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Chapter 1

Introduction

Different customer tastes and preferences, as well as technological advancements, char-
acterize today’s global markets. In many industries, the requirement to offer various
products challenges production companies that want to compete successfully. The build-
to-order supply chain (BTO-SC) or make-to-order (MTO) system involves manufacturing
processes tailored to fulfill customer demands in markets with highly customizable prod-
ucts. High-tech companies such as Dell, BMW, Compaq, and Gateway have implemented
BTO-SCs to address the uncertain variability in demand that arises from offering a vast
range of products and product configurations (Gunasekaran and Ngai, 2009). For example,
the Dell computer company allows end-customers to configure computer systems online
and order their desired computer with a promised delivery in days. Dell’s German online
shop1 offers delivery in less than six working days for most of its products. Gunasekaran
and Ngai (2009) define a BTO-SC as

... the system that produces goods and services based on individual customer require-
ments in a timely and cost competitive manner by leveraging global outsourcing, the
application of information technology and through the standardization of components
and delayed product differentiation strategies.

The difference between MTO and build-to-order (BTO) systems is that an MTO system
includes the manufacturing of components and parts alongside assembly, while a BTO
system concentrates on the assembly of already manufactured items. Both manufacturing
processes differ from traditional production operations by usually carrying no (long-
term) inventory of finished goods and building products to order only (Wagner et al.,
2003). These characteristics differentiate the considered manufacturing processes from the
classic make-to-stock (MTS) or assemble-to-stock (ATS) paradigms wherein products are
manufactured based on predicted future demands.

Apart from structuring the manufacturing processes and setting up the supplier
network supply chain to realize an MTO system effectively, distribution decisions play a
significant role in fulfilling customer orders in a timely manner and at low costs. As the
manufacturer produces or assembles final products only after an incoming order arrives,

1Dell GmbH. Shop für Home PCs und Zubehör. Dell. 13th November 2020: https://www.dell.com/de-
de/shop.
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Chapter 1. Introduction

the production end-date and the ordering customer’s distribution must be synchronized
to ensure short delivery times and to fulfill customer needs.

Gunasekaran and Ngai (2009) emphasize that using third-party logistics (3PL) is
essential to accomplish this task in BTO and MTO systems. A recent study (Langley
and Infosys, 2020) highlights the general importance of 3PL. In a questionnaire, 73%
of the responding companies outsourced domestic transportation, and 65% outsourced
international transportation. The issue of optimizing the use of 3PL services to minimize
order lead times and the total distribution costs consequently arises.

There is a widespread agreement on the importance of coordinating production and
distribution decisions in the supply chain. However, the scientific research on this topic is
often directed towards strategic and tactical planning levels, as demonstrated in literature
reviews by Sarmiento and Nagi (1999), Erengüç et al. (1999), Goetschalckx et al. (2002),
Bilgen and Ozkarahan (2004), and Chen (2004). In contrast, integrated production plan-
ning and distribution models on the operational planning level have received much less
attention (Chen, 2010). This observation holds especially true for coordinating production
and delivery decisions in detailed scheduling processes that involve 3PL providers. De-
tailed scheduling models coordinate the production and distribution on an order-by-order
level to optimize metrics such as revenues, inventory and distribution costs, and customer
service levels.

The difficulty of coordinating production scheduling and distribution decisions arises
from various restrictions. For instance, the production and delivery of an order are
constrained to specific time windows. Order production generally starts in the final
production or assembly stage, depending on resource availability, which is influenced by
earlier stages. Additionally, fulfilling an order is expected up to a final delivery date due
to, for example, contract penalties or the perishability of products. Chen and Vairaktarakis
(2005) studied the latter issue in the context of coordinating food preparation and delivery
by food caterers. Other products and industries with hard time windows are, for example,
time-sensitive chemical compounds (Armstrong et al., 2008; Devapriya et al., 2006) or
the production and distribution of ready-mix concrete paste that hardens after a short
period (García and Lozano, 2004, 2005). Furthermore, time window restrictions appear in
the steel industry. As steel coils are generally bulky, and storage space at the customer
site is limited, delivery is expected to occur in a pre-agreed time window (Li et al., 2017).
Time window restrictions are a complicated issue for manufacturers that rely on 3PL for
outbound distribution activities. The manufacturer must adhere to a pre-agreed delivery
schedule that dictates when products can be collected from the manufacturing site by 3PL
vehicles and shipped to customer locations. Missing a departure time consequently means
storing the produced items until the next available shipment or discarding expired items.

This dissertation contributes to the research on efficiently scheduling production
processes in an environment with outsourced distribution to a 3PL company with a fixed
delivery schedule. In general, Chen (2010) refers to scheduling problems that coordinate
production and outbound distribution as integrated production and outbound distribution
scheduling (IPODS) problems. The present dissertation specifically refers to IPODS with
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1.1. Categorization

distribution by 3PL as integrated production and outbound distribution scheduling with
fixed delivery departure dates (IPODS-FD). The models and methods presented in this
work cover various scenarios that are not already considered by the present literature.
They consider hard time window restrictions for the production and distribution of orders,
and they investigate the conflicting objective of simultaneously minimizing holding and
transportation costs. The trade-off between these cost types stems from considering fixed
transportation costs that are reducible by delivering products in batches, which leads to
the intermediate storage of batched products and therefore to an increase in holding costs.

This dissertation addresses static planning processes with known orders for the consid-
ered planning horizon (e.g., a day or a week). It also addresses a dynamic environment
with the objective of integrating dynamically arriving orders into the execution plan in
real time. A specifically designed real-time control (RTC) approach schedules tasks in
this real-time setting. Apart from a single study that proposes simple dispatching rules
for a dynamic context, the contemporary research does not cover dynamic IPODS-FD.
Therefore, the presented dynamic approach introduces an elaborate RTC approach to
expand such models’ research in this direction. The introductory chapter continues with
Section 1.1, which briefly categorizes this dissertation’s contents. The central research aim
and objectives follow this categorization in Section 1.2. Finally, Section 1.3 outlines the
subsequent chapters of this dissertation.

1.1 Categorization

This dissertation contributes to the field of operations research (OR), which Hillier and
Lieberman (2012) outline as a scientific approach to managing organizations. This broad
definition includes the following non-exhaustive list of application areas: manufacturing,
transportation, construction, telecommunications, health care, and the military. As the
research part of the name suggests, OR is driven by the application of a scientific method
(Hillier and Lieberman, 2012, p.3). The following six overlapping phases summarize an
OR study:

1. Analyzing a real-world problem and gathering relevant data;
2. Formulating an abstract mathematical model that attempts to explain the problem

under investigation;
3. Developing computer-based methods that generate solutions to the formulated

problem;
4. Testing the developed model via computational experiments and refining the model

if necessary;
5. Preparing the application of the model and solution methods as demanded by

management;
6. Implementing the application (Hillier and Lieberman, 2012, p. 7).

While OR at its core, is concerned with establishing mathematical results, the first and
last phases highlight its practical importance of providing managerial implications for
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1.1. Categorization

real-world problems. The topics covered in this dissertation are part of the broad area of
supply chain management (SCM) that Christopher (2011, p. 3) defines as follows:

The management of upstream and downstream relationships with suppliers and
customers in order to deliver superior customer value at less cost to the supply chain
as a whole.

The central aim of effectively managing a supply chain by applying OR methods is to
gain a competitive advantage. This aim is achieved by gaining a cost or value advantage.
On the one hand, a cost advantage means that a competitor can offer a product at a
lower cost rate than others. In this context, SCM increases efficiency and productivity to
reduce unit costs in various ways. On the other hand, a value advantage is gained by
offering a product that customers perceive to be better than comparable products. The
value advantage increases not only through the product itself but also through the service
a company offers alongside its product. Moreover, effective SCM improves the level of
service in regards to product availability, selectable product configurations, and order lead
times (Christopher, 2011, pp. 5–7).

The consideration of the different company activities as an interlinked system is
illustrated in Figure 1.1. Logistic activities link the individual stages of procuring raw
materials or components from suppliers, producing the final products through different
operations, and distributing the final products to customers. There is consequently an
oppositely directed flow of information triggered by customer demands in the supply
chain view.

Figure 1.1

Logistics Management Process

Suppliers Procurement Operations Distribution Customers

Materials flow

Requirements information flow

Note. Adapted from Christopher, M. (2011). Logistics & supply chain management. Pearson Education, fourth
edition, p. 11. Copyright 2011 by Pearson Education Limited.

As discussed by Chen (2010), production and distribution models at an operational
level have received much less attention than their counterparts on the strategic or tactical
level. Chen classifies the existing models at this time into five classes:

1. Models with individual and immediate delivery;
2. Models with batch delivery to a single customer;
3. Models with batch delivery to multiple customers;
4. Models with batch delivery to multiple customers via a routing method;
5. Models with fixed delivery departure dates.
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First, in models with individual and immediate delivery, the distribution of completed products
occurs at the instance of completion. Models of this type differ from classic scheduling
models by either considering a fixed delivery time known beforehand or specifying time
windows for the jobs in which delivery must occur.

Second, models that consider batch delivery to a single customer via a direct shipping mode
allow for the storage of produced items at the production site. Produced and stored items
are bundled and delivered to a customer location. A further distinction between these
types of models is in the size of orders, which are either equally sized or of different sizes.

Third, models with batch delivery to multiple customers via a direct shipping method extend
the single customer models by enabling orders from and transportation to different
locations. With direct shipping, transportation occurs only on a direct path from the
production site to customer locations. As the locations differ, these types of models
assume unequal transportation times and costs for different customers.

Fourth, in contrast to the previous types of models, models with batch delivery to multiple
customers via a routing method consider routing decisions. That is, a single delivery activity
is allowed to visit multiple customers. The routing problem for each delivery resembles
the difficult to solve traveling salesman problem (Karp, 1972). Models that consider a
limited fleet of vehicles comprise vehicle routing problem variants as subproblems. An
overview of routing problems is, provided by, for example, Bodin (1981). Due to the
complexity of these problems’, integrated problems with routing are usually not optimally
solvable with limited resources.

Finally, models with fixed delivery departure dates (IPODS-FD models) define feasible
departure times as input parameters. This context assumes that a vehicle leaves the pro-
duction site at specified times to carry out deliveries. These types of problems often appear
in the utilization of 3PL providers, which carry out pickup requests from manufacturer at
times given by a time table.

The IPODS-FD models discussed in this dissertation focus on optimizing the operations
between the final production or assembly stage and the outbound distribution of the final
products. In particular these models are concerned with detailed scheduling decisions. In
general, scheduling is understood as a decision-making process that allocates resources to
tasks within a certain time frame. Its goal is to optimize one or more objectives (Pinedo,
2016, p. 1). In the manufacturing context, resources are commonly machines, workers,
and raw materials in a production environment, and tasks may refer to operations in
a production process, for example the assembly of components to a final product on a
machine. The objectives considered in such decision-making processes are manifold. Most
objectives are related to the completion times of tasks, such as minimizing the completion
time of the last task for a given planning horizon. While much of the scheduling research
applies to the manufacturing context, applications exist for scheduling computer systems
and transportation and distribution settings (Pinedo, 2016, pp. 1–4). Figure 1.2 illustrates
the function of scheduling in the manufacturing context.

As the figure indicates, scheduling decisions are made in a hierarchical way. Earlier
production planning phases determine the availability of resources, the scheduling con-
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Figure 1.2

Information Flow Diagram in a Manufacturing System
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Note. Adapted from Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer, p. 5. Copyright
2016 by Springer Science+Business Media, LLC.

straints, and the tasks to schedule. The scheduling process itself subsequently attempts to
optimize the allocation of the selected resources and tasks under a set of constraints. In
the context of the considered IPODS-FD applications, the scheduling decisions focus not
only on the completion of tasks but also on distributing the finished products. Therefore,
the completion times and departure times of finished products impact the measurable
schedule performance.
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1.2 Purpose of the Study

This dissertation studies an IPODS-FD application with the objective of minimizing hold-
ing costs and batch delivery transportation costs in a static and a dynamic environment.
The research attempts to provide insights into the application of OR methods for the
considered models that are directly implementable and provide a starting point for further
model extensions in related or more complex applications. The central research question
of this dissertation is as follows:

What is the underlying optimality structure of the considered IPODS-FD application with the
objective of minimizing final product holding costs and batch delivery transportation costs and how
can this structure be utilized to develop effective optimization algorithms in static and dynamic
settings?

To answer this question, this dissertation aims to mathematically formalize the consid-
ered IPODS-FD application and develop procedures that use problem-specific properties
usable in effective optimization frameworks to generate measurable optimal or near-
optimal solutions. This research goal is achieved by meeting the following objectives:

• Formulating a novel scheduling model that captures the problem of minimizing
holding and batch transportation costs for an integrated production scheduling and
outbound distribution problem with fixed delivery departures.

• Constructing a mixed-integer linear programming problem (MILP) that is solvable
with available optimizer suites.

• Developing an exact branch-and-bound (B&B) procedure that benefits from the
results of the problem structure analysis and the definition of various dominance
properties and lower bounds as a superior alternative to the MILP approach.

• Developing a heuristic greedy randomized adaptive search procedure (GRASP) to
construct high-quality solutions in a short time-frame and to provide initial bounds
for the B&B algorithm.

• Providing an instance generator to construct a variety of problem instances.

• Implementing the solution approaches and the generator for a static problem envi-
ronment

• Testing the developed model and procedures through computational experiments
on the specifically generated instances.

• Extending the static problem definition to the dynamic case in which some orders
arrive dynamically during the planning and execution process.

• Developing a RTC approach that provides schedules in a dynamic environment,
where customer orders arrive at various points in time.
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• Tailoring the heuristic GRASP to solve static problem instances generated as snap-
shots of the real-time situation during the application of the RTC approach to provide
high-quality dynamic schedules.

• Developing workload balancing methods that are essential to control the workload of
the production machine in a dynamic environment to reduce costs and improve order
acceptance rates of dynamic schedules in the considered uncertain environment.

• Providing a modification procedure to extend the instances for the static problem to
include order arrival times.

• Implementing the RTC approach, modifying the GRASP implementation to work in
the dynamic setting, and implementing workload balancing methods.

• Testing the RTC approach on the generated dynamic instance sets through computa-
tional experiments.

1.3 Outline

The remainder of this dissertation is structured as follows. In Chapter 2, the basic ter-
minology and notation of general OR and scheduling research are introduced that are
relevant for the contents of the subsequent chapters of this dissertation.

Chapter 3 presents the topic of IPODS-FD by reviewing the literature concerning its
applications. The chapter provides an overview of the state-of-the art models and applied
solution methods.

The proposed IPODS-FD model is presented in Chapter 4. This chapter includes a
MILP formulation that is implementable with various optimization suites. Thereafter,
Chapter 5 describes the developed B&B algorithm, including various problem properties
and dominance criteria. Furthermore, this chapter presents preprocessing techniques and
lower bounds for the problem.

Chapter 6 describes the developed GRASP algorithm, which is a competitive heuristic
for time-critical applications and, on top of that, provides initial upper bounds for the
B&B approach. The approach is specifically designed to construct feasible solutions by
applying a repair procedure that iteratively eliminates infeasibility in initially constructed
solutions. Moreover, the approach applies a path-relinking procedure to further improve
generated solutions.

Chapter 7 discusses the introduced model’s extension towards a dynamic environment
with dynamic job arrivals and the specifically tailored RTC approach for dynamic schedule
generation. The designed approach utilizes a GRASP that solves snapshot instances at
periodic intervals of time. Moreover, this chapter discusses workload balancing methods
that pro-actively schedule jobs to improve the chances of integrating future order requests.

Chapter 8 presents a comprehensive computational study to evaluate all developed and
implemented approaches. The chapter describes static and dynamic instance generators,
as well as procedures to generate prediction values for the pro-active workload balancing
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methods. The optimization methods are tested on instances with different time window
settings and cost structures. To evaluate the RTC approach, the experiments vary the
number of dynamic order arrivals and the available time to optimize.

Finally, Chapter 9 summarizes the findings and their implications, and discusses future
research opportunities.
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Chapter 2

Selected Topics of Operations
Research and Scheduling

The purpose of this chapter is to briefly introduce the basic concepts and terminology of
the general research field of OR and the specific field of scheduling. Section 2.1 introduces
the selected topics of OR that are relevant for the discussion regarding IPODS-FD models.
Then, Section 2.2 presents the deterministic scheduling models described by Pinedo (2016)
and Blazewicz et al. (2019). Finally, since a dynamic scheduling problem is considered in
Chapter 7, a brief introduction to this problem context is provided in Section 2.3.

2.1 Operations Research

This section is structured in three parts. Section 2.1.1 defines the notion of a general
optimization problem, since scheduling problems are optimization problems in the area
of scheduling. Section 2.1.2 follows with basic definitions regarding the analysis of
computational complexity. Thereafter, Section 2.1.3 offers a brief overview of optimization
methods.

2.1.1 Optimization Problems

As described in Chapter 1, OR is concerned with building abstract mathematical models
that capture the essence of real-life problems in managing operations—the literature
refers to the developed abstract mathematical models simply as problems. A problem is a
general question to be answered, including parameters or free variables left unspecified.
Moreover, a problem comprises a definition of all relevant parameters and a statement
of the requirements that an answer or solution to the problem must satisfy. An instance
of a problem specifies all values for the problem parameters (Garey and Johnson, 1979).
Many practical and theoretical problems seek a “best” configuration of the parameters to
reach a particular goal. Optimization problems, specifically, can be divided into continuous
optimization problems and discrete optimization problems. The former type seeks a set of
real numbers or a function, and the latter type seeks discrete numbers as an answer to a
problem (Papadimitriou and Steiglitz, 1982).
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According to Blum and Roli (2003), an optimization problem P = (S, f) is characterized by

• a set of variables X = {x1, ..., xn},
• variable domains D1, ...,Dn,
• constraints regarding the variables, and
• an objective function f to be minimized, with f : D1 × ...×Dn → IR+.

All feasible solutions to a problem are denoted as

S = {s = {(x1, v1), ..., (xn, vn)} | vi ∈ Di and s satisfies all constraints},

where v1, ..., vn are the values assigned to the decision variables x1, ..., xn. This set is also
called the search or solution space to a problem. Finding a solution s∗ ∈ Swith a minimum
objective value – that is,

f(s∗) 6 f(s) ∀s ∈ S

– is said to solve an optimization problem. The solution s∗ is also called a global optimum
of (S, f), while S∗ ⊆ S is the set of globally optimal solutions. Note that in practice, not
all objective functions are of the minimization type (e.g., maximization of profit), but
each maximization function can be transformed into an equivalent minimization function.
The above definition is consequently sufficient. Generally, (Optimization) problems are
generally defined as “templates” for applicable problem instances. That is, the parameters
of an optimization problem can be changed to express different scenarios of the same
problem. In practical applications, it is not only of interest that optimal solutions to a
problem exists, but also that there is a procedure that finds such an optimal solution. An
algorithm is a procedure that solves instances of a problem; that is, it produces a solution
that satisfies the predefined requirements (Garey and Johnson, 1979).

2.1.2 Complexity Theory

For large solution spaces that cannot be reduced considerably by an optimization algo-
rithm, solving an optimization problem optimally is not always possible in a reasonable
time frame. This section provides a brief introduction to the analysis of computational
complexity that addresses the issue of tractable and intractable problems. Complexity
theory, as a field in theoretical computer science and mathematics, studies the difficulty of
algorithmic problems. The theory of NP-completeness (Garey and Johnson, 1979) provides
a framework to categorize problems based on their computational complexity. This sec-
tion presents a brief overview of the important terminology that is used throughout this
dissertation.

The computational complexity of an algorithm can be measured by its time complexity
function T(n). This function measures the running time of an algorithm, as the number
of computational steps required to perform an algorithm given a certain input of size n.
Most commonly, one is interested in the asymptotic worst-case time-complexity of an
algorithm, which can be expressed using the big O notation. This notation characterizes
functions according to their growth rate; that is, it classifies algorithms according to how
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their running time (or space requirements) grows as the size of the input provided to an
algorithm grows. The asymptotic notation is defined as follows:

Definition 2.1.2.1. A function T(n) is O(g(n)) whenever a positive constant c > 0 and
non-negative integer n0 exist such that T(n) 6 c · g(n) for all integers n > n0 (Brucker,
2007).

In the context of OR, one is usually interested in finding polynomial-time algorithms to
solve optimization problems. A polynomial-time algorithm is an algorithm with a time
complexity function that is O(p(n)), for some polynomial-time function p of the form
nk, with a constant k and n as the input length. One consequently calls an algorithmic
problem polynomially solvable if there exists a polynomial-time algorithm for this problem.

The characteristic of polynomial solvability depends on the encoding of the input. The
regular assumption is that numerical data describing a problem is binary encoded. For
example, numbers (1, 2, 3, . . . ) are represented as bits (1, 10, 11, . . . ) in a binary encoding.
For some problems, changing the encoding from binary to unary enables polynomial
solvability. A unary encoding for numbers (1, 2, 3, . . . ) is a sequence of ones in a unary
encoding (1, 11, 111, . . . ). Such an algorithm is referred to as pseudopolynomial, a problem
solved by such an algorithm is hence called pseudopolynomially solvable (Brucker, 2007).

The complexity theory classifies decision problems based on their solvability. A decision
problem has only two answers; yes or no. Fortunately, each optimization problem can
be translated into a decision problem by defining a threshold for the objective function
value that is to be minimized or maximized. For example, an optimization problem P with
cost coefficients ci for i = 1, . . . ,n that minimizes a total cost value min z =

∑n
i=1 cixi

and comprises a set of constraints, is translated into a decision problem as follows: The
decision problem comprises all constraints and replaces the objective by the following
question, with θ being a threshold for objective function value z: Is there a solution to P
for which z 6 θ holds? If the answer to this question is yes, then the given instance is a
yes-instance, otherwise it is a no-instance.

A formal definition of the following complexity classes can be found in Garey and John-
son’s (1979) work. For reasons of brevity, we provide the rather informal Definitions 2.1.2.2
and 2.1.2.3:

Definition 2.1.2.2. A decision problem D is in complexity class P if it is polynomially
solvable.

Definition 2.1.2.3. A decision problem D is in complexity class NP if a yes instance can be
verified by a polynomial-time algorithm.

In other words, problems in class P are efficiently solvable. Moreover, for problems
in class NP, at least a suggested solution to a problem instance can be efficiently verified
to be a valid solution. It holds that P ⊆ NP, and there is strong evidence that P 6= NP,
although the latter is still an open problem. Garey and Johnson (1979) provide a discussion
about the so-called P versus NP problem. More recently, an overview of the status of this
open problem and further references have been provided (Fortnow, 2009).
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Another important complexity class is the class of NP-complete problems. Following
the assumption that P 6= NP, a problem that belongs to the NP class, but not to P, is
called NP-complete. A convenient method of proving that a problem is NP-complete
is to conduct a polynomial reduction as described by Definition 2.1.2.4 from a known
NP-complete problem to the unclassified problem.

Definition 2.1.2.4. A decision problem P polynomially reduces to a decision problem Q

(also written as P 6p Q) if a polynomial-time function g exists that transforms inputs for
P into inputs for Q such that x is a yes-input for P if and only if g(x) is a yes-input for Q.

This approach is summarized by the following lemma.

Lemma 2.1.2.1. If the decision problems P and Q are in the class NP, the problem P is NP-
complete, and P 6p Q, then the problem Q is NP-complete as well (Brucker, 2007).

Not all hard problems belong to the class NP. Problems that are not easier than the
hardest problem in NP are called NP-hard. More precisely, a problem P is NP-hard
when every problem of NP is polynomially reducing to P. Furthermore, Brucker (2007)
note that an optimization problem is NP-hard if the corresponding decision problem
is NP-complete. NP-hard problems can be further distinguished into two categories:
First, an optimization problem is called strongly NP-hard if it can not be solved by a
pseudopolynomial algorithm unless P = NP; second, an optimization problem is called
weakly NP-hard if it can be solved by a pseudopolynomial algorithm but not by a
polynomial algorithm.

Determining the complexity status of an optimization problem is the sensible choice
before designing a fitting optimization algorithm. By resolving the complexity status,
the choice of useful methods to apply is limited. If one proves a problem to be NP-hard,
then there is no reason to find a polynomial algorithm. One must hence apply a method
that either solves NP-hard problems optimally (usually for limited input sizes) or uses
heuristics to find at least useful solutions. In contrast, finding a polynomial time algorithm
for a problem often makes designing more complex optimization algorithms unnecessary.

2.1.3 Optimization Methods

OR is a vast scientific field with numerous applications. Although the problems that arise
in different fields are quite unique, the applied methods are similar. This section provides
a brief introduction to commonly used OR methods.

2.1.3.1 Linear and Integer Programming

According to Padberg (2013, p. 25), a general linear programming problem (LP) has the
following form:

minimize
∑n
j=1 cjxj

subject to
∑n
j=1 ai,jxj 6 bi for i = 1, . . . ,p∑n
j=1 ai,jxj 6 bi for i = p+ 1, . . . ,m
xj > 0 for j = 1, . . . ,q
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where q 6 n. In a case where q < n holds, some of the decision variables xj for
j = q + 1, . . . ,n are unrestricted in sign. Such variables are called free variables. The
parameters ai,j, cj, and bi are also referred to as the data of the problem. The quantities are
defined as real, rational, or integer numbers. Linear programs as defined above are solved
by the so called simplex method, originally developed by George Dantzig (see Dantzig, 1948
and Dantzig et al., 1951) or by interior point methods (see, for example, Karmarkar, 1984).
For many optimization problems, there is the additional requirement that all variables xj
must be integers. An LP with this requirement is called an integer linear programming
problem (ILP). If both types of variables are present in a formulation, then the problem
is called a MILP. While LPs can be efficiently solved by interior point methods and, in
practice, also by the simplex method, no polynomial approach exists for ILPs or MILPs.
Several methods exist that solve integer programs: branch-and-cut (B&C) techniques and
B&B techniques. The first technique relaxes a given problem to an LP (i.e., the integer
restriction is relaxed), and either the simplex method or an interior point method then
solves the resulting LP. The approach iteratively tries to force variables to become integers
by cleverly adding new constraints to the LP. If the approach generates a solution with
only integer values for the variables xj, then the solution is an optimal solution for the
original ILP. Otherwise, new constraints are added.

The second technique is a sophisticated way in which to enumerate the solution
space. The B&B procedure generates different branches (subsets) of the solution space
and computes bounding values for the considered subsets. If the bound indicates that a
subset comprises no better solution than an already identified solution, then the technique
excludes the whole subset from further branching steps. B&B algorithms in the context
of LPs also use the relaxation technique. An optimal objective function value for the LP
provides a bound for the best objective function value attainable by a corresponding ILP.

Combinations of the two approaches exist in the form of B&C and branch-and-price
(B&P) algorithms. The former combines B&B with the cutting plane (CP) technique. A CP,
or column generation (CG), algorithm is applied to generate the bounding value. These
types of algorithms work with a restricted set of variables of the original problem.

It is worth mentioning that commercial and noncommercial solvers are readily avail-
able that apply these techniques to solve LPs. An optimization problem formulated as an
ILP consequently needs only to be implemented with the appropriate syntax in one of the
available modeling languages and solved by one of the available solvers. Two frequently
used commercial solvers (which are, in many cases, free for students and researchers to
utilize) are the IBM ILOG CPLEX Optimization Studio1 and the Gurobi Optimizer 2. Note that
the conventional approach of “simply” constructing an ILP and solving instances with
a solver package is often found to be inferior to more elaborate techniques that include
problem-specific knowledge in the solution approaches as proven by the vast number of
published research papers.

1https://www.ibm.com/analytics/cplex-optimizer
2https://www.gurobi.com/
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2.1.3.2 Dynamic Programming

Dynamic programming (DP) is an optimization method developed by Richard Bellman
that solves problems by combining solutions to subproblems (Bellman, 1952, 1953). Ac-
cording to (Cormen et al., 2009, p. 379), the DP technique is based on two principles: an
optimal substructure and overlapping subproblems.

An optimization problem has an optimal substructure if an optimal solution to a
problem comprises optimal solutions to subproblems. By combining the “right” solutions
to subproblems, one consequently yields the optimal solution to the overall problem
(Cormen et al., 2009, p. 380). For example, if the construction of a solution to an optimiza-
tion problem requires n decisions D1,D2, . . . ,Dn, then if the sequence with n decisions
is optimal, the previous k decisions Dn, . . . ,Dn−k+2,Dn−k+1 must be optimal as well
(Papadimitriou and Steiglitz, 1982, p. 448).

The optimal substructure differs between optimization problems in the following two
ways: the number of subproblems an optimal solution requires and the number of choices
that exist to determine what subproblems to use in an optimal solution. The product of
subproblems and choices considered for each subproblem consequently determines the
run-time of a DP algorithm. A recursive algorithm commonly solves a dynamic program
by computing a recurrence relation that starts at the last stage (i.e., decision Dn) and then
recursively solves the previous stages.

This concept leads to the second principle, called overlapping subproblems, requiring
an optimization problem to have a relatively small subproblem space. That is, the number
of subproblems should be polynomial in the input size. Therefore, a recursive algorithm
that solves a dynamic program solves identical subproblems over and over instead of
generating new subproblems to solve the overarching problem (Cormen et al., 2009, pp.
380, 384).

2.1.3.3 Branch and Bound

In general, for a combinatorial optimization problem, B&B algorithms search the entire
solution space for either a single solution or all optimal solutions. Similar to the DP
approach, this entails subdividing the overarching problem into smaller subproblems.
B&B algorithms avoid searching the whole solution space by incorporating techniques
to exclude significant parts of the solution space from the search (Papadimitriou and
Steiglitz, 1982, p. 433). In a general sense, the technique, applicable in the context of
ILP as mentioned above, is a framework to search the solution space of combinatorial
optimization problems. Researchers may consequently define problem-specific procedures
to evaluate subproblems and provide lower and upper bounds without solving LPs. Such
an algorithm is proposed in Chapter 5, with Section 5.1 covering the B&B procedure in
greater detail.
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2.1.3.4 Heuristics and Metaheuristics

The previous exact solution methods commonly aim to solve a problem by proving opti-
mality for the found solution. Given sufficient computing time, the entire solution space’s
consideration by the discussed methods guarantees the optimality property. Due to the
computational complexity of difficult optimization problems, these methods often provide
optimal solutions to relatively small problem instances in reasonable computational time.
Heuristic algorithms undergo a comprehensive but not exhaustive search of an optimiza-
tion problem’s solution space to tackle larger problem instances. Therefore, these methods
do not guarantee the optimality of the found solutions. Apart from their application as
standalone solution methods, heuristics often supplement exact methods by, for example,
providing bounding values for the objective function that exclude regions of the solution
space (Gendreau et al., 2010, pp. ix, x).

Typically, one categorizes heuristic algorithms into two types: constructive algorithms
and local search (LS) methods. On the one hand, constructive algorithms start with an
empty solution and iteratively generate a complete solution to an optimization problem.
On the other hand, LS methods start from an initial complete solution and aim to improve
the solution by iterative modification. Establishing a so-called neighborhood of a solution
drives the transition from one solution to another. Definition 2.1.3.1 by Blum and Roli
(2003) defines this neighborhood as follows:

Definition 2.1.3.1. A neighborhood structure is a function N : S→ 2S that assigns a set of
neighbors N(s) ⊆ S to every solution s ∈ S. N(s) is called the neighborhood of s.

The best solution of a neighborhood is called a local minimal solution, as stated in
Definition 2.1.3.2 by Blum and Roli (2003):

Definition 2.1.3.2. A local minimal solution (or local minimum) with respect to a neigh-
borhood structure N is a solution ŝ such that ∀s ∈ N(ŝ) : f(ŝ) 6 f(s). One calls ŝ a strict
locally minimal solution if f(ŝ) < f(s) ∀s ∈ N(s̄).

Glover (1986) introduced the term metaheuristic (MH) for his tabu search (TS) pro-
cedure, which utilizes an LS procedure. Blum and Roli (2003) remarked that there is
no commonly accepted definition of MH, although many researchers offer their own
definitions. MHs can be described as strategies that guide the search process intending
to explore the solution space to find optimal or near-optimal solutions. The procedures
used by MHs range from simple search procedures to complex learning processes. The
search process is usually non-deterministic, since it incorporates randomized mechanisms
to avoid getting trapped in local optima. MH-frameworks are not problem-specific but
allow for the integration of procedures that exploit problem-specific knowledge, such as
specifically designed heuristics. MHs provide concepts for the two principles of diversifi-
cation and intensification. Diversification refers to a robust exploration of the search space,
which is not confined to small regions. The term intensification refers to the exploration of
concentrated regions to find local optima. The success of the solution space exploration
of a MH implementation relies on the problem-specific tailoring of these two principles
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(Blum and Roli, 2003). Some prominent examples are TS algorithms, genetic algorithms
(GA), simulated annealing (SA) algorithms, and GRASP algorithms.

A TS is a heuristic method originally proposed by Glover (1986). This procedure’s
basic idea is to allow LS procedures to overcome local optima. This property is achieved
by storing applied neighborhood moves or visited solutions of previous iterations to
avoid cycling. In its basic version, a so-called tabu list records the history of the search.
Elements of the tabu list are tabu in subsequent iterations; therefore, the application of
certain neighborhood moves are marked as forbidden and will be disregarded in the
choice of the next neighborhood move to apply to the current solution. Since a TS is
an improvement heuristic, the initial solution must be generated by another procedure
(Gendreau and Potvin, 2010). Since a TS extends LS, the core of a basic TS algorithm
is essentially an LS procedure. The key difference in a pure LS procedure is that an LS
terminates if it finds no improving neighbor in an iteration; in contrast, a TS also accepts
non-improving moves. Once a TS carries out a non-improving move from solution s to
the neighboring solution s ′ ∈ N(s), the former solution s is now a neighbor of s ′ and
potentially the target of a neighborhood move. This scenario leads to cyclic computations
that switch between both solutions indefinitely. Tabus are used to avoid this form of
cycling by disallowing moves that reverse a previous move’s effect. The so-called tabu
list stores these tabus. Furthermore, a circular list can implement a tabu list with a fixed
capacity. Once the tabu list reaches its capacity limit, it removes the oldest tabu. Hence,
the tabu list is known as the short-term memory of the search (Gendreau and Potvin,
2010). Note that there are numerous extensions to this basic form of TS not covered by
this dissertation. A good starting point for further information is (Gendreau and Potvin,
2010) that gives an introduction to TS.

SA, similar to TS, primarily uses a LS heuristic to improve a solution iteratively. The
key element of SA is a mechanism that allows escaping local optima by hill-climbing
moves, which are a sequence of neighborhood moves that are allowed to worsen the
solution’s objective function value. Annealing refers to the process of physically annealing
solids by initially heating and slowly cooling materials. Similarly, SA starts with an initial
temperature set to a sufficiently high-temperature value. The algorithm iteratively generates
and evaluates neighborhood moves one-by-one based on a generation probability function
that prioritizes the early testing of promising neighborhood moves. A neighborhood
move is accepted based on an acceptance probability function that depends on the current
temperature of the system and the objective value of the neighboring solution compared
to the current solution. Accepting worse solutions at high-temperature values is more
likely than for lower temperature values. SA lowers the temperature in steps based on
an efficient cooling schedule. The procedure terminates upon reaching a defined stopping
criterion, for example, the number of total iterations (Nikolaev and Jacobson, 2010).

GRASP is a so-called multi-start MH. The iterative process applies two phases in
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each iteration: solution construction and LS. The first phase constructs a feasible solu-
tion from scratch, and the second phase improves the constructed solution by applying
an LS heuristic. Upon executing a targeted number of iterations or after a time-limit,
the procedure terminates and returns the best-found solution. The construction phase
typically constructs solutions step by step, where at each step, the procedure decides
which viable construction move to implement. To diversify the constructed solutions,
the procedure initially constructs a candidate list of construction moves, selects a subset
of promising moves as the restricted candidate list, and lastly chooses a random candidate
from this restricted list (Resende and Ribeiro, 2010). Chapter 6 describes a developed
GRASP heuristic and provides more information on the general framework.

A GA is a MH framework first introduced by Holland (1992). The idea of GAs heavily
draws on natural occurrences. The original motivation stems from the selective breeding
of plants or animals with the aim of creating offspring with desirable properties as a
combination of the parents’ properties. The concept of a GA approach allows for the
separation of the solution representation of an optimization problem and its decision
variables. The solution representation is also called the genotype, while the set of decision
variables is known as the phenotype. Given a discrete search space X of an optimization
problem, a solution in a GA is represented by a string s of length l, with symbols drawn
from an alphabet A using a mapping c : Al → X. Therefore, the heuristic works on a
subset of the search space S ⊆ Al with the objective of finding

arg min
s∈S

g,

where g(s) = f(c(s)), with f being the objective function of the optimization problem.
The defining characteristic of GAs is that the algorithm works on a set (population) of
strings, which are often referred to as chromosomes or individuals. In contrast to TSs, SA,
and GRASP, GAs rely on combining solution representations by reproduction rather than
an LS on individual solutions. The two concepts to carry out the reproduction process
are crossover and mutation. The crossover combines the genes of two (or more) parent
individuals to construct one or multiple offspring. For example, for two individuals with
bit-strings (1, 0, 0, 1) and (1, 1, 0, 0) a possible offspring representation might be (1, 0, 0, 0),
which is constructible by taking the first two bits from the first parent and the last two bits
from the second parent. Mutation modifies the strings of the offspring randomly such that
the gene pool, and by extension the searched solution space, is diversified. For example,
the bit-string (1, 1, 0, 0) might be randomly modified to (1, 0, 0, 0) by flipping the second
bit. Furthermore, GAs implement mechanisms to select and remove individuals from
a population, usually by replacing worse individuals with better ones. The quality of
individuals in a population consequently improves over several iterations such that the
best individuals, after multiple rounds (generations) of breeding and selecting, represent
high-quality or even optimal solutions to the optimization problem (Reeves, 2010).
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2.1.3.5 Approximation Algorithms

In addition to heuristic or meta-heuristic algorithms, a frequently studied type of non-exact
algorithm is an approximation algorithm. The main characteristic of an approximation
algorithm is its performance guarantee. An approximation algorithm for a combinatorial
optimization problem constructs a near-optimal solution whose cost is at most a factor
ρ away from the optimal cost, where ρ > 1 is some real number. Such an algorithm is
hence also called a ρ-approximation algorithm. A polynomial-time approximation scheme
(PTAS) is a (1 + ε)-approximation algorithm with ε > 0 that runs in polynomial time.
Moreover, if the time complexity of a PTAS is polynomially bounded in 1/ε, it is called a
fully polynomial-time approximation scheme (FPTAS) (Woeginger, 2000).

The first FPTASs were developed in the mid-70s (Ibarra and Kim, 1975; Horowitz and
Sahni, 1976; Sahni, 1976). These FPTASs and, according to Woeginger (2000), all FPTASs
developed since then are based on dynamic problem algorithms that solve problems
optimally, but not in polynomial time. Two established types of techniques use a dynamic
problem algorithm as an FPTAS. The first technique is called rounding the input data and it
transforms the input data to rounded values, such that the transformed instance can be
solved in polynomial time. The second technique, called trimming the state space which
iteratively thins out the search space during algorithm execution, for instance by collapsing
states close to each other. Pinedo (2016, p. 599) mentions two additional concepts that
transform the input data of scheduling problems: merging and aligning. Merging joins
instance data together; for example, jobs that require short processing times on a machine
are merged into a single job. Aligning, aligns the processing times of similar jobs: instead
of having several jobs with almost identical processing times, an average processing time
value replaces the processing times for these jobs.

2.2 Deterministic Scheduling

This dissertation is primarily concerned with scheduling problems that are a specific
type of optimization problem. This section introduces the basic notation and concepts
for deterministic scheduling problems, as introduced by Pinedo (2016) and Blazewicz
et al. (2019). Since scheduling is a popular research field due to its practical relevance, a
common notation has evolved that applies to various scheduling problems. This notation
is presented in Section 2.2.1. Moreover, as this dissertation considers production and
delivery decisions, Section 3.1 extends this notation by additional components that are
relevant for IPODS-FD models.

2.2.1 Framework and Notation

Scheduling problems come with a wide variety of different modeling assumptions, and this
subsection introduces only a basic list of notation. A scheduling problem is characterized
by a set N = {1, 2, . . . ,nN} of n jobs and a set M = {1, 2, . . . ,mM} of m machines or
processors. Parameters and variables associated with jobs and machines will usually be
sub-scripted by i if referring to the i-th machine and by j if referring to the j-th job. In
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complex machine environments, a job j comprises operations on the different machines.
Depending on the assumptions made in a scheduling model, jobs may be associated with
the following data:

• Processing time (pi,j). This is the time needed to process job j on machine i. In the
case of a single machine environment, the subscript i can be omitted.

• Release date/arrival time (rj). In dynamic settings, jobs usually arrive at various points
in time. The release date rj marks the earliest time job j can start processing on any
machine.

• Due date (dj). The due date dj of a job marks the targeted completion time for all
operations of a job j.

• Deadline (d̄j). The deadline dj of a job j is a targeted completion time that can not be
exceeded.

• Weight/priority (wj). In some models, certain jobs need to be prioritized over others.
The wj parameter may represent the cost of keeping job j in the system, for example
inventory costs.

A solution to a given scheduling problem instance is an assignment of tasks (jobs) to
resources (machines) at specific times. A solution thus defines the completion time Ci,j
of the operation of job j on machine i. The completion time of the last operation of a
job (or in single machine models, the completion time of job j) is denoted as Cj. Most
commonly, solutions to a given problem instance are represented by either a sequence
or a schedule. A sequence refers to a permutation of the n job indexes that describes the
processing order on a given machine. A schedule is a variable setting for a given problem,
for example the explicit setting of all Ci,j variables. In many scheduling problems, a
sequence is sufficient to unambiguously define a locally optimal schedule. That is, given a
sequence, the time-dependent decision variables, for example, optimal completion time
values (in the context of the applied objective function), can be computed without any
ambiguity.

A useful visualization of a schedule is one via a so-called Gantt chart, which is a type
of bar chart. Figure 2.1 presents such a chart for a schedule with two machines (m = 2)
and three jobs (n = 3). In this example, the first job must be processed on both machines,
with processing times p1,1 = 4 and p2,1 = 2, the second job must be processed only on
machine 1, with processing time p1,2 = 5; and the third job has processing times p1,3 = 5
and p2,3 = 3 on the two machines. The processing of each operation, labeled by the
corresponding job index, is visualized as a bar that occupies a certain amount of machine
time. The specific machine allocation times of the operations can be read directly from the
chart.

The objective in machine scheduling literature is usually a function of the completion
times of the jobs alone or in conjunction with a specified due date. Some metrics are
subsequently defined for scheduling problems with due dates present. The lateness of job j
is defined as

Lj = Cj − dj,
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Figure 2.1

Illustration of a Gantt Chart
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which takes a positive value if a job is completed late, and a negative value if a job is
completed early. The tardiness of a job assigns a zero value to the earliness of a job and is
defined by

Tj = max{0,Cj − dj} = max{0,Lj}.

Similarly, the earliness of a job is defined as

Ej = max{0,dj − Cj} = −min{0,Lj}.

Variable Uj indicates whether a job is late or not and is defined as

Uj =

1 if Cj > dj

0 otherwise
.

The objective function in classic scheduling problems is usually composed of one or
more of the previously defined metrics. In some cases, these metrics can be weighted, due
to a known cost value associated with the earliness or tardiness of jobs or the duration a
job is stored in the system. In multi-objective problems, each job usually has a different
weight for each objective component. Some commonly found objectives in the literature
are the minimization of (weighted) completion times

min
n∑
j=1

(wj)Cj,

the minimization of the makespan (usually denoted as Cmax) of the schedule

min
n

max
j=1

{Cj},

or the minimization of the (weighted) tardiness

min
n∑
j=1

(wj)Tj.

2.2.2 Complexity Hierarchy

Although many scheduling problems have similar or even identical parameters and
constraints, a change in the objective function usually requires a specialized solution
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method. An easily solvable problem for one objective becomes difficult to solve for a
different objective. In other words, the addition, removal, or modification of parameter
domains significantly affects a scheduling problem’s complexity status. As scheduling
problems are a type of optimization problem, the concepts introduced in Section 2.1.2
apply to scheduling problems. The intimate relationships between similar scheduling
models also come with a benefit: An algorithm that solves a more complicated scheduling
problem solves easier versions of the problem. An example is the one machine scheduling
problem with the objective min

∑n
j=1Cj: Applying the algorithm that solves the more

complex version with the weighted objective min
∑n
j=1wjCj also solves the unweighted

version. On the other hand, adding release dates even to the unweighted version yields
a strongly NP-hard problem (Pinedo, 2016, p. 605). For many deterministic scheduling
problems, such relationships are well known and published. For example, Pinedo (2016)
and Brucker (2007) present tables and graphs that state the complexity hierarchies for
many variants.

2.2.3 Scheduling Algorithms

Many scheduling problems, such as the two problems without release dates discussed
in Section 2.2.2, can be solved efficiently. Simple scheduling rules solve some problems;
others can be solved by using standard OR techniques by reducing scheduling problems
to well-known optimization problems, such as shortest path problems, flow problems,
and transportation problems. Some more complicated problems can be solved efficiently
by using, for example, DP. Furthermore, the methods described in Section 2.1.3 can be and
are applied to solve hard scheduling problems (cf. Chen et al., 1998; Brucker, 2007; Pinedo,
2016). Furthermore, in scheduling literature, the following two types of scheduling rules
are widely employed: dispatching or priority rules and composite dispatching rules.

Dispatching rules can be classified into static and dynamic dispatching rules. A static
dispatching rule establishes a job priority based on the given instance parameters only,
while a dynamic dispatching rule is time-dependent. That is, dynamic dispatching rules
schedule jobs one-by-one where the relative priority order of jobs may change after each
step. In multi-machine environments, one can further distinguish rules into local and
global rules. Local rules are isolated to information on a single machine. In contrast, global
rules account for the overall system state’s information.

Composite dispatching rules are composed of ordinary static or dynamic dispatching
rules. Such rules are used in constructive algorithms that build schedules iteratively by
choosing the highest-ranking job, determined by the composite dispatching rule, to be
scheduled next. Each of the dispatching rules is usually scaled by a scaling factor that is
either pre-computed from the instance data or updated alongside the scheduling process
(Pinedo, 2016, pp.371–374).
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2.3 Dynamic Scheduling

Dynamic scheduling can be understood as the “problem of scheduling in the presence of
real-time events” Ouelhadj and Petrovic (2009). In scheduling literature, the terminology
on-line scheduling, as opposed to off-line scheduling, is often used. In off-line scheduling,
a schedule is computed entirely before the execution of tasks is realized. Therefore, off-
line scheduling considers scheduling with complete (but not necessarily deterministic)
information on the scheduled tasks. In contrast, on-line scheduling decisions are made at
run-time with incomplete information. In a technical sense, on-line scheduling provides
solutions to incomplete problem instances, with information revealed piece by piece
(Blazewicz et al., 2019, p. 243).

In dynamic scheduling, real-time events can be classified into two categories: resource-
related events and job-related events. The first category comprises, for example, machine
breakdowns or shortages of materials, while the second category comprises new incoming
jobs; cancellation of jobs; or changes in job characteristics, such as processing time or due
date changes.

Figure 2.2 illustrates the difference between static and dynamic scheduling for a prob-
lem with dynamically arriving orders. On the time-axis schedule generation and execution
appear sequentially for static scheduling models. All relevant problem information (in the
illustration, orders) are registered before the schedule generation commences. Only after
the schedule generation ends, the execution starts.

Figure 2.2

Schedule Generation and Execution for Static and Dynamic Scheduling

Static Scheduling

Jobs

t
Schedule generation Schedule execution

Dynamic Scheduling

Jobs

t
Simultaneous schedule generation and execution

Static approaches are particularly useful when planning horizons can be planned sepa-
rately and when it is sufficient to fulfill incoming production requests in the subsequent
planning horizon. In contrast, in dynamic scheduling applications, reacting to changes in
the problem information (e.g., new jobs) is instrumental to efficiently plan the considered
process. Therefore, schedule generation and execution run simultaneously. Such environ-
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ments are particular challenging to optimize, since future events of the current planning
horizon are unknown and difficult or impossible to predict.

According to Ouelhadj and Petrovic (2009), dynamic scheduling is distinguishable
by completely reactive scheduling, predictive-reactive scheduling, and robust pro-active
scheduling.

• Completely reactive scheduling. This approach makes decisions locally in real-time.
Priority dispatching rules usually determine the next job to schedule from a list
of available jobs at the time. A reactive scheduling system consequently does not
attempt to provide a schedule for all remaining jobs and, therefore, does not make
decisions based on the overall schedule performance.

• Predictive-reactive scheduling, In comparison to completely reactive scheduling, a
predictive-reactive scheduling strategy builds and revises schedules based on real-
time events. Strategies that perform minimal adjustments to the schedule are often
applied. The deviation between two consecutive proposed schedules is usually of
no concern, although some others explicitly consider schedule stability and schedule
efficiency simultaneously.

• Robust pro-active scheduling. Robust pro-active approaches incorporate a predictive
element into schedule generation, for example the likelihood of machine breakdowns
influencing schedule generation.

Real-time schedulers react to incoming events either by schedule repair or by complete
rescheduling. The first method makes only minor adjustments to the current implemented
schedule to incorporate dynamic events. On the other hand, complete rescheduling
generates an entirely new schedule with the additionally revealed information present.
Schedule repairing is usually computationally less expensive, but complete rescheduling
potentially leads to a more efficient schedule. The issue of reschedule timings can be
distinguished into three strategies: periodic, event-Driven and hybrid. Periodic policies
generate schedules at regular intervals; therefore, a generated schedule is always valid for
some time. Event-driven policies trigger responses directly upon new events. Periodic
policies lead to more schedule stability and less nervousness, but they react slower to
new events. Hybrid approaches reschedule periodically and in an event-driven manner
when exceptional events occur. The scheduling techniques applied vary vastly: heuristics,
meta-heuristics, knowledge-based systems, fuzzy logic, neural networks, multi-agent
systems, and hybrid approaches (Ouelhadj and Petrovic, 2009).
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Chapter 3

Integrated Production and Outbound
Distribution Scheduling with Fixed

Delivery Departure Dates

Chapter 1 motivated the investigation into integrated production and distribution prob-
lems on a detailed scheduling level. This chapter presents the current state of research of
IPODS-FD models and solution approaches; it aims to provide an overview of IPODS-FDs
and discuss gaps in the published studies that motivate the research in this dissertation.
Section 3.1 extends the previously introduced notation in Section 2.2.1 by introducing
fixed delivery departure times. Thereafter, Section 3.2 presents a classification scheme for
IPODS-FD problems that extends the general classification scheme for IPODS problems
by Chen (2010). This classification scheme displays the different modeling assumptions of
the present IPODS-FD literature without requiring a detailed comparison of the proposed
models. The literature review of IPODS-FD models in Section 3.3 then classifies the current
literature with the help of the introduced classification scheme and discusses each study.
The chapter concludes with Section 3.4, which discusses the state of research and aspects
that deserve increased attention.

3.1 Considering Fixed Delivery Departure Dates

The production scheduling problems described so far do not cover any explicit trans-
portation decisions except for due dates that may indicate the planned product’s delivery.
When due dates are present in a scheduling model, completing a job earlier or later than
its due date usually leads to earliness or tardiness penalties. The question in these models
remains whether a late completion time is simultaneously the new delivery departure
time, or, if this is not the case, then when and at what cost the unplanned delivery takes
place. Scheduling models that integrate transportation decisions answer these questions
by unambiguously defining the delivery departure time of a job by either explicitly setting
delivery variables or introducing a dependency relation between completing and deliver-
ing a job. This section introduces the modeling assumptions of these types of models in a
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general way. The notation presented is similar to the one used by Chen (2010).
In IPODS models, each job j has a completion time Cj and a delivery departure time (or

pickup time) Dj that represents the point in time where the transportation of the produced
products of job j begins. It immediately follows that Dj > Cj must hold in a feasible
solution for any scheduling problem that considers delivery decisions. Several literature
models assume that the delivery departure timeDj coincides with the completion time
Cj of a job. Other models impose certain restrictions on the choice of Dj. For example,
vehicles’ availability or earliest and latest departure times restrict the choice of Dj. As this
dissertation is concerned with schedule problems that include fixed delivery departure
dates, the following description focuses on these types of problems.

In IPODS-FD models, a given number of transports IT = {1, ...,nT} exist that carry
produced products. A transport i ∈ IT has fixed delivery departure time ti ∈ T , which
marks the time-point for this transport at which a produced product that uses the i-th
transport must be ready for handling. IPODS-FD models do not explicitly model the
handling activities, as they are assumed to require a constant time. The delivery departure
time variable Dj for a job j ∈ N must equal one of the given fixed departure times t ∈ T in
a feasible schedule. Figure 3.1 illustrates a schedule for an IPODS-FD.

Figure 3.1

Illustration of an IPODS-FD* schedule
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* integrated production and outbound distribution scheduling with fixed delivery departure dates

Note. The fixed delivery departure times t1,t2, and t3 are input parameters and form the domain for the
assignable delivery departure times of the three jobs. The dashed lines and the placement of the Dj variables
indicate the allocated times of the schedule. In this example, the first job departs at time t1 = 5, and the
second and third jobs depart at time t3 = 14.

Basic models of this type assume that each job j is generally schedulable to depart
at any time t ∈ T . More complex models consider multiple customers’ orders where
dedicated vehicles transport finished products to individual customer locations. In these
multi-customer models, a set of customers G = {1, ...,nG} exists, with each job j ∈ N
belonging to one of the NG customers. To distinguish jobs with different customers, let
Ng ⊆ N define the subset of jobs that belongs to customer g. Furthermore, the transports
IT and the fixed delivery departure times T are distinguished by subsets IT

1, IT
2, . . . IT

nG

and T1, T2, . . . TnG such that the delivery departure time Dj for job j ∈ Ng is restricted to
transports IT

g that depart at times Tg.
Jobs may also be associated with additional data concerning delivery decisions. To
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differentiate between parameters and variables concerning the completion time and the
departure time of a job, a hat above a symbol (e.g., x̂) appears whenever a distinction
is required. Otherwise, the use of the additional symbol is omitted. IPODS-FD models
comprise some of the following parameters:

• Departure due date (d̂j). The departure due date d̂j of a job denotes the targeted
departure time of a job j. Similarly to classic production scheduling models, a
tardiness cost penalizes late deliveries.

• Departure deadline (̂̄dj). The departure deadline marks the latest departure time of
a job j. With deadlines present, any feasible schedule must adhere to the deadline
restrictions.

• Departure window ([aj,bj]) A departure window is given if the departure time is
constrained. Due to this restriction, early delivery before time aj is not allowed.
Instead, produced products are stored until the first allowed delivery time.

Modified scheduling metrics concerning the completion times can be defined equivalently
for the departure times:

L̂j = Dj − d̂j

is the lateness of a job;
T̂j = max{0,Dj − d̂j} = max{0, L̂j}

is the tardiness of a job;

Êj = max{0, d̂j −Dj} = max{0,−L̂j}

is the earliness of a job; and being late is indicated by

Ûj =

1 if Dj > d̂j

0 otherwise
.

Furthermore, the time between completion and departure may be of interest. The expres-
sion

Hj = Dj − Cj

describes the holding time of a completed job j ∈ N. In some models, optimal Dj values
arise from the optimized completion times; in others, allocation of jobs to departure times
is part of the optimization problem.

3.2 A Classification Scheme for Integrated Production and
Outbound Distribution Scheduling with Fixed Delivery
Departure Dates

This section presents a classification scheme for scheduling problems with fixed delivery
departure dates, which builds on the classification scheme introduced by Chen (2010). The
aim of an optimization problem classification scheme is generally to concisely describe
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related optimization problems without the need to explicitly state all parameters, variables,
objectives, and constraints in a mathematically precise way. A prominent example of such
a classification scheme appears in Graham et al.’s (1979) study that classifies machine
scheduling problems by a three-field notation. Each field describes a set of assumptions
about the classified scheduling problem. This notation denotes each problem in the form

α | β | γ,

where the α field describes the machine configuration, the β field lists the restrictions and
constraints associated with jobs, and the γ field specifies the objective function.

Similar tuple notations exist for problems for queuing systems (Kendall, 1953), project
scheduling (Brucker et al., 1999), cutting and packing (Dyckhoff, 1990), assembly line
balancing (Boysen et al., 2007), and crane scheduling with interference (Boysen et al.,
2017). Chen (2010) presents a classification scheme dedicated to IPODS problems. This
scheme extends the notation of Graham et al. (1979) by two additional fields. The field π
describes the characteristics of the delivery process, and the field δ represents the number
of customers. The model representation introduced by Chen (2010) tries to incorporate
many different model types with various assumptions surrounding the transportation
environment. Therefore, the utilized notation is imprecise in some aspects. For example,
the objective field distinguishes between total trip-based transportation costs, vehicle-
based transportation costs, total production costs, and the indication of a revenue-based
performance measure. Since the focus of this thesis is on integrated production and
distribution scheduling models with fixed departure dates, the classification scheme
introduced next attempts to expand the notation for this model type. The classification
scheme describes an optimization problem in five fields

α | β | π | δ | γ,

where α is the machine configuration, β lists the restrictions and constraints associated
with jobs, π describes the characteristics of the delivery process, δ represents the number
of customers, and γ specifies the objective function.

The following paragraphs define an inherent order for the attributes of the five fields.
This structuring approach adopts Graham et al.’s (1979) classification scheme, which
describes ordered attribute lists for machine scheduling problems. Chen et al. (1998) and
Boysen et al. (2007, 2017) structure the attributes in a similar way. This section’s listed
attributes define only a fitting selection to express the literature’s current state. Additional
attributes can freely extend the classification scheme to represent new models. The symbol
◦marks default values in the classification scheme that do not need to appear in the tuple
representation.

Machine Configuration (α)

The machine configuration is specified by two attributes: α = α1α2
1. The attribute

α1 ∈ {◦,P,Q,R, F, J,O} denotes the machine environment. In the case of α1 ∈ {◦,P,Q,R},
1Note that α is a string with two characters α1 and α2 and not a mathematical expression.
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a job consists of a single operation that can be processed on any machine or a subset of
machines.

α1 = ◦ Single-machine configuration. All jobs are processed on a single ma-
chine (p1,j = pj).

α1 = P Parallel-machine configuration. There are a number of identical ma-
chines with pi,j = pj.

α1 = Q Uniform parallel-machine configuration. The processing speed of each
machine imay differ such that pi,j = qipj, where qi is a given machine
speed factor.

α1 = R Unrelated parallel-machine configuration. The processing times on the
machines are arbitrary.

In some models, a job consists of more than a single operation. In these cases, sym-
bols indicating a multi-stage model are used. Each job comprises a chain of operations
(o1,j, ...,om,j), where each operation oi,j requires pi,j time units of processing time.

α1 = F Flow shop configuration. Each job must be processed on each machine.
All jobs must follow the same path through the system; jobs must
be processed in the same machine order. In permutation flow shop
configurations, the processing order of jobs is identical on all machines.

α1 = J Job shop configuration. Each job has an individual machine sequence
it must follow. In the base case, each job needs to be processed only
once on each machine. In more general cases, a job may visit the same
machine multiple times.

α1 = O Open shop configuration. No restrictions with regards to the routing
of jobs through the machine environment exist.

The second attribute α2 ∈ {◦,m} describes the number of machines or stages considered.

α2 = ◦ The number of machines is a variable.

α2 = m There is a fixed number ofmmachines.

In the case of a single machine problem, α1 = ◦ and α2 = 1; for other problem types, it
holds that a1 6= ◦ and a2 6= ◦ (see Chen et al., 1998). For example, a parallel machine
problem withmmachines, wherem is specified by the input, is denoted as α = Pm.

Processing Characteristics and Constraints (β)

The first attribute indicates whether the processing of jobs can be interrupted once started:
β1 ∈ {◦,pmtn}.

β1 = ◦ The processing of jobs can not be interrupted.
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β1 = pmtn Preemption constraints. Processing of a job can be interrupted and
continued at a later time.

The second attribute indicates whether processing consumes limited resources: β2 ∈
{◦, res}.

β2 = ◦ No resource constraints.

β2 = res During processing a job uses rh,j resources.

The third attribute indicates precedence constraints: β3 ∈ {◦,prec, tree}.

β3 = ◦ No precedence constraints exist.

β3 = prec Precedence constraints. The order of jobs is restricted by precedence
constraints of the form: job amust be scheduled before job b.

β3 = tree Precedence constraints. The order of jobs is restricted by precedence
constraints that together form a tree.

The fourth attribute indicates the arrival of orders at the system: β4 ∈ {◦, rj}.

β4 = ◦ All orders are available at time 0.

β4 = rj Release dates. The release date represents the time when a job arrives
at the system. This is the earliest time a job j can start its processing.

The fifth attribute indicates whether a common due date exists: β5 ∈ {◦,dj,dj = d}.

β5 = ◦ No due dates are specified.

β5 = dj Each job has an individual due date.

β5 = dj = d All jobs have a common due date.

The sixth attribute indicates whether orders are assigned a deadline: β6 ∈ {◦, d̄j}.

β6 = ◦ No due date is specified for the orders.

β6 = d̄j Deadline. Represents the committed completion or shipping time of a
job. A completion time or departure time greater than d̄j is forbidden
for job j.

β6 = d̄j = d̄ All jobs have a common deadline.

The seventh attribute describes processing characteristics and constraints. In a single
machine problem, the machine index i is omitted: β7 ∈ {◦,pi,j = 1,pi,j = p,pi,j = 0}.

β7 = ◦ Each job j has processing time pi,j on machine i.

β7 = pi,j = 1 All jobs have unit processing times.

β7 = pi,j = p All jobs have equal processing times.

β7 = pi,j = 0 Jobs have no processing time.
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Delivery Characteristics and Constraints (π)

Various assumptions exist regarding the transportation stage of integrated scheduling
models. The first attribute specifies the number of departure dates π1 ∈ {1, 2, T }. To emphasize
the classification as an integrated model, the value of attribute π1 is always denoted.

π1 = 1 Only a single departure date exists. All orders are delivered at this
date.

π1 = 2 Two departure date exist. All orders are delivered either on the first or
the second date. Usually, the objective function penalizes the assign-
ment of jobs to the second date.

π1 = T Multiple departure dates exist and are part of the input. Orders have
to be assigned to specific departure dates.

The second attribute specifies the transportation limit π2 ∈ {I,C,Q, ◦} for departure at a
specific time.

π2 = I Individual shipment. Each delivery consists of only one order.

π2 = C Number restricted shipment. Each delivery can consist of up to c
orders where c < n.

π2 = Q Capacity restricted shipment. Each delivery can consist of at most Q
units, where each job j consists of a different number of units.

π2 = ◦ Unrestricted shipment. Each delivery can consist of any number of
orders.

The third attribute describes the delivery mode π3 ∈ {◦, routing}. This attribute only applies
to multi-customer models.

π3 = ◦ Batch delivery by direct shipping. Each shipment transports goods
only to a single customer.

π3 = routing Batch delivery with routing. Each shipment can deliver goods to multi-
ple or all customers.

The fourth attribute indicates transportation splitting. In some models, a customer order
comprises multiple production jobs, and either the finished products must be transported
together or splitting the delivery of orders is allowed: π4 ∈ {◦, split}.

π4 = ◦ Orders must be delivered as a whole.

π4 = split Splittable delivery. Orders are allowed to be split and can be delivered
in multiple batches.

The fifth attribute states whether orders are pre-assigned to departure dates or if the choice
is part of the decision problem: π5 ∈ {◦,pre}.
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π5 = ◦ Orders must be assigned to departure dates.

π5 = pre Orders are assigned to departure dates as part of the input.

The sixth attribute describes the departure date structure: π6 ∈ {◦, eqdist}.

π6 = ◦ No structure is required for departure dates.

π6 = eqdist The distance between two consecutive departure dates is a constant. In
other words, all consecutive pairs of departure dates are equidistant to
one another.

Number of Customers (δ)

Since the number of customers considered in integrated models is an important parameter,
it is specified in a separate field.

δ = 1: Single customer. All deliveries are made to a single customer.

δ = K: Multiple customers. Deliveries are made to at least two customers.

δ = N: One time customers. Each job is delivered to a different customer.

Note that considering multiple customers in a model influences other model aspects.
For example, transportation costs may depend on the ordering customer. Additionally,
each transport may only transport products to a single customer location or a subset of
locations.

Objective Functions (γ)

In most production scheduling models, the objective function takes the completion times
of jobs into account (Pinedo, 2016). Some objectives may target the production completion
time; other models use functions depending on the actual departure time. In line with Hall
et al. (2001), variables associated with the delivery time of jobs instead of the completion
time are made distinguishable by the symbol (̂ ). Note that the delivery time itself is
denoted as D instead of Ĉ. The objective function γ may comprise a combination of
multiple objectives, for example the sum of multiple cost-related measures.

γ = Cmax/Dmax Makespan. This objective is defined as max{C1, ...,Cn} which is the
completion time of the last job to leave the system. This measure is
utilized mostly if no delivery assumptions are made. In integrated
models the related objective measures the latest delivery time.

γ = Lmax/L̂max Maximum Lateness. This objective is defined as max{L1, ...,Ln} which
measures the largest lateness, this can be either production or delivery
lateness of all jobs.
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γ =
∑

(wj)Cj/Dj Total (weighted) completion or departure time. This is the weighted
sum of completion or departure times. If the weights represents inven-
tory holding costs, the objective value is equivalent to the total cost
value.

γ =
∑

(wj)Fj/F̂j Total (weighted) flow time. This objective measures the time of a job in
the system if jobs have nonzero release dates. This time is either defined
as Fj = Cj − rj or as F̂j = Dj − rj.

γ =
∑

(wj)Tj/T̂j Total (weighted) tardiness. This objective generalizes the total (weight-
ed) completion time objective, since a solution to an instance with all
due dates set to value 0 has the same objective function value under
both objectives.

γ =
∑

(wj)Ej/Êj Total (weighted) earliness. This objective measures the distance be-
tween the completion time from an agreed-upon due date/departure
date.

γ =
∑

(wj)Uj/Ûj (Weighted) number of tardy jobs. This objectives measures all jobs that
are tardy for a given production due date or delivery due date.

γ =
∑

(wj)Vj/V̂j (Weighted) number of early jobs. These objectives measure all jobs early
for a given production due date or delivered earlier than expected.

γ =
∑

V̂j Cumulative payoffs. This measure calculates a payoff related to the
delivery departure dates of jobs that is cumulative. The payoff for a
job j is calculated as a non-increasing step-wise function of the job’s
delivery departure time. Early deliveries are consequently beneficial to
the objective function value.

Some models consider a finished goods storage penalty that applies between completing
a job and its pickup. This objective is captured as follows:

γ =
∑

(wj)Hj Total (weighted) holding time or sum of holding costs. This objective
is concerned with the dwell time of jobs between the completion time
and the actual departure time (Hj = Dj − Cj). Note that this objective
is identical to the

∑
(wj)Ej objective when the departure time of a job

is given by the input. The objective is different when there exists a
planned departure time but the model allows departures at other times.

The above objectives rate the time of completion or departure of orders. Most models con-
sidered in the literature use at least one of the aforementioned departure-time-dependent
objectives. Some models also include additional costs based on the delivery decisions or,
in rare cases, production costs. Unlike the above completion- or departure-time-based
objectives, no commonly used notation for delivery-related measures exists. To indicate a
fixed transportation cost or the minimization of the number of transports, we introduce
Bi as a binary variable set to true if at least one job uses the i−th delivery departure date.
Therefore, the following objective is defined:

page 33



3.3. A Review of Models with Fixed Departure Dates

γ =
∑

(wi)Bi Fixed transportation cost, or number of deliveries. In the weighted
case, using the transport at time ti costs wi monetary units. In the un-
weighted case, the minimization of the number of deliveries is sought.

As the structure of transportation decisions varies largely between problem formulations,
we abstain from capturing other cost-related objectives in detail. Instead, we use the
following notation to capture the essence of the different cost assumptions:

γ = TCN Variable job dependent transportation cost. This cost assumption
defines a different cost value for each job. The motivation for this
cost structure is to capture different job characteristics such as size or
weight.

γ = TCM Variable mode dependent transportation cost. This cost assumption
defines a different cost value for each delivery date to indicate the use
of different transportation modes: For example truck transportation is
more costly but faster than transportation by train.

γ = TCV Fixed vehicle transportation cost. At each departure time, there are
multiple vehicles ready for transportation where using a vehicle incurs
a cost value. This cost measure works in conjunction with limited
vehicle capacities.

Additionally, some models consider special measures. These measures appear below:

γ =
∑
Rj Revenue. In acceptance/rejection models, the delivery of an order j

results in revenue Rj.

γ = PCR Regular time production cost. Some models consider a periodic plan-
ning horizon in which production cost differs between periods. Each
period has a certain capacity (in time units) available to schedule jobs.

γ = PCO Overtime production cost. This measure applies in combination with
the PCR cost measure. The production capacity of periods can be
enlarged by, for example scheduling overtime for employees. Overtime
production is usually more costly than regular time production.

γ = Cap Capacity usage. If transportation is capacitated, this objective maxi-
mizes the used or minimizes the unused capacity.

3.3 A Review of Models with Fixed Departure Dates

This section presents an overview of published articles that deal with IPODS-FD problems
that appear in the literature. The main modeling assumption that is shared across all of
the discussed models is the presence of fixed delivery departure times in the context of
outbound distribution. Hence, models that focus on inbound transportation activities
are not discussed. The previously introduced classification scheme classifies the studied

page 34



3.3.1. Models with Predetermined Deliveries

models. Table 3.1 lists the reviewed publications, the tuple-representation of the studied
model(s), and the applied solution methods.

Common model characteristics are investigated in the following literature review. The
majority of models are of the following five types:

• Models with predetermined deliveries (Section 3.3.1)

• Models with equidistant deliveries (Section 3.3.2)

• Models with arbitrary deliveries (Section 3.3.3)

• Models with multiple customers (Section 3.3.4)

• Models with batch deliveries (Section 3.3.5)

Note that some models can be characterized by more than one type.

3.3.1 Models with Predetermined Deliveries

This section presents models with predetermined deliveries. In a few models, the delivery
departure times Dj are agreed upon in advance and given as problem parameters. The
designed optimization methods are consequently not concerned with delivery decisions.
Instead, the applied approaches must find a schedule with job completion times close
to the agreed departure time. The delivery times in these models are modeled either
as due dates or as deadlines. In the first case, completion times are allowed to exceed the
planned delivery time, and a tardiness penalty applies. In the second case, each job must
be completed at or before the planned delivery time. In general, many classic scheduling
models that do not explicitly deal with transportation decisions also include due dates
or deadlines; we exclude these models from the discussion. Instead, this section only
considers problem formulations that minimize earliness costs, as this objective is often
considered in IPODS-FDs.

An early work that includes delivery decisions with predetermined deliveries is by
Chand and Schneeberger (1988); the studied problem is denoted as 1 | d̄j | T ,pre | 1 |∑
wjHj by the five-field notation. The authors deal with a just-in-time (JIT) production

environment where the delivery of jobs occurs exclusively at given points in time. The
investigated scenario assumes tight production capacities and significantly fewer due
dates or transports than jobs. This assumption requires the joint transportation of finished
products. Hence, it is frequently impossible to complete each job exactly at its departure
date in this setting. The scheduling problem under consideration minimizes the total
weighted earliness (WE) subject to no tardy jobs. More precisely, the problem is to find a
feasible schedule for n jobs on a single machine, where each job has a processing time pj
and a planned departure date d̄j (deadline), and is associated with a holding cost value
cH
j . The objective is to minimize the total weighted holding costs

n∑
j=1

(d̄j − Cj) · cH
j .
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Table 3.1

Articles that Consider IPODS-FD Problems (in Chronological Order)

Publication Model Method

Chand and Schneeberger (1988) 1 | d̄j | T ,pre | 1 |
∑
wjHj DP, H

Matsuo (1988) 1 | d̄j | 1 | 1 |
∑
wjT̂j + PC

R + PCO H

Lee et al. (1991) 1 | dj = d | 1 | 1 |
∑
w1
jEj +w

2
jTj +

∑
w3
jUj DP

Chhajed (1995) 1 | d̄j | 1/2, eqdist | 1 |
∑
Hj + β

∑
Dj PA, H

Lee and Li (1996) 1 | (pj = p) | T , eqdist | 1 |
∑
Hj + β

∑
Dj DP, PA

Yang (2000) 1 || T | 1 |
∑

(wj)Hj/max(wj)Hj PA

Hall et al. (2001) α || T | 1 | γ, PTAS, DP

α ∈ {1,Pm,P, F2, F3, J2, J3,O2,O3,O},

γ ∈ {Dmax,
∑

(wj)Dj, L̂max,
∑

(wj)Ûj,
∑

(wj)T̂j}

Wang et al. (2005) 1 | rj | T ,C | G | Cap H, PDR

Li et al. (2005, 2006) 1 | rj | T ,pre | K |
∑
w1
jHj +w

2∑(Uj)* MILP, H

Stecke and Zhao (2007) 1 | pmtn, d̄j | T , (split) | 1 |
∑
f(Dj)} PA, H

Chen (2010)
1 || T ,C | 1 | γ

DP
γ ∈ {f(Dj), f(Dj) + TC,

∑
Dj + TC}

Carrera et al. (2010a,b) 1 | res | 1 | 1 | Cmax PTAS

1 | dj = d, res || 2 | 1 | (1 +
∑
wjÛj) · Cmax

1 | res | T | 1 |
∑
wjDj

Fan (2010) 1 || T , (eqdist) | 1 | Dmax +
∑
wjVj PTAS

Fu et al. (2012) 1 | rj, cj, d̄j,accept | T ,Q | 1 |
∑
Rj PTAS

Seddik et al. (2013) 1 | (rj), (pmtn) | 2/T | 1 |
∑

V̂j PA,DP

Leung and Chen (2013) 1 || T ,C | 1 | γ PA

γ ∈ {L̂max, L̂max +
∑
Bi,αL̂max + β

∑
Bi}

Ma et al. (2013) 1 | rj | T | 1 |
∑
w1
jH

1
j +w

2
jH

2
j +
∑
w3
j T̂j + TC

M GA

Tyagi et al. (2013) 1 || T | 1 |
∑
w1
jHj +w

2∑Bi -

Mensendiek et al. (2015) Pm || T | 1 |
∑
wjT̂j B&B,GA,TS

Liu and Hsu (2015) Jm | aj | T , eqdist | 1 |
∑
w1
j F̂j +

∑
w2
jHj*** PDR

Li et al. (2017) 1 | [âj, b̂j],noidle | T , (force batch) | K |
∑
w1
jHj + TC

N,M CG, TS

Han et al. (2019) F(1, 1) || T , (Q), split | K | γ PA, DP

γ =
∑
w1
jHj +

∑
w2
jÛj +

∑
w3
j(1 − Ûj) + TC

V

Wang et al. (2020a,b) - ** GA

DP: Dynamic Programming B&B: Branch-and-bound TS: Tabu Search GA: Genetic Algorithm
PDR: Priority Dispatching Rule PTAS: Polynomial-time Approximation Scheme PA: Polynomial-time
Algorithm CG: Column Generation H: Heuristic MILP: Standard solver approach
* Notation for the scheduling problem
** Multi-stage model for a port-centric supply chain that is not captured by the introduced notation
*** The problem is a dynamic scheduling problem with job arrival times aj
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3.3.1. Models with Predetermined Deliveries

Due to the deadline assumption, the constraints

Cj 6 d̄j ∀j ∈ {1, 2, . . . ,n}

must additionally hold. This so called WE problem allows idle times on the machine. A
variant of this model is the constrained weighted earliness (CWE) problem that disallows
machine idle time by introducing the constraint

Cj 6
n∑
i=1

Pi

for each job j ∈ {1, 2, . . . ,n}. Chand and Schneeberger argue that the CWE problem is
equivalent to the NP-hard2 weighted completion time problem subject to no tardy jobs
1|d̄j|

∑
wjCj and prove that the objective functions only differ by a constant. The CWE

problem is consequently NP-hard even for an identical weights setting.
Lee et al. (1991) formulate the second model with predefined departure times denoted

as 1 | dj = d | 1 | 1 |
∑
w1
jEj+w

2
jTj+

∑
w3
jUj. Only a single departure date (common due

date d) exists in the researched model. The completion of a job after the planned delivery
time d generates a penalty cost. Two different tardiness penalties are part of the objective
function: a unit tardiness penalty and a fixed job-dependent tardiness penalty, as stated in
Objective Function (3.1)

min
n∑
j=1

w1
j max{0,d− Cj}+w

2
j max{0,Cj − d}+w3

jUj. (3.1)

The above parameters w1
j ,w

2
j and w3

j are the earliness cost per unit of job j, the tardi-
ness cost per unit of time of job j, and the fixed penalty cost that applies when job j is
tardy. The authors consider two versions of the problem: In the first one, the common due
date d is a parameter; in the second one, d is a decision variable. Pseudopolynomial DP
algorithms solve both versions. Furthermore, the authors describe a polynomial DP for the
case where all cost types are equal for all jobs, with d as a variable and a pseudopolynomial
DP for d as a parameter.

Li et al. (2005) investigate a problem of assembly scheduling with air-transportation in a
consumer electronics supply chain. The problem is to coordinate transportation and assem-
bly decisions. In this study, the problem is formulated as two sub-problems and solved by
a hierarchical approach. The first subproblem requires orders to be allocated to transports
to minimize earliness, tardiness, and transportation costs. The second subproblem seeks a
schedule that minimizes the average waiting time before transportation for the allocated
orders. The scheduling problem is denoted as 1 | rj | T ,pre | K |

∑
w1
jHj +w

2∑(Uj)and
solved heuristically by a dispatching rule. Note, while Li et al. (2005) describe the alloca-
tion problem formally, the scheduling problem’s details are left out. A second study by the
same authors (Li et al., 2006) considers an identical problem that additionally incorporates
uncertainty. Specifically, the machine environment is subject to process delays for reasons
such as machine breakdowns or shortages of materials. A more detailed explanation of

2Note. The authors make no distinction between weak and strong NP-hardness.
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the scheduling subproblem appears in this publication. The authors segment the whole
planning horizon into planning days and formulate a separate MILP for each planning day
to model the allocated jobs’ scheduling problem. During each planning day, the authors
assume prior knowledge of occurring delays. Therefore, the MILP models have no stochas-
tic components. The scheduling problem aims to build a schedule that adheres to the
assignment stage’s allocation while minimizing earliness penalties. Since machine delays
occur (but are not known during allocation), lateness fees are part of the objective function.
Moreover, commercial flights transport late orders at additional costs. As the considered
scheduling problem is weakly NP-hard, the authors developed a scheduling heuristic.
Both studies consider only scheduling decisions with delivery dates pre-computed in an
initial planning stage.

3.3.2 Models with Equidistant Deliveries

This section discusses models with decidable job delivery departure times that consider
a special structure of fixed delivery departures: Departure times occur in intervals of
equal length. The considered models define the time between two consecutive departure
dates as a constant duration τ. Therefore, there are departures at times τ, 2τ, ...,nTτ where
nTτ >

∑n
j=1 pj is required for feasible schedules to exist.

One of the first studies of this type was by Matsuo (1988). The considered problem
1 | d̄j | 1 | 1 |

∑
wjT̂j + PC

R + PCOcombines determining overtime utilization and job
sequencing over a periodic planning horizon with periods of equal length. The model
includes tardiness costs for jobs that do not meet their due dates. Increasing machine
capacity is allowed for each planning period, although using overtime generates higher
costs than regular time usage. As the model does not consider transportation costs or
delivery restrictions, completing a job in a planning period triggers delivery at the end of
the same period. The authors prove the strong NP-hardness of the problem in its general
form, and a two-stage heuristic solves the problem: First, a problem relaxation determines
an initial (possibly infeasible) solution to the general problem; then, a feasible schedule is
generated from this information and subsequently improved.

The problem that appears in Lee and Li’s 1996 research also assumes an equidistant
structuring of departure dates. The researched model’s objective is to minimize due
date costs and inventory holding costs. The five-field notation describes the model as
1 | (pj = p) | T , eqdist | 1 |

∑
Hj+β

∑
Dj. First, the due date cost in the considered model

is a step-wise increasing cost function that increases with each consecutive departure date.
Completing a job at (i− 1)τ < Cj 6 iτ triggers delivery at τ with due date costs βi. Note
that the due date cost objective is equivalent to β

∑
Dj, since for Dj = ti, Dj/τ = i. The

objective is consequently not denoted differently. Second, the objective jointly minimizes
the total holding cost value equivalently to Chand and Schneeberger (1988). Both cost
types are job agnostic in the considered models. The model in Lee and Li’s 1996 work
is a generalized version of the model by Chhajed (1995) that considers only instances
with two due dates {τ, 2τ}. Lee and Li (1996) note that, for a setting β = 0, and under the
constraint that the interval length τ is larger than the sum of the processing times of all
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jobs, the problem is equivalent to the parallel machine problem Pm||
∑
Cj. Although this

problem is generally strongly NP-hard, Lee and Li (1996) derive a DP formulation for the
problem with a fixed number of due dates that solves the problem in pseudopolynomial
time. The authors provide a O(n3) time DP algorithm for the special case with identical
job processing times.

Fan (2010) considers a single machine problem with equidistant or arbitrary deliveries
denoted as 1 || T , (eqdist) | 1 | Dmax +

∑
wjVj. The objective is to minimize the maximum

delivery time (Dmax) and the total weighted number of early jobs (
∑
wjVj). As this variant

is strongly NP-hard, the authors developed approximation schemes and demonstrated
that the version with arbitrary deliveries has no PTAS with a fixed performance ratio
unless P= NP is true. The authors consequently studied the equidistant version of the
problem and describe a PTAS with a performance ratio of 3/2, which is the best ratio
attainable (unless P = NP) for this problem.

Liu and Hsu (2015) discuss the problem Jm | aj | T , eqdist | 1 |
∑
w1
j F̂j+

∑
w2
jHj with

equidistant delivery departure dates. The study stands out in the literature discussion
for two reasons. First, the authors consider a job shop environment; therefore, the study
is one of the few works that deviate from the single machine assumption. Second, the
study considers a dynamic scheduling problem with dynamic job arrivals and it is hence
the only dynamic IPODS-FD formulation found during the literature search. The authors
assume that jobs arrive dynamically over time and are processable on arrival. The objective
function minimizes two criteria: the sum of weighted flow times and the total holding
costs. In their experimental study, the authors compare different dispatching rules, which
select the best job available for processing at each point in time. As future orders are
unknown before arrival in the dynamic context, the dispatching rules only select the next
operation by considering the revealed orders.

Surprisingly, the authors do not mention the implemented scheduling procedure
that was used on the basis of the computed priorities. As the objective also minimizes
the holding costs, completing jobs close to the delivery departure time is cost efficient.
However, scheduling jobs later than necessary may delay the processing of dynamically
arriving jobs. The exact mechanics of the presented approach consequently are not entirely
comprehensible. Furthermore, although the computational study compares the results
of the different dispatching rules, the quality of the final schedules (by comparing the
schedules to those produced with full information) is not discussed.

3.3.3 Models with Arbitrary Delivery Departure Dates

In models with arbitrary delivery departure dates, the distance between two consecutive
dates may vary. Yang (2000) uses the term “generalized deliveries” to describe such
models. This paper analyzes a single machine problem with two alternative objective
functions: the minimization of the sum of holding costs

(∑
(wj)Hj

)
and the minimization

of the maximum holding cost
(
max(wj)Hj

)
. The problems are denoted as 1 || T | 1 |∑

(wj)Hj/max(wj)Hj. In the investigated problems, there are nT delivery departure
dates, where tnT =

∑n
j=1 pj. Hence, the study does not deal with idle times on the
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machine. The k-th delivery batch is defined as job set Bk = {j | tk−1 < Cj 6 tk} and
therefore Dj = tk ∀j ∈ Bk. In general, even the unweighted problems are strongly
NP-hard. If all n jobs have equal processing times, then the problems can be modeled
as assignment problems that are solved in O(n3) time optimally. The authors note that
the assignment problem’s particular structure allows for an even faster algorithm that
minimizes the WE by sorting the jobs accordingly. Due to this approach, the worst time
complexity of O(n log(n)) is attainable.

Hall et al. (2001) present numerous scheduling problems with generalized deliv-
eries. The authors study the complexity and provide solution approaches to classic
scheduling problems extended by considering fixed departure dates. As described in
Section 3.2, Hall et al. define time-oriented scheduling variables based on the depar-
ture time instead of the completion time of a job. The problems α || T | 1 | γ with
α ∈ {1,Pm,P, F2, F3, J2, J3,O2,O3,O}, and the objectives (γ) (weighted) departure time
(wj)Dj, maximum lateness L̂max, (weighted) number of tardy jobs (wj)Ûj, and (weighted)
tardiness (wj)T̂j are discussed. The study provides complexity-related results and presents
approaches for parallel machines, flow shops, job shops, and open shops. Most of the
analyzed problems are either weakly NP-hard when the number of departure dates is a
constant, or strongly NP-hard when the number of delivery dates is part of the input. The
authors formulate several pseudopolynomial-time DP algorithms.

Stecke and Zhao (2007) discuss eight model variations for a production and distribution
problem in a MTO environment for a single product. The problem can be described as
1 | pmtn, d̄j | T , (split) | 1 |

∑
f(Dj)}, with f(Dj) denoting a cost function that is based on

the delivery time of the individual jobs. In the considered problems, the manufacturer
adopts a commit-to-delivery mode; that is, the manufacturer commits to a delivery due
date for an order. The authors consider the possibility of using several shipping modes
that differ in travel time and costs. Specifically, they consider the cost structure of different
transportation modes of 3PL providers such as FedEx and UPS (e.g., overnight, one-day,
or two-day delivery). Furthermore, they investigate scenarios with two different shipping
cost functions that depend on the shipping time, two modes of delivery (partial delivery
allowed or forbidden), and either a single customer location or multiple customer locations.
In the presented models, there exists an average production rate of p in items per hour and
a daily production capacity c. The production plan comprises producingQj items for each
order j with delivery departure deadline d̄j throughout a planning horizon with m days.
A solution to a problem instance decides on the number of items produced for customer
order j on production day i. Although the models incorporate deadlines, Stecke and Zhao
assume that the production capacity is sufficiently large such that constructing a feasible
schedule is non-problematic. The shipping date Dj for order j with Dj 6 dj and the used
shipping mode for order j are dependents on the production decisions. In the problem
with linear shipping costs and allowed partial delivery, the shipping cost for an order j
is b − a(dj −Dj), where value b is the cost per item for overnight shipping, and value
a is the dollar value of increasing the shipping time by one more day. Early production
and delivery are consequently cost-beneficial in a schedule. Furthermore, some model
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variations allow partial delivery; in these variations, the optimal delivery date is at the end
of the production day. The authors show that a non-preemptive earliest due date (EDD)
schedule is optimal in this case. For nonlinear shipping costs that follow a concave cost
function, a modified EDD rule constructs optimal schedules. When partial delivery is not
allowed, the problem becomes strongly NP-hard for linear and nonlinear cost functions.
Therefore, the authors offer heuristic solution methods.

Carrera et al. (2010a,b) consider the combination of fixed delivery departure dates and
resource availability for jobs. To start the production of a job, the required resources must
be present. The production resources arrive several times during the planning horizon,
and each production process consumes a certain amount of available resources. The
authors describe the arrival of components as a fixed cumulated staircase curve, and they
consider the following three models:

• 1 | res | 1 | 1 | Cmax: The only delivery occurs at time Cmax. This model technically
does not consider fixed departure dates since the value ofCmax cannot be determined
beforehand.

• 1 | dj = d, res | 2 | 1 | (1 +
∑
wjÛj) · Cmax: A single fixed departure date t and

a second departure at time Cmax exist. In this scenario, a job j that is completed
after time t departs instead at time Cmax. A lateness penalty wjÛj penalizes this late
delivery. In contrast, jobs that are completed before or at Cmax contribute no costs to
the objective value.

• 1 | res | T | 1 |
∑
wjDj: In the third scenario, there is a set of fixed departure dates,

where the last departure date is sufficiently large, such that all jobs are completed
beforehand.

The authors develop lower bounds and approximation-based upper bounds for the three
NP-hard problems.

Fu et al. (2012) study problem 1 | rj, cj, d̄j,accept | T ,Q | 1 |
∑
Rj, which maximizes

the revenue of jobs. For each job j, there exists a production time window [rj, d̄j] on a single
machine and additionally a latest departure date ̂̄dj. The time restrictions are assumed to
be hard, but rejecting (i.e., not producing) jobs is allowed. Each job j is associated with a
size cj and a profit pj. A transport at delivery date i has a maximum capacity of Ci. In this
model, a job is only profitable if it is completed within its production time window and
starts delivery at its promised departure date. The authors also study the version with
only one departure date. Both problems are strongly NP-hard. The problem with one
departure date is solved heuristically by a PTAS. Furthermore, an extension to this PTAS
solves the problem with multiple departure dates, assuming that the number of departure
dates is a constant.

Seddik et al. (2013) study the problem 1 | (rj), (pmtn) | 2/T | 1 |
∑

V̂j
3 with release

dates and a cumulative payoff function. The function rewards the early completion of jobs.
3The notation γ = 2/T refers to two variants of the problem: The first variant specifically deals with two

delivery departure times, while the second variant allows an arbitrary number of delivery departure times
specified by the input.
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For a given set of nT delivery departure times {t1, t2, . . . , tT
n} completing a job before time t1

realizes a payoff of nT; a completion after t1, but before t2, realizes a payoff of nT − 1; and
so on. The authors prove the strong NP-hardness of the general problem and therefore
study relaxed versions of this general problem. The shortest processing time (SPT) rule
optimally solves the problem without release dates, and the shortest remaining processing
time (SRPT) rule solves the problem with release dates and preemption. The problem with
equal processing times with n jobs is solved in O(n log(n)) time. The authors provide
a polynomial-time algorithm based on the Moore-Hodgson algorithm (Moore, 1968) for
solving 1||

∑
Ui for the special case with a single delivery date. A DP algorithm optimally

solves the problem with two delivery dates.
The model by Ma et al. (2013) considers the transport of items with variable costs that

depend on the departure date. The problem can be stated as 1 | rj | T | 1 |
∑
w1
jH

1
j+w

2
jH

2
j+∑

w3
j T̂j+TC

M. The objective function considers two types of inventory holding costs: The
first one rates storage in a warehouse at the manufacturing site after processing completes
until departure; the second one considers storage at the transportation destination in a
distribution center until the warehouse’s pickup is due. Additionally, tardy arrivals at the
warehouse are penalized, and shipments are associated with a variable shipping cost that
differs by shipment but is equal for all jobs. The problem is solved by a GA.

Mensendiek et al. (2015) present the scheduling problem Pm || T | 1 |
∑
wjT̂j on

identical parallel machines to minimize total tardiness while considering fixed departure
dates. The model comprises no further restrictions. As the problem is weakly NP-hard, the
authors propose a B&B approach and two heuristics to solve it. The considered problem
differs from the ordinary production scheduling problem Pm||

∑
Tj by considering the

delivery-equivalent objective
∑
T̂j.

3.3.4 Models with Multiple Customers

In multi-customer models, different customers G order products, and produced items
must therefore be transported to different customer locations. In this type of model, there
is a separate set of delivery departure times Tg for each customer g, and a vehicle that
arrives at such a customer-specific departure time t ∈ Tg consequently only transports
produced items that belong to the customer g if routing is not part of the model.

Wang et al. (2005) investigate a practical problem of sequencing the processing of
incoming mail. In the considered problem 1 | rj | T ,C | G | Cap, multiple mail trays from
different origin locations must be processed on a single machine without preemption.
Each mail tray comprises mail that is to be delivered to multiple destinations, and all
trays from a specific location arrive at the same time. Furthermore, for each destination, a
truck leaves at a fixed leaving time. The goal is to process the incoming mail such that the
unused truck capacity is minimized. The problem formulation allows for unprocessed
trays, and several dispatching rules are compared to solve the daily problem.

Li et al. (2017) present a model that acknowledges orders from and deliveries to
multiple customers. The considered problem

1 | [âj, b̂j],noidle | T , (force batch) | K |
∑

w1
jHj + TC

N,M
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arises for manufacturers in the steel industry that adopt an MTO production strategy.
In this setting, customers dictate a delivery time window for placed orders, and the
manufacturer relies on 3PL providers to transport the ordered items. The presented model
assumes that customers’ orders comprise multiple jobs that require processing on a single
machine. After a job is processed, a transporter delivers items to the specific customer,
starting at dedicated departure times. The model restricts the transportation of an order
to a subset of departure times within a time window ([âj, b̂j]). The authors consider a
case where the delivery of an order can be split over multiple shipments, and a non-split
case where all jobs of an order must be delivered together. Additionally, the authors
impose a noidle-constraint for the machine, which they justify as a requirement in the
studied steel industry. The objective considered in this study is to minimize the total
inventory and delivery costs. The model’s holding costs originate from the produced
items’ literal weight in the holding cost function. Moreover, the transportation costs are
weight and mode dependent (TCN,M); that is, at each departure date, the cost to transport
the produced items of a job varies. Furthermore, the model allows the definition of job
weights to prioritize a job compared to others. Both variants of the problem are strongly
NP-hard, while some relaxations are easier to solve. A CG approach is combined with a
TS heuristic to solve the problem optimally or near optimally.

Han et al. (2019) consider a three-stage supply chain with a single supplier, a single
manufacturer and multiple customers. The problem is represented as

F(1, 1) || T , (Q), split | K |
∑

w1
jHj +

∑
w2
jÛj +

∑
w3
j(1 − Ûj) + TC

V

with F(1, 1) denoting the supplier-manufacturer environment. Orders from customers
comprise multiple jobs that must be processed on a single machine at the supplier’s site
and then on a single machine at the manufacturer’s site. Afterward, the manufacturer
stores finished jobs in inventory for later pick up by vehicles at fixed departure times. The
considered model does not include release dates, but delivery deadlines. Late deliveries
are forbidden by the model; instead, jobs can be rejected by paying a rejection fee. Rejected
jobs are not part of the generated schedules. Apart from the rejection fees, the objective
function minimizes the total holding cost and total transportation costs of finished jobs.
Furthermore, multiple possible departure times exist for each customer destination. At
each of these departure times, a transporter with limited weight capacity is available that
may transport finished jobs with individual weight. Activation of a transport generates
a date-dependent cost value that is independent of the number of transported jobs. The
authors provide complexity-related results for variations of their model. Most of the
problems are strongly NP-hard in the general case, and weakly NP-hard for a fixed
number of orders (=customers). Some problems are shown to be polynomial-solvable by a
DP algorithm.

The models presented by Wang et al. (2020a,b) consider a port-centric supply chain
with multi-modal transportation that cannot be accurately captured by the introduced
five-field notation. Customer orders are produced at an inland industrial park, transported
to a single origin port by truck or train and shipped to multiple destination ports. Orders
have material requirements that have release dates and material storage costs. At the
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manufacturing site, multiple production lines (i.e., machines) exist that work in parallel.
The authors consider different production speeds and restrict the set of producible orders
for each production line. Finished orders can be transported either by a regularly arriving
train or on demand by trucks to the origin port, where orders can be stored for a storage
cost rate. Ships headed to the different destination ports arrive at the origin port, based on
a timetable. The model considers unit production costs and unit maritime transportation
costs for each order, railway transportation costs and truck transportation costs per
delivery and unit storage costs at the factory and at the origin port, and earliness and
tardiness penalty costs. A solution to this problem decides on the assignment of orders to
production lines, the schedules for the production lines, the transportation mode and time
to transport finished orders to the origin port, and the assignment of orders to cargo ships.
The authors describe a GA to heuristically solve this strongly NP-hard problem.

3.3.5 Models with Batch Deliveries

This section focuses on models that explicitly encourage the bundling of jobs into delivery
batches due to the underlying cost structure. The models discussed so far all assume
either no or only job-related (as in Lee and Li (1996) or more recently Li et al. (2017)) costs
for transportation. In these models, a job’s delivery time is consequently derived directly
from the completion time, which is the earliest available time after processing completes.
While some models consider variable transportation costs (e.g., Stecke and Zhao (2007)
and Li et al. (2017)), bundling jobs has no intrinsic cost benefit in these models.

Leung and Chen (2013) present problems that deal with delivery bundles. The con-
sidered problems are 1 || T ,C | 1 | γ with γ ∈ {L̂max, L̂max +

∑
Bi,αL̂max + β

∑
Bi}.

The presented models assume that a vehicle arrives at each delivery date and can only
transport a limited number of orders. The objectives considered are (1) L̂max and more
importantly, (2) L̂max +

∑
Bi and (3) the weighted sum of L̂max +

∑
Bi, where Bi is

the number of deliveries. The Objectives (2) and (3) are hierarchically structured, and
schedules are hence sought that minimize the (weighted) Lmax objective first and the num-
ber of deliveries second. For all three variants, the authors developed polynomial-time
algorithms.

Tyagi et al. (2013) propose a model that pursues the minimization of fixed transporta-
tion costs and total holding costs. The authors use a nonlinear model to formulate the
problem, which is solved by the Lingo 9 software package4. However, the authors do not
present a computational analysis of the implemented model.

3.4 Conclusion

This chapter presented the integration of outbound distribution decisions with fixed
departure times in production scheduling models. Section 3.1 provided a brief introduction
to scheduling problems that incorporate delivery decisions for settings with fixed delivery
departure times–so-called IPODS-FDs. To categorize the current research that studies

4https://www.lindo.com/
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such problems, Section 3.2 presented a classification scheme, based on the one presented
by Chen (2010), that covers a wide variety of model assumptions in a concise format.
Thereafter, Section 3.3 discussed the studied scheduling models and classified them using
the scheme introduced beforehand. The discussion of the models was structured according
to the common characteristics . This chapter concludes with a description of the current
state of research in Section 3.4.1 and research gaps and possibilities in Section 3.4.2.

3.4.1 The Current State of Research

The conducted literature review discussed 25 publications that were mostly published
in the previous decade. Therefore, the extension of scheduling models with fixed de-
parture dates is a relatively new and not broadly studied research field. However, the
published papers offer models and solution methods for many different applications and
assumptions. This section briefly recapitulates the different characteristics regarding the
integration of delivery decisions.

The structure of delivery departure dates considered in the different models varies
greatly. The first variation is the considered number of departure dates that are specified
by the input. Early works by Matsuo (1988), Lee et al. (1991), and Chhajed (1995) consider
problems with one or two departure dates. In some publications, a relaxation of the general
problem with multiple departure dates to a problem with only one or two departure dates
enables the construction of optimal polynomial-time algorithms. Most models consider
a finite number of available departure times that either are equidistant to one another
or have an arbitrary structure. Most of the models consider only a single customer or
a common departure schedule for all ordered jobs. This assumption is extended by the
recent multi-customer models (Li et al. (2017), Han et al. (2019), and Wang et al. (2020a,b)).
These publications define individual, customer-dependent departure schedules. A job
ordered by a certain customer g can only depart with a vehicle that moves to the customer
location of g.

Some of the authors assume that transports are subject to capacity constraints. Models
presented by Chen (2010) and Leung and Chen (2013) limit transports to a number of jobs,
which they justify by considering equally sized goods. In addition, recent publications
Han et al. (2019) and Wang et al. (2020a,b), and an earlier publication by Fu et al. (2012)
considers different weights for the produced goods and limit vehicle capacity by total
weight.

Many of the discussed models do not consider any transportation costs and focus on
completion-time or departure-time-oriented objectives. To the best of our knowledge,
Stecke and Zhao (2007) first studied models that focus on transportation-related costs. The
cost structure they considered is job dependent, and the number of jobs that depart at
the same date is of no consequence for the resulting costs. Apart from the job-dependent
aspect, the cost structure may depend on the used transportation mode and might be
influenced by the customer destination. The assumption made in Stecke and Zhao (2007)
is that the vehicle(s) that arrive at a departure time ti transports the products first to a
distribution center that handles the downstream transport to customer locations. Li et al.
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(2017) define eligible departure times for each order that comprises multiple jobs. The
transportation costs are defined by cost values ci,t for an order i and departure time t.
The model does not cover the cost benefit of transporting parts of the order jointly on the
same departure time.

The model proposed by Leung and Chen (2013) integrates delivery batching to min-
imize the number of transports and, consequently, transportation costs. In this model,
using fewer distinct departure dates (i.e., fewer vehicles) to pickup produced items re-
duces the transportation costs. Note that holding costs are not considered in conjunction
with batch delivery costs. Furthermore, the multi-customer models by Han et al. (2019)
and Wang et al. (2020a,b) consider varying transportation costs that depend on the job
and the chosen departure date but do not include fixed transportation costs.

3.4.2 Research Gaps and Opportunities

Analyzing the relevant literature revealed the following research gaps:

• Only a few papers consider hard time window restrictions in their presented models.
Many of the studied papers consider no release-date restrictions, which exempts
the use of the solution approaches in applications with prior production stages or
inbound distribution activities. Furthermore, production or delivery deadlines are
only present in a handful of papers. Fu et al. (2012) study a model with release dates
and deadlines but avoid the arising issue of generating feasible schedules by rejecting
jobs. Including hard time window restrictions into IPODS-FD is consequently an
area that requires further study.

• The trade-off between holding and batch transportation costs is not well studied.
On the one hand, a few considered models include a finished product holding cost
that measures the storage duration of products between completion and the start
of delivery – minimizing these costs in isolation results in many transport activi-
ties throughout the considered planning period. These activities cause numerous
separate handling operations to retrieve the stored products and, depending on the
contracts with the 3PL provider, per delivery costs. On the other hand, the model by
Leung and Chen (2013) that minimizes transports does not consider holding costs,
and the average holding time of finished products is consequently relatively high to
reduce the number of transports. A combined consideration of the two interlinked
cost types, namely, holding costs and batch delivery costs, is not well studied.

• The only model that describes a dynamic and not a static planning environment
is formulated Liu and Hsu (2015). Hence, for the other models, all orders for the
planning horizon are known beforehand, and the orders or transports’ parameters
are certain and do not change. Stochastic models with random parameters and
dynamic scheduling models are consequently not well researched for IPODS-FDs.
Therefore, many opportunities exist to extend the research of such problems in both
areas.
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The stated research opportunities motivate the formulation of two scheduling models.
First, the scheduling problem with flexible customer-dependent delivery dates that pur-
sues the minimization of holding and transportation costs (SFDDHT) (see Chapter 4).
Second, a dynamic problem formulation with dynamically arriving orders in Chapter 7
named scheduling problem with flexible customer-dependent delivery dates and dy-
namic job arrivals that pursues the minimization of holding and transportation costs
(D-SFDDHT).
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Chapter 4

The Scheduling Problem with
Flexible Definable Departure Dates

The contents presented in this chapter also appear in the work of Bachtenkirch and Bock (2022),
titled Finding efficient make-to-order production schedules, which is published in the European
Journal of Operational Research. To avoid impairing the reading flow, citations do not reference
this article continuously throughout this chapter. However, when introducing a mathematical
statement, such as a lemma, proposition, or proof, from the stated paper, the text includes a reference.
Moreover, tables, figures, and algorithms that are taken from this paper are referenced as per usual.

The previous chapter reviewed the existing literature concerning IPODS-FD models
and discussed the different model assumptions. While the presented studies cover a
wide variety of applications, the joint optimization of the holding costs and batch delivery
transportation costs of finished goods is an area that has not been covered by the published
research.

This chapter introduces the SFDDHT, that is a novel scheduling problem to map
various BTO-SC and MTO applications. The proposed model comprises the following
notable aspects: the minimization of finished goods’ holding costs and batch delivery
transportation costs, batch delivery to multiple customer locations, hard production and
delivery time windows, and the enabling of machine idle times.

The SFDDHT is informally introduced in Section 4.1 to illustrate the possible applica-
tions of the proposed model. An introduction to the problem notation and parameters
in Section 4.2 follows the initial informal description. Then, Section 4.3 formulates the
optimization problem as a MILP that unambiguously defines the constraints and objective
of the SFDDHT. Lastly, Section 4.4 resolves the problem’s complexity status by polynomial
reduction from a strongly NP-hard problem.

4.1 Problem Description and Application Areas

This section introduces the SFDDHT alongside its intended areas of application: Several
customers task a single manufacturer in a JIT environment with the production of products
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for multiple orders and their timely distribution via 3PL transportation. The proposed
model is concerned with a single machine of the manufacturer’s production system, which
finalizes the product building or assembly in an MTO or a BTO fashion with multiple
previous production and assembly stages.

Due to this underlying complex environment, the model enforces production release
dates for the jobs that are a consequence of previous operations and raw material or
component availability (Jamili et al., 2016). We consider applications in the area of JIT
production in MTO or BTO supply chains that usually try to avoid extensive inventories
of components and materials. A sufficient inventory to produce or assemble all final
products at any given point time hence does not exist.

The proposed model additionally includes production and delivery deadlines. This
modeling assumption makes the model especially suited for applications with perishable
products, for example in the context of the production and distribution of fresh fruits
and vegetables (c.f. Chen and Vairaktarakis, 2005), concrete paste (c.f. García and Lozano,
2004, 2005), and perishable chemical compounds (c.f. Devapriya et al., 2006; Armstrong
et al., 2008; Geismar et al., 2008). A deadline indicates the last possible delivery departure
at which the distributor guarantees product arrival without deterioration below an ac-
ceptable level. The newspaper industry is another application area for deadline models.
Newspapers or magazines are usually offered for a limited amount of time and replaced
by newer editions daily, weekly, or monthly, therefore, the distribution of orders is strongly
encouraged to take place in a given time frame (c.f. Russell et al., 2008).

The reliance on 3PL for distribution is modeled by customer-specific fixed delivery
departure dates. For each customer destination, the manufacturer and 3PL provider
agree on a delivery timetable with several product pickup and delivery departure times at
the production facility. The 3PL provider only sends a vehicle to the manufacturing site
at a pre-agreed time if the manufacturer calls for a pickup at this time. Transportation
fees consequently arise for each pickup request. Alternatively, a nearby train station or
harbor with a fixed transportation schedule is available to the manufacturer. Figure 4.1 by
Bachtenkirch and Bock (2022) illustrates the modeled environment.

In all cases, the model distinguishes between orders with different customer loca-
tions in terms of delivery departure times and transportation costs. It assumes that the
transportation mode is identical for all available transports to the same customer location.
Additionally, it does not consider capacity limitations for vehicles. The assumption is that
the agreement between the 3PL partner and the manufacturer specifies suitable vehicles
that can carry a sufficient number of products. With the mode and capacity assumptions
in mind, the model includes fixed transportation costs only. Each pickup with products
destined to the same customer location costs only a fixed monetary value independent of
the number of jobs transported. The variable, namely, product-dependent-transportation
costs, is not part of the model. This modeling decision is justified by assuming that these
costs are constant and independent of the departure date assignment and delivery batch
configuration. Note that the fixed transportation cost may represent general administrative
and handling costs that the 3PL provider charges for each delivery.
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Figure 4.1

Illustration of the Considered Problem
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Note. Reprinted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier.

One of the objectives of the JIT philosophy is the minimization of work-in-process
inventory (Huang et al., 1983). Purchasing and manufacturing parts close to the assembly
activity that requires these parts accomplishes this objective. Furthermore, the finished
products’ production and outbound distribution should be synchronized (Schonberger
and Gilbert, 1983). The model includes holding costs for the finished goods. Considering
this cost type and the batch delivery transportation costs, a trade-off between minimizing
both objectives arises. On the one hand, an increase in the number of delivery batches
allows for few products to be produced near the assigned delivery departure time and
reduces holding costs while transportation costs increase. On the other hand, lowering
the number of delivery batches and transportation costs increases the average holding
time of finished products, which in turn increases holding costs.

The model explicitly allows idle times on the machine to encourage the minimization
of job holding times before delivery. This assumption is especially useful for planning
previous stages in the manufacturing process. A feasible schedule can, for example, aid
in planning inbound-transportation activities for critical production parts that are not
needed at the initial release date but at the scheduled start time of the corresponding
job. In many of the reviewed models in Section 3.3, idle times are not considered. This
neglect occurs due to the lack of holding costs or earliness costs in the objective function.
Additionally, some models, for example the one presented by Li et al. (2017), prohibit idle
times due to the application defined continuous production requirement.
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4.2 Problem Definition and Notation

This section formally introduces the problem parameters and assumption of the SFDDHT.
The optimization problem seeks to find an integrated production and delivery schedule
that defines machine processing intervals and delivery departure times for the set of jobs

N = {1, 2, . . . ,nN},

where parameter nN is the total number of jobs considered in the problem instance. The jobs
must first be processed on a single machine and then transported to

G =
{

1, 2, . . . ,nG
}

customers, where nG is the total number of customers in a problem instance. Each job
j ∈ N represents an order of a single customer g ∈ G; therefore, nN > nG holds. The
corresponding customer g ∈ G of a job j ∈ N is given by a surjective function

gN : N→ G.

For example, the expression gN(5) = 2 states that the job with index 5 is of the customer
with index 2. Additionally, the nN

g jobs of customer g ∈ G are

Ng =
{
j | j ∈ N,gN(j) = g

}
.

For convenience, let ng,j, with g ∈ G and let j ∈ {1, . . . ,Ng} be the j-th job of customer g.
Jobs are indexed such that ng,j =

∑g−1
h=1 |Nh|+j holds for each job j ∈ Ng and all customers

g ∈ G. Each job j ∈ N requires processing on a single machine for pj units of processing
time. The processing of jobs is non-preemptable. Therefore, once the processing of a job
j ∈ N starts on the machine, the processing continues for pj time units to completion in
a feasible schedule. The production of a job is disallowed outside of the time window[
rj, d̄j

]
, which is defined by the production release date rj and the production deadline d̄j.

Simultaneously, the deadline d̄j coincides with the latest feasible delivery departure time
for job j. The flexible departure times are defined as follows: In total, nT transports

IT =
{

1, 2, . . . ,nT
}

occur with delivery departure time tl, with l ∈ IT and t1 6 t2 6, . . . , tnT . The l-th
transport is allotted to a specific customer g ∈ G and only completed jobs of customer g
can consequently depart with this transporter. The customer of a transport l is defined by
function

gT(l) : IT → G.

The delivery departure times for a customer g constitute the set

Tg =
{
tl | l ∈ IT,gT(l) = g

}
.

Additionally,
IT
g = {l | l ∈ IT,gT(l) = g}
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are the transports for customer g ∈ G, nT
g the number of transports to customer g, and tg,l the

l-th delivery departure time of customer g with g ∈ G and l ∈ IT
g. The customer-dependent

delivery departure times are given in increasing order of time: tg,1 < tg,2 < · · · < tg,nT
g
.

A schedule or solution for the SFDDHT is unambiguously defined by setting the
production completion time Cj and the departure time Dj for each job j ∈ N. Two cost
types are part of the objective function: finished product holding costs and batch delivery
transportation costs. A job j ∈ N that completes processing, but does not immediately
start transportation, is held in inventory until its delivery occurs. The storage of such a job
induces the finished product holding cost cH

j per unit of holding time. The first part of the
objective function is thus to minimize the sum of holding costs∑

j∈N
cH
j (Dj − Cj). (4.1)

The proposed model allows for the bundling of jobs from identical customers to delivery
batches. That is, multiple jobs that depart at the same delivery departure time use the same
transportation vehicle. For each transport, the manufacturer pays a fixed transportation
fee. This cost value is identical for all transports IT

g of customer g ∈ G but may differ
between customers. Furthermore, the transportation cost cT

g is imposed for each used
transportation vehicle and is independent of the number of jobs transported. The capacity
of each transportation vehicle is assumed to be sufficient for any number of jobs. The total
transportation cost value can be described as∑

g∈G
cT
g

∣∣{Dj | j ∈ Ng}∣∣ . (4.2)

Expression (4.2) counts the number of distinct departure times for each customer and
multiplies this number by the customer-dependent cost value cT

g.
A feasible schedule for the SFDDHT processes each job j ∈ N inside its time window

[rj, d̄j] on the machine and assigns each job to an eligible delivery departure time between
the job’s production completion time and its deadline. An optimal schedule is a feasible
schedule that minimizes the sum of the total holding (4.1) and transportation costs (4.2).
The problem is written as

1 | rj, d̄j | T | K |
∑

w1
jHj +

∑
w2
iBi

in the five-field notation introduced in Section 3.2. The problem’s symbols and notation
are also listed in Table 4.1 in compact form.
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Table 4.1

Notation for the SFDDHT

Parameters:

nN Number of jobs

nG Number of customers

nT Number of available departures

nT
g Number of available departures for customer g

nN
g Number of jobs from customer g

N Set of jobs N = {1, 2, . . . ,nN}

G Set of customers G = {1, 2, . . . ,nG}

Ng Set of jobs from customer g ∈ G, with Ng ⊆ N

ng,j The j-th job from customer g

IT Index set of the available departures IT = {1, 2, . . . ,nT }

IT
g Index set of the available departures of customer g ∈ Gwith IT

g ⊆ IT

tl Departure time of the l-th departure, with l ∈ IT (in TU)

Tg Departure times for customer g ∈ G

tg,l Departure time of the l-th available departure for customer g

, with l ∈ ITg (in TU)

gT(l) Customer of the l-th available departure, with gT : IT → G

gN(j) Customer of the j-th job, with gN : N→ G

pj Processing time of job j ∈ N (in TU)

rj Production release date of job j ∈ N (in TU)

d̄j Production and departure deadline of job j ∈ N (in TU)

cH
j Unit inventory cost of job j ∈ N (in MU)

cT
j Transportation cost per transport to customer g ∈ G (in MU)

Variables:

Cj Completion time of job j ∈ N in a schedule (in TU)

Dj Departure time of job j ∈ N in a schedule (in TU)

Hj Holding time of job j ∈ N in a schedule, Hj = Dj − Cj (in TU)

TU: time units
MU: monetary units
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4.3 A Mixed-Integer Linear Programming Formulation

This section formulates the SFDDHT as a MILP that is solvable by standard combinatorial
optimization methods. The MILP uses the following additional parameters and decision
variables to formulate the problem:

Additional Parameters:

ag,j ∈ {0, 1}: A binary parameter which indicates whether the products produced by
the j-th job must be delivered to customer g ∈ G. The value of parameter
ag,j is set to 1 if gN(j) = g holds, and 0 otherwise.

Bmax
g,l : The maximal number of jobs from customer g that can depart at the

l-th departure date of customer g. The values for Bmax
g,l are entirely com-

puted from the production time windows of jobs and are not defined
independently as a capacity restriction. The values are computed as
follows:

Bmax
g,l = |{j | j ∈ Ng, tg,l ∈ [rj + pj, d̄j]}| ∀g ∈ G, l ∈ {1, 2, . . . ,nTg}.

Note that modifying this parameter to be independently definable ex-
tends the SFDDHT to express capacity restrictions, without the need to
introduce additional constraints.

Binary Decision Variables:

Yi,j ∈ {0, 1}: A binary sequencing decision variable that indicates the direct predeces-
sor of a job. The value of Yi,j equals 1 if job i ∈ N ∪ {0} directly precedes
job j ∈ N ∪ {nN + 1}. Otherwise, its value is set to 0.
The definition of these variables includes a first dummy job with index
i = 0 and a final dummy job with index j = nN + 1.

Zg,l,j ∈ {0, 1}: A binary delivery decision variable that indicates the delivery date of a
job. The value Zg,l,j is set to 1 if a job j departs at the l-th delivery date
of customer g at time tg,l; otherwise, it is set to 0.

Z ′g,l ∈ {0, 1}: A binary batching decision variable that indicates whether a transport
is used at all. The value of Z ′g,l is equal to 1 if a transport is used, and 0
otherwise.

The MILP has the following minimizing objective function:

min
∑
j∈N

cHj ·Hj +
∑
g∈G

nTg∑
l=1

cTg · Z ′g,l (4.3)

The Objective Function (4.3) minimizes the total sum of holding costs and transportation
costs for all jobs j ∈ N. The holding cost calculation is identical to calculation (4.1). The
transportation costs are calculated with the help of binary decision variables Z ′g,l that
indicate whether the l-th transport to customer g is used or not.
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The following restrictions (4.4 - 4.20) ensure the feasibility of a production and distribu-
tion schedule:

Sequencing Constraints: ∑
j∈N\{i}∪{|N|+1}

Yi,j = 1, ∀i ∈ N ∪ {0} (4.4)

∑
i∈N\{j}∪{0}

Yi,j = 1, ∀j ∈ N ∪ {|N|+ 1} (4.5)

Constraints (4.4) and (4.5) ensure that a feasible solution unambiguously defines a produc-
tion sequence for the jobs. Each job j ∈ Nmust have a single immediate predecessor and
a single immediate successor. The inclusion of “dummy jobs” 0 and nN + 1 ensures that
the first scheduled regular job has predecessor 0 and that the last scheduled regular job
has successor nN + 1.

Processing Constraints:

Cj > Ci + pjYi,j +Mi,j(Yi,j − 1), ∀i, j ∈ N, i 6= j (4.6)

The definition of Constraint (4.6) forces the completion time of an immediate successor j of
a job i to be larger or equal to the completion time Ci of job i plus the processing time pj of
job j. The completion times are consequently in line with the production sequence defined
by Constraint (4.4) and (4.5) and ensures that at most one job is produced simultaneously.
Constraints (4.6) include the “big M” parameterMi,j, which is defined for each job pair
i, j ∈ N, i 6= j. The parameter guarantees that the completion times of jobs, that are not
the immediate successor to a job i, are not restricted by the introduction of the processing
constraints. Parameter Mi,j is set to value rj + pj − d̄i for each i, j ∈ N, i 6= j. Hence, if
Ci = d̄i holds, then the constraint reduces to Cj > rj + pj. Otherwise, if Ci < d̄i holds,
then Cj is lower bounded less tight.

Production Time Window Constraints:

Cj 6 d̄j, ∀j ∈ N (4.7)

Cj > rj + pj, ∀j ∈ N (4.8)

The production time windows of the jobs are defined by Constraints (4.7) and (4.8), which
restrict processing within the interval [rj, d̄j]. The earliest processing start time of a job
j ∈ N is rj + pj, and the latest completion time is the deadline d̄j.

Delivery Assignment Constraints:

∑
g∈G

nTg∑
l=1

Zg,l,j · ag,j = 1, ∀j ∈ N (4.9)

The Constraint (4.9) ensures that a job j of customer g is assigned to exactly one transport
to customer g.
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Delivery Time Constraints (1):

Dj =
∑
g∈G

nT
g∑

l=1

tg,l · Zg,l,j, ∀j ∈ N (4.10)

The setting of the binary decision variables Zg,l,j for a job j defines the delivery time Dj
with the inclusion of Constraint (4.10). The delivery timeDj is set to the l-th delivery time
of customer g if Zg,l,j is set to one. Hence, the domain of the delivery time variables is re-
stricted to the delivery departure time parameters by combined application of Constraints
(4.9) and (4.10).

Delivery Time Constraints (2):

Dj > Cj, ∀j ∈ N (4.11)

Dj 6 d̄j, ∀j ∈ N (4.12)

The delivery departure times of jobs are restricted by Constraints (4.11) and (4.12). The
delivery departure may start at the earliest at the time of completion and must take place
before the given job deadline.

Transport Activation Constraints:

Z ′g,l · Bmaxg,l >
∑
j∈N

Zg,l,j, ∀g ∈ G,∀l ∈ {1, 2, . . . ,nT
g} (4.13)

Constraint (4.13) ensures that the binary batching variables Z ′g,l are set to one if at least
one job is assigned to the l-th transport to customer g. The Z ′g,l variables are used in the
Objective Function (4.3) to trigger the transportation cost for this activated transport.

Holding Time Constraints:

Hj 6 d̄j − rj − pj, ∀j ∈ N (4.14)

Hj > Dj − Cj, ∀j ∈ N (4.15)

The holding times of the jobs are lower bound by Constraint (4.15) by the difference
between the delivery departure time Dj and the completion time Cj of job j. Additionally,
the holding times are upper bound by Constraint (4.14) by the difference between the
earliest completion time rj + pj and the latest delivery departure time d̄j. Note that
Constraint (4.14) is not required to ensure a correct model formulation. The variables Hj
are used to trigger the job holding costs in the Objective Function (4.3).

Variable Domains:

Yi,j ∈ {0, 1}, ∀i, j ∈ {0, 1, ...,nN + 1} (4.16)

Z ′g,l, ∈ {0, 1}, ∀g ∈ G, l ∈ {1, 2, . . . ,nT
g} (4.17)

Zg,l,j ∈ {0, 1}, ∀g ∈ G, l ∈ {1, 2, . . . ,nT
g}, j ∈ N (4.18)

Cj > 0, ∀j ∈ {0, 1, ...,nN + 1} (4.19)

Dj,Hj > 0, ∀j ∈ N (4.20)
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Lastly, Constraints (4.16 - 4.20) define the variable domains. Note that the variables
Dj,Cj, and Hj for jobs j ∈ N do not need to be defined as integers. Introducing integrity
constraints for these variables is also not required, as subsequently shown by Lemma 4.3.1
by Bachtenkirch and Bock (2022).

Lemma 4.3.1. The completion time variables Cj, delivery time variables Dj, and holding time
variables Hj for all jobs j ∈ N are integers in an optimal solution of the MILP formulation of
SFDDHT.

Proof. This proof of Lemma 4.3.1 considers the integrality of the delivery time, completion
time, and holding time variables, one type after the other.

• The delivery time variables are integers due to the equality constraint of (4.10).
According to this constraint, the delivery time Dj of a job j that is assigned to the
l-th delivery date of customer g takes the integer value tg,l in any feasible solution.

• The integrality of completion time values in an optimal solution is proven by assum-
ing that an optimal solution S∗ exists with at least one fractional Cj value and shows
that such a solution S∗ does not exist. Consider the largest fractional Cj value in a
solution: Let this completion time be known as Cj ′ of job j ′.

At this point, one can distinguish between two cases: Either j ′ has at least one
successor job in the solution, or it has none.

– In the latter case, it must hold that Cj ′ 6 Dj ′ due to Constraint (4.11). If
Cj ′ = Dj ′ holds, then Cj ′ must be integral because Dj ′ is integral, as proven
initially. This contradicts the assumption that Cj ′ is fractional and cannot be.

Otherwise, if Cj ′ < Dj ′ holds, then the solution S∗ is not optimal because the
setting Cj ′ = Dj ′ reduces the objective value. This is true, since the holding
time of job j ′ is determined by the inequality Hj ′ > Dj ′ − Cj ′ – see Constraint
(4.15)) – that is minimized by setting Hj ′ = Dj ′ − Cj ′ and is zero for the setting
Cj ′ = Dj ′ . The holding cost contribution of job j ′ is consequently also zero in
the Objective Function (4.3). Therefore, the optimality assumption of S∗ does
not hold in this case.

– In the former case, j ′ has an immediate successor k with integral completion
time Ck and integral start time Sk = Ck − pk. Since Cj ′ is fractional, Cj ′ < Sk
holds with idle time on the machine between the production of jobs j ′ and k.
At this point, one can distinguish between two cases: Either the delivery time
of job j ′ is later than the start time of successor k, or it is earlier.

In the first case Dj ′ > Sk, setting Cj ′ = Sk reduces holding time Hj ′ and hence
the holding costs of job j ′ and the objective function value. However, this
violates the optimality assumption of S∗.

In the other case of Dj ′ < Sk, consider the following three cases: It holds that
either Cj ′ > Dj ′ , Cj ′ = Dj ′ , or Cj ′ < Dj ′ :

* Case Cj ′ > Dj ′ : This case violates Constraint (4.11) and cannot be.
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* Case Cj ′ = Dj ′ : Since Dj ′ is integral, this contradicts the assumption that
Cj ′ is fractional, and it thus cannot be.

* Case Cj ′ < Dj ′ : By setting Cj ′ = Dj ′ , the objective value can be reduced,
as argued before. Hence, this case also cannot be.

Therefore, no case exists for Dj ′ < Sk that is optimal with Cj ′ being fractional.

In conclusion, there is no case in which Cj ′ is fractional and S∗ optimal. By extension,
this proves that no completion time Cj with j ∈ N ∪ {0} is fractional in an optimal
solution.

• Lastly, the holding times Hj must be integers. As already stated during this proof,
the constraint Hj ′ > Dj ′ − Cj ′ (4.15) is minimized by setting Hj ′ = Dj ′ − Cj ′ , and
since the completion times Cj ′ and delivery times Dj ′ must be integral, the holding
times Hj must be integral as well in an optimal solution.

This proof completes the MILP formulation of the problem.

4.4 Computational Complexity

This section determines the complexity status of the SFDDHT by a polynomial reduction
from a strongly NP-hard problem. The following proof as stated in Bachtenkirch and Bock
(2022) shows that the SFDDHT generalizes the strongly NP-hard problem investigated in
Yang (2000).

Lemma 4.4.1. SFDDHT is strongly NP-hard.

Proof. The scheduling problem proposed by Yang (2000), named scheduling problem with
generalized batch delivery dates and earliness penalties, is described by the three-field-
notation of Graham et al. (1979) as 1|GBDD,B = m|

∑
wiEi, where Ei is equivalently

defined to Hi, that is Ei = max{Di −Ci, 0}. The acronym GBDD indicates so-called gener-
alized batch delivery dates, that model a number of arbitrary (hence, generalized) fixed
delivery dates. Furthermore, the expression B = m denotes the number of considered
delivery dates. Consequently, an instance of the SFDDHT with a single customer, no
release dates, equivalent deadlines (which match the latest delivery date) and no trans-
portation costs, defines a corresponding instance of 1|GBDD,B = m|

∑
wiEi. As Yang

(2000) shows that 1|GBDD,B = m|
∑
wiEi is strongly NP-hard, it follows that SFDDHT

is also strongly NP-hard. Additionally, it holds that the task of finding a feasible schedule
to the SFDDHT is strongly NP-hard, since the feasibility problem 1|rj, d̄j|− is strongly
NP-hard (Garey and Johnson, 1979).

4.5 Conclusion

This chapter introduced the novel scheduling problem, namely, the SFDDHT, which
combines several practically relevant problem assumptions into one model. Section 4.1
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explained the reasoning and use cases for the formulated model. Section 4.2 and Sec-
tion 4.3 described a mathematical, unambiguous problem formulation and the notation
of the problem. The established MILP formulation enables solving problem instances
of the SFDDHT by standard integer programming optimization methods. Since readily
available solvers exist for these types of problems, this chapter’s contents provide suf-
ficient information to solve the problem instances of the proposed problem in practice.
However, since integer programming is NP-complete (c.f. Papadimitriou and Steiglitz,
1982, p. 316), such solution methods require an excessive amount of time to solve larger
problem instances. Therefore, to solve larger instances in a reasonable amount of time,
other solution approaches must be developed for the considered problem. As the SFDDHT
is strongly NP-hard (Section 4.4), no polynomial-time algorithm (unless P equals NP)
exists that efficiently solves the problem. This finding justifies the research of elaborate
OR methods for the SFDDHT that compute (optimal or high-quality heuristic) solutions
to strongly NP-hard problems.
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Chapter 5

The Developed Branch and Bound
Algorithm

The contents presented in this chapter also appear in the work of Bachtenkirch and Bock (2022),
titled Finding efficient make-to-order production schedules, which is published in the European
Journal of Operational Research. To avoid impairing the reading flow, citations do not reference
this article continuously throughout this chapter. However, when introducing a mathematical
statement, such as a lemma, proposition, or proof, from the stated paper, the text includes a reference.
Moreover, tables, figures, and algorithms that are taken from this paper are referenced as per usual.

This chapter describes the proposed B&B algorithm for the SFDDHT. As already
pointed out at the end of the previous chapter, strongly NP-hard optimization problems,
such as the SFDDHT, can not be solved by a polynomial-time algorithm unless P =

NP holds. Fortunately, OR offers several methods to tackle such problems. One of
these methods is the B&B method, which draws its effectiveness from utilizing problem-
specific knowledge. This chapter explores the structure of the SFDDHT that makes
applying the B&B method to the problem a reasonable choice. Papadimitriou and Steiglitz
(1982, p. 433) describe B&B as a method of “intelligently enumerating all the feasible
points of an optimization problem.” Methodologically, the approach tries to prove that
a solution is optimal by repeatedly partitioning the solution space. In essence, B&B
algorithms search the complete solution space for at least one optimal solution. Since an
exhaustive enumeration of all feasible solutions in a reasonable time-frame is impossible
for larger instances, B&B algorithms apply various methods to reduce the explicitly
searched solution space based on mathematical proofs.

This chapter is structured as follows: Section 5.1 describes the B&B concept and its
components, to establish a common understanding of the description of the problem-
specific components in the subsequent sections. Section 5.2 explains how the proposed
algorithm generally partitions the solution space and verifies its applicability in search of
an optimal solution for a problem instance. The section also establishes that an optimal
schedule must have specific structural properties, limiting the search for an optimal
solution to this type of schedule. Thereafter, Section 5.3 proposes several dominance

60



5.1. Principles of Branch-and-Bound Algorithms

relations and procedures that further reduce the searched solution space. Sections 5.4 to 5.6
then propose methods to limit the partitioning of the solution space to only promising
partitions. Section 5.4 establishes results solely based on the initial instance data, while
Section 5.5 executes on information gathered from the currently processed subset of the
solution space. Section 5.6 combines the previous two sections’ results and describes
further reductions based on feasibility and optimality properties. Furthermore, Section 5.7
describes three lower bounds that estimate the cost of completing the scheduling of jobs of
already partially determined schedules. The B&B algorithm for the SFDDHT (SFDDHT-
B&B) uses the resulting bound values to guide the search towards promising solution
space regions and to cut off the partitioning process for non-optimal regions. In Section 5.8,
the interaction of the described components is explained. Lastly, Section 5.9 provides a
summary of this chapter.

5.1 Principles of Branch-and-Bound Algorithms

This section briefly explains the principles and core components of B&B algorithms.
The explanations of the SFDDHT-B&B build on the contents introduced in this section.
The following explanations are based on various works that provide frameworks or
generalized descriptions of B&B procedures. Namely, Lawler and Wood (1966), Mitten
(1970), Morin and Marsten (1976), Kohler and Steiglitz (1974), Ibaraki (1976), Ibaraki
(1977), Ibaraki (1978), Kumar and Kanal (1983), Nau et al. (1984), Crainic (1993), and
Morrison et al. (2016) provide generalized technical descriptions of the procedure and
its components. This section also summarizes important concepts that appear useful for
describing the SFDDHT-B&B.

According to Mitten (1970) and Morrison et al. (2016), an optimization problem can
be described as P = (X, f) where X denotes the set of feasible solutions (the search space),
and f : X→ R is the objective function. An optimal feasible solution to an optimization
problem has function value supx∈Xf(x) = f∗(X). The objective of an optimization problem
is to find the set of optimal feasible solutions

X∗ = {x∗ | x∗ ∈ X and f(x∗) = f∗(X)} .

The descriptions are subsequently restricted to minimization problems such that

min
x∈X

f(x) = f∗(X)

holds.
A B&B algorithm decomposes the original set of feasible solutions X into sets of

decreasing size (Kumar and Kanal, 1983). The decomposition is realized by iteratively
building a search tree1 T = (N,E), where N is a set of nodes, and E is a set of arcs. Each
node in this tree represents a subset of the search space X, where each subset Xi ⊆ X

is called a subproblem of P. The root node N0 of the search tree T corresponds to the
1A formal description of the tree data structure is, for example, given in Knuth (1997) in sections 2.3 (pp.

308–316) and 2.3.4 (pp 362–364).
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original problem P with search space X0 = X. All other nodes in the tree correspond
to subproblems Xi with i = 1, 2, . . . , |N| − 1. By definition of a tree, each node, except
the root node, has a single parent node. In the context of subproblem decomposition, a
node is terminal if the corresponding subproblem is a singleton (i.e., a set with only one
element). All nodes, except the terminal nodes, of a tree have one to many child nodes.
These connections are represented by a set of arcs E, where Xj is a child of Xi if the arc
(Xi,Xj) is an element of E. Given the arc (Xi,Xj) ∈ E, subproblem Xj is generated from
Xi by decomposition. The level of a subproblem l(Xi) is the length of the path from X0

to Xi, with l(X0) = 0. Each terminal node Xi in the tree is a trivially solved subproblem
(i.e., Xi is a singleton). The solution to such a terminal node is a feasible solution x ∈ X for
problem P (Kumar and Kanal, 1983; Morrison et al., 2016).

The B&B procedure starts by constructing search tree T with the unexplored subproblem
X0 and an initial, incumbent solution x̂ ∈ X. This incumbent solution can be generated by
some heuristic beforehand. Alternatively, the procedure may start without an incumbent
solution, by initially choosing x̂ arbitrarily and setting f(x̂) =∞. Afterward, in each itera-
tion, the algorithm selects and removes a subproblem Xi ⊆ X from a list L of unexplored
subproblems. If Xi is terminal (i.e., |Xi| = 1 with x ∈ X) and x is a better solution than
the current incumbent solution x̂ – that is, f(x) < f(x̂) – then the investigated solution
x becomes the new incumbent solution. Otherwise, if it can be proven that no solution
x ∈ Xi is better than the current incumbent solution – that is, ∀x ∈ Xi : f(x) > f(x̂) – then
the subproblem Xi is pruned. If such a proof cannot be conducted, then the subproblem
Xi is decomposed into smaller subproblems Xj with j = 1, . . . , r, which are inserted into
the search tree T as nodes with edges (Xi,Lj) ∀j = 1, . . . , r and into list L. Once the list L
is empty (i.e., no unexplored subproblem remains) the incumbent solution x̂ is returned as
an optimal solution of P (Morrison et al., 2016). A generic B&B framework from Morrison
et al. (2016) is given in Algorithm 5.1. Note that the above description does not specify

Algorithm 5.1 A Branch-and-Bound Algorithm for a Minimization Problem

1: procedure BRANCH-AND-BOUND(X,f)
2: Set N = {X},E = ∅,L = {X} and initialize x̂
3: while L 6= ∅ do
4: Select and remove a subproblem Xi from L

5: if |Xi| = 1 (terminal) and f(x) < f(x̂) set x̂ = x then
6: else if Xi can not be pruned then
7: Decompose Xi into subproblems Xj with j = 1, 2, . . . , r
8: Insert each Xj into N and L and insert edges (Xi,Xj) into E

9: return x̂
Note. Adapted from Morrison, D. R., Jacobson, S. H., Sauppe, J. J., and Sewell, E. C. (2016). Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102.
Copyright 2016 by Elsevier.

any of the core components of a B&B, which are: the Search Strategy, the Branching Strategy,
and the Pruning Rules. These components are often highly problem-specific and must be
carefully chosen for each optimization problem. The following descriptions subsequently
only provide a general understanding of these components and present a few options that
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are applied in the literature.

5.1.1 Search Strategy

The search strategy defines the order in which nodes are selected from the list of unex-
plored subproblems L throughout the procedure. Ibaraki (1976) describes the decision of
selecting the next subproblem by considering the result of a heuristic function

h : X→ R

with h(Xi) 6= h(Xj) for Xi 6= Xj to prevent ties. Different search strategies may signif-
icantly impact the required computational time of a B&B procedure. Additionally, the
memory necessary to search varies substantially between strategies (Morrison et al., 2016).
Sections 5.1.1.1 to 5.1.1.3 describe some prominently applied search strategies and their
characteristics. Further information about different variants and hybrids of the strategies
can be found in the in-depth discussion by Morrison et al. (2016).

5.1.1.1 Depth-first Search

The depth-first search (DFS) strategy explores the solution space by choosing, in each
iteration, the most recently generated subproblem in list L. Synonymous labels for this
strategy are branch from newest active bounding problem (Lawler and Wood, 1966) or the
last-in-first-out (LIFO) rule (Kohler and Steiglitz, 1974). This approach can be conducted by
implementing the list L as a stack (Morrison et al., 2016). A stack is a linear list, where
insertion, deletion, and access are made at the same end of the list (Knuth, 1997, p. 239).
An advantage of this branching strategy is that a minimum amount of computer memory
is required to perform the search, since the size of the stack is proportional to the depth of
the tree (Lawler and Wood, 1966). An even more memory-efficient way to perform a DFS is
to store the path from the root node to the currently evaluated subproblem (Morrison et al.,
2016). A downside to this approach is that simple implementations do not utilize bounds
and information about the structure of the problem (Morrison et al., 2016). Variants of
the DFS approach that attempt to overcome the downsides of the standard variant are
iterative, deepening DFSs (Korf, 1985), interleaved DFSs (Meseguer, 1997), or DFSs with
complete branching (Scholl and Klein, 1999).

5.1.1.2 Breadth-First Search

In contrast to the DFS strategy, the breadth-first search (BFRS) strategy explores the
solution space by choosing, in each iteration, the subproblem Xi that was added earliest to
list L (Morrison et al., 2016). Kohler and Steiglitz (1974) describe this strategy as the first-
in-first-out (FIFO) rule. Similar to a DFS, the BFRS strategy can be implemented with the
help of a simple data structure, namely, a queue. A queue is a linear list (i.e., a sequence of
elements with relative positions defined between elements) where insertion is performed
at one end of the list, and access and deletion are performed at the other end of the list
(Knuth, 1997, p. 239). This strategy builds the search tree level by level. The approach
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(in pure form) consequently does not utilize information on complete solutions to prune
subproblems, while other pruning rules may be applied (Morrison et al., 2016).

5.1.1.3 Best-First Search

The best-first search (BFS) strategy explores the solution space by choosing, in each
iteration, the best subproblem Xi. Subproblems in this approach are evaluated by a
heuristic function where the subproblem with the minimal value h(Xi) is selected. The
approach explores promising regions of the solution space first, to prune less promising
regions afterward. A heap, which is a tree data structure that stores elements and some
key, can implement the BFS strategy. In a min-heap, the element at the top of the tree is
the one with the minimal key value of all stored elements. By reordering elements, the
heap property holds after each insertion or extraction. Accordingly, the data structure
allows for efficient retrieval of elements in non-decreasing order of their keys (Morrison
et al., 2016). Morrison et al. (2016) state that the BFS strategy offers significant advantages
over a DFS strategy. A BFS is not tied to branches of a tree and often finds good, complete
solutions earlier in the search process.

However, a drawback to the BFS approach is that it may spend a significant amount of
time in the middle regions of the search tree. A hybridization of a DFS and a BFS, called
cyclic or distributed BFS, presented by Kao et al. (2009), tries to overcome this problem by
storing subproblems in heaps (called contours) organized by tree levels. In each iteration,
the locally “best” subproblem from a specified contour is selected for branching. A natural
approach to choose a contour in an iteration is to iterate a cyclic list of contours ordered
by tree level.

5.1.2 Branching Strategy

Branching refers to the decomposition of a subproblem into smaller subproblems. Branch-
ing strategies can be categorized as either binary or non-binary (wide). The following
discussion does not consider branching strategies applied to integer programming prob-
lems.

5.1.2.1 Binary Branching

Binary branching approaches decompose each subproblem into exactly two mutually ex-
clusive smaller subproblems. These approaches appear to be most useful for optimization
problems where elements are selected or rejected as part of a solution (Morrison et al.,
2016). A prominent application of binary branching is the B&B approach for the binary
knapsack problem presented by Kolesar (1967). This problem seeks a value-maximizing
selection of indivisible items to fit into a capacitated bin. The presented algorithm branches
on a subproblem Xi by constructing two subproblems, where an item is included in the
knapsack in one smaller subproblem and excluded in the other smaller subproblem.
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5.1.2.2 Non-binary Branching

Non-binary branching (or wide branching) may deconstruct a subproblem into more than
two smaller subproblems (Morrison et al., 2016). For instance, wide branching strategies
are appropriate for problems with solutions definable by a permutation of elements.
Kohler and Steiglitz (1974) explicitly deals with B&B algorithms for such permutation
problems. An example of a B&B applied to such a permutation problem is the approach
described by Ignall and Schrage (1965) for flow-shop scheduling problems.A flow-shop
problem covers the scheduling of jobs on multiple machines, with each job requiring
processing only once on each machine. For some special cases, it is sufficient to describe a
solution as a permutation of the job indexes. Ignall and Schrage use a branching strategy
that decomposes a subproblem by extending the partial permutation by an unused job
index to form a partial schedule.

5.1.3 Pruning Rules

Pruning rules exclude regions of the search space from exploration. Without the appli-
cation of pruning rules, the B&B procedure explores all subproblems, regardless of the
applied search or branching strategy. Pruning rules are consequently essential to reduce
the computational time necessary and lower memory requirements in order to provide an
optimal solution. The implementation of pruning rules is highly problem-specific. Two
types of pruning rules can generally be distinguished for a minimization problem: lower
bounds and dominance relations.

5.1.3.1 Lower Bounds

Most prominently, B&B algorithms for minimization problems use lower bounds to prune
subproblems. A lower bound LB : Xi → R computes a lower bound on the objective
function value that holds for each solution of a subproblem; that is,

LB(Xi) 6 f(x), ∀x ∈ Xi.

If the lower bound LB(Xi) of the current subproblem is not strictly better than the currently
known best solution value f(x̂) in the search process, then the subproblem Xi can be
pruned. That is, Xi does not contain a feasible solution that has a lower objective function
value than x̂ and therefore must not be investigated.

Additionally, the following two important conditions, stated in Ibaraki (1977), generally
hold for lower bounds of subproblems in a B&B algorithm:

(a) LB(Xi) 6 LB(Xj), for all Xj ⊆ Xi, and

(b) LB(Xj) = f(x) holds if Xj = {x}.

Condition (a) states that decomposed subproblems do not reduce the lower bound value.
Since the decomposed subproblem Xj comprises a subset of solutions of Xi, it immediately
follows that LB(Xi) is a valid bound for Xj. Therefore, LB(Xi) 6 LB(Xj) must hold.
Condition (b) enforces tightness of the lower bound values for singleton subproblems.
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Since such a subproblem comprises a single solution, the lower bound LB(Xj) can be set
to the objective function value of the solution x.

A common approach to construct a lower bound for a subproblem is to apply polyno-
mial optimal solution approaches to relaxed versions of a subproblem (Morrison et al.,
2016).

5.1.3.2 Dominance Relations

Given two subproblems X1 and X2, a dominance relation X1DX2 allows X2 to be pruned.
That is, the subproblem X1 contains a solution x ∈ X that is at least as good as all solutions
x ′ of subproblem X2. In other words,

X1DX2 =⇒ there exists a x ∈ X1 with f(x) 6 f(x ′) for all x ′ ∈ X2.

If it is proven that an explored subproblem is dominated, then this subproblem can be
pruned during the exploration of the search space. Dominance relations can be classified as
either memory-based or non-memory-based. Memory-based relations compare subprob-
lems to already explored and stored subproblems, while non-memory-based rules have
no such requirement. Instead, non-memory-based rules dynamically generate potentially
dominating subproblems to test whether dominance can be established (Morrison et al.,
2016).

5.2 Search Space and Solution Properties of the SFDDHT

This section starts with a description of the developed SFDDHT-B&B by defining the
explored search space. A solution to a problem instance of the SFDDHT is defined
by an allocation of jobs to specific machine times for processing and an allocation of
jobs to delivery departure times. Let Xo be the search space (all feasible solutions) of a
problem instance of the SFDDHT as defined by the constraints of the MILP formulation in
Section 4.3. Note that the feasibility of an allocation of jobs to machine times and delivery
departure times is computationally easy to test by, for example, verifying the validity of
the constraints provided by the MILP formulation. However, a prior specification of the
search space Xo is not possible without enumerating all reasonable solutions. A reasonable
solution can be thought of as a solution generated by a procedure that does not violate
the problem constraints in an obvious manner. Such apparent violations might be the
preemptive production of jobs, overlaps in the production of jobs, or the scheduling of
jobs outside of the given time windows. No formal definition of what a reasonable solution
constitutes is given, since it is not crucial for the following discussion.

An important aspect to keep in mind is that the B&B needs to identify infeasible
branching decisions as early as possible to skip the explicit evaluation of infeasible regions
of the search space. Furthermore, the set of all feasible settings of the completion time
variables Cj and delivery departure time variables Dj is large, even for small instances.
An approach that decomposes the search space with both variable types consequently
does not seem to be viable. Recall from Section 2.2.1 that a schedule defines the allocation
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of jobs to specific machine times, while a sequence only defines the processing order of
jobs on a machine. Many scheduling problems found in the literature offer an inherent
structure that is utilizable to search for optimal solutions. For example, for many schedul-
ing problems, optimal schedules are shown to be non-delay schedules; that is, jobs are
scheduled as early as possible without forcing idle times on the machine(s) (Pinedo, 2016,
p. 22). Therefore, in many cases, a sequence can be mapped to a single, best-attainable
schedule that comprises this sequence. The SFDDHT offers a similar structure. The
following subsections demonstrate that it is sufficient to define solutions in terms of a
production sequence on the machine and an allocation of the scheduled jobs to delivery
departure times. This branching strategy eliminates the requirement to explore all feasible
completion time settings in the SFDDHT-B&B.

5.2.1 Schedule Representation

A representation scheme that equates solutions of the SFDDHT with schedules is subse-
quently shown. The described schedule definition covers complete and partial schedules.
A partial schedule is a schedule defined for a proper subset of jobs of set N. Hereafter, a
(partial) schedule for an instance of the SFDDHT is denoted by symbol ζ. To distinguish
partial and complete schedules, let J(ζ) ⊆ N be the scheduled jobs in a (partial) schedule
ζ that comprises nJ(ζ) jobs, and let J̄(ζ) = N \ J be the remaining (unscheduled) jobs of
schedule ζ that comprises the remaining nJ̄(ζ) = nN − nJ jobs. The processing sequence of
jobs

Π(ζ) = (π(k),π(k+ 1), ...,π(nN))

is a permutation (i.e., an ordered arrangement) of job-indexes j ∈ J, which defines the
processing order of jobs in a (partial) schedule ζ. An element π(i) of the sequence Π(ζ)
defines the index of the job at the i-th position in schedule ζ. For the purposes of the
SFDDHT-B&B, it is sufficient to define partial schedules that sequence jobs at the back
positions of the schedule. Symbol k(ζ) consequently denotes the first determined position
in schedule ζ. Additionally, the scheduled position of a job j ∈ J is denoted by π−1(j).
The transportation decisions in a (partial) schedule ζ are described by a sequence of
transportation assignments

P(ζ) = (ρ(k), ρ(k+ 1), ..., ρ(nN)).

An element ρ(i) ∈ P(ζ) defines the delivery departure time (Dπ(i) = ρ(i)) for the job
scheduled at the i-th position. It holds that ρ(i) ∈ TgN(π(i)). In addition to the sequences
Π and P, a specification of the completion times Cj for all jobs j ∈ J is necessary to fully
define a (partial) schedule ζ (Section 5.2.2 discusses the computation of completion times).
The holding cost of a (partial) schedule ζ amount to

cH(ζ) =
∑
j∈J(ζ)

(Dj − Cj) · cH
j .

The transportation costs of a (partial) schedule are computed analogously to Equation (4.2).
For notational ease, let Jg(ζ) = {j | j ∈ J(ζ),gN((j)) = g} be the set of scheduled jobs of
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customer g ∈ G in a partial solution ζ. The transportation costs are as follows:

cT(ζ) =
∑
g∈G

cT
g ·
∣∣{Dj | j ∈ Jg(ζ)}∣∣ .

The total objective function value of a (partial) schedule ζ is expressed by

f(ζ) = z(ζ) = cH(ζ) + cT(ζ).

Note that the forthcoming sections omit the supplement (ζ) from the defined symbols
for readability purposes when no ambiguity exists.

5.2.2 Canonical Schedules

This subsection shows that the explicit specification of completion times is unnecessary
in the search for optimal solutions. Specifically, it proves that cost-optimal completion
times for a set of jobs J ⊆ N can be derived with only a given production sequence Π
and transportation assignments P. Consider the following notational extension: The
start time of a job j in a (partial) schedule ζ is denoted as Sj = Cj − pj for all jobs j ∈ J.
Furthermore, the start time of the job at the first determined position k in a schedule ζ is
abbreviated as S1 = Sπ(k). If the schedule ζ is empty, then S1 is set to the maximal deadline
(max{d̄j | j ∈ N}). Procedure 5.2.2.1 by Bachtenkirch and Bock (2022) calculates cost-
optimal completion times given production sequence Π and transportation assignments
P.

Procedure 5.2.2.1. The completion time Cπ(i) of the job that is scheduled at the i-th
position and is assigned to delivery departure time Dπ(i) 6 d̄π(i) in the (partial) schedule
ζ is defined by recursively applying the following expression:

Cπ(i) = min
{
Dπ(i),Sπ(i+1)

}
. (5.1)

The computation begins with the last scheduled job with the setting Cπ(nN) = Dπ(nN)

and continues the computation by applying Equation (5.1) for all i = π(nN − 1),π(nN −

2), . . . ,π(k) in order of decreasing positions.

Lemma 5.2.2.1 by Bachtenkirch and Bock (2022) proves the cost optimality of the
generated completion times when the resulting schedule is feasible, that is, release date
restrictions are not violated.

Lemma 5.2.2.1. Given jobs J ⊆ N, processing sequence Π, and transportation assignments P
Procedure 5.2.2.1 computes cost-optimal completion times for all jobs j ∈ J if the setting (Π, P)
enables a feasible schedule.

Proof. The validity of Lemma 5.2.2.1 stems from the independence of the transportation
costs of a (partial) schedule ζ from the jobs’ production sequence and completion times.
In particular, a (partial) schedule fixes the delivery departure times and the production
sequence of jobs, and it hence defines the resulting transportation costs by the transporta-
tion assignment P. The remaining cost contribution of each scheduled job j ∈ J thus solely
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depends on the holding costs (Dj − Cj) · cH
j with Dj > Cj. Procedure 5.2.2.1 sets the

completion time Cj to its maximal value Cj 6 Dj 6 d̄j that complies with (a) the delivery
departure time defined by P and (b) the production sequence Π.

The procedure determines the completion time values Cj in reversed production order,
starting with the job positioned last j = π(nN). This job has no successor in the production
schedule. The procedure consequently sets the completion time Cj to its maximal value
Dj, which results in zero holding time and costs for job j in partial schedule ζ. Each earlier
scheduled job j ∈ J with a position i < nN has an immediate successor π(i+ 1) that upper
bounds the feasible completion time of Cj by the start time of this successor (Sπ(i+1)). Job
j is therefore scheduled with a minimum holding time such that it completes before the
immediate successor starts its production and before or at its delivery departure time
Dj.

The purpose of Procedure 5.2.2.1 is to compute cost-optimal completion times for the
scheduled jobs J given the information provided by the two sequences Π and P. The
procedure does not guarantee the construction of a feasible (partial) schedule, nor does it
guarantee that a feasible partial schedule is extendable to a feasible complete schedule.

Verifying the feasibility of the constructed schedule is assessable in each step of the
computation: Lemma 5.2.2.1 already enforces feasible delivery time assignments to de-
parture times by requiring Dj 6 d̄j for each job j ∈ J, and a test for deadline violations
is hence unnecessary during application of Procedure 5.2.2.1. Therefore, the infeasibility
of a schedule may only arise in the form of release date violations. These violations can
be checked in each step of the procedure by testing whether Sπ(i) > rπ(i) holds for the
job scheduled at position i. The feasibility status of a (partial) schedule generated by
Procedure 5.2.2.1 is consequently determined alongside the generation of completion
times. Definition 5.2.2.2 describes schedules that are generated by Procedure 5.2.2.1.

Definition 5.2.2.2. A (partial) schedule constructed according to Procedure 5.2.2.1 is called
a canonical schedule. Furthermore, the completion times of jobs in a canonical schedule are
referred to as canonical completion times.

5.2.3 Canonical Search Space

This subsection demonstrates that due to the application of Lemma 5.2.2.1, the search
for an optimal solution can be restricted to a search over all feasible canonical schedules.
Let the canonical search space Xc comprise all feasible canonical schedules for an instance
of the SFDDHT. To prove that it is sufficient to explore only canonical schedules, a
procedure is introduced that transforms a feasible schedule into a feasible canonical
schedule. Procedure 5.2.3.1 reschedules the jobs of a solution xo ∈ Xo by modifying the
completion times of the scheduled jobs.

Procedure 5.2.3.1. Given a feasible solution xo ∈ Xo with production sequence Πo and
transportation assignments Po, the transformation function foc : Xo → Xc constructs
solution xc ∈ Xc from the production sequence and transportation assignment of solution
xo ∈ Xo. Specifically, the transformation is carried out by first setting Πc = Πo and
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Pc = Po. The completion times for all jobs j ∈ Jc = Jo from position nN to position k are
subsequently computed by Procedure 5.2.2.1, and the resulting schedule is a canonical
schedule.

Lemma 5.2.3.1. Procedure 5.2.3.1 transforms each feasible solution xo ∈ Xo into a correspond-
ing feasible canonical solution xc ∈ Xc with equal or lower objective function value; that is,
f(xc) 6 f(xo).

Proof. The solutions xo and xc only differ by the completion times of jobs. Since a canonical
schedule (Lemma 5.2.2.1) is cost optimal in terms of completion times, it holds that
f(xc) 6 f(xo).

Accordingly, each feasible solution xo ∈ Xo is transformable into a corresponding
feasible solution xc ∈ Xc with equal or lower cost. Lemma 5.2.3.2 formalizes the relation
between the search spaces Xo and Xc.

Lemma 5.2.3.2. The canonical search space Xc is a subset of the search space of all feasible
solutions Xo.

Proof. The search space Xo comprises all feasible combinations of Π, P, and Cj values for
j ∈ N. The search space Xc comprises all feasible combinations of Π, P with one specific
feasible setting of the Cj values for j ∈ N. Hence, Xc is a subset of Xo.

In conclusion, it is sufficient to explore the search space Xc instead of the search space
Xo. Therefore, the proposed B&B algorithm explores search space Xc. Hereafter, if not
stated differently, the term “schedule” implicitly refers to a canonical schedule (simply
denoted by symbol ζ) in the context of the SFDDHT-B&B.

5.2.4 Decomposition of the Canonical Search Space

The developed B&B algorithm uses a non binary (wide) branching scheme (see Sec-
tion 5.1.2) that decomposes a subproblem, which implicitly defines a canonical schedule ζ,
by extending this schedule ζ in each subsequent subproblem. The extension is carried out
by additionally scheduling a job j ∈ J̄. Specifically, a backward-oriented branching scheme is
used, which builds partial schedules from the last scheduling position to the first.

The initial subproblem Xc0 is equivalent to the original problem with an empty schedule
ζ; that is, J = ∅ and J̄ = N. Each subsequent smaller subproblem defines a nonempty
schedule with J 6= ∅ and J̄ = N \ J. The scheduled jobs j ∈ J occupy positions k to nN,
while leaving positions 1 to k− 1 vacant. Each selected, non-dominated subproblem Xch,
with first defined position kh, decomposes into subproblems Xci with i = h+ r,h+ r+

1, . . . ,h+ r+ s− 1, where h+ r is the smallest unused index for a search tree node, and s is the
number of smaller subproblems that are generated. The subproblem Xch is decomposed by

(a) assigning a job j ∈ J̄ to the highest indexed, vacant position (kh − 1) and

(b) assigning this job j to a delivery departure time tl ∈ TgN(j).
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In the implementation of the approach, a node Nci , which represents subproblem Xci , is
stored with the following information:

• A job index j ∈ N,

• the customer-specific delivery departure time index l ∈
{

1, 2, . . . ,nT
gN(j)

}
, and

• the memory location of its parent node Xh. This information defines arc (Xch,Xci ) ∈ E

in search tree T.

The level of the node in the search tree defines the position in the schedule to which job j is
assigned; that is, π−1(j) = nN − l(Xci ) + 1. A corresponding schedule ζci for a subproblem
Xci is constructed by gathering the node information on the path from the search node
to the root node of the tree. The visited nodes on this path define the jobs scheduled on
positions k to nN and their assignments to delivery departure times. The sequences Π
and P are hence iteratively constructed by following the path in the search tree. To fully
define the considered schedule ζci , Procedure 5.2.2.1 computes the completion times of the
specified canonical schedule. Figure 5.1 illustrates the implemented branching scheme.

Figure 5.1

Decomposition of the Search Space for the SFDDHT Problem

(root)

(1, 50)

(2, 50)
(3, 30)

(3, 60)

(3, 30) (2, 50)

(3, 60) (2, 50)

(2, 50)

(1, 50)
(3, 30)

(3, 60)

(3, 30) (1, 50)

(3, 60) (1, 50)

(3, 30)
(1, 50) (2, 50)

(2, 50) (1, 50)

(3,60)
(1,50) (2,50)

(2, 50) (1, 50)

Level 1 2 3
Position (p) 3 2 1

Note. Each terminal node at tree level nN specifies a complete feasible schedule. The displayed tree is
generated for an instance with the following data: N = {1, 2, 3}, G = {1, 2}, N1 = {1, 2}, N2 = {3}, T1 = {50}, and
T2 = {30, 60}. Additionally, all schedules are assumed to be feasible. Each node (except for the root node) in
the illustration is displayed as a decision pair(π(p), ρ(p)) that defines – together with all nodes on the path
to the root node – a subproblem. For example, the emphasized nodes in the illustration lead to a complete
schedule with production sequence Π = (2, 1, 3) and transportation assignments P = (50, 50, 60).
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5.2.5 Structural Analysis of Canonical Schedules

The overarching goal of the B&B method is to reduce the explicitly searched solution space
to find an optimal solution. This subsection analyzes the structure of canonical schedules
to distinguish potentially optimal from suboptimal decisions. Since each additional
identification of the optimal structure of an optimal solution to the SFDDHT (and its
application during the implemented B&B procedure) potentially reduces the number of
created search nodes through avoided branches and, therefore, the time spent evaluating
these nodes. This section commences by first describing some essential properties of
canonical schedules. Afterward, it presents additional constructs to structure canonical
schedules.

Property 5.2.5.1 by Bachtenkirch and Bock (2022) explicitly states the feasibility require-
ment for each feasible canonical schedule.

Property 5.2.5.1. A feasible schedule ζ processes the scheduled jobs j ∈ J such that
rj + pj 6 Cj 6 Dj 6 d̄j holds.

Proof. Property 5.2.5.1 directly follows from the problem definition.

The following two properties (Properties 5.2.5.2 and 5.2.5.3) by Bachtenkirch and
Bock (2022) identify canonical schedules with suboptimal transportation decisions. Both
properties are formulated as dominance relations between two schedules ζ and ζ ′. Symbol
( ′) denotes variables associated with schedule ζ ′.

Property 5.2.5.2 identifies suboptimal transportation decisions for a scheduled job
j ∈ J, under consideration of the transportation decisions of jobs for the same customer
as job j scheduled at succeeding positions. Specifically, for each job j with successor k,
with gN(j) = gN(k), it holds that Dj 6 Dk because the opposite decision, Dj > Dk, causes
unnecessary holding costs for job j.

Property 5.2.5.2. Let the jobs j and k, sequenced in this order, with identical customer
(gN(j) = gN(k)), be feasibly processed in a (partial) schedule ζ. It consequently holds
that Cj 6 Dj 6 d̄j and Ck 6 Dk 6 d̄k. If the completion times and delivery departure
times for both jobs are chosen such that Cj < Ck and Dj > Dk simultaneously apply, the
schedule ζ is dominated by a schedule ζ ′ that coincides with ζ except for setting D ′j = Dk.

Proof. Property 5.2.5.2 proposes setting the delivery departure time of job j to time Dk
instead of time Dj. This alternative is a feasible choice due to the assumption that job j
is feasibly processed in schedule ζ and that d̄j > Dj > Dk therefore holds. Schedule ζ ′

is thus feasible. The choice of delivering job j at time Dk instead of time Dj positively
influences the objective function value by reducing the holding cost contribution of job j.
Specifically, schedule ζ ′ attains the objective value

z(ζ ′) 6 z(ζ) − cH
j · (Dj −D ′j). (5.2)

Equation (5.2) is specified as an inequality because setting D ′j = Dk potentially reduces
transportation costs if job j is the sole job transported at delivery departure time Dj in

page 72



5.2.5. Structural Analysis of Canonical Schedules

schedule ζ. Since schedules ζ and ζ ′ process identical jobs (J = J ′) schedule ζ ′ dominates
schedule ζ.

Property 5.2.5.3 identifies suboptimal transportation assignments for a scheduled job
j ∈ J. Some feasible schedules assign jobs to needlessly distant delivery departure times,
even though transports closer to the completion time of the job exist in a solution. An
assignment to an earlier delivery departure time consequently reduces the holding costs.

Property 5.2.5.3. Let job j be a job assigned to delivery departure time Dj in a (partial)
schedule ζ. Additionally, assume that there exists a delivery departure time tτ ∈ TgN(j),
which is currently not in use by any scheduled job that lies between the completion time
of job j and the currently assigned pickup time Dj. That is, it holds for delivery departure
time tτ that Cj 6 tτ < Dj. If cH

j · (Dj − tτ) > cT
gN(j) holds, then schedule ζ is dominated

by a schedule ζ ′ that is identical to schedule ζ, except that job j is scheduled with delivery
departure time D ′j = tτ instead of Dj.

Proof. Modifying the assignment of job j from delivery departure timeDj toD ′j = tτ leads
to a reduction in cost by amount cH

j · (Dj− tτ)− cTgN(j)
. Hence, the decision to use delivery

departure time tτ instead of timeDj is favorable and without any negative effects on other
parts of the solution.

The results of Properties 5.2.5.1 to 5.2.5.3 supplement the definition of canonical
schedules. A (partial) schedule for which these propositions do not hold can be discarded
in the search for an optimal schedule.

By using the above results, two constructs are introduced that provide additional
structure for the scheduled jobs. The following definitions (Definitions 5.2.5.4 and 5.2.5.5)
by Bachtenkirch and Bock (2022) introduce delivery batches ∆ and production blocks Γ that
each define a collection of subsets of the scheduled jobs J of a (partial) schedule ζ.

Definition 5.2.5.4. Let ∆ = {∆1,∆2, ...,∆nT } denote the set of (possibly empty) delivery
batches in a (partial) schedule ζ. Therefore, for each delivery departure date l ∈ IT, there
is an associated delivery batch ∆l that defines the set of jobs of customer gT(l) that are
jointly transported with the l-th transport at delivery departure time tl; in other words,

∀l ∈ IT : ∆l =
{
j | j ∈ JgT (l),Dj = tl

}
.

Each delivery batch ∆l comprises jobs δl(j) with j = 1, 2, ...,n∆l that are indexed in order
of their scheduled position such that π−1(δl(1)) < π−1(δl(2)) < ... < π−1(δl(n

∆
l )) holds.

All jobs j ∈ ∆l in the l-th delivery batch have an identical delivery departure timeDj = tl.

With Property 5.2.5.2 in mind Definition 5.2.5.4 leads to Observation 1:

Observation 1. Consider a (partial) schedule ζ. For two jobs j and k of the same customer
gN(j) = gN(k), with j scheduled before k and delivery batches j ∈ ∆l and k ∈ ∆m, it holds
that l 6 m. That is, a job with a lower indexed position in the schedule is always part of a
lower or an equally indexed delivery batch.
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Definition 5.2.5.4 preserves the ordering of jobs in the schedule. This enables a job
j ∈ J to be defined as either a terminal job in a delivery batch – that is, the job with the
highest position (i.e., the latest scheduled job) in a delivery batch – or a non-terminal job in
a delivery batch. The set of all terminal jobs in a schedule ζ is

Jt =
{
j | j ∈ J∧ ∃l ∈ IT : j = δl(n

∆
l )
}

. (5.3)

Let Jn = J \ Jt denote the set of all non-terminally scheduled jobs. Additionally, jtj denotes the
earliest terminal successor of a non-terminal job j ∈ Jn; that is,

∀j ∈ Jn : jtj = min
{
k | k ∈ Jt : π−1(k) > π−1(j)

}
. (5.4)

Note that the term jtj is properly defined, since the last scheduled job is always terminal.
Equations (5.3) and (5.4) enable production blocks to be defined:

Definition 5.2.5.5. Let Γ = {Γ(1), Γ(2), ..., Γ(nT)} denote the set of (possibly empty) pro-
duction blocks in a schedule ζ. A production block Γl ∈ Γ defines the consecutively
sequenced set of jobs that comprises the terminal job δl(n∆l ) and the immediate chain of
non-terminal predecessors in the schedule ζ. Specifically, this chain comprises all non-
terminal predecessors i ∈ Jn for which jti = δl(n

∆
l ) holds. Production blocks are formally

defined as

∀l ∈ IT : Γl =

{δl(n
∆
l )} ∪ {j | j ∈ Jn, jtj = δl(n

∆
l )} if ∆l 6= ∅

∅ otherwise.
(5.5)

Similar to the definition of a delivery batch by Definition 5.2.5.4, in a production block,
jobs are indexed by their scheduled position: Γl comprises jobs γl(j) with j = 1, 2, ...,nΓl
and π−1(γl(1)) < π−1(γl(2)) < ... < π−1(γl(n

Γ
l )).

Lemma 5.2.5.1 by Bachtenkirch and Bock (2022) describes an important property
of production blocks regarding the delivery departure times of jobs within the same
production block:

Lemma 5.2.5.1. For each production block Γl ∈ Γ , as defined by Definition 5.2.5.5, the following
property is valid in a (partial) schedule ζ: Each job j ∈ Γl has a delivery departure time Dj >
Cγl(nΓl )

. That is, all jobs of a production block Γl have a delivery departure time that is not earlier
than the completion time of all jobs of the production block Γl.

Proof. Assume that there exists a job j = γl(m) of production block Γl with delivery de-
parture time Dj < Cγl(nΓl ). Job j is consequently assigned to an earlier delivery departure
time than the last job of production block Γl. Therefore, job j is not the last scheduled
job of this production block and is thus a non-terminal job. Hence, there exists another
job k on one of the positionsm+ 1,m+ 2, ...,nΓl − 1 of production block Γl with delivery
departure time Dk = Dj that must be a terminal job. However, this scenario contradicts
Definition 5.2.5.5 that defines a production block as a set of non-terminal jobs and only
one terminal job that is scheduled at position nΓl of the l-th production block. Therefore,
one concludes that Dj > Cγl(nΓl ).
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An essential property of nonempty production blocks is that jobs in the same produc-
tion block are produced consecutively, without idle time between the processing of jobs.
This property can be inferred from Lemma 5.2.5.1. Each job in a production block Πl is
delivered at some point after the completion of the last job γl(nΓl ) in this production block.
Therefore, the holding cost Hγl(i) = (Dγl(i) − Cγl(i))) · c

H
γl(i)

is minimized by setting
Cγl(i) to its maximal value. This is guaranteed by the procedure of Lemma 5.2.2.1. Thus,
idle time in a canonical schedule may only exist between two production blocks or at the
beginning of the schedule.

To illustrate the process of building canonical schedules and the structuring of such
schedules, an extensive example is presented below. Example 5.2.5.6 is also mentioned
by Bachtenkirch and Bock (2022) in a condensed format; the below presented version
comprises detailed calculations and an illustration of the instance.

Example 5.2.5.6. There are nN = 6 jobs with nG = 2 customers. Jobs 1 − 3 belong to
customer 1, while jobs 4-6 belong to customer 2. The complete instance data for this
example is stated in the following table.

Instance data of the SFDDHT

Customer (g) Jobs (gN(j) = g) Transportation cost (cT
g) Delivery departure times (Tg)

1

j pj rj d̄j cH
j

1 15 0 100 2
2 8 20 150 6
3 12 30 150 5

100 50, 100, 150

2

j pj rj d̄j cHj

4 22 30 130 9
5 18 50 130 7
6 35 50 130 5

80 40, 70, 130

The time windows for the jobs are illustrated in Figure 5.2.

Figure 5.2

Graphical Instance Representation for Example 5.2.5.6

t
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

[r1, d̄1]
[r2, d̄2]

[r3, d̄3] [r4, d̄4]

[r5, d̄5]

[r6, d̄6]

t1,1 t1,2 t1,3t2,1 t2,2 t2,3

Note. Each horizontal bar represents the time window of a job j with inner markings to indicate earliest
completion times.

The example schedule ζ is described by the two sequences: the production sequence
Π = {1, 4, 5, 2, 3, 6} and the transportation assignments P = {100, 70, 70, 100, 100, 130}.
Therefore, it immediately holds that D1 = D2 = D3 = 100, D4 = D5 = 70, and D6 = 130.
The completion times are derived by Procedure 5.2.2.1. To clarify the computations below,
the formulas of this procedure are reprinted:
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Cπ(nN) = Dπ(nN) and

Cπ(i) = min{Dπ(i),Sπ(i+1)} for each i = π(nN − 1),π(nN − 2), ...,π(k).

The computation is carried out as follows:

Step 1: i = nN = 6,π(i) = π(6) = 6.
C6 = D6 ⇔ C6 = 130⇒ S6 = C6 − p6 = 130 − 35 = 95.

Step 2: i = nN = 5,π(i) = π(5) = 3.
C3 = min{D3,S6} = min{100, 95} = 95⇒ S3 = C3 − p3 = 95 − 12 = 83.

Step 3: i = nN = 4,π(i) = π(4) = 2.
C2 = min{D2,S3} = min{100, 83} = 83⇒ S2 = C2 − p2 = 83 − 8 = 75.

Step 4: i = nN = 3,π(i) = π(3) = 5.
C5 = min{D5,S2} = min{70, 75} = 70⇒ S5 = C5 − p5 = 70 − 18 = 52.

Step 5: i = nN = 2,π(i) = π(2) = 4.
C4 = min{D4,S5} = min{70, 52} = 52⇒ S4 = C4 − p4 = 52 − 22 = 30.

Step 6: i = nN = 1,π(i) = π(1) = 1.
C1 = min{D1,S4} = min{100, 30} = 30⇒ S1 = C1 − p1 = 30 − 15 = 15.

In conclusion, the completion times amount to

C1 = 30, C2 = 83, C3 = 95, C4 = 58, C5 = 70, and C6 = 130.

The available delivery departure times tl with l ∈ IT are indexed by non-decreasing time
value, such that: t1 = 40, t2 = 50, t3 = 70, t4 = 100, t5 = 130, and t6 = 150. Since jobs 1-3
are assigned to transport 4, jobs 4 and 5 are assigned to transport 3, and job 6 is assigned
to transport 5. The set of delivery batches is

∆ = {∅,∅, {4, 5}, {1, 2, 3}, {6},∅}.

The terminal jobs are Jt = {5, 3, 6}, and the terminal successors of the non-terminal jobs are
jt1 = jt4 = 5 and jt2 = 3. Therefore, the resulting production blocks are

Γ = {∅,∅, {1, 4, 5}, {2, 3}, {6},∅}.

The schedule is also visualized in Figure 5.3. In total, there are three transports, one for
customer 1 at time t1,2 = 100 and two for customer 2 at times t2,2 = 70 and t2,3 = 130.
Hence, the transportation costs amount to

zT(ζ) = 1 · cT
1 + 2 · cT

2 = 1 · 100 + 2 · 80 = 260.

Jobs 5 and 6 complete at their respective departure times and do not contribute holding
costs to the total objective value. Job 1 is stored for H1 = D1 − C1 = 100 − 30 = 70
time unitss (TU) and contributes holding cost H1 · cT

1 = 70 · 2 = 140. Job 2 is held for
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H2 = D2 − C2 = 100 − 83 = 17 TUs and contributes holding cost H2 · cT
2 = 17 · 6 = 102.

Next, job 3 is held for H3 = D3 − C3 = 100 − 95 = 5 TUs and contributes holding cost
H3 · cT

3 = 5 · 5 = 25. Finally, job 4 is held for H4 = D4 − C4 = 70 − 52 = 18 TUs and
contributes holding cost H4 · cT

4 = 18 · 9 = 162. The total holding cost amounts to

zH(ζ) = 140 + 102 + 25 + 162 = 429.

This results in total cost

z(ζ) = zT(ζ) + zH(ζ) = 260 + 429 = 689.

Figure 5.3

Graphical Representation of the Exemplary Schedule of Example 5.2.5.6.

t
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

1 4 5 2 3 6

t2,2 t1,2 t2,3t1,1 t2,1 t1,3

H3

H2

H4

H1

Note. Deliveries to customer 1 are marked by and deliveries to customer 2 are marked by . Additionally,
inventory holding times Hj are given below the axis. Adapted from “Finding efficient make-to-order
production schedules” by D. Bachtenkirch and S. Bock, 2021, submitted to the European Journal of Operational
Research. Copyright 2021 by Elsevier. .
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5.3 Dominance Relations and Procedures

This section describes dominance relations (see Section 5.1), which are the basis for the
implementation of dominance procedures that try to reduce the number of explicitly explored
subproblems during the enumeration process. The proposed dominance relations allow
to fathom (finish) a considered (partial) schedule ζ (and all schedules constructible from
ζ), if the existence of a dominating (partial) schedule ζ ′ is proven.

This section describes four dominance procedures. The first three are non-memory-
based dominance procedures. Hence, the dominating schedule ζ ′ does not need to
be found during the search but is constructed specifically to prove dominance over
schedule ζ. As a prerequisite for the description of the non-memory-based dominance
procedures, Sections 5.3.1 and 5.3.2 describe dominating sequence permutations for the
SFDDHT and their efficient evaluation. These results play a major role in the application
of the subsequently described dominance procedures, namely, permutation dominance
(Section 5.3.3), production block dominance (Section 5.3.4), and delivery batch dominance
(Section 5.3.5).

Figure 5.4

Flow Diagram for each Non-Memory-Based Dominance Procedure

Start Schedule ζ

Generate
ζ ′ ∈ Nd(ζ) and
test dominance
relation ζ ′Dζ

Does ζ ′Dζ
hold?

ζ is dominated.
Eliminate the
current node

Is Nd(ζ)

exhaustively
tested?

ζ is not
dominated by
this procedure

End

no

no

yes

yes

Figure 5.4 illustrates the program flow for the non-memory-based dominance pro-
cedures. Each procedure receives a schedule ζ as its input and tests a set of alternative
schedules (or neighborhood) Nd(ζ), where Nd(ζ) is defined differently by each of the
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dominance procedures. The schedule alternatives depend on the characteristics of the
input schedule ζ, and in each step, the iterative process tests whether one of the alterna-
tive schedules dominates the currently explored schedule ζ. Each dominance procedure
terminates when establishing dominance over ζ or when no alternative schedule is left to
test: Either, one alternative schedule ζ ′ ∈ Nd(ζ) dominates ζ, or no alternative schedule is
constructible, that dominates ζ. In the first case, the B&B discards the current search node
that defines schedule ζ. In the second case, the remaining dominance procedures have the
opportunity to discard the explored node.

The fourth dominance procedure (Section 5.3.6) is a memory-based procedure, im-
plemented with the help of a dominance table that stores the required information of
schedules found during the search process to carry out dominance relations testing.

5.3.1 Dominating Permutations

This subsection postulates the existence of optimal production sequences given a fixed
transportation assignment of jobs. As a prerequisite, the following paragraphs provide
an analysis of the situation for the remaining jobs J̄ of a particular schedule ζ. In a
(partial) schedule ζ, the processing of the jobs J is determined by Procedure 5.2.2.1, and
the decisions are consequently fixed for schedule ζ and all schedules derived from ζ. The
start time of the first scheduled job at position k is, as previously introduced, denoted as
S1. Therefore, the processing of jobs J̄ is restricted by this time point. That is, all remaining
jobs J̄must not complete later than S1 to feasibly extend schedule ζ towards a complete
schedule. Definition 5.3.1.1 additionally considers the deadlines for the remaining jobs:

Definition 5.3.1.1. The maximal completion time of any unscheduled job j ∈ J̄, given partial
schedule ζ, is

C̄max = min
{

max
j∈J̄

{
d̄j
}

,S1
}

.

The value C̄max can be seen as an indicator of the flexibility to schedule the remaining
jobs J̄ given schedule ζ. It follows that any change to the processing of the already
scheduled jobs does not negatively impact the flexibility of the remaining jobs, unless C̄max

decreases by such modification. In contrast, given a schedule ζ, a different permutation
for the scheduled jobs J may exist, which results in a higher value S1 and therefore in a
potentially higher value for C̄max (i.e., an increased flexibility to schedule the remaining jobs
J̄). This idea is formalized by Bachtenkirch and Bock (2022) by Lemma 5.3.1.1, which states
the existence of locally optimal production sequences. Informally, this lemma compares
two feasible schedules with an identical set of jobs scheduled and identical transportation
decisions for the scheduled jobs. Both schedules differ only in the sequencing of jobs and
hence in the derived canonical completion times. A feasible schedule is dominated if
another feasible schedule exists that schedules the jobs in a different order that attains a
lower holding cost and is not less flexible than the dominated schedule.

Lemma 5.3.1.1. Consider two feasible (partial) schedules ζ and ζ ′ with an identical set of scheduled
jobs J = J ′ and identical delivery departure times Dj = D ′j for each job j ∈ J(= J ′) but differing
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production sequences Π 6= Π ′. If the alternative schedule ζ ′ is not less flexible C̄ ′max > C̄max and
attains a lower total cost z(ζ ′) < z(ζ), then schedule ζ is dominated by the alternative schedule ζ ′.

Proof. Lemma 5.3.1.1 compares two non-identical schedules ζ and ζ ′ with identical sched-
uled jobs J = J ′ and identical delivery departure times. As the scheduled jobs are identical,
the same holds true for the unscheduled jobs; that is, J̄ = J̄ ′. As C̄ ′max > C̄max holds any
extension of schedule ζ towards a complete schedule ζc (by scheduling the jobs J̄ ′) can
also be executed identically for schedule ζ ′ towards a complete schedule ζ ′c. That is, the
setting of the completion times Cj = C ′j and delivery departure time settings Dj = D ′j for
the remaining jobs J̄ = J̄ ′ is feasible for the alternative schedule ζ ′c if these decisions are
feasible for ζc.

Moreover, Lemma 5.3.1.1 requires z(ζ ′) < z(ζ). The extended schedules ζc and ζ ′c have
identical decisions concerning the completion and delivery times of the remaining jobs
J̄ = J̄ ′ of the original schedules ζ and ζ ′. Therefore, the transportation cost and holding
cost contributions of these jobs are identical in both schedules. That is, the holding costs∑
j∈J̄(Dj − Cj) · cH

j equal the holding costs
∑
j∈J̄ ′(D

′
j − C

′
j) · cH

j , and the transportation
costs

∑
g∈G c

T
g ·
∣∣{Dj | j ∈ J̄g}∣∣ equal the transportation costs

∑
g∈G c

T
g ·
∣∣{Dj | j ∈ J̄ ′g}∣∣.

The total costs of both extended schedules are consequently increased by the same amount
compared to the original schedules ζ and ζ ′. However, due to z(ζ ′) < z(ζ), it holds that
z(ζ ′c) < z(ζc), and therefore schedule ζ is dominated by schedule ζ ′ and can be excluded
from the ongoing search process.

Figure 5.5 illustrates the comparison of Lemma 5.3.1.1 and depicts the alternative out-
comes of comparing two schedules ζ and ζ ′, under the conditions laid out by Lemma 5.3.1.1.
All three cases imply that z(ζ) < z(ζ ′) holds, because otherwise, dominance can not be
established. The two cases (a) and (b) show the outcomes with both schedules providing
identical flexibility for the remaining jobs j ∈ J̄. In the case of alternative (c), the schedule
ζ ′ provides a better sequence in terms of cost but restricts the processing capabilities for
the remaining jobs. Hence, case (c) establishes no dominance.

Lemma 5.3.1.1 provides the basis to identify any (partial) production schedule as either
locally optimal or locally suboptimal. That is, either the currently investigated schedule ζ
minimizes the holding costs and preserves the flexibility for the unscheduled jobs, or, a
different production sequence exists that is strictly better in terms of cost and not worse in
terms of flexibility. As previously explained, the feasibility problem of scheduling jobs
with hard time windows is strongly NP-hard and can not be solved efficiently. Therefore,
there is little hope (unless P = NP) of providing a polynomial algorithm that finds a
locally optimal schedule. In fact, for a schedule with nJ jobs, there are nJ! − 1 alternative
schedules, and an exhaustive test of all permutation sequences must consequently be
ruled out due to computational time constraints. Instead, a small subset of alternative
permutations is built heuristically to test the dominance conditions of Lemma 5.3.1.1 (see
Section 5.3.3).
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Figure 5.5

Possible Outcomes of Applying Lemma 5.3.1.1

(a) S1 6 S ′1.
ζ ′ dominates ζ

ζ

S1

ζ ′
S ′1

(b) S1 > S ′1 and C̄max = C̄ ′max.
ζ ′ dominates ζ

ζ

C̄max S1

ζ ′
C̄ ′max S ′1

(c) S1 > S ′1 and C̄max > C̄ ′max.
no dominance of ζ ′

ζ

C̄max = S1

ζ ′
C̄ ′max = S ′1

Note. Cases (a) to (c) compare schedules ζ and ζ ′ with z(ζ ′) < z(ζ), as stated in Lemma 5.3.1.1.

5.3.2 Efficient Comparison of Permutation Schedules

Prior to the description of the heuristics that test permutation dominances, this subsection
describes an efficient procedure to compare a feasible schedule ζ to a newly constructed
schedule ζ ′, which only differs from the original schedule in terms of the production
sequence (but not the delivery decisions) of the scheduled jobs. The procedure starts with
a feasible schedule ζ comprising scheduled jobs J, delivery departure times Dj for all jobs
j ∈ J (inferred from transportation assignment P), and canonical completion times Cj for
all jobs j ∈ J (inferred from production sequence Π). This schedule is compared with an
alternative schedule ζ ′ that differs by permutation Π ′ 6= Π and delivery schedule P ′ with
for all i ∈ {k,k + 1 . . . ,nN} it holds that ρ ′(i) = ρ(π−1(π ′(i))). That is, the transportation
assignment P ′ is constructed such that delivery departure times are identical in both
schedules; that is, Dj = D ′j for each j ∈ J(= J ′).

Each of the production sequences of both schedules can be described as a sequence of
two subsequences:

Π = (Π1,Π2) and Π ′ = (Π ′1,Π2).

In other words, both permutations differ only in the subsequences Π1 and Π ′1, while the
second (possibly empty) subsequence Π2 is identical for both schedules. As a consequence
of the backward computation of canonical completion times by Procedure 5.2.2.1, the
completion times (and therefore holding times and costs) of the jobs of subsequence Π2 are
identical in both schedules. Hence, only canonical completion times for subsequence Π ′1
must be computed to finalize the definition of schedule ζ ′. The nonidentical subsequences
are

Π1 = (π(k),π(k+ 1), . . . ,π(l))
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and
Π ′1 = (π ′(k),π ′(k+ 1), . . . ,π ′(l))

with l denoting the position of the last job in subsequences Π1 and Π ′1. Algorithm 5.2
computes the total cost z(ζ ′) the start time S ′1 and the feasibility status of ζ ′.

Algorithm 5.2 Comparison of Permutation Schedules
1: Requires: Schedules ζ and ζ ′ with J = J ′, Π = (Π1,Π2), Π ′ = (Π ′1,Π2), and Dj =
D ′j ∀j ∈ J(= J ′);

2: z(ζ ′)← z(ζ);
3: t← Sπ ′(l+1) if Π2 6= ∅, t←∞ otherwise;
4: for i = l to k do
5: C ′π ′(i) ← min{D ′π ′(i), t};
6: t← C ′π ′(i) − pπ(i);
7: if t < rπ(i) then
8: return infeasible;
9: z(ζ ′)← z(ζ ′) + (D ′π ′(i) − C

′
π ′(i)) · c

H
π ′(i) − (Dπ(i) − Cπ(i)) · cHπ(i);

10: S ′1 ← t;
11: return feasible;

The algorithm derives the canonical completion times for the jobs of subsequence Π ′1.
In each step of the procedure, the current schedule’s feasibility is checked (Line 7). The
algorithm terminates early if the permutation leads to an infeasible schedule. The total cost
of schedule ζ ′ is initially set to z(ζ). In Line 9, the total cost is updated by reducing the total
value by the holding cost contribution of the job at position i in schedule ζ and by adding
the holding cost contribution of the job at position i in schedule ζ ′. This cost update is
sufficient, since the transportation decisions are identical in both schedules. The earliest
start time of schedule ζ ′ is assigned in Line 10. Afterward, the maximum completion
time C̄ ′max is computable with this value by applying the equation in Definition 5.3.1.1.
Algorithm 5.2 executes on a subsequence of the production sequence in linear time and
only needs to update the relevant data from the base schedule ζ. Therefore, it is more
efficient than a full computation of the alternative schedule. The asymptotic runtime
complexity is O(|Π1|) with |Π1| 6 nJ, as the procedure requires |Π1| steps.

5.3.3 Permutation Dominance Procedure

This subsection details the permutation dominance procedure by Bachtenkirch and Bock
(2022) that generates a subset of alternative permutations based on Lemma 5.3.1.1, which
is evaluated by Algorithm 5.2. The procedure tests two types of alternative schedules:
The first type is an alternative schedule generated by exchanging the positions of the first
scheduled job at π(k) and another job in schedule ζ to form a new permutation Π ′, and the
second type is an alternative schedule constructed by moving the job at the k-th position
to a different position. Figure 5.6 illustrates both operations. The generation and testing of
both types of alternative schedules are explained in Sections 5.3.3.1 and 5.3.3.2.
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Figure 5.6

Illustration of the Swap and Move Operators

Swap operation

t
i j

C̄max

t
j i

Move operation

t
i

C̄max

t
i

Note. Reprinted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier.

5.3.3.1 Swap Dominance

Swap dominance describes the method of constructing alternative permutations from
production sequence Π by exchanging the job located at the first determined position
(π(k)) of schedule ζ with a later scheduled job in production sequence Π. In particular,
the dominance procedure tests the following set of alternative permutations:

ZS(Π) =
{
ΠS
i | i = k+ 1, ...,nN

}
.

For each alternative permutation ΠS
i, it holds that job π(k) occupies position i such

that πS
i(i) = π(k), and job π(i) occupies position k such that πS

i(k) = π(i), while all
other job positions between positions k and i and after position i are identical for both
sequences. That is, for a permutation Π = (π(k),π(k+1),π(k+2), . . . ,π(nN)), it constructs
the following alternative permutations:

ZS(Π) =
{(
π(k+ 1),π(k),π(k+ 2), . . . ,π(nN)

)
,(

π(k+ 2),π(k+ 1),π(k), . . . ,π(nN)
)

,

. . . ,(
π(nN),π(k+ 1),π(k+ 2), . . . ,π(k)

)}
.

Each alternative permutation ΠS
i ∈ NS(Π) leads to a new alternative schedule ζS

i. The
applied dominance procedure tests the permutations one by one by application of Al-
gorithm 5.2, which computes the necessary information to test whether ζ is dominated
by ζS

i according to Lemma 5.3.1.1. The swap dominance procedure follows the program
flow illustrated in Figure 5.4 – each sequence permutation defines a new neighbor Nd(ζ) –
and computes at most nJ − 1 exchanges for the positions k + 1,k + 2, . . . ,nN, which are
evaluated by the application of Algorithm 5.2 inO(nJ) time. Hence, the overall asymptotic
time complexity of the swap dominance procedure is in O(nJ2) for a schedule ζwith nJ

jobs. Notice that a generated alternative permutation does not necessarily constitute a
feasible schedule. The computation provided by Algorithm 5.2 applies a feasibility test in
each iteration that aborts the evaluation of a permutation early if infeasibility is detected.

In some cases, feasibility checks are unnecessary. Consider again the exchanged
positions k and l of jobs i and j in sequence Π and production sequence

ΠS
l = (j,πS

l(k+ 1), . . . ,πS
l(l− 1), i,πS

l(l+ 1), . . . ,πS
l(n

N)).
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Algorithm 5.2 first determines the completion time of job i in schedule ζ ′ = ζS
i, and as job i

starts later in the modified schedule (i.e., S ′i > Si), feasibility for this job is guaranteed. One
can distinguish between two cases concerning the jobs scheduled at positions k+1, . . . , l−1.
If S ′i > Sj, then the completion times of the jobs between i and j are not processed earlier
in schedule ζ ′. Therefore, the feasibility test for these jobs is unnecessary, and only the
feasibility of the decision to place job j at position k needs to be checked. Otherwise, if
S ′i < Sj holds, then the completion times for the jobs at positions k + 1, . . . , l − 1 may
decrease, and release date constraints may therefore be violated. The feasibility check
must thus be carried out in this case. If, in some iteration, an increased start time S ′h > Sh
for a job h ∈ {π ′(l − 1), ...,π ′(k + 1)} is detected, then the feasibility test can be omitted
for subsequent iterations of jobs at lower positions. Example 5.3.3.1 illustrates the swap
operator.

Example 5.3.3.1. This example considers an instances with nN = 6 jobs. Swap dominances
are tested for a partial schedule ζ with J = {1, 2, 3, 4} and production sequence Π =

(π(3),π(4),π(5),π(6)) with π(3) = 1,π(4) = 2,π(5) = 3, and π(6) = 4. In this example, the
swap permutation ΠS

5 = (3, 2, 1, 4) is considered, which exchanges the positions of job 1
(position 3) and job 3 (position 5). Additionally, the characteristics of the remaining jobs
J̄ = {5, 6} lead to C̄max = 30. Transportation costs are omitted. The rest of this example is
showcased below:

Comparison of schedules ζ and ζ ′ = ζS
5

Schedule ζ
Pos (i) Job j rj Sj pj Cj Dj cH

j

3 1 20 37 10 47 70 2
4 2 45 47 8 55 55 3
5 3 30 58 12 70 70 1
6 4 40 70 7 77 77 4

Schedule ζ ′ with Π ′ = ΠS5
Pos (i) Job j rj S ′j pj C ′j D ′j cH

j

3 3 30 35 12 47 70 1
4 2 45 47 8 55 55 3
5 1 20 60 10 70 70 2
6 4 40 70 7 77 77 4

After generating the alternative schedule, the necessary conditions for schedule ζ ′ to
dominate schedule ζ, as stated by Lemma 5.3.1.1, must be checked. The cost of ζ totals
z(ζ) = 46 due to the holding costs of job 1. The swap of jobs 1 and 3 reduces the
holding cost of job 1 to zero, while job 3 now contributes a non-zero holding cost value. In
total, schedule ζ ′ has total cost value z(ζ) = 23. Therefore, the first necessary condition
z(ζ ′) < z(ζ) is fulfilled. Furthermore, the start time S1 = S1 in schedule ζ is S1 = 37
with, as initially stated, C̄max = 30. The alternative schedule ζ ′ has an earlier start time
S1 = S3 = 35, which does not decrease flexibility for the remaining jobs (i.e., C̄ ′max = C̄max).
Hence, this example is of type case (b), as illustrated in Figure 5.5. Schedule ζ ′ dominates
schedule ζ.

5.3.3.2 Move Dominance

Instead of exchanging the positions of two jobs, another approach to find schedules that
potentially dominate a considered schedule ζ is to move the job at the first position to
another position in the production sequence π. Analogous to swap dominance, the move
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dominance procedure constructs the following alternative permutations:

ZM(Π) = {ΠM
i | i = k+ 1, ...,nN}

where for each permutation ΠM
i , it holds that πM

i (h) = π(h+ 1) for each h ∈ {k, ..., i− 1},
and πM

i (i) = π(k) and πM
i (h) = π(h) for each h ∈ {i + 1, . . . ,nN}. Hence, the set ZM(Π)

comprises the following sequences:

ZM(Π) =
{(
π(k+ 1),π(k),π(k+ 2), . . . ,π(nN)

)
,(

π(k+ 1),π(k+ 2),π(k), . . . ,π(nN)
)

,

. . . ,(
π(k+ 1),π(k+ 2), . . . ,π(nN),π(k)

)}
.

Each alternative permutation ΠM
i ∈ ZM

i (Π) defines a new alternative schedule ζ ′ = ζM
i

that is evaluated by Algorithm 5.2. In this procedure, the feasibility test can be omitted if,
in some iteration, S ′h > Sh for a job h ∈ {π ′(l−1), ...,π ′(k)} applies, where l is the insertion
position of job π(k). The asymptotic time complexity of the move dominance procedure
is equivalent to the swap dominance procedure and therefore in O(nJ2). Example 5.3.3.2
demonstrates the application of the move dominance procedure.

Example 5.3.3.2. Consider the same instance and schedule ζ as stated in Example 5.3.3.1
and the move permutation ΠM

4 = (2, 1, 3, 4), which moves job 1 from position 3 to position
4, thereby forcing job 2 to position 3 of the partial schedule ζM

4 . The execution of this move
is depicted below:

Comparison of schedules ζ and ζ ′

Schedule ζ
Pos (i) Job j rj Sj pj Cj Dj cH

j

3 1 20 37 10 47 70 2
4 2 45 47 8 55 55 3
5 3 30 58 12 70 70 1
6 4 40 70 7 77 77 4

Schedule ζ ′ = ζR
4 with Π ′ = Πm

4

Pos (i) Job j rj S ′j pj C ′j D ′j = cH
j

3 2 45 40 8 48 55 3
4 1 20 48 10 58 70 2
5 3 30 58 12 70 70 1
6 4 40 70 7 77 77 4

Again, the necessary conditions must be checked for schedule ζ ′ to dominate schedule
ζ, as stated in Lemma 5.3.1.1. The reinsertion of job 1 from position 3 to position 4 results
in a cost decrease, as the total cost amounts to z(ζ ′) = 45. As highlighted in the above
table, this schedule is not feasible, since S2 < r2 violates release date constraints for job 2.
Therefore, schedule ζ is not dominated by schedule ζ ′.

5.3.3.3 Dominance Test

The SFDDHT-B&B implementation applies Lemma 5.3.1.1 by testing dominance first
with the swap permutations and then with the move permutations. That is, for each
i ∈ {k + 1, . . . ,nN}, it performs the computation of Algorithm 5.2 with the permuted
sequence ΠS

i ∈ ZS(Π). If a dominating schedule ζ ′ is found, then the computation ends,
and the current node, which defines schedule ζ, is discarded from the enumeration process.
Otherwise, for each i ∈ {k+ 2, . . . ,nN}, it performs the computation of Algorithm 5.2 with
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the permuted sequence ΠM
i ∈ ZM(Π) and again discards the current node, which defines

schedule ζ if a dominating schedule ζ ′ was constructed. Note that ΠS
k+1 and ΠM

k+1 are
identical and therefore only tested once.

5.3.4 Production Block Dominance Procedure

The second dominance procedure targets the sequencing of jobs within a production block.
Specifically, the procedure establishes precedence constraints for two currently scheduled
jobs h and j of the same production block. Any identified precedence violation by the
procedure proves that the current schedule ζ is locally suboptimal and can be dismissed
from further exploration. The dominance relation by Bachtenkirch and Bock (2022) that
establishes such precedence constraints is stated in Proposition 5.3.4.1.

Proposition 5.3.4.1. Let h and j be two jobs processed in the stated order with identical production
block Γl for the l-th transport of set IT for a given schedule ζ. Additionally, let α be the set of jobs
of production block Γl that are processed between jobs h and j, and let the total processing time of
these in-between jobs be Pα =

∑
i∈α pi. If

cH
h · (Pα + pj) + (pj − ph) ·

∑
i∈α

cH
i > c

H
j · (Pα + ph) (5.6)

and
Si + (pj − ph) > ri ∀i ∈ α ∪ {j} (5.7)

apply, then an optimal schedule ζ ′ must exist in which job h is not processed before job j in
production block Γl.

Proof. Proposition 5.3.4.1 considers an exchange of positions for two jobs h and j in a
production block Γl. Examine the modified schedule ζs with exchanged positions for
jobs h and j, as considered by Proposition 5.3.4.1. In this modified schedule ζs, job j is
scheduled before jobs α, and job h is scheduled after jobs α. Lemma 5.2.5.1 states that all
jobs that are part of the same production block are assigned to delivery departure times
that are not before the latest completion time of a job within this block. As the jobs are
scheduled canonically and therefore consecutively, no idle time exists between jobs of the
same production block (see Lemma 5.2.2.1).

Equation (5.6) assumes that job h completes at time Csh = Cj in schedule ζs. This
choice for job h is feasible due to Dh > Cj in schedule ζ. Scheduling job h at Cj, jobs α
canonically before job h, and lastly job j before all jobs of α results in start time Ssj = Sh
for job j. Therefore, the earliest start and latest completion time of the processing of the
jobs {h} ∪ α ∪ {j} are left unmodified after the exchange. No job scheduled before job j and
after job h is consequently affected in terms of its processing on the machine in modified
schedule ζs.

The exchange results in job h’s increased completion time by (Pα + pj) TUs whereas
job j completes (Pα + ph) TUs earlier. The completion times of the jobs scheduled in-
between decrease by amount (ph − pj) if ph > pj, and they increase (ph < pj) or remain
unchanged (ph = pj) otherwise. Inequality (5.6) states a decrease in the total holding
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costs by exchanging jobs h and j. Furthermore, Inequality (5.7) ensures that no release
date violations occur for jobs α ∪ {j}. Job h starts later than before and is therefore feasibly
scheduled.

Figure 5.7

Illustration of Proposition 5.3.4.1

Sγl(1) Cγl(nΓl )

· · · h α j · · ·

Ssγl(1)
Cs
γl(n

Γ
l )

· · · j α h · · ·

Cj = C
s
h

Sh = Ssj

Note. In above schedule, production block Γl comprises the jobs h, j, and α for which it holds that ph < pj and
α is nonempty. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch
and S. Bock, 2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

The dominance relation of Proposition 5.3.4.1 establishes precedence relations between
jobs in the same production block. Figure 5.7 illustrates the dominance relation for two
jobs h and j with ph < pj and a non-empty set of jobs α for a production block Γl. Jobs
scheduled before j and h are not affected by the exchange, while for ph < pj, the jobs of
set α have increased completion times after the exchange.

The computation proposed by Proposition 5.3.4.1 considers the holding costs of all
affected jobs in an exchange (Inequality [5.6]) as well as the feasibility requirements
(Inequality [5.7]). In some cases, this computation can be simplified. The following three
cases stated in Proposition 5.3.4.2 originate from Bachtenkirch and Bock (2022).

Proposition 5.3.4.2. Schedule ζ is dominated if a production block Γl ∈ Γ exists with job h ∈ Γl
scheduled before job j ∈ Γl, with rj 6 max{rh,Sh} and one of the following cases applies:

Case 1. α = ∅ and cH
j /pj < c

H
h/ph.

Case 2. ph 6 pj and cH
j · (Pα + ph) < c

H
h · (Pα + pj)

Case 3. ph 6 pj and cH
j · (Pα + ph) + (ph − pj) ·

∑
i∈α c

H
i < c

H
h · (Pα + pj).

Proof. Let ζs be the schedule derived from schedule ζ that exchanges the positions of jobs
h and j. All three cases assume that rj 6 max{rh,Sh} holds. An exchange of jobs h and j
leads to Ssj = Sh. Hence, an exchange is guaranteed to be feasible for j.

In Case 1, α = ∅ holds. Therefore, jobs h and j are scheduled next to each other in
production block Γl, and the cost and feasibility considerations of Proposition 5.3.4.1 for
jobs scheduled between h and j can hence be omitted. The term cH

h · pj < cH
j · ph can be

written as cH
j /pj < c

H
h/ph.
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In Cases 2 and 3, ph 6 pj holds. Therefore, the completion times of the jobs of set α
do not decrease. Holding costs consequently do not increase for these jobs, and release
date violations do not occur. Case 2 considers solely the increase in holding costs of job j
and the decrease in holding costs of job h. Case 3 additionally accounts for the potential
holding cost decrease for the jobs scheduled between j and h.

As a result, all cases are simplifications of Proposition 5.3.4.1 that apply to special
cases.

5.3.4.1 Dominance Test

Algorithm 5.3 Dominance Test for Two Jobs h and j Scheduled in the Same Production
Block Γ 1 that Applies Propositions 5.3.4.1 and 5.3.4.2
Input: A partial schedule ζ. Output: true if ζ is dominated, false otherwise.

Step 1: Set h = π(k), P(α) = 0, H(α) = 0 and i = 2.

Step 2: Let j = γ1(i). Define the holding costs for jobs h and j at position k as h(h) =
cHh · (P(α) + pj) and h(j) = cHj · (P(α) + ph). The exchange is feasible if rj 6 max{rh,Sh}.
The cases from Proposition 5.3.4.2 can be applied if the exchange is feasible and ph 6 pj
holds. If both requirements and additionally h(j) < h(h) hold true, then return true (ζ is
dominated), otherwise goto Step 3.

Step 3: The holding costs for the jobs in α are h(α) = (ph − pj) · H(α). If ph 6 pj and
(h(j) + h(α)) < h(h), then the exchange improves cost; return true (ζ is dominated),
otherwise goto Step 4.

Step 4: If (h(j) + h(α)) < h(h), calculate the start times for all jobs i ∈ α and test whether
Si > ri holds. If the exchange is feasible, then return true (ζ is dominated), otherwise
goto Step 5.

Step 5: Update the set α, i.e. set P(α) to P(α) + pj and H(α) to H(α) + cHj . Increment i to
i+ 1. If i > |Γ 1|, then return false (ζ is not dominated). Else, goto Step 2.

The second dominance test only considers the first non-empty production block –
in the following denoted as Γ 1 = {γ1(1), · · · ,γ1(|Γ 1|)} – of the current schedule ζ with
h = π(k) = γ1(1). The dominance relation proposed by Proposition 5.3.4.1 is tested for
job h and each successor in production block Γ 1; that is, for j ∈ {γ1(2), · · · ,γ1(|Γ 1|)} in
this order. For each combination of h and j, the procedure uses the computationally least
expensive calculations first, while interrupting the computation if dominance over ζ can
be proven. The dominance procedure stores intermediate results such that the subsequent
tested cases access previously computed values. Algorithm 5.3 employs memorization
to speed up the computation of the testing procedure. The algorithm runs for |Γ 1 − 1|
iterations at most; that is, |Γ 1−1| exchanges are tested by application of Propositions 5.3.4.1
and 5.3.4.2. All operations performed within each iteration are basic and executed in O(1).
Algorithm 5.3 consequently has asymptotic time complexity O(|Γ 1|) when applied to a
schedule ζwith production block Γ 1.
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5.3.5 Delivery Batch Dominance Procedure

The third dominance procedure identifies suboptimal delivery batches in a schedule ζ. The
proposed dominance relation identifies cases in which the merger of two delivery batches
for the same customer into a single delivery batch leads to a schedule ζ ′ that dominates
the original schedule ζ. That is, the split delivery of the two sets of jobs is consolidated
into a single delivery. To properly define the proposed dominance relation, the procedure
distinguishes between open and closed delivery batches (Bachtenkirch and Bock, 2022).
A delivery batch is closed if it cannot be extended by an additional job in any schedule
derived from the current schedule ζ, otherwise it is considered open. Next, the conditions
leading to the open or closed status of a delivery batch are defined. Definition 5.3.5.1 first
introduces the earliest delivery departure time of a customer in a schedule:

Definition 5.3.5.1. Let tmin
g denote the earliest used delivery departure time of customer g ∈ G

in a schedule ζ. Additionally, let tmin
g = ∞ for schedules without scheduled jobs for

customer g.

Furthermore, Proposition 5.3.5.1 introduces J̄(g, l) as the set of remaining jobs for customer
g that can still be assigned to the l-th delivery departure time of customer g.

Proposition 5.3.5.1. For each customer g ∈ G and transport l ∈ {1, 2, . . . ,nTg}, the following
holds:

J̄(g, l) =
{
j | j ∈ J̄g, rj + pj 6 tg,l 6 min

{
d̄j, tmin

g

}}
.

Proof. From the problem definition it immediately follows that a job j ordered by customer
g is only assignable to the l-th transport to customer g if job j

a) can be completed before the departure time (i.e., rj + pj 6 tg,l holds) and
b) does not have to be delivered earlier (i.e., d̄j > tg,l holds).

Additionally, from Property 5.2.5.2, it follows that no remaining job j ∈ J̄g can be optimally
assigned to a departure time t > tmin

g , since assignments to an earlier, already used
transport is more cost efficient.

As a consequence of Proposition 5.3.5.1, four conditions exist for a set J̄(g, l) to be an
empty set, as stated by Observation 2.

Observation 2. One of the four sufficient conditions must be met to claim that J̄g,l is empty:

(i) J̄(g, l) = ∅ if tg,l > t
min
g ,

(ii) J̄(g, l) = ∅ if tg,l > max
j∈J̄g

{d̄j},

(iii) J̄(g, l) = ∅ if tg,l < min
j∈J̄g

{rj + pj}, or

(iv) J̄(g, l) = ∅ if J̄g = ∅.
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Let ∆(g) denote the set of delivery batches for customer g; that is, ∆(g) = {∆l | ∆l ∈ ∆, l ∈
IT
g} for each customer g ∈ G. Additionally, the individual delivery batches for customer g

are indexed by increasing departure time – that is, ∆(g) = {∆g,1,∆g,2, · · · ,∆g,nTg } – such
that t(∆g,l) = tg,l. The set of closed delivery batches ∆c(g) can now be stated for each
customer g ∈ G as follows:

∆c(g) =
{
∆g,l ∈ ∆(g) | J̄(g, l) = ∅

}
.

Evidently, a delivery batch is closed if there is a preceding (lower indexed) non-empty
delivery batch for the same customer g in schedule ζ; the deadlines for all remaining jobs
of customer g are earlier than the delivery departure time for ∆l; or all jobs of customer g
are already scheduled, and no job therefore can be appended to the current delivery batch.
For completeness, the set of open delivery batches for customer g is

∆o(g) = ∆(g) \ ∆c(g).

An important property of any nonempty closed delivery batch ∆ ∈ ∆c(g) for some
customer g is that the reassignment of all jobs of this closed delivery batch to a later
delivery time does not affect the remaining jobs J̄g in the choice of their delivery time.
This is due to the fact, that no remaining job j ∈ J̄g can be added to this batch ∆, as it
is closed. The following dominance relation by Bachtenkirch and Bock (2022) identifies
suboptimal closed delivery batches. Informally, a closed delivery batch in a schedule ζ
is identified as suboptimal if the jobs of this delivery batch can be reassigned to a later
delivery time and if this reassignment reduces the total cost of a schedule. The dominance
relation is formalized by Proposition 5.3.5.2.

Proposition 5.3.5.2. Consider a schedule ζ with a nonempty closed delivery batch ∆g,l ∈ ∆c(g)
and a second nonempty closed delivery batch ∆g,o ∈ ∆c(g) of identical customer g ∈ G, with
o > l. In this setting, the o-th delivery batch of customer g is defined for a later delivery departure
time compared to the l-th batch of customer g.

The schedule ζ is dominated by a feasible schedule ζ ′ with an identical set of jobs J = J ′ and
identical sequence Π = Π ′ that joins the jobs of both delivery batches ∆g,l and ∆g,o to define the
delivery batch ∆ ′g,o and leaves ∆ ′g,l empty. That is, ∆ ′g,o = ∆g,o ∪ ∆g,l with D ′j = tg,o for each
j ∈ ∆ ′g,o and ∆ ′g,l = ∅.

If the schedule ζ ′ is feasible, which is guaranteed if D ′j 6 d̄j for each j ∈ ∆ ′g,o holds, and has a
lower objective value – that is, z(ζ ′) < z(ζ) holds – then schedule ζ is dominated by schedule ζ ′.

Proof. The modification of the delivery departure times Dj for jobs j ∈ ∆g,o to the new
delivery departures time D ′j = tg,o may increase (but never reduce) the completion times
of the jobs ∆g,l as well as all jobs {π(k),π(k + 1), . . . , δg,o(n

∆
g,o)}. This property follows

from the rescheduling of jobs by Procedure 5.2.2.1, which leads to a canonical schedule.
The schedules flexibility is consequently preserved; that is, C̄ ′max > C̄max is guaranteed.
As the delivery batch ∆g,l is closed, the delivery departure time tg,l is unreachable for
any remaining job j ∈ J̄g of customer g. Therefore, closing this batch does not negatively
affect the transport assignments of the remaining jobs. Proposition 5.3.5.2 assumes that
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ζ ′ is feasible (i.e., d̄j > tg,o for each job j ∈ ∆g,l), and has a lower cost than schedule ζ.
Therefore, schedule ζ is dominated by schedule ζ ′.

Note that the modification proposed by Proposition 5.3.5.2 eliminates a transport to
customer g and reduces the total cost value by fixed transportation cost value cT

g. The
holding costs for the jobs in delivery batch j ∈ ∆g,l are guaranteed to increase due to the
assignment to a later delivery departure time by at most

∑
j∈∆g,o

cH
j · (tg,o − tg,l) holding

costs. The actual holding cost value might be lower, since the completion times of the
jobs potentially increase by canonical rescheduling. Since the completion times of other
jobs also potentially increase, additional holding cost savings might be realized by this
modification.

5.3.5.1 Dominance Test

The B&B algorithm tests the proposed dominance relation of Proposition 5.3.5.2 only for a
schedule ζ if the addition of the job π(k) leads to the closure of a previously open delivery
batch. Therefore, the procedure avoids redundant testing on later sections of a (partial)
schedule, as these were already tested during evaluation of ancestor nodes. To determine
the tests to execute, the dominance procedure first identifies the newly closed delivery batches,
closed by adding job π(k), and proceeds only if such a closed delivery batch and a suitable
delivery batch exist such that a merge, as described by Proposition 5.3.5.2, is executable.

Let ∆•(g) ⊆ ∆(g) denote the set of nonempty delivery batches of customer g in schedule ζ;
that is, ∆•(g) = {∆g,l ∈ ∆(g) | ∆g,l 6= ∅}. In the following, let gN(π(k)) = g. If |∆•(g)| = 1
holds, then Proposition 5.3.5.2 is not applicable, as it proposes merging of two nonempty
delivery batches. Therefore, let ∆•1(g) and ∆•2(g), denote the first two (in order of delivery
departure time) nonempty delivery batches transported to customer g for a schedule ζ
with |∆•(g)| > 1, and additionally, let ∆•3(g) denote the third nonempty delivery batch
transported to customer g for a schedule ζwith |∆•(g)| > 2. The dominance test detects
whether the first two delivery batches are newly closed as follows:

• Job π(k) is added to ∆•1(g), which is the first nonempty delivery batch. If this batch
is also closed, verified by one of the conditions of Observation 2, then the batch was
open prior to the addition of π(k) and is therefore newly closed.

• ∆•2(g) was previously open if d̄π(k) > t(∆•2(g)). That is, job π(k) was assignable to
this delivery batch prior to its assignment to delivery batch ∆•1(g) and is therefore
newly closed.

The procedure computes, at most, two dominance tests for a schedule ζ, one for each
of the following two cases:

Test 1. ∆•1(g) is newly closed: Set ∆g,l of Proposition 5.3.5.2 to ∆•1(g), and set ∆g,o to ∆•2(g).

Test 2. ∆•2(g) is newly closed: Set ∆g,l of Proposition 5.3.5.2 to ∆•2(g), and set ∆g,o to ∆•3(g).

Note that both tests may apply for the same schedule ζ such that the procedure carries
out two tests in the stated order. If the two delivery batches required for Proposition 5.3.5.2
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can be successfully built for either of the two tests, then the procedure executes the modi-
fications proposed by that proposition. Furthermore, if schedule ζ ′ fulfills all necessary
conditions to establish dominance over ζ, then the current schedule is dismissed, since
it is suboptimal. Figure 5.8 illustrates the second test by use of the general (customer

Figure 5.8

Illustration of the Merge of Delivery Batches

Before unification
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Note. The illustration depicts the unification of production blocks Γk and Γl due to joint delivery of jobs ∆k
and ∆o at time to. Reprinted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch
and S. Bock, 2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier.

agnostic) indexing of delivery batches. The two delivery batches ∆l and ∆o are merged to
constitute schedule ζ ′. The modified schedule does not transport any job at time tl and
instead delays transportation of the jobs ∆l to the transport at time to. In this example,
dissolving delivery batch ∆l additionally leads to the merging of production blocks Γl and
Γl due to the increased delivery departure time of the last job γl,nΓl .

The computation of the applicability of Proposition 5.3.5.2 is carried out in linear time.
The implementation makes a single pass through the current schedule ζ to check whether
the nonempty delivery batches∆•1(g),∆

•
2(g), and∆•3(g) exist and whether delivery batches

∆•1(g) and ∆•2(g) are newly closed. Additionally, alongside this check, the required job
information is stored to construct the alternative schedules. The delivery batches for
customer g are found by iterating the production sequence Π and grouping the jobs of
customer g into disjoint sets, distinguished by their delivery departure times, that define
the first nonempty delivery batches for customer g. Once the first nonempty delivery batch
is found, the check for closedness of ∆•1(g) is performed by testing the sufficient conditions
of Observation 2, for which the second condition (ii) (which is the most time-consuming
condition) requires a check for whether the deadlines of the remaining jobs of customer g
make further assignments to delivery departure time t(∆•1(g)) impossible. The closedness
of ∆•2(g) immediately follows from the existence of t(∆•1(g)). The same argument applies
for the second and third nonempty delivery batches. Upon verification that ∆•1(g) is
newly closed and ∆•2(g) exists, the alternative canonical schedule ζ ′ is built and evaluated
backwards, starting with the last job of delivery batch ∆g,l. If Proposition 5.3.5.2 applies,
then the procedure is terminated, otherwise the last steps are repeated for delivery batches
∆•2(g) and ∆•3(g). The evaluation is carried out in linear time. In the worst case, the
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dominance test requires the scheduled jobs J and the unscheduled jobs of customer g to
be analyzed once and requires two evaluations for schedule ζ. The asymptotic run time
complexity is consequently in O(nJ̄

g + n
J + 2 · nJ), which is O(nJ̄

g + n
J).

5.3.6 Dominance Table

The final proposed dominance procedure is memory-based. The procedure compares the
current schedule under investigation ζ to already processed schedules by comparing ζ
with schedules stored in a dominance table. Proposition 5.3.6.1 by Bachtenkirch and Bock
(2022) establishes a dominance relation for two schedules:

Proposition 5.3.6.1. Let ζ and ζ ′ denote two schedules for which all of the following statements
hold:

1. J = J ′, (identical set of scheduled jobs)
2. (Π, P) 6= (Π ′, P ′); (non-identical decisions)
3. z(ζ ′) < z(ζ); (lower total cost for schedule ζ ′)
4. C̄ ′max > C̄max; and (schedule ζ ′ is not less flexible)
5. ∀g ∈ G, with Jg 6= ∅ and J̄(g, tmin

g ) 6= ∅, it holds that tmin
g > t ′min

g .
That is, the earliest already used transports of schedule ζ ′ to a customer g depart not later,
compared to the transports of schedule ζ, if there are remaining jobs left in both schedules
that can still be assigned to this earliest transport.

If all five statements hold, then schedule ζ is dominated by schedule ζ ′ and can be discarded.

Proof. Proposition 5.3.6.1 extends Lemma 5.3.1.1 by considering different permutations
for an identical set of jobs and different transportation decisions. The correctness of
the dominance property of statements 1 – 4 for schedules with identical transportation
decisions are already addressed by the proof of Lemma 5.3.1.1. That is, any feasible
decision for the remaining jobs conducted for schedule ζ can also be conducted for
schedule ζ ′. Therefore, the less costly (and not less flexible) schedule ζ ′ can be extended
towards complete schedules with a lower cost compared to schedule ζ.

Hence, it only needs to be shown that the validity of the fifth statement establishes
dominance between two schedules ζ and ζ ′ with additionally unequal transportation
decisions. As stated by Proposition 5.3.6.1, the requirement of tmin

g > t ′min
g only applies to

customers who

(a) have remaining jobs left (J̄g 6= ∅) that
(b) can be assigned to delivery departure time tmin

g (J̄(g, tmin
g ) 6= ∅),

because identical transportation assignments of the remaining jobs to delivery departure
times earlier than tmin

g result in equal (t ′min
g = tmin

g ) or potentially lower (t ′min
g < tmin

g )
transportation costs for schedule ζ ′ compared to schedule ζ.

The customers for which the requirement applies have at least one job that is assignable
to the first already used transportation that departs at time tmin

g /t ′min
g . The minimal

holding time of assigning a job to this transport is tmin
g − C̄max for schedule ζ, and t ′min

g −
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C̄ ′max for schedule ζ ′. Due to t ′min
g 6 tmin

g and C̄ ′max > C̄max, one concludes that t ′min
g −

C̄ ′max 6 tmin
g − C̄max, and the holding cost of assigning a job to t ′min

g is therefore not larger
compared to tmin

g . Schedule ζ ′ consequently dominates schedule ζ.

Figure 5.9 illustrates the two schedules ζ and ζ ′ of Proposition 5.3.6.1. In this example,
C̄ ′max is later than C̄max. Moreover, the earliest used delivery times for the first customer
are identical, and the earliest used delivery times for the second customer are earlier for
schedule ζ ′.

Figure 5.9

Illustration of Proposition 5.3.6.1

ζ

ζ ′

tmin
1 tmin

2C̄max = S1

t ′min
1 t ′min

2C̄ ′max = S ′1

Minimal holding time:

Note. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

5.3.6.1 Dominance Test

The SFDDHT-B&B tests the dominance relation of Proposition 5.3.6.1 for the currently
considered schedule ζ and a suitable set of stored schedules in a dominance table. Apart
from the stated comparisons, the dominance test requires no additional computations.
To check the proposed conditions, the required information is stored for each already
processed schedule in memory. To guarantee fast access to comparable schedules with
identical jobs scheduled (J = J ′), the following binary encoding scheme is used:

Let BJ(J) = (bJ
1,bJ

2, . . . ,bJ
nN) denote a sequence of bits of length nN, indicating whether

a job is scheduled in ζ. Hence, for each job j ∈ N, the entry

bJ
j =

1 if j ∈ J,

0 otherwise.

The data structure for the implemented dominance table is illustrated in Figure 5.10. For
each encountered set of jobs J defined by the schedule ζ, the binary encoding BJ(J) is
computed. By application of a hash function, a hash table stores the index of the first
table entry (stored in a continuous array) with the set of scheduled jobs J. Each entry of
this array points to the subsequent entry with an identical set of scheduled jobs such that
all entries with identical jobs are accessible. Note that the number of schedules that are
inserted into the dominance table is unknown, as the number of schedules that will be
evaluated during the application of the B&B algorithm is determined dynamically. The
implementation hence pre-allocates a large amount of memory to store the dominance
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table entries. The hash table also uses dynamic allocation. It comprises an array of
a limited size of buckets, where each bucket stores values with identical hash values;
therefore, collisions of different objects with identical hash values are resolved by a linear
search over the bucket entries. Once the hash table stores a certain number of elements, it
is allowed to grow by enlarging the capacity of the array and rehashing all stored elements.
For the hash table2 and the hash function,3 the built-in implementation of the C++ standard
library implementation of the GNU GCC compiler (version 10.2) is used.

Figure 5.10

Memory Layout of the Implemented Dominance Table

· · ·

··
·

· · ·

Hash-tableHash-table

Entries

The computational complexity of the memory-based dominance test is not easily
derivable, as the computational time it requires is impacted by the size of the hash-table,
the computational time necessary to grow the hash table, and the number of already
stored schedules. Therefore, further analysis of the computational complexity is omitted.
The dominance table stores schedules in the form of a representation that comprises
the necessary information to test Proposition 5.3.6.1. The representation of a schedule ζ
comprises the following information:

• The B&B search node index for ζ;
• The index of the next entry with identical job set J in the dominance table, or a

default value indicating that this entry is the last of the incidental list of entries with
identical jobs;

• The earliest departure time values tmin
1 , tmin

2 , . . . , tmin
nG ;

• The latest completion time for the remaining jobs C̄max;
• The total cost z(ζ).

The dominance table processes a new schedule ζ by testing whether it dominates schedules
already inserted into the table with identical jobs or whether it is dominated by an already
inserted schedule. If schedule ζ itself is not dominated by any other schedule, then its
representation is added to the table. Otherwise, if ζ is dominated by another schedule, then
the process terminates, and schedule ζ is discarded by the B&B approach. All schedules

2The hash table uses the GNU GCC compiler implementation of the std::unordered_map data structure.
3The hash-function uses an implementation of the murmurhash2 algorithm. See

https://sites.google.com/site/murmurhash/ (Last visited on 15.02.2021).
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that are dominated by a newly processed schedule are removed from the table and labeled
as dominated by the B&B approach. Upon encountering a child node of this node during
further branching (which is detected when recursively building Π and P to define the
canonical schedule), the B&B approach immediately deletes the child node.

5.3.7 Application Order of the Dominance Procedures

The B&B approach applies the proposed dominance tests in order of increasing compu-
tational complexity. As such, it starts with the dominance test of Section 5.3.4 specified
for the first production block that applies dominance relation Proposition 5.3.4.1. Next,
the two heuristic sequence permutation tests, based on Lemma 5.3.1.1, are performed as
described in Sections 5.3.3.1 and 5.3.3.2. Afterward, the delivery batch merging is tested
as described in Section 5.3.5. Finally, Proposition 5.3.5.2 is checked with the help of the
described dominance table from Section 5.3.6. If domination of schedule ζ is proven at
any point, then the application of dominance tests ends and schedule ζ is immediately
dismissed from the branching process. That is, the current node containing the information
for schedule ζ is deleted.

5.4 Preprocessing Procedures

This section describes preprocessing procedures that compute rules that eliminate branch-
ing decisions before the tree enumeration starts. The procedures thus only use data from
the original problem instance. This section proposes two types of precomputed constraints.
The first type establishes precedence constraints between two jobs: Scheduling job i before
job j is required in all feasible schedules. Hence, the B&B algorithm discards any branching
decision that schedules job j before i during the enumeration process. The second type
establishes position constraints that allow the scheduling of a job j only on a subset of
positions {1, 2, . . . ,nN} in any feasible schedule. Therefore, the B&B discards any branching
decision suggesting the scheduling of job j on a forbidden position or leading to job j left
unscheduled without a remaining feasible position. Both preprocessing procedures only
operate on the data concerning the processing of jobs on the machine.

5.4.1 Precedence Constraints

This section establishes precedence constraints between two jobs i and j of N based on
their processing time windows. The SFDDHT requires the processing of all jobs j ∈ N in
the time interval [rj, d̄j] with processing duration pj. Hence, the earliest feasible processing
interval for a job j ∈ N is

[Sej ,Cej ]

with Sej = rj and Cej = rj + pj. Analogously, the latest processing interval is given by

[Slj,C
l
j]

with Slj = d̄j−pj andClj = d̄j. Property 5.4.1.1 by Bachtenkirch and Bock (2022) formulates
the precedence constraints between two jobs i and j.
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Property 5.4.1.1. Given two jobs i and j, with i 6= j and i, j ∈ N, if Cej > S
l
i holds, then job

j is scheduled after job i in any feasible schedule.

Proof. Property 5.4.1.1 states that job jmust be processed after job i (hence, job imust be
processed before job j) in any feasible schedule if job j cannot finish processing before the
latest processing start time for job i occurs. According to this property,

Cej > S
l
i ⇔ rj + pj > d̄i − pi ⇔ rj + pj + pi > d̄i

holds. Assume that there exists a feasible schedule ζ ′ with job j processed before job
i: The earliest completion time of job j is Cej = rj + pj; therefore, the earliest attainable
completion time for job i processed after job j is C ′i = rj + pj + pi. For this schedule, it
must hold that rj+pj+pi 6 d̄i, but the initial assumption was that rj+pj+pi > d̄i holds.
This contradicts the initial assumption, thereby proving that job jmust be scheduled after
job i in a feasible schedule.

The SFDDHT-B&B implementation computes the comparison stated by Property 5.4.1.1
for each pair of non-identical jobs before executing the branching process and stores
the comparison results in a symmetric precedence matrix Mprec with nN rows and nN

columns. For each row i ∈ {1, 2, . . . ,nN} and column j ∈ {1, 2, . . . ,nN}, the matrix stores a
binary valuempreci,j . The value ofmpreci,j is set to 1 if job i needs to be scheduled before job j,
according to Property 5.4.1.1, and it is set to 0 otherwise. Afterward, the branching process
of the B&B approach determines the extensions of a partial schedule ζ by a remaining
job j ∈ J̄. With the help of the precomputed precedence matrixMprec, the approach tests
whether job j is a suitable candidate to occupy position k − 1 in schedule ζ by testing
whethermprecj,i is set to a value 1 or 0 for each job i ∈ J̄\{j}. Ifmprecj,i = 1, then the currently
considered job j cannot be placed at position k − 1, since it must be scheduled before
job i. Note that checking whether some already scheduled job violates any precedence
constraint is not necessary, since each scheduled job j ∈ J passed this test previously;
therefore, it holds thatmprec

π(i),h = 0 for any h ∈ J̄ ∪ {π(k), . . . ,π(i− 1)}.

5.4.2 Position Constraints

The second type of proposed constraint forbids placing a job j at a position p in any feasible
schedule. In the SFDDHT, a feasible schedule processes each job in its time window as
stated in Section 5.4.1. Therefore, if a job j is placed at position p, the remaining jobsN− {j}

must be scheduled at the other positions 1, . . . ,p− 1 and p+ 1, . . . ,nN while adhering to
the time-window constraints. The general idea of the following approach is to derive a
schedule of jobs at the earlier positions 1, . . . ,p − 1 and the later positions p + 1, . . . ,nN,
and subsequently to test the feasibility of scheduling job j in-between both partial sub-
schedules. Unfortunately, even the generation of a feasible schedule for a single machine
problem with release and deadlines (1|rj, d̄j|−) is an NP-complete problem, according to
Garey and Johnson (1979) (this result was already highlighted in Section 4.4 but is restated
for the sake of the argument). The existence of an efficient algorithm that builds a feasible
schedule with job j at the p-th position or is able to prove that no such schedule exists is
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thus unlikely. Instead, the following procedure utilizes Property 5.4.2.1 by Bachtenkirch
and Bock (2022):

Property 5.4.2.1. Given an instance of the SFDDHT, the following two properties hold
regarding scheduling a job j ∈ N at a position p ∈ N in a feasible schedule:

(i) A job j ∈ N can only be scheduled at position p if a subset of p − 1 jobs of the
remaining jobs N∗j = N \ {j} have been assigned to preceding positions 1, . . . ,p− 1
such that job j can be scheduled at position pwith rj + pj 6 Cj 6 d̄j in this partial
schedule.

(ii) A job j ∈ N can only be scheduled at position p if a subset of nN − p remaining jobs
N∗j = N \ {j} have been assigned to succeeding positions p+ 1, . . . ,nN such that job j
can be scheduled at position p with rj + pj 6 Cj 6 d̄j in this partial schedule.

Proof. The feasibility condition rj + pj 6 Cj 6 d̄j follows directly from the problem
definition. The first property (i) suggests selecting a subset of size p− 1 of jobs of N \ {j}

scheduled at positions 1, . . . ,p − 1 and scheduling job j subsequently. If such a feasible
partial schedule does not exist, then even the most favorable subset of the remaining
jobs (with a minimal makespan) is not able to let job j occupy position p, as job j must
be processed beyond its deadline. Hence, a negative result excludes positioning job j at
position p; job jmust be placed at a lower indexed position. The same argument applies
for property (ii), but in this instance, a subset of jobs is placed at the last nN − p positions.
A negative result indicates that job jmust start processing before its release date to avoid
conflicting with the jobs processed at positions p + 1, . . . ,nN. Therefore, job j must be
placed at a position with a higher index than p.

To demonstrate that p is a valid position, let

Πf(j,p) = (πf(1),πf(2), · · · ,πf(p− 1), j)

be the front production sequence, and

Πb(j,p) = (j,πb(p+ 1),πb(p+ 2), · · · ,πb(nN))

the back production sequence, with job j scheduled at position p such that feasible partial
schedules exist for both sequences. In contrast, if one of the two sequences does not
produce a valid schedule, then the assignment of job j to position p is invalid. Figure 5.11
illustrates the general concept of the following approach. In the case of the front production
sequence Πf(j,p), the feasibility of scheduling job j depends on the completion time
Cπf(p−1) of the immediate predecessor of job j. As already explained, finding a feasible
schedule is an NP-complete problem. Hence, to establish positional constraints, the
developed procedure computes a lower bound for the completion time of job πf(p− 1)
and, with this information, a lower bound for the completion time of job j with p− 1 jobs
scheduled before job j. In the case that this bound value defines an infeasible completion
time for job j, the position assignment can be excluded on this account. Similarly, the start
time of the immediate successor of job j, which is Sπf(p+1), determines whether job j can
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Figure 5.11

Precomputation of Eligible Positions

. . .πfj,p(1) πfj,p(p− 1) . . .πbj,p(p+ 1) πbj,p(n
N)

Forward schedule
(minimizes completion time)

Backward schedule
(maximizes start time)

Available machine time
for job j at position p

Drawn out of N \ {j} Drawn out of N \ {j}

Note. A job j ∈ N at position pmust be scheduled between the forward and backward schedules in any feasible
schedule ζ. Reprinted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S.
Bock, 2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier.

be processed inside its time window, or if the release date constraint for job j is violated.
In this case, the upper bound to the completion time of j decides on the feasibility of the
assignment to position p. To generate the bound values, the time window constraints are
relaxed in both cases. Next, Section 5.4.2.1 describes the bound computation for a schedule
at positions 1, . . . ,p− 1. Thereafter, Section 5.4.2.2 discusses the case for the succeeding
positions p+ 1, . . . ,nN.

5.4.2.1 Computation of the Front Schedule

The approach that schedules jobs N∗j at the first p − 1 positions relaxes the deadline
constraints of the jobs. The objective is thus to find a schedule for a subset of jobs of
size p − 1 that minimizes the maximal completion time (makespan). In general, this
scheduling problem can be denoted as 1 | rj,n ′ 6 n | Cmax, (i.e., the scheduling problem
of finding a selection of n ′ 6 n jobs that minimizes the makespan Cmax subject to release
date constraints).

The classic scheduling problem, without selecting a subset of jobs 1 | rj | Cmax, is
polynomially solvable by applying the earliest release date (ERD) rule, as shown by
Lawler (1973). The ERD rule defines a sequence of jobs ordered by non-decreasing release
date. This rule is ambiguous, since the order of two jobs i and j with identical release
date ri = rj is left undefined. To resolve this ambiguity, Definition 5.4.2.2 defines the
precedence relation i≺ERDj, which provides second and third ordering criteria to establish
a single ERD sequence for a given set of jobs.

Definition 5.4.2.2. In an ERD schedule, the precedence relation i ≺ERD j holds for each job
i scheduled before job j :

i ≺ERD j holds if and only if :


ri < rj ∨

ri = rj, pi < pj ∨

ri = rj, pi = pj, i < j.

(5.8)
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Algorithm 5.4 presents a list scheduling algorithm that generates a schedule in ERD
order, as established by Definition 5.4.2.2. A list scheduling algorithm assigns jobs to a
machine in order of an initially generated list. The order does not change, because of the
information provided by an intermediate schedule. Due to the required minimization of
Cmax, jobs are scheduled as early as possible without generating unnecessary idle time
on the machine. The algorithm performs in O(n log(n)) time due to the initial sorting
operation.

Algorithm 5.4 ERD list

Require: A list of indexes of jobs I = [i1, i2, · · · in] in ERD order, such that
i1≺ERDi2≺ERD...≺ERDin;
procedure ERD-LIST(I)
Ci1 := ri1 + pi1 ;
for ij ∈ {i2, i3, · · · , in} do
Cij := max{Cij−1 , rij}+ pij .

return Cin ;

An application of Algorithm 5.4 does not necessarily result in an optimal schedule for
the selection problem 1|rj,n ′ 6 n|Cmax, as proven by Example 5.4.2.3.

Example 5.4.2.3. Consider an instance with n = 3 jobs with the following data:

Job (j) 1 2 3

Release date (rj) 0 2 4
Processing time (pj) 2 4 1

The application of the ERD rule results in optimal sequence (1, 2, 3) for problem
1|rj|Cmax with the following completion times:

Job (j) 1 2 3

Completion time (Cj) 2 6 7

Consider the problem 1|rj,n ′ 6 n|Cmax with n ′ = 2. The ERD rule yields Cmax =

C2 = 6, as shown by the above schedule. However, the sequence (1 − 3) results in
completion times C1 = 2 and Cmax = C3 = 5. This proves that the ERD rule does not
optimally solve 1|rj,n ′ 6 n|Cmax.

Instead, we now describe a specifically developed DP algorithm that solves 1|rj,n ′ 6
n|Cmax. The approach is based on Lemma 5.4.2.1 by Bachtenkirch and Bock (2022):

Lemma 5.4.2.1. An optimal schedule exists for problem 1|rj,n ′ 6 n|Cmax where the n ′ selected
jobs are scheduled in ERD order.

Proof. The ERD rule solves problem 1|rj|Cmax optimally (Lawler, 1973). The problem of
scheduling a selection of n ′ jobs of the original jobs 1, 2, . . . ,n reduces to an instance of
1|rj, |Cmax with the n ′ selected jobs.
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The following description assumes, without loss of generality, that jobs are indexed in
the unambiguous ERD order defined by Definition 5.4.2.2. That is,

∀i, j ∈ N : i≺ERDj ⇐⇒ i < j

holds. Consider a procedure that decides on selecting (or rejecting) a job j ∈ N for
integration into the schedule in ERD order. If a job j is selected for integration, then
it appears at the intermediate schedule’s last position, since all jobs i with i < j are
already selected or rejected. The DP algorithm that solves 1|rj,n ′ 6 n|Cmax utilizes the
fixed relative order of jobs in an ERD schedule. Each state during the execution of the
algorithm is characterized by its function value f(j, l) which is the minimal makespan
of scheduling l jobs of the set {1, 2, . . . , j}. Informally, a state’s function value results by
selecting one of two policies: Either job j is not scheduled in a schedule with l 6 n ′ jobs,
or job j extends the best schedule with l− 1 < n ′ jobs at the last position, which increases
the makespan by the earliest completion time that job j attains with the l− 1 other jobs
scheduled before job j. Algorithm 5.5 by Bachtenkirch and Bock (2022) describes the DP
formulation. Furthermore, Lemma 5.4.2.2 by Bachtenkirch and Bock (2022) claims that the

Algorithm 5.5 Dynamic Programming Algorithm for 1|rj,n ′ 6 n|Cmax
Dynamic programming algorithm for 1|rj,n ′ 6 n|Cmax

Initial conditions:
f(l, 0) = 0 ∀l = 0, 1, ...n,

f(1, 1) = r1 + p1,

f(j, l) =∞ ∀j < l.

Recursive computation:

f(j, l) = min{f(j− 1, l), max{f(j− 1, l− 1), rj}+ pj}

with j ∈ N and 1 6 l 6 j.

Optimal value (i.e., output value):
f(n,n ′).

above algorithm optimally solves the selection problem and states the DPs asymptotic
time complexity.

Lemma 5.4.2.2. Algorithm 5.5 optimally solves the scheduling problem 1|rj,n ′ 6 n|Cmax in
time O(max{log(n),n ′} · n).

Proof. First, consider the correctness of the initial conditions and the recursive computation.
The return value (=makespan) of f(l, 0) for each l ∈ {0, 1, . . . ,n} is set to zero because no
job is scheduled for l = 0. The return value of f(1, 1) is set to r1 + p1, since the state (1, 1)
describes the situation where only job 1 is scheduled on the machine. States (j, l) with
j < l are infeasible and set to∞, since no schedule of size l exists with less than l jobs
scheduled.

Second, consider the value function f(j, l) with j ∈ N and 1 6 l 6 j of state (j, l). Such
a state decides whether the cost optimal decision of scheduling l jobs from set {1, 2, · · · , j}
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is attainable by selecting or rejecting job j. Due to the indexing of jobs in ERD order, the
selection of job j implies that it is scheduled at the last position and therefore completes at
time max{rj, f(j− 1, l− 1)}+pj. In a case where the rejection of job j is cost optimal at state
(j, l), then the makespan is identical to the one provided by f(j− 1, l). Since f(j− 1, l− 1)
and f(j− 1, l) are optimal, either selecting or rejecting job j leads to an optimal schedule
for state (j, l). To execute the DP algorithm, n jobs are sorted first, with asymptotic time
complexity O(log(n) · n). The DP algorithm requires n · n ′ states at most; hence, the total
asymptotic time complexity of the algorithm is O(max{log(n),n ′} · n).

With Algorithm 5.5 defined, the discussion returns to the description of the prepro-
cessing procedure for the SFDDHT. For each job j ∈ N and position p ∈ N, the algorithm
computes the minimal makespan of assigning p− 1 jobs of set N∗j to the first 1, . . . ,p− 1
positions, with Cf,min

N∗j ,p denoting the resulting makespan value. Note that a single call of
Algorithm 5.5 with job set N∗j and n = n ′ = nN − 1 computes the minimal makespan
values for each n ′ ∈ {0, 1, · · · ,n}. It thus suffices to call the algorithm nN times, once for
each job j ∈ N. Equation (5.9) estimates the lower bound value for the front schedule with
job j ∈ N at the p-th position as follows:

Cmin
j,p = max{Cf,min(N∗j ,p), rj}+ pj ∀j,p ∈ N. (5.9)

5.4.2.2 Computation of the Back Schedule

Similarly to the computation of the front schedule, Algorithm 5.5 computes the back
schedule at positions p + 1, . . . ,nN. Instead of scheduling jobs as early as possible, the
jobs must be processed as late as possible at the back positions. Therefore, rather than
relaxing the deadlines of jobs, the approach relaxes the release dates of jobs such that each
job is solely defined by its deadline and processing time. To apply Algorithm 5.5, an initial
procedure transforms the relaxed instances with deadlines and processing times into an
equivalent instance with release dates and processing times. Specifically, given jobs N
of the SFDDHT instance, the deadlines are transformed into equivalent release dates rbj as
follows:

∀j ∈ N : rb
j = d̄

max − d̄j

where d̄max = maxj∈N{d̄j} is the maximal deadline.
Following this transformation, Algorithm 5.5 is called once with jobs N∗j , processing

times pj, and equivalent release dates rbj and n ′ = nN for each job j ∈ N, with Cb,min
N∗j ,p

denoting the resulting makespan values. To state an upper bound value for the latest
completion time of a job j scheduled at position p with an assignment of a selection
of the jobs N∗j to positions p + 1, . . . ,nN, the approach corrects values Cb,min(N∗j ,p) by
subtracting the values from d̄max. This operation yields the latest start time of a back
schedule that comprises a selection of jobs N∗j . Equation (5.10) is consequently an upper
bound for the completion times of a job j scheduled at position p:

Cmax
j,p = min{d̄max − Cb,min(N∗j ,p), d̄j} ∀j,p ∈ N. (5.10)
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5.4.2.3 Preprocessing and Application in the Branching Process

The preprocessing procedure computes the completion time bounds Cmin
j,p and Cmax

j,p for
each pair j,p ∈ N. Similar to the implementation of the precedence matrix Mprec, the
procedure constructs a position binary matrixMpos with nN ×nN rows and columns. The
entrymposi,j of the i-th row and j-th column is set to 1 if position j is allowed for job i, and
it is set to 0 otherwise. Equation (5.11) decides the binary value for each entry:

m
pos
i,j =

1 if Cmin
i,j 6 d̄j ∧ Cmax

i,j > rj + pj,

0 otherwise.
(5.11)

The branching procedure eliminates each potential branch that schedules a job j at an
excluded position p. That is, given schedule ζ, the job j ∈ J̄ does not extend schedule ζ at
position k− 1 ifmposj,k−1 = 0.

5.5 Dynamic Feasibility Testing

As explained, the preprocessing procedures construct the preprocessing tables Mprec and
Mpos before starting the enumeration of the B&B algorithm, and during the enumeration,
the algorithm simply reads the values of the stored matrices. This technique allows for
fast computable decisions for allowing or excluding branching decisions. However, the
computation uses no knowledge gained by considering a currently active schedule ζ to
exclude branching decisions. Therefore, this section proposes a procedure that utilizes
dynamic knowledge at the expense of additional computational effort to further eliminate
branching decisions that were not excluded by the preprocessing results. The dynamic
procedure utilizes knowledge about the currently explored schedule ζ that already fixed
the decisions for jobs J scheduled at positions k, . . . ,nN and the scheduling of the remaining
jobs J̄.

Suppose that the B&B considers a non-dominated node with evaluated schedule ζ for
branching. The branching procedure determines whether a job j ∈ J̄ can be scheduled
directly before the already scheduled jobs J at position k− 1. Hence, for a candidate j ∈ J̄
to be placed at position k − 1, the other remaining jobs J̄∗j = J̄ \ {j} must be scheduled at
positions 1, . . . ,k−2 if the set J̄∗j is nonempty. The start time of the currently first scheduled
job in schedule ζ is S1 = Sπ(k). Therefore, the latest time point at which a candidate job j
can be feasibly scheduled in any schedule that extends ζ is

∀j ∈ J̄ : C̄max
j (ζ) = min{d̄j,S1}.

Similar to the methods applied in the preprocessing phase, the subsequently discussed
procedure determines whether placing job j at position k − 1 can be identified as an
infeasible extension of schedule ζ. Again, the applied procedure computes only a lower
bound on the makespan of the remaining jobs at positions 1, . . . ,k− 2 to allow or disallow
job j at position k− 1. Fortunately, in the dynamic case, the set of scheduled jobs before j is
fixed. Therefore, a more restrictive relaxation can be utilized, compared to the one applied
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in Section 5.4.2 to compute a lower bound value. Additionally, the underlying scheduling
procedure enables the detection of infeasible scheduling of the jobs J̄∗j .

The applied procedure relaxes the feasibility problem of scheduling jobs by allowing
preemptive processing. More precisely, it solves the scheduling problem 1|rj,pmnt|Tmax

that pursues the minimization of maximum tardiness for a given set of jobs with release
dates and due dates (i.e., soft deadlines), while enabling the preemption of jobs. Preemp-
tion allows for the jobs to be partially processed and for their processing to be resumed
at a later time on the machine. This preemptive scheduling problem is polynomially
solvable (in contrast to its non-preemptive counterpart) through the approach described
by Baker and Su (1974) that schedules the ready job with rj > t at each time-point t with
the minimal due date. As the machine does not delay the processing of ready jobs, the
makespan is minimized by this dispatching rule.

Algorithm 5.6 describes the SFDDHT-B&B implementation of the approach by Baker
and Su (1974) for a set of jobs with indexes N ′ = {j1, j2, . . . , jn ′} labeled in order of non-
decreasing release dates such that rj1 6 rj2 6 · · · 6 rjn ′ holds. Ties between jobs with
identical release date values are broken (a) in order of nondecreasing deadline and (b) in
order of job index. Next, the remaining processing time variables for all jobs are denoted
as p ′j for each j ∈ N ′ and initially set to p ′j = pj.

The algorithm returns the minimal makespan if no remaining processing time for
any job is left. Otherwise, if a deadline violation is detected during the execution, then
the algorithm terminates early and returns ∞. The implementation requires an initial
sort to obtain the described ordering of jobs by non-decreasing release dates, which is an
O(n ′ log(n ′)) operation. The set S initially comprises the reversely ordered job indexes
such that access and deletion at the back of the index list are constant operations. The set
of ready job indexes R is implemented as a heap data structure that stores the ready job
with the earliest deadline at the top. In general, this data structure has O(log(n)) element
insertion, O(1) top-element access, and O(log(n)) top-element deletion (with subsequent
restoration of the heap property) performance for n elements. In the stated algorithm,
n ′ − 1 preemptions (for each newly released job after the first processed one) occur at
most; hence, the number of iterations that the algorithm performs is linear in terms of
the number of jobs. The overall asymptotic worst time complexity of the algorithm is
O(n ′ log(n ′)).

The return value of Algorithm 5.4 (i.e., the minimal makespan) is denoted as C̄min(J̄∗(ζ))

for a particular set of remaining jobs J̄∗(ζ). The minimal makespan for job j under these
conditions is then given as

C̄max
j (ζ) = max{rj, C̄min(J̄∗(ζ))}+ pj

Given schedule ζ, job j ∈ J̄ can be scheduled at position k− 1 if the following holds:

C̄min
j (ζ) 6 C̄max

j (ζ).
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Algorithm 5.6 Implementation of the Algorithm Proposed by Baker and Su, Adapted to
Solve Problem 1|rj, d̄j|Cmax

Require: Jobs N ′ = {j1, j2, . . . , jn ′} ordered such that rj1 6 rj2 6 · · · 6 rjn ′ .
1: t← 0 . Current time
2: S← {n ′,n ′ − 1, . . . , 1} . List of job indexes in reverse ERD order
3: R← ∅ . Heap of ready jobs indexes (top element has earliest deadline)
4: while S 6= ∅ and R 6= ∅ do
5: if R = ∅ then
6: t = rjback(S)
7: while rjback(S) == t do
8: insert(R, jback(S))
9: pop_back(S)

10: j← top(R)
11: c ′ ← t+ pj ′

12: if c ′ > d̄j ′ then
13: return∞ . Deadline violation detected
14: while rjback(S) < c

′ do
15: k← back(S)
16: insert(R, jk)
17: pop_back(S)
18: if d̄jk 6 d̄j ′ then
19: c ′ ← rjk
20: break
21: if top(R) = j ′ then
22: delete_top(R)
23: else
24: p ′j ′ ← p ′j ′ − c

′ + t

25: t← c ′

26: return t . Minimal makespan

5.6 Branching Strategy

This section describes the final branching strategy of the SFDDHT-B&B algorithm, which
utilizes the findings from Section 5.4 and Section 5.5 to restrict the set of jobs that can
extend a schedule ζ. Furthermore, this section proposes a reduction of transports that
must be considered for feasibility and optimality reasons. The combination of both
phases significantly reduces the number of subproblems that must be considered in the
branching process. Given a subproblem Xci defining schedule ζ, the following explanations
unambiguously define the set of smaller subproblems generated from Xci in the branching
process by defining all non-dominated job-time pairs that extend schedule ζ at position
k− 1.

The following initial branching decisions may extend schedule ζ at position k−1, without
applying any feasibility considerations:

B0(ζ) =
{
(j, t) | j ∈ J̄, t ∈ TgN(j)

}
. (5.12)

Therefore, in non-restrictive cases, the process considers
∑
g∈G |J̄g|×nT

g different subprob-
lems, assuming that all transports are still assignable by unscheduled jobs.
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The previously described preprocessing procedures and the dynamic feasibility test
reduce this number and define the set of branching candidate jobs J̄b(ζ) ⊆ J̄(ζ), which can
not be excluded and therefore must be considered for branching. Equation (5.13) defines
this set as follows:

J̄b(ζ) =

j ∈ J̄(ζ)
∣∣∣∣∣∣∣∣∣

∑
i∈J̄∗j (ζ)

m
prec
j,i = 0,

m
pos
j,k−1 = 1,

C̄min
j (ζ) 6 C̄max

j (ζ)

 . (5.13)

Figure 5.12 illustrates cases in which job j is included or excluded in the set of branching
candidate jobs, based on the third condition. In the first case, the set of remaining jobs
without j is not feasibly scheduled; in the second case, the addition of job j after scheduling
the other remaining jobs violates the deadline constraint of job j; and in the third case, job
j can not be completed before production of the already scheduled jobs begins.

Figure 5.12

Different Cases of Evaluation Jobs for Branching

+
Tmax > 0

ζ

C̄min(J̄∗(ζ)) S1

+ j

Cmin
j > d̄j

ζ

C̄min(J̄∗(ζ)) d̄j Cmin
j S1

+
Cminj > S1

ζ

C̄min(J̄∗(ζ))

j

Cmin
jS1

X j ζ

C̄min(J̄∗(ζ)) d̄jCmin
j S1

Note. Symbols on the left indicate that job j is included X (discarded ×) in the branching candidate set J̄B for
extending schedule ζ at position k− 1.

After defining set J̄b, the branching procedure obtains viable transports for each job
j ∈ J̄b(ζ). Let Dj,τ(ζ) ⊆ TgN(j) denote the set of non-dominated delivery departure times
assignable to job j completing at time τ given schedule ζ. The branching process sets τ to
C̄min
j (ζ), which is a valid lower bound for the completion time Cj and also for the delivery
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time Dj of a job j ∈ J̄. Hence, no date before time C̄min
j (ζ) has to be considered to define

set Dj,τ(ζ).
Next, we introduce three subsets of departure times that form setDj,τ(ζ) by unification.

For notational purposes, Equation (5.14) defines the set of feasible delivery departure times of
job j solely based on the job’s time window:

∀j ∈ N : TN
j =
{
t | t ∈ TgN(j), rj + pj 6 t 6 d̄j

}
. (5.14)

The first subsetD1
j,τ(ζ) – Equation (5.15) – includes all feasible delivery departure times of

job j earlier than the starting time S1 of schedule ζ:

D1
j,τ(ζ) =

{
t | t ∈ TN

j , τ 6 t < S1} . (5.15)

The second subset D2
j,τ(ζ) – Equation (5.16) – is a singleton set that comprises the first

unused transport not earlier than the schedule start time S1 and is defined as follows:

D2
j,τ(ζ) =

d2
j,τ(ζ) = min

{
t | t ∈ T ′Nj

}
if T ′Nj =

{
t | t ∈ TN

j ,S1 6 t < tmin
g

}
6= ∅,

∅ otherwise.
(5.16)

Lastly, Equation (5.17) considers the first used transport at time tmin
g . If schedule ζ

defines such a transport for customer g = gN(j) it is the sole element of the third singleton
subset:

D3
j,τ(ζ) =


{
tmin
g

}
if tmin
g ∈ TNj ,

∅ otherwise.
(5.17)

Equation (5.18) unifies the three subsets to form set Dj,τ(ζ):

Dj,τ(ζ) = D
1
j,τ(ζ) ∪D2

j,τ(ζ) ∪D3
j,τ(ζ). (5.18)

Lemma 5.6.1 by Bachtenkirch and Bock (2022) states that Dj,τ(ζ) is exhaustive.

Lemma 5.6.1. Given a partial schedule ζ with job j ∈ J̄, no delivery departure time other than
the ones in the unified set Dj,τ(ζ) = D1

j,τ(ζ) ∪ D2
j,τ(ζ) ∪ D3

j,τ(ζ) need to be considered in the
branching process for job j at position k− 1 for schedule ζ.

Proof. The set TN
j defines all feasible delivery departure times for a job j, which follows

from the problem definition. No delivery departure time t ∈ TN
j with t < τ = C̄min

j has to
be included in set Dj,τ(ζ), since C̄min

j is a lower bound of the completion time of j, and
inequalityDj > Cj holds from the problem definition. All delivery departure times t ∈ TN

j

with t < S1 are included in set D1
j,τ(ζ). Therefore, Dj,τ(ζ) includes all feasible transports

up to time S1 − 1.
The remaining delivery departure times to consider are the transports that range from

time S1 up to the jobs deadline d̄j, which marks the latest feasible delivery departure
time for job j. The set D2

j,τ(ζ) comprises at most a single delivery departure time that is
defined for the earliest unused transport to customer gN(j). This delivery departure time
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minimizes the holding costs for job j subject to the maximization of the completion time
of j in a canonical schedule. Departures at any other delivery departure times later than
d2
j,τ(ζ) result in higher holding costs for job j, while resulting in an equal transportation

cost increase of cT
gN(j). The later unused transports can thus be dismissed for optimality

reasons. Lastly, if the earliest already used transport at tmin
gN(j) exists, it is included, and all

later, already used transports can be excluded due to Property 5.2.5.2. In conclusion, no
delivery departure time that is not included in set Dj(ζ) needs to be considered.

In the following lemma, this set may further be reduced by one transport. In some
circumstances, the delivery departure tmin

gN(j) from set Dj,τ(ζ) can be excluded if d2
j,τ(ζ) is

dominant due to costs; that is, if the saved transportation costs of an assignment to tmin
gN(j)

do not make up for an increase in holding cost compared to an assignment to earlier date
d2
j,τ(ζ), then an extended schedule with j assigned to tmin

gN(j) does not need to be considered.
Lemma 5.6.2 by Bachtenkirch and Bock (2022) formalizes this finding.

Lemma 5.6.2. Given partial solution ζ and a job j ∈ J̄ with nonempty sets D2
j,τ and D3

j,τ, an
assignment of job j to d2

j(ζ) dominates an assignment to tmin
gN(j) if(

tmin
gN(j) − d

2
j,τ(ζ)

)
· cH
j > cT

gN(j)

holds. It follows that an extended schedule of ζ with job j assigned to departure time d2
j,τ(ζ)

dominates an extended schedule of ζ with job j assigned to departure time tmin
gN(j).

Proof. The minimal cost of assigning job j to time d2
j,τ(ζ) is c1 = (d2

j,τ(ζ) − S
1) · cH

1 + cT
gN(j),

and the minimal cost of assigning job j to tmin
gN(j) is c2 = (tmin

gN(j) − S
1) · cH

j , which can be
written as

c2 = (tmin
gN(j) − d

2
j,τ(ζ)) · cH

j + (d2
j,τ(ζ) − S

1) · cH
j .

By assumption, (tmin
gN(j) − d

2
j,τ(ζ)) · cH

j > cT
gN(j). Therefore,

c2 > cT
gN(j) + (d2

j,τ(ζ) − S
1) · cH

j ≡ c2 > c1

holds. Additionally, other jobs of customer gN(j) assignable to the transport at time d2
j,τ(ζ)

may benefit from this earlier transport.

The construction of viable transports is illustrated by Figure 5.13. The application of
Lemma 5.6.2 may exclude one element of Dj,τ(ζ) in the branching process. Therefore,
D∗j,τ(ζ) – Equation (5.19) – defines the viable transports for each branching candidate
j ∈ J̄B(ζ).

D∗j,τ(ζ) =

Dj,τ(ζ) \D3
j,τ(ζ) if Lemma 5.6.2 holds,

Dj,τ(ζ) otherwise.
(5.19)

The branching carried out during the branching procedure for a node with schedule ζ
is thus defined by the following set:

B(ζ) = {(j, t) | j ∈ J̄b(ζ), t ∈ D∗
j,C̄min

j (ζ)
(ζ)}.
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Figure 5.13

Considered Delivery Departure Times for a Candidate Job During Branching

d2
j,τ(ζ) tmin

g

j ζ

C̄min(J̄∗(ζ)) τ = Cmin
j S1

delivery departure time t ∈ Dj,τ(ζ)
delivery date t 6∈ Dj,τ(ζ)

d̄j

Note. Each delivery departure time marked with a black circle is a decision that must be considered for
branching. All delivery departure times marked with a white circle can be discarded for feasibility or
optimality reasons. In the shown case six new branches must be considered.

5.7 Lower Bounds

This section describes a total of three alternative lower bounds for the SFDDHT that
are computable for each generated partial schedule ζ during the execution of the B&B
algorithm. As detailed in Section 5.1, a lower bound value for a subproblem Xci that
defines a partial schedule ζ is a valid lower bound for the objective value for each derived
subproblem of Xci and, in particular, each complete schedule derivable from the analyzed
subproblem. The SFDDHT-B&B computes lower bounds for two reasons. First, given
an upper bound of the objective value of an optimal solution to a problem instance, any
subproblem can be discarded for which the computed lower bound value is not lower
than the upper bound, as no better upper bound can be found following the branches
from such a subproblem. Second, the lower bounds help to guide the search for promising
subproblems earlier, as the SFDDHT-B&B adopts a best-first strategy.

Each lower bound for a subproblem Xci with partial schedule ζ consists of two parts:
The first part is the cost value z(ζ) for the scheduled jobs J, and it is constant for all derived
schedules of ζ. The second part is a cost estimate zei (ζ, J̄) for the remaining unscheduled
jobs. Note that the computation of zei (ζ, J̄) depends on the remaining jobs J̄ and the
decisions made for the already scheduled jobs J. This cost estimate lower bounds the cost
attainable by scheduling the remaining jobs J̄. The return value for each lower bound
i ∈ {1, 2, 3} is given as LBi(ζ) = z(ζ)+zei (ζ, J̄), where the subscript i distinguishes between
the three proposed lower bounds and cost estimates.

The different lower bounds adopt the common methodology of suitably relaxing
problem assumptions to define instances of polynomially solvable problems (c.f. Morrison
et al., 2016). An optimal solution to such an easier problem instance then provides a cost
lower bound for scheduling the remaining jobs. In many scheduling problems, finding a
suitable relaxation is straightforward. For example, the NP-hard problem 1 | rj |

∑
wjCj

is relaxable to the polynomially solvable problem 1 ||
∑
wjCj by omitting the job release

dates. An optimal solution to an equivalent instance for 1 ||
∑
wjCj provides a lower

bound value for the problem with release dates, since having job release dates may only
increase the individual job completion times. Note that this relaxation does not necessarily
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provide tight bounds.
The SFDDHT comprises significantly more constraints than the abovementioned

example problem. Therefore, the subsequently presented lower bounds relax multiple
problem aspects and try to preserve different components of the original SFDDHT problem
to generate strong lower bound values.

5.7.1 Linear Assignment Bound

The first lower bound (LB I), namely, the linear assignment bound, maps the remaining
decisions of a subproblem of the SFDDHT to an instance of the well-known (balanced)
linear assignment problem (LAP). The LAP seeks a cost-minimal assignment of mlap

elements to mlap targets (Kuhn, 1955). An assignment of the i-th element to the j-th target
is expressed by setting binary decision variable Xlap

i,j to 1 (and a non-assignment to 0) in
the following LP formulation of the LAP:

min
∑
i∈Mlap

∑
j∈Mlap

c
lap
i,j X

lap
i,j (5.20)

subject to: ∑
j∈Mlap

X
lap
i,j = 1 ∀i ∈Mlap, (5.21)

∑
i∈Mlap

X
lap
i,j = 1 ∀j ∈Mlap, (5.22)

X
lap
i,j > 0 ∀(i, j) ∈Mlap ×Mlap. (5.23)

The Objective Function (5.20) minimizes the total costs of all assignments, while
Constraints (5.21) and (5.22) ensure that each element is assigned to one target and that
each target is assigned to an element. As recognized by Pinedo (2016), requiring the Xlap

i,j to
be integers is not necessary – see (5.23) – since the structural properties of the LP lead to
integral solutions for the problem. Note that the cost of each assignment in the LAP is
independent of the other assignments. The LAP is polynomially solvable in O

(
mlap3

)
time formlap targets/elements.

An instance of the LAP is specified by a cost matrix with mlap elements (rows) and
mlap targets (columns). The proposed bound links the remaining jobs J̄with elements of
the LAP, and time slots (processing intervals on the machine) with targets of the LAP. A
time slot explicitly defines the completion time on the machine for the assigned job in a
schedule. The proposed approach constructs a cost matrix in three steps:

1. The approach specifies the time slots on the machine to process the remaining jobs
J̄, where each time-slot is assignable by one job at most, and each job j ∈ J̄must be
assigned to a single time slot. Additionally, the introduction of additional dummy
jobs balances the cost matrix of the LAP when the number of generated time slots
exceeds the number of regular jobs.

2. The approach computes a cost factor for each transport that is attributed to individual
jobs to account for the batch delivery transportation cost.
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3. The approach calculates a lower bound for the total cost contribution for each job to
time slot assignment that represents the minimal holding and transportation costs of
completing a job j at a specific time on the machine.

The problem-specific interpretation of the LAP’s cost-matrix is illustrated in Figure 5.14.
Note that the problem definition requires the possibility of assigning each job to each
time slot. Release date and deadline restrictions are accounted for by introducing pro-
hibitively large cost values for infeasible assignments. An optimal LAP solution avoids
such assignments if possible.

Figure 5.14

Interpretation of the LAP Cost Matrix

jobs time-slots

1 1

2 2

3 3
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LAP: linear assignment problem

5.7.1.1 Construction of Time Slots

Given a partial schedule ζ, the remaining jobs J̄ 6= ∅ must be scheduled before the
already processed jobs. The available machine time to process these jobs is denoted as
processing interval P =

[
pe,pl

]
, which ranges from pe = min

{
rj | rj ∈ J̄

}
to pl = C̄max.

The assignable time slots are defined as processing intervals within this range. Note that
for an empty schedule, C̄max is set to the maximal deadline value of the jobs J̄ = N (see
Section 5.3.1); hence, P is properly defined.

To construct intervals that lead to a valid lower bound of the cost of scheduling jobs
J̄, a set of completion times is derived that provides a segmentation of the processing
interval P. Specifically, we now define a subset of completion times that may occur in
complete canonical schedules for a given partial schedule ζ. This subset is constructed
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by first considering the unique delivery departure times, which are the time points, in
processing interval P:

T(P) = {tl | l ∈ IT,pe 6 tl 6 pl}.

The delivery departure times of set T(P) are denoted as tP
1, tP

2, . . . , tP
nT(P) and ordered by in-

creasing time value such that tP
1 < t

P
2 < · · · < tP

nT(P) holds. The defined time points separate
the processing horizon P into disjoint time intervals, as specified by Definition 5.7.1.1.

Definition 5.7.1.1. Let U(P) = {u1,u2, . . . ,unU(P) } with ui = [uei ,uli] define the set of
intervals defined by the planning horizon start time pe, the unique delivery departure
times T(P), and the planning horizon end time pl. The number of intervals comprising
U(P) is either nU(P) = nT(P) + 1 if tP

nT(P) < p
l, or nU(P) = nT(P) otherwise. Specifically, the

intervals are defined as follows:

• u1 = [pe, tP
1].

• unU(P) =

[tP
nT(P) ,pl] if tP

nT(P) < p
l

[tP
nU(P)−1, tP

nU(P) ] otherwise.

• For each l = 2, 3, ...,nT(P) − 1 set ul = [tP
l−1, tP

l ].

The set U(P) defines disjoint intervals of available machine time to process the jobs
j ∈ J̄. The length of each interval l(Ui) = uli − u

e
i depends on the distance between the

unique departure times on the one hand and the horizon start time pe and end time pl

on the other. Consider the remaining jobs J̄ and their feasible scheduling within the now
separated processing interval P by intervals U(P). The set of jobs completable in an interval
Ui ∈ U(P) is defined by

N(Ui) =
{
j ∈ J̄ | rj + pj 6 uli 6 d̄j

}
.

Note that this definition ensures only that each job of N(Ui) can complete within this
interval Ui, without considering any other scheduling decisions. Now consider the
scheduling of a subset of jobs ofN(Ui) such that all jobs of this subset complete in interval
Ui. Let N ′(Ui) ⊆ N(Ui) be the subset with maximal cardinality subject to∑

j∈N ′(Ui)

pj 6 l(Ui),

that is, the jobs N ′(Ui) are all jointly processable within interval Ui. This set is generated
by considering the jobs N(Ui) in order of non-decreasing processing times and choosing
the largest subset of ordered elements that does not violate the stated processing constraint.
Once this subset N ′(Ui) is established, define

n(Ui) = min
{
|N(Ui)|, |N ′(Ui)|+ 1

}
as the maximal number of jobs that can complete (but not necessarily start) production in interval
Ui for each i ∈ {1, . . . ,nU(P)}. Let the jobs of N ′(Ui) be denoted as jUi,1, jUi,2, . . . jU

i,nU(P) and
ordered by non-decreasing processing times such that pjU

i,1
6 pjU

i,2
6 · · · 6 pjU

i,nU(P)
holds.
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Finally, each element of the set of completion times C(Ui) =
{
CU
i,1, . . . ,CU

i,n(Ui)

}
for

an interval Ui ∈ U(P) is defined as

CU
i,p = uli −

n(Ui)−p∑
j=1

pjU
i,j

.

Each set C(Ui) defines maximally chosen completion times to schedule n(Ui) jobs that
complete in interval Ui. That is, the completion times C(Ui) represent the scheduling of
jobs N ′(Ui) in order of non-increasing processing times such that the job with minimal
processing time completes at time uli. Specifically, considering the job j at position p
of the i-th interval, it holds that there is no feasible later completion time for job j such
that j has p − 1 successors completing at or before time uli. As a consequence, given a
transport assignment for this job j at some time t > uli, the holding time and holding costs
for job j are minimal for this setting with the chosen completion time. The constructed
assignment problem allows not only the assignment of job j to the considered completion
time CU

i,p, but also the assignment of all other jobs ofN(Ui) to this time point (or time slot).
This relaxation allows for the scheduling of jobs with high holding cost values cH

j to later
positions, regardless of their actual processing time requirement. Formally, Lemma 5.7.1.1
proves the validity of the derived completion times.

Lemma 5.7.1.1. Consider a partial schedule ζ that is extended towards a complete feasible schedule
ζc with completion times Ccj for each job j ∈ J̄ of schedule ζ. Each of the remaining jobs of schedule
ζ completes within an interval Ui ∈ U(P) and is therefore an element of a set N(Ui).

Consider the interval Ui of schedule ζc and s jobs ji,1, ji,2, . . . , ji,s that complete within this
interval indexed by their relative position from 1 to s, where ji,s is the last job that completes before
time uli.

By replacing each completion timeCcji,p , with p ∈ {1, 2, . . . , s}, by the corresponding completion
time CU

i,p ∈ C(Ui), it follows that in this modified (not necessarily feasible) schedule, no job
ji,1, ji,2, . . . ji,s completes earlier than before.

Proof. The jobs ji,1, ji,2, . . . , ji,s were not scheduled in ζ, and because they can feasibly
complete in interval Ui in schedule ζc, they are elements of the set N(Ui). Therefore,
subset N ′(Ui) and the set of completion times C(Ui) are generated for schedule ζ by
considering these jobs.

The attained completion times Ccji,p with p ∈ {1, 2, . . . , s} are maximally chosen if it
holds that pji,s 6 pji,s−1 6 · · · 6 pji,1 with job ji,s completing at time uli. Therefore, if
ji,k ∈ N ′(Ui) for each ji,k with k ∈ {1, 2, . . . , s} and if the jobs have processing times that
are lower or equal to the remaining jobs of set N ′(Ui), then the completion times Ccji,p are
equal to the completion times CU

ji,p
∈ C(Ui). Otherwise, at least one completion time CU

ji,p

is larger than the corresponding completion time Ccji,p . This proves that no constellation
exists in which modifying the completion times as defined by Lemma 5.7.1.1 forces a job
to complete earlier.

The collection of completion times C(U(P)) defines the time slots in the LAP for-
mulation. Therefore, an assignment of a job j ∈ J̄ to a time-slot with time t represents
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the scheduling of job j such that the job completes on time t. Keep in mind that this
representation relaxes the processing of the jobs on the machine.

5.7.1.2 Computation of the Assignment Costs

While an assignment of the LAP formulation directly defines the completion time of
a remaining job, the departure time is not expressed directly. Further calculations are
necessary to obtain a definitive cost estimate for an assignment. For this, all feasible
and non-dominated departure time decisions for a job completing at a specific time are
compared, and the costs of the best setting are chosen as the assignment costs.

The set of feasible and non-dominated transports, given that a job j completes at
a specific time-point τ, was already defined in Section 5.6 as D∗j,τ(ζ). The cost of an
assignment to such a delivery departure time is split into two parts: the holding costs
and the transportation costs. Since the transportation costs in the SFDDHT are fixed costs,
once the transport for a single job is planned at a specific time, an additional assignment
of jobs does not increase the costs. A way to assess the transportation cost contribution of
individual jobs is to split the transportation costs for a delivery batch over all jobs of this
batch. The assignment cost calculation adopts this cost accounting. Since the assignment
cost values in the LAP formulation are predetermined and do not depend on the chosen
assignments, the transportation costs can not be evaluated dynamically when computing
the optimal assignment of jobs to time slots. Hence, the minimal cost contribution of a job
assigned to a specific transport is estimated as the transportation cost contribution if the
delivery batch is of maximal size, which minimizes the split cost share for the considered
job. An upper bound for the maximal delivery batch size n∆g,l(J̄) for the l-th transport to
customer g is

n∆g,l(J̄) =
∣∣{j | j ∈ J̄g, rj + pj 6 tg,l 6 d̄j

}∣∣ .
The set n∆g,l(J̄) comprises jobs individually assignable and processable on the machine

before departure time tg,l. It follows that an assignment of job j to the l-th transport of
customer g contributes at least cT

g/n
∆
g,l(J̄) transportation costs to the total cost value.

The total cost of assigning job j to the time slot with completion time CU
i,p is calculated

for each job j ∈ J̄, CU
i,p ∈ C(U(P)) by

cj,i,p =


min

t∈D∗
j,CU
i,p

(ζ)

{
(t− CU

i,p) · cH
j + c

T
g/n

∆
g,l(J̄)

}
if j ∈ N(Ui),

∞ otherwise.
(5.24)

Equation (5.24) chooses the minimal combined holding and transportation cost value
for all feasible transport assignments. Infeasible assignments are penalized by a pro-
hibitively large cost value, previously defined simply as∞.

5.7.1.3 Solving the Resulting Linear Assignment Problem Instance

Once the cost values are computed, a cost matrix with mlap =
∑nU(P)

i=1 n(Ui) elements
(targets) for the LAP can be formulated. This is carried out by mapping the cost values
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cj,i,p to the cost matrix of a LAP such that each row is a job, and each column is a
completion time. Specifically, let ∀j ∈ J̄,∀i ∈ {1, 2, . . . ,nU(P)},∀p ∈ {1, 2, . . . ,n(Ui)} :

c
lap
j,
∑i−1
h=1n(Uh)+p

= cj,i,p.

The initial resulting LAP cost matrix is usually unbalanced, since the defined time
slots outnumber the remaining jobs. To balance the matrix, dummy jobs that possess zero
cost values are added for assignment to all time slots; that is, new zero-rows are appended
to the matrix until it is balanced. The assignment of these dummy jobs is arbitrary and
does not influence the LAP solution and the total assignment cost.

Variants of the Hungarian method originated by Kuhn (1955) solve the LAP to op-
timality. The SFDDHT-B&B implementation uses the algorithm described by Munkres
(1957), which guarantees an asymptotic run-time complexity of O

(
mlap3

)
. The attained

optimal objective function value serves as the estimated cost component ze1 (ζ, J̄) of LB I.

5.7.2 Bounding the Number of Additional Transports

This subsection describes the lower and upper bound procedures to derive the minimal
and maximal number of additional required transports for feasibly scheduling the remain-
ing jobs J̄ of a partial schedule ζ. The bound values of both procedures are utilized by the
second (Section 5.7.3) and third (Section 5.7.4) lower bounding procedures during execu-
tion of the B&B algorithm. The minimal and maximal number of additional transports to
a customer g ∈ G in a complete solution derived from partial schedule ζ depends on the
number of remaining jobs J̄g and the unassigned transports that are still assignable. First,
let the assignable delivery departure times for customer g be

Tag (ζ) =
⋃
j∈J̄g

Dj,0(ζ). (5.25)

Equation (5.25) unifies the assignable delivery departure times of all remaining jobs
of customer g (see Section 5.6). The set of unused assignable delivery departure times for
customer g, given schedule ζ, is then defined as

Tu,a
g (ζ) = Tag (ζ) \ {t

min
g }.

5.7.2.1 The Maximal Number of Additional Transports

A valid upper bound to the number of additional transports to a customer g ∈ G given a
partial schedule ζ is stated by Lemma 5.7.2.1 from Bachtenkirch and Bock (2022).

Lemma 5.7.2.1. The value nD,max
g (ζ) = min

{∣∣J̄g∣∣ , |Tu,a
g (ζ)|

}
is an upper bound of the number

of additional transports for jobs J̄g that may appear in a complete schedule derived from partial
schedule ζ.

Proof. The first part of the expression assumes that each job of J̄g is assigned to a different
delivery departure time. The second part defines the set of non-dominated unassigned
delivery departure times (Tu,a

g (ζ)). The minimum size of the two sets defines an upper
bound to the number of additional deliveries.
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5.7.2.2 The Minimal Number of Additional Transports

The minimal number of additional transports is estimated by finding an assignment of the
remaining jobs to transports such that the number of newly used transports is minimal.
Since the already used transport at time tmin

g is potentially assignable by some jobs of set
J̄g, these jobs must be excluded from the lower bound computation for the number of
additional transports. Therefore, Definition 5.7.2.1 defines the set of critical jobs as a subset
of J̄g.

Definition 5.7.2.1. The set of critical jobs of customer g in a schedule ζ is defined as follows:

J̄cg =


{
j ∈ J̄g | d̄j < t

min
g

}
if tmin
g ∈ Tag (ζ),

J̄g otherwise.

Note that if J̄cg is an empty set, then no additional transport is required for the remain-
ing jobs of customer g. Additionally,

∣∣J̄cg∣∣ = 1 implies that exactly one additional transport
must exist in a complete schedule. Therefore, assume that

∣∣J̄cg∣∣ > 1 for the subsequently
presented bounding procedure.

The difficulty of determining an assignment of minimal size for critical jobs J̄cg to
delivery departure times Tu,a

g (ζ) arises from the different processing and delivery time
windows of the jobs: Not all jobs j ∈ J̄cg are necessarily feasibly assignable to each delivery
departure time of set Tu,a

g (ζ). Recall that the set TN
j comprises each delivery departure

time that is assignable by job j ∈ N solely based on the release date, processing time,
and deadline parameters. Hence, Definition 5.7.2.2 introduces the assignable delivery
departure times for each critical job j ∈ J̄cg.

Definition 5.7.2.2. The set of non-dominated unassigned delivery departure times assignable by
a critical job j ∈ J̄cg of customer g is defined as

Tu,a
g,j (ζ) = T

u,a
g (ζ) ∩ TN

j .

A lower bound to the number of additional transports is described by Lemma 5.7.2.2
from Bachtenkirch and Bock (2022).

Lemma 5.7.2.2. Given a partial schedule ζ and a customer g ∈ G, assigning each critical job
j ∈ J̄cg to a delivery departure time t ∈ Tu,a

g,j (ζ), such that the number of assigned times of Tu,a
g (ζ)

is minimal, provides a lower bound to the number of additional transports required for jobs J̄g in a
complete schedule computed from partial schedule ζ.

Proof. The noncritical jobs j ∈ J̄g \ J̄cg are assignable to delivery departure time tmin
g . These

jobs do not require an additional transport. Therefore, only jobs J̄cg are relevant to establish
a lower bound on the number of additional transports.

Each critical job must be assigned to a delivery departure time t ∈ Tu,a
g (ζ) in a complete

schedule derived from ζ. More precisely, the set Tu,a
g,j (ζ) for each job j ∈ J̄cg comprises the

assignable delivery departure times. Finding a complete assignment of jobs to delivery
departure times that minimizes the number of nonidentical delivery departure times
provides a lower bound to the number of additional transports required for jobs J̄g in a
complete schedule derived from ζ.
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Note that finding an assignment of jobs to delivery departure times does not imply
that a feasible schedule exists that includes these assignments. Specifically, the developed
approach does not test the scheduling of jobs with such an assignment. The use of set
Tu,a
g,j (ζ) to specify whether a job is assignable to a delivery departure time, only guarantees

that this job is assignable to one of these delivery departure times in isolation. An
assignment of two or more jobs to an identical delivery departure time may lead to release
date violations in an actual schedule.

The problem of determining an assignment of jobs to a subset of available delivery
departure times with minimal size is equivalent to the (unweighted) minimal set covering
problem (SCP). Therefore, the transport assignment problem is mapped to an instance of
the SCP. Fortunately, the transformed instances have a special structure that allows for the
application of a polynomial-time optimization procedure. As a result, the optimal solution
to the SCP instance directly provides the lower bound for the number of additional
transports.

In the SCP, a set of elements and a collection of subsets of these elements exist. The
objective of the SCP is to find a minimal number of subsets, such that each element is
contained in at least one of the selected subsets. A linear programming formulation of the
SCP, adapted from Ruf and Schöbel (2004), uses a matrix Ascp withMscp = {1, 2, . . . ,mscp}

rows and Nscp = {1, 2, . . . ,nscp} columns. An entry ascp
i,j of the matrix Ascp is set to 1 if

column (=subset) j comprises the i-th element, otherwise it is set to 0. Furthermore, a cover
in the SCP is defined as a subset of columns N̄scp ⊆ Nscp such that for each row i ∈Mscp,
some element ascp

i,j with j ∈ N̄scp equals 1. A cover in the LP formulation is expressed by
binary variables

X
scp
j =

1 if j ∈ N̄scp,

0 otherwise.

The objective function and constraints of the LP are

min
∑
j∈Nscp

X
scp
j (5.26)

subject to ∑
j∈Nscp

a
scp
i,j X

SCP
j > 1 ∀i ∈Mscp (5.27)

X
scp
j ∈ {0, 1} ∀j ∈ Nscp (5.28)

Objective Function (5.26) minimizes the size of the cover, and Inequality (5.27) de-
scribes mscp constraints in which at least one Xscp

j with coefficient ascp
i,j must equal 1 for

satisfaction. Lastly, the Xscp
j variables are defined as binary variables by Constraint (5.28).

In general, the SCP is a strongly NP-hard problem (Karp, 1972). Fortunately, the
structure of the described transport assignment problem defines SCP instances that belong
to a class of polynomial solvable instances. Ruf and Schöbel (2004) investigates SCPs
whose coefficient matrices have the consecutive ones property. That is, the ones of the
coefficients (ascp

i,j ) in each row i ∈Mscp of the LP formulation appear consecutively. For
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each row i ofMscp, it holds that

aSCP
i,h = 1,aSCP

i,k = 1 with h 6 k =⇒ a
scp
i,j = 1 for all h 6 j 6 k.

Additionally, let Mscp
j = {i ∈ Mscp : a

scp
i,j = 1} and Nscp

i = {j ∈ Nscp : a
scp
i,j = 1} define

the one rows of column j and one columns of row i, respectively. The algorithm that solves
the SCP optimally uses two reduction rules first proposed by Toregas and Revelle (1973).

Lemma 5.7.2.3 (adapted from Ruf and Schöbel, 2004).

1. If Nscp
i1
⊆ Nscp

i2
, then an optimal solution to the SCP is found by considering the reduced

problem without row i2 ∈Mscp.

2. If Mscp
j1
⊆Mscp

j2
, then an optimal solution to the SCP is found by considering the reduced

problem without column j1 ∈ Nscp.

The first reduction rule of Lemma 5.7.2.3 excludes the row that represents element i2
because covering element i1 also covers i2. In other words, each subset that contains i1
also contains i2. Since at least one subset with element i1 must be part of a cover, i2 is
part of a cover in the final solution. The second reduction rule of Lemma 5.7.2.3 excludes
a column (subset) j1 if another column (subset) j2 exists where all elements of subset j1
are also elements of subset j2. Therefore, the first subset does not need to be considered
in a cover, because the second set comprises all elements of the first set and potentially
additional elements.

Ruf and Schöbel (2004) propose the consecutive application of the introduced reduction
rules to reduce a given matrix Ascp.

Lemma 5.7.2.4 (adapted from Ruf and Schöbel, 2004). The matrix Ascp with consecutive
ones property can be reduced to an identity matrix by applying a finite sequence of the rules of
Lemma 5.7.2.3.

After application of a finite sequence of the two reduction rules as proposed by
Lemma 5.7.2.4, the remaining columns define a minimal cover, as stated by Ruf and Schöbel
(2004).

To utilize the proposed procedure, the transport assignment problem for each customer
must be transformed into an instance of the SCP. The transformation is described by
Procedure 5.7.2.3.

Procedure 5.7.2.3. Equate the number of rows (elements) of the SCP with the number of
critical jobs, and the number of columns (subsets) with the number of distinct delivery
departure times:

mscp =
∣∣J̄cg∣∣ and

nscp =
∣∣Tu,a
g (ζ)

∣∣ .
Let jcg,1, jcg,2, . . . , jcg,mscp denote the jobs of set J̄cg, and let tu,a

g,1 , tu,a
g,2 , . . . , tu,a

g,mscp denote the
delivery departure times of set Tu,a

g (ζ) such that tu,a
g,1 < tu,a

g,2 < · · · < tu,a
g,mscp . Then, the

entries of the coefficient matrix Ascp are constructed as follows:
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a
scp
i,j =

1 if tu,a
g,i ∈ T

u,a
jcg,j

0 otherwise.
for each i ∈Mscp and j ∈ Nscp.

The exhaustive application of the reduction rules to the constructed matrix Ascp yields
a reduced matrix A ′SCP. The number of columns n ′SCP is a lower bound to the number
of additional deliveries. Hence, the value nD,min

g is set to n ′SCP for each customer g ∈ G.
Example 5.7.2.4 illustrates the approach:

Example 5.7.2.4. Consider the five remaining jobs J̄g of customer g and the eight assignable
delivery departure times Tag (ζ):

Job Cmin
j d̄j

1 5 30
2 12 50
3 20 50
4 35 60
5 40 100

Tag (ζ) = {10, 15, 20, 30, 40, 50, 60, 70} and tmin
g = 70

As the fifth job is assignable to tmin
g , this job is not considered to compute the lower

bound. The following table presents the resulting SCP instance with four rows and six
columns.

Departure time 10 15 30 40 50 60

Job 1 1 1 1 0 0 0
Job 2 0 1 1 1 1 0
Job 3 0 0 1 1 1 1
Job 4 0 0 0 1 1 1

The application of the rules by Lemma 5.7.2.3 first eliminates row 3, as row 4 is a
subset.

Departure time 10 15 30 40 50 60

Job 1 1 1 1 0 0 0
Job 2 0 1 1 1 1 0
Job 4 0 0 0 1 1 1

Columns 1 and 3 are consequently eliminated as subsets of column 2, and columns 5
and 6 are reduced as subsets of column 4.

Departure time 15 40

Job 1 1 0
Job 2 1 1
Job 4 0 1
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Lastly, the rules allow for the elimination of row 2, as it is a superset of row 1. The
reduction results in the following non-reducible table with two columns.

Departure time 15 40

Job 1 1 0
Job 4 0 1

Therefore, at least two additional transports are required to deliver the remaining jobs.

5.7.3 Parallel Machine Bound

The second lower bound (LB II), namely, the parallel machine bound, utilizes similarities
between parallel machine scheduling problems and the SFDDHT. Each delivery batch
formed in the SFDDHT is mapped to a single machine, which processes the assigned
jobs. In contrast to LB I, detailed in Section 5.7.1, LB II computes an isolated cost estimate
for each customer g ∈ G. For each customer, multiple parallel machine environments
are considered, where a variation in the number of machines mimics the decision to
use a certain number of transports for the remaining jobs. The subsequent lower bound
procedure utilizes the equivalence of relaxed instances of the SFDDHT and the parallel
machine scheduling problem Pm||

∑
wjSj, which minimizes the weighted start times on

parallel machines, as shown in Section 4.4.
The proposed transformation found in the proof of Lemma 4.4.1 implies that an optimal

solution for Pm||
∑
wjSj provides an optimal solution for 1|s|wjEj with nonrestrictive

delivery departure times. That is, the delivery departure times are sufficiently spread out
to avoid restricting the cost-minimal scheduling of jobs. It follows that for instances with
restrictive delivery departure times (i.e., insufficient available machine time to process all
jobs between consecutive transports), an optimal objective function value for Pm||

∑
wjSj

is a lower bound for the SFDDHT. Unfortunately, even problem Pm||
∑
wjCj(=

∑
wjSj)

is weakly NP-hard, as proven by Bruno et al. (1974) and the computation of optimal
solutions is hence ruled out in a bounding procedure in reasonable time. Therefore, this
section proposes a bounding procedure for the SFDDHT that uses lower bound values
computed for instances of problem Pm||

∑
wjCj to estimate the total cost values for the

remaining jobs of schedule ζ.
Several lower bounding procedures for Pm||

∑
wjCj exist in the literature. Experi-

mental implementations of the SFDDHT-B&B procedure have revealed that bounding
techniques proposed by Webster (1995) and Belouadah and Potts (1994) do not attain con-
vincing results (weak bounding values for the SFDDHT). Instead, a result of Elmaghraby
and Park (1974) is used to compute lower bounding values: Instances of Pm||

∑
wjCj with

only agreeable jobs are polynomially solvable. That is, for two jobs i and j, the processing
times pi 6 pj imply weightswi > wj. Elmaghraby and Park (1974) demonstrate that a list
scheduling algorithm that considers the jobs in weighted shortest processing time (WSPT)
order provides an optimal schedule. That is, in the final schedule, jobs complete in order
of non-decreasing pj/wj-values.
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In general, list scheduling algorithms execute two phases: In the first phase, each
job is assigned a priority, and in the second phase, jobs are iteratively selected and then
scheduled in order of their priority. The list scheduling algorithm WSPT-List (Elmaghraby
and Park, 1974) prioritizes jobs in WSPT order. Thereafter, in each iteration, the remaining
job with the highest priority is scheduled on the machine that currently completes earli-
est. Hence, the completion time for each job is minimized under the constraint that all
higher-prioritized jobs are already scheduled on the machines. The algorithm performs
an initial sort in O(n log(n)) time for n jobs to establish the WSPT ordering. Afterward,
the n jobs are scheduled on m machines in n iterations. To schedule the next job, the
algorithm chooses the machine that currently completes earliest. The implementation
of the dynamic machine prioritization uses a min-heap datastructure that stores all m
machines, with the machine with minimal completion time at the top. As the heap opera-
tions perform with time complexity log(m), WSPT-List has the worst time complexity of
O(max{n log(n),n log(m)}).

5.7.3.1 The Bounding Procedure

The overarching bounding procedure is described by Algorithm 5.7 from Bachtenkirch and
Bock (2022). For each customer g ∈ Gwith a nonempty set of remaining jobs J̄g, the parallel

Algorithm 5.7 The Bounding Procedure (LB II)
1: procedure BOUND(ζ)
2: ze ← 0
3: for g ∈ G do
4: J̄II

g ← J̄g with pII
j = pj and wII

j = c
H
j for all jobs;

5: Reindex processing times and weights such that pII
i 6 p

II
j and wII

i > w
II
j

for all i, j ∈ J̄II
g with i < j;

6: MII
g ← {mII

1 , . . . ,mII
nD,max
g

} with rII
i = 0 for each i = 1, . . . , |MII

g|;

7: if tmin
g 6=∞ thenMII

g ←MII
g ∪ {mII

0 } with rII
0 = tmin

g − S1;
8: if t1

g 6=∞ then rII
nD,max
g

= t1
g − S

1;

9: ze ← ze+ SOLVE_CUSTOMER(nD,min
g ,nD,max

g ,MII
g, J̄II

g)

10: return z(ζ) + ze;

machine problem is constructed by transforming the SFDDHT jobs into agreeable jobs
of the parallel machine problem. Specifically, a job set J̄II

g = {jII
1 , jII

2 , . . . , jII
nII } is constructed

such that the i-th job in this set is assigned the i-th smallest processing time and the i-th
largest weight of the original job set J̄g (see Lines 4 and 5). The machines are constructed
under consideration of the bounds for the number of additional transports nD,min

g and
nD,max
g and the set of assignable delivery departure times Tag (ζ). The procedure considers

the machinesmII
1 ,mII

2 , . . . ,mII
nD,max
g

where the first nD,max
g − 1 machines are available to start

processing jobs at machine release time rII
i = 0. The start time of machine mII

nD,max
g

depends

on the existence of an unassigned delivery departure time t1
g with S1 6 t1

g < tmin
g in

schedule ζ. If a transport at time t1
g exists, then machine release time rnD,max

g
equals t1

g − S
1,

otherwise t1
g has value∞ and rII

nD,max
g

is set to 0. Similarly, if the transport at time tmin
g

exists in schedule ζ for customer g, then an additional machine mII
0 is introduced, with
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machine release time rII
0 = tmin

g − S1, that models the unavoidable holding time for a job
j ∈ J̄g assigned to this delivery departure time. Note that WSPT-List is still valid even if
machine release times are considered, because the release times can be modeled as dummy
jobs with sufficiently large weights such that scheduling these jobs first adheres to the
required WSPT ordering. The machine structure is depicted in Figure 5.15.

Figure 5.15

Illustration of the Problem Transformation for LB II

tg,1 tg,2 tg,3 tg,5t1
g tming

ζ

S1

mII
0 (t
min
g )

mII
1 (tg,1)

mII
2 (tg,2)

mII
3 (tg,3)

mII
4 (t

1
g)

activate at no cost

activation costs transportation cost (cT
g)

rII
0

rII
4

Note. The original problem is transformed into problem Pm||
∑
wjSj. Delivery dates of customer g are

transformed into identical parallel machines with an infinite production capacity. The machines mII
0 and

mII
nD,max
g

require an initial setup time that models the unavoidable holding times.

5.7.3.2 Calculation of Customer-Related Costs

After constructing the job and machine data, the bounding procedure calculates the
minimal cost value attainable by scheduling the jobs optimally on machines MII

g. This
procedure is displayed by Algorithm 5.8 from Bachtenkirch and Bock (2022).

Algorithm 5.8 Bounding Customer Costs (LB II)
¸

1: procedure SOLVE_CUSTOMER(nD,min
g ,nD,max

g ,MII
g, J̄II

g)
2: zII,∗

g ←∞
3: form = nD,min

g , . . . ,nD,max
g do

4: zII,T
g,m ← cT

g ·m;
5: zII,H

g,m ← solve Pm||
∑
wjCj with WSPT-List on machines

{mII
i | m

II
i ∈MII

g, i 6 m} with jobs J̄II
g;

6: zII
g,m ← zII,T

g,m + zII,H
g,m;

7: zII,∗
g ← min{zII,∗

g , zII
g,m};

8: if (zII,H
g,m < cT

g) or (zII,H
g,m = zII,H

g,m−1) or (zII,H
g,m − zII,H,min

g,m+1 < c
T
g) then return zII,∗

g ;

9: return zII,∗
g ;

The total costs for the remaining jobs j ∈ J̄g are computed by iteratively solving parallel
machine problems with an increasing number of machines in each iteration. Specifically,
solutions to instances that enable nD,min

g 6 m 6 nD,max
g additional transports are computed.
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Hence, in them-th iteration, WSPT-list optimally schedules the jobs jII
1 , jII

2 , . . . , jII
nII on the

machines mII
i with i 6 m. The application of objective function

∑
wjSj yields estimate

zII,H
g,m for the holding costs of jobs j ∈ J̄g with up tom additional transports allowed. The

transportation costs are estimated by zII,T
g,m = m · cT

g. In total, the decision to have m
additional deliveries for customer g results in estimated costs zII

g,m = zII,H
g,m + zII,T

g,m.
The iterative process terminates early under the following three conditions:

1. zII,H
g,m < cT

g: The current estimated holding cost with m additional transports is
smaller than the transportation cost of an additional delivery. As a result, even if no
holding costs are present in an estimate withm+ 1 additional transports, the total
costs can not be lowered by an additional transport.

2. zII,H
g,m = zII,H

g,m−1: The holding costs were not reduced by the addition of a transport,
because each job is solely processed on a machine.

3. zII,H
g,m− zII,H,min

g,m+1 < c
T
g: The term zII,H,min

g,m+1 is an estimate for the holding costs derived by
a bound from Eastman et al. (1964). The original bound for Pm||

∑
wjCj is stated as

Cm 6 max
{
Cn,

1
m

C1 +
m− 1

2m
Cn

}
,

where Cm is the optimal value of an instance of Pm||
∑
wjCj with m machines,

value C1 is the optimal cost of scheduling all jobs on a single machine, and Cn

is the optimal cost of scheduling the n jobs in an environment with n machines.
The value for C1 is calculated by scheduling the jobs in WSPT order, which is the
optimal policy in the single machine case. Cn returns total cost

∑n
j=1wjpj, since

each job starts processing at time 0 on a unique machine. As the holding costs of
jobs are equivalent to weighted start times, the above bound must be corrected by
the constant difference

∑n
j=1wjpj = Cn between an optimal schedule for objectives∑

wjCj and
∑
wjSj. Hence, the procedure uses bound value

zII,H,min
g,m =

1
m

C1 −
m+ 1

2m
Cn.

The lower bound zII,H,min
g,m+1 in iterationm provides the maximal holding cost difference

between iterationsm andm+ 1. If the resulting value indicates that an additional
delivery can not lower total costs, then the cost-minimal decision was already found.

Remark. One might suspect that zII
g,m+1 > zII

g,m implies zII
g = zII

g,m; that is, once an
additional delivery or machine does not decrease the cost, then zII

g,m is the minimum
value. Attempts to prove the validity of this suspicion by using the lower and upper
bounds provided by Eastman et al. (1964) failed. The question of whether the initial
suspicion is correct remains open.

For each customer g ∈ G, value zII,∗
g is the minimal zII

g,m value computed in the process.
Algorithm 5.8 returns the lowest cost value zII,∗

g of all tested machine configurations. The
final estimate of the proposed bound is ze2 (ζ, J̄) =

∑
g∈G z

II,∗
g , which sums the individual

customer-related cost estimates.
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5.7.4 Partition Bound

The third lower bound (LB III), namely, the partition bound, partitions jobs into two classes.
Each job j ∈ J̄ is classified either as a terminal or a nonterminal job. Recall from Section 5.2.5
that a terminal job is a job that completes last in a delivery batch in a schedule ζ, while a
nonterminal job has at least one successor in schedule ζ that is terminal. The proposed
bound executes two steps: In the first step, an initial partition is computed that minimizes
the overall cost; the second step utilizes the bound values for the minimal and maximal
additional transports that may require the reclassification of jobs.

5.7.4.1 Computation of the Initial Partition

The proposed bound assumes that a terminal job causes the requested transport and,
therefore, contributes the total transportation cost value cT

gN(j) to the total objective value,
while all nonterminal jobs can be transported for free. It holds by definition that a
nonterminal job j has at least one successor of an identical customer that is processed after
job j and completes before job j starts transportation. Hence, a nonterminal job always
contributes holding costs to the objective function value (assuming cH

j > 0). Therefore,
the cost contribution of a nonterminal jobs depends on the set of feasible successors of an
identical customer, as described by Definition 5.7.4.1:

Definition 5.7.4.1. Consider a partial schedule ζ, a customer g ∈ G, and a remaining job
j ∈ J̄g. The set J̄sj comprises the feasible successors of job j of identical customer g. The
definition of this set is solely based on the job time-windows.

J̄sj =
{
k | k ∈ J̄g,k 6= j, max{rk, rj + pj}+ pk 6 d̄j, rj + pj + pk 6 d̄k

}
.

For each job k of J̄sj , Definition 5.7.4.1 allows the processing sequence (j,k). A delivery
batch that comprises nonterminal job j and terminal job k hence may exist in a feasible
schedule. The following lower bound computation ensures fast computability by only
considering the case where a job j is succeeded by a single job of set J̄sj before the transport
of both jobs takes place.The lower bound computation compares the cost of classifying a
job as terminal or nonterminal. The estimated cost of remaining job j ∈ J̄g classified as a
terminal job is

zIII,t
j = cT

g.

If job j is considered to be nonterminal, then it is succeeded either by a job k ∈ J̄sj or by
all already scheduled jobs up to the minimal delivery departure time tmin

g if a transport
for customer g already exists in schedule ζ. To ensure the validity of the proposed lower
bound, job k with minimal processing time is chosen such that the assumed holding time
of job j is minimized.

zIII,n
j =

min
{
(tmin
g − S1), mink∈J̄sj {pk}

}
· cH
j if Jg 6= ∅

mink∈J̄sj {pj} · c
H
j otherwise.

The minimal cost contribution of job j of customer g is

zIII,∗
j = min

{
zIII,t
j , zIII,n

j

}
.

page 124



5.7.4. Partition Bound

The sum of the zIII,∗
j values over all remaining jobs J̄g is consequently a valid estimate for

the total cost contribution.

5.7.4.2 Reclassification

The initial estimate can be improved by considering the bound values for the number of
additional transports. After computing the contribution values, the remaining jobs can
be partitioned into the set of jobs classified as terminal and the set of jobs classified as
nonterminal:

J̄III,t
g = {j ∈ J̄g | zIII,t

j 6 zIII,n
j } and

J̄ng = {j ∈ J̄g | zIII,t
j > zIII,n

j }.

The resulting classification implies
∣∣∣J̄III,t
g

∣∣∣ additional transports for customer g. This num-

ber may contradict the valid bounds nD,min
g and nD,max

g for the number of additional
transports. The classification is thus modified in a cost-minimal way such that the clas-
sification adheres to the transport bounds. Let nn→tg and nt→ng be the correction values,
where

nn→tg = max{0,nD,min
g −

∣∣J̄III,t
g

∣∣}
indicates the number of nonterminal jobs of customer g that must be reclassified to terminal,
and

nt→ng = max{0,
∣∣J̄III,t
g

∣∣− nD,min
g }

indicates the number of terminal jobs of customer g that must be reclassified to nonterminal.
Only one of the two values can be simultaneously nonzero for a specific customer g. The
final classification of jobs of customer g is established as follows:

1. nn→tg > 0: The nn→tg nonterminal jobs of customer g with highest holding cost
contribution zIII,n

j are reclassified as terminal jobs. Let jng,n be the element of J̄ng with
the n-th largest cost contribution zIII,n

j . Then, the final partitioning of the jobs of
customer g is

J̄t∗g = J̄tg ∪
{
jng,1, jng,2, . . . , jng,nn→tg

}
and

J̄n∗g = J̄ng \
{
jng,1, jng,2, . . . , jng,nn→tg

}
.

2. nt→ng > 0: The nt→ng terminal jobs of customer g with lowest holding cost contri-
bution zIII,n

j are reclassified as nonterminal jobs. Let jtg,t be the element of J̄III,t
g with

the n-th smallest cost contribution zIII,n
j . Then, the final partitioning of the jobs of

customer g is
J̄t∗g = J̄tg \

{
jtg,1, jtg,2, . . . , jtg,nt→ng

}
and

J̄n∗g = J̄ng ∪
{
jtg,1, jtg,2, . . . , jtg,nt→ng

}
.

3. nn→tg = nt→ng = 0: The number of terminal jobs is within the specified bounds.
Hence, the initially computed partition remains:

J̄t∗g = J̄tg and

J̄n∗g = J̄ng .
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Note that the reclassification applied in Cases 1 and 2 does not decrease costs, since the
initial classification is cost minimal. In the SFDDHT-B&B implementation, jobs are ordered
by their nonterminal cost contribution. For each job, a label is stored that marks a job as
either terminal or nonterminal, and the reclassification simply changes the stored label.
The final cost estimate amounts to

ze3 =
∑
g∈G

∑
j∈J̄t∗g

zIII,t
j +

∑
j∈J̄n∗g

zIII,n
j

 .

5.7.5 Discussion of the Lower Bounds

The three proposed lower bounds all focus on different aspects of the SFDDHT to estimate
the remaining scheduling costs.

LB I, presented in Section 5.7.1, constructs time slots for the remaining jobs and allows
for jobs to be assigned to a time slot if the completion time is feasible. This definition
does not consider whether the considered job fits into a time slot (i.e., has lower or equal
processing time compared to the time slot’s interval length). While a valid bound is
attained, this relaxation of the processing constraints may result in poor bounding values
for a set of jobs with heterogeneous processing times, since jobs with high pj values may
be assigned to time slots that occupy only a fraction of the required processing duration.
On the other hand, with relatively homogeneous processing times, the available machine
time is only relaxed slightly. Depending on the structure of the considered SFDDHT
instance, the transportation cost associated with an assignment to a transport may be
low if jobs have generally large time windows such that many jobs of the same customer
can be transported at the same time. For instances with relatively few different batching
possibilities, the estimated cost values may result in good estimates. A strong point of
the proposed bound is that it largely preserves the time window restrictions of jobs if the
cost-efficient choice of jobs for each time slot is limited in the LAP instance in which the
computed assignment is expected to resemble a feasible schedule of the remaining jobs.

LB II, proposed in Section 5.7.3, relaxes the time window constraints of all jobs and
additionally considers the scheduling of jobs for each customer separately without coordi-
nating the production between jobs by different customers. The estimated costs calculated
by transformation into parallel machine problems can be seen as an idealized production
and distribution schedule that always produces an identical customer’s jobs together in a
production block without interference from other jobs. The transformation to agreeable
jobs performs especially well for homogeneous job sets. In comparison, to LB I, LB II pre-
serves the impact of transportation costs, also strengthened by the minimal and maximal
transport bounds.

Similarly to the second lower bound, the third lower bound (Section 5.7.4) provides a
decent estimation of transportation costs by utilizing the proposed bounds of the addi-
tional transports. The cost estimate for the holding costs is calculated in a much simpler
way which is expected to be less tight but faster computable.
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5.8 Algorithm Execution

This section details the execution of the SFDDHT-B&B algorithm that orchestrates the
procedures described in the previous sections of this chapter. The algorithm processes
an SFDDHT instance that defines the initial subproblem Xc0 . It constructs a search tree
Tc that comprises a single root node for the initial subproblem such that Nc = {Xc0 }. The
approach uses a BFS search strategy with an active list Lc that is implemented by a heap
data structure. This heap is initialized with subproblem Xc0 . Moreover, the algorithm
optionally accepts an initial solution (canonical schedule) x̂c with upper bound value
f(x̂c) generated by some heuristic procedure.

Before the search process begins its execution, the preprocessing tablesMprec andMpos

are precomputed (see Section 5.4). Afterward, the search process iteratively selects the
next subproblem Xci from list Lc with the minimal lower bound value f(Xci ). Given this
node Xci , the corresponding schedule ζi is constructible by following the relevant stored
parent-child arcs of set Ec from the i-th node towards the root node with index 0. As the
algorithm uses the proposed dominance table (see Section 5.3.6) to eliminate not only
newly constructed subproblems but also already evaluated ones, the algorithm may detect
a dominated label concerning schedule ζi at this point. Specifically, the schedule ζi or one
of the extended schedules towards ζi, defined by the ancestor nodes, may be labeled
dominated. If this is the case, the algorithm deletes the current node and does not branch on
this subproblem. Otherwise, if schedule ζi is not dominated, then the algorithm generates
the branching candidates B(ζi) that define the possible extensions of schedule ζi towards
an extended schedule with an additional job processed before jobs J and transported
at a feasible, non-dominated delivery departure time (see Section 5.6). The algorithm
subsequently carries out the following steps for each branching candidate:

1. Construction of branching candidate schedule ζb.
2. Execution of the dominance procedures production block dominance procedure (Sec-

tion 5.3.4), permutation dominance procedure Section 5.3.3, and delivery batch dominance
procedure Section 5.3.5 on ζb. Suppose that at any point during the dominance testing,
schedule ζb is dominated by one procedure. In that case, the routine discards the
branching candidate, and the algorithm continues to evaluate the next candidate.

3. Processing of ζb by the dominance table Section 5.3.6. If ζb is dominated, then the
branching process terminates for this candidate. Otherwise, the table stores the
information of ζb as a new entry. Furthermore, if ζb dominates an already inserted
schedule, then the corresponding subproblem is labeled as dominated. This label is
stored in the corresponding node of the dominated subproblem in search tree T.

4. Application of one or multiple of the lower bounds LB I, LB II, and LB III (described
in Sections 5.7.1, 5.7.3, and 5.7.4) to generate lower bound LB(ζ) with subsequent
bound dominance testing. That is, the generated lower bound LB(ζb) is tested
against the current upper bound f(x̂). If LB(ζb) > f(x̂c), then the candidate is
discarded. In the case that schedule ζb is a complete schedule and LB(ζb) < f(x̂c),
the current best solution x̂c is replaced by ζb.
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5. Extensions of the search tree by a new node and insertion into the active list Lc at
the location that depends on the lower bound of ζb if ζb is not dominated by the
pruning rules and is not a complete schedule.

The described subproblem selection and branching phases execute as long as the active
list Lc is nonempty, which means that the algorithm has not solved the problem instance
by finding an optimal solution and proving the solution’s optimality. The algorithm
returns the best-found schedule upon termination if the input instance is feasibly solvable.
However, if the opposite holds, then the algorithm returns no solution but signals that no
feasible solution exists for the input instance.

Note that most of the required memory is allocated before the execution of the algo-
rithm in the implementation. That is, the search tree may store, at most, a fixed number of
nodes simultaneously. If an instance is not solved with this limitation, then the algorithm
terminates early. Similarly, memory is pre-allocated for the dominance table entries, while
the required hash table is allowed to grow when necessary.

To speed up the schedule generation of subproblems extracted from the active list
Lc and the schedule generation of branching candidates, the implementation performs
updates on the schedule data rather than relying on a full reevaluation, if possible. That
is, given a schedule ζi of subproblem Xci , an extended schedule of ζi with an additional
job scheduled in front of the jobs already can be evaluated simply by adding the new
job canonically, adding its holding cost to the previous objective value, and adding
transportation costs only if the added job is using a former unused transport.

Similarly, an efficient evaluation of branching candidates is used for two consecutive
evaluated schedules. If the job is identical in both schedules, then the evaluation procedure
reschedules the added job and evaluates its transport assignment. Otherwise, it removes
the last added job and adds the one proposed by the currently investigated branching
candidate. The above implementation details minimize the time the algorithm spends
while not performing bound or dominance computations.

5.9 Conclusion

This chapter described the SFDDHT-B&B algorithm that solves instances of the SFDDHT
optimally. A significant effort went into utilizing the scheduling problem’s structural
properties to develop an efficient branching strategy and to establish dominance rules and
lower bounds that significantly reduce the searched solution space for an optimal solution.
Furthermore, the chapter offered specified details for an efficient implementation of the
proposed procedures and described important data-structures to attain computational
efficiency.

Following a brief introduction to the principles of B&B algorithms in Section 5.1, the
remaining sections described the SFDDHT-B&B. First, Section 5.2 defined the solution
space searched by the enumerative approach. In particular, we reduced the search space
to only search for solutions that are canonical schedules and derived several properties of
optimal solutions. Moreover, Section 5.3 provided an in-depth description of applicable
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dominance relations and computationally efficient dominance procedures to reduce the
searched solution space. Then, Sections 5.4 to 5.6 were dedicated to the minimization of
the number of necessary search tree branches by initial analysis of the provided problem
instance. Three different lower bounds were proposed in Section 5.7, and the program
execution was detailed in Section 5.8.
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Chapter 6

The Developed Greedy Randomized
Adaptive Search Procedure

The contents presented in this chapter also appear in the work of Bachtenkirch and Bock (2022),
titled Finding efficient make-to-order production schedules, which is published in the European
Journal of Operational Research. To avoid impairing the reading flow, citations do not reference
this article continuously throughout this chapter. However, when introducing a mathematical
statement, such as a lemma, proposition, or proof, from the stated paper, the text includes a reference.
Moreover, tables, figures, and algorithms that are taken from this paper are referenced as per usual.

This chapter introduces a specifically designed GRASP that generates heuristic so-
lutions for the SFDDHT. GRASP is a meta-heuristic framework applicable to various
optimization problems originally derived from a procedure proposed by Feo and Resende
(1989). Since the SFDDHT is strongly NP-hard the B&B algorithm described in Chapter 5
inevitably requires an unreasonably large amount of computer memory to store nodes,
or it mandates unacceptable amounts of computing time to provide optimal solutions
when executed on large problem instances. Therefore, a heuristic procedure is required to
provide high-quality solutions for large instances in a reasonable time frame. Additionally,
the heuristic construction of a solution provides an upper bound for the objective value.
Such a derived upper bound can be utilized to test for bound dominances during the B&B
search process, even before the exact procedure encounters a leaf node itself. Furthermore,
the heuristic approach is a suitable optimization tool usable in time-critical applications
such as the RTC approach described in Chapter 7.

The remainder of this chapter explains the key ideas and components of GRASP in
Section 6.1. The GRASP algorithm for the SFDDHT (SFDDHT-GRASP) is subsequently
described in detail. The heuristic applies the general premise of the iterative randomized
construction and the improvement of solutions. Since the feasible construction of a solution
can not be ensured, the SFDDHT-GRASP additionally implements a repair procedure that
attempts to establish feasible solutions. The heuristic is complemented by the application
of a so-called path relinking procedure, which combines the solution characteristics of two
solutions to explore the solution space in regions close to solutions of high quality. In
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pursuit of a fast sampling of the solution space, the SFDDHT-GRASP enables parallel
execution on multiple threads. The heuristic procedure is described in the following order.
Section 6.2 describes the construction phase, and the improvement and repair procedures
are then outlined in Section 6.3. Afterward, Section 6.4 elaborates on the path relinking
procedure used by the SFDDHT-GRASP. Lastly, Section 6.5 explains the interaction of
the previously described components and their application in the SFDDHT-GRASP. As
the implementation of the algorithm runs simultaneously on multiple threads, a brief
description of implementation details is also provided. Finally, Section 6.6 concludes this
chapter.

6.1 Principles of the Solution Method

According to Feo and Resende (1995), GRASP is an iterative randomized sampling tech-
nique. In each iteration of the procedure, a new solution to an optimization problem is
generated from scratch. Upon termination of the procedure, the best-found solution is
returned. Each GRASP iteration is split into two phases: solution construction and solution
improvement. In the construction phase, to generate different solutions, a solution is
generated with some randomized construction techniques involved. In the improvement
phase, a local improvement procedure is applied to a constructed solution. The basic
procedure by Feo and Resende (1995) is illustrated by Algorithm 6.1 for an instance X of a
minimization problem. Each iteration constructs (procedure ConstructGreedyRandom-
izedSolution) and improves (procedure LocalSearch) a new solution without relying on
information from previous iterations.

Algorithm 6.1 A GRASP Algorithm for a Minimization Problem

1: procedure GRASP(X)
2: Initialize ŝ arbitrarily with f(ŝ) =∞; . ŝ: best found solution
3: while GRASP stopping criterion not satisfied do
4: s← ConstructGreedyRandomizedSolution();
5: LocalSearch(s);
6: if f(s) 6 f(ŝ) then
7: ŝ← s;
8: return ŝ;

Note. Adapted from Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133.

The construction phase builds a feasible solution one element at a time. Possible
extensions to a solution are called candidates, which are stored in a so-called candidate list
(CL). The construction is guided by a greedy function that measures the myopic benefit of
extending a partial solution by a candidate. To generate different solutions, the choice
of the next element, which extends the solution, is determined partially by the greedy
function and partially by randomness. A selection of the best candidates is inserted into a
restricted candidate list (RCL) from which a candidate is drawn randomly. The procedure
ConstructGreedyRandomizedSolution as described by Feo and Resende (1995) is depicted
in Algorithm 6.2.
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Algorithm 6.2 The GRASP Construction Phase

1: procedure CONSTRUCTGREEDYRANDOMIZEDSOLUTION

2: while Solution construction of s incomplete do
3: CL←MakeCL(s) . evaluated by a greedy function
4: RCL←MakeRCL(CL);
5: c← SelectCandidateAtRandom(RCL);
6: s← s ∪ {c};
7: return s

Note. Adapted from Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133.

In general, the construction of partial solutions is problem dependent, as is the imple-
mentation of the greedy function (denoted as f in Algorithm 6.2). A logical choice for the
greedy function is the objective function of an optimization problem.

A complete solution generated by procedure ConstructGreedyRandomizedSolution
is usually not locally optimal with respect to some local neighborhood definition. The
improvement phase of GRASP generates a locally optimal solution based on the initially
constructed solution s. In each iteration, the local neighborhood of the current solution s
is constructed. The solution s is replaced with the best neighbor if s is not locally optimal.
Similarly to the construction phase, the actual implementation of the improvement phase
is highly problem dependent.

Algorithm 6.3 The GRASP Improvement Phase

1: procedure LOCALSEARCH(s)
2: Let N denote the neighborhood structure;
3: while s is not locally optimal do
4: Find best neighbor n ∈ N(s)
5: if f(n) < f(s) then
6: s← n

7: return s
Note. Adapted from Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133.

Feo and Resende argue that the use of the GRASP framework is appealing, since
its implementation is relatively simple and because the framework relies only on a few
parameters. An implementation of GRASP only needs to specify a termination criterion
and a method to restrict the CL. While the basic GRASP framework provides satisfactory
results in many applications (Feo and Resende, 1995), numerous extensions and hybridiza-
tions of the GRASP procedure can be found in the literature. Gendreau et al. (2010) note
that there is a general trend to hybridize existing procedures to provide better results
than with pure heuristics. Resende and Ribeiro (2010) discusses various extensions of the
GRASP method.

page 132



6.2. Construction Phase

6.2 Construction Phase

This section describes the construction phase of the SFDDHT-GRASP. In each GRASP
iteration, a partial solution is extended by adding a single job. The construction procedure
consequently requires a total of nN steps to define a complete solution for the SFDDHT.
To avoid confusion between the notation used to describe a schedule found by the B&B
approach and a schedule(=solution) constructed by the SFDDHT-GRASP, let S symbolize
a schedule constructed by the SFDDHT-GRASP. Specifically, let Sk be the schedule built
after completing k steps of the construction procedure in a particular GRASP iteration.
Furthermore, let the set of scheduled jobs in step k be Jk ⊆ N and the complementary
set of remaining jobs in step k be Jk = N \ Jk. The construction procedure starts with an
empty schedule S0 with no jobs scheduled (J0 = ∅) and the remaining jobs set to J̄0 = N.
During construction step k, a remaining job j of J̄k−1 is selected and inserted into schedule
Sk−1 at one of the positions 1, . . . ,kwith an assignment to a delivery departure time t of
TN
j . It follows that after the insertion of job j at position i, the jobs previously scheduled at

positions i, . . . ,k− 1 then occupy positions i+ 1, . . . ,k.

6.2.1 Selection Order of Jobs

Remember that generating a feasible solution for the SFDDHT is a complex task. Since the
underlying feasibility problem 1|rj, d̄|− is strongly NP-hard (Garey and Johnson, 1979),
no construction procedure exists (under the assumption P 6= NP) that either guarantees
the construction of a feasible schedule or detects that no feasible solution for an instance
exists, in polynomial time. As a consequence of the problem complexity, the step-wise
construction of schedules, applied by the SFDDHT-GRASP may lead to partial schedules
with no feasible insertions available. To work around this issue, the construction procedure
uses a fixed job selection order that schedules jobs with restrictive time windows first.
The idea for this fixed selection order stems from Gendreau et al. (1998), who utilize a
fixed selection order to construct feasible tours for the traveling salesman problem with
time windows (TSPTW). In the proposed heuristic approach for the TSPTW, a tour is
iteratively constructed by considering customer requests in order of their time-window
restrictiveness. Analogously to the proposition by the authors, selecting jobs in order
of increasing time window flexibility provides a way to potentially increase the chances
of generating feasible schedules. This claim is supported by the empirical study of
the construction heuristic for the TSPTW, and the SFDDHT-GRASP adopts this idea to
construct solutions. The construction heuristic adds jobs to a partial schedule in order of
non-decreasing processing time window length

pwj = d̄j − rj.

The SFDDHT-GRASP consequently establishes an initial ordering of jobs j∗1 , j∗2 , . . . , j∗nN

such that pwj∗1 6 pwj∗2
6 · · · 6 pwj∗

nN
holds. By adhering to this ordering, in each iteration

k of the construction phase, job j∗k is added to the currently considered partial schedule
Sk−1. The ordering is computed before the first iteration of the SFDDHT-GRASP starts.
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Therefore, the choice of the remaining job in each iteration is independent of the previously
undertaken construction steps in a GRASP iteration.

6.2.2 Construction Moves

The integration of job j∗k into partial schedule Sk−1 is carried out by setting the relative
position of job j∗k and its delivery departure time. Each of the alternative decisions
(construction moves) in step k is represented by a tuple (i, t) with i ∈ {1, 2, . . . ,k} describing
the insertion position and t ∈ TN

j describing the pickup time of j∗k. A construction move
(i, t) is evaluated by computing the resulting objective function value of schedule Sk−1

extended by adding job j∗k at position i and delivery departure time t. Let a schedule Sk

be defined by a set of triples

Sk =
{
(1, jSk,1, tSk,1), . . . , (k, jSk,k, tSk,k)

}
,

where each triple (i, j, t) represents the job j currently scheduled at position iwith delivery
departure time t in schedule Sk. As the construction procedure extends partial schedules
by inserting a job at some position, the position index for a triple is only relatively defined.
That is, by insertion of a new job at position i 6= k in a schedule Sk, the positions for jobs
at positions i, . . . ,k increment by one. In step k, the evaluation procedure extends the
schedule Sk−1 to a temporary schedule, which is defined as follows:

Sk,i,t =
{
(1, jSk−1,1, tSk−1,1), . . . , (i− 1, jSk−1,i−1, tSk−1,i−1), (i, j

∗
k, t),

(i+ 1, jSk−1,i, t
S
k−1,i), . . . , (k, jSk−1,k−1, tSk−1,k−1)

}
.

The addition of j∗k to schedule Sk−1 does not alter preexisting transportation assign-
ments for any job of Jk−1. As job j∗k is now part of schedule Sk,i,t, the delivery departure
time of the added job j∗k is set to time t. To compute the total cost and the feasibility
of this temporary schedule, the effect of the integration of this new job to the schedule
must be considered. This is carried out by computing the completion time of job j∗k and
the recalculation of the completion times for already scheduled jobs that are affected by
the integration of job j∗k. As the local cost optimality of canonical schedules is shown by
Lemma 5.2.2.1, the SFDDHT-GRASP only constructs canonical schedules by application
of Procedure 5.2.2.1 to compute the completion times. The backward computation of this
procedure starts with the insertion of job j∗k at position i and continues to calculate the
new completion times for jobs at the preceding positions i−1, . . . , 1 of temporary schedule
Sk,i,t.

The objective function value (i.e, the return value of the greedy cost function in the
SFDDHT-GRASP) of the temporary schedule, denoted as Vc(Sk,i,t), is computed alongside
the canonical scheduling procedure. For this, the objective value of the original schedule
Sk−1 is copied and updated by the changed holding costs for the jobs at positions 1, . . . , i−1.
As job j∗k is newly added, its holding costs are simply added to Vc(Sk,i,t). If job j∗k is the
sole job of customer gN(j) assigned to delivery departure time t, then the customer-specific
transportation cost cT

gN(j) is added.
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The application of Procedure 5.2.2.1 may produce schedules that violate the release
date constraints, since completions for already scheduled jobs may decrease due to the
integration of job j∗k. If a violation is detected during Procedure 5.2.2.1, then the procedure
continues, but labels the construction move as infeasible.

6.2.3 Reducing the Set of Construction Moves

In step k, there are k alternative insertion positions and |TN
j∗k
| alternative pickup time as-

signments for the integration of job j∗k. The number of considered alternative construction
moves is thus bounded by k · |TN

j∗k
|. To speed up the execution of the construction phase,

the set of construction moves is reduced by exclusion of some easily testable infeasible
combinations. For each position 1, . . . ,k, the construction procedure determines a feasible
subset of assignable delivery departure times for job j∗k. As the following procedure is also
used in the repair and improvement phase, the definitions are formulated in a generalized
way for a schedule S with |S| jobs scheduled in order jS1 , jS2 , . . . , jS

|S|
, with jSi denoting the job

at position i in schedule S. Let Cmin(S, j, i) be the minimal completion time of scheduling a
job j ∈ N at position i given schedule S. It is implied that job j is currently not scheduled in
schedule S. The minimal completion time is computed by scheduling the jobs jS1 , . . . , jSi−1, j
in this order as early as possible. That is, job jS1 completes at

CjS1
= rjS1

+ pjS1
.

Each job jSk with k ∈ {2, . . . , i− 1} is subsequently iteratively scheduled and completes at

CjSk
= max{rjSk ,CjSk−1

}+ pjSk
.

Lastly, job j completes at

Cmin(S, j, i) = Cj = max{rj,CjSi−1
}+ pj.

It follows that the earliest delivery departure time available for job j scheduled at position
i is

De(S, j, i) = min
{
t ∈ TN

j , t > Cmin(S, j, i)
}

.

Furthermore, the latest delivery departure time time available for job j scheduled at
position i is

Dl(S, j, i) = min
{
d̄j, min

{
tSo

∣∣∣ i 6 o 6 |S| ,gN(jSo) = g
N(j)
}}

.

The restrictions provided by De(Sk, j, i) and Dl(Sk, j, i) reduce the set of evaluated con-
struction moves in each iteration k of the construction procedure to

CL =
{
(i, t)

∣∣∣ i ∈ {1, . . . ,k} and t ∈ TN
j∗k

with De(Sk−1, j∗k, i) 6 t 6 Dl(Sk−1, j∗k, i)
}

,

which defines the CL for the SFDDHT-GRASP.
In the implementation of the SFDDHT-GRASP, the set of construction moves is de-

termined iteratively, starting with all pairs (i, t) with position i = 1 in iteration 1, and
continuing to evaluate all pairs (i, t) with i = 2, . . . ,k. A full computation of all completion
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times of predecessors to derive Cmin(S, j, i) is therefore not necessary. In each iteration i,
only the value CjSi = max{rjSi ,CjSi−1

} + pjSi
with initial value CjS0 = 0 must be computed.

Afterward, this value is stored for the next iteration i+ 1. The computation of the minimal
completion time for job j in each iteration i is simply computed as

Cmin(S, j, i) = max{rj,CjSi−1
}+ pj.

6.2.4 Outline of the Construction Procedure

The selection of the construction move that extends schedule Sk−1 to define schedule Sk,
is based on the definition of an RCL (a subset of the CL). Specifically, the candidate is
randomly chosen from the subset of the best nRCL construction moves according to the
applied greedy function. The definition of this subset for each construction k, depends on
whether at least one feasible construction move exists in the CL. Let nCL be the number
of moves in the CL, and let nCLf be the number of feasible moves in the CL. If nCLf 6= 0 ,
then the subset comprises the min{R,nCLf } best feasible moves in terms of solution quality.
Otherwise, if nCLf = 0 and nCL 6= 0, then the subset comprises the min{R,nCL} best, albeit
infeasible, construction moves. In both cases, a candidate is drawn randomly from the
reduced set, and extends the current schedule towards schedule Sk. Due to the exclusion
of assignable delivery departure times, the case nCL = 0 may occur. No attempt is made
to resolve this issue. Instead, the current GRASP iteration ends unsuccessfully, and the
next iteration starts with an empty schedule. The entire construction procedure is outlined
by Algorithm 6.4.

Algorithm 6.4 The Construction Phase of the SFDDHT-GRASP

1: Let S be a new solution;
2: for k = 1 to nN do
3: CL←

{
(i, t)

∣∣∣ i ∈ {1, . . . ,k} and t ∈ TN
j∗k

with De(Sk−1, j∗k, i) 6 t 6 Dl(Sk−1, j∗k, i)
}

;
4: Evaluate all insertion pairs of CL;
5: RCL← {(i, t) | (i, t) is feasible and one of the R best solutions}
6: if RCL = ∅ then
7: RCL← {(i, t) ∈ CL | (i, t) is one of the R best but infeasible solutions}
8: if RCL = ∅ then
9: return S . solution is incomplete

10: (i, t)← draw randomly from RCL

11: S← Sk,i,t (insert j∗k at position iwith delivery departure date t);

12: return S . solution is complete but not necessarily feasible
Note. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

6.3 Repair and Improvement Phase

The construction phase ends with the generation of a feasible solution, an infeasible so-
lution, or an incomplete solution. The SFDDHT-GRASP makes no attempt at repairing
incomplete solutions. Moreover, if no complete solution could be established in a construc-
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tion attempt, then the current GRASP iteration ends, and a new solution is constructed
from scratch. Hence, only complete solutions, which are either feasible or infeasible, enter
the repair and improvement phase.

6.3.1 Reinsertion Moves

The repair and improvement phase uses a single move operator to repair and improve
infeasible and feasible solutions, respectively. This move operator modifies a solution by
moving a job ji, located at position i, to a sequence position i ′ and replaces the currently
assigned delivery departure time twith time t ′. Such a move is defined by a quadruple
(i, t, i ′, t ′) with (i, t) 6= (i ′, t ′), and it consequently modifies either the position of a job, or
the delivery departure time of a job, or both attributes.

Conceptually, the move operator is executed by removing job ji from the schedule
and reinserting this job at position i ′ with delivery departure time t ′. Hence, a move
carried out by this operator is referred to as a reinsertion move. Analogously to the previous
section, a complete schedule, simply denoted by S, is defined by a set of triples that define
the positions and completion times of the scheduled jobs. As each completed schedule
comprises k = nN triples, the subscript k = nN is omitted from the notation. By this
simplification, a complete schedule is defined by

S =
{
(1, jS1 , tS1 ), . . . , (nN, jSnN , tSnN)

}
.

A reinsertion move (i, t, i ′, t ′) defines a new modified solution

S ′ =
{
(1, jS

′
1 , tS

′
1 ), . . . , (nN, jS

′

nN , tS
′

nN)
}

.

The elements of S ′ depend on whether the new position i ′ is greater than i. For i ′ > i, it
holds that

∀h = 1, . . . , i− 1, i ′ + 1, i ′ + 2, . . . ,nN : jS
′
h = jSh and tS

′
h = tSh,

∀h = i, . . . , i ′ − 1 : jS
′
h = jSh+1 and tS

′
h = tSh+1 and

jS
′

i ′ = j
S
i and tS

′

i ′ = t
S
i .

In contrast, if i ′ 6 i holds, then the new solution S ′ is defined as follows:

∀h = 1, . . . , i ′ − 1, i+ 1, i+ 2, . . . ,nN : jS
′
h = jSh and tS

′
h = tSh,

∀h = i ′ + 1, . . . , i : jS
′
h = jSh−1 and tS

′
h = tSh−1 and

jS
′

i ′ = j
S
i and tS

′

i ′ = t
S
i .

The completion times in the modified schedule are determined by Procedure 5.2.2.1 such
that the resulting schedule is canonical. Since the solution S ′ is identical to solution S at
positions max{i ′, i}+ 1, . . . ,nN, only completion times for the lower indexed positions are
newly computed. Alongside the computation of the completion times, the feasibility of S ′

is determined by checking for release date violations.
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To evaluate a reinsertion move, the SFDDHT-GRASP uses two different evaluation
functions: The first function Vc(S), which also evaluates construction moves, returns the
objective function value of solution S, while the second function Vf(S) measures the degree
of infeasibility of a solution S. The degree of infeasibility is defined as the total violation of
the job-time windows in a solution S, measured in TUs. Since solutions generated by the
SFDDHT-GRASP never violate deadlines, this measure is defined as

Vf(S) =
∑
j∈N

max{0, rj − Sj}.

The repair and improvement phase executes the hill-climbing procedure, already out-
lined by procedure LocalSearch (Algorithm 6.3), for repairing and improving solutions.
That is, the iterative process incrementally modifies the input solution to construct bet-
ter solutions. The process halts if no improving modification is found. Specifically, the
SFDDHT-GRASP uses the reinsertion operator to construct candidate solutions.

6.3.2 Reducing the Set of Reinsertion Moves

The repair and improvement stages exclude from full evaluation any moves that define
detectable infeasible modifications to the schedule. In addition to the exclusion of as-
signments to delivery departure times, moves that lead to infeasible sequences are also
excluded from full evaluation. The repair and improvement phase utilizes precomputed
matrices Mprec and Mpos, which are also used by the Branch&Bound algorithm (see
Section 5.4). The set of reinsertion moves Mr, that are fully evaluated, comprises the
quadruples (i, t, i ′, t ′) with i, i ′ ∈ {1, . . . ,nN} and t, t ′ ∈ TN

jSi
that additionally satisfy each

of the following conditions:

(a) The considered job at position i, is reinserted at a different position or is assigned to
a different delivery departure time. That is, the reinsertion leads to the generation of
a different schedule.

(b) The considered job at position i, is allowed at the reinsertion position i ′ and not
prohibited by the position constraints given by matrixMpos.

(c) The considered job at position i, is a feasible successor to the jobs at positions
1, . . . , i ′ − 1 of schedule S ′, due to the precedence constraints stored in matrixMprec.

(d) The considered job at position i, is a feasible predecessor to the jobs at positions
i ′+1, . . . ,nN of schedule S ′, due to the precedence constraints stored in matrixMprec.

(e) The assigned delivery departure time t ′ is non-dominated according to the time
bounds De(Sr, jSi , i ′) and Dl(Sr, jSi , i ′), with Sr denoting the schedule that is given
by removing the considered job jSi from schedule S.

Formally, for each valid reinsertion move (i, t, i ′, t ′) ∈Mr, the following holds:

(a) (i, t) 6= (i ′, t ′) and

(b) mpos
jSi ,i ′

= 1 and
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(c)
∑i ′−1
h=1 m

prec

jSi ,jSh
= 0 and

(d)
∑nN

h=i ′+1m
prec

jSh,jSi
= 0 and

(e) De(Sr, jSi , i ′) 6 t ′ 6 Dl(Sr, jSi , i ′).

In each iteration of the hill-climbing procedure, the current solution is replaced by the
best solution constructable from a reinsertion move, if and only if the move improves
the current solution. The repair and improvement phase dynamically changes the active
evaluation function, based on the feasibility status of the input solution. If the initial
solution, generated in the construction phase, is infeasible, then all moves of Mr are
evaluated by function Vf(S). As long as infeasibility-reducing solutions can be constructed,
the hill climber continues to replace the current solution by solutions with a lower degree
of infeasibility until Vf(S) equals zero. The repair procedure ends if a feasible solution is
found or if the hill climber cannot eliminate the remaining release date violations. In the
latter case, the repair and improvement phase ends unsuccessfully, and a new solution
construction attempt is made by the SFDDHT-GRASP. In the first case, the evaluation
function is switched to Vc(S), and the feasible solution is subsequently improved until
no feasible improvement move can be applied. Hence, once feasibility is established, the
solution remains feasible during the remainder of the improvement phase. Algorithm 6.5
covers the repair and improvement phase.

Algorithm 6.5 The Repair and Improvement Procedure of the SFDDHT-GRASP

1: procedure IMPROVE(S, ◦)
2: Let V◦(S) with ◦ ∈ {f, c} denoting the active evaluation function.
3: improved← true;
4: while improved do
5: improved← false;
6: Mr ← {(i, t, i ′, t ′) | i, i ′ ∈ {1, . . . ,nN} and

t, t ′ ∈ TN
jSi

and (a) - (e) hold for (i, t, i ′, t ′)};

7: if ◦ = c thenMr ← {(i, t, i ′, t ′) ∈Mr | (i, t, i ′, t ′) is feasible};
8: if Mr = ∅ return S;
9: (i∗, t∗, i ′∗, t ′∗)← arg min{V◦(apply(S, (i, t, i ′, t ′))) | (i, t, i ′, t ′) ∈Mr};

10: if V◦(apply(S, (i∗, t∗, i ′∗, t ′∗))) < V◦(S) then
11: S← apply(S, (i∗, t∗, i ′∗, t ′∗));
12: improved← true

13: return S;
Note. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

6.4 Path relinking

Path relinking is an intensification strategy originally proposed by Glover (1997). This
strategy explores the solution space along a trajectory between two constructed solutions.
In Resende and Ribeiro’s (2005) study, the enhancement of the GRASP procedure by path
relinking is advertised as a highly promising extension. Hence, the SFDDHT-GRASP
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incorporates this strategy. In general, path relinking modifies an initial solution such that
it increasingly resembles a given target solution. Therefore, each incremental modification
defines an intermediate solution that potentially has a better objective function value than
both input solutions.

Algorithm 6.6 The Path Relinking Procedure of the SFDDHT-GRASP

1: procedure PATH_RELINK(SI, ST )
2: SU

∗ ← arg min{Vc(X) | X ∈ {SI, ST }}
3: SU ← SI

4: while ∆(SU, ST ) > 1 do
5: Mp ← {(i, tS

U

i ,k, tS
U

k ) | ∀i ∈ {1, 2, . . . ,nN},
6: (i, jS

U

i , tS
U

i ) 6= (i, jS
T

i , tS
T

i ) with jS
U

i = jS
T

k }

7: m← arg min{Vc(apply(SU, (i, t, i ′, t ′))) | (i, t, i ′, t ′) ∈Mp}

8: SU ← apply(SU,m)
9: if Vc(SU) 6 Vc(SU∗) then

10: SU
∗
= SU

11: return SU
∗

The SFDDHT-GRASP incorporates this concept (as shown by Algorithm 6.6) as follows.
The procedure starts with an initial solution SI and a target solution ST , the distance between
these two solutions is expressed by the symmetric difference ∆(SI, ST ). The symmetric
difference is defined as the set of elements that are either in SI or in ST , but not in both;
that is, ∆(SI, ST ) = SI∪ST \(SI∩ST ). The procedure iteratively modifies the initial solution
SI to reduce the size of the symmetric difference in each step. Modification is carried out
by application of the reinsertion move operator described in the previous section. Given
the triplets (i, jS

I

i , tS
I

i ) 6= (k, jS
T

k , tS
T

k ) with jS
I

i = jS
T

k , job jS
I

i is removed from position i in
solution SI and reinserted at position k with delivery departure time tS

T

k . In each step, all
possible moves are evaluated. If at least one move leads to a feasible solution, then the
feasible move with the lowest cost is implemented; otherwise, regardless of the resulting
infeasibility, the move with the lowest cost is implemented. The path relinking procedure
stores the best-generated feasible solution along the trajectory, and the procedure ends if
the next path relinking step results in an identical solution to ST . Path relinking returns
the best-encountered solution, which includes the possible return of either initial solution
SI or target solution ST .

6.5 Elite Pool and Implementation

To provide a larger sampling of the solution space in a short time frame, the SFDDHT-
GRASP distributes its workload over nthd threads. The concept of the parallelized version
is similar to the implementation proposed by Aiex et al. (2003). Each thread iteratively
constructs, repairs, and improves solutions, asynchronously. The implementation stores
the best-encountered nε solutions, called elites, in an elite pool Sε. This elite pool is
synchronized between all threads such that each GRASP procedure has access to the same
set of elite solutions. In fact, each thread owns a separate local elite pool. Changes to
the local pool are then communicated to the other threads. In the initial iterations the
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elite pool Sε is filled with the first nε successfully generated feasible solutions. Once the
pool is filled, the path relinking procedure is applied after the construction and the repair
and improvement phases for each feasible solution. A feasible solution S is combined
with each elite ε ∈ Sε once as the initial solution SI and once as the target solution
ST (see Algorithm 6.7). The path relinking phase returns the best-encountered solution
during its application. Since the resulting solution is not necessarily locally optimal, the
improvement procedure with evaluation function Vc is applied to the best-generated
solution. If it has a better objective value than one of the current elites, then it replaces the
worst stored elite.

Algorithm 6.7 Elite Pool-Updating Procedure of the SFDDHT-GRASP

1: procedure UPDATE_POOL(S,Sε)
2: S∗ ← S

3: for εi ∈ Sε do
4: P1 ← path_relink(S, εi);
5: P2 ← path_relink(εi, S);
6: S∗ ← arg min{Vc(X) | X ∈ {S∗,P1,P2}};
7: S∗ ← IMPROVE(S∗, c)
8: ε ′ = arg max{Vc(X) | X ∈ Sε} . Worst elite
9: if Vc(S∗) < Vc(ε ′) then

10: Replace ε ′ by S∗ in Sε;
11: Synchronize the local elite pool with all other elite pools

This update is initially only carried out for the local copy of the elite pool. To synchro-
nize updates, a buffer data structure is shared between each thread. A solution that is
accepted locally as an elite is immediately sent to this buffer. Each thread synchronizes its
elite pool in the last step of a GRASP iteration. The thread that requests synchronization
locks the buffer and implements the buffered changes locally. That is, each buffered
solution is compared to the locally stored elites and replaces the worst elite if the objective
value of the buffered solution is better. This acceptance test ensures that better local
updates, which are not yet synchronized by all other threads, are not overwritten in the
synchronization step.

Algorithm 6.8 Main Procedure of the SFDDHT-GRASP

1: procedure GRASP(nthd,niters,tlim,nε,nRCL)
2: Sε = ∅;
3: n← niters/nthd . Assuming niters mod nthd = 0 for simplicity
4: form = 1, ...,nthd do
5: EXECUTE THREAD(n, tlim,nε,Sε,nRCL) . Copy elite pool Sε and call
6: post optimize elite pool Sε . Apply Algorithm 6.6 for all pairs of elites
7: return εbest = arg min{Vc(εi | εi ∈ Sε}

Note. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

The SFDDHT-GRASP algorithm is outlined in Algorithms 6.8 and 6.9. The termination
of the algorithm is controlled by two parameters: First, the iteration limit niters defines
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the number of GRASP iterations to perform in total; second, time limit tlim terminates the
execution of the procedure after a period of time. The RCL utilized in the improvement
procedure is limited by maximal size nRCL. After all parallel GRASP applications finish

Algorithm 6.9 GRASP Execution in a Thread of the SFDDHT-GRASP

1: procedure EXECUTE_THREAD(I,Tmax, Emax,E,nRCL)
2: while Iteration limit I or time limit Tmax not reached do
3: S← construct(S); . Calling Algorithm 6.4
4: if S is incomplete then goto next iteration;
5: if S is infeasible then S← IMPROVE(S, f); . Try to repair
6: if S is infeasible then goto next iteration; . Repair failed
7: S← IMPROVE(S, c); . Calling Algorithm 6.5
8: update_pool(S,E);

Note. Adapted from “Finding efficient make-to-order production schedules” by D. Bachtenkirch and S. Bock,
2021, submitted to the European Journal of Operational Research. Copyright 2021 by Elsevier. .

execution, a final post-optimization step combines all pairs of elites via path relinking,
and the best-encountered solution during the whole process is returned as the result.

6.6 Conclusion

This chapter introduced the SFDDHT-GRASP that provides heuristic solutions for the
SFDDHT. The developed algorithm is usable as a standalone solution method and acts as
an initial solution (and upper bound) generation procedure for the SFDDHT-B&B. The
described procedure heavily draws on results attained in Chapter 5 in terms of excluding
infeasible or dominated solutions and efficient solution evaluation.

This chapter first provided a generic introduction to the GRASP concept in Section 6.1,
and the remainder of the chapter was concerned with the SFDDHT-GRASP implementa-
tion. Section 6.2 described the solution construction phase of the approach, and Section 6.3
the subsequently executed repair and improvement phase. A major concern in developing
the heuristic procedure was the generation of feasible solutions, which is a difficult task for
instances with restrictive production time-windows. This task was handled by introducing
an insertion order of the jobs to generate solutions iteratively and by a repair procedure
that reduces time-window violations step by step through the introduced reinsertion
operator. The SFDDHT-GRASP was extended by a path relinking procedure, which was
described in Section 6.4, to obtain improved solutions with the help of previously found
elite solutions. Lastly, Section 6.5 provided a description of the overarching implementa-
tion and interaction of the described components. To speed up the computation of a large
number of GRASP iterations, the implementation used multiple threads that synchronize
found elite solutions to perform individual path relinking operations.
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Chapter 7

The Developed Real-Time Control
Approach

This chapter describes a RTC approach that solves a dynamic extension of the SFDDHT,
abbreviated as D-SFDDHT. The dynamic problem models an environment where unpre-
dictable real-time events take place that force changes in the scheduled plans. In particular,
the developed approach handles situations with dynamic job arrivals that occur during
the schedule execution. The approach concentrates its efforts on this single source of
dynamism for evaluation purposes. However, it is easily extendable to handle other dy-
namic events in practical implementations. This chapter broadens the research regarding
IPODS-FD problems by introducing a real-time approach for this problem type. Apart
from Liu and Hsu’s 2015 application of priority rules in for a dynamic scheduling problem,
the conducted literature review in Section 3.3 did not encounter dynamic problem for-
mulations or approaches for IPODS-FDs. While this chapter describes an RTC approach
specifically for the D-SFDDHT, the general framework is suitable for related applications.

Using the terminology introduced in Section 2.3, the approach described in this chapter
to solve the dynamic problem D-SFDDHT is, in its basic form, a predictive-reactive
scheduling approach, which executes schedule repairs and complete rescheduling by
applying either a simple insertion heuristic or a meta-heuristic GRASP approach. As
initial experiments revealed that the performance of the approach is highly dependent on
utilizing machine time correctly, the approach is complemented by a pro-active procedure
that controls the machine workload with predicted target values. The real-time approach
reschedules periodically, although switching the system to an event-driven configuration
is straightforward by stopping the optimization process on new job arrivals.

The remainder of the chapter is structured as follows. Section 7.1 describes the dy-
namic problem D-SFDDHT investigated in this dissertation, and Section 7.2 describes
the implemented RTC approach framework that dynamically responds to new job ar-
rivals. The required updating steps of the approach are detailed in Section 7.3, and the
integration of new jobs into previously generated schedules is explained in Section 7.4.
The proposed schedules by the RTC approach that minimize the total costs are likely to
comprise extended idle periods on the machine, due to the optimality structure of SFD-
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DHT schedules. This property may hinder the successful integration of new production
requests, as machine capacity is left unused. To tackle this issue, Section 7.5 proposes
workload-balancing procedures that force machine capacity usage to anticipate future job
requests. Lastly, Section 7.6 summarizes this chapter’s contents and discusses possible
extensions of the described approach.

7.1 The Considered Dynamic Scheduling Problem

This section describes the dynamic scheduling problem D-SFDDHT that covers dynam-
ically arriving jobs or orders1. The considered optimization problem is extended by a
temporal component that changes the optimization process in the following notable aspect:

The (static) SFDDHT assumes that schedule computation and schedule execution
take place sequentially. Specifically, the computation of an optimized schedule by the
SFDDHT-B&B or the SFDDHT-GRASP takes place before the considered planning horizon
of the production and distribution process execution. In contrast, the dynamic setting
dictates simultaneous planning and execution. Therefore, the D-SFDDHT requires quick
responses to new order requests by proposing updated schedules that integrate these new
requests.

As a motivational example, consider a two-shift operation where production shuts
down during the night and starts each morning. During the production day, several cus-
tomers place orders for which the manufacturer considers processing. At the start time of
the day’s first shift, there is an order-backlog of previous days, planned for production and
distribution on the current day. At the beginning of each day, the problem is to generate a
schedule for the backlogged orders, which can be solved by computing a schedule during
the night. Once the first shift starts, the workforce follows the generated schedule. Simul-
taneously to the execution, new orders arrive with the request to produce and transport
the orders during the current production day. Note that it is reasonable to assume that
an initial vetting phase takes place. Hence, the system typically processes orders that
are likely (but not unquestionably) executable during the current work day. With the
addition of dynamically arriving orders, the problem arises of quickly deciding whether
integrating a new order into an executable schedule is possible and, if so, proposing a
modified schedule that takes the already executed operations into account.

Moreover, consider the following assumptions about the dynamic setting:

• Order requests placed by customers must arrive before a given (e.g., daily) deadline. The D-
SFDDHT considers a finite planning horizon to be optimized. Within this planning
horizon, requests that arrive after a given deadline are not considered in the current,
but rather in the subsequent planning horizon. A typical problem instance thus
comprises several known orders at the beginning of the planning horizon, while the
remaining orders arrive dynamically over time. Note that, theoretically, the planning
horizon’s length may span a large amount of time (e.g., weeks, months, or years);

1Note that in the context of D-SFDDHT, the terms job and order are used interchangeably. As the problem
formulation allows rejecting customer orders, the term order might be a more natural fit.

page 144



7.1. The Considered Dynamic Scheduling Problem

this assumption hence does not limit the usefulness of the problem formulation.
Therefore, the presented approach to solve the D-SFDDHT is generally applicable
in continuous production environments. However, imposing a relatively short
planning horizon with a backlog of orders aims at computationally evaluating the
approach in Chapter 8.

• A single source of dynamism, namely, the incoming order requests, exists in the model.
Therefore, all attributes, apart from the arrival times of orders, are expected to be
deterministic. There exists no cancellation of orders by customers. Additionally,
the delivery is assumed to be reliable, such that deliveries occur precisely at the
pre-agreed times. Furthermore, it is generally expected that any decision made by
an optimization approach for the D-SFDDHT is executed as planned without any
deviations.

• Dynamically incoming orders are subject to rejection. As the D-SFDDHT considers
hard deadlines for orders, there is a possibility that a new order cannot be accepted
and fulfilled timely; in such cases, rejecting orders is allowed. The problem for-
mulation assumes that order acceptance is beneficial from a business stand-point,
since rejection may lead to contractual penalties imposed on the manufacturer or
loss-of-goodwill on the customer’s side. Order rejection is thus only allowed if the
applied solution approach cannot feasibly integrate a new order request.

The Dynamic Problem: Formally, the dynamic problem formulation of the D-SFDDHT
is equivalent to the static problem SFDDHT (see Chapter 4) with the exception of also
modeling dynamically arriving orders and the possibility of rejecting orders. The formula-
tion considers a finite planning horizon with start time 0 and end time tT during which the
schedule execution takes place. To distinguish between the dynamic and static versions,
dynamic parameters and variables are accentuated by use of ( ˘ ). In the considered finite
planning horizon orders,

N̆ = {1, 2, . . . ,nN̆}

arrive dynamically at arbitrary times. These orders are placed by customers

Ğ = {1, 2, . . . ,nĞ}.

As in the static problem, a set of fixed delivery departure times T̆g exists for each customer
g ∈ Ğ at which completed orders may commence with transportation.

Dynamic Orders: Each order j ∈ N̆ has an arrival time ăj, which marks the time at which
order j first becomes known to the system. One distinguishes between two types of orders:
orders known at the beginning of the planning horizon and dynamically arriving orders.
The former type has arrival time ăj = 0, while the latter type has arrival time ăj > 0. For
all intents and purposes, time 0 of the planning horizon marks the D-SFDDHT solving
optimization approach’s activation time. It must be noted that the problem formulation
still includes job production release dates for which r̆j > ăj holds.
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Note that given sufficient computational time before the beginning of the planning
horizon, the D-SFDDHT is equivalent to SFDDHT if it holds that ăj = 0 for each j ∈ N̆;
then, the static approaches can solve the problem without requiring any modifications.
However, in the real-time context, this scenario is unlikely; therefore, the set of revealed
orders at some time-point τ ∈ [0, tT] is defined by

N̆τ =
{
j ∈ N̆ | ăj 6 τ

}
.

An optimization approach that handles the dynamic problem has only partial information
on the job set N̆ at a specific time. The number and characteristics of not-yet-revealed
orders at a time t < tT is thus unknown to the approach.

Furthermore, order integration is not necessarily possible for all incoming requests;
hence, for each order j ∈ N̆, the decision variables are complemented by binary decision
variables X̆j that indicate whether an order is accepted (X̆j = 1) or rejected (X̆j = 0) by the
optimization approach. Note that this decision is only made once for each order and does
not change over the course of the planning horizon. Moreover, one distinguishes orders
by their rejection status. At time τ, the accepted orders are

N̆+
τ =
{
j ∈ N̆τ | X̆j = 1

}
,

and the rejected orders are

N̆−
τ =
{
j ∈ N̆τ | X̆j = 0

}
.

Continuing with this time-dependent notation, one distinguishes accepted orders by
their production and distribution status. The currently revealed but unfulfilled orders at
time τ are

N̆u
τ = {j ∈ N̆+

τ | D̆j > τ}.

At time τ, some of the unfulfilled orders are already processed (or in production) on the
machine and wait for transport. These unfulfilled processed orders are defined as

N̆
u,p
τ =

{
j ∈ N̆u

τ | S̆j 6 τ
}

.

Since the processing of these orders on the machine is fixed, only the departure time is
subject to variable planning decisions at time τ. All other revealed orders that still await
processing are therefore defined as

N̆u,-
τ =

{
j ∈ N̆u

τ | S̆j > τ
}

.

All orders for which the start of distribution has already taken place are no longer part of
the problem.

Objective: The dynamic version considers two objectives. The first objective seeks to
integrate as many orders as possible into a feasible schedule; that is, maximize

z̆1 =
∑
j∈N̆

X̆j.
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The second objective is to schedule the integrated orders as efficiently as possible. The
schedule’s performance is measured by the sum of total holding and transportation costs
of the accepted orders:

z̆2 =
∑

j∈N̆,X̆j=1

c̆H
j

(
D̆j − C̆j

)
+
∑
g∈Ğ

c̆T
g

∣∣{D̆j | j ∈ N̆g, X̆j = 1
}∣∣ .

The optimization approach presented in the following sections assumes a hierarchical
structuring of both objectives. That is, integrating order requests (maximizing z̆1) is the
primary objective, while optimizing the schedule costs (minimizing z̆2) is the secondary
objective. This structure models an inflexible scenario that assumes prohibitive order rejec-
tion costs that arise. As a result, whenever schedule integration of an order is possible,
accepting an order request is seen as the superior decision. A more flexible scenario that
allows for the rejection of orders to optimize scheduling costs is not considered, as it
requires additional information regarding the exact cost of rejecting orders. Nevertheless,
Section 8.7.4 evaluates the results of the proposed RTC approach for D-SFDDHT in light
of flexible and inflexible environments.

7.2 The Real-Time Control Approach

In this section, the framework of the developed RTC approach that controls the previously
described dynamic environment is presented. The approach generally adapts the approach

Figure 7.1

Information Flow in a Manufacturer’s Real-time Control System
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Note. Adapted from Bock, S. (2010). Real-time control of freight forwarder transportation
networks by integrating multimodal transport chains. European Journal of Operational
Research, 200(3):733–746. Copyright 2010 by Elsevier.

introduced by Bock (2004, 2010) to control freight forwarder transportation networks. A
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version of this concept is also applied by Ferrucci et al. (2013) and by Ferrucci and Bock
(2014, 2015, 2016) for other types of dynamic pickup and delivery problems.

At all times, the approach proposes a feasible production and delivery schedule for
the accepted and unfulfilled orders. An optimization algorithm continuously generates
alternative schedules to the currently executed one. Moreover, the approach periodically
tries to integrate new order requests into the existing schedule alternatives and checks
whether a better alternative schedule can replace the currently proposed schedule in exe-
cution. The information flow for such a system is illustrated in Figure 7.1 (Bock, 2010). In
line with the terminology introduced in Bock (2010), the proposed and currently executed
schedule is called the relevant schedule. The description of the RTC approach’s components
assumes that the workforce executes the relevant schedule precisely as proposed. There-
fore, the manufacturer carries out the relevant schedule without any deviations and delays.
Conceptually, the approach works on two different levels, namely, the process level and the
adaption level: On the process level, the manufacturer and distributor execute the relevant
schedule. Meanwhile, on the adaption level, the RTC approach carries out computations
to generate alternative schedules implementable in the future. These optimized schedules
are called theoretical schedules.

The RTC approach employs a periodic rescheduling policy. It proposes a relevant
schedule at periodic intervals of time, valid for one interval length duration (see Fig-
ure 7.2). These intervals of length ta are called anticipation horizons, where duration ta is a

Figure 7.2

State of the Real-Time Control Process for an Anticipation Horizon

Process level
Relevant schedule Sr

τ

Fixed decisions of Sr
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Adaption level
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τ Alternative scheduling decisions
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controllable parameter. At the end of each anticipation horizon (which is identical to the
beginning of the next anticipation horizon), the approach proposes the relevant schedule
Sr
τ. The subscript τ ∈ {0, ta, 2ta, . . . , tT − ta} refers to the schedule that is proposed for the

interval [τ, τ + ta]. As time advances, new order requests arrive. These incoming order
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requests are initially buffered until time progresses to the end of the current anticipation
horizon. Since the D-SFDDHT also considers hard-time window constraints, feasible
integration of requested orders is not necessarily achievable. A request integration strat-
egy is applied to accept or reject an incoming request (see Section 7.4), and the available
time during an anticipation horizon [τ, τ+ ta] is used to compute a schedule Sr

τ+ta that is
proposed for the subsequent anticipation horizon [τ+ ta, τ+ 2ta]. For schedule generation,
the current environment state (also called a snapshot) is captured and used to generate a
static problem instance of the SFDDHT, which is then solved by a static solver. As the
approach assumes the execution of decisions proposed by schedule Sr

τ for the interval
[τ, τ+ ta], it simulates the decisions (production and delivery of orders) that lie in this in-
terval. Affected orders are consequently not (or only partially) part of the generated static
problem instance. After simulation and instance generation completes, the remaining
time of the anticipation horizon is dedicated to generating an improved plan for interval
[τ+ ta, τ+ 2ta]. The details of the approach are discussed in Sections 7.3 to 7.5.

7.3 Update Handling

This section discusses the update handling of the proposed RTC approach at the end of
each anticipation horizon (see Figure 7.3). The following descriptions detail the update
handling initiated at time τ+ ta, which is the end of the current anticipation horizon. The
following steps are carried out in the presented order:

1. Termination of the optimization process that generated theoretical schedules for the
subsequent anticipation horizon [τ+ ta, τ+ 2ta].

2. Handling of buffered order requests with arrival during the current anticipation
horizon [τ, τ+ ta].

3. Selection and proposition of a new relevant schedule Sr
τ+ta , which is to be executed

during the subsequent anticipation horizon [τ+ ta, τ+ 2ta].

4. Simulation of the decisions proposed by the relevant schedule Sr
τ+ta in the interval

[τ + ta, τ + 2ta]. This step leads to the generation of a new static instance and the
adaption of all stored theoretical schedules to the now executed events (up to time
τ+ ta) and the simulated events (up to time τ+ 2ta).

5. Starting the optimization process that generates plans for the anticipation horizon
[τ+ 2ta, τ+ 3ta].

The first three steps are carried out at the end of the anticipation horizon [τ, τ+ ta] at
time τ+ ta. For descriptive purposes, assume that these steps can be executed effectively
in zero time. In practice, one must ensure that Sr

τ+ta is proposed at time τ+ ta at the latest
such that decisions that immediately take place at this time (and were not present in
the previously proposed plan) are executable. Step 4 starts at the beginning of the next
anticipation horizon at τ+ ta. Once the simulation completes, the RTC approach dedicates
the subsequent anticipation horizon’s remaining time to the optimization process (Step 5).
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Figure 7.3

Flow Diagram of the Real-Time Control Approach for an Anticipation Horizon
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7.3.1 Simulation of the Current Anticipation Horizon and Static Instance
Generation

As a means of generating a static instance at time τ for the revealed orders N̆τ, the decisions
made according to the relevant schedule Sr

τ in the interval [τ, τ+ ta] are simulated. This
simulation involves (a) all production decisions and (b) all delivery decisions that will
be executed according to schedule Sr

τ. The simulation time is thus fast-forwarded to
time τ+ ta. It is important to note that preemption is not allowed in the model, and the
processing on the machine hence occasionally fixes decisions beyond time-point τ+ ta for
a job that started production earlier than τ+ ta but completes production later than τ+ ta.
The simulation and static instance generation performs as follows:
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• The static instance omits already fulfilled orders and orders that will be fulfilled
during the simulation interval [τ, τ+ ta] according to schedule Sr

τ. That is, the set of
jobs in the static instance in the interval [τ, τ+ ta] is:

N = N̆u
τ \
{
j ∈ N̆u

τ | C̆j 6 D̆j 6 τ+ t
a} .

According to the relevant schedule, Sr
τ, the orders excluded from the set N̆u

τ al-
ready departed or will depart during the current anticipation horizon; therefore, all
decisions concerning these orders are already determined.

• The orders that are already produced or will be produced, partly or entirely, in the
current anticipation horizon interval but are not, according to schedule Sr

τ, planned
to be delivered during the current anticipation horizon are only partially simulated.
The currently planned completion time C̆j is fixed, while the departure time is kept
variable. These orders are referred to as semi-fixed orders. The set of semi-fixed
orders Nf is defined as

Nf = N̆u
τ \
{
j ∈ N̆u

τ | S̆j 6 τ+ t
a < D̆j

}
.

To model this aspect, a feasible static schedule, generated during the current antici-
pation horizon, must fulfill the following constraints:

Cj = C̆j for each j ∈ Nf.

In contrast to the fixed completion times, the departure timesDj oblige no additional
restrictions other than those already present in the static problem formulation.

• All non-semi-fixed (i.e., free) orders, ignoring release dates, can start production
earliest at time τ+ ta or (if machine time is reserved further) after the latest finishing
semi-fixed order on the machine. To avoid allocation of variable jobs before the
simulation time window ends during scheduling generation, the release dates of the
free jobs are adapted to the simulation. At time τ, the release dates of the free orders
are determined as follows:

rj = max
{
rj, τ+ ta, max

j∈Nf

{
C̆j
}}

for each j ∈ N−Nf.

• The remaining parameter values concerning the orders in the static problem instance
are identical to the parameter values of the dynamic problem instance:

∀j ∈ N :

pj = p̆j,
cH
j = c̆H

j ,
d̄j =

˘̄dj.

• As the current schedule Sr
τ is simulated until time τ+ta, the available departure times

in the static instance are reduced to Tg =
{
t ∈ T̆g | t > τ+ ta

}
for each customer

g ∈ Ğ. Equivalently, the procedure updates the transports IT and IT
g for each

customer g ∈ Ğ.

• The remaining customer information of the static problem is equivalent to the
dynamic problem’s information.
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7.3.2 Solving Static Instances

The proposed real-time concept requires prompt responsiveness to dynamic events. Hence,
the implemented approach uses the heuristic SFDDHT-GRASP approach (see Chapter 6)
in favor of the exact B&B approach (see Chapter 5) to solve the static problem instances. At
the start of each anticipation horizon, a static instance, generated according to Section 7.3.1,
is forwarded to the SFDDHT-GRASP solver. The heuristic approach executes until time
τ+ta and returns several generated schedules. These schedules define the set of theoretical
schedules at the end of an anticipation horizon, one of which will be selected as the relevant
schedule Sr

τ+ta . The existence of semi-fixed orders Nf requires slight modifications to the
heuristic approach that are discussed next.

7.3.2.1 Construction Phase

As described in Section 6.2, the SFDDHT-GRASP adds jobs to a partial schedule in order
of non-decreasing time-window length pw

j , which is computed before the first iteration of
the SFDDHT-GRASP starts. This ordering is modified such that the construction heuristic
adds

• all free jobs N−Nf in order of non-decreasing time-window length pw
j first, and

• all semi-fixed jobs Nf in order of decreasing fixed completion time Cf
j second.

Semi-fixed orders complete a partial schedule by iterative insertion at the front of the
schedule, since each semi-fixed order’s schedule position in a complete schedule is fixed.
The choice of the best move for a semi-fixed order reduces to selecting the most cost-
effective departure date assignment. Note that the partial schedule after inserting all
free orders can be infeasible. In particular, a free order j ∈ N \ Nf with release date
rj > max

{
Cf
j | j ∈ Nf

}
may violate its release date such that Sj < max

{
Cf
j | j ∈ Nf

}
holds.

That is, a free job occupies machine time allocated to the semi-fixed orders. Even for such
schedules, semi-fixed orders are inserted into the schedule at their allocated times without
triggering any rescheduling procedure. The approach ignores such violations because
they are simultaneously handled by penalizing release date violations and corrected in
the repair phase.

7.3.2.2 Repair, Improvement, Path Relinking

In the repair and improvement phases and the path-relinking procedure of the SFDDHT-
GRASP, schedule modifications are carried out by reinsertion moves. The following
modifications to the heuristic handle the semi-fixed jobs:

• No reinsertion move applied to a semi-fixed job j ∈ Nf is allowed to change the jobs
position. Therefore, the procedure constructs only moves that change the departure
time of a semi-fixed job in the schedule.

• No reinsertion move applied to a free job is allowed to change the position of a free
job to one of the fixed positions 1, . . . , |Nf|.
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• The rescheduling procedure that generates canonical schedules ignores the semi-
fixed orders. That is, the rescheduling procedure that optimizes completion times to
minimize holding costs does not apply to the first |Nf| positions.

7.3.2.3 Integration into the Real-Time Control Approach

With these changes implemented, the SFDDHT-GRASP is applied as described in Chap-
ter 6. The RTC approach starts the execution of the SFDDHT-GRASP after simulation
and static instance generation at the beginning of an anticipation horizon, and the pro-
cedure only halts upon receiving a termination signal from the RTC approach at the end
of an anticipation horizon. No other termination criterion is active. During execution,
the SFDDHT-GRASP generates a set of elite schedules, which form the set of theoretical
schedules. If new order requests arrive, the RTC approach considers these theoretical
schedules for integrating new requests. Thereafter, the approach implements the best
theoretical schedule as the relevant schedule of the next anticipation horizon.

7.3.3 Adaption of the Stored Theoretical Schedules

The best theoretical schedule is chosen as the relevant schedule Sr
τ+ta at time τ+ ta. The

decisions made by this schedule are simulated up to the end of anticipation horizon
[τ + ta, τ + 2ta]. In conjunction, the stored theoretical schedules (elites) are updated to
follow the simulated decisions. In particular, the stored theoretical schedules are modified
in two ways: First, the previously simulated and now executed events of the previous
anticipation horizon [τ, τ+ ta] are handled; second, the simulated decisions of plan Sr

τ+ta

are adopted. Note that this modification also affects the theoretical schedule chosen as the
relevant schedule. Specifically,

1. Each order that executed (departed from the manufacture) in the interval [τ, τ+ ta]

from the theoretical schedules is removed. As these orders were semi-fixed already,
the remaining scheduling decisions are unaffected by the removal.

2. The simulated decisions in interval [τ + ta, τ + 2ta] according to schedule Sr
τ+ta

lead to two types of modifications. Each order that is planned to depart in interval
[τ+ ta, τ+ 2ta] is removed from each theoretical schedule. Note that removing such
an order may result in a sub optimal schedule concerning the holding costs (i.e.,
non-canonical). Therefore the schedule is canonized after removal. Furthermore, an
order that is planned to complete but not depart in interval [τ+ ta, τ+ 2ta] is marked
as semi-fixed in the now applicable static instance and each schedule is consequently
modified to guarantee the semi-fixed order by simple positional changes of the
relevant orders. Again, this triggers the rescheduling procedure to minimize holding
costs after completing the modification.

It must be noted that these modifications may lead to infeasible schedules that are removed
from the list of theoretical schedules. The remaining feasible theoretical schedules define
the elites for the subsequent optimization process. Evidently, at least one schedule – the
relevant schedule Sr

τ+ta – remains and is reused as an elite.
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7.4 Integration of Order Requests

This section discusses the procedure executing two strategies that attempt to integrate
new order requests into the planning process. Consider time-point τ+ ta that is the end of
the current anticipation horizon. During the interval [τ, τ+ ta], new order requests may
have arrived. A buffer stores these requests until the end of the anticipation horizon, and
the task of the integration procedure at time τ+ ta is to decide whether the requests will be
accepted or rejected. The decisions is made by either generating a schedule that integrates
the dynamic requests (resulting in order acceptance) or failing to find such a schedule
(resulting in order rejection). At the present time τ+ ta, the current relevant schedule is
Sr
τ, which proposed decisions for the interval [τ, τ+ ta] that were executed. During this

time, the optimization procedure generated theoretical schedules Stτ,1, Stτ,2, . . . , St
τ,nS

τ
that

are now implementable as the subsequent relevant plan Sr
τ+ta . The integration procedure

attempts to insert the new order requests into these theoretical schedules.
The procedure handles the buffered orders in a first-come-first-served (FCFS) manner;

that is, it considers the integration of buffered requests in order of their arrival times.
Two strategies are employed to integrate these requests: The first strategy is called the
integration strategy, which tries to integrate a request into an existing plan quickly by
applying a least-cost insertion procedure, and the second strategy is called the optimization
strategy, where the SFDDHT-GRASP attempts to find schedules that integrate the requested
orders throughout the subsequent anticipation horizon. The procedure that implements
the first strategy returns positive answers to order requests quickly if integration succeeds
and delegates a final decision on the acceptance or rejection of the remaining (initially
not accepted) requests to an integration procedure that executes during the subsequent
anticipation horizon. The RTC approach’s default strategy is to first apply the integration
strategy to all incoming requests in order of arrival and then utilize the optimization
strategy for all requests for which the integration strategy failed. The two strategies are
presented in Algorithm 7.1 and Algorithm 7.2. As illustrated in Figure 7.3, the integration
strategy procedure is immediately called after stopping the optimization process at the
end of each anticipation horizon.

Algorithm 7.1 Insertion Strategy

Require: Sε - the current pool of elite solutions generated by SFDDHT-GRASP
Require: NR

τ - the indexes of buffered order requests
1: for j ∈ NR

τ do
2: Add job j to the current static instance
3: for ε ∈ Sε do
4: Apply the best insertion move (see Section 6.2) for job j to extend ε
5: if at least one ε ∈ Sε is feasible then
6: Remove all infeasible elites from the elite pool Sε

7: else
8: Remove job j from the current static instance
9: Revert the addition of job j to each elite ε ∈ Sε

10: Label job j as rejected by insertion
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Algorithm 7.1 labels each buffered job as either accepted or rejected by insertion. In
the latter case the customer that requested the order must wait for a final decision on the
order acceptance until the end of the next anticipation horizon.

Algorithm 7.2 Optimization Strategy

Require: topt - the total available optimization time in the current anticipation horizon
Require: Sε - the current pool of elite solutions generated by SFDDHT-GRASP
Require: NR2

τ - the indexes of buffered order requests labeled rejected by insertion
1: S ′ε ← Sε . copy the current elites
2: Sε ← ∅ . clear the current elite pool
3: tint ← topt/|NR2

τ |

4: for j ∈ NR2
τ do

5: Add job j to the current static instance
6: Execute SFDDHT-GRASP with time-limit tint

7: if Sε 6= ∅ then
8: Label job j as accepted
9: else

10: Remove job j from the current static instance
11: Label job j as rejected
12: if Sε = ∅ then . All order requests are rejected
13: Sε = S ′ε . Restore the old set of elite solutions

The optimization strategy is only activated if at least one request is labeled rejected
by insertion. During the next anticipation horizon, the computing power dedicated to
optimization is instead used to find plans that integrate the initially rejected requests
(Algorithm 7.2). If the optimization strategy leads to the acceptance of at least one
additional order, then the best theoretical schedule is implemented as the subsequent
relevant schedule. Otherwise, the set of theoretical plans that existed at the end of the
previous anticipation horizon is restored. Note that if no additional job could be integrated
during this phase, then the GRASP-heuristic cycled through the construction and repair
phases without finding a feasible schedule. Consequently, the RTC-approach restores
the stored elite solutions, then continues with potentially handling new buffered order
requests and selects the best theoretical schedule as the new relevant schedule as usual.
Following the notation introduced in Section 7.1 the acceptance variable X̆j of order j ∈ N̆
is set to 1 if either of the two strategies labels order j as accepted. If the optimization
strategy fails to integrate an order j ∈ N̆, then the variable X̆j is set to 0.

7.5 Workload-Balancing Techniques

Sections 7.2 to 7.4 describe the RTC approach with all components, which jointly form a
fully functional procedure to solve D-SFDDHT instances. However, the application of this
procedure may result in the under utilization of machine capacity that subsequently leads
to situations wherein order requests are rejected, which could be avoided by proactively
utilizing idle times on the machine. This section presents techniques that control the
workload on the machine in real time to tackle the described issue.
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The need to control the workload arises due to the uncertainty of the required machine
time to process the unknown order requests within their hard processing time windows.
As the RTC has no knowledge about future requests, the plan generation, avoids unneces-
sary holding costs by proposing canonical schedules. The typical structure of canonical
schedules incorporates unforced idle time periods that minimize total holding costs. The
proposed relevant schedule consequently suggests keeping the machine idle for extended
periods of time, if the current situation does not require full machine utilization in the
following anticipation horizon. Specifically, the relevant schedule at time Sr

τ may propose
leaving the machine idle for the whole, or parts of, interval [τ, τ + ta], as illustrated in
Figure 7.4. As the schedule is carried out, the unused machine capacity is irretrievably
lost.

Figure 7.4

Underutilized Machine Capacity in the Anticipation Horizon [τ, τ+ ta]

t

τ

executed production

τ+ ta

simulated production
at time τ

idle time

Note. The relevant schedule for anticipation horizon [τ, τ+ ta] initially leaves the machine
idle. As a new relevant schedule is first implemented at time τ+ ta, the machine capacity
is not utilized during execution of the RTC approach.

To integrate orders that arrive after time τ, the idle time could have been used by
already released but delayed production jobs. This effect of wasted production capacity
is cumulative. Idle-time adds up in periods with low processing requirements, and
decreases available machine capacity in periods with high processing demand. The
real-time approach is thus likely to reject many orders in environments with fluctuating
workload requirements.

To overcome this issue, this section proposes methods that control the machine utiliza-
tion. Specifically, the extended RTC approach forces schedule generation that utilizes idle
periods to improve the chances to integrate dynamic order requests. Let these methods be
known as workload-balancing techniques. In line with the terminology used by Xu and Xu
(2015) (in the context of maintenance activities), the time interval between two idle states
on a machine is called a working interval. The workload of a working interval is the total
processing time of the jobs processed during this interval. As the SFDDHT considers only
a single machine, the processing capacity or maximum workload up to time point t ∈ N0 on
the machine is simply defined as

w̆max
t = t.

In the real-time context, the committed workload at time s, which is committed up to time t,
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is denoted as w̆c
s,t. The term committed is used to refer to already executed machine time

allocations up to time s and simulated or planned processing up to time t, with t > s and
s, t ∈ N0. The committed workload is

w̆c
s,t =

∑
j∈N̆s : S̆j<t

min
{
p̆j, t− S̆j

}
.

The above calculation takes into account the processing of a job before t for a job that
completes after t. The ratio of committed workload at time s up to time t is hence defined as

q̆c
s,t = w̆

c
s,t/w̆

max
t ,

with 0 6 q̆c
s,t 6 1. In the real-time context at time τ, the question arises as to whether the

committed workload w̆c
τ,τ+ta (proposed by relevant schedule Sr

τ) is sufficiently large to
generate enough breathing room to integrate future order requests that arrive after time
τ. The following intrusive workload-balancing techniques’ key idea is to force the static
solver to utilize available machine capacity if this decision is likely to be necessary to
accept future order requests. This approach relies on additional information about future
requests to control the workload on the machine. Different methods are described in the
following sections that suggest a workload to the system.

7.5.1 Expected Workload Balancing

To handle the workload-balancing problem, recognize the following additional assump-
tion about the real-time environment: The RTC system receives information about the
expected workload in the current planning period. This extension is motivated by the fact
that historical data of past order requests and executed plans is likely available in a real-
world setting. To research the effect of information available to the system, two different
scenarios are studied that vary in the provided workload information’s granularity:

1. Total workload scenario. In this scenario, the RTC receives the total (estimated) work-
load throughout the planning horizon. The assumption is that the current planning
horizon’s total workload is predictable by averaging or smoothing the workload of
past planning periods.

2. Interval workload scenario. In this scenario, sectional workload information is available.
Therefore, fluctuations in the required workload throughout the planning horizon
are captured and provided to the RTC. The system periodically receives the estimated
workload up to the end of the simulation interval, and the RTC consequently has
information on intervals with lower and higher demand for machine time. As
with the first scenario, it is reasonable to assume that the workload might follow a
predictable pattern here and, is therefore anticipated with a high degree of certainty.

In both scenarios the RTC receives the time-indexed parameter q̆r
t (t > 0), which

describes the recommended total workload ratio up time t with 0 6 q̆r
t 6 1 for each t ∈

{0, ta, . . . , T } (i.e., the proportion of recommended working time compared to idle time
on the machine until time t). Naturally, q̆r

0 is set to 0. At the end of each anticipation
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horizon at time τ + ta, the RTC receives value q̆r
τ+2ta . This additional information is

utilized to generate schedules during the interval [τ, τ+ ta] that are implementable as the
relevant plan Sr

τ+ta , which decides on the machine utilization in interval [τ+ ta, τ+2ta]. In
addition, in the total workload scenario, q̆r

t is constant over time; therefore, q̆r
t = q̆

r
t−1 for

each t ∈ {2, . . . , T }. In contrast, in the interval workload scenario, the predicted workload
changes from one anticipation horizon to another.

7.5.2 Calculation of the Required Utilization

The RTC utilizes the suggested workload as follows: At the beginning of an anticipation
horizon at time τ the relevant schedule Sr

τ is implemented, and the decisions proposed by
this schedule are simulated. Therefore, the workload in interval [τ, τ+ ta] is committed.
Additionally, as production that has begun on the machine is not preemptable, any
processing that is proposed to start before τ + ta and that ends after time τ + ta is also
committed.

In the interval [τ, τ+ ta], theoretical schedules are generated that are candidates to be
implemented for the subsequent anticipation horizon [τ + ta, τ + 2ta]. The decisions of
one of these theoretical schedules will commit the workload at least up to time τ + 2ta.
However, the workload w̆c

τ,τ+2ta that will be committed by the relevant schedule S
p
τ+ta

is still controllable by lowering or increasing the idle time on the machine in interval
[τ + ta, τ + 2ta]. The earliest start of an idle period (considering only the executed and
simulated machine time allocation) that may exist in this interval is

ueτ+ta = min{max{τ+ ta, max
j∈N̆τ,S̆j<τ+2ta

{C̆j}}, τ+ 2ta},

with latest end time
ulτ+ta = τ+ 2ta.

The amount of controllable idle time vcτ+ta is the interval length l([ueτ+ta , ulτ+ta ]). If
the recommended workload ratio q̆r

τ+2ta is greater than the committed workload ratio
qc
τ,τ+2ta , then the difference ∆wτ+2ta = wc

τ,τ+2ta −wr
τ+2ta with wr

τ+2ta = qr
τ+2ta · (τ+ 2ta)

describes the amount of additional processing required on the machine until time τ+ 2ta

to emulate the recommended workload. To encourage the static solver to generate plans
to approach or attain the recommended workload, the objective function considered by
the SFDDHT-GRASP is extended to penalize schedules that do not utilize the available
machine time in interval [τ + ta, τ + 2ta]. Specifically, let vr

τ+ta denote the additionally
required workload in interval [τ+ta, τ + 2ta] to increase the workload to the maximum
value for which wc

τ,τ+2ta 6 wr
τ+2ta holds. This value is

vr
τ+ta = min{∆wτ+2ta , l([ueτ+ta ,ulτ+ta ])}.

The objective function Vc of the SFDDHT-GRASP is extended to Vc’:

Vc’ = Vc + cI ·max{vr
τ+ta − P(ueτ+ta ,ulτ+ta), 0},

where P(a,b) expresses the processing in TUs on the machine in interval [a,b], and cI is a
sufficiently large cost value such that schedules with higher machine time utilization are
prioritized by the SFDDHT-GRASP.
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7.5.3 Rescheduling

Algorithm 7.3 Left-Shifting Scheduled Jobs
Require: The jobs in schedule S are indexed by their positions 1, . . . ,n
Require: pf - the index of the largest fixed position in the schedule

1: U← vcτ+ta

2: for j = pf + 1 to n do
3: Cmin

j ← {Cmin
j−1, rj}+ pj . Minimal feasible completion time

4: Smin
j ← Cmin

j − pj . Minimal feasible start time
5: Snewj ← max{Smin

j ,ulτ+ta − min{pj,U}}
6: if Snewj > Sj then
7: return . No further left-shifting possible.
8: U← U− Sj + S

new
j

9: Sj ← Snewj

10: for k = j− 1 to pf + 1 do
11: Sk ← Sk+1 − pk+1

12: if U = 0 then
13: return . No further left-shifting required.

A rescheduling procedure (Algorithm 7.3) minimizes a schedule’s idleness penalty
in a (partial) schedule S during the application of the SFDDHT-GRASP. This procedure
reschedules jobs without altering the job sequence or the date assignment of a solution
and minimizes the total schedule cost under this constraint. The rescheduling procedure
executes on each canonical schedule (which minimizes the holding costs) generated
during the SFDDHT-GRASP. As idle-time is penalized only in a small time interval, the
rescheduling procedure usually affects only a small subset of jobs in a schedule. A schedule
generated by the SFDDHT-GRASP usually comprises some semi-fixed jobs at the first
positions, followed by free jobs at the remaining positions. The rescheduling procedure
starts at the first position in the schedule occupied by a free job and continues to evaluate
subsequent positions. The procedure iteratively computes whether scheduling jobs up to
the current position earlier reduces the total cost Vc’ by increasing P(ueτ+ta ,ulτ+ta). This
rescheduling activity is referred to as left-shifting. The procedure terminates when all
penalized idle time has been eliminated or when no further reduction is possible.

The procedure increases the machine utilization in the penalized interval up to vcτ+ta

TUs by iteratively shifting allocated processing times in this interval. Specifically, the
algorithm checks whether it is possible to produce the current job partially or entirely in
interval [ueτ+ta ,ulτ+ta ]. If this modification is possible, then the procedure again schedules
the previously rescheduled jobs earlier to accommodate the processing of an additional
job in this interval. Each left-shift maximizes the additional time utilization in the interval
while minimizing the increase in holding costs by this modification.

Note that the SFDDHT-GRASP allows for the violation of release dates in the construc-
tion and repair phases. Therefore, the scheduled jobs may violate their release dates. If
the left-shifting procedure detects the violation of a job’s release date, then the condition
in Line 6 evaluates to true, and the procedure terminates. The final idle time violation
cost after rescheduling is ci · U. The introduction of the new objective function Vc’ and
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Figure 7.5

Illustration of the Applied Left-Shifting Procedure
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application of Algorithm 7.3 guides the SFDDHT-GRASP to generate schedules that prop-
erly utilize the workload as suggested. Figure 7.5 illustrates the left-shifting procedure.
The original schedule does not produce jobs in interval [ueτ+ta ,ulτ+ta ], since canonically
scheduling all jobs results in maximized completion times. As vc

τ+ta > 0 holds for the
schedule, the Algorithm 7.3 reschedules the free jobs j and k to increase the workload
until τ+ 2ta.

7.6 Conclusion

This chapter presented the dynamic problem D-SFDDHT and an RTC approach for solving
it. Section 7.1 described the dynamic problem with dynamic order arrivals. The uncertainty
of future order requests hinders the proposing of high-quality schedules throughout
the planning horizon. Additionally, this problem turned out to be challenging due to
considering hard time-window constraints: Proposing scheduling decisions that minimize
holding and transportation costs makes it more challenging to integrate future requests.
Sections 7.2 to 7.5 presented a real-time approach that continuously optimizes schedules
that take the current situation into account. The approach generates static instances
throughout the planning horizon to optimize snapshots by the SFDDHT-GRASP and
periodically propose updated schedules. The approach offers two methods to integrate
newly arriving orders into the proposed schedule: First, a least-cost insertion method
quickly updates the optimized schedules with new orders; if this method fails, then an
optimization approach attempts to integrate the remaining orders. Section 7.5 described
two workload-balancing techniques that proactively try to balance the machine utilization
to increase the chance of successfully integrating new order requests.

The dynamic version D-SFDDHT includes a single source of dynamism; dynamically

page 160



7.6. Conclusion

arriving orders. The model concentrates on this single dynamic aspect because including
additional dynamic components would interfere with the analysis of the RTC approach’s
performance. Some other dynamic aspects that are present in practical applications are,
for example, cancellation of orders, cancellation or delays of transports, changes in the
production and delivery time windows of orders, and non-problem-specific occurrences
such as machine breakdowns. However, the RTC framework can be easily adapted
to handle these aspects by modifying the static instance generation and the schedule
adaption procedures. This adaptability of the approach makes it a powerful tool for
real-time optimization.

Section 7.5 introduced workload-balancing techniques without explaining how to
obtain the workload suggestions specifically – this aspect is out of the scope of this
dissertation but offers a starting point for further research. The two suggested methods,
namely, total workload and interval workload, require analysis of historical data. The general
assumption is that the currently optimized planning horizon is similar to past planning
horizons; that is, a pattern of customer order requests is expected. To offer useful workload
values, one must define and match existing historical patterns to the current request
pattern. A recent approach by Ferrucci and Bock (2016) presents a proactive real-time
routing approach with multiple request patterns. A similar methodology may be adapted
to generate workload predictions and optimize the presented RTC approach.

The conclusion of this chapter also concludes the description of the optimization
approaches for the SFDDHT and the D-SFDDHT. The computational evaluation of the
developed approaches follows in Chapter 8.
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Chapter 8

Evaluation of the Developed
Optimization Approaches

Some results presented in this chapter also appear in the work of Bachtenkirch and Bock (2022),
titled Finding efficient make-to-order production schedules, which is published in the European
Journal of Operational Research. To avoid impairing the reading flow, citations do not reference
this article continuously throughout this chapter. However, tables, figures, and algorithms that are
taken from this paper are referenced as per usual.

This chapter presents the evaluation of the specifically developed optimization ap-
proaches from Chapters 5 to 7 that solve the static problem SFDDHT and the dynamic
problem D-SFDDHT through computational experiments. The experiments aim to gain
insights into the developed solution approaches’ relative performance and their best-
performing configurations. The analysis of the experimental results provides a compre-
hensive overview of the approaches’ strengths and limitations and their applicability in
various scenarios, and it answers the following questions:

• What problem instances are solvable in a reasonable time by the two exact optimiza-
tion approaches CPLEX and the SFDDHT-B&B?

• Do differences in the solvability of instances exist based on the tightness of time
windows and different settings of transportation cost values for the exact solution
approaches?

• Which proposed lower bound performs best in terms of bound strength and runtime
behavior?

• How does the heuristic SFDDHT-GRASP approach perform in terms of solution
quality and speed?

• What roles do the repair, improvement, and path relinking phases play in the
performance of the heuristic GRASP approach?
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• Is the SFDDHT-GRASP approach suitable as an initial upper bound procedure for
the B&B algorithm, a stand-alone heuristic, and an optimization procedure for the
RTC approach?

• Can the RTC approach attain high-quality solutions without full information avail-
able, compared to solutions generated with access to the complete instance informa-
tion?

• Are the workload-balancing methods able to improve the integration of dynamic
orders? If so, at what additional scheduling cost?

• Do scenarios exist in which the workload-balancing methods are more useful than
in others?

The optimization approaches SFDDHT-B&B and SFDDHT-GRASP were implemented
in the programming language C++ to perform the experiments that answer the formulated
research questions. Additionally, the SFDDHT-MILP model was formulated with the
CPLEX Concert Technology Library for C++ so that the CPLEX Solver (v. 12.8) could solve
the generated MILPs. The C++ source code was compiled with the G++ Compiler (v. 10.2.0)
from the GNU Compiler Collection (GCC). All tests were executed on four hardware-identical
machines with 6× 3.6GHz CPUs and 64GB RAM.

The SFDDHT-GRASP solver and the CPLEX solver were executed on 12 threads in
parallel using Intel’s Hyper-Threading technology, which allows the operating system to
address two virtual cores for each of the six processor cores.

The SFDDHT-B&B implementation performed a single-threaded execution. Note that
an efficient multi-threaded implementation of the B&B approach is not straightforward. A
naive implementation that only parallelized the evaluation of child nodes did not attain
convincing results due to the high cost of synchronization compared to the fast execution
of the dominance and bounding procedures. In addition, as the experiments’ results
revealed, the limitations of the implemented B&B approach stem from the stored nodes
and their memory requirement, not from the execution times.

All the conducted experiments use generated problem instances that vary several
problem instance parameters. Section 8.1 starts by describing the specifically designed
static and dynamic problem instance generators and the methods to establish the rec-
ommended workload ratios for the RTC approach. The subsequent sections describe
the computational experiments conducted on these generated instances. This chapter
organizes the description of the computational study as follows:

Computational study for the SFDDHT:

1. Setup of the computational experiments for the approaches CPLEX, SFDDHT-B&B,
and SFDDHT-GRASP that solve the SFDDHT; (Section 8.2)

2. Comparison of the three different lower bounds (see Sections 5.7.1, 5.7.3, and 5.7.4)
in terms of bound strength and computational complexity; (Section 8.3)
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3. Evaluation of the performance of the SFDDHT-B&B with different bound configura-
tions and the CPLEX solver; (Section 8.4)

4. Evaluation of the SFDDHT-GRASP’s performance in comparison to the exact solu-
tion approaches, and analysis of different intensification configurations’ impact on
the solution quality. (Section 8.5)

Computational study for the D-SFDDHT:

1. Setup of the computational experiments for the RTC approach solving the D-
SFDDHT; (Section 8.6)

2. Comparison of workload-balancing methods for the RTC approach in terms of sched-
ule costs compared to statically generated schedules and dynamic order acceptance
success rate; (Section 8.7)

3. Analysis of the impact of varying the anticipation horizon length on the performance
of the overall system; (Section 8.8)

4. Analysis of the approach’s consistency in terms of solution quality for different
proportions of dynamic orders throughout the planning horizon; (Section 8.9)

5. Analysis of the effect on solution quality by omitting the optimization process
while relying on a best-fit insertion procedure, and analysis of the more elaborate
integration procedure’s success compared to the faster, but less elaborate, insertion
method. (Section 8.10)

8.1 Instance Generation

This section describes instance generation procedures that enable the experiments in the
subsequent sections. Since the SFDDHT and D-SFDDHT problems are novel problem
formulations, and no suitable benchmark instances of related problems are published,
specifically designed and implemented instance generation procedures are proposed.

Section 8.1.1 describes the generator for static problem instances that sets the param-
eters of the SFDDHT introduced in Section 4.2. To evaluate the dynamic approach’s
performance for problem D-SFDDHT, a specifically developed procedure extends the
static instances by adding arrival times. Section 8.1.2 describes the implemented mod-
ification procedure. Furthermore, Section 8.1.3 proposes different methods to generate
workload predictions for the real-time setting.

8.1.1 Static Instance Generator

The static instance generator constructs SFDDHT instances by specifying the parameters
of Table 8.1. It accepts a set of configurable parameters that specify the instance char-
acteristics from which it draws the exact parameter values by using a random number
generator. Specifically, the instance generator uses an implementation of the Mersenne
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Table 8.1

Data of a Static Instance

Parameter Brief description

N/nN Jobs
G/nG Customers

∀j ∈ N : pj Processing times (in TU)
∀j ∈ N : cH

j Holding costs (in MU)
∀j ∈ N : rj Release dates (in TU)
∀j ∈ N : d̄j Deadlines (in TU)
∀g ∈ G : Ng* Job-customer allocation
∀g ∈ G : Tg Departure times (in TU)
∀g ∈ G : cT

g Transportation costs (in MU)

*
⋃
g∈G

Ng = N,∀h, i ∈ G,h 6= i,Nh ∪Ni = ∅

Twister generator (see Matsumoto and Nishimura, 1998 for the original description of this
random number generator) of 64-bit numbers with a state size of 19,937 bits, supplied
with the used C++ standard library implementation (libstdc++).

The instance generator expects the following three input parameters that determine
the size of a problem instance to generate:

• The number of jobs nN;
• The number of customers nG;
• The number of departures nT

g = |Tg| for each customer g ∈ G. This number is
identical for each customer.

From an initial parameter setting of the three size parameters, the generator determines
the job-customer allocation in two phases: First, each customer g ∈ G is assigned a single
job; second, an iterative procedure assigns the remaining jobs to customers by successively
drawing the customer for a still unassigned job from the discrete uniform distribution
U(1,nG). After the procedure completes, each customer-job set Ng comprises at least
one job. The processing time of each job j ∈ N is a uniformly distributed integer in the
interval pj ∼ U(1, 100) and has holding cost value cH

j ∼ U(1, 10). The customer-dependent
transportation costs depend on choosing either a low or high transportation cost setting,
and the costs are chosen from either a low-valued distribution (cT

g ∼ U(100, 500)) or a
high-valued distribution (cT

g ∼ U(500, 2,500)) for each customer g ∈ G.
After generating these parameters, the generator constructs job release dates as follows:

The sum of processing times of the generated jobs is P(N) =
∑
j∈N pj. The release date for

each job j ∈ N is drawn from the distribution U[0, rub] with rub being randomly generated
from distribution U(0.75P(N),P(N)).

Afterward, the deadlines are generated by constructing a non-delay schedule (an ERD
schedule) by application of the ERD rule (see Section 5.4.2.1). Let the job completion times
and makespan of this schedule be Cerd

j for each j ∈ N andMerd, respectively. Provisional
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deadlines d̄p
j for each j ∈ N are initially drawn from the distribution U[Cerd

j ,Merd · α],
where α is a configurable parameter that controls the tightness of the job time windows.
In the experiments, α = 0.8 is chosen for instances with tight time windows, and α = 1.2
for instances with relaxed time windows. Thereafter, the departure times for each customer
g ∈ G are generated within the interval

Ig =
[
min
{
Cerd
j | j ∈ Ng

}
, max

{
d̄

p
j | j ∈ Ng

}]
∀g ∈ G.

The latest departure time tg,nT
g

is set to the largest value of interval Ig, whereas the
remaining nT

g − 1 departure dates are distributed evenly throughout this interval; this
distribution defines the departure times Tg for each customer g ∈ G. As the provisional
deadlines do not necessarily align with the generated departure times, the actual deadline
d̄j for each job j ∈ N is set to the nearest departure time with a value equal to or greater
than d̄p

j :

d̄j = min
t∈TgN(j)

{
t | t > dpj

}
.

Note that the generation procedure does not necessarily produce feasibly solvable in-
stances. Therefore, the generator accepts a generated instance only if the ERD schedule
defines a feasible production schedule for this instance. This post generation step con-
cludes the description of the static instance generator.

Table 8.2

Parameter Configurations for the Generated Static Instances

Set Size Transportation costs Time windows nN nG nT
g #

SLT

Small
Low

Tight

{8, 10, 12, 14, 16, 18} {2, 3, 4} {2, 4, 6}

162
SLR Relaxed 162
SHT High Tight 162
SHR Relaxed 162

LLT

Large
Low

Tight

{20, 30, 40, 50} {2, 4, 6} {4, 6, 8, 10}

144
LLR Relaxed 144
LHT

High
Tight 144

LHR Relaxed 144

Total 1224

#: Total number of instances for each set

For the computational experiments in this study, the generator produced a total of 1224
instances with the parameter configurations listed in Table 8.2. The analysis presented in
the subsequent sections groups instances with similar parameters into instance sets. The
following naming scheme is used throughout the discussion of the experimental results:
An instance is either Small or Large, has Low or High transportation costs, and has Relaxed
or Tight time windows. Combining these distinctions yields eight instance sets: SLR,
SLT, SHR, SHT, LLR, LLT, LHR, and LHT. For each identical parameter combination, three
different instances (due to application of the random number generator) were generated.
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Figure 8.1

Information Revelation while Simulating a Dynamic Problem Instance
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Therefore, there are 4× 162 instances in the small sets and 4× 144 instances in the large
sets.

8.1.2 Dynamic Instance Generator

The developed procedure to generate dynamic problem instances for the D-SFDDHT
extends the static problem instances of Section 8.1.1 such that statically generated solutions
constitute benchmarks for the dynamically generated schedules. A dynamic instance
represents the input data from a real-world system sent to the RTC approach to generate
optimized schedules dynamically. Concretely, time-dependent information – the order
arrival times – supplements a static problem instance; that is, the dynamic instance
generation procedure adds an arrival time aj parameter for each job j ∈ N.

Over time, the RTC approach receives portions of the generated dynamic instances’
information. At a given time t during the execution of the RTC process, all jobs with
arrival time aj 6 t are visible, while the implementation hides the remaining jobs from the
approach. The other instance data that concerns the customers and departure times is im-
mediately available for the RTC approach. Figure 8.1 illustrates the described information
reveal that concerns the dynamically arriving orders.

The RTC approach processes the dynamic problem instances in real time; hence, the
parameters defined in the abstract measure of time (the TU) of the generated instances
are mapped to a real-life duration. This mapping is not part of the dynamic instance
generation procedure. Instead, the implementation of the RTC approach allows for control
of the specific mapping by setting initial configuration parameters. For example, the RTC
approach may execute with a setting that maps one TU to 100 milliseconds. This setting
controls the anticipation horizon length ta and the time available to optimize plans within
each anticipation horizon.

The D-SFDDHT environment distinguishes between two types of jobs: jobs already
known when starting the optimization and jobs that arrive dynamically during the exe-
cution of the RTC approach. The generation procedure partitions the jobs N of a static
instance into two subsets; the first subset N̆0 ⊆ N comprises the jobs known in advance,
while the remaining jobs are N̆d = N \ N̆0. For the experiments, two different scenarios
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are considered: The first scenario considers instances with half of the jobs known, and the
second scenario reduces this quantity to approximately a quarter of jobs. In both scenarios,
the most urgent jobs form the set N̆0. Specifically, N̆0 comprises jobs with the earliest
deadline values such that no dynamic job has an earlier deadline than an initially known
one.

In a dynamic instance, all arrival times aj of the known jobs N̆0 have the value zero.
For the remaining jobs the generation procedure chooses the arrival times for dynamically
arriving jobs N̆d such that the RTC approach (theoretically) has a chance of generating the
same schedules as the static approaches. That is, the generator guarantees that the RTC
registers a dynamically arriving job before its start time in the best-found static schedule
such that the RTC approach can schedule a dynamic job within the statically determined
processing interval on the machine. Additionally, the generator ensures that a job’s arrival
time takes place on the job release date at the latest. Arrival times were consequently
generated by considering the start times S∗j with j ∈ N̆d of the best-found schedule s∗ for
static instance x by drawing from a discrete uniform distribution:

ăj ∼ U
[
0, min

{
rj,S∗j − t

a}]
for each job j ∈ N̆d. In the above expression, the parameter ta (the anticipation horizon
length) ensures that a job j arrives before the occurrence of anticipation horizon interval
in which the start time S∗j lies. Therefore, job j can be integrated into the schedule
and theoretically start at time S∗j in the dynamic schedule. In all the experiments, the
anticipation length is ta = 20 TUs long.

In this study, to conduct the experiments for the RTC approach, the generator con-
structed dynamic instance from all large static instances with 50 jobs. Overall, it generated
144 instances with 50% of dynamic orders (25 jobs) and 144 instances, with 76% of orders
(38 jobs) dynamically arriving. Figure 8.2 illustrates the resulting distribution of dynamic
arrival times for both instance sets. The dynamic arrivals tended to occur at the beginning
of the planning horizon, while later arrivals were less frequent.

8.1.3 Recommended Workloads

To apply the workload-balancing methods discussed in Section 7.5, the RTC approach
requires workload recommendations for the planning horizon to optimize. The generated
static instances and corresponding statically generated schedules provide the informa-
tion to generate the recommendation values. The experiments include tests for the two
proposed methods, namely, total and interval workload, each with an omniscient and a
predictive setting. On the one hand, the omniscient settings act as benchmarks for the
predictive settings. Here, workload estimates stem from the best-found schedule to a
dynamic instance’s corresponding static instance for the omniscient settings. On the other
hand, the predictive settings gather estimates from schedules to comparable instances.
The subsequent sections discuss the four implemented and tested workload-balancing
variations.
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Figure 8.2

Arrival Time Distribution of the Dynamic Instances for both Scenarios
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8.1.3.1 Omniscient Total Workload-Balancing

The omniscient total workload-balancing (WBOT) setting provides the RTC approach with
a constant total workload ratio. This value is calculated from a high-quality statically gen-
erated feasible schedule. The setting stimulates the RTC approach to mimic this schedule
in terms of workload utilization. In the computational experiments, the omniscient total
workload value for a given dynamic instance is computed from the best-found schedule
s∗(x) for the corresponding static instance x. This value results from dividing the total
processing times P(x) of all jobs of instance x by the makespan of the best-found schedule
M(s∗(x)). Hence, the predicted workload ratio that remains constant during the execution
of the RTC approach is

∀t ∈ {ta, 2ta, . . . , tT} : q̆r
t =

P(x)

M(s∗(x))
.

Note that the best-known schedule was either calculated by the SFDDHT-B&B algo-
rithm or the SFDDHT-GRASP. Both algorithms exclusively generate canonical schedules
where the maximum completion time is also the latest departure time of a job. Table 8.3
displays statistics for the total workload recommendations generated from the best-found
solutions. On average, the recommended workload ratio is 81% for instances with relaxed
time windows and about 97% for instances with tight time windows.

8.1.3.2 Predictive Total Workload-Balancing

The predictive total workload-balancing (WBPT) setting is more realistic than its omni-
scient counterpart. This workload estimate was generated for a dynamic instance without
detailed data of the corresponding static schedule. Instead, it was assumed that the
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Table 8.3

Total Workload Values Recommended to the RTC Approach

Set Min Mean Max SD

Low / Relaxed 0.76 0.81 0.84 0.03
High / Relaxed 0.76 0.82 0.88 0.03

Low / Tight 0.91 0.97 1.00 0.03
High / Tight 0.91 0.97 1.00 0.03

Total 0.76 0.89 1.00 0.08

Min = minimum total workload; Mean = mean total workload; Max = maximum total
workload; SD = average standard deviation

planning horizon’s events of a dynamic instance will follow a predictable pattern for
which a workload prediction is available. This prediction was calculated from best-found
solutions to static instances related to the static instance from which the dynamic instance
stems. Specifically, in the generated test set, a static instance was defined as related to
another static instance if the transportation cost and time-window generation settings
are identical. Since the real-time experiments use only 50 job instances, there are 4× 36
related instances in the dynamic instance set. The dynamic instance’s expected workload
ratio was computed by averaging the expected workload ratios of the omniscient setting
of its 35 related instances Xr(x) of an instance x. The recommended workload ratios are
consequently

∀t ∈ {ta, 2ta, . . . , tT} : q̆r
t =

1
|XR(x)|

∑
x ′∈XR(x)

P(x ′)

M(s∗(x ′))

for all instances. Note that the above calculation is independent of the proportion of
dynamically arriving jobs.

8.1.3.3 Omniscient Interval Workload-Balancing

The omniscient interval workload-balancing (WBOI) setting provides the RTC with a
new expected workload ratio at the end of each anticipation horizon. Similarly to the
omniscient total workload setting, the omniscient interval workload setting calculates the
expected workload ratio from the best-found solution to a corresponding static instance.
The workload ratio is calculated for all relevant multiples of ta TUs such that a workload
suggestion is available for each RTC update step. Equivalent to the computation of the
committed workload w̆c

s,t, introduced in Section 7.5, the workload of a schedule at time
t ∈ Z is defined as

wt(s
∗(x)) =

∑
j∈N : Sj<t

min
{
pj, t− Sj

}
.

The recommended workload ratios are calculated as follows:
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∀t ∈ {ta, 2ta, . . . , tT} : q̆r
t =

wt(s
∗(x))

t
.

8.1.3.4 Predictive Interval Workload-Balancing

The predictive interval workload-balancing (WBPI) setting averages the WBOI values of
related instances for each dynamic instance. The calculation is carried out as follows:

∀t ∈ {ta, 2ta, . . . , tT} : q̆r
t =

1
|Xr(x)|

∑
x ′∈Xr(x)

wt(s
∗(x ′))

t
.

Figure 8.3 illustrates the (average) workload ratio computed for the four sets, each of
which comprises 36 related instances. The workloads attained by the statically generated
schedules for relaxed and tight instances differ significantly. The average workload
for tight instances is much higher than the average workload of schedules for relaxed
instances. With some exceptions, the schedules for tight instances usually produce without
interruption after the initial scheduling phase. One can explain this behavior by requiring
a feasible schedule to produce all jobs before exceeding the tight deadline restrictions. For
relaxed instances, most schedules initially have an extended idle time period or have a
brief high utilization period followed by an idle time phase. While the pattern appears to
be similar for all relaxed instances, one can identify high variance in the level of workload
utilization.

8.2 Setup of the Computational Experiments for the SFDDHT

The computational experiments for the static problem D-SFDDHT analyzed the exact opti-
mization approaches SFDDHT-B&B and CPLEX and the heuristic optimization approach
SFDDHT-GRASP.

The execution times of the exact approaches were limited to one hour per instance.
Upon exceeding this time-limit, the solvers received a termination signal and returned
their respective best-found schedules and lower bound values. As the B&B approach
requires a large amount of memory to store nodes in the search tree and dominance
table, the implementation imposed a limit of, at most, 100 million concurrently stored
nodes in the search tree. Note that the program deletes nodes of dominated schedules
such that the algorithm is allowed to evaluate more than 100 million nodes in total. The
identical limit applies to the dominance table. Upon reaching this limit, the program
prohibited the insertion of a new entry until an already inserted entry was deleted to
free up memory. This design decision turned out to be inconsequential in the conducted
experiments, as the B&B algorithm never reached the dominance table limit. The SFDDHT-
B&B implementation was executed with different bound configurations to test the bound
effectiveness.

The SFDDHT-GRASP heuristic generated initial upper-bound values for the B&B
approach. In the initial experiments, the heuristic executed with an iteration limit of 10,000
iterations for a single instance. The RCL had a capacity limit of 10 entries, independent of
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Figure 8.3

Cumulative Workload Ratios of Best-Found, Statically Generated Schedules
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Note. The four diagrams display the cumulative workload ratios of the best-found schedules for all 50 job
static instances generated by the SFDDHT-B&B or the SFDDHT-GRASP. The time window and transportation
cost settings group the plots. The blue lines display the average workload ratio computed from the individual
workload ratios for the 36 instances of the respective types. Furthermore, the lighter plots illustrate the
individual workload ratios of the generated schedules.

the instance size. In initial tests, increasing the limit or setting the limit as a proportion of
the number of entries did not noticeably change the generated solutions’ quality. Hence,
the reported computational experiments omit the results for limit variations. The SFDDHT-
GRASP required no other parameter settings.

The reported times measured the execution times of the approaches. The presented
numbers exclude the time spent during the initialization of the approaches (e.g., loading
the problem instance, performing memory allocation, and computing preprocessing steps,
etc.). Additionally, the B&B timings were measured without the initial bound computation
by the SFDDHT-GRASP. Therefore, time measurement for the SFDDHT-B&B started upon
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inserting the root node into the active list and ended either after detecting that the active
list is empty or upon receiving a termination signal because of overstepping the time limit
or trying to allocate more than 100 million nodes. The CPLEX solver time measurement
started before calling the CPLEX-libraries IloCplex::solve() method and after the program
exited this method call. The library parameter IloCplex::TiLim was set to 3,600 seconds.
The SFDDHT-GRASP time measured the execution time starting upon calling a solve
method that signals each of the GRASP instantiations to construct its first local solution.
The end time was taken after stopping the execution of each thread and applying the
post-optimization procedure. To simplify the implementation, all solvers were allowed
to complete their current computation after receiving a signal to stop reaching a set time
limit. Some reported time measurements consequently slightly exceeded the time limit of
3600 seconds for the CPLEX and SFDDHT-B&B solvers. Note that the initial setup for all
solvers took less than a second in all of the conducted experiments.

8.3 Comparison of the Proposed Lower Bounds

This section describes the results of the experiment that compares the proposed lower
bound procedures LB I, LB II, and LB III in terms of the bound quality and computational
complexity. The three procedures were computed for each root problem of the 1,224
generated instances from Section 7.3.1. The experiment results are illustrated in Figure 8.4
for small instances, and in Figure 8.5 for large instances. Both figures separately depict the
different instance sets (low or high transportation costs, relaxed or tight time windows).
Each point represents the mean bound value computed by one of the three lower bound
procedures for a specific instance configuration (each configuration comprises three gener-
ated instances). A visual analysis of the illustrations concludes that lower bound LB II
outperformed both of the other lower bounds. However, lower bound LB I occasionally
returned stronger values than lower bound LB II, and the third lower bound returned the
weakest bound value in most cases. This general relationship between the three bounds is
valid over all instance sets. In detail, LB II returned the strongest lower bound in 1,098
out of all 1,224 instances, while in 125 cases, lower bound LB I performed best, and in
one instance, both lower bounds produced an identical bound value. In terms of solution
quality, lower bound LB III was dominated by LB II, as it strictly performed worse. In
1,013 cases, LB III was worse than LB I, while it performed better in the remaining cases.

A summary of the computational complexity for the three lower bounds is presented
in Tables 8.4 to 8.6. Table 8.4 displays the computational times aggregated by the number
of jobs nN. As expected, the computational time necessary to compute a bound value
increased with an increase in the number of jobs for all three bounds. The lower bound
LBIII computed fastest, followed by lower bound LBII. The lower bound LBI required
dramatically more computational time than the other two lower bounds. This observation
is explainable by the cubic computational complexity of the Hungarian method that
computes the bound value for LB I. Tables 8.5 and 8.6 show that the lower bound LB I was
also highly sensitive to an increase in the number of customers (Table 8.5) and the number
of departure dates (Table 8.6). The same conclusion cannot be made for the lower bounds
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Figure 8.4

Mean Bound Values of the Proposed Lower Bounds for the Small Instance Sets
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Note. The graphs display the data aggregated by instances with an identical setting for jobs, customers, and
departure dates for each small instance set.

LB II and LB III, as we found no correlation between an increase in the two parameters nG

and nT
g and the observed computational time.

In conclusion, the lower bound LB II appears to be the most promising lower bound
for application in the B&B approach due to its strong bounding values with only moderate
computational complexity.
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Figure 8.5

Mean Bound Values of the Proposed Lower Bounds for the Large Instance Sets
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Note. The graphs display the data aggregated by instances with an identical setting for jobs, customers, and
departure dates for each small instance set.

Table 8.4

Summary of the Computational Times in Microseconds for the Three Proposed Bounds Grouped
by the Number of Jobs

LB I LB II LB III

(nN, size) Min Max Mean SD Min Max Mean SD Min Max Mean SD

(8, Small) 12.90 64.49 26.64 10.13 5.27 8.53 6.82 0.70 1.37 2.78 1.81 0.25
(10, Small) 17.05 79.15 33.50 13.41 5.50 9.03 7.41 0.85 1.50 2.69 1.92 0.23
(12, Small) 21.39 94.81 44.25 17.35 5.70 9.76 7.63 0.96 1.62 2.97 1.99 0.25
(14, Small) 28.29 223.35 59.92 33.41 6.05 17.85 8.28 1.44 1.55 6.13 2.12 0.47
(16, Small) 32.50 191.08 73.07 34.28 6.45 10.76 8.66 1.09 1.68 9.30 2.22 0.73
(18, Small) 36.52 304.19 91.88 49.48 6.79 12.03 8.83 1.25 1.85 2.91 2.28 0.25
(20, Large) 69.42 527.82 190.04 104.67 8.92 31.13 11.95 2.03 1.96 3.58 2.61 0.32
(30, Large) 142.23 1510.91 489.46 274.12 9.78 26.13 14.57 2.39 2.41 3.71 2.92 0.28
(40, Large) 289.70 3240.44 1054.46 606.13 12.42 25.69 17.57 2.83 2.92 4.07 3.34 0.25
(50, Large) 501.10 6393.00 1838.44 1187.27 14.70 30.72 21.46 3.83 3.35 4.43 3.78 0.23

Mean - - 390.17 233.03 - - 11.32 1.74 - - 2.50 0.33

Min = minimal value; Max = maximal value; Mean = mean value; SD = standard deviation
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Table 8.5

Summary of the Computational Times in Microseconds for the Three Proposed Bounds Grouped
by the Number of Customers and Instance Size

LB I LB II LB III

(nG, size) Min Max Mean SD Min Max Mean SD Min Max Mean SD

(2, Small) 12.90 141.67 44.40 25.87 5.27 11.34 7.79 1.22 1.37 9.30 1.96 0.57
(3, Small) 17.06 304.19 58.60 42.49 5.50 17.85 7.91 1.44 1.57 6.13 2.08 0.40
(4, Small) 16.64 223.35 61.63 39.47 5.69 10.76 8.11 1.18 1.67 2.99 2.14 0.27
(2, Large) 69.42 2007.58 535.41 424.07 8.92 30.72 17.13 5.68 1.96 4.27 3.01 0.58
(4, Large) 105.53 4117.57 892.42 749.20 9.37 31.13 15.68 3.89 2.21 4.29 3.17 0.47
(6, Large) 89.05 6393.00 1251.48 1258.93 10.12 26.94 16.36 3.70 2.42 4.43 3.30 0.46

Min = minimal value; Max = maximal value; Mean = mean value; SD = standard deviation

Table 8.6

Summary of the Computational Times in Microseconds for the Three Proposed Bounds Grouped
by the Number of Departure Dates and Instance Size

LB I LB II LB III

(nT
g, size) Min Max Mean SD Min Max Mean SD Min Max Mean SD

(2, Small) 12.90 58.45 31.99 11.76 5.27 17.85 6.87 1.00 1.37 6.13 2.09 0.41
(4, Small) 18.82 179.76 57.75 31.66 5.95 10.32 8.01 0.86 1.40 9.30 2.06 0.56
(6, Small) 24.36 304.19 74.88 46.11 6.43 12.03 8.93 1.06 1.37 2.99 2.03 0.29
(4, Large) 69.42 2554.39 518.32 446.39 8.92 26.94 13.53 2.97 1.99 4.43 3.16 0.50
(6, Large) 86.38 4209.65 781.98 734.84 10.62 31.13 15.96 3.83 1.99 4.26 3.18 0.53
(8, Large) 83.48 5212.05 1024.73 974.67 10.81 28.23 17.08 4.27 2.11 4.29 3.17 0.51

(10, Large) 99.71 6393.00 1247.38 1210.00 11.98 30.72 18.98 5.06 1.96 4.27 3.13 0.54

Min = minimal value; Max = maximal value; Mean = mean value; SD = standard deviation
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8.4 Comparison of the CPLEX Solver and the SFDDHT-B&B

This section compares the performance of the B&B algorithm and the CPLEX solver, both of
which computed solutions with the settings discussed in Section 8.2 for all 1,224 instances.
The B&B algorithm was executed four times with the following bound configurations: LB
I, LB II, LB III, and LB I + LB II. The last configuration executed both lower bounds LB I
and LB II for each non-dominated node. For this configuration, a node’s lower bound is
defined as the largest of both computed bound values. This configuration was included in
the experiments, since no clear domination exists between both bounds.

Table 8.7

Results of the CPLEX Solver Applied to all 1,224 Instances, Compared to the Results of the
Branch-and-Bound Approach with Different Bound Configurations

CPLEX B&B (II) B&B (III) B&B (I) B&B (I+II)
nN Opt Feas Time Opt Time Opt Time Opt Time Opt Time

Ti
gh

t

8 100.00 100.00 0.19 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
10 100.00 100.00 0.80 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
12 100.00 100.00 2.99 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
14 100.00 100.00 13.80 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
16 94.44 100.00 352.04 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
18 94.44 100.00 642.81 100.00 0.00 100.00 0.00 100.00 0.01 100.00 0.01
20 54.17 100.00 2027.99 100.00 0.01 100.00 0.01 100.00 0.03 100.00 0.03
30 0.00 31.94 3603.65 100.00 0.17 100.00 0.17 100.00 1.20 100.00 1.28
40 0.00 0.00 3602.89 100.00 21.05 100.00 21.15 98.61 190.23 98.61 195.22
50 0.00 0.00 3603.35 75.00 1065.60 75.00 1078.30 55.56 1964.92 55.56 1979.46

Total (T) 58.33 68.46 - 97.06 - 97.06 - 94.61 - 94.61 -

R
el

ax
ed

8 100.00 100.00 1.02 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
10 100.00 100.00 7.85 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
12 100.00 100.00 167.03 100.00 0.01 100.00 0.01 100.00 0.02 100.00 0.03
14 74.07 100.00 1363.26 100.00 0.02 100.00 0.02 100.00 0.05 100.00 0.08
16 11.11 100.00 3368.63 100.00 0.23 100.00 0.14 100.00 0.73 100.00 0.94
18 0.00 100.00 3605.92 100.00 0.73 100.00 0.49 100.00 2.08 100.00 2.79
20 0.00 100.00 3604.51 100.00 4.67 100.00 1.93 100.00 44.71 100.00 48.73
30 0.00 81.94 3603.77 77.78 809.79 86.11 596.42 48.61 2517.15 47.22 2630.99
40 0.00 4.17 3607.92 6.94 2325.95 13.89 2142.15 0.00 3600.00 0.00 3600.00
50 0.00 0.00 3605.47 0.00 2741.61 0.00 2597.36 0.00 3600.01 0.00 3600.01

Total (R) 33.99 74.84 - 74.67 - 76.47 - 70.42 - 70.26 -

Total 46.16 71.65 - 85.87 - 85.86 - 82.52 - 82.43 -

Opt = percentage of optimal solutions; Feas = percentage of feasible solutions; Time = mean computational
time until termination

Table 8.7 presents the results of the experiments. In general, the tight instances were
more easily solvable than the relaxed ones for the CPLEX solver and the B&B solver.
The different transportation cost settings in the generated instances did not affect the
performance of the approaches. Therefore, the table displays the results differentiated
by time window tightness, but not transportation costs. The B&B approach solved more
than 97% of tight instances with the application of either LB II or LB III. In contrast, the
performance of the B&B approach suffered from the high computational complexity of LB
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I, as it solved fewer tight instances with configurations LB I and LB I +LB II. Moreover, the
aspired performance boost by the combined bound application of the latter configuration
did not occur. This configuration’s performance was the worst one due to the largest
amount of computational time spent in the bounding process out of all B&B configurations.

The B&B approach dominated the CPLEX solver in all respects. All B&B configurations
also solved any instance that CPLEX solved in significantly less time, and, beyond that,
the B&B approach could solve more instances. This conclusion also holds for the relaxed
instances, although both solvers performed worse on relaxed than tight instances. The
performance difference stems from the fact that tight instances generally allow fewer
variations in the schedule due to each job’s limited feasible production interval. Therefore,
both of the exact solution approaches needed to evaluate fewer possibilities. Interestingly,
the weak lower bound LBIII performed comparably to the strongest bound LBII on tight
instances, while providing slightly worse results on relaxed instances. This outcome
indicates that the branching scheme and dominance procedures mainly drive the B&B
approach’s performance.

The B&B solver in its best configuration, with LB II active, could optimally solve all
tight instances with up to 40 jobs in seconds, while the CPLEX solver began to struggle
at instance sizes with 16 or more jobs. The B&B approach optimally solved all relaxed
instances with up to 20 jobs and a significant amount of relaxed instances with up to 30 jobs,
while CPLEX barely solved any of the 16 job instances optimally. In total, B&B (CPLEX)
solved 594 (357) out of 612 tight instances and 468 (208) relaxed instances. Furthermore,
the CPLEX solver failed to produce feasible integer solutions for 193 of the tight instances
and 154 of the relaxed instances.

Table 8.8 also highlights the performance difference of the approaches by comparing
the executed approaches’ lower and upper bound values. The table lists the gaps between
the lower/upper bound value and the best-known upper bound value in percentages. The
upper bound value originated from the best-produced feasible integer solution from both
solvers. Furthermore, the lower bound value of the CPLEX solver was the best-provided
objective value with integrality constraints relaxed, while the lower bound value of the
B&B solver is the minimal lower bound value selected from all non-dominated leaf nodes
of the branching tree at the point of termination (i.e., the branching candidates in the active
set). The results stated in Table 8.8 suggest that the lower bounds provided by the CPLEX
solver on unsolved instances (in the time limit of one hour) are usually low compared
to the best-found objective value. As expected, the best results for the different B&B
configurations are in line with the already discussed results. The configuration with LB II
active was the best-tested one – the achieved lower bound gaps were significantly lower
compared to the ones produced by the CPLEX solver. As the B&B approach with LB II
active was terminated early due to the imposed node limit of 100 million nodes and never
due to the time limit of one hour, improved bounding results are likely with increased
memory allocation. Please see Appendix A for more gathered statistics regarding the
created and dominated nodes of the SFDDHT-B&B.

Overall, the SFDDHT-B&B algorithm proved to be an effective solution method for
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Table 8.8

Comparison of Lower and Upper Bound Gaps to the Best-Found Solution for the CPLEX Solver
and the B&B Configurations

CPLEX B&B (II) B&B (III) B&B (I) B&B (I+II)
nN LB UB LB UB LB UB LB UB LB UB

Ti
gh

t

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 2.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 10.44 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 55.27 4.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 68.75 -* 0.00 0.00 0.00 0.00 0.12 0.15 0.15 0.15
50 76.70 -* 9.06 0.00 12.66 0.00 17.89 1.53 19.09 1.53

R
el

ax
ed

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 5.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 34.44 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 47.65 1.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 43.83 2.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 57.10 11.20 2.12 0.00 6.73 0.02 11.49 0.06 12.57 0.06
40 65.19 22.97 20.29 0.00 42.00 0.03 47.65 0.11 48.17 0.11
50 73.86 -* 37.12 0.00 65.26 0.00 64.12 0.00 64.28 0.00

LB = mean gap between lower bound and best upper bound; UB = mean gap between upper bound and best
upper bound; * no feasible integer solution

small- to medium-sized instances and is superior to the standard solver approach. To a
large degree tight instances in particular were solved quickly by the developed approach.
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8.5 Evaluation of the SFDDHT-GRASP

The analysis of the performance of the SFDDHT-GRASP heuristic starts with Table 8.9,
which reports the results of the SFDDHT-GRASP configuration (see Section 8.2) that
generated the initial upper-bound values for the B&B procedure. The table displays the
proportion of instances for which SFDDHT-GRASP computed the best-found solution
(best); that is, the B&B procedure did not improve the initial upper bound, either because
the heuristic found the optimal solution or because the SFDDHT-B&B terminated forcibly
due to its memory limitations without finding a better solution. In the latter case, the
quality of the heuristic solution cannot be assessed accurately. Furthermore, the table
reports the gap to the best-found solution (gap) and the execution time for computing
10,000 iterations (time).

Table 8.9

Summary of the Initially Generated Solutions for the B&B Approach by the SFDDHT-GRASP
within 10,000 Iterations.

SFDDHT-GRASP SFDDHT-GRASP
nN Best Gap Time nN Best Gap Time

Ti
gh

t

8 100.00 0.00 0.11

R
el

ax
ed

8 100.00 0.00 0.19
10 100.00 0.00 0.17 10 100.00 0.00 0.31
12 100.00 0.00 0.32 12 100.00 0.00 0.54
14 100.00 0.00 0.48 14 100.00 0.00 0.78
16 100.00 0.00 0.76 16 100.00 0.00 1.28
18 100.00 0.00 1.15 18 98.15 0.02 1.86
20 95.83 0.02 1.53 20 95.83 0.03 3.44
30 80.56 0.23 5.55 30 88.89 0.06 11.98
40 34.72 1.75 13.85 40 91.67 0.11 31.19
50 44.44 2.49 31.75 50 100.00 0.00 70.93

Total (T) 83.01 0.53 6.46 Total (R) 97.06 0.03 14.26

Best = percentage of instances where the SFDDHT-GRASP found the best-known solution; Gap = mean gap
to the best-known solution; Time = mean computing time for 10,000 iterations

Overall, the SFDDHT-GRASP generated mostly optimal or close-to-optimal solutions
for all problem instances. The solution gaps of suboptimal solutions to the best-found
solution were low, with a mean gap of under 1%. The SFDDHT-GRASP computed the best-
found solution for over 97% of the relaxed instances and over 83% of the tight instances.
As the B&B solver initially started with an upper bound generated by the SFDDHT-
GRASP (executed with the stated configuration) in the experiments, the exact procedure
certainly profited from the tight upper bounds provided by the heuristic procedure. Bear
in mind that the low gaps reported for the large relaxed instances with 30, 40, and 50 jobs
likely stem from the SFDDHT-B&B’s failure to compute optimal solutions, although this
conjecture cannot be proven by the computational results.

Overall, the time spent to compute 10,000 iterations was quite low for small instances
but over-proportionally increased on larger instances. This behavior can be explained
by the quadratic and cubic complexity of the construction and improvement procedures.
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Evidently, lowering the iteration limit on larger instances solves the issue of increased
execution times. Alternatively, one could, for example, evaluate only a random sample of
construction and improvement moves on larger instances to still construct a large number
of solution samples. However, the considered purposes of the heuristic approach did not
mandate testing a sampling evaluation scheme.

In addition to this single run on the static instances, experiments were conducted
to test the improvement phases’ and path-relinking procedures’ impacts on the overall
solution quality. Different SFDDHT-GRASP configurations were tried with or without
the following components: the improvement phase (I), the path-relinking procedure (P),
and the post-improvement of a new elite (E). Note that the setting (-/E/-) only applies
the improvement procedure to constructed high-quality solutions. Each configuration
executed three times on every instance, each time with a different seed for the random
number that decides the selection of the next insertion move during the approaches’
construction phase.

Table 8.10 reports solution gaps to the previous experiments’ best-found solutions and
execution times in seconds. As expected, the configuration with all components active
(I/E/P) performed best on average (average gap under 1%). The solution quality suffered
slightly from deactivating the path relinking procedure. Moreover, both configurations
(I/E/P) and (I/E/-) had the highest computational costs. The configuration that only
improved the already well-constructed solutions (-/E/-) performed worse, with an av-
erage gap of about 5%, but was computationally much less exhausting. The additional
activation of the path relinking procedure did not improve the results in this case. In
comparison, the sole application of the path-relinking procedure performed even worse.
The deactivation of all components did not lead to satisfactory results, with an average
gap of over 43%. Overall, the improvement procedure appears to be vital for generating
high-quality solutions, while applying the path-relinking procedure is much less critical.

To investigate the different settings’ performance under tight time restrictions, the
SFDDHT-GRASP additionally executed the six different configurations with a time limit of
6 seconds. This experiment simulated the limited optimization time during the execution
of the RTC approach. Table 8.11 reports the results of this experiments, listing the number
of executed iterations (iter) performed within 6 seconds, the average gap to the best-known
solution (gap) and the average iteration (iter*), and (time*) that found the best solution
of the configuration. For example, for tight instances with eight jobs, the configuration
(I/E/P) performed 978,164.78 iterations on average and always returned optimal solutions
generated after executing on average of 10.43 iterations in under 50 milliseconds. The
experiment’s overall results are in line with the results of the experiment with the iteration
limit active. The intensification procedures turned out to be instrumental for generating
high-quality solutions. Although the configuration (-/-/-) executed on average almost
thrice (11 times) as many iterations compared to the base configuration (I/E/P) on tight
(relaxed) instances, the solution quality was poor in comparison. Especially on small
instances, the best-performing solution was generated early during execution; however,
this behavior changed for larger instances. The execution of the configuration (I/E/P)
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Table 8.10

Results of the SFDDHT-GRASP Solver Applied to all 1,224 Instances Limited to 10,000 Iterations

I/E/P I/-/- -/E/- -/-/- -/E/P -/-/P
nN Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Ti
gh

t

8 0.00 0.11 0.00 0.09 2.02 0.06 2.67 0.06 2.81 0.09 2.03 0.09
10 0.00 0.16 0.00 0.13 3.14 0.08 4.08 0.08 3.65 0.11 4.15 0.11
12 0.00 0.29 0.07 0.27 0.26 0.13 2.05 0.13 0.23 0.18 0.91 0.18
14 0.01 0.43 0.00 0.40 0.39 0.20 3.43 0.20 0.87 0.25 1.21 0.25
16 0.02 0.70 0.01 0.65 0.42 0.29 7.31 0.28 0.80 0.36 2.54 0.36
18 0.02 1.08 0.10 1.02 1.18 0.47 9.74 0.46 1.69 0.55 3.25 0.56
20 0.09 1.31 0.11 1.20 2.40 0.62 16.45 0.61 2.21 0.78 3.52 0.79
30 0.77 4.68 1.65 4.48 8.20 2.31 40.80 2.30 7.95 2.80 11.46 2.83
40 2.56 13.26 4.01 12.43 13.16 6.12 57.17 6.08 14.34 7.44 19.88 7.54
50 4.52 25.63 5.80 24.73 22.69 11.10 77.83 11.04 23.86 13.20 32.71 13.45

Total (T) 0.94 5.52 1.38 5.27 6.12 2.48 25.20 2.46 6.58 2.99 9.19 3.03

R
el

ax
ed

8 0.04 0.18 0.10 0.14 0.93 0.05 3.88 0.05 0.67 0.12 1.52 0.12
10 0.04 0.31 0.02 0.23 0.39 0.06 5.74 0.06 0.57 0.17 1.06 0.17
12 0.01 0.55 0.00 0.45 0.68 0.08 16.16 0.08 1.08 0.25 3.02 0.25
14 0.00 0.82 0.01 0.68 1.40 0.08 21.23 0.08 2.18 0.33 5.61 0.32
16 0.07 1.41 0.07 1.19 2.15 0.10 31.89 0.09 2.78 0.50 7.88 0.48
18 0.00 2.05 0.13 1.75 3.50 0.12 36.98 0.12 3.57 0.63 10.72 0.63
20 0.05 3.98 0.11 3.21 5.07 0.17 54.97 0.16 3.81 1.54 6.93 1.41
30 0.23 15.84 0.56 13.38 7.11 0.46 103.57 0.44 5.56 5.44 12.89 4.81
40 0.68 42.71 1.25 37.27 8.87 0.98 132.51 0.93 8.50 12.72 21.33 11.30
50 0.65 98.50 1.29 88.96 7.94 1.59 153.87 1.44 7.00 25.81 22.52 21.67

Total (R) 0.20 19.41 0.41 17.20 4.21 0.42 62.57 0.39 3.88 5.53 10.12 4.78

Total 0.57 12.46 0.89 11.24 5.16 1.45 43.88 1.42 5.23 4.26 9.65 3.90

Gap = mean gap to the best-found solution; Time = mean computational time

Note. Each configuration was executed three times with different seeds for the utilized random
number generator.

attained better results with the less restrictive iteration limit for large instances, compared
to the 6-seconds time limit.
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Table 8.11

Results of the SFDDHT-GRASP Solver Applied to all 1,224 Instances Limited to 6 seconds

I/E/P I/-/- -/-/-
nN Iter Gap Iter* Time* Iter Gap Iter* Time* Iter Gap Iter* Time*

Ti
gh

t

8 978164.78 0.00 10.43 0.00 1402473.98 0.00 11.67 0.00 2879823.28 1.28 648.56 0.00
10 610596.98 0.00 17.67 0.00 738190.96 0.00 17.07 0.00 1827564.38 3.54 6437.47 0.07
12 258722.69 0.00 17.72 0.00 292982.72 0.00 30.94 0.00 884151.96 1.03 35569.90 0.44
14 165890.30 0.00 33.59 0.00 179848.80 0.00 48.26 0.00 436816.87 1.31 70597.80 1.13
16 103480.52 0.00 40.19 0.00 109408.39 0.00 59.00 0.01 287664.70 3.14 112410.06 2.45
18 63303.02 0.04 125.37 0.01 66044.15 0.12 257.31 0.03 156087.37 6.07 73903.94 2.93
20 82477.46 0.07 935.11 0.14 89521.24 0.08 1707.94 0.19 163950.94 10.92 91153.38 3.16
30 18373.04 0.32 5435.29 1.36 19670.86 1.23 7211.71 2.02 41795.71 37.20 21675.03 3.12
40 6516.06 2.92 3091.83 2.82 6905.65 4.56 3552.22 2.67 12753.33 57.54 6465.99 2.96
50 3804.81 5.34 1643.67 2.96 3918.24 6.61 1746.60 2.76 6956.54 79.90 3444.06 2.98

Total (T) 205647.15 1.02 1328.83 0.86 260203.26 1.48 1710.20 0.90 595136.84 23.41 40828.68 2.07

R
el

ax
ed

8 507058.78 0.12 16.57 0.00 705191.96 0.00 22.30 0.00 3847197.21 1.76 148992.51 0.32
10 254186.63 0.00 30.72 0.00 329926.69 0.04 87.89 0.00 2813248.61 0.78 418888.70 1.09
12 133793.59 0.00 60.06 0.00 156199.94 0.00 76.96 0.00 1739453.09 4.98 720396.61 2.50
14 86602.56 0.00 73.78 0.01 98949.94 0.00 79.77 0.01 1508360.52 8.66 754351.50 2.92
16 50700.76 0.03 601.20 0.08 56775.91 0.02 616.06 0.08 1206062.24 15.65 546402.98 2.78
18 32655.13 0.00 775.37 0.16 36737.46 0.00 2033.11 0.34 862302.50 21.11 409132.83 2.81
20 17760.83 0.05 1269.47 0.61 21825.32 0.12 1974.07 0.70 540941.19 37.95 260067.99 2.94
30 4216.43 0.46 1241.89 1.88 4976.93 0.89 2082.40 2.58 183042.38 83.45 80801.06 2.81
40 1562.31 1.69 824.24 3.12 1757.50 2.53 936.88 3.25 89837.75 120.79 42409.39 2.81
50 647.62 2.33 391.10 3.52 699.42 3.30 350.28 2.93 56777.75 140.15 29755.74 3.11

Total (R) 96815.92 0.55 575.88 1.10 125584.18 0.81 887.28 1.15 1154785.01 49.73 313404.89 2.47

Total 151231.54 0.78 952.36 0.98 192893.72 1.14 1298.74 1.02 874960.92 36.57 177116.78 2.27

-/E/P -/E/- -/-/P
nN Iter Gap Iter* Time* Iter Gap Iter* Time* Iter Gap Iter* Time*

Ti
gh

t

8 1362521.00 1.88 255.66 0.00 2844963.59 1.97 112.06 0.00 1356443.17 1.21 468.45 0.00
10 1020279.98 2.89 259.30 0.00 1843392.89 2.94 210.15 0.00 989079.79 1.68 900.47 0.01
12 494010.09 0.07 1981.98 0.04 862510.13 0.03 673.09 0.01 498079.02 0.42 13850.43 0.21
14 306262.94 0.09 6914.89 0.15 435391.98 0.00 1368.94 0.02 307611.30 0.58 25093.02 0.54
16 214035.25 0.10 3120.51 0.11 286068.70 0.05 4742.35 0.17 212612.58 0.85 49599.57 1.38
18 128961.39 0.39 5800.69 0.29 155301.33 0.98 7071.43 0.34 129842.19 1.17 52051.08 2.28
20 129144.96 1.05 19073.38 0.76 162724.93 1.76 14783.97 0.55 130001.92 2.10 34799.65 2.11
30 30037.39 5.24 6540.12 1.28 41512.49 6.07 4683.79 0.84 29765.11 8.69 14236.18 3.06
40 10602.85 11.09 2610.19 1.53 12706.46 11.47 2158.69 1.01 10536.21 19.32 6460.39 3.52
50 5957.64 23.72 2144.44 2.08 6923.26 23.74 2062.38 1.76 5927.51 34.20 3990.38 3.95

Total (T) 328936.06 5.35 5212.45 0.72 593481.01 5.59 4037.92 0.54 327097.79 8.16 19420.58 1.88

R
el

ax
ed

8 988192.48 0.66 607.87 0.01 3721896.44 0.22 37618.59 0.08 986683.40 0.43 6197.83 0.07
10 671465.87 0.06 6878.50 0.13 2713356.30 0.09 1090.24 0.00 667308.54 0.14 55883.48 0.58
12 527428.33 0.22 15859.56 0.28 1693399.83 0.43 51651.76 0.26 525159.28 0.89 163532.20 1.13
14 416167.30 0.71 26056.04 0.51 1481394.57 1.14 52331.76 0.26 416766.35 2.64 181837.13 1.87
16 322415.00 0.98 28907.26 0.64 1186022.98 1.82 46560.78 0.27 315413.17 4.51 115470.87 1.91
18 263503.43 2.57 13740.69 0.57 841595.72 3.07 53451.37 0.44 250224.89 4.89 114426.48 2.75
20 50214.18 2.82 10311.26 1.31 534654.17 5.21 11492.83 0.10 52670.69 4.72 25739.58 2.73
30 14207.60 5.08 3069.99 1.53 182902.65 6.81 393.49 0.03 14812.17 11.59 8616.64 3.58
40 6459.29 8.13 816.89 0.85 88702.93 9.06 413.07 0.08 7137.72 21.80 4727.81 4.21
50 3093.99 7.24 459.81 0.75 54516.93 7.76 469.14 0.18 3635.33 28.42 2781.83 4.57

Total (R) 290100.51 3.20 9846.51 0.71 1128120.71 3.99 22917.28 0.16 287024.13 9.03 61251.94 2.51

Total 309518.29 4.28 7529.48 0.72 860800.86 4.79 13477.60 0.35 307060.96 8.59 40336.26 2.19

Iter = mean number of iterations executed within 6 seconds; Gap = mean gap to the best-found solution; Iter*
= mean iteration number in which the best solution was found; Time* = mean computational time after which
the best solution was found

Note. Each configuration was executed three times with different seeds for the utilized random
number generator.
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An interesting aspect worth mentioning is the important role of the repair procedure,
especially for tight instances generally. To demonstrate this importance, the implemented
program tracked the number of constructed complete solutions and the number of feasible
solutions generated, with or without repair, during execution of the SFDDHT-GRASP. Fig-
ures 8.6 to 8.8 illustrate the results of tracking these numbers for the (-/-/-) configuration
as it performed only the construction and repair steps, thus computing the largest number
of iterations in the specified time limit of 6 seconds. Figure 8.6 displays the proportion
of complete solutions and feasible solutions for the processed instances broken down by
time window tightness and number of jobs. For relaxed instances, the completion success
rate was approximately 99.58% on average, whereas this value decreased to 89.80% on
tight instances. The completion success for large (20 jobs or more) and tight instances
was only 82.30%, and the rate of produced feasible solutions (with and without repair)
followed the same pattern. While in 99.30% of the iterations, a feasible solution could be
constructed for relaxed instances, the proportion dropped to 62.98% for tight instances.

Figure 8.6

Proportion of Incomplete Solutions Generated in 6 Seconds by the SFDDHT-GRASP with Setting
(-/-/-)
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Note. Incomplete solutions are discarded, and no repair attempt is made during application of the SFDDHT-
GRASP. The labels Rx/Tx indicate the time-window tightness and the number of jobs of the instances.

Figure 8.7 displays the feasibility aspect in more detail. The figure additionally shows
the proportion of feasible solutions with and without repair. About 91.36% of iterations
produced a complete and feasible solution for relaxed instances without requiring the
repair procedure. In addition, roughly 8% of initially infeasible solutions could be repaired.
The results for the tight instance set highlights the importance of the repair phase. Only
8.65% initial construction attempts were successful, whereas in 54.36% of the iterations,
the repair phase produced a feasible solution. Furthermore, less than 1% of the iterations
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for tight instances with 30 or more jobs resulted in a feasible solution.

Figure 8.7

Proportion of Feasible Solutions Constructed in 6 Seconds by the SFDDHT-GRASP with Setting
(-/-/-)
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Note. The labels Rx/Tx indicate the time-window tightness and the number of jobs of the instances.

The repair phase almost always successfully repaired relaxed instances, as depicted in
Figure 8.8. The figure illustrates the proportion of successfully repaired solutions. The
success rate was at 98.76% for relaxed instances, and it decreases for tight instances to
approximately 66.16%.

Overall, the repair procedure was highly successful in producing feasible solutions for
the considered instance types. For larger instances, it might be advisable to implement
techniques to increase the likelihood of producing complete solutions. For example, a
backtracking procedure could rewind a number of executed solutions during the con-
struction phase when encountering the situation where no extension of a partial schedule
exists. However, evaluating the necessity and possible solutions of additional components
for the SFDDHT-GRASP is out of the scope of this work.

In summary, the SFDDHT-GRASP results are promising, as the heuristic generates
high-quality solutions with low gaps. In particular, the heuristic seems to be a fitting tool
to compute schedules for relaxed instances that provide less opportunity for restricting
the subproblem space during application of the SFDDHT-B&B algorithm. Therefore, it is
suitable as a stand-alone heuristic for the SFDDHT. In addition, the computational time
necessary to attain these results turned out to be very low. This property enables the
SFDDHT-GRASP application to be an optimization procedure for the RTC approach. Since
the SFDDHT-GRASP evaluates many solutions whose generation does not depend on
prior computations, the approach is highly scalable, and the anticipation horizon length
for the RTC approach can consequently be adjusted as required. Even with very low
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Figure 8.8

Proportion of Successful Repair Attempts in 6 Seconds by the SFDDHT-GRASP with Setting
(-/-/-)
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Note. The labels Rx/Tx indicate the time-window tightness and the number of jobs of the instances.

optimization time, useful results can be expected.

8.6 Setup of the Computational Study for the D-SFDDHT

The computational experiments for the dynamic problem D-SFDDHT tested the imple-
mentation of the RTC approach executed with different configurations on the dynamic
instances generated from the static instance sets. The implementation of the RTC approach
allows for the configuration of the following parameters:

Either one of the workload-balancing settings – WBOT, WBPT, WBOI, or WBPI– is
active, or the RTC enforces no workload balancing. The abbreviation WBN indicates the
latter option.

Additionally, the implementation allows for a free configuration of the anticipation
horizon length, the initial plan construction duration, and the translation of the instance
parameters’ TU values into milliseconds. The experiments comprise three different config-
urations for these timings:

1. Short: In this setting, a time unit equates to 100 milliseconds. Therefore, the average
job processing duration is approximately five seconds (50 TUs) long. The anticipation
horizon length of ta is 2 seconds, and the initial plan solve time is limited to 5 seconds.

2. Medium: This setting triples the parameter values of the short setting: A TU is 300
milliseconds long, while the anticipation horizon length is 6 seconds, and the initial
plan solve time is limited to 15 seconds. Note that the medium setting is considered
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to be the base case for the experiments, which is why the vast number of results
presented in the experimental study use this setting.

3. Long: In this configuration, the timings are five times as large as in the short con-
figuration. Hence, the values are 500 milliseconds for each TU, 10 seconds for each
anticipation horizon, and 25 seconds for the initial solve time.

Furthermore, the optimization procedure’s deactivation during the execution of the RTC
approach was tested. In addition to the base configuration that optimizes theoretical
plans and uses the optimizer to integrate jobs as well as the initial least-cost insertion, the
following two additional settings were used:

• Optimization and Insertion: In this setting, only the least-cost insertion integrates new
order requests. If the insertion procedure does not successfully generate a feasible
plan that integrates the new request(s), then the RTC immediately rejects the order
request(s). The optimizer reschedules during each anticipation horizon.

• Insertion: In this setting, the RTC does not produce optimized schedules after the
initial plan generation. New order requests are integrated only by least-cost insertion.
As in the previous setting, rejection of new requests occurs when the insertion fails
for a new request.

The RTC approach executed with all combinations of the five workload configurations
and the three time-setting configurations on all 144 dynamic instances with 50% dynamic
orders. The number of tested configurations for the experiments concerning the 76%
instances and the deactivation of the optimization components was limited. Therefore,
throughout Sections 8.7 to 8.7.4, the results pertain to the instances with 50% of dynamic
orders solved by the RTC approach with a medium time setting, optimization activated,
and both integration strategies. Section 8.8 presents the results for different time settings,
while Section 8.9 varies the number of dynamic order arrivals, and Section 8.10 compares
the different optimization and integration settings.

To assess the quality of the generated dynamic schedules, these schedules are com-
pared to statically generated schedules by the SFDDHT-B&B or the SFDDHT-GRASP. As
explained in Section 8.1.2, each dynamic instance was generated with the information
of a static instance and the best-performing schedule. The best-performing schedule
for the static instance was thus taken as a benchmark for the dynamic scheduling cost.
Note that since the best performing schedule is not necessarily optimal, it is possible –
but unlikely – that a dynamically produced schedule performs better. For the following
experiments, the static results are reported alongside the dynamic results. Furthermore,
the following sections report the total cost gap for the dynamic schedules compared to
the static schedules. For a dynamic schedule s(x̆) for instance x̆ and the corresponding
best-found static schedule s∗(x) with static instance x, the objective gap is computed as

zgap(s∗(x), s(x̆)) =
z(s(x̆)) − z(s∗(x))

z(s∗(x))
· 100. (8.1)
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Allowing order rejections in the dynamic case resulted in occasional negative gaps because
the overall scheduling costs significantly decrease for schedules without the rejected
orders.

8.7 Comparison of the Real-Time Control Workload-Balancing
Methods

This section presents the results of the RTC approach executed on the 144 50% instances
with medium time settings and with optimization as well as both integration strategies
active. The RTC approach was executed five times on each instance with each of the five
different workload-balancing configurations: WBN, WBOT, WBPT, WBOI, and WBPI. The
presented analysis of the experimental results offers insights into the overall performance
of the RTC approach. Section 8.7.1 presents an initial analysis of the results of the generated
schedules; it primarily focuses on the dynamic schedule costs and the order acceptance
rates of the configurations. As the interpretation of the results proved to be difficult
with the unprocessed information alone, a number of additional, different evaluation
approaches were tested to investigate various aspects of the solutions and compare the
configurations in different ways. Section 8.7.2 describes the performance indicators and
their interpretation for the RTC approach that exclude the cost contribution of orders.
Section 8.7.3 evaluates the dynamic schedules by building a new static instance for each
dynamically produced schedule that only comprises the accepted orders. Afterward, an
optimized static schedule (with full information reveal) is compared to the dynamically
generated schedule. Lastly, Section 8.7.4 discusses the attained results in light of flexible
and inflexible environments that value the rejection of orders differently.

8.7.1 Initial Analysis of the Results

In this subsection, the dynamically produced final schedules of the five different RTC
settings are compared with the best-known static schedules generated by the SFDDHT-
B&B or the SFDDHT-GRASP. Table 8.12 summarizes the results of the first experiment.
The first data column (Static) of the table presents the best-found schedules for the relevant
static instances, while the second to sixth data columns display the values attained by
the five RTC configurations. The data is aggregated by the different transportation cost
settings (low or high) and the time window tightness settings (relaxed or tight). Each
cell displays five values with the following interpretation: The first value is the mean
objective value for the grouped instances; the second value is the mean objective value
gap computed by Equation (8.1); the third and fourth values are the mean holding and
transportation costs; and the last value is the mean number of rejected orders during the
execution of the RTC approach.

The discussion starts with the results regarding the acceptance or rejection of dynamic
orders. The attained results of configuration WBN highlight the need for the proposed
workload-balancing techniques because executing the RTC without balancing resulted
in rejecting, on average, 5.64/4.89 of the 25 dynamic orders, which is about 20% of all
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Table 8.12

Comparison of Different Workload-Balancing Methods Applied to all 144 Dynamic Instances with
50% Dynamic Arrivals and Medium Time Settings

Instances Static RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed 38077.36* 38720.92 53041.61 54622.58 43788.25 46724.33
- 1.89 38.93 41.95 15.31 22.77

19966.94 21068.44 33430.00 34602.14 24675.22 27948.69
18110.42 17652.47 19611.61 20020.44 19113.03 18775.64

- 0.94 0.00 0.00 0.03 0.00

High Tight 51090.36 35682.67 57308.75 56897.31 53722.33 53642.50
- -28.46 11.86 11.24 5.34 5.03

27256.78 15032.08 33590.58 32560.31 30351.75 29912.56
23833.58 20650.58 23718.17 24337.00 23370.58 23729.94

- 5.64 0.78 0.89 1.14 1.31

Low Relaxed 21569.56 21929.25 34757.97 36238.17 26842.47 30525.97
- 3.31 66.64 75.32 29.02 46.03

16323.42 16942.58 29450.31 31030.22 21497.50 25404.83
5246.14 4986.67 5307.67 5207.94 5344.97 5121.14

- 0.83 0.00 0.00 0.06 0.00

Low Tight 30350.36 17525.33 36234.25 35587.69 32781.89 32807.00
- -39.35 21.50 19.39 10.26 11.49

24508.81 12143.86 30478.06 29844.94 27121.86 27183.28
5841.56 5381.47 5756.19 5742.75 5660.03 5623.72

- 4.89 0.69 0.89 1.06 1.17

* Total cost, objective gap to best-found static objective, holding cost, transportation cost, and rejected jobs

requests. In comparison, the balancing methods introduced in Section 7.5 significantly
reduce the number of rejected orders. In particular, on each of the 72 relaxed instances,
the configurations WBOT, WBPT, and WBPI were able to integrate all dynamic orders.
The issue of rejecting orders is much more prevalent for tight instances compared to
relaxed instances. This discrepancy occurs because each job’s feasible production interval
is, on average, wider in relaxed instances than in tight instances. Therefore, balancing the
workload is more critical in tight environments compared to relaxed environments. In
terms of minimizing the number of rejected jobs, the total omniscient and total predictive
workload methods perform slightly better than the interval omniscient and interval
predictive workload methods. Further investigating this result led us to conclude that
the total workload methods often overestimate the required workload in the beginning
compared to the best-found solution(s).

Figure 8.9 illustrates this observation for a selected instance. The figure displays the
workload ratios of the RTC schedule with different workload-balancing configurations ac-
tive and compares these ratios to the best-known solution’s workload ratios. The predicted
total workload ratio followed by the RTC approach for WBOT and WBPT configurations
was significantly larger than the actual workload ratios at the beginning of the static sched-
ule. The WBN configuration underutilized the machine compared to the static schedule.
As the plotted lines do not converge at the end of the schedule for this configuration, the
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Figure 8.9

Comparison of the Workload Ratios of the Different Balancing Configurations for a Selected
Instance with Tight Time Windows
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dynamic schedule’s total workload was lower than in the static schedule. Therefore, the
RTC approach could not accept all jobs during its execution. The interval approach WBOI
followed the static machine utilization very closely; the small drop-off at the end of the
line occurred due to the production’s earlier completion. Furthermore, the illustration
for the WBPI configuration indicates that the used definition of related instances might
be too simple for this instance to avoid mixing different workload patterns. Figure 8.10
illustrates the workload ratios for a characteristic instance with relaxed time windows.
The behavior of the different configurations executed on relaxed instances is identical to
the behavior on tight instances. However, a much more pronounced over-utilization of
machine time can be observed for the total workload-balancing configurations.

In general, the overestimation at the beginning forces early production of jobs during
the execution of the RTC approach, which is more costly on the one hand but benefits
the integration of future requests on the other, as more capacity is available later on. The
number of rejected jobs does not drastically differ between the balancing approaches.
However, there is a slight bias in favor of both total workload methods. It appears that the
choices made to reduce the penalized machine under-utilization do not necessarily align
with the scheduling decisions of the static schedule, and more rejections therefore occur
compared to the total workload approaches.

Consider the displayed cost values of Table 8.12. The interpretation of the objective
values and objective gaps is not straightforward. The option of the RTC approach to
reject jobs whenever it does not establish a feasible job integration, positively influences
the objective value, as it lowers the scheduling costs. A job rejection lowers the final
schedule’s objective value in two ways: One, each rejected job itself causes no holding and
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Figure 8.10

Comparison of the Workload Ratios of the Different Balancing Configurations for a Selected
Instance with Relaxed Time Windows
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transportation cost in the final schedule, and two, rejection enables the dynamic solver
to schedule other jobs more efficiently, as the machine does not need to allocate time to
produce the rejected job.

For this reason, the table highlights the results of the WBN configuration executed on
tight instances (bold numbers). On average, this configuration’s objective value was almost
35% lower than the best-found objective values for tight instances. The total holding costs
almost halved for tight instances with many rejected orders. Nevertheless, the results seem
to be very promising on relaxed instances. In this setting, order integration was much
simpler, even without any workload-balancing mechanism active. The displayed average
objective gaps were 1.89% on the relaxed instances with high transportation costs and
3.31% with low transportation costs. Again, it must be noted that these gap values were
not measured in an entirely fair manner, as 0.94 and 0.83 jobs were rejected on average.

The balancing approaches’ performance on relaxed instances differs significantly
compared to their performance on tight instances. First, the RTC approach generally solved
tight instances with vastly lower objective gaps than the relaxed instances. Simultaneously,
the number of rejected jobs was slightly higher on average. Second, the interval workload-
balancing methods produced schedules with lower gaps but more rejections than the total
workload configurations. Third, the predictive interval balancing method WBPI attained
an average gap of 5.03% on tight instances with high transportation costs and an average
gap of 11.49%. Note that this approach performed comparably to the WBOI approach.
Taking these results into account, it appears that balancing methods are instrumental in
tight instances while attaining relatively low gaps to statically generated schedules.

As already discussed, the option to reject jobs distorts the interpretation of the attained
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objective values. The drastic positive effect on the objective function of rejecting even a few
orders mandated measuring the performance of the RTC approach differently. Section 8.7.2
thus proposes performance indicators that aim to interpret the solution quality of the RTC
configurations with a different perspective than the one portrayed in Table 8.12.

8.7.2 Analysis with Different Performance Indicators

This section presents three performance indicators that evaluate the scheduling costs
in different ways. The first indicator measures cost values for all solutions – static and
dynamic – from a specified time onward and ignores earlier cost contributions. That is,
the measurement excludes early scheduling costs from the total cost computation for
comparison. This analysis is motivated by the fact that the initial scheduling phase is
not necessarily representative in the dynamic context. The expectation is that the total
workload predictions more accurately reflect the workload in the planning horizon’s main
part than at the start. The first indicator with a warm-up phase measures cost values for all
solutions – static and dynamic – beginning at time t = 1,000. The specific threshold value
was chosen from visually analyzing the workloads of the dynamic schedules that converge
around this time with the static schedule workloads. The separation of jobs impacts the
contribution of holding costs and transportation costs. Specifically, in a schedule s(x)
for instance x, holding costs for jobs j ∈ N with start time Sj < 1,000 are excluded, and
delivery assignments of these jobs are not counted. Hence, in a schedule where only
jobs that start before t = 1000 form a delivery batch, this batch’s transportation cost is
excluded from the cost computation. Figure 8.11 illustrates this performance indicator and
partitions jobs as counted and excluded jobs. Moreover, Table 8.13 reports the results of this

Figure 8.11

Performance Indicator with Warm-Up

excluded contribution
counted contribution
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Note. Job j5 completes in the counted-interval but starts during the warm-up phase and thus is not counted.

performance indicator as average objective values and average objective gaps compared
to the static solutions in the first two rows of a cell. Overall, using this performance
indicator reduced the relative difference between static and dynamic solutions on relaxed
instances compared to the values stated in Table 8.12. Therefore, the high total cost of the
dynamic schedules was caused predominantly at the beginning of the dynamic schedules.
This finding is in line with the two representative illustrations in Figures 8.9 and 8.10.
The workload of the WBOT, WBPT, and WBPI approaches significantly differs from
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Table 8.13

Results for the First Indicator: Comparison of Different Workload-Balancing Configurations
Applied to all 144 Dynamic Instances with 50% Dynamic Arrivals and Medium Time Settings
with Costs Measured First After 1,000 TU

Instances Static RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed 28830.03* 32210.81 30880.92 31601.22 33775.67 34345.92
0.00 11.96 7.58 8.72 17.26 18.78

37.94 39.44 34.11 33.83 38.00 37.25
0.00 7.51 20.07 23.28 17.15 21.52

High Tight 30102.03 26741.86 32574.39 31883.75 33158.61 32087.69
0.00 -9.45 8.12 6.36 9.73 6.36

32.14 31.81 30.47 30.42 31.19 30.86
0.00 -8.28 14.04 12.46 13.15 11.01

Low Relaxed 15888.53 18372.86 18074.25 19080.53 19281.06 20208.28
0.00 16.86 16.22 23.01 24.06 30.83

37.06 39.03 34.00 33.67 36.64 36.61
0.00 10.81 27.08 37.92 25.70 33.48

Low Tight 16508.14 13239.31 18816.39 17832.00 19035.58 18041.83
0.00 -18.33 14.46 6.97 15.40 8.59

31.89 31.56 30.58 30.19 31.22 30.92
0.00 -17.21 19.26 12.96 17.99 12.27

* Total cost, objective gap to static objective, number of jobs evaluated, average gap per evaluated job

the initial statically scheduled workload. This indicator favors the early scheduling of
jobs, as it excludes all jobs that started before t = 1,000 from the total cost sum. This
design favors the two total workload methods WBOT and WBPT, as they overestimate
the initially required workload. Furthermore, the rejection of orders still lowers the
total cost contribution of the dynamic schedules. For this reason, the table includes the
average number of evaluated jobs by the performance indicator as a third value in each
cell. Accordingly, the fourth value in each cell is the average gap per evaluated job.
These corrected values indicate a better performance of the interval approaches than
the total workload approaches on relaxed instances and similar performance on tight
instances. Only the WBOI configuration closely mimics the static schedule’s workload
profile; hence, the number of evaluated orders is relatively close to the number attained
by static scheduling. Interestingly, the cost difference between the solution approaches
mostly concerns the holding costs because, since on average, the transportation costs are
similar between static and dynamic solutions.

The second indicator evaluates the jobs commonly scheduled in all configurations. Let
N(s(x)) denote the jobs scheduled (accepted) in schedule s for instance x. Given the six
generated schedules (Static, WBN, WBOT, WBPT, WBOI, and WBPI) si(x) with i ∈ 1, . . . , 6
for instance x, the evaluation procedure first computes the intersection of scheduled jobs of
the six schedules and then counts these job-contributions while excluding the contribution
of the remaining jobs. As for the first indicator, the exclusion also affects delivery batches
that do not comprise at least one intersection job.
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Table 8.14 presents the results of applying this method and the results of combining the
first two indicators. This third (composite) indicator only measures the cost contributions
of intersection-jobs that start processing at or later than t = 1,000. In detail, the approach
computes the intersection of scheduled jobs with or without warm-up (t ∈ {0, 1,000}) as
follows:

N∩t (x) =

6⋂
i=1

{
j | j ∈ N(si(x)),Sj > t

}
.

The table displays the mean objective gaps to the static objective and the mean number of
commonly scheduled jobs for the second (Time = 0) and third (Time = 1,000) indicators. The
computed intersections were mostly determined by the WBN configuration, which rejected
more jobs than the other dynamic configurations. By applying the second indicator, the
interval approaches WBOI and WBPI seem to be superior to the total workload approaches
WBN and WBOT. The jobs were generally scheduled more efficiently by the interval
approaches. This result is in line with the relative performance between the dynamic
configuration presented in Table 8.12. For the third indicator, the number of commonly
scheduled jobs was lower. The total workload configurations slightly outperformed the
interval configurations on relaxed instances, while the opposite was true on tight instances.
As for the first indicator, the warm-up phase favored the early scheduling of jobs, which
resulted in more efficient scheduling of later arriving jobs by the approaches WBOT and
WBPT.

Table 8.14

Second and Third Indicators: Comparison of Different Workload-Balancing Methods Applied to all
144 Dynamic Instances with Half of the Jobs Known in Advance and Medium Time Settings with
Costs Measured after 0/1,000 TU and for Common Jobs

Instances Time Common RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed 0 49.06 3.39* 39.33 42.29 15.16 23.06
Tight 44.14 -24.70 11.44 11.01 4.46 5.35

Low Relaxed 49.17 4.89 66.90 75.95 28.58 45.86
Tight 44.89 -34.99 22.09 21.21 10.30 13.53

High Relaxed 1000 29.83 8.77 12.09 14.98 16.28 18.23
Tight 22.28 -8.79 8.46 5.58 6.48 5.47

Low Relaxed 29.72 12.72 21.14 30.14 23.62 28.83
Tight 23.22 -17.78 15.42 8.82 12.75 9.10

*objective gap to static objective measured after 0/1,000 TU for a common job set

Time = Earliest time of measurement; Common = Average number of evaluated jobs

8.7.3 Comparison with Static Schedules

This section presents a more elaborate method of evaluating the RTC approach compared
to the previous indicators. The evaluation method presented below compares each dy-
namically generated schedule to an optimized schedule that comprises all accepted jobs
and dismisses dynamically rejected jobs from schedule generation. Specifically, for each
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dynamic schedule sd(x̆) with accepted jobs N0(s(x̆)) for dynamic instance x̆ and its corre-
sponding static instance x, the evaluation approach builds a new static instance x ′. This
instance is identical to x except for omitting the rejected jobs N \N0(s(x̆)). Afterward, the
SFDDHT-GRASP solver computes a static solution s(x ′) with a limit of 15,000 iterations.
This solution acts as a benchmark for efficiently scheduling the accepted jobs, which is
expected to outperform the dynamic schedules due to the full information reveal. The
limit of 15,000 iterations turned out to always be sufficient to generate a better schedule.
Table 8.15 displays the results of this comparison. The WBN configuration with balancing

Table 8.15

Objective Gaps of the RTC Configuration’s Statically Produced Solutions for the Set of Accepted
Jobs by the Individual Configuration

Instances RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed 4.78* 37.64 39.94 13.97 21.64
13.89 84.72 88.03 31.36 51.64
-2.50 7.08 7.00 4.11 1.56

High Tight 4.31 18.64 20.28 17.83 18.58
7.17 47.42 44.53 42.69 42.39
2.17 -3.61 0.75 -0.42 1.22

Low Relaxed 6.08 64.22 72.69 27.58 44.11
14.03 111.72 129.75 48.14 83.25
-3.22 -0.61 -1.28 1.06 -4.00

Low Tight 5.53 36.03 38.00 33.97 33.92
10.47 54.86 59.67 54.72 55.61
-0.64 -4.36 -4.53 -3.53 -5.31

* Total cost gap, holding cost gap, transportation cost gap

deactivated attained mean objective values that are only about 5% higher than the static
objective value. This result indicates that the continuous re-optimization during the appli-
cation of the RTC approach produces dynamic schedules of a high quality. In contrast,
the solution quality suffered from applying the balancing methods. The left-shifting
(i.e., earlier production) of jobs led to a significant increase in holding costs. Note that
the interval balancing methods interfered less with the scheduling of jobs than the total
balancing methods. The early machine allocations recommended by the WBOT and WBPT
configurations led to remarkably high costs on relaxed instances. The applied evaluation
method demonstrates the high impact on workload balancing for request integration. The
workload overestimation for the total workload balancing configurations does not appear
suitable in scenarios with high scheduling costs, compared to the downside of rejecting
orders. Section 8.7.4 discusses the trade-off between scheduling costs and order rejection
costs.
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8.7.4 Analysis for Flexible and Inflexible Environments

The following analysis distinguishes between flexible and inflexible environments. In in-
flexible environments, order rejection must be avoided, as rejecting an order is extremely
expensive due to contractual obligations or product expiration. In the latter case, expira-
tion imposes additional opportunity and disposal costs. Ranking the configurations in
this context is straight forward because solution quality can be measured hierarchically.
The already presented analysis in previous sections leads to the conclusion that the total
workload configurations perform best in this setting despite the high scheduling costs.
The workload overestimation helps to ensure dynamic order acceptance.

The discussion regarding flexible environments is more nuanced than for inflexible
environments. Flexible environments require the joint optimization of scheduling and
rejection costs. The general assumption in this setting is that the products of rejected
orders can be produced either in a subsequent planning horizon (e.g., day) or at additional
monetary costs by, for example, using overtime capacity or outsourcing.

The following analysis measures the performance of the already generated dynamic
schedules by adding to the attained objective function value a rejection penalty that
depends on the number of rejected orders. Without discussing the costs of rejecting orders
in detail, the subsequent analysis assumes that each order’s rejection cost is proportional
to the estimated average holding cost for a scheduled job. This value was calculated from
the best-performing static schedule for each instance. On average, the holding costs per
job for the four instance groups were as follows:

• (Low/Relaxed): 326.47;
• (High/Relaxed): 399.34;
• (Low/Tight): 490.18 ;
• (High/Tight): 545.14.

To analyze the obtained results in this context, Figure 8.12 displays the average sum of
schedule and rejection costs for the four instance groups with an order rejection severity
factor (δ) that scales the average holding cost value. For δ = 1, a dynamically generated
solution with n rejected orders is rated with the additional rejection cost value n-times the
average holding cost value. For δ > 1, the additional rejection cost value is δn-times the
average holding cost value.

The cost values for all dynamic schedules for the five RTC configurations with δ-
factors ranging from 0 to 200 were computed. Thereafter, the mean objective values for
the 36 instances were computed for each of the four instance groups for each δ-factor.
Figure 8.12 displays the costs for δ-factors up to 60 for the tight instances. Up to roughly
a δ-factor of 10, the total cost of the WBN configuration was lower for low tight and high
tight instances compared to the values of the workload-balancing approaches. Beyond
this mark, rejection costs became increasingly prohibitive for the WBN configuration.
The interval workload method performed better than the total workload method up to a
δ-factor of about 20, as the scheduling cost was comparatively lower, but the rejection rate
was slightly higher. Furthermore, on the instances with relaxed time windows, the WBN
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Figure 8.12

Performance of the RTC Configurations with Rejection Costs
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Note. Each graph displays the result for a combination of the time-window tightness (low/high) and the
transportation costs (low/high). The plotted lines display the total costs that include the scheduling and
rejection costs by the chosen δ-value (Delta).

configuration’s performance was comparable to the instances with tight time windows.
The only balancing configuration that rejected orders was the WBOI method. Hence, for
exceptionally high rejection costs, the method performed worse than the other balancing
approaches, although it attained the lowest scheduling costs on average.

From these results, one may draw conclusions regarding the applicability of the ap-
proaches for different scenarios. In environments with tight time windows and high
rejection costs, balancing is required. Although the no-balancing configuration attained
lower costs for low δ-factors, one must consider that the rejected jobs still had to be sched-
uled during subsequent planning horizons and, therefore would contribute additional
costs. For instances with relaxed time-windows, the rejection rate is low for all approaches.
Hence, deactivating balancing mechanisms when rejection costs are relatively low is a
valid option. Similar to prior discussed results, the total workload configuration’s schedule
performance was relatively poor for this type of instance. As the WBPI configuration, like
the total workload approaches, accepted all orders, it displayed superior performance for
scenarios with high rejection costs. Overall, the WBOI configuration is the best-performing
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balancing configuration for relatively low rejection costs for tight and relaxed instances
because of its low scheduling costs.

8.8 Comparison of Different Real-Time Control Time Settings

This section discusses the effect of varying the time settings of the RTC approach by
presenting the results of the RTC approach executed on the 144 50% instances with
small, medium, and large time settings and with optimization as well as both integration
strategies active. Specifically, the RTC approach was also executed with the short and long
settings defined in Section 8.6 to investigate the effect of shortening or lengthening the
time available for optimization during an anticipation horizon. Table 8.16 summarizes
the results of running the RTC approach with the different time settings and displays
the objective gaps and the mean number of rejected jobs. The table does not indicate a

Table 8.16

Gaps and Rejected Jobs for Different Time Settings

Instances opt.-time RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed short 1.32 39.05 41.48 15.25 21.61
1.06 0.00 0.00 0.06 0.00

mid 1.89 38.93 41.95 15.31 22.77
0.94 0.00 0.00 0.03 0.00

long 1.91 39.16 41.11 14.90 21.97
0.94 0.00 0.00 0.03 0.00

High Tight short -28.28 12.06 10.71 5.39 5.86
5.61 0.75 0.92 1.14 1.33

mid -28.46 11.86 11.24 5.34 5.03
5.64 0.78 0.89 1.14 1.31

long -28.75 12.38 10.99 5.83 5.22
5.58 0.72 0.86 1.17 1.28

Low Relaxed short 3.51 65.80 77.05 31.48 45.57
0.92 0.00 0.00 0.06 0.00

mid 3.31 66.64 75.32 29.02 46.03
0.83 0.00 0.00 0.06 0.00

long 2.90 67.54 77.05 30.72 44.92
0.86 0.00 0.00 0.06 0.00

Low Tight short -38.88 21.33 19.16 10.51 12.05
5.00 0.72 0.89 1.06 1.08

mid -39.35 21.50 19.39 10.26 11.49
4.89 0.69 0.89 1.06 1.17

long -39.22 21.70 19.04 10.13 11.63
5.06 0.72 0.86 1.06 1.11

* objective gap, rejected orders

significant difference in the average number of rejected orders or objective values for the
different settings. This result is not surprising, since the results from Section 8.5 revealed
that the SFDDHT-GRASP quickly finds its best solution. This result may not hold for larger
instances, as the number of computable GRASP iterations decreases with an increase in
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the number of jobs to schedule. Within the scope of the conducted experiments, one can
conclude that the medium setting’s optimization time is well suited.

8.9 Evaluation of the Real-Time Control Approach Executed
on Instances with an Increased Number of Dynamic Job
Arrivals

In addition to dynamically computing solutions for the instances with 50% dynamic
arrivals, the program executed the five workload-balancing configurations for the problem
instances with 76% dynamic orders. Similar to the previous experiments, the RTC was
performed with optimization as well as both integration strategies active. Table 8.17
summarizes the results for this experiment. Each cell displays the average objective
gap, the difference to the objective gap for the 50% instances in percentage points, the
average number of rejected jobs, and the difference to the average number of rejected
jobs for the 50% instances in percentage points. As expected, on average, The WBN

Table 8.17

RTC Results with 38 Dynamically Arriving Orders

Instances RTC configuration
WBN WBOT WBPT WBOI WBPI

High Relaxed 1.35* 40.85 43.13 16.58 22.5
-0.54 +1.92 +1.18 +1.27 -0.27
1.58 0.00 0.00 0.03 0.03

+0.64 +0.00 +0.00 +0.00 +0.03

High Tight -29.39 12.00 11.68 6.84 5.57
-0.93 +0.14 +0.44 +1.50 +0.54
6.47 0.67 0.86 1.06 1.25

+0.83 -0.11 -0.03 -0.08 -0.06

Low Relaxed 4.83 67.59 77.41 33.99 46.56
+1.52 +0.95 +2.09 +4.97 +0.53

1.44 0.00 0.00 0.06 0.00
+0.61 +0.00 +0.00 +0.00 +0.00

Low Tight -40.92 21.02 18.35 12.49 11.87
-1.57 -0.48 -1.04 +2.23 0.38
6.42 0.72 0.92 1.11 1.28

+1.53 +0.03 +0.03 +0.05 +0.11

* objective gap, difference to the objective gap of the 50% instances in percentage points, rejected jobs,
difference to the rejected jobs of the 50% instances in percentage points

** no rejections in the 50% solutions

configuration rejected more orders with the more difficult setting. The attained objective
values also increased, except for the high/relaxed instances. In this case, the decrease
in the mean cost value stemmed from a higher rejection rate. Overall, the performance
of the workload-balancing methods did not drastically change for all instance types.
Interestingly, the average number of rejected jobs decreased for the tight instance-set with
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high transportation costs, while the number slightly increased for tight instances with low
transportation costs. As the difference is only marginal, this observation can be attributed
to randomness. The results suggest that the RTC approach with workload balancing active
is well suited for situations with a higher quantity of dynamic arrivals.

8.10 Evaluation of the Optimization Performance

The last experiment evaluated the applied optimization approach’s effectiveness during
the execution of the RTC. Table 8.18 compares the execution of the RTC approach in the
WBPI configuration with three optimization variations executed on the 50% instances
with medium time settings. The first RTC column (OPT+OI+LCI) displays the results with
optimization and both integration strategies active, while the second column (OPT+LCI)
shows the results with the optimized integration deactivated, and the last column (LCI)
presents the results for the RTC approach without the optimizer (for integration and
schedule optimization). The LCI configuration applies only the least-cost insertion pro-
cedure to integrate new requests. The results indicate that the optimized integration

Table 8.18

Results for Different Optimization Configurations

Instances static RTC (WBPI)
OPT+OI+LCI OPT+LCI LCI

High Relaxed 38077.36 46724.33 46308.06 44899.92
0.00 22.77 21.61 18.97

19966.94 27948.69 27629.53 25839.56
18110.42 18775.64 18678.53 19060.36

0.00 0.00 0.06 0.89

High Tight 51090.36 53642.50 54778.06 38286.89
0.00 5.03 6.95 -23.52

27256.78 29912.56 31094.50 17291.75
23833.58 23729.94 23683.56 20995.14

0.00 1.31 1.53 5.47

Low Relaxed 21569.56 30525.97 30171.44 27115.14
0.00 46.03 44.68 32.53

16323.42 25404.83 25010.03 22029.61
5246.14 5121.14 5161.42 5085.53

0.00 0.00 0.00 1.08

Low Tight 30350.36 32807.00 33500.56 20068.25
0.00 11.49 13.78 -29.27

24508.81 27183.28 27851.42 14707.22
5841.56 5623.72 5649.14 5361.03

0.00 1.17 1.33 5.19

* Total cost, objective gap to best-found static objective, holding cost, transportation cost, and rejected jobs

slightly outperformed the configuration without optimized integration – rejections were
less frequent with this option activated. Without the optimizer, the integration of new
job requests often failed. A consequent conclusion is that a simple schedule extension by
insertion heuristics is unlikely to work in the considered dynamic environment. Instead,
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extensive rescheduling appears to be necessary to integrate new jobs and provide feasi-
ble plans. This result justifies the application of the real-time approach that utilizes the
SFDDHT-GRASP to propose dynamic schedules.

8.11 Conclusion

This chapter presented the performed computational experiments for the developed
approaches on specifically designed problem instances. This section summarizes the key
findings of the study.

The proposed optimization algorithms SFDDHT-B&B and SFDDHT-GRASP and the
RTC approach were implemented in C++ to perform on specifically designed problem
instances. Furthermore, the CPLEX Solver was used to solve corresponding MILPs
to provide a benchmark for the SFDDHT-B&B algorithm. The problem instances were
designed to vary instance characteristics to evaluate whether they influence the approaches’
performance. Overall, 1,224 problem instances were generated for the static problem
SFDDHT. The computational study for the RTC approach modified the large static problem
instances with 50 jobs to incorporate dynamic arrival times. The employed generation
procedure enabled a comparison between dynamically generated and corresponding
statically generated schedules such that the performance of the RTC approach could be
evaluated in detail. The problem of dynamic order integration was investigated using five
different RTC workload-balancing configurations, for which workload recommendations
were generated from the static instances and best-performing schedules.

The developed SFDDHT-B&B algorithm attained encouraging results on the instances
with tight time windows and decent results for the instances with relaxed time windows.
The algorithm solved all instances with tight time windows and up to 40 jobs in seconds,
and 77.78% of the 30 job instances with relaxed time windows. With the initially provided
solution of the SFDDHT-GRASP, the algorithm computed feasible solutions for all 1,224
generated instances. The exact algorithm attained the best results with the configuration
that applies LB II. The B&B algorithm benefited from its fast computation and high
bounding values compared to LB I and III. Moreover, although LB III generally provided
the weakest bound values of the three bounds, its fast computing enabled the B&B
approach to obtain similar results as with the application of LB II. The application of LB
I (also in combination with LB II) did not perform well. For large instances, the cubic
computational complexity of the Hungarian method resulted in too long computational
times compared to the attained bound quality.

The developed B&B algorithm clearly dominates the CPLEX solver (which solves the
generated MILPs) in all aspects. Solving the MILP formulation within the time limit of 1
hour became challenging for instances with 14/16 jobs for relaxed/tight time windows.
Furthermore, the solver could only provide feasible solutions for 46.16% of the generated
solutions. Therefore, this solution method can be ruled out from practical usability.

The SFDDHT-GRASP delivered promising results in all aspects. The solution quality
was high, with a mean gap to the best-found solution of under 1% with many instances
solved optimally. Although the finding of feasible solutions is a complex task, the simple
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repair procedure proved to be highly effective. The heuristic was shown to quickly provide
a large sample size of high-quality solutions, thus making the heuristic especially suitable
for dynamic applications.

Based on the results of the RTC approach, it performed well in terms of dynamic order
acceptance rate and scheduling costs. The two integration strategies coupled with the
workload-balancing methods fulfilled their purpose of improving the order acceptance
rate compared to no balancing. All four tested balancing methods reduced the average
number of rejected orders successfully below one for instances with 25 dynamic orders.
The results suggest that workload balancing with correct workload values is instrumental
in integrating new orders and attaining reasonable scheduling costs. The RTC approach
performed well with short anticipation horizons and an increasing proportion of dynamic
orders that caused a more considerable degree of uncertainty.

The testing of the different workload balancing methods revealed that the usefulness
of the different approaches depends on the instance characteristics. The total workload
method appears to be sufficient when the workload remains relatively constant through-
out the planning horizon. Therefore, this method attained decent results on tight instances.
Moreover, deactivating workload balancing also performed well on tight instances. On
the one hand, the mean workload of static schedules for the tight instances was 97% (see
Table 8.3); that is, only 3% of machine time was not utilized. Therefore, balancing had
a smaller effect on schedule generation in these cases. On the other hand, in relaxed in-
stances, the interval methods WBOI and WBPI could utilize the more accurate information
for fitting workload ratios. In these cases, the generated scheduling costs turned out to be
acceptable when considering the high request acceptance rate.

Overall, the performance of the RTC approach highlights the need for powerful opti-
mization frameworks in dynamic settings where order integration is not trivial due to time
window constraints. The integration of dynamic requests by insertion and optimization
successfully integrated dynamic orders in tight settings.
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Chapter 9

Summary and Outlook

This chapter presents the conclusions of this dissertation. Section 9.1 contains a summary
of the contents and highlights the attained results. Lastly, Section 9.2 discusses the
limitations of the research and elaborates on future research possibilities.

9.1 Summary and Research Findings

Coordinating production and distribution processes in the supply chain is a topic of
high importance and opens up immense opportunities for optimization. However, no
widespread research is available that aims at the integration of production and distribution
processes on an operative level. In particular, the detailed scheduling of products and
their outbound distribution by 3PL providers offers many research opportunities due
to the lack of developed models and solution approaches. The developed models and
methods that were presented in this dissertation contribute to this research field.

The research aim of this dissertation, stated in Section 1.2, was to provide insights into
the application of OR methods for the considered IPODS-FD that provide value as is and
are easily extendable towards more complex applications. This aim was accomplished by
developing the optimization methods described in Chapters 4 to 7. The proposed models
and methods cover scenarios with hard time-window restrictions for the joint optimization
of final product holding costs and batch delivery transportation costs. The proposed
methods were explained in detail to allow for their implementation and application
in a real-world system or extension for related applications. Chapter 8 analyzed the
results of the conducted computational experiments in detail to indicate the strengths and
limitations of the proposed approaches.

The contents and findings of the individual chapters are summarized next. Chapter 1
introduced the topic of IPODS with fixed delivery departure times. The research was
categorized as a specific line of research within the field of OR. Furthermore, the chapter
stated the aims and objectives of this work and provided a brief outline of the contents.
Chapter 2 introduced the selected OR topics and the basic scheduling terminology and
concepts.

Chapter 3 introduced IPODS-FD models and the current state of research. Moreover, a
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classification scheme was presented to categorize the different scheduling models. This
also chapter discussed the differences and similarities between the developed models to
date and their applications. Specifically, models can be differentiated not only in terms
of the structure of delivery dates but also by their objective. From reviewing the existing
literature, it is evident that on a grand scale, the detailed scheduling of production and
distribution involving 3PL providers is still a niche topic with relatively few contributions.
The contemporary research mostly focuses on deterministic single-machine scheduling
problems, and therefore neglects not only uncertainty in dynamic settings but also more
complex machine environments.

Chapter 4 presented a novel scheduling problem (the SFDDHT) that models the joint
optimization of finished goods’ holding costs and batch delivery transportation costs in
a setting with fixed delivery departure times and hard time-window restrictions. The
model is the first of its kind that combines these complex aspects into a single formulation.
Its application areas are JIT production in MTO or BTO supply chains that usually try to
avoid excessive inventories of components and materials and that rely on 3PL distribution.
The formulation differs from already published scheduling models by having to optimize
schedules with hard production and delivery time windows and by considering the
presence of idle time in optimal schedules. These aspects are not considered by the related
research of Li et al. (2017). Moreover, the modeling of delivery bundling extends Leung
and Chen’s (2013) research by also considering inventory holding costs. The combined
consideration of the conflicting objectives results in special properties of optimal schedules
that are newly discussed in this dissertation. Section 4.3 presented a MILP formulation for
the SFDDHT. This formulation enables the solving of SFDDHT instances with available
optimizer suites by translating the mathematical formulation to the applied optimizer
syntax. The formulation unambiguously defines the problem and is a starting point for
extending the SFDDHT towards problem variations. In particular, the objective function
can easily be modified to capture different cost assumptions, as detailed scheduling and
transportation decisions are already expressed by the defined decision variables. The
strongly NP-hard complexity status of the problem motivated the development of the
B&B and GRASP approaches in the two subsequent chapters to provide optimal and
high-quality heuristic solutions, respectively.

The developed B&B procedure presented in Chapter 5 utilizes several specific problem
and dominance properties and lower bounds to reduce the explicitly searched subproblem
search space during the B&B procedure. The optimality properties of schedules due to
the objective function enabled the reduction of the searched subproblem space to (partial)
canonical schedules, which in turn provided the basis to branch on a manageable set
of combinatorial branching decisions. Furthermore, the cost structure and feasibility
properties further enabled the construction of branch-reduction procedures in the form of
preprocessing procedures, a dynamic feasibility test, and the exclusion of dominated deliv-
ery decisions. It must be noted that many of the results are applicable to other optimization
methods, such as the GRASP presented in the subsequent chapter, to heuristically solve
problem instances. The combination of all developed procedures into the B&B framework
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provides a superior alternative to the standard solver approach, which the conducted
computational experiments clearly show. Many of the presented techniques concern only
parts of the problem formulation, and are therefore reusable for related problems and
direct extensions. Note that the proposed B&B approach is one of the few exact solution
approaches for an NP-hard IPODS-FD. The research by Mensendiek et al. (2015) (B&B)
and Li et al. (2017) (CG) form the only other solution approaches of this type.

The SFDDHT-GRASP described in Chapter 6 effectively applies insertion and rein-
sertion operators in combination with the efficient canonical scheduling procedure to
sample the solution space. A specifically designed repair procedure generated feasible
solutions, which is a difficult task for instances with restrictive production time windows.
Moreover, the parallel implementation with path relinking offers an easy-to-implement,
scalable heuristic solution for the problem. The heuristic provided high-quality initial
upper bounds for the B&B procedure that often turned out to be optimal. Similar to
the B&B algorithm, most parts of the heuristic can be tailored to related optimization
problems, as long as the sequencing and date assignment decisions, in combination with
an efficient scheduling procedure, are sufficient to define problem solutions.

The D-SFDDHT with dynamic job arrivals was presented in Chapter 7. The proposed
RTC approach to dynamically propose schedules uses the framework by Bock (2010). In
this context, a transformation of the real-time situation to statically solvable instances was
developed, as well as the fitting of the SFDDHT-GRASP to provide high-quality schedules
quickly. The integration of new requests was handled by an insertion and optimization
strategy. Further improvement of the order acceptance rate could be established by using
specifically designed workload-balancing methods.

The conducted computational experiments in Chapter 8 used specifically designed
instances to evaluate the performance of the designed approaches. The constructed B&B
algorithm turned out to be a valid exact optimization approach for small-to medium-sized
instances, especially for instances with tight time windows. The designed SFDDHT-
GRASP was shown to be a powerful heuristic that attains solutions of high-quality in very
little time. Both aspects make the heuristic an appropriate tool for dynamic optimization
with small response times to changes in the environment. The RTC approach offers
schedules of high quality and successfully integrates new order requests by applying
workload-balancing methods.
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9.2 Limitations and Future Research

The proposed models SFDDHT and D-SFDDHT primarily focus on the conflicting objec-
tives of minimizing holding and batch delivery transportation costs. This simplified cost
structure has its uses for problem domains in which both aspects primarily influence the
total scheduling costs. However, in practice the transportation cost is often influenced by
other factors, such as choosing different transportation modes or having different product
weights and sizes. Furthermore, the proposed models assume transportation capacity to
be sufficient or nonrestrictive. Modeling the mentioned aspects would enhance the ap-
plicability of generated solution approaches to numerous additional scenarios. However,
many of the established results in Chapter 5 no longer hold in these settings, which might
reduce the chances of generating optimal schedules in a reasonable amount of time.

In addition to extensions concerning the delivery of produced products, another
possible future research direction is the modeling of more complex production environ-
ments. Most models in the literature (including the ones explored in this dissertation) are
concerned with single-machine environments. Future models could hence cover more
complex machine models, such as job-shop, flow-shop, and open-shop models or even
assembly line sequencing.

The RTC approach described in Chapter 7 handles only dynamic job arrivals as the
single source of dynamism. This limitation was purposefully imposed to have better
control over the dynamic influence in order to evaluate the implemented approach. For
practical applications, one must guarantee that a real-time approach handles many types
of dynamic events. This includes, for example, the delay or cancellation of pickups and
an extension of release dates due to delays in previous stages or because of material
availability or machine breakdowns. Furthermore, the assumption that the proposed plan
is followed without any variations is rather utopic.

The prediction of the required workload in the dynamic setting is a topic that was not
covered in this work, although an accurate prediction of the workload turned out to be a
critical aspect for applying the RTC approach during the computational study. In practice,
it is unrealistic to know these values exactly; therefore, one must accurately predict these
values. The simplistic WBPI approach that identifies related instances did not quite fulfill
this requirement. For practical applications, a suitable approach might match the current
situation to workload patterns identified from past historical data (c.f. Ferrucci and Bock,
2016). In this context, machine learning algorithms can be used to supplement dynamic
optimization approaches.

The proposed RTC approach attempts to integrate new orders without considering the
impact on the scheduling costs of producing an additional order’s products. As shown by
the experiments in Chapter 8, rejecting orders reduces the scheduling costs immensely,
foremost due to a reduction in holding costs. With additional information about the cost
of rejecting orders, one could modify the approach to handle flexible environments such
that the RTC procedure refuses to produce products of orders for cost reasons.

Lastly, while this dissertation contributes to the existing research, numerous not-yet-
analyzed IPODS-FD applications still exist that are worth investigating.
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Appendix A

Additional Results

Table A.1

Additional SFDDHT-BNB (LB I) Statistics

nN Time Nodes Del Block Swap Move Batch Table

R
el

ax
ed

8 0.00 221.44 169.46 30.31 24.04 0.72 0.04 13.76
10 0.00 761.00 596.20 171.22 96.04 3.98 1.50 50.52
12 0.00 2768.76 2231.91 646.19 381.87 26.69 1.06 188.78
14 0.00 7059.65 5763.44 2317.87 1078.78 94.63 7.44 422.28
16 0.46 75900.41 64892.39 19637.11 14381.56 1408.24 13.78 7317.35
18 1.61 201495.09 173497.28 64296.54 30846.57 4129.91 35.20 17507.56
20 44.17 2171091.71 1898265.56 412525.54 379294.99 27156.85 2118.78 554659.60
30 2516.92 61061512.43 50583386.61 21920711.40 9990325.01 1004798.07 13643.26 12783900.94
40 3600.00 28034695.31 20500829.47 11598111.90 4847247.18 333582.60 199.79 3711680.38
50 3600.00 14075138.06 10391030.75 7175144.33 2340887.19 112556.79 53.29 762270.85

Ti
gh

t

8 0.00 41.44 23.72 9.33 2.93 0.13 0.06 1.98
10 0.00 44.87 24.20 12.19 2.52 0.31 0.04 3.07
12 0.00 141.43 85.74 50.22 14.00 1.69 0.06 10.04
14 0.00 199.63 125.65 72.80 23.15 1.74 0.15 13.76
16 0.00 666.46 461.67 244.83 89.06 6.17 1.00 50.70
18 0.00 1053.07 736.61 466.13 138.43 10.81 0.48 77.39
20 0.00 2345.92 1713.29 568.26 428.15 27.32 1.85 427.19
30 0.86 48198.18 38999.14 24479.61 5378.18 467.92 11.35 6587.82
40 189.68 4544673.17 3936506.25 2085381.17 825592.56 80677.15 2786.61 934018.53
50 1964.67 34194514.36 28755466.65 21618175.44 2677499.03 160852.62 1055.82 4065556.19

Time = average runtime in seconds;
Nodes = average number of created nodes;
Del = average number of deleted nodes;
Block = average number of dominated nodes by the Production Block Dominance Procedure;
Swap = average number of dominated nodes by the Permutation Block Dominance Procedure (Swap);
Move = average number of dominated nodes by the Permutation Block Dominance Procedure (Move);
Batch = average number of dominated nodes by the Delivery Batch Dominance Procedure;
Table = average number of dominated nodes by the Dominance Table
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Table A.2

Additional SFDDHT-BNB (LB II) Statistics

nN Time Nodes Del Block Swap Move Batch Table

R
el

ax
ed

8 0.00 227.83 159.31 60.57 24.72 1.24 0.11 11.85
10 0.00 878.43 640.76 327.20 124.50 5.98 0.30 44.54
12 0.00 4605.57 3545.19 1991.22 650.04 47.17 1.48 213.26
14 0.00 11655.19 9215.09 5733.41 1657.67 161.98 1.74 533.91
16 0.00 92036.85 76831.39 50955.30 12900.56 1048.87 5.46 3531.39
18 0.09 303190.83 254366.37 184104.13 32697.26 3086.46 4.98 14707.61
20 1.58 748567.04 630661.62 186183.14 155370.89 8742.53 198.85 115999.06
30 595.89 145662739.42 123239664.86 56788186.94 24373555.08 3334371.88 16267.25 26518910.54
40 2141.65 389169218.07 306015672.47 143108570.85 92938543.29 9681129.46 8008.72 56597949.54
50 2596.94 459827601.01 367955260.17 219914497.86 113818340.46 9515109.60 49.32 24702967.69

Ti
gh

t

8 0.00 49.17 26.87 13.52 3.39 0.20 0.06 2.89
10 0.00 49.20 25.91 14.83 2.80 0.31 0.04 3.83
12 0.00 150.56 89.89 55.04 14.98 1.76 0.11 11.91
14 0.00 214.80 133.44 79.85 25.19 1.80 0.15 14.50
16 0.00 741.72 506.39 298.98 94.31 6.22 1.17 57.59
18 0.00 1138.07 792.80 523.67 152.93 10.67 0.41 81.94
20 0.00 2483.29 1794.14 618.54 458.76 29.17 2.15 471.12
30 0.03 48199.50 38773.64 24727.93 5552.44 481.97 10.01 6480.60
40 20.69 4557032.29 3953192.44 2089368.17 830659.31 81337.92 2447.00 937610.51
50 1077.88 206182400.33 181572261.61 137456615.01 17654621.33 874002.25 1159.32 25460083.35

Time = average runtime in seconds;
Nodes = average number of created nodes;
Del = average number of deleted nodes;
Block = average number of dominated nodes by the Production Block Dominance Procedure;
Swap = average number of dominated nodes by the Permutation Block Dominance Procedure (Swap);
Move = average number of dominated nodes by the Permutation Block Dominance Procedure (Move);
Batch = average number of dominated nodes by the Delivery Batch Dominance Procedure;
Table = average number of dominated nodes by the Dominance Table
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Table A.3

Additional SFDDHT-BNB (LB III) Statistics

nN Time Nodes Del Block Swap Move Batch Table

R
el

ax
ed

8 0.00 295.35 211.52 80.07 32.44 1.33 0.15 18.46
10 0.00 1102.26 811.37 391.76 151.19 7.33 1.72 81.20
12 0.00 6097.56 4730.50 2460.72 857.83 72.83 6.07 453.52
14 0.00 16218.46 12943.50 6974.04 2715.93 261.35 5.31 1237.30
16 0.04 150040.35 125318.20 66584.19 23854.83 2337.85 25.81 14011.96
18 0.28 449947.81 377076.81 242328.35 57098.85 5901.76 64.35 36129.09
20 4.35 1832410.99 1567498.99 438940.90 353979.33 24664.19 1380.25 386988.93
30 809.29 198435790.07 168567984.71 80287453.10 32270484.99 4252045.35 56834.86 44379774.26
40 2325.44 462901296.46 381403465.74 189786372.21 102072013.38 9225967.62 17935.39 79870981.71
50 2741.18 550227434.31 464404731.74 286201837.92 128642715.36 7792355.46 2256.35 41765566.65

Ti
gh

t

8 0.00 50.67 27.94 14.59 3.46 0.20 0.06 2.94
10 0.00 49.41 25.98 15.09 2.76 0.31 0.07 3.89
12 0.00 150.04 89.46 55.19 14.96 1.78 0.07 10.93
14 0.00 213.28 132.33 80.39 24.94 1.76 0.11 15.02
16 0.00 768.11 523.69 309.52 97.46 6.50 1.15 67.89
18 0.00 1160.46 806.59 531.61 156.78 10.93 0.54 90.96
20 0.00 2559.14 1848.31 657.76 474.03 29.39 2.97 515.74
30 0.03 49869.31 40039.79 25200.68 5842.42 504.81 12.03 7046.47
40 20.62 4625469.36 4011481.82 2117288.60 843794.78 82484.72 3061.28 959250.33
50 1065.12 217481705.62 192399767.71 145415090.99 18136146.26 876012.26 1517.08 27618164.83

Time = average runtime in seconds;
Nodes = average number of created nodes;
Del = average number of deleted nodes;
Block = average number of dominated nodes by the Production Block Dominance Procedure;
Swap = average number of dominated nodes by the Permutation Block Dominance Procedure (Swap);
Move = average number of dominated nodes by the Permutation Block Dominance Procedure (Move);
Batch = average number of dominated nodes by the Delivery Batch Dominance Procedure;
Table = average number of dominated nodes by the Dominance Table
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Table A.4

Additional SFDDHT-BNB (LB I+II) Statistics

nN Time Nodes Del Block Swap Move Batch Table

R
el

ax
ed

8 0.00 307.44 223.85 72.20 32.52 1.37 0.11 18.17
10 0.00 1154.72 867.33 384.96 155.87 7.04 1.57 73.59
12 0.00 5393.81 4192.35 2162.28 740.87 53.15 2.00 308.28
14 0.00 12894.33 10249.48 6004.67 1869.85 180.41 7.70 703.13
16 0.59 132154.35 111371.74 60098.24 20229.50 1823.89 14.46 9062.31
18 2.35 390293.59 330385.72 207931.44 46816.48 5042.59 35.28 25261.74
20 48.18 2255510.38 1961361.78 442840.83 400673.57 28208.90 2145.19 584716.26
30 2630.76 64211365.99 52801471.53 24076096.36 10905084.60 1110925.72 12808.79 13665970.76
40 3600.00 28710178.57 21375165.61 12662668.64 4900180.01 341104.36 191.81 3471020.75
50 3600.00 14973110.49 11427857.71 8274186.76 2318776.60 110909.46 52.68 723932.21

Ti
gh

t

8 0.00 49.94 27.28 13.67 3.44 0.20 0.06 2.96
10 0.00 49.48 26.06 14.83 2.80 0.31 0.04 3.94
12 0.00 151.20 90.28 55.22 15.06 1.76 0.11 12.50
14 0.00 216.13 134.39 80.17 25.20 1.80 0.15 15.00
16 0.00 755.80 516.78 302.54 96.37 6.31 1.24 60.48
18 0.00 1145.72 797.69 526.70 154.07 11.04 0.48 84.57
20 0.00 2533.69 1831.76 629.14 466.17 29.26 2.47 498.65
30 0.93 49907.43 40162.12 25017.15 5826.42 499.12 11.38 7059.10
40 194.72 4488654.94 3881902.78 2063511.64 813927.15 79355.35 2579.90 916837.74
50 1979.22 40022889.12 34593146.81 27756377.88 2669937.50 172756.61 1060.51 3756772.43

Time = average runtime in seconds;
Nodes = average number of created nodes;
Del = average number of deleted nodes;
Block = average number of dominated nodes by the Production Block Dominance Procedure;
Swap = average number of dominated nodes by the Permutation Block Dominance Procedure (Swap);
Move = average number of dominated nodes by the Permutation Block Dominance Procedure (Move);
Batch = average number of dominated nodes by the Delivery Batch Dominance Procedure;
Table = average number of dominated nodes by the Dominance Table
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