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Chapter 1

Introduction

Many branches of applied mathematics consider physical, biological, or social systems,
governed by highly complex processes, with attributes showing complex patterns of
variation in space and time. For example, diffusion processes describe the evolution in
time of the density of quantities as heat, fluids, or chemical substances. Fluid dynam-
ics is concerned with the flow of liquids and gases with subdisciplines as aerodynamics
or hydrodynamics. In fields like acoustics and electromagnetics, wave equations are
used in order to describe light waves or mechanical waves as water waves, sound waves,
and seismic waves. These are only a few examples of many more disciplines where
the mathematical modeling have to provide a sufficient understanding of processes
occuring in the real world. At the same time, as these systems are highly complex, it
is often not possible to describe them precisely. In theory, an attribute of a system at
a given location, e.g., the conductivity of a porous medium, is deterministic and by
measuring it at each location of a system we possibly could describe it deterministi-
cally. However, for practical purposes, it would be impractical to do so. When the
degree of disorder in a system gets too large, it is more reasonable to approach it in a
probabilistic rather than deterministic manner. The inclusion of random fields makes
it possible to model complex patterns of variations and spatially correlated values by
their covariance structures. A random field allows to capture the essential coefficients
of a model and makes them accessible by only a few meaningful parameters. The
definition of random fields varies, but is traditionally given by a collection of multi-
dimensional random variables, where the index set is given in time or space. If the
index set descibes time, we consider stochastic processes. The time scale is poten-
tially the interval between molecular collsions, as in the study of Brownian motion,
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or it may in geological units, for example, to describe the variation of properties and
thickness of layers of the earth’s crust. Spatial random fields are used to e.g., describe
subatomic particles in the study of superheated plasma or temperature, density, or
chemical composition of matter in interstellar space [112]. As a random field usually
cannot cover all effects of a system, the choice of which specific random field should
be applied depends on the stochastic nature of the underlying problem.

Generalized random fields are an extension to fields with infinite-dimensional index
spaces. Using generalized random fields, we can describe set-valued and distribution-
valued random fields as, e.g., point processes or the classical white noise. This thesis
presents two applications in which generalized random fields are used to model com-
plex systems of deterministic physical processes in a probabilistic manner. In chapter
4, we extend a well known shape optimization setting into a multi-criteria optimiza-
tion problem. As an example, we illustrate an application on the optimization process
for vanes of gas turbines. Clearly, the reliability of such a component posseses a ma-
jor role in the optimization process and thus a mathematical language to capture the
time of failure must be developed. The event of failure of a vane is associated with
the formation of the first crack. Due to the probabilistic nature of crack initiation
[60] in time and location, this event is often described using the language of Poisson
point processes. This perspective leads to a probability that the time to failure, i.e.,
the time that passes until the formation of the first crack, lies within a warranty time
interval of the lenght 𝑡.

The second implementation of generalized random fields is presented in chapter
5 where we investigate the linear stationary diffusion equation. The diffusion equa-
tion finds its use in many branches of natural science and engineering. For example,
driven by Darcy’s law, it describes the flow of a fluid through a porous medium by the
equation ´𝑎p𝑥q∇𝑢p𝑥q on a domain 𝐷, where 𝑢 is the concentration of the diffusing
fluid, and 𝑎 is the conductivity associated to the domain 𝐷. In a setting such as
the flow of groundwater, the values of the conductivity coefficient are uncertain, as
they are derived from sparsed oberservations. The well established approach to deal
with these uncertainties includes Gaussian random fields describing the conductivity
function 𝑎. Gaussian fields have been extensively investigated in the context of uncer-
tainty quantification. However, there are effects which cannot be fully explained by
Gaussian random fields, as e.g. the flow diffusion in fractured media or the modeling
of heterogeneous materials with two phases. Therefore, an extension to the Gaussian

6



approach is necessary. Chapter 5 uses generalized random fields to describe a possi-
ble extension by generalizing the Gaussian coefficients into Lévy type coefficients and
gives fundamental results in order to prepare the numerical treatment of diffusion
equations with Lévy coefficient functions.

This work is organized as follows: The first two chapters provide introductions
to the underlying mathematical language applied in chapter 4 and 5. The second
chapter covers partial differential equations (PDEs). As in this thesis we investigate
solutions to PDEs in the weak as well as in the classical sense, the second chapter
gives a brief overview of definitions and results on Hölder continuity and boundary
regularity before it proceeds to the theory of Sobolev spaces. Afterwards, we con-
tinue to define and classify systems of partial differential equations in the terms of
[4, 5]. For weak and classical solutions, we derive existence results, based on an index
theorem for Fredholm operators, along with corresponding Schauder estimates which
are applied in chapter 4 in order to prove the compactness of the associated solution
spaces. Chapter 2 ends by defining the equation of linear elasticity, a potential flow
equation, and the linear diffusion equation as examples for partial differential equa-
tions. Chapter 3 introduces generalized random fields to investigate crack initiation
on mechanical components and diffusion equation with Lévy coefficient functions in
chapter 4 and 5, respectively. Following [42] and [69], it describes Lévy random fields
by using Minlos’ Theorem based on the concept of multi-Hilbertian spaces. We de-
rive continuity conditions for Lévy noise fields smoothed with smoothing kernels (by
a convolution of the random field with the kernel in the distributional sense) from the
Matérn class so that we can use them as coefficient function in a differential equa-
tion. Chapter 3 ends by providing some examples for Lévy random fields. After the
preperation, in chapter 4, we present the first application [59]. Chapter 4 is focused
towards multi-criteria shape optimization of mechanical elements. We introduce a
multi-criteria shape optimization framework and apply it, as an example, on the op-
timization of the shape of a turbine vane with respect to lifespan and efficiency. As
the integrity of a component is crucial for every optimal design process, the chapter
starts with an extensive description of the probabilistic modeling of failure events
using Poisson point processes. The last section of this chapter explores scalariza-
tion methods and the sensitivity of the sets of optimal shapes in dependency of the
scalarization parameters. Chapter 5 deals with random diffusion equation with Lévy
diffusion coefficients [42]. We investigate the existence of moments of the 𝐻1-Sobolev
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norm of the random solution and their approximability by approximating the random
diffusion coefficient by a finite modal expansion. This thesis then ends in chapter 6
with its conclusion and an outlook on questions which are worth investigating as part
of future work.

The introduction of the generalized random fields in chapter 3 as well as the in-
vestigation of random diffusion equation in chapter 5, is based on the joint work
[42] with my advisor Hanno Gottschalk from the University of Wuppertal and Oliver
Ernst, Thomas Kalmes, and Toni Kowalewitz from the Chemnitz University of Tech-
nology. Whereas chapter 3 was mainly written by the collaborators from Chemnitz,
most of chapter 5 was the work of myself under the academic supervision of Hanno
Gottschalk, including a number of corrections and suggestions by Thomas Kalmes.
The shape optimization framework and results of chapter 4 is based on the work [59]
of myself under the supervision of Hanno Gottschalk.
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Chapter 2

Linear Partial Differential Equations

The first three sections of this chapter provide relevant definitions and results on
Hölder continuity, boundary regularity of domains, and Sobolev spaces, which are
needed throughout this thesis and are particularly important for the theory of bound-
ary value problems in Section 2.4.

2.1 Hölder Spaces

Let Ω be an open subset of R𝑑 and 𝑢 : Ω Ñ R a bounded and continuous function on
Ω. For 0 ă 𝛼 ď 1 let

‖𝑢‖𝐶0pΩ,Rq :“ sup
𝑥PΩ

|𝑢| and r𝑢s𝐶0,𝛼pΩ,Rq :“ sup
𝑥,𝑦PΩ
𝑥‰𝑦

"

|𝑢p𝑥q ´ 𝑢p𝑦q|
|𝑥´ 𝑦|𝛼

*

.

If r𝑢s𝐶0,𝛼pΩ,Rq ă 8, then 𝑢 is Hölder continuous with Hölder coefficient 𝛼. The
collection of all bounded functions in 𝐶𝑘pΩ,Rq, which derivatives up to order 𝑘 P N0

are 𝛼-Hölder continuous, will be denoted by

𝐶𝑘,𝛼
pΩ,Rq.

With 𝛽 P N𝑑
0 denoting a multi-index, we define the norm on 𝐶𝑘,𝛼pΩ,Rq

‖𝑢‖𝐶𝑘,𝛼pΩ,Rq :“
ÿ

|𝛽|ď𝑘

‖𝐷𝛽𝑢‖𝐶0pΩ,Rq `
ÿ

|𝛽|“𝑘

r𝐷𝛽𝑢s𝐶0,𝛼pΩ,Rq,

where |𝛽| “
ř𝑑
𝑗“1 𝛽𝑗, which makes 𝐶𝑘,𝛼pΩ,Rq into a Banach space.
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Definition 2.1.1 (𝐶𝑘,𝛼-Diffeomorphism). Consider bounded subsets Ω, Ω1 of R𝑑 and
a bijective map 𝑓 : Ω Ñ Ω1. If 𝑓 P 𝐶𝑘,𝛼pΩq and 𝑓´1 P 𝐶𝑘,𝛼pΩq, then we say that 𝑓 is
a 𝐶𝑘,𝛼-diffeomorphism. The sets of all 𝐶𝑘,𝛼-diffeomorphism from Ω to Ω1 is denoted
with

𝒟𝑘,𝛼
pΩ,Ω1q,

and when Ω “ Ω1, we also write
𝒟𝑘,𝛼

pΩq.

2.2 Regularity Properties of Domains

Definition 2.2.1 (Cone Condition). A subset Ω of R𝑑 satisfies a uniform (interior)
cone condition, based on radius 𝑟 ą 0 and angle 𝛽 P s0, 𝜋2 r, if, for every 𝑥 P BΩ, there
is at least one unit vector 𝜐 such that the cone 𝐶𝜐 :“ t𝑦 P R𝑑 : x𝑦, 𝜐y ą ‖𝑦‖ cosp𝛽qu
satisfies

p𝑡` 𝐶𝜐q X𝐵𝑟p𝑥q Ă Ω, for all 𝑡 P ΩX𝐵𝑟p𝑥q,

where 𝐵𝑟p𝑥q is an open ball centered at 𝑥 with radius 𝑟 and ‖¨‖ denotes the Euclidean
norm. We say a family of subsets 𝒪 satisfies a uniform cone condition if any subset
Ω P 𝒪 fulfills a uniform cone condition based on the same radius 𝑟 and angle 𝛽.

Lemma 2.2.2 ([60, Lemma 5.5]). Let 𝒪 consist of bounded subsets of R𝑑. If for 𝒪
a uniform cone condition holds true, then, for every 𝜀 ą 0, there exists a constant
𝐶𝜀 ą 0, uniform with respect to 𝒪, such that for any 𝑢 P 𝐶1pΩ,Rq

‖𝑢‖𝐶0pΩ,Rq ď 𝜀‖𝑢‖𝐶1pΩ,Rq ` 𝐶𝜀‖𝑢‖𝐿1pΩ,Rq.

Definition 2.2.3 (𝐶𝑘,𝛼-boundary). A subset Ω in R𝑑 and its boundary are of class
𝐶𝑘,𝛼, if at each point 𝑥 P BΩ there is a ball 𝐵 “ 𝐵𝑟p𝑥q and a one-to-one mapping 𝜓
of 𝐵 onto Ω1 Ă R𝑑 such that

(i) 𝜓p𝐵 X Ωq Ă R𝑑
ě0,

(ii) 𝜓p𝐵 X BΩq Ă BR𝑑
ě0,

(iii) 𝜓 P 𝐶𝑘,𝛼p𝐵,R𝑑q, 𝜓´1 P 𝐶𝑘,𝛼pΩ1,R𝑑q.

A set Ω has a boundary portion Γ Ă BΩ of class 𝐶𝑘,𝛼, if at each point 𝑥 P Γ there is a
ball 𝐵 “ 𝐵𝑟p𝑥q in which the above conditions are satisfied and such that 𝐵XBΩ Ă Γ.
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We shall say that the diffeomorphism 𝜓 straightens the boundary near 𝑥. In this work,
we shall always assume that 𝑘 P N0 and 0 ă 𝛼 ď 1 unless we restrict further.

𝐵 𝑥

set Ω

𝜓

𝜓´1

R𝑑
ě0

𝜓p𝐵 X Ωq

𝜓p𝐵 X BΩq

Figure 2-1: Hölder continuous diffeomorphism 𝜓 from 𝐵 to R𝑑

Remark 2.2.4. (i) If only 𝜓 P 𝐶𝑘p𝐵,R𝑑q, 𝜓´1 P 𝐶𝑘pΩ,R𝑑q, then we shall say
that Ω is of class 𝐶𝑘. In the case of 𝐶0,1, we say that Ω possesses a Lipschitz
boundary.

(ii) We note that Ω is a 𝐶𝑘,𝛼-domain if each point of BΩ has a neighborhood in
which BΩ is the graph of a 𝐶𝑘,𝛼 function of 𝑛´ 1 of the coordinates 𝑥1, . . . , 𝑥𝑛.
The converse is also true if 𝑘 ě 1; see, e.g., [38, Chapter 2, Theorem 5.5].

Definition 2.2.5 (Hemisphere Condition). Let Ω Ă R𝑑 be a domain with regular
boundary portion Γ Ă BΩ. Consider a subdomain 𝑆 Ă Ω with B𝑆XBΩ Ă Γ̊. We shall
say 𝑆 satisfies a hemisphere condition if there is a distance 𝑟 ą 0 such that every
𝑥 P 𝑆, with distp𝑥, BΩq ď 𝑟, possesses a neighborhood 𝑈𝑥 with

(i) clp𝑈𝑥q X BΩ Ă Γ,

(ii) 𝐵𝑟{2p𝑥q Ă 𝑈𝑥,

(iii) clp𝑈𝑥q X clpΩq “ T𝑥
`

Σ𝑅p𝑥q

˘

, clp𝑈𝑥q X BΩ “ T𝑥
`

𝐹𝑅p𝑥q
˘

, 0 ă 𝑅p𝑥q ď 1.

Here, Σ𝑅p𝑥q “ t𝑦 P R𝑑 : ‖𝑦‖ ď 𝑅p𝑥q, 𝑦𝑑 ě 0u is a hemisphere, 𝐹𝑅p𝑥q “ t𝑦 P

R𝑑 : ‖𝑦‖ ď 𝑅p𝑥q, 𝑦𝑑 “ 0u is a disk, and T𝑥 is a one-to-one mapping and called
hemisphere transform. If 𝑆 and T𝑥,T´1

𝑥 are of class 𝐶𝑘,𝛼, we say that 𝑆 satisfies a
𝐶𝑘,𝛼-hemisphere condition.
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Remark 2.2.6. A domain Ω which satisfies a hemisphere condition already possesses
a boundary of class 𝐶𝑘,𝛼. However, the converse is only true for bounded domains
(see, e.g., [19, Lemma 6.1]), since a hemisphere condition needs a lower bound for
the size of the neighborhood of the points near to the boundary, which is not provided
in the definition of Hölder continuous boundaries.

Definition 2.2.7 (Uniform Hemisphere Condition). Let 𝒪 be a family of domains
where each domain Ω P 𝒪 satisfies a hemisphere condition. If the distance of each
hemisphere condition as well as the bounds of the corresponding hemisphere trans-
forms are uniform over 𝒪, i.e., we have ‖TΩ,𝑥‖𝐶𝑘,𝛼pR𝑑,R𝑑q ď 𝐶𝒪, for some 𝐶𝒪 ą 0, we
shall say that 𝒪 satisfies a uniform hemisphere condition.

Lemma 2.2.8 ([55, Lemma 6.36]). Let Ω be a domain in R𝑑 with boundary of class
𝐶𝑘,𝛼, with 𝑘 ě 1, and let 𝑆 be a bounded set in 𝐶𝑘,𝛼pclpΩq,Rq. Then, 𝑆 is precompact
in 𝐶𝑗,𝛽pclpΩq,Rq if 𝑗 ` 𝛽 ă 𝑘 ` 𝛼.

Lemma 2.2.9 ([55, Lemma 6.37]). Let Ω be a bounded domain in R𝑑 with boundary
of class 𝐶𝑘,𝛼, with 𝑘 ě 1, and let Ω1 be an open set containing clpΩq. For every
𝑢 P 𝐶𝑘,𝛼pclpΩq,Rq there exists an extension operator 𝑝 : 𝐶𝑘,𝛼pΩ,Rq Ñ 𝐶𝑘,𝛼

𝑐 pΩ1,Rq
such that 𝑝p𝑢q “ 𝑢 in Ω and

‖𝑝p𝑢q‖𝐶𝑘,𝛼pΩ1,Rq ď 𝐶‖𝑢‖𝐶𝑘,𝛼pΩ,Rq, (2.1)

where 𝐶 depends on Ω,Ω1 and 𝑘, and where 𝐶𝑘,𝛼
𝑐 pΩ1,Rq denotes the space of all

functions in 𝐶𝑘,𝛼pΩ1,Rq with compact support in Ω1.

Remark 2.2.10. Let 𝒪 be a family of sets in R𝑑 with boundary of class 𝐶𝑘,𝛼 (𝑘 ě 1).
If 𝒪 possesses a uniform hemisphere condition, then it is shown in [19, Lemma 7.2]
that the constant 𝐶 in Equation (2.1), which depends on the hemisphere transforms
to Ω, can be choosen independently with respect to 𝒪.
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2.3 Sobolev Spaces

Let Ω be an open subset of R𝑑. 𝐿1
locpΩ,Rq denotes the space of all locally integrable

functions 𝑢 : Ω Ñ R. Assuming we are given functions 𝑢, 𝑣 P 𝐿1
locpΩ,Rq and let 𝛾 P N𝑑

0

be a multi-index. We say that 𝑣 is the 𝛾th-weak partial derivative of 𝑢, written

𝐷𝛾𝑢 “ 𝑣,

provided
ż

Ω
𝑢𝐷𝛾𝜑 d𝑥 “ p´1q|𝛾|

ż

Ω
𝑣𝜑 d𝑥

for all test functions (smooth functions with compact support) 𝜑 P 𝐶8𝑐 pΩ,Rq. If 𝑢
possesses a weak 𝛾th-partial derivative 𝑣, then this is uniquely defined up to a set of
measure zero.

Definition 2.3.1. Fix 1 ď 𝑝 ď 8 and let 𝑘 be a non-negative integer. The space

𝑊 𝑘,𝑝
pΩ,Rq

is called Sobolev space and consists of all locally integrable functions 𝑢 : Ω Ñ R such
that for each multi-index 𝛾 with |𝛾| ď 𝑘, 𝐷𝛾𝑢 exists in the weak sense and belongs to
𝐿𝑝pΩq. We equip this space with the norm

‖𝑢‖𝑊𝑘,𝑝pΩ,Rq :“
˜

ÿ

|𝛾|ď𝑘

ż

Ω
|𝐷𝛾𝑢p𝑥q|𝑝 d𝑥

¸
1
𝑝

,

which makes 𝑊 𝑘,𝑝pΩ,Rq a Banach space (see [3, Theorem 3.3]).
In the case of 𝑝 “ 2, the Sobolev space defines a Hilbert space and we shall follow

the common convention and write

𝐻𝑘
pΩ,Rq :“ 𝑊 𝑘,2

pΩ,Rq,

and
‖𝑢‖𝐻𝑘pΩ,Rq :“ ‖𝑢‖𝑊𝑘,2pΩ,Rq.

The first theorem of this section describes the inclusions between certain Sobolev
spaces and possesses a major role for section 2.4 and the regularity of weak and
classical solutions of boundary value problems.
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Theorem 2.3.2 (The Sobolev Imbedding Theorem, [3, Theorem 4.12]). Let Ω be a
domain in R𝑑 satisfying a cone condition, 𝑗 ě 0, 𝑚 ě 1 be integers, and 1 ď 𝑝 ă 8.

(i) If either 𝑚𝑝 ą 𝑑 or 𝑚 “ 𝑑 and 𝑝 “ 1, then

𝑊𝑚,𝑝
pΩ,Rq ãÑ 𝐿𝑞pΩ,Rq, for 𝑝 ď 𝑞 ď 8.

(ii) If 𝑚𝑝 “ 𝑑, then

𝑊𝑚,𝑝
pΩ,Rq ãÑ 𝐿𝑞pΩ,Rq, for 𝑝 ď 𝑞 ă 8.

(iii) If 𝑚𝑝 ă 𝑑 and either 𝑑´𝑚𝑝 ă 𝑘 ď 𝑑 or 𝑝 “ 1 and 𝑑´𝑚 ď 𝑘 ď 𝑑, then

𝑊𝑚,𝑝
pΩ,Rq ãÑ 𝐿𝑞pΩ,Rq, for 𝑝 ď 𝑞 ď 𝑝˚ “ 𝑑𝑝{p𝑑´𝑚𝑝q.

Given Ω is a domain with Lipschitz boundary, the imbeddings can be further refined
as follows:

(iv) If 𝑚𝑝 ą 𝑑 ą p𝑚´ 1q𝑝, then

𝑊 𝑗`𝑚,𝑝
pΩ,Rq ãÑ 𝐶𝑗,𝛼

pclpΩq,Rq, for 0 ă 𝛼 ď 𝑚´ p𝑑{𝑝q.

(v) If 𝑑 “ p𝑚´ 1q𝑝, then

𝑊 𝑗`𝑚,𝑝
pΩ,Rq ãÑ 𝐶𝑗,𝛼

pclpΩq,Rq, for 0 ă 𝛼 ă 1.

Also if, 𝑑 “ 𝑚´ 1 and 𝑝 “ 1, then the last imbedding also holds for 𝛼 “ 1.

Remark 2.3.3. The imbeddings (i) and (ii) also hold for 1 ď 𝑞 ă 𝑝 in addition to the
values of 𝑞 asserted in the statement if and only if the domain Ω has finite volume.

2.3.1 Sobolev Spaces of Fractional Order

In this subsection, we introduce one possible extension of Sobolev spaces to fractional
orders 𝑘 P R using the Bessel potential. For 𝑢 P 𝐿1pR𝑑,Rq, we define its Fourier
transform by

𝑢̂p𝜉q :“ F p𝑢qp𝜉q :“
ż

R𝑑

𝑢p𝑥q𝑒´𝑖𝜉𝑥 d𝑥.
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Let S “ S pR𝑑,Rq denote the Schwartz space (see Subsection 3.1.1). For 𝑘 P R,
we define a continuous linear operator 𝒥 𝑘 : S pR𝑑,Rq Ñ S pR𝑑,Rq, called the Bessel
potential of order 𝑘, by

𝒥 𝑘
p𝑢qp𝑥q :“ 1

p2𝜋q𝑑

ż

R𝑑

p1` |𝜉|q 𝑘
2 𝑢̂p𝜉q𝑒𝑖𝜉𝑥 d𝜉, for 𝑥 P R𝑑.

Since the Bessel potential of some Schwartz function 𝑢 is defined as the inverse Fourier
transform of p1` |𝜉|q 𝑘

2 𝑢̂p𝜉q, we have

F
`

𝒥 𝑘
p𝑢q

˘

p𝜉q “ p1` |𝜉|q 𝑘
2 𝑢̂p𝜉q. (2.2)

For a tempered distribution 𝑢 P S 1 (the topological dual of S ) and a Schwartz func-
tion 𝑔 P S we denote by x𝑢, 𝑔y :“ 𝑢p𝑔q. Furthermore, for any fixed 𝑢 P 𝐿1

locpR𝑑,Rq,
the integral

𝑣 ÞÑ p𝑢, 𝑣q :“
ż

R𝑑

𝑢p𝑥q𝑣p𝑥qd𝑥, for all 𝑣 P S ,

defines a tempered distribution. Since p𝑢, ¨q is uniquely determined by 𝑢 (see [83,
Theorem 3.7]), this yields an injection of S into S 1. Therefore, for any 𝑢, 𝑣 P S we
shall write

x𝑢, 𝑣y “ p𝑢, 𝑣q.

Conversely, for any 𝑢 P S 1 we say 𝑢 lies in 𝐿1
locpR𝑑,Rq if there is some 𝑤 P 𝐿1

locpR𝑑,Rq
such that

x𝑢, 𝑣y “ p𝑤, 𝑣q, for all 𝑣 P S .

Following these notations, by using the natural extension 𝒥 𝑘 : S 1pR𝑑,Rq Ñ S 1pR𝑑,Rq
on the space of tempered distribution, given by

S 1
Q 𝑢 ÞÑ x𝒥 𝑘

p𝑢q, 𝑣y “ x𝑣,𝒥 𝑘
p𝑢qy, for all 𝑣 P S ,

we can define the following extension of Sobolev spaces to fractional orders.

Definition 2.3.4 (Sobolev Spaces of Fractional Order). For any 𝑘 P R, we define
𝑊 𝑘,𝑝pR𝑑,Rq, the Sobolev space of order 𝑘 on R𝑑, by

𝑊 𝑘,𝑝
pR𝑑,Rq :“ t𝑢 P S 1 : 𝒥 𝑘

p𝑢q P 𝐿𝑝pR𝑑,Rqu,
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and equip this space with the norm

‖𝑢‖𝑊𝑘,𝑝pR𝑑,Rq :“ ‖𝒥 𝑘
p𝑢q‖𝐿𝑝pR𝑑,Rq, for 𝑢 P 𝑊 𝑘,𝑝

pR𝑑,Rq.

In [3, 7.6.2] it is shown, that for 𝑘 P N this definition of 𝑊 𝑘,𝑝pR𝑑,Rq coincide with
the definition above up to equivalence of norms. Moreover, for 𝑘 P R and 𝑝 “ 2, it
follows immediately that 𝐻𝑘pR𝑑,Rq “ 𝑊 𝑘,2pR𝑑,Rq remains a Hilbert space. By (2.2)
and Plancherel’s Theorem (see [83, Theorem 3.12]) we also have that

‖𝑢‖𝐻𝑘pΩ,Rq “ p2𝜋q´𝑑‖p1` |𝜉|2q
𝑘
2 𝑢̂‖𝐿2pΩ,Rq. (2.3)

Definition 2.3.5. For a non-empty open subset Ω of R𝑑 and 𝑘 P R we define the
Hilbert space

𝑊 𝑘,𝑝
pΩ,Rq :“ t𝑢 P S 1

pΩ,Rq : 𝑢 “ 𝑈æΩ for some 𝑈 P 𝑊 𝑘,𝑝
pR𝑑,Rqu

with the norm

‖𝑢‖𝑊𝑘,𝑝pR𝑑,Rq :“ inf
𝑈P𝑊𝑘,𝑝pΩ,Rq

𝑈æΩ“𝑢

‖𝑈‖𝑊𝑘,𝑝pR𝑑,Rq, for 𝑢 P 𝑊 𝑘,𝑝
pΩ,Rq.

In general, for a function 𝑢 P 𝐿𝑝pΩ,Rq it is meaningless to speak of the value at
BΩ as the 𝑑-dimensional Lebesgue measure of the boundary is zero. Fortunately, for
Sobolev spaces we can give a reasonable definition of traces assuming Ω is a Lipschitz
domain. Let tr : 𝐶0pclpΩq,Rq Ñ 𝐶0pBΩ,Rq be the trace operator, mapping functions
in 𝐶0pclpΩq,Rq to their traces on BΩ. If Ω is open, bounded, and Lipschitz, we can
extend this operator continuously to 𝑊 1,𝑝pΩ,Rq (see [44, Theorem 4.6]). By an abuse
of the notation, we still denote this extension with tr.

Theorem 2.3.6 (Trace Theorem, [41, Theorem B.52 and Corollary B.53]). Let Ω be
an open and bounded domain in R𝑑 with Lipschitz boundary and let 1 ď 𝑝, 𝑞 ď 8

such that 1
𝑝
` 1

𝑞
“ 1. Then,

(i) tr : 𝑊 1,𝑝pΩ,Rq Ñ 𝑊
1
𝑞
,𝑝
pBΩ,Rq is surjective.

(ii) The kernel of the trace operator is given by the closure of 𝐶8𝑐 pΩ,Rq in 𝑊 1,𝑝pΩ,Rq,
denoted by 𝑊 1,𝑝

0 pΩ,Rq.
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(iii) There exists a constant 𝐶 ą 0 such that for all 𝑢 P 𝑊 1,𝑝pΩ,Rq it holds

‖𝑢‖𝑊 1,𝑝pΩ,Rq ď ‖trp𝑢q‖
𝑊

1
𝑞 ,𝑝
pBΩ,Rq

,

where the constant 𝐶 only depends on 𝑝 and Ω.

Since by p𝑖q we can characterize the trace of a function 𝑢 in 𝑊 1,𝑝pΩ,Rq with some
function 𝑣 P 𝑊

1
𝑞
,𝑝
pBΩ,Rq, we denote the trace of 𝑢 also with 𝑢 instead of trp𝑢q.

Due to the trace theorem, the following subspaces of 𝑊 𝑘,𝑝pΩ,Rq are well-defined.

Definition 2.3.7. Let Ω be a bounded domain with Lipschitz boundary and Γ𝐷 a
boundary portion of BΩ. With 𝑘 P R and 1 ď 𝑝 ă 8, we define the subspaces

𝑊 𝑘,𝑝
𝐷 pΩ,Rq :“ t𝑢 P 𝑊 𝑘,𝑝

pΩ,Rq : 𝑢 “ 0 along Γ𝐷u.

and
𝐻𝑘
𝐷pΩ,Rq :“ 𝑊 𝑘,2

𝐷 pΩ,Rq.

One can show that 𝐻1
𝐷pΩ,Rq defines a closed subspace of 𝐻1pΩ,Rq (see [32, Theorem

6.3-4]).

Lemma 2.3.8 (Poincaré Inequality, [41, Lemma B.61]). Let 1 ď 𝑝 ă 8 and let Ω
be an open and bounded set with Lipschitz boundary. Then, there exists a constant
𝐶𝑃 ą 0 such that

𝐶𝑃‖𝑢‖𝐿𝑝pΩ,Rq ď ‖∇𝑢‖𝐿𝑝pΩ,Rq, for all 𝑢 P 𝑊 1,𝑝
𝐷 pΩ,Rq,

where 𝐶𝑃 depends on 𝑝 and Ω.

2.4 Elliptic System of Linear Partial Differential
Equation

In this section, we develop the relevant theory of elliptic systems of linear partial
differential equations, needed for this thesis. The emphasis here lies on the regularity
of solutions to these systems and on corresponding Schauder estimates, which are
important, e.g., to, derive uniform bounds of solutions over shape spaces. Our starting
point is a more general introduction on the underlying theory, based on the work of
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Geymonat [54], and Agmon, Douglis and Nirenberg [4, 5]. Afterwards, we provide
some examples of systems of linear elliptic partial differential equations which are
considered in this work

Let Ω be a subset of R𝑑 and 𝛽 P N𝑑
0 a multi-index. We consider a polynomial in

Ξ “ p𝜉1, . . . , 𝜉𝑑q given by

𝑝p𝑥,Ξq :“
𝐸
ÿ

|𝛽|“0
𝑝p𝛽qp𝑥qΞ𝛽

“

𝐸
ÿ

|𝛽|“0
𝑝p𝛽1,...,𝛽𝑑qp𝑥q𝜉𝛽1

1 ¨ ¨ ¨ 𝜉𝛽𝑑
𝑑 ,

with coefficient functions 𝑝p𝛽q on Ω and degree degp𝑝 p𝑥,Ξqq “ 𝐸. In the case of
𝜉𝑖 “ B{B𝑥𝑖

, we obtain a partial differential operator of order 𝐸

r𝑝𝑢sp𝑥,𝐷q :“
𝐸
ÿ

|𝛽|“0
𝑝p𝛽1,...,𝛽𝑑qp𝑥q

ˆ

B

B𝑥1

˙𝛽1

. . .

ˆ

B

B𝑥𝑑

˙𝛽𝑑

𝑢p𝑥q “
𝐸
ÿ

|𝛽|“0
𝑝p𝛽q𝐷𝛽𝑢p𝑥q.

A matrix ap𝑥,Ξq :“ p𝑎𝑖,𝑗p𝑥,Ξqq𝑖,𝑗“1,...,𝑁 , consisting of such polynomials 𝑎𝑖,𝑗p𝑥,Ξq “
ř𝑁𝑖,𝑗

|𝛽|“0 𝑎
p𝛽q
𝑖,𝑗 p𝑥qΞ𝛽 of degree 𝐸𝑖,𝑗 ě 0, gives, with the above substitution, a system of

partial differential equations

pra𝑢sp𝑥,𝐷qq𝑖 “
𝑁
ÿ

𝑗“1
𝑎𝑖,𝑗r𝑢𝑗sp𝑥,𝐷q “ 𝑓𝑖p𝑥q, for 𝑖 “ 1, . . . , 𝑁. (2.4)

The matrix ap𝑥,Ξq is called the symbol of the differential operator ap𝑥,𝐷q. We
assume that the orders of these operators depend on two system of integer weights –
which do not have to be unique – 𝑠1, . . . , 𝑠𝑁 and 𝑡1, . . . , 𝑡𝑁 attached to the 𝑖th equation
and to the unknown 𝑗th dependend variable 𝑢𝑗. The manner of the dependence is
expressed by the inequality

deg p𝑎𝑖,𝑗p𝑥,Ξqq ď 𝑠𝑖 ` 𝑡𝑗, for 𝑖, 𝑗 “ 1, . . . , 𝑁, (2.5)

where it is to be understood that 𝑎𝑖,𝑗 “ 0 if 𝑠𝑖 ` 𝑡𝑗 ă 0. We can choose the two
systems such that 𝑠𝑖 ď 0 and 0 ď 𝑡𝑗 ď 𝑡1, where 𝑡1 is the maximum of the 𝑡𝑗, and
write

𝑎𝑖,𝑗p𝑥,Ξq “
𝑠𝑖`𝑡𝑗
ÿ

|𝛽|“0
𝑎
p𝛽q
𝑖,𝑗 Ξ𝛽.
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Definition 2.4.1 (Ellipticity). With a1p𝑥,Ξq “
`

𝑎1𝑖,𝑗p𝑥,Ξq
˘

𝑖,𝑗“1,...,𝑁 we denote the
principal symbol of ap𝑥,𝐷q that consists of the terms in ap𝑥,Ξq which are just of the
order 𝑠𝑖 ` 𝑡𝑗. Then, a system of partial differential equation is

(i) elliptic, if the corresponding characteristic polynomial is non-zero, i.e.,

𝒜p𝑥,Ξq :“ det pa1p𝑥,Ξqq ‰ 0, for all Ξ P R𝑑
z t0u.

(ii) uniformly elliptic, if the characteristic polynomial 𝒜p𝑥,Ξq is of even degree
degp𝒜p𝑥,Ξqq “ 2𝑀 and there exists a constant Λ ą 0 such that

Λ´1‖Ξ‖2𝑀
ď |𝒜p𝑥,Ξq| ď Λ‖Ξ‖2𝑀 , for all Ξ P R𝑑, 𝑥 P clpΩq,

where ‖¨‖ denotes the Euclidean norm.

Definition 2.4.2 (Supplementary Condition on 𝒜). The characteristic polynomial
𝒜 is said to satisfy the supplementary condition, if

(i) 𝒜p𝑥,Ξq is, with respect to Ξ, of even degree 2𝑀 ,

(ii) for every pair of linearly independent real vectors Ξ, Ξ1, the polynomial 𝒜p𝑥,Ξ`
𝜏Ξ1q in the complex variable 𝜏 has exactly 𝑀 roots with positive imaginary part.

Remark 2.4.3. (i) A characteristic polynomial 𝒜 satisfies the supplementary con-
dition whenever the corresponding system of partial differential equations (2.4)
is a system in three or more independent variables 𝑢𝑗. A proof to this statement
can be found in [4, p. 631-632].

(ii) The supplementary condition is used only at points 𝑥 of the boundary of Ω with
Ξ a tangent, and Ξ1 the normal to the boundary at 𝑥.

From now on, the following assumptions will be used repeatedly and for sake of
convenience we summarize them here.

Assumptions 2.4.4. Consider a partial differential operator ap𝑥,𝐷q. We state the
assumptions:

(A1) The systems of weights 𝑠1, . . . , 𝑠𝑁 ď 0 and 0 ď 𝑡1, . . . , 𝑡𝑁 ď 𝑡1 satisfy (2.5).

(A2) The operator a is elliptic.
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(A3) The characteristic polynomial 𝒜 fulfills the supplementary condition and the
number 𝑀 “ 1

2deg p𝒜p𝑥,Ξqq is positive.

The boundary conditions we consider refer to a regular portion Γ of BΩ and are
expressed as

prb𝑢sp𝑥,𝐷qqℎ “
𝑁
ÿ

𝑗“1
𝑏ℎ,𝑗r𝑢𝑗sp𝑥,𝐷q “ 𝑔ℎp𝑥q, ℎ “ 1, . . . ,𝑀, 𝑥 P Γ (2.6)

in terms of given polynomials in Ξ, 𝑏ℎ,𝑗p𝑥,𝐷q. The order of the boundary operators,
like of the operators in (2.4), depends on two system of integer weights, where the
system 𝑡1, . . . , 𝑡𝑁 is already attached to the dependend variables 𝑢𝑗 and a new system
𝑟1, . . . , 𝑟𝑀 , of which 𝑟ℎ pertains to the ℎth condition, is introduced. The dependence
is equally expressed by the inequality

deg p𝑏ℎ,𝑗q ď 𝑟ℎ ` 𝑡𝑗,

where it is understood that 𝑏ℎ,𝑗 “ 0 if 𝑟ℎ ` 𝑡𝑗 ă 0. For this system, we define 𝑟1 :“
maxt0, 𝑟1 ` 1, . . . , 𝑟𝑀 ` 1u and 𝑟2 :“ maxt0, 𝑟1, . . . , 𝑟𝑀u. By b1p𝑥,Ξq “

`

𝑏1ℎ,𝑗p𝑥,Ξq
˘

,
with 1 ď ℎ ď 𝑀 and 1 ď 𝑗 ď 𝑁 , we denote the matrix that consists of the terms
in bp𝑥,Ξq which are just of the order 𝑟ℎ ` 𝑡𝑗. Further, we can write the polynomials
𝑏ℎ,𝑗p𝑥,Ξq as

𝑏ℎ,𝑗p𝑥,Ξq “
𝑟ℎ`𝑡𝑗
ÿ

|𝛽|“0
𝑏
p𝛽q
ℎ,𝑗Ξ𝛽.

The resulting boundary value problems (BVPs) are described by
#

ra𝑢sp𝑥,𝐷q “ 𝑓p𝑥q on Ω,
rb𝑢sp𝑥,𝐷q “ 𝑔p𝑥q along Γ,

(2.7)

where 𝑓 “ p𝑓1, . . . , 𝑓𝑁q and 𝑔 “ p𝑔1, . . . , 𝑔𝑀q. For a well-posed problem, the boundary
conditions must "complement" the differential equations. The complementing bound-
ary condition we describe below is an algebraic criterion and involves the principal
symbols a1p𝑥,Ξq and b1p𝑥,Ξq.

For a point 𝑥 on Γ, we denote with 𝑛p𝑥q the outward normal at 𝑥 and Ξp𝑥q ‰ 0
any tangent to Γ. We denote by 𝜏`ℎ p𝑥,Ξq, 1 ď ℎ ď 𝑀 , the 𝑀 solutions (in 𝜏) with
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positive imaginary part of the characteristic equation

𝒜 p𝑥,Ξp𝑥q ` 𝜏𝑛p𝑥qq “ 0,

which are assured by the supplementary condition on 𝒜. Set

𝑀`
p𝑥,Ξ, 𝜏q “

𝑀
ź

ℎ“1

`

𝜏 ´ 𝜏`ℎ p𝑥,Ξq
˘

,

and let a1˚p𝑥,Ξ ` 𝜏𝑛q denote the adjoint matrix of a1p𝑥,Ξ ` 𝜏𝑛q. The criterion
regarding the coercivity of the boundary value problems (2.7), we mentioned above,
is that the following algebraic condition is satisfied.

Definition 2.4.5 (Complementing Boundary Condition). The boundary value prob-
lem (2.7) fulfills the complementing boundary condition if, for any point 𝑥 P Γ and
any real, non-zero vector tangent to Γ at 𝑥, the matrix

cp𝑥,Ξ` 𝜏𝑛qℎ,𝑘 “
𝑁
ÿ

𝑗“1
𝑏ℎ,𝑗p𝑥,Ξ` 𝜏𝑛q𝑎1𝑗,𝑘

˚
p𝑥,Ξ` 𝜏𝑛q, ℎ “ 1, . . .𝑀, 𝑘 “ 1, . . . , 𝑁,

has linear independent rows modulo 𝑀`p𝑥,Ξ, 𝜏q. We refer to the assumption, that
the complementing boundary condition holds, as (B1).

For problems in which the complementing boundary condition is satisfied, we can
find coefficients 𝑐p𝛽qℎ,𝑘p𝑥,Ξq P R such that

cp𝑥,Ξ` 𝜏𝑛qℎ,𝑘 “
𝑀´1
ÿ

𝛽“0
𝑐
p𝛽q
ℎ,𝑘p𝑥,Ξq𝜏𝛽 pmod𝑀`

p𝑥,Ξ, 𝜏qq.

We construct the matrix c “ p𝑐𝛽ℎ,𝑘q having 𝑀 rows ℎ “ 1, . . . ,𝑀 and 𝑀𝑁 columns
𝛽 “ 0, . . . ,𝑀 ´ 1, 𝑘 “ 1, . . . , 𝑁 . Under the complementing boundary condition, the
rank of c will be 𝑀 . Hence, if

𝑀1
p𝑥,Ξq, . . . ,𝑀p

𝑀𝑁
𝑀 qp𝑥,Ξq

denote all the 𝑚-rowed minors of c, the value

max
𝑗“1,...,p𝑀𝑁

𝑀 q
|𝑀 𝑗

p𝑥,Ξq|
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will not be zero. Also, if Γ is compact, then the infimum Δ1
Γ of these quantities is,

for all 𝑥 P Γ and all real vectors Ξ which are tangent to Γ at 𝑥, non-zero either.

Definition 2.4.6 (Minor Constant). Assuming that (B1) holds, we define the minor
constant as follows.

(i) If Γ is plane, the minor constant is given by ΔΓ :“ Δ1
Γ.

(ii) If Γ is non-plane and a change of variables 𝜓 : Γ Ñ R𝑑´1 exists that makes Γ
plane, we define the minor constant by ΔΓ :“ Δ1

𝜓pΓq.

(iii) If Γ itself is covered by a union of subportions Γ𝑖, and each Γ𝑖 has a minor
constant ΔΓ𝑖

, the corresponding minor for Γ will be defined as Δ ” ΔΓ “

inf ΔΓ𝑖
.

We denote with Δ𝑥 the minor constant for clp𝑈𝑥qXBΩ that pertains to the hemisphere
transform T𝑥 (see Definition 2.2.5). Hence, by (iii), Δ “ inft𝑥 : distpx,Γqďmu Δ𝑥.

Example 2.4.7 (Pure Traction Problem of Linear Elasticity). Consider a domain
Ω Ă R3 and vector fields 𝑓 : Ω Ñ R3, 𝑢 P 𝐶2pΩ,R3q. The partial differential equation
system of linear elasticity with Dirichlet boundary condition is given by

#

´∇ ¨ 𝜎p𝑢q “ 𝑓 on Ω,
𝑢 “ 0 along BΩ,

(2.8)

where 𝜎p𝑢q “ 𝜆p∇ ¨ 𝑢qI`𝜇p𝐷𝑢`𝐷𝑢ᵀq, with Lamé coefficient constants 𝜆, 𝜇 ą 0 and
3ˆ 3 identity matrix I “ I3. Componentwise, this system reads

”

p𝜆` 2𝜇q B2

B𝑥2
1
` 𝜇

´

B2

B𝑥2
2
` B2

B𝑥2
3

¯ı

𝑢1 ` p𝜆` 𝜇q
B2

B𝑥1B𝑥2
𝑢2 ` p𝜆` 𝜇q

B2

B𝑥1B𝑥3
𝑢3 “ 𝑓1,

p𝜆` 𝜇q B2

B𝑥1B𝑥2
𝑢1 `

”

p𝜆` 2𝜇q B2

B𝑥2
2
` 𝜇

´

B2

B𝑥2
1
` B2

B𝑥2
3

¯ı

𝑢2 ` p𝜆` 𝜇q
B2

B𝑥2B𝑥3
𝑢3 “ 𝑓2,

p𝜆` 𝜇q B2

B𝑥1B𝑥3
𝑢1 ` p𝜆` 𝜇q

B2

B𝑥2B𝑥3
𝑢2 `

”

p𝜆` 2𝜇q B2

B𝑥2
3
` 𝜇

´

B2

B𝑥2
1
` B2

B𝑥2
2

¯ı

𝑢3 “ 𝑓3,

with symbols

apΞq “

¨

˚

˚

˝

p𝜆` 𝜇q𝜉2
1 ` 𝜇‖Ξ‖2 p𝜆` 𝜇q𝜉1𝜉2 p𝜆` 𝜇q𝜉1𝜉3

p𝜆` 𝜇q𝜉1𝜉2 p𝜆` 𝜇q𝜉2
2 ` 𝜇‖Ξ‖2 p𝜆` 𝜇q𝜉2𝜉3

p𝜆` 𝜇q𝜉1𝜉3 p𝜆` 𝜇q𝜉2𝜉3 p𝜆` 𝜇q𝜉2
3 ` 𝜇‖Ξ‖2

˛

‹

‹

‚

,
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and bpΞq “ I. As systems of weights, we can choose, e.g., 𝑠1 “ 𝑠2 “ 𝑠3 “ 0,
𝑡1 “ 𝑡2 “ 𝑡3 “ 2 and 𝑟1 “ 𝑟2 “ 𝑟𝑟 “ ´2. The form of the corresponding characteristic
polynomial

𝒜pΞq “ 𝜇2
p𝜆` 2𝜇q‖Ξ‖6

implies obviously the uniform ellipticity and satisfies the supplementary condition,
since (2.8) is a system in three independent variables 𝑢1, . . . , 𝑢3.

Theorem 2.4.8 (Index Theorem, [54, Theorem 3.5]). Let

#

ra𝑢sp𝑥,𝐷q “ 𝑓p𝑥q on Ω,
rb𝑢sp𝑥,𝐷q “ 𝑔p𝑥q along Γ

(2.9)

be a system of partial differential equations with bounded domain Ω Ă R𝑑 of class
𝐶𝑟1`𝑡1`𝑘, 𝑘 P N0Yt8u, differential operator ap𝑥,𝐷q of order 𝑁 , and boundary operator
bp𝑥,𝐷q of order 𝑀 on a regular boundary portion Γ Ă BΩ. We assume that the
coefficients of a and b, respectively, satisfy

𝑎
p𝛽q
𝑖,𝑗 P

#

𝐶𝑟1´𝑠𝑖`𝑘pclpΩq,Rq if |𝛽| “ 𝑠𝑖 ` 𝑡𝑗,

𝑊 𝑟1´𝑠𝑖`𝑘,8pΩ,Rq if |𝛽| ă 𝑠𝑖 ` 𝑡𝑗,

𝑏
p𝛽q
ℎ,𝑗 P

#

𝐶𝑟1´𝑟ℎ`𝑘pΓ,Rq if |𝛽| “ 𝑟ℎ ` 𝑡𝑗,

𝑊 𝑟1´𝑟ℎ`𝑘,8pΓ,Rq if |𝛽| ă 𝑟ℎ ` 𝑡𝑗.

Then, the following two assertions are equivalent:

(i) The system (2.9) is elliptic (A2) and fulfills the supplementary and complement-
ing conditions (A3) and (B1).

(ii) If 1 ă 𝑝 ă 8 and 0 ď 𝑙 ď 𝑘, the operator

𝐴𝑙,𝑝 :
𝑁
ź

𝑗“1
𝑊 𝑟1`𝑡𝑗`𝑙,𝑝pΩ,Rq Ñ

𝑁
ź

𝑗“1
𝑊 𝑟1´𝑠𝑖`𝑙,𝑝pΩ,Rq ˆ

𝑀
ź

𝑗“1
𝑊 𝑟1´𝑟ℎ`𝑙´

1
𝑝
,𝑝
pΓ,Rq,

𝑢 ÞÑ pa𝑢,b𝑢q

is linear, continuous, and has finite index

indp𝐴𝑙,𝑝q :“ dim pkerp𝐴𝑙,𝑝qq ´ dim pcokerp𝐴𝑙,𝑝qq (2.10)

that is independent of 𝑙 and 𝑝.
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Remark 2.4.9. We can consider the differential and boundary operator of linear
boundary value problems (2.7) in the context of Fredholm operators. Then, the index
(2.10) of the Fredholm operator 𝐴𝑙,𝑝 contains informations about the existence and
uniqueness of solutions to boundary value problems, encoded into one number. The
dimension of the kernel can be treated as a measure for the injectivity of the operator.
If the kernel is given by t0u, and hence the dimension is 0, the operator is injective
and solutions are unique. If we treat the dimension of the kernel as a measure for
injectivity, we can accordingly consider the dimension of the cokernel as a measure
for surjectivity. If the operator is surjective, the corkernel possesses dimension 0.
Consequently, if we are able to show that dim pkerp𝐴𝑙,𝑝qq “ dim pcokerp𝐴𝑙,𝑝qq “ 0, and
thus indp𝐴𝑙,𝑝q “ 0, we see that there exists a unique solution to the boundary value
problem (2.7). Now, in this situation, the index theorem states, under the necessary
assumptions, that the index is zero for each 1 ă 𝑝 ă 8 and the unique solution lies
in the corresponding space 𝐿𝑝. This trait allows us to, e.g., improve the regularity of
a standard 𝐻1 solution to 𝑊 1,𝑝, for arbitrary 1 ă 𝑝 ă 8.

Theorem 2.4.10 (Schauder Estimate in Sobolev Spaces, [5, Lemma 10.5]). Consider
a boundary value problem (2.7) on a bounded domain Ω Ă R𝑑 that fulfills assumptions
(A1) - (A3) and (B1). Let 𝑘 ě 𝑟1 be a fixed integer and 1 ă 𝑝 ă 8. We further assume
that the following regularity assumption hold:

(i) The coefficient functions 𝑎p𝛽q𝑖,𝑗 P 𝐶𝑘´𝑠𝑖pclpΩq,Rq, 𝑏p𝛽qℎ,𝑗 P 𝐶𝑘´𝑟ℎpBΩ,Rq and the
functions 𝑓𝑖 P 𝑊 𝑘´𝑠𝑖,𝑝pΩ,Rq, 𝑔ℎ P 𝑊 𝑘´𝑟ℎ´

1
𝑝
,𝑝
pBΩ,Rq,

(ii) We assume that the right-hand sides, 𝑓 and 𝑔, and the coefficients 𝑎p𝛽q𝑖,𝑗 and
𝑏
p𝛽q
ℎ,𝑗 , are respectively bounded from above by constants 𝐶𝑓,𝑔, 𝐶𝑎,𝑏 ą 0 in their

respective norms.

(iii) Ω possesses a 𝐶𝑡1`𝑘-hemisphere property such that ΔΓ ą 0 and that the hemi-
sphere transforms T𝑥 have finite 𝐶𝑡1`𝑘-norms, bounded by some constant 𝐶T

independently of 𝑥.

Then, a weak solution 𝑢𝑗 P 𝑊 𝑟1`𝑡𝑗 ,𝑝pΩ,Rq to (2.7) also lies in 𝑊 𝑡𝑗`𝑘,𝑝pΩ,Rq, for
𝑗 “ 1, . . . , 𝑁 , and we can estimate

‖𝑢𝑗‖𝑊 𝑡𝑗`𝑘,𝑝
pΩ,Rq ď 𝐶

˜

𝑁
ÿ

𝑖“1
‖𝑓𝑖‖𝑊𝑘´𝑠𝑖,𝑝pΩ,Rq `

𝑀
ÿ

ℎ“1
‖𝑔ℎ‖

𝑊
𝑘´𝑟ℎ´

1
𝑝 ,𝑝
pBΩ,Rq

`

𝑁
ÿ

𝑙“1
‖𝑢𝑙‖𝐶0pΩ,Rq

¸

,
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with constant 𝐶 ą 0 that depends on 𝐶𝑎,𝑏,Λ,ΔΓ, 𝐶T, 𝑟, 𝑑,𝑁,𝑀,
ř

|𝑟ℎ|, 𝑝 and 𝑘.

Theorem 2.4.11 (Schauder Estimate in Hölder Spaces, [5, Theorem 9.3]). Consider
the boundary value problem (2.7) on a non-empty domain Ω Ă R𝑑. Suppose that
assumptions (A1) - (A3) and (B1) are fulfilled. Let 𝑆 be a subdomain of Ω with the
property that B𝑆 X BΩ lies in the interior of Γ. Let 𝛼 P s0, 1r be a Hölder exponent
and fix an integer 𝑘 ě 𝑟2. Further, assume that 𝑆 satisfies a hemisphere condition
with minor constant ΔΓ𝑠 ą 0 and consider the following regularity assumptions:

(i) 𝑎
p𝛽q
𝑖,𝑗 , 𝑓𝑖 are elements of 𝐶𝑘´𝑠𝑖,𝛼pclpΩq,Rq and 𝑏p𝛽qℎ,𝑗 , 𝑔ℎ of 𝐶𝑘´𝑟ℎ,𝛼pΓ,Rq.

(ii) We assume that the right-hand sides, 𝑓 and 𝑔, and the coefficients, 𝑎p𝛽q𝑖,𝑗 and 𝑏p𝛽qℎ,𝑗 ,
are respectively upper bounded by constants 𝐶𝑓,𝑔, 𝐶𝑎,𝑏 ą 0 in their respective
norms.

(iii) The hemisphere transforms T𝑥 and their inverse are of class 𝐶𝑡2`𝑘,𝛼, 𝑡2 “
maxt´𝑠𝑖,´𝑟ℎ, 𝑡𝑗u, and have fintie 𝐶𝑡2`𝑘,𝛼-norms, bounded by some constant
𝐶T independently of 𝑥.

Then, a classical solution 𝑢𝑗 P 𝐶𝑟2`𝑡𝑗 ,𝛼pΩYΓ,Rq to (2.7) also lies in 𝐶𝑡𝑗`𝑘,𝛼pclp𝑆q,Rq,
for 𝑗 “ 1, . . . , 𝑁 , and we can estimate

‖𝑢𝑗‖𝐶𝑡𝑗`𝑘,𝛼
p𝑆q ď 𝐶

˜

𝑁
ÿ

𝑖“1
‖𝑓𝑖‖𝐶𝑘´𝑠𝑖,𝛼pΩ,Rq `

𝑀
ÿ

ℎ“1
‖𝑔ℎ‖𝐶𝑘´𝑟ℎ,𝛼pΓ,Rq `

𝑁
ÿ

𝑙“1
‖𝑢𝑙‖𝐶0pΩ,Rq

¸

,

with constant 𝐶 ą 0 that depends on 𝐶𝑎,𝑏,Λ,ΔΓ𝑠 , 𝐶T,𝑚, 𝑑,𝑁, 𝛼 and 𝑘.
For a bounded domain Ω, we have 𝑆 “ Ω and Γ “ BΩ, and any solution 𝑢 P

𝐶𝑟2`𝑡𝑗 ,𝛼pclpΩq,Rq to (2.7) already belongs to 𝐶𝑡𝑗`𝑘,𝛼pclpΩq,Rq.

2.4.1 Regularity Theory and Linear Elasticity

Now, we apply the regularity results from above in the context of linear elasticity.
Let Ω Ă R3 be an open, bounded, and connected domain with divided Lipschitz
boundary BΩ “ Γ𝐷 Y Γ𝑁 , with Γ𝐷 X Γ𝑁 “ H. With 𝑢 : clpΩq Ñ R3 we denote the
displacement field and with 𝑓 : Ω Ñ R3, 𝑔 : Γ𝑁 Ñ R3 a volume load and a surface
load acting on Ω. With Lamé coefficients 𝜆, 𝜇 ą 0, the disjoint-traction problem, or
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the linear elasticity equation, is given by
$

’

’

&

’

’

%

´∇ ¨ 𝜎p𝑢q “ 𝑓 on Ω,
𝑢 “ 0 along Γ𝐷,

𝑛 ¨ 𝜎p𝑢q “ 𝑔 along Γ𝑁 ,
(2.11)

where 𝜎p𝑢q “ 𝜆p∇ ¨ 𝑢qI ` 𝜇 p𝐷𝑢`𝐷𝑢ᵀq. With 𝜀p𝑢q :“ p𝐷𝑢`𝐷𝑢ᵀq we denote
the linearized strain tensor. Approximative numerical solution can be computed by
a finite element approach; see [41, 67]. The existence of weak 𝐻1 solutions can be
found in, e.g., [32, 41]. In [32], Ciarlet also shows existence theory to the pure traction
problem (2.8) in Sobolev spaces of higher order.

Results for classical strong solutions of elliptic systems of partial differential equa-
tions are, however, somewhat scattered in the literature. Nonetheless, for linear elas-
ticity, we can derive results on the existence of solutions with corresponding Schauder
estimates directly from the results provided above.

Lemma 2.4.12 (Korn’s Second Inequality, [24, 3.3]). Let Ω be an open and bounded
set in R3 with Lipschitz boundary BΩ. In addition, suppose Γ𝐷 Ă BΩ has positive
two-dimensional surface measure. Then, there exists a constant 𝐶 ą 0 such that

‖𝜀p𝑢q‖𝐿2pΩ,R3ˆ3q “

ˆ
ż

Ω
𝜀p𝑢q : 𝜀p𝑢q 𝑑𝑥

˙
1
2

ě 𝐶‖𝑢‖𝐻1pΩ,R3q, for all 𝑢 P 𝐻1
𝐷pΩ,R3

q,

where 𝜀p𝑢q : 𝜀p𝑢q denotes the Frobenius scalar product of 𝜀p𝑢q with itself.

Definition 2.4.13. The weak formulation of (2.11) is given by

𝐵p𝑢, 𝑣q “ 𝐿p𝑣q, for all 𝑣 P 𝐻1
𝐷pΩ,R3

q, (2.12)

with

𝐵p𝑢, 𝑣q :“
ż

Ω
𝜆tr p𝜀p𝑢qq tr p𝜀p𝑣qq ` 2𝜇tr p𝜀p𝑢q𝜀p𝑣qq d𝑥 “

ż

Ω
𝜀p𝑢q : 𝜎p𝑣q d𝑥,

and
𝐿p𝑣q :“

ż

Ω
x𝑓, 𝑣y d𝑥`

ż

Γ𝑁

x𝑔, 𝑣y d𝐴,

where tr denotes the trace of a 𝑛ˆ𝑛 matrix. By Korn’s second inequality, the bilinear
form 𝐵 is strictly coercive and continuous on 𝐻1

𝐷. Since Ω has a Lipschitz boundary,
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we can define the trace operator tr : 𝐻1pΩ,R3q Ñ 𝐻
1
2 pBΩ,R3q and apply the Sobolev

Imbedding Theorem 2.3.2 to estimate

|𝐿p𝑣q| ď
´

𝐶1‖𝑓‖
𝐿

6
5 pΩ,R3q

` 𝐶2‖𝑔‖
𝐿

4
3 pΓ𝑁 ,R3q

¯

‖𝑣‖𝐻1pΩ,R3q,

with constants 𝐶1, 𝐶2 ą 0. This yields the continuity of the linear form 𝐿 and even-
tually the existence of a unique weak solution to (2.11).

Theorem 2.4.14 (Regularity of the Weak Solution to the Elasticity Equations, [32,
Theorem 6.3-5] and [18, Theorem 2.3.4]). Consider elasticity equation (2.11) on a
𝐶2-domain Ω Ă R3, and let Γ𝐷 be a measurable subset of BΩ with positive surface
measure. If Γ𝑁 “ BΩ´Γ𝐷, with distpΓ𝐷,Γ𝑁q ą 0, and 𝑓 P 𝐿 6

5 pΩ,R3q, 𝑔 P 𝐿 4
3 pBΩ,R3q,

then there is a unique solution 𝑢 P 𝐻1
𝐷pΩ,R3q solving (2.12). Furthermore, we have:

(i) If 𝑓 P 𝐿𝑝pΩ,R3q and 𝑔 P 𝑊 1´ 1
𝑝
,𝑝
pBΩ,R3q, 𝑝 ě 4

3 , then the solution lies in
𝑊 2,𝑝pΩ,R3q.

(ii) Assume that 𝑘 ě 3 is an integer and Ω is a 𝐶𝑘-domain. If for 𝑝 ě 4
3 we have that

𝑓 P 𝑊 𝑘´2,𝑝pΩ,R3q and 𝑔 P 𝑊 𝑘´1´ 1
𝑝
,𝑝
pBΩ,R3q, then the solution is an element

of 𝑊 𝑘,𝑝pΩ,R3q.

For 𝑘 ě 2, any solution 𝑢 P 𝑊 𝑘,𝑝pΩ,R3q satisfies

‖𝑢‖𝑊𝑘,𝑝pΩ,R3q ď 𝐶
´

‖𝑓‖𝑊𝑘´2,𝑝pΩ,R3q ` ‖𝑔‖
𝑊

𝑘´1´ 1
𝑝 ,𝑝
pBΩ,R3q

` ‖𝑢‖𝐶0pΩ,R3q

¯

,

with constant 𝐶 ą 0, which depends on ΔBΩ, 𝐶T, 𝜆, 𝜇, 𝑝, 𝑘, and 𝑚.

Proof. In order to demonstrate the usage of index Theorem 2.4.8, we briefly sketch
the main steps of the proof to Theorem 2.4.14 (i). First, by [32, Theorem 6.3-5]
there exists a unique solution 𝑢 P 𝐻1

𝐷pΩ,R3q to (2.11). Because the linear elasticity
equation satisfies assumptions (A1) - (A3) and (B1), by Theorem 2.4.10, for 𝑝 “ 2,
we have 𝑢 P 𝑊 2,𝑝

𝐷 pΩ,R3q. Now, by the Index Theorem 2.4.8, the operator

𝐴0,𝑝 :
3
ź

𝑗“1
𝑊 2,𝑝
𝐷 pΩ,Rq Ñ

3
ź

𝑗“1
𝑊 2,𝑝

pΩ,Rq ˆ
3
ź

𝑗“1
𝑊 1´ 1

𝑝
,𝑝
pBΩ,Rq,

𝑢 ÞÑ pa𝑢,b𝑢q

has an index indp𝐴0,𝑝q “ 0 which is independent of 1 ă 𝑝 ă 8. In the case of 𝑝 “ 2,
𝐴0,2 is a bijection and dim pkerp𝐴0,2qq “ dim pcokerp𝐴0,2qq “ 0. Since the boundary
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of Ω is of class 𝐶2, a cone condition is satisfied and the Imbedding Theorem 2.3.2
gives 𝑊 2,𝑝

𝐷 pΩ,R3q ãÑ 𝐻1
𝐷pΩ,R3q, for 𝑝 ě 6{5. Therefore, dim pkerp𝐴0,𝑝qq “ 0 for any

4{3 ă 𝑝 ă 8. It is an immediate consequence that dim pcokerp𝐴0,𝑝qq “ 0 for any
4{3 ă 𝑝 ă 8 as well. Hence, 𝑢 P 𝑊 2,𝑝

𝐷 pΩ,R3q for 4{3 ă 𝑝 ă 8.

Theorem 2.4.15 (Regularity of the Strong Solution to the Elasticity Equations, [18,
Theorem 2.3.6]). We consider elasticity equation (2.11) on a bounded domain Ω Ă R3

of class 𝐶𝑘,𝛼, with 𝑘 ě 2 and 𝛼 P s0, 1r, and let Γ𝐷 be a portion of BΩ, with positive
surface measure. Further, we have a portion Γ𝑁 “ BΩ ´ Γ𝐷 with distpΓ𝐷,Γ𝑁q ą 0,
and assume that 𝑓 P 𝐶𝑘´2,𝛼pclpΩq,R3q and 𝑔 P 𝐶𝑘´1,𝛼pΓ𝑁 ,R3q. Then, there exists a
unique solution 𝑢 P 𝐶𝑘,𝛼pclpΩq,R3q of (2.11) satisfying

‖𝑢‖𝐶𝑘,𝛼pΩ,R3q ď 𝐶
`

‖𝑓‖𝐶𝑘´2,𝛼pΩ,R3q ` ‖𝑔‖𝐶𝑘´1,𝛼pΓ𝑁 ,R3q ` ‖𝑢‖𝐶0pΩ,R3q

˘

.

The constant 𝐶 ą 0 depends on ΔBΩ, 𝐶T, 𝜆, 𝜇, 𝛼, 𝑘, and 𝑚.

Proof. We only describe the main steps here, since a full proof is already provided in
[18, Theorem 2.3.6]. First, we assume that 𝑘 ě 3. With the same procedure as in the
proof to Theorem 2.4.14, we get, by using Index Theorem 2.4.8, a unique solution
𝑢 P 𝑊 𝑘,𝑝pΩ,R3q for any 1 ă 𝑝 ă 8. Then, for 𝑝 ě 3, the Sobolev Imbedding Theorem
2.3.2 states that 𝑢 also lies in 𝐶𝑘´1,𝛼pΩ,R3q for any 𝛼 P s0, 1r. As 𝑘 ě 3, 𝑢 lies thus
in 𝐶2,𝛼pclpΩq,R3q and therefore, by Theorem 2.4.11, in 𝐶𝑘,𝛼pclpΩq,R3q as well. In
addition, Theorem 2.4.11 provides the desired Schauder estimate.

Now, for 𝑘 “ 2, we have 𝑓 P 𝐶0,𝛼pΩ,R3q and 𝑔 P 𝐶1,𝛼pclpΓ𝑁q,R3q. Consid-
ering that 𝐶𝑘1,𝛼p𝑆,R3q is dense in 𝐶𝑘,𝛼p𝑆,R3q for any bounded domain 𝑆 in R𝑑,
𝛼 Ps0, 1s, and any 𝑘, 𝑘1 P N0, with 𝑘 ă 𝑘1, we can find sequences p𝑓𝑛q𝑛PN Ă 𝐶1,𝛼pΩ,R3q

p𝑔𝑛q𝑛PN Ă 𝐶2,𝛼pclpΓ𝑁q,R3q which converge in their respective norm to 𝑓 and 𝑔. By
above considerations, the elasticity equation (2.11) yields a corresponding sequence of
solutions p𝑢𝑛q𝑛PN Ă 𝐶2,𝛼pclpΩq,R3q which forms a bounded subset of 𝐶2,𝛼pclpΩ𝑁q,R3q.
One can show that this implies the convergence of the sequence p𝑢𝑛q𝑛PN to a solution
𝑢 P 𝐶2,𝛼pclpΩq,R3q to (2.11) with volume load 𝑓 and surface load 𝑔. Lastly, Theorem
2.4.11 implies the assertion.

2.4.2 Potential Flow Equation

Potential flow theory possesses a large role in fluid dynamics and describes approxi-
mately many processes occuring in nature. In the following, we show a simple way to
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apply potential flow theory in order to model the flow of an ideal fluid flowing past a
component within a shroud.

As component we consider a connected and compact domain Ω Ă R3 with 𝐶𝑘,𝛼-
boundary – where we always assume that 𝑘 ě 2 and 𝛼 P s0, 1s unless we specify further
– that is partially contained in some larger, connected, and compact domain 𝐷 Ă R3

representing a shroud with 𝐶𝑘,𝛼-boundary such that intp𝐷zΩq is simply connected
and has 𝐶𝑘,𝛼-boundary as well. The shroud 𝐷 has an inlet and outlet where the fluid
flows in and out, respectively. At the remaining boundary part the fluid cannot leak;
see Figure 2-2. This model considers an incompressible and rotation free perfect fluid
in a steady state. The assumption of zero shearing stresses in a perfect fluid – or zero
viscosity – simplifies the equation of motion so that potential theory can be applied.
The resulting solution still provides reasonable approximations to many actual flows.
The viscous forces are limited to a thin layer of fluid adjacent to the surface and
therefore, in favor of simplicity, we leave these effects out since they have little effect
on the general flow pattern1.

A fundamental condition is that no fluid can be created or destroyed within the
shroud 𝐷. The equation of continuity expresses this condition. Consider a three-
dimensional velocity field 𝑣 on 𝐷 Ă R3, then the continuity equation is given by

∇ ¨ 𝑣 “ 0.

If we assume that the velocity field 𝑣 is rotation free, ∇ˆ 𝑣 “ 0, then there exists a
velocity potential or flow potential 𝜑 such that

𝑣 “ ∇𝜑.

Hence, under the assumption that 𝑣 is divergence free and rotation free, there is a
velocity potential 𝜑 that satisfies the Laplace equation

Δ𝜑 “ ∇ ¨∇𝜑 “ 0.

Let 𝑛 be the unitary outward normal of the boundary B𝐷. By applying suitable
Neumann boundary conditions 𝑔 that correspond to our assumptions for a conserved

1unless the local effects make the flow separate from the surface
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flow through the inlet and outlet of the shroud, we get the potential flow equation
$

’

’

&

’

’

%

Δ𝜑 “ 0 on intp𝐷zΩq,
𝑛 ¨∇𝜑 “ 𝑔 along B𝐷zBp𝐷 X Ωq,
𝑛 ¨∇𝜑 “ 0 along 𝐷 X BΩ.

(2.13)

Here, we assume that 𝑔 is only non-zero on the inlet and outlet regions and is
continued to be zero on the upper and lower wall of the shroud. Therefore, no
discontinuities occur where BΩ meets B𝐷.

∂D

In
let

∂ΩD

∂ΩN

∂ΩD∂D

Figure 2-2: A turbine blade Ω within a shroud 𝐷. We note that this representation of
the domains Ω and 𝐷 is merely a sketch of the above construction. In particular, every
visible edge has to be sufficently smooth in order to ensure the Hölder continuity of the
boundaries.

The following theorem ensures the existence of a solution to the potential flow
equation and states the corresponding Schauder estimate.

Theorem 2.4.16 (Schauder Estimate for Flow Potentials). Let us consider the po-
tential flow equation (2.13), where we assume that the boundaries described above are
all of class 𝐶𝑘,𝛼, with 𝑘 ě 2, and let 𝑔 P 𝐶𝑘´1,𝛼p𝐷,Rq. If

ş

B𝐷
𝑔 d𝐴 “ 0, then the

potential flow problem (2.13) possesses at least one solution 𝜑 P 𝐶2,𝛼pclp𝐷zΩq,Rq.
To obtain uniqueness, we fix 𝑢p𝑥0q “ 0 at some point 𝑥0 P intp𝐷zΩq. This solution

satisfies
‖𝜑‖𝐶2,𝛼p𝐷zΩ,Rq ď 𝐶

`

‖𝑔‖𝐶1,𝛼pB𝐷zBp𝐷XΩq,Rq ` ‖𝜑‖𝐶0,𝛼p𝐷zΩ,Rq
˘

, (2.14)

where the constant 𝐶 ą 0 depends on the domain Ω.

Proof. Both, the existence of a solution and the Schauder estimate are provided in
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[86, Theorem 3.1 and Theorem 4.1]. Alternatively, we can derive this result from
Theorem 2.4.11 following the same arguments as in Theorem 2.4.15

2.4.3 Diffusion Equations

Diffusion equations help us to understand a rich variety of fundamental processes
in physical science. Among these phenoma are thermal processes such as heat con-
duction in materials, fluid pressure transients in porous media, drying of solids due
to moisture depletion, transport of chemicals and pollutants in the environment by
gradual reduction in their concentrations, migration of chemicals within concrete and
other structural materials, sedimentation and consolidation of geomaterials and in the
study of transmission lines. Consider an open, bounded, and connected set 𝐷 Ă R𝑑

with Lipschitz boundary B𝐷, representing the domain on which the diffusion process
takes place. Assuming that there is a measurable partition of BΩ “ Γ𝐷 Y Γ𝑁 such
that Γ𝐷 has positive surface measure, we consider the boundary value problem for
the stationary diffusion equation

$

’

’

&

’

’

%

∇ ¨ p𝑎∇𝑢q “ 𝑓 on 𝐷,

𝑢 “ 𝑔𝐷 along Γ𝐷,
𝑛 ¨ 𝑎∇𝑢 “ 𝑔𝑁 along Γ𝑁 ,

(2.15)

where 𝑓 is a given source term, 𝑔𝐷 denotes the Dirichlet boundary data, 𝑔𝑁 the
given Neumann boundary data, and 𝑛 denotes as usual the outward normal unit
vector field along B𝐷. The coefficient function 𝑎 models the conductivity throughout
the domain 𝐷.

Theorem 2.4.17. Given a conductivity 𝑎 P 𝐿8p𝐷,Rq with inf 𝑎 ą 0, 𝑓 P 𝐿2p𝐷,Rq,
𝑔𝐷 P 𝐻

1
2 pΓ𝐷,Rq, and 𝑔𝑁 P 𝐻

´ 1
2 pΓ𝑁 ,Rq, the diffusion equation (2.15) has a unique

solution 𝑢 P 𝐻1p𝐷,Rq. Moreover, there is a constant 𝐶 ě 1 independent of 𝑎, 𝑓, 𝑔𝐷
and 𝑔𝑁 such that

‖𝑢‖𝐻1p𝐷,Rq ď 𝐶
1` ‖𝑎‖𝐶0p𝐷,Rq

inf𝑥P𝐷 𝑎p𝑥q

´

‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

¯

.

(2.16)
One can choose 𝐶 “ p1`𝐶2

𝑃 qmaxt1, 2‖𝐸‖, ‖tr‖u, where 𝐶𝑃 ą 0 only depends on
𝐷 and Γ𝐷 and where 𝐸 : 𝐻 1

2 pΓ𝐷,Rq Ñ 𝐻1p𝐷,Rq denotes an extension operator and
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tr : 𝐻1p𝐷,Rq Ñ 𝐻
1
2 pΓ𝐷,Rq the trace operator from Theorem 2.3.6.

Proof. With tr denoting the trace operator from 𝐻1p𝐷,Rq into 𝐻 1
2 pΓ𝐷,Rq we seek

𝑢 P 𝐻1p𝐷,Rq with trp𝑢q “ 𝑔𝐷 on Γ𝐷 and
ż

𝐷

𝑎∇𝑢 ¨∇𝑣 d𝑥 “
ż

Γ𝑁

𝑔𝑁 trp𝑣q d𝐴`
ż

𝐷

r𝑓𝑣 ´ 𝑎∇ p𝐸p𝑔𝐷qq ¨∇𝑣s d𝑥 p“: 𝐿p𝑣qq

for all 𝑣 P 𝐻1
𝐷p𝐷,Rq. By [110, Theorem 6.1.5.4] (and [83, Theorem 3.29, Theorem

3.30]), the left-hand side of (2.16) defines an inner product p¨, ¨q𝑎 on the closed sub-
space 𝐻1

𝐷p𝐷,Rq Ă 𝐻1p𝐷,Rq whose associated norm ‖¨‖𝑎 satisfies, for some constant
𝐶𝑃 ą 0 originating from the Poincaré inequality 2.3.8,

d

inf 𝑎
1` 𝐶2

𝑃

‖𝑣‖𝐻1p𝐷,Rq ď ‖𝑣‖𝑎 ď ‖𝑎‖8‖𝑣‖𝐻1p𝐷,Rq, for all 𝑣 P 𝐻1
𝐷p𝐷,Rq. (2.17)

One can show that the linear form 𝐿 is continuous, hence, by Riesz Representation
Theorem, there is a unique 𝑣𝑙 P 𝐻1

𝐷p𝐷,Rq satisfying p𝑣𝑙, 𝑣q𝑎 “ 𝐿p𝑣q and

‖𝑣𝑙‖𝐻1p𝐷,Rq ď
1` 𝐶2

𝑃

inf𝑥P𝐷 𝑎p𝑥q

´

‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑎‖8‖𝐸‖‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

‖tr‖
¯

.

Setting 𝑢 :“ 𝑣𝑙 ` 𝐸𝑔𝐷 gives the unique (weak) solution of (2.15) and the desired
inequality follows with 𝐶 :“ p1` 𝐶2

𝑃 qmaxt1, 2‖𝐸‖, ‖tr‖u.
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Chapter 3

Generalized Random Fields

In this chapter, we introduce generalized random fields indexed by locally convex
vector spaces and describe how to obtain smoothed Lèvy noise fields, which we
employ in Chapter 5 as random diffusion coefficients in (2.15). We characterize
a Lévy noise field as generalized (distribution-valued) random field ”𝑍p𝑥q”, where
𝑍p𝑓q “ ”

ş

𝑍p𝑥q𝑓p𝑥q d𝑥” is only defined as a random variable after "integrating" the
distribution-valued random variable ”𝑍p𝑥q” against a test function 𝑓 . Based on the
analysis of Hilbert-Schmidt embeddings, we provide sufficient conditions for Matérn
smoothing kernels ”𝑘p𝑥q” under which the noise field 𝑍𝑘p𝑥q “ ”

ş

𝑘p𝑥´𝑦q𝑍p𝑦q d𝑦” has
continuous paths. By composing with a continuous positive function 𝑇 of real argu-
ments, this approach yields Lévy models 𝑎p𝑥q “ 𝑇 p𝑍𝑘p𝑥qq of strictly positive random
coefficients so that the boundary value problem (2.15) can be solved strongly, i.e.,
path-wise for almost all paths 𝑎p𝑥q.

3.1 Multi-Hilbertian Spaces

Let 𝑉 be a vector space. A seminorm 𝑝 : 𝑉 Ñ p0,8q is called a Hilbertian seminorm,
or H-seminorm if 𝑝 fulfills the polarization property

𝑝p𝑓 ` 𝑔q2 ` 𝑝p𝑓 ´ 𝑔q2 “ 2𝑝p𝑓q2 ` 2𝑝p𝑔q2

for all 𝑓, 𝑔 P 𝑉 . A vector space 𝑉 endowed with a H-seminorm is called Hilbertian
seminormed space. If p𝑉, 𝑝q has a countable dense subspace, then p𝑉, 𝑝q (or 𝑝) is called
separable. Further, orthogonality, orthonormality, and an orthonormal basis (abbr.
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ONB) are defined on p𝑉, 𝑝q in the same way as in Hilbert spaces. If 𝑝 is separable,
then

𝑉𝑝 :“ 𝑉 {𝑁𝑝 p𝑁𝑝 :“ t𝑓 P 𝑉 : 𝑝p𝑓q “ 0uq

is a separable pre-Hilbert space with a Hilbertian norm induced by 𝑝. We shall denote
the quotient norm also with 𝑝. The completion of 𝑉𝑝 into a separable Hilbert space
will be denoted with 𝑉𝑝.

Definition 3.1.1. Let 𝑝 and 𝑞 be separable H-seminorms on a vector space 𝑉 . We
define

p𝑝 : 𝑞q :“ sup
𝑓P𝑉
t𝑝p𝑓q : 𝑞p𝑓q ď 1u,

p𝑝 : 𝑞qHS :“
˜

ÿ

𝑛

𝑝p𝑒𝑛q
2

¸
1
2

, t𝑒𝑛u𝑛PN an ONB on p𝑉, 𝑞q

if p𝑝 : 𝑞q ă 8. Otherwise, we set p𝑝 : 𝑞qHS “ 8. We note that p𝑝 : 𝑞qHS is well-defined
independently of the choice of t𝑒𝑛u𝑛PN (see, e.g., [69, Remark 1.1.2]).

Definition 3.1.2 (Hilbert–Schmidt Operator). Let 𝑉 and 𝐻 be separable Hilbert
spaces with respective norms 𝑝 and 𝑞. A linear operator 𝑖 : 𝑉 Ñ 𝐻 for which

p𝑞 ˝ 𝑖 : 𝑝qHS ă 8

is called a Hilbert–Schmidt operator.

Definition 3.1.3. Let 𝑝 and 𝑞 be separable H-seminorms on a vector space 𝑉 . 𝑝 is
said to be bounded by 𝑞, written 𝑝 ă 𝑞, if p𝑝 : 𝑞q ă 8. 𝑝 is said to be Hilbert-Schmidt
bounded, or HS bounded by 𝑞, written 𝑝 ăHS 𝑞, if p𝑝 : 𝑞qHS ă 8.

Definition 3.1.4 (Multi-Hilbertian Space). Let 𝑉 be a vector space and 𝜏 a topology
on 𝑉 . 𝜏 is called multi-Hilbertian if there exists a family of separable H-seminorms
P such that the sets

t𝑔 P 𝑉 : 𝑝𝑖p𝑔 ´ 𝑓q ă 𝜀𝑖, 𝑖 “ 1, . . . , 𝑛u, 𝑛 P N, 𝑝𝑖 P P, 𝜀𝑖 ą 0

form a complete system of 𝜏´neighborhoods of 𝑓 for every 𝑓 P 𝑉 . A vector space
with a multi-Hilbertian topology is a special topological vector space and called multi-
Hilbertian space. The multi-Hilbertian topology determined by P is denoted by 𝜏pPq.

34



Let 𝜏 be a multi-Hilbertian topology on a vector space 𝑉 and let 𝑞 be a separable
H-seminorm on 𝑉 . If the 𝑞 topology induced by the semimetric

𝑑𝑞p𝑓, 𝑔q :“ 𝑞p𝑓 ´ 𝑔q, 𝑓, 𝑔 P 𝑉

is weaker than 𝜏 , we write 𝑞 ă 𝜏 . Let 𝜏1 and 𝜏2 be two multi-Hilbertian topologies
on 𝑉 . We say 𝜏1 is Hilbert-Schmidt weaker, or HS weaker than 𝜏2, written 𝜏1 ăHS 𝜏2,
if for every H-seminorm 𝑝 ă 𝜏1 there exists a H-seminorm 𝑞 ă 𝜏2 such that 𝑝 ăHS 𝑞.

Definition 3.1.5 (Nuclear Space). Let 𝜏 be a multi-Hilbertian topology on a vector
space 𝑉 . The multi-Hilbertian topology determined by

t𝑝 : 𝑝 ăHS 𝑞 for some 𝑞 ă 𝜏u

is called the Kolmogorov-I-topology of 𝜏 denoted by 𝐼p𝜏q [72]. 𝐼p𝜏q is the strongest
of all multi-Hilbertian topologies HS weaker than 𝜏 . If 𝜏 is determined by a single
separable H-seminorm, then 𝐼p𝜏q is called the Sazonov topology or the Gross topology
of 𝜏 [36, 96]. If 𝐼p𝜏q “ 𝜏 , then 𝜏 is called nuclear and p𝑉, 𝜏q nuclear space.

Remark 3.1.6. An equivalent definition of nuclear spaces would be the following.
Consider a multi-Hilbertian topology 𝜏 on a vector space 𝑉 that is determined by a
family of continuous H-seminorms P such that for every 𝑝, 𝑞 P P there is a 𝑟 P P

with 𝑝, 𝑞 ă 𝑟. If for every 𝑝 P P there is some 𝑞 P P with 𝑝 ă 𝑞 and such that the
so-called canonical linking map 𝑖𝑝𝑞 : 𝑉𝑞 Ñ 𝑉𝑝, i.e., the extension of the inclusion from
the pre-Hilbert space 𝑉𝑞 into the pre-Hilbert space 𝑉𝑝 to their respective completion
𝑉𝑞 and 𝑉𝑝, is a Hilbert-Schmidt operator, then 𝜏 is called nuclear and p𝑉, 𝜏q nuclear
space.

3.1.1 The Schwartz Space S pR𝑑,Rq

Let S “ S pR𝑑,Rq denote the space of all (real-valued) rapidly decreasing smooth
functions on R𝑑 [84, Example 29.4]. The standard topology 𝜏 of S is induced by the
family of norms

‖𝑓‖𝛼,𝛽 :“ sup
𝑥PR𝑑

|𝑥𝛼𝐷𝛽𝑓p𝑥q|, 𝛼, 𝛽 P N𝑑
0,

which make S a separable Fréchet space. Clearly, S is a subspace of 𝐿2pR𝑑,Rq.
These norms are not H-norms, but we can generate the same locally convex topology
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𝜏 by a sequence of H-(semi-)norms based on Hermite polynomials as well (see [69,
Section I.1.3], [84, Example 29.4], or [92, Appendix to Section V.3] for the case 𝑑 “ 1).
For 𝑘 P N0 we denote by ℎ𝑘 the 𝑘th-Hermite function on R, defined as

ℎ𝑘p𝑥q :“
`

2𝑘𝑘!
?
𝜋
˘´ 1

2 p´1q𝑘e𝑥2
2

ˆ

d
d𝑥

˙𝑘

e´𝑥2
, 𝑥 P R,

and for 𝛼 P N𝑑
0 we denote by ℎ𝛼 :“ ℎ𝛼1 b ¨ ¨ ¨ b ℎ𝛼𝑑

the tensorized Hermite function
ℎ𝛼p𝑥q “

ś𝑑
𝑗“1 ℎ𝛼𝑗

p𝑥𝑗q on R𝑑. It is well known that the family pℎ𝛼q𝛼PN𝑑
0

forms an
orthonormal basis of 𝐿2pR𝑑,Rq. By denoting the inner product on 𝐿2pR𝑑,Rq with
p¨, ¨q, we observe that for every 𝑝 P R the set

S𝑝 :“

$

&

%

𝑓 P 𝐿2
pR𝑑,Rq : |𝑓 |2𝑝 :“

ÿ

𝛼PN𝑑
0

p2|𝛼|` 𝑑q2𝑝 |p𝑓, ℎ𝛼q|2 ă 8

,

.

-

is a subspace of 𝐿2pR𝑑,Rq containing S , |¨|𝑝 is a norm on S𝑝 with associated inner
product

p𝑓, 𝑔q𝑝 :“
ÿ

𝛼PN𝑑
0

p2|𝛼|` 𝑑q2𝑝p𝑓, ℎ𝛼qpℎ𝛼, 𝑔q, 𝑓, 𝑞 P S𝑝,

and S𝑞 Ď S𝑝 with continuous (and even contractive) inclusion for every 𝑝 ď 𝑞.
Furthermore, we have that

S “
č

𝑝PR
S𝑝 “

č

𝑝ě0
S𝑝 “

č

𝑝PN0

S𝑝

and p|¨|𝑝q𝑝PR is an increasing family of H-norms on S which generates the standard
topology 𝜏 and makes S nuclear as we show below.

Proposition 3.1.7. For each 𝑝 P R and ℓ ą 𝑑
2 the linking map

𝑖𝑝𝑝`ℓ : pS𝑝`ℓ, |¨|𝑝`ℓq Ñ pS𝑝, |¨|𝑝q ,

from the local Hilbert space S𝑝`ℓ into the local Hilbert space S𝑝, is Hilbert–Schmidt.

Proof. First, for the pre-Hilbert space pS , |¨|𝑝q, whose completion is denoted by
pS𝑝, |¨|𝑝q, we select an orthonormal basis pℎ𝑝,𝛼q𝛼PN𝑑

0
defined by

ℎ𝑝,𝛼 :“
𝑑
ź

𝑗“1
p2𝛼𝑗 ` 1q´𝑝ℎ𝛼𝑗

, 𝑝 P R, 𝛼 P N𝑑
0.
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Because for 𝛽 P N𝑑
0, ℓ ě 0 we have

|ℎ𝑝`ℓ,𝛽|2𝑝 “
ÿ

𝛼PN𝑑
0

p2|𝛼|` 𝑑q2𝑝 |pℎ𝑝`ℓ,𝛽, ℎ𝛼q|2 “
p2|𝛽|` 𝑑q2𝑝

ś𝑑
𝑗“1p2𝛽𝑗 ` 1q2p𝑝`ℓq

and since there is 1 ď 𝑗 ď 𝑑 with 𝛽𝑗 ě |𝛽|{𝑑, we can estimate

|ℎ𝑝`ℓ,𝛽|2𝑝 ď
p2|𝛽|` 𝑑q2𝑝

p2 |𝛽|
𝑑
` 1q2p𝑝`ℓq

“
𝑑2p𝑝`ℓq

p2|𝛽|` 𝑑q2ℓ
.

Now, by using that for any given 𝑘 P N0 the number of 𝛽 P N𝑑
0 with |𝛽| “ 𝑘 is equal

to
`

𝑘`𝑑´1
𝑘

˘

, we have that

ÿ

𝛽PN𝑑
0

|ℎ𝑝`ℓ,𝛽|2𝑝 ď 𝑑2𝑝`ℓ
8
ÿ

𝑘“0

ˆ

𝑘 ` 𝑑´ 1
𝑘

˙

1
p2𝑘 ` 𝑑q2ℓ

“
𝑑2p𝑝`ℓq

p𝑑´ 1q!

8
ÿ

𝑘“0

p𝑘 ` 𝑑´ 1q!
𝑘!p2𝑘 ` 𝑑q2ℓ

ď
𝑑2p𝑝`ℓq

p𝑑´ 1q!

8
ÿ

𝑘“0
p2𝑘 ` 𝑑q𝑑´1´2ℓ.

Because we assumed that ℓ ą 𝑑
2 , this proves the assertion.

3.2 Generalized Random Fields

Random fields are fundamental to model physical processes where uncertainties, orig-
inating from sparse informations, occur. By following [42] closely, we introduce the
concept of generalized random fields (in the sense of Minlos; see, e.g., [53, 85]) and
analyse them thoroughly. To avoid an excessive introduction, we assume that the
reader is already familiar with the basic concepts of probability theory and functional
analysis. Generalized random fields are families of random variables indexed by an ab-
stract vector space 𝑉 . In order to ensure the existence of a non-trivial dual space, we
assume that 𝑉 is a locally convex vector space over the real numbers. Let 𝐿0pΩ,A,Pq
denote the vector space of Borel measurable random variables on a probability space
pΩ,A,Pq. We treat two random variables from the same equivalence class, resulting
from almost sure (a.s.) equality, notationally, as equal. Moreover, we set

‖𝑋‖𝐿0 :“ E r|𝑋| ^ 1s “
ż

Ω
p|𝑋| ^ 1q dP 𝑋 P 𝐿0

pΩ,A,Pq
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and
𝑑0p𝑋, 𝑌 q :“ ‖𝑋 ´ 𝑌 ‖𝐿0 𝑋, 𝑌 P 𝐿0

pΩ,A,Pq,

where 𝑋 ^ 1 is the minimum of 𝑋 and 1. 𝑑0 is a (translation-invariant) metric on
𝐿0pΩ,A,Pq and makes 𝐿0pΩ,A,Pq a Hausdorff topological vector space. Moreover,
since for any 𝜀 P s0, 1r and 𝑋 P 𝐿0pΩ,A,Pq we have

𝜀Pp|𝑋| ą 𝜀q ď ‖𝑋‖𝐿0 ď Pp|𝑋| ą 𝜀q ` 𝜀

it follows that convergence with respect to the metric 𝑑0 coincides with convergence
in probability. It is well known that the metric space p𝐿0pΩ,A,Pqq is complete (see
e.g. [70, Lemma 3.6]).

Definition 3.2.1 (Generalized Random Field). A collection of real-valued random
variables t𝑍p𝑓qu𝑓P𝑉 , indexed by a locally convex topological space 𝑉 , on a common
probability space pΩ,A,Pq, is called generalized random field if

(i) Linearity: 𝑍p𝛼𝑓 ` 𝛽𝑔q “ 𝛼𝑍p𝑓q ` 𝛽𝑍p𝑔q a.s. for all 𝑓, 𝑔 P 𝑉 and 𝛼, 𝛽 P R.

(ii) Stochastic continuity: 𝑓 Ñ 𝑓0 in 𝑉 implies 𝑍p𝑓q Ñ 𝑍p𝑓0q in probability.

Thus, a generalized random field on pΩ,A,Pq indexed by 𝑉 is a continuous linear
mapping 𝑍 : 𝑉 Ñ 𝐿0pΩ,A,Pq, where 𝐿0pΩ,A,Pq is endowed with the metric 𝑑0.

Two generalized random fields 𝑍 and 𝑍 on probability spaces pΩ,A,Pq and pΩ̃, Ã, P̃q
indexed by 𝑉 are equivalent (in law) if their finite-dimensional distributions coincide,
i.e., if

P p𝑍p𝑓1q P 𝐴1 ^ ¨ ¨ ¨ ^ 𝑍p𝑓𝑛q P 𝐴𝑛q “ P̃
`

𝑍p𝑓1q P 𝐴1 ^ ¨ ¨ ¨ ^ 𝑍p𝑓𝑛q P 𝐴𝑛
˘

holds for all 𝑛 P N, 𝑓1, . . . , 𝑓𝑛 P 𝑉 and 𝐴1, . . . , 𝐴𝑛 P BpRq, where BpRq denotes the
Borel 𝜎´algebra on R.

Remark 3.2.2. (i) For the topological dual 𝑉 1 of a locally convex vector space 𝑉
and measurable 𝑋 : pΩ,A,Pq Ñ p𝑉 1,Bq, with 𝜎´algebra B on 𝑉 1 for which the
evaluation mapping 𝑉 1 Ñ R, 𝑢 ÞÑ 𝑢p𝑓q, 𝑓 P 𝑉 , are measurable, the application
of Lebesgue’s Dominated Convergence Theorem shows that

𝑍 : 𝑉 Ñ 𝐿0
pΩ,A,Pq, 𝑓 ÞÑ p𝜔 ÞÑ 𝑋p𝜔qp𝑓qq “: 𝑋p𝑓q “: 𝑍p𝑓, 𝜔q
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is a generalized random field. Hence, in this setting, 𝑉 1 valued random variables
are generalized random fields. Conversely, for a general (metrizable) locally
convex space 𝑉 we cannot characterize (up to equivalence) every general random
field 𝑍, indexed by 𝑉 , by a 𝑉 1 valued random variable. However, by Minlos
Theorem, for nuclear locally convex spaces 𝑉 , this realization also holds true;
see below.

(ii) Let 𝑉 be a dense subspace of a locally convex space 𝑉 and 𝑍 : 𝑉 Ñ 𝐿0pΩ,A,Pq
a generalized random field. Then, due to the fact that 𝐿0pΩ,A,Pq endowed with
the topology of convergence in probability is a complete Hausdorff space, there is
a unique continuous linear extension 𝑍 : 𝑉 Ñ 𝐿0pΩ,A,Pq of 𝑍 (see, e.g., [84,
Lemma 22.19]). In particular, for every generalized random field 𝑍 on a locally
convex space 𝑉 , there is a unique extension on the completion of 𝑉 .

In finite dimensions, Bochner’s Theorem [94, Theorem 1.4.3] establishes a one-
to-one correspondence between the distributions of R𝑑-valued random variables and
positive definite functions 𝜙 : R𝑑 Ñ C with 𝜙p0q “ 1 by way of the Fourier transform
as E

“

e𝑖𝑋p𝑓q
‰

“ 𝜙p𝑓q with 𝑓 P R𝑑 and 𝑋p𝑓q “ 𝑋 ¨ 𝑓 denoting the Euclidean inner
product on R𝑑. As we mentioned above, not every generalized random field indexed
by a locally convex space 𝑉 can be represented by a 𝑉 1 valued random variable.
However, the ono-to-one correspondence between generalized random fields (up to
equivalence in law) and characteristic functionals on 𝑉 remains valid in this general
setting.

Definition 3.2.3 (Characteristic Functional). A mapping 𝜙 : 𝑉 Ñ C on a locally
convex space 𝑉 is called characteristic functional if

(i) 𝜙p0q “ 1,

(ii) 𝜙 is continuous,

(iii) 𝜙 is positive definite, i.e., the matrix r𝜙p𝑓𝑖 ´ 𝑓𝑗qs𝑛𝑖,𝑗“1 is Hermitian and positive
semidefinite for all 𝑛 P N and 𝑓1, . . . , 𝑓𝑛 P 𝑉 .

Note that positive definite functions on a locally convex space are continuous if
and only if they are continuous at 0, which holds if and only if they are uniformly
continuous, i.e., for every 𝜀 ą 0 there is a continuous seminorm 𝑝 on 𝑉 such that
|𝜙p𝑓q ´ 𝜙p𝑔q| ă 𝜀 whenever 𝑝p𝑓 ´ 𝑔q ă 1 [17].
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Theorem 3.2.4 ([69, Theorem 2.4.5]). Let 𝜙 : 𝑉 Ñ C be a characteristic functional
on a locally convex space 𝑉 . Then, there exist a generalized random field 𝑍 indexed by
𝑉 which is unique (up to equivalence in law) and satisfies 𝜙p𝑓q “ E

“

e𝑖𝑍p𝑓q
‰

, 𝑓 P 𝑉 .
Conversely, for any generalized random field 𝑍 indexed by 𝑉 , its Fourier transform
𝜙p𝑓q :“ E

“

e𝑖𝑍p𝑓q
‰

, 𝑓 P 𝑉 , is a characteristic functional.

In order to be able to state a generalized random field 𝑍 indexed by a locally
convex space 𝑉 as a 𝑉 1´valued random variable, a sufficient condition would be
that the characteristic functional of 𝑍 is not only continuous with respect to the
topology given on 𝑉 but also in the Kolmogorov-I-topology (see Definition 3.1.5). In
general, the Kolmogorov-I-topology is strictly weaker than the original topology on
𝑉 . A notable exception is the case when the locally convex space 𝑉 is nuclear. The
version of Minlos’ Theorem stated below plays an important role for this thesis. In
order to formulate Minlos’ Theorem, we have to introduce and recall the following
notation. Let 𝑝 be a continuous seminorm and 𝑉𝑝 the corresponding local Banach
space defined above. By an abuse of notation we also denote with 𝑝 the quotient
norm on 𝑉𝑝. Then we can identify the dual space 𝑉 1𝑝 of 𝑉𝑝 in a canonical way with
the subspace t𝜔 P 𝑉 1 : D𝐶 ą 0 @𝑓 P 𝑉 : |𝜔p𝑓q| ď 𝐶𝑝p𝑓qu of 𝑉 1. We denote by ℬ the
Borel 𝜎´Algebra on 𝑉 1 that is generated by the weak*-topology 𝜎p𝑉 1, 𝑉 q. Due to
the Banach-Alaoglu-Bourbaki Theorem, for every continuous seminorm 𝑝 on 𝑉 and
every 𝑛 P N the set t𝜔 P 𝑉 1 : |𝜔p𝑓q| ď 𝑛𝑝p𝑓q @𝑓 P 𝑉 u is 𝜎p𝑉 1, 𝑉 q´compact which
implies 𝑉 1𝑝 P ℬp𝑉 1q. The following version of Minlos’ Theorem is a combination of
[36, Proof of Theorem III.1.1] and [31, Theorem I.3.4].

Theorem 3.2.5 (Minlos). Consider a nuclear space 𝑉 with its topological dual 𝑉 1.
For a functional 𝜙 : 𝑉 Ñ C the following are equivalent:

(i) 𝜙 is a characteristic functional.

(ii) There is a unique probability measure 𝜇 on p𝑉 1,ℬp𝑉 1qq such that its Fourier
transform 𝜇̂ coincides with 𝜙, where

𝜇̂p𝑓q :“
ż

𝑉 1
e𝑖𝜔p𝑓q 𝜇pd𝜔q, 𝑓 P 𝑉.

Additionally, if a characteristic functional 𝜙 on a nuclear space 𝑉 is continuous with
respect to a continuous H-seminorm 𝑝 on 𝑉 , then for the unique probability measure
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𝜇 on p𝑉 1,ℬp𝑉 1qq we have that 𝜇p𝑉 1𝑞 q “ 1 for every continuous H-seminorm 𝑞 on 𝑉

for which the canonical linking map 𝑖𝑝𝑞 : 𝑉𝑞 Ñ 𝑉𝑝 is Hilbert–Schmidt.

Remark 3.2.6. (i) For any locally convex space 𝑉 and any probability measure 𝜇
on p𝑉 1,ℬp𝑉 1qq, the evaluation mapping

p𝑉 1,ℬp𝑉 1q, 𝜇q Ñ R, 𝜔 ÞÑ 𝜔p𝑓q

defines a (scalar) random variable for each 𝑓 P 𝑉 . Hence, the mapping

𝑍 : 𝑉 Ñ 𝐿0
p𝑉 1,ℬp𝑉 1q, 𝜇q, 𝑓 ÞÑ p𝜔 ÞÑ 𝜔p𝑓qq

defines a generalized random field indexed by 𝑉 , which is called the canonical
process associated with 𝜇. Canonical processes satisfy a stronger continuity con-
dition than an arbitrary generalized random field since p𝑍p𝑓𝑙qq𝑙P𝐼 converges also
pointwise on 𝑉 1 (in particular 𝜇-almost everywhere) to 𝑍p𝑓q whenever p𝑓𝑙q𝑙P𝐼 is
a net converging to 𝑓 in 𝑉 .

(ii) Consider a characteristic functional 𝜙 on the nuclear space 𝑉 which is continu-
ous with respect to the H-seminorm 𝑝 and let 𝜇 be the corresponding probability
measure on p𝑉 1,ℬp𝑉 1qq. Further, let 𝑞 ą 𝑝 be a continuous H-seminorm on 𝑉

such that the canonical linking map 𝑖𝑝𝑞 is Hilbert–Schmidt. One can easily show
that the trace 𝜎-algebra ℬp𝑉 1q X 𝑉 1𝑞 coincides with the Borel 𝜎-algebra ℬp𝑉 1𝑞 q
which is generated by the weak*-topology 𝜎p𝑉 1𝑞 , 𝑉𝑞q. Therefore, the canonical
process

𝑍 : 𝑉𝑞 Ñ 𝐿0
p𝑉 1𝑞 ,ℬp𝑉 1𝑞 q, 𝜇æ𝑉 1𝑞 q

associated with the restriction 𝜇æ𝑉 1𝑞 , satisfies that for any open 𝐷 Ď R𝑑, the
mapping

𝐷 Ñ 𝑉𝑞, 𝑥 ÞÑ 𝑓𝑥

is continuous, and that p𝑍p𝑓𝑥qq𝑥P𝐷 is a random field indexed by 𝐷 with almost
surely continuous paths. Since the characteristic function of the random variable
𝑍p𝑓𝑥q given by 𝜙p𝑓𝑥q, 𝑥 P 𝐷, is by assumption uniformly continuous with respect
to 𝑝, we can extend it uniquely to a uniformly continuous functional on 𝑉𝑝 Ě 𝑉𝑞.

Below we follow the approach outlined in remark 3.2.6 (ii) for generalized random
fields indexed by the space S “ S pR𝑑,Rq of Schwartz functions on R𝑑 whose char-
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acteristic functionals are continuous with respect to a specific norm which we define
below. In order to obtain random continuous functions on R𝑑 with known pointwise
distributions, these random fields will then be convolved with Matérn kernels.

For 𝑓 P S we denote with |||𝑓 ||| the continuous norm on S defined by

|||𝑓 ||| :“
´

‖𝑓‖2
𝐿1pR𝑑,Rq ` ‖𝑓‖2

𝐿2pR𝑑,Rq

¯
1
2
“

´

‖𝑓‖2
𝐿1pR𝑑,Rq ` |𝑓 |20

¯
1
2

For 𝑚 P N, 𝑚 ą 𝑑
2 , we set

𝑐𝑚 :“
ż

R𝑑

d𝑥
p1` |𝑥|2q𝑚

.

With another suitable constant 𝐶𝑚, we see by applying Hölder’s and Jensen’s in-
equality that, for any 𝑓 P S ,

|||𝑓 |||2 ď 𝑐𝑚

ż

R𝑑

p1` |𝑥|2q𝑚|𝑓p𝑥q|2 d𝑥`
ż

R𝑑

|𝑓p𝑥q|2 d𝑥

ď p1` 𝑐𝑚q2𝑚´1
ż

R𝑑

p1` |𝑥|2𝑚q|𝑓p𝑥q|2 d𝑥

ď p1` 𝑐𝑚qp2𝑑q𝑚´1
ż

R𝑑

ˆ

1`
𝑑
ÿ

𝑗“1
𝑥2𝑚
𝑗

˙

|𝑓p𝑥q|2 d𝑥

“ p1` 𝑐𝑚qp2𝑑q𝑚´1
ˆ

|𝑓 |20 `
𝑑
ÿ

𝑗“1
|𝑥𝑚𝑗 𝑓 |

2
0

˙

ď p1` 𝑐𝑚qp2𝑑q𝑚𝐶𝑚|𝑓 |2𝑚
2
.

(3.1)

In the last step we used that for each 𝑚 P N there exists 𝐶𝑚 ą 0 such that we can
estimate

|𝑥𝑚𝑗 𝑓 |
2
0 ď 𝐶𝑚|𝑓 |

2
𝑚
2
, for all 1 ď 𝑗 ď 𝑑 and for all 𝑓 P S ,

which follows easily by induction from the well-known three-term recurrence relation

𝑥𝑗ℎ𝛼p𝑥q “

c

𝛼𝑗
2 ℎ𝛼´𝑒𝑗

p𝑥q `

c

𝛼𝑗 ` 1
2 ℎ𝛼`𝑒𝑗

p𝑥q, 1 ď 𝑗 ď 𝑑, 𝛼 P N𝑑
0, 𝑥 P R𝑑

satisfied by the Hermite functions. Here, 𝑒𝑗 “ p𝛿ℓ,𝑗q1ďℓď𝑑 denotes the 𝑗th unit coordi-
nate vector in R𝑑.

Theorem 3.2.7. Consider a positive definite functional 𝜙 : S Ñ C which is con-
tinuous with respect to the norm |||¨||| and for which 𝜙p0q “ 1. Then, there exists a
unique probability measure 𝜇 on pS 1,ℬpS 1qq such that 𝜇̂ “ 𝜙. Moreover, 𝜇pS 1

𝑞q “ 1

42



whenever 𝑞 ą 3𝑑
4 .

Proof. With inequality (3.1), we showed that the continuous functional 𝜙 is also
continuous with respect to |¨|𝑚

2
for any 𝑚 ą 𝑑

2 . Since by Proposition 3.1.7 the linking
map 𝑖

𝑚{2
𝑚{2`ℓ is Hilbert–Schmidt for every ℓ ą 𝑑

2 , the assertion follows from Minlos’
Theorem 3.2.5.

Functionals that lie in the dual space of S are called tempered distributions. The
convolution of a tempered distribution 𝜔 P S 1 with a rapidly decreasing function
𝑓 P S

𝜔 ˚ 𝑓 : R𝑑
Ñ R, 𝑦 ÞÑ x𝜔, 𝜏𝑦p𝑓

_
qy “ x𝜔𝑥, 𝑓p𝑦 ´ 𝑥qy

is a smooth function (see, e.g., [46, section 10.3]). We recall that we denote by
𝑢p𝑔q “ x𝑢, 𝑔y the application of 𝑢 P S 1 to 𝑢 P S . In addition, p𝜏𝑦𝑔qp𝑥q :“ 𝑔p𝑥 ´ 𝑦q

denotes the translation of 𝑔 by 𝑦 P R𝑑, 𝑔_p𝑥q :“ 𝑔p´𝑥q states the reflection of 𝑔 at
the origin, and the subscript 𝜔𝑥 indicates that the tempered distribution 𝜔 acts on
test functions depending on the variable 𝑥.

For the dual S 1
𝑞 of the local Hilbert spaces S 1

𝑞 , with 𝑞 P N0, we can similarly
conclude that whenever a function 𝑓 P S𝑞 is such that 𝜏𝑦𝑓_ P S𝑞 for every 𝑦 P R𝑑,
the convolution with a tempered distribution 𝜔 P S 1

R𝑑
Ñ R, 𝑦 ÞÑ x𝜔𝑥, 𝜏𝑦p𝑓

_
qy

is defined and is clearly continuous if the mapping

R𝑑
Ñ S𝑞pR𝑑,Rq, 𝑦 ÞÑ 𝜏𝑦p𝑓

_
q

is continuous. Therefore, whenever we have a |||¨|||-continuous characteristic functional
𝜙 on S with associated probability measure 𝜇 on pS 1,ℬpS 1qq, it follows, from The-
orem 3.2.7, that if 𝑞 ą 3𝑑

4 , for each 𝑓 P S𝑞, with 𝜏𝑦p𝑓_q P S𝑞, the convolution 𝜔 ˚ 𝑓 is
a well-defined function for 𝜇-almost all 𝜔 P S 1

𝑞 . This convolution yields a continuous
function if

R𝑑
Ñ S𝑞, 𝑦 ÞÑ 𝜏𝑦p𝑓

_
q

is continuous. The specific type of Schwartz functions we are particularly interested
in, is the class of Matérn kernels.
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Definition 3.2.8 (Matérn Kernels). We the describe the class of Matérn kernels by
their Fourier transforms. For 𝛼 P R and 𝑚 ą 0 we define by

𝑘𝛼,𝑚 : R𝑑
Ñ R, 𝜉 ÞÑ

1
p|𝜉|2 `𝑚2q

𝛼

the Fourier transform of the Matérn kernel

𝑘𝛼,𝑚 :“ F´1
p𝑘𝛼,𝑚q

with parameters 𝛼 and 𝑚. Note that 𝑘𝛼,𝑚 is a polynomially bounded smooth function,
and thus belongs to S 1; hence, its inverse Fourier transform is well-defined.

Lemma 3.2.9 ([42, Appendix A]). Let 𝑞 P N0, 𝛼 P R, and 𝑚 ą 0. In the following,
statement (i) implies (ii), (ii) implies (iii), and (iii) implies (iv).

(i) 𝛼 ą 𝑑
4 ` 𝑞 `maxt0, 𝑞´3

2 u,

(ii) For every 𝑦 P R𝑑 the translation 𝜏𝑦p𝑘
_
𝛼,𝑚q lies in S𝑞 and the mapping

R𝑑
Ñ pS𝑞, |¨|𝑞q, 𝑦 ÞÑ 𝜏𝑦p𝑘

_
𝛼,𝑚q

is continuous.

(iii) For every 𝑦 P R𝑑 the translation 𝜏𝑦p𝑘
_
𝛼,𝑚q lies in S𝑞.

(iv) 𝛼 ą 𝑑
4 ` 𝑞.

In particular, if 𝑞 P t0, 1, 2, 3u, then (ii), (iii), and (iv) above are equivalent.

We can now state for a random field with |||¨|||-continuous characteristic functional
conditions on the amount of smoothing required such that it has continuous realization
after smoothing by convolution with a Matérn kernel 𝑘𝛼,𝑚.

Theorem 3.2.10. Consider a positive definite and |||¨|||-continuous functional 𝜙 on
S pR𝑑,Rq with 𝜙p0q “ 1. Then, there is a unique probability measure 𝜇 on pS 1,ℬpS 1qq

satisfying 𝜇̂ “ 𝜙 such that for all 𝛼 ą 𝑑`maxt0, 3𝑑´12
8 u, for every 𝑚 ą 0, the function

R𝑑
Ñ R, 𝑦 ÞÑ 𝜔 ˚ 𝑘𝛼,𝑚p𝑦q “ x𝜔, 𝜏𝑦p𝑘

_
𝛼,𝑚qy
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is defined and continuous for 𝜇-almost all 𝜔 P S 1. Moreover, for fixed 𝑦 P R𝑑 the
distribution of the random variable

pS 1,ℬpS 1
q, 𝜇q Ñ pR,ℬpRqq , 𝜔 ÞÑ 𝜔 ˚ 𝑘𝛼,𝑚p𝑦q

has the Fourier transform 𝜙
`

𝜏𝑦p𝑘
_
𝛼,𝑚q

˘

.

Proof. Theorem 3.2.7 provides a unique probability measure 𝜇 on pS 1,ℬpS 1qq with
𝜇̂ “ 𝜙 and 𝜇pS 1

𝑞q “ 1 whenever 𝑞 ą 3𝑑
4 . Now, for 𝛼 ą 𝑑

4 `
3𝑑
4 ` maxt0,

3𝑑
4 ´3

2 u “

𝑑 `maxt0, 3𝑑´12
8 u there is a 𝑞 ą 3𝑑

4 such that 𝛼 ą 𝑑
4 ` 𝑞 `maxt0, 𝑞´3

2 u, and that by
Lemma 3.2.9 the mapping

R𝑑
Ñ pS𝑞, |¨|𝑞q , 𝑦 ÞÑ 𝜏𝑦p𝑘

_
𝛼,𝑚q

is well-defined and continuous. As 𝜇pS 1
𝑞q “ 1 and hence 𝜇pS 1zS 1

𝑞q “ 0, this implies
that for 𝜇-almost all 𝜔 P S 1 the mapping

R𝑑
Ñ C, 𝑦 ÞÑ x𝜔, 𝜏𝑦p𝑘

_
𝛼,𝑚qy “ 𝜔 ˚ 𝑘𝛼,𝑚p𝑦q

is continuous, since it is the composition of continuous functions.
Finally, by inequality (3.1) we can follow that 𝜙 is |¨|𝑝-continuous for any 𝑝 ą 𝑑

2

and in particular |¨|𝑞-continuous for 𝑞 as above. Because 𝜏𝑦p𝑘
_
𝛼,𝑚q belongs to S𝑞,

the |¨|𝑞-completion of S , there exists a sequence p𝑓𝑛q𝑛PN in S which converges to
𝜏𝑦p𝑘

_
𝛼,𝑚q with respect to |¨|𝑞. With Lebesgue’s Dominated Convergence Theorem we

can conclude

𝜙
`

𝜏𝑦p𝑘
_
𝛼,𝑚q

˘

“ lim
𝑛Ñ8

𝜙p𝑓𝑛q “ lim
𝑛Ñ8

ż

S 1

e𝑖x𝜔,𝑓𝑛y 𝜇pd𝜔q

“ lim
𝑛Ñ8

ż

S 1
𝑞

e𝑖x𝜔,𝑓𝑛y 𝜇pd𝜔q “
ż

S 1
𝑞

e𝑖x𝜔,𝜏𝑦p𝑘_𝛼,𝑚qy 𝜇pd𝜔q,

which proves the theorem.

3.3 Lévy Random Fields

In this section, we introduce Lévy random fields and apply the generalized random
field theory from above in order to construct smoothed Lévy noise fields. In this work,
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we use these smoothed fields to model uncertainties occurring in various physical state
problems.

3.3.1 Classification of Noise Fields

Definition 3.3.1 (Lévy Noise Fields). Let 𝑏 P R, 𝜎2 ě 0 and 𝜈 be a 𝜎-finite Borel
measure on Rzt0u satisfying

ş

Rzt0u mint1, 𝑠2u 𝜈pd𝑠q ă 8. Then, the function

𝜓 : RÑ C, 𝜓p𝑡q :“ 𝑖𝑏𝑡´
𝜎2𝑡2

2 `

ż

Rzt0u

`

e𝑖𝑡𝑠 ´ 1´ 𝑖𝑡𝑠1t|𝑠|ď1up𝑠q
˘

𝜈pd𝑠q (3.2)

is called the Lévy characteristic with characteristic triplet p𝑏, 𝜎2, 𝜈q.
A generalized random field 𝑍 indexed by S is called a Lévy noise field if there is a

characteristic triplet p𝑏, 𝜎2, 𝜈q such that for the characteristic functional 𝜙 of 𝑍 there
holds

𝜙p𝑓q “ exp
ˆ
ż

R𝑑

p𝜓 ˝ 𝑓qp𝑥q d𝑥
˙

, 𝑓 P S , (3.3)

where 𝜓 is the Lévy characteristic associated with p𝑏, 𝜎2, 𝜈q. (In particular, this as-
sumes 𝜓 ˝ 𝑓 P 𝐿1pR𝑑,Rq for all 𝑓 P S .) We then say that 𝑍 is associated with the
characteristic triplet p𝑏, 𝜎2, 𝜈q. A classical reference for Lévy noise fields is, e.g., [53];
see also [6, 7].

Lemma 3.3.2. Let 𝑍 be a Lévy noise field. Then, we can decompose it in 𝑍 “

𝑍𝐷 ` 𝑍𝐺 ` 𝑍𝐽 with deterministic part 𝑍𝐷, Gaussian white noise 𝑍𝐺, and pure jump
noise 𝑍𝐽 , each of which are independent random fields with characteristic functionals

𝜙𝑍𝐷
p𝑓q “ e𝑖𝑏

ş

R𝑑 𝑓p𝑥q d𝑥,

𝜙𝑍𝐺
p𝑓q “ e´

1
2𝜎

2‖𝑓‖2
𝐿2pR𝑑,Rq , and

𝜙𝑍𝐽
p𝑓q “ e

ş

R𝑑

ş

Rzt0u e𝑖𝑠𝑓p𝑥q´1´𝑖𝑡𝑓p𝑥q1t|𝑠|ď1up𝑠q 𝜈pd𝑠qd𝑥,

respectively.

Proof. This factorization is directly implicated by Definition 3.3.1, which suggests the
factorization of the characteristic functional 𝜙𝑍p𝑓q “ 𝜙𝑍𝐷

p𝑓q𝜙𝑍𝐺
p𝑓q𝜙𝑍𝐽

p𝑓q.

By Lemma 3.3.2, Lévy noises are seen to be a generaliation of Gaussian noises, to
which they simplify when the pure jump part 𝑍𝐽 is omitted.
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Proposition 3.3.3. We consider a Lévy characteristic 𝜓 with triplet p𝑏, 𝜎2, 𝜈q such
that the Lévy measure satisfies

ş

Rzt0u|𝑠|1t|𝑠|ą1up𝑠q 𝜈pd𝑠q ă 8. Then,

𝜙 : S Ñ C, 𝜙p𝑓q :“ exp
ˆ
ż

R𝑑

p𝜓 ˝ 𝑓qp𝑥q d𝑥
˙

is a well-defined characteristic functional which is continuous with respect to the norm
|||¨|||. In particular, there is a Lévy noise field 𝑍 (unique up to equivalence in law)
associated with p𝑏, 𝜎2, 𝜈q. Further, 𝑍 is continuous with respect to |||¨|||.

Proof. Because any 𝑓 P S also lies in 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq we have
ż

R𝑑

ż

Rzt0u
|e𝑖𝑠𝑓p𝑥q ´ 1´ 𝑖𝑠𝑓p𝑥q1t|𝑠|ď1up𝑠q| 𝜈pd𝑠qd𝑥

“

ż

R𝑑

ż

t0ă|𝑠|ď1u
|e𝑖𝑠𝑓p𝑥q ´ 1´ 𝑖𝑠𝑓p𝑥q| 𝜈pd𝑠qd𝑥`

ż

R𝑑

ż

t|𝑠|ą1u
|e𝑖𝑠𝑓p𝑥q ´ 1| 𝜈pd𝑠qd𝑥

ď

ż

R𝑑

ż

t0ă|𝑠|ď1u

|𝑠|2|𝑓p𝑥q|2

2 𝜈pd𝑠qd𝑥`
ż

R𝑑

ż

t|𝑠|ą1u
|𝑠||𝑓p𝑥q| 𝜈pd𝑠qd𝑥

ď
1
2

ż

Rzt0u
mint1, 𝑠2

u 𝜈pd𝑠q ‖𝑓‖2
𝐿2pR𝑑,Rq `

ż

t|𝑠|ą1u
|𝑠| 𝜈pd𝑠q ‖𝑓‖𝐿1pR𝑑,Rq

which yields 𝜓 ˝ 𝑓 P 𝐿1pR𝑑,Rq and

‖𝜓 ˝ 𝑓‖𝐿1pR𝑑,Rq ď

ˆ

|𝑏| `

ż

t|𝑠|ą1u
|𝑠| 𝜈pd𝑠q

˙

‖𝑓‖𝐿1pR𝑑,Rq

`

˜

𝜎2 `
ş

Rzt0u mint1, 𝑠2u 𝜈pd𝑠q
2

¸

‖𝑓‖2
𝐿2pR𝑑,Rq.

Therefore,
𝜙 : S Ñ C, 𝜙p𝑓q :“ exp

ˆ
ż

R𝑑

p𝜓 ˝ 𝑓qp𝑥q d𝑥
˙

is well-defined.
Since 𝜙p0q “ 1, the previous inequality implies that 𝜙 is continuous at 0 with

respect to the norm |||¨|||. Since, by [53, Theorem 6, p. 283], the restriction of 𝜙
to D :“ 𝐶8c pR𝑑,Rq is positive definite, it follows that the restriction of 𝜙 to D is
(uniformly) |||¨|||-continuous. Further, D is dense in S with respect to |||¨||| and hence,
𝜙 is positive definite and continuous. Therefore, due to Theorem 3.2.4 (and inequality
(3.1)), there is a generalized random field 𝑍 indexed by S whose Fourier transform
is 𝜙 and which, in addition, is continuous with respect to the |||¨|||-norm. Thus, the
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proposition is proven.

Remark 3.3.4. By convolving a compactly supported continuous function on R𝑑 with
an approximate identity, e.g., with a mollifier, we can show that D is a dense subspace
of the space of compactly supported continuous functions on R𝑑 with respect to the |||¨|||
norm. It follows immediately that S is dense in 𝐿1pR𝑑,RqX𝐿2pR𝑑,Rq assuming the
latter space is equipped with the norm |||¨|||. As it is noted in remark 3.2.2 (ii), it
thus follows that for every |||¨|||-continuous Lévy noise field 𝑍 there is a generalized
random field indexed by 𝐿1pR𝑑,RqX𝐿2pR𝑑,Rq that uniquely extends 𝑍. The extension
will also be denoted by 𝑍. Therefore, for a Borel subset Λ of R𝑑 with finite Lebesgue
measure, we are able to define the (non-normalized) Λ-average of the Lévy noise field
𝑍 by 𝑍p1Λq.

Definition 3.3.5 (Stationary Noise Field). A generalized random field 𝑍 indexed by
S is called

(i) a noise field if for any choice of index functions 𝑓1, . . . , 𝑓𝑛 P S with mutually
disjoint supports the random variables 𝑍p𝑓1q, . . . , 𝑍p𝑓𝑛q are independent,

(ii) a stationary field if for every 𝑓 P S and each 𝑎 P R𝑑 the random variables 𝑍p𝑓q
and 𝑍p𝑓𝑎q have the same probability distribution, i.e., 𝑍p𝑓q „ 𝑍p𝑓𝑎q, where
𝑓𝑎p𝑥q “ p𝜏𝑎𝑓qp𝑥q “ 𝑓p𝑥´ 𝑎q,

(iii) a stationary noise field if it is both a noise field and a stationary field.

Since the distributional derivatives of noise fields are noise fields as well, a noise
field can be arbitrary singular. There are many situations in which one would like for
a bounded and measurable set 𝐴 Ď R𝑑 take the spatial average 𝑍p1𝐴q and ensure that
this quantity has finite expectation. However, for such 𝐴, the indicator function 1𝐴 P

𝑉 “ 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq, but 1𝐴 R S which rules out too singular distributional
noises. The next theorem is a characterization of stationarity in the setting outlined
above.

Theorem 3.3.6. We assume for a generalized random field 𝑍 on pΩ,A,Pq indexed by
S which is |||¨|||-continuous that its unique |||¨|||-continuous extension to 𝐿1pR𝑑,Rq X
𝐿2pR𝑑,Rq satisfies 𝑍p𝑓q P 𝐿1pΩ,A,Pq for all 𝑓 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq. Then, the
following two properties are equivalent:

(i) 𝑍 is a Lévy noise field.
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(ii) 𝑍 is a stationary noise field.

Proof. First, let us assume that 𝑍 is a Lévy noise field. Then, by definition there
is a characteristic triplet p𝑏, 𝜎2, 𝜈q with associated Lévy characteristic 𝜓 such that
the Fourier transform of 𝑍 satisfies 𝜙p𝑓q “ exp

`ş

R𝑑p𝜓 ˝ 𝑓q d𝑥
˘

, for 𝑓 P S . Since
the Lebesgue measure is translation invariant, we know that for any 𝑎 P R𝑑 we have
𝜙p𝑓𝑎q “ 𝜙p𝑓q, i.e., the random variables 𝑍p𝑓𝑎q and 𝑍p𝑓q have the same characteristic
function and therefore 𝑍p𝑓q „ 𝑍p𝑓𝑎q. Hence, 𝑍 is a stationary field.

Next, for 𝑓1, . . . , 𝑓𝑛 P S with disjoint supports it follows for all p𝜅1, . . . , 𝜅𝑛q P R𝑛

and every 𝑥 P R𝑑 that 𝜓
´

ř𝑛
𝑗“1 𝜅𝑗𝑓𝑗p𝑥q

¯

“
ř𝑛
𝑗“1 𝜓 p𝜅𝑗𝑓𝑗p𝑥qq because at most one of

the summands is different from 0 and 𝜓p0q “ 0. Therefore,

E
”

e𝑖
ř𝑛

𝑗“1 𝜅𝑗𝑍p𝑓𝑗q
ı

“ E
”

e𝑖𝑍p
ř𝑛

𝑗“1 𝜅𝑗𝑓𝑗q
ı

“ exp
˜

ż

R𝑑

𝜓p
𝑛
ÿ

𝑗“1
𝜅𝑗𝑓𝑗p𝑥qq d𝑥

¸

“

𝑛
ź

𝑗“1
exp

ˆ
ż

R𝑑

𝜓p𝜅𝑗𝑓𝑗p𝑥qq d𝑥
˙

“

𝑛
ź

𝑗“1
E
“

e𝑖𝜅𝑗𝑍p𝑓𝑗q
‰

,

i.e., we have that the Fourier transform of the joint distribution of the random vari-
ables 𝑍p𝑓1q, . . . , 𝑍p𝑓𝑛q equals the product of the characteristic functions of the 𝑍p𝑓𝑗q,
thus, 𝑍p𝑓1q, ¨ ¨ ¨ , 𝑍p𝑓𝑛q are independent, so that 𝑍 is stationary.

Now, we show that (ii) implies (i). First, as mentioned in remark 3.3.4, due to
the |||¨|||-continuity of 𝑍, there is a unique extension on 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq to 𝑍

which we denote with 𝑍 as well, where the space 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq is eqiupped
with the norm |||¨|||. Since the operator 𝜏𝑎 is linear and continuous on S with respect
to the norm |||¨|||, it follows by the |||¨|||-density of S in 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq that
𝑍p𝑓𝑎q „ 𝑍p𝑓q for all 𝑓 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq.

We define a cube in R𝑑 as a set of the form
ś𝑑

𝑗“1r𝛽𝑗, 𝛾𝑗q where 𝛽𝑗, 𝛾𝑗 P R, 1 ď 𝑗 ď 𝑑

with 𝛾𝑗´𝛽𝑗 ą 0 independent of 𝑗, the so-called (side) length of the cube. We consider
a cube Λ with side length 𝐿 ą 0 and subdivide Λ into 𝑛𝑑 non-intersecting cubes Λℓ,
each of side length 𝐿{𝑛. Therefore, for each 1 ď ℓ, 𝑘 ď 𝑛𝑑 we have 𝑍p1Λℓ

q „ 𝑍p1Λ𝑘
q

by the extended stationarity of 𝑍. Due to the construction, we can find 𝛽𝑗, 𝛾𝑗 P

R, 𝛾𝑗 ´ 𝛽𝑗 “ 𝐿{𝑛, 1 ď 𝑗 ď 𝑑 as well as 𝑎p1q, . . . , 𝑎p𝑛𝑑q P R𝑑 such that

Λℓ “

𝑑
ź

𝑗“1
r𝛽𝑗 ` 𝑎

pℓq
𝑗 , 𝛾𝑗 ` 𝑎

pℓq
𝑗 q, ℓ “ 1, . . . , 𝑛𝑑.
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For 𝜀 P s0, 𝐿{2𝑛r we define

Λ𝜀
ℓ :“

𝑑
ź

𝑗“1
r𝛽𝑗 ` 𝑎

pℓq
𝑗 ` 𝜀, 𝛾𝑗 ` 𝑎

pℓq
𝑗 ´ 𝜀q, ℓ “ 1, 2, . . . , 𝑛𝑑.

Further, we consider 𝜑 P D with supp𝜑 Ă p´1, 1q, 𝜑 ě 0, and
ş

R𝑑 𝜑 d𝑥 “ 1. For
𝜀 ą 0 we set 𝜑𝜀p𝑥q :“ 𝜀´𝑑𝜑p𝑥{𝜀q. For 𝜀 Ps0, 𝐿{2𝑛r, the functions 𝜑𝜀 ˚ 1Λ𝜀

ℓ
, 1 ď ℓ ď 𝑛𝑑

belongs to D and satisfy

(1) @1 ď ℓ ď 𝑛𝑑, 𝜀 P s0, 𝐿{2𝑛r : supp𝜑𝜀 ˚ 1Λ𝜀
ℓ
Ď Λℓ,

(2) @1 ď ℓ ď 𝑛𝑑, 𝜀 P s0, 𝐿{2𝑛r : sup𝑥PR𝑑 |𝜑𝜀 ˚ 1Λ𝜀
ℓ
| ď 1.

Due to (1), for fixed 𝜀 P s0, 𝐿{2𝑛r the functions 𝜑𝜀˚1Λ𝜀
ℓ
, 1 ď ℓ ď 𝑛𝑑, have mutually dis-

joint supports and by Lebesgue’s Dominated Convergence Theorem, lim𝜀Ñ0 𝜑𝜀 ˚1Λ𝜀
ℓ
“

1Λℓ
with respect to |||¨|||. As 𝑍 is |||¨|||-continuous, 𝑍p𝜑𝜀 ˚1Λ𝜀

ℓ
q Ñ 𝑍p1Λℓ

q in probability
when 𝜀Œ 0; see Remark 3.2.2 (ii). Consequently, the vector p𝑍p𝜑𝜀 ˚ 1Λ𝜀

1
q, ¨ ¨ ¨ , 𝑍p𝜑𝜀 ˚

1Λ𝜀
𝑛𝑑
qq converges in probability to p𝑍p1Λ1q, ¨ ¨ ¨ , 𝑍p1Λ

𝑛𝑑
qq as well. Since the random

variables 𝑍p𝜑𝜀 ˚ 1Λ𝜀
ℓ
q are independent, their joint characteristic function factors to

a product of individual characteristic functions, each converging to the character-
istic function of the corresponding 𝑍p1Λℓ

q. Hence, the joint characteristic function
of p𝑍p1Λ1q, ¨ ¨ ¨ , 𝑍p1Λ

𝑛𝑑
qq, which coincides with the limit of the joint characteristic

function of p𝑍p𝜑𝜀 ˚ 1Λ𝜀
1
q, ¨ ¨ ¨ , 𝑍p𝜑𝜀 ˚ 1Λ𝜀

𝑛𝑑
qq, factors to a product of the characteristic

functions of 𝑍p1Λℓ
q. This implies the independence of the random variables 𝑍p1Λℓ

q.
With

𝐵ℓ,𝑛 :“
„

𝛽1 ` pℓ´ 1q𝐿
𝑛
, 𝛽1 ` ℓ

𝐿

𝑛

˙

ˆ

𝑛
ź

𝑗“2
r𝛽𝑗, 𝛾𝑗q, 1 ď ℓ ď 𝑛,

we define a partition of Λ into 𝑛 sets where each set is a disjoint union of a mutually
disjoint subfamily of the Λ1, . . . ,Λ𝑛𝑑 such that the corresponding random variables
𝑍p1𝐵1,𝑛q, . . . , 𝑍p1𝐵𝑛,𝑛q are independent and identically distributed. Since 𝑛 P N was
arbitrarily chosen and 𝑍p1Λq “

ř𝑛
ℓ“1 𝑍p1𝐵ℓ,𝑛

q, 𝑍p1Λq has an infinitely divisible prob-
ability law. By the Lévy-Khinchine Theorem [95, Theorem 8.1], there is a uniquely
determined characteristic triplet p𝑏Λ, 𝜎

2
Λ, 𝜈Λq with associated Lévy characteristic 𝜓Λ

such that
E
“

e𝑖𝑍p1Λq
‰

“ e|Λ|𝜓Λp𝜅q and E
“

e𝑖𝜅𝑍p1Λℓ
q
‰

“ e|Λℓ|𝜓Λp𝛼q,
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for all 𝜅 P R and ℓ “ 1, . . . , 𝑛𝑑, where for a Borel set 𝐵 Ă R𝑑 we denote by |𝐵| its
Lebesgue measure.

Now, we consider another cube Λ1 with side length 𝐿1 such that 𝐿{𝐿1 is a rational
number 𝑛{𝑚, with 𝑛,𝑚 P N. We subdivide the cube Λ into 𝑛𝑑 mutually disjoint
cubes Λℓ of side length 𝐿{𝑛 and Λ1 into 𝑚𝑑 mutually disjoint cubes Λ1𝑘 of side length
𝐿1{𝑚 as we did above. Since the extension 𝑍 is stationary and 𝐿{𝑛 “ 𝐿1{𝑚, we
have that the random variables 𝑍p1Λℓ

q and 𝑍p1Λ1
𝑘
q have the same distribution, for

1 ď ℓ ď 𝑛𝑑, 1 ď 𝑘 ď 𝑚𝑑. This yields

e|Λℓ|𝜓Λp𝜅q “ e|Λ1𝑘|𝜓Λ1 p𝜅q, @𝜅 P R, 1 ď ℓ ď 𝑛𝑑, 1 ď 𝑘 ď 𝑚𝑑,

so that, by |Λℓ| “ p𝐿{𝑛q
𝑑 “ p𝐿{𝑚q𝑑 “ |Λ1𝑘| and the continuity of the Lévy character-

istics 𝜓Λ and 𝜓Λ1 , it follows that there is 𝑘 P Z with 𝜓Λp𝜅q “ 𝜓Λ1p𝜅q ` 2𝜋𝑖𝑘. Since
𝜓Λp0q “ 0 “ 𝜓Λ1p0q, we can follow that 𝜓Λ “ 𝜓Λ1 . Therefore, there is a characteristic
triplet p𝑏, 𝜎2, 𝜈q with associated Lévy characteristic 𝜓 such that for all cubes Λ with
rational side length we have E

“

e𝑖𝜅𝑍p1Λq
‰

“ e|Λ|𝜓p𝜅q, 𝜅 P R. From [95, Example 25.12]
we can follow, since 𝑍p1Λq P 𝐿

1pΩ,A,Pq, that
ş

t|𝑠|ą1u |𝑠| 𝜈pd𝑠q ă 8 which yields by
Proposition 3.3.3 that

𝜙𝜓 : S Ñ C, 𝑓 ÞÑ exp
ˆ
ż

R𝑑

p𝜓 ˝ 𝑓qp𝑥q d𝑥
˙

is a well-defined, positive definite functional which is |||¨|||-continuous and which can
be extended uniquely to a |||¨|||-characteristic functional on 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq.

Since 𝑍 is a noise field, for mutually disjoint cubes Λp1q, . . . ,Λp𝑛q in R𝑑 of respec-
tive side length 𝐿𝑗 P Q we obtain by the same procedure as above, i.e., via mollifi-
cation of the indicator functions of suitably shrunk cubes, that the random variables
𝑍p1Λp1qq, . . . 𝑍p1Λp𝑛qq are independent. For the simple function 𝑓 “

ř𝑛
𝑗“1 𝜅𝑗1Λp𝑗q we

conclude

𝜙p𝑓q “ E
“

e𝑖𝑍p𝑓q
‰

“

𝑛
ź

𝑗“1
e|Λp𝑗q|𝜓 “

𝑛
ź

𝑗“1
e
ş

Λp𝑗q 𝜓p𝜅𝑗q d𝑥
“ e

ş

R𝑑
ř𝑛

𝑗“1 𝜓p𝜅𝑗q1Λp𝑗q d𝑥

“ e
ş

R𝑑 p𝜓˝𝑓qp𝑥q d𝑥
“ 𝜙𝜓p𝑓q,

(3.4)

where we have used again that for functions with mutually disjoint (essential) supports
𝑓1, . . . , 𝑓𝑛 P 𝐿

1pR𝑑,Rq X 𝐿2pR𝑑,Rq we have 𝜓p
ř

𝑗 𝑓𝑗q “
ř

𝑗 𝜓p𝑓𝑗q due to 𝜓p0q “ 0.
Finally, since the simple functions we used above are |||¨|||-dense in 𝐿1pR𝑑,Rq X
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𝐿2pR𝑑,Rq and 𝜙 as well as 𝜙𝜓 are |||¨|||-continuous, it follows from p3.4q that 𝜙p𝑓q “
𝜙𝜓p𝑓q for all 𝑓 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq. In particular, 𝑍 is a Lévy noise field.

The next proposition is numerically motivated. In order to computationally treat
Lévy noise fields in terms of e.g., quadrature or Karhunen-Loève expansion, knowl-
edge about the expectation of polynomial expressions in the random fields is needed.
Hence, we provide in the next proposition the moments of Lévy noise fields.

Proposition 3.3.7 ([42, Appendix B]). Let 𝑍 be a |||¨|||-continuous Lévy noise field
with characteristic triplet p𝑏, 𝜎2, 𝜈q. We assume that the Lévy measure 𝜈 is such that
the following integrals exist and are finite:

𝑏1 :“
ż

t|𝑠|ą1u
𝑠 𝜈pd𝑠q and 𝑏𝑛 :“

ż

Rzt0u
𝑠𝑛 𝜈pd𝑠q, 𝑛 P N, 𝑛 ě 2.

Then, 𝑍p𝑓q possesses moments of all orders for every 𝑓 P S and

E
«

𝑛
ź

𝑗“1
𝑍p𝑓𝑗q

ff

“
ÿ

𝐼PPp𝑛q

𝐼“t𝐼1,...,𝐼𝑘u

𝑘
ź

ℓ“1
𝑐|𝐼ℓ|

ż

R𝑑

ź

𝑗P𝐼ℓ

𝑓𝑗 d𝑥.

Here, Pp𝑛q is the collection of all partitions of t1, . . . , 𝑛u into non-intersecting and
non-empty sets t𝐼1, . . . , 𝐼𝑘u, where 𝑘 is arbitrary. |𝐼ℓ| denotes the number of elements
in 𝐼ℓ and 𝑐𝑛 is a sequence of constants defined as

𝑐𝑛 “

$

’

’

’

&

’

’

’

%

𝑏` 𝑏1 : 𝑛 “ 1,

𝜎2 ` 𝑏2 : 𝑛 “ 2,

𝑏𝑛 : 𝑛 ě 3.

3.4 Smoothed Stationary Noise Fields

In this thesis, we apply random functions on (an open, bounded subset of) R𝑑 to
model physical uncertainties in various situations. In order to make use of the so
far examined |||¨|||-continuous stationary noise fields indexed by the Schwartz space
S pR𝑑,Rq, which are uniquely extendable on 𝐿1pR𝑑,RqX𝐿2pR𝑑,Rq, we introduce the
following notation.
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Definition 3.4.1 (Smoothed Random Fields). For a |||¨|||-continuous stationary noise
field 𝑍 on the probability space pΩ,A,Pq and a function 𝑘 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq
we define the smoothed random field (with window function, smoothing function, or
smoothing kernel 𝑘) as the family of random variables

𝑍𝑘p𝑥q :“ 𝑍p𝑘𝑥q P 𝐿
0
pΩ,A,Pq, 𝑥 P R𝑑,

where 𝑘𝑥 :“ 𝜏𝑥p𝑘
_q “ 𝑘p𝑥 ´ ¨q. More generally, we shall call a bivariate function

𝑘 : R𝑑 ˆ R𝑑 Ñ R a smoothing function (or window function) if 𝑘p𝑥, ¨q P 𝐿1pR𝑑,Rq X
𝐿2pR𝑑,Rq for every 𝑥 P R𝑑 and R𝑑 Ñ p𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq, |||¨|||q, 𝑥 ÞÑ 𝑘p𝑥, ¨q is
continuous. For a bivariate smoothing function 𝑘 we set, by an abuse of notation,
𝑘𝑥 :“ 𝑘p𝑥, ¨q and define the smoothed random field with smoothing function 𝑘 as the
family of random variables 𝑍𝑘p𝑥q :“ 𝑍p𝑘𝑥q P 𝐿

0pΩ,A,Pq, 𝑥 P R𝑑.

Remark 3.4.2. (i) By Minlos’ Theorem 3.2.5, every generalized random field 𝑍

on a probability space pΩ,A,Pq indexed by S pR𝑑,Rq is given by a S 1pR𝑑,Rq-
valued random variable (also denoted by 𝑍). It follows for a window function
𝑘 P S pR𝑑,Rq that

R𝑑
Ñ R, 𝑥 ÞÑ 𝑍p𝑘𝑥q “ x𝑍, 𝑘p𝑥´ ¨qy “ p𝑍 ˚ 𝑘qp𝑥q

is P-almost surely a smooth function as a convolution of a random tempered
distribution with a Schwartz function.

(ii) By definition, the random variables of a smoothed random field based on a
stationary noise field 𝑍 and an arbitrary window function 𝑘 P S pR𝑑,Rq are
identically distributed, i.e., 𝑍𝑘p𝑥1q „ 𝑍𝑘p𝑥2q for every 𝑥1, 𝑥2 P R𝑑. Further,
whenever 𝑥1, . . . , 𝑥𝑛 P R𝑑 are such that 𝜏𝑥1p𝑘q, . . . , 𝜏𝑥𝑛p𝑘q have mutually disjoint
supports, then the random variables 𝑍𝑘p𝑥1q, . . . , 𝑍𝑘p𝑥𝑛q are independent. By
the same arguments we already used in the proof of Theorem 3.3.6, it follows
that for a stationary noise field the "noise field property" as well as stationar-
ity not only hold for 𝑓1, . . . , 𝑓𝑛, 𝑓 P S pR𝑑,Rq but for arbitrary 𝑓1, . . . , 𝑓𝑛, 𝑓 P

𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq.

(iii) By Theorem 3.2.7, we can describe every |||¨|||-continuous stationary noise field
𝑍 by a S 1

𝑞pR𝑑,Rq-valued random variable with arbitrary 𝑞 ą 3𝑑
4 . Thus, if 𝑘 P
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S𝑞pR𝑑,Rq is a function such that

R𝑑
Ñ S𝑞pR𝑑,Rq, 𝑥 ÞÑ 𝜏𝑥𝑘 (3.5)

is well-defined, we may consider the smoothed random field 𝑍𝑘 with window
function 𝑘 even if 𝑘 R 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq. If the function in (3.5) is also
continuous (when S𝑞pR𝑑,Rq is equipped with the Hilbert space norm | ¨ |𝑞), the
resulting smoothed random field is almost surely a continuous function on R𝑑.
For Matérn kernels as window function this smoothing procedure is described in
Theorem 3.2.10.

(iv) A smoothed Lévy field 𝑍𝑘𝛼,𝑚 with a Matérn kernel 𝑘𝛼,𝑚 as window function can
also be viewed as the distributional solution of the linear Stochastic pseudodif-
ferential equation

p´Δ`𝑚2
q
𝛼𝑍𝑘𝛼,𝑚p𝑓q “ 𝑍p𝑓q, for all 𝑓 P S ,

where 𝑍 is a Lévy noise field and Δ denotes the Laplacian; see [6, 7]. In this
sense, the approach of [42] directly extends the approach in [77] for sampling
Gaussian fields.

3.5 Examples

3.5.1 Gaussian Fields

We obtain Gaussian random fields by Lévy fields with associated characteristic triplet
p𝑏, 𝜎2, 0q where we set the Lévy measure 𝜈 “ 0. The corresponding generalized
random field is a stationary noise field denoted by 𝐺 with characteristic functional
𝜙𝐺p𝑓q “ exp

´

𝑖𝑏
ş

R𝑑 𝑓p𝑦q d𝑦 ´ 𝜎2

2 ‖𝑓‖2
𝐿2pR𝑑,Rq

¯

. Since 𝑏 corresponds to a deterministic
background field, we obtain a classical white noise for 𝑏 “ 0. If 𝐺 is indexed by
𝑓 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq, the corresponding random variable 𝐺p𝑓q has variance
𝜎2‖𝑓‖𝐿2pR𝑑,Rq.

If we smooth a Gaussian random field with window functions 𝑘 P 𝐿1pR𝑑,Rq X
𝐿2pR𝑑,Rq, then 𝐺p𝑘𝑥q has a Gaussian distribution with mean 𝑏

ş

R𝑑 𝑘p𝑦q d𝑦 for each
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𝑥 P R𝑑. Further, a straightforward calculation shows that

Covp𝐺𝑘p𝑥1q, 𝐺𝑘p𝑥2qq “ 𝜎2
ż

R𝑑

𝑘p𝑥1 ´ 𝜏q𝑘p𝑥2 ´ 𝜏q d𝜏 “ 𝜎2
p𝑘_ ˚ 𝑘qp𝑥1 ´ 𝑥2q.

In particular, setting 𝑘 “ 𝑘𝛼,𝑚 we obtain Covp𝐺𝑘p𝑥1q, 𝐺𝑘p𝑥2qq “ 𝜎2𝑘2𝛼,𝑚p𝑥1 ´ 𝑥2q,
which is the usual Matérn covariance function with smoothness parameter 2𝛼.

Remark 3.5.1. By Kolmogorov’s continuity criterion for random fields [73] one can
see that the lower bound 𝛼 ą 𝑑 in 𝑑 “ 1, 2, 3 obtained in Theorem 3.2.10 is not
optimal for the Gaussian case, where 2𝛼 ą 𝑑 already yields a continuous modification
𝑍𝑘𝛼,𝑚p𝑥q.

3.5.2 Compound Poisson Random Field

Let 𝜈 be a finite Lévy measure on Rzt0u and set 𝑏 :“
ş

t0ă|𝑠|ď1u 𝑠 𝜈pd𝑠q. A com-
pound Poisson random field is a Lévy noise field 𝑃 with associated triplet p𝑏, 0, 𝜈q
and corresponding characteristic functional

𝜙𝑃 p𝑓q “ exp
ˆ
ż

R𝑑

ż

Rzt0u

`

e𝑖𝑠𝑓p𝑥q ´ 1
˘

𝜈pd𝑠qd𝑥
˙

, 𝑓 P 𝐿1
pR𝑑,Rq X 𝐿2

pR𝑑,Rq. (3.6)

We consider 𝑓 P 𝐿1pR𝑑,RqX𝐿2pR𝑑,Rq with essential support in a region Λ Ă R𝑑 with
|Λ| ă 8. The finite Lévy measure 𝜈 yields an intensity parameter 𝜆 :“ 𝜈pRzt0uq and
a probability measure 𝜈 on R defined by 𝜈 :“ 𝜆´1𝜈 with 𝜈pt0uq “ 0.

Now, let pΩ,A,Pq be a probability space, let 𝑁Λ be a Poisson-distributed random
variable with intensity 𝜆|Λ|, and let p𝑋1, 𝑆1q, p𝑋2, 𝑆2q, . . . be a sequence of R𝑑ˆRzt0u-
valued random variables which are identically distributed with p𝑋1, 𝑆1q „

d𝑥
|Λ| b 𝜈,

where d𝑥 is restricted to Λ, and such that 𝑁Λ, p𝑋1, 𝑆1q, p𝑋2, 𝑆2q, . . . are independent.
Let tΛ𝑗u𝑗PN define a partition of R𝑑 such that any compact set intersects at most
finitely many Λ𝑗 and such that the random variables 𝑃Λ𝑗

:“
ř𝑁Λ𝑗

𝑗“1 𝑆𝑗𝛿𝑋𝑗
are mutually

independent. For 𝑓 P S with compact support let 𝐼 “ t𝑗 P N : Λ𝑗 X supp𝑓 ‰ Hu.
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Then,

𝜙𝑃 p𝑓q “ E
“

e𝑖𝑃 p𝑓q
‰

“ E
”

e𝑖
ř

𝑗P𝐼 𝑃Λ𝑗
p𝑓q
ı

“
ź

𝑗P𝐼

E
”

e𝑖𝑃Λ𝑗
p𝑓q
ı

“
ź

𝑗P𝐼

8
ÿ

ℓ𝑗“1
Pp𝑁Λ𝑗

“ ℓ𝑗q

ℓ𝑗
ź

𝑟𝑗“1
E
”

e𝑖𝑆
p𝑗q
𝑟𝑗
𝑓p𝑋

p𝑗q
𝑟𝑗
q
ı

“
ź

𝑗P𝐼

8
ÿ

ℓ𝑗“1
e´𝜆|Λ| p𝜆|Λ𝑗|q

ℓ𝑗

ℓ𝑗!

˜

ż

Λ𝑗

ż

R
e𝑖𝑠𝑓p𝑥q 𝜈pd𝑠q d𝑥

|Λ𝑗|

¸ℓ𝑗

“
ź

𝑗P𝐼

exp
˜

𝜆

ż

Λ𝑗

ż

R
pe𝑖𝑠𝑓p𝑥q ´ 1q 𝜈pd𝑠qd𝑥

¸

“ exp
ˆ
ż

R𝑑

ż

Rzt0u
pe𝑖𝑠𝑓p𝑥q ´ 1q 𝜈pd𝑠qd𝑥

˙

.

(3.7)

Since the space of smooth functions with compact support is |||¨|||-dense in S , we can
extend 𝑃 p𝑓q to S . As the characteristic functionals coincide, the constructed random
field 𝑃 p𝑓q coincide with the random field from Theorem 3.2.5 up to equivalence in
law. By the Borel-Cantelli Lemma, it follows that the locally finite and discrete signed
measure 𝑃 is actually a tempered distribution P-a.s..

Let 𝑘 be a continuous, bounded function in 𝐿1pR𝑑,Rq (and hence also in 𝐿2pR𝑑,Rq),
then

𝑃Λ𝑗 ,𝑘p𝑥q “

𝑁Λ𝑗
ÿ

ℓ“1
𝑆
p𝑗q
ℓ 𝑘p𝑥´𝑋

p𝑗q
ℓ q

is a continuous functions. For the smoothed compount Poisson noise field we obtain
𝑃𝑘p𝑥q “

ř8

𝑗“1 𝑃Λ𝑗 ,𝑘. Although the continuity of 𝑃Λ𝑗 ,𝑘 does not immediately imply
that 𝑃𝑘 is continuous as well, it seems likely that this is true if 𝑘p𝑥q has some global
uniform continuity and decays sufficiently fast; see [7, Theorem 3.2] for a related
argument.
Remark 3.5.2. We note that the absolute value of the signed measure |𝑃 | is given
by

ř

𝑗 |𝑃Λ𝑗
| and |𝑃Λ𝑗

| “
ř𝑁Λ𝑗

ℓ“1 |𝑆
p𝑗q
ℓ |𝛿𝑋p𝑗q

ℓ

holds P-a.s.. This yields the estimate

|𝑃𝑘p𝑥q| ď |𝑃 ||𝑘|p𝑥q, for all 𝑥 P R𝑑 (3.8)

P-almost surely. Since |𝑃 | is also a compound Poisson noise field with characteristic
triplet p𝑏`, 0, 𝜈`q, where 𝜈` is the image measure of 𝜈 under the mapping 𝑠 ÞÑ |𝑠|

which is supported on s0,8r, the right-hand side of (3.8), for fixed 𝑥, is almost surely
finite.
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3.5.3 Poisson Point Process

As Poisson point processes, which we use in chapter 4 to model crack initiation events
on mechanical elements, are of importance for this thesis, we present them here as an
example, despite the fact that they do not necessarily define a Lévy noise field in terms
of Definition 3.3.1. Here, we only construct the process, but provide a more detailed
introduction on this construction below. We consider a characteristic triplet p𝑏, 0, 𝜈q
where the Lévy measure 𝜈 on R is given by 𝜈 “ 𝛿1, where 𝛿𝑥 denotes the Dirac measure
on 𝑥 P R, and 𝑏 :“

ş

t0ă|𝑠|ď1u 𝑠 𝜈pd𝑠q “ 1. Let Ω Ă R𝑑 and 𝒞 “ ΩˆRě0. Let pΩ,A,Pq
be a probability space, 𝜌 a compactly supported Radon-Nikodym derivative of some
Radon measure describing the intensity of the process, and Λ Ď 𝒞. We consider
the random variables 𝑁Λ, 𝑋1, 𝑋2, . . . on pΩ,A,Pq, where 𝑁Λ is Poisson distributed
with intensity 𝜌pΛq and 𝑋𝑗 „

𝜌pd𝑥q
𝜌´1pΛq is R𝑑 valued. Assuming that all these random

variables are additionally independent, we define the Poisson point process on 𝒞 by
𝛾Λ “

ř𝑁Λ
𝑗“1 𝛿𝑋𝑗

. Similarly to above, we can derive that the characteristic functional
of 𝛾 is given by

𝜙𝛾p𝑓q “ exp
ˆ
ż

R𝑑

pe𝑖𝑠𝑓p𝑥q ´ 1q𝜌p𝑥q d𝑥
˙

, (3.9)

for all 𝑓 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq. If 𝜌 is translation invariant, we can show, by
following the same steps as in the proof of Theorem 3.3.6, that the associated Poisson
point process is a stationary noise field, and thus by Theorem 3.3.6 a Lévy noise field.

3.5.4 Lévy Noise of Infinite Activity

We consider the case when we only have
ş

t|𝑠|ď1u |𝑠| 𝜈pd𝑠q. In this case, the determinis-
tic compensator term for the small jumps

ş

Rzt0u 𝑠1t|𝑠|ď1up𝑠q 𝜈pd𝑠q can still be subsumed
into the constant 𝑏 and the expression for the characteristic functional (3.6) remains
valid. Even though the assumption is quite strong, it includes important examples
such as (bi-) gamma distributions with 𝜈pd𝑠q “ 𝑣1t𝑠ą0up𝑠q

e´𝑤𝑠

𝑠
d𝑠 (𝜈pd𝑠q “ 𝑣 e´𝑤|𝑠|

|𝑠|
d𝑠),

𝑣, 𝑤 ą 0. Since in this case and others the jump measure 𝜈 is infinite, the represen-
tation given in the compound Poisson case needs to be extended as follows: With
Θ0 “ t𝑠 P R : |𝑠| ą 1u and Θℓ “ t𝑠 P R : 1

ℓ
ě |𝑠| ą 1

ℓ`1u we consider partitions of
Rzt0u. The Lévy measures on these sets 𝜈ℓpd𝑠q “ 1Θℓ

p𝑠q𝜈pd𝑠q are all finite and define
independent compound Poisson processes 𝑃ℓ. Similarly to (3.7), we can show that
(3.6) still holds and the same applies to (3.8), where |𝑃 | “

ř8

ℓ“1 |𝑃ℓ|. Further, |𝑃 |
is a Lévy noise with characteristic triplet p𝑏`, 0, 𝜈`q and the right-hand side of (3.8)
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is P-a.s. true for all 𝑥 P R𝑑. Figure 3-1 shows sample paths of Gaussian, Poisson
(compound Poisson with 𝜈 “ 𝛿1) and bi-directional gamma noise fields with identical
covariance.

.
Figure 3-1: Realizations of smoothed noise fields: Gaussian (left), Poisson (middle) and
bi-gamma (right) – each with the same Matérn covariance function.
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Chapter 4

An Analytical Study in Multi-Physics and

Multi-Criteria Shape Optimization

In this chapter, we give our first application of randomness in models expressing real
world problems. We present a shape optimization model that includes the random-
ness of crack initiation processes in the design process of mechanical elements [59].
Component life model from material science are often used to evaluate the integrity of
a mechanical component subjected to a certain number of load cycles; see, e.g., [20].
In the literature, there are different approaches described to predict the failure of a
component. Many models use deterministic life calculation which predicts failure at
the component or component’s surface, depending on whether we have a volume or a
surface driven damage mechanism. Probabilistic models extend the deterministic life
prediction by integrals over local functions of the stress tensor in the component or on
the component’s surface, respectively; see, e.g., [10, 45, 60, 61, 66, 80, 98, 101]. This
approach makes it possible to compute shape derivatives and gradients [18, 25, 58, 104]
and therefore places component reliability in the context of shape optimization.

Besides the endurance, the design of a component’s shape must often satisfy fur-
ther primary objectives. For example, the component has to withstand a minimum
amount of load cycles before yielding while being as efficient as possible at the same
time. This search for an optimal design leads therefore, in the majority of cases,
to an at least bi-criteria optimization problem. While several mono-criteria shape
optimization frameworks have already been established [8, 27, 38, 49, 65], a general
framework for a multi-criteria design process is still missing; see however [28, 39, 65]
for numerical studies addressing the topic.
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The different types of objectives are typically expressed by objective functionals,
which depend on the solutions to boundary value problems. These objective function-
als require a certain level of regularity for the solutions and the usual weak theory
based on 𝐻1 Sobolev spaces is sometimes not sufficient. This is the case for, e.g.,
the probability of failure, as remarked in [60], but, as we see here, also for simplistic
fluid dynamic models. As in previous works [19, 21, 60], we therefore introduce here
a framework based on Hölder continuous classical solution spaces and extend it to
multi-criteria optimization. Within this framework, we state conditions which pro-
vide the existence of at least one optimal shape in terms of Pareto optimality [40].
Our approach uses the graph compactness property [65, Subsection 2.4] and requires
the lower semicontinuity of all objective functionals to provide certain maximality
properties of the non-dominated feasible points: Namely that the Pareto front in the
set of feasible points coincides with the Pareto front of the closure of the feasible
points. Put in other words, each dominated design is also dominated by at least one
Pareto optimal design.

In order to illustrate our framework, we describe a simplistic multi-physics system
as an example. This mathematical model is motivated from gas turbine engineering
and describes a turbine vane lying within a shroud where a fluid is flowing through.
We couple a potential flow equation, describing the fluid, with the equation of linear
elasticity in order to model the deformations of the component when volume and
surface forces are exerted onto it. We identify the objectives by two (rather singular)
functionals, namely an aerodynamic loss based on the theory of boundary layers
[97] and furthermore, the probability of failure after a certain number of load cycles
[60, 80]. For this system, we prove that the assumptions of the general framework are
fulfilled and we conclude that a maximal Pareto front exists in this case.

In contrast to solving a multi-criteria optimization problem in the context of
Pareto optimality, the traditional approach of scalarization functions reduces the
multi-criteria into a mono-criteria shape problem by using a decision maker, which
reflects the preferences of the design process. Here, we are interested in continuity
properties of Pareto optimal shapes, when the preference is expressed by a parameter
in a merit function, which, e.g., could be the weights in a weighted sum approach. The
stability of the solution to such scalarization techniques have already been investigated
in the literature for finite and infinite-dimensional spaces; see, e.g., [16, 63, 105, 106].
We study our general framework on these known result, i.e., we are interested in how
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the sets of optimal shapes act, when subjected to small changes in the preference
parameter.

The first section of this chapter follows closely [60] and is devoted to the proba-
bilistic modeling of a mechanical components life expectation. Afterwards, we give a
general introduction to multi-criteria shape optimization problems governed by PDE
constraints. We then present a toy model, where we couple a potential flow equation
with the equation of linear elasticity, and which includes the components life model
provided in the first section. For this toy model, we prove the existence of an optimal
shape and also study scalarization techniques and corresponding continuity properties
of the sets of optimals shapes with respect to the weighted sum scalarization and the
𝜀-constraint method.

4.1 Probabilistic Life Prediction

In this section, we introduce Poisson point processes (see Example 3.5.3) from a
practical point of view and show how to implement them in crack initiation models
by following the construction of [60]. We consider an open and bounded domain
Ω Ă R3 with Lipschitz boundary BΩ representing the shape of some component in a
physical system. In this system, we measure time in load cycles 𝒯 “ N0 or in natural
time 𝒯 “ clpRq, where clpRq “ R Y t´8,8u. The space 𝒞 “ 𝒯 ˆ clpΩq endowed
with the standard metric topology denotes the configuration space of crack initiation
at time 𝑡 P 𝒯 and location 𝑥 P clpΩq. The Borel 𝜎-algebra of the topological space 𝒞
is denoted by Bp𝒞q.

Let ℛ “ ℛp𝒞q denote the space of all Radon measures on 𝒞, i.e., the set of all
measure 𝛾 on the measurable space p𝒞,Bp𝒞qq for which 𝛾p𝐵q ă 8 for each bounded
set 𝐵 P Bp𝒞q. The set of all counting measures in ℛ, i.e., the Radon measures 𝛾 P ℛ
with 𝛾p𝐵q P N0 for all bounded 𝐵 P Bp𝒞q, is denoted by ℛ𝑐. In the given context, a
counting measure 𝛾 P ℛ𝑐 encodes one particular history of potentially multiple crack
initiations on the component Ω. Hence, 𝛾p𝐵q gives for some Borel measurable location
𝐵 Ď clpΩq the number of crack initiations with time-location instances 𝑐 “ p𝑡, 𝑥q P 𝐵.

We attach the event of failure of the component Ω with the occurrence of the first
crack in clpΩq. We define the time of failure 𝜏 : ℛ𝑐 Ñ 𝒯 ‚ “ 𝒯 Y t8u regarding some
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crack initiations history 𝛾 by

𝜏p𝛾q “ inft𝑡 ą 0 : 𝛾p𝒞𝑡q ą 0u,

where 𝒞𝑡 “ tp𝜏, 𝑥q P 𝒞 : 𝜏 ď 𝑡u. By [71, Theorem 1.6], for each bounded set
𝐵 P Bp𝒞q, the restriction of 𝛾 P ℛ𝑐 to 𝐵 possesses an atomic decomposition

𝛾æ𝐵 “
𝑛
ÿ

𝑗“1
𝑏𝑗𝛿𝑐𝑗

, 𝑛, 𝑏𝑗 P N, 𝑐𝑗 P 𝒞, 𝑐𝑖 ‰ 𝑐𝑗 for 𝑖 ‰ 𝑗,

where 𝛿𝑐 stands for the Dirac measure in 𝑐 P 𝒞. This representation is unique up to
order of terms. We call the Radon measure 𝛾 simple if for all 𝐵 P Bp𝒞q we have
𝑏𝑗 “ 1 for all 𝑗 “ 1, . . . , 𝑛. The simplicity of a crack initiation history 𝛾 is a natural
condition, since it states that two cracks occuring at the same time and at the same
place are considered as the same crack. As we cannot predict the precise time and
location of the first crack initiation, we have to take into account that crack initiation
is a random process. With 𝒩 pℛ𝑐q we denote the standard 𝜎-algebra, which is called
vague topology, on the space of Radon counting measures generated by the mapping
𝛾 ÞÑ

ş

𝒞 𝑓 d𝛾 with 𝑓 P 𝐶𝑐p𝒞,Rq, the space of compactly supported continuous func-
tions on 𝒞. It is easily seen that the time of failure 𝜏 : pℛ𝑐,𝒩 pℛ𝑐qq is measurable.
The following definition can be found in [71, Chapter 2].

Definition 4.1.1 (Point Process). Let p𝒳 ,A,Pq be a probability space.

(i) A point process on 𝒞 is a measurable mapping 𝛾 : p𝒳 ,A,Pq Ñ pℛ𝑐,𝒩 pℛ𝑐qq.

(ii) The point process 𝛾 is simple if 𝛾p¨, 𝜔q is simple for P-almost all 𝜔 P 𝒳 .

(iii) A point process 𝛾 is non-atomic if P p𝛾pt𝑐uq ą 0q “ 0 for all 𝑐 P 𝒞.

(iv) A point process 𝛾 has independent increments if for mutually disjoint 𝐵1, . . . , 𝐵𝑛 P

Bp𝒞q, the random variables 𝛾p𝐵1q, . . . , 𝛾p𝐵𝑛q are independent.

Random crack initiation histories are naturally modeled as simple point processes.
The additional assumption that 𝛾 does not possess "atoms" states that there is no
location 𝑥 P clpΩq where a crack precisely originates with a probability larger than
zero.

Definition 4.1.2 (Crack Initiation Process).
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(i) A crack initiation process 𝛾 is a simple, non-atomic point process on 𝒞.

(ii) The time to crack initiation 𝑇 : 𝒳 Ñ 𝒯 ‚ associated with 𝛾 is the random
variable 𝑇 “ 𝜏p𝛾q.

It is debatable whether the assumption of independent increments is realistic for ran-
dom crack initiation. However, since we regard a component Ω as failed after the first
crack has occurred, we are only interested in the component’s history until the forma-
tion of the first crack initiation. A study of a model with interacting crack networks
is given in, e.g., [81].

The following proposition is an application of some standard results from the
theory of point processes in the given context.

Proposition 4.1.3 (Crack Initiation and PPPs, [60, Proposition 2.3]).

(i) Any crack initiation process 𝛾 on 𝒞 with independent increments is a Poisson
point process (PPP), i.e., there exists a unique Radon measure 𝜌 P ℛ such that

P p𝛾p𝐵q “ 𝑛q “ e´𝜌p𝐵q𝜌p𝐵q
𝑛

𝑛! , for all bounded 𝐵 P Bp𝒞q, 𝑛 P N0.

𝜌 is called the intensity measure of 𝛾.

(ii) The distribution function 𝐹𝑇 of the time to crack initiation 𝑇 is given by 𝐹𝑇 “
1´ e´𝐻p𝑡q with cumulative hazard function 𝐻p𝑡q “ 𝜌p𝒞𝑡q.

(iii) If 𝜌p𝒞q “ 8, then Pp𝑇 “ 8q “ 0 and 𝑇 can be modified to 𝑇 : p𝒳 ,Aq Ñ
p𝒯 ,Bp𝒯 qq.

The reliability of the component Ω at some warranty time 𝑡˚ or after the passage
of a service interval of duration 𝑡˚ depends on the forces acting on Ω, the material,
and the shape Ω itself. In many design applications the loads and material are given
and the optimization process to maximize the life span of the component takes place
at the choice of the shape. The choice of an optimal design depends crucially on an
assignment of failure probabilities to the shape Ω. In the following part, we introduce
a reliability optimization model.

Definition 4.1.4 (Crack Initiation Model). Let 𝒪 be a collection of admissible shapes
contained in some larger shape Ωext Ă R3 and let 𝑓, 𝑔 : 𝒞ext “ 𝒯 ˆΩext Ñ R3 be vector
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fields belonging to some spaces 𝒱vol and 𝒱sur, respectively. For Ω P 𝒪 we interpret
𝑓æΩ as the history – or load collective – of volume force densities on BΩ and 𝑔æBΩ as
the history of surface force densities.

A crack initiation model is a mapping 𝛾 from 𝒪 ˆ 𝒱vol ˆ 𝒱sur to the space of all
crack initiation processes on 𝒯 ˆ Ωext mapping pΩ, 𝑓, 𝑔q to 𝛾Ω,𝑓,𝑔 such that

(i) 𝛾Ω,𝑓,𝑔p𝒯 ˆ pΩextzclpΩqqq “ 0 P-almost surely,

(ii) 𝛾Ω,𝑓,𝑔 depends P-almost surely only on 𝑓æΩ and 𝑔æBΩ.

Any crack initiation model induces a mapping of pΩ, 𝑓, 𝑔q to the crack initiation
time random variable 𝑇Ω,𝑓,𝑔 associated with 𝛾Ω,𝑓,𝑔. Assuming we are given volume
and surface loads 𝑓 P 𝒱vol and 𝑔 P 𝒱sur, and a fixed warranty time 𝑡˚ P 𝒯 , a crack
initiation model leads to the optimal reliability problem.

Definition 4.1.5 (Optimal Reliability Problem). Given 𝑡˚ P 𝒯 , 𝑓 P 𝒱vol, 𝑔 P 𝒱sur,
and a crack initiation model 𝛾, find Ω˚ P 𝒪 such that

Pp𝑇Ω˚ ď 𝑡˚q ď Pp𝑇Ω ď 𝑡˚q, for all Ω P 𝒪.

As the initiation of the first crack interacts with the atomic displacements within
the component Ω originating from the exerted volume and surface forces 𝑓 and 𝑔, we
construct crack initiation models with independent increments based on the PDE of
linear isotropic elasticity (2.11). We restrict ourself to the case where 𝑓 and 𝑔 are
independent of 𝑡 such that the model is based on one well-defined load cycle. The
time 𝑡 then counts the number of such load cycles.

Definition 4.1.6 (Local Crack Initiation Model). Let 𝒪 ˆ 𝒱vol ˆ 𝒱sur be such that
for all Ω P 𝒪, 𝑓 P 𝒱vol, and 𝑔 P 𝒱sur there exists a unique (weak) solution 𝑢Ω to
(2.11). Let furthermore 𝜚vol : 𝒯 ˆ R𝑑 Ñ clpRě0q and 𝜚sur : 𝒯 ˆ R𝑑 Ñ clpRě0q with
𝑑 “ 3 `

ř𝑟
𝑗“0 3𝑗`1 “ 3 ` 3

2p3
𝑟`1 ´ 1q be measurable, non-negative functions, where

𝑟 P N is the order of the model. Suppose that the 𝑘th weak derivatives ∇𝑘𝑢 of 𝑢 are
measurable functions for 𝑘 “ 0, . . . , 𝑟 and that the trace ∇𝑘𝑢æBΩ is well defined in
the sense of measurable functions. Here, p∇𝑘𝑢q𝑗𝑗1,...,𝑗𝑘 stands for B𝑘𝑢𝑗

B𝑥𝑗1 ¨¨¨ ,B𝑥𝑗𝑘
. Then, we

define the following:

(i) An 𝑟th order local crack initiation model with independent increments and linear
elasticity state equation is defined by this data by setting 𝛾Ω to be the PPP on
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𝒞ext associated to the intensity measure

𝜌Ωp𝐵q “

ż

𝐵Xp𝒯 ˆΩq
𝜚volp𝑡, 𝑥, 𝑢,∇𝑢, . . . ,∇𝑟𝑢q d𝑡d𝑥

`

ż

𝐵Xp𝒯 ˆBΩq
𝜚surp𝑡, 𝑥, 𝑢,∇𝑢, . . . ,∇𝑟𝑢q d𝑡d𝐴, for all 𝐵 P Bp𝒞ext

q,

provided that the resulting measures are Radon measures on 𝒞ext.

(ii) 𝛾 is said to be strain driven if 𝜚vol and 𝜚sur depend only on the elastic strain
tensor field 𝜀p𝑢q from (2.11). As the elastic stress tensor field 𝜎p𝑢q can be ob-
tained from 𝜀p𝑢q and vice versa, strain and stress driven crack initiation models
are synonymous.

(iii) If 𝜚vol “ 0, then 𝛾 is surface driven, and if 𝜚sur “ 0 it is volume driven.

(iv) We say that the 𝑟th order crack initiation model has 𝑠-regular intensity functions,
𝑠 ě 0, if 𝜚vol and 𝜚sur are in 𝐶0p𝒯 q b 𝐶𝑠pR𝑑q.

From the previous definition, it follows that the optimal reliability problem from
Definition 4.1.5 is, in the case of an 𝑟th order local crack initiation model, a PDE
constrained shape optimization problem. The following lemma establish the link
between optimal reliability and PDE constrained shape optimization.

Lemma 4.1.7 (Optimal Reliability and PDE Constrained Shape Optimization, [60,
Lemma 2.7]). For an 𝑟th order local crack initiation model with elasticity state equation
(2.11), the optimal reliability problem given in Definition 4.1.5 is equivalent to the
shape optimization problem given in Definition 4.3.2 below with

𝐽pΩ, 𝑦q “
ż

Ω
ℱvolp𝑥, 𝑦,∇𝑦, . . . ,∇𝑟𝑦q d𝑥

`

ż

BΩ
ℱsurp𝑥, 𝑦,∇𝑦, . . . ,∇𝑟𝑦q d𝐴,

with ℱvolp¨q “
ş𝑡˚

0 𝜚volp𝑡, ¨q d𝑡 and ℱsurp¨q “
ş𝑡˚

0 𝜚surp𝑡, ¨q d𝑡 and 𝑦 : Ωext Ñ R3 sufficiently
regular (continuous differentiable). In particular, for the case of 𝑠-regular intensity
functions ℱvol,ℱsur P 𝐶

𝑠pR𝑑q.
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4.1.1 LCF Driven Crack Initiation Model

We give here an example for crack initiation models based on small deformations
which pile up and are the result from cyclic loadings. This degradation is called
fatigue and is differentiated into high-cycle fatigue (HCF) and low-cycle fatigue (LCF)
[90, 93]. The model we introduce in the following considers repeated small plastic
deformations and models LCF crack initiation as a surface and strain driven model
with elastic state equation. It is numerically implemented in [99] where it is applied
to gas turbines. An extension to thermomechanical equations can be found in [100]
and experimental validation is presented in [101].

The use of the equation of isotropic elasticity (2.11) in the context of low-cycle
fatigue seems contradictory at first as it models elastic deformations which are com-
pletely reversible and therefore does not lead to degradation. In the following, we
introduce a method of time-honored elastic-plastic stress conversion which solves this
problem.

We define by 𝜎𝑣 “
b

3
2trp𝜎1 2q the von Mises stress, where 𝜎1 “ 𝜎 ´ 1

3trp𝜎qI
is the trace free part of 𝜎 capturing non-hydrostatic stresses only. The von Mises
stress is often used in order to determine whether an isotropic and ductile metal will
yield when subjected complex loading. Next, we define the Ramberg-Osgood relation
which is used to locally derive strain levels from scalar comparison stresses 𝜎𝑣; see
[91]. This equation describes stress-strain curves of metals near their yield points.

Definition 4.1.8 (Ramberg-Osgood Relation). Let 𝐾 ą 0 denote the strain harden-
ing coefficient and 𝑛1 ą 0 the strain hardening exponent. Then, the Ramberg-Osgood
relation between an elastic-plastic comparison strain 𝜀el´pl

𝑣 P clpRě0q and an elastic-
plastic comparison stress 𝜎el´pl

𝑣 is given by

𝜀el´pl
𝑣 “

𝜎el´pl
𝑣

𝐸
`

ˆ

𝜎el´pl
𝑣

𝐾

˙

1
𝑛1

, (4.1)

with Young‘s modulus 𝐸 “
𝜇p3𝜆`2𝜇q
𝜆`𝜇

. The coefficient 𝜀el´pl
𝑣 is called the comparison

strain and we shall write 𝜀el´pl
𝑣 “ ROp𝜎el´pl

𝑣 q.

The problem which arise at this point is that the elastic-plastic comparison stress
𝜎el´pl
𝑣 needs to be defined on the basis of the elastic von Mises stress 𝜎𝑣. We can solve

this problem with the method of stress shakedown by Neuber [87, 93].
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Definition 4.1.9 (Elastic-Plastic Stress Conversion and Shakedown). Given 𝜎𝑣 P

clpRě0q the associated elastic-plastic comparison stress 𝜎el´pl
𝑣 is defined as the positive

solution to the equation

𝜎2
𝑣

𝐸
“ 𝜎el´pl

𝑣 𝜀el´pl
𝑣 “

p𝜎el´pl
𝑣 q2

𝐸
` 𝜎el´pl

𝑣

ˆ

𝜎el´pl
𝑣

𝐾

˙

1
𝑛1

.

Therefore, we can determine the elastic-plastic von Mises stress 𝜎el´pl
𝑣 by using the

elastic von Mises stress 𝜎𝑣 and, in addition, we are able to obtain 𝜀el´pl
𝑣 from (4.1).

We shall write 𝜎el´pl
𝑣 “ SDp𝜎𝑣q.

Compared to the static case, with fatigue we describe the damage of material
caused by much lower load amplitudes of cyclic loading. As an example, in Figure
4-1 (from [60]) we can see a triangle-shaped uniaxial load-time-curve, where 𝜎𝑎 “
rp𝜎max ´ 𝜎minq{2s𝑣 is the elastic von Mises comparison stress amplitude.

𝑇

𝜎𝑎

Δ𝜎

𝑡

𝜎min

𝜎𝑚

𝜎max

𝜎

Figure 4-1: Triangle-shaped load-time-curve.

Since in fatigue the number of cycles until failure is determined, so-called E-N
diagrams can be drawn if the tests are strain controlled; see Figure 4-2 (from [60]).
Figure 4-2 also shows the relation between the strain amplitude 𝜀el´pl

𝑎 “ RO ˝ SDp𝜎𝑎q
and the life time 𝑁𝑖 to crack initiation measured in cycles. The Coffin-Manson-
Basquin (CMB), or Wöhler equation, connects both sides of this relationship.

Definition 4.1.10 (CMB Equation). The Coffin-Manson-Basquin (CMB) equation
connects the (deterministic) time to crack initiation 𝑁𝑖 with the elastic-plastic strain
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𝜀el
𝑎

𝜀
pl
𝑎

𝜀𝑎

𝜀𝑎plogq

𝑁𝑖plogq

Figure 4-2: E-N diagram of a standardized specimen.

amplitude 𝜀el´pl
𝑎 via

𝜀el´pl
𝑎 “ CMBp𝑁𝑖q “

𝜎1𝑓
𝐸
p2𝑁𝑖q

𝑏
` 𝜀1𝑓 p2𝑁𝑖q

𝑐. (4.2)

Here, 𝜎1𝑓 and 𝜀1𝑓 are positive and 𝑏 and 𝑐 are negative material parameters. For
the sake of simplicity, we assume in the following that the lower edge of the load cycle
is stress-free, corresponding to 𝑓min “ 0 and 𝑔min “ 0 in (2.11) and thus 𝜎𝑎 “ 𝜎𝑣{2,
where we set 𝜎 “ 𝜎max, 𝑓 “ 𝑓max, and 𝑔 “ 𝑔max.

In deterministic design, the lifetime of a component under cyclic loading corre-
sponds to the loading condition at the part’s surface position of highest stress. Safety
factors are additionally imposed to account for the stochastic nature of LCF and size
effects. This method is referred to as the safe-life approach in fatigue design, which
is widely used in engineering; see [90, 93, 101, 102].

Lemma 4.1.11 ([60, Lemma 3.1]). The function 𝜙 “ CMB´1
˝RO˝SD : Rě0 Ñ Rě0,

which maps the elastic von Mises comparison stress to a predicted life time, satisfies
the following:

(i) 𝜙 is bijective and strictly monotonically decreasing.

(ii) lim𝜎𝑣Ñ0 𝜙p𝜎𝑣q “ 8.

(iii) 𝜙 lies in 𝐶8pRě0q.

Definition 4.1.12 (Deterministic LCF-Life at a Surface Point). Let R3ˆ3 be the space
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of real 3ˆ 3 matrices. Define 𝑁det : R3ˆ3 Ñ clpRě0q by

𝑁detp𝑀 q “ 𝜙pr𝜆trp𝑀q𝐼 ` 𝜇p𝑀 `𝑀 ᵀ
qs𝑣q

where 𝜙, as in Lemma 4.1.11, is extended by 𝜙p0q “ 8. Assuming that there is a
solution 𝑢 P 𝐻1pΩ,R3q to (2.11) such that the trace ∇𝑢æBΩ can be reasonably defined
and can be represented as a continuous function, then 𝑁detp∇𝑢p𝑥qq is the predicted
deterministic LCF-life at point 𝑥 P BΩ.

The usual approach in reliability statistics [114] is to choose the deterministic life
prediction as a scale variable of a failure time distribution. Moreover, Weibull dis-
tributions are widely used in technical reliability analysis. Recall that the Weibull
distribution with scale parameter 𝜂 and shape parameter 𝑚 is defined by the cumu-
lative distribution function 𝐹 p𝑡q “ 1´ e´p

𝑡
𝜂 q

𝑚

for 𝑡 ą 0 and zero otherwise.

Definition 4.1.13 (Local Weibull Model for LCF). For 𝑚 ě 1, the strain and surface
driven crack initiation model (recall Definition 4.1.6) with independent increments of
first order, that is defined by

𝜚vol “ 0, 𝜚surp𝑡,∇𝑢q “
𝑚

𝑁detp∇𝑢q

ˆ

𝑡

𝑁detp∇𝑢q

˙𝑚´1

,

is called the local (probabilistic) Weibull model for LCF. The associated optimal reli-
ability problem, as given in Definition 4.1.5 and Lemma 4.1.7, is called the optimal
reliability problem for LCF. Here, we employ the convention 1

8
“ 0.

The model could be defined for both 𝒯 “ N0 and 𝒯 “ clpRě0q, but the second
option is used more often. In this case, ℱsurp∇𝑢q “ p 𝑡

𝑁detp∇𝑢q
q𝑚.

Proposition 4.1.14 (Properties of the Local Weibull Model for LCF, [60, Proposition
3.4]). Let the conditions of Definition 4.1.6 be fulfilled such that ‖ 1

𝑁detp∇𝑢q
‖𝐿𝑚pBΩq ă 8

for some 𝑚 ą 1 and for all 𝑓 P 𝒱vol, 𝑔 P 𝒱sur, and Ω P 𝒪. Then,

(i) the local probabilistic Weibull model for LCF actually induces a first order local
crack initiation model, i.e., the associated measure 𝜌Ω are Radon measures.

(ii) the intensities of this model are 0-regular, i.e., are continuous functions of ∇𝑢.

(iii) the crack initiation time 𝑇Ω is Weibull distributed with shape parameter 𝑚 and
scale parameter 𝜂 “ ‖ 1

𝑁detp∇𝑢q
‖´1
𝐿𝑚pBΩq.
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Notch Support Effect

When loads acting on components with inhomogeneous geometries where, e.g., notches
exist, these components exhibit domains of concentrated stress at the respective loca-
tion. This stress concentration leads to inhomogeneous stress fields. Thus, domains
near the surface are quickly plastically strained while domains further inside the body
still support the structure as they experience smaller stresses and therefore impede
failure. In reality, the predicted crack initiation life of components with inhomo-
geneous feature are therefore higher than predicted by the Coffin-Manson-Basquin
equation (4.2). To approach this phenomenon, known as notch support effect, Siebel
et al. [103] proposed to shift LCF life prediction models such as the CMB equation
to higher life by using a notch support factor 𝑛𝒳 . We model 𝑛𝒳 as a function of the
normalized von Mises stress gradient

𝒳 p𝑥q “ 1
𝜎𝑣p𝑥q

¨∇𝜎𝑣p𝑥q, for 𝑥 P BΩ

at the surface of the component which depends on material dependent notch support
parameter 𝐴 and 𝑘. These parameters are simultaneously derived with the CMB
parameters from LCF test data as described in Section 1.3 in [79]. By replacing
the maximum strain value 𝜀el´pl

𝑎 in the CMB equation (4.2) by 𝜀el´pl
𝑎 {𝑛𝒳 , we lift the

Wöhler curve along the 𝜀el´pl
𝑎 -axis to higher strain values as 𝑛𝑥 ě 1 for all 𝒳 ě 0. A

numerical validation for this assertion is provided in [79] and [80]. In the extended
probabilistic LCF model, all strain values 𝜀el´pl

𝑎 are divided by the respective local
notch support factor 𝑛𝒳 p𝑥q at every integration point. Thus, the values of 𝑁detp∇2𝑢q

are obtained by inverting the equation

𝜀el´pl
𝑎

𝑛𝒳 p𝒳 p𝑥qq
“
𝜎1𝑓
𝐸
p2𝑁𝑖q

𝑏
` 𝜀1𝑓 p2𝑁𝑖q

𝑐.

This implies that 𝑁det depends on the second order derivative of the displacement
field 𝑢. We also note that in addition to the notch support effect, we also have a
statistical size effect which plays an important role in the LCF life of irregularly
shaped components, as critical stresses usually occur in confined domains which are
small compared to the entire component.
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4.2 A Multi-Criteria Shape Optimization Problem

Shape optimization is an indispensable mathematical subject for the design and con-
struction of industrial structures. The optimization of the geometry and topology of
structural layout has quite an impact on the performance of structures and the effi-
cient use of materials. For example, mechanical elements of an aircraft and spacecraft
have to satisfy, simultaneously, very strict criteria on mechanical performance while
weighing as little as possible. The optimization process of these compontents consists
of minimizing several loss (or cost) functionals, which represent the demands on the
element, while, at the same time, satisfying specific constraint, as, e.g., thickness,
strain energy, displacement bounds, or solving boundary value problems standing for
physical phenomenas which the component is subjected to. These strict constraints
make the search for an optimal shape far from trivial, and often, simplifications of
the real world applications are needed in order to be able to solve these problems.
For example, we optimize over a set of admissible shapes representing the compo-
nents. The admissible shapes are given by open and bounded sets whose topology is
given, e.g., it may be simply connected or doubly connected. As on these domains
boundary value problems take place, the boundary of the domains, which represent
the compontent, have to fulfill regularity conditons as, e.g., smoothness or piecewise
smoothness. Further, the objective functionals may need to depend continuously on
the solutions to the boundary value problems.

In the first section, we give an abstract framework in which our multi-physics
shape optimization problem is described, and in which it possesses at least one optimal
solution in terms of Pareto optimality. This framework, we define below, is an multi-
criteria extension of the uni-criteria setting presented in [65, Chapter 2].

4.2.1 General Definitions

We denote a family of admissible shapes by 𝒪̃ and for every shape Ω P 𝒪̃ we denote
by 𝑉1pΩq, . . . , 𝑉𝑚pΩq, 𝑚 P N state spaces of real-valued functions on Ω. Consider
a sequence of shapes pΩ𝑛q𝑛PN in 𝒪̃, and let Ω P 𝒪̃. Assuming a topology on the
shape space 𝒪̃ is given, the convergence of Ω𝑛 against Ω is denoted by Ω𝑛

𝒪̃
ÝÑ Ω as

𝑛Ñ 8. For a sequence of functions p𝑦𝑛q𝑛PN, with 𝑦𝑛 P
Ś𝑚

𝑖“1 𝑉𝑖pΩ𝑛q for all 𝑛 P N, we
denote the convergence against some 𝑦 P

Ś𝑚
𝑖“1 𝑉𝑖pΩq with respect to a given topology

on
Ś𝑚

𝑖“1 𝑉𝑖pΩq with 𝑦𝑛 ù 𝑦 as 𝑛 Ñ 8. We assume that for every Ω P 𝒪̃ one
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can solve uniquely a given set of state problems, e.g., a set of PDEs or variational
inequalities. By associating the corresponding unique solutions 𝑣𝑖,Ω P 𝑉𝑖pΩq with
Ω P 𝒪̃, one obtains the map 𝑣𝑖 : Ω ÞÑ 𝑣𝑖,Ω P 𝑉𝑖pΩq. Let 𝒪 be a subfamily of 𝒪̃, then
𝒢 “ tpΩ, 𝑣Ωq : Ω P 𝒪u is called the graph of the mapping 𝑣 :“ p𝑣1, . . . , 𝑣𝑚q. A cost
functional 𝐽 on 𝒪̃ is given by a map 𝐽 : pΩ, 𝑦q ÞÑ 𝐽pΩ, 𝑦q P R, where Ω P 𝒪̃ and
𝑦 P

Ś𝑚
𝑖“1 𝑉𝑖pΩq. Then, a vector of 𝑙 cost functionals is defined by 𝐽 :“ p𝐽1, . . . , 𝐽𝑙q, and

the image of 𝒪 (or 𝒢) under 𝐽 is denoted with 𝒴 Ă R𝑙. For the sake of convenience,
we shall write 𝐽pΩ, 𝑣Ωq :“ p𝐽1pΩ, 𝑣Ωq, . . . , 𝐽𝑙pΩ, 𝑣Ωqq, and, in addition, we make use of
the notation ∇𝑣Ω :“ p∇𝑣1,Ω, . . . ,∇𝑣𝑚,Ωq.

Definition 4.2.1 (Pareto optimality). Consider a subfamily 𝒪 of 𝒪̃ with correspond-
ing graph 𝒢 to given state spaces 𝑉 “ p𝑉1, . . . , 𝑉𝑚q. We call a point pΩ˚, 𝑣Ω˚q P 𝒢
Pareto optimal with respect to cost functionals 𝐽 “ p𝐽1, . . . , 𝐽𝑙q, if there is no pΩ, 𝑣Ωq P

𝒢 such that 𝐽𝑖pΩ, 𝑣Ωq ď 𝐽𝑖pΩ˚, 𝑣Ω˚q for all 1 ď 𝑖 ď 𝑙 and 𝐽𝑗pΩ, 𝑣Ωq ă 𝐽𝑗pΩ˚, 𝑣Ω˚q for
some 𝑗 P t1, . . . , 𝑙u. The associated value 𝐽pΩ˚, 𝑣Ω˚q is called non-dominated.

Let 𝒴 :“ 𝐽p𝒢q “ t𝐽pΩ, 𝑣Ωq : pΩ, 𝑣Ωq P 𝒢u denote the image of the graph 𝒢 under
the objective functionals mapping 𝐽 . For a set of Pareto optimal points, we can define
𝒴𝑁 :“ t𝐽pΩ, 𝑣Ωq P 𝒴 : 𝐽pΩ, 𝑣Ωq is non-dominated in 𝒴u, i.e., the corresponding
Pareto front which lies by definition on the boundary of 𝒴 .

Definition 4.2.2 (Multi-Criteria Shape Optimization Problem). Consider a family
𝒪 of admissible shapes which is a subspace of a shape space 𝒪̃. For every Ω P 𝒪̃,
let 𝑣Ω “ p𝑣1,Ω, . . . , 𝑣𝑚,Ωq be the unique solutions to given state problems on Ω, and let
𝐽 “ p𝐽1, . . . , 𝐽𝑙q be cost functionals on 𝒪̃. We define an optimal shape design problem
by

#

Find Ω˚ P 𝒪 such that
pΩ˚, 𝑣Ω˚q is Pareto optimal with respect to 𝐽.

(4.3)

The next theorem states conditions on the existence of potentially multiple solu-
tions to the optimal shape design problem (4.3). It outlines the succeeding sections,
where we define, exemplary, a multi-physics shape optimization problem, and provide
existence results for optimal shapes in the given context.

Theorem 4.2.3. Let 𝒪̃ be a family of shapes with a subfamily of admissible shapes
𝒪. Consider cost functionals 𝐽 “ p𝐽1, . . . , 𝐽𝑙q on 𝒪̃ and assume for each Ω P 𝒪̃ we
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have given state problems with state spaces 𝑉 pΩq “ p𝑉1pΩq, . . . , 𝑉𝑚pΩqq such that each
state problem has a unique solution 𝑣𝑖,Ω P 𝑉𝑖pΩq, 1 ď 𝑖 ď 𝑚. Let the following two
assumptions hold true:

(i) Compactness of 𝒢 “ tpΩ, 𝑣Ωq : Ω P 𝒪u:
Every sequence pΩ𝑛, 𝑣Ω𝑛q𝑛PN Ă 𝒢 has a subsequence pΩ𝑛𝑘

, 𝑣Ω𝑛𝑘
q𝑘PN that satisfies

Ω𝑛𝑘

𝒪̃
ÝÑ Ω, 𝑘 Ñ 8

𝑣Ω𝑛𝑘
ù 𝑣Ω, 𝑘 Ñ 8,

for some pΩ, 𝑣Ωq P 𝒢.

(ii) Lower semicontinuity of 𝐽𝑖:
Let pΩ𝑛q𝑛PN be a sequence of shapes in 𝒪̃ and p𝑦𝑛q𝑛PN a sequence of functions
such that 𝑦𝑛 P 𝑉 pΩ𝑛q for all 𝑛 P N. Consider some elements Ω, 𝑦 in 𝒪̃ and
𝑉 pΩq, respectively. Then,

Ω𝑛
𝒪̃
ÝÑ Ω, 𝑛Ñ 8

𝑦𝑛 ù 𝑦, 𝑛Ñ 8

+

ùñ lim inf
𝑛Ñ8

𝐽𝑖pΩ𝑛, 𝑦𝑛q ě 𝐽𝑖pΩ, 𝑦q,

for all 1 ď 𝑖 ď 𝑙.

Then, the multi-criteria shape design problem (4.3) possesses at least one solution and
the Pareto front covers all non-dominated points in clp𝒴q, i.e., 𝒴𝑁 “ clp𝒴q𝑁 , the set
of non-dominated points in the closure of 𝒴.

Proof. First, we prove the existence of an optimal shape. [65, Theorem 2.10] shows
that, in this setting, a single lower semicontinuous cost functional possesses at least
one minimum. We apply this theorem, without loss of generality, to cost functional
𝐽1 and minimize it on 𝒢. Due to the compactness of 𝒢 and the lower semicontinuity
of 𝐽1, the resulting set of arguments of the minimum arg minpΩ,𝑣ΩqP𝒢 𝐽1 is also com-
pact. Hence, we can again apply [65, Theorem 2.10] to the next cost functional 𝐽2

and minimize it on arg minpΩ,𝑣ΩqP𝒢 𝐽1 as well. We continue this procedure until we
minimized each cost functional on its preceding cost functionals set of arguments of
the minimum. The last set then contains at least one Pareto optimal point.

For the second assertion, we recall that 𝒴𝑁 lies on the boundary of 𝒴 , and thus
it is an immediate consequence that 𝒴𝑁 Ď clp𝒴q𝑁 . Conversely, let 𝐽˚ P clp𝒴q𝑁 .
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Consider a sequence p𝐽pΩ𝑛, 𝑣Ω𝑛qq𝑛PN Ă 𝒴 with 𝐽pΩ𝑛, 𝑣Ω𝑛q Ñ 𝐽˚ P clp𝒴q𝑁 as 𝑛Ñ 8.
We assume that the corresponding sequence pΩ𝑛, 𝑣Ω𝑛q𝑛PN Ă 𝒢 converges to some
pΩ, 𝑣Ωq P 𝒢 as well (since 𝒢 is compact we can always find such a subsequence). Due
to the lower semicontinuity of 𝐽 , we have

𝐽𝑖pΩ, 𝑣Ωq ď lim
𝑛Ñ8

𝐽𝑖pΩ𝑛, 𝑣Ω𝑛q “ 𝐽˚𝑖 , for all 1 ď 𝑖 ď 𝑙.

The Pareto optimality of 𝐽˚ “ 𝐽pΩ˚, 𝑣Ω˚q gives that 𝐽pΩ, 𝑣Ωq “ 𝐽pΩ˚, 𝑣Ω˚q, and since
𝐽pΩ, 𝑣Ωq P 𝒴 , it follows that 𝐽˚ P 𝒴 and therefore clp𝒴q𝑁 Ď 𝒴𝑁 .

4.3 Multi-Physics Shape Optimization

Shape optimization techniques have to consider the various different physical pro-
cesses a mechanical component is exposed to. In practice, a component is subjected
to more than one simultaneously occurring physical processes as, e.g.,internal and
external flows of fluids, centrifugal forces, or thermal effects occurring during service.
Thus, a multi-physics design approach is necessary and the different physical fields
have to be coupled. In this section, we present an example for an multi-physics shape
optimization system, where we model a gas turbine vane lying within a shroud in
which a fluid is flowing. Our goal is to maximize its lifespan while it shall be as en-
ergy efficient as possible. We present a simple toy model, which describes the material
behavior of a vane when it is exposed to the pressure that is inflected by the fluid onto
the vane. Therefore, we couple the elasticity equation, presented in Subsection 2.4.1,
which describes the deformations of a shape Ω under volume and surface loadings,
with the potential flow equation from Subsection 2.4.2, which models the fluid flowing
past the vane.

4.3.1 Multi-Physics Equation Coupling

We consider the system of the potential flow equation given in Subsection 2.4.2 and
adjust it so that, in this setting, the elasticity equation is on the shape Ω solvable
as well. For this purpose, we introduce an open ball 𝐵 :“ 𝐵𝑟, with radius 𝑟 ą 0,
where we clutch the component and which is fixed and excluded from the optimization
process. Assuming that clp𝐵q Ă intpΩz𝐷q, we define the domain Ω𝐵 “ intpΩz𝐵q. For
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the boundary conditions, we get as Dirichlet boundary Γ𝐷 “ B𝐵 and as Neumann
boundary Γ𝑁 “ BΩ.

As we already suggested, the surface force 𝑔 in equation (2.11) is given by the
pressure the fluid exerts onto the component. The potential flow equation (2.13)
yields the velocity field 𝑣 at the part of the boundary of Ω that lies within the shroud
𝐷. Assuming that the total energy density, also denoted as stagnation pressure 𝑝st,
is constant at the inlet, we can derive the static pressure 𝑝s from Bernoulli’s law

𝑝st “
1
2𝜌|∇𝜑|

2
` 𝑝s ô ´𝑝s “

1
2𝜌|∇𝜑|

2
´ 𝑝st, (4.4)

where 𝜌 is the density of the fluid at all points in the fluid. The surface force 𝑔 on the
component Ω is then described by the directed static pressure ´𝑝s𝑛, where 𝑛 denotes
the unitary outward normal on BΩ. Therefore, by continuously extending 𝑝s to be
zero on BΩz𝐷, the surface load 𝑔 is given by

𝑔 “ 𝑔s “ ´𝑝s𝑛 “

ˆ

1
2𝜌|∇𝜑|

2
´ 𝑝st

˙

𝑛.

As Ω possesses, by the construction of the potential flow equation, a Hölder continuous
boundary of class 𝐶𝑘,𝛼 (with 𝑘 ě 2), the outward normal 𝑛 is a function of class
𝐶𝑘´1,𝛼. Additionally, since we model an incompressible flow, the density 𝜌 of the
fluid is constant as well as the stagnation pressure 𝑝st by assumption. Therefore, as
the flow potential 𝜑 lies in 𝐶2,𝛼pclp𝐷zΩq,Rq (see Theorem 2.4.16), the surface load 𝑔s

is a function in 𝐶1,𝛼pBΩ,R3q. In summary, the elasticity equation coupled with the
potential flow equation can be stated as

$

’

’

&

’

’

%

´∇ ¨ 𝜎p𝑢q “ 𝑓 on Ω𝐵,

𝑢 “ 0 along B𝐵,
𝑛 ¨ 𝜎p𝑢q “ 𝑔s along BΩ.

(4.5)

By Theorem 2.4.15, for any volume force 𝑓 P 𝐶𝑘´2,𝛼pclpΩ𝐵q,R3q, there exists a unique
solution 𝑢Ω P 𝐶

2,𝛼pclpΩ𝐵q,R3q, with corresponding Schauder estimate

‖𝑢Ω‖𝐶2,𝛼pΩ𝐵 ,R3q ď 𝐶
`

‖𝑓‖𝐶0,𝛼pΩ𝐵 ,R3q ` ‖𝑔s‖𝐶1,𝛼pBΩ,R3q ` ‖𝑢Ω‖𝐶0pΩ𝐵 ,R3q

˘

. (4.6)

At the same time, due to the regularity assumptions on Ω, the potential flow equa-
tion (2.13) possesses, by Theorem 2.4.16, for any Neumann boundary conditon 𝑔 P
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𝐶1,𝛼p𝐷,Rq a unique solution 𝜑Ω P 𝐶
2,𝛼pclp𝐷zΩq,Rq with Schauder estimate

‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ď 𝐶
`

‖𝑔‖𝐶1,𝛼pB𝐷zBp𝐷XΩq,Rq ` ‖𝜑Ω‖𝐶0,𝛼p𝐷zΩ,Rq
˘

. (4.7)

Henceforth, we shall always associate in this chapter a function 𝑔 with the Neumann
boundary conditon of the potential flow equation, and a function 𝑔𝑠 with the Neumann
boundary conditon, or the surface load, of the elasticity equation.

4.3.2 Admissible Shapes and Criteria

Our problem formulation starts with choosing a space of admissible shapes 𝒪 that
contains all possible candidates among which an optimal one is sought. In order
to satisfy the assumptions of Theorem 4.2.3, the shape space shall lie compact in a
larger system 𝒪̃. In addition, the definition of 𝒪 has to respect all technical constraint
characterizing the problem which means that, in particular, for each shape Ω P 𝒪̃
the coupled multi-physics system of Subsection 4.3.1 must possess a unique solution.
Hence, it is initially clear that 𝒪 is a space consisting of compact domains that possess
Hölder continuous boundaries. Within the shape space, we want to be able to freely
deform one shape into another. For this purpose we introduce the shapes Ω0 and Ωext,
which suffice the construction of Subsection 4.3.1. The shape Ω0 serves as a baseline
domain which we deform continuously into various shapes in order to construct a
shape space. Ωext provides an upper bound for the shapes, i.e., any shape in 𝒪 is a
subset of Ωext, and therefore Ω0 Ă Ωext in particular. Any of these transforms which
deform Ω0 must retain the assumptions of Subsection 4.3.1. All these considerations
lead to the following definitions. Let 𝐾 ą 0 be a positive constant, then the elements
of the set

𝑈ad
𝑘,𝛼 :“ 𝑈ad

𝑘,𝛼pΩext
q :“

 

𝜓 P 𝒟𝑘,𝛼
pΩext

q : 𝜓æclpΩz𝐷q “ id, ‖𝜓‖𝐶𝑘,𝛼pΩext,R3q ď 𝐾,

‖𝜓´1‖𝐶𝑘,𝛼pΩext,R3q ď 𝐾
(

are called design variables. These design variables induce, in a natural way, the set
of admissible shapes

𝒪𝑘,𝛼 :“ 𝒪𝑘,𝛼pΩ0,Ωext
q :“

 

𝜓pΩ0q : 𝜓 P 𝑈ad
𝑘,𝛼pΩext

q
(

,
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assigned to Ω0. In order to measure the distance between two shapes in 𝒪𝑘,𝛼, we need
a suited metric. For two non-empty subsets Ω, Ω1 of a metric space p𝑀,𝑑q we define
their Hausdorff distance by

𝑑𝐻pΩ,Ω1q :“ maxtsup
𝑥PΩ

inf
𝑦PΩ1

𝑑p𝑥´ 𝑦q, sup
𝑦PΩ1

inf
𝑥PΩ

𝑑p𝑥´ 𝑦qu.

Since by definition the shapes in 𝒪𝑘,𝛼 are compact, the Hausdorff distance defines
a metric on 𝒪𝑘,𝛼. Furthermore, in Corollary 4.4.4 we see that the metric space
p𝒪𝑘,𝛼, 𝑑𝐻q is also compact.

Lemma 4.3.1. Let 𝑘 ě 1 and 𝛼 P s0, 1s, then the shape space 𝒪𝑘,𝛼 satisfies a uniform
hemisphere condition and a uniform cone condition.

Proof. First, we show that 𝒪𝑘,𝛼 satisfies a uniform hemisphere condition. We consider
a set of hemisphere transforms T1, . . . ,T𝑚, with 𝑚 P N, straightening piecewise the
boundary of the baseline shape Ω0, and define 𝐶T :“ max𝑖“1,...,𝑚‖T𝑖‖𝐶𝑘,𝛼pΩ0,R3q. By
definition, for each shape Ω P 𝒪𝑘,𝛼 we have Ω “ 𝜓pΩ0q with some admissible variable
𝜓 P 𝑈ad

𝑘,𝛼. Consequently, the compositions T𝑖 ˝ 𝜓´1, 1 ď 𝑖 ď 𝑚, define a set of
hemisphere transforms for Ω. Since 𝑘 ě 1, the functions T and 𝜓´1 are Lipschitz
continuous up to order 𝑘 ´ 1, and thus the hemisphere transforms T𝑖 ˝ 𝜓´1 are a
subset of 𝐶𝑘,𝛼p𝜓pΩ0q,R3q. The admissible variables are, by definition, uniformly
bounded by some constant 𝐾 ą 0 in their respective norm, and hence, it follows
directly that max𝑖“1,...,𝑚‖T𝑖 ˝ 𝜓´1‖𝐶𝑘,𝛼pΩ,R3q ď 𝐾𝐶T uniformly with respect to 𝒪𝑘,𝛼.

Next, as 𝑘 ě 1, the shape Ω0 is a domain with Lipschitz boundary and therefore
fulfills a uniform cone condition. Since, in addition, every transform 𝜓 P 𝑈ad

𝑘,𝛼pΩextq

and its inverse is bounded by 𝐾, we have

1
𝐾
|𝑥´ 𝑦| ď |𝜓p𝑥q ´ 𝜓p𝑦q| ď 𝐾|𝑥´ 𝑦|, for all 𝑥, 𝑦 P Ω0. (4.8)

Let 𝐶p𝑥q be the cone associated with the cone condition satisfied by Ω0, where 𝑥 P BΩ0

denotes the vertex. Further, we denote with 𝐶𝐾p𝑥q the cone where we decreased the
radius of 𝐶 with factor 1

𝐾
. Then, by the lower bound in (4.8), we can always place

the shrinked cone 𝐶𝐾 within the transformed cone 𝜓p𝐶p𝑥qq at the boundary point
𝜓p𝑥q P B𝜓pΩ0q for every 𝜓 P 𝑈ad

𝑘,𝛼pΩextq and 𝑥 P BΩ0. Consequently, the cone 𝐶𝐾
provides the uniform cone condition for 𝒪𝑘,𝛼.

Now, to specify a shape optimization problem, it only remains to define a class
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of cost functionals which depend lower semicontinuously on the shapes in 𝒪𝑘,𝛼 and
respect the demands and constraints of the component.

Definition 4.3.2 (Local Cost Functionals). Let 𝒪 Ă 𝒫pR3q denote a shape space
with corresponding state spaces 𝑉1pΩq, . . . , 𝑉𝑚pΩq, Ω P 𝒪 and graph 𝒢 :“ tpΩ, 𝑣Ωq :
Ω P 𝒪u. Assuming that 𝑉𝑖pΩq Ď 𝐶𝑘pΩ,R𝑑𝑖q for all 1 ď 𝑖 ď 𝑚, then the local cost
functional on 𝒢 is given by

𝐽pΩ, 𝑣Ωq :“
ż

Ω
ℱvol p𝑥, 𝑣Ω,∇𝑣Ω, . . . ,∇𝑘𝑣Ωq d𝑥

`

ż

BΩ
ℱsur p𝑥, 𝑣Ω,∇𝑣Ω, . . . ,∇𝑘𝑣Ωq d𝐴,

(4.9)

where ℱvol, ℱvol : R𝑟 Ñ clpRě0q and 𝑟 “ 3 `
ř𝑚
𝑖“1

ř𝑘
𝑗“1 𝑑

𝑗
𝑖 . We denote the volume

integral and surface integral with

𝐽volpΩ, 𝑣Ωq :“
ż

Ω
ℱvol p𝑥, 𝑣Ω,∇𝑣Ω, . . . ,∇𝑘𝑣Ωq d𝑥,

𝐽surpΩ, 𝑣Ωq :“
ż

BΩ
ℱsur p𝑥, 𝑣Ω,∇𝑣Ω, . . . ,∇𝑘𝑣Ωq d𝐴.

(4.10)

Assuming 𝐽vol, 𝐽sur P 𝐶
0pR𝑟,Rq and 𝑣 P 𝐶𝑘pΩ,R𝑑q, with

ř𝑚
𝑖“1 𝑑𝑖, we will show in

Lemma 4.4.9 that these cost functionals not only depend lower semicontinuously on
the shapes Ω P 𝒪𝑘,𝛼 but also continuously. In the following, we present two examples
of cost functionals connected with the linear elasticity equation and the potential flow
equation, which one could possibly implement in this optimization framework.

4.3.3 Examples

Optimal Reliability

Low cycle fatigue (LCF) driven surface crack initiation is particularly important for
the reliability of highly loaded engineering parts as turbine components [79, 99]. The
design of such mechanical elements therefore requires a model that is capable of
accurately quantifying risk levels for LCF crack initiation, crack growth and ultimate
failure. Here we refer to the model that we introduced in Subsection 4.1.1 that models
the statistical size effect but also includes the notch support factor, by using stress
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gradients arising from the coupled elasticity equation (4.5):

𝐽𝑅pΩ, 𝑢Ωq :“
ż

𝐷XBΩ

ˆ

1
𝑁detp∇𝑢Ω,∇2𝑢Ωp𝑥qq

˙𝑚

d𝐴. (4.11)

Ω represents the shape of the component, 𝑢Ω is the displacement field and the solution
to the coupled elasticity equation on Ω𝐵, 𝑁det is the deterministic number of life cycles
at each point of the surface of Ω and 𝑚 is the Weibull shape parameter. The probabil-
ity of failure (PoF) after 𝑡 load cycles is then given as 𝑃𝑜𝐹 p𝑡q “ 1´e´𝑡𝑚𝐽𝑅pΩ,𝑢Ωq. Min-
imizing the probability of failure thus clearly is equivalent to minimizing 𝐽𝑅pΩ, 𝑢Ωq.

By Lemma 4.1.11, 𝑁det is a smooth function on Rě0. In addition, by Theorem
2.4.15, the solution 𝑢Ω is a function in 𝐶2,𝛼pclpΩ𝐵q,R3q for any shape Ω P 𝒪2,𝛼. Thus,
as we see later, 𝐽𝑅 defines a continuous cost functional on 𝒪2,𝛼

Efficiency

The second primary objective of a vane we use as an example is the energy efficiency
that is connected with the viscosity of the fluid flowing through the shroud. Viscosity
is a measure which describes the internal friction of a moving fluid. In a laminar fluid
the effect of viscosity is limited to a thin layer near the surface of the component.
The fluid does not slip along the surface, but adheres to it. In the case of potential
flow, there is a transition from zero velocity at the surface to the full velocity which is
present at a certain distance from the surface. The layer where this transition takes
place is called the boundary layer or frictional layer. The thickness of the boundary
layer is not constant but (roughly) proportional to the square root of the kinematic
viscosity 𝜈 and is growing from the leading edge, the location where the fluid first
impinge on the surface of the component. Friction of the fluid on the surface leads to
energy dissipation. A coefficient for the inflicted local wall shear stress is given by

𝜏𝑤p𝑥q “
0.322 ¨ 𝜇‖𝑣Ω‖ 3

2
a

𝜈 ¨ distLEp𝑥q
, (4.12)

where we denote with ‖¨‖ the Euclidean norm, 𝜇 is the viscosity, and distLE

the distance to the leading edge along the component’s surface BΩ. For a detailed
introduction to boundary layer theory one can see, e.g., [23, 97]. With this coefficient
one can derive an estimate for the loss of power due to friction given by
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𝐽𝐸pΩ, 𝜑Ωq :“
ż

𝐷XBΩ
‖𝑣Ω‖𝜏𝑤 dA. (4.13)

Again, Ω is a shape in 𝒪𝑘,𝛼 and 𝑣Ω “ ∇𝜑Ω originates from the potential flow
equation (2.13). Even though 𝜏𝑤 does not satisfy the continuity assumptions we can
find, since we see later that 𝑣Ω is uniformly bounded on 𝒪𝑘,𝛼, an integrable majorant
for |𝑣Ω|𝜏𝑤 for every Ω P 𝒪𝑘,𝛼 which implies the continuity of 𝐽𝐸 on 𝒪𝑘,𝛼, by applying
Lebesgue’s Dominated Convergence Theorem.
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4.3.4 Multi-Physics Shape Optimization Problem

At last, we are able to merge all the needed parts and state our multi-physics
shape optimization problem. Consider the space p𝒪𝑘,𝛼, 𝑑𝐻q of admissible shapes
and let 𝐽1, . . . , 𝐽𝑙 be local cost functionals on the Graph 𝒢 :“ tpΩ, 𝑢Ω, 𝜑Ωq : Ω P

𝒪𝑘,𝛼, 𝑢Ω solves p4.5q on Ω𝐵, 𝜑Ω solves p2.13q on 𝐷zΩu. The multi-physics shape op-
timization problem is defined by:

#

Find Ω˚ P 𝒪𝑘,𝛼 such that
pΩ˚, 𝑢Ω˚ , 𝜑Ω˚q is Pareto optimal with respect to 𝐽.

(4.14)

4.4 Existence of Pareto Optimal Shapes

A well-posed shape optimization problems must characterize the underlying engineer-
ing task as well as possible while, at the same time, being solvable at all. Showing
that the multi-physics shape optimization problem (4.14) possesses at least one Pareto
optimal solution includes, besides proving the lower semicontinuity of the local cost
functionals (see Definition (4.3.2)), proving the compactness of the graph 𝒢. As 𝒢 de-
pends on the solution to the multi-physics boundary value problem, uniform bounds
for the corresponding solution spaces are needed. In the following subsection, we
derive uniform bounds for the unique solutions 𝑢Ω of (4.5) and 𝜑Ω of (2.13), which
holds for every Ω P 𝒪𝑘,𝛼.

4.4.1 Uniform Bounds for Solution Spaces

For both, the elasticity equation and the potential flow equation, the approach to
derive a uniform bound is the same. We further investigate estimate (4.6) and (4.7)
in order to obtain a uniform bound in the shape space 𝒪𝑘,𝛼.

Lemma 4.4.1. Let 𝜑Ω be the unique solution to the potential flow problem (2.13) on
Ω P 𝒪𝑘,𝛼, with 𝑘 ě 2 and 𝛼 P s0, 1s. Then, there exists a constant 𝑀𝜑 ą 0 such that
for every Ω P 𝒪𝑘,𝛼 we have

‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ď𝑀𝜑.
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Proof. We consider Schauder estimate (4.7):

‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ď 𝐶
`

‖𝑔‖𝐶1,𝛼pB𝐷zBp𝐷XΩq,Rq ` ‖𝜑Ω‖𝐶0,𝛼p𝐷zΩ,Rq
˘

.

In general, the constant 𝐶 potentially depends on the domain Ω; see, e.g., [55, The-
orem 6.30]. However, the dependency of 𝐶 on Ω is through the ellipticity of the
differential operator, which depends on the hemisphere transforms that are used to
straighten BΩ in order to prove (4.7) for neighbourhoods near the boundary. The con-
stant 𝐶 reflects the upper bound of the hemisphere transforms and since the shape
space 𝒪𝑘,𝛼 possesses a uniform hemisphere condition (see Lemma 4.3.1), this upper
bound is independent with respect to 𝒪𝑘,𝛼.

Next, ‖𝑔‖𝐶1,𝛼pB𝐷zBp𝐷XΩq,Rq is obviously bounded by ‖𝑔‖𝐶1,𝛼pB𝐷,Rq. Moreover, since
𝒪𝑘,𝛼 satisfies a uniform cone condition (see Lemma 4.3.1), Lemma 2.2.2 implies that
for every 𝜀 ą 0 there is a constant 𝐶𝜀 ą 0 such that

‖𝜑Ω‖𝐶0,𝛼p𝐷zΩ,Rq ď 𝜀‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ` 𝐶𝜀‖𝜑Ω‖𝐻1p𝐷zΩ,Rq.

Combining all of the above considerations and choosing 𝜀 ă 1
𝐶

yields

‖𝜑‖𝐶2,𝛼p𝐷zΩ,Rq ď 𝐶
`

‖𝑔‖𝐶1,𝛼pB𝐷zBp𝐷XΩq,Rq ` ‖𝜑Ω‖𝐶0,𝛼p𝐷zΩ,Rq
˘

ď
1

1´ 𝜀𝐶
`

𝐶‖𝑔‖𝐶1,𝛼pB𝐷,Rq ` 𝐶𝜀‖𝜑Ω‖𝐻1p𝐷zΩ,Rq
˘

.

Lastly, with the same approach as in the proof to Theorem 2.4.17, one can show that
the a-priori estimate

‖𝜑Ω‖𝐻1p𝐷zΩ,Rq ď 𝐶𝑃 |𝐷|‖𝑔‖𝐶1pB𝐷,Rq

holds for all shapes Ω P 𝒪𝑘,𝛼. Hence, there exists a constant 𝑀 ą 0 such that

‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ď𝑀𝜑,

for all Ω P 𝒪𝑘,𝛼.

Lemma 4.4.2. Let 𝑢Ω be the unique solution to (4.5) on Ω P 𝒪𝑘,𝛼, with 𝑘 ě 2 and
𝛼 P s0, 1s. Then, there exists a constant 𝑀𝑢 ą 0 such that for every Ω P 𝒪𝑘,𝛼 we have

‖𝑢Ω‖𝐶2,𝛼1 pΩ𝐵 ,R3q ď𝑀𝑢,
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Proof. Following the same steps as in the proof to Lemma 4.4.1, we first state
Schauder estimate (4.6):

‖𝑢Ω‖𝐶2,𝛼pΩ𝐵 ,R3q ď 𝐶
`

‖𝑓‖𝐶0,𝛼pΩ𝐵 ,R3q ` ‖𝑔s‖𝐶1,𝛼pBΩ,R3q ` ‖𝑢Ω‖𝐶0pΩ𝐵 ,R3q

˘

,

where, as explained above, the constant 𝐶 can be choosen independently of the shape
Ω P 𝒪𝑘,𝛼. The norm ‖𝑓‖𝐶0,𝛼pΩ,R3q of volume force 𝑓 is bounded by ‖𝑓‖𝐶0,𝛼pΩext,R3q

and the norm ‖𝑔s‖𝐶1,𝛼pBΩ,R3q can be further estimated as follows. Recalling that the
surface force is given by 𝑔s “

`1
2𝜌|∇𝜑|

2 ´ 𝑝st
˘

𝑛, we estimate

‖𝑔s‖𝐶1,𝛼pBΩ,R3q “

⃦⃦⃦⃦
⃦
ˆ

1
2𝜌|∇𝜑Ω|2 ´ 𝑝st

˙

𝑛

⃦⃦⃦⃦
⃦
𝐶1,𝛼pBΩ,R3q

ď
1
2𝜌‖|∇𝜑Ω|

2𝑛‖𝐶1,𝛼pBΩ,R3q ` ‖𝑝st𝑛‖𝐶1,𝛼pBΩ,R3q.

(4.15)

In the proof of Lemma 4.3.1 we constructed, for Ω P 𝒪𝑘,𝛼, 𝐶𝑘,𝛼-continuous hemisphere
transforms which are uniformly bounded in their respective norm. As we can use these
diffeomorphisms as chart mappings to describe the two-dimensional submanifold BΩ,
we can conclude that the unitary normal vector 𝑛 of BΩ is uniformly bounded in
𝒪𝑘,𝛼 with respect to ‖¨‖𝐶1,𝛼pBΩ,R3q. Since 𝑝st is constant and by Lemma 4.4.1 ∇𝜑Ω is
uniformly upper bounded in Ω P 𝒪𝑘,𝛼 with respect to ‖¨‖𝐶1,𝛼pBΩ,R3q, it follows that
(4.15) is uniformly upper bounded in 𝒪𝑘,𝛼 by some constant 𝐿 ą 0.

Next, by Lemma 4.3.1 the shape space 𝒪𝑘,𝛼 possesses a uniform cone condition,
and, hence, we can apply Lemma 2.2.2 which implies that for any 𝜀 ą 0 there is a
constant 𝐶𝜀 ą 0 such that

‖𝑢Ω‖𝐶0,𝛼pΩ𝐵 ,R3q ď 𝜀‖𝑢Ω‖𝐶2,𝛼pΩ𝐵 ,R3q ` 𝐶𝜀‖𝑢Ω‖𝐻1pΩ𝐵 ,R3q.

Combining the above and choosing 𝜀 ă 1
𝐶

gives

‖𝑢Ω‖𝐶2,𝛼pΩ𝐵 ,R3q ď
1` 𝐶
1´ 𝜀𝐶

`

‖𝑓‖𝐶0,𝛼pΩext,R3q ` 𝐿` 𝐶𝜀‖𝑢Ω‖𝐻1pΩ𝐵 ,Rq
˘

Lastly, it remains to show that ‖𝑢Ω‖𝐻1pΩ𝐵 ,R3q is uniformly bounded. For this purpose,
we consider the weak formulation of (4.5)

ż

Ω
𝜀p𝑢q : 𝜎p𝑣q d𝑥 “

ż

Ω
x𝑓, 𝑣y d𝑥`

ż

Γ𝑁

x𝑔s, 𝑣y dA
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on 𝐻1
𝐷pΩ𝐵,R3q “ t𝑢 P 𝐻1pΩ𝐵,R3q : 𝑢 “ 0 along B𝐵u. Now, for every 𝑣 P

𝐻1
𝐷pΩ𝐵,R3q we can find a constant 𝐶 ą 0 that is uniform with respect to 𝒪𝑘,𝛼

such that
𝐶´1‖𝜀p𝑣q‖2

𝐿2pΩ𝐵 ,R3ˆ3q ď

ż

Ω𝐵

𝜎p𝑣q : 𝜀p𝑣q d𝑥,

and, as 𝑓 and 𝑔s are uniformly bounded, also
ˇ

ˇ

ˇ

ˇ

ż

Ω
x𝑓, 𝑣y d𝑥`

ż

Γ𝑁

x𝑔s, 𝑣y d𝐴
ˇ

ˇ

ˇ

ˇ

ď 𝐶‖𝑣‖𝐻1pΩ𝐵 ,R3q.

Applying Korn’s second inequality with some suitable constant 𝐶𝐾 ą 0 then yields

𝐶´1‖𝜀p𝑢Ωq‖2
𝐿2pΩ𝐵 ,R3ˆ3q ď 𝐶‖𝑢Ω‖𝐻1pΩ𝐵 ,R3q ď 𝐶𝐾‖𝜀p𝑢Ωq‖𝐿2pΩ𝐵 ,R3ˆ3q,

which gives that ‖𝑢Ω‖𝐻1pΩ𝐵 ,R3q is bounded by 𝐶𝐶𝐾 , where the constant 𝐶𝐾 may
depends on the shape Ω. Examining the proof to Korn’s second inequality (see, e.g.,
[88]), one can see that the dependence of the constant 𝐶𝐾 on Ω is through the cone
of the uniform cone condition satisfied by Ω. As the shape space 𝒪𝑘,𝛼 satisfies itself
a uniform cone conditon, we have that 𝐶𝐾 is uniform with respect to 𝒪𝑘,𝛼.

4.4.2 Existence Theorem for Pareto Optimal Shapes

Given that 𝑘 ě 2, we can derive from Lemma 4.4.1 and 4.4.2 that for any 0 ă
𝛼1 ă 𝛼 ď 1 the solution spaces 𝒫 :“ t𝜑Ω : Ω P 𝒪𝑘,𝛼u and ℰ :“ t𝑢Ω : Ω P 𝒪𝑘,𝛼u,
formed by solving potential flow equation (2.13) and elasticity equation (4.5) on
𝒪𝑘,𝛼, are compact metric spaces with respect to the norm ‖¨‖𝐶𝑘,𝛼1 as well as the
shape space 𝒪𝑘,𝛼 with respect to the Hausdorff distance 𝑑𝐻 . This subsections first
provides a proof to each of these assertions. Afterwards, we show that the local
cost functionals defined in Definition 4.3.2 are continuous functionals on the graph
𝒢 :“ tpΩ, 𝜑Ω, 𝑢Ωq : Ω P 𝒪𝑘,𝛼u. Then, from Theorem 4.2.3 we can conclude that the
multi-physics shape optimization problem (4.14) possesses at least one Pareto optimal
solution and that the corresponding Pareto front is closed.

Lemma 4.4.3. Let 𝑘 ě 1 and 𝛼 P s0, 1s, then the space of admissible variables
𝑈ad
𝑘,𝛼pΩextq defines a compact space with respect to ‖¨‖𝐶𝑘,𝛼1 pΩext,R3q for all 0 ă 𝛼1 ă

𝛼 ď 1.

Proof. Due to its definition, 𝑈ad
𝑘,𝛼 is bounded with respect to ‖¨‖𝐶𝑘,𝛼pΩext,R3q and there-
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fore, by Lemma 2.2.8, a precompact subset of 𝐶𝑘,𝛼1pΩext,R3q for any 0 ă 𝛼1 ă 𝛼 ď 1.
Since 𝐶𝑘,𝛼1pΩext,R3q is a Banach space, for any sequence p𝜓𝑛q𝑛PN Ă 𝑈ad

𝑘,𝛼 there is a
subsequence p𝜓𝑛𝑙

q𝑙PN that converges against some function 𝜓 P 𝐶𝑘,𝛼1pΩext,R3q with
respect to ‖¨‖𝐶𝑘,𝛼1 pΩext,R3q. Using that ‖𝜓𝑛𝑙

‖𝐶𝑘,𝛼pΩext,R3q ď 𝐾 for all 𝑙 P N, we have for
all 𝛽 P N with |𝛽| “ 𝑘 that

r𝐷𝛽𝜓s𝐶0,𝛼pΩext,R3q ď 2‖𝐷𝛽𝜓 ´𝐷𝛽𝜓𝑛𝑙
‖𝐶0pΩext,R3q ` r𝐷

𝛽𝜓𝑛𝑙
s𝐶0,𝛼pΩext,R3q

ď 2‖𝐷𝛽𝜓 ´𝐷𝛽𝜓𝑛𝑙
‖𝐶0pΩext,R3q `𝐾 ´ ‖𝐷𝛽𝜓𝑛𝑙

‖𝐶0pΩext,R3q

𝑛Ñ8
ÝÑ 𝐾 ´ ‖𝐷𝛽𝜓‖𝐶0pΩext,R3q.

Therefore, 𝜓 is in 𝐶𝑘,𝛼pΩext,R3q with ‖𝜓‖𝐶𝑘,𝛼pΩext,R3q ď 𝐾.
In addition, by the same arguments, it follows that the sequence of inverse p𝜓´1

𝑛𝑙
q𝑙PN

converges to some function 𝜓 P 𝐶𝑘,𝛼pΩext,R3q with ‖𝜓‖𝐶𝑘,𝛼pΩext,R3q ď 𝐾 with respect
to ‖¨‖𝐶𝑘,𝛼1 pΩext,R3q. It is straightforward to show that any bounded set of Hölder
continuous functions is equicontinuous, which gives that 𝜓 “ 𝜓´1 and hence 𝜓 P

𝑈ad
𝑘,𝛼.

Corollary 4.4.4. Let 𝑘 ě 1 and 𝛼 P s0, 1s, then the space of admissible shapes 𝒪𝑘,𝛼

defines a compact space with respect to the Hausdorff distance 𝑑H.

Proof. Let pΩ𝑛q𝑛PN be a sequence of shapes in 𝒪𝑘,𝛼 with associated sequence of ad-
missible variables p𝜓𝑛q𝑛PN Ă 𝑈ad

𝑘,𝛼 such that 𝜓𝑛pΩ0q “ Ω𝑛. Since 𝑈ad
𝑘,𝛼 is compact (see

Lemma 4.4.3) we can find a subsequence p𝜓𝑛𝑙
q𝑙PN that converges against some variable

𝜓 P 𝑈ad
𝑘,𝛼 with respect to ‖¨‖𝐶𝑘,𝛼1 pΩext,R3q for any 0 ă 𝛼1 ă 𝛼 ď 1. Let pΩ𝑛𝑙

q𝑙PN be the
corresponding subsequence of shapes, then

𝑑𝐻pΩ𝑛𝑙
,Ωq “ maxt sup

𝑥PΩ𝑛𝑙

inf
𝑦PΩ
|𝑥´ 𝑦|, sup

𝑦PΩ
inf
𝑥PΩ𝑛𝑙

|𝑥´ 𝑦|u

“ maxtsup
𝑥PΩ0

inf
𝑦PΩ0

|𝜓𝑛𝑙
p𝑥q ´ 𝜓p𝑦q|, sup

𝑦PΩ0

inf
𝑥PΩ0

|𝜓𝑛𝑙
p𝑥q ´ 𝜓p𝑦q|u

ď sup
𝑥PΩ0

|𝜓𝑛𝑙
p𝑥q ´ 𝜓p𝑥q|

𝑛Ñ8
ÝÑ 0.

Hence, each sequence in 𝒪𝑘,𝛼 has a subsequences that converges to a limit shape in
𝒪𝑘,𝛼 which implies the compactness of 𝒪𝑘,𝛼.

While investigating the compactness of 𝒫 and ℰ , the question arises of how to
compare two functions defined on different domains. In order to solve this issue we
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use the extension operator introduced in Lemma 2.2.9 to extend the Hölder continuous
solutions of the multi-physics shape optimization problem to a common domain. The
topology of the solution spaces is then defined through the topology induced by the
resulting extensions with respect to the Hölder norm on the extended domain.

Definition 4.4.5. Let either 𝑉 “ 𝒫 or 𝑉 “ ℰ, and let 𝑝 be the extension operator
from Lemma 2.2.9. With 𝑣ext

Ω :“ 𝑝p𝑣Ωq we denote the extension of a solution 𝑣Ω P

𝑉 from Ω to Ωext (or from 𝐷zΩ to 𝐷) and with 𝑉 ext the space consisting of all
such extensions 𝑣ext

Ω for all 𝑣Ω P 𝑉 . For a sequence of solutions p𝑣Ω𝑛q𝑛PN Ă 𝑉 , the
expression 𝑣Ω𝑛 ù 𝑣Ω as 𝑛 Ñ 8 is defined by 𝑣ext

Ω𝑛
Ñ 𝑣ext

Ω in 𝑉 ext with respect to
‖¨‖𝐶𝑘,𝛼pΩext,R3q (or ‖¨‖𝐶𝑘,𝛼p𝐷,Rq).

Lemma 4.4.6. Let 𝑘 ě 2, then the extension space 𝒫ext to the solutions of potential
flow equation (2.13) is a compact subspace of 𝐶𝑘,𝛼1p𝐷,Rq for any 0 ă 𝛼 ă 𝛼1 ď 1.

Proof. Using Lemma 2.2.9 and 4.4.1 gives

‖𝜑ext
Ω ‖𝐶2,𝛼p𝐷,Rq ď 𝐶‖𝜑Ω‖𝐶2,𝛼p𝐷zΩ,Rq ď 𝐶𝐾,

where the constants 𝐶 and 𝐾 are independent of Ω P 𝒪𝑘,𝛼 as 𝒪𝑘,𝛼 satisfies a uniform
cone property. Hence, 𝒫ext is bounded in 𝐶𝑘,𝛼p𝐷,Rq and therefore, by Lemma 2.2.8,
a precompact subset of 𝐶𝑘,𝛼1p𝐷,Rq for any 0 ă 𝛼1 ă 𝛼 ď 1. As 𝐶𝑘,𝛼1p𝐷,Rq is a
Banach space, for any sequence p𝜑ext

Ω𝑛
q𝑛PN Ă 𝒫ext we can find a subsequence p𝜑ext

Ω𝑛𝑙
q𝑙PN

that converges against some function 𝜑 P 𝐶𝑘,𝛼1p𝐷,Rq. In addition, the corresponding
subsequence of shapes pΩ𝑛𝑙

q𝑙PN Ă 𝒪𝑘,𝛼 converges, as 𝒪𝑘,𝛼 is compact (see Corollary
4.4.4), to some shape Ω P 𝒪𝑘,𝛼. In the proof to Lemma 4.4.3, we have seen that 𝜑 P
𝐶𝑘,𝛼p𝐷,Rq and since the convergence in ‖¨‖𝐶𝑘,𝛼1 p𝐷,Rq implies pointwise convergence,
the function 𝜑 is the extension to the unique solution 𝜑Ω P 𝒫 and belongs therefore
to 𝒫ext. Hence, 𝒫ext is a closed subspace of 𝐶𝑘,𝛼p𝐷,Rq with respect to ‖¨‖𝐶𝑘,𝛼1 p𝐷,Rq

and thereby compact.

Lemma 4.4.7. Let 𝑘 ě 2, then the extension space ℰext to the solutions of elasticity
equation (4.5) is a compact subspace of 𝐶𝑘,𝛼1pΩext,R3q for any 0 ă 𝛼 ă 𝛼1 ď 1.

Proof. The proof is the same as that of Lemma 4.4.6 and is therefore omitted.

Lemma 4.4.8. We consider the multi-physics shape optimization problem (4.14) with
boundary regularity of class 𝐶𝑘,𝛼, with 𝑘 ě 2. Then, the graph 𝒢 is compact with
respect to the corresponding product metric.
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Proof. By Corollary 4.4.4, Lemma 4.4.6 and Lemma 4.4.7 the product space 𝒪𝑘,𝛼 ˆ

𝒫 ˆ ℰ is compact. Let ppΩ𝑛, 𝜑Ω𝑛 , 𝑢Ω𝑛qq𝑛PN be a sequence in 𝒢 that converges to
some pΩ, 𝜑, 𝑢q P 𝒪𝑘,𝛼 ˆ 𝒫 ˆ ℰ . Since the convergence of 𝜑Ω𝑛 in ‖¨‖𝐶𝑘,𝛼1 p𝐷,Rq and
of 𝑢Ω𝑛 in ‖¨‖𝐶𝑘,𝛼1 pΩext,R3q, with 0 ă 𝛼1 ă 𝛼 ď 1, implies pointwise convergence, the
limit functions 𝜑 “ 𝜑Ω and 𝑢 “ 𝑢Ω solve the potential flow equation and the elasticity
equation on 𝐷zΩ and Ω𝐵, respectively. Hence, pΩ, 𝜑, 𝑢q P 𝒢 and thereby 𝒢 is compact.

Lemma 4.4.9 (Continuity of Local Cost Functionals [60, Lemma 6.3]). Let ℱvol, ℱsur P

𝐶0pR𝑟,Rq (with 𝑟 as in Definition 4.3.2), and for Ω P 𝒪𝑘,𝛼 and 𝑣𝑖 P 𝐶𝑘pΩ,R𝑑𝑖q

for all 𝑖 “ 1, . . . ,𝑚, consider the volume integral 𝐽volpΩ, 𝑣q and the surface integral
𝐽surpΩ, 𝑣q. Let Ω𝑛 Ă 𝒪𝑘,𝛼 with Ω𝑛

𝒪̃
ÝÑ Ω as 𝑛 Ñ 8 and let p𝑣𝑛q𝑛PN P 𝐶𝑘pΩ𝑛,R𝑑q,

with 𝑑 “
ř𝑚
𝑖“1 𝑑𝑖, such that 𝑣𝑛 ù 𝑣 as 𝑛Ñ 8 for some 𝑣 P 𝐶𝑘pΩ,R𝑑q. Then,

(i) 𝐽volpΩ𝑛, 𝑣𝑛q ÝÑ 𝐽volpΩ, 𝑣q as 𝑛Ñ 8, and

(ii) if 𝑘 ě 1, we also have 𝐽surpΩ𝑛, 𝑣𝑛q ÝÑ 𝐽surpΩ, 𝑣q as 𝑛Ñ 8.

Proof. For assertion (i), we first consider the volume integral on a shape Ω𝑛

𝐽volpΩ𝑛, 𝑣𝑛q “

ż

Ωext
1Ω𝑛 ¨ ℱvol p𝑥, 𝑣

ext
𝑛 ,∇𝑣ext

𝑛 , . . . ,∇𝑘𝑣ext
𝑛 q d𝑥.

Because of ℱvol P 𝐶
0pR𝑟,Rq and 𝑣𝑛 ù 𝑣 as 𝑛 Ñ 8, there exists a constant 𝐶 ą 0

such that |1Ω𝑛 ¨ ℱvol p𝑥, 𝑣
ext
𝑛 ,∇𝑣ext

𝑛 , . . . ,∇𝑘𝑣ext
𝑛 q| ď 𝐶 is valid for all 𝑛 P N almost

everywhere in Ωext. Moreover, Ω𝑛
𝒪̃
ÝÑ Ω and 𝑣ext

𝑛 Ñ 𝑣ext in 𝐶𝑘
𝑐 pΩext,R𝑑q ensures the

existence of

lim
𝑛Ñ8

1Ω𝑛 ¨ ℱvol p𝑥, 𝑣
ext
𝑛 ,∇𝑣ext

𝑛 , . . . ,∇𝑘𝑣ext
𝑛 q “ 1Ω ¨ ℱvol p𝑥, 𝑣

ext,∇𝑣ext, . . . ,∇𝑘𝑣ext
q,

for all 𝑥 P Ωext. Therefore, using Lebesgue‘s dominated convergence theorem yields

lim
𝑛Ñ8

𝐽volpΩ𝑛, 𝑣𝑛q “ lim
𝑛Ñ8

ż

Ωext
1Ω𝑛 ¨ ℱvol p𝑥, 𝑣

ext
𝑛 ,∇𝑣ext

𝑛 , . . . ,∇𝑘𝑣ext
𝑛 q d𝑥

“

ż

Ωext
lim
𝑛Ñ8

1Ω𝑛 ¨ ℱvol p𝑥, 𝑣
ext
𝑛 ,∇𝑣ext

𝑛 , . . . ,∇𝑘𝑣ext
𝑛 q d𝑥

“

ż

Ωext
1Ω ¨ ℱvol p𝑥, 𝑣

ext,∇𝑣ext, . . . ,∇𝑘𝑣ext
q d𝑥

“ 𝐽volpΩ, 𝑣q.
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For assertion (ii), we first recall that for each shape Ω P 𝒪𝑘,𝛼 can be considered, by its
definition, as a differentiable submanifold which is locally embeddable into R2. Let
𝐴𝑖𝑛 Ă BΩ𝑛 for 1 ď 𝑖 ď 𝑙, with Y𝑙𝑖“1𝐴𝑖 “ BΩ𝑛 and 𝐴𝑖 X𝐴𝑗 “ H for 𝑖 ‰ 𝑗, be a disjoint
decomposition of the boundary BΩ𝑛. We can use the hemisphere transforms we
constructed proving Lemma 4.3.1 as, in 𝑖 and 𝑛 uniformly bounded, chart mappings
T𝑖𝑛 : 𝐴𝑖𝑛 Ñ 𝐴𝑖 with 𝐴𝑖 Ă R2 in order to straighten the boundary of Ω𝑛. This gives

𝐽surpΩ𝑛, 𝑣𝑛q “

ż

BΩ𝑛

ℱsur p𝑥, 𝑣𝑛,∇𝑣𝑛, . . . ,∇𝑘𝑣𝑛q d𝐴

“

𝑙
ÿ

𝑖“1

ż

𝐴𝑖
𝑛

ℱsur p𝑥, 𝑣𝑛,∇𝑣𝑛, . . . ,∇𝑘𝑣𝑛q d𝐴

“

𝑙
ÿ

𝑖“1

ż

𝐴𝑖

ℱsur
`

T𝑖𝑛p𝑠q, 𝑣𝑛pT𝑖𝑛p𝑠qq,∇𝑣𝑛pT𝑖𝑛p𝑠qq, . . . ,∇𝑘𝑣𝑛pT𝑖𝑛p𝑠qq
˘

b

𝑔T𝑖
𝑛p𝑠q d𝑠,

which is a volume integral with corresponding Gram determinants 𝑔T𝑖
𝑛 . Due to the

fact that the chart mappings T𝑖𝑛 are uniformly bounded and since 𝐴𝑖 is independent
of 𝑛, one can see that, similarly to (i), we can apply Lebesgue’s Theorem which proves
the assertion.

Theorem 4.4.10. Given that 𝑘 ě 2, the multi-physics shape optimization problem
(4.14) possesses at least one Pareto optimal solution pΩ˚, 𝜑Ω˚ , 𝑢Ω˚q P 𝒢 and the asso-
ciated Pareto front covers all non-dominated points in 𝒴, i.e., 𝒴𝑁 “ clp𝒴q𝑁 .

Proof. Lemma 4.4.8 provides the compactness of the graph 𝒢 and Lemma 4.4.9 the
continuity of the local cost functionals. Then, Theorem 4.2.3 gives the existence of
an optimal shape and the closeness of the set of optimal shapes.

4.5 Scalarization and Multi-Physics Optimization

Scalarizing is the traditional approach to solving a multi-criteria optimization prob-
lem. This includes formulating a single objective optimization problem that is related
to the original Pareto optimality problem by means of a real-valued scalarizing func-
tion typically being a function of the objective function, auxiliary scalar or vector
variables, and/or scalar or vector parameters. Additionally, scalarization techniques
sometimes further restrict the feasible set of the problem with new variables or/and
restriction functions. In this section, we investigate the stability of the parameter-
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dependent optimal shapes to different types of scalarization techniques with under-
lying design problem (4.14).

First, let us define the scalarization methods we consider. This involves a cer-
tain class of real-valued functions 𝑆𝜃 : R𝑙 Ñ R, referred to as scalarization function
that possibly depends on a parameter 𝜃 which lies in a parameter space Θ. The
scalarization problem is given by

min𝑆𝜃 p𝐽pΩ, 𝑢Ω, 𝜑Ωqq

subject to pΩ, 𝑢Ω, 𝜑Ωq P 𝒢𝜃,
(4.16)

where 𝒢𝜃 Ď 𝒢. For the sake of notational convenience, we sometimes identify an
element pΩ, 𝑢Ω, 𝜑Ωq P 𝒢𝜃 only by its distinct shape Ω. If we assume that 𝒢𝜃 is closed
and the scalarization 𝑆𝜃p𝐽q is lower semicontinuous on 𝒢𝜃 ˆ t𝜃u, then, by the results
of Section 4.4.2, (4.16) obviously has an optimal solution for 𝜃 P Θ. For a fixed 𝜃 P Θ
we shall denote the set of all optimal shapes to an achievement function problem by
𝜁𝜃 “ arg minΩP𝒢𝜃

𝑆𝜃 p𝐽pΩ, 𝑢Ω, 𝜑Ωqq. We assume that Θ Ă R𝑙 is closed and equip the
space 𝒵 :“ t𝜁𝜃 : 𝜃 P Θu with the Hausdorff distance, which in this setting defines, due
to the closeness of the optimal shapes sets, a metric (see Lemma 4.5.2 and Corollary
4.5.3.

In the following, we gather some definitions and results from Chapter 4 of [16]. We
define the optimal set mapping 𝜒 : Θ Ñ 𝒵, the optimal value mapping 𝜏 : Θ ÝÑ R,
and the graph mapping 𝐺 : Θ Ñ 2𝒢 which maps a parameter 𝜃 P Θ to the corre-
sponding set of optimal shapes 𝜁𝜃, the corresponding optimal value minΩP𝒢𝜃

𝑆𝜃p𝐽q,
and the corresponding graph 𝒢𝜃, respectively.

Definition 4.5.1 (Closed point-to-set mappings). Let pΘ, 𝑑Θq and p𝑋, 𝑑𝑥q be metric
spaces and Γ a point-to-set mapping of Θ into 2𝑋 . We say that Γ is closed at a point
𝜃˚ P Θ if for each pair of sequences p𝜃𝑛q𝑛PN Ď Θ and p𝑥𝑛q𝑛PN Ď 𝑋 with

(i) 𝜃𝑛 Ñ 𝜃˚, as 𝑛Ñ 8,

(ii) 𝑥𝑛 P Γp𝜃𝑛q, for all 𝑛 P N,

(iii) 𝑥𝑛 Ñ 𝑥˚, as 𝑛Ñ 8,

it follows that 𝑥˚ P Γp𝜃˚q.

With these definitions at hand, we can describe the stability of the optimal shapes
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for a wide range of scalarization methods. First, we state a lemma that shows that
p𝒵, 𝑑Hq is indeed a metric space.

Lemma 4.5.2. [16, Theorem 4.2.1 (3)] If the graph mapping 𝐺 is closed at some
parameter 𝜃˚ P Θ, the optimal value mapping 𝜏 is upper semicontinuous at 𝜃˚ and
the scalarization 𝑆𝜃˚p𝐽q is lower semicontinuous on 𝒢 ˆ t𝜃˚u, then the optimal set
mapping 𝜒 is closed at 𝜃˚

Corollary 4.5.3. If 𝐺 is closed, and the scalarization function 𝑆𝜃 is lower semicon-
tinuous on R𝑙 ˆ t𝜃u, for every 𝜃 P Θ, and uniformly continuous on t𝑥u ˆΘ, for each
𝑥 P R𝑙, then the Hausdorff distance 𝑑𝐻 defines a metric on 𝒵.

Proof. Due to the continuity of 𝐽 (see Lemma 4.4.9) and the uniform continuity of 𝑆𝜃
on t𝑥uˆΘ, the optimal value maping 𝜏 is upper semicontinuous for every 𝑥 P R𝑙, and
therefore, by Lemma 4.5.2, the optimal set mapping 𝜒 is closed. Since 𝑑𝐻 defines a
metric on 𝐹 p𝒢q (the set of all closed subsets of 𝒢), p𝒵, 𝑑𝐻q defines a metric space.

Since the sclarization solution is not necessarly unique, we need some sort of
continuity property of point-to-set mappings in order to discuss the stability of sets
of optimal shapes. The literature describes serveral definitions which vary in the
statement. We investigate the stability according to Hausdorff and Berge (for Berge
see [16, Section 2.2]) which, in this setting, are equivalent.

Definition 4.5.4 (Upper semicontiniuity according to Hausdorff). Let pΘ, 𝑑Θq and
p𝑋, 𝑑𝑥q be metric spaces and Γ a point-to-set mapping of Θ into 𝑋. Γ is called upper
semicontinuous in 𝜃˚ if for each sequence p𝜃𝑛q𝑛PN Ď Θ with 𝜃𝑛 ÝÑ 𝜃˚, for 𝑛 Ñ 8,
we have

sup
𝑥PΓp𝜃𝑛q

inf
𝑥1PΓp𝜃˚q

𝑑𝑋p𝑥, 𝑥
1
q ÝÑ 0. (4.17)

Γ is called upper semicontinuous if Γ is upper semicontinuous in each 𝜃 P Θ. For this
type of continuity we simply write u.s.c.-H.

The last theorem of this chapter states stability conditions for scalarization func-
tion problems.

Theorem 4.5.5 ([16, Theorem 4.2.2 (3)]). Assume that 𝐺 is u.s.c.-H at 𝜃˚ and 𝐺p𝜃˚q
is compact. Further, let 𝜏 be upper semicontinuous at 𝜃˚ and 𝑆𝜃˚ lower semicontinu-
ous on 𝐺p𝜃˚q ˆ t𝜃˚u. Then, the optimal set mapping 𝜒 is u.s.c.-H at 𝜃˚.
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The following two corollaries demonstrate continuity properties of shapes under
changes of preferences for two commonly used scalarization techniques. In particular,
the results apply to the multi-physics shape optimization problem (4.14).

Corollary 4.5.6 (Weighted Sum Method). Consider cost functionals
𝐽 “ p𝐽1, . . . , 𝐽𝑙q and let Θ Ă R𝑙 be a closed subset. Then, the weighted sum scalariza-
tion method (with 𝜃 P Θ), which is given by

min
ř𝑙
𝑖“1 𝜃𝑖𝐽𝑖pΩ, 𝑢Ω, 𝜑Ωq

subject to pΩ, 𝑢Ω, 𝜑Ωq P 𝒢,

fulfills all conditions of Theorem 4.5.5 due to the compactness of 𝒢 (see Lemma 4.4.8)
and the continuity of 𝐽 (see Lemma 4.4.9).

Corollary 4.5.7 (𝜀-Constraint Method). Let 𝐽 “ p𝐽1, . . . , 𝐽𝑙q be cost functionals.
We optimize cost functional 𝐽𝑗 and constrain the other functionals by 𝐽𝑖 ď 𝜀𝑖 P R, for
1 ď 𝑖 ď 𝑛 and 𝑖 ‰ 𝑗. If each 𝜀𝑖 converges monotonically decreasing to some 𝜀˚𝑖 , then
the 𝜀-Constraint Method

min 𝐽𝑗pΩ, 𝑢Ω, 𝜑Ωq

subject to 𝐽𝑖 ď 𝜀𝑖,

fulfills all conditions of Theorem 4.5.5.

Proof. Let 𝜀 “ p𝜀1, . . . , 𝜀𝑙q and 𝒢𝜀 “ tΩ P 𝒢 : 𝐽𝑖pΩq ď 𝜀𝑖, 𝑖 ‰ 𝑗u. The u.s.c.-H of 𝐺 is
given due to the continuity of 𝐽 . The continuity of 𝐽𝑗, the u.s.c.-H of 𝐺, and the fact
that 𝒢𝜀 Ď 𝒢𝜀1 for all 𝜀˚ ď 𝜀1 ď 𝜀 gives that 𝜏p𝜀q converge to 𝜏p𝜀˚q for 𝜀Œ 𝜀˚. Hence,
the optimal sets 𝜒p𝜀q converge against 𝜒p𝜀˚q for 𝜀Œ 𝜀˚ in the sense of u.s.c.-H.

Remark 4.5.8. Whenever the scalarized problem (4.16) possesses a unique solution
𝜁𝜃 “ tΩ𝜃u for all 𝜃 in some neighborhood of 𝜃˚ P Θ, then Ω𝜃𝑛 ÝÑ Ω𝜃˚ in the Hausdorff
distance (for subsets in R𝑑) if 𝜃𝑛 Ñ 𝜃˚.
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Chapter 5

Integrability and Approximability of Solutions to

the Stationary Diffusion Equation with Lévy
Coefficient

The second part of this thesis considers diffusion equations with random diffusion co-
efficient given by Lévy fields [42]. Modeling physical phenomena occuring in real world
application with differential equation using deterministic coefficient functions is often
an inadequate approach as it is not always possible to determine the precise values
of these coefficients. Random differential equations treat this problem by describing
the uncertain data with random variables or stochastic processes. As illustration, we
introduce in this chapter randomness in the diffusion equation (2.15) which is often
used as model problem for a variety of numerical approximation methods.

In many application, e.g., when we model the groundwater flow in a porous
medium governed by Darcy’s law, the precise value of the conductivity 𝑎 in (2.15)
is typically uncertain as it is often derived from sparse information based on limited
observations. In order to model this randomness, we introduce a probability distri-
bution on the set of admissible coefficient functions 𝑎 which gives a random partial
differential equation. Typically, the stochastic conductivity model 𝑎 “ 𝑎p𝑥, 𝜔q is cho-
sen to be a lognormal random field, with the mean and covariance structure of the
underlying Gaussian random field log 𝑎 estimated using geostatistical methods.

For the resulting elliptic linear differential equation, early results on the existence
and uniqueness of solution in a finite-dimensional setting focusing on numerical ap-
proximation methods are presented in e.g., [11, 12, 13, 37, 47, 82]. An extension of
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these results to random fields characterized by infinite-dimensional parameters can
be found in [1, 14, 15, 30, 33, 34, 43, 68, 89]. Most of these works employ random
model based on transformed Gaussian random field as they provide a strong instru-
ment which describes a wide range of effects. However, there are also effects which
cannot be captured by Gaussian fields, e.g. discontinuities and heavy-tail behaviour
as they occur in applications such as flow in fractured media, anomalous diffusion
and the modeling of heterogeneous material; see, e.g., [29, 109]. In order to model
these blind spots of the Gaussian model, an extension is needed.

The work Sarkis et al. [50, 51, 52] considers the diffusion equation (2.15) in the
absence of uniform ellipticity and boundness, allowing for a diffusion coefficient which
is a smooth transformation of a Gaussian white noise. Our work uses the approach
of chapter 3 where we extensively analyzed the notion of noise as generalized random
field in the sense of Minlos [53, 85]. We provide a more general stochastic approach
and extend naturally the Gaussian coefficient to one which follows a Lévy distribution
[9, 62, 76].

For possible numerical treatments, this chapter gives a proof of integrability of the
corresponding random solution to (2.15). This proof is based on a priori estimate of
elliptic partial differential equations which crucially depends on the minimal value of
the coefficient ”𝑎p𝑥q” and leads to an extremal value problem for Lévy fields. These
kind of problems have been studied extensively in the field of empirical processes by
exploiting metric entropy estimates and concentration phenomena [56, 108, 111]. In
order to investigate the tail of the Lévy field we decompose it in its Gaussian part,
which we control with a metric entropy estimate provided by Talagrand [107], and its
Poisson part, whose tail is described by a Chernoff-like bound under the assumption
that the Lévy measure defining the Poisson contribution has a Laplace transform.

Furthermore, we present here an adaptation of the Karhunen-Loève (KL) ex-
pansion for smoothed Lévy noise fields. Unlike Gaussian fields, Lévy fields are not
determined by their covariance function. Therefore, we choose to expand the smooth-
ing kernel 𝑘p𝑥´ 𝑦q instead of the covariance function. Due to translation invariance,
the kernel always has a continuous spectrum as an integral operator on 𝐿2pR𝑑, d𝑥q.
Hence, we have to cut off the noise field 𝑍p𝑦q and restrict it to some sufficient large
domain Λ. The solution 𝑢𝑁 arising out of this finite-dimensional approximation of
the random diffusion coefficient then converges, under sufficient conditions, to the
real solution 𝑢 in 𝐿𝑛ppΩ,A,Pq, 𝐻1p𝐷,Rqq. In addition, we provide convergence rates
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for the combined decay of the cut-off to Λ and the truncation of series given by the
Mercer expansion of the smoothing kernel.

We begin with modeling 𝑎 as a transformed smoothed random field, hence 𝑎p𝑥q “
𝑇 p𝑍𝑘p𝑥qq, where 𝑇 is a suitable Borel-measurable real-valued function and 𝑍𝑘 is a
noise field smoothed by a window function 𝑘 P 𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq. We intend to
estimate quantities of interest connected to the solution 𝑢 of the resulting random
boundary value problem. Further, we are interested in the probability of certain
events and the expected or maximum flow through a subdomain or boundary. As-
suming for each 𝜔 P Ω that

0 ă ess inf
𝑥P𝐷

𝑎p𝑥, 𝜔q ď ess sup
𝑥P𝐷

𝑎p𝑥, 𝜔q ă 8 (5.1)

ensures the strict ellipticity of the differential operator of boundary value problem
(2.15) with conductivity function 𝑎 given by a realization 𝑎p¨, 𝜔q of the random field
𝑎 “ 𝑇 ˝ 𝑍𝑘. Therefore, there exists a unique 𝑢 “ 𝑢p¨, 𝜔q P 𝐻1p𝐷,Rq which solves
(2.15) with 𝑎 “ 𝑎p¨, 𝜔q and which satisfies consequently, by Theorem 2.4.17, the
a-priori estimate

‖𝑢‖𝐻1p𝐷,Rq ď 𝐶
1` ‖𝑎‖𝐶0p𝐷,Rq

ess inf𝑥P𝐷 𝑎p𝑥q

´

‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

¯

. (5.2)

Lemma 5.0.1. (i) Let 𝑍 be a |||¨|||-continuous random field and 𝑘 P 𝐿1pR𝑑,Rq X
𝐿2pR𝑑,Rq be a window function such that the random field p𝑍𝑘p𝑥qq𝑥PR𝑑 has al-
most surely continuous paths. Then, for a strictly positive and locally Lipschitz
continuous function 𝑇 on R, we have for the random conductivity 𝑎 :“ 𝑇 ˝𝑍𝑘 P

𝐿8p𝐷,Rq as well as ess inf 𝑎 ą 0 almost surely. Denoting with 𝑢p¨, 𝜔q the solu-
tion of (2.15) with conductivity function 𝑎p¨, 𝜔q, the mapping 𝜔 ÞÑ 𝑢p¨, 𝜔q is an
𝐻1p𝐷,Rq-valued, Borel-measurable random variable.

(ii) For a |||¨|||-continuous generalized random field and a Matérn kernel 𝑘𝛼,𝑚, with
𝛼 ą 𝑑 ` maxt0, 3𝑑´12

8 u, the random field p𝑍𝑘𝛼,𝑚p𝑥qq𝑥PR𝑑 has almost surely con-
tinuous paths. If 𝑍 is a Gaussian field, the same holds already for 𝛼 ą 𝑑{2.

Proof. To prove (i), we first show that the mapping pΩ,A,Pq Ñ 𝐶0pclp𝐷q,Rq, 𝜔 Ñ
𝑍𝑘p¨, 𝜔q is measurable with respect to the Borel 𝜎-algebra generated by the ‖¨‖𝐶0pclp𝐷q,Rq-
norm. As 𝑍𝑘p𝑥q P 𝐿0pΩ,A,Pq, 𝑥 P R𝑑, we have for any 𝑞 P 𝐶0pclp𝐷q,Rq and 𝑟 ą 0
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that the set

𝑍´1
𝑘 pclp𝐵𝑟p𝑞qqq “ t‖𝑍𝑘 ´ 𝑞‖𝐶0pclp𝐷q,Rq ď 𝑟u “

č

𝑥P𝐷̄XQ𝑑

t|𝑍𝑘p𝑥q ´ 𝑞p𝑥q| ď 𝑟u

is almost measurable. Since p𝐶0pclp𝐷q,Rq, ‖¨‖𝐶0pclp𝐷q,Rqq is separable, every open set
𝑈 Ă 𝐶0pclp𝐷q,Rq is a countable union of open balls 𝐵𝑟p𝑞q, which gives that the above
implies t𝑍𝑘 P 𝑈u is measurable for any open 𝑈 Ă 𝐶pclp𝐷q,Rq. Moreover, due to the
local Lipschitz continuity of 𝑇 , the mapping 𝑞 ÞÑ 𝑇 ˝ 𝑞 is continuous on 𝐶0pclp𝐷q,Rq
with respect to ‖¨‖𝐶0pclp𝐷q,Rq, and thus ‖¨‖𝐶0pclp𝐷q,Rq-Borel measurable. To see that for
fixed 𝑓 P 𝐿2p𝐷,Rq, 𝑔𝐷 P 𝐻

1
2 pΓ𝐷,Rq and 𝑔𝑁 P 𝐻

´ 1
2 pΓ𝑁 ,Rq the solution map

𝐶ą0pclp𝐷q,Rq :“ t𝑎 P 𝐶0
pclp𝐷q,Rq : inf 𝑎 ą 0u Ñ 𝐻1

p𝐷,Rq, 𝑎 ÞÑ 𝑢𝑎

is continuous, where 𝑢𝑎 denotes the unique solution to (2.15), we refer to [64] or to
the methods used in Section 5.2. Thus, 𝑢 P 𝐿0pΩ, 𝐻1p𝐷,Rqq and therefore (i) holds.
Lastly, (ii) follows directly from Theorem 3.2.10 and Remark 3.5.1.

5.1 Integrability of Solutions

In this section, we study the integrability of solutions to diffusion equation (2.15) with
transformed and smoothed Lévy diffusion coefficient 𝑎 “ 𝑇 ˝ 𝑍𝑘. More precisely, we
perform extreme value estimation on the random diffusion coefficient in order to show
the existence of moments of the Sobolev norm of solutions. The first result serves to
connect the existence of moments with extremal value theory for random fields.

Lemma 5.1.1. Let 𝑍 be a |||¨|||-continuous generalized random field and let 𝑘 P

𝐿1pR𝑑,Rq X 𝐿2pR𝑑,Rq be a window function such that p𝑍𝑘p𝑥qq𝑥PR𝑑 has almost surely
continuous paths. In addition, let 𝑇 be a function on R that is locally Lipschitz contin-
uous such that for some ℎ ě 0 and 𝐵, 𝜌 ą 0 it holds that 𝐵´1e´𝜌|𝑧|ℎ ď 𝑇 p𝑧q ď 𝐵e𝜌|𝑧|ℎ

for all 𝑧 P R.
Then, for the random conductivity 𝑎 “ 𝑇 ˝ 𝑍𝑘 there exists a constant 𝐶 ě 1 so

that for all 𝑓 P 𝐿2p𝐷,Rq, 𝑔𝐷 P 𝐻
1
2 pΓ𝐷,Rq, and 𝑔𝑁 P 𝐻

´ 1
2 pΓ𝑁 ,Rq the solution 𝑢 to

the boundary value problem (2.15) satisfies

E
“

‖𝑢‖𝑛𝐻1p𝐷,Rq
‰

ď 𝐶𝑛2𝑛´1
p𝐵𝑛

`𝐵2𝑛
q

8
ÿ

𝑗“0
e2𝑛𝜌p𝑗`1qℎ Ppsup

𝑥P𝐷
|𝑍𝑘p𝑥q| ě 𝑗q, for all 𝑛 P N
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with 𝐶 “ 𝐶p‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

q.

Proof. By assumption, the smoothed random field 𝑍𝑘 has continuous paths on the
complement 𝑁 𝑐 of some P-null set 𝑁 P A. By setting the functions

‖𝑎‖𝐶0p𝐷,Rq “ sup
𝑥P𝐷

𝑇 p𝑍𝑘p𝑥qq “ sup
𝑥P𝐷XQ𝑑

𝑇 p𝑍𝑘p𝑥qq

and
ess inf 𝑎 “ inf

𝑥P𝐷
𝑇 p𝑍𝑘p𝑥qq “ inf

𝑥P𝐷XQ𝑑
𝑇 p𝑍𝑘p𝑥qq

to zero on 𝑁 , they are both measurable. Applying (5.2) and the law of total proba-
bility yields

𝐶´𝑛E
“

‖𝑢‖𝑛𝐻1p𝐷,Rq
‰

ď E
„ˆ

1` sup𝑥P𝐷 𝑇 p𝑍𝑘p𝑥qq
inf𝑥P𝐷 𝑇 p𝑍𝑘p𝑥qq

˙𝑛

ď E
«

p1`𝐵 sup𝑥P𝐷 e𝜌|𝑍𝑘p𝑥q|
ℎ
q𝑛

p𝐵 inf𝑥P𝐷 e𝜌|𝑍𝑘p𝑥q|ℎq´𝑛

ff

ď E
«

2𝑛´1 ` 2𝑛´1𝐵𝑛e𝑛𝜌 sup𝑥P𝐷 |𝑍𝑘p𝑥q|
ℎ

𝐵´𝑛e´𝑛𝜌 sup𝑥P𝐷 |𝑍𝑘p𝑥q|ℎ

ff

ď 2𝑛´1
p𝐵𝑛

`𝐵2𝑛
qE

”

e2𝑛𝜌 sup𝑥P𝐷 |𝑍𝑘p𝑥q|
ℎ
ı

ď 2𝑛´1
p𝐵𝑛

`𝐵2𝑛
q

8
ÿ

𝑗“0
E
„

e2𝑛𝜌p𝑗`1qℎ
|𝑗 ď sup

𝑥P𝐷
|𝑍𝑘p𝑥q| ă 𝑗 ` 1



Ppsup
𝑥P𝐷

|𝑍𝑘p𝑥q| ě 𝑗q

ď 2𝑛´1
p𝐵𝑛

`𝐵2𝑛
q

8
ÿ

𝑗“0
e2𝑛𝜌p𝑗`1qℎPpsup

𝑥P𝐷
|𝑍𝑘p𝑥q| ě 𝑗q.

The above Lemma shows that we need exponential bounds for the extreme values
of the smoothed and transformed Lévy field. We obtain the bounds by decomposing
𝑍𝑘 into its Gaussian part 𝐺𝑘 and its Poisson part 𝑃𝑘 and then seperately estimating
the extreme values of each field. For this purpose, the next lemma from Talagrand
gives an exponential bound for Gaussian random fields.

Lemma 5.1.2. [107, Theorem 2.4] Let p𝐺p𝑥qq𝑥P𝐷 be a centered Gaussian field with
almost surely continuous paths and let 𝜎̄2 “ sup𝑥P𝐷 E r𝐺p𝑥q2s. Consider the canonical
distance 𝑑𝑐p𝑥, 𝑦q :“ E rp𝐺p𝑥q ´𝐺p𝑦qq2s

1
2 on 𝐷 and let 𝑁p𝐷, 𝑑𝑐, 𝜀q be the smallest

number of 𝑑𝑐-open balls with 𝑑𝑐-radius 𝜀 needed to cover 𝐷. Assume that for some
constant 𝐴 ą 𝜎̄, some 𝑣 ą 0 and 0 ď 𝜀0 ď 𝜎̄, the number 𝑁p𝐷, 𝑑𝑐, 𝜀q is bounded above
by p𝐴

𝜀
q𝑣 whenever 𝜀 P s0, 𝜀0r.
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Then, there is a uniform constant 𝐾 ą 0 such that for 𝑔 ě 𝜎̄2p1`
?
𝑣q{𝜀0 we have

Ppsup
𝑥P𝐷

|𝐺p𝑥q| ě 𝑔q ď 2
ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

˙𝑣

Φ
´

´
𝑔

𝜎̄

¯

ď

ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

˙𝑣

e´
𝑔2

2𝜎̄2 , (5.3)

where Φ denotes the cumulative distribution function of the standard normal distri-
bution. If 𝜀0 “ 𝜎̄, the condition on 𝑔 is 𝑔 ě 𝜎̄p1`

?
𝑣q.

We continue with deriving properties of Matérn kernel functions which are needed
below.

Lemma 5.1.3. Let 𝐷 Ă R𝑑 be open and bounded, 𝛼 ą 𝑑
2 , and 𝑚 ą 0. Then the

following holds:

(i) For 0 ă 𝜂 ă 2𝛼 ´ 𝑑 there exists 𝐶 “ 𝐶p𝑚, 𝜂, 𝛼q ą 0 such that for all 𝑥, 𝑦 P R𝑑

|𝑘𝛼,𝑚p𝑥q ´ 𝑘𝛼,𝑚p𝑦q| ď 𝐶p𝑚, 𝜂, 𝛼q |𝑥´ 𝑦|𝜂.

(ii) The absolute value |𝑘𝛼,𝑚| is bounded, decreases like e´𝑚|𝑥|, and the mapping
𝑦 ÞÑ sup𝑥P𝐷 |𝜏𝑦 p𝑘𝛼,𝑚p𝑥qq | lies in 𝐿1pR𝑑,Rq X 𝐿8pR𝑑,Rq.

Proof. For (i), we first note that for a fixed 𝜂 P p0, 1q and for all 𝑤, 𝑧 P C with
|𝑤 ´ 𝑧| ď 2 we have |𝑤 ´ 𝑧| ď 21´𝜂|𝑤 ´ 𝑧|𝜂. Further, we have |e´𝑖𝜉𝑥 ´ e´𝑖𝜉𝑦| ď 2 and
|e´𝑖𝜉𝑥 ´ e´𝑖𝜉𝑦| ď |𝜉p𝑥´ 𝑦q| for all 𝑥, 𝑦, 𝜉 P R𝑑. Therefore,

|𝑘𝛼,𝑚p𝑥q ´ 𝑘𝛼,𝑚p𝑦q| “
1

p2𝜋q𝑑

ˇ

ˇ

ˇ

ˇ

ż

R𝑑

e´𝑖𝜉𝑥 ´ e´𝑖𝜉𝑦
p|𝜉|2 `𝑚2q𝛼

d𝜉
ˇ

ˇ

ˇ

ˇ

ď
21´𝜂

p2𝜋q𝑑 |𝑥´ 𝑦|𝜂
ż

R𝑑

|𝜉|𝜂

p|𝜉|2 `𝑚2q𝛼
d𝜉,

where the last integral converges if 0 ă 𝜂 ă 2𝛼 ´ 𝑑.

Proving (ii), one can apply the Hankel transform to see that

𝑘𝛼,𝑚p𝑥q “ F´1
p𝑘𝛼,𝑚qp𝑥q “

p|𝑥|{𝑚q𝛼´𝑑{2𝐾𝛼´𝑑{2p|𝑥|𝑚q

2𝛼´1Γp𝛼qp2𝜋q𝑑{2 ,

where 𝐾𝑣 is the modified Bessel function of second kind; see, e.g., [2]. For a fixed
𝑣 ą 0, 𝐾𝑣p|𝑥|q „

1
2Γp𝑣qp1

2 |𝑥|q
´𝑣 for |𝑥| Ñ 0 and 𝐾𝑣p|𝑥|q „

a

𝜋{p2|𝑥|qe´|𝑥| for |𝑥| Ñ 8.
This implies that |𝑘𝛼,𝑚| is bounded and decreases as e´𝑚|𝑥|. Therefore, since 𝐷 is
relatively compact, sup𝑥P𝐷 |𝜏𝑦𝑘𝛼,𝑚p𝑥q| is bounded and exponentially decreasing as
well, which implies the assertion.
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Next, we further specify the Lévy measure 𝜈 of the Lévy characteristic (3.2). This
assumption will be used repeatedly below. Recall that for a Borel measure 𝜈 on Rzt0u
we denote by 𝜈` its image measure on Rě0 under | ¨ |.

Assumptions 5.1.4. Let 𝑍 be a |||¨|||-continuous Lévy field with characteristic triplet
p𝑏, 𝜎2, 𝜈q, such that 𝜈 is a Lévy measure satisfies

ş

Rzt0u |𝑠| 𝜈pd𝑠q ă 8 and
ş

Rpe
𝛽𝑠 ´

1q 𝜈`pd𝑠q ă 8 for some 𝛽 ą 0.

The Lemma below provides an exponential upper bound of Chernov-type for the
extreme values of the Poisson part of a Lévy random field.

Lemma 5.1.5. Let 𝑃 be a compound Poisson field, i.e., a Lévy field with character-
istic triplet p

ş

t0ă|𝑠|ď1u 𝑠 𝜈pd𝑠q, 0, 𝜈q with a finite measure 𝜈, which satisfies Assumption
5.1.4. Moreover, let 𝐷 Ă R𝑑 be open, and bounded and let 𝑘𝜄 : R𝑑ˆR𝑑 Ñ R, 𝜄 P 𝐼, be
a family of smoothing functions such that with 𝑘𝜄p𝑦q :“ sup𝑥P𝐷 |𝑘𝜄p𝑥, 𝑦q|, 𝑦 P R𝑑, 𝜄 P 𝐼,
the following conditions hold:

i) for all 𝜄 P 𝐼 : 𝑘𝜄 P 𝐿1pR𝑑,Rq X 𝐿8pR𝑑,Rq.

ii) 𝜅 :“ sup𝜄P𝐼‖𝑘𝜄‖𝐿8pR𝑑,Rq ă 8 as well as 𝜅1 :“ sup𝜄P𝐼‖𝑘𝜄‖𝐿1pR𝑑,Rq ă 8.

Then, for all 𝜏 P s0, 1r, 𝜄 P 𝐼 and 𝑝 ą 0 we have

Ppsup
𝑥P𝐷

|𝑃𝑘𝜄p𝑥q| ě 𝑝q ď e𝑓𝜏´𝑝
𝜏𝛽
𝜅 ,

where 𝑓𝜏 is given by

𝑓𝜏 :“ 𝜏𝛽𝜅1

𝜅

ˆ

e𝜏𝛽
ż

t0ă𝑠ď1u

|𝑠|𝜈`pd𝑠q `
ż

t𝑠ą1u

1
p1´ 𝜏𝜅𝜄{𝜅q𝛽e

ż

t𝑠ą1u
e𝛽𝑠𝜈`pd𝑠q

˙

.

Proof. For 𝜄 P 𝐼 we define 𝜅𝜄 :“ }𝑘𝜄}𝐿8pR𝑑,Rq as well as

𝑓𝜄 : s0,8rÑ r0,8s, 𝑓𝜄p𝜗q :“
ż

R𝑑

ż

Rě0

pe𝜗𝑠𝑘𝜄p𝑦q ´ 1q𝜈`pd𝑠qd𝑦

and
𝜃𝜄 : s0,8rÑ RY t8u, 𝜃𝜄p𝑝q :“ sup

𝜗ą0
𝜗𝑝´ 𝑓𝜄p𝜗q.

Then, 𝑓𝜄 is a convex, increasing function and 𝜃𝜄 is its Legendre transform (Fenchel
transform, conjugate function). Using the notation from Remark 3.5.2 we can derive,
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for 𝜗 ą 0 and abbreviating 𝑃𝜄p𝑥q :“ 𝑃𝑘𝜄p𝑥q, 𝜄 P 𝐼, 𝑥 P 𝐷, analogously to (3.7)

Ere𝜗 sup𝑥P𝐷 |𝑃𝜄p𝑥q|s ď Ere𝜗 sup𝑥P𝐷|𝑃 ||𝑘𝜄|p𝑥qs ď Ere𝜗
ř

𝑗

ř

𝑁Λ𝑗
𝑙“1 |𝑆

p𝑗q
𝑙
|𝑘𝜄p𝑋

p𝑗q
𝑙
q
s

“ e
ş

R𝑑

ş

R`
pe𝜗𝑠𝑘̃𝜄p𝑦q´1q 𝜈`pd𝑠q d𝑦

.

Applying Markov’s inequality, this yields for 𝑝 ą 0

Ppsup
𝑥P𝐷

|𝑃𝜄p𝑥q| ě 𝑝q “ inf
𝜗ą0

P
`

e𝜗 sup𝑥P𝐷|𝑃𝜄p𝑥q| ě e𝜗𝑝
˘

ď inf
𝜗ą0

Ere𝜗 sup𝑥P𝐷 |𝑃𝜄p𝑥q|s

e𝜗𝑝

ď inf
𝜗ą0

e
ş

R𝑑

ş

R`
pe𝜗𝑠𝑘̃𝜄p𝑦q´1q 𝜈`pd𝑠qd𝑦´𝜗𝑝 (5.4)

ď e
´ sup

𝜗ą0
t𝜗𝑝´

ş

R𝑑

ş

R`
pe𝜗𝑠𝑘̃𝜄p𝑦q´1q 𝜈`pd𝑠q d𝑦u

“ e´𝜃𝜄p𝑝q.

Using Assumption 5.1.4, for 0 ď 𝜗 ă 𝛽
𝜅𝜄

we get

𝑓𝜄p𝜗q “

ż

R𝑑

ż

R`

`

e𝜗𝑠𝑘𝜄p𝑦q ´ 1
˘

𝜈`pd𝑠q d𝑦

ď

ż

R𝑑

ˆ
ż

t0ă𝑠ď1u
`

ż

t𝑠ą1u

˙

e𝜗𝑠𝑘𝜄p𝑦q𝜗𝑠𝑘𝜄p𝑦q 𝜈`pd𝑠q d𝑦

ď 𝜗‖𝑘𝜄‖𝐿1pR𝑑,Rq

ˆ

e𝜗𝜅𝜄

ż

t0ă𝑠ď1u
|𝑠| 𝜈`pd𝑠q `

ż

t𝑠ą1u
e𝜃𝑠𝜅𝜄𝑠 𝜈`pd𝑠q

˙

ď 𝜗𝜅1

ˆ

e𝜗𝜅
ż

t0ă𝑠ď1u
|𝑠| 𝜈`pd𝑠q `

ż

t𝑠ą1u
e𝛽𝑠ep𝜃𝜅𝜄´𝛽q𝑠𝑠 𝜈`pd𝑠q

˙

ď 𝜗𝜅1

ˆ

e𝜗𝜅
ż

t0ă𝑠ď1u
|𝑠| 𝜈`pd𝑠q `

1
p𝛽 ´ 𝜃𝜅𝜄qe

ż

t𝑠ą1u
e𝛽𝑠 𝜈`pd𝑠q

˙

,

(5.5)

where we have used that for any 𝛼 ą 0 the function

𝑓𝛼 : p0,8q Ñ R, 𝑠 ÞÑ e´𝑠𝛼𝑠

attains its maximum at 𝑠 “ 1
𝛼
. Therefore, 𝑓𝜄ær0,𝛽{𝜅𝜄r is finite. For any arbitrary

𝜏 P s0, 1r and 𝜗 “ 𝜏 𝛽
𝜅
, it follows from the definition of 𝜃𝜄 and the fact that 𝜅 ě 𝜅𝜄

𝜃𝜄p𝑝q ě 𝜏
𝛽

𝜅
𝑝´ 𝑓𝜏 p𝜏q

for every 𝑝 ą 0. Thus, from (5.4) and the previous inequality, the claim follows.
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Now, by using both exponential bounds, we can prove the main result of this
subsection.

Theorem 5.1.6. Let 𝑍 be a Lévy field such that Assumption 5.1.4 is satisfied and
let 𝑘 “ 𝑘𝛼,𝑚 be a Matérn kernel with 2𝛼 ą 𝑑. Moreover, we assume that 𝑇 is locally
Lipschitz such that for ℎ P r0, 1s, 𝐵, 𝜌 ą 0 we have 𝐵´1e´𝜌|𝑧|ℎ ď 𝑇 p𝑧q ď 𝐵e𝜌|𝑧|ℎ for
all 𝑧 P R.

Then, for the solution 𝑢 to boundary value problem (2.15) with random conduc-
tivity function 𝑎 “ 𝑇 ˝ 𝑍𝑘 we have 𝑢 P 𝐿𝑛pΩ, 𝐻1p𝐷,Rqq, for any 𝑛 P N if ℎ ă 1 and
for 𝑛 ă 𝛽{2𝜅𝜌 if ℎ “ 1, where 𝜅 :“ sup𝑥P𝐷,𝑦PR𝑑 |𝑘𝛼,𝑚p𝑥´ 𝑦q|.

In particular, all moments of 𝑢 exist if ℎ ď 1 and
ş

R`pe
𝛽𝑠 ´ 1q 𝜈`pd𝑠q ă 8 for all

𝛽 ą 0.

Proof. First, we show that without loss of generality, we may assume that 𝑍 has the
characteristic triplet p𝑏1, 𝜎2, 𝜈q with 𝑏1 :“

ş

t0ă|𝑠|ď1u 𝑠 𝜈pd𝑠q. By Proposition 3.3.3, the
Lévy noise field 𝑍 associated with characteristic triplet p𝑏1, 𝜎2, 𝜈q is |||¨|||-continuous.
In addition, for any 𝛼 P R, 𝑇𝛼p𝑧q :“ 𝑇 p𝑧 ` 𝛼q is locally Lipschitz, and with 𝜌 :“
maxt1, 2ℎ´1u𝜌, 𝐵̃ :“ 𝐵e𝜌|𝛼|ℎ we have

𝐵̃´1e´𝜌|𝑧|ℎ ď 𝑇𝛼p𝑧q ď 𝐵̃e𝜌|𝑧|ℎ .

In the case of 𝛼𝑘 :“ p𝑏 ´ 𝑏1q
ş

R𝑑 𝑘p𝑦q d𝑦 we obtain 𝑎 “ 𝑇 ˝ 𝑍𝑘 “ 𝑇𝛼𝑘
˝ 𝑍𝑘. Thus,

by replacing 𝑇 with 𝑇𝛼𝑘
and 𝑍 with 𝑍, we may indeed assume that 𝑍 has the

characteristic triplet p𝑏1, 𝜎2, 𝜈q. Therefore, we have 𝑍 “ 𝐺 ` 𝑃 , where 𝐺 is the |||¨|||-
continuous generalized centered Gaussian field with characteristic triplet p0, 𝜎2, 0q and
𝑃 is the |||¨|||-continuous Lévy field with characteristic triplet p𝑏1, 0, 𝜈q.

Let d𝑐 denote the canonical distance of the centered Gaussian field p𝐺𝑘p𝑥qq𝑥P𝐷

which, by Theorem 3.2.10, has almost surely continuous paths. We fix 𝜂 P s0, 2𝛼´ 𝑑r
and 𝛿 ą diamp𝐷q and set 𝜎̄2 :“ sup𝑥P𝐷 E r𝐺𝑘p𝑥q

2s “ 𝜎2}𝑘}2𝐿2pR𝑑,Rq.
Using Lemma 5.1.3 (i), with some suitable constant 𝐶1 “ 𝐶1p𝑚, 𝜂, 2𝛼q ą 0, we

have for arbitrary 𝑥, 𝑦 P 𝐷

d𝑐p𝑥, 𝑦q2 “ Varp𝐺𝑘p𝑥q ´𝐺𝑘p𝑦qq

“ Varp𝐺𝑘p𝑥qq ´ Varp𝐺𝑘p𝑦qq ´ 2 Covp𝐺𝑘p𝑥q, 𝐺𝑘p𝑦qq

“ 2𝜎2
p𝑘2𝛼,𝑚p0q ´ 𝑘2𝛼,𝑚p𝑥´ 𝑦qq ď 2𝜎2𝐶1|𝑥´ 𝑦|

𝜂.

(5.6)
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Then, with 𝐶 12 :“ 2𝜎2𝐶1, we have for all 𝜀 ą 0 and 𝑥 P R𝑑

𝐵
|¨|,p 𝜀2

𝐶1
2 q

1
𝜂
p𝑥q : “

"

𝑦 P R𝑑 : |𝑥´ 𝑦| ă
´ 𝜀2

𝐶 12

¯
1
𝜂

*

Ď t𝑦 P R𝑑 : 𝑑𝑐p𝑥, 𝑦q ă 𝜀u “: 𝐵d𝑐,𝜀p𝑥q.

(5.7)

Since 𝐷 is bounded, we can cover 𝐷 with a finite number 𝑁 of open balls 𝐵
|¨|,p 𝜀2

𝐶12
q

1
𝜂
p𝑥q.

By the choice of 𝛿, the minimal number 𝑁 be bounded by p𝐶 1
2
𝜂 𝛿{𝜀

2
𝜂 q𝑑 “ p𝐶 1𝛿𝜂{2{𝜀q2𝑑{𝜂.

By (5.7) we thus obtain for all 𝜀 ą 0

𝑁p𝐷, 𝑑𝑐, 𝜀q ď p𝐶
1𝛿𝜂{2{𝜀q2𝑑{𝜂,

so that the canonical distance d𝑐 satisfies the covering property of Talagrand’s Lemma
5.1.2 with 𝑣 :“ 2𝑑{𝜂 and 𝐴 :“ maxt𝐶 1𝛿𝜂{2, 𝜎̄ ` 1u for every 𝜀 ą 0. Therefore, by
Talagrand’s Lemma 5.1.2, there is a uniform constant 𝐾 ą 0 such that for every
𝑔 ě 𝜎̄p1`

?
𝑣q we can estimate

P
ˆ

sup
𝑥P𝐷

|𝐺𝑘p𝑥q| ě 𝑔

˙

ď

ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

˙𝑣

e´
𝑔2

𝜎̄2 . (5.8)

Next, Lemma 5.1.3 (ii), gives

𝑘p𝑦q :“ sup
𝑥P𝐷

|𝑘p𝑥, 𝑦q| “ sup
𝑥P𝐷

|𝑘𝛼,𝑚p𝑥´ 𝑦q| P 𝐿
1
pR𝑑,Rq X 𝐿8pR𝑑,Rq,

so that by Lemma 5.1.5 applied to a family of smoothing functions consisting only of
Matérn functions 𝑘𝛼,𝑚, for arbitrary 𝜏 P s0, 1r there is a constant 𝐶𝜏 depending only
on 𝜏, }𝑘}𝐿1pR𝑑,Rq, }𝑘}𝐿8pR𝑑,Rq, 𝛽, and 𝜈 such that for every 𝑝 ą 0

Ppsup
𝑥P𝐷

|𝑃𝑘p𝑥q| ě 𝑝q ď 𝐶𝜏e´
𝛽
𝜅
p1´𝜏q𝑝. (5.9)

Considering that 𝑍 “ 𝐺 ` 𝑃 , it follows from Lemma 5.1.1 together with (5.8), (5.9)
that for every 𝜏 P s0, 1r we have with

𝐷𝜏 :“ max
"ˆ

𝐾𝐴
?
𝑣

˙𝑣

, 𝐶𝜏 , 1
*
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that

E
“

‖𝑢‖𝑛𝐻1p𝐷,Rq
‰

ď 𝐶𝑛2𝑛´1
p𝐵𝑛

`𝐵2𝑛
q

8
ÿ

𝑧“0
e2𝑛𝜌p𝑧`1qℎ Ppsup

𝑥P𝐷
|𝑍𝑘p𝑥q| ě 𝑧q

ď 𝐶𝑛2𝑛´1
p𝐵𝑛

`𝐵2𝑛
q𝐷𝜏

#

t𝜎̄p1`
?
𝑣q{𝜏 u

ÿ

𝑧“0
e2𝑛𝜌p𝑧`1qℎ (5.10)

`

8
ÿ

𝑧“t𝜎̄p1`
?
𝑣q{𝜏 u`1

e2𝑛𝜌p𝑧`1qℎ
ˆ

𝑧𝑣e´
𝜏2𝑧2
2𝜎̄2 ` e´

𝛽
𝜅
p1´𝜏q𝑧

˙

+

.

Thus, in the case of ℎ ă 1 the above series converges. Choosing ℎ “ 1, the above
series converges if 𝑛 ă p1 ´ 𝜏q𝛽{2𝜅𝜌. Hence, by choosing 𝜏 sufficiently close to zero,
the case ℎ “ 1 converges for all 𝑛 ă 𝛽{2𝜅𝜌.

Remark 5.1.7. (i) By Theorem 5.1.6, in the case of ℎ “ 1 we get all moments up
to an order that depends on 𝛽. The larger 𝛽 is, the more moments 𝑢 has with
respect to the ‖¨‖𝐻1p𝐷,Rq norm.

(ii) If we assume the existence of the Laplace transform for 𝜈, i.e.,
ş

Rě0
e𝛽𝑠 𝜈`pd𝑠q ă

8 for some 𝛽 ą 0, we exclude noises with infinite activity like Gamma noise.
That is the reason we employ the more general condition

ş

Rě0
pe𝛽𝑠´ 1q 𝜈`pd𝑠q ă

8.

(iii) In the special case, where the smoothed Lévy noise field 𝑍𝑘 is a Gaussian field
without a compound Poisson noise component, we have 𝜃p𝑝q “ 8 for all 𝑝 ą
0 so that (5.10) gives us the existence of all moments if ℎ ă 2. Moreover,
in case of ℎ “ 2, we then obtain the existence of moments up to order 𝑛 ă
1{p4𝜌𝜎2}𝑘}2𝐿2pR𝑑,Rqq. This improves [26], where this result was shown for ℎ “ 1.

5.2 Approximability of Solutions of the Random
Diffusion Equation

In this section, we approximate the random diffusion coefficient 𝑎 by a finite dimen-
sional modal expansion and thus reducing it from an infinite-dimensional Lévy field
to a finite-dimensional Lévy vector. Under similar assumptions as for integrability, we
show that the resulting solution to (2.15) with approximated diffusion coefficient con-
verges to that of the original equation in the Bochner space 𝐿𝑛ppΩ,A,Pq, 𝐻1p𝐷,Rqq.
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5.2.1 Approximation Scheme for the Random Solution

In order to investigate the approximability of the solution 𝑢 to the random diffusion
equation, we need to control the change in the solution that stems from a change
in the coefficients. The results we discuss in this section can be applied in various
context of interest as, e.g., to control the error in statistical estimation of the law and
smoothing function of the random field. In addition, one can easily generalize these
results to arbitrary continuous random fields and differentiable transformations 𝑇 p𝑧q
which are exponentially bounded from below and above.

Let 𝑍𝑘 be a smoothed Lévy random field with a.s. continuous paths and smooth-
ing function 𝑘 : R𝑑 ˆR𝑑 Ñ R. Let 𝑘 “ 𝑘𝑁 ` 𝑟𝑁 be any decomposition of 𝑘 such that
lim𝑁Ñ8 𝑘𝑁p𝑥, ¨q “ 𝑘p𝑥, ¨q with respect to |||¨||| for every 𝑥 P R𝑑. We define the corre-
sponding approximation of 𝑍𝑘 with 𝑍𝑁p𝑥q :“ 𝑍𝑘𝑁

p𝑥q, 𝑁 P N and the corresponding
remainder with 𝑅𝑁p𝑥q :“ 𝑍𝑟𝑁

p𝑥q such that 𝑍𝑘p𝑥q “ 𝑍𝑁p𝑥q ` 𝑅𝑁p𝑥q. Assuming that
𝑍𝑁 and 𝑅𝑁 have continuous paths on clp𝐷q, this yields an approximating diffusion
coefficient 𝑇 p𝑍𝑁p𝑥qq in equation (2.15) with associated random solution 𝑢𝑁 to the
corresponding weak problem.

We prove the convergence of the approximating solution 𝑢𝑁 to the solution 𝑢 in
𝐿𝑛ppΩ,A,Pq, 𝐻1p𝐷,Rqq, for 𝑛 P N, as 𝑁 Ñ 8. For this purpose, we first derive
an estimate based on an interpolated diffusion equation with diffusion coefficient
𝑇 p𝑍𝑁,𝑡p𝑥qq where 𝑍𝑁,𝑡p𝑥q :“ 𝑍𝑘𝑁`𝑡𝑟𝑁

“ 𝑍𝑁 ` 𝑡𝑅𝑁 with 𝑡 P r0, 1s. The resulting weak
form of (2.15) with approximating diffusion coefficient and homogenized Dirichlet
boundary condition with weak solution 𝑢0𝑁,𝑡

P 𝐻1
𝐷p𝐷,Rq is characterized by

𝑏𝑁,𝑡p𝑢0𝑁,𝑡
, 𝑣q “ ℓ𝑁,𝑡p𝑣q @𝑣 P 𝐻1

𝐷p𝐷,Rq,

with
𝑏𝑁,𝑡p𝑢, 𝑣q :“

ż

𝐷

𝑇 p𝑍𝑁,𝑡p𝑥qq∇𝑢p𝑥q ¨∇𝑣p𝑥q d𝑥, 𝑢, 𝑣 P 𝐻1
𝐷p𝐷,Rq,

and

ℓ𝑁,𝑡p𝑣q :“
ż

𝐷

r𝑓p𝑥q𝑣p𝑥q ´ 𝑇 p𝑍𝑁,𝑡p𝑥qq∇𝐸𝑔𝐷p𝑥q ¨∇𝑣p𝑥qs d𝑥`
ż

Γ𝑁

𝑔𝑁p𝑥q𝑣p𝑥q d𝜎,

where 𝐸𝑔𝐷 P 𝐻1p𝐷,Rq is an extension of 𝑔𝐷. The weak solution to (2.15) with
inhomogeneous Dirichlet boundary condition then is given by 𝑢𝑁,𝑡 “ 𝑢0𝑁,𝑡

`𝐸𝑔𝐷. For
the transformation 𝑇 we additionally aussume that it is continuously differentiable.
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Then, it can be shown that the mapping 𝑡 ÞÑ 𝑢0𝑁,𝑡
(and thus 𝑡 ÞÑ 𝑢𝑁,𝑡 “ 𝑢0𝑁,𝑡

`𝐸𝑔𝐷)
is differentiable with respect to the weak topology [18, 75]. We denote the derivative
by 9𝑢0𝑁,𝑡

and 9𝑢𝑁,𝑡, respectively. Moreover, setting

9𝑏𝑁,𝑡p𝑢, 𝑣q :“
ż

𝐷

𝑇 1p𝑍𝑁,𝑡p𝑥qq𝑅𝑁p𝑥q∇𝑢p𝑥q∇𝑣p𝑥qd𝑥

9ℓ𝑁,𝑡p𝑣q :“ ´

ż

𝐷

𝑇 1p𝑍𝑁,𝑡p𝑥qq𝑅𝑁p𝑥q∇𝐸𝑔𝐷p𝑥q ¨∇𝑣p𝑥q d𝑥

for 𝑢, 𝑣 P 𝐻1
𝐷p𝐷,Rq, one can show that

𝑏𝑁,𝑡p 9𝑢0𝑁,𝑡
, 𝑣q “ 9ℓ𝑁,𝑡p𝑣q ´ 9𝑏𝑁,𝑡p𝑢0𝑁,𝑡

, 𝑣q @𝑣 P 𝐻1
𝐷p𝐷,Rq. (5.11)

Using (5.11), we can prove that 𝑡 ÞÑ 9𝑢𝑁,𝑡 is continuous with respect to the strong
𝐻1-topology, so we conclude that 𝑡 ÞÑ 𝑢𝑁,𝑡 is also differentiable with respect to the
strong topology with derivative 9𝑢𝑁,𝑡; see [18].

Lemma 5.2.1. Let 𝑍 be a |||¨|||-continuous generalized random field and 𝑘 : R𝑑 Ñ R a
smoothing function such that p𝑍𝑘p𝑥qq𝑥P𝐷 has a.s. continuous paths. Further, let 𝑍𝑁,𝑡
and 𝑇 be given as described above. Then, for the solution 𝑢𝑁,𝑡 to equation (2.15) with
random conductivity 𝑎 :“ 𝑇 ˝ 𝑍𝑁,𝑡 we have

‖ 9𝑢𝑁,𝑡‖𝐻1p𝐷,Rq ď 𝐶 sup
𝑥P𝐷

|𝑇 1p𝑍𝑁,𝑡p𝑥qq| sup
𝑥P𝐷

|𝑅𝑁p𝑥q|

ˆ

1` sup𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|
pinf𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|q2

`
1

inf𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|

˙

`

‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

˘

,

where 𝐶 “ p1 ` 𝐶2
𝑃 q

2 maxt1, 2‖𝐸‖, ‖tr‖u with 𝐸 : 𝐻 1
2 pΓ𝐷,Rq Ñ 𝐻1p𝐷,Rq denoting

an extension operator, tr : 𝐻1p𝐷,Rq Ñ 𝐻
1
2 pΓ𝐷,Rq the trace operator (see Theorem

2.3.6), and where 𝐶𝑃 ą 0 only depends on 𝐷 and Γ𝐷.

Proof. Since we can write the weak solution to (2.15) as 𝑢𝑁,𝑡 “ 𝑢0𝑁,𝑡
`𝐸𝑔𝐷, we have

‖ 9𝑢𝑁,𝑡‖𝐻1p𝐷,Rq “ ‖ 9𝑢0𝑁,𝑡
‖𝐻1p𝐷,Rq . Therefore, by setting 𝐶 :“ p1`𝐶2

𝑃 qmaxt1, 2‖𝐸‖, ‖tr‖u
by (a generalization of) Poincaré’s inequality (cf. (2.17)), (5.11), the definition of 9𝑏𝑁,𝑡

and 9ℓ𝑁,𝑡, as well as inequality (2.16) we have

inf𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|
p1` 𝐶2

𝑃 q
‖ 9𝑢0𝑁,𝑡

‖2
𝐻1p𝐷,Rq ď 𝑏𝑁,𝑡p 9𝑢0𝑁,𝑡

, 9𝑢0𝑁,𝑡
q “ | 9ℓ𝑁,𝑡p 9𝑢0𝑁,𝑡

q ´ 9𝑏𝑁,𝑡p𝑢0𝑁,𝑡
, 9𝑢0𝑁,𝑡

q|

ď

ż

𝐷

|𝑇 1p𝑍𝑁,𝑡p𝑥qq𝑅𝑁p𝑥q∇p𝐸𝑔𝐷 ` 𝑢0𝑁,𝑡
qp𝑥q ¨∇ 9𝑢0𝑁,𝑡

p𝑥q| d𝑥
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ď sup
𝑥P𝐷

|𝑇 1p𝑍𝑁,𝑡p𝑥qq| sup
𝑥P𝐷

|𝑅𝑁p𝑥q| ‖ 9𝑢0𝑁,𝑡
‖𝐻1p𝐷,Rq‖𝑢0𝑁,𝑡

` 𝐸𝑔𝐷‖𝐻1p𝐷,Rq

ď sup
𝑥P𝐷

|𝑇 1p𝑍𝑁,𝑡p𝑥qq| sup
𝑥P𝐷

|𝑅𝑁p𝑥q| ‖ 9𝑢0𝑁,𝑡
‖𝐻1p𝐷,Rq

´

‖𝐸‖ ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

`𝐶
1` sup𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|

inf𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|
`

‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

˘

¯

.

The assertion now follows on dividing by inf𝑥P𝐷 |𝑇 p𝑍𝑁,𝑡p𝑥qq|

p1`𝐶2
𝑃 q

‖ 9𝑢0,𝑡‖𝐻1p𝐷,Rq.

The next lemma provides an estimate which we use to describe the effects of
the perturbation 𝑅𝑁 by a term that is exponentially growing in the extreme values
of 𝑍𝑁,𝑡p𝑥q and a moment in the perturbation. To derive this estimate, we need an
additional assumption on the derivative of the function 𝑇 .

Assumptions 5.2.2. For the continuously differentiable function 𝑇 : RÑ Rě0 there
exist 𝜌,𝐵 ą 0, ℎ P s0, 1s such that for all 𝑧 P R it holds

𝐵´1e´𝜌|𝑧|ℎ ď 𝑇 p𝑧q ď 𝐵e𝜌|𝑧|ℎ and |𝑇 1p𝑧q| ď 𝐵e𝜌|𝑧|ℎ . (5.12)

Lemma 5.2.3. Assuming that, in addition to the assumptions of Lemma 5.2.1, as-
sumption 5.2.2 is satisfied for any 𝜚 ą 1, 1

𝜚
` 1

𝜚1
“ 1, and 𝑛 ě 1 we have

E
“

‖𝑢´ 𝑢𝑁‖𝑛𝐻1p𝐷,Rq
‰

ď 𝐶E
„

sup
𝑥P𝐷

|𝑅𝑁p𝑥q|
𝑛𝜚1


1
𝜚1

sup
𝑡Pr0,1s

E
“

e4𝜚𝜌𝑛 sup𝑥P𝐷 |𝑍𝑁,𝑡p𝑥q|
‰

1
𝜚 , (5.13)

where 𝐶 “ 𝐶𝑛p𝐵2 ` 𝐵3q𝑛p‖𝑓‖𝐿2p𝐷,Rq ` ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

` ‖𝑔𝑁‖
𝐻´

1
2 pΓ𝑁 ,Rq

q𝑛 with 𝐶 from
Lemma 5.2.1.

Proof. Considering the properties of the Bochner integral for Banach space-valued
functions and Jensen’s inequality for the ordinary integral over r0, 1s, we get

E
“

‖𝑢´ 𝑢𝑁‖𝑛𝐻1p𝐷,Rq
‰

“ E
«⃦⃦⃦⃦

⃦
ż 1

0
9𝑢𝑁,𝑡 d𝑡

⃦⃦⃦⃦
⃦
𝑛

𝐻1p𝐷,Rq

ff

ď E
„ˆ

ż 1

0
‖ 9𝑢𝑁,𝑡‖𝐻1p𝐷,Rq d𝑡

˙𝑛

ď E
„
ż 1

0
‖ 9𝑢𝑁,𝑡‖𝑛𝐻1p𝐷,Rq d𝑡



“

ż 1

0
E
”

‖ 9𝑢𝑁,𝑡‖𝑛𝐻1p𝐷,Rq

ı

d𝑡,

where we used that we can interchange the order of integration for non-negative
integrands. Applying now Lemma 5.2.1 and Hölder’s inequality, we easily obtain
(5.13).
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5.2.2 Convergence of the Solution Moments

Lemma 5.2.3 implies that proving the convergence 𝑢𝑁 Ñ 𝑢 in 𝐿𝑛ppΩ,A,Pq, 𝐻1p𝐷,Rqq
can be achieved in two steps:

(i) First, we establish a bound, based on the Laplace transform E
“

e4𝜚𝜌𝑛 sup𝑥P𝐷 |𝑍𝑁,𝑡p𝑥q|
‰

,
of the extreme values of 𝑍𝑁,𝑡, which is uniform in 𝑁 and 𝑡.

(ii) Then, we prove that E
“

sup𝑥P𝐷 |𝑅𝑁p𝑥q|
𝑛𝜚1
‰

Ñ 0 as 𝑁 Ñ 8.

In this subsection, we first identify suitable conditions on 𝑘 and 𝑘𝑁 which imply (i)
and (ii). Afterwards, we apply these conditions to the natural generalization of the
Karhunen-Loève expansion to smoothed Lévy fields. The first lemma of this section
is a uniform version of Talagrand’s Lemma 5.1.2.

Lemma 5.2.4. Let 𝐺 be a generalized centered Gaussian field, i.e., a |||¨|||-continuous
Lévy field with characteristic triplet p0, 𝜎2, 0q, with 𝜎 ą 0. Further, let 𝐷 be an open
and bounded subset of R𝑑 and 𝑘𝜄 : R𝑑 ˆ R𝑑 Ñ R, 𝜄 P 𝐼 be a family of smoothing
functions such that for another smoothing function 𝑘 : R𝑑 ˆ R𝑑 Ñ R the following
hold:

(i) For all 𝜄 P 𝐼 : sup𝑥P𝐷‖𝑘𝜄p𝑥, ¨q‖𝐿2pR𝑑,Rq ď sup𝑥P𝐷‖𝑘p𝑥, ¨q‖𝐿2pR𝑑,Rq.

(ii) The canonical distances 𝑑𝜄, 𝜄 P 𝐼 and 𝑑𝑐 of the centered Gaussian random fields
p𝐺𝑘𝜄p𝑥qq𝑥P𝐷, 𝜄 P 𝐼, and p𝐺𝑘p𝑥qq𝑥P𝐷, respectively, satisfy 𝑑𝜄 ď 𝑑𝑐, 𝜄 P 𝐼, and 𝑑𝑐

satisfies the covering property in Talagrand’s Lemma 5.1.2.

(iii) The centered Gaussian fields p𝐺𝑘𝜄p𝑥qq𝑥P𝐷, 𝜄 P 𝐼, and p𝐺𝑘p𝑥qq𝑥P𝐷 all have almost
surely continuous paths.

Then, for 𝜎̄2
𝜄 :“ 𝜎2 sup𝑥P𝐷‖𝑘𝜄p𝑥, ¨q‖𝐿2pR𝑑,Rq and 𝜎̄2 :“ 𝜎2 sup𝑥P𝐷‖𝑘p𝑥, ¨q‖𝐿2pR𝑑,Rq, there

are constants 𝐴 ą 𝜎̄2, 𝐾, 𝑣, 𝛾 ą 0, and 𝜀0 P s0, 𝜎̄r such that

@ 𝜄 P 𝐼, 𝑔 ą 𝜎̄𝜄p1`
?
𝑣q{𝜀0 : Ppsup

𝑥P𝐷
|𝐺𝑘𝜄p𝑥q| ě 𝑔q ď

ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

𝜄

˙𝑣

exp
´

´
𝑔2

2𝜎̄2
𝜄

¯

(5.14)

ď 𝛾

ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

˙𝑣

exp
´

´
𝑔2

2𝜎̄2

¯

.
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Proof. As 𝑘 is a smoothing function, it follows that 𝜎̄2 ą 0 and by assumption (i),
with abbreviating 𝐺𝜄p𝑥q :“ 𝐺𝑘𝜄p𝑥q, 𝜄 P 𝐼, 𝑥 P 𝐷, we have for all 𝜄 P 𝐼

𝜎̄2
𝜄 :“ sup

𝑥P𝐷
E
“

𝐺𝜄p𝑥q
2‰
“ sup

𝑥P𝐷
𝜎2‖𝑘𝜄p𝑥, ¨q‖𝐿2pR𝑑,Rq ď sup

𝑥P𝐷
𝜎2‖𝑘p𝑥, ¨q‖𝐿2pR𝑑,Rq

“ sup
𝑥P𝐷

E
“

𝐺𝑘p𝑥q
2‰
“ 𝜎̄2.

By assumption (ii), the 𝑑𝑐-ball centered at 𝑥 P R𝑑 with 𝑑𝑐-radius 𝜀 ą 0 is contained in
the 𝑑𝜄-ball centered at 𝑥 with 𝑑𝜄-radius 𝜀. Therefore, using the notation in Talagrand’s
Lemma 5.1.2, we have 𝑁p𝐷, 𝑑𝜄, 𝜀q ď 𝑁p𝐷, 𝑑𝑐, 𝜀q. Again using assumption (ii) there
are thus 𝐴 ą 𝜎̄2, 𝑣 ą 0, 𝜀0 P s0, 𝜎̄r such that

@ 𝜄 P 𝐼, 𝜀 P s0, 𝜀0r : 𝑁p𝐷, 𝑑𝜄, 𝜀q ď
ˆ

𝐴

𝜀

˙𝑣

.

Since 𝑓 : r1,8rÑ R, 𝑓p𝑥q :“ 𝑥𝑣 expp´𝜎̄2 p1`
?
𝑣q2

2𝜀0
p𝑥 ´ 1qq is bounded from above, the

assertion follows by setting 𝛾 :“ sup𝑥ě1 𝑓p𝑥q.

The first step of the two-steps apprach outlined above involves a uniform estimate
of the Laplace transform of the extreme values of 𝑍𝑁,𝑡 under suitable assumptions
on the smoothing kernel 𝑘. For the sake of convenience we introduce the following
abbrevation for the bivariate kernel function 𝑘 “ 𝑘p𝑥, 𝑦q

𝑘p𝑦q :“ sup
𝑥P𝐷

|𝑘p𝑥, 𝑦q|, 𝑦 P R𝑑,

and define the following.

Definition 5.2.5. A smoothing function 𝑘 : R𝑑 ˆ R𝑑 Ñ R has an orthogonal ap-
proximation sequence 𝑘 “ 𝑘𝑁 ` 𝑟𝑁 , 𝑁 P N, if 𝑘𝑁 and 𝑟𝑁 are smoothing functions
with

(i)
ş

R𝑑 𝑘𝑁p𝑥1, 𝑦q𝑟𝑁p𝑥2, 𝑦q d𝑦 “ 0 for all 𝑥1, 𝑥2 P R𝑑;

(ii) maxt‖𝑟𝑁‖𝐿1pR𝑑,Rq, 𝜅𝑟,𝑁u Ñ 0 as 𝑁 Ñ 8, where 𝜅𝑟,𝑁 :“ sup𝑥P𝐷,𝑦PR𝑑 |𝑟𝑁p𝑥, 𝑦q|

and 𝑟𝑁 is defined as 𝑘 is above.

Lemma 5.2.6. Consider a Lévy field 𝑍 that satisfies Assumption 5.1.4 and let 𝑘 :
R𝑑 ˆ R𝑑 Ñ R be a smoothing function such that 𝑘 P 𝐿1pR𝑑,Rq X 𝐿8pR𝑑,Rq and
such that the canonical distance 𝑑𝑐 of p𝐺𝑘p𝑥qq𝑥P𝐷 satisfies the covering property in
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Talagrand’s Lemma 5.1.2, where 𝐺 is the centered Gaussian part of 𝑍, i.e., the |||¨|||-
continuous Lévy field with characteristic triplet p0, 𝜎2, 0q. Furthermore, let 𝑘 “ 𝑘𝑁 `

𝑟𝑁 , 𝑁 P N be an orthogonal approximation sequence for which the centered Gaussian
fields p𝐺𝑘𝑁

q𝑥P𝐷 and p𝐺𝑟𝑁
p𝑥qq𝑥P𝐷, 𝑁 P N, all have a.s. continuous paths and for

which 𝑘𝑁 P 𝐿
1pR𝑑,Rq X 𝐿8pR𝑑,Rq, with 𝑁 P N. Additionally, let 𝜚 ą 1, 𝜌 ą 0, and

𝑛 P s0, 𝛽
4𝜚𝜅𝜌r, where 𝜅 :“ ‖𝑘‖𝐿8pR𝑑,Rq. Then, there is 𝑀 P N such that

sup
𝑁ě𝑀,𝑡Pr0,1s

E
“

e4𝜚𝜌𝑛 sup𝑥P𝐷 |𝑍𝑁,𝑡p𝑥q|
‰

ă 8.

If 𝑘𝑁p𝑥, ¨q and 𝑟𝑁p𝑥, ¨q, 𝑥 P R𝑑, have disjoint supports for every 𝑁 P N, one can
choose 𝑀 “ 1.

Proof. We define 𝑏1 :“
ş

t0ă𝑠ď1u 𝑠𝜈pd𝑠q and denote the Lévy characteristic associated
with the characteristic triplet p𝑏1, 0, 𝜈q with 𝑃 . Then, 𝑃 is |||¨|||-continuous and for an
arbitrary smoothing function 𝑙 : R𝑑 ˆ R𝑑 Ñ R the smooth field 𝑍𝑙 satisfies

𝑍𝑙p𝑥q “ p𝑏´ 𝑏
1
q

ż

R𝑑

𝑙p𝑥, 𝑦qd𝑦 `𝐺𝑙p𝑥q ` 𝑃𝑙p𝑥q, 𝑥 P R𝑑.

With 𝐺𝑁,𝑡p𝑥q :“ 𝐺𝑘𝑁`𝑡𝑟𝑁
p𝑥q, 𝑃𝑁,𝑡p𝑥q :“ 𝑃𝑘𝑁`𝑡𝑟𝑁

p𝑥q, 𝑁 P N, 𝑡 P r0, 1s it follows for
arbitrary 𝐵 ą 2|𝑏´ 𝑏1| }𝑘}𝐿1pR𝑑,Rq and each 𝑁 P N, 𝑡 P r0, 1s and every 𝜆 P s0, 1r:

E
“

e4𝜚𝜌𝑛 sup𝑥P𝐷 |𝑍𝑁,𝑡p𝑥q|
‰

ď

8
ÿ

𝑗“0
e4𝜚𝜌𝑛p𝑗`1q𝐵Ppsup

𝑥P𝐷
|𝑍𝑁,𝑡p𝑥q| ě 𝑗𝐵q

ď e4𝜚𝜌𝑛𝐵
`

8
ÿ

𝑗“1
e4𝜚𝜌𝑛p𝑗`1q𝐵P

´

sup
𝑥P𝐷

|𝐺𝑁,𝑡p𝑥q| ` sup
𝑥P𝐷

|𝑃𝑁,𝑡p𝑥q| ě p𝑗 ´
1
2q𝐵

¯

ď e4𝜚𝜌𝑛𝐵

˜

1`
8
ÿ

𝑗“1
e4𝜚𝜌𝑛𝑗𝐵

„

Ppsup
𝑥P𝐷

|𝐺𝑁,𝑡p𝑥q| ě p𝑗 ´
1
2q𝜆𝐵q

`Ppsup
𝑥P𝐷

|𝑃𝑁,𝑡p𝑥q| ě p𝑗 ´
1
2qp1´ 𝜆q𝐵q

˙

.

(5.15)

In order to apply Lemma 5.2.4, we next verify its assumptions for the family of
smoothing functions 𝑘𝑁 ` 𝑡𝑟𝑁 , 𝑁 P N, 𝑡 P r0, 1s and the smoothing function 𝑘. By
using property (i) of an orthogonal approximation sequence, we set

𝜎̄2
𝑁,𝑡 :“ sup

𝑥P𝐷
E
“

𝐺𝑁,𝑡p𝑥q
2‰
“ sup

𝑥P𝐷
𝜎2

ˆ
ż

R𝑑

|𝑘𝑁p𝑥, 𝑦q|
2 d𝑦 ` 𝑡2

ż

R𝑑

|𝑟𝑁p𝑥, 𝑦q|
2 d𝑦

˙
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ď sup
𝑥P𝐷

𝜎2
ˆ
ż

R𝑑

|𝑘𝑁p𝑥, 𝑦q|
2 d𝑦 `

ż

R𝑑

|𝑟𝑁p𝑥, 𝑦q|
2 d𝑦

˙

“ sup
𝑥P𝐷

E
“

𝐺𝑘p𝑥q
2‰
“: 𝜎̄2,

which implies assumption (i) of Lemma 5.2.4. For the centered Gaussian random
fields p𝐺𝑘p𝑥qq𝑥P𝐷 and p𝐺𝑁,𝑡p𝑥qq𝑥P𝐷 we denote with 𝑑𝑐 and 𝑑𝑁,𝑡 the canonical distances,
respectively. For arbitrary 𝑁 P N, 𝑡 P r0, 1s and each 𝑥1, 𝑥2 P R𝑑, we have by using
property (i) of an orthogonal approximation sequence

𝑑𝑁,𝑡p𝑥1, 𝑥2q “
`

E
“

p𝐺𝑁,𝑡p𝑥1q ´𝐺𝑁,𝑡p𝑥2qq
2‰˘ 1

2

“ 𝜎

ˆ
ż

R𝑑

p𝑘𝑁,𝑡p𝑥1, 𝑦q ´ 𝑘𝑁,𝑡p𝑥2, 𝑦qq
2 d𝑦

˙
1
2

“ 𝜎

ˆ
ż

R𝑑

p𝑘𝑁p𝑥1, 𝑦q ´ 𝑘𝑁p𝑥2, 𝑦qq
2 d𝑦 ` 𝑡2

ż

R𝑑

p𝑟𝑁p𝑥1, 𝑦q ´ 𝑟𝑁p𝑥2, 𝑦qq
2 d𝑦

˙
1
2

ď 𝜎

ˆ
ż

R𝑑

p𝑘𝑁p𝑥1, 𝑦q ´ 𝑘𝑁p𝑥2, 𝑦qq
2 d𝑦 `

ż

R𝑑

p𝑟𝑁p𝑥1, 𝑦q ´ 𝑟𝑁p𝑥2, 𝑦qq
2 d𝑦

˙
1
2

“ 𝜎

ˆ
ż

R𝑑

p𝑘p𝑥1, 𝑦q ´ 𝑘p𝑥2, 𝑦qq
2 d𝑦

˙
1
2

“ 𝑑𝑐p𝑥1, 𝑥2q,

which implies assumption (ii) of Lemma 5.2.4. Assumption (iii) of Lemma 5.2.4 is
given by the assumptions on 𝑘𝑁 and 𝑟𝑁 . Therefore, it follows from Lemma 5.2.4
that there exist constants 𝐴 ą 𝜎̄2, 𝐾, 𝑣, 𝛾 ą 0 and 𝜀0 P s0, 𝜎̄r such that for all
𝑁 P N, 𝑡 P r0, 1s and 𝜆 P s0, 1r

P
´

sup
𝑥P𝐷

|𝐺𝑘𝜄p𝑥q| ě p𝑗 ´
1
2q𝜆𝐵

¯

ď 𝛾

ˆ

𝐾𝐴p𝑗 ´ 1
2q𝜆𝐵?

𝑣𝜎̄2

˙𝑣

exp
ˆ

´
pp𝑗 ´ 1

2q𝜆𝐵q
2

2𝜎̄2

˙

,

(5.16)
whenever 𝑗 ą 1

2 `
𝜎̄p1`

?
𝑣q

𝜆𝐵𝜀0
. Next, due to

@𝑁 P N, 𝑡 P r0, 1s : ‖𝑘𝑁,𝑡‖𝐿1pR𝑑,Rq ď ‖𝑘‖𝐿1pR𝑑,Rq ` ‖𝑟𝑁‖𝐿1pR𝑑,Rq

and property (ii) of an orthogonal approximation sequence, we have

𝜅1 :“ sup
𝑁PN,𝑡Pr0,1s

‖𝑘𝑁,𝑡‖𝐿1pR𝑑,Rq ă 8.

Further, property (ii) of an orthogonal approximation gives in addition, since for all
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𝑁 P N, 𝑡 P r0, 1s

𝜅𝑁,𝑡 “ sup
𝑥P𝐷

‖𝑘𝑁p𝑥, ¨q ` 𝑡𝑟𝑁p𝑥, ¨q‖𝐿8pR𝑑,Rq ď 𝜅` p1´ 𝑡q𝜅𝑟,𝑁 ď 𝜅` 𝜅𝑟,𝑁 , (5.17)

that for all 𝜀 ą 0 there exists 𝑀𝜀 such that

@𝑁 P N, 𝑁 ě𝑀𝜀, 𝑡 P r0, 1s : 𝜅𝑁,𝑡 ď 𝜅` 𝜀.

Moreover, if 𝑘𝑁p𝑥, ¨q and 𝑟𝑁p𝑥, ¨q have disjoint supports for every 𝑁 P N, 𝑥 P R𝑑,
it follows that in (5.17) we even have 𝜅𝑁,𝑡 ď 𝜅. Now, using Lemma 5.1.5 for some
fixed 𝜀 ą 0 to the family of smoothing functions p𝑘𝑁 ` 𝑡𝑟𝑁q𝑁ě𝑀𝜀,𝑡Pr0,1s (respectively
to p𝑘𝑁 ` 𝑡𝑟𝑁q𝑁PN,𝑡Pr0,1s) gives that for every 𝜏 P s0, 1r there is a constant 𝐶𝜏 such that

P
´

sup
𝑥P𝐷

|𝑃𝑁,𝑡p𝑥q| ě p𝑗 ´
1
2qp1´ 𝜆q𝐵

¯

ď 𝐶𝜏 e´
𝛽

𝜅`𝜀
p𝑗´ 1

2 qp1´𝜆q𝜏𝐵 (5.18)

for all 𝑗 P N, 𝜆 P s0, 1r, whenever 𝑁 ě 𝑀𝜀 (respectively 𝑁 P N), 𝑡 P r0, 1s and where
𝐶𝜏 is given by

𝐶𝜏 :“ 𝛽𝜅1

𝜅

ˆ

e𝛽
ż

t0ă𝑠ď1u

|𝑠|𝜈`pd𝑠q `
1

p1´ 𝜏q𝛽e

ż

t𝑠ą1u

e𝛽𝑠𝜈`pd𝑠q
˙

.

Since 𝑛 P p0, 𝛽
4𝜚𝜅𝜌q there are 𝜆0 P p0, 1q and 𝜀 ą 0 such that 𝑛 ă 𝛽p1´ 𝜆0q{p𝜅` 𝜀q4𝜚𝜌.

Then, with 𝐵 ą 2|𝑏 ´ 𝑏1|‖𝑘‖𝐿1pR𝑑,Rq large enough so that 2𝜎̄p1 `
?
𝑣q{𝜀0𝐵𝜆0 ă

1
2 it

follows from (5.15), (5.16), and (5.18) that for every 𝜏 P s0, 1r and for all 𝑁 ě 𝑀𝜀

(respectively 𝑁 P N), 𝑡 P r0, 1s

E
“

e4𝜚𝜌𝑛 sup𝑥P𝐷 |𝑍𝑁,𝑡p𝑥q|
‰

ď e4𝜚𝜌𝑛𝐵

˜

1`
8
ÿ

𝑗“1
e4𝜚𝜌𝑛𝑗𝐵

”

𝐶𝜏e´
𝛽

𝜅`𝜀
p𝑗´ 1

2 qp1´𝜆0q𝜏𝐵

`𝛾

ˆ

𝐾𝐴p𝑗 ´ 1
2q𝜆0𝐵

?
𝑣𝜎̄2

˙𝑣

exp
ˆ

´
pp𝑗 ´ 1

2q𝜆0𝐵q
2

2𝜎̄2

˙˙

.

With the same arguments we employed in the proof of Theorem 5.1.6, the series
converges as 4𝜚𝜌𝑛 ă 𝛽p1´ 𝜆0q{p𝜅` 𝜀q. Thus, the assertion follows.

Lemma 5.2.7. Consider 𝑍, 𝑘, 𝑘𝑁 , and 𝑟𝑁 , 𝑁 P N as given in Lemma 5.2.6 and let
further 𝜚1 ą 1 and 𝑛 ě 1{𝜚1. Then, for every 𝛿 P s0, 1r there exists a constant 𝐶 ą 0
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depending only on 𝛿, 𝑍, 𝑘, and 𝑛𝜚1 such that

@𝑁 P N : ‖sup
𝑥P𝐷

|𝑅𝑁p𝑥q|
𝜚1‖𝐿𝑛ppΩ,A,Pq,Rq ď 𝐶

`

maxt𝛼𝑁 , 𝛼1´𝛿
𝑁 u

˘𝜚1

where 𝛼𝑁 :“ maxt‖𝑟𝑁‖𝐿1pR𝑑,Rq, 𝜅𝑟,𝑁u. In particular, lim
𝑁Ñ8

E
“

sup𝑥P𝐷 |𝑅𝑁p𝑥q|
𝑛𝜌1
‰

“ 0.

Proof. Using the notation of the proof to Lemma 5.2.6 we have

𝑅𝑁p𝑥q “ p𝑏´ 𝑏
1
q

ż

R𝑑

𝑟𝑁p𝑥, 𝑦q d𝑦 `𝐺𝑟𝑁
p𝑥q ` 𝑃𝑟𝑁

p𝑥q,

and with Jensen’s inequality it follows

E
„

sup
𝑥P𝐷

|𝑅𝑁p𝑥q|
𝑛𝜚1


ď 3𝑛𝜚1´1
ˆ

|𝑏´ 𝑏1|𝑛𝜚
1‖𝑟𝑁‖𝑛𝜚

1

𝐿1pR𝑑,Rq ` E
„

sup
𝑥P𝐷

|𝐺𝑟𝑁
p𝑥q|𝑛𝜚

1



(5.19)

` E
„

sup
𝑥P𝐷

|𝑃𝑟𝑁
p𝑥q|𝑛𝜚

1

˙

.

The Gaussian part can be estimated as above. From property (i) of an orthogonal
approximation sequence we get

@𝑁 P N, 𝑥 P 𝐷 : ‖𝑟𝑁p𝑥, ¨q‖𝐿2pR𝑑,Rq ď ‖𝑘p𝑥, ¨q‖𝐿2pR𝑑,Rq and 𝑑𝑁 ď 𝑑𝑐,

where 𝑑𝑁 and 𝑑𝑐 denote the canonical distances associated with p𝐺𝑟𝑁
p𝑥qq𝑥P𝐷 and

p𝐺𝑘p𝑥qq𝑥P𝐷, respectively. Using the first inequality of (5.14), there are constants

𝐴 ą 𝜎̄2 :“ 𝜎2 sup
𝑥P𝐷

‖𝑘p𝑥, ¨q‖2
𝐿2pR𝑑,Rq ě 𝜎2 sup

𝑥P𝐷
‖𝑟𝑁p𝑥, ¨q‖2

𝐿2pR𝑑,Rq “: 𝜎̄2
𝑟,𝑁 ,

𝐾, 𝑣 ą 0 and 𝜀0 P s0, 𝜎̄r such that for every 𝑁 P N, 𝑔 ě 𝜎̄𝑟,𝑁p1`
?
𝑣q{𝜀0 we have

Ppsup
𝑥P𝐷

|𝐺𝑟𝑁
p𝑥q| ě 𝑔q ď

ˆ

𝐾𝐴𝑔
?
𝑣𝜎̄2

𝑟,𝑁

˙𝑣

exp
´

´
𝑔2

2𝜎̄2
𝑟,𝑁

¯

.

Since for 𝑗 P N with 𝑗 ą 𝜎̄𝛿p1 `
?
𝑣q{𝜀0 it holds 𝑗𝜎̄1´𝛿

𝑟,𝑁 ą 𝜎𝑟,𝑁p1 `
?
𝑣q{𝜀0, we have

with 𝑀 :“ maxtr𝜎̄𝛿p1`
?
𝑣q{𝜀0s, r𝜎̄𝛿

b

𝑣 1`𝛿
𝛿

su that

E
„

sup
𝑥P𝐷

|𝐺𝑟𝑁
p𝑥q|𝑛𝜚

1



ď

8
ÿ

𝑗“0

`

p𝑗 ` 1q𝜎̄1´𝛿
𝑟,𝑁

˘𝑛𝜚1 Ppsup
𝑥P𝐷

|𝐺𝑟𝑁
p𝑥q| ě 𝑗𝜎̄1´𝛿

𝑟,𝑁 q
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ď

𝑀
ÿ

𝑗“0

`

p𝑗 ` 1q𝜎̄1´𝛿
𝑟,𝑁

˘𝑛𝜚1

`

8
ÿ

𝑗“𝑀`1

`

p𝑗 ` 1q𝜎̄1´𝛿
𝑟,𝑁

˘𝑛𝜚1

˜

𝐾𝐴𝑗
?
𝑣𝜎̄1`𝛿

𝑟,𝑁

¸𝑣

expp´ 𝑗2

2𝜎̄2𝛿
𝑟,𝑁

q

ď𝜎̄
p1´𝛿q𝑛𝜚1
𝑟,𝑁

˜

𝑀
ÿ

𝑗“0
p𝑗 ` 1q𝑛𝜚1

`2𝑛𝜚1
ˆ

𝐾𝐴
?
𝑣

˙𝑣 8
ÿ

𝑗“𝑀`1
𝑗𝑛𝜚

1

˜

𝑗

𝜎̄1`𝛿
𝑟,𝑁

¸𝑣

exp
˜

´
𝑗2

2𝜎̄𝑟,𝑁

2𝛿
¸¸

ď𝜎̄
p1´𝛿q𝑛𝜚1
𝑟,𝑁

˜

𝑀
ÿ

𝑗“0
p𝑗 ` 1q𝑛𝜚1

`2𝑛𝜚1
ˆ

𝐾𝐴
?
𝑣

˙𝑣 8
ÿ

𝑗“𝑀`1
𝑗𝑛𝜚

1

ˆ

𝑗

𝜎̄1`𝛿

˙𝑣

exp
ˆ

´
𝑗2

2𝜎̄2𝛿

˙

¸

,

where in the last step we have used that for every 𝑗 ą r𝜎̄𝛿
b

𝑣 1`𝛿
𝛿

s the functions
𝑓𝑗 : r0,8rÑ R, 𝑓𝑗p𝑥q :“ p𝑗𝑥´p1`𝛿qq𝑣 expp´𝑗2{2𝑥2𝛿q are strictly increasing on r0, 𝜎̄s
and that 𝜎̄𝑟,𝑁 P r0, 𝜎̄s for all 𝑁 P N. As the above series converges, denoting with 𝐶1

the expression in brackets on the right-hand side of the above inequality and taking
into account that

@𝑁 P N : 𝜎̄2
𝑟,𝑁 “ 𝜎2 sup

𝑥P𝐷

ż

R𝑑

|𝑟𝑁p𝑥, 𝑦q|
2 d𝑦 ď 𝜎2𝜅𝑟,𝑁‖𝑟𝑁‖𝐿1pR𝑑,Rq ď 𝜎2𝛼2

𝑁 ,

we derive
@𝑁 P N : E

„

sup
𝑥P𝐷

|𝐺𝑟𝑁
p𝑥q|𝑛𝜚

1



ď 𝜎1´𝛿𝐶1𝛼
p1´𝛿q𝑛𝜚1
𝑁 . (5.20)

Now, it remains to estimate the Poisson part in (5.19). By Hölder’s inequality,
|𝑃 ||𝑟𝑁 |p𝑥q ď |𝑃 |p𝑟𝑁q (cf. (3.8)), Lemma 3.3.7, and ‖𝑟𝑁‖𝑘𝐿1pR𝑑,Rq𝜅

𝑙´𝑘
𝑟,𝑁 ď 𝛼𝑙𝑁 for all

0 ď 𝑘 ď 𝑙, we have for every 𝑁 P N

E
„

sup
𝑥P𝐷

|𝑃𝑟𝑁
p𝑥q|𝑛𝜚1



ď

ˆ

E
„

sup
𝑥P𝐷

|𝑃𝑟𝑁
p𝑥q|r𝑛𝜚1s

˙

𝑛𝜚1
r𝑛𝜚1s

(5.21)

ď

´

E
”

|𝑃 |p𝑟𝑁p𝑥q|
r𝑛𝜚1s

ı¯

𝑛𝜚1

r𝑛𝜚1s
“

ˆ

ÿ

𝐼PPpr𝑛𝜚1sq

𝐼“t𝐼1,...,𝐼𝑘u

𝑘
ź

ℓ“1
𝑐`
|𝐼ℓ|

ż

R𝑑

𝑟
|𝐼ℓ|

𝑁 d𝑥
˙

𝑛𝜚1

r𝑛𝜚1s
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ď

ˆ

ÿ

𝐼PPpr𝑛𝜚1sq

𝐼“t𝐼1,...,𝐼𝑘u

𝑘
ź

ℓ“1
𝑐`
|𝐼ℓ|

‖𝑟𝑁‖𝐿1pR𝑑,Rq𝜅
|𝐼𝑙|´1
𝑟,𝑁

˙

𝑛𝜚1

r𝑛𝜚1s

“

ˆ

ÿ

𝐼PPpr𝑛𝜚1sq

𝐼 “t𝐼1,...,𝐼𝑘u

‖𝑟𝑁‖𝑘𝐿1pR𝑑,Rq𝜅
r𝑛𝜚1s´𝑘
𝑟,𝑁

𝑘
ź

ℓ“1
𝑐`
|𝐼ℓ|

˙

𝑛𝜚1

r𝑛𝜚1s

ď

ˆ

ÿ

𝐼PPpr𝑛𝜚1sq

𝐼“t𝐼1,...,𝐼𝑘u

𝑘
ź

ℓ“1
𝑐`
|𝐼ℓ|

˙

𝑛𝜚1

r𝑛𝜚1s

𝛼𝑛𝜚
1

𝑁 ,

where Ppr𝑛𝜚1sq denotes the collection of all partitions on t1, . . . , r𝑛𝜚1su into non-
intersecting, non-empty sets 𝐼1, . . . , 𝐼𝑘, 1 ď 𝑘 ď r𝑛𝜚1s, and 𝑐`

|𝐼𝑙|
are suitable non-

negative numbers. Further, note that the constants 𝑐`
|𝐼ℓ|

are given with respect to the
modified Lévy measure 𝜈` associated with |𝑃 | instead of 𝜈 associated with 𝑃 . We
set the constant 𝐶2 to be equal with the factor in front of 𝛼𝑛𝜚

1

𝑁 from the previous
inequality. Then, the previous inequality gives

@𝑁 P N : E
„

sup
𝑥P𝐷

|𝑃𝑟𝑁
p𝑥q|𝑛𝜚

1



ď 𝐶2𝛼
𝑛𝜚1

𝑁 . (5.22)

At last, by combining (5.19), (5.20) and (5.22) we obtain

@𝑁 P N : E
„

sup
𝑥P𝐷

|𝑅𝑁p𝑥q|
𝑛𝜚1


ď 3𝑛𝜚1´1
p|𝑏´ 𝑏1| ` 𝜎𝛿𝐶1 ` 𝐶2q

`

maxt𝛼𝑁 , 𝛼1´𝛿
𝑁 u

˘𝑛𝜚1

wich proves the assertion.

Now, combining Lemma 5.2.3, 5.2.6 and 5.2.7 yields the following convergence
result.

Theorem 5.2.8. Consider a Lévy field 𝑍 that satisfies Assumption 5.1.4 and a
smoothing function 𝑘 : R𝑑ˆR𝑑 Ñ R such that 𝑘 P 𝐿1pR𝑑,RqX𝐿8pR𝑑,Rq and such that
the canonical distance 𝑑𝑐 of p𝐺𝑘p𝑥qq𝑥P𝐷 satisfies the covering property in Talagrand’s
Lemma 5.1.2, where 𝐺 is the centered part of 𝑍. Furthermore, let 𝑘 “ 𝑘𝑁 ` 𝑟𝑁 ,
𝑁 P N, be an orthogonal approximation sequence for which the centered Gaussian
fields p𝐺𝑘𝑁

p𝑥qq𝑥P𝐷 and p𝐺𝑟𝑁
p𝑥qq𝑥P𝐷, all have a.s. continuous paths and for which

𝑘𝑁 P 𝐿
1pR𝑑,Rq X 𝐿8pR𝑑,Rq for all 𝑁 P N.

Let 𝑢 and 𝑢𝑁 , with 𝑁 P N, be the solution to (2.15) with random conductivity
𝑇 ˝ 𝑍𝑘 and 𝑇 ˝ 𝑍𝑘𝑁

, respectively, where 𝑇 satisfies Assumption 5.2.2. Assuming that
with 𝜅 :“ ‖𝑘‖𝐿8pR𝑑,Rq we have 𝛽 ą 4𝜅𝜌, for all 𝑛 P r1, 𝛽

4𝜅𝜌r, 𝜚 P s1,
𝛽

4𝜅𝜌𝑛r, and 𝛿 P s0, 1r
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there exist constants 𝐶 1 ą 0 and 𝑀 P N such that for all 𝑁 ě𝑀 we have

‖𝑢´ 𝑢𝑁‖𝐿𝑛ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶 1 maxt𝛼𝑁 , 𝛼1´𝛿
𝑁 u,

where 𝛼𝑁 “ maxt‖𝑟𝑁‖𝐿1pR𝑑,Rq, 𝜅𝑟,𝑁u. If 𝑘𝑁p𝑥, ¨q and 𝑟𝑁p𝑥, ¨q have disjoint support for
all 𝑥 P R𝑑 and all 𝑁 P N, one can choose 𝑀 “ 1.

In particular, p𝑢𝑁q𝑁PN converges to 𝑢 in 𝐿𝑛ppΩ,A,Pq, 𝐻1p𝐷,Rqq. The constant
𝐶 1 depends only on 𝐵, 𝑍, 𝑘, 𝑛𝜚

𝜚´1 , ‖𝑓‖𝐿2p𝐷,Rq, ‖𝑔𝐷‖
𝐻

1
2 pΓ𝐷,Rq

, ‖𝑔𝑁‖
𝐻

1
2 p𝐷,Rq

, and 𝐶, the
constant from Lemma 5.2.1.

5.2.3 Series Expansion of Lévy Coefficients

We approximate the smoothed Lévy coefficient and therefore the solution to (2.15)
in two steps. With our approximation scheme we have to consider that only 𝑥 is
restricted to the domain 𝐷, whereas 𝑦 transport the effect of noise source terms
from locations 𝑦 R 𝐷 into 𝐷. Let pΛ𝑁q𝑁PN denote a compact exhaustion of R𝑑, i.e.,
pΛ𝑁q𝑁PN is a sequence of compact subsets of R𝑑 with Λ𝑁 Ď intpΛ𝑁`1q, 𝑁 P N, and
Y𝑁Λ𝑁 “ R𝑑. In the first step, we restrict the second argument of the kernel 𝑘p𝑥, 𝑦q
to a sufficiently large domain Λ𝑁 from this sequence. Since now both 𝑥 and 𝑦 are
restricted to sufficiently large compact domains, we can apply Mercer’s expansion
onto the restricted version of the smoothing function 𝑘 in the second step of our two-
steps approximation approach. This yields a finite-dimensional approximation of 𝑍𝑘
and is a natural generalization of the Karhunen-Loève expansion for Lévy fields.

The first step, induces for a |||¨|||-continuous Lévy field 𝑍 directly a |||¨|||-continuous
generalized random field 𝑍𝑁p𝑓q :“ 𝑍p1Λ𝑁

𝑓q, 𝑁 P N, which, however, is no longer
stationary. From Theorem 3.2.10 it follows for Matérn kernel, with 𝑘𝛼,𝑚, 𝑚 ą 0, and
𝛼 ą 𝑑`maxt0, 3𝑑´12

8 u, that the smoothed fields p𝑍𝑁
𝑘 p𝑥qq𝑥P𝐷, 𝑁 P N, with smoothing

function 𝑘p𝑥, 𝑦q “ 𝑘𝛼,𝑚p𝑥´ 𝑦q, have a.s. continuous paths. Furthermore, in the proof
of Theorem 5.1.6 we have seen that the canonical distance 𝑑𝑐 associated with the
Gaussian field p𝐺𝑘p𝑥qq𝑥P𝐷 (where 𝐺 denotes the centered Gaussian part of 𝑍) fulfills
the covering property in Talagrand’s Lemma 5.1.2 and, by Lemma 5.1.3 (ii), we have
𝑘 P 𝐿1pR𝑑,Rq X 𝐿8pR𝑑,Rq with lim|𝑦|Ñ8 𝑘p𝑦q “ 0. Therefore, the assumptions of
Theorem 5.2.8 are directly satisfied for smoothing functions given by Matérn kernels.
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Corollary 5.2.9. Let 𝑍, 𝑇 and 𝑢 be given as in Theorem 5.2.8 and let 𝑘𝛼,𝑚 be a
Matérn kernel with 𝛼 ą 𝑑. For a compact exhaustion pΛ𝑁q𝑁PN of R𝑑 with 𝐷 Ď Λ1, we
set 𝑘𝑁p𝑥, 𝑦q :“ 𝑘𝛼,𝑚p𝑥, 𝑦q1Λ𝑁

p𝑦q and denote by 𝑢𝑁 the solution to diffusion equation
(2.15) with random conductivity 𝑇 ˝ 𝑍𝑘𝑁

.
Then, for all 𝑛 P r1, 𝛽

4𝜅𝜌r, 𝜚 P s1,
𝛽

4𝜅𝜌𝑛r, and 0 ă 𝑚1 ă 𝑚, there is a constant 𝐶 ą 0
such that for all 𝑁 P N we have

‖𝑢´ 𝑢𝑁‖𝐿𝑛ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶e´𝑚1d𝑒p𝐷,Λ𝑐
𝑁 q, (5.23)

where 𝑑𝑒 denotes the Euclidean distance between 𝐷 and Λ𝑐
𝑁 .

Proof. We first note that 𝑘 “ 𝑘𝑁 ` 𝑟𝑁 is an orthogonal approximation sequence in
the sense of Definition 5.2.5, since, first, as the 𝑦-domain of 𝑘𝑁 and 𝑟𝑁 are disjoint
by definition, it follows that condition (i) is satisfied, and, second, the decay rate
𝑘𝛼,𝑚p𝑥, 𝑦q ď 𝐶e´𝑚|𝑥´𝑦| for |𝑥´ 𝑦| Ñ 8 from Lemma 5.1.3 (ii) implies for 0 ă 𝑚1 ă 𝑚

‖𝑟𝑁‖𝐿1pR𝑑,Rq ď 𝐶

ż

Λ𝑐
𝑁

sup
𝑥P𝐷

e´𝑚|𝑥´𝑦| d𝑦 “ 𝐶e´𝑚d𝑒p𝐷,Λ𝑐
𝑁 q

ż

Λ𝑐
𝑁

sup
𝑥P𝐷

e´p𝑚´𝑚1q|𝑥´𝑦| d𝑦 ă 8,

where the last integral can be estimated by a constant as the integration area gets
smaller for 𝑁 Ñ 8. Since we have

𝜅𝑟,𝑁 “ ‖𝑟𝑁‖𝐿8pR𝑑,Rq “ sup
𝑥P𝐷,𝑦PΛ𝑐

𝑁

𝐶e´𝑚|𝑥´𝑦| “ 𝐶e´𝑚𝑑𝑒p𝐷,Λ𝑐
𝑁 q

it follows
𝛼𝑁 “ maxt‖𝑟𝑁‖𝐿1pR𝑑,Rq, 𝜅𝑟,𝑁u ď 𝐶𝑒´𝑚

1𝑑𝑒p𝐷,Λ𝑐
𝑁 q.

and therefore the second condition of Definition 5.2.5 is satisfied as well. We now can
use Theorem 5.2.8 and obtain

‖𝑢´ 𝑢𝑁‖𝐿𝑛ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶 1 maxt𝛼𝑁 , 𝛼1´𝛿
𝑁 u ď 𝐶 1𝐶e´𝑚1𝑑𝑒p𝐷,Λ𝑐

𝑁 q,

where we merged 𝑚1 and 𝛿 as for 𝑚1 P s0,𝑚r and 𝛿 P s0, 1r we again have p1´ 𝛿q𝑚1 P

s0,𝑚r. Redefining the constant 𝐶 gives (5.23).

Remark 5.2.10. (i) The discontinuous cut-off 1Λ𝑁
p𝑦q perhaps seems to be a con-

tradiction to the assumptions needed for the continuity of the paths of 𝑍𝑘𝑁
p𝑥q,

which is part of the prerequisites of Theorem 5.2.8. However, as it is equiva-

116



lent to apply the noise 𝑍 to 𝑘𝑁p𝑥, ¨q or to apply the noise 1Λ𝑁
𝑍 to 𝑘p𝑥, ¨q we

may still obtain continuous realizations of 𝑍𝑘𝑁
p𝑥q from Theorem 3.2.10. As

𝜙𝑁p𝑓q “ e
ş

Λ𝑁
𝜓p𝑓q d𝑥 (and equally for 𝑅𝑁p𝑦q with Λ𝑁 replaced by Λ𝑐

𝑁), we see
that this functional still is |||¨|||-continuous and therefore the results of Theo-
rem 3.2.10 are compatible with the cut-off Λ𝑁 .

(ii) In a similar way, the Hölder continuity of the covariance function 𝑘2𝛼,𝑚 of the
Gaussian part (see (5.6)) also holds for the truncated fields 𝐺𝑘𝑁

p𝑥q, 𝑍𝑘𝑁,𝑡
p𝑥q

and 𝑅𝑁p𝑥q, as by Definition 5.2.5 (i) the canonical distances of all these fields
are dominated by that of 𝐺𝑘p𝑥q.

After we restricted both arguments of the smoothing kernel 𝑘 to a sufficient large
compact domain Λ at the cost of a small controllable error, we are now able to apply
Mercer’s expansion to 𝑘 on the domain Λ.

Theorem 5.2.11 (Mercer’s Theorem, [57, Theorem 1.80]). Let Λ be a compact subset
of R𝑑 and 𝑘 : Λ ˆ Λ Ñ R be a continuous and positive definite kernel. Consider the
compact linear operator 𝐾 : 𝐿2pΛ,Rq Ñ 𝐿2pΛ,Rq,

r𝐾𝜑sp𝑥q “

ż

Λ
𝑘p𝑥, 𝑦q𝜑p𝑦q d𝑦

associated with 𝑘. Then, there exists an orthonormal basis t𝑒𝑗u𝑗PN of 𝐿2pΛ,Rq consist-
ing of eigenfunctions of 𝐾 such that the associated sequence of eigenvalues t𝜆𝑗u𝑗PN is
non-negative with zero as its only possible point of accumulation. The eigenfunctions
corresponding to positive eigenvalues are continuous on Λ and 𝑘 has the representation

𝑘p𝑥, 𝑦q “
8
ÿ

𝑗“1
𝜆𝑗𝑒𝑗p𝑥q𝑒𝑗p𝑦q, 𝑥, 𝑦 P Λ,

where the convergence is absolute and uniform.

Remark 5.2.12. (i) In the following, instead of applying Mercer’s expansion onto
the covariance function 𝑘_˚𝑘 induced by the smoothing kernel 𝑘 as in a Karhunen-
Loève (KL) expansion, we obtain a finite-dimensional approximation of the
smoothed random field by expanding the smoothing kernel 𝑘 itself. Whereas the
standard KL-expansion expands the covariance function

ş

R𝑑 𝑘p𝑥´ 𝑧q𝑘p𝑦´ 𝑧q d𝑧,
our approach expands the covariance of the truncated noise

ş

Λ 𝑘p𝑥´𝑧q𝑘p𝑦´𝑧q d𝑧,

117



where 𝑥, 𝑦 P Λ. We could easily show that the eigenvalues obtained for the ex-
pansion of the second covariance function are given by 𝜆2

𝑖 where 𝑒𝑖p𝑥q are the
eigenfunctions of the integral operator defined by 𝑘p𝑥´ 𝑦q in 𝐿2ppΛ,Rq, d𝑦q.

(ii) In principle, one could also expand the paths of 𝑍𝑘p𝑥q in eigenfunctions of the
first covariance operator, by expanding the smoothing kernel 𝑘p𝑥 ´ 𝑦q in 𝑥 P Λ
(or 𝐷). In addition, a proof for the uniformity and decay properties of this
expansion in 𝑦 P R𝑑 are needed. This approach seems more involved than the cut-
off method used here, as the spectral properties of the integral operator induced
by 𝑘p𝑥´ 𝑦q can not be used. In addition, the cut-off method seems not to loose
any efficiency for Matérn kernels as it does not lead to a worsening of rates of
convergence as shown in Theorem 5.2.16 below.

(iii) The assumptions of Theorem 5.2.11 is clearly satisfied for 𝑘p𝑥, 𝑦q “ 𝑘𝛼,𝑚p𝑥´ 𝑦q

for 2𝛼 ą 𝑑 when restricted to Λ in both arguments 𝑥, 𝑦; see, Lemma 5.1.3. Note
that the positive definiteness of the kernel 𝑘𝛼,𝑚p𝑥 ´ 𝑦q is given as the Fourier
transform of 𝑘𝛼,𝑚p𝑥q is positive (see Definition 3.2.8).

(iv) As the eigenfunctions 𝑒𝑖 and the eigenvalues 𝜆𝑖 depend on Λ, in what follows
we use for Λ “ Λ𝑁 the notation 𝜆𝑁,𝑖 and 𝑒𝑁,𝑖.

Corollary 5.2.13. We assume in addition to the assumptions of Theorem 5.2.8 that
𝑘 is a positive definite kernel. Then, for fixed 𝑁 P N the decomposition

𝑘𝑁p𝑥, 𝑦q “ 𝑘p𝑥, 𝑦q1Λ𝑁
p𝑦q “ 𝑘𝑁,𝑁 1p𝑥, 𝑦q ` 𝑟𝑁,𝑁 1p𝑥, 𝑦q, 𝑥, 𝑦 P Λ𝑁 ,

where the truncated Mercer expansion 𝑘𝑁,𝑁 1p𝑥, 𝑦q “
ř𝑁 1

𝑗“1 𝜆𝑁,𝑗𝑒𝑁,𝑗p𝑥q𝑒𝑁,𝑗p𝑦q from The-
orem 5.2.11 with remainder 𝑟𝑁,𝑁 1 represents an orthogonal approximation sequence
in the sense of Definition 5.2.5 with respect to the approximation parameter 𝑁 1 P N.
For the solution 𝑢𝑁 of (2.15) with smoothing kernel truncated in the 𝑦 variable (see
Corollary 5.2.9) and the solution 𝑢𝑁,𝑁 1 associated with 𝑍𝑘𝑁,𝑁 1

we have

‖𝑢𝑁 ´ 𝑢𝑁,𝑁 1‖𝐿𝑛ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶|Λ𝑁 |𝜅𝑟,𝑁,𝑁 1 Ñ 0, as 𝑁 1
Ñ 8,

where 𝜅𝑟,𝑁,𝑁 1 “ sup𝑥P𝐷,𝑦PΛ𝑁
|
ř8

𝑗“𝑁 1`1 𝜆𝑁,𝑗𝑒𝑁,𝑗p𝑥q𝑒𝑁,𝑗p𝑦q| and Λ𝑁 ą 1.
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Proof. Mercer’s Theorem 5.2.11 provides

0 ď 𝜅𝑟,𝑁,𝑁 1 ď sup
𝑥PΛ𝑁 ,𝑦PΛ𝑁

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

𝑗“𝑁 1`1
𝜆𝑁,𝑗 𝑒𝑁,𝑗p𝑥q 𝑒𝑁,𝑗p𝑦q

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 as 𝑁 1
Ñ 8.

Additionally, we have ‖𝑟𝑁,𝑁 1‖𝐿1pΛ𝑁 ,Rq ď |Λ𝑁 |𝜅𝑟,𝑁,𝑁 1 as Λ𝑁 is bounded. Now, the
assertion follows by Theorem 5.2.8

In order to establish a convergence rate for Matérn kernels, we first have to prove
the following auxiliary lemma.

Lemma 5.2.14. Consider the compact operator 𝐾 : 𝐿2pΛ,Rq Ñ 𝐿2pΛ,Rq on a
compact set Λ Ă R𝑑 such that clpintpΛqq “ Λ, where

r𝐾𝑓 sp𝑥q “

ż

Λ
𝑘𝛼,𝑚p𝑥´ 𝑦q𝑓p𝑦q d𝑦, 𝑓 P 𝐿2

pΛ,Rq, 𝑥 P R𝑑,

and where 𝑘𝛼,𝑚 is the Matérn kernel with parameters 𝛼 ą 𝑑
2 , 𝑚 ą 0. Let p𝜆Λ,𝑗q𝑗PN be

the eigenvalues of 𝐾 with normalized eigenfunctions p𝑒Λ,𝑗q𝑗PN, and let 𝜀 P s0, 𝛼
𝑑
´ 1

2r,
𝛿 ą 0 and 𝜒 ą maxt1, 1

𝛿
u. For diampΛq ď 𝛿 and every 𝛾 ą 𝜒𝛿 we have

a

𝜆Λ,𝑗‖𝑒Λ,𝑗‖𝐿8pΛ,Rq ď 𝐶𝛾2p𝛼´ 𝑑
2´𝜀q𝑗´

𝛼
𝑑
` 1

2`𝜀, for all 𝑗 P N, (5.24)

where the constant 𝐶 only depends on 𝛼,𝑚, 𝜀, and 𝜒.

Proof. This proof is very much inspired by [78] where the author prove a similar
bound which, however, depends on the domain Λ.

As 𝑘𝛼,𝑚 is a real-valued function with positive Fourier transform, 𝐾 is a positive,
self-adjoint operator. The eigenfunctions p𝑒Λ,𝑗q𝑗PN “: p𝑒𝑗q𝑗PN define an orthonormal
basis of 𝐿2pΛ,Rq and since 𝐾 is positive, 𝜆𝑗 ě 0, 𝑗 P N. As usual we assume that the
eigenvalue sequence is decreasing.

By extending every 𝑓 P 𝐿2pΛ,Rq by zero to R𝑑 and denoting this extension of 𝑓
to R𝑑 again by 𝑓 , we interpret 𝐿2pΛ,Rq as a closed subspace of 𝐿2pR𝑑,Rq. Since Λ is
compact, we also have 𝐿2pΛ,Rq Ă 𝐿1pR𝑑,Rq, therefore

𝑘𝛼,𝑚 ˚ 𝑓 P 𝐿
1
pR𝑑,Rq for all 𝑓 P 𝐿2

pΛ,Rq

and 𝐾𝑓 “ p𝑘𝛼,𝑚 ˚ 𝑓q|Λ. Clearly, 𝐾 is the compression to 𝐿2pΛ,Rq of the convolution
operator on 𝐿2pR𝑑,Rq with convolution kernel 𝑘𝛼,𝑚. Therefore, 𝑘𝛼,𝑚 ˚ 𝑓 P 𝐻𝛼pR𝑑,Rq,
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for 𝑓 P 𝐿2pR𝑑,Rq, and since 𝛼 ą 𝑑
2 we have {𝑘𝛼,𝑚 ˚ 𝑓 P 𝐿

1pR𝑑,Rq, for 𝑓 P 𝐿2pR𝑑,Rq.
Because

𝜆𝑗𝑒𝑗 “ p𝑘𝛼,𝑚 ˚ 𝑒𝑗q1Λ, for all 𝑗 P N

it follows 𝜆𝑗 ‰ 0 for 𝑗 P N as well as 𝑒𝑗 P 𝐻𝛼pintpΛq,Rq X 𝐶0pΛ,Rq.

Let 𝑑
2 ă 𝑠 ă 𝛼. By the fact that due to 𝑠 ą 𝑑

2 the Fourier transform of every
𝐻𝑠pR𝑑,Rq function belongs to 𝐿1pR𝑑,Rq (see, e.g. [74, Corollary 7.9.4]), the Fourier
inversion formula gives for every 𝑈 P 𝐻𝑠pR𝑑,Rq with 𝑈æintpΛq “ 𝑒𝑗 that

‖𝑒𝑗‖𝐿8pΛ,Rq ď p2𝜋q´𝑑‖𝑈̂‖𝐿1pR𝑑,Rqď ‖p1` |𝜉|2q´𝑠‖𝐿1pR𝑑,Rq‖𝑈‖𝐻𝑠pR𝑑,Rq

so that with 𝑐𝑠 :“ ‖p1` |𝜉|2q´𝑠‖𝐿1pR𝑑,Rq we have

‖𝑒𝑗‖𝐿8pΛ,Rq ď 𝑐𝑠‖𝑒𝑗‖𝐻𝑠pintpΛq,Rq, for all 𝑗 P N.

By applying an interpolation inequality (see, e.g. [83, Theorem B.8 and Lemma B.1])
we have for all 𝑗 P N

‖𝑒𝑗‖𝐿8pΛ,Rq ď 𝑐𝑠𝛼

ˆ

sinp 𝑠𝜋
𝛼
q

𝜋𝑠p𝛼 ´ 𝑠q

˙
1
2

‖𝑒𝑗‖
1´ 𝑠

𝛼

𝐿2pΛ,Rq‖𝑒𝑗‖
𝑠
𝛼

𝐻𝛼pintpΛq,Rq

“ 𝑐𝑠𝛼

ˆ

sinp 𝑠𝜋
𝛼
q

𝜋𝑠p𝛼 ´ 𝑠q

˙
1
2

‖𝑒𝑗‖
𝑠
𝛼

𝐻𝛼pintpΛq,Rq.

(5.25)

From (2.3) and Plancherel’s Theorem [83, Theorem 3.12] we conclude

𝜆2
𝑗‖𝑒𝑗‖2

𝐻𝛼pintpΛq,Rq ď ‖𝑘𝛼,𝑚 ˚ 𝑒𝑗‖2
𝐻𝛼pR𝑑,Rq “ p2𝜋q´2𝑑

ż

R𝑑

p1` |𝜉|2q𝛼p𝑚2
` |𝜉|2q´2𝛼

|𝑒𝑗|
2 d𝜉

ď maxt1,𝑚´2𝛼
up2𝜋q´2𝑑

ż

R𝑑

{𝑘𝛼,𝑚 ˚ 𝑒𝑗 𝑒𝑗 d𝑥

“ maxt1,𝑚´2𝛼
up2𝜋q´2𝑑

p𝐾𝑒𝑗, 𝑒𝑗q𝐿2pΛq “ maxt1,𝑚´2𝛼
up2𝜋q´2𝑑𝜆𝑗,

where 𝑒𝑗 denotes the complex conjugate of 𝑒𝑗 and where p¨, ¨q𝐿2pΛq is the 𝐿2 inner
product on Λ. Combining the previous inequality with (5.25) we obtain for every
𝑠 P p𝑑2 , 𝛼q and for all 𝑗 P N:

a

𝜆𝑗‖𝑒𝑗‖𝐿8pΛ,Rq ď 𝑐𝑠𝛼

ˆ

sinp 𝑠𝜋
𝛼
q

𝜋𝑠p𝛼 ´ 𝑠q

˙
1
2

maxt1,𝑚´𝑠
up2𝜋q´ 𝑑𝑠

𝛼 𝜆
1
2´

𝑠
2𝛼

𝑗 . (5.26)
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Next we derive estimates for the eigenvalue sequence p𝜆𝑗q𝑗PN. Let 𝛿 ě diampΛq.
Without loss of generality we assume that Λ Ď r´ 𝛿

2 ,
𝛿
2s
𝑑. Then, the integral operator

𝐾 is determined by 𝑘𝛼,𝑚ær´𝛿,𝛿s𝑑 . For arbitrary 𝛾 ą 𝛿 we can consider 𝐿2pΛ,Rq as a
subspace of 𝐿2pr´𝛾, 𝛾s𝑑,Rq, by extending the functions in 𝐿2pΛ,Rq by zero to r´𝛾, 𝛾s𝑑.
Again, we do not distinguish notationally between functions from 𝐿2pΛ,Rq and their
extensions.

If 𝑘 is continuous, real-valued, and an even extension of 𝑘𝛼,𝑚ær´𝛿,𝛿s𝑑 to r´𝛾, 𝛾s𝑑 –
note that 𝑘𝛼,𝑚 is a radially symmetric function, so in particular even – it follows that

𝐾̃ : 𝐿2
pr´𝛾, 𝛾s𝑑,Rq Ñ 𝐿2

pr´𝛾, 𝛾s𝑑,Rq, r𝐾̃𝑓 sp𝑥q :“
ż

r´𝛾,𝛾s𝑑
𝑘p𝑥´ 𝑦q𝑓p𝑦q d𝑦

is a self-adjoint, compact operator which satisfies𝐾𝑓 “ 𝐾̃𝑓æΛ, for 𝑓 P 𝐿2pΛ,Rq. As 𝐾̃
is self-adjoint and compact, there exists an orthonormal basis p𝑓𝑗q𝑗PN of 𝐿2pr´𝛾, 𝛾s𝑑,Rq
consisting of eigenfunctions of 𝐾̃ and a real sequence of corresponding eigenvalues
p𝜆̃𝑗q𝑗PN which, without loss of generality, have decreasing moduli.

Clearly, for every 𝑗 P N the operators

𝐵𝑗 : 𝐿2
pΛ,Rq Ñ 𝐿2

pΛ,Rq, 𝑓 ÞÑ
𝑗
ÿ

𝑙“1
𝜆𝑙p𝑓, 𝑒𝑙q𝐿2pΛq𝑒𝑙,

𝐶𝑗 : 𝐿2
pΛ,Rq Ñ 𝐿2

pΛ,Rq, 𝑓 ÞÑ
𝑗
ÿ

𝑙“1
𝜆̃𝑙p𝑓, 𝑓𝑙æΛq𝐿2pΛq𝑓𝑙æΛ

and

𝐶𝑗 : 𝐿2
pr´𝛾, 𝛾s𝑑,Rq Ñ 𝐿2

pr´𝛾, 𝛾s𝑑,Rq, 𝑓 ÞÑ
𝑗
ÿ

𝑙“1
𝜆̃𝑙p𝑓, 𝑓𝑙q𝐿2pr´𝛾,𝛾s𝑑q𝑓𝑙

are continuous and linear operators with at most 𝑗-dimensional range.

Then, 𝐶𝑗𝑓æΛ “ 𝐶𝑗𝑓 for 𝑓 P 𝐿2pΛ,Rq and 𝑗 P N0. By denoting the associated
operator norms with ‖¨‖Λ and ‖¨‖𝛾, we have

‖𝐾𝑓 ´ 𝐶𝑗𝑓‖Λ “ ‖p𝐾̃𝑓 ´ 𝐶𝑗𝑓qæΛ‖Λ ď ‖𝐾̃𝑓 ´ 𝐶𝑗𝑓‖𝛾, for all 𝑓 P 𝐿2
pΛ,Rq

so that
‖𝐾 ´ 𝐶𝑗‖Λ ď ‖𝐾̃ ´ 𝐶𝑗‖𝛾, for all 𝑗 P N. (5.27)

Since 𝐾 is positive and both 𝐾 as well as 𝐾̃ are self-adjoint and compact operators,
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by a well-known result (see, e.g., [84, Lemma 16.5 and its proof]), using (5.27) gives

𝜆𝑗 “ ‖𝐾 ´𝐵𝑗´1‖Λ ď ‖𝐾 ´ 𝐶𝑗´1‖Λ ď ‖𝐾̃ ´ 𝐶𝑗´1‖𝛾 “ |𝜆̃𝑗|, for all 𝑗 P N. (5.28)

Up until this point we did not specify the extension 𝑘 of 𝑘𝛼,𝑚ær´𝛿,𝛿s𝑑 . For this pur-
pose we fix 𝜒 ą maxt1, 1

𝛿
u and a real-valued, even 𝜑1,𝜒 P D “ 𝐶8𝑐 pR𝑑,Rq with

𝜑1,𝜒ær´ 1
𝜒
, 1

𝜒
s𝑑 “ 1 and supp𝜑1,𝜒 Ď r´1, 1s𝑑 (the support of 𝜑1,𝜒). For 𝛾 ě 𝜒𝛿 we define

𝜑𝛾,𝜒p𝑥q :“ 𝜑1,𝜒p
1
𝛾
𝑥q so that 𝜑𝛾,𝜒ær´𝛿,𝛿s𝑑 “ 1 and supp𝜑𝛾,𝜒 Ď r´𝛾, 𝛾s𝑑. To simplify the

notation we write 𝜑1 and 𝜑𝛾 instead of 𝜑1,𝜒 and 𝜑𝛾,𝜒, respectively.

Then, 𝑘𝛾 :“ 𝑘𝛼,𝑚𝜑𝛾 is an even extension of 𝑘𝛼,𝑚ær´𝛿,𝛿s𝑑 whose support lies in
r´𝛾, 𝛾s𝑑, with 𝛾 ě 𝜒𝛿. We define the 𝛾-periodic extension 𝑘𝑝 of 𝑘𝛾 by

𝑘𝑝p𝑥q :“
ÿ

𝑛PZ𝑑

𝑘𝛾p𝑥` 2𝛾𝑛q, for all 𝑥 P R𝑑.

Then, for the integral operator 𝐾̃ corresponding to 𝑘𝛾, we have for all 𝑥 P R𝑑 and
𝑛 P Z𝑑 that

r𝐾̃e´𝑖
𝜋
𝛾
𝑛¨𝑦
sp𝑥q “

ż

r´𝛾,𝛾s𝑑
𝑘𝛾p𝑥´ 𝑦qe´𝑖

𝜋
𝛾
𝑛¨𝑦 d𝑦 “

ż

r´𝛾,𝛾s𝑑
𝑘𝑝p𝑥´ 𝑦qe´𝑖

𝜋
𝛾
𝑛¨𝑦 d𝑦

“

ż

r´𝛾,𝛾s𝑑
𝑘𝑝p𝑧qe´𝑖

𝜋
𝛾
𝑛¨𝑧 d𝑧 𝑒´𝑖

𝜋
𝛾
𝑛¨𝑥.

Since t𝑒´𝑖
𝜋
𝛾
𝑛¨𝑥, 𝑛 P Z𝑑u is an orthogonal basis of 𝐿2pr´𝛾, 𝛾s𝑑,Rq it follows that the

Fourier coefficients 𝑐𝑛p𝑘𝑝q of 𝑘𝑝

𝑐𝑛p𝑘𝑝q :“
ż

r´𝛾,𝛾s𝑑
𝑘𝑝p𝑧qe´𝑖

𝜋
𝛾
𝑛¨𝑧 d𝑧 “

ż

r´𝛾,𝛾s𝑑
𝑘𝛾p𝑧qe´𝑖

𝜋
𝛾
𝑛¨𝑧 d𝑧, for all 𝑛 P Z𝑑

(which are real since 𝑘𝛾 is even) are the eigenvalues of 𝐾̃, i.e., a suitable enumeration
of p𝑐𝑛p𝑘𝑝qq𝑛PZ𝑑 yields the eigenvalue sequence p𝜆̃𝑗q𝑗PN. Since supp 𝑘𝛾 Ď r´𝛾, 𝛾s𝑑 we
have for all 𝑛 P Z𝑑

|𝑐𝑛p𝑘𝑝q| “

ˇ

ˇ

ˇ

ˇ

ż

r´𝛾,𝛾s𝑑
𝑘𝛾p𝑧qe´𝑖

𝜋
𝛾
𝑛¨𝑧 d𝑧

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R𝑑

𝑘𝛾p𝑧qe´𝑖
𝜋
𝛾
𝑛¨𝑧 d𝑧

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

{𝑘𝛼,𝑚 ¨ 𝜑𝛾

ˆ

´
𝜋

𝛾
𝑛

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

𝑘𝛼,𝑚 ˚ 𝜑𝛾

ˆ

´
𝜋

𝛾
𝑛

˙
ˇ

ˇ

ˇ

ˇ

.

(5.29)
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Furthermore, for 𝜉 P R𝑑 it holds

ˇ

ˇ

ˇ
𝑘𝛼,𝑚 ˚ 𝜑𝛾p𝜉q

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|𝜂|ď
|𝜉|
2

𝑘𝛼,𝑚p𝜂q𝜑𝛾p𝜉 ´ 𝜂q d𝜂

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|𝜂|ě
|𝜉|
2

𝑘𝛼,𝑚p𝜂q𝜑𝛾p𝜉 ´ 𝜂q d𝜂

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
|𝜁|ě

|𝜉|
2

ˇ

ˇ

ˇ
𝜑𝛾p𝜁q

ˇ

ˇ

ˇ
‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` max

|𝜁|ě
|𝜉|
2

ˇ

ˇ

ˇ
𝑘𝛼,𝑚p𝜁q

ˇ

ˇ

ˇ
‖𝜑𝛾‖𝐿1pR𝑑,Rq.

(5.30)

Since 𝜑𝛾p𝜉q “ 𝛾𝑑𝜑1 p𝛾𝜉q, it follows

‖𝜑𝛾‖𝐿1pR𝑑,Rq“ ‖𝜑1‖𝐿1pR𝑑,Rq. (5.31)

Moreover, due to 𝛾 ě 𝜒𝛿 ě 1 and 𝛼 ą 𝑑
2 we have

|𝜑𝛾p𝜉q| “ 𝛾𝑑
`

1` |𝛾𝜉|2
˘´r𝛼s `1` |𝛾𝜉|2

˘r𝛼s
ˇ

ˇ

ˇ
𝜑1 p𝛾𝜉q

ˇ

ˇ

ˇ

“ 𝛾𝑑
`

1` |𝛾𝜉|2
˘´r𝛼s

ˇ

ˇ

ˇ

{p1´Δqr𝛼s𝜑1 p𝛾𝜉q
ˇ

ˇ

ˇ

ď 𝛾2𝛼 `1` |𝜉|2
˘´𝛼

⃦⃦⃦
p1´Δqr𝛼s𝜑1

⃦⃦⃦
𝐿1pR𝑑,Rq

.

Applying this and (5.31) on (5.30) gives for 𝜉 P R𝑑

|𝑘𝛼,𝑚 ˚ 𝜑𝛾p𝜉q| ď 𝛾2𝛼
ˆ

1` |𝜉|
2

4

˙´𝛼 ⃦⃦⃦
p1´Δqr𝛼s𝜑1

⃦⃦⃦
𝐿1pR𝑑,Rq

‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq

`

ˆ

𝑚2
`
|𝜉|2

4

˙´𝛼

‖𝜑1‖𝐿1pR𝑑,Rq

ď 𝛾2𝛼 maxt1,𝑚´2𝛼
u

ˆ

1` |𝜉|
2

4

˙´𝛼
”⃦⃦⃦
p1´Δqr𝛼s𝜑1

⃦⃦⃦
𝐿1pR𝑑,Rq

¨‖p𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` ‖ p𝜑1‖𝐿1pR𝑑,Rq

ı

.

Thus, by using (5.29) we get for every 𝑛 P Z𝑑

|𝑐𝑛p𝑘𝑝q| ď maxt1,𝑚´2𝛼
u

”

‖p1´Δqr𝛼s𝜑1‖𝐿1pR𝑑,Rq‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq`‖𝜑1‖𝐿1pR𝑑,Rq

ı

¨ 𝛾2𝛼 max
"

1, 2𝛾
𝜋

*2𝛼
`

1` |𝑛|2
˘´𝛼

.

For 𝛾 ě 𝜒𝛿 we follow that for every 𝑛 P Z𝑑 and 0 ă 𝜂 ď |𝑐𝑛p𝑘𝑝q| we have

|𝑛| ă maxt1,𝑚´1
u

”

‖p1´Δqr𝛼s𝜑1‖𝐿1pR𝑑,Rq‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` ‖𝜑1‖𝐿1pR𝑑,Rq

ı
1

2𝛼

¨max
"

1, 2𝛾
𝜋

*

𝛾𝜂´
1

2𝛼 .
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Therefore, for 𝛾 ě 𝜒𝛿 and 𝜂 ą 0 we obtain

#t𝑛 P Z𝑑 : |𝑐𝑛p𝑘𝑝q| ě 𝜂u ď 2𝑑 maxt1,𝑚´𝑑
u

¨

”

‖p1´Δqr𝛼s𝜑1‖𝐿1pR𝑑,Rq‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` ‖𝜑1‖𝐿1pR𝑑,Rq

ı
𝑑

2𝛼

ˆ

max
"

1, 2𝛾
𝜋

*˙𝑑

𝛾𝑑𝜂´
𝑑

2𝛼 .

For the eigenvalue sequence p𝜆̃𝑗q𝑗PN of the operator 𝐾̃ associated with 𝑘𝛾, 𝛾 ě 𝜒𝛿, it
thus follows for all 𝑗 P N that

|𝜆̃𝑗| ď 4𝛼 maxt1,𝑚´2𝛼
u

”

‖p1´Δqr𝛼s𝜑1‖𝐿1pR𝑑,Rq‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` ‖𝜑1‖𝐿1pR𝑑,Rq

ı

¨

ˆ

max
"

1, 2𝛾
𝜋

*˙2𝛼

𝛾2𝛼𝑗´
2𝛼
𝑑 .

By taking (5.28) and (5.26) into account, we finally obtain that for every 𝑠 P p𝑑2 , 𝛼q,
𝛾 ě 𝜒𝛿 and each 𝑗 P N

a

𝜆𝑗‖𝑒𝑗‖𝐿8pΛ,Rq ď 𝑐𝑠𝛼

ˆ

sinp 𝑠𝜋
𝛼
q

𝜋𝑠p𝛼 ´ 𝑠q

˙
1
2

maxt1,𝑚´𝑠
up2𝜋q´ 𝑑𝑠

𝛼 2𝛼´𝑠 maxt1,𝑚´p𝛼´𝑠q
u

¨

”

‖p1´Δqr𝛼s𝜑1‖𝐿1pR𝑑,Rq‖𝑘𝛼,𝑚‖𝐿1pR𝑑,Rq ` ‖𝜑1‖𝐿1pR𝑑,Rq

ı
𝛼´𝑠
2𝛼
𝛾𝛼´𝑠𝑗´

𝛼
𝑑
` 𝑠

𝑑 .

It follows that for every 𝛿 ą 0 and each 𝜀 P p0, 𝛼
𝑑
´ 1

2q (with 𝑠 “ 𝑑
2 ` 𝜀 in the previous

inequality) for every 𝜒 ą max
 

1, 1
𝛿

(

there is a constant 𝐶 ą 0, depending only on
𝛼,𝑚, 𝜀, and 𝜒, such that for every compact subset Λ Ď R𝑑 with clpintpΛqq “ Λ and
diampΛq ď 𝛿 and every 𝛾 ě 𝜒𝛿, there holds

a

𝜆Λ,𝑗‖𝑒Λ,𝑗‖𝐿8pΛ,Rq ď 𝐶𝛾𝛼´
𝑑
2´𝜀𝑗´

𝛼
𝑑
` 1

2`𝜀, for all 𝑗 P N.

Corollary 5.2.15. Let a kernel function 𝑘 “ 𝑘𝛼,𝑚 be given by a Matérn function with
𝛼 ą 𝑑 and let pΛ𝑁q𝑁PN be a compact exhaustion of R𝑑 with 𝐷 Ď Λ1 and diampΛ1q ě 1.
Then, for every 𝜀 P s0, 𝛼

𝑑
´ 1

2r there exists a constant 𝐶 ą 0 such that for each 𝑁 P N the
uniform bound 𝜅𝑟,𝑁,𝑁 1 “ sup𝑥P𝐷,𝑦PΛ𝑁

|
ř8

𝑗“𝑁 1`1 𝜆𝑁,𝑗𝑒𝑁,𝑗p𝑥q𝑒𝑁,𝑗p𝑦q| on the remainder of
the Mercer series of the restriction 𝑘𝑁 of 𝑘 to Λ𝑁 ˆ Λ𝑁 satisfies

𝜅𝑟,𝑁,𝑁 1 ď 𝐶 diampΛ𝑁q
2p𝛼´ 𝑑

2´𝜀q𝑁 1´2p𝛼
𝑑
´1´𝜀q

@𝑁 1
P N.

In particular, if 𝜀 ă 𝛼
𝑑
´ 1, the right-hand side converges as ´𝛼

𝑑
` 1` 𝜀 ă 0.
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Proof. Consider the compact operator 𝐾 : 𝐿2pΛ,Rq Ñ 𝐿2pΛ,Rq on a compact set
Λ Ă R𝑑, where

r𝐾𝑓 sp𝑥q “

ż

Λ
𝑘𝛼,𝑚p𝑥´ 𝑦q𝑓p𝑦q d𝑦, 𝑓 P 𝐿2

pΛ,Rq, 𝑥 P R𝑑,

and where 𝑘𝛼,𝑚 is the Matérn kernel with parameters 𝛼 ą 𝑑
2 , 𝑚 ą 0. Let 𝜀 P s0, 𝛼

𝑑
´ 1

2r,
𝛿 ą 1 and 𝜒 ą maxt1, 1

𝛿
u. Lemma 5.2.14 provides a bound on the eigenvalues t𝜆Λ,𝑗u𝑗PN

and eigenfunctions t𝑒Λ,𝑗u𝑗PN of 𝐾 which holds for diampΛq ď 𝛿 and every 𝛾 ą 𝜒𝛿 and
is given by

a

𝜆Λ,𝑗‖𝑒Λ,𝑗‖𝐿8pΛ,Rq ď 𝐶𝛾𝛼´
𝑑
2´𝜀𝑗´

𝛼
𝑑
` 1

2`𝜀, 𝑗 P N, (5.32)

where 𝜀 P s0, 𝛼
𝑑
´ 1r, and where the constant 𝐶 only depends on 𝛼,𝑚, 𝜀, and 𝜒.

Using (5.32) gives

𝜅𝑟,𝑁,𝑁 1 ď
8
ÿ

𝑗“𝑁 1`1
sup

𝑥P𝐷,𝑦PΛ𝑁

|𝜆𝑁,𝑖𝑒𝑁,𝑖p𝑥q𝑒𝑁,𝑖p𝑦q| ď
8
ÿ

𝑗“𝑁 1`1
‖
a

𝜆𝑁,𝑗𝑒𝑁,𝑗‖2
𝐿8pΛ𝑁 ,Rq

ď 𝐶2diampΛ𝑁q
2p𝛼´ 𝑑

2´𝜀q
8
ÿ

𝑗“𝑁 1`1
𝑗´

2𝛼
𝑑
`1`2𝜀

ď 𝐶2diampΛ𝑁q
2p𝛼´ 𝑑

2´𝜀q

ż 8

𝑁 1
𝑥´

2𝛼
𝑑
`1`2𝜀 d𝑥

ď 𝐶2
p2𝛼{𝑑´ 2´ 2𝜀q´1diampΛ𝑁q

2p𝛼´ 𝑑
2´𝜀q𝑁 1´2p𝛼

𝑑
´1´𝜀q

.

Note that the series converges, since ´2𝛼
𝑑
` 1 ` 2𝜀 ă ´1. Redefining 𝐶 yields the

assertion.

Now, combining Corollaries 5.2.9 and 5.2.13 provides the second main result of
this chapter.

Theorem 5.2.16. Let the assumption of Theorem 5.2.8 hold and let the smoothing
function 𝑘 “ 𝑘𝛼,𝑚 be given by a Matérn function with 𝛼 ą 𝑑. Let 𝛿 :“ diamp𝐷q and
fix 𝑥0 P 𝐷 with 𝐷 Ď 𝑥0 `

“

´ 𝛿
2 ,

𝛿
2

‰𝑑. For fixed 0 ă 𝑚̃ ă 𝑚 let

𝛿𝑁 :“ 𝛿 ` 1
2 `

2
𝑚̃

´𝛼

𝑑
´ 1

¯

log𝑁 and Λ𝑁 :“ 𝑥0 ` r´𝛿𝑁 , 𝛿𝑁 s
𝑑 , 𝑁 P N.

Further, we denote with 𝑢 the solution to (2.15) with random conductivity 𝑇 ˝𝑍𝑘 and
with 𝑢𝑁,𝑁 1 the solution associated with random conductivity 𝑇 ˝𝑍𝑘𝑁,𝑁 1

, where 𝑘𝑁,𝑁 1 is
given by the truncated Mercer expansion of 𝑘𝑁 on Λ𝑁 ˆ Λ𝑁 .
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Then, for every 𝜐 P p0, 2𝛼{𝑑´ 2q there is a constant 𝐶 ą 0 such that

@𝑁 P N : ‖𝑢´ 𝑢𝑁,𝑁‖𝐿𝑛ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶𝑁´𝜐.

Proof. Let 𝜐 P s0, 2𝛼
𝑑
´ 2r and 𝜀 P s0, 𝛼

𝑑
´ 1r so that 𝜐 ă 2𝛼

𝑑
´ 2 ´ 2𝜀. Under the

assumption that 𝑚̃ P s0,𝑚r we define

𝑚1 :“
𝑚̃
`

𝛼
𝑑
´ 1´ 𝜀

˘

`

𝛼
𝑑
´ 1

˘ P s0,𝑚r.

It follows that

2
𝑚1

´𝛼

𝑑
´ 1´ 𝜀

¯

“
2
𝑚̃

´𝛼

𝑑
´ 1

¯

ñ 𝛿𝑁 “
𝛿 ` 1

2 `
2
𝑚1

´𝛼

𝑑
´ 1´ 𝜀

¯

log𝑁,

as well as
𝑑𝑒p𝐷,Λ𝑐

𝑁q ą
2
`

𝛼
𝑑
´ 1´ 𝜀

˘

𝑚1
log𝑁, for all 𝑁 P N,

where 𝑑𝑒 denotes the Euclidean distance. Furthermore, we have |Λ𝑁 | “ 2𝑑𝛿𝑑𝑁 ,
diampΛ1q ą 1, and diampΛ𝑁q “

?
2𝑑𝛿𝑁 . Combining Corollaries 5.2.9, 5.2.13 and

Corollary 5.2.15, and abbreviating 𝐿1ppΩ,A,Pq, 𝐻1p𝐷,Rqq by 𝐿1pΩ, 𝐻1p𝐷qq we thus
obtain

‖𝑢´ 𝑢𝑁,𝑁‖𝐿1pΩ,𝐻1p𝐷qq ď ‖𝑢´ 𝑢𝑁‖𝐿1pΩ,𝐻1p𝐷qq ` ‖𝑢𝑁 ´ 𝑢𝑁,𝑁‖𝐿1pΩ,𝐻1p𝐷qq

ď 𝐶 1e´𝑚1𝑑𝑒p𝐷,Λ𝑐
𝑁 q ` 𝐶|Λ𝑁 |𝐶 pdiampΛ𝑁qq

2p𝛼´ 𝑑
2´𝜀q𝑁´2p𝛼

𝑑
´1´𝜀q

ď 𝐶 1𝑁´2p𝛼
𝑑
´1´𝜀q ` 𝐶𝐶 2𝑑

?
2𝑑 𝛿𝛼`

𝑑
2´𝜀

𝑁 𝑁´2p𝛼
𝑑
´1´𝜀q

Next, we make use of the fact that for an arbitrary 𝜀1 ą 0 there exists a constant
𝐶2 ą 0, depending on 𝛿, 𝛼,𝑚,𝑚1, 𝜀 and 𝜀1, such that 𝛿𝛼`

𝑑
2´𝜀

𝑁 ď 𝐶2𝑁 𝜀1 , for all 𝑁 P N.
Choosing 𝜀1 such that 𝜐 ` 𝜀1 ă 2p𝛼

𝑑
´ 1´ 𝜀q we therefore get

‖𝑢´ 𝑢𝑁,𝑁‖𝐿1ppΩ,A,Pq,𝐻1p𝐷,Rqq ď 𝐶 1𝑁´2p𝛼
𝑑
´1´𝜀q ` 𝐶𝐶 2𝑑

?
2𝑑 𝛿𝛼`

𝑑
2´𝜀

𝑁 𝑁´2p𝛼
𝑑
´1´𝜀q

ď 𝐶 1𝑁´2p𝛼
𝑑
´1´𝜀q`𝜀1 ` 𝐶𝐶𝐶22𝑑

?
2𝑑𝑁´2p𝛼

𝑑
´1´𝜀q`𝜀1

ď

´

𝐶 1 ` 𝐶𝐶𝐶22𝑑
?

2𝑑
¯

𝑁´𝜐

which proves the assertion.
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Remark 5.2.17. (i) By combining Theorem 5.2.8 and Corollary 5.2.9 we obtain
the convergence of the approximated solution for any positive definite kernel
function satisfying the assumptions of Theorem 5.2.8. However, in order to
derive a convergence rate, additional informations on the the remainder 𝑟𝑁 are
necessary.

(ii) As 𝑍𝑘𝑁,𝑁
p𝑥q “

ř𝑁
𝑗“1 𝜆𝑁,𝑗𝑒𝑁,𝑗p𝑥q𝑍p𝑒𝑁,𝑗q only depends on the finite-dimensional

Lévy distribution of p𝑍p𝑒𝑁,1q, . . . , 𝑍p𝑒𝑁,𝑁qq, we can follow out of Theorem 5.2.16
an approximation scheme for 𝑢 provided by the coefficients from an infinite-
dimensional distribution by 𝑢𝑁,𝑁 obtained from a finite-dimensional distribu-
tions.
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Chapter 6

Conclusion

In this thesis, we presented two applications in different fields of mathematics which
includes randomness in the physical modeling as common denominator. The first work
extended the well-known shape optimization framework [27, 65] into a multi-criteria
setting. We presented conditions for the existence of Pareto optimal solutions and
the completeness of the corresponding Pareto front. Further, we demonstrated this
framework with a simple multi-physics toy model, where we coupled fluid-dynamical
and mechanical systems, motivated by the optimization process of a vane in the
context of gas-turbines. Our choice of cost functionals represented the friction effects
on the surface of the vane exerted by a fluid flowing through the shroud in which the
vane lies, and the integrity of the mechanical component described by the probability
of failure under low cycle fatigue. In multi-criteria optimization, the Pareto front
contains points which are optimal with respect to different preferences of a decision
maker. We investigated if a small variation in the preference parameter leads to a
small variation in the design. As, in fact, the Pareto optimal shape need not be unique,
we studied the convergence behaviour of the sets of optimal shapes of the presented
analytical model in terms of the Hausdorff metric. Considering the weighted sum
method or an 𝜀-constraint scalarization, we derived certain continuity properties in
the preference parameter.

At this point it seems natural to consider multi-criteria shape optimization also
from an algorithmic point of view, using the theory of shape derivatives and gradient
based optimization; For a first step towards that direction, see, e.g., [22, 39]. For
the numerical approach of shape optimization, it would be worth to discuss if (a)
the optima of the discretized problem are close to the optima of the continuous

129



problem and, if (b) the same holds for shape gradients for non-optimal solutions,
as, e.g., used in multi-criteria descent algorithms. In particular, this should be true
for the objective values of discretized and continuous solutions, respectively. Using
iso-geometric finite elements [35, 48, 113] could potentially be an approach to avoid
spoiling the 𝐶𝑘,𝛼 domain regularity that is built into our framework by the need of
𝐶𝑘,𝛼-classical solutions necessary for the evaluation of the objectives in multi-criteria
shape optimization problems like the one presented here.

The second application considered the random diffusion equation and extended
the model of Gaussian diffusion coefficients into its natural generalization of Lévy
type. We comprehensively described the theory of generalized random fields in the
terms of multi-Hilbertian spaces and Minlos’ theorem. We provided continuity con-
ditions for the smoothed random fields, which are sufficient enough to apply them
as diffusion coefficients in equation (2.15). For prospective numerical treatments, we
established integrability results of the Sobolev norm of the random solution to (2.15)
with smoothed Lévy noise field diffusion coefficient, by investigating the decreasing
rate of the probability of the extreme values of Lévy fields. Furthermore, we provided
a two-steps approximation scheme for the random solutions, where the first step is
a cut-off of the random diffusion coefficient to a sufficient large domain and the sec-
ond step is a truncated Mercer expansion of the smoothing kernel of the field. By
applying the same methods of extreme value estimation of Lévy fields, we proved the
convergence of the resulting finite dimensional approximation to the real solution and
provided the corresponding convergence rate. In order to further specify the relevance
of Lévy models, statistical investigations of the actual distribution of, e.g., hydraulic
conductivity in groundwater problems, are necessary.

For further research, it would be of interest to proceed with numerical treat-
ments of the random diffusion equation using the proposed stochastic approximation
scheme. However, since the uncorrelated Lévy random variables p𝑍p𝑒1q, . . . , 𝑍p𝑒𝑛qq

of the finite-dimensional approximation are not necessarly independent, we cannot
apply standard (sparse) tensor quadrature formulae for numerically computing the
expected value of quantities of interest without any modification.

Moreover, in this thesis we only have considered Lévy fields with Poisson part
corresponding to finite activity, i.e.

ş

t|𝑠|ă1u |𝑠|𝜈pd𝑠q ă 8. This allowed us to shift
the compensator term 𝑖𝑡𝑠1t|𝑠|ď1up𝑠q for small jumps in the Lévy characteristic to
the constant 𝑏 (cf. 3.5.2). For Lévy fields associated to Lévy measures which only
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provides that
ş

t|𝑠|ă1u |𝑠|
2𝜈pd𝑠q ă 8, the presented tail estimates are not applicable.

In addition, it would be of interest to weaken the integrability conditions for the Lévy
measure and allow thicker tails for 𝜈pd𝑠q in order to include, e.g., 𝛼-stable Lévy fields
with extremely fat tails. Furthermore, random fields with positive paths as, e.g.,
Gamma noises with positive kernel functions 𝑘p𝑧q, would make the transformation
𝑇 p𝑧q unnecessary and turn the maximum value problem for 𝑍𝑘p𝑥q into a minumum
value problem, which requires a new set of estimates.
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