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1 Introduction
Modern-day communication has become more and more digital. While this has
made human life more convenient and many processes in society and economy more
efficient, it has also created more and more opportunities for various adversaries to
manipulate communication or eavesdrop on it. The Snowden revelations in 2013
further highlighted the seriousness of these threats. To protect the communica-
tion of people, companies, and states from such threats, we require cryptography.
Throughout the introduction, we first give a brief overview of the principles of cryp-
tography as a science and then describe the contributions of this thesis to the field
of cryptography.

1.1 Modern Cryptography
Ronald Rivest very fittingly described cryptography as being “[. . .] about the com-
munication in the presence of adversaries” [Riv90, p. 719]. Taking encryption as an
example, we naturally require that an encryption scheme guarantees the confiden-
tiality of the communication in the presence of adversaries. However, this intuitive
definition of security for encryption schemes leaves some questions unanswered. For
example, the capabilities of potential adversaries may differ significantly depending
on the application in which an encryption scheme is used. It may be realistic to
assume that all potential adversaries can only passively eavesdrop on exchanged
messages in some applications. Meanwhile, this assumption may not hold for other
applications where adversaries can trick communication partners into encrypting
specific messages of the adversary’s choice. Moreover, even if encrypting the mes-
sages guarantees confidentiality of the communication, it might not prevent adver-
saries from manipulating the content of the messages without learning anything
about the content.
These open questions highlight the need for formal definitions of security. Thus,

modern cryptography requires mathematically precise definitions of security for
cryptographic schemes. Furthermore, there can be several equally reasonable def-
initions of security that are fitting in different applications. For example, some
applications may have the property that all encrypted messages are distributed uni-
formly at random. Moreover, as discussed above, we have to consider adversaries
with different capabilities for different applications. We formalize these security re-
quirements in modern cryptography in so-called security experiments or sometimes
also called security games. Such a security experiment is modeled as an interaction
between two algorithms: a challenger and an adversary.

1



1 Introduction

Provable security. For a long time, cryptographic schemes were proposed
and considered secure if no successful attack was found for an extended period of
time. However, this approach to security left open the possibility of arbitrary new
attacks that could compromise the security of a cryptographic scheme. Goldwasser
and Micali addressed this issue in 1984 by introducing the paradigm of provable
security [GM84]. Following this paradigm, we consider an encryption scheme secure
if there is a mathematical sound proof showing that any algorithm that can break
the security of a scheme would imply an algorithm that can efficiently solve a
computational problem that is believed to be intractable. More specifically, we
consider a computational problem that is believed to be impossible to solve with
probability ε by any algorithm that runs in time at most t. We then show that any
algorithm A that runs in time tA ∈ N and can break the security of a cryptographic
scheme with probability εA implies the existence of an algorithm B that can solve
the computational problem that is believed to be intractable

in time tB ≤ t with probability εB ≥ ε.

Thus, the existence of an algorithm that can break the security of the cryptographic
scheme contradicts the assumed intractability of the computational problem. Ex-
amples of such problems used in cryptography are the discrete logarithm problem,
the RSA (Rivest-Shamir-Adleman) problem, and the short integer solution prob-
lem. These computational problems have been extensively studied, and so far, no
practically efficient algorithm has been found for cryptographically relevant param-
eter sizes.

Kerckhoffs’ principle. Another essential paradigm in cryptography that is
orthogonal to the paradigms we discussed above is Kerckhoffs’ principle. Translated
to English, it states that any cryptographic “system must not require secrecy and
can be stolen by the enemy without causing trouble” [Pet11, p. 675]. That is, for
example, an encryption scheme should remain secure as long the decryption key is
kept secret, even if all details of the scheme become known to the adversary. Thus,
the security of the scheme should follow only from the secrecy of the key. The
principle was first described by Auguste Kerckhoff as one of six principles [Ker83a,
Ker83b].
Following this principle has several practical advantages. First and foremost, the

security of a cryptographic scheme that is publicly available can be validated by
a large number of experts. Moreover, it is practically much easier to keep a small
key secret than a complete encryption scheme, and if a secret key becomes public,
it is much easier to replace. For these reasons, the vast majority of cryptographic
algorithms used in everyday life are publicly known.
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1.2 Overview of this Thesis

1.2 Overview of this Thesis
We give a brief overview of the topics covered in this thesis. First, we informally
describe the cryptographic primitives this thesis focuses on, namely identity-based
encryption (IBE)1 and verifiable random functions (VRFs). We then informally
discuss adaptive security, the type of security model this thesis is concerned with
before presenting the outline of the thesis.

1.2.1 Richer forms Cryptography
While cryptography is associated the most with encryption, this is only one of
many primitives modern cryptography research is concerned with. This thesis
presents novel identity-based encryption (IBE) schemes and verifiable random func-
tions (VRFs). Therefore, we informally introduce these two primitives below.

Identity-based encryption. Identity-based encryption (IBE) is a variant of
encryption that Shamir first proposed in 1984 [Sha84]. In an IBE scheme, a trusted
third party provides publicly known system parameters and personal secret keys to
all users. After this setup step, the knowledge of a receiver’s identity, e.g., their e-
mail address, suffices to encrypt a message such that only the receiver can correctly
decrypt the ciphertext. Thus, this form of encryption makes the distribution of keys
among users obsolete and only requires the distribution of the system parameters.
Even though Shamir already proposed the concept in 1984, it was only in 2001
when Boneh and Franklin [BF01] and Cocks [Coc01] independently presented the
first IBE schemes with practical efficiency.

Verifiable random functions. The second cryptographic primitive this the-
sis focuses on are verifiable random functions (VRFs), which are an extension to
pseudorandom functions (PRFs). Therefore, we briefly describe PRFs as a prereq-
uisite to describe VRFs.
Given m,n ∈ N with m ≤ n, consider the set F = {f : {0, 1}m → {0, 1}n},

i.e. the set of all functions that map bit strings of length m to bit strings of
length n. Intuitively, a function f drawn uniformly at random from F is helpful
in cryptography since evaluating f on an arbitrary input yields an independent
uniformly random output, thus perfectly hiding the input. However, since there
are 2n(2m) different functions in F , it would take at least n · 2m bits to describe
a function from F uniquely. For m and n in the order of 128, which would be
a plausible size for cryptography, the size of the function description is too large
by many orders of magnitude. Thus, Goldreich et al. instead considered a small
subset F ′ ( F , where each function fK ∈ F ′ is efficiently described by a small

1This thesis considers identity-based key encapsulation mechanisms instead of IBEs. Here, we
describe IBEs, because this primitive is better suited for an informal presentation. However,
the two primitives are very closely related, and we explain their relationship in Section 2.3.2.
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1 Introduction

key K [GGM84, GGM86]. Furthermore, Goldreich et al. require that for f drawn
uniformly at random from F and f ′ drawn uniformly at random from F ′, there
is no practically efficient algorithm that can distinguish f from f ′ only from the
function outputs. We refer to F ′ as a family of pseudorandom functions (PRFs)
if these properties are achieved. We note that with the knowledge of K, this
indistinguishability does not hold anymore, and therefore K must be kept secret.
Pseudorandom functions have the downside that an entity evaluating the PRF

for a user can lie to the user about the outputs of the PRF without the user being
able to take notice. Verifiable random functions (VRFs), introduced by Micali,
Rabin, and Vadhan in 1999 [MRV99], address this issue by making the output of a
PRF verifiable. That is, a secret key sk identifies a function Fsk, but in contrast to
PRFs, the private key always comes together with a public verification key vk. The
secret key sk then allows the evaluation of Fsk(X) on input X and to obtain the
pseudorandom output Y . However, a VRF also produces a non-interactive proof
of correctness π. Together with vk, the proof π allows everyone to verify that Y
is Fsk(X). We require two security properties from VRFs: unique provability and
pseudorandomness. Unique provability means that for every verification key vk and
every VRF input X, there is a unique Y for which a proof π exists such that the
verification algorithm accepts. However, note that there might be multiple valid
proofs π verifying the correctness of Y with respect to vk and X. Furthermore, we
(informally) say that a VRF is pseudorandom if there is no efficient adversary that
can distinguish a VRF output without the accompanying proof from a uniformly
random element of the range of the VRF.

1.2.2 Adaptive Security
As discussed above in Section 1.1, different applications may require different se-
curity properties from cryptographic schemes. This thesis concentrates on secu-
rity requirements that prevent attacks from adaptive adversaries. For example,
adaptive adversaries against encryption schemes are characterized by their abil-
ity to make communication partners encrypt arbitrary messages of the adversary’s
choice. Moreover, the adversaries we consider may choose the messages they trick
the communication partners to encrypt depending on the ciphertexts the adversary
has seen previously. We refer to schemes that are secure in the presence of such
adversaries as adaptively-secure. Moreover, note that similar adaptive security re-
quirements also apply to IBEs schemes and VRFs, and we discuss them in detail
in Section 2.3.

Plausibility of adaptive attacks. Considering adversaries that can obtain
the encryption of arbitrary messages of their choice might look like an unnecessarily
strong security requirement. However, there are historical and practical examples of
attacks that are well captured by this type of adversary. We follow [KL14, Section
3.4.2] and present two examples for this.

4



1.2 Overview of this Thesis

Historically, the intelligence operations of the USA in preparation for the Battle
of Midway are an example of such an adaptive attack. They are described as
follows in Chapter 31 of [LPC85] by Layton et al., who took part in this intelligence
operation. The US Navy knew from intercepted and deciphered communications
that the Japanese Navy planned to attack an island the Japanese referred to as AF in
their communications. The US government was aware of an upcoming attack by the
Japanese and suspected that AF corresponded to the Midway Islands, but they were
not sure. To confirm the suspicion, they send a message through an undersea cable
to the military base on Midway Islands and asking them to announce a drinking
water shortage on the island via an unencrypted radio message. Only 24 hours after
this message, US Navy intelligence intercepted Japanese communications about
bringing an additional two weeks drinking water reserve for the occupation of AF.
This observation confirmed to the US Navy that AF referred to Midway Islands.
However, there are also examples more aligned with modern communication,

like the following one given by [KL14, Section 3.4.2]. Consider an adversary with
remote access to a command-line interface, which encrypts all commands entered
by the adversary. If the adversary can eavesdrop on the ciphertexts produced by
the command line, then the adversary can obtain ciphertexts for arbitrary messages
of its choice.

1.2.3 The Random Oracle Model
The seminal work by Goldwasser and Micali introducing the provable security
paradigm for cryptography [GM84] was a major step forward for cryptography
as a science. However, back then and even today, most cryptographic schemes used
in practice are not shown to be secure purely in the models of provable security.
Bellare and Rogaway, therefore, introduced the random oracle model (ROM) to
bridge this gap in their seminal work in 1993 [BR93]. In the ROM, the challenger
and the adversary are given oracle access to a shared random oracle (RO). If the RO
is queried on any input X, it checks whether it has been queried for X previously
or not. If it has not been queried on X before, it draws an output YX uniformly at
random from the range of the RO, stores it for future reference. It then returns YX
to the algorithm that queried for X. If the RO has been queried for X previously,
it retrieves YX from storage and returns YX to the algorithm that queried the RO
for X. In most applications, the domain of a RO will be {0, 1}∗ and the range will
be {0, 1}n for some n ∈ N. However, other domains and ranges are used as well.
Once a cryptographic scheme is proven secure using the ROM, the heuristic is to
instantiate the RO with a cryptographic hash function H : {0, 1}∗ → {0, 1}n. Of
course, if the RO has a different domain or range, this must be addressed in the
instantiation. Furthermore, numerous security proofs in the ROM, particularly for
schemes used in practice, also use the so-called programmability of random oracles.
That is, the reduction in a security proof adaptively chooses specific outputs of the
RO for inputs of the reduction’s choice while maintaining the output distribution
of the RO.

5
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The random oracle heuristic has proven immensely valuable in constructing cryp-
tographic schemes with practical efficiency whose security holds in real-world ap-
plications. However, as Canetti et al. showed [CGH98, CGH04], ROs can unfortu-
nately not be instantiated in a theoretically sound way. From a theoretical point
of view, it would therefore be preferable to have cryptographic constructions that
are secure without relying on an uninstantiable model. We say that a construction
or proof is in the standard model if it does not make use of the ROM. This thesis
makes progress towards efficient constructions without the ROM by proposing as-
sumptions for hash functions that are significantly weaker than random oracles and
by showing how these assumptions can be used for efficient cryptographic schemes
with provable security.

1.2.4 Outline
We conclude the introduction by providing an outline of the thesis.

Chapter 2: Preliminaries We provide preliminaries to the subsequent chapters of
the thesis. That is, we introduce the notation and the computational model
used throughout the thesis. Moreover, we formally introduce verifiable ran-
dom functions and identity-based key encapsulation mechanisms, the cryp-
tographic primitives with which this is concerned the most. Furthermore,
we formally introduce the complexity assumptions used in this thesis and
describe the game hopping technique to structure complex security proofs.
Finally, we discuss partitioning arguments, the proof technique that we em-
ploy in all constructions of cryptographic schemes in this thesis. Specifically,
we first introduce partitioning arguments and discuss how they are used to
achieve cryptographic schemes with adaptive security. We then discuss the
challenges in using partitioning arguments to prove the adaptive security of
schemes that require decisional security, like VRFs and IB-KEMs.

Chapter 3: Efficient Verifiable Random Functions This chapter discusses the ef-
ficiency of VRFs in the standard model and provides novel constructions
that improve on the status quo. To that end, we first introduce admissi-
ble hash functions (AHFs), a building block used in most recently published
VRFs that focus on efficiency and do not rely on the ROM. We then de-
velop tools to assess the potential real-world efficiency of VRFs that rely on
AHFs. These tools show that the efficiency that VRFs based on AHFs can
achieve is inherently limited by the information-theoretic security required by
all instantiations of AHFs known to us. Therefore, we propose computational
admissible hash functions (cAHFs) as an alternative with computational ef-
ficiency, functioning as a drop-in replacement for AHFs. We then present an
efficient VRF whose security can be proven using cAHFs. However, these
VRFs still have key and proof sizes that are not practical. To construct even
more efficient VRFs, we introduce blockwise partitioning as a new technique
to achieve adaptive security. Blockwise partitioning can no longer function

6
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as a drop-in replacement for AHFs but enables us to construct more efficient
VRFs. Finally, we provide a comprehensive comparison of concrete key and
proof sizes of VRFs.

Chapter 4: Verifiable Random Functions with Optimal Tightness All currently
known standard model VRFs have a reduction loss that is much worse than
what one would expect from known optimal constructions of closely related
primitives like unique signatures. In this chapter, we show that:
1. Every security proof for a VRF that relies on a non-interactive com-

plexity assumption has to lose a factor of Q, where Q is the number of
adversarial queries. To that end, we extend the meta-reduction tech-
nique of Bader et al. [BJLS16] to also cover VRFs.

2. This raises the question: Is this bound optimal? We answer this question
in the affirmative by presenting the first VRF with a reduction from
the non-interactive q-DBDHI assumption [BB04a, Definition 4] to the
security of VRF that achieves this optimal loss.

We thus paint a complete picture of the achievability of tightly secure verifi-
able random functions: We show that a security loss of Q is unavoidable and
present the first construction that achieves this bound.

Chapter 5: Efficient Identity-Based Key-Encapsulation Schemes from Lattices
Programmable hash functions (PHFs) were formally introduced by Hofheinz
and Kiltz in [HK08, HK12], but only for complexity assumptions that do not
hold in the presence of large-scale quantum computers. Zhang et al. then
introduced PHFs for lattices that allow the construction of identity-based key
encapsulation mechanisms (IB-KEMs), a building block that implies IBEs
schemes, and digital signatures with post-quantum security.
In this chapter, we present PHFs with short function descriptions, which thus
allow us to significantly reduce the size of public keys and public parameters
of digital signatures and IBEs schemes. Moreover, we define balanced pro-
grammable hash functions (balanced PHFs) that allow the construction of
schemes with decisional security, such as IB-KEMs or IBE schemes, without
requiring an artificial abort step. Finally, we present an IB-KEM that can be
generically be instantiated with balanced PHFs.

1.3 Publication Overview
This thesis builds upon the following peer-reviewed publications and the following
unpublished manuscript.
Peer-reviewed publications:

[JN19a] Tibor Jager and David Niehues. On the real-world instantiability of admis-
sible hash functions and efficient verifiable random functions. In Kenneth G.
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Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 303–332, Waterloo, ON, Canada, August 12–16, 2019. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-030-38471-5_13.

[JKN21] Tibor Jager, Rafael Kurek, and David Niehues. Efficient adaptively-secure
IB-KEMs and VRFs via near-collision resistance. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 596–626, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany. doi:10.1007/978-3-
030-75245-3_22.

[Nie21] David Niehues. Verifiable random functions with optimal tightness. In
Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 61–
91, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-75248-4_3.

Unpublished manuscripts:

[JN21] Tibor Jager and David Niehues. Compact and Balanced Programmable Hash
Functions for Lattices. 2021. Unpublished manuscript. To be submitted to
PKC 2022.
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2 Preliminaries
Before presenting the results of this thesis, we introduce the notation used through-
out this thesis and present some further foundations.

2.1 Notation
Throughout this thesis, λ denotes the security parameter. Such a parameter is
commonly used in cryptography and allows to scale the difficulty of breaking a
cryptographic scheme. Thus, the security parameter allows to choose key and
parameter sizes of cryptographic schemes depending on a desired security level. For
c ∈ N, we denote the set {1, . . . , c} of all integer from 1 to c by by [c]. Furthermore,
for a, b ∈ N with a ≤ b ≤ c we denote the set {a, . . . , c} by [a, c] and the set [c]\{b}
by [c \ b]. Moreover, we let

[c]0 := [c] ∪ {0}, [a, c]0 := [a, c] ∪ {0}, and [c \ b]0 := [c \ b] ∪ {0}.

Also, for a finite set S we denote sampling an element s uniformly at random from
S by s $←− S. Moreover, unless specified otherwise, all logarithms in this thesis are
to the basis two and we use poly to denote an arbitrary polynomial over R if no
further specification is required.
Since we will repeatedly use bit strings and operations on them, we introduce

some notation for them. That is, for some n, i ∈ N wit i ≤ n and a bit string
x ∈ {0, 1}n, we denote the ith bit of x by xi. We will also use this notation for bit
strings that are outputs of functions. For example, if H is a function that produces
outputs in {0, 1}n, then we denote the ith bit of H(X) by H(X)i, where X is an
arbitrary element from H’s domain. Furthermore, for n,m ∈ N and bit strings
x ∈ {0, 1}n and y ∈ {0, 1}m we let

x ‖ y := x1, . . . , xn, y1, . . . , ym ∈ {0, 1}n+m

denote the concatenation of x and y.
Finally, we introduce the notion of negligible functions.

Definition 1. We say that a function f : N→ R≥0 is negligible if for every positive
polynomial poly there is an N ∈ N such that for all n ≥ N it holds that

f(n) < 1
p(n) .

We will denote an arbitrary negligible function by negl. Furthermore, we say that
a function f : N→ R≥0 is non-negligible f is not negligible.

9
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2.2 Computational Model
We will repeatedly consider runtimes and success probabilities of algorithms and
thus require that these quantities are well-defined. We thus define a computational
model in the form of Turing machines (TMs), which were first introduced by Alan
Turing in [Tur37]. Note that, unless specified otherwise, all algorithms in this thesis
are modelled as Turing machines. We follow the notation for Turing machines
from [AB09, Chapter 1] and slightly adapt it.

Definition 2 (Turing machine, adapted from [AB09, Chapter 1]). A k-tape Turing
machine (TM) M , for k ∈ N and k ≥ 2, is described by a triple M = (Σ,Γ, Q, δ)
of the following components:

• Γ is a finite set of symbols that M ’s tape can contain. We assume without
loss of generality that Γ always contains the blank symbol �, and the start
symbol B. We refer to Γ as the tape alphabet of M .

• Σ ( Γ is a finite set that contains all symbols that can be an input to M . In
particular, we require that Σ does not contain the start symbol B. We refer
to Σ as the input alphabet of M .

• Q is the finite set of states M can be in. We again assume without loss of
generality that Q always contains the start state qstart and a the halting state
qhalt.

• A state transition function δ : Q × Γk → Q × Γk−1 × {L, S,R}k. δ describes
the rules that M follows during execution.

If M is in state q ∈ Q and if (σ1, . . . , σk) ∈ Γk are the symbols currently being read
in the k tapes, and δ(q, (σ1, . . . , σk)) = (q′, (σ′2, . . . , σ′k), z), where z ∈ {L, S,R}k,
then at the next step the σ symbols in the last k − 1 tapes will be replaced by the
σ′ symbols, M will be in state q′, and the k heads will each move either left, right,
or stay, depending on the symbol given in z for the respective tape. If the machine
tries to move left from the leftmost position of a tape, then it will stay in place
instead.
We refer to the first tape as the input tape. Moreover, we refer to triples

(q,X, n) ∈ Q × (Γ∗)k × Nk as a configurations of M . For such a triple, q ∈ Q
specifies the state M is in, X = (x1, . . . , xk) ∈ (Γ∗)k specifies the contents of the
respective tapes until all further symbols to the right on the respective tape are the
blank symbol �. Furthermore, n = (n1, . . . , nk) ∈ Nk specifies the positions of M ’s
heads on the respective tapes.
All tapes except for the input tape are initialized with the first symbol being the

start symbol B and with all other locations of the tape being the blank symbol
�. The input tape is initialized to begin with the start symbol B, followed by the
input of M of finite length, and the blank symbol � on the rest of its cells. All
heads start at the left ends of the tapes and the machine is in the special starting

10
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state qstart. We refer to this configuration as the start configuration of M on input
x. Finally, we only allow transition functions δ that do not allow any change to
the state, the content of the tapes or the positions of M ’s heads once M is in state
qhalt. The content of the second tape except for trailing blank symbols � are the
output of M . For a TM M and x ∈ {0, 1}∗ we write M(x) to denote the execution
of M on input x. Furthermore, if there is no specific input x, we write use · as a
placeholder and write M(·).
Even though Turing machines can use arbitrary input alphabets of finite size, we

limit ourselves for to binary inputs for clarity and only consider Turing machines
with Σ = {0, 1}. Observe that this limitation is without any loss of generality be-
cause symbols of arbitrary finite alphabets can be encoded in binary. In particular,
we assume that all numbers that are inputs to algorithms are encoded in binary
unless stated otherwise. Moreover, we only consider TMs that halt on all inputs.
After formally introducing Turing machines, we proceed by formally defining the

running time of Turing machines.
Definition 3 (Runtime of TMs). We say that a TM M runs in time t ∈ N on
input x ∈ {0, 1}∗ if M reaches the state qhalt after exactly t successive evaluations
of δ. If there is a polynomial p : N → N such that for all x ∈ {0, 1}∗ the TM M
runs in time at most p(|x|), then way say M runs in polynomial time.
Throughout this thesis, we will repeatedly encounter randomized algorithms that

are not captured by the model of computation we described so far. We thus extend
our computational model to also capture these algorithms by defining probabilistic
Turing machines.
Definition 4 (Probabilistic TMs, adapted from [Gol08, Definition 6.1]). A proba-
bilistic Turing machine M is a TM associated with a function p : N→ N, and with
a second designated input tape that takes p(|x|) many uniformly random bits as in-
put, where x ∈ {0, 1}∗ isM ’s primary input. For any x ∈ {0, 1}∗ and ρ $←−{0, 1}p(|x|)
we write M(x; ρ) for the execution of M on input x with randomness ρ. Moreover,
note that the output of M on input x and randomness ρ $←− {0, 1}p(|x|) is a random
variable because ρ is drawn uniformly at random. We say that M is a probabilistic
polynomial time algorithm (PPT) if p is polynomially bounded there is a polyno-
mial p′ : N → N such that M(x; ρ) runs in time at most p′(|x|) for all x ∈ {0, 1}∗
and all ρ ∈ {0, 1}p(|x|).
Remark 1. In most occasions, we will omit explicitly drawing the randomness ρ
and just write y $←−A(x) for executing a probabilistic algorithm A with input x and
uniformly random input ρ of appropriate length. Moreover, for a fixed randomness
ρ, we viewA(x; ρ) as deterministic algorithm. This will be of relevance in Chapter 4,
where we also recall this notation shortly.
In this thesis, we will oftentimes consider algorithms that have oracle access to

other algorithms. This interaction is also not captured by our computational model
up to this point. We incorporate it by defining Turing machines with oracle access
as follows.

11
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Definition 5 (TMs with oracle access, adapted from [Gol08, Definition 1.1]). A
(probabilistic) Turing machine M with oracle access to a (probabilistic) TM N is
a Turing machine with a special additional tape, called the oracle tape, and two
special states, the oracle invocation state qinvoke and the oracle spoke state qspoke. M
accesses its oracle during execution as follows.

• For configurations with a state different from qinvoke the next configuration is
defined via the transition function δ as usual.

• Let γ = (q,X, n) be a configuration with q = qinvoke and suppose that the
content of the oracle tape (except for trailing blank symbols �) is o. Then
the configuration following γ is identical to γ, except that the state is qspoke,
and the oracle tape contains N(o) (followed by infinitely many blank symbols
�). We refer to o as M ’s query and to N(o) as the oracles response.

We denote the output ofM on input x ∈ {0, 1}∗ with oracle access to N byMN(x).
Moreover, if N is a probabilistic TM, then we implicitly assume that the result is
computed as N(o; ρ), where ρ is a bit string of appropriate length that is drawn
uniformly at random.

In complexity theory the evaluation of an oracle query is counted as a single
step and thus does not affect the asymptotic runtime of a TM with oracle access.
However, in some of our applications, it will be convenient to count the evaluation
of an oracle query as as many steps as N takes to compute the result. We will
explicitly state this for the specific application.

2.3 Cryptographic Primitives
As further preliminaries, we now formally introduce VRFs and IB-KEMs, which we
informally introduced in Section 1.2.1, and their accompanying security notions.
Remark 2. Note that we will view the time to execute the security experiments
for VRFs and IB-KEMs as part of the runtime of an adversary that is executed
in the security experiment. We do so as to not worsen the runtime of a reduction
by accounting it runtime for simulating the security experiment for the adversary.
Moreover, it allows us to state the security proofs with more clarity. Moreover,
note that we supply the adversary in the security experiments only with λ bits of
randomness for clarity ρA $←− {0, 1}λ. Note that this limitation is without loss of
generality because the randomness can be stretched to arbitrary polynomial length
by a pseudorandom number generator [KL14, Corollary 7.10].

2.3.1 Verifiable Random Functions
As we discussed in Section 1.2.1, verifiable random functions (VRFs), introduced
by Micali, Rabin and Vadhan in [MRV99], can be thought of as the public key
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GPsrd
VRF ,(A1,A2)(λ)

(vk, sk) := SetupVRF(1λ); ρA $←− {0, 1}λ

(X∗, st) $←−AEval(sk,·)
1 (vk; ρA)

(Y0, π) := Eval(sk, X∗)
Y1

$←−Y
b $←− {0, 1}

b′ := AEval(sk,·)
2 (Yb, st)

if (b′ == b)
return 1

else
return 0

Figure 2.1: The security experiment specifying pseudorandomness of verifiable
random functions.

equivalent of pseudorandom functions. Here we formally introduce VRFs and their
security properties.

Definition 6. A verifiable random function (VRF) with domain X and finite range
Y consists of three algorithms VRF = (SetupVRF,Eval,Vfy) with the following
syntax.

• (vk, sk) $←− SetupVRF(1λ) takes as input the security parameter λ and outputs
a key pair (vk, sk). We say that sk is the secret key and vk is the verification
key.

• (Y, π) $←− Eval(sk, X) takes as input a secret key sk and an input X ∈ X , and
outputs a function value Y ∈ Y and a proof π.

• Vfy(vk, X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ X , Y ∈ Y ,
and proof π, and outputs a bit.

We say that VRF = (SetupVRF,Eval,Vfy) with domain X and range Y is a secure
VRF if it fulfills the following requirements.

Correctness. For all (vk, sk) $←− SetupVRF(1λ), X ∈ X and, (Y, π) $←− Eval(sk, X) it
must hold that Vfy(vk, X, Y, π) = 1. Further, the algorithms SetupVRF, Eval,
Vfy have to be PPTs.

Unique provability. For all vk ∈ {0, 1}∗ and all X ∈ X , there does not exist any
Y0, π0, Y1, π1 ∈ {0, 1}∗ such that Y0 6= Y1, and it holds that Vfy(vk, X, Y0, π0) =
Vfy(vk, X, Y1, π1) = 1.
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GIND-ID-CPA
IB-KEM,(A1,A2)(λ)

(mpk,msk) := SetupIBK(1λ); ρA $←− {0, 1}λ

(id∗, st) $←−AKeyGen(mpk,msk,·)
1 (1λ,mpk; ρA)

κ0
$←−K; (ct, κ1) $←− Encap(mpk, id∗)

b $←− {0, 1}

b′ := AKeyGen(mpk,msk,·)
2 (ct, st)

if (b′ == b)
return 1

else
return 0

Figure 2.2: The security experiment for indistinguishability of ciphertexts under
adaptively chosen plaintext attacks for IB-KEMs.

Pseudorandomness. Consider an adversary A = (A1,A2) with access (via oracle
queries) to Eval(sk, ·) in the pseudorandomness game depicted in Figure 2.1.
We say that A is legitimate if there is no ρA ∈ {0, 1}λ such that A1 or A2
query Eval(sk, X∗), where X∗ ∈ X is part of the output of A1. We define the
advantage of A in breaking the pseudorandomness of VRF as

AdvPsrd
VRF ,A(λ) :=

∣∣∣Pr
[
GPsrd
VRF ,(A1,A2)(λ) = 1

]
− 1/2

∣∣∣ .
In addition to the properties above, Hofheinz and Jager introduced the notion

of VRFs with all desired properties [HJ16]. More specifically, a VRF possesses all
desired properties if it fulfills all requirements above, has an exponentially sized
domain and is proven secure under a non-interactive complexity assumption. In
this thesis, we only consider VRFs that have all desired properties.

2.3.2 Identity-Based Encryption
Identity-based encryption was first described by Shamir in 1984 [Sha84]. As Ben-
tahar et al. [BFMS08] describe, IBEs can also be constructed by first constructing
an identity-based key encapsulation mechanism (IB-KEM) and then combining it
with an data encapsulation mechanism (DEM). This approach is also known as the
KEM-DEM approach and was first formally describe by Shoup in 2000 [Sho00]. We
follow this approach and thus only define IB-KEMs.

Definition 7. An identity-based key encapsulation mechanism (IB-KEM) consists
of the following four PPT algorithms:

• (mpk,msk) $←− Setup(1λ) takes as input the security parameter and outputs
the public parameters mpk and the master secret key msk.
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• uskid
$←− KeyGen(msk, id) returns the user secret key uskid for identity id ∈

{0, 1}λ.

• (ct, κ) $←− Encap(mpk, id) returns a tuple (ct, κ), where ct is the ciphertext
encapsulating κ with respect to identity id.

• κ = Decap(uskid, ct, id) returns the decapsulated key κ or an error symbol ⊥.

Correctness requires that for all λ ∈ N, all (mpk,msk) $←− SetupIBK(1λ), all id ∈
{0, 1}λ, all (κ, ct) $←− Encap(mpk, id) and all uskid

$←− KeyGen(msk, id):

Pr[Decap(uskid, ct, id) = κ] ≥ 1− negl(λ).

In order for the combination of an IB-KEM with a DEM to yield an adaptively-
secure IBE scheme, we need that the IB-KEM has indistinguishable ciphertexts
under adaptively chosen plaintext attacks, which we refer to as IND-ID-CPA se-
curity. We use the following standard IND-CPA-security notion for IB-KEMs
from [BFMS08].

Definition 8. For an identity-based key encapsulation mechanism IB-KEM =
(SetupIBK,KeyGen,Encap,Decap) and an adversary A = (A1,A2) with access (via
oracle queries) to KeyGen(mpk,msk, ·) let IND-ID-CPA be the security experiment
depicted in Figure 2.2. We say that A is legitimate, if there is no ρA ∈ {0, 1}λ such
that A1 or A2 query KeyGen(msk, id∗), where id∗ is the identity output by A1. We
define the advantage of A in breaking the IND-ID-CPA security of IB-KEM as

AdvIND-ID-CPA
IB-KEM,A(λ) :=

∣∣∣Pr[GIND-ID-CPA
IB-KEM,(A1,A2)(λ) = 1]− 1/2

∣∣∣
We say that IB-KEM is IND-ID-CPA (t, ε)-secure if AdvIND-ID-CPA

A,IB-KEM(λ) ≤ ε for all
adversaries probabilistic adversaries A = (A1,A2) running in time t.

2.4 Complexity Assumptions
Here, we introduce the complexity assumptions that we repeatedly use in Chapters 3
and 4. We will introduce further complexity assumptions in Chapter 5 in the
immediate context where we need them.
The constructions of our VRFs in Chapter 3 and Chapter 4 are based on bilinear

pairings. Informally, a bilinear pairing for a prime p and two groups G1,G2 of size
p and a target group GT also of size p is a function e : G1×G2 → Gt such that for
all generators g1 of G1 and g2 of G2 and all a, b ∈ Zp is holds that

e(ga1 , gb2) = e(g1, g2)ab.

Bilinear pairings have more required properties that we formalize below. Moreover,
note that we only consider so-called Type-I pairings. That is, pairings where G1 =
G2. We refer to [GPS08] for a more detailed discussion of bilinear pairings.
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We introduce (certified) bilinear group generators, which were originally de-
scribed in [HJ16] to formalize how a pairing is chosen. The definition of (certified)
bilinear group generators allow us to define complexity assumptions relative to the
way the bilinear group is chosen end ensure that every group element has a unique
encoding, which is required for the unique provability of the constructions of our
VRFs.

Definition 9. A Bilinear Group Generator is a probabilistic polynomial-time al-
gorithm GrpGen that takes as input a security parameter λ (in unary) and outputs
BG = (p,G,GT , ◦, ◦T , e, φ(1)) $←− GrpGen(1λ) such that the following requirements
are satisfied.

1. p is a prime and log(p) ∈ Ω(k)

2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps
φ : Zp → G and φT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security
parameter) maps ◦ : G×G→ G and ◦T : GT ×GT → GT , such that
a) (G, ◦) and (GT , ◦T ) form algebraic groups,
b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
c) φT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the security
parameter) bilinear map e : G×G→ GT . We require that e is non-degenerate,
that is,

x 6= 0⇒ e(φ(x), φ(x)) 6= φT (0).

Definition 10. We say that group generator GrpGen is certified, if there exist
deterministic polynomial-time (in the security parameter) algorithms GrpVfy and
GrpElemVfy with the following properties.

Parameter Validation. Given the security parameter (in unary) and a string
BG, which is not necessarily generated by GrpGen, algorithm GrpVfy(1λ,BG)
outputs 1 if and only if BG has the form

BG = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 9 are satisfied.

Recognition and Unique Representation of Elements of G. Furthermore,
we require that each element in G has a unique representation, which can
be efficiently recognized. That is, on input the security parameter (in unary)
and two strings BG and s, GrpElemVfy(1λ,BG, s) outputs 1 if and only if
GrpVfy(1λ,BG) = 1, and it holds that s = φ(x) for some x ∈ Zp. Here
φ : Zp → G denotes the fixed group isomorphism contained in BG to specify
the representation of elements of G.
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Given the definition of (certified) bilinear group generators, we introduce the
computational problems and complexity assumptions that we use in the construc-
tions of VRFs. Note that for a finite group G, we let

G∗ := G \ {1G}

denote the group G without the identity element 1G.

Definition 11 (q-DDH problem). For a bilinear group generator GrpGen, let BG $←−
GrpGen(1λ), g, h $←− G∗, α $←− Zp, T0 := e(g, h)αq+1 and T1

$←− GT . We then denote
with

Advq-DDH
B (λ) :=∣∣∣Pr

[
B(BG, g, gα, . . . , gαq , h, T0) = 1

]
− Pr

[
B(BG, g, gα, . . . , gαq , h, T1) = 1

]∣∣∣
the advantage of B in solving the q-DDH problem for groups generated by GrpGen,
where the probability is taken over the randomness of drawing g, h, α and T and
the internal randomness of B. For functions t : N → N and ε : N → [0, 1], we say
that B (t, ε)-solves the q-DDH problem relative to GrpGen, if Advq-DDH

B (λ) ≥ ε(λ)
and B runs in time at most t(λ).

Definition 12 (q-DDH assumption). Let GrpGen be a bilinear group generator. If
for all polynomials t : N → N and all non-negligible functions ε : N → [0, 1], there
is no algorithm B that (t, ε)-solves the q-DDH assumption relative to GrpGen, then
we say that the q-DDH problem is hard relative to GrpGen.

Note that the q-DDH assumption is trivially implied by the decisional q + 1
Bilinear Diffie-Hellman Exponent assumption introduced in [BBG05].

Definition 13 (q-DBDHI problem, Definition 4 in [BB04a]). For a bilinear group
generator GrpGen, an algorithm B and q ∈ N, let BG $←− GrpGen(1λ), g, h $←− G∗,
α $←− Z∗p, T0 := e(g, h)1/α and T1

$←−GT . We then denote with

Advq-DBDHI
B (λ) :=∣∣∣Pr

[
B(BG, g, h, gα, . . . , gαq , T0) = 1

]
− Pr

[
B(BG, g, h, gα, . . . , gαq , T1) = 1

]∣∣∣
the advantage of B in solving the q-DBDHI problem for groups generated by GrpGen,
where the probability is taken over the randomness of GrpGen, the random choices
of g, h and α, and the internal randomness of B. For functions t : N → N and
ε : N→ [0, 1], we say that B (t, ε)-solves the q-DBDHI problem relative to GrpGen,
if Advq-DBDHI

B (λ) ≥ ε(λ) and B runs in time at most t(λ).

Definition 14 (q-DBDHI assumption). Let GrpGen be a bilinear group generator.
If for all polynomials t : N → N and all non-negligible functions ε : N → [0, 1],
there is no algorithm B that (t, ε)-solves the q-DBDHI problem relative to GrpGen,
then we say that the q-DBDHI problem is hard relative to GrpGen.
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2.5 Sequence of Games Arguments
To prove the security of cryptographic schemes such as VRFs and IB-KEMs, mod-
ern cryptography uses reductions from complexity assumptions like the ones we
introduced in Section 2.4 above to the security of the respective scheme. That is,
the proof shows that any adversary that breaks the security of the cryptographic
scheme implies the existence of an efficient algorithm for a computational problem.
Since the complexity assumption states that such an algorithm can not exist, we
thus conclude that the cryptographic scheme is secure under the respective com-
plexity assumption.
These reductions can become rather complex and are thus prone to errors. To

tame the complexity of such proofs and allow experts to efficiently verify the cor-
rectness, it is common to structure security proofs as so-called sequence of games
arguments. Sequence of games arguments have been used known in cryptography
for quite some time. An early example of their usage is Goldreich et al.’s work
on the construction of pseudorandom functions [GGM86]. Since then, different no-
tations and notions for sequence of games arguments have evolved. Most notable
are the notations of code-based games by Bellare and Rogaway [BR06] and the se-
quence of games notation by Shoup [Sho04]. This thesis uses the latter notation by
Shoup [Sho04].
A proof structured as a sequence of games argument makes small incremental

changes to the security experiment. More specifically, consider one of the security
experiments for VRFs or IB-KEMs, which we introduced in Section 2.3 and denote
the event that the security experiment outputs 1 by G0. Thus, for the security of
VRFs and IB-KEMs, we require that Pr [G0] is negligibly close to 1/2. We then
define a sequence of games Game 1 up to Game n, where there is an incremental
change for each consecutive game. Denoting the event that Game i outputs 1 by
Gi, these small incremental changes make it easy to relate Pr [Gi−1] to Pr [Gi] for
all i ∈ [n]. In particular, the changes will be made such that, in the end, we will
be able to conclude that

|Pr [G0]− Pr [Gn]| (2.1)
is negligible. Furthermore, Game n will be constructed in a way such that it is easy
to describe an algorithm B solving the computational problem and relating the B’s
success probability to the success probability of the adversary in Game n. This
property, together with Equation (2.1) thus enable us to relate the adversary’s
advantage to the advantage of B. In the proofs in this thesis, we will construct
Game n and Game n − 1 such that Pr [Gn] = 1/2 and that |Pr [Gn]− Pr [Gn−1]| is
identical to the advantage of B.
Over the years some useful tools for these types of proofs have been developed.

One of the most common tool is the difference lemma. It is used to relate Pr [Gi−1]
and Pr [Gi] if the challenger aborts the experiment in Game i if an event bad hap-
pens. Informally, the lemma then states that |Pr [Gi−1]− Pr [Gi]| is at most Pr [bad].
We provide the formal statement below and refer to [Sho04, Lemma 1] for the proof.
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Lemma 1 (Difference lemma [Sho04, Lemma 1]). Let A,B and F be events in
some probability distribution, and suppose that A ∧ ¬F ⇐⇒ B ∧ ¬F . Then

|Pr [A]− Pr [B]| ≤ Pr [F ]

holds.

2.6 Partitioning Arguments for Adaptive Security
As the final preliminary before presenting the results of the thesis, we introduce par-
titioning arguments, a proof strategy that we will make use of repeatedly through-
out this thesis. Thus, we first describe partitioning arguments and then discuss the
challenges that come with using them to prove the pseudorandomness of VRFs or
the IND-ID-CPA security of IB-KEMs.
Consider IB-KEMs as a concrete example, but note that all statements also apply

to VRFs. A reduction that uses a partitioning argument, at the very beginning,
partitions the identity space in two disjoint sets as follows:

1. A “controlled set”, which contains all identities for which the reduction is able
to answer queries made by the adversary. However, if the adversary chooses
the challenge identity in the controlled set, the reduction is not able to extract
a solution to the underlying complexity assumption.

2. A “uncontrolled set”, which contains all identities for which the reduction
is able to extract a solution to the underlying complexity assumption if the
adversary chooses it as the challenge. However, the reduction is not able to
answer any queries for identities that lies in this subset.

Thus, if the adversary makes a query for any identity in the uncontrolled set or
chooses the challenge identity in the controlled set, then the reduction can only
abort and output a uniformly random bit. Thus, the reduction has to choose the
controlled set and the uncontrolled set in a probabilistic way such that it does
not has to abort with a non-negligible probability. More specifically, all queries
id(1), . . . , id(Q) have to fall into controlled set and the challenge identity id∗ has to
fall in the uncontrolled set a non-negligible probability.
Partitioning is often used in the random oracle model, which we discussed in

Section 1.2.3. For instance, the well-known security proofs of Full-Domain Hash
signatures [BR96], BLS signatures [BLS04], or the Boneh-Franklin IBE [BF03] use
this approach. Furthermore, partitioning is the only known way to prove security
of unique signatures1 or VRFs against adaptive adversaries.
However, this thesis is concerned with partitioning arguments that do not use the

random oracle heuristic, i.e., proofs in the standard model. There are several semi-
generic techniques for partitioning arguments in the standard model. Most notably

1That is, digital signatures where for any given (public key, message)-pair there exists only one
unique string that is accepted as a signature by the verification algorithm.
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are admissible hash functions (AHFs) [BB04a] and programmable hash functions
(PHFs) [HK08, HK12]. Admissible hash functions are a combinatoric approach to
choose the controlled and uncontrolled set and we discuss this approach in detail in
Section 3.2. In contrast to AHFs, programmable hash functions also describe how
the partitioning in controlled and uncontrolled sets are embedded into a construc-
tion. While Hofheinz and Kiltz originally defined PHFs for schemes based on the
RSA assumption, the discrete logarithm assumption and closely related assump-
tions [HK08, HK12], Zhang et al. also introduce PHFs for constructions based on
lattice problems [ZCZ16]. We introduce more efficient constructions of PHFs for
lattices in Chapter 5.

Partitioning arguments for decisional security. We use partitioning
arguments to prove the pseudorandomness of VRFs (see Definition 6) and the
IND-ID-CPA security of IB-KEMs (see Definition 8). Both these primitives with
their accompanying security notions have in common that they require decisional
security, meaing the adversary has to correctly guess a bit b with a probability
that is non-negligibly far away from 1/2 to break the security. Consequently, in
all our constructions, a reduction from a decisional assumption like the q-DBDHI
assumption (see Definition 14) or the q-DDH assumption (see Definition 12) are
used to prove the security.
This comes with the issue that the event that the reduction aborts can be cor-

related with the choice of the queries and the challenge chosen by the adversary.
More specifically, let succ-red be the event that the reduction solves the complexity
assumption and let abort be the event that the reduction aborts and outputs a
random bit. For clarity in this informal description, we assume that the reduction
always outputs the correct bit when the adversary succeeds and the reduction does
not abort. We then have that

Pr [succ-red] = Pr [succ-red ∧ abort] + Pr [succ-red ∧ ¬abort]

= 1
2(1− Pr [¬abort]) + Pr [succ-red ∧ ¬abort]

= 1
2 + Pr [succ-red ∧ ¬abort]− Pr [¬abort]

2 .

Thus, the reduction has to ensure that not only Pr [¬abort] is large enough, but
also that Pr [¬abort] is not too large. Waters achieved this by introducing an arti-
ficial abort step [Wat05]. In this step, the reduction uniformly at random samples
polynomially many query potential sequences and by that estimates the probability
τ to abort for a uniformly random query sequence. The reduction then aborts and
outputs a random bit with a probability based on τ and by that makes the event
abort, not technically, but virtually independent from the particular sequence of
queries the adversary chose and thus allows the reduction to succeed.
The artificial abort technique has the major downside that the estimation of τ

is computationally quite expensive. Bellare and Ristenpart addressed this issue
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by proving close upper and lower bounds on Pr [¬abort] in a technically involved
proof [BR09a]. Ultimately, this allowed them to avoid the computationally expen-
sive artificial abort step that Waters required.
Throughout the thesis, we discuss further approaches to prove adaptive security

using partitioning arguments. In Chapters 3 and 5, we discuss partitioning argu-
ments that yield particularly efficient constructions and in Chapter 4, we present a
partitioning argument that makes the event abort independent from the sequence
of queries chosen by the adversary.
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In this chapter, we study the construction of efficient verifiable random function
from bilinear pairings in the standard model. To this end, we first study admissi-
ble hash functions (AHFs) as a common building block to construct VRFs in the
standard model and derive techniques to show the inherent limitations of AHFs in
Section 3.2. Motivated by these limitations, we proceed in Section 3.3, by present-
ing computational admissible hash functions (cAHFs) and their instantiation from
truncation-collision resistant hash functions, first introduced in [JK18], as a drop-
in replacement for AHFs and show how cAHFs can be used to construct efficient
VRFs. In Section 3.4, we introduce blockwise partitioning from weak near-collision
resistant hash functions in order to construct even more efficient VRFs than the
VRFs we constructed from cAHFs. However, this gain in efficiency comes at the
cost that blockwise partitioning can not replace AHFs as generically as cAHFs can.
In addition to the VRF built from blockwise partitioning we present in this chap-
ter, blockwise partitioning can also be used to construct efficient identity-based key
encapsulation mechanisms. We present an identity-based key encapsulation mech-
anism using blockwise partitioning in Chapter 5. Finally, we compare VRFs from
pairings in detail in Section 3.5 and conclude the chapter in Section 3.6.

Author’s contributions. Overall, the results in this chapter are based on
joint work with Tibor Jager and Rafael Kurek published in [JKN21, JN19a]. More
specifically, the results presented in Section 3.2 are based on [JN19a] and are the
author’s contribution. The results presented in Section 3.3 are also based on [JN19a]
but are due to joined work with Tibor Jager. In particular the VRF presented in
Construction 1 is a more efficient variant of the VRF published in [JN19a]. It
is also described in the full version [JN19b] of [JN19a]. Furthermore, the results
presented in Section 3.4 are based on the joint work [JKN21]. However, the notions
of weak near-collision resistance and blockwise partitioning are mostly the authors
contribution. Moreover, the VRF presented in Construction 2 and Lemma 7 and
the accompanying proofs are mostly due to myself. The detailed comparison of
VRFs in Section 3.5, except for the discussion of Kohl’s VRF were published in
[JN19a] and are mostly due to myself.
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3.1 Motivation and Overview
VRFs have found a wide range of applications in theory and in practice. One of
the most notable ones is the recent application of VRFs in proof of stake consensus
mechanisms, like the ones used in the Algorand Blockchain [GHM+17], the Cardano
Blockchain [BGK+18, DGKR18] and the DFINITY Blockchain [AMNR18]. Fur-
ther applications are in key transparency systems like CONIKS [MBB+15], the novel
Merkle2 [HHK+21] system, or the discontinued Google key transparency [MGZ+18],
where VRFs prevent the enumeration of all users that have keys in the system. Sim-
ilarly, VRFs are used in the by now inactive DNSSEC extension NSECv5 [VGP+18]
proposal, where they provably prevent zone enumeration attacks in the authenti-
cated denial of existence mechanism of DNSSEC [GNP+15]. Further classical appli-
cations are resettable zero-knowledge proofs [MR01], lottery systems [MR02], verifi-
able transaction-escrow systems [JS04], updatable zero-knowledge databases [Lis05]
and E-Cash [ASM07, BCKL09]. The wide range of applications has led to currently
ongoing efforts to standardize VRFs [GRPV21]. These VRFs are efficient, but the
accompanying security proofs rely on the random oracle heuristic [BR93], which
can not be instantiated in general [CGH04].

Admissible hash functions. AHFs are a generic and useful tool to enable
partitioning proofs in the standard model, that is, without random oracles. They
thus enable construction with adaptive security in the standard model. AHFs were
formally introduced in [BB04b] but had implicitly already been used by Lysyan-
skaya [Lys02]. They are a ubiquitous tool in public-key cryptography and have
been used to realize numerous cryptographic primitives with strong adaptive se-
curity and without random oracles, such as unique signatures [Lys02], verifiable
random functions [Bit17a, HJ16, Jag15, Lys02], different variants of identity-based
encryption [AFL12, BB04b], Bonsai trees [CHKP12], programmable hash func-
tions [FHPS13], and constrained PRFs [AMN+19, DKN+20]. All recent construc-
tions of VRFs that focus on efficiency, such as [Jag15, HJ16, Yam17a, Kat17,
Koh19], rely on AHFs.

Practical Instantiability of AHFs. Given the large number of crypto-
graphic constructions based on AHFs and their relevance for efficient VRFs in the
standard model, it is interesting and important to ask how AHF-based construc-
tions can be instantiated in practice. Known constructions are based on different
types of error-correcting codes with suitable minimal distance, which is required to
be a constant fraction of the length of the code, in order to make the partitioning
argument go through with noticeable success probability. There are many possible
codes to choose from [Gil52, Jus72, SS96, Var57, Zém01], which yield very different
concrete instantiations with very different efficiency and security properties.
Most aforementioned works mention that one or another of these error-correcting

codes can be used to instantiate their AHFs in the asymptotic setting, but it is never
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clarified how their constructions can be instantiated concretely, by explaining how
the underlying code and other cryptographic parameters must be chosen, taking
into account the considered security parameter, deployment parameters such as
the number of AHF evaluations by a realistic adversary, and the tightness of the
security proof. The concrete choice of the code used to instantiate the AHF has a
very significant impact on the efficiency of the resulting cryptosystem. Hence, while
AHFs provide a powerful generic tool to achieve provable security asymptotically,
it is completely unclear how efficiently they can be instantiated concretely.

Contributions. We make progress regarding most of the issues laid out above
by first developing tools to assess the practicality of AHFs and then providing more
efficient alternatives from non-standard yet plausible assumptions. We discuss the
contributions in more detail below.

• We assess how AHFs can be instantiated with error-correcting codes. We
show that while AHFs are theoretically sufficient to obtain polynomial-time
constructions and security against polynomial-time adversaries in the asymp-
totic setting, they yield only extremely inefficient concrete instantiations. By
applying bounds on error-correcting codes from classical coding theory, we
point out inherent limitations of concrete instantiations of the AHFs pre-
sented in prior work. Concretely, we show that even with codes that meet
the Gilbert-Varshamov (GV) or McEliece-Rodemich-Rumsey-Welch (MRRW)
bound, even optimized variants [Kat17, Yam17a] of known verifiable random
functions [Jag15] have only very inefficient practical instantiations.

• Standard AHFs based on error-correcting codes are essentially an information-
theoretic primitive, which works unconditionally and even for computationally
unbounded adversaries, which of course is stronger than necessary for most
applications. We introduce computational admissible hash functions, which
relax this requirement in the sense that they are only required to partition
the considered set successfully in the presence of a computationally bounded
adversary. This approach makes it possible to overcome the aforementioned
limitations of AHFs. We also give a concrete instantiation of cAHFs, based
on the notion of truncation-collision resistant hash functions from [JK18]. We
furthermore describe a new efficient VRF, based on Jager’s VRF [Jag15] that
uses cAHFs. It thus showcases how cAHFs can be applied in constructions
and proofs and can semi-generically replace AHFs.

• We introduce blockwise partitioning as a new approach to leverage the as-
sumption that a cryptographic hash function is weak near-collision resistant.
In Section 3.4, we show that our technique yields a VRF that achieves both
small public keys and small proofs simultaneously. Furthermore, the size
of the keys and proofs is not only asymptotically small but also concretely.
As we see in our detailed construction in Section 3.5, other constructions,
like [Yam17a, Kat17], that also achieve (poly-)logarithmic size public keys or
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Schemes |vk| |π| Assumption Security loss
[HW10] O(λ) O(λ) O(λ ·Q)-DDHE O(λQ/ε)

[BMR10b] O(λ) O(λ) O(λ)-DDH O(λQ/ε)*
[Jag15] O(λ) O(λ) O(log(Q/ε))-DDH O(Qν/εν+1)
[HJ16] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)

[Yam17a] Sec. 6.1 ω(λ log2 λ)† ω(log2 λ)† Õ(λ)-DBDHI O(Qν/εν+1)
[Yam17a] Sec. 6.2 ω(log2 λ)† ω(

√
λ log2 λ)† Õ(λ)-DBDHI O(Qν/εν+1)

[Yam17b] App. C. ω(log2 λ)† poly(λ) poly(λ)-DBDHI O(λ2Q/ε2)
[Kat17] Sec. 5.1 ω(log2 λ)† ω(λ log2 λ)† ω(log2 λ)†-DBDHI O(Qν/εν+1)
[Kat17] Sec. 5.3 ω(

√
λ log λ)† ω(log λ)† ω(log2 λ)†-DBDHI O(Qν/εν+1)

[Ros18] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)
[Koh19] ω(λ log λ)† ω(log λ)† DLIN O(|π| log(λ)Q2/ν/ε3)
[Koh19] ω(λ2+2η) ω(1)† DLIN O(|π| log(λ)Q2+2/ν/ε3)

VRF cAHF in Construction 1 O(λ) O(λ) O(log λ)-DDH O(t2/ε)
VRFBlk in Construction 2 O(log λ) O(log λ) O(t2/ε)-DBDHI O(t2/ε)

Table 3.1: We compare adaptively-secure VRF schemes in the standard model. We
measure the size of vk and π in the number of the respective group elements and the
size of sk as the number of Zp elements. Q, ε and t respectively denote the number
of queries an adversary makes, the adversaries advantage against the security of
the respective VRF and the adversaries runtime. Most of the constructions use an
error correcting code C : {0, 1}λ → {0, 1}n with constant relative minimal distance
c ≤ 1/2, where n,ν > 1 can be chosen arbitrarily close to 1 by choosing c arbitrarily
close to 1/2 [Gol08, Appendix E.1]. However, this leads to larger n and by that to
larger public keys and/or proofs.

† Note that these terms only hold for “λ large enough” and therefore, key
and proof sizes might have to be adapted with larger constants in order to
guarantee adequate security.

* The loss we state for [BMR10b] is as in the recently updated full ver-
sion [BMR10a].

proofs suffer from large constant factors, even under very optimistic assump-
tions. Furthermore, we will show in Chapter 5 how blockwise partitioning
enables the construction of efficient IB-KEMs from lattices. Moreover, my
co-authors Tibor Jager and Rafael Kurek show in our joined [JKN21] work
that blockwise partitioning also yields highly efficient IB-KEMs from bilinear
pairings.

We asymptotically compare our construction with previous constructions in Ta-
ble 3.1, which is based on the respective table by Kohl [Koh19].

Related work. Boneh and Boyen [BB04b] formally introduced AHFs to con-
struct identity-based encryption schemes without random oracles. Balanced AHFs
were introduced in [Jag15]. The balancedness makes it possible to apply AHF-based
partitioning directly in security proofs considering “indistinguishability-based” se-
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curity experiments, without requiring the artificial abort approach, which was intro-
duced by Waters [Wat05]. Balanced AHFs were used to construct verifiable random
functions [Bit17a, HJ16, Jag15, Yam17a], IBE [Yam17a], constrained pseudoran-
dom functions [AMN+19, DKN+20], and distributed PRFs [LST18]. We consider
both standard and balanced AHFs in detail in Section 3.2.
Recently, Yamada, Katsumata and Kohl developed techniques to optimize VRFs

based on AHFs. Yamada [Yam17a] and Katsumata [Kat17] presented VRFs that
encode the information of the “controlled” set into shorter bit strings and employ
the AHF on this shorter string. Kohl [Koh19] applied a similar approach to the
VRF construction of [HJ16] to obtain a VRF with very shorter proofs that is secure
under standard assumptions in the standard model.
Most previous applications of AHFs consider a setting where a polynomially-

bounded number of Q elements X(1), . . . , X(Q) must fall into the “controlled” set,
while one “challenge” element X∗ must fall into the “uncontrolled” set for the
reduction in the security proof to be successful. This matches what is required for
most common security experiments for primitives such as digital signatures, VRFs,
IBE, and many others. Chen et al. [CHZ16] generalize this to AHFs that can
handle more than one challenge element and ensure that n > 1 challenge elements
X(1)∗, . . . , X(n)∗ fall into the “uncontrolled” set, and give a construction with n = 2.
AHFs are related to programmable hash functions (PHFs) [HJK11, HK12], but

are more general, in the sense that PHFs can generically be constructed from AHFs,
but there exist cryptographic primitives, such as VRFs, for which only constructions
based on AHFs are known to exist, but not on PHFs.
Moreover, Zhandry introduced extremely lossy functions (ELFs) [Zha16, Zha19a,

Zha19b]. These are hash functions that allow the reduction to choose the hash
functions image size depending on the adversary, such that a function with a small
image size is indistinguishable from an injective hash function. This enables a
similar reduction strategy as AHFs do. We discuss ELFs in more detail in the
context of blockwise partitioning and weak near-collision resistance in Section 3.4.

3.2 Admissible Hash Functions and their Limitations
Admissible hash functions (AHFs) are a ubiquitous tool to achieve adaptive security
in cryptographic constructions by enabling a partitioning argument as discussed in
Section 2.6. In this chapter, we first formally introduce AHFs, show how they
can be instantiated from error-correcting codes and finally show to what extent
known instantiations are limited in their real-world applicability due to bounds
from coding theory.

High level perspective. In order to sketch the main idea, consider VRFs
and their security experiment GPsrd (see Definition 6) as an example. Denote by
X(1), . . . , X(Q) ∈ {0, 1}λ all the queries made by the adversary and let X∗ ∈ {0, 1}λ
be the challenge chosen by the adversary. An AHF is a function AHF that maps
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each input to a longer bit string and amplifies differences in the inputs. This
amplification then allows the reduction to guess a carefully chosen number η of the
bits of AHF(X∗). Due to the amplification of differences and the requirement in
the game GPsrd from Definition 6 that X(i) 6= X∗ has to hold for all i ∈ [Q], the
reduction’s guess is correct only for the AHF(X∗) but not for any X(i). To the best
of our knowledge, this amplification is always achieved by using an error-correcting
code.

3.2.1 Defining Admissible Hash Functions
AHFs have, to the best of our knowledge, first been used by Lysyanskaya in [Lys02]
but have been formally introduced by Boneh and Boyen in [BB04b]. Since then,
many different definitions of AHFs have emerged. Below, we choose a definition we
deem best suited to capture the core idea and most applications of AHFs such as
for example those in [AFL12, FHPS13, Kat17].

Definition 15 (Admissible Hash Function [BB04b]). Let n, k : N→ N be polyno-
mially bounded functions and let AHF := {AHF` : {0, 1}k(`) → {0, 1}n(`))}`∈N be a
family of functions. For all ` ∈ N, K ∈ {0, 1,⊥}n(λ) and X ∈ {0, 1}k(λ) we then let

FK,`(X) :=

1, if ∀ i ∈ [n(`)] : AHF`(X)i = Ki ∨ Ki = ⊥ holds and
0 otherwise.

(3.1)

We say that AHF is a family of admissible hash functions (AHFs) if there exists a
PPT AdmSmp(1λ, ·) outputting K ∈ ({0, 1} ∪ ⊥)n(λ) such that for all polynomials
Q : N → N, there is a non-negligible function γmin : N → [0, 1] such that for all
(X(1), . . . , X(Q(λ)), X∗) ∈ ({0, 1}k(λ))Q(λ)+1 with X∗ 6= X(i) for all i ∈ [Q(λ)], it
holds that

γmin(λ) ≤ Pr
[
FK,λ

(
X(1)

)
= · · · = FK,λ

(
X(Q(λ))

)
= 0 ∧ FK,λ (X∗) = 1

]
, (3.2)

where the probability is over the choice of K $←− AdmSmp(1λ, Q(λ)).

Informally, a family of AHFs thus guarantees that if all messages, identities, VRF
inputs or respective entities for the considered primitive are passed trough AHFλ,
then the reduction can always partition the respective space in a controlled and
uncontrolled set such that the partitioning succeeds with a non-negligible probabil-
ity. That is, with a non-negligible probability, the reduction can answer all queries
made by the adversary and can extract a solution to the underlying complexity
assumption if the adversary wins the security experiment.

Variants of AHFs. Since there have been many different definitions of AHFs,
we provide a small overview over the decisions we made in our definition of AHFs.
Most notably, we limited ourselves to families of admissible hash functions that
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take binary inputs and produce binary outputs. In contrast, some definitions con-
sider functions that map binary inputs to tuples over some abstract finite alpha-
bet [BB04b, AFL12, FHPS13]. As Bitansky has shown, AHFs with non-binary
outputs can also be constructed [Bit20]. Moreover, Kohl shows how this can be
used to construct efficient VRFs [Koh19]. However, since most applications of AHFs
require that the outputs of an AHF are binary, this is a only a minor limitation.
Furthermore, we discuss Kohl’s VRF in detail in Section 3.5.
Another decision we made in the definition above is to have only a single function

AHFλ for each potential value of the security parameter instead of a family of
functions, as for example in [BB04b, AFL12]. These latter works define AHFs as
a family of families of functions because they include the application of a hash
function H from a family of collision resistant hash functions. H is then evaluated
before what we refer to as an AHF is evaluated on the output of H. This is also why
Boneh and Boyen chose to name the primitive admissible hash function [BB04b].
Nonetheless, most applications of AHFs and in particular more recent ones, e.g.
those in [Bit17a, Bit20, FHPS13, HJ16, Jag15, Kat17, Koh19, Yam17a], assume
that a collision resistant hash function is used in advanced to process arbitrary
length inputs. For this reason, we define AHFs with a bounded length input space
and view the application of a collision resistant hash function as in [BB04b] only
as a generic way of processing arbitrary length inputs with a purely information-
theoretic AHF.

AHFs and decisional security experiments. Intuitively, admissible hash
functions guarantee a lower bound on the probability that the partitioning argument
succeeds. This is sufficient to prove the security of primitives where the adversary
has to solve a computational problem such as digital signatures. However, when the
adversary has to solve a decisional problem to break the security of a primitive as for
example for VRFs, IB-KEMs for constrained pseudorandom functions, this is not
sufficient. As we discussed in Section 2.6 this is because the event that the adversary
is successful is not independent from the event hat the partitioning argument is
successful. Using the artificial abort technique from Waters [Wat05], AHFs can be
made to work also in this decisional context, see for example [AFL12, HJ16, Koh19].
Unfortunately, the artificial abort technique comes at the cost of a substantial
computational overhead in the reduction. Due to this undesirable property, Bellare
and Ristenpart further investigated the issue. They showed that the computational
overhead of the artificial abort technique can be avoided if, in addition to the lower
bound γmin(λ) on the probability for the partitioning argument to succeed, there is
also an upper bound γmax(λ) that is close enough to the lower bound. The concrete
requirements to apply Bellare’s and Ristenpart’s technique are well captured by the
following Lemma by Katsumata and Yamada [KY16, Lemma 8].

Lemma 2 ([KY16, Lemma 8], implicit in [BR09a]). For an adversary A = (A1,A2)
in the GIND-ID-CPA (see Definition 8) or the GPsrd (see Definition 6) security experi-
ment that has advantage ε : N→ [0, 1], let us denote with b ∈ {0, 1} the bit chosen
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by the security experiment and with b′ ∈ {0, 1} the bit output by A in the end.
Further, let Q∗ = {X(1), . . . , X(Q), X∗} be the identities or VRF inputs for which A
queried its oracle and the challenge identity or challenge VRF input, respectively.
For a function γ that maps Q∗ to a value in [0, 1], let b̂ := b′ with probability γ(Q∗)
and let b̂ $←− {0, 1} with probability 1− γ(Q∗). It then holds that

∣∣∣∣Pr
[
b = b̂

]
− 1

2

∣∣∣∣ ≥ ε(λ) · γmin(λ)− γmax(λ)− γmin(λ)
2 ,

where γmin : N → [0, 1] and γmax : N → [0, 1] are upper and lower bounds on a
γ(Q∗) taken over all possible Q∗.

Informally, the lemma guarantees that if γmin is non-negligible and γmax and
γmax are sufficiently close, then a reduction that aborts and outputs a random bit
whenever the partitioning fails still guesses the correct bit b correctly with a non-
negligible probability. We do not provide a proof for Lemma 2 and refer to [BR09a]
for a detailed exposition of the proof.

Remark 3. We explicitly state the applicability of Bellare’s and Ristenpart’s tech-
nique to VRFs and IB-KEMs because these are the primitives this thesis is fo-
cussed on. Nonetheless, the technique is also applicable to further primitives such as
identity-based encryption [BR09a] or constrained pseudorandom functions [DKN+20].

Balanced admissible hash function. To use Bellare’s and Ristenpart’s tech-
nique together with AHFs, Jager introduced balanced admissible hash functions
(bAHFs) [Jag15, Definition 5], which guarantee close lower and upper bounds as
required to apply Lemma 2.

Definition 16 (Balanced admissible hash functions [Jag15, Definition 5]). Let
AHF and F be as in Definition 15. We call AHF a family of balanced admissible
hash function (bAHF) if there exists a PPT K $←−AdmSmp(1λ, ·, ·) with K ∈ ({0, 1}∪
{⊥})n(λ) such that for all polynomials Q : N → N and all non-negligible functions
ε : N→ [0, 1] there are functions γmax, γmin : N→ [0, 1] such that for all (X(1), . . . ,
X(Q(λ)), X∗) ∈ ({0, 1}k(λ))Q(λ)+1 with X∗ 6= X(i) for all i ∈ [Q(λ)] it holds that

γmin(λ) ≤ Pr
[
FK,λ

(
X(1)

)
= · · · = FK,λ

(
X(Q)

)
= 0 ∧ FK,λ (X∗) = 1

]
≤ γmax(λ),

(3.3)
and that

τ(λ) := ε(λ)γmin(λ)− γmin(λ)− γmax(λ)
2 (3.4)

is a non-negligible function, where the probability is over the choice of the key of
the AHF K $←− AdmSmp(1λ, Q(λ), ε(λ)).
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3.2.2 Instantiating Admissible Hash Functions
After we discussed different notions and properties of AHFs in the previous section,
we now consider their instantiation. Since, to the best of our knowledge, all instan-
titations of AHFs are based on error-correcting codes (ECCs), we first formally
introduce ECCs and then describe how AHFs can be instantiated using ECCs.

Error Correcting Codes.

The original purpose of error-correcting codes (ECCs) is to encode messages such
that if an encoded messages, which referred to as code word, is transmitted over an
unreliable medium and errors are introduced, the original message can uniquely be
identified. ECCs achieve this by ensuring that all code words potentially produced
by an ECC differ in many positions. This difference is also referred to as the
Hamming distance and we formally introduce it below.

Definition 17 (Hamming weight and distance). Let n ∈ N, q a prime power and
x, y ∈ Fnq , then wt(x) is defined as the number of components of x that are not zero.
We call wt(x) the Hamming weight of x and ∆(x, y) := wt(x − y) the Hamming
distance between x and y.

Given the definition of the hamming distance, we define ECCs as follows.

Definition 18 (Error-correcting code). Let q be a prime power and let k, n ∈ N
with k < n. We then refer to a function C : Fkq → Fnq as a q-ary error-correcting
code (ECC). We say that C has minimal distance

d := min
x,x′∈Fkq
x 6=x′

(∆(C(x), C(x′))).

Furthermore we refer to δ(C) := d/n as the relative minimal distance and to
R(C) := k/n as the rate of C. If C has a minimal distance of d, we say that
C is an [n, k, d]q ECC. If there is a matrix G ∈ Fk×nq such that C(x) = xG for all
x ∈ Fkq , then we say that C is a linear q-ary error-correcting code.

Informally, the rate of an ECC captures how much longer the code words are
compared to the messages. Thus, a small rate is desirable in practice to not blow
up the size of the transmitted data more than necessary. Furthermore, the minimal
distance of an error correcting code is in indicator on how many errors an ECC can
at least correct. That is, for an ECC with a minimal distance of d ∈ N it is
always possible to recover the original message if not more than b1/2(d− 1)c errors
were introduced during transmission [MS98, Theorem 2]. Even though we don’t use
ECCs in this thesis to ensure the correct transmission of data, we will see that both
these qualities of ECCs significantly affect the efficiency of cryptographic schemes
using AHFs based on ECCs.
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Remark 4. The ECCs we introduced above are more specifically known as block
codes. Other types of codes such as convolutional codes [HP03, Chapter 14] are also
known. Nonetheless, we limit our attention to block codes because all instantiations
of AHFs known to us are based on block codes. Furthermore, coding theorists
sometimes also use a slightly more general notion of ECCs, which defines a code to
be any subset C ⊆ Fk×nq . However, Definition 18 is better suited to our purposes
because only ECCs with an efficient encoding algorithm are relevant to this thesis.

Instantiating Admissible Hash Functions with Error Correcting Codes.

To the best of our knowledge, all instantiations of AHFs and bAHFs are based on
families of ECCs with a constant relative minimal distance δ > 0, meaning all codes
in the family have a relative minimal distance of at least δ. An example for such
a family of codes are the Justesen codes [Jus72]. In addition to a constant relative
minimal distance, ECCs in this family of codes have a constant rate, meaning that
the length n of the code words is linear in the length k of the encoded message.
Furthermore, all instantiations of AHFs known to us use an algorithm AdmSmp

that samples K as follows. First, for all m ∈ [n(λ)], let {0, 1}(n(λ),m)
⊥ be the subset

of {0, 1,⊥}n(λ) whose elements have exactly m positions that are not ⊥. Then
AdmSmp calculates η ∈ [n(λ)] as a function of Q(λ) and the advantage ε(λ) of
a given adversary A (the latter only for bAHFs). Finally, AdmSmp chooses K
uniformly at random from {0, 1}n(λ),η)

⊥ . We formalize these statements below. That
is, we first prove generic bounds γmin and γmax as in Equation (3.3) if K is chosen
by AdmSmp above for an arbitrary η ∈ [n(λ)] in Theorem 1. We then describe how
exactly η has to be chosen to yield (balanced) AHFs in Corollary 1.

Theorem 1 (Adapted from [FHPS13, Jag15]). Let k, n : N → N be polynomially
bounded functions with k(λ) ≤ n(λ) for all λ ∈ N, let Q : N → N be a polynomial
and let ε : N → [0, 1] be a non-negligible function. If C = {C`}`∈N is a family of
[n(`), k(`), n(`) · δ]2 error-correcting codes, where δ ∈ (0, 1/2) denotes the relative
distance of all C ∈ C, then for AHF := C it holds for all η ∈ [n(λ)] and K $←−
{0, 1}(n(λ),η)

⊥ that

γmin(λ) ≤ Pr
[
FK,λ

(
X(1)

)
= · · · = FK,λ

(
X(Q)

)
= 0 ∧ FK,λ (X∗) = 1

]
≤ γmax(λ)

for

γmin(λ) := (1−Q(λ) · (1− δ)η) · 2−η and γmax(λ) := 2−η (3.5)

and all X(1), . . . , X(Q(λ)), X∗ ∈
(
{0, 1}k(λ)

)(Q(λ)+1)
with X∗ 6= X(i) for all i ∈ [Q].

The proof mostly follows the respective proofs from [FHPS13, Jag15] and we
provide it here because Theorem 1 is central to this chapter.

Proof. For simplicity, we drop the security parameter throughout the proof. Fur-
thermore, for the remainder of the proof, we fix arbitrary X(1), . . . , X(Q), X∗ ∈
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3.2 Admissible Hash Functions and their Limitations

{0, 1}k with X(i) 6= X∗ for all i ∈ [Q]. First, we analyse the probability for
FK(X∗) = 1 to hold. Recalling the definition of FK in Equation (3.1), C(X∗)
has to be identical with K on all positions where K is not ⊥ for FK(X∗) = 1 to hold.
Due to the choice of K as K $←− {0, 1}(n,η)

⊥ , we have

Pr [FK(X∗) = 1] = 2−η,

where the probability is taken over the choice of K. This observation already yields
the upper bound of γmax(λ) = 2−η. We proceed to upper bound

Pr
[
FK(X(i)) = 1 | FK(X∗) = 1

]
for a fixed i ∈ [Q]. Recall that due to the minimal distance of C and because
X(i) 6= X∗, we have that C(X(i)) and C(X∗) have to differ in at least δ ·n positions.
Thus, for FK(X(i)) = FK(X∗) = 1 to hold, the δ ·n positions in which C(X(i)) and
C(X∗) differ have to coincide with positions where K is ⊥. Since we condition on
the event FK(X∗) = 1, C(X∗) specifies the value of K in all positions where K is
not ⊥. Therefore, view the choice of K as choosing the η out of n positions where
K is not ⊥. Each position has a probability of (1 − δ) for C(X(i)) and C(X∗) to
not differ. This yields

Pr
[
FK(X(i)) = 1 | FK(X∗) = 1

]
≤ (1− δ)η.

Applying the union bound, we then have that

Pr
[
∃ i ∈ [Q] : FK(X(i)) = 1 | FK(X∗) = 1

]
≤

Q∑
i=1

Pr
[
FK(X(i)) = 1 | FK(X∗) = 1

]
= Q(1− δ)η.

We conclude the proof by showing that γmin is a lower bound. We do so by com-
bining the observations we made above:

Pr
[
FK(X(1)) = · · · = FK(X(Q)) = 0 ∧ FK(X∗) = 1

]
= Pr

[
FK(X(1)) = · · · = FK(X(Q)) = 0 | FK(X∗) = 1

]
· Pr [FK(X∗) = 1]

=
(
1− Pr

[
∃ i ∈ [Q] : FK(X(i)) = 1|FK(X∗) = 1

])
· Pr [FK(X∗) = 1]

≥(1−Q(1− δ)η) · Pr [FK(X∗) = 1]
=(1−Q(1− δ)η) · 2−η = γmin.

Having shown lower and upper bounds on the success probability of the parti-
tioning, we now describe how η has to be chosen in order to yield a non-negligible
success probability for the partitioning using AHFs to succeed. However, our choice
of η differs from the choice in [Jag15] and further applications of bAHFs such
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as [Yam17a, Kat17, Bit20] because we aim at maximizing τ . This will be relevant
when we compare VRFs based on bAHFs to VRFs following different paradigms in
Section 3.5. In this comparison, we normalize the different constructions to have ap-
proximately the same reduction loss. Thus, choosing η in a sub-optimal way would
put VRFs based on bAHFs in an unfair disadvantage. Therefore, we first show how
η has to be chosen in order to maximise τ(λ) in Equation (3.4) in Lemma 3 and
then show that τ(λ) is non-negligible for this choice of η in Corollary 1 and thus
(balanced) AHFs can be instantiated from ECCs.

Lemma 3. Let Q : N→ N be a polynomial, let δ ∈ (0, 1/2), and let ε : N→ (0, 1].
Then for

γmin(λ) = (1−Q(λ) · (1− δ)η) · 2−η and γmax(λ) = 2−η

from Equation (3.5) in Theorem 1 it holds that

τ(λ) = ε(λ)γmin(λ)− γmin(λ)− γmax(λ)
2

from Equation (3.4) in Definition 16 is maximal for

η = ηopt := log1−δ

 −ε(λ) · ln(2)(
ε+ 1

2

)
·Q(λ) · ln

(
1−δ

2

)
 . (3.6)

Proof. As in the proof of Theorem 1, we omit the security parameter in the proof
for simplicity. Furthermore, since we optimize the choice of η, we view γmin, γmax
and τ as functions in η instead of in λ throughout this proof.
In order to compute the maximum of τ , we first need to find the zeros of τ ′(η)

and then show that τ ′′(η) is negative for them. Indeed, as we will see, ηopt is the
unique zero of τ ′(η). As a preparation, we first compute the first derivatives of
γmin and γmax. Observe that, we view γmin and γmax as functions of η for this proof
instead of as functions of λ. We first claim that

γ′min(η) = −2−η
(
Q · (1− δ)η · ln

(
1− δ

2

)
+ ln(2)

)
. (3.7)

holds. We prove Equation (3.7) as follows.

γ′min(η) = (1−Q(1− δ)η) · 2−η)′

= (1−Q(1− δ)η)′ · 2−η + (1−Q · (1− δ)η) · (2−η)′

= −(Q(1− δ)η)′ · 2−η − (1−Q · (1− δ)η) · ln(2) · 2−η

= 2−η(−Q · (1− δ)η)′ +Q · (1− δ)η · ln(2)− ln(2))
= −2−η(Q · ln(1− δ) · (1− δ)η −Q · (1− δ)η · ln(2) + ln(2))

= −2−η
(
Q · (1− δ)η · ln

(
1− δ

2

)
+ ln(2)

)
.
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We proceed by observing that

γ′max(η) = (2−η)′ = −2−η ln(2) (3.8)

holds. With these preparations, we claim that

τ ′(η) = −2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
+ ε · ln(2)

)
︸ ︷︷ ︸

:=µ(η)

(3.9)

holds, where we define µ(η) as above to easily reference it later on. We prove
Equation (3.9) as follows.

τ ′(η) = ε · γ′min(η)− γ′max(η)
2 + γ′min(η)

2

=
(
ε+ 1

2

)
γ′min(η)− γ′max(η)

2

=
(
ε+ 1

2

)
γ′min(η) + 2−η · ln(2)

2 (3.10)

= −
(
ε+ 1

2

)
· 2−η ·

(
Q · (1− δ)η · ln

(
1− δ

2

)
+ ln(2)

)
+ 2−η · ln(2)

2 (3.11)

= −2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
+
(
ε+ 1

2

)
ln(2)− ln(2)

2

)

= −2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
+ ε · ln(2)

)
,

where Equation (3.10) follows from Equation (3.8) and Equation (3.11) follows from
Equation (3.7).
Next, we observe that there is no η ∈ R such that 2−η = 0. Thus, every zero of

τ ′(η) has to be a zero of µ(η). Furthermore, we note that every zero of µ(η) is a
zero of τ ′(η). We proceed by showing that ηopt from Equation (3.6) is the only zero
of µ(η) and thus also the only zero of τ ′(η). It holds that

µ(η) = 0

⇔
(
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
+ ε · ln(2) = 0

⇔ (1− δ)η = −ε · ln(2)(
ε+ 1

2

)
·Q · ln

(
1−δ

2

)
⇔ η = log1−δ

 −ε · ln(2)(
ε+ 1

2

)
·Q · ln

(
1−δ

2

)


and thus ηopt is the only zero of µ(η) and τ ′(η). In order to complete the proof it
is only left to show that τ ′′(ηopt) < 0 holds. To do so, we first show that

γ′′min(η) = 2−η ·
(
Q · (1− δ)η · ln

(
1− δ

2

)
· ln

( 2
1− δ

)
+ ln(2)2

)
(3.12)
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holds. We prove Equation (3.12) as follows:

γ′′min(η) = ((1−Q(1− δ)η) · 2−η)′′

=
(
−2−η

(
Q · (1− δ)η · ln

(
1− δ

2

)
+ ln(2)

))′
(3.13)

=
(
−2−η ·Q · (1− δ)η · ln

(
1− δ

2

))′
− (2−η · ln(2))′

= Q · ln
(

1− δ
2

)
(−2−η · (1− δ)η)′ + 2−η ln(2)2

= Q · ln
(

1− δ
2

)
·
(
(−2−η)′ · (1− δ)η −2−η · ((1− δ)η)′

)
+ 2−η ln(2)2

= Q · ln
(

1− δ
2

)
·
(
ln(2) · 2−η · (1− δ)η

−
(
2−η · ln(1− δ) · (1− δ)η

))
+ 2−η · ln(2)2

= Q · ln
(

1− δ
2

)
· (ln(2)− ln(1− δ)) (1− δ)η2−η + 2−η · ln(2)2

= Q · ln
(

1− δ
2

)
· ln

( 2
1− δ

)
(1− δ)η2−η + 2−η · ln(2)2

= 2−η ·
(
Q · (1− δ)η · ln

(
1− δ

2

)
· ln

( 2
1− δ

)
+ ln(2)2

)

where Equation (3.13) follows from Equation (3.7). Similar to before, we observe
that

γ′′max(η) =
(
−2−η · ln(2)

)′
= 2−η · ln(2)2 (3.14)

holds. With these preparations at hand, we claim that

τ ′′(η) = 2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
· ln

( 2
1− δ

)
+ ε · ln(2)2

)
︸ ︷︷ ︸

:=ν(η)

(3.15)

holds, where we define ν(η) as above in order to easily reference it later on. We

36



3.2 Admissible Hash Functions and their Limitations

prove Equation (3.15) as follows:

τ ′′(η) =
(
ε+ 1

2

)
· γ′′min(η)− γ′′max(η)

2

=
(
ε+ 1

2

)
· γ′′min(η)− 2−η · ln(2)2

2

= 2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
· ln

( 2
1− δ

)

+
(
ε+ 1

2

)
ln(2)2 − ln(2)2

2

)

= 2−η ·
((
ε+ 1

2

)
·Q · (1− δ)η · ln

(
1− δ

2

)
· ln

( 2
1− δ

)
+ ε ln(2)2

)

We observe that 2−η is positive for all η ∈ R and thus τ ′′(ηopt) < 0 holds if and
only if ν(ηopt) < 0. As we show below, this is the case. It holds that

ν(ηopt) =
(
ε+ 1

2

)
·Q · (1− δ)ηopt · ln

(
1− δ

2

)
· ln

( 2
1− δ

)
+ ε · ln(2)2

=
(
ε+ 1

2

)
·Q · −ε · ln(2)(

ε+ 1
2

)
·Q · ln

(
1−δ

2

) · ln(1− δ
2

)
· ln

( 2
1− δ

)
+ ε · ln(2)2

=− ε ln(2) · ln
( 2

1− δ

)
+ ε · ln(2)2

=ε · ln(2) · (ln(2)− (ln(2)− ln(1− δ)))
= ε · ln(2)︸ ︷︷ ︸

>0

· ln(1− δ)︸ ︷︷ ︸
<0

< 0, (3.16)

where the inequality in Equation (3.16) holds since ε · ln(2) is always positive and
ln(1− δ) is negative because δ ∈ (0, 1/2). This concludes the proof of Lemma 3.

Now that we have shown how to choose η in order to maximize τ , we still have to
show that this ideal choice indeed leads to a non-negligible security loss, which we
do in the following corollary. We further observe that ηopt is not always an integer.
Thus, we round it up to the next largest integer to use it in bAdmSmp.

Corollary 1. Let C = {C`}`∈N be a family of [n(`), k(`), n(`) · δ]2 error-correcting
codes, where k and n are polynomially bounded and δ ∈ (0, 1/2) denotes the common
relative distance of all C ∈ C. Furthermore, for all polynomials Q : N → N and a
non-negligible function ε : N→ [0, 1] let bAdmSmp(1λ, Q(λ), ε(λ)) be the algorithm
that sets

η :=
log1−δ

 −ε(λ) · ln(2)(
ε(λ) + 1

2

)
·Q(λ) · ln

(
1−δ

2

)

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and outputs K $←− {0, 1}n(λ),η
⊥ . Then for γmin and γmax from Theorem 1 and τ from

Equation (3.4), γmin and τ are both non-negligible. In particular, AHF := C is a
family of balanced admissible hash functions and if ε(λ) is set to a positive constant
it immediately follows that AHF is also a family of admissible hash functions.

Remark 5. Note that the choices of η above, just as the choices in literature such as
those in [FHPS13, Jag15], can yield a η larger than n for small security parameters.
However, η ∈ [n] holds for reasonable parameters as presented in Section 3.5.

Proof. Analogous to the proof of Theorem 1, we drop the security parameter for
simplicity. First observe that we can simplify the term τ as follows for all η ∈ [n]:

τ = ε · γmin −
γmax − γmin

2

= ε · (1−Q(1− δ)η) · 2−η − 2−η − (1−Q(1− δ)η) · 2−η
2

= 2−η
(
ε · (1−Q(1− δ)η)− 1− (1−Q(1− δ)η)

2

)

= 2−η
(
ε · (1−Q(1− δ)η)− Q(1− δ)η

2

)

= 2−η
(
ε−Q(1− δ)η

(
ε+ 1

2

))
(3.17)

Next, we simplify the term Q(1− δ)η for η as in Corollary 1 above.

Q(1− δ)η = Q(1− δ)

⌈
log1−δ

(
−ε·ln(2)

(ε+ 1
2)·Q·ln( 1−δ

2 )

)⌉

≤ Q(1− δ)
log1−δ

(
−ε·ln(2)

(ε+ 1
2)·Q·ln( 1−δ

2 )

)

= −Q · ε · ln(2)(
ε+ 1

2

)
·Q · ln

(
1−δ

2

)
= −ε · ln(2)(

ε+ 1
2

)
· ln

(
1−δ

2

) (3.18)

For simplicity, we substitute the non-negligible term from Equation (3.18) by α.
That is, we set

α := −ε · ln(2)(
ε+ 1

2

)
· ln

(
1−δ

2

) .
We observe that α is non-negligible because ε is non-negligible and δ is constant.
We now proceed by simplifying the term 2−η. For this, we use the fact that for all
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r ∈ R>0 it holds that log1−δ(r) = log(r)/ log(1− δ). We thus have the following:

2−η = 2
−
⌈

log1−δ

(
−ε·ln(2)

(ε+ 1
2)·Q·ln( 1−δ

2 )

)⌉

≥ 2
− log1−δ

(
−ε·ln(2)

(ε+ 1
2)·Q·ln( 1−δ

2 )

)
−1

= 1
2 ·
 −ε · ln(2)(

ε+ 1
2

)
·Q · ln

(
1−δ

2

)
− 1

log(1−δ)

= 1
2 ·Q

1
log(1−δ) · α−

1
log(1−δ) (3.19)

Combining Equation (3.17), Equation (3.18) and Equation (3.19), we conclude that

τ = 2−η
(
ε−Q(1− δ)η

(
ε+ 1

2

))
≥ 1

2 ·Q
1

log(1−δ)α−
1

log(1−δ)

(
ε− α

(
ε+ 1

2

))
.

Finally, using that 1/ log(1 − δ) < 0 because δ ∈ (0, 1/2), α is non-negligible and
that Q is a polynomial, we conclude that τ is non-negligible. Analogously, we
conclude that

γmin = (1−Q(1− δ)η) · 2−η ≥ 1
2 · (1− α)Q

1
log(1−δ) · α−

1
log(1−δ)

is non-negligible because α is non-negligible, δ ∈ (0, 1/2) is a constant and Q is a
polynomial.

3.2.3 Efficiency Bounds for Admissible Hash Functions from
Coding Theory

When AHFs are used in cryptographic schemes, the length n of code words of the
used ECC usually affects the size of private and secret keys, signatures and proofs.
For example, the public key of the VRF of [Jag15] contains two groups element
for every bit in the output of the ECC. The VRFs in [Kat17, Yam17a] reduce
this, but still contain at least logarithmically (in n) many group elements. Even
though asymptotically logarithmic, the number may still be impractically large
when instantiated concretely - we explore this in detail in Section 3.5. Furthermore,
as we have seen in Corollary 1, the relative distance δ of the ECC affects the
probability that the partitioning succeeds.
Thus, in order to be able to efficiently instantiate AHFs, it is important to reduce

the length n of code words while at the same time maintaining a high relative
distance δ. In the following, we analyse the inherent limitations of instantiating
AHFs with binary ECCs, by applying upper and lower bounds from coding theory.
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The Gilbert-Varshamov bound. In order to instantiate AHFs efficiently, we
need a code that has both a high rate and a high relative minimal distance. Coding
theorists worked on the construction of such codes and accompanying bounds for
decades [MS98, HP03]. Asymptotically, the Gilbert-Varshamov (GV) bound guar-
antees the existence of well-suited families of binary ECCs, but we note that this
result is not constructive.

Theorem 2 (Gilbert-Varshamov bound [Gil52, Var57]). For all n ∈ N and c ∈
(0, 1/2), there exists an ECC C : Fk2 → Fn2 with

δ(C) ≥ c and R(C) ≥ 1−H2(δ(C)),

where H2 denotes the binary entropy, defined as

H2(p) := p · log (1/p) + (1− p) · log (1/(1− p)) .

for all p ∈ (0, 1).

Even though the GV bound guarantees the existence of families of binary ECCs
with the parameters from above and random linear codes attain the bound [Var57],
no explicit construction of a family of ECCs attaining the GV bound is known
so far. Unfortunately, rejection sampling of random linear codes in order to find
one with a large minimal distance also is infeasible, because, as [Var97, DMS99]
show, there is no efficient algorithm that can compute or approximate the minimal
distance of a random linear code. It is possible however to construct a family of
binary ECCs that comes relatively close to this bound by concatenating algebraic
geometry codes with binary error-correcting codes [SAK+01, Section V].
Hence, when instantiating a family of (balanced) AHFs, we can treat the GV

bound as an optimistic upper bound on what is possible with currently known
families of binary ECCs. For example the GV bound yields that for δ = 0.2, the
best rate we can hope to achieve with known construction of families of ECCs is
≈ 0.28. For the VRF from [Jag15], this would mean that the required number of
group elements in the public key is at least about four times larger than the number
of input bits. We show in Section 3.5 that similar numbers apply to more recent
VRFs.

Efficiency bounds for concrete security parameters. Albeit the un-
promising situation in the asymptotic setting, it is worth investigating the situation
for specific practically relevant security parameters and input lengths k of ECCs1 in-
stead of only considering whole families of ECCs. That is, for example for k = 128,
there is a [255, 128, 38]2 ECC C based on a BCH code [Gra07]. Thus, this code
beats the GV bound with R(C) ≈ 1/2 and δ(C) ≈ 0.15, whereas the GV bound
only guarantees the existence of a ECC C with R(C) ≈ 0.39 and δ(C) = 0.15.
To asses this concrete setting more thoroughly, we consider general upper bounds

1For the VRFs in [HJ16, Jag15, Kat17, Koh19, Yam17a] this is identical to the input length.
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on the relation between the rate and the relative minimal distance. The sharpest
such bound for binary ECCs, to the best of our knowledge, is the MRRW bound
presented in Theorem 3.

Theorem 3 (MRRW bound [MRRW77]). Let C be an [n, k, d]2 ECC with relative
distance δ(C) ∈ (0, 1/2) and let g(x) := H2((1−

√
1− x)/2). Then

R(C) ≤ min
0≤u≤1−2 δ

{1 + g(u2)− g(u2 + 2 δ(C)u+ 2 δ(C))}

holds for the rate of C.

The MRRW-Bound thus also yields limits on what can be achieved for spe-
cific security parameters instead of asymptotically for all security parameters. For
example, every binary ECC C with δ(C) = 0.15 inevitably has R(C) < 0.58.
Analogously, every ECC C with δ(C) = 0.2 has R(C) < 0.47.
The GV bound and the MRRW bound above enable us to realistically asses

the size of public keys, private keys and proofs of VRFs that are based on AHFs.
However, the bounds already indicate that instantiations of VRFs based on AHFs
will not be very efficient. Thus, we will first consider VRFs that use computational
assumptions as replacements for information-theoretic AHFs in Section 3.3 and
Section 3.4 before we compare the efficiency of different VRFs in Section 3.5 by
applying the GV bound and the MRRW bound.

3.3 Verifiable Random Functions from
Computational Admissible Hash Functions

In this section, we will show how the inherent limitations of (balanced) AHFs due to
their instantiation with ECCs can be overcome. We do so by relaxing the constraints
and consider a computational setting and replace ECCs with cryptographic hash
functions. Throughout this section we will first introduce computational admissible
hash functions (cAHFs) as a drop-in replacement for bAHFs with computational
security. We then introduce truncation-collision resistant (TCR) hash functions
from [JK18] and show how they can be used to instantiate cAHFs. Finally, we
demonstrate how cAHFs can be used as a drop-in replacement for bAHFs by pre-
senting a variant of Jager’s VRF that uses cAHFs instead of bAHFs.

High-level perspective. In order to sketch the main idea, consider VRFs as
an example. Our approach is to let the reduction guess the first η = O(log λ) bits
of H(X∗), where H $←−H is a cryptographic hash function and X∗ is the challenge
input chosen by the adversary. Using standard techniques from selectively-secure
constructions, we prove security with a reduction that is successful if the first η bits
of H(X∗) are guessed correctly, while the hash of every input for that the adversary
requests the evaluation of the VRF differs in at least one of the first η bits. For this
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approach to yield a reduction with non-negligible loss, we have to choose η such
that it fulfills the following two conflicting goals:

1. η has to be small enough, such that the probability of guessing the first η bits
of H(X∗) correctly is non-negligible

2. η has to be large enough to ensure that it is unlikely, relative to the adversary’s
advantage, to make a query X whose hash also matches on the first η guessed
bits (“truncation-collision resistance”).

Following [JK18] (which in turn is inspired by [BHJ+13, BHJ+15]), we balance
these two goals by choosing n′ depending on the runtime and advantage of the
adversary.
This relaxation to computational instead of information-theoretic security frees

us from the redundancy inherent to ECCs. As we show in Section 3.5, this allows
us to construct VRFs with significantly smaller public and secret keys, and proofs.
Furthermore, we aim at defining cAHFs in a way that allows us to replace bAHFs
in many constructions like [AMN+19, HJ16, Jag15, Kat17, LST18, Yam17a], while
making only minor modifications to the constructions or their accompanying secu-
rity proofs.

Computational admissible hash functions. We keep using the function
F, since we want to design cAHFs such that the can generically replace bAHFs.
AllowingH to have pairs of inputsX, Y withX 6= Y andH(X) = H(Y ) comes with
the problem that an adversary can have a collision for H hard coded. Therefore,
we need to draw the function H from a family of hash functions H. This requires
us to make the following minor modification to the definition of F of replacing the
security parameter index by a hash function H from a family of hash functions
H. Note that we consider a single family of functions H and not a family of hash
functions for each potential λ to better capture a real-world instantiation with
already standardized hash functions.

FK,H(X) =

1, if ∀ j ∈ [n] : H(X)j = Kj ∨ Kj = ⊥
0, otherwise.

(3.20)

After these adaptations to the computational setting, we are ready to define
computational admissible hash functions.

Definition 19 (Computational admissible hash functions (cAHFs)). Let H = {H :
{0, 1}∗ → {0, 1}n} be a family of hash functions for some n ∈ N and let H ∈ H.
For all K ∈ {0, 1,⊥}n and all sequences (X(1), . . . , X(Q), X∗) with X(i), X∗ ∈ {0, 1}∗
and X(i) 6= X∗ for all i, we let X(Q+1) := X∗ to ease notation and define the events
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coll, badChal and badEval as follows.

badChal ⇐⇒ FK,H(X∗) = 0
coll ⇐⇒ ∃ i, j with X(i) 6= X(j) s.t.

∀ ` ∈ [n] : H(X(i))` = H(X(j))` ∨ K` = ⊥
badEval ⇐⇒ ∃ i ∈ [Q] s.t. FK,H(X(i)) = 1

Let tA ∈ N and εA ∈ (0, 1] such that tA/εA < 2λ, where λ is the security parameter.
We say that H is a family of computational admissible hash functions (cAHFs), if
there is an efficient algorithm cAdmSmp(1λ, tA, εA) generating K ∈ {0, 1,⊥}n such
that for every adversary A running in time tA outputting (X(1), . . . , X(Q), X∗) it
holds that

badEval =⇒ coll ∨ badChal,
badChal and coll are independent, and that

τ(λ) := Pr[¬badChal](εA − Pr[coll]) (3.21)

is non-negligible as a function in λ. The probabilities are over the randomness used
by A, H $←−H and K $←− cAdmSmp(1λ, tA, εA).
Remark 6. The term τ in Equation (3.21) is the equivalent of τ for bAHFs in
Definition 16, in the sense that it conveniently describes a term that typically
occurs in a reduction-based security proof that uses a cAHF. Intuitively, it captures
a security proof that in a first step aborts when coll occurs and in a second step
aborts when badChal occurs. We will study a concrete application in Section 3.3.2.

3.3.1 Computational Admissible Hash Functions from
Truncation Collision Resistance

We show how to construct very efficient cAHFs based on truncation-collision resis-
tant (TCR) hash functions, as introduced in [JK18].

Truncation collision resistant hash functions. For a hash function H :
{0, 1}∗ → {0, 1}n we write H:η : {0, 1}∗ → {0, 1}η to denote the hash function
H, with outputs truncated to the first η ∈ [n] bits. Essentially, a hash function
is truncation collision resistant, if for every prefix of length η ∈ [n] there is no
significantly more efficient algorithm to find a collision for H:η than the birthday
attack. Note that this property is likely satisfied by standard cryptographic hash
functions, like SHA-3.
Definition 20 (Truncation collision resistance [JK18]). Let H = {H : {0, 1}∗ →
{0, 1}n} be a family of hash functions. For η ∈ [n], we say that an adversary A
η-breaks the truncation collision resistance of H, if it runs in time tA and

Pr
H

$←−H

[
(x0, . . . xq) $←−A(H) :
∃u, v s.t. H:η(xu) = H:η(xv) ∧ xu 6= xv

]
>
tA(tA − 1)

2η+1 .
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We say H is truncation collision resistant, if there exists no adversary A that η-
breaks the truncation collision resistance of H for any η ∈ [n].

We deem truncation collision resistance a reasonable assumption since truncated
versions of SHA-256 (to 224 bits) and SHA-512 (to 384 bits) have already been stan-
dardized by NIST in [oST15a]. Furthermore, [oST15b] defines extendable-output
functions (XOF) based on SHA-3. These allow to extend the output of the hash
function to an arbitrary length while maintaining collision resistance.

Useful technical lemma. The following lemma is a variant of Lemma 1 by
Jager and Kurek in [JK18], tailored to our application and cAHFs, which yields
better parameters than the corresponding result in [JK18]. The condition t/ε <
2λ captures that we consider an efficient adversary, i.e. one with a small time
complexity, a high success probability or both. Essentially, the lemma guarantees
that if we choose η := dlog(4t(2t− 1)/ε)e then the adversary is sufficiently unlikely
to find a collision on H:η if H is a TCR hash function. Furthermore it guarantees
that the size of {0, 1}η is polynomial and a reduction can thus guess a value in this
space correctly with a non-negligible probability. Finally, it also guarantees that η
is at most 2λ+ 3.

Lemma 4. Let t ∈ N, ε ∈ (0, 1] such that t/ε < 2λ, and η := dlog(4t(2t− 1)/ε)e.
Then it holds that

η ∈ {1, . . . , 2λ+ 3}, 2t(2t− 1)
2η ≤ ε

2 and 1
2η ≥

ε

16t2 − 8t

Proof. We start by proving η ∈ {1, . . . , 2λ+ 3}.

η = dlog(4t(2t− 1)/ε)e ≤
⌈
log

(
4 · 2λ(2t− 1)

)⌉
≤
⌈
log

(
8 · 2λt

)⌉
≤
⌈
log

(
2λ2λ+3

)⌉
= 2λ+ 3

Since 4t(2t−1) = 8t2−4t > 1 for all t ∈ N and ε ∈ (0, 1], we have log(4t(2t−1)/ε) >
0 and therefore η ≥ 1.

We proceed to prove 2t(2t− 1)/2η ≤ ε/2.

2t(2t− 1)
2η = 2t(2t− 1)

2dlog(4t(2t−1)/ε)e ≤
ε2t(2t− 1)
4t(2t− 1) = ε

2

Finally, we have

1
2η = 1

2dlog(4t(2t−1)/ε)e ≥
1
2 ·

ε

4t(2t− 1) = ε

16t2 − 8t .
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Constructing cAHFs from TCRs. Lemma 4 allows us to prove that a family
of TCRs is also a family of cAHFs. Note that even though the first definition of
AHFs in [BB04b] already incorporates collision resistant hash functions – they are
only used to enable the processing of arbitrary length inputs – while the core of the
AHF in [BB04b] is the error correcting code that yields an information-theoretic
AHF, which we replace with TCRs hash functions.

Theorem 4. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of truncation collision
resistant hash functions in the sense of Definition 20. Then H is a family of cAHFs.
In particular, let tA ∈ N and εA ∈ (0, 1] such that tA/εA < 2λ. Then there is an
algorithm cAdmSmp(1λ, t, ε) such that for every adversary A running in time tA
that, given H $←− H, outputs X(1), . . . , X(Q), X∗ ∈ {0, 1}∗ with X(i) 6= X∗ it holds
that coll and badChal are independent,

badEval =⇒ coll ∨ badChal

and
Pr[¬badChal](ε− Pr[coll]) ≥ ε2/(32t2 − 16t).

In particular, if tA is polynomial in λ and ε is non-negligible in λ, then ε2
A/(32t2A)

is also non-negligible and H is therefore a family of cAHFs.

Proof. Let n := 2λ+3. The algorithm cAdmSmp(1λ, t, ε) sets η := dlog(4t(2t− 1)/ε)e,
samples K′ $←−{0, 1}η, and defines K := K ′‖⊥n−η, where ‖ denotes string concatena-
tion and ⊥n−η the string consisting of (n− η)-times the ⊥-symbol. In total the key
K consists of η uniformly random bits, padded to a string of length n in {0, 1,⊥}n
by appending ⊥-symbols. Note that n ≥ η by Lemma 4.
Recall that ¬badChal occurs if and only if FK,H(X∗) = 1. For our construction,

this means that the first η bits of H(X∗) are identical to K′, the first η bits of K.
Since K′ is chosen uniformly at random, and independent of H $←−H, this happens
with probability 2−η, and therefore

Pr[¬badChal] = 1
2η ≥

εA
16t2A − 8t ,

where the inequality uses Lemma 4. Furthermore, recall that coll occurs, if the
adversary outputs, as queries or as challenge, two values X 6= Y such that H(X)
and H(Y ) are identical in all positions where K is not ⊥. In particular, we then
have H:η(X) = H:η(Y ). Therefore, we claim that

Pr[coll] ≤ εA
2 .

We prove this upper bound on Pr[coll] by contradiction. Assume A outputs X =
(X(1), . . . , X(Q), X∗) such that Pr[coll] > ε/2. Then we can construct an adversary
B that η-breaks the truncation collision resistance of H. B runs A, waits for A to
outputX and then outputsX itself. B’s running time consists of the time to execute
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A plus the time to output X, yielding2 tB ≤ 2 · tA. Thus, B is an algorithm with
success probability at least εA/2 in η-breaking the truncation collision resistance of
H. We furthermore have

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2η ≥ 2tA(2tA − 1)
2η = tB(tB − 1)

2η >
tB(tB − 1)

2η+1 ,

where the second inequality follows from Lemma 4. This contradicts the truncation
collision resistance of H and therefore proves the upper bound on Pr[coll]. We thus
conclude that

Pr[¬badChal](εA − Pr[coll]) ≥ εA
16t2A − 8t

(
εA −

εA
2

)
= ε2

A
32t2A − 16t

holds. Note that if tA is polynomial in λ and εA is non-negligible in λ, then
ε2
A/(32t2A − 16t) is also non-negligible.
Moreover, the events coll and badChal are independent of each other because

K is chosen independently from (X(1), . . . , X(Q), X∗). Finally, we explain that if
badEval occurs, then either badChal or coll must occur. This is because if there
exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗ and H:η(x) = K′, then we have either that
also H:η(X∗) = K′ and thus coll occurs, or we have that there exists an index i ∈ [η]
such that H(X∗)i 6= K′i and thus badChal occurs. This concludes the proof.

3.3.2 Verifiable Random Functions from Computational
Admissible Hash Functions

Now that we have constructed cAHFs from TCRs hash functions, we demonstrate
how they can be used in a construction as a drop-in replacement for bAHFs. We do
so using Jager’s VRF [Jag15] as an example. We then show how cAHFs are used in
a proof in Section 3.3.2. Furthermore, we improve Jager’s VRF with a new proof
technique that allows us to halve the size of public verification keys and secret keys.

Construction 1. Let H = {H : {0, 1}∗ → {0, 1}n} be a family of hash functions
for some n ∈ N, let GrpGen be a certified bilinear group generator (see Definition 10)
and let VRF cAHF = (SetupVRFcAHF,EvalcAHF,VfycAHF) be the following algorithms.

Key generation: SetupVRFcAHF(1λ) runs BG $←−GrpGen(1λ), chooses a random hash
function H $←−H and random generators g, h $←−G∗, where G is from BG, and
wi

$←− Zp for i ∈ [n+ 1]0. It then defines gi := gwi and the keys as

vk :=
(
H,BG, g, h, (gi)i∈[n+1]0

)
and sk := (wi)i∈[n+1]0 .

2One could tighten the upper bound tB to tA + Q. However, it would at most save a factor of
two in the run time of B and would complicate the analysis. Therefore, we use the slightly
less tight bound.

46



3.3 Verifiable Random Functions from Computational Admissible Hash Functions

Evaluation: On input vk, sk and X ∈ {0, 1}∗, EvalcAHF computes

wX := w0 ·
(

n∏
i=1

w
H(X)i
i

)
· wn+1 and Y := e(g, h)wX .

To compute the proof, it sets π0 := gw0 and then computes π1, . . . , πn as

πi := π

(
w
Hi
i

)
i−1

for i ∈ [n]. Finally, it sets πn+1 := πwn+1
n and outputs (Y, π = (π1, . . . , πn+1)).

Verification: Given 1λ, vk, X ∈ {0, 1}∗ and (Y, π = (π1, . . . , πn+1)), VfycAHF tests
if Y and π contain only valid group elements using GrpVfy and GrpElemVfy,
and outputs 0 if not. Then it defines π0 := g0, and outputs 1 if and only if
for all i ∈ [n] it holds that

e(πi, g) =

e(πi−1, g) if H(X)i = 0 and
e(πi−1, gi) if H(X)i = 1,

(3.22)

and both

e(πn+1, g) = e(πn, gn+1) and Y = e(πn+1, h) (3.23)

hold.

Comparison to Jager’s VRF. Our construction improves Jager’s VRF in two
regards, one already present in the publication at SAC 2019 [JN19a] and one in-
troduced in [JN19b], the full version of [JN19a].

• First, our verification and secret key contain only one element for each i ∈ [n],
compared to two in Jager’s VRF. This improvement is possible by encoding
the keys of the cAHF into the public and secret keys in a more efficient
way. We explain this technique in detail in the proof of Theorem 5. This
improvement is not contained in the publication at SAC 2019 [JN19a].

• The second improvement is that we instantiate the VRF with a cAHF instead
of a bAHF. Therefore, the algorithms EvalcAHF and VfycAHF apply a standard
hash function instead of an error correcting code to each input. This changes
the input space of the VRF from {0, 1}λ to {0, 1}∗. In the same way, cAHFs
are applicable to the VRFs of Katsumata [Kat17] and Yamada [Yam17a].
This improvement is discussed in the SAC 2019 publication [JN19a].

Observe, that the first improvement is also applicable when the VRF is instantiated
with a bAHF instead of a cAHF.
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Remark 7. The terms wn+1 and gn+1 in our construction are equivalent to appending
a bit that is always set to one to each output of the hash function. This ensures
that there is no input to the hash function resulting in an all-zero output, which is
needed in the security proof. Alternatively, we could assume preimage resistance
of the hash function and use that there is no efficient adversary that is able to find
a preimage for the all-zeros output. We could then guess a position that is one for
all inputs provided by the adversary. We chose to introduce wn+1 and gn+1 instead
for simplicity and clarity.

Correctness and Unique Provability of the VRF from cAHFs.

We begin by proving that VRF cAHF is indeed correct and provides unique provabil-
ity. The argumentation mostly follows the respective arguments from [Jag15].

Correctness. For any λ ∈ N and anyX ∈ {0, 1}∗, let (vk, sk) $←−SetupVRFcAHF(1λ)
and (Y, π) ← EvalcAHF(sk, X). We now consider the behavior of the verification
algorithm VfycAHF(1λ, vk, X, (Y, π)). Since Y and π are results of EvalcAHF, both
GrpVfy and GrpElemVfy output 1 and thus VfycAHF does not reject the input. Now
let (H1, . . . , Hn) := H(X) and π0 := g0. Then for all i ∈ [n], we have

e(πi, g) = e
(
π
w
Hi
i

i−1

)
=

e(π
w0
i

i−1, g) = e(πi−1, g) if Hi = 0 and
e(πw

1
i

i−1, g) = e(πi−1, g
wi) = e(πi−1, gi) if Hi = 1.

Therefore, Equation (3.22) is fulfilled. Furthermore, we have

e(πn+1, g) = e(πwn+1
n , g) = e(πn, gn+1),

which fulfills the first part of Equation (3.23). Moreover, notice that for all i ∈ [n],
we have that

πi = gw0
∏i

j=1 w
Hj
j and πn+1 = πwn+1

n = g
w0

(∏i−1
j=1 w

Hj
j

)
wn+1 = gwX

holds. Thus, e(πn+1, h) = e(gwX , h) = e(g, h)wX holds, fulfilling Equation (3.23)’s
second part. Hence, VfycAHF outputs 1 on input (1λ, vk, X, (Y, π)). Finally, as
can easily be verified, SetupVRFcAHF,EvalcAHF and VfycAHF are all polynomial-time
algorithms.

Unique Provability. We show that for any (vk, sk) $←− SetupVRFcAHF(1k) and
X ∈ {0, 1}∗, there is a unique Y ∈ {0, 1}∗ such that there exists a proof π with
VfycAHF(1λ, vk, X, Y, π) = 1. Let (H1, . . . , Hn) := H(X), then, since elements from
G and GT have an unique encoding, πi = π

(wi)Hi
i−1 is the unique group element

fulfilling Equation (3.22). By induction, πi is therefore uniquely defined for all
n ∈ [n]. Analogously, πn+1 is uniquely defined by the first part of Equation (3.23).
Finally, since πn+1 is uniquely defined, so is Y by the second part of Equation (3.23).
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Pseudorandomness of VRF cAHF.

We will prove the pseudorandomness of our construction based on the q-decisional
Diffie-Hellman assumption, also used in the proof of pseudorandomness by Jager
for his VRF [Jag15], with small q = dlog(4tA(2tA − 1)/εA))e = O(log λ).

Theorem 5. If VRF cAHF is instantiated with the family of computational admissi-
ble hash functions from Theorem 4, then for any legitimate attacker A that breaks
the pseudorandomness of VRF cAHF in time tA with advantage εA := AdvPsrd

VRFcAHF,A(λ),
there exists an algorithm B that, given (sufficiently close approximations of) tA and
εA, breaks the q-DDH assumption with q = dlog(4tA(2tA − 1)/εA)e in time tB ≈ tA
and with advantage

Advq-DDH
B (λ) ≥ ε2

A
32t2A − 16tA

.

In particular, if VRF cAHF is instantiated with a certified bilinear group generator for
which the q-DDH assumption is hard, then VRF cAHF is a secure verifiable random
function.

Remarkably, the proof of Theorem 5 is significantly simpler than the correspond-
ing AHF-based proof from [Jag15].

Proof. We prove the theorem with a sequence of games as discussed in Section 2.5.
In the sequel, we denote the event that Game i outputs 1 by Gi and denote the
adversary’s advantage in Game i by Ei := |Pr [Gi]− 1/2|.

Game 0. This is the original VRF security game, as described in Definition 6. By
definition, it holds that

E0 = AdvPsrd
A,VRFcAHF

(λ).

Game 1. Recall that Theorem 5 assumes knowledge of (sufficiently close approxi-
mations of) the running time tA and the advantage εA. In this game, the challenger
additionally runs K $←− cAdmSmp(tA, εA) in the end of the security experiment but
before returning the result of the game. It uses its knowledge of (the sufficiently
close approximations of) tA ∈ N and εA ∈ [0, 1]. Note that K and H now define
the function FK,H(X) from Equation (3.20) and events coll, badChal and badEval as

badChal ⇐⇒ FK,H(X∗) = 0
coll ⇐⇒ ∃ i, j with X(i) 6= X(j) s.t.

∀ ` ∈ [n] : H(X(i))` = H(X(j))` ∨ K` = ⊥
badEval ⇐⇒ ∃ i ∈ [Q] s.t. FK,H(X(i)) = 1

like in Definition 19. Note that we denote with X(1), . . . , X(Q) ∈ {0, 1}∗ the eval-
uation queries made by A and by X∗ the challenge chosen by A. The changes we
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made in this game are purely conceptual and perfectly hidden from A. It thus
holds that

E1 = E0.

Game 2. In this game, the challenger checks whether the event coll occurred after
generating K in the end and outputs a random bit if it occurred. We have that

Pr [coll] ≥ |Pr [G1]− Pr [G2]| (3.24)

=
∣∣∣∣Pr [G1]− Pr [G2] + 1

2 −
1
2

∣∣∣∣
=
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)∣∣∣∣
=
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)∣∣∣∣+ ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣
≥
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)
+
(

Pr [G2]− 1
2

)∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣
(3.25)

=
∣∣∣∣Pr [G1]− 1

2

∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣ = E1 − E2,

where Equation (3.24) follows from Lemma 1 (Shoup’s Difference Lemma) and
Equation (3.25) follows from the triangle inequality. Rearranging the terms above,
we thus obtain that

E2 ≥ E1 − Pr [coll] = εA − Pr [coll] .

Game 3. This game proceeds identically to the previous game, except that the
challenger checks whether the event badChal occurred in the end and outputs a
random bit if it occurred. We have that

Pr [G3] = Pr [G3 ∧ badChal] + Pr [G3 ∧ ¬badChal]
= Pr [G3 | badChal] (1− Pr [¬badChal])

+ Pr [G3 | ¬badChal] Pr [¬badChal]
= 1/2 + Pr [¬badChal] (Pr [G3 | ¬badChal]− 1/2) (3.26)
= 1/2 + Pr [¬badChal] (Pr [G2 | ¬badChal]− 1/2) (3.27)
= 1/2 + Pr [¬badChal] (Pr [G2]− 1/2) , (3.28)

where the Equation (3.26) follows from Pr [G3 | badChal] = 1/2, since a random bit
is returned if badChal occurs, Equation (3.27) uses that by definition of the games
it holds that Pr [G3 | ¬badChal] = Pr [G2 | ¬badChal], and the Equation (3.28) uses
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Pr [G2 | ¬badChal] = Pr [G2], since Game 2 is independent of badChal. This is
because K is only sampled after A made all its queries and stated its challenge and
K is therefore perfectly hidden from A. We thus conclude that

E3 =
∣∣∣∣G3 −

1
2

∣∣∣∣ =
∣∣∣∣Pr [¬badChal] ·

(
Pr [G2]− 1

2

)∣∣∣∣ = Pr [¬badChal] ·
∣∣∣∣Pr [G2]− 1

2

∣∣∣∣
= Pr [¬badChal] · E2.

Game 4. In this game the challenger also checks for the event badEval in the end
and aborts if it occurs and outputs a random bit. Since we have that badEval =⇒
coll∨ badChal holds by the properties of cAHFs (see Definition 19), this is a purely
conceptual change and it holds that

E4 = E3.

Game 5. We replace the events badChal, coll and badEval with an equivalent event
bad, in order to simplify the construction of adversary B. We let bad denote the
event that coll ∨ badChal ∨ badEval. Since this is a purely conceptual change, it
holds that

E5 = E4.

Game 6. In this game, we change the challenger to generate K in the very begin-
ning instead of in the end. Furthermore, the challenger already sets the event bad
as soon as the adversary makes an evaluation query or states challenge that causes
the event. However, the challenger still only aborts and outputs a random bit if
bad occurred in the very end. Therefore, these are purely conceptual changes and
it holds that

E6 = E5.

Game 7. In this game, the challenger aborts and outputs a random bit as soon as
it occurs. Because Game 6 and Game 7 are identical until bad, it holds that

E7 = E6.
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Game 8. In this game, the challenger always returns Y1
$←− GT , regardless of the

value of b in GPsrd. We claim that there is an algorithm B such that

|E7 − E8| = Advq-DDH
B (λ) (3.29)

for q := dlog(4tA(2tA − 1)/εA)e. We proceed by describing B.

Initialization. The input of B is the q-DDH-challenge (BG, g̃, h, g̃α, . . . , g̃αq ,
h, T ). B first checks whether g̃α ?= 1G. Since g̃ is a generator of G, this holds
if and only if α = 0. In this case, B also checks whether T ?= 1GT and outputs 0 if
the statement is true and 1 otherwise. This is the correct solution to the q-DDH-
challenge if α = 0, because if α = 0, then e(g, h)αq+1 = e(g, h)0 = 1GT . Therefore,
we assume α 6= 0 for the remainder of the proof. Moreover, B draws a random bit
b $←− {0, 1}.

Generating the verification key. After receiving the values from the q-DDH-
challenge, B first samples H $←−H and K $←− cAdmSmp(1λ, tA, εA). It then computes
the values gi exactly as in the original SetupVRFcAHF-algorithm for most i ∈ [n] by
choosing wi $←− Z|G| and setting gi := gwi , but with the exception that

gi :=

gwi+1/α if Ki = 0
gwi+α if Ki = 1

for all i ∈ [n] with Ki 6= ⊥. Recall that due to our choices in Theorem 5, we
have that σ(K) ≤ q. Therefore, B can compute gw0+αq−σ(K)−1 since q − σ(K) − 1
is at least −1 and at most q − 1, and g1/α = g̃, . . . , gα

q−1 = g̃α
q are part of the

q-DDH-challenge. B can compute gwi+1/α for the same reason. Moreover, note that
all values gi are distributed exactly as in the original security experiment. This
way of generating vk is the main difference from this construction compared to the
construction published at SAC 2019 [JN19a] and Jager’s VRF [Jag15]. In both
earlier constructions, there were wi,0 and wi,1 for each i ∈ [n] instead of only wi
in this construction. The former constructions then added α to wi,Ki if Ki 6= ⊥.
Adding either α or 1/α depending on Ki allows us to include only a single element
for each i ∈ [n] instead of two.

Helping definitions. To describe how B responds to evaluation queries and
A’s challenge, we define four sets Iv,X , I0

v,X , I1
v,X and I⊥v,X , which depend on a VRF

input X ∈ {0, 1}∗ and an integer v ∈ [n]. Iv,X ⊆ [v] ⊆ [n] is the set of all indices
such that H(X)i = 1. The other sets partition Iv,X in the respective subsets of
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indices where Ki is 0, 1 or ⊥. Formally, the sets are defined as follows.

Iv,X := {i ∈ [v] : H(X)i = 1},
I0
v,X := {i ∈ [v] : H(X)i = 1 ∧ Ki = 0},
I1
v,X := {i ∈ [v] : H(X)i = 1 ∧ Ki = 1} and
I⊥v,X := {i ∈ [v] : H(X)i = 1 ∧ Ki = ⊥}

We observe that Iv,X = I0
v,X∪I1

v,X∪I⊥v,X . Based on these sets, we define polynomials
Pv,X(Z) ∈ Zp[Z] for allX ∈ {0, 1}∗ and v ∈ [n+1]0. We let P0,X(Z) := w0+Zq−σ(K)−1

and define

Pv,X(Z) =


Pv−1,X(Z) · (wi + 1/Z) if v ∈ I0

v,X ,

Pv−1,X(Z) · (wi + Z) if v ∈ I1
v,X ,

Pv−1,X(Z) · wi if v ∈ I⊥v,X and
Pv−1,X(Z) otherwise.

for all X ∈ {0, 1}∗ and v ∈ [n]. Finally, we define Pn+1,X(Z) := Pn,X(Z) · (wn+1 +
Z) for all X ∈ {0, 1}∗. We observe some important properties of these helping
definitions in the following lemma.
Lemma 5. Let I0

v,X and I1
v,X be as above, then∣∣∣I0

v,X

∣∣∣ ≤ q − σ(K) and
∣∣∣I1
v,X

∣∣∣ ≤ σ(K)

holds for all v ∈ [n]. Furthermore, for Pv,X as above, it holds that

deg(Pv,X(Z)) = q − σ(K)− 1−
∣∣∣I0
v,X

∣∣∣+ ∣∣∣I1
v,X

∣∣∣
for all v ∈ [n], where deg denotes the degree of a polynomial. In particular, we have

−1 ≤ deg(Pv,X(Z)) ≤ q − 1

for all v ∈ [n]. Note that we simplify notation by writing deg(f(Z)) = −k for a
rational function f such that 1/f(Z) is a polynomial of degree k ∈ N.

Proof of Lemma 5. Observe that by the Definition of cAdmSmp in Theorem 4 and
the choice of q in Theorem 5 we have σ(K) ≤ q. Furthermore, I1

n,X contains up
to one element for each i ∈ [n] such that Ki = 1, which are at most σ(K) many.
Analogously, I0

v,X can contain at most q− σ(K) elements since K has only q− σ(K)
positions where it is 0. We proceed by proving that

deg(Pv,X(Z)) = q − σ(K)− 1−
∣∣∣I0
v,X

∣∣∣+ ∣∣∣I1
v,X

∣∣∣ (3.30)

holds for all v ∈ [n]. Observe that in the definition of Pv,X each i ∈ I0
v,X adds a

factor (wi + 1/Z) to Pv−1,X(Z) and by that decreases the degree of the polynomial
by one. Analogously, each element in I1

v,X increases the degree of the polynomial
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by one. Finally, P0,X(Z) is defined as (w0 + Zq−σ(K)−1) yielding, together with the
upper bounds on |Iv,X |0 and |Iv,X |1 above, Equation (3.30).
We finish the proof of Lemma 5, by showing that

−1 ≤ deg(Pv,X(Z)) ≤ q − 1

holds for all v ∈ [n]. By Equation (3.30) and |Iv,X | ≤ σ(K), the following holds.

deg(Pv,X(Z)) = q − σ(K)− 1−
∣∣∣I0
v,X

∣∣∣+ ∣∣∣I1
v,X

∣∣∣
≤ q − σ(K)− 1 +

∣∣∣I1
v,X

∣∣∣
≤ q − σ(K)− 1 + σ(K) = q − 1.

We conclude the lower bound analogously by applying Equation (3.30) and |Iv,X | ≤
q − σ(K).

deg(Pv,X(Z)) = q − σ(K)− 1−
∣∣∣I0
v,X

∣∣∣+ ∣∣∣I1
v,X

∣∣∣
≥ q − σ(K)− 1−

∣∣∣I0
v,X

∣∣∣
≥ q − σ(K)− 1− q − σ(K) = −1

Now, having Lemma 5 at hand, we proceed with the proof of Theorem 5 and,
similar to [Jag15], make the following observations.

1. For all X with FK,H(X) = 0 and v ∈ [n + 1]0, we have −1 ≤ deg(Pv,X(Z)) ≤
q− 1. Note that in contrast to Lemma 5, the bound also holds for v = n+ 1.
For this, observe that for all X with FK,H(X) = 0, there is an i ∈ [n] such that
Ki 6= ⊥ and Ki 6= H(X)i. Therefore, at least one of the following conditions
hold. ∣∣∣I0

v,X

∣∣∣ > 0 for all v ≥ i
∣∣∣I1
v,X

∣∣∣ < q − σ(K) for all v ∈ [n]

By Lemma 5, we thus have deg(Pn,X(Z)) ≤ q − 2, which implies that the
degree of Pn+1,X(Z) is at most q − 1. Hence, B can efficiently compute
gPv,X(α) = g̃α·Pv,X(α) for all v ∈ [n + 1]0. To this end, B would first com-
putes the coefficients γ0, . . . , γq of the polynomial Z · Pv,X(Z) = ∑q

i=0 γiZi
with degree at most q, and then compute

g̃α·Pv,X(α) := g̃
∑q

i=0 γiα
i =

q∏
i=0

(g̃αi)γi

using the terms (g̃, g̃α, . . . , g̃αq) from the q-DDH challenge.

2. If FK,H(X) = 1, then H(X)i = Ki for all i ∈ [n] with Ki 6= ⊥ and it thus
holds that

∣∣∣I0
n,X

∣∣∣ = 0 and
∣∣∣I1
n,X

∣∣∣ = σ(K). By Lemma 5, Z ·Pn+1,X(Z) therefore
has degree q+ 1. We do not know how B can efficiently compute gPn+1,X(α) =
g̃α·Pn+1,X(α) in this case.
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Responding to evaluation queries. For an evaluation query X ∈ {0, 1}∗, B
first computes FK,H(X). Just as the challenger in Game 8 and Game 7, B aborts and
outputs a random bit if FK,H(X) = 1. Moreover, B checks for each query whether
the event coll occurred and if so outputs a random bit just as the challenger in
Game 8 and Game 7. If FK,H(X) = 0, then B sets

πi := gPi,X(α)

for all i ∈ [n+ 1]0 and

Y := e(πn+1, h),

which it can compute as we outlined above. Observe that B’s response to A’s
evaluation query is distributed exactly as in Game 8 and Game 7.

Responding to A’s challenge. Just as the challenge in Game 8 and Game 7,
checks whether the event bad occurred and aborts and outputs a random bit if it
is the case. We observe that if bad did not occur, then we have that FK,H(X∗) = 1
holds. Now, B sets

Y ∗ $←−GT if b = 1

and it computes

Y ∗ := T γq+1 ·
q∏
i=0

e((g̃αi)γi , h) = T γq+1 · e(g̃
∑q

i=0 γiα
i

, h) if b = 0

where γ0, . . . , γq+1 are the coefficients of the degree-(q+1)-polynomial Z·Pn+1,X∗(Z) =∑q+1
i=0 γix

i. Note that if T is uniformly random in GT , then Y ∗ is always uniformly
random, regardless of the value of b, and is thus distributed exactly as in Game 8.
However, if T = e(g̃, h)αq+1 , then Y ∗ is uniformly random if b = 1 and is e(g, h)wX∗
if b = 0. In particular, if T = e(g̃, h)αq+1 , then Y ∗ is distributed exactly as in
Game 7.

Solving the q-DDH challenge. Finally, when A states its guess b′ ∈ {0, 1},
then B outputs 1 if b = b′ and 0 otherwise.

B’s running time. The running time tB of B consists of the running time tA of
A plus the time required to answer A’s queries. The latter step essentially consists
of the operations defined in the construction of the VRF in Section 3.3.2 plus minor
operations like sampling K, evaluating FK,H , checking for collisions, calculate the
γi to compute gPv,X (α) and some group operations to compute the gi. Since we
include the runtime of the experiment in the adversary’s runtime, we have that
have tB ≈ tA.
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B’s advantage. As we noted throughout the description of B, all responses B
gives to A are distributed exactly as in Game 8 if T $←− GT and are distributed
exactly as in Game 7 if T = e(g̃, h)αq+1 . We thus conclude that

Advq-DDH
B (λ) = |E7 − E8|

holds as we claimed in Equation (3.29). Summing up probabilities from Game 0 to
Game 8, we thus obtain

Pr [E8] ≥ 1/2 + Pr [¬badChal] (Pr [E0]− 1/2− Pr [coll])
= 1/2 + Pr [¬badChal] (εA − Pr [coll])
≥ 1/2 + τ(λ) (3.31)

for some non-negligible function τ(λ), where the last inequality is due to the defi-
nition of cAHFs (see Equation (3.21)). In particular, when instantiated concretely
with the computational AHF from Theorem 4, then we have that

Advq-DDH
B (λ) ≥ ε2

A/(32t2A − 16tA)

holds as claimed.

3.4 More Efficient Verifiable Random Functions from
Blockwise Partitioning

We saw in the previous section how we can construct VRFs from cAHFs instead
of bAHFs, to replace a component with information-theoretic security with a more
efficient component with computational security. In our definition of cAHFs in
Definition 19, we took care to define cAHFs such that they can be used as a drop-
in replacement for bAHFs. In this section, we abandon this design goal and instead
aim to construct VRFs that are as efficient as possible. Throughout this section,
we will first describe blockwise partitioning as a semi-generic technique to achieve
adaptive security in Section 3.4.1 and then show how it can be used to construct
more efficient VRFs in Section 3.4.2. Note that we will show in Chapter 5 how
blockwise partitioning can also be used to construct IB-KEMs (see Definition 7)
from lattices.

3.4.1 Blockwise Partitioning via Near-Collision Resistance
We approach this goal by improving our technique from the previous section by
combining it with confined guessing [BHJ+13, BHJ+15], a semi-generic technique
to construct efficient and adaptively-secure digital signature schemes. Apart from
its introduction in [BHJ+13, BHJ+15], confined guessing has been used for instance
in [DM14, Alp15] and with a slight variation in [JK18]. Unfortunately, confined
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guessing achieves only non-adaptive security, which is sufficient for signatures (as
adaptive security can then be easily achieved generically by using chameleon hash
functions [KR00]). However, it is therefore neither applicable to IB-KEMs, nor to
VRFs3.
We propose blockwise partitioning as a new semi-generic technique, and show

how it can be used to construct efficient VRFs with adaptive security. It is based
on the near-collision resistance of a cryptographic hash function and is similar in
spirit to the closely related notion of truncation collision resistance [JK18], which
we used in the previous section.

High-level perspective. In order to sketch the main idea, consider VRFs as
an example. The general approach of confined guessing is analogous to our construc-
tion of cAHFs from TCR. That is, we let the reduction guess η = dlog(4t(2t− 1)/ε)e
many bits of H(X∗), where H is a cryptographic hash function and X∗ is the chal-
lenge input chosen by the adversary. Using standard techniques from selectively-
secure constructions, we prove security with a reduction which is successful if the
η bits of H(X∗) are guessed correctly, while the hash of every input for which the
adversary requests the evaluation of the VRF X(i) differs in at least one of the η
bits.
In contrast to the constructions in the previous section, constructions employing

the confined guessing approach, such as used in [JK18], only use powers of two4

as η. That is, they would use the smallest power of two that is larger or equal
to dlog(4t(2t− 1)/ε)e as η instead of dlog(4t(2t− 1)/ε)e directly. Ultimately, this
leaves only O(log(λ)) many possibilities for η and consequently enables construc-
tions with smaller keys and signatures. However, this also leads to η being almost
twice of what would be ideal and incurs an additional quadratic security loss and
also requires a stronger q-type assumption with quadratically larger q.
We address this issue by viewing η = dlog(4t(2t− 1)/ε)e as a sum of powers of two

and the output of the hash function as the concatenation of blocks of exponentially
growing length, i.e. the first bit is the first block, bits two and three are the second
block, bits four to seven are the third block, and so on. Our reduction then uses
the ideal choice for η and guesses the bits in the blocks whose lengths sum up to
exactly η. Compared to confined guessing, this more fine-grained guessing yields
constructions with tighter security from weaker assumptions. It also reduces the
required output length of the hash function from 4(λ+1) bits in [JK18] to only 2λ+3
bits. Note that this is essentially optimal for a collision resistant hash function.
In particular, for many practical constructions one would use a collision resistant
hash function, anyway, to map long inputs to short strings. We compare our

3The variation of confined guessing in [JK18] enables the construction of IB-KEMs. We follow
a similar approach.

4Confined guessing was originally introduced for powers of arbitrary positive numbers and not
only two [BHJ+13, BHJ+15]. However, we only describe the approach with basis two for
clarity.
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techniques to the ones of [JK18] in more detail after formally introducing blockwise
partitioning.
We proceed describing the framework and assumptions for blockwise partitioning,

give some more technical intuition, and state and prove a technical lemma that
will be useful that will be useful in constructing security proofs using blockwise
partitioning, in a way that is as modular as possible.

Blockwise partitioning.

Let H : {0, 1}∗ → {0, 1}n be a hash function. We will assume in the sequel
that n = ∑`

i=0 2i for simplicity and ease of exposition. One can generalize this to
arbitrary n, but this would make the notation rather cumbersome without providing
additional insight or clarity. We can then view the output space {0, 1}n of the hash
function as a direct product of sets of exponentially-increasing size

{0, 1}n = {0, 1}20 × · · · × {0, 1}2` .

For a hash function H we define functions H0, . . . , H` such that

Hi : {0, 1}∗ → {0, 1}2i and H(x) = H0(x) ‖ · · · ‖H`(x).

One can consider each Hi(x) as one “block” of H(x). Note that blocks have expo-
nentially increasing size and there are blog nc+ 1 blocks in total. In order to avoid
confusion, we point out that this notation is close to the notation we used in the
previous section, where we usedH(X)i to denote the ith bit of H(X). Furthermore,
observe that truncation-collision resistance of hash functions is no longer sufficient
because it only considers prefixes of H whereas the blocks Hi of H are, except
for H0, not prefixes of H. We will thus introduce weak near-collision resistance of
hash functions as a slightly stronger but still quite plausible assumption for hash
functions.

Using blockwise partitioning. Let t = t(λ) be a polynomial and let ε = ε(λ)
be a non-negligible function such that ε > 0 and t/ε < 2λ for all λ. Like in the
previous section, think of t and ε as (approximations of) the running time and
advantage of an adversary in a security experiment. We again define an integer η
depending on (t, ε) as

η :=
⌈

4t · (2t− 1)
ε

⌉
(3.32)

Recall that if n ≥ 2λ+ 3, then we have 0 ≤ η ≤ n as we have shown in Lemma 4.
Furthermore, observe that η uniquely determines an index set I = {i1, . . . , iω} ⊆
{0, . . . , `}, for ` = blog nc, such that η = ∑

i∈I 2i. As for cAHFs, the key point
in defining η as in Equation (3.32) is that it provides the following two properties
simultaneously:
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The algorithm BPSmp(1λ, t, ε)
η := d4t(2t− 1)/εe
` := blog(2λ+ 3)c
Let I ⊆ [`]0 s. t. η =

∑`
i=0 2i

for i ∈ I

Ki $←− {0, 1}2i

for i ∈ [`]0 \ I
Ki := ⊥

K := (K0, . . . ,K`)
return K

Figure 3.1: The specification of the algorithm BPSmp with inputs 1λ, t ∈ N and ε
for t/ε < 2λ.

Guessing a from polynomially-bounded range. In order to enable a reduction
from adaptive to selective security, we will later have to “predict” a certain
hash valueH(X∗). Think ofX∗ as the challenge input in theGPsrd-experiment
(see Definition 6) for the security of VRFs. Blockwise partitioning enables
this, as we now show. Consider the probabilistic algorithm BPSmp, which is
depicted in Figure 3.1. It takes as input λ, t, and ε, computes η as in Equa-
tion (3.32) and by that defines I as above, chooses Ki

$←−{0, 1}2i uniformly at
random for i ∈ I and defines Ki = ⊥ for all i 6∈ I. Then it outputs

(K0, . . . ,K`) $←− BPSmp(1λ, t, ε).

The joint range of all hash functions Hi with i ∈ I is {0, 1}2i1×· · ·×{0, 1}2i|I| ,
which has size

2η = 2
∑

i∈I 2i .

Hence, we have that

Pr [Hi(X∗) = Ki for all i ∈ I] = 2−η.

Note that 2−η is non-negligible, due to the definition of η in Equation (3.32).

Upper bound on the collision probability. In Lemma 6 below we will show that
near-collision resistance of H guarantees that the probability that an adver-
sary running in time t outputs any two values x 6= x′ such that

Hi(x) = Hi(x′) for all i ∈ I (3.33)

is at most ε/2. Think of x and x′ as values chosen adaptively by an adver-
sary in a security experiment. In the context of VRFs these would be chosen
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inputs, in context of digital signatures these would be chosen messages, for in-
stance. Note that we do not argue that there is a negligible collision probabil-
ity. This is not possible, because we consider a polynomially-bounded space,
where an adversary will always be able to find collisions with non-negligible
probability. However, we can guarantee that there will be no collision with
probability at least ε/2. This means that an adversary that runs in some
time t and has some advantage ε will sufficiently often be successful without
finding a collision.

Hence, similar to confined guessing [BHJ+13, BHJ+15] and computational admis-
sible hash functions, blockwise partitioning enables us to guess challenge identities
from a sufficiently small space such that the guess is correct with a non-negligible
probability. At the same time, it ensures that the space is large enough such that
the adversary produces two colliding inputs with probability at most ε/2. Hence,
the any adversary breaking a considered cryptosystem with some advantage ε must
“sufficiently often” be successful without finding a collision. Observe that 2−η can
be super-polynomial if 1/ε is super-polynomial, which is not precluded by requiring
ε to be non-negligible.

Blockwise partitioning via near-collision resistance. We will now give
a formal definition of weak near-collision resistance and then provide a technical
lemma, which will be useful for security proofs based on blockwise partitioning of
hash function outputs. Note that weak near-collision resistance is only required for
the security of our constructions and we hence only require this property in the
respective theorems and not in the constructions themselves. Furthermore, as for
cAHFs, we consider a single family of hash functions and thus do not use a security
parameter in the definition of weak near-collision resistant hash functions to better
capture an instanitation with already standardized hash functions.

Definition 21 (Weak near-collision resistance). Let H = {H : {0, 1}∗ → {0, 1}n}
be a family of hash functions. For η ∈ {1, . . . , n}, we say that an adversary A =
(A1,A2) breaks the weak η-near-collision resistance of H, if it runs in time tA and
it holds that

Pr
[
η-wNCRHA = 1

]
≥ tA(tA − 1)/2η+1,

where η-wNCR is the experiment defined in Figure 3.2 and the probability is over
the randomness ofA and choosingH. We say thatH is weak near-collision resistant
(wNCR), if there exists no adversaryA breaking the weak η-near-collision resistance
of H for any η ∈ {1, . . . , n}.

The following lemma will be useful to apply blockwise partitioning in security
proofs.

Lemma 6. Let H : {0, 1}∗ → {0, 1}n be a hash function, t be a polynomial, and
let ε be a non-negligible function such that ε > 0 and t/ε < 2λ for all λ. Let η :=
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Gη-wNCR
A,H

(J , st) $←−A1(η)
H $←−H
(X(1), . . . , X(Q+1)) $←−A2(H, st)
if |J | = η and ∃x 6= y ∈ {X(1), . . . , X(Q+1)} with H(x)i = H(y)i for all i ∈ J :

return 1
else

return 0

Figure 3.2: The security experiment for weak near-collision resistance, executed
with a family of hash functions H and adversary A = (A1,A2), where A1 outputs
an index set J ⊆ [n] and H ⊆ {h : {0, 1}∗ → {0, 1}n}. We restrict A1 to only
output index sets J with |J | = η. Note that H(x)i denotes the i-th bit of H(x).

dlog(4t · (2t− 1)/ε)e as in Equation (3.32) and define set I such that η = ∑
i∈I 2i.

Let A be an algorithm that outputs (X(1), . . . , X(Q), X∗) and runs in time t and let

(K0, . . . ,K`) $←− BPSmp(1λ, t, ε),

where BPSmp is the algorithm depicted in Figure 3.1.

1. Let coll be the event that there exists x, x′ ∈ {X(1), . . . , X(Q), X∗} such that

Hi(x) = Hi(x′) for all i ∈ I. (3.34)

Let badChal be the event that there exists i ∈ I such that Pr [Hi(X∗) 6= Ki]. If
H is drawn uniformly at random from a family of weak near-collision resistant
hash functions in the sense of Definition 21, then we have

(ε− Pr [coll]) · Pr [¬badChal] ≥ ε2

32t2 − 16t .

Moreover, coll and badChal are independent of each other.

2. Let badEval be the event that there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗

such that Hi(x) = Ki for all i ∈ I. Then we have

badEval =⇒ coll ∨ badChal.

Proof. The proof uses the same inequalities from Lemma 4 that we already used in
the context of cAHFs in Section 3.3.

η ∈ {1, . . . , 2λ+ 3}, 2t(2t− 1)
2η ≤ ε

2 and 1
2η ≥

ε

16t2 − 8t (3.35)
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We start to prove Property 1 by showing Pr[coll] < ε/2. Assume an algorithm A
running in time tA that outputs (X(1), . . . , X(Q), X∗) such that there exist x, x′ ∈
{X(1), . . . , X(Q), X∗} and that Equation (3.34) holds with probability at least ε/2.
By the definition of I and the functionsHi, this yields thatH(x) andH(x′) agree on
at least η positions. We construct an algorithm B = (B1,B2) that uses A to break
the weak η-near-collision resistance of H. Note that the choice of I is independent
of H ∈ H. B1 therefore just encodes K = (K0, . . . ,K`) to J ⊆ {1, . . . , n} with
|J | = η. B2 simply relays A’s output (X(1), . . . , X(Q), X∗). The runtime tB of B is
at most 2tA, since B does nothing more than executing A and relaying its outputs.
Therefore, we get

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2η ≥ tB(tB − 1)
2η+1 ,

where the second inequality follows from Equation (3.35). This contradicts the
weak near-collision resistance of H. Next, we determine Pr [¬badChal]. We have
that the events coll and badChal are independent of each other because (K0, . . . ,K`)
is chosen independently from (X(1), . . . , X(Q), X∗). Moreover, each Ki with i ∈ I is
chosen uniformly at random from {0, 1}22i and thus we have

Pr [¬badChal] = Pr [Hi(X∗) = Ki for all i ∈ I] = 1
2
∑

i∈I 2i = 2−η,

where the last equation follows by definition of η. To prove Property 1, we then
calculate

(εA − Pr[coll])2−η ≥
(
εA −

εA
2

)
εA

16t2A − 8tA
= ε2

A
32t2A − 16tA

,

where the first inequality follows from Equation (3.35). Finally, to show Property
2, we explain that if badEval occurs, then either badChal or coll must occur. This
is because if there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗ and Hi(x) = Ki for
all i ∈ I, then we have either that also Hi(X∗) = Ki for all i ∈ I and then coll
occurs or we have that there exists an index i ∈ I such that Hi(X∗) 6= Ki and then
badChal occurs. This concludes the proof.

Plausibility of weak near-collision resistance for standard hash
functions. Near-collision resistance has been studied in several previous works,
such as [BC04, BCJ+05, PS14]. Furthermore, the Handbook of Applied Cryptog-
raphy [MvOV96, Remark 9.22] lists near-collision resistance as a desired property
of hash functions and a potential certificational property. Moreover, the sponge
construction for hash functions, which SHA-3 is based on, has been shown to
be indifferentiable from a random oracle [BDPV08] in a slightly idealized model,
which immediately implies near-collision resistance of the sponge construction in
this model. Since weak near-collision resistance is an even weaker property, we view
it as a natural property of cryptographic hash functions.
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Near-collision resistance and the non-programmable random oracle
model. Near-collision resistance holds unconditionally in the non-programmable
random oracle model [FLR+10]. Hence, our results can also be viewed as a generic
technique to obtain adaptively-secure cryptosystems in the non-programmable ran-
dom oracle model without any additional assumptions. In this sense, our paper is
in line with recent works that aim to avoid programmability, such as [FHJ20].

Comparison to ELFs. Extremely lossy functions (ELFs), which were intro-
duced by Zhandry in [Zha16, Zha19a, Zha19b], are hash functions that allow the
reductions to choose the hash function’s image size depending on the adversary,
such that a function with a small image size is indistinguishable from an injec-
tive hash function. Blockwise partitioning uses the weak near-collision resistance
of standard hash functions in a similar manner, by selecting the blocks depend-
ing on the adversary’s runtime and advantage. Hence, ELFs have the potential
to enable constructions similar to the ones we present. However, the known con-
struction [Zha19a] based on exponential hardness of the decisional Diffie-Helman
problem relies on public key techniques and thus is less efficient then a standard
hash functions. Blockwise partitioning can also be seen as an approach towards
resolving the open problem of constructing ELFs from symmetric-key primitives.
While we syntactically do not construct an ELF, the way blockwise partitioning is
used in a proof is very similar.

Comparison to confined guessing. Note that the index set I defined above
may contain multiple indices. This is a major difference of our approach to confined
guessing and the application of truncation collision resistance in [JK18], where
always only single blocks are guessed.
The advantage of being able to guess multiple blocks is that we are now able to

define η as fine grained as we previously did for cAHFs in Section 3.3. In contrast,
[BHJ+13, BHJ+15] and [JK18] were only able to pick values η of exponentially
increasing size, such that η = 22j for some j, which is the reason why our reductions
can improve tightness and the strength of the required assumptions quadratically.
At the same, blockwise partitioning allows us to only consider a logarithmic number
of blocks and thus enables us to construct schemes with efficiency similar to what
a confined guessing approach achieves.
However, the downside of blockwise partitioning is that it does not enable black-

box transformations from selective security to adaptive security as confined guessing
does. Essentially, the confined guessing technique enables this by running O(log λ)
many instances of a scheme in parallel, one for each block. Since it only guesses
one block, it allows to reduce the adaptive security of the scheme to the selective
security of an instance for that one block. Since blockwise partitioning guesses
the challenge value of several blocks instead of one, this black-box approach of
[BHJ+13, BHJ+15] and [JK18] is not applicable to blockwise partitioning.
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3.4.2 Verifiable Random Functions from Blockwise Partitioning
The construction of our VRF is an adaption of Yamada’s VRF [Yam17a] to block-
wise partitioning. For simplicity, we let ` := blog(2λ+ 3)c. Moreover, note that for
all X ∈ {0, 1}∗ and all i ∈ [`]0 we view Hi(X) as a number in Zp by interpreting
it as the canonical binary representation of a natural number. This requires that
p > 2` − 1. However, since

2` = 2blog(2λ+3)c ≤ 2λ+ 3

holds, this does not require us to use any significantly larger p than we would do
anyway for security. We thus proceed to formally describe the VRF.

Construction 2. Let H = {H : {0, 1}∗ → {0, 1}n} be a family of hash functions
for some n ∈ N, let GrpGen be a certified bilinear group generator and let VRFBlk =
(SetupVRFBlk,EvalBlk,VfyBlk) be the following algorithms.

Key generation: SetupVRFBlk(1λ) chooses a group description BG $←− GrpGen(1λ),
a random hash function H $←−H, random generators g, h $←− G∗ and samples
wi

$←− Zp for all i ∈ [`]0. It then sets Wi := gwi for all i ∈ [`] and returns

vk := (BG, g, h, (Wi)i∈[`]0 , H) and sk := ((wi)i∈[`]0).

Evaluation: EvalBlk(sk, X) computes

Θi :=
i∏

i′=0
(wi′ +Hi′(X)),

for all i ∈ [`]0. If there is an index i ∈ [`]0 such that Θi(X) ≡ 0 mod p, it sets
Y := 1GT and πi = 1G for all i ∈ [`]0. Otherwise, it sets

Y := e(g, h)1/Θ` and πi := g1/Θi

for all i ∈ [`]0 and outputs (Y, (πi)i∈[`]0).

Verification: VfyBlk(vk, X, Y, π) checks if the following conditions are met and out-
puts 0 if not, otherwise it outputs 1.
1. X ∈ {0, 1}∗

2. vk is of the form (BG, g, h, (Wi)i∈[`]0 , H).
3. BG is a certified encoding of a bilinear group: GrpVfy(1λ,BG) = 1.
4. All group elements are correctly encoded, that is: the generators g and h

are correctly encoded, as verified by running GrpElemVfy(1λ,BG, g) = 1
and GrpElemVfy(1λ,BG, h) = 1, and all group elementsWi and πi are cor-
rectly encoded, which is verified by running GrpElemVfy(1λ,BG,Wi) = 1
and GrpElemVfy(1λ,BG, πi) = 1 for all i ∈ [`]0.
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5. If there is an i ∈ [`]0 such that Wi · gHi(X) = 1G, then it holds that
Y = 1GT and πi = 1G for all i ∈ [`]0.

6. If Wi · gHi(X) 6= 1G for all i ∈ [`]0, then it holds that e(π0,Wi · gH0(X)) =
1GT and that e(πi,Wi · gHi(X)) = e(g, πi−1) for all i ∈ [`].

7. It holds that e(π`, h) = Y .

Correctness and Unique Provability of VRFBlk.

The correctness and uniqueness of VRFBlk follow with similar arguments to those
by Yamada in the full version [Yam17b].

Correctness. We prove the correctness of VRFBlk by considering an arbi-
trary input X ∈ {0, 1}∗ and assume that (vk, sk) $←− SetupVRFBlk(1λ) and (Y, π) $←−
EvalBlk(sk, X) are honestly generated. We have that vk = (BG, g, h, (Wi)i∈[`]0 , H)
and π = (πi)i∈[`]0 . As can easily be verified, (vk, X, Y, π) passes the first four
properties that are checked in VfyBlk(vk, X, Y, π). For the remaining conditions,
distinguish the two cases that there exists or does not exist an index i ∈ [`]0 such
that Θi(X) ≡ 0 mod p. If there exists such an index i ∈ [`]0, then EvalBlk sets
Y := 1GT and πi := 1G for all i ∈ [`]0. Thus, conditions 5, 6 and 7 also do not lead
to VfyBlk rejecting its input and it is just accepted.
We proceed by considering the case that there does not exist an index i ∈ [`]0

such that Θi(X) ≡ 0 mod p. In this case we have that

e
(
πi,Wi · gHi(X)

)
= e

(
g1/Θi , gwi · gHi(X)

)
= e

(
g1/Θi , gwi+Hi(X)

)
= e (g, g)

wi+Hi(X)
Θi

= e (g, g)1/Θi−1 = e
(
g, g1/Θi−1

)
= e(g, πi−1)

holds. Thus, neither the fifth nor the sixth condition lead to VfyBlk rejecting the
input. Finally, we have that

e(π`, h) = e(g1/Θ` , h) = e(g, h)1/Θ` = Y

holds and thus also the seventh condition does not lead to VfyBlk rejecting the input.
Hence, VfyBlk always accepts if all its inputs are honestly generated.

Unique Provability. In order to show that VRFBlk has unique provability,
we have to show that for every vk ∈ {0, 1}∗ and X ∈ {0, 1}∗ there do not ex-
ist bit strings Y, π, Y ′, π′ ∈ {0, 1}∗ with Y 6= Y ′ such that VfyBlk(vk, X, Y, π) =
VfyBlk(vk, X, Y ′, π′) = 1 holds. We prove this by considering arbitrary bit strings
vk, X ∈ {0, 1}∗ and Y, π, Y ′, π′ ∈ {0, 1}∗ with Y 6= Y ′ such that VfyBlk(vk, X, Y, π) =
VfyBlk(vk, X, Y ′, π′) = 1 holds. We will show that this can only hold if Y = Y ′ holds.
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Recall that VfyBlk first verifies that X ∈ {0, 1}∗, the bilinear group is indeed certi-
fied and that all supposed group elements are correctly and uniquely encoded. We
therefore assume for the remainder of the proof that these conditions hold because
otherwise VfyBlk(vk, X, Y, π) = VfyBlk(vk, X, Y ′, π′) = 1 could not hold.
We first consider the case that there is i ∈ [`]0 such that Wi · gHi(X) = 1G holds.

Then, in order for VfyBlk(vk, X, Y, π) = VfyBlk(vk, X, Y ′, π′) = 1 to hold, both (Y, π)
and (Y ′, π′) have to pass Step 5 of the verification algorithm. However, they can
only pass Step 5 in this case if Y = Y ′ = 1GT holds, which proves our claim in this
case.
Now, we consider the case that there is no index i ∈ [`]0 such thatWi ·gHi(X) = 1G

holds. Then, in order to pass Step 6 of the verification algorithm, it has to hold
that e(π0,W0 · gH0(X)) = 1GT = e(π′0,W0 · gH0(X)). The group structure together
with the unique representation guaranteed by the certified bilinear group generator
thus implies that π0 = π′0 has to hold. Furthermore, the sixth condition in the
verification algorithm requires that

e(πi,Wi · gHi(X)) = e(g, πi−1) and e(π′i,Wi · gHi(X)) = e(g, π′i−1)

has to hold for all i ∈ [`]. By induction, the group structure together with the
unique representation guaranteed by the certified bilinear group generator thus
implies that πi = π′i has to hold for all i ∈ [`] if

VfyBlk(vk, X, Y, π) = VfyBlk(vk, X, Y ′, π′) = 1

holds. Finally, Step 7 of the verification algorithm enforces that

e(π`, h) = Y and e(π′`, h) = Y ′

holds. Since we already established that π` = π′` holds, it also has to hold that

Y = Y ′

by the group structure and the unique representation guaranteed by the certified
bilinear group generator. This proves our claim also for the second case and by
that the unique provability of VRFBlk.

Pseudorandomness of VRFBlk.

We prove the security of VRFBlk from the q-DBDHI assumption (see Definition 14).

Theorem 6. If VRFBlk is instantiated with a familyH = {H : {0, 1}∗ → {0, 1}2λ+3}
of weak near-collision resistant hash functions (see Definition 21), then for any le-
gitimate attacker A that breaks the pseudorandomness of VRFBlk in time tA with
advantage εA := AdvPsrd

VRFBlk,A(λ) let K $←− BPSmp(1λ, tA, εA) and let I := {i ∈ [`]0 :
Ki 6= ⊥}. Then there exists an algorithm B that, given (sufficiently close approxi-
mations of) tA and εA, breaks the q-DBDHI assumption with

q := |I|+ 2
∑
i∈I

(
22i − 1

)
(3.36)
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in time tB ≈ tA and with

Advq-DBDHI
B (λ) ≥ ε2

A
32t2A − 16tA

+ negl(λ),

for some negligible function negl(·). In particular, if VRFBlk is instantiated with a
bilinear group generator for which the q-DBDHI assumption is hard, then VRFBlk
is a secure verifiable random function as defined in Definition 6.

Before we proceed with the proof of Theorem 6, we succinctly discuss the size
of q in the q-type assumption. First, observe that even though it depends on
K $←−BPSmp(1λ, tA, εA), which is randomized, I and |I| in particular are determin-
istically defined by tA and εA. Thus, q is well defined. Furthermore, the sum in
Equation (3.36) can easily be upper bounded as we observe in the following lemma,
which will also use in the proof of Theorem 6 below.

Lemma 7. For arbitrary t ∈ N and ε ∈ [0, 1] such that t/ε ≤ 2λ let K $←−
BPSmp(1λ, t, ε) and let the index set be I := {i : Ki 6= ⊥} ⊆ [blog(2λ+ 3)c]0,
it then holds that

2 ·
∑
i∈I

(
22i − 1

)
≤ 32t2

ε
.

Proof.

2 ·
∑
i∈I

(
2(2i) − 1

)
≤ 2 ·

∑
i∈I

2(2i) < 2 ·
∏
i∈I

2(2i) (3.37)

= 2 · 2
∑

i∈I(2i) = 2η

= 2 · 2dlog(4t(2t−1)/ε)e ≤ 8t(2t− 1)
ε

≤ 2 · 16t2
ε

= 32t2
ε
,

where the second inequality in Equation (3.37) holds, because a + b ≤ ab for all
a, b ≥ 2. This concludes the proof.

Moreover, we will use the Schwartz-Zippel Lemma in the proof of Theorem 6. We
therefore state it here for reference.

Lemma 8 (Schwartz-Zippel lemma [Zip79, Sch80]). Let f ∈ F[Z] be a non-zero
polynomial of degree d ≥ 0 over the field F. For any finite subset S of the field
F and for any r1, . . . , rn drawn uniformly and independently at random from S it
holds that

Pr [f(ri) = 0 ∀ i ∈ [n]] ≤ d

|S|
.

With this preparation, we now proceed with the proof of Theorem 6.
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Proof of Theorem 6. We prove Theorem 6 with a sequence of games argument (see
Section 2.5). We denote the event that Game i outputs 1 by Gi and denote the
adversary’s advantage in Game i by Ei := |Pr[Gi]− 1/2|. The first half of the proof
closely follows the proofs by Jager, Kurek and Niehues [JK18, JN19a]. The second
half follows the proof by Yamada [Yam17a].

Game 0. This is the original VRF pseudorandomness experiment GPsrd from Def-
inition 6. And therefore

Pr [G0] = Pr
[
GPsrd
VRFBlk,A(λ) = 1

]
and εA := E0 =

∣∣∣∣G0 −
1
2

∣∣∣∣ .

Game 1. This game is identical to Game 0, except that the challenger runs K =
(K0, . . . ,K`) $←− BPSmp(tA, εA) depicted in Figure 3.1. Furthermore, it defines I :=
{i : Ki 6= ⊥}. Moreover, we let X be the set of all queries that the adversary makes
to EvalBlk(sk, X(i)), and let X ∗ := X ∪{X∗}, where X∗ is the challenge query. Then
note that the choice of K also defines the events coll, badChal and badEval as in
Lemma 6 as

badChal ⇐⇒ ∃ i ∈ I : Hi(X∗) = Ki,

coll ⇐⇒ ∃X 6= X ′ ∈ X ∗ s.t. Hi(X) = Hi(X ′)∀ i ∈ I and
badEval ⇐⇒ x ∈ X s.t. Hi(X) = Ki ∀ i ∈ I.

Since these changes are purely conceptual, it holds that

Pr [G1] = Pr [G0] .

Game 2. In this game, the challenger aborts the experiment and outputs a random
bit if it detects that event coll occurred. We thus have that

Pr [coll] ≥ |Pr [G1]− Pr [G2]| (3.38)

=
∣∣∣∣Pr [G1]− Pr [G2] + 1

2 −
1
2

∣∣∣∣
=
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)∣∣∣∣
=
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)∣∣∣∣+ ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣
≥
∣∣∣∣(Pr [G1]− 1

2

)
−
(

Pr [G2]− 1
2

)
+
(

Pr [G2]− 1
2

)∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣
(3.39)

=
∣∣∣∣Pr [G1]− 1

2

∣∣∣∣− ∣∣∣∣Pr [G2]− 1
2

∣∣∣∣ = E1 − E2,
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where Equation (3.38) follows from Lemma 1 (Shoup’s Difference Lemma) and
Equation (3.39) follows from the triangle inequality. Rearranging the terms above,
we thus obtain that

E2 ≥ E1 − Pr [coll] = εA − Pr [coll]

holds.

Game 3. In this game, the challenger additionally aborts and outputs a random bit
if badChal or badEval occur. By Property 2 of Lemma 6 we have badEval =⇒ coll∨
badChal. Thus, event badEval does not cause any aborts on its own. Moreover we
have by Property 1 from Lemma 6 that the events badChal and coll are independent
and that

(εA − Pr [coll]) · Pr [¬badChal] ≥ ε2
A

32t2A − 16tA
holds. We thus conclude that

E3 = E2 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥ ε2
A

32t2A − 16tA
(3.40)

holds.

Game 4. In this game, we replace the events badChal, badEval and coll by a single
event bad := badChal ∨ badEval ∨ coll and the challenger outputs a random bit if
bad occurs. Since this is a purely conceptual change, it does not affect A’s success
probability and we thus have that

E4 = E3.

Game 5. In this game, the challenger aborts as soon as the event bad occurs
instead of in the end. Since Game 5 and Game 4 are identical until bad we have
that

E5 = E4.

The previous changes were about applying the blockwise partitioning technique
from Lemma 6. The next changes use Yamada’s technique to embed the partition-
ing into the public key and therefore closely follow his proof [Yam17a]. Recall that
we set

q := j + 2
∑
i∈I

(
22i − 1

)
,

where for j := |I|.
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Game 6. In this game we change the way vk is generated by the challenger. It
samples α $←− Z∗p, w̃i $←− Z∗p and sets

wi :=

w̃i · α− Ki if Ki 6= ⊥
w̃i otherwise

for all i ∈ [n]0. If wi = 0 for any i ∈ [`]0, then the challenger aborts and outputs
a random bit. This happens iff w̃iα = Ki. Since w̃iα is distributed uniformly at
random in Z∗p, the probability that this happens for any of the O(log λ) many wi
is negligible and therefore

|E6 − E5| ≤ negl(λ).

Game 7. In this game we change the way the challenger chooses the generator g.
Again, let j := |I| be the number positions in K that are not ⊥. The challenger
then first defines the polynomial Q(Z) ∈ Zp[Z] as

Q(Z) := Zj−1 ∏
i∈I

∏
−22i+1≤k≤22i−1

k 6=0

(w̃iZ + k) . (3.41)

Now, instead of sampling g $←−G, the challenger samples g̃ $←−G and sets g := g̃Q(α).
If g = 1G, which happens iff Q(α) ≡ 0 mod p, the challenger outputs a random bit
and aborts. It can be seen that the distribution of g changes only if Q(α) ≡ 0 mod p.
Since Q(Z) is a non-zero polynomial of degree j − 1 + 2∑`

i∈I(2(2i) − 1) = q − 1 ≤
blog(2λ+ 3)c+32t2A/ε by Lemma 7 and α is uniformly random in Z∗p, we have that
Pr [Q(α) = 0] ≤ `+32t2A/εA

p−1 holds by the Schwartz-Zippel lemma (see Lemma 8).
Since blog(2λ+ 3)c + 32t2A/εA is polynomial in λ and p ∈ 2Ω(λ) by the properties
of GrpGen, it holds that

|E7 − E6| = negl(λ).

Game 8. In this game, the challenger always responds to A’s challenge with a
random element Y $←−GT , regardless of the value of b. Thus, it holds that

Pr [G8 = 1] = 1
2 and E8 = 0.

Furthermore, we claim that there is an algorithm B such that

|E8 − E7| = Advq-DBDHI
B (λ).

We proceed by describing how B works.
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Initialization. In the beginning of the experiment B runs K := (K0, . . . ,K`) $←−
BPSmp(tA, εA) and by doing so determines the index set I = {i : Ki 6= ⊥} according
to Lemma 6. Moreover, it receives a q-DBDHI instance (BG, g̃, h, g̃α, g̃α2

, . . . , g̃α
q
,

T ), for q = j + ∑
i∈I

(
22i − 1

)
, where either T = e(g̃, h)1/α or T $←− GT . Recall

that j = |I| is the number of non-wildcard positions in K. In order to compute
g, B samples w̃i $←− Z∗p for all i ∈ [`]0 as in Game 8. It then computes coefficients
ϕ0, . . . ϕq−1 ∈ Zp such that

Q(Z) = Zj−1 ∏̀
i∈I

∏
−22i+1≤k≤22i−1

k 6=0

(w̃iZ + k) =
q−1∑
k=0

ϕkZk

holds, where Q(Z) is as in Equation (3.41). Such coefficients ϕ0, . . . ϕj·2(a−1)+j−1 ∈
Zp exist because Q(Z) is of degree q − 1 and B can compute them since it knows
w̃i for all i ∈ [n]0. It then computes

g :=
q−1∏
k=0

(
g̃α

k
)ϕk = g̃

∑q−1
k=0 ϕkα

k = g̃Q(α).

Recall that g(α0), . . . , g(αq−1) are given in the q-DBDHI instance and B can therefore
compute g in this way. If g = 1G, meaning Q(α) ≡ 0 mod p, B aborts and outputs
a random bit. Since α from the q-DBDHI instance is distributed identically to α
in Game 8 and all wi are distributed exactly as in Game 8, we have that g is
distributed exactly as in Game 8. B proceeds with computing vk. For this purpose,
B (implicitly) sets

wi :=

w̃i · α− Ki if Ki 6= ⊥
w̃i otherwise

by computing ψi,0, . . . , ψq ∈ Zp for all i ∈ [`]0 such that

Q(Z) · (w̃i · Z− Ki) =
q∑

k=0
ψi,kZk

holds and setting

Wi :=
q∏

k=0

(
g̃α

k
)ψi,k = g̃

∑q

k=0 Q(α)·(w̃iα−Ki) = gwi

for all i ∈ [`]0 with Ki 6= ⊥. Observe that B can compute these values by using
g̃(α0), . . . , g̃(αq) from the q-DBDHI instance. For all i ∈ [`] with Ki = ⊥, B then sets
Wi := gwi and then gives vk := (BG, g, h, (Wi)i∈[`]0 , H) to A. Further, since α and
all wi are distributed as in Game 8, we have that all Wi are also distributed as in
Game 8.
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Helpful definitions. In order to describe how B responds to evaluation que-
ries and the challenge X∗, we define the polynomials PX,i(Z) ∈ Zp[Z] — these
polynomial will assume the role of the respective Θi in the construction — for all
X ∈ {0, 1}∗ and i ∈ [`]0 as

PX,i(Z) :=

PX,i−1(Z) (w̃iZ− Ki +Hi(X)) if Ki 6= ⊥
PX,i−1(Z) (w̃i +Hi(X)) if Ki = ⊥

,

where PX,−1(Z) := 1. Furthermore, we let PX(Z) := PX,`(Z). We require the
following lemma by Yamada [Yam17a] to proceed with the description of B.

Lemma 9 (Lemma 6 in [Yam17a]). Let X ∈ {0, 1}∗ then there exist ζX ∈ Z∗p and
RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z) =


ζX
Z + RX(Z) if Hi(X) = Ki for all i ∈ I and

RX(Z) otherwise.

The proof of Lemma 9 mostly follows the proof of Lemma 6 in [Yam17a]. How-
ever, the proof is only contained in the full version [Yam17b]. As to not interrupt
the current proof, we provide it after finishing this proof.

Answering evaluation queries. When B receives an evaluation query X ∈
{0, 1}∗ from A, it checks whether Hi(X) = Ki for all i ∈ I and if so aborts and
outputs a random bit. If there is an index i ∈ I such that Hi(X) 6= Ki, then
B lets RX,i(Z) ∈ Zp[Z] such that RX,i(Z) = Q(Z)/PX,i(Z) for all i ∈ [`], which is
guaranteed to exist by Lemma 9. B then computes the coefficients ρX,i,k ∈ Zp of
the polynomials RX,i(Z) for all i ∈ [`]0 and k ∈ [dX,i], where dX,i ≤ q is the degree
of RX,i(Z), such that RX,i(Z) = ∑dX,i

k=0 ZkρX,i for all i ∈ [`]0. B then computes πi as

πi :=
dX,i∏
k=0

(
g̃α

k
)ρX,i,k = g̃

∑dX,i
k=0 αkρX,i,k = g̃RX,i(Z) = g̃Q(α)/PX,i(α) = g1/PX,i(α),

for all i ∈ [`]0. It then computes the result Y as

Y := e(πn, h) = e(g, h)1/PX(α)

and outputs (Y, (πi)i∈[`]0) to A. Observe that both Y and (πi)i∈[`]0 are distributed
exactly as in Game 8.

Answering A’s challenge. When B receives the challenge X∗ ∈ {0, 1}∗, it
checks whether there exists an index i ∈ I such that Hi(X) 6= Ki and if so aborts
and outputs a random bit. This behavior is identical to the challenger’s behavior
in Game 8. Otherwise, B lets b $←− {0, 1} and responds to A with Y $←−GT if b = 1.
If b = 0, then B lets ζX∗ ∈ Zp and RX∗(Z) ∈ Zp[Z] be such that Q(Z)/PX∗(Z) =
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ζX∗/Z+RX∗(Z) as guaranteed by Lemma 9. B then computes coefficients γX∗,k ∈ Zp
of RX ∈ Zp[Z] for all k ∈ [dX∗ ], where dX∗ ≤ q is the degree of RX∗(Z), such that∑dX∗
k=0 ZkγX∗,k holds. B then computes the response Y as

Y := T ζX∗e

dX∗∏
k=0

(
g̃α

k
)γX∗,k

, h

 = T ζX∗e
(
g̃
∑dX∗

k=0 α
kγX∗,k

)
= T ζX∗e

(
g̃RX∗ (Z)

)
(3.42)

and returns Y to A.

Solving q-DBDHI. Finally, when A outputs its guess b′ to B, then B outputs 1
as the solution to the q-DBDHI instance and 0 otherwise.

Analysis of B. Recapping the construction of B, we observe that vk and all an-
swers of B to evaluation queries by A are distributed identically to the challenger’s
interactions with A in Game 8. Analyzing B’s response to the challenge X∗, we
distinguish the following two cases depending on the q-DBDHI instance.

T = e(g̃, h)1/α: In this case we have to distinguish between b = 1 and b = 0. In the
latter case, we have that the following by Equation (3.42):

Y = e (g̃, h)
ζX∗

Z e(g̃, h)RX∗ (Z) = e(g̃, h)
ζX∗

Z +RX∗ (Z) = e(g, h)1/PX∗ (Z)

Since b $←− {0, 1}, this is the case with probability 1/2. Analogously, if b = 1,
then B sets Y $←−GT .

T $←−GT : In this case we have that Y = T ζX∗e
(
g̃RX∗ (Z), h

)
is uniformly random in

GT , regardless of what b is.

We observe that Y is distributed exactly as in Game 7 if T = e(g̃, h)1/α and that
Y is distributed exactly as in Game 8 if T $←−GT . This proves that

Advq-DBDHI
B (λ) = |E8 − E7| (3.43)

holds. Furthermore, the running time tB of B consists of the time needed to execute
A plus the time required to respond to evaluate queries by A. Since we included
the runtime of the challenger in the runtime of the adversary in Definition 6, we
have that tB ≈ tA. To complete the proof of Theorem 6, we now only need to lower
bound Advq-DBDHI

B (λ). We have for a negligible function negl : N→ [0, 1] that

Advq-DBDHI
B (λ) = |E8 − E7| (3.44)

≥ |E8 − E3|+ negl(λ) (3.45)
= E3 + negl(λ) (3.46)

≥ ε2
A

32t2A − 16tA
+ negl(λ), (3.47)
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Equation (3.44) follows from Equation (3.43), Equation (3.45) holds because the
changes between Game 3 and Game 7 are all conceptual or negligible, Equa-
tion (3.46) holds because E8 = 0 and Equation (3.47) follows from Equation (3.40).
This completes the proof.

Proof of Lemma 9. Recall that we set ` := blog(2λ+ 3)c, denote the set of indices i
with Ki 6= ⊥ by I := {Ki 6= ⊥} and denote the number of non-wildcard positions in
K by j := |I|. The proof mostly follows the respective proof by Yamada [Yam17b].
In order to decomposition PX(Z) and Q(Z), we define

tX :=
∏

i∈([`]0\I)
(w̃i +Hi(X))

and the polynomials SX,i(Z) for all i ∈ I and all X ∈ {0, 1}∗, and the polynomials
Qi(Z) ∈ Zp[Z] for all i ∈ [`]0 as

SX,i(Z) := w̃iZ− Ki +Hi(X) and Qi(Z) =
∏

−22i+1≤k≤22i−1
k 6=0

(w̃iZ + k) .

By the definitions of PX(Z) and Q(Z), we then have that

PX(Z) = tX
∏
i∈I

SX,i(Z) and Q(Z) = Zj−1 ∏̀
i=0

Qi(Z)

holds. Now, define the set of indices i where Ki and Hi(X) match as M := {i ∈
I : Hi(X) = Ki}. We first observe that Ki = Hi(X) for all i ∈ I if and only
if M = I. Furthermore, we observe that for all i ∈ M it holds that SX,i(Z) =
w̃iZ− Ki +Hi(X) = w̃iZ. Therefore, it follows from the definition of Qi(Z) that

SX,i(Z) - Qm(Z) for all i ∈M and m ∈ [`]0, (3.48)
SX,i(Z) - Z for all i ∈M. (3.49)

We distinguish the two cases considered in Lemma 9.

Case 1: I = M. In this case the lemma claims that there is ζX ∈ Zp and
RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z) = ζX

Z + RX(Z)

holds. SinceM = I, we have by Equation (3.48) and by Equation (3.49) that

PX(Z) | Zj
∏̀
i=0

Qi(Z) but PX(Z) - Zj−1 ∏̀
i=0

Qi(Z) = Q(Z)

holds, because j = |I|. This implies the existence of a polynomial RX(Z) ∈ Zp[Z]
and ζX ∈ Zp such that Q(Z)/PX(Z) = ζX/Z + RX(Z) as claimed by the lemma.
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Case 2: I 6= M. In this case there exists i∗ ∈ I such that H(X)i∗ 6= Ki∗ . Let
L := −Ki∗ + Hi∗(X). We then note that L 6= 0 and −22i∗ + 1 ≤ L ≤ 22i∗ − 1
holds. Furthermore, it holds that SX,i∗(Z) = w̃i∗Z − Ki∗ + Hi∗(X) = w̃i∗Z + L by
the definition of SX,i∗(Z). In particular, it therefore holds that SX,i∗(Z) | Qi∗(Z).
Therefore, we also have that PX(Z) | Q(Z) and hence it exists a polynomial RX(Z) ∈
Zp[Z] such that RX(Z) ∈ Zp[Z] = Q(Z)/PX(Z) as claimed by the lemma. This
completes the proof Lemma 9.

3.5 Comparison of VRF Instantiations
In this section, we use the bounds we introduced in Section 3.2 to compare the con-
crete number of group-/Zp-elements in keys and proofs of VRF cAHF in Construc-
tion 1, VRFBlk in Construction 2 and the VRFs by Jager [Jag15], Yamada [Yam17a]
and Katsumata [Kat17] in detail. Furthermore, we discuss the VRF of Kohl [Koh19],
which achieves very short proofs while relying on standard assumptions. Further-
more, where possible, we compare an instantiation with bAHFs from ECCs with
an instantiation with cAHFs from TCR hash functions.
Except for Construction 2, all these VRFs can be instantiated in two different

ways: using bAHFs based on ECCs and using cAHFs based on TCR hash functions
from Section 3.3.1. We do not compare Yamada’s third VRF here, because it follows
a more generic approach and is not aimed at being particularly efficient. However,
we will discuss it in detail in Chapter 4 since this generic approach enables re-
ductions with optimal tightness. Overall, our comparison shows that instantiating
the VRFs with cAHFs significantly reduces the key and proof sizes. Furthermore,
comparing our new VRF in Construction 1 to any of the other VRFs shows that
our new VRF has either significantly smaller secret keys, verification keys or proofs
than each other VRF. Moreover, our VRF based on blockwise partitioning in Con-
struction 2 is by far the most efficient VRF from all VRFs that we compared.
However, note that our VRF based on blockwise partitioning in Construction 2
can only be compared to the other VRFs to a limited degree because its security is
based on a q-DBDHI assumption with a much larger q, which makes the assumption
significantly stronger as Cheon has shown [Che06].

Formulas for key and proof sizes. Our comparison is in the concrete setting
instead of an asymptotic one. That is, we consider realistic runtime, advantage
and security parameters for the comparison. Table 3.2 thus shows the sizes of the
verification keys |vk| and proofs |π| as the number of group elements they contain
as functions of λ,Q, ε, δ and t. Analogously, |sk| shows the number of Zp elements
the secretkey contains in dependence of λ,Q, ε, δ and t. The caption precisely
explains how the key and proof sizes relate to these variables. Furthermore, the
table shows the advantage of the solver AdvB against the respective hard problem.
For our VRF in Construction 2, the VRFs of [Kat17] and [Yam17a], this is the
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3 Efficient Verifiable Random Functions

q-DBDHI assumption introduced by Boneh and Boyen [BB04a]. For our VRF in
Construction 1 and Jager’s VRF [Jag15], this is the q-DDH assumption. While the
security of Construction 2 is based on the q-DBDHI assumption with a much larger
and is thus only comparable to a limited degree [Che06], the key and proof sizes of
all other constructions are comparable for the following reasons, even though they
rely on different assumptions.

1. Cheon’s algorithm [Che06] is the most efficient known generic algorithm to
solve both the q-DDH assumption and the q-DBDHI assumption.

2. Except for Yamada’s VRFs [Yam17a], all schemes considered share almost
the same q in the assumption. Also, Yamada’s VRF relies on a O(λ log(λ))-
DBDHI assumption [Yam17a], and is therefore reasonably close the q of the
assumptions of the other schemes. Hence, Yamada’s VRFs would only need
to use slightly larger groups to compensate the stronger assumption.

Instantiation choices. The concrete number of group elements in keys and
proofs depends on some instantiation choices, which we describe here. Since the
VRF instantiation with cAHFs takes inputs from {0, 1}∗, we level the playing field
by assuming that the instantiations using ECCs first hash the inputs with a collision
resistant hash function H : {0, 1}∗ → {0, 1}n and thus the VRFs also take inputs
from {0, 1}∗. We let n = 2λ, to ensure the collision resistance of H against birthday
attacks. Hence, when an ECC C is used in an instantiation, then C is always chosen
to take inputs from {0, 1}2λ. We list the key sizes of the different VRFs, instantiated
with cAHFs and with ECCs in Table 3.3.
Unfortunately, assessing the potential efficiency of the instantiation using bAHFs

with ECCs is only possible to a limited degree because finding the best known
ECC for a given input length and relative minimal distance is non-trivial for larger
numbers. Code tables [Gra07], the most extensive collection (to the best of our
knowledge) of best known codes for different parameters, only lists binary codes of
length up to 256, which is too small for reasonable security parameters. Therefore,
we compare the instantiation of bAHFs with Bose–Chaudhuri–Hocquenghem (BCH)
codes and with hypothetical ECCs on the MRRW and GV bound. We describe
these potential instanations more specifically below.

• We consider primitive Bose–Chaudhuri–Hocquenghem (BCH) codes that we
puncture to achieve the desired relative minimal distance. Again, tables in for
example [PW88, Table 9.1] only list codes for lengths up to 1023. Therefore,
we wrote a small program that finds the most suited primitive BCH code for
this purpose. It can be found in Appendix A or at https://github.com/
DavidNiehues/bch-code-search. The program considers the Bose distance
of the BCH codes instead of the (sometimes worse) design distance. The
caption of Table 3.3 states the used primitive BCH code explicitly.

• Furthermore, we present key and proof sizes under the assumptions that ECCs
on the GV and MRRW bound can be efficiently instantiated.
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3 Efficient Verifiable Random Functions

Assuming instantiations with ECCs on the GV and MRRW bound gives the
instantiation with bAHFs and ECCs an advantage over instantiations using cAHFs
with TCRs, since ECCs on the MRRW bound are the best theoretically possible
ECCs and it is not known whether ECCs on the GV bound can be constructed
efficiently. We consider both bounds because there are concrete codes better than
the GV bound. Hence, only showing codes on the GV bound would be unfair to
the instantiation with ECCs.
In the calculation of the key sizes of Yamada’s VRFs [Yam17a], we pick nECC

1 =
nECC

2 as
⌈√

nECC
⌉
in order to make the parameter sizes comparable.

Kohl’s VRF with short proofs. In addition to the VRFs that we discuss
in detail, we also want to discuss Kohl’s VRF [Koh19] with short proofs of ω(1)
many group elements from a standard assumption. In contrast to the other VRFs
that we compare, Kohl’s VRF relies on an AHF together with the artificial abort
technique, which was first introduced by Waters [Wat05]. Furthermore, it uses
ECCs over larger finite fields of polynomial size, as first discussed for partitioning
by Bitansky in the full version [Bit17b] of [Bit17a]. The full version was later
published as [Bit20]. While using an ECC over a larger build can be used in
a bAHF, as Bitansky has shown [Bit20, Section 4.1.1], Kohl’s VRF relies on a
particular choice of η to play out its strength of achieving short proof sizes at
the cost of a larger loss, which we use to normalize the comparison in Table 3.3.
Therefore, we do not include it in our detailed comparison of VRFs in Table 3.3.
Nontheless, we want to give an impression of the size of the proofs of Kohl’s VRF
if it is instantiated exactly as described by Kohl in [Koh19].
We are considering the same scenario as in Table 3.3. The parameters for the

instantiation of Kohl’s VRF are λ = 128 and Q = 225. Then the proofs of Kohl’s
VRF have a size of |π| = 3 · (dlog(2Q)/(ν log(λ))e+ 1) many group elements, where
0 < ν ≤ 1 is a parameter that allows a tradeoff between the size of the proofs
and the size of the verification keys of the VRF [Koh19, Section 3]. Note that this
size of proofs is asymptotically ω(1) because Q is polynomial in λ. We show in
Table 3.4 how many group elements the proofs of Kohl’s VRF have in this setting
for different values of ν.

Smaller keys and proofs using cAHFs. Table 3.3 shows the concrete num-
ber of group elements of the different instantiations in the setting with λ = 128,
Q = 225, t = 250 and ε = 2−25. The instantiation of the VRFs with cAHFs improves
the size of keys and proofs significantly, even compared to bAHFs instantiated with
the best theoretically possible ECCs on the MRRW bound. Concretely, using cAHFs
with TCRs instead of bAHFs with ECCs on the MRRW bound reduces the size of
the proofs of the VRF in Section 5.1 in [Kat17] by ≈ 61% in the setting of Table 3.3.
Compared to an instantiation with ECCs on the GV bound, we reduce the proof
size by ≈ 78%. Compared to the instantitation with punctured primitive BCH
codes, the improvement is ≈ 87%. Particularly, keys and proofs whose size
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3.5 Comparison of VRF Instantiations

Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 1551 1549 261883 ≈ 2−155

GV 1551 1549 154942 ≈ 2−155
[Kat17] Sec. 5.1 MRRW 1422 1420 85797 ≈ 2−155

cAHF 1283 1281 33291 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 32769 1549 257 ≈ 2−155
[Kat17] Sec. 5.3 MRRW 23094 1420 257 ≈ 2−155

cAHF 16131 1281 255 ≈ 2−155

BCH 5936 129 5934 ≈ 2−155

GV 4517 129 4515 ≈ 2−155
[Yam17a] Sec. 6.1 MRRW 3356 129 3354 ≈ 2−155

cAHF 2178 128 2176 ≈ 2−155

BCH 131 129 11739 ≈ 2−155

GV 131 129 8901 ≈ 2−155
[Yam17a] Sec. 6.2 MRRW 131 129 6579 ≈ 2−155

cAHF 130 128 4224 ≈ 2−155

BCH 4060 4058 2029 ≈ 2−155

GV 2402 2400 1200 ≈ 2−155
[Jag15] MRRW 1330 1328 664 ≈ 2−155

cAHF 520 518 259 ≈ 2−155

BCH 2033 2031 2030 ≈ 2−155

GV 1204 1202 1201 ≈ 2−155
Construction 1 MRRW 668 666 665 ≈ 2−155

cAHF 263 261 260 ≈ 2−155

Construction 2 Blockwise Part. 11 9 9 ≈ 2−155

Table 3.3: Key and proof sizes for λ = 128, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have ηbAHF = 129. Puncturing a primitive [2047, 264, 495] BCH-
code 18 times to a [2029, 264, 477]2 code yields nBCH = 2029, nBCH

1 = 46, nBCH
2 = 46

and ζBCH = 12. If an ECC on the GV bound is used, this implies nGV = 1200, nGV
1 =

35, nGV
2 = 35 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used,

this implies nMRRW = 664, nMRRW
1 = 26, nMRRW

2 = 26 and ζMRRW = 11. Finally, if
the VRFs are instantiated with a cAHF using TCRs, we have nhash = 259, nhash

1 =
17, nhash

2 = 17, ηhash = 128 and ζhash = 10.
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3 Efficient Verifiable Random Functions

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
|π| 117 60 42 33 27 24 21 18 18 15

Table 3.4: The size of proofs of Kohl’s VRF for λ = 128, Q = 225 and for ν ∈
{0.1, 0.2, . . . , 0.9, 1}.

depends linearly on nECC shrink when the VRFs are instantiated with cAHFs.
Over all key and proof sizes affected by the improvement, the reduction amounts
for at least 9% of the size of an instantiation with ECCs on the MRRW bound.
Note that the size of all keys and proofs stays at least the same. Hence, by making
an additional (but from a practical point of view plausible and natural) complexity
assumption, we can reduce the key and proof sizes significantly, which may be useful
for many practical applications of VRFs. Furthermore, it hints at the usefulness of
cAHFs for other primitives.

Efficiency of VRF cAHF. Table 3.3 shows that Construction 1 nearly halves the
size of the verification and secret key of Jager’s VRF while maintaining the proof
size. Comparing Construction 1 with the VRFs of Katsumata and Yamada shows
that, in the worst case, Construction 1 has secret or verification keys about twice the
size of the verification or secret keys of VRFs by Katsumata and Yamada. At the
same time, when instantiated with cAHFs, our VRF always has either verification
or secret keys with size only ≈ 20% of the size of the respective keys of the VRFs
of Yamada and Katsumata with the same instantiation.

Efficiency of VRFBlk. The comparison in Table 3.3 shows that our VRF based
on blockwise partitioning in Construction 2 is by far the most efficient VRF from
those that we considered. Even though we have to take into account that Con-
struction 2 is based on a significantly stronger assumption than the other VRFs
that we considered, the VRF would still be the most efficient construction after
compensating the stronger assumption by using larger groups.

Further comparisons. Below, we provide more comparisons like those in Ta-
ble 3.3. These comparisons further support the efficiency of cAHFs, blockwise
partitioning and both our VRFs. The results we present are calculated using the
formulas stated in Table 3.2. Compared to Table 3.3, we provide key and proof sizes
for λ ∈ {100, 128, 256} and ε ∈ {2−25, 2−50}. For every combination of λ and ε, δ is
chosen such that the advantages for the instantiation using ECCs and the instantia-
tion using truncation-collision resistant hash functions are approximately the same.
The results show that using the cAHF instantiated with a truncation-collision re-
sistant hash function reduces key and proof sizes significantly. Furthermore, our
VRF from blockwise partitioning is by far the most efficient in all settings, however,
also requires the strongest assumptions.
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3.5 Comparison of VRF Instantiations

Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 2005 2003 567966 ≈ 2−205

GV 1851 1849 225931 ≈ 2−205
[Kat17] Sec. 5.1 MRRW 1697 1695 110892 ≈ 2−205

cAHF 1380 1378 31222 ≈ 2−205

BCH 55443 2003 307 ≈ 2−205

GV 39119 1849 307 ≈ 2−205
[Kat17] Sec. 5.3 MRRW 27569 1695 307 ≈ 2−205

cAHF 13467 1378 305 ≈ 2−205

BCH 9396 154 9394 ≈ 2−205

GV 6008 154 6006 ≈ 2−205
[Yam17a] Sec. 6.1 MRRW 4160 154 4158 ≈ 2−205

cAHF 2297 153 2295 ≈ 2−205

BCH 156 154 18634 ≈ 2−205

GV 156 154 11858 ≈ 2−205
[Yam17a] Sec. 6.2 MRRW 156 154 8162 ≈ 2−205

cAHF 155 153 4437 ≈ 2−205

BCH 7376 7374 3687 ≈ 2−205

GV 2934 2932 1466 ≈ 2−205
[Jag15] MRRW 1440 1438 719 ≈ 2−205

cAHF 408 406 203 ≈ 2−205

BCH 3691 3689 3688 ≈ 2−205

GV 1470 1468 1467 ≈ 2−205
Construction 1 MRRW 723 721 720 ≈ 2−205

cAHF 207 205 204 ≈ 2−205

Construction 2 Blockwise Part. 10 8 8 ≈ 2−205

Table 3.5: Key and proof sizes for λ = 100, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have ηbAHF = 154. Puncturing a primitive [4095, 211, 1463] BCH-
code 408 times to a [3687, 211, 1055]2 code yields nBCH = 3687, nBCH

1 = 61, nBCH
2 =

61 and ζBCH = 13. If an ECC on the GV bound is used, this implies nGV =
1466, nGV

1 = 39, nGV
2 = 39 and ζGV = 12. Analogously, if an ECC on the MRRW

bound is used, this implies nMRRW = 719, nMRRW
1 = 27, nMRRW

2 = 27 and ζMRRW =
11. Finally, if the VRFs are instantiated with a cAHF using TCRs, we have nhash =
203, nhash

1 = 15, nhash
2 = 15, ηhash = 153 and ζhash = 9.
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Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 1551 1549 259174 ≈ 2−155

GV 1422 1420 121143 ≈ 2−155
[Kat17] Sec. 5.1 MRRW 1422 1420 67092 ≈ 2−155

cAHF 1155 1153 26122 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 23094 1420 257 ≈ 2−155
[Kat17] Sec. 5.3 MRRW 23094 1420 257 ≈ 2−155

cAHF 11267 1153 255 ≈ 2−155

BCH 5807 129 5805 ≈ 2−155

GV 4001 129 3999 ≈ 2−155
[Yam17a] Sec. 6.1 MRRW 2969 129 2967 ≈ 2−155

cAHF 1922 128 1920 ≈ 2−155

BCH 131 129 11481 ≈ 2−155

GV 131 129 7869 ≈ 2−155
[Yam17a] Sec. 6.2 MRRW 131 129 5805 ≈ 2−155

cAHF 130 128 3712 ≈ 2−155

BCH 4018 4016 2008 ≈ 2−155

GV 1878 1876 938 ≈ 2−155
[Jag15] MRRW 1040 1038 519 ≈ 2−155

cAHF 408 406 203 ≈ 2−155

BCH 2012 2010 2009 ≈ 2−155

GV 942 940 939 ≈ 2−155
Construction 1 MRRW 523 521 520 ≈ 2−155

cAHF 207 205 204 ≈ 2−155

Construction 2 Blockwise Part. 10 8 8 ≈ 2−155

Table 3.6: Key and proof sizes for λ = 100, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have ηbAHF = 129. Puncturing a primitive [2047, 209, 511] BCH-
code 39 times to a [2008, 209, 472]2 code yields nBCH = 2008, nBCH

1 = 45, nBCH
2 = 45

and ζBCH = 12. If an ECC on the GV bound is used, this implies nGV = 938, nGV
1 =

31, nGV
2 = 31 and ζGV = 11. Analogously, if an ECC on the MRRW bound is used,

this implies nMRRW = 519, nMRRW
1 = 23, nMRRW

2 = 23 and ζMRRW = 11. Finally, if
the VRFs are instantiated with a cAHF using TCRs, we have nhash = 203, nhash

1 =
15, nhash

2 = 15, ηhash = 128 and ζhash = 9.
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Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 2005 2003 581672 ≈ 2−205

GV 1851 1849 289071 ≈ 2−205
[Kat17] Sec. 5.1 MRRW 1697 1695 141846 ≈ 2−205

cAHF 1533 1531 39791 ≈ 2−205

BCH 55443 2003 307 ≈ 2−205

GV 39119 1849 307 ≈ 2−205
[Kat17] Sec. 5.3 MRRW 27569 1695 307 ≈ 2−205

cAHF 19281 1531 305 ≈ 2−205

BCH 9550 154 9548 ≈ 2−205

GV 6778 154 6776 ≈ 2−205
[Yam17a] Sec. 6.1 MRRW 4776 154 4774 ≈ 2−205

cAHF 2603 153 2601 ≈ 2−205

BCH 156 154 18942 ≈ 2−205

GV 156 154 13398 ≈ 2−205
[Yam17a] Sec. 6.2 MRRW 156 154 9394 ≈ 2−205

cAHF 155 153 5049 ≈ 2−205

BCH 7554 7552 3776 ≈ 2−205

GV 3754 3752 1876 ≈ 2−205
[Jag15] MRRW 1842 1840 920 ≈ 2−205

cAHF 520 518 259 ≈ 2−205

BCH 3780 3778 3777 ≈ 2−205

GV 1880 1878 1877 ≈ 2−205
Construction 1 MRRW 924 922 921 ≈ 2−205

cAHF 263 261 260 ≈ 2−205

Construction 2 Blockwise Part. 11 9 9 ≈ 2−205

Table 3.7: Key and proof sizes for λ = 128, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have ηbAHF = 154. Puncturing a primitive [4095, 259, 1399] BCH-
code 319 times to a [3776, 259, 1080]2 code yields nBCH = 3776, nBCH

1 = 62, nBCH
2 =

62 and ζBCH = 13. If an ECC on the GV bound is used, this implies nGV =
1876, nGV

1 = 44, nGV
2 = 44 and ζGV = 12. Analogously, if an ECC on the MRRW

bound is used, this implies nMRRW = 920, nMRRW
1 = 31, nMRRW

2 = 31 and ζMRRW =
11. Finally, if the VRFs are instantiated with a cAHF using TCRs, we have nhash =
259, nhash

1 = 17, nhash
2 = 17, ηhash = 153 and ζhash = 10.
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Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 1551 1549 261883 ≈ 2−155

GV 1551 1549 154942 ≈ 2−155
[Kat17] Sec. 5.1 MRRW 1422 1420 85797 ≈ 2−155

cAHF 1283 1281 33291 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 32769 1549 257 ≈ 2−155
[Kat17] Sec. 5.3 MRRW 23094 1420 257 ≈ 2−155

cAHF 16131 1281 255 ≈ 2−155

BCH 5936 129 5934 ≈ 2−155

GV 4517 129 4515 ≈ 2−155
[Yam17a] Sec. 6.1 MRRW 3356 129 3354 ≈ 2−155

cAHF 2178 128 2176 ≈ 2−155

BCH 131 129 11739 ≈ 2−155

GV 131 129 8901 ≈ 2−155
[Yam17a] Sec. 6.2 MRRW 131 129 6579 ≈ 2−155

cAHF 130 128 4224 ≈ 2−155

BCH 4060 4058 2029 ≈ 2−155

GV 2402 2400 1200 ≈ 2−155
[Jag15] MRRW 1330 1328 664 ≈ 2−155

cAHF 520 518 259 ≈ 2−155

BCH 2033 2031 2030 ≈ 2−155

GV 1204 1202 1201 ≈ 2−155
Construction 1 MRRW 668 666 665 ≈ 2−155

cAHF 263 261 260 ≈ 2−155

Construction 2 Blockwise Part. 11 9 9 ≈ 2−155

Table 3.8: Key and proof sizes for λ = 128, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have ηbAHF = 129. Puncturing a primitive [2047, 264, 495] BCH-
code 18 times to a [2029, 264, 477]2 code yields nBCH = 2029, nBCH

1 = 46, nBCH
2 = 46

and ζBCH = 12. If an ECC on the GV bound is used, this implies nGV = 1200, nGV
1 =

35, nGV
2 = 35 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used,

this implies nMRRW = 664, nMRRW
1 = 26, nMRRW

2 = 26 and ζMRRW = 11. Finally, if
the VRFs are instantiated with a cAHF using TCRs, we have nhash = 259, nhash

1 =
17, nhash

2 = 17, ηhash = 128 and ζhash = 10.
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Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 2159 2157 1177961 ≈ 2−205

GV 2005 2003 577822 ≈ 2−205
[Kat17] Sec. 5.1 MRRW 1851 1849 283527 ≈ 2−205

cAHF 1686 1684 78960 ≈ 2−205

BCH 78543 2157 307 ≈ 2−205

GV 55443 2003 307 ≈ 2−205
[Kat17] Sec. 5.3 MRRW 39119 1849 307 ≈ 2−205

cAHF 27390 1684 305 ≈ 2−205

BCH 13554 154 13552 ≈ 2−205

GV 9550 154 9548 ≈ 2−205
[Yam17a] Sec. 6.1 MRRW 6624 154 6622 ≈ 2−205

cAHF 3521 153 3519 ≈ 2−205

BCH 156 154 26950 ≈ 2−205

GV 156 154 18942 ≈ 2−205
[Yam17a] Sec. 6.2 MRRW 156 154 13090 ≈ 2−205

cAHF 155 153 6885 ≈ 2−205

BCH 15298 15296 7648 ≈ 2−205

GV 7504 7502 3751 ≈ 2−205
[Jag15] MRRW 3682 3680 1840 ≈ 2−205

cAHF 1032 1030 515 ≈ 2−205

BCH 7652 7650 7649 ≈ 2−205

GV 3755 3753 3752 ≈ 2−205
Construction 1 MRRW 1844 1842 1841 ≈ 2−205

cAHF 519 517 516 ≈ 2−205

Construction 2 Blockwise Part. 12 10 10 ≈ 2−205

Table 3.9: Key and proof sizes for λ = 256, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have ηbAHF = 154. Puncturing a primitive [8191, 521, 2731] BCH-
code 543 times to a [7648, 521, 2188]2 code yields nBCH = 7648, nBCH

1 = 88, nBCH
2 =

88 and ζBCH = 14. If an ECC on the GV bound is used, this implies nGV =
3751, nGV

1 = 62, nGV
2 = 62 and ζGV = 13. Analogously, if an ECC on the MRRW

bound is used, this implies nMRRW = 1840, nMRRW
1 = 43, nMRRW

2 = 43 and ζMRRW =
12. Finally, if the VRFs are instantiated with a cAHF using TCRs, we have nhash =
515, nhash

1 = 23, nhash
2 = 23, ηhash = 153 and ζhash = 11.
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Construction Instantiation |vk| #G |sk| #Zp |π|#G AdvB
BCH 1809 1807 920946 ≈ 2−155

GV 1680 1678 309743 ≈ 2−155
[Kat17] Sec. 5.1 MRRW 1551 1549 171454 ≈ 2−155

cAHF 1411 1409 66060 ≈ 2−155

BCH 65793 1807 257 ≈ 2−155

GV 46443 1678 257 ≈ 2−155
[Kat17] Sec. 5.3 MRRW 32769 1549 257 ≈ 2−155

cAHF 22915 1409 255 ≈ 2−155

BCH 10967 129 10965 ≈ 2−155

GV 6323 129 6321 ≈ 2−155
[Yam17a] Sec. 6.1 MRRW 4775 129 4773 ≈ 2−155

cAHF 2946 128 2944 ≈ 2−155

BCH 131 129 21801 ≈ 2−155

GV 131 129 12513 ≈ 2−155
[Yam17a] Sec. 6.2 MRRW 131 129 9417 ≈ 2−155

cAHF 130 128 5760 ≈ 2−155

BCH 14278 14276 7138 ≈ 2−155

GV 4802 4800 2400 ≈ 2−155
[Jag15] MRRW 2658 2656 1328 ≈ 2−155

cAHF 1032 1030 515 ≈ 2−155

BCH 7142 7140 7139 ≈ 2−155

GV 2404 2402 2401 ≈ 2−155
Construction 1 MRRW 1332 1330 1329 ≈ 2−155

cAHF 519 517 516 ≈ 2−155

Construction 2 Blockwise Part. 12 10 10 ≈ 2−155

Table 3.10: Key and proof sizes for λ = 256, Q = 225, t = 250, ε = 2−25

and δ = 0.235. In consequence, we have ηbAHF = 129. Puncturing a primitive
[8191, 520, 2731] BCH-code 1053 times to a [7138, 520, 1678]2 code yields nBCH =
7138, nBCH

1 = 85, nBCH
2 = 85 and ζBCH = 14. If an ECC on the GV bound is used,

this implies nGV = 2400, nGV
1 = 49, nGV

2 = 49 and ζGV = 13. Analogously, if an ECC
on the MRRW bound is used, this implies nMRRW = 1328, nMRRW

1 = 37, nMRRW
2 = 37

and ζMRRW = 12. Finally, if the VRFs are instantiated with a cAHF using TCRs,
we have nhash = 515, nhash

1 = 23, nhash
2 = 23, ηhash = 128 and ζhash = 11.
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3.6 Conclusion and Discussion
In this chapter, we first discussed the inherent limitations of (balanced) AHFs due
to their instantiation from ECCs in Section 3.2. In Section 3.3, we then intro-
duced cAHFs from truncation-collision resistant hash functions as a more efficient
drop-in replacement for (balanced) AHFs and showed how it can be used in Jager’s
VRF [Jag15]. Moreover, note that VRF cAHF that we present in Construction 1
is a more efficient variant of Jager’s VRF and is only contained in the full ver-
sion [JN19b] and not in the published version [JN19a]. Next, in Section 3.4, we
introduced blockwise partitioning from weak near-collision resistant hash functions
as a new semi-generic technique to construct as efficient VRFs as possible without
relying on the ROM. Finally, in Section 3.5 we compared the VRFs we presented
with the VRFs from previous publications in detail. From this comparison, we
conclude that cAHFs and blockwise partitioning offer significant advantages over
bAHFs in constructing VRFs. Furthermore, we note that blockwise partitioning
is also applicable when constructing IB-KEMs [JKN21]. The two constructions of
IB-KEMs from pairings were contributed by my two co-authors and are thus not
presented in this thesis. However, we will present the construction of an IB-KEM
based on lattices from blockwise partitioning in Chapter 5.

3.6.1 Open Questions
Even though we made significant progress in constructing efficient VRFs from pair-
ings, there still remain open research questions that we want to discuss here.

Research Question 1. Are there VRFs that are secure (under standard assump-
tions) in the standard model and are as efficient as VRFs in the ROM?

While there are highly efficient VRFs that are about to be standardized [GRPV21],
all of these constructions are only secure in the ROM. And even though, as Table 3.3
shows, VRFBlk comes close to practical efficiency, it is still significantly less efficient
in several aspects than the VRFs specified in [GRPV21]. That is, it has still
significantly larger verification/secret keys and proofs. But furthermore, both the
evaluation as well as the verification require the time-consuming computation of
the bilinear pairing e. Thus, even though we made a plausible but non-standard
hash function assumption with weak near-collision resistant, our most efficient VRF
in VRFBlk is still significantly less efficient than VRFs in the ROM. Moreover, by
now there are only three VRFs that are secure under standard assumptions in the
standard model [HJ16, Koh19, Ros18]. Even though Kohl’s VRF achieves very
short proofs of only ω(1) many group elements, this comes at the cost of larger
verification keys and still does not provide as much efficiency as the VRFs in the
ROM.

Research Question 2. Are there practically efficient VRFs that provide post-
quantum security?
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All VRFs that we discussed so far and in particular those about to be stan-
dardized [GRPV21] do not provide post-quantum security. That is, the complexity
assumptions underlying these constructions are known to be solvable in polynomial
time by quantum computers once they become available in sufficiently large scale.
Thus, VRFs providing security against quantum computers are a current topic of
research and some constructions have been presented recently. Esgin et al. present
an efficient VRF secure under the hardness of lattice problems in [EKS+20]5. How-
ever, their VRF can only be evaluated a few times before leaking too much infor-
mation about the secret evaluation key. Similarly, Leroux presents a VRF secure
under isogeny assumptions [Ler21] that can only be evaluated once. Moreover,
Buser et al. present two post-quantum secure VRFs from symmetric primitives
in [BDE+21]. They first present a construction based on post-quantum secure non-
interactive zero-knowledge proof (NIZK) and a PRF. This construction is rather
efficient but has significantly larger proofs and takes significantly longer to evaluate
and verify [BDE+21, Table 2] than the schemes that are about to be standard-
ized [GRPV21]. The second construction by Buser et al. provides a competitive
time to evaluate and verify but is stateful and takes a very long time to generate
key pairs [BDE+21, Table 2].
While the limitations of these first post-quantum secure VRFs are acceptable for

some applications, it is still desirable to construct post-quantum secure VRFs that
have all the properties we discussed in Section 2.3.1.

5The publication by Esgin et al. [EKS+20] was presented at the “International Conference on
Financial Cryptography and Data Security 2021”. However, no peer-reviewed versions of the
publications at this venue from 2021 are available at the time of writing.
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4 Verifiable Random Functions with
Optimal Tightness

All known standard model VRFs, include those that we introduced in Chapter 3,
have a reduction loss that is much worse than what one would expect from known
optimal constructions of closely related primitives like unique signatures. In this
chapter, we show that:

1. Every security proof for a VRF that relies on a non-interactive assumption
has to lose a factor of Q, where Q is the number of adversarial queries. To
that end, we extend the meta-reduction technique of Bader et al. [BJLS16]
to also cover VRFs.

2. This raises the question: Is this bound optimal? We answer this question in
the affirmative by presenting the first VRF with a reduction from the non-
interactive q-DBDHI assumption to the security of VRF that achieves this
optimal loss.

We thus paint a complete picture of the achievability of tight verifiable random
functions: We show that a security loss of Q is unavoidable and present the first
construction achieving this bound.

Author’s contributions. This chapter is based on [Nie21], which the author
of this thesis is the single author of. Thus, all contributions in this chapter are due
to the author.

4.1 Motivation
Following the reductionist approach to security, we relate the difficulty of breaking
the security of a cryptographic scheme to the difficulty of solving an underlying
hard problem. Let λ be the security parameter and consider a reduction showing
that any adversary that breaks the security of a cryptographic scheme in time t(λ)
with probability ε(λ) implies an algorithm that solves the underlying hard problem
with probability ε′(λ) in time t′(λ) with t′(λ) ≥ t(λ) and ε′(λ) ≤ ε(λ). We then
say that the reduction loses a factor `(λ) if

t′(λ)
ε′(λ) ≥

`(λ)t(λ)
ε(λ)
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for all λ ∈ N. We say that a reduction is tight if ` is a constant, i.e., if the quality
of the reduction does not depend on the security parameter.
The loss of a reduction is of particular practical importance when deciding on

the key sizes to use for cryptographic schemes. For simplicity, assume that we
have a reduction with ε′(λ) = ε(λ) and t′(λ) = `(λ)t(λ) and let topt(λ) denote the
time the fastest algorithm takes to solve an instance of the complexity assumption.
Then, if we want to rule out the existence of an adversary that breaks the scheme’s
security faster than tadv, we have to choose the security parameter large enough
such that topt(λ)/`(λ) ≥ tadv. Hence, if ` is large, then λ has to be rather large to
guarantee that any adversary that breaks the security of the scheme has runtime
at least tadv. However, a large security parameter also implies large keys, which
negatively affects the real-world efficiency of the scheme. On the positive side, this
means that if we are able to construct a tight reduction, this allows us to use small
key sizes and guarantee security against all adversaries with runtime at most tadv.
This approach to security is also known as concrete security and is more thoroughly
discussed in [BR09b].

Impossibility of tight reductions. Unfortunately, we know that tight re-
ductions can not exist for some primitives. Coron presented the first result of this
kind in 2002 for unique signatures [Cor02], in which he showed that every security
reduction for unique signatures loses at least a factor of ≈ Q, where Q is the num-
ber of adaptive signature queries made by the forger. He achieved this result by
introducing the meta-reduction technique. That is, one shows that a tight reduction
can not exist by proving that any tight reduction would solve the underlying hard
problem without the help of an adversary. Note that the full proof is only contained
in the full version [Cor01]. Subsequently, the technique has been successfully used
to prove the same lower bound for the loss of security reductions for efficiently re-
randomizable signatures by Hofheinz et al. [HJK12] and later on to an even broader
class of primitives by Bader et al. [BJLS16]. Most recently, Coron’s technique has
been extended by further publications. First, Morgan and Pass extended Coron’s
technique to incorporate interactive complexity assumptions and reductions that
execute several instances of an adversary in parallel. However, since the result ap-
plies to a broader class of reductions and complexity assumptions, the lower bound
on the loss is only

√
Q instead of Q. Moreover, Morgan et al. applied the technique

to MACs and PRFs [MPS20].
Even though VRFs are closely related to unique signatures, none of the lower

bounds on the loss mentioned above applies to VRFs in general because the non-
interactive proofs of VRFs do not need to be unique, nor do they need to be
re-randomizable. For example, the VRF by Bitansky does not have unique proofs
of correctness [Bit20]. Hence, in contrast to a remark in [MP18], a VRF does not
immediately imply a unique signature scheme but just a signature scheme with a
unique component in its signatures.
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Circumventing tightness lower bounds. Despite all the lower bounds on
the loss of reductions to the security of unique signatures, Guo et al. showed
in [GCS+17] that reductions circumventing the lower bounds are possible by making
heavy use of the programmability of a random oracle. However, this technique is
only applicable in the random oracle model and can not be adapted in the standard
model to the best of our knowledge.
Moreover, the tightness lower bounds have also been circumvented in the stan-

dard model by making the signatures non-re-randomizable [AFLT12, BKKP15,
CD96, HJ12, KW03, Sch11]. Kakvi and Kiltz even describe a tightly secure unique
signature scheme by using a public key in the reduction that allows for non-unique
signatures and is indistinguishable from an honestly generated public key [KK12,
KK18].
Furthermore, for identity-based encryption schemes, which are closely related to

VRFs [ACF14], Chen and Wee [CW13], and also Blazy et al. [BKP14] in parallel,
describe a scheme that can be proven secure with a reduction whose loss depends
only on the security parameter and not on the number of queries made by the
adversary. In 2016, Boyen and Li then presented the first tightly secure IBE scheme
in [BL16]. Similar to our approach in this work, they homomorphically evaluate a
pseudorandom function in the reduction. However, they use it in order to apply
the technique of Katz and Wang to construct tightly secure signatures by making
the signatures non-re-randomizable [KW03].
However, the techniques above do not apply to VRFs. Replacing the verification

with an indistinguishable verification key that allows for non-unique signatures is
not possible due to the strong uniqueness requirement. Moreover, our meta reduc-
tion makes no assumptions about the re-randomizability of the proof of correctness
produced by a VRF evaluation. Hence, making the proofs of correct evaluation
non-re-randomizable can not allow for tighter reductions. Thus, to the best of our
knowledge, the only avenues to achieve tighter reductions for VRFs would be to
either use the random oracle model, prove the security from an interactive assump-
tion, or use a reduction that can run several instances of an adversary in parallel.
However, it seems unlikely to achieve a loss better than

√
Q through the latter two

approaches due to the lower bound by Morgan and Pass [MP18].

Our contributions. In this chapter, we study the tightness of reductions from
non-interactive complexity assumptions to the security of verifiable random func-
tions.

1. We first extend the lower bound for the loss of re-randomizable signatures
from Bader et al. [BJLS16] to verifiable unpredictable functions (VUFs), which
differ from VRFs in that the output only has to be unpredictable instead of
pseudorandom. Since this is a weaker requirement, the theorem for VUFs also
implies the same bound for reductions to the security of VRFs. Concretely,
we prove that any reduction from a non-interactive complexity assumption to
the unpredictability of a VUF loses a factor of at least Q.
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2. We present a VRF and a reduction from the non-interactive q-DBDHI as-
sumption to the adaptive pseudorandomness of the VRF that achieves this
bound. The VRF is based on a VRF by Yamada in [Yam17b, Appendix C],
which is the full version of [Yam17a].

4.2 Technical Overview
Before presenting our results, we give a short overview of our techniques below.
We first describe how we prove the lower bound for the loss of VRFs and then
describe our construction attaining this bound. Furthermore, recall that we model
probabilistic algorithms in Definition 4 as TMs with a designated input tape on
which the TM receives uniformly random input bits ρ. Moreover, we write A(x; ρ)
to execute A on input x with random bits ρ and that we view A as deterministic
if ρ is explicitly specified. We recall these definitions here because we will make
heavy use of executing probabilistic algorithms with specific randomness ρ.

Adversary A
(simulated by

Meta-Reduction B)

Reduction Λ

Meta Reduction B
Problem instance

Solution

Problem instance

Solution

Figure 4.1: The meta-reduction technique of Coron [Cor02].

Bounding the tightness of VRFs. The results by Bader et al. apply to
re-randomizable signatures/relations1, which is a large call of public-key primitives,
the do not cover VRFs and VUFs. This is because the non-interactive proofs
of correctness given by VRFs and VUFs are not required to be re-randomizable.
Since, to the best of our knowledge, all previous constructions of VRFs and VUFs
have unique or re-randomizable proofs of correctness, this opens a gap for VRFs
and VUFs with potentially tighter security proofs. Therefore, we extend the meta-
reduction of Bader et al. to VRFs and VUFs and thus show that any reduction from
a non-interactive complexity assumption to the security of a VRF necessarily loses
a factor of at least Q, where Q is the number of queries made by the adversary. This
closes the gap left by previous meta-reductions. In order to explain how we extend
their technique, we shortly revisit Coron’s meta-reduction technique depicted in
Figure 4.1. A meta-reduction can be thought of as a reduction against a reduction.
That is, the meta-reduction B simulates a hypothetical adversary A for a reduction

1Note that unique signatures are re-randomizable because, given a unique signature for a mes-
sage, it is trivial to sample from all signatures for that message since there is only that one
signature.
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4.2 Technical Overview

Λ. Since the meta-reduction is constructed to have a polynomial runtime and
simulates the hypothetical adversary, it is the reduction Λ that solves the instance
of the complexity assumption. This allows us to show that any reduction with a
certain tightness can break the underlying complexity assumption without the help
of any adversary and therefore contradicts the complexity assumption.
In their proof, Bader et al. use the re-randomizability/uniqueness of the signa-

tures that Λ produces for A to solve the challenge when simulating A. We extend
their technique to VRFs/VUFs by showing that it is sufficient if the part of the
signature that the adversary has to provide for the challenge, in the case of VUFs,
the unpredictable value Y , is unique or re-randomizable.
For simplicity, we prove the theorem for VUFs: this automatically implies the

same bound for VRFs because every VRF is also a VUF. Following Bader et al.,
we consider a very weak security model in which the number of queries Q is fixed a
priori. Further, the adversary is presented with Q uniformly random and pairwise
distinct inputs X(1), . . . , X(Q) and has to choose a challenge X∗ from these. For
all other inputs, the adversary is then given the VUF output and proof. Finally,
the adversary has to output the VUF value for the challenge input and wins if the
output is correct. We refer to this very weak security notion as weak-selective un-
predictability. We describe a hypothetical adversary that breaks the weak-selective
unpredictability with certainty and then show that our meta-reduction can effi-
ciently simulate this adversary for the reduction. Informally, on input a problem
instance for a non-interactive complexity assumption, the meta-reduction Λ behaves
as follows.

1. It passes on the problem instance to the reduction and lets it output a veri-
fication key vk and Q pairwise different VUF inputs X(1), . . . , X(Q).

2. It then iterates over all j ∈ [Q] and executes the second part of the reduction
as if it chose j as the challenge and lets the reduction produce all pairs of
VUF output and proof except for the jth pair. It then verifies them and saves
them if they are correct with respect to vk and the corresponding input.

3. Finally, it chooses j∗ $←− [Q] and passes on the correct VUF output for X(j∗)

to the reduction. We formally prove in Section 4.3 that the meta-reduction
indeed has learned the correct VUF output for X(j∗) from the reduction with
probability at least 1/Q.

4. When the reduction then outputs the solution to the underlying problem
instance, the meta-reduction outputs this solution as well.

Overall, we can then show that the meta-reduction takes time at most B = Q · tΛ +
Q(Q + 1)tVfy and has a success probability of at least εΛ − 1/Q, where tΛ and εΛ
are the runtime and the success probability of the reduction and tVfy is the time
it takes to verify a VUF output. Now, we conclude that Λ has a loss of at least
` = (εN +1/Q)−1, where εN is the largest probability any algorithm running in time
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4 Verifiable Random Functions with Optimal Tightness

Schemes Security loss
Hohenberger and Waters [HW10] O(λQ/ε)
Boneh et al. Sec. 7 in [BMR10b] (Qλ)τ(ε)

Jager [Jag15] O(Qν/εν+1)
Hofheinz and Jager [HJ16] O(λ log(λ)Q2/c/ε3)
Yamada Sec 6.1 in [Yam17a] O(Qν/εν+1)
Yamada Sec. 6.2 in [Yam17a] O(Qν/εν+1)
Yamada App. C in [Yam17b] O(λ2Q/ε2)
Katsumata Sec. 5.1 in [Kat17] O(Qν/εν+1)
Kastumata Sec. 5.3 in [Kat17] O(Qν/εν+1)

Roşie [Ros18] O(λ log(λ)Q2/c/ε3)
Kohl [Koh19] O(|π| log(λ)Q2/ν/ε3)
Kohl [Koh19] O(|π| log(λ)Q2+2/ν/ε3)

Jager and Niehues [JN19a] O(t2/ε)
Jager et al. [JKN21] O(t2/ε)

Section 4.4.2 O(Q)

Table 4.1: We compare the loss of previous VRFs with all desired properties. For
the variables, let |π| denotes the size of the proofs of the VRF and ε, t and Q the
advantage, runtime and number of queries made by the adversary the reduction is
run against. Further, there are three values that depend on the error correcting
code used in the construction: the function τ(ε) > 1 and the constants ν > 1 and
c ≤ 1/2. Note that the full version [BMR10a] of [BMR10b] has been updated with
the bound stated above.

tB has in breaking the complexity assumption. Since the complexity assumption
implies that εN is negligibly small, we have that ` ≈ Q.
While the meta-reduction above is only applicable to reductions that execute

the adversary exactly once, our proof of the lower bound on the loss of VRFs
in Section 4.3, like the one by Bader et al., also applies to reductions that can
sequentially rewind the adversary.

On the difficulty of constructing tightly secure VRFs. We recall
the overview of constructions of VRFs with security in the standard model that we
gave in Table 3.1 in Chapter 3, focusing on tightness in Table 4.1. It shows that
known security proofs for VRF in the standard model are significantly more lossy
than the lower bound Q. This situation raises the question:

Do verifiable random functions with a loss of Q exist?

In consequence, such a VRF would show that a loss of Q is indeed optimal.
We proceed to explain why all previous constructions have a much worse loss than

Q and then give an overview of our approach that achieves the optimal tightness.
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To the best of our knowledge, the security proofs for all VRFs in the standard
model are partitioning arguments as we discussed them in Section 2.6. That is, the
reduction makes a guess in the very beginning and then has to abort and output
a random bit depending on the queries and the challenge of the adversary. As we
discussed in Section 2.6, such a reduction strategy requires upper and lower bounds
on the probability to abort that are close to each other to prove the security of a
VRF. Proving such upper and lower bounds is non-trivial because the probability
to abort may depend on the queries and the challenge chosen by the adversary.
The two most notable techniques addressing this requirement for VRFs are the
artificial abort technique by Waters [Wat05] and the balancing technique by Bellare
and Ristenpart [BR09a], which we discuss in detail in Section 2.6. Nonetheless, in
conclusion, none of the techniques known so far achieves the optimal loss of Q.

A reduction with optimal tightness. We next answer the question stated
above in the affirmative by presenting a VRF with a reduction that only loses a
factor of Q. To do so, we have to address the issue raised above: that the success
probability for the partitioning argument depends on the sequence of queries made
by the adversary. We achieve this by passing every query and the challenge of the
adversary through a pseudorandom function (PRF). Further, we utilize a property
of the VRF Yamada introduced in [Yam17b, Appendix C]. This VRF allows the
reduction to homomorphically embed an arbitrary NAND circuit of polynomial size
and logarithmic depth in the VRF. The idea here is that the reduction can embed
an arbitrary NAND-circuit in the VRF such that it can answer all queries by the
adversary for which the circuit evaluates to 0 and can extract a solution to the
underlying hard problem whenever the circuit evaluates to 1. In particular, the
homomorphic evaluation hides selected bits of the circuit’s inputs, all internal state
bits of the circuit, and the circuit’s output from the adversary.
We use these properties to evaluate a PRF homomorphically. Since the adversary

does not learn any internal states or outputs of the PRF, we have that the outputs
of the PRF are distributed as if they were the outputs of a random function. In
particular, we then have that the outputs of the PRF are distributed uniformly
and independent of each other. We show in Section 4.4.1 that it then suffices for
the reduction to guess dlog(Q)e+ 1 bits of the PRF output for the challenge input.
Then the probability that the following two events both occur is at least 1/8Q:

1. The PRF output of the challenge matches the guess.

2. The guess does not match the PRF output for any of the adversary’s queries.

Further, viewing the PRF outputs as the output of a truly random function, the
probability for the reduction to succeeds is independent of the probability of the
adversary breaking the security of the VRF. Ultimately, this yields a VRF, which
has a loss of Q plus the loss of the PRF.

95



4 Verifiable Random Functions with Optimal Tightness

GUnpred
(A1,A2),VUF(λ)

(vk, sk) $←− SetupVUF(1λ); ρA $←− {0, 1}λ

(X∗, Y ∗) := AEval(sk,·)(vk; ρA)
(Y, π) $←− Eval(sk, X∗)
if Y == Y ∗

return 1
else

return 0

Figure 4.2: The security experiment specifying unpredictability.

4.3 Impossibility of VUFs and VRFs with Tight
Reductions

In this section, we prove that any reduction from a non-interactive complexity
assumption to the security of a VUF or VRF unavoidably loses a factor of Q. To
that end, we formally introduce VUFs and their accompanying security notion.
We then introduce a very weak security notion for VUFs and prove that even for
this notion, every reduction form a non-interactive complexity assumption to it
necessarily loses a factor of Q.

4.3.1 Verifiable Unpredictable Functions
Syntactically, a verifiable unpredictable function (VUF) consists of the same algo-
rithms as a VRF. However, for a VUF, we require the weaker security notion of
unpredictability instead of pseudorandomness. That is, instead of providing a chal-
lenge input X∗, we require the adversary to provide a challenge input X∗ together
with the output Y ∗ of the VUF for X∗. We formalize these properties below.

Definition 22. A verifiable unpredictable function (VUF) with domain X and
finite range Y consists of three algorithms VUF = (SetupVUF,Eval,Vfy) with the
following syntax.

• (vk, sk) $←− SetupVUF(1λ) takes as input the security parameter λ and outputs
a key pair (vk, sk). We say that sk is the secret key and vk is the verification
key.

• (Y, π) $←− Eval(sk, X) takes as input a secret key sk and an input X ∈ X , and
outputs a function value Y ∈ Y and a proof π.

• Vfy(vk, X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ X , Y ∈ Y ,
and proof π, and outputs a bit.
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GQ-ws-Unpred
(A1,A2),VUF(λ)

(vk, sk) $←− SetupVRF(1λ); ρA $←− {0, 1}λ

(X(1), . . . , X(Q)) $←−X s.t. X(i) 6= X(j) for all i 6= j

(Yi, πi) $←− Eval(sk, X(i))
(j, st) := A1(vk, (X(i))i∈[Q]; ρA)
Y ∗ := A2((Yi, πi, st)i∈[Q\j])
return Y ∗ == Yj

Figure 4.3: The security experiment specifying weak selective unpredictability.

We say that VUF = (SetupVUF,Eval,Vfy) with domain X and range Y is a secure
VUF if it fulfills the following requirements.

Correctness. We say that VUF has correctness if for all (vk, sk) $←− SetupVUF(1λ),
X ∈ X and, (Y, π) $←− Eval(sk, X) it must hold that Vfy(vk, X, Y, π) = 1.
Further, the algorithms SetupVUF, Eval, Vfy have to be PPTs.

Unique provability. We say that VUF has unique provability if for all vk ∈ {0, 1}∗
and all X ∈ X , there does not exist any Y0, π0, Y1, π1 ∈ {0, 1}∗ such that
Y0 6= Y1, and it holds that Vfy(vk, X, Y0, π0) = Vfy(vk, X, Y1, π1) = 1.

Unpredictability. Consider an adversary A with access (via oracle queries) to
Eval(sk, ·) in the unpredictability game depicted in Figure 4.2. We say that A
is legitimate if there is no ρA ∈ {0, 1}λ such that A query Eval(sk, X∗), where
X∗ ∈ X is part of the output of A. We define the advantage of A in breaking
the unpredictability of VUF as

AdvUnpred
VUF ,A(λ) := Pr

[
GUnpred
VUF ,A(λ) = 1

]
and say that VUF is unpredictable if for every PPT adversary A it holds that
AdvUnpred

VUF ,A(λ) is negligible in λ.

We note that every secure VRF is also a secure VUF. This is because an adversary
that can compute the correct output of a VRF, i.e., can predict it, can trivially
distinguish the correct output from a random element of the range of the VRF.

4.3.2 Lower Tightness Bounds for VUFs
We begin by introducing the very weak security notion of weak-selective unpre-
dictability for VUFs. In this security model, all queries and the challenge are
uniformly random and pairwise distinct. We formally define it as follows.

Definition 23. Let VUF = (SetupVUF,Eval,Vfy) be a verifiable unpredictable
function and let t : N → N, ε : N → [0, 1]. For an adversary A = (A1,A2), we
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NICAN
A(λ)

(c, w) $←− T(1λ); ρA $←− {0, 1}λ

s := A(c; ρA)
return V(c, w, s)

Figure 4.4: The generic security experiment for a non-interactive complexity as-
sumption N = (T,V,U) between the challenger and an adversary A.

say that A (t, Q, ε)-breaks the weak selective unpredictability of VUF if A runs in
time t and

Advws-Unpred
VUF ,(A1,A2)(λ) := Pr

[
Gws-Unpred
VUF ,(A1,A2)(λ) = 1

]
= ε(λ)

where Gws-Unpred
VUF ,(A1,A2)(λ) is the security experiment depicted in Figure 4.3.

Note that any VRF fulfilling the requirements of Definition 6 and every VUF
fulfilling the requirements of Definition 22 has also weak-selective unpredictability.
Hence, ruling out a tight reduction from weak selective unpredictability to a class
of complexity assumptions, also rules out tight reductions from pseudorandomness
and unpredictability to that class of complexity assumptions. We thus prove a lower
bound on the loss of any reduction from any non-interactive complexity assumption
to the weak selective unpredictability of a VUF, where the reduction my sequentially
repeat the execution of the adversary.
To be more precise in our definitions, we follows [AGO11, BJLS16], and ex-

plicitly state that the algorithms we consider are Turing machines (TMs) as de-
fined in Section 2.2. We define a non-interactive complexity assumption as a triple
N = (T,V,U) of TMs. While the TM T generates a problem instance and V
verifies the correctness of a solution, the TM U represents a trivial adversary to
compare an actual adversary against. For example, a trivial adversary against the
DDH assumption would just output random bit as its guess. We formally define
non-interactive complexity assumptions as follows.

Definition 24. A non-interactive complexity assumption N = (T,V,U) consist of
three Turing machines. The instance generation machine (c, w) $←− T(1λ) takes the
security parameter as input and outputs a problem instance c and a witness w.
U is a probabilistic polynomial-time Turing machine, which takes c as input and
outputs a candidate solution s. The verification Turing machine V takes as input
(c, w) and a candidate solution s. If V(c, w, s) = 1, then we say that s is a correct
solution to the challenge c.

Remark 8. We note that all complexity assumptions used in this thesis, and in
particular those we introduced in Section 2.4, fall in the category of non-interactive
complexity assumptions.
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r-ΛA(c, ρΛ)
stΛ1,1 := Λ1(c; ρ0)
for 1 ≤ ` ≤ r :

(vk`, (X(i)`)i∈[Q], ρA, stΛ`,2) := Λ`,1(stΛ,1)

(j∗`, stA) := A1(vk`, (X(i)`)i∈[Q]; ρA)
((Y `

i , π
`
i )i∈[Q\j∗`], stΛ`,3) := Λ`,2(j∗`, stΛ`,2)

Y `
j∗` := A2((Y `

i , π
`
i )i∈[Q\j∗`], stA)

stΛ`+1,1 := Λ`,3
(
Y `
j∗` , j

∗`, stΛ`,3

)
s := Λ3(stΛr+1,1)

Figure 4.5: Description of the Turing machine r-ΛA built from an adversary A =
(A1,A2) against the weak selective unpredictability of a verifiable unpredictable
function and a reduction (Λ1, (Λ`,1,Λ`,2,Λ`,3)`∈[r],Λ3).

Definition 25. Let N = (T,V,U) be a non-interactive complexity assumption
and let NICA be the security experiment depicted in Figure 4.4. For functions
t : N → N, ε : N → [0, 1] and a probabilistic Turing machine B running in time
t(λ), we say that B (t, ε)-breaks N if∣∣∣Pr

[
NICAN

B (λ) = 1
]
− Pr

[
NICAN

U (λ) = 1
]∣∣∣ ≥ ε(λ),

where the probabilities are taken over the randomness consumed by T and the
random choices of ρU and ρB in the security experiments NICAn

B(λ) and NICAn
U(λ).

Bader et al. prove lower bounds for simple reductions as well as for reductions
that can sequentially rewind the adversary [BJLS16]. Since the latter class of
reductions include the former class, we directly prove the lower bound on the loss
for the larger class of reductions. Following Bader et al., we view a reduction that
sequentially rewinds an adversary up to r ∈ N times as a 3r + 2-tuple of Turing
machines. That is, one TM that initializes the reduction, one to produce a solution
in the end and three for each execution of the adversary. For an adversary A =
(A1,A2) against the weak selective unpredictability of a verifiable unpredictable
function VUF , we let r-ΛA be the Turing machine depicted in Figure 4.5.

Definition 26 (Def. 6 in [BJLS16]). For a verifiable unpredictable function VUF ,
we say that a Turing machine r-Λ = (Λ1, (Λ`,1,Λ`,2,Λ`,3)`∈[r],Λ3) is an r-simple
(tΛ, Q, εΛ, εA)-reduction from breaking the non-interactive complexity assumption
N = (T,V,U) to breaking the weak selective unpredictability of VUF if for any TM
A that (tA, Q, εA)-breaks the weak selective unpredictability of VUF , TM r-ΛA as
defined in Figure 4.5 (tΛ + rtA, εA) breaks N .
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Furthermore, we define the loss of a reduction as the factor that the quotient
(tΛ(λ)+rtA(λ))/εΛ(λ) is larger than tA(λ)/εA(λ). We formalize this in the following
definition.

Definition 27. For a verifiable unpredictable function VUF , a non-interactive
complexity assumption N , a function ` : N → N and a reduction Λ, we say that
Λ loses `, if there exists an adversary A that (tA, Q, εA) breaks the weak selective
unpredictability of VUF such that ΛA (tΛ + r · tA, εA)-breaks N , where

tΛ(λ) + rtA(λ)
εΛ(λ) ≥ `(λ) · tA(λ)

εA(λ) .

After introducing the needed notations and notions, we can now state our theo-
rem regarding the loss of VRFs and VUFs.

Theorem 7. Let N = (T,V,U) be a non-interactive complexity assumption, Q, r ∈
poly(λ) and let VUF be a verifiable unpredictable function. Then for any r-simple
(tΛ, Q, εΛ, 1)-reduction Λ from breaking N to breaking the weak selective unpre-
dictability of VUF there exists a TM B that (tB, εB)-breaks N , where

tB ≤ r ·Q · tA + r ·Q · (Q− 1) · tVfy

εB ≥ εΛ −
r

Q
.

Here, tVfy is time needed to run the algorithm Vfy of VUF .

Note that the theorem also applies to adversaries with εA < 1, as we discuss after
the proof of Theorem 7. However, before proving Theorem 7, we show that it implies
that every r-simple reduction Λ from a non-interactive complexity assumption N
has at least a loss of ≈ Q. For tN := tB = r ·Q · tΛ +r ·Q · (Q−1) · tVfy, let εN be the
largest probability such that there exists an algorithm that (tN , εN)-breaks N . We
then have that εN ≥ εB and by Theorem 7, we have that εΛ ≤ εB+r/Q ≤ εN +r/Q.
We can then conclude that

tΛ + r · tA
εΛ

≥ r · tA
εN + r/Q

= (εN + r/Q)−1 · r · tA1 = (εN + r/Q)−1 · r · tA
εA
.

This means that Λ loses at least a factor of ` = r/(εN + r/Q). Further, if εN is
very small, which it is supposed to be for a realistic complexity assumption, then
` ≈ Q.

Proof. Our proof is structured like the proofs in [BJLS16, HJK12, LW14] and thus
first describes a hypothetical adversary that breaks the weak selective unpredictabil-
ity of VUF with certainty and then describes a meta reduction that perfectly and
efficiently simulates this adversary towards Λ.
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The hypothetical adversary A. The hypothetical adversary A = (A1,A2)
consists of the following two procedures.

A1(vk, (X(i))i∈[Q]; ρA) samples j $←− [Q] and outputs (j, st) with the state st = (vk,
(X(i))i∈[Q], j).

A2((Yi, πi)i∈[Q\j], st) first parses the state st as (vk, (X(i))i∈[Q], j) and checks whether
Vfy(vk, X(i), Yi, πi) = 1 for all i ∈ [Q \ j]. If there is i∗ for which it holds that
Vfy(vk, X(i), Yi, πi) = 0, it aborts with result ⊥. Otherwise, it computes
Y ∗ ∈ Y such that there exists π ∈ {0, 1}∗ with Vfy(vk, X(j), Y ∗, π) = 1. The
existence and uniqueness of such a Y ∗ is guaranteed by the correctness and
the unique provability of VUF .

Observe that A breaks the weak selective unpredictability of VUF with certainty
because a correct VUF produces only valid pairs of outputs and proofs, but A2 may
not be efficiently computable. However, we show that B can efficiently simulate A
nonetheless.

The meta-reduction B. We now describe the meta-reduction B that simulates
A r times for the reduction Λ = (Λ1, (Λ`,1,Λ`,2,Λ`,3)`∈[r],Λ3). B’s goal in this is to
break N and is therefore called on input c, where (c, w) $←− T(1λ).

i. B receives c as input. It samples randomness ρΛ
$←− {0, 1}λ and executes

stΛ1,1 = Λ1(c, ρΛ). If Λ1 does not output stΛ1,1 , then B aborts and outputs
⊥. Since the randomness of Λ1 is fixed, we view all subroutines of Λ as
deterministic. Note that Λ1 can pass on random coins to the other subroutines
via stΛ1,1 .

ii. Next, B sequentially simulates A r times for Λ. That is, for all 1 ≤ ` ≤ r it
does the following.
a) Initialize an empty array A` with Q places, that is A`[i] = ⊥ for all

i ∈ [Q].

b) Run (vk`, (X(i)`)i∈[Q], ρA, stΛ`,2) = Λ`,1(stΛ`,1). If Λ`,1 does not produce
such an output, then B aborts and outputs ⊥.

c) Then B runs
(
(Y `

i,j, π
`
i,j)i∈[Q\j], stΛ3,`

)
= Λ`,2(j, stΛ`,2) for all j ∈ [Q]. If

Λ`,2 only produces correct outputs with respect to vk`, that is if∧
i∈[Q\`]

Vfy(vk`, X(i)`, Y `
i,j, π

`
i,j) = 1

holds, then B sets A`[i] := Y `
i,j for all i ∈ [Q \ j].

d) B then samples j∗` $←− [Q]. It then proceeds in one of the following cases:
1. If Λ`,2(j∗`, stΛ`,2) produced any invalid pair of output and proof, that

is, if there exists i ∈ [Q \ j∗`] such that it holds that the Vfy rejects,
that is Vfy(vk`, X(i)`, Y `

i,j∗` , π
`
i,j∗`) = 0, then B aborts and outputs ⊥.
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2. Otherwise, B sets Y ∗ := A`[j∗`].
e) Set stΛ`+1,1 := Λ`,3(Y ∗, stΛ`,3)

iii. Finally, B runs s $←− Λ3(stΛr+1,1) and outputs s.

Success probability of B. In order to analyze the success probability of B,
we compare the simulation of A by B with the description of A. Note that A1
samples j uniformly at random and A2 aborts if it is given an invalid pair of
output and proof. B also samples j∗` uniformly at random from [Q] and aborts if
Λ`,2(j∗`, stΛ`,2) produced any invalid pair of output and proof, just like A. However,
we are only guaranteed that A`[j∗`] contains the correct output of VUF for X(i)`

if there is j′ ∈ [Q \ j∗`] such that Λ`,2(j′, st`,2) outputs only correct pairs of outputs
and proofs, i.e., if this is not the case the simulation of A by B deviates from A’s
behavior. Below, we formally prove that B perfectly simulates A unless the event
described above occurs and upper bound the probability that it occurs by r/Q.
Let stΛ`,2 be the unique state computed by Λ`,1 and let j∗` ∈ [Q] be the unique

index that Λ`,3 is executed with. Note that these values are well-defined in both
NICAΛA

N (λ) and NICABN(λ). Now, define the event all-valid(stΛ`,2 , j) as the event that
Λ`,2 outputs only valid pairs of outputs and proofs. That is

all-valid(stΛ`,2 , j) :=

1 if Vfy(vk`, X(i)`, Y `
i,j, π

`
i,j) = 1 for all i ∈ [Q \ j]

0 otherwise,

where (Y `
i,j, π

`
i,j)i∈[Q\j] = Λ`,2(stΛ`,2 , j). Recalling the case in which B’s simulation

deviates the hypothetical adversary A, we define the event

bad(`) := all-valid(stΛ`,2 , j
∗`)

∧
j∈[Q\j∗`]

¬all-valid(stΛ`,2 , j).

Informally, the event bad(`) occurs if Λ`,2 returned only valid pairs of outputs and
proofs for j = j∗` in the `’th simulation of A. Further, we let bad := ∨

`∈[r] bad(`)
be the event that bad(`) occurs for any ` ∈ [r].
Next, let S(F) denote the event that NICAFN(λ) = 1 for some adversary F against

the non-interactive complexity assumption N . Then we observe the following:

Pr
[
S(r-ΛA)

]
− Pr [S(B)]

= Pr
[
S(r-ΛA) ∧ bad

]
+ Pr

[
S(r-ΛA) ∧ ¬bad

]
− Pr [S(B) ∧ bad]− Pr [S(B) ∧ ¬bad]

≤Pr
[
S(r-ΛA) ∧ ¬bad

]
− Pr [S(B) ∧ ¬bad] + Pr [bad]

Therefore, we proceed by showing two things:

1. Pr
[
S(r-ΛA) ∧ ¬bad

]
= Pr [S(B) ∧ ¬bad]

2. Pr [bad] ≤ r/Q
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In order to prove the first statement, we consider two cases in which A outputs
either ⊥ or the correct output of VUF for input X(j)` under verification key vk`.
These are the two cases that B distinguishes in step ii. d).

1. In the first case Λ`,2(j∗`, stΛ`,2) outputs (Y `
i,j∗` , π

`
i,j∗`)i∈[Q\j∗`] such that there is

i ∈ [Q \ j∗`] with Vfy(vk`, X(i)`, Y `
i,j∗` , π

`
i,j∗`) = 0. Note that in this case, A2

aborts and outputs ⊥. B also aborts and outputs ⊥ in step ii. d) in the first
case.

2. In the second case no such i ∈ [Q\ j∗`] exists for the output of Λ`,2(j∗`, stΛ`,2).
Hence, we have all-valid(stΛ`,2 , j

∗`) = 1. Furthermore, since we assumed
that bad does not happen, we have that there is also j ∈ [Q \ j∗`] with
all-valid(stΛ`,2 , j) = 1 and therefore A`[j∗`] contains the correct VUF output,
which B passes on to Λ`,3. Since A also outputs the correct output for VUF
in this case, the two outputs are distributed identically.

Therefore, we have Pr
[
S(r-ΛA) ∧ ¬bad

]
= Pr [S(B) ∧ ¬bad].

Next, we show that Pr [bad] ≤ r/Q. For this, consider a fixed ` ∈ [r] and
observe that bad(`) can occur only if there is a unique index j ∈ [Q] such that
all-valid(st`,2, j) = 1 holds. Hence, the probability that B draws j∗` = j in step
ii. d) in the `’th round is 1/Q. Therefore, we have that Pr [bad(`)] = 1/Q, and
it follows by the union bound that Pr [bad] ≤ r/Q. Summing up, we have shown
that.

Pr
[
S(r-ΛA)

]
− Pr [S(B)] ≤ Pr [bad] ≤ r/Q ⇐⇒ εΛ ≤ εB − r/Q

It is now only left to compute the running time of B. For this, note that B
executes the algorithms Λ`,2 Q times for each ` ∈ [r] and other algorithms of Λ only
once. Furthermore, B executes Vfy r ·Q · (Q− 1) times. Overall, we thus conclude
that

tB ≤ r ·Q · tΛ + r ·Q · (Q− 1) · tVfy

holds, where tVfy is the time it takes to execute Vfy. This concludes the proof.

Non-perfect adversaries. We only considered adversaries that always break
the weak selective unpredictability of the VUF in the theorem above. However,
the hypothetical adversary A and the meta-reduction can also simulate adversaries
with arbitrary εA ∈ [0, 1] by just aborting with probability 1− εA in the simulation
of A.

4.4 Achieving Optimal Tightness for Verifiable
Random Functions

Now that we showed that every reduction from a non-interactive complexity as-
sumption to the pseudorandomness or unpredictability of a VRF or VUF, respec-
tively, loses at least a factor of Q, we present a VRF together with a reduction,
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which attains this bound up to a small constant factor. We achieve this by de-
scribing a partitioning proof strategy, which we discussed in Section 2.6. We first
describe how the reduction chooses this partition in Section 4.4.1. We then discuss
the embedding of the partitioning in the VRF in Section 4.4.2.

4.4.1 A Reduction Strategy with Optimal Tightness
In order to make a partitioning argument with optimal tightness for VRFs, we need
to decouple the probability that the partitioning succeeds from the queries and the
challenge, which are chosen by the adversary. We achieve this by passing every
input of the adversary through a pseudorandom function (PRF). This ensures that
the outputs are distributed independently and uniformly at random for pairwise
different inputs. We formally define a PRF as below, similar to the definition
in [KL14, Definition 3.25].

Definition 28 (Pseudorandom functions [GGM84, GGM86]). For functions t,m, n :
N → N and ε : N → [0, 1], we say that a function PRF : {0, 1}m(λ) × {0, 1}λ →
{0, 1}n(λ) is an (t, ε)-secure pseudorandom function (PRF) if it holds for every al-
gorithm D running in time t(λ) that∣∣∣∣∣ Pr

KPRF $←−{0,1}m(λ)

[
DPRF(KPRF,·)(1λ) = 1

]
− Pr

F
$←−Fλ,n(λ)

[
DF (·)(1λ) = 1

]∣∣∣∣∣ ≤ ε(λ),

where Fλ,n(λ) = {F : {0, 1}λ → {0, 1}n(λ)} is the set of all functions from {0, 1}λ to
{0, 1}n(λ).

For a clear exposition of our reduction strategy, assume that all queries by the
adversary and the challenge are passed through a truly random function F $←−Fλ,n(λ).
We later replace this truly random function with a PRF. We then show that if
the PRF is secure, then this does only make a negligible difference in the success
probability.
We use the outputs X ′ of the truly random function for partitioning in the

following way. The reduction samples Kpart $←− {0, 1}η for some carefully chosen
η ∈ [n(λ)]. It then defines the uncontrolled set, i.e., the set of inputs for which
the reduction can extract a solution but not answer evaluation queries, as the set
of all inputs whose PRF output match Kpart on the first η bits. We formalize this
partitioning as the following function F.

Definition 29. For X ′ ∈ {0, 1}n(λ) and Kpart ∈ {0, 1}η, we define

F(X ′,Kpart) :=

1 if X ′|η = Kpart

0 otherwise,

where X ′|η denotes the first η bits of X ′.

104



4.4 Achieving Optimal Tightness for Verifiable Random Functions

We have previously used a function F with the same name in Chapter 3 in the
context of admissible hash functions. However, since there is no risk of confusion
due to the context and the functions capturing a similar intuition, we reuse the
symbol F here.
Let TRF $←−Fλ,n(λ) be a truly random function and letX(1), . . . , X(Q), X∗ ∈ {0, 1}λ

be arbitrary with X(i) 6= X(j) and X(i) 6= X∗ for all i 6= j. We then let X ′i :=
TRF(X(i)) and X∗′ := TRF(X∗). Observe that we then have that all X ′i and X∗

′

are independent and uniformly random in {0, 1}n(λ). We show in the following
Lemma that for η = dlog(Q)e + 1 and Kpart $←− {0, 1}η, where Q is the number of
evaluation queries made by the adversary, we have that F(X ′i,Kpart) = 0 for all
i ∈ [Q] and F(X∗′ ,Kpart) = 1 with probability at least 1/(8Q). That means, the
partitioning argument has optimal tightness for VRFs up to a small constant factor.
We later on show that since a pseudorandom function is indistinguishable from a
truly random function, we can efficiently apply this in our construction.

Lemma 10. Let Q = Q(λ) be a polynomial, let η = η(λ) := dlog(Q)e + 1 and let
X ′1, . . . , X

′
Q, X

∗′ be as above. For Kpart $←− {0, 1}η, we then have that

Pr
[
F(X ′i,Kpart) = 0 for all 0 ≤ i ≤ Q and F(X∗′ ,Kpart) = 1

]
≥ 1

8Q.

Proof. We start by lower bounding the probability from the lemma as follows.

Pr
[
F(X ′i,Kpart) = 0 for all 0 ≤ i ≤ Q and F(X∗′ ,Kpart) = 1

]
= Pr

[
F(X ′i,Kpart) = 0 for all 0 ≤ i ≤ Q | F(X∗′ ,Kpart) = 1

]
Pr
[
F(X∗′ ,Kpart) = 1

]
=
 Q∏
i=1

Pr
[
F(X ′i,Kpart) | F(X∗′ ,Kpart) = 1

]Pr
[
F(X∗′ ,Kpart) = 1

]
(4.1)

=
(

1−
(1

2

)η)Q
Pr
[
F(X∗′ ,Kpart) = 1

]
≥
(

1−
(1

2

)η
Q
)

Pr
[
FK(X∗′ ,Kpart) = 1

]
(4.2)

=
(

1−
(1

2

)η
Q
)(1

2

)η
Observe that Equation (4.1) holds because all X ′i and X∗

′ are stochastically inde-
pendent and that Equation (4.2) follows from Bernoulli’s inequality. Next, no-
tice that since η = dlog(Q)e + 1 we have that

(
1
2

)η
≥

(
1
2

)log(Q)+2
= 1

4Q and

−
(

1
2

)η
≥ −

(
1
2

)log(Q)+1
= − 1

2Q . We can therefore conclude the proof as follows.

Pr
[
F(X(i),Kpart) = 0 for all 0 ≤ i ≤ Q and F(X∗,Kpart) = 1

]
≥
(

1−
(1

2

)η
Q
)(1

2

)η
≥
(

1− 1
2QQ

)
1

4Q = 1
2 ·

1
4Q = 1

8Q
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Note that Lemma 10 only holds if all X ′i and X∗
′ are distributed independently

and uniformly at random in {0, 1}n, e.g., if X ′i = TRF(X(i)) for all i ∈ [Q] and
X∗

′ = TRF(X∗). Observe that we stated our argument for a truly random function
instead of a PRF and our construction in Section 4.4.2 uses a PRF. Therefore,
we define the function G, which uses a pseudorandom function instead of a truly
random function.

Definition 30. For X ∈ {0, 1}λ,KPRF ∈ {0, 1}m and Kpart ∈ {0, 1}η, we define

G(X,KPRF,Kpart) := F(PRF(KPRF, X),Kpart).

Intuitively, Lemma 10 also applies to G and adversarially chosen X(i) and X∗

because the outputs of the pseudorandom function are indistinguishable from the
outputs of a truly random function. Hence, any adversary that is able to efficiently
make queries to the PRF such that the probability in Lemma 10 differs significantly
from the probability for a truly random function would also be able to distinguish
the pseudorandom function from a truly random function. We show that this also
holds formally as part of the security proof of the pseudorandomness of our VRF
in Section 4.4.2.

4.4.2 Verifiable Random Functions with Optimal Tightness
In order to embed the partitioning argument we described in Section 4.4.1 into a
VRF, we use the VRF that Yamada describes in [Yam17b, Appendix C]. This is
the full version of [Yam17a]. This VRF is well-suited for our purposes, because it
enables us to embed the homomorphic evaluation of arbitrary NAND circuits in the
reduction such that the reduction can answer all queries for inputs on which the
circuit evaluates to zero and can extract a solution to the underlying complexity
assumption for all inputs for which the circuit evaluates to 1. At the same time, the
embedding of the circuit hides some input bits, all internal states and the output
of the circuit from the adversary. We use this property to embed the homomorphic
evaluation of G from Definition 30. We first describe how we model NAND circuits
and then describe the VRF.

NAND circuits. Before describing our construction, we require a formal defi-
nition of NAND circuits. The type of circuits we consider take two types of inputs:
public inputs and secret inputs. For the function G, which we want to embed in
the VRF, we can think of the public input as a VRF input X ∈ {0, 1}λ and of the
secret input as the PRF key KPRF and the partitioning key Kpart. Like Yamada, we
roughly follow the notation of [BHR12] when describing NAND circuits. That is, we
assign an index to each input bit and to each gate, beginning with the public input
bits, continuing with the secret inputs bits and finally indexing the gates. Formally,
if there are k ∈ N inputs of which kpub ∈ [k] are public input bits and ksec = k−kpub
are secret input bits, then we set P := [kpub] and S := [kpub + 1, kpub + ksec] as the
respective index sets for the public and secret input bits.
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For a NAND circuit C : {0, 1}|P|+|S| → {0, 1} with c many gates and |P| + |S|
many input bits, we assign an index j ∈ C := [|P| + |S| + 1, |P| + |S| + c] to each
gate. Further, we formalize the wiring of the circuit with the functions in1, in2 :
C → P ∪ S ∪ C that represent the input wires of a gate. We require that for all
j ∈ C it holds that in1(j) < j and in2(j) < j. This condition ensures that the circuit
does not contain any circles.
Since we only consider circuits with a single output bit, we assume without loss

of generality that the output of the gate with index |P| + |S| + |C| outputs the
overall output of the circuit. Furthermore, we define the depth of a gate j as the
maximal distance from any input gate to j. Consequentially, we define the depth
of a circuit C as the depth of the gate with index |P|+ |S|+ |C|.

Evaluating a circuit. For a circuit C in the notation above with public inputs
p = (pj)j∈P , secret inputs s = (sj)j∈S , gates with indexes in C and the wiring
encoded by in1, in2 : C → P∪S∪C, we define the function value : P∪S∪C → {0, 1}
as follows. For all j ∈ P we set value(j) := pj and for all j ∈ S as value(j) :=
sj. Further, for all j ∈ C, we set value(j) := value(in1(j)) NAND value(in2(j)). In
order to evaluate a circuit on input p ∈ {0, 1}|P| and s ∈ {0, 1}|S|, we compute
value(|P| + |S| + |C|) since the gate with index |P| + |S| + |C| outputs the overall
output of C. Note that the evaluation of the circuit is well-defined because we have
that for all j ∈ C it holds that in1(j) < j and in2(j) < j.

Representing G as a circuit. For our construction, we need to represent G
from Definition 30 as a NAND-circuit. However, given the plain definition of G,
the number of input bits of the circuit depends on η(λ), which in turn depends on
the number Q of Eval queries made by the adversary. We address this by adapting
the encoding of Kpart. Namely, we let PrtSmp(1λ, Q(λ)) be the algorithm that
samples Kmatch $←−{0, 1}n(λ), computes η := dlog(Q(λ))e+1 sets Kfixing = 1η||0n(λ)−η(λ)

and outputs Kpart = (Kmatch,Kfixing) ∈ ({0, 1}n(λ))2. We then adapt the function
F(X ′,Kpart) to compare X and Kmatch on all positions where Kfixing is 1 and output
1 if they match on all such positions and 0 otherwise. These adaptations do not
change the output of F or G but ensure that the NAND-circuit representing G only
depends on λ and not on Q. Note that it would be possible to encode Kfixing more
efficiently, but we use this encoding for clarity.

Construction. We assume that the NAND circuits for the function G for differ-
ent security parameters are publicly known, and we denote the circuit for G with
security parameter λ by CG,λ. For our construction, we have that P = [λ], since the
public input of G is X ∈ {0, 1}λ. Furthermore, we set SPRF := [|P|+ 1, |P|+m(λ)]
for the indexes of the bits of KPRF ∈ {0, 1}m(λ), Spart := [|P| + |SPRF| + 1, |P| +
|SPRF|+ 2n(λ)] for the indexes of Kpart ∈ {0, 1}2n(λ), and S := SPRF ∪Spart. Finally,
we assume that the functions in1

λ, in2
λ : C → P ∪ S ∪ C encode the wiring of CG,λ
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and that |P| + |S| + |C| is the index of the output gate. For simplicity, we set
out := |P|+ |S|+ |C|.

Construction 3. Let GrpGen be a certified bilinear group generator (see Defini-
tions 9 and 10) with verification algorithms GrpVfy and GrpElemVfy. We then let
VRFopt = (SetupVRFopt,Evalopt,Vfyopt) be the following verifiable random function.

SetupVRFopt(1λ) first generates a group description BG $←−GrpGen(1λ) and samples
uniformly random group generators g, h $←−G∗, w0

$←− Z∗p and wj $←− Zp for all
j ∈ S. It then sets W0 := gw0 , Wj := gwj for all j ∈ S and outputs

vk :=
(
BG, g, h,W0, (Wj)j∈S

)
and sk :=

(
w0, (wj)j∈S

)
.

Evalopt(sk, X) parses X ∈ {0, 1}λ as (X1, . . . , Xλ) and sets

θj :=

Xj if j ∈ P
wj if j ∈ S

for all j ∈ P ∪ S. For all j ∈ C, it sets

θj := 1− θin1
λ(j)θin2

λ(j).

It then sets π0 := gθout/w0 and πj := gθj for all j ∈ C and outputs

Y := e(g, h)θout/w0 and π := (π0, (πj)j∈C).

Vfyopt(vk, X, Y, π) verifies that vk has the form (BG, g, h,W0, (Wj)j∈S) and that π
has the form (π0, (πj)j∈C). It then verifies the group description by running
GrpVfy(1λ,BG) and then verifies all group elements in vk, π and Y by running
GrpElemVfy(1λ,BG, s) for all s ∈ {g, h, Y, π0, π|P|+|S|+1, . . . , π|P|+|S|+|C|}. Vfyopt
outputs 0 if any of the checks fails. Next, the algorithm verifies the correctness
of Y in respect to vk, X and π by setting πj := gXj for all j ∈ P and πj := Wj

for all i ∈ S and performing the following steps.

1. It checks whether e(g, πj) = e(g, g)
(
e(πin1

λ(j), πin2
λ(j))

)−1
for all j ∈ C.

2. It checks whether e(π0,W0) = e(πout, g).

3. It checks whether e(π0, h) = Y .

If any of the checks above fail, then Vfyopt outputs 0. Otherwise, it outputs
1.
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Instantiation. In order to instantiate VRFopt, we need that G can be repre-
sented by a circuit of polynomial size and logarithmic depth. While this is certainly
possible for the comparison of the PRF output with Kmatch, we also require a PRF
that can be computed by such a NAND circuit. The Naor-Reingold PRF is an exam-
ple of such a PRF that is also provably secure under the DDH assumption [NR97].
However, we can further optimize the efficiency by using the adaptation of the Naor-
Reingold PRF in [JKP18, Section 5.1]. This PRF has secret keys of size ω(log(λ)).
Further, we can change the encoding of Kmatch and Kfixing to also consist of only
ω(log(λ)) many bits. This would bring the size of the public verification key down
to ω(log(λ)), would, however, only hold for λ large enough. We can further optimize
the size of the proofs by applying the technique of [IKOS08], which allows to reduce
the circuit size of every PRF to O(λ) at the cost of reducing the output length to
λ1/c for some constant c > 0 that depends on the PRF. However, the smaller output
length is no issue, since λ1/c is larger than dlog(Q(λ))e + 1 = O(log(λ)) for large
enough λ, because Q is polynomial in λ. This technique therefore reduces the size
of proofs to O(λ). The author wants to thank Yuval Ishai for the helpful discussion
on optimizing the size of the circuit.

Correctness and Unique Provability of the VRF.

The proofs for correctness and unique provability closely follow the respective proofs
by Yamada [Yam17b, Appendix C]. Therefore, we only present them here for com-
pleteness. Before proving the pseudorandomness of the VRF, we shortly discuss
the instantiation with concrete PRFs and the effect on the efficiency.

Correctness. We prove the correctness of VRFopt by considering an arbitrary
input X ∈ {0, 1}λ. Let (vk, sk) $←− SetupVRFopt(1λ) and (Y, π) := Evalopt(sk, X),
then the algorithm Vfyopt(vk, X, Y, π) first verifies the structure of vk and π. This
verification succeeds because vk and π are generated in this specific format by
SetupVRFopt and Evalopt. The same applies to the verification of BG and the en-
coding of the group elements by GrpVfy and GrpElemVfy. Further, the first check
succeeds because Evalopt computes πj for all j ∈ C such that

e(g, πj) = e(g, gθj) = e(g, g1−θin1
λ

(j)θin2
λ

(j)) = e(g, g)e
(
g, g

θin1
λ

(j)θin2
λ

(j)
)−1

= e(g, g)e
(
g
θin1
λ

(j) , g
θin2
λ

(j)
)−1

= e(g, g)e
(
πin1

λ(j), πin2
λ(j)

)−1
.

Further, the second check succeeds because Evalopt and SetupVRFopt compute π0, πout

and W0 such that e(π0,W0) = e(gθout/w0 , gw0) = e(gθout , g) = e(πout, g). Finally, we
have that

e(π0, h) = e(gθout/w0 , h) = e(g, h)θout/w0 = Y.

Therefore, Vfyopt outputs 1, which proves the correctness of VRFopt.
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Unique Provability. In order to show that VRFopt has unique provability,
we have to show that for every vk ∈ {0, 1}∗ and X ∈ {0, 1}λ there does not
exist Y 0, π0, Y 1, π1 ∈ {0, 1}∗ with Y 0 6= Y 1 such that Vfyopt(vk, X, Y 0, π0) =
Vfyopt(vk, X, Y 1, π1) = 1.
We do so by assuming that there are vk, Y 0, π0, Y 1, π1 ∈ {0, 1}∗ such that

Vfyopt(vk, X, Y 0, π0) = Vfyopt(vk, X, Y 1, π1) = 1 and then conclude that Y 0 = Y 1

has to hold by going through the checks of the verification algorithm. Vfyopt first
checks whether vk and π both have the correct format and that supposed group
elements in vk, π and Y are actual group elements with a unique encoding. Since
we assumed that Vfyopt(vk, X, Y 0, π0) = Vfyopt(vk, X, Y 1, π1) = 1, we from now on
assume that vk, Y 0, π0, Y 1, π1 fulfill these conditions.
Next, observe that it follows from the group structure of G that πj = gXj is

uniquely defined for all j ∈ P and that logg(πj) = wj uniquely defines wj ∈
Zp for all j ∈ S. Vfyopt(vk, X, Y0, π0) = Vfyopt(vk, X, Y1, π1) = 1. Then, the
first check of Vfyopt inductively specifies a unique πj ∈ G such that e(g, πj) =
e(g, g)

(
e(πin1

λ(j), πin2
λ(j))

)−1
holds for all j ∈ C. This implies that the values πj are

identical in π0 and π1. The second check of Vfyopt then uniquely specifies π0, be-
causeW0 and πout are uniquely specified. Hence, π0 has to be identical in π0 and π1.
Finally, the last check of Vfyopt uniquely specifies Y because π0 is already unique.
Therefore, Y 0 = Y 1 has to hold, which proves the unique provability of VRFopt.

Proof of Pseudorandomness.

The security of our VRF is based on the decisional q-bilinear Diffie-Hellman inver-
sion assumption that we introduced in Section 2.4 as Definition 14. Note that the
assumption falls in the category of non-interactive complexity assumptions from
Definition 24. Based on this assumption, we can formulate the theorem for the
pseudorandomness of our VRF.
Theorem 8. Let VRFopt = (SetupVRFopt,Evalopt,Vfyopt) be the verifiable random
function from Construction 3, then for every legitimate adversary A = (A1,A2)
that (tA, εA) breaks the pseudorandomness of VRFopt and makes Q(λ) queries to
Evalopt for some polynomial Q : N → N, there exists an algorithm B that (tB, εB)-
breaks the q-DBDHI assumption relative to GrpGen used in VRFopt with

tB(λ) = tA(λ), εB(λ) ≥ εA(λ)
8Q(λ) − εPRF(λ)− negl(λ) and q := 2d,

where d is the depth of CG,λ, εPRF is the largest advantage any algorithm with
runtime tA(λ) that makes Q(λ) queries to its oracle has in breaking the security
of the PRF used in VRFopt and negl(λ) is a negligible function. In particular:
VRFopt achieves the optimal tightness, since εPRF(λ) is negligible if the construction
is instantiated with a PRF with a security reduction loss of at most Q(λ).
Remark 9. Note that the requirement of a loss of at most Q for the PRF is fulfilled
by e.g. the Naor-Reingold PRF [NR97] or the PRFs by Jager et al. [JKP18].
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4.4 Achieving Optimal Tightness for Verifiable Random Functions

Proof. Since Evalopt is deterministic, A can not learn anything by making the same
query to Evalopt twice. We therefor assume without loss of generality that A makes
only pairwise distinct queries to Evalopt. Further, we set Q := Q(λ), n := n(λ),m :=
m(λ) and εA := εA(λ) in order to simplify notation.
We denote the event that Game i outputs 1 by Gi. The first part of the proof

will focus on our technique of using a PRF for partitioning. The second part of
the proof follows the proof by Yamada [Yam17b, Theorem 6] and we provide it for
completeness.

Game 0. This is the original security experiment from Definition 6 and we thus
have that ∣∣∣∣Pr [G0]− 1

2

∣∣∣∣ = εA

holds by definition.

Game 1. In this game, the challenger first runs the game as before. But, before
outputting a result, it samples X ′i $←−{0, 1}n uniformly and independently at random
for each query X(i) ∈ {0, 1}λ to Evalopt by A and X∗′ $←− {0, 1}n for the challenge
X∗ ∈ {0, 1}λ. Observe that this perfectly emulates the process of evaluating a truly
random function on the queries and the challenge because we assumed without loss
generality that all queries and the challenge are pairwise distinct. Further, it sets
η := dlogQe+ 1 and samples Kpart $←− PrtSmp(1λ, Q). It then aborts and outputs a
random bit if F(X ′i,Kpart) = 1 for any i ∈ [Q] or if F(X∗′ ,Kpart) = 0. We denote the
occurrence of any of the two abort conditions by the event bad. We next show that

|Pr [G1]− Pr [G0]| = εA(1− Pr [bad]) ≤ εA

(
1− 1

8Q

)

holds. We later use that Pr [¬bad] ≥ 1/(8Q) holds, which follows from Lemma 10
and will in the end yield the loss stated in Theorem 8. We have the following.

|Pr [G1]− Pr [G0]| = |Pr [G1 | bad] Pr [bad] + Pr [G1 | ¬bad] Pr [¬bad]− Pr [G0]|

=
∣∣∣∣12 (1− Pr [¬bad]) + Pr [G1 | ¬bad] Pr [¬bad]− Pr [G0]

∣∣∣∣
=
∣∣∣∣12 + Pr [¬bad]

(
Pr [G1 | ¬bad]− 1

2

)
− Pr [G0]

∣∣∣∣
=
∣∣∣∣12 + Pr [¬bad]

(
Pr [G0]− 1

2

)
− Pr [G0]

∣∣∣∣ (4.3)

=
∣∣∣∣Pr [¬bad]

(
Pr [G0]− 1

2

)
−
(

Pr [G0]− 1
2

)∣∣∣∣
=
∣∣∣∣(Pr [G0]− 1

2

)
(Pr [¬bad]− 1)

∣∣∣∣
=
∣∣∣∣Pr [G0]− 1

2

∣∣∣∣ · |Pr [¬bad]− 1|

= εA · (1− Pr [¬bad])
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4 Verifiable Random Functions with Optimal Tightness

Note that Equation (4.3) holds because Pr [G1 | ¬bad] = Pr [G0 | ¬bad] and the
event ¬bad is independent of G0. The independence holds because X∗′ and all
X ′i are drawn at random. Note that it is this independence together with the
independence between the different X ′i and X∗ that allows us to achieve the optimal
tightness in contrast to the other approaches discussed in the introduction.
Further, by Lemma 10, we have that Pr [¬bad] ≥ 1/(8Q) holds and therefore

holds that
|G1 − G0| = εA(1− Pr [¬bad]) ≤ εA

(
1− 1

8Q

)
.

Game 2. In this game, the challenger only changes the way it computes X∗′ and
X ′i for all i ∈ [Q]. The challenger samples KPRF $←− {0, 1}m and aborts and outputs
a random bit if G(X(i),KPRF,Kpart) = 1 or if G(X∗,KPRF,Kpart) = 0. The only
difference to Game 1 is that G setsX∗′ := PRF(KPRF, X∗) andX ′i := PRF(KPRF, X(i))
instead of drawing them uniformly at random.
Informally, every algorithm distinguishing Game 2 from Game 1 with advantage

ε implies a distinguisher for PRF with advantage ε. We describe a distinguisher
BPRF for PRF that is based on Game 2 and Game 1 and achieves exactly this:
BPRF(λ) with access to either a PRF(KPRF, ·) or a truly random function F $←−Fλ,n(λ)
as oracle first runs (vk, sk) $←−SetupVRFopt(1λ) and uses sk to answer all queries and
the challenge by A. After A submits its guess b′, BPRF queries its oracle on X(i)

and by that obtains X ′i for all i ∈ [Q]. Analogously, it queries its oracle on X∗ and
by that obtains X∗′ . It then samples Kpart $←−PrtSmp(1λ, Q) and aborts and outputs
a random bit if F(X∗′ ,Kpart) = 0 or F(X ′i,Kpart) = 1 for some i ∈ [Q]. Otherwise,
BPRF outputs 1 if A’s guess is correct and 0 otherwise.
Note that B has exactly the same runtime as A and that the probability that it

outputs 1 is identical to Pr [G2] if its oracle is the pseudorandom function. Analo-
gously, if its oracle is a truly random function, then its output is 1 with probability
Pr [G1] and therefore

|Pr [G2]− Pr [G1]| =∣∣∣∣∣ Pr
KPRF $←−{0,1}m

[
BPRF(KPRF,·)

PRF (1λ) = 1
]
− Pr

F
$←−Fλ,n(λ)

[
BF (·)

PRF = 1
]∣∣∣∣∣ ≤ εPRF.

Game 3. In this game, the challenger samples the key of the PRF KPRF $←−{0, 1}m
and Kpart $←−PrtSmp(1λ, Q) in the very beginning and aborts and outputs a random
bit as soon as A makes an Evalopt query X(i) with G(X(i),KPRF,Kpart) = 1 or if
it holds for A’s challenge X∗ that G(X∗,KPRF,Kpart) = 0. Since this is just a
conceptual change, we have that

Pr [G3] = Pr [G2] .
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4.4 Achieving Optimal Tightness for Verifiable Random Functions

From here on, the proof mostly follows the proof by Yamada [Yam17b, Appendix
C] and we present it here for completeness.

Game 4. In this game, we change the way the values wj are chosen. That is,
the challenger samples the partitioning key Kpart $←− PrtSmp(1λ, Q) with Kpart ∈
{0, 1}|Spart| and KPRF $←−{0, 1}|SPRF|. For all j ∈ S it sets sj := KPRF

j−|P| for all j ∈ SPRF

and sj := Kpart
j−|P|−|SPRF| for all j ∈ Spart. The challenger then samples α $←− Z∗p, and

w̃j
$←− Z∗p for all j ∈ S. It then sets

w0 := w̃0α and wj := w̃j · α + sj for all j ∈ S.

Note that the values w̃j are drawn from Z∗p and not from Zp like the values wj in
the previous game. This slightly changes the distributions of each wj. However, the
overall statistical distance is at most |S|/p, which is negligible because p = Ω(2λ)
by Definition 9 and therefore

|G4 − G3| = negl(λ).

Helping Definitions. Before proceeding to the next game, we introduce addi-
tional notation. That is, for all X ∈ {0, 1}λ and all j ∈ P ∪ S ∪ C, we let

PX,j(Z) :=


Xj if j ∈ P ,
w̃iZ + sj if j ∈ S and
1− PX,in1

λ(j)(Z)PX,in2
λ(j)(Z) if j ∈ C.

Note that by the definition of wj form Game 3, we have that PX,j(α) = θj. In order
to proceed to the next game, we require the following lemma by Yamada.

Lemma 11 (Lemma 16 in [Yam17b]). There exists RX(Z) ∈ Zp[Z] with deg(R(Z)) ≤
deg(PX,out(Z)) ≤ 2d, where d is the depth of the circuit for the function G, and it
holds that

PX,out(Z) = G(X,KPRF,Kpart) + Z · RX(Z).

As not to interrupt the proof of Theorem 8, we postpone the proof of Lemma 11
and first conclude the proof of Theorem 8.

Game 5. With Lemma 11 at our hands, we change how the challenger answers A’s
evaluation queries in this game. As in the previous game, the challenger aborts and
outputs a random bit if G(X(i),KPRF,Kpart) = 1 for any query X(i) by A. Otherwise,
the challenger computes and outputs

Y := e
(
gRX(α)/w̃0 , h

)
, π :=

(
π0 = gRX(α)/w̃0 ,

(
πj := gPX,j(α)

)
j∈C

)
.
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Observe that Y and π are distributed exactly as in Game 4. This holds for all πj
because PX,j(Z) is defined exactly as Pj in the definition of Evalopt above, just with
wj defined as in Game 4. Further, it holds for π0 and Y because

RX(α)
w̃0

= α · RX(α)
α · w̃0

= G(X,KPRF,Kpart) + α · RX(α)
α · w̃0

= PX,out(α)
w0

,

where the last equality follows from Lemma 11. It therefore holds that

Pr [G5] = Pr [G4] .

Game 6. In this game, we change how the challenger answers to A’s challenge
X∗. As in the previous game, the challenger aborts and outputs a random bit if
G(X∗,KPRF,Kpart) = 0. Otherwise, the challenger computes RX∗(α) and sets

Y0 :=
(
e(g, h)1/α · e

(
gRX∗ (α), h

))1/w̃0 = e
(
g(1+αR∗X(α))/(w̃0α), h

)
= e

(
g(G(X∗,KPRF,Kpart)+αR∗X(α))/(w̃0α), h

)
= e

(
gPX∗,out(α)/w0 , h

)
.

Then, the challenger samples a bit b uniformly at random and Y1
$←−GT and outputs

Yb to A. Again, observe that PX∗,out(α) is, relative to wj as defined in Game 4,
distributed exactly as θout in the definition of Evalopt. It therefore holds that

Pr [G6] = Pr [G5] .

Game 7. In this game, the challenger always responds to A’s challenge X∗ with
Y1

$←−GT regardless of the value of b. It thus holds that

Pr [G7] = 1
2 ,

because no response of the challenger to the challenge X∗ or an evaluation query
X(i) depends in b in any way. Furthermore, we claim that there is an algorithm
B that runs in time tA and has an advantage of |Pr [G6]− Pr [G7]| in solving the
q-DBDHI problem.
Lemma 12. Let d ∈ N be the depth of the CG,λ, then there is an algorithm B with
run time tB ≈ tA that on input a q-DBDHI instance with q = 2d perfectly simulates
either Game 6 or Game 7 such that

εB := Advq-DBDHI
B (λ) = |Pr [G6]− Pr [G7]|

holds.
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4.4 Achieving Optimal Tightness for Verifiable Random Functions

As not to interrupt the proof of Theorem 8, we postpone the proof of Lemma 12
and first conclude the proof of Theorem 8. By Lemma 12 and the (in)equalities we
derived above, it holds that

εA =
∣∣∣∣Pr [G0]− 1

2

∣∣∣∣ ≤ |Pr [G0]− Pr [G1]|+
∣∣∣∣Pr [G1]− 1

2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+
∣∣∣∣Pr [G1]− 1

2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+ εPRF +

∣∣∣∣Pr [G2]− 1
2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF +

∣∣∣∣Pr [G3]− 1
2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+ εPRF + negl(λ) +

∣∣∣∣Pr [G4]− 1
2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF + negl(λ) +

∣∣∣∣Pr [G6]− 1
2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+ εPRF + negl(λ) + |Pr [G6]− Pr [G7]|+

∣∣∣∣Pr [G7]− 1
2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF + negl(λ) + εB.

Rearranging the terms above, we have that

εB ≥
εA
8Q − εPRF − negl(λ),

which concludes the proof of Theorem 8.

Proofs for Lemma 11 and Lemma 12.

In order to finalize the proof of Theorem 8, we still need to prove Lemma 11 and
Lemma 12, which we do below.

Proof of Lemma 11. Our proof closely follows Yamada’s proof of Lemma 16 in Ap-
pendix C of [Yam17b]. For all j ∈ P ∪ S ∪ C let

bj :=



Xj if j ∈ P
KPRF
j−|P| if j ∈ SPRF

Kpart
j−|P|−|SPRF| if j ∈ Spart

1− bin1
λ(j) · bin2

λ(j) if j ∈ C.

Note that for two bits a, b ∈ {0, 1}, it holds that 1 − ab = aNAND b. Therefore,
we have for all j ∈ C that bj is the output of gate j and in particular, that bout =
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G(X,KPRF,Kpart). We now claim that for all j ∈ C there exist RX,j(Z) ∈ Zp[Z] such
that

PX,j(Z) = bj + Z · RX,j(Z).

Furthermore, it holds for all j ∈ P ∪ S ∪ C, that if dj ∈ N is the depth of j, then
deg(PX,j(Z)) ≤ 2dj . We prove this by induction. For all j ∈ P ∪ S this holds by
the definition of PX,j(Z). For all j ∈ C, let j1 := in1

λ(j) and j2 := in2
λ(j). Note that

by our requirements for in1
λ and in2

λ we have that j1 < j and j2 < j, which allows
us to prove the statement by induction. We then prove our claim as follows.

PX,j(Z) = 1− PX,j1(Z)PX,j2(Z)
= 1− (bj1 + Z · RX,j1(Z))(bj2 + Z · RX,j2(Z)) (4.4)
= 1− bj1bj2 + Z · (−bj1RX,j2(Z)− bj2RX,j1(Z) + ZRX,j1(Z)RX,j2(Z))︸ ︷︷ ︸

:=RX,j(Z)

= bj + Z · RX,j(Z)

Note that Equation (4.4) holds because we have by induction that PX,j1(Z) =
bj1 + Z · RX,j1(Z) and PX,j2(Z) = bj2 + Z · RX,j2(Z) holds.
Moreover, notice that for dj, the depth of the gate with index j, it holds that

dj = 1 + max{dj1 , dj2}, where dj1 and dj2 are the depths of the gates with index j1
and j2 respectively. We then have that

deg(PX,j(Z)) = deg(1− PX,j1(Z)PX,j2(Z)) = deg(PX,j1(Z)) + deg(PX,j2(Z))
= 2dj1 + 2dj2 ≤ 2 · 2max{dj1 ,dj2} = 2dj

Finally, we provide the proof for Lemma 12.

Proof of Lemma 12. On input (BG, g, h, gα, . . . , gαq , T ), where T is either e(g, h)1/α

or a random element in GT , the algorithm B samples w̃0
$←− Z∗p and w̃j $←− Z∗p for all

i ∈ S. It further samples Kpart $←− PrtSmp(1λ, Q) and KPRF $←−{0, 1}m. For all j ∈ S
it then sets

Wj :=

(gα)w̃j gKPRF
j−|P| if j ∈ SPRF and

(gα)w̃j gKpart
j−|P|−|SPRF| if j ∈ Spart.

Further, B sets W0 := (gα)w̃0 . It then gives vk := (BG, g, h,W0, (Wj)j∈S) to A.
Whenever A makes a query X(i) to Evalopt, then B computes the coefficients of the
polynomials PX(i),j(Z) for all j ∈ C. Note that by Lemma 11, we have that the
coefficient for degree zero of PX(i),out(Z) is identical to G(X(i),KPRF,Kpart). Hence,
if the coefficient of degree zero is 1 for any query X(i), then B aborts and outputs
a random bit just as the challenger in Game 6 and Game 7.
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Otherwise, B computes Y and π as

Y := e
(
gRX(α)/w̃0 , h

)
, π :=

(
π0 = gRX(α)/w̃0 ,

(
πj := g

P
X(i),j(α))

j∈C

)
.

Note that B can compute these values because all PX(i),j(Z) and RX(i)(Z) have
degree at most 2d ≤ q and therefore all group elements gxi for i ≤ 2d are part of
the q-DBDHI instance.
When A submits its challenge X∗, B computes the coefficients of R∗X(Z) and

PX∗,j(Z) for all j ∈ C as above. As the challenger in Game 6 and Game 7, B aborts
and outputs a random bit if the coefficient of degree zero of PX∗,out(Z) is not 1, i.e.,
if G(X∗,KPRF,Kpart) = 0. Otherwise, B draws a random bit b $←− {0, 1} and returns

Y ∗ :=
(
T · e

(
gRX∗ (α), h

))1/w̃0

to A if b = 0 and B returns Y ∗ $←−GT to A if b = 1.
In order to conclude the proof, observe that π and Y for all evaluation queries

and Y ∗ for the challenge are distributed exactly as in Game 6 if T = e(g, h)1/α.
Analogously, if T $←− GT , then π and Y for all evaluation queries and Y ∗ for the
challenge are distributed exactly as in Game 7 and therefore

εB := Advq-DBDHI
B (λ) = |Pr [G6]− Pr [G7] .|

Furthermore, observe that tA ≈ tB because tA already includes the runtime of the
security experiment and B does nothing more than executing the security experi-
ment for B with the sole difference that it has to compute the coefficients of the
polynomials PX,j(Z) and RX(Z). However, these few additional operations do not
make a significant difference in the overall runtime of B.

4.5 Conclusion and Open Problems
We showed that every reduction from a non-interactive complexity assumption
to the pseudorandomness of a VRF that can sequentially rewind the adversary
a constant number of times necessarily loses a factor of ≈ Q. This settles the
question of the optimal tightness an adaptively-secure VRF can achieve under a
non-interactive complexity assumption. Furthermore, we constructed the first VRF
with a reduction that has this optimal tightness. The takeaway message is that the
optimal loss for adaptively-secure VRFs is Q and that it is possible to construct
VRFs that attain this bound.
Our main technical contributions are:

1. The extension of the lower bound for the loss of reductions by Bader et
al. [BJLS16] to VRFs and VUFs in Section 4.3.
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2. Further, we presented a new partitioning strategy that achieves this optimal
tightness even in the context of decisional security notions and complexity
assumptions.

3. Finally, we show that this partitioning strategy can be applied in Yamada’s
VRF and thus yields a VRF in the standard model with optimal tightness.
This also shows that the lower bound on the loss of reductions from a non-
interactive complexity assumption to the security of a VRF that we present
is optimal.

However, there are still some open questions. The technique of Bader et al., and
therefore also our results, only applies to non-interactive complexity assumptions
and reductions that sequentially rewind adversaries. While this result covers al-
ready a large class of assumptions and reductions, it does not cover interactive
assumptions and reductions that can run several instances of the adversary in par-
allel. Morgan and Pass show a lower bound of

√
Q for the loss of reductions to the

unforgeability of unique signatures from interactive assumptions [MP18]. While
it seems plausible that their technique could be extended to also cover VRFs and
VUFs, this is still an open question.

Research Question 3. Is there a lower bound on the reduction loss of proofs
of pseudorandomness or unpredictability when the reduction is from an interactive
complexity assumptions or the reduction can execute several instances of the adver-
sary at the same time? In particular, can the technique by Morgan and Pass [MP18]
be extended to also cover VUFs or VRFs?

Moreover, VRFopt is less efficient than the VRFs that we discussed in Chapter 3.
This raises the question whether a comparable efficiency can be achieved together
with tightness.

Research Question 4. Are there verifiable random functions that can be proven
secure with optimal tightness loss and are as efficient as currently known VRFs
without optimal tightness loss?

Similar to the VRFs that we introduced in Chapter 3, VRFopt is based on the
q-DBDHI assumption with a polynomial q, which is not a standard assumption
and gets stronger with q [Che10]. It would therefore be preferable to construct an
efficient VRF with optimal tightness from a standard assumption, like the VRFs
in [HJ16, Koh19, Ros18].

Research Question 5. Are there verifiable random functions that can be proven
secure under a standard assumption and achieve optimal tightness?
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5 Efficient Identity-Based
Key-Encapsulation Schemes from
Lattices

In this chapter, we construct new programmable hash functions (PHFs) for lat-
tices. The notion of PHFs was introduced by Hofheinz and Kiltz [HK08, HK12],
and it provides a modular building block to construct efficient cryptosystems with
adaptive-security in the standard model. Zhang et al. first introduced PHFs specif-
ically for lattices in [ZCZ16]. We introduce balanced PHFs for lattices that, in con-
trast to standard PHFs, enable cryptographic schemes with decisional security, such
as IB-KEMs, without requiring additional techniques such as the artificial abort
technique by Waters [Wat05]. We show a construction of a lattice-based IB-KEM
that is secure in the standard model and uses balanced PHFs in a black-box man-
ner. Furthermore, since balanced PHFs for lattices also fulfill all requirements for
standard PHFs for lattices, the digital signature schemes by Zhang et al. [ZCZ16]
can be instantiated with all balanced PHFs that we present.
Overall, we present three balanced PHFs. Our first balanced PHF uses the

blockwise partitioning technique we introduced in Section 3.4. Thus, it requires
weak near-collision resistant hash functions for its security. It has a description
that essentially consists of O(log λ) many LWE matrices and thus gives rise to the
currently most efficient IB-KEM from lattices with a polynomial reduction loss and
polynomial LWE parameters.
Even though we view weak near-collision resistance of hash functions as a natural

assumption for standardized hash functions, it would still be preferable to base se-
curity on well-studied complexity assumptions. We, therefore, define exponentially-
collision resistant (ECR) hash functions as a weaker assumption for hash functions
than the assumptions we used in Chapter 3. We then concretely construct ECR
hash functions from the exponential SIS assumption, which extends the standard
SIS assumption with a concrete bound on the running time of algorithms. Thus,
in contrast to TCR (see Definition 20) and wNCR (see Definition 21), we prove
the existence of ECR hash functions by assuming the hardness of a well-studied
computational problem.
We then demonstrate the potential of ECR hash functions by presenting two

balanced PHFs from ECR hash functions that achieve even shorter function de-
scriptions than the PHF based on blockwise partitioning. The first of these PHFs
has a function description consisting essentially of a constant number of matri-
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ces and gives rise to the first lattice-based IB-KEM with adaptive security in the
standard model, but with a slightly super-polynomial LWE parameter. Our last
balanced PHF achieves a polynomial LWE parameter with a function description
consisting of O(

√
log λ) many matrices. However, this efficiency comes at the price

of a larger reduction loss: Both balanced PHFs from ECR hash functions require
a guessing argument, which incurs a “sub-quasi-polynomial” loss of λ−O(log log(λ)) if
instantiated with the ECR hash function we present.
This yields very efficient IB-KEMs and signatures, including the first IND-ID-

CPA secure lattice-based IB-KEMs with essentially a constant number of matrices
in their master public keys and adaptive security. Moreover, it yields the most effi-
cient IB-KEM with polynomially-bounded LWE parameter. Finally, it also yields a
signature scheme, which directly achieves full EUF-CMA security with constant-size
verification key, and the most efficient signature scheme with polynomially-bounded
SIS parameter secure under SIS.

Author’s contributions. The results presented in this chapter are based on
joined work with Tibor Jager and Rafael Kurek published as [JKN21] and on un-
published joined work with Tibor Jager that is to be submitted to PKC 2022. The
formulation of balanced PHFs as an extension to plain PHFs and the definition
and construction of the ECR hash functions are the result of intensive discussions
with Tibor Jager, and both contributed equally. Apart from this, the author made
the following technical contributions:

• The construction of balanced PHFs from blockwise partitioning, which is
published in [JKN21];

• The formulation and proof of the bound on the size of the description of
ECR hash functions of exponentially increasing output length presented in
Lemma 21;

• The construction and the accompanying proofs of the PHFs from ECR func-
tions that we present in Section 5.5 and Section 5.6;

• The construction and the accompanying proofs of the IB-KEM presented in
Section 5.7.2, which is a variation of the identity-based encryption scheme
by [Yam17a, Section 5].

5.1 Motivation and Overview
The generality of PHFs as an abstract building block makes it possible to “out-
source” a partitioning argument, as we describe it in Section 2.6, from a security
proof to the PHF. This makes security proofs more modular, it reduces their com-
plexity significantly, and avoids a tedious repetition of standard arguments. Fur-
thermore, it makes it possible to instantiate schemes with different PHFs without
the need for a new security analysis.

120



5.1 Motivation and Overview

Lattice-based PHFs. Various different types of PHFs were constructed in sev-
eral follow-up works [HK08, HK12, HJK11, FHPS13, CFN15, ZCZ16]. Most rel-
evant to this chapter is the adoption to the setting of lattice-based cryptography
by Zhang et al. [ZCZ16], who constructed the first lattice-based PHFs and showed
how to use them to construct short signatures and identity-based encryption (IBE)
schemes with small key sizes based on lattice assumptions.
A lattice-based PHF is based on a matrix hash function F = (HGen,HEval),

where HGen(1λ) takes the security parameter λ and produces a function description
F , and HEval(F,X) evaluates the function X 7→ F (X) ∈ Zn×mq . Essentially, F is a
PHF if there exist additional efficient algorithms TrapGen (trapdoor key generation)
and TrapEval (trapdoor evaluation) with the following properties.

1. TrapGen(A) takes a matrix A (e.g., from an LWE instance) and produces
a function description F ′, which is indistinguishable from one generated by
HGen, along with a trapdoor td.
Intuitively, this makes it possible to replace HGen with TrapGen(A) in a se-
curity proof, such that an instance A of a hard lattice problem is embedded
into the function description and that the reduction knows some additional
trapdoor information td.

2. TrapEval(td, X) produces two matrices (RX ,HX) such that one can write
HEval(F ′, X) as

HEval(F ′, X) = ARX + HXG (5.1)

where G is the so-called gadget matrix that allows the reduction to solve LWE
or SIS if the norm of RX is sufficiently small. We formally introduce G and
its properties in Lemma 13.
Intuitively, this ensures that the reduction is able to use the trapdoor to
obtain a representation of the form from Equation (5.1) of the output of
HEval(F ′, X), which can be used with standard lattice proof techniques to
simulate a security experiment whenever HX 6= 0.

3. For any sequence of inputs X = (X1, . . . , XQ, X
∗) holds

HX∗ = 0 and HXi 6= 0 ∀ i ∈ {1, . . . , Q}

with some non-negligible probability.
Intuitively, this “well-distributedness” requirement enables a “partitioning ar-
gument” in a security proof. It ensures that we have HX = 0 only forX = X∗.
For example, for identity-based encryption this will make it possible to embed
an instance of a hard problem into a ciphertext associated to “identity” X∗,
whereas for signatures this will enable the extraction of a solution to a hard
problem from a forgery for “message” X∗
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Limitations of known lattice-based PHFs. The known constructions of
lattice-based PHFs by Zhang et al. [ZCZ16] enable the generic and modular appli-
cation of PHFs to construct cryptosystems like IBE and signature schemes from
standard lattice assumptions. However, they still exhibit the following limitations,
which we seek to address.

Efficiency and dependence on Q. For typical applications of PHFs, including the
IBE and signature schemes in [ZCZ16] and the IB-KEM we present, the func-
tion description F is contained in the public key (concretely, in the mas-
ter public key of an IBE scheme or the public key of a signature scheme).
Therefore we measure the efficiency of a PHF by the size |F | of the function
description.

For the second lattice-based PHF construction from [ZCZ16], F consists
of log(Q) matrices in Zn×mq . While it asymptotically holds that log(Q) =
O(log λ) for a polynomial Q = Q(λ), any concrete instantiation of F still
depends on Q. For instance, for the applications of PHFs in [ZCZ16] and
our work, Q corresponds to the number of identity key queries made by an
adversary. Therefore the resulting schemes only achieve security against ad-
versaries that ask up to Q queries (“Q-bounded security”), but no security
against arbitrary polynomial-time adversaries which might ask Q+ 1 or more
queries.

Furthermore, this construction seems rather impractical, unless Q is very
small, since it is based on Q-cover free sets.

The only other currently known PHF for lattices is the first construction from
[ZCZ16]. However, this construction requires O(λ) many matrices in |F |.

Dependence on X , the “artificial abort”, and modularity. Note that the “well-
distributedness” of a PHF guarantees only that a partitioning argument suc-
ceeds with non-negligible probability. However, it does not guarantee that
the partitioning works (or fails) with approximately the same probability for
all possible sequences of queries X = (X1, . . . , XQ, X

∗), as required when
reducing from a decisional assumption as we discussed in Section 2.6.

While the standard approach of performing an artificial abort, which was
also used by Zhang et al. [ZCZ16], resolves this issue, it comes at the price
of a significant computational overhead. Furthermore, it adds significant
complexity to reductions and redundancy to proofs.

To reduce the computational overhead, Bellare and Ristenpart [BR09a] showed
how to avoid artificial aborts. However, their analysis is not generically based
on PHFs, but more “low-level” and therefore not modular. This makes it dif-
ficult to generically and modularly apply such PHFs for the construction of
cryptosystems without requiring artificial abort.
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Contributions. We make progress regarding the issues mentioned above by in-
troducing balanced PHFs and demonstrating how to construct an IB-KEM from a
balanced PHF in a black-box manner without relying on the artificial abort tech-
nique. We then present three balanced PHFs, one whose security relies on wNCR
hash functions and two balanced PHFs that essentially rely on the exponential
hardness of the well-studied short integer solution (SIS) problem. We discuss the
contributions in more detail below.

• We define balanced programmable hash functions (balanced PHFs) as an ex-
tension of plain PHFs. Balanced PHFs are “balanced” in the sense that they
do not require the artificial abort technique in order to prove the security of
IB-KEMs or other primitives with indistinguishability-based security defini-
tions. Furthermore, for all three constructions of balanced PHFs we present,
the size |F | of the function description is independent of Q.

• Our first PHF construction (FBLK) is based on the semi-generic blockwise
partitioning technique (see Lemma 6) and has a function description F that
consists of O(log λ) many matrices. This construction requires wNCR hash
functions (see Definition 21) in order to be secure. It currently allows for the
most efficient constructions of IB-KEMs with polynomial LWE parameters
and a polynomial reduction loss.

• Even though we deem wNCR a plausible assumption, it is still desirable to
replace it with a well-studied computational problem. To that end, we intro-
duce exponentially-collision resistant (ECR) hash functions, which essentially
require that any algorithm for finding collision takes exponential time in the
output length. On a high level, this approach follows the same paradigm as
wNCR and TCR in the sense that it makes it possible to instantiate a hash
function H : {0, 1}∗ → R such that R is “sufficiently small” to make it pos-
sible to guess H(X∗) with significant success probability, while at the same
time R is “sufficiently large” that it is possible to argue that an efficient ad-
versary must (sometimes) be able to break the cryptosystem without finding
a collision. We provide a construction of ECR hash functions based on lattice
assumptions. We show how to construct ECR hash functions based on lattice
assumptions explicitly. To this end, we define the exponential SIS assump-
tion (eSIS), which essentially extends the standard SIS assumption [Ajt96]
with a concrete bound on the success probability of any adversary running
within a certain amount of time. In our construction, the set R is of size
λO(log log(λ)), which is super-polynomial but still sub-quasi-polynomial. Hence,
our reduction can only guess H(X∗) correctly with probability λ−O(log log(λ)),
thus losing a quasi-polynomially bounded factor.

• We demonstrate the potential of exponentially-collision resistant hash func-
tions by presenting two balanced PHFs from ECR hash functions. Both
constructions use ` = Θ(log λ) ECR hash functions H1, . . . , H` in parallel,
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5 Efficient Identity-Based Key-Encapsulation Schemes from Lattices

such that there exists a suitable choice Hi for every runtime t and advan-
tage ε an adversary might have. Our first balanced PHF from ECR hash
functions has a function description F , which essentially consists of a con-
stant number of matrices. More precisely, it consists of two matrices in Zn×mq

and ` = O(log λ) keys for hash functions, where λ is the security parameter.
However, the hash function keys require only space O(|Zn×mq |), where |Zn×mq |
denotes the size of one matrix in Zn×mq . This construction extends a technique
by Alperin-Sheriff [Alp15], which was used to construct efficient lattice-based
signatures but only achieved non-adaptive security. We show how to leverage
this approach to construct PHFs, which then directly yields adaptive security.
The main downside of this construction is that it only achieves a (slightly)
super-polynomial upper bound on the norm of the trapdoor matrices and thus
also requires modulus q of (slightly) super-polynomial size.

• Our second balanced PHF construction (FSN) addresses this downside. Here,
a function description again consists of ` = O(log λ) keys for hash functions
(which again can be compactly represented using space O(|Zn×mq |)), along
with only O(

√
`) = O(

√
log λ) Zn×mq -matrices. Essentially, the idea of this

construction is to represent ` matrices B1, . . . ,B` that correspond to the “ac-
tual” function description by only 2

√
` matrices. We achieve this by following

a baby-step giant-step approach that we describe in more detail in Section 5.6.

• Balanced PHFs can not immediately be used in the IBE scheme by Zhang
et al. [ZCZ16] because it requires an additional “min-entropy” property from
the PHF. Therefore, we describe a new IB-KEM, which does not have this
min-entropy requirement and can be proven secure under LWE by using a
balanced PHF in a black-box manner. We compare the properties of our IB-
KEM with lattice-based IBEs schemes in Table 5.2 in Section 5.7, which is
based on the respective table by Yamada in [Yam17a, Table 1].

Application to lattice-based signatures. All three of our PHFs directly
give rise to more efficient digital signature schemes by plugging the PHF into the
digital signature construction from [ZCZ16].
FAS gives rise to a signature scheme where the public parameters essentially con-

sist of a constant number of matrices. This approach is similar to the construction
by Alperin-Sheriff [Alp15], which, achieves only non-adaptive security and thus re-
quires an additional chameleon hash function or a one-time signature to achieve
adaptive security which increases the size of signatures. Ours directly achieves
adaptive security.
When instantiated with FSN, we obtain the most efficient signature scheme secure

under the short integer solution (SIS) problem with polynomially bounded SIS
parameter β. We compare ours and previous signature schemes in Table 5.1, which
is based on the respective table from [KONT20]. Note that Table 5.1 lists schemes
from SIS and RingSIS to give a better overview over lattice-based digital signature
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schemes in the standard model, even though our claim is only subject to digital
signature schemes secure under the standard SIS problem. Moreover, it is plausible
that our techniques could also be applied to constructions of digital signatures
secure under RingSIS. However, we do not make any claims regarding this.

Application to lattice-based IB-KEMs. Unfortunately, our PHFs cannot
immediately be used in the IBE scheme by Zhang et al. [ZCZ16] because their IBE
scheme requires an additional “min-entropy” property from the PHF. Therefore
we describe a new IB-KEM, which does not require the PHFs to fulfill the “min-
entropy” property, but otherwise has similar performance when instantiated with
the same PHF.
Given the modularity of the PHF abstraction, we can base this construction in a

relatively straightforward way on the construction by Yamada [Yam17a]. For sim-
plicity, we build an identity-based key encapsulation mechanism (IB-KEM), which,
however, directly gives rise to an IBE scheme (since we consider IND-ID-CPA se-
curity, see Definition 8). The balancedness allows us to avoid an artificial abort.
We provide a detailed comparison of our schemes with previous ones in Table 5.2,
which is based on the respective tables in [Yam17a].
For constructions with a polynomial LWE parameter, Table 5.2 shows that if our

IB-KEM is instantiated with FBLK, our balanced PHF based on blockwise parti-
tioning, which we present in Section 5.3, it achieves master public keys consisting
of only O(log λ) many matrices but requires us to assume the existence of wNCR
hash functions. This already improves over previous lattice-based IB-KEMs and
IBEs. Without non-standard assumptions, the schemes of Yamada [Yam17a] from
CRYPTO’17 are the most efficient ones since they achieve master public keys that
consist of only log2(λ) and log3(λ) many matrices, respectively. Note that the
scheme by Apon et al. [AFL17] achieves a constant number of matrices in the mas-
ter public key but requires that the matrix dimension m is at least O(λ1+δ) for
some δ > 0. This makes the master public keys asymptotically larger than those
of the previous schemes, which all only require m = O(λ log λ). In contrast to
these previous constructions, when instantiated with FSN, our IB-KEM is the most
efficient IB-KEM with polynomially bounded LWE parameter 1/α, since it essen-
tially requires only O(

√
log(λ)) many matrices in the master public key. When

instantiated with FAS, we obtain the first IB-KEM with full adaptive IND-ID-CPA
security, which can be instantiated with essentially a constant-size (in the number
of matrices) master public key.
Note that we say “essentially” when counting the matrices in the master public

key of our construction since the description of each of the PHFs contains the
description logarithmically many ECR hash functions. However, we show that
these logarithmically many ECR hash functions can alltogether be described by
what is equivalent to O(1) many matrices from Zn×mq .
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Scheme |vk| |sk| |sig| Reduction loss β

[Boy10] O(n) O(n) O(n) O(nQ) Ω(n2)
[CHKP12] O(n) O(1) O(1) O(nQ) Ω(n7/2)
† [BHJ+15] O(1) O(1) O(log(n)) O (Q2ν/εν) Ω(n5/2)
z † [DM14] O(log n) O(1) O(1) O (Q2ν/εν) Ω(n7/2)
† [BKKP15] O(1) O(1) O(n) O(1) Ω(n3/2)
† [Alp15] O(1) O(1) O(1) O (Q2ν/εν) superpoly(λ)
[BL16] O(n) O(1) O(1) O(n) Ω(n7/2ζ4µ)

SIG1 in [ZCZ16] O(log n) O(1) O(1) O(nQ2) Ω(Q2n11/2)
SIG2 in [ZCZ16] ω(log n) O(1) O(1) Õ(nQ) Ω(n11/2)

z Scheme 1 in [KONT20] O(log n) O(1) O(1) O (Qν/εν) Ω(n7/2)
z Scheme 2 in [KONT20] O(n) O(1) O(1) O(Q/n) Ω(n7/2)

Signatures from Fblk O(log λ) O(1) O(1) O(t2/ε2) Ω(n7/2)
Signatures from FAS O(1) O(1) O(1) λO(log log(λ)) superpoly(λ)
Signatures from FSN O

(√
log(λ)

)
O(1) O(1) λO(log log(λ)) Ω(n7/2)

Table 5.1: EUF-CMA secure signatures based on (Ring-)(I)SIS in the standard
model
Above, we compare EUF-CMA secure digital signature schemes based on the SIS
assumption and well established variants of it like ISIS and Ring-SIS. |vk|, |sk| and
|sig| respectively denote the size of the verification key, the secret key and the
signatures, where the size of vk is measured in the number of matrices it consists
of and we count the number of vectors for the latter two. The lattice dimension is
n = Θ(λ). For the parameters, we have t, Q ∈ N and ε ∈ [0, 1] are, respectively, the
runtime of the adversary, the number of signature queries made by the adversary
and its advantage. The parameter ν > 0 is a constant that can be chosen arbitrarily
and is common to signatures employing the confined guessing approach [BHJ+15].
Furthermore, the following notes apply.

• The parameters for signatures from FBLK, FAS and FSN refer to the instan-
tiation of SIG1 from [ZCZ16] with our respective PHF and then applying
Theorem 6 from [ZCZ16].

• The signature scheme by [BL16] requires a PRF that can be evaluate by a
NAND-circuit of logarithmic depth and polynomial size. ζ is the number of
input bits of the circuit and µ is chosen such that µ log(ζ) is an upper bound
on the depth of the circuit.

• Schemes marked with † need to employ a chameleon hash function in order to
achieve adaptive security. This requires a constant number of further matrices
in the verification key [CHKP12, Section 4.1].

• Schemes marked by z are based on the hardness of the SIS problem over
rings instead of standard lattices and hence the size of the verification key
refers to vectors instead matrices.
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Scheme
|mpk|
# of
Zq ele-
ments

|usk|, |ct|
# of
Zmq vec.

LWE
param

1/α
Reduction

Cost
Remarks

[CHKP10] O(λ · λ2 · log(λ)) O(λ) Õ(n1.5) O(εν+1/Qν)‡

[ABB10b]+[Boy10] O(λ · λ2 · log(λ)) O(1) Õ(n5.5) O(ε2/qQ)
[Yam16] O(λ1/µ · λ2 · log(λ))† O(1) nω(1) O(εµ+1/kQµ)†

[ZCZ16] O(log(Q) · λ2 · log(λ)) O(1) Õ(Q2n6.5) O(ε/kQ2) Q-bounded
[AFL17]∗ O(λ2 · λδ) O(1) Õ(n6) O(ε2/qQ)
[BL16] O(λ · λ2 · log(λ)) O(1) superpoly(n) O(λ)

[Yam17a] + FMAH § O(log3(λ) · λ2 · log(λ)) O(1) Õ(n11) O(εν+1/Qν)‡

[Yam17a] + FAFF § O(log2(λ) · λ2 · log(λ)) O(1) poly(λ) O(ε2/k2Q) Expensive
offline phase

Constr. 8 + Sec. 5.3 O(log(λ) · λ2 · log(λ)) O(1) Õ(n6) O(ε2/t2)
Needs wNCR

hash
functions

Constr. 8 + Sec. 5.5 O(λ2 · log(λ)) O(1) superpoly(n) λO(log log(λ)) Needs eSIS
Constr. 8 + Sec. 5.6 O(

√
log(λ) · λ2 · log(λ)) O(1) Õ(n13) λO(log log(λ)) Needs eSIS

Table 5.2: Adaptively-secure IBEs based on LWE in the standard model
The table above compares the relevant parameters of previous LWE based IBEs
in the standard model with instantiations of our IB-KEM. We measure the size
of ct and usk in the number of Zmq vectors and the size of mpk in the number of
Zq elements. By Q ∈ N, ε ∈ [0, 1] and t ∈ N we denote the number of queries,
the advantage against the security of the respective IBE, and the runtime of an
adversary, respectively. The reduction cost is computed as the advantage that
the reduction has in solving the LWE problem relative to the advantage of an
adversary against the IBE. We compute all reductions costs by using the technique
from [BR09a].

† The constant µ ∈ N can be chosen arbitrarily. However, the reduction cost
degrades exponentially in µ and hence it should be chosen rather small.

‡ ν > 1 describes the relative distance c = 1−2−1/ν of a binary error correcting
code that is used in these constructions. By applying standard constructions
from coding theory, ν can be chosen arbitrarily close to 1 [Gol08].

∗ The construction requires m = n1+δ for some δ > 0. Note that this is asymp-
totically larger than m = O(n log n), which is used in all other constructions
listed above. We do not include the prior draft [AFL16] of [AFL17] in the
table above, because the latter one completely subsumes former one.

§ Yamada [Yam17a] provides two instantiations of his IBE. The first one is
based on a modified admissible hash function (FMAH) and the second one
is based on affine functions (FAFF). Note that the construction based on
FAFF requires the key generation and encryption algorithms to compute the
description of a branching program that computes the division and thus makes
the construction less efficient.
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Further related work. Similar to our assumption of the exponential hard-
ness of the SIS problem for appropriate parameters, Zhandry [Zha16, Zha19a,
Zha19b] used exponential hardness of the DDH problem in elliptic curve groups to
construct extremely lossy functions (ELFs), which we already discussed in Chap-
ter 3. Our eSIS assumption can be seen as a “lattice analog” to Zhandry’s expo-
nential hardness assumption of the DDH problem.
Balancedness of partitioning proofs was also considered in [Jag15] in the context

of admissible hash functions (AHFs) [BB04b, CHKP12, FHPS13], and we discussed
it in detail in Section 3.2. Balanced admissible hash functions provide a different
way to perform partitioning proofs. However, as we have shown in Section 3.2.3,
known constructions of bAHFs come with a significant overhead due to the redun-
dancy that is inherently introduced by the error-correcting codes that all known
constructions of AHFs use.
Yamada [Yam17a] describes another way to build partitioning reductions, which

can also be used to construct lattice-based IBE schemes and signatures without
random oracles. However, the “compatible algorithms” approach used in [Yam17a]
is very low-level and seems not to allow for as modular security proofs as with
PHFs. Note that the balanced PHF based on blockwise partitioning is published
in [JKN21], and there it is presented in the form of compatible algorithms. We
state it in the form of a balanced PHF for consistency.

5.1.1 Notation and Preliminaries for Lattices
We provide some further notation necessary in the context of lattices. That is, for
A ∈ Rm×m′ and arbitrary m,m′ ∈ N we denote with ‖A‖∞ the largest absolute
value of any entry of A and with ‖A‖2 we denote the matrix norm induced by the
Euclidean vector-norm, also referred to as spectral norm. Furthermore, we denote
the transpose of A ∈ Rm×m′ by AT ∈ Rm′×m. Finally, for B ∈ Rntimesm′ , we denote
with [A | B] the matrix in R(n+m)×m′ obtained by appending the columns of B to
A to the right in the same order as in B.
Furthermore, we introduce two important Lemmas that we will repeatedly use

throughout this chapter. We will provide further preliminaries on lattices through-
out the chapter where necessary.
We begin by defining the “gadget” matrix introduced by Micciancio and Peik-

ert [MP12].

Lemma 13 (Theorem 1 from [MP12]). Let m ≥ n dlog(q)e, then there is a fixed
“gadget” matrix G ∈ Zn×mq , such that G has full rank and there is an efficient
algorithm G−1 that on input a matrix U ∈ Zn×mq outputs V ∈ {0, 1}m×m such that
GV = U.

Note that G−1 is not the inverse of G but an efficient algorithm. However, this
notation captures very well what G−1 achieves, and we thus deem it justified. This
gadget matrix has some further useful properties.
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Lemma 14 (Section 3.4 in [MP12]). Let A ∈ Zn×mq ,R ∈ Zm×mq , and let H ∈ Zn×nq

be an invertible matrix. Then we can efficiently sample from [A | AR + HG]−1
σ for

σ = m · ‖R‖∞ · ω(
√

log(m)).

Furthermore, we introduce the left-over hash lemma. Informally, the lemma guar-
antees that for A $←−Zn×mq and R $←−{−1, 1}m×m it holds that AR is indistinguishable
from an independent uniformly random matrix A′ $←− Zn×mq .

Lemma 15 (Leftover hash lemma [Reg05, ABB10a]). Let m ≥ (n + 1)(log(q) +
ω(log(n)), then for R $←− {−1, 1}m×m,A,A′ $←− Zn×mq it holds that the statistical
difference between the distributions (A,AR) and (A,A′) is negligible in n.

Finally, we introduce the Bertrand–Chebyshev theorem, which will be useful
when considering concrete parameters for lattice based schemes. Informally, it
states that for any natural number n, there will always be a prime number p
between n and 2n. We refer to [MM13] for a proof of the theorem in english.

Theorem 9 (Bertrand–Chebyshev theorem [Ber45, Che52]). Let n ∈ N with n > 3.
Then there is always a prime p ∈ N with

n < p < 2n.

5.2 Balanced Programmable Hash Functions for
Lattices

In this section, we formally introduce lattice-based balanced programmable hash
functions (balanced PHFs), based on lattice-based programmable hash functions
by Zhang et al. [ZCZ16], which in turn are based on [HK08, HK12]. In contrast to
standard lattice-based PHFs, which we informally introduced in Section 5.1 above,
lattice-based balanced PHFs can be applied in reductions from decisional hardness
assumption immediately. We achieve this by following roughly the same approach
as for computational admissible hash functions (see Section 3.3) and blockwise
partitioning (see Section 3.4). That is, we define the “well-distributedness”property
of balanced PHFs via two events collphf and badChalphf . The former occurs if an
adversary generates two inputs X 6= X ′ for the balanced PHF such that HX = HX′

holds, where HX and HX′ are the matrices produced by TrapEval for the inputs X
and X ′. Analogously, badChalphf occurs if H∗X 6= 0, where X∗ is the challenge that
the adversary chooses in the security experiment and H∗X is the respective matrix
generated by TrapEval for X∗. Analogous to cAHFs and blockwise partitioning, we
then require that

(ε− Pr [collphf ]) · Pr [badChalphf ]
is non-negligible. This guarantees that all requirements from standard PHFs is
fulfilled but moreover enables reductions to decisional complexity assumptions as
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we demonstrate by constructing an IND-ID-CPA-secure IB-KEM in Section 5.7.
While the events collphf and badChalphf resemble the respective events Chapter 3,
they concern the embedding of the partitioning argument used in the construction
of the balanced PHF instead of the partitioning argument itself. That is why we
indexed them with “phf”. We formally define balanced PHFs as follows.

Definition 31. Let X be an arbitrary set and let T := Zn×mq for n = Θ(λ) and
m = Θ(λ log λ). Further, let F = (HGen,HEval) be a pair of algorithms, where
HGen(1λ) produces a description F of a function and HEval(F,X) implements a
function F : (X → T , X 7→ F (X). We say that F is a (β, γ, δ)-balanced pro-
grammable hash function (balanced PHF) if there exists a PPT trapdoor key gener-
ation algorithm TrapGen and a deterministic polynomial time trapdoor evaluation
algorithm TrapEval such that the following holds.
Given a uniformly random matrix A ∈ Zn×mq , the public gadget matrix G, t ∈ N

and ε ∈ (0, 1] the following properties hold:

Syntax: TrapGen and TrapEval have the following syntax.
• Algorithm (F ′, td) $←− TrapGen(1λ, t, ε,A) takes as input the security pa-

rameter λ, t ∈ N, ε ∈ [0, 1], and a matrix A. It outputs a hash function
description F ′ and a trapdoor td.

• Algorithm (RX ,HX) = TrapEval(td, F ′, X) takes as input the trapdoor
td, a function description F ′, and X ∈ X . It returns RX ∈ Zm×mq and
HX ∈ Zn×nq .

Correctness: For all (F ′, td) $←− TrapGen(1λ, t, ε,A), X ∈ X , and (RX ,HX) =
TrapEval(td, F ′, X):

• Let GL(Zq, n) be the set of invertible matrices in Zn×nq . We require
that HX ∈ GL(Zq, n) ∪ {0} and ‖RX‖∞ ≤ β hold with overwhelming
probability over the trapdoor td corresponding to F ′.

• We have

HEval(F ′, X) = ARX + HXG (5.2)

where G is the gadget matrix of dimension n from Lemma 13.

Statistically close keys: For (F ′, td) $←−TrapGen(1λ, t, ε,A) and F $←−HGen(1λ), the
statistical distance of (A, F ) and (A, F ′) is at most γ.

Well-distributed hidden matrices: Consider the following experiment. We run
(F ′, td) $←− TrapGen(1λ, t, ε,A) and then

X = (X1, . . . , XQ, X
∗) $←−A(F ′)

for some algorithm A. Further, let (RX∗ ,HX∗) := TrapEval(td, F ′, X∗) and
(RXi ,HXi) := TrapEval(td, F ′, Xi) for all 1 ≤ i ≤ Q. We then require that
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the events

collphf := ∃X 6= X ′ ∈ X : HX = HX′ , badChalphf := HX∗ 6= 0

are independent and that it holds that

(ε− Pr [collphf ]) · Pr [¬badChalphf ] ≥ δ(t, ε) (5.3)

for all algorithms A running in time t.

Note that in comparison to prior definitions of (lattice-based) programmable
hash functions [ZCZ16, HK12], which considered “statistical” well-distribution that
holds even for unbounded A, we consider a “computational” variant. Following the
approach from the previous chapter, the Equation (5.3) essentially captures the
“balancedness” and allows us to apply balanced PHFs in partitioning proofs based
on decisional assumptions without requiring an artificial abort.

5.3 Balanced Programmable Hash Functions from
Blockwise Partitioning

In this section we describe how blockwise partitioning can be used in the construc-
tion of a balanced PHF. Recall that, for blockwise partitioning, we considered a
family of hash functions H = {H : {0, 1}∗ → {0, 1}n} and assumed for simplicity
that n = ∑`

i=0 2i holds for some ` ∈ N. Note that this can be generalized to arbi-
trary n but would only make the notation rather cumbersome without providing
additional insight. For H ∈ H, we then let Hi : {0, 1}∗ → {0, 1}2i for all i ∈ [`]0
such that

H(X) = H0(X) ‖ · · · ‖H`(X)

holds for all X ∈ {0, 1}∗.

Encoding identities as full rank difference matrices. As preparation
for the construction of our balanced PHF from blockwise partitioning, we discuss
how a hash function output Hi(X) is encoded as a matrix using the full rank differ-
ence encoding function (FRD) by Agrawal et al. [ABB10a] and adapt it to blockwise
partitioning. Essentially, it guarantees that we can map bit strings injectively to
matrices, such that the resulting matrices and their differences are invertible.
Informally, for a binary string a ∈ {0, 1}2i , meaning a is a potential output of

Hi, we pad a with zeros to be of length n by first padding it with ∑i−1
j=0 2j zeros in

the front and with ∑`
j=i+1 2j zeros in the end. We then canonically interpret it as a

vector in Znq and encode it with the full-rank difference encoding of [ABB10a]. We
formalize the full rank difference encoding function and this process in the following
definitions.
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Definition 32. Let f(Z) be an irreducible polynomial of degree n in Znq [Z] and for
a ∈ Znq , let ga(Z) := ∑n−1

k=0 ak+1Zk ∈ Znq [Z]. Then the function FRD(a) : Znq → Zn×nq

from [ABB10a] is defined as

FRD(a) :=



coeffs(ga mod f)
coeffs(Z · ga mod f)
coeffs(Z2 · ga mod f)
...
coeffs(Zn−1 · ga mod f)

 ∈ Zn×nq ,

where coeffs denotes the coefficients of a polynomial in Znq [Z].

Agrawal et al. [ABB10a] prove the following properties of FRD will be useful to
us.

Lemma 16 (Section 5 in [ABB10a]). Let FRD : Znq → Zn×nq be as defined in
Definition 32, then the following holds:

1. FRD is injective.

2. There is an additive group G ⊂ Zn×nq such that each H ∈ G\{0} is invertible
and the range of FRD is a subset of G

We refer to [ABB10a, Section 5] for the proofs of the properties stated in Corol-
lary 4. Given FRD and its properties, we now define the function FRDblk

i , which
formalizes the process of padding the outputs of Hi that we described above.

Definition 33. For all 0 ≤ i ≤ ` we define FRDblk
i : {0, 1}2i → Zn×nq to be the

function that behaves as follows.

1. For an input a = (a1, . . . , a2i) ∈ {0, 1}2i , FRDblk
i lets offseti := ∑i−1

j=0 2j and
sets bT := (b1, . . . , bn) ∈ Znq , where

bk :=

ak−offseti if offseti < k ≤ offseti + 2i

0 otherwise

for all 1 ≤ k ≤ n.

2. It then outputs FRDblk
i (a) := FRD(b).

As we show below, the properties of FRD we stated in Lemma 16 carry over to
FRDblk

i .

Corollary 2. Let FRDblk
i : {0, 1}2i → Zn×nq be as defined in Definition 33, then the

following holds:

1. FRDblk
i is injective.
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2. There is an additive group G ⊂ Zn×nq such that each H ∈ G\{0} is invertible
and the range of FRDblk

i is a subset of G for all 0 ≤ i ≤ `.

Proof. The first claim, that FRDblk
i is injective for all i ∈ [`]0, immediately follows

from the fact that FRD is injective. This is because FRDblk
i only pads its input

a ∈ {0, 1}2i with zeros, resulting in b ∈ Znq , and then outputs FRD(b). Since
this padding process is injective, the injectivity of FRD immediately implies the
injectivity of FRDblk

i . Similarly, the second claim holds because the range of FRDblk
i

is a subset of the range of FRD for all i ∈ [`]0.

Recall from Section 3.4.1, that for blockwise partitioning, we defined the al-
gorithm BPSmp that on input 1λ, t ∈ N and ε ∈ (0, 1] with t/ε < 2λ outputs
(K0, . . . ,K`), where either Ki = ⊥ or K ∈ {0, 1}2i holds for all i ∈ [`]0. Essentially,
we then showed in Lemma 6 that with a non-negligible probability

Hi(X) = Ki for all i ∈ [`]0 such that Ki 6= ⊥

holds only for the challenge input X = X∗ and in particular for no query made
by the adversary. This just enables a partitioning proof strategy. Our definition
of FRDblk

i serves the purpose of expressing this line of thought in lattices. We
concretise this in the following lemma.

Lemma 17. Let BPSmp be as defined in Section 3.4.1 and let t ∈ N, ε ∈ (0, 1] with
t/ε < 2λ. Then for (K0, . . . ,K`) $←− BPSmp(1λ, t, ε), I = {i : Ki 6= ⊥} ⊆ [`]0 and
X ∈ {0, 1}∗ it holds that

−
(∑
i∈I

FRDblk
i (Ki)

)
+
(∑
i∈I

FRDblk
i (Hi(X))

)
= 0 ⇐⇒ Ki = Hi(X) for all i ∈ I.

Proof. First, we observe that if Hi(X) = Ki for all i ∈ I, then it holds that

−
(∑
i∈I

FRDblk
i (Ki)

)
+
(∑
i∈I

FRDblk
i (Hi(X))

)

=−
(∑
i∈I

FRDblk
i (Ki)

)
+
(∑
i∈I

FRDblk
i (Ki)

)
= 0,

which proves the first direction of the equivalence. We prove the second direction by
contradiction. Informally, we do so by observing that the first row of HX consists
of the differences between Ki and Hi(X) over Zq for all i ∈ I. Hence, H = 0 implies
Hi(X) = Ki for all i ∈ I, which contradiction the original assumption. We proceed
by formalizing this proof by contradiction as follows.
Assume that there exists an index i∗ ∈ I such that Hi∗(X) 6= Ki holds and

HX := −
(∑

i∈I FRDblk
i (Ki)

)
+
(∑

i∈I FRDblk
i (Hi(X))

)
= 0 also holds at the same

time. Now for all i ∈ I and 1 ≤ j ≤ n we denote the j-th element of the first
row of FRDblk

i (Hi(X)) by bi,j ∈ Zq. Analogously, we denote the j-th element of the
first row of HX by hj ∈ Zq. We now make the following observations that follow
immediately from the definition of FRDblk

i in Definition 33.
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1. For all i ∈ I and for all j ∈ {1, . . . , n} \ {offseti + 1, . . . , offseti + 2i} we have
bi,j = 0.

2. It holds (bi,offseti+1, . . . , bi,offseti+2i) = Hi(X) and (hoffseti+1, . . . , hoffseti+2i) = Ki

for all i ∈ I, where offseti is as defined in Definition 33.

Combining the two observations yields that for all i ∈ I and offseti + 1 ≤ j ≤
offseti + 2i it holds that [hoffseti+1, . . . , hoffseti+2i ]T = Hi(X)−Ki, where we interpret
Hi(X) and Ki as vectors in Z2i

q . Recall that by our assumption above, it holds that
HX = 0 and hence Hi∗(X)−Ki∗ = 0, if interpreted as vectors in Z2i

q . This however
contradicts Hi∗(X) 6= Ki, which proves the lemma.

Next, we show how we can use blockwise partitioning to construct balanced
programmable hash function based and blockwise partitioning and then proof that
it is indeed a balanced PHF.

Construction 4. Let H = {{0, 1}∗ → {0, 1}n} be a family of hash functions with
n = 2λ + 3 and let ` := blog(2λ+ 3)c. We define a FBLK = (HGenblk,HEvalblk) as
follows.

HGenblk(1λ) runs H $←− H and samples B,Bi
$←− Zn×mq and outputs the function

description Fblk := (H,B, (Bi)i∈[`]0).

HEvalblk(Fblk, id) does the following:
1. It computes Hi := FRDblk

i (Hi(id)) for all i ∈ [`]0.
2. It then computes B′i := Bi ·G−1(HiG) for all i ∈ [`]0.
3. It then returns

Bid := B +
∑̀
i=0

B′i.

Lemma 18. If H is instantiated with a family of weak near-collision resistant hash
functions, then FBLK above is a (β, γ, δ)-balanced programmable hash function for
β := 1 + (` + 1) · m, γ = negl(λ) and δ(t, ε) := ε2/(32t2 − 16t), provided that
TrapGenblk is only run on inputs t ∈ N, ε ∈ [0, 1] such that t/ε < 2λ.

Proof. We begin by describing the algorithms TrapGenblk and TrapEvalblk.

TrapGenblk(1λ, t, ε,A) works as follows:
1. It samples H $←−H

2. It runs K $←− BPSmp(1λ, t, ε), parses K = (K0, . . . ,K`) and sets I := {i ∈
[`]0 : Ki 6= ⊥}.

3. It then samples R,Ri
$←− {−1, 1}m×m for all 0 ≤ i ≤ `
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4. It sets

Bi :=

ARi + G if Ki 6= ⊥
ARi if Ki = ⊥

for all i ∈ [`]0.
5. It computes

B := AR −
(∑
i∈I

FRDblk
i (Ki)G

)
.

6. It returns Fblk := (H,B, (Bi)i∈[`]0) and td := (R, (Ri)i∈[`]0).

TrapEvalblk(td, Fblk, id) works as follows:
1. It computes Hi := FRDblk

i (Hi(id)) for all i ∈ [`]0.
2. It sets R′i := RiG−1(HiG).
3. It outputs

Rid := R +
∑̀
i=0

R′i and Hid :=
∑
i∈I

FRDblk
i (Hi(id))G.

We first notice that TrapGenblk and TrapEvalblk are syntactically correct and can
be executed in probabilistic polynomial time. To show correctness, we need to
prove that ‖Rid‖∞ ≤ β and that HEvalblk(FAS, id) = ARid + HidG for (Fblk, td) =
TrapGenblk(1λ, t, ε,A) and (Rid,Hid) = TrapEvalblk(td, FAS, id). We start by proving
‖Rid‖∞ ≤ β.

Proving ‖Rid‖∞ ≤ β. First, observe that ‖R′i‖∞ = ‖RiG−1(HiG)‖∞ ≤ m holds
since Ri,G−1(HiG) ∈ {−1, 1}m×m and therefore their product R′i ∈ Zm×mq can not
contain any element of absolute value larger than m. We then have that

‖Rid‖∞ =
∥∥∥∥∥R +

∑̀
i=0

R′i

∥∥∥∥∥
∞
≤ ‖R‖∞ +

∑̀
i=0
‖R′i‖∞ ≤ 1 + (`+ 1)m = β

holds, where the last inequality follows from R ∈ {−1, 1}m×m and ‖R′i‖∞ ≤ m.
Further, the trapdoor keys are statistically close because it holds that (A,BK)

and (A,B1) have only a negligible statistical difference by the Leftover-Hash Lemma
(Lemma 15).

Proving Bid = ARid + HidG. To complete the proof of correctness, we show
that Equation (5.2) from the definition of balanced PHFs holds. That is, we show
that it holds that

HEvalblk(F ′blk, id) = ARid + HidG.
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We observe that

HEvalblk(F ′blk, id) = B +
∑̀
i=0

B′i = B +
∑̀
i=0

Bi ·G−1(HiG) (5.4)

= AR −
(∑
i∈I

FRDblk
i (Ki)G

)
+
(∑
i∈I

AR′i + xiHiG
)

= A
(

R +
∑̀
i=0

R′i

)
−
(∑
i∈I

FRDblk
i (Ki)G

)
+
(∑
i∈I

FRDblk
i (Hi(id))G

)
= ARid −HidG

holds, where Equation (5.4) holds by the definition of HEvalblk(F ′blk, id) and all
further equations follow from the definitions of TrapGenblk(1λ,A) and the trap-
door evaluation algorithm TrapEvalblk(td, F ′blk, id). Furthermore, notice that Hid ∈
GL(Zq, n) because it is a sum of the outputs of FRDblk

i (for different i), which all
produce outputs in an additive subgroup of GL(Zq, n) by Lemma 17. This complete
the proof of correctness.

Well-distributedness. Let A be an algorithm that outputs Q∗ := {id(1), . . . ,
id(Q), id∗} on input Fblk with (Fblk, td) $←− TrapGen(1λ, t, ε,A) and A $←− Zn×mq . Fur-
thermore, let

(Rid∗ ,Hid∗) := TrapEval(td, Fblk, id∗)
(Rid(i) ,Hid(i)) := TrapEval(td, Fblk, id(i)) for 1 ≤ i ≤ Q

and let id(Q+1) := id∗ and define the events collphf and badChal as in Definition 31
as

collphf := ∃ id 6= id′ ∈ Q∗ : Hid = Hid′ , badChalphf := Hid∗ 6= 0.

First, recall that we have Hid = H′id if and only if Hi(id) = Hi(id′) for all i ∈ I by
Lemma 17. We thus have that

coll ⇐⇒ collphf and badChal ⇐⇒ badChalphf .

Thus, collphf and badChalphf are independent because coll and badChal are indepen-
dent by Lemma 6. Also by Lemma 6, we thus have that

(ε− Pr [collphf ]) · Pr [¬badChalphf ] ≥
ε2

32t2 − 16t

holds, which is non-negligible if t is polynomial and ε is non-negligible in λ.
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5.4 Hash Functions with Exponential Collision
Resistance

In the previous section just as in the previous chapter, we just assumed the plau-
sible but nonetheless unproven existence of families of TCR and wNCR hash func-
tions. In this section, we address this shortcoming. To that end, we introduce
exponentially-collision resistant (ECR) hash functions, which essentially requires
that any algorithm for finding collision takes exponential time in the output length
of the hash function. Thus, while the notion of ECR hash functions is similar in
spirit, it is a weaker notion than TCR and wNCR for hash functions. We show
how to explicitly construct ECR hash functions based on lattice assumptions. To
this end we define the exponential short integer solution (eSIS) assumption, which
essentially extends the standard SIS assumption [Ajt96] with a concrete bound
on the success probability of any adversary running within a certain amount of
time. We stress that this bound holds for all currently known algorithms for SIS
and closely related computation problems [BGLS19, APS15, BKW00, ACD+18,
Duc18, MW16, ADH+19, SE94, BDGL16, Alb17, AGVW17] and also matches how
one would instantiate SIS parameters in practice. We also discuss the relation of
eSIS to worst-case lattice problems SIVPγ and GapSVP with polynomial approx-
imation factors. The main idea of our construction is to follow the well-known
construction of collision resistant hash functions from SIS by [Ajt96] to construct
suitable compression functions, which can then be used in the Merkle-Dåmgard
transformation to obtain ECR hash function families.
Since we will instantiate ECR hash functions from a concrete lattice hardness

assumption, we will consider families of hash functions of the form

Hn = {H : {0, 1}λ → Znq },

where n ∈ N and q = q(n) ∈ N is a prime whose size may depend on n.

Definition 34 (Exponential Collision Resistance). We say that a family of hash
functions Hn is (c, d)-exponentially-collision resistant (ECR) for constants c ≥
1, d > 0 if for every probabilistic algorithm A running in time at most t ∈ N
it holds that

Pr
H

$←−Hn
[H(x) = H(y) | (x, y) $←−A(H)] ≤ tc

2n·d .

Remark 10. We observe that every family wNCR or TCR hash functions is also a
family of ECR hash functions for q := 2, c := 2 and d := 1 by setting η := n.
We will show how to construct ECR hash function families that satisfy this bound

for every n ∈ N, even for small values which are too small to achieve standard
collision resistance. The construction is based on a concrete formulation of the SIS
problem. Furthermore, we sometimes just say that a family of hash functions is
ECR if the constants c and d are irrelevant or clear from the respective context.
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Technical lemma. The following lemma will be useful to apply exponential
collision resistance in our construction of programmable hash functions and forms,
together with Lemma 20, the equivalent to Lemma 4 for ECR hash functions. It
essentially asserts that we can choose n = 2i∗ = O(λ), for some carefully chosen
i∗ ∈ N, such that no adversary running in time t can break the ECR of the hash
function with probability better than ε/2 for some ε ∈ (0, 1].
Lemma 19. Let c ≥ 1 and d > 0 be constants, and let t ∈ N and ε ∈ (0, 1] with
t/ε < 2λ. Then for i∗ := dlog((log(tc/ε) + c+ 1)/d)e and n := 2i∗ it holds that:

i∗ ≤
⌈
log

(
c(λ+ 1) + 1

d

)⌉
and ε

2 ≥
tc

2d·n−c .

Proof. We prove the first inequality as follows.

i∗ =
⌈
log

(
log(tc/ε) + c+ 1

d

)⌉
≤
⌈
log

(
log(tc/εc) + c+ 1

d

)⌉

≤
⌈
log

(
c log(t/ε) + c+ 1

d

)⌉

≤
⌈
log

(
cλ+ c+ 1

d

)⌉
=
⌈
log

(
c(λ+ 1) + 1

d

)⌉

To show the second inequality, we observe that n = 2dlog((log(tc/ε)+c+1)/d)e implies
that n ≥ log( tcε )+c+1

d
. Then the proof is straightforward:
tc

2d·n−c ≤
tc

2d
log( tcε )+c+1

d
−c

= tc

2log( tcε )+1
= tc

2 tc
ε

= ε

2

5.4.1 Concrete Exponential Hardness of SIS
The exponential short integer solution (eSIS) assumption essentially extends the
standard short integer solution (SIS) assumption, as considered in [Ajt96], with a
concrete exponential bound on the success probability of any adversary running
within a certain amount of time. We stress that this bound holds for all currently
known algorithms [BGLS19, APS15, BKW00, ACD+18, Duc18, MW16, ADH+19,
SE94, BDGL16, Alb17, AGVW17] and also matches a reasonable choice of pa-
rameters for SIS when instantiated in practice. A sub-exponential time algorithm
breaking SIS, and thus the eSIS assumption, would be a major algorithmic and
cryptanalytic breakthrough.
Definition 35 (Exponential SIS (eSIS) assumption). There are constants c ≥ 1
and d > 0 and polynomials m, q : N→ N such that for all n ∈ N and all algorithms
A we have that

Pr
[
Ax = 0 mod q(n) ∧ x ∈ {−1, 0, 1}m(q) ∧ x 6= 0 | x = A(A)

]
≤ tc

2d·n ,
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where A $←−Zn×m(n)
q and t ∈ N is the maximal runtime of A on inputs from Zn×m(n)

q .

Observe that Definition 35 imposes a particularly strict limit on the norm of
solution vectors, by requiring x ∈ {−1, 0, 1}m(n), which makes the assumption
weaker than a more general bound γ. Moreover, we will just write m instead of
m(n) and q instead of q(n) if it is clear from context.

Applicability of worst-case reductions to eSIS. Micciancio and Peikert
[MP13, Theorem 1] show that for m := n · d3 log(n) + 4e + 1 and q the smallest
prime larger than 4n3 any polynomial time algorithm breaking the SIS assumption
implies a polynomial time algorithm for worst case SIVPγ with a polynomial ap-
proximation factor γ.1 It seems that this result can also be adopted to showing
that an algorithm breaking the eSIS assumption implies a sub-exponential time
algorithm for worst case SIVPγ with a polynomial approximation factor γ (which
would be a breakthrough result for worst-case lattice problems). We did not prove
this formally, though.
Furthermore, the eSIS assumption is also supported by the Exponential Time

Hypothesis (ETH) for GapSVP by Lombardi and Vaikuntanathan [LV20, Conjec-
ture 2.1] by applying Micciancio’s and Regev’s reduction [MR07, Theorem 5.23].
The option to base the eSIS assumption on the ETH for GapSVP with polyno-
mial approximation factors is worth noting, because it provides a fallback in case
that SIVPγ with polynomial approximation factors γ surprisingly turns out to be
solvable in sub-exponential time.
We want to thank Martin Albrecht and Damien Stehlé here for helpful discussions

and further information supporting the plausibility of the eSIS assumption.

5.4.2 Constructing ECR Hash Functions from eSIS
We now use the eSIS assumption to construct a family of ECR hash functions. The
analysis of our construction will require a concrete instantiation of SIS parameters.
As discussed in Section 5.4.1, in this chapter we follow [MP13, Theorem 1], which
reduces worst-case lattice problems to SIS for certain parameters. Therefore, for
the remained of this section, let q be the smallest prime larger than 4n3 and set
m := n · d3 log(n) + 4e+ 1.

Collision resistant compression function. We first show that fA(x) :=
Ax for A $←− Zn×mq and x ∈ {0, 1}m is an ECR compression function. Standard
collision resistance for sufficiently large n was shown by Ajtai [Ajt96]. We show a
concrete exponential bound with respect to the eSIS assumption, which yields ECR
even for small n.

Theorem 10. Let fA : {0, 1}m → Znq , x 7→ Ax. Then:
1Taking the variables from [MP13, Theorem 1], we implicitly set β =

√
m,β∞ = 1 and δ = 1.

It can then easily be verified that q = 4n3 ≥ β · nδ and q > β for all n ∈ N.
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1. fA is a compression function, since m > n · (blog(q)c+ 1).

2. fA is exponentially-collision resistant if eSIS holds. Concretely, eSIS implies
that there are constants c ≥ 1 and d > 0 such that for all algorithm A running
in time at most t ∈ N on inputs from Zn×mq we have that

Pr
[
Ax = Ay mod q ∧ x,y ∈ {0, 1}m ∧ x 6= y

∣∣∣∣∣ A $←− Zn×mq

(x,y) = A(A)

]
≤ tc

2d·n .

(5.5)

Proof. We first show that m ≥ n · (blog(q)c+ 1). For this, observe that q ≤ 8n3 by
the Bertrand-Chebyshev Theorem (see Theorem 9). It thus holds that

n · (blog(q)c+ 1) ≤ n · (log(q) + 1) ≤ n · (3 log(n) + 4) < n · d3 log(n) + 4e+ 1
= m.

We now show that Equation (5.5) holds if the eSIS assumption holds. This part
closely follows the proof from [Ajt96]. Assume that there is an n ∈ N and an
algorithm A running in time tA ∈ N on inputs from Zn×mq for which there are no
constants c ≥ 1 and d > 0 such that Equation (5.5) holds. We then construct an
algorithm B that, on input A ∈ Zn×mq , runs (x,y) $←− A(A) and outputs x − y.
If Ax = Ay, then we have A(x − y) = Ax − Ay = 0. Furthermore, we have
0 6= (x− y) ∈ {−1, 0, 1}m. Hence, B breaks the eSIS assumption.

Collision resistant hashing. Now that we have proven that fA is a colli-
sion resistant compression function, we can apply the Merkle-Dåmgard construc-
tion [Mer90, Dam90] to obtain a family of hash functions with arbitrary input
lengths. We will construct a function with fixed input space {0, 1}λ, where λ is
the security parameter, since this avoids the need to encode the input length in
the input to the Merkle-Dåmgard construction and is sufficient for our purposes. If
required for a particular application, the input space can be generically extended to
{0, 1}∗ by first applying a standard collision resistant function h : {0, 1}∗ → {0, 1}λ.
In order to construct a hash function family Hn for some n ∈ N, we let m :=

n ·d3 log(n) + 4e+1 and set q to be the smallest prime larger than 4n3, as discussed
above in Section 5.4.1. A random hash functionH $←−Hn is sampled by first choosing
a random matrix A $←−Zn×mq . The matrix A defines the above compression function
fA : {0, 1}m → Znq , which in turn will define a hash function HA as follows.
By encoding vectors in Znq as binary vectors, we can view fA as a function

fA : {0, 1}m → {0, 1}α

for α := n · (blog(q)c + 1). Since Theorem 10 shows that this is a compression
function, we have m > α. By setting r := m − α ≥ 1, we can apply the Merkle-
Dåmgard transformation to process exactly r input bits per call of the underlying
compression function. To describe the function

HA : {0, 1}λ → Znq
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5.4 Hash Functions with Exponential Collision Resistance

we will henceforth assume without loss of generality that λ is an integer multiple
of r. This is without loss of generality, because one can always pad constant-
length inputs until their length is a multiple of r. Applying the Merkle-Dåmgard
transformation [Mer90, Dam90] to fA yields the following construction.

Construction 5. For any n ∈ N, we define family Hn as follows. Let m :=
n · d3 log(n) + 4e + 1 and let q = q(n) be the function that returns the smallest
prime larger than 4n3.

Function sampling: Choose A $←− Zn×mq and output H := A.

Function evaluation: On input H = A ∈ Zn×mq and x ∈ {0, 1}λ:
1. Let r := m−α and split x into r-bit chunks Bi such that x = B1‖· · ·‖BL,

where ‖ denotes concatenation.
2. Set z0 := 0α and for all i ∈ [L] let zi := fA(Bi ‖ zi−1).
3. Output fA(BL ‖ zL−1).

The following corollary essentially applies the security proof of the Merkle-Dåm-
gard transform to the above construction. We prove it for completeness and to
verify the claimed bound.

Corollary 3. For any n ∈ N, Hn from Construction 5 is a family of exponen-
tially collision resistant hash functions in the sense of Definition 35 under the eSIS
assumption.

Proof. Suppose that Hn is not exponentially-collision resistant. That is, for all
constants c ≥ 1 and d > 0 there is an adversary A that runs in time tA such that

Pr
[
HA(x) = HA(y) : A $←− Zn×mq ; (x, y) $←−A(A)

]
>

tc

2d·n

We then construct an adversary B that breaks the exponential collision resistance
of the compression function fA. B receives as input A $←− Zn×mq and runs (x, y) $←−
A(A) with x, y ∈ {0, 1}λ. Write

x = B
(x)
1 ‖ · · · ‖B

(x)
L and y = B

(y)
1 ‖ · · · ‖B

(y)
L .

B then sets z(x)
0 := z

(y)
0 := 0α and computes z(x)

i := fA(B(x)
i ‖ z

(x)
i−1) and z

(y)
i :=

fA(B(y)
i ‖ z

(y)
i−1) for all i ∈ [L]. If z(x)

L 6= z
(y)
L , then B aborts. Otherwise, it lets

i∗ ∈ [L − 1] be the largest index such that z(x)
i∗ 6= z

(y)
i∗ and then outputs x :=

(B(x)
i∗ ‖ z

(x)
i∗ )− (B(y)

i∗ ‖ z
(y)
i∗ ) ∈ {−1, 0, 1}m.

Observe that x 6= 0 because z(x)
i∗ 6= z

(y)
i∗ . Furthermore, we have z(x)

i∗+1 = z
(y)
i∗+1

because i∗ ∈ [L−1] is the largest index such that z(x)
i∗ 6= z

(y)
i∗ . Hence we obtain that

z
(x)
i∗+1 = z

(y)
i∗+1 ⇔ fA(B(x)

i∗ ‖ z
(x)
i∗ ) = fA(B(y)

i∗ ‖ z
(y)
i∗ )⇔ Ax = 0.
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5 Efficient Identity-Based Key-Encapsulation Schemes from Lattices

Guessing the output of an ECR hash function. The following lemma
provides a bound on the probability of “guessing” an (c, d)-ECR hash output, as a
function of the size of n. Note that this is where the super-polynomial loss in our
reduction originates from, because q grows with i∗. If one constructed a provably
secure ECR-hash function with constant q or even over {0, 1}, then this would
allow us to avoid the quasi-polynomially bounded loss in our reductions, which
however is even smaller than quasi-polynomial. Thus, if we instantiate an ECR
hash function with an TCR or wNCR hash function as discussed in Remark 10,
then we would indeed have q = 2. However, we leave the question of constructing
ECR hash functions with a constant q from well-studied computational problems
as an open research problem (see Research Question 6).
Lemma 20. Let c ≥ 1 and d > 0 be constants, and let t ∈ N and 1/ε both be
polynomial in λ. For

i∗ :=
⌈
log

(
log(tc/ε) + c+ 1

d

)⌉
,

n := 2i∗ and q the smallest prime larger than 4n3, we then have that qn = λO(log log λ).

Proof. Observe that since both t and 1/ε are polynomial in λ, we have that there
is a constant f such that for λ large enough it holds that

log(tc/ε) + c+ 1
d

≤ f log(λ)

and hence we have that

n = 2i ≤ 2 · 2log
(

log(tc/ε)+1
d

)
≤ 2f log(λ)

for λ large enough. Observe that by the Bertrand-Chebyshev Theorem (see Theo-
rem 9) we have that q ≤ 8n3. We can therefore conclude the following for λ large
enough:

qn ≤
(
8n3

)n
≤ 82·f log(λ) · n6·f log(λ) ≤ 26·f log(λ) (2f log(λ))6·f log(λ)

= (2 · 2 · f)6·f log(λ) · log(λ)6·f log(λ) = λO(1) · 26·f log(λ)·log log(λ)

= λO(1) · λ6·f ·log log(λ) = λO(log log(λ))

5.4.3 Instantiating Multiple ECR Hash Functions in Parallel
Our constructions of balanced PHFs will use 1 + ` = O(log(λ)) many copies of
the above ECR hash function in parallel, with exponentially increasing range size.
Therefore it will be convenient to define

n(i) := 2i, m(i) = n(i) · d3 log(n(i)) + 4e+ 1, q(i) = q′(n(i)),
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5.4 Hash Functions with Exponential Collision Resistance

where q′(n) is the function that returns the smallest prime larger than 4n3. Since
the description of the hash functions has to be contained in the master public key of
an IB-KEM or digital signature scheme and we are keen to keep the size of these as
small as possible, we study how large the description of these ` many hash functions
together are and show that they are asymptotically as large as a constant number
matrices used in the context of constructions based on LWE or SIS.
Lemma 21. Let ` = O(log(λ)) and let Hi

$←−Hn(i) for all 0 ≤ i ≤ `. Then the hash
functions H0, . . . , H` can all together be described by O(λ2 log(λ)) many elements
from {0, . . . , q(`)− 1}.
Remark 11. We count elements in {0, . . . , q(`)− 1} instead of Zq(i) for the different
moduli q(i). We do so for simplicity because it allows us to disregard the different
modulus sizes of the different hash functions. Note that we thus overestimate the
size of the descriptions of the ECR hash functions.

Proof. First, recall that a hash function Hi ∈ Hi is represented by a matrix Ai ∈
Zn(i)×m(i)
q(i) and is thus encoded by gi := n(i) ·m(i) many elements from {0, . . . , q(`)−

1}. We upper bound gi as follows.

gi = 2i · 2i
⌈
3 log(2i) + 4

⌉
+ 1 ≤ 22i · (3i+ 5) + 1 = 3 · i · 4i + 5 · 4i + 1

Thus, for any ` ∈ N, we have that∑̀
i=0

gi ≤ 3 ·
(∑̀
i=0

4i · i
)

+ 5 ·
(∑̀
i=0

4i
)

+ `+ 1

= 3 · ` · 4
`+2 − (`+ 1) · 4`+1 + 4

32 + 5 · 4`+1 − 1
3 + `+ 1 (5.6)

≤ ` · 4`+2 + 4 + 2 · 4`+1 + `+ 5
= ` · 22`+4 + 22`+3 + `+ 5

= 16 · ` ·
(
2`
)2

+ 8 ·
(
2`
)2

+ `+ 1 =
(
2`
)2

(16 · `+ 8) + `+ 5,

where Equation (5.6) follows from the closed-form formulas for the geometric series
and a variant of it for all t ∈ N and x 6= 1:

t∑
k=0

xk · k = k · xn+2 − (k + 1)xk+1 + x

(x− 1)2

t∑
k=0

xk = xk+1 − 1
x− 1

Now let f > 0 such that ` ≤ f log(λ). Such a constant exists since ` = O(log(λ)).
We can then conclude the proof as follows.∑̀

i=0
gi ≤ (2`)2 · (16 · `+ 8) + `+ 5

≤ 22f log(λ) · (16 · f log(λ) + 8) + f log(λ) + 5
= λ2f · (16 · f log(λ) + 8) + f log(λ) + 5
= O(λ2 · log(λ)) +O(λ2) +O(log(λ)) = O(λ2 · log(λ))

143
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5.5 Constant-Size Balanced PHFs
This section will extend a technique by Alperin-Sheriff [Alp15], originally used
to construct digital signatures with constant size keys from SIS. Previously, this
technique achieved only non-adaptive security, and therefore could not be used to
construct adaptively-secure IB-KEMs. We will use it to construct balanced PHFs
with constant size keys, which then yields an IB-KEM with constant-size master
public key and full adaptive security.

full rank difference encoding function for ECR hash functions.
We require a variant FRDecr of Agrawal et al.’s full rank difference encoding function
similar to the variant that we introduced for blockwise partitioning. However, in
contrast to FRDblk, FRDecr just pads its input with zeros in the end instead of in
the front and in the end.
Definition 36. For ` = O(log λ) and all i ∈ [`]0 we define FRDecr

i : Z2i
q → Zn×nq as

the function that on input a = (a1, . . . , a2i) ∈ Z2i
q outputs

FRDecr
i (a) := FRD((a1, . . . , a2i , 0, . . . , 0)).

Analogous to FRDblk, the properties of FRD from Lemma 16 carry over to FRDecr.
Essentially, it guarantees that we can map vectors injectively to matrices, such that
the resulting matrices and their differences are invertible.
Corollary 4. Let FRDecr

i : Z2i
q → Zn×nq be as defined as above, then the following

holds:
1. FRDecr

i is injective.

2. There is an additive subgroup G ⊂ Zn×nq such that each H ∈ G \ {0} is
invertible and the range of FRDecr

i is a subset of G for all 0 ≤ i ≤ `.
Proof. We first observe that padding (a1, . . . , a2i) ∈ Z2i

q with zeros construct a
vector in Zn

q is an injective operation. Thus, since FRD is injective by Lemma 16
it follows that FRDecr

i is also injective, which proves the first claim. Furthermore,
since FRDecr

i just pads its input with zeros and then outputs what FRD outputs,
we have that the range of FRDecr

i is necessarily a subset of the range of FRD, which
proves the second claim.

Alperin Sheriff’s method. We proceed to describe Alperin Sheriff’s approach,
which our first balanced PHF from ECR hash functions is based on. For this, let
n(i) and q(i) be as in Section 5.4.3. Then, let id = (id0, . . . , id`), where idi ∈ Zn(i)

q(i)

for 0 ≤ i ≤ ` for some integer ` ∈ Θ(log(λ)), some i∗ ∈ [`]0 and some K ∈ Z2i∗
q(i∗).

We follow [Alp15] and define a function f as

ti :=

1 if i = i∗

0 otherwise
and f(id,K, i∗) := −FRDecr

i∗ (K) +
∑̀
i=0

tiFRDecr
i (idi).
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5.5 Constant-Size Balanced PHFs

Note that we have

f(id,K, i∗) =

0 if K = idi∗
Hid ∈ GL(Zq, n)n otherwise

(5.7)

because f(K, idi∗ , i∗) = 0 holds obviously and the “otherwise” condition follows
immediately from the second property of Corollary 4.
The main idea of Alperin-Sheriff [Alp15] is to rewrite f as follows. Consider the

following degree-` polynomials pi for all 0 ≤ i ≤ `.

pi(x) :=

1 if x = i,

0 for x ∈ {0, . . . , `} \ {i}

Furthermore, let ci,j be coefficients such that

pi(x) =
∑̀
j=0

ci,jx
j

holds. Observe that the definition of pi is independent of i∗ and K and therefore
the coefficients ci,j ∈ Zq are publicly known. This allows us to rewrite f(id,K, i∗) as

f(id,K, i∗) = −FRDecr
i∗ (K) +

∑̀
i=0

pi(i∗)FRDecr
i (idi)

= −FRDecr
i∗ (K) +

∑̀
i=0

FRDecr
i (idi)

∑̀
j=0

ci,ji
∗j


= −FRDecr

i∗ (K) +
∑̀
j=0

i∗j
(∑̀
i=0

cijFRDecr
i (idi)

)
.

Intuition for the balanced PHF construction. The key feature of Alperin-
Sheriff’s method is that it makes it possible to define only two matrices BK and
B, such that by recursively applying arithmetic computations on these matrices
one can compute a matrix Bid. Furthermore, and crucially, in a security proof it
is additionally possible to obliviously embed −FRDecr

i∗ (K) and i∗ into BK and B,
respectively, such that by recursively applying these arithmetic computations one
obtains

Bid = ARid + f(id,K, i∗)G

such that f(id,K, i∗) = 0 if K = idi∗ , and f(id,K, i∗) ∈ GL(Zq, n) otherwise. We will
use this to construct lattice-based balanced PHFs.

Construction 6. For i ∈ N let Hn(i) = {{0, 1}λ → Zn(i)
q(i)} be a family of (c, d)-ECR

hash functions for constants c > 1 and d > 0, and let ` := dlog((c(λ+ 1) + 1)/d)e.
We start by describing the hash function FAS = (HGenAS,HEvalAS).
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5 Efficient Identity-Based Key-Encapsulation Schemes from Lattices

HGenAS(1λ) samples HECR,i
$←− Hn(i) for 0 ≤ i ≤ ` and BK,B $←− Zn×mq . It then

outputs FAS := ((HECR,i)0≤i≤`,BK,B).

HEvalAS(HAS, id) does the following:
1. Set B1 := B and Bj := B1G−1(Bj−1) for all 2 ≤ j ≤ ` and set idi :=
Hi(id) for all 0 ≤ i ≤ `.

2. Compute Hj := ∑`
i=0 ci,jFRDecr

i (idi) for all 0 ≤ j ≤ ` and set B′0 := H0G.
3. Compute B′j := BjG−1(HjG) for 1 ≤ j ≤ `.

4. Compute and output Bid := BK +∑`
j=0 B′j.

Why this particular evaluation algorithm is useful will become clear with the
description of the corresponding trapdoor generation and evaluation algorithms.
Note that the description of the balanced PHF consists of two matrices BK,B and
` + 1 ECR hash functions. However, as shown in Lemma 21, when instantiated
with the ECR family from Section 5.4.2, then these ` + 1 hash functions can be
represented by O(λ2 · log(λ)) many elements from {0, . . . , q(`) − 1}. Hence, we
have |(HECR,i)0≤i≤`| ∈ O(|Zn×mq |), where |Zn×mq | is the size of the representation of
a matrix in Zn×mq .

Theorem 11. If Hn(i) is instantiated with the family of (c, d)-ECR hash functions
from Construction 5 for 0 ≤ i ≤ `, then FAS = (HGenAS,HEvalAS) is a (β, γ, δ)-
balanced PHF for β := m+ (`+ 1)m2``, γ = negl(λ) and δ(t, ε) = λ−O(log log(λ))ε/2,
provided that TrapGen is only run on inputs t, ε such that t/ε < 2λ, where t and
1/ε are polynomial in λ.

Proof. We begin by describing the algorithms TrapGen and TrapEval, which are
based on the technique by Alperin-Sheriff [Alp15].

TrapGen(1λ, t, ε,A) works as follows:

1. It sets i∗ := dlog((log(tc/ε) + c+ 1)/d)e and samples K $←− Zn(i∗)
q(i∗) .

2. Sample HECR,i
$←−Hn(i) for 0 ≤ i ≤ `.

3. Sample RK,R $←− {−1, 1}m×m.
4. Set BK := ARK − FRDecr

i∗ (K)G and B := AR + i∗G.
5. Return FAS := ((HECR,i)0≤i≤`,BK,B) and td := (RK,R,K, i∗).

TrapEval(td, FAS, id) does the following:
1. Set B1 := B, R1 := R, R0 := 0, and idi := HECR,i(id), and compute

Rj := RG−1(Bj−1) + i∗Rj−1 for 2 ≤ j ≤ `.
2. Compute Hj := ∑`

i=0 ci,jFRDecr
i (idi) for 0 ≤ j ≤ `, where the ci,j are the

coefficients of the polynomials pi from Section 5.5.
3. Compute R′j := RjG−1(HjG) for 1 ≤ j ≤ `.
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5.5 Constant-Size Balanced PHFs

4. Return Rid := RK +∑`
j=1 R′j and Hid := f(id,K, i∗).

We first notice that TrapGen and TrapEval are syntactically correct and can
be computed in probabilistic polynomial time. To show correctness, we need to
prove that ‖Rid‖∞ ≤ β and that HEvalAS(FAS, id) = ARid + HidG for (FAS, td) =
TrapGen(1λ, t, ε,A) and (Rid,Hid) = TrapEval(td, FAS, id). We start by proving
‖Rid‖∞ ≤ β.

Proving ‖Rid‖∞ ≤ β. We bound the norm of Rid by showing ‖Rid‖∞ ≤ β =
m + (` + 1)m2``. We begin by showing that ‖Rj‖ ≤ m`` for all 1 ≤ j ≤ `. As a
preparation, we show that ‖Rj‖∞ ≤ m

∑j−1
i=0 i

∗i for all 1 ≤ j ≤ `. Recall that we
set R1 := R and that thus ‖R1‖∞ ≤ 1 ≤ m by definition of R. Hence, we have by
induction that for all 2 ≤ j ≤ ` holds that

‖Rj‖∞ =
∥∥∥R1G−1(Bj−1) + i∗Rj−1

∥∥∥
∞

≤
∥∥∥R1G−1(Bj−1)

∥∥∥
∞

+ i∗ ‖Rj−1‖∞

≤ m+ i∗m
j−2∑
i=0

i∗i ≤ m
j−1∑
i=0

i∗i.

Applying the geometric series equality
t∑

k=0
xk = (xt+1 − 1)/(x− 1),

which holds for all t ∈ N and x 6= 1, we have, for i∗ 6= 1, that

‖Rj‖∞ ≤ m
j−1∑
i=0

i∗i = m
i∗j − 1
i∗ − 1 ≤ mi∗j ≤ m``.

Moreover, if i∗ = 1, then

m
j−2∑
i=0

i∗i = m · j ≤ m · ``

and the bound holds nonetheless. We proceed by bounding the norm of R′j.∥∥∥R′j∥∥∥∞ =
∥∥∥RjG−1(HjG)

∥∥∥
∞
≤ ‖Rj‖∞m ≤ m``m = m2``

Note that the second inequality holds because G−1(HjG) ∈ {0, 1}m×m. To show
that ‖Rid‖∞ ≤ m+ (`+ 1)m3`` we compute

‖Rid‖∞ =

∥∥∥∥∥∥RK +
∑̀
j=0

R′j

∥∥∥∥∥∥
∞

≤ ‖RK‖∞ +
∑̀
j=0

∥∥∥R′j∥∥∥∞ ≤ m+ (`+ 1)m2``

Further, the trapdoor keys are statistically close because it holds that (A,BK) and
(A,B1) have only a negligible statistical difference by the Leftover-Hash Lemma
(see Lemma 15).
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Proving Bid = ARid + HidG. To complete the proof of correctness, we show
that Equation (5.2) holds. We first show that for all 1 ≤ j ≤ ` we have that
Bj = ARj + i∗jG, where Bj and Rj are as specified by HEvalAS, TrapGen, and
TrapEval. For j = 1, this holds trivially by definition of HEvalAS and TrapEval. By
induction we obtain

Bj = B1G−1(Bj−1) = (AR1 + i∗G)G−1(Bj−1)
= AR1G−1(Bj−1) + i∗GG−1(ARj−1 + i∗j−1G)
= A(R1G−1(Bj−1) + i∗Rj−1) + i∗i∗j−1G
= ARj + i∗jG

for all 1 ≤ j ≤ `.
Next, we show that

B′j = AR′j + i∗j
(∑̀
i=0

ci,jFRDecr
i (idi)

)
G

To this end, we calculate

B′j = BjG−1(HjG) = (ARj + i∗jG)G−1(HjG)
= ARjG−1(HjG) + i∗jHjG

= AR′j + i∗j
(∑̀
i=0

ci,jFRDecr
i (idi)

)
G.

Finally, we obtain the correctness of FAS as follows:

Bid = BK +
∑̀
j=0

B′j

= ARK − FRDecr
i∗ (K)G +

∑̀
j=0

(
AR′j + i∗j

(∑̀
i=0

ci,jFRDecr
i (idi)

)
G
)

= A

RK +
∑̀
j=0

R′j

+
−FRDecr

i∗ (K) +
∑̀
j=0

i∗j
(∑̀
i=0

ci,jFRDecr
i (idi)

)G

= ARid + f(id,K, i∗)G = ARid + HidG, (5.8)

where Equation (5.8) follows from the definition of f(id,K, i∗) in Equation (5.7).

Well-distributedness. Let A be an algorithm that outputs Q∗ := {id(1), . . . ,
id(Q), id∗} on input F ′AS with (F ′AS, td) $←− TrapGen(1λ, t, ε,A) and A $←− Zn×mq . Fur-
thermore, let

(Rid∗ ,Hid∗) := TrapEval(td, FAS, id∗)
(Rid(i) ,Hid(i)) := TrapEval(td, FAS, id(i)) for 1 ≤ i ≤ Q
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and let id(Q+1) := id∗ and the events collphf and badChalphf be defined as

collphf := ∃ id 6= id′ ∈ Q∗ : Hid = Hid′ , badChalphf := Hid∗ 6= 0

as in Definition 31.
We begin by showing that Pr [collphf ] ≤ ε/2. For this, observe that we have

Hid = H′id if and only if HECR,i∗(id) = HECR,i∗(id′). This holds because FRDecr
i∗ is

injective by Corollary 4 and because for all îd ∈ {0, 1}λ and îdi∗ := HECR,i∗(îd) it
holds that

Hid = f(îd,K, i∗) = FRDecr
i∗ (îdi∗).

Hence, Hid = Hid′ implies a collision on HECR,i∗ . Therefore we can describe an
algorithm B that uses A to break the ECR of Hi∗ , provided that A produces a
set Q∗ such that collphf occurs with probability larger than ε/2. More formally B
receives as input

HECR,i∗ ∈ Zn(i∗)×m(i∗)
q(i∗)

and proceeds as follows.

1. Sample K $←−Zn(i∗)
q(i∗) , A $←−Zn×mq and HECR,i

$←−Hni for all 0 ≤ i ≤ ` with i 6= i∗.

2. Sample RK,R $←− {−1, 1}m×m and set BK := ARK + FRDecr
i∗ (K)G and B :=

AR + i∗G.

3. Set F ′AS := ((HECR,i)0≤i≤`,BK,B) and compute Q∗ = {id(1), . . . , id(Q), id∗} :=
A(F ′AS).

4. If there are id 6= id′ ∈ Q∗ such that HECR,i∗(id) = HECR,i∗(id), then output
(id, id′), otherwise abort.

Note that B essentially runs A plus some minor additional operations. Therefore,
we upper-bound the running time of B by tB := 2t, where t is the running time
of A. Observe that F ′AS is distributed exactly as if it was generated by TrapGen.
Hence, if A produces Q∗ such that Pr [collphf ] ≥ ε/2, then B outputs (id, id′) with
HECR,i∗(id) = HECR,i∗(id) with probability at least ε/2. However, we have that

ε

2 ≥
tc

2dn−c = (2t)c
2dn = tcB

2dn

by Lemma 19 and thus B breaks the (c, d)-ECR of Hi∗ if collphf occurs with proba-
bility at least ε/2.
We next consider the event ¬badChalphf . Observe that we have Hid∗ = 0 if and

only if HECR,i∗(id∗) = K and that TrapGen samples K $←−Zn(i∗)
q(i∗) . Thus, we conclude at

this point that badChalphf and collphf are independent because K is drawn uniformly
at random from Zn(i∗)

q(i∗) . Furthermore, we thus have that

Pr [¬badChalphf ] = q(i∗)−n(i∗).
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Now, we conclude that

(ε− Pr [collphf ]) · Pr [¬badChalphf ] ≤
ε

2q(i
∗)−n(i∗) = ε

2(ε/2)λ−O(log log(λ)) = δ(t, ε)

where q(i∗)−n(i∗) = λ−O(log log(λ)) holds by Lemma 20.

Discussion. The main advantage of this approach is that we obtain PHFs, which
are balanced and whose key size is equivalent to a constant number of matrices in
Zn×mq . The major downside of this approach is that the powers i∗2, . . . , i∗` have to be
computed homomorphically, hidden from the adversary by TrapEval. This has the
consequence that we can only prove that ‖Rid‖∞ ≤ m+(`+1)m3``. Unfortunately,
the term `` is super-polynomial for our choice of `.
As Alperin-Sheriff [Alp15] discusses, this issue can be addressed to some degree by

choosing ω(log(log(λ))) ≤ ` ≤ O(log(λ)/ log(log(λ))). However, even then ‖Rid‖∞
is only bounded by a high-degree polynomial and the security holds only for λ large
enough.
We will therefore describe an alternative approach that allows us to replace the

term `` in the upper bound of the norm by `d
√
`e = λo(1), at the cost of a (asymp-

totically) slightly larger description of the programmable hash function.

5.6 Balanced Programmable Hash Functions with
Small-Norm Trapdoors

The naïve approach to reduce the norm of Rid would be to pre-compute all powers
of i∗ and embed each in a matrix in the description of the PHF. However, this would
lead to ` = O(log(λ)) many matrices in the description of the PHF and nullify the
gains made by using Alperin-Sheriff’s method in the first place.

A baby-step giant-step approach. We introduce a new approach, which
follows a middle way by pre-computing only 2d

√
`e = O(

√
log λ) different powers

of i∗, allowing us to reduce `` to `d
√
`e = λo(1) for ` = dlog((c(λ + 1) + 1)/d)e. For

this purpose, we describe a list S` of size 2d
√
`e and a function pair` : {1, . . . , `} →

{0, . . . , `} × {0, . . . , `} such that for all j ∈ {1, . . . , `} and pair(j) = (j1, j2), it
holds that j1, j2 ∈ S` and j = j1 + j2. In particular, we then have i∗j = i∗j1 · i∗j2 .
Furthermore, we have that j2 ≤ d

√
`e, which allows us to reduce the norm of

‖Rid‖∞ as outlined above.
Informally, we achieve this by a “baby-step giant-step” approach, where the list

S` contains all integers from zero up to d
√
`e (“baby steps”) and all integer multiples

of d
√
`e between zero and ` (“giant steps”). Then every number in j ∈ [`] can be

represented as the sum of the largest multiple of d
√
`e that is smaller or equal than

j and a number between zero and d
√
`e. It will be convenient to formalize this in

a lemma.
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Lemma 22. For ` ∈ N, let

S` := (1, . . . , d
√
`e − 1) ‖

(
m · d

√
`e
)

0≤m≤d√`e

where || is concatenation. Then there is an polynomial-time computable function
pair` : {1, . . . , `} → S` × S` such that for all j ∈ {1, . . . , `} and (j1, j2) := pair`(j) it
holds that j = j1 + j2 and j2 ≤ d

√
`e. In particular, we have that |S`| = 2d

√
`e =

O(
√
`).

Proof. We have that |S`| = d
√
`e − 1 + d

√
`e+ 1 = 2d

√
`e = O(

√
`). We define the

function pair as follows. For an input j ∈ [`], it sets m :=
⌊
j/d
√
`e
⌋
, j1 := md

√
`e

and j2 := j − j1. Note that j1 is the largest multiple of d
√
`e smaller than j

and hence is contained in S`. It therefore holds that 0 ≤ j2 ≤ d
√
`e and hence

j2 ∈ {1, . . . , d
√
`e − 1} ∪ {0 · d

√
`e, 1 · d

√
`e}. By the definition of S`, j2 is therefore

contained in S`. Also, pair` can be efficiently evaluated. Finally, since j2 = j − j1,
we also have that j = j1 + j2, which completes the proof.

This approach allows us to construct an balanced PHF with still a very compact
description but with much small bound on the norm of Rid.

Construction 7. For i ∈ N let Hn(i) = {{0, 1}λ → Zn(i)
q(i)} be a family of (c, d)-ECR

hash functions for some constants c > 1 and d > 0, and let ` := dlog((c(λ + 1) +
1)/d)e. We define a hash function FSN = (HGenSN,HEvalSN) as follows.

HGenSN(1λ) runs HECR,i
$←−Hn(i) for 0 ≤ i ≤ ` and BK,Bj

$←− Zn×mq for j ∈ S` and
outputs FSN := ((HECR,i)0≤i≤`,BK, (Bj)j∈S`).

HEvalSN(FSN, id) computes (j1, j2) := pair`(j) for all j /∈ S` and then:
1. It computes Bj := Bj2G−1(Bj1) for all 2 ≤ j ≤ ` with j /∈ S` and sets

idi := HECR,i(id) for all 0 ≤ i ≤ `.
2. Hj := ∑`

i=0 ci,jFRDecr
i (idi) for all 0 ≤ j ≤ ` and B′0 := H0G.

3. B′j := BjG−1(HjG) for 1 ≤ j ≤ `.
4. Finally, compute and output Bid := BK +∑`

j=0 B′j.

The following theorem shows that this is indeed a balanced PHF.

Theorem 12. If Hn(i) is instantiated by the family of (c, d)-ECR hash functions
from Construction 5 for 0 ≤ i ≤ `, then FSN = (HGenSN,HEvalSN) is a (β, γ, δ)-
balanced PHF for β := 1 + (` + 1)m2(1 + λo(1)), γ = negl(λ) and δ(t, ε) = δ(t, ε) =
λ−O(log log(λ))ε/2, provided that TrapGen is only run on inputs t, ε such that t/ε < 2λ,
where t and 1/ε are polynomial in λ.

Proof. We begin by describing the algorithms TrapGen and TrapEval.

TrapGen(1λ, t, ε,A) sets i∗ := dlog((log(tc/ε) + c+ 1)/d)e and then:
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1. Sample K $←−Zni∗qi∗ andHECR,i
$←−Hni for 0 ≤ i ≤ ` and RK,Rj

$←−{−1, 1}m×m
for j ∈ S`.

2. Compute BK := ARK−FRDecr
i∗ (K)G and Bj := Rj + i∗jG for all j ∈ S`.

3. Compute and output FSN := ((HECR,i)0≤i≤`,BK, (Bj)j∈S`) and the trap-
door td := (RK, (R)j∈S` ,K, i∗).

TrapEval(td, FSN, id) starts by computing (j1, j2) := pair`(j) and the matrix Rj :=
Rj2G−1(Bj1) + i∗j2Rj1 for all j /∈ S`. It then does the following.
1. Compute Hj := ∑`

i=0 ci,jFRDecr
ni

(HECR,i(id)) for 0 ≤ j ≤ `.

2. Set R′j := RjG−1(HjG) for 1 ≤ j ≤ ` and Rid := RK +∑`
j=1 R′j.

3. Finally, set Hid := f(id,K, i∗) and output (Rid,Hid).

We first notice that TrapGen and TrapEval are syntactically correct and can be
efficiently computed. For correctness we need to prove that ‖Rid‖∞ ≤ β and
that HEvalSN(FSN, id) = ARid + HidG for (FSN, td) = TrapGen(1λ, t, ε,A) and
(Rid,Hid) = TrapEval(td, FSN, id). We start by proving ‖Rid‖∞ ≤ β.

Proving ‖Rid‖∞ ≤ β. We bound the norm of Rid by showing that ‖Rid‖∞ ≤
m+ (`+ 1)(m2 +m2`d

√
`e). We begin by showing that ‖Rj‖ ≤ m2 +m`d

√
`e for all

1 ≤ j ≤ `. First, notice that ‖Rj‖∞ ≤ 1 for all j ∈ S` because Rj ∈ {−1, 1}m×m
by definition of TrapGen. For all j /∈ S`, we have the following.

‖Rj‖∞ =
∥∥∥Rj2G−1(Bj1) + i∗j2Rj1

∥∥∥
∞

≤
∥∥∥Rj2G−1(Bj1)

∥∥∥
∞

+ i∗j2 ‖Rj1‖∞
≤ m(1 + i∗j2)

Note that the last inequality holds because Rj2 ∈ {0, 1}m×m and G−1(Bj1) ∈
{0, 1}m × m. Using that j2 ≤ d

√
`e by Lemma 22 and i∗ ≤ `, we have that

‖Rj‖∞ ≤ m2 +m`d
√
`e. We proceed by bounding the norm of R′j.∥∥∥R′j∥∥∥∞ =
∥∥∥RjG−1(HjG)

∥∥∥
∞
≤ ‖Rj‖∞m ≤ m(1 + i∗j2)m

= m2(1 + `d
√
`e)

We now show that ‖Rid‖∞ ≤ 1 + (`+ 1)m2(1 + `d
√
`e).

‖Rid‖∞ =

∥∥∥∥∥∥RK +
∑̀
j=0

R′j

∥∥∥∥∥∥
∞

≤ ‖RK‖∞ +
∑̀
j=0

∥∥∥R′j∥∥∥∞
≤ 1 + (`+ 1)m2(1 + `d

√
`e)
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To obtain the bound on ‖Rid‖∞ claimed in the theorem, we need to show that
`d
√
`e = λo(1) for ` = ddlog((c(λ + 1) + 1)/d)ee. Ignoring constants and ceiling

operations, this can be seen as follows:

log(λ)
√

log(λ) = λlog(log(λ))
√

log(λ)/ log(λ) = λlog(log(λ))/
√

log(λ) = λo(1).

However, the constants and ceiling operations make the proof rather tedious. We
therefore state it as a lemma.
Lemma 23. For ` = ddlog((c(λ+ 1) + 1)/d)ee it holds that `d

√
`e = λo(1).

To not interrupt the proof of Theorem 12, we postpone the proof of Lemma 23
until after we finished the proof of Theorem 12.
Applying Lemma 23 then yields that 1+(`+1)m2(1+`d

√
`e) ≤ 1+(`+1)m2(1+

λo(1)) as claimed.

Proving Bid = ARid + HidG. To complete the proof of correctness, we show
that Equation (5.2) holds. We first show that for all 0 ≤ j ≤ ` we have that
Bj = ARj + i∗jG, where Bj and Rj are as specified by the algorithms TrapGen
and HEvalSN. For all j ∈ S`, this holds by the definition of Bj in the TrapGen
algorithm. For all j /∈ S`, the matrix Bj is computed as follows by HEvalSN:

Bj = Bj2G−1(Bj1) = (ARj2 + i∗j2G)G−1(Bj1)
= ARj2G−1(Bj1) + i∗j2GG−1(ARj1 + i∗j1G)
= A(Rj2G−1(Bj1) + i∗j2Rj1) + i∗j1+j2G
= A(Rj2G−1(Bj1) + i∗j2Rj1) + i∗jG.

We next show that B′j = AR′j + i∗j
(∑`

i=0 ci,jFRDecr
i (idi)

)
G holds for all 1 ≤ j ≤ `

B′j = BjG−1(HjG) = (ARj + i∗jG)G−1(HjG)
= ARjG−1(HjG) + i∗jHjG

= AR′j + i∗j
(∑̀
i=0

ci,jFRDecr
i (idi)

)
G

Finally, we prove the correctness of FSN, that is that Bid = ARid + f(id,K, i∗)G,
where Bid and Rid are as defined by TrapGen, TrapEval and HEvalSN.

Bid = BK +
∑̀
j=0

B′j

= ARK − FRDecr
i∗ (K)G +

∑̀
j=0

(
AR′j + i∗j

(∑̀
i=0

ci,jFRDecr
i (idi)

)
G
)

= A

RK +
∑̀
j=0

R′j

+
−FRDecr

i∗ (K) +
∑̀
j=0

i∗j
(∑̀
i=0

ci,jFRDecr
i (idi)

)G

= ARid + f(id,K, i∗)G = ARid + f(id,K, i∗)G (5.9)
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where Equation (5.9) follows from the definition of f(id,K, i∗) in Equation (5.7).

Well-distributedness. The proof that FSN has well-distributed hidden ma-
trices is almost identical to the respective proof for FAS. Let A be an algo-
rithm that outputs Q∗ := {id(1), . . . , id(Q), id∗} on input F ′SN with (F ′SN, td) $←−
TrapGen(1λ, t, ε,A) and A $←− Zn×mq . Furthermore, let

(Rid∗ ,Hid∗) := TrapEval(td, FSN, id∗)
(Rid(i) ,Hid(i)) := TrapEval(td, FSN, id(i)) for 1 ≤ i ≤ Q

and let id(Q+1) := id∗ and let the events collphf and badChalphf be defined as

collphf := ∃ id 6= id′ ∈ Q∗ : Hid = Hid′ , badChalphf := Hid∗ 6= 0

as in Definition 31.
We begin by showing that Pr [collphf ] ≤ ε/2. For this, observe that we have

Hid = H′id if and only if HECR,i∗(id) = HECR,i∗(id′). This holds because FRDecr
i∗ is

injective by Corollary 4 and because for all îd ∈ {0, 1}λ and îdi∗ := HECR,i∗(îd) it
holds that

Hid = f(îd,K, i∗) = FRDecr
i∗ (îdi∗).

Hence, Hid = Hid′ implies a collision on HECR,i∗ . Therefore we can describe an
algorithm B that uses A to break the ECR of Hi∗ , provided that A produces a
set Q∗ such that collphf occurs with probability larger than ε/2. More formally B
receives as input

HECR,i∗ ∈ Zn(i∗)×m(i∗)
q(i∗)

and proceeds as follows.

1. Sample K $←−Zn(i∗)
q(i∗) , A $←−Zn×mq and HECR,i

$←−Hni for all 0 ≤ i ≤ ` with i 6= i∗.

2. Sample RK,R $←− {−1, 1}m×m and set BK := ARK + FRDecr
i∗ (K)G and B :=

AR + i∗G.

3. Set F ′SN := ((HECR,i)0≤i≤`,BK,B) and compute Q∗ = {id(1), . . . , id(Q), id∗} :=
A(F ′SN).

4. If there are id 6= id′ ∈ Q∗ such that HECR,i∗(id) = HECR,i∗(id), then output
(id, id′), otherwise abort.

Again B only runs A and performs some minor additional computations, so that
we bound the running time of B by tB := 2t, where t is the running time of
A. Observe that F ′SN is distributed exactly as if it was generated by TrapGen.
Hence, if A produces Q∗ such that Pr [collphf ] ≥ ε/2, then B outputs (id, id′) with
HECR,i∗(id) = HECR,i∗(id) with probability at least ε/2. However, we have that

ε

2 ≥
tc

2dn−c = (2t)c
2dn = tcB

2dn
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by Lemma 19 and thus B breaks the (c, d)-ECR of Hi∗ if collphf occurs with proba-
bility at least ε/2.
We next consider the event ¬badChalphf . Observe that we have Hid∗ = 0 if and

only if HECR,i∗(id∗) = K and that TrapGen samples K $←−Zn(i∗)
q(i∗) . Thus, we conclude at

this point that badChalphf and collphf are independent because K is drawn uniformly
at random from Zn(i∗)

q(i∗) . Furthermore, we thus have that

Pr [¬badChalphf ] = q(i∗)−n(i∗).

Now, we conclude that

(ε− Pr [collphf ]) · Pr [¬badChalphf ] ≤
ε

2q(i
∗)−n(i∗) = ε

2(ε/2)λ−O(log log(λ)) = δ(t, ε)

where q(i∗)−n(i∗) = λ−O(log log(λ)) holds because of Lemma 20.

Now it is only left to provide the proof of Lemma 23 that we omitted during the
proof of Theorem 12.

Proof of Lemma 23. First, observe that there is a constant a > 0 such that ` ≤
a log(λ) for λ large enough. We show that log(λ)d

√
`e = λo(1) in preparation for the

actual proof.

log(λ)d
√
`e =

(
λlog(log(λ))/ log(λ)

)d√`e = λlog(log(λ))d√`e/ log(λ)

≤ λlog(log(λ))(
√
a log(λ)+1)/ log(λ)

= λlog(log(λ))
√
a log(λ)/ log(λ)λlog(log(λ))/ log(λ)

= λlog(log(λ))
√
a/
√

log(λ)λlog(log(λ))/ log(λ)

= λo(1)λo(1) = λo(1)

Using this, we can easily conclude the lemma as follows.

`d
√
`e ≤ (a log(λ))d

√
`e = ad

√
`e log(λ)d

√
`e = ad

√
`eλo(1)

≤ log(λ)d
√
`eλo(1) = λo(1)λo(1) = λo(1)

Note that we use that a ≤ log(λ) for λ large enough.

5.7 Efficient Lattice-Based Identity-Based
Key-Encapsulation

We proceed to describe our IB-KEM based on balanced PHFs. Our construction is
based on the identity-based encryption scheme from [Yam17a]. We do not base our
construction on the less efficient PHF-based IBE from Zhang et al. [ZCZ16], which
also additionally requires that the PHF has high min-entropy. Throughout this
section, we first introduce some further preliminaries on lattices before we describe
the construction and prove its correctness and security.
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5.7.1 Preliminaries for Lattice-Based IB-KEMs
We provide some further preliminaries that we require only for the construction
and security proof of the IB-KEM. Let m > 0 be an integer and let DZm,σ be the
discrete Gaussian distribution over Zm with parameter σ > 0. Further, recall that
we denote the largest absolute component of a matrix by ‖ · ‖∞ and the `2-norm of
a matrix by ‖·‖2. We then have the following lemma due to Regev [Reg05].

Lemma 24. We have Pr [‖x‖2 > σ
√
m : x $←−DZm,σ] ≤ 2−2m.

The learning with errors problem. The security of our IB-KEM is based
on the learning with errors (LWE) problem, which was introduced by Regev [Reg05].
We formally introduce it below.

Definition 37. Let n = n(λ),m = m(λ) be integers, q = q(n) > 2 be prime, and
α ∈ (0, 1) be a real number. The advantage in solving the learning with errors
problem dLWEn,m,q,α of a PPT algorithm A is defined as

AdvdLWEn,m,q,α
A (λ) :=

∣∣∣Pr
[
A(A, sTA + xT ) = 1

]
− Pr

[
A(A,wT + xT ) = 1

]∣∣∣ ,
where A $←−Zn×mq , s $←−Znq ,x $←−DZm,αq,w $←−Zmq and the probability is over the random
choices of A, s,x and w, and the internal randomness of A. Then for t ∈ N and
ε ∈ (0, 1], the (t, ε)-dLWEn,m,q,α assumption holds if AdvdLWEn,m,q,α

A (λ) ≤ ε for all
probabilistic algorithms A running in time at most t.

It is known that solving dLWEn,m,q,α for αq ≥ 2
√
n is (quantumly) at least as

hard as solving worst-case lattice problems GapSVPγ and SIVPγ on n-dimensional
lattices for some γ = Õ(n/α) [Reg05, Pei09, BLP+13]. Moreover, Katsumata
and Yamada [KY16] proved the following lemma that enables rerandomizing LWE
instances.

Lemma 25. Let q,m,m′ be positive integers and r a positive real satisfying r >
max{ω(

√
log(m)), ω(

√
log(m′))}. Let b ∈ Zmq be arbitrary and x $←− DZm,r. Then

for any V ∈ Zm×m′ and positive real s > ‖V‖2, there exists a PPT algorithm
ReRand(V,b + x, r, s) that outputs b′ = bTV + x′T ∈ Zm′×1

q , where x′ is distributed
statistically close to DZm′ ,2rs.

Lattice trapdoors. In addition to the gadget matrix, which we introduced
in Lemma 13, we use the following lattice trapdoors in the construction of our
IB-KEM. Following Brakerski and Vaikuntanathan [BV16], let n,m,m′, q ∈ N and
A ∈ Zn×mq and let A−1

σ (V) with V ∈ Zn×m′q denote the random variable whose
distribution is a Gaussian Dm′

Zm,σ conditioned on A ·A−1
σ (V) = V. A σ-trapdoor for

A is an algorithm that samples from A−1
σ (V) in time poly(n,m,m′, log(q)) for any

V ∈ Zn,×m′q . Note that we again slightly overload notation and denote a σ-trapdoor
for A by A−1

σ .
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Lemma 26. The following claims were proven in [GPV08, ABB10a, ABB10b,
CHKP10, BLP+13].

1. There exists an efficient algorithm GenTrap(1n, 1m, q) that outputs
(
A,A−1

σ0

)
for some m = O(n log(q)), such that A ∈ Zn×mq is 2−n-close to a uniformly
random matrix and σ0 = ω(

√
n log q logm).

2. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.

3. Given A−1
σ , one can obtain [A | B]−1

σ for any B.

4. For A−1
σ and u ∈ Znq , it holds Pr [‖A−1

σ ‖2 >
√
m · σ] = negl(λ).

5.7.2 Construction of the IB-KEM
Given these preliminaries, we are ready to describe our IB-KEM that is based on
the IB-KEM by Yamada [Yam17a].

Construction 8. Let F = (HGen,HEval) be a matrix hash function with range
T = Zn×mq . We construct IB-KEM = (SetupIBK,KeyGen,Encap,Decap) as follows.

SetupIBK(1λ) chooses n,m, q, `, σ, α and α′ as specified in Remark 12 such that q
is a prime. It then runs (A,A−1

σ0 ) $←− GenTrap(1n, 1m, q) such that A ∈ Zn×mq

and σ0 = ω(
√
n log(q) log(m)) holds. Next, it samples C $←− Zn×mq , u $←− Znq

and F $←− HGen(1λ). Finally, it outputs

mpk := (A,C, F,u) and msk := A−1
σ0 .

KeyGen(mpk,msk, id) computes Bid := HEval(F, id) with Bid ∈ Zn×mq . It then uses
A−1
σ0 to compute [A | C + Bid]−1

σ and samples

e $←− [A | C + Bid]−1
σ .

It returns skid := e ∈ Z2m. Observe that [A | C + Bid]e = u mod q.

Encap(id,mpk) computes Bid := HEval(F, id) ∈ Zn×mq . It samples s $←−Znq , x0
$←−DZ,αq,

x1,x2
$←−DZm,α′q, and κ $←− {0, 1} and computes

c0 = sTu + x0 + κ · dq/2e ∈ Zq, cT
1 = sT[A | C + Bid] + [xT

1 | xT
2 ] ∈ Z2m

q .

It outputs (ct = (c0, c1), κ).

Decap(ct, uskid) parses ct as (c0, c1) and computes w = c0 − cT
1 · e ∈ Zq. It sets

κ := 1 if |w − dq/2e | < dq/4e and κ := 0 otherwise. It then returns κ.

Remark 12. For the IB-KEM we have the following requirements regarding the
parameter choice similar to [Yam17b]:
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• As we show below, we require that q/5 ≥ αq
√
m + (α′

√
2m) · σ

√
2m holds

with overwhelming probability in order to guarantee the correctness of the
scheme;

• That GenTrap can operate, that is m > 6n dlog qe;

• That the leftover hash lemma (Lemma 15) can be applied, meaning m ≥
(n+ 1) log(q) + ω(log(n));

• σ has to be large enough such that the distribution of private keys in the actual
scheme and in the reduction is the same, that is σ > σ0 = ω(

√
n log(q) log(m))

and σ > m(β + 1)ω(
√

log(m));

• That the ReRand algorithm can operate in the reduction, that is α′/2α >√
2 ·m(β + 1) and αq > ω(

√
log(m)) by Lemma 25;

• That the worst to average case reduction works, that is αq > 2
√

2n.

To satisfy the above requirements, we set the parameters as follows:

n = Θ(λ), m = Θ(n log(q)), q = n9/2 · β2ω(log7/2(n))

σ = m · (β + 1) · ω(
√

log(m)) αq = 3
√
n, α′q = 9

√
n ·m · (β + 1).

Furthermore, to instantiate the IB-KEM with one of the balanced PHFs from ECR
hash functions, we also require that

n ≥ 2` and q ≥ q(`),

where ` = dlog((c(λ+ 1) + 1)/d)e and c and d are constants such that there is a
family of (c, d)-ECR hash functions like the one that we describe in Construction 5.
If IB-KEM is instantiated with FBLK from Construction 4 based on a weak near-
collision resistant hash functions, then we instead only require that

n ≥ 2λ+ 3.

Correctness.

We first deduce the error term as in [Yam17b]. For a ciphertext ct = (c0, c1), let
uskid = e and w be as described in Decap(ct, uskid). We then have that

w = c0 − cT
1 · e = κ · dq/2e+ x0 −

[
xT

1 | xT
2

]
· e︸ ︷︷ ︸

:=err

,
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holds, where we refer to err := x0−
[
xT

1 | xT
2

]
·e as the error term. Assuming α′ ≥ α,

as guaranteed by our parameter choice in Remark 12, we then have that

|err| ≤ |x0|+
∣∣∣[xT

1 | xT
2

]
· e
∣∣∣ (5.10)

≤ |x0|+
∥∥∥[xT

1 | xT
2

]∥∥∥
2
· ‖e‖2 (5.11)

≤ αq
√
m+ (α′

√
2m) · σ

√
2m (5.12)

= O(α′σmq)

holds with overwhelming probability. Equation (5.10) follows from the triangle in-
equality, Equation (5.11) follows from the Cauchy-Schwartz inequality, and Equa-
tion (5.12) follows from Lemma 24 and Item 4 of Lemma 26. Note that the bound
does not hold with certainty because Lemma 24 and Item 4 of Lemma 26 only guar-
antee that their respective bounds hold with probability 1− negl(λ). However, we
treat the bounds as if they hold with certainty for the remainder of this discussion
for simplicity.
Now, let q > Ω(α′σmq) such that |err| < q/5 holds. We then have that

|w − dq/2e| = |κ dq/2e+ err − dq/2e| ≤ |κ dq/2e − dq/2e|+ q/5

holds and we can thus conclude that

|κ dq/2e − dq/2e|+ q/5 =

|dq/2e − dq/2e|+ q/5 = q/5 < dq/4e if κ = 1 and
|− dq/2e|+ q/5 ≥ 7q/10 ≥ dq/4e otherwise.

Thus, Decap outputs the correct κ with overwhelming probability.

Multi-bit Variant of our IB-KEM.

The IB-KEM we described above can be adapted to encapsulate λ many bits with
a reasonable overhead. This can be achieved as described by Yamada [Yam17a,
Section 5.3] by applying the techniques of [PVW08, ABB10a, Yam16]. Specifically,
in order to encapsulate keys of λ many bits, the vector u $←−Znq in the master public
key has to be replaced with a matrix U $←−Zn×λq . The ciphertext component c0 ∈ Zq
is then replaced by a vector cT

0 ∈ Zλq that is computed as

cT
0 := sTU + xT

0 + κ dq/2e ,

where x0
$←−DZλ,αq and κ $←−{0, 1}λ. Furthermore, the user secret key usk = e ∈ Z2m

has to be replaced by the matrix E ∈ Zm×λ for

E $←− [A | C + Bid]−1
σ (U).

The security of the scheme can then be proven along the lines of the proof of
Theorem 13 under the dLWEn,m+λ,q,α assumption. The parameter selection from
Remark 12 remains valid. Overall, the asymptotic sizes of mpk and ct stay the
same because mpk already contains at least the matrix C ∈ Zn×mq and because ct
already contains cT

1 ∈ Z2m
q . Only the size of user secret keys increases by a factor

of λ.
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IND-ID-CPA security of IB-KEM

Theorem 13. If IB-KEM := (SetupIBK,KeyGen,Encap,Decap) from above is in-
stantiated with a (β, γ, δ)-balanced programmable hash function with γ = negl(λ),
then IB-KEM is (t, ε)-IND-ID-CPA secure under the (t, ε′)-dLWEn,m+1,q,α assump-
tion for ε′ := δ(t, ε)− negl(λ).

Proof. We prove Theorem 13 in a sequence of games [Sho04]. We denote with Gi

the event that Game i outputs 1 and with Ei := |Pr [1 $←− Gi]− 1/2| the advantage
of A in Game i. The proof essentially adopts the proof from [Yam17a] to balanced
programmable hash functions.

Game 0. This is the original IND-ID-CPA security experiment. Therefore, we have

E0 = AdvIND-ID-CPA
A,IB-KEM(λ).

Game 1. This game is identical to Game 0, except that the challenger computes
(F ′, td) $←−TrapGen(1λ, t, ε,A) in addition to F $←−HGen(1λ). Note that the challenger
still sets mpk := (A,C, F,u) as specified in SetupIBK and does not include F ′ in
mpk. Therefore, this is a purely conceptual change and we thus have that

E1 = E0.

Game 2. This game is identical to Game 1, except that the challenger main-
tains a set Q∗ := {id(1), . . . , id(Q), id∗}, where id(1), . . . , id(Q) are all the identities for
which the adversary made queries to the KeyGen oracle and id∗ is the challenge
identity chosen by A. It then computes (Rid∗ ,Hid∗) := TrapEval(td, F ′, id∗) and
(Rid(i) ,Hid(i)) := TrapEval(td, F ′, id(i)) for all 1 ≤ i ≤ Q. Further, it defines the
events collphf and badChalphf as

collphf := ∃ id 6= id′ ∈ Q∗ : Hid = Hid′ , badChalphf := Hid∗ 6= 0

as in Definition 31. This is a purely conceptual change and it thus holds that

E2 = E1.
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Game 3. This game is identical to Game 2, except that the challenger aborts and
outputs a random bit if event collphf occurs. It thus holds that

Pr [collphf ] ≥ |Pr [G2]− Pr [G3]| (5.13)

=
∣∣∣∣Pr [G2]− Pr [G3] + 1

2 −
1
2

∣∣∣∣
=
∣∣∣∣(Pr [G2]− 1

2

)
−
(

Pr [G3]− 1
2

)∣∣∣∣
=
∣∣∣∣(Pr [G2]− 1

2

)
−
(

Pr [G3]− 1
2

)∣∣∣∣+ ∣∣∣∣Pr [G3]− 1
2

∣∣∣∣− ∣∣∣∣Pr [G3]− 1
2

∣∣∣∣
≥
∣∣∣∣(Pr [G2]− 1

2

)
−
(

Pr [G3]− 1
2

)
+
(

Pr [G3]− 1
2

)∣∣∣∣− ∣∣∣∣Pr [G3]− 1
2

∣∣∣∣
(5.14)

=
∣∣∣∣Pr [G2]− 1

2

∣∣∣∣− ∣∣∣∣Pr [G3]− 1
2

∣∣∣∣ = E2 − E3,

where Equation (5.13) follows from Shoup’s Difference Lemma (see Lemma 1) and
Equation (5.14) follows from the triangle inequality. We thus obtain that

E3 ≥ E2 − Pr [collphf ]

holds by rearranging terms.

Game 4. This game is identical to Game 3, except that the challenger aborts and
outputs a random bit if the event badChalphf occurs. We have that

E4 = E3 · Pr [badChalphf ]

holds because badChalphf is independent of the adversaries success in Game 3 since
no information about the PHF with the trapdoor is given to the adversary in both
the previous game and also this game and because badChalphf is also independent
of collphf by the well-distributedness of the balanced PHF.

Game 5. This game is identical to Game 4, except that we introduce the event
badEvalphf that occurs if the adversary makes a secret key query id such that Hid =
0. If badEvalphf occurs, then the challenger aborts. Observe that this is a purely
conceptual change because if badEvalphf occurs than either collphf or badChalphf must
occur. This is because if event badEvalphf occurs and collphf does not occur then
Hid∗ 6= 0 can not hold since this would imply a collision, thus causing the event
badChalphf . Analogously, if event badEvalphf occurs and badChalphf does not occur
then event collphf must happen because we then have that Hid = 0 = Hid∗ . it thus
holds that

E5 = E4.
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Game 6. This game is identical to Game 5, except that the challenger no longer
computes F $←− HGen(1λ) but sets F := F ′, where (F ′, td) $←− TrapGen(1λ, t, ε,A) as
specified in Game 1. Since F has statically close keys, we have that

Pr [E6] = Pr [E5]− γ = Pr [E5]− negl(λ)

holds, where the last equality holds because we required γ = negl(λ).

Game 7. This game is identical to Game 6, except that whenever the adver-
sary queries the KeyGen-oracle for id, then the challenger computes (Rid,Hid) =
TrapEval(td, F, id) and then sets Bid := ARid + HidG. This is a purely conceptual
change since we have that HEval(F, id) = ARid + HidG by the correctness of the
balanced PHF F . It thus holds that

E7 = E6.

From here on the proof closely the proof from [Yam17b, Section 5.6].

Game 8. In this game we change the way C is chosen. The challenger samples
RC

$←− {−1, 1}m×m and sets C := [A | ARC ]. Everything else remains as in Game
7. By the Leftover Hash Lemma (Lemma 15) we have that the distributions

(A,C) and (A,C′)

only have negligible statistical difference for C′ $←− Zm×mq and therefore

E8 ≥ E7 − negl(λ).

Before we proceed, we establish some handy observations. Note that for any
id ∈ Q∗ and (Rid,Hid) := TrapEval(td, F, id) we have that

‖RC + Rid‖∞ ≤ ‖RC‖∞ + ‖Rid‖∞ ≤ 1 + β (5.15)

holds because RC ∈ {−1, 1}m×m and we chose F to be a correct (β, γ, δ)-balanced
programmable hash function. Also, recall that it follows from the correctness of F
and the abort conditions we established throughout Games 2 to 5 that

C + Bid =

A(RC + Rid) if id = id∗ and
A(RC + Rid) + HidG if id ∈ Q∗ \ {id∗},

(5.16)

where Hid ∈ GL(Zq, n) for all id ∈ Q∗ \ {id∗}.
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Game 9. This game is identical to the previous game except that the challenger
samples A $←− Zn×mq instead of generating it with a trapdoor. This makes only
a negligible difference by Item 1 in Lemma 26, which states that the statistical
distance between A and a matrix A′ generated using GenTrap is at most 2−n.
Further, for each query id to the KeyGen-oracle the challenger sets (Rid,Hid) :=

TrapEval(td, F, id). Observe that we then have that

[A | C + Bid] = [A | A(RC + Rid) + HidG].

The challenger then uses the “gadget matrix” G to compute

uskid := e $←− [A | A(RC + Rid) + HidG]−1
σ (u).

Note that the challenger can sample from this distribution by Lemma 14 because
Hid ∈ GL(Zq, n) and we chose σ ≥ m(β + m)ω(

√
log(m)) ≥ ‖RC + Rid‖∞ in

Remark 12.
Summing up, choosing A $←−Zn×mq alters the view of the adversary only negligibly

and the challenger can still sample user secret keys with the correct distribution by
using the “gadget matrix”. It thus holds that

E9 ≥ E8 − negl(λ).

Game 10. This game is identical to the previous game except that the chal-
lenger creates the challenge ciphertext ct∗ differently. As previously, it computes
(Rid∗ ,Hid∗) := TrapEval(td, F, id∗). Recall that we ensured that Hid∗ = 0 holds
in Game 4. The challenger then samples b, κ0, κ1

$←− {0, 1}, s $←− Znq , x0
$←− DZ,αq,

x̄1
$←− DZm,αq and sets w0 := sTu + x0 and wT

1 := sTA + x̄T
1 . Then it defines the

challenge ciphertext ct∗ := (c0, c1) ∈ Zq × Z2m
q as

c0 := w0 + κ1 · dq/2e , cT
1 := ReRand([Im | RC + Rid∗ ],w1, αq, α

′/2α), (5.17)

where Im is the identity matrix of dimension m and ReRand is the algorithm from
Lemma 25. The challenger outputs (ct∗ = (c0, cT ), κb).
By Lemma 25, this alters the view of the adversary only negligibly. More pre-

cisely, define the matrix V and the vector bT as follows:

V := [Im | RC + Rid∗ ] x := x̄1 and bT := sTA.

By applying Lemma 25 we then obtain that the distribution of cT
1 as computed in

Equation (5.17) above has only a negligible statistical distance to

cT
1 = sTAT[Im | RC + Rid∗ ] + [xT

1 | xT
2 ] (5.18)

= sT[A | ARC + ARid∗ ] + [xT
1 | xT

2 ]
= sT[A | C + Bid∗ ] + [xT

1 | xT
2 ], (5.19)
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where x1,x2
$←−DZm,α′q. Note that Equation (5.18) holds because of Equation (5.16)

and Equation (5.19) holds because C = ARC and Bid∗ = ARid∗ . We can apply
Lemma 25 because

α′/(2α) >
√

2 ·m · (β + 1) ≥
√

2m
√
m · ‖RC + Rid∗‖∞ ≥ ‖RC + Rid∗‖2 ,

where the second inequality follows from Equation (5.15) with id = id∗ and the
third from the general inequality between the two norms. Therefore, we conclude
that

E10 ≥ E9 − negl(λ).

Game 11. In this game, the generation procedure for the challenge ciphertext ct∗ is
modified again. First, the challenger picks v0

$←−Zq, v1
$←−Zmq , x0

$←−DZ,αq, and vectors
x1

$←−DZm,α′q. It then uses TrapEval to compute (Rid∗ ,Hid∗) := TrapEval(td, F, id∗).
Next, it samples b, κ0, κ1

$←−{0, 1} as in the IND-ID-CPA security experiment and sets
the challenge ciphertext as in Equation (5.17) of Game 10, but with w0 := v0 + x0
and w1 := v1 + x̄1. Specifically, the challenger sets

c0 := v0 + x0 + κ1 · dq/2e

and
cT

1 := ReRand([Im | RC + Rid∗ ],v + x̄1, αq, α
′/2α).

We then claim that
E11 ≥ E10 − negl(λ)

holds under the dLWEn,m+1,q,α assumption. We prove the claim by constructing an
adversary B against dLWEn,m+1,q,α from any algorithm A that distinguishes between
Game 10 and Game 11 with non-negligible advantage.

Description of B. The algorithm receives a dLWEn,m+1,q,α instance (A′,w′ =
v′ + x̄) ∈ Zn×(m+1)

q × Zm+1
q as input, where x̄ $←− DZm+1,αq. The algorithm then

tries to distinguish whether it holds that v′T = sTA′ for s $←− Znq or if it holds that
v′ $←− Zm+1

q as follows.

Generating mpk: Denote the first column of A′ by u ∈ Znq and denote the last m
columns of A′ by A ∈ Zn×mq . Also, denote the first coefficient of w′ ∈ Zm+1

q

by w0 ∈ Zq and let the last m coefficients of w′ be w1 ∈ Zmq . Then the
algorithm B sets the master public key mpk exactly as both in Game 10 and
Game 11.

Answering queries and creating ct∗: Just as since Game 2, B aborts and outputs
a random bit if A queries id(i) to KeyGen-oracle or chooses a challenge identity
id∗ such that

Hid(i) = 0 or Hid∗ 6= 0.
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Under these conditions, A can answer key extraction queries as described
in Game 9 and in particular without knowledge of a trapdoor for A. Fur-
thermore, it can construct ct∗ exactly as in Equation (5.17) by sampling
b, κ0, κ1

$←− {0, 1} and setting ct∗ := (c0, cT
1 ). It then outputs ((c0, cT

1 ), κb) to
A. Note that the secret randomness used to generate w0 and w1 (namely, s
and x̄) is not necessary for this computation.

Solving dLWE: Once A outputs its guess b′, our algorithm B checks whether b′ = b
and if so outputs 1 and 0 otherwise.

Analysis of B’s success probability. Observe that if (A′,w′) is a valid LWE
sample with v′T = sTA′, then A’s view corresponds to Game 10. Otherwise, that
is if v′ $←− Zm+1

q , then A’s view corresponds Game 11. Hence, we have that the
advantage of B in solving dLWEn,m+1,q,α is (Pr [1 $←− G11] − Pr [1 $←− G10]) and we
thus conclude that

E11 ≥ E10 − AdvdLWEn,m+1,q,α
B (λ).

Game 12. We further alter the challenge ciphertext in this game. The challenger
now samples v0

$←−Zq,v1
$←−Zmq , x0

$←−DZ,αq and x1,x2
$←−DZm,α′q and computes Rid∗

using TrapEval. Then the challenger samples b, κ0, κ1
$←−{0, 1} and sets the challenge

ciphertext as

c0 := v0 + x0 + κ1 · dq/2e , cT
1 :=

[
vT

1 | vT
1 (RC + Rid∗)

]
+
[
xT

1 | xT
2

]
. (5.20)

Note that the difference between this game and the previous one is that the chal-
lenger samples both x1 and x2 in contrast to Game 11 where the challenger samples
only x̄1. This can be seen as reverting the change from Game 9 to Game 10. Like
that previous change, also this one alters the view of the adversary only negligibly.
We can verify this by setting V := [Im | RC + Rid∗ ], x̄1

$←−DZm,α′q and v1
$←−Zmq (as

in Game 11). It then follows that

ReRand(V,v1 + x̄1, αq, α
′/2α),

which is how cT
1 is computed in Game 11, is statistically negligibly close to cT

1 in
Equation (5.20) above by Lemma 25. This lemma is applicable because we chose
the parameters in Remark 12 such that

α′/(2α) >
√

2 ·m · (β + 1) ≥
√

2m
√
m · ‖RC + Rid∗‖∞ ≥ ‖RC + Rid∗‖2 ,

where the second inequality follows from Equation (5.15) with id = id∗ and the
third from the general inequality between the two norms. We thus have that

E12 ≥ E11 − negl(λ).
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Game 13. In this game, we change the challenge ciphertext such that it contains
no information about κ1 anymore. Formally, we set ct∗ $←−Zq ×Z2m

q . We then have
that

E13 = 0.
Thus, it is only left to show that E13 ≥ E12− negl(λ). Both games differ only in the
generation of the challenge ciphertext. We thus focus on this part. First, we observe
that c0 is already uniformly random in Game 12 because we there already sample
v0

$←− Zq. We can therefore limit our attention to showing that the distribution of
c1 is negligibly close to the uniform distribution over Z2m

q . Recall that

c1 =
[
vT

1 | vT
1 (RC + Rid∗)

]
+
[
xT

1 | x2T
]
.

We begin by observing that for A,A′ $←−Zn×mq ,RC
$←−{−1, 1}m×m,v1,v′T1 $←−Zmq the

distributions(
A,ARC ,vT

1 ,vT
1 RC

)
≈
(
A,A′,vT

1 ,v′T1
)
≈
(
A,ARC ,vT

1 ,v′T1
)
, (5.21)

are negligibly close. We note that the first two distributions are negligibly close by
the leftover hash lemma (Lemma 15) for

[
AT | v1

]T
∈ Z(n+1)×m

q and RC . We obtain
the statistical closeness for the second and the third distribution by applying the
leftover hash lemma for A and RC .
Using Equation (5.21), we conclude that for A,A′ $←− Zn×mq ,RC

$←− {−1, 1}m×m
and v1,v′T1 $←− Zmq it holds that(

A,ARC , cT
1 ,v′T1

)
≈
(
A,ARC ,vT

1 + xT
1 ,v′T1 + vT

1 Rid∗ + xT
2

)
≈
(
A,ARC ,vT

1 + xT
1 ,vT

1 (RC + Rid∗ + xT
2 )
)

are negligibly close. The first and second distribution are negligibly close because
1. x1,x2 are chosen independently at random from the other variables and

2. Rid∗ is computed from the trapdoors (Ri)0≤i≤`, which are also chosen inde-
pendently at random from the other variables.

Finally, it immediately follows from Equation (5.21) that the second and the third
distributions are negligibly close by. We thus conclude that

E13 ≥ E12 − negl(λ).

Analysis. From all the games above, we can now conclude that

0 = E13 ≥ E11 − negl(λ) ≥ E10 − AdvdLWEn,m+1,q,α
B (λ)− negl(λ)

≥ E4 − AdvdLWEn,m+1,q,α
B (λ)− negl(λ)

≥ E3 · Pr [¬badChalphf ]− AdvdLWEn,m+1,q,α
B (λ)− negl(λ)

≥ (E2 − Pr [collphf ]) · Pr [¬badChalphf ]− AdvdLWEn,m+1,q,α
B (λ)− negl(λ)

= δ(t, ε)− AdvdLWEn,m+1,q,α
B (λ)− negl(λ).
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This is equivalent to

AdvdLWEn,m+1,q,α
B (λ) ≥ δ(t, ε)− negl(λ),

which concludes the proof of Theorem 13.

5.8 Conclusion and Open Questions
Concluding the chapter, we introduced balanced PHFs for lattices and demon-
strated how this extension of PHFs for lattices enables the construction of IB-KEMs
from lattices with security in the standard model. Moreover, we presented three
constructions of balanced PHFs. Our first balanced PHF FBLK is based on block-
wise partitioning, which we previously introduced in Chapter 3. This construction
shows how blockwise partitioning can be used in the context of lattices.
However, the downside of blockwise partitioning is that it relies on the non-

standard assumption of weak near-collision resistant hash functions. We addressed
this shortcoming by introducing the weaker notion of ECR hash functions and
presenting a construction from the eSIS assumption, a variant of the SIS assumption
with a concrete bound on the running time of algorithms. We note that exponential-
collision resistance is a stronger assumption than truncation-collision resistance and
weak near-collision resistance, and thus every TCR or wNCR hash function is also
an ECR hash function. Thus, the advantage of ECR hash functions is that we are
able to provide an explicit construction from a well-studied computational problem.
We then demonstrated that ECR hash functions suffice to construct balanced

PHFs by presenting two balanced PHFs from ECR hash functions. The first bal-
anced PHFs FAS has a descriptions size of only O(λ2 log(λ)) many Zq-elements.
It is based on a technique by Alperin-Sheriff [Alp15] and thus inherits a super-
polynomial LWE parameter from it. We thus presented FSN, which has a slightly
larger description size of O(

√
log λ ·λ2 log(λ)) many Zq-elements but has a polyno-

mially bounded LWE parameter. Unfortunately, both balanced PHFs from ECR
hash functions suffer from a super-polynomial but, sub-quasi-polynomial reduction
loss of λO(log log(λ)) that originates from the fact that our ECR hash function pro-
duces outputs in Znq , where n can be chosen freely, and q is polynomially bounded
in n. A construction of ECR hash functions for which q is a constant would resolve
this issue.

Research Question 6. Are there ECR hash functions whose security can be re-
duced to the hardness of well-studied computational problems and produce outputs
in Znq for a constant q?

However, even given such ECR hash functions, our most efficient balanced PHF
FAS would still result in an IB-KEM, which requires a super-polynomial LWE
parameter for security. This leads to the open question already asked by Peikert
in [Pei16, Question 9].
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Research Question 7. Are there standard-model, adaptively-secure lattice-based
IBE/IB-KEM schemes that have comparable efficiency and concrete security to the
existing selectively-secure ones?
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A The Program Used to find
Parameters of BCH Codes

1 import math as m
2 import logging
3

4 logging.basicConfig()
5 logger = logging.getLogger("find_good_bch_codes")
6 logger.setLevel(logging.WARNING)
7

8

9 def list_suitable_bch_codes(n, min_dimension,
required_relative_minimal_bose_distance):↪→

10 """Lists parameters of BCH codes that (potentially after
puncturing) have codewords of length n, dimension at least
min_dimension and has relative distance of at least
required_relative_minimal_bose_distance."""

↪→

↪→

↪→

11 # the minimal distance required in order to achieve the given
12 # relative distance.
13 required_min_distance = m.ceil(n *

required_relative_minimal_bose_distance)↪→

14

15 # compute all 2-cyclotomic cosets mod n.
16 cosets = q_cyclotomic_cosets_mod_n(2, n)
17 print("Finished computing cyclotomic cosets")
18

19 smallest_n = n + 1
20 best_k = 0
21 best_d = 0
22 best_puncturing = 0
23

24 # consider all possible starting points for sequences for
25 # 2-cyclotomic cosets mod n
26 for start in range(0, n - 1):
27 # initialize the defining set to be empty and i to be at the
28 # start position.
29 defining_set = set()
30 i = start
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31

32 # add 2-cyclotomic cosets mod n to the defining set until the
33 # required minimal distance is reached or there are no
34 # further 2-cyclotomic cosets mod n.
35 while i <= n - 1:
36 defining_set = defining_set.union(cosets[i])
37 i += 1
38 achieved_bose_distance =

_number_of_consecutive_elements(defining_set)↪→

39

40 # the required minimal distance is achieved if there are
more↪→

41 # than required_min_distance consecutive elements in the
42 # defining set.
43 if achieved_bose_distance >= required_min_distance:
44

45 # the dimension of the code is n minus the size of the
46 # defining set (see [HP03, Theorem 4.4.2])
47 dimension = n - len(defining_set)
48 if dimension > min_dimension:
49 num_puncturing =

_get_puncturing_amount(achieved_bose_distance,
required_relative_minimal_bose_distance, n)

↪→

↪→

50

51 logger.debug("[{:d}, {:d}, {:d}]_2 at start {:d} and for
{:d} cosets".format(n, dimension,
achieved_bose_distance, start, i - start))

↪→

↪→

52 if n - num_puncturing < smallest_n:
53 smallest_n = n - num_puncturing
54 best_puncturing = num_puncturing
55 best_k = dimension
56 best_d = achieved_bose_distance
57

58 print("[{:d}, {:d}, {:d}] => {:d} x puncturing => [{:d},
{:d}, {:d}]".format(n, dimension,
achieved_bose_distance, num_puncturing, n -
num_puncturing, dimension, achieved_bose_distance -
num_puncturing))

↪→

↪→

↪→

↪→

59

60 print("Best: [{:d}, {:d}, {:d}] => {:d} x puncturing => [{:d},
{:d}, {:d}]".format(n, best_k, best_d, best_puncturing, n -
best_puncturing, best_k, best_d - best_puncturing))

↪→

↪→

61

62
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63 def q_cyclotomic_cosets_mod_n(q, n):
64 """ Computes all q-cyclotomic cosets modulo n. The result is a

dictionary mapping all 0 <= i <= n to the cyclotomic coset
containing i."""

↪→

↪→

65 cosets = dict()
66 zero_coset = set()
67 zero_coset.add(0)
68 cosets[0] = zero_coset
69

70 for i in range(1, n):
71 if not i in cosets:
72 coset = set()
73 coset.add(i)
74 cosets[i] = coset
75 next_element = i * q % n
76 while not next_element == i:
77 coset.add(next_element)
78 cosets[next_element] = coset
79 next_element = next_element * q % n
80 return cosets
81

82

83 def _number_of_consecutive_elements(a):
84 """ Given the set a, the function outputs the largest number of

consecutive elements in a"""↪→

85

86 # A set of size zero always has zero consectutive numbers in it.
87 if len(a) == 0:
88 return 0
89

90 sorted_elements = sorted(list(a))
91

92 # the length of the longest sequence found so far
93 longest_sequence_length = 1
94 # the index where the longest sequence found so far starts (in

the sorted list)↪→

95 longest_sequence_start = 0
96 # the length of the currently considered sequence
97 current_sequence_length = 1
98 # the index where the currently considered sequence starts
99 current_sequence_start = 0

100

101 # initialize the previous element with the first element in order
to emulate a do-while loop↪→
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102 previous_element = sorted_elements[0]
103 for i in range(1, len(sorted_elements)):
104 current_element = sorted_elements[i]
105 if current_element == previous_element + 1:
106 # if the current sequence is continued, update the length of

the current↪→

107 # sequence and, if it is longer than the currently longest
sequence, update the information↪→

108 # on the longest sequence found so far to the current
sequence.↪→

109 current_sequence_length += 1
110 if current_sequence_length > longest_sequence_length:
111 longest_sequence_length = current_sequence_length
112 longest_sequence_start = current_sequence_start
113 else:
114 # if the current element is not the continuation of
115 # the previous sequence, start a new sequence of length 1
116 current_sequence_start = i
117 current_sequence_length = 1
118 previous_element = current_element
119 return longest_sequence_length
120

121

122 def _get_puncturing_amount(achieved_bose_distance,
required_rel_min_distance, code_out_length):↪→

123 """ Given the achieved bose distance, the output length of an
error correcting code and a desired relative minimal
distance, this function computes how often the code can be
punctured while still maintaining the desired relative
minimal distance."""

↪→

↪→

↪→

↪→

124 return m.floor((achieved_bose_distance - code_out_length *
required_rel_min_distance) / (1 - required_rel_min_distance))↪→
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