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ẋ = f(t, x) First order ODE

FZ(z) := P (Z ≤ z) Cumulative distribution function (c.d.f.)

(K,Π′,Σ′) Finite element

λ̄ Scalarization for the biobjective descent method

z̄ + R2
> The set {z ∈ R2 : z > z̄}(

Z(x)
)
x∈X :=

(
Z(ω, x)

)
x∈X Random field with parameter set X

δmax Step size control in the biobjective descent and weighted sum methods

Σ̇0 Covariance vector of the known sample point and an unknown point x0

Σ̇Z Covariance matrix with gradient information incorporated
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Nmax.it EGO: Number of maximum iterations

PI(x0) Probability of improvement

Sd−1, d = 2, 3 Unit sphere in Rd, d = 2, 3

Sh := Sh(Ω,Rd), d = 2, 3 Discretized Sobolev space

TK Affine mapping for finite element K

u : Ω→ Rd, d = 2, 3 Displacement, solution of PDE

X nx × ny grid

x(λ) Solution of Pareto tracing by numerical integration

x = (x1, . . . , x6) Optimization variables for biobjective shape optimization

x0 = x(t0) Initial condition

xk(λ) Approximate solution of Pareto tracing by numerical integration

x0,k′′;l,0.8 := x0,k′′;l = xk′′;l(0.8) S-shaped joint: initial solution
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x0,k′;l,0.25 := x0,k′;l = xk′;l(0.25) S-shaped joint: initial solution

x0,ki;l,0.8 S-shaped joint: premature solutions

xi,k i-th iterate of a Runge-Kutta method/Pareto tracing by numerical integration

Z(ω) Realization of Z

Z : (Ω,A, P )→ (E,F) E-valued random variable

ZN Non dominated front in the objective space

ZwN Set of weakly dominated points in the objective space

tr(u) Trace

uts Ultimate tensile strength
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1 Introduction

1.1 Motivation

The aim of this work is to apply gradient-based optimization methods to shape optimiza-
tion problems of ceramic components that consider two objective functions. In shape
optimization, it is of interest to find an optimal shape, in the sense that this shape min-
imizes a given cost function while fulfilling constraints, see, e.g., [5, 25, 83, 145] for an
introduction. Moreover, for many problems there exists an underlying partial differential
equation that governs the physical behavior of the shapes, and therefore also the cost
functional. Furthermore, in [28, 66, 83] the existence of optimal shapes was discussed.
Shape optimization has many applications like, e.g., the assessment of the reliability of
gas turbines (low cycle fatigue) [75] and ceramics [20]. Further, applying the adjoint ap-
proach to shape calculus allowed on the algorithmic side for efficient ways to calculate
shape gradients, see, e.g., [32, 41, 54, 55, 100, 138, 139, 145].

As mentioned we consider ceramics, since it is a commonly used material in applications
due to its advantageous qualities, such as its low density, low electric conductivity, and
corrosion resistance. One of the objectives that we consider is the mechanical integrity
which is one of the main objectives in mechanical engineering [13]. Traditionally, this
objective is non-differentiable as it only depends on the point of maximal stress of the
component. In this approach, the ultimate tensile load that the material can bear or the
fatigue life of a component are described deterministically. In numerical optimization this
would lead to highly unstable optimization schemes.

In [21, 20, 74, 73, 75, 134, 135, 136], alternative probabilistic approaches for mechanical
integrity are proposed. These formulations overcome the problem of non-differentiablity.
Moreover, note that the ground breaking work of Weibull standardized the probabilistic
description of the ultimate strength of ceramics, see, e.g., [13, 24, 112, 127, 152].

In practice, in most cases there is a trade-off between the mechanical integrity of a com-
ponent and its volume (cost). Usually, improving the mechanical integrity requires also a
larger volume. In this work, we analyze these two conflicting goals, mechanical integrity
and volume, in a biobjective optimization model. Furthermore, to apply gradient-based
optimization methods, we utilize the implementation of [79], which produces shape gradi-
ents computed with the adjoint approach. We consider two dimensional ceramic compo-
nents, bended beams and s-shaped joints, for our biobjective shape optimization problem,
where we fix the left boundary of the components and apply tensile load on right bound-
ary. Furthermore, methods from three classes of gradient-based biobjective optimization
methods are applied to this problem.
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1.2 Historical Background

To start the field of shape optimization a formulation of derivatives and gradients of
objective functions J that depend on a shape Ω ⊂ Rd, d = 2, 3, was necessary to translate
the optimality concepts of finite dimensional analysis, e.g., KKT conditions, to shape
calculus. In 1907, Hadamard proposed a way to acquire such derivatives [78]. After a
few decades, in 1975 Chenais published an existence result for optimal shapes in [28].
Furthermore, in 1979 Zolésio built on the results of Hadamard and introduced the now
(in shape calculus) central ’Hadamard structure theorem’ in [159]. This theorem enabled
the definition of gradients and therefore also descent directions and optimality conditions
for optimization methods. The summary of the historical background of shape calculus
can also be found in [18].

The international society on Multi Criteria Decision Making (MCDM) states that Ben-
jamin Franklin (1706 1790) provided the earliest known reference w.r.t. MCDM1. Franklin
used a simple paper system for deciding important issues in which he incorporated a de-
cision making approach which considered multiple objectives. In [52], it is stated that the
book [114] that Pareto published in 1896, introducing the concept of Pareto optimality,
is historically considered as the first reference considering problems with multiple con-
flicting objectives. Following [51], we give a short summary of the historical development
of the field of multiobjective optimization since the 1950’s. In 1951, Kuhn and Tucker
formulated optimality conditions for nonlinear optimization problems in [99], where also
multiple objectives were considered. One of the early contributions was goal program-
ming which got its name from Charnes and Cooper in 1961 when they published [27].
Goal programming was further developed under the leadership of Lee (1972) [101] and
Ignizio (1976) [87]. In the meantime, vector optimization methods to recover the set of all
nondominated solutions of multiobjective optimization problems became more prominent,
see, e.g., [68, 58, 17]. Furthermore, in the 1980s interactive methods to help determine
final solutions of large sized nondominated sets gain in popularity, see, e.g. [15, 69, 97].
Since then, accompanied with the growth of computational power, new branches like, e.g.,
evolutionary multiobjective optimization arised, see, for e.g., [62, 147, 86].

1.3 Related Work

For the solution of shape optimization problems, there are two major approaches. Evolu-
tionary and metaheuristic algorithms are commonly used for these problems since they do
not depend on the structure of a given problem [29, 39, 40, 154]. Nonetheless, for expen-
sive numerical simulations these methods can be inefficient. On the other hand, efficient
computations of the gradient are required for gradient-based algorithms [43, 60, 156] and
steepest descents with the weighted sum scalarizations of the objective functions. There-
fore, they are often applied in combination with adjoint approaches.

In biobjective optimization, scalarization methods are a common choice to compute repre-
sentations of the Pareto front, see, e.g., [52]. Assuming differentiability, one can utilize op-
timality conditions to recover additional parts of the Pareto front, see, e.g., [52, 85]. To this
end, the literature provides an array of methods to compute the Pareto front, e.g., subdivi-

1https://www.mcdmsociety.org/content/short-mcdm-history-0
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sion techniques [42, 89, 141], applying sensitivities w.r.t. the scalarization parameters [53],
or continuation and predictor-corrector methods [53, 104, 103, 115, 116, 125, 132, 140].
In many cases, scalarization methods are incorporated in continuation and predictor-
corrector methods, transforming the problem to a single-objective problem which de-
pends on the scalarization parameters. Therefore, these problems can also be interpreted
as parametric optimization problems. Under appropriate differentiability assumptions,
where in some cases Hessian information is incorporated, predictor-corrector methods
can recover parts of the Pareto front using the underlying optimality conditions. More-
over, continuation methods are capable of handling problems with constraints as well as
multiobjective problems. They are also able to incorporate preference information in the
exploration of the Pareto front, see, e.g., [103].
Another commonly used solution approach are surrogate based optimization methods
which allow to estimate expensive objective functions using computationally cheap sur-
rogate models. These methods are also incorporated in multiobjective optimization
[123, 143]. One of the widely used surrogate based optimization methods [157], the Effi-
cient Global Optimization (EGO) algorithm [92, 90], utilizes a Kriging surrogate model
[98, 105, 130, 34, 35] and can also incorporate gradient information [111]. It was extended
for the multiobjective case in [96, 36]. Furthermore, it is widely applied in aerodynamic
design problems [117, 102, 11, 94, 63, 64, 133], where also affordable gradient information
was incorporated into surrogate models [31, 8, 82, 157, 12].

1.4 Own Contribution

In [46], we published a first gradient-based biobjective approach of computing solutions
for a biobjective PDE constrained shape optimization problem for the simultaneous op-
timization of the mechanical integrity and the cost of a ceramic component. The novelty
is that in most publications in the highly developed field of numerical shape optimization
neither problems with multiple objective functions, nor mechanical integrity as one of the
objective functions is considered. Nevertheless, there exist some remarkable exceptions,
see, e.g., [83, 6, 50, 119]. However, the cases that consider mechanical integrity as an
objective function do not apply a probabilistic approach [6, 119, 50]. Building on the
probabilistic formulation for ceramics under load given in [20] and a first single crite-
ria optimization utilizing this objective in [21], we for the first time combine biobjective
gradient-based optimization methods with a probabilistic assessment of mechanical in-
tegrity. My main contribution to this work was the development, implementation and
numerical testing of a variant of a biobjective descent algorithm. Note that some parts
of this work were published in [46]. Note that some parts of [46] are also to be published
in parallel in [137], since [46] is a joint work.
Furthermore, in [19] we published a novel continuation methodin which the underlying
parametric scalarizations are defined by simple weighted sums. This approach comes
with the advantage that no further constraints are added to the formulation of the prob-
lem. Thus, for unconstrained biobjective optimization problems we do not require con-
straint handling techniques. Moreover, from our numerical experiments we obtain well dis-
tributed points on the Pareto front approximation since the numerical integration method
controls the step length.
In this work, we also apply for the first time a gradient enhanced Kriging approach on
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structural mechanic problems considering the mechanical integrity of ceramic components.
Since the Kriging approach, with and without gradient information, is widely used in
applications it provides a sufficient benchmark for the other gradient-based optimization
methods of this work.

1.5 Structure of this Work

This work is structured as follows:
In Chapter 2, properties of ceramics are discussed, first. Then, the concept of weak solu-
tions for partial differential equations (PDE) is introduced. In particular, properties of the
existence of weak solutions for the linear elasticity theory, i.e., an elliptic PDE formula-
tion that describes ceramics under tensile force, are provided. Subsequently, (Lagrangian)
finite elements to discretize partial differential equations are reviewed. In Chapter 3, a
formal introduction of the biobjective shape optimization problem, including a review of
Weibull type models for the probability of failure is given. To this end, a brief overview of
biobjective optimization and the weighted sum scalarization are provided, and an existence
results for Pareto optimal shapes is stated. Chapter 4 is devoted to the discretization and
parameterization of the problem, including an adjoint approach to compute the gradients
cost efficiently. Here, the numerical implementation follows a first discretize then optimize
approach. Chapter 4 also introduces the two dimensional case studies that we consider
in this work. In Chapter 5, a biobjective gradient descent method and the weighted sum
method, are investigated. We also provide some details on their efficient implementa-
tion. Subsequently, the approach is validated for the two dimensional case studies. We
expect for the case study w.r.t. the bended beams that the solutions of the biobjective
gradient descent methods are straight rods of varying thickness, since from a mechanical
engineering point of view these should be the optimal forms. Subsequently, the methods
are applied to the case study w.r.t. the s-shaped joints where we have no initial guess for
the optimal solutions. In Chapter 6, a gradient-based biobjective continuation method,
Pareto tracing by numerical integration, that utilizes an ordinary differential equation
(ODE) to trace the Pareto front, is proposed. Toward this end, a brief introduction to
ODEs and numerical methods to solve them, i.e., the Runge-Kutta methods, is given.
The approach is then validated on biobjective problems for which the Pareto fronts are
known. Subsequently, it is applied on the two two dimensional ceramic case studies
that we investigate in this work. The third class of gradient-based optimization methods
that we investigate in this work, the surrogate based method efficient global optimization
(EGO), where gradient information is incorporated in the surrogate model, is introduced
in Chapter 7. Since, EGO utilizes a Kriging, i.e., a Gaussian process, model as a surrogate
model, a brief review of Gaussian random fields and their analytical properties is given.
For our numerical experiments, the implementation of the EGO algorithm provided by
the (open source) software toolbox Dakota is utilized. For this purpose, an introduction
to the Dakota toolbox is given and the coupling with Dakota described. Then, the EGO
algorithm is applied on the two case studies. Subsequently, the numerical results w.r.t.
the two case studies of Chapters 5, 6, and 7 are compared. Perspectives for future research
are suggested in Chapter 8.
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2 Ceramics: Linear Elasticity Equation
and Finite Element Discretization

In this chapter, the mechanical properties of ceramic materials are discussed in Section 2.1.
Then, in Section 2.2, an brief overview of some partial differential equations, i.e., ellip-
tic boundary value problems, and their weak solutions is given. Furthermore, the linear
elasticity theory which describes the behavior of ceramic components under physical phe-
nomena, e.g., stress, using a PDE formulation is introduced. Subsequently, in Section 2.3
the concept of (Lagrangian) finite element discretization is introduced and utilized to
discretize the linear elasticity equation. Note that this overview was also given in [45].
Further, note that some of these concepts are introduced for three dimensional ceramic
components but are also true for two dimensional components.

2.1 Mechanical Properties of Ceramic Materials

Here, the main material properties of ceramic materials are discussed. This section is
mainly based on [112, 76].

Ceramics are of interest in manufacturing since it possess advantageous qualities, such as
its low electric conductivity, low density and corrosion resistance, which makes them a
common material choice. Nevertheless, it comes with one major disadvantage, its brittle-
ness causes the ceramics to have low stability at room temperature. Brittleness is due to
the manufacturing of the ceramic materials utilizing sintering which creates small flaws in
the material. Hence, it is an inescapable side effect of the manufacturing process. These
flaws under high stress can induce cracks which can lead to failure of the material as
plastic deformations are not able to stop stress peaks. This makes ceramic materials vul-
nerable to failure under tensile load. Moreover, experiments have shown that the form of
the ceramic component has great influence when tensile stress is applied [112]. Hence, we
are interested in the elastic behavior of ceramic materials, which is categorized as linear
elastic [23]. The behavior of ceramic materials under stress, i.e., its linear elastic behav-
ior, is among other things characterized by the Young‘s modulus EY and Poisson’s ratio
νP . In Table 2.1, an overview of some exemplary values of EY and νP for some ceramic
materials is given. The ultimate tensile strength (uts), which is measured in megapascal
(MPa), is another characteristic value of a material. It represents the maximal stress the
material can endure before failing under tensile load. The transformation of a flaw in the
material in an actual crack is mainly driven by the stress acting on the component, in the
sense that the higher the stress, the higher the probability of failure of the component.

Stress, i.e., σ̃, in one point is described with a stress tensor that is given by the stresses in
three planes which are in general chosen as orthogonal to the directions of the Cartesian
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Ceramic EY in GPa νP uts in MPa
Al2O3: dense 410 0.20-0.25 11-276
Al2O3: 95% 320 0.20-0.25 11-276
Al2O3: 88% 250 0.20-0.25 11-276
BeO 311-340 0.25 93-140
MgO 317 0.17 96
ZrO2 160-240 0.22-0.30 123-140
B4C 450-470 0.17 155
SiC 480 0.16 41-200
TiC 460 120
WC 730 350
AlN 318 0.25
BN 90 1.6-48
Si3N4 : HPSN 320 0.28 150-375
Si3N4 : RBSN 160-200 0.23 140-170
TiB2 500-570 0.10 127
ZrB2 340 0.11 198
MoSi2 370 280
Al2TiO5 5-30 0.22-0.26
Mullite 144 0.20 110

Table 2.1: Ceramics: values of Young‘s modulus EY , Poisson’s ratio νP , and uts (see, e.g.,
[112, 142]). See also [45].

coordinate system. We then have

σ̃ =

 σ̃x σ̃xy σ̃xz
σ̃yx σ̃y σ̃yz
σ̃zx σ̃zy σ̃z

 ,
where the entries on the diagonal represent the stress acting in the normal direction of
the surface it is acting on. We refer to it as normal stress. If an entry on the diagonal
is positive we refer to it as tensile stress, whereas a negative entry is referred to as
compressive stress.

2.2 Elliptic Boundary Value Problems

In this section, the linear elastic problem is introduced. For components Ω in Rd, d = 2, 3,
linear elastic problems are modeled as partial differential equations more precisely elliptic
boundary value problems. In the following, a brief overview on elliptic boundary value
problems and the existence of weak solutions is given. Note that this section is based on
[23].
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2.2.1 PDEs with Dirichlet and Neumann Boundary Conditions

Boundary value problems are governed by certain properties of the boundary of the con-
sidered set. Here, two important boundary conditions are introduced. To this end, the
notion of Lipschitz continuity, see, e.g., [95], is introduced.

Definition 2.1. Let (E, dE) and (F, dF ) be metric spaces. We say a function f : E → F
is Lipschitz continuous if there exists a constant L <∞ such that

dF (f(x), f(y)) ≤ L · dE(x, y) for all x, y ∈ E.

L is then called the Lipschitz constant of f .

Furthermore, we introduce the concept of positive definiteness for matrices.

Definition 2.2. A symmetric matrix A ∈ Rn×n is called positive definite if x>Ax > 0 for
all x ∈ Rn.

Moreover, in the following for a domain Ω we denote the boundary of Ω as ∂Ω, the interior
of Ω as int(Ω) := Ω \ ∂Ω, and the closure as Ω̄. Now, we can state following definitions.

Definition 2.3. Let Ω ⊆ Rd, d = 2, 3. The boundary of Ω, i.e., ∂Ω, is called a piecewise
Lipschitz boundary, if there exist open sets U1, U2, ..., UN , with N ∈ N, such that

1. ∂Ω ⊆
N⋃
i=1

Ui

2. ∂Ω ∩ Ui is the graph of a Lipschitz continuous function ∀i = 1, ..., N .

Definition 2.4. Let Ω ⊆ Rd, d = 2, 3, be a domain with piecewise Lipschitz boundary
∂Ω and let

Lu(ξ) := −
∑
i,k

∂i(aik(ξ)∂ku(ξ)) + a0(ξ)u(ξ) (2.1)

be a second order elliptic partial differential operator, where a0(ξ) ≥ 0 for ξ ∈ Ω and the
matrix A(ξ) := (aik(ξ))i,k is positive definite. Then, an elliptic (or coercive) boundary
value problem with Dirichlet boundary condition is given as

Lu(ξ) = f̂(ξ) ξ ∈ Ω,
u(ξ) = ĝ(ξ) ξ ∈ ∂Ω,

(2.2)

with f̂ and ĝ arbitrary functions on Ω.

Every Dirichlet boundary value problem can be transformed to a homogeneous problem
by a re-definition of f̂ [23]. Hence, only problems with ĝ = 0 are considered in the
following.
The other boundary condition that we consider is the so called Neumann boundary con-
dition. Differing from the Dirichlet boundary condition it controls the values of the
solution‘s derivative on ∂Ω.
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Definition 2.5.
Let Ω ⊆ Rd, d = 2, 3, be a domain with piecewise Lipschitz boundary ∂Ω. Furthermore,
let Lu be defined as in 2.1. Then, an elliptic boundary value problem with Neumann
boundary conditions is given as

Lu(ξ) = f̂(ξ) ξ ∈ Ω,∑
i,k

niaik∂ku(ξ) = ĥ(ξ) ξ ∈ ∂Ω, (2.3)

where aik = aik(ξ), n := n(ξ) is the outward pointing normal which is defined almost
everywhere on ∂Ω, and f̂ and ĥ are arbitrary functions on Ω. This can be written in a
more compact way as

Lu(ξ) = f̂(ξ) ξ ∈ Ω,

n · a · ∇u(ξ) = ĥ(ξ) ξ ∈ ∂Ω.
(2.4)

Neumann boundary conditions are also called natural boundary conditions.

In general, a problem is governed by mixed boundary conditions. Hence, the following
formulation for a mixed boundary problem arises

Lu(ξ) = f̂(ξ) ξ ∈ Ω,
u(ξ) = ĝ(ξ) ξ ∈ ∂ΩD,

n · a · ∇u(ξ) = ĥ(ξ) ξ ∈ ∂ΩN ,

(2.5)

with ∂ΩN = ∂Ω\∂ΩD and where ∂ΩD is the part of the boundary on which the Dirichlet
conditions hold and ∂ΩN the part on which the Neumann boundary conditions hold.
The functions f̂ , ĝ and ĥ are be described later on. In a next step, the concept of weak
solutions and their existence is introduced.

2.2.2 Weak Solutions of Elliptic PDEs

We utilize Sobolov spaces and the variational form of the boundary value problem to show
the exitence of weak solutions. In this section, the assumptions required for the existence
and uniqueness of weak solutions are discussed. The Dirichlet and Neumann boundary
problems are considered separately, starting with the Dirichlet boundary problem. This
subsection is based on [23].

Existence of Solutions for Dirichlet Problems

Let Ω be an open subset of Rd, d = 2, 3, with piecewise Lipschitz boundary. The Sobolev
spaces are built on the function space

L2(Ω) := L2(Ω;R) :=

{
f : Ω→ R : f is measureable,

∫
Ω

|f(ξ)|2 dξ <∞
}
.
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On L2(Ω) one can define the following scalar product

(u, v)0 :=

∫
Ω

u(ξ) · v(ξ) dξ,

and the corresponding norm

‖u‖0 =
√

(u, u)0.

Following [23], L2(Ω) equipped with this norm is a Hilbert space, i.e., it is complete w.r.t.
‖ · ‖0 or in other words every Cauchy sequence in L2(Ω) has a limit in L2(Ω).

Definition 2.6. Let u ∈ L2(Ω). We say that u possesses the weak derivative v = ∂αu
in L2(Ω) provided that v ∈ L2(Ω) and

(φ, v)0 = (−1)|α|(∂αφ, u)0 ∀ φ ∈ C∞0 (Ω) (2.6)

with C∞0 (Ω) = {φ ∈ C∞(Ω) | supp(φ) ⊂ Ω compact}.

Note that for differentiable u the weak derivative is equal to the derivative.

Definition 2.7 (Sobolev Space). Let q ∈ N. Further, let Hq(Ω) be the set of all functions
u ∈ L2(Ω) that have weak derivatives ∂αu ∈ L2(Ω) for all |α| ≤ q. We say that Hq(Ω) is
a Sobolev space. Further, we define a scalar product on Hq(Ω) by

(u, v)q :=
∑
|α|≤q

(∂αu, ∂αv)0

with the associated norm

‖u‖q :=
√

(u, u)q =

√∑
|α|≤q

‖∂αu‖2
0.

Note that Hq(Ω) is complete w.r.t. the norm ‖ · ‖q, see, e.g., [23]. The completion of
C∞0 (Ω) regarding the Sobolev norm ‖ · ‖q is denoted by Hq

0(Ω).

Theorem 2.8 (Characterization Theorem). Let V be a linear space, and assume that

B : V × V → R

is a symmetric positive bilinear form, i.e., B(v, v) > 0 for all v ∈ V, v 6= 0. Moreover, let

` : V → R

be a linear functional. Then,

J(v) :=
1

2
B(v, v)− 〈`, v〉 (2.7)

attains its minimum over V at u if and only if

B(u, v) = 〈`, v〉 for all v ∈ V. (2.8)
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Furthermore, (2.8) has one unique solution.

Proof. For u, v ∈ V and t ∈ R we have

J(u+ tv) =
1

2
B(u+ tv, u+ tv)− 〈`, u+ tv〉

=
1

2

(
B(u, u) + 2tB(u, v) + t2B(v, v)

)
− 〈`, u〉 − t〈`, v〉

= J(u) + t(B(u, v)− 〈`, v〉) +
1

2
t2B(v, v).

(2.9)

If u satisfies condition (2.8), we can conclude with t = 1 that if v 6= 0 and as B is positive
definite

J(u+ v) = J(u) +
1

2
B(v, v) > J(u). (2.10)

Hence, u is the unique minimum of J .
To the contrary, if the function J possesses a unique minimum at u, then for every v ∈ V ,
the derivative of the function t 7→ J(u + tv) must vanish at t = 0. Following (2.9), the
derivative has the form B(u, v)− 〈`, v〉, and therefore condition (2.8) follows.

The following proposition links the boundary value problem to a variational problem.

Proposition 2.9 (Minimal Property). Every solution of the boundary value problem

Lu(ξ) = −
∑
i,k

∂i(aik(ξ)∂ku(ξ)) + a0(ξ)u(ξ) = f̂(ξ) ξ ∈ Ω

u(ξ) = 0 ξ ∈ ∂Ω

is a solution of the variational problem

min J(v(ξ)) :=

∫
Ω

[
1

2

∑
i,k

aik(ξ)∂iv(ξ)∂kv(ξ) +
1

2
a0(ξ)v(ξ)2 − f̂(ξ) · v(ξ)

]
dξ (2.11)

among all functions in C2(Ω) ∩ C0(Ω̄) with zero boundary conditions.

In [23], Theorem 2.8 is used to prove this result. We omit most details of this proof,
except that it was shown that if there exists a solution for the boundary value problem,
it is the solution of equation (2.8), with

B(u, v) :=

∫
Ω

[∑
i,k

aik(ξ)∂iu(ξ)∂kv(ξ) + a0(ξ)u(ξ)v(ξ)

]
dξ

and

〈`, v〉 :=

∫
Ω

f̂(ξ) · v(ξ) dξ.

In the following, it is shown that solving the variational problem on a suitable Hilbert
space (i.e., with the right choice of topology) existence and uniqueness of the weak solution
can be shown.
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Definition 2.10. Let H be a Hilbert space. We say a bilinear form B : H ×H → R is
continuous, if there exists C > 0 such that

|B(u, v)| ≤ C‖u‖ · ‖v‖ ∀u, v ∈ H.

A symmetric bilinear form B is called H-elliptic or short elliptic or coercive, if for some
α > 0

α‖v‖2 ≤ B(v, v) ∀v ∈ H.

This induces the following norm

‖v‖B :=
√
B(v, v). (2.12)

The norm (2.12) is also referred to as energy norm.

We denote the space of continuous linear functions on a normed linear space V by V ′.

Theorem 2.11 (Lax-Milgram).
Let H be a Hilbert space. Further, let V ⊂ H be a closed convex set, and let B : H×H →
R be an elliptic bilinear form. Then, for every ` ∈ H ′ the variational problem

min J(v) :=
1

2
B(v, v)− 〈`, v〉 (2.13)

has a unique solution in V.

Proof. The function J is bounded from below, since

J(v) ≥ 1

2
α‖v‖2 − ‖`‖ · ‖v‖

=
1

2α
(α‖v‖ − ‖`‖)2 − ‖`‖

2

2α
≥ −‖`‖

2

2α
.

Let c1 := inf{J(v) | v ∈ V }. Further, let (vn) be a minimizing sequence. Then

α‖vn − vm‖2 ≤ B(vn − vm, vn − vm)

= 2B(vn, vn) + 2B(vm, vm)−B(vn + vm, vn + vm)

= 4J(vn) + 4J(vm)− 8J

(
vn + vm

2

)
≤ 4J(vn) + 4J(vm)− 8c1.

This inequality holds since V is convex and therefore
(
vn+vm

2

)
∈ V . From J(vn), J(vm)→

c1 it follows that ‖vn − vm‖ → 0 for n,m → ∞. Hence, (vn) is a Cauchy sequence in
H and consequently u = lim

n→∞
vn exists. Since V is a closed set we have that u ∈ V .

Furthermore, J(u) = lim
n→∞

J(vn) = infv∈V J(v) follows from the continuity of J .

In a next step, the uniqueness of the solution u is shown. Assume that u1 and u2 are
solutions of (2.13). Then, a minimizing sequence can be constructed as u1, u2, u1, u2, ....
But as already established, every minimizing sequence is a Cauchy sequence. Hence,
u1 = u2.
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A weak solution can then be defined in the following way.

Definition 2.12. Let Ω ⊂ Rd, d = 2, 3. Let u ∈ Hq
0(Ω), q > 0. u is called weak solution

of the second order elliptic boundary value problem

−
∑
i,k

∂i(aik(ξ)∂ku(ξ)) + a0(ξ)u(ξ) = f̂(ξ) ξ ∈ Ω

u(ξ) = 0 ξ ∈ ∂Ω
(2.14)

with homogeneous Dirichlet boundary conditions, if and only if

B(u, v) = (f̂ , v)0 for all v ∈ H1
0 (Ω), (2.15)

where B is a bilinear form that is given as

B(u, v) :=

∫
Ω

[∑
i,k

aik(ξ)∂iu(ξ)∂jv(ξ) + a0(ξ)u(ξ)v(ξ)

]
dξ. (2.16)

Now, we can state the following existence result as a direct consequence of Theorem 2.13.

Theorem 2.13 (Existence Theorem).
Let L be a second order uniformly elliptic partial differential operator. Then, the Dirichlet
boundary value problem (2.14) has a weak solution in Hq

0(Ω). It is the minimum of the
variational problem

min
v∈Hq

0 (Ω)

1

2
B(v, v)− (f̂ , v)0. (2.17)

Existence of Solutions for Neumann Problems

To show the existence of weak solutions for Neumann boundary value problems, the
concept of cones is needed. We denote by

C(ζ̄ , θ̄, l̄) := {ξ ∈ Rd | |ξ| < l̄, ξ · ζ̄ > |ξ| cos(θ̄)}, d = 2, 3

a cone with height l̄, direction ζ̄, and opening angle θ̄.

Definition 2.14. Let Ω̂ be a bounded open set in Rd, d = 2, 3. For θ̄ ∈ ]0, π
2
[, l̄, r > 0,

2r ≤ l̄ we say Ω ⊂ Ω̂ satisfies the cone property, if for any ξ ∈ ∂Ω there exists a cone
Cξ = Cξ(ζ̄ξ, θ̄, l̄), where ζ̄ξ is a unit vector in Rd, d = 2, 3, such that

ξ′ + Cξ ⊂ Ω, ξ′ ∈ Br(ξ) ∩ Ω,

where Br(ξ) is the open ball in Rd, d = 2, 3, with radius r centered at ξ. Further, we
denote by Π(θ̄, l̄, r) the set of all subsets Ω of Ω̂, which satisfy the cone property.

The following well-known lemma is needed for a proof later down in this section. Note
that this lemma was also used in the proof of Proposition 2.9.
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Lemma 2.15 (Green’s formula).
Let Ω ⊂ Rd, d = 2, 3. For u, v ∈ C1(Ω̄) we have∫

Ω

v(ξ)∂iu(ξ) dξ = −
∫

Ω

u(ξ)∂iv(ξ) dξ +

∫
∂Ω

v(ξ)u(ξ)ni(ξ) dξ, (2.18)

where n(ξ) is the normal at ξ ∈ Ω.

For a proof we refer to, e.g., [9].

Theorem 2.16 (Trace Theorem).
Let Ω ⊂ Rd, d = 2, 3, be bounded, and assume that Ω has piecewise Lipschitz boundary.

Furthermore, assume that Ω satisfies the cone property. Then, there exists a bounded
linear mapping

γ̂ : Hq(Ω)→ L2(∂Ω), ‖γ̂(v)‖0,∂Ω ≤ c‖v‖1,Ω, (2.19)

such that γ̂v = v|∂Ω for all v ∈ C1(Ω̄).

For a proof of this theorem we refer to [23].

Theorem 2.17. Let ∂ΩD ⊂ ∂Ω be the part of the boundary with respect to the Dirichlet
boundary conditions, i.e., the part on which zero-boundary conditions hold. Furthermore,
assume that the domain Ω satisfies the assumptions of the Theorem 2.16 and that ∂ΩD

has positive two-dimensional measure. Then, the variational problem

min J(v) :=
1

2
B(v, v)− (f, v)0,Ω − (g, v)0,∂Ω

has a unique solution in Hq(Ω). The solution of the variational problem is of class C2(Ω)∩
C1(Ω̄) if and only if there exists a classical solution of the boundary value problem

Lu(ξ) = f̂(ξ) ξ ∈ Ω,∑
i,k

ni(ξ)aik(ξ)∂ku(ξ) = ĝ(ξ) ξ ∈ ∂Ω,

in which case the two solutions are identical.

Proof. Given that B is a Hq-elliptic bilinear form, Theorem 2.11 guarantees the existence
of an unique solution u ∈ Hq(Ω). In particular, u is characterized by

B(u, v) = (f, v)0,Ω + (g, v)0,∂Ω ∀ ∈ Hq(Ω). (2.20)

Now assume that (2.20) holds for u ∈ C2(Ω) ∩ C1(Ω̄). For v ∈ Hq
0(Ω) we have γ̂v = 0

and with (2.20) we conclude that

B(u, v) = (f, v)0, ∀v ∈ Hq
0(Ω). (2.21)

Furthermore, it can be shown that u solves the Dirichlet problem. We have

Lu(ξ) = f̂(ξ) ξ ∈ Ω,
(2.22)
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For v ∈ Hq(Ω) we have with Lemma 2.15∫
Ω

v(ξ)∂i(aik(ξ)∂ku(ξ)) dξ = −
∫

Ω

∂iv(ξ)aik(ξ)∂ku(ξ) dξ +

∫
∂Ω

v(ξ)aik(ξ)∂ku(ξ)ni(ξ) dξ.

(2.23)

Therefore,

B(u, v)− (f, v)0 − (g, v)0,∂Ω =

∫
Ω

v(ξ)[Lu(ξ)− f(ξ)]dξ

+

∫
∂Ω

[∑
i,k

ni(ξ)aik(ξ)∂ku(ξ)− ĝ(ξ)

]
v(ξ) dξ.

(2.24)

With (2.20) and (2.22) the integral w.r.t. ∂Ω in (2.24) vanishes. Further, assume that
the function v0(ξ) = ni(ξ)aik(ξ)∂ku(ξ) − ĝ(ξ) does not vanish. Then,

∫
∂Ω
v0(ξ)2 dξ > 0.

Given that C1(Ω̄) is dense in C0(Ω̄), there is a v ∈ C1(Ω̄) such that
∫
∂Ω
v0(ξ)v(ξ) dξ > 0.

This contradicts the assumptions. Hence, the boundary condition has to be satisfied. On
the other hand, (2.24) gives us that every solution of (2.21) satisfies (2.22).

In a next step, we formulate a elliptic partial differential equation for ceramic materials.

2.2.3 Linear Elasticity Theory

In Section 2.1 the mechanical properties of ceramics were discussed. In the following,
these properties are translated into mathematical terms. Following [23], ceramics behave
according to the linear elasticity theory, as long as the applied stress remains below the
uts. The variational problem w.r.t. the linear elasticity theory is given as an minimization
problem of energy

Π(u) :=

∫
Ω

[
1

2
σ̃(ξ) : ε(u(ξ))− f̂(ξ) · u(ξ)

]
dξ −

∫
∂Ω

ĝ(ξ) · u(ξ) dξ,

where f : Ω → Rd, d = 2, 3, is the body force, g : Ω × Sd−1 → Rd, d = 2, 3, is
the area force, and Sd−1 is the unit sphere in Rd, d = 2, 3. Furthermore, we define
σ̃(ξ) : ε(u(ξ)) :=

∑
i,k

σ̃ik(ξ)εik(u(ξ)). The variables ε, σ̃ and u are coupled by the following

kinematic equations

εij(ξ) =
1

2

(
∂ui(ξ)

∂ξj
+
∂uj(ξ)

∂ξi

)
(2.25)

or ε(u(ξ)) := ∇u(ξ) and the linear constitutive equations

ε(u(ξ)) =
1 + νP
EY

σ̃(ξ)− νp
EY

tr(σ̃(ξ))I, (2.26)
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where tr(·) is the trace. We therefore have for the stress

σ̃(ξ) =
EY

1 + νP

(
ε(u(ξ)) +

νP
1− 2νP

tr(ε(u(ξ)))I

)
.

In some cases this equation is written component-wise, for e.g., d = 3,


σ̃11

σ̃22

σ̃33

σ̃12

σ̃13

σ̃23

 = K ·


1− νP νP νP 0 0 0
νP 1− νP νP 0 0 0
νP νP 1− νP 0 0 0
0 0 0 1− 2νP 0 0
0 0 0 0 1− 2νP 0
0 0 0 0 0 1− 2νP




ε11

ε22

ε33

ε12

ε13

ε23

 , (2.27)

where K := EY
(1+νP )(1−2νP )

. Further, note that we omitted the dependency of ξ for no-

tational reasons. Moreover, substituting with Lamé’s constants λL = EνP
(1+νP )(1−2νP )

and

µL = E
2(1+νP )

yields the common formulation for σ̃

σ̃(ξ) = λLtr(ε(u(ξ)))I + µL (ε(u(ξ)) + ε(u(ξ))>), (2.28)

and we have for the energy density

1

2
σ̃(ξ) : ε(u(ξ)) =

1

2
(λLtr(ε(u(ξ)))I + 2µL ε(u(ξ))) : ε(u(ξ)) (2.29)

=
λL
2

(tr(ε(u(ξ))))2 + µL ε(u(ξ)) : ε(u(ξ)). (2.30)

With the mixed method of Hellinger and Reissner [23] one can use (2.30) to reformulate
Π,

Π(u) =

∫
Ω

[µL ε(u(ξ)) : ε(u(ξ)) (2.31)

+
λL
2

(div u(ξ))2 − f̂ · u(ξ)

]
dξ (2.32)

+

∫
∂ΩN

ĝ(ξ) · u(ξ) dξ, (2.33)

where ∂Ω is divided into a part where zero boundary conditions hold, ∂ΩD, and ∂ΩN .
Note that div u(ξ) denotes the divergence of u at ξ, i.e., the trace of the Jacobian of u at
ξ. Hence, we have the following differential equation

−div σ̃(ξ) = f̂(ξ) ξ ∈ Ω
u(ξ) = 0 ξ ∈ ∂ΩD,

σ̃(ξ) · n(ξ) = ĝ(ξ) ξ ∈ ∂ΩN ,

with σ̃ as defined in (2.28).
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Theorem 2.18 (Korn’s Inequality).
Let Ω ⊂ Rd, d = 2, 3, be an open bounded set with piecewise Lipschitz boundary. Further,

assume that ∂ΩD ⊂ ∂Ω has positive two-dimensional measure. Then, there is a positive
number C = C(Ω, ∂ΩD) such that

C‖v‖2
q ≤

∫
Ω

ε(v(ξ)) : ε(v(ξ)) dξ ∀v ∈ Hq
∂Ω(Ω).

Here, Hq
∂Ω(Ω) is the closure of {v ∈ C∞(Ω)3 | v((ξ)) = 0, ξ ∈ ∂ΩD} w.r.t. the ‖·‖q-norm.

For a proof we refer to [23]. A consequence of Theorem 2.18 is that (2.33) is elliptic.
Furthermore, applying Theorem 2.11 yields the following existence result.

Theorem 2.19.
Let Ω ⊂ Rd, d = 2, 3, be a domain with piecewise Lipschitz boundary. Further, assume
that ∂ΩD has a positive two-dimensional measure. Then, the variational problem of the
linear elasticity theory has a unique solution.

Furthermore, one can now state the variational formulation for the linear elasticity PDE

B(u, v) =

∫
Ω

f̂(ξ) · v(ξ) dξ +

∫
∂ΩN

ĝ(ξ) · v(ξ) dA ∀v ∈ Hq
∂Ω(Ω), (2.34)

where the bilinear form B on the left hand side is given by

B(u, v) =

∫
Ω

σ̃(u(ξ)) : ε(v(ξ)) dξ (2.35)

= λL

∫
Ω

div(u(ξ)) div(v(ξ)) dξ + 2µL

∫
Ω

ε(u(ξ)) : ε(v(ξ)) dξ. (2.36)

2.3 Finite Element Discretization

In this section, a brief introduction in the concept of finite element discretization and
the Galerkin-Method is given. This section is based on [23]. Note that we only need the
Sobolov space H1(Ω,Rd), d = 2, 3, in this work.

2.3.1 Finite Elements

The main idea of the finite element method is to compute (2.13) not on the Sobolov space
H1(Ω,Rd), d = 2, 3, but instead on a discretized finite-dimensional subspace denoted as
Sh := Sh(Ω,Rd), d = 2, 3. To indicate that the initial space is a Sobolev space over Rd,
d = 2, 3, we use H1

h(Ω,Rd) instead of Sh. Our choice for Sh is H1
∂ΩD,h

(Ω,Rd), i.e., the

subspace of H1
h(Ω,Rd) such that all u ∈ H1

h(Ω,Rd) are vanishing on the closure of ∂ΩD.
In finite element theory the domain Ω is partitioned by, e.g., triangles and quads in
the two-dimensional case, and, e.g., tetrahedrons, cubes, parallelepipeds in the three-
dimensional case. On each subdomain basis functions are considered, i.e., on the finite
grid that is generated by the partitioning of Ω basis functions are defined which are used

31



to further define weak solutions on the discretized space Sh. Hence, one demands certain
properties of the grid.

Definition 2.20.

1. A partition T = {K1, K2, ..., KN} of Ω into triangles, tetrahedrons or rectangular
parallelepipeds is called admissible if

a) Ki ⊆ Ω is open for all i ∈ {1, ..., N};

b) Ki ∩Kj = ∅, i 6= j, ∀i, j ∈ {1, ..., N};

c)
N⋃
i=1

K̄ = Ω̄.

2. We write Th instead of T when every element of T has diameter of at most 2h.

3. We say a family of partitions {Th} is shape regular if there exists a number τ > 0
such that every K in Th contains a ball of radius ρK where

ρK ≥ hK/τ,

where hK is half the diameter of K.

4. We say a family of partitions {Th} is uniform if there is a number τ > 0 such that
every element in Th contains a ball with radius

ρK ≥ h/τ,

where h := max
K∈Th

hK.

Now, we can state the definition of finite elements, compare with [23].

Definition 2.21 (Finite Element).
A finite element is a triple (K,Π′,Σ′) satisfying the following conditions.

1. K is a polyhedron in Rd, d = 2, 3.

2. Π′ := Π′(K) is a subspace of C(K) with finite dimension s.

3. Σ′ := Σ′(K) is a set of s linearly independent functions over Π′. We also call these
functionals interpolation conditions. Further, there exists the bijective mapping
Σ′ = {ϕ1, ..., ϕs} : Π′ → Rs, hence each p ∈ Π′ is uniquely defined by p 7→
(ϕ1(p), ..., ϕs(p)).

The functions θK ∈ Π′ are also called local shape functions if they form a basis of Π′.

Hence, every u ∈ Π′ can also be written as u =
s∑
i=1

uKi θ
K
i with uKi ∈ R. To determine an

element of Π′ a nodal basis of Π′, i.e., s interpolation points (or nodes) X1, ..., Xs ∈ K
including at least the vertices of K, is needed. To this end, we use Lagrange finite
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elements, since they are commonly used finite elements. Furthermore, they are governed
by the following interpolation conditions ϕ at the s interpolation points

ϕj(θ
K
i ) = θKi (Xj) = δij ∀ i, j ∈ {1, ..., s}.

Now, assume that Ω is discretized via the finite element method such that Ω =
⋃
K∈Th K.

Then, every function u =
∑

K∈Th

∑s
i=1 u

K
i θ

K
i defined on this set is continuous, since Π′(K)

is a subspace of C(K).

Definition 2.22. We say a family of finite element spaces Sh of partitions Th of Ω ⊆
Rd, d = 2, 3, is an affine family, if there exists a finite element (K̂, Π̂′, Σ̂′), referred to as
the reference element, which possesses the following properties. For any K ∈ Th, there is
an affine mapping TK : K̂ −→ K such that

1. Π̂′ = Π′ ◦ TK,

2. θ̂j := θj ◦ TK,

3. ϕ̂j(p ◦ TK) := ϕj(p),

where θ̂j and ϕ̂j denote for each finite element K the local shape functions and interpola-

tion conditions on the reference element K̂.

Therefore, this allows one to compute every required solution first on the reference element
and then transform it to a solution on an element K.

2.3.2 The Galerkin-Method

In this subsection, a brief overview over the Galerkin-method to solve finite element prob-
lems is given. Note that we omit ξ for convenience. Toward this end, consider the following
variational problem

min
Sh

J(v) :=
1

2
B(v, v)− 〈`, v〉 (2.37)

in the subspace Sh. From Subsection 2.2.2 it is known that uh is a solution given that

B(uh, v) = 〈`, v〉 ∀v ∈ Sh. (2.38)

With the basis {θ1, ..., θs}, i.e., set of local shape functions, of Sh, (2.38) is equivalent to

B(uh, θi) = 〈`, θi〉, i = 1, 2, ..., s.

Now, suppose that uh ∈ Sh has the form

uh =
s∑

k=1

zkθk.
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This leads to the system of equations

s∑
k=1

B(θk, θi)zk = 〈`, θi〉, i = 1, 2, ..., s,

which can be compactly as

Az = b,

where A is positive definite, if B is a H1-elliptic bilinear form. Recall that for this case
the existence of unique weakly solution is provided by Subsection 2.2.2. Furthermore, the
Galerkin-method enables the reformulation of the problem to a system of equations, for
which several numerical methods are known. The following lemma gives insight on the
accuracy of the method.

Lemma 2.23 (Céa’s Lemma).
Assume that the bilinear form B is H1-elliptic. Furthermore, let u and uh be the solution
of the variational problem in H1 and in Sh ⊆ H1, respectively. Then there exists C, α > 0
such that

‖u− uh‖1 ≤
C

α
inf
vh∈Sh

‖u− vh‖1.

Proof. From the definition of u and uh it follows directly that

B(u, v) = 〈`, v〉 ∀v ∈ H1

B(uh, v) = 〈`, v〉 ∀v ∈ Sh.

with Sh ⊆ H1, it follows by subtraction that

B(u− uh, v) = 0 ∀v ∈ Sh. (2.39)

Let vh ∈ Sh. Moreover, with v = vh − uh ∈ Sh, and (2.39) it follows that B(u− uh, vh −
uh) = 0 and

α‖u− uh‖2
1 ≤ B(u− uh, u− uh)

= B(u− uh, u− vh) +B(u− uh, vh − uh)
≤ C‖u− uh‖1‖u− vh‖1.

Further, dividing by ‖u− uh‖1 establishes the assertion.

From Lemma 2.23 it becomes clear, that the approximation error of the solution uh
depends primarily on the choice of the underlying functional space. Note that this can
be controlled by the order of the polynomials and by the fineness (or coarseness) of the
partitioning.
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2.3.3 Discretization of the Linear Elasticity Equation with Finite
Elements

In this subsection, the finite element method is applied on the linear elasticity equation

B(u, v) =

∫
Ω

f̂(ξ) · v(ξ) dξ +

∫
∂ΩN

ĝ(ξ) · v(ξ) dA ∀v ∈ Hq
∂ΩD,h

(Ω,Rd), d = 2, 3.

As mentioned the function is discretized via the finite element method using Lagrange
nodes. We apply the same discretization of [73]. For the computation of the integrals we
apply numerical quadrature.

Let Ω ⊂ Rd, d = 2, 3, be partitioned by a finite grid Th with N grid points X = {Xi ∈
K | i = 1, ..., N}. Further, let Nel be the number of finite elements {K,Π′(K),Σ′(K)}
forming this grid. Moreover, for each finite element K there are nsh local shape functions
θj ∈ Π′(K), j = 1, ..., nsh which are defined by some nodes XK

1 , ..., X
K
nsh
∈ X. Now,

assume that the family of finite elements is affine. Then, there exists a reference element
{K̂, Π̂′, Σ̂′} and a bijective transformation TK : K̂ → K for each finite element K ∈ Th
such that Π̂′ = Π′ ◦ TK , θ̂j = θj ◦ TK , j ∈ {1, ..., nsh}. We have

TK = TK(ξ̂, X) =

nsh∑
j=1

θ̂j(ξ̂)X
K
j , ξ̂ ∈ K̂.

For the numerical quadrature we choose qK quadrature points ξ̂Kl on the reference element
K̂ and weights ω̂Kl for each K ∈ T . Then, the discretized bilinear form (2.36) is given as
follows

B(u, v) = λL
∑
K∈Th

∫
K

div(u(ξ)) div(v(ξ)) dξ + 2µL
∑
K∈Th

∫
K

ε(u(ξ)) : ε(v(ξ)) dξ

= λL
∑
K∈Th

∫
K̂

div(u(TK(ξ̂))) div(v(TK(ξ̂))) det(∇̂TK(ξ̂)) dξ̂

+ 2µL
∑
K∈Th

∫
K̂

ε(u(TK(ξ̂))) : ε(v(TK(ξ̂))) det(∇̂TK(ξ̂)) dξ̂

≈ λL
∑
K∈Th

qK∑
l=1

ω̂Kl det(∇̂TK(ξ̂Kl )) div(u(TK(ξ̂Kl ))) div(v(TK(ξ̂Kl )))

+ 2µL
∑
K∈Th

qK∑
l=1

ω̂Kl det(∇̂TK(ξ̂Kl ))ε(u(TK(ξ̂Kl ))) : ε(v(TK(ξ̂Kl ))).

With the local shape functions θ̂m on the reference element it holds that

u(ξ) =

nsh∑
m=1

umθ̂m ◦ T−1
K (ξ) for every ξ ∈ K.
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Hence,

∇u(ξ) =

nsh∑
m=1

um ⊗ (∇̂TK(ξ̂)T )−1∇̂θm(ξ̂). (2.40)

Furthermore, we have

div(u(ξ)) =

nsh∑
m=1

tr
(
um ⊗ (∇̂TK(ξ̂)T )−1∇̂θm(ξ̂)

)
.

The volume force is discretized in a similar way

∫
Ω

f̂(ξ) · (ξ) dξ =
∑
K∈Th

qK∑
l=1

ω̂Kl det
(
∇̂TK(ξ̂l)

)
f̂(TK(ξ̂l)) · v(TK(ξ̂l)).

The surface force is discretized in another way, since only the faces F of the finite el-
ements K that lie on ∂Ω are considered. To this end, let Nh be the set of all faces F
of finite elements K = K(F ) ∈ Th that lie on ∂Ω. Further, let F̂ be the face on the
reference element K̂ with TK(F ) : F̂ → F . Stemming from the fact that the face F is

of lower dimension than K additional qF quadrature points ξ̂Fl and weights ω̂Fl have to
be considered. Furthermore, we replace the determinant of the derivative of TK with the

square root of the Gram determinant
√

det gF (ξ̂Fl ), given by

gF (ξ̂) = ∇̂F (TK
∣∣
F̂

)(ξ̂)
(
∇̂F (TK

∣∣
F̂

)
)T

(ξ̂).

Hence,

∫
∂Ω

ĝ(ξ) · v(ξ) dA =
∑
F∈Nh

qF∑
l=1

ω̂Fl

√
det gF (ξ̂Fl ) ĝ(TK(F )(ξ̂

F
l )) · v(TK(F )(ξ̂

F
l )).

With the global degrees of freedom U = (uj)j∈{1,...,N} ⊆ Rd, d = 2, 3, and the node
coordinates X, with uj = 0 if Xj ∈ ∂ΩD this can also be expressed as

B(X)U = F̂ (X),
B(X)(j,r),(k,s) = B(θjer, θkes),

F̂(j,r) =
∫
Ω

f̂(ξ) · θjer dξ +
∫

∂ΩN

ĝ(ξ) · θjer dA,
(2.41)

where {er | r = 1, . . . , d} is the standard basis of Rd, d = 2, 3.
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3 Biobjective Shape Optimization (of
Ceramic Structures)

In this chapter, we first introduce a set of admissible (feasible) shapes and review the state
equations that model the physical behavior of a shape under external forces according to
the linear elasticity theory (Section 3.1), see also Chapter 2. The considered objective
functions, the intensity measure modelling the mechanical integrity, and the volume of
the shape, are formally introduced in Sections 3.2 and 3.3, respectively. In Section 3.4,
a brief overview of biobjective optimization, which is a special case of multiobjective
optimization, where only two objective functions are considered, is given and the overall
problem is formulated as a biobjective optimization problem. In Section 3.5, a widely used
scalarization method to solve multiobjective and biobjective optimization problems, the
weighted sum scalarization, is introduced. Furthermore, the existence of Pareto-optimal
solutions is shown in Section 3.6. Most of this chapter was published in [46, 19].

3.1 Admissible Shapes and State Equation

We follow the description from [79, 21, 80, 20] and consider a compact body (also referred
to as component or shape) Ω ⊂ Rd, d = 2, 3, with Lipschitz boundary that is filled with
ceramic material. Furthermore, we assume that the boundary ∂Ω of Ω is subdivided into
three parts with nonempty relative interior,

∂Ω = (∂ΩD) ∪ (∂ΩNfixed
) ∪ (∂ΩNfree

).

∂ΩD describes the part of the boundary where the Dirichlet boundary condition holds,
∂ΩNfixed

the part where surface forces may act on and ∂ΩNfree
the part of the boundary

that can be modified in an optimization approach. It is assumed to be force free for
technical reasons [20].

Ω̂

Ω
∂ΩNfixed

∂ΩNfree

∂ΩD

n̂

Figure 3.1: Illustration of Ω and its boundary components. See also [46, 19].

Since all feasible shapes have to coincide in ΩD and in ΩNfixed
, it is natural to restrict

the analysis to subsets of a sufficiently large bounded open set Ω̂ ⊂ Rd that satisfies
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∂ΩD ⊆ ∂Ω̂ and ∂ΩNfixed
⊆ ∂Ω̂ (see Figure 3.1). We additionally assume that Ω̂ satisfies

the cone property (recall Definition 2.14) for a given angle θ̄ ∈ (0, π/2) and radii r̄, l̄ > 0,
r̄ ≤ l̄/2, i.e.,

∀ξ ∈ ∂Ω̂ ∃ζ̄ξ ∈ Rd, ‖ζ̄ξ‖ = 1 : y + C(ζ̄ξ, θ̄, l̄) ⊂ Ω̂ ∀y ∈ Br̄(ξ) ∩ Ω̂,

where C(ζ̄ξ, θ̄, l̄) := {c ∈ Rd : ‖c‖ < l̄, c>ζ̄ξ > ‖c‖ cos(θ̄)} is a truncated circular cone
oriented along ζ̄ξ with height l̄ and opening angle 2θ̄, and Br̄(ξ) ⊂ Rd is an open ball of
radius r̄ centered at ξ. Now the set of admissible shapes Oad ⊂ P(Rd) can be defined as

Oad :=
{

Ω ⊆ Ω̂ : ∂ΩD ⊆ ∂Ω, ∂ΩNfixed
⊆ ∂Ω, Ω̂ and Ω satisfy the cone property

}
. (3.1)

Ceramic components behave according to the linear elasticity theory [112]. The state
equation can be described as an elliptic partial differential equation, see, e.g., [23]. More
precisely, we get the state equation which describes the reaction of the ceramic component
to external forces as a partial differential equation:

−div(σ(u(ξ))) = f̂(ξ) for ξ ∈ Ω
u(ξ) = 0 for ξ ∈ ∂ΩD

σ(u(ξ))n̂(ξ) = ĝ(ξ) for ξ ∈ ∂ΩNfixed

σ(u(ξ))n̂(ξ) = 0 for ξ ∈ ∂ΩNfree

(3.2)

Here, n̂(ξ) is the outward pointing normal at ξ ∈ ∂Ω, which is defined almost everywhere
on ∂Ω given that ∂Ω is piecewise differentiable. Furthermore, let f̂ ∈ L2(Ω,Rd) be the
volume forces and ĝ ∈ L2(∂ΩNfixed

,Rd) the forces acting on the surface ∂ΩNfixed
, e.g., the

tensile load. The displacement caused by the acting forces is given by u ∈ H1(Ω,Rd),
where H1(Ω,Rd) is the Sobolov space of L2(Ω,Rd)-functions with weak derivatives in
L2(Ω,Rd×d). The linear strain tensor ε ∈ L2(Ω,Rd×d) is given by ε(u(ξ)) := 1

2
(∇u(ξ) +

(∇u(ξ))>), where ∇u is the Jacobi matrix of u. It follows for the stress tensor σ ∈
L2(Ω,Rd×d) that σ(u(ξ)) = λL tr(ε(u(ξ)))I + 2µLε(u(ξ)), where λL, µL > 0 are the Lamé
constants derived from Young’s modulus EY and Poisson´s ratio νP as λL = νPEY

(1+νP )(1−2νP )

and µL = EY
2(1+νP )

. From a numerical perspective, a variational formulation of the state

equation (3.2) is usually preferred, see, e.g., [79, 21, 80, 20]. This still guarantees a unique
weak solution u, see [49]. Thus, u is uniquely defined by the shape Ω [49], and we will
equivalently write σ(∇u(ξ)) := σ(u(ξ)) for ξ ∈ Ω to highlight that σ depends on the
Jacobi matrix of u.

3.2 Probability of Failure

The primary objective function, the mechanical integrity of the ceramic component, is
modelled based on the probability of failure analogous to [79, 21, 80, 20, 24, 152]. For the
sake of completeness, this is briefly summarized in the following.
We want to optimize the reliability of a ceramic body Ω, i.e., its survival probability, by
minimizing its probability of failure under tensile load. In that sense failure means that
the ceramic body breaks under the tensile load due to cracks. Such cracks occur as a
result of small faults in the material caused by the sintering process. To understand the
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mechanics of cracks, three types of crack opening are considered, see [76] and Figure 3.2a
for an illustration. They are referred to as Modes I, II and III, respectively, and relate
to different loads. Note that in the two-dimensional case, only Modes I and II can occur.
We refer to [76] for a detailed introduction into this topic.

x1

x2

x3

(a) Modes I, II and III (from left to right)

x1 = x

x2 = y r

φ

(b) r-φ coordinate sys-
tem at the tip of the
crack

Figure 3.2: Crack opening modes and two-dimensional model for the crack-tip field ac-
cording to [79, 21, 80, 20, 76]. See also [46].

The stresses and strains close to a crack are represented by the crack-tip field which de-
pends on the respective crack opening modes. It is described locally by a two-dimensional
model, see Figure 3.2b for an illustration. With KI, KII and KIII being the stress-intensity
factors (also called K-factors) corresponding to Modes I, II, and III, respectively, one can
describe the crack-tip field σ locally according to linear fracture mechanics as

σ(ξ) = σ(r, φ) =
1√
2πr

{
KIσ̃

I(φ) +KIIσ̃
II(φ) +KIIIσ̃

III(φ)
}

+R(r, φ). (3.3)

Here, r is the distance to the crack tip, and φ the angle w.r.t. the x1-axis (aligned with
the crack plane), see Figure 3.2b. The functions σ̃I,II,III(φ) are known functions of the
angle φ, see again [76], and R(r, φ) is a regular function of the considered position in
x ∈ Ω that is independent of the crack. Note that in the two-dimensional case, Mode III
is omitted from (3.3) since it does not exist. Moreover, experimental evidence has shown
that Mode I, which relates to tensile and compressive load, is the most relevant for the
failure of ceramic structures [24], see [76] for approaches for multi-mode failure. We will
thus focus on KI in the following as the driving parameter for crack development under
tensile load.

In order to evaluate KI analogous to [20], we adopt the concept of equivalent circular discs
to represent different crack shapes and crack sizes, and hence assume that the cracks are
penny shaped. Then, a particular crack can be identified by its configuration

(ξ, a, n) ∈ C := Ω× (0,∞)× Sd−1,

where ξ ∈ Ω is its location, a ∈ (0,∞) its radius, and n ∈ Sd−1 its orientation (Sd−1

denotes the unit sphere in Rd). C is called the crack configuration space. Given a crack
(ξ, a, n) ∈ C, KI can be computed as a function of the radius a and of the tensile load
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σn(∇u(ξ)) in the normal direction n of the stress plane at the crack location ξ as

KI = KI(a, σn(∇u(ξ))) =
2

π
σn(∇u(ξ))

√
πa, (3.4)

see, e.g., Table 4.1 in [76]. Following [20] we set

σn(∇u(ξ)) := max{n> σ(∇u(ξ))n , 0}.

Note that negative values of σn(ξ) correspond to compressive loads which can be ignored
in the analysis of crack development, see Figure 3.2a above.

A crack (ξ, a, n) ∈ C becomes critical, i.e., a fracture occurs and the material fails, if KI

exceeds a material-specific critical value KIc (the ultimate tensile strength of the material).
Note that (3.4) implies that all cracks with radius

a > ac :=
π

4

(
KIc

σn(∇u(ξ))

)2

(3.5)

are critical. We denote the set of critical configurations by

Ac := Ac(Ω,∇u) = {(ξ, a, n) ∈ C : KI(a, σn(∇u(ξ))) > KIc}

and want to minimize the probability of finding a crack with configuration in Ac.

Following [79, 21, 80, 20], we assume that the parameters (ξ, a, n) are random (i.e., they
are not deterministically given by the sintering process), that the cracks are statistically
homogeneously distributed in Ω, and that their orientations are isotropic. Let A ⊆ C be
a measurable subset of the configuration space. Then, under quite general assumptions
the random number N(A) of cracks in A is Poisson distributed (see [93, 151]), and hence

N(A) is a Poisson point process. It follows that P (N(A) = k) = e−υ(A) υ(A)k

k!
∼ Po(υ(A)),

where υ is the (Radon) intensity measure of the process. Recall that a component fails
if N(Ac) > 0. Given a displacement field u ∈ H1(Ω,Rp), we can now write the survival
probability of the component Ω as

ps(Ω|∇u) = P (N(Ac(Ω,∇u)) = 0) = exp{−υ(Ac(Ω,∇u))}.

Hence, to maximize the survival probability of a component Ω we need to minimize the
intensity measure υ. Since only cracks (ξ, a, n) with radius a > ac need to be considered
(c.f. (3.5) above), [79, 21, 80, 20] determine the intensity measure as

υ(Ac(Ω,∇u)) =
Γ(d

2
)

2π
d
2

∫
Ω

∫
Sd−1

∞∫
ac

dυa(a) dn dξ

with dξ the Lebesgue measure on Rd, dn the surface measure on Sd−1, and dυa(a) =
c · a−m̃da being a positive Radon measure modelling the occurrence of cracks of radius a
in Ω (c > 0 and m̃ ≥ 3

2
are positive constants). Note that for d = 3 the Γ-function takes

the value Γ(3
2
) =

√
π

2
and for d = 2 we obtain Γ(1) = 1. With m := 2(m̃ − 1) ≥ 1 and
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using again (3.5) the inner integral can be evaluated, yielding

υ(Ac(Ω,∇u)) =
Γ(d

2
)

2π
d
2

∫
Ω

∫
Sd−1

(
σn(∇u(ξ))

σ0

)m
dn dξ, (3.6)

where σ0 is an appropriately chosen positive constant. As highlighted in [79, 21, 80, 20],
this is in accordance with the statistical model introduced by Weibull [152]. In this
context, the parameter m is referred to as Weibull module and typically assumes values
between 5 and 30.

Summarizing the discussion above, we define our primary objective function f1 : Oad → R
as

J1(Ω) := υ(Ac(Ω,∇u)) (3.7)

and refer to it as intensity measure, modelling the probability of failure (PoF) of the
component Ω. Recall that u(Ω) is uniquely defined by Ω and thus J1(Ω) is completely
defined by the shape Ω (given fixed boundary conditions f̂ , ĝ).

Furthermore, for a theoretical analysis w.r.t. continuous dependency of optimal shapes on
preference parameters in the context of shape optimization we refer to [72].

3.3 Material Consumption

Improving the intensity measure J1 of a ceramic component (and hence its PoF) usually
comes at the price of an increased material consumption, which is directly correlated with
the cost of the component. In order to avoid excessively expensive solutions, classical
approaches thus set a predetermined bound on the allowable volume of the shape Ω (see,
e.g., [79, 21, 80, 20]). We follow a more general approach in this manuscript and interpret
the volume (and hence the cost) of the component as an equitable second objective func-
tion. This facilitates, in particular, the analysis of the trade-off between these two criteria
and supports the engineer in finding a preferable design. We thus define J0 : Oad → R as
the volume of a shape Ω ∈ Oad given by

J0(Ω) :=

∫
Ω

dξ. (3.8)

3.4 Biobjective Optimization

When multiple conflicting goals are relevant in an optimization problem, a common ap-
proach is to use a weighted sum of the individual objectives as an overall objective function
and then resort to classical optimization algorithms. The advantages and also the short-
comings of this so-called weighted sum scalarization are discussed in the following section,
see also [52]. Particularly when choosing fixed weights, this method is of limited applica-
bility. While fixed weights may represent the preferences of one decision maker, another
decision maker may have other preferences, i.e., other weights. Moreover, the objective
ranges and the scales of the objectives may be very different or even incomparable, which
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generally leads to numerical difficulties.
Another common approach to handle multiple conflicting goals is to select one “most
important” objective function to minimize, e.g., the probability of failure, and set upper
bounds on the acceptable objective function values of the other objective functions. In
our case this would imply a constraint on the allowable material consumption, see, e.g.,
[79, 21, 80, 20]. This approach is referred to as ε-constraint scalarization, see again
[52] for a general discussion of this topic. In addition to the numerical difficulties that
may arise from adding potentially complicating constraints to the problem formulation,
this approach has similar drawbacks as the weighted sum scalarization: The selection of
meaningful upper bound values may be difficult, and trade-off information is ignored.
A more general approach is to formulate a multiobjective optimization problem, and
hence to compute a set of relevant solution alternatives rather than one single “optimal”
solution. By providing a set of solution alternatives the decision maker can not only choose
a solution that aligns the most with his preferences, but he can also inspect the trade-
off between alternative solutions and can adjust his preferences accordingly. A decision
maker may, for example, prefer reliability over volume, but looking into the trade-off
between solution alternatives there may be a solution that is some small percentage worse
w.r.t. the reliability while it is a lot better regarding the volume. This may lead to a
re-evaluation of the decision maker’s preferences.
Next, a general definition of multiobjective optimization problems is given, while for the
rest of this chapter biobjective optimization problems, which are multiobjective problems
with two objective functions, are investigated. Without loss of generality only minimiza-
tion problems are considered. Most of this section is based on [52]. Note that [109] also
provides a suitable introduction to multiobjective optimization.

Definition 3.1. Let f = (f1, . . . , fp) : X → Rp, p ≥ 2, be an objective function vector,
where X ⊆ Rn is called the feasible set and Rp the objective space. A multiobjective
optimization problem is of the form

min f(x) = (f1(x), . . . , fp(x))

s.t. x ∈ X .
(3.9)

In this work we introduce a rather unconventional notation for biobjective optimization
problems, since this notation is more convenient for the method introduced in Chapter 6.
The objective functions f, f1 and f2 are replaced by J, J0 and J1, respectively.

Definition 3.2. Let J = (J0, J1) : X → R2, be an objective function vector, where
X ⊆ Rn is called the feasible set and R2 the objective space. A biobjective optimization
problem is then of the form

min J(x) = (J0(x), J1(x))

s.t. x ∈ X .
(3.10)

Therefore, with our two objective functions “intensity measure” (J1, modeling the PoF)
and “volume” (J0), the following biobjective shape optimization problem arises:

min
Ω∈Oad

J(Ω) := (J0(Ω), J1(Ω))

s.t. u ∈ H1(Ω,Rd) solves the state equation (3.2),
(3.11)
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where J1 and J0 are defined according to Sections 3.2 and 3.3 above. Note that only J1

depends on the displacement field u(Ω). We call J = (J0, J1) : Oad −→ R2 the biobjective
function vector and R2 the objective space. Later on, discretizations of admissible shapes
are used for the numerical studies. To this end, a mapping X → Oad, X ⊂ Rn, that
parameterizes the admissible shapes is described in Section 4.3. Thus, the problem (3.11)
with the feasible set Oad can be transformed as in (3.10) to a problem with feasible set
X ⊂ Rn.

Let Z := J(X ) ⊂ R2 denote the set of all feasible outcome vectors in the objective space,
i.e., the set of all outcome vectors that are images of admissible shapes x ∈ X . Further,
we assume that J ∈ C2. In the following, we denote the gradient of Ji at x as ∇xJi(x),
i = 0, 1. In contrast to single objective optimization, we have to define optimality in
the presence of two objectives, since there is no natural order on R2. For two shapes
x1, x2 ∈ X , let z1 = J(x1) and z2 = J(x2) be the respective outcome vectors in Z. We
write

z1 5 z2 ⇐⇒ z1
j ≤ z2

j , j = 0, 1

z1 6 z2 ⇐⇒ z1 5 z2 and z1 6= z2

z1 < z2 ⇐⇒ z1
j < z2

j , j = 0, 1.

Note that z1 6 z2 implies that z1
j ≤ z2

j for j = 0, 1 with at least one strict inequality. We
use the notation

R2
> := {z ∈ R2 : z > (0, 0)>} and z̄ + R2

> := {z ∈ R2 : z > z̄} for z̄ ∈ R2.

The notations R2
=, R2

>, R2
6, R2

5 and R2
< are used accordingly. We have the following

Pareto optimality definitions w.r.t. z1 and z2.

Definition 3.3 (Pareto optimality).

(i) We say that z1 dominates z2 if and only if z1 6 z2, i.e., if and only if z1 ∈ z2 +R2
6.

(ii) An outcome vector z̄ ∈ Z is called nondominated if there is no other outcome vector
z ∈ Z such that z 6 z̄.

(iii) An admissible shape xP ∈ X is called Pareto-optimal or efficient, if there is no
other admissible shape x ∈ X such that J(x) 6 J(xP ). The set of all Pareto-
optimal shapes is called the Pareto front and denoted by XP . Similarly, the set of
all nondominated outcome vectors ZN := f(XP ) is referred to as the nondominated
front in the objective space.

(iv) An admissible shape x`P ∈ X is called locally Pareto-optimal or locally efficient, if
there is a neighborhood N ⊆ X of x`P such that there is no other admissible shape
x ∈ N with f(x) 6 f(x`P ).

(v) An admissible shape xwP ∈ X is called weakly Pareto-optimal or weakly efficient,
if there is no other admissible shape x ∈ X such that J(x) < J(xwP ). The set of
all weakly Pareto-optimal shapes is denoted by XwP . Similarly, the set of all weakly
nondominated outcome vectors is denoted by ZwN .
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(vi) An admissible shape xsP ∈ X is called strictly Pareto-optimal or strictly efficient,
if there is no other admissible shape x ∈ X with x 6= xsP such that J(x) 5 J(xsP ).
The set of all strictly Pareto-optimal shapes is denoted by XsP .

With this definition we have
ZN ⊆ ZwN

and
XsP ⊆ XP ⊆ XwP .

In biobjective optimization strictly efficient solutions correspond to unique optimal solu-
tions in single objective optimization. We are mainly interested in Pareto-optimal shapes
since these are precisely those shapes that can not be improved in one objective without
deterioration in the other objective. As in single-objective optimization, one often has
to resort to local minima if the underlying optimization problem is nonconvex (and dif-
ficult). Since derivative information is available, necessary optimality conditions can be
formulated that generalize the concept of critical points from single-objective optimiza-
tion. Toward this end, we omit the constraints implied by the parametric representation
of admissible shapes to keep the exposition simple. All constraints will be handled implic-
itly in the numerical tests described in Chapters 5, 6 and 7. Assuming that both objective
functions are continuously differentiable, a necessary condition for a solution x ∈ X to be
locally Pareto-optimal, and a relaxation of this condition, can be formulated [60].

Definition 3.4 (Pareto Critical).

(i) A biobjective descent direction d ∈ Rn at x, is a search direction such that we have
∇xJi(x)>d < 0 for i ∈ {0, 1}. We say x is Pareto critical, if{

d ∈ Rn | ∇xJi(x)>d < 0, i = 0, 1
}

= ∅, (3.12)

i.e., there does not exist a direction d ∈ X that is a descent direction for both
objectives

(ii) For ε > 0, x is called ε-Pareto critical, if{
d ∈ Rn | ∇xJi(x)>d ≤ −ε‖d‖ ∧ ∇xJj(x)>d < 0, i, j ∈ {0, 1}, i 6= j

}
= ∅.

In this work, we aim at the efficient computation of Pareto critical shapes that, ideally,
approximate the Pareto front. Since derivative information can be obtained for both
objective functions, we select solution methods that efficiently utilize this information
and that can be adopted such that a meaningful representation of a Pareto critical front
is obtained. In the following, when we use the term approximation of the Pareto front, we
imply a set of ε-Pareto critical points that cover a sufficient range of the (local) Pareto
front. Next, some properties of the set of nondominated objective vectors ZN are stated.

3.4.1 Nondominated Set

Let Z ⊂ R2 and ZN the corresponding set of all nondominated outcome vectors. It is
Zn ⊆ Z. This subsection is based on [52].
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Proposition 3.5. ZN =
(
Z + R2

=

)
N
.

Proof. For the trivial case Z = ∅ it directly follows that Z + R2
= = ∅, and therefore both

of their nondominated sets are empty, too.
Let now Z 6= ∅. First, we assume that z ∈ (Z + R2

=)N , but z /∈ ZN . In that case there

exist two possibilities. If z /∈ Z there exists a z′ ∈ Z and 0 6= d ∈ R2
= such that z = z′+d.

Since z′ = z′+ 0 ∈ Z+R2
= we get z /∈ (Z+R2

=)N , which is a contradiction. If z ∈ Z there

exists a z′ ∈ Z with z′ ≤ z. We then have with d = z − z′ ∈ R2
= \ {0} that z = z′ + d.

This implies that z /∈ (Z +R2
=)N , which is again a contradiction. Therefore in either case

z ∈ ZN .
Second, assume z ∈ ZN , but z /∈ (Z + R2

=)N . Then, there exists a z′ ∈ Z + R2
= with

z − z′ = d′ ∈ R2
= \ {0}. In other words, z′ = z′′ + d′′ with z′′ ∈ Z, d′′ ∈ R2

= \ {0}2, and we

therefore have z = z′ + d′ = z′′ + (d′ + d′′) = z′′ + d with d = d′ + d′′ ∈ R2
= \ {0}. This

implies z /∈ ZN , which contradicts the assumption. Hence, z ∈ (Z + R2
=)N .

In Figure 3.3 an illustration of Proposition 3.5 is given.

Z

Z + R2
=

0

Figure 3.3: The nondominated points of Z coincide with the nondominated points of
Z + R2

=.

Another result for ZN is that efficient points are located on the boundary of Z, that we
denote as ∂Z. The interior of Z is then given as int(Z) := Z \ ∂Z.
Proposition 3.6. ZN ⊆ ∂Z

Proof. Let z ∈ ZN and assume that z /∈ ∂Z. Hence, z ∈ int(Z) and there exists an
ε-neighbourhood Bε(z) of z. Here, Bε(z) is an open ball centered at z with radius ε. Now
choose z′ ∈ Bε(z) such that z = z′ + d and d ∈ R2

=, d 6= 0. We then have z′ ≤ z and

therefore z /∈ ZN , contradicting the assumption.

3.5 Weighted Sum Scalarization

In this section, the weighted sum method, or weighted sum scalarization, which is a scalar-
ization method that in order to solve multiobjective problems transforms them into single
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objective problems, is introduced. This section is based on [52, 38].

For a multiobjective problem

min
x∈X

f(x) = (f1(x), . . . , fp(x))

the weighted sum scalarization is given as

min
x∈X

p∑
k=1

λkfk(x), (3.13)

with λ = (λ1, . . . , λp) ∈ Rp
=, where Rp

= is defined analogously to R2
=. Consequently, for

our biobjective problem
min
x∈X

J(x) = (J0(x), J1(x))

the weighted sum scalarization is given as

min
x∈X

λ0J0(x) + λ1J1(x) (3.14)

with λ = (λ0, λ1) ∈ R2
=. Let Z = J(X ) ∈ R2. For a fixed λ ∈ R2

= we denote by

S(λ, Z) :=
{
ẑ = (ẑ0, ẑ1) ∈ Z : 〈λ, ẑ〉 = min

z∈Z
〈λ, z〉

}
(3.15)

the set of optimal points of Z with respect to λ. In Figure 3.4, an example of an optimal set
S(λ, Z) is given that consists of two points z1 and z2. These nondominated points are at
the intersection points of a level set {z ∈ R2 : 〈λ, z〉 = ĉ}. Considering the family of lines
({z ∈ R2 : 〈λ, z〉 = c})c, ĉ is chosen in a way that it is the smallest value of c such that the
intersection of the corresponding line and Z is nonempty. To find ĉ graphically, we start
with a sufficiently large value of c and translate the line in parallel toward the origin as
far as possible while assuring that the intersection of the line and Z is still nonempty. An
analytical approach translates to finding elements of S(λ, Z). For this purpose, we write
ri(Z) for the relative interior of Z, i.e., ri(Z) = {z ∈ Z : ∃ ε > 0, Bε(z) ∩ aff(Z) ⊆ Z},
where aff(Z) = {

∑k
i=1 αiz

i : k > 0, zi ∈ Z, αi ∈ R,
∑k

i=1 αi = 1} is the affine hull of Z.
Note that following the definition of nondominated points we only consider nonnegative
weights λ ∈ R2. A further distinction between nonnegative and positive weights is made.
Toward this end, we define the following sets

S(Z) :=
⋃
λ∈R2

>

S(λ, Z) =
⋃

{λ>0 : λ0+λ1=1}

S(λ, Z)

S0(Z) :=
⋃
λ∈R2

=

S(λ, Z) =
⋃

{λ=0 : λ0+λ1=1}

S(λ, Z).
(3.16)

Note that the assumption λ0 + λ1 = 1 just normalizes the weights and does not change
S(λ, Z). In the following, we assume that the weights are normalized. For convenience
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we introduce following notation

Λ :=
{
λ ∈ R2

> : λ0 + λ1 = 1
}
,

Λ0 := ri(Λ) =
{
λ ∈ R2

= : λ0 + λ1 = 1
}
.

(3.17)

Since for λ = 0 we have S(0, Z) = Z, we exclude this case. Further, from the definition
it directly follows that

S(Z) ⊆ S0(Z). (3.18)

J0

J1

z2

z1

{
z ∈ R2 : 〈λ, z〉 = c

}
λ

Z

0

Figure 3.4: Exemplary optimal set S(λ, Z) containing the points z1 and z2.

For many of the following results of this section some convexity assumptions are needed.
Since, following Proposition 3.5 the nondominated points are located ”south west” of Z
[52], we define R2

=-convexity.

Definition 3.7. A set Z ⊂ R2 is called R2
=-convex if Z + R2

= is convex.

Note that every convex set Z is R2
=-convex. The set Z depicted in Figure 3.4 is neither

convex nor R2
=-convex. The set Z illustrated in Figure 3.3 is nonconvex but R2

=-convex.
For convex sets it is known that nonintersecting convex sets can be separated by a hyper-
plane.

Theorem 3.8. Let Z1, Z2 ⊂ R2 be nonempty convex sets. There exists some z′ ∈ R2 such
that

inf
z∈Z1

〈z, z′〉 ≥ sup
z∈Z2

〈z, z′〉

and sup
z∈Z1

〈z, z′〉 > inf
z∈Z2

〈z, z′〉
(3.19)

if and only if ri(Z1) ∩ ri(Z2) = ∅. Z1 and Z2 are then called properly separated by a
hyperplane with normal z′.
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For a proof we refer to [126]. In the following, a theorem that describes the relation be-
tween weighted sum solutions and (weakly) efficient solutions of a biobjective optimization
problem is given.

Theorem 3.9. For any Z ⊂ R2 we have S0(Z) ⊆ ZwN .

Proof. Let λ ∈ R2
= and ẑ ∈ S(λ, Z). Then,

〈λ, ẑ〉 ≤ 〈λ, z〉 for all z ∈ Z.

Assume that ẑ /∈ ZwN . Then, there exists a z′ ∈ Z with z′ < ẑ and therefore

〈λ, z′〉 < 〈λ, ẑ〉,

since at least one of the weights λ0 and λ1 has to be positive. This contradicts the
assumption.

For R2
=-convex sets the converse inclusion of this theorem can be shown.

Theorem 3.10. If Z ⊂ R2 is R2
=-convex, then S0(Z) = ZwN

Proof. Following Theorem 3.9 we only have to show that ZwN ⊆ S0(Z). Replacing R2
=

with R2
> in the proof of Proposition 3.5 one can show that ZwN ⊆ (Z+R2

>)wN . Therefore,
for ẑ ∈ ZwN we have

(ZwN + R2
> − ẑ) ∩ (−R2

>) = ∅.

In other words, the intersection of the relative interior of these two convex sets is empty.
Theorem 3.8 guarantees the existance of some λ ∈ R2 \ {0} such that

〈λ, z + d+ ẑ〉 ≥ 0 ≥ 〈λ,−d′〉 (3.20)

for all z ∈ Z and d, d′ ∈ R2
>.

Since 〈λ,−d′〉 ≤ 0 for all d′ ∈ R2
> we choose d′ = ek + εe, where ε > 0 arbitrarily small,

ek is the k-th unit vector, i.e., e1 = (1, 0) and e2 = (0, 1), and e = (1, 1) ∈ R2 a vector of
all ones, to show that λ0, λ1 ≥ 0. Further, choosing d = εe in 〈λ, z + d+ ẑ〉 ≥ 0 implies

〈λ, z〉+ ε〈λ, e〉 ≥ 〈λ, ẑ〉 (3.21)

for all z ∈ Z and therefore
〈λ, z〉 > 〈λ, ẑ〉. (3.22)

Hence, λ ∈ R2
= and ẑ ∈ S(λ, Z) ⊆ S(Z).

Next we relate the weighted sum scalarization sets of optimal points S0(Z) and S(Z) to
ZN .

Theorem 3.11. Let Z ∈ R2. Then, S(Z) ⊆ ZN .

Proof. Let ẑ ∈ S(Z). Then, there exists some λ ∈ R2
> satisfying 〈λ, ẑ〉 ≥ 〈λ, z〉 for all

z ∈ Z. Assume that ẑ /∈ ZN . Therefore there exists a z′ ∈ Z with z′ ≤ ẑ. Furthermore,
componentwise multiplication with the weights gives λkz

′
k ≤ λkẑk, k = 0, 1, and a strict

inequality for at least one k. This strict inequality and the fact that λ ∈ R2
> implies that

λ0z
′
0 + λ1z1 < λ0ẑ

′
0 + λ1ẑ1, which contradicts ẑ ∈ S(Z).
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Corollary 3.12. Let Z ∈ R2. If Z is R2
=-convex, then ZN ⊆ S0(Z).

Proof. This follows immediately from Theorem 3.11, since ZN ⊆ ZwN = S0(Z).

Furthermore, one can extend this theorem for the case of unique elements of S(λ, Z).

Proposition 3.13. If {ẑ} = S(λ, Z) for some λ ∈ R2
> then ẑ ∈ ZN .

Proof. Suppose ẑ /∈ ZN . Then, there exists z′ ∈ Z, such that z′ ≤ ẑ. Furthermore,
componentwise multiplication with the weights gives λkz

′
k ≤ λkẑk, k = 0, 1. There are

two possibilities, since λ ∈ R2
>. First, if 〈λ, z′〉 < 〈λ, ẑ〉, ẑ /∈ S(λ, Z) follows, which is a

contradiction. Second, if 〈λ, z′〉 = 〈λ, ẑ〉, we have z′ ∈ S(λ, Z). Which is a contradiction,
since ẑ is the unique element of S(λ, Z). Hence, ẑ ∈ ZN .

Summarizing the results of Theorem 3.11 and Corollary 3.12 we have the following impli-
cations

S(Z) ⊆ ZN ; S0(Z) ⊆ ZwN (3.23)

in general and
S(Z) ⊆ ZN ⊆ S0(Z) = ZwN (3.24)

for R2
=-convex sets. In the following, theorem all the results of this chapter are summa-

rized.

Proposition 3.14. Let x̂ be an optimal solution of the weighted sum problem

min
x∈X

λ0J0(x) + λ1J1(x) (3.25)

with λ = (λ0, λ1) ∈ R2
=. Then, the following statements hold.

1. If λ ∈ R2
=, then x̂ ∈ XwP .

2. If λ ∈ R2
>, then x̂ ∈ XP .

3. If λ ∈ R2
>, and x̂ is the unique solution of (3.25) then x̂ ∈ XsP .

Proof. This follows directly from Theorem 3.9, Theorem 3.11 and Proposition 3.13.

For convex problems we thus have.

Proposition 3.15. Let X be a convex set, and let J0, J1 : X → R2 be convex functions.
If x̂ ∈ XwP there exists a weighting vector λ ∈ R2

> such that x̂ is an optimal solution of
(3.25).

Proof. This follows from Theorem 3.10.

Therefore, in this case every solution of the weighted sum scalarization (3.14) is Pareto-
optimal for (3.11). Nevertheless, for the numerical experiments of this work we consider
weights λ ∈ R2

>. Thus, following (3.23) it is not guaranteed that we can recover all
x̂ ∈ XwP even if X is a convex set, and J0, J1 : X → R2 are convex functions. Furthermore,
a disadvantage of the weighted sum method is, however, that only solutions that map to
the convex hull conv(Z) = {

∑k
i=1 αiz

i : zi ∈ Z, k > 0, αi ≥ 0,
∑k

i=1 αi = 1} of the image
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set Z = f(X ) in the objective space can be found, and thus relevant compromise solutions
in nonconvex areas of the nondominated front may be missed. Moreover, [38] showed at
simple biobjective test instances that evenly distributed weights do in general not lead to
well distributed outcome vectors in the objective space. This is particularly problematic
if the considered objective function values are of largely different magnitude, which is the
case here. In order to obtain solutions that are consistent with the preferences expressed by
λ, we thus normalize the objective functions by using appropriate scaling factors κ0, κ1 >
0, and replace J0 and J1 in (3.14) by κ0J0 and κ1J1, respectively. Despite the difficulties
mentioned above, the weighted sum method is usually well-suited to efficiently compute
at least a rough approximation of the Pareto front. Note that from here on for simplicity
we still refer to the objectives as J0 and J1, while assuming that they are approximately
scaled.

3.5.1 First and Second-Order Optimality Conditions

Recall, that we normalize the weights, i.e., λ0 + λ1 = 1, in the discussion in the previous
section. To normalize the weights of the weighted sum scalarization of a biobjective
optimization problem it is sufficient to choose one λ ∈ [0, 1] and set λ0 = 1 − λ and
λ1 = λ. Hence, one can reformulate the weighted sum sclarization (3.14) to

min
x∈X

Jλ(x) := (1− λ)J0(x) + λJ1(x) (3.26)

with λ ∈ [0, 1]. Note that with this notation Jλ is equal to J0 for λ = 0 and J1 for λ = 1,
respectively. Moreover, if J0, J1 (and therefore Jλ) are two times differentiable one can
formulate the following first and second-order optimality conditions.

Definition 3.16. Let x̂ ∈ X and let J0, J1 : X → R be differentiable. Further, let
Jλ = (1− λ)J0 + λJ1 be the weighted sum scalarization for some weight λ ∈ [0, 1].

(i) We say x̂ is (locally) optimal with respect to λ, if Jλ(x̂) ≤ Jλ(x
′) for x′ ∈ X

(x′ ∈ U ⊂ X , with U = Bε(x)).

(ii) We say x̂ is critical for Jλ, or λ-critical, if

∇xJλ(x̂) = (1− λ)∇xJ0(x̂) + λ∇xJ1(x̂) = 0. (3.27)

(iii) For ε > 0, x̂ is called ε-critical with respect to Jλ, if

‖∇xJλ(x̂)‖ ≤ ε. (3.28)

Lemma 3.17. If for some ε > 0 and λ ∈ (0, 1) the point x̂ ∈ X ⊂ Rn is ε-critical with
respect to Jλ, i.e., ‖∇xJλ(x̂)‖ ≤ ε, it follows directly that x̂ is also ε′-Pareto critical with
ε′ = ε

min{λ,(1−λ)} .

Proof. Assume the contrary, i.e., that there exists a search direction d ∈ Rn such that

∇xJi(x̂)>d ≤ −ε′‖d‖ and ∇xJj(x̂)>d < 0, i, j ∈ {0, 1}, i 6= j,
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where we choose j = 0 and i = 1 without loss of generality. Since x̂ is ε-critical with
respect to Jλ we have∥∥(1− λ)∇xJ0(x̂)>d+ λ∇xJ1(x̂)>d

∥∥ =
∥∥∇xJλ(x̂)>d

∥∥ ≤ ‖∇xJλ(x̂)‖‖d‖ ≤ ε‖d‖. (3.29)

Furthermore, multiplying both sides of (3.29) with 1/min{λ, (1− λ)} > 0 yields∥∥∥∥∥ (1− λ)

min{λ, (1− λ)}
∇xJ0(x)>d+

λ

min{λ, (1− λ)}
∇xJ1(x)>d

∥∥∥∥∥ ≤ ε‖d‖
min{λ, (1− λ)}

= ε′‖d‖.

(3.30)
Thus, contradicting∥∥∥∥∥ (1− λ)

min{λ, (1− λ)}
∇xJ0(x)>d︸ ︷︷ ︸

<0

+
λ

min{λ, (1− λ)}
∇xJ1(x)>d︸ ︷︷ ︸

≤−ε′‖d‖

∥∥∥∥∥ > ε′‖d‖.

Hence, the assertion follows.

Next, recall the concept of positive definiteness.

Definition 3.18. A symmetric matrix A ∈ Rn×n is called positive definite if x>Ax > 0
for all x ∈ X ⊂ Rn.

With this property second-order optimality conditions can be stated.

Definition 3.19. Let x̂ ∈ X and let J0, J1 : X → R be two times differentiable. Further,
let Jλ = (1 − λ)J0 + λJ1 be the weighted sum scalarization for some weight λ ∈ [0, 1]
and let ∇2

xJλ(x̂) be the Hessian of Jλ at x̂. Then, we say that x̂ satisfies the second-
order optimality conditions for Jλ(x̂) strictly if x̂ is λ-critical and ∇2

xJλ is strictly positive
definite.

Note that if x̂ satisfies strict second-order Jλ-optimality, it is locally Jλ-optimal, i.e., x̂ is
a local Pareto-optimal point.

3.6 Existence of Pareto-optimal Shapes

In order to prove the existence of Pareto-optimal shapes, we consider the weighted sum
scalarization (3.26) of problem (3.11), since following Section 3.5 every optimal solution
of problem (3.26) is Pareto-optimal for problem (3.11). Moreover, following [20] and as a
continuation of Section 3.2, some assumptions for the crack size measure dυa have to be
made to show the existence of Pareto-optimal shapes.

Definition 3.20. A crack size measure d υa has the non decreasing hazard property, if
and only if the function Υ : (0, 1)→ R, which is defined as

Υ(k) := d υa

( ]
1

k2
,∞
[ )

, (3.31)

is convex in k.
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Theorem 3.21. If the crack size measure d υa has the non decreasing stress hazard prop-
erty then the set Oad

P is non-empty.

Proof. Suppose that λ ∈ [0, 1] is chosen arbitrarily, but fixed. Then, the weighted sum
objective can be evaluated as

Jλ(Ω) = λ

Γ(p
2
)

2π
p
2

∫
Ω

∫
Sp−1

(
σn(∇u(ξ))

σ0

)m
dn dξ

+ (1−λ)

∫
Ω

dξ

= λ
Γ(p

2
)

2π
p
2

∫
Ω

∫
Sp−1

(
σn(∇u(ξ))

σ0

)m
dn +

2π
p
2 (1−λ)

Γ(p
2
)λ︸ ︷︷ ︸

constant

dξ.

Thus, the incorporation of the volume J0 into the scalarized objective function corresponds
to the addition of a constant term in the shape integral of J1. This does not affect the
convergence analysis of [20], which is based on convexity of the integrand in ∇u, see
[28, 66]. We can conclude that the weighted sum scalarization has an optimal solution
for every λ ∈ [0, 1]. Since every such solution is Pareto-optimal for (3.11), the result
follows.

52



4 Discretization of the Objective
Functionals and the Numerical Test
Cases

To actually compute locally Pareto optimal shapes, we adopt the finite element discretiza-
tion implemented in [79] for two-dimensional instances (i.e., d = 2). In this implemen-
tation, the shapes Ω ∈ Oad, the state equation (3.2), the objective functions J0 and J1

and their gradients are discretized. Standard Lagrangian finite elements are used for the
discretization of the state equation (3.2), and all integrals are calculated using numeri-
cal quadrature. The discretized shape gradients are obtained by an adjoint approach to
reduce computational costs.
In the following, based on [79, 21, 80] we give a brief overview over the above mentioned
discretization in Section 4.1 and the adjoint approach in Section 4.2. Further, the geom-
etry definition and finite element mesh utilized in this work is introduced in Section 4.3.
Subsequently, in Section 4.4 the two ceramic test cases that are considered in this work are
presented. Some parts of this chapter, mainly Sections 4.3 and 4.4 are already published
in [46].

4.1 Discretization of the Objective Functionals

Now, that we have stated our biobjective optimization problem (3.11), following [79, 21,
80] we discretize the objective functions for the two-dimensional case via the finite element
method. To this end, we utilize Lagrangian nodes as described in Chapter 2. Recall that
we have

• NG grid points X = {X1, ..., XNG},

• Nel Lagrange finite elements {K,Π′(K),Σ′(K)},

• nsh local shape functions θKk ∈ Π′(K) defined by local nodes XK
1 , ..., X

K
nsh
∈ K,

• a reference element {K̂, Π̂′, Σ̂′} with

• a bijective transformation TK : K̂ → K for each K and

• quadrature points ξ̂Kl and weights ω̂l.

Further, recall that the inner integral of (3.6), i.e., the PoF objective function, is given as

I(u) :=

∫
S1

((
n>σ(∇u(ξ))n

)+
)m

dn.
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Then, a transformation via polar coordinates yields

I(u) =

∫ 2π

0

((
cos2(ϕ)σ11 + 2 cos(ϕ) sin(ϕ)σ12 + sin2(ϕ)σ22

)+
)m

dϕ,

for which in [79, 21, 80] it is shown that the discretized objective functional is of the form

J(Ω, u) =
∑
K∈Th

∫
K

ψ̂ (σ (ξ) , ϕ) dξ

=
∑
K∈Th

∫
K̂

ψ̂
(
σ
(
TK

(
ξ̂
))

, ϕ
)

det
(
∇̂TK

(
ξ̂
))

dξ̂

≈
∑
K∈Th

qK∑
l=1

ω̂Kl
2π

n

((
σ
(
TK

(
ξ̂Kl

))+

11

)m

+
n−1∑
i=1

((
cos2

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
12

+ sin2

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
22

)+
)m)

· det
(
∇̂TK

(
ξ̂Kl

))
,

where ψ̂(σ, φ) is obtained with the trapezoidal rule for n interpolation points. For further
details we refer to [79, 21, 80]. The much simpler volume objective function is discretized
in an analogous way.

4.2 Adjoint Equation

In this section, a cost-efficient way to calculate discretized gradients, i.e., the adjoint
approach, is introduced. Note that this section is based on the corresponding section in
[45]. For our gradient based optimization methods we need the derivative of J(X,U) with
respect to X which is given as

dJ(X,U(X))

dX
=
∂J(X,U(X))

∂X
+
∂J(X,U(X))

∂U

∂U(X)

∂X
. (4.1)

Computationally a cost problem arises when computing the gradients straightforward,
since the computation of ∂U(X)

∂X
is very expensive. Therefore, one want to compute the

gradients without using this term by applying the discrete adjoint approach. First, con-
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sider the derivative of the state equation

∂B(X)

∂X
U(X) +B(X)

∂U(X)

∂X
=
∂F̂ (X)

∂X

⇔ ∂U(X)

∂X
= B(X)−1

[
∂F̂ (X)

∂X
− ∂B(X)

∂X
U(X)

]
.

(4.2)

Then by substituting ∂U(X)
∂X

in (4.1) with (4.2) we obtain

dJ(X,U(X))

dX
=
∂J(X,U(X))

∂X
+
∂J(X,U(X))

∂U
B(X)−1

[
∂F̂ (X)

∂X
− ∂B(X)

∂X
U(X)

]
.

Further, let

Λ̂ :=
∂J(X,U(X))

∂U
B(X)−1.

Furthermore, with the fact that B is symmetric we can deduce the adjoint equation

BT (X) Λ̂ =
∂J(X,U(X))

∂U
,

which gives us the adjoint state method :

If X̂ solves the minimization problem min J(X,U(X)) s.t. B(X)U(X) = F̂ (X), then it
also is a solution of the following system of equations

BT (X)Λ̂ =
∂J(X,U(X))

∂U

B(X)U(X) = F̂ (X)

∂J(X,U(X))

∂X
+ Λ̂

[
∂F̂ (X)

∂X
− ∂B(X)

∂X
U(X)

]
= 0.

(4.3)

4.2.1 Derivative of the Objective Functional

In this subsection, we explain the discretization of the adjoint equation (4.3). Following
[79, 21, 80], we discretize the derivatives of J with respect to U andX, and refer to [73, 129]
for the other derivatives. In contrast to [73, 129], we only consider local derivatives instead
of global derivatives. To this end, recall that to compute discretized objective function
values of J a sum over all objective values on finite elements K ∈ Th is taken into account.
In a local approach the computation of the local derivatives of J loc with respect to U loc

and X loc takes place on every K separately and are then assembled into global derivatives.
Thus, for every K ∈ Th we only consider the local properties like the shape functions ϑK,k

and degrees of freedom. For any K ∈ Th with ωl := ω̂Kl · det ∇̂TK(ξ̂Kl ), for l = 1, ..., qK ,
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we then have

J loc(X,U(X)) =

qK∑
l=1

ωl
2π

n

((
σ
(
TK

(
ξ̂Kl

))+

11

)m
+

n−1∑
i=1

((
cos2

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
11

+2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
12

+ sin2

(
i2π

n

)
σ
(
TK

(
ξ̂Kl

))
22

)+
)m)

,

For notational simplicity we set

T
(n)
i := cos2

(
i2π

n

)
σ
(
TK

(
ξ̂l

))
11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
TK

(
ξ̂l

))
12

+ sin2

(
i2π

n

)
σ
(
TK

(
ξ̂l

))
22
.

(4.4)

Derivative with Respect to U loc

Let K ∈ Th. Further, let j = 1, ..., nsh be the index of corresponding shape functions and
k = 1, 2 the dimension. Then, the local derivative with respect to the local degrees of
freedom U is given as

∂J loc(X,U(X))

∂U loc
jk

=
∂

∂U loc
jk

qK∑
l=1

ωl
2π

n

((
σ
(
TK

(
ξ̂Kl

))+

11

)m
+

n−1∑
i=1

((
T

(n)
i (ξ̂Kl )

)+
)m)

=

qK∑
l=1

ωl
2π

n

(
∂

∂U loc
jk

(
σ
(
TK

(
ξ̂Kl

))+

11

)m
+

n−1∑
i=1

∂

∂U loc
jk

((
T

(n)
i (ξ̂Kl )

)+
)m)

.

In a next step, we calculate the derivatives of (σ(TK(ξ̂Kl ))+
11)m. We get

∂

∂U loc
jk

(
σ
(
TK

(
ξ̂Kl

))+

11

)m
=1{σ(TK(ξ̂Kl ))

11
>0}(ξ̂

K
l )
∂σ
(
TK

(
ξ̂Kl

))
11

∂U loc
jk

×m
(
σ
(
TK

(
ξ̂Kl

))
11

)m−1

.

To calculate ∂
∂U loc

jk
σ(TK(ξ̂Kl ))11 a ”bottom-up” approach is followed, i.e., first the smallest
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required entity to calculate the next smallest entity is calculated and so forth. Hence, we
begin by calculating the derivative of ∇̂u(ξ̂Kl ) := (∇u ◦ TK)(ξ̂Kl ).

∂∇̂u(ξ̂Kl )i`
∂U loc

jk

=

nsh∑
r=1

2∑
s=1

∂U loc
rs

∂U loc
jk

((
∇̂TK(ξ̂Kl )

)−1
)
s`

∇̂sθ̂r(ξ̂
K
l )

=

nsh∑
r=1

2∑
s=1

δrjδik

((
∇̂TK(ξ̂Kl )

)−1
)
s`

∇̂sθ̂r(ξ̂
K
l )

= δik

2∑
s=1

((
∇̂TK(ξ̂Kl )

)−1
)
s`

∇̂sθ̂r(ξ̂
K
l ).

With (2.27) and Lamé’s constants we then have

σ
(
TK

(
ξ̂Kl

))
i`

= µL

(
∇̂u(ξ̂Kl )i` + ∇̂u(ξ̂Kl )`i

)
+ λLδi`

2∑
r=1

∇̂u(ξ̂Kl )rr.

Thus, the derivative is then

∂(σ ◦ TK)i`
∂U loc

jk

= µL

(
∂∇̂ui`
∂U loc

jk

+
∂∇̂u`i
∂U loc

jk

)
+ λLδi`

2∑
r=1

∂∇̂urr
∂U loc

jk

.

In a next step ∂
U loc
jk

((T
(n)
i (ξ̂Kl ))+)m is calculated. We obtain
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i , we then have

∂T
(n)
i (ξ̂Kl )

∂U loc
jk

= cos2

(
i2π

n

) ∂σ
(
TK

(
ξ̂Kl

))
11

∂U loc
jk

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

) ∂σ
(
TK

(
ξ̂Kl

))
12

∂U loc
jk

+ sin2

(
i2π

n

) ∂σ
(
TK

(
ξ̂Kl

))
22

∂U loc
jk

.

57



Derivative with Respect to X loc

Let K ∈ Th. The derivative with respect to a local X is given as
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Next, the remaining derivatives are computed following our ”bottom-up” approach. Start-
ing with

∂ωl
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=
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(
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The derivative of ∇̂TK(ξ̂) was already calculated, it is
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Hence, utilizing the formula for derivatives of determinants ∂ det(A)
∂x

= det(A)tr
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)
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To calculate the derivative of σ
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,

the ”bottom-up” approach is followed and we obtain, similar to the derivative with respect
to U ,
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For further details we refer to [79, 21, 80]. The remaining derivative of
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(4.6)

In the following, the ”bottom-up” approach is further explained. All components of the
local derivatives are calculated in separate functions, that have no interdependence of
functions of the same level. In Figure 4.1, the hierarchy of this principle is exemplary
illustrated for the partial derivatives with respect to U . As one can observe there exists a
strict order for the sub-function use for the derivative computation and each sub-function
can be incorporated in various other applications.

∂J(X,U(X))
∂U

Volume-Determinant

weights ∇̂TK

Ti-Derivative J loc-Derivative

σ-Derivative

∇u-Derivative

∇̂TK ∇̂ϑ̂

Figure 4.1: Scheme of dependence of the subfunctions in the ”bottom-up” approach.

4.3 Geometry Definition and Finite Element Mesh

In this section, the definition of geometry and the finite element mesh representing the
ceramic components is described. The two-dimensional shapes Ω ∈ Oad ⊂ P(R2) are
discretized by an nx × ny mesh X := XΩ = (XΩ

ij)nx×ny (we write Xij := XΩ
ij ∈ R2 for

short) using triangles, with nx, ny ∈ N being the number of grid points in x and y direction

59



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

FE

mesh

meanline

thickness

B-splines

fit

Figure 4.2: Transformation: mesh X → meanline/thickness % → B-spline fit γ. See also
[46].

of ξ, respectively. Given a shape Ω ∈ Oad and its discretization X, the objective function
values J0(X) and J1(X) as well as their gradients ∇J0(X) and ∇J1(X) are computed
using the implementation of [79, 21, 80].

For the optimization process we fix the x-component of all grid points to equidistant
values ξx1 , . . . , ξ

x

nx , and we only consider the y-components of those grid points that define
the boundary of the shape to avoid deformation of the inner mesh structure. Note that
this reformulation reduces the number of optimization variables from 2nxny to 2nx. As
a consequence, feasible shapes can alternatively be represented by a shape parameter %
containing, for every relevant ξx-coordinate, the ξy-coordinate of the meanline %ml

i ∈ R of
the shape, and the thickness %th

i ∈ R> of the shape, i = 1, . . . , nx. Given a feasible shape
represented by % := (%ml, %th) ∈ R2nx with %th ∈ Rnx

> , an associated mesh representation
X can be obtained using

Xi,j :=

(
ξxi , %

ml
i +

%th
i

ny − 1

(
j − ny + 1

2

))
∈ R2, i = 1, . . . , nx, j = 1, . . . , ny. (4.7)

To further reduce the computational burden and to obtain smoother shapes, the shape
parameters %ml ∈ Rnx and %th ∈ Rnx

> are modelled using B-splines. Let nB ∈ N, with
nB < nx, be the number of B-spline basis functions, and let {Bj : R→ R≥, j = 1, . . . , nB}
be a B-spline basis (see, e.g., [120]). Feasible shapes are then represented by B-spline
coefficients γ := (γml, γth) ∈ R2nB . The corresponding meanline and thickness values can
be computed using the auxiliary functions

%̂ml(x) :=

nB∑
j=1

γml
j Bj(x) and %̂th(x) :=

nB∑
j=1

γth
j Bj(x), x ∈ R.

These auxiliary meanline and thickness functions are then evaluated at the fixed x-
coordinates of the gridpoints which yields

%ml
i := %̂ml(xi) and %th

i := %̂th(xi), i = 1, . . . , nx. (4.8)

Using the B-spline coefficients γ = (γml, γth) ∈ R2nB as optimization variables yields a
further reduction of the number of variables to 2nB. Moreover, the B-spline representa-
tion leads to an implicit regularization and smoothing of the represented shapes. In the
following, we denote the set of feasible shape parametrizations by Γ ⊆ {(γml, γth) ∈ R2nB}.
The transformation from the mesh to the B-spline fit is visualized in Figure 4.2.

To evaluate the objective functions Jj(γ) and their gradients ∇Jj(γ) = ∂Jj/∂γ, j =
0, 1, w.r.t. the new parametrization of shapes based on B-spline parameters γ, while
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still using the implementation of [79, 21, 80], we compute an associated grid X using
a two step transformation. First, the fixed B-spline basis is utilized to construct the
auxiliary functions of meanline and thickness, the evaluation of which (via (4.8)) then
generates the shape parameters for the next step of the grid computation (4.7). While the
resulting objective function values can be used immediately in the optimization process,
the gradients computed w.r.t. the grid X need to be translated to the space of B-spline
coefficients, i.e.,

∂Jj
∂γml

=
∂Jj
∂X

∂X

∂%ml

∂%ml

∂γml
and

∂Jj
∂γth

=
∂Jj
∂X

∂X

∂%th

∂%th

∂γth
, j = 0, 1. (4.9)

The numerical computation of gradients of Jj, j = 0, 1, w.r.t. a B-spline representation
γ of a feasible shape Ω is thus based on a two-step projection of γ onto the original
grid X. The thus computed gradients of J1 (the intensity measure) were validated, using
finite differences, at the sample shape shown in Figure 4.4a. The validation is based on
a grid (Xij)41×7, i.e., nx = 41 and ny = 7. Consequently, for the corresponding meanline
and thickness representation we have % = (%ml, %th) ∈ R82, where %th ∈ R41

> . Moreover,
we used a B-spline basis with five basis functions, i.e., nB = 5 and γ = (γml, γth) ∈
R10. We computed all ten partial derivatives w.r.t. γ via the respective transformations
to the grid representation and compared them with finite differences. The results of
this comparison, i.e., the absolute values of the differences between computed derivatives
and finite differences, are shown in Figure 4.3a and 4.3b for the meanline and thickness
parameters, respectively. The figures indicate in all cases that, when the finite differences
are evaluated for decreasing values of the increment ε, then they correspond well to the
computed gradients.

4.4 Test Cases

In this section, two test cases are introduced, which then are used in the numerical
experiments of Chapters 5, 6 and 7. We consider 2D ceramic shapes made out of beryllium
oxide (BeO) under tensile load. Therefore, we set Young’s modulus to EY = 320 GPa (see,
e.g., [112]), Poisson’s ratio to νP = 0.25, and the ultimate tensile strength to 140 MPa,
according to [142]. Weibull’s modulus is set to m = 5, which is on the lower bound for
industrial ceramics where m is between 5 and 30 depending on the production process
[110]. All considered shapes have a fixed length of 1.0 m and a fixed height of 0.2 m on
the left and right boundaries. The shapes are fixed on the left boundary, where Dirichlet
boundary conditions hold (∂ΩD), and on the right boundary, where surface forces may act
on and Neumann boundary conditions hold (∂ΩNfixed

). The upper and lower boundaries
are assumed to be force free (∂ΩNfree

). They can be modified within the optimization
process. We set f̃ = 0 neglecting the gravity forces and g̃ = 107 Pa, representing tensile
load. Note that, in order to be consistent with 3D models, we define the force density w.r.t.
Pa = N/m2 (and not w.r.t. N/m). This is motivated by assuming a constant width of the
2D component of 1 unit (i.e., 1m). Then plane stresses and plane strains are assumed by
neglecting Poisson effects in the third dimension. For the biobjective gradient descents
performed in Chapter 5, both starting solution are chosen without involving a decision
maker. In the first case, we choose an obviously not efficient solution for a horizontal
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Figure 4.3: Validation of gradients computed according to (4.9) using finite differences.
On the x-axis: increment ε used for the finite difference evaluation; on the
y-axis: absolute deviation between ∂J1/∂γ

ml,th
i computed according to (4.9)

and the corresponding finite difference, i = 1, . . . , 5, for meanline (left) and
thickness (right). See also [46].

load transfer to see how the biobjective gradient descent algorithms works. The second
test case simulates a shifted load transfer. We thus take an a posteriori approach on
decision making with regard to design or cost preferences. We are aware that using
only one starting design for each test case may bias the solutions of both optimization
methods. Nevertheless, numerical experiments with moderately modified initial designs
yielded comparable solutions, indicating that in these special cases there is not much to
gain by varying the starting designs. In Chapter 6, a continuation method is applied on
Pareto critical solutions of both test cases that are computed in Chapter 5. Furthermore,
in Chapter 7 surrogate based optimization is applied and to that end explicit design spaces
for both test cases are chosen. The shapes are discretized by a 41× 7 grid (i.e., nx = 41
and ny = 7) using triangles as detailed in Section 4.3. The B-spline representation is
based on nB = 5 basis functions. Thus, we have in total ten B-spline coefficients. Since
the left and right boundary are fixed and we only modify the upper and lower boundary
of the components, we have to fix the first and last B-spline coefficients for both, the
auxiliary meanline and thickness functions. All in all, we have now six control variables.
For the rest of this work we denote the six control variables γml

2 , γml
3 , γml

4 , γth
2 , γ

th
3 and γth

4

( recall that γml
1 , γml

5 and γth
1 , γ

th
5 are fixed) as

x = (x1, . . . , x6) = (γml
2 , γml

3 , γml
4 , γth

2 , γ
th
3 , γ

th
4 ) ∈ X ⊂ R6. (4.10)
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Most implementations are realized in R version 3.5.0, where the B-spline implementation
of [124] is utilized. Furthermore, we use the adjoint finite element code of [79, 21, 80] as
a subroutine. Only in Chapter 7 additional external code from an optimization toolbox,
i.e., Dakota, is utilized. The details are explained in Chapter 7.

4.4.1 Test Case 1: A Straight Joint

In the first test case, a straight joint is sought that is fixed at the left side, while the tensile
load acts on the right side. This is a particularly simple situation where the straight rod
connecting from the left to the right (Figure 4.4d) can be expected to be optimal, with
varying thickness depending on the trade-off between the intensity measure (J1) and the
volume (J0). The biobjective gradient descent algorithms of Chapter 5 are challenged by
providing a bended beam as a starting shape, which is clearly far from being optimal.
The starting shape, is shown in Figure 4.4a, together with the 41 × 7 tetrahedral dis-
cretization X. Its objective values are J1(X(1)) = 0.769624 (intensity measure) and
J0(X(1)) = 0.2 (volume), respectively. The relatively high value for the intensity measure
J1 can be explained by the relatively high stresses that are illustrated in Figure 4.4b. Fig-
ure 4.4c shows that the B-spline representation based on only five basis functions leads
to a rather inaccurate representation, particularly at the left and right boundary. This
could be improved by fixing the slopes at the left and right boundary, however, at the
price of a significantly reduced design space. Indeed, a majority of the Pareto critical
shapes computed during our numerical tests do not have zero slopes at the left and right
boundary, particularly in the case of the S-shaped joint considered in Section 4.4.2 below.
Note that the smoothing induced by the B-spline representation in this case already leads
to dominating objective values of J1(γ(1)) = 0.453867 and J0(γ(1)) = 0.2.

4.4.2 Test Case 2: An s-Shaped Joint

A more complex situation is obtained when the left and right boundaries are not fixed
at the same height, i.e., when an S-shaped joint is to be designed. In our tests, we fix
the right boundary about 0.27 m lower than the left boundary. The starting shape for
the biobjective gradient descent algorithms of Chapter 5 and its 41 × 7 tetrahedral dis-
cretization X, that is used for all optimization runs, is shown in Figure 4.5a. Figure 4.5b
highlights the stresses that are particularly strong toward the left boundary. The re-
spective objective values are J1(X(1)) = 1.520058 (intensity measure) and J0(X(1)) = 0.2
(volume), respectively. As can be expected, the intensity measure (and hence also the
PoF) is considerably higher than in the case of the straight joint discussed in Section
4.4.1. Despite the significant smoothing induced by the B-spline representation of the
initial shape shown in Figure 4.5c, it has an even higher value of the intensity measure
of J1(γ(1)) = 1.910532 (and hence a higher PoF value), while J0(γ(1)) = 0.2 remains
constant.
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Figure 4.4: Test case 1 - straight joint: starting solution and expected solution [46].

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

(a) Tetrahedral mesh X

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 1.520058
Volume = 0.2

(b) Objective values and
stresses

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6 Intensity Measure = 1.910532
Volume = 0.2
Iteration = 0

(c) Approximation with
B-splines

Figure 4.5: Test case 2 - s-shaped joint: starting solution [46].
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5 Gradient Based Biobjective Shape
Optimization to Improve Reliability
and Cost of Ceramic Components

In this chapter, the first gradient based optimization methods of this work are applied to
the shape optimization problem (3.11), i.e., the test cases described in Section 4.4. We
consider a biobjective steepest descent algorithm and a steepest descent approach with
the weighted sum scalarization for varying weights λ ∈ (0, 1). Most of this chapter was
already published in [46].

The optimization of the design of mechanical structures is a central task in mechanical
engineering. If the material for a component is chosen and the use cases are defined,
implying in particular the mechanical loads, then the central task of engineering design
is to define the shape of the component. Among all possible choices, those shapes are
preferred that guarantee the desired functionality at minimal cost. The functionality,
however, is only guaranteed if the mechanical integrity of the component is preserved.
The fundamental design requirements of functional integrity and cost are almost always
in conflict, which makes mechanical engineering an optimization problem with at least
two objective functions to consider.

Mathematically, the task of choosing the shape of a structure is formulated by the the-
ory of shape optimization, see, e.g., [5, 25, 83, 145] for an introduction. We thus con-
sider admissible shapes Ω ⊆ Rd, d = 2, 3, along with an objective function J(Ω) which
returns lower values for better designs. The task then is to find an admissible shape
Ω∗ ∈ arg min J(Ω). The existence of optimal shapes has been studied in [28, 66, 83] – for
the specific objective function J of compliance see [5]. On the algorithmic side, the adjoint
approach to shape calculus has led to efficient strategies to calculate shape gradients, see,
e.g., [32, 41, 54, 55, 100, 138, 139, 145]. While theory and numerical algorithms of shape
calculus are highly developed mathematically, most publications in the field neither deal
with multiobjective optimization problems, nor directly consider mechanical integrity as
one of the objective functions, see [83, 6, 50, 119] for some remarkable exceptions.

In mechanical engineering, mechanical integrity is one of the central objectives, see, e.g.,
[13]. However, if objectives like the ultimate load that the structure can bear or the fatigue
life of a component are formulated deterministically, then the objective function is in gen-
eral non-differentiable as it only depends on the point of maximal stress. Thus, this would
lead to highly instable numerical optimization schemes. At the same time, as material
properties are subject to considerable scatter, a deterministic approach is not realistic.
To overcome these two shortcomings, an alternative probabilistic approach to mechanical
integrity has been proposed in [21, 20, 74, 73, 75, 134, 135, 136] (see also Section 3.2),
which has a smoothing effect on the singularities that are typical for deterministic models.
Note that the probabilistic description of the ultimate strength of ceramics has become
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a standard in material engineering since the ground breaking work of Weibull, see, e.g.,
[13, 24, 112, 127, 152]. In practice, there usually is a trade-off between the mechanical in-
tegrity of a structure and its volume (cost), since an improved mechanical integrity usually
comes at the cost of a larger volume. Instead of presetting a fixed bound on the allowable
volume, the trade-off between these two conflicting goals can be analyzed in a biobjective
model. Other relevant objective functions may be, for example, the minimal buckling
load of a structure or its minimal natural frequency, see, for example, [83]. In Chapter 3,
a general introduction into the field of biobjective optimization is given. In the context
of shape optimization problems, two major solution approaches can be distinguished:
Metaheuristic and, in particular, evolutionary algorithms are widely applicable solution
paradigms that do not utilize the particular structure of a given problem [29, 39, 40, 154].
However, in combination with expensive numerical simulations such approaches tend to
be inefficient. On the other hand, gradient-based algorithms [43, 60, 156] require efficient
gradient computations and are often applied in the context of adjoint approaches and
using weighted sum scalarizations of the objective functions. See [122] for a comparison.

In this work, we consider biobjective PDE constrained shape optimization problem (3.11)
for the simultaneous optimization of the mechanical integrity and the cost of a ceramic
component. As we have seen, most papers in shape optimization of structures do not deal
with mechanical integrity as an objective, but use elastic compliance [5], or in the case that
they consider mechanical integrity, do not use a probabilistic approach [6, 119, 50]. In [75,
134, 136, 135], probabilistic models for metals under low cycle fatigue are introduced and in
[73, 74] some numerical studies are made. Further, a probabilistic formulation for ceramics
under load is provided in [20] and a first single criteria optimization with this objective
while using a volume constraint is done in [21]. Multicriteria optimization including
mechanical integrity is widely considered, see, e.g., [29] for a recent example. However,
these works neither consider probabilistic effects nor use gradients. This work for the
first time combines biobjective gradient based optimization methods with a probabilistic
assessment of mechanical integrity.

This chapter is structured as follows. In Section 5.1, a biobjective descent algorithm and
the gradient descent with the weighted sum scalarization are introduced. In Section 5.2,
the numerical implementation is described and subsequently the numerical results are
presented in Section 5.3.

5.1 Biobjective Gradient Descent Methods

Recall that we aim at the efficient computation of Pareto critical shapes while incorpo-
rating the available gradient information. Two fundamental approaches in this category,
a parametrized weighted sum method and a biobjective descent algorithm are chosen and
explained in Sections 5.1.1 and 5.1.2, respectively. Their performance in the context of
2D shape optimization problems is compared in Section 5.3.

5.1.1 Weighted Sum Method

Maybe the easiest way to compute a representation of the Pareto front is to iteratively
solve weighted sum scalarizations (3.26) with varying weights. Recall that the weighted
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sum scalarization of problem (3.11) can be restated as

min
x∈X

Jλ(x) := (1− λ)J0(x) + λJ1(x), (5.1)

where λ ∈ (0, 1) is the weight specifying the relative importance of J1 and J0, respectively.

For this purpose, problem (3.14) is solved iteratively for varying weights (in our case, we
choose λ ∈ {0.2, 0.25, 0.3, . . . , 0.9} since numerical experiments showed that this yields
meaningful trade-offs). Each single objective optimization problem (3.14) is then indi-
vidually solved using a classical gradient descent algorithm with stepsizes determined
according to the Armijo rule, see, for example, [14].

Algorithm 1: Parametric weighted sum algorithm using gradient descent

Data: Choose β ∈ (0, 1), x(1) ∈ X , weights λ1, . . . , λJ ∈ (0, 1), and ε > 0.
Result: Set of approximations of Pareto critical solutions x̃1, . . . , x̃J .
for j = 1 to J do

Set λ = λj, set k := 1, and set d(0) := −∇xJλ(x
(1)) and h0 := 1;

while ‖hk−1 d
(k−1)‖ > ε do

Compute a search direction d(k) = −∇xJλ(x
(k)) ;

Compute a step length hk ∈ (0, 1] as

max
{
h=

1

2`
: ` ∈ N0, Jλ(x

(k)+hd(k)) ≤ Jλ(x
(k))+β h∇xJλ(x

(k))>d(k)
}

;

x(k+1) := x(k) + hk d
(k) and k := k + 1;

end

x̃j := x(k)

end

Under appropriate assumptions, the gradient descent algorithm in the inner loop of Al-
gorithm 1 converges to a critical point of (3.14), see, e.g., [14].

In our implementation, the inner loop is also terminated when a prespecified maximum
number of iterations is reached. However, in this case there is no guarantee that the final
iterate is close to a Pareto critical solution.

Note that a critical point of the weighted sum scalarization (3.14) is necessarily Pareto
critical for the biobjective shape optimization problem (3.11), while the converse is not
true in general. This has some correspondence to the fact that global optimal solutions of
a weighted sum scalarization (3.14) are always Pareto optimal, while nonconvex problems
may have Pareto optimal solutions that are not optimal for any weighted sum scalarization
(3.14), see, Chapter 3.

Note also that the search direction d(k) = −∇xJλ(x
(k)) does not necessarily satisfy

∇xJj(x
(k))>d(k) < 0, j = 0, 1, in all iterations. In other words, one objective function

may deteriorate during the optimization process if only the other objective function com-
pensates for this.
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5.1.2 Biobjective Descent Algorithm

Different from the weighted sum method described above and in Chapter 3, biobjective
descent algorithms – as a natural generalization of single-objective gradient descent al-
gorithms – are potentially capable of finding every Pareto optimal solution, if only the
starting solution is chosen appropriately. While this is a rather theoretical advantage,
biobjective descent algorithms are indeed highly efficient in finding (or approximating)
one Pareto critical solution without the necessity to specify preferences. However, if a
representation of the complete Pareto front is sought, they need to be combined with
other search strategies. We adopt the multiobjective descent algorithm proposed in [60]
(see also [61]) for the biobjective optimization problem (3.11). Similar approaches have
been suggested in [43, 44, 70]. This section is mostly based on [60].

Recall, that we call x̂ ∈ X Pareto critical if and only if{
d ∈ Rn | ∇xJi(x̂)>d < 0, i = 0, 1

}
= ∅.

Biobjective descent algorithms iteratively improve both objective functions simultane-
ously. This is based on the observation that, if a solution x ∈ X is not Pareto critical
according to (3.12), then there exists a direction d ∈ Rn which is a descent direction for
both objectives. Now, suppose that x ∈ X is not Pareto critical. Then, there exists a
biobjective descent direction d ∈ Rn with ∇xJi(x)>d < 0, i = 0, 1. Further, let

Jx(d) := max(∇xJ0(x)>d,∇xJ1(x)>d). (5.2)

Jx is convex and positive homogeneous in d [60].

Then according to [60] a direction of steepest biobjective descent d ∈ Rn can be defined
as a direction solving the auxiliary optimization problem

min Jx(d) +
1

2
‖d‖2

s.t. d ∈ Rn.
(5.3)

Which can be reformulated to get rid of the non differentiabilities

min
α∈R,d∈Rn

α +
1

2
‖d‖2

s.t. ∇xJj(x
(k))> d ≤ α, j = 0, 1.

(5.4)

Problem (5.4) is a convex quadratic optimization problem with linear inequality con-
straints. Note that the term 1

2
‖d‖2 in the objective function ensures that the problem is

bounded, and that the solution α = 0, d = 0 is always feasible. Note also that the optimal
value α∗ is negative if and only if d∗ 6= 0, i.e., if a direction of steepest biobjective descent
exists. The following definition and lemma are needed for a proof of another important
lemma.

Definition 5.1. Let (X , ‖ · ‖) be a real normed space, C ⊂ X ⊂ Rn a convex subset and
c > 0 a positive constant. A function h : C → R is called strongly convex with modulus c
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if, and only if for all x, y ∈ C and a ∈ (0, 1)

h(ax+ (1− a)y) ≤ ah(x) + (1− a)h(y)− ca(1− a)‖x− y‖2.

Lemma 5.2. Let (X , ‖ · ‖) be a real normed space, C ⊂ X ⊂ Rn a convex subset and
c > 0 a positive constant. Further, let h : C → R. Then, the following two properties are
equivalent

(i) h is strongly convex with modulus c,

(ii) h− c‖ · ‖2 is convex.

For a proof of this lemma we refer to, e.g. [113]. We can now prove the following lemma
from [60].

Lemma 5.3. Let x ∈ X . Further, let d(x) := arg min(Jx(d) + 1
2
‖d‖2) be the solution and

α(x) := mind(J
x(d) + 1

2
‖d‖2) the optimal value of (5.3). Then

1. If x is Pareto critical, then d(x) = 0 ∈ Rn and α(x) = 0.

2. If x is not Pareto critical, then α(x) < 0 and

Jx(d(x)) < −1

2
‖d(x)‖2 < 0,

∇xJi(x)>d(x) ≤ Jx(d(x)), i = 0, 1.

3. x 7→ d(x) and x 7→ α(x) are continuous.

Proof. 1. If x is Pareto critical, then {d ∈ Rn | ∇xJi(x̂)>d < 0, i = 0, 1} = ∅ and
therefore Jx(d) ≥ 0 ∀d ∈ Rn. Since Jx(0) = 0, the conclusion follows.

2. If x is not Pareto critical, then there exists a d ∈ Rn such that Jx(d) < 0. With

t̂ := −J
x(d)

‖d‖2
> 0, d̂ := t̂d,

and since Jx is positive homogeneous we have

Jx(d̂)− 1

2
‖d̂‖2 = t̂Jx(d) +

1

2
t̂2‖d‖2

= −1

2

Jx(d)2

‖d‖2
< 0.

Thus, α(x) < 0 and both inequalities follow directly.

3. Let x0 ∈ X and ε > 0. Set

Lε := {d ∈ Rn | ‖d(x0)− d‖ = ε}.
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Let d(x0) be the optimal solution of (5.3) for x = x0. Recall that Jx is convex.
Thus, the objective function of (5.3) is convex, and as a conclusion of Lemma 5.2
also strongly convex with modulus 1

2
. Hence, we have

Jx0(d) +
1

2
‖d‖2 ≥ Jx0(d(x0)) +

1

2
‖d(x0)‖2 +

1

2
ε2 ∀d ∈ Lε.

Since the mapping (x, d) 7→ Jx(d) is continuous and the set Lε is compact, it follows
with the inequality from above that there exists a δ > 0 such that, if ‖x− x0‖ ≤ δ,
then

Jx(d) +
1

2
‖d‖2 > Jx(d(x0)) +

1

2
‖d(x0)‖2 ∀d ∈ Lε.

Take now x ∈ X such that ‖x − x0‖ ≤ δ. Since d 7→ Jx(d) + 1
2
‖d‖2 is convex, one

can conclude from the above inequality that d(x), the minimal value of the objective
function Jx(·)+ 1

2
‖·‖2 is not in the region ‖d(x0)−d‖ ≥ ε, hence ‖d(x0)−d(x)‖ < ε.

Continuity of α(x) follows directly.

See also [48]. Following [60], we say for points x that are ε-Pareto critical, with ε > 0,
that d = d(x), as the corresponding solution of (5.3) w.r.t. x, is an approximate solution
of (5.3). Then we can state the following lemma from [60].

Lemma 5.4. Suppose that for some ε > 0 x is ε-Pareto critical and that d is a corre-
sponding approximate solution of (5.3). Then

‖d‖ ≤ 2‖∇xJ(x)‖∞,2.

Here, ‖A‖∞,2 with A ∈ Rm×n is given as

‖A‖∞,2 := max
i=1,...,m

(
n∑
j=1

A2
i,j

) 1
2

.

Note that following [60], ‖ · ‖∞,2 is a norm on Rm×n. When a direction of steepest
biobjective descent d 6= 0 is found, then we move from x into the direction d to a new
point x := x+ hd. The step length h > 0 is computed using an Armijo-like rule. Toward
this end, let β ∈ (0, 1) be a prespecified constant. Then, a step length h is accepted if it
guarantees a sufficient biobjective descent in the sense that

Jj(x+ h d) ≤ Jj(x) + β h∇xJj(x)> d, j = 0, 1. (5.5)

In order to compute an acceptable step length h, we iteratively test the values (1
2
)`,

` = 0, 1, 2, . . . until condition (5.5) is satisfied. The finiteness of this procedure is given
in the following lemma .

Lemma 5.5. Let J be differentiable and let d ∈ Rn with ∇xJ(x)>d < 0. Then, there

70



exists ε := ε(x, d, β) > 0 such that

J(x+ hd) < J(x) + βh∇xJ(x)>d ∀h ∈]0, ε].

Proof. Since J is differentiable we have for h ∈ R \ {0}

J(x+ h) = J(x) +∇xJ(x)>h+R(h)

with

lim
h→0

|Ri(h)|
‖h‖

= 0, i = 0, 1.

Set a := maxi(∇xJi(x)>d). It follows directly that a < 0 and d 6= 0. Since β < 1, there
is some ε > 0 such that

0 < h ≤ ε⇒ |Ri(hd)|
‖hd‖

<
(1− β)|a|
‖d‖

, i = 0, 1

⇒ |Ri(hd)| < t(1− β)|a|, i = 0, 1.

Since |a| = −a = mini(−∇xJi(x)>d) it follows that

R(hd) < −h(1− β)∇xJ(x)v

Thus, we have for 0 < h ≤ ε

J(x+ hd) = J(x) + h∇xJ(x)>d+R(hd)

< J(x) + h∇xJ(x)>d− h(1− β)∇xJ(x)>d

= J(x) + hβ∇xJ(x)>d.

The overall method is summarized in Algorithm 2. Let for iteration k, x(k) ∈ X be the
iterate, d(k) ∈ Rn be the search direction, and hk ∈ (0, 1] the step length.
Next, following [60] we show that if J1 and J0 are continuously differentiable and ε = 0
then Algorithm 2 converges to a Pareto critical solution.

Theorem 5.6. Let (x(k))k be an infinite sequence generated by Algorithm 2. Then, every
accumulation point of the sequence (x(k))k is a Pareto critical point. Further, if the objec-
tive function J has bounded level sets, i.e., the set {x ∈ X | J(x) ≤ J(x(1))} is bounded,
then the sequence (x(k))k stays bounded and has at least one accumulation point.

Proof. Let y be an accumulation point of the sequence (x(k))k. further, let d(y) be the
solution and α(y) be the optimum value of 5.3 at y, i.e.

d(y) := arg min

(
(Jy(d) +

1

2
‖d‖2

)
, α(y) := min

d

(
(Jy(d) +

1

2
‖d‖2

)
,
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Algorithm 2: Biobjective descent algorithm according to [60]

Data: Choose β ∈ (0, 1), x(1) ∈ X and ε > 0, set k := 1.
Result: Approximation of a Pareto critical solution x̃ := x(k).
Compute d(0) := d(1) as a solution of (5.4) and set h0 := 1;
while ‖hk−1 d

(k−1)‖ > ε do
Compute d(k) as a solution of (5.4);
Compute a step length hk ∈ (0, 1] as

max
{
h=

1

2`
: `∈ N0, Jj(x

(k)+hd(k)) ≤ Jj(x
(k))+βh∇xJj(x

(k))>d(k), j=0, 1
}

;

x(k+1) := x(k) + hk d
(k) and k := k + 1;

end

where Jy(d) := maxi(∇xJi(y)d). Following Lemma 5.3, it is sufficient to show that
α(y) = 0.

From Algorithm 2 we can directly conclude that the sequence (J(x(k)))k is componentwise
strictly decreasing and

lim
k→∞

J(x(k)) = J(y).

Thus,
lim
k→∞
‖J(x(k))− J(x(k+1))‖ = 0.

But
J(x(k))− J(x(k+1)) ≥ −hkβ∇xJ(x(k))d(k) ≥ 0,

and therefore
lim
k→∞
−hkβ∇xJ(x(k))d(k) = 0. (5.6)

We observe that hk ∈ (0, 1] for all k. Select a subsequence (x(ku))u of (x(k))k converging
to y. There are two cases to cosnider

lim sup
u→∞

hku > 0 and lim sup
u→∞

hku = 0.

First case (lim supu→∞ hku > 0): Here, a subsequence (x(kl))l of (x(ku))u exists that
converges to y and satisfies

lim
l→∞

hkl > 0.

With (5.6) it follows that

lim
l→∞
∇xJ(x(kl))>d(kl) = 0,
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and thus

lim
l→∞

α(x(kl)) = 0.

Since the mapping x 7→ α(x) is continuous, it follows that α(y) = 0. Thus, y is Pareto
critical.

Second case (lim supu→∞ hku = 0): Lemma 5.4 assures that the sequence (v(ku))u is
bounded. Therefore, we can select a subsequence (x(kr))r of (x(ku))u such that the sequence
(d(kr))r converges to some d̄. Recall that for all r we have

max
i=0,1

(
∇xJi(x

(kr))>d(kr)
)
≤ ε̂α(x(kr)) < 0, with ε̂ ∈ (0, 1].

With r →∞ we obtain

1

ε̂
max
i=0,1

(
∇xJi(y)>d̄

)
≤ α(y) ≤ 0. (5.7)

Take some p ∈ N. For r sufficiently large,

hkr <
1

2p
,

thus the Armijo-like rule (5.5) does not hold for h = 1
2

p
, i.e.

J

(
x(kr) +

(
1

2

)p
d(kr)

)
6≤ J(x(kr)) + β

(
1

2

)p
∇xJ(x(kr))>d(kr).

In a next step take a subsequence (x(ks))s of (x(kr))r such that (d(ks))s converges to d̄.
Then, we have

J

(
x(ks) +

(
1

2

)p
d(ks)

)
6≤ J(x(ks)) + β

(
1

2

)p
∇xJ(x(ks))>d(ks).

Then, passing onto the limit s→∞ yields

Jj

(
y +

(
1

2

)p
d̄

)
≥ Jj(y) + β

(
1

2

)p
∇xJj(y)v̂

for at least one j ∈ {0, 1}. This inequality holds for any p ∈ N.
Thus, from Lemma 5.5 it follows that

max
i=0,1

(
∇xJi(y)>d̄

)
≥ 0,

implying together with (5.7) that α(y) = 0. Thus, we can also conclude that y is Pareto
critical.

A natural stopping condition for practical implementations of Algorithm 2, motivated by
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(3.12), is that ‖hkd(k)‖ ≤ ε, with ε > 0 a prespecified small constant.
In practice, we also terminate the algorithm when a prespecified maximum number of
iterations is reached. In this case, the final solution has to be used with caution since the
optimization procedure has generally not yet converged.
The choice of the search direction using problem (5.4) together with condition (5.5) implies
that the iterates of Algorithm 2 satisfy J(x(k+1)) < J(x(k)) for all k = 1, 2, . . . . In other
words, the objective vector J(x(k+1)) in iteration k+ 1 is bounded above by the objective
vector J(x(k)) of the previous iteration k, i.e., J(x(k+1)) ∈ J(x(k))− R2

>.
Several alternative Pareto critical solutions (and hence trade-off information between
them) can be obtained, for example, by varying the starting solution. We follow a different
approach in our implementation that is somewhat similar to the weighted sum method,
and that is based on the observation that the optimal solution of problem (5.4) (i.e.,
the direction of steepest biobjective descent) depends on the scaling of the objective
functions J1 and J0. Thus, Algorithm 2 is executed repeatedly, using different scalings of
the objective functions. In our implementation, we use a scaling parameter s := λ̄rmax > 0
and replace J0 by sJ0 in the optimization process, where the parameter rmax > 0 is chosen
as the largest ratio between partial derivatives of J1 and J0, evaluated at the starting
solution x(1). Note that the latter aims at the constraints in problem (5.4) in the sense
that they should be comparable, i.e., both objective functions should equally contribute
to active constraints and thus influence the choice of the search direction. By varying
the parameter λ̄ ∈ {0.5, 0.6, . . . , 2}, we implicitly control the run of the gradient descent
algorithm and thus obtain different solutions starting from the same initial shape. Note
that the volume of the solutions can be expected to increase with larger values of λ̄.
Note also that the resulting parametric version of Algorithm 2 is fundamentally different
from the weighted sum method in Algorithm 1 in the way the search directions are chosen
and in the way the iterates converge to a Pareto critical solution.
Note that the biobjective descent algorithm is introduced as a multiobjective descent
algorithm in [60]. Therefore, it can handle multiple objectives without a modification.
However, in practice the initial scaling of the objectives is difficult, and the probability
of getting stuck in local minima generally increases with the number of objectives. The
weighted sum method also naturally extends to more than two objectives, but the com-
putational cost to explore the weight space {λ ∈ [0, 1]q :

∑
λi = 1} with q > 2 may

become prohibitive. This may be, for example, handled by adaptive strategies for weight
selections that aim at approximations of the Pareto set, see, e.g., [131].

5.2 Numerical Implementation

In this section an alternative scalar product for the computation of shape gradients is
described and a control of step sizes that was utilized for the biobjective gradient descents
is introduced.

5.2.1 Scalar Products and Gradients in Shape Optimization

The performance of Algorithms 1 and 2 depends largely on the choice of the search
direction, which is computed based on the discretized gradients ∇xJj(x), j = 0, 1. Michor
and Mumford [108] showed that (continuous) shape gradients calculated with respect to
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the ordinary L2-scalar product lead to an ill defined notion of the distance of two shapes,
as the infimum over all deformation path lengths is zero. They suggest a modified scalar
product given by

〈h, k〉$ =

∫
∂Ω

〈h, k〉R2 (1 +$κ2) dA (5.8)

and show that this indeed leads to a well defined Riemannian metric on the shape space.
Here, h, k are two vector fields in normal direction to the boundary of ∂Ω, dA is the
induced surface measure, κ is the scalar curvature of the surface, and $ > 0 is a regu-
larization parameter. In practice, this corresponds to a transformation of function values
on ∂Ω that, given some function g : ∂Ω → R2, can be described by g$(x) = g(x)

1+$κ2(x)
for

x ∈ ∂Ω.

Despite discretizing the space of shapes, we also discretize this definition of the gradient
in order to obtain stability in the limit of small finite element mesh size and a high
number of spline basis elements. We adopt a discretized version of this concept in the
numerical implementation of shape gradients for both objectives Jj, j = 0, 1. More
precisely, a discretized scalar curvature κ is computed at grid points on the boundary
∂Ω, which is represented by a polygonal approximation induced by the shape parameters
(%ml, %th) ∈ R2nx , %th ∈ Rnx

> . Since the upper and lower boundary of the shape Ω may
have a different curvature at the same x-coordinate value xi (i ∈ {1, . . . , nx}), we have
to compute the curvature for upper and lower boundary points separately. For the upper
boundary, this is realized by comparing the normals nu

i and nu
i+1 on two consecutive facets

of length lui and lui+1, respectively. Similarly, for the lower boundary we use nl
i, n

l
i+1 and

lli, l
l
i+1, and obtain

κu
i := κu(xi) =

2‖nu
i − nu

i+1‖2

lui + lui+1

,

κl
i := κl(xi) =

2‖nl
i − nl

i+1‖2

lli + lli+1

,

i = 1, . . . , nx − 1. (5.9)

The upper and lower boundaries of the shape Ω are reconstructed from the meanline
and thickness representation using the linear transformation %u

i = %ml
i + 1

2
%th
i and %l

i =
%ml
i − 1

2
%th
i , i = 1, . . . , nx. In other words, (%u, %l) ∈ R2nx is obtained from (%ml, %th) ∈

R2nx , %th ∈ Rnx
> , as (%u, %l) = M (%ml, %th), using an appropriate transformation matrix

M ∈ R2nx×2nx . This leads to a discretized representation of the respective boundaries by
points (xi, %

u
i ) (upper boundary) and (xi, %

l
i) (lower boundary), from which the κ values

can be computed according to (5.9).

Now (5.8) can be applied to the gradients of Jj w.r.t. (%u, %l), j = 0, 1, by multiplying the
respective partial derivatives by

du
$,i :=

1

1 +$ (κu
i )

2
and dl

$,i :=
1

1 +$ (κl
i)

2
, i = 1, . . . , nx.

Since we actually need the gradients of Jj w.r.t. % = (%ml, %th), j = 0, 1, we additionally
have to consider the linear tranformation M . Let D$ = (d$,ij)2nx×2nx ∈ R2nx×2nx be a
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diagonal matrix with diagonal elements given by

d$,ii := du
$,i, i = 1, . . . , nx and d$,ii := dl

$,i−nx , i = nx + 1, . . . , 2nx,

and set D̄$ := M−1D$M . Then, we obtain the curvature adapted B-spline gradients as(∂Jj
∂x

)
$

= D̄$

(
∂Jj
∂X

∂X

∂%

)
∂%

∂x
, j = 0, 1. (5.10)

Note that for $ = 0 the matrix D̄0 is the identity matrix, and hence the L2-gradient of
Jj w.r.t. x, j = 0, 1, is recovered in this case, c.f. (4.9).

5.2.2 Control of Step Sizes

Large mesh deformations may cause numerical difficulties and thus have to be avoided. We
thus limit the step size during the optimization procedure. Recall that the representation
of feasible shapes, using meanline and thickness values (%ml

i , %
th
i ) at fixed xi coordinates,

i = 1, . . . , nx, implies that grid points can only move vertically. A natural choice for a
maximum admissible step in one iteration of the optimization process is thus determined
by the thickness of the shape, divided by the number ny of gridpoints in y-direction. Since
in our case studies the shapes are fixed at the left boundary (i.e., at x = x1) and hence
their thickness is constant at x1, we set

δmax := 0.8
%

th,(1)
1

ny

i.e., to 80% of the vertical distance between grid points on the left boundary of the initial
shape. For a given search direction d(k) = (dml,(k), dth,(k)) ∈ R2nB in iteration k of the

optimization algorithms, we check whether maxi=1,...,2nB |d
(k)
i | ≤ δmax. Otherwise, d(k)

is scaled by a factor δmax/maxi=1,...,2nB |d
(k)
i |. Then, the step length t ≤ 1 is computed

according to the Armijo rule as indicated in Algorithms 1 and 2.

While δmax is derived from the mesh X(1), it still is a meaningful upper bound for a
step d(k) in the B-spline representation. Indeed, if {Bj, j = 1, . . . , nB} is a B-spline basis
and x(k) = (xml,(k), xth,(k)) ∈ x is the current iterate, then the B-spline basis properties∑nB

j=1 Bj(x) = 1 and Bj(x) ≥ 0, j = 1, . . . , nB (see, e.g., [120]) imply that, for all i =
1, . . . , nx,∣∣∣%ml,(k+1)

i − %ml,(k)
i

∣∣∣ =
∣∣∣ nB∑
j=1

(x
ml,(k)
j +d

ml,(k)
j )Bj(xi)−

nB∑
j=1

x
ml,(k)
j Bj(xi)

∣∣∣
≤

nB∑
j=1

|dml,(k)
j | |Bj(xi)| ≤ max

j=1,...,nB
|dml,(k)
j |

nB∑
j=1

|Bj(xi)| = max
j=1,...,nB

|dml,(k)
j |.

An analogous bound holds for the corresponding thickness parameters. Note that the
above inequalities do in general not guarantee that all grid points of the corresponding
mesh X(k) move by at most 80%, since this also depends on the current shape and the
mutual movement of meanline and thickness values. In some situations it may thus be
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necessary to adapt this bound to a smaller value. However, this never occured in our
numerical tests.

5.3 Numerical Results

In this section, the biobjective descent methods proposed in Section 5.1.2 are applied on
the two test cases described in Section 4.4. To that end, the curvature regularization
parameter is set to $ = 10−4, see Section 5.2.1. During the optimization process, we
monitor the Euclidean norm of the update of the design variables in every iteration and
stop when it is lower than 10−4. The implementation is realized in R version 3.5.0 and
uses the adjoint finite element code of [79, 21, 80] as a subroutine.

5.3.1 A Straight Joint

Among all shapes with a fixed volume of J0(X) = 0.2, the straight rod shown in Fig-
ure 5.1d can be expected to have the mimimum possible intensity measure J1. Indeed,
the straight rod shown in Figure 5.1d achieves an objective value of J1(X) = 0.00058.
Figures 5.1e and 5.1f show the results of the weighted sum method (Algorithm 1) with
weight λ = 0.8 and of the biobjective descent algorithm (Algorithm 2) with scaling pa-
rameter λ̄ = 1.8. Both methods show a rather quick convergence (with the expected
advantage for the biobjective descent algorithm) to solutions that are close to optimal.
However, the solution of the biobjective descent algorithm seems to be a local solution
with slightly higher stresses (and thus slightly higher objective value for J1).
Figure 5.2 shows iteration histories of exemplary runs of the weighted sum method (Al-
gorithm 1) and of the biobjective descent algorithm (Algorithm 2), respectively. It nicely
illustrates that, in contrast to the biobjective descent algorithm, the weighted sum method
permits iterations where one objective function deteriorates while the weighted sum ob-
jective is still decreasing. This may, in certain situations, help to overcome local Pareto
critical solutions. On the other hand, the weighted sum method may get stuck in local
minima as well. Indeed, independent of the chosen weight, the histories of the weighted
sum method have a similar structure: First, mainly the intensity measure (representing
the PoF) is improved (since in early stages of the algorithm the gradient of J1 is consid-
erably larger than the gradient of J0). Only at later stages of the algorithm, the volume
is varied to a larger extent, depending on the given weight.
Note also that the final solution obtained with the biobjective descent algorithm largely
depends on the starting solution, since the objective values can never deteriorate during
the optimization process. Thus, when the starting solution has a volume of J0(X) =
0.2, then all Pareto critical shapes that can be computed with the biobjective descent
algorithm have a volume of at most 0.2, irrespective of the scaling.
Three shapes with progressively reduced volume (and hence lower cost) are shown in
Figures 5.1g to 5.1i. As was to be expected, a lower cost comes at the price of a higher
intensity measure (and hence higher PoF). A comparison between Figures 5.1h and 5.1g
suggests that also for the low volume solutions, the weighted sum solutions slightly out-
perform the biobjective descent solutions.
Figure 5.3 summarizes the results of several optimization runs with varying weights (Algo-
rithm 1) and varying scalings (Algorithm 2), respectively. The same starting solution was
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(f) MO descent, λ̄ = 1.8
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(g) MO descent, λ̄ = 0.5
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(h) Weighted sum, λ = 0.6
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(i) Weighted sum, λ = 0.3

Figure 5.1: Straight joint: Starting solution (row 1), straight rod solutions (row 2), and
low volume solutions (row 3). See also [46].
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Figure 5.2: Iteration histories of an exemplary run of the weighted sum method (Algo-
rithm 1) and of the biobjective descent algorithm (Algorithm 2). Note that
both algorithms use the same starting solution. See also [46].

used in all cases, see Figure 5.1c. While the solution quality of the weighted sum method
and of the biobjective descent algorithm is comparable, a clear advantage of the weighted
sum method seems to be that it is not so much constrained by the (performance of the)
starting solution. Indeed, the weighted sum solutions shown in Figure 5.3 span a large
range of alternative objective values in the objective space and thus provide the decision
maker with meaningful trade-off information and a variety of solution alternatives.

Both algorithms need in general one gradient computation and kA function evaluations
per iteration, where kA is the number of iterations in the Armijo rule to calculate a step
length. Additionally, the biobjective descent needs one gradient evaluation, whereas the
weighted sum requires one objective function evaluation to determine an initial scaling
of the objectives. In this test case the mean number of iterations for the weighted sum
method was 94 with around 3.8 Armijo iterations on average. The biobjective descent
needed 46 iterations with 1.7 Armijo iterations on average. On this rather coarse grid (41×
7) a function evaluation takes about 1.2 seconds and a gradient evaluation around 15.48
seconds, a finer grid would extend the run time significantly. Note that the underlying
simulation code for the function evaluation and gradient computation is not optimized
w.r.t. runtime. Summing up, an optimization run with the weighted sum method for
this test case on a 41 × 7 grid took about 31.4 minutes on average. The biobjective
descent algorithm took about 14.9 minutes on average. All algorithms are implemented
in R version 3.5.0, and the numerical tests run on a PC with Intel Core i7-8700 CPU @
3.20 GHz, 31.2 GB RAM.
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Figure 5.3: Approximated nondominated front for the straight joint. The associated
Pareto critical shapes are shown for selected weightings/scalings. See also
[46].

5.3.2 An S-Shaped Joint

We observe that the resulting shapes resemble the profile of a whale. If we consider 1st
principal stress of the stress tensor on the grid points of the initial shape resulting from
tensile load, see Figure 5.4c, we observe an anti clockwise eddy in the left part of the
joint. The hunch close to the left boundary of the optimized shapes gives room for the
occurring stresses and therefore improves the intensity measure and, likewise, the PoF.
Note that, different from the case of the straight rod, we have no prior knowledge on the
Pareto optimal shapes. For the solutions shown in Figures 5.4d and 5.4e, we can only
guarantee that they are (approximately) Pareto critical, i.e., the respective optimization
runs terminated due to the criticality test. Figure 5.4f shows a shape with a significantly
higher volume of J0(X) = 0.225906, and with a largely improved intensity measure of
J1(X) = 0.196791. This shape was obtained with the weighted sum method with weight
λ = 0.85 after 150 iterations. In this case, the algorithm terminated since it reached
the maximum number of iterations and not due to convergence. We observed that all
optimization runs of the weighted sum method with λ ≥ 0.85 were not converging in
this setting. Thus in these cases it is not guaranteed, that the resulting solutions are
Pareto critical. Note that, given a starting solution with a volume of 0.2, this shape is
not attainable with the biobjective descent algorithm.
However, there is no guarantee that the computed shapes are Pareto optimal. For exam-
ple, the shape shown in Figure 5.4e obtained with the weighted sum method with weight
λ = 0.8 achieves objective values of J1(X) = 0.293853 and J0(X) = 0.188445, and hence
slightly dominates the shape shown in Figure 5.4d obtained with the biobjective descent
algorithm with scaling parameter λ̄ = 1.1 that has objective values J1(X) = 0.300996 and
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(d) MO descent, λ̄ = 1.1
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Figure 5.4: S-shaped joint: Starting solution (row 1), two exemplary Pareto critical so-
lutions (5.4d and 5.4e) , and a not converged solution of the weighted sum
method (5.4f). See also [46].

J0(X) = 0.188774.

Figure 5.5 summarizes the results of several optimization runs of both Algorithms 1 and 2
in the objective space. Note that not all solutions of the weighted sum method lie on the
convex hull of the computed points (and are thus not globally optimal for a weighted sum
scalarization). In some cases, the biobjective descent algorithm also computes dominated
points, while in other cases it found solutions that lie even below the convex hull of the
weighted sum solutions (see, e.g., the result for λ̄ = 0.5 in Figure 5.5).

A larger range of alternative objective vectors is, as in the case of the straight rod, obtained
with the weighted sum method. A cross-test between the two methods, where the final
solution of Algorithm 1 was used as starting solution for Algorithm 2, confirms that local
Pareto critical solutions were found for λ ≤ 0.8.

Compared to test case 1, the optimization runs for test case 2 needed in general more
iterations. The mean number of iterations for the weighted sum method in test case 2
was 107 with around 5.3 Armijo iterations on average. The biobjective descent needed 74
iterations with 3.9 Armijo iterations on average. Thus, the weighted sum method needed
about 39.06 minutes on average and the biobjective descent algorithm took about 26.96
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Figure 5.5: Outcome vectors for the S-shaped joint. The associated Pareto critical shapes
are shown for selected weightings / scalings. Compare with [46].
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6 Pareto Tracing by Numerical
Integration

Most of this chapter was published in [19]. Here, we additionally give a brief overview of
standard ODE theory and provide more detail than in [19].

The aim of this chapter is to introduce a reliable and efficient method to approximate
the Pareto front of convex and sufficiently smooth unconstrained biobjective optimization
problems. Based on the optimality conditions of the weighted sum scalarization, see also
Section 3.5, (parts of) the Pareto front can be described as a parametric curve, parameter-
ized by the scalarization parameter λ, i.e., the weight in the weighted sum scalarization.
Differentiating it w.r.t. the parameter yields an (explicit) ordinary differential equation
(ODE) that, given an arbitrary initial solution on the Pareto front, enables one to trace
the Pareto front by numerical integration. We call this novel approach Pareto tracing by
numerical integration. While the developed methods are tailored for convex problems,
we show that they are more generally applicable and that they can be adapted to handle
nonconvex problems and to approximate convex parts of non connected Pareto fronts.
To compute representations and approximations of the Pareto front, scalarization meth-
ods are a common choice, see, e.g., [52]. Under differentiability assumptions, optimality
conditions, for example, the classical KKT-conditions, can be incorporated to obtain fur-
ther parts of the Pareto front, see, for example, [52, 85]. Following the literature, one can
then apply sensitivities w.r.t. the scalarization parameters [53], subdivision techniques
[42, 89, 141], or continuation and predictor-corrector methods [53, 104, 103, 115, 116,
125, 132, 140] to recover the Pareto front. Continuation and predictor-corrector meth-
ods usually are based on scalarizations, yielding corresponding single-objective problems
depending on one or several scalarization parameters, e.g., the weights λ in the case of
weighted sum scalarizations. Hence, they can be interpreted as parametric optimization
problems, which under appropriate differentiability assumptions can then be associated to
the single-objective case for predictor-corrector methods, see, e.g., [7, 77]. Under appropri-
ate differentiability assumptions, combinations of predictor steps (that are often derived
from dual information from the previous iteration) and corrector steps can then be used
to recover the manifolds that are induced by the optimality conditions for the respective
parametric optimization problems. Continuation methods can handle constrained prob-
lems as well as problems with more than two objective functions, and they can be adapted
in order to incorporate preference information in the exploration of the Pareto front, see,
for example, [103].

An alternative perspective on parametric scalarizations in the biobjective case is suggested
in [121]: When interpreting the scalarization parameter as an independent variable, then
the parametric optimization problem induces a system of ordinary differential equations
that can be solved by numerical integration methods. In the article [121] the normalized
normal constraint (NNC) scalarization method of [107] and its utopia line are utilized to
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formulate an ODE to trace the Pareto front, which is then, given an initial value, solved
with standard integrators. Since the NNC scalarization induces additional constraints
to the parameterized problem, an active set method is employed. This may lead to the
generation of locally Pareto-optimal outcome vectors which are filtered in a post processing
step.

In this work, we follow a similar strategy, however, we use simple weighted sums to define
the underlying parametric scalarizations. The main advantage of this approach is that
no additional constraints are added to the problem formulation, and hence, at least for
unconstrained biobjective optimization problems, no constraint handling techniques are
required. Nevertheless our numerical results show that we obtain well distributed points
on the Pareto front approximation since the step length is controlled by the numerical
integration method.

This chapter is structured as follows. First, a brief introduction in the existence and
uniqueness theory of solutions of a system of first-order ordinary differential equations
(ODEs) is given in Section 6.1. Then, the Pareto tracing by numerical integration method,
suggested in [19], is explained in detail in Section 6.2. Under appropriate differentiability
assumptions and a given initial Pareto-optimal solution of a weighted sum scalarization
this method uses an explicit first-order ODE to compute further Pareto-optimal solutions.
Toward this end, assuming local Lipschitz continuity of the Hessians of both objective
functions, the existence and continuity of the solutions of the ODE are established in
Section 6.2.1. Since the subject of this work are biobjective shape optimization problems,
i.e., complex real-world applications with only approximated solutions, the results are then
extended to the case that initial solutions are ε-Pareto critical, with ε > 0 (Section 6.2.2).
In a next step, in Section 6.3 the application of the well-established Runge-Kutta methods
is suggested, local and global error estimates are provided and the Pareto tracing by
numerical integration algorithm is stated for this case. Further, in Section 6.4, a brief
overview of the multiobjective predictor-corrector method Pareto Tracer is given, see
also [103]. Subsequently, in Section 6.5, the Pareto tracing by numerical integration
approach is first validated and tested against Pareto Tracer on quadratic test problems
(Section 6.5.1) and a variant of the biobjective test problem ZDT3 (Section 6.5.2), see
also [158], for which the Pareto fronts are known. In a next step, it is applied on our
biobjective shape optimization problem with the two test cases described in Sections 4.4.1
and 4.4.2.

6.1 A Brief Overview of First-Order Ordinary Differential
Equations

In this section a brief summary of some of the important results of the existence and
uniqueness theory of solutions of first-order ordinary differential equations is given. Sub-
sequently these results will be extended to systems of first-order ordinary differential
equations. For a more detailed discussion of this field we refer to [4], on which this section
is based.
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6.1.1 First-Order Ordinary Differential Equations

First, a definition of ordinary differential equations of order n is given.

Definition 6.1 (Ordinary Differential Equation (ODE)). An ordinary differential equa-
tion is a relation that contains one real independent variable t ∈ R and the real dependent
variable x = x(t) with some of its derivatives (ẋ, ẍ, . . . , x(n)). In general, an ODE can be
written in implicit form

F
(
t, x, ẋ, ẍ, . . . , x(n)

)
= 0, (6.1)

where F is a known function of n+ 2 variables. Then, the order of an ODE is given by
the order of the highest derivative, x(n), in the equation.

Then, a first-order ordinary differential equation is defined as follows.

Definition 6.2 (first-order Ordinary Differential Equation). The explicit differential
equation of the first-order is given by

ẋ = f(t, x) (6.2)

where the real function x = x(t) is unknown and f(t, x) is a given function of two real
variables, defined on some domain D ⊂ R2.

Definition 6.3. Let I ⊂ R be an interval. A function x : I → R is said to be a
(particular) solution of (6.2) in I, if for any t ∈ I x(t) is differentiable, ẋ(t) = f(t, x(t))
holds for all t ∈ I, and (t, x(t)) ∈ D for all t ∈ I. The family of all particular solutions
of (6.2) is denoted as the general solution of (6.2).

In practice it is desirable that for a given t0 ∈ I the solution of the ODE (6.2) satisfies an
additional initial condition x0 = x(t0), called initial boundary condition. The first-order
ODE (6.2) with an additional initial boundary condition x0 = x(t0) is of the form{

ẋ = f(t, x),
x(t0) = x0,

(6.3)

and is called initial value problem (IVP). In the following, the existence and uniqueness
of solutions for the IVP (6.3) is discussed. Toward this end, we assume from here on that
f(t, x) is continuous in a domain D that contains the point (t0, x0).

Definition 6.4. Let I ⊂ R be an interval containing t0. A solution of the initial value
problem (6.3) on the interval I is a function x : I → R satisfying

(i) x(t0) = x0,

(ii) x(t) is differentiable for all t ∈ I,

(iii) (t, x(t)) ∈ D for all t ∈ I,

(iv) ẋ = f(t, x) for all t ∈ I.

One can prove the uniqueness of solutions for functions f that are Lipschitz continuous.
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Definition 6.5. A function f : D → R is called Lipschitz continuous in x if there exists
a Lipschitz constant L > 0, such that

|f(t, x′(t))− f(t, x′′(t))| ≤ L |x′(t)− x′′(t)| for all (t, x′(t)), (t, x′′(t)) ∈ D. (6.4)

A function f : D → R is locally Lipschitz continuous in x if for any (t, x(t)) ∈ D there
are δ,∆ > 0 such that the rectangle

B = [t−∆, t+ ∆]× [x(t)− δ, x(t) + δ] ⊂ D

and there exists a Lipschitz constant L := L(t, x(t)) > 0, such that

|f(t, x′(t))− f(t, x′′(t))| ≤ L |x′(t)− x′′(t)| for all (t, x′(t)), (t, x′′(t)) ∈ B. (6.5)

If the partial derivative ∇xf(t, x(t)) of f(t, x(t)) exists and possesses some additional
properties, one can draw some conclusions about the Lipschitz continuity of f .

Lemma 6.6.

(i) If ∇xf(t, x(t)) exists and is bounded in a rectangle B ⊂ R2 then f(t, x(t)) is Lipschitz
for all x ∈ B.

(ii) If ∇xf(t, x(t)) exists and is continuous in an open set Γ ⊂ R2 then f(t, x(t)) is
Lipschitz for all x ∈ Γ.

Proof.

(i) Let (t, x′), (t, x′′) ∈ B and assume without loss of generality that x′ < x′′. Since B
is a rectangle, the connecting interval between these points is also in B. Applying
the mean value theorem yields

f(t, x′′)− f(t, x′) = ∇xf(t, ξ)(x′′ − x′),

for some ξ ∈ [x′, x′′]. By assertion we also have

|f (t, x′′)− f (t, x′)| = |∇xf (t, ξ) (x′′ − x′)| ≤ sup
B
|∇xf (t, ξ)| |x′′ − x′| , (6.6)

hence f is Lipschitz with L := supB |∇xf(t, ξ)| <∞.

(ii) Let (t0, x0) ∈ Γ and choose δ,∆ > 0 sufficiently small, such that the bounded closed
set B = [t−∆, t+ ∆]× [x(t)− δ, x(t) + δ] is in Γ, this is always possible since Γ is
open. Now (ii) follows with (i).

In the theory of ordinary differential equations it is practical to reformulate the IVP (6.3)
as an integral equation.

Theorem 6.7. Let f : D → R be continuous. A function x is a solution of the IVP
(6.3), if and only if x is also a solution of

x(t) = x0(t) +

∫ t

t0

f(y, x(y)) dy. (6.7)
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Proof. For any solution x(t) of (6.3) it is ẋ = f(t, x). Integrating both sides yields

x(t)− x(t0) =

∫ t

t0

f(y, x(y)) dy.

On the other hand, for every solution x(t) of (6.7) it is x(t0) = x0 and differentiating
(6.7) yields ẋ = f(t, x).

The well-known Gronwall-type integral inequalities are useful to formulate error estima-
tions. Note that in the following, the absolute values of the integrals have to be considered,
since t ∈ [t0 −∆, t0 + ∆], ∆ > 0, can be smaller than t0.

Theorem 6.8. Let u(t), p(t) and q(t) be non negative continuous functions on
[t0 −∆, t0 + ∆], for ∆ > 0, and

u(t) ≤ p(t) +

∣∣∣∣∫ t

t0

q(y)u(y) dy

∣∣∣∣ for all t ∈ [t0 −∆, t0 + ∆]. (6.8)

Then the following inequality holds

u(t) ≤ p(t) +

∣∣∣∣∫ t

t0

q(y)u(y) exp

(∣∣∣∣∫ t

y

q(s) ds

∣∣∣∣) dy

∣∣∣∣ for all t ∈ [t0 −∆, t0 + ∆]. (6.9)

Proof. For the proof of (6.9) consider t ∈ [t0, t0 + ∆], where the case t ∈ [t0 − ∆, t0] is
analogous. First define

r(t) =

∫ t

t0

q(t)u(t) dt

such that r(t0) = 0 and
ṙ(t) = q(t)u(t).

With the hypothesis (6.8), u(t) ≤ p(t) + r(t), it follows that

ṙ(t) ≤ p(t)q(t) + q(t)r(t),

which multiplied by exp
(
−
∫ t
t0
q(s) ds

)
yields

d

dt

(
exp

(
−
∫ t

t0

q(s) ds

)
r(t)

)
≤ p(t)q(t) exp

(
−
∫ t

t0

q(s) ds

)
.

Furthermore, we obtain by integration

r(t) ≤
∫ t

t0

p(y)q(y) exp

(∫ t

y

q(s) ds

)
dy

and consequently (6.9) follows from u(t) ≤ p(t) + r(t).

Corollary 6.9. If in Theorem 6.8 the function p(t) ≡ 0, then u(t) ≡ 0.
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Corollary 6.10. If the functions u(t) and p(t) of Theorem 6.8 are of the form u(t) =
c0 + c1|t− t0| and p(t) = c2, where c0, c1, c2 > 0, then

u(t) ≤
(
c0 +

c1

c2

)
exp
(
c2|t− t0|

)
− c1

c2

for all t ∈ [t0 −∆, t0 + ∆]. (6.10)

For a proof we refer to [4]. In the following, some fundamental definitions and theorems
from real analysis are needed and are stated without proof.

Definition 6.11. We say a sequence of functions {xq(t)} converge uniformly to a function
x(t) in an interval I ⊂ R if for every ε > 0 there exists a n0 ∈ N such that for q ≥ n0,
|xq(t)− x(t)| ≤ ε for all t ∈ I

Theorem 6.12. Let {xq(t)} be a sequence of continuous functions with limq→∞ xq(t) =
x(t) uniformly in I ⊂ R. Then, x(t) is continuous in I.

Theorem 6.13 (Lebesgue’s Dominated Convergence Theorem). Let {xq(t)} be a sequence
of functions with limq→∞ xq(t) = x(t) uniformly in I ⊂ R and let f(t, x) be a continuous
function in D, such that (t, xq(t)) ∈ D for all q and t ∈ I. Then

lim
q→∞

∫
I

f(t, xq(t)) dt =

∫
I

lim
q→∞

f(t, xq(t)) dt =

∫
I

f(t, x(t)) dt. (6.11)

Theorem 6.14 (Weierstrass’ M-Test). Let {xq(t)} be a sequence of functions. Further-
more, let |xq(t)| ≤ Mq for all t ∈ I with

∑∞
q=0Mq < ∞. Then,

∑∞
q=0 xq(t) converges

uniformly in I to a unique function x(t).

Theorem 6.15 (Implicit Function Theorem). Let f(t, x) be defined in D = I×R, contin-
uous in t and differentiable in x. Let further 0 < m ≤ f(t, x) ≤M <∞ for all (t, x) ∈ D.
Then, there exists a unique continuously differentiable solution x(t) in I of the equation
f(t, x) = 0.

In the following, to prove the existence of solutions, the integral equation (6.7) will be
solved with the Picard method, see, e.g., [4]. To this end, we assume a continuous function
x0(t), where x0(t) ≡ x0 is a common choice, as the initial approximation of the desired
solution x(t) of (6.3), and define the iterate x1(t) as

x1(t) = x0(t) +

∫ t

t0

f(y, x0(y)) dy. (6.12)

Substituting x1(t) with x0(t) on the right hand side of (6.12) yields the next iterate x2(t).
Therefore, the q−th approximation xq(t) is obtained from xq−1(t) through

xq(t) = x0(t) +

∫ t

t0

f(y, xq−1(y)) dy, q = 1, 2, 3, . . . . (6.13)

Following Theorem 6.13, if the sequence of functions {xq(t)} converges uniformly to a
continuous function x(t) in some interval I that contains t0 and (t, xq(t)) ∈ D for all t ∈ I,
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we have

x(t) = lim
q→∞

xq(t) = x0(t) + lim
q→∞

∫ t

t0

f(y, xq−1(y)) dy = x0(t) +

∫ t

t0

f(y, x(y)) dy. (6.14)

Let {xq(t)} be the sequence obtained by the approximation method (6.13). The following
famous theorems, see, e.g., [4, Theorem 8.1 and 8.2], ensure the uniform convergence of
{xq(t)} to the unique solution x(t) of (6.3) under sufficient conditions.

Theorem 6.16 (Local Existence Theorem). Let the following conditions be satisfied

(i) f(t, x) is continuous in the closed rectangle S = {(t, x) ∈ D | |t0− t| ≤ ∆, |x0−x| ≤
δ}, and therefore there exists a M > 0 such that |f(t, x)| ≤M for all (t, x) ∈ S,

(ii) f(t, x) is locally Lipschitz in S with Lipschitz constant L,

(iii) x0(t) is continuous in [t0 −∆, t0 + ∆], and |x0(t)− x0| ≤ δ.

Then the sequence of functions {xq(t)}, generated with (6.13), converges uniformly to
the unique solution x(t) of the initial value problem (6.3). The validity of this solution
is ensured on the interval Ih := [t0 − h, t0 + h], where h = min(∆, δ/M). Further, the
following error estimate holds for all t ∈ Ih:

|x(t)− xq(t)| ≤ eLh max
t∈Ih
|x1(t)− x0(t)| min

(
1,

(Lh)q

q!

)
, q = 1, 2, 3, . . . . (6.15)

Proof. First, we show that the iterates {xq(t)} generated via (6.13) are continuous in Ih
and for each t ∈ Ih we have that (t, x(t)) ∈ S. We use the following inductive argument.
Since x0(t) is continuous in [t0 − ∆, t0 + ∆], further the function F0(t) = f(t, x0(t)) is
continuous in Ih and therefore x1(t) is also continuous in Ih. Moreover following inequality
holds

|x1(t)− x0(t)| ≤
∣∣∣∣∫ t

t0

|f(y, x0(y))| dy
∣∣∣∣ ≤M |t0 − t| ≤Mh ≤ δ.

Let us assume that the assertion is true for xq−1(t), q ≥ 2, then it is sufficient to prove
that it is also true for xq(t). Toward this end, the function Fq−1(t) = f(t, xq−1(t)) is
continuous in Ih, since by assumption xq−1(t) is continuous in Ih, and we have

|xq(t)− x0(t)| ≤
∣∣∣∣∫ t

t0

|f(y, xq−1(y))| dy

∣∣∣∣ ≤M |t0 − t| ≤Mh ≤ δ.

In a next step, it is shown that {xq(t)} converges uniformly in Ih. For this, since the
functions x0(t) and x1(t) are continuous in Ih, it follows that there exists a constant
N > 0 such that |x0(t)− x1(t)| ≤ N . Furthermore, for all t ∈ Ih the inequality

|xq(t)− xq−1(t)| ≤ N
(L|t0 − t|)q−1

(q − 1)!
, q = 1, 2, . . . , (6.16)
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holds, given the following inductive argument. It is obvious that (6.16) holds for q = 1,
further if it is also true for q = w ≥ 1, then we have with assertion (ii) and (6.13)

|xw+1(t)− xw(t)| ≤
∣∣∣∣∫ t

t0

|f(y, xw(y))− f(y, xw−1(y))| dy
∣∣∣∣

≤ L

∣∣∣∣∫ t

t0

|xw(y)− xw−1(y)| dy
∣∣∣∣

≤ L

∣∣∣∣∫ t

t0

N
(L|t0 − y|)w−1

(w − 1)!
dy

∣∣∣∣ = N
(L|t0 − t|)w

(w)!
.

Hence, the inequality (6.16) holds for all q.
Now, with Theorem 6.14 and the fact that

N

∞∑
q=1

(L|t0 − t|)q−1

(q − 1)!
≤ N

∞∑
q=1

(Lh)q

(q)!
= NeLh <∞,

it follows that the series

x0(t) +
∞∑
q=1

(xq(t)− xq−1(t))

converges absolutely and uniformly in Ih. Therefore, its partial sums {xq(t)} converge to
a continuous function in Ih, i.e., limq→∞ xq(t) = x(t), which is a solution of (6.7).
To show the uniqueness of x(t), we assume that (6.7) has another solution x′(t) in Ih such
that (t, x′(t)) ∈ S for all t ∈ Ih. Then, it follows with (ii) that

|x(t)− x′(t)| ≤
∣∣∣∣∫ t

t0

|f(y, x(y))− f(y, x′(y))| dy
∣∣∣∣ ≤ L

∣∣∣∣∫ t

t0

|x(y)− x′(y)| dy
∣∣∣∣ .

However, applying Corollary 6.9 implies that |x(t) − x′(t)| = 0 for all t ∈ Ih, and conse-
quently x(t) = x′(t) for all t ∈ Ih.

The error bound (6.15) is then established as follows. For r > q, the inequality (6.16)
gives

|xr(t)− xq(t)| ≤
r−1∑
w=q

|xw+1(t)− xw(t)| ≤
r−1∑
w=q

N
(L|t0 − t|)w

w!

≤ N

r−1∑
w=q

(Lh)w

w!
= N(Lh)q

r−q−1∑
w=q

(Lh)w

(q + w)!
.

(6.17)

Nevertheless, as 1/(q + w)! ≤ 1/(q!w!) we have

|xr(t)− xq(t)| ≤ N
(Lh)q

q!

r−q−1∑
w=q

(Lh)w

(w)!
≤ N

(Lh)q

q!
eLh
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and with the limit r →∞, we get

|x(t)− xq(t)| ≤ N
(Lh)q

q!
eLh. (6.18)

From inequality (6.17), we also obtain

|xr(t)− xq(t)| ≤ N

r−1∑
w=q

(Lh)w

w!
≤ NeLh

and as r →∞, we get
|x(t)− xq(t)| ≤ NeLh. (6.19)

The error bound (6.15) follows then from (6.18) and (6.19).

Theorem 6.16 guarantees the local existence of a solution, the global existence is covered
with the following theorem.

Theorem 6.17 (Global Existence Theorem). Let the following conditions be satisfied:

(i) f(t, x) is continuous in the strip T = {(t, x) ∈ D | |t0 − t| ≤ ∆, |x| ≤ ∞},

(ii) f(t, x) is locally Lipschitz in T with Lipschitz constant L,

(iii) x0(t) is continuous in [t0 −∆, t0 + ∆].

Then the sequence of functions {xq(t)}, generated with (6.13), converges uniformly to the
unique solution x(t) of the initial value problem (6.3). The validity of this solution is
ensured on the whole interval [t0 −∆, t0 + ∆].

Proof. Since x0(t) is continuous, each xq(t) exists and satisfies |xq(t)| <∞. By replacing
h with ∆ in the proof of Theorem 6.16, further recalling that f(t, x(t)) is Lipschitz in T ,
the uniform convergence of {xq(t)} to x(t) in [t0 −∆, t0 + ∆] is established.

In most cases an initial value problem (6.3) describes a model based on physical data,
which in some cases might not be measured accurately. Therefore, there may be some
underlying errors in the function f(t, x(t)) as well as the initial condition (t0, x0). Note
that this can be by choice in order to simplify the given model. Thus, the question arises
how the solution of (6.3) behaves when f(t, x(t)) and (t0, x0) are altered. The following
theorem, see, e.g., [4], answers this question.

Theorem 6.18. Let (t0, x0), (t1, x1) ∈ D be initial conditions of the IVP (6.3) and let
f(t, x(t)) and g(t, x(t)) be functions in D. Here (t1, x1) and g(t, x(t)) are slightly altered.
Furthermore, let following conditions be satisfied:

(i) f(t, x) is continuous and bounded by M in D,

(ii) f(t, x) is locally Lipschitz in D with Lipschitz constant L,

(iii) g(t, x) is continuous and bounded by M̂ in D,
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(iv) the solutions x(t) and y(t) of (6.3) and

ẏ(t) = f(t, x(t)) + g(t, x(t)), y(t1) = x1

exist in an interval I that contains t0 and t1.

Then the following inequality

|x(t)− y(t)| ≤
(
|x0 − x1|+ (M + M̂)|t0 − t1|+

1

L
M̂
)
× exp(L|t0 − t|)−

1

L
M̂ (6.20)

holds for all t ∈ I.

Proof. With Theorem 6.7 it follows for all t ∈ I that

y(t) = x1 +

∫ t

t1

[f(s, y(s)) + g(s, y(s))] ds

= x1 +

∫ t

t0

f(s, y(s)) ds+

∫ t0

t1

f(s, y(s)) ds+

∫ t

t1

g(s, y(s)) ds

(6.21)

and consequently

x(t)− y(t) = x0 − x1 +

∫ t

t0

[f(s, x(s))− f(s, y(s))] ds

+

∫ t1

t0

f(s, x(s)) ds−
∫ t

t1

g(s, x(s)) ds.

(6.22)

Using the assumptions and taking absolute values of (6.22), we find

|x(t)− y(t)| ≤ |x0 − x1|+ (M + M̂)|t1 − t0|+ M̂ |t− t0|

+ L

∣∣∣∣∫ t

t0

|x(s)− y(s)| ds
∣∣∣∣ . (6.23)

Comparing inequality (6.23) with the inequality considered in Corollary 6.10 yields that
they are the same with c0 = |x0 − x1| + (M + M̂)|t1 − t0|, c1 = M̂, c2 = L and u(t) =
|x(t)− y(t)|, and consequently (6.20) follows.

Hence, according to inequality (6.20) reasonable small changes in (t0, x0) and f(t, x(t))
lead to small differences between the solutions x(t) and y(t) in an interval I.

6.1.2 Systems of First-Order Ordinary Differential Equations

Until now, the existence and uniqueness of solutions of initial value problems with a
scalar initial value were discussed. Following [4] these results are extended to a system of
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first-order ODEs. For this purpose, we consider a system of first-order ODEs of the form

ẋ1(t) = f1(t, x1(t), . . . , xn(t))

ẋ2(t) = f2(t, x1(t), . . . , xn(t))

...

ẋn(t) = fn(t, x1(t), . . . , xn(t))

(6.24)

From here on it is assumed that the functions f1, . . . , fn are continuous in some domain
E ⊂ Rn+1.

Definition 6.19. A solution of (6.24) in an interval I are n functions x1, . . . , xn such
that

(i) ẋ1(t), . . . , ẋn(t) exist for all t ∈ I,

(ii) (t, x1, . . . , xn) ∈ E for all t ∈ I,

(iii) ẋi(t) = fi(t, x1(t), . . . , xn(t)) for all t ∈ I.

As in the scalar case, one can specify initial conditions to the problem (6.24) which are
of the form

xi(t0) = xi0 for all i = 1, . . . , n, (6.25)

where t0 ∈ I is known and x1
0, . . . , x

n
0 are given values such that (t0, x

1
0, . . . , x

n
0 ) ∈ E. These

conditions combined with the system of ODEs (6.24) form an initial value problem, which
we write in a compact vector notation by setting

x(t) = (x1(t), . . . , xn(t)) and f(t, x(t)) = (f1(t, x(t)), . . . , fn(t, x(t))

and establishing that the differentiation and integration operators act componentwise,
i.e., ẋ(t) = (ẋ1(t), . . . , ẋn(t)) and

∫
x(t) dt = (

∫
x1(t) dt, . . . ,

∫
xn(t) dt).

Additionally we say the function f(t, x(t)) is continuous in E, if all of its components are
continuous in E. The initial value problem is then of the form

ẋ(t) = f(t, x(t)), x(t0) = x0, (6.26)

which is analogous to the scalar formulation (6.3).

Definition 6.20. Let ‖ · ‖ be a norm on Rn. The function f(t, x(t)) is called Lipschitz
continuous in x in E if there exists a Lipschitz constant L > 0, such that

‖f(t, x′(t))− f(t, x′′(t))‖ ≤ L ‖x′(t)− x′′(t)‖ for all (t, x′(t)), (t, x′′(t)) ∈ E. (6.27)

The function f(t, x(t)) is called locally Lipschitz continuous in x in E if for any (t, x(t)) ∈
E there exists δ,∆ > 0 such that

G = [t−∆, t+ ∆]× B̄δ(x(t)) ⊂ E,
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and there exists a Lipschitz constant L := L(t, x(t)) > 0, such that

‖f(t, x′(t))− f(t, x′′(t))‖ ≤ L ‖x′(t)− x′′(t)‖ for all (t, x′(t)), (t, x′′(t)) ∈ G. (6.28)

If the function f(t, x(t)) is continuous in E, then solving (6.26) is equivalent to solving
the integral equation

x(t) = x0(t) +

∫ t

t0

f(y, x(y)) dy. (6.29)

This follows from the same arguments as in Theorem 6.7.
As in the scalar case, the Picard method of approximations comes handy to find a solution
of (6.29). Let a continuous function x0(t), where x0(t) ≡ x0 is a common choice, be the
assumed initial approximation of the solution, and define the iterates xq(t) as

xq(t) = x0(t) +

∫ t

t0

f(y, xq−1(y)) dy. (6.30)

It is clear that as before, if in some interval I that contains t0 the sequence of functions
{xq(t)} converges uniformly to a continuous function x(t) and (t, x(t)) ∈ E for all t ∈ I,
then x(t) solves (6.29) and consequently (6.26).
Finally, the existence theorems for the initial value problem (6.3) Theorem 6.16 and
Theorem 6.17 can easily be extended to systems of ordinary differential equations. The
following existence theorems for systems of ODEs are stated without proof since the proofs
are similar to the scalar case, for further detail we refer to [4].

Theorem 6.21 (Local Existence Theorem). Let the following conditions be satisfied:

(i) f(t, x) is continuous in S = {(t, x) ∈ D | |t0 − t| ≤ ∆, ‖x0 − x‖ ≤ δ}, and therefore
there exists a M > 0 such that ‖f(t, x)‖ ≤M for all (t, x) ∈ S,

(ii) f(t, x) is locally Lipschitz in S with Lipschitz constant L,

(iii) x0(t) is continuous in [t0 −∆, t0 + ∆], and ‖x0 − x0(t)‖ ≤ δ.

Then the sequence of functions {xq(t)}, generated with (6.30), converges uniformly to
the unique solution x(t) of the initial value problem (6.26). The validity of this solution
is ensured on the interval Ih := [t0 − h, t0 + h], where h = min(∆, δ/M). Further, the
following error estimate holds for all t ∈ Ih

‖x(t)− xq(t)‖ ≤ N eLh min

(
1,

(Lh)k

k!

)
, q = 1, 2, 3, . . . , (6.31)

where ‖x1(t)− x0(t)‖ ≤ N .

Theorem 6.22 (Global Existence Theorem). Let the following conditions be satisfied:

(i) f(t, x) is continuous in T = {(t, x) ∈ D | |t0 − t| ≤ ∆, ‖x‖ ≤ ∞},

(ii) f(t, x) is locally Lipschitz in T with Lipschitz constant L,

(iii) x0(t) is continuous in [t0 −∆, t0 + ∆].
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Then the sequence of functions {xq(t)}, generated with (6.30), converges uniformly to the
unique solution x(t) of the initial value problem (6.26). The validity of this solution is
ensured on the whole interval [t0 −∆, t0 + ∆].

6.2 Pareto Tracing Using ODEs

As already mentioned, the Pareto tracing by numerical integration method was published
in [19]. Here we provide more details than in [19].

Let J = (J0, J1) : X ⊂ Rn → R2 be a biobjective objective function. Further, let
Jλ = (1 − λ)J0 + λJ1 be the weighted sum scalarization for some weight λ ∈ (0, 1), see
Section 3.5. For this section, we assume that J is two times differentiable, i.e., J ∈ C2,
and therefore Jλ ∈ C2 for all λ ∈ (0, 1). In the following, we denote the gradient of Jλ
and Ji at x as ∇xJλ(x) and ∇xJi(x), i = 0, 1, and the Hessian matrix of Jλ and Ji at x as
∇2
xJλ(x) and ∇2

xJi(x), i = 0, 1, respectively. Furthermore, recall the optimality conditions
from Section 3.5.1 as they are the base for the following discussion.

6.2.1 Implicit and Explicit ODEs for Local Pareto Optimality

From here on, we assume that ∇2
xJi is locally Lipschitz with Lipschitz constant LH(x, δ)

on the ball Bδ(x) with radius δ > 0 centered at x, i.e.,

‖∇2
xJi(x)−∇2

xJi(x
′)‖ ≤ LH(x, δ)‖x− x′‖, i = 0, 1,

where ‖A‖ is the spectral norm, i.e., the square root of the maximum eigenvalue of
A>A, A ∈ Rn×n.
Let us first assume that on some interval λ ∈ [λl, λu] ⊆ (0, 1) we have attained Jλ critical
points x(λ). Further, suppose that x(λ) is differentiable w.r.t. λ. Differentiating the
first-order optimality conditions ∇xJλ(x(λ)) = 0 with respect to λ yields

∇2
xJλ(x(λ)) ẋ(λ) = ∇xJ0(x(λ))−∇xJ1(x(λ)). (6.32)

Note that the differentiability of x(λ) is assured by the Implicit Function Theorem (6.15).
This implicit ODE can be rearranged to a explicit ODE ẋ(λ) = f(λ, x(λ)), if x(λ) addi-
tionally satisfies the second-order optimality conditions with respect to Jλ strictly. Hence,
f is then given by

ẋ(λ) =
(
∇2
xJλ(x(λ))

)−1
(∇xJ0(x(λ))−∇xJ1(x(λ))) = f(λ, x(λ)). (6.33)

Now, let us on the contrary assume that we have attained a point x0 which fulfills the
strict second-order optimality condition for Jλ0 , i.e., for some λ0 ∈ (0, 1). If the right
hand side of (6.33) is locally Lipschitz in x on some open neighborhood U of x0 with a
Lipschitz constant Lf that is uniform in λ on some interval [λl, λu] ⊆ (0, 1), the conditions
of the local existence theorem Theorem 6.16 are satisfied.

Lemma 6.23. Let A1, A2 ∈ Rn×n be two strictly positive definite matrices with smallest
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eigenvalue not smaller than some ε > 0. Then, we have

‖A−1
1 − A−1

2 ‖ ≤
1

ε2
‖A1 − A2‖. (6.34)

Proof. Let Aκ = κA1 + (1 − κ)A2 for κ ∈ (0, 1). Then, Aκ is also positive definite
with smallest eigenvalue not smaller than ε. The assertion follows directly from the sub
multiplicativity of the spectral norm:

‖A−1
1 − A−1

2 ‖ =

∥∥∥∥∫ 1

0

d

dκ
(Aκ)−1 dκ

∥∥∥∥
=

∥∥∥∥∫ 1

0

(Aκ)−1 d

dκ
Aκ(Aκ)−1 dκ

∥∥∥∥
=

∥∥∥∥∫ 1

0

(Aκ)−1(A1 − A2)(Aκ)−1 dκ

∥∥∥∥
≤
∫ 1

0

∥∥(Aκ)−1(A1 − A2)(Aκ)−1
∥∥ dκ

≤ 1

ε2
‖A1 − A2‖.

(6.35)

Thus, we can establish the following bound for the Lipschitz constant Lf of the right hand
side of (6.33).

Lemma 6.24 (c.f. [19], Lemma 1). Let λ ∈ (0, 1) and for a solution x that fulfills the
second-order optimality conditions w.r.t. Jλ, let Λ(λ, x) be the smallest eigenvalue of the
Hessian ∇2

xJλ(x):

(i) Λ(λ, x) is locally Lipschitz in x with Lipschitz constant LH(x, δ) on Bδ(x).

(ii) Λ(λ, x) is Lipschitz in λ on (0, 1) with Lipschitz constant Lλ(x) = ‖∇2
xJ0(x)‖ +

‖∇2
xJ1(x)‖.

(iii) Let 1 > % > 0, then for λ′ ∈ (0, 1) and x′ ∈ Bδ(x) such that

LH(x, δ)‖x− x′‖+ Lλ(x)|λ− λ′| ≤ (1− %)Λ(λ, x),

it is Λ(λ′, x′) ≥ %Λ(λ, x).

(iv) Let the interval [λl, λu] containing λ and Bδ(x) be given such that LH(x, δ)δ +
Lλ(x) max{λu−λ, λ−λl} ≤ (1−%)Λ(λ, x). This can always be achieved, as LH(x, δ)
is monotonically decreasing in δ. Then, f(λ′, x′) is uniformly (in λ′) Lipschitz in x′

on [λl, λu]×Bδ(x) and its Lipschitz constant is bounded by

Lf (x, δ, %) = 2

((
1

%Λ(λ, x)

)
C2(x, δ) +

(
1

%Λ(λ, x)

)2

LH(x, δ)C1(x, δ)

)
,

where C2(x, δ) = max
i∈{0,1}

sup
x′∈Bδ(x)

‖∇2
xJi(x

′)‖ and C1(x, δ) = max
i∈{0,1}

sup
x′∈Bδ(x)

‖∇xJi(x
′)‖.
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Proof.

(i) Let x′, x′′ ∈ Bδ(x). Without loss of generality we assume that Λ(λ, x′) ≥ Λ(λ, x′′).
Then

0 < Λ(λ, x′)− Λ(λ, x′′)

= inf
v∈Rn:‖v‖=1

v>∇2
xJλ(x

′)v − inf
v∈Rn:‖v‖=1

v>∇2
xJλ(x

′′)v

≤ inf
v∈Rn:‖v‖=1

v>
(
∇2
xJλ(x

′)−∇2
xJλ(x

′′)
)
v

≤ sup
v∈Rn:‖v‖=1

v>
(
∇2
xJλ(x

′)−∇2
xJλ(x

′′)
)
v

=
∥∥∇2

xJλ(x
′)−∇2

xJλ(x
′′)
∥∥

≤ LH(x, δ) ‖x′ − x′′‖ .

(ii) Let λ′, λ′′ ∈ (0, 1) with Λ(λ′, x) ≥ Λ(λ′′, x) similar to (i), then

0 < Λ(λ′, x)− Λ(λ′′, x)

= inf
v∈Rn:‖v‖=1

v>∇2
xJλ′(x)v − inf

v∈Rn:‖v‖=1
v>∇2

xJλ′′(x)v)

≤ inf
v∈Rn:‖v‖=1

v>
(
∇2
xJλ′(x)−∇2

xJλ′′(x)
)
v

≤ sup
v∈Rn:‖v‖=1

v>
(
∇2
xJλ′(x)−∇2

xJλ′′(x)
)
v

=
∥∥∇2

xJλ′(x)−∇2
xJλ′′(x)

∥∥
=
∥∥(λ′′ − λ′)∇2

xJ0(x) + (λ′ − λ′′)∇2
xJ1(x)

∥∥
≤
(
‖∇2

xJ0(x)‖+ ‖∇2
xJ1(x)‖

)
|λ′ − λ′′| .

(iii) For x′ ∈ Bδ(x), (iii) now follows from (i) and (ii) by

Λ(λ′, x′) = Λ(λ, x) + (Λ(λ′, x)− Λ(λ, x)) + (Λ(λ′, x′)− Λ(λ′, x))

≥ Λ(λ, x)− LH(x, δ) ‖x− x′‖ − Lλ(x) |λ− λ′|
≥ %Λ(λ, x).

(iv) Hence, with (iii) and (6.34) with ε = ρΛ(λ, x) it follows for x′, x′′ ∈ Bδ(x),
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λ′ ∈ [λl, λu] and K := (∇2
xJλ′(x

′))
−1

(∇xJ0(x′′)−∇xJ1(x′′)) that

0 ≤ ‖f(λ′, x′)− f(λ′, x′′)‖

=
∥∥∥(∇2

xJλ′(x
′)
)−1

(∇xJ0(x′)−∇xJ1(x′))−K

−
(
∇2
xJλ′(x

′′)
)−1

(∇xJ0(x′′)−∇xJ1(x′′)) +K
∥∥∥

≤
∥∥∥(∇2

xJλ′(x
′)
)−1

(∇xJ0(x′)−∇xJ0(x′′)−∇xJ1(x′) +∇xJ1(x′′))
∥∥∥

+
∥∥∥((∇2

xJλ′(x
′)
)−1 −

(
∇2
xJλ′(x

′′)
)−1
)

(∇xJ0(x′′)−∇xJ1(x′′))
∥∥∥

≤

∥∥∥∥∥(∇2
xJλ′(x

′)
)−1

(∫ x′

x′′
∇2
xJ0(y) dy −

∫ x′

x′′
∇2
xJ1(y) dy

)∥∥∥∥∥
+
∥∥∥((∇2

xJλ′(x
′)
)−1 −

(
∇2
xJλ′(x

′′)
)−1
)∥∥∥× ‖(∇xJ0(x′′)−∇xJ1(x′′))‖

≤ 1

%Λ(λ, x)

(
sup

x∗∈Bδ(x)

‖∇2
xJ0(x∗)‖+ sup

x∗∈Bδ(x)

‖∇2
xJ1(x∗)‖

)
‖x′ − x′′‖

+

(
1

%Λ(λ, x)

)2 ∥∥∇2
xJλ′(x

′)−∇2
xJλ′(x

′′)
∥∥

× sup
x∗∈Bδ(x)

‖∇xJ0(x∗)−∇xJ1(x∗)‖

≤ 2

(
1

%Λ(λ, x)
C2(x, δ) +

(
1

%Λ(λ, x)

)2

LH(x, δ)C1(x, δ)

)
‖x′ − x′′‖.

With these results we can establish the existence of solutions of (6.33) with the following
theorem:

Theorem 6.25 (c.f. [19], Theorem 2). Let x0 ∈ Rn and λ0 ∈ (0, 1) given such that x0

fulfills the strict second-order optimality conditions with respect to Jλ0, see Definition 3.19.
Further, using the notation of Lemma 6.24, let ∆, δ > 0 and 1 > % > 0 such that
LH(x0, δ)δ+Lλ(x0)∆ ≤ (1−%)Λ(λ0, x0). Let C̃(x0, δ,∆) = supλ∈[λ0−∆,λ0+∆]

x∈Bδ(x0)

‖f(λ, x)‖. Let

also ∆′ = min{∆, δ/C̃(x0, δ,∆)} and λl = λ0 −∆′, λu = λ0 −∆′. Then,

(i) the solution x(λ) of (6.33) with initial value x(λ0) = x0 at λ0 exists and is unique
locally on the interval [λl, λu]. Further, x(λ) is continuously differentiable on [λl, λu];

(ii) one can extend x(λ) to a solution of (6.33) to a maximal time interval (λ′l, λ
′
u) ⊆

(0, 1) containing λ0 such that Λ(λ, x(λ)) > 0 for λ ∈ (λ′l, λ
′
u) and either λl = 0

(λu = 1) or Λ(λ, x(λ)) has accumulation point 0 as λ↘ λ′l (λ↗ λ′u);

(iii) x(λ) satisfies the strict second-order optimality conditions with respect to Jλ and
thus is locally Jλ optimal and locally Pareto-optimal with respect to J on the interval
(λ′l, λ

′
u).

Proof.
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(i) We have shown that the conditions of Theorem 6.21 are fulfilled by Lemma 6.24
(iv). Hence, the assertion follows.

(ii) Since we have Λ(λu, x(λu)) ≥ ρΛ(λ0, x(λ0)), the statement of (i) can be iterated by

replacing λ0 with λl = λ
(1)
0 and x0 with x(λl). This can be done, until either λ

(n)
0 is

reaching one or Λ(λ
(n)
0 , x(λ

(n)
0 )) is approaching 0. Now one can define the minimal

lower boundary as λ′l = limn→∞ λ
(n)
0 . For the maximal upper bound λ′u one can

argue analogously.

(iii) We recall that for any λ ∈ (λ′l, λ
′
u), (6.33) implies (6.32), i.e., ∇xJλ(x(λ)) = 0, and

thus

∇xJλ(x(λ)) = ∇xJλ0(x0) +

∫ λ

λ0

d

dτ
∇xJ

τ (x(τ)) dτ = 0, (6.36)

therefore, x(λ) is Jλ critical and consequently Pareto critical. Further, since in (ii),
it was established that Λ(λ, x) > 0 holds for λ ∈ (λ′l, λ

′
u), it follows that ∇2

xJλ(x(λ))
is strictly positive definite. Hence, x(λ) satisfies strict second-order optimality for
Jλ and is locally Pareto-optimal.

Remark 6.26. (i) All results of this section consider all x ∈ Rn as feasible solutions
simplifying the notation, i.e., an unrestricted domain is considered. Nevertheless, obvious
adaptations enable one to extend the results of this section to the general case, where
Ji(x), i ∈ {0, 1} is only defined on an open subset of Rn. Toward this end, one has to
choose the constants δ > 0 of the local constructions in Lemma 6.24 and Theorem 6.25
smaller than the distance to the boundary of the feasible domain and adjust the maximal
intervals of existence (λ′l, λ

′
u).

(ii) If the two objective functions are equal, i.e., if J1 = J0, and therefore Jλ = J1 = J0 for
all λ ∈ (0, 1), then any existing optimal solution of J1 is Pareto-optimal. In this case, the
nondominated set consists of exactly one outcome vector and consequently (6.33) becomes
ẋ(λ) = 0, coinciding with the fact that there only exists one unique outcome vector.

Since estimating the quality of the numerical approximation of x(λ) often relies on the
regularity of x(λ), we recall the following well-known result on the regularity of solutions
to ODEs, see also [19].

Lemma 6.27 (c.f. [19], Lemma 4). Assume that Ji, i ∈ {0, 1}, is p+2 times differentiable
with locally bounded p+ 2nd derivative, p ∈ N0. Let [λl, λu] ⊂ (λ′l, λ

′
u) be a closed interval

in the maximal interval from Theorem 6.25(ii). Then x(λ) is p + 1 times differentiable
with bounded p+ 1st derivative on [λl, λu].

Proof. First we note that inverting an invertible matrix A as an operation is C∞ on
a neighborhood of A. Next, by redefining the right hand side of (6.33) as f(λ, x) =
f (0)(λ, x), it becomes obvious that f (0) is p times differentiable in λ and x. For l = 1, . . . , p,
we recursively define f (l)(λ, x) = ∂

∂λ
f (l−1)(λ, x)+∇xf

(l−1)(λ, x)>f(λ, x), where f (l) is p− l
times differentiable in x and λ and locally bounded, where p = l. Now, differentiating

x(l)(λ) =
(
d
dλ

)l
x(λ) = f (l−1)(λ, x(λ)) with respect to λ, yields that x(l+1)(λ) = f (l)(λ, x(λ))

for l = 0, . . . , p exists and is bounded on [λl, λu] if l = p.
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6.2.2 Approximately Pareto Critical Initial Conditions and Numerical
Stability

Until now we have assumed that the initial value x0 is the (local) optimum to the single-
criteria optimization problem given by the objective function Jλ0 , i.e., x0 satisfies the strict
second-order optimality conditions for Jλ0 . In general, we do not know x0, especially when
dealing with applications like the shape optimization problem (3.11) that we investigate
in this work. However, one can use approximations of x0, which can be obtained by, e.g.,
the gradient descend methods proposed in Chapter 5, as initial values. In this subsection,
we define approximates of x0 that for example can be obtained by a gradient descent
method or Newton-type method applied to Jλ0 .

Definition 6.28. Let x0,k be the iterates of some optimization algorithm started suf-
ficiently close to x0. Further assume that under these circumstances the optimization
problem is convex and convergence is guaranteed, i.e., x0,k → x0, k →∞.

We may further assume that x0,k is sufficiently close to x0 such that also ∇2
xJλ0(x0,k) is

strictly positive definite. The terminal output x0,k of the optimization algorithm is ε-Jλ0

critical, assuming a gradient based stopping criterion was utilized, e.g., ‖∇xJλ0(x0,k)‖ ≤ ε
for some ε > 0.

Definition 6.29. Let k > 0 and let x0,k be the k-th iterate of some optimization algorithm
as described as in Definition 6.28. Let further ∇2

xJλ0(x0,k) be strictly positive definite.
Then, starting the ODE (6.33) in the approximative initial value x0,k yields the following
ODE

ẋk(λ) = f(λ, xk(λ)), (6.37)

where f is defined as in (6.33).

In the following, an error bound for xk(λ) when starting the ODE (6.33) in a ε-Jλ0 critical
initial solution x0,k is given.
Additionally to the approximations of initial solution x0,k, many applications further rely
on numerical approximations of the function f(λ, x(λ)).

Definition 6.30. Let fl(λ, x(λ)) be an approximation of the function f(λ, x(λ)) that has
limited accuracy, such that the numerical error is controlled by the parameter l in the
sense that εl(C, λ) = supx∈C ‖f(λ, x)− fl(λ, x)‖ → 0 if l→∞ and C ⊆ Rn is compact.

The following proposition provides estimates to control the effect of the error caused by
the error in the initial condition x0−x0,k on the solution of (6.33) as well as the numerical
error in f − fl. Furthermore, using x0,k as the initial value of ODE (6.33) provides ε-
critical solutions xk(λ) with respect to Jλ for λ in some interval containing λ0.

Proposition 6.31 (c.f. [19], Proposition 5). Let x0 fulfill the strict second-order optimality
condition with respect to Jλ0 and x0,k → x0 as k →∞:

(i) Let ε > 0. For k sufficiently large, solutions xk(λ) to (6.33) started with initial
condition xk(λ0) = x0,k at λ0 exist on some maximal intervals (λ′l,k, λ

′
u,k) ⊂ (0, 1)

and xk(λ) is Jλ ε-critical, hence, ε′ = ε
min{λ,(1−λ)}-Pareto critical for λ ∈ (λ′l,k, λ

′
u,k).
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(ii) Let I = [λl, λu] ⊂ (λ′l, λ
′
u) a compact subinterval of the maximal interval from (i),

where it is established that x(λ) exist. Let Λ′(I) = infλ∈I Λ(λ, x(λ)), LH(I, δ) =
supλ∈I LH(x(λ), δ), and Ci(δ, I) = supλ∈I Ci(x(λ), δ), i ∈ {1, 2}, where Ci(x(λ), δ),
i ∈ {1, 2}, are defined as in Lemma 6.24(iv). Further, let 0 < δ < Λ′(I)/LH(I, δ),
which is always possible, since LH(I, δ) is finite and monotonically increasing in δ.
Additionally we set

Lf (δ, I) = 2

(
C2(δ, I)

Λ′(I)− δLH(I, δ)
+

(
1

Λ′(I)− δLH(I, δ)

)2

LH(I, δ)C1(δ, I)

)
.

Then, for k sufficiently large, xk(λ) exists for λ ∈ [λl, λu] and

‖x(·)− xk(·)‖C(I,Rn) ≤ ‖x0 − x0,k‖ eLf (δ,I) max{λ0−λl,λu−λ0}, (6.38)

where ‖ · ‖C(I,Rn) is the maximum norm on I. Therefore, xk(λ) converges with the
same rate to the locally Jλ and locally Pareto optimal point x(λ) as x0,k converges
to the locally Jλ0 optimal and locally Pareto optimal point x0.

(iii) Additionally, let fl be a locally Lipschitz function such that f − fl → 0, as l → ∞
uniformly on compact sets. Let further δ as in (ii) and k, l sufficiently large. Then,
the solution xk;l(λ) of ẋk;l(λ) = fl(λ, xk;l(λ)) with initial value xk;l(λ0) = x0,k at λ0

exists on I, and the following estimate holds

‖x(·)− xk;l(·)‖C(I,Rn) ≤ ‖x0 − x0,k‖ eLf (δ,I) max{λ0−λl,λu−λ0}

+
1

Lf (δ, I)

(
eLf (δ,I) max{λ0−λl,λu−λ0} − 1

)
‖fl − f‖C(U(I,δ),Rn),

(6.39)

where U(I, δ) =
⋃
λ∈I Bδ(x(λ)) and ‖ · ‖C(U(I,δ),Rn) denotes the maximum norm on

U(I, δ).

Proof.

(i) For sufficiently large k for which δ = ‖x0,k − x0‖ satisfies δLH(x, δ) < Λ(λ0, x) and
Λ(λ0, x0,k) > 0, by repeating the proof of Theorem 6.25 (ii) one obtains that xk(λ)
exists for some maximal interval (λ′l,k, λ

′
u,k). Furthermore, if k is sufficiently large

x0,k is ε-critical for Jλ0 , since Jλ0(x) is continuous in x. Furthermore, integrating as
in (6.36) yields

∇xJλ(xk(λ)) = ∇xJλ0(x0,k).

Hence, for sufficiently large k the solution xk(λ) is then ε-critical for Jλ for λ ∈ I.
The ε′-Pareto criticality of xk(λ) is then established as in Remark 3.17.

(ii) Let now I = [λl, λu] ⊆ (λ′l, λ
′
u) be some closed interval and let δ > 0 be sufficiently

small such that 0 < δ < Λ′(I)/LH(I, δ). Further, let k be sufficiently large such
that ‖x0−x0,k‖ < δe−Lf (δ,I) max{λ0−λl,λu−λ0}, which implies x0,k ∈ Bδ(x0) ⊆ U(I, δ) =⋃
λ∈I Bδ(x(λ)). Further, LH(I, δ) gives an upper bound for the uniform Lipschitz

constant of f on U(I, δ) by Lemma 6.24 (iv) with the choice % = 1−δLH(I, δ)/Λ′(I).
Thus, xk(λ) exists on some interval In = [λl,k, λu.k] ⊆ I that contains λ0. Now,
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applying Theorem 6.18 gives the following estimate on the continuous dependence
on the initial condition

‖x(λ)− xk(λ)‖ ≤ ‖x0 − x0,k‖ eLf (I,δ)|λ−λ0| ≤ ‖x0 − x0,k‖ eLf (I,δ) max{λ0−λl,λu−λ0} < δ,
(6.40)

for λ ∈ In. Hence, xk(λ) ∈ U(I, δ) and one can extend xk(·) beyond In. Applying
the above estimate repeatedly yields that I = [λl, λu] is contained in the maximal
interval of existence I ′n = (λ′l,n, λ

′
u,n) for xk(·) since for λ ∈ I, xk(λ) stays in U(I, δ),

and the inequality (6.40) holds for all λ ∈ I, proving the proposition’s second
assertion.

(iii) This case is also covered by Theorem 6.18 by essentially the same arguments as in
(ii). Toward this end, let, as in (ii), I = [λl, λu] ⊆ (λ′l, λ

′
u) be some closed interval

and let δ > 0 be sufficiently small such that 0 < δ < Λ′(I)/LH(I, δ). Further, let k, l
be sufficiently large such that ‖x0−x0,k;l‖ < δe−Lf (δ,I) max{λ0−λl,λu−λ0}, which implies
x0,k;l ∈ Bδ(x0) ⊆ U(I, δ) =

⋃
λ∈I Bδ(x(λ)). We also have LH(I, δ) as an upper

bound for the uniform Lipschitz constant of f on U(I, δ), and consequently xk;l(λ)
exists on some interval In = [λl,k, λu.k] ⊆ I that contains λ0. Now, with g = fl − f ,
i.e., g is bounded by ‖fl − f‖C(U(I,δ),Rn), Theorem 6.18 yields the following estimate

‖x(λ)− xk;l(λ)‖ ≤ ‖x0 − x0,k‖ eLf (I,δ)|λ−λ0|

+
1

Lf (δ, I)

(
eLf (δ,I)|λ−λ0| − 1

)
‖fl − f‖C(U(I,δ),Rn)

≤ ‖x0 − x0,k‖ eLf (I,δ) max{λ0−λl,λu−λ0}

+
1

Lf (δ, I)

(
eLf (δ,I) max{λ0−λl,λu−λ0} − 1

)
‖fl − f‖C(U(I,δ),Rn)

< δ

(6.41)

for λ ∈ In. Furthermore, with the same arguments as in (ii) the validity of this
estimate can also be extended to the whole interval I.

6.3 Pareto Front Tracing by Numerical Integration

Until now only the existence and the uniqueness of solutions of ODEs were discussed. In
the following, the Runge-Kutta methods, see, e.g., [81], to solve IVPs (6.3) are introduced
and based on them an algorithm to compute a solution for (6.33) is formulated.
Now recall from (6.37), that to compute an approximation xk of the Pareto front, the
following ODE has to be solved:

ẋk(λ) = f(λ, xk(λ)).

Next, an initial value x0,k = x(λ0) at λ0 is needed for a numerical integration approach
to approximate (6.37). An obvious choice for λ0 would be λ0 = 0 or λ0 = 1, following
the (ε-)Pareto critical points forward or backward, respectively. One could also start at
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a compromise solution w.r.t., e.g., λ0 = 0.5. Note that the problem might not be well-
posed for λ0 = 0 or λ0 = 1, in which case a starting point w.r.t. a compromise solution is
chosen. Solving two independent initial value problems separately, one can then recover
the Pareto critical points in two directions at the same time. In the following, we denote
the ith iterate of a numerical integration method by xi,k.
The explicit Euler method is the most straightforward method for solving (6.37) numeri-
cally. It approximates the derivative of xk by

ẋk(λ) ≈ xk(λ+ h)− xk(λ)

h
,

which leads to

xk(λ+ h) ≈ x1,k := xk(λ) + h
(
∇2
xJλ(xk(λ))

)−1
(∇xJ0(xk(λ))−∇xJ1(xk(λ))) ,

where h > 0 denotes the step size of the method. The global error of the Euler method is
then given by Ch, where C > 0 is depending on the problem [26]. For problems of higher
order, Runge-Kutta methods [10, 128, 19] can be used.

Definition 6.32 (Explicit Runge-Kutta method).
Let s ∈ N, h > 0, and let a2,1, a3,1, a3,2, . . . , as,1, as,2, . . . , as,s−1, b1, . . . , bs, c2, . . . , cs ∈ R.
Then, the method

k1 = f(λ0, x0,k)

k2 = f(λ0 + c2h, x0,k + ha2,1k1)

k3 = f(λ0 + c3h, x0,k + h(a3,1k1 + a3,2k2))

... (6.42)

ks = f(λ0 + csh, x0,k + h(as,1k1 + · · ·+ as,s−1ks−1))

x1,k = x0,k + h(b1k1 + · · ·+ bsks)

is called an s-stage explicit Runge-Kutta method for (6.37).

Definition 6.33 (c.f. [81], Definition II.1.2). A Runge-Kutta method (6.42) is of order
p if for sufficiently smooth problems (6.32), there exists a constant K > 0 that does not
depend on h such that

‖xk(λ0 + h)− x1,k‖ ≤ Khp+1.

The method described in (6.42) can also be symbolized in a more compact way with the
so called Butcher tableau, see, e.g., [81, 26].

0
c2 a2,1

c3 a3,1 a3,2
...

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

(6.43)

Furthermore, the following error estimate holds true.
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Theorem 6.34 (c.f. [81], Theorem II.3.1). If the Runge-Kutta method (6.42) has order
p and if f(λ, xk(λ)) is p times continuously differentiable, then we have the following
estimate for the local error of (6.42)

‖xk(λ0+h)−x1,k‖ ≤ hp+1

(
1

(p+ 1)!
max
t∈(0,1)

‖x(p+1)
k (λ0 + th)‖+

1

p!

s∑
i=1

|bi| max
t∈(0,1)

‖k(p)
i (th)‖

)
.

Proof. We write

xk(λ0 + h)− x1,k = xk(λ0 + h)− x0,k − h
s∑
i=1

biki(h). (6.44)

Further, with 0 < θ, θi < 1, i = 1, . . . , s, we have the following Taylor expansions

xk(λ0 + h) = x0,k + ẋk(λ0)h+ ẍk(λ0)
h2

2!
+ · · ·+ x

(p+1)
k (λ0 + θh)

hp+1

(p+ 1)!

ki(h) = ki(0) + k̇i(0)h+ · · ·+ k
(p)
i (θih)

hp

p!
i = 1, . . . , s,

where the formula is valid componentwise (for possibly distinct θ’s). The assertion then
follows from the order conditions.

Hence, a Runge-Kutta method of order p can be applied on f , as given in (6.33), if it is
continuously differentiable p times. To this end, the objective functions J0 and J1 have
to be (p+ 2) times continuously differentiable. Since Theorem 6.34 holds for each step j
of the Runge-Kutta method, we can formulate the following estimates for j = 1, . . . , N ,
where N is the number of integration points, and using xj−1,k as the initial value in step
j

‖ej‖ := ‖xk(λ0 + jh)− xj,k‖ ≤ Chp+1. (6.45)

To establish a global error, i.e., the error after several steps in the approximation, esti-
mation the ”fundamental lemma” theorem is needed and is stated without proof.

Theorem 6.35 (The ”fundamental lemma”, c.f. [81], Theorem I.10.2). Let x(λ) be a
solution of an IVP (6.3) and let y(λ) be a approximate solution. If for some ρ > 0 and
ε > 0

(i) ‖x(λ0)− y(λ0)‖ ≤ ρ,

(ii) ‖ẏ(λ)− f(λ, y(λ))‖ ≤ ε,

(iii) ‖f(λ, x(λ))− f(λ, y(λ))‖ ≤ Lfx‖x(λ)− y(λ)‖,

then, for λ ≥ λ0, we have the following error estimate

‖x(λ)− y(λ)‖ ≤ ρeLfx |λ−λ0| +
ε

Lfx

(
eLfx |λ−λ0| − 1

)
. (6.46)

Furthermore, the following theorem from [81] is also useful for a global estimation.
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Theorem 6.36 (c.f. [81], Theorem I.10.6). Let x(λ) be a solution of an IVP (6.3) and
let y(λ) be a approximate solution. Suppose that

‖∇f(λ, ν)‖ ≤ Lfx for ν ∈ [x(λ), y(λ)],

and
‖x(λ0)− y(λ0)‖ ≤ ρ, ‖ẏ(λ)− f(λ, y(λ))‖ ≤ δ(λ).

Then for λ > λ0 we have

‖x(λ)− y(λ)‖ ≤ eLfx |λ−λ0|
(
ρ+

∫ λ

λ0

e−Lfx |s−λ0|δ(s) ds

)
. (6.47)

The global error can then be estimated by an error transport along N − j steps of the
numerical scheme [81]. The following theorem gives an estimate on the global error of a
Runge-Kutta method of order p.

Theorem 6.37 (c.f. [81], Theorem II.3.4). Let U be a neighborhood of {(λ, xk(λ))|λ ∈ I},
where xk(λ) is the exact solution of (6.37) and I as defined in the previous sections.
Suppose that in U

‖∇f‖ ≤ Lfx

and that the local error estimates (6.45) hold in U . Then, the global error

E = xk(λu)− xN,k

can be estimated as

‖E‖ ≤ hp
C

Lfx

(
eLfx |I| − 1

)
,

for sufficiently small h such that the solution remains in U .

Proof. Inserting ρj = ‖ej‖, j = 1, . . . , N , in Theorem 6.35 with ε = 0 and Theorem 6.36
with δ = 0, respectively, we obtain the following estimate

‖Ej‖ ≤ exp(Lfx|λu − λj,k|) ‖ej‖, j = 1, . . . , N, (6.48)

where Ej = xk(λu)− xj,k, j = 1, . . . , N . Then, this together with (6.45) is inserted in

‖E‖ ≤
N∑
j=1

‖Ej‖.

We then have

‖E‖ ≤
N∑
j=1

exp(Lfx|λu − λj,k|)Chp+1,
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and consequently

‖E‖ ≤ hpC

(
N∑
j=1

h exp(Lfx|λu − λj,k|)

)
︸ ︷︷ ︸

(∗)

.

The expression (*) can then be bounded by∫
I

exp(Lfx |λu − y|) dy,

proving the assertion.

For the numerical experiments in Section 6.5 we apply 2nd-order and 4th-order Runge-
Kutta methods to solve (6.37) in two different settings. To formulate the explicit methods
one needs to specify the parameters s ∈ N and a2,1, a3,1, a3,2, . . . , as,1, as,2, . . . , as,s−1 ∈ R,
b1, . . . , bs ∈ R, and c2, . . . , cs ∈ R. The Butcher tableau (6.43) for the 2nd-order and
4th-order Runge-Kutta methods that we choose is then given as follows:

0
c2 = 1

2
a2,1 = 1

2

c3 = 1
2

a3,1 = 0 a3,2 = 1
2

c4 = 1 a4,1 = 0 a4,2 = 0 a4,3 = 1
b1 = 1/6 b2 = 1/3 b3 = 1/3 b4 = 1/6

(6.49)

Thus, the 2nd-order and 4th-order Runge-Kutta methods can then be formulated as
follows:

Definition 6.38.

(i) The 2nd-order Runge-Kutta method, i.e., order p = 2, is given by

x1,k = x0,k + hf(0 +
h

2
, x0,k +

h

2
f(0, x0,k)).

(ii) The classical 4th-order Runge-Kutta method (RK4-method), i.e., order p = 4, is
given by

k1 = f(λ0, x0,k)

k2 = f(λ0 +
h

2
, x0,k +

k1

2
)

k3 = f(λ0 +
h

2
, x0,k +

k2

2
)

k4 = f(λ0 + h, x0,k + k3)

x1,k = x0,k + h

(
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4

)
.

Now the following algorithm to recover the Pareto front numerically using an explicit
Runge-Kutta scheme for a given initial point λ0 can be stated.
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Algorithm 3: Pareto front tracing

Input : initial value (λ0, xk(λ0)), number of points to integrate N , number of
steps s and parameters ai,`, bi, ci, i = 1, . . . , s, ` = 1, . . . , i− 1 of the
chosen explicit Runge-Kutta method

Output: approximations to points on the Pareto front (λj, xk(λj)), j = 1, . . . , N
h = (λu − λ0)/N
for j = 1, . . . , N do

for i = 1, . . . , s do

ki = f(λ0 + jh+
i∑̀
=2

c`h, xj−1,k + h
i−1∑̀
=1

ai,`ki)

end

xj,k = xj−1,k + h
s∑̀
=1

b`k`

end

Remark 6.39. The presented algorithm uses only integration forward in λ, as in tradi-
tional time integration. By taking −f(λ, x(λ)) as the right hand sight and by transforming
the ordered set of negative λ-directions

{λ−q, . . . , λ−2, λ−1 | λj < λ0, λj < λj+1, j = −q,−q + 1, . . . ,−1}, for some q > 0,

into λ̄j = λ0 − λj, j = −q,−q + 1, . . . ,−1, in a next step reverting the ordering of these
λ̄j, and re-transforming these λ̄j during the evaluation of the right hand side of the ODE,
one can also trace the Pareto front backward by going from λ0 up to λl.

6.4 A Related Method: Pareto Tracer

In this section we give a brief overview of Pareto Tracer (PT) a predictor-corrector method
based on the Karush-Kuhn-Tucker (KKT) condition for multiobjective optimization prob-
lems introduced in [103], where for our purposes we only need the variant for unconstrained
biobjective problems. Note that in [103] also a strategy for constrained problems is pro-
vided.

6.4.1 Predictor

Given an unconstrained biobjective optimization problem

min
x∈Rn

J(x) = (J0(x), J1(x)), (6.50)

where J : Rn → R2 one can formulate the (local) optimality condition, i.e., the Karush-
Kuhn-Tucker (KKT) condition, as:

There exist Lagrange multipliers α ∈ R2 such that
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α0∇J0(x) + α1∇J1(x) = 0,

αi ≥ 0, i = 0, 1,

α0 + α1 = 1.

(6.51)

A point x ∈ Rn satisfying (6.51) is called a Karush-Kuhn-Tucker (KKT) point. Next,
predictor corrector (PC) methods are briefly introduced and then applied on the KKT
conditions (6.51), see also [103]. Consider the following equation

G(x) = 0, (6.52)

where G : Rq+1 → Rq is sufficiently smooth. Assume that we have a solution x̄ of (6.52)
with rk(∇xG(x̄)) = rk(G′(x̄)) = q, where rk(G′(x̄)) is the rank of G′(x̄). The implicit
function theorem then implies that there exists a value ε > 0 and a curve c : (−ε, ε) →
Rq+1 such that c(0) = x̄ and

G(c(t)) = 0, ∀t ∈ (−ε, ε). (6.53)

Further differentiating (6.53) yields

G′(c(t)) · c′(t) = 0. (6.54)

Therefore, computing kernel vectors for G′(x) leads to tangent vectors c′(t). To compute
these a QR factorization of G′(x)> is used. Since for G′(x)> = QR, where Q is an
orthogonal matrix and R an upper right triangular matrix the last column of Q yields
such a kernel vector, see also [103]. Moving in the direction of a given tangent vector
then leads to a predictor point p. Now applying a corrector step with Algorithm 4 brings
one back on the curve c. A PC method for unconstrained multiobjective optimization
problems was introduced in [85] which considers for biobjective optimization problems

Ĵ(x, α) =

(
α0∇J0(x) + α1∇J1(x)

α0 + α1 − 1

)
= 0, (6.55)

where αi ≥ 0, i = 0, 1. The zero set of Ĵ contains all KKT points of problem (6.55)
motivating the continuation along Ĵ−1(0). The kernel vectors of Ĵ ′ are then computed
via a QR factorization of Ĵ ′>. Following [85], from this factorization one obtains an
orthonormal basis of the linearized solution set in (x, α)−space. Pareto Tracer computes
such vectors in a way that allows the two spaces to be separated yielding tangent vectors
to the Pareto set [103]. We only give a brief overview, for further details we refer to [103].
Let x ∈ Rn be a KKT point of (6.50) and α ∈ R2 its corresponding Lagrange multipliers
with αi ≥ 0, i = 0, 1, α0 + α1 = 1 and

α0∇J0(x) + α1∇J1(x) = 0.
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Further, let ν ∈ Rn and µ ∈ R2 such that

Ĵ ′(x, α)

(
ν
µ

)
=

(
α0∇J0(x) + α1∇J1(x) ∇J0(x) ∇J1(x)

0 1 1

)(
ν
µ

)
=

(
0
0

)
.

(6.56)
Then a tangent vector can be obtained by

νµ = −W−1
α ∇f(x)>µ, (6.57)

where we assume that the n× n matrix

Wα := α0∇2J0(x) + α1∇2J1(x) ∈ Rn×n (6.58)

is regular. It is desired to steer the search into a direction in the objective space such that
the direction is orthogonal to α [103]. Following [103] for biobjective problems there are
only two choices for the direction µ

µ(1) = (−1, 1)> and µ(2) = (1,−1)>. (6.59)

To obtain a predictor p := x + hνµ at a given KKT point x a step length h is computed
as

h =
hPT

‖∇f(x)νµ‖
, (6.60)

where hPT ≈ ‖f(xi)−f(xi+1)‖ is a user specified value that corresponds to the Euclidean
distance of two consecutive solutions xi and xi+1 on the Pareto front. After computing a
predictor point p a modification of Algorithm 2 where Hessian information is incorporated
in the computation of a search direction is applied as a corrector step.

6.4.2 Corrector

Following [59], we modify the biobjective descent algorithm (Algorithm 2) from Subsec-
tion 5.1.2 by incorporating Hessian information, if available. In [59], a Newton’s method
for multiobjective optimization problems was introduced which we formulate for the biob-
jective case. In [59], a modification of the quadratic problem to compute a search direction
for the biobjective gradient descent (5.4) is considered and modified by adding the Hes-
sians to the problem. Thus, one obtains the following quadratic problem to compute a
Newton search direction for biobjective optimization problems

min
ρ∈R,d∈X

ρ

s.t. ∇Jj(x(k))> d+
1

2
d>∇2Jj(x

(k)) d ≤ ρ, j = 0, 1.
(6.61)

In [59], it was established that for strictly convex objective functions with Lipschitz con-
tinuous second derivatives a descent with Newton search directions computed via (6.61)
combined with step lengths computed with the Armijo-like rule (5.5) converges quadrat-
ically to a KKT point. Thus, one can state the following algorithm as a modification of
Algorithm 2.
Similar to Algorithm 2 the stopping condition is chosen as ‖hkd(k)‖ ≤ ε, with ε > 0
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Algorithm 4: Newton’s method for biobjective optimization methods according
to [59]

Data: Choose β ∈ (0, 1), x(1) ∈ X and ε > 0, set k := 1.
Result: Approximation of a Pareto critical solution x̃ := x(k).
Compute d(0) := d(1) as a solution of (6.61) and set h0 := 1;
while ‖hk−1 d

(k−1)‖ > ε do
Compute d(k) as a solution of (6.61);
Compute a step length hk ∈ (0, 1] as

max
{
h=

1

2`
: `∈ N0, Jj(x

(k)+hd(k)) ≤ Jj(x
(k))+βh∇Jj(x(k))>d(k), j=0, 1

}
;

x(k+1) := x(k) + hk d
(k) and k := k + 1;

end

a prespecified small constant. Furthermore, one can observe for Algorithm 4 the same
limitations w.r.t. the iterates as for Algorithm 2, i.e., for the objective vector J(x(k+1)) in
iteration k + 1 we have J(x(k+1)) ∈ J(x(k))− R2

>.

6.4.3 PC Method

The predictor-corrector method Pareto Tracer for biobjective optimization problems can
now be stated as the following algorithm.

Algorithm 5: Pareto Tracer[103]

Data: KKT point x(0) of (6.50) with associated convex weight, directions
µ1, . . . , µs ∈ R2 and τ > 0.

Result: KKT points x(i), i = 1, . . . , s, in proximity of x0.
for i = 1, . . . , s do

Compute νi := νµi as in (6.57);
Compute hi as in (6.60);
Compute pi := x(0) + hiνi;

end
for i = 1, . . . , s do

Compute a KKT point x(i) and associated weight via Algorithm 4 starting
with pi;

end

6.5 Numerical Results

The Pareto tracing by numerical integration algorithm is tested on a simple biobjective
convex quadratic optimization problem (Section 6.5.1), and on a variant of the biobjective
test problem ZDT3 (see, e.g., [158]) (Section 6.5.2) as well as on our biobjective shape
optimization problem (3.11). All numerical experiments are realized in R (version 3.5).
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The resulting ODEs are solved with the implementations of the 2nd-order and 4th-order
Runge-Kutta method of the R package “deSolve”, version 1.27.1, see also [144]. Fur-
thermore, in Section 6.5.1 and Section 6.5.2, the results of the presented approach are
compared with the predictor-corrector method Pareto Tracer (Section 6.4), where the
MATLAB toolbox provided in [103] is used for the numerical experiments. This method
iteratively computes points on the Pareto front that have a Euclidean distance of hPT ,
i.e., the step length hPT determines the distance between points on the Pareto front.

6.5.1 Pareto Tracing by Numerical Integration for Biobjective
Convex Quadratic Optimization

We consider an unconstrained and strictly convex biobjective optimization problem with
two quadratic objective functions Ji : Rn → R, i = 0, 1, given by

J0(x) =
1

2
(x− χ0)>Q0(x− χ0), J1(x) =

1

2
(x− χ1)>Q1(x− χ1)

with positive definite matrices Q0, Q1 ∈ Rn×n and arbitrary but fixed vectors χ0, χ1 ∈ Rn.
The biobjective optimization problem is then of the form

min J(x) = (J0(x), J1(x))
s.t. x ∈ Rn.

(6.62)

Quadratic problems, as a class of problems, are particular useful to assess the quality of
approximated Pareto fronts, since for problems of this class an analytic description of the
Pareto-optimal set exists, see, e.g., [149]. For the sake of completeness, the derivation is
provided below. Since Ji, i = 0, 1 are strictly convex, every Pareto-optimal solution can
be obtained as the unique optimal solution x(λ) of a weighted sum scalarization

min Jλ(x) :=(1− λ)J0(x) + λJ1(x)

=
(1− λ)

2
(x− χ0)>Q0(x− χ0) +

λ

2
(x− χ1)>Q1(x− χ1)

(6.63)

with λ ∈ (0, 1). Note that this condition is only necessary and sufficient for strictly convex
problems, but not in general. Since in this case the Hessian ∇2

xJλ(x(λ)) = λQ1 +(1−λ)Q0

is positive definite for all λ ∈ (0, 1) (regardless of x(λ)), the second-order optimality
condition is strictly satisfied by every such solution x(λ), i.e., every x(λ) is Pareto-optimal
for all λ ∈ (0, 1). Thus x(λ) is optimal for (6.63) if and only if ∇xJλ(x) = 0, where

∇xJλ(x(λ)) = (1− λ)∇xJ0(x(λ)) + λ∇xJ1(x(λ))
= (1− λ)Q0(x(λ)− χ0) + λQ1(x(λ)− χ1)
= [λQ1 + (1− λ)Q0]x(λ)− [(1− λ)Q0χ0 + λQ1χ1].

(6.64)

Furthermore, from the optimality condition one can derive that

∇xJ(λ)(x(λ)) = 0
⇔ x(λ) = [λQ1 + (1− λ)Q0]−1((1− λ)Q0χ0 + λQ1χ1).

(6.65)
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Hence, the Pareto set is contained in a parameterized curve that is completely described
by the function x : (0, 1)→ Rn given by x(λ) = [λQ1 +(1−λ)Q0]−1((1−λ)Q0χ0 +λQ1χ1)
for λ ∈ (0, 1). The two limiting points are obtained for λ = 0 and λ = 1, respectively, as
the unique minima of the individual objective functions:

λ = 0 : x(0) = χ0

λ = 1 : x(1) = χ1.
(6.66)

We can conclude that x(λ) solves ∇xJλ(x(λ)) = 0 for all λ ∈ (0, 1). Next as described
in Sections 6.2 and 6.3 above the first-order optimality conditions are differentiated w.r.t.
λ to state the implicit ODE (6.32) on which the Pareto tracing by numerical integration
algorithm is based on. Thus, yielding

d

dλ
∇xJλ(x(λ)) = 0 ⇔ [(1− λ)Q0 + λQ1] ẋ(λ)−Q0(x(λ)− χ0) +Q1(x(λ)− χ1) = 0

for λ ∈ (0, 1). Since the Hessian ∇2
xJλ(x(λ)) is positive definite for all λ ∈ (0, 1), one can

rearrange this to a standard ODE (6.33) as

ẋ(λ) = [(1− λ)Q0 + λQ1]−1(Q0(x(λ)− χ0)−Q1(x(λ)− χ1)) = f(λ, x(λ)), (6.67)

with possible initial values x0 = x(λ0) = χ1 (for λ0 = 1) or x0 = x(λ0) = χ0 (for λ0 = 0).

Remark 6.40. The Hessian of (6.63) is then given as ∇2
xJλ(x) = (1 − λ)Q0 + λQ1

and is as such independent of x. Since it is further positive definite for all λ ∈ (0, 1),
its smallest eigenvalue Λ(λ, x) is bounded from below by some ε > 0 on (0, 1), i.e., for
I = (0, 1), we have Λ′(I) = infλ∈I Λ(λ, x(λ)) ≥ ε > 0. This implies that uniform constants
L], ] = H, f, λ, can be chosen in Lemma 6.24 and Proposition 6.31, where one can set
LH = 0. Furthermore, the analysis above yields that f(λ, x(λ)) ∈ C∞, and consequently
following Theorem 6.34 and Lemma 6.27 high-order iteration schemes are then applicable
for this problem.

In [149] different classes of biobjective quadratic test functions are proposed. These test
functions are of the form

J0(x) =
1

b
(x− χ0)>Q0(x− χ0), a, b ∈ R, J1(x) =

1

a
(x− χ1)>Q1(x− χ1)

i.e., our test functions are covered by this class of functions, where the difficulty of the
biobjective problem can be regulated with the properties of the matrices Q0, Q1, e.g.,
orthogonal or permutation matrices, and the vectors χ0, χ1. We do not specify a problem
class of varying difficulty as proposed in [149] to investigate, but generate, random ma-
trices Q0 and Q1 by Qj = P>j Pj, where Pj is a sample from a n× n-random matrix with
independent standard normal distributed entries, j = 0, 1. The vectors χ0 and χ1 are
also generated in a same way as n-dimensional random vectors with independent stan-
dard normal entries. Numerical tests are provided for dimension n = 100. The 4th-order
Runge-Kutta method is used in Parerto tracing algorithm to solve the resulting ODE.

In Figure 6.1a, we compare the analytic solution x(λ) (orange, thick solid), i.e., the exact
solution obtained from (6.65), with solutions of Pareto tracing by numerical integration
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(a) Comparison with the objective values of the
numerically integrated solution of the ODE
(6.67) started at the exact solution (solid
blue, λ0 = 0.5) and integrated solutions
(dashed light blue, λ0 = 0.5) started at the
5th, 10th, 15th, and 20th iteration of a gra-
dient descent algorithm starting at x0,0 = 0
(dotted light blue). Numerical integration
of the ODE uses 4th order Runge-Kutta
method with 20 iterations, 10 in each di-
rection (step length h = 0.05).
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(b) Comparison with the objective values of the
numerically integrated solution of the ODE
(6.67) and the objective values of solutions
computed with Pareto Tracer started in the
same exact solution (solid blue) with step
lengths hPT = 100, 1000 (green and black,
respectively).

Figure 6.1: Comparison of the analytic solution (6.65) for the Pareto front (orange, thick
solid) with different approximations. The dimension of the problem is n = 100.
See also [19].

applied on (6.67) with initial value x0 = x(0.5) (solid blue). One can observe, that the re-
sults of the numerical integration are a fairly good approximation of the analytical Pareto
front. Furthermore, the Pareto tracing by numerical integration algorithm is applied on
approximate starting solutions x0,k for k ∈ {5, 10, 15, 20}, which are computed with a
gradient based descent algorithm with Armijo step lengths (with parameter β = 0.5)
starting in x0,0 = 0 to integrate for an approximate Pareto front. One can observe that
the solutions x5(λ), x10(λ), x15(λ) and x20(λ), λ ∈ (0, 1), for the 5th, 10th, 15th and 20th
iteration of the gradient descent are all ε-Pareto critical approximations of the Pareto
front (for different ε each) and the approximations become more precise, i.e., ε decreases,
for increasing iteration numbers k, coinciding with the results of Proposition 6.31 (iii).
Moreover, to investigate the robustness of this procedure further 100 randomized biob-
jective quadratic test functions are investigated analogously. For all instances, the obser-
vations from above are reproduced, i.e., good approximations of the Pareto fronts were
achieved. Similarly, the results of the integration starting in premature starting solu-
tions x0,k for k ∈ {5, 10, 15, 20} also yield various ε-Pareto critical approximations of the
Pareto front for all 100 random instances. Some exemplary solution fronts are illustrated
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in Figure 6.2.
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Figure 6.2: Some exemplary fronts of the 100 randomized biobjective quadratic test prob-
lems.

In Figure 6.1b we also compare the analytic solution x(λ) and the integrated solutions
with initial value x0 with solutions obtained by the Pareto Tracer starting in x0 with
step lengths hPT = 100 and hPT = 1000. One can observe that the Pareto Tracer yields
a comparable approximation of the Pareto front for both step lengths. For the step
length hPT = 100, the Pareto Tracer is not able to fully trace the Pareto front, while
for hPT = 1000, an approximation covering (nearly) the complete range of the front is
obtained. Increasing the maximum iteration number for hPT = 100 does not improve
the range of the approximation, whereas approximations with hPT = 10, hPT = 50,
and hPT = 150 covered (slightly) larger ranges than hPT = 100. Since the step length
of the Pareto Tracer defines the Euclidean distance between two consecutive points on
the curve describing the Pareto front, there can be unfavorable choices for step lengths
w.r.t. to the local trade-offs. Moreover, a comparison of the needed number of objective
function evaluations per solution on the front is given in Table 6.1. One can observe that
for the Pareto Tracer the mean number of evaluations increases with bigger step sizes,
which is in accordance with the fact that a bigger predictor step may yield a predictor
that is farther away from the actual front and hence more corrector steps may be needed.
Consequently, a smaller step length reduces the average number of function evaluations,
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where the amount of mean Jacobian and Hessian evaluations can become smaller as in the
case of Pareto tracing by numerical integration, see hPT = 10 in Table 6.1. However, the
average number of function evaluations of the approach presented in this paper, Pareto
tracing by numerical integration is independent of the step length h and only depends
on the order of the chosen Runge-Kutta method. Note that for small steps, the RK 2
method may be sufficient for the integration, further cutting the needed Jacobian and
Hessian evaluations in half. Therefore, when aiming at the approximation of small parts
of the Pareto front, the Pareto Tracer method may be preferable, while for larger steps
on the Pareto front, Pareto tracing by numerical integration is usually a better choice.
Note, however, that the error estimates from Theorem 6.37 for RK 4 provide a bet-
ter asymptotic (quartic) rate as compared to Pareto Tracer since, even when assuming
quadratic convergence for the corrector [59], at most a quadratic decrease of the error in
the number of evaluations is obtainable.

Int. (RK 4)
for all h

P. Tracer:
hPT = 10

P. Tracer:
hPT = 100

P. Tracer:
hPT = 1000

Mean objective calls 1 23.4300 67.2288 642
Mean Jacobian calls 4 1.5338 8.4576 40.9473
Mean Hessian calls 4 1.5338 8.4576 40.9473

Table 6.1: Comparison of the average number of objective function evaluations per com-
puted point for the biobjective convex quadratic problem. See also [19].

6.5.2 Pareto Tracing by Numerical Integration for the Biobjective
Test Function ZDT3s

The biobjective test function ZDT3, see, for example, [158] is a well-known test function
where the Pareto set is not a line segment and the Pareto front consists of various non-
contiguous convex parts. For n ∈ N and x ∈ [0, 1]n, its objectives are given by

J0(x) := x1, (6.68)

J1(x) := g(x)

[
1−

√
x1

g(x)
− x1

g(x)
sin(10 π x1)

]
, (6.69)

where g(x) = 1 + 9
n−1

(∑n
j=2 xj

)
. Hence, the biobjective optimization problem can be

stated as

min
x∈[0,1]n

J(x) := (J0(x), J1(x)), (6.70)

and its Pareto front is formed with g(x) = 1, see, e.g., [158]. Since, for these objectives the
Hessian of any weighted sum scalarization ∇2

xJλ(x) for λ ∈ (0, 1) is singular, we adapt a
small modifications to the problem to ensure regular Hessians, i.e., the xj in the objectives
(6.68) and (6.69) are replaced by x2

j , for j = 1, . . . , n. In the following, we refer to this
problem as ZDT3s. Note that the Pareto front of ZDT3s is equal to the front of ZDT3,
while the Pareto set of ZDT3s is given by the component wise square root of the Pareto
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set of ZDT3.
For the computation of the right hand side f(λ, x(λ)) of (6.33) for the problem ZDT3s
the gradients ∇xJi(x) and Hessians ∇2

xJi(x), i = 0, 1, are approximated by the finite
difference method with precisions εG ≈ 1.5 × 10−8 and εH ≈ 6 × 10−6, respectively.
The gradients and Hessians for Pareto Tracer are computed in the same way. For the
numerical integration of the ODE the 4th order Runge-Kutta method with a step length
of h = 0.001 is used. The dimension of the problem is n = 100. In Figure 6.3a, the
analytical solution is compared with the results of the numerical integration. Nearly all
parts of the Pareto front are approximated reasonably well when starting in five different
initial values. The corresponding initial weight λ0 for one initial value x0 such that
x0 is Jλ0-critical is computed by solving the equation ‖∇Jλ(x0)‖ = 0 for λ0 ∈ (0, 1).
We stop the numerical integration when an inflection point on the local Pareto front is
reached, since the Hessians of the weighted sum scalarization become indefinite in these
points. Beyond the inflection point on a non convex Pareto front the trade-offs reverse
again which would require an ODE solution ”backward in time”. This is not included
in our present algorithm. Also the presented approach does not further guarantee local
Pareto optimality from that point on. Integrating past this given barrier may also lead to
dominated solutions, which then can be filtered in a post processing step that has to be
done anyway since the Pareto front consists of several parts where some local solutions
on one part of the curve may dominate some other local solutions on another part of
the curve. Further, in Figure 6.3b the analytical solution is compared with the results of
Pareto Tracer with a step length of hPT = 0.02. In contrast to the numerical integration,
Pareto Tracer is not limited by inflection points and can therefore approximate the whole
Pareto front. Moreover, in this case as in the other one a post processing filtering step is
needed to determine the Pareto front.

Furthermore, in Table 6.2, the mean number of objective evaluations per solution of the
numerical integration and Pareto Tracer are compared. Since the parts of the Pareto front
are relatively small small step sizes are needed, favoring Pareto Tracer. The mean amount
of iterations of Pareto Tracer only exceeds the amount for the numerical integration for
step lengths bigger than ĥPT ≈ 0.4.

Int. (RK 4)
for all h

P. Tracer:
hPT = 0.02

P. Tracer:
hPT = 0.4

Mean objective calls 20801 7085.84 25609.75

Table 6.2: Comparison of the mean objective function evaluations per solution of the
numerical integration and Pareto Tracer for ZDT3s. See also [19].

Remark 6.41. Note that our assumption on the strict positive definiteness of the Hessian
of Jλ is not satisfied at an inflection point of the Pareto front. Indeed, consider a sequence
of weights {λi}, λi ∈ (0, 1) for all i, with limi→∞ λi = λ̄, and let x(λi) be a corresponding
sequence of local minima of Jλi with limi→∞ x(λi) = x̄. Now suppose that the outcome
vector J(x̄) is an inflection point of the Pareto front in the objective space. Then, x̄ fulfills
∇Jλ̄(x̄) = 0 by continuity, but is not a local minimum of Jλ̄ since Jλ̄(x(λi)) < Jλ̄(x̄) for i
sufficiently large, i.e., for λi sufficiently close to λ̄.

116



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

J0

J 1

Exact solution

Int. with exact starting points

Starting points

(a) Comparison of the analytic solution of
ZDT3s (red) and the numerical integration
started in exact solutions (blue). The initial
values are marked as triangles.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

J0

J 1

Exact solution

P. Tracer with exact starting points

Starting points

(b) Comparison of the analytic solution of
ZDT3s (red) and Pareto Tracer started in
exact solutions (black). The initial values
are marked as triangles.

Figure 6.3: Comparison of the analytic solution with solutions of the numerical integration
and Pareto Tracer. See also [19].

6.5.3 Pareto Tracing by Numerical Integration for Biobjective Shape
Optimization

Now we apply the Pareto tracing by numerical integration approach to our biobjective
shape optimization problem (3.11), see also [118] for a related work. To this end, recall
that we have

min
Ω∈Oad

J(Ω) := (J0(Ω), J1(Ω))

s.t. u ∈ H1(Ω,R2) solves the state equation,
(6.71)

where J1(Ω) is the objective w.r.t. the probability of failure of the shape Ω ∈ Oad and
J0(Ω) is its volume. The same discretization, i.e., J0(x) and J1(x), that was proposed
in Chapter 4 is used. Furthermore, to apply the Pareto tracing by numerical integration
approach, the right hand side f(λ, x(λ)) of (6.33) for problem (3.11) has to be com-
puted. Therefore, the 2nB × 2nB Hessian matrices ∇2

xJi(x
ml) and ∇2

xJi(x
th), i = 0, 1, are

approximated with finite differences using a precision of εH = 10−6, i.e.

(
∇2
xJi(x

α)
)
·j ≈
∇xJi(x

α + ejεH)−∇xJi(x
α)

εH
, α ∈ {ml, th}, j = 1, . . . , nB (6.72)

where ej, j = 1, . . . , nB, are the standard basis vectors of RnB . Hence the right hand
side is then of the form fl(λ, x(λ)) for some l. This is something that can easily be done
in parallel. Toward this end, the R packages ”doParallel”, version 1.0.15, and ”foreach”,
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version 1.4.7, are used to compute the nB+1 gradient evaluations for the finite differences
approximation on nB+1 CPU cores. Further, Proposition 6.31 (iii) establishes the stability
of this approach while using an approximate right hand side fl(λ, x(λ)).
For the numerical solution of the ODE (6.33), we apply an order 2 Runge-Kutta method,
thus requiring that the discretized objective functions Ji, i = 0, 1, are at least 4 times
continuously differentiable (c.f. Theorem 6.34). This is clearly satisfied for the dis-
cretized volume J0(x), which is, as a polynomial, infinitely differentiable. For the dis-
cretized intensity measure J1(x), we can build on the analysis for J1(Z) performed in
[79, 21, 80, 73] and Section 4.2. Recall that the discretized state equation (3.2) is of the
form B(Z)U(Z) = F̂ (Z), where U(Z) is the discretized displacement, B(Z) the positive
definite stiffness matrix, and F̂ (Z) the discretized forces. From the assembly of B(Z) and
F̂ (Z) in [79, 21, 80, 73] and Section 4.2, it can be seen that B(Z), F̂ (Z) ∈ C∞. Using
the identity U(Z) = B(Z)−1F (Z), where the right hand side is infinitely differentiable,
it can be shown iteratively that also U(Z) ∈ C∞. Moreover, in [18, Lemma 6.5.5], it is
shown that ζ(σ) = ((n>σ n)+)m is m times continuously differentiable w.r.t. σ. We can
conclude that this is also the case for J1(Z). The order 2 Runge-Kutta method is hence
applicable for Weibull modules 5 ≤ m ≤ 30. We consider the two test cases proposed
in Section 4.4, i.e., the straight joint (Subsection 4.4.1) and the s-shaped joint (Subsec-
tion 4.4.2), and choose the solutions generated with the weighted sum scalarization in
the previous chapter (Chapter 5) as initial solutions for the Pareto tracing by numerical
integration algorithm. While this problem may be non convex in general and, as a conse-
quence, the computation of the complete Pareto front cannot be guaranteed a priori, we
note that numerical experiments indicate that the Pareto front is at least locally convex
and that it can be well approximated by the suggested method.

Test Case 1: A Straight Joint

In this test case the left and right boundaries are fixed at the same height and the surface
forces ḡ act on the right boundary. In the previous chapter, we established that the
Pareto critical shapes for this test case are straight rods with varying thickness connecting
both boundaries, see Figure 6.4. This motivates the use of a discretized straight rod
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Figure 6.4: Some solutions of the weighted sum method of Chapter 5 and the initial shape
x0. See also [19].

with constant thickness of 0.2 m as the initial point x0 for the numerical integration, see
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Figure 6.4c, even though this particular shape was not computed with a gradient descent
of the weighted sum scalarization. For this shape we do not have an iteration index k ∈ N,
since the initial value x0 is not a approximation but an exact solution. Nevertheless, x0 as
a Pareto critical solution is the limit of some unknown sequence {x0,k}, i.e., limk→∞ x0,k =
x0, since the part of the (local) Pareto front that was computed in Chapter 5 seems convex
and therefore the weighted sum scalarization should be able to recover the solutions in
that part of the front for some weights λ ∈ (0, 1). Further, since the right hand side of
the ODE fl(λ, x(λ)) is an approximation that depends on some parameter l we denote
the solution of the ODE as xl(λ) := x∞;l(λ) = xk;l(λ). Note that this should not be
confused with xk(λ). Next, a corresponding weight λ0 such that x0 is Jλ0-critical is
recovered by solving the equation ‖∇Jλ(x0)‖ = 0 for λ0 ∈ (0, 1). From this optimization
we obtain λ0 ≈ 0.813 for the desired weight, for which ‖∇Jλ(x0)‖ ≈ 2.6 × 10−8. We
therefore have x0 ≈ xl(0.813) with ∇J0(x0) and ∇J1(x0) pointing in opposite directions
(cos(∇J0,∇J1) = −0.999998). We thus consider this solution as Pareto critical up to
numerical error. This nicely agrees with the intuition from mechanical engineering that
the straight rod should be the optimal form given its volume.
Applying Pareto tracing by numerical integration on the interval [λl, λu] = [λ0−0.66, λ0 +
0.1] with a step length of h = 0.01 then yields shapes of varying thickness that are also
straight rods. This is in accordance with the results of Chapter 5, see Figure 6.5 for some
exemplary shapes corresponding to xl(λ). The outcome vectors obtained with Pareto

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

xl(0.203)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

xl(0.503)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

x0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

xl(0.903)

Int. in

neg. dir.

Int. in

neg. dir.

Int. in

pos. dir.

Figure 6.5: Exemplary results of Pareto tracing by numerical integration w.r.t. the ODE
(6.33) in negative and positive direction, starting from x0. See also [19].

tracing by numerical integration algorithm and the outcome vectors computed via the
two gradient based descent algorithms in Chapter 5 are compared in Figure 6.6. One
can observe that not only the weighted sum solutions are covered by the solutions of the
numerical integration, but also a larger part of the (local) Pareto front is approximated
with this approach.
The statements of Proposition 6.31 are also validated as shown in Figure 6.7, where
the first and the second-order optimality conditions were tracked during the numerical
integration of Pareto tracing by numerical integration. Indeed, the results nicely display
that the solutions of Pareto tracing by numerical integration achieve good results w.r.t.
first and second-order optimality tests.
Furthermore, in Figure 6.8 the behaviour of the B-spline coefficients x of the solutions
xl(λ), λ ∈ [λ0 − 0.66, λ0 + 0.1] is shown. As all shapes are straight rods, the B-spline
coefficients xml w.r.t. the meanline values xml

1 (orange), xml
2 (red) and xml

3 (brown) stay
unchanged for all solutions. Furthermore, the two thickness coefficients w.r.t. the B-splines
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scalarization (green). See also [19].
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Figure 6.7: Straight joint: evaluating first and second-order optimality during the numer-
ical integration. See also [19].

on the edges of the shapes xth
1 (green) and xth

3 (purple) behave symmetrically and decrease
with smaller λ, whereas the values of xth

2 (blue) stay nearly unchanged throughout the
optimization process, increasing slightly for (relatively) big λ. Thus, one can assume that
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xth
1 and xth

3 mainly control the volume of the shapes via the edges until at some point the
middle part of the rod, i.e., xth

2 , has to grow, too.
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Figure 6.8: Test case 1: behaviour of the B-spline coefficients x of the solution xl(λ)
obtained with Pareto tracing by numerical integration for λ ∈ [λl, λu] = [λ0−
0.66, λ0 + 0.1].

Test Case 2: An S-Shaped Joint

For the test case of the s-shaped joint, the numerical studies of the previous chapter
suggest that the (locally) Pareto-optimal shapes resemble the profiles of whales with
varying volume. See Figure 6.9 for exemplary solutions of gradient descents with weighted
sum scalarizations for weights λ = 0.25, 0.4, 0.6, 0.8. Note that the gradient descent
method did not converge for λ < 0.25 and λ > 0.8, hence we omit these solutions in
the following comparisons. Since the optimization of this test case was more complex in
the previous chapter, we choose two starting solutions for the numerical integration and
compare their results. Toward this end, we consider the two solutions of the weighted
sum scalarization with the smallest and largest weight λ for which the descent algorithm
converged in Chapter 5, x0,k′;l,0.25 := x0,k′;l = xk′;l(0.25) and x0,k′′;l,0.8 := x0,k′′;l = xk′′;l(0.8),
as initial values for Pareto tracing by numerical integration. Pareto tracing by numerical
integration is then applied on the interval [λl, λu] = [0.20, 0.85], starting in x0,k′,0.25 and
x0,k′′,0.8 and moving in positive (forward) and negative (backward) direction, respectively.
In both cases, a step size of h = 0.01 is used in the numerical integration.
In Figure 6.10a, the outcome vectors obtained from forward and backward integration
and the results of Chapter 5 are compared in the outcome space. Here, the solutions of
the gradient descent of weighted sum scalarizations for different weights are illustrated
as green points, where the rightmost point on the curve corresponds to x0,k′′;l,0.8 and
where the leftmost point corresponds to x0,k′;l,0.25, respectively. Most solutions of xk′(λ)
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Figure 6.9: Exemplary solutions of the weighted sum method in Chapter 5, including
x0,k′;l,0.25 and x0,k′′;l,0.8. See also [19].

with initial value x0,k′;l,0.25 (purple trajectory) are dominated by weighted sum solutions,
while the approximative front of weighted sum solutions (obviously excluding x0,k′′;l,0.8)
is dominated by the solutions of xk′′;l(λ) with initial value x0,k′′;l,0.8 (blue trajectory).
In Figure 6.11, the corresponding shapes to the results of xk′′;l(λ) are shown. They
also resemble the profiles of whales and are therefore consistent with the weighted sum
solutions. Furthermore, in Figure 6.12 the behaviour of the B-spline coefficients x of
the results of xk′′;l(λ) for λ ∈ [0.25, 0.8] is shown. One can observe that the meanline
coefficients xml

2 (red), xml
3 (brown) and the thickness coefficients xth

3 (purple), xth
2 (blue)

stay nearly the same during the numerical integration, while xth
2 also slightly increases for

bigger λ. The two coefficients corresponding to the first B-spline on the left boundary,
xml

1 (orange) and xth
1 (green), are the two most sensitive coefficients as they decrease

with smaller λ. Since all shapes resemble whale profiles one can assume that these two
variables have the most influence on the volume of the solutions. It is also of interest
to investigate the behavior of the solutions when sub optimal initial values obtained from
prematurely stopped gradient descents of the weighted sum scalarization in Chapter 5 are
used in the Pareto tracing by numerical integration algorithm. The trajectories of three
additional numerical integrations starting in suboptimal initial solutions x0,k1;l,0.8, x0,k2;l,0.8,
and x0,k3;l,0.8, with corresponding initial values λ0,k1 ≈ 0.808, λ0,k2 ≈ 0.810, and λ0,k3 ≈
0.814, respectively, are shown in Figure 6.10b. To solve the ODEs backward numerical
integration with a step size of h = 0.01 is applied on [λl,ki , λu,ki ] = [λ0,ki − 0.55, λ0,ki ], i =
0, 1, 3, respectively. Here, the gray dots resemble some iterates of the gradient descent
method applied to the weighted sum objective J0.8. Regardless of the suboptimal choices
of the initial values, one can observe that the solutions x0,k1;l,0.8(λ) (brown), x0,k2;l,0.8(λ)
(green), and x0,k3;l,0.8(λ) (red) still represent good approximations of the (local) Pareto
front, see Figures 6.10b and 6.13. This is not totally surprising, since we observed in
Chapter 5 that the gradient descent algorithm applied to the weighted sum objectives
Jλ first approaches an extension of the Pareto front by improving substantially w.r.t. J1,
to then move along almost in parallel to the Pareto front while the trade-off between
the potential improvements w.r.t. J0 and J1 changes in favor of J0 during later stages
of the optimization. Therefore, the premature solutions x0,k1;l,0.8, x0,k2;l,0.8, and x0,k3;l,0.8

have better J1-values and thus themselves approximate an extension of the Pareto front,
providing excellent starting points for the numerical integration. Note, however, that this
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Figure 6.10: Comparison of the outcome vectors obtained with Pareto tracing by numer-
ical integration using forward and backward integration (left) and starting
from suboptimal initial solutions (right). See also [19].

may not be true in general, since this behaviour largely depends on the initial solution
and, even more so, on the relative variability (slopes) of the considered objective functions
J1 and J0. It is noticeable that this is a problem-specific observation and should not be
expected in general, since, for example, the quadratic case, see Figure 6.1a, behaves
differently. Our numerical investigation suggests that the direction of integration matters
as we observe drifting away of (J0, J1)-values from the Pareto front in one λ-direction
and narrowing in the opposite one. This does not come as a surprise, as our algorithm
rather provides guarantees for the ε-criticality of xk(λ) but not (directly) for ‖J(xk(λ))−
J(x(λ))‖. In practical applications, it might therefore be interesting to measure the
spread of J-trajectories, i.e., ‖J(xk(λ))− J(xk′(λ))‖, close to the initial value λ0 in order
to identify favorable values for λ0 along with a direction of integration that is (initially)
contractive in J-space.

Moreover, it is apparent that in the above examples Pareto tracing by numerical integra-
tion yields a more dense approximation of the (local) Pareto front than the gradient based
methods investigated in Chapter 5. This density depends on the choice of the weights
for which weighted sum problems are solved in Chapter 5 ([46]), and on the choice of
the step length h in the Pareto tracing by numerical integration method, respectively.
Note that it is generally difficult to control the distribution of points when solving indi-
vidual weighted sum problems (see, for example, [38]). The selection of the step length
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Figure 6.11: Some shapes obtained with backward Pareto tracing by numerical integration
in x0,k′′;l,0.8. See also [19].

h plays a corresponding role for our method. However, the error estimates that we pro-
vide give some means of control in the case of the Pareto front tracing by numerical
integration method. Moreover, small step lengths induce dense approximations, however,
these approximations come at comparably high computational costs. Larger step sizes on
the other hand allow to quickly obtain a rough estimate of the Pareto front with rather
few and distant solutions. So, it is of particular interest to determine the sensitivity of
the Pareto tracing by numerical integration method w.r.t. the step length h, and espe-
cially for larger values of h. Toward this end, we compare the results of three further
Pareto tracing by numerical integration solves starting in x0,k′′;l,0.8 for different step sizes
h = 0.001, 0.04, 0.08, see Figure 6.14a. Assuming divisibility among the considered step
lengths we can observe that the solutions obtained for a larger step size are approximately
equal to a subset of the outcome vectors obtained for smaller step sizes. Hence, for this
particular problem this enables for a relatively coarse representation of the (local) Pareto
front by using a relatively large step length. This was also observed for the simpler Test
Case 1. Furthermore, the distance between two consecutive outcome vectors on the ap-
proximated (local) Pareto front may differ significantly for a constant step length h. This
is in accordance with the fact that equidistantly spaced weights λ ∈ (0, 1) do in general
not yield equidistantly spaced outcome vectors on the Pareto front, recall Section 3.5.

From a practical point of view, when dealing with computationally expensive problems
like the given biobjective shape optimization problem (3.11) rough approximations of
the Pareto front are of particular interest. Recall from Chapter 5, that computing one
weighted sum solution for a weight λ ∈ (0, 1) starting in the same initial shape came with
the cost of kW + 1 gradient computations and kW · kA + 1 objective function evaluations,
where kW denotes the number of iterations of the gradient descent algorithm and kA
denotes the number of Armijo iterations. One optimization run for Test Case 2 needed on
average 106.7 iterations, and per iteration on average 5.3 Armijo iterations to compute a
solution for a given weight, i.e., 107.7 gradient computations and 566.5 objective function
evaluations in total. In contrast, the Pareto tracing by numerical integration algorithm
needs only 14 gradient computations and one objective function evaluation, i.e., 29 PDE
evaluations, to compute one further solution, if a sufficiently good initial solution is at
hand. This is significantly cheaper than using one common initial shape for all weights
λ of the weighted sum descent as investigated in Chapter 5 (see also [46]). But one can
easily speedup the weighted sum descent by choosing the optimal solution for weight λi
as the initial solution for the next weight λi+1 = λi ± h. The presented approach is also
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Figure 6.12: Test Case 2: Behavior of the B-spline coefficients x of the results of xk′′;l(λ)
obtained with Pareto tracing by numerical integration for λ ∈ [λl, λu] =
[0.25, 0.8].

compared with the case where the optimal shape for λ0 = 0.8, x0,k′′,0.8, is used as the
initial solution for a weighted sum descent w.r.t. λ1 = λ0 − h and the solution of that
descent is then used as an initial value to compute the next solution for λ2 = λ1 − h
and so on. This scheme is then repeated with a step length of h = 0.08 until a solution
for the weight λ = 0.24 is computed. Further, to better compare this approach with the
Pareto front tracing by numerical integration solutions obtained by backward numerical
integration starting in x0,k′′,0.8 utilizing a step size of h = 0.08, we set the maximum
iteration number of the weighted sum descents as 15 according to the needed 29 PDE
evaluations (14 gradient computations and one objective function evaluation) per iteration
of Pareto front tracing by numerical integration, i.e., the on average 5.3 Armijo iterations
per iteration of the weighted sum descent are not counted as PDE evaluations for the
weighted sum descent approach. The red points in Figure 6.14a illustrate the solutions
of this scheme. One can observe that the solutions of these consecutive descents with the
weighted sum scalarization do not cover the same range of solutions as the Pareto front
tracing by numerical integration solutions and lose accuracy during the scheme. Further,
setting the step length h = 0.04, i.e., choosing a more dense weight distribution, yields
a more accurate approximation, but when limited to 15 iterations also fails to cover the
same range of solutions as Pareto front tracing by numerical integration with the same
step length. Increasing the maximal iteration number to 50 for both step lengths h = 0.04
and h = 0.08 improves the solutions and their range, respectively (see Figure 6.14b), but
none of the descents managed to converge in the given 50 iterations. This nicely shows
that for the Pareto front tracing by numerical integration approach, the number of PDE
evaluations is independent of the step length h, while the error bounds of Theorems 6.34
and 6.37 hold in each step. In contrast, the weighted sum descent is slow to converge
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Figure 6.13: S-Shaped Joint: Tracking first and second-order optimality during Pareto
tracing by numerical integration in reliance of the quality of the initial value.
See also [19].

and may lose accuracy during the scheme.
All in all, this is a significant speedup that, in combination with the robustness w.r.t. the
step length and the guarantee of the error bounds of Theorems 6.34 and 6.37, allows for a
reasonably good approximation of a wide range of solutions at reasonable computational
cost. Furthermore, in the case that a decision maker is involved, the robustness w.r.t. the
step length allows one to first compute a coarse representation of the Pareto front and
then in a next step generate a denser representation of the part of the solution front that
aligns the most with the preferences of the decision maker.
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7 EGO and Gradient Enhanced Kriging

In this chapter, the solutions of the weighted sum gradient descent of Chapter 5 and the
solutions of Pareto tracing using numerical integration of Chapter 6 are compared with
weighted sum solutions computed via the global surrogate based optimization method
Efficient Global Optimization (EGO) utilizing Kriging and Gradient Enhanced Kriging
(GEK) as surrogate models, respectively. For expensive to compute objective functions
surrogate based optimization methods provide a way to, in comparison, cheaply obtain
an optimum for the use case. The central idea of surrogate based optimization is that the
optimization takes place on a surrogate model that approximates the expensive objective
function by a cheap to evaluate objective function. A thorough introduction to this
field and an incorporation into multiobjective optimization can be found in [123]. The
history of surrogate based optimization in multiobjective optimization is discussed in
[143]. We choose the Efficient Global Optimization algorithm, see, e.g., [92, 90], that
utilizes Kriging [98, 105, 130, 34, 35] or GEK [111] as surrogate models as benchmarks,
respectively, since they are widely used in applications [157]. The Kriging predictor is an
interpolator and a best linear unbiased predictor, [130, 92]. ParEGO [96, 36] extends the
EGO algorithm to the multiobjective case. In [155], a multiobjective gradient descent
is applied on a Kriging model. A common field in which the EGO algorithm is applied,
is the gradient-free optimization of aerodynamic design problems [117, 102, 11, 94, 63,
64, 133]. If cheap to compute gradients are available, e.g., from an adjoint approach,
they also have been incorporated into surrogate models for aerospace design problems
[31, 8, 82, 157, 12]. In [111], the Direct Gradient Enhanced Kriging approach was first
established, and further developed, see, e.g., [65, 22, 37]. Note that GEK methods are not
as commonly used as ordinary Kriging, since cheap gradients are needed and the numerical
stability of GEK methods is an issue [157]. The novelty of this work is that now that
adjoint gradients for structural mechanic problems of ceramic components are available,
see Chapter 3, a GEK approach can be applied on the biobjective shape optimization
problem (3.11). Furthermore, since EGO and GEK are widely used in (aerodynamic
design) applications they provide proper benchmarks for the numerical results from the
Chapters 5 and 6. We use the EGO, Kriging and GEK implementations of the open source
optimization and uncertainty quantification software toolbox Dakota of Sandia National
Laboratories [56, 57, 37]. This chapter is structured as follows. In Section 7.1, a brief
overview of random variables, random fields, in particular Gaussian random fields, and
their covariance functions is given. In Section 7.2, the continuity and differentiability of
random fields is discussed. In Section 7.3, the Kriging and GEK models are introduced
and the EGO algorithm is stated. Next, the Dakota toolbox and the coupling is described
in Section 7.5. Subsequently, the numerical results are compared in Section 7.6.

128



7.1 Random Variables and Random Fields

From a probabilistic point of view, outcomes of experiments are handled as random vari-
ables which are uncertain quantities that are observed. A random field, as a family of
random variables, can be associated with a simulation in which many experiments can be
done. Therefore, observing the outcome of the random field is equivalent to observing all
experiments [150].
To analyze random fields, tools from elementary probability theory are needed which are
presented in this section. A definition of a random variable and afterwards the definition
of a random field and some basic insights from probability theory are provided. Note that
most of this section is based on [95, 150, 1].

Definition 7.1 (Random Variable). Let (Ω,A, P ) be a probability space and (E,F) a
measurable space. A measurable function Z : (Ω,A, P ) → (E,F) is called a E-valued
random variable and Z(ω) with ω ∈ Ω is called a realization of Z.

Every random variable has a distribution. In the later parts of this section, we fix the
distribution as Gaussian.

Definition 7.2 (Distribution of a Random Variable). Let (Ω,A, P ) be a probability space,
(E,F) a measurable space and Z : (Ω,A, P )→ (E,F) a random variable. Then

PZ(B) := P (Z−1(B)) = P (Z(ω) ∈ B) for B ∈ F (7.1)

defines a probability measure PZ on (E,F) and is called the distribution of Z under P .

For real random variables, i.e., (E,F) = (Rk,Bk), k ∈ N, the probability of the event {Z ≤
z} has a special meaning in probability theory. It defines the (cumulative) distribution
function of Z. Recall that for x, y ∈ Rk the inequality x ≤ y is equivalent to xi ≤ yi for
all i = 1, . . . , k.

Definition 7.3 (Cumulative Distribution Function (c.d.f)). Let (Ω,A, P ) be a probability
space and (R,B) and (Rk,Bk) measurable spaces.

1. Let Z : (Ω,A, P )→ (R,B) be a random variable. The function

F ≡FZ : R→ [0, 1] (7.2)

z 7→FZ(z) := P (Z ≤ z)

is called the (cumulative) distribution function of Z.

2. Let Z = (Z1, . . . , Zk) : (Ω,A, P )→ (Rk,Bk) be a random vector. The function

F ≡ FZ ≡ FZ1,...,Zk : Rn → [0, 1] (7.3)

z = (z1, . . . , zk) 7→ FZ(z) := P (Z1 ≤ z1, . . . , Zk ≤ zk)

is called the (cumulative) distribution function of the random vector Z.

If the cumulative distribution function is differentiable, then the probability density func-
tion exists:
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Definition 7.4 (Probability Density Function (p.d.f.)). Let (Ω,A, P ) be a probability
space and let (Rk,Bk) be a measurable space.

1. Let Z = (Z1, . . . , Zk) : (Ω,A, P ) → (Rk,Bk) be a random vector. The function
f ≡ fZ = fZ1,...,Zk is called the probability density function of the random vector Z
if

FZ(z1, . . . , zk) =

∫ z1

−∞
. . .

∫ zk

−∞
fZ1,...,Zk(y1, . . . , yk) dy1 . . . dyk. (7.4)

2. Let f ≡ fZ = fZ1,...,Zk be a probability density function. The marginal probability
density function of zi for i ∈ S ⊆ {1, . . . , k}, is obtained by integrating over all
possible values of zj with j /∈ S

f(zi|i ∈ S) ≡ fZ(zi|i ∈ S) =

∫ +∞

−∞
. . .

∫ +∞

−∞
fZ1,...,Zk(z1, . . . , zk)

∏
j /∈S

dzj. (7.5)

One can further construct a conditional sample space by imposing conditions on random
variables. We state some general definitions and theorems for a random vector Z that is
partitioned into two vectors Z1 and Z2. For more detail, we refer to [95]

Definition 7.5 (Conditional c.d.f. and p.d.f.). Let Z = (Z1, . . . , Zk) ∈ Rk be a ran-
dom vector that is partitioned into two vectors Z1 = (Z1, . . . , Zp) ∈ Rp and Z2 =
(Zp+1, . . . , Zk) ∈ Rq and let further be z1 ∈ Rp and z2 ∈ Rq be realizations of the random
vectors Z1 and Z2, respectively. Given a condition {Z1 = z1} with P ({Z1 = z1}) > 0 we
then have:

1. The conditional c.d.f. of Z2 given {Z1 = z1} is given by

FZ2|Z1(z2|z1) := P (Z2 ≤ z2|Z1 = z1). (7.6)

2. The corresponding conditional p.d.f. fZ2|Z1(z2|z1) exists if

FZ2|Z1(z2|z1) =

∫ zp+1

−∞
. . .

∫ zk

−∞
fZ(z1, . . . , zp, yp+1, . . . , yk)

k∏
j=p+1

dyj

=

∫ zp+1

−∞
. . .

∫ zk

−∞
fZ2|Z1(y2|z1)

k∏
j=p+1

dyj.

(7.7)

3. We have the following relation

fZ(z1, z2) = fZ2|Z1(z2|z1)fZ(z1) = fZ1|Z2(z1|z2)fZ(z2). (7.8)
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4. Bayes’ theorem for conditional probabilities (see for e.g. [150]) can then be rewritten
as

fZ2|Z1(z2|z1) =
fZ(z1, z2)

fZ(z1)
=
fZ1|Z2(z1|z2)fZ(z2)

fZ(z1)
. (7.9)

5. Two real random vectors Z1 and Z2 are called independent if

FZ(z) = FZ1(z1)FZ2(z2). (7.10)

Further, if the p.d.f.́s fZ , fZ1 , fZ2 exist one has equivalently

fZ(z) = fZ1(z1)fZ2(z2). (7.11)

Note that one can replace the vector z2 with the random vector Z2, transforming the
conditional p.d.f. to a function of the random vector Z2. A formal definition of a random
field can be stated as:

Definition 7.6 (Random Field). Let (Ω,A, P ) be a probability space, (E,F) a mea-
surable space, and X a non-empty parameter set. A random field is a indexed family
Z :=

(
Z(ω, x)

)
x∈X of E-valued random variables, i.e., for every fixed x ∈ X , Z(·, x) is a

measureable function of ω ∈ Ω. So, we have

Z(·, x) : (Ω,A, P )→ (E,F)

ω 7→ Z(ω, x).
(7.12)

For notational reasons the dependency on the underlying probability space will be omitted

Zx := Z(x) := Z(·, x), x ∈ X .

Furthermore, for xi ∈ X , i ∈ N, we write

Zi := Zxi .

For a fixed ω ∈ Ω, Z(ω, x) is a deterministic function of x which is called a sample path
and is denoted by zx

z·(ω) : X → (E,F)X

x 7→ zx := zx(ω) := Z(ω, x).
(7.13)

Analogously, for xi ∈ X , i ∈ N, we write

zi := zxi .

The parameter set X can in principle be a far more general set than Rn. But in this work
we assume that the parameter set is a linear space and choose X ⊆ Rn.
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7.1.1 Finite-Dimensional Distributions

In this subsection, finite-dimensional distributions of random fields are discussed. Now,
that we have seen the c.d.f. and p.d.f of random variables and random vectors, we will
extend this for random fields. The parameter set X ⊆ Rn of a random field in general
has an infinite and uncountable amount of points. To describe the distribution of random
fields, one uses its finite-dimensional (cumulative) distributions.

Definition 7.7 (Finite-dimensional Distributions). Let Z =
(
Z(x)

)
x∈X be a real valued

random field with X ⊆ Rn. Then, for k ∈ N its finite-dimensional (cumulative) distribu-
tions are defined as

Fx1,...,xk(z1, . . . , zk) = P (Z1 ≤ z1, . . . , Zk ≤ zk), (7.14)

where {x1, . . . , xk} ⊆ X and z1, . . . , zk ∈ R.

Finite-dimensional distributions of random fields have to satisfy two consistency require-
ments.

1. Symmetry Condition: For every permutation π of the set {1, . . . , k}

Fx1,...,xk(z1, . . . , zk) = Fxπ1,...,tπk(zπ1, . . . , zπk) (7.15)

must hold.

2. Compatibility condition:

Fx1,...,xk−1
(z1, . . . , zk−1) = Ft1,...,tk−1,tk(z1, . . . , zk−1,∞) (7.16)

has to be satisfied.

Conversely, if there exist distribution functions that satisfy (7.15) and (7.16), then there
also exists a random field having these distributions. This is the result of the following
famous theorem.

Theorem 7.8 (Kolmogorov’s Existence Theorem). If a system of finite-dimensional dis-
tributions, Fx1,...,xk , satisfies the consistency requirements (7.15) and (7.16), then there
exists on some probability space (Ω,A, P ) a random field

(
Z(x)

)
x∈X having Fx1,...,xk as its

finite-dimensional distributions.

For a proof we refer to [1, 16].

7.1.2 Expected Value and Covariance

For this subsection we assume, that we have a random field Z =
(
Z(x)

)
x∈X and a non-

empty parameter set X ⊆ Rn at hand. Recall, that for a given x ∈ X , Z(x) is a real
valued random variable. The expected value at a location x ∈ X for a random field is
defined as a expectation function m(·).
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Definition 7.9 (Expected Value). Let Z(x) be a real valued random variable with p.d.f.
fZ(x). If

∫ +∞
−∞ |z| fZ(x)(z) dz <∞ then the expected value of Z(x) is defined as

m(x) = E[Z(x)] =

∫ +∞

−∞
z fZ(x)(z) dz. (7.17)

Let Z = (Z1, . . . , Zk) = (Z(x1), . . . , Z(xk)) be a real random vector. Then, the expected
value of Z is given by

E[Z] = E[(Z1, . . . , Zk)] = (E[Z1], . . . ,E[Zk])
>. (7.18)

Further, one has a covariance function C(·, ·) for the covariance of the values of a random
field at two locations.

Definition 7.10 (Covariance). Let Z1 = Z(x1) and Z2 = Z(x2) be two real valued random
vectors. Then, the covariance of Z1 and Z2 is defined as

C(x1, x2) = Cov(Z(x1), Z(x2)) = Cov(Z1, Z2) = E[Z(x1)Z(x2)]− E[Z(x1)]E[Z(x2)],
(7.19)

further, the variance of Z1 is defined as

Var(x1) = Var(Z1) = Cov(Z1, Z1) = σ(x1)2 = E[Z(x1)2]− E[Z(x1)]2. (7.20)

Let Z = (Z(x1), . . . , Z(xk)) = (Z1, . . . , Zk) be a random vector. Then, the by definition
symmetric and positive definite covariance matrix of Z is given by

ΣZ =

C(x1, x1) . . . C(x1, xk)
...

. . .
...

C(xk, x1) . . . C(xk, xk)

 =

Cov(Z1, Z1) . . . Cov(Z1, Zk)
...

. . .
...

Cov(Zk, Z1) . . . Cov(Zk, Zk)

 . (7.21)

Definition 7.11 (Correlation). Let Z1 = Z(x1) and Z2 = Z(x2) be two real valued random
variables. Then, the correlation of Z1 and Z2 is defined as

ρ(Z1, Z2) =
C(Z1, Z2)

σ(Z1) σ(Z2)
=

E[Z1Z2]− E[Z1]E[Z2]√
E[Z2

1 ]− E[Z1]2 ·
√
E[Z2

2 ]− E[Z2]2
. (7.22)

The Kriging model makes use of conditional expectations for predictions.

Definition 7.12 (Conditional Expectation [146]). Let Z1 and Z2 be (E,F) = (Rk,Bk)
valued random vectors. Furthermore, let z1, z2 ∈ Rk and let fZ1|Z2(z1|Z2 = z2) be the
conditional p.d.f. under the condition {Z2 = z2}. The conditional expectation of Z1

given Z2 is defined as

mZ1|Z2 = E[Z1|Z2 = z2] =

∫ ∞
−∞

z1 fZ1|Z2(z1|Z2 = z2) dz1

=

∫ ∞
−∞

z1 fZ1,Z2(z1, z2)

fZ2(z2)

dz1

(7.23)
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Since the conditional expectation depends on Z2, it itself is also a random vector. It
becomes a constant if Z2 takes a specific value.

7.1.3 Positive Definiteness

For Gaussian random fields the concept of positive definiteness is crucial. To estab-
lish consistent finite-dimensional distributions, the positive definiteness of the covariance
function gives a necessary and sufficient condition. Now, recall the definition of positive
definiteness of functions.

Definition 7.13. Let k ∈ N, and let xi ∈ X and ci ∈ R for i = 1, . . . , k. Then, a function
C on X ⊗ X is called positive definite on X if

k∑
i=1

k∑
j=1

cicjC(xi, xj) ≥ 0

for any choice of k, {x1, . . . , xk} and {c1, . . . , ck}.
For a random field

(
Z(x)

)
x∈X with covariance function C consider k > 0 arbitrary random

variables {Z(x1), . . . , Z(xk)}. We then have for arbitrary ci ∈ R, i = 1, . . . , k,

V ar(c1Z(x1) + · · ·+ ckZ(xk)) =
k∑
i=1

k∑
j=1

cicjC(xi, xj) ≥ 0.

The following theorem and its corollary characterize the class of covariance and correlation
functions, respectively. For proofs we refer to [1].

Theorem 7.14. The class of covariance functions coincide with the class of positive
definite functions.

Corollary 7.15. The class of correlation functions coincide with the class of positive
definite functions where C(x, x) = 1.

7.1.4 Gaussian Random Fields

In this subsection Gaussian random fields and symmetry properties are introduced. Re-
call, that we chose X ⊆ Rn for the parameter set.

Definition 7.16 (Multivariate Normal Distribution). A random vector Z = (Z1, . . . , Zk)
of k Gaussian random variables is characterized by the multivariate normal p.d.f.

fZ(z) = (2π)−k/2 |ΣZ |−1/2 exp
{
−1

2
(z −mZ)>ΣZ

−1 (z −mZ)
}
, (7.24)

where mZ is the vector of mean values and ΣZ the k × k covariance matrix.

Theorem 7.17 (Multivariate Gaussian Characteristic Function). Let Z be a multivariate
Gaussian random variable with expectation mZ and covariance matrix ΣZ. Then, the
characteristic function of Z is given by

φZ(u) = exp
{
iu>mZ −

1

2
u>ΣZu

}
. (7.25)
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And the conditional multivariate normal distribution is given by:

Definition 7.18 (Conditional Multivariate Normal Distribution). Let Z be a vector of
k Gaussian variables and assume that it is partitioned into two vectors X and Y with
dimensions k1 and k2, respectively. Then, we have

Z =
( X
Y

)
, mZ =

( mX

mY

)
, and ΣZ =

( ΣX ΣXY

ΣY X ΣY

)
. (7.26)

The conditional Gauss p.d.f. of Y given X, (Y |X), is then given by

f(y|X) = (2π)−k2/2 |ΣY |X |−1/2 exp
{
−1

2
(y −mY |X)>ΣY |X

−1 (y −mY |X)
}
, (7.27)

where mY |X = E[Y |X] is the conditional expectation of Y given X and ΣY |X the condi-
tional covariance matrix. We have

Y |X ∼ N (mY |X , ΣY |X), (7.28)

mY |X = mY + ΣY X ΣX
−1 (X −mX), (7.29)

ΣY |X = ΣY − ΣY X ΣX
−1 ΣXY . (7.30)

A complete deduction is provided in [150]

Definition 7.19 (Gaussian Random Field). A real valued random field Z =
(
Z(x)

)
x∈X ,

i.e.

Z(·, x) : (Ω,A, P )→ (R,B)

ω 7→ Z(ω, x),
(7.31)

is called a Gaussian random field, if all of its finite-dimensional distributions Fx1,...,xk ,
{x1, . . . , xk} ⊆ X , k > 0, are multivariate normal distributions.

Like the multivariate normal distribution a Gaussian random field is fully characterized
by its first two moments, i.e., the expectation function m(x) and the covariance function
C(x1, x2). Therefore, following [1] and Subsection 7.1.3, it is sufficient to restrict the
covariance function C to be positive definite to ensure that the consistency requirements
(7.15) and (7.16) hold and consequently that the Gaussian random field is well defined. To
simplify the verification of positive definiteness, we restrict the class of possible covariance
functions.

Definition 7.20 (Stationarity). Let
(
Z(x)

)
x∈X be a real valued random field, where X is

a linear space, e.g., X ⊆ Rn.

1. Stationarity in the strict sense:
If all finite-dimensional distributions of

(
Z(x)

)
x∈X are invariant under arbitrary

translation, i.e.

Fx1+s,...,xk+s(z1, . . . , zk) = Fx1,...,xk(z1, . . . , zk), for all s ∈ X , (7.32)
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then it is called a stationary random field in the strict sense.

2. Stationarity to 2nd order:
If we have for

(
Z(x)

)
x∈X that

m(x) = m and C(x, s) = C(τ) = C(x− s) (7.33)

then it is called a stationary random field to 2nd order. The covariance function that
only depends on the separation vector τ = x− s is then called stationary covariance
function.

For Gaussian random fields these conditions are equivalent. Note that every stationary
covariance function must have constant variance, i.e., C(x, x) = σ2(x) = σ2 for all x ∈ X ,
so that

C(τ) = σ2ρ(τ).

This means, that one can investigate the correlation function or the covariance function
without loss of generality.

7.2 Analytical Properties of Random Fields

In this section, analytical properties, i.e., continuity and differentiability, of random fields
are discussed. These properties can not be described by the finite dimensional distribu-
tions, therefore the underlying function space (E,F) has to be taken into account [1].
Most of this section is based on [1, 2, 33].

7.2.1 Continuity

Based on the different stochastic convergence types almost sure convergence and mean
square convergence one has different types of continuity for random fields.

Definition 7.21. Let
(
Z(x)

)
x∈X be a random field with X ⊆ Rn and Z(x) ∈ L2(Ω,A, P )

for all x ∈ X .

1.
(
Z(x)

)
x∈X has continuous sample paths with probability one, or sample path con-

tinuous, in X if for every series
(
xk
)

with xk → x as k →∞, then

P ({ω : |Z(ω, xk)− Z(ω, x)| → 0, k →∞, for all x ∈ X}) = 1. (7.34)

2.
(
Z(x)

)
x∈X is almost surely continuous in X if for every series

(
xk
)

with xk → x as
k →∞, then

P ({ω : |Z(ω, xk)− Z(ω, x)| → 0, k →∞}) = 1 for all x ∈ X . (7.35)

3.
(
Z(x)

)
x∈X is mean square continuous in X if for every series

(
xk
)

with xk → x as
k →∞, then

E[|Z(ω, xk)− Z(ω, x)|2]→ 0, k →∞ for all x ∈ X . (7.36)
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Note that sample path continuity means that for all t ∈ X there are, with probability
one, no discontinuities. Whereas for almost sure continuity there exists a measurable set
N with P (N) = 0, on which discontinuities are allowed. Hence, sample path continuity
is a stronger property than almost sure continuity. In general, neither does mean square
continuity imply sample path continuity, nor does sample path continuity imply mean
square continuity. However, for Gaussian random fields mean square continuity is a
necessary and almost sufficient condition for continuous sample paths with probability
one [1]. Furthermore, mean square continuity and almost sure continuity imply continuity
in probability, i.e.

lim
k→∞

P ({ω : |Z(ω, xk)− Z(ω, x)| > δ} = 0, for all δ > 0.

Definition 7.22 (Version of a Random Field). Let
(
Z(x)

)
x∈X and

(
Z̄(x)

)
x∈X be two

random fields. Z and Z̄ are called versions of each other if

P ({ω : Z(ω, x) = Z̄(ω, x)}) = 1 for all x ∈ X . (7.37)

Note that two versions have the same finite dimensional distributions, but are not neces-
sarily identical.

Definition 7.23 (Separable Random Fields [3]). A random field
(
Z(x)

)
x∈X is called

separable, if there exists a countable set D ⊂ X and a fixed event N for which P (N) = 0,
such that for any closed set A ⊂ Rn and open set I ⊂ X the two sets

{ω : Z(ω, x) ∈ A, t ∈ I} and {ω : Z(ω, x) ∈ A, t ∈ I ∩D}

differ by a subset of N .

In [1, 47], it is shown that to any given random field Z, one can always find a version Z̄
which is separable. Therefore, from here on we assume that we have separable random
fields.
As already mentioned mean square continuity is implied by the sufficient conditions for
sample path continuity. Further, there exists a relation between mean square continuity
of a random field and the continuity of its covariance function. Proofs for the following
theorems can be found in [1, 2].

Theorem 7.24. Let
(
Z(x)

)
x∈X be a random field with continuous expectation m(x).(

Z(x)
)
x∈X is mean square continuous at x ∈ Rn if and only if its covariance function

C(s, ŝ) is continuous at x = s = ŝ.
(
Z(x)

)
x∈X is everywhere continuous if C(s, ŝ) is

continuous at every diagonal point (s, ŝ = s).

It directly follows for stationary random fields.

Corollary 7.25. A stationary random field
(
Z(x)

)
x∈X is mean square continuous if and

only if its covariance function C(τ) is continuous at 0.

Now some sufficient conditions for sample path continuity are discussed. The following
theorem helps to determine if a random field has continuous sample paths.
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Theorem 7.26. Let
(
Z(x)

)
x∈X be a random field with X ⊆ Rn. If

E[|Z(x)− Z(s)|α] ≤ c τ 2d

| log(‖τ‖)|1+β
, (7.38)

where τ = x− s, c > 0, α > 0, and β > α, then
(
Z(x)

)
x∈X will have continuous sample

paths with probability one.

For Gaussian random fields we then have the following theorem.

Theorem 7.27. Let
(
Z(x)

)
x∈X be a zero-mean, Gaussian random field with continuous

covariance function. Then, if for some 0 < c <∞ and some ε > 0,

E[|Z(x)− Z(s)|2] ≤ c

| log(‖τ‖)|1+ε
, (7.39)

for all τ with ‖τ‖ < 1, then
(
Z(x)

)
x∈X has continuous sample paths with probability one.

For stationary Gaussian random fields this can be simplified.

Corollary 7.28. Let
(
Z(x)

)
x∈X be a stationary Gaussian random field with continuous

correlation function ρ. Then, if for some 0 < c <∞ and some ε > 0,

ρ(0)− ρ(τ) ≤ c

| log(‖τ‖)|1+ε
, (7.40)

for all τ with ‖τ‖ < 1, then
(
Z(x)

)
x∈X has continuous sample paths with probability one.

7.2.2 Differentiability

Comparable to the continuity there are also different types of differentiablity correspond-
ing to different forms of convergence. In this work, we focus on mean square differentia-
bility corresponding to mean square continuity. Most proofs of the results stated in this
subsection can be found in [2, 33].

Definition 7.29. 1. A random field
(
Z(x)

)
x∈X with X ⊆ Rn and Z(x) ∈ L2(Ω,A, P )

is differentiable in the mean square sense (m.s.s.) with respect to the component xi
of x = (x1, . . . , xi, . . . , xn), if there exists a random field Żi(x), s.t.

E

[∣∣∣∣∣Z(x+ h ei)− Z(x)

h
− Żi(x)

∣∣∣∣∣
2]
→ 0 as h→ 0, (7.41)

where ei is the i-th unit vector. Żi(x) is also called the i-th partial derivative of(
Z(x)

)
x∈X and is also denoted as

Żi(x) =
∂Z(x)

∂xi
= lim

h→0

Z(x+ h ei)− Z(x)

h
. (7.42)

If
(
Z(x)

)
x∈X is differentiable at every location x, then it is differentiable everywhere.
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2.
(
Z(x)

)
x∈X has differentiable sample paths with probability one in X if for every

series
(
xk
)

with xk → x as k →∞

P ({ω : |Ż(ω, xk)− Ż(ω, x)| → 0, k →∞, for all x ∈ X}) = 1. (7.43)

3.
(
Z(x)

)
x∈X is almost surely differentiable in X if for every series

(
xk
)

with xk → x
as k →∞

P ({ω : |Ż(ω, xk)− Ż(ω, x)| → 0, k →∞}) = 1 for all x ∈ X . (7.44)

Note that the same implications for continuity following Definiton 7.21 also apply for dif-
ferentiability. As with mean square continuity, there is a link between the differentiability
in the m.s.s. of a random field and the differentiability of its covariance function.

Theorem 7.30. A random field
(
Z(x)

)
x∈X with X ⊆ Rn and covariance function C and

differentiable expectation is m.s. differentiable, if the derivative ∂2C(s, x)/∂si∂xi exists
and is finite for all i = 1, . . . , n at all diagonal points x = s. The covariance function of(
Ż(x)

)
x∈X is then given by ∂2C(s, x)/∂si∂xi.

A proof can be found in [33, 30]. For stationary random fields we have consequently the
following result.

Corollary 7.31. Let
(
Z(x)

)
x∈X be a stationary random field with X ⊆ Rn and covariance

function C. If the derivative ∂2C(τ)/∂τ 2
i = ∂2C(x− s)/∂si∂xi exists and is finite for all

i = 1, . . . , n at τ = 0, then
(
Z(x)

)
x∈X is m.s. differentiable. The covariance function of(

Ż(x)
)
x∈X is then given by −∂2C(τ)/∂τ 2

i .

Note that the negative sign comes from ∂C(x− s)/∂si = −∂C(τ)/∂τi. When the partial
derivatives of the sample paths are continuous then the sample paths are differentiable.
Sufficient conditions for differentiable sample paths are that the partial derivatives of the
sample paths are continuous [1]. Thus, one obtains sufficient conditions for continuous
sample paths by applying Theorem 7.26 or 7.27 to the covariance or correlation function
of the gradient field

(
Ż(ω, t)

)
x∈X .

7.3 Gradient Enhanced Kriging

In this section, we introduce the method of gradient enhanced Kriging. This method
is based on Design and Analysis of Computer Experiments (DACE) [130], where an ex-
pensive to compute function, for which we also have gradient information, is estimated
using Gaussian random fields while incorporating the available gradient information. This
estimated surrogate function is then used in the optimization process to determine new
points which then are evaluated with the expensive original function. The aim of this
approach is to reduce the computational costs of the optimization and to be able to do a
more global optimization.
In the following, a brief overview of Latin hypercube sampling (LHS) to generate an initial
sampling is given. Then, the stochastic model and the Kriging approach are introduced,
subsequently it is shown how gradient information can be incorporated in the model.
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Most of this section is based on [65, 130, 92, 90, 37]. Further, details about the Dakota
Kriging implementation surfpack can be found in [57, 71].

7.3.1 Latin Hypercube Sampling

For a Kriging surrogate model and our numerical studies with Dakota an initial sampling
is needed. We choose Latin hypercube sampling (LHS) as our method to generate an
initial sampling, since this is the default option in the Dakota implementation [56]. The
LHS technique is a common choice for a variety of computer models since 1979. In that
year, [106] introduced Latin hypercube sampling, which was further developed, e.g., in
[88, 84]. In [148], the LHS implementation of Dakota is presented. Following [148], we
give a brief overview of LHS and refer to [106, 88, 84] for more details.
Let J be a function of x1, x2, . . . , xn, that may be very complicated, e.g., our objective
function w.r.t. PoF J1. It is of interest to investigate how J varies when x1, x2, . . . , xn vary,
assuming a joint probability distribution. Applying Monte Carlo sampling yields answers
to this question. Given the distribution of J some of its properties, e.g., its mean, can
be estimated by repeated random sampling from the assumed joint probability density
function of x1, x2, . . . , xn and by evaluating the J values for each sample. This yields
for k Monte Carlo iterations a set of k n-dimensional vectors of input variables. These k
vectors can then be used as an initial sampling for optimization schemes. For k sufficiently
large this method yields reasonable estimates for the distribution of J . However, large k
come with a high computational cost. Therefore, other sampling methods, like the Latin
hypercube sampling, were sought.
Latin hypercube sampling is a constrained Monte Carlo sampling method that was de-
veloped in [106]. In LHS, k different values from each of the n variables x1, x2, . . . , xn
are selected as follows. The range of each variable is divided into k disjoint intervals of
equal marginal probability 1/k. From each interval one value is randomly, i.e., w.r.t. the
probability density in the interval, selected. In a next step, the k values obtained for x1

are randomly paired with the k values obtained for x2. These k pairs are then combined
randomly with the k values obtained for x3, and so on, until k n-dimensional vectors are
generated. These k n-dimensional vectors form an initial sampling, as described above,
and are the result of the Latin hypercube sampling. For better understanding one can
think of this sample as generating an (k × n) matrix of input values where the i-th row
contains specific values for each of the n input variables on the i-th run of the computer
simulation [148].
Note that there exists ways to restrict the described random pairing of variables. But
these are beyond the scope of this work and therefore we omit them and refer to [148]
instead for further details.

7.3.2 Stochastic Model

The Kriging model is based on a positive definite radial basis function, i.e., a real function
which only depends on the distance of the argument to a fixed point, e.g., the origin, of
the form

ψ(xi, xj) = ψ(xi − xj) = exp
{
−

n∑
h=1

θh|xih − x
j
h|
ςh
}
, θh ≥ 0, ςh ∈ [1, 2]. (7.45)
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Following Theorem 7.14 and Corollary 7.15, this radial basis function is a correlation
function [65]. The surrogate model is based on a stationary Gaussian random field Z(x)
that estimates the function of interest

Z(x) ∼ N (m(x), C(xi, xj)), (7.46)

where

m(x) = µ and C(xi, xj) = σ2 exp
{
−

n∑
h=1

θh|xih − x
j
h|
ςh
}
. (7.47)

Further, it is assumed that the expectation function m(x) is constant for every random
variable and the covariance function depends on the Euclidean distance of two points,
i.e., the radial basis function ψ(xi, xj) is the correlation function ρ(xi, xj) of this random
field. The model has 2n+ 2 parameters (µ, σ, θ1, . . . , θn, ς1, . . . , ςn), where in general it is
assumed that θh ≥ 0 and ςh ∈ [1, 2] for all h = 1, . . . , n. The parameters ςh determine
the smoothness of the covariance function. For ςh = 2 the covariance function is smooth
and for smaller ςh the smoothness decreases, i.e., one assumes less covariance between the
points.

Estimation of the Model Parameters

The maximum-likelihood-method is used to estimate the model parameters. Additionally
to the parameters (θ1, . . . , θn, ς1, . . . , ςn) , we have k sample points {x1, . . . , xk} ⊆ Rn

and their associated function values {z1, . . . , zk} ⊆ Rn which are a realization of the
random field Z(x) := (Z(x1), . . . , Z(xk)). These random variables are multivariate normal
distributed with expectation ~1µ and covariance matrix ΣZ(x). Therefore, the likelihood
function takes the following form

L(µ, σ, θ1, . . . , θn, ς1, . . . , ςn) =
exp
{
−

(Z(x)−~1µ)>Σ−1
Z(x)

(Z(x)−~1µ)

2σ2

}
(2πσ2)

k
2 |ΣZ(x)|

1
2

. (7.48)

The parameters (θ1, . . . , θn, ς1, . . . , ςn) are imbedded in the covariance matrix ΣZ(x). Fur-
ther, if the parameters (θ1, . . . , θn, ς1, . . . , ςn) are known, then a maximization of (7.48)
yields:

µ̂ =
~1>Σ−1

Z(x)Z(x)

~1>Σ−1
Z(x)

~1
, (7.49)

σ̂2 =
(Z(x)−~1µ)>Σ−1

Z(x)(Z(x)−~1µ)

k
. (7.50)

Re-substituting (7.49) and (7.50) in (7.48) yields the concentrated likelihood :

exp
{
−k

2

}
(2πσ2)

k
2 |ΣZ(x)|

1
2

(7.51)
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For the optimization, i.e., estimation of the model parameters, the logarithm of the con-
centrated likelihood is taken and constants are omitted

− k

2
ln(σ̂2)− 1

2
ln(|ΣZ(x)|). (7.52)

Since we want to incorporate gradients to our model we set ς1 = . . . = ςn = 2 and change
|xih−x

j
h|2 in (7.45) to (xih−x

j
h)

2 to ensure differentiability of the covariance function. The
remaining d + 2 model parameters are estimated with the maximum-likelihood method.
Toward this end, the following algorithm is used.

7.3.3 DIvision of RECTangles (DIRECT) Algorithm

The DIRECT algorithm is a widely used heuristic for global optimization problems and
was first introduced in [91]. Since the Dakota implementation of DIRECT is based on
[67], we will introduce the algorithm from this reference. It consists of two main parts.
The first defines how to divide the domain, and the second defines how to decide which
hyperrectangles are divided in the next iteration.

Dividing the Domain

DIRECT uses division based on n-dimensional trisection. In the following, it is shown
how this division is done for a hypercube and a hyperrectangle.

Let c be the center point of a hypercube. DIRECT evaluates the function at the locations
c ± δei, where δ is 1/3 of the side length of the cube and ei is the i-th standard basis
vector, i = 1, . . . , n. Then, wi is defined by

wi = min{f(c− δei), f(c+ δei)}, i = 1, . . . , n. (7.53)

Then in a next step the hypercube is divided in the order given by the wi, starting with
the smallest wi. First the hypercube is divided perpendicularly to the direction with the
lowest wi. The remaining volume is then divided perpendicularly to the direction of the
second lowest wi and so on, until the hypercube is divided in all directions. This approach
constructs a hypercube with length δ centered at c. Let b = argmini=1,...,n{f(c−δei), f(c+
δei)}. Then, b is the center of a hyperrectangle with one side of length δ, and the oder
n− 1 sides of length 3δ.

Hyperrectangles are only divided along its longest sides. This ensures that the maximal
side length of the hyperrectangle decreases.

Choosing a Hyperrectangle to divide

The DIRECT algorithm decides which hyperrectangle to divide in the next iteration by
using the concept of potentially optimal hyperrectangles [67].

Definition 7.32. Let ε > 0 and let fmin be the current best function value. A hyper-
rectangle j is called potentially optimal hyperrectangle if there exists some C > 0 such
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that

f(cj)− Cdj ≤ f(ci)− Cdi, ∀i
f(cj)− Cdj ≤ fmin − ε |fmin|.

Here cj is the center of the hyperrectangle j and dj is a measure for this hyperrectangle.

In [91] dj is chosen as the distance from the center cj of the hyperrectangle j to its vertices.

The DIRECT Algorithm

Unlike more traditional optimization methods the DIRECT algorithm has no stopping
condition. It terminates when the maximum number of iterations Nit or the maximum
number of function evaluations Neval is reached. Therefore, the variables m for the number
of function evaluations and t for the number of iterations are needed in the algorithm
formulation. The DIRECT algorithm is then of the following form, see also [67]:

Algorithm 6: DIRECT

Data: A hyperrectangle, choose f , Nit, Neval, and ε > 0.
Result: Approximation of a global solution (on the hyperrectangle).
Normalize the search space to be the unit hypercube with center point c1;
Evaluate f(c1), f(c1) = fmin, t = 0, m = 1;
while t < Nit and m < Neval do

Identify the set P of potentially optimal hyperrectangles;
while P 6= ∅ do

Take j ∈ P ;
Sample new points (ci ± δei), evaluate f at these points and divide the
hyperrectangle as described above;
Update fmin, m = m+ ∆m;
Set P = P \ {j}

end
t=t+1;

end

Following lemma from [67] helps to reformulate Definition 7.32 to identify potentially
optimal intervals.

Lemma 7.33. Let ε > 0 and let fmin be the current best function value. Let I be the set
of all indices of all intervals existing. Let I1 = {i ∈ I : di < dj}, I2 = {i ∈ I : di > dj}
and I3 = {i ∈ I : di = dj}. Interval j ∈ I is potentially optimal if

f(cj) ≤ f(ci) ∀i ∈ I3, (7.54)

there exists a C > 0 such that

max
i∈I1

f(cj)− f(ci)

dj − di
≤ C ≤ min

i∈I2

f(ci)− f(cj)

di − dj
, (7.55)
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and

ε ≤ fmin − f(cj)

|fmin|
+

dj
|fmin|

·min
i∈I2

f(ci)− f(cj)

di − dj
, fmin 6= 0, (7.56)

or

f(cj) ≤ dj ·min
i∈I2

f(ci)− f(cj)

di − dj
, fmin = 0. (7.57)

One modification of the DIRECT algorithm of [91] in [67] is that another measure dj,
i.e., the length of the longest side of the hyperrectangle, is used. This reduces the number
of different groups of hyperrectangles and makes the algorithm more biased toward local
search [67]. The second modification is, that when there is more than one hyperrectangle
with the same measure only one is divided, instead of all. Both modifications can lead to
an improvement of performance of the DIRECT algorithm.

7.3.4 The Kriging Model

In this section, the Kriging model and Kriging estimator are introduced. Toward this
end, let x1, . . . , xk ∈ Rn be a set of sample points with responses z1, . . . , zk which are real-
izations of the random variables Z(x1), . . . , Z(xk). In the Kriging approach one assumes
that the response Z(x0) of an unknown point x0 is linearly dependent on the observed
values Z(x1), . . . , Z(xk), i.e.

Ẑ(x0) =
k∑
j=1

αjZ(xj). (7.58)

One chooses the weights αj by minimizing the Mean Square Error of (7.58) under an
unbiasedness assumption

E[Ẑ(x0)] = E
[ k∑
j=1

αjZ(xj)
]

!
= µ

⇔
k∑
j=1

αjE[Z(xj)] =
k∑
j=1

αjµ = µ

⇔µ
k∑
j=1

αj = µ

⇔
k∑
j=1

αj = 1

⇔α>~1− 1 = 0.

(7.59)

We have the following problem

min E[(Ẑ(x0)− Z(x0))2]

s.t. α>~1− 1 = 0

x0 ∈ Rn

. (7.60)
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With Z(x) = (Z(x1), . . . , Z(xk)), the covariance matrix Σx := ΣZ(x) =
(
Cov(xi, xj)

)
i,j

,

and the covariance vector w.r.t. x0, Σ0 := Σx0,x := Cov(x0, x), we get

E[(Ẑ(x0)− Z(x0))2] = σ2(α>Σxα− 2αΣ0 + 1). (7.61)

Therefore, the problem (7.60) is a convex minimization problem with a unique solution,
since Σx is positive definite. This unique solution can be computed using the KKT
conditions of (7.60), which are given as follows.

2Σxα− 2Σ0 + u~1 = 0

α>~1− 1 = 0,
(7.62)

with u ≥ 0. This can also be expressed as(
Σx

~1
~1> 0

)(
α
1
2
u

)
=

(
Σ0

1

)
. (7.63)

Furthermore, we have (
α
1
2
u

)
=

(
Σx

~1
~1> 0

)−1(
Σ0

1

)
. (7.64)

Solving (7.64), with A := −~1>Σ−1
x
~1, yields,

α = Σ−1
x Σ0 +

Σ−1
x
~1~1>Σ−1

x Σ0

A
− Σ−1

x
~1

A
. (7.65)

Therefore, we have for (7.58)

Ẑ(x0) = Σ>0 Σ−1
x Z(x) +

Σ>0 Σ−1
x
~1~1>Σ−1

x Σ0Z(x)

A
− Σ−1

x
~1Z(x)

A
. (7.66)

Using (7.49) and (7.50) we get for the Kriging predictor and the mean square error of the
prediction

Ẑ(x0) = µ̂+ Σ>0 Σ−1
x (Z(x)−~1µ̂) (7.67)

ŝ2
K(x0) = σ̂2

(
1− Σ>0 Σ−1

x Σ0 +
(1−~1>Σ−1

x Σ0)2

~1>Σ−1
x
~1

)
. (7.68)

For further detail we refer to [65, 130].

7.3.5 Bayesian Approach

Alternatively, for Gaussian processes one can also follow the Bayesian approach to model
the predictor. In general, both methods lead to different results. Let x1, . . . , xk ∈ Rn be
a set of sample points with responses Z(x1), . . . , Z(xk), and let Z(x0) be the response of
an unknown point x0. Following the DACE model [130], (Z(x1), . . . , Z(xk), Z(x0)) are
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multivariate normal distributed, i.e.

mZ = (~1>µ, µ) and ΣZ =
( Σx Σ0

Σ>0 σ2

)
. (7.69)

Now, one can calculate the conditional Gaussian distribution (Definition 7.18) of Z(x0)
given Z(x1), . . . , Z(xk) and predict Z(x0) by

Ẑ(x0) = E[Z(x0)|Z(x1), . . . , Z(xk)]. (7.70)

One obtains

Ẑ(x0) = µ+ Σ>0 Σ−1
x (Z(x)−~1µ), (7.71)

ŝ2
B(x0) = σ2

(
1− Σ>0 Σ−1

x Σ0

)
. (7.72)

Since we do not know µ and σ, we use the estimates µ̂ and σ̂ in the equations (7.71) and
(7.72). We have now two different measures of uncertainty of the model prediction ŝ2

K

and ŝ2
B for which we have

ŝ2
K(xi) = ŝ2

B(xi) = 0, i = 1, . . . , k,

i.e., there is no uncertainty in the prediction of the sampled points (x1, . . . , xk). The
additional term in ŝ2

K can be seen as the uncertainty of the prediction of µ and is in
general omitted, since its influence usually is not of great magnitude. In practice, the
Kriging approach also uses ŝ2

B to calculate the model uncertainty. Therefore, we use
ŝ2 := ŝ2

B as the uncertainty measure from here on out.

7.3.6 Gradient Enhanced Kriging

If we have additional data on the gradients at the sampled points available, we can add
this information to our model. Let {x1, . . . , xk} ∈ X ⊆ Rn, with xi = (xi1, . . . , x

i
n), be

our sampled points and Z1, . . . , Zk the random variables associated with the realizations,
then the observed data is a (n+ 1)k column vector:

Z =

[
Z1, . . . , Zk,

∂Z1

∂x1
1

, . . . ,
∂Zk
∂xk1

, . . . ,
∂Z1

∂x1
n

, . . . ,
∂Zk
∂xkn

]>
(7.73)

A second set of Kriging basis functions centered around the sampled data is incorpo-
rated into the model. The corresponding radial basis functions are the derivatives of the
first k Gaussian basis functions, where we set ςh = 2 for all h ∈ {1, . . . , n} to ensure
differentiability

∂ψ(xi, xj)

∂xil
=
∂ exp

{
−
∑n

h=1 θh(x
i
h − x

j
h)

2
}

∂xil
= −2 θl (x

i
l − x

j
l )ψ(xi, xj). (7.74)
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We then have

∂ψ(xi, xj)

∂xi
=

[
∂ψ(xi, xj)

∂xil
= −2 θl (x

i
l − x

j
l )ψ(xi, xj)

]
l=1,...,k

,

∂ψ(xi, xj)

∂xj
=

[
∂ψ(xi, xj)

∂xjl
= 2 θl (x

i
l − x

j
l )ψ(xi, xj)

]
l=1,...,k

,

∂2ψ(xi, xj)

∂xi∂xj
=

[
∂ψ(xi, xj)

∂ximx
j
l

= −4 θmθl (x
i
m − xjm)(xil − x

j
l )ψ(xi, xj)

]
l,m=1,...,k

.

(7.75)

Since the derivatives in (7.75) exist and are finite in all diagonal points, it follows with
(7.31) that the gradients in the m.s. sense of the random field exist and that their
covariance function is given by ∂2C(xi, xj)/∂xi∂xj, where C(xi, xj) = σ2ψ(xi, xj) =
σ2ψ(xi − xj). To show that they also have differentiable sample paths, we have to check
if for a finite C > 0, ε > 0, and ‖τ‖ < 1, where τ = xi − xj, ∂2ψ(xi, xj)/∂xi∂xj satisfies
(7.28):

∂2ψ(xi, xi)

∂xi∂xj
− ∂2ψ(xi, xj)

∂xi∂xj
=
∂2ψ(0)

∂xi∂xj
− ∂2ψ(xi − xj)

∂xi∂xj

= 0 + 4θ2τ 2 exp
{
−

n∑
l=1

θl(τl)
2
}

≤ 4θ2τ 2 exp
{
− θ̂

n∑
l=1

(τl)
2
}

≤ 4θ2τ 2 exp
{
− θ̂

√√√√ n∑
l=1

(τl)2
}

= 4θ2τ 2 exp
{
− θ̂‖τ‖

}
!

≤ C

| log(‖τ‖)|1+ε
.

(7.76)

Both sides vanish at ‖τ‖ = 0, therefore the derivatives have to be inspected. The deriva-
tive of the left hand side is finite for any ‖τ‖. Consequently, for any ε one can choose a
sufficiently large C such that (7.76) holds.
The (d+ 1)n× (d+ 1)n covariance matrix is then of the form

Σ̇Z =



C(x1, x1) . . . C(x1, xk) ∂C(x1,x1)
∂x1 . . . ∂C(x1,xk)

∂xk
...

. . .
...

...
. . .

...

C(xk, x1) . . . C(xk, xk) ∂C(xk,x1)
∂x1 . . . ∂C(xk,xk)

∂xk

∂C(x1,x1)
∂x1

>
. . . ∂C(x1,xk)

∂x1

> ∂2C(x1,x1)
∂2x1 . . . ∂2C(x1,xk)

∂x1∂xk
...

. . .
...

...
. . .

...
∂C(xk,x1)

∂xk

>
. . . ∂C(xk,xk)

∂xk

> ∂2C(xk,x1)
∂xk∂x1 . . . ∂2C(xk,xk)

∂2xk


. (7.77)
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It contains the covariance between the data with itself, between the gradients and data,
between the data and gradients and between the gradients and themselves.
With the covariance vector w.r.t. to an unknown x0

Σ̇0 =

(
C(x0, x1), . . . , C(x0, xk),

∂C(x0, x1)

∂x1
, . . . ,

∂C(x0, xk)

∂xk

)>
(7.78)

one can compute the Kriging predictor for an unknown x0. Let

1 = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
kn

)> (7.79)

then the GEK predictor is given by

Ẑ(x0) = µ̂+ Σ̇>0 Σ̇−1
Z (Z(x)− 1µ̂). (7.80)

7.4 Efficient Global Optimization (EGO)

In this section, Efficient Global Optimization (EGO) is introduced. It was first introduced
in [92] and is a global optimization method that incorporates a Kriging model as a sur-
rogate model on which the optimization takes place. After acquiring an optimal solution
on the surrogate model, the original expensive function value of that solution is evaluated
and the stopping condition is checked. If the algorithm does not terminate, then this
value and its point are added to the underlying Kriging model, and subsequently the sur-
rogate is updated. Therefore, the acquisition of new points is of interest and is handled in
Subsection 7.4.1. The implementation of EGO in Dakota is discussed in Subsection 7.4.2.
Most of this section is based on [92, 90, 57, 65].

7.4.1 Acquisition Functions

In this subsection, two acquisition functions which determine new points to evaluate are
discussed. A minimization process using the Kriging estimator Ẑ(t0) as an objective,
can easily lead to a local minimum, especially when the initial sample is not evenly
spread. In the parts of the range of the objective function where there is uncertainty in
the model, there may be objective values that are smaller than the minimum value of
the Kriging estimation. Thus, a minimization process with the predictor as an objective
function would only yield an accurate estimate of a local minimum. The reason for this is,
that this approach assumes that there is no uncertainty in the model and therefore only
exploits the predictor, failing to explore points where the model is uncertain. So, a proper
acquisition function should balance exploitation, i.e., optimization of the objective, and
exploration of uncertain points. This can also be seen as a balance between a local and
global search. In the following, the probability of improvement and expected improvement
are introduced.
Let {x1, . . . , xk} be a set of sample points with responses {z1, . . . , zk} as realizations of
the random variables Z(x1), . . . , Z(xk). The response at an unknown x0 is given by a
random variable that is normal distributed with mean and standard deviation given by
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the Kriging predictor and its standard error, i.e.

Z̃(x0) := Z(x0)|Z(x1), . . . , Z(xk) ∼ N (Ẑ(x0), ŝ2(x0)). (7.81)

Further, let
zmin = min(z1, . . . , zk) (7.82)

be the current best objective value.

Probability of Improvement

The probability of improvement assesses for given {x1, . . . , xk} and responses {z1, . . . , zk}
the probability that the response of an unknown x0 is better than the current best objec-
tive value zmin. Then, we have for ŝ(x0) > 0

PI(x0) := P (Z̃(x0) ≤ zmin |Z(x1) = z1, . . . , Z(xk) = zk)

= Φ

(
zmin − Ẑ(x0)

ŝ(x0)

)
,

(7.83)

where Φ(·) is the standard normal distribution function, and PI(x0) = 0 in the case
ŝ(x0) = 0 as this only occurs if and only if x0 ∈ {x1, . . . , xk}. Hence, the objective is to
maximize the probability of improvement.

Expected Improvement

Another acquisition function is the expected improvement of the current best objective
value zmin at an unknown x0. In contrast to the probability of improvement, which
assesses the probability of an improvement, the expected improvement assesses the actual
expected improvement at a location x0. The improvement is formally given as

I(x0) = max
(
zmin − Z̃(x0), 0

)
, (7.84)

and it itself is a random variable since Z̃(x0) is a random variable. Hence, the expected
improvement is

EI(x0) := E[I(x0) |Z(x1) = z1, . . . , Z(xk) = zk]. (7.85)

Further, one can express the expected improvement after some integration in closed form.
First we use a reparameterization of Z̃(x0)

Z̃(x0) = Ẑ(x0) + ŝ(x0) ε, ε ∼ N (0, 1).
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Then we have with K := zmin−Ẑ(x0)
ŝ(x0)

EI(x0) =

∫ ∞
−∞

I(x)φ(ε) dε

=

∫ K

−∞

(
zmin − Ẑ(x0)− ŝ(x0) ε

)
φ(ε) dε

=
(
zmin − Ẑ(x0)

)
Φ(K)− ŝ(x0)

∫ K

−∞
ε φ(ε) dε

=
(
zmin − Ẑ(x0)

)
Φ(K) +

ŝ(x0)√
2π

∫ K

−∞
−ε e−ε2/2 dε

=
(
zmin − Ẑ(x0)

)
Φ(K) + ŝ(x0)φ(K).

(7.86)

Re-substituting K yields

EI(x0) =

 (zmin − Ẑ(x0)) Φ

(
zmin−Ẑ(x0)

ŝ(x0)

)
+ ŝ(x0)φ

(
zmin−Ẑ(x0)

ŝ(x0)

)
, ŝ(x0) > 0

0 , ŝ(x0) = 0

, (7.87)

where Φ(·) and φ(·) are the standard normal distribution and density function. One can
also express the expected improvement for a weighted sum scalarization in closed form.
Let f be an additional deterministic objective function and λ ∈ [0, 1] an arbitrary weight.
The weighted improvement is then of the form

Iλ(x
0) = max

(
zmin −

(
λ Z̃(x0) + (1− λ) f(x0)

)
, 0
)
, (7.88)

and we have for the weighted expected improvement with Kλ := zmin−λ Ẑ(x0)−(1−λ) f(x0)
λ ŝ(x0)

EIλ(x
0) =

∫ ∞
−∞

Iλ(x)φ(ε) dε

=

∫ Kλ

−∞

(
zmin − λ

(
Ẑ(x0)− ŝ(x0) ε

)
− (1− λ) f(x0)

)
φ(ε) dε

=
(
zmin − λ Ẑ(x0)− (1− λ) f(x0)

)
Φ(Kλ)− λ ŝ(x0)

∫ Kλ

−∞
εφ(ε) dε

=
(
zmin − λ Ẑ(x0)− (1− λ) f(x0)

)
Φ(Kλ) +

λ ŝ(x0)√
2π

∫ Kλ

−∞
−εe−ε2/2 dε

=
(
zmin − λ Ẑ(x0)− (1− λ) f(x0)

)
Φ(Kλ)− λ ŝ(x0)φ(Kλ).

(7.89)

As with the probability of improvement one want to maximize the expected improvement.
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7.4.2 The EGO Algorithm

The expected improvement function is highly modular,i.e., and in large parts numerically
equal to zero [92]. Therefore, one has to choose a suitable optimization approach to
determine the global maximum of EI. In our case, we follow the Dakota implementation
[57] and use the DIRECT algorithm (Algorithm 6) for the maximization of EI. The EGO
algorithm as we use it is given as follows.

Algorithm 7: EGO

Data: f (,∇f), NLHS, and Nmax.it.
Result: Approximation of a global solution.
Generate a Latin hypercube sampling of size NLHS as an inital sampling X(0),
see Subsection 7.3.1;
Set l = 0;
while l ≤ Nmax.it do

Construct a Kriging model from X(l), the MLE of the model parameters is
done with the DIRECT algorithm, i.e., Algorithm 6;

Use the mean Ẑ(t0) and its standard error ŝ2(t0) of the Kriging model to
formulate the expected improvement EI (7.87);

Maximize EI on the Kriging model by using the DIRECT algorithm and
attain the solution x̄(l);

Evaluate f (and ∇f) at x̄(l);
Add x̄(l) and f(x̄(l)) to X(l), i.e., X(l+1) = X(l) ∪ {x̄(l), f(x̄(l))};
l=l+1;

end

Note that the function f is in our case the weighted sum scalarization Jλ and the only
stopping condition is a maximum number of iterations Nmax.it. One notable difference
between this formulation of the algorithm, that is based on the Dakota implementation,
and the first version of [92] is that the DIRECT algorithm is used for the optimization.
In [92], this is done by a branch and bound method.

7.5 Coupling With Dakota

In this section, we give a brief overview of Dakota and how we coupled Dakota version
6.12 with an R script that computes the objective function values and gradients of J0 and
J1 under Ubuntu 16.04.7 LTS. The Dakota software toolbox (open source under GNU
LGPL) has many capabilities for optimization and uncertainty quantification (UQ). It
includes, see, e.g., [56, 57],

• optimization with gradient and nongradient-based methods;

• uncertainty quantification with sampling, reliability, stochastic expansion, and epis-
temic methods;

• parameter estimation using nonlinear least squares (deterministic) or Bayesian in-
ference (stochastic); and
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• sensitivity/variance analysis with design of experiments and parameter study meth-
ods.

To access the methods implemented in Dakota one has to specify six blocks in the Dakota
input file. These six specification blocks are variables, interface, responses, model, method,
and environment. The relationship of these blocks is described in the user manual of
Dakota [56] as follows. In each iteration of its algorithm, a method block requests a
variables-to-responses mapping from its model, which the model fulfills through an inter-
face. In Figure 7.1, this relationship is visualized. The params and results blocks are
described later on.

Method

Model

Variables Interface Responses

params results

Environment

Figure 7.1: Relationship between the six specification blocks of a Dakota input file, see
also [56].

These six blocks have to be specified in a Dakota input file, see [56]. In the following,
we show an input file, Figure 7.2, that we used for the numerical tests and explain based
on that file what the specifications of the blocks mean in our case. For a thorough
introduction we refer to the Dakota user manual [56].
In Figure 7.2, the environment block states that the results should be saved in a tabular
data file ’CeramcisRM01.dat’. We had difficulties with this setting. In our case, this
generated empty tabular data files. Therefore, we opt to save the computed values in
the coupled R code. In the method block, the handle efficient global invokes the imple-
mented EGO Algorithm 7. It includes a LHS as an initial sampling, see [56], for which the
handle initial samples corresponds to NLHS in Algorithm 7. The handle max iterations
corresponds to Nmax.it. The handle use derivatives incorporates gradient information into
the Kriging model, omitting this handle leads to the standard EGO algorithm without
GEK. The variables block specifies our six optimization variables and their ranges, i.e.,
the designspace. In the interface block, the fork handle indicates that an external code
is to be used for the evaluation of the objective function and gradients. This external
code is accessed via the analysis driver that invokes an Unix-Shell script ’GEKCeramics-
DriverRM01.sh’ that starts a R script to compute the requested values. In each iteration
i Dakota writes an .txt file ’params.in.i’ with the variable values for the variables ’x1’,
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environment
tabu la r da ta

t a b u l a r d a t a f i l e = ’ CeramcisRM01 . dat ’

method
e f f i c i e n t g l o b a l
seed = 123456
u s e d e r i v a t i v e s
max i t e r a t i on s = 211
i n i t i a l s a m p l e s = 141

v a r i a b l e s
cont inuous de s i gn = 6

lower bounds −0.05 −0.05 −0.05 0 .05 0 .05 0 .05
upper bounds 0 .25 0 .65 0 .25 0 .4 0 .4 0 .4
d e s c r i p t o r s ’ x1 ’ ’ x2 ’ ’ x3 ’ ’ x4 ’ ’ x5 ’ ’ x6 ’

i n t e r f a c e
a n a l y s i s d r i v e r s = ’ GEKCeramicsDriverRM01 . sh ’

f o rk
p a r a m e t e r s f i l e = ’ params . in ’
r e s u l t s f i l e = ’ r e s u l t s . out ’
f i l e t a g
f i l e s a v e

r e sponse s
o b j e c t i v e f u n c t i o n s = 1
a n a l y t i c g r a d i e n t s
no he s s i an s

Figure 7.2: Dakota input file for EGO with GEK for test case 1.

’x2’, ’x3’, ’x4’, ’x5’, ’x6’, which correspond to our six optimization variables, and re-
quests corresponding objective value and gradient evaluations from the analysis driver.
After computing the values the analysis driver writes them also in a .txt file ’results.out.i’
which then is automatically read by Dakota. The handles file tag and file save are of
technical nature and save the .txt files ’params.in.i’ in the workspace such that the R
code can access them. Exemplary ’params.in.i’ and ’results.out.i’ files are depicted in
Figure 7.3 and Figure 7.4. Finally, the response block specifies the requested values. The
objective function = 1 handle indicates that Dakota expects one objective value for the
variables. Note that there can be more than one objective function value requested de-
pending on the optimization method, e.g., multiobjective optimization methods that are
implemented in Dakota. The following discussion for the gradients handles also applies
for the hessians handles. There are three options for the gradients handle no gradients,
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analytical gradients and numerical gradients, where no gradients indicates that no gra-
dient information is expected, i.e., EGO without GEK, analytical gradients implies that
the interface will return gradient information through the analysis driver, and numeri-
cal gradients approximate the gradients with a finite difference method of Dakota.

6 v a r i a b l e s
1.339235474811274 e−03 x1
3.021429777979283 e−01 x2
6.396233240499141 e−02 x3
2.511367462300498 e−01 x4
1.953218475344974 e−01 x5
2.565019968075593 e−01 x6

1 f u n c t i o n s
3 ASV 1 : o b j f n
6 d e r i v a t i v e v a r i a b l e s
1 DVV 1 : x1
2 DVV 2 : x2
3 DVV 3 : x3
4 DVV 4 : x4
5 DVV 5 : x5
6 DVV 6 : x6
0 ana lys i s components
1 e v a l i d

Figure 7.3: Exemplary ’params.in.i’ file. The variables are denoted by ’x1’, ’x2’, ’x3’,
’x4’, ’x5’ and ’x6’. The functions handle requests the value of one objective
function. The active set value (ASV ) indicates which values are expected by
Dakota. It is ASV ∈ {1, 2, 3, 4, 5, 6, 7} and we have for ASV = 1 that the ob-
jective function should be computed, for ASV = 2 the gradient and for ASV =
4 the hessian. A sum of these values indicate that a combination is requested,
e.g., ASV = 3 means that the objective value and the gradient are requested.
The derivative variables DVV indicate for which variables derivatives should
be computed.

0 .207271
[ 0 .037847 0.115888 0.075434 0.183707 0.150483 0.177094 ]

Figure 7.4: Exemplary ’results.out.i’ file. The first row consists of the objective value,
the second row of the gradient. The gradient is marked by the brackets [. . . ],
hessians would be marked by double brackets [[. . . ][. . . ] . . . [. . . ]].

7.5.1 Routine for Consecutive Weighted Sum EGO Runs

In this subsection, we describe our implementation to apply EGO for consecutive weighted
sum scalarizations with differing weights. For simplicity we refer to the Dakota input file
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as ’Ceramics.in’ and to the R script that is invoked by the Unix-Shell analysis driver and
computes the objective values and gradients as Driver.R. First, n weights λ are chosen for
which weighted sum scalarizations should be minimized. These weights are saved in a n-
dimensional array named weights. Then, a for-loop over k = 1, . . . , n is initiated, in which
the λ that is at position k in the weights array, i.e., λ = weights[k], is written in a .txt file
’weight.txt’ and saved in the workspace. Then, Dakota is started and the ’Ceramics.in’
file is executed, i.e., EGO is started. During the optimization ’params.in.i.txt’ files are
written and the analysis driver invokes Driver.R which then reads the ’weight.txt’ and
’params.in.i.txt’ files, constructs the weighted sum scalarization w.r.t. λ from ’weight.txt’,
computes the objective values and gradients, and subsequently writes ’results.out.i.txt’
files for Dakota. At this point Driver.R also saves the computed objective values and
gradients in a separate .RData file. This scheme is repeated until k = n is reached.
Figure 7.5 illustrates this routine.

Routine.sh

select n
weights;
k = 1

write
weights[k]

in
weight.txt

Dakota Ce-
ramics.in

Driver.R
(via sh)

clean WS;
k = k + 1

save
RData for
weights[k]

k == n?

stop

no

yes

weight.txt

params.in.i

results.out.i

Driver.R

read
weight.txt,
params.in.i

extract
λ, x, i, ASV

compute
objective

values and
gradients

save
RData,

write re-
sults.out.i

stop

Figure 7.5: Routine to apply EGO to consecutive weighted sum sclarizations.

7.6 Numerical Results

In this section, we apply the EGO algorithm with Kriging and GEK as the underlying
surrogate model to our biobjective shape optimization problem (3.11), respectively, and
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compare the results with the solutions computed in Chapter 3 and Chapter 6. In the
following, the results for the test cases introduced in Subsection 4.4.1 and Subsection 4.4.2
are described.

7.6.1 Test Case 1: A Straight Joint

We take the same specifications as in Subsection 4.4.1 and utilize the weighted sum scalar-
ization Jλ = (1 − λ)J0 + λJ1 as the objective function that is estimated by the Kriging
predictor (7.67). Following Algorithm 7, we have to choose values for NLHS and Nmax.it.
Toward this end, we take the mean numbers of the objective function evaluations and
gradient computations for the gradient descents with the weighted sum scalarization of
Chapter 3. Recall that on average one gradient descent with the weighted sum scalar-
ization, i.e., for one weight λ, needs 93.21 iterations and in each iteration 3.77 Armijo
iterations to compute a solution. This equals on average 93.21 × 3.77 = 351.51 objec-
tive function evaluations, 93.21 gradient computations, and 93.21 + 351.51 ≈ 445 total
evaluations. To be able to compare the solutions of EGO with the previously computed
solutions w.r.t. the function evaluations, we set NLHS + Nmax.it = 445 when utilizing a
Kriging model and NLHS +Nmax.it = 352 for the GEK approach. The total budget is then
divided into NLHS and Nmax.it, where NLHS attributes to 40% and Nmax.it to 60% of the
budget. Hence, for the Kriging model we set NLHS = 178 and Nmax.it = 267 and for the
GEK model NLHS = 141 and Nmax.it = 211, respectively. Furthermore, the design space is
chosen in a way that it contains the starting shape, see Figure 5.1c, and the solutions of
Chapter 3 and Chapter 6. The lower and upper bounds for the six optimization variables
is given in Table 7.1.

Variables x1 = γml
2 x2 = γml

3 x3 = γml
4 x4 = γth

2 x5 = γth
3 x6 = γth

4

Lower bounds -0.05 -0.05 -0.05 0.05 0.05 0.05
Upper bounds 0.25 0.65 0.25 0.4 0.4 0.4

Table 7.1: Lower and upper bounds for the optimization variables for the first test case,
see Subsection 4.4.1.

The EGO algorithm is then applied for the weights λ ∈ {0.2, 0.3, . . . , 0.9}. In Figure 7.6a,
the results of these optimization runs with a Kriging model (purple) and a GEK model
(red) are compared with the weighted sum gradient descent solutions of Chapter 3 (green)
and the Pareto tracing by numerical integration solutions (blue).
Further, in Table 7.2 the Jλ objective values, for λ ∈ {0.2, 0.3, . . . , 0.9}, of the optimal
solutions computed by the four methods depicted in Figure 7.6a are compared. In Fig-
ure 7.7, some exemplary shapes for these four methods are shown. Solutions of both EGO
methods are not quite straight rods. The Kriging model outperformed the GEK model
for every λ ∈ {0.2, 0.3, . . . , 0.9}. A reason for this is that EGO with the GEK model had
a smaller budget of iterations than with the Kriging model. Apparently, the additional
gradient information could not compensate for this deficit. All of this, combined with Ta-
ble 7.2 and Figure 7.6a clearly shows, that the gradient descent of Chapter 3 and Pareto
tracing by numerical integration of Chapter 6 outperform the EGO solutions, whether
gradient information is incorporated or not. Another observation for both EGO methods
is that for some distinct weights the same local Pareto optimal solution is computed, i.e.,
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Figure 7.6: Comparison of the numerical results for test case 1.

there are less distinct solutions than distinct weights. Furthermore, EGO with a Kriging
or GEK model computed only five distinct solutions for eight different weights, respec-
tively. Dakota also allows to integrate sampling data into the Kriging model, for GEK
this option is unfortunately not available. Doing this comes in our case with an additional
cost of 7 function evaluations that Dakota needs to check the incorporated points. We
used this capability of Dakota to recycle the Latin hypercube sampling computed for the
optimization w.r.t. the first weight λ = 0.2, i.e., we incorporated the NLHS = 267 sample
points of this LHS into the models for the weights λ ∈ {0.3, . . . , 0.9} and thereby saved
the computational cost of NLHS − 7 = 260 evaluations. Note that, since we save the
computed weighted sum and both objective function values in an separate R file, we can
adjust the weighted sum objective values of this recycled LHS for weight λ = 0.2 to the
other weights λ ∈ {0.3, . . . , 0.9}. In Figure 7.6b, the results of this approach (yellow) are
shown. The computed solutions coincide with the already computed EGO with Kriging
solutions. As with the non recycled case, the method gets stuck in local minima, i.e.,
eight distinct weights produce only three distinct solutions. This nicely shows that if
gradient information is available a gradient descent with a weighted sum scalarization is
preferable to a global approach like EGO. For both cases a continuation of a solution
with Pareto tracing by numerical integration is in general possible, but since the gradient
descent clearly outperforms EGO, it should be used to generate an initial value for Pareto
tracing by numerical integration method.
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λ EGO:Kriging EGO:GEK Grad. Descent Pareto Tracing
0.2 0.14158868 0.15437675 0.11969789 0.11890384
0.3 0.13012732 0.14558050 0.11438980 0.11392020
0.4 0.13148747 0.13567980 0.10592921 0.10539918
0.5 0.11583851 0.11985043 0.09486769 0.09435064
0.6 0.09562510 0.09865657 0.08167443 0.08118969
0.7 0.07541169 0.07695466 0.06652542 0.06602785
0.8 0.05519827 0.05525275 0.04925905 0.04870324
0.9 0.03122986 0.03266942 0.02920745 0.02853962

Table 7.2: Comparison of the objective values of Jλ, for λ ∈ {0.2, 0.3, . . . , 0.9}, of the
solutions computed with EGO with Kriging, EGO with GEK, gradient descent
(Chapter 3) and Pareto tracing by numerical integration (Chapter 6) for test
case 1.

7.6.2 Test Case 2: An S-Shaped Joint

We take the same specifications as in Subsection 4.4.2 and also estimate Jλ with the
surrogate models. For this test case the gradient descents with weighted sum scalariza-
tions of Chapter 3 needs 106.64 iterations and in each iteration 5.25 Armijo iterations to
compute a solution. This equals on average 106.64 × 5.25 = 560.11 objective function
evaluations and 106.64 + 560.11 ≈ 667 total evaluations, i.e., NLHS +Nmax.it = 667 for the
Kriging model and NLHS + Nmax.it = 561 when incorporating gradient information. We
therefore set NLHS = 267 and Nmax.it = 400 for the Kriging model and set NLHS = 225 and
Nmax.it = 336 for GEK, respectively. Here, we also ensure that the starting shape , see
Figure 4.5c, and the solutions for this test case of Chapter 3 and Chapter 6 are included
in the design space, see Table 7.3.

Variables x1 = γml
2 x2 = γml

3 x3 = γml
4 x4 = γth

2 x5 = γth
3 x6 = γth

4

Lower bounds 0.1 -0.2 -0.2 0.05 0.05 0.05
Upper bounds 0.7 0.4 0.4 0.7 0.7 0.7

Table 7.3: Lower and upper bounds for the optimization variables for the second test case,
see Subsection 4.4.2.

For this test case the EGO algorithm with a Kriging model is applied for the weights
λ ∈ {0.2, 0.3, . . . , 0.8}. For the GEK runs only the weights λ ∈ {0.2, 0.5, 0.8} are used,
since each computation took over eight days to complete and we see no added insight
from further (time expensive) points. A comparison of the results of EGO computed with
a Kriging model (purple) and a GEK model (red), respectively, weighted sum gradient
descent solutions of Chapter 3 (green) and the Pareto tracing by numerical integration
solutions (blue) is shown in Figure 7.8a. In Table 7.4, the weighted sum objective values
are compared. Exemplary shapes are illustrated in Figure 7.9. As with test case 1 one
can observe that the gradient descent and Pareto tracing by numerical integration method
outperform both EGO methods. The shapes computed by the EGO methods do not really
resemble the shapes computed by the other methods. Here, EGO with a Kriging model
also outperformed EGO with a GEK model.
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λ EGO:Kriging EGO:GEK Grad. Descent Pareto Tracing
0.2 0.7631164 0.8207741 - 0.6031819
0.3 0.7336212 - 0.5881540 0.5849745
0.4 0.7293749 - 0.5521766 0.5498210
0.5 0.6637988 0.6887095 0.5052462 0.5034985
0.6 0.5817372 - 0.4512161 0.4483271
0.7 0.4718165 - 0.3872412 0.3849630
0.8 0.3592713 0.3828001 0.3119188 0.3119188

Table 7.4: Comparison of the objective values of Jλ, for λ ∈ {0.2, 0.3, . . . , 0.8}, of the
solutions computed with EGO with Kriging, EGO with GEK, a gradient de-
scent (Chapter 3) and Pareto tracing by numerical integration (Chapter 6) for
test case 2. Note that the weighted sum gradient descent did not converge for
λ = 0.2 and is therfore omitted from the comparison.

As with the first test case, we applied the recycling of the LHS approach. The results
(yellow) are illustrated in Figure 7.8b. The recycling yields better solutions for some
weights for in total less evaluations, but still does not reach the quality of solutions of
the gradient descent with a weighted sum scalarization or of Pareto tracing by numerical
integration.
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Figure 7.8: Comparison of the numerical results for test case 2.

Wrapping up, one can conclude that for our biobjective shape optimization problem
3.11, where gradient information is available, a gradient descent with a weighted sum
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scalarization (Chapter 3) and afterwards applying Pareto tracing by numerical integration
(Chapter 6) to the solution is preferable to a global approach like EGO. In aerodynamic
design problems similar observations were made. In [153], a gradient descent method also
outperformed an evolutionary algorithm, strengthening our argument for the inclusion of
gradient information when available.
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Figure 7.7: Exemplary solutions for test case 1 of the weighted sum method (row 1),
Pareto tracing (row 2), EGO with Kriging (row 3) and GEK (row 4) for the
weights λ = 0.2, 0.5, 0.8.
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(g) Kriging: λ = 0.2
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0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

(k) GEK: λ = 0.5
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Figure 7.9: Exemplary solutions for test case 2 of the weighted sum method (row 1),
Pareto tracing (row 2), EGO with Kriging (row 3) and GEK (row 4) for the
weights λ = 0.2, 0.5, 0.8. Note that the weighted sum descent did not converge
for λ = 0.2, therefore we included the solution for λ = 0.25.
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8 Conclusion and Outlook

In this chapter, we give our conclusions and an outlook for each of the gradient-based
optimization methods considered in Chapters 5, 6, and 7 separately. Note that some
parts were already published in [46, 19].

Gradient Based Biobjective Shape Optimization to Improve Reliability and Cost of
Ceramic Components

We have developed a modelling and solution approach for biobjective PDE constrained
shape optimization of ceramic components. The mechanical integrity of the component on
one hand, and the cost of the component on the other hand, were considered as two pivotal
optimization criteria. A probabilistic approach was used to assess the mechanical integrity
(i.e., the reliability) of the component, which allows, in combination with a finite element
discretization and an adjoint approach for gradient computations, the efficient calculation
of derivative information. Approximations of the Pareto front were computed using two
different approaches: (1) parametric weighted sum scalarizations in combination with a
single objective gradient descent method, and (2) a biobjective descent algorithm with
parametric scalings of the objective functions. Numerical results for 2D test cases visualize
the trade-off between the reliability and the cost, and hence pave the way for an informed
selection of a most preferred design. A generalization to 3D shapes seems possible and is
the next natural step. Moreover, further optimization criteria like, for example, reliability
w.r.t. other loading scenarios, minimal natural frequencies, and/or efficiency criteria, can
be included into a general multiobjective shape optimization problem.

Pareto Tracing by Numerical Integration

We have presented a novel approach for approximating the Pareto front by tracing it
using numerical time integration. The optimality conditions of a scalarization Jλ were
differentiated w.r.t. the scalarization parameter λ to obtain an implicit ODE describing
the front. If second order optimality conditions are fulfilled, an explicit ODE is obtained
with a Lipschitz right hand side and the existence and uniqueness of the solution that
is a representation of the Pareto front was shown. The smoothness of the Pareto front
depends on the smoothness of the objective function. Further, we have shown how this
extends to ε-critical starting points. The use of standard explicit Runge-Kutta methods
was established and the well-known convergence estimates can be applied. The technique
was demonstrated for a simple biobjective convex quadratic optimization problem, as well
as for problems originating from shape optimization.
We have not yet covered the effects of using adapted and/or adaptive step sizes in λ,
e.g., in order to obtain equispaced points on the Pareto front. Different approaches are
possible in this respect, see, for example, [53, 132]. Further, we will extend the approach to
constrained problems via KKT conditions, and also consider other scalarizations. While
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we have only considered the biobjective case here, the approach can also be used to handle
more than two criteria. In the case of q + 1 criteria, the front can be described by a q-
dimensional functional (using again, e.g., weighted sum scalarizations with q independent
scalarization parameters) that can be obtained numerically using a q-dimensional mesh
and numerical integration starting from some mesh point. This will also be considered in
the future.

EGO and Gradient Enhanced Kriging

We have applied state of the art methods, i.e. the surrogate model based global opti-
mization methods EGO and EGO with GEK, to benchmark the results obtained with the
weighted sum method of Chapter 5 and Pareto tracing by numerical integration of Chap-
ter 6. The expected improvement was maximized on the Kriging surrogate model which
was fitted with (EGO with GEK) and without (EGO) gradient information, respectively.
The DIRECT algorithm was used for the maximization of the expected improvement and
the maximum likelihood estimation which is needed for the construction of a Kriging sur-
rogate model. The achieved results with these benchmark methods were all dominated by
the results obtained in Chapters 5 and 6. Thus, we conclude that if for a problem gradient
information is available it may be favorable to distribute the computational budget more
toward gradient descent and gradient-based continuation methods than commonly used
surrogate model based methods.
We have not yet considered other state of the art methods like, e.g., biobjective evolution-
ary algorithms, as additional benchmark methods. In future work, it would be of interest
to compare the results of Chapters 5 and 6 with more benchmark methods to have a
clearer insight on the performance of gradient-based biobjective optimization methods.
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[113] K. Nikodem and Z. Páles. Characterizations of inner product spaces by strongly
convex functions. Banach Journal of Mathematical Analysis 5(1):83–87 · January
2011, 2011.
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