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Abstract
Magnetic monopoles, carriers of magnetic charge, are particles theorized to exist for
nearly a century. No detection of such particles has been substantiated as of yet. One
explanation for this could be a high restmass of such particles. In this case, creation of
magneticmonopoles could only have happened in early epochs of theUniverse. Thus,
their density would be diluted by the consequent expansion of the Universe. As mag-
neticmonopoles carrymagnetic charge, they undergo accelerationbymagnetic fields.
Due to the cosmic magnetic fields, their expected velocity at the position of the Earth
ranges from10−3 𝑐 to close to𝑐. The IceCubeNeutrinoObservatory (IceCube) utilizes a
cubic kilometer of natural Antarctic ice as adetectionmediumforneutrinos. Designed
to measure Cherenkov light emitted by secondary particles of neutrino-ice interac-
tions, it is also suited to detect magnetic monopoles. Previous searches at IceCube
focused on Cherenkov light either produced directly or indirectly by magnetic mono-
poles or theorized light production channels like catalysis of nucleon-decay. This left
the low relativistic regime between 0.1 𝑐 to 0.55 𝑐 untested. Luminescence light is in-
duced by the conversion of kinetic energy of a magnetic monopole passing through a
target material to atomic or molecular excitations of said target material. This thesis
establishes luminescence light as a new light production channel to detect magnetic
monopoles at IceCube. An analysis is presented probing the low relativistic regime at
IceCube for the first time. 2524.6 days of IceCube data taken between the seasons of
2011/2012 and 2017/2018 are investigated for magnetic monopole signatures. No ex-
cess of monopole candidate was detected. The possible flux of magnetic monopoles
in the low relativistic regime is restrained down to 9.6 × 10−19 cm−2 s−1 sr−2, a two order
of magnitude improvement over previous best flux limits.
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Zusammenfassung
MagnetischeMonopole sind Senken und Quellen desmagnetischen Feldes. Klassisch
können magnetische Monopole als magnetisches Pendant zu den elektrisch gelade-
nen Leptonen und somit als Teilchen angesehen werden.

Mathematische Lösungen, die funktional identisch mit Senken und Quellen des ma-
gnetischen Feldes und somit mit magnetischen Monopolen sind, können in vielen
Theorien, die das Standardmodell der Teilchen erweitern, gefunden werden. Die Exis-
tenz vonmagnetischenMonopolen konnte bisher nicht nachgewiesen werden.

EineTheorie dies zu erklären besteht in einer prohibitiv hohen Ruhemasse eines ma-
gnetischenMonopols. Dadurch wäre die Erzeugung durch heutige, sowohl anthropo-
gene als auch natürliche, Teilchenbeschleuniger unmöglich. Nur magnetischeMono-
pole, die als Relikte aus der Entstehung des Universums zurückgeblieben sind, könn-
ten detektiert werden. Da das Universum im Laufe seiner Entwicklung expandierte,
wäre die heutige Dichte vonmagnetischenMonopolen im Universum sehr gering.

In diesem Szenario sind magnetische Monopole mit vernachlässigbar kleiner kineti-
scher Energie im Bezugssystem der Erde erzeugt worden. Sie können durch kosmi-
sche magnetische Felder beschleunigt werden. Verschiedene Beschleunigungsszena-
rien, basierend auf der kohärenten Feldlänge und Feldstärke, existieren. Je nach Sze-
nario, Ruhemasse undmagnetischer Ladung eines magnetischenMonopols sind Ge-
schwindigkeiten zwischen 10−3 𝑐 bis nahezu Lichtgeschwindigkeit an der Position der
Erde zu erwarten.

Das IceCube Neutrino Observatory (IceCube) ist einWassereis basierter Neutrinode-
tektor. Ein Kubikkilometer des natürlichen Eises der Antarktis wurde mit Lichtsenso-
ren ausgestattet, um die Interaktionsprodukte vonNeutrinosmit demEis zu detektie-
ren. Die Interaktionsprodukte induzieren dabei Tscherenkow-Strahlung. Neben Neu-
trinos ist IceCube auch fähig andere Teilchen, die das Detektionsmedium passieren,
zu detektieren.Voraussetzung dafür sind genügend hohe Lichtemissionen des passie-
renden Teilchens.
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Magnetische Monopole sind eben solche Teilchen. Sie induzieren sowohl selbst
Tscherenkow-Strahlung als auch durch sekundäre Teilchen. Zusätzlich können sie
theoretisch Nukleonenzerfall induzieren, was ebenfalls Lichtemissionen zur Folge
hätte. Diese Lichtproduktionskanäle wurden in der Vergangenheit zur Suche nach
magnetischen Monopolen in den Daten von IceCube genutzt. Dadurch konnte das
nieder-relativistische Regime zwischen 0.1 𝑐 und 0.55 𝑐 nicht untersucht werden, da
nur vernachlässigbare Lichtmengen durch die zuvor genannten Produktionskanälen
in diesem Bereich erzeugt werden.

Lumineszenzlicht wird durch die Umwandlung von kinetischer Energie einesmagne-
tischenMonopols in atomareodermolekulareAnregungen innerhalb einespassierten
Materials induziert. MagnetischeMonopole verlieren aufgrund ihrer hoch ionisieren-
denWirkung kinetische Energie in der Ordnung von 10MeV cm−1 bis 1000MeV cm−1

in wasserbasierten Eis, das wiederum zu Lumineszenzlicht führt. Durch ihre hohe Ru-
hemasse hat dieser Energieverlust auf einemKilometer innerhalb von Eis keinen nen-
nenswerten Geschwindigkeitsverlust zur Folge.

In dieser Arbeit wird Lumineszenz als Lichtproduktionskanal zur Detektion von
magnetischen Monopolen verwendet. Zum ersten Mal wurden die Daten von
IceCube auf Signaturen von magnetischen Monopolen im nieder-relativistische
Geschwindigkeitsbereich untersucht. Dazu wurde Lumineszenz als Lichtproduk-
tionsmechanismus in die Simulationssoftware von IceCube implementiert und
validiert. Die Möglichkeit der Detektion von magnetischen Monopolen mit der
vorhandenen Datenerfassung von IceCubewird demonstriert.

Im Anschluss wird eine Analyse vorgestellt, die auf Basis dieser Detektorsimulation
magnetischeMonopole und simulierteUntergrundereignisse separiert. In diesemFall
sind Untergrundereignisse Standardmodell konforme Interaktionen von kosmischer
Strahlung mit der Atmosphäre der Erde oder dem Eis der Antarktis. Die simulierten
Untergrundereignissewerdenmit einer Stichprobeder gemessenenDaten verglichen,
um die Korrektheit der Untergrundsimulation zu zeigen.

Diese Stichprobe ist klein genug, um nur eine vernachlässigbar kleine Anzahl an ma-
gnetischen Monopolen zu beinhalten, wodurch eine Beeinflussung des Analysede-
signs ausgeschlossen werden kann.
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Mit einer Sequenz von univariaten Entscheidungen werden magnetische Monopole
im nieder-relativistischem Bereich selektiert. Diese univariaten Entscheidungen ba-
sieren sowohl auf bereits in IceCube im Einsatz befindlichen und definierten Varia-
blen, als auch auf speziell für diese Arbeit entworfenen. ImAnschluss wird ein aufma-
schinellem Lernen basierender Selektionsschritt verwendet, um die finalen magneti-
schenMonopol Kandidaten zu selektieren. Da in diesem Schritt die Untergrundsimu-
lation bereits statistisch limitierend ist, wird ein Stichprobenwiederholungsverfahren
eingesetzt, um Aussagen über die zu erwartenden Verteilungen von Variablen nach
diesem finalen Selektionsschritt zu treffen.
2524.6 Tage von IceCubeDaten, aufgezeichnet zwischendemApril 2011 und Juli 2018,
werden untersucht. Basierend auf derUntergrundsimulation sind in diesemZeitraum
0 ≤ 𝑁𝐵 ≤ 10 Untergrundereignisse mit einemMittelwert𝑁𝐵 = 2 zu erwarten. Da die
Untergrundsimulation statistisch limitierend ist, wurde die Projektion der Anzahl zu
erwartendenUntergrundereignisse ebenfallsmit der zuvor genannten Stichprobe der
gemessenen Daten ausgeführt. Aus dieser werden 0 ≤ 𝑁𝐵 ≤ 4 Untergrundereignisse
mit einemMittelwert𝑁𝐵 = 0 für den zuvor erwähnten Zeitraum prognostiziert.
Nach Anwendung der Analyse auf die Daten verblieben zwei Ereignisse. Dies liegt in-
nerhalb des zu erwartendenUntergrunds. Somit konnten keinemagnetischenMono-
pole nachgewiesen werden.
Die Ereignisse wurden visuell als auch mit statistischen Methoden untersucht.
Sie scheinen untergrundartig zu sein. Als konservativer Ansatz wurden die beiden
Ereignisse als magnetische Monopole angenommen und ein geschwindigkeits-
abhängiger oberer Fluss von magnetischen Monopolen im nieder-relativistischen
Bereich berechnet. Dieser unterbietet den bisherigen oberen Fluss um zwei Größen-
ordnungen und limitiert den Fluss von magnetischen Monopolen auf bis zu unter
9.6 × 10−19 cm−2 s−1 sr−2.
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CHAPTER 1
Introduction

The existence of magnetic monopoles seems like one of the safest bets that one can make about
physics not yet seen.

J. Polchinski [Pol04]

Magnetic monopoles (MMs) are hypothesized objects exhibiting the attributes of a
magnetic source. First proposed in 1931 by P. A.M.Dirac, their existence would ex-
plain the quantitation of the electric charge and remedy the classical asymmetry be-
tween theelectric andmagneticfields. Formostof the last century,many theorieshave
included them, prominently any Grand UnifiedTheory (GUT), unifying the strong in-
teraction, weak interaction, and electromagnetic interaction into a single interaction.
An overview of the field ofMM search is outlined in Chapter 3 including different the-
ories, kinematic attributes at Earth, interactions with matter, and current bound on
the upper limit ofMM flux by multiple experiments.
As yet, no experimental confirmation of the existence ofMM has occurred. Bounds on
the upper limit ofMM flux at the location of the Earth have been established both by
cosmology and experiments. Even assuming the weakest cosmological bound on the
upper limit of theMMflux, already superseded by experiment by orders ofmagnitude,
the Parker bound (see Section 3.9), the flux ofMM at the Earth is only in the order of
4MMsm−2 kyr−1. Thus, any search forMM requires detectors with huge effectiveMM
detection areas to be able to detectMM in a reasonable amount of time.
The IceCube Neutrino Observatory (IceCube) features such detectors with its in-ice
arrays instrumenting a km3 of Antarctic ice with Digital Optical Modules (DOMs). In
thiswork, ice alwaysmeanswater-based ice. Designed todetect directCherenkov light
fromsecondaries of neutrino-ice interactions, its large effective area and instrumenta-
tion density allow for the search ofMM. A description of IceCube is outlined in Chap-
ter 2.
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2 CHAPTER 1. INTRODUCTION

Depending on the velocity and theory ofMM, different light production mechanisms
exist which facilitate light production within IceCube’s detection volume. In this the-
sis, the velocity range of 0.1 𝑐 to 0.55 𝑐, called the low relativistic regime, is of interest.
In contrast to themildly and relativistic regime above this velocity, nodirect andbarely
any indirect Cherenkov light is produced. Instead, luminescence light becomes the
dominant light production mechanism.
Luminescence light is isotropically, delayed emitted light due to excitation of the
molecular or atomic structures in a medium by a passing particle. Both direct and
indirect Cherenkov light and luminescence light are described in Chapter 5.
Searches in themildly relativistic and relativistic regime have already been conducted
at IceCube setting competitive limits on the flux ofMMs. This work sets out to extend
theMM sensitivity of IceCube down to the low relativistic regime. A blinded analysis,
meaning it is only basedon simulated responses of the detector, is conducted to detect
MMs. Luminescence light as anew lightproductionmechanism is implemented in the
simulation framework of IceCube. Specialized signal simulation forMMs in the low
relativistic regime is conducted and described in Chapter 6.
The analysis, described in Chapter 7, consists of multiple single variable based selec-
tion steps up to a machine learning (ML) based selection step for the final selection
sample. Remedies to low background statistics are applied in the form of bootstrap
aggregating (bagging).
The final event sample is discussed in detail in Chapter 8. A new bound on the upper
limit ofMM flux at the location of the Earth in the low relativistic regime is calculated,
superseding previous limits by two orders of magnitude.



CHAPTER 2
IceCube Neutrino Observatory

Fortune would be in a hard mood indeed if it allowed such a combination of knowledge,
experience, ability, and enthusiasm to achieve nothing.

R. F. Scott [Sco13]

The IceCube Neutrino Observatory (IceCube), described in references [Ach+06;
Aar+17], is situated close to the geographic South Pole. It was primarily designed to
detect statistically significant numbers of high energetic neutrinos. Due to the low
cross-section of neutrino-matter interactions, large volumes of material are needed
to be instrumented to achieve reasonably high neutrino count rates. Additionally,
neutrino based events become rarer with increasing energy. On the other hand,
higher instrumentation density enables detection of lower energetic events which
produce less light.
As the cost of a detector increases with raised total instrumentation, some form of
compromise between the density and volume has to be reached. IceCube accom-
plishes this by combining multiple detectors optimized for different energy ranges.
The multi-detector architecture of IceCube is described in Section 2.1, including the
utilized detection medium. Subsequently, the data acquisition chain to record data is
outlined in Section 2.2.
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2.1 Detector Architecture of IceCube

IceCube applies a multi-detector design utilizing natural transparent materials as a
detection medium for neutrinos and other particles to balance light sensitivity and
cost. Two of its detectors utilize the natural Antarctic ice: the IceCube in-ice array
(IC) and the IceCube DeepCore array (DC). Both consist of multiple Digital Optical
Modules (DOMs) embedded in the Antarctic ice on vertically drilled strings. In total,
5160DOMs are installed. The IC features a higher volume but lower instrumentation
density than theDC. A schematic of IceCube can be seen in Figure 2.1. While other
detectors exist at IceCube, they are not utilized in this thesis and hence are omitted
from description.

Figure 2.1: Schematic
of IceCube

A schematic of the positioning
of allDOMs on their respect-
ing strings in both the IC and
theDC is shown. The strings

are each connected to the ICL
on top of the ice. DC exclu-

siveDOMs are marked in red.
The dust layer, a region in the

ice with high light absorp-
tion due to impurities in the
ice, is marked in green. The
schematic is to scale besides
the radii of theDOMs which
have been upscaled by a fac-
tor of 50 for better visibility.

ICL0m
surface

−2832m
bedrock

−2100m to −2450m
dust layer

−1450m
top of IC strings

−2450m
bottom of

IC andDC strings

All detectors are connected to the ICL. The ICL contains all the support infrastructure
needed to operate IceCube, including all servers, data storage, power distribution in-
frastructure, and infrastructure for external satellite communication. Data is collected
from all sub-detectors and processed centrally while preprocessing might be applied
in each sub-detector.
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Depending on different criteria, the datamay be deleted or stored locally. If additional
criteria are met, the data is also transmitted via satellite to the IceCube data center
outside of Antarctica for immediate analysis. The locally stored data will be shipped
on hard disks to the data center once per year for further analysis. While IceCubewas
designed todetect primarily neutrinos, the sizeof fiducial volume facilitates the search
for presumably rarer, exotic events.

2.1.1 Antarctic Ice

Antarctica is mostly covered by ice. This ice is the accumulation of snow in Antarctica
which was compressed down into firn and then ice under its own weight over time.
The oldest ice at the bottom, directly on the bedrock, is about 165 kyr old as described
in reference [PWC00]. Due to variations in snowfall rate and impurities in the snow,
the optical properties of the ice can change depending on age and hence depth.

These optical properties are calibrated for by the IceCube collaboration (ICC), de-
scribed in reference [Ron19], by using specialized impuritymeasurement devices low-
ered into the ice or by in-situ measurements utilizing light sources within theDOMs.
Themost prominent impurity relevant to this thesis is called the dust layer. At a depth
between −2100m to −2450m, a region with high content of dust exists. This dust re-
duces the absorption length of light drastically and can be observed in many event
renders of recorded events by IceCube.

2.1.2 Digital Optical Modules

The Digital Optical Module (DOM) is the common data collection module of the IC
and DC. Each DOM consists of a glass pressure sphere in which a 25.4 cm-diameter
photomultiplier tube (PMT) is placed at the bottomhalf, facing outward. As a support
structure, a collar is molted onto the neck of the PMT. Around the collar of the PMT,
multiple interconnected electronic boards are placed: theHighVoltageControl Board,
the PMTbaseboard, the FlasherBoard, and theDelayBoard. A schematic of the inside
of aDOM is depicted in Figure 2.2.

The High Voltage Control Board generates and monitors the high voltage required
to operate the PMT. The high voltage is supplied to the PMT base board which
distributes it to the individual cathodes of the PMT. Furthermore, it contains filters
and adjusts the coupling of the output signal which is recorded by the Main Board.
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Figure 2.2: Schematic of a DOM
A schematic of aDOMwithout the pres-
sure sphere is depicted. The downward

facing the PMT sits at the bottom. Mag-
netic shielding is implemented via a

Mu-Metal Grid surrounding the PMT
from the bottom to the neck, shown here

in pink. Depicted in orange, the PMT
collar is molted onto the neck. It serves
as a support structure for all electronic
boards. In light green, the Delay Board

is illustrated while the PMT Base Board
is painted in dark green. Graphic taken
and modified from reference [Aar+17].

HighVoltage
Control Board

PMT Base
Board PMT

Collar Flasher
Board

Main
Board

Delay
Board

Mu-Metal
GridPMT

TheMainBoard is the centralmanagement and data recording systemof theDOM. All
communication inside or outside theDOM is implemented in the Main Board. Once
the output signal of the PMT base board reaches a configurable threshold, a trigger
signal is raised. Thenearest and second-nearest neighboringDOMs on the same string
are notifiedof the trigger signal via specialized cabling. Locally to theDOM, the trigger
signal causes the data acquisition to be started.

Data acquisition is performedby two complementary sampling systems: the Fast Ana-
log to Digital Converter (fADC) and the AnalogTransientWaveformDigitizer (ATWD).
The fADC has a sampling speed of 40Msps. Data is collected for 6.4 µs after the trigger
signal was raised. The ATWD has a sampling speed of 300Msps. Data is recorded from
75ns before to 352 ns after the trigger signal was raised. Data before the trigger signal
can be recorded as the signal is passed through the Delay Board. The Delay Board is
a passive board which consists of an approximately 10m of printed electrical circuit
delaying the output signal before it arrives at the ATWD. After it has been delayed, it is
passed through three parallel amplifiers with different gain factors. The resulting sig-
nals are recorded by three channels of the ATWD increasing the dynamic range of the
amplitude of the signal. The combination of all recorded data is called a hit.

A hit which is coincident within±1 µs with an external trigger signal from a nearest or
second-nearest neighboring DOMs is called a hard local coincidence (HLC) hit. Any
other hit is called a soft local coincidence (SLC) hit. For both, the first three samples
of the fADC are stored along with the time of the local trigger signal. In case of aHLC
hit, the full waveforms are also stored albeit not every digitized channel of the ATWD.
Only channels required tomeasure the dynamic range of the recorded signal are kept.
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The last board is the Flasher Board. While the Main Board contains a low power light
source for calibration purposes of theDOM local PMT, the Flasher Board contains a
high intensity light source that can be used to calibrate otherDOMs or perform in-situ
measurements of the surrounding ice.

2.1.3 IceCube In-Ice Array

The IceCube in-ice array (IC) is an in-ice detector of IceCube. It consists of 78 ver-
tical strings which are embedded in the ice of Antarctica in a hexagonal formation.
The inter-string spacing is 125m. On each string, there are 60DOMs. Placement of
theDOMs starts at a depth of −1450m and ends at a depth of −2450m with a 17m
vertical inter-DOM spacing. In total, this instruments a 1 km3 of ice.

2.1.4 IceCube DeepCore Array

The IceCubeDeepCore array (DC) is an in-icedetector of IceCube. It is situatedwithin
the detection volume of the IC creating a higher instrumented regionwithin the ice. It
consists of 7 strings shared with the IC and 8 extra strings dedicated to theDC. These
dedicated strings feature a closer verticalDOM spacing of either 7mor 10mand lower
the average horizontal inter-string spacing to 72m with a minimum distance of 41m
and amaximal distance of 105m. TheDOMs on these strings also featurePMTs with a
higher quantum efficiency. While this detector does not feature the detection volume
of the IC, it is muchmore sensitive to dimmer events than the IC.

2.2 Data Acquisition of IceCube

IceCube is operatedwith a triggered data acquisition systemwhich selects data acqui-
sition events basedonHLChits. A data acquisition event is the combinationof allHLC
and SLC hits within a defined time frame. Once a data acquisition event has been de-
tected, it is always recorded locally at the ICL, butmightnot be transmitted via satellite
based on different filters that select specific event signatures. In the next sections, the
selection criteria of the triggered data acquisition system of IceCube, relevant to this
thesis, are depicted. The signal processing up to the ICC internally named level 0 is
outlined. In this analysis, only events which pass the MonopoleFilter_16 (MPF16) fil-
ter, described inSection7.1.2.1, are consideredandhenceonly selection criteriawhich
are relevant to the aforementioned filter are examined.
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2.2.1 Global Triggers

HLC hits happen within the IC and DC at a rate between 5Hz to 25Hz per DOM. Se-
lection criteria are applied to select a time window to build a data acquisition event.
These selection criteria are referred to as global triggers. Such data acquisition events
are recorded with a yearly median rate of 2.7 kHz as reported in reference [Aar+17].
In this thesis, four global trigger criteria are used. Two are based on a simple multi-
plicity trigger (SMT) requirement. SMTmeans a number ofDOMs have signaled a hit
within a sliding time window of a configurable size independent of any other topo-
logical constrain but the array the hits occurred within. The other two triggers, the
Volume and String triggers function the same as the SMT selection criteria but add
topological constrains. The Volume trigger applies the SMT selection criteria only on
a cylinder around each hitDOMwith a radius of 175m and a height of 75m while the
String trigger applies the SMT criteria to 7 consecutive DOMs on a string. The sliding
time window sizes and number of required to be hitDOMs is listed in Table 2.1.

Name Array HitDOMs Window / µs Topology
SMT-8 IC 8 5
SMT-3 DC 3 2.5
Volume IC 4 1 cylinder, 𝑟 = 175m, ℎ = 75m
String IC 5 1.5 7 consecutiveDOMs on string

Table 2.1: Trigger configuration settings
A summary of the trigger configuration for each trigger upstream of theMPF16 filter is
depicted. Individual values are taken from reference [KI14].

2.2.2 WaveformDeconvolution

To approximate the physical time a photon has hit a PMT from the recorded wave-
forms of the associatedDOM, the recordedwaveform is deconvoluted. The character-
istic response functions of the fADC andATWD is taken into account aswell as calibra-
tion data taken for the whole detector. The final result is the number of reconstructed,
calibratedphotonsover timewhich caused thewaveform inunits of themost probable
value of charge a single photon would cause (pe) as described in reference [Aar+14a].
An example of this deconvolution is depicted in Figure 2.3.
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Figure 2.3: Exemplary WaveformDeconvolution
A plot with the measured voltage of the fADC and ATWD (called ADC voltage in the
graphic) and the reconstructed number of photons, both as a function of time is pre-
sented. Time is indicated by the shared horizontal axis, the recorded voltage of the sig-
nal, corresponding to the non-red colors in the plot, is indicated by the left hand vertical
axis while the number of reconstructed photons in red is indicated by the right hand
vertical axis. The same single photon waveform is recorded by the fADC and ATWD yet
significant differences can be observed in the recorded response of the two digitizer sys-
tems. The fADCs response is much wider, lower in amplitude, and occurs later than the
response of the ATWD. A fit is applied to both digitizer systems to derive a non-discrete
description of the recorded signal. After unfolding, both systems reconstruct the time
and amplitude of the initial arriving photon, here drawn in red. Graphic is taken from
reference [Aar+14a].





CHAPTER 3
Magnetic Monopoles

One would be surprised if nature had made no use of it.

P. A.M.Dirac [Dir31]

Magnetic monopoles (MMs) are sinks and sources of the magnetic field. Classically
interpreted as hypothetical particles, they are carriers of elementary magnetic charge
and no electric charge. Particles which carry both electric and magnetic charge are
called dyons. Both are highly ionizing, stable, massive particles (SMPs).

In multiple theories, mathematical solutions are known that can be identified with
MMs. While this makes the theories compatible with MMs, they are not required to
exist. Due to the diverse nature of the theories, a wide phase space for the rest mass
of MM exists ranging from 103 GeV as described in reference [Pin+09] up to or even
surpassing the Planck mass𝑚𝑃 of 1019 GeV.

In this chapter, an overview of different theoretical models describingMMs, their ex-
pected kinematic attributes at Earth as well as exclusion limits ofMM both by theoret-
ical assumptions and reports by experiments is given. Equations are given inGaussian
units unless otherwise stated.

This chapter is limited to only touch upon theories related to this thesis. Velocities will
be given as fractions of 𝑐 (𝛽) or, in the high relativistic regime, by the Lorentz factor
𝛾 = 1

√1−𝛽2
. Vectors are set in bold.
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3.1 Maxwell’s Equations

In 1861, J. C.Maxwell published his paper describing the interactions between the
electric field, magnetic field, and electric charges in reference [Max61]. His equations
feature an asymmetry between the electric and magnetic force: the magnetic field
is source-free in contrast to the electric field. This is often referred to as Gauß’s
Law of magnetism. There is no fundamental physical reason why this should be the
case. Assuming such sources, referred to asMMs, exist, Maxwells equations become
symmetric for both the electric andmagnetic field as seen in the following equations,
given for vacuum:

∇ ⋅ 𝑬 = 4𝜋𝜌𝑒, (Gauß’s Law)

∇ ⋅ 𝑩 = 4𝜋𝜌𝑚, (Gauß’s Law of magnetism)

−∇ × 𝑬 =
1
c
𝜕𝑩
𝜕𝑡

+
4𝜋
c
𝒋𝑚, (Faraday’s Law of induction)

∇ × 𝑩 =
1
𝑐
𝜕𝑬
𝜕𝑡

+
4𝜋
c
𝒋𝑒. (Ampère’s Law with Maxwell’s extension)

𝜌𝑒,𝑚 is the density of electric or magnetic charges, 𝒋𝑒,𝑚 the corresponding electric or
magnetic current, 𝑬 and 𝑩 are the electric and magnetic flux densities. The terms
marked in red are 0 in case of the non-existence ofMMs. Their absence gives rise to
the aforementioned asymmetry. Including these terms, a transformation of the form

⎛

⎝

cos𝜑 − sin𝜑
sin𝜑 cos𝜑

⎞

⎠
= 𝑅 ∈ SO(2), (3.1)

⎛

⎝

𝜌′𝑒
𝜌′𝑚

⎞

⎠
= 𝑅

⎛

⎝

𝜌𝑒
𝜌𝑚

⎞

⎠
,

⎛

⎝

𝒋 ′𝑒
𝒋 ′𝑚

⎞

⎠
= 𝑅

⎛

⎝

𝒋𝑒
𝒋𝑚

⎞

⎠
,

⎛

⎝

𝐸′

𝐵 ′

⎞

⎠
, = 𝑅

⎛

⎝

𝐸
𝐵
⎞

⎠
, (3.2)

will leave the equations unchanged. This indicates the existence of an internal sym-
metry which can be described by the SO(2), the special, orthogonal group of dimen-
sion 2. Note that SO(2) is locally equivalent toU(1), the unitary group of dimension 1.
Phenomena which are the result of these symmetries can manifest in different theo-
ries as long as the underlying symmetry is also present, a principal described in refer-
ence [Cur94].
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3.2 Dirac Magnetic Monopoles

In 1931, P. A.M.Dirac investigated the problem of the quantization of electric charge.
By studying nodal line endpoints and their phase changing effect on particle wave
functions, he constructed a formation of magnetic field lines which are in parts all
directional aligned and compressed to a single line, a Dirac string, described in refer-
ence [Dir31]. As the field lines are closed, theywrap at the ends of theDirac string back
and point into the direction of the other end of the Dirac string. The configuration of
field lines and the resulting Dirac string are depicted in Figure 3.1.

MM MM

large distanceclose up close up

Dirac string

Figure 3.1: Sketch of themagnetic field lines of anMMwith Dirac string
A sketch of the magnetic field lines of a DiracMM, shown on the left, and an Dirac anti
MM, shown on the right, is depicted. In red, a Dirac string is shown connecting the two
objects. In the center, a region bordered by two vertical dashed lines has been drawn
where the spatial scaling has been changed indicating a far distance between the two
objects. While both objects seem to carry a magnetic charge in the far field due to the
magnetic field lines indicated by the black lines, a reversemagnetic flux is carried by the
Dirac string connecting the two objects closing all of the magnetic field lines, thus, the
magnetic field is still source-free.

Without being able to detect the Dirac string, this formation matches the field
line structure of a magnetic source. Such a Dirac string would cause a detectable
phase change similar to the Ehrenberg–Siday–Aharonov–Bohm effect described in
reference [AB59], depicted in Figure 3.2, unless

NgD = 2
𝑞𝑒𝑞𝑚
ℏc

∈ Z+, (3.3)
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theDirac quantization criteria described in reference [Dir31], is satisfied. In this equa-
tion, 𝑞𝑒 and 𝑞𝑚 are the electric and magnetic charge, Z+is the set of positive integers,
and ℏ is the reduced Planck constant. As this is virtually independent of any assump-
tions apart from low level quantum mechanics, the existence of a single MM would
require all electric charges to be quantized.

The minimal magnetic charge such a Dirac MM can have is called the Dirac charge
𝑔𝐷. By applying minNgD = min (Z+) = 1 to Equation 3.3, the Dirac charge can be
calculated to be

𝑔𝐷 =
ℏc
2𝑞𝑒

=
𝑞𝑒
2𝛼

≈ 68.5𝑞𝑒 (3.4)

where𝛼 is the fine structure constant and 𝑞𝑒 is the elementary electric charge, usually
assumed to be the charge of an electron. AnyMM has to have a multiple of the Dirac
charge. AsMM-matter interaction strength scales with themagnetic charge, the Dirac
charge is used to calculate theminimal interaction strength betweenmatter andMMs.

While Equation 3.4 is derived classically, the same can be done in quantum theory by
examining the gauge condition of the scalar potential Φ and the vector potential 𝑨.
Maxwell’s equations become

𝑬 = −
1
c
𝜕𝑨
𝜕𝑡

− 𝜵Φ (3.5)

𝑩 = 𝜵 × 𝑨. (3.6)

While 𝑬 and 𝑩 are physical, Φ and 𝑨 can be gauge transformed utilizing an arbitrary
scalar function Ξ like this:

Φ′ = Φ −
𝜕Ξ
𝜕𝑡

𝑨′ = 𝑨 + 𝜵Ξ. (3.7)

This is known as aU(1) symmetry.
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particle

Dirac string

||𝜓1 + 𝜓2
||
2

exp (4𝜋i𝑞𝑒𝑞𝑚ℏc )𝜓2𝜓1

Figure 3.2: Ehrenberg–Siday–Aharonov–Bohm setup
A schematic of the Ehrenberg–Siday–Aharonov–Bohm effect measurement setup is dis-
played. A particle is sent through a double slit. 𝜓1/2 denotes the wave function resulting
from passing through slit 1 or 2. The superposition of the two wave functions ||𝜓1 + 𝜓2

||
2

is measured. If a Dirac string is placed between the paths of the two wave functions,
indicated by a red dot in the schematic, a phase shift of exp (4𝜋𝑖𝑞𝑒𝑞𝑚ℏ𝑐 ), also in red, is in-
troduced.

Depending on the chosen gauge transformation,MMs are allowed, but poles are intro-
duced into the 𝑨-potential. These poles take the form of infinitely small lines and can
be identified with the aforementioned Dirac string. Considering a double-slit experi-
ment as depicted inFigure 3.2, theprobability density tomeasure aparticle behind the
double-slit becomes either ||𝜓1 + 𝜓2

||
2 without or |||𝜓1 + exp (4𝜋i𝑞𝑒𝑞𝑚ℏ𝑐 )𝜓2

|||
2
with a Dirac

string being present. Consequently, as long as

exp (
4𝜋i𝑞𝑒𝑞𝑚

ℏc
) = 1, (3.8)

the Dirac string is undetectable. As the exp function is periodic with 2𝜋i, this is true as
long as

2
𝑞𝑒𝑞𝑚
ℏc

∈ Z+. (3.9)

which is the same as Equation 3.3.
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3.3 ’t Hooft-PolyakovMagnetic Monopoles

TheHiggs field is modeled as a vector field that at some point during the cooling pro-
cess of theUniverse started to uniformly have the same value anddirection. Assuming
that different domains of theUniverse independently selected a randomHiggsfielddi-
rection which then propagated outwards, the borders of these domains will have the
Higgs field point into different directions forcing a reorientation of the Higgs field in
at least one of these domains. In 1974, both G. ’t Hooft and A. M. Polyakov indepen-
dently studied the effects such Higgs field boundaries would have. They showed that
Higgs field configurations exist, like the Hedgehog configuration shown in Figure 3.3,
that cannot reorient themselves into the vacuum state and hence are stable topolog-
ical defect. As the Higgs field still must be smooth at all points, it has to vanish at the
origin conserving the symmetry laws that existed during the Big Bang, consequently
creating a non-zero density at the origin of the topological defect which imparts rest
mass to the topological defect. Additionally, they derived the far-field electromagnetic
field tensor resulting from this topology to be

𝐹𝜇𝜃 =
1

𝑞𝑒 |𝒓|3
𝜀𝜇𝜃𝑎3𝒓𝑎 (3.10)

and the resulting magnetic field becomes

𝑩 =
𝒓

𝑞𝑒 |𝒓|3
. (3.11)

In this equation, 𝜀 is the Levi-Civita tensor and 𝒓 the distance vector from the origin,
the locationof the topological defect, with indices0 to2denoting the3 individual com-
ponents. Thus, a Hedgehog configuration exhibits a magnetic field just as a magnetic
field source of twice the Dirac charge 𝑔𝐷 as described in references [t H74; Pol74].
As the energy density solution is non-singular in the origin, amass estimate can be de-
rived andplaces the ’t Hooft-PolyakovMMmass at roughly 100GeVwhich is reachable
by modern accelerators. No suchMMwas ever detected.
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Figure 3.3: Hedgehog Higgs field con-
figuration
The configuration of the Higgs field sur-
rounding a ’t Hooft-Polyakov or Grand
Unified Theory (GUT)MM is displayed.
TheMM is situated at the origin and
the arrows indicate the direction of the
Higgs field pointing away from theMM.
The opaque arrows point into the page,
all other arrows points out of the page.

3.4 Magnetic Monopoles in Grand UnifiedTheories

In 1974, H. Georgi and S. L. Glashow published their Georgi–Glashow model of parti-
cle physics in reference [GG74]. It attempted to unify the electromagnetic, the weak,
and the strong force into one Grand UnifiedTheory. This theory is based on an SU(5)
symmetry that breaks down into a SU(3) × SU(2) ×U(1) symmetry at low energies. It
alsopredictsHiggsfield configurations like theHedgehogconfigurationof the ’t Hooft-
PolyakovMM but places themass at 1016 GeVwhich is not probable by anthropogenic
particle accelerators. It also predicts that the proton can decay with a live time of the
order of 1031 yrwhichhas alreadybeen ruled out by experiments placing lower bounds
on the proton live time of 1034 yr as described in reference [Tan+20].
Nonetheless, it can be shown that the ’t Hooft-PolyakovMM solutions are not an arti-
fact of this specific theory but arise from the fundamental underlying symmetry. Any
GUT which features an explicit U(1) subgroup allows for the existence ofMMs as de-
scribed in reference [Pre84].
In contrast to the ’t Hooft-Polyakov MM, an SU(5) or higher dimension GUT MM
would be able to catalyze nucleon decay. This is due to a stable high energetic region
at the core of theMM where the SU(5) symmetry is unbroken just as it was shortly
after the Big Bang as depicted in Figure 3.4.
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Figure 3.4: Sketch of cosmological MM production
A sketch of theMM production during the cosmological evolution of the Universe is de-
picted using SU(5) GUTmagnetic monopoles as an example for allMMs. Time evolu-
tion of the Universe is indicated from left to right, the size of the Universe is sketched
vertically albeit arbitrary. At the beginning of the Universe, referred to as the Big Bang,
it was both very small and energy dense. During the expansion of the Universe, the en-
ergy density falls, forcing the Universe into multiple phase transitions. The phase tran-
sition from the GUT phase, where the SU(5) is unbroken, to the electroweak phase with
a SU(3) × SU(2) × U(1) symmetry is highlighted. In this case, the energy density is too
low to further produceMM and the existingMMs freeze out limiting the total number of
MMs in the Universe. Afterwards, the Universe underwentmassive inflation, increasing
its size by tens of orders of magnitude, dramatically reducing the density of MMs. Col-
ors are used to emphasize the falling energy density in the Universe with increasing size
from dark blue on the left to yellow on the right. The color of theMM corresponds to the
energy density at the time of freeze out.
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3.5 Rest Mass

As previously stated, various theories predict varying different rest masses for MMs.
In many symmetry group based theories, the mass of the predictedMM is tied to the
energy Λ𝑠𝑦𝑚 at which the symmetry is broken spontaneously. The mass can then be
estimated by

𝑀𝑀𝑀c2 ≳
Λ𝑠𝑦𝑚

𝛼𝑠𝑦𝑚
(3.12)

with 𝛼𝑠𝑦𝑚 being the coupling constant in question. Thus, a rest mass of 102 GeV to
105 GeV is expected for electroweakMM like the ’t Hooft-PolyakovMM andmore than
1013 GeV is expected for GUT scaleMMs like the SU(5) GUTMMs. There are also the-
ories in which the symmetry is not broken directly but in multiple steps which allows
for masses between 105 GeV to 1013 GeV, referred to as intermediate mass magnetic
monopoles (IMMs). Much of this mass phase space cannot be probed by anthro-
pogenic particle accelerators and consequently, searches can only be performed for
relicMMs which were produced during the Big Bang as sketched in Figure 3.4.

3.6 Kinetic Energy

RelicMMs are assumed tohavenegligible kinetic energy at their creationas theywould
be created in thermal equilibriumwith the surroundingUniverse. During their propa-
gation through theUniverse, they are accelerated bymagnetic and gravitational fields.
As gravitational field acceleration only becomes dominant for MM with rest masses
larger than 1017 GeV, they are ignored in this work. The total gained energy by mag-
netic fields can be calculated by

𝐸kin = 𝑞𝐵 ⋅ 𝐵 ∫
𝐶
𝝃 ⋅ 𝑑𝒗 (3.13)

where 𝑞𝐵 is the magnetic charge of theMM, 𝐵 is the magnetic field strength, 𝝃 is the
field’s direction andcoherence length,𝐶 is thepropagationpath, and𝑑𝒗 is thenormal-
ized MMs velocity vector at any given point of 𝐶 as described in reference [Wic+03].
Assuming theMM is always traveling parallel to 𝝃, the equation reduces to

𝐸kin = 𝑞𝐵 ⋅ 𝐵 ⋅ |𝝃| (3.14)
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and allows for a classical estimate of the expected velocity after a single pass through
a magnetic field by

𝐸kin = 𝑞𝐵 ⋅ 𝐵 ⋅ |𝝃| ⇔ (3.15)
1
2
𝑀𝑀𝑀 ⋅ 𝑣2𝑀𝑀 = 𝑞𝐵 ⋅ 𝐵 ⋅ |𝝃| ⇔ (3.16)

𝑣𝑀𝑀 = √
2 ⋅ 𝑞𝐵 ⋅ 𝐵 ⋅ |𝝃|

𝑀𝑀𝑀
. (3.17)

Estimated values for the coherent field length and field strength for different fields,
published in reference [Wic+03], are given in Table 3.1.

𝐵/µG |𝝃| /Mpc 𝐸kin/NgD/GeV
normal galaxies 3 − 10 10−2 (0.3 − 1) ⋅ 1012
starburst galaxies 10 − 50 10−3 (1.7 − 8) ⋅ 1011

active galactic nucleus jets ≈ 100 10−4 − 10−2 1.7 ⋅ (1011 − 1013)
galaxy clusters 2 − 30 10−4 − 10−1 3 ⋅ 1011 − 5 ⋅ 1014

extragalactic sheets 0.1 − 1.0 1 − 30 1.7 ⋅ 1013 − 5 ⋅ 1014

Table 3.1: Estimatedmagnetic fields in the Universe
A table with different magnetic fields which are expected to contribute to the accelera-
tion ofMMs is presented. 𝐸kin is given for a single pass through the field. Adapted from
reference [Wic+03].

AnMM can be accelerated by the same fieldmultiple times if it is trapped due to elec-
tric fields or gravity (e. g., inside galaxies) or passed throughmultiple similar fields due
to the sizeof theenvironment (e. g., extra galacticfields). For theextra galacticdomain,
this effect increases the maximal kinetic energy to 𝐸kinmax

= 1015 GeV as described in
reference [Wic+03].
For this work, a velocity profile for IMM as expected at a detector situated at Earth of

𝛽 =
⎧
⎨
⎩

c 𝑀 ≲ 1011 GeV

c (10
11 GeV
𝑀 )

1
2 𝑀 ≳ 1011 GeV

(3.18)

is assumed, taken from reference [Tan+18]. This corresponds to an acceleration sce-
nario of anMM of Dirac charge being accelerated from rest by the electric fields in the
MilkyWay galaxy. In Figure 3.5 the resulting velocity profile in the transition zone for
different rest masses from the high relativistic regime to the non-relativistic regime
can be observed.
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Figure 3.5: Velocity of IMMs in dependence of rest mass
A plot with the expected 𝛽 as a function of the rest mass of anMM in the intermediate
mass range following Equation 3.18 is depicted. Thehorizontal axis is logarithmicwhile
the vertical axis is linear. Below 1011 GeV, the expected velocity is close to 𝑐. The velocity
drops to about 0.6 𝑐at 1011.5 GeV,passes below0.2 𝑐at 1012.5 GeV,and converges towards
0 for the non-relativistic regime heavier than 1014 GeV.

3.7 Stopping Power

MMs passing through matter lose parts of their kinetic energy to said matter. The en-
ergy loss per path length depends on the Dirac charge, passed material, and velocity.
Different velocity ranges are dominated by varying energy losses. Starting at the high
relativistic regimewhere 𝛾 ⋅𝛽 ≥ 1000, the energy loss is dominated by stochastic loses.
As this regime has been covered in multiple searches before and is of little interest to
this work, the energy loss is excluded from description in this thesis. Between 0.05 c
and 𝛾 = 100,MMs dominantly lose kinetic energy by excitation of electrons and the
resulting ionization of the target material. The energy loss in this velocity range can
be described by the Bethe-Bloch formula adjusted to magnetic charges as described
in reference [Ahl78]

𝑑𝐸
𝑑𝑥

=
𝜋𝜌𝑒ℏ2N2

gD

𝑚𝑒
[ln (

2𝑚𝑒 (c𝛽𝛾)2

𝐼target
) − 0.5 (3.19)

+
𝑘 (NgD)

2
(quantum electrodynamics correction)

−
𝛿 (log10 (𝛽𝛾))

2
(density correction)

− 𝐵𝑚 (NgD) (Bloch correction)

]
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where 𝜌𝑒 = 𝜌target ⟨𝑍/𝐴⟩target is the electron density of the target material, 𝑚𝑒 is the
massof the electron,NgD is the aforementionednumberofDirac charges theMMs pos-
sess, and 𝐼target is the mean ionization energy of the target material.

𝐵𝑚 (NgD) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

0.248, for NgD = 1,
0.672, for NgD = 2,
1.022, for NgD = 3,
1.685, for NgD = 6,
2.085, for NgD = 9,

(3.20)

is the Bloch correction, described in references [Blo33; Der+98], and

𝑘 (NgD) =
⎧⎪⎪
⎨
⎪⎪
⎩

0.406, for NgD = 1
0.346, for NgD = 2
0.300, for NgD ≥ 3

(3.21)

is the quantum electrodynamics correction, described in reference [Der+98].
𝛿 (log10 (𝛽𝛾)) is the density correction due to the polarization of real media which can
be modeled via the Sternheimer model described in reference [Ste81]

𝛿 (𝑥) =
⎧⎪⎪
⎨
⎪⎪
⎩

𝛿010(2(𝑥−𝑋0)) for 𝑥 < 𝑋0

2 ln (10) 𝑥 − 𝐶 + 𝑎(𝑋1 − 𝑋0)𝑚 for 𝑋0 <= 𝑥 < 𝑋1

2 ln (10) 𝑥 − 𝐶 for 𝑋1 <= 𝑥
(3.22)

where𝑋0,𝑋1,𝐶, 𝛿0, and𝑎 arematerial specific constants derived fromdirectmeasure-
ments of the materials. In this work, the values from reference [SBS84] are used.
Between 10−3 𝑐 to 10−2 𝑐, the interaction between theMM and thematerial can be de-
scribed by a free, possibly degenerate, electron gas. The energy loss can then be de-
scribed by

𝑑𝐸
𝑑𝑥

=
𝜋𝜌𝑒N2

gDℏ𝑐𝛽

2 (3𝜋2𝜌𝑒)
1
3
(ln (2𝑎0 (3𝜋2𝜌𝑒)

1
3 ) − 0.5) , (3.23)

taken from reference [AK82], where 𝑎0 is the Bohr radius and all other factors are the
same as in Equation 3.19. For the velocity range between 10−2 c and 0.05 c, the energy
loss was linearly interpolated for this work.
Below 10−3 c,MMs cannot excite atoms anymore but still lose energy via elastic colli-
sion. AsMMs in this velocity range cannot be detected in this work, they are assumed
to immediately stop within the target material without being detectable.
The resulting energy loss for different materials in the velocity ranges where energy
loss has been modeled is depicted in Figure 3.6. Given an energy loss, the distance
anMM can travel within a medium can be calculated by

𝑅 = ∫
𝐸0

𝐸min

1
𝑑𝐸/𝑑𝑥

𝑑𝐸 (3.24)
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Figure 3.6: Energy loss of anMM in different media
In the plot, the logarithmic energy loss of anMM of Dirac charge in GeV cm−1 as a de-
pendence of the velocity expressed in logarithmic𝛽⋅𝛾 is depicted. As examplematerials,
iron (red), silicon (green), and ice (blue) were chosen. The density was kept at 1 kg cm−3

for all threematerials. Thedashed zonemarks the region of linear interpolationbetween
Equations 3.19 and 3.23. The shape in the left and right speed regime is roughly the same
for all materials. However, there is a differing offset between them which widens in the
intermediate regime. The highest energy loss is seen in ice, second is silicon, and last is
iron. This is mainly due to fixing the density for all materials. The energy loss linearly
scales with the density.

where 𝐸min is the energy there the particle is assumed to be at rest. 𝐸0 is the initial
energy and 1

𝑑𝐸/𝑑𝑥 is the inverse energy loss.
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3.8 Earth Shielding

MMs traversing the Earth lose energy due to matter interactions. Consequently, their
velocity decreases. Depending on the amount of Earth passed and the sensitivity to
the velocity of a traversing MM, this may result in a measurable different velocity of
anMM or even shield certain directions from incomingMMs.
In order to model this velocity difference for this work, a two material composition
model for the Earth with only a radial dependency is assumed. In this model, the core
of the Earth consists of iron and the outer crust is composed of silicon with a linear
transitionzone inbetween. ThedensityprofileofEarth is taken fromreference [LM01].
The resulting material densities are depicted in Figure 3.7.
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Figure 3.7: Density and compo-
sitionmodel of Earth
Model of Earth used for calcu-
lating the expected energy loss
for MM at the in-ice arrays of
IceCube. Left hand, blue shaded
region is indicative of the density
of iron, right hand, red shaded re-
gion is indicative of the density of
silicon. Themodel starts out with
a high density iron core and ends
with a silicon outer shell. In be-
tween, the composition is linearly
interpolated. Themodel is only dependent on the radius and assumes a perfectly spher-
ical planet. The black arrows depict possible exemplary trajectories of MMs and point
at the depth of the in-ice arrays of IceCube.

The shielding depends on themass in the path of the incident particle which varies as
a function of the zenith angle in the aforementioned spherical Earth model. On the
other side, there are free parameters from the model of theMM, namely the number
of Dirac charges NgD , its rest mass𝑚0, and kinetic energy 𝐸kin.
In Figure 3.8, the expected velocity profile at the in-ice arrays of the IceCube Neutrino
Observatory (IceCube) assuming an initial velocitymass profile as described in Equa-
tion 3.18 corresponding to an IMM being accelerated by the Milky Way galaxy is de-
picted.
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Figure 3.8: Velocity of IMMs at IceCube for NgD =1 and NgD =9
In the two figures, the velocity of IMM at the in-ice arrays of IceCube as a function of
their rest mass and zenith angle are on display. The first figure has been calculated as-
suming anMMwith𝑁𝑔𝐷 = 1, the second figurewith𝑁𝑔𝐷 = 9. Earth shielding depends on
themagnetic charge, thus𝑁𝑔𝐷 = 1 represents a lowbound for the shielding of Earthwhile
𝑁𝑔𝐷 = 9 is presented to make the shielding effect of the Earth more prominent. In both
figures, the horizontal axis is indicative of the rest mass of an incidentMM in logarith-
mic presentation while the vertical axis is used to indicate different zenith angles in the
coordinate system of IceCube, depicted in Figure 6.3. For each combination, an initial
velocity as described in Figure 3.5 is assumed. For computing purposes, c is treated as
𝛾 = 1000. TheMM is propagated through the Earth following the density and composi-
tion model described in Figure 3.7. Its arrival velocity at the in-ice arrays of IceCube is
indicated by color, corresponding to a velocity as noted at the right hand color bar. Note
that the color coding is not uniformbut is deliberately fine grained in the sensitive region
of this analysis (0.1 𝑐 to 0.6 𝑐). For both𝑁𝑔𝐷=1 and𝑁𝑔𝐷=9, nearly no velocity change is
observed for down goingMMs. For up goingMMs, total shielding is observed for𝑁𝑔𝐷=9
while MMs with 𝑁𝑔𝐷=1 slow down slightly. Additional intermediate magnetic charges
have been calculated and can be seen in Figures B.1 to B.7.
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3.9 Exclusion Limits for Magnetic Monopole Flux

Observations of the current state of the Universe limit the possible number of MMs
in existence in the observable Universe. One such observation is the detection of a
magnetic field inside the Milky Way galaxy. MMs are accelerated by magnetic fields
as described in Section 3.6 and thus drain energy from magnetic fields. If the flux of
MMs is too high, no magnetic field inside the Milky Way could be observed as they
would have been completely drained. This is called the Parker bound, described in
reference [Par70]. Thus, the exclusion limit ofMM flux at the Earth is

𝐹 <
⎧
⎨
⎩

10−15 cm−2 s−1 sr−2, 𝑀MM ≲ 1017 GeV,
10−15 cm−2 s−1 sr−2 𝑀MM

1017 GeV , 𝑀MM ≳ 1017 GeV.
(3.25)

The same reasoning can be applied to all current or past magnetic fields observed in
the Universe, but dependencies on the specific model ofMM, especially the assumed
rest mass of theMM, become more prominent making the bounds less universal. In
the low relativistic to highly relativistic regime, the Parker bound is already superseded
by current exclusion limits forMMs flux as can be seen in Figure 3.9.
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Figure 3.9: Previous flux limits for MMs
A plot with the result of previous searches for MMs is depicted. The horizontal, linear
axis is the velocity in units of 𝑐 from 0.1 to 0.99. The vertical, logarithmic axis is the
excluded level of flux forMM as reported by different experiments and collaborations in
references [Abb+10b; Alb+17; Ayn+08; Aar+16; Bur20; Amb+02], sorted in the legend by
alphabetical order.



CHAPTER 4
Machine Learning

Machine learning, in the simplest terms, is the analysis of statistics to help computers make
decisions based on repeatable characteristics found in the data.

V. K. Agrawal [Agr20]

Machine learning (ML) is a subfield of artificial intelligence. This subfield is limited to
deriving or training estimators, here called predictors from a set of data points, called
the training set, with the goal of generalizedperformance towardsdisjunct datapoints.
All points are part of the same feature space, the space spanned by the product of
all used features. In this thesis, ML is used in the final analysis step to select candi-
date events. This is called binary regression or binary classification. The predictors are
trained based on data points with known classes. This subclass ofML is called super-
vised learning. In this chapter, the required nomenclature and methods used for that
step is explained.

4.1 Feature Space

A feature of an event is any information derived reproducible from said event. In this
thesis, every feature is a scalar value. Multiple features can be derived from a single
event.

Feature space is the abstract spacewhere all possible points a predictor can be applied
to reside in. It is the product of the individual features which span the space.

27
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For any ML based algorithm, choosing proper features is crucial. Adding more fea-
tures increases the size of the feature space. As processing time is limited, usually only
a finite number of data points within the feature space can be utilized. This can re-
sult in the density of sampled data points in sub-samples to vary wildly and in turn
influence the performance of a predictor towards different sub-samples of the fea-
ture space which is not desirable. Furthermore, features influence the maximal per-
formance achievable by a predictor.

4.2 Sampled Supervised Binary Classification

Sampling is the process by which discrete data points are derived from an underlying
probability density function. In this thesis, only the case of finite numbers of sampled
points is discussed.

Binary classification is the process by which a sampled data point is assigned one of
twopossible labels or classes. In this thesis, these classes arebackground-like or signal-
like.

Once a data point is classified, it can be removed if it is background-like or selected as
a candidate event for further use. The class of a data point may be known or unknown
depending on the origin the data point is derived from, e. g., simulated events have
known classes while measured events have unknown classes.

In supervised learning, predictors are trained using data points with known or as-
sumedclass. After the traininghas concluded, thepredictors are applied todatapoints
with unknown class assigning each data point a probability or score value between 0
and 1where 0 stands for background-like while 1 stands for signal-like.

A predictor approximates the mapping 𝔐TS ∶ 𝒙𝑖 → 𝑐𝑖 between the data points 𝒙𝑖
and their associated class 𝑐𝑖 ∈ {0, 1} within a training set 𝒙𝑖 ∈ ℎTS. It is crucial that
this mapping𝔐TS is representative for all possible data points. This can be achieved
by randomly selecting the data points from all possible points. If only subspaces are
utilized, special precautions are required to ensure that the subspaces have the same
underlying mapping.
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4.2.1 Bias–Variance Trade-Off

The bias of a predictor towards a given set of data points is the average offset between
the predicted class of all data pointswithin the set by the predictor and the true class of
thesedatapoints. In the ideal case, thebias towards all possibledatapoints isminimal,
i. e., the predictor has the best mean performance for all possible data points. Thus,
the variance of this bias in different sub-samples of all possible data points becomes
minimal as well. The absolute value of this bias is influenced by the structure and thus
complexity of a given predictor.
During the training of a predictor, only a finite set of data points can be regarded. Con-
sequently, the aforementioned average bias and variance for all possible data points
cannot be determined. Instead, only the bias towards a specific subset, e. g., the train-
ing set, and the variance between different sets, e. g., the training set and a disjunct
comparison set, can be derived.
The bias for a specific set of data points can be driven to zero with high enough com-
plexity of a predictor and consequently can be lower than the theoreticalminimal bias
towards all possible data points. Such a predictor is overspecialized towards this spe-
cific set of data points, also referred to as over-trained. This over-training is accompa-
nied by a high variance of the predictor.
On the other hand, a trivial, low complexity predictor, e. g., a predictor with a constant
predicted value, usually has a high bias but a low variance. Such a predictor is called
under-trained.
The training of a predictor needs to be balanced between the under-trained and over-
trained regime. The first will generate a predictor with a sub-optimal performance,
also called a weak predictor. The latter will result in a predictor with apparent great
performance, even better than the unknown theoretical optimum, butwhich does not
generalize outside the training set. Examples of predictors with different biases and
variances can be seen in Figure 4.1.
In this thesis, this balance is accomplished by adding regularization systems during
the training phase. Regularization systems limit the degree of complexity a predictor
can achieve by penalizing high complexity over low complexity.
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(a) over-trained (b) ideal (c) under-trained

Figure 4.1: Predictors in different bias and variance regimes
Three polar plots are presented, containing the same data points. Two classes of data
points are used, represented by the colors red and blue. For each class, two sets of data
points are sampled, one set used to train the predictor, the other set to compare the per-
formance of the predictor outside the training set. These sets are illustrated by either a
circle, indicating the training set, or a star, indicating the comparison set. Each data
point has two features: the radius and the angle. The radius is sampled from a uniform
probability distribution ranging from0.5 to 1 for the red class while the blue class is uni-
form between 0.8 and 1.3. The angle is randomly distributed and hence does not allow
for any separation power between the two classes. For each plot, a binary class predic-
tor has been trained on the same data points. The training result is indicated by a red
shaded region to indicate areas in which data points are assigned to the red class. The
left plot is an example of a highly over-trained predictor. All training data points are
correctly identified and thus the bias is zero, but testing the predictor on the comparison
set yields a high bias result. Thus, the variance of the predictor is high. The predictor
on the right is under-trained. No data point in the training set is correctly identified,
a performance matched by the comparison with the test set. While the bias of the pre-
dictor is high for both sets, the variance is low. In the middle plot, an ideal predictor is
presented as a comparison to the previous two predictors. In this case, both the bias and
the variance are as small as theoretical possible given the aforementioned distribution
of the radius.

4.2.2 Training Goal: Minimize the Objective Function

The objective function is themathematical description of the objective to be achieved.
During training, the goal is to converge the predictor to a global minimum of the ob-
jective function. Depending on the objective function, differentminimawith different
performance characteristics for the predictor may exist.

In this thesis, the objective is to correctly predict the class of all data points while only
a subset of data points is available. The objective function is the sum of two sub-
functions, the loss function and regularization function.
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The loss is the qualification of howwell the predictions of a predictormatch the classes
of data point. The loss function is the algorithm to derive this loss. In this thesis, an
estimator of the cross entropy,𝐻𝑃, is used as the loss function.

The cross entropy𝐻, first mentioned in reference [Goo56], is an extension of the Kull-
back–Leibler divergence described in reference [KL51]. It is a metric for the distance
between two probability measures 𝑂 and 𝑃with the same topological support 𝑄. It is
defined as

𝐻(𝑂, 𝑃, 𝑄) = − ∑
𝑞∈𝑄

𝑜(𝑞) ⋅ log𝑝(𝑞) (4.1)

where 𝑜 and𝑝 are the respective probability density functions of𝑂 and𝑃. Assume𝑂 is
an unknown probabilitymeasure and a finite number𝑁𝑞 of randomly sampled points
𝑄𝑂 following 𝑜 are available. Then, an estimator of the cross entropy 𝐻𝑃 (𝑄𝑂) can be
defined as

𝐻𝑃 (𝑄𝑂) = −
∑

𝑞∈𝑄𝑂

𝑜 (𝑞) ⋅ log𝑝 (𝑞) + (1 − 𝑜 (𝑞)) ⋅ log (1 − 𝑝 (𝑞))

𝑁𝑞
. (4.2)

By identifying

𝑃 as the probability measure of the predictor and thus

𝑝 (𝑞) ∈ [0, 1] as the probability density of the predicted binary class,

𝑜 (𝑞) as the true class label, and

𝑄𝑂 as the training set,

it can be observed that minimizing 𝐻𝑃 (𝑄𝑂) lowers the differences between the pre-
dictions of the predictor and the class labels as presented by the sampled data points
used for training. This approximates the underlying, unknown class distribution𝔐TS

that the data points in the training set were sampled from.

The regularization function is a penalty applied to a given predictor based on various
factors. These penalties are applied in order to limit the complexity of the predictor or
to facilitate convergence of the predictor. In this chapter, the regularization function
itself is split into different functions and techniques described in Section 4.4.

4.3 Machine Learning Based Estimators

Different algorithms exist in ML to build predictors. In this section, the algorithms
relevant for this thesis are summarized. Only binary classification is regarded.
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4.3.1 Singular Variate Decision

The singular variate decision (SVD) separates a set of data points ℎ into two subsets
ℎ𝑙/𝑟 based on the value of a single feature 𝑓 and a defined value 𝑐 via

ℎ𝑙 = {𝑥 ∈ ℎ|𝑓 (𝑥) ≤ 𝑐} (4.3)

and
ℎ𝑟 = {𝑥 ∈ ℎ|𝑓 (𝑥) > 𝑐} . (4.4)

The class represented by ℎ𝑙 and ℎ𝑟 can vary. In this thesis, 𝑐 is called a cut value. Mul-
tiple techniques exist to determine 𝑐. Two different techniques are used in this work,
described in Section 4.5 and Section 7.3.6.

4.3.2 Decision Tree

A set of predictors can be combined into a single predictor with a higher performance
than the sumof the individual predictors as described in reference [Sch90]. A decision
tree (DT) is an ensemble of multiple, weak SVDs arranged in a binary tree. It can be
applied to multifeature data points albeit only a single feature is utilized in an SVD.
Different strategies exist to select a feature for each SVD. The algorithm used in this
thesis is described in Section 4.5.
Each SVD forms a branch of the tree, splitting the training set into subsets which in
turn the next SVDs are based upon. A subset which is not split by an SVD is called a
leaf.
An example of a binary tree is depicted in Figure 4.2. Themaximal number of consec-
utive SVDs to reach all leafs within aDT is called the depth of theDT.

4.3.3 Boosted Decision Trees

Similar to aDT being an ensemble of SVDs, a boosted decission trees (BDT) is an en-
semble of consecutively addedDTs forming a single predictor.
TheDTs are built in succession, adjusting the objective to be optimized by each indi-
vidual learner by altering or boosting the training data based on the predictions of the
previously built ensemble of DTs. Various strategies for boosting exist, the technique
utilized in this thesis is described in Section 4.5. A diagram of the process is presented
in Figure 4.3.
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Figure 4.2: Example of a DT
An example of aDTwith a depth of
three is depicted. Data points with
three features, 𝑓1, 𝑓2, and 𝑓3 are as-
sumed. At the top, all data points
used for training are within one set
ℎ0. A feature 𝑓1 is used to split ℎ0

into two subsets,ℎ1
1 and ℎ1

2 depend-
ing if the data points have a 𝑓1 value
below of 𝑐11 . This is repeated twice,
resulting in a total of eight subsets.

data
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train predict

BDTDT

predictionboosted
data
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Figure 4.3: Flow diagram of the principal of BDT training
A flow diagram of the iterative training process of a BDT is presented. As the first step,
aDT is trained based on the training data. The resulting DT is added to the BDT. The
predictions of the BDT for the training set is calculated. The predictions and training
data are compared and the training data is boosted based on the comparison. A new,
boosted training data set is generated. Another DT is trained on the boosted data and
added to the BDT. The cycle repeats until a stop condition is met.
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4.4 Regularization Systems and Techniques

Different techniques and systems exist for regularization of the training depending
on the task at hand. These can vary from penalizing high complexity in a predictor
or ensemble of predictors, defining a stopping condition to training, or augmenting
the available training data. This results in a minimal reachable bias of the predictor
towards the training set instead of allowing the bias to reach zero, and thus, as it has
been discussed in Section 4.2.1, keeps the predictor from becoming over-trained.

4.4.1 Number of Predictors

One of the basic regularization for ensembles of predictors is the number of predictors
within the ensemble. For DTs, this is called the maximal depth as explained in Sec-
tion 4.3.2. For BDTs, it is called the maximal number ofDTs. Note that this describes
only themaximal number of possible predictors, other techniquesmay limit the num-
ber of added predictors based on different factors. For example, early stopping can be
utilized while building a BDT to stop addingDTs once no further improvement of the
performance of the BDT has been observed for a given number of addedDTs. In this
case, the BDT is assumed to have already reached the theoretical best performance
given the regularization function.

4.4.2 Sub-sampling the Training Data

Sub-sampling is a technique inwhich only a fraction 𝑆 ∈ (0, 1] of the training set is uti-
lized to build the individual predictors of an ensemble of predictors. Every time, sub-
sampling is applied, each data point has a probability of 𝑆 to be selected. As not every
data point is included in the training of the predictor, potential over-trained regions
of feature space in each predictor average out while regions common in all predictors
get amplified.

4.4.3 Dropout Regularization

Dropout regularization, originally proposed as a regularization for Neural Network
based ML applications in reference [Hin+12], is a technique in which a random set
of previously trained predictors in an ensemble is disregarded for a given prediction.
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In this thesis, dropout regularization is applied during the training ofBDTs, described
in Section 4.3.3. An example flowchart of dropout during the training of a BDT is de-
picted in Figure 4.4. It is described by two parameters: the probability to apply the
regularization 𝐷 ∈ [0, 1] and the probability for each DT to be ignored in the predic-
tion 𝑅 ∈ (0, 1]. The sampling ofDTs to be ignored is performed in a weighted fashion,
resulting in higher performance predictors being dropped more often and therefore
equalizing the overall performance over allDTs. As a performance metric, the overall
reduction of the objective function perDT is utilized.

Without this form of regularization, early predictors in the training achieve high per-
formance while subsequent added predictors contribute less. By only selecting a sub-
set of predictors, overall beneficial additions to the predictors are included in multi-
ple predictors, spreading the performance over all predictors while suppressing over-
training additions in early predictors. Additionally, settling on a local minimumof the
objective function over the global minimum is suppressed.

predict and boost

trainDT5

apply dropout

predict and boost

trainDT6

⋮

⋮

{DT1,DT2,DT3,DT4}

{DT1,DT2,DT3,DT4,DT5}

{DT1,DT2,DT3,DT4,DT5}

{DT1,DT2,DT3,DT4,DT5}

{DT1,DT2,DT3,DT4,DT5,DT6}

Figure 4.4: Example flowchart of dropout regularization
An exemplary flowchart of dropout regularization is depicted. After four training cycles
of a BDT, presented in Figure 4.3, four DTs have already been trained. DT5 is trained
regularly. By chance, the next cycle has dropout regularization applied. DT1,DT3, and
DT5 are disabled. Only DT2 and DT4 are used for the next prediction. DT6 is trained
based on the boosted data based on this prediction. For the next cycle, all DTs are en-
abled unless dropout is applied once again.
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4.4.4 Tikhonov Regularization

Tikhonov regularization is a set of techniques to smooth linear ill-posed problems and
make them potentially numerically solvable. A regularization parameter 𝒘 is added
to the solution and subsequently minimized. In the case of gradient based BDTs, de-
scribed in Section 4.5,𝒘 is the bias of the BDT towards all data points in the data set.
An example of gradient based optimization is presented in Figure 4.5.
For this work, a special kind of Tikhonov regularization is utilized by adding the L2
regularization term onweights ‖𝒘‖22, described in reference [Ng04], to the regulariza-
tion function. Thus, any newly added DT which introduces large deviations from the
previous predictions is suppressed in favor of aDTwith small changes to the previous
predictions, a prerequisite for convergence towards a minimum.

4.5 EXtreme Gradient Boosting

In this thesis, theML is implemented in the eXtreme Gradient Boosting (XGBoost)
framework, introduced in reference [CG16]. In this framework, boosting is imple-
mented via gradient boosting with multiple different supported boosting algorithms.
TheDropoutsmeetMultipleAdditiveRegressionTrees (DART)booster, presented in ref-
erence [VG15], has been chosen as it allows for dropout regularizationduring boosting
as discussed in Section 4.4.3.
In gradient boosting, the individual predictors are not directly trained using the class
of a given data point but by pseudo-residuals. Let {𝑝1,… , 𝑝𝑛−1} be the set of already
trained DTs, �̂�𝑖 the class of the data point 𝒙𝑖, and 𝐿 a chosen loss function. Then, the
pseudo-residuals are

𝑅𝑖,𝑛 = −
𝜕𝐿 (�̂�𝑖, 𝑝𝑛−1 (𝒙𝑖))

𝜕𝑝𝑛−1 (𝒙𝑖)
. (4.5)

The next DT 𝑝𝑛 is trained to predict these pseudo-residuals, i. e., in the ideal case
𝑝𝑛 (𝒙𝑖) = 𝑅𝑖,𝑛. Before the new DT is added to the set of all already trained DTs, the
predictions are scaled with an arbitrarily chosen scaling factor, the learning rate 𝜂.
With 𝜂 the rate of descent towards a minimum can be controlled. The higher 𝜂, the
faster and more prone to non-convergence the ensemble of predictors becomes, the
lower 𝜂, the more predictors are needed to descend towards a minimum.
During the training of theDT, sub-sampling to the trainingdata canbe applied at each
SVD. Each SVD is calculated following the Exact Greedy Algorithm described in refer-
ence [CG16].
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Figure 4.5: Gradient descent example with and without dropout
The two dimensional surface of an arbitrary chosen objective function as a function of
two varying parameters 𝜃1/2 is presented. The objective function is emulated by the sum
of two Gaussian distributions, one forming a local minimum, the other the global min-
imum. An arbitrary starting point, indicated by a white star, is chosen. Following the
gradient of fastest descend, 100 steps are performedwith a decreasing stepwidth for nu-
meric stability. The endpoint is marked by a black star. In one case, only the current
position and hence all previous steps are regarded, i. e., the no dropout scenario. It can
be observed that the found minimum is the local minimum. With dropout, the path
also directs into the local minimum at first but as previous steps are dropped out, an
escape is made out of the local minimum to the global minimum. Note that this is an
arbitrary constructed example, emulating the setup of gradient descent, to highlight the
principal.





CHAPTER 5
Light Emission of Magnetic Monopoles

in Ice

Wherever there is light, one can photograph.

A. Stieglitz [Ada80]

Magnetic monopoles (MMs) passing through ice cause light emissions. These emis-
sions can be grouped into two subcategories. The first are classical light emission pro-
cesses caused by the charge of the incident particle. The second are hypothesized light
emissions which arise from the structure of theMM andmight differ between various
theories. The latter is mostly of interest in the non-relativistic regime whereMMs are
theorized to catalyze nucleon decay and hence is out of the targeted velocity range of
this analysis.

Classical light emissions are modeled by the measured light emissions of already de-
tected particles. The light yield is adjusted to the difference in emission fromone elec-
tric charge to onemagnetic charge. For this thesis, three classical light emissions are of
interest: direct Cherenkov radiation, indirect Cherenkov radiation, and luminescence
light emissions, described in the following sections.

39
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5.1 Direct Cherenkov Radiation

Coherent light produced by the polarization of a dielectric medium by a propagating
electromagnetic field with a velocity higher than the local phase speed in themedium
is called Cherenkov radiation. This effect was first described in references [Čer34;
Čer37]. Each volume element of the dielectric medium becomes polarized locally
due to the electromagnetic field. Once the electromagnetic field does not force the
material into a polarized state anymore, the material returns to a non-polarized state
and in turn emits a spherical light wave. Due to the polarization being induced faster
than the local phase speed, these light waves can positively interfere creating a plane
wave front which can be detected as macroscopic light.
A common case of direct Cherenkov radiation occurring are electrically charged parti-
cles traversing a dielectricmedium close to the speed of light. In this case, the positive
interference occurs under a specific angle from the particle trajectory as seen in Fig-
ure 5.1.

light cone
particle trajectory

emitted light
direction

𝜃

Figure 5.1: Direct Cherenkov light
A sketch of the induction of Cherenkov
light is shown. A charged particle,
drawn in red, traverses a medium.
The medium is polarized locally. Once
the material loses its polarization,
a wave of light is emitted indicated by
black circles. The waves of light from
different locations on the trajectory
positively interfere and form a light
cone indicated by two blue lines. The
angle 𝜃 between the trajectory of the particle and the emitted light cone can be
observed.

The angle 𝜃 is defined by

cos 𝜃 =
1

𝑛 (𝜆) 𝛽
+

𝑝pho
2𝑝par

(1 −
1

𝑛2 (𝜆)
) (5.1)

with

𝑛 as the refractive index of the medium for a specific wavelength 𝜆,

𝛽 as the ratio of the speed of the particle to the absolute speed of light,

𝑝pho as the momentum of the photon, and

𝑝par as the momentum of the particle, taken from reference [Gin40].
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The term 𝑝pho
2𝑝par

(1 − 1
𝑛2(𝜆)) can be ignored formostmedia as themomentumof the pho-

ton is negligible. The angle 𝜃 does not depend on the rest mass of the particle but only
on its velocity.

The number of emitted photons in a defined wavelength range per distance traversed
by the particle is

𝑑𝑁𝛾𝑑𝐶ℎ

𝑑𝑥
=
𝑞2𝑒
c2

𝜆2

∫
𝜆1

(1 −
1

𝑛2 (𝜆) ⋅ 𝛽2
)
𝑑𝜆
𝜆2

(5.2)

where 𝜆1 to 𝜆2 is the wavelength range. It is also independent of the rest mass of the
particle. It onlydependson the velocity of theparticle asdescribed in reference [TF37].

To adapt the aforementioned formulas derived for electrically charged particles to
magnetically charged particles, a transformation as described in Equation 3.2 can be

applied. Choosing 𝑅 =
⎛

⎝

0 1
1 0

⎞

⎠
, i. e., switching the electric and magnetic compo-

nents, and applying it to Equation 5.2 the number of Cherenkov photons per path
length can be determined to be

𝑑𝑁𝛾dCh

𝑑𝑥
=
𝑞2𝑚
c2

𝜆2

∫
𝜆1

(𝑛2 (𝜆) −
1

𝜇 ⋅ 𝛽2
)
𝑑𝜆
𝜆2

(5.3)

where 𝜇 is the magnetic permeability.

For ice, assuming 𝑛 (𝜆) = 𝑛 ≈ 1.3 and 𝜇 ≈ 0, the ratio of Cherenkov photons emitted

by anMM with one Dirac charge to a muon is ≈ 𝑞2𝑚⋅𝑛2

𝑞2𝑒
=

(𝑞𝑒⋅𝑛2𝛼 )
2

𝑞2𝑒
≈ 8400. Another

difference is a change in the polarization between the two. This is of no consequence
for this thesis.

5.2 Indirect Cherenkov Radiation

Depending on the charge and velocity of an incident particle, the particle can ion-
ize the target medium inducing free electron emission around its path. If enough en-
ergy is transferred to the electrons, they themselves become relativistic and induce
Cherenkov light on their own. A sketch of the setup is depicted in Figure 5.2.

These relativistic electrons are referred to as 𝛿-electrons. The Cherenkov radiation
emitted by 𝛿-electrons is called indirect Cherenkov light. In contrast to direct
Cherenkov light, there is no sharp velocity at which this effect takes place. Instead,
the light yield decreases with reducing velocity until no 𝛿-electrons are created.
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Figure 5.2: Indi-
rect Cherenkov light

A sketch of the induction of in-
direct Cherenkov light is shown.
A charged particle, here drawn
in red traverses a medium. 𝛿-
electrons, drawn in green, are

knocked out of the medium by
the traversing particle. These in
turn produce direct Cherenkov

light as shown in Figure 5.1.
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The structure and yield of this light emission channel is defined by the emission char-
acteristic of 𝛿-electrons. The emission of 𝛿-electrons caused by anMM can be mod-
eled following the Kazama Yang Goldhaber (KYG) cross-section, described in refer-
ence [KYG77]. In this thesis, this is implemented the sameway as in a previous search
forMMs described in reference [Pol18]. A fitted form factor, depicted in Figure 5.3, is
applied to the Rutherford differential cross-section described in reference [Rut11]

(
𝑑𝜎
𝑑Ω

)
Rutherford

= (
𝑞target material𝑞𝑚

4𝐸
)
2 1
sin4 𝜗

2

(5.4)

where 𝐸 is the initial energy of the incident particle and 𝜗 is the reflection angle.
By integratingover thenumberof photonsproducedper𝛿-electronand the𝛿-electron
production rate, the total number of photons per unit length can be calculated via

𝑑𝑁𝛾iCh

𝑑𝑥
= 2𝜋

𝐸𝑚(𝛽,𝑀)

∫
𝐸0

(
𝑑𝜎 (𝐸, 𝜗 (𝐸, 𝛽))

𝑑Ω
)
KYG

⎛

⎝

𝐸

∫
𝐸0

𝑑𝑁𝛾dCh (𝐸
′)

𝑑𝐸′ ⋅ 𝑑𝐸′
⎞

⎠
⋅ 𝑑𝐸. (5.5)

𝐸0 is the minimal kinetic energy needed for an electron to produce direct Cherenkov
light, 𝐸𝑚 (𝛽,𝑀) is the maximal energy transferred to a recoiled electron from anMM
with mass𝑀, and 𝜗 (𝐸, 𝛽) is the scattering angle in dependence of the incidents par-
ticles velocity 𝛽 and the transferred energy to the electron 𝐸.



5.3. LUMINESCENCE LIGHT EMISSIONS 43

1 2 3
scattering angle/rad

1

1.2

1.4

1.6

1.8

2
(𝑞

𝑒
⋅𝑞

𝑚
⋅𝛽
)2
(𝑑

𝜎
𝑑
Ω
) KY

G
/(

𝑑
𝜎

𝑑
Ω
) Ru

th
er
fo
rd

Figure 5.3: KYG form factor
On the vertical axis, the ratio between
the Rutherford cross-section and the KYG
cross-section is shown as a function of
the scattering angle on the horizontal
axis. A scaling factor based on the mag-
netic and electric charge is included. The
graph is interpolated from the tabulated
values published in reference [KYG77],
applying a six dimensional polynomial
fit. For low scattering angles, the KYG
and Rutherford cross-section are roughly
the same, but the KYG cross-section in-
creases by a factor of two approaching an
scattering angle of 𝜋 rad.

5.3 Luminescence Light Emissions

Energy is conserved and thus, any energy deposited into a medium by an incident
particle is either stored as potential energy or emitted in some form from themedium.
There are two energy emissionmethodswhichdirectly emit light: black body radiation
due to the heating of the material and luminescence light due to molecular or atomic
excitation. For this work, black body radiation is neglected as no detectable shift in
temperature of the medium can be expected. Luminescence light is the sum of the
light emitted during individual molecular or atomic processes, each associated with
an individual emission spectrum of light and decay time. An example of the resulting
photon emission is illustrated in Figure 5.4. Consequently, it highly depends on the
composition of the target material as described in reference [Bel53].

Ice emits luminescence light when illuminated with charged particles. Depending on
the preparation process of the water and ice, different photo spectra can be observed
as described in references [QTS82; Fre+84; Lee+09].
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particle trajectory

Figure 5.4: Emission of luminescence
A twodimensional sketch of the emission of luminescence light around a particle trajec-
tory at a fixed point in time is shown. A particle traverses a medium at 0.5 𝑐. Excitation
of the medium is simulated in fixed steps. Individual photons are emitted indicated by
arrows from the excitationpoints. Thephotons are emitted isotropically. An exponential
time delay from the time of excitation to the emission of the photon is simulated. The
location of the arrow indicates the covered distance. The color of the photons encodes
the time and consequently the location of the excitation of the medium.

Temperature influences the spectra as described in reference [Qui+91]as does the frag-
mentation of the ice as described in reference [Bak+88]. Measured decay times range
from 15ns in reference [Fre+84] to 250 ns in reference [Bak+88]. As the IceCube Neu-
trino Observatory (IceCube) cannot distinguish different wavelengths of light, these
photo spectra can be integrated into an average effective luminescence light yield 𝑑𝑁𝛾

𝑑𝐸

within the wavelength acceptance of IceCube. Hence, the luminescence light yield
becomes

𝑑𝑁𝛾lum

𝑑𝑥
=
𝑑𝑁𝛾

𝑑𝐸
⋅
𝑑𝐸
𝑑𝑥

(5.6)

where 𝑑𝐸
𝑑𝑥 is the energy loss per unit length of the incident magnetic monopole as de-

scribed in Section 3.7. Notably, the average effective luminescence light yield varies
depending on the preparation of the sample and excitationmode by roughly an order
of magnitude from 0.2𝛾/MeV in reference [Tro92] to 2.4𝛾/MeV in reference [SSH72].
Precise knowledge of the particular ice is thus required.
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Measurements of the effective light yield at IceCube have been performed and
are described in reference [Pol19]. Based on this reference, an effective lumi-
nescence light yield for magnetic monopoles of 𝑑𝑁𝛾

𝑑𝐸 = 1𝛾/MeV is assumed.
While four decay times have been preliminarily identified in reference [Pol19]
(2.4(2)ns, 190(30)ns, 5.03(6)µs, 56(6)µs), the relative ratio of the decay modes to
the absolute amount of luminescence is not available. Assuming the first two decay
modes dominate the luminescence production, an average decay time of 500 ns is
assumed during simulation in this thesis to be conservative towards the first two
decay modes.
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5.4 Expected Light Yields

Depending on the assumed velocity, the light yield ofMMs is dominated by different
processes, described in Section 5.1, Section 5.2, and Section 5.3. A comparison of the
expected light yields in ice is illustrated in Figure 5.5. While luminescence light has the
lowest expected light yield, it is mostly constant over the whole velocity range while
direct Cherenkov light has the highest expected light yield, but drops off sharply once
the incident particles speed falls short of the local speed of light. Indirect Cherenkov
light also shows a change with velocity, but does not have a sharp drop off like direct
Cherenkov light. Instead, it decreases until it becomes undetectable.
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Figure 5.5: Expected light yields for MMs in IceCube
The theoretically predicted light yield forMMs as a function of velocity within the ice of
IceCube is shown. On the horizontal, linear axis, the velocity in relation to the speed
of light between 0 𝑐 and 0.99 𝑐 is shown. On the vertical, logarithmic axis, the expected
number of emitted photons per unit length is depicted. Three light production mech-
anisms are regarded, described in Section 5.1, Section 5.2, and Section 5.3. For lumi-
nescence, both the expected value for the in-ice arrays of IceCube and the minimal and
maximal reported light yields from reference [Tro92] and reference [SSH72] is drawn.



CHAPTER 6
Simulation

Physicists like to think that all you have to do is say, these are the conditions, now what
happens next?

R. P. Feynman [Fey70]

Modern experiments have complicated response functions to physical events which
are challenging to derive analytically. Instead, Monte Carlo Simulations (MCSs) are
utilized to derive the response function. This is especially true for theoretical physical
signatures like magnetic monopoles (MMs).
MCS is based on the law of large numbers. Many possible physical events are sim-
ulated and the expected detector response is calculated. Attributes of the physical
event which are of no interest or are not observable to the experiment, i. e., random
fluctuations in one of the experiments components, are averaged out. Assuming a
large enough number of simulated events, the sum of the detector responses con-
verges against the true detector response.
In this chapter, theMCS used within the IceCube Neutrino Observatory (IceCube),
and the specific simulation conducted for the analysis of this thesis is summarized.
The creation of the simulated datasets, the sets containing the detector response for
specific sampledpoints, utilized in this thesis is chosenas the transitionpoint toChap-
ter 7.
To reduce the complexity of theMCS for a given experiment, the detector response
can be decomposed in discrete sub-responses. For theMCS computed for IceCube,
this decomposition has three sub-responses: the light produced inside the detection
mediumbyaphysical signature, thepropagationof aforementioned light to theDigital
Optical Modules (DOMs) of IceCube, and the response of theDOM and data acqui-
sition (DAQ) of IceCube to the light. Thereafter, simulated and physically measured
events are treated the same.
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The following subsections will highlight each step, starting at theDAQ, described in
Section 2.2.1, applied to both simulated and physicallymeasured events tracking back
to the initial location of a photon induced by an incident particle. The photon produc-
tion originating from physical events is described in Section 6.3.

6.1 Digital Optical Module Response

TheDOM response translates the first electron emitted from the photocathode, also
called the photoelectron, of theDOM to the digitized signal including the creation of
soft local coincidences (SLCs) andhard local coincidences (HLCs) as described in Sec-
tion 2.2. TheDOM response is composed of two sub-responses: the PMT response
and the Main Board response.

6.1.1 Photomultiplier Tube Response

The PMT type used within eachDOM has been characterized in reference [Abb+10a].
Multiplephysical effectswhich influence the response functionhavebeendetermined
by the IceCube collaboration (ICC) and are included in the PMT response simulation.
A pulse consists of a measured amplitude and time at the end of the PMT response
simulation. A sketch of a PMT and the simulated pulses is illustrated in Figure 6.1.
Normal pulse refers to a pulse that is only subject to the first two simulated effects.

The first effect is a random time delay between the photoelectron and the cascade of
electrons arriving at the anode of the PMT referred to as time jitter. A Gumbel dis-
tribution with a mean of ≈1.26 ns and a variance of ≈6.05 ns is utilized to simulate a
random time offset for each photoelectron.
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photocathode dynode 1 dynode 2 anode

normal pulse 𝛾
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late pulse 𝛾

after pulse

Figure 6.1: Sketch of PMTwith different pulses
A sketch of a PMT with two dynodes is illustrated. Four situations are shown each cor-
responding to one simulated situation described in Section 6.1.1. Electrons are drawn
as black lines.

The second effect is a non-constant amplification of a photoelectron. The TA0003
model, published in reference [Aar+20], is used to map each photoelectron to a mea-
sured quantity in pe. The definition of pe can be found in Section 2.2.2. In this model,
a probability density function is used to sample the derived charge for each photo-
electron. The probability density function consists of a Gaussian distribution around
1 pe with an additional exponential distribution which dominates in the 0 pe to 0.5 pe
range.

The third effect arises from photoelectrons originating from the first dynode of
the PMT instead of the photocathode. These are called prepulses. The prepulses
arrives earlier at the anode than normal pulses. The amplitude is also lower. This is
simulated by applying a chance of 0.3% to each photoelectron to be a prepulse. If
it is a prepulse, a further time shift of −31.8 ns is applied and the signal amplitude
is reduced by a factor of 12 in contrast to a normal pulse. Values can be found in
reference [Aar+20].

The fourth effect results from a photoelectron back-scattering from the first dynode
before initiating the amplification process. These pulses are referred to as late pulses.
Each photoelectron is assigned a 3.5% probability to be a late pulse, as described in
reference [Aar+20]. These pulses have the same amplification as normal pulses but
arrive later due to the extra distance traveled. The extra time delay for each late pulse
is sampled from the combination of six Fisher-Tippett distributions derived in refer-
ence [Aar+20].
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Thefifth effect doesnot originate fromaphotoelectronbut from ionized gasmolecules
inside the PMTwhichmay be ionized by an amplification cascade caused by a photo-
electron as described in reference [Ma+11]. These are called after pulses. About 5.9%
of all pulses are accompanied by an after pulse as mentioned in reference [Aar+20].
This is modeled by a probability density function derived from measured data. The
probability density function consists of eleven Gaussian peaks combined with center
time delays ranging from 500 ns to 7833.4 ns with varying widths as described in ref-
erence [Aar+20].

The last effect is caused by the electron current inside the PMT being limited by
the PMT Base Board, described in Section 2.1.2. Once the current inside the PMT
is greater than the supplied current, the amplification is reduced. This is called
saturation. Saturation is taken into account by folding the simulated current with an
exponential decay template with a decay time of 2.2 ns. The amplification is scaled
accordingly. As this analysis is conducted in the low brightness regime, no saturation
effects are expected.

6.1.2 Main Board Response

The simulation of the Main Board, described in Section 2.1.2, response consists of
three sub-responses. The discriminator, the detection of SLCs andHLCs, and the dig-
itization of the simulated PMT anode pulse are simulated.

Starting with the discriminator, the simulated PMT pulses, described in Section 6.1.1,
are folded with calibration templates to take into account the electronic components
between the PMT and the actual discriminating electronic element of the discrimi-
nator. Afterwards, every amplitude crossing over a preset discrimination value is col-
lected and used in the next simulation step without any further processing. They are
examined to detect coincident crossings thus making themHLCs, otherwise they are
marked as SLCs. The same logic as described in Section 2.1.2 is used to build all hits.

For the simulation of the digitization, the waveform created for the discriminators is
sampled in regular intervals. The sampling rate anddead times are taken into account.
Electronic noise is added to each sample. The noise is modeled by a Gaussian distri-
bution with a mean value of 0 and different widths for the different digitizers inside
theDOM. The phase of sampling is randomized and a random phase noise is added
to digitizers situated on differentDOMs.
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6.2 Photon Propagation Inside the Ice

IceCube utilizes the natural ice of Antarctica as a detection medium for particles.
While “Antarctic ice is the cleanest, clearest natural solid on Earth” as mentioned in
reference [Bra13], it is not completely isotropic, transparent, or scatter free. While
the bulk of the original ice has these properties, parts of the ice had to be melted and
refrozen during the instrumentation phase of IceCube. As the ice refroze from the
outside to the inside of the boreholes, impurities were pushed towards the center
altering the ice propertiesmeasurably. Due to this, thishole ice has different attributes
than the original bulk ice.

To model the light transmission from an incident particle passing through the in-ice
arrays of IceCube, specialized studies have been performed. Flashes of light were
emitted in a controlled manner from DOMs which in turn were recorded by other
DOMs. With this flasher data, South Pole ICE (SPICE) models were built starting with
a Mie scattering based model called SPICEMie. Over the past years, updates and ad-
justments to this model have been made. In simulation specifically conducted for
this thesis, the SPICE 3.2.1 model is used described in reference [Ron19] which is the
latest iteration of SPICE models. SPICE 3.2.1 is a complex, multi-parameter model
describing the propagation and absorption of light inside the detection medium of
IceCube depending on the initial direction and location of the light inside the in-ice
arrays. This includes modeling impurities in the ice, most noticeably the dust layer,
and anisotropies, due to the movement of the glacier.

While SPICE 3.2.1 is the current best model to describe the ice used by IceCube, it is
not perfect. Sensitivity to systematic deviations of themodel from reality are explored
by systematic variations of themodel parameters of the ice. The systematic variations
related to the ice can be found in Section 7.3.9.

Within the simulation, photons originating from an incident particle are tracked
through the detector, scattering as described by the aforementioned SPICE model,
until they either are absorbed by the ice or aDOMwhere they induce a photoelectron.

6.3 Physical Signature to In-Ice Photons

Before any photon can be propagated through the ice, the time, direction, and initial
location of the photon is required. While the individual photons do not interact with
each other, the relative timing of photons andmulti-photon detection at a givenDOM
need to be considered. This increases the size of the possible phase space immensely.
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Within the active volume of IceCube, charged leptons are the only expected light
inducing particles within the Standard Model of particle physics. While limiting the
phase space to all possible signatures inducible by any number of charged leptons
passing through the active detection volume of IceCube lowers the photon phase
space tremendously, it is still virtually impossible to calculate the response function
for the whole photon phase space.

Thus, the sampling needs to be further reduced down to physical signatureswhich can
reasonably be expected to be measured. While there are no direct background events
expected in this analysis as all other particles have a velocity which is at least twice
as high as the signal particles, indirect background events from mis-reconstructed
charged leptons are expected. In particular, coincident muons are of interest as these
can be reconstructed as a single event passing through the detector at sub-luminal
velocities.

For the in-ice arrays of IceCube in this thesis, thedominant injector of charged leptons
are cosmic ray induced air showers described in Section 6.3.1. The simulation of light
production by anMM is outlined in Section 6.3.3.

6.3.1 Cosmic Ray Induced Air Showers

Theatmosphere of Earth is constantly subjected to a flux of high energetic cosmic par-
ticles historically called cosmic rays. Due to inelastic scattering between these primary
cosmicparticleswith thenuclei of the atmosphere, secondaryparticles canbe created.
These in turn scatter elastically with the atmosphere losing energy until they are at rest
or inelastically to produce further secondary particles. On top of this, they can decay
into particles with lower rest mass.

The secondary particles can be grouped, based on their attributes, into the muonic
component, the hadronic component, and the electromagnetic component. The elec-
tromagnetic and hadronic components are absorbed by either the atmosphere or the
ice above the in-ice arrays of IceCube and are hence not detectable by the IceCube in-
ice array (IC) or the IceCubeDeepCore array (DC). Themuonic component can reach
the in-ice arrays. A single air shower can produce many muons which are causally
linked inside the in-ice arrays of IceCube. A schematic view of an air shower with its
components is depicted in Figure 6.2.
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To simulate the event signature of cosmic ray induced air showers at the ground level,
a software package originating from the KArlsruhe Shower Core and Array DEtector
(KASCADE) experiment called COsmic Ray SImulations for KASCADE (CORSIKA),
described in reference [Hec+98], is used. The primary and the produced secondaries
arepropagateduntil they interactwith theatmosphere. Theprobabilities for all further
secondaries are calculated and one specific interaction is selected. The secondaries
produced in the selected interaction are then added to the particles being propagated
through the atmosphere.
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Figure 6.2: Schematic air shower
A schematic cosmic ray inducedair shower is shownwith thedifferent components being
spatially separated. Only the muons and neutrinos are able to reach the in-ice arrays of
IceCube. The separation of components is only used for illustrative purposes and does
not happen in a real extended air shower. Graphic is inspired by reference [RS12].

Particles at ground level are stored. If stopped inside the atmosphere due to lack of
kinetic energy, they are removed until no particle is left to be tracked. Once no particle
remain to be tracked, the simulated air shower can be used as an input to the IceCube
simulation.
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As simulating an air shower is computational expensive, individual showers can be
used multiple times to generate a signature inside the in-ice arrays of IceCube. This
process is called over sampling. The location of the primary and the relative rotation of
the primary to the in-ice arrays of IceCube is randomized resulting in different signal
signature for the same air shower. For each over sampled air shower, only the muons
reaching the ground are propagated through the Antarctic ice to the in-ice arrays of
IceCube as only these particles have a reasonable chance to be detected by the in-
ice arrays. The propagation through the ice is done utilizing PROpagator with opti-
mal Precision and Optimized Speed for All Leptons (PROPOSAL), described in refer-
ence [Koe+13]. Inside the in-ice arrays, the muons produce light via direct Cherenkov
light, as described in Section 5.1.

While neutrinos are also able to reach the in-ice arrays, they do not directly produce
light inside the ice. Instead, they have to interact with the ice to produce charged lep-
tons which in turn produce light. As the probability of this process is rather low in
contrast to the light production of the air shower muons, neutrinos are neglected in
the CORSIKA simulation. Instead, specialized neutrino simulation described in Sec-
tion 6.3.2 is conducted.

The flux of primary cosmic particles 𝐹 in dependence of kinetic energy 𝐸 can be de-
scribed by a power law with a power law factor 𝛾 being a function of the energy and
the type of primary

𝑑𝐹
𝑑𝐸

∝ 𝐸−𝛾. (6.1)

In simulation, this is approximated by simulating five different kinds of primary par-
ticles: hydrogen nuclei, helium nuclei, nitrogen nuclei, aluminum nuclei, and iron
nuclei. The ratio between the nuclei can be adjusted and a different 𝛾 factor for each
type can be applied. The combination of used primary nuclei, energy dependent 𝛾
factor, and total rate of each primary nuclei is called the flux profile. After simulation,
the events can be reweighted to follow any flux profile instead of the original profile
they have been simulated with.
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Three CORSIKA based datasets are used in this thesis: the cosmic ray in-
duced air showers (2012) set, the cosmic ray induced air showers (2016) set,
and the cosmic ray induced air showers (2016)c set. Each dataset consists of multiple
subdatasets covering different energy ranges described in Tables 6.1 to 6.3. The
subdatasets have been centrally simulated by the ICC and are designed to be used
by multiple analyses. Thus, the parameters for each subdataset are not specifically
chosen for this analysis. Each subdataset has an ICC internal, unique identification
number or ID which can be used to identify the subdataset by the ICC. While of no
use to the public, the IDs are given here to uniquely identify the sets used in this
thesis.

As abrief summary, the cosmic ray inducedair showers (2012) set consists ofCORSIKA
based cosmic air showers conducted at IceCube in 2012 but has been updated to use
the 2016 filter settings of IceCube. Due to this, the dataset is well understood andused
by many other analyses but has limited statistics. The cosmic ray induced air show-
ers (2016) set and the cosmic ray induced air showers (2016)c set consist of new sim-
ulations conducted by the ICC. Both utilize software, filters, and settings present at
IceCube in 2016. The simulation process was started in the mid of 2019 and therefore
are not studied by many analyses yet. As they deploy a new technique, over sampling
of simulated cosmic ray induced air showers, they have a much higher statistic.

While both cosmic ray induced air showers (2016) and cosmic ray induced air show-
ers (2016)c are createdwith the 2016 filter settings of IceCube, theywere created using
two different versions of the SIBYLL event generator, described in reference [Fle+94],
which determines the interactions within the cosmic air showers. The cosmic ray in-
duced air showers (2016) set uses version 3.2 described in reference [Rie+16], the
cosmic ray induced air showers (2016)c set uses version 3.2 c described in refer-
ence [Fed+19]. Latter is an updated version of the former. As this analysis should not
be sensitive to the difference of these two interaction models, both datasets are used
to enhance the statistics.

All CORSIKA based datasets are weighted to simulate the same primary parti-
cle flux and composition. For this work, the GaisserH3a flux model, described
in reference [Gai12], has been chosen to be comparable to other IceCube based
analyses.
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ICC ID 𝑁Shower 𝑁Over sampling 𝐸primary
min / GeV 𝐸primary

max / GeV
11499 5 ⋅ 1011 / 600 105
11937 2.4 ⋅ 1010 / 105 1011

Table 6.1: Subdatasets of the cosmic ray induced air showers (2012) set
In the table, the subdatasets constituting the cosmic ray induced air showers (2012) set
with the number of simulated cosmic air showers are shown. No over sampling was
used, hence one shower is equivalent to one potential event inside the in-ice array of
IceCube and the times each shower was used to create a potential event for the in-ice
arrays of IceCube are shown. All subdatasets have been created with CORSIKA, version
74001pg, SIBYLL 2.1, and the SPICEmodel lea described in reference [WI14].

ICC ID 𝑁Shower 𝑁Over sampling 𝐸primary
min / GeV 𝐸primary

max / GeV
20777 1011 20 600 3 ⋅ 104
20779 1011 50 600 3 ⋅ 104
20782 2 ⋅ 1011 50 600 3 ⋅ 104
20787 3 ⋅ 108 2 106 1010
20783 3 ⋅ 108 2 106 1010
20780 3 ⋅ 1010 10 600 1011
20781 3 ⋅ 1010 2 600 1011

Table 6.2: Subdatasets of the cosmic ray induced air showers (2016) set
In the table, the subdatasets constituting the cosmic ray induced air showers (2016) set
with the number of simulated cosmic air showers and the times each showerwas used to
create a potential event for the in-ice arrays of IceCube are shown. All subdatasets have
been created with CORSIKA, version 75600, SIBYLL 3.2, and the SPICEmodel 3.2.1.

ICC ID 𝑁Shower 𝑁Over sampling 𝐸primary
min / GeV 𝐸primary

max / GeV
20788 1011 50 600 3 ⋅ 104
20891 5 ⋅ 1011 50 600 3 ⋅ 104
20789 3 ⋅ 109 50 3 ⋅ 104 106
20848 3 ⋅ 108 2 106 1010

Table 6.3: Subdatasets of the cosmic ray induced air showers (2016)c set
In the table, the subdatasets constituting the cosmic ray induced air showers (2016)c set
with the number of simulated cosmic air showers and the times each showerwas used to
create a potential event for the in-ice arrays of IceCube are shown. All subdatasets have
been created with CORSIKA, version 75600g, SIBYLL 3.2 c, and the SPICEmodel 3.2.1.

http://simprod.icecube.wisc.edu/cgi-bin/simulation/cgi/cfg?dataset=11499
http://simprod.icecube.wisc.edu/cgi-bin/simulation/cgi/cfg?dataset=11937
https://iceprod2.icecube.wisc.edu/dataset/20777
https://iceprod2.icecube.wisc.edu/dataset/20779
https://iceprod2.icecube.wisc.edu/dataset/20782
https://iceprod2.icecube.wisc.edu/dataset/20787
https://iceprod2.icecube.wisc.edu/dataset/20783
https://iceprod2.icecube.wisc.edu/dataset/20780
https://iceprod2.icecube.wisc.edu/dataset/20781
https://iceprod2.icecube.wisc.edu/dataset/20788
https://iceprod2.icecube.wisc.edu/dataset/20891
https://iceprod2.icecube.wisc.edu/dataset/20789
https://iceprod2.icecube.wisc.edu/dataset/20848


6.3. PHYSICAL SIGNATURE TO IN-ICE PHOTONS 57

6.3.2 Neutrinos

Neutrinos are electrically neutral particles. There are three flavors of neutrinos named
after their charged leptonpartner, the electronneutrino𝜈e, themuonneutrino𝜈μ, and
tauon neutrino 𝜈𝜏. The sum of their rest masses can be constrained to be below 0.2 eV
as reported in references [SSM06; CS06]. As they are neutrally charged, they do not in-
duceCherenkov light. Instead, only light producedby secondaries fromaneutrino-ice
reaction can be detected. The cross-section of these processes, while energy depen-
dent, is𝒪 (10−7 b to 10−34 b) as described in reference [FZ12].

If a charged lepton is created via a neutrino-ice interaction and has enough kinetic
energy, Cherenkov radiation can be induced as described in Section 5.1. Alternatively,
the lepton can induce a cascade of secondary particles inside the ice which in turn
induce light. Former is the dominant process for muons, latter the dominant process
for electrons and tauons.

To simulate these interactions, a neutrino interaction is assumed and the resulting
particles are propagated through the ice. Afterwards, the event is assigned a weight
based on an assumed flux of neutrinos with the specific kinetic attributes.

Different sources for neutrinos exist exhibiting different flux characteristics. For
IceCube, two fluxes are of interest: atmospheric neutrinos originating from cosmic
ray induced air showers described in Section 6.3.1 and the extra terrestrial flux caused
by cosmic neutrino generators like the Sun or Supernovae. The same simulated
neutrino event can be used for different neutrino sources by applying different
weighting based on the assumed flux attributes.

In this thesis, only atmospheric electron and muon neutrinos are regarded as back-
ground sources. The number of events originating from atmospheric electron and
muon neutrinos passing the very first selection step is orders ofmagnitude lower than
the number of background events originating from cosmic air shower muons. This
also does not change over the course of the analysis. As an extraterrestrial neutrino
flux is simulated by reweighting the same events to a different, orders of magnitude
lower flux, their contribution can be neglected.

Two separate datasets have beenused in this thesis to simulate the flux of atmospheric
electron and muon neutrinos: the atmospheric 𝜈μ set and the atmospheric 𝜈e set. In
Table 6.4 and Table 6.5, the subdatasets constituting the datasets are listed including
energy ranges and statistics at generation level.
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Thecurrent SPICEmodel at the time of simulation production has been used, namely
SPICE 3.2. Afterwards, the datasets have been weighted to an atmospheric flux by
assuming aHKKM2006 flux as described in reference [Hon+07], again to be consistent
with previous IceCube analyses.

ICC ID 𝑁𝜈e 𝐸min / GeV 𝐸max / GeV
20321 1.2 ⋅ 109 0.1 5
20364 0.6 ⋅ 109 5 104
20407 0.1 ⋅ 109 104 105

Table 6.4: Subdatasets of the atmospheric 𝜈e set
In the table, the subdatasets constituting the atmospheric 𝜈e set with the number of sim-
ulated neutrinos to create a potential event for the in-ice arrays of IceCube are shown.
All subdatasets utilize the SPICEmodel 3.2.

ICC ID 𝑁𝜈μ 𝐸min / GeV 𝐸max / GeV
20450 1.2 ⋅ 109 0.1 5
20493 0.6 ⋅ 109 5 104
20536 0.1 ⋅ 109 104 105

Table 6.5: Subdatasets of the atmospheric 𝜈μ set
In the table, the subdatasets constituting the atmospheric 𝜈e set with the number of sim-
ulated neutrinos to create a potential event for the in-ice arrays of IceCube are shown.
All subdatasets utilize the SPICEmodel 3.2.

6.3.3 Magnetic Monopoles

AnMM signal was simulated by isotropically illuminating the in-ice arrays of IceCube
withMMs with different kinematic and physical configurations. A disc with a radius
of 850m, its central axis pointing to the center of the ICC internal coordinate system,
roughly in the middle of the IC, was placed 1000m from the aforementioned center.
While distance and size of the disc can be varied, the optimal values for an isotropic
illumination described in reference [Chr11] have been used.
For eachMM, the placement of the creation disk, expressed as two angles, the zenith
𝜃 and azimuth𝜑, is randomized. Afterwards, theMM is emitted parallel to the central
axis from a random position on the disc. The initial velocity is sampled from a con-
figurable distribution. The resulting MM flux is isotropic around the in-ice arrays of
IceCube. A sketch of the setup is shown in Figure 6.3.

https://iceprod2.icecube.wisc.edu/dataset/20321
https://iceprod2.icecube.wisc.edu/dataset/20364
https://iceprod2.icecube.wisc.edu/dataset/20407
https://iceprod2.icecube.wisc.edu/dataset/20450
https://iceprod2.icecube.wisc.edu/dataset/20493
https://iceprod2.icecube.wisc.edu/dataset/20536
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Figure 6.3: Sketch of MM generation disc
A to scale sketch of the generation disc in gray relative to the in-ice arrays of IceCube
is depicted. In red, potential MM propagation paths are drawn. The generation disc is
placed at an example zenith 𝜃 and azimuth𝜑which are randomized for each generated
MM. In the center, at the origin of the IceCube coordination system, the three directions
of the coordinate system, the zenith, and azimuth of the generation disc are displayed.

A mass of 1011 GeV was selected as the rest mass of all simulated MMs as this is the
lower mass limit for intermediate mass magnetic monopole (IMM). Thus, any effect
on the velocity of an IMMwouldbemaximal. Nomeasurable change in velocitywithin
the volume of the in-ice arrays of IceCube is observed during the simulation ofMM
inside the volume of the in-ice arrays of IceCube. Hence, anMM can be assumed to
remain at its initial velocity within the detection volume of IceCube.
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While theMM is propagated through the ice, the energy loss due to interactions
with the ice are calculated and its total energy is adjusted. Light production due to
Cherenkov light is calculated as described in Section 5.1 and Section 5.2 and was
already implemented by previous analyses.
The production of luminescence light was implemented and validated in the context
of this thesis. The number of emitted photons per distance is calculated as described
in Section 5.3. Each photon is emitted from the path of theMM in a random direction
due to the isotropicnatureof luminescence light. The initial positionof thephotonson
thepath is also randomly chosen. To simulate the delayed light emission, the emission
time of each photon is shifted by a random time delay sampled from an exponential
distribution.
Support for multiple pairs of luminescence light yield and decay time has been im-
plemented albeit only simulation with one pair has been used in this thesis. The im-
plementationwas validated by comparing the expected light from simulationwith the
expected light from theory. Specialized simulations with fixed velocities were created.
The combined light arriving at all DOMs of the in-ice arrays of IceCube and the light
recorded by IceCube was compared to the theoretical light production per distance.
The results is depicted in Figure 6.4. Events with a non-physically high light yield and
long decay time were simulated and inspected by eye to observe the delayed light
emission.
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Figure 6.4: Simulated and theoretical light production of MMs
An overlay of the expected arriving light integrated over all DOMs of the in-ice arrays
of IceCube, the registered light by IceCube after digitization and triggering, and the
expected number of photons per distance from theory as a function of initial veloc-
ity of anMM is depicted. The left, blue, vertical, logarithmic axis is the reference axis
for all lines representing different light production mechanism: direct Cherenkov light
(solid, Section 5.1), indirect Cherenkov light (dotted, Section 5.2), and luminescence
light (dashed, Section 5.3). The right, red, vertical, logarithmic axis is the reference axis
for all triangles indicating the mean of the total integrated light per simulated event.
Twodifferentmetrics areused todetermine the light per event. Theupwardspointing tri-
angles are based on light which reached aDOM. The downwards pointing triangles are
based on light recorded by IceCube after the trigger process described in Section 2.2. For-
mer is an indicator of the light induced by an event, latter is an indicator of the recorded
light available for further analysis. An artificial scaling point was chosen indicated by
a cyan colored point to align the two scales. It can be observed that the upwards facing,
red triangles closely follow the expected light production from theory indicating a cor-
rect light yield simulation. While the downward facing triangles match mostly to the
upwards facing ones, they divert in the high velocity, high light region at about 0.9 𝑐 due
to saturation effects in theDOMs as described in Section 6.1.1 and the low velocity, low
light region below 0.25 𝑐 due to a reduced chance to trigger on the simulated event. A
worst case luminescence light yield was chosen (0.2𝛾/MeV) for this test making the dif-
ference between the upward and downward facing triangles also theworst case scenario
for this analysis.
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Multiple datasets to simulateMMs have been created, each covering a certain velocity
range. A flat velocity spectrum was always chosen as there is no information to indi-
cate a strong dependency of the expectedMM flux to the expected velocity around the
in-ice arrays of IceCube nor is there a strong dependency of computational cost per
event to the aforementioned velocity.
Datasets have been created with two different luminescence light yields: 0.2𝛾/MeV
and 1𝛾/MeV. The former is the lowest measured luminescence light yield reported by
labmeasurements of water-based ice and can be treated as theworst case scenario for
light production. Latter is the expected luminescence light yield frommeasurements
conducted in-situ at IceCubedescribed in reference [Pol19]. For both, a velocity range
starting at 0.1 𝑐 to 0.6 𝑐 has been chosen, split into multiple section covering 0.05 𝑐
each. 2 ⋅ 106 MM events per 0.05 𝑐 have been simulated.
While weighting forMMs can be chosen arbitrarily, each dataset is weighted to an in-
tegrated flux at generation time of 1.68 × 10−16 cm−2 s−1 sr−2, the best flux limit in this
velocity range before this analysis described in reference [Amb+02]. With the chosen
weighting, each dataset can be interpreted as anMM flux within the given velocity
range consistent with the previous best flux limit. Thus, in any graph comparing natu-
ral rates of simulated background events and simulated signal events in this work, the
minimal required further separation to detectMMs can be observed. This makes the
difference in natural rate between simulated background and signal in a given distri-
bution the minimal required further separation needed before the signal can become
dominant over background.



CHAPTER 7
Event Selection and Reconstructions

He who never made a mistake, never made a discovery.

S. Smiles [Smi66]

In this chapter, the methods and event selection steps required to process the lowest
availabledata streamof the IceCubeNeutrinoObservatory (IceCube) to thefinal event
selection of this analysis are described. In Section 7.1, all processing and signal selec-
tion steps which are implemented invariant from this specific analysis at IceCube are
summarized, in Section 7.2, all selection criteria up to the last selection step of this
analysis are presented, and in Section 7.3 the final selection step of the analysis, in-
cluding the boosted decission trees (BDT) training, variable selection,model rejection
factor (MRF) calculations, and optimization, is discussed.

The selection criteria are designed based on simulation of the detector response de-
scribed in Chapter 6. The sum of the simulated cosmic ray induced air showers (2012)
set, the atmospheric 𝜈μ set, and the atmospheric 𝜈e set is the simulated background
set. To validate that the simulated background and a specific variable is representative
of the measured data, the simulation is compared to a subset of the measured data at
each selection step. This subset is referred to as the blinded data set due to the dras-
tically reduced statistics. It consists of every 10th data run recorded by IceCube and
thus is approximately 10% of the total data.
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7.1 IceCube Event Selection

In this section, the event selection starting at the combined data streams of all Digital
Optical Modules (DOMs) in the IceCube laboratory (ICL) to the IceCube internally
named level 0, level 1, and level 2 event selections, is outlined. This is intended for
readers not familiar with the data processing used at IceCube and can be skipped oth-
erwise as it does not contain any information specific to this analysis. As a takeover
point, the online Processing and Filtering (PnF) system of IceCube is chosen, all pro-
cessing before that is described in Section 2.2.

7.1.1 Level 0: Events at Data Acquisition

At the beginning of the PnF, events are the collection of all deconvoluted, calibrated
hard local coincidence (HLC) and soft local coincidence (SLC) hits within a certain
timewindow. This is called level 0. The size and position of the timewindow is defined
by the global triggers as described in Section 2.2.1. Each hit consists of the informa-
tion whichDOM registered the hit, the calibrated amplitude in units of pe, the time of
arrival, and if a local coincidence with other hits was detected. A pe is the most prob-
able number of photons which caused the amplitude measured by a given DOM. As
calibration is applied individually to allDOMs, the resulting calibrated amplitudes are
comparable for allDOMs.

7.1.2 Level 1: Filtering at the South Pole and Reconstruction of

Events at the IceCube Data Center

After the data has been processed up to level 0, specialized, IceCube wide imple-
mented selection steps called filters are applied to select events of immediate interest
to the IceCube collaboration (ICC). If any filter selects an event, it is transmitted
via satellite to the ICC data center outside Antarctica. Before being transmitted, the
event is compressed with a possible lossy algorithm and any redundant information
is removed to reduce the required satellite bandwidth. This is called level 1.

If an event is not immediately sent, it will still be transmitted to the data center once a
year via airplane. This allows to apply changes retroactively to the level 1 processing.

For this analysis, only one filter is utilized selecting relevant events, the Monopole-
Filter_16 (MPF16) filter. In the following sections, the selection criteria of this filter
are described.
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7.1.2.1 TheMonopoleFilter_16 filter

TheMonopoleFilter_16 (MPF16) filter is a specialized filter implemented at IceCube
in 2016. It is designed to detect particles with a velocity between the low relativistic up
to the mildly relativistic regime (0.1 𝑐 to 0.75 𝑐) and a wide range of possible light pro-
duction yields matching the signature of an intermediate mass magnetic monopole
(IMM). It is applied to events selected by the SMT-8, the SMT-3, Volume, and String
triggers, described in Section 2.2.1.
Events are selected fromboth the IceCube in-ice array (IC) and the IceCubeDeepCore
array (DC) with different requirements due to the different geometries of the in-ice
arrays. As a convention, variables based only on hits detected by one array will be
denoted with the name of the array in question as IC/DC.
As a first step, each event is cleaned from probable noise hits. Starting by selecting all
HLC hits, each SLC hit is compared against the already selected list of hits. If a hit is
within a sphere of radius 150m and a temporal distance of 1000 ns, it is selected as
well. This process is repeated until no further hits are selected.
Afterwards, the selected hits are split into IC and DC selections depending on which
in-ice array they are detected by. For theDC hit selection, the total light seen by each
DOM is calculated and the dimmer half of hit DOMs is removed from the selection.
As a convention, ℎIC is the set of all hits of the IC selection, ℎDC is the set of all hits of
theDC selection.
For both selections, different criteria are applied, described in the subsequent sec-
tions. If one of these two criteria is met, the event qualifies for selection based on
theMPF16 filter.

7.1.2.2 In-Ice Array Selection

All variables are calculated on the aforementioned IC hit selection. A subscript to the
variables using the IC is omitted in this section. To pass the IC selection of theMPF16
filter, events need to have at least 6DOMs hit and a maximal temporal distance be-
tween first hits (TBH) at any DOMs of at least 4000 ns. Assuming 𝑡𝑖 is the time of the
first registered hit at the 𝑖th DOM, then TBH is defined as

TBHIC/DC = max
𝑖,𝑗∈DOMsIC/DC

(𝑡𝑖 − 𝑡𝑗) . (7.1)

Eventually, a globalMPF16 track hypotheses (GMF16TH) is calculated by applying a
improved LineFit (iLF) to the event as described in Appendix A to all hitswithin the IC.
The GMF16TH needs to converge and to have a reconstructed velocity 𝛽GMF16TH of
below 0.8 𝑐.
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The following last two requirements are calculated relative to the GMF16TH. Only hits
that are within a 100m radius of the GMF16TH are taken into account. These hits are
projected onto the GMF16TH where 𝑙𝑖 denotes the position along the track hypothe-
sis,𝑤𝑖 is the number of reconstructed photons for the specific hit in pe. As a conven-
tion, the hits are sorted so that 𝑙𝑖+1 ≥ 𝑙𝑖.
Thenext to last requirement is basedon thefirst to last quartileCOGdistance (FLQCD)
defined as the distance of the center of gravity (COG) of the time sorted first quartile
𝑄1 and last quartile𝑄4 of hits projected onto the GMF16TH or

FLQCDIC/DC =
∑

𝑖∈𝑄4
𝑙𝑖 ⋅ 𝑤𝑖

∑
𝑖∈𝑄4

𝑤𝑖
−

∑
𝑖∈𝑄1

𝑙𝑖 ⋅ 𝑤𝑖

∑
𝑖∈𝑄1

𝑤𝑖
. (7.2)

A sketch of the calculation is depicted in Figure 7.1. To be selected, the absolute
value of FLQCD needs to be at least 250m. FLQCD is an indicator of the length of
the GMF16TH and indirectly signals the amount of active media being passed by an
incident magnetic monopole (MM).
The last requirement is a maximal separation length of hits (MSL) of at most 200m.
This describes the maximal distance between two track-wise neighboring hits or

MSLIC/DC = max
𝑖∈(0,…,𝑁−1)

(𝑙𝑖+1 − 𝑙𝑖) . (7.3)

Thus, MSL is an indicator of the biggest gap in the light production along
the GMF16TH. AnMM should have a small gap as the light production is smooth
while background events, especially cascade-like events will show a greater separa-
tion.

track
hypoth-
esis

FLQCD

Figure 7.1: Sketch of the first to last quartile COG distance
A sketch of the calculation of the first to last quartile COG distance (FLQCD) is drawn.
An event consisting of twelve hits, indicated by spheres is shown. The radius of the sphere
indicates the reconstructed amount of light. Based on these hits, a track hypothesis is
drawn as a black arrow. Each quartile of hits is indicated by a different color: red for
the first quartile, orange for the second quartile, lime for the third quartile, and blue for
the fourth quartile. A bracket is utilized to indicate the distance between the COG of the
first and last quartile of hits: the FLQCD.
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7.1.2.3 DeepCore Array Selection

All variables are calculated on the aforementionedDChit selection. A subscript to this
array is omitted in this section. Similar to the description in Section 7.1.2.2, theDC
selection of theMPF16 filter requires that at least 6DOMs are hit and TBH needs to
be bigger than 2750 ns. TBH has been introduced in Section 7.1.2.2.
The full width half maximum (FWHM) of the timing of the hits needs to be larger than
2500 ns. This is calculated assuming a Gaussian distribution of the hits via

FWHMIC/DC = 2√2 ln 2

√√√√√
√

∑
𝑖∈ℎIC/DC

⎛

⎝
𝑡𝑖 −

⎛

⎝

∑
𝑗∈ℎIC/DC

𝑡𝑗

∑
𝑘∈ℎIC/DC

1

⎞

⎠

⎞

⎠

2

(7.4)

where 𝑡𝑖 denotes the time at which a specific hit was detected. Note that no Bessel
correction is included. As a last step, an iLF is applied to all hits within theDC as de-
scribed in Appendix A.The iLF needs to converge and to have a reconstructed velocity
below 0.7 𝑐.

7.1.3 Level 2: MonopoleFilter_16 Filter Selection

At level 2, the main goal is to decompress the transmitted events from level 1 and re-
construct the deleted redundant information. For theMPF16 filter, this is achieved
by applying the same calculations as described in Section 7.1.2. Any variable utilized
within theMPF16 filter is accessible afterwards albeit with potential slightly different
values as at level 1 due to the possible lossy compression of the event. In the context
of this thesis, only the reconstructed values of level 2 are utilized.

7.2 Analysis Specific Quality Selection Steps

In this section, the analysis specific event selection steps are discussed up to the last
step. These are implemented to increase the match between the simulated and mea-
sured data and to reduce the event rate. Latter allows more sophisticated, process-
ing time intensive event selection algorithms to be used in the final selection step.
While these selection criteria are commutative, they are presented in the order they
have been developed in. Following nomenclature used in the ICC, each dataset after
a given selection criteria is referred to as a level. The presented selection steps reduce
the amount of backgroundevents by roughly a factor of 50while keepingbetween40%
to 80%, depending on the specific velocity, of the signal selected. The exact numbers
are presented in Table 7.1.
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Level 3 events Level 8 events
Rate / Hz 𝒪 (#) Rate / Hz 𝒪 (#)

Blinded data, 2011-2017 30.465(1) 8 ⋅ 108 0.6021(2) 2 ⋅ 107
Induced air showers (2012) 33.99(2) 4 ⋅ 106 0.506(2) 6 ⋅ 104

Atmospheric 𝜈e 4.44(1) µ 1 ⋅ 106 0.207(2) µ 3 ⋅ 105
Atmospheric 𝜈μ 10.83(1)m 3 ⋅ 106 3.06(2) µ 2 ⋅ 105

Monopoles (0.10 − 0.15 c) 7.26(1) µ 3 ⋅ 105 2.662(8) µ 1 ⋅ 105
Monopoles (0.35 − 0.40 c) 11.18(2) µ 5 ⋅ 105 8.80(2) µ 4 ⋅ 105
Monopoles (0.55 − 0.60 c) 12.88(2) µ 5 ⋅ 105 5.46(1) µ 2 ⋅ 105

Table 7.1: Remaining events at different selection levels
A table with the event rate and absolute number of events at level 3, the first analysis
specific selection step described in Section 7.2.1, and level 8, the next to last selection
step of this analysis described in Section 7.2.4, is presented.

7.2.1 Level 3: MonopoleFilter_16 filter, In-Ice Array Selection

Any event fulfilling the IC criteria of theMPF16 filter is selected. This removes many
of the complexities that arise from dealing with virtually two distinct detectors with
different signal signatures. For this analysis, the focus is placed on the IC as it has a
higher effective volume and consequently a higher flux of potential signal events.

7.2.2 Level 4-6: Coincident Particle Rejection

Asmost of thebackgroundevents originate fromcoincident particles produced in cos-
mic ray induced air showers,multiple selection steps are created to reject these events.
Each event is split time-wise in the middle. Two iLF are performed, one on each half.
In case of anMMpassing through the detector, these two iLFs should reconstruct sim-
ilar kinematic attributes while multiple, coincident particles should be reconstructed
with varying kinematic attributes. A sketch has been drawn in Figure 7.2 to illustrate
the setup.

7.2.2.1 Level 4: Minimal Number of Digital Optical Modules hit

While theMPF16 filter already has some requirements on the number ofDOMs to be
hit, as a prerequisite for the next level, a stronger requirement is added. As the event
will be split, only half the number of hit DOMs, NhitDOMs, is available for each iLF. To
compensate for this, only events are considered with NhitDOMs ≥ 25. The distribution
of the variable and the selected region is illustrated in Figure 7.3.
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first half
of hits

last half
of hits

all hits

time

Figure 7.2: Rationale for double splitting
A schematic of the logic behind event time-wise double splitting is presented. A two di-
mensional grid of circles, representing individualDOMs is drawn. The circles are colored
to indicate the time when they are hit with white representing no hit at all. As an ex-
emplary scenario, two particles traversing the grid in parallel but time-wise separate is
chosen. Three hypothetical iLFs are drawn, the first is based on all hits with the resulting
reconstruction indicated by a cyan arrow, the two other are computed on the first half
and last half of hits individually with the resulting reconstructions indicated by black
arrows. The time-split reconstruction fits the initial chosen scenario much better than
the global iLF.
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Figure 7.3: Minimal number of DOMs hit selection
Two vertically stacked plots are depicted. On the shared horizontal axis, NhitDOMsis
shown on a linear scale. NhitDOMsis utilized in Section 7.2.2.1 as a selection variable.
The top vertical axis is used to show the natural rateℛ on a logarithmic scale while the
bottom vertical axis is used as an indicator of the ratio between the simulated back-
ground and the measured blinded data. The shaded region indicates the selection area
as described in Section 7.2.2.1.
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7.2.2.2 Level 5-6: Time-Wise Event Splitting

Theevent is split time-wise. Thismeans that all hits within an event are separated into
two groups of hit selection, ℎfirst and ℎlast. Let 𝑡𝑖𝑗 denote the time of the 𝑖th hit at the
𝑗th DOM, then the two hit sets are ℎfirst = {𝑡𝑖𝑗 < ̃𝑡0𝑗} and ℎlast = {𝑡𝑖𝑗 > ̃𝑡0𝑗}. ̃𝑡0𝑗 is the
median time of the first time any DOM is hit. Next, the time-wise double split iLFs
(TWDSiLF) are computed on these hit selections resulting in two iLFs.

The level 5 event selection requires that the reconstructed velocity 𝛽firstis within 0.15 𝑐
to 0.65 𝑐while the level 6 event selection requires that𝛽lastis within 0.07 𝑐 to 0.8 𝑐. Both
distributions are depicted in Figure 7.4 and Figure 7.5. The selection criteria based
on 𝛽firstis imposed first leading to a softer distribution of 𝛽lastadditionally to a worse
reconstruction of𝛽lastin the first place. Thus, softer selection criteria where chosen for
𝛽last.
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Figure 7.4: Reconstructed velocity based on first half of event
Two vertically stacked plots are depicted. On the shared horizontal axis, 𝛽firstis shown
ona linear scale. 𝛽firstis utilized in Section 7.2.2.2 as a selection variable. The top vertical
axis is used to show the natural rate ℛ on a logarithmic scale while the bottom verti-
cal axis is used as an indicator of the ratio between the simulated background and the
measured blinded data. The shaded region indicates the selection area as described in
Section 7.2.2.2.
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Figure 7.5: Reconstructed velocity based on second half of event
Two vertically stacked plots are depicted. On the shared horizontal axis, 𝛽lastis shown
on a linear scale. 𝛽lastis utilized in Section 7.2.2.2 as a selection variable. The top vertical
axis is used to show the natural rate ℛ on a logarithmic scale while the bottom verti-
cal axis is used as an indicator of the ratio between the simulated background and the
measured blinded data. The shaded region indicates the selection area as described in
Section 7.2.2.2.

7.2.3 Level 7: Global Linefit Cut

One requirement to pass theMPF16 filter is a reconstructed velocity of the GMF16TH
below 0.8 𝑐. In this thesis, the low relativistic velocity regime is of interest. Conse-
quently, this selection criteria is hardened. Only events with a reconstructed velocity
of the GMF16TH within the aforementioned regime are selected, 0.1 𝑐 to 0.6 𝑐 to be
precise.

While the low relativistic regime ends at 0.55 𝑐, some overlap was chosen with a pre-
vious analysis searching for the same signal signature in themildly relativistic regime,
described in reference [Pol18]. The distribution of the reconstructed velocity is de-
picted in Figure 7.6.
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Figure 7.6: Reconstructed velocity based onMPF16 filter
Two vertically stacked plots are depicted. On the shared horizontal axis, 𝛽GMF16TH is
shown on a linear scale. 𝛽GMF16TH is utilized in Section 7.2.2.2 as a selection variable.
The top vertical axis is used to show the natural rateℛ on a logarithmic scale while the
bottom vertical axis is used as an indicator of the ratio between the simulated back-
ground and the measured blinded data. The shaded region indicates the selection area
as described in Section 7.2.3.

7.2.4 Level 8: Corner Clipper Removal

As a last quality selection step, corner clipping events are removed. These events hap-
pen in the corners of the detector and do not pass through much active detection
medium making the differentiation of a track-like event from a cascade-like event
challenging while offering virtually no benefit to signal selection. A cylinder is placed
at the center of the active detection medium with a height and radius of 750m. After-
wards, 𝑙r=750mh=750m, the length of the GMF16TH inside the cylinder with the given radius
and height is calculated. The distribution of the lengths can be seen in Figure 7.7. A
sketch of the cylinder is depicted in Figure 7.8. The track length within the cylinder
needs to be at least 250m for the event to be selected.
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Figure 7.7: Passed active volume
Twovertically stackedplots are depicted. On the sharedhorizontal axis, 𝑙r=750m

h=750m is shown
on a linear scale. 𝑙r=750m

h=750m is utilized in Section 7.2.4 as a selection variable. The top ver-
tical axis is used to show the natural rate ℛ on a logarithmic scale while the bottom
vertical axis is used as an indicator of the ratio between the simulated background and
the measured blinded data. The shaded region indicates the selection area as described
in Section 7.2.4.
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Figure 7.8: Sketch of track length calculation inside cylinder
A sketch of the positions of theDOMs of IceCube is shown superimposedwith a cylinder
of a height and radius of 750m. Position and relation of all elements are to scale besides
an increased radius of theDOMs by a factor 50. A demo track is shown in black with the
length inside the cylinder highlighted in red.
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7.3 Level 9: Machine Learning Based Selection

As a last event selection, a machine learning (ML) based, binary classification algo-
rithm is utilized to select candidate events. In Chapter 4, the required nomenclature
for this section is introduced.

A bootstrap aggregating (bagging) based approach, described in Section 7.3.4 is cho-
sen. A set of BDTs is trained on subsets of the available training set. The resulting
set of predictions for each event are either reduced to a single prediction, the mean of
the set of predictions, or interpreted as the probability density of the event to pass the
selection step.

The selection of events utilized for the training of the set of BDTs is described in Sec-
tion7.3.1, followedby the selectionanddescriptionof all input features inSection7.3.2
and training process in Section 7.3.3.

After the BDTs are trained, the last selection step is based on the predictions of the
set of BDTs. The optimization of the final selection step is described in Sections 7.3.5
to 7.3.7. The reconstruction of the most probable true kinematic attributes of the re-
maining events is outlined in Section 7.3.8. The influence of potential systematic shifts
from the assumed models of the detection medium,MM-ice interactions, and detec-
tor response is discussed in Section 7.3.9.

The expected result after the unblinding process, i. e., application of the analysis to all
available events is described in Section 7.3.10.

7.3.1 Events Utilized for Training

To train the BDTs, a set of events with known class are required. All simulated events,
both for cosmic ray induced air showers and atmospheric neutrinos are utilized as
examples of background-like events. As the cosmic ray induced air showers (2012)
set has very limited statistics, two extra datasets with simulated cosmic ray induced
air shower events are included: the cosmic ray induced air showers (2016) set and
the cosmic ray induced air showers (2016)c set with an additional 𝒪 (4 ⋅ 106) events
each to compliment the𝒪 (6 ⋅ 104) events remaining at this selection stage in the cos-
mic ray induced air showers (2012) set. These sets are created similarly to the cos-
mic ray induced air showers (2012) set, but have been simulatedwith updated settings
and two different air shower interaction models.
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Furthermore, 10% of the events in the blinded data, 2011-2017 set are also included
as background-like events, enhancing the statistics of the training set by ≈ 1.5 ⋅ 106

events. While the measured data may include MMs, the number of MMs consistent
with previous flux limits at this selection stage in the 10% of the blinded data, 2011-
2017 set is < 20MMs and can be neglected during the training stage.

The signal-like events utilized for training consist of the signal simulation with a flat
velocity spectrumbefore any selection step. One half of the signal simulation is calcu-
lated for a luminescence efficiency of 1𝛾/MeV, the other with 0.2𝛾/MeV. Amixture of
simulation with two light yields is used to harden the BDTs against potential system-
atic shifts in the luminescence light yield.

While the inter-set weighting is kept within both classes, the integrated weight of both
the signal-like and the background-like class is re-normalized to 1 to compensate for
the different statistics and debias the predictors from the total integrated natural rate
of events of each class.

7.3.2 Input Feature Selection

For any ML based algorithm, choosing the correct input variables or features is cru-
cial. Adding more features increases the amount of information space that can be
sampled and consequently allows for stronger predictions to be made as described
in Section 4.1.

33 features are suspected to be usable as separators between signal and background
by visual inspection. These features are chosen from standardized reconstructions ex-
isting within the ICC, features which are reconstructed as by-products of the recon-
struction steps in theMPF16 filter, and previous selection steps. Features can directly
separate, e. g., reconstructed velocity or indirectly, e. g., providing contextual informa-
tion required to interpret other features.

For a feature to be usable for this analysis, a close match between simulated back-
groundandmeasureddata at early selection stages is required. To ensure only suitable
features are utilized, an iterative process is used.

A specializedBDT is trained to separate the background simulation set, the combina-
tion of the cosmic ray induced air showers (2012) set, cosmic ray induced air show-
ers (2016) set, cosmic ray induced air showers (2016)c set, atmospheric 𝜈μ set, and
atmospheric 𝜈e set from the blinded data, 2011-2017 set. The same training configu-
ration as for the final BDTs is used.
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The available training data is split into two similarly sized sets. One set is used for
training, the other to evaluate the performance. The separation powers of the input
features are calculated and the highest separating feature is removed.
The process is repeated until separation power is equalized between all features. Two
metrics are utilized to define the separation power of a feature: the number of singular
variate decisions (SVDs) operating on the feature, also called theweight of the feature,
and the increase in accuracyof themodel due to the inclusionof the feature, also called
the gain. Note that the input features are correlated and thusmight share importance
based on the underlying correlation.
In total, 24 features remain. While this may seem like a rather high number of param-
eters, not every variable will be reconstructed for each event. 16 variables are defined
by data takenwithin the IC, the other 8 are only reconstructed if enough hits occurred
in theDC. All chosen variables are described below and are depicted in Figures D.1
to D.24.
In Figure 7.9, the maximal separation of simulated background and measured data,
i. e., the scoredistributionof thefinal, feature rejectionBDT, is illustrated. The two fea-
ture separation power metrics for this BDT are depicted in Figures E.1 and E.3. These
can be used as a reference to compare the feature importance of the final, signal and
background separating BDTs to highlight any potential influence of mismatches be-
tween simulated background events andmeasured data.

7.3.2.1 Global MonopoleFilter_16 Track Hypotheses Based Features

Two features are taken from the global MPF16 track hypotheses (GMF16TH) as in-
put features for the BDTs. The first feature is the reconstructed velocity 𝛽GMF16TH as
described in Section 7.2.3. The second feature is the number of hits Nhit GMF16THthe
last linear regression of the GMF16TH is performed on. This number differs from the
number of hits in the event due to internal event cleaning inside the iLF as described
in Appendix A.

7.3.2.2 Double Splitting Based Features

Four features based on the time-wise double split iLFs (TWDSiLF) are utilized asBDT
input features. A description of the TWDSiLF can be found in a Section 7.2.2. With the
two iLFs expressed by

𝒓 (𝑡)first/last = 𝒓first/last + 𝑡 ⋅ 𝒗first/last, (7.5)

the input features are
∡ (𝒗first, 𝒗last) = 𝒗first ⋅ 𝒗last, (7.6)
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the angle between the two iLFs,

𝛽first/last = ||𝒗first/last|| , (7.7)

the reconstructed velocity of the two iLFs, and the distance of closest approach
(DOCA) between the two iLFs defined by

DOCA =
||||
𝒓𝜟 − 𝒗𝜟 ⋅

𝒓𝜟 ⋅ 𝒗𝜟
(𝒗𝜟)2

||||
(7.8)

where
𝒓Δ = 𝒓first − 𝒓last (7.9)

is the difference between the two support vectors and

𝒗Δ = 𝒗first − 𝒗last (7.10)

is the difference of the two velocity vectors. 𝛽first/last is described in Section 7.2.2.2.
∡ (𝒗first, 𝒗last) is a scalar valuewhich indicates howwell the two iLFs directionally align
while DOCA indicates any spatial or temporal offset between the two iLFs. Combin-
ing these features encodes the requirement that both iLFs describe a single particle
traveling through the detector on a linear trajectory.

7.3.2.3 Hit Digital Optical Modules Projected on Global MonopoleFilter_16
Track Hypotheses

Seven features are based on the distribution of hits projected on the GMF16TH.
Three distribution attributes are calculated for both the hits happening inside
the IC and theDC, one is only calculated for the hits registered by theDC. Let
{(𝑡0, 𝑙0, 𝑑0, 𝑤0),… (𝑡𝑁, 𝑙𝑁, 𝑑𝑁, 𝑤𝑁)}IC/DC be the sets of all hits registered by either
the IC or DC where 𝑡𝑖 is the time the hit is detected, 𝑙𝑖 is the projected position on
the GMF16TH, 𝑑𝑖 is the orthogonal distance of the hit from the GMF16TH, and 𝑤𝑖

is the number of reconstructed photons which caused the hit. An illustration of
these features is depicted in Figure 7.10. As a convention, the set is sorted in time so
𝑡𝑖 ≤ 𝑡𝑖+1 and the lengths are shifted somin 𝑙𝑖 = 0.
The first distribution feature is the smoothness of projected hits (SPH) defined by

SPHIC/DC =
𝑗
𝑁
−
𝑙𝑗
𝑙𝑁

(7.11)

where 𝑗 is the first element to fulfill

||||
𝑗
𝑁
−
𝑙𝑗
𝑙𝑁

||||
= max

𝑖∈(1,…,𝑁)

||||
𝑖
𝑁
−
𝑙𝑖
𝑙𝑁

||||
. (7.12)
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Figure 7.9: Score distribution of final BDT of input feature selection
Thedistribution of events as predicted by the finalBDT of the feature selection process as
described in Section 7.3.2 is depicted. The vertical, linear axis indicates the rate of events
in natural rate, the horizontal, linear scale indicates the predicted score for the events.
In red, the distribution for simulated background events is shown while blue is utilized
to indicate themeasured data distribution. In an ideal case, a perfectmatch is supposed
to be observed. Instead, two nearly Gaussian distributions with some offset can be seen.
While this indicates some separation between the two datasets is still possible, nomajor
separation capabilities for the given set of features can be expected.
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Figure 7.10: Illustration of projected hits on track
All variables based on the relationship of hit DOMs and reconstructed track hypothe-
sis are sketched out. Each sphere indicates a hit DOM with the radius indicating the
recorded charge𝑤𝑖 and the color corresponding to the time 𝑡𝑖 of the hit . 𝑙𝑖 indicates the
location of the hit projected onto the track while 𝑑𝑖 is the orthogonal distance from the
track hypothesis.
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𝑙𝑖/𝑙𝑁

𝑖
𝑁
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Figure 7.11: Illustration of
the smoothness of projected
hits
A plot illustrating smoothness
of projected hits (SPH) is
shown. An event consisting of
10 hits, indicated by colored
spheres, is utilized as an ex-
ample. A horizontal arrow is
drawn to indicate a track hy-
pothesis. The hits are projected
onto aforementioned track.
The vertical direction is used
to indicate the order in which
the hits occurred. In the case
of a perfectly homogeneously illuminated track, the hits would be situated on a 45 °
line between the two arrows. Their ideal position is indicated by non-filled spheres. The
maximal distance between spheres and their ideal position is the SPH, here highlighted
in red.

This feature describes how even the hits are distributed on the track. A sketch of the
setup is drawn in Figure 7.11. As anMM would constantly produce light along the
track, the track of a signal event should be smooth and SPH is close to 0.

The other two dual array distribution attributes are the MSLIC/DC and FLQCDIC/DC,
described in Section 7.1.2.2. As the previous attribute is not independent of the total
track length, this information is needed to utilize the attributes in a meaningful way.
E. g., aMSL of 50m might be acceptable for a long GMF16TH of 1 km but not for a
short one of 100m.

The last attribute is calculated only for the hits registered in theDC. The weighted
orthogonal distance from the track hypothesis (WODTH) is also calculated based on
the GMF16TH by

WODTHDC =

𝑁
∑
𝑖=𝑖

𝑑𝑖 ⋅ 𝑤𝑖

𝑁
∑
𝑖=1

𝑤𝑖

. (7.13)

This is only useful for the fraction of events that pass through theDC. It adds separa-
tion power as a signal-like event should form a cylinder around the track due to the
homogeneous light emission while cascade events or mis-reconstructed coincident
events vary depending on the topology.
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7.3.2.4 Timing Based Features

Four timing based features are selected. One feature is calculated for both the IC and
DC, the other two are only calculated for theDC. All features are derived based on the
time of the first hit of any DOM. The first hit at aDOM has the most reliable infor-
mation about the distance of a light inducing particle to theDOM. The hit inducing
photon is most likely to have traversed directly between the particle and theDOM.
Later hits may have been delayed due to scattering inside the detection medium. Let
{𝑡1,… 𝑡𝑁}IC/DC be the time sorted set of times of the first hit at aDOM in a given array.
The first feature, the temporal maximal gap (TMG), is both calculated for the IC and
theDC and is defined by

TMGIC/DC = max
𝑖∈(1,…,𝑁−1)

𝑡𝑖+1 − 𝑡𝑖. (7.14)

For a signal-like event, this feature should have small values as the light production is
homogeneouswhile cascade-like events should have large values as in betweenof cas-
cades, no light is beingproduced. Theother two features are theTBHDC andFWHMDC,
both described in Section 7.1.2. Both are used in theMPF16 filter, DC selection and
are indicators of the temporal length of the event. Signal-like events should be tem-
porally longer than background events as the incident particle has a lower velocity,
requiring more time to pass through the detector.

7.3.2.5 Topology Based Features

Seven topology based features are selected. Three are based on the track lengthwithin
different areas of the detectionmediumof the IC. Another three describe the height of
the event within the ICwhile the last is the number of strings with any hits in theDC.
The latter is referred to as𝑁stringsDC.
The next three are 𝑙r=500mh=500m, 𝑙

r=750m
h=750m, and 𝑙

r=1000m
h=1000m. 𝑙

r=750m
h=750m is already described in Sec-

tion 7.2.4. 𝑙r=500mh=500m and 𝑙r=1000mh=1000m are calculated exactly the same way but are computed
for different cylinder heights and radii (500m and 1000m). These are indicators of the
length of a potential particle’s track in different parts of the in-ice arrays of IceCube.
The last three features are indicators of the height of the event within the IC. The
attributes of the detection medium of the IC depend on the height as described in
Section 2.1.1 and hence may influence the quality and values of other features. All
three features are based on the height of the hit DOMs used for the GMF16TH. With
{𝑧1,…𝑧𝑁} being the set of all heights of all hitDOMs, the included features are

𝑧 =

𝑁
∑
𝑖=1

𝑧𝑖

𝑁
, (7.15)
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the mean of all heights and

𝑧min/max = min /max 𝑧𝑖, (7.16)

the minimal and maximal height. Note that these features are not weighted and thus
only describe the height of the event, not the light deposit.

7.3.3 Boosted Decision Tree Training Configuration

All BDTs are trained with the same settings, derived from pre-studies, yielding BDTs
rather in the slightly under-trained than over-trained regime. Following the nomen-
clature in Chapter 4, each BDT consists of 500 decision trees (DTs), each with a depth
of 6. Sub-samplingwith a factor of 𝑆 = 0.5 is applied as well as dropout regularization,
with a probability to apply the regularization of 𝐷 = 0.7 and a fraction of predictors
ignored in the prediction of 𝑅 = 0.3. A learning rate of 𝜂 = 0.05 is used. As binary
regression is to be achieved, the cross entropy is chosen as the loss function.

7.3.3.1 Validation

Before the set of BDTs can be utilized in the final selection stage, their performance
has to be validated. As BDTs are only applied and evaluated based on events disjunct
from their training set, over-training is only an issue of sub-optimal overall perfor-
mance but not of overestimated performance. Instead, overestimated performance
may arise from potential background simulation and measured data mismatches al-
beit the precautions described in Section 7.3.2.
Comparing the importance of features in Figures E.1 and E.3 and Figures E.2 and E.4
does not indicate reliance on similar features and thus strong separationbetween sim-
ulated events andmeasured events.
Comparing the score distributions of the BDTs for simulated events and measured
events, shown in Figure 7.12, does not indicate a mismatch between the two.

7.3.4 Bootstrap Aggregating

Bootstrap aggregating (bagging), introduced in reference [Bre96], is a method in
which a set of homogeneous classifiers {𝐶0,… , 𝐶𝑀} are combined into a single
classifier 𝐶.
In this analysis, BDTs are utilized as binary classifiers as described in Section 4.2. The
training set is split into randomly sampled subsets. These subsets are in turn utilized
to build the individual BDTs.
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Figure 7.12: Mean score distributions of BDTs
Two vertically stacked plots are depicted. On the shared horizontal axis, the mean of
all BDTs is shown on a linear scale. The top vertical axis is used to show the natural
rate ℛ on a logarithmic scale while the bottom vertical axis is used as an indicator of
the ratio between the simulated background and the measured blinded data. A close
match between the simulated background events and the measured data is observed as
expected before the last selection step.

Consequently, each event 𝑒𝑗 has a set of classifications {𝑐0,… , 𝑐𝑀}𝑒𝑗 . This set can be
reduced to a single classification, here by calculating the mean 𝑐𝑒𝑗 . After defining the
passing value to be classified as part of the positive class 𝑆, any event with 𝑐𝑒𝑗 ≥ 𝑆 is
identified as being signal-like.

7.3.4.1 Configuration

A set of 1000 BDTs, each with the same configuration, is trained on a random subsets
of the total available training data described in Section 7.3.4. 1000was chosenbecause
the ratio between the average rate of events of the coursed simulated background set
and the rate of a single signal event is𝒪 (1000). While moreBDTs can be added, train-
ing time of the whole set also increases linearly with size.
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Each event in the training set has a 10% chance to get assigned to each subset. The
prediction of a BDT on the event of the subsets used for training aremasked from fur-
ther usage to prevent biasing towards these subsets. Consequently, every event has an
average of 900 classification predictions.

7.3.4.2 Probabilistic Interpretation of the Classification Predictions

Alternatively to selecting events as described in the previous sections, the distribu-
tion of classifications can be treated probabilistic. This is useful to derive information
about the average distribution of any attribute of an event after a classification has
been made in the low statistic limit. Let an event 𝑒𝑗 have a weight of𝑤𝑗. By interpret-
ing the distribution of {𝑐0,… , 𝑐𝑀}𝑒𝑗 as the probability distribution of the event to pass

the selection step𝑃 (𝑒𝑗||𝑆), a probabledistribution about any attribute of the events can

be created by reweighting the events from𝑤𝑗 to𝑤𝑗 ⋅ 𝑃 (𝑒𝑗||𝑆). The setup is sketched out
in Figure 7.13. Consequently,more events contribute to the post selectiondistribution
albeit with reducedweights creating a smooth approximation of the actual underlying
distribution.
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Figure 7.13: Example of probabilistic treatment of a single event
A histogram of the number of BDTs predicting a certain score of a singular, exemplary
event based on anMM is depicted. Themean score of all BDTs is highlighted by a black,
vertical, solid line. Assuming an arbitrary cut value of 0.9792, the event would not be
selected based on the mean value of all BDTs and consequently not contribute to any
further distribution after the selection step. By interpreting the distribution probabilis-
tic, the event still contributes but by a reduced weight of 43% of its original weight.
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7.3.5 Feldman-Cousins Sensitivity

In event-counting-based experiments, the result of the 𝑖th measurement is the num-
ber of observed events𝑁O

𝑖 after a predetermined time. 𝑁O
𝑖 is the sum of the unknown

number of observed background-like events during themeasurement𝑁B
𝑖 and the un-

known number of observed signal-like events during the measurement𝑁 S
𝑖 . If the ex-

periment is repeatable and the average number of background-like events𝑁B known,
the average number of detected signal-like events𝑁S can be derived by

𝑁S = 𝑁O − 𝑁B. (7.17)

In the case of a single measurement with known𝑁B, only an upper limit of signal-like
events compatible with themeasurement can be calculated. To derive this upper limit
in this work, the Feldman-Cousins approach introduced in reference [FC98] is used.
It can be applied in the small signal regime and is not biased towards the measured
data. For this approach

𝑁S
max

∫
𝑁S
min

𝑃 (𝑁O||𝑁
S, 𝑁B) 𝑑𝑁 S = 𝛼 (7.18)

needs to be solved where 𝑁 S
min to 𝑁

S
max is the interval the true 𝑁 S is situated in, with

a probability of 𝛼. 𝑃 (𝑁O||𝑁
S, 𝑁B) is the probability to measure 𝑁O if the true signal

count is 𝑁 S with a mean, true background of 𝑁B. For this, a Poissonian probability
density is used, implemented by a modified Gamma distribution and consequently
defined for all real values.

In the subsequent analysis steps, only 𝑁 S
max is of interest as 𝑁 S

min will be 0. Further-
more,𝑁B has a noticeable uncertainty. This is taken into account by folding the max-
imal number of signal events 𝑁 S

max consistent with 𝑁B with the probability for 𝑁B to
be the true number of background events to be observed in the experiment or

∞

∫
0

𝑃 (𝑁B||𝑁
B)𝑁 S

max (𝑁O, 𝑁B) 𝑑𝑁B = 𝜇𝛼
𝑁. (7.19)
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Figure 7.14: Compari-
son of Poissonian and
Gaussian approxima-
tion
A plot of the probability
density as a function of
𝑁B for different𝑁B with
associated uncertainty
is depicted. Red is used
for Poissonian distribu-
tions, blue for Gaussian
distributions. As exem-
plary values, the expected
number after the final se-
lection step described in
Section 7.3.7 are used. It
can be observed that the
Gaussian approximation
predicts higher values of
𝑁B.

In this thesis, 𝛼 is chosen to be 90%. While a Poissonian distribution was regarded
to approximate the distribution of 𝑁B, a Gaussian distribution is utilized instead to
accommodate the uncertainty of 𝑁B. Consequently, the expected number of back-
ground events is higher and the derived upper average number of compatible signal-
like events smaller and thus conservative. A comparison between the probability den-
sities for 𝑁B assuming a Poissonian distribution and a Gaussian distribution is de-
picted in Figure 7.14.

𝜇90%
𝑁 is the average upper number of true signal counts compatible with the observed

counts and the predicted average number of background events if the experiment was
repeated an infinite amount of times.

While in this thesis, the experiment, the unblinding of the measured data, can only
be done once, this parameter will be used as the upper number of signal-like events
within the recorded data sample.
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7.3.6 Model Rejection Factor

Separating events sampled from two different distribution can be accomplished by
varying selection techniques. In case of an SVD, described in Section 4.3.1, the opti-
mization of the separation is the same as optimizing the cut value 𝑐.
Deducing 𝐶, the optimal value of 𝑐, can be accomplished inmultiple ways depending
on the objectives of the selection. In the case that the underlying true distribution is
not known and only sampled data points are available like in this thesis, the value of
𝑐 should not be biased towards the sampled data points. On top of this, the value of 𝑐
should be optimized to offer the best discovery potential for the proposed signal. This
is achieved by optimizing the model rejection factor (MRF).
TheMRF, introduced in reference [HR03], is the ratio between the average upper
number of true signal counts 𝜇90%

𝑁 as calculated by the Feldman-Cousins’s unified
approach, described in Section 7.3.5, and the number of remaining expected signal
events𝑁𝑆, both for a given value of 𝑐 and thus

MRF (𝑐) =
𝜇90%
𝑁 (𝑐)
𝑁𝑆 (𝑐)

. (7.20)

𝐶 is the value that minimizesMRF (𝑐).

7.3.7 Optimized Final Selection Step

The final event selection is optimized by minimizing theMRF as described in Sec-
tion 7.3.6. As the underlying distribution, the probabilistic predictions of all BDTs,
described in Section 7.3.4, is used.
𝑁O, the number of remaining events, is an integer value in counting-based experi-
ments. In this work, due to bagging, the projected number of remaining events can
be a fraction. This is taken into account by linearly interpolating the between integer
steps.
The aforementioned process is applied to both the simulated background data and
the blinded, measured data set. The number of remaining events projected for the full
measurement time of 7 yr is shown in Figure 7.15. Themean𝑝 and standard error (SE)
𝜎𝑝 is derived by assuming aGaussian distribution in the predictions of allBDTs. As an
approximation of the asymmetric errors once the predictions approach 0, 𝜎𝑝 is split
into a positive bound 𝜎+

𝑝 and negative bound 𝜎−
𝑝 . For a given number of SE intervals

𝑑, once
𝑝 − 𝑑 ⋅ 𝜎𝑝 ≤ 0, then (7.21)

𝑑 ⋅ 𝜎−
𝑝 = 0 (7.22)
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and
𝑑 ⋅ 𝜎+

𝑝 = 𝑑 ⋅ 𝜎𝑝 − (𝑝 − 𝑑 ⋅ 𝜎𝑝) = 2 ⋅ 𝑑 ⋅ 𝜎𝑝 − 𝑝. (7.23)

For the numbers given below, 𝑑 = 1 is chosen.
A one dimensional grid search with a step size of 0.0001 of the cut value 𝑐 is con-
ducted to find the value 𝐶 which minimizes theMRF. TheMRF becomes minimized
at 𝐶 = 0.9997, both for the simulated data set and the blinded, measured data set.
After this selection step, the expected mean number of background events based on
the blinded, measured data set is 0 with an upper Gaussian approximated limit of 4.
Conducting the same calculation based on the background simulation set results in
an expected number of 2 background events with an upper Gaussian approximated
limit of 10 events.
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Figure 7.15: Estimated number of background events
A plot of the expected number of remaining background events on the vertical, linear
axis after the unblinding process is presented as a function of the final cut value on
the horizontal, linear axis. Expected numbers are derived from either simulated back-
ground events or measured, blinded data indicated by red and black respectively. The
mean expected values are indicated by a dashed line while a colored contour indicates
the statistical uncertainty around the mean. A vertical line indicates the points where
theMRF becomesminimal. This happens in both cases at 0.9997. Themagnitudes of the
upper bounds are dominated by the underlying statistics and can only be improved by
adding more events. These numbers are the integrated amount of expected events over
the whole velocity space.
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7.3.8 Reconstructed Kinematic Attributes

To this point, the reconstructed kinematic attributes of events are treated as being syn-
onymous with the actual or true kinematic attributes. While this was possible as only
kinematic distributions ofmany events have been examined, amore careful treatment
is required for singular events.
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Figure 7.16: Mapping of reconstructed to true kinematic attributes
Six plots in a two to three grid are shown. From left to right, figures related to the kine-
matic attributes𝛽, zenith,andazimutharepositioned. At the bottomrow, the truemean
values and SE as a function of the reconstructed values of all three kinematic attributes
are illustrated. For each kinematic attribute, one example distribution is shown in the
top row. There, the distribution of the true kinematic attributes for a specific recon-
structed value, indicated by a red in the bottom plot, is illustrated. The horizontal axis
indicates the reconstructed valuewhile the vertical axis represents the rate of events. The
red, solid, vertical line corresponds to the mean, the red, dashed, vertical lines to the SE.
The relationship is approximately linear for all kinematic attributes.
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The kinematic attributes are the velocity and direction of the candidate events. The di-
rection is described by two angles, the zenith and the azimuth, depicted in Figure 6.3.
To derive the most probable true values with an associated standard deviation, the
reconstructed kinematic attributes of simulated signal events and their standard de-
viation are calculated from simulated events in dependence of the true kinematic at-
tributes. Afterwards, the relation is inverted.

All three parameters are treated independently. Velocity is assumed to be Gaussian
shaped with appropriate limits based on the available signal simulation. Same is ap-
plied to the cos (zenith) distribution. For the azimuth, a circular Gaussian distribution
is applied. Examples for single reconstructed values for all three parameters as well as
the total reconstruction are depicted in Figure 7.16.

7.3.9 Systematic Shifts of Detector Response

Thesimulation of events depends on the correctmodeling of the interaction of anMM
with thedetectionmediumand the correspondingdetector response. As thesemodels
are the same for all simulated events, a shift from the true values will result in a sys-
tematic shift between the signature of simulated events and the signature ofmeasured
events.

For this analysis, four systematic effects are investigated and included in the final sig-
nal detection efficiency: variations in the detection mediums scattering and absorp-
tion, variations in the photon scattering due to uneven freezing after the deployment
of the detector, a shift in the photon acceptation rate for all photomultiplier tubes
(PMTs), and a systematic shift in the luminescence light yield efficiency.

For each signal dataset, an extra dataset with one of the aforementioned systematic
shifts is simulated albeit with reduced statistics. For each velocity, the minimal effi-
ciency dataset for each variation is used as the assumed actual efficiency of the detec-
tor. Afterwards, the four efficiency are combined into a total effective efficiency shift
for signal events which is applied to the final expected number of signal events.

The efficiency is calculated for each individual speed dependent dataset. In between,
linear interpolation is applied to derive a systematic efficiency function independent
of the underlying binning. The resulting combined systematic efficiency shift is de-
picted in Figure 7.17.

For simulated background events, no systematic shifted datasets are simulated for the
final selection step. Theexpectednumber of remaining background events after the fi-
nal selection step is limited by the available statistics of simulated background events.
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Any systematically shifteddatasetwould encompass a smaller statistic asmultiple sys-
tematically shifted dataset have to be computed within a reasonable amount of pro-
cessing time. Consequently, no prediction could bemade with such hypothetical sys-
tematically shifted dataset. Furthermore, the expected number of background events
after the final selection step is close to zero limiting the impact of potential systematic
shifts in the number of predicted events.
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Figure 7.17: Combined systematic signal efficiency
The combined systematic efficiency to detect signal-like events is depicted. On the hori-
zontal axis, the incidentMM velocity is drawn in fractions of 𝑐. On the vertical axis, the
relative abundance of MMs in % relative to the normal dataset parameters is plotted.
Thefinal projected systematic shift is drawn in blackwhile the systematic shift before the
final selection step is drawn in red. Themean and SE are calculated for the mean veloc-
ity of each dataset with linear interpolation between points. The individual behavior of
the four underlying examined systematic variations are depicted in Figures C.1 to C.4. A
higher systematic shift is observed at lower velocitieswhich is expected due to the bright-
ness of the event having a stronger impact in this region. An additional reduction can
be seen in the velocity region 0.38 𝑐 to 0.55 𝑐. It can be observed that this reduction is not
present before this selection stage. This reduction starts to appear at an unoptimized cut
value of 0.996 and gradually becomesmore pronounced approaching the optimized cut
value of 0.9997.

However, checkswith already existing, low statistic systematic datasets have been per-
formed for lower levels of the selection process. This limits the testable systematic to
a change in the PMT efficiency. No relative systematic shift in the number of back-
ground events greater than the relative shift for the number of signal events could be
observed.
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7.3.10 Projected Sensitivity

After the final event selection, the expected sensitivity of this analysis in the velocity
space can be derived. First, the velocity spectrum of the expected background events
is calculated. This is done following Section 7.3.4.2. The reconstructed velocity of each
event is folded and shifted to the most probable truth velocity of the event assuming
they are actual signal events as described in Section 7.3.8.
Afterwards, the effective signal detection area for each velocity is calculated by the
fraction of signal events selected from the total simulated signal events. Theamount of
predicted signal events is multiplied with the derived systematic efficiency described
in Section 7.3.9.
As a last step, the average upper number of signal events compatible with the ex-
pected number of background events at each velocity is computed as described in
Section 7.3.5. This is done for both simulated background and the remaining events
from the blinded data, 2011-2017 set. The resulting diagram is depicted in Figure 7.18.
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Figure 7.18: Projected sensitivity before the unblinding process
Two plots are presented. The horizontal axis is utilized to indicate the incident particles
velocity in units of 𝑐 in both plots. The vertical axis of the top plot is used to show the
projected number of events after the final selection step for three different event groups:
the signal events, the simulated background events,and the blindeddata, 2011-2017 set.
In the bottom plot, the resulting sensitivity based on both the blinded data, 2011-2017
set and the simulated backgrounds is shown. The same signal simulation is used for
both calculations. The shaded regions indicate the uncertainty on the derived numbers.
For the signal simulation, this consists of both the statistical uncertainty from statistics
as well as the aforementioned systematic shift in signal detection efficiency described in
Section 7.3.9. For the blinded data, 2011-2017 set and simulated background, only the
statistical error is included. The dashed orange linemarks the previous best flux limit in
this velocity range published by the MACRO collaboration in reference [Amb+97].



CHAPTER 8
Results

The weight of evidence for an extraordinary claim must be proportioned to its strangeness.

T. Flournoy [Flo99]

In this chapter, the results of theunblinding process are presented. Unblindingmeans
that the analysis presented in Chapter 7 is applied to all available measured data of
the IceCube Neutrino Observatory (IceCube) instead of applying it to a smaller and
thus statistically blinded sample of the measured data. This process is implemented
as a precaution against biasing the analysis against themeasured data. All predictions
postulated in Section 7.3.7 and Section 7.3.10 are compared against the actual results
after the unblinding process. Tension between the predictions and the results after the
unblinding process could indicate such biases.

In total, the analysis is applied to 2524.6days of measured data taken at IceCube be-
tweenMay 13, 2011 and July 10, 2018. Thenumber of remaining events is compared to
the pre-unblinding projections, the remaining events themselves are presented, ana-
lyzed, and interpreted. An upper flux limit compatible with the observed remaining
events is calculated and compared against previous searches.
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8.1 Remaining Events

After unblinding, two measured events remained after all selection steps which is
within the projected number of background events. As described in Section 7.3.7, the
mean expected value before unblinding was 0 with an upper Gaussian approximated
limit of 4 derived from the blinded, measured data set and 2 events with upper
Gaussian approximated limit of 10 events derived from the background simulation
set. Consequently, no detection of magnetic monopoles (MMs) can be claimed.
These events will be called Hubert and Staller in this thesis. In any graphic, Hubert
will be drawn in blue and Staller will be drawn in red. Both events are illustrated in
Figure 8.1. The reconstructed kinematic attributes in the reference frame of the in-ice
arrays of IceCube are shown in Table 8.1 with a translation of the arrival direction in
galactic coordinates shown in Figure 8.3.

(a)Hubert (b) Staller

Figure 8.1: Renders of Hubert and Staller
Renders of bothHubert andStaller arepresented. Spheres indicate the locationofDOMs,
their size indicates the amount of light detected at each DOM. The color of the sphere
indicates the timing of the first light being detected, from early in red to late in blue.
Additionally, a red arrow is drawn indicating the reconstructed globalMPF16 track hy-
potheses as described in Section 7.1.2.
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Name Velocity / 𝑐 Azimuth / ° Zenith / ° Date
Hubert 0.564 ± 0.009 38 ± 6 38 ± 1 September 19, 2013
Staller 0.54 ± 0.01 246 ± 5 62 ± 1 March 14, 2018

Table 8.1: Reconstructed kinematic attributes at IceCube
A table containing the reconstructedkinematic attributes ofHubert andStaller is shown.
Values are given in the coordinate system of IceCube as detected by the in-ice arrays.
Additionally, the day the events took place is included.

8.2 Event Origin

In order todetermine themost probable origin of these two remaining events, the vari-
ables used in the final selection steps boosted decission treess (BDTs) are utilized. All
variableswhich could not be reconstructed are removed and the remaining set of vari-
ables, 25 in total, are used to build multivariate kernel density estimators (KDEs). A
multivariate KDE 𝑓 (𝒙) is constructed by applying a kernel function to each sampled
data point. A kernel function maps a given sampled data point to an assumed proba-
bility density around the location of the data point. In this work, a Gaussian kernel is
used and the KDE becomes

𝑓 (𝒙) =
1
𝑛

𝑛
∑
𝑗=1

(2𝜋)−
𝑑
2 |𝐇|−

1
2 exp (−

1
2
(𝒙 − 𝒙𝑗)

⊺
𝐇−1 (𝒙 − 𝒙𝑗)) (8.1)

where 𝑑 is the number of multivariate variables, 𝑛 is the number of sampled data
points, and𝐇 is the bandwidthmatrix. For this section,𝐇was chosen following Scott’s
rule, described in reference [Sco79], and thus

𝐇𝑖𝑖 = 𝑛− 2
𝑑+4 ⋅ 𝜗𝑖 (8.2)

where 𝜗𝑖 is the variance of the 𝑖th variable within the sampled data points.
As there is no event from thebackground simulation remaining after thefinal selection
step, the multivariate KDEs have to be built based on events before the final event se-
lection. While just removing the final selection step would be enough to supply ample
statistics to calculate the multivariate KDEs, it introduces the risk of the multivariate
KDEs not being representative of the events after the final selection step due to the
high background rejection. An intermediate selection step between the two is used.
Any event which has at least one BDT with a score greater than 0.996 is used to build
themultivariateKDEs. With this intermediate selection step, there is still a reasonable
high number of events left to build themultivariateKDEs from simulated background
events (𝒪 (1000))while still being as close to the final event selection as is possiblewith
the available simulated background datasets.
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Five KDEs are build, one is based on simulated cosmic ray induced air showers, the
other four are based on MM simulation. At the aforementioned intermediate selec-
tion stage, only 𝒪 (10) simulated neutrinos are available with an integrated expected
natural rate 𝒪 (104) below the integrated natural rate of the remaining cosmic ray in-
duced air shower simulation. Consequently, no KDE was built for neutrino based
background simulation.
Two velocity ranges from theMM simulation are chosen as they are the closest to the
reconstructed velocities of the remaining events, each with two luminescence light
yields which were used for theMM simulation: 0.2𝛾/MeV and 1𝛾/MeV. The resulting
probability density estimates are logarithmized and afterwards normalized between
the fiveKDEs. The resulting relative probabilities are depicted in Figure 8.2 pointing to
coincidentmuons as themost probable origin from the tested hypotheses for both re-
maining events. It is crucial to understand that theseKDEs are only useful to compare
the relative likelihood between the tested models and also do not make a statement
about the absolute likelihood of themodel. Any addedmodelmay change the relative
probabilities.
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Figure 8.2: KDEs for remaining events
A radar chart with five corners, each representing the relative probability derived from
a single multivariant KDE is depicted. The probabilities of five events, Hubert, Staller,
and three exemplary MM events, randomly selected from theMM 𝛽 =0.55 𝑐 to 0.60 𝑐,
1𝛾/MeV subdataset, are shown. The simulatedMMs all have their maximal probability
towards the data set they originate from while Hubert and Staller have their maximal
probability towards the CORSIKA based KDE indicating a non-MM origin of the two
events.
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8.3 Internal Consistency of Remaining Events

Even if noMM detection can be claimed, if the remaining two events exhibit similar
characteristics, this might indicate a common origin. This could be used as a hint for
future analysis as either a regionof interest or a specificMM-likebackground signature
to be rejected.

8.3.1 Arrival Direction

A similar arrival direction for the remaining events might indicate a similar accelera-
tion source, i. e., if both are aligning with the direction of the galactic magnetic field
lines, this might hint at a low mass relativisticMM being accelerated following these
field lines. In this analysis, reconstructions for the velocity and arrival direction of
MM exist and can be tested immediately. Direction-wise, the remaining events are
not aligned in galactic coordinates as illustrated in Figure 8.3.
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Figure 8.3: Reconstructed galactic coordinates of Hubert and Staller
A map of the sky as seen on Earth in a Hammer projection, described in refer-
ence [Ham92], is presented. The Hammer projection is chosen as it is an equal-area
map. Consequently, it does not introduce distortions to the confidence interval of the
reconstructed directions based on their longitudinal position. The reconstructed arrival
direction of Hubert and Staller, assuming they areMM, with the 90% confidence inter-
val of the reconstruction, has been drawn in blue and red. The arrival directions of the
events do not coincide.
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8.3.2 Magnetic Charge

Assuming the remaining events are signal signatures of the samekindofMM, themag-
netic charge and restmass should be the same. As an indicator of themagnetic charge,
the light production can be used as ametric. This analysis is designed to be insensitive
to the light yield of an event due to the uncertainties in the luminescence light yield.
Consequently, no metric to measure the light yields of events is included. Instead, an
estimator for the light yield post-unblinding is constructed.
Specialized MM simulation is conducted, illuminating the in-ice arrays of IceCube
withMMs. Instead of an isotropic illumination with different velocity ranges, the illu-
mination is limited to the coincident interval of the reconstructed kinematic attributes
of the remaining events.
Different luminescence light yields are used ranging from 0.2𝛾/MeV to 2.4𝛾/MeV to
emulate a change in Dirac charge and/or luminescence light yield. Mirroring Sec-
tion 8.1, multivariantKDEs are build based on this signal simulation. Enough statistic
is available, so the final selection step can be conducted instead of the intermediate
selection step needed to remedy low statistics as described in Section 8.1.
The resulting relative probabilities are depicted in Figure 8.4. While both events fa-
vor their arrival directions, which is expected, they do not favor the same light yield
indicating that if both areMMs, they cannot exhibit the same Dirac charge.

8.3.3 Rest Mass

A direct indicator of the restmass would be the change of velocity within the in-ice ar-
rays of IceCube. This change is too small to be detected in this analysis. Consequently,
an indirect indicator of the rest mass has to be used. Given a certain acceleration sce-
nario forMM, the restmass will influence the terminal velocity of anMM and thus the
observed velocity of theMM at the in-ice arrays of IceCube. As both remaining events
are down going events, shielding from the Earth and subsequent possible changes in
velocity can be neglected.
Both remaining events exhibit very similar velocities, shown in Table 8.1, whichmight
indicate similar rest masses. The reconstructed velocities are also close to the upper
end of the low relativistic regime. It can be observed that there are two competing
challenges for separating background events from signal events in this thesis. At low
velocity, event selection is limited by event brightness. At high velocity, event selection
is limited by mis-reconstructed coincident muons. While the similar velocity points
to the same origin for both events, it cannot be determined if this origin isMMs or a
geometric effect from coincident muons.
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8.3.4 Discussion

It seemsunlikely that these two events can beMMs as they donot favor the same lumi-
nescence light yield. Assuming one event was anMM and the other was a background
event, the other consistency checks also disfavor this as they point either to the same
origin or favor coincident muons outright. From the tested scenarios, it is most likely
that these events are both coincident muons and result from a geometric effect. To
remain conservative in flux limit calculations, the events will still be treated as if they
wereMM.
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Figure 8.4: KDEs for remaining event, light yield comparison
A radar chart with ten corners, each representing the relative probability derived from a
single multivariant KDE, is depicted. The KDEs on the left are derived from specialized
simulation with kinematic attributes taken from Hubert, the KDEs on the right are de-
rived from specialized simulation with kinematic attributes taken from Staller.
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8.4 Low Relativistic Magnetic Monopole Flux Limit

NoMMdiscovery can be claimed as no excess of candidate events after the unblinding
of the measured data was observed.
Hints on theoriginof the remaining eventspoint toward coincidentmuonsoriginating
from cosmic ray induced air showers. This limits the possible flux ofMMs in the low
relativistic regime.
For the flux calculation, the two remaining events are treated as possible signal events
to be conservative. The flux calculation is described in Section 7.3.10, but no pro-
jection based on bootstrap aggregating (bagging), illustrated in Section 7.3.4, is con-
ducted as events are either classified as candidates or removed from the sample based
on the mean of all BDTs. The calculatedMM flux limit, shown in Figure 8.5, is mostly
the same as the projected sensitivity depicted in Figure 7.18. Differences are due to the
number of observed events. These reduce the flux limit in the velocity region of the ob-
served remaining events in respect to the projected sensitivity by roughly a factor of
two.
In contrast to previous reported flux limits in the low relativistic regime, the new flux
limit is two orders of magnitude stronger and roughly as strong as the best flux limit
in the low end of themildly relativistic regime. Note that the flux limit is calculated as-
suming total shielding by the Earth for anyMMwith an incident angle below the hori-
zon and thus can be applied toMM of higher magnetic charge than the Dirac charge.
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Figure 8.5: Flux limit in contrast to previous searches
Current best flux limits for MMs from the low relativistic to the relativistic regime as a
function of velocity are illustrated. The horizontal, linear axis represents the initial ve-
locity of anMM between 0.07 𝑐 to 0.99 𝑐. The vertical, logarithmic axis is the level of flux
in units of cm−2 s−1 sr−2. Previous flux limits are taken from different experiments and
collaborations, sorted in the legend by alphabetical order. The corresponding references,
in the same order, are [Abb+10b; Alb+17; Ayn+08; Aar+16; Bur20; Amb+02]. The flux
limit calculated in Section 8.4 is drawn as a solid, red line. The data for this line can be
found in Appendix F.



CHAPTER 9
Conclusion and Outlook

If in this I have been tedious, it may be some excuse, I had not time to make it shorter.

W.Cowper [SC05]

A search formagneticmonopoles in the low relativistic regimeat the IceCubeNeutrino
Observatory (IceCube) is described in this work. No such particle could be detected
in the examined data. As a light production mechanism, luminescence was utilized
for the first time at IceCube. Themodeling of luminescence light is examined, imple-
mented into the simulation framework of IceCube, and validated against theoretical
expectation. Potential shieldingofmagneticmonopoles by theEarth is discussed, lim-
iting the search for magnetic monopoles to down-going events instead of excluding
higher charged magnetic monopoles.

The data acquisition system of IceCube is found to be able to detect magnetic
monopoles in the low relativistic regime. Without any changes to the data acquisition
system, about 25% of isotropically passing magnetic monopoles can be detected.
Selection criteria are presented allowing for up to 20% of the detected magnetic
monopoles to be isolated while suppressing𝒪 (1 kHz) of background events recorded
by IceCube’s data acquisition system. 2524.6days of recorded data are examined for
magnetic monopoles. Two events passed all selection criteria which is within the
background estimate. After examination both visually and by statistical methods,
these events are found to be most likely background-like. The first exclusion limit on
the flux of magnetic monopoles in the low relativistic regime at IceCube is derived
superseding previous best limits by up to two orders of magnitude.
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To surpass this exclusion limit in the near future, an increase in the statistics of back-
ground simulation by an estimated𝒪 (10) to𝒪 (100)will be required. This would alle-
viate the statistically limited predictions on the expected background event distribu-
tions at the final selection stage of this analysis. Additionally, this would facilitate the
usage of more advanced algorithms to be deployed potentially resulting in a higher
percentage of magnetic monopoles retained while suppressing similar orders of mag-
nitude of background. Neural Networks are one of such more advanced algorithms.
While they have been explored as a promising, albeit unproved algorithm for the final
selection step for this thesis in prestudies, they could not be utilized for this thesis due
to the lack of available and reliable background simulation.
Seven seasons of recorded data by IceCube have been used in this thesis. Conse-
quently, any superseding of the aforementioned exclusion limit by an order of mag-
nitude solely due to increased statistics is infeasible in the near future. Instead, a fo-
cus should be placed on the data acquisition system of the IceCube-Gen2 upgrade
with its current design described in reference [Aar+21]. The upgrade is designed to in-
crease the instrumented volume of ice by about a factor of 10. This comes at the cost
of instrumentation density which could pose a challenge for relatively dim events like
Dirac charged magnetic monopoles in the low relativistic regime. Light sensors with
improved sensitivity could be utilized to alleviated this. Proposed high efficiency air
shower vetoes could suppress the dominant class of background events observed in
this analysis.



APPENDIX A
Improved LineFit

Many events of interest recorded at the IceCubeNeutrinoObservatory (IceCube) orig-
inate fromparticles traversing the in-ice arrays of IceCube at a constant velocity. Their
trajectory can be described by

𝑹 (𝑡) = 𝑽 ⋅ (𝑡 − 𝑇) + 𝑹 (𝑇) (A.1)

where 𝑹 (𝑡) is the particle position at time 𝑡, 𝑽 is a constant velocity, and 𝑇 is an arbi-
trary reference point in time. As a first guess, analytical, fast algorithm for direction,
timing, and velocity of such events, the improvedLineFit (iLF) algorithmwasdesigned
by the IceCube collaboration (ICC) and published in reference [Aar+14b]. Below, the
algorithm is summarized to facilitate the understanding for this thesis.
An iLF is applied to a set of hits where 𝒓𝒊 is the position and 𝑡𝑖 is the time of the 𝑖th

hit. As a first step, any late hits are removed. Here, late means that the hit occurred
without another hit occurring within a configurable radius 𝑑 and time window of 𝑡.
In this thesis, the default values described in the aforementioned reference are used
namely 𝑑 = 156m and 𝑡 = 778 ns.
Afterwards, a Hubert fit, described in reference [BV04] is calculated. A Hubert fit is
a common multiple linear regression with an added penalty function, the Hubert
penalty, to reduce the impact of outliers. Let𝜟𝒓𝒊 = 𝒓𝒊 −𝑹′ andΔ𝑡𝑖 = 𝑡𝑖 −𝑇 ′ where 𝑇 ′,
𝑉 ′, and 𝑹′ follow the naming convention of Equation A.1. Then,

𝑝𝑖 = ||𝑽 ′ ⋅ Δ𝑡𝑖 − 𝜟𝒓𝒊|| (A.2)

is the residual of the 𝑖th hit and the reconstructed trajectory. For residuals smaller than
a configurable threshold 𝜇, the common linear regression penalty

𝑃𝑖 = 𝑝2
𝑖 (A.3)

is used. Residuals bigger than the threshold are assigned a penalty of

𝑃𝑖 = 𝜇 ⋅ (2 ⋅ 𝑝𝑖 − 𝜇). (A.4)
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Figure A.1: Penalty 𝑃 as
a function of residual 𝑝

The relationship between the value of
a residual 𝑝 and the value of the ap-
plied penalty 𝑃 is drawn as a black

solid line for an exemplary case
of μ = 5. To contrast the Hubert

penalty, a regular penalty of 𝑃 = 𝑝2

is drawn as a red, dashed line.
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This is called the Hubert penalty. In Figure A.1, the relation between the penalty and
the residual is drawn. 𝑹′, 𝑇 ′, and 𝑽 ′ are the values which minimize the sum of all
penalties∑𝑃𝑖.
Once𝑹′, 𝑇 ′, and𝑽 ′ are determined, all hits with a residual greater than𝜇 are removed.
Here, the default values described in the aforementioned reference of 𝜇 = 116m is
used.
If the number of remaining hits is lower than a configured number of hits, no further
processing is applied and no iLF can be derived for the given hit list. The iLF is said to
have not converged. Here, the default value of minimal required hits, 2, is used.
As a last step, a linear regression is applied to the remaininghits. Following thenaming
convention in Equation A.1, the analytical solution is

𝑹 = ⟨𝒓⟩ − 𝑽 ⟨𝑡⟩ =
⟨𝒓 ⋅ 𝑡⟩ − ⟨𝒓⟩ ⋅ ⟨𝑡⟩
⟨𝑡2⟩ − ⟨𝑡⟩2

(A.5)

where ⟨…⟩ is the mean value operator. |𝑽| is the reconstructed velocity, 𝑽
|𝑽| the recon-

structed direction.
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APPENDIX B
Earth Shielding for Intermediate

Magnetic Charges
Additional graphics, calculated for intermediate magnetic charges between NgD = 1
and NgD = 9 which have already been presented in Section 3.8, are depicted. Each fig-
ure is calculated assuming a different magnetic charge, each a multiple of the Dirac
charge 𝑔𝑀𝑀. The horizontal axes are indicative of the rest mass of an incidentMM in
logarithmic presentation while the vertical axes are used to indicate different zenith
angles. An initial velocity as described in Figure 3.5 is assumed. The MM is propa-
gated through the Earth following the density and composition model described in
Figure 3.7. Its arrival velocity at the in-ice arrays of IceCube is indicated by color cor-
responding to a velocity as noted at the right hand color bar.
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Figure B.1: IMMs velocity at IceCube for NgD =2
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Figure B.2: IMMs velocity at IceCube for NgD =3
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Figure B.3: IMMs velocity at IceCube for NgD =4
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Figure B.4: IMMs velocity at IceCube for NgD =5
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Figure B.5: IMMs velocity at IceCube for NgD =6
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Figure B.6: IMMs velocity at IceCube for NgD =7
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Figure B.7: IMMs velocity at IceCube for NgD =8
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APPENDIX C
Individual Systematic Effects

While in Section 7.3.9, the total systematic variation due to all examined effects is pre-
sented, here, the individual behavior of singular effects are depicted. Effects expected
due to the nature of IceCube are systematic shifts in the light detection efficiencies
of the deployed Digital Optical Modules (DOMs) and changes in the angular accep-
tance of light for each DOM due to melted and refrozen ice around the DOMs during
deployment. Potential mismatches between the utilized ice model and the real exist-
ing ice are taken into account by varying the expected scattering and absorption of
photons inside the bulk ice of the in-ice arrays of IceCube. These effects are also in-
vestigated in similar analyses performed on IceCube data. Unique to this work, an ad-
ditional systematic effect is investigated: a systematic shift of the luminescence light
yield. While this effect is virtually the same as lowering the light detection efficiencies
of each DOMs in the low relativistic regime, this is not true once indirect Cherenkov
light is produced by anMM. All effects are treated as independent of each other and
are varied within the expected uncertainties of the parameters.
In each graphic, the horizontal axis represents the velocity of a simulated MM. On
the vertical axis, the observed ratio of natural rates between a systematically shifted
dataset and an unshifted dataset is illustrated.

VII



0.1 0.2 0.3 0.4 0.5 0.6
𝛽

90

95

100

105

110

re
la
tiv
e
ab
un

da
nc
e
/%

p1=0.20, p2=0
p1=0.25, p2=+1
p1=0.25, p2=-1
p1=0.25, p2=-3

p1=0.25, p2=0
p1=0.30, p2=+1
p1=0.30, p2=-1

p1=0.30, p2=-3
p1=0.30, p2=0
p1=0.35, p2=0

Figure C.1: Deployment systematic efficiency
Due to the deployment of the DOMs of the in-ice arrays of IceCube, holes had to be
melted into the original or bulk ice of Antarctica. After the melted water froze around
the positioned DOMs, the properties of the hole ice differed from the properties of the
bulk ice. This is taken into account by altering the acceptance of photons for eachDOM
depending on the arrival angle 𝜂 with cos (𝜂) = 1 being straight up. The acceptance
is then modeled by 0.34 ⋅ (1 + 1.5 cos 𝜂 − cos3 𝜂

2 ) + 𝑝1 ⋅ cos 𝜂 ⋅ (cos2 𝜂 − 1)3 + 𝑝2 ⋅
exp (10 (cos 𝜂 − 1.2)) where p1 and p2 are fitted parameters from specialized studies
within the ICC as described in reference [Chi17]. No dependence on these parameters
is expected, neither for the analysis overall nor velocity wise. For very slow velocities,
some dependence is observed,most likely due to the low brightness of events. Otherwise,
no dependence is observed.
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Figure C.2: DOM efficiency systematic efficiency
The detected amount of light by the in-ice arrays of IceCube depends on the light detec-
tion efficiency of eachDOM. A relative shift of efficiency between −10% to 10% is tested
for in linewith the current uncertainty on the absolute calibration conducted by the ICC
described in reference [Aar+17]. For this analysis, it is expected to have a higher signal
retention for higherDOM efficiencies as event detection is limited by the amount of light
in thefirst place. As at lower velocities, even less is produced,a stronger effect could be as-
sumed. In the figure, the relative abundance of signal events as a function of the velocity
is depicted. The shaded region indicates the statistical contour around the mean values
drawn as lines. Ignoring the velocity dependence, a roughly ±2% point shift in the rel-
ative abundance is observed. If there is any velocity dependent effect is inconclusive due
to the statistical limitations of the simulated systematic sets.
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Figure C.3: Ice property systematic efficiency
The detected amount of light by the in-ice arrays of IceCube depends on light transmis-
sion attributes of the detection medium. This can be described by two parameters: the
scattering of photons inside the ice and the absorption of photons inside the ice. These
two parameters are correlated and thus systematic shifts of one needs to be tested with a
systematic shift of the other. In line with the current estimates on the systematic shift of
these parameters described in reference [Aar+13], a systematic shift of±5% for each pa-
rameter is regarded. It is expected that an increase in scattering and absorption should
decrease the number of recorded signal events while decreasing scattering and absorp-
tion should increase the number of recorded signal events. Besides a general trend of the
detection of very slow events (0.1 𝑐) to be more sensitive to the total amount of recorded
light and thus scattering and absorption, no influence of velocity is expected. A priori,
no prediction on the severeness of scattering over absorption has been made. The ob-
served relative shift of signal detection efficiency as a function of velocity is depicted in
the figure above. As expected, the scenario with higher scattering and absorption has
the biggest impact on the number of recorded signal events. Roughly 93% of all baseline
events are still recorded. No major dependency on the velocity is observed.
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Figure C.4: Luminescence light yield systematic efficiency
Thedetected amount of light by the in-ice arrays of IceCubedepends on the light induced
byMMs. In this thesis, a previously unused light production mechanism, luminescence
of water based ice, described in Section 5.3, is utilized for the detection ofMMs. In-situ
measurements of the luminescence light yield of the Antarctic ice have been described in
reference [Pol19]. Following reference [Pol20], a uncertainty of ±40% for this measure-
ment is estimated. As this is by far the strongest systematic effect, a strong impact on this
analysis is expected overall. Additionally, a strong velocity dependence is predicted as at
0.5 𝑐 a second, luminescence light yield independent light production channel becomes
effective: indirect Cherenkov light, described in Section 5.2. The observed relative shift of
detection efficiency of signal efficiency as a function of velocity is depicted in the figure
above. As expected, a strong influence is seen at low velocities where a 40% reduction
in the produced light results in only 80% of the baseline events to be detected while a
40% increase leads to 110% of the baseline events to pass through all selection steps.
With increasing velocity, this effect becomes less pronounced until the region between
0.4 𝑐 to 0.55 𝑐 where a strong impact can be seen. This effect becomes less pronounced
for weaker cuts in the final selection step indicating a reliance of the set of BDTs on the
proper amount of light in this region for unknown reasons.
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APPENDIX D
Input Variables for the Last Analysis

Selection Step
In this section, all input variablesutilized in themachine learning (ML) based selection
step described in Section 7.3 are illustrated. A short description of each variable is in-
cluded inall figures. For eachvariable, twovertically stackedplots aredepicted. On the
shared horizontal axis, the variable in question is shown on a linear scale. The upper
vertical axis is used to display the natural rateℜ on a logarithmic scale while the lower
vertical axis is used as an indicator of the ratio between the simulated background and
themeasuredblindeddata. The simulated background is the sumof the cosmic ray in-
duced air showers (2012) set, the atmospheric𝜈μ set, and the atmospheric𝜈e set. A de-
scription of each variable and the exact equation to calculate the variable canbe found
in Section 7.3.2. To keep repetition of graph description to a minimum, the informa-
tion presented in this sectionwill be omitted from the graph description. All error bars
are 1𝜎 error bars. In the ideal case, a flat line is expected in the second plots which in-
dicates a perfect match between background simulation and measured events as the
measured data at this selection stage is dominated by background events.
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Figure D.1: Input variable: Nhit GMF16TH
Number of hits utilized in the globalMPF16 track hypotheses (GMF16TH).
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Figure D.2: Input variable: 𝛽GMF16TH
Reconstructed velocity of the globalMPF16 track hypotheses (GMF16TH).
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Figure D.3: Input variable: 𝛽first
Reconstructed velocity based on the temporal first half of hits of the event.
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Figure D.4: Input variable: 𝛽last
Reconstructed velocity based on the temporal second half of hits of the event.
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Figure D.5: Input variable: DOCA
Distance of closest approach (DOCA) between the reconstructed particle paths of the
first and second half of temporal split hits.
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Figure D.6: Input variable: ∡ (𝒗first, 𝒗last)
Angle between the between the reconstructed particle paths of the first and second half
of temporal split hits.
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Figure D.7: Input variable: FLQCDIC
First to last quartile COG distance (FLQCD) of the hits in the IceCube in-ice array (IC)
projected on the globalMPF16 track hypotheses (GMF16TH).
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Figure D.8: Input variable: SPHIC
Smoothness of projected hits (SPH) on the globalMPF16 track hypotheses (GMF16TH)
in the IceCube in-ice array (IC).
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Figure D.9: Input variable: MSLIC
Maximal separation length of hits (MSL) projected onto the global MPF16 track hy-
potheses (GMF16TH) in the IceCube in-ice array (IC).
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Figure D.10: Input variable: TMGIC
Temporal maximal gap (TMG) between hits in the IceCubeDeepCore array (DC).

XVIII



−10

−7

−4

−1

lo
g
(ℜ

⋅s
)

Blinded data, 2011 − 2017
Atmospheric 𝜈e neutrinos
Atmospheric 𝜈μ neutrinos
Cosmic ray induced air showers (2012)

Monopoles (0.10 − 0.15 𝑐)
Monopoles (0.35 − 0.40 𝑐)
Monopoles (0.55 − 0.60 𝑐)

−400 −200 0 200 400
𝑧/m

1.0 ∶ 3.0
1.0 ∶ 1.5
1.5 ∶ 1.0
3.0 ∶ 1.0

da
ta
:b
ac
k.
si
m
.

Figure D.11: Input variable: 𝑧
Mean height of all hit Digital Optical Modules (DOMs) in the event.
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Figure D.12: Input variable: 𝑧min
Minimal height of any hit Digital Optical Module (DOM) in the event.
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Figure D.13: Input variable: 𝑧max
Maximal height of any hit Digital Optical Module (DOM) in the event.
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Figure D.14: Input variable: 𝑙r=1000mh=1000m
Length of the global MPF16 track hypotheses (GMF16TH) through a cylinder with a
height and a radius of 1000m at the center of the IceCube in-ice array (IC).
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Figure D.15: Input variable: 𝑙r=750mh=750m
Length of the global MPF16 track hypotheses (GMF16TH) through a cylinder with a
height and a radius of 750m at the center of the IceCube in-ice array (IC).
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Figure D.16: Input variable: 𝑙r=500mh=500m
Length of the global MPF16 track hypotheses (GMF16TH) through a cylinder with a
height and a radius of 500m at the center of the IceCube in-ice array (IC).
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Figure D.17: Input variable: 𝑁stringsDC
Number of strings which had at least one Digital Optical Module (DOM) with a hit in
the IceCube DeepCore array (DC). Note: a value of -1 indicates the value was missing
i. e. no strings detected any hits.
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Figure D.18: Input variable: FLQCDDC
First to last quartile COG distance (FLQCD) of the hits in the IceCube DeepCore array
(DC) projected on the globalMPF16 track hypotheses (GMF16TH).
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Figure D.19: Input variable: SPHDC
Smoothness of projected hits (SPH) on the globalMPF16 track hypotheses (GMF16TH)
in the IceCubeDeepCore array (DC).
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Figure D.20: Input variable: WODTHDC
Weighted orthogonal distance from the track hypothesis (WODTH) in the IceCube
DeepCore array (DC).
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Figure D.21: Input variable: MSLDC
Maximal separation length of hits (MSL) projected onto the global MPF16 track hy-
potheses (GMF16TH) in the IceCubeDeepCore array (DC).
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Figure D.22: Input variable: FWHMDC
Full width half maximum (FWHM) of the timing distribution of hits in the IceCube
DeepCore array (DC).
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Figure D.23: Input variable: TBHDC
Maximal temporal distance between first hits (TBH) in the IceCube DeepCore array
(DC).
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Figure D.24: Input variable: TMGDC
Temporal maximal gap (TMG) between hits in the IceCubeDeepCore array (DC).
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APPENDIX E
Feature Importance of Different

Boosted Decision Trees During the
Last Selection Step

In this section, feature importance metrics are shown for different boosted decission
treess (BDTs) during the last selection step described in Section 7.3. Two metrics are
utilized, the weight metric indicating how often a feature is used by a singular vari-
ate decision (SVD) within the BDTs and the gainmetric indicating the increase of ac-
curacy of the BDTs due to adding the feature. Figures E.1 and E.2 are indicative for
a specialized BDT to separate simulated events from measured events described in
Section 7.3.2. Figures E.2 and E.4 are indicative for the set of 1000BDTs utilized in the
final selection step. To combine the feature importance of all BDTs, violin plots are
used. It can be observed that features which have the strongest separation strength
between simulated background events and measured events are not strong features
for the BDTs separating signal-like and background-like events.
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Figure E.1: Feature weight of last BDT of feature selection step
A bar plot of the distribution of feature importance by weight for the last BDT of the
iterative input feature selection process described in Section 7.3.2 is drawn. On the ver-
tical axis, all features utilized as input features are shown, the linear, horizontal axis
represents the number of SVDs utilizing said features within the BDTs.
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Figure E.2: Feature weight of all BDTs of last selection step
A violin plot of the distribution of feature importance by weight for the 1000 trained
BDTs is presented. On the vertical axis, all features utilized as input features are shown,
the linear, horizontal axis represents the number of SVDs utilizing said features within
the BDTs. For each feature, the mean, minimal, and maximal importance observed in
the set of 1000BDTs is drawn. Additionally, a Gaussian kernel density estimate of the
distribution of values for each feature is added, drawn as a shaded region.
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Figure E.3: Feature gain of last BDT of feature selection step
A bar plot of the distribution of feature importance by gain for the last BDT of the iter-
ative input feature selection process described in Section 7.3.2 is drawn. On the vertical
axis, all features utilized as input features are shown, the linear, horizontal axis repre-
sents the increase of accuracy due to said features.
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Figure E.4: Feature gain of all BDTs of last selection step
A violin plot of the distribution of feature importance by gain for the 1000 trainedBDTs
is presented. On the vertical axis, all features utilized as input features are shown, the
linear, horizontal axis represents the increase of accuracy due to said features. For each
feature, the mean,minimal, andmaximal importance observed in the set of 1000BDTs
is drawn. Additionally, a Gaussian kernel density estimate of the distribution of values
for each feature is added.
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APPENDIX F
Data of Derived Flux Limit

The derived flux limit, depicted in Figure 8.5, is printed as a velocity dependent, equi-
spaced histogram with the left hand sides of the bins 𝛽𝑙 and the deduced upper flux
boundΦ90 divided by a constant factor𝑊 = 10−18 cm−2 s−1 sr−2.

𝛽𝑙 Φ90/𝑊
0.100 9.521
0.105 7.139
0.110 5.790
0.115 5.076
0.120 3.917
0.125 3.365
0.130 2.706
0.135 2.339
0.140 1.939
0.145 1.595
0.150 1.359
0.155 1.241
0.160 1.197
0.165 1.159
0.170 1.139
0.175 1.159
0.180 1.167
0.185 1.226
0.190 1.244
0.195 1.303
0.200 1.329
0.205 1.388
0.210 1.405
0.215 1.460
0.220 1.434

𝛽𝑙 Φ90/𝑊
0.225 1.523
0.230 1.505
0.235 1.499
0.240 1.534
0.245 1.486
0.250 1.499
0.255 1.501
0.260 1.489
0.265 1.473
0.270 1.507
0.275 1.523
0.280 1.555
0.285 1.576
0.290 1.599
0.295 1.703
0.300 1.646
0.305 1.750
0.310 1.710
0.315 1.807
0.320 1.811
0.325 1.914
0.330 1.871
0.335 1.887
0.340 1.961
0.345 1.974

𝛽𝑙 Φ90/𝑊
0.350 1.965
0.355 1.971
0.360 1.999
0.365 2.085
0.370 2.060
0.375 2.132
0.380 2.104
0.385 2.093
0.390 2.131
0.395 2.160
0.400 2.084
0.405 2.158
0.410 2.121
0.415 2.102
0.420 2.122
0.425 2.166
0.430 2.056
0.435 2.077
0.440 2.053
0.445 2.039
0.450 2.010
0.455 1.984
0.460 2.035
0.465 2.062
0.470 2.038

𝛽𝑙 Φ90/𝑊
0.475 1.996
0.480 2.136
0.485 2.252
0.490 2.265
0.495 2.455
0.500 2.558
0.505 2.612
0.510 2.820
0.515 2.810
0.520 2.888
0.525 2.673
0.530 2.207
0.535 1.698
0.540 1.435
0.545 1.308
0.550 1.184
0.555 1.034
0.560 0.956
0.565 0.974
0.570 0.985
0.575 1.126
0.580 1.305
0.585 1.779
0.590 2.783
0.595 6.089

Table F.1: Table with final flux limit
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Figure F.1: Quick response encoded final flux limit
Thesamedataas inTable F.1 is presented inamachine readable quick response encoding
defined in reference [ISO15]. Recovery of the data was tested on multiple devices, both
from paper versions printed at a resolution of 600 dots per inch and digitally displayed
ones.
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Acronyms

ATWD Analog TransientWaveform Digitizer
bagging bootstrap aggregating
BDT boosted decission trees
COG center of gravity
CORSIKA COsmic Ray SImulations for KASCADE
DAQ data acquisition
DC IceCubeDeepCore array
DOCA distance of closest approach
DOM Digital Optical Module
DT decision tree
fADC Fast Analog to Digital Converter
FLQCD first to last quartile COG distance
FWHM full width half maximum
GMF16TH globalMPF16 track hypotheses
GUT Grand UnifiedTheory
HLC hard local coincidence
IC IceCube in-ice array
ICC IceCube collaboration
IceCube IceCube Neutrino Observatory
ICL IceCube laboratory
iLF improved LineFit
IMM intermediate mass magnetic monopole
KASCADE KArlsruhe Shower Core and Array DEtector
KDE kernel density estimator
KYG KazamaYang Goldhaber
MCS Monte Carlo Simulation
ML machine learning
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MM magnetic monopole
MPF16 MonopoleFilter_16
MRF model rejection factor
MSL maximal separation length of hits
PMT photomultiplier tube
PnF online Processing and Filtering
PROPOSAL PROpagator with optimal Precision and Optimized Speed

for All Leptons
SE standard error
SLC soft local coincidence
SMP highly ionizing, stable, massive particle
SMT simple multiplicity trigger
SPH smoothness of projected hits
SPICE South Pole ICE
SVD singular variate decision
TBH maximal temporal distance between first hits
TMG temporal maximal gap
TWDSiLF time-wise double split iLFs
WODTH weighted orthogonal distance from the track hypothesis
XGBoost eXtreme Gradient Boosting
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