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Introduction

In this thesis we develop a framework for linear port-Hamiltonian systems (PHS)
on multidimensional spatial domains that justifies existence and uniqueness of
solutions. The inner dynamic of those systems can be described by the following
equations

(0.0 = 3 SL P00 + (.0, ¢ ERt=0,
i=1 >

SL’(O,C) = l’o(C), < € Qa

where x is the state, P; and P, are matrices, H is the Hamiltonian density, and
) is an open subset of R™ with bounded Lipschitz boundary. We will restrict

ourselves to the case, where the matrices P; have the block shape { LOH LO} for

ie{l,...,n}.

We also introduce “natural” boundary controls and observations, the so
called ports, which make the system a scattering passive (energy preserving) or
impedance passive (energy preserving) boundary control system

u(t, ¢) = B(OH(O)x(t, Q) Ce ot >0,
y(t, Q) = C(OH()x(t,¢), Ce ot =>0.

Moreover, we are interested in stability /stabilizability of such systems. As
showcase we regard the wave equation. However, we conclude what has to
be done for general port-Hamiltonian systems. Amongst others a compact
embedding of the domain of the differential operator is necessary. We will
also show that the Maxwell operator with mixed non-homogeneous boundary
conditions satisfies this.

The partial differential equation (PDE) in (1) perfectly matches the descrip-
tion of port-Hamiltonian systems in one spatial dimension in the book of Jacob

and Zwart [25], if we set n = 1. The additional restriction P; = [LOT Lol] is
not needed in [25], since the boundary of a line automatically satisfies certain
symmetry properties. We decided to not demand an analogous symmetry from

Q in the multidimensional case, because it did not seem very restrictive to

ask for P; = { LOH LO} as all the examples satisfy this anyway. However, it is

ix



x Introduction

probably possible to drop this restriction and ask instead for a certain symmetry
of the boundary. The references [25, 61] treat the existence and uniqueness of
solutions for these port-Hamiltonian systems with a one-dimensional spatial
domain.

The port-Hamiltonian formulation has proven to be a powerful tool for
the modeling and control of complex multiphysics systems. Port-Hamiltonian
systems encode the underlying physical principles such as conservation laws
directly into the structure of the system. An introductory overview can be
found in [59]. This theory originates from Bernhard M. Maschke and Arjan van
der Schaft [36]. For finite-dimensional systems there is by now a well-established
theory [58, 14, 13]. The port-Hamiltonian approach has been further extended
to the infinite-dimensional situation, see e.g. [60, 30, 32, 26, 67, 61, 25, 28].
In [28] the authors showed that the port-Hamiltonian formulation of the wave
equation in n spatial dimensions possesses unique mild and classical solutions.

Chapter 8 of the Ph.D. thesis [61] also regards such port-Hamiltonian systems
that have multidimensional spatial domains, but the results demand very strong
assumptions on the boundary operators (they have to map into H/?(9Q)* and
its dual respectively), which are not satisfied in case of Maxwell’s equations
and the Mindlin plate model, as Example 5.1.8 shows for Maxwell’s equations.
With the following approach we will overcome these limits.

The strategy is to find a boundary triple associated to the differential
operator. The multidimensional integration by parts formula

/Q<§ a(ziLix(C)7y(C)>dC+/Q<:v(C)7iZ:; aiL?y(g)>dg

_ /B Q<;W(<)Lix<c>7y(o>y

where v; is the i-th component of the normal vector on the boundary of €,
already suggests possible operators for a boundary triple (we will show this
integrations by parts formula in Lemma 3.1.8). Unfortunately these operators
cannot be extended to the entire domain of the differential operator. Hence, we
need to adapt the codomain of these boundary operators, which will lead to
the construction of suitable boundary spaces for this problem. These boundary
spaces behave like a Gelfand triple with the original codomain as pivot space,
but lack of a chain inclusion.

To the author’s best knowledge there is no earlier theory about this setting.
So we will develop the notion of quasi Gelfand triples in Chapter 4, which equips
us with the tools to state the boundary condition in terms of the pivot space
instead of the artificially constructed boundary spaces (Theorem 4.4.6).

One can think of using a quasi boundary triple (G,T'g,I'1) (see [7]) to
overcome the extension problem of the boundary mappings, but unfortunately
the condition ker I’y is self-adjoint (or in this setting skew-adjoint) is in general
not satisfied for our class of systems.




xi

The approach to the wave equation in [28] perfectly fits the framework
presented in this thesis. In fact, many ideas from [28] are generalized in this
work. Also Maxwell’s equations can be formulated as such a port-Hamiltonian
system and the results in [64] can also be derived with the tools of this framework.
Moreover, this theory can be applied on the model of the Mindlin plate in [8, 33].
In Chapter 6 we give examples of how this framework can be applied to these
three PDEs.

The core of this thesis has been published in form of an article, see [54].
However, in this thesis we have enough space to deepen some aspects and give
extra information. Chapter 7 and Chapter 8 are the result of the papers [24]
and [46], respectively.

We start this thesis with some preliminaries. In particular we give a short
introduction to distributions and Lipschitz boundaries to be self-contained (up
to a certain point) and precise. Then we will introduce a (maybe not entirely
standard) concept of dualities of Banach spaces and adjoint operators, that
covers both Banach spaces and Hilbert spaces at once. Moreover, this enables
us to easily switch between a Banach space adjoint and a Hilbert space adjoint.
In this work we work with linear operators from the point of view of linear
relations, which is a generalization of linear operators. They can be seen as
multi-valued linear operators. This concept is presented in Chapter 2.

Finally, in Chapter 3 we define port-Hamiltonian systems and the corre-
sponding differential operators. We take care of all the technical details of these
differential operators. Furthermore, we give relevant examples of this class of
PDEs.

In order to develop a suitable solutions theory for these systems we create
the concept of quasi Gelfand triple in Chapter 4. These triples behave essentially
like Gelfand triples, but lack of a chain inclusion. Afterwards in Chapter 5
we construct suitable boundary spaces for our port-Hamiltonian differential
operator that establish a quasi Gelfand triple with L2(9f2) as pivot space.
This enables us to formulate boundary conditions that admit existence and
uniqueness of solutions. Thus, at this point we reach one goal of the thesis.

In Chapter 6 we regard the port-Hamiltonian system with an input and
an output function as a boundary control and observation system. We will see
that certain choices of these inputs and outputs result in well-posed boundary
control and observation systems.

We will apply a scattering passive feedback to the wave equation in Chapter 7
and show that this stabilizes the wave equation in a semi-uniform way. This
also implies strong stability of the closed loop system. As a by-product we show
that the differential operator of this system possesses a compact resolvent.

Finally in Chapter 8 we show a compact embedding of the domain of Max-
well’s equations with mixed and non-homogeneous boundary conditions. This
can be used to show that the “pure dynamic” (displacement from an equilibrium)
of Maxwell’s equation is described by an operator with compact resolvent.
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Here are you few things that might help readers that are only interested in
selected chapters.

e We use linear relations instead of operators, i.e. every linear operator
A: X — Y will be also treated as linear relation. This means that you
xr

will often find something like [ ] € A, which just means Az = y. This
nuance is sometimes helpful.

e We will always regard the antidual space instead of dual space. This pre-
vents unnecessary inconveniences when switching between a dual pairing
and an inner product.

e We define the adjoint with respect to a dual pair. This allows us to
treat Banach space adjoints and Hilbert space adjoints with the same
framework.

Figure 1 illustrates the dependencies of the chapters. A dashed arrow indicates
that it is also understandable without the previous chapters, but some results
of the previous chapters might be used.

xiii



Xiv

Important for Cherry Picker

Preliminary

Linear Relations

/

o~

Port-Hamiltonian Systems

Quasi Gelfand Triples

.

/

Boundary Spaces

Boundary Control Systems

-
-
-

s

Stability

~
~

A

Compact Embedding

Figure 1: Dependencies



Chapter 1

Preliminaries

Sometimes it can be confusing to pay attention to the antilinear structure of an
inner product of a Hilbert space, when switching between the inner product
and the dual pairing. Thus, for the sake of clarity we will always consider the
antidual space instead of the dual space, which is the space of all continuous
antilinear mappings from the topological vector space into its scalar field. Hence,
both the inner product and the (anti)dual pairing is linear in one component
and antilinear in the other.

1.1 Distributions

In this section we want to recall the definition of the space of distributions and
the most important results. For detailed information see [66, ch. I, sec. 8] or [22,
ch. I1J.

Let Q be an open subset of R". Before we can introduce distributions we
have to introduce the space of test functions on 2. We define

D(2) == C(NQ) == {¢ € C°(Q) | supp ¢ is compact in Q}.

We use the notation D() instead of C°(2), because we will endow this space
with a special topology. Note that this space is dense in LP(Q2) for every
p € [1,00).

For a multi-index o € Nij we define |a| =" | a; and

olal

Ozt ... 0z T

D%p =

We want to give an idea of the topology, but for a precise discussion we
refer to [22, 66]. For @ C R™ open and K C Q we define

Dk () :={¢ € D(Q) [supp¢ C K}

1



2 1. Preliminaries

On Dk (£2) we can define the semi norms

pm(®) = sup sup|D%¢(z)[, m € No.
la|l<mzeK

These semi norms establish a topology on D (2), with which Dk () is a locally
convex topological vector space. We have

D(Q) = U 2x@.
KCQ compact

and we will endow D(2) with the finest locally convex topology such that all
inclusion mappings ¢k : Dk (2) — D(Q), f — [ are continuous.
We can characterize convergence in D(f2) by ¢, — ¢, if and only if

e there exists a compact K C Q) such that supp(¢, — ¢) C K for alln € N
e and sup,c|D*(¢, — ¢)(z)| — 0 for all o € Nj.

Definition 1.1.1. We define the space of distributions D’(2) as the (anti)dual
space of test functions D(2). For A € D'(Q2) and ¢ € D(QQ) we define

(A, 9)pr)po) = A9).

We will write just (A, ¢)p p, if Q is clear and (A, ¢), if it can’t be confused
with another dual pairing.

Remark 1.1.2. Every f € Ll _(Q) can be regarded as a distribution by

(f, D)o (), D) =/Qf$dN

where A denotes the Lebesgue measure. Since supp ¢ C €2, we can replace the
integral over 2 by an integral over R”, if we extend f outside of Q with 0. A
distribution that can be represented by an f € L () via the previous integral
is called regular.

Inspired by the integration by parts formula we define D*A for a distribution.

Definition 1.1.3. Let A € D'(Q2) we define the distributional derivative DA
pointwise for every ¢ € D(Q) by

(DA, ¢)pr().p() = (—1)1*(A, D) pr(02) p(02)-

Note that a distribution is arbitrarily often differentiable (in the distribu-
tional sense).

Example 1.1.4. We define the Heaviside function Hi: R — R by

0, =<0,
Hf(x):{l x>0
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Clearly, Hf = 1(g,400)- Its distributional derivative can be calculated by

—+oo

(Hi, )/ (r),D(R) = —/RHHZV dA = _/o ¢'(x) dz = —p(z) . = $(0)

where ¢ € D(R). Note that dg: ¢ + ¢(0) is continuous and antilinear, and
therefore an element of D'(R).

Lemma 1.1.5. Let (fy)men be a sequence in L () that converges pointwise
to f € LL.(Q) such that for every compact K C Q) there exists an integrable
function gx such that |fm(2)] < gk (x) for a.e. x € K. Then f, converges to
finD(Q), ie

I (fn,6) = (£,6) for all &€ D),

Proof. Let ¢ € D(QQ) be arbitrary. Then supp ¢ is compact and therefore
there exists an integrable function gsupp ¢ such that |fy, (x)| < gsupp o () for a.e.
x € supp ¢. Hence, by Lebesgue’s dominated convergence theorem, we have

m—o0 m—00

supp ¢

Lemma 1.1.6. Let (A,,)men be a sequence in D' (Q) that converges to A € D' (Q)
in D'(Q). Then D*A,, converges to DA in D'(Q2) for every a € Njj.

Proof. Let ¢ € D(92). Note that also D¢ € D(2). Hence,
(D¥(Am — M), ¢) = (—1)!*/(A,, — A, DY) — 0. Q

Note that every Lipschitz continuous function f: Q — R possesses an
almost everywhere defined derivative by Rademacher’s theorem, see [1, th.
2.6]. Moreover, if we restrict it on a line in €, then this function is absolutely
continuous. Hence, by the fundamental theorem of calculus for absolutely
continuous function we can derive an integration by parts formula for every

¢ € D(Q) by integrating
0
8l'i )

over R. Consequently the distributional derivative D* f coincides with 3 f as
distribution for oo = e;, where e; is the n-tuple that with 1 in the i-th entry and
0 else.

aii<f¢):(aii )¢+f(
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Figure 1.1: Lipschitz boundary

1.2 Lipschitz Boundary

In this thesis we will only deal with strong Lipschitz boundaries, hence we will
not mention weak Lipschitz boundaries and we will just use the term Lipschitz
boundary for strong Lipschitz boundary. Sets with Lipschitz boundaries are
nice enough to allow to define an outer normal vector, which will be important
to define boundary operators. More details can be found in [21].

Definition 1.2.1. A set 2 C R™ is said to have a Lipschitz boundary, if for
every p € 0f2 there exists an ¢, h > 0, a hyper plane H in p and a Lipschitz
continuous function g: H N B.(p) — R such that

NNCep ={x+g(x)v|ze HNB(p)},
QNCep ={z+yv|z e HNB(p),—h <y < g(x)},

where v is the normal vector on H and C. is the cylinder {x + nv|z €
HnN Be(P)ﬂ? € (_hvh)}‘

Figure 1.1 illustrates this definition. Locally the boundary of 2 is the graph
of a Lipschitz function. Alternatively, you can regard the hyper plane and its
normal vector as an orthogonal basis (a different coordinate system). Sometimes
this is used to define Lipschitz boundaries. The condition on €2 N C ; makes
sure that the surface of €2 is orientable.

Locally we can define an embedding on a Lipschitz boundary by

) B.(p)nH — 09,
& x = x4+ g(x)v.

Clearly, since Be(p) N H is isomorphic to a ball B.(0) in R"™!, we can also
define a Lipschitz continuous embedding ¢, whose domain is B.(0) C R"~1L.
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Note that for x € B(p) the vector  — (z,v)v € H and we can characterize
the boundary locally at p by the zeros of

. Bé(p — Ra
F{ z = (z—pv)—g(z—(x—povw).

In the coordinate system given by H and v (origin in p) this function can be
expressed by
P B(p) — R,
L] - gm0,

where g is an appropriate modification of g. Since g is Lipschitz continuous,
also F' is Lipschitz continuous.

By Rademacher’s theorem [1, th. 2.6] every Lipschitz function is almost
everywhere differentiable. Hence, we can define tangential space on almost
every point of 90 and an outward pointing normal vector. Let (b;)7]' be a
basis of H. Then the tangential space of 92 in almost every ¢ is given by

span{ 22607 0). s o 0(6™ @)}, (1)

or

0 ~,~_4 0 ~,~4
span{ 2567 @) oo 567 @)
where (e;)"_; is the standard basis of R™. It can be shown that the tangential
space does not depend on the embedding ¢, i.e. if ¢ is another embedding such
that ¢ is in the image of 1, then the corresponding tangential space w.r.t. ¢ is
the same.

Lemma 1.2.2. The normal vector is given (almost everywhere) by

{8QﬂBe(p) - R~
v: (dF(g)"
9 7 aFQn-

Proof. Let ¢ € 9Q N B(p) such that the tangential space exists. By (1.1)

{a%lgb(qb_l(q)), e % (gb_l(q))} is a basis of the tangential space. Hence,

we only have to show that v/(q) is orthogonal on each basis vector. Let s = ¢~1(q).
Then

(aF@T, 5267 @) = dFl@) g (67 (0) = AF(6() 526)
0
= 5 (Fod)(s) =0,

which proves the claim. a
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By working in the coordinate system centered in p given by an orthogonal
basis of H and v we can assume

H = span{ey,...,en—1} and v =e,. (1.2)

Moreover, we will identify H with R”~!, which allows us to write the embedding

¢ as

Note that in this new coordinate system p = 0. Let ¢ € 9Q N Be(p), m denotes
the orthogonal projection on H, which is given by x +— [#1 @2 ... @n1 ]T and
s =m(q). Then the tangential space in ¢ can by written as

1 0 0

0 1 0

Span 5 b E PR | :

0 0 1
99(s) 99(s) 9g(s)
deq Oes Oen_1

or in a matrix form
ran {E"_l]
dg(s)]’

where E,,_; denotes the identity matrix in R?~!. Hence, we can easily see
that the tangential space exists in every point where g(s) is differentiable. The
normal vector in Lemma 1.2.2 is then given by

o) =~z | )
VTV L 1

Theorem 1.2.3. Let v be the function given in Lemma 1.2.2. Then v(q) points
outward Q for almost every g € 02N C .

Figure 1.2 illustrates the proof.

Proof. Let ¢ € 02N C¢, such that the tangential space exists and s = 7(q).
For an x € H N B(p) we can express the corresponding point on surface of ) by

[g(g;)] '

Since g is differentiable in s, we have

st o) = Loto) = Liveone] * Lot
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Q

Figure 1.2: Outer normal vector

Hence, for p > 0 sufficiently small we have g(s) > g(s — uVg(s)), which implies

[57’;(2“;'(8)} ¢ Q. Consequently,

| s —Vy(s)
q+pv(q) = L}@] +u[ 1 } ¢ Q.
Therefore, v(q) points outward €. a

Hence, there is a function v: dQ — R”™ that is defined almost everywhere
(w.r.t. surface measure of 9€) such that v is an outward pointing normal vector.

We mentioned the surface measure of 02 a few times without really saying
what it is. Hence, we catch up on this. The set of Borel sets on 02 can be
described by

BOQ) =BR")NQ={ANQ|A e BR")},

where B(R") are the Borel sets on R™. We still assume (1.2). For simplicity
we will only define the surface measure on 992 N C p, but this can easily be
extended on 0f2 by a covering consisting of sets C. , centered in different points.

Definition 1.2.4. For A € B(99Q) N C.,j, we define the surface measure of 9

by
u) = | oy VISP
g~ (mn

where A,,_; denotes the Lebesgue measure in R*~! and ,, denotes the projection
on the n-th coordinate.

Note that g=!(m,(A4)) = ¢ 1(A). For a measurable function f we can
calculate the surface integral by

/amce,hfd“/Be(o)f <[g($x)]> VI+ [ Vg(@)[? dh,_i ().
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In order to prove the divergence theorem or Gaufl’s theorem,

/divfdA:/ v fdu,
Q a0

we will prove locally fQ opdN = |, oq Vi dp and then obtain the global result
by a partition of unity. Finally, the divergence theorem/Gaufl’s theorem is just
an easy consequence.

Theorem 1.2.5. Let ¢ € D(C. ). Then

QF‘ICCJL BQﬂCe,h

for every i € {1,...,n}.
We will again (without loss of generality) assume (1.2).

Proof. Let h € C*(R) be such that

07 C € (_0070)7
h(¢) € ¢ 10,1], ¢ €]0,1],
1, ¢ e (1,00).

Figure 1.3 illustrates the function h. We define h, (x) :== h(mx), which converges

h
1»ﬁ
1

Figure 1.3: The function h

pointwise to the heaviside function Hy = 1 yo0)- By the second condition of
Lipschitz boundaries, we have z € QN C.p, if and only if z,, < g(Z), where
Z = 7(z), the projection of = on the first n — 1 coordinates. Therefore, we can
write 1 for z € C¢ ;, as a pointwise limit

where iy, == hy (9(E) — ). Hence 1 regarded as distribution, i.e. as element
of D'(C. 1), is also the limit of h,, (Lemma 1.1.5). The distributional derivatives
of 1 can be written as (Lemma 1.1.6)

]IQ = lim mwih
ox; m—oo

!
m?
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where w(z) = [Vf(f)} = —/1+ ||Vg(£)|\21/([g(“;)]) (for a.e. x). For 7 €
D(C. ) we have

/ B dh = —< 0 ng,w>
QNCe p Oz D'(Ce,n),D(Ce,n)

~  lim / - / mawy ()W (m(g(7) — 2))([ £ ]) de, di

m— o0

[ w@ [ [aihmm}w([ &, ]) day di

R M—00 T

_ /R w@HELD ([0 ) ey ey 9
= [ LD (L) VITTVa@ Pz

= / v dp. a
8ONCe.p,

Lemma 1.2.6. Let K C R" be a compact set and Q C R™ open with Lipschitz
boundary. Then there exists an open covering (Oj)fzo of QN K, such that O;
for j > 1 are cylinders C¢, 1, (p;) that fulfill the conditions in the definition of
a Lipschitz boundary (Definition 1.2.1) and Og C €.

Proof. By definition of a Lipschitz boundary for each p € 02 there exists a
cylinder Cer(p) (€ and h depend on p). Clearly, U,caonx Cen(p) is an open
covering of the compact set 92 N K. Therefore, there exist finitely many p;
such that

k
U Ceyn,(p) 2000 K.
j=1

We define O; as C, pn,(p;) for every j € {1,...,k}. Since the distance ¢ of
(QNK)\Uj_, O, to 92 is positive, the 3 neighborhood Bs (2N K)\U;_, 0;)
of (ANK) \Uk O; is contained in 2. We define Oy as Bg((QﬂK) \U§:1 0;).
Then (O;)%_ is the desired open covering of QN K. a

Theorem 1.2.7. Let ¢ € D(R) and Q C R™ be open with Lipschitz boundary.

Then
Q o

Proof. We apply Lemma 1.2.6 on K = suppt. Then we have an open covering
QN K consisting of Og C Q and cylinder O; = C, p,(p;) for j € {1,...,k}. We
employ a partition of unity and obtain (ozj)?:o subordinate to this covering, i.e.

for everyi € {1,...,n}.

a; € D(0;), «aj(x)€[0,1], and Zaj y=1 for (€QNK.
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We define ¢; = a9 € D(O;). Hence, we have ¢ = Z?:o 1; and

k k
O dA = / 0; 5 i A = / By, dA.
/Q QNK Z ! _]z::() QNO; !

=0

Note that fQﬁOo O AN = fOo i dN = [4. 0o dN = 0. Therefore, by
Theorem 1.2.5 we have

k k k
jgo /QﬁOj ! ; QNO; ! ; o0N0O; ! 19]9)

which proves the claim. a

Theorem 1.2.8 (Gauf}’s theorem). Let Q C R"™ be open with Lipschitz boundary

and f € D(R™)™. Then
/divfd?\:/ v- fdu.
Q o0

Proof. Note that f; € D(R™). Hence, by Theorem 1.2.7

lefd?\: / 8if,» dA = / Z/ifi d,u: / 1/~fd,u. d
/Q ; Q ; o0 o0

This result can be extended to a more general class of functions by continuity,
e.g. HL ()", if Q is bounded. Note that for an unbounded 2 this formula cannot
be extended to H!(Q)" as shown in [57, Re. 13.7.4]. We will later use this
result to introduce an integration by parts formula for a certain class of L%(Q)
functions.

1.3 Dual Pairs

In this section we will introduce the notion of dual pairs, that allows us to treat
dualities for Hilbert spaces and for Banach spaces in the same framework.

Definition 1.3.1. Let X and Y be Banach spaces and let (-, )y, x: Y xX — C
be continuous and sesquilinear (linear in the first argument and antilinear in
the second argument). We define

X = Y

{ Yy - X/,
D —
Tr <-,(E>yﬁx.

and W: {
y o= (Y )vx,

If @ is isometric and bijective, then we say that (X,Y) is a (anti)dual pair and
(-, )v,x s its (anti)dual pairing.
We define
<$,y>X,Y = <y,$>Y,X,
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which is again a sesquilinear form.
If also W is isometric and bijective, then we say that (X,Y) is a complete
(anti)dual pair.

Remark 1.3.2. Since ® is isometric, the duality mapping of a dual pair (X,Y)
satisfies

[y 2)y x| < [lyllyllellx.
Example 1.3.3. There are some “natural” and well-known dual pairs.

e Let X be a Banach space, then (X, X’) is a dual pair by the dual pairing

(y,2)x x = y().
If X is additionally reflexive, then (X, X’) is even a complete dual pair.

e Let H be a Hilbert space, then (H, H) is a complete dual pair by its inner
product

<y7$>H,H = (y,T)H.

o Let p € [1,+0), X = LP(Q) and Y = L4(Q), where %—l— % = 1. Then
(X,Y) is a dual pair with the dual pairing

(v, 2)y.x = / yz .
Q

For p # 1 it is even a complete dual pair. Note that this is not a special
case of the first example as LY(Q) is “only” isomorphic to the dual space
of LP().

Clearly, every dual pair (X,Y) can be identified with (X, X’). However,
sometimes such identifications can make things a little bit confusing. Especially
for Hilbert spaces H it is (in most cases) more “natural” to regard the dual pair
(H, H) instead of (H, H'). Nevertheless, sometimes also for Hilbert spaces it is
more convenient to regard another dual pair, e.g. for the Sobolev space H!(R)
it is more handy to work with H™!(R). Furthermore, if you deal with both the
dual pairs (H, H) and (H, H') simultaneously, then it is less confusing, if you
are able to properly distinguish between them, even if the difference is only an
isomorphism.

Unfortunately, building this theory is a little bit harder than doing duality
theory only for Hilbert spaces, but on the plus side it gives a framework in
which the duality of Banach spaces and Hilbert spaces is the same. This is
especially an advantage, when it comes to adjoint mappings.

If we do not explicitly choose a dual pair, we work with (X, X'), if X is
a Banach space and (H, H) if H is a Hilbert space.
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Remark 1.3.4. If (X,Y) is a complete dual pair, then (Y, X) is also a complete
dual pair. A Banach space X is reflexive, if and only if there exists a Banach
space Y such that (X,Y) is a complete dual pair.

Definition 1.3.5. For a dual pair (X,Y) we define a sesquilinear form on

X xY by
(2B, s i

We call this sesquilinear form the Stokes-Dirac product. We will just write
{-,-), if the space is clear. If we regard canonical dual pairs like (X, X’) or
(H, H) for a Hilbert space H we will sometime just write -, )x and {-, ),
respectively. We say similar to inner products [z3] Ly [73], if {[Z2],[55]) =0

and correspondingly [Z)] Ly M and N Ly M for sets M, N C X x X',

Lemma 1.3.6. Let (X,Y) be a dual pair. Then (-, ) is a non-degenerated
sesquilinear form, i.e. (X x V)¢ = {0}.

Proof. Let [3,] € X x Y be such that [7,] Ly X xY. Then, in particular,
(5] Ly [9] for all y € Y, which means 0 = ([51],[§]) = (z1,¥)x,y. This
implies x; = 0, since (X,Y) is a dual pair. Analogously, we can show that

.13220. a

Clearly, for a complete dual pair (X,Y) it is easy to show that (X xY,Y x X)
is a complete dual pair. However, the next lemma shows that there is another
complete dual pairing for X x Y, which comes from an indefinite inner product.

We endow X x Y with [|[72 ]| xxy = VIz1l% + [|z2]3-

Lemma 1.3.7. Let (X,Y) be a complete dual pair. Then (X xY, X xY) with
(-, W xxy is a complete dual pair.

Proof. Since this is a duality between the space X x Y and itself, it is enough

to show that
- { XxY — (XxY),

[z2] = ([22] Dxxy
is isometric and bijective.

Let [z ], [¥2] € X xXY. Then by the triangle inequality and Cauchy Schwarz’s
inequality

‘« [i;] ; Bj >>’ = [(z2, y1)v,x + (x1,92) xv| < llwlly [lvally + 21l x[|yelly
< lwally + o2l /Tl + el

_|||* 1

T2 Y2

On the other hand for z; € X there exits a yo € Y with ||y2|| = ||z1]| such that
(w1,y2) = ||1]|? and for 2o € Y there exists a y; € Y with |y1]| = ||a2] such

‘XXY ‘XXY
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that (xo,y1) = ||22]|? (this is a consequence of the Hahn Banach theorem and
the fact that (X,Y) is a complete dual pair). Hence,

T1 Y1

T2 Y2

4l hn _ 2 2 _||[T
[ B = e < [ 2]
To show surjectivity let f € (X x Y)’ be arbitrary. Then

which implies [[®[%, ][l xxyy = [z ][ xxv-
FABD =f0S D+ F([ 2]

Since both parts can be seen as elements of X’ and Y’, we find 25 € Y and
x1 € X such that

)

2 ‘

XxXY XxXY ’XXY

F([5]) = (2 y)vx + (21,920 xy = ([23], [0 1)
Consequently, ®[31] = f. a

Definition 1.3.8. Let (X,Y) be a dual pair, M C X and N CY. Then we
define the annihilators of M and N by

MYy = {yeY|(y,z)yx =0Vr € M},
XN ={z e X|{y,x)yx =0Vy € N}.

We will just write M~ and + N, if the dual pair is clear. If (X,Y) is a complete
dual pair we also write N+ for - N.

Note that for a complete dual pair (X,Y") also (Y, X) is a complete dual
pair. Hence, the notation N1x for -X N is justified for N C Y as both describe
the same set.

The next theorem is a translation of [53, Theorem 4.7] in our notation.
Nevertheless we will present a proof.

Proposition 1.3.9. Let (X,Y) be a complete dual pair, and M C X and
N CY be subspaces. Then

MY =M and N*+=N.

Proof. Tt is sufficient to show M+ = M as the second assertion follows from
the first applied to the complete dual pair (Y, X).

It is obvious that M C M*' and since M+ is closed, we conclude M C
M=+, On the other hand, if # ¢ M, then we can separate x and M by a Hahn-
Banach theorem ([53, Theorem 3.5]) with a functional ¢ such that ¢(z) =1
and (M) = 0. This ¥ can be represented by (y,-)y,x foray € Y. This y
satisfies y € M+ and (y, )y x # 0, therefore z ¢ ML+ Qa
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Chapter 2

Linear Relations

In this chapter we will introduce linear relations, which can be seen as a
generalization of linear operators or as multi-valued linear operators. Although
it may be possible to completely avoid this concept, it is worth to use it, as
otherwise proofs can become cumbersome and some interesting links will stay
hidden. We will introduce well-known concepts like adjoints, skew-symmetry,
dissipativity and the Cayley transform for linear relations. Then we will present
the most important results on boundary triples (for our purposes). Finally, we
recall strongly continuous semigroups and in particular contraction semigroups.

2.1 Basics

Definition 2.1.1. Let X,Y be two vector spaces over the same scalar field.
Then we will call a subspace T of X XY a linear relation between X and Y. A
linear relation between X and X will be called a linear relation on X.

Remark 2.1.2. Every linear operator T: X — Y can be identified by a linear
relation by considering the graph of T'. In fact, if we consider mappings from X
to Y as subsets of X x Y then T is already a linear relation. On the other hand
not every linear relation comes from an operator, as {0} x Y demonstrates the
most degenerate example.

The statement [y] € T can be interpreted as Tz “="y, if T' comes from a
linear operator, this is also its literal meaning. However, for a general linear
relation y is not uniquely determined by z. So from a multi-valued operator
perspective this can be interpreted as y € Tx.

Definition 2.1.3. For a linear relation 7" between the vector spaces X and Y
we define

e dom7 :={z € X |3y € Y such that [, ] € T} the domain of T,

e ran7 = {y € Y |3z € X such that [y] € T} the range of T,

15
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o kerT :={x € X|[§] € T} the kernel of T,
e mulT :={ye€Y|[)] €T} the multi-value-part of T.
We say T is single-valued or a linear operator, if mulT = {0}.

Remark 2.1.4. Every linear relation T which satisfies mulT = {0} can be
regarded as a linear mapping T' defined on dom 7', where Tx = y is well defined
by [y] € T.

Definition 2.1.5. Let X, Y, Z be vector spaces and S, T be linear relations
between X and Y, and R a linear relation between Y and Z.

o S+T ={[yf]eX xY|[,;] € Sand][,,] €T},

o M= (5] € X xV|[5] €T},

o TN (1)€Y x X|[5] €T},

e RS ={[%]€ X xZ |3y €Y such that [;] € S and [¥] € R}.

It is easy to check that the sets defined in the previous definition are
also linear relations. Furthermore, if S, T and R are linear operators, then
the previous definition coincide with the usual definition of addition, scalar
multiplication, inverse and composition.

Definition 2.1.6. For a Banach space (X, ||-||) and a linear relation A on X,
we define

e p(A) ={AeCU{c}|(A—N)"t e Ly,(X)} as the resolvent set,
e 0(A) = (CU{oo})\ p(A4) as the spectrum,
e 0,(A) = {\ € CU{oo} |ker(A — \)~! # {0}} as point spectrum, and

o r(A):={AeCU{oo}|(A— N1 e Ly(ran(A — N), X)} as the points of
reqular type,

where ran(A4 — )) is endowed with the norm of X and we set (T —o00)™t =T
and ran(T — co0) = dom 7.

Note that definition of (A — 0o)™! is just to ensure that co € o(A), if A is
unbounded.

Definition 2.1.7. Let X be a vector space over C and M = {: g] € C?x2,
then we define the mapping 737 X x X — X x X by

- {x} . [5[ ’yl} {m] _ [533—1—73/]
My'_BI ol | |y| — |Bx+ay|’

Lemma 2.1.8. For M, N € C?*? we have TaTn = Tun and therefore, for

invertible M also Thy—1 = Tar L.
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sl = ool ]

0 1 0 110 1 0 1 0 1 0 1
TMTN_L o]ML o} L O]N[l O}_[l o]MNL o]_TMN'

From the already shown, we can immediately conclude that 75,-1 = TJ\_41. a

Proof. Note that

Lemma 2.1.9. Let A be a linear relation on a vector space X and M = {: g} €
C2*2. If mul A = {0}, then

T (A) = (@A + B (vA+ 617"

Proof. Let [§] € Tar(A). Then there exists a [y] € A such that [§] = [g;i?xﬂ

By the definition of the addition and multiplication by a scalar for linear
relations we have [oy¥g.] € (@A + BI), [4y56:] € (YA + 1) and therefore
[wioe] € (yA+6I)~t. Consequently [§] € (aA+ BI)(yA+6I)~L

On the other hand let [§] € (aA + BI)(vA + 6I)~!. Then there exists a
x € dom A such that [2] € (YA+8I)"! and [§] € («A+BI). Since mul A = {0},
there exists a unique y € X such that [y] € A. Hence, a = vy + dz and

b= ay + fz and consequently [§] € Tar(A). Q
Remark 2.1.10. For M = [: ?} € C?*2 with det M # 0 we have the Mobius
transformation
o2 = 258 — (0 4 Bz +6)
M=) yz+0 v ’

By Lemma 2.1.9, we can see that ¢pr(A) = (aA + B)(yA+ §)~t = 7pr(A) for
any linear relation A with mul A = {0}.

Hence, the previous definition of 7p;(A) can be seen as the Mobius transfor-
mation of a linear relation.

2.2 Adjoint Linear Relations

We will introduce a slightly more general approach to the adjoint of a linear
relation (or operator). This is again a nuance coming from a proper distinction
of identifications of dual spaces. Clearly, all adjoints for different (isomorphic)
dual spaces are isomorphic in some sense, nevertheless this differentiation can
sometimes reveal details, that are otherwise hard to spot.
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Definition 2.2.1. Let (X1,Y7), (X2,Ys) be dual pairs and A a linear relation
between X; and Xs. Then we define the adjoint linear relation by

AFVaxvi = {{W] €Y, x Y,

Y1 2

(Y2, T2)vs, x> = (Y1, Z1)v;,x, for all Bl} € A}-

We will just write A*, if the dual pairs are clear.

For a Banach space X, we will regard the dual pair (X, X’) for the adjoint,
if no other dual pair is given. Similar, for a Hilbert space H we will regard the
dual pair (H, H), if no other dual pair is given.

Remark 2.2.2. Let Hy, Hy be Hilbert spaces and let us regard the natural
complete dual pairs (Hi, Hq) and (Hs, He). Then the adjoint of a densely
defined linear operator A: Hy — Hy can be characterized by

Lyf} e A" & Ay, Ax)y, = (y1,x)g, forall z € dom A.
1

This matches the usual definition of a Hilbert space adjoint, if we regard y, as
A*ys

(Y2, Ax)p, = (A2, @), -
In fact we will later see that for a densely defined linear relation its adjoint is
an operator.

In the operator case the next lemma is sometimes used as the definition of
dom A*.

Lemma 2.2.3. Let A be an operator (mul A = {0}). Then we can characterize
the domain of A* by

re€domA® & domA>u— (z,Au)y, x, i continuous w.r.t. ||-||x, -

Proof. If © € dom A*, then there exists (at least one) y € Y7 such that

(x, Au)y, x, = (Y, u)y;,x, forall w € domA.

Hence, u — (x, Au)y,, x, is bounded by ||y||y; and therefore continuous.

If : dom A — C,u — (x, Au)y, x, is continuous, then we can extend this
mapping by continuity on dom A. By Hahn-Banach we can further continuously
extend this on X; (not necessarily uniquely), denoted by . Since (X1,Y1)is a
dual pair, there exists a y € Y; such that ¢(-) = (y,-)y,.x,. Hence,

<Z’AU>YQ,X2 = ¢(u) = <y,U>Y1’X1
which implies [;] € A* and = € dom A*. a

Lemma 2.2.4. Let (X1,Y1), (X1,721), (X2,Y2) and (X2, Z2) be dual pairs and
Ui: Y, = Z1 and Vy: Yo — Zy be the isomorphisms between Yy and Z1, and
Y5 and Zy, respectively. Then we have for a linear relation between X1 and Xo

U, 0

A*Z2x21 — \Ile*Y2><Y1 \1151 — { 0 o
1

:| A*Y2><Y1 .
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Proof. By the definition of the adjoint relation we have

|:§:| € A>n And <xav>Y2,X2 = <yau>Y1,X1 v |:;L]L] €A

<~ <\I/2xaU>Z27X2 = <\Il1y7u>Z1,X1 v |:7’l‘)ll:| S A
\1121‘
& € A*72x 21,
[‘Iﬁy}
This implies the claim. a

Remark 2.2.5. Let (X,Y) be a complete dual pair. For a linear relation A
between X and Y we use the dual pairs (X,Y") and (Y, X) such that the adjoint
relation A*XxY is also between X and Y. In this case we can characterize the
adjoint relation by

o e (BB, -0 e [

or shorter by
—A* = Aty

Lemma 2.2.6. Let (X1,Y7), (X2, Ys) be dual pairs and let A be a linear relation
between X1 and Xo. Then

o (—A)T=_A1
° (_A)J-YIXYQ = _Alvixva gnd
° (A*l)ly.zxyl — (AJ-leYQ)*l.

Proof. We show (—A)~! = —A~! by

(fle (A tTe [M]ede [Plede[fHleA e f]le—AL
The second assertion (—A)+ = — A~ follows from

(1€ (A" & (G115 Dyixvaxxx, =0 V[i]€A
<[—$y] [u]>ylxy27X1><X2 =0 V[Z] €A

& [y] e —(4h).

Finally, (A~!)+ = (A+)~! can be seen by

[5le (A e (FL D vixmaxxx, =0 V)€
<:><[g]’[u]>Y2><Y1,X2><X1:O V[Z]E
]

s et Q

g
SN S
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Proposition 2.2.7. Let (X1,Y7), (X2,Y2) be dual pairs and A a linear relation
between X1 and Xo. Then we have the following identities

A= (A=A =~
Moreover, A* is closed.
Proof. Note that
(v, w)y x, + (@, 0)ve x0 = (2], [V Dvixva.xixx,

Therefore we can reformulate the condition in the definition of A*

e {f ([ ) 0w [ e

The other characterizations follow from Lemma 2.2.6. The closedness follows
from the closedness of the annihilator. a

Lemma 2.2.8. Let (X1,Y7), (X2,Y2) and (X3,Y3) be dual pairs and A a linear
relation between X, and Xo. Then

(i) mul A* = (dom A)*, ker A* = (ran A)*,

(ii) (BA)* D A*B* for all linear relations B between Xo and X3,
(iii) (BA)* = A*B* for all operators B € L (X2, X3),
Proof.

(i) By the definition of A*, we have

=0
~ =
mul A* = {yeYs|[J] € A*} = {y € Y2|(0,v) = (y,u) for all [}] € A}
= (dom A)*,
=0
ker A* ={zeYi|[§]e A"} ={z e V1| (z,v) = (0,u) for all [}] € A}
= (ran A)*.

(ii) If [] € A*B*, then there exist a z € Y such that [Z] € B* and [;] € A*.
Moreover,

(T, W)y, x5 = (2,V)v,,x, forall [5]€ B,

(z,0)vs,x, = (¥, u)y,,x, forall [}]e A

Hence, (z,w)y, x; = (y,u)y,,x, for all [] € BA and consequently [3] €
(BA)*.
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(iii) Since B is an everywhere defined operator, we can write BA = {[ g, ]|[%] €

A}. Therefore,
(BA)* = {[}] € Y3 x Y1 | (2, Bv)y, x, = (y,u)y;,x, for all [I{] € A}.
If [§] € (BA)*, then
(x, Bu)c, = (B*z,v)c, = (y,u)x, forall [¥]e€ A,

and in turn [B,7] € A*. Clearly, we also have [5%,] € B*. Hence
[y] € A*B*.
d

For complete dual pairs (X1, Y1) and (X2, Y2) the adjoint of a linear relation
A between X7 and X5 is defined by A* = A*Y2x¥1., However, we can also define
the adjoint of a linear relation B between Y5 and Y; by B* = B*X1xX2 ag
(Y2, X2) and (Y7, X1) are also dual pairs. Therefore, we can take the double
adjoint of A which is

A = (A*YZXYl )*X1><X2 .
The next lemma will show that this is just the closure of A in X; x Xs.

Lemma 2.2.9. Let (X1,Y7), (X2,Y2) be complete dual pairs and A a linear
relation between X, and Xo. Then

A = A

Proof. By the identities in Proposition 2.2.7 and Proposition 1.3.9 we have
1 _
A= (= (A = (™)) = at = a

In some sense a linear relation on a complete dual pair (X,Y), i.e. Ais a
linear relation between X and Y, is the closest thing to a linear relation on a
Hilbert space. Note that A* is again a linear relation between X and Y. Hence,
we can define things like symmetry.

Definition 2.2.10. Let (X,Y) be a complete dual pair and A a linear relation
between X and Y. We call A

o symmetric, if A C A* and self-adjoint, if A = A*.

o skew-symmetric, if A C —A* and skew-adjoint, if A = —A*.

dissipative, if Re(y, z)y,x < 0 for all [y] € A and mazimal dissipative, if
A is dissipative and there is no proper dissipative extension of A.

accretive, if —A is dissipative and mazimal accretive, if —A is maximal
dissipative.
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Note that, if H is a Hilbert space and we regard the dual pair (H, H) and
a linear relation A between H and H, then the previous definition coincides
with the standard definition in the literature. However, for Banach spaces
dissipativity and accretivity are usually defined differently.
Remark 2.2.11. If A is symmetric/self-adjoint, then 1A is skew-symmetric/skew-
adjoint. Conversely, if A is skew-symmetric/skew-adjoint, then iA is sym-
metric/self-adjoint.

Lemma 2.2.12. A self-adjoint operator A, i.e. A* = A and mul A = {0}, is
densely defined. A skew-adjoint operator B is densely defined.

Proof. By Lemma 2.2.8 we have
dom A = (mul A)* = {0}* = X,

which proves the claim.
Clearly, this already implies the result for skew-adjoint operators, as iB is
self-adjoint. Q

Lemma 2.2.13. A linear relation A is skew-symmetric, if and only if A is
dissipative and accretive, i.e. Re(xa, z1)y,x =0 for all [31] € A.

For operators the condition can be read as Re(Az,z)y,x = 0. In other
words (Az, z)y x € iR.

Proof. Let Re{wa, z1)y,x = 0. Note that ([z1],[z2]) = 2Re(x2,z1)y,x. By
the polarization identity (Lemma A.3.1), we have

1) R P P EE R (| R
T2 Y2 T2 Y2 T2 T2 To

The right hand side of the equivalence is satisfied by assumption and the left
hand side implies by Remark 2.2.5 that —A C A*.

If A is skew-symmetric, then [71] € A implies [ 7] € A*. Hence, by the
definition of the adjoint

(T2, 1)y, x = (T1, —T2)xy

and consequently (x2,z1)y,x + (2, z1)y,x = 0, where the left hand side equals
the real part of (z2,21)y x. a

Remark 2.2.14. We can characterize skew-symmetry, dissipativity and accretivity
in the following way

A skew-symmetric < Re(y,z) =0 V[y]le A & ([y],[]) =0 V[y]e A,
A dissipative & Re(y,z) <0 V[l €A & ([y].[y]) <0 V[y] €A,
A accretive < Re(y,z) >0 V[y]€ A < ([y].[y]) >0 V[y] €A
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2.3 Skew-symmetry and Dissipativity on Hilbert
Spaces

In the following we will regard linear relations on Hilbert spaces. Similar to
defect indices for symmetric operators we want to introduce the analogon for
skew-symmetric operators. We will discuss the spaces ran(A—\) and ran(A+\),
where Re A # 0. Note that contrary to the concept for symmetric operators
we regard a pair of complex numbers A, —\ mirrored along the imaginary axis,
instead of the real axis. This is not surprising as the point spectrum of a
skew-symmetric operator is on the imaginary axis.

Lemma 2.3.1. Let A be a closed dissipative linear relation on a Hilbert space
X and X € C such that Re A\ > 0. Then ran(A — \) is closed in X.

Proof. Let [y] € Aand [Z] € (A—)) such that z = y—Az. Note that (A—ilm\)
is also a dissipative linear relation and therefore Re(y — iIm Az, z) < 0. Then
we have the following inequality

2% = lly — Azl|% = lly — ilm Az — Re Az[|%
<0
= |ly —iImAz||% —2Re ARe(y — iIm Az, 2) x +|Re A\ z||%

>0

> [Re AP|| 1%

Let ([ ])nen be a sequence in (A — X) such that (z,)nen converges to z € X.
Then the previous inequality implies that also (x,)n,en converges to a limit
x € X. Since A is closed (and therefore also (A — \)), we conclude that

[2] € (A — )\) and consequently that ran(A — )) is closed. a

Corollary 2.3.2. Let A be a closed skew-symmetric operator on a Hilbert space
X and X € C such that Re X # 0. Then ran(A — \) is closed in X.

Proof. Note that A and —A are dissipative. Hence, for Re A > 0 we apply
Lemma 2.3.1 on A and for Re A < 0 we apply Lemma 2.3.1 on —A. d

Lemma 2.3.3. If A is a maximal dissipative linear relation on a Hilbert space
X, then (A —1) is surjective, i.e. ran(A —1) = X.

Proof. Note that ran(A — 1) is closed. Assume that (A — 1) is not surjective.
Then there is a non zero z € X that is orthogonal on ran(A4 — 1), i.e.

0=(y—z,2)=(y,2) — (z,2) forall [}]e€ A (2.1)

If z € dom A, then, by the previous equation and the dissipativity of A, we
have for all [7] € A
Rel|z||? = Re(w, z) < 0.
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Therefore, z = 0, which contradicts our assumption z # 0. On the other hand,
if z ¢ dom A, then we extend A to B = span(A U {[ Z,]}), which is again
dissipative. This can be seen by using (2.1)

Re(az +a,—az +y) = —|af[|2|* + Re({az,y) — (z,az)) +Re(z,y) <0

=0

for [y] € A. However, this contradicts the maximal dissipativity of A. Hence,
such a z cannot exist. a

Lemma 2.3.4. Let A be a closed skew-symmetric operator on a Hilbert space
and A € C such that Re X # 0. Then

dom A* = dom A + ran(A — \)* 4 ran(A + \)*. (2.2)
Proof. We start showing that this sum is indeed direct. Let
fedomA, gecran(A—XN* and h€ran(A+ Nt
— —
=ker(A*—\) =ker(A*+\)

be such that
f+g+h=0. (2.3)

Applying A* — X on this equations yields (A*f = —Af and A*h = —\h)
—(A+Nf-=A+Ah=0
——
=2Re A

By assumption the summands are orthogonal and Re A # 0, therefore
(A+X)f=0 and h=0.

Since A is skew-symmetric, only a pure imaginary number can be an eigenvalue
and consequently f = 0. Because of (2.3), we also see g = 0.

Finally, we show that there is equality in (2.2). Let u € dom A*. Since
ran(A — ) is closed by Corollary 2.3.2, we have X = ran(A—\) @ (ran(A4—\))* .
Therefore, we can decompose

(A* 4+ N)u=uj +up, where wu; € ran(A — \),uy € (ran(A4 — \))*.
We can write u; = (A — \)f for an f € dom A and uy = (X + \)g, where
g= X—}r/\uQ € ker(A* — ).
(A +Nu=(A=Nf+A+A)g=—(A"+X)f+ (A" + N)g.
Therefore, h == u+ f —g € ker(A*+ ) = (ran(A+ X))t andu = —f+g+h. Q

Definition 2.3.5. Let X and Y be Hilbert spaces and A: X — Y be a linear
operator. Then we define the graph inner product by

<fag>A = <f7.g>X + <Af7Ag>Y
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The corresponding graph norm is given by

1£lla =I5 + 1AL

It is easy to see that dom A is a Hilbert space with the graph inner product, if
A is a closed operator (if A is closed in X x Y).

Lemma 2.3.6. Let A be a closed skew-symmetric operator on an Hilbert space
X. If we regard dom A* with the graph inner product of A*, then we have the
following orthogonal decomposition

dom A* = dom A @ 4« ran(A — 1)~ @4+ ran(A + 1)+,

where ran(A — 1)+ is still the orthogonal complement of ran(A — 1) in X.
Proof. By Lemma 2.3.4 for A =1 we know that the sum on the right hand side
spans all of dom A*. Hence, it is left to show that is an orthogonal sum.

Let f € dom A and g € ran(A — A\)* = ker(A* — X). Then by assumption
A*f =—Af and A*g = \g, therefore

* * ~—1 * N
<fag>A*:<fag>X+<A faAg>X:<f7)‘ Ag>X7<Af,)\g>X
—1 —
= (£, (" =Narg)
(6 T,

Hence, if A = %1, then we have orthogonality.

Let g € ker(A — 1) and h € ker(A 4 1). Then

<g’ h>A* = <g7h’>X + <A*g,A*h>X = <g7h>X + <g7 _h>X = 07
which finishes the proof. d

Remark 2.3.7. Since dom A* endowed with the graph inner product of A* is
isomorphic to A* as subspace of X x X. Hence, by Lemma 2.3.6 we can also
decompose A* into

AT =A ©® ‘4|ram(Afl)L ® A‘ran(AJrl)i’
where the orthogonal sum is in X x X.

Lemma 2.3.8. Let A be a densely defined, closed skew-symmetric operator on
a Hilbert space X. Then

<f,g>A*:i<<[A{fHA€g]» for fedomA*,g e ran(A — (£1))*

Proof. Let f € dom A* and g € ran(A4 — (£1))*. Note that ran(A — (£1))+ =
ker(A* — (£1)). Therefore, we have g = £A*g and

-(L] L)) :
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Definition 2.3.9. Let A be a linear relation on a Hilbert space. Then we
define the Cayley transform of A by

C(A) = a1 (A) = {[_iiﬂ ‘ m c A}, where M — % E _11] .

Remark 2.3.10.

e Note that the factor L is only for cosmetic reason as 7,3y = Ty for
a # 0.

e Note that the Cayley transform comes from the Md&bius tranformation

S

z+1
z—1’

om(z) =

which maps the imaginary axis on the unit circle ring! and the left half
plane on the interior of the unit circle?. Therefore, it will not come as a
surprise that the Cayley transform of a skew-adjoint operator is a unitary
operator and the Cayley transform of a dissipative linear relation is a
contractive operator.

e The inverse Cayley transform is given by
CH(A) =cC(A).
This can be easily seen by M? =1 and Lemma 2.1.8.
e If A is an operator then we can write the Cayley transform as
C(A)=(A+1)(A-1)""
If additionally 1 ¢ 0,(A), then C(A) is an operator.

Definition 2.3.11. We say a linear relation A between two Banach spaces X
and Y is contractive, if

€T
Slea = oy <l

Note that every contractive linear relation A satisfies mul A = {0}, or in
other words A is an operator. This can be easily seen by

blea = <o
Y
Lemma 2.3.12. Let A be a dissipative linear relation on a Hilbert space. Then

its Cayley transform is a contractive operator. Conversely, the Cayley transform
of a contractive operator K is a dissipative linear relation.

Loften denoted by T
2often denoted by D
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Note that a contractive operator does not have to be everywhere defined.

Proof. By definition, for [}] € C(A) there exits [y ] € A such that
ul  |[—rx+y
vl | T4y

lul® = llzl* + llyl|* — 2Re(z, y)
[vll* = lll* + [ly]I* + 2 Re(z, y).

So we have

Since A is dissipative, this implies ||v|| < ||u||. Consequently C(A) is a contractive
linear relation, which is automatically an operator.

By definition,
x _J|—z+ Kz
flerp =]

- {[757
Hence, for [*] € C(K) we have

sty xEdomK}

Re(v,u) = Re(z+ Kz, —x+Kz) = —||z||*+| Kz||*+Re((z, Kz) — (K, z)) <0,

=0

because K is contractive. This gives the dissipativity of C(K). d

Lemma 2.3.13. Let K be a linear relation on a Hilbert space with mul K = {0}
(single-valued). Then

ker [1+K 1-K]=C(K).
Proof. Let [§] € ker [1+ K 1— K]. Then
(K +1)a= (K —1)b.
Subtracting Kb and b on both sides gives
K(a—b)+ (a —b) = —2b,
which implies [“5}] € (K + 1). Moreover
(K-1)(a—b)=Ka—a— (K —-1)b=—2aq,

—_——
=(K+1)a

which implies {(;EZ)} € (K —1)~'. Hence, [3¢] € (K 4+ 1)(K —1)~! and by
linearity [§] € (K + 1)(K — 1)~ = C(K).
For the reverse inclusion note

ew= {2y =Rl

T+y xedomK}.
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Therefore, if [§] € C(K), then

[1-K 1+K] [‘b‘] —[1-K 1+K] H}fgﬂx_o

which proves the assertion. a

Theorem 2.3.14. The Cayley transform of a maximal dissipative linear rela-
tion is an everywhere defined contractive operator and conversely the Cayley
transform of an everywhere defined contractive operator is a maximal dissipative
linear relation.

We could also say “maximal contractive operator” instead of “everywhere
defined”. In this notation the Cayley transform preserves maximality.

Proof. We only have to check whether the Cayley transform of these linear
relations are everywhere defined and maximal, respectively, as we have already
shown in Lemma 2.3.12, that the Cayley transformation maps dissipative linear
relations on contractive linear relations and vice versa.

If A is a maximal dissipative linear relation, then by Lemma 2.3.3 ran(A —
1) = X and therefore domC(A) = X.

If K is a everywhere defined contractive operator, then C(K) is dissipative. If
C(K) would not be maximal dissipative, then it would have a proper dissipative
extension A. The Cayley transform of A would be a proper contractive extension
of K, which is impossible as K is already everywhere defined. a

Corollary 2.3.15. A linear relation A on a Hilbert space X is mazximal
dissipative, if and only if there exists an everywhere defined K contractive
operator on X (dom K = X ) such that
A=ker[I+K I-K]J. (2.4)
We can even say C(A) = K and C(K) = A.
Proof. This immediately follows from Theorem 2.3.14 and Lemma 2.3.13. U

Remark 2.3.16. There is also a slightly different characterization of maximal
dissipative operators, given by

A:ker[IfK IJrK].

This gives the inverse linear relation of the linear relation in (2.4) (the inverse
of a dissipative linear relation is again dissipative). This becomes even more
obvious, if we notice that —K is also contractive.
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2.4 Boundary Triples

Boundary triples were investigated primarily to determine self-adjoint extensions
of symmetric operators. We will use them to find dissipative extensions of skew-
symmetric operators. We will make a slight modification on the standard
definition, which allows us to work with a complete dual pair as boundary space
instead of a Hilbert space.

Boundary triples are studied extensively in [18].

Definition 2.4.1. Let Ay be a densely defined, skew-symmetric, and closed
operator on a Hilbert space X. By a boundary triple for Aj we mean a triple
((B4,B-), By, B) cousisting of a complete dual pair (B4, B_), and two linear
operators By: dom A — By and By: dom Af§ — B_ such that

(i) the mapping B = [g;]: dom A§ — By x B_, © — [g;i] is surjective,

and

(i) for z,y € dom A there holds

(Agz,y)x + (z, Agy)x = (Biz, Boy)s, 5. + (B2x, B1y)s_5,.. (2.5)

In order to avoid too much notation we will assume that the boundary
space is a reflexive Banach space and we regard the complete dual pair (B, 5’)
instead of (B4, B_) and denote the boundary triple as (B, By, B2) instead of
((B,B), By, Bs), which represents the setting of complete dual pairs.

When we say (B, By, Ba) is a boundary triple for Aj, we implicitly assume
that Ag is densely defined, closed and skew-symmetric. Clearly, if Ag is densely
defined and skew-symmetric, we can always regard A instead to have a closed
operator.

Note that if B is a Hilbert space and Bs; maps also into B, then we can
replace the dual pairing in (2.5) by the inner product in B. If B is a Hilbert
space, this can always be forced, since we can replace By by ¥ By, where VU is
the natural isomorphism between B’ and B. Nevertheless, we will allow this
nuance.

Alternatively we can write (2.5) as

(L] L)~ (= [E0), .

Since dom A§ equipped with the graph inner product of Af is isomorphic to
A{ as subspace of X x X, we can also regard By and Bs as mapping defined on
A{ instead of dom Af. In fact, by this approach we could generalize boundary
triples for linear relations, as done in [7]. However, also for our usage this can
sometimes simplify some arguments. In [7] they present an even weaker concept
of boundary triples: so called quasi boundary triple.
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Definition 2.4.2. Let (B, By, B2) be a boundary triple for Aj. Then we define

B Ay — B, = [ A — B, B Ay, — BxB,
Sl e B, 1 = B, 1~ [l

The only difference between Bl and Bj is that Bl is defined on the operator
A{, where we regard Af as subspace of X x X, and B; is defined on dom A§. If
we introduce 7 : X X X — X, [51] — x1 the projection on the first component,
then we have the relation

Bily] = Bim[3].

On the other hand, since A{ is an operator (well-defined), we can also find
an embedding ¢ from dom A onto Aj. Therefore, we have Bjz = Bjuz.
Accordingly, we have the same for By and B.

If we would fully commit to linear relations, we could write (2.5) even more
compactly, as

(frg)xxx = «Bf, Bg)ﬁ;xg/ for all f,g€ A§.

In [7] this notation is used.

Remark 2.4.3. Let A be a densely defined, closed, and symmetric operator.
Then iA is a densely defined, closed, and skew-symmetric operator. If there is
a boundary triple (B, By, Bs) for (iA)*, then we have the following adaption
of (2.5)

(A*z,y) — (x, A%y) = (iB1z, Boy) — (Baz,1B1y).

Hence, (B,iB1, Bs) is a boundary triple for A* in the notion of symmetric
operators.

One could wonder why we introduced a boundary triple for the adjoint of a
skew-symmetric operator instead of replacing Af just with any operator A in
Definition 2.4.1. One could think that these properties already imply that A*
is given by the restriction of —A to ker By Nker By and A is the adjoint of a
skew-symmetric operator anyway, but this is not necessarily true as we will see
later in Example 2.4.6.

Example 2.4.4. Let X = L%(0,1)? and

0o 4
Ay = — [d %51 with  dom Ay = H3(0,1) x H3(0, 1).
dg

Then the adjoint of this operator is given by

0

d¢

d
%5] with dom A = H'(0,1) x H*(0,1).
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For smooth functions we have by the integration by parts formula

cinn o= [ [ ) (1) 1

- /ol(fégl + fig2 + 195 + f297) € = ngl‘; +fion|

= F2(1)g1(1) = £2(0)91(0) + f1(1)ga(1) = f1(0)g2(0)

(1) o < ([l ()
T HBlfg_/ B f Bag

1
0

Defining By f = [ﬁgég] and B f == [ _f;Z%)} yields (by continuous extension)

(Aof,9) +{f, Aog) = (B1f, Bag) + (Baf, Big). (2.6)

The mapping [g; ] : dom A} — K2 x K2 is surjective (this can be seen by choos-

ing f1 and f, to be linear interpolations). Hence, (K2, By, By) is a boundary
triple for Ag§.

The operator Ay can be recovered by restricting —A{ to ker B; Nker By as
the next lemma will show. However, if Aj satisfied item (i) and item (ii) but
wasn’t the adjoint of a skew-symmetric operator, then the next lemma would
not hold as Example 2.4.6 demonstrates.

Lemma 2.4.5. Let Ay be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X and (B, By, Bz) be a boundary triple for A§. Then

Ao = _A3|ker Binker Bo _A8|kerB'
In other words dom Ag = ker B; Nker By = ker B.

Proof. Let x € ker By Nker By and y € dom Aj. Then the right-hand-side
of (2.5) is 0. Hence,

(x, Ajy)x = (—Ajx,y)x forall y € dom Aj.

This yields (z, —Ajz) € AS* = Ap. Hence, 7A3|ker Bynker By C Ay.

On the other hand if z € dom Ay, then Ajz = —Apz and consequently

(Apx, y)x + (7, Agy)x = (—, Agy) x + (z, Agy)x = 0.
=—Agx

Therefore, the right-hand-side of (2.5) is 0 which can be written as

(([g;]:c,[g;]y»gxlg,ZO for all y € dom Aj.
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Since [g;] is surjective on B x B’, we have

B1l‘
BQJL‘

:| J_«,» B x 8/7

which implies « € ker By Nker By = ker B (because (-, ) is non-degenerated).
d

The next example shows that it is possible to have item (i) and item (ii) of
a “boundary triple” for an operator A (replacing A§ with A in Definition 2.4.1)
without A being the adjoint of a skew-symmetric operator. Moreover, it shows
that in this situation Lemma 2.4.5 does not hold. This demonstrates the
importance of A being the adjoint of a skew-symmetric operator in the definition.

Example 2.4.6. Let Ay be the operator on L%(0,1)? from Example 2.4.4.
Then we have a boundary triple (K2, By, By) for A, where By f := [fl(l)] and

f1(0)
— | O
Baf = [—}2”2(0) } ’
We define A as the restriction of Af on Hh}zo((), 1) x H%O}:{l}(o, 1), where

0},
)}

Hiy_o(0,1) = {f € H(0,1)| F(1)
and  Higy_14(0,1) := {f € H'(0,1) | £(0)

Therefore, we can reformulate (2.6) for f, g € dom A:
(Af,9) + (f, Ag) = (B1f, Bag) + (Baf, Big) = — f1(0)g2(0) + f2(0)(—g1(0)).

By defining F f := — f1(0) and F5f := f2(0) we again have that [%] : dom A —
K x K is surjective. However A is not the adjoint of a skew-symmetric operator.
If it were, then (K, Fy, F5) would be a boundary triple for A and

AT = 7A|kerFlﬂkerF2 = 7A8|Hé(0,1)2 = AO'
This would imply A = A** = A%, which is certainly not true.
In fact, with the boundary triple for A§ we can apply Corollary 2.4.11, which
il gi that the adjoint of A is —A| ., N .
will give us that the adjoint of A is 0|H{D}={1}(0,1)XH{0}=0(071)
Lemma 2.4.7. Let (B, By, Bz) be a boundary triple for Af. We endow dom A
with the graph inner product of Af. Then the following statements are true

(i) B: Ay — B x B is bounded.
(ii) B: dom Af — B x B’ is bounded (w.r.t. to the graph norm,).

(iii) B restricted to A(’§|(mn(A_1))L L s bijective, bounded and

EBAS (ran(A+1))
boundedly invertible.



2.4. Boundary Triples 33
(iv) B restricted to (ran(A —1))* @ (ran(A+1))* is bijective, bounded and
boundedly invertible.
Clearly, this also implies that Bi, By and By, B, are bounded.

Proof. Recall that we can decompose Lemma 2.3.6 dom Af into
dom A = dom Ag ® 4~ ran(A — 1) @ 4« ran(A + 1)+

By Lemma 2.4.5 dom Ag = ker B, which implies that B restricted to ran(A —
1)+t @a-ran(A + 1)+ is bijective. Hence, it is enough to show item (iv).
We will show that B|ran(A0 1)~ @ran(Ao+1)

ping theorem this also implies that B‘

is bounded. By the open map-
is bounded. For

ran(Ap—1)t@ran(Ag+1)-+ by B.

Let ([ ]),en be a sequence in ranB|mn<A*1>L C B x B’ that converges
to [¥] in B x B/. Then we define x, == B7!}[{"] and x = B~![¥%], which
gives the sequence (2, )nen in ran(Ag — 1)+, We can uniquely and orthogonally
decompose z into x = 2+ + 27, where ¥ € ran(4y — (1))*. By Lemma 2.3.8

ran(Ap—1)L@ran(Ag+1)+
notational simplicity we will replace B ’

- (@ — &, 20 — %) a5 — (X0 — 2,27 ) as

<< :Aaﬁ[—xm)]’{flsx&; —i >>M <<{A (e [Aii;—}»m
{ ﬁiﬁi:iii]’E;Eiziii§]>>w*<<[§;ﬁiziiﬂ’[gﬁi}»m,
(=] 5::§;ii}>>w+<<[3::ﬂv[izi?mw )

and x E ran(Ag— 1)+, by the closedness of ran(Ag —1)+. Moreover, Bz = [%] €
ranB’ which implies that raunB”mn(Ao_l)L is closed. Equation (2.7)

ran(Ap—1)L’
also implies the continuity of B’
-1

ran(Ao— 1)L Analogously, we can show that

| is continuous. Since B is bijective from ran(Ag —1)* & 4z ran(Ag+

ran(Ap+1)
1)t to B x B', we have B x B’ = ranB’ran e + ranB‘ran(A +1)¢’ which is
a decomposition of closed subspaces. Hence, the continuity of B|]ram Ao—1)L and
;1(A0+1)J‘ implies the continuity of B. a

Remark 2.4.8. B x B with (-, -)sxp is a Krein space. Its fundamental de-
composition is given by Bran(Ag — 1)+ and Bran(Ap + 1)*. The Krein space
topology and the norm topology of B x B’ coincide. Hence, we can endow B x B’
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with an inner product such that it is a Hilbert space. Consequently, there is
an inner product on B whose induced norm is equivalent to its original norm.
Therefore, we do not restrict ourselves, if we ask B to be a Hilbert space in
Definition 2.4.1 from the beginning.

Definition 2.4.9. Let Ay be a skew-symmetric operator and (B, By, B2) a
boundary triple for Aj. Then for a linear relation © between B and B’ (© C

B x B') we define
- T * Bl _ p-1
A@._{[y}er [BQ]xe@}_B O.

So Ag is the restriction of A} to dom Ag = {x € dom A | [gﬂx €0} If
© is even an operator on B, then dom Ag = ker(Bs — ©B;). If ©71 is an
operator, then dom Ag = ker(B; — ©71By).

On the other hand if we have —Ay C A C Ajj, then we can construct a linear
relation ©(A) such that Ag(a) = 4, by

0(4) = {gj dom A — El} A= BA.

2

Hence, every operator A that satisfies —Ag C A C Ag is given by Ag for some
linear relation © (for © = BA).

Proposition 2.4.10. Let Ag be a closed and skew-symmetric operator on a
Hilbert space X, (B, By, Ba2) a boundary triple for Ay and © a linear relation
between B and B'. Then

() Ae = Ag.

(i) Ay =—A_e-,

(ili) Ao is (maximal) dissipative/accretive, if and only if © is (maximal)
dissipative/accretive.

In particular, Ag is skew-adjoint, if and only if, © is skew-adjoint.
Proof.

(i) Since B is bounded and boundedly invertible, we have
do=B10=5"0= 4.

(ii) Note that by —Ag C Ag C Af, the adjoint of Ag is contained in —Ag.
Moreover, by assumption we have

(GLED B2 D), e
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for all [y ],[%] € Aj. Hence, by Remark 2.2.5

[u} e-Ay < B H c-0" & {u} € B71(-0%).
v v v —_—
ZA o

(iii) Note that dissipativity of a linear relation R between ¥ and Y’ can be
characterized by ([y], [5])y «y~ < 0 forall [] € R. Hence, again by (2.8)
we conclude the assertion. a

The next corollary is same result in a different notation, as it is presented
in [28].

Corollary 2.4.11. Let Ay be a skew-symmetric operator and (B, By, Ba) be
a boundary triple for Aj. Consider the restriction A of Aj to a subspace D

Bl] D. Then

containing ker By Nker Bs. Define a subspace of B x B’ by © = [B
2

the following claims are true:

(i) The domain of A can be written as

domA =D = {de dom Aj

By
Bacel
(ii) The operator closure of A is Af restricted to

By —

where © is the closure in B%. Therefore, A is closed, if and only if © is
closed.

D= {d € dom A}

(ili) The adjoint A* is the restriction of —A§ to D', where

sel o)

——o*

D = {d’ € dom A}

(iv) The operator A is (mazimal) dissipative if and only if © is a (maximal)
dissipative relation. It also holds that A is (maximal) accretive, if and
only if © is (mazimal) accretive.

2.5 Strongly Continuous Semigroups
We will be very minimalistic in this section and only introduce really necessary

results. However, there is a lot more to say about strongly continuous semigroups.
We refer to [15] for a detailed introduction.
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Let A be a n X n matrix and xy € C" any initial vector. Then we regard
the following differential equation (Cauchy problem)

&(t) = Ax(t), te€][0,400)

x(0) = xo.
The solution of this equation is given by x(t) = e*4zy. The exponential function
is not only defined for matrices, but also for bounded linear mappings on a
Banach space. Hence, this approach to solve differential equations can easily
extended to so called abstract Cauchy problems: Let X be a Banach space, A
be a bounded linear mapping and zp € X. Find a function z: [0, 400) such
that

#(t) = Az(t), te[0,+00) (2.9)

Again the solution is given by z(t) = e*4x.

However, we want to go even further and want to solve this abstract Cauchy
problem for unbounded operators. For unbounded operators the exponential
function is harder to define or not even possible, but if A satisfies a few conditions
we can find something that carries the essence to solve the abstract Cauchy
problem.

Definition 2.5.1. Let X be a Banach space and T': [0,4+00) = Lp(X). We
say T is a strongly continuous semigroup or Cy-semigroup, if

o T(0)=1,
o T(t+s)=T()T(s) for all t,s € [0, +00),
e and t — T(t)x is continuous for every x € X, i.e. T is strongly continuous.

Note that it is actually enough to ask for T is strongly continuous in 0, as
T(t+ s) =T(t)T(s) then already implies that T is strongly continuous in every
t € [0,+00).

By the properties of the exponential function we can see that T(t) := e*4,
for A € £1,(X), is a Cyp-semigroup.

Definition 2.5.2. Let T be a strongly continuous semigroup on a Banach space
X. We define its infinitesimal generator by

Azz{m eXxX‘yzlimT(t)zx}.
Yy t—0 t

Note that the infinitesimal generator A is an operator (mul A = {0}), since
limits in Hausdorff spaces are unique. So for x € dom A we can also write
Tt)x —x

Ax = lim
t—0
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Lemma 2.5.3. Let T be a strongly continuous semigroup. Then there exists
an M > 1 and an w € R such that

T ()| < Me**  for all t € [0,+00).

Proof. First we will show that there is an € > 0 such that ||T'(¢)| is uniformly
bounded for ¢ € [0, ¢]:

Let us assume that this is not true. Then for each n € N we there exists a
ty € [0, 1] such that

1T (tn)]| = n. (2.10)

Since (tn)nen converges to 0 and 7T is strongly continuous we have T'(t,,)x — z
for all x € X. Consequently, the set {T'(t,)x|n € N} is bounded in X for
every x € X. The principle of uniform boundedness implies that the set
{T(tn) |n € N} is bounded in £,(X), which contraticts (2.10). Thus there
exists an € > 0 such that ||T(¢)|| < M on [0, €].

We can write every t = ne+ 6, where § < e and n € N (n = [£]). This leads
to

IT O] = IT(ne + 8)| = |T()"T©G)|| < M"M < MM* = Mex "M,
Defining w as < In(M) finishes the proof. Q
Lemma 2.5.4. Let T be a strongly continuous semigroup, A its infinitesimal

generator and x € dom A. Then

d
a(T(t)gg) =T(t)Ax = AT(t)x.

Proof. Note that for fixed ¢ the operator T'(¢) is continuous. Therefore,

lim T+ s)x—T(t)x ~ lim T)T(s)x — T(t)x

s—0+ S s—0+ S

On the other hand, we have to check the limit from the left hand side, which
we can rewrite as a right hand side limit

lim T(t+s)x—T(t)x — lim T(t)x —T(t— s)x.

s—0— S s—0+ S

Hence, we have to check whether the limit agrees with T'(t)Axz. Note that
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T(t) < Me“! (by Lemma 2.5.3) and that 7' is strongly continuous:

% — T(t) Az

=

% —T(t—s)Az| + |T(t — s)Ax — T'(t) Az||

< HT(t —s)

< Me*(t=9) — Ax||+ ||T(t — s)Ax — T(t)Ax|| .

—0

‘T(s)x —

—0

47 (t)x = T(t)Az and T(t)z € dom A. Therefore,

Hence, g;

lim _ T(s)T(t)x — T(t)x
s—0+ S s—0+ S

= AT (t)x.

For the limit from left hand side we obtain the same since we have already
shown that the limits agree. d

Now let T be a strongly continuous semigroup, A its infinitesimal generator
and xg € dom A. Then the abstract Cauchy problem

z(t) = Ax(t), t€[0,+00),
z(0) = xo,

is solved by z(t) := T'(t)xo, as

#(t) = %

and z(0) = T(0)xo = xo. It can even be shown that this is the only solution,
see [15, ch. IT prop. 6.2].

Therefore, it is natural to ask when a linear operator A is an infinitesimal
generator of a strongly continuous semigroup.

We can even extend the solution term for initial conditions that are not in
dom A.

(T(t)zo) = AT (t)xg = Ax(t)

Definition 2.5.5. We say a function z: [0, +00) — X is a mild solution of an
abstract Cauchy problem (2.9), where A is an unbounded operator on X, if

x(t) —x(0) = A/o x(s)ds,

where we implicitly demand that fot z(s)ds € dom A.

Every mild solution is given by z(-) = T(-)zo for g € X, if A is the
infinitesimal generator of T'(-).

Since we are only interested in solutions that respect certain physical con-
servation laws, we restrict ourselves to semigroups that produce non-increasing
solutions w.r.t. the norm (in our applications the norm will represent the energy).



2.5. Strongly Continuous Semigroups 39

Definition 2.5.6. We say a strongly continuous semigroup T is a contraction
semigroup, if |T'(¢)]] <1 for all ¢t € [0, 4+00).

Note that our definition of dissipativity only matches the standard definition
in literature for Hilbert spaces.

Theorem 2.5.7 (Lumer-Phillips Theorem). Let A be a linear operator on
a Hilbert space X. Then A is the infinitesimal generator of a contraction
semigroup T, if and only if A is dissipative and ran(A — 1) = X.

Note that A is dissipative and ran(A —I) = X is equivalent to A is maximal
dissipative (in the Hilbert space case).

Proof. For the proof we refer to [15, ch. II, th. 3.15] a

Corollary 2.5.8. Let A be a closed and densely defined linear operator on
a Hilbert space X. Then A is the infinitesimal generator of a contraction
semigroup T, if and only if A and A* are dissipative.

Proof. For the proof we refer to [15, ch. II, cor. 3.17]. Q
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Chapter 3

Port-Hamiltonian Systems

The port-Hamiltonian formulation has proven to be a powerful tool for the
modeling and control of complex multiphysics systems. Port-Hamiltonian
systems encode the underlying physical principles such as conservation laws
directly into the structure of the system structure. An introductory overview
can be found in [59]. This theory originates from B. M. Maschke and A. van der
Schaft [36]. For finite-dimensional systems there is by now a well-established
theory [58, 14, 13]. The port-Hamiltonian approach has been further extended
to the infinite-dimensional situation, see e.g. [60, 30, 32, 26, 67, 61, 25, 28].
In [28] the authors showed that the port-Hamiltonian formulation of the wave
equation in n spatial dimensions possess unique mild and classical solutions.
We want to develop a port-Hamiltonian framework in n spatial dimension that
provides existence and uniqueness of solutions.

In this chapter we will give a precise definition of what we understand under
a linear first order port-Hamiltonian system. We aim to lift the theory of infinite
dimensional port-Hamiltonian systems in one spatial variable, that is presented
in the book of Jacob and Zwart [25] and Ph.D. thesis of Villegas [61], to n
spatial variables—at least in some aspects. Although Dirac structures play
an important role in most of the previous references, we choose a semigroup
approach as in [25]. In the Ph.D. thesis [61] there is even one chapter dedicated
to port-Hamiltonian systems in n spatial variables. We will adopt the system
equation:

5ot = 3 S PR (6.0) + RHO2(60. ez,

1
.’L'(O,C) = 550(4)’ < S Qa

where P; are symmetric matrices, Py is a skew-symmetric matrix and H is the
matrix-valued Hamiltonian density. The details are given in Definition 3.2.1.
However, the theory in [61] is limited, e.g. it can not handle Maxwell’s equations
as it requires that the boundary operators establish a Gelfand triples. We will

41
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see that the boundary operators of Maxwell’s equations cannot be extended
to operators that map into L2(99) in Example 5.1.8. We will overcome these
limits by, among others, introducing quasi Gelfand triple in Chapter 4.

We will associate “natural” boundary operators to this PDE, which can be
used to control and observe the system

u(t, ¢) = B(OH(Q)z(t, ¢), e, t>0,
y(t, ¢) = C(OH(¢)x(t,¢), ¢ €0, t>0.

However, for now we restrict ourselves to the case of no input (u = 0), which
essentially gives a boundary condition. We will later see that answering the
question of existence and uniqueness of solutions for no input will be crucial
also for non-zero input. We will also ignore the output function y for now as
we focus on existence and uniqueness of solutions of the inner dynamic. We
will regard the entire system (with input and output) in Chapter 6.

3.1 Differential Operators

Before we start analyzing port-Hamiltonian systems we will make some obser-
vations about the differential operators that will appear in the PDE. In this
section we take care of all the technical details of these differential operators.
Since it doesn’t really make a difference whether we use the scalar field R or C
we will use K € {R,C} for the scalar field. The following assumption will be
made for the rest of this chapter.

Assumption 3.1.1. Let mq, mg,n € N,  C R" be open with a bounded Lip-
schitz boundary, and L = (L;)?_, such that L; € K™ *™2 for all i € {1,...,n}.
Corresponding to L we also have LM := (L), where LY denotes the complex
conjugated transposed (Hermitian transposed) matrix.

By bounded Lipschitz boundary we mean that the surface measure of the
boundary is finite. Hence, we can also regard the exterior of a domain. Moreover,
Q = R" is also allowed as the boundary of R™ is empty.

Moreover, we will write D(R”)’Q for {f|Q|f € D(R™)}. We will use

0; as a short notation for %. We denote the boundary trace operator by

y0: HL(Q, X) — L2(09, X) for a Banach space X.
Definition 3.1.2. Let L be as in Assumption 3.1.1. Then we define

Ly:=Y» 0;L; and L :=(L")y=> oL
i=1 =1

as operators from D’(Q2)™2 to D'(2)™* and from D'(Q)™ to D'(2)™2, respec-
tively. Furthermore, we define the space

H(Ly, Q) = {f € L>(Q, K™) | Lo f € L>(Q, K™)}.
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This space is endowed with the inner product
(ML) = ([, 9 z,xme) + (Lo f, Lag)L2(a,xm1)-

The space Ho(Lp,?) is defined as D(Q2)™2 Dy Mo , the closure of D(Q2)™2 in
H(Ly, ). We denote the outward pointing normahzed normal vector on 92 by
v and its i-th component by v;. Moreover, we define

Z” { OK™) — L2990, K™),
it f = Zz 1V1L f’

and L} = (LM),.

The operator Ly can also be regarded as a linear unbounded operator from
L2(Q,K™2) to L2(Q, K™ ) with domain H(Lp,?). In fact this is what we will
do most of the time. The same goes for L} with domain H(L}!, Q). Since
v € L>=(0Q,R") the mappings L, and L!! are well-defined and bounded.

For convenience we will write H'(2)* instead of H!(Q,K*) and L2(Q)*
instead of L2(£2, K¥) for k € N.

Clearly, D(R")””‘Q C HY(Q)™ C H(Lp, Q) and D(R")ml|Q C HY(Q)™ C
H(LY, ).

Example 3.1.3. Let us regard the following matrices
le[l 0 O], L2:[0 1 O], and Lg:[O 0 1}.
Then we obtain the corresponding differential operators

O
Ly = [81 0o 83] =div and Lg: Oy | = grad.
03

The corresponding operator L, that acts on L2(9Q) can be written as an inner
product

f1
Lf=[n v2 vs]|fo]| =v-f
f3

Clearly, the previous example can be extended to any finite dimension.
Example 3.1.4. The following matrices will construct the rotation operator.
00 O 0 0 1 0 -1 0
Li=1(0 0 -1, Ls=|0 0 O, and Lz3= (1 0 O
01 0 -1 0 0 0 0 O



44 3. Port-Hamiltonian Systems

In this example we have Li»" = —L;. Furthermore, the corresponding differential
operator is

0 =03 O
La = 83 0 —61 =rot = 7L(!;
-0y O 0

The corresponding operator L, that acts on L2(9f2) can be written as a vector
cross product

0 —-uv3 1 f1
LVf = Vs 0 —U1 f2 =V X f
—v2 0 f3

The previous two examples give us a definition of the spaces H(rot,2),
H(div, 2) and H(grad, 2) by the corresponding L and H(Lp, 2). These definition
matches the standard definition in literature. It is easy to see that H(grad, ) =
HL(Q).

Lemma 3.1.5. The operator Ly with dom Ly = H(Ly, Q) is a closed opera-
tor from L2(Q)™2 to L2(2)™ and H(Lp, Q) endowed with the inner product
(s MH(Lo,0) is a Hilbert space.

Note that for f € D'(2)™2 and ¢ € D(2)™* we have

n

(Lo f, &) (ym1 p(ym = Z(@'Lif, ®)pr()m1 D)™

=1

n
= (f, =0iLY®) pr(yma i)z = (f, = L5 B)pr () m2 Dyms -
=1

Proof. Let ({Lg’}k Dk . be a sequence in Ly that converges to a point [/] €
1/ ke
L2(Q)™2 x L2(2)™. For an arbitrary ¢ € D(2)"™ we have

(9, D) pr(2ym1 Dy = (Lo frs @) pr(2)m1 (@)

lim
k—o0
1 - H / m m

klglgo(fk, Ly ¢)pr(ym1 p(y™

= (f, L5 o) pr(yme D2yme

= (Lo f, ®)pr()m1 D)1 5
which implies g = Lpf. Since g is also in L2(2)™, we conclude that L is
closed. Hence, dom Ly = H(Ly, ) endowed with the graph norm of Ly, which
is induced by (-, -)H(z,,0), is a Hilbert space. a

Lemma 3.1.6. The adjoint of Ly with dom Ly = H(Lp, ) (as an unbounded
operator/linear relation from L2(Q2)™2 to L2(Q)™ ) is given by Lyg = —Lklg for
g €domL} CH(LY,Q), ie. L C —L}.
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Proof. For an arbitrary g € dom L3 and an arbitrary ¢ € D(2)™2 we have
(Lg, ¢)pr.p = (L3g,8)1> = (9, Lod)r2 = (9, Lod)pr.p = (—Ly'g, 6)p D
Therefore, Ljg = —Lig and L}g € L%(Q)™2 implies Lf'g € L%(92)™2. Conse-
quently, dom L C H(L}, Q). a

Remark 3.1.7. If L contains only Hermitian matrices (LY = L;), then L} = Ly
and L is skew-symmetric by the previous lemma.

The next result is an integration by parts version for Ly. This will be
helpful to construct a boundary triple for the differential operator in the port-
Hamiltonian PDE.

Lemma 3.1.8. Let f € HY(2)™2 and g € HY(Q)™'. Then we have

(Lo f, g2y + (> L gz yme = (Lo f, Yo9)L200)m
= (v f, L'09)12(00)ms -

Proof. Let f € D(R™)™2 ‘Q and g € D(R")™ |Q By the definition of Ly and L},
and the linearity of the scalar product we can write the left-hand-side of (3.1)
as

(3.1)

/ZaLf, (f,0:LMg) dA = /ZaLf, (Lif,d:g) AN

where A denotes the Lebesgue measure. By the product rule for derivatives and
Gauf’s theorem (divergence theorem, Theorem 1.2.8) this is equal to

/Q;ai<Lif’g>dA/E)Q;Vi70<Lif’g>dﬂ/6)Q<LV70fa’YOg>du,

where p denotes the surface measure of 9. By density we can extend this
equality for f € H1(2)™2 and g € H}(Q)™. a

Note that GauB’s theorem (Theorem 1.2.8) cannot be extended to H!(Q)" for
an unbounded 2 as we have already remarked (see [57, Re. 13.7.4]). However,
in (3.1) the dependencies on f and g are continuous w.r.t. the norm of H!(£2).

Corollary 3.1.9. Let f € HY(Q)™2 and g € HY(Q)™ . Then we have

‘(Lﬂof, Y92y | < 1f Inczo, ) 190y o)-

Proof. Lemma 3.1.8, the triangle inequality and the Cauchy Schwarz inequality
yield

< KLaf, g)zeaym | + [{fs L gz (aym |

< Lo fllz(@ymr lgllez@ym + [1Fllzi@yme 1L gLz @yme

<\ 2o f 12+ 1112 gl + 12 122

= [l fllczo. ) l9llhczs 0)- Q

(Lo f, v09) L2 (00)m1
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Note that Q = R™ satisfies the assumptions in Assumption 3.1.1. Hence, all
the previous results hold true for Q = R™ (and also the following).

Our next goal is to show that D(R™)™2 ’Q is dense in H(Ly, 2); see Theo-
rem 3.1.18. In order to archive this we will present some regularization and
continuity results. In particular the density is needed to extend the integration
by parts formula (Lemma 3.1.8) for f € H(Ly, ) and g € H(LY, Q).

Lemma 3.1.10. The mapping ¢: H(Lp,R™) — H(Ls, ), f — f{ﬂ s well-
defined and continuous for any open set @ C R™. In particular, La(f|Q) =
(Laf){ﬂ. Moreover, if f — f in H(Lg,R™), then fi — f in H(Ly, ).

Hence, we can always regard an f € H(Lp,R") as an element of H(Ly, (2),
especially when supp f C €2 — then it is also possible to recover f from f |Q

Proof. If f € H(Lyp,R™), then f € L2(R™)™2 and Lyf € L*(R™)™ . Hence, it
is easy to see that || f|q [z < [Ifl2@n) and [[(Lof)|qllz@) < (Lo fllizan)-
Note that D(2) C D(R"), and that for g € L>(R") and ¢ € D(2)

<ga¢>D/(R")7D(R") = <ga¢>L2(]R") = <g|97 >|_2(Q <g|Qv >D’(Q)7D(Q)'
Hence, for f € H(Lp,R™) and ¢ € D(Q2) we have

<L3(f|9), >D’(Q)D <f|ga ~Ly ¢’>D,(Q ), D(Q) = ([, *Lg@D/(Rn),D(Rn)
<Laf7 ) (R7), D(R")
Laf ‘Q’¢>D’(Q),D(Q)’
which implies Ly(f|,,) = (Lof)|,, in D'(€2). Since the latter is in L*(Q2), we
conclude f!Q € H(Lp, ). Consequently, ¢ is well-defined and [|tf||n(z,,0) <

| fllH(Lo,rm) by the norm estimates from the beginning. Since ¢ is linear this
implies the continuity of ¢ and in turn the last assertion of the lemma. a

Lemma 3.1.11. Let D,: L2(R")* — L%(R")* be the mapping defined by

(Dy F)(C) = f(nC),

where n € (0,400) and k € N. Then D, converges in the strong operator
topology to 1 form — 1.

Proof. For ¢ € D(R™)* we will show that  — D, from (0, +00) to L2(R")"
is continuous:

1Dgyé = Dy @lltz = | N16(m€) = ¢(n20)llier dA(C)

R™
1

2n
M2 Jrn

m
12

2
)f¢(<)Hde7\(g)%o for ne—m
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by Lebesgue’s dominated convergence theorem, where A denotes the Lebesgue
measure. For f € L2(R™)¥ there exists a sequence (¢, )men of D(R™)* functions
that converges to f (w.r.t. ||-||.2). Hence,

1
[ Dném = Dy fllLz = n7||¢m — [l

and D,¢,, converges uniformly in n € (¢,+00),e > 0 to D, f for m — oo.
Consequently 7 ~— D, f is also continuous from (e, +00) to L%(Q)* and in
particular D, f — f for n — 1. d

Definition 3.1.12. A set O C R"™ is strongly star-shaped with respect to (p,
if for every ¢ € O the half-open line segment {0(¢ — (o) + (o |6 € [0,1)} is
contained in O. We call O strongly star-shaped, if there is a (y such that O is
strongly star-shaped with respect to (p.

Note that this is equivalent to
0(0 — o)+ CO forall 6e]0,1).

Lemma 3.1.13. Let f € H(Ly,R™) and {y € R™. Furthermore, let fo(¢) =
f(5(C =) + o) for 6 € (0,1) and a.e. ¢ € R™. Then fy € H(Ly,R"™) and
fo— fin H(Ls,R™) as 8 — 1. If there exists a strongly star-shaped set O with
respect to the previous (o such that supp f C O, then supp fo C O for 6 € (0,1).

Proof. Let f € H(Ly,R™) and a(C) := 4(¢ — ¢o) + Co- Then it is easy to see
that fo = foa and fy € L2(R™)™2. By change of variables we have

(Lo(f o ), §)pr(rn), D(®R")

= (f,—(Lf¢)o 0710”>L2(Rn) = <f, - éLzHﬁi (¢° a71é>9n>L2(Rn)

<f, -1y (%Qs ° a_1>9n>L2(an) - <%(L‘9f) ° a’¢>L2(R")
= <%(Laf) Oav¢> '

D (R"),D(R™)

Therefore, Lyfo = %(L@f)g and fo € H(Lyp,R™). We can also write fp as
TgOD%T_COf, where T¢: L2(R™")™2 — L2(R™)™2 is the translation mapping
[ f(-+€) and D,,: L2(R™)™2 — L2(R™)™2 is the mapping from Lemma 3.1.11.
Since T¢ is bounded and D,, converges strongly to I as 7 — 1, we conclude
fo— fin L2(R")™2 as @ — 1 and Lofy = 3(Lof)o — Lof in L2(R™)™ as
6 — 1. Hence, fy — f in H(Lp, R™).

Let O be strongly star-shaped with respect to ¢y and supp f € O. Then for
6 (0,1)

supp fo = 6(supp f — (o) + Co € (0 — {o) + ¢o C O. a
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Lemma 3.1.14. If f € H(Lp,Q2) and ¥ € D(R™) |Q, then also ¥ f € H(Ly, )
and

Lo(f) = ¥Lof + > ()L

i=1
Proof. Note that (¥ f, ¢)pr.p = (f,1¢)p p and by the product rule
VL0 = 0i(PLY §) — (0i)) LY.

Hence,

<L8(’L/)f>7 ¢>D’,D = _<1/)fa Lg¢>D/1D = Z<f7 @Lz‘a{'@D/,D
=1

D', D

__ i:< f,0:(L} ) — (9L ¢>
=1

= >~ 0L00) ), gy + £, (D) LYS)

= Z<T/’Liaifa ) prp + O Lif ) pr p
=1

= (WLof.0)prp+ (D (O Lif,0)

i=1

= <1/)L8f + i(aﬂ/})l’if’ ¢>'D’ D

D', D

Thus, Lo(vf) = Lo f + 3251 (9:) Lif. Q

Lemma 3.1.15. For every f € H(Lg, R™) exists a sequence (fr)ren in H(Ly, R™),
whose terms have compact support supp fr C supp f, that converges to f in
H(Ls, R™).

Proof. Let ¢ € C*°(R™,R) be such that

{1}, el <1,
P(¢) € 4 10,1], i1 <I¢ll <2,
{0y, if|icl = 2.

Then f == ¢(3)f € LQ(R")’”"’ and fp — f in L2. By Lemma 3.1.14 we
have Ly f), = w( VLof + £+ 30 (9;¢)(5)L;if and therefore f, € H(Lp,R™).
Since [|0;%|lcc < o0 and HL fllez < || L; ||||f|||_2 < oo, we have Lyf, — Lpf as
() Lof — Lof in L*(R™)™2 and consequently fr — f in H(Ly,R"). a

The next result is essentially [9, Proposition 2.5.4, page 69], except that we
allow Q to be unbounded.
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Lemma 3.1.16. For Q C R" (opgn with bounded Lipschitz boundary) there
exists an open covering (O;)F_ of {2 such that O; N Q is bounded and strongly
star-shaped for i € {1,...,k} and Oy C Q.

Proof. Since Q has a bounded Lipschitz boundary, there is an open ball B,.(0)
such that 092 C B,.(0). Hence, B,.(0) N {2 is bounded and open with bounded
Lipschitz boundary and we can apply [9, Proposition 2.5.4, page 69]. This gives
an open covering (0;)%_; of B,.(0) N and in particular of 9 such that O; N Q

is strongly star-shaped. We define Og as Be(£2\ Ule 0;), where € > 0 is small
enough such that Oy C Q. a

The next lemma is similar to [12, Lemma 1, page 206], which proves the
result for Ly = rot. The main idea of the proof can be adopted.

Lemma 3.1.17. If f € H(Ly, Q) is such that

(Lof,0)i2@) + (f, Ly D)oy =0 for all ¢ €DR™)™,  (32)
then f € Ho(Lp, ).
Recall the definition of a positive mollifier: Let p € D(R™). Then we define

pe by pe(C) = e_”p(%). We say that p. is a positive mollifier, if p(¢) > 0,

fR" p(¢)d¢ =1 and lim._,¢ p. = dp in the sense of distributions, where d is the
Dirac delta function, i.e. (d, ¢)p o = ¢(0).
In particular, for every f € L2(R™) holds

poxfim [ pOF= QA i LY.

Proof. Let f € H(Lp, Q) satisfy (3.2). Then we have to find a sequence (fy,)nen
in D(Q2)™2 that converges to f with respect to [|-[|n(z,,q)-

We define f and E(;‘/f as the extension of f and Ly f respectively on R™ such
that these functions are 0 outside of Q2. By

(3.2)

<LaNf,¢>D'(Rn),D(Rn) = <L8Nf,¢>|_2(Rn (Lof, d)r2) = (f,—Lyd)i2(a)
= (f,~Lio)2en) = (f, —LE$) Dz D87
= (Lo f, 8)p/(wn),DEn)

for ¢ € D(R™)™, we see that Lof =Lyf and f € H(Ly, R™) with supp f C €.

By Lemma 3.1.16 there is a finite open covering (0;)%_, of  such that
0O; N Q is bounded and strongly star-shaped for i € {1,...,k} and Oy C Q. We
employ a partition of unity and obtain (a;)¥_, subordinate to this covering,
that is

a; € C°(R™), suppa; C O, «;(¢) €10,1], and Zal =1 for (€.

Hence, f = Zi’c:o o f and we define f; := o; f. By construction f; € H(Lp,R"™)
and supp f; € O; N Q. For i # 0 the set O; N () is compact.
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e Forie {l1,...,k} we have O; N Q is strongly star-shaped. Lemma 3.1.13
ensures that supp(f;)g € O; NQ for 6 € (0,1) and (f;)e — fi in H(Lp, R™)
for 6§ — 1.

Let p. be a positive mollifier. Then p, * g — g in L2(R") for an arbitrary
g € L2(R™). Since Ly(pc*h) = pe* Loh, we also have p.xh — h in H(Ly, R™)
for h € H(Ly,R™) and since p. € C>°(R™) we have p. * h € C°(R™)™=.
For fixed 6 € (0,1) and e sufficiently small, we can say supp pe * (f;)g € O;N
Q. Hence, by a diagonalization argument we find a sequence (pe; *(fi)o, ) jen
in D(Q)™2 converging to f; in H(Ly, R™). Doing this for every ¢ € {1,...,k}
yields sequences (fi ;)jen in D(2)™* converging to f; in H(Lg, R™).

e For fy we have supp fo C Oy C Q and by Lemma 3.1.15 there exists a
sequence (g;)en in H(Ly, R™) that converges to fo in H(Lg, R™) such that
every g; has compact support in 2. Every g; can be approximated by
pe * g for € = 0 in H(Ly, R™) and if € is sufficiently small supp p. * g; C Q.
Hence, p.xg; € D(Q2)™2. A diagonalization argument establishes a sequence
(fo,j)jen in D(2)™2 that converges to fy in H(Ls, R™).

Consequently, (Zf:o fw-)jeN is a sequence in D(Q)™2 that converges to f in
H(Ls,R™) and by Lemma 3.1.10 also in H(Ly, 2). a
Theorem 3.1.18. D(R”)m?|Q is dense in H(Ly, Q).

Proof. Suppose D(R™)™2 |Q
zero f € H(Ly, ) such that
(fo Do) = (£, + (Lof, Logh= =0 forall g€ DR")™[,. (3.3)

In particular, for an arbitrary h € D(2)™2 we have
(f.h)prp = (f,h)2 = —(Lof, Loh)2 = —(Lof, Loh)pr,p = (L§ Lo f, h)p 1,
which implies that f = L' Ly f € L2(Q)™2 and fy == Lo f € H(L}, Q). Hence we
can rewrite (3.3) as
(LY Lof g2y + (Lof, Log)iz) = 0 forall g € D(R")™|.
\7 \7
=Jo =Jo

By Lemma 3.1.17 (switching the roles of Ly and L) we have fo € Ho(L}!, Q).
Since D(Q)™! is dense in Ho(L}!, ), there is a sequence (f,)nen in D(Q)™
converging to fo with respect to ||-||H(Lg79). The fact f = LY Ly f = L} fo implies

(fo, fadnezp o) = (fos frdiz + (LY fo, LY fu)i2 = (Lo f, fa)i2 + (f, LY fu)i2

= <L8fv fn>'D’,D - <L6f» fn>D’,D
= 0.

is not dense in H(Lp, 2). Then there exists a non

Since ||f0||f|(Lgﬂ) = limp— o0 (fos fr)n(zp,0) = 0, we have fo = 0, which implies
f =LY fo = 0. Hence, D(R™)™2 ‘Q is dense in H(Ly, ). a
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3.2 Port-Hamiltonian Systems

In this section we will introduce linear first order port-Hamiltonian systems
on multidimensional spatial domains and illustrate the difficulties we want to
overcome.

Definition 3.2.1. Let m € N and P = (P;),, where P; is a Hermitian m x m
matrix. Moreover, let H: Q — K™*™ be measurable such that H ()™ = H(¢)
and cI < H(¢) < CT for a.e. ( € 2 and some constants ¢, C > 0 independent of
¢. Then we endow the space X, = L?(Q2)™ with the scalar product

(9w = (HF Gz = /Q (H(OF(C), 9(0)) e AN(Q).

We will refer to X3 as the state space and to its elements as state variables or
states. Furthermore, let Py € K™*™ be such that P} = —Py. Then we will call
the differential equation

Z 3¢ B (HQ2(t.0) + R(HO(t.C), teRCEQ,
x(oag):xO(C)a cen

a linear, first order port-Hamiltonian system, where zo € L2(Q2)™ is the initial
state. The associated Hamiltonian H: Xy — Ry U {0} is defined by

1 1

3.0, = 5 [ (OO, (O Q)

(3.4)

m

H(z) =

where H is called the Hamultonian density.

In most applications the Hamiltonian describes the energy in the state space.
It may seem more natural to define the inner product of Xy as

<Hf> )LQ(Q

because then the Hamiltonian is just |23 %,, and the name energy norm is
accurate. However, then we also have to pay attention to the factor 5, when
we switch between the inner products. Therefore, for convenience we leave out
this factor.

By the convention of regarding a function z: Ry x & — K™ as 2: Ry —
L2(; K™) by setting z(t) = z(t, ), we can rewrite the PDE (3.4) as

t) = (Z&‘Pz‘ + P())Hx(t) = (B + Py)Hx(t), =(0) = o,

where P is defined by Definition 3.1.2 replacing L with P. This is an abstract
Cauchy problem. Hence, we are interested whether (P + Py)H is a generator
of a contraction semigroup.

We want to add the following assumption on P.
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Assumption 3.2.2. Let m,my,ms € N such that m = m; + mo and let
L = (L;)! such that L; € K™**™2_ Then we assume that P = (P;)I", has

the block structure
0 L
r=i )

Assumption 3.2.2 implies that P contains only Hermitian matrices. Accord-
ing to the block structure we split 2 € K™ into [z:" |, where zn = (;)7} and
rp = (23)iZpm, 11-

We have introduced differential operators Ly for a family of matrices L.
Clearly, we can do the same with the family P. Because of the block structure
of P we can immediately derive the following identities: H(5, Q) = H(L}, Q) x
H (Laa Q)a

10 Iy 10 L
el 8] 2 5]

By Lemma 3.1.8 we have for z,y € H(Q)™

(Pyx,y)i2 ) + (@, Pay>L2(Q)
= (B o, Voy>L2(aQ)

oA R B DO

= (LyyoxL, YoyrH)L2(00) + <L:|70xLH770yL>L2(8Q)
= (Luyorr, YoyoH)L2 o) + (0T LH, Luyoyr) 2 (e9)-

Hence, B = L2(0Q)™, Bix = L,yxr and Box = oz n is reminiscent of a
boundary triple for A§ = P (Ao = Py is skew-symmetric by Remark 3.1.7).
However, we need to extend (3.5) for z,y € H(F, ). In order to do this we
have to introduce a new norm on L2(9Q)™!, which will lead to the notion of
quasi Gelfand triples.

If we are a little bit sloppy about the details (just for now), then we can
easily calculate the change of the Hamiltonian (energy) along a solution x of
the port-Hamiltonian system:

2 S H(a(1) = S {r(t), a0, = (0, 20 + (1), (0) v,

= (B + Po)Ha(t), x(t)) , + (x(t), (B + Po)Ha(t))

H H

)
= <(‘P8 + PU)H:'E( )’H‘T(t)>|_2(g <7‘L’L‘(t), (‘Pf) + PO)Hm(t)>|_2(Q)
(since Py is skew-adjoint, we can eliminate Pp)

= <P8H37(t)77{x(t)>|_2(9) + <IHQj , PyHa(t )> L2(Q)
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(we can use (3.5) and Ha = |:((7:)‘L-[I$))LLH ])

= (Loyo(Hz) L, vo(Hz) )2 00) + (Yo(Hz) Lry Luyo(Ho) )12 00) -

Thus, the change of the Hamiltonian (energy) only occurs on the boundary.
Moreover, we can see that the change of the Hamiltonian is connected to
Stokes-Dirac product of L2(99):

Q%H( (1) = << [I;VOW(%?)?HL }7 [Lvuov(gg)?f } >>L2(aQ)'

3.3 The Wave Equation as port-Hamiltonian
System

In [28] the wave equation in n-D is investigated as a port-Hamiltonian system.
We follow their reformulation of the wave equation such that it fits the port-
Hamiltonian framework.

The classical formulation of the wave equation without boundary conditions
is given by

2

%w(t,@) = ( ] div ( ) gradw(t,C)), teRy,C€Q,
w(0,¢) = wo(¢), (e,

0
9 00,0 = wi ), cea

where 2 C R", p is the mass density, T" is Young’s modulus and wq,w; are the
initial conditions. Furthermore, T'(¢) is symmetric for a.e. ¢ € ,

P 1 €L>®(Q) and T,T(-)"*eL>®Q)"*m.
p

We can reformulate the wave equation in a port-Hamiltonian fashion, by
introducing the state variable

0= [0 d] - Lokt

Hence, if w is a solution of the wave equation, then

0= [0t - P i)
{grad le} {E} T(¢ }B;Ei:gﬂ (3.6)
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Note that div and grad can be written as Ly and Lg‘ for L given by the
n-dimensional analogon of Example 3.1.3. Therefore we have

0 div] 9 [0 L
oo 0] =23 i 0]
and we can write (3.6) as
9 —~ J [0 L
0= g | o) HOee0)

20,0 = 2],

It is easy to see that (3.7) fits the definition a port-Hamiltonian system. Hence,
we will regard this system as abstract Cauchy problem on L2(£2)"*1:

(3.7)

i(t) = [gr(; . d(i)v] Ha(t),

where z(t) = x(t,-) (z(t) € L2(Q)"*! for all t € R} ). However, we will later
see that for stability analysis the state space L2(£2)"*! is too large, as it allows
solutions that are unrelated to the original wave equation. Nevertheless for
well-posedness we can even work with this larger space.

For uniqueness of solutions we need boundary conditions, like Dirichlet
boundary conditions

w(t,¢) = h(C), (€09,

or Neumann boundary conditions

0

STQut.) = g(0).  Ceom.

We can reduce ourselves to homogeneous boundary condition, by subtracting a
solution of the time invariant system

divT(¢) gradw(¢) = 0, e,
w(¢) = h(¢), ¢ € 0N

Accordingly, for Neumann boundary conditions. Note that w(t, () = h(({) for
¢ € 99 can be translated to %w(t, ¢) = 0, if the initial condition wq satisfies
the boundary condition. Therefore, we can translate the boundary conditions
in the port-Hamiltonian formulation to

1
'yo;zl(t) =0 or v-yTz(t) =0,

where v - oy = L,y is the “natural” boundary operator corresponding to L
given by Ly = div.
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3.4 Maxwell’s Equations

Let Q C R3. We will see that Maxwell’s equations in a non-conducting medium

gt (t,¢) = rot H(t, ), %B(t,c) = —10tE(t,¢), teR,,C€Q, (3.8)
divD(t,¢) = p(C), divB(t,() = teR,,CEQ, (3.9
D(t,¢) = e(QE(t, ), B(t,¢) = p(OH(, (), teRy, (e, (3.10)
D(0,¢) = Do(), B(0,¢) = Bo(¢), (e, (3.11)
where €, 1, ¢, 5, € L®(Q) and p € L*(), fit the port-Hamiltonian structure.

We choose the state variable

so that

0
1

0.0 = |per )|
%x(t’o N [—got rgt] l Ics)
ZH©Q)

Note that by Example 3.1.4 there is an L such that Ly = rot and Lg' = —rot.
Hence, (3.12) fits the definition of a port-Hamiltonian system Definition 3.2.1.
We will see that (3.9) is automatically fulfilled, if the initial condition satis-
fies (3.9).

The “natural” boundary operator L, is given by f +— v x f. We will see that
v X 7o cannot be continuously extended on H(rot, §2) such that its codomain is
still L2(09), see Example 5.1.8. Hence, we have to find another way to get a
boundary triple for the Maxwell differential operator.

] (t, Q). (3.12)

3.5 Mindlin Plate Model

The Mindlin plate model was formulated in a port-Hamiltonian fashion in [33, 8].
We just want to show the equations without going into its physical background.

Let Q C R? be as in Assumption 3.1.1. Let us consider the differential
operator I and the skew-symmetric matrix Py given by

00 0[0 0 0 & 000 000000
00 0[d 0 & 0 0 00 000010
00 0[0 8 & 0 0 00 000001
P | 0 & 0[00 0 0 0|, {00 000000
T10 0800 0 0 0" {00 000000
0 & &0 0 0 0 0 000 000000
0 0[0 0 0 0 0 0 -1 0 00000
[ 0 0|0 0 0 0 O | 0 0 -1 0000 0]
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The corresponding L = (L;)?_, is given by

00010 00 0 01
Li=|1 0 0 0 0 and Ly=1]0 0 1 0 0O},
0 01 00 01 0 00
and therefore P = (P;)?_; is given by
0 L;
r=i )
We define a Hamiltonian density by
[ 0 0 0 0 0 0 07
P
0 5% 0 00000
0 0 2% 00000
P
-] 0 0 0 0 0
o0 o Dy ool
0 0 0 0 0
0 0 0 0 0 O
L 0 O 0 0 0 O Ds_

where p, h are strictly positive functions, D;(({) is a coercive 3 x 3 matrix and
D (() is a coercive 2 x 2 matrix, such that all conditions on H in Definition 3.2.1
are satisfied. We write the state variable x as

— h® h? i
o = |phv PT3W1 PzW2 K11 K22 Ki2 71,3 72,3 >

where we stick to the notation in [8] except that we renamed the coordinates x,
y and z as 1, 2 and 3. Furthermore, we have

.
e=Ha=[v wi wy My Mz My Q1 Q2 .

We don’t want to go into details about the physical meaning of these state
variables. We just want to make it easier to translate the results into the
notation of [33, 8]. So the port-Hamiltonian PDE

%x = (P + Py)Hx looks like %a = (B + Py)e,

which is the formulation in [33, 8]. The corresponding boundary operator is

fs

fl I/~|:f4]

0 0 0 vy U2 f2 fs

Lf=|vi 0 1, 0 0] |fs]= V,“:;]
0 o 1 0 0] |fs
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Since ||[v(¢)|| = 1, at least v1(¢) # 0 or v5(¢) # 0. This can be used to show
that ran L, = L2(9Q)3.

Since there is no direct physical meaning to the boundary variables we will
later apply a unitary transformation on them, to obtain the boundary variables
of [33, 8].
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Chapter 4

Quasi Gelfand Triples

Normally when we talk about Gelfand triples we have a Hilbert space Xy and a
reflexive Banach space X that can be continuously and densely embedded into
Xy. The third space X_ is given by the completion of X with respect to

fexor Ifllag

The duality between X, and A_ is given by
<97 f>X,,X+ = khm <gk:7 f>X07
—00

where (gx)rken 18 a sequence in Xp that converges to g in X_. Details for
“ordinary” Gelfand triple can be found in [18, ch. 2.1, p. 54] or in [57, ch. 2.9,
p. 56]. We want to weaken the assumptions such that the norm of X, is
not necessarily related to the norm of Xy. This is in particular necessary for
Maxwell’s equations.

4.1 Motivation

)

In Section 6.4 we point out that is not possible to associate an “ordinary’
Gelfand triple to the spatial differential operator of Maxwell’s equations.

We will have the following setting: Let Xy be a Hilbert space with the inner
product (-,-)x, and (-,-)x, be another inner product on X (not necessarily
related to (-,-)x,), which is defined on a dense (w.r.t. ||-||x,) subspace D, of
Xy. We denote the completion of D, w.r.t. -lae ([fllxs = /f, Fay) by
X,. This completion is, by construction a Hilbert space with the extension of
(*,-)a,, for which we use the same symbol. Now we have D is dense in X,
w.r.t. ||-||x, and dense in Xy w.r.t. ||-||x, . Figure 4.1 illustrates this setting.

Note that Xy, as a Hilbert space, is automatically reflexive. For the further
construction the crucial property of X is its reflexivity. Hence, we will weaken
the previous setting such that X, is only a reflexive Banach space:

59
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Xo Hilbert space endowed with (-, -) x,.

D, dense subspace of Xy (w.r.t. ||| x,)-

|||+, another norm defined on D,.

X, completion of D with respect to ||-|| x . is reflexive.

Xo

Figure 4.1: Setting of Xy, Dy and X, .

Example 4.1.1. Let X, = (*(Z \ {0}) with the standard inner product
(T,9) %y = Dvey TnTn + T_nY—pn. We define the inner product

o0
1
<x,y>x+ = E 7ﬂxn37n+ ﬁx—ny—n
n=1

and the set Dy = {f € Ay |||fllx, < +o0}. Clearly, this inner product is
well-defined on D+. Let e; denote the sequence which is 1 on the i-th position
and 0 elsewhere. Since {e;|i € Z\ {0}} is a orthonormal basis of Ay and
contained in Dy, D is dense in &p. The sequence (Z:’:l e,i) is a Cauchy
sequence with respect to ||-||x, , but not with respect to ||| x,-

neN

Definition 4.1.2. We define

gva
ol = sup |G inl

forge Xy and D_ = {g S ‘ llgllxv. < +oo}.
repivioy 11l

We denote the completion of D_ w.r.t. ||-||x+_ by X_. We will also denote the
extension of ||-|[x_ to X_ by ||-||x_-

Remark 4.1.3. By definition of D_ we can identify every g € D_ with an
element of A, by the continuous extension of

" { D. — C,
g f H <g7f>X07
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on Xy. We denote this extension again by v,. By definition of D_ we have

[gllxy = llglla_ for g € D_. Hence, we can extend the isometry
- { D_ — X,
g = Yy

by continuity on A_. So A_ can be seen as the closure of D_ in X .

We can define a dual pairing of between Xy and X_ by
<97 f>X7,X+ = <\I]g7 f>X_"_,X+'

However, this does not necessarily make (X, ,X_) a dual pair in the sense of
Definition 1.3.1, because we do not know whether WU is surjective.

Lemma 4.1.4. D_ is complete with respect to ||gllx_nx, = \/llgll%, + 9%

Proof. Let (gn)nen be a Cauchy sequence in D_ with respect to ||-|| x_nx,. Then
(gn)nen is a convergent sequence in Xy (w.r.t. ||-||x,) and a Cauchy sequence in
D_ (wr.t. ||-||x_). We denote the limit in Xy by go. By definition of ||-||x_ we

obtain for f € D4
90, o] = 1m [{ga, f)a) < i lgulla[17]lx, < CUf e,

and consequently go € D_.
Let € > 0 be arbitrary. Since (g, )nen is a Cauchy sequence with respect to
|-|l_, there is an ng € N such that for all f € Dy with || f|lx, =1

6 .
|<gn*gm7f>Xo‘ < 5 if n,m >ng

holds true. Furthermore, for every f € D+ there exists an my > ng such that

f ..
1{90 = Gms» [lao| < i !XJr, because g,, — go W.r.t. ||-||x,. This yields

|<gO_gn7f>X0| S ‘<go*gmf,f>)(‘0| |<gmf*gn,f>2(o‘ SQ if 712710.
11 2, (FAIE 1/ 2,

Since the right-hand-side is independent of f, we obtain

lgo = gnllx_ = sup 80 = n o]

<e, if n>ng.
feby\{o0} Hf||X+

Hence, go is also the limit of (g, )nen With respect to ||-||x_ and consequently
the limit of (gp,)nen with respect to ||| x_nap- a

Strictly speaking D, and D_ are subsets of X, but most of the time we
rather want to regard them as subsets of &, and &_, respectively. Hence,
introduce the following embedding mappings

D C
Z+2 D+ - X+ — Xo, and o D_CXx. — X(),
I = I g = g
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This allows us to distinguish between f € D, as element of X, and iy (f) as
element of Xy, if necessary. Clearly, the same for g € D_.

Lemma 4.1.5. The embedding iy is a densely defined operator with raniy is
dense in Xy and keriy = {0}. Furthermore, the embedding v_ is closed and
ker._ = {0}.

Proof. By assumption on D and definition of X, the embedding 7. is densely
defined and has a dense range. Clearly, keriy = {0} and ker._ = {0}. By
Lemma 4.1.4 ¢+_ is closed. a

Lemma 4.1.6. Let i} = Z:qXX/* denote the adjoint relation (w.r.t. the du-
alities (Xp, Xp) and (X4, X)) of iy. Then I is an operator (single-valued,
i.e. muliy = {0}) and keriy = {0}. Its domain coincides with D_ and
Mo D_CAX_ — X is isometric.

If ker iy = {0}, then rani% is dense in X/ .

Proof. The density of the domain of i} yields mulif = (domiy)* = {0},

and ran Z+X° = Ap yields kerit = {0}. The following equivalences show
domi} = D_:

g € domi* & (g,i4f)x, is continuous in f € Dy wr.t. |||,

& sup M < +0o0
reby\{o} £ 1l
sSge D
For g € D_ C X_ we have
‘<L*g7f>Xo‘ |<Z*+L—g7f>X’+,X+| e
lglla. = sup ———= = sup = [1ehe-gllxy,
febDi\{0} 11l febi\{o} £l

which proves that 7% . is isometric.
Note that the reflexivity of X implies 7 = %", If ker i, = {0}, then the
following equation implies the density of rani% in X

{0} =keriy = ker " = (rani®)". Q

Remark 4.1.7. As mentioned in Remark 4.1.3 every g € D_ can be regarded as
an element of X by v,. Let g € D_, f € X, and (f,)nen in D converging
to fin Xy (w.r.t. |-||x.). Since D_ = dom 7’ , we have

(thg, a2, = TLILH;O<L—97Z+fn>X0 = (The-g, fay x,

and consequently 1y = i ¢t_g. Hence, YD_ =13 D_.

Proposition 4.1.8. The following assertions are equivalent.
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(i) There is a Hausdorff topological vector space (Z,T) and two continuous
embeddings ¢x, : Xy — Z and ¢x,: Xo — Z such that the diagram

+

X
id Px,
D+/ \Z
oS e
0

commutes.

(ii) If Dy 3 fo — 0 wort. |-||x, and lim, o f, ezists w.r.t. ||| x,, then this
limit is also 0 and if Dy > f, = 0 w.rt. ||||x, and lim, o fr exists
w.r.t. ||| x, , then this limit is also 0.

(iil) i4: Dy C Xy — Xy, f — f is closable (as an operator) and its closure is
njective.

(iv) D_ is dense in Xy and dense in X, i.e. WD_ is dense in X .

Proof. (i) = (ii): Let (fy)nen be a sequence in D such that f, — f w.r.t. X,
and f, — f w.r.t. Xp. Since T is coarser than both of the topologies induced
by these norms, we also have

f
f T/ in Z.
n\TA

f

Since T is Hausdorff, we conclude f = f . Hence, if either f or f is 0, then also
the other is 0.

(i1) = (iii): If (fn, fn)nen is & sequence in 74 that converges to (0, f) €
Xy X Xy, then f = 0 by (ii). Hence, muliy = {0} and consequently i, is
closable. On the other hand, if (f,, fn)nen is a sequence in 7} that converges
to (f,0), then f =0 by (ii). Consequently, keri; = {0} and 7 is injective.

(iii) = (iv): We have (dom %)+ = mul7%* = muli;. Since 7y is closable,
we have mul 7. = {0}, which yields that dom *} is dense in Ap. By Lemma 4.1.6
dom %} coincides with D_.

The second assertion of Lemma 4.1.6 yields that ran’ is dense in X’|. By
Remark 4.1.7 we have ran} = VD_.

(iv) = (i): Let Y := D_ be equipped with

lglly = llgllx_nxo = \/llglZ_ + llgllZ,-
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We define Z := Y" as the (anti)dual space of Y. Then we have

(9% < Ifllxllglxe < 1fllxllglly  for feXo,geY
and  [(f, 73 9)x, 2w | < [ fllag 17902y < [ fllxegllglly for feXigeY.
——

=llgllx_

Hence, ¢x,: [+ (f,")x, and ¢x, @ f = (f, Zi'>X+,Xjr are continuous mappings
from Xy and X, respectively, into Z. The injectivity of these mappings follows
from the density of D_ in Ay and D_ in X% (I% D_ dense in X), respectively.

For f € D, we have
bx, f=(f 00 )ap 2y = (4 f, )y = P 0l f
and consequently the diagram in (i) commutes. a

If one and therefore all assertions in Proposition 4.1.8 are satisfied, then
Xy N Ay is defined as the intersection in Z and complete with the norm

Nl e = ||||%(Jr + |||, - Moreover, we define D as the closure of Dy in

Xy N&y (wrt. ||-[x,na, ). Note that although A} N Ay may depend on Z, D
is independent of Z. We will denote the extension of iy to Dy by ¢, which
can be expressed by ¢y = i. The adjoint +% coincides with 7. Also D_ does

not change, if we replace D+ by Dy in Definition 4.1.2 and all previous results
in this section also hold for D, and ¢ instead of D, and i, respectively. If
iy is already closed, then Dy = D,.
Lemma 4.1.9. Let one assertion in Proposition 4.1.8 be satisfied. Let Z =Y,
where Y = D_ endowed with ||glly = llgllx_nx, = (/9% + llgl%, (from
Proposition 4.1.8 (iv) = (i)). Then we have the following characterization for
D+ N

e D, =dom.*,

L] D+:X+HXO ZTLY/

Proof. Note that for g € D_ we have g = (Lj)*lLig and that ¢} ¢ is isometric
from D_ = dom._ C A_ onto ran:} = dom(Li)_l C X{. The following
equivalences show the first assertion:

fedom* & D_>gw— (f, 1_g)x, is continuous w.r.t. ||-||x_
& D_>ge (f,(15) A i_g)x, is continuous w.r.t. ||+
& dom(er) ™ 3 h (f, (13) " h)a, is continuous w.r.t. IR
& f € dom ((L’_';_)*l)* =dom:; ' =rancy = D,
For the second characterization we define P, = X} N &p and we define P_
analogously to D_ in Definition 4.1.2:

g?f X
lolp. = sup (9, ) x|

=20 and Po={g€ X ||gllp. < +oc}.
sepgor Il
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Clearly, |lg|lx_ < |lg|lp_ for g € P_ and consequently P_ C D_. Furthermore,
we can define v1p, : Py C X, — Ap, f — f analogously to iy. Note that
tp, is closed due the completeness of (X1 N X, ||-||x;nx,). Then we have
domtp, = P_ and iy C vp, and therefore v C 7% For g € D_ and f € Py
we have, by definition of P, = X, N &} in Z,

(g ol = g, Py x| N gl 1 les = gl [1f v,
which yields [|gllp_ < [lgllx_. Hence, P~ = D_,p =% and tp, = iy, which

= X+ﬂX0
is equivalent to P = X, N&p = D4 =D.. a

Theorem 4.1.10. Let one assertion in Proposition 4.1.8 be satisfied. Then
the continuous extension of v} 1 denoted by v} 1 equals ¥. Moreover, ¥ is
surjective and (X4, X_) is a complete dual pair with

(9, fla_xp = (Vg flag x, -

Proof. We have already shown, that ¢ 1_g = g for g € D_. Since D_ is dense
in X_, we also have 15 ._g = Wg for g e X_.

If one assertion in Proposition 4.1.8 is true, then all of them are true. Hence,
WD_ is dense in A, and because V is isometric ran ¥ is closed and therefore

ran¥ = X7 .
Since ¥ is an isomorphism between X_ and X, it immediately follows that
(X4, X_) is a complete dual pair with the dual pairing (-, )x_ x, . a

Remark 4.1.11. For f € D4 and g € D_ we have

<g7f>X7,X+ = <\Ilg7f>X_’*_,X+ = <L1L,g, f>X_'*_,X+ = <LfgaL+f>Xo = <gaf>X0-

Since these two sets are dense in X' and X_ respectively, we have for f € Xy
and g € A_

<gvf>X7,X+ = lim <gn7fm>?(oa

(n,m)—(oc0,00)

where (fn)men is a sequence in D that converges to f in X} and (gn)nen is a
sequence in D_ that converges to g in A_.

4.2 Definition and Results

The previous section leads to the following definition.

Definition 4.2.1. Let (X, X_) be a complete dual pair and Xj be a Hilbert
space. Furthermore, let ¢y: dom¢y C X, — &p and v : dome- C X = &)
be densely defined, closed, and injective linear mappings with dense range. We
call (X1, Xy, X_) a quasi Gelfand triple, if

(9, Ny = gyt N xo (4.1)
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N

N,

QM

Figure 4.2: Illustration of a quasi Gelfand triple

for all f € dom¢y and g € dom¢_, and dom:’} =ran:_. The space Ay will be
referred as pivot space.

Figure 4.2 illustrates the setting of a quasi Gelfand triple. Contrary to the
previous section we will regard the adjoint of ¢ and ¢_ with respect to the
complete dual pairs (X, X_) and (Xp, Ap). Therefore, % is a densely defined
operator from Xy to X_ and * is a densely defined operator from Xy to X'y
We could not do this before, because we did not know from the beginning that
(X4, X_) is a complete dual pair.

Example 4.2.2. Let X, = LP(R), X_ = LYR) and Xy, = L?(R), where
p € (1,+00) and % + % = 1. Then (X}, X_) is a complete dual pair. Note that
LP(R) N L2(R) is already well-defined. We can define

{ LP(R)NL2(R) C LP(R) — L%(R),

al foe f
and L_: { Lq (R) n L2 (R) g Lq(R) — L2 (R)a
g = g.

These mapping are densely defined, injective and closed with dense range. By
definition of the dual pairing of (L?(R),L%(R)) we have

(9, [ILa@),Lr@®) = /]Rg?(ﬂ = (9, N, = (t-g, 14 ) %

for g € LY9(R) N L%(R) and f € LP(R) N L%(R). Hence, (L?(R),L3(R),L?(R)) is a
quasi Gelfand triple.
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Figure 4.3: Illustration of a quasi Gelfand triple, where D, = ran:; and
D_=ran¢_.

Note that the mapping ¢4 gives us an identification of dom ¢ and rane¢,.
Hence, we can introduce the norm of Xy on rancy by || fl|lx, = [le3' flx, for
f €ranty. Then the completion of ran ¢, with respect to ||-||x, is isometrically
isomorphic to Xy. Accordingly, we can do the same for X_. This justifies the
following definition and Figure 4.3

Definition 4.2.3. For a quasi Gelfand triple (X, Xy, X_) we define
XyNAy:=ranty and A_NAp:=ranc_.

If either ¢4 or ¢_ is continuous, then a quasi Gelfand triple is an “ordinary”
Gelfand triple. Clearly, every “ordinary” Gelfand triple is also a quasi Gelfand
triple.

The condition dom¢*} = ran:_ is not really necessary as this condition can
always be forced as we will see later. Actually, I believe that this condition is
automatically implied by all the others, but I could not find a proof. Moreover,
the next lemma shows that we can also ask for the converse condition dom (* =
ran:y instead. Note that from (4.1) we can immediately see that dom:* O
rant_ and dom:* D ranc¢,. Hence, for f € dom¢y and g € dom¢_ we have

g Nax
(9, flaxy = (=gt x, = 3 % ) N (4.2)
<91L—L+f>X_,X+7
which implies 1} ¢_g =g and " ¢\ f = f.

Lemma 4.2.4. Let (Xy, Xy, X_) with vy and ¢_ satisfy all conditions of Defi-
nition 4.2.1 except dom:y =rant_. Then

dom:} =ran.. < dom:® =rant,.

In particular, if (X, Xo, X_) is a quasi Gelfand triple, then also domt* =rancy
holds true.
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The proof of this is basically the first part of the proof of Lemma 4.1.9.
Proof. Let dom ¢} =ran:_. The following equivalences

fedom® < dome_ 3 g~ (f,t_g)x, is continuous w.r.t. ||-||x_
& dome 3 g (f, (13) 7 hi_g)x, is continuous w.r.t. |||l x_
——
=g
& f € dom ((Lj_)_l)* =dom;' =rancy

imply dom¢* =ran¢y.
The other implication follows analogously. a

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple
is somehow “symmetric”, i.e. the roles of Ay and A_ are interchangeable, since
neither of the embeddings ¢, and ¢ has to be continuous, as indicated in the
beginning of this section.

Lemma 4.2.5. Let (X, Xy, X_) with vy and ¢_ satisfy all conditions of Defi-
nition 4.2.1 except dom = ran._. Then there exists an extension i_ of 1_
that respects (4.1) and satisfies dom ¢, = rani_. In particular, (X, Xy, X_)
with vy and I— forms a quasi Gelfand triple.

Proof. Note that 5 ¢t_g = g. Hence, (5 2 =" and (¢h)7t 2. We define i_
as (Li)’l. Then clearly rani_ = dom:%. For f € dom:y and g € domi_ we
have

(i—g, i fay = (Whi-g, Hla_x, = (9, [la_ x,- u

Remark 4.2.6. If (X4, Xp, X_) is a quasi Gelfand triple and (X, X_) is another
dual pair for X4, then also (X5, Xy, X_) is a quasi Gelfand triple.

Lemma 4.2.7. Let (X, Xy, X_) be a quasi Gelfand triple. Then

1 * —1

*__ _
Go=1"" and =1

Proof. By (4.2) we have 5.1_g = g for all g € dom . Since ran¢_ = dom ¢},
(by assumption), we conclude that ¢ = Py

Analogously, the second equality can be shown. a

Theorem 4.2.8. Let X be a reflexive Banach space and Xy be a Hilbert space
and t4: domey C Xy — Xy be a densely defined, closed, and injective linear
mapping with dense range. Then there exists a Banach space X_ and a mapping
t— such that (X4, Xy, X_) is a quasi Gelfand triple.

In particular, X_ is given by Definition 4.1.2, where Dy = raniy.

Proof. We will identify dom ¢ with ran ¢, and denote it by D,. Then item (iii)
of Proposition 4.1.8 is satisfied. Hence, the corresponding D_ (Definition 4.1.2)
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is dense in AXp and its completion X_ (w.r.t. to ||-||x_) establishes the complete
dual pair (X;,X_), by Theorem 4.1.10. The mapping

L { D_CX. — X,
o g = 9
is densely defined and injective by construction. By the already shown ran:_ =

D_ is dense in &y. Finally, by Lemma 4.1.5 ¢_ is closed and by Lemma 4.1.6
dom:} = D_ =ran¢_. a

Remark 4.2.9. By Theorem 4.2.8 the setting in the beginning of this chapter
establishes a quasi Gelfand triple, if one assertion of Proposition 4.1.8 is satisfied.

Until the end of this chapter we will assume that (X, Xy, X_) is a quasi
Gelfand triple and we will identify dom ¢4 with ran¢; and denote it by D,.
The set D_ is defined by Definition 4.1.2 for D, . This set coincides with ran¢_,
which we will identify with dom¢_.

Proposition 4.2.10. The space Dy N D_ is complete with respect to

Il nae = /1%, + 101 -

Proof. For f € Dy N D_ we have

£ 3 = [CFs Pl = 1 Pz e < Ml ey < AR o -

Hence, every Cauchy sequence in Dy N D_ with respect to [|-||x,nx_ is also a
Cauchy sequence with respect to [|-||x,, |||+, and ||-[[x_.

Let (fn)nen be a Cauchy sequence in D N D_ with respect to ||| x,nx_-
By the closedness of ¢ the limit with respect to ||-||x, and the limit with respect
to ||-||x, coincide. The same argument for ._ yields that the limit with respect
to |||l x, and the limit with respect ||-||x_ also coincide. Therefore, all these
limits have to coincide and (f,,)nen converges to that limit in Dy N D_ w.r.t.
-l v a

Lemma 4.2.11. The operator
D+XD7QX+XX, — XQ,
o] H = f+g,
g
1s closed.

Proof. Let (([gz],zn))neN be a sequence in [L+ L_] that converges to ([ch],z)
in X; x X_ x Xy. Then we have

2%, = Jim [ fu + gallZ, = Jim (falk, + l9al%, +2Re(fn, ga)2,).
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Since 2 Re(fn, gn)x, converges to 2Re(f, g)x, x_, we conclude that || fy|x,
and ||gn|lx, are bounded. Hence, there exists a subsequence of (fy)nen that
converges weakly to an f € Xp. Moreover, by Lemma A.3.3 we can pass on to
a further subsequence (fy,(x))ren such tha‘g (Jl Sy f”(k))jeN converges to f
strongly (w.r.t. ||-||x,). The sequence (% >, f"(k))jeN has still th~e limit f in
Xy (wort. |-|x.) and because ¢4 is closed we conclude that f = f € D,. By
linearity we also have % Z?c:l Ink)y — % — [ in Xp for the same subsequence.
Since %Z{C:l gn(k) 18 a Cauchy sequence in both X_ and &p, the closedness
of v gives that g = z — f € D_. Hence, z = [L+ L,] [f} and the operator

g
[L+ L_] is closed. u

Proposition 4.2.12. D, N D_ is dense in Xy with respect to ||| x, -

Proof. By dom (¢} =ranty = D+ (Lemma 4.2.4) we have

/'\,’oz(mul[ur L,])L:dom[L+ L,]*:domLiﬂdomLizD_ﬁD+. a

4.3 Quasi Gelfand Triple with Hilbert Spaces

In this section we will regard a quasi Gelfand triple (X5, Xy, X_), where X
and X_ (and of course Xj) are Hilbert spaces. Maybe also these results can be
proven for general quasi Gelfand triple, but I could not find a substitute for
Theorem 4.3.1.

For a quasi Gelfand triple (X, Xy, X_) consisting of Hilbert spaces, there
exists a unitary mapping ¥ from X_ to X, satisfying

<gaf>X77X+ = <\I’gaf>X+ and <f?g>X+,X, = <\I/_1f7g>?€',~
We will refer to this mapping as the duality map of the quasi Gelfand triple.

Theorem 4.3.1 (J. von Neumann). Let T be a closed linear operator from the
Hilbert space X to the Hilbert space Y. Then T*T and TT* are self-adjoint,
and (Ix + T*T) and (Iy +TT*) are boundedly invertible.

Note that here the adjoint T is calculated with respect to the “natural”
dual pairs (X, X) and (Y,Y), i.e. T* = T*¥xx,

Proof. Since T* = [_?X I(’J’ ]TJ-7 we have T @ [IO }I)X ]T* = X x Y. Hence, for

Y

[#] € X xY there are unique z € dom T and y € dom T such that

m B [I?w} i Hy} | (4.3)

Consequently, h = x — T*y and y = —T'x, which implies z € dom T*T and

h=x+T"'Tx.



4.3. Quasi Gelfand Triple with Hilbert Spaces 71

Because of the uniqueness of the decomposition in (4.3), x € domT™*T is
uniquely determined by h € X. Therefore, (Ix +T*T)~! is a well-defined and
everywhere defined operator.

For hy,hy € X, we define 21 == (Ix + T*T)"*hy and 29 == (Ix + T*T) ths.
Then z1, 29 € domT*T and, by the closedness of T', T** = T. Hence,

<h17 (IX +T*T)_1h2> = <(IX + T*T)$1,$2> = <$1,{L‘2> + <T*T£U17l‘2>
= (21, 22) + (T1,Tx2) = (w1, 72) + (21, T"T22)
= (21, (Ix + T*T)x3) = ((Ix + T*T) " hy, ha),

which yields that (Ix + T*T)~! is self-adjoint. Therefore (Ix + T*T) and
T*T are also self-adjoint. Moreover, (Ix + T*T)~! is bounded as a closed and
everywhere defined operator.

By TT* = (T*)*(T™*) the other statements follow by the already shown. QO

Applying this theorem to S = AT implies that R_ is contained in the
resolvent set of T*T.

Note that we previously regarded the adjoint of ¢y with respect to the dual
pairs (X, Xp) and (X, X_). However, in order to apply Theorem 4.3.1 we
have to regard the adjoint with respect to (Xp, Xp) and (X1, X} ). Hence, we

will emphazise this difference by the notation LiXOXX+, which was introduced in
Definition 2.2.1.

Corollary 4.3.2. The set D, N D_ 1is dense in X4 and X_ with respect to
their corresponding norms.

Proof. Applying Theorem 4.3.1 to ¢ yields L:XOXX+ t4 is self-adjoint. Note that

by Lemma 2.2.4 we have LiX“XXJr = \I/L:_XO R W%, where V¥ is the duality map

introduced in the beginning of this section. Hence, dom LiXOXX+ ty = dom e} ey
is dense in &}. By Lemma 4.2.4 dom:%} = D_, consequently

domiivy =Dy ND_. (4.4)
An analogous argument for ¢_ yields Dy N D_ is dense in X_. d
Corollary 4.3.3. D, + D_ = &j.

Proof. Applying Theorem 4.3.1 to ¢4 gives that (Ix, 4+t Lj:\’o “™ ) is onto. Hence,
for every x € Xy there exists a g, € dom L+LiXOXX+ C D_ such that

XXy

*"YO
T= gy +ilyly gy -
~—~
eD_ €Dy

. *xX0X X *xXg XX
Since g, € domuje, 0" we have Ly 0" g, € D, and consequently z €

D +D_. Q
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Note that D, N D_ with [|-||x,nx_ is complete and therefore a Banach
space. Since X1 and Xj are Hilbert spaces (in this section) we can define the
inner product

<g’f>X+ﬂX7 = <g’f>X+ + <gaf>X7

on Dy N D_. This inner product induces the previous norm ||-||x, nx_. Con-
sequently D N D_ is a Hilbert space with (-,-)x, nx_. For shorter notation
we denote Dy N D_ as Z,. Note that Z, is dense in Xy, &y and A_ with
respect to their norms (up to embeddings). Hence, we can continuously embed
all of theses spaces into Z’,. For notational harmony we will denote 2! as
Z_. Clearly (Z4,Z_) is a complete dual pair. Moreover, by Theorem 4.2.8
and Remark 4.2.6 (2, Xp, Z_) is a quasi Gelfand triple. Actually, it is even
a Gelfand triple, as the embedding of Z, into X} is continuous. Figure 4.4
illustrates this scenario.

Z_

Figure 4.4: quasi Gelfand triple embedded in Z_

Lemma 4.34. Z_ =X, + X_ and

— i 2 2
Ihllz_ = inf /AN, + ol

Proof. Note that Z, is a Hilbert space with (21, 22)z, = (21, 22)x, + (21, 22)x_-
Hence, there is a duality map ® from Z_ to Z, and we can write

<h,Z>ZﬂZ+ = <‘I)h,,2’>g+ = <(I)h, Z>X+ + <‘I’h,2’>x7.
Furthermore, with the duality map ¥ from X_ to X} we have

(h,2)z z, = (VT '®h,2)x_ x, + (¥Ph, 2)x, x
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and h = U~1®h + UPh in Z_, where U™1®h € X_ and ¥VPh € X,
Let h € Z_. Then for every f € X, g € X_ that satisfy h = f+gin Z_
we have

Kh,2)z_ z, | = |{fs D)o as + (9, 2)a x| Sy 2)ap v |+ {9, 2) a2, |
< fllaey 12l + Mgl 2] 2,

< JIFIE, +llgl3 \JI=13 + 1213,

=I5, +lgl%_ll=l2,,

which implies [[h]|z_ < infa—yig (/I /1%, +[l9][3 - On the other hand

IhZ = l1®hZ, = [®h]%, + (P15 = [T OAl% + [[CRA[%,

finishes the proof. d

Theorem 4.3.5. The intersection Xy N X_ in Z_ s Dy ND_.

This means that area of X, N A_ in Figure 4.4 outside of A} is actually
empty.

Proof. Let he Xy NX_ C Z_ ie. it exists an f € Xy and a g € X_ such that
(h,2)z_ 2z, = ([ =" 2, 2. = (9,05 2)x_x, forall zeDynD_.

We define x = Lllz. Since z € dom:~!, we have z € dom:~'.,. Note that

Zh =1 and 7' 24 = dom ¢}ty (see (4.4)). Hence,

(fiiipr)x, v = (9, 2)x_x, forall zedomeiiey,
which implies (¢} ¢4)*f = g and f € dom(¢}1y)* = dome% ¢y . In particular,

1+ f € Dy N D_. Note that again by .=' = ¢ we have 1='1y f = g. Therefore,
g € dome_ and ¢y f = ¢_g. This gives

<h" Z>377Z+ = <L+f7 Z>X0 = <L—g’ Z>X0'

Therefore, h=f=g=14+f=1_gin Z_. a

4.4 Quasi Gelfand Triples and Boundary Triples

By Remark 2.4.8 the boundary spaces of a boundary triple are always Hilbert
spaces. Hence, without loss of generality we will again assume that (X, Xy, X_)
is a quasi Gelfand triple, where X} and A_ are Hilbert spaces.
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Proposition 4.4.1. Let T be a bounded and boundedly invertible mapping from
Xy to another Hilbert space Yy. Then Py = TD. equipped with ||f|ly, =
| T~ f|lx, establishes a quasi Gelfand triple (Y4,Yo,Y-), where Y, is the
completion of Py and Y_ is the completion of P_ defined as in Definition 4.1.2,
where D is replaced by P,.. Moreover, P_ = (T*)™*D_ and ||g|ly_ = ||T*g|lx_
forge P_.

Proof. The mapping T’ | D, D, — P, is isometric and surjective, if we equip
its domain with ||-||x, and its codomain with ||-||y,. So the linear (single-
valued) relation [Z %]uy = { [gﬂ ’ [1] e L+} C Y4+ x Yy is closed. Since this

linear relation coincides with the embedding tp, : Py C Yy — o, f — f,
Theorem 4.2.8 yields that (Y1, Yo, YV-) is a quasi Gelfand triple.
For g € P_ we have

T
oy, = sup Lokl o [0 T

nepogoy hlly,  sepivgoy TSIy,
|<T*g7f>?(o| o

= sup 0 = ||Tglla_
repnoy ISl

and consequently P_ = (T*)~1D_. Q

Corollary 4.4.2. With the assumption from Proposition 4.4.1 the operators
T|D+ and (T*)*1|D7 can be continuously extended to unitary operators from

Xy and X_ to Yy and Y_ respectively. These extension will be denoted by T’y
and (T*)~*.

Proof. Since T| D, is isometric from Dy onto P,, we can extend this mapping

by continuity. This extension T is again isometric and since P, C ranT}
is dense, Ty has to be surjective. Analogously, we can show the same for
(T*)~L a

Note that we regard the dual pairs (X4, X_) and (Y1, Y—) and therefore the
adjoint of T’ is not its inverse. However, the adjoint with respect to (X, Xy)

and (Y4, Y+) denoted by T_:y+XX+ is the inverse of T'y. Clearly, the same goes
for (T'*)~!. In fact we have another identity for the adjoint of T, .

Corollary 4.4.3. Let us continue with the assumptions of Proposition 4.4.1
and Corollary 4.4.2. Then (T7)~' = (T*)-" and

<(Tjt>_1g7T+f>y_7y+ = <g7f>X7,X+
forge X_ and f € X,.
Proof. Note that for f € D, and g € D_ we have
<gaf>X_,X+ = <gaf>Xo = <(T*)719,Tf>yo = <(T*)719,Tf>y7,y+.

Hence, we can extend this by continuity for f € Xy and g € A_. d
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Corollary 4.4.4. Let S, T be a bounded and boundedly invertible mappings
on Xy. Then [ST‘D+ S(T*)’I‘EL ] is a densely defined closed surjective linear

operator from X, x X_ to Xy. In particular ran [ST|D+ S(T*)_1|D7 ] = AXp.

Proof. Let Py =TD,. Then by Proposition 4.4.1 the corresponding P_ can
be obtained by (T*)~'D_. The mapping

Xy X XXX — Yy x)YV_xd&,

- f Ty 0 01 [f
= gl —~ [0 (THZ" 0| |g
z 0 0 S—1 |z

is linear bounded and boundedly invertible, where )y is the completion of Pi
as in Proposition 4.4.1. Since (Y4, Xp, V-) is a quasi Gelfand triple,

Tf
[LPJr Lpi} = (T*)_lg :f€D+,g€D,
Tf+(T*)'g

is closed in Y1 x Y_ x Xy (Lemma 4.2.11) and therefore also its pre-image
under =

T-Y 0 0
= ([, e ])=| 0 T 0| [y p]=[STey ST ]
0 0o S

is closed in X} x X_ x Xy. Furthermore, by Corollary 4.3.3
ran {ST|D+ S(T*)ﬂ!DJ = Sran [Lp+ Lpi} =SX, = Ap. a

Lemma 4.4.5. Let Ag be a densely defined, closed, skew-symmetric operator on
Xo, Yo be a Hilbert space, and let T: Xy — Vo be a bounded and boundedly in-
vertible. Let (X4, Xy, X_) be a quasi Gelfand triple such that (X4, X_), B1, Ba)
is a boundary triple for Aj§. Furthermore, let Y+ and Y_ be as defined in
Proposition 4.4.1. Then (Y4+,Yo,YV-) is also a quasi Gelfand triple such that
(V4,Y-), Ty By, (T5) ' By) is a boundary triple for Aj.

Proof. By Proposition 4.4.1 (Y4, Yo, Y-) is a quasi Gelfand triple. For z,y €
dom A§ we have, by Corollary 4.4.3,

2Re(Ajz,y) = 2Re(B1z, Bay)a, . x. = 2Re(Ty Biz, (T5) ' Bay)y, y_-
Since Ty : X4 — Yy and (T5)~': X_ — Y_ are surjective, the surjectivity of

[ T B }_{T+ 0

(T7)-1 B 0 (Ti)—1:| [ 1] follows from the surjectivity of [ 7! ]. a

The following result is a generalization of [28, Theorem 2.6] for quasi Gelfand
Vel

as an operator from By x B_ to K. This theorem is the main tool to justify
existence and uniqueness of solutions for port-Hamiltonian systems.

triple and also fixes some minor issues, like the closedness of |:V1 |B B 5. B
+ 0 - 0
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Theorem 4.4.6. Let (B4, By, B-) be a quasi Gelfand triple, Ay be a closed
skew-symmetric operator and ((B4,B-), B1, B2) be a boundary triple for Aj,
where U is the duality map of the quasi Gelfand triple. For Vi,Va € Ly,(Bo, K)
we define

D= {aedomAS B
2

Bia,Baa € By and [Vi V3] l:Bl}a: }

and the operator A = Agf| . If

(1) |:V1|BOQB+ V2|BomB,] is closed as an operator from By x B_ to K,

(ii) ker [Vl VQ] is dissipative as linear relation on By,

(iii) ViV5" + VaVi* > 0 as operator on K,
then A is a generator of a contraction semigroup.
Proof. Tt is sufficient to show that A is closed, and A and A* are dissipative.
Step 1. Showing that A is closed and dissipative. We have

By

aEDc)[BQ

:|a€ (BQ XBo)ﬂker [‘/1 VQ]

By
= [BJ a € ker [Vl|30m,3+ V2|BOOB,} :

=0

We can write
@—{{ﬂ €B+XB_‘pEBo,q€BO andquJrVQp—()}.

Since (B4, By, B-) is a quasi Gelfand triple we have for [§] € ©

Re<qap>B,,B+ = Re<q7p>50 S 07
which implies the dissipativity of A by Corollary 2.4.11. Assumption (i) implies
that © is closed in B4 x B_, which implies the closedness of A by Corollary 2.4.11.

Step 2. Showing that A* is dissipative. By Corollary 2.4.11 we can characterize
the domain of A* by

y B 0 I| Sis us
d € dom A @{BJdE{I O}@ +

32 (‘/1‘6 - )*ICXB_
d OB+ e
4 {Bl] € ran [(%}Bomg) KxBg

B_xB4
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The second equivalence needed the closedness in assumption (i), since (ker T')* =
ranT* for a linear relation (or even unbounded operator) T is not true in general.
Hence, by Lemma 4.2.7

(‘/1’30m3+)*)cxs_ = (V1L+)* = L*+‘/'1* — L:1V1* _ Vl*

vy —1(BonB_ )

where v : B NBy C By — Bpand ¢—: B_NBy C B_ — By are the embeddings
of the quasi Gelfand triple. Analogously, we have

Vel )™ = (Vat ) = V3 =35 = Vo

V=1 (BorBy)”

Hence, for
m € (Vi gy, )"
ran KK XB
Yy (Va Boms,)
- { [gl] k ’ ke Vi BonB_)nVy (Byn B+)},
2
we have

Re<x7y>37,g+ = Re(Vf‘l@ V2*k>57’3+ = Re(Vf‘k, V2*/€>BU
= Re(VoVi'k, k)i > 0.

Therefore, O is accretive and by Corollary 2.4.11 also Ag
which yields A* = —

‘ dom A+ 18 accretive,

AO’dom - 1s dissipative. a

Remark 4.4.7. If we are already satisfied with the operator closure A is a
generator (instead of A) in the previous theorem, then we can replace condition

(i) by

B+><B,
ker {Vl|160r113+ V2|Bonzs,] C ker [V1‘80n8+ V2‘Bon3,] ) (4.5)

where [V1|Bor‘15 4 Velsgns_ } is the closure as linear relation (possibly multi-valued).
Clearly, if (4.5) holds, then there is already equality.

Example 4.4.8. Let (B4, By, B_) be a quasi Gelfand triple that satisfies all
conditions of Theorem 4.4.6 and let M € L,(By) be coercive (i.e. M > I,
¢>0). Then V7 =1, V5 := M fulfill all conditions of Theorem 4.4.6:

1

(i) Setting S = M2 and T = M™% in Corollary 4.4.4 implies the closedness
of [I‘BOmBJr M’BOmB, }

(ii) For [4] € ker [Vi V3| we have z = —My. Since M is positive this yields

Re<9€7y>60 = Re<_Myay>Bo = _<Myay>60 < 0.
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(ili) ViVy + VaVy = M* + M =2Re M > 0.

Moreover, Corollary 4.4.4 also implies the surjectivity of [I|Bom5+ M’BONL ]

Clearly, also V; .= M, V, := 1 fulfill all conditions.

Lemma 4.4.9. Let the assumptions of Theorem 4.4.6 be true. Additionally,
let V1, Vo be boundedly invertible and we replace condition (iii) by the stricter
condition V1 V5 is coercive, i.e. ViV > cl, for ¢ > 0. The adjoint of A is then
given by A* = —Ajj restricted to

dom A* = {I’ € dOHlAO | Bll’,BQI € Bo, (V;)ilBll' — (Vl*)ilBQI = 0}
Proof. In the proof of Theorem 4.4.6 we characterized the domain of A* by

a € dom A*

B+><B,

Bia Vo'k *— . —
=[] < {[i][re v nmny e )

First we show that the set on the right-hand-side is already closed: Let (kj,)nen
be a sequence in V;* (B N By) N V5~ (B_ N By) such that

Vo'kn fl.
] 1w s

Then we have

1 * * *
% < —5 oy ViV hin) i = (Vi ki, V5 K ) 5,
= (Vkn, Va'kn)s_ s, = (9, )55

which implies that (kp)nen is bounded in K. Therefore, there exists a weakly
convergent subsequence with limit k£ € K and by Lemma A.3.3 there is even
a further subsequence such that k is the strong limit of ky = % Z;\/:l (-
Hence, Vi'k, — Vi*k and Vi'k, — Vi'k w.r.t. ||-||s,. Clearly, the limit of V;*k,
in B_ is still g and the same goes for V5 ky. By the closedness of the embeddings
t+ and ¢ of a quasi Gelfand triple, we conclude that ¢ = Vi*k and f = V5'k
and

x Bia V5'k «—1 —1
a € domA* & {Bza] € {[Vf‘k} ‘keVl (B_NBy)NV, (B‘+mBo)}.

Hence, a € dom A* is equivalent to there exists a k € V;* 1 (B_NBy)NVs (BN
By) such that
(Vo) 'Bia=k and (V) 'Bya=F,

which is equivalent to

(V) 'Bia — (Vi)' Bya = 0. a



Chapter 5

Boundary Spaces

In this chapter we come back to the port-Hamiltonian PDE and combine the
previous theory to justify well-posedness of the port-Hamiltonian PDE. We
had boundary operators that gave us almost a boundary triple in (3.5). We
will construct suitable boundary spaces to extend those operators such that
we obtain a boundary triple. Hence, we can apply boundary triple theory to
characterize boundary conditions such that the systems has for every initial
condition a unique solution that does not grow in the Hamiltonian. Furthermore,
we will see that our boundary spaces establish a quasi Gelfand triple with a
subspace of L2(99) as pivot space. Hence, we can also apply Theorem 4.4.6 to
obtain suitable boundary conditions. This enables us to formulate the boundary
conditions in the pivot space.

5.1 Boundary Spaces for Ly

In this section we will construct a suitable boundary space Vy, (Definition 5.1.6),
such that we can extend the integration by parts formula for Ly (Lemma 3.1.8).
We will formulate the boundary conditions in this space in Section 5.3. This
space will provide a quasi Gelfand triple with a subspace of L2(92) as pivot
space. In order to impose different boundary conditions on different parts of
the boundary we introduce boundary operators that only act on a part of the
boundary and their boundary spaces Vr, r, .

Definition 5.1.1. We say (I';)%_,, where T'; C 09, is a splitting with thin
boundaries of 0%, if

() Uj_a Ty =09,
(ii

) the sets I'; are pairwise disjoint,
(iii) the sets I'; are relatively open in 9,
)

(iv) the boundaries of I'; have zero measure w.r.t. the surface measure of 0.

79
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For I' C 99 we will denote by Pr the orthogonal projection from L2(9£2)™1
on L2(T') :==ran 1L, C L3(T")™, where 1,; denotes the indicator function for
a set M. We endow L2(T') with the inner product of L?(9§2)™1. Therefore, we
can adapt (3.1) to obtain

(Lof, g)12(ym + {f, LE g)2(yme = (Lo fs Paavog)12(a0)m: - (5.1)
——

TLg

We define 7T : HY(Q)™ — L2(T) by n} = Pryo and 71, = 79, Since both Pr
and o are continuous, the mapping 7t is also continuous. Therefore, ker 7% is
closed. Note that Pr = 1pPyq and consequently WE = lp7p, and IprL, = L, 1p.

Example 5.1.2. Let L be as in Example 3.1.3 (Ly = div). Then L, f =v - f
and L, is certainly surjective. Therefore, L2(9€) = L2(99), 7, = 7o and
7t = 1po. Since LY = grad, we have H(L}, Q) = H1(Q).

Example 5.1.3. Let L be as in Example 3.1.4 (Ly =rot). Then L,f = v x f.

Note that for every w € K3 and every u € R3 with ||u]| = 1 we have w =
(u X w) X u+ (u-w)-u. It is not hard to conclude Pyof = (v X f) x v. Hence,

7w, = (VX y) X V.
Lemma 5.1.4. Let T" C 00 be relatively open and let the boundary of T’ have

zero measure (w.r.t. the surface measure of ). Then kerwl is closed as
subspace of HL(Q)™ endowed with the trace topology of H-||H(Lg,9), i.e.

II-1
ker 7% IS A HYQ)™ = ker L.

Proof. Clearly, ker WEH'”H(LEE"Q) N HY(Q)™ D kernt. So we will show the other
inclusion. Note that for T C 02 we have

HE (@)™ = {f € HI(Q)™ | Txaof = 0 € L2(00)™ ).

Hence, HéQ\F(Q)mQ = H(}m\f(ﬂ)"”7 since the boundary of I' has zero measure.
Let (gn)nen be a sequence in ker 7L which converges to g € H(€2)™ with respect
t0 ||“[l(zy ). By Corollary 3.1.9 we have for an arbitrary f € Hpq, ()™

(Lo fs 7L (g = ga))z] = (Lo fs mr(g = ga))iz] < I fllczo.) 19 = nllaczy)-
Since 7% (g — gn) = 7Lg and the right-hand-side converges to 0, we can see
that 719 L LyoHbe (™2, By [57, Th. 13.6.10, Re. 13.6.12] yoH}q, (€)™
is dense in L2(I")™2, which implies 75 g L ran1rL,. By definition 7} g is also
in ran 1L, which leads to 7} g = 0. Hence, ker 7} is closed in H*(Q2)™ with
respect to ||z 0)- Qa

By the previous lemma

6l = it { gz o | 7E9 = 0}
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is a norm on My = ran 7} . The next lemma will show that this norm is induced
by an inner product.

Lemma 5.1.5. Let T' C 09 be relatively open and let the boundary of T' have
zero measure (w.r.t. the surface measure of 92). Then the space (Mr, |||/ ary)
is a pre-Hilbert space. Furthermore, its completion denoted by (M, |||l577) s

H
isomorphic to the Hilbert space H(Léﬂ Q)/ker WEH(LB )

The mapping 7% : HY(Q)™ — Mr can be continuously extended to a sur-
jective contraction 7% : H(LY,Q) — Mr. The kernel of 7% satisfies ker 7t =

H(LY Q)
ker 7r£ .

Instead of 7?29 we will just write 7p,.

Proof. By Lemma 5.1.4 ker 7} is closed in H'(Q)™ with respect to trace
. . . . Hl Q ma .

topology of ||-[l(z# o), which implies that ( () /kerw£7|| HH(Lg,Q)/ke”rE>

is a normed space (normed space factorized by a closed subspace is again a

normed space). Since

H[Q]NHH(L'O*,Q)/I(QME = ||7T£gHMF’

it is straight forward that [g]. — 7L g is an isometry from (Hl(Q)ml/ker 7t

250 g ) 080 (M )
er Ty, _
Clearly, (Mr, ||-||as) has a completion (M, |[|-[|37). By definition of the

norm ||-||ar. we have for every g € HY(Q)™

7L gllsz = ImLgllane < lgllnczy o)-

Therefore, we can extend 7% by continuity on H(L, Q). This extension is
denoted by 7L and is a contraction by the previous equation.

Let g € H(L}, Q). Then by Theorem 3.1.18 there exists a sequence (gy)nen
in HY(Q)™, which converges to g. Therefore, we have

_T s T T .
||7I_Lg||]\47F = nILH;O“ﬂ_LgnHMr = 'n,h~>nolo kei(IelfTrEHgn + kHH(Lg,Q)

The triangular inequality yields

inf |lg+kll = llgn —gll < inf |lgn +k[| < inf g+ k[ + llgn — gl-
keker nl keker nb keker nb

Hence, we have

HﬁEQHJ\Tp = kegrfﬂzllg + Ellnzy.o) = . %HQ + Kl o (5.2)

Eker m
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and consequently H(L,Ia_' ,€2) / ker ﬂ-E is isomorphic to ran L. Since the quotient
space H(Lg ;) / ker 7, is a Hilbert space, in particular complete, and M C

ran 7’7{1 C My, we have Mt = ran 7’r£. This makes Mr also a Hilbert space and
Mt a pre-Hilbert space.
Finally, equation (5.2) implies ker 7} = ker k. a

Now we are able to define a complete subspace of H(L}!, Q) that is in some
sense 0 at one part of the boundary and the corresponding boundary space for
the other part of the boundary.

Definition 5.1.6. Let I'g,I'; C 09 be a splitting with thin boundaries and 7,
the extension of w7 introduced in Lemma 5.1.5. Then we define

H o) - _y : .
Hro (Ly, Q) =ker7,* and Vpp, =ranmply o),

where we endow Hr, (L}, Q) with ||~||H(L51752) and Vp r, with [[-[[y, . = ”'HiMm'

Instead of Vr gq = rany, = Mapq we just write V.

From now on until the end of this section we will assume that I'g, 'y C 0
is a splitting with thin boundaries. By Lemma 5.1.5 V, is a Hilbert space.

Note that Vi r, and Mr, are not necessarily the same space. Although, we
have 71 'g = 7rg (in L2(0Q)™) for g € HY(Q)™ NHr, (L}, Q), but we can only

_T _
say |7 glla < I7Lgllver, -

Example 5.1.7. Continuing Example 5.1.2 yields Hp, (L}, Q) = Hp, (@)™ =
{f € H{(Q)™ | 1p,v0f = 0} which already appeared in the proof of Lemma 5.1.4.
Moreover, we have T, = 7o, ﬁ'El = 1r,v, VL = H1/2(6Q)7 and Vo r, = {f €
H1/2(aQ)\f|FO =0}.

The next example shows that for L from Example 5.1.3 (Ly = rot) neither
of the “natural” boundary operators 7y, and I, can be continuously extended
to H(rot, Q) (= H(Ly,)) such that the codomain is contained in L%(92). Note
that L,¢ = v x ¢ for ¢ € L2(0) and 7r.f = (v X v f) x v for f € HY(Q).

Example 5.1.8. Let Q = (0,1)% and F: Q — R be defined by
1 2 2 2\—2/10
F(CU):W:(%‘F%‘F%) :
Zll2

Then we define f = grad F', which is

— gy (] + a3 +a3)"
f(@) = | —ggea(e} + a3 +23) "
—qo3(ei + a3 +a3) 7
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Hence, rot f = rot grad F = 0. We will show that f is in L2(Q)3:
[ls@ldz - / Z S b ad) T da

100 (3?1 +a3+a3) P de

Y
< / (22 4+ 2% +23) Pde = 271/ i / =52 cos 0 dr df
B5(0) _x

V3 V3
= 47r/ r=* dr = 4n5r/?
0

< +o0.
Therefore, f is even in H(rot,). Let v denote the normal vector on 0f.
Then we show that v x f|,, is not in L*(9Q)*

[0,1] x [0,1] x {0}. Therefore,

0

: Note that v(¢) = [_81] on

— LG+ @)

V(O x f(O) = | GG +G)7| for ¢€[0,1] x[0,1] x {0}
0

and consequently

/ Q) x F(OI2d¢ > / 1(0) x FOIZd¢
a0 [0,1]x[0,1]x {0}

16 7
00 (€8 +&)77"de.
100 Jppapwoy
Since [0, 1] x [0, 1] contains the circular sector with arc 7 and radius 1, we
further have (by applying polar coordinates)
16 s —14 16 Tt -9
> on fordr = — & /5 d
=100 2 / T 1002 / '
1
_ 16 7m5 _uy
w021 |, 0™

Hence, f € H(rot, ), but v x f|BQ ¢ L2(00Q)3. Since

— 175G (G + )
W(Q) x f(Q)) x v(Q) = | —15¢(¢ +¢3)~7°

0
we also have (v x f|,,) x v ¢ L2(90)%.

for ¢ €[0,1] x [0,1] x {0},

Lemma 5.1.9. The space Hr, (L}, Q) equipped with (., '>H(LS’Q) is a Hilbert

space and H(Q)™ N Hr, (L}, Q) is dense in Hr, (LY, Q). Moreover, V1, is a
closed subspace of Vi, and therefore also a Hilbert space.
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Proof. By definition of Hr, (LY, Q) and Lemma 5.1.5 we have

Hr, (L5, Q) = ker 71° = ker 7,0 = H1(Q)™ N Hr, (LY, Q).

Note that ker 7, C ker 7TLO, since 7rL° = Lp,7r. Again by Lemma 5.1.5, we
have
ker 7w, = kermp, C ker7r ker7rL .

Therefore, 7‘{0 o 7?51 : Vi, — Mp, is single-valued (well-defined). For arbitrary
¢ €Vy and g € ﬁglqﬁ we have
0

_T _
|7 0 7TL1¢HMFO = . lg + kHH(LH ) < mrfﬁLHQ + k”H(LH,Q) = 9llv, -

erTrL

Hence, 7‘{" o 7?;1 is continuous and ker 7‘r£° o 7?21 is closed in Vp, and therefore
also a Hilbert space endowed with (-, -}y, . The equivalences

¢ € keer“ o 7TL1 & ﬁ;lcﬁ - kerfri" & g€ raner‘keﬁrro
—_————
=Vr,r,
imply that Vp r, is closed and therefore a Hilbert space. d

Proposition 5.1.10. The mapping Ir,L,yo: HY(Q2)™2 — L2(T'1) can be ex-
tended to a linear continuous mapping

L)' H(Lp, Q) — Vi p,,
such that | Ly fllvy . < 1/ lnczo.)-
Proof. Let f € HY(Q)™2. For g € HY(Q)™ N Hr, (L}, Q) we have by Corol-
lary 3.1.9
(L, Lovo f, ®rg)iz, )y | = |[(Lvyofs RLgdizaaym | < 1 Imczo. ) 19y 0)-
By Lemma 5.1.9 the subspace M = ranﬁL’Hl(Q)mlmeo(Lg@) C LZ(I'y)™ of
Vi, is dense in Vi r,. For ¢ € M there exists at least one g € H'(Q2)™ N

Hr, (L}, Q) such that 77,9 = ¢. Hence, we can rewrite the inequality as

1r, L my | < inf
|< ri Lo f, o)y 1| < I lnczo. ) geHl(Q)mllanpo(Lg‘,Q)”g”H(Lg’Q)
TLg=¢
= [[flzo. 19llve v, -
We extend the mapping ¢ +— (Ir, LYo f, ¢)L2(r,)m: by continuity on Vp r, and
denote this extension by Z¢. Therefore, we have

IZ¢ () < 1 f o.Ml v, -

This means that the mapping f — Z¢ from H'(2)™2 to V], T, is continuous, if

we endow H*(Q)™2 with [||lu(z,.0)- Once again, we will extend this mapping
by continuity on H(Lp, ) and denote it by L. a
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Instead of writing L? we will just write L,,.
Remark 5.1.11. Since Vr,r, is a subspace of Vi g0 = Vr every element of %9
can also be treated as an element of V} . . By definition of L' and L, it is
easy to see that LI'f = I, f|vL .. or equivalently LI f and L, f coincide as
241

elements of V] . for f € H(Lp, ). Hence, we can say V], C Vi, Since

|VL,F1 -
. . . / Y
Hahn-Banach gives the reverse 1f1clus1on we can even sayivL |VL,F1 =Vir,-
The reason for even defining LL* instead of just using I, is that the range of
its restriction to H*(Q)™2 is also contained in L2(T';), which will be important

for getting a quasi Gelfand triple.

Corollary 5.1.12. For f € H(Lp, ) and g € Hr, (L, Q) we have
(Lo f, g)r2(ym + (f. LY g)2yme = (Lo f, TLIV, o Vir, -
For f € H(Ly, Q) and g € H(L}, Q) we have

(Lof, g2y + (f Ly g2 yme = (Lo fr TLg)vy v,
= (@, L9y v -

LH» H

Proof. Since HY(€2)™2 is dense in H(Lg, ©2) and H(Q)™ N Hp, (L}, Q) is dense
in Hr, (L}, ), the first equation follows from (5.1) by continuity. The second
equation is just the special case I'g = () and switching the roles of Ly and Lg
yields the last equation. a

Theorem 5.1.13. The mapping L,: H(Lyp,Q) — V} is linear, bounded and
onto.

Proof. By Proposition 5.1.10 we already know that L, is linear and bounded
from H(Ly, ) to V;.

Let u € V), be arbitrary. Since 7, is continuous from H(L}, Q) to Vp, the
mapping g — (i1, Tr.g)y; v, is continuous from H(L}, Q) to C. Consequently,
there exists an h € H(L}!, Q) such that

(hs ncey.o) = (smLghvy v, forall ge H(LY, Q).
For a test function v € D(2)™* we have
0= </J,, 7TL’U>V£7VL = <h, U>H(Lg',Q) = <h, 1}>|_2(Q)m1 —+ <Lg‘h7 Lg’U>L2(Q)m2
H H
= <h’ U>D’(Q)m1 ,D(Q)™1 + <L8 ha L& U>D/(Q)7n27D(Q)7n2
H
= <(I - L(’)La )h7 U>'D’(Q)m'1 D(Q)™1

This means LyL}'h = h in the sense of distributions. However, h € H(L}, )
implies h € L2(), which in turn gives LyL}'h € L2(Q)™, and L'k € L2(Q)™=.
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Therefore, f == Lyh € H(Ly, Q). By Corollary 5.1.12 for f = L}'h € H(Ly, )
and g € H(L}, Q) we have

(b mrg)vy v = (b Duy.a) = (b ghz@ym + (LY h, Ly g)12(0)me
= (L= LoL)h, ghizoym + (L LD, wLg)vy v,
_ /T H
- <L1/ (La h)7 7TL9>V£,VL'
=f

Hence, L, f = p and L, is onto. d

Corollary 5.1.14. The mapping LI : H(Lp, Q) — Vir, 18 linear, bounded and
onto.

Proof. By Proposition 5.1.10 we already know that Ll is linear and bounded
form H(Ls,?) to V;. Remark 5.1.11 gives L”f|vL L= LI f for f € H(Ly, Q)
L1

and Vi p =Vp , which completes the proof. Qa

‘VL,I‘l
Theorem 5.1.15. (Vi r,, L?r(l"l),V'LIl) is a quasi Gelfand triple.

Proof. Let D, = ran7rL|H% ( equipped with [|-[|x, = [|‘[lv,, and let
0

Q)m1
D_ denote the corresponding set from Definition 4.1.2 with Xy = L2(I'y).
Then by Remark 4.1.3 ||g||lx_ = ||g||V/L1Fl for g € D_ and ran1p, L,y C D_
(by Proposition 5.1.10). By definition ran 1r, L, is dense in L2(T;) and by
Proposition 5.1.10 and Corollary 5.1.14 also dense in VIL,I‘I' Consequently, also
D_ is dense in both L2(T';) and Vj, . . Hence, assertion (iv) of Proposition 4.1.8
is satisfied, and by Remark 4.2.9 the completions of D+ and D_ form a quasi
Gelfand triple with pivot space L2(I';). By construction the completion of D
is Vo r,. By the density of D_ in V] . and ||g|lx_ = HgHV/L‘Fl for g € D_ the
completion of D_ is V7 . a

Corollary 5.1.16. Ho(L}, Q) = Hoa (LY, Q) = ker 71, = ker Lf! and Ho(Ly, Q) =

Hoq(Lg, Q) = ker wpn = ker L,.
Proof. For g € Ho(L}, Q) there is a sequence (g, )nen in D(Q) converging to

g, which implies 7,9 = lim,, o 7r.g, = 0. Therefore, HO(L{';,Q) C kermy, =
H@Q(Lg, Q). On the other hand, if g € HaQ(Lg, Q), then

(Lof, g)2(ymi + (f LY g)r2(yme = (Lo f, 7Lg) vy v, =0

for all f € H(Ly,2). Hence, by Lemma 3.1.17 g € Ho(LY, Q). Consequently,
Ho(LY, Q) = Hao (LY, Q). The second equality of the statement holds by
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_A*lK

Figure 5.1: Setting of Section 5.2

definition and the third will be proven by the following equivalences

g € kermp, & (TLg, Y)v, v, =0 forall o€ 1%
& <_Lg,iuf>V/L7VL =0 forall feH(L,N)
(

C.5.

—

=
AHIH g, 7 PV vn =0 forall feH(Lo,Q)
=4

(L'g, ¢>V/LH,VLH =0 forall ¢ €V
&g cker I,

Switching L with LH yields Ho(Lg, Q) = Hoo (Lo, Q) = ker 7y = ker L,. Q

5.2 Abstract Approach

This section we extract the essence of the previous and present an abstract
approach to boundary spaces with differential operators of arbitrary order in
mind.

Let H1, Ho be Hilbert spaces, A;: domA; C Hy — Ho and As: dom A; C
Ho — Hy be a densely defined and closed operators, such that A; C —A3.
Moreover, let Dq, Dy be dense subspaces of Hy and Hi, respectively, such
that D; is also dense in dom A} for ¢ € {1,2} with respect to the graph norm.
Furthermore, let Xy be another Hilbert space and By: D1 — &y, Ba: Dy — A)
are linear with dense range.

In this section we will show the following theorem

Theorem 5.2.1. Let Ay, As, By and Bs fulfill the previous assumptions and
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an abstract integration by parts formula:

<A>|1(fa g>7‘ll + <f’ A§g>7'12 = <Blfa B2g>Xo (53)

for f € D1 and g € Dy. Then we can construct a boundary triple (X, Bl, Bg)
for [12; ’L(‘)I} such that (X, Xy, X') is a quasi Gelfand triple.

Clearly, the previous setting with A; = Ly, As = Lg', By =L, and By = 7,
is an example of this setting.

Lemma 5.2.2. For f € Dy and g € Dy we have

|<B1fa BQQ>XO| < ||f|

Proof. By (5.3), the triangular inequality and Cauchy-Schwarz’s inequality we
have

Arllgllag.

|<B1f7 BQQ>XO’ = |<Aif7 g>'H1 + <f7 A;g>7'l2|
< AL fllae llgllzey + 111311 A3gl9e

< 1AL B, + 17130/ I9l3, + 143911,
= £

Lemma 5.2.3. ker By is closed in Do with respect to |||

Az llgllag- Q

A3 -

Proof. Let (gn)nen be a sequence in ker By that converges to g € Dy with
respect to ||-||az. Then for every f € Dy

‘<B1f7 B29>XO| = |<B1f7 BQ(Q - gn)>Xo‘ < ”f‘

Since ran B is dense in X)), we have Bag | &)y and consequently g € ker By. O

Axllg — gnllay — 0

Therefore, ran By equipped with

Bag = ¢} (5.4)

is a normed space. Its completion is a Hilbert space as the next lemma will
show.

|Plran B, = inf{ ||9||A§

Lemma 5.2.4. the completion of ran By with respect to the norm (5.4) is
isometric isomorphic to dom Az/ker Bz”'HAE equipped with the factor norm
IS~ = inf{|glla; [g ~ f}-

Proof. By Lemma 5.2.3 that ker By is closed in Dy w.r.t. |||
D, / ker B, 1s a normed space. Moreover, we have

A3

A;. Hence,

I~ 1Dz oy, =, I llg + K]

Ay = ||B2,gHranBQ



5.2. Abstract Approach 89

and therefore it is straight forward that [g]. +— Bsg is an isometry from
D2/ ker B, onto ran Bs.

Consequently every completion of D2 / ker B, is also a completion of ran B,

with ||||lran 5, It is not hard to see that dom A;/ ker le\'l\A; is a completion
of DQ/ ker By - Q

We will denote the completion of ran By w.r.t. ||||lran B, by X. We have
that By as a mapping from Dy equipped with [|-[| 43 onto ran By equipped with
I |lvan B, is a contraction (||Bz|| < 1).

Lemma 5.2.5. We can continuously extend the mapping By to a surjective
mapping Bs: dom A5 — X, where dom A3 is equipped with the graph norm.
Moreover, || Bs|| < 1 and ker By = ker BQ”IHAE.

Proof. Since dom By = Dy is dense in dom A3 (w.r.t. ||-|4z), the continuous
extension of Bj is defined on dom A% and still satisfies |Bz|| < 1. Clearly,
ker BQH.”A; C ker By and on the other hand for g € ker B, there exists a
convergent (w.r.t. [|-[|a;) sequence (g, )nen in Dy such that lim Byg, = 0. By
the triangular inequality we have

. f 2 N 5 < f * i f * — *
reif p lotkllas —llgn—gllas < nf, llgnthllaz < inf ) llg+kllas +ll9.=gll3
Hence,
0= HB29||X = llm||B2gn||ranB2 = hé%lkeigfg ||gn Az = kelnf
which implies that f € ker By 3. .

Lemma 5.2.6. The mapping B1: D1 — Xy can be extended to a mapping
By: dom A7 — X', such that for every f € Dy

B1f(¢) = (B1f,d)x, forall ¢ € ranBs

Proof. For a fixed f € Dy and ¢ € ran By we have [(B1f, ¢)x,| < ||f]
by Lemma 5.2.2. Hence, we can extend the mapping

ol x

A7

Efl ¢ € Dy — <Blfa¢>X0

by continuity on X. So Zf € A" and f + Zy is linear and bounded by |- a;.
Therefore, we can also extend this mapping on dom A7, we will denote this
extension by Bj. a

Lemma 5.2.7. For f € dom A} and g € dom A5 we have

(AT f, 9, + (f, ASg)m, = (Bif, Bag)ar x
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Proof. By assumption D; is dense in dom A} w.r.t. the graph norm of A7.
Moreover, B; are continuous extensions of B; (w.r.t. the graph norm of A}).

Hence, the assertion follows by continuity from (5.3). Q
Clearly this also implies A; = — and consequently dom A; =

ker BQ = ker BQHHAS

AS ’kcr B,

Theorem 5.2.8. B is surjective.

Proof. Let u € X’ be arbitrary. Then ¢: g € dom A3 +— {(u, Bag)xr x is an
element in (dom A3)" and therefore there exists an h € dom A3 such that
(i, B2g)xr . x = (h,g)a,. For g € dom A; = ker By we have

0= <M7 B2g>X’,hs - <hag>A§ = <h7g>H1 + <A§ha A;g>H2
= <ha g>H1 - <A;h’7 A19>H27
which implies that A5h € dom A} and h = AjA%h. Hence, we have for a
g € dom A3
<Na B29>X/,X = <hag>H1 + <A;h, A;g>H2
= (h,9)r, — (ATA3h, ), + (B1A3h, Bag)ar x
= (h — AT A3h, g)m, + (B1A3h, Bag)xr .
=0

Consequently, 4 = B A5h and By is surjective. a
Proof of Theorem 5.2.1. We define b+ = ran B; which is by assumption dense
in Ay. Moreover, ran Bs is also dense in Xy and since its extension Bs maps
into X '’ we conclude that ran B C D_ (where D_ is the corresponding set to
D given by Definition 4.1.2). By construction of Bs, ran By is also dense in

X'. Hence, assertion (iv) of Proposition 4.1.8 is satisfied and by Remark 4.2.9
(X, Xp, X') is a quasi Gelfand triple. a

5.3 Boundary Triple for a port-Hamiltonian Sys-
tem

In this section we will show that there is a boundary triple associated to
the port-Hamiltonian differential operator (P + Py)H, which enables us to
formulate boundary conditions that admit existence and uniqueness of solutions.
In particular, we can parameterize all boundary conditions that provide unique
solutions that are non-increasing in the Hamiltonian.

Recall the setting in Section 3.2. We had the following PDE:

ax
z(0,¢) = zo(¢), Ceq,

0 (tv C) = Z %Pf}{(()l’(t, C) + P()H(C)l'(t, C)a te RJM C € Q,
i=1
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LOH LO] for i € {1,...,n}, see Assumption 3.2.2.

We wrote this system as an abstract Cauchy problem:

where we assume that P; = [

&(t) = (B + Po)Hx(t), x(0) = xo,

so that we can use semigroup theory to characterize solvability and uniqueness
of solutions.

In (3.5) we have already found an almost boundary triple for B + Py (note
that Py is skew-adjoint, therefore (Pyx,y) + (x, Poy) = 0). We had

(P + Po)x,y) + (x, (B + Po)y) = (Luyvoxr, Yoyrr) + (Yoxw, Luyoyr)-

We will see that we can extend this to a boundary triple such that the boundary
spaces establish a quasi Gelfand triple with L2(9€2) as pivot space.

Lemma 5.3.1. Let P and L be as in Assumption 3.2.2. Then
VP = VL X VLH and V;: = V}J X V/LH'

Moreover,

_ |7 0 5 0 EV
“P_{o m} and P”_[Ly o]

Proof. Note that 7p is defined as the orthogonal projection on ran B,. Since
B, = [Lo:{ LO”], we can easily derive mp = [WOL WSH } By definition Vp is the
completion of ranmp with respect to the range norm. We will denote the
completion of a normed space S by S. Thus,

Vp=ranmp =ranmy X ranmps =ranwy X ranmph = Vr X VrH.

Clearly, this implies Vp, = V] x V7, and 7p as the continuous extension
of mp = [WOL WSH:| equals [ﬁOL ﬁ(L)H } Finally, the continuous extension P, of
PV:[LOHLO”] equals[—OHIB”]. d

Recall the splitting = [£"]. Accordingly, we introduce Hz = {
for x € H™1(H(P,)), so that

(Hzx) ph }
(Hz)L

L@(H$)L

P{)H:L' - {Lg (Hl‘)LH

} . [0 LHx=L(Hz)L, [fr 0] Ha=7r(Ha)pm.

The next theorem gives us a boundary triple for the port-Hamiltonian
differential operator, such that the boundary spaces establish a quasi Gelfand
space with L2(9Q) as pivot space. Recall that Xy is L2(Q)™ equipped with

<x7y>X7-¢ = <$7Hy>L2(Q)
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Theorem 5.3.2. The operator
Ag = —(Py+ Py)H, domAy:=H '(kerB)
is closed, skew-symmetric, and densely defined on Xy . Its adjoint is
Ay = (P + Po)H, domAf=H"(H(P,Q)).
Let B; = [ﬁL O] H, By = [0 Lj] H. Then (V5, B1, B2) is a boundary triple
for Aj.

Proof. We define A as (Py + Py)H with dom A = H~'(H(P,Q)) on Xy. By
Lemma 3.1.5 By: H(P,Q) C L2(Q)™ — L2(2)™ is a closed operator. Since H
is a bounded operator on L2(£2)™, and X3 and L?(2)™ have equivalent norms,
it is easy to see that A: H~'(H(Fy, Q)) C Xy — Ay is closed. The adjoint of
A can be calculated by

A% = ((Py+ Po)H) ™% = T (B + Po)H) ™ H = (B + Py )H

. *
and according to Remark 3.1.7 we have P, <" = *Pa|d0m prizxiz, Where
o

domP;L2XL2 C H(P, Q). Hence,

A" = —(Py+ PO)’H|H

. =-A . c -A.
—1(dom B, L2xL2y ’H*l(domPaszg) =

Since A is closed, we have A** = A. Consequently, A* is skew-symmetric on
Xy

Now we know that A is the adjoint of a skew-symmetric operator. So we
can talk about boundary triples for A. First we note that

ran [gﬂ =ran7y xran L, = Vg x V;.
Since H is self-adjoint and P, is skew-adjoint, we have for z,y € dom A

<A’Zi177 y>X;.¢ + <‘T7 Ay>XH
= (BHz, Hy) 2 + (Hz, BHy) 2

0 Lo
LYo

_ /| Lo(Hz)L (Hy) m (Hx)pn Lo(Hy)L
- <[L5<HZ>LJ ’ [(Hm ] > - <[<Hw>L] ’ [La“mym] >
= (Lo(Hx) L, (Hy)w)2 + ((Ha) £, LY (Hy) 1n ) o

+ <L5I(H$)LH, (Hy)L>|_2 + <(Hm)LHa Lg(Hy)L>|_2

= (L, (Ha)r, 7o (Hy) pw)vy vy, + (T (Ha) o, L (Hy) L)y, v,

by the the identity I = [ } and Corollary 5.1.12 we further have

= (Bax, Bry)y; v, + (B12, Bay)y, vy -



5.3. Boundary Triple for a port-Hamiltonian System 93

Therefore, (Vr, By, Ba) is a boundary triple for A.
By Lemma 2.4.5 dom A* = ker By N ker By, which is equal to

ker By Nker By = H ™' (ker [7, 0] Nker [0 L,])=H " (ker7, x ker L,).

By Corollary 5.1.16 this is equal to %~ (ker L}! x ker L,,) = H™! (ker F,). Hence,
A* = 4g and 4; = A. -

Theorem 5.3.3. Let Aj be the operator from the previous theorem. Then
Vo, [ﬁL O] H, [0 L,fl] H) is a boundary triple for

A= A]

H1 (Hry (LY, Q) xH(Lo,)) "

Proof. Since we already have a boundary triple for Afj, we can show that A is
the adjoint of a skew-symmetric operator by Corollary 2.4.11 (iii). Hence, we
have to check, whether [§ ]C+ C C in V, x V], where C is the corresponding
relation to the domain of A according to Corollary 2.4.11. For Bj, B being the
mappings from the previous theorem we have (Note that Vp, r, is a subspace of
Vr; Lemma 5.1.9)

C = |:§1:| dom A = VL,I‘l X Vi
2

[(1) (IJ Ct ={0} x Vi, SV, xV, =C.

For x,y € dom A we have, using Remark 5.1.11,

<le, B2y>VL7V’L = <7_TL(,H‘T)LH7EV(/Hy)L>VL7V/L
= <7_TL (H‘T)LH ) EEI (Hy)L>VL,F1 Yir

= <[ﬁ-L O] Hl‘, [0 EEI] ,Hy>VL:F1’V/L,F1,

which yields item (ii) in Definition 2.4.1. By ran [7; 2 }
v 1 THp (L8,9) xH(Lo,Q)

Vrr, X Vi r,, the remaining item (i) is fulfilled.

With the next theorem from [28, Theorem 2.5] we can characterize boundary
conditions such that an operator A that possesses a boundary triple generates
a contraction semigroup.

Theorem 5.3.4. Let Ay be a skew-symmetric operator on a Hilbert space X
and (B, By, B2) be a boundary triple for Af. Furthermore let K be a Hilbert
space, Wg = [Wl Wg], where Wy, Wo € L,(B,K), and A == A(’§|d where

om A’
dom A = ker Wpg [gl} If ran Wy — Wy C ran Wy + Ws then the following
2

assertions are equivalent.
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(i) The operator A generates a contraction semigroup on X.
(ii) The operator A is dissipative.

(iii) The operator Wy + W is injective and the following operator inequality
holds

We will reformulate this theorem to fit our situation.

Corollary 5.3.5. Let K be some Hilbert space and W = [Wl Wg] Vo, X
Vir, = K a bounded linear mapping such that ran Wy — Wy C ran Wy + Wo.
Let

D= {x € H™!(Hr, (L5, ) x H(Ls, )
Wi [7 O] Ho+Wo¥ [0 LI] Ha =0},

where W : V;Z,IH — Vr.r, 15 the duality mapping corresponding to the quasi
Gelfand triple. Then the following assertions are equivalent.

i) (B + PO)'H|D generates a contraction semigroup.
(ii) (B + PO)H|D is dissipative.

(iii) The operator Wy + W is injective and the following operator inequality
holds

Note that by Theorem 5.3.3 the port-Hamiltonian differential operator FyH
has the boundary triple (Vr,, [ 7z 0]H, [0 L't |H). Additionally, (Vi r,, L2(T1),
V’L’Fl) is a quasi Gelfand triple. The previous results characterize dissipative
boundary conditions (and therefore existence and uniqueness of solutions) in
terms of the boundary spaces Vr r,, which posses a slightly unhandy inner
product/norm. This makes it sometimes impracticable to check the conditions
of the previous results. Fortunately, in Theorem 4.4.6 we have already shown
that we can formulate the boundary conditions also in terms of the pivot space
of the quasi Gelfand triple, thus in L2(I';). Moreover, in Example 4.4.8 we have
given concrete boundary operators that fulfill all conditions of Theorem 4.4.6.

Theorem 5.3.6. Let M be a linear positive operator on L2(T'1). Then A =
(B + Py)H with domain

dom A = {a € H™*(Hr, (L}, Q) x H(Lp, Q)) | 7r(Ha)n + ML, (Hz) = 0}

generates a contraction semigroup. Its adjoint is given by —(Py+ Po)H restricted
to

dom A* = {a S /H_l(HFO(Lg,Q) X H(La,Q)) Iﬁ'L(/Hl‘)LH — ME,,(H.Z‘)L = 0}



5.4. Conclusion 95

Note that 7p(Hz)pn + ML,(Hx), = 0 and 7p(Hx)pn — ML,(Hz), = 0
implicitly imply that each summand is in the pivot space L2 (I';) (Theorem 4.3.5).

Proof. We want to apply Theorem 4.4.6. Hence, we need a boundary triple,
which dual pair comes from a quasi Gelfand triple. By Theorem 5.3.3

(VL,FU liﬁ-L O] ) [0 I’El})

is a boundary triple for (P + Py)H with domain H =1 (Hr, (LY, Q) x H(Ls, Q)).
Moreover, (Vrr,,L3(T'1), V] 1,) is a quasi Gelfand triple. In Example 4.4.8 we
checked that the boundary operators V3 = I and Vo = M satisfy the conditions of
Theorem 4.4.6. Hence, by Theorem 4.4.6 the operator A generates a contraction
semigroup.

By Lemma 4.4.9 the adjoint of A is given by — (P + Py)H restricted to

{z e ' (Hr, (L5, Q) x H(Ly, Q) | M~ 7L (Ha)n — L, (Hz) = 0}.
Applying the operator M on the boundary condition yields the claim. a

Corollary 5.3.7. The port-Hamiltonian system with boundary condition
7r(Hx)pn + M(Hz), =0
possesses a unique mild solution for every initial condition in L*(Q)™.

Proof. This is just an easy consequence of Theorem 5.3.6. a

5.4 Conclusion

For the port-Hamiltonian operator (P + Py)H, there exists a boundary triple
(Vr, [72 0],[0 L. ]) such that (V1,L2(d%2),V}) is a quasi Gelfand triple. Hence,
we can characterize every boundary conditions such that (P + Py)H generates
a contraction semigroup in terms of the boundary space V;. However, we
can also characterize boundary conditions in the pivot space L2(912) such that
(P + Py)H generates a contraction semigroup by Theorem 4.4.6. In any case we
have existence and uniqueness of solutions. Moreover, the Hamiltonian along
solutions is non-increasing. This can be seen by

1 1 1
H(x(t)) = Sllz@®)l|%,, = T = $)z()|%,, < Sle()x, = Hz(s), s<t,
as T (the semigroup generated by (P + Py)H) is a contraction semigroup.

Instead of using a semigroup approach to show existence and uniqueness of
solutions we could have used the tools of [37], which provide a more general
approach. The crucial property is that PyH (with adequate boundary conditions)
is a maximal dissipative operator.
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Chapter 6

Boundary Control and
Observation Systems

We will recall the notion of boundary control systems, scattering passive and
impedance passive in the manner of [35]. We will show that a port-Hamiltonian
system can be described as such a system. This concept already provides
solution theory (see i.e. [34, Lemma 2.6]). It is well known that every scattering
passive boundary control system induces a scattering passive well-posed linear
system.

Finally, we will show that port-Hamiltonian systems, with the input and
output function that were indicated at the beginning, can be described as
such boundary control and observation systems, either scattering passive or
impedance passive.

6.1 Basics

ru
Definition 6.1.1. A colligation = := g}, X | ) consists of the three Hilbert

K1l
spaces U, X, and Y, and the three linear maps G, L, and K, with the same
domain Z C X and with values in U, X', and ), respectively.

<
—

Definition 6.1.2. A colligation Z := (L%j

boundary control and observation system, if

%D is an (internally well-posed)

G ru
i) the operator | L | is closed from X to | x |,
K Yy
(ii) the operator G is surjective, and

(iii) the operator A = L‘ker o generates a contraction semigroup on X.

We will sometimes use boundary control system as an abbreviation for
boundary control and observation system

97



98 6. Boundary Control & Observation Systems

r=Lx ——

Figure 6.1: Boundary control and observation system

In literature you will also find the term boundary node for what we have
defined as boundary control and observation system.

We think of the operators in this definition as determining a system via

u(t) = Gz(t),
%(t) = Lx(t), =(0) = zo, (6.1)
y(t) = Ka(t

Figure 6.1 illustrates this system. We call U the input space, X the state space,
Y the output space and Z the solution space. Normally, the input space U and
the output space ) are boundary spaces.

Definition 6.1.3. Let = = ([z], [%D be a colligation. If = is a boundary

control and observation system such that
2Re(Lz,z)x + |K2z|3 < |Gzl for z€ Z, (6.2)

then it is scattering passive and it is scattering energy preserving, if we have
equality in (6.2).
We say E is impedance passive (energy preserving), it Y =U', U: U — U is
B %(G+‘I/K)
the unitary identification mapping and = := ( [ Ln ] ; |:X ] ) is scattering
2 (G-vK) || U
passive (energy preserving).

Note that an impedance passive (energy preserving) colligation = does not
need to be a boundary control and observation system. If &/ = ), then ¥ is the
identity mapping.

We defined impedance passive (energy preserving) for a colligation not
directly, but by its external Cayley transform. This prevents difficulties with
boundary control and observation systems as already remarked. Normally we
would ask for

Re(Lz,z)x < Re(Gz, Kz)u.y,

where (U,)) is a complete dual pair. This would also allow U and Y to be
Banach spaces.
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6.2 Port-Hamiltonian System as Boundary Con-

trol and Observation System

Corresponding to a port-Hamiltonian system we want to introduce the following
operators

Gy =5, [7L O] H: HHH(P,Q)) C Xy — SV,
Ly = (Py+ Py)H: HU(H(R, Q) C Xy — Xy,
K, =(S)2' [0 L] H: HH(H(R, Q) € Xy = (S

where S € L£,(L%(992)™) is boundedly invertible, and S, and (S*)~' de-
note their extension on Vi and V respectively (see Corollary 4.4.2). By
Lemma 4.4.5 also G, and K, establish a boundary triple for L, restricted to
Hr, (LY, Q) x H(Lp, Q) and (S Vi r,,SLZ(T1), (S4VLr,)') is a quasi Gelfand
triple For simplification S can be imagined to be the identity mapping. We still
have T'g,T'; as a splitting with thin boundaries of 2.

Definition 6.2.1. We say the colligation

cl@]] ru
== L, ;| Xu
K] LY

is a port-Hamiltonian boundary control and observation system, where G and
K are linear mappings from Vy, x V; to Hilbert spaces U and Y, repectively.

In particular we will regard
G[zi]=21 and KJ[z}]= 2o,

and 1 )
Gz = ﬁ(wl +x2) and K] = ﬁ(wl - x2),
where in the second case we have to specify the solution space such that x; + x2
and x1 — x5 is defined.
Gp S+VrL,r,
Corollary 6.2.2. The colligation E = ({Lp } { Xy }) with solution

Kp (S+Vr,ry)
space

Z =1 (Hr, (L, Q) x H(Lp, )

18 a boundary control and observation system. Moreover, it is impedance energy
preserving.

Proof. Since Ly, is closed on Xy, with domain Z, and G, and K, are continuous

with the graph norm of Ly, we have |Gy Ly Kp ]T is closed. By construction Gy,
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with domain Z maps onto S;Vr r,. Since G}, is one operator of a boundary
triple for Ly, the restriction Lp|ker Gy is skew-adjoint and therefore a generator
of a contraction semigroup.

We denote Y = S4Vpr, and Y =U" = (S VT'1)" and we write ¥ for the
duality map between ¢ and ). Note that (U, Gp, K,) is a quasi Gelfand triple
for L. Therefore,

2Re(L,x, %) xy,
=2Re(Gpz, Kpx)y, v, = 2Re(Gpa, VKpz)y,
1
=5 ((Gpw, Gpa)u + 2Re(Gpa, VK pa)y + (VKyz, VK,x)y)

((Gpx, Gpa)y — 2Re(Gpx, VK,3)y + (VK pz, VK z)y)

= H%(GP + ‘IJKP)IHZ - ||%(GP - ‘I'Kp)xHi{v

. 75 (Gp+UEy)

which makes = = ({ Ly ] a scattering energy preserving colligation.
5 (Gp—VKy)

Thus, = is impedance energy preserving a

Proposition 6.2.3. Let R € L£,(SLZ(T'1)) be coercive. Then the colligation

[1]

75 (Gp+REy) u
= ({ Ly ]; |:X’H:|> withd =Y = SL2(T'1) endowed with || f|jy =
75 (Gp—RKy) Y

Iflly = IR f||L> and solution space
Z={z e M "(Hr (L}, Q) x H(Ly,Q)) | Gpz, Kpz € SLZ(T1)}.
s a scattering energy preserving boundary control and observation system

Proof. Let (n, [Gpzn LpTn Kpzn] )nen be a sequence in [G, L, Kp|'
(restricted to Z) that converges to (z,[f y ¢g]T) € Xy x U x Xy x U. Since
L, with domain H(P,) is a closed operator and Hr, (L}, Q) x H(Ly, Q) is
closed in H(P,Q), we conclude that @ € H~1(Hr, (L}, Q) x H(Lp,Q)) and
y = Lyx. Hence, Gpx, converges in S.Vpr, to Gpz and in SL2(T) to f.
Since (S VL 1y, SLZ(T1), (S+VLr,)’) is a quasi Gelfand triple, we have Gpx = f.
Analogously, we conclude K,z = g. Therefore, z € Z and [G, L, Kp|T
is closed, which implies that also [%(Gp +RK,) L, %(Gp - RKP)]T is
closed.

By Example 4.4.8 and Theorem 4.4.6 L

traction semigroup.

enerates a con-
b ier L (Gp+REy) &

The surjectivity of [%’)] and Example 4.4.8 gives the surjectivity of %(Gp +

RK,).
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Since (Vr, Gp, Kp) is a boundary triple for L, we have

2Re(Lpx, ) x,,
= 2Re(Gpz, pr>VL,V’L = 2Re(Gpz, KpT)i2 (1))

1
- 5((R‘lex, Gpz)i2 + 2Re(Gpx, Kpx) 12 + (Rpr,Kpm>|_z)

1
— 5(<Ri1Gpa;, Gpr)iz — 2Re(Gpz, Kpx) 12 + (RKpz, Kpa)2)
_ 2 1 2
= 175(Go + REp)zl,, = || J5(Go — REp )5,
which makes = scattering energy preserving. a

Remark 6.2.4. Clearly, the previous proposition holds also true for the oper-
ator triple [%(RKP +Gy) Ly %(RKP - Gp)]T and for G, and K, being
swapped. Moreover, replacing L, by L, + J, where J € L,(Xy) is dissipative,
yields a scattering passive system.

Hence, the port-Hamiltonian system with input u and output y described
by the equations

ﬂ (t, <>=m(%(c> (t,0)) w + RL,(H(Q)x(t.Q)),, teRy,CeTy,

2(t,¢) = Z% Jo(t,Q)) + Po(H(Q)a(t,Q)), tERy,CEQ,

(6.3)
ftg_m( QOz(t,0)) w — RL(H(Q)x(t.C)),, teRy,CeTy,
(H(

O—WLH $ )LH’ tER_A,_,CEF(),
z(0,¢) = zo(C), Ceq,

is scattering passive and in particular well-posed, as the following corollary will
clarify. The mappings n;, and L, are used a little bit sloppy. There is always a
pointwise a.e. description for these mappings, but due to compact notation we
use 7y, and L.

Corollary 6.2.5. The system (6.4) can be interpreted as the scattering energy
preserving boundary control and observation system

L (GrRED T [ U
Ly 3| Xn ,
LG-RE) ||y

with the assumptions of Proposition 6.2.8 and S =1. Replacing L, with L, + J
for a dissipative J € L1,(Xy) yields a scattering passive boundary control and
observation system.

Corollary 6.2.6. With the setting of Proposition 6.2.3 the colligation

Gp SLZ ()
) m"])
< Kpd LsLZy)
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with solution space
Z ={zx e H ' (Hp, (L}, Q) x H(Ls,Q)) | Gp, Ky € SLE(T)}
is 1mpedance enerqy preserving.
Proof. This is a direct consequence of Proposition 6.2.3 for R = L. d

Note that the colligations in Corollary 6.2.2 and Corollary 6.2.6 are the same
but the solution spaces are slightly different. The colligation in Corollary 6.2.6
is in general not necessarily a boundary control and observation system.

Hence, the port-Hamiltonian system with input u and output y described
by the equations

U(t ¢) = RL,(H(¢)x(t,¢)) teRy,CeTy,
w(t,() = Zac Jo(t,€)) + Po(H(Qx(t,Q)), tER;,CEQ,
(6.4)
y(t, C) —7TL( C)a(t )LH’ teRy,(ely,
0 =7 (H(Q)z(t,C)) te Ry, €Ty,
z(0,¢) = zo(C), C€q,

is impedance energy preserving.

6.3 Wave Equation

This section can be seen as a continuation of Section 3.3. For convenience we
recap the assumptions. Let Q C R™ be as in Assumption 3.1.1 and I'g, I'; is a
splitting with thin boundary of 9 (Definition 5.1.1). Let p € L*°(2) be the
mass density and T' € L*°(Q)™*™ be the Young modulus, such that % € L>(Q),
T()H =T(¢) and T(¢) > 61 for a § > 0 and almost every ¢ € Q.

In Section 3.3 we have already seen, that we can rewrite the wave equation
as a port-Hamiltonian system. The wave equation

2

D 3w(1,€) = e div (7€) grad w(t, ),

1
p(8)
can be formulated as a port-Hamiltonian system by choosing the state variable

2(t,Q) = [ 1] = | £3549) | Then the PDE looks like

0 div][; 0
= x.
grad O ||0 T

=P =H

This is exactly the port-Hamiltonian system we get from choosing L as in
Example 3.1.3. From Example 5.1.2 and Example 5.1.7 we know that the
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boundary operators are 7o and the extension L, of L,y = v-vy. We will denote
the normal trace I, by ~,. Therefore,

V3u(t, Q) = M(Q) - (T(Q) mradu(t,)) + Duw(t,C), 1ER,CET,

Srult.€) =~ div (T radu(1.9). LeR,Ce,
VEy(1,¢) = Q) - (T(Q) gradw(t, Q) — orw(t,Q), 1€ Ry (T,
0= %w(t7g)7 teRJraCEFOv
w(O»O = wO(C)? C € Qa

0
%w((LC) = wl(C)7 C € Q,

can be modeled by a scattering passive and well-posed boundary control system,
by Corollary 6.2.5. In the port-Hamiltonian formulation this system is described
by

u(t) = % (’YVT.%‘Q(t) + ’)/0%3?1@)), teRy,
#(t) = {gr(; . dﬂ Ha(t), teR,,
y(t) = % (’Yquz(t) + ’YO%xl(t))a t € Ry,
z(0) = xp,

where we choose the solution space as
2 = {o € H(HE, (Q) x H(div, Q) [10m1,7, T2z € LAY} (6.5)

Moreover, with different input and output operators we have by Corol-
lary 6.2.6 the impedance passive boundary control system

U(t, C) = V(C) ' (T(C) gradw(tv C))7 te R-‘m C € F17
Sl = v (T gadu(t9).  teR,CeD
y(t,C) = %w(taC)a tGR—HCGFla

0
Ozaw(taC)a tGR—HCGFO'
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Again in the port-Hamiltonian formulation this system is described by

u(t) = ynTaa(t), teRy,
. 0 div

z(t) = {grad 0 ] Hax(t), teRy,
y(t) = 0521 (1), teRy,

x(0) =z
with solution space either (6.5) or
Z = H ' (HE, (2) x H(div,Q))

depending of whether we use Corollary 6.2.6 or Corollary 6.2.2. Thus there
are two ways of describing the wave equation as impedance port-Hamiltonian
boundary control and observation system.

In any case (scattering energy preserving or impedance energy preserving)
[gr(;d d(i)V]H with boundary condition ’Yo%zl + vTxe = 0, v,Txs or fy()%zl
generates a contraction semigroup.

6.4 Maxwell’s Equations

This section is continuation of Section 3.4. However, we will recall the most
important things. Let Q C R3 be as in Assumption 3.1.1 and L = (L;)3_, be
as in Example 3.1.4. In this example we have already showed Ly = rot and
L,f =v x f. The corresponding differential operator for the port-Hamiltonian

PDE is
P — 0 Lp| | O rot
7Ly o] |[~rot 0]
We write the state as z = [B], where D, B € K3. We also want to introduce
the positive scalar functions €, u, g and r such that

1 1 1
€ —, 1, —, g €LC(Q) and r,— € L®().
e r

2 o
Furthermore, we define the Hamiltonian density by H(¢) = { X } , Where
()
D

each block is a 3 x 3 matrix. At last we define [E]:= H[B], so that we have
the same notation as in [64].

The projection on ran L, is given by g — (v x g) X v, therefore 7y, is the
extension of g — (v x y0g) x v to H(L}, Q). The mapping m, from [64] can be
compared with 77, but is not exactly the same, since they have different domains
and codomains. We have 7, : H1(Q)3 — V, C L2(9Q)% and 71, : H(rot, Q) — Vy,
is its extension, if we change the norms in the domain and codomain of .
However, V;, cannot be embedded into L%(9£2)3.
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For this particular L we denote L, by ~,, and 71, by ;.

Note that by Example 5.1.8 neither +, nor fyfxl map even into L2(T),
therefore it is really necessary to use a quasi Gelfand triple instead of an
“ordinary” Gelfand triple.

The corresponding boundary control system is a model for Maxwell’s equa-
tions in the following form

V2u(t, ¢) = r(Qv(¢) x H(t,¢) + (v(¢) x E(t,¢)) x v(¢), t€Ry, (€T,
0

8t (t C) - I'OtH(t C) (C)E(t,(), te R—HC S Q,
DB(1,¢) = 1ot B(1,0), LR, (e,
\fy(t )—T(C)V( Q) x H(t,¢) — (v(Q) x E(t,Q)) xv((), teRy,(eTy,
= (v(¢) x E(t,¢)) x v(Q), te Ry, €T,
(7):D0(C) (e,
(7):B0(C) CEQ,

and is scattering passive by Corollary 6.2.5, where we set J = [_Og 8] H.

Note that, following the trick in [64, Proposition 6.1], Gau}’s law divD = p
is satisfied by simply defining p by this formula and Gauf’s law for magnetism
div B = 0 is automatically satisfied, if the initial condition satisfies it. This
can be seen, if we apply div on both sides of %MH = —rot E and noting that
div uH = div B is constant in time (divrot = 0). This has to be understood
in the sense of distributions. However, for classical solutions this can also
be understood in the classical sense. We will explain this in more detail in
Section 8.5.3, where we separate the static solutions from the dynamic solutions.

In the port-Hamiltonian formulation this system looks like

(ryn B +7-,D),

%
i[EESH o rﬂ [% 9} BE%W )] (5
5

with solution space

zZ= { []1:3)8))} € eHp, (rot, Q) x uH(rot, 2) | 7, 1B, 7, 1D € L2(F1)}.
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6.5 Mindlin Plate Model

This section is a continuation of Section 3.5. Nevertheless, we will recall the
setting. Let Q C R? be as in Assumption 3.1.1. Let us consider the differential
operator I and the skew-symmetric matrix Py given by

0 0 0[O0 O 0 O O 0 0 0 00O0O0OO

0 0 001 0 92 0 O 0 0 0 00O0OT1O

0 0 0[O0 02 0o 0 O 0 0 0 0O0O0OTO01

Py = 0 00 0{]0 O O O O P 0 0 0 00O0OO0OTO
' 0 0 &[0 0 0 0 0% o 0o 0 0000O0|

0 0 4O O O O O 0 0 0 00O0O0OO

0 0 010 0 O O O 0 -1 0 000O0O0

9, 0 0/0 0 0 0 0| 0 0 -1 0000 0
It is easy to derive the corresponding P = (P;)%_, and L = (L;)%_;. We define

a Hamiltonian density by

L0 0 000 0 0]
p
0 2% 0 00000
12
0 0 2% 00000
=10 0 0 00
o0 o Dy ool
0 0 0 00
00 0 000
_ooooooDS_

where p, h are strictly positive functions, D;({) is a coercive 3 x 3 matrix and
D (() is a coercive 2 x 2 matrix, such that all conditions on H in Definition 3.2.1
are satisfied. We have written (in Section 3.5) the state variable x as
. h? r® T

o= {phv PTaW1 pPzW2 Ki1 K22 Ki2 71,3 ’72,3}

and defined
T
e=Ha=[v wi wy My My My Q1 Q2 .

Thus, we can write the port-Hamiltonian PDE

ga: = (B + P)Hx as ga = (B + Py)e.

ot ot
The corresponding boundary operator is
fl V- |: fa ]
0 0 0 v v |f Fs
Lf=|vi 0 v 0 0] |fs|= V.H;]
0 vo v1i 0 Of |fa P
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Since ||[v(¢)|| = 1, at least v1(¢) # 0 or v5(¢) # 0. This can be used to show
that ran L, = L2(92)2. Therefore, 71, is the extension of the boundary trace
operator v to H(L}', ©2).

Since there is no direct physical meaning to the boundary variables

Ql}
V .
& .
0 Lle=|u. [%i;} and [r, Ole= |wi|,
: W
M; 2
v [30]
10 0
we define n == [_l,’f] and apply the unitary transformation S = [0 V1 t@} to
—UVa V1
obtain
Ql}
l/ .
Q. {Q2 v v
M,,| =58 |u. [%1;} and  |w, | = (S |wi |,
M, , Ml.’2 Wy Ys w2
v [302]

which have a physical interpretation; see [8]. Hence, by Corollary 6.2.6 the
system

w=[Q, M,, M,,]", on R, x Ty,
%a = (B + Py)e, on Ry x €,
y:[v Wy, wn}T, on Ry x Iy,
0:[11 wy, w,,}T, on Ry x I,

for the Mindlin plate is impedance energy preserving, which is exactly the
system in [8].
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Chapter 7

Stabilization of the Wave
Equation

We investigate the stability of the wave equation with spatial dependent coeffi-
cients on a bounded and connected multidimensional domain. The system is
stabilized via a scattering passive feedback law. We show that the system is
semi-uniform stable, which is a stability concept between exponential stability
and strong stability. Hence, this also implies strong stability of the system. In
particular, classical solutions are uniformly stable. This will be achieved by
showing that the spectrum of the port-Hamiltonian operator is contained in the
left half plane C_ and the port-Hamiltonian operator generates a contraction
semigroup. Moreover, we show that the spectrum consists of eigenvalues only
and the port-Hamiltonian operator has a compact resolvent.

This chapter is the result of joint work with Birgit Jacob [24].

7.1 Introduction

Recall the setting of the wave equation in Section 3.3. We had the Young’s
elasticity modulus 7: Q@ — C™*™ which is a Lipschitz continuous matrix-
valued function such that 7T'(¢) is a positive and invertible matrix (a.e.) and
T, T-1 € L>°(Q2)"*". Moreover, we had the Lipschitz continuous mass density
p: Q — Ry, that satisfies p,p~! € L°°(Q). In this chapter we investigate

109
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stability of following boundary control system

ow

u(taC):ﬁ(uC)v tZO,CGFh
0w 1
FE 10 = = div (MO araduw(t. ). 1200,
w(t, ¢) = h(C), t>0,¢ €Ty, (7.12)
w(0,¢) = wo(¢), Ceq,
20,0 = <<> ceo,
y(t, Q) = (f Q) t>0,(eTy,
with feedback law
u(ta C) = —k(C)y(t, C)’ t > 07( S Flv (71b)

where u and y are the boundary control and observation, respectively and
Q C R” is a bounded and connected domain with Lipschitz boundary 92 =
ToUT; withToNT; =0, Ty and I'y are open in the relative topology of 9§
and the boundaries of I'y and I'y have surface measure zero. Note, that T’y
and 'y do not have to be connected. Furthermore, w((,t) is the deflection at
point ( € Q and ¢t > 0, and a profile h is given on I'y, where the deflection
is fixed. The vector v denotes the outward normal at the boundary and
so-w(t,¢) = T(Qv(C) - gradw(t, () = v(¢) - T(¢) grad w(t, () is the conormal
derivative. Further, k: I'; — R is a measurable positive and bounded function
such that also its pointwise inverse k~1 = % is bounded. Finally, wg and w; are
the initial conditions.

Stability of (7.1) has been studied in the literature by several authors,
see e.g. [3, 23, 29, 52]. Strong stability has been investigated in [52]. Further,
exponential stability of the wave equation with constant 7" and p has been shown
in [29] using multiplier methods. For smooth domains, in [3] the equivalence of
exponential stability and the so-called geometric control condition was shown
by methods from micro-local analysis. In [23] this system also appears in
port-Hamiltonian formulation, but with constant 7" and p and C? boundary.
Under these restrictions it could be shown that this system is even exponential
stable. However, semi-uniform stability, a notion which is stronger than strong
stability and weaker than exponential stability, of the multidimensional wave
equation with spatial dependent functions p and T on quite general domains
has not been studied in the literature.

We aim to show semi-uniform stability of the multidimensional wave equa-
tion (7.1) using a port-Hamiltonian formulation. Semi-uniform stability implies
strong stability, and thus we extend the results obtained in [52]. To prove
our main result we use the fact that semi-uniform stability is satisfied if the
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port-Hamiltonian operator generates a contraction semigroup and possesses no
spectrum in the closed right half plane.

We proceed as follows. In Section 7.2 we model the multidimensional wave
equation as a port-Hamiltonian system with a suitable state space. The main
results concerning stability are then obtained in Section 7.3, where we analyze
the spectrum of the differential operator of the port-Hamiltonian formulation.
We will see that finding points in the resolvent set is linked to solvability of
lossy Helmholtz equations. We will show that our operator has a compact
resolvent and its resolvent set contains the imaginary axis. At that point we can
apply existing theory to justify semi-uniform stability. Finally, used notations
and results on Sobolev spaces and Gardings inequalities are presented in the
Appendix.

7.2 Port-Hamiltonian Formulation of the Sys-
tem

In order to find a port-Hamiltonian formulation of our system, that is suitable
for our purpose, we split the system (7.1) into a time independent system for the
equilibrium and a dynamical system with homogeneous boundary conditions.
The time static system for the equilibrium is given by

div T'(¢) grad we(¢) = 0, e,
we(¢) = h(¢), ¢ €T, (7.2)
Ow, B
8Tl/ (C) - 07 C S F17

and a dynamical system with homogeneous Dirichlet boundary conditions on
Ty is given by

%(t O) = —— div(T(¢) grad wa(t,C)), t>0,C € Q)
otz " p(¢) & AL E= ’
wd(t7C) :07 t207C€F07
wd(07 C) = wO(C) - we(C)7 C S Q, (73)
Owg
2(0.0) = wi(0), Cea.
Gwd 5‘wd
%(t,o:—kﬁ(t’@v t>0,(ely.

The original system is solved by w(t, () = we(t, () + wa(¢). As in Section 3.3
(and in [28]) the system in (7.3) can be described in a port-Hamiltonian manner

by choosing the state z(t, () = {pg(;f;iﬁt(tg) } By using the convention z(t) :=
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x(t,-) we can write the system (7.3) as

3
R [
|

2(0) = P ]

grad(wo — we)
VO%xl(t”FO =

WTra(t)|, = —kyz21(t)|p

)

where g is the boundary trace and =, is the normal trace (the extension of
f=v-9f). In Section 3.3 we chose the state space L2(2)"! equipped with
the energy inner product

— 0
<I7y> T <'1:v |:O T:|y>L2(Q)”+la

which is equivalent to the standard inner product of L(£2)"*! thanks to the
assumptions on 71" and p. For well-posedness this is a suitable state space, but
when it comes to stability this state space is too large as it does not reflect the
fact that the second component of the state variable s is of the form grad v,
for some function v in the Sobolev space H{, (). Thus, we choose the state
space Xy as L?(Q) x grad Hp (), instead of L?(Q)"*!. Note that grad Hf, ()
is closed in L2(2)" by Poincaré’s inequality. Hence, Xy, is also a Hilbert space
with the L2-inner product. Nevertheless, we also use the energy inner product
on Xy, that is

. 1o
<$’y>X,H T <:E7 |:6 Ti|y>L2(Q)n+1.

Furthermore, we define

iv i
a= 13

—1

. 1 .
with dom(2) = [6 ;] (HE, () x H(div, Q)

as densely defined operator on L2(£2)"*1. The definition of H(div, Q)) is given
in the appendix. Note that we have already packed the boundary condition
70%331 =0 on Iy into the domain of 2. Moreover, by construction ran 2l = Xy.
Taking the state space and the remaining boundary condition (feedback) into
account gives

A= 9l|dom(A)’
(7.4)
where dom(A) = {m € dom(2A) "yl,Tx2|F1 = —k'y()%x1|rl} N Xy

as an operator on Xz . Note that ran A C ran®? = X3. Therefore the operator
A indeed maps into Xy .
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n+1

The corresponding operator on L2(Q) would be

Ag = Q[’dom(Ao)’

(7.5)
where dom(Ap) = {x € dom(2A) ‘7VT$2’r1 = —k%%xl‘rl }

By Section 6.3, Ay generates a contraction semigroup on L2(Q)"*! endowed

with (z,y) = <x, [g ;}y>|—2. Note that this operator allows elements in its

domain which do not respect that the second component is a gradient field.
This can lead to solutions that are not related to the original problem anymore,
as by construction of the state z(¢,() the second component is grad wq(t, ()
and therefore a gradient field. Lemma 7.3.15 shows that this is problematic for
stability.

We do not need to rebuild the semigroup theory in [28] for the “new” state

space Xz. We will see that A inherits most of the properties of Ay as A = Ay ’ X

Lemma 7.2.1. Let (T'(t))i>0 be a strongly continuous semigroup on a Hilbert
space X and A its generator. Then every subspace V D ran A is invariant under

Tt)e=0-
Moreowver, A|V generates the strongly continuous semigroup

(Tv (t))ez0 = (T(t)],)ezo0,
if V is additionally closed.

Proof. Let t > 0 and = € V. Then it is well-known that

t
A/ T(s)zds=T(t)x—_ =z .
0 ~~
ev
GranAgV

Hence, T'(t)x € V, because the left-hand-side is in ranA C V and V is a
subspace. The remaining assertion follows from [15, ch. II sec. 2.3]. Q

Remark 7.2.2. If the strongly continuous semigroup (7'(¢)):>¢ is even a contrac-
tion semigroup, then also (Tv (t)):>0 is a contraction semigroup.

Proposition 7.2.3. The operator A given by (7.4) is a generator of contraction
semigroup.

Proof. By [28], Ao (defined in (7.5)) is a generator of a contraction semigroup
(To(t))e>0. Because of ran Ay C ran2 = Xy and Lemma 8.5.5 A = A0|XH
generates the contraction semigroup (T'(¢))¢>0 = (TO(t)|XH)t20- a

The following lemma is the boundary triple property for the port-Hamiltonian
system given by the wave equation.
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Lemma 7.2.4. Let A be given by (7.4) and x,y € dom(A). Then

(A, y) 2 + (2, AY) ey, = (W Tx2,70591)12(0,) + (Y0521, W TY2)12(r,)-
And in particular

Re(Az, z) x,, = Re(y, T2, 70%x1>L2(F1).

7.3 Stability Results

In this section we prove semi-uniform stability of the multidimensional wave
equation (7.1). We start with the definition of semi-uniform stability and strong
stability.

Definition 7.3.1. We say a strongly continuous semigroup (7'(¢)):>0 on a
Hilbert space X is strongly stable, if for every z € X

Jim [T (t)z] x = 0.

We say a continuous semigroup (7'(t)):>0 on a Hilbert space X is semi-
uniform stable, if there exists a continuous monotone decreasing function
f:10,00) = [0, 00) with lim; o f(¢) = 0 and

IT@®)zlx < f(#)llza
for every z € dom(A).

Remark 7.3.2. Note that in [10, sec. 3] semi-uniform stability is defined by
|T(t)A~]| — 0, where A is the generator of (T'(t));>0. It can be easily seen
that this is equivalent to our definition.

Moreover, in [10, sec. 3] it is explained that semi-uniform stability is a concept
between exponential stability and strong stability. In particular, semi-uniform
stability implies strong stability.

The already mentioned article [10] is an overview article on semi-uniform
stability. We remark that this notion is sometimes called differently, e.g. in [55]
it is called uniform stability for smooth data (USSD).

In the following we denote by A the operator given by (7.4) which is
associated to the port-Hamiltonian formulation of (7.1).

Our main result is the following theorem.

Theorem 7.3.3. The semigroup generated by A is semi-uniform stable.

The proof of Theorem 7.3.3 is given at the end of the section.

Remark 7.3.4. For the original system (7.1) strong stability of A translates to:
There is a we € HY(Q) such that for every initial value wy € HL(2), w; € L2(Q)
the corresponding solution w satisfies

Jim () = we(:) ui (@) = 0.
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We will make use of a characterization of semi-uniform stability in [10,
Theorem 3.4] to show that A, given by (7.4), generates a semi-uniform stable
semigroup. As A generates a bounded strongly continuous semigroup, by this
theorem a sufficient condition for semi-uniform stability is given by o(A)NiR = (.
Here 0(A) denotes the spectrum of the operator A. Hence, it suggests itself to
analyse the spectrum of A or its complement in C, the resolvent set.

We will show that calculating the resolvent set p(A) is related to a lossy
Helmholtz problem: Find a function u:  — C that satisfies

divTgradu — Mpu=f in Q,

7.6
%u—l—)\kzu:g on I, (7.6)

where A € C\ {0}, f € L%(), g € L>(T'1), and k, p and T are the functions from
the beginning. A weak formulation of this problem can be derived by taking
the inner product with v € Hf, (Q), apply an integration by parts formula for
div-grad and taking the boundary conditions into account:

(T grad u, grad v) 2(q) + N pu, v)2(0) + AMEYou, Yov)L2(ry)

= (-1, U>L2(Q) + <gv'YOU>L2(F1)~ @7
We define
b(u,v) = (T grad u, grad v) 2 (o) + A% (pu, v)2(0) + A(kY0u, Y00)L2(ry)
F(v) = (=f,v)20) + (9, %0V)L2(ry)>
so that we can write (7.7) as
b(u,v) = F(v). (7.8)

A weak solution of (7.6) is a function u € Hf, (Q) that satisfies (7.8) for every
v e Hf ().

Lemma 7.3.5. Let u be a weak solution of the Helmholtz problem (7.6). Then
u € Hp (), Tgradu € H(div, Q) and in particular,

divT gradu — Npu = f in L*(Q),
v T gradu 4+ Meyou = g in  L*(Ty).

Proof. A weak solution u is by definition in Hp, (€2) and satisfies b(u,v) = F(v)
for all v € Hf, (Q). If we choose v € C°(€2), then all boundary integrals vanish.
Hence,

<T grad u, grad U>L2(Q) = <—f, U>L2(Q) - )\2 (pu, 'U>L2(Q)7

which implies that T gradu € H(div,Q) and divT gradu = f + A\?pu. Using
this and choosing again v € Hp () in the weak formulation gives

<%T“v70“>H—1/2(r1),H1/2(r1) + )\<k’70ua 'VO'U>L2(I‘1) = <9770U>L2(F1)~

Therefore, v, Tu has an L?(I';) representative and ~, Tu + Mkyou = g. a
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Note that for y = [¥}] € Xy there exists a ¢ € H%U (©) such that yo = grad ¢.
This ¢ continuously depends on y2 by Poincaré’s inequality. If I'y = @), then
we choose ¢ € H'(Q)/r (¢ € H'(Q) and Jo®dA = 0) for uniqueness and
continuity.

Lemma 7.3.6. Let A be the operator defined in (7.4). Then X € p(A) \ {0} is
equivalent to: The system

divT gradu — M pu = Myp + N2po  in Q,

5 _ (7.9)
gy U+ Aku = —Ak¢ on Ty,

is weakly solvable for every y = [¥1] € Xy, where ¢ is defined by grad ¢ = yo as
described above.

Proof. For A € p(A) \ {0} and y € Xy there exists an & € dom(A) such that
(A — Xz =vy. Hence,

divTze — Az =1

grad %xl —Axg=grad¢p = 12= %grad(%xl — ).

Substituting x5 in the first equation, multiplying by A and adding A?p¢ on both
sides yields

dingrad(%:z:l —¢) - Azﬂ(%m —¢) = Ay1 + A po.
Since z € dom(A) we have kv, Tz + ’70%961 = 0 which becomes
wT grad(;z1 — ¢) + Ao (21 — ¢) = —Aky00.

Hence, u == (%xl — @) is a weak solution of the system (7.9). On the other hand

if u is a weak solution of (7.9), then z = [ plutd) } € dom(A) and (A— Nz =y

% grad u

by Lemma 7.3.5. a
Theorem 7.3.7. For every A € iR\ {0} the system (7.9) is weakly solvable.

Proof. We set A = in, where n € R\ {0}.
Note that by

Reb(u,u) = |1 grad ul|fa gy — 0 l0"*ulP2 ()

b(-,-) satisfies a Garding inequality (see Definition A.1.1).

By Garding’s inequality it is sufficient to show that b(-, -) is a non-degenerated
sesquilinear form, (see e.g. Theorem A.1.2). Suppose there is a u € Hf, (92) such
that b(u,v) = 0 for all v € Hp (Q). Then b(u,u) = 0 and by separating the
imaginary part we have

in(kyou, You)2(r,) = 0.
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Hence, u € HE)(Q). Moreover, u is a weak solution of the corresponding system
to b(u,v) = F(v), where F(v) := 0. By Lemma 7.3.5, divT gradu + n?pu = 0
in L2(Q) and v, Tu = 0 in L*(Ty). Summed up u satisfies

divT gradu + npu = 0,
You = Oa
"yl,Tu|F1 =0.

By the unique continuation principle (see e.g. [56, Theorem 1.7, Remark 1.8]),
u has to be 0 and consequently b(-, -) is non-degenerated. a

Remark 7.3.8. The system (7.9) is also solvable for A € C, but we already
knew from the dissipativity of A that C. C p(A).

Corollary 7.3.9. iR\ {0} UC, C p(A).
Proof. This is a direct consequence of Lemma 7.3.6 and Theorem 7.3.7. d

Lemma 7.3.10. If A € iR is an eigenvalue of A, then a corresponding eigen-
vector x satisfies fyuTa:2|F1 = ’yo%;tl ’FI =0.

Proof. By Lemma 7.2.4 we have
Re((A— Nz, z) x,, = Re(Ax, z)x,, — Re Mx,2) 2y,
= Re(n T2, 705 21)12(r,) — ReA|z[|%,
= — Re(k’yo%wh 70%£U1>L2(F1) —Re )\||33|\ch
= —[Ik" 0tz |2,y — ReAl|z[|%, -
If « is an eigenvector of A € iR, then this equation becomes
0= _Hkl/Q’}/O%leEQ(Fl)’
which implies 70%331 ’I‘l =0 and ’YVTan’Fl = 0 by the boundary condition. O

Lemma 7.3.11. Let A: dom(A) C Xy — Xy be the operator from the begin-
ning. Then 0 is not an eigenvalue of A.

Proof. Let us assume that 0 is an eigenvalue of A and = be an eigenvector. Then
divTxs = 0 and grad %ml = 0 and by Lemma 7.3.10 x satisfies 'yVTa?2’F1 =0=

'y()%xlyrl. Hence, for arbitrary f € H%O (©2) we have

0= <d1V TJ,‘Q, f>|_2 = —<T.132, grad f>|_2,

which implies Tz | grad HllqO (). Since by assumption Txo € grad H%O(Q) we
conclude x5 = 0. Finally, 1 = 0 by Poincaré’s inequality. Therefore, 0 cannot
be an eigenvalue. a
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Theorem 7.3.12. Let
X = gradHp (Q) N {f € H(div, Q) |5 f|., € L*(T1)}
with | llx = /112y + 11V £ + 1 £, -

Then X can be compactly embedded into L2(2)™.

Proof. Let (fn)nen be a bounded sequence in X, i.e. sup, eyl fnllx < K € R.
By assumption there exists a ¢,, € H%O (Q) such that f,, = grad ¢,, for every
n € N. By Poincaré’s inequality we have

[Pnllnt ) < Cllgrad én|lz) < Cllfullx-

Hence, (¢n)nen is a bounded sequence in H!(2). Moreover, (Yodn)nen is a
bounded sequence in H/2(99). By the compact embedding of H' () into L2()
and H'2(99) into L2(912), there exists a subsequence (¢y,(x))ren that converges
in L%(€2) such that also (yo@y(k))ken converges in L2(99). W.lo.g. we assume
that this is already true for the original sequence. By

1 = fnllt2(qy
= (fn — fm,grad(é, — ¢m)>L2(Q)
= —(div(fa = fm): &0 — dm)L2(0)
+ <7u(fn - fm)a’YO(¢n - ¢m)>|—|—1/2(p1)7|-|1/2(r1)
(o (Fn=Fm)v0(Pn—bm))i2(r,)

< 2K||¢n - ¢m||L2(Q) + 2K||’70¢n - ’YO(bmHLQ(Fl)
— 0,

we have that (f,,)nen is a Cauchy sequence in L2(2)" and therefore convergent.
a

Theorem 7.3.13. dom(A) can be compactly embedded into Xy .

Proof. Note that dom(A) C A% and that ||-||x,, is equivalent to ||-[| 2(q)n+1. We
regard dom(A) with (z,y)a = (x,y)x,, + (Az, Ay)x,, as inner product. Note
that dom(A) is a Hilbert space with the previous inner product. The induced
norm can be written as

lella = /el + 17 arad Zar 2 + |12 div Tl

Note that ||y, T@2l 2(r,) is automatically bounded by C||z| 4 for some C' > 0,
since ||70%531H|-|1/2(39) is bounded by C||z||a for some C > 0 and %,Tu!n =

—k’m%xﬂrl. Let X be the space from Theorem 7.3.12. Then
dom(4) — Hf () x X,
d: °

v o |

1
r
1
po}x,
0T
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is continuous. Moreover, both H%O (©) and X can be compactly embedded into
L2(©2) and L2(2)", respectively. We denote this combined compact embeddeding
by ¢: Hp, (€2) x X — L?(Q)"*!. Hence, also dom(A) can be compactly embedded
into Xy by &~ 1.®. d

Corollary 7.3.14. The resolvent operators of A are compact, the spectrum of
A contains only eigenvalues and IRUC, C p(A).

Proof. By Theorem 7.3.13, dom(A) can be compactly embedded into Xy;, which
implies that every resolvent operator is compact. Hence, the spectrum of A
contains only eigenvalues. Since 0 is not an eigenvalue by Lemma 7.3.11, we
conclude that 0 € p(A). Moreover, by Corollary 7.3.9 also every other point on
iR is in p(A). a

Finally we will prove Theorem 7.3.3.

Proof of Theorem 7.3.5. By Corollary 7.3.14 we have 0(A) NiR = . Therefore,
as announced in the beginning, [10, Theorem 3.4] implies the semi-uniform
stability of the semigroup generated by A. a

We conclude this section with an investigation of the strong stability of the
operator Ay given by (7.5), which is an extension of A and generates a strongly
continuous semigroup on L2(Q)"+1.

Lemma 7.3.15. Let Q C R" be bounded and open with Lipschitz boundary,
n > 2. Then the operator Ay (defined in (7.5)) has A =0 as an eigenvalue and
thus, does not generate a strongly stable semigroup.

Proof. Choose the components of x = [71] as

—01¢
21=0 and a,=T7"" 0 5
0
where ¢ is any non zero C°(Q) function. Then z2 # 0 and divTze = 01020 —
0201¢ = 0. Since ¢ has compact support, = satisfies the boundary conditions.

Thus Ay cannot generate a strongly stable semigroup, since the eigenvector x
to A = 0 is a constant solution of the Cauchy problem. d

7.4 Conclusion

In this paper we showed semi-uniform stability of the multidimensional wave
equation equipped with a scattering passive feedback law. Further, we proved
that the corresponding port-Hamiltonian operator has a compact resolvent.
To get compact embeddings for the port-Hamiltonian operator of the wave
equation it is necessary to choose an adequate state space. This is a new aspect
that arises for spatial multidimensional port-Hamiltonian systems as in the
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one-dimensional spatial setting the compact embedding is always given. It is
likely that most of the techniques presented in this chapter will translate for
general linear port-Hamiltonian systems on multidimensional spatial domains
like Maxwell’s equations and the Mindlin plate model. Probably the crucial
tool will be a unique continuation principle.

Moreover, there is an interesting link between the resolvent set of the port-
Hamiltonian operator of the wave equation and solvability of lossy Helmholtz
equations. Since in the theory of Helmholtz equations (especially in view
of finite element methods) a uniform bound of the solution operator is of
interest, it might be possible to use results from that theory to give explicit
decay rates for the semi-uniform stability or even obtain exponential stability
under certain assumptions. For constant coeflicients we can find such estimates
in [38, 39, 17]. There are some recent works on these estimates with non constant
coefficients [19, 20].



Chapter 8

Compact Embedding for
div-rot Systems

We show the following compactness theorem: Any L2-bounded sequence of vector
fields with L2-bounded rotations and L2-bounded divergences as well as L2-
bounded tangential traces on one part of the boundary and L2-bounded normal
traces on the other part of the boundary, contains a strongly L2-convergent
subsequence. This generalises recent results for homogeneous mixed boundary
conditions in [4, 6]. As applications we present a related Friedrichs/Poincaré
type estimate, a div-curl lemma, and show that the Maxwell operator with
mixed tangential and impedance boundary conditions (Robin type boundary
conditions) has compact resolvents.
This chapter is the result of a joint work with Dirk Pauly [46].

8.1 Introduction

Let Q C R3 be open with boundary I', composed of the boundary parts I}
(tangential) and Iy (normal). In [4, Theorem 4.7] the following version of Weck’s
selection theorem has been shown. In fact they showed the theorem for weak
Lipschitz boundaries, but we will stick to strong Lipschitz boundaries.

Theorem 8.1.1 (compact embedding for vector fields with homogeneous mixed
boundary conditions). Let Q be a bounded strong Lipschitz domain and Ty, Ty
a splitting with thin boundaries (see Definition 5.1.1). Furthermore, let € be
admissible. Then

Hr, (rot, Q) N e~ Hr, (div, Q) & L2(9).

t
Here, <& denotes a compact embedding, and — in classical terms and in the
smooth case — we have for a vector field F (v denotes the exterior unit normal

121
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at I')

FE e HFo(rOt,Q) = FE e Lz(Q)v rot & € L2(Q)v v X E|F0 =0,
Ee€e 'Hp(div,Q) &  eEel?(Q), diveEe€l?*Q), v-eE|n =0.

Note that Theorem 8.1.1 even holds for bounded weak Lipschitz pairs (Q,Tj).
For exact definitions and notations see Section 8.2, and for a history of related
compact embedding results see, e.g., [63, 49, 62, 11, 65, 27, 51] and [31]. The
general importance of compact embeddings in a functional analytical setting
(FA-ToolBox) for Hilbert complexes (such as de Rham, elasticity, biharmonic)
is described, e.g., in [42, 44, 45, 43] and [47, 48, 2].

In this chapter, we shall generalise Theorem 8.1.1 to the case of inhomoge-
neous boundary conditions, i.e., we will show that the compact embedding in
Theorem 8.1.1 still holds if the space

Hr, (rot, Q) N e~ Hr, (div, Q)

is replaced by
Hr, (rot, ) N e~ H, (div, Q),

where in classical terms and in the smooth case

E € Hp, (rot, Q) & Eel?(Q), rotEel?(), vxE|el?),
Ece'Hp(div,Q) & cEcl?Q), diveEel?(Q), v-eE|n € L3(IY).

The main result (compact embedding) is formulated in Theorem 8.4.1. As
applications we show in Theorem 8.5.1 that the compact embedding implies a
related Friedrichs/Poincaré type estimate, showing well-posedness of related
systems of partial differential equations. Moreover, in Theorem 8.5.3 we prove
that Theorem 8.4.1 yields a div-curl lemma. Note that corresponding results for
exterior domains are straight forward using weighted Sobolev spaces, see [40, 41].
Another application is presented in Section 8.5.3 where we show that our
compact embedding result implies compact resolvents of the Maxwell operator
with inhomogeneous mixed boundary conditions, even of impedance type.

8.2 Notations

Throughout this chapter, let £ C R? be an open and bounded strong Lipschitz
domain, and let € be an admissible tensor (matrix) field, i.e., a symmetric, L>°-
bounded, and uniformly positive definite tensor field £: Q — R3*3. Moreover,
let the boundary I' of 2 be decomposed into two relatively open and strong
Lipschitz subsets Iy and I := I' \ T, forming the interface Ty N T} for the
mixed boundary conditions. See [4, 5, 6] for exact definitions. We call (Q2,T) a
bounded strong Lipschitz pair.
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The usual Lebesgue and Sobolev Hilbert spaces (of scalar or vector valued
fields) are denoted by L2(Q), H'(Q2), H(rot, ), H(div,Q), and spaces with
vanishing rot and div are denoted by

HFo,O(TOta Q) = Hr, (rot, 2) Nkerrot and
Hr, 0(div, Q) :== Hr, (div, Q) N ker div,

respectively. Moreover, we introduce the cohomology space of Dirichlet or
Neumann fields (generalised harmonic fields)

Hry.1y . (Q) = Hr, o(rot, Q) N e 'Hr, o(div, Q).

The L%(Q)-inner product and norm (of scalar or vector valued L?()-spaces)
will be denoted by (-, -)i2(q) and |- ||L2(q), respectively, and the weighted
Lebesgue space L2(Q) is defined as L?(Q2) (of vector fields) but being equipped
with the weighted L*(€2)-inner product and norm (-, -)i2@) = (¢-, - )12(q)
and ||-[[L2(q), respectively. The norms in, e.g., H'(Q2) and H(rot, () are de-
noted by || - |1 (o) and || - [[H@ot,0), respectively. Orthogonality and orthogonal
sum in L2(Q) and L2(Q) are indicated by Liz(), Liz(o), and @r2(q), Brz(o)s
respectively.

Finally, we introduce inhomogeneous tangential and normal L2-boundary
conditions in

Hr, (rot, Q) = {E € H(rot, Q) |7 E € L3(Ty)},
Hr, (div, Q) = {E € H(div, Q) |72 E € L2(I) }

with norms given by, e.g., ||E||2 o) = = | E| Hrot.0) T [|yEo E||L2(FO) The

definitions of the latter Hilbert spaces need some explanations:
Definition 8.2.1. (L%-traces)

(i) The tangential trace of a vector field E € H(rot, Q) is a well-defined
tangential vector field 7F E € H'/2(I") generalising the classical tangential
trace fyTE =—VUXUX E|F for smooth vector fields E. By the notation

I E € L%(Ty) we mean, that there exists a tangential vector field Er, €
L%(I}), such that for all vector fields ® € H, (Q) it holds

% 0
<I'Ot (I),E>|_2(Q) <(I),I'Ot E>L2(Q) <")/T ¢;EF >|_2(F0).

Then we set 72 E := Er, € L2(Ty). Here and in the following, the twisted
tangential trace of the smooth vector field @ is given by the tangential
vector field 4L @ = v x ®|p € L*(I) with 7[!® = L ®|p, = 0 and

YRO® =L <I>|p0 € L*(Ty). Note that y°E is well defined as y;°HY, (Q) is
dense in Lf(FO) = {w e L*(I,)|v-w = 0}.
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(ii) Analogously, the normal trace of a vector field E € H(div, ) is a well-
defined function 7L F € H=Y/2(T") generalising the classical normal trace

o E=v- E|p for smooth vector fields E. Again, by the notation
Y E € L(I) we mean, that for all functions ¢ € Hf, (Q) it holds

(grad ¢, E)2(q) + (¢, div E) 20y = (10" &, 70 E)12(ry)-

Here, the well-known scalar trace of the smooth function ¢ is glven by

¢ = Plr < L2(T") with 75°¢ = 7 ff)\ro =0 and 75'¢ = 75 ¢lr, € L*(I0).
Note that 7' F is well defined as 7' H}; ,(Q) is dense in L*(I7).

Remark 8.2.2. Analogously to Definition 8.2.1 (i) and as
0E Ao H = (VXE)-(—VXVXE[):(VXVXE)-(VXﬁ):—vf‘)E-'yTFQﬁ

holds on I} for smooth vector fields E f[ we can define the twisted tangential
trace 710 E € L2(Iy) of a vector field E € H(rot Q) as well by

(rot @, E>|_2(Q) — (D, rot E>L2(Q) —{~ OCI),’}/FOE>|_2(1—*O)

for all vector fields ® € Hy, ().

8.3 Preliminaries

In [6, Theorem 5.5], see [5, Theorem 7.4] for more details and compare to [4],
the following theorem about the existence of regular potentials for the rotation
with homogeneous mixed boundary conditions has been shown.

Theorem 8.3.1 (regular potential for rot with homogeneous mixed boundary
conditions).

Hr, o(div, Q) N Hr,.r (2)2@ = ot Hr, (rot, Q) = rot H}, ()

holds together with a regular potential operator mapping rot Hr, (rot, Q) to Hllﬂ1 Q)
continuously. In particular, the latter ranges are closed subspaces of L?(2).

Moreover, we need [6, Theorem 5.2]:

Theorem 8.3.2 (Helmholtz decompositions with homogeneous mixed boundary
conditions). The ranges grad Hp, () and rot Hr, (rot, ) are closed subspaces of
L2(Q), and the L2(2)- om‘hogonal Helmholtz decompositions

L2(Q) = grad H}, (Q) @12(q) £~ Hry o(div, Q)
= Hr, o(rot, ©2) ®12(0) e~ rot H, (rot, Q)
= grad Hp, (Q) ®r2(0) Hry.1y .« () Brz(q) e rot Hr, (rot, Q)

hold (with continuous potential operators). Moreover, Hr, 1,.(2) has finite
dimension.
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Combining Theorem 8.3.1 and Theorem 8.3.2 shows immediately the follow-
ing.

Corollary 8.3.3 (regular Helmholtz decomposition with homogeneous mixed
boundary conditions). The L2(2)-orthogonal reqular Helmholtz decomposition

L2(2) = grad H, () Drz(a) Hryn () Srz(o) e~ ' rot H, ()

holds (with continuous potential operators) and Hr, 1y () has finite dimension.
More precisely, any E € L2(Q) may be L2(Q)-orthogonally (and regularly)
decomposed into

E = grad ugraq + Fy + e rot Eyot

with ugraa € HE, (Q), Erot € HE (Q), and By € Hr, 1, (), and there exists a
constant ¢ > 0, independent of E, Ugrad, 3, Erot, such that
Exllz) < 1]z
cllugraallny (@) < llgrad ugraalliz() < [Ell2 (),

cl| Erotllng, o) < lle™" vt Erotlliz () < [ EllL20)-

8.4 Compact Embeddings

QOur main result reads as follows:

Theorem 8.4.1 (compact embedding for vector fields with inhomogeneous
mixed boundary conditions).

Fir, (rot, ) N e~ Ap (div, Q) <& L2(Q).

Proof. Let (E;) be a bounded sequence in ﬁpo (rot, Q) N 5’1ﬁp1 (div, ). By the
Helmholtz decomposition in Corollary 8.3.3 we L2(Q)-orthogonally and regularly
decompose

Ey = grad ugraqe + Epe +e7!

with Ugrad,t € H%‘o (Q), Erot e € H%H (Q), and By ¢ € HFO7F175(Q), and there exists
a constant ¢ > 0 such that independent of £ and for all £

rot Erog e

[ugrad,ellny, @) + 1 Enellizi) + [ Brotellig, (@) < cllEelliz)-

As Hr,r, () is finite dimensional we may assume (after extracting a sub-
sequence) that E3 , converges strongly in L2(€). Since H'(Q) & L2(Q) by

Rellich’s selection theorem, we may assume that also the regular potentials
Ugrad,¢ and Eyq; ¢ converge strongly in L2(). Moreover, Ugrad,¢|r and Erog ¢|r
are bounded in H'/2(I") by the (scalar) trace theorem, and thus we may assume

by the compact embedding H/2(T") &2 (T') that ugrad,¢|r and Eyot ¢|r converge
strongly in L?(I"). In particular, ugad¢|r, and Frote|r, converge strongly in
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L2(Ty) and L2(I}), respectively. After all this successively taking subsequences
we obtain (using L2(Q)-orthogonality and the definition of the L?(T})-traces of
yieEy and the L%(Tp)-traces of 420 E, from Definition 8.2.1)
2
ngad(ugrad,@ - ugrad,k) ||L§(Q)
= <grad<ugrad,Z - ugrad,k)» E, - Ek>L2(Q)
= _<ugrad,é — Ugrad, k> div €(Eg - Ek)>|_2(ﬂ)
+<'7(1;1 (Ugrad,é - Ugrad,k)a 7£1€(E€ - Ek)>L2(F1)
S CHugrad,Z - Ugrad,kHLQ(Q) + C||(Ugrad,£ - ugradyk)‘rl |||_2(1"1) =0

and

_ 2
HE ! rOt(Erot,Z - Erot,k)HLg(Q)
= <571 rOt(Erot,f - Erot,k)’ EZ - Ek>L2(Q)
= <Erot,£ - Erot,ka rOt(EZ - Ek)>L2(Q)
+ <'Y71j>(<) (Erot,é - Erot,k)v ’YEO (EK - Ek)>L2(F0)

S CHErot,f - Erot,k||L2(Q) + CH(Erot,Z - Erot,k)'Fo |||_2(F0) — 0.
Hence, (E;) contains a strongly L2(2)-convergent (and thus strongly L%(£)-
convergent) subsequence. a

Remark 8.4.2 (compact embedding for vector fields with inhomogeneous mixed
boundary conditions). Theorem 8.4.1 even holds for weaker boundary data.
For this, let 0 < s < 1/2. Taking into account the compact embedding

HY/2(T) & H*(T") and looking at the latter proof, we see that

(B € H(rot, Q) /0 B € H™*(Iy)}

cpt

N{FE € e 'H(div, Q) |7'eE e H3(Th)} <= L2(Q).

8.5 Applications

8.5.1 Friedrichs/Poincaré Type Estimates
A first application is the following estimate:

Theorem 8.5.1 (Friedrichs/Poincaré type estimate for vector fields with inho-
mogeneous mixed boundary conditions). There exists a positive constant ¢ such
that for all vector fields E in Hr, (rot, Q) N e~ Hr, (div, Q) N H]“OYI‘l’E(Q)ng(Q) it
holds

clEllizo) < llrot El|i2(o) + [1diveE |2 ) + V2 Ellezmy) + 170 eEllizm)-
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Proof. For a proof we use a standard compactness argument using Theorem 8.4.1.
If the estimate was wrong, then there exists a sequence (E¢) € Hr, (rot, ) N

5_1HF1 (diV7Q) ﬂHFO’Fl’E(Q)LLE(m with HE@”L?(S)) =1 and

l[rot Eelli2 (o) + [1diveEell2) + 1720 Eellez ) + I eEellizayy — 0.

Thus, by Theorem 8.4.1 (after extracting a subsequence)
E;,—F in ﬁpo (rot, ) N e~ Ay, (div, Q) N Hpmpl,s(Q)J‘L?(“) (strongly)

and rot £ = 0 and diveE = 0 (by testing). Moreover, for all ® € C(£2) and
for all ¢ € CF(02)

(rot @, Ep)2() — (@, 10t Br)i2(a) = (172 @, 77 Er)i2(r) < el Eellizr,) — 0,
and
(grad ¢,eEy)12(q) + (¢, diveEy) 2(q)
= (%' ¢, o eE)2(ry) < el eEelizyy — 0,
cf. Definition 8.2.1, implying
(rot @, E)i2(0) =0 and (grad¢,eFE) 2q) = 0.

Hence, E € Hr, o(rot, Q) Ne'Hr, o(div, Q) = Hr, 1y () by [6, Theorem 4.7
(weak and strong homogeneous boundary conditions coincide). This shows E =0
as B Li2(q) Hryry £ (©), in contradiction to 1 = || Bl 2(q) — [[EllL2@) = 0. Q

Remark 8.5.2 (Friedrichs/Poincaré type estimate for vector fields with inhomoge-
neous mixed boundary conditions). As in Remark 8.4.2 there are corresponding
generalised Friedrichs/Poincaré type estimates for weaker boundary data, where
the L2(Tg /1)-spaces and norms are replaced by H™*(I'y/; )-spaces and norms.

8.5.2 A div-curl Lemma

Another immediate consequence is a div-curl-lemma.

Theorem 8.5.3 (div-curl lemma for vector fields with inhomogeneous mixed
boundary conditions). Let (E,) and (H,) be bounded sequences in ﬁro (rot, )
and ﬁpl(diV,Q), respectively. Then there exist E € ﬁpo(rot,Q) and H €
ﬁrl (div, Q) as well as subsequences, again denoted by (E,) and (H,), such
that £, = E in ﬁpo (rot,2) and H, — H in ﬁrl (div, Q) as well as

<EnaHn>L2(Q) — <E7H>|_2(Q).
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Proof. We follow in closed lines the proof of [43, Theorem 3.1]. Let (E,) and
(H,) be as stated. First, we pick subsequences, again denoted by (E,,) and (H,,),
and E and H, such that E, — E in Hp, (rot,Q) and H,, — H in Hr, (div, ).
In particular,

Y H, =40 H in L2(IY). (8.1)
To see (8.1), let 5, H,, = Hr, in L*(I). Since for all ¢ € Hf, ()

(10" ¢, Hry)i2(ry) < (00" ¢, Hu)iz(ry) = (grad ¢, Hy)i2(a) + (¢, div Hy)12(q)
— (grad ¢, H) 2 (q) + (¢, div H)2(q),

we get H € Hp, (div,Q) and /' H = Hy,. Moreover, (oL, Yo Hp) 2y —
(oL, Y H)2(ry). As vng%o(Q) is dense in L*(I) and ((-,v.'Hy)i2(ry)) is
uniformly bounded with respect to n we obtain (8.1).

By Theorem 8.3.2 we have the orthogonal Helmholtz decomposition

ﬁpo (rot, Q) > E,, = gradu,, + E,

with u, € H}(Q) and E, € Hy,(rot, Q) N Hr, o(div, Q) as grad HE () C
Hr, o(rot, Q) C ﬁpo (rot, Q). By orthogonality and the Friedrichs/Poincaré
estimate, (u,) is bounded in Hf, () and hence contains a strongly L*(€)-

convergent subsequence, again denoted by (u,). (For Ty = ) we may have to
add a constant to each u,.) Moreover, as (u,|r) is bounded in H'/2(I") &

L2(T") we may assume that (u,|r) converges strongly in L2(T"). In particular,
(fy(l;:un) = (un|r, ) converges strongly in L2(I}). The sequence (Exn) is bounded
in Hr, (rot, Q) N Hp, o(div, Q) by orthogonality and since rot E,, = rot E,, and
YR E, =~ E,. Theorem 8.4.1 yields a strongly L?(Q)-convergent subsequence,
again denoted by (E,). Hence, there exist u € Hf, () and E € Hp, (rot, Q) N
Hr, 0(div, Q) such that un = u in HiO(Q) and u, — u in L2() and 'ygluiﬁ
yotu in L2(I1) as well as E,, — E in Hr, (rot, Q) N Hpy o(div, Q) and E,, — E in
L2(Q). Finally, we compute

(En, Hu)i2(0) = (grad un, Hy)i2(9) + (En, Ho)i2(o)
= —(un, div Hyp)12(0) + <’Y(1;1Un,’7£1Hn>|_2(F1) + (En, Hp)i2(0)
— —(u, div H)p2(q) + (70" u, Yo H)r2(ryy + (B, H) 20
= (gradu, div H)v2(0) + (E, H)12(0) = (B, H)12(0),

since indeed E = grad u + E holds by the weak convergence. d

Remark 8.5.4 (div-curl lemma for vector fields with inhomogeneous mixed
boundary conditions). As in Remark 8.4.2 and Remark 8.5.2 there are corre-
sponding generalised div-curl lemmas for weaker boundary data, where the
L2 (To/1)-spaces and norms are replaced by H™*(Ty/)-spaces and norms.
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8.5.3 Maxwell’s Equations with Mixed Impedance Type
Boundary Conditions

Let €, u be admissible and time-independent matrix fields, and let T, k € R.
We consider Maxwell’s equations with mixed tangential and impedance boundary
conditions

SE—c'rotH=F (Ampere/Maxwell law) (8.2a)
SH+p 'rot E=G (Faraday /Maxwell law) (8.2b)
diveE = p, (Gauf law) (8.2¢)

divpuH =0, (GauB law for magnetism) (8.2d)

Y E =0, (perfect conductor bc) (8.2e)

Fom=§, (normal trace bc) (8.2f)

B+ /wfle =0, (impedance bc) (8.2g)
E(0) = Ep (electric initial value) (8.2h)

H(0) = Hy (magnetic initial value) (8.2i)

Note that the impedance boundary condition, also called Leontovich bound-
ary condition, is of Robin type and that the impedance is given by A = 1/k =

Velp ife,ueRy.

Despite of other recent and very powerful approaches such as the concept of
“evolutionary equations”, see the pioneering work of Rainer Picard, e.g., [50, 37],
one can use classical semigroup theory for solving the Maxwell system (8.2).

We will split the system (8.2) into two static systems and a dynamic system.
For simplicity we set € = p =1 and F' = G = 0. The static systems are

rot E =0, rot H =0, (8.3a)
div E = p, divH =0, (8.3b)
WE =0, VOH = §, (8.30)
TE = —kg, TH=g, (8.3d)

where ¢ is any suitable tangential vector field in L2(I}). For simplicity we put
g = 0, then these two systems are solvable by [4, Theorem 5.6]. However, the
same result also gives conditions for which g # 0 this system is solvable. The
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dynamic system is

%E =rot H, (8.4a)

2 H=—r0tE, (8.4b)

div E = 0, (8.4c)

div H =0, (8.4d)

yor =0, (8.4e)

o E =0, (8.4f)

Y E + kv H = 0. (8.4g)

The initial conditions for the dynamic system are F(0) = Ey — FEgstas and
H(0) = Hy — Hgtat, where Egar and Hgpag are the solutions of the two static
systems (8.3). We can write (8.4a) and (8.4b) as

g El |0 rot| | F
dt |H|  |—rot 0| |H|’
—A

and the boundary conditions (8.4f) and (8.4g) shall be covered by the domain
of A()S

dom Ay = {(E,H) € Ar(rot, Q) x Hr, (rot,2) [y E =0, yP E + kD H = o}.

Here, we did ignore the equations div E = 0, div H = 0 and v.° H = 0. However,
Ap is a generator of a Cy-semigroup, by Section 6.4. The next lemma provides
a tool to respect the remaining conditions of (8.4) as well.

Lemma 8.5.5. Let T(-) be a Cy-semigroup on a Banach space X, and let
A be its generator. Then every subspace V O ran A is mvamant under ().
Moreover, A|v generates the strongly continuous semigroup Ty (+) |V, if
V' is additionally closed in X.

Proof. Let t > 0 and let x € V. Then ran A > Afo s)xds =T(t)z — x and
hence T'(t)x € V. The remaining assertion follows from [15 Chapter II, Section
2.3]. a

Therefore, it is left to show that the remaining conditions establish a closed
and invariant subspace under the semigroup Ty generated by Ay or contains
ran Ag. Note that by Theorem 8.3.1

S —{ (E,H) ‘leE—O divH =0, 'yFOH—O}
= Ho(le, Q) X HFU, (le, Q)
= (rot H(rot, Q) x rot Hr, (rot, ) & (Hrp() x Hry ().
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This space is closed as the intersection of kernels of closed operators. Clearly,
Hrp(2) x Hr, () is invariant under Tp, since every (E,H) € Hp () x
Hr, 1, (£2) is a constant in time solution of the system (8.4), i.e.,

wolf]- 3]

0 rot

rot H(rot, ) xrot Hr, (rot, Q) = [ ot 0

} (Hr, (rot, Q) x H(rot, €2)) D ran 4,

and Lemma 8.5.5 we have that also rot H(rot, ) x rot Hr, (rot, §2) is invariant
under Ty. Hence, Lemma 8.5.5 and Theorem 8.4.1 imply the next theorem.

Theorem 8.5.6. A := Ay|. is a generator of a Co-semigroup and

s

cpt

dom A C (Hr(rot, ) N H(div, Q) x (Hr, (rot, Q) N Hr, (div, ) < L2(Q).
Consequently, every resolvent operator of A is compact.

If Hrp(Q) = {0} and Hr, 1, (2) = {0}, then 0 is in the resolvent set of A
and A~! is compact. Alternatively, we can further restrict A to ’HR@(Q)LLQ@ X

H]“lyI‘O(Q)LLQ(Q). This would also match our separation of static solutions and
dynamic solutions, since solutions with initial condition in Hr ¢(Q) x Hr, r, ()
are constant in time.
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Appendix A

Appendix

A.1 Garding Inequalities

In this section we want to show that there is a Fredholm alternative for sesquilin-
ear forms that are non-coercive, but satisfy a Garding inequality. In [66] this
concept is presented in a less abstract way for differential operators.

Definition A.1.1. Let Xy and X; be Hilbert spaces and K: X; — Xy be
a compact linear operator. A sesquilinear form b: X; x X; — C satisfies a
Garding inequality, if

Reb(u,u) > Ci|jull%, — Ca||Kull%, forall ue€ Xj.

In most applications K is a compact embedding, e.g. the embedding of H(Q)
into L2(Q2). Note that (by Lax-Milgram, e.g. [16]) for every bounded sesquilinear
form b(-,-) on a Hilbert space there exists a bounded operator B: X; — X;
such that

b(u,v) = (Bu,v)x, forall wu,ve Xj.

The operator B is injective if and only if b(-,-) is non-degenerated.

Theorem A.1.2 (Fredholm alternative). Let b(-,-) be a bounded sesquilinear
form on X1 that satisfies a Garding inequality. If the corresponding operator B
is injective (b(-,-) is non-degenerated), then B is bijective.

Proof. The sesquilinear form b satisfies the Garding inequality

Reb(u,u) > Ci|lull%, — Ca||Kull%, forall ue€ Xj.

Hence, b(u,v) = b(u,v) + Cy(Ku, Kv)x, is coercive. The corresponding oper-
ator B is given by B 4+ Co K*K. By the Lax-Milgram theorem B is bijective.
Note that

B=B-C,K*K = B1- B 'C,K"K).
The injectivity of B implies that 1 is not an eigenvalue of B~'Cy K*K and since
B 'C,K*K is compact, it is surjective. Consequently B is also surjective. O

133
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A.2 Solution Theory for the Wave Equation

In this section we will discuss a suitable solution concept for (7.1). We will
regard a solution w(-,-) as a function in time mapping into spatial function
space.

An integrated version of the PDE is

0550 (t.0) = pOua(6) = [ dvT() grad (s, ) .

We will demand that a solution will satisfy this integrated version of the PDE.
If we assume that both

/tdivT(C)gradw(s,C)ds and divT(() /tgradw(s,C)ds
0 0

exist, then they coincide and

PO 550(0:0) = p(Cur (€)= divT(Q) [ erad (s ) .

This is a consequence of the closedness of div. For a classical solution (w €
C2(Ry x Q)N CHR, x Q)) these integrals coincide.
We will also regard an integrated version of the boundary conditions:

t t
/ d (s,0)ds = —k:/ v-Tgradw(s,()ds
0 0

&U}

for all ¢ € T';. Again for classical solutions this can be manipulated to

t
w(t, () —w(0,() = —kv- T/ gradw(s,()ds forall ¢ €Ty,
0

t
Vow(f,')|pl —’Yow(O,-)fFl = —kvy, (T/o gradw(s,-)ds) e

Definition A.2.1. Let wo € HY(Q) and w; € L?(Q2). Then we say that w(-, )
is a solution of (7.1), if t — w(t,-) is CY(Ry;L%(Q)) N CO(R4; HY()), and

d t
pgpwlt ) —pwr = divT/ gradw(s, ) ds,
0

w(0,-) = wo,

iw(u )

:’u)’
dt !

t=0

’Y()’U}(t7 ) ‘FO = h7

t
Yow(t, ~)|F1 - VOwO|Fl = —kv, (T/O grad w(s, ) ds)

7

I

for allt € Ry.
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Proposition A.2.2. Let w is a solution of (7.1) in the sense of Definition A.2.1
and w, the solution of the equilibrium system (7.2). Then

9
parw(t,-) pwi
grad w(t, ) — grad we and T(t) grad wy — grad we

coincide, where T is the semigroup generated by A.
On the other hand, let x1 denote the first component of the solution given
by the semigroup. Then

t
1
w(t,) = /0 ;xl(s) ds 4+ wo + we

is a solution of (7.1) in the sense of Definition A.2.1.

Remark A.2.3. If we regard the semigroup Ty generated by Ay, we can even
cancel out grad w, and obtain

] o )

grad w(t, - grad wo

Theorem A.2.4. The system (7.2) is solvable for h € H/*(Ty).

Proof. Let H € H'(Q) such that h = VOH’FO. The weak formulation of (7.2) is:
find a @ € Hp, (Q) such that

(grad w, grad v) 2(q) = —(grad H, grad v) 2(q)

for all v € Hp (€2). Then we = @ + H. By the Lax-Milgram theorem this is
solvable. Q

A.3 Uncategorized

Lemma A.3.1 (Polarization identity). Let X be a vector space and b: X x X —
C be a sesquilinear form. Then

4b(z,y) = bz +y,x+y) = b(z —y,r —y) +ib(x +iy, z +iy) —ib(z — iy, z — iy).
Proof. Note that

blx +y,z+y
—b(z—y,x—y
ib(x + iy, x + iy
—ib(z — iy, — iy

= b(z,z) + b(z,y) + by, z) + b(y,y),

= —b(z,z) + b(z,y) + by, z) — b(y, ),
=ib(z,z) + b(z,y) — by, z) +1b(y, y),
= —ib(x,x) + b(x,y) — b(y, x) — ib(y, y).

—_ — — —

Summing this four equations yields the statement. d
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Lemma A.3.2. Let (z,)nen be a sequence in a normed vector space X that
converges w.r.t. the weak topology to an xo € X. Then (x,)nen is bounded i.e.
suppenl|znllx < +oo.

Proof. Let ¢ denote the canonical embedding from X into X” that maps z to
(x,-)x,x’. Then, by assumption, for every fixed ¢ € X’ (12,,)(¢) — (vx0)(¢), in
particular sup,,cy|(¢@n)(¢)| < co. The principle of uniform boundedness yields
sup,enlltenlx» < +o00. Since |wz| x» = ||z||x for every x € X, this proves the
assertion. a

Lemma A.3.3. Let (z,)nen be a weak convergent sequence in a Hilbert space
H with limit 2. Then there exists a subsequence (T (y))ken such that

1 N
HN S ey —
k=1

Proof. We assume that © = 0. For the general result we just need to replace x,,
by =, — x.

We define the subsequence inductively: n(1) = 1 and for k¥ > 1 we choose
n(k) such that

— 0.

for all j < k.

T =

(@ k) Tni))| <

This is possible, because (x,,)nen converges weakly to 0. Hence, by Lemma A.3.2
sup,enl|n|| < C. This yields

1 N 2 1 N N
[SPIENN IEE=D 9p piCHAR
k=1 k=1j=1
1 N 1 N N
=Nz ZHﬂfn(k)H2 t 42 Z Z 2Re(@n (ks Tn(j))
k=1 j=1k=j+1

IA

N N
1, 2 1?1
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