obtain another root datum
(Y(T),®(G,T)",X(T),®(G,T)). A connected reductive group G* is in duality with G
if the root datum (X (T%), ®(G*,T*),Y(T*),®(G*, T*)") is isomorphic to the root datum
(Y(T),®(G,T)", X(T),®(G,T)) for some maximal torus T* of G*. More precisely, if there
exists an isomorphism ¢ : X (T) — Y (T*) such that 6(®(G,T)) = (G*,T*)" and

</\7 av> = <5(a)\/7 (5(/\»
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for every A € X(T) and a € (G, T). If we need to specify the choice of maximal tori then we
say that (G, T) is dual to (G*, T*). Observe that G can be identified with the dual of G*. It is
also worth noting that if G is semisimple then G* is semisimple. Furthermore if G is semisimple
and simply connected (resp. adjoint) then G* is adjoint (resp. simply connected) (see the comment
following [DM20| Example 11.1.13]).

Let F': G — G be a Steinberg endomorphism and consider an F'-stable torus T. A pair (G*, F'*),
with G* a connected reductive group and F”* a Steinberg endomorphism of G*, is dual to (G, F')
if there exists an F'*-stable maximal torus T* of G* such that (G, T) is dual to (G*, T*) and

§ (Ao F'|r) = F" |+ 06(A)
for every A e X(T).If (G, T, F) is dual to (G*, T*, F'*), then there exists a bijection
L L" (6.1.1)

between the set of Levi subgroups of G containing T and the set of Levi subgroups of G*
containing T* (see [[CE04} p.123]). This bijection induces a correspondence between the set of
F-stable Levi subgroups of G and the set of F'*-stable Levi subgroups of G*. Moreover, it is
compatible with the action of G and G*¥". This bijection can be described as follows (see
[CS13] Section 2.3]): the Levi subgroups L and L* correspond via (6.1.1)) if (L, T') corresponds
to ®(L*, T*)" via the isomorphism § : X (T) - Y (T"). Furthermore, in this case (L, T, F') is
dual to (L*, T*, F™).

6.1.4 Regular embeddings

Let G, G be connected reductive groups with Steinberg endomorphisms F' : G - G and
F:G->G.A morphism of algebraic groups ¢ : G — Gisa regular embedding if Foi=ioF
and i induces an isomorphism of G with a closed subgroup i(G) of G, the center Z(G) of G is
connected and [i(G),i(G)] = [G, G]. In this case we can identify G with its image i(G) and

F with an extension of F' to G which, by abuse of notation, we denote again by F'.

Since [G, G] is contained in G, we deduce that G is normal in G and that G/G is abelian.
Moreover, since G is connected and reductive, we have G = Z(G)[G,G] = Z(G)G. In
particular, it follows that Z(G) = Z(G) n G. Similarly, [G",G"'] < G¥ and hence G is a
normal subgroup of G with abelian quotient G /G¥. Notice, however, that G might be
larger than Z(G¥)G¥'. We point out that, when G is simple of simply connected type different
from D,,, then one can construct a regular embedding such that G /G is cyclic (see [GM20),
Proposition 1.7.5]).

By the description given in the previous paragraph it follows that, when dealing with the repre-
sentation theory of the groups G and G, we can apply Clifford theory for abelian quotients
(see [Isa76l Problem 6.2]). Another fundamental ingredient to understand the representation
theory with respect to G 4 G¥" is the fact that restriction from G to G is multiplicity free.
This results was first stated by Lusztig [Lus88] while the details of the proof were provided by
Cabanes—Enguehard (see [[CE04, Chapter 16]). We state a slightly more general result.
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Theorem 6.1.2. Let G be a connected reductive group with a Frobenius endomorphism F' : G - G.
Then, for every x € Irr(GI") the restriction of x to [GT',GT'] is a sum of distinct irreducible
characters.

Proof. This is [CE04, Theorem 15.11]. ]

Let now L be an F-stable Levi subgroup of G. Then, the group L := Z( G)L is an F'-stable Levi
subgroup of G. In fact, if L = Cg(8S) with S := Z°(L), then L:=LZG) = Cg(S)Z(G) <
Ca(S) = GZ(G)(S) < Cg(S)Z(G) = LZ(G) = L. Then, it is clear that L = L n G and

therefore Ng(L) = Ng(S) and NG(L) Ng(L) = Ng(S). In addition, as Z(G) is contained
in L, observe that G = LG which implies G/G ~ L/L. Similarly, we have G = LI'GYF
and G¥/GF =~ Ng (L) /Ng(L)* = L7 /LF. Observe that, since L has connected center by
[DM91| Lemma 13.14] and [L, L] = [LZ(G),LZ(G)] = [L, L], the map i |p,: L - L is a regular
embedding.

Next, consider pairs (G*, F*) and (G*, F*) dual to (G, F) and (G, F') respectively. The map i :
G — G induces a surjective morphism %* : G* > G* such that Ker(7*) is a connected subgroup
of Z(G*) (see [CE04, Section 15.1]). When G is simply connected, we have Ker(i*) = Z(G*):
in fact, the center Z(G™) is trivial since G* is adjoint and therefore, using the isomorphism
G*/Ker(i*) ~ G*, we deduce that Z(G*) < Ker(i*). As shown in [CE04, (15.2)], there exists
an isomorphism

Ker(i*)f' - Irr(éF/GF) (6.1.2)

Al ’Z\E’;F
If L is an F-stable Levi subgroup of G, noticing that Ker(i*) < Z(é:) < L*, it follows that
Ker(i*) = Ker(i* |f.. ). As before we obtain a map Ker(i* |g.)f" — Irr(L¥ /LY), 2 = 25 which

coincides with the restriction of the map defined above, i.e. Zfr = (Tz’é F)E . If no confusion
arises, we will denote K := Ker(i*)* = Ker(i* . )" and obtain bijections

K- Irr (iF/LF)
VA ’Z\EF
for every F'-stable Levi subgroup L < G.

We summarize the above discussion in the following lemma.

Lemma 6.1.3. Leti: G jé be a regular embedding and consider a Levi subgroup L = Ca(S) of
G, where S = Z°(L). Set L := L - Z(G). Then the following statements hold:

(i) L= C&(8S) is a Levi subgroup of G;
(ii) Ng(L) = Ng(S) and Ng(L) = N5 (S) = Ng(L);
(iii) if L is e-split then so is L;

(iv) il : L — L is a regular embedding;
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(v) Let (G*, F*) be in duality with (G, F), consider the morphismi* : G* — G* given in [CE04,
Section 15.1] and set K := Ker(i*)¥'. There are canonical isomorphisms K ~ GI' |G ~
L7 /L¥. Moreover Ker(i*) < Z(G*) < L*, so that K = Ker(i*|z. )¥.

6.1.5 Automorphisms

Let G be a connected reductive group with a Frobenius endomorphism £’ defining an IF,-structure
on G.If o : G — G is a bijective morphism of algebraic groups satistying o o F' = F' o o, then the
restriction of o to G¥', which by abuse of notation we denote again by o, is an automorphism of
the finite group G¥". We denote by Autp(G?") the set of those automorphisms of G obtained
in this way. As mentioned in [CS13| Section 2.4], a morphism o € Autp(G') is determined by
its restriction to GI" up to a power of F. It follows that Autg(G*") acts on the set of F-stable
closed connected subgroup H of G. In particular, for any F'-stable closed connected subgroup H
of G, there is a well defined set Auty(G!")gg whose elements are the restrictions to G of those
morphisms o as above that stabilize H. When G is a simple algebraic group of simply connected
type such that G¥'/Z(GT") is a nonabelian simple group, then we have Autp(G!") = Aut(G*)
(see [GLS98| Section 1.15]).

Now, we want to describe the connection between automorphisms of a connected reductive group
and its dual. Here, we follow [Tay18| Section 4 and Section 5]. This is done by studying isogenies.
IR =(X,9,Y,®Y) and R’ = (X', ®", Y’ , ®") are root data, then a group homomorphism
¢: X" > X is a p-isogeny if the following two conditions are satisfied (see, for instance, [GM20,
Definition 1.2.9]):

(i) ¢ and ¢" are injective, where " : Y — Y is the dual of ¢, i.e. ¢" is the unique element
of Hom(Y,Y") such that (¢(2"),y) = (2', " (y)) for every 2’ € X" and y € Y;

(i) there exists a bijection ® - @', o = of and amap ¢ : ® » {p" | n € Zsg} such that
o(a™) = g(a)aand ¢V (") = g(a)(a’)V for every a € ®.

We denote by Iso, (R, R') the set of all p-isogenies from R to R'. Next, recall that a morphism
of connected reductive groups o : G — G’ is an isogeny if it is surjective and has a finite kernel.
In this case, notice that Ker(o) < Z(G). Consider the pairs G = (G, T) and G’ = (G', T),
where T and T are maximal tori of G and G’ respectively. Following [Tay18| Section 4.5],
we denote by Iso(G,G’) the set of isogenies o : G - G’ such that o(T) = T’. Observe
that the torus T acts on Iso(G,G’) via o - t := o o o4, where for any group X and x € X we
denote by 0, : X — X the homomorphism given by y + z 'yz. Then, if o € Iso(G,G’),
we obtain a map X (o) : X(T') - X(T) given by X (o)(z") := 2’ o 0. Notice that X (o)
is a p-isogeny of the corresponding root data R = (X(T),®(G,T),Y(T),®(G,T)") and
R' = (X(T'),®(G',T),Y(T'),®(G’,T')") and that the map Iso(G,G") — Isop(R,R’) is
constant on T-orbits. By [GM20, Theorem 1.3.12] this induces a bijection

Iso(G,G")/T - Isop(R', R). (6.1.3)

Consider now pairs (G*, T*) and (G, T"*) dual to (G, T) and (G’, T’) respectively and let
§: X(T)—>Y(T*)and &' : X(T’) » Y (T'"*) be the isomorphisms introduced in Section[6.1.3]



76 Chapter 6. Representation Theory of Finite Groups of Lie Type

By [Tay18| Lemma 5.2] the map
“: Hom(X(T'), X (T)) > Hom(X(T*), X (T"))
defined by (¢*)" = 8’ 0 ! 0 5! induces a bijection
Iso,(R',R) - Iso,(R*, R™), (6.1.4)

where we define the root data R* := (Y(T),®(G,T)",X(T),®(G,T)) corresponding to
G*:=(G*,T*) and R"™ = (Y(T'),®(G', T')", X(T'),®(G’, T')) corresponding to G"* :=
(G, T"). Now, and implies that there exists a bijection

Is0(G,G")/T - Iso(G",G*)/T" (6.1.5)

sending the T-orbit of o to the T'*-orbit of a corresponding element o* € Iso(G"*,G*).

Let F' : G —» G be a Frobenius endomorphism and consider a pair (G*, F*) dual to (G, F).
According to [[CS13] Section 2.4], there exists an isomorphism

Autp (GF> /Inn (Gfd) ~ Autp (G*F*) /Inn (G;f*) :

If the coset of o corresponds to the coset of ¢* via the above isomorphism, then we write o ~ o*
(see [[CS13] Definition 2.1]). In the following remark, we point out the relation between this
definition and the similar situation given by the bijection (6.1.5)).

Remark 6.1.4. Let 0 € Autp(GT) and 6* € Autp(G*F") and, by abuse of notation, denote
extensions of these morphisms to the algebraic groups againby 0: G - G and o* : G* - G*.
Then o ~ ¢* if and only if the T-orbit of o corresponds to the T*-orbit of o*~! via the bijection
(6.1.5).

The above remark allows us to compare the results of [[CS13]] with the ones of [Tay18].

Lemma 6.1.5. Let L < K be F'-stable Levi subgroups of G in duality with the Levi subgroups
L* <K* of G*. Then, for every o € Autp(G¥)r, k there exists o* € Autp(G*F )1 x+ such that
o~0o*.

Proof. Notice that by the comment at the beginning of this section, the groups Autp(G* LK =
Autp(GF)L, n Autp(GTk and Autp(G* )px k+ = Autp(G*F ) n Autp(G*F )k are
well defined. If L = K, then this is [[CS13] Proposition 2.2] while a similar argument applies in
the general case. O

Assume now that G is simple of simply connected type. Fix a maximally split torus Ty contained
in an F-stable Borel subgroup Bg of G. This choice corresponds to a set of simple roots A ¢
® := &(G,Ty). For every o €  consider a one-parameter subgroup z, : G, — G. Then G is
generated by the elements x,,(t), where t € G, and « € +A. Consider the field endomorphism
Fy : G - G given by Fy(zq(t)) := x4 (tP) for every t € G, and o € . Moreover, for every
symmetry 7y of the Dynkin diagram of A, we have a graph automorphism v : G — G given by
Y(xa(t)) = Ty (q)(t) for every t € G, and a € +A. Then, up to inner automorphisms of G, any
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Frobenius endomorphism F’ defining an F,-structure on G can be written as F' = Iy, for some
symmetry v and m € Z with g = p'" (see [MT11] Theorem 22.5]). We say that F' is untwisted if v
is the identity and twisted otherwise. In this case one can construct a regular embedding G < G
in such a way that the Frobenius endomorphism Fj extends to an algebraic group endomorphism
Fy : G - G defining an [Fp-structure on G. Moreover, every graph automorphism + can be
extended to an algebraic group automorphism of G commuting with Fy (see [MS16, Section
2B]). If we denote by A the group generated by - and Fj, then we can construct the semidirect
product G % A. Finally, we define the set of diagonal automorphisms of G to be the set of
those automorphisms induced by the action of G on G If G¥'/Z(G"") is a nonabelian simple
group with universal covering group G, then the group G x Aacts on G and induces all
the automorphisms of G¥* (see, for instance, the proof of [Spa12, Proposition 3.4] and of [CS19,
Theorem 2.4]).

We conclude this section, by recalling an important property that will be needed in subsequent
chapters.

Lemma 6.1.6. Let G, G, F and A as in the above paragraph and suppose that GF' is the universal
covering group of GI'/Z(GT). Let Z < Z(GT') and denote by (G A) z the normalizer of Z in
GF A. Then
F S F
Caray,z(G'12)=2(G") ]z

and the canonical map (G A) ; - Aut(G*'/Z) induces an isomorphism

(G"4),/2(G") = Aut (G"/Z).

Proof. By the above paragraph, we know that G A/ Car A(GF ) =~ Aut(G*) and therefore,
using the fact that Cgr A(GF ) = Z(GF) (for this fact see the argument used in [Spai2
Proposition 3.4 (a)], [CS19, Theorem 2.4] and ultimately [GLS98, Theorem 2.5.1]), we obtain
(GFA)2)Z(GF) =~ Aut(GF) ;. Then, by [GLS98| Corollary 5.1.4 (b)], it follows that

(GFA),/2(G") ~ Aut (GF) , ~ Aut (GF/Z).
On the other hand, since
(GFA), |z
Claray,/z(G"/2)’

Aut (G"/Z) =
the third isomorphism theorem yields the desired isomorphism. O

6.1.6 Polynomial orders and E-split Levi subgroups

It is a well known fact that, given a connected reductive group G with a Frobenius endomorphism
F defining an F-structure on G, the order of the corresponding finite group G!" is given by the
evaluation at g of a polynomial with coeflicients in Z. More precisely, there exists a polynomial
Pg p(z) € Z[x], called the polynomial order of G'', and a positive integer a such that

‘GFM‘ =Pa.r(q™)
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for every m =1 (mod a). By the comment at the beginning of [MTT11] Section 25.1], if ®.(x)
denotes the e-th cyclotomic polynomial for a positive integer e, then there exist nonnegative
integers N, n. such that
Pg r(z) = NV H D (x).
ex>1

The theory of polynomial orders was developed in [BM92]. In this paper it was shown that
the cyclotomic polynomials @, () should play the role of "generic prime numbers". Moreover
the authors showed that an analogue of the Sylow theorem holds in this context. In the sequel
we follow the presentation given in [[CE04, Chapter 13]. For further details we refer to [BM92],
[MT11}, Chapter 25] and [GM20, Section 3.5].

It can be shown (see [CE04, Proposition 13.2 (ii)]) that, if H is an F'-stable closed connected
reductive subgroup of G, then Py () divides Pg r(x). Now, given a set of positive integers
E, we define a ® p-torus of G to be any F'-stable torus T such that Py p(2) = [Tecp ®e(z)",
for some nonnegative integers n.. The centralizer in G of a ® p-torus is called an E-split Levi
subgroup (or ® p-split Levi subgroup) of G. When E = {e}, then we write ®.-torus and e-split
Levi subgroup instead of ®.,-torus and {e}-split Levi subgroup. By [GM20, Example 3.5.2] a
Levi subgroup is 1-split if and only if it is contained in an F'-stable parabolic subgroup. This
terminology agrees with the definition given in Section[6.1.2]

As mentioned before, if we replace prime numbers with cyclotomic polynomials, than an analogue
of the Sylow theorem holds in this situation.

Theorem 6.1.7. Let G be a connected reductive group with Frobenius endomorphism F': G - G
defining an IF-structure on G. Let e be a positive integer and . (x)"™ be the largest power of ®.(x)
dividing Pg ().

(i) There exists an F'-stable torus S of G such that Ps p(x) = ®.(x)". All such tori are
GF -conjugate and are called Sylow ®.-tori.

(ii) For every ®.-torus T of G there exists a Sylow ®.-torus S such that T < S.
Proof. This is [BM92, Theorem 3.4]. See also [CE04, Theorem 13.18]. O

It follows by the above theorem that, if G is abelian, then there exists a unique Sylow ®.-torus
which we denote by Gg,. The same is true if we replace the singleton {e} with any set of
positive integers F (see [CE04], Proposition 13.5]). We can now prove the following result on the
intersection of E-split Levi subgroups.

Lemma 6.1.8. Consider a set of positive integers /. Let Ly and Ly be two E-split Levi subgroups of
G containing a common F'-stable maximal torus T. Then Ly n Ly is an E-split Levi subgroup of G.

Proof. Fori=1,2,letS; bea®p-torus of G such that L; = C(S;). Notice that S; < Z°(L;) < T.
Then S; < T4 ,. Moreover, as T is abelian, we deduce that S := S1S, is a subgroup of T. Since S
is connected it follows that S is a torus contained in T. By [[CE04} Proposition 13.2] it follows
that S is a ® g-torus and therefore L := C(S) is an E-split Levi subgroup of G. To conclude,
observe that L = L; n Lo. ]
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We conclude by studying the behaviour of E-split Levi subgroups with respect to duality and
regular embeddings.

Lemma 6.1.9. Let (G*, F*) be a pair dual to (G, F). Then the bijection (6 restricts to a
bijection
L~L"

between E-split Levi subgroups of G and E-split Levi subgroups of G*.

Proof. This is [CE04] Proposition 13.9]. O

Lemma 6.1.10. Leti: G — G bea regular embedding. Consider a Levi subgroup L of G and set
L := LZ(G). IfL is an E-split Levi subgroup of G then L is an E-split Levi subgroup of G.

Proof. Since L is an E-split Levi subgroup of G, we can find a ®p-torus T < G such that
L = Cg(T). Recalling that G = Z(G)G, it follows that Ca(T) = CZ(G)G(T) Z(G)Cg(T)
Therefore L = Z(G)L = C &(T) and, because T is a ® p-torus of G, we conclude that L is an
E-split Levi subgroup of G. O

6.2 Representation theory of finite groups of Lie type

Let G be a connected reductive group with Frobenius endomorphism F': G — G. For every F'-
stable Levi subgroup L of a (not necessarily F'-stable) parabolic subgroup P of G, Deligne-Lusztig
and Lusztig associated two maps

Rip: Zlrr (L) - ZIrr (GT)

and
‘Ri.p : ZIrr (G) — zIrr (L)

adjoint to each other with respect to the usual scalar product on class functions. The representation
theory of finite groups of Lie type relies heavily on the work of Deligne and Lusztig and it is the
aim of this section to recall some of the main ideas and definitions of this fascinating field.

6.2.1 Deligne-Lusztig induction and restriction

Fix a prime ¢ different from p and let Qg be an algebraic closure of the field Q of ¢-adic numbers.
So far, we have only considered affine algebraic varieties. In this section we will encounter a
larger family of varieties. However, whenever we say variety we mean quasi-projective variety,
ie. alocally closed subvariety of a projective variety (see [CE04, Appendix 2] for more details).
One can associate to every variety X a family of finite dimensional Qg-vector spaces H'(X, Qy),
i € Z, called the ¢-adic cohomology groups with compact support (see [CE04, Appendix 3]).
This cohomology theory is functorial and, for every morphism f : X — X/, there is an induced
linear map f* : H(X',Q;) - HY(X,Qy). Then, if G is a finite group acting via algebraic
automorphisms on X, then the vector space H'(X, Qy) has a structure of Q,G-module given by
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g-v:=(g*)1(v) for every g € G and v € H (X, Q). We then define the Lefschetz number of
gon X to be

£(9,X) =2 (-1)'Tr ((9") " HAX, Qo))

7

where Tr((g*)™!, H:(X,Qy)) denotes the trace of the linear map (¢g*)~* on H!(X, Q). Notice
that, since the vector spaces H(X, Q) are finite dimensional and zero whenever i < 0 or
i > 2dim(X), it follows that the above sum is well defined (see [DM91] Proposition 10.1]). It is
also worth noting that £(g, X) does not depend on ¢ (see [DM91] Corollary 10.6]).

Let G be a connected reductive group with a Frobenius endomorphism F' associated to an
[F4-structure on G for some power g of p. For every parabolic subgroup P of G with Levi
decomposition P = L x U such that L is F'-stable, we can define the variety

Yu:={gUeG/U | g'F(g) e UF(U)}.

Since the finite groups G" and LF acts on Yy by left and right multiplication respectively, it
follows that the vector spaces H:(Yy, Q) are (G¥', L¥)-bimodules. Then, we define Deligne—-
Lusztig induction as the map

RSSP : ZIrr (LF) - ZIrr (GF)
defined by

Rip(M)(9) = 1 (-1)'Tr ((9°) " Ho(Yu, Q) @cr A)

1

= |LF|_1 Z S((gal)?YU)A(l)v
leLF

where A is a CL#'-module affording the character A and we consider H:(Yy, Q) as a module
over C (see [[GM20, Remark 2.1.5]). The map

"Ri.p : ZIrr (GF) - zIrr (LF)

dual to RE’SP with respect to the usual scalar product is called Deligne-Lusztig restriction.
This means that

[RESP()‘)7 X] = [Af RI(,;gP(X)]

for every A € Irr(LY") and x € Irr(G*"). For more details on this topic and for the main properties
of Deligne-Lusztig induction, we refer the reader to [DM91] Chapter 10 and 11], [CE04] Section
8.3] and [[GM20, Section 3.3]. The idea of using ¢-adic cohomology to obtain representations of
finite groups was introduced by Deligne-Lusztig [DL76]] and Lusztig [Lus76]]. The constructions
given above where introduced in [DL76]] only for the case where L is a maximal torus and then
generalized to arbitrary F-stable Levi subgroups in [Lus76l]. For this reason, some authors use
the term Deligne-Lusztig induction (resp. restriction) only when L is a maximal torus and use the
term Lusztig induction (resp. restriction) for the general case. Another term used in the literature
is twisted induction (resp. restriction). To avoid confusion, in this thesis we will refer to these
maps as Deligne-Lusztig induction (resp. restriction) in every case. The generalized characters of
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the form R% g (), where T is an F'-stable maximal torus contained in a Borel subgroup B of
G and 9 € Irr(TT), are called Deligne-Lusztig characters.

It is conjectured that Deligne—Lusztig induction and restriction do not depend on the choice
of a parabolic subgroup. This fact can be derived as a consequence of the so called Mackey
formula. Let L and M be F'-stable Levi complements of the parabolic subgroups P and Q of G
respectively. Then the Mackey formula asserts that

IM

*1 G G L —
Ri<p o Rpyicq = Z Riromcrnoq ©  Rrpnomeprom © (ad g)ppr,  (6.2.1)
geLF\Sq (L,M)F /MF

where the sum runs over a set of representatives for the (L, M")-double cosets in
F._ F g . .
Sg(L,M)" = {g eG ‘ L n? M contains a maximal torus of G}

and (ad g)pgr : ZIrr(ME) — ZIrr(9MF) is the map defined by (ad ¢)pr (1) (92) = o (z) for
every x € MY, We will say that the Mackey formula holds for a connected reductive group G if
it holds with respect to every parabolic and Levi subgroups of G. As mentioned above, assuming
the Mackey formula, one can show the independence of Deligne-Lusztig induction and restriction
from the choice of a parabolic subgroup (see [GM20, Theorem 3.3.8]).

Lemma 6.2.1. Assume that the Mackey formula holds for a connected reductive group G with
Frobenius endomorphism F : G — G. Then R&P and *RESP are independent of the parabolic
subgroup P.

It is conjectured that the Mackey formula always holds. Unfortunately, at the time of writing, this
has not yet been proved in full generality. Initially the formula was shown in the case where both
parabolic subgroups are F'-stable (see [LS79, Lemma 2.5]) and in the case where one of the two
Levi subgroups is a maximal torus (see [DL83]] and [DM91] Theorem 11.13]), while the case where
both Levi subgroups are maximal tori was already dealt with in [DL76]]. The best known result
in this direction shows that the formula holds for every connected reductive group G endowed
with an F-structure induced by a Frobenius endomorphism F' : G — G, unless g = 2 and G’
has a quasisimple component of type ?Eg, E7 or Eg (see [BM11])). Other evidences appeared in
[Tay18].

Theorem 6.2.2. Let G be a connected reductive group with a Frobenius endomorphism F' : G - G
associated to an IF -structure on G. Then (6.2.1) holds whenever one of the following conditions is
met:

(i) both P and Q are F'-stable;
(ii) either L or M is a maximal torus;
(i) q + 2;
(iv) GT' does not contain a quasisimple component of type *Eg, E7 or Eg.

As a final remark, we warn the reader that from now on we will always write R]cj' (resp. *RE )
instead of R&P (resp. *Rfsp) whenever the result does not depend on the choice of a parabolic
subgroup.
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6.2.2 Rational Lusztig series

We now introduce a fundamental partition of the characters of a finite group of Lie type. We follow
the description given in [Bon06| Section 9, Section 11]. Other references are [DM91] Chapter 13],
[[CE04, Section 8.4] and [[GM20, Section 2.6].

Let G be a connected reductive group with a Frobenius endomorphism F': G — G defining an
[F4-structure on G. Denote by V(G, F') the set of pairs (T, ") where T is an F-stable maximal
torus of G and ) € Irr(TT"). The finite group G acts by conjugation on V(G, F') and we denote
by V(G, F)/G" the set of G -orbits on V(G, F). Let (G*, F*) be a pair dual to (G, F') and
consider the set V*(G, F') consisting of pairs (T*,s) where T* is an F'*-stable maximal torus
of G* and s € T2/ . As before, the group G*F"" acts by conjugation on the set V*(G, F') and we
denote by V*(G, F')/G*F"" the set of G*I"" -orbits on V*(G, F'). By [DM91] Proposition 13.13]
there exists a bijection

V(G,F)|GF - v*(G,F)/G*T". (6.2.2)
Since, for every (T1,11), (T2,92) € V(G, F'), we have R% (W) = R% (¥2) whenever (T1,71)
and (T3, 192) are G-conjugate (see [GM20, Corollary 2.2.10]), using the bijection we can
define

R (5) == RE (V)

for every (T, ) € V(G, F) and (T*, s) € V*(G, F') whose orbits correspond via (6.2.2).

We now define the (rational) Lusztig series associated to the G*¥”" -conjugacy class of a semisim-
ple element s € G2I™ to be the set £(GF', [s]) of irreducible constituents of some RS, (), where
T” is an F'*-stable maximal torus of G* containing s, that is

S(GF, [s]):={xe Irr(GF) ‘ [X,RG*(S)] # 0, for some (T*,s) e V*(G,F)}.

The elements of £(G",[1]) are called unipotent characters. The importance of Lusztig series
lies in the following result of Lusztig (see [Lus77, 7.6]). This is the first step towards a Jordan
decomposition for characters.

Theorem 6.2.3. Lusztig series give a partition of the irreducible characters of G*" as
Irr (GF) =11¢ (GF, [s]).
S

.
where s runs over a set of representatives for the G*I" -conjugacy classes of semisimple elements of

G*F*

We remark that there is another type of series which is often considered in the literature. These
are the so-called geometric Lusztig series. One can show that geometric Lusztig series are
unions of rational Lusztig series and that the two notions coincide when G has connected center.
However, in this thesis we will only consider rational Lusztig series and we will refer to them
simply as Lusztig series.

We will now state some properties that will be often used in the sequel. First, consider an F'-stable
Levi subgroup L of G and let P be a parabolic subgroup of G of which L is a Levi complement.
It is important to know how the Deligne-Lusztig induction map RSSP : ZIrr (LY - ZIrr (GF)
behaves with respect to the Lusztig series of LY and of G¥".
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Lemma 6.2.4. Let P be a parabolic subgroup with F-stable Levi complement L and consider
an F*-stable Levi subgroup L* of G* in duality with L. Lett ¢ L:", s ¢ G and consider
Ne E(LEY[t]) and x € E(GF,[5]). Then

R p(\) € ZE (GT[t])
and, if \ is an irreducible constituent of*RE’SP(X), then s and t are G*I" -conjugate.

Proof. This is [CE04] Proposition 15.7]. O

Next, we consider Lusztig series under regular embeddings.

Lemma 6.2.5. Leti: G — G be a regular embedding and let i* : G* — G* be the dual morphism.
Let 3 be a semisimple element of G**" and consider its image s := i*(3). Then

E(GF,[S]) = {Xelrr(GF) ‘ [X;Xgr] #0, forsome;?eé'(éF,[?])}.

Proof. This is [CE04] Proposition 15.6]. O

6.2.3 Jordan decomposition of characters

In the previous section we have seen how rational Lusztig series provide a partition of the
irreducible characters of a finite reductive group. The next step towards a "Jordan decomposition"
for characters was proved by Lusztig in [Lus84] (for groups with connected center) and [Lus88]]
(for groups with disconnected center under some mild restrictions). In order to state this result,
we need to introduce some notation. Let s € G2, since the centralizer Cg+ () might not be
connected, we denote by £(Cg-(s)"", [1]) the set of irreducible constituents of those characters
of Cg+(5)F" induced from an element of £(Cg. (s)",[1]). Notice that, if Z(G) is connected,
then Cg+(s) is connected (see [DM91, Remark 13.15 (ii)]) and the above definition coincides
with the notion of Lusztig series.

Theorem 6.2.6. Let G be a connected reductive group with Frobenius endomorphism F'. Consider
a pair (G*, F*) dual to (G, F) and a semisimple element s € G2 . Then there exists a bijection

Jas:€(GF [s]) > £ (Ca ()", [1]).

Moreover

(1) =]G7: Car ()

,Ja.s(0)(1)
p

for every x € E(GT,[s]).

Proof. See [DM20] Theorem 11.5.1 and Proposition 11.5.6] and [GM20}, Theorem 2.6.22 and Remark
2.6.26). O
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As mentioned before Theorem [6.2.6| was mainly proven by Lusztig in [Lus88] generalizing the
connected center case which was already shown in Lusztig’s book [Lus84]. The argument of
[Lus88|] needs to be complemented by some multiplicity one statements (see [CE04, Chapter
16], [DM20], Section 11.5] and [Lus08]). In this way, every irreducible character y of G’ can be
parametrized by a rational conjugacy class [s] of semisimple elements of G*” and a unipotent
character of Cg+(s)?". This provides a Jordan decomposition of the characters of GF'.

When the centralizer Cg+(s) is a Levi subgroup, then Jordan decomposition can be explicitly
described via Deligne-Lusztig induction. This follows by the next two results.

Proposition 6.2.7. Let s € G be a semisimple element and consider z € Z(G*)" . Then there
exists a linear character Zgr € (G, [2]) and a bijection

& (GF, [s]) > & (GF, [s2])

given by multiplication by Zgr.
Proof. This is [CE04] Proposition 8.26]. O

For the next statement, we need to define the sign eg := (—1)"(G) for every linear algebraic
group G, where o(G) is the Fj-rank of G as in [DM91} Definition 8.3].

Proposition 6.2.8. Let L be a Levi subgroup of G corresponding to the Levi subgroup L™ of G* via
duality. Suppose that s € G*I" is a semisimple element such that C, (s)Cgq+(s)F < L*. Then
there exists a bijection

eLecREcp € (L7, [s]) ~ £(G", [5])

given by Deligne—Lusztig induction, where P is a parabolic subgroup of G having L as Levi
complement.

Proof. See [CE04] Theorem 8.27] and [DM91, Theorem 13.25]. ]

To conclude this section, we consider an important property of Jordan decomposition. Namely,
we ask whether a Jordan decomposition can always be chosen in such a way that it commutes
with Deligne—Lusztig induction (resp. restriction). Although this property still needs to be proved
in full generality, some partial results have been shown for groups with connected center. For
classical groups this was first proved by Fong and Srinivasan by using results of Shoji and Asai
[FS89, Appendix A]

Theorem 6.2.9. Let G be a connected reductive group with connected center and with components
only of classical type A, B, C or D. Let F' be a Frobenius endomorphism of G and suppose that I’
does not induce the triality automorphism on components of type Dy4. Let (G*, F™*) be a pair dual
to (G, F') and consider F'-stable Levi subgroups L < M < G corresponding to L* < M* < G* via
duality. If s e L:I" | then the diagram
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z& (MF[s]) 22 Z€ (Cape ()™, [1])

Copx(8)
RII\JAT TRCLM* (s)

28 (L, 161) 5 28 (O ()" 1)

commutes, where J, s is a Jordan decomposition as in Theorem|[6.2.6
Proof. This is [GM20|, Theorem 4.7.2]. O

For groups of exceptional type we have the following result.

Theorem 6.2.10. Let G be a simple algebraic group with connected center, F' : G — G a Steinberg
endomorphism and suppose that the Mackey formula holds for GT'. Let (G*, F*) be a pair dual
to (G, F') and consider F-stable Levi subgroups L < M < G corresponding to L* < M* < G* via
duality. If s e L:" | then the diagram

z& (MF | [s]) -2 7€ (Cape ()7, [1])

Copx(8)
RQAT TRCZE, (s)

z€ (LY, [s]) 5 ZE (Cr-(s)F,[1])

commutes, where J,  is a Jordan decomposition as in Theorem[6.2.6, unless possibly when G = M is
of type Eg.

Proof. This is [GM20, Theorem 4.7.5]. ]

6.2.4 Generalized e-Harish-Chandra theories

We now introduce the main results in e-Harish-Chandra theories. The classical ordinary Harish-
Chandra theory provides an inductive way of classifying the irreducible characters of finite groups
of Lie type. More generally this theory can be developed for groups with a BN -pair (see [GM20]
Section 3.1]). Ordinary Harish-Chandra theory was first introduced by Harish-Chandra in [HC70]
and then developed further by Howelett and Lehrer in [HL80]. This theory provides a partition
of the irreducible characters of a finite group of Lie type into, so-called, Harish-Chandra series
determined via Harish-Chandra induction from cuspidal characters of 1-split Levi subgroups.
By replacing Harish-Chandra induction (resp. restriction) with Deligne-Lusztig induction (resp.
restriction) and by considering e-split Levi subgroups instead of 1-split Levi subgroups, we then
obtain the, so-called, e-Harish-Chandra theories first introduced by Fong and Srinivasan in [FS86]]
and then fully developed in [BMM93] in the unipotent case. Then, ordinary Harish-Chandra series
can be recovered as 1-Harish-Chandra theory. Here, we will present the main features of these
theories following [[GM20, Chapter 3]. In the next section we will see how e-Harish-Chandra
theories can be applied in order to obtain a deep insight into the modular representation theory
of finite groups of Lie type in nondefining characteristic.
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Let G be a connected reductive group with a Frobenius endomorphism [’ defining an I;-structure
on G. For the rest of this section we fix a positive integer e. An irreducible character x € Irr(G)
is e-cuspidal if *R&P( X) = 0 for every e-split Levi subgroup L < G which is the complement
of a parabolic subgroup P. An e-cuspidal pair of (G, F') (or simply of G if no confusion arises)
is any pair (L, \), where L is an e-split Levi subgroup of G and \ is an e-cuspidal character of L
(see also Definition [7.2.1). Next, we relate the notion of e-cuspidality with Jordan decomposition.

Proposition 6.2.11. Let y € £(GT,[s]) be e-cuspidal with s € GXI" . If 1) € £(C&. (s)F,[1])
lies in the Cg~ (s)F" -orbit of unipotent characters lying below Jg s(x), then:

(i) o is e-cuspidal; and
(”) ZO(G*)q)e = ZO(COG*(S))@E'

Proof. This is [CE99, Proposition 1.10]. O

It is conjectured that the above property of x, called e-Jordan cuspidality in [KM15| Definition
2.1], is equivalent to the notion of e-cuspidality. In particular, Proposition [6.2.11|{implies that, if
x € E(GT,[s]) is e-cuspidal, then G* is the only e-split Levi subgroup of G* containing Cgy. ().

For every e-cuspidal pair (L, \), define the associated e-Harish-Chandra series £(G, (L, \))
to be the set of y € Irr(G'") such that [x, RF.p())] # 0, for some parabolic subgroup P of
G having L has Levi complement. By Lemma it follows that e-Harish-Chandra series
are contained in rational Lusztig series. More precisely, if A € (LY, [t]) with t € L/, then
E(GT,(L,))) € E(GT,[t]). It is expected that rational Lusztig series are unions of e-Harish-
Chandra series and therefore that e-Harish-Chandra series partition the set of irreducible charac-
ters of G¥'. This has been shown for ordinary Harish-Chandra theory and for e-Harish-Chandra
series associated with unipotent e-cuspidal pairs.

Theorem 6.2.12. Let G be a connected reductive group with Frobenius endomorphism F' and
consider a positive integer e.

(i) The set of 1-Harish-Chandra series partition Irr(G*"). More precisely

Ir (GF) = [] €(G", (L),
(L,A)

where the union runs over 1-cuspidal pairs (L, \) up to G* -conjugation.

(ii) The set of e-Harish-Chandra series corresponding to unipotent e-cuspidal pairs partition the
set of unipotent characters of G¥'. More precisely

£(G". )= I £(G", (L),
Y

where the union runs over the set of unipotent e-cuspidal pairs (L, \) up to G¥ -conjugation.

Proof. See [DM91, Theorem 6.4] and [BMMO93| Theorem 3.2 (1)]. Other references are [GM20,
Corollary 3.1.17 and Theorem 4.6.20]. O
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In the next chapter we will show that a similar result holds for arbitrary e-Harish-Chandra
series under some suitable conditions. In fact we will see that e-Harish-Chandra series can be
used to describe Brauer—Lusztig blocks (see Definition|[7.3.1)) in characteristic ¢, where e is the
multiplicative order of ¢ modulo .

Given a partition as the ones in Theorem [6.2.12] it is natural to look for a description of every
single e-Harish-Chandra series. For every e-cuspidal pair (L, A) of G set

Ne(L,A)" = (Ng (L))
and define the relative Weyl group of (L, \) in G to be the quotient group
Wa(L, )" = Ne (L))" /LY,

where N (L){ is the stabilizer of A in N (L)*". Then, the e-Harish-Chandra series correspond-
ing to the e-cuspidal pair (L, \) can be described in terms of the relative Weyl group W (L, \) .
For ordinary Harish-Chandra theory this result is due to Howlett and Lehrer [HL83].

Theorem 6.2.13. For every 1-cuspidal pair (L, \) of G and any 1-split Levi subgroup M with
L <M < G there exists a bijection

gy e (W (Lo 2)1) = € (M, (L, ).

These bijections can be chosen in such a way that, if extended Z-linearly, then the following diagram
commutes

G
TR

Zhrr (Wa(L,\)F) —= Z& (G, (L, )))

F G
Ind$ FT TRM

ZIr (W (L, N)F) —o— 2 (M, (L, )))

(L,2)

where Indl(\;,[FF denotes the induction of characters from M*" to G¥'.
Proof. See [HL83|] and [GM20, Theorem 3.2.7]. O

In the case of e-Harish-Chandra series corresponding to unipotent e-cuspidal pairs this is due to
Broué, Malle and Michel [BMMO93]].

Theorem 6.2.14. For every unipotent e-cuspidal pair (I, \) of G and any e-split Levi subgroup
L <M < G there exist an isometry

I sy 20 (Win(L, )T) = Z€ (MF (L, ).
These isometries can be chosen in such a way that the following diagram commutes

G
Zh (W (L A)F) % 7¢ (G, (L, 1))

F G
Ind$ FT TRM

ZIrr (Ww(L, )Y) —o— ZE (M, (L, 1))

(L,2)
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Proof. See [BMM93] Theorem 3.2 (2)] and [GM20, Theorem 4.6.21]. O

In Chapter [10| we will obtain similar bijections for any e-cuspidal pair when G has connected
center. This is done by applying Theorem and Theorem[6.2.10|and will therefore require
some restrictions on the type of G. It is expected that the bijections from Theorem[6.2.13]and
Theorem|6.2.14] and more generally similar bijections for arbitrary e-cuspidal pairs (L, \), can
be chosen to be equivarinat with respect to those automorphism of G stabilizing (L, \) (see
[MS16| Theorem 5.2] and [[CS13| Theorem 3.4] for some special cases).

6.2.5 Blocks in nondefining characteristic

In this section we consider Brauer blocks of finite groups of Lie type in nondefining characteristic.
All blocks will be considered with respect to the prime ¢. Let ¢ be a prime power such that
¢ + q and let e be the order of ¢ modulo ¢. A strong connection between the block structure
of classical groups of Lie type and the decomposition of Deligne-Lusztig induction has been
established by Fong and Srinivasan in [[FS86]]. These results show that generalized e-Harish-
Chandra theory provides a very effective tool to study and classify the blocks of finite groups
of Lie type in nondefining characteristic. The work of Fong and Srinivasan on classical groups
has been extended to unipotent blocks (i.e. blocks containing a unipotent character) by Broué,
Malle and Michel [BMM93] (for large primes ¢) and by Cabanes and Enguehard [CE94], while
the case of arbitrary blocks, for primes ¢ > 7, has been described by Cabanes and Enguehard
in [CE99]. In a recent paper by Kessar and Malle [KM15]], all of the previous results have been
unified and extended to the highest possible generality. Our aim is to introduce the reader to
these and other results on /-modular representation theory of finite groups of Lie type that are
used in the subsequent chapters.

Let G be a connected reductive group with a Frobenius [ : G — G defining an F,-structure on
G. Let (G*, F*) be a pair dual to (G, F') and consider a semisimple /-regular element s ¢ G*F".
We define the union of rational Lustig series

£ (G",[s]) =Ue (G, [st]),

t

where the union runs over the f-elements ¢ € Cg+(s)!". The next result, due to Broué and
Michel, shows that to every ¢-block B of G¥" is associated a unique G*¥" -conjugacy class of
semisimple /-regular elements(see [BM89, Theorem 2.2]).

Theorem 6.2.15. Let s be a semisimple (-regular element of G*I"". Then £,(GY,[s]) is a union
of (characters of) blocks of GF'.

Next, define the union of rational Lusztig series associated to semisimple /-regular elements of
G*F*
E(GF. )= |J €(GF,[s]).

*F*
SEGss,z’
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Let s be a semisimple /-regular element of G*" and consider a block B of G*" such that Irr(B) ¢
E(GF,[s]). It was shown by Hiss in his habilitation [Hi890] (see also [CE04, Theorem 9.12 (ii)])
that Irr(B) n (G, [s]) # @. Notice also that Irr(B) n £(GF, [s]) = Irr(B) n E(GF, ).

Theorem 6.2.16. Let s be a semisimple (-regular element of G*¥" and consider a block B of G¥
such that Trr(B) € £(GY,[s]). ThenIrr(B) n £(GF, [s])  @.

Suppose now that, for a semisimple (-regular element s of G*", there exists an F-stable Levi
subgroup L of G satisfying COG*(S)C(;*(S)F* < L*, where L* is the Levi subgroup of G*
corresponding to L via duality. By Proposition [6.2.8 and using the fact that Cg+(st) < Cg=(s)
whenever t is an /-element of Cg-(s)!" < L*!"", we deduce that Deligne-Lusztig induction
yields a bijection

GLGGRE : gg (LF, [8]) g gg (GF, [8]) .

In [Bro90], Broué showed that the above bijection preserves the partition of characters into
blocks. In fact Broué showed that the above bijection is a perfect isometry [Bro90, Theorem
2.3]. We refere the reader to [Bro90] and [Sam20] for more details on perfect isometries. It was
conjectured by Broué that the above mentioned perfect isometry should be a consequence of a
Morita equivalence. This conjecture has been proved by Bonnafé and Rougier [BR03|] and by
Bonnafé, Dat and Rouquier [BDR17].

Theorem 6.2.17. Let L be an F'-stable Levi subgroup of G. Let s be a semisimple (-regular element
of L*F" such that Cg.(8)Cq=+(s)F < L*. Then the bijection

EGGLRE : gg (LF, [S]) d 5g (GF, [S])

satisfies
bl(A1) = bl(A2) < bl (enegRE (M) = bl (eLegRE (M2))

for every A, Ay € £(L, [s]).
Proof. This is [Bro90, Theorem 2.3]. O

The next statement, which is one of the main ingredients for the parametrization of blocks of
groups of Lie type given by Cabanes and Enguehard, shows how Deligne-Lusztig induction can
be used to define a twisted induction for blocks.

Theorem 6.2.18. Assume { > 7 if G has a component of type Eg and { > 5 otherwise. Let L be an
e-split Levi subgroup of G and consider a block b of L. Then there exists a block B of G¥ such that

RE.p(\) € ZIrr(B)

forevery X € Irr(b) nE(LY, ¢ and any parabolic subgroup P of G of which L is a Levi complement.
Moreover, if L = Cg (Z(L)Y), then B coincides with the block bC" obtained via Brauer’s induction.

Proof. This is [CE99, Theorem 2.5] ]
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Using the above result, Cabanes and Enguehard have showed in [[CE99] that the blocks of finite
groups of Lie type, for £ > 7, can be parametrized by G!"-conjugacy classes of e-cuspidal pairs
(L,\) where X\ € (LY, ¢"). The case of unipotent blocks can be found in [CE94] while a
generalization to arbitrary primes and blocks is the main result of [KM15]].

Theorem 6.2.19. Assume ! > 7 if G has a component of type Eg and £ > 5 otherwise. Let e be the
order of ¢ modulo ¢. Then there exists a bijection

(L,A) » bgr(L,\)

between the set of G -conjugacy classes of e-cuspidal pairs (L, \) with X\ € E(L*, ") and the set of
blocks ofGF. Moreover, we have

Irr (bgr (L,A) nE(GF, ) = {x eir (GF) | (L,\) <. (G,x)}
where <<, is the order relation introduced after Definition[7.2.1]

Proof. This is [CE99, Theorem 4.1]. O



7

Brauer-Lusztig Blocks and
e-Harish-Chandra Series

Let G be a connected reductive group and F' : G - G a Frobenius endomorphism endowing
G with an Fg-structure for some prime power g. Let / be a prime number not dividing ¢ and
denote by e the multiplicative order of ¢ modulo ¢ (modulo 4 if £ = 2). Let (G*, F'*) be a dual
pair to (G, F'). As we have seen in Section [6.2.4} blocks of finite groups of Lie type have been
parametrized by work of Fong—-Srinivasan, Cabanes—Enguehard and Kessar—Malle. We recall
briefly how this parametrization works. For simplicity assume ¢ > 7. By Theorem [6.2.15] to
every /-block B of G is associated a unique rational conjugacy class [s] of semisimple /-regular
elements of G*" such that
Irr(B) € (G, [s]).

Then, according to Theorem there exists a unique G*'-conjugacy class of e-cuspidal
pairs (L, \) such that A € E(L,[s']) for some G*I"" -conjugate s’ of s and every irreducible
constituent of RE (1)) is contained in Irr(B) for every parabolic subgroup P having L as Levi
complement. In this situation we write

B = bGF (L, )\)
In this case, we also have a characterization of the #'-characters in the block B as
E(GH,[s])nIir(B) = {x err (G") | (L,\) <¢ (G,X)}, (7.0.1)

where <, is the transitive closure of a relation <. defined on the set of e-pairs, i.e. pairs (M, p)
with M an e-split Levi subgroup of G and y € Irr(M?") (see the discussion following Definition
[7.2.1)for more details). The next step is to obtain information on all irreducible characters contained
in the block B.

Combining Brauer ¢-blocks and Lusztig series, Broué, Fong and Srinivasan introduced the so-called
Brauer-Lusztig blocks of G’ these are defined to be those nonempty sets of the form

£(GF,C, [2]) = € (G, [2]) nTrr (C),

91
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where C is an /-block of G and x is any semisimple element of G*I"" (see Definition [7.3.1).
Using once again Theorem[6.2.15] observe that

Ir(B)= [ € (GF,B, [st]),

tGCGx— (S)ZF*

where s lies in the rational conjugacy class of semisimple /-regular elements of G *’ " determined
by Irr(B) < £(G¥, [s]). In particular, in order to obtain all the characters in Irr(B), we have to
describe the Brauer-Lusztig blocks £(GT', B, [st]). In [BMMO93] Broué, Malle and Michel proved
that, on the set of unipotent e-pairs, the relation <, is transitive and therefore coincides with
<. This fact was conjectured in full generality in [CE99, 1.11] (see Conjecture [7.2.2). Under this
assumption, (7.0.1) can be restated by saying that, when s is ¢-regular, the Brauer Lusztig block
E(GY, B, [s]) coincides with the e-Harish-Chandra series £(G!', (L, \)).

In this chapter, we generalize ideas of Broué, Fong and Srinivasan on unipotent blocks and we
extend the results of Cabanes and Enguehard. Namely, we remove the condition on the semisimple
element s and we show that Brauer-Lusztig blocks are disjoint unions of e-Harish-Chandra series.
In particular, this gives a parametrization of all the characters in a block B in terms of e-cuspidal
pairs and shows that e-Harish-Chandra series partition Irr(G").

Theorem 7.1. Assume Hypothesis Then, for every Brauer-Lusztig block £(GT', B, [s]), there
exist e-cuspidal pairs (L;, \;), fori=1,...,n, such that

£(G*,B,[s]) = ﬁ[E(GF, (Li, \i)).-

Moreover the (L, \;) are unique up to G -conjugation and B = bl()\i)GF via Brauer induction.

We believe that the integer n in Theorem|7.1]is always 1 and therefore that Brauer-Lusztig blocks
and e-Harish-Chandra series coincide. This issue will be the subject of future investigations and it
can be reduced to showing that the reverse implication of Corollary[7.2.12Jholds. As an immediate
consequence, we obtain a description of all the characters in a block.

Corollary 7.2. Assume Hypothesis and let B be a block of GT'. Then

Ir(B)= ][] € (GFa (L, )‘))v
(L,2)

where the union runs over a G¥ -transversal in the set of e-cuspidal pairs (L, \) of G such that
bI(M)E" = B.

Notice that Hypothesis is satisfied whenever G is simple simply connected such that
GT £ 2E4(2), E7(2),Es(2) and considering ¢ € T'(G, F) with £ > 5 (see Remark.

As we have mentioned before, Cabanes—Enguehard results have been generalized to bad primes
by Kessar and Malle in [KM15]] and the reader might wonder why we are not considering this
more general situation. Unfortunately, many of the techniques used in this chapter fail for bad
primes and a different proof needs to be found in this case.
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7.1 Good primes and e-split Levi subgroups

For the rest of this chapter we will consider the following setting.

Notation 7.1.1. Let G be a connected reductive linear algebraic group defined over an algebraic
closure IF of a finite field of characteristic p and F': G — G a Frobenius endomorphism defining
an [F-structure on G, for a power ¢ of p. Consider a prime /¢ different from p and denote by e the
multiplicative order of ¢ modulo ¢ (modulo 4 if ¢ = 2). All blocks are considered with respect to
the prime /.

In what follows we will consider some restrictions on the prime /. First, recall that ¢ is a good
prime for G if it is good for each simple factor of G, while the conditions for the simple factors
are

A, : every prime is good
B,,C,,D,:{+2
Go,Fy,Eq,E7: 0 +2.3
Eg:0+2,3,5.

We say that ¢ is a bad prime for G if it is not a good prime. Next, we introduce the set of primes
I'(G, F) that is of fundamental importance in the rest of this thesis (see [CE94, Notation 1.1]).

Definition 7.1.2. We denote by (G, F') the set of primes ¢ such that: ¢ is odd, ¢ # p, ¢ is good
for G and /¢ doesn’t divide |Z(G) : Z°(G)¥|. Let (G*, F*) be in duality with (G, F) and
set (G, F) = (v(G, F) ny(G*, F*)) \ {3} if G, has a component of type D4 (¢g™) and
I'(G,F):=v(G, F) ny(G*, F*) otherwise.

Remark 7.1.3. Notice that, if { € I'(G, F'), then ¢ e I'(G*, F*) and ¢ €« I'(H, F'), where H is
any F'-stable connected reductive subgroup of G containing an F'-stable maximal torus of G (see

[CE04, Proposition 13.12]). In particular, if £ € I'(G, F) and L is an F-stable Levi subgroup of G,
then e T'(L, F).

If G is simple of simply connected type with Frobenius endomorphism F' defining an IF,-structure
on G, then the primes ¢ € I'(G, F') are as follows (see [CE04] Table 13.11])
An(q): € 42¢(n+1,q-1),
2An(q) 0+ 2¢(n+1,q+1),
B.(4), Cn(4), Dn(a),” Dn(q) : £#2,p

*Du(q), G2(q), Fa(q), Ee(q), Es(q), E7(q) : £ # 2,3,p
ES(Q) :E * 273757]9-

As a consequence, if a connected reductive group G has no simple components of type A, then

eT'(G, F) if and only if £ is good for G and ¢ # p.

Lemma 7.1.4. Let G be a connected reductive group with Frobenius endomorphism F'. Let ¢ be a
good prime for G. If G has no simple component of type A, then { does not divide|Z(G)¥ : Z°(G)¥|
nor |Z(G*)F" 1 Z°(G*)™|.
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Proof. This is [CE04| Proposition 13.12]. O]

When /¢ € T'(G, F') some really nice consequences on the structure of e-split Levi subgroups
can be drawn. For instance, as pointed out by Broué, Fong and Srinivasan [BFS14], under this
assumption one can establish a link between /-elementary abelian chains in G" and descending
chains of e-split Levi subgroup of G (see Section [9.2.1). This will be one of the main ingredients
used in Chapter [9 to tackle the Character Triple Conjecture for finite groups of Lie type (see

Section[9.2.1).
Lemma 7.1.5. Let L be an F'-stable Levi subgroup of G.
(i) Let E be a set of positive integers. Then L is E-split if and only if L = Cg(Z° (L) ¢, ).

(ii) Set Eq:={e- ™ |meN}. IfL = Cg (Z°(L)}'), then L is Eg o-split. The converse holds if
LeT'(G,F).

Proof. The first statement follows directly from the definition. In fact, since Z°(L) is a torus,
we deduce that Z°(L)g,, is a ®g-torus and therefore Cg(Z°(L)s,, ) is E-split. Conversely,
assume that L is E-split. Then there exists a ®p-torus T such that L = Cg(T). Since T
is abelian, we deduce that T < Z(L). Then, as T is connected, we have T < Z°(L) and
therefore T < Z°(L)g,, because T = Tg . By [DM91] Proposition 1.21], we conclude that L =
Cg(Z°(L)) < Cg(Z°(L)s,) < Ca(T) = L. For the second statement see [CE04, Proposition
13.19]. O

Before stating the next proposition, recall that for any finite /-group X and positive integer n we
can define the subgroup

Qn(X) = (ze X |2 =1).
In particular, when X is abelian, Q1 (X)) is the largest ¢-elementary abelian subgroup of X.
Proposition 7.1.6. LetY be an (-subgroup of GF .
(i) If € is good for G andY is abelian, then C¢,(Y') is a Levi subgroup.
(ii) If ¢ e T'(G, F'), then:
(@) Ca(Y)" = Cg(Y);
(b) if Y is abelian, then Y < Z°(Cg(Y));

(c) if Y is abelian and either Z(Gsc)! = 1 or £ € T(Gaq, F'), then Cg(Y') is an e-split
Levi subgroup of G;

() if S is any ®.-torus of G, then S < Z(G) if and only if S}’ < Z(G"") if and only if
Q1(S) < Z(GT). Moreover C.(S) = Cg(SE) = Cg (4(Sf));

(e) let L be an e-split Levi subgroup of G and define X := (Z°(L)5). Then L =
Ca(Z(L)]) = Cg(X).
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Proof. The first statement is [[CE04, Proposition 13.16 (ii)] while (ii.a) is [[CE94, Proposition 2.1
(iii)] (see also [[CE04] Proposition 13.16 (i)]). To prove (ii.b) notice that, since Y is abelian and
using (ii.a), Y < Cg(Y)! = C4(Y)F. Then Y < Z(Cg(Y)). By (i) we know that Cg (Y) is a
Levi subgroup of G and hence / ¢ I'(Cg (Y'), F') by Remark([7.1.3] In particular £ does not divide
1Z(Cx(Y)F : Z°(CL(Y)) | and so Y < Z°(Cg(Y)).

Next, consider (ii.c). Set L := Cg (Y") and notice that, using (i) and (ii.b), L is a Levi subgroup
with Y < Z°(L). By [DM91l Proposition 1.21] it follows that L = C%(Z°(L)!") and Lemma
implies that L = Cg(ZO(L)q,Eq’Z ).NowL < Cg(Z°(L)s,) == Mand Z°(L)g, < Z°(M). Using
[CE04, Lemma 22.3 (ii)] (if Z(G sc)f = 1) or [CE94, Proposition 1.6] (if ¢ € T'(G,q, F)) we conclude
that Z°(L)¢E < Z°(M) and therefore that M = Cg(Z°(M)) < Cg (Z°(L)¢E e) = L. This
shows that L = M is an e-split Levi subgroup.

We now prove (ii.d). This follows from an adaptation of the proof of [CE04}, Proposition 13.17 (ii)].
In order to prove the first part, it is enough to show that, if S ¢ Z(G), then Q4 (S}) ¢ Z(G™).
So assume that S £ Z(G) and consider the canonical morphism 7 : G - G/Z(G). Observe,
by the proof of [CE04, Proposition 13.7], that 7(S) # 1 is a ®.-torus. Moreover, notice that ¢
divides ®.(q) (see [Mal07, Lemma 5.2 (a)]) and that, if £* is the largest power of ¢ dividing ®.(q),
then Tf is the direct product of copies of Cya for every ®.-torus T (see [BM92, Proposition
3.3]). Let y € 7(S)} be an element of order ¢°. Since 7(S)!" = 7(S,") by [CE04, Lemma 13.17
()], it follows that there exists = € Sf such that 7(z) = y. Moreover, notice that the order of
y = m(«) divides the order of . On the other hand, since S is a ®.-torus, the above discussion
implies that the order of z divides £%. We conclude that z has order £%. Then s := 2" € Q; (SF )

and 7(s) =y "+ 1. This shows that 01(SI") ¢ Z(GT). To prove the second part of (ii.d), we
proceed by induction on the dimension of G. Notice that Cg(S) < Cg(SF) < CL(Q:1(S]))
and it’s enough to show that L := Cg (21 (S)) < Cg(S). Observe that L is a Levi subgroup by
(i) above. If S < Z(G), thenL = G = Cg(S). Therefore, we can assume S £ Z(G). By the above
argument, we know that 1 (S/) £ Z(G) and therefore dim(L) < dim(G). As by Remark
we have £ € I'(L, F'), applying the inductive hypothesis we conclude that Cy,(S) = C7,(Q2:(S;)).
Then the result follows by noticing that Cr,(S) = Cg(S) and Cr,(€1(S/)) = Cg (Ql(Se ).

Now (ii.e) follows from (ii.d). In fact, let L be an e-split Levi and suppose that L = Cg(S) for a
®.-torus S. We need to show that L = C¢, (X)), where X := Ql(Z (L)) AsS < Z(L) using
(ii.d) we obtain Q1(S/") < Z(G') and C a(S) = CE;(Ql(S)(Z ). In particular Q(S}') < X. It
follows that L = Cg(Z°(L)) < C&(X) < Cg(1(Sf)) = Ca(S) = L. O

7.2 e-Harish-Chandra series and /-blocks

Consider G, F', ¢ and e as in Notation|7.1.1

Definition 7.2.1. An e-pair of (G, F') (or simply of G when no confusion arises) is a pair (L, \)
where L is an e-split Levi subgroup of G and A € Irr(L"). For any semisimple element s ¢ G*¥' "
we say that an e-pair (L, \) is an (e, s)-pair if A € (LY, [s']) for some s’ € L*F"" that is G*I" -
conjugate to s. Finally, we say that (L, \) is an (e, ¢')-pair if it is an (e, s)-pair for some ¢-regular
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semisimple element s € G**"

In [[CE99, Notation 1.11] a binary relation, denoted by <., was defined on the set of e-pairs. Namely,
write (L, \) <. (K, k) provided that L < K are e-split Levi subgroups of G and there exists
a parabolic subgroup P of K containing L as a Levi complement such that « is an irreducible
constituent of the virtual character Ri(gP (A). Since Deligne-Lusztig induction and restriction
send characters to generalized characters, the relation <. might not be transitive. In fact, suppose
that (L, \) <. (M, 1) < (K, k). Assume for simplicity that Deligne-Lusztig induction does not
depend on the choice of parabolic subgroups. By assumption we know that y is an irreducible
constituent of R%‘/I()\) and that « is an irreducible constituent of Rﬁ(u). In particular, we
can write R}YI()\) = A +apu, where 0 # a € Z and [A, ] = 0. Now, by the transitivity of
Deligne-Lusztig induction, we deduce that

RE(A) = Ryi(A) + aRyg ().

Although & is an irreducible constituent of Rf (1), since RE; (A) is a generalized character, it
might happen that [RE(A), k] = —a[RE; (1), #] and hence that [R¥()\), k] = 0.

In order to overcome this problem, we consider the transitive closure <<, of <.. Since the
set of e-pairs of (G, F') is finite, we deduce that, for two e-pairs (L, \) and (K, k), we have
(L, \) <. (K, k) if and only if there exists a finite number of e-pairs (L;, \;), withi=1,...,n,
such that

(L, )‘) <e (Lla )\1) e Le (Lna )\n) <e (K, K)'

Observe that a pair (L, \) is e-cuspidal (see the discussion preceding Proposition[6.2.11) if and
only if it is minimal with respect to <<.. Moreover, by using Lemma [6.2.4] the relations <. and <,
restrict to the set of (e, s)-pairs for every s € G *. A minimal element in the induced poset of
(e, s)-cuspidal pairs is called (e, s)-cuspidal.

The following conjecture was made in [[CE99, 1.11].

Conjecture 7.2.2 (Cabanes-Enguehard Conjecture). The relation <. is transitive and therefore
coincides with <.

We point out an important consequence of Conjecture Let (L, \) be an e-pair of G. If
Conjecture holds, then

{x el (G") | (L,\) <¢ (G,x)} =€(G",(L,))),

where £(G! (L, \)) is the e-Harish-Chandra series determined by (L, )\), that is the set of
irreducible constituents of RS<P()\) for every parabolic subgroup P of G having L as a Levi
complement. In addition, if Deliéne—Lusztig induction does not depend on the choice of a parabolic
subgroup, then

{xelr (G") | (L,A) <. (G,x)} =Trr (RE(N)),

where we recall that, for any finite group X and y € ZIrr(X), we denote by Irr(y) the set of
irreducible constituent of . Since this remark will be used many times in the sequel, we introduce
the following condition.
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Condition 7.2.3. Consider G, F, ¢ and e as in Notation and assume that Deligne-Lusztig
induction does not depend on the choice of parabolic subgroups and

{/1 eIrr (KF) | (L)) < (K,/i)} =Trr (R{‘{()\))

for every e-split Levi subgroup K of G and every (e, ¢')-cuspidal pair (L, \) of K.

Observe that Conjecture|7.2.2)is known for (e, 1)-pairs by [BMM93| 3.11] while Condition|7.2.3|
has been proved for G simple of exceptional simply connected type and good primes in [Hol22|
Theorem 1.1]. Exceptional simple groups and bad primes have been considered in [KM13, Theorem
1.4]. Moreover Condition is known to hold for groups with connected center and good
primes ¢ > 5 by [Eng13| Proposition 2.2.4]. We extend these results and show that Condition|7.2.3]
holds for every simply connected reductive group and good primes ¢ > 5. Notice that our proof
does not depend on [Eng13] in any way.

The following result is well known to the experts.

Lemma 7.2.4. Let L be an e-split Levi subgroup of a connected reductive group G and consider
Gy :=[G,G] and Ly := L n Gy.

(i) Let X € Trr(LY") and xo € Irr(GE). If (Lo, M) <e (Go,x0) and x € Irr(GE | xo), then
there exists A € Irr (LY | \g) such that (I, \) <. (G, ).

(ii) Let A € Irr(LE) and x e Irr(GF). If (L, \) <. (G, x) and \g € Irr()\Lg ), then there exists
X0 € IH"(XGg) such that (Lo, \o) <e (Go, X0)-

Proof. First observe that Ly is an e-split Levi subgroup of Gg. By [GM20| Proposition 3.3.24] (see
also the proof of [GM20, Corollary 3.3.25]) and since G = Z°(G) Gy, it follows that

G LF GF G
and
*1 Go GF LY +pG
R R =R R 7.2.2
L, ©NeSgr = hespr o Ry, (7.2.2)

Suppose first that (Lo, \g) <e (Go, x0) and consider x € Irr(G{ | xo). Then Y is an irreducible

F

constituent of Indgp (RIC,;OO (X)) and by (7.2.1) we can find A € Irr(L% | Ag) such that (L, \) <.
0
(G, ).

Suppose now that (L, \) <. (G, x) and let A\ be an irreducible constituent of Ay . Since Deligne-
Lusztig induction and restriction are adjoint with respect to the usual scalar product, we deduce

that ¢ is an irreducible constituent of Resii (‘R (x)). By there exists xo € Irr(x & 5)
0
such that )\ is a constituent of *RSOO (x0) and therefore (Lg, A\o) <¢ (Go, x0)- d

The following result shows that Condition[7.2.3/holds when G has only components of classical
types or when G is simple, K = G and A lies in a rational Lusztig series associated with a
quasi-isolated element. Recall that a semisimple element s of a reductive group G is called
quasi-isolated if C(s) is not contained in any proper Levi subgroup of G.
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Lemma 7.2.5. Let G be connected reductive, x € Irr(GY) and consider an e-cuspidal pair
(L,\) < (G,X), where A € E(LF [s]) for some s € L*F,,. Suppose that ¢ > 5 is good for
G and that the Mackey formula holds for (G, F). If either G has only components of classical types
and F' does not induce the triality automorphism on components of type D4 or G is simple and s is

quasi-isolated in G*, then (L, \) <. (G, x).

Proof. Consider a regular embedding i : G — G. By applying Theorem and [GM20, Corollary
4.7.8] to G, it follows that Conjectureholds in G unless s is quasi-isolated in G and G is
simple of simply connected type Eg or E7 or GI' = 3D4(¢). However, in these excluded cases
the result holds by [Hol22| Theorem 1.1] and we can therefore assume that Conjecture[7.2.2/holds
in G. Now, [CE99, Proposition 5.2] shows that

{¢ err(GY) | (L,A) < (G,9)} = Trr (bgr (L, N) nE (G, 2) (7.2.3)
while

{¢ eIr(G") | (L,\) <c (G,9)} =Trr (bgr(L,\)) nE(GF, 1) (7.2.4)
according to Theorem Combining and the result follows. O

We can now prove our claimed result. For a connected reductive group G, we say that G is simply
connected (resp. adjoint) if the semisimple group [G, G] is simply connected (resp. adjoint).

Proposition 7.2.6. Let G be a simply connected reductive group, x € Irr(G*") and consider an
(e, £")-cuspidal pair (L, \) <. (G, x). If £ > 5 is good for G and the Mackey formula holds for
(G, F), then (L,\) <. (G, x)-

Proof. Let (G*, F*)bedualto (G, F') and let L* be the e-split Levi subgroup of G* corresponding
to L. Consider s € L;‘S’FZ such that A € £(LY,[s]) and notice that y € £(GF,[s]) because
(L, \) <. (G, x) (see Lemmal6.2.4). By induction on dim(G ), we claim that s is quasi-isolated
in G*. Suppose that G is a proper F'-stable Levi subgroup of G such that Cg+(s) < G. Observe
that Gy is simply connected by [MT11] Proposition 12.14]. Set L{ := Cg: (Z°(L")e,) = L*nGJ
and notice that its dual Ly < L is an e-split Levi subgroup of G and that Cp«(s) <L*n G =
L]. By Propositionthere exist unique \; € (LY, [s]) and x1 € E(GT,[s]) such that
A= iRh()\l) and x = iRgl(Xl). Since (L, \) <. (G, ), it follows by the transitivity of
Deligne-Lusztig induction that (L1, A1) <. (G1, x1). A similar argument also shows that \; is
e-cuspidal. Since dim(G) < dim(G), we obtain (L1, A1) <. (G1, x1). This shows that x; is an
irreducible constituent of Rﬁl (A1) and, because all constituents of Rﬁl (A1) are contained in
E(GT,[s]) and Rgl induces a bijection between £(GY', [s]) and £(GT', [s]), we conclude that
X is an irreducible constituent of iRgl (RS’I1 (A1) = +RE()). Hence (L, \) <. (G, x) and we
may assume that s is quasi-isolated in G*.

Let Gg := [G, G] and Lj := L n Gg. By assumption, there exist e-split Levi subgroups L; of G
containing L and characters A; € Irr(L") such that (L, \) <. (L1, A1) <. - < (G, x). If we
define L; o := L; N Gy, then a repeated application of Lemmayields characters \g € Irr()\Lg )
i € Irr()\LLZpO) and g € ITT(XGg) such that (Lo, Ao) <e (L1,0,A1,0) <e - <e (Go, x0)- Then
(Lo, o) <e (Go, Xo) with (Lg, Ag) an (e, ¢")-cuspidal pair. Moreover, if the result is true for
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Go, then (Lo, A\g) <e (Go, xo0) and using Lemmawe find M e Irr(L¥ | \g) such that
(L, \) < (G, x). Then Theoremshows that \'Y = ), for some g ¢ Ng (L), and hence
(L,A) = (L)Y <. (G,x)? = (G, x). Notice that the inclusion Gy -~ G induces a dual
morphism G* — G and that, if s € G2 is quasi-isolated, then the corresponding element
So € Ggfs* is quasi-isolated by [Bon05| Proposition 2.3]. Without loss of generality we can assume

G=[G,G]

Now, G is a direct product of simple algebraic groups Hy, ..., H,, (see [Mar91, Proposition
1.4.10]). The action of F' induces a permutation on the set of simple components H;. For every
orbit of F' we denote by G, j = 1,...,, the direct product of simple components in such orbit.
Then G is ['-stable and

GF=GI x--xGf.

If H;; is a simple component of G; and n; is the size of the F'-orbit of H;, then we have an
isomorphism
F P
G ~H]". (7.2.5)

Define L; := L n G; and observe that L; is an e-split Levi subgroup of G and that
LFszx---fo.

Then we can write x = X1 x---x Xz and A = Ay x-+-x A\, with y; € Irr(Gf) and \; € Irr(Lf). Since
RE = RGrl RGt (see [DMO91], Proposition 10.9 (ii)]), eventually considering intermediate
e-split Lev1 subgroups the fact that (L A) <<e (G, x) implies that (Lj,)\ ) <e (Gj,x; ) for
every j. Noticing that G*F" = G3F" x ... x G}, we can write s = 51 x - x 5; for some /-regular
semisimple elements s; € G, Moreover, since s is quasi-isolated in G*, it follows that s; is
quasi-isolated in G. Finally, by and Lemma it follows that the result holds in G;
and so (Lj, A;) <c (Gj, x;). From this, we conclude that (L, \) <. (G, x). O

Since the hypotheses of the above proposition are inherited by Levi subgroups, it follows that
Condition|7.2.3 holds whenever G is a simply connected reductive group.
In the sequel we will assume the following conditions.
Hypothesis 7.2.7. Let G, F : G — G, { and e be as in Notation[7.1.1} Assume that:
(i) £eI'(G, F) with £ > 5 and the Mackey formula hold for (G, F');
(i) either Z((G*)E" )y =1or £ e ' ((G*)aq, F); and
(ili) Condition[7.2.3holds for (G, F).

Notice that under Hypothesis[7.2.7)(i), Deligne-Lusztig induction and restriction do not depend on
the choice of parabolic subgroups (see the comment following [DM91| Theorem 11.13]). For this
reason, in what follows we will usually write RE (resp. *RE ) instead of REsP (resp. *RSsP)'
Regarding the validity of the Mackey formula we refer the reader to Theorem (see also
[BM11]) and [Tay18]).

In the following remark we show that Hypothesis is satisfied in most of the cases we are
interested in.
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Remark 7.2.8. Let G be simple of simply connected type and consider a Forbenius endomorphism
F of G associated with an F-structure. Suppose that G # 2Eg(2), E7(2), Es(2) and that
¢ € T(G, F) with ¢ > 5. Then Hypothesis[7.2.7)is satisfied. In fact, under our assumption, the
Mackey formula holds by [BM11] and [Tay18] while Condition[7.2.3|holds by Proposition|[7.2.6]
This shows that Hypothesis (i) and (iii) are satisfied. Moreover, since G is simple and simply
connected, our assumption on ¢ shows that £ € T'((G*).q, F') (see [[CE04, Table 13.11]). Notice
that in this case we also have ¢ € ['(G,q, F).

We now start working towards a proof of our main result. The next result shows how to associate
to every (e, s)-pair an (e, sy )-pair via Jordan decomposition. This will be used to extend some of
the results of [CE99] from (e, ¢’)-pairs to arbitrary e-pairs.

Lemma 7.2.9. Assume Hypothesis([7.2.7 (i)-(ii).

(i) If (L, \) is an (e, s)-pair of G with s € L*, then there exists an (e, sp)-pair (L(sg), A(s¢))
and a linear character 5; of L(s;)* such that \ = eLeL(sZ)RhSZ)(A(SZ) - 57).

(i) If (L, \) is (e, s)-cuspidal, then (L(sg), A(s¢)) is (e, s¢r)-cuspidal. In this case L = L(sy).

Proof. Under our assumptions, Proposition implies that Cg. (s/) is an e-split Levi subgroup
of G*. If T* is an F'*-stable maximal torus of L* such that sy € T*, then T” is a maximal torus
of Cg. (s¢) and Lemma 6.1.8]implies that C}.. (s7) = Cg.(s¢) N L* is an e-split Levi subgroup
of G*. As ¢ € T'(G, F'), Remark implies that ¢ € T'(L*, F'*) and therefore C§. (s¢)! =
Cr-(s¢)f by Propositionmai.a). Recalling that (s) < (s), it follows that C3..(s)Crx(s)" ¢
Ci..(5¢)CrL+(s0)F = C35.(s¢). Let L(sy) be an e-split Levi subgroup of G in duality with
Cy-(s¢). By Proposition and Proposition there exists a unique character \(sy) €
E(L(s0)¥,[s¢]) such that
A= GLEL(Sg)Ri(SZ) (52 A(s0))

where 5; is the linear character corresponding to sy € Z(Cr«(s)"") (see Proposition . This
proves (i). Assume now that (L, \) is (e, s)-cuspidal. Then Proposition[6.2.11|implies that L* is

the largest e-split Levi subgroup containing C¢,. (s). Therefore L(s,) = L and A = 5; - A(s¢). It
follows that (L(sg), A(s¢)) is (e, s¢)-cuspidal. O

Next, we show that the relation <, is preserved under the construction of Lemma

Lemma 7.2.10. Assume Hypothesis|7.2.7(i)-(ii). Let (L, \) and (K, k) be two (e, s)-cuspidal pairs
and consider the corresponding (e, sy )-cuspidal pairs (L(s¢), A\(s¢)) and (K(s¢), k(s¢)) given by
Lemma[7Z3, If (L, \) <. (K, ), then (L(s0), A(s0)) << (K(s0), i(50)).

Proof. Without loss of generality we may assume s € L*. Since (L, \) <. (K, k), there exist
(e, s)-pairs (L;, \;), fori =1,...,n, such that

(L,)\) = (Lla)\l) <e - Ze (Ln,)\n) = (K,H).

Fori = 1,...,n, consider the (e, sy )-pair (L;(s¢), Ai(s¢)) given by Lemma(7.2.9] If we show
that (L;(s¢), Ai(s¢)) <e (Lit1(s¢), Aix1(s¢)), then we obtain (L(s¢), A(s¢)) <e (K(s7),k(s7)).
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Since (L;, \;) <e¢ (Ljt1, Ai+1), we know that \;,1 is an irreducible constituent of RE“ (\:). By
the transitivity of Deligne-Lusztig induction (see [GM20, Theorem 3.3.6]), we have

Ry (N) =er, 6LZ(SZ)RL (o) (- Ai(se)) = €L€Li(5g)REii(sé) ( LZEE(SU (3e- N (Se)))

Moreover, by Lemma [6.2.4] every irreducible constituent of R. Liv1(s0) (52 N\i(s¢)) is contained in

Li(s¢)
E(Lis1(50)*, [5]). Then, since

Lins Lo () RE T () E Wit (50)", [5]) > £, [8)
is a bijection, we deduce that 5; - \;+1(s¢) is an irreducible constituent of RL’ZE(S") (52-Ni(s0))-

It follows that A;11(s¢) is an irreducible constituent of RL“EI(?) (Ai(s¢)) (see [Bon06| 10.2]) and

this completes the proof. O

The following lemma is a fundamental ingredient to understand the distribution of characters
into blocks. This idea was first used in [CE94] in order to deal with unipotent blocks.

Lemma 7.2.11. Assume Hypothesis(7.2.7 (i)-(ii). Let (K, k) be an (e, s)-pair of G and consider
the (e, s¢r)-pair (K(s¢), £(s¢)) given by Lemmal7.2.9 Consider an (e, sp)-cuspidal pair (L, \) of
K(s¢) such that bl(r(s¢)) = bg(s,yr (L, A) (see Theorem. Then bl(k) = bgr (L, \).

Proof. Using Theorem observe that all irreducible constituents of RE(S[)(K(SK)) are
contained in a unique block b of K¥'. Moreover, under our assumptions, Proposition m
(ii.e) implies that K = C&(Z(K)!') and therefore b = bl(x(s;))¥" . Similarly bic(syF (I, A) =

bI(A)KED™ and by r (L, A) = bI(A)K". Then, by the transitivity of block induction, we deduce
that

b =bl(r(s))¥" = (bl()\)K(S’v’)F)KF = bION)K" = byr (L, )

and it is enough to show that b = bl(). In order to do so, we apply Brauer’s second Main Theorem
(see [CE04, Theorem 5.8]). Then, it suffices to show that dl(RK(S )(KJ(S@))) has an irreducible

constituent in bl(x). By [[CE04, Proposition 21.4] and since RK(S@) and *RE (s,) are adjoint, it
follows that

d' (RE ) (5(s0))) = RE ) (@' (s(50)))
RK(S@) (d"(52-k(se)))

= EKEK(SZ)dl(KJ).

Since by Brauer’s second Main Theorem d'(x) € NIrr(bl(x)), the proof is now complete. ~ [J

As a corollary we deduce that the construction given in Lemma preserves the decomposition
of characters into blocks.
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Corollary 7.2.12. Assume Hypothesis|7.2.7 (i)-(ii). Let L be an e-split Levi subgroup of G and
consider s € L. Fori = 1,2, let \; € E(LY[s]) and consider \;(s¢) € E(L(s¢)7, [s¢]) given
by Lemma If A1 (s¢) and \y(s;) are in the same block of Li(s;)¥', then \; and \y are in the
same block of LY.

Proof. Let ¢ be the block of L(s,) containing A1 (s¢) and A2(s;) and consider an e-cuspidal pair
(M, ;1) such that ¢ = by,(5,)(M, u). Then, Lemmaimplies that bl(A1) = bpr(M, p) =
bl(As). O

Remark 7.2.13. We believe that the reverse implication of Corollary[7.2.12|also holds. Namely we
believe that, if A\; and A\, are in the same block, then A1 (sy) and A2(s¢) are in the same block. We
point out that this is true when s is (-regular, and more generally when Cg, (s¢)Cq=(s¢)F <
L(sp)*, by results of Broué on perfect isometries (see [Bro90, Theorem 2.3]).

The next result can be seen as an extension of Theorem to (e, s)-pairs with s not necessarily
(-regular. Notice that, if € I'(G, F') and L is an e-split Levi subgroup of G, then L = Cqr (X)
for some abelian /-subgroup X < G by Proposition Therefore, block induction from L%’
to GI' is defined by [Nav98| Theorem 4.14].

Proposition 7.2.14. Assume Hypothesis[7.2.7 (i)-(ii). Let K be an e-split Levi subgroup of G and
(L, \) an (e, s)-pair of K. Then there exists a block b of K" such that R¥ (\) € ZIrr(b). Moreover

b=Dbl(\)K".

Proof. Without loss of generality we may assume s € L*. Consider the (e, sy )-pairs (L(s¢), A(s¢))

given by Lemmal7.2.9} By Theorem|6.2.18] there exists a block b(sy) of K(s) such that Rf( S")) (A(s¢)) €

ZIrr(b(s¢)). Furthermore b(s;) = bl()\(SK))K(sL’)F by Proposition (e). If we denote by
50+ b(sy) the block of K(sy) consisting of those characters of the form 5; - &, for £ € Irr(b(sy)),
then

Ry(oy (57 Als0)) = 5 Ry () (A(s0)) € 20w (53 (s0). (726)

By Corollary|(7.2.12|and (7.2.6) it follows that there exists a unique block b of K" such that

RI (V) = RE (Ri(,,) (51 A(50)) ) = Rifge,) (Rp(es) (527 A(s0) ) € 2 ().

Next, set ¢ := bl(A(s¢)). Consider an (e, £')-cuspidal pair (M, 11) such that ¢ = by,(s,) (M, ).
Since ¢ = bl(u)L(S‘)F and b(sy) = KGO it follows that

S F S F
b(s¢) = KGO =bl(p)EEDT = b,y (M, p).

Now, Lemma(7.2.11|implies that bl(\) = by,» (M, ;1) and that b = b+ (M, p1). We conclude that
b= bl(,u)KF = (bl(u)LF)KF = bl(/\)KF and this completes the proof. O

Finally, we show that for every e-pair (K, ) there exists a unique (up to Kf'-conjugation)
e-cuspidal pair (L, \) <. (K, k).
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Proposition 7.2.15. Assume Hypothesis[7.2.7 Let (L,\) <. (K,x) be (e, s)-pairs such that
(L, \) is (e, s)-cuspidal. Then (L, \) <. (K, k). Moreover, if (L', \") is another (e, s)-cuspidal
pair satisfying (L', \') <. (K, k), then (L, \) and (L', \") are K* -conjugate.

Proof. By Lemma6.2.4 we may assume s € L* < K*. Consider the (e, s¢/)-pairs (L(s¢), A(s¢))
and (K(s¢),x(s¢)) given by Lemmal7.2.9/and notice that (L(s;), A(s¢)) is e-cuspidal. By Lemma
[7.2.10]it follows that (L(s¢), A(s¢)) <<e (K(s¢),k(sr)) and Condition [7.2.3| shows that x(s;)

is an irreducible constituent of R (( ) (A(s¢)). Then 5; - k(sy) is an 1rreduc1ble constituent of

50 RL((;Z) (A(s¢)). Since by Lemma [6.2.4{ we have

L((sg))(A(sz)) RE((SSZ)(SE A(se)) € ZE(K(se), [s]),

we deduce form Propositionthat K = €KEK (s e)RE(SZ) (57-k(s¢)) is an irreducible constituent

OfRE(s[)( 5((”))(55 A(s¢))) = RE(N). This shows that (L, \) <. (K, &).

Next consider another (e, s)-cuspidal pair (L', \') <. (K, ). Let A" € £(L’,[s]) and notice
that s and s’ are K*/"" -conjugate by Lemma Replacing (L', \') with a K¥'-conjugate we
may assume that s = s’. As before consider the (e, sy )-cuspidal pair (L’(s7), \'(s¢)) and observe

that (L'(s¢), X' (s¢)) <e (K(s¢),£(sr)). By Theorem|6.2.19)it follows that (L(s,), A(s¢)) and
(L'(s¢), N (s¢)) are K(s;)-conjugate. Since 5; is K(s¢) -invariant, we deduce that (L(s;),5; -

A(s;)) and (L/(s;),57- N (s¢)) are K(s;) -conjugate. Recalling that L = L(s;) and L’ = L/ (),
we obtain that (L, \) and (L', \) are K -conjugate. O

As an immediate consequence of Propositionwe deduce that the set Irr(K*") is a disjoint
union of e-Harish-Chandra series. This should be compared with the classical Harish-Chandra
theory (see [[GM20, Corollary 3.1.17]) and with the analogous result for unipotent characters
[GM20, Theorem 4.6.20]. These two results can be recovered by considering (1, s)-pairs and
(e, 1)-pairs respectively.

Corollary 7.2.16. Assume Hypothesis[7.2.7, If K is an e-split Levi subgroup of G, then

Ir(K") = ][] € (KFv (L. V),
(L)

where the union runs over a K''-transversal in the set of e-cuspidal pairs of K.

Combining Corollary(7.2.16|and Proposition|7.2.14| we can describe all the characters in the blocks
of K¥' in terms of e-Harish-Chandra series.

Theorem 7.2.17. Assume Hypothesis|7.2.7, Let K be an e-split Levi subgroup of G and b a block
of K¥'. Then
Irr (b) = [] (K", (L)),

(L,A)

where the union runs over a KI' -transversal in the set of e-cuspidal pairs (L, \) of K such that
bI(WE" = b,
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Proof. First, for every e-cuspidal pair (L, \) such that bl()\)KF = b, Proposition shows that
E(KY, (L, )\)) c Irr(b). On the other hand, if k € Irr(b), then by Corollary there exists

an e-cuspidal pair (L, \) of K such that k € £(K, (I, \)). Moreover, applying Proposition
once more, it follows that b = bl(k) = bl()\)KF. Finally, the union is disjoint by Proposition
O

Corollary|[7.2]is now an immediate consequence of Theorem[7.2.17

7.3 Brauer-Lusztig blocks

We now extend Theorem[7.2.17]in order to obtain Theorem 7.1} To start, following Broué, Fong
and Srinivasan, we define the Brauer-Lusztig blocks of G¥'.

Definition 7.3.1. A Brauer-Lusztig block of G’ is any nonempty set of the form
£(GF,B,[s]) =& (G, [s]) nIix(B),

where B is an {-block of G¥" and s is a semisimple element of G*¥"". In this case, we say that
(G, B, [s]) is the associated Brauer-Lusztig triple of GI". Moreover, we denote by BL(G, F)
the set of all Brauer—Lusztig triples of G". We also define the set

BL*(G,F):= || BL(L, F),
L<G

where L runs over all e-split Levi subgroups of G.

Next, assume £ € I'(G, F). If L is an e-split Levi subgroup of G, then L = C5r (A) for some
abelian /-subgroup A < G¥" by Proposition Therefore, for b € BI(L’"), the Brauer induced

block bG" is defined (see [Nav98| Theorem 4.14]). Then, we can introduce a partial order relation
on BL* (G, F') by defining

(L,b,[s]) < (K, ¢, [t])
if L < K, 5" = ¢ and the semisimple elements s and ¢ are conjugate by an element of K*/""
If (L, b, [s]) is a minimal element of the poset (BL* (G, F'), <), then we say that (L, b, [s]) isa
cuspidal Brauer-Lusztig triple.

In the next lemma we compare the relation < on Brauer-Lusztig triples with the relation <, on
e-pairs.

Lemma 7.3.2. Assume Hypothesis[7.2.7, Let L and K be e-split Levi subgroups of G and consider
semisimple elements s € LY andt ¢ K*™.

(i) Let X € E(LY b,[s]) and k € E(KF ¢, [t]). If (L,)\) <. (K,k), then (L,b,[s]) <
(K, ¢ [t]).
(i) Let X € E(LY b, [s]). If (L, b, [s]) is cuspidal, then (L, \) is e-cuspidal.

(iii) If (L, b, [s]) < (K,¢,[t]), then for every X € E(LY,b,[s]) there exists k € E(K'', ¢, [t])
such that (L, \) <. (K, k).
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Proof. We start by proving (i). Let (L, ) <. (K, %). By Lemmal6.2.4] we may assume s = ¢ and it
is enough to show that bl(/\)KF =bl(k). To see this, choose an e-cuspidal pair (M, u) <<, (L, \)
and notice that (M, 1) <. (K, ). By Proposition[7.2.15|we deduce that (M, z1) <. (L, \) and
(M, p) < (K, k). Then, Propositionimplies that bl(\) = bl(/l)LF and bl(k) = bl(p)KF.
By the transitivity of block induction, we conclude that bl(x) = bl()\)KF. This proves (i) and
(i) is an immediate consequence. In fact, if (L, b, [s]) is a cuspidal Brauer-Lusztig triple and
we consider an e-cuspidal (M, i) <, (L, \), then (i) shows that (M, bl(u), [r]) < (L, b, [s]),
where 1 € £(MY, [r]). It follows that L = M and that (L, \) = (M, p) is e-cuspidal.

Finally, let (L,b,[s]) < (K,c,[t]) and consider A\ € £(LY,b,[s]). Let « be an irreducible
constituent of REK(\) so that (L, )\) <. (K, ). We need to show that x € £(K¥, ¢, [t]). By
Lemmawe have k € £(K¥', [5]) = (KT, [t]). Moreover, applying Proposition we
obtain bl(k) = bl()\)KF = b¥" = ¢. We conclude that k € E(KE ¢, [t]). O

Finally, we prove the following strong form of Theorem|7.1]

Theorem 7.3.3. Assume Hypothesis|7.2.7 Let (K, c, [t]) € BC* (G, F). Then

E(K e, [t]) = I] £(K",(L,N), (7.3.1)
(LX)

where the union runs over a Kt -transversal in the set of (e,t)-cuspidal pairs (L, \) of K with
e E(LY,[s2]) such that (L,bl(N), [s2]) < (K, ¢, [t]).

Proof. Consider an e-cuspidal pair (L, \) such that (L, bl()\), [s]) < (K, ¢, [t]), where s € L*f"
and \ € £(LF, [s]). Since s and t are K*F" -conjugate, Lemma|6.2.4|implies that £ (K, (L, X)) ¢
E(KF,[t]). Moreover, using the fact that ¢ = blI(A\)X", Proposition shows that the e-
Harish-Chandra series £(K', (I, \)) is contained in Irr(c). This shows that the union on the
right hand side of is contained in the Brauer-Lusztig block £(K*', ¢, [t]). Moreover the
union is disjoint by Proposition[7.2.15 To conclude, let x € £(K, ¢, [¢]) and notice that there exists
an e-cuspidal pair (L, \) of K such that x € Irr(R¥()\)) by Proposition If A e E(LY,[s]),
then s and ¢ are K*!"" -conjugate by Lemma Moreover, ¢ = bl(k) = bl()\)KF by Proposition
It follows that (L, bl()\), [s]) < (K, ¢, [t]). O

We conclude this section with a remark concerning Theorem Here we have shown that
Brauer—Lusztig blocks are disjoint unions of e-Harish-Chandra series. However, we believe that
there exists a unique (up to K’ -conjugation) e-cuspidal pair (L, \) such that (L, bl(\), [s:]) <
(K,c,[t]). By Theorem|6.2.19| this happens when ¢ is an ¢'-element. In particular this would
show that the concepts of Brauer-Lusztig blocks and e-Harish-Chandra series coincide, at least
under the above restrictions on primes. It can be seen that to prove such a statement it is enough
to show that the reverse implication of Corollary[7.2.12] would hold (see Remark[7.2.13). We will
see this condition again in Theorem[10.2]
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7.4 Cuspidal Brauer-Lusztig triples have central defect

Consider G, F, ¢ and e as in Notation In this section we show that under suitable assump-
tions, if (L, A) is an e-cuspidal pair of G, then \ has ¢/-defect zero. This result will be used in the
main theorem of Chapter 9] (see Theorem[9.2.21).

Proposition 7.4.1. Let L e T' (G, F) nT'((G*)aq, F'*). If (L, \) is an e-cuspidal pair of G such
that Z(L*)E" = 1, then \ has (-defect zero, i.e. d(\) = 0.

Proof. Let s € L*F" such that A € £(L”, [s]). By Jordan decomposition (see Theorem 6.2.6), A
corresponds to a unique A(s) € £(Cr+(s)"",1) lying over some unipotent character \°(s) €
E(Ci.(s)F",1). Notice that

ILE|,

Cr- () e

A1) = A(s)(1)e-

Since ¢ € I'(G, F'), we obtain ¢ € I'(L, F') by Remark Now, since |Cr+(s)" : Cp.(s)7
divides |Z(L*)F" : Z°(L*)F"| by [DM20, Lemma 11.2.1 (iii)], Clifford’s theorem implies

IL7,

A1), = CROLT

A (8)(De- (7.4.1)
Set H := Cj,. (s) and notice that, by [CE94, Theorem (ii)], the block bl(A°(s)) has defect group
D e Syl,(C2;([H,H])F"). Since H = Z°(H)[H, H], it follows that C3([H, H]) = Z°(H).
Thus D < Z(H)"" < Z(H'") and, using [Nav98, Theorem 9.12], we obtain

X°(s)(1) = [H" : D

This implies
A°(s)(1), = HI : Z°(H)T|,. (7.4.2)

Combining and we see that it is enough to show that Z := Z°(H)!" = 1. To do
so, observe that Z°(L*)s, = Z°(H)gs, by Proposition In particular, for every e-split
Levi subgroup K* of L* containing H, we have K* = L*. Notice that H < C{..(Z) and that
C3.-(Z) is an e-split Levi subgroup of L* by Proposition|[7.1.6)(ii.c). Therefore Cj..(Z) = L* and
Z<Z(LHF =1 O
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Bijections for Groups with Connected
Center

The main goal of this chapter is to construct certain bijections (see Corollary[3.2) which will be used
in Chapter|[10]to obtain results towards a proof of the inductive condition for Dade’s Conjecture for
groups of Lie type. More precisely, let G, F': G — G, ¢ and e be as in Notation[7.1.1]and recall that,
if L < K are F-stable Levi subgroups of G and \ € Irr (L"), then Wir (L, \) := Nk (L, \) ' /LY
denotes the relative Weyl group of (L, A) in K (see Section[6.2.4). By Theorem|[6.2.14] there exists

a collection of isometries
It 2 (Wi (L, \)F) > ZE(KF (L))

for every e-split Levi subgroup K of G and every unipotent e-cuspidal pair (L, \) of K. This
gives rise to bijections with signs between the sets Irr(Wi (L, \)¥) and £(K*, (L, \)). By
eventually changing the signs, we can then define bijections

Iy Ter (W (L, \)7) = E(KT, (L, ) (8.0.1)

which by abuse of notation are denoted by the same symbol. Moreover, if A has an extension A to
Nk (L, \)¥, then by Gallagher theorem and the Clifford correspondence we obtain a bijection

E(KF,(L,N)) » Ir (N (L)F | A) (8.0.2)
185 sy () = ()™

for every i € Irr(Wi (L, A\)*"). Similar bijections will be considered in the following chapters to
prove some results on the inductive condition for Dade’s Conjecture (see Condition [9.1)

As afirst step, we construct bijections as in for nonunipotent e-cuspidal pairs of groups with
connected center. For this, consider a regular embedding i : G — G compatible with F' and set
L := LZ(G) for every Levi subgroup L of G. Consider the subset Autz(G') of automorphisms
of G defined in Section Then, for every F-stable subgroup H of G, the stabilizer of H in
Autp(GF) is well defined and is denoted by Autp(G!")g. The same observation applies to G.

107
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Theorem 8.1. Let G, F' : G — G, { and e be as in Notation|7.1.1 and suppose that G is simple not
of type Eg, E7 or Eg. Then there exist a collection of bijections

K . T T\ SE (T
1§ 5 I (Wi (TX)") - € (RF,(T,X))
where I~{~runs over the set of e-split Levi subgroup of G and (L, ) runs over the set of e-cuspidal
pairs of K, such that:
(i) I(I%X) is AU'GF(GF)K@;\') -equivariant;

(i) I 5, (M) (D¢ = [K” : Ng (L2, - X(1)¢ - 7(1)¢; and

(iii) If z € Z(INC*T) corresponds to charactiri?t € Irr(fi/EF) and Zg € Irr (K /KF) (see
(61:2)), then X - Zg» is e-cuspidal, Wiz (L, \)* = Wi (L, X-%5)* and

K ~ =~ 7K ~
I(i”)\“) (n) R T I(ﬂ}:gi) (77)

for every ] € Irr(WR(E,X))F.

Notice that the restrictions on the type of G are mainly due to the fact that the Mackey formula is
not known to hold in full generality. In addition for types Eg, E7 and Eg it is not known whether
there exists a Jordan decomposition map which commutes with Deligne-Lusztig induction.

Next, using Theorem [8.1] together with the results obtained in Chapter[7] assuming the existence
of an equivariant extension map for e-split Levi subgroups (see Definition [8.2.1) we obtain the
following result which will be used in Chapter [10|(see Assumption and Assumption [10.1.4).
For any connected reductive group H with Frobenius endomorphism F, we denote by Cusp, (H*")
the set of (irreducible) e-cuspidal character of HY'.

Corollary 8.2. Suppose that G is simple, simply connected and not of type E¢, E7 or Eg. Consider
LeT(G,F) with{>5 and let K be an e-split Levi subgroup of G and (L, \) be an e-cuspidal pair
of K. Set A := Autp(GF )k 1, x Irr(GT'/GT') and assume there exists an A-equivariant extension
map for Cusp, (L") with respect to LY < Ng (L) asin Deﬁnitionm Then there exists an
A(Ly,\) -equivariant bijection

ULy tler (RF ] & (K (L)) = Ler (Ng(L)" | )
that preserves the {-defect of characters and such that
I (T(rer)) = 1 (Ui Dgier))

and .
~ K
bL(X) = bl (G5, 1) (7))

for every X e Irr (K | £(K', (L, \)).
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As a by-product, we obtain the following consequence of Corollary [8.2| that is of independent
interest. This provides a way to obtain bijections as in (8.0.2) for nonunipotent e-cuspidal pairs of
connected reductive groups with disconnected center.

Corollary 8.3. Suppose that G is simple, simply connected and not of type Eg, E7 or Eg. Consider
LeT (G, F) with¢>5 and let K be an e-split Levi subgroup of G and (L, \) be an e-cuspidal pair
of K. Set A := Autp(GT )k 1, x Irr(GF/GT') and assume there exists an A-equivariant extension
map for Cuspe(iF) with respect to L7 « NK(L)F as in Deﬁnition Then, there exists a defect
preserving AutF(GF)Ky(Lv)\) -equivariant bijection

O € (KT (I, N) - Trr (N (L) | 2).

8.1 Generalized e-Harish-Chandra theory for groups with
connected center

In this section, we construct bijections as in (8.0.1) for nonunipotent e-cuspidal pairs of reductive
groups with connected center. This will prove Theorem 8.1}

Let G, F': G — G, ¢ and e be as in Notation To start, we define an action of the group K
introduced in Lemma (v) on the set of irreducible characters.

Definition 8.1.1. Let K be as in Lemma (v). For z € K and y € Irr(GF), let
X=X Zg,

where Zg € Irr (G /GF') corresponds to z via the isomorphism (6.1.2). Similarly, for a Levi sub-
group L of G, the group K acts on Irr(L""). Moreover, noticing that G /G ~ Ng(L)¥/Ng(L)F,
we deduce that z € K also acts on the characters 1) € Irr(Ng (L)) via

V7= INg (L)
In the same way, an action of K on Irr(K*") and on Irt(Ng (L)) can be defined for all F'-stable
Levi subgroups L and K of G satisfying L < K.

In what follows we will make use of the fact that, under suitable hypotheses, there exists a Jordan
decomposition for G which commutes with Deligne-Lusztig induction (see Theorem and
Theorem [6.2.10). In order to be able to apply this result, from now on we will make the following
assumption.

Hypothesis 8.1.2. Let G, F': G —» G, { and e be as in Notation[7.1.1and suppose that G is a
simple algebraic group not of type Eg, E7 or Eg.

Theorem 8.1.3. Assume Hypothesis For every F-stable Levi subgroup L of G and every
semisimple element s € L*'"", there exists a bijection

Jg, €T [s]) » € (Cp. ()", 1)

satisfying the following properties:
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(i) Jg (X)g* = JE e (s) (Xa)foreverya € Aut]p(éF)E ando* € AutF(G*F*)i* witho ~ o*
(see Lemma and [CS13, Proposition 2.2]);

(i) Jg s © R%{ = Rg;(:((:)) o Ji,  for every F'-stable Levi subgroup K of G containing L;

A]-_:*F’F : Ci* (S)F’F

(iii) M(1) =
(iv) If z € Z(L*F") corresponds to the character 7 € Irr(LY /L") via (6.1.2), then
Je. () =Jp.. (A7)

for every X € E(LY | [s]), or equivalently

b Jis(’)?)(l)for every X € E(LY, [s]);

Tl ()7 = L (D)
for every v e £(Cx.(s), [1]) = 5(Cﬁ*(32)p*7 [1])

Proof. This follows from [DM90| Theorem 7.1], [CS13| Theorem 3.1], Theorem[6.2.9|and Theorem
together with the fact that the Mackey Formula holds under our assumptions (see Theorem
6.2.2). O]

As a consequence of the equivariance of the above Jordan decomposition, we obtain an isomor-
phism of relative Weyl groups.

Corollary 8.1.4. Assume Hypothesis , let T < K be F-stable Levi subgroups of G and X €
E(LY[s]). Then, there exists an isomorphism

K = 7\ by
B W (B) > Wep 0 (Cp (). 7, (V)

such that

foreveryo € Autm(éF)f( fando” e Autp(G*” )ie: T+ Witho ~ o™ (see Lemma and [CS13,
Proposition 2.2]). Moreover, if z € Z(K*F™) corresponds to the character Z; € Irr(LY /L) via

(6.1.2), then

Wg (B.X) =g (T.3-5%)"

Weg. () (Cre (), J5. (X)) = Weg. ) (Cre (52), J.. (X 7))

and

!

K

I=~ = 1~ _
,)\’Z'L'

=
=

by

Proof. The first statement follows from the proof of [CS13, Theorem 3.3]. The second statement
follows from [8.1.3| (iv). O

Before proving Theorem [8.1] we state an equivariant version of Theorem [6.2.14] that has been
proved in [[CS13].
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Theorem 8.1.5. Let H be a connected reductive group with a Frobenius endomorphism F': H - H
defining an F ;-structure on H, £ a prime not dividing q and e the order of ¢ modulo { (modulo 4
if ¢ = 2). For any e-split Levi subgroup M of H and 1 € £(MF,[1]) with (M, 1) a unipotent
e-cuspidal pair, there exists an AutF(HF)(M#)-equivariant bijection

I(ﬁ{m Irr (W (M, p0)") - € (HY, (M, 1))

such that
Iing,y (M) (Ve = [HT - N (M, )7, - (1) - n(1)e
for everyn € Trr (Wi (M, ) ).

Proof. This follows from the proof of [CS13, Theorem 3.4] applied to arbitrary e-split Levi sub-
groups (see the comment in the proof of [BS20b| Proposition 5.5]). Regarding the statement on
character degrees, see [Mal07, Theorem 4.2] and the argument used to prove [BS20b, Lemma
5.3]. O]

We now extend Theorem-to nonunipotent e-cuspidal pairs in the case that H has a connected
center. Let L and K be e-split Levi subgroups of G with I < K and consider Xe E(LY [s])
such that (L )\) is an e-cuspidal pair. Notice that, by Proposmon | the unipotent character
It ()\) is e-cuspidal. Moreover, using the fact that L is an e- spht Levi subgroup of K, we

conclude that Cy, (s) is an e-split Levi subgroup of Cg. (s). This shows that (Cs. (s), J5 S(A))
is a unipotent e-cuspidal pair of Cg. (s). Now, we can define the map

I8 5 T (W (EX)") - £ (RF, (LX) (8.1.1)

given by =
K =~ ._ 7-1 Cgx(s) . i£{7~
lax (D=, (I (Cpe ()75, (%)) ((”) - ))
~ ~ ig~ ~ *
for every 7 € Irr(Wg (L, X)) and where (7)'TX € Irr(We, (5)(Cg (s), Ji,s()‘))F ) corre-

sponds to 7] via the isomorphism i%{x of Corollary(8.1.4

Lemma 8.1.6. Assume Hypothesis|8.1.2 Then the map X

EX is an AutF(éF)K’(’L“”X) -equivariant

bijection.

Proof. First, we observe that the map 1K T3

1 i (¥ (£)) 52, (i (R (3. )

=T (JR, o R () 0 g (V)

is a bijection because of Theorem |8.1.3|(ii), in fact

Next, to show that the bijection is equivariant, let ¢ ¢ Autp(G¥ )& 1, and consider o* €
Autp(G*F” )i+ i Witho ~ 0™ (see Lemma Ifo e Autp(GF )& (T.x)- then o” stabilizes the
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L*F” -orbit of s. Without loss of generality, we may assume that 0*(s) = s. Then Theorem
(i) implies that o* stabilizes J; _(\). Applying Theorem (i) and the equivariance properties
of Corollary and Theorem we conclude that

K  (=o._ 7-1 Cgx(s) ~il:(f))g
I(L,,\) (@) = JK,S (I(Ci,,(s),JE’S(X)) (77 o
= gzt [ Crx() ~i§X)J*
TR.s (I<cﬁ*<s>,Jz,s(X)> ((n
_ g2t ([Cr ( 7o Z?x))
JK,S( (Cg+ ()7 (X)) @)
LK ~c
= I(E,X) (77 )

for every 7j € Irr(Wﬁ(f,X)F). O

Then 1§7X)(ﬁ)(1)4 = [K¥: Ng (L. M), - X(1)-7(1),

I\

Lemma 8.1.7. Assume Hypothesis|8.1.
for every ] € Irr(WK(f, 0.

Proof. By the condition on character degrees given in Theorem together with Theorem 8.1.3
(iii), we deduce that

Cg«(s) ~¢IZ<~)
I’k ~ LX) (1
Iz (%) Wi+ |Cxe (997" : Neg, (5)(Cp- (), I, (A))F
_ I 5 (D (e [Cr- ()7, - [L7],

X(1)e|CE. ()7 |o- K¢ |Cge ()7 - N, () (Ca (5), I, (W)F°
 IEx @O

X(1)e- [KF - Ng(L,N)F|,

A1) = ()55 (1), =

14

14

for every 77 € Irr(Wg (L, M) F). O

Lemma 8.1.8. Assume Hypothesism Ifz € Z(K*F*) corresponds to the characters Zj €
Irr(LF /L) and Zg € Irr(KF /KF), thenX"z\E is e-cuspidal, WK(E,X)F = WK(E,X-?E)F and

K -~ = _ 7K =
Iex )% = g xa) (M
for every ] € Irr(WR(E,X)F).

Proof. We start by noticing that, by [Bon06, Proposition 12.1], the character X - 7, is e-cuspidal,
while Corollary [8.1.4/shows that Wi (L, A\)" = W (L, X - %;) and that ZiI'(, iK,X’z‘t
Theorem [8.1.3|(iv) we obtain

=1

. Using

X

Ci+(s) o Cg+(s2) N
(Cix ()75 ,(A)) " (Cge(s2),Jg .. (A7)
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and
I8 5 () g = TR (ICR*(S) 5 ((’77)1'155))‘~
(T.X) K K5 \ " (Cg. (5).75 ., (N)) K
1 [ 1O (52) UL |
. K _ , T
JK,s( (ci*(sz),Jﬁ,SZ(/\rzﬁ))((77) L)) K
&
— J:l Icf(* (Sz) _ ~ ZE,’X"Z\~
K,sz( (Cgx (s2),Jg, .. (A%%)) () "
_ 7K =~
= Lg 52 ()
for every 77 € Irr(Wg (L, M) F). O

Now, combining Lemma (8.1.6, Lemma and Lemma 8.1.8] we obtain Theorem

8.2 Equivariant maximal extendibility

We start by recalling the definition of maximal extendibility (see [MS16, Definition 3.5]).

Definition 8.2.1. Let Y < X be finite groups and consider ) € Irr(Y'). Then, we say that
maximal extendibility holds for J with respect to Y < X if every ¥ € Y extends to Xy. In this
case, an extension map is any map

A:y-> ] (X))

Y<X'<X

such that for every ) € ), the character A(¥) € Irr(Xy) is an extension of 9. If J = Irr(Y"), then
we just say that maximal extendibility holds with respect to Y < X.

From now on, suppose that G is simple of simply connected type. As in Section[6.1.5/fix a maxi-
mally split torus T contained in an F'-stable Borel subgroup By, and consider the corresponding
group A generated by field and graph automorphisms (see the discussion preceding[6.1.6) in such
a way that A acts on G¥". We then form the semidirect product G x A.

Now, let I and K be e-split Levi subgroups of G and consider an extension map A with respect
to L 9 Ng(L)¥. The group (GFA)k 1, x K acts on the set Irr(L*") via

Xzz = ’)‘\’m . ?t
for every X e Irr(LY), # € (GF A)k 1, and 2 € K. In this case notice that
K(X)xz = K(X)x '/Z\NK(E’}(E)F

is an extension of \** to NK(E,X‘“ Ve = NK(E,XI)F . We say that the an extension map A
with respect to L < Ng(L)F is (G A)k 1, x K-equivariant if A(X"%) = A(X)** for every
Xelrr(LF), z € (G A)k 1, and z € K. Moreover, if Cusp, (L") denotes the set of (irreducible)
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e-cuspidal characters of L”, then (G A)k 1, x K acts on Cusp, (L") (see [Bon06! Proposition
12.1]) and therefore we can also ask for a (G A)k 1, x K-equivariant extension map A for
Cusp, (L*") with respect to L” 9 Ng (L)

Now, let K be an e-split Levi subgroup of G and consider an e-cuspidal pair (f, X) of K. Using

the bijection (I,(ﬂ %) from (8.1.1) and assuming the existence of an extension map A for Cusp, (L")

with respect to L < Nz (L)¥, we can define the map
T:& (K, (LX) » Ir (Ng (L) | X) (8.2.1)
K [~ 1Y) A\ Nr@T
@ M~ (A7) %

for every 7y € Irr (WR (E,X)F) Notice that T is a bijection by the Clifford correspondence and
Gallagher’s theorem (see [Isa76, Theorem 6.11 and Corollary 6.17]).

First we show that the bijection T from (8.2.1) preserves the ¢-defect of characters.

Lemma 8.2.2. Assume Hypothesis and suppose there exists an extension map A for Cusp, (L")
~ ~ ~\F
with respect to LT < NI~<(L)F. For every 1 € Irr (Wf{ (L, )\) ) we have

( (T.X) (77)) (( %) 'ﬁ)NR(L)F)'

Proof. This follows immediately from Lemma after noticing that induction of characters
preserves the defect (this follows from the degree formula for induced characters). O

The bijection Y from (8.2.1) also preserves central characters.

Lemma 8.2.3. Assume Hypothesis and suppose there exists an extension map A for Cusp, (L")
with respect to L' < N (L)¥. For everyije It (Wf{ (E,X)F) we have

K ~ ~ i~y A Ng(L)F
Irr(I(t’X) (n)Z(KF)) :Irr(((A(/\).n) R )
Proof. First, by Clifford theory we deduce that

Irr (((K (X) 'ﬁ)NK(L)F) ~F)) =Irr (XZ(éF)) . (8.2.2)

zZ(G

z(f(F))‘

On the other hand, by using the character formula [DM91} Proposition 12.2 (i)], we obtain
Ky Ky Y
RE (N z&r) = Ry (V) - Agir)

and hence _
. ~
Irr (I(i,X) (n)z(ﬁp)) =Irr ()‘Z(KF)) . (8.2.3)
Now the result follows from together with (8.2.3). O
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Using the results obtain in Chapter 7| we show that the bijection Y from (8.2.1) is compatible
with block induction.

Lemma 8.2.4. Assume Hypothesis[7.2.7, Hypothesis[8.1.4 and suppose there exists an extension
map A for Cusp,(LY) with respect to LY < Ng (L), Then bl(Y) = b1(Y (Y))KF for every
Y e E(KF, (LX)

Proof. Since bl(X)KF = bl(X) by Proposition and bl(Y (X)) = bl(X)I~<€ by Lemma
the result follows by the transitivity of block induction. O
Finally, we show that the bijection T from (8.2.1) is equivariant.

Lemma 8.2.5. Assume Hypothesism and suppose there exists a (GF.A)KL x KC-equivariant
extension map A for Cusp,(LY) with respect to LY < Ng (L), Then Y is ((C‘rF.A)K L X IC)X_

equivariant.

Proof. Let (x,z) € ((GFA) X IC) and notice that, as X = \” - Z;, we have Ng (L, N =
NK(L,XI 77)F = Ng (L, A" ) . By using the equivariance properties of A, we obtain

x N”(L)F —~
)T A

=
S
N

(A(

— o~ z N (L)F

A7) A wnr) R (8.2.4)
Ng(L)"

On the other hand Lemma implies

I(i x) (77)(96 ) = I(L ) (77)36 '?K

R
- (Lv)‘x'AE) (?7 ) (825)
_ 7K ~
- I(t}}) (77 )

Now, the result follows immediately from (8.2.4) and (8.2.5). O

8.3 e-Harish-Chandra series and regular embeddings

In this section, we combine the bijections given in in order to obtain Corollary[8.2] To do
so, we study the behaviour of e-Harish-Chandra series W1th respect to regular embeddings. We

use the notation introduced in the previous sections. Fix an e-split Levi subgroup K of G and an
e-cuspidal pair (L, \) of K.
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Definition 8.3.1. Let HC(K', (L, \)) be the set consisting of those e-Harish-Chandra se-
ries £(K¥, (L, X)) with X € Irr(L¥ | ). The group K from Lemma acts on the set
HC(KF (L, \)) via
£(RF, (LX) = £ (RF, (LY %))

for every E(K¥, (L, X)) € HC(K¥, (L, \)) and z € K, where Z7 corresponds to z via (6.1.2).
Here notice that, as ) is e-cuspidal, then so are Xand \- Zt, (see [Bon06} Proposition 10.10 and
Proposition 10.11]). Moreover, if we define £(K*, (I, X)) - Z to be the set of characters Y - Z
for Y e £(K¥, (L, X)), then

S(KFv (E7X))Z = E(RFv (va)) ?R
by [Bon06), Proposition 10.11].

We want to compare the action of K on HC(K', (L, \)) with the action of K on the set of
characters Trr (L% | \). To start, notice that both these two actions of K are transitive by [Isa76)
Problem 6.2].

Lemma 8.3.2. Assume Hypothesis and let \; € Irr (LY | \) fori = 1,2. Let z € K, then
£ (RF, (L)) = & (R, (. 5))

if and only if
= 3 %%

for some z € Ng (L, \)".

Proof. First, assume S(KF (L )\1)) = &(KF,(L,X\2))%. By Proposmon 5, there exists
u e K such that (L, %) = (I, X2 - Z;)“. This implies that u € Ng (L) and that X=Xy 75
Moreover, since A lies over both A and A", it follows by Clifford’s theorem that A = \"“?, for
some v € L. Then z := uv € Ng(L,\)" and X =A2 - Zt . Conversely, if A = A2 -z, for some
z € Ng (L, \), then [Bon06| Proposition 10.11] yields the desired equality. O

Next, consider the external semidirect product (G A) x K where, for z ¢ G A and 7 € K, the
element 27 is defined as the unique element of K corresponding to (Zg)” € Ir(G*'/G!") via
(6.1.2). Notice that (G A)y, x K acts on Irr(L”") by

A7 )\x"

for every z € (G¥ A)g, and z € K. We denote by ((GF A)yg, x )5 the stabilizer of X under this
action.

Corollary 8.3.3. Assume Hypothesis and consider X € Irr(L¥ | \). Then Kewr .5)) <
Ng (L) (Ng (L, A)F x K)5.

Proof. Let z € K stabilize £(K¥, (L, X)). By Lemmathere exists € Ng (L, \)¥" such that
X=A" -7 and hence z = 27 'zz € Ng (L, \)F (Ng (L, \) ¥ x K)5. O
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Our next goal is to show how the set G of characters of K* lying over some character of
the e-Harish-Chandra series £(K*', (L, \)) can be partitioned into e-Harish-Chandra series
E(GF (L, X)) e HC(GF, (L, \)). On the other hand the set A/ of characters of Nz (L)F lying
over \ can be partitioned into the sets Irr(Ng (L)* | ), where X € Irr (LY | A).

Proposition 8.3.4. Assume Hypotheszs- 7.2.7 and let X € Trr (LY | A). Consider G := Trr(KF |
E(KF (L, X)) and N := Irr(Ng (L) | X). If T is a transversal for the stabilizer Ke®r £
in KC, then

G=1]&(XK" (LX) %% (8.3.1)
zeT
and B _
N =TT r (Ng@)™ | X) - Zng ) (83.2)
z€T

where Irt(Ng (L) | ) “ZN (L) is the set of characters ) ZNg (L) for e Irr(Ng (L) | ).

Proof. First, we claim that G is the union of the e-Harish-Chandra series in the set #C (K, (L, A)).
In fact, if ¥ € G, then there exists x € £(K', (L, A) lymg below ¥. By [[GM20, Corollary 3.3.25], it
follows that ¥ is an irreducible constituent of RK (/\L ) and therefore there exists 7 € Irr(L* | )
such that ¥ € £(K, (L, 7)). On the other hand, if 7 e Irr(LY | \) and ¥ € £(KF, (L, 7)), then
[GM20, Corollary 3.3.25] implies that ¥ lies over some character x € (K", (L, \)). Since the
action of KC on HC(K”', (L, \)) is transitive, we obtain (8.3.1).

Now we prove (8.3.2). By Clifford theory, we know that every element of G lies above some
character ¥ € Irr (L | \). Since K is transitive on Irr(LY | \), we deduce that A/ is contained in
the union

LeIJCIH“( gD | X) Znp )

Moreover, we claim that the above union coincides with
U Trr (Ng (D)7 | X) - Zngwy- (8.3.3)
zeT

To see this, let z € K and write z = zgt, for some zg € ’CS(KF (E.5) andt € T. By Corollary
we obtain 2 € Ng (L, \)*(Ng (L, \)" x K)5 and therefore

Irr (NK(L)F | ’)\\’) -’Z\NR(L) =Irr (NI’Z(L)F | 5\/) .?NK(L)'

This proves our claim and it remains to show that the union in is disjoint. Assume that,
for some z € T, there exists a character 1 inside both Irr(NK(L)F | )\) and Irr(Ng (L)¥ | X) -

ZNg (L)- By [[sa76| Problem 5.3] we deduce that Ir(Ng (L)F | X)'?NR(L) = Irr(Ng (L)" | X?E)
and hence ) lies above X and \ - %= By Clifford’s theorem X = (X ZE) = X - Zy,» for some
u € Nz (L)¥ and now Lemmamplies E(KY (I, X)) = (K, (L,X))?. By the definition
of T it follows that the union in is disjoint. O

As a corollary of Proposition and using the bijection T from (8.2.1), we are finally able to
prove Corollary
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Theorem 8.3.5. Assume Hypothesw- and Hypotheszs- Suppose there exists a (G A)k 1,
KC)-equivariant extension map for Cusp, (L") with respect to L' < N % (L)Y Then, there exists a

defect preserving ((G Ak (L)) X IC) -equivariant bijection
QL I (K7 | €(KT,(L,0))) » Trr (Ng (L)7 | A)
such that, for every X € Irr(K*¥ | (K, (L, \))), the following conditions hold:
(i) Irr (%Z(KF)) =Irr (\j(i(v)z(f{F));
g -~ ~  _\KF
(1) bI(X) =bL (¥ (X))
Proof. Set G := Irr (K | £(K¥, (L, \))) and N := Irr(Ng (L) | \) and fix X € Trr(LF | ). Let

T: (K, (LX) » Ir (Ng (L) | )

be the bijection constructed in (8.2.1). Let Tglo bea ((GFA)k 1, xIC)x-transversal in E(KF (L,N))
and observe that, by Lemma [8.2.5] the set Tjoc == {Y(Y) | ¥ € Tglo} isa ((GFA)k 1 x K)x-
transversal in Irr(Ng (L)¥ | \).

Next, we fix a transversal 7 for K £(RF (T.))) in K and we claim that

F((&F SF(ASF
Ki ((G Ak ™ IC)X T =Kg (G A)y 1, %K. (8.3.4)
To prove this equality, consider zz ¢ (G A)K,(1,») * K. Then both Xand \* - %t lie over A and
by [[sa76l Problem 6.2] there exists u € K such that X = \* -7, - g Therefore x2 € ((éFA)K’L %
)5 - K. On the other hand, applying Corollary we obtain K¢ gr (13 < KE(KE x KC)x
and by the definition of T, we conclude that
F((GF ), <K). T > RE (G 4)

K, (L)) ’C)'

To prove the remaining inclusion it’s enough to show that
(@A) g0 ) = (6 A < K)s.

Since X is L -invariant, one inclusion is trivial. So let 2z € ((GF A)k 1, x IC)x and observe that
X=X\ - 71, lies both over A and over \*. By Clifford’s theorem there exists y ¢ L% such that
A = A" and hence zz € EF((GF.A)K’(L’A) x C)x. This proves the claim.

Now, using (8.3.4), we show that Tglo isa (((~}FA)K (L,) % K)-transversal in G. Consider Y € G.
By Proposition there exist unique z ¢ T and Y, € (K, (L, X)) such that ¥ = ¥ P
Let X0 be the unique element in Tglo such that [, = Xo U, for some zu € ((GF.A)KL x IC)5.
Then Y = X - Ug - 25, for vuz € ((GF A)k 1, x K)5 - 7. But using and since Y and Y are
NR(L)F-invariant, we conclude that X = X{ - U, for some y € ((EFA)Ky(L)\) and v € K. This

argument also shows that Xj is the unique element of Tglo with this property.
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Similarly, using (8.3.4), we deduce that the set T),. is a ((G*" Ak, (1,)) % K)-transversal in N.
Now, the map
(L A) g - N
defined by
U (Y 2g) = YD) Zng L)
for every X € Tglo, x€ ((EFA)K,(L’A) and z € K, isa (((~}F.A)K7(L’>\) x KC)-equivariant bijection.

The remaining properties follow from Lemma [8.2.2] Lemma and Lemma after noticing
that Zi and /Z\NK(L) are linear characters and that

K F

~ KT ~KF
b1(¢ : ZNR(L)) -bl(P) -2
for every 1) € Irr(Ng (L)"') and 2 € K. O

As an immediate consequence, we obtain Corollary[8.3]

Corollary 8.3.6. Assume Hypotheszs- and Hypotheszs- Suppose there exists a ((GF A)k 1%
KC)-equivariant extension map for Cusp, (L") with respect to L' < N % (L)Y Then, there exists a

defect preserving (G A)K7(L7)\) -equivariant bijection
ALy € (KT (1L, 0)) - Irr (N (L) | X).

Proof: Fixa ((GF A)k ,(L,x) X KC)-transversal Tglo inIrr (K" | £(KF, (L, A\))). By Theoremm
the set Tjoc := {Q(L )\)( X)|Xc¢ Tglo} isa ((GFA)Ky(L’,\) x KC)-transversal in Irr(Ng (L) | \).
For every Y € Tgk) fix an irreducible constituent y € £(GY, (L, \)) of Xgr and define the
set Tglo consisting of such characters y, while X runs over the elements of Tg10 Similarly, for
every ¥ € Tjoe, fix an irreducible constituent 1) € Irr(Ng (L) | \) of ¥ and define the set Tjoc
consisting of such characters 1, while 1/) runs over the elements of T)... Then Tg1o and T, are
(GFA)Ky(L,)\)—transversals in £(G,(L,))) and Irr(Nk (L)¥ | \) respectively. Fix y € Tgo
and let X be the unique element of Tglo lying above x. Let Y= (NZFL ") (X) € Tioc and consider
the unique element 1) of Ty, lying below 7. This defines a bijection

Tglo - Tloc- (8.3.5)

Then, defining
Qg, )\)(Xx) ="

for every x € (GF Ak (L,\) and every x € Ty, corresponding to ¢ € Ty, via we obtain
the wanted bijection. O
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9

Towards the Character Triple
Conjecture for Groups of Lie Type

As we have seen in Theorem 3.5.2] in order to obtain Dade’s Projective Conjecture for all finite
groups via Spéth’s reduction theorem, one needs to prove the Character Triple Conjecture for
quasisimple groups. In this chapter we provide a strategy to tackle the Character Triple Conjecture
for quasisimple groups of Lie type. This project originates from ideas introduced by Broué, Fong
and Srinivasan in an attempt to solve Dade’s Projective Conjecture for unipotent blocks. Inspired
by this and using the main results of the previous chapter (see Theorem|7.1|and Theorem|7.2.17)
we provide a strategy to prove the Character Triple Conjecture tailored to finite groups of Lie
type. Namely, we show that the Character Triple Conjecture holds provided that some bijections
related to e-Harish-Chandra theory exist (see Condition [9.1|below). In the next chapter we will
see that the main obstruction to the construction of the above mentioned bijections is given by
some rather technical conditions on extendibility of characters of e-split Levi subgroups. These
conditions also appear in the proofs of the inductive conditions for the McKay, the Alperin-
McKay and the Alperin Weight conjectures and the checking of these requirements is part of
an important ongoing project in representation theory of finite groups of Lie type (see [CS17all,
[CS17b], [Tay18], [[CS19] and [BS20bl).

More precisely, using the description of characters in blocks given by Theorem[7.2.17] we give a
first reformulation of the Character Triple Conjecture (see Conjecture tailored to groups of
Lie type. To do so, we restate this conjecture by replacing chains of /-elementary abelian subgroups
with chains of e-split Levi subgroups and related e-cuspidal pairs (see Proposition[9.2.10). This
is inspired by a clever argument given by Broué, Fong and Srinivasan for Dade’s Projective
Conjecture and unipotent blocks. The next step in their plan was to reduce the new reformulation
of Dade’s Projective Conjecture to the existence of certain bijections associated to e-cuspidal
pairs similar to the one given by [BMM93| Theorem 3.2] for the unipotent case. Generalizing this
argument, we reduce the Character Triple Conjecture to the existence of analogous bijections
satisfying some additional Clifford theoretic requirements.

Condition 9.1. Let G, F': G — G, { and e be as in Notation and consider an e-cuspidal pair

121
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(L, \) of G. Then there exists a defect preserving Aut]F(GF)(L,A)-equivariant bijection
OG. ) € (G, (LX) - Trr (Ne (L)™' | A)

such that
(X0, G",0) ~ar (Nx, (L), Ngr(L), 2§, ) (9))

foreveryd € £ (G, (L, \)) and where X := G x Autg(GF).

We will say that Condition 9.1 holds for (G, F') at the prime / if it holds for every e-cuspidal pair
(L, \) where e is order of ¢ modulo ¢ and ¢ is the prime power associated to F'. As anticipated,
we show that using the bijections given by Condition [9.1| we can prove the Character Triple
Conjecture (in the form of Conjecture and therefore the inductive condition for Dade’s
Conjecture (see Definition[9.1.3).

Theorem 9.2. Assume that Hypothesis is satisfied with respect to (G, F') and the prime ¢
and denote by e the order of ¢ modulo {. If Condition[9.1 holds at ¢ for every irreducible rational
component (H, F') of every e-split Levi subgroup of G (see Definition[9.2.13), then Conjecture[9.1.1]
holds at ¢ for G with respect to GI" < G x Autp(GT'). Moreover, if GI'|Z(GT") is a nonabelian
simple group with universal covering group G, then the inductive condition for Dade’s Conjecture

(see Deﬁnition holds for GT' |Z(GT) at ¢.
In Remark it is shown that Hypothesis[9.2.11] holds in most of the cases we are interested in.

The same argument used to prove Theorem[9.2] can be used to obtain the nonblockwise version
of Dade’s Projective Conjecture from a weaker version of Condition [9.1](see Condition[9.2.22|and
Theorem [9.2.23). Moreover, as said before, in the next chapter we will show how the checking
of Condition (and Condition reduces to proving some technical requirements on
extendibility of characters of e-split Levi subgroups.

9.1 Preliminaries

Before proving the main results of this chapter, we introduce some preliminary remarks. First,
we introduce a version of the inductive condition for Dade’s Conjecture (see [[Spd17} Definition
6.7]) better suited to our purpose. Moreover, we consider a variant of Proposition tailored to
finite groups of Lie type.

9.1.1 The inductive condition for Dade’s Conjecture

In order to state the inductive condition for Dade’s Conjecture, we need to introduce a strong
form of the Character Triple Conjecture.

Conjecture 9.1.1. Let G be a finite group such that O;(G) < Z(G) and consider a block B € BI(G)
with defect groups larger than O,(G). Suppose that G < A. Then, for every d > 0, there exists an
Ap-equivariant bijection

Q:¢4B),/G - CYB).|G
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such that Ker(Jz()) = Ker(xz(g)) = Z and
(Apw/Z,Gp]Z,9) ~cyz (Aen/Z,GEl Z,X)

for every (D,9) € C4(B), and (E, x) € Q((D, 9)).

Notice that the above statement is stronger than the original version of the Character Triple
Conjecture (see Conjecture [3.5.1), in fact, block isomorphisms of character triples can be lifted
from quotients with respect to central subgroups (see [Spa17, Corollary 4.4]).

Using Conjecture we can reformulate the inductive condition for Dade’s Conjecture as
defined in [Spa17| Definition 6.7]. The next result should be compared with Lemmal5.1.2]

Lemma 9.1.2. Let S be a nonabelian simple group with universal covering group X and consider
B e BI(X)) with noncentral defect groups. Then the inductive condition for Dade’s Conjecture (in the
sense of [Spal7, Definition 6.7]) holds for B if and only if Conjecture[9.1.1 holds for B with respect to
X 9 X x Aut(X).

Proof. This is [Spal7, Proposition 6.8]. O

The above lemma tells us that, in order to prove the inductive condition for Dade’s Conjecture
(see [Spa17, Definition 6.7]) for a nonabelian simple group .S, it is enough to show that Conjecture
[9.1.1] holds for all blocks of its universal covering group X with respect to X 4 X »x Aut(X).
Due to this fact, we introduce the following reformulation of the inductive condition for Dade’s
Conjecture.

Definition 9.1.3. Let S be a nonabelian simple group with universal covering group X. We say
that the inductive condition for Dade’s Conjecture holds for S if Conjecture holds for
X with respect to X 4 X x Aut(X) and every d > 0 and B € BI(X) with defect groups larger
than O/(G).

Now, the reduction theorem of Dade’s Projective Conjecture (see Theorem [3.5.2) can be restated
as follows.

Theorem 9.1.4. Let G be a finite group and suppose that every nonabelian simple group involved
in G satisfies the inductive condition for Dade’s Conjecture. Then Dade’s Projective Conjecture holds

forG.

Noticing that, in the majority of cases, the universal covering group of a finite simple group of

Lie type is of the form G, where G is a simple algebraic group of simply connected type with

a Frobenius endomorphism F’, we now turn our attention to proving Conjecture for such
F

groups G*.

9.1.2 Bijections and N-block isomorphic character triples

Next, we prove a technical result involving /N-block isomorphic character triples. Using this
result we will be able to lift the bijections given by Condition This is a version of Proposition
adapted to finite groups of Lie type. Recall that, for Y < X and S ¢ Irr(Y'), we denote
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by Irr(X | S) the set of irreducible characters of X whose restriction to Y has an irreducible
constituent contained in S. Moreover, we define X5 := {x ¢ X | §* = S}.

Proposition 9.1.5. Let K < G < A be finite groups with G 4 A, consider Ay < A. and set
Hy := Hn A for every H < A. Consider S € Irr(K) and Sy < Irr(Ky) and suppose there exists
K <V <X <Ny(K) and U < Xy such that:

(i) V < Xs. Moreover, ift € X and SnS* + @, thenz € V;

(i) U < Xo s,. Moreover, if x € Xo and So N S§ # @, then x € KoU;

(iii) V = KU.
Assume there exists a U-equivariant bijection

U:S->38)
such that
(X9, K,0) ~x (Xo9, Ko, ¥ ()

foreveryd e S. If K < J < X nG and Cx(Q) < Xy for every radical ¢-subgroup @Q of Jy, then
there exists an N (.J)-equivariant bijection

Oy:Irr(J | S) > Irr (Jo | So)

such that
(NX(J)Xv JvX) ~J (NXO(J)Xa J07q)J(X))

for every x e Irr(J | S).

Proof. Consider an Ny (J)-transversal S in S and define Sy := {¥(¥) | ¥ € S}. Since ¥ is U-
equivariant, it follows that Sy is an Ny (.J)-transversal in Sp. For every ¢ € S, with J¢ := U(¥) €
So, we fix a pair of projective representations (P (), 735190)) giving (Xy, K,9) ~k (Xo,9, Ko, Vo).
Now, let T be an N/ (J)-transversal in Irr(J | S) such that every character x € T lies above a
character ¥} € S (this can be done by the choice of S). Moreover, using Clifford’s theorem together
with hypotheses (i) and (iii), it follows that every x € T lies over a unique ?J € S.

For x € T lying over ¢ € S, let ¢ € Irr(Jy | ) be the Clifford correspondent of x over ¥J. Set ¥ :=
V(1) € Sp and consider the N/ (J)y-equivariant bijection o, : Irr(Jy | ) = Irr(Jo 9 | o)
induced by our choice of projective representations (P(?), Péﬁo) )- Let ¢g := 05, (¢)). Observe
that Jg 9, = Jo,9. To see this, notice that Uy = Uy, since V¥ is U-equivariant and that Jg 4, < KoU
by (ii) above. Therefore Jy 3, < Jo y. On the other hand, since (J nU)y = (J nU)y, because
U is U-equivariant and noticing that Jy y < Jon'V = Ko(J nU) by using (iii), it follows that
Jo9 < Jo.9,- Now @ 7(x) = 1”70 is irreducible by the Clifford correspondence. We define

Oy (x*) =2s(0)"

for every x € T and 2 € N7 (J). This defines an Ny (J)-equivariant bijection ¥ : Irr(J | S) —
Irr(Jp | So).
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To prove the condition on character triples, consider x € Irr(J | §), ¥ € Irr(xx) N S, ¢ €
Irr(Jy | ¥) and ¥g := ¥ (), Yo := 05, (¢) and xo := @ ;(x) as in the previous paragraph. Since
(X, K,0) ~k (Xo,9,Ko,0), Proposition(i) implies that

(Nx, (J9)w: J9,%) ~ 15 (Nxg 5 (J9)ws Jo9,%0)

and, because N x (J)y < Nx, (Jy), Lemma implies

(Nx () g,s S, %) ~55 (Nxo(F)gr Jo.9,%0) - (9.1.1)

To conclude, observe that by hypothesis we have

Cny (1), (@) < N, (J)y

for every xo € Irr(Jy | S) and Q € 6(bl(x0)) and therefore we can apply Proposition [3.4.3| which,
together with (9.1.1), yields

(NX(J)Xv Ja X) ~J (NX()(J)X7 J(]a XO) .
The proof is now complete. O
Remark 9.1.6. Consider the setup of Proposition[9.1.5] Then, the bijection ® ; is defect preserving

if and only if W is defect preserving.

Proof. For x € Irr(J | ), let ¥ be the Clifford correspondent of y over some ¢ € Irr(xx ) NS and
let ¢ := 0,7, (1) and ¥ := (). If X0 := P(x) = ¥, then d(x) = d(¢) and d(xo) = d(¢p).
By Proposition [3.4.1](ii) we deduce that d(¢) — d(to) = d(9) - d(Jp). O

9.2 The reformulation

Showing how Conjecture can be deduced from Condition [9.1] requires two main steps: first,
we replace elementary abelian /-subgroups with e-split Levi subgroups, then we use the bijections

given by Condition[9.1]to prove Conjecture Consider G, F, £ and e as in Notation

9.2.1 From /-elementary abelian subgroups to e-split Levi subgroups

We start by replacing chains of /-elementary abelian subgroups with chains of e-split Levi
subgroups and related e-cuspidal pairs. This will give us a version of Conjecture tailored to
finite reductive groups. To do so we adapt a clever argument of Broué, Fong and Srinivasan. For
this purpose we make the following assumption.

Hypothesis 9.2.1. Let G be a connected reductive group with Frobenius endomorphism F
defining an F,-structure on G. Let £ € I'(G, F) and suppose that O;(G'") = 1 and that either
Z(Gs)l =lorleT(Gug, F).

The next definition has been introduced by Broué, Fong and Srinivasan.
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Definition 9.2.2. Let E be an /-elementary abelian subgroup of G¥'. Then FE is said to be good
if

B =0, (0,(2° (Cg (B))")),

and bad otherwise. An /-elementary abelian chain E € (G, 1) starting with Ey = 1 is said to be
good if E; is good for every 7, while it is bad otherwise. The set of good (resp. bad) /-elementary
abelian chains of GI" is denote by €,(G!") (resp. &,(G)).

Denote by £(G, F'), or simply by £(G) when F is clear from the context, the set of decreasing
chains L = (G = Lg > --- > L,;) of e-split Levi subgroups of G. We define the length of the chain
L as |L|:= n. For € € {+,-}, let L(G, F'). be the subset of L(G, F') consisting of those chains
L such that (—1)“14‘ = el. We show that there exists an equivariant length preserving bijection
between decreasing chains of e-split Levi subgroup of G and good ¢-elementary abelian chains
of G¥'. Recall that every automorphism o € Autp(G?") extends to a bijective endomorphism of
G commuting with F. Then Autr(GT) acts on the set of F-stable closed connected subgroups
of G (see Section[6.1.5|and [[CS13| Section 2.4] for more details).

Lemma 9.2.3. Assume Hypothesis|9.2.1 Then the maps

L(G) > ¢, (GF)
L=(L;)~»E-= (Ql (OE (ZO(LZ)F)))

and

E=(E;)~L:=(Cg(E:))

are Autp(GT')-equivariant length preserving bijections inverses of each other.

Proof. First, consider a chain of e-split Levi subgroups L = (G = Ly > --- > L;). Under
Hypothesis We can apply Propositionm (ii.e) to deduce that E; := Q1 (Oy(Z°(L;))) isa
good (-elementary abelian subgroup and that L; = Cg, (E;). Since L; > L1, this also shows that
E; < E;;1 foreveryi=0,...,n— 1. Moreover, as O,(G!") = 1, we deduce that Ey = O,(G).
On the other hand, if D = (O,(G¥) = Dy < --- < D,,) is a good -elementary abelian chain,
then all terms D; are elementary abelian (since Oy(G*") = 1) and by Proposition (ii.c) we
deduce that K; := Cg(D;) is an e-split Levi subgroup. Furthermore D; = Q1(0,(Z°(K;)")),
because D; is good in the sense of Definition and Ko = . As a consequence, since
D; < Djy1, we obtain that K; > K;,; for every ¢ =0,...,n — 1. It follows that the above maps
are Autp(GF)-equivariant, inverses of each other and preserve the length of chains. O

Next, we show that there exists a self inverse Auty(G!)-equivariant bijection between bad
(-elementary abelian chains such that, if E is mapped to E', then |E| = |[E’| £ 1. This allow us to
only consider good (-elementary abelian chains and therefore, by Lemmal[9.2.3] we can replace
{-elementary abelian chains with chains of e-split Levi subgroups.
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Lemma 9.2.4. Assume Hypothesis Then there exists an Autp(G?')-equivariant bijection
€(G") > €(G")
such that, if E is mapped to ', then |E| = |E’| £ 1.

Proof. LetE = (Egy < - < E,,) € €&(G') and set D; := Q1(0¢(Z°(Cg(E;))")). Notice that
E; < D; by Propos1t10n(11 b) and therefore that C¢; (D;) < Cg (E;). On the other hand, as
D; < Z°(Cg(E;))F, we have Cg(E;) < Cg(D;). Thus Cg (B ) C¢ (D;) and we conclude
that D; is a good /¢-elementary abehan subgroup Now, since E is a bad chain, there exists a
maximal index j such that E; < D;. If j = n, then we define E’ by adding D,, to the chain E.
Assume j < n. In this case we claim that D; < E;,1 and we define E’ to be the chain obtained
from [E by adding (resp. removing) D; to E when D; < E;,1 (resp. Dj = E;.1). To prove the
claim, notice that Ej,1 < Ca(Ej+1)" < Ca(E;)! = C (E ) by Proposmon(ua ). As D;

centralizes Cg, (E}), we deduce that D; < Cg( 41)F = Cg(Fj.1)F and that D centrahzes
C&(Ej41). Thus Dy < Z(Cy(Ejr1)) and hence D < Z°(Cg (Ej.1)) by Proposmonas
(el (Cg(Ejm), F) see Remark- It follows that D;<Dj.=Ej. O

Before proving the main result of this subsection, we need a lemma. Notice that the group G*
acts on the set L(G, F'). For a chain L € £L(G, F'), we denote by Gf the stabilizer of L in G*',
Observe that this stabilizer coincides with the intersection of the normalizers of the individual
terms L; of the chain L.

Lemma 9.2.5. Let G be a finite reductive group and consider a chain of e-split Levi subgroups
L € £L(G) with final term L. If ¢ e I'(G, F’), then:

(i) Every block ofGFf is LY -regular (see [Nav98, p.210]). In particular, for b € BI(LY), the
induced block bGL is defined and is the unique block of GF that covers b.

(ii) Assume Hypotheszs- There is a partition of the irreducible characters ofG given by

Irr(Gf): [ &r(GE ‘ E(LY, (M, p))),
(M) [~

where the union is taken over the e-cuspidal pairs (M, 1) of L up to Gf -conjugation.

Proof. To prove the first statement, let £ := Q1 (O,(Z°(L)*")) and observe that L¥ = Cg (E)F =
Cc(E)! by Proposmon_(u a)-(ii.e) and that E < O,(GI). If B € BI(GL) has defect group
D, then E < D (see [Nav98| Theorem 4.8]) and CGF(D) < CF £ (F) = L. This shows that B is

L! -regular. In particular, if the block B covers b € Bl(LF ), then B = bCL by [Nav98| Theorem
9.19].

We now consider the second statement. As Irr(L%") is the union of the e-Harish-Chandra
series £(LY, (M, 1)) by Corollary we deduce that every character y € Irr(GY) lies
over some character of an e-Harish-Chandra series (L%, (M, 1)), where (M, ) is an e-
cuspidal pair of L. To conclude we have to show that, if (M, 1) is another e-cuspidal pair
of L, then Irr (G | E(LY, (M, 11))) and Irr(G{" | E(LE, (M, 11'))) are disjoint unless (M, 11)
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and (M’ u') are Gf -conjugate. For this, suppose that y is a character contained in the inter-
section of Irr(G{" | £(LY, (M, ))) and Irr(G{" | (LY, (M, 11))). Let ¢ € E(LY, (M, 1))
and ¢’ € E(LY, (M, 1)) lie below x and consider g € GI such that 1) = ¥"9. Then, 1 €
E(LE, (M, ) nE(LE, (M, 11')9) and Corollaryimplies that (M, ) = (M, u’)9%, for
some z € L. Since gz € Gf the proof is now complete. O

Before proving the main result of this section (see Proposition [9.2.10) we give some definitions.

Definition 9.2.6. Let M be an e-split Levi subgroup of a connected reductive group H with
Frobenius endomorphism F. For a set ) ¢ Irr(M") of e-cuspidal characters, we define

£(H",(M,Y)) = L;J}JEZ(HF,(M,,U,)).
HE

Moreover, for a fixed character y € Irr(M?) we define the set

V() = {pn | nelr (MF/[M,M]")}.

By [Bon06, Proposition 12.1], if i is e-cuspidal, then every character in (1) is e-cuspidal.

Definition 9.2.7. For any e-split Levi subgroup K of G, we denote by CP.(K”') the set of all
e-cuspidal pairs (L, \) of K. Moreover, when ¢ € T'(G, F), for every block b of K we define
the subset CP.(b) consisting of those e-cuspidal pairs (L, \) of K such that bl()\)KF = b (see
the comment preceding Proposition [7.2.14 concernig block induction).

Next, we introduce the following set which can be thought of as an adaptation to groups of Lie
type of the set C%(B). from Conjecture m

Definition 9.2.8. Fix a block B € BI(G!"). For every nonnegative integer d and € € {+, -} we
define

J B LeL(G)c,(M,1)eCP. (B) with M<L,
LYB)e = {(L’M’y(“)’ﬂ) ‘ delrnd(GF | S(LF,(M,y(u))))withbl(ﬂ)GFzB}’

where L is the final term of the chain IL. while }(u) and CP.(B) are as in Definition and
Deﬁnitionrespectively. Notice that the group G acts by conjugation on £%(B), and denote
by £4(B)./G! the corresponding set of G -orbits. As usual, for (I, M, Y(1),9) € L4(B). we
denote the corresponding G -orbit by (I, M, Y (1), 9).

Remark 9.2.9. We remark that, if (M, p) € CP.(B) and i’ € V() then we have Y (u) = V(i)
although it might happen that (M, i1/) ¢ CP.(B). On the other hand, let L € £(G) with last
term L and consider an e-cuspidal pair (M, ) of L. If ¥ € Irr(G{ | £(LY, (M, Y(p2)))) and
bl(ﬁ)GF = B, then there exists u’ € (), so that Y (u) = Y (i), such that (M, u’) € CP.(B).
In fact, there exists 1/ € J(p) such that ¥ € Irr (G | E(LY, (M, 1/'))). By Proposition
every character of £(LY', (M, 11')) is contained in bl( ' )LF. Then, applying Lemma (i) and
using the transitivity of block induction, it follows that bl(9) = (bl(x/)¥" )GL = bl(1/)CL . We
deduce that bl(,u’)GF = bl(ﬂ)GF = B and hence (M, i1') € CP.(B). It follows from the above
discussion that the set defined in Definition[9.2.8] coincides with

d . LeL(G)e,(M,u)eCP (L),
LYB)e = {(L’M’y(“)’ﬁ) 9elrr? (G| S(LF,(M,)J(,u))))withbl(ﬁ)GF:B}’
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where L is the final term of the chain L.

We are now able to prove a reformulation of Conjecture tailored to finite groups of Lie type.

Proposition 9.2.10. Assume Hypothesis[9.2.1 and Hypothesis|7.2.7. Then Conjecture[9.1.1 holds for a
block B € BI(GT") with nontrivial defect groups and d > 0 with respect to GI' 9 GF x Autp(GF) =
A provided there exists an Autp(G!") g-equivariant bijection

A:£4B),)GF > £YB)_/GF
such that Ker(Jzgry) = Ker(xzgry) = Z and
(A]L,ﬂ/Za Gf/Z7 1_9) ~GF|Z (AK,X/Z7 Gﬂg/Zv Y)
for every (L, M, Y (), ) € LY(B). and (K,N, Y(v),x) € A(L, M, Y (), 9)).

Proof. Consider (E,¥) € C4(B),. By Lemma we may assume that E is an /-elementary
abelian chain. If E is a bad (-elementary abelian chain (see Definition[9.2.2), then we define

Q((E,9)) = (&),

where E’ is the chain corresponding to E via the bijection given by Lemma Notice in
this case that G = GL, and therefore that (E’,?9) € C¢(B)-. Then, assume that E is a good
{-elementary abelian chain and consider the corresponding chain of e-split Levi subgroups IL
given by Lemma Notice that G£ = G{" and let L be the final term of L. By Lemma
(ii), there exists an e-cuspidal pair (M, ) of L, unique up to Gf -conjugation, such that
¥ e I (GL | £(LF, (M, p)). We claim that (M, i) € CP.(B). First, observe that every
character of £(L!, (M, 1)) is contained in the block bl(,u)LF by Proposition Then,
applying Lemma (i) and using the transitivity of block induction, it follows that bl(¥) =
(bl(u)LF)GIle = bl(,u)Gf. Since (D,9) € C%(B), we deduce that bl(ﬁ)GF = B and hence
(M, i1) € CP.(B). This proves the claim. Now (L,M,Y(u),?) € £L4(B), and we choose
(K,N,Y(v),x) € A((L,M,Y(u),9)). Let D be the /-elementary abelian chain corresponding
to K via the bijection given by and observe that (D, ) € C%(B)_. Finally, we define

Q((E,9)) = (D, ).

Since (M, 1) is unique up to Gf -conjugation while A and the bijections given by Lemma
and Lemma 9.2.3|are equivariant, we conclude that 2 is a well defined A g-equivariant bijection.
Moreover, using the property on character triples of A it is immediate to show that () satisfies the
analogous properties required by Conjecture This completes the proof. O

9.2.2 From Condition to Conjecture

We now come to the proof of Theorem[9.2] namely we show how to deduce Conjecture [9.1.1] from
Condition Because our final aim is to show the inductive condition for Dade’s Projective
Conjecture, from now on we restrict our attention to simple algebraic group of simply connected
type. Furthermore, in order to be able to use the results from Section[7.2|and Section we
will make the following assumptions.
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Hypothesis 9.2.11. Assume Hypothesis[7.2.7and suppose that G is simple of simply connected
type such that O,(G") < Z(GT).

Remark 9.2.12. Observe that under Hypothesis [9.2.11| the prime ¢ does not divide |Z(G)|
and therefore O,(G!") = 1. Thus Hypothesis (9.2.1|is satisfied. In addition, the requirements of
Proposition[7.4.1|are satisfied with G = L (this will be used in the proof of Theorem [9.2.21).

By using Remark[7.2.8] we deduce that Hypothesis[9.2.11holds whenever G is simple of simply
connected type such that G # 2Eg(2), E7(2), Eg(2) such that G'/Z(GF) is a nonabelian
simple group and ¢ € I'(G, F') with £ > 5.

Before proceeding further we introduce the notion of irreducible rational component (see [[CE94,
Section 1.1]).

Definition 9.2.13. Let G be a connected reductive group with Frobenius endomorphism F' :
G — G. Recall that [G, G] is the product of simple algebraic groups G1,...,G,, and that F’
acts on the set {G1,..., G, }. For any orbit O of F, we denote by G the product of those
simple algebraic groups in the orbit O. Notice that G is F'-stable and, by abuse of notation,
denote by F' the restriction of F' to Gp. Then, we say that (Gp, F') is an irreducible rational
component of (G, F').

The proof of the next result should be compared to the argument used in [Ruh21a, Proposition
3.8]. Recall that a connected reductive group G is simply connected if the semisimple algebraic
group [G, G] is simply connected.

Proposition 9.2.14. Assume thatHypothesis holds for (G, F) and that G is simply connected.
Consider an e-split Levi subgroup K of G and suppose that Condition[9.1 holds at the prime { for
every irreducible rational component of (K, F'). Let K¢ := [K, K] and consider an e-cuspidal pair
(Lo, Ao) of K. Then there exists a defect preserving AutF(Kg)(LO)\O)-equivariant bijection

Ko

(Lo,ho) € (KF’ (Lo, AO)) - Irr (NKO(LO)F ‘ )\0)

such that
(Yo, KE9) ~xer (N, (Lo), Nigo (L), 2852 1 (9))

for every 9 € E(KE, (Lo, \o)) and where Y = K& x Autp(KE).

Proof. Since G is simply connected, we deduce that Ky is a semisimple group of simply connected
type (see [MT11] Proposition 12.14]). By [Mar91} Proposition 1.4.10], Ky is the direct product
of simple algebraic groups K, ..., K, and the action of F’ induces a permutation on the set of
simple components K;. For every orbit of F' we denote by H;, j = 1,...,¢, the direct product of
simple components in such orbit. Then H; is F'-stable and

F F F
Ky =H; x---xH;,

where by abuse of notation we denote the restriction of ' to H; again by F'. Observe that the
(H;, F')’s are the irreducible rational components of (K, F'). Define M := Ly n H; and observe
that M; is an e-split Levi subgroup of H; and that

Ly =M x - x M.
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Then, we can write A\g = pu1 X -+- x fi; with 1 € Irr(l\/[f). As R{J{OO = Ri{/lll X +ee X Rﬁtt (see [DMO1]
Proposition 10.9 (ii)]), it follows that (M}, 11;) is an e-cuspidal pair of H; for every j =1,...,¢
and, using our assumption, there exist bijections
H; ) F F

Uing, € (H S (M, p17)) = T (N, (M) | ) (9.2.1)

asin Condition[9.1| By using the fact that RK? = RH1 »...xRE | we deduce that £(KE, (Lo, \o))
' Lo M, M, 0> (Lo, Ao

coincides with the set of characters of the form ¥ x --- x ¥, with ¢; € S(Hf, (M, 1)), while

it is not hard to see that Irr(Ng, (Lo)Y | \o) coincides with the set of characters of the form
&1 x--x & with & € Irr(NH,(Mj)F | 115). Hence, we obtain a map

QT agy + € (K (Lo, o)) = Trr (N, (L) \ o)
Dy % - x 0y > Q(Mw)(ﬁl) X e X Qg\jl (D).
We now show that 2 (LO o) satisfies the required properties.

First, consider the partition {1,...,t} = [[; A; given by j,k € A; if there exists a bijective
morphism ¢ : H; - Hj, commuting with F' such that (MM, 1) = (My, p1,). Fix j; € A;. By
Lemma [3.3.8| (iii), we may assume without loss of generality that

Kj = X Hj,
l
and H
Ko Ay
Q(LOJ\O) XQ(MAZWAZ)
A .
where Hy, = H|jzl" My, = M|' l" ra = ,u;@‘ ! and Q(MAZ7)\AZ (Q(Mjlv)\Jl )®‘Al|' Fix

¥ = x4, with ¥y, € S(Hil (My,,1t4,)), and write § := Q(Lo )\O)(ﬁ) = x;€a, With £4, =

(l\zlAl,uAl)(ﬂAl ). Then, noticing that Autg (KJ') = X; AutF(HAl ), by Lemma [3.4.9)it is enough

to check that

(YAl’ﬁAz’Hil’ﬂAl) THY, (NYAWAZ (M), Nu,, (MA’)F’gAl) 622)
where Yy, := HF x Autp(HY -

To prove (9.2.2), observe that 4, is Autr(HY )(m A,a,)-CONjugate to a character of the form

%y, such that for every u, v we have either ¢,, = 9, or ¢,, and ¥,, are not AutF(H ) conjugate.
By Lemma [3.3.8](iii), we may assume without loss of generality that 14, = x,1, m , where for
every u # v the characters 1, and v, are distinct and not Autr(H 4, )-conjugate While m,, are
some nonnegative integers. Then

Aut]F(HAl )19A - (AUtF(HJl)Vu ZSmu)

and hence (9.2.2) follows by the properties of the bijections by applying Lemma[3.4.10] A
similar argument shows that the bijection oK (L o) is AutF(Kg ) (Lo,)o)-€quivariant. Moreover

oK (Lo \o) Preserves the defect of characters by the analogous property of Condition O
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We now prove an easy lemma which will be used to combine bijections oK
sition 9.2.14] for various e-cuspidal pairs (Lo, Ao).

(L o) given by Propo-

Lemma 9.2.15. Let X <Y < Z with X, Y 9 Z and Y |/ X abelian. Considern € Irr(Y") and define
thesetY :={nv|velr(Y/X)}.Ifze ZandY*nY + @, thenY* = ).

Proof. Suppose that nv € Y* '), then there exists v € Irr(Y/X) such that nv = (nv1)?. Since
Y/ X is abelian we deduce that n* = nu(v7) 1. Now, if nue € V), then (n12)? = n°vi = nu(vi) 113,
Noticing that v(v5) "' e Irr(Y /X)), we conclude that J* ¢ ) and the result follows. O

Corollary 9.2.16. Assume that Hypothesis[7.2.7 holds for (G, F') and that G is simply connected.
Consider an e-split Levi subgroup K of G and suppose that Condition[9.1 holds at the prime ¢ for every
irreducible rational component of (K, F'). Let (L, \) be an e-cuspidal pair of K, set K := [K, K]
and Lo := Ln K and consider \g € Irr()\Lg). Define Vo := {\o€ | € e Irr(LY'/[L, L) }. Then

there exists a defect preserving Auty (GF )K,L,y())“€quivariant bijection

W ay € (Ko (Lo, ) = Irr (N, (L) | D)

such that
(Yﬁ’K(I;’ﬁ) ~KY (NYﬂ(LO) NKO(LO) ‘IJKOO )\0)(19))

for every 9 € E(KE', (Lo, Vo)) and where Y := K& x Autp(KE).

Proof. First observe that for every Ao € )y the pair (Lo, A\o€) is e-cuspidal in K¢ (see [Bon06)}
Proposition 12.1]). Moreover, notice that L = Z(K)Lg and therefore Nk (Lg) = Nk(L).
Let T be a NKO(L)§0 >4 Aut]F(GF)K’L’yO -transversal in ). For each A\g§ € T consider an

Autﬂ:(GF)KL,)\Og—transversal Tho¢ in S(Kg, (Lo, Ao€)) and define 7 as the union of the sets
7;\05 with \g€ € T.

We claim that 7 is an Auty(G* )K 1.y, -transversal in
&(KE, (Lo, M)

First let x € E(K{, (Lo, Mo€)) with € € Trr(LE/[L,L]") and consider the unique \o€ € T
such that (\g&)™ = )\ngor some = € Nk, (L)§0 and y € Aut]F(GF)K,LyO. Then x¥ = x™¥ ¢
E(KY, (Lo, \o€)) and there exist a unique X € Ty,gand z € AutF(GF)K’L’)\Og such that x¥* =
X. By Lemma it follows that AutF(GF)K’L’)\Og < AutF(GF)K’L7y0 and hence yz €
Aut]F(GF)K,L,yO. Next, for i = 1,2 consider x; € Ty,¢; with A¢; € T such that x; = x§ with y €
Autp(GT)k 1y, In particular x1 € E(KJ', (Lo, Aoé1)) n E(KE, (Lo, Mo&2)Y) and Proposition
implies that \o&; = (Ap&2)Y” for some x € Nk, (L)¥'. Moreover, Lemma yields
x € Nk, (L)§0 and by the choice of T it follows that A\g&1 = M\p&2. Now yx € AutF(GF)KL,)\O&
satisfies x1 = X" and the choice of Ty¢, implies that x; = x2. This proves the claim.

Next, using Proposition , for every Mo € T, x € Ty,¢c and x € Autp(GF )KLy, we define

(Lo 2oy (X7) = (Lvoé)(X)x'
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Noticing that U (L o )(7') is an Autp(G’)k 1y, transversal in

Irr (N, (Lo)" | Do)

we deduce that U (L o) is an Autp(G")k 1, y,-equivariant bijection. The remaining properties

follow directly from the corresponding properties of the bijections oK (K Aof) given by Proposition
O

Using Theorem we rewrite the relations on character triples given by Corollary
replacing Ko x Autp(K{) with (G x Autp(GT))k.

Corollary 9.2.17. Consider the setup of Corollary[9.2.16 Then
(X0, KE,9) ~ier (Nox, (L), Nk (L), U, (9))
for everyd € E(KE', (Lo, V) and where X = (G x Autp(GT))k.

Proof. Fix ¥ as in the statement, let Y := K/ x Autp(K{") and consider the canonical maps
€: Yy - Aut(KE)

and
€: Xy — Aut(KD).

Define U := €1 (¢(Xy)) < Yy. By Corollary[9.2.16 we know that

(Y9, K§, ) ~kr (Ny, (Lo), Nig, (Lo), UF° 1 (9))
and applying Lemma 3.3.8(ii) we obtain

(U KG,9) ~ier (Nu (o), Nigy (Lo), (8 (9)).
Now Theorem implies that

(X0, K¢, ) ~xer (Nx, (Lo), Nig, (Lo), (1))
and this concludes the proof. O

Our next goal is to lift the bijection S to a similar bijection \Ilﬁ 5 To do so we need the

(L A0)
following preliminary result.

Lemma 9.2.18. Consider the setup ofCorollary with Vo = { o€ | € € Irr(LE/[L, L]F)}
and let Y(N\) := {\n | n e Irr (LY /[L,L]F)} (see Deﬁnition. Then

Irr (K" | £(K{, (Lo, Y0))) =€ (K", (L,Y(\)))

and
Irr (N (L)" | Do) = Irr (Nx (L) | Y(V)).
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Proof. Let Ao € Vo and consider x € Irr(K | £(KZ', (Lo, Mo€))). Since LY /[L, L]¥ is abelian,
¢ has an extension ¢ € Irr(LY/[L, L]¥"). By [GM20, Corollary 3.3.25] and [Isa76} Problem 5.3]
we obtain

Indky (R (M6)) = RE (Tndky (h06)) = RE (ndEy (20)2).

Then, by [[saZ6, Problem 6.2] there exists 1) € Irr(L/L{") such that y € £(K¥, (L, \n€)) with
né e Irr(LY/[L, L]F). Assume now that x € £(K!', (L, An)) with A\ € Y(\). Applying [GM20,
Corollary 3.3.25], we obtain

Resgg (R}f()\?’])) = RE)O (Resi(g()\n)) )

By Clifford’s theorem we deduce that ResK r(x) has an irreducible constituent in RKO (AJ€) for
some g € LY and ¢ := nLr € Irr (LY /L, L]F) This proves the first equality.

Next, consider 1) € Irr(Nk (L) | An) with A € V(). Since An lies above \o&, with & :=
L € Irr (LY /[L, L)), we deduce that ¢ € Trr(Ng (L)Y | )p). Conversely suppose that
¥ e Irr(Ng (L) | \o€) with M\g& € Yy and consider an extension 7, € Irr(LF /[L, L]F ) of £. By
[[sa76, Problem 5.3 and Problem 6.2], we conclude that there exists 7 € Irr(L /L") such that v
lies above A1y 7y. Since 1) := 117 € Irr (LY /[L, L]¥) the result follows. O]

Corollary 9.2.19. Assume that Hypothesis(7.2.7 holds for (G, F') and that G is simply connected,
let K be an e-split Levi subgroup of G and suppose that Condition[9.1 holds at the prime { for every
irreducible rational component of (K, F). Let (L, \) be an e-cuspidal pair of K and consider Y (\)
asin Deﬁnition Then there exists a defect preserving Auty (G* )KL, y())-equivariant bijection

Uit € (K (L,Y(N)) - Ir (N (L) | Y(V))

such that
(X9, KT 9) ~gr (Nxﬁ(L) Nk (L)", 0§, A)(19))

for every ¥ e E(KF, (L, Y()\))) and where X := (GF x Autp(GF))k.

Proof. Define K := [K,K], Ly := L n K, fix an irreducible constituent \y of )\L(z): and set
Vo = {No€ | € e Trr(LY/[L,L]F)}. We apply Propositionwith A = G x Autp(GT),
Ag = Na(L), K := K}, Ky = Nk, (L) = Nk, (Lo)", G == G, X = (GT x Autp(GT))k,
S = E(KL, (Lo, M), So = Irr(Ni, (Lo)" | W), V = (G x Autp(G))k s and U :=
(G % Autp(GT))k 1.y, Observe that properties (ii) and (iii) of Propositionare satisfied
by Proposition and Lemma Consider the bijection between S and Sy given by
Corollary orollary rder to apply Propositionwith J := K" we need
to show that Cx (Q) < X, for every radical ¢-subgroup @ of Jy = Nk (L)Y By Lemma
(i), we know that L = Cg (F) with F := Z°(L){ and hence E < Oy(Ng(L)). Since Q is
a radical /-subgroup of Jy, it follows that F < ) (see [Dad92, Proposition 1.4]) and therefore
Cx(Q) <Cx(F) <Nx(E)=Nx (L) = X,. We can thus apply Proposition[9.1.5together with
Lemmato obtain an Auty(G* )K,L.y()\)-€quivariant bijection

Ty € (K (L,Y(N)) = Trr (Nk(L)F | Y(V))
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such that
(X9, K", 0) ~cr (Nx, (L), Nx(L)", W ) (9))

for every ¥ € £(K¥, (L,Y()\))). Moreover, \I/& ») preserves the defect of characters by Remark
9.1.6| To conclude, notice that by a Frattini argument and using Clifford’s theorem and Lemma
y g g
[9.2.15] we have
Autr(GF)k Ly < L Aute(GF)k 1,y ()

and therefore the bijection ‘Ifg ) i Autp(GF )K,L,y())-equivariant. O

Now, applying Proposition[9.1.5] we show how to lift the bijection given by Corollary toa
bijection

QL T (H | E(K,(L,Y(V))) > Tr (Ng(L) | Y(V)

for every K" < H < Ng(K)¥". The proof of the next result is similar to the argument used in

Corollary

Proposition 9.2.20. Consider the setup of Corollary and let KI' < H < Ng(K)¥". Then
there exists a defect preserving Autp (G HK,(L,)) -€quivariant bijection
KH |
Qe b (H | €(K7(L,Y(N))) » Lr (Ng(L) | Y(N))

such that
(Nx(H)y, H,x) ~g (Nx(H,L)\,Ng(L), )

for every x € Irr(H | (K, (L, Y()\)))) and where X := (G x Autp(G))k.

Proof. We apply Proposition [9.1.5/to the bijection given by Corollary[9.2.19 We consider A :=
G % Autp(GY), G := G, K := KF', Ay := N4 (L), X := Nu(K), S := E(KF, (L, Y(\))),
So = Iir(Ng (L)Y | Y(\)), U = Xy, V = Xs and J := H. By Propositionand
Lemma we deduce that conditions (ii) and (iii) of Proposition hold. Next, let Q
be a radical ¢-subgroup of N (L). Set E := Z°(L)!" and notice that under our assumptions
L = C¢ (E) by Lemma(7.1.5] Then E < Oy(N (L)) < Q because Q is radical and we conclude
that Cx(Q) < Cx(F) < Nx(L) = X(o. We can therefore apply Proposition to obtain

an Aut]F(GF ) H,K,LY())-€quivariant bijection Qg’ﬁ{) as in the statement. Notice that Q?L’I/{) is

defect preserving by Remarkwhile it is Autp(GT) H,K,(L,))-€quivariant because
Autr(G") i (L) < Aute(GT) gk Ly
by Lemma[9.2.15| O

We can finally prove the main result of this section. Theorem[9.2|will be an immediate consequence
of the following result. Notice that when G is simple, simply connected and G¥'/Z(G!") is a
nonabelian simple group, then Autp(G*) = Aut(GF) (see [GLS98, 1.15] and [CS13] 2.4]).

Theorem 9.2.21. Assume that Hypothesis[9.2.11 holds for (G, F') and suppose that Condition|[9.]]
holds at the prime ¢ for every irreducible rational component of any e-split Levi subgroup of (G, F).
Then Conjecture holds at ¢ for GT' with respect to GT' 9 GT' x Autp(GT).
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Proof. We start by noticing that, under Hypothesis in order to prove Conjecture
it’s enough to check the requirements of Proposition (see also Remark[9.2.12). Set A :=
G x Autp(GY) and fix B € BI(G!") with nontrivial defect. Let 77 ; be an Ap-transversal in
the set

Si+={(L,M,Y(n)) |[LeL(G)s,(M,p) e CP.(B) with M < L}

where L is the smallest term of L. For (L, M, Y(p)) € T1 4, let T(l’ MY pe an A (Mop)”
transversal in the set {9 € It (G | (LY, (M, Y (1)))) | bl(ﬁ)GF = B}. Then

To= {LMY (), 0) | (LM Y() € Ti o0 e TV D)

is an Ap-transversal in £Y(B),/G.

Fix (L,M, Y (1)) € T1,+ and let L be the smallest term of L. If L = M, then define K to be the
chain obtained by deleting L from L and denote by K the final term of K. Since B has nontrivial
defect, Proposition [7.4.1implies that M < G and hence the chain K is nonempty. On the other
hand if M < L, then define K to be the chain obtained by adding M to L. In this case the last
term K of K coincides with M. This construction yields an A p-equivariant bijection

A:S =81 -
where
Si-={(K,N,Y(v)) | Ke L(G)-,(N,v) e CP.(B) with N <K}
with K the smallest term of K. In particular the image 77 — of 77 + under A is an Ap-transversal

in &1 —. Moreover, notice that if A((IL, M, Y(x))) = (K,M, Y (1)), then we have

Ap (M) = Ax, (M- (9.2.3)

Next, consider (L, M, Y (1)) € 71 1 and (K, M, Y(p)) := A((L,M, Y())) € Ti,— with (M, p) €
CP.(B). Assume first that L. = M. By Proposition applied with H = GL, we obtain a
bijection

Q(M i (G | € (K, (M, V(1)) - Trr (Ngr (M) ‘ V().

Since M = L, notice that N r (M) = Gl and thatTrr(G{" | (L, (M, Y()))) = Ir(Ngr (M) |
Y(n)). We define

KMY(1) ._ [ K Gic (L, M,Y(1))
7-27_ ._ (Q(Mnu)) (7- )

Similarly, if M < L, then Propositionapplied with H = Gf yields a bijection

L (G | £ (L Y00))) ~ I (N () | Y00).

Noticing that NG{ (M) = Gﬂlg and recalling that the last term K of K coincide with M, it follows
that Irr(NGf(M) | V() =Ir(GE | E(KE, (M, Y(12)))). In this case we define

Q

KMY(1) ,_ ol G{ (L,M,Y(1))
7-2:— (M u) (T )
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Since ESH;’M’y(“)) is an Ap (np, ) -transversal in the set {1 € e (G | E(LE, (M, Y ()))) |
bl(9)S" }, it follows by Proposition|9.2.20/and that TQ(’Hf’M’y(“)) is an Ag (n,,)-transversal
in the set {x € Ir(GE | (K, (M, Y(1)))) | bl(x)¢" = B}. In particular the set

T = {EMY(),x) | (KM, V() e i, x e TLoMY0D

is an Ap-transversal in £¢(B)_/G in bijection with 7;. By setting

A (MY (), 9)") = (K MY (), )

for every x € Ap and every (L, M, Y(u), ) € T, corresponding to (K, M, Y(u),x) € T-, we
obtain an A g-equivariant bijection

A:£4B),/GF > £4(B)_/GT.

It remains to check the condition on character triples. Let (L, M, Y(u),4) and (K, M, Y(u), x)
be as above. Without loss of generality we may assume that M < L and so K = M. By the
construction given in the previous paragraph and using Proposition[9.2.20|and Lemma 3.3.8](ii)
we know that

(AL, Gf,9) ~GrF (Ak . Gk, X)- (9.2.4)

First we show that

(AL, G, 9) ~ar (Akx, Gk, X)- (9.2.5)

To do so, applying Lemma [3.3.10] it is enough to check that
CGFA]L’,g (D) < AK,X (9.2.6)

for some defect group D of bl(x). By we already know that C 4, , (D) < Ak, and noticing
that Ak , = Ak y it remains to show that Cgr 4, (D) < AL y. Write L = {G =L > > Ly, =
L} and set E; := Z°(LZ~){. By the argument used at the end of the proof of Proposition
and noticing that GE < GI', we have E; < D and hence Cgra, ,(D) < Cgry, ,(F;) for every
i =0,...,n. This implies that Cgr 4, ,(D) < (GFAL )L = A]Lﬂg and so we obtain (0.2.6). We

can now apply Lemma [3.3.10|to (9.2.4) in order to obtain (9.2.5). Moreover, by Lemma we
deduce that Z := Ker(Jz(gry) = Ker(xz(gr)) and, since under our assumption Z(GF) has

order coprime to /, it follows from Lemma [3.4.7)(see also Lemma [6.1.6) that
(AL0/2,GL]Z,0) ~ar)z (Axx/ 2, Gic| Z,X)
where 9 and ¥ correspond to 1) and  via inflation of characters. This shows that all the conditions

required by Proposition[9.2.10| are satisfied and hence Conjecture[9.1.1holds for B with respect
to G x Autp(G?"). This completes the proof. O]
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9.2.3 Proving the nonblockwise Character Triple Conjecture

It should be clear to the reader that, with minor changes, all results that are deduced in the
presence of N-block isomorphic character triples admit versions which hold when the starting
character triples are (only) V-central isomorphic. For instance, with some natural adjustment,
Proposition clearly holds if we replace N-block isomorphic character triples with /NV-central
isomorphic character triples. Similarly, a nonblockwise version of the Character Triple Conjecture
can be introduced by requiring the involved character triples to be N-central isomorphic instead
of N-block isomorphic (see Conjecture [3.5.5). As mentioned in Section the nonblockwise
Character Triple Conjecture could be used as an inductive condition for the nonblockwise version
of Dade’s Projective Conjecture (see Conjecture [2.5.4).

By the argument used in the previous section, we can show how to deduce the nonblockwise
Character Triple Conjecture (see Conjecture(3.5.5) from the following weaker version of Condition

Condition 9.2.22. Let G, F': G - G, £ and e be as in Notation [7.1.1)and consider an e-cuspidal
pair (L, \) of G. Then there exists a defect preserving Autp(G* )(1,»)-équivariant bijection

QG € (G, (LX) = Trr (Ne (L) | A)

such that
(XI%GFvﬁ) NE}F (NXg(L)>NGF(L)7Q(GL,)\)(19))

for every ¥ € £ (GF, (L,))) and where X := G x Autyp(GF).
We say that Condition[9.2.22|holds for (G, F') at the prime / if it holds for every e-cuspidal pair

(L, A) where e is the order of ¢ modulo £. Then, proceeding in the exact same way as to prove
Theorem[9.2] we obtain the following result.

Theorem 9.2.23. Let G, F: G - G, ¢ and e be as in Notation and assume that Hypothesis
is satisfied with respect to (G, F). If Condition[9.2.22 holds at the prime ( for every irreducible
rational component (H, F') of every e-split Levi subgroup of G, then Conjecture[3.5.9 holds at £ for
G with respect to GF' < G x Autp(GF).
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Criteria for Condition 9.1 and
Condition 9.2.22

In Theorem 9.2 we have shown that, in order to prove the Character Triple Conjecture and
hence the inductive condition for Dade’s Conjecture (see Definition , it is enough to check
Condition[9.1] This significantly simplifies the verification of the inductive condition for Dade’s
Conjecture for quasisimple groups of Lie type. Similarly, Theorem[9.2.23|shows how Condition
a weak version of Condition implies the nonblockwise Character Triple Conjecture
(see Conjecture[3.5.5). In this chapter we prove criteria for Condition 9.1 and Condition
(see Theorem and Theorem [10.1.8). In particular, we show that the main obstruction to
the validation of Condition [9.1]and Condition is given by some technical requirements
related to the extendibility of characters of e-split Levi subgroups (see Definition[10.2.1]and [CS19|
Definition 2.2]). This approach has already proved effective in dealing with the inductive condition
for the McKay conjecture (see [Spa12], [CS13], [MS16l], [CS17b], [CS17a], [[CS19]) as well as with
the inductive conditions for the Alperin-McKay and the Alperin Weight conjectures ([Spa13al,
[Mal14]), [SF14], [CS15]}, [KS16al], [KS16bl], [BS20b]). It is therefore a natural and necessary step
to extend this approach to Dade’s Projective Conjecture and its inductive condition.

The requirements for the criteria that we will prove (see Assumption [10.1.1{and Assumption
10.1.4) are roughly divided into two parts: the first part requires the existence of certain bijections
with good properties (see Assumption [10.1.1] (ii) and Assumption [10.1.4](ii)), the second part

requires some conditions on extendibility of characters of e-split Levi subgroups (see Assumption
(iii)-(iv) and Assumption [10.1.4](iii)-(iv)). In Chapter [8] we have shown how to obtain the
bijections required by these criteria by assuming the existence of certain extension maps (see
Corollary [8.2). Therefore, it only remains to check the requirements on extendibility of characters.
This remaining problem is part of an important ongoing project in representation theory of finite
groups of Lie type.

Let G, F': G - G,/ and e be asin Notationand consider a regular embedding i : G - G
compatible with F'. Consider the subset Autp(GT) of automorphisms of G defined in Section
6.1.5/and observe that, for every F'-stable subgroup H of G, the stabilizer of H in Autp(GT) is

139
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well defined and is denoted by Autp(GT ). Recall that if L is a Levi subgroup of G, then we set
L := LZ(G). Moreover, notice that if G is simple of simply connected type and G¥'/Z(G!") is a
finite nonabelian simple group, then Autp(G*) = Aut(GF) (see [CS13| 2.4]).

As a consequence of the criteria proved in this chapter (Theorem [10.1.3]and Theorem and
applying Corollary we can then show how to obtain Condition by assuming some
conditions on extendibility of characters (see Definition [10.2.1). These conditions should be
compared with those introduced in [[CS19| Definition 2.2].

Theorem 10.1. Suppose that G is simple, simply connected not of type Eg, E7 or Eg and consider
L eT(G,F) with¢ > 5. Let L be an e-split Levi subgroup of G and suppose that the following
conditions hold:

(i) maximal extendibility (see Deﬁnition holds with respect to G < G and to Ng(L)f «
Ng(L)";
(ii) the requirement from Definition[10.2.1 holds for L < G;

(iii) there exists an (Autp(GT)y, x Irr(GY /GT))-equivariant extension map for Cusp, (L")
with respect to LT < Né(L)F;

then Condition holds for every e-cuspidal pair (L, ) of GF'.

A similar result can be obtained for Condition For this, we need to add some additional
block theoretic requirements (see [[CS15, Theorem 4.1 (v)] and [BS20b, Theorem 2.4 (v)]). These
additional restrictions can be shown to hold for unipotent blocks and blocks with maximal defect
and in general for every group not of type A, D or Eg (see Remark[10.1.5).

Theorem 10.2. Suppose that G is simple, simply connected not of type Eg, E7 or Eg and consider
(eT(G,F) with{ > 5. Let L be an e-split Levi subgroup of G, B an {-block of G¥" and suppose
that the following conditions hold:

(i) maximal extendibility holds with respect to G 4 G and to Ng(L)¥ < Ng(L)F;
(ii) the requirement from Definition[10.2.1 holds for L < G;

(iii) there exists an ﬁAutF(GF)L w Irr(GF /GF))-equivariant extension map for Cusp, (LY
with respect to L¥ < Ng (L)

(iv) the £-block B satisfies either
(a) Out(G)g is abelian, where B is the GF -orbit of B, or

(b) for every subgroup G¥ < H < GF, we have that every block C of H covering B is
GF -invariant.

Then Condition 9.1 holds for every e-cuspidal pair (L, \) € CP.(B) such that £(G¥, (L, )\)) =
E(GY B, [5]), where s e L™ and X € E(LY,[s]) (see the discussion following Theorem

As a corollary, by using [BS20b, Theorem 1.2], we obtain Condition and Condition|[9.2.22| for
some cases in type A.
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Corollary 10.3. Let { be a prime, q a prime power and € € {+1,-1} such that { + 3q(q - €). Set
G :=SL,(F,), G := SLy, (€ - q) and assume that G is the universal covering group of PSL,,(¢-q).
If B is a block of G such that, either

(i) Out(G)p is abelian, where B is the GL,, (€ - q)-orbit of B; or
(ii) B is unipotent; or
(iii) B has maximal defect.

Then Condition[9.2.22 holds for every e-cuspidal pair (L, \) € CP(B) and Condition|9.1 holds for
every (e, {")-cuspidal pair (L, \) € CP.(B).

Similarly, by using the main result of [Bro], we obtain Condition[9.1and Condition [9.2.22 for
some cases in type C.

Corollary 10.4. Let ¢ be a prime and q a prime power such that { + 6q. Set G := SpQR(E),
G := Spy,,(q) and assume that G is the universal covering group of PSp,,(q), eg. n > 2 and q
odd. Then Condition[9.2.22 holds for every e-cuspidal pair of G and Condition[9.1 holds for every
(e, ") -cuspidal pair G.

10.1 The criteria

It will be clear to the experts that the bijections involved in Condition[9.1]and Condition
are closely related to the bijections used to prove the inductive conditions for the McKay Con-
jecture and the Alperin-McKay Conjecture for simple groups of Lie type. These bijections were
introduced, under certain assumptions, by Malle in [Mal07] and [Mal14]] and later strenghtened
by Cabanes-Spath and Brough-Spath in order to obtain the inductive conditions for the above
mentioned conjectures for some cases for groups of Lie type A (see [CS17a] and [BS20b]). The
main idea that allows us to tackle inductive conditions for groups of Lie type comes from a
criterion introduced in [Spa12, Theorem 2.12] and in particular in [Spa12, Lemma 2.11] which
allows the construction of projective representations.

In this section, we are going to generalize this approach and obtain similar criteria for Condition
and Condition Due to some obstructions arising in Clifford theory for blocks, we can
only prove a criterion for the stronger Condition[9.1 by adding some additional restrictions on
the type of blocks considered which are analogous to the ones introduced in [[CS15, Theorem
4.1], [BS20b, Theorem 2.4] and [BS20a, Theorem 4.5]. The criteria proved in this chapter should
be compared to [Spa12, Theorem 2.12], [[CS15, Theorem 4.1], [BS20a, Theorem 2.4], [Ruh21al
Theorem 2.1] and [Ruh21bl Theorem 9.2].

Throughout this section we will be assuming Hypothesis|9.2.11|(see also Remark|9.2.12).
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10.1.1 The criterion for Condition[9.2.22

We start by dealing with Condition[9.2.22] The results obtained in this section will then be used
in the next one to prove the criterion for Condition 9.1 under additional restrictions.

As recalled in Section|[6.1.4] the group K from Lemmal[6.1.3|(v) (see also (6.1.2)) is isomorphic to

the group of linear characters of GI" via
K- Irr(éF/GF)
2 Za-

Since for every e-split Levi subgroups L of G we have Ng (L) /Ng (L) ~ G /GT restriction
of characters then gives an isomorphism

K - Irr (Ng(L)"/Na(L)")
Z = ?NG(L)'
and hence the group K acts on the sets of irreducible characters of G and Né(L)F .

We now introduce the requirements for our first criterion.

Assumption 10.1.1. Let (L, \) be an e-cuspidal pair of G and consider
G:=E(GF,(L,)\)) and N :=Trr(Ng(L)" | A)

and

J:: Irr(éF ‘ g) and N := ITT(NC‘,(L)F | N)
Assume that:

(i) (a) Thereisa semidiregt decompgsition (N;f x A, with A a finite abelian group, such that
Car 4(G") = Z(G") and GF A/Z(G*) ~ Aut(G"') via the natural map;

(b) Maximal extendibility holds with respect to G < G¥';
(c) Maximal extendibility holds with respect to Ng (L) 4 N& (L)

(i) For A:= (GF A)(L,») there exists a defect preserving (A x K)-equivariant bijection

such that Irr (YZ(C‘,F)) =Trr (Q&A)(y)z(@)) for every X € G.
(iii) For every ¥ € G there exists y € G N Irr (Ygr ) such that:
(@) (GFA) =Gl Ay
(b) x extends to x’ € Irr (GF AX).

(iv) For every ﬂ; ¢ N there exists 1) e N 0 Irr (JNG(L)F) such that:
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@) (GFA), , =Ng@)F (GFA), s

(b) 7 extends to 1) € Irr ((GF N A)L,w)‘

Our aim is to show that Assumption [10.1.1/implies Condition[9.2.22| Before giving a proof of this
result, we show that Assumption|10.1.1(iii.a) and Assumption|10.1.1|(iv.a) are equivalent in the
presence of an equivariant bijection Q& NE G- N.

Lemma 10.1.2. Assume Hypothesis[9.2.11} Let (L, \) be an e-cuspidal pair of G and suppose that
there exists a (G A) , \)-equivariant bijection

0G0 (G, (L,A) = Trr (Na(L)" | A).
Ifx e £(GF,(L,\)) and ¢ := Q&ﬁ)\)(x), then
(G"4), = G A, (10.1.1)

if and only if . o
(GTA)p, =Ng(@L)y (G A) - (10.1.2)

Proof. As the two implications can be shown by similar arguments we will only show that (10.1.1)
implies ((10.1.2). To start, consider the subgroups

T:=Ng(L)" (G{L,)\),X : (GFA)(L,,\),X) =Ng(L)" (é{L,)\)ﬂ/} : (GFA)(L,/\),w)

and
V= Na(L)(GFA) sy = Na (@) (GFA) @)

where the equalities follow since Q(Ci ") is equivariant by assumption.

Define U(x) = (GFA)L,, and U(¢)) = (GF A), 4. We claim that U(x) = U() = U. To
prove this fact, notice that it is enough to show that U () and U (v) are contained in V, in fact
this would imply U(x) = U(x) NV = (GFA)LnV =U@)nV = U(®). If z € U(x), then
x € E(GF (L, \)) nE(GT, (L, \)?) and, by Proposition there exists y € GI' such that
(L,)\) = (L, \)*¥. Notice that y ¢ Ng (L) and hence = € V. On the other hand, if z € U(¢),
then 1 lies over A% and by Clifford’s theorem \*¥ = ), for some y € Ng(L)¥". Also in this case
x € V.Now U(x) = U(v) and we denote this group by U.

Next, we claim that 7' = U. If this is true, then we deduce that T" < NG(L)i(GFA)Lyzﬁ <U=T

and therefore holds. First, observe that T < U. As T n G¥ = Ng(L)f = Un GF
and T < U < (GFA),, it is enough to show that TG = (G¥'A),. First, repeating the same
argument as before, a Frattini argument shows that

~F _F (AF
(G7A) =G " (G"A) 1, (10.1.3)
and B B
Gy =G G(L - (10.1.4)
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Then using the hypothesis we finally obtain

1013

(GF A) LY GF (GFA) L)

GF(GF(GFA) )
X/ (L,\)

= ar QMG (6RA),)

= GFG(L N (GFA)
=GI'T.

(L,2),x

This concludes the proof. O

We are now ready to prove the criterion for Condition[9.2.22] It will be clear from the proof of this
result that, by using Lemma [10.1.2] only one amongst Assumption (ili.a) and Assumption
(iv.a) is actually necessary. In fact, the equivariant map required in Lemma is
constructed in the following proof independently form the choices of characters satisfying

Assumption [10.1.1(iii.a) and Assumption [10.1.1](iv.a).

Theorem 10.1.3. Assume Hypothesis[9.2.11 and Assumption[10.1.1 with respect to an e-cuspidal
pair (L, \) of G. Then Condition|9.2.22 holds for (L, \) and G.

Proof. We start by ﬁxinNg an (A~l>< K)-transversial Tglo inG. As ﬁ&, ) 18 (Ax lC)-fquivariant,
we deduce that the set Ty, := {Q(GI'W\) (X) | X € Tg1o} is an (A x C)-transversal in . For every

X € Tglo, we chose a character x € G nIrr(Xgr) satistying Assumption (iii). Denote by
Ty, the set of such characters x, where X runs over Ty),. Similarly, for every 1 € Tj,, fix a
character ¢ e N nIrr(¢ o(1)F) satisfying Assumption [10.1.1/(iv) and denote by Ty, the set of
such characters ¢. Observe that Tg, (resp. Tjoc) is an A-transversal in G (resp. in \V). In fact, if
X € G, thenlet Y ¢ G lying over . Then there exists X € Tglo such that Xy = ¥*?, for some x € A
and z € K. Let X € Ty, correspond to Xo and observe that x* and x lie under Xo- By Clifford’s
theorem there exists y € G such that y*¥ = xo. Now x € E(GF, (L, \)) n E(GF, (L, \)™)
and, by Proposmon 5] there exists u € G such that (L, \) = (L, \)®". Set v := zyu and
notice that xo = x" and that v € A. Moreover, if xo = x* for some X, xo € Ty, and z € A,
then X and X* lie over x, where Xj (resp. X) is the element of Tglo corresponding to X (resp.
X)- Therefore Xy = X*%, for some z € K, which implies Xy = X and so xo = x. This shows
that Ty, is an A-transversal in G. This argument also shows that, for every X ¢ Tglo, there

exists a unique character x € Ty, N Irr(Xgr) and that, for every x € Tyo, there exists a unique

X € Tglo N Irr(XG ). A similar _argument shows that T),. is a transversal in \ and that the
correspondence between ¢/ and w defines a bijection between T),. and ']I‘IOC

Now, setting
08 ) (") = v°
for every x € A and x € Ty,, where 1 is the unique character in Ty, lying below 17; = (NZ& ) (X)

and Y is the unique character in Tglo lying over X, defines an A- equlvarlant bijection between G
and NV. By Assumptlonm (1 a) this means that Q(L ) i Autp(GF )(L,))-equivariant.
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To show that Q((i ») Preserves the defect, we use Assumption (i.b) and (i.c). Clearly it’s
enough to show that d(x) = d(¢), for x € Ty, and ¢ := Q(GI" )\)(X) € Toc. Let X (resp. ) be the
unique element of Tg10 (resp. Tioc) lying over x (resp. ). Then Q(L N (X) =v¢ and d(X) = d(v))
by Assumption 1/ (ii). Moreover, since G /G ~ Ng(L)¥/Ng(L)* is abelian and using
Assumption ) and (i.c), we deduce that the Clifford correspondent X € Ilrlr(éf(7 ) of ¥

over Y is an extension of x and, similarly, that the Clifford correspondent ¢ € Irr(Né(L)i ) of ¢
over 1 is an extension of . As a consequence

2400 _ pd(X) | ‘éi : GF‘@

and

(10— 1) NG (L)F s N (L),

Therefore, as the defect is preserved by induction of character, we obtain d(¥) = d(X) = d() =
d(v) and it remains to show that \G§ : G, = |Né(L)fZ : Ng(L)¥'|,. This follows from
the proof of Lemma in fact there it is shown that Né(L)fZ = Né(L)§ and therefore
G /G" x Ng(L);/Na(L)" = Ng (L), /Na(L)".

Next, we prove the condition on character triples. Applying a simplified version of [Spa17,
Theorem 5.3] adapted to IV-central isomorphic character triples (this immediately follows by part
of the proof of [Spa17, Theorem 5.3)), it is enough to show that

((GFA), G" x) ~&r ((GF ALy, Na(L)",0f ) (0). (10.1.5)

Moreover, as the equivalence relation ~¢, » is compatible with conjugation, it’s enough to prove
this condition for a fixed x € Ty, and ¢ := Q((i’)\) (x) € Toe.

First of all, notice that the required group theoretical properties are satisfied by the proof of
Lemnla In fact, there we have shown that (G A)1, ,, = (GF A)y, 4 and that (G A), =
GF(GF A)y, ., while

Cara, (G") <Cgryy (L) <(G"4), =(G"A),

X

To construct the relevant projective representations, we make use of [Spa12 Lemma 2.11]. As
before, consider the corresponding X € Tglo and 1/} € T}o. with QG (L)) (X) = % X lying over x and
0 lying over 1. Furthermore, consider the Clifford correspondent ¥ ¢ Irr(G§ | x) of X and the
Clifford correspondent 1) ¢ Irr(Né(L)i | 1) of Y. Let Dy, be a representation affording Y and
notice that, by the choice of x and using Assumption[10.1.1](iii.b), there exists a representation
D’ , affording an extension ' € Irr(G*" A, of x. Similarly, let Dioc be a representation affording
n and observe that, by the choice of 1), there is a representation D] . affording an extension
¢ e rr((GFA)L.y) of 1. Applying [Spal2) Lemma 2.11] with L = GF, T := (~}§, C:=GFA,,
X = (GFA) y and recalling that X = LC because Assumption(iii.a) holds for x, we deduce
that the map
Pglo : (GF.A)X - GLX(I)(C)
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given by Pyo(z122) = glo(:cl)Dglo(xz), for every z; € éi and 72 € GI' A, is a projective
representation associated with y whose factor set oy, satisfies

glo(T122, y1y2) = HE (Y1) (10.1.6)

for every 1,y € GF and 72,92 € GI'A,, where LEY € Irr(éF/GF) is determined by the

equality Y = ,u,m X” via Gallagher s theorem. In a similar way, considering L := = Ng(L)F,
L Ng(L )X, = (GF AL, X = (GFA)1,, and noticing that X = LC because Assumption
(1V a) holds for 1), we deduce that the map

Pioc : (G"A)p, = GLy1)(C)

given by Pioc(2172) = Dige(w1) D}, (22), for every z; € Né(L)fg and 72 € (GFA)L,, is a
projective representation associated with ¢/ whose factor set o, satisfies

Qoc(T172, ZYy1y2) = Hmc(yl) (10.1.7)

for every z1,y; € NG(L) and 9,12 € (GFA)L ~» Where MIOC € Irr(NG(L)F/Ng(L)F) is
determmed by ¢ = ulocwm In order to obtain the condition on factor sets required to prove
we have to show that the restriction of ag), to (G A)1, , x (GFA)L,, coincides with
Qloc- Using (10.1.6) and (10.1.7), it is enough to show that

loc

glo _
)NG(L)g = K

(18

loc

for every x € (GF A)L  and where Y = u$ elo9r and ¢ = M:c . To prove this equality, since
(GF AL, = N(;(L) A, (see the proof of Lemma , we may assume x € A,. Then, we
conclude since Q% (L) is (A x KC)-equivariant.

To conclude we need to check one of the equivalent conditions of Lemma 3.3.3] Recalling that
Car A)X(GF ) = Z(GF) by Assumption(i.a), if (410 and (o are the scalar functions of

Pg1o and P, respectively, we have to show that (g1, and (jo coincide as characters of Z(éF ).
By the definition of Py, it follows that (i, coincide with the unique irreducible constituent v of
SC\Z( &r)- Moreover, by Clifford theory we know that v is also the unique irreducible constituent
of Xz(gr)- Therefore, we conclude that {Calo} = Irr(yz(é F)) and a similar argument shows that

{Goc} = Irr({/;z(é F)). Then, Assumption (ii) implies that (41 = Cloc. This completes the
proof. O

10.1.2 The criterion for Condition

Our aim is now to prove a criterion for Condition[9.1] To do so, we will sharpen the argument used
in the proof of Theorem|[10.1.3] As mentioned at the beginning of Section [10.1] some additional
restrictions will be required in order to deal with Clifford theory for blocks.

Assumption 10.1.4. Let (L, \) be an e-cuspidal pair of G, suppose that £ € I'(G, F') and set
B :=Dbl(A\)E". Consider

G:=E(GF,(L,)\)) and N :=Trr (Ng(L)" | ))
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and set

G:= Irr(éF ‘ g) and N := Irr(Né(L)F | N)
Assume that:

(i) (a) There is a semidirect decomposition G¥ x A, with A a finite abelian group, such
that C gr 4y,/2(G717) = Z(GF)/Z and (G A) 7/Z(G") = Aut(GF/Z) via the
natural map for every Z < Z(G!") (see Lemma ;

(b) Maximal extendibility holds with respect to G < GF,
(c) Maximal extendibility holds with respect to Ng (L) < N (L)

(i) For A := (GF A) (L, there exists a defect preserving (A x K)-equivariant bijection
~c¢ 5
Q(L,A) . g - N
such that, for every X € G, the following conditions hold:

@ T (Yzr)) = 1 (9, ) (Vzar) )
~ GF
(b) b1 (%) = bL(TG, ,, (D)
(iii) For every X € G there exists X € Irr (Xgr ) such that:
y G
(@) (GFA) =Gl Ay
(b) x extends to x' € Irr (GF.AX).
(iv) For every ¢ € N there exists 1) € N nIrr (QZN o (L) F) such that:

(a) ((EFA)W = Ng (L)}, (G"A)

(b) 9 extends to 1)’ € Irr ((GF x A)L w).
(v) Assume one of the following conditions:

() Qut(GF )3 is abelian, where B is the G¥-orbit of B. In particular (iii) holds for every
G -conjugate of x (see the proof of [BS20a} Lemma 4.7]).

(b) for every subgroup G < H < G we have that every block C' € BI(H | B) is

G -invariant.

(vi) If s € LI and X € (LY, [s]), then G = £(GY, B, [s]) (see the discussion following
Theorem|[7.3.3).

Remark 10.1.5. Here we comment on Assumption[10.1.4] First, observe that (v.a) holds for every
block of G whenever G is a simple algebraic group not of type A, D or Eg. Next, notice that
condition (v.b) holds for blocks of maximal defect (see [[CS15| Proposition 5.4] and observe that the
proof of this result holds in general in our situation by Lemma|[7.1.5[ii)) and for unipotent blocks:
if B is a unipotent block of G, then there exists a unipotent character y € Irr(B). By [DM91}
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Proposition 13.20] we deduce that x extends to a character X € Irr(éF ).IFGF < H < GFandC
is a block of H that covers B, then we can find a character 1) € Irr(C) that lies above . Since
X is an irreducible character of H lying above ¥, we deduce that ¢ = XgZ for some z € K
corresponding to Zg € Irr(éF/GF) and where Zp is the restriction of Zg» to H. Then v is
G/ -invariant and therefore C' is G* -invariant. This proves that (v.a) holds for unipotent blocks.

Next, we point out that the character y from Assumption (iii) is not required to lie in G.
In fact, if such a character  exists, then a character with the same properties and lying in G
can always be found under Assumption (v)-(vi). To see this, fix Y € G and y € Irr(Xgr)
satisfying Assumption (iii). By the definition of G there exists xo € Irr(Ygr) N G. In
particular x and y are G’ -conjugate. Now, if (v.a) holds, then all GF -conjugates of y satisfy
Assumption [10.1.4] (iii.a) and (iii.b) according to the proof of [BS20a, Lemma 4.7]. Then yj is
the character we were looking for. If (v.b) holds, then B is GF-invariant and, since bl(xg) = B,
we deduce that bl(y) = B. On the other hand x € £(GF,[s]) by Lemma and therefore
x € Irr(B) n (G, [s]). By Assumption (vi) we conclude that y € G.

We now prove the criterion for Condition[9.1] This proof will make large use of the notion of
Dade’s ramification group. For every block b of a normal subgroup N of GG, Dade introduced a
normal subgroup G[b] of the subgroup Gy, such that G[b] < G, for every x € Irr(b). Here we use
the following equivalent definition given by Murai in [Mur13]] (see also [[CS15| Definition 3.1]).

Definition 10.1.6. For every N < GG and b € BI(G) define
G[b] = {9 € Gy ‘ Ap(o) (Q:[(N,g)(h)+) + 0, for some h € Ng}

where b9 is any block of (N, g) covering b (this definition does not depend on the choices of the
blocks b(9)).
See [Dad73]), [Mur13]] and [KS15] for further details on ramification groups.

Before proving the criterion for Condition we need the following result in which we show
how to choose transversals with good properties.

Proposition 10.1.7. Assume Hypothesis and Assumption|10.1.4 Let Tgk)Nbe any (Ax K)-
transversal in G and consider the (A x IC)-transversal Ty = {Q(L )\)()Ng) | X € Tgio} in N. Then
there exist A-transversals Tg1o in G and Tioc in N with the following properties:

(i) Every x € Ty, satisfies Assumption[10.1.4 (iii.a) and (iii.b);
(ii) Every € Tio satisfies Assumption[10.1.4 (iv.a) and (iv.b);

iii) For every x € Ty, there exists a unique X € Tg lying over x. Conversely x is the on
jii) F Y Telo th ] ique X € Ty, lying C ly he only
character of Tg1o lying under X;

(iv) For every i € Tio. there exists a unique 12 € Toe lying over 1. Conversely 1) is the only
character of T, lying under;

(v) Let x € Ty, and 1/)5 Tioc such that 5&7/\) (X) = {/F, where X is the unique character ofﬁglo
lying above x and 1) is the unique character ot T\ lying above 1). Then

— J
bl (X,) = bl (1/}N(~;(L)£m]> (10.1.8)
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for every G < J < G, where Y € Irr(éi) is the Clifford correspondent of X over x and
Ve Irr(Né(L)i) is the CLifford correspondent of ¥ over 1.

Proof. For every 1 € Ty, fix a character ¢ e N nIrr(¢yg o (1yF) satisfying Assumption (iv)

and denote by T, the set of such characters v, while 1 runs over Tj,.. As proven in Theorem
the set Tiq is an A-transversal in AV satisfying (iv) above. Next, for every X € Tgi,, we are
going to find a character x € G nIrr(Xgr ) satisfying Assumption|10.1.4|(iii.a) and (iii.b) and such
that

—~ J
bL(%s) = bl (Pngwyzns) (10.1.9)

for every G < J < C~}§ and where Y € Irr((~}§ | x) is the Clifford correspondent of Y over x
and 9 € Irr(Né(L)fZ | 1/))~15 the Clifford correspondent of ¢ over v with ) := Q(GI"’)\)()Y) and
1 € Ty corresponding to . Th~en, as shown in the proof of Theorem the set Ty, of such

characters x while X runs over Ty, will be an A-transversal in G satisfying (iii) above. Moreover
(v) will be satisfied by our choice.

We first prove the claim assuming Assumption [10.1.4|(v.a). We start by showing that, for every
X € Tg1o, there exists a character x € G N Irr(Xgr) such that

)éF[B]

bl (YGF[B]) = bl (JN(;(L)F[C] ) (10.1.10)

where Y € Irr(éfz | X) is the Clifford correspondent of X over x and ¢ € Irr(Né(L)i | 1) is the

Clifford correspondent of ¥ over 1) with ¢ := ﬁ& 4 (X) and ¢ € Ty, corresponding to ¥ and
C' :=bl(%)). Notice that, as pointed out in Remark under Assumption (v.a) such a
character x will automatically satisfy Assumption (ili.a) and (iii.b).

Set b := bl(\) and recall that, as every block of Ng (L) is L -regular (see Lemma|9.2.5), C' must
coincide with bN¢ @) and therefore CG" = vG" = B. Moreover, for F := Z°(L)5, we have
Nu (L) = Ng(E) for every F-stable G < H < G (see Proposition . Then, for every block
Cy € BI(Ng(L)¥ | ©), the induced block By := C’PF is well defined and covers C¢" = B (see
[KS15, Theorem B]): in fact for a defect group D € §(C') we have E < Oy(Ng (L)) < D and
hence Cyr (D) < Ng(E)F = Ng(L)F.

Consider C := bl(¢)), B := bl(¥) and recall that B = (G)GF by Assumption(ii.b). Notice
that GF'[B] = Ng(L)[C]- G* (see [KS15, Lemma 3.2 (c) and Lemma 3.6]) and set C; :=
bl(JNG(L)F[C]) and By := C’IG F[B]. By the previous paragraph the block B; covers B and the
exact same argument can be used to show that B covers By . In particular there exists 1 € Irr(B;)
lying under Y. We claim that x; gr is irreducible and lies in G. If  is an irreducible constituent
of X1 g, then By covers bl(x). As B is G''[ B]-invariant, we conclude that bl(x) = B. Then
GF[B] < éfz and Assumption (i.b) implies that x; gr = x. Furthermore, since for every
GF<J< éfi there exists a unique irreducible character of J lying over x and under ¥, we
conclude that x; = Xg FlB] where X € Irr(é§ ) is the Clifford correspondent of X over x. To
conclude, since ¥ € G covers y; and hence Y, Lemmaimplies that x € £(GT, [s]), where
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se L and X € E(LY,[s]). By Assumption(vi) we conclude that y e GnIrr(Xgr) =G
and satisfies (10.1.10).

Next, we deduce from (10.1.10). First, since bl(’(:ENé(L)F‘[C]) is covered by bl(¢)), by the
same argument used before we deduce that bl({ENé(L)F[C])GF[B] = bl(j{@F[B]) is covered by
bl({p\)éi Since ég has a unique block that covers bl(YéF[B]) (see [Muri3] Theorem 3.5]), we

conclude that bl({b\)éi = bl(X). Finally, for GI" < J < GF observe that bl(X) is éF-stable
and therefore it is the unique block of J covered by bl(X) Since, again by using the previous
argument, bl (¢ (L)FOJ) is covered by bl(¢)¢ X = = bl(X) we conclude that x is a character

of Irr(XYgr) NG satlsfymg Assumption[10.1.4](iii.a) and (iii.b) and such that (0.1.9) holds. This
proves the claim under Assumption|[10.1.4)(v.a).

We now prove the claim under Assumption 4| (v.b). Consider x € Irr(Xgr) satisfying
Assumption [10.1.4] (iii) and notice that, as shown in Remarkm [10.1.5] under Assumption [10.1.4](v.b)

we automatically have x € G. As shown in the e previous part, the block B := bl(w,Z))GX is covered
by B := bl(X) and covers B. Since B covers B, we deduce that B and bl(Y) are G'-conjugate.
On the other hand our assumption implies that B is G -stable and therefore coincide with bl1(¥).

This shows that bl(¥) = bl(¢) )éi and, arguing as in the final part of the previous paragraph, we
conclude that holds. This completes the proof. O

We can finally prove the criterion for Condition [9.1]

Theorem 10.1.8. Assume Hypothesis[9.2.11 and Assumption[10.1.4 with respect to the e-cuspidal
pair (L, \). Then Condition[9.1 holds for (L, \) and G.

Proof. Choose transversals Tglo, Tioc, Tg10 and Ty, as in Proposition (10.1.7, As in the proof of
Theorem [10.1.3] setting

(L,\)(X )=

for every x € A and x € Ty,, where 1 is the unique character in Ty, lying below Y= Q(GL N X)

and X is the unique character in Tglo lying over x, defines an A-equivariant bijection between G
and NV. By Assumption (i.a) this means that Q(GI'” N is Aut(GF )(L,»)-équivariant.

The argument used in the proof of Theorem shows that Q(Ci A 18 defect preserving and

that Ker(xzgr)) = Ker(Q&A)(X)Z(GF)) for every x € G. By [Spai7, Theorem 5.3], we deduce
that to conclude the proofit’s enough to show that

((G"A)/2,.G"Z,X) ~grz ((GTA)Ly/Z Na(L)"/2,9), (10.1.11)

where v := Q8 (L, )\)( X)- Moreover, as the equivalence relation ~gr, is compatible with conju-
gation, it is enough to prove for a fixed x € Ty, and ¢ := Q& 2 (X) € Tioc. As before,
consider the corresponding Y € Tglo and ¢ € Ty, with ﬁ& ") (X) = z,? ¥ lying over y and ¢ lying
over 1. Furthermore, consider the Clifford correspondent ¥ ¢ Irr(Gfi | x) of X and the Clifford
correspondent ¢ € Irr(Né(L)i | ) of .
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Proceeding as in the proof of Theorem we can construct a projective representation
associated with

Pglo : (GF.A)X /Z - GLX(l)((C)
given by Pgio(Zx122) 1= 5g10(x1)Dé10($2) for every 1 € éf and 72 € (GF A),. Similarly, we

obtain a projective representation associated with 1
7_310(: : (GFA)L,X /Z — GL¢(1)((C)

given by Ploc(Zx122) = Dioe(1)DL (x2) for every x; € NG(L)i and 79 € (GFA)Ly.

loc

Moreover, by the proof of Theorem|[10.1.3] we know that
((G"A),/2,G"12,%) ~gr)z (GFA)Ly/Z Na(L)"/2,9)

via the projective representations (7_3g10, 7_710C). Consider the factor sets &g, of 5g10 and o of
Pioc. Let S be the group generated by the values of aglo and denote by Ay, the central extension
of (GFA),/Z by S induced by Qglo- Let €1 Aglo — (G A),/Z be the canonical morphism with
kernel S. As 0y, is trivial on (sz |Z) x (G§ /Z), every subgroup X < G§ /Z is isomorphic
to the subgroup X = {(z,1) | # € X} of Ay, and € '(X) = X x S. In particular, we have
Hgo:=¢" ((N?ri/Z) = ((~}§/Z)0 x S. The map given by

leo($a S) = 37—3g10(x)7

forevery s € Sand z € (G¥ A)y/Z,is an irreducible representation of A, affording an extension
x1 of the character X, of (G'/Z)¢ corresponding to X. Notice that

X1Hy, = (%), % & (10.1.12)

where ¢(s) := s and (Y)o is the character of (é)}:/Z)O corresponding to X € Irr(ég/Z). Next,
set Ajoe i= 6’1((6}F A)E’X /Z) and notice that, because the factor set @, of Pjo. is the restriction
of the factor set oy, of fglo: the map given by

Qloc(-rv 5) = 37—310c(33)7

for every s € S and z € (G ‘A)f,x /Z, is an irreducible representation of Aj,. affording an
extension v; of the character v, of (Ng(L)"/Z)¢ corresponding to 1. As before, we have

U1, Hye = (5)0 XL, (10.1.13)

where H, := €1 (N@(L)i/Z) = (N@(L)g/Z)OXS and (E)O is the character of(Né(L)fz/Z)O
corresponding to 1 € Irr(Né(L)i/Z). Now, (10.1.12)), (10.1.13) and (10.1.9) imply that

J
bl (x1,7) = bl (¥1,0nH,,) (10.1.14)

for every (GF'/Z)o < J < H, glo (see the argument at the end of the proof of [CS13| proposition
4.2]). By [KS15| Theorem C] there exists o1 € Irr(Agio[Bo]) such that ©1,(GF/7), 18 irreducible
and lies in the block By and

bl (¢1,7) = bl (¥1,7n4,,.)" (10.1.15)
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for every (G''/Z) < J < Agio[ Bo]. It follows from and that

bl (¢1,7) = bl (wl,JngC)J =bl(x1,7)

for every (G¥'/Z)o < J < Hgo[Bo] = Hglo N Aglo[Bo]. In particular By = bl(X1,(cF/z),) =
bl(X(). Therefore the condition of [CS13| Lemma 3.2] are satisfied and we obtain an extension
x2 € Irr(Ago) of X1, Hy, satisfying

bl(¢1,7) = bl (x2,7) (10.1.16)

for every (G¥'/Z)o < J < Agio[ Bo]. From (10.1.15) and (10.1.16) we obtain

bl (41, 70a,,.)" = bl (x2.7)

for every (G¥'/Z)o < J < Agio[Bo]. The latter equation, together with [Mur13| Theorem 3.5],
yields

J
bl (1,74, )" = (bl (@bl’JﬂAlocﬁAglo[Bo])JnAloc)

= (bl(Xz,JnAglo[Bo]))J (10.1.17)
=bl(x2,7)

for every (G'/Z)g < J < Ag,. Finally, observe that using Assumption(i.a) and [Spai7,
Theorem 4.1 (d)] we obtain
Cay, ((G"/Z)0) = Cay, ((GT/Z)0 x 5)
-1 F
! (Caraz(G"17))
el (Z((~}F)/Z)
(Z(G")/Z),xS5.

IA

Recalling that Irr(xz(qr)) = Irr(¢z(gr)), we obtain It (X gr)) = II“T(QZZ(@F)) and hence

Irr (XQ,(Z(C"F)/Z)()XS) =1Irr (XL(z(éF)/Z)oxS)
=Irr ((?)0’(Z(GF)/Z)O X L)

=TIrr ((w)o,(z(éF)/Z)o x L) (10.1.18)

=TIrr (wlj(z(éF)/Z)oXs) :

Thanks to (10.1.17) and (10.1.18), we can apply [Spa17, Lemma 3.10] which implies

(40, (G"/2):%0) ~(a#/20 (Aioes (NG(L)"/2) ).

Then follows by using [Spa17, Theorem 4.1 (i)]. This completes the proof. O
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10.2 Proof of Theorem|(10.1 and Theorem [10.2

We now come to the proofs of Theorem[10.1)and Theorem As said before this reduces the
verification of Condition [9.1|and hence of the inductive condition for Dade’s Conjecture for finite
quasisimple groups of Lie type to problems on character stabilizers and extendibility. Before
proceeding further, we give an exact definition of these extendibility conditions. The following
should be compared to [[CS19, Definition 2.2].

Definition 10.2.1. Let G be a simple algebraic group of simply connected type and consider
F, G and A as in the previous sections. For every e-split Levi subgroup L of G, we define the
following condition.

There exists a L -transversal 7 in Cusp, (L*") such that:

(G) For every A € T and every x € £(G”, (L, \)) there exists an N (L) -conjugate xo of x
such that:

(@) (GFA) =Gy Ay, and

(ii) o extends to GI'A,,.

(L) For every A € T and every v € Irr(Ng (L) | \) there exists an N (L)% -conjugate 1 of
y y GLH/A g
1) such that:

0 (G7A), ,, = NG (L)L, (G"A), ,  and

, an
vao

(i) 1t extends to (GF.A)L’%.

We now make two remarks on the conditions of Definition First we consider the local
condition for groups of type A.

Remark 10.2.2. Notice that condition (L) from Definition [10.2.1] holds with respect to every
e-split Levi subgroup L in the case that G is of type A,,. This follows from [BS20b| Section 4].

Proof. To see this observe first that the results obtained in [BS20b} Section 4] (in particular [BS20b|
Theorem 4.1 and Corollary 4.7]) rely on the proof of [CS17bl Theorem 4.3] and therefore on
the arguments introduced in [CS17a| Section 5]. In particular, consider the argument used in
[CS17al Proposition 5.13]. Consider v € Irr(Ng(L)¥ | A) and notice that A has an extension
e Irr(Ng (L)L) by [BS20b, Theorem 1.2 (a)]. Using Gallagher’s theorem and the Clifford
correspondence, we can write ¢ = (’)\\n)NG(L)F for some 77 € Irr(Ng (L)% /LT). By the argument
of [CS17a, Proposition 5.13], there exists 79 € Irr(Ng (L)% /L") such that 1 := (XUU)NG(L)F
satisfies Deﬁnition(L.i)—(L.ii) and v = ¢ for some v € N (L)¥'. By the definition of 1, we
deduce that g lies above A and therefore v lies above A and A*. By Clifford’s theorem, it follows
that A = A*¥ for some y € Ng(L)¥ and we conclude that ¢ = 1;¥ with zy € Ng(L)¥. O

Next, we make a comment on the global condition (see also Remark[10.1.5).
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Remark 10.2.3. Assume that Hypothesis[7.2.7/holds for (G, F') and let (L, \) be an e-cuspidal
pair of G. Set B := bl()\)GF (see the discussion following Definition D and suppose that
either:

(i) Out(GT)g is abelian, where B denotes the G''-orbit of B; or
(ii) B is G -invariant and £(GF, (L, )\)) = £(GY, B, [s]) where A € (L, [s]) with s ¢
L
Then Definition[10.2.1](G) is equivalent to the following:

(G’) For every A € T and every y € E(GY, (L, )\)) there exists a G¥-conjugate x( of y such
that:

(i) (éF‘A)xo = éfOAXO, and

(i) xo extends to G’ Ay

Proof. Clearly Deﬁnition (G) implies (G’) above. Conversely let y € £(G, (L, \)) and
consider a G¥-conjugate 1 of x satisfying the required properties. As explained in Remark|10.1.5|
if Out(G*") is abelian, then Y also satisfies the required properties (see [BS20a, Lemma 4.7]) and
we set xo := X. On the other hand by using the argument of Remark if £(GF, (L, \)) =
E(GY,B,[s]) and B is G -invariant, then x; € £(GY,(L,))) and we set xo := x1. This
shows that there exists xo € £(G', (L, \)) and = € G' such that x( = x* satisfies the required
properties. In particular yo € £(GF, (L, \)) n £(GY, (L, X\)*) and Proposition implies
that (L, A) = (L, A\)*¥ for some y € G". It follows that ¢ = x*¥ with 2y € Ng(L)} as required
by Definition (G). O

We can now prove Theorem

Theorem 10.2.4. Assume Hypothesis[9.2.1] and Hypothesis[8.1.2 Let L be an e-split Levi subgroup
of G and suppose that the following conditions hold:

(i) maximal extendibility holds with respect to G¥ 4 G¥" and to Ng (L) ¢ Ng(L)¥;
(ii) the requirement from Definition[10.2.1 holds for L < G;
(iii) there exists a (G¥ A)y, x K-equivariant extension map for Cusp, (L' with respect to LY <
Ng(L)";
then Condition[9.2.22 holds for every e-cuspidal pair (L, \) of G.

Proof. Fix an e-cuspidal pair (L, \) of G. We want to find a bijection Q(i )) s in Condition
Let 7 be the L -transversal in Cusp, (L¥) given by Definition Since N-central

isomorphisms of character triples are compatible with conjugation, it is no loss of generality
to assume A € 7. Now Assumption (iii) and (iv) hold by Definition (G) and (L)
respectively, while under Hypothesis the bijection from Assumption [10.1.1|(ii) exists by

Theorem Since we are assuming Hypothesis we can apply Theorem([10.1.3]to conclude
that Condition[9.2.22 holds for (L, \) and G. O
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The same proof can be used to obtain Theorem

Theorem 10.2.5. Assume Hypothesis[9.2.11] and Hypothesis[8.1.2 Let L be an e-split Levi subgroup
of G, B € BI(GT) and suppose that the following conditions hold:

(i) maximal extendibility holds with respect to G¥' 4 G and to Ng(L)¥ < Ng(L)F;
(ii) the requirement from Definition[10.2.1 holds for L < G;

(iii) there exists a (G A)y, x K-equivariant extension map for Cusp, (L") with respect to L' 4
Ng(L)F;
G ]

(iv) the block B satisfies either
(a) Out(GF)g is abelian, where B is the G -orbit of B, or

(b) for every subgroup G¥ < H < G¥', we have that every block C of H covering B is
G -invariant;

then Condition holds for every e-cuspidal pair (L, \) € CP.(B) such that £(GF (L, )\)) =
E(GY B,[s]), wheres e L:F" and X € E(LY,[s]).

Proof. Consider an e-cuspidal pair (L, \) of G as in the statement. Let 7~ be the L -transversal
in Cusp, (L") given by Definition Since N-central isomorphisms of character triples
are compatible with conjugation and the assumption (iv) in the statement is preserved by G*'-
conjugation, it is no loss of generality to assume A € 7. Now Assumption [10.1.4] (iii) and (iv)
hold by Definition [10.2.1](G) and (L) respectively, while under Hypothesis the bijection from
Assumption (ii) exists by Theorem Finally notice that Assumption (v) and (vi)
hold by our hypothesis. Since we are assuming Hypothesis[9.2.11| we can apply Theorem to
conclude that Condition [9.1/holds for (L, \) and G. O

By applying the results of [BS20b] and [Bro] we can now prove Corollary [10.3|and Corollary[10.4]

Proof of Corollary[10.3 Let(, ¢, G, G, B and (L, \) as in Corollary[10.3| with (L, \) an (e, ¢')-
cuspidal pair. Let G := GL,,(F,) and G = GL,,(e-q). We show that Condition|9.1/holds for (L, \)

and G by an application of Theorem[10.2.5] By assumption and using [DM91] Proposition 13.20]
and [[CS15| Section 5], we deduce that Theorem[10.2.5](iv) holds for B. Let s be a semsisimple
element such that A € £(LY, [s]). Since s has ¢'-order, it follows by Theoremand Theorem
6.2.19that £(G, B, [s]) = £(G, (L, X)) (see also Proposition[7.2.6). Next, observe that Theorem
10.2.5|(i) holds because G/G is cyclic while Theorem (iii) holds by [BS20b, Corollary 4.7
(b)]. It remains to check the requirements of Definition[10.2.1] First, by [BS20b| Corollary 4.7]
together with the argument used in the proof of [CS17a| Proposition 5.13], we deduce that there
exists a L -transversal 7 in Cusp, (L’ such that Deﬁnition (L) holds (see Remark [10.2.2).
Moreover, by [CS17al Theorem 4.1] the requirements of Remark[10.2.3|(G’) are satisfied and, under
our assumption, we deduce that Definition (G) is satisfied by using Remark We
can now apply Theorem[10.2.5/to conclude that Condition[9.1]holds for (L, \) and G. A similar
argument shows that Condition holds for (L, \) and G by applying Theorem[10.2.4, [
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Proof of Corollary[10.4 Let ¢, g, G, G and (L, ) as in Corollary [10.4 with (L, \) an (e, ?')-
cuspidal pair. Let G := CSp,,, (F,) and G := CSp,,,(¢). We show that Condition 2| holds for

(L, \) and G by applying Theoremm 5| Under our assumption, observe that Theoremm
(iv.a) is always satisfied. Moreover, if B := bl(/\)GF (this is defined by Lemma and s is a
semisimple element of ¢'-order such that \ € £(L, [s]), then £(G, B, [s]) = £(G, (L, \)) by
Theorem and Theorem (see also Proposition . Since G/G is cyclic we have
Theorem (i), while Theorem (iii) holds by [Brol]]. We now check the requirements of
Definition By [Bro] together with the argument used in the proof of [[CS17al Proposition
5.13], we obtain a L' -transversal 7 in Cusp, (L") satisfying Deﬁnition (L) (this follows by
the same argument used in Remark|[10.2.2applied to the results of [Brdl]). Furthermore, by [[CS17b,
Theorem 3.1] the requirements of Remark[10.2.3|(G’) are satisfied and, under our hypothesis, we
deduce that Definition[10.2.1](G) holds by Remark[10.2.3] Finally, by Theorem 10.2.5| we conclude
that Condition[9.1] holds for (L, M) and G. O
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