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on atiyah-segal completion for hermitian k-theory

Abstract

The Atiyah-Segal completion theorem states that the completion of equivariant
complex K-theory may be computed using the Borel construction, which is a gener-
alization of the construction of the classifying space. This thesis investigates whether
there is an analogue of the Atiyah-Segal completion theorem for Hermitian K-theory,
also known as Grothendieck-Witt theory. We compute the higher Grothendieck-
Witt groups of the motivic classifying space of a split torus over an arbitrary field
of characteristic not two. We also compute the higher Grothendieck-Witt groups of
projective bundles over a divisorial base scheme X such that 1

2 ∈ OX(X), as well
as the higher Grothendieck-Witt groups of even Grassmannians over a field of zero
characteristic. These computations rely on semi-orthogonal decompositions that be-
have well with respect to duality. Using these results, we prove the Atiyah-Segal
completion theorem for Grothendieck-Witt theory in the special case of the split
torus. This completion theorem is an important first step in finding a more general
Atiyah-Segal completion theorem, moreover it is likely to be a key ingredient in the
proof of such a generalization.
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1 Introduction

This thesis stands on the shoulders of some of the greatest mathematicians of the 20th
century: those of Michael Atiyah and Graeme Segal, who laid the foundations for equi-
variant K-theory; of Alexander Grothendieck, the architect of modern algebraic geome-
try; and of Ernst Witt, the founder of the theory of quadratic forms over arbitrary fields.
It stands to reason that their most influential ideas form the heart of the mathematical
objects and results that were named after them. The story presented here begins with
the legacy of Segal’s equivariant K-theory as presented in [75] and the Atiyah-Segal
completion theorem [2, theorem 2.1], and, through numerous twists and turns, ties it
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to the marriage of Grothendieck’s concept of group completion and Witt’s ideas about
quadratic forms known as both Hermitian K-theory and Grothendieck-Witt theory.

The development of equivariant cohomology began in the 1950’s with Cartan and
Borel. Given a topological space X acted on by a topological group G, one can ask for a
kind of singular cohomology of X that reflects the group action. Since ordinary singular
cohomology only depends on X and not on the action, a modification is necessary. The
idea, then, is essentially to construct a homotopy quotient X//G using a technique now
known as the Borel construction, and to define the G-equivariant singular cohomology
of X as the singular cohomology of X//G. When X is a point, the Borel construction
yields the classifying space BG of the group G, which shows that the cohomology of
classifying spaces lies at the core of equivariant cohomology.

The Atiyah-Segal completion theorem is a famous result in equivariant topological
complex K-theory, which builds on the ideas of equivariant singular cohomology. For
a compact Lie group G, the representation ring R(G) is the G-equivariant K-theory of
a point. In the case of singular cohomology, the G-equivariant singular cohomology of
the point is defined as the singular cohomology of the classifying space BG, and that’s
the end of the story. By contrast, R(G) is not isomorphic to the ordinary K-theory
of BG, but the Atiyah-Segal completion theorem shows that the representation ring
becomes isomorphic to it after taking the completion R(G)∧ of R(G) with respect to
the augmentation ideal. The Atiyah-Segal completion theorem contains this result as an
important special case.

One of the main features of topological cohomology theories is that they are repre-
sentable objects in the stable homotopy category, which is obtained from the category of
(topological) spectra by inverting the weak homotopy equivalences. The framework of
motivic homotopy theory developed in [66] is the analogue of this situation in algebraic
geometry. In it, the affine line A1 takes the place of the contractible unit interval in to-
pology, which is the reason it is also called A1-homotopy theory sometimes. Topological
spectra are replaced by motivic spectra or P1-spectra, and the homotopy classes of these
represent A1-invariant cohomology theories in algebraic geometry. Among the cohomol-
ogy theories that have been proven to be representable by motivic spectra are orientable
theories such as motivic cohomology, algebraic K-theory and algebraic cobordism [86,
section 6], as well as non-orientable theories such as Witt theory and Grothendieck-Witt
theory (also known as Hermitian K-theory) [38, section 5].

It is natural to ask whether one can extend Atiyah-Segal completion to cohomology
theories in the framework of motivic homotopy theory; the formulation of equivariant
Chow groups in [83] and [28] paved the way for such a project, and the completion
theorem was extended to algebraic K-theory in [57].

This thesis provides a foray into the extension of Atiyah-Segal completion to Hermi-
tian K-theory, which is also known as algebraic Grothendieck-Witt theory. It is an exten-
sion of algebraic K-theory incorporating the concept of symmetric forms. Grothendieck-
Witt theory has evolved from triangular Witt theory, which was developed by Balmer
in [3] and [4] at the turn of the century, using the notion of triangulated category intro-
duced by Verdier in [84]. Grothendieck-Witt theory is an active area of research, with

4



herman rohrbach

many analogues of results for algebraic K-theory still unproven. For example, the ring
structure of the Grothendieck-Witt theory of projective spaces and Grassmannians has
not yet been described.

Extensions of Atiyah-Segal completion are useful because they provide a bridge be-
tween equivariant and non-equivariant theory, and it is often possible to leverage results
from representation theory to compute the equivariant theory. Furthermore, Atiyah-
Segal completion is a good measure for the “niceness” of an equivariant theory.

In line with recent developments in the field, the results of this thesis can very likely
be rephrased in the language of Poincaré ∞-categories as in [15–17], but it was written
using the language of dg categories before these preprints became available.

1.1 Acknowledgements

As scientists, we do not often get the opportunity to be emotional in our written work.
The acknowledgements section in dissertations is a rare exception, and for that, I want to
thank the anonymous people who started this tradition, and those who help the tradition
evolve. It shows the world that scientists are human beings with feelings and connections
that reach beyond the merely scientific, which are nonetheless of vital importance to the
functioning of science. I hope the acknowledgements section can be a small patch that
seeds further pockets of joy in the frequently all too barren landscape of mathematical
writing.

Most guides to writing acknowledgements seem to suggest making them no longer
than one page, claiming it would otherwise dilute the gratitude I am trying to express.
I think that is poppycock. I owe a great debt of gratitude to a great many people, and
I intend to thank each one of them appropriately. In fact, there are so many people I
would like to thank, that I am afraid I might forget someone. I am grateful to all of you
who contributed to my thesis in some way but did not make it onto this list despite its
considerable length.

I am grateful to the principal investigators of the GRK 2240 for believing in me and
hiring me. It is not a cheap decision to give someone a second chance in academia. I
am aware that this has been a privilege for me. I also want to thank them for the broad
range of expertise they have offered in the various lectures of the GRK, which have
enriched my experience.

I am grateful to Jens Hornbostel for his supervision – his replies were always swift
and his comments meticulous and helpful. The research project was carefully prepared
and the main questions were well-formulated, allowing me relatively smooth entry into
the unyielding world of motivic homotopy theory. I also want to thank him sincerely for
his guidance on my career path.

I am grateful to Marcus Zibrowius for his co-supervision, for taking out the time in
his schedule to discuss whatever problem I was working on, for generously sharing his
own ideas, notes and experiences, and for still making time for me even after becoming
a new parent.
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I am grateful to Heng Xie for some helpful conversations about additivity for Her-
mitian K-theory and semi-orthogonal decompositions.

I am grateful to Marco Schlichting for sharing his ideas on the proof of the projective
bundle formula.

I am grateful to Stefan Schröer for commenting on a draft of appendix A.2.

I am grateful to Jeremiah Heller for a very helpful reply to a question regarding the
construction of motivic classifying spaces.

I am also grateful to the members of my PhD committee, Jens Hornbostel, Marcus
Zibrowius, Kay Rülling and Matthias Wendt, for taking the time out of their schedules
to read and judge this thesis.

Henry, thanks for reading my drafts and listening to some of my ideas, for your help
with German bureaucracy, for being my successor and for improving my pool game by
showing me all the pockets of the table.

Jule, thank you for proofreading my work and being my mathematical soulmate. It
is so nice to know that there is always someone who will appreciate a beautiful universal
construction.

Pablo, thank you for your interest in my ideas about closed immersions, lifting prop-
erties and factorization systems, even though they might be far removed from your
own area of expertise. Thank you and Montse also for hosting the party that spawned
gintomatonic.

Peter, thank you for your undying enthusiasm for everything higher categorical, and
for your insightful comments and suggestions. I deeply appreciate your philosophical
ideas about the nature of duality. I also want to thank you for that time you made spicy
tofu noodles for all of us in the middle of the night – those who were there will know
what I am talking about.

Thomas, thank you for sharing your professional and personal experience, for working
with me on Euler classes in the Grothendieck-Witt groups of projective spaces, for
explaining the yoga of intersection theory and Schubert calculus, for the games we played
together, and for the movies we watched together. Thank you also for being my mentor
after Sean left. I am sure you did it for the greater good. The greater good.

PhD students of the GRK 2240, you are all awesome. Thank you for bearing with
me in the workshop about stacks. Thank you for the GRK days we got to spend in the
same physical room, and for the dinners and drinks afterwards, which gave academic life
its color. I wish you all the best in the rest of your careers and I am happy to have been
your representative.

Sean, you welcomed me into academic life in Wuppertal with such grace when you
invited me to watch Django Unchained in the cinema with some other colleagues when
I was first there. It made me feel at home. Thank you for being my mentor, for always
suggesting other areas of mathematics and papers that might be useful to me, for your
idiosyncratic views that were nevertheless very helpful once I understood them, for your
willingness to read and check my work, for our conversations and discussions about music
and musical genres, for indulging me at the piano in the station hall, for always caring
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about the well and woe of the PhD students, for all the movies we saw together, and for
your friendship. And for the dangerous bar, obviously.

Zeynep, merely thanking is not enough; you have become such a dear friend. Thank
you for being who you are, for holding up a mirror to our academic environment, for
all the conversations, all the insights, all the heartfelt moments, all the feasts, all the
dancing, and that faithful New Year’s Eve when I drank more gin and tonics than I
maybe should have. Thank you for putting diapers on the seagulls.

Joy, thank you for your relentless faith in me, for our evolving friendship, for always
having my back when the going gets rough, and for always offering a place to return to.
Liam, you remind me that we have to think of the next generation. We have to examine
the legacy we were given by our forebears, and decide what to leave behind for the ones
that come after us. Thank you for your smile – it is nothing short of a ray of sunshine.

Loki, bedankt dat je me hebt aangemoedigd om mijn dromen na te jagen, en voor
alle fijne gesprekken – met of zonder two hour mark.

Brenwan, Janna, Judith, Melanie, Mette, Ricardo en Simon, bedankt dat jullie bereid
waren mij naar Wuppertal te laten gaan. Jullie zijn de beste vrienden die een mens zich
kan wensen.

Cees, bedankt voor je interesse in mijn werk, voor je inzichtelijke commentaar op mijn
preprint, en voor de bedachtzame wijze waarop je dat commentaar presenteerde. Jouw
ideeën over de vorm van een goed wetenschappelijk artikel zijn me constant bijgebleven.

Edith, bedankt dat je me de weg hebt laten zien.
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2 Preliminaries

Before exploring the Atiyah-Segal theorem for Grothendieck-Witt theory, we will give
an (incomplete) overview of the preliminaries to this work. These preliminaries include
the classical Atiyah-Segal completion theorem, a concise guide to motivic homotopy
theory, and some details regarding perfect complexes. Other topics, such as classifying
spaces, semi-orthogonal decompositions and Grothendieck-Witt theory have their own
introductory chapters because more details and intermediate results are required.

2.1 The Atiyah-Segal completion theorem

A complex vector bundle over a topological space X can be thought of as a continuous
family of complex vector spaces parametrized by X. One might wonder how many dif-
ferent (up to isomorphism) complex vector bundles exist over a given X, whether these
isomorphism classes can be organized into some algebraic object and what kind of infor-
mation about X such an algebraic object contains; the study of these questions is known
as topological K-theory. More concretely, the K-theory K(X) of a topological space is the
group completion of the abelian monoid (Vect(X),⊕) of isomorphism classes of vector
bundles over X. Thus K(X) is an abelian group, and tensor product of vector bundles
gives it the structure of a commutative ring. This extends to a Z-graded cohomology
theory, denoted by K∗(X).

Although some information contained in Vect(X) is lost when passing to K(X) since
K-theory considers vector bundles up to stable equivalence instead of up isomorphism,
the theory has proven powerful and flexible. Two famous applications of K-theory are the
solution of the Hopf invariant one problem by Adams and Atiyah and the description of
vector fields on spheres by Adams. For a detailed introduction to topological K-theory,
see [50].

Recall that a compact Lie group is a compact smooth differentiable manifold G
that has a group structure compatible with the smooth manifold structure. Let X be
a topological space, which is acted on by a compact Lie group G. The purpose of
equivariant K-theory is to study complex vector bundles E with a G-action over X, such
that the structure map E → X is compatible with the G-action on X. The foundations
of equivariant K-theory can be found in [75].

Now let XG be the homotopy type of (X × EG)/G, where EG is the universal G-
torsor over the classifying space BG. Given a G-vector bundle V over X, the space
(V × EG)/G is a vector bundle over XG, which defines a map

α : K∗G(X) −→ K∗(XG).

When X is a point, K∗G(X) ∼= R(G). For any other compact G-space X, the unique
map π : X → ∗ induces a pullback map π∗ : R(G) → K∗G(X), which gives K∗G(X) the
structure of an R(G)-module. Furthermore, there is a natural map K∗G(X)→ Z defined
by taking the rank of a vector bundle, which is known as the augmentation map. In the
case of X = ∗, its kernel IG ⊂ R(G) is called the augmentation ideal.

The theorem of central interest is the following.
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Theorem 2.1.1 (Atiyah-Segal completion theorem). Let X be a compact G-space such
that K∗G(X) is finite over the representation ring R(G). Then there is an isomorphism

α : K∗G(X)∧ −→ K∗(XG),

where K∗G(X)∧ is the IG-adic completion of K∗G(X).

Remark 2.1.2. The cited [2, theorem 2.1] contains the slightly stronger result that
there is an isomorphism of pro-rings whose limit is the isomorphism in the theorem
above.

Atiyah and Segal address real topological K-theory, or KO-theory, the topological
analogue of Hermitian K-theory, in [2, section 7], using KR-theory as a more general
invariant. In short, the KR-theory of a compact space with involution X is the K-
theory of the category of complex vector bundles with an anti-linear involution that is
compatible with the involution on X. If the involution on X is trivial, then its KR-theory
is isomorphic to its KO-theory via the functor that sends a real vector bundle V over
X to its complexification V ⊗ C with the obvious anti-linear involution v ⊗ z 7→ v ⊗ z̄.
The inverse of that functor sends a complex vector bundle V over X with anti-linear
involution to the fixed points of this involution.

2.2 Motivic homotopy theory

In the twentieth century, the study of topological spaces up to homotopy became a
prolific area of mathematical research, as the realization grew that homotopy groups
contain profound information about the spaces studied.

At the turn of the century, as algebraic geometry and categorical methods matured,
Morel and Voevodsky were led to consider the possibility of a homotopy theory for
algebraic varieties. In such a theory, the unit interval, which is fundamental to the
definition of a homotopy between continuous maps, would have to be replaced by a
suitably contractible, one-dimensional variety. Morel and Voevodsky chose the affine
line A1, developed the concept of a site with a unit interval and demonstrated that
an appropriate category of schemes could be equipped with such a structure in their
landmark paper [66] and the related texts [86] and [65], spawning what they called
A1-homotopy theory, and what is now also known as motivic homotopy theory.

One of the great advantages of motivic homotopy theory is that many cohomology
theories in algebraic geometry become representable by motivic spectra, yielding a general
framework for the study of cohomology theories and their operations. Conversely, if a
cohomology theory satisfies a certain collection of axioms, such as being A1-invariant,
then it is necessarily representable [86, section 6]. Furthermore, motivic spectra can
be organized into a triangulated category called the stable motivic homotopy category,
enabling the use of triangulated methods. The proof of the Bloch-Kato conjecture [87],
for example, relies crucially on this framework.

Motivic homotopy theory is a broad and active area of modern research, and we
cannot hope to explain all of its aspects here. In this section, we will focus mainly on
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the part of the theory needed for the construction of classifying spaces (see chapter 3),
as well as a working definition of motivic spectra.

In order to do homotopy theory on a category, it requires the notion of a homotopy
between morphisms. The concept of homotopy originated in topology, but a curious
analogue appeared in the study of chain complexes: the chain homotopy. In the 1960’s,
Quillen distilled a categorical framework for homotopy theory from these examples, by
showing that the category of topological spaces as well as the category of chain com-
plexes of abelian groups can be equipped with the structure of a model category, thereby
generalizing the context of homotopy theory. For a basic and readable introduction to
the theory of model categories, see [27].

Definition 2.2.1. A model category is a category C together with three classes of mor-
phisms w, c and f called weak equivalences, cofibrations and fibrations, respectively, such
that

(M1) the category C admits small limits and small colimits;
(M2) the class of weak equivalences contains all isomorphisms;
(M3) if f and g are morphisms of C such that the composition gf exists, and if two of

f , g and gf are weak equivalences, then so is the third; and
(M4) the pairs (c, f ∩w) and (c ∩w, f) are weak factorization systems on C.

If the category C satisfies (M1), then a triple (w, c, f) of classes of morphisms satisfying
(M2-M4) is called a model structure on C.

Sometimes, condition (M1) is weakened to the existence of finite limits and colimits.
It is possible to define the notion of (left and right) homotopy in a model category.
Subsequently, one obtains the notion of the homotopy category Ho(C) of a model category
C, the study of which can be thought of as the homotopy theory of C.

The category of schemes Sch, while admitting finite limits, does not admit pushouts
except in some special cases such as the gluing construction, thus does not admit a model
structure. The category Smk of smooth schemes of finite type over a field k suffers the
same fate, but it turns out that restricting to this category allows the use of homotopy
purity, also known as the Thom isomorphism, which is often useful. We can easily adjoin
all limits and colimits by passing to the category PSh(Smk) of presheaves of sets on
Smk, but this category still does not admit a suitable model structure. This is fixed by
replacing the category of sets by the category sSet∗ of pointed simplicial sets.

Simplicial sets are combinatorial models for topological spaces. The singular complex
of a topological space is a fundamental example of a simplicial set. In fact, taking the
singular complex of a space is a functor which is right adjoint to another functor called
geometric realization. We will give a quick overview of simplicial sets for the uninitiated,
for a wonderful and complete introduction see [68].

Definition 2.2.2. The simplex category ∆ is the category whose objects are non-empty
totally ordered finite sets and whose maps are order-preserving morphisms. A morphism
f : X → Y of totally ordered sets is order-preserving if, for x1 ≤ x2 in X, f(x1) ≤ f(x2)
in Y . A small model of ∆ is given by the sets [n] = {0 < 1 < · · · < n} with n ∈ N.
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Any order-preserving morphism between totally ordered finite sets can be written as
a composition of elementary order-preserving morphisms, the face and degeneracy maps.

Definition 2.2.3. For i ≤ n + 1, the face map δni : [n] ↪→ [n + 1] is the unique order-
preserving injection that does not have i in its image. For i < n, the degeneracy map
σni : [n] � [n−1] is the unique order-preserving surjection such that σni (i+1) = σni (i) = i.

Definition 2.2.4. A simplicial set is a functor S : ∆op → Set, in other words, a
presheaf of sets on the simplex category. The category of simplicial sets sSet is the
presheaf category PSh(∆). Let S be a simplicial set. We write Sn for S([n]). The
elements of S0 and S1 are called the vertices and edges of S, respectively. A pointed
simplicial set is a functor S : ∆op → Set∗, where Set∗ is the category of pointed sets.
We denote by sSet∗ the corresponding category of pointed simplicial sets.

Definition 2.2.5. For n ∈ N, the standard n-simplex ∆n is the representable presheaf
∆(−, [n]). The face map dni : ∆n+1 → ∆n is the map ∆(−, [n+ 1])→ ∆(−, [n]) induced
by composition with the face map δni from definition 2.2.3. Similarly, the degeneracy
map sni : ∆n−1 → ∆n is the map induced by composition with the degeneracy map σni .

Lemma 2.2.6. For a simplicial set S and n ∈ N, there is a bijection Sn → sSet(∆n, S).

Proof. This follows from the Yoneda lemma.

Definition 2.2.7. For S ∈ sSet and n ∈ N, we call an element of Sn an n-simplex of S.
An n-simplex σ is called degenerate if there exists an (n−1)-simplex τ ∈ Sn−1 such that
sni (τ) = σ for some i. Note that for the standard n-simplex ∆n, every m-simplex with
m > n is degenerate, since any order-preserving morphism [m] → [n] factors through a
degeneracy map.

Returning to motivic homotopy theory, one obtains the category Spc∗(k) of pointed
simplicial presheaves on Smk, which are functors Smop

k → sSet∗. Any category of
pointed simplicial presheaves inherits a pointwise smash product from sSet∗.

Here is a sketch of the construction of the model category Spc∗(k), carried out
in [24, section 8] as an example of a more general procedure. There is a general model
structure on Spc∗(k) called the projective structure or the Bousfield-Kan model structure,
which exists on any category of pointed simplicial presheaves. Its fibrations and weak
equivalences are maps which are pointwise fibrations and weak equivalences in simplicial
sets, respectively. However, this model structure does not take into account any topology
on Smk, so one localizes with respect to the Nisnevich topology on Smk. This is called
the universal model category for Smk, considered as a site with the Nisnevich topology,
in [24, definition 7.2]. Finally, one last localization is needed to make the affine line
contractible. When we write Spc∗(k), we shall understand its model structure to be the
localization in which the affine line is contractible. The objects of Spc∗(k) are called
(pointed) motivic spaces. This construction is different from the original construction in
[66], but equivalent by [24, proposition 8.1]. The homotopy category H(k) of Spc∗(k)
is called the unstable motivic homotopy category, analogously to the unstable homotopy
category of topological spaces.

11
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Remark 2.2.8. It is possible to construct an ∞-category H(k)∗ whose homotopy cat-
egory coincides with H(k) by [69, section 2.4.1]. Again, we start with the category
Smk of smooth schemes of finite type over k. Then, we take the nerve N(Smk),
which is an ∞-category. We equip N(Smk) with the usual Nisnevich topology us-
ing [61, remark 6.2.2.3]. Next, we take the ∞-category P(N(Smk)) of presheaves on
N(Smk) and sheafify with respect to the Nisnevich topology to obtain the ∞-topos
ShNis(N(Smk)). Note that the sheafification functor is left adjoint to the inclusion
ShNis(N(Smk)) ⊂ P(N(Smk)) by [61, proposition 5.5.4.15]. Now we would have to
take the hypercompletion of ShNis(N(Smk)) for technical reasons, but it turns out
that ShNis(N(Smk)) is already hypercomplete by [66, proposition 3.1.16]. Finally, we
take the localization of ShNis(N(Smk)) with respect to the class of all projection maps
X×A1 → X with X ∈ Smk to obtain H(k). The∞-category H(k) admits a final object,
so we may consider the ∞-category H(k)∗ of pointed objects, which is the underlying
∞-category of the model category Spc∗(k).

The unstable motivic homotopy category has a curious property its topological sibling
does not share: there are two different circles! One is the simplicial circle S1 obtained
from the constant functor S1 : Smk → sSet∗ sending X ∈ Smk to ∆1/∂∆1, the other
one is the Tate circle Gm obtained by pointing the punctured affined A1 − 0 at 1. The
smash product of these two circles is the projective line P1.

Lemma 2.2.9. The smash product of S1 and Gm is S1 ∧Gm = P1.

Proof. The projective line admits a Zariski cover P1 = U ∪V , such that U ∼= A1, V ∼= A1

and U ∩ V ∼= Gm. Hence there is a pushout diagram

Gm A1

A1 P1

in Spc(k). The maps Gm → A1 are both cofibrations, so the above diagram corresponds
to the homotopy pushout diagram

Gm ∗

∗ S1 ∧Gm,

whence P1 = S1 ∧Gm, as was to be shown.

In light of this lemma, we regard spheres in Spc(k) as having two parameters.

Definition 2.2.10. For natural numbers p ≥ q, let Sp,q = (S1)∧p−q∧G∧qm . In particular,
S1 = S1,0, Gm = S1,1 and P1 = S2,1.

12
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It is possible to construct a reasonable category of motivic spectra Spt(k), in which
the functor Sp,q ∧ − becomes invertible. The homotopy category of this category is
called the stable motivic homotopy category and is denoted by SH(k), or simply SH if
no confusion can arise. It is a triangulated category, where the shift functor is given by
smashing with the simplicial circle S1,0. There is an infinite suspension functor

Σ∞P1 : Spc∗(k) −→ Spt(k),

which sends a pointed motivic space X to its P1-suspension spectrum Σ∞P1(X). If X is
an unpointed scheme, we denote by X+ the pointed motivic space X t∗. Of course, the
model category Spt(k) also has an underlying ∞-category, which can be obtained by
equipping the∞-category H(k)∗ of remark 2.2.8 with the symmetric monoidal structure
induced by the smash product and then formally inverting (P1,∞) as in [69, definition
2.38].

For most of the purposes of this thesis, it will suffice to think of Spc∗(k) as a closed
model category containing Smk as a full subcategory, with an infinite suspension functor
Σ∞P1 : Spc∗(k)→ Spt(k). The functor Σ∞P1 and its adjoint Ω∞P1 become invertible on the
stable motivic homotopy category SH(k). Furthermore, SH(k) is triangulated with
translation the simplicial suspension Σs = S1

s ∧−, the inverse of which is denoted by Ωs.
As in the case of the classical stable homotopy category, an object E ∈ SH(k) defines a
cohomology theory on Smk. However, these motivic cohomology theories are bigraded,
because of the existence of the two different circles.

Definition 2.2.11. Let E ∈ SH(k) and X ∈ Smk with suspension spectrum Σ∞P1X+.
For p, q ∈ Z, the cohomology theory E on X in bidegree (p, q) is defined as the abelian
group

Ep,q(X) = SH(k)(Σ∞P1X+, S
p−2q
s ∧ (P1)∧q ∧ E).

Note that it is indeed an abelian group since SH(k) is triangulated and therefore additive.

2.3 Perfect complexes

Thomason was working on the algebraic K-theory of schemes, when one night, his de-
ceased friend Tom Trobaugh appeared to him in a dream, telling him to consider perfect
complexes. Thomason, who was sure that his friend’s remark in the dream had been
wrong, pursued the idea anyway and ended up laying the foundations of the modern
algebraic K-theory of schemes [80], crediting Trobaugh as co-author. Since then, cate-
gories of perfect complexes have become the standard way of organizing the algebraic
K-theory of schemes.

The previous approach to algebraic K-theory was Quillen’s Q-construction for exact
categories [67], but Waldhausen [89] realized that algebraic K-theory could be defined
for Waldhausen categories, which Waldhausen himself called categories with weak equiv-
alences and cofibrations. The category of perfect complexes of sheaves of modules on a
scheme admits such a structure, and is explained in [73, section 3]. See also [77, Tag
08CL] and [77, Tag 08C3] for more details on perfect complexes.
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In this thesis, we organize perfect complexes into dg categories, which will be studied
in much more detail in chapter 5. For a scheme X over a suitable base scheme S, the
category of chain complexes of OX -modules can be enriched in the category of OS-
modules, which makes it into an OS-linear dg category. Most of the dg categories we
will encounter in this thesis will be of this form.

Let X be a scheme.

Definition 2.3.1. A strictly perfect complex of OX-modules is a bounded complex of
finite locally free OX -modules. The strictly perfect complexes of OX -modules form a dg
category, which is denoted by sPerf(X).

Definition 2.3.2. A perfect complex M of OX-modules is a complex ofOX -modules such
that there exists an affine open cover {Ui}i of X such that each M |Ui is quasi-isomorphic
to a strictly perfect complex. The category Perf(X) of perfect complexes on X is the full
dg subcategory of the dg category Ch(OX) of chain complexes of OX -modules consisting
of the perfect complexes of OX -modules.

Let X be a scheme with an action of a group scheme G.

Definition 2.3.3. An perfect complex M of G-equivariant OX-modules is a complex
of G-equivariant OX -modules such that there exists an affine open cover {Ui}i of X
such that each M |Ui is quasi-isomorphic to a bounded complex of finite locally free G-
equivariant OX -modules. The category PerfG(X) of G-equivariant perfect complexes
on X is the full dg subcategory of the dg category ChG(X) of chain complexes of
G-equivariant OX -modules consisting of the perfect complexes of G-equivariant OX -
modules.

Definition 2.3.4. The scheme X has the resolution property if every coherent OX -
module is the quotient of a finite locally free OX -module.

Sometimes, the resolution property is formulated by requiring that every quasi-
coherent OX -module is a directed colimit of finitely presented OX -modules

Definition 2.3.5. Let L be an invertible OX -module and let f ∈ L(X) be a global
section. Define

Xf = {x ∈ X | Lx ∼= fxOX},

that is, Xf consists of the points x ∈ X such that f(x) 6= 0, or equivalently, fx /∈ mxLx.

A set Xf ⊂ X as above, with f a global section of an invertible sheaf, is an open
subscheme of X, as explained in [34, (5.5.2)]. The following definition is [44, definition
2.2.4].

Definition 2.3.6. A collection {Li | i ∈ I} of line bundles on X is said to be an ample
family of line bundles if the open subschemes Xf , with f ∈ L⊗ni for some i ∈ I and
n ∈ N, form a basis for the topology on X.

For equivalent definitions, see [44, proposition 2.2.3].

14
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Proposition 2.3.7. If X is a quasi-compact quasi-separated scheme admitting an ample
family of line bundles, then X has the resolution property.

Proof. Let {Li : i ∈ I} is an ample family of line bundles on X and let F be a coherent
OX -module. By [44, proposition 2.2.3(ii)], there are families (mi)i∈I with mi ≥ 0 and
(ni)i∈I with ni > 0 such that there is a surjective morphism of sheaves⊕

i∈I

(
L⊗−nii

)⊕mi −→ F .
Hence F is the quotient of a finite locally free OX -module, and the proof is done.

Definition 2.3.8. A quasi-compact quasi-separated scheme admitting an ample family
of line bundles is called divisorial.

The following proposition is [73, proposition 3.4.8].

Proposition 2.3.9. Let X be a divisorial scheme. Then the fully faithful inclusion
sPerf(X) ⊂ Perf(X) induces an equivalence D(sPerf(X)) ' D(Perf(X)) of derived cat-
egories.

For the rest of this thesis, we will only consider divisorial schemes, and we shall use
sPerf(X) and Perf(X) interchangeably.

3 Classifying spaces

The ultimate goal of this thesis is to prove Atiyah-Segal completion for Grothendieck-
Witt theory, which means equivariant Grothendieck-Witt theory and therefore classi-
fying spaces are involved, as discussed in the introduction. This warrants a rigorous
account of the existing theory of classifying spaces in motivic homotopy theory.

The idea of classifying spaces is that they classify torsors over an arbitrary base.
Agnostically speaking, the classifying space BG of a group G ought to come equipped
with a universal G-torsor EG → BG such that any G-torsor T → X corresponds to a
unique map X → BG with the property that

T EG

X BG

is a pullback diagram, the slogan being that every torsor is the pullback of the universal
torsor along its classifying map.

Classifying spaces were originally constructed for topological groups, within the cat-
egory of topological spaces. Unfortunately, the classifying space of a group scheme does
not exist in the category of schemes. One of the advantages of motivic homotopy theory
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is that this situation is remedied, but in multiple ways: classifying spaces can be con-
structed naively, as Nisnevich sheaves, or as the sheafification of these Nisnevich sheaves
in some finer topology such as the étale topology.

The classifying spaces of interest will be those of linear algebraic groups, so an
overview of linear algebraic groups is given in the first subsection 3.1. A brief introduc-
tion to torsors in the category of schemes is given in subsection 3.3. Two different flavors
of classifying spaces in the motivic setting are defined and examined in subsection 3.5.
Subsection 3.6 gives the construction of geometric classifying spaces, which will be used
throughout this thesis. The fact that geometric classifying spaces model étale classifying
spaces is an essential ingredient in the proof of Atiyah-Segal completion.

3.1 Linear algebraic groups

Matrices with coefficients in a field k model the morphisms in k-linear algebra. The
group of linear automorphisms of a vector space V is usually called the general linear
group of V , denoted by GL(V ), and consists of invertible (n×n)-matrices once a basis is
chosen. If V = kn, then GL(V ) is also written as GLn(k). The subgroups of GL(V ) are
known as matrix groups or linear groups. Examples of linear groups include the general
linear group GLn(k) itself, the special linear group SLn(k) of matrices with determinant
1, the orthogonal group On(k) of matrices whose transpose and inverse coincide, and the
special orthogonal group SOn(k) = On(k) ∩ SLn(k). It is natural to ask whether these
linear groups give rise to functors Algk → Grp from the category of k-algebras to the
category of groups, and if they do, whether they are representable by group schemes.
The answer to both these questions is affirmative (even when k is only a commutative
ring), and the consequent study of the resulting group schemes is the modern theory of
linear algebraic groups. The following definitions are central to the subject.

Definition 3.1.1. Fix a base scheme S. A group scheme over S is a group object in
the category of schemes Sch /S, which is the same as a representable presheaf of groups
on Sch /S via the Yoneda embedding.

For more on group objects in categories, see [63, section III.6]. Since a general linear
group GLn(k) is the group of invertible (n × n)-matrices, and a matrix is invertible
precisely when its determinant is invertible, a general linear group scheme GLn should
reflect this property in a formal way.

Definition 3.1.2. The general linear group GLn,Z over Z is the scheme

SpecZ[{Tij | 1 ≤ i, j ≤ n},det−1],

where det is the determinant of the formal (n×n)-matrix (Tij). For an arbitrary scheme
S, the general linear group GLn,S over S is defined as

GLn,S = GLn,Z×SpecZS.

More generally still, if E → S is a vector bundle over a scheme S, then the general linear
group GL(E) is the group scheme Aut(E) over S of linear automorphisms of E.
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If there is no risk of confusion, GLn,S will simply be denoted by GLn. When S =
SpecA is affine, one also writes GLn,A instead of GLn,S . By construction, for a scheme
X, the group GLn,Z(X) of X-valued points is the group of invertible (n × n)-matrices
with coefficients in the ring of global sections OX(X). For a field k in particular, the
group GLn,Z(k) corresponds to the classical general linear group. Note that GLn,S is
canonically isomorphic to GL(AnS). Furthermore, the general linear group GL(E) of a
vector bundle E → S is locally isomorphic to GLn, where n is the rank of E, as E is
locally trivial.

The philosophy is that linear algebraic groups should be subgroups of general linear
groups that are given by further algebraic properties of the formal matrix, such as the
determinant being 1 or the transpose being invertible.

Definition 3.1.3. A group scheme G over S is called a linear algebraic group if there
exists a closed immersion G→ GL(E) for some vector bundle E over S.

When S = Spec k is a point, GL(E) ∼= Spec k[Tij ,det−1] and a closed immersion into
GL(E) corresponds uniquely to an ideal I ⊂ k[Tij ,det−1]. Such an ideal is necessarily
generated by polynomial relations on the Tij , in other words, algebraic properties of the
formal matrix (Tij), as demonstrated in the following examples.

Example 3.1.4. The special linear group SLn,Z is the linear algebraic group

SpecZ[Tij ]/(det−1),

with notation as in definition 3.1.2. It is the subgroup of GLn,Z whose functor of points
assigns to a scheme X the group SLn(OX(X)) of (n × n)-matrices with coefficients in
OX(X) and determinant 1.

Example 3.1.5. A split torus of rank n is a linear algebraic group T that is isomorphic
to the subgroup Gn

m,Z ⊂ GLn,Z of invertible diagonal matrices. In more detail, for a
scheme X, Gn

m,Z(X) consists of diagonal (n× n)-matrices whose entries on the diagonal

are in the unit group Gm(X) ∼= OX(X)× of the ring OX(X).

3.2 Representation theory of linear algebraic groups

This section contains a few key concepts of the representation theory of linear algebraic
groups. Let G be a linear algebraic group over a base scheme S.

Definition 3.2.1. A finite representation of G is a homomorphism of group schemes
ρ : G→ GLn(E) for some finite locally free OS-module E .

If S = Spec k for some field k, then a finite G-representation corresponds uniquely to
a morphism G(k) → GLn(V ), which is a classical representation of the group G(k)
of k-rational points of G. These two different but equivalent incarnations of a G-
representation are often used interchangably.

Assume S = Spec k. Then G = SpecA for some Hopf algebra A over k. It is a useful
fact that A-comodules correspond to G-representations.
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Lemma 3.2.2. The data of a representation of G is equivalent to that of an A-comodule.

Another useful fact is that a finite G-representation always admits a composition
series.

Lemma 3.2.3. Let M be a finite G-representation. Then M admits a composition
series.

Proof. Consider M as an A-comodule. Note that M is a finite dimensional over k by
assumption. HenceM is finite length as k-comodule, and it follows thatM is finite length
as A-comodule. By the Jordan-Hölder theorem, M admits a composition series.

3.3 Torsors in sites

Torsors are the objects classified by classifying spaces, so if there is to be any hope of
defining and constructing some kind of universal torsor, one must understand what a
torsor is. The material in this section is based on [85, section 4.4.1].

It is useful to think of a torsor as a group that has forgotten its neutral element,
ignoring the subtleties of the theory, which will be presented hereafter. Let C be a site
and G a group object in C.

Definition 3.3.1. Let X and Y be G-objects in C, with action maps a : G ×X → X
and b : G× Y → Y . A map f : X → Y is called

(i) G-equivariant if the diagram

G×X G× Y

X Y

id×f

a b

f

commutes; and
(ii) G-invariant if f is G-equivariant and the action of G on Y is trivial.

Definition 3.3.2. Let Y be an object of C. A trivial G-torsor X over Y in C is a
G-object X in C, together with a G-invariant map f : X → Y , such that there exists a
commutative diagram

G× Y X

Y,

g

pr2 f

where g is a G-equivariant isomorphism.

Intuitively, a trivial G-torsor over Y consists of copies of G, parametrized by Y . A
G-torsor over Y is an object over Y that is a trivial G-torsor locally on Y , and this is
where the topology on C begins to play a role.
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Definition 3.3.3. A G-torsor X over Y in C is an object X in C with an action of G,
together with a G-invariant map f : X → Y , such that there exists a covering {Ui → Y }
of Y for which the projection map X ×Y Ui → Ui is a trivial G-torsor over Ui for each i.

Sometimes, G-torsors are also called principal G-bundles, since they are trivial G-
bundles locally on the target. The following proposition gives a convenient alternative
description of G-torsors.

Proposition 3.3.4. Let X be a G-object in C with an invariant map f : X → Y . The
following are equivalent.

(i) The morphism f defines a G-torsor over Y .
(ii) The morphism f is a covering of Y and the arrow (a,pr2) : G×X → X ×Y X is

an isomorphism.

Proof. To see that (ii) ⇒ (i), note that there is a commutative diagram

G×X X ×Y X

X.

(a,pr2)

pr2 pr2

For an object T in C, (a,pr2)T (g(h, x)) = (ghx, gx) = g(a,pr2)T (h, x), so (a,pr2) is a
G-equivariant isomorphism and pr2 : X ×Y X → X is a trivial G-torsor. Therefore f
gives X the structure of a G-torsor over Y .

See the proof of [85, proposition 4.43] for the other direction.

Example 3.3.5. Here is the prototypical example of a nontrivial torsor in the category
Schét of schemes with the étale topology. Let K ⊂ L be a finite Galois extension with
group G′, and let G be the discrete group scheme over SpecK corresponding to G′.
Then the map SpecL → SpecK becomes an étale G-torsor if SpecL is equipped with
the Galois action, which can be described as follows. Let α ∈ L be a primitive element,
so that L = K[α]. Note that

G =
∐
g∈G′

SpecK = Spec

∏
g∈G′

K

 .

The Galois action a : G× SpecL→ SpecL is given by the map

L→
∏
g∈G′

L, α 7→ (αg)g∈G′ .

Here the action of G′ on L is written as a right action so that a is a left action.

There is an alternative and more general definition of torsors in terms of sheaves, for
which it suffices that G is a sheaf of groups on a site C. Note that this means that G
is not necessarily representable. The interested reader may compare and contrast this
definition with [77, Tag 03AH].
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Definition 3.3.6. Let C be a site, X a sheaf of sets on C and G a sheaf of groups on
C. A G-torsor is a morphism π : Y → X of sheaves on C, where Y is equipped with a
G-action a : G× Y → Y , that satisfies the following conditions.

(i) The morphism π is G-invariant, that is, π(a(g, y)) = π(y) for all g ∈ G and y ∈ Y .
(ii) The morphism G × Y → Y × Y of sheaves given by (g, y) 7→ (a(g, y), y) is a

monomorphism. In this case, we call the action a : G× Y → Y categorically free.
(iii) Let Y/G be the coequalizer of the diagram

G× Y Y
a

pr2

of sheaves on C. The canonical morphism Y/G → X induced by π is an isomor-
phism of sheaves.

A morphism of G-torsors Y → Y ′ is a commutative diagram

Y Y ′

X

φ

π π′

of G-equivariant morphisms of sheaves on C.

The fact that a G-torsor π : Y → X is locally trivial is now hidden in the fact that
Y/G is a coequalizer and is therefore the sheafification of the naive quotient presheaf
U 7→ Y (U)/G(U).

Generalizing even further, we can replace the category Set with the category of
simplicial sets sSet, in which case G becomes a sheaf of simplicial groups. Since motivic
spaces are sheaves of simplicial sets, we will need the definition from [66, section 4.1] in
the context of motivic homotopy theory, but note that this definition is essentially the
same as definition 3.3.6; we simply replace sheaves with simplicial sheaves.

3.4 Free actions in the category of schemes

Free actions in the category of schemes feature prominently in the construction of quo-
tient schemes. Quotient schemes, in turn, are central to the construction of geometric
classifying spaces. This section provides the necessary background to make the latter
construction precise.

Intuitively, the action of a group on some object is free if it has no fixed points.
However, this is not quite accurate in the category of schemes and one can distinguish
between actions that are set-theoretically free, meaning they have no fixed T -valued
points for arbitrary T , and actions that are scheme-theoretically free or strictly free,
meaning that the graph of the action map is a closed immersion. Let G be an S-
group scheme acting on an S-scheme X with action morphism a : G ×S X → X. Let
(a,pr2) : G×X → X ×X be the graph of the action morphism.
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Definition 3.4.1. The action of G on X is called

(i) proper if (a,pr2) is proper;
(ii) set-theoretically free if (a,pr2) is a monomorphism; and

(iii) strictly free (or scheme-theoretically free) if (a,pr2) is a closed immersion.

Note that an action is set-theoretically free precisely if, for each S-scheme T , all its
T -valued points have trivial stabilizers. Proper set-theoretically free actions correspond
to strictly free ones by a result of Grothendieck.

Lemma 3.4.2. If the action of G on X is proper and set-theoretically free, then it is
strictly free.

Proof. A proper monomorphism is a closed immersion by [36, corollaire 18.12.6].

An important example of a strictly free action is that of a linear algebraic group on
the general linear group, which will turn out to be useful when constructing geometric
classifying spaces.

Lemma 3.4.3. Let i : G → GLn,S be a linear algebraic group. Then the translation
action a : G×GLn,S → GLn,S given by (g, x) 7→ gx is strictly free.

Proof. The map
GLn,S ×GLn,S −→ GLn,S ×GLn,S

given by (x, y) 7→ (xy, y) is an isomorphism and therefore a closed immersion, which
shows that the translation action of GLn,S on itself is strictly free. Since closed immersion
are stable under pullback, i × id : G × GLn,S → GLn,S ×GLn,S is a closed immersion.
The composition of these two closed immersion is the map

(a,pr2) : G×GLn,S −→ GLn,S ×GLn,S ,

which is therefore also a closed immersion, as was to be shown.

Fix a quasi-compact separated group scheme G over a base scheme S. Let X and
Y be quasi-compact quasi-separated schemes over S with a G-action. The following
lemmas are useful for determining when an action is proper or free.

Lemma 3.4.4. Assume that the action of G on both X and Y is proper. Then the
induced action of G on X ×S Y is proper.

Proof. As the fiber product of proper maps,

(aX ,pr2)× (aY , pr2) : G×X ×G× Y −→ X ×X × Y × Y

is proper. Since G is separated, the diagonal map G → G × G is a closed immersion.
Hence the composition

G×X × Y −→ G×X ×G× Y −→ X ×X × Y × Y

which defines the action of G on X × Y is proper, as was to be shown.
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For the computation of the Grothendieck-Witt theory of the classifying space of a
linear algebraic group G, it will be useful to know whether certain fppf-quotients X/G
exist as schemes. The following result, [21, théorème 4.C], provides a partial answer.

Theorem 3.4.5. Let S be a locally noetherian scheme of dimension ≤ 1 and G a group
scheme locally of finite type over S with a closed subgroup H that is flat over S. Then
the fppf-quotient G/H exists as a scheme.

This theorem applies nicely to the case of linear algebraic groups.

Corollary 3.4.6. Let E be a vector bundle over a locally noetherian scheme S of di-
mension ≤ 1 and let G ⊂ GL(E) be a linear algebraic group that is flat over S. Then
the fppf-quotient GL(E)/G exists as a scheme.

Proof. Since GL(E) is of finite type over S and G ⊂ GL(E) is closed by definition, the
result follows from theorem 3.4.5.

Note that S = SpecZ is noetherian of dimension 1, so as long as one considers linear
algebraic groups G ⊂ GLn,Z that are flat over SpecZ, the fppf-quotient GLn,Z /G exists
as a scheme; the same goes for S = SpecZ[1/2]. In particular, it is a universal categorical
quotient and therefore stable under pullback.

3.5 Nisnevich and étale classifying spaces

Since the category of motivic spaces admits colimits, classifying spaces of group objects
in motivic homotopy theory can be shown to exist. The objects of Spc∗(k) are simplicial
sheaves on the Nisnevich site Smk, so it most natural to first construct a classifying space
that classifies Nisnevich torsors. One can then consider the étale sheafification of the
resulting Nisnevich sheaf, which classifies étale torsors, and regard it as a Nisnevich
sheaf. This is possible because the étale topology is finer than the Nisnevich topology,
so any étale sheaf is automatically a Nisnevich sheaf. Typically, one considers étale
torsors in algebraic geometry, since one would like finite Galois extensions, as in example
3.3.5, to be torsors; any theory of torsors should mesh nicely with the theory of étale
fundamental groups. As a result, the étale classifying space is a slightly elusive object
in motivic homotopy theory, and we will see how we can construct it geometrically in
section 3.6.

A word of warning: in the preliminary section 2.2, we defined motivic spaces as
simplicial presheaves on the Nisnevich site Smk, because that makes their construction
easier. In this section, however, we stay close to the source material [66] by working
with simplicial sheaves instead. As already mentioned, the two theories are equivalent
by [24, proposition 8.1]. Furthermore, whenever Spc∗(k) is mentioned, we consider the
simplicial model structure before A1-localization.

Definition 3.5.1. Let C be a category. The nerve of C is the simplicial set N(C) : ∆op →
Set which sends [n] to the set of composable n-tuples (f0, . . . , fn−1) of morphisms in C.
A degeneracy map inserts an identity map in a given n-tuple, and a face map replaces
an adjacent pair of morphisms by the composition.
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Recall that a monoid can be defined as a category with a single object.

Definition 3.5.2. Let F be a pointed presheaf of monoids on Smk. Then the nerve of
F is the simplicial presheaf N(F ) : Smk → sSet sending a scheme X to the nerve of the
monoid F (X).

To define classifying spaces of simplicial sheaves of groups, we need the notion of a
bisimplicial set.

Definition 3.5.3. A bisimplicial set is a functor ∆op ×∆op → Set, and its diagonal is
the simplicial set obtained by precomposing with the diagonal functor ∆op → ∆op×∆op.

Let G be a group object in Spc∗(k), that is, a Nisnevich sheaf of simplicial groups
on Smk; in practice, G will often be a linear algebraic group over some field k. The
following definition can be found on [66, section 4.1, p. 123].

Definition 3.5.4. The Nisnevich classifying space BnisG of G is the diagonal simplicial
sheaf of the bisimplicial sheaf ([n], [m]) 7→ N(Gn)m, where N(Gn) is the nerve of the
sheaf of groups Gn, regarded as sheaf of monoids. Note that BnisGn = N(Gn)n.

As discussed in the introduction to this chapter, classifying spaces of torsors, in the
sense of definition 3.3.6, should be equipped with a universal G-torsor. The following
definition is the first step in the construction of such a universal torsor in our current
context.

Definition 3.5.5. LetX be a Nisnevich sheaf of sets on Smk. Define EX : Smk → sSet
by letting EXn : Smk → Set be the sheaf Xn+1. The face maps Xn+1 → Xn are given
by projections and the degeneracy maps Xn → Xn+1 are given by diagonals.

Let G be a Nisnevich sheaf of groups on Smk, T ∈ Smk and n ∈ N. Then there is a
natural map EG(T )n → N(G)(T )n, given by

(g0, . . . , gn) 7−→ (g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn),

which yields a natural map EG→ N(G). Note that EG admits a natural left G-action,
and that EG/G→ N(G) is an isomorphism with inverse

(g1, . . . , gn) 7→ (1, g1, g1g2, . . . , g1g2 · · · gn).

Now if G is a group object in Spc∗(k), then EG is defined as the diagonal of the
bisimplicial sheaf of groups (n,m) 7→ E(Gn)m. Again, there are a natural map EG →
BnisGn which factors through the isomorphism EG/G→ BnisGn.

We will need the notion of local fibrations from [46, section II.4.2] in the next lemma.
A morphism f : X → Y of simplicial presheaves on a site C has the local right lifting
property with respect to a map of simplicial sets c : K → L if there exists, for every
object U ∈ C and every commutative square

K X(U)

L Y (U)

c f
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a covering {Ui → U}i∈I of U such that the diagram

K X(U) X(Ui)

L Y (U) Y (Ui)

c f

admits a lift L → Y (Ui) for every i ∈ I. A local fibration is a morphism f : X → Y
of simplicial presheaves that has the local right lifting property with respect to all horn
inclusions Λni ⊂ ∆n with n ≥ 1 and 0 ≤ i ≤ n. A local trivial fibration is a morphism
f : X → Y of simplicial presheaves that has the local right lifting property with respect
to all boundary inclusions ∂∆n ⊂ ∆n with n ≥ 0. Note that although local trivial
fibrations are motivic weak equivalences, the converse is not true.

The following lemma [66, lemma 4.1.12] shows that BnisG classifies G-torsors up to
local trivial fibrations.

Lemma 3.5.6. Let X ∈ Spc∗(k) and let E → X be a G-torsor over X. Then there
exist a local trivial fibration pE : Y → X, and a map fE : Y → BnisG in Spc∗(k) such
that f∗E EG ∼= p∗EE.

Proof. Let Y = (EG × E)/G. Then pE : Y → X is a local trivial fibration, whose
fibers are locally isomorphic to the contractible space EG. Furthermore, there is a map
fE : Y → BnisG, which is the quotient by G of the projection EG × E → EG. Since
f∗E EG ∼= p∗EE by construction, the proof is done.

If G has simplicial dimension zero, that is, if G is just a sheaf of groups, then we
define H1(X,G) to be the set of isomorphism classes of G-torsors over X, where X is
some motivic space. We state the following result [66, lemmas 4.1.13-4.1.16] without
proof.

Lemma 3.5.7. Let G be a group object of Spc∗(k) of simplicial dimension zero. Let
BG be a fibrant replacement of BnisG in the simplicial model structure on Spc∗(k).

(i) If f : X → Y is a trivial local fibration in Spc∗(k), then the induced map
H1(Y,G)→ H1(X,G) is a bijection.

(ii) For X ∈ Spc∗(k), there is a natural bijection

H1(X,G) −→ H(k)(X,BnisG),

given by E 7→ fE ◦ p−1
E , where fE and pE are as in lemma 3.5.6.

(iii) There exists a G-torsor EG → BG such that for any X ∈ Spc∗(k), the map
Spc∗(k)(X,BG)→ H1(X,G) given by f 7→ f∗EG defines a bijection

H(k)(X,BG) −→ H1(X,G).

Summarizing, BnisG is a classifying space for G in the unstable motivic homotopy cate-
gory H(k).
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Since the étale topology on Smk is finer than the Nisnevich topology, there is a
continuous functor of sites

π : (Smk)ét −→ (Smk)Nis,

which yields the étale sheafification functor π∗ on simplicial Nisnevich sheaves and its
right adjoint π∗, as well as the total right derived functor Rπ∗.

Definition 3.5.8. Let G be a group object in Spc∗(k) of simplicial dimension zero.
Then the étale classifying space BétG is the object

BétG = Rπ∗π
∗BnisG

in the unstable motivic homotopy category H(k).

If BétG is a fibrant model of the classifying space of π∗G in the category of simplicial
étale sheaves, then π∗BétG ∼= BétG. Again, there is a natural bijection

H1(X,G) −→ H(k)(X,BétG)

as in lemma 3.5.7(iii). There is a natural map BnisG → BétG in H(k), adjoint to the
identity on π∗BnisG. By [66, lemma 4.1.18], this map is an isomorphism if and only if
G is a sheaf in the étale topology and if all étale G-torsors are also Nisnevich G-torsors,
in other words, if

H1
Nis(X,G) ∼= H1

ét(X,G)

for all X ∈ Smk. In the next section, we will see how we can construct a geometric
model for the étale classifying space BétG.

3.6 Geometric classifying spaces

As noted before, having a geometric model BgmG for the étale classifying space BétG
provides one with a means of computing the cohomology of BétG in good cases. Thus far,
they have been of fundamental importance in the proof of every variant of the Atiyah-
Segal completion theorem. The construction presented in this subsection is a special
case of the more general construction for quotient stacks found in [40, section 2], namely
the case where S = Spec k is a point in the notation of [40]. The original construction
comes from [66, section 4.2].

Let Lfppf be the fppf sheafification functor on simplicial presheaves on Smk. We
denote Spec k by ∗. Let G be an fppf sheaf of groups (of simplicial dimension zero) on
Smk acting on a simplicial fppf sheaf of sets U on Smk.

Definition 3.6.1. For a simplicial fppf sheaf X and an fppf G-torsor π : T → X, the
twist of U by π is defined as Uπ = Lfppf((U × T )/G).

Definition 3.6.2. The fppf classifying space BfppfG of G is defined as the fppf sheaf of
groupoids

BfppfG = Lfppf(∗/G).

25



on atiyah-segal completion for hermitian k-theory

The fppf classifying space BfppfG
There is analogue of lemma 3.5.7 for BfppfG. The construction of geometric classify-

ing spaces hinges on the following lemma [40, lemma 2.1], which allows the construction
of BfppfG as the fppf quotient of the auxiliary sheaf U .

Lemma 3.6.3. If Uπ → X is a motivic equivalence for all schemes X and all fppf
G-torsors π : T → X, then the morphism

Lfppf(U/G) −→ BfppfG

induced by U → ∗ is a motivic equivalence.

The following string of definitions and lemmas is used to construct a U satisfying
the condition of lemma 3.6.3 as a colimit of fppf quotients. In many cases, for example
when G is a linear algebraic group, these fppf quotients are representable by schemes,
which justifies calling such a colimit construction a geometric classifying space.

Definition 3.6.4. A system of vector bundles over a scheme S is a diagram (Vi)i∈I of
vector bundles over S, where the maps are vector bundle inclusions and I is a filtered
partially ordered set. A system of vector bundles over S is called:

(i) saturated if for every i ∈ I there exists j ≥ i such that the map Vi → Vj is
isomorphic under Vi to the inclusion (id, 0) : Vi → Vi ×S Vi; and

(ii) complete if for every affine X ∈ SchS and every vector bundle E over X, there
exists an i ∈ I and a vector bundle inclusion E → Vi ×S X.

The following example gives a convenient complete and saturated system of vector
bundles over S.

Example 3.6.5. The system of vector bundles (AnS)n∈N over S with maps AnS → An+1
S

given by v 7→ (v, 0) is saturated by definition. Now let X = SpecA be an affine scheme
and E a vector bundle over X. Then E corresponds to a finitely generated projective
A-module (cf. [33, proposition 11.7]) and is therefore a direct summand of a finite free
A-module of rank n. Thus there is a vector bundle inclusion E → AnX , which shows that
this system of vector bundles is also complete.

Lemma 3.6.6. Let X = SpecA be an affine scheme, V a vector bundle over X and
i : Z → X a closed immersion. Then any global section of i∗V → Z lifts to a global
section of V → X.

Proof. Let E be a locally free sheaf on X such that V ∼= Spec(Sym(E∨)). Then the
canonical map E → i∗i

∗E is an epimorphism, since i is a closed immersion. An element
s ∈ i∗i∗E(X) corresponds to a global section of i∗V → Z. Note that s also corresponds
to a map of OX -modules OX → i∗i

∗E . Furthermore, OX is projective since X is affine
and therefore by Serre’s criterion H i(X,F) = 0 for any quasi-coherent F and i > 0.
Thus s lifts to a map OX → E , which defines a global section of V → X, and the proof
is finished.
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Lemma 3.6.7. Let (Vi)i∈I be a saturated system of vector bundles over a scheme S and
let Ui ⊂ Vi be an open subscheme for each i ∈ I. Suppose that

(i) there exists an i ∈ I such that Ui → S admits a section; and
(ii) for each i ∈ I, the isomorphism Vi ×S Vi ∼= V2i induces an inclusion (Ui ×S Vi) ∪

(Vi ×S Ui) ⊂ U2i.

Then the simplicial presheaf U∞ = colimi Ui on SmS is motivically contractible.

Proof. If U∞(X) → S(X) is a weak equivalence of simplicial sets for all smooth affine
S-schemes X, then the canonical morphism of simplicial presheaves U∞ → S is a motivic
equivalence. Let X be an arbitrary smooth affine scheme over S. Then it suffices to show
that U∞(X) = Map(A•S ×S X,U∞) is a trivial Kan complex. Here, A•S is the motivic
space whose sheaf of n-simplices is given by AnS , with the usual face and degeneracy
maps. Consider a lifting problem

∂∆n Map(A•S ×S X,U∞)

∆n,

f

and replace f by the corresponding map ∂AnX → U∞, where ∂AnX is the boundary of
the algebraic n-simplex. Since ∂AnX is a compact object of PSh(SmS), there exists an
i ∈ I such that f factors through Ui. Increasing i if necessary, assumption (i) ensures
that Ui → S admits a section s : S → Ui. Consider the diagram

∂AnX Ui

Vi ×S AnX Vi

AnX S,

f

f ′

and note that f ′ is a section of Vi ×S ∂AnX → ∂AnX that factors through Ui ×S AnX .
Hence, by lemma 3.6.6, there exists a morphism g′ : AnX → Vi ×S AnX that lifts f ′.
Composing g′ with the projection Vi ×S ∂AnX → Vi yields a lift g : AnX → Vi of f . Let
Zi ⊂ Vi be a closed subscheme such that Zi = Vi − Ui as topological spaces. Then
g−1(Zi) ∩ ∂AnX = ∅. Let s′ : AnX → Ui ×S AnX be the base change of s to AnX and note
that s′(g−1(Zi)) ∩ f ′(∂AnX) = ∅. Hence,

g−1(Zi) t ∂AnX
s′tf ′−→ Vi ×S AnX

is a section and admits a lift h′ : AnX → Vi ×S AnX by lemma 3.6.6, which yields a map
h : AnX → Vi by composing h′ with the projection Vi ×S AnX → Vi.
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Now g and h are such that if g(x) /∈ Ui, then h(x) ∈ Ui for all x ∈ AnX . Thus,
by assumption (ii), the map (g, h) : AnX → Vi ×S Vi factors through U2i under the
isomorphism Vi ×S Vi ∼= V2i. Consequently, (g, h) is a solution to the above lifting
problem and U∞(X) is a trivial Kan complex, as was to be shown.

Let i : V → W be an inclusion of vector bundles over ∗. The subpresheaf U ⊂
Hom(V,W ) of vector bundle inclusions, defined on objects T ∈ Smk by

U(T ) = {linear maps f : V × T →W × T of maximal rank} ,

is representable by an open subscheme by [33, proposition 16.18]. Now let G ⊂ GL(V ) be
a closed subgroup and define an action a : G×Hom(V,W )→ Hom(V,W ) by (g, f) 7→ f ◦
g−1. The following fact is of key importance in the construction of geometric classifying
spaces.

Lemma 3.6.8. The action of G on the open subscheme U ⊂ Hom(V,W ) of vector
bundle inclusions is strictly free.

Proof. First assume that G = GL(V ). Since (a,pr2) : G × U → U × U being a closed
immersion is local on the target and therefore local on S, it may be assumed that
S = SpecA is affine and that V and W are free of rank m and n, respectively. Hence
G ∼= GLm,A. Consider a lifting problem

SpecA G× U

SpecB U × U

where B → A is a ring extension. The map SpecB → U × U corresponds to a pair
(y, x) of elements of Matn×m(B). Likewise the map SpecA → G × U corresponds to
a pair (g, x̃) with g ∈ G(A) and x̃ ∈ Matn×m(A). The commutativity of the solid
diagram ensures that x̃ = x and that xg−1 = y. Since x is of maximal rank m, it
contains an invertible submatrix x′ ∈ GLm(B). Note that x′g−1 = y′ for some submatrix
y′ of y, so g−1 = x′−1y′ has entries in B. Moreover, xg−1 = y is also of maximal
rank m, which shows that g−1 ∈ GLm(B). Thus there exists a unique dotted arrow
(g, x) : SpecB → G × U making the diagram commute. It follows that (a,pr2) is a
closed immersion by theorem A.2.1.

For an arbitrary closed subgroup G ⊂ GL(V ), the map

G× U −−−−→ GL(V )× U (a,pr2)−−−−→ U × U

is a composition of closed immersions and therefore a closed immersion, which concludes
the proof.

Finally, here is the theorem that constructs the geometric classifying space, see [40,
theorem 2.7] for the more general statement in the appropriate category of stacks.
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Theorem 3.6.9. Let V be a vector bundle over ∗ and G ⊂ GL(V ) a closed subgroup
that is flat and finitely presented. Let (Vi)i∈I be a complete saturated system of vector
bundles over ∗. For i ∈ I, let Ui ⊂ Hom(V, Vi) be the open subscheme of vector bundle
inclusions. Let U∞ = colimi∈I Ui. Then the morphism

Lfppf(U∞/G) −→ BfppfG

induced by the canonical map U∞ → ∗ is a motivic equivalence.

Proof. By lemma 3.6.3, it suffices to prove that for any G-torsor π : T → X in Smk,
the map (U∞)π → X is a motivic equivalence. By [41, lemma 4.6(1)], one need only
consider G-torsors π : T → X where X is affine; let π : T → X be such a G-torsor. Then
the schemes Wi = Hom(Vπ, Vi × X) define a saturated system of vector bundles over
X. Now (Ui)π ⊂ Wi, and it will be shown that the saturated system of vector bundles
(Wi)i∈I with the opens (Ui)π ⊂Wi satisfy the conditions of lemma 3.6.7, with X taking
the place of S in the statement of the lemma.

For condition (i), note that sections of (Ui)π → X are precisely the vector bundle
inclusions Vπ → Vi ×X. Since X is affine and the system of vector bundles (Vi)i∈I over
S is complete, it follows that there is an i ∈ I for which there exists such a vector bundle
inclusion.

Condition (ii) can be seen to hold as follows. Let Y be any scheme over X. Then a
pair of morphisms of vector bundles f, g : Vπ ×X Y → Vi × Y , where one of the two is
an inclusion, fits in a commutative diagram

Vπ ×X Y

V2i × Y Vi × Y

Vi × Y Y,

f

g

and the dotted arrow exists by the universal property of the pullback. Because either f
or g is a vector bundle inclusion, so is the dotted arrow.

Hence lemma 3.6.7 applies and it follows that (U∞)π → X is a motivic equivalence,
as was to be shown.

The fppf quotients Lfppf(Ui/G) in the above theorem are often representable by
schemes (cf. [21, théorème 5] and corollary 3.4.6), in which case Lfppf(U∞/G) is a
colimit of representables; this is why this construction is called geometric.

If G is representable by a smooth group scheme, then it is necessarily an fppf sheaf
since the fppf topology is subcanonical. Furthermore,

H1
fppf(X,G) ∼= H1

ét(X,G)

for all X ∈ Smk since any G-torsor T → X is a smooth morphism and therefore it
has étale-local sections by [36, corollaire 17.16.3]. Thus it follows that the natural map
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BétG → BfppfG is an isomorphism in H(k) whenever G is representable by a smooth
group scheme, which will always be the case in this thesis.

Now we tie the construction of BfppfG to the concept of an admissible gadget with a
nice G-action [66, definitions 4.2.1, 4.2.4]. These gadgets are useful for cohomology com-
putations involving the classifying space BétG since the cohomology of their constituent
parts is often well-understood.

Definition 3.6.10. Let X ∈ Smk. An admissible gadget over X is a sequence of tuples
(Vi, Ui, fi)i≥1, where the Vi are vector bundles over X, the Ui are open subschemes of Vi
and the fi : Ui → Ui+1 are monomorphisms over X such that:

(i) for any field k and closed point x : Spec k → X, there exists an i ≥ 1 such that
Ui ×X Spec k has a k-rational point; and

(ii) for any i there exists j > i such that the morphism Ui → Uj factors through the
morphism Ui → V 2

i − (Vi − Ui)2 of the form v 7→ (0, v).

Let V be a vector bundle over ∗ and G ⊂ GL(V ) a closed subgroup that is flat and
finitely presented.

Definition 3.6.11. Let (Vi, Ui, fi) be an admissible gadget over S. A nice action of G
on (Vi, Ui, fi) is an action of G on Vi for each i, such that:

(i) for each i ≥ 1, the open subscheme Ui ⊂ Vi is G-invariant, the map fi is G-
equivariant and the factorization of condition (ii) of definition 3.6.10 can be chosen
to consist of G-equivariant maps;

(ii) the action of G on Ui is strictly free; and
(iii) for any étale G-torsor T → X over a smooth S-scheme X, there exists an i such

that the morphism (Ui × T )/G→ X is Nisnevich locally an epimorphism.

Lemma 3.6.12. Let V be a vector bundle on ∗. Let Vi = Hom(V,Aik) for i ∈ N, and
fi : Vi → Vi+1 the monomorphism induced by the inclusion Aik → Ai+1

k on the first i
coordinates. Let Ui ⊂ Vi be the open subscheme of vector bundle inclusions. Let G act
on Vi via the standard action on V . Then (Vi, Ui, fi)i∈N is an admissible gadget over ∗
with a nice G-action.

Proof. Given a closed point x : Spec k′ → Spec k, the pullback of V is a finite dimensional
vector space over k′, so there exists a i ∈ N such that V×Spec k′ ∼= Aik′ . Hence Ui×Spec k′

has a k′-rational point, which shows that (i) of definition 3.6.10 is satisfied. Point (ii) of
definition 3.6.10 is satisfied by construction.

Since G acts on each Vi via V , the maps fi are G-equivariant, so condition (i) of
definition 3.6.11 is satisfied. Condition (ii) of definition 3.6.11 is also satisfied, by lemma
3.6.8. Let T → X be an étale G-torsor over X ∈ Smk. By the proof of theorem 3.6.9,
for i ∈ N the sections of (Ui×T )/G→ X are vector bundle inclusions (V ×T )/G→ AiX .
Let i be the rank of V . Then (V × T )/G has rank i over X, so (V × T )/G is Zariski
locally isomorphic to AiX . Hence (Vi, Ui, fi) satisfies condition (iii) of definition 3.6.11,
and the proof is finished.

30



herman rohrbach

We can use the above lemma to construct admissible gadgets with nice actions for
arbitrary X ∈ Smk with an action of G.

Definition 3.6.13. Let X be a smooth scheme over k with a G-action and let (Vi, Ui, fi)
be an admissible gadget over ∗ with a nice G-action. The motivic borel space XG is the
motivic space

XG = colim
i

(X × Ui)/G.

The following examples constitute the most important geometric classifying spaces
considered in this thesis.

Example 3.6.14. Let T ∼= Gt
m be a split torus over k of rank t. Then T ⊂ GLt

is the inclusion of invertible diagonal matrices. Set V = Atk and let (Vi, Ui, fi)i∈N be
the admissible gadget with nice T -action of lemma 3.6.12. Let i ∈ N≥t. Note that for
X ∈ Smk, Ui(X) is the set of (i×t)-matrices M of maximal rank t with entries inOX(X).
Then a computation shows that Ui/T ∼= (Pik)t, and it follows BgmT ∼= colimi∈N(Pik)t.
Note that BgmT is a product of t copies of the “infinite projective space” BgmGm.

More generally, for X ∈ Smk with trivial T -action, the motivic borel space XT is
colimi∈N(PiX)t.

Example 3.6.15. Let G ∼= GLt be a general linear group over k for some t ∈ N. Let
i ∈ N≥t. Then Ui/G = GLi /P = Grk(t, i), where P ⊂ GLi is the parabolic subgroup

P =

(
GLt ∗

0 GLi−t

)
.

Hence BgmG ∼= colimi∈N Grk(t, i) is a colimit of Grassmannians, of which we can think
as an infinite Grassmannian.

4 Milnor exact sequence

The Milnor exact sequence is instrumental in computing the cohomology of classifying
spaces, since it provides a means of detecting whether a cohomology theory commutes
with a given colimit. This section is dedicated to the Milnor exact sequence in motivic
homotopy theory, which takes the following form for a motivic spectrum E and an
N-filtered colimit X = colimi∈NXi of motivic spaces:

0→ lim1

i
Ep−1,q(Xi)→ Ep,q(X)→ lim

i
Ep,q(Xi)→ 0.

Thus the lim1-term should be understood as the obstruction to the equality of the coho-
mology of the colimit X and the limit of the cohomologies of the Xi. In particular, the
Milnor exact sequence can be applied to the classifying spaces of linear algebraic groups,
since these can be constructed as N-filtered colimits. Any treatment of the Atiyah-Segal
completion theorem would be incomplete without considering the appropriate Milnor
exact sequence.
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4.1 Mapping telescopes

We give a construction of the mapping telescope of a sequence of cofibrations in a
simplicial model category that is of independent interest, as well as useful in the proof
of the existence of the Milnor exact sequence.

Remark 4.1.1. Here is a remark to avoid potential confusion. When we write about
“the homotopy (co)limit” of some diagram in a model category C, we mean some explicit
construction of the homotopy colimit in C itself, not in Ho(C). Thus it makes sense to ask
whether the colimit and the homotopy colimit of a given diagram are weakly equivalent;
if they are, they are isomorphic in Ho(C).

Let C be a simplicial model category. Regard N as a poset with the usual partial
order. Let X : N→ C be a sequence of cofibrations in C, with X0 cofibrant. Denote the
cofibration X(i ≤ i+ 1) by fi : Xi → Xi+1.

Definition 4.1.2. The mapping telescope of X is the pushout T in the pushout diagram∐
m∈N

Xm
∐
m∈N

X2m+1 ⊗∆[1]

∐
m∈N

X2m ⊗∆[1] T.

ι1

ι0 (4.1.3)

where the map ιi for i = 0, 1 is given on Xm by idXm ⊗1 if the parities of m and i
coincide, and fm ⊗ 0 otherwise. Note that the ιi are cofibrations, so that T is in fact a
homotopy pushout.

Lemma 4.1.4. With notation as above, the mapping telescope T of X is weakly equiv-
alent to colimXi.

Proof. I will construct T inductively, so that the required weak equivalence will be a
colimit of weak equivalences.

(i) Define T0 = X0⊗∆[1]. Let i0 : X0 → T0 be the map idX0 ⊗1 induced by the trivial
cofibration of simplicial sets 1 : ∆[0] → ∆[1]. Since X0 is cofibrant, the map i0 is
a trivial cofibration by [37, proposition 9.3.9]. In particular, T0 is cofibrant. Let
p0 : T0 → X0 be the projection map induced by ∆[1] → ∆[0]. Then p0 is a weak
equivalence by two-out-of-three, since p0i0 = idX0 and i0 are weak equivalences.

(ii) Fix n ∈ N. Assume that Tm, a trivial cofibration im : Xm → Tm and a weak
equivalence pm : Tm → Xm have been defined for all m ≤ n. Define Tn+1 as the
following pushout:

Xn Xn+1 ⊗∆[1]

Tn Tn+1.

fn⊗0

in

tn
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The right vertical map, being the pushout of a trivial cofibration, is a trivial
cofibration, so the composition

Xn+1 Xn+1 ⊗∆[1] Tn+1

idXn+1
⊗1

is a composition of trivial cofibrations and therefore itself a trivial cofibration;
denote it by in+1. Clearly, the diagram

Xn Xn+1 ⊗∆[1]

Tn Xn+1

fn⊗0

in

fnpn

commutes, so there is a unique map pn+1 : Tn+1 → Xn+1 such that pn+1tn = fnpn
and pn+1in+1 = idXn+1 by the universal property of the pushout Tn+1. Hence pn+1

is a weak equivalence by two-out-of-three. The map tn is also a cofibration, since
it is the pushout of the cofibration fn ⊗ 0.

Combining (i) and (ii) yields a sequence of cofibrations T ′ : N → C, the colimit of
which is clearly T . Furthermore, there is a map p : T ′ → X which is an objectwise
weak equivalence of cofibrant objects, so by [37, theorem 18.5.3] the induced map of
homotopy colimits is a weak equivalence. Since the homotopy colimits of T ′ and X
are weakly equivalent to their respective colimits by [37, theorem 19.9.1], T is weakly
equivalent to colimXi, as was to be shown.

4.2 The motivic Milnor exact sequence

In this section, we construct the motivic Milnor exact sequence, using the fact that the
category SptP1(k) of P1-spectra is a stable, proper simplicial model category. As noted
before, this exact sequence is a useful tool for computing the cohomology of certain
colimits of motivic spaces, such as the geometric classifying spaces of theorem 3.6.9.
Such a computation will usually consist of (i) an assertion that the lim1-term of the
sequence vanishes, and (ii) a computation of the limit of the cohomology groups of each
space in the colimit diagram.

First, we prove an auxiliary lemma.

Lemma 4.2.1. Let C be a stable model category with suspension functor Σ. Let

X Y Z
f0

f1

g

be a coequalizer diagram in C. Assume that the homotopy coequalizer of f0 and f1 exists
and that Z is weakly equivalent to it. Then there exists a distinguished triangle

X Y Z ΣX
[f0]−[f1] [g] α

in the stable homotopy category Ho(C).
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Proof. By assumption

X Y Z,
[f0]

[f1]

[g]

is a coequalizer diagram in Ho(C). Since C is stable, Ho(C) is triangulated and in
particular additive, yielding a coequalizer diagram

X Y Z,
[f0]−[f1]

0

[g]

which by definition of the triangulated structure on Ho(C) fits into a distinguished tri-
angle

X Y Z ΣX,
[f0]−[f1] [g] α

as was to be shown.

The model structure of the category SptP1(k) of P1-spectra is stable, proper and
simplicial by [47, theorem 2.9]. Let f : X → Y be a map of P1-spectra and consider the
pushout square

X Y

X ∧∆[1] Z.

i

f

g (4.2.2)

Note that i is a cofibration. Since the model structure on SptP1(k) is proper, Z is weakly
equivalent to the homotopy pushout of f and i by [37, proposition 13.5.4]. Since X∧∆[1]
is contractible, it follows that this construction defines a cofiber sequence

X Y Z X[1],
f g h (4.2.3)

of P1-spectra, which becomes a distinguished triangle when passing to SH(k), since
[g] : Y → Z is the coequalizer of [f ] and the zero map in SH(k).

Remark 4.2.4. Lemma 4.2.1 is particularly useful when f0 and f1 are cofibrations in
SptP1(k), in which case the coequalizer Z automatically coincides with the homotopy
coequalizer of f0 and f1 by [37, proposition 19.9.1]. Note that the map [f0]− [f1] is not
necessarily represented by a map f : X → Y , but it is represented by a map f : X ′ → Y ′

with X ′ and Y ′ weakly equivalent to X and Y , respectively. Thus, when passing to
SH(k), the pushout square 4.2.2 defining the cofiber sequence for f becomes isomorphic
to the pushout square

X Y

∗ Z,

[f0]−[f1]

[g]

showing that the maps [f0]− [f1] and [g] really fit in a distinguished triangle in SH(k).
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Lemma 4.2.1 also applies to coequalizer diagrams in the category of pointed motivic
spaces Spc∗(k), since the suspension P1-spectrum functor Σ∞P1 : Spc∗(k) → SptP1(k)
has a right adjoint and therefore preserves colimits.

Bousfield and Kan prove the existence of a lim1-exact sequence of homotopy groups
of simplicial sets in [13, theorem IX.3.1], which might be adapted to the current setting.
However, we choose to present a more direct proof here. Note that the proof works for
any stable, proper and simplicial model category.

Theorem 4.2.5 (Milnor sequence). Let E ∈ SH(k) be a P1-spectrum in the motivic
stable homotopy category, with associated cohomology theory E∗,∗. Let X : N→ Spc∗(k)
be a sequence of cofibrations and denote the cofibration X(i ≤ i+ 1) by fi : Xi → Xi+1.
Then there is a short exact sequence

0→ lim1Ep−1,q(X)→ Ep,q(colim
i

Xi)→ lim
i
Ep,q(Xi)→ 0 (4.2.6)

for all p, q ∈ Z.

Proof. See [64] for a proof of the similar statement on the stable homotopy category
SH of Top. This proof will be analogous to the one found there, though slightly more
technical in nature.

Since Spc∗(k) has a simplicial model category structure, X has a mapping telescope
T as in definition 4.1.2. Now T fits in a coequalizer diagram∐

i∈N
Xi

∐
i∈N

Xi ⊗∆[1] T,
ι0

ι1

where the ιi from definition 4.1.2 have been replaced by their compositions with the
canonical inclusions∐

i∈N
X2i −→

∐
i∈N

Xi and
∐
i∈N

X2i+1 −→
∐
i∈N

Xi.

By lemma 4.1.4 and remark 4.2.4, T is weakly equivalent to colimXi in SptP1(k). Hence
the observation that

∐
i∈NXi is weakly equivalent to

∐
i∈NX2i ⊗∆[1] together with an

application of lemma 4.2.1 yields a distinguished triangle

∐
i∈N

Xi

∐
i∈N

Xi colimiXi Σs

(∐
i∈N

Xi

)
g h

in SH(k), where g = ι0−ι1. Let P =
∐
i∈NXi and C = colimiXi. For q ∈ Z, the functor

SH(k)(−,Σq
tE), which we shall also denote by the shorthand [−,Σq

tE], is cohomological
by e.g. [77, Tag 0149]. Thus, we apply [−,Σq

tE] to the above triangle to obtain a long
exact sequence of abelian groups

. . . [ΣsP,Σ
q
tE] [C,Σq

tE] [P,Σq
tE] [P,Σq

tE] . . . .h∗ g∗
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Note that [ΣsP,Σ
q
tE] = [P,ΩsΣ

q
tE] = Eq−1,q(P ) by definition 2.2.11. By shifting, we

can concoct a diagram

Ep−1,q(P ) Ep−1,q(P ) Ep,q(C) Ep,q(P ) Ep,q(P )

coker g∗p−1 ker g∗p

g∗p−1 h∗p g∗p

for any p, q ∈ Z, where the top row is exact and the dotted morphisms fit in a short
exact sequence. It remains to show that coker g∗p−1 = lim1

iE
p−1,q(Xi) and ker g∗p =

limiE
p,q(Xi). First note that

Ep,q(P ) =
∏
i∈N

Ep,q(Xi).

The map g∗ : Ep,q(P )→ Ep,q(P ) is given by g∗0 − g∗1, that is, for (ai)i ∈ Ep,q(P ),

(ai)i 7→ ((−1)i(ai − f∗i (ai+1)))i.

Multiply g∗ with ((−1)i)i, and note that this leaves its kernel and cokernel unchanged.
Now g∗ is given by

(ai)i 7→ (ai − f∗i (ai+1))i.

The kernel of this map is equal to limiE
p,q(Xi), and its cokernel is lim1

iE
p,q(Xi) by

definition. See section 3.5 of [92] for more details about the lim1-term.

4.3 The example of motivic cohomology

In this section, we will apply the motivic Milnor exact sequence to the example of motivic
cohomology to show that Totaro’s definition of the the Chow ring of a classifying space
from [83] is the right one in the context of motivic homotopy theory. Since Totaro defined
the Chow ring of a classifying space using an admissible gadget as in definition 3.6.10,
the proof of this result boils down to checking that the lim1-term in a particular instance
of the motivic Milnor exact sequence vanishes. We will generalize Totaro’s definition to
include Bloch’s higher Chow groups [10] along the way, for a smoother comparison to
motivic cohomology.

Integral motivic cohomology is given on P1-spectra by the Eilenberg-MacLane spec-
trum HZ as

HZp,q(E) = SH(k)(E,Sp−2q
s ∧ (P1)∧q ∧HZ),

see for example [88, section 3.1]. For X ∈ Sm /k and p, q ∈ Z, there are isomorphisms
HZp,q(X) ∼= CHq(X, 2q − p), where CHq(X,m) are the higher Chow groups as defined
in [10]. In particular, one retrieves the ordinary Chow groups HZ2q,q(X) = CHq(X).

Let G be a linear algebraic group over a field k. We will show that the construction
from [83] of the Chow ring CH∗(BG) of the classifying space of G coincides with the

36



herman rohrbach

cohomology ring HZ2∗,∗(BgmG) of the motivic geometric classifying space BgmG. We
will define the higher Chow groups CHq(BG,m) for all q,m ∈ N and prove

CHq(BG,m) ∼= HZ2q−m,q(BgmG),

which is a slightly stronger result.
We first prove a few auxiliary lemmas, adapting the proof of [83, theorem 1.1] to

the current context, in order to show that Totaro’s method of defining Chow groups
of classifying spaces also works for higher Chow groups, and that these coincide with
the motivic integral cohomology of BétG. The same technique is used in [28, definition-
proposition 1] and in [28, section 2.7], equivariant higher Chow groups are defined in a
similar way.

Let D be the category whose objects are pairs (V, S) where V is a representation
of G and S ⊂ V is a G-invariant closed subset such that G acts freely on V − S
and the geometric quotient (V − S)/G exists as a quasi-projective variety. There are
sufficiently many such pairs by [83, remark 1.4]. Morphisms f : (V, SV ) → (W,SW )
in D are inclusions f : V → W of G-representations such that f−1(SW ) ⊂ SV , which
implies codimV (SV ) ≤ codimW (SW ). Note that D is a non-empty category and that
we can produce pairs (V, S) with arbitrarily large codimV (S). In fact, the admissible
gadget of lemma 3.6.12 produces an infinite sequence of such pairs, with closed subsets
of increasing codimension.

Remark 4.3.1. The existence of a geometric quotient can be ignored if one works in
the category of smooth algebraic spaces over k, rather than schemes. In this case, as
long as G acts freely on V − S the quotient (V − S)/G always exists as an algebraic
space, c.f. the discussion at the beginning of [28, section 2.2]. Still, the existence of a
geometric quotient is often useful in computations. Note that the category of motivic
spaces over k also contains all smooth algebraic spaces over k (since algebraic spaces are
presheaves on Smk).

Lemma 4.3.2. Let (V, S), (V, S′) ∈ D such that both S and S′ have codimension ≥ d in
V . Then it holds that

CHq((V − S)/G,m) ∼= CHq((V − S′)/G,m)

for all q < d and m ∈ N.

Proof. Since it holds that S ⊂ S ∪ S′ and S ∪ S′ is also a G-invariant closed subset
of codimension ≥ d on whose complement G acts freely, I may assume without loss of
generality that S ⊂ S′. Let X = (V − S)/G, U = (V − S′)/G and Y = (S′ − S)/G.
There is a long exact localization sequence of higher Chow groups

· · · → CHq−d(Y,m)→ CHq(X,m)→ CHq(U,m)→ CHq−d(Y,m− 1)→ . . .

by [11, corollary (0.2)] (c.f. [10, theorem 3.1]; the proof contained a mistake, which was
rectified in [11]). As CHq−d(Y,m) = 0 for q < d and m ∈ N,

CHq(X,m) ∼= CHq(U,m)

for q < d and m ∈ N, as was to be shown.
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Lemma 4.3.3. Let (V, SV ), (W,SW ) ∈ D such that SV and SW have codimension ≥ d.
Then

CHq((V − SV )/G,m) ∼= CHq((W − SW )/G,m)

for q < d and m ∈ N.

Proof. Consider ((V − SV )×W )/G and (V × (W − SW ))/G as open subsets of V ⊕W ,
once again as in the proof of [83, theorem 1.1]. These are both vector bundles; the former
over (V − SV )/G, the latter over (W − SW )/G. Note that both SV ×W and V × SW
have codimension ≥ d in V ⊕W . Thus, an application of lemma 4.3.2 yields

CHq(((V − SV )×W )/G,m) ∼= CHq((V × (W − SW ))/G,m)

for q < d and m ∈ N. Then it follows from A1-homotopy invariance for higher Chow
groups [10, theorem 2.1] that

CHq(((V − SV )×W )/G,m) ∼= CHq((V − SV )/G,m)

CHq((V × (W − SW ))/G,m) ∼= CHq((W − SW )/G,m)

for q,m ∈ N, which yields the desired result.

Lemmas 4.3.2 and 4.3.3 inspire the following definition.

Definition 4.3.4. The higher Chow group CHq(BG,m) of the classifying space BG is
the group CHq((V − S)/G,m) for any (V, S) ∈ D such that q < codimV (S).

Note that the symbol BG in the above definition does not actually represent a geo-
metric object, but is rather a placeholder for the geometric classifying space BgmG, as
we will show next by relating the integral motivic cohomology of BgmG to the higher
Chow groups of the classifying space in the sense of definition 4.3.4.

Theorem 4.3.5. There is a natural isomorphism

HZ2q−m,q(BgmG)→ CHq(BG,m), (4.3.6)

where CHq(BG,m) is as in definition 4.3.4.

Proof. Let (Vi, Ui, fi) be an admissible gadget over k with a nice G-action, as in defini-
tions 3.6.10 and 3.6.11, which exists by lemma 3.6.12. Let U∞ = colimi Ui. By theorem
4.2.5, there is an exact sequence

0→ lim1

i
CHq(Ui/G,m+ 1)→ HZ2q−m,q(U∞/G)→ lim CHq(Ui/G,m)→ 0

for all q,m ∈ N. Note that Bgm = U∞/G, so it remains to be shown is that the lim1-
term vanishes. It follows from lemma 4.3.3 that, for fixed q,m ∈ N, the inverse system of
Chow groups CHq(Ui/G,m+ 1) is constant for large enough i and therefore satisfies the
Mittag-Leffler condition (c.f. [77, Tag 0594]). Thus, by [30, corollary 6], the lim1-term
vanishes, and the proof is done.

Remark 4.3.7. One can also consider algebraic K-theory, which is similarly represented
by a motivic spectrum by [86, section 6.2]. In this case, the lim1-term of the Milnor exact
sequence vanishes in many cases by [57, theorem 7.5], yielding an analogue of theorem
4.3.5 for algebraic K-theory.
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5 Semi-orthogonal decompositions

The theory of semi-orthogonal decompositions has become an invaluable tool in algebraic
K-theory. It provides a way of describing the structure of certain “stable” categories,
such as stable ∞-categories, pretriangulated dg categories and triangulated categories.
We extend the theory of semi-orthogonal decompositions to include duality, thus making
it compatible with Grothendieck-Witt theory. All the calculations of Grothendieck-
Witt spectra in this thesis make use of such decompositions, which renders the theory
indispensable for our strategy of proof of the Atiyah-Segal completion theorem.

The structure of a ring or scheme is to a large extent reflected in its derived category,
so explicit descriptions of the derived category yield deep cohomological information.
One tool for giving such explicit descriptions is the semi-orthogonal decomposition. A
category with a semi-orthogonal decomposition can be thought of as being semi-simple
with respect to K-theory. Their existence already loomed in [89] and [80], which proved
additivity for algebraic K-theory using auxiliary categories of exact sequences.

Before we define semi-orthogonal decompositions, we review the theory of dg cate-
gories, which is the main categorical language of this thesis. The most relevant example
of a dg category here is the dg category of (bounded) chain complexes of sheaves of mod-
ules on a scheme X. The key idea is to replace the morphism set of chain maps between
two complexes by a morphism complex, yielding an enrichment in chain complexes of
the classical category of chain complexes. This provides a flexible framework for cate-
gorical constructions that are not available in the language of triangulated categories,
such as functorial mapping cones and more generally homotopy limits and colimits. It
is essentially the idea of enhanced triangulated categories, as introduced in [12].

The definitions and results of this section are not new and mainly sourced from
Keller’s excellent overview article [53], work by Toën [81] and Tabuada [78], and [58,
section 2].

5.1 dg Modules over a commutative ring

Let k be a commutative ring (or a sheaf of commutative rings, such as the structure
sheaf OX of a scheme X). The morphism object between two objects of a k-linear dg
category is a differential graded k-module. As such, the dg category of dg k-modules
forms the backbone of the theory of k-linear dg categories, and we will describe this
category in this section, starting with the objects.

Definition 5.1.1. A differential graded k-module, or more briefly a dg k-module, is a
graded k-module

M =
⊕
i∈Z

M i

together with a morphism of k-modules d : M → M called the differential of M such
that d(M i) ⊂M i+1 for all i ∈ Z and d2 = 0.

Note that a differential graded k-module can also be viewed as a complex of k-
modules. This perspective is often useful, and will be leveraged throughout, using the
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cohomological grading convention; by a complex we shall always mean a cochain complex.
Furthermore, every differential graded k-module has an underlying graded k-module,
which is obtained by forgetting the differential.

Definition 5.1.2. Let M be a dg k-module. The degree |x| or deg x of a homogeneous
element x ∈M i is defined as |x| = i.

Definition 5.1.3. A morphism of dg k-modules f : M → N is a morphism of graded
k-modules such that dNf = fdM , where dM and dN are the differentials of M and N ,
respectively. Classically, morphisms of dg k-modules are called chain maps. We will
denote the abelian group of chain maps M → N by Z0(M,N).

Definition 5.1.4. The category of dg k-modules is the category whose objects are dg
k-modules and whose morphisms are chain maps of dg k-modules as in definitions 5.1.1
and 5.1.3.

There are additive functors Zi, Bi and H i from the category of dg k-modules to
Modk, defined for a dg k-module M by the i-th cycles ZiM = ker(d : M i → M i+1),
the i-th boundaries BiM = im(d : M i−1 → M i) and the i-th cohomology H iM =
ZiM/BiM , respectively.

Definition 5.1.5. Let M and N be dg k-modules. Their tensor product M ⊗N is the
dg k-module whose n-th component is

(M ⊗N)n =
⊕
i+j=n

M i ⊗N j ,

and whose differential is given by

d(x⊗ y) = (dx⊗ y) + (−1)|x|(x⊗ dy)

on simple tensors x⊗ y ∈M i ⊗N j with i, j ∈ Z.

Definition 5.1.6. Let M be a dg k-module and n ∈ Z. Define Σ to be the dg k-module
consisting of a single copy of k in degree −1. Let Σn = Σ⊗n. The n-th shift ΣnM of M
is the tensor product Σn ⊗M . For i ∈ Z, (ΣnM)i = M i+n and di : M i+n → M i+n+1

is given by (−1)ndi+nM , by definition of the tensor product. The dg k-module ΣnM will
also be denoted by M [n].

Definition 5.1.7. Let M and N be dg k-modules. Let [M,N ] be the dg k-module
whose n-th component is given by the morphisms of graded k-modules ΣnM → N , and
whose differential is given by

df = dNf − (−1)|f |fdM

for f ∈ [M,N ]n. A morphism f ∈ [M,N ]n is called homogeneous of degree n. A
homogeneous morphism f is called closed if df = 0. Note that chain maps are precisely
the closed homogeneous morphisms of degree 0.
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From now on, when we write f ∈ [M,N ], we will always understand f to be homo-
geneous, unless explicitly indicated otherwise. The following result is folklore, and its
proof amounts to checking the relevant definitions.

Proposition 5.1.8. The category of dg k-modules has a closed symmetric monoidal
structure with tensor product ⊗, internal hom-functor [−,−], unit 1 = k and symmetry
τ : M ⊗N → N ⊗M given by τ(x⊗ y) = (−1)|x||y|(y ⊗ x).

Proposition 5.1.8 allows us to upgrade the category of dg k-modules to a dg category.

Definition 5.1.9. The dg category of dg k-modules dgModk is the category whose
objects are dg k-modules and whose mapping complex [M,N ] between two objects M
and N is the dg k-module [M,N ] of definition 5.1.7.

The underlying k-linear category Z0 dgModk is obtained by taking Z0 of each map-
ping complex [M,N ]. Note that Z0[M,N ] is the set of closed morphisms M → N ,
so that Z0 dgModk is the category of dg k-modules from definition 5.1.4. Limits and
colimits exist in dgModk and may be computed degreewise.

We may equip dgModk with the projective model structure [39, theorem 2.3.11], in
which the weak equivalences are the quasi-isomorphisms and the fibrations the surjec-
tions. This model structure is compatible with the monoidal structure, making dgModk
a symmetric monoidal model category in the sense of [39, definition 4.2.6].

The category dgModZ is closely related to the category sAb of simplicial abelian
groups via the Dold-Kan correspondence [48], a modern account of which can be found
in [32, chapter III]. The general version [23, Satz 3.6] due to Dold and Puppe states
that for an abelian category A, the normalized chain complex functor N : A∆op →
Ch+(A) to the category of non-negatively graded chain complexes is an equivalence
of categories, which admits an explicit inverse. Since we use a cohomological grading
convention, we should write Ch−(A) for the category of non-positively graded cochain
complexes instead of Ch+(A). In our current case, A is the abelian category of k-
modules Modk, and Ch−(Modk) is a full subcategory of Z0 dgModk. The Dold-
Kan correspondence makes it possible to construct an n-simplex in dgModk as the
normalized chain complex N(k[∆n]) of the free k-module on ∆n. For n = 0, this yields
the monoidal unit N(k[∆0]) = 1, and for n = 1, we obtain the standard interval in chain
complexes I = N(k[∆1]), which is the complex

I : . . . 0 k k ⊕ k 0 . . .
(1,−1)

concentrated in degrees [−1, 0]. There is a split monomorphism (0, 1) : 1 → I, and its
quotient is the cone object Γ. Hence the exact sequence

1 : . . . 0 0 k 0 . . .

I : . . . 0 k k ⊕ k 0 . . .

Γ : . . . 0 k k 0 . . .

(0,1)

(1,−1)
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in dgModk is analogous to the fiber sequence S0 ↪→ I+ � I in pointed topological
spaces, where I+ = I t ∗ is the unit interval with a disjoint base point. Recall that,
in pointed topological spaces, S0 is the unit for the smash product, smashing with I+

constructs the reduced cylinder, and smashing with I constructs the cone of a space,
making it contractible. Similar properties hold for 1, I and Γ in dgModk.

Definition 5.1.10. Let A,B ∈ dgModk. The cone ΓA of A is the tensor product
Γ⊗A. Similarly, the cylinder IA of A is the tensor product I⊗A.

The classical concept of chain homotopy can be reformulated using the cylinder.
Note that for A ∈ dgModk, there are two maps (0, 1) : 1→ I and (1, 0) : 1→ I, which
we can think of as the endpoints of IA.

Definition 5.1.11. Let f, g : A → B be chain maps in dgModk. A chain homotopy
f ∼ g is a commutative diagram

A IA A

B.

(0,1)

f

(1,0)

g

We leave it as an exercise for the reader to check that the above definition is equivalent
to the classical definition of chain homotopy; that Γ is chain contractible (i.e. 0 ∼ idΓ);
and that for contractible C, C ⊗ A is contractible and [C,A] is acyclic for all A ∈
dgModk.

It will be useful to give Z0 dgModk the structure of an exact category (see definition
5.4.1) by setting conflations to be those sequences A→ B → C such that for each i ∈ Z,
the sequence Ai → Bi → Ci is split exact in Modk. Using this structure, Γ fits in an
exact sequence 1→ Γ→ Σ in Z0 dgModk, given by the commutative diagram

1 : 0 0 k 0

Γ : 0 k k 0

Σ : 0 k 0 0,

which is clearly degreewise split, a splitting being given by reversing the vertical arrows.
Note that neither of these two splittings are chain maps. The resulting commutative
square

1 0

Γ Σ

is cocartesian in dgModk, in the same way that S1 is the pushout of the inclusion
S0 → I along the map S0 → ∗. This demonstrates the analogy between the shift functor
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on dgModk and the suspension functor on the stable homotopy category. The cone of a
chain map in dgModk is a functorial colimit construction, analogous to the construction
of cofibers in topology.

Definition 5.1.12. Let f ∈ [A,B] be a chain map in dgModk. The cone cone(f) of f
is the pushout

A B

ΓA cone(f)

f

in dgModk.

Since ΓA is contractible and A → ΓA is a cofibration in the model structure on
dgModk, the cone of a chain map f is also a homotopy cokernel of f . The cone
construction in dgModk serves as a blueprint for the cone construction in other dg
categories. In particular, we will define the arrow dg category Ar(dgModk) and show
that the cone construction is a functor C : Ar(dgModk)→ dgModk.

5.2 dg Categories

As in the previous section, let k be a commutative ring or a sheaf of commutative rings.

Definition 5.2.1. A dg k-category is a category A enriched in dgModk. It is small if
the collection of objects is a set, as usual. It is pointed if it is a equipped with a zero
object, called the base point and denoted 0. Thus a small pointed dg k-category consists
of the following data:

(i) a non-empty set of objects Ob(A);
(ii) for each pair of objects A,B ∈ A a dg k-module A(A,B) called the mapping

complex from A to B;
(iii) for each object A ∈ A a unit morphism 1A ∈ A(A,A)0;
(iv) for any three objects A,B,C ∈ A a morphism of dg k-modules

◦ : A(B,C)⊗A(A,B)→ A(A,C)

called composition, satisfying the usual associative and unital conditions; and
(v) a choice of zero object 0.

We shall mean by dg category a pointed dg k-category, to ease notation. For an un-
pointed dg category A, we denote by A+ the pointed dg category obtained by adding a
disjoint basepoint to A. For n ∈ Z and A,B ∈ A, an element f ∈ A(A,B)n is called a
homogeneous morphism of degree n, and if df = 0, the morphism f is said to be closed.

Note that dgModk is the prototypical example of a dg category by the above defi-
nition. Let A be a dg category and A ∈ A. Let 1 = 1A and let d : A(A,A) → A(A,A)
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be the differential. By definition, 1 = 1 ◦ 1 = ◦(1⊗ 1), and since ◦ is a morphism of dg
k-modules, it holds that

d(1) = d(1 ◦ 1) = ◦(d(1⊗ 1)) = (d(1) ◦ 1) + (1 ◦ d(1)),

which yields d(1) = 0. Similarly,

d(f ◦ g) = d(◦(f ⊗ g)) = ◦(d(f ⊗ g)) = (df ◦ g) + (−1)|f |(f ◦ dg),

so if both df = 0 and dg = 0, it holds that d(f ◦ g) = 0. These observations show that
Z0A ⊂ A is a k-linear category with the same objects as A, which can be thought of as
the underlying category of A.

More generally, each dg category A has induced categories ZnA, BnA and HnA for
n ∈ Z, whose objects are the objects of A and whose morphism sets are Zn(A(A,B)),
Bn(A(A,B)) and Hn(A(A,B)), respectively.

Definition 5.2.2. For a dg category A, its underlying category is the category Z0A,
which has the same objects as A and the closed morphisms of degree zero as its mor-
phisms. The homotopy category of A is the category H0A. We call a morphism
f : A→ B of Z0A an equivalence if its image in H0A is an isomorphism.

Definition 5.2.3. Let A and B be dg categories. A dg functor F : A → B is an enriched
functor of categories enriched in dgModk. Thus such an F consists of the following data:

(i) a map F : Ob(A) → Ob(B) on objects sending the base point of A to the base
point of B; and

(ii) for each pair of objects A,B ∈ A a morphism A(A,B) → B(FA,FB) of dg k-
modules, respecting composition and units.

Definition 5.2.4. The category of dg categories dgCatk has small pointed dg categories
as its objects and dg functors as its morphisms.

Let A,B ∈ dgCatk be dg categories and let F,G : A → B be dg functors.

Definition 5.2.5. A natural transformation of dg functors α : F → G is a collection{
αA

∣∣ A ∈ A, αA ∈ Z0B(FA,GA)
}

such that

FA GA

FB GB

αA

F (f) G(f)

αB

commutes for all A,B ∈ A and f ∈ A(A,B).

Definition 5.2.6. If there exists a dg functor F ′ : B → A such that FF ′ and F ′F are
naturally isomorphic to the respective identity functors on A and B, then F is called an
equivalence of dg categories.
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Definition 5.2.7. The tensor product dg category A⊗B is the dg category whose objects
are pairs (A,B) ∈ A × B, where all objects (A, 0B) and (0A, B) are identified with the
base point 0A⊗B, so that Ob(A⊗ B) = Ob(A) ∧Ob(B), and whose mapping complexes
are

(A⊗ B)((A1, B1), (A2, B2)) = A(A1, A2)⊗ B(B1, B2),

where the composition is given by

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (−1)|g2||f1|((f2 ◦ f1)⊗ (g2 ◦ g1))

for homogeneous morphisms f1 ∈ A(A1, A2), f2 ∈ A(A2, A3), g1 ∈ B(B1, B2) and g2 ∈
B(B2, B3).

Definition 5.2.8. The homomorphism dg category dgFun(A,B) has dg functors F :
A → B as its objects. For F,G ∈ dgFun(A,B), define [F,G] as the graded k-module
for which α ∈ [F,G]i is given by a collection

{
αA

∣∣ A ∈ A, αA ∈ B(FA,GA)i
}

such that

FA GA

FB GB

αA

F (f) G(f)

(−1)|α||f |αB

commutes for all homogeneous f ∈ A(A,B). Then define a differential d on [F,G] by
setting (dα)A = dB(FA,GA)αA for α ∈ [F,G] and A ∈ A.

The category of dg categories dgCatk becomes a closed symmetric monoidal category
with the tensor product of definition 5.2.7 and the mapping dg categories of definition
5.2.8.

Definition 5.2.9. Let C be a small category and A a dg category. Let k[C] be the
dg category whose objects are those of C and whose mapping complexes are given by
k[C](A,B)0 = k[C(A,B)] and k[C](A,B)i = 0 for i 6= 0, where k[C(A,B)] is the free
k-module on the set C(A,B). The functor dg category Fun(C,A) is the dg category
dgFun(k[C]+,A).

To describe Fun(C,A) more concretely, let us consider F ∈ Fun(C,A) for C a small
category and A a dg category. Let f : X → Y be a morphism in C. Since k[C]+(X,Y ) =
k[C(X,Y )] is a complex concentrated in degree zero, f is closed of degree zero. Hence,
as F : k[C]+ → A is a dg functor, F (f) is also closed of degree zero. Since homogeneous
morphisms in k[C]+ are freely generated by morphisms in C, it follows that F is a functor
C → Z0A.

Definition 5.2.10. Let A be a dg category and let [1] be the category consisting of two
objects with a single non-identity morphism between them. The arrow category Ar(A)
of A is the dg category Fun([1],A). The objects of Ar(A) are the morphisms of Z0A,
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and for f, g ∈ Ar(A), the mapping complex Ar(A)(f, g) is given in degree n by the
collection of those (α, β) ∈ A(A,A′)n ⊕ B(B,B′)n such that the diagram

A B

A′ B′

f

α β

g

commutes, and the differential of (α, β) ∈ Ar(A)(f, g)n is given by (dα, dβ).

Example 5.2.11. For a complex A and i ∈ Z, let A≤i be the naive truncation

A : . . . −→ Ai−1 −→ Ai −→ 0 −→ . . .

of A.
Let Ck be the full subcategory of dgModk whose objects are (representatives of

the isomorphism classes of) the bounded complexes of finitely generated free k-modules.
Then Ck is a full dg subcategory of dgModk, since the tensor products and mapping
complexes of such complexes are again bounded complexes of finitely generated free
k-modules in Ck.

The unit of Ck is the unit 1 of dgModk, and the cone object Γ, the interval I and
the shift object Σ of section 5.1 are contained in Ck. The category ffModk of finite
free k-modules embeds fully faithfully into Ck via k⊕m 7→ 1⊕m for m ∈ N. Consider an
object

M : . . . −→ 0 −→Ma −→Ma+1 −→ . . . −→M b−1 −→M b −→ 0 −→ . . .

in Ck, concentrated in degrees [a, b]. Then M is the cone of the morphism db−1 :
Σ−1M≤b−1 → M b, where Σ−bM b is the complex with a single copy of M b in degree
b. Note that Σ−bM b = (Σ−b)⊕m for some m ∈ N. Continuing iteratively, one sees that
M can be constructed from ffModk by taking finitely many shifts and cones. Hence Ck
is the closure of ffModk (and even of 1) in dgModk under shifts and cones.

5.3 dg Modules over a dg category

Just as it is often useful to think of a scheme X as a representable functor Schop → Set,
it can be useful to think of an object of a dg category A as a representable dg functor
Aop → dgModk.

Definition 5.3.1. Let A be a dg category. A dg A-module is a dg functor M : Aop →
dgModk.

Example 5.3.2. Let A be a dg category with a single object X and End(X) = R. Then
a dg A-module M : A → dgModk is the same as a dg R-module. This mirrors the
situation for a k-algebra R: an R-module M is the same as a functor M : A →Modk
where A is a pre-additive category with a single object X such that End(X) = R.
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Definition 5.3.3. Let A be a dg category. The dg category of dg A-modules Cdg(A) is
the dg category dgFun(Aop,dgModk).

Lemma 5.3.4 (dg Yoneda embedding). Let A be a dg category. Then there is a fully
faithful dg functor h : A → Cdg(A) given by A 7→ A(−, A). For A ∈ A, the image h(A)
will be denoted hA.

Proof. The proof is analogous to the classical Yoneda lemma.

Similarly to the classical case, we define a dg module F : Aop → dgModk to be
representable if it is isomorphic to hA ∈ Cdg(A) for some A ∈ A. We can define shifts
and cones of dg modules pointwise: the cone ΓF is the dg module A 7→ Γ⊗ F (A), and
for n ∈ Z, the shift ΣnF is the dg module A 7→ Σn ⊗ F (A). More generally, we can
define a dg functor

dgModk⊗Cdg(A) −→ Cdg(A)

by M⊗F 7→ (A 7→M⊗F (A)). Of course, we can also take the underlying category of dg
modules C(A) = Z0Cdg(A), which turns out to be a Frobenius category as in definition
5.4.2(v).

The dg category Cdg(A) is a cofibrantly generated dgModk-model category [82,
section 3]. If the (co)limit of a diagram of representable objects in Cdg(A) is itself
representable, then the (co)limit of the corresponding diagram in A exists. We will see
in section 5.4 that this is true in particular for cones of morphisms in pretriangulated
dg categories.

Definition 5.3.5. The derived category D(A) of a dg category A is the localization of
H0Cdg(A) with respect to the quasi-isomorphisms.

In many cases of interest, the derived category D(A) will be too large, and it will be
more convenient to construct a related, smaller category, see example 5.5.5(iii).

5.4 Exact and pretriangulated dg categories

As defined in [67, section 2], an exact category is an additive category with a distinguished
collection of sequences A � B � C, which is to satisfy some properties to mimic
the behaviour of abelian categories. By [52, appendix A.1], we can use the following
definition of an exact category.

Definition 5.4.1. Let E be an additive category. A sequence

A
i−→ B

d−→ C

is exact if i is a kernel of d and d is a cokernel of i. Let ε be a collection of pairs (i, d)
that are exact sequences, called conflations. The morphism i of a conflation is called an
inflation, and d is called a deflation. Suppose that ε has the following properties:

(i) the identity on the zero object 0 is a deflation;
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(ii) the composition of deflations is a deflation;
(iii) for any deflation d : X � Y and any morphism f : Y ′ → Y , there exists a pullback

square

X ′ Y ′

X Y

d′

f ′ f

d

such that d′ is a deflation; and
(iv) for any inflation i : X � Y and any morphism f : X → X ′, there exists a pushout

square

X Y

X ′ Y ′

i

f f ′

i

such that i′ is an inflation.

Then the pair (E , ε) is called an exact category. Inflations are usually denoted by feath-
ered arrows A � B, and deflations by two-headed arrows A � B. An exact functor
F : (E , ε)→ (E ′, ε′) is a functor such that F (ε) ⊂ ε′, i.e. F preserves conflations.

A common example is the category of finite locally free sheaves on a scheme, where
the conflations are the usual exact sequences of locally free sheaves. This category can
be embedded fully faithfully in the abelian category of quasi-coherent sheaves on the
scheme.

Like in an abelian category, in an exact category there are the notions of injective and
projective objects. In the special case where there are enough injective and projective
objects, and these two types objects moreover coincide, we obtain a Frobenius category
giving rise to a stable category, which is triangulated.

Definition 5.4.2. Let (E , ε) be an exact category.

(i) An object I of E is called injective if the functor

E(−, I) : Eop −→ Ab

is exact, when the abelian category Ab is endowed with the canonical exact struc-
ture in which all short exact sequences are conflations.

(ii) An object P of E is called projective if the functor

E(P,−) : E −→ Ab

is exact.
(iii) The exact category E is said to have enough injectives if every object A of E admits

an inflation A→ I into an injective object I.
(iv) The exact category E is said to have enough projectives if every object A of E

admits a deflation P → A out of a projective object P .
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(v) The exact category E is called a Frobenius category if it has enough injectives,
enough projectives, and injective and projective objects coincide.

Definition 5.4.3. Let A be a dg category. A sequence A
f→ B

g→ C with gf = 0 in the
underlying category Z0A is called exact if there exist r ∈ A(B,A)0 and s ∈ A(C,B)0

such that rf = idA and gs = idC and fr + sg = idB. The dg category A is called exact
if the exact sequences of Z0A turn Z0A into an exact category.

Note that the retractions s and r in the above definition are not morphisms of Z0A,
so not all exact sequences of Z0A are necessarily split. In light of the above definition,
being exact is a property of a dg category, and does not amount to added structure, as
is the case for additive categories with an exact structure. Note als that any dg functor
between exact dg categories preserves exact sequences.

Definition 5.4.4 (dg category of bounded complexes). Let E be a k-linear exact cat-
egory. Let Chb(E) be the category of bounded chain complexes in E with the usual
chain maps (respecting the grading and commuting with differentials) as morphisms.
For chain complexes M and N , let the mapping complex [M,N ] be given for n ∈ Z by

[M,N ]n =
∏
i∈Z
E(M i, N i+n),

with differential df = dNf−(−1)|f |fdM for f ∈ [M,N ]n. This gives Chb(E) the structure
of a dg category, the dg category of bounded complexes in E .

Definition 5.4.5. For a dg category A, let CkA be the tensor product dg category
Ck ⊗ A of definition 5.2.7. A dg category A is called pretriangulated if it is exact and
the functor A → CkA given by A 7→ 1⊗A is a natural equivalence.

If A is a pretriangulated dg category, its homotopy category H0A is triangulated by
[12, proposition 3.2]. In fact, most triangulated categories one encounters in practice are
the homotopy category of a pretriangulated dg category. It was precisely this observation
that led Bondal and Kapranov to the definition of pretriangulated dg categories [12,
definition 3.1] in the first place, and to call a triangulated category T enhanced if there
exists a pretriangulated dg category A such that T ' H0A.

Note that CkA is a dg category containing all the shifts and cones of objects in
A. Its dg modules are isomorphic to dg A-modules, so there is a Yoneda embedding
h : CkA → Cdg(A), and for any M ∈ Ck and A ∈ A,

hM⊗A = M ⊗ hA.

Indeed, it is the defining feature of a pretriangulated dg category A that it is closed
under shifts and cones, so that its homotopy category H0A is triangulated.

Lemma 5.4.6. Let A be a dg category. Then A is pretriangulated if and only if

(i) the dg category A is exact;
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(ii) for all objects A ∈ A and n ∈ Z, ΣnhA is representable; and
(iii) for any morphism f : A→ B in Z0A, the dg A-module X in the pushout square

hA hB

ΓhA X

hf

in Cdg(A) is representable. This pushout square is called the cone construction
and X = cone(f) is called the cone of f .

Proof. First, assume that A is pretriangulated. Then A is exact by definition.

To prove (ii), let f : A → B be a closed morphism of degree 0 in A. For n ∈ Z and
A ∈ A, the object Σn ⊗ A in CkA is isomorphic to the image of some ΣnA ∈ A under
the equivalence A → CkA, and ΣnA represents the dg A-module ΣnhA.

For the proof of (iii), note that the tensor product Γ⊗A ∈ CkA is isomorphic to an
object ΓA ∈ A. Since A is exact and A ↪→ ΓA is an inflation with cokernel ΣA, the
pushout

A B

ΓA cone(f)

f

exists in A. In the pushout square

hA hB

ΓhA X

f∗

in Cdg(A), ΓhA = hΓA, so it follows that X = hcone(f).

For the converse, assume that A is a dg category satisfying (i)-(iii). As Ck is the
closure of ffModk in dgModk under shifts and cones by example 5.2.11, it follows from
our assumptions that the canonical functor A → CkA is essentially surjective, and since
it is always fully faithful, it is an equivalence and A is pretriangulated.

In light of the above lemma, it is useful to think of pretriangulated dg categories as
exact dg categories that are “closed under taking shifts and cones”. Our main source
of pretriangulated dg categories will be categories of bounded complexes in an exact
category E .

Lemma 5.4.7. Let E be an exact category and Chb(E) the corresponding dg category of
bounded complexes in E. Then Chb(E) is pretriangulated. In particular, H0 Chb(E) is
the triangulated category of chain complexes in E up to chain homotopy.
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Proof. To ease notation, let A = Chb(E). By lemma 5.4.6, it suffices to show that A is
exact and closed under shifts and cones. The latter is a fact from homological algebra,
so it remains to be shown that A is exact.

Note that the maps of Z0A are chain maps of complexes. Suppose given a sequence

A
f→ B

g→ C with gf = 0 in Z0A. Moreover, suppose we have maps

Ai Bi Ci
fi gi

ri si

for each i ∈ Z such that rifi = id, gisi = id and firi + sigi = id. Then drifi = d and
ri+1dfi = ri+1fi+1d = d. Since fi is a monomorphism, it follows that dri = ri+1d, which
shows that the collection (ri)i∈Z is actually a chain map r. A similar argument shows

that s = (si)i∈Z is a chain map. Hence the sequence A
f→ B

g→ C is exact in Z0A if and
only if it is termwise split exact. Since E is exact and in particular additive, it follows
that A is indeed exact.

The statement about the homotopy category H0 Chb(E) follows from the definition
of H0.

The properties of being exact and pretriangulated transfer to certain functor cate-
gories and dg categories as follows.

Lemma 5.4.8. Let A and B be pointed dg categories. The following statements hold.

(i) If B is exact then so is dgFun(A,B).
(ii) If B is pretriangulated then so is dgFun(A,B).

(iii) If B is pretriangulated then so is CkB.

Proof. This is [72, lemma 1.10].

Definition 5.4.9. The pretriangulated hull ptr(A) of a dg category A is a dg functor
A → ptr(A) which is universal among dg functors A → B where B is pretriangulated.

An explicit construction of the pretriangulated hull is given in [72, definition 1.16],
and refines an earlier construction from [12]. It admits an action ⊗ : Ck ⊗ ptr(A) →
ptr(A) by [72, remark 1.18], which plays an important role in the construction of products
on Grothendieck-Witt spectra.

Definition 5.4.10. A dg functor F : A → B is called a Morita equivalence if it induces
an equivalence D(A)→ D(B) of derived categories.

Let A be a dg category and let C(A) = Z0Cdg(A) be the category of dg A-modules,
which is Frobenius by [53, lemma 3.3]. Recall that a Frobenius category is an exact cate-
gory which has enough injectives and projectives, and in which injectives and projectives
coincide. If A is pretriangulated, then Z0A is a Frobenius subcategory of C(A), and
H0A is triangulated.

One of the main advantages of dg categories over triangulated categories is that cones
in dg categories are functorial, as announced at the end of section 5.1. For us specifically,
it provides a framework for higher Hermitian K-theory as developed in [72].
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Lemma 5.4.11. Let A be a pretriangulated dg category. Then the cone construction
that assigns to a map f : A 7→ B its cone cone(f) defines a dg functor

cone : Ar(A) −→ A.

Proof. By lemma 5.4.6, each morphism of Z0A admits a unique cone. Let

A B

A′ B′

f

α β

g

be a homogeneous morphism f → g in Ar(A). Taking cones, we obtain a commutative
diagram

A B B′

ΓA cone(f)

ΓA′ cone(g)

f β

Γα

in which a unique dotted arrow exists since the upper left square is a pushout in A.
Hence the cone construction cone : Ar(A)→ A defines a dg functor.

Let f : A→ B be a morphism in Z0A, whereA is a pretriangulated dg category. Note
that a homogeneous map cone(f)→ C in A is completely determined by a commutative
diagram

A B

ΓA C,

f

and that the image of ΓA under the Yoneda embedding is pointwise contractible. It is
therefore useful to think of cone(f) as a homotopy cokernel of f , since A→ B → cone(f)
is an exact triangle in the triangulated category H0A.

5.5 Localization of dg categories

For triangulated categories, there are good notions of localization and quotients, which
makes it possible to construct exact sequences of triangulated categories. This behavior
turns out to be a shadow of a more general result for dg categories.

In [79], it is shown that the category dgCat admits a model structure with the
quasi-equivalences as its weak equivalences, and the homotopy category Ho(dgCat)
with respect to this model structure is studied in more detail in [81], where the mapping
space between two dg categories A and B is described as the nerve of a certain category
of (A,B)-bimodules.
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For most applications, including those in this thesis, we study invariants of dg cat-
egories that are invariant under quasi-equivalence, so that we may invert the quasi-
equivalences. One way to do this is by taking the Dwyer-Kan localization L(dgCat)
with respect to the quasi-equivalences, which gives a generalization of the homotopy
category Ho(dgCat) with simplicial sets as mapping spaces. In particular, by [81, corol-
lary 8.7], for a set of closed morphisms S in a dg category A, there exists a localization
LS(A) in L(dgCat) with a natural morphism A → LS(A) which is universal among
morphisms A → B that invert the morphisms of S, in that they become isomorphisms
in H0B. We will state the precise result in this section. For a detailed treatise, see [81,
sections 2, 8.2].

Definition 5.5.1. A dg functor F : A → B is called

(i) quasi-fully faithful if for each pair of objects A,B ∈ A the morphism of mapping
complexes F : A(A,B)→ B(F (A), F (B)) is a quasi-isomorphism;

(ii) quasi-essentially surjective if the induced functor H0F : H0A → H0B is essentially
surjective;

(iii) a quasi-equivalence if it is both quasi-fully faithful and quasi-essentially surjective;
and

(iv) a fibration if it satisfies the following conditions:

(a) for all A,B ∈ A, the map A(A,B)→ B(F (A), F (B)) is an epimorphism (i.e.
a fibration of dg k-modules); and

(b) for all A ∈ A and for all isomorphisms g : H0F (A)→ B′ in H0B, there exists
an isomorphism f : A→ B in H0A such that H0F (f) = g.

The fibrations and quasi-equivalences define a cofibrantly generated model structure
on dgCat [79]. In this model structure, every object A ∈ dgCat is fibrant, and there
exists a cofibrant replacement functor Q : dgCat → dgCat such that for A ∈ dgCat,
the natural map QA → A is the identity on objects [81, proposition 2.3]. Taking the
Dwyer-Kan localization [26, definition 4.1], we obtain the simplicially enriched category
L(dgCat), whose underlying category is the homotopy category of dgCat:

π0L(dgCat) = Ho(dgCat).

For objects A,B ∈ L(dgCat), the mapping space L(dgCat)(A,B) can be represented by
an explicit simplicial set Map(A,B) [37, chapter 17]. By [81, theorem 6.1], Ho(dgCat)
admits a closed symmetric monoidal structure such that for any two objects A,B ∈
Ho(dgCat), there is an object RHom(A,B) ∈ Ho(dgCat) that represents the functor
C 7→ Map(C ⊗L A,B), where ⊗L is the total left derived functor of the tensor product
on dgCat of definition 5.2.7.

Let S be a set of morphisms in H0A for some dg category A. For a dg category B, let
MapS(A,B) ⊂ Map(A,B) be the full simplicial subset whose vertices are the morphisms
F : A → B in L(dgCat) such that H0F : H0A → H0B sends morphisms in S to
isomorphisms. Then we have the following theorem [81, corollary 8.7, corollary 8.8].
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Theorem 5.5.2. The L(sSet)-enriched functor

MapS(A,−) : L(dgCat)→ L(sSet)

is corepresented by an object LS(A) of L(dgCat), unique up to unique isomorphism in
L(dgCat). Moreover, for B ∈ dgCat, the natural morphism A → LS(A) in L(dgCat)
induces a quasi-fully faithful functor

RHom(LS(A),B)→ RHom(A,B)

whose quasi-essential image is given by the morphisms A → B in L(dgCat) sending
morphisms in S to isomorphisms in H0B.

Definition 5.5.3. Let A ∈ L(dgCat) and let S ⊂ A be a set of morphisms. The
localization LS(A) of A with respect to S is an object LS(A) of L(dgCat) corepresenting
the L(sSet)-enriched functor MapS(A,−), which exists by theorem 5.5.2.

If A is pretriangulated, then so is its localization LS(A). As an application, we
obtain a natural theory of dg quotients. This will be useful for defining exact sequences
of dg categories and semi-orthogonal decompositions.

Definition 5.5.4. Let B be a dg subcategory of a dg category A. Let S be the set
of morphisms B ∈ 0 in A with B ∈ B. Then the quotient dg category A/B is the
localization LS(A).

Example 5.5.5. Here are some relevant examples of quotients, c.f. [53, section 4.4].

(i) Let A ∈ A. The quotient A/〈A〉 is the localization of A with respect to the
morphism A → 0 in H0A. More generally, if {Ai | i ∈ I} is a set of objects in A,
then A/〈Ai | i ∈ I〉 is the localization of A with respect to the set of morphisms
{Ai → 0 | i ∈ I} in H0A.

(ii) Let A = Chb(E) be the dg category of bounded chain complexes in an exact
category E . Let S be the set of chain homotopy equivalences. Then S consists
precisely of the isomorphisms in H0A, and therefore LS(A) = A.

(iii) Again, let A = Chb(E). Let S be the set of quasi-isomorphisms in H0A. Then
there is an equivalence of triangulated categories

H0LS(A) ' Db(E),

where Db(E) is the bounded derived category of E . Alternatively, let T be the set
of morphisms A→ 0 where A is acyclic, i.e. has vanishing cohomology. Note that

LT (A) = Chb(E)/Acb(E),

where Acb(E) ⊂ Chb(E) is the dg subcategory of bounded acyclic complexes. The
localization LT (A) is quasi-equivalent to the localization LS(A). We can show
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this using the universal property of the localization. There is a natural mor-
phism LT (A) → LS(A) since T ⊂ S. Now suppose that f : A → B is a quasi-
isomorphism in A. Then its cone cone(f) is acyclic. Hence the induced functor
H0A → H0LT (A) sends the exact triangle A → B → cone(f) → A[1] in H0A to
the exact triangle A→ B → 0→ A[1] in H0LT (A), which shows that f is mapped
to an isomorphism in H0LT (A). The universal property of LS(A), yields a natural
morphism LS(A) → LT (A) that is an inverse to LT (A) → LS(A) by uniqueness.
In light of this example, it makes sense to define the bounded derived dg category
Db

dg(E) = LT (A). In case E = Vect(X) for some scheme X with an ample family

of line bundles, we understand Db
dg(X) to mean Db

dg(E). Note that H0Db
dg(E) is

the usual bounded derived category Db(E).

Remark 5.5.6. Here is a word of warning about the “category of perfect complexes on a
scheme”. Let X be a scheme. The dualizable objects in the usual derived category D(X)
are precisely the perfect complexes, so the category of dualizable objects in D(X) is often
denoted Perf(X), in which case it is a triangulated category. Another convention is that
Perf(X) denotes a certain sub-∞-category of dualizable objects. We follow yet another
convention, in which Perf(X) is the localization with respect to the quasi-isomorphisms
of the full pretriangulated dg subcategory of perfect complexes of the pretriangulated
dg category Ddg(X) of complexes of OX -modules. If X satisfies the resolution property,
each perfect complex of OX -modules is quasi-isomorphic to a strictly perfect complex of
OX -modules and therefore to a bounded complex of finite locally free sheaves on X. In
this case

Perf(X) = sPerf(X) = Db
dg(Vect(X)) = Chb(Vect(X))/Acb(Vect(X)),

where the equalities should be understood as equivalences we pretend to be identities,
and this is the only case we will encounter in this thesis.

5.6 Semi-orthogonal decompositions of dg categories

We have now developed the technical machinery we need in order to define semi-
orthogonal decompositions of dg categories.

Semi-orthogonal decompositions, or rather their precursor in the form of exceptional
collections, were among the first applications of pretriangulated dg categories to be con-
sidered in [12]. Given a collection of objects in a triangulated category, it is not obvious
how to determine the triangulated category generated by this collection, but the trian-
gulated category generated by a collection of objects in a pretriangulated dg category
admits a natural description [12, theorem 4.1]. An exceptional collection in a pretri-
angulated dg category is a collection of objects satisfying certain conditions such that
they split the dg category into smaller subcategories. More generally, a semi-orthogonal
decomposition of a pretriangulated dg category splits it into smaller subcategories, with-
out requiring the existence of special objects. They play an important role in modern
computations of algebraic K-theory and Grothendieck-Witt theory, see e.g. [54] and [51].
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The material in this section may be compared to that of [58, section 2] for the classical
case of triangulated categories, and to that of [62, section II.7.2.1] for the case of stable
∞-categories, the theory of dg categories being “somewhere in the middle”. Every dg
category yields an∞-category by applying the differential graded nerve [60, construction
1.3.1.6]. Furthermore, it is shown in [20] that there is an equivalence between the
underlying ∞-category of the Morita model category structure on the category of k-
linear dg categories on the one hand, and the ∞-category of idempotent-complete k-
linear small stable ∞-categories on the other.

In linear algebra, we may think of orthogonality as a geometric condition, two vectors
being orthogonal if their inner product vanishes. Generalizing, we define the orthogonal
complement W⊥ of a subspace W of a vector space V equipped with an inner product
ξ : V × V → V as those vectors v ∈ V such that ξ(w, v) = 0 for all w ∈ W . Crucially,
V = W ⊕W⊥, which in effect reduces the study of V to the study of W and W⊥. If we
imagine that ξ is another bilinear form which is not symmetric, we end up instead with
a “left” and a “right” orthogonal of W via the formulas ξ(w, v) = 0 and ξ(v, w) = 0,
respectively. Abstracting the situation further, we may take instead of a vector space
V an additive category C with a full additive subcategory B ⊂ C, and consider the
morphism functor HomC : C × C → Ab. We define the left orthogonal ⊥B (resp. the
right orthogonal B⊥) of B to be the full subcategory of A consisting of the objects A ∈ A
such that C(A,B) = 0 (resp. C(B,A) = 0) for all B ∈ B. We can then wonder to what
extent A decomposes as a “direct sum” B⊕B⊥, and semi-orthogonal decompositions are
a formal tool for studying this question in the context of dg categories. For dg categories,
we also take into account the model structure on dgModk, which takes over the role of
Ab.

Definition 5.6.1. Let B ⊂ A be a (not necessarily full) dg subcategory of a dg category.
The left orthogonal ⊥B (resp. the right orthogonal B⊥) of B is the full dg subcategory
consisting of the objects A ∈ A such that the chain complex A(A,B) (resp. A(B,A)) is
acyclic for all B ∈ B.

Note that B ⊂ (⊥B)
⊥

and B ⊂ ⊥(B⊥) by definition.

Lemma 5.6.2. If B ⊂ A is an inclusion of pretriangulated dg categories, then the left
orthogonal ⊥B and the right orthogonal B⊥ are pretriangulated.

Proof. Let B⊥ be the right orthogonal of B in A. By lemma 5.4.6, we need to show that
B⊥ is exact and contains all shifts and cones.

Let A1 → A2 → A3 be an exact sequence in Z0A with two out of three terms in B⊥,
and call the remaining term A. Note that this also determines an exact triangle in the
triangulated category H0A. For B ∈ B, applying the hom-functor H0A(B,−) to the
exact triangle yields a long exact cohomology sequence

. . . H i+1A(B,A3) H iA(B,A1) H iA(B,A2) H iA(B,A3) . . .

By assumption, two out of each three consecutive terms in this sequence are zero, so
it follows that H iA(B,A) = 0 for each i ∈ Z. Therefore, A ∈ B⊥, yielding that B⊥ is
exact.
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Let A ∈ B⊥ and n ∈ Z. As A is pretriangulated,

H iA(B,A[n]) = H i(A(B,A)[n]) = H i+nA(B,A) = 0

for all B ∈ B, which shows that A[n] ∈ B⊥. Thus, B⊥ is closed under taking shifts.

Let f : A → A′ be a closed morphism of degree 0 in B⊥ and B ∈ B. Let b : B →
cone(f) be another closed morphism of degree 0. Then there is a diagram in H0A

0 B B 0

A A′ cone(f) A[1],

b

f g h

where the rows are exact triangles. Note that hb = 0 by assumption, so the diagram can
be completed to a morphism of triangles because H0A is triangulated. As there are no
nonzero morphisms B → A′ in H0A, it follows that b = 0 and H0A(B, cone(f)) = 0.
Shifting B shows that A(B, cone(f)) is acyclic, so B⊥ has cones. This finishes the proof
that B⊥ is pretriangulated.

The proof that ⊥B is pretriangulated is similar.

If A is a pretriangulated dg category and S ⊂ A is a collection of objects of A,
then 〈S〉 denotes the full pretriangulated dg subcategory of A generated by S, obtained
as follows: consider S ⊂ H0A, take the smallest triangulated subcategory S ⊂ H0A
containing S, and define 〈S〉 to be the full pretriangulated dg subcategory of A whose
objects are those of S. For a dg subcategory B ⊂ A, the pretriangulated dg subcategory
〈B〉 ⊂ A is defined by regarding B as its collection of objects.

Definition 5.6.3. Let A be a pretriangulated dg category. A pair of full pretriangulated
dg subcategories A−,A+ forms a semi-orthogonal decomposition 〈A−,A+〉 of A if

(i) for all objects A− ∈ A− and A+ ∈ A+, the mapping complex A(A+, A−) is acyclic
(“there are no morphisms from right to left”); and

(ii) for every object A ∈ A, there exists a closed morphism f : A+ → A with A+ ∈ A+

whose cone A− = cone(f) is in A−.

The following lemma shows that a semi-orthogonal decomposition of a pretriangu-
lated dg category is the same as a semi-orthogonal decomposition of the underlying
triangulated category.

Lemma 5.6.4. Let A be a pretriangulated dg category with full pretriangulated dg sub-
categories A− and A+. The following are equivalent.

(i) The pair 〈A−,A+〉 is a semi-orthogonal decomposition of A.
(ii) The inclusion H0A− ⊂ H0A admits a left adjoint and ⊥A− = A+.

(iii) The inclusion H0A+ ⊂ H0A admits a right adjoint and A+
⊥ = A−.
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Proof. We will prove only that (i) is equivalent to (ii), the proof that (i) is equivalent to
(iii) being similar.

First note that A(A+, A−) is acyclic if and only if H0A(A+, A−[n]) = 0 for all n ∈ Z,
so A(A+, A−) being acyclic for all A+ ∈ A+ and A− ∈ A− is equivalent to H0A(A+, A−)
being zero for all A+ ∈ A+ and A− ∈ A−, since A− is pretriangulated.

Let f : A → B be a morphism in H0A. Since 〈A−,A+〉 is a semi-orthogonal
decomposition of A, we obtain two exact triangles

A+ A A−

B+ B B−

a+ a−

b+ b−

in H0A. Then there is a morphism of exact triangles

A+ A A−

0 B− B−

a+ a−

b−f f−

in which the dotted arrow f− : A− → B− exists and is unique because of [77, Tag
0FWZ]. Thus we can define a functor F : H0A → H0A− by choosing an A− ∈ A− for
each A ∈ A, which is left adjoint to the inclusion H0A− → H0A by construction.

Conversely, suppose that F : H0A → H0A− is left adjoint to the inclusion H0A− →
H0A and that ⊥A− = A+. Let A ∈ A. Then there is a canonical morphism A→ F (A)
in H0A, which we extend to an exact triangle A → F (A) → B. If A ∈ A−, then
the canonical morphism A → F (A) is an isomorphism, as the inclusion H0A− → H0A
is fully faithful. Hence, the image of the exact triangle A → F (A) → B under F
is isomorphic to the exact triangle F (A) = F (A) → 0, so F (B) = 0. This yields
H0A(B,A−) = H0A−(F (B), A−) = 0 by adjunction for any A− ∈ A−, so it follows
that B ∈ A+. Rotation of triangles yields an exact triangle B[1]→ A→ F (A), which is
induced by a morphism B[1]→ A with B[1] ∈ A+, whose cone is in A−.

Lemma 5.6.4 gives a feasible way of constructing a semi-orthogonal decomposition
from an inclusion B ⊂ A of pretriangulated dg categories – we can try to construct a
right or left adjoint on the level of homotopy categories, and if we succeed we define the
other component of the decomposition as the appropriate orthogonal, much as we would
define the orthogonal of a subspace of a vector space.

It is possible to define semi-orthogonal decompositions using the notion of a split
exact sequence of dg categories, which is defined as a sequence

A → B → C

in dgCat that is both a fiber and a cofiber sequence in a localization of the model
structure on dgCat, see [71, section 2.1.2] and [18, definition 3.1], but we will not need
to work in this generality.
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Recall that for a triangulated category T and a thick subcategory T ′, the Verdier
quotient T /T ′ is the unique (up to unique equivalence) triangulated category such that
any exact functor F : T ′ → S with T → T ′ → S trivial factors uniquely through the
canonical functor T ′ → T ′/T . Recall furthermore that a sequence T1 → T2 → T3 of
triangulated categories is called exact if the composition is trivial, T1 → T2 turns T1

into a thick subcategory of T2, and the induced functor T2/T1 → T3 is an equivalence of
triangulated categories.

Definition 5.6.5. A sequence
A → B → C

of pretriangulated dg categories is called quasi-exact if the associated sequence

H0A → H0B → H0C

of triangulated categories is exact. It is called split exact if H0A → H0B admits a right
adjoint.

Semi-orthogonal decompositions correspond to split exact sequences by lemma 5.6.4
and the following result.

Lemma 5.6.6. Let 〈A−,A+〉 be a semi-orthogonal decomposition of A. Then H0A− is
equivalent as a triangulated category to the Verdier quotient H0A/H0A+.

Proof. We must show that H0A− satisfies the universal property of the Verdier quotient.
Let F : H0A → H0A− be the left adjoint to the inclusion H0A− ⊂ H0A, and for
A ∈ H0A let A− = F (A). Let G : H0A → H0B be an exact functor such that each
A+ ∈ H0A+ is mapped to the zero object in H0B. Then a morphism f : A → A′ in
H0A can be completed to a morphism of exact triangles

A+ A A−

A′+ A′ A′−.

f F (f)

As G(A+) = 0, the image of this morphism of triangles under G is

0 G(A) G(A−)

0 G(A′) G(A′−),

G(f) G(F (f))

and since G is exact, this is a morphism of exact triangles. It follows that G(A)→ G(A−)
is an isomorphism for all A ∈ H0A. Hence G factors through F , as was to be shown.

Now we expand the definition of a semi-orthogonal decomposition by allowing more
components, which will make the concept more flexible in practice.
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Definition 5.6.7. Let A be a pretriangulated dg category with full pretriangulated dg
subcategories A1, . . . ,An for some n ∈ N≥2. For 0 ≤ i ≤ n, Define A≤i = 〈A1, . . . ,Ai〉
to be the smallest full pretriangulated dg subcategory containing each Aj for j ≤ i,
and define A≥i similarly. Note that A≤0 = 0. Then A1, . . . ,An form a semi-orthogonal
decomposition 〈A1, . . . ,An〉 of A if 〈A≤i,A≥i+1〉 is a semi-orthogonal decomposition
(definition 5.6.3) of A for each 1 ≤ i ≤ n− 1.

Remark 5.6.8. Unpacking definition 5.6.7, we see that subcategories A1, . . . ,An of A
form a semi-orthogonal decomposition if and only if for all i > j, Ai ∈ Ai and Aj ∈ Aj ,
the mapping complex A(Ai, Aj) is acyclic, and each A ∈ A admits a filtration

0 = A≥n+1 −→ A≥n −→ . . . −→ A≥2 −→ A≥1 = A

with A≥i ∈ A≥i for each 1 ≤ i ≤ n+ 1, where the cone of A≥i+1 → A≥i lies in Ai.

The following prototypical example of a semi-orthogonal decomposition was given
by Bernstein, Gelfand and Gelfand in [9].

Example 5.6.9. Let S be a scheme and let X = PnS be the projective space over X. Let
A = Perf(X) be the pretriangulated dg category of perfect complexes of OX -modules,
which is equivalent to the quotient dg category

Chb(Vect(X))/Acb(Vect(X)),

where Acb(Vect(X)) ⊂ Chb(Vect(X)) denotes the dg subcategory of acyclic objects. For
i ∈ Z, define Ai = 〈OX(i)〉 to be the full pretriangulated dg subcategory of A generated
by the line bundle OX(i). Then A(OX(i),OX(j)) is acyclic for all j + n ≥ i > j, which
follows from the fact that the sheaf cohomology H∗(X,OX(−r)) vanishes for r = 1, . . . n.
Furthermore, by a dg version of [73, lemma 3.5.2], A is generated by the line bundles
OX(i) with i ≤ 0. The Koszul complex of X, which we will see in detail in section 7.2,
shows that OX(−n−1) is generated by OX(i) with −n ≤ i ≤ 0. Hence 〈A−n, . . . ,A0〉 is
a semi-orthogonal decomposition of A. Note that we can always twist a semi-orthogonal
decomposition by a line bundle to obtain another semi-orthogonal decomposition. In
particular, 〈Ai, . . . ,Ai+n〉 is a semi-orthogonal decomposition of A for each i ∈ Z. This
trick will be useful once we start dealing with duality.

Here is another extension of the definition of a semi-orthogonal decomposition follow-
ing [71, definition 3.1] by allowing infinitely many components, which has applications
in equivariant K- and GW-theory.

Definition 5.6.10. Let A be a pretriangulated dg category. For any pre-ordered set
(P,≤) and a collection of full pretriangulated subcategories {Ai ⊂ A | i ∈ P}, the
subcategories Ai form a pre-ordered semi-orthogonal decomposition of A if

(i) for all i ∈ P , the inclusion H0Ai ⊂ H0A admits both a left and a right adjoint;
(ii) for all i, j ∈ P such that i < j, Ai ⊂ Aj⊥; and
(iii) A is the smallest pretriangulated dg subcategory containing Ai for each i ∈ P .
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Example 5.6.11. Let G = Gm be the multiplicative group over a base field k. The
pretriangulated dg category A = PerfG(k) of G-equivariant perfect complexes over k
is equivalent to the bounded derived dg category of finite dimensional graded k-vector
spaces. For i ∈ Z, let k(i) be the graded vector space with k(i)j = δijk, where δij
is the Kronecker delta, and let Ai = 〈k(i)〉. Then Ai is equivalent to Perf(k). Note
that A(k(i), k(j)) = 0 for all i, j ∈ Z such that i 6= j. The smallest pretriangulated dg
category containing each Ai is A itself, and since we only consider finite dimensional
k-vector spaces, each V ∈ A is contained in A[i,j] for some i, j ∈ Z. Hence 〈Ai | i ∈ Z〉 is
an example of a semi-orthogonal decomposition as in definition 5.6.10. See proposition
8.1.1 for a generalization of this semi-orthogonal decomposition which is crucial in the
proof of the Atiyah-Segal completion theorem for split tori.

A useful feature of semi-orthogonal decompositions is that they are stable under
equivalences of pretriangulated dg categories.

Proposition 5.6.12. Let F : A → B be an equivalence of pretriangulated dg cate-
gories and let 〈A−,A+〉 be a semi-orthogonal decomposition of A. Then the image
〈F (A−), F (A+)〉 is a semi-orthogonal decomposition of B.

Proof. Since F preserves shifts and cones, F (A−) and F (A+) are full pretriangulated
dg subcategories of B.

For A− ∈ A− and A+ ∈ A+, as F is fully faithful, B(F (A+), F (A−)) = A(A+, A−),
which is acyclic by assumption. Let B ∈ B and let A ∈ A such that F (A) ∼= B, which
exists since F is essentially surjective. Then A admits a sequence

A+
f−→ A −→ cone(f)

with A+ ∈ A+ and cone(f) ∈ A− by assumption. Taking the image of this sequence
under F yields a sequence

F (A+)
F (f)−→ F (A) −→ F (cone(f)),

where F (cone(f)) ∼= cone(F (f)). As F (A) ∼= B, there is a sequence

F (A+)
g−→ B −→ cone(g)

with cone(g) ∈ F (A+). Therefore, 〈F (A−), F (A+)〉 is a semi-orthogonal decomposition
of B, as was to be shown.

Corollary 5.6.13. Let A be a pretriangulated dg category with a semi-orthogonal de-
composition 〈Ai | i ∈ Z〉. Let F : A → A be an equivalence of dg categories. Then
〈F (Ai) | i ∈ Z〉 is a semi-orthogonal decomposition of A.

Proof. By proposition 5.6.12, 〈F (A≤i), F (A>i)〉 is a semi-orthogonal decomposition of A
for each i ∈ Z. By assumption, each A ∈ A is contained in A[i,j] for some i, j ∈ Z, so each
F (A) is contained in F (A[i,j]) = (FA)[i,j] for some i, j ∈ Z. Since F is an equivalence,
each A ∈ A is isomorphic to F (B) for some B ∈ A, and the result follows.
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The situation where this corollary is the most useful for us is the following. Let X
be a scheme with the resolution property of definition 2.3.4 and let A = Perf(X). Let
L be a line bundle on X. Then tensoring by L defines an autoequivalence of A, and
therefore sends semi-orthogonal decompositions to semi-orthogonal decompositions.

Remark 5.6.14. Semi-orthogonal decompositions are closely related to the notion of
t-structures. A t-structure on a pretriangulated dg category A is given by a pair of full
dg subcategories A≤0,A≥0 such that

(i) for all A ∈ A≥0, B ∈ A≤0, A(A,B[1]) is acyclic;
(ii) A≤0[1] ⊂ A≤0 and A≥0[−1] ⊂ A≥0; and

(iii) for any A ∈ A, there exists a closed morphism f : A+ → A with A+ ∈ A≥0 such
that the cone cone(f) lies in A≤0[1].

Note that if A≤0 is closed under desuspension, or equivalently if A≥0 is closed under
suspension, then A≤0 and A≥0 are pretriangulated, and 〈A≤0,A≥0〉 is a semi-orthogonal
decomposition of A. In this case the heart A♥ = A≤0 ∩ A≥0 of the t-structure consists
solely of nullhomotopic objects, c.f. [62, remark 7.2.1.6].

6 Grothendieck-Witt theory

In many areas of mathematics, involutions and duality appear naturally, the prototypical
example being the dual of a vector space over a field k. Ignoring these natural structures
leads to coarser invariants, so it is desirable to design invariants that incorporate these
structures. This line of research was arguably initiated by Ernst Witt in the 1930’s, who
studied quadratic forms over fields and gave the theory its name. In subsequent years
a more general theory developed, allowing the study of quadratic forms over schemes
[55, 56]. This culminated in the definition of the triangular Witt groups [3, 4], which
provide a general framework for studying triangulated categories with duality. The
derived categories of fields, rings and schemes can all be equipped with various dualities,
and their Witt groups continue to be studied, e.g. [7, 42, 51].

Grothendieck-Witt theory developed in the wake of the development of Witt theory,
and can be thought of as an amalgam of Witt theory and algebraic K-theory, capturing
both invariants simultaneously. It is sometimes also called Hermitian K-theory to em-
phasize the connection to both K-theory and Hermitian phenomena. Complex K-theory
in topology has a real counterpart KO. Some of the development of the algebraic theory
has been informed by this topological counterpart through comparison maps, as in [96].
Like algebraic K-theory, both Grothendieck-Witt theory and Witt theory are cohomo-
logical invariants which are representable in the stable motivic homotopy category [38,
section 5].

We claim no originality in this section, instead snaking our way through [5], [74] and
[72] for our definitions and results.
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6.1 Grothendieck-Witt groups of categories with duality

A finite dimensional vector space V is non-canonically isomorphic to its dual V ∨ =
Hom(V, k). Any isomorphism φ : V → V ∨ corresponds to a perfect pairing φ′ : V ⊗
V → k via φ′(v, w) = φ(v)(w). Furthermore, if the characteristic of the base field is
not two, isomorphisms φ : V → V ∨ correspond bijectively to quadratic forms on V .
Grothendieck-Witt theory formalizes the study of such isomorphisms. First, we extract
a more general concept from the category of finite dimensional vector spaces over a field
k, equipped with its duality functor.

Definition 6.1.1. An exact category with duality is a triple (E , ∗, ω) consisting of an
exact category E together with an exact involution ∗ : Eop → E called the duality on E
and a natural isomorphism ω : IdE → ∗ ◦ ∗op called the double dual identification such
that (ωV )∗ ◦ ωV ∗ = idV ∗ .

Fix an exact category with duality (E , ∗, ω).

Definition 6.1.2. A symmetric space (V, φ) in E is an object V of E together with an
isomorphism φ : V → V ∗ such that φ∗ωV = φ. An isometry of symmetric spaces (V, φ)
and (W,ψ) is an isomorphism f : V →W such that f∗ψf = φ.

The orthogonal sum (V, φ) ⊥ (W,ψ) of two symmetric spaces (V, φ) and (W,ψ) is
the symmetric space (

φ 0
0 ψ

)
: V ⊕W → V ∗ ⊕W ∗

Definition 6.1.3. A symmetric space (V, φ) in E is called metabolic if there exists an
exact sequence

L V L∗.α α∗φ

In this case, the subspace L ⊂ V is called a Lagrangian of (V, φ). A symmetric space
(V, φ) is called hyperbolic if it is isometric to a symmetric space H(L), given by(

0 1
ωL 0

)
: L⊕ L∗ −→ L∗ ⊕ L∗∗.

Let M(E) be the monoid of isometry classes in E whose binary operation is given by
the orthogonal sum.

Definition 6.1.4. The Grothendieck-Witt group GW0(E) of E is the Grothendieck group
K(M(E)) modulo the relation [(V, φ)] = [H(L)], where (V, φ) is a metabolic space with
Langrangian L. The Witt group W(E) of E is the Grothendieck group K(M(E)) modulo
the relation [(V, φ)] = 0 for all metabolic spaces (V, φ).

If E = Vect(X) is the exact category of finite locally free sheaves on a scheme X with
a line bundle L and duality F∗ = Hom (F ,L), then GW0(E) is denoted GW0(X,L). If
L = OX , it is often surpressed in the notation.
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We can associate to an exact category with duality E its bounded derived category
A = Db(E). This is an example of a triangulated category with duality. The triangulated
category A comes equipped with a shift functor, which can be used to transform the
duality on E into new dualities. In [72, section 3], gives a detailed exposition of triangu-
lated categories with duality and the Grothendieck-Witt groups of such categories. We
will only present the necessary definitions and an example.

Definition 6.1.5. A triangulated category with duality (A, ], can, λ) is a triangulated
category A together with an additive duality functor ] : Aop → A and natural isomor-
phisms can : IdA → ]]op and λ : ] → Σ]Σop, where Σ is the shift functor on A, such
that

(i) the square

Σ Σ]]op

]]opΣ Σ]Σop]opΣ

can Σ

Σ can λ]opΣ

Σ]λop

commutes;
(ii) for each A ∈ A, can]A canA] = idA] ; and
(iii) for each exact triangle

A B C ΣA
f g h

in A, the dual triangle

C] B] A] Σ(C])
g] f] Σ(h])λA

is also exact.

Comparing definition 6.1.5 to definition 6.1.1, we see that ] plays the role of ∗ and
can plays the role of ω. The natural transformation λ ensures that the duality ] behaves
well with respect to the shift Σ, as it does in the case of complexes, where the dual of
a complex is obtained by dualizing each differential and inverting the grading. In this
case, shifting a complex, dualizing it and shifting again is the same as simply dualizing
it, up to sign, and this sign constitutes λ, whence the term δ-duality originates that can
be found in [3].

A morphism of triangulated categories with duality

(F, ρ, φ) : (A1, ]1, can1, λ1) −→ (A2, ]2, can2, λ2)

is a triangle functor (F, ρ) : A1 → A2 together with a duality compatibility isomorphism
φ : F]1 → ]2F satisfying some further compatibility conditions, see [72, definition 3.4].

Note that definition 6.1.2 can be used in an additive category with duality (A, ∗, ω),
so in particular we can define symmetric spaces in a triangulated category with duality
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as symmetric spaces in the underlying additive category. Note also that, by definition,
the category of exact triangles in a triangulated category with duality is an additive
category with duality, so that we may consider symmetric spaces in the category of
exact triangles.

Definition 6.1.6. Let (A, ], can, λ) be a triangulated category with duality. Then
the Grothendieck-Witt group GW0(A) of A is the abelian group generated by isome-
try classes of symmetric spaces [A, φ] in A, subject to the relations:

(i) [A, φ] + [B,ψ] = [A⊕B,φ⊕ ψ]; and
(ii) if

A0 A1 A2 ΣA0

A]2 A]1 A]0 Σ(A]2)

f

φ0

g

φ1

h

φ2 Σφ0

g] f] Σ(h])λA

is a symmetric space in the category of exact triangles of A, then

[A1, φ1] =

[
A0 ⊕A2,

(
0 φ2

φ0 0

)]
.

The Witt group W0(A) of A is the quotient of GW0(A) by the relation [A1, φ1] = 0 for
[A1, φ1] as in (ii) above.

In a category of chain complexes with duality, dualizing a complex inverts its grading.
Hence if we shift a complex, take its dual, shift it again, and take its dual again, we
expect to end up with the complex we started with, up to signs on the differential and
the canonical double dual identification on the terms of the complex. This turns out to
be true, and can be formalized with the following definition.

Definition 6.1.7. Let (A, ], can, λ) be a triangulated category with duality. We define
A[1] as the triangulated category with duality

(A,Σ],−(λ]op) ◦ can,−Σλ),

and we call Σ] the shifted duality. Here, −(λ]) ◦ can is the negation of the vertical
composition of the natural transformations can : 1 → ]]op and λ]op : ]]op → Σ]Σop]op.
Similarly, we define A[−1] as the triangulated category with duality

(A, ]Σ, (]λop)−1 ◦ can,−λΣ).

Let A[0] = A. For n ∈ Z>0, we define A[n] = (A[n−1])[1] and A[−n] = (A[−n+1])[−1]

recursively.

Definition 6.1.8. Let A be a triangulated category with duality. For n ∈ Z, the n-th
shifted Grothendieck-Witt group of A is defined as

GW
[n]
0 (A) = GW0(A[n]).

Similarly, the n-th shifted Witt group of A is defined as W
[n]
0 (A) = W0(A[n]).
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Example 6.1.9. Let k be a field. The bounded derived category A = Db(k) of k is
a triangulated category which can be equipped with a duality ∨ : Aop → A as follows.
Let ∗ : Vect(k)op → Vect(k) be the standard duality on k-vector spaces, with canonical
double identification the evaluation map ev : IdVect(k) → ∗∗op. Let V be a complex of
k-vector spaces with differential d. Then, for i ∈ Z,

(V ∨)i = (V −i)∗ (d∨)i = (−1)i+1(d−i−1)∗.

The dual of a chain map f : V → W is the chain map f∨ : W∨ → V ∨ given in each
component by (f∨)i = f∗−i. The canonical double dual identification canV : V → V ∨∨ is
given by (canV )i = (−1)i evV i . The signs are forced by the sign conventions in dgModk,
see definition (5.1.1). With these definitions, (A,∨, can, 1) becomes a triangulated cate-
gory with duality. The duality ∨ is actually given by the dg functor [−, k] : Aop → A, and

this is how many dualities in chain complexes arise. We define GW
[n]
0 (k) = GW

[n]
0 (A).

Now suppose that k is quadratically closed of characteristic not two. Under the
identification k → Hom(k, k) given by 1 7→ (1 7→ 1), the identity map 1 : k → k is a
symmetric form. Let a ∈ k. Since the square

k k

k k

1

√
a
−1

a

√
a
−1

commutes, [k, 1] = [k, a] in GW
[0]
0 (k). Hence the class in GW

[0]
0 (k) of a symmetric form

is determined completely by its dimension, yielding GW
[0]
0 (k) = Z. To compute the

shifted Grothendieck-Witt groups of k, we use the fundamental exact sequence

GW
[n]
0 (k) K0(k) GW

[n+1]
0 (k) W

[n+1]
0 (k) 0

Fn Hn+1

of [91, theorem 2.6], or the more general version [72, theorem 6.1], which is called the

algebraic Bott sequence. Now assume that n 6= 0 mod 4. Then W
[n]
0 (k) = 0 by [4,

theorem 5.6], so that the hyperbolic map Hn : K0(k) → GW
[n]
0 (k) is surjective. Since

K0(k) = Z, it follows that GW
[n]
0 (k) is generated by the hyperbolic form Hn(k).

The class of k in K0(k) is F0([k, 1]), so H1(k) = 0 by the above exact sequence.

Hence GW
[1]
0 = 0, so H2 is injective and GW

[2]
0 (k) = ZH2(k). Finally, note that the

image of H2(k) under F2 : GW
[2]
0 (k)→ K0(k) is 2[k], so that GW

[3]
0 (k) = (Z/2Z)H3(k).

In summary,

GW
[0]
0 (k) = Z GW

[1]
0 (k) = 0

GW
[2]
0 (k) = Z GW

[3]
0 (k) = Z/2Z.

Since shifted Grothendieck-Witt groups are four-periodic, this completes the computa-
tion of the shifted Grothendieck-Witt groups of k.
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For the definition of higher Grothendieck-Witt groups, we need to go one step beyond
triangulated categories, into the realm of dg categories with duality.

Definition 6.1.10. Let A be a dg category. The opposite dg category Aop is the dg
category with the same objects as A, mapping complexes Aop(A,B) = A(B,A) and
composition fop ◦ gop = (−1)|f ||g|(g ◦ f)op, where fop and gop are homogeneous maps in
Aop corresponding to composable homogeneous maps f and g in A.

Composition in Aop is given by the commutative diagram

Aop(B,C)⊗Aop(A,B) Aop(A,C)

A(C,B)⊗A(B,A) A(B,A)⊗A(C,B) A(C,A),

op

τ ◦

op

which shows that the sign appearing in the composition of morphisms in the opposite
category comes from the switch map τ .

Definition 6.1.11. A dg category with duality (A,∨, can) is a dg category A together
with a dg functor ∨ : Aop → A and a natural transformation of dg functors can : IdA →
∨ ◦ ∨op called double dual identification such that can∨A ◦ canA∨ = idA∨ for all A ∈ A.

Definition 6.1.12. Let (A,∨, can) and (B,∨, can) be dg categories with duality. A
dg form functor (F, η) : A → B is a functor F : A → B together with a natural
transformation η : F ◦ ∨ → ∨ ◦ F op, whose components are called duality compatibility
morphisms, such that η∨A canF (A) = ηA∨F (canA) for all objects A of A.

Definition 6.1.13. Let (A,∨, can) be a dg category with duality. A symmetric form
in A is a closed morphism φ : A → A∨ of degree zero such that φ∨ canA = φ. When φ
is an isomorphism in H0A, the symmetric form is called nondegenerate.

Proposition 6.1.14. Let (A,∨, can) and (B,∨, can) be dg categories with duality and
(F, η) : A → B a dg form functor. If φ : A → A∨ is a symmetric form, then ηAF (φ) :
F (A)→ F (A)∨ is a symmetric form.

Proof. The diagram

F (A) F (A∨∨) F (A∨)

F (A)∨∨ F (A∨)∨ F (A)∨

F (canA)

canF (A)

F (φ∨)

ηA∨ ηA

η∨A F (φ)∨

commutes, because (F, η) is a dg form functor. Furthermore, as φ is a symmetric form,
F (φ∨)F (canA) = F (φ∨ canA) = F (φ). Hence

(ηAF (φ))∨ canF (A) = F (φ)∨η∨A canF (A) = ηAF (φ),

as was to be shown.
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The above proposition allows us to define the category dgCatD of dg categories with
duality, whose morphisms are dg form functors. Furthermore, dgCatD can be equipped
with a closed symmetric monoidal structure similar to that of dgCat, c.f. [72, section
1.10].

As for triangulated categories with duality, we can shift dualities on pretriangulated
dg categories with duality. More generally, we can shift a duality by an object in Ck.

Definition 6.1.15. Let A be an object of Ck. The duality on Ck defined by A consists of
the following functor ∨A : C op

k → Ck and natural transformation canA : id→ ∨A ◦ ∨op
A :

(i) on objects, ∨A is given by B 7→ [B,A];
(ii) on mapping complexes, the component [B,C]→ [[C,A], [B,A]] of ∨A is given by

f∨A = (g 7→ (−1)|f ||g|gf)

for homogeneous f ∈ [B,C] and g ∈ [C,A]; and
(iii) the canonical double dual identification canAB : B → [[B,A], A] on an object B is

given by
canAF (x) = (f 7→ (−1)|x||f |f(x)).

The category Ck equipped with the duality defined by A is denoted by

(Ck,∨A, canA),

or shortly C
[A]
k . For n ∈ Z, C

[n]
k abbreviates C

[Σn]
k , and ∨Σn is called the n-th shifted

duality on Ck. For an arbitrary dg category A with duality, we define A[A] = C
[A]
k ⊗A.

Note that, for any A ∈ Ck, one also obtains (Ck,∨A,− canA), the duality of which is
sometimes called the skew-duality defined by A. Almost all dualities we will consider in
this thesis are induced by objects. In particular, for a scheme X, the pretriangulated dg
category Perf(X) of perfect complexes of OX -modules has a duality of the form [−,L] for
each line bundle L on X. This is the main example to keep in mind until it is introduced
in detail in section 7.1.

We need shifted dualities in order to define a Grothendieck-Witt spectrum, the higher
homotopy groups of which form the higher Grothendieck-Witt groups. The definition
of this spectrum involves simplicial construction akin to Waldhausen’s S•-construction
[89, section 1.3]. We will only sketch this construction here, a full account can be found
in [72, section 4.6], culminating in [72, definition 5.4].

Let A be a pretriangulated dg category with duality. Recall that the equivalences of
A are the morphisms of Z0A that become isomorphisms in H0A. For n ∈ N, let

[n] = {−n < −n+ 1 < · · · < 0 < · · · < n}

be the category with objects −n ≤ i ≤ n and a unique morphism i→ j for all i ≤ j. This
category has a strict duality ∗ : [n]op → [n] given by the sign change (i ≤ j) 7→ (−j ≤ −i).
The category of these [n] with order-preserving maps between them is denoted ∆e, since
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it is equivalent to the category of edgewise subdivisions of objects in the simplex category
∆. Furthermore, there is a canonical functor ∆→ ∆e given by [n] 7→ [n]. Then Ar([n])
has pairs (i, j) with i ≤ j as its objects and commutative squares

i j

i′ j′

with i ≤ j ≤ j′ and i ≤ i′ ≤ j′ as its morphisms, and inherits duality from [n].
Define RnA as the following full dg subcategory of the pretriangulated dg category

with duality Fun(Ar([n]),A). Let A ∈ Fun(Ar([n]),A). Then A ∈ RnA if and only if

(i) for all −n ≤ i ≤ n, Ai,i = 0; and
(ii) for all i ≤ j ≤ k in [n], the sequence

0 −→ Ai,j −→ Ai,k −→ Aj,k −→ 0

in Z0A is exact.

Then RnA is a pretriangulated dg category with duality. Hence we obtain a simplicial
pretriangulated dg category with duality R•A : ∆op

e → dgCatD. For each n ∈ N, we
define wRnA as the category of equivalences in RnA, thus obtaining wR•A. Note that
wRnA consists of all the morphisms in Z0RnA that become isomorphisms in H0RnA,
reducing us to the study of exact categories with weak equivalences and duality as in
[74].

Let S•A be Waldhausen’s S•-construction (replace [n] with [n] in the above construc-
tion) and (wR•A)h the category of nondegenerate symmetric forms in wR•A. Then
there is a natural composition

(wR•A)h −→ wR•A −→ wS•A,

where the first map is the forgetful map (A, φ) 7→ A and the second map is induced by
the natural inclusion [n]→ [n] for each n ∈ N. Hence we obtain a map

|(wR•A)h| −→ |wS•A|

of pointed topological spaces.

Definition 6.1.16. The Grothendieck-Witt space GW(A) of A is the homotopy fiber of
the natural map

|(wR•A)h| −→ |wS•A|.

Using a multi-simplicial construction, we can now define the Grothendieck-Witt spec-
trum of the pretriangulated dg category with duality A. For m1, . . . ,mn ∈ N, the pre-
triangulated dg category with duality Fun(Ar([m1]) × · · · × Ar([mn]),A) consists of
functors

A : Ar([m1])× · · · ×Ar([mn])→ A,
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for which A(i1 ≤ j1, . . . , in ≤ jn) will be denoted by Ai1,j1;...;in,jn . Let R(n)
m1,...,mnA be

the full subcategory of Fun(Ar([m1])× · · · ×Ar([mn]),A) consisting of the functors A
such that

(i) whenever ik = jk for some 1 ≤ k ≤ n, Ai1,j1;...;in,jn = 0;
(ii) for every object (i1 ≤ j1, . . . , in ≤ jn) of Ar([m1])×· · ·×Ar([mn]), every 1 ≤ r ≤ n,

and every jr ≤ k ≤ mr, the sequence

0 −→ Ai1,j1;...;in,jn −→ Ai1,j1;...;ir,k;...;in,jn −→ Ai1,j1;...;jr,k;...;in,jn −→ 0

is exact.

We obtain a multi-simplicial pretriangulated dg category with duality R(n)
•,...,•A, and we

define R(n)
• to be the diagonal of this multisimplicial construction. Then R(n)

• A has a
number of useful categorical properties [72, section 4.6]. In particular, there is a map

|(wR(n)
• A[n])h| → Ω|(wR(n+1)

• A[n+1])h|

for each n ≥ 0, which is a homotopy equivalence for each n ≥ 1. Here, A[n] is n-th
shifted pretriangulated dg category with duality as in definition 6.1.15.

Definition 6.1.17. The Grothendieck-Witt spectrum GW(A) of A is the spectrum

whose n-th space is given by |(wR(n)
• A[n])h| and whose bonding maps are induced by

the maps

|(wR(n)
• A[n])h| → Ω|(wR(n+1)

• A[n+1])h|.
In particular, GW(A) is an Ω-spectrum in degrees n ≥ 1.

See [72, section 5.2] for details on the bonding maps of the Grothendieck-Witt spec-
trum. It is also shown there that GW(A) is a module spectrum over the ring spectrum
GW(k), where k is the base ring of the dg categoryA. The infinite loop space Ω∞GW(A)
of the Grothendieck-Witt spectrum is the Grothendieck-Witt space of definition 6.1.16
and π0 GW(A) is isomorphic to the Grothendieck-Witt group GW0(H0A) of definition
6.1.6 by [72, proposition 5.6].

6.2 Fundamental results

Localization and additivity of algebraic K-theory are two of its main computational tools.
For example, localization can be used to relate the K-theory of a scheme to the K-theory
of a closed subscheme and that of the open complement via a fiber sequence of K-theory
spectra, and additivity states that whenever the category being studied has a semi-
orthogonal decomposition, its K-theory splits as a direct sum of the K-theory of each
of the semi-orthogonal components; in other words, K-theory makes semi-orthogonal
decompositions orthogonal.

Grothendieck-Witt theory also satisfies localization [72, theorem 6.6, theorem 8.10]
and additivity [72, proposition 6.8], albeit in a slightly different form to account for
duality phenomena. Because of their fundamental importance, we restate these results
here.
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Theorem 6.2.1 (localization for GW). Let A → B → C be a quasi-exact sequence of
dg form functors between pretriangulated dg categories with duality. Then there is a
homotopy fibration of Grothendieck-Witt spectra

GW[n](A) GW[n](B) GW[n](C).

The following is a slightly more general version of additivity for GW-theory, c.f. [90,
theorem 2.5] and [72, proposition 6.8].

Theorem 6.2.2 (additivity for GW). Let (A,∨, can) be a pretriangulated dg category
with duality equipped with a semi-orthogonal decomposition 〈A0,A1, . . . ,Ar〉, such that
A∨i ⊂ Ar−i.

(i) The duality ∨ : Aop → A induces equivalences Aop
i ' Ar−i

(ii) Suppose r is odd. Let q = (r − 1)/2. Then the functor

q∏
i=0

HAi −→ A

q∏
i=0

(Ai, Bi) 7−→
q⊕
i=0

Ai ⊕B∨i ,

where HAi is the hyperbolic category with duality associated to Ai, induces a stable
equivalence of spectra

q⊕
i=0

K(Ai) −→ GW(A).

(iii) Suppose r is even. Let q = r/2. Then the functor

Aq ×
q−1∏
i=0

HAi −→ A

Aq ×
q−1∏
i=0

(Ai, Bi) 7−→ Aq ⊕

(
q−1⊕
i=0

Ai ⊕B∨i

)

induces a stable equivalence of spectra

GW(Aq)⊕
q−1⊕
i=0

K(Ai) −→ GW(A),

which identifies (up to stable equivalence) the homotopy fiber of the forgetful maps
F : GW(A)→ K(A) and F ′ : GW(Aq)→ K(Aq).

Proof. Since A∨i ⊂ Ar−i, and since there is an equivalence ∨ : Aop
i → Ar−i sending a

map A → B in Aop
i to the dual map A∨ → B∨, which lies in Ar−i by assumption, (i)

holds.
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Next, (ii) will be proved. Using the notation in the statement of the theorem, let
A− = 〈A0, . . . ,Aq〉 and A+ = 〈Aq+1, . . . ,Ar〉. Then A = 〈A−,A+〉 is a semi-orthogonal
decomposition of A, so there is an exact sequence of pretriangulated dg categories

A− A A+.

By additivity [72, proposition 6.8] for GW-theory, it holds that the hyperbolic functor
of the statement of (ii) induces a stable equivalence of spectra

K(A−) GW(A)∼

Since 〈A0, . . . ,Aq〉 is a semi-orthogonal decomposition of A−, additivity for connective
K-theory [73, theorem 3.3.7] 1 yields an equivalence

q⊕
i=0

K(Ai) K(A−)∼

and the proof of (ii) is finished by composing these two equivalences.
Finally, (iii) will be proved. Let 〈A−,A0,A+〉 be the semi-orthogonal decomposition

of A with A− = 〈A0, . . . ,Aq−1〉 and A+ = 〈Aq+1, . . . ,Ar〉. Then it holds that A∨− = A+

and A∨0 = A0. Hence [93, theorem 3.5.6] yields a stable equivalence of spectra

GW(Aq)⊕K(A−) GW(A).∼

One obtains the desired stable equivalence of spectra with another application of the
additivity of connective K-theory. It remains to show that there is a stable equivalence
of homotopy fibers hofib(F ) ' hofib(F ′). There is a commutative diagram of spectra

hofib(F ′ ⊕ id) GW(Aq)⊕K(A−) K(Aq)⊕K(A−)

hofib(F ) GW(A) K(A)

∼ ∼

F ′⊕id

∼

F

where the vertical arrows are stable equivalences. Thus it holds that

hofib(F ) ' hofib(F ′ ⊕ id) ' hofib(F ′)⊕ hofib(id),

but hofib(id) is contractible and the result follows.

Corollary 6.2.3. Let (A,∨, can) be a pretriangulated dg category with duality.

(i) If there is a semi-orthogonal decomposition

A = 〈. . . ,A−n, . . . ,A−1,A1, . . . ,An, . . . 〉
1This theorem is stated and proved for triangulated categories, but holds for dg categories mutatis

mutandis using lemma 5.6.4.
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such that A∨n = A−n, then the functor⊕
i

HAi −→ A⊕
i

(Ai, Bi) 7−→
⊕
i

Ai ⊕B∨i ,

induces a stable equivalence of spectra⊕
i

K(Ai) −→ GW(A).

(ii) If there is a semi-orthogonal decomposition

A = 〈. . . ,A−n, . . . ,A−1,A0,A1, . . . ,An, . . . 〉

such that A∨n = A−n, then the functor

A0 ×
⊕
i 6=0

HAi −→ A

A0 ×
⊕
i 6=0

(Ai, Bi) 7−→
⊕
i 6=0

Ai ⊕B∨i ,

induces a stable equivalence of spectra

GW(A0)⊕
⊕
i 6=0

K(Ai) −→ GW(A).

Proof. Let A+ = 〈A1,A2, . . . 〉 and A− = 〈. . . ,A−2,A−1〉, apply additivity, and note
that K(A+) decomposes as an infinite direct sum by additivity for K-theory.

6.3 Equivariant Grothendieck-Witt theory

One side of the isomorphism in the Atiyah-Segal completion theorem is concerned
with equivariant cohomology. This section develops the basic theory of equivariant
Grothendieck-Witt theory, which can be thought of as a refinement of equivariant alge-
braic K-theory.

First, we will recall some of the theory of equivariant objects, following [85, section
3.8]. Let p : S → C be a fibered category. Let G : Cop → Set be a presheaf of groups on
C and X an object of C with an action α : G× hX → hX of G.

Definition 6.3.1. A G-equivariant object of SX is an object F of SX , together with an
action a′ : (G ◦ p)× hF → hF of G ◦ p on hF such that the diagram

(G ◦ p)× hF hF

(G ◦ p)× (hX ◦ p) hX ◦ p

a′

α′
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in PSh(S) commutes, where the vertical maps are induced by p and where the map
α′G = αY for each Y ∈ C and G ∈ SY . A morphism F → G of G-equivariant objects
is called G-equivariant if hF → hG is G ◦ p-equivariant. The category of G-equivariant
objects of SX with G-equivariant morphisms is denoted SGX .

Now assume that G is a group object of C, acting on an object X of C via an
action α : G×X → X. In this case, there are several equivalent ways of characterizing
equivariant objects; we only state [85, proposition 3.49]. We define:

(i) m : G×G→ G the multiplication map on G;
(ii) pr2 : G×X → X the projection map;
(iii) pr3 : G×G×X → X the projection map;
(iv) pr23 : G×G×X → G×X the projection map;
(v) A : G×G×X → X the map α(m× idX); and
(vi) B : G×G×X → X the map pr2(idG×α).

Proposition 6.3.2. To give an object F of SX a G-equivariant structure is the same
as giving an isomorphism φ : pr∗2F → α∗F in SG×X such that the diagram

pr∗3F A∗F

B∗F

(m×idX)∗φ

pr∗23 φ (idG×α)∗φ

commutes.

Proposition 6.3.2 holds because S is fibered over C and therefore pullbacks exist.
Let X be a scheme with an action of a group scheme G. Since QCoh → Sch is

a fibered category, proposition 6.3.2 gives a definition of G-equivariant quasi-coherent
OX -modules.

Definition 6.3.3. A G-equivariant locally free OX-module is a locally free sheaf on X
which is G-equivariant as a quasi-coherent OX -module.

Let PerfG(X) be the dg category of perfect complexes of G-equivariant locally free
OX -modules up to quasi-isomorphism, see remark 5.5.6 and definition 2.3.3.

Definition 6.3.4. The G-equivariant Grothendieck-Witt spectrum of X is defined as

GW
[n]
G (X) = GW[n](PerfG(X)).

Example 6.3.5. Let X = Spec k, where k is a field. Let G = Gm. Then RG = KG
0 (X) is

the ring of k-representations of G. There is a nontrivial 1-dimensional G-representation
M , whose action G × M → M is given by (λ, a) 7→ λa. Note that the action of G
on M⊗n is then given by (λ, a) 7→ λna. A result in representation theory states that
RG ∼= Z[x, x−1], where x corresponds to M . The augmentation map a : RG → Z is
given by

∑
aix

i 7→
∑
ai and the augmentation ideal is defined to be IG = ker a, which is

generated by the element (x−1). Then the completion of RG with respect to IG is R̂G ∼=
ZJyK, where y corresponds to the class [M ]−1, since Z[x, x−1]/(x−1)n ∼= Z[y]/yn. Using
the projective bundle formula for K-theory, it can be shown that K0(BGm) ∼= ZJyK.
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7 Projective bundle formula

One of the first computations for any cohomology theory, whether topological or algebro-
geometric, is the computation of the cohomology of projective spaces and projective
bundles. It is simultaneously a proving ground for the computability of the theory, a
toolkit for further computations, and a guide for the general behaviour of the theory;
the projective space is often the example that contains the seeds of generality, if one
knows where to look for them.

In this chapter, we will prove a projective bundle formula for Grothendieck-Witt
theory [70], generalizing a result from [90], following [72, remark 9.11]. A less general
version of this result was proven independently in [51].

We will use the theory of pretriangulated dg categories with duality as exhibited in
the previous chapters. Throughout, we let X be a scheme with the resolution property,
that is, satisfying Perf(X) ' sPerf(X) as in remark 5.5.6. Note that any quasi-compact
quasi-separated schemes with an ample family of line bundles satisfies this property. We
let OX be the structure sheaf of X and define dgModOX as in section 5.1. All the dg
categories considered in this chapter will be dg categories over OX , the main example
being the pretriangulated dg category Perf(X) of perfect complexes of OX -modules of
remark 5.5.6, see also section 2.3.

7.1 Duality on the dg category of perfect complexes

The sign conventions used will be the same as those in chapter 5.2. All tensor products
in this section are taken over the structure sheaf O = OX of the scheme X, unless indi-
cated otherwise. Let Perf(X) be the usual closed symmetric monoidal pretriangulated
dg category of perfect complexes of O-modules, where the monoidal structure is given
by the tensor product of complexes and the monoidal unit is the perfect complex O, con-
centrated in cohomological degree 0. It is useful to think of Perf(X) as a subcategory of
dgModO.

We recall some of our conventions:

(i) complexes of O-modules are cohomologically graded;
(ii) for an object A of Perf(X) with differential d, the i-th differential is di : Ai → Ai+1;

(iii) for n ∈ Z, the n-th shift of A is denoted either by ΣnA or by A[n], with (ΣnA)i =
Ai+n;

(iv) we have objects 1, Σ and Γ in Perf(X) corresponding to the monoidal unit O, the
shift O[1] and the complex id : O → O concentrated in degrees −1 and 0;

(v) a homogeneous morphism f : A → B in Perf(X) has degree j if its components
are f i : Ai → Bi+j for all i ∈ Z; and

(vi) since Perf(X) ' sPerf(X) by assumption, an object A of Perf(X) will always
be assumed to be a cohomologically bounded complex of locally free O-modules,
which gives a small model of sPerf(X).

For a line bundle L on X, the duality ∨L[n] on Perf(X) is closely related to the
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duality ∨L on Vect(X), given by

F∨L = Hom (F ,L),

whose canonical double dual identification is the evaluation map evF : F → F∨L∨L . Fix
a line bundle L on X, let n ∈ Z and L = L[n], and equip Perf(X) and Vect(X) with the
dualities ∨L and ∨ = ∨L, respectively. Let A be an object of Perf(X) with differential
d. Let B be another object of Perf(X) and let f ∈ [A,B]j . The following identities are
forced by definition 6.1.15:

(A∨L)i = (A−i−n)∨

(d∨L)i = (−1)i+1(d−i−1−n)∨

(f∨L)i = (−1)ij(f∨)−i−j−n

(canLA)i = (−1)i(n+1) evAi .

(7.1.1)

The following lemma from algebraic geometry, [33, proposition 7.7], plays an impor-
tant role in the theory of duality on Perf(X). Indeed, corollary 7.1.5 is crucial in the
proof of proposition 7.1.6, which shows that tensoring by a symmetric form in Perf(X)[L]

preserves duality.

Lemma 7.1.2. Let F , G and H be O-modules. If F or H is finite locally free, then the
canonical map

φ : G ⊗O Hom (F ,H)→Hom (F ,G ⊗O H)

given by s⊗ f 7→ (t 7→ s⊗ f(t)) is an isomorphism.

Corollary 7.1.3. Let M and N be in Perf(X), n ∈ Z, and L a line bundle on X. Then
there is a natural isomorphism

φ : N ⊗ [M,L[n]] −→ [M,N ⊗ L[n]]

given by s⊗ f 7→ (x 7→ s⊗ f(x)).

Proof. Note that φ is the composition

N ⊗ [M,L[n]] [L[n], N ⊗ L[n]]⊗ [M,L[n]] [M,N ⊗ L[n]],
∇⊗1 ◦

and therefore a natural morphism. Here, ∇ : N → [L[n], N ⊗ L[n]] is the unit of the
tensor-hom adjunction for L[n]. Each component

φi : (N ⊗ [M,L[n]])i −→ [M,N ⊗ L[n]]i

of φ is a map

φi :
⊕
p

N i−p ⊗Hom (M−p−n,L) −→
⊕
q

Hom (M q−n, N i+q ⊗ L)

given by s⊗ f 7→ (x 7→ s⊗ f(x)). Thus φi is a direct sum of isomorphisms as in lemma
7.1.2, which ultimately yields that φ is a natural isomorphism.
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Let L1 and L2 be line bundles on X and m,n ∈ Z. Set L1 = L1[m], L2 = L2[n] and
L1L2 = (L1 ⊗ L2)[m+ n], and denote simple tensors of elements similarly.

Remark 7.1.4. The map

O[m]⊗ L1 ⊗O[n]⊗ L2
1⊗τ⊗1−→ O[m]⊗O[n]⊗ L1 ⊗ L2

induces a natural isomorphism L1 ⊗ L2 → L1L2 given by

1−m ⊗ x⊗ 1−n ⊗ y 7−→ 1−m−n ⊗ xy,

where, for i ∈ Z, 1−i ∈ O[i]−i is the multiplicative unit.

Corollary 7.1.5. Let M,N ∈ Perf(X). Then there is natural isomorphism

φ : [M,L1]⊗ [N,L2]→ [M ⊗N,L1L2]

given by φ(f ⊗ g)(x⊗ y) = (−1)|x||g|(f(x)⊗ g(y)).

Proof. The map φ is the composition

[M,L1]⊗ [N,L2] [N,L2]⊗ [M,L1] [M, [N,L2]⊗ L1]

[M,L1 ⊗ [N,L2]] [M, [N,L1 ⊗ L2]] [M ⊗N,L1L2] ,

τ α

[1,τ ]

β

where α and β are natural isomorphisms as in corollary 7.1.3, and the final map is the
tensor-hom adjunction combined with the natural isomorphism of remark 7.1.4.

The following proposition provides a useful tool for constructing dg form functors
(cf. [72, remark 1.32]). Indeed, most of the form functors considered in the rest of this
paper will be of this type.

Proposition 7.1.6. Let φ : M → [M,L1] be a symmetric form in Perf(X)[L1]. Then
tensoring by M defines a dg form functor

(M,φ)⊗− : Perf(X)[L2] −→ Perf(X)[L1L2]

with duality compatibility morphisms

ηN : M ⊗ [N,L2] −→ [M,L1]⊗ [N,L2] −→ [M ⊗N,L1L2],

where the first arrow is φ ⊗ id and the second arrow is the natural isomorphism of
corollary 7.1.5.
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Proof. The assignment N 7→ M ⊗ N certainly defines a functor, which leaves to be
shown that it defines a form functor with the provided compatibility morphisms, or
equivalently, that the square

M ⊗N [[M ⊗N,L1L2] , L1L2]

M ⊗ [[N,L2] , L2] [M ⊗ [N,L2] , L1L2]

canL1L2

1⊗canL2 η
∨L1L2
N

η[N,L2]

(7.1.7)

commutes for all N in Perf(X)[L2]; this amounts to a computation using the definitions
of all the morphisms.

Remark 7.1.8. Linear maps φ : M ⊗M → N such that φτ = φ are called symmetric
correspond to symmetric forms via the tensor-hom adjunction. Given a symmetric linear
map φ : M ⊗ M → N , the corresponding symmetric form φ̃ : M → [M,N ] is the
composition

M
∇−→ [M,M ⊗M ]

[1,φ]−−→ [M,N ],

so that φ̃(x) = (y 7→ φ(x⊗ y)). The morphism ∇ : [M,M ⊗M ] is the coevaluation map
x 7→ (y 7→ x ⊗ y). A symmetric linear map is called nondegenerate if its corresponding
symmetric form is nondegenerate, that is, if it is a quasi-isomorphism.

One consequence of proposition 7.1.6 is that skew-symmetric forms can be trans-
formed into symmetric forms.

Remark 7.1.9. For the purpose of this remark, let L = L[m], where L is a line bundle
on X and m ∈ Z, and let ε ∈ {±1} and i ∈ Z. Consider a symmetric linear map
φ : M ⊗ M → L in (Perf(X),∨L, ε canL). Then φτ = εφ. The multiplication map
µ : O[i]⊗O[i] → O[2i] given by x⊗ y 7→ xy satisfies µτ = (−1)iµ, as witnessed by the
identity

µ(τ(x⊗ y)) = (−1)i
2
yx = (−1)ixy = (−1)iµ(x⊗ y).

Thus µτ ⊗ φτ = (−1)iε(µ⊗ φ). Since the diagram

O[1]⊗M ⊗O[1]⊗M O[1]⊗O[1]⊗M ⊗M

O[1]⊗M ⊗O[1]⊗M O[1]⊗O[1]⊗M ⊗M

1⊗τ⊗1

τ τ⊗τ

1⊗τ⊗1

commutes, as can be seen from a direct computation, it follows that the composition

ψ : O[1]⊗M ⊗O[1]⊗M O[1]⊗O[1]⊗M ⊗M O[2]⊗ L1⊗τ⊗1 µ⊗φ

satisfies ψτ = (−1)iεψ. This yields an equivalence of dg categories with duality

(O[i], µ)⊗− : (Perf(X),∨L, ε canL) −→ (Perf(X),∨L[2i], (−1)iε canL[2i]),
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which in particular shows how to turn skew-symmetric forms into symmetric ones by
taking ε = −1 and i = ±1.

Another consequence is that the tensor product of two symmetric forms is another
symmetric form.

Corollary 7.1.10. Let φ : M ⊗M → L1 and ψ : N ⊗ N → L2 be symmetric linear
maps in Perf(X)[L1] and Perf(X)[L2], respectively. Then the composition

M ⊗N ⊗M ⊗N M ⊗M ⊗N ⊗N L1L2
1⊗τ⊗1 φ⊗ψ

is a symmetric linear map in Perf(X)[L1L2].

Proof. The symmetric linear maps φ and ψ define symmetric forms φ̃ : M → [M,L1]
and ψ̃ : N → [N,L2]. Let F = (M, φ̃)⊗− be the form functor of proposition 7.1.6 with
duality compatibility morphisms ηA. Then ηNF (ψ̃) is a symmetric form by proposition
6.1.14, and the symmetric linear map it induces is precisely that of the statement of the
lemma.

Corollary 7.1.11. Let L = L[m], where L is a line bundle on X and m ∈ Z, equipped
with the trivial symmetric form µ : L ⊗ L → L⊗2 Then tensoring by L induces an
equivalence

(L, µ)⊗− : Perf(X)[0] −→ Perf(X)[L⊗2]

of pretriangulated dg categories with duality.

Proof. It is immediate from proposition 7.1.6 that tensoring by L gives a dg form functor

F : Perf(X)[0] −→ Perf(X)[L⊗2]

whose duality compatibility morphisms are isomorphisms. Furthermore, tensoring by L
is an equivalence; an inverse is given by tensoring with [L,O]. It follows that F is an
equivalence of pretriangulated dg categories with duality.

7.2 Constructing symmetric forms from Koszul complexes

Let X be a scheme satisfying the resolution property and let E be a finite locally free
OX -module of rank r+1. Let P = P(E) be the projective bundle over X associated to E ,
with projection map π : P→ X. Set s = dr/2e and O = OP, so O no longer denotes OX
for notational convenience in this section. By the construction of the projective bundle,
there is a canonical surjection

π∗E −→ O(1),

giving rise to the Koszul complex K

K : 0→ . . .→ Λiπ∗E(−i)→ . . .→ Λ1π∗E(−1)→ O → 0
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with K−i = Λiπ∗E ⊗O(−i) in cohomological degree −i, which is acyclic by [80, section
4.6]. It also holds that Λr+1π∗E ∼= π∗ det E and Λ1π∗E = π∗E . View K as a differential
graded algebra with Λ1π∗E(−1) in degree −1, so that the cohomological degree and the
degree of the grading coincide, and write |x| for the degree of a homogeneous element
x ∈ K. For ease of notation, fix ∆ = detπ∗E(−r − 1) = K−r−1.

The rest of this section is dedicated to the construction of a symmetric form (H,ψ)
such that the cone of ψ is the Koszul complex, which can be seen as a generalization
of [8, section 4]. Two cases are distinguished, r is even and r is odd, the construction
in the first case being easier than that in the second case. Such a symmetric form
(H,ψ) is a quasi-isomorphism in Perf(P) because the Koszul complex is acyclic, and

therefore defines an element of the Grothendieck-Witt group GW
[r]
0 (P,∆), which is a

key ingredient in the proof of theorem 7.4.10.
The following proposition is an adaptation of the well-known and useful fact that

the Koszul complex is self-dual.

Proposition 7.2.1. The linear map µ : K ⊗K → ∆[r + 1] given by the composition

K ⊗K ∧−→ K
pr−→ ∆[r + 1],

where the last map is the projection map, is symmetric and nondegenerate.

Proof. Symmetry can be checked by a direct computation involving the graded commu-
tativity of K and the sign change on the twist map τ : K ⊗K → K ⊗K.

Non-degeneracy holds because the components of the induced symmetric form µ̃ :
K → [K,∆[r + 1]] are locally isomorphisms of free O-modules and therefore isomor-
phisms.

Fix an integer ` such that −r−1 ≤ ` ≤ −1 and let M = K≤` be the naive truncation
of K:

M : K−r−1 K−r . . . K` 0 . . . 0

K : K−r−1 K−r . . . K` K`+1 . . . K0.

ι

d d d

d d d d d d

Since K is a differential graded O-algebra, there is a multiplication map ∧ : K⊗K → K
given by the wedge product. Let ϕ be the composition

M ⊗M K ⊗K ∆[r + 2],
dι⊗ι µ

where µ is the symmetric linear map of proposition 7.2.1. In a formula,

ϕ(x⊗ y) =

{
d(x) ∧ y if |x|+ |y| = −r − 2
0 otherwise.

Now ϕ is a symmetric linear map, which will be molded in such a way that its cone
becomes the Koszul complex.
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Proposition 7.2.2. The map

ϕ : M ⊗M −→ ∆[r + 2]

defines a symmetric form φ : M [−1]→ [M [−1],∆[r]] in Perf(P)[∆[r]] given by x 7→ (y 7→
(−1)|x|ϕ(x⊗ y)).

Proof. Let τ : M ⊗M → M ⊗M be the switch map x ⊗ y 7→ (−1)|x||y|y ⊗ x. By [72,
remark 1.31], ϕ defines a skew-symmetric form φ : M → [M,∆[r + 2]] if ϕ satisfies
ϕ = −ϕτ , which is what will be shown. By construction,

ϕ(τ(x⊗ y)) = 0 = −ϕ(x⊗ y)

if |x| + |y| 6= −r − 2. Therefore, let x ⊗ y ∈ M ⊗M with |x| + |y| = −r − 2. Then a
direct computation involving the graded Leibniz rule shows that

ϕ(τ(x⊗ y)) = (−1)|y|+1(−1)|y|d(x) ∧ y = −d(x) ∧ y = −ϕ(x⊗ y).

By remark 7.1.9, tensoring ϕ with the skew-symmetric form O[−1] ⊗ O[−1] → O[−2]
yields the desired symmetric form φ.

For the remainder of this section, let φ be the symmetric form of proposition 7.2.2.
Note that φ is not necessarily a quasi-isomorphism in Perf(P) and therefore does not
necessarily define an element of GW[r](P,∆). However, the ideas of [8, section 4] can
be combined with the technique of the proof of [90, theorem 1.5] to obtain a symmetric
form (H,ψ) having the Koszul complex, or a related acyclic complex, as its cone.

Proposition 7.2.3. Assume that r is even and let (H,ψ) = (M,φ) with ` = −s − 2.
Then ψ is a quasi-isomorphism.

Proof. By proposition 7.2.1, ψ becomes isomorphic to the map of complexes

K−r−1 . . . K−s−2 0

0 K−s−1 . . . K0,

−d −d

d

d d

concentrated in cohomological degrees [−r, 0]. Therefore, the cone cone(ψ) of ψ is isomor-
phic to the Koszul complex K, which is acyclic. Consequently, ψ is a quasi-isomorphism,
as was to be shown.

Now suppose that r is odd. Taking ` = −s, the cone cone(φ) becomes isomorphic to
the complex K ⊕K−s[s], where K−s = Λsπ∗E(−s) is viewed as a complex concentrated
in degree zero. The middle terms of cone(φ) are

. . . K−s−1 (K−s)⊕2 K−s+1 . . . ,
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where the differential K−s−1 → (K−s)⊕2 is given by x 7→ (−dx, dx) and the differential
(K−s)⊕2 → K−s+1 is given by (x, y) 7→ dx + dy. The idea presents itself that there
might be a symmetric form whose cone is an acyclic complex that is closely related to
the Koszul complex, as long as K−s “splits into two dual parts”. The remainder of this
section is dedicated to constructing such a symmetric form, with a suitable assumption
on ΛsE .

For the moment, consider the exact category with duality Vect(X)[det E] of locally
free sheaves on X, where the duality is denoted by \. The reason for this excursion to
Vect(X) is that the symmetric form (H,ψ) in sPerf(P)[∆[r]], which is being constructed
for the splitting of the homotopy fibration in theorem 7.4.10(ii), needs to have a specific
image in sPerf(X)[0].

Lemma 7.2.4. The restriction of the wedge product ∧ : ΛE ⊗ ΛE → ΛE to ΛsE ⊂ ΛE
induces a (−1)s-symmetric form

ν ′ : ΛsE −→ (ΛsE)\

in Vect(X)[det E], and in particular defines an element ν ′ ∈W [r+1](X,det E).

Proof. Since x ∧ y = (−1)s
2
y ∧ x = (−1)sy ∧ x for x, y ∈ ΛsE , ν ′ is a (−1)s-symmetric

form, which is also an isomorphism. As 2s = r+ 1, it follows that ν ′ defines an element
in W [r+1](X,det E).

Now assume that the element ν ′ of lemma 7.2.4 vanishes in W [r+1](X,det E). Then
(ΛsE , ν ′) is stably metabolic, so by [5, remark 29] there exists a metabolic space (N ′, σ′)
such that (ΛsE , ν ′) ⊥ (N ′, σ′) is split metabolic and even hyperbolic by [5, example
21], because 2 is invertible; let (N ′, σ′) be such a metabolic space and fix a split exact
sequence

P ′ ΛsE ⊕ N ′ P ′\,
ιP′ ι\P′ (ν

′⊕σ′)

prP′ (ν′⊕σ′)−1 pr\P′

(7.2.5)

where P ′ is a split Lagrangian of ΛsE ⊕N ′ with orthogonal complement P ′\. It is useful
to think of this construction as extending ΛsE by N ′ such that it can be chopped into
two halves P ′ and P ′\ which are dual to each other.

Additionally, fix a short exact sequence

S ′ N ′ S ′\,α α\σ

which exists since N ′ is metabolic.

Note that π∗ : Vect(X)[det E] → Vect(P)[detπ∗E] is an exact duality-preserving functor.
Furthermore, the symmetric form id : O(−s) → O(−s) in Vect(P)[O(−r−1)] yields a
duality-preserving equivalence

(O(−s), id)⊗− : Vect(P)[detπ∗E] −→ Vect(P)[∆].
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Let F be the composition

F : Vect(X)[det E] Vect(P)[detπ∗E] Vect(P)[∆],π∗ (O(−s),id)⊗−

and let P = F (P ′), N = F (N ′), S = F (S ′), ν = F (ν ′) and σ = F (σ′). Note that ν is
the (−1)s-symmetric form

ν : Λsπ∗E(−s) −→ Λsπ∗E\(−s)

induced by the restriction of the wedge product ∧ : K ⊗K → K of the Koszul complex
to the middle term K−s. The image of the exact sequence (7.2.5) under F is another
split exact sequence

P K−s ⊕N P\
ιP ι\P (ν⊕σ)

prP (ν⊕σ)−1 pr\P

(7.2.6)

in Vect(P)[∆], where the duality on Vect(P) induced by ∆ is also denoted by \. The fact
that P, N and S lie in the image of F will be crucial in the proof of theorem 7.4.10(ii).
The following two technical lemmas construct the central square of (H,ψ). The takeaway
is that this square is symmetric when appropriately embedded in sPerf(P).

Lemma 7.2.7. The square

K−s−1 ⊕ S K−s ⊕N P

K−s ⊕N (K−s)\ ⊕N \

P\ (K−s)\ ⊕N \ (K−s−1)\ ⊕ S\

d⊕α

d⊕α

prP

(ν⊕σ)ιP

ι\P (ν⊕σ) (d⊕α)\

pr\P (d⊕α)\

(7.2.8)

anti-commutes.

Proof. The split exact sequence (7.2.6) yields

ιP prP +(ν ⊕ σ)−1 pr\P ι
\
P(ν ⊕ σ) = id(K−s⊕N ),

which becomes

(ν ⊕ σ)ιP prP + pr\P ι
\
P(ν ⊕ σ) = (ν ⊕ σ)

when composed with (ν⊕σ). Furthermore, note that d\νd : K−s−1 → (K−s−1)\ is given
by x 7→ (y 7→ d(x) ∧ d(y)), but d(x) ∧ d(y) = d(x ∧ d(y)) = d(0) = 0, so d\νd = 0. Thus
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the sum of the two paths of the square satisfies

(d⊕ α)\(ν ⊕ σ)ιP prP(d⊕ α) + (d⊕ α)\ pr\P ι
\
P(ν ⊕ σ)(d⊕ α)

= (d⊕ α)\((ν ⊕ σ)ιP prP + pr\P ι
\
P(ν ⊕ σ))(d⊕ α)

= (d⊕ α)\(ν ⊕ σ)(d⊕ α)

= (d\νd⊕ α\σα)

= 0,

which proves the result.

The next lemma applies the previous one in the context of sPerf(P)[∆[r]], with the
duality ∨ = ∨∆[r]. It is essentially an application of the identities (7.1.1).

Lemma 7.2.9. The map of complexes ψ given by

K−s−1 ⊕ S P

P\ (K−s−1)\ ⊕ S\

prP (d⊕α)

ι\P (ν⊕σ)(d⊕α) (−1)s(d⊕α)\(ν⊕σ)ιP

(−1)s+1(d⊕α)\ pr\P

concentrated in cohomological degrees [−s,−s + 1] is symmetric in the pretriangulated
dg category with duality (sPerf(P),∨, can).

Proof. By lemma 7.2.7, the square commutes. For notational convenience, the subscript
of the evaluation map evF is suppressed. It remains to be shown that ψ = ψ∨ can. Note
that (ψ∨)−s+1 = ψ\s−1−r = ψ\−s. Since (ν ⊕ σ) is (−1)s-symmetric,

(ι\P(ν ⊕ σ)(d⊕ α))\ ev = (d⊕ α)\(ν ⊕ σ)\ι\\P ev

= (d⊕ α)\(ν ⊕ σ)\ ev ιP

= (−1)s(d⊕ α)\(ν ⊕ σ)ιP .

A similar computation shows that(
(−1)s(d⊕ α)\(ν ⊕ σ)ιP

)\
ev = ι\P(ν ⊕ σ)(d⊕ α),

which concludes the proof.

Let H be the following complex, concentrated in degrees [−r,−s+ 1]:

K−r−1 . . . K−s−2 K−s−1 ⊕ S P,d d d prP (d⊕α)

where d : K−s−2 → K−s−1⊕S is the composition of the differential d : K−s−2 → K−s−1

and the canonical inclusion K−s−1 → K−s−1 ⊕ S. In some sense, H is “half” of the
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Koszul complex, with some surgical alterations at the end to ease the conditions under
which it can be constructed. Piecing together the various results obtained thus far yields
the following theorem.

Theorem 7.2.10. Assume that ν ′ = 0 in W [r+1](X,det E). Let ψ : H → H∨ be the
chain map in sPerf(P)[∆[r]] given by

H−r . . . H−s−1 H−s H−s+1 0 . . . 0

0 . . . 0 (H−s+1)\ (H−s)\ (H−s−1)\ . . . (H−r)\,

where the central square is that of lemma 7.2.9. Then ψ is symmetric and a quasi-
isomorphism.

Proof. In this proof, let d′ denote the differential of H. The central square commutes and
is symmetric by lemma 7.2.9. The square directly left of the central square commutes
since

ψ−sd
′
−s−1 = ι\P(ν ⊕ σ)(d⊕ α)d′−s−1 = 0,

and similarly for the square directly right of the central square. It follows that ψ is
symmetric and it remains to be shown that ψ is a quasi-isomorphism, or equivalently,
that the cone cone(ψ) of ψ is acyclic. Note that cone(ψ) is the complex

K−r−1 . . . K−s−1 ⊕ S K−s ⊕N (K−s−1)\ ⊕ S\ . . . (K−r−1)\,

which is isomorphic to the Koszul complex away from the middle degrees [−s−2,−s+2]
by proposition 7.2.1. In the middle degrees, cone(φ) is given as

K−s−2 K−s−1 ⊕ S K−s ⊕N (K−s−1)\ ⊕ S\ (K−s−2)\.d d⊕α d⊕α\σ d

Thus cone(φ) is the direct sum of the acyclic koszul complex K and the exact sequence
S → N → S\, seen as an acyclic complex concentrated in degrees [−s − 1,−s + 1].
Therefore, cone(φ) itself is acyclic, as was to be shown.

Theorem 7.2.10 finishes the construction of the symmetric form (H,ψ), but it is not
a priori clear when the condition on ν ′ holds. The following lemma provides a useful
criterion.

Lemma 7.2.11. If E admits a quotient bundle of odd rank, then ν vanishes in the Witt
group W [r+1](X,det E).

Proof. This is [90, proposition 8.1]. Note that if E is trivial, it certainly admits a quotient
bundle of odd rank.
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In the case of a trivial projective bundle PrX of odd dimension, it is possible to
construct an alternative symmetric form in Perf(PrX)[r], which is more concrete than the
one obtained in theorem 7.2.10. Let

E =

r⊕
i=0

OXTi

be the free sheaf on X of even rank r+ 1. Set P = P(E), O = OP and s = (r+ 1)/2. Let
π : P→ E be the projection map. For each i = 0, . . . , r there is a complex of locally free
sheaves

Ti : O(−1)→ O,

given by multiplication with Ti, with O(−1) in cohomological degree −1. Let M be the
complex

M = O(s− 1)⊗
r−1⊗
i=0

(
O(−1)

Ti−→ O
)

in Perf(P). This is the complex

O(−s)→ . . .→ O(−s+ i)⊕(ri) → . . .→ O(s− 2)⊕r → O(s− 1)

with O(−s) in cohomological degree −r. Furthermore, there is an isomorphism

M∨ ∼= O(−s+ 1)⊗
r−1⊗
i=0

(
O Ti−→ O(1)

)
,

which is a complex

O(−s+ 1)→ . . .→ O(−s+ i+ 1)⊕(ri) → . . .→ O(s− 1)⊕r → O(s)

with O(−s+ 1) in cohomological degree 0. Multiplication by Tr induces a chain map

O(−s) O(−s+ 1)⊕r . . . O(s− 1)

O(−s+ 1) O(−s+ 2)⊕r . . . O(s)

Tr Tr Tr

from M to M∨[r], which will be shown to be a symmetric form in Perf(P)[r].

Proposition 7.2.12. The map Tr : M →M∨[r] defines an element µ ∈ GW
[r]
0 (P).

Proof. By [77, Tag 0628], the cone of Tr is (a twist of) the Koszul complex of E , which is

acyclic. Therefore, Tr is a quasi-isomorphism, and µ = [M,Tr] is an element of GW
[r]
0 (P),

as was to be shown.
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7.3 Cutting the Koszul complex in half abstractly

Here is an abstract argument that shows we can cut the Koszul complex in half in
specific cases, suggested to me by Marcus Zibrowius. The Koszul complex K on X
comes equipped with an isomorphism µ : K → [K,∆[r + 1]], induced by the wedge
product. Consider the pretriangulated dg category B = Perf(P)′ of perfect complexes of
OP-modules (before localizing with respect to the acyclic complexes), equipped with the
duality induced by ∆[r+ 1]. Let A ⊂ B the dg subcategory of acyclic complexes and let
C = B/A be the quotient dg category. Then there is a quasi-exact sequence

A a−→ B b−→ C.

Taking homotopy categories, this yields an exact sequence of triangulated categories.
Since K is acyclic and µ is an isomorphism, the Koszul form (K,µ) is a symmetric

form in A. By [3, theorem 5.2], there is a 12-term localization exact sequence

. . . W[n](A) W[n](B) W[n](C) W[n+1](A) . . . ,
∂n

where ∂n([P,ψ]) = [cone(P,ψ)] for (P,ψ) a symmetric form in C with ψ a quasi-
isomorphism. The element [cone(P,ψ)] is not trivial to define; the notation here is
merely meant to suggest that ∂n is given by taking the cone of a symmetric form and
then putting some canonical symmetric form on that space. The fact that triangular
Witt groups are four-periodic explains why the localization sequence wraps around after
twelve terms. Note that [K,µ] ∈W[0](A).

Assume that a([K,µ]) = 0 in W[0](B). Then there exists a class [H,ψ] ∈ W[−1](C)
such that cone(ψ) = K and [H,ψ] ∈ GW

[r]
0 (Perf(P),∆), which is the Koszul complex cut

in half. This argument does not tell us what it is concretely, but gives a philosophical
reason for its existence.

7.4 Grothendieck-Witt spectra of projective bundles

In this section, formulae for the Grothendieck-Witt spectra of general projective bun-
dles are stated and proven. Let X be a quasi-compact quasi-separated scheme over
SpecZ[1/2] with the resolution property, i.e. sPerf(X) ' Perf(X). As noted before,
schemes with an ample family of line bundles satisfy the resolution property. Let E be a
locally free sheaf of OX -modules of rank r + 1 and write P = P(E). Also set s = dr/2e.
Let π : P→ X be the associated projective bundle and let O = OP. Write A for Perf(P).
Let L be a line bundle on X and let L = (O(m) ⊗ π∗L)[0], with m ∈ Z, be the object
of A consisting of a single copy of O(m)⊗ π∗L concentrated in cohomological degree 0.
Let A[L] be the pretriangulated dg category with duality given by the mapping complex
[−, L]; write \ for this duality on A and reserve the symbol ∨ for the standard duality
on Vect(X), Vect(P) and their respective categories of perfect complexes. By corollary
7.1.11, O(m) may be replaced by O(m+ 2i) for any i ∈ Z in the definition of L without
affecting the Grothendieck-Witt spectrum. Therefore, m can be chosen freely up to
parity in the proofs below.
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The following theorem is contained in the proof of [73, theorem 3.5.1]; a version of
this result in the context of stable ∞-categories is [54, theorem B].

Theorem 7.4.1. The following statements hold.

(i) For each k ∈ Z, the assignment F 7→ O(k) ⊗ p∗F defines a fully faithful functor
Perf(X)→ A. The essential image of such a functor will be denoted A(k).

(ii) For each i ∈ Z, 〈A(i− r), . . . ,A(i)〉 is a semi-orthogonal decomposition of A.

Proposition 7.4.2. With notation as in theorem 7.4.1, the essential image of A(k)
under the duality \ is A(m− k) for all k ∈ Z.

Proof. First note that π∗ can be made into a dg form functor (cf. [72, section 9.3], which
discusses the functoriality of π∗). Any object of A(k) can be written as π∗M ⊗ O(k)
with M ∈ Perf(X). The dual of such an object satisfies

(π∗M ⊗O(k))\ ∼= [π∗M ⊗O(k), L]
∼= [π∗M, [O(k), L]]
∼= L⊗ [π∗M,O(−k)]
∼= O(m)⊗ π∗L[0]⊗ π∗[M,OX ]⊗O(−k)
∼= π∗[M,L[0]]⊗O(m− k),

where the isomorphisms are given by various results of section 7.1, as well as standard
properties of the pullback π∗. Hence (π∗M ⊗O(k))\ is an object of A(m− k). It follows
that A(k)\ ⊂ A(m − k) and A(m − k)\ ⊂ A(k). As \ is an equivalence, the proof is
done.

The following theorem is the important projective bundle formula for m and r of
equal parity. Its proof is an application of additivity for Grothendieck-Witt spectra.

Theorem 7.4.3. Recall that s = dr/2e. The following statements hold for n ∈ Z.

(i) If m and r are even, then there is a stable equivalence of spectra

GW[n](X,L)⊕K(X)⊕s GW[n](P, π∗L(m)).

(ii) If m and r are odd, then there is a stable equivalence of spectra

K(X)⊕s GW[n](P, π∗L(m)).

Proof. Without loss of generality, assume that m = −r. By theorem 7.4.1, there is a
semi-orthogonal decomposition

〈A(−r),A(−r + 1), . . . ,A(0)〉

of A. The duality maps A(i) to A(−r − i) for all i ∈ Z by proposition 7.4.2. Hence the
additivity theorem 6.2.2 applies and yields the desired result.
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This covers the easy cases of the projective bundle formula. Now set m = −r − 1.
By theorem 7.4.1, there is a semi-orthogonal decomposition

〈A(−r − 1),A(−r), . . . ,A(−1)〉

of A. By proposition 7.4.2, A(i)\ ⊂ A(−r − 1− i) for all i ∈ Z. Let

A0 = 〈A(−r), . . . ,A(−1)〉.

Then the constituents of A0 are exchanged by the duality, so that GW(A0) may be com-
puted using the additivity theorem 6.2.2. Furthermore, there is a quasi-exact sequence
of pretriangulated dg categories with duality

A[L]
0 A[L] (A/A0)[L]. (7.4.4)

Thus understanding GW[n]((A/A0)[L]) is paramount to understanding GW[n](A[L]). Fix
∆ = detπ∗E(−r − 1).

Lemma 7.4.5. There is a quasi-equivalence of pretriangulated dg categories

F : Perf(X) −→ A/A0

given by M 7→ ∆[r]⊗ π∗M .

Proof. The functor F is the composition

Perf(X) A A A/A0.
π∗ ∆[r]⊗−

Denote the composition Perf(X)→ A of the first two maps by F ′. Then

F ′(det E∨[−r]) = ∆[r]⊗ π∗ det E∨[−r]
∼= detπ∗E [r]⊗ π∗ det E∨[−r]⊗O(−r − 1)
∼= O(−r − 1).

As tensoring with det E∨[−r] gives a self-equivalence of Perf(X), the essential image of
F ′ consists of objects of the form π∗M ⊗ O(−r − 1) and is therefore the subcategory
A(−r − 1) of A of theorem 7.4.1. In particular, F ′ : Perf(X) → A(−r − 1) is a quasi-
equivalence. Hence F factors through the canonical map F ′′ : A(−r − 1) → A/A0.
Since 〈A(−r − 1),A0〉 is a semi-orthogonal decomposition of A, it follows that F ′′ is
a quasi-equivalence. Therefore F , being a composition of quasi-equivalences, is also a
quasi-equivalence, as was to be shown.

For the next lemma, it will be convenient to use the machinery of triangulated cate-
gories. Let w be the class of quasi-isomorphisms in A and denote by T A the triangulated
category w−1H0A, which is equivalent to the bounded derived category Db(Vect(P)).
By [72, lemma 3.6], any duality on A is inherited by T A. The Verdier quotient T A/T A0

89



on atiyah-segal completion for hermitian k-theory

is the triangulated category v−1H0A, where v is the class of morphisms in A whose cone
lies in A0.

Let M [−1] = K≤−1[−1]. Consider the chain map α : M [−1] → [M [−1],∆[r]] given
by

K−r−1 K−r . . . K−2 K−1

K−r K−r+1 . . . K−1 K0

−d

0

−d

0

−d −d

0 d

−d −d −d −d

(7.4.6)

concentrated in degrees [−r, 0]. The bottom complex is identified with [M [−1],∆[r]] via
the perfect pairings νi : Ki → [K−r−1−i,∆] given by x 7→ (y 7→ x∧y) for −r−1 ≤ i ≤ 0.
Note that α factors as

K−r−1 K−r . . . K−2 K−1

0 0 . . . 0 O

K−r K−r+1 . . . K−1 K0,

−d −d −d −d

d

1

−d −d −d −d

where the map M [−1]→ O is a quasi-isomorphism in A and the cokernel of the inclusion
O → [M [−1],∆[r]] lies in A0. Therefore, α is a weak equivalence in A/A0. It will be
shown that α is in fact a nondegenerate symmetric form in T A/T A0.

Lemma 7.4.7. The chain map α : M [−1] → [M [−1],∆[r]] defined above defines a
nondegenerate symmetric form in the Verdier quotient T A/T A0. In particular, α defines
an element [∆[r], β] ∈ GW0((A/A0)[∆[r]]).

Proof. It has already been shown that α is a weak equivalence in A/A0, so it remains to
be shown that α is a symmetric form in T A/T A0 with the duality ∨ induced by ∆[r],
and it will suffice to show that α is a symmetric form in T A with the same duality ∨.

Using the identities (7.1.1) and the fact that K is a differential graded algebra, one
computes α∨ can to be the chain map

K−r−1 K−r . . . K−2 K−1

K−r K−r+1 . . . K−1 K0.

−d

(−1)rd

−d

0

−d −d

0 0

−d −d −d −d

The homogeneous map h ∈ [M [−1], [M [−1],∆[r]]]1 of degree 1 given by

K−r−1 K−r K−r+1 . . . K−2 K−1 0

0 K−r K−r+1 . . . K−2 K−1 K0

−d −d

(−1)r

−d

(−1)r−1

−d −d

(−1)2 −1

−d −d −d −d −d
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defines a chain homotopy from α to α∨ can in A since the sum of the compositions of
the sides of the leftmost square is (−1)r+1d = (α− α∨)−r, the sum of the compositions
of the sides of the rightmost square is d = (α−α∨)0, and the sum of the compositions of
the sides is 0 = (α−α∨)i for all the inner squares with top left corner Ki, −r ≤ i ≤ −2.
Therefore, α = α∨ can in T A.

Note that M [−1] ∼= ∆[r] in T A/T A0, since the kernel of the natural projection
M [−1] → ∆[r] lies in A0. By [72, proposition 3.8], α defines an element [∆[r], β] of
GW0((A/A0)[∆[r]]), as was to be shown.

Proposition 7.4.8. The quasi-equivalence F : sPerf(X) → A/A0 of proposition 7.4.5
can be made into a nondegenerate dg form functor

(F, η) : sPerf(X)[0] → (A/A0)[∆[r]].

In particular, there is a quasi-equivalence of pretriangulated dg categories with weak
equivalences and duality

sPerf(X)[det E∨⊗L[−r]] ' (A/A0)[L].

Proof. Let β be a symmetric form in A[∆[r]] whose image in (A/A0)[∆[r]] corresponds to
the element [∆[r], β] of lemma 7.4.7, by abuse of notation. Although β itself might be
degenerate, its image in (A/A0)[∆[r]] is nondegenerate.

The quasi-equivalence F of proposition 7.4.8 is equivalent to the composition

F : sPerf(X)[0] A[0] A[∆[r]] (A/A0)[∆[r]],π∗ (∆[r],β)⊗−

now ornamented with the dualities of each category. Note that π∗ is a nondegenerate
dg form functor by [72, section 9.3], and the composition A[0] → (A/A0)[∆[r]] is a
nondegenerate dg form functor by proposition 7.1.6 and lemma 7.4.7. Thus, equipping
F with the duality compatibility morphism η induced by β yields a quasi-equivalence
(F, η) of pretriangulated dg categories with weak equivalences and duality.

Finally, twisting the duality in sPerf(X)[0] by the invertible complex det E∨ ⊗L[−r]
gives the desired quasi-equivalence

sPerf(X)[det E∨⊗L[−r]] ' (A/A0)[L],

and the proof is done.

The following technical lemma will be instrumental in the construction of the splitting
of the homotopy fibrations of theorem 7.4.10.

Lemma 7.4.9. If r is even, let [H,ψ] ∈ GW0(A[∆[r]]) be the element of proposition

7.2.3. If r is odd and the element ν ′ of lemma 7.2.4 vanishes in W
[r+1]
0 (X,det E), let

[H,ψ] ∈ GW0(A[∆[r]]) be the element of theorem 7.2.10. Let [∆[r], β] be the element in
GW0((A/A0)[∆[r]]) of lemma 7.4.7.

In both cases,
(−1)s[H,ψ] = [∆[r], β]

in GW0((A/A0)[∆[r]]).
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Proof. Let ∨ denote the duality on A induced by ∆[r]. First assume that r is even. Con-
sider the element [H,ψ] ∈ GW0(A[∆[r]]) of proposition 7.2.3. The chain mapM [−1]→ H
given by

K−r−1 . . . K−s−1 K−s . . . K−1

K−r−1 . . . K−s−1 0 . . . 0

1 1

is a weak equivalence in A/A0, so [H,ψ] = [M [−1], ψ′]. Recall from lemma 7.4.7 that
[∆[r], β] = [M [−1], α]. Hence, it suffices to show that (−1)sψ′ and α are chain homotopy
equivalent. The homogeneous map h ∈ [M [−1], [M [−1],∆[r]]]1 of degree 1 given by

K−r−1 K−r . . . K−s−1 K−s . . . K−2 K−1 0

0 K−r . . . K−s−1 K−s . . . K−2 K−1 K0

−d −d

0

−d −d

0

−d

(−1)s

−d −d

(−1)2 −1

−d −d −d −d −d −d −d

defines the required chain homotopy from α to (−1)sψ′.
Now assume that r is odd and that the element ν ′ of lemma 7.2.4 vanishes in

W
[r+1]
0 (X,det E). Let [H,ψ] ∈ GW0(A[∆[r]]) be the element of theorem 7.2.10. There is

a canonical chain map γ : M [−1] → H given by the identity maps 1 : K−i−1 → K−i−1

in degrees −r ≤ i ≤ −s− 1, the canonical injection K−s−1 → K−s−1 ⊕ S in degree −s,
the composition ρ : K−s → K−s ⊕ N → P in degree −s + 1, and the zero map in all
other degrees. The canonical weak equivalence M [−1]→ ∆[r] in A/A0 factors through
γ, and the canonical projection H → ∆[r] is a weak equivalence since N , P and S lie in
A0 by construction of H, so γ is a weak equivalence in A/A0 by two out of three. Let
ψ′ = γ∨ψγ. Then [H,ψ] = [M [−1], ψ′] in GW0((A/A0)[∆[r]]). As before, it suffices to
show that α is chain homotopic to (−1)sψ′. For this, it will be useful to zoom in on the
central square of H, defined in lemma 7.2.7. Let \ be the duality on Vect(P) induced by
∆. In degrees [−s− 1,−s+ 2], ψ′ is given by the following commutative diagram

K−s−2 K−s−1 K−s K−s+1

K−s−1 ⊕ S K−s ⊕N P

K−s ⊕N (K−s)\ ⊕N \

P\ (K−s)\ ⊕N \ (K−s−1)\ ⊕ S\

(K−s+1)\ (K−s)\ (K−s−1)\ (K−s−2)\

0

−d −d

ρ

−d

υ

0

−(d⊕α)

d⊕α

prP

−1
(−1)s(ν⊕σ)ιP

ι\P (ν⊕σ) (d⊕α)\
(−1)s

pr\P
ρ\

(−1)s(d⊕α)\

υ\

(−1)s+1d\ (−1)sd\ (−1)s−1d\
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Note that the vertical map K−s−1 → (K−s)\ is υ\ pr\P ι
\
P(ν ⊕ σ)υd. Furthermore, it

follows from the proof of lemma 7.2.7 that

d\υ\(ν ⊕ σ)ιP prP υ = d\υ\(1− pr\P ι
\
P)(ν ⊕ σ)υ

= d\υ\(ν ⊕ σ)υ − d\υ\ pr\P ι
\
P(ν ⊕ σ)υ

= d\ν − d\υ\ pr\P ι
\
P(ν ⊕ σ)υ.

For −r− 1 ≤ i ≤ 0, let νi : Ki → (K−r−1−i)\ be the usual perfect pairing and note that
ν = ν−s. Then d\νi = (−1)i+1νi+1d for all −r − 1 ≤ i ≤ −1 by an application of the
graded Leibniz rule. Define a homogeneous map

h ∈ [M [−1], [M [−1],∆[r]]]1

of degree 1, with the following components hi : Ki−1 → (K−r−i)\ in degrees −r ≤ i ≤ 0:

hi =


0 if −r ≤ i ≤ −s;
−υ\ pr\P ι

\
P(ν ⊕ σ)υ if i = −s+ 1; and

(−1)i+sνi−1 if −s+ 2 ≤ i ≤ 0.

By construction,

(−1)−i−1d\hi + hi+1(−d) =


ψi if −s ≤ i ≤ −s+ 1;
0 if −s+ 2 ≤ i ≤ −1; and
(−1)s+1d\ν−1 if i = 0.

Note that (−1)s+1d\ν−1 = (−1)s+1ν0d = (−1)s+1α0. It follows that h is a chain homo-
topy from ψ′ to (−1)sα, as was to be shown.

Now there are no more obstacles to the computation of the Grothendieck-Witt spec-
trum of projective bundles when the parities of r and m differ.

Theorem 7.4.10. The following statements hold.

(i) If r is even and m is odd, then there is a split homotopy fibration

K(X)⊕s GW[n](P, π∗L(m)) GW[n−r](X,det E∨ ⊗ L).

(ii) If r is odd and m is even, then there is a homotopy fibration

GW[n](X,L)⊕K(X)⊕s−1 GW[n](P, π∗L(m)) GW[n−r](X,det E∨ ⊗ L),

which splits if the element ν ′ of lemma 7.2.4 vanishes in W
[r+1]
0 (X,det E). The

condition for the splitting is satisfied e.g. if E is a trivial bundle.
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Proof. Without loss of generality, one may assume m = −r − 1 in both cases. The
quasi-exact sequence (7.4.4) gives rise to a homotopy fibration of Grothendieck-Witt
spectra

GW[n](A[L]
0 ) −→ GW[n](A[L]) −→ GW[n]((A/A0)[L])

by [72, theorem 6.6]. Note that GW[n](A[L]) is nothing more than a different way of
writing GW[n](P, π∗L(m)). As already remarked, the additivity theorem 6.2.2 gives a

formula for the first term GW[n](A[L]
0 ) of both (i) and (ii). Thus it suffices to show that

there is a quasi-equivalence

F : sPerf(X)[det E∨⊗L[−r]] −→ (A/A0)[L],

but this holds by proposition 7.4.8. This yields both claimed homotopy fibrations.
If r is even or r is odd and the element ν ′ of lemma 7.2.4 vanishes in the Witt

group W
[r+1]
0 (X,det E), either proposition 7.2.3 or theorem 7.2.10 constructs an element

[H,ψ] ∈ GW0(A[∆[r]]). Thus the composition

F ′ : sPerf(X)[0] A[0] A[∆[r]]π∗ (−1)s(H,ψ)⊗−

induces a map (−1)s[H,ψ]∪− : GW[−r](X,det E∨⊗L)→ GW[0](P, π∗L(m)) of spectra.
To show that this map splits the homotopy fibration, it suffices to show that the triangle
of pretriangulated dg categories with duality

A[∆[r]]

sPerf(X)[0] (A/A0)[∆[r]]F

F ′

commutes up to natural weak equivalence, but this follows from lemma 7.4.9, which
states that (−1)s[H,ψ] = [∆[r], β].

Note that lemma 7.2.11 provides a sufficient condition for ν ′ to vanish, and that this
condition holds in particular if E is a trivial bundle.

8 Atiyah-Segal completion for split tori

The time has come to take the proverbial bull by the horns and prove an important
special case of the Atiyah-Segal completion theorem. The proof for split tori leans
heavily on the projective bundle formula for Grothendieck-Witt theory that was proven
in section 7. Atiyah-Segal completion for Grothendieck-Witt theory is a first step to
other generalizations of Atiyah-Segal completion for non-oriented cohomology theories.

8.1 Equivariance for split tori

Representations of split tori over a field k correspond to multi-graded vector spaces.
This phenomenon is not limited to representations, but extends to equivariant sheaves
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when the base scheme is not the spectrum of some field k anymore. This significantly
simplifies computations of equivariant cohomology, which is why results are often first
proved for split tori, cf. [2] and [57].

Fix a base scheme S and let T be a split torus of rank t over S, see example 3.1.5.
Let X be a scheme over S with the resolution property and equip it with the trivial
T -action. Since T -equivariant sheaves of OX -modules correspond to Zt-graded sheaves
of OX -modules (c.f. [22, proposition 1.1.17]), a finite locally free OX -module F equipped
with a T -equivariant structure decomposes as a direct sum

F =
⊕
λ∈Zt
Fλ

of finite locally free OX -modules Fλ, where all but finitely many of the Fλ are zero. For
such F , denote by WF ⊂ Zt the subset of all λ ∈ Zt such that Fλ 6= 0. These λ are
called the weights of F . Note that the trivial action induces the trivial Zt-grading on
OX , so that it is concentrated in multi-degree (0, . . . , 0) ∈ Zt.

We write VectT (X) for the exact category of T -equivariant finite locally free OX -
modules, and A = PerfT (X) for the corresponding dg category of perfect complexes
of T -equivariant finite locally free OX -modules. If S = Spec k for some field k, then a
T -equivariant finite locally free sheaf on S is a representation of T , which is equivalent
to Zt-graded vector space.

The following proposition gives a semi-orthogonal decomposition of A to facilitate
computations of its K-theory and GW-theory.

Proposition 8.1.1. For λ ∈ Zt, let Aλ be the pretriangulated dg subcategory of A
consisting of perfect complexes of T -equivariant locally free OX-modules concentrated in
multi-degree λ. The following statements hold:

(i) for each λ ∈ Zt, Aλ is equivalent to Perf(X);
(ii) for µ, λ ∈ Zt such that µ 6= λ, M ∈ Aµ and L ∈ Aλ,

[M,L]T = 0 and [L,M ]T = 0,

where [−,−]T is the internal mapping complex of A; and
(iii) there is a semi-orthogonal decomposition A = 〈Aλ | λ ∈ Zt〉.

Proof. For λ ∈ Zt, the functor Perf(X) → Aλ sending a locally free OX -module F to
the T -equivariant locally free OX -module F(λ) such that WF(λ) = {λ} and F(λ)λ = F
is an equivalence.

Furthermore, T -equivariant maps F → G of T -equivariant locally free OX -modules
respect the induced Zt-gradings on F and G. So if WF ∩WG = ∅, then Hom T (F ,G) = 0,
and this extends to perfect complexes.

Lastly, every object M of A decomposes as a direct sum

M =
⊕
λ∈Zt

Mλ

with Mλ in Aλ for all λ ∈ Zt.
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This yields the following generalization of an important result in the representation
theory of split tori.

Corollary 8.1.2. There is an isomorphism of K0(X)-algebras

K∗(A) ' K∗(X)⊗K0(X) K0(A)

In particular, there is an isomorphism of rings

K0(A) ∼=
K0(X)[x1, . . . , xt, y1, . . . , yt]

(xiyi + xi + yi | i = 1, . . . , t)
.

Proof. By additivity for K-theory and proposition 8.1.1, there are isomorphisms of
K0(X)-modules

Ki(X)⊗K0(X)

(⊕
λ∈Zt

K0(X)

)
−→ Ki(A),

which form an isomorphism of graded K0(X)-algebras

K∗(A) ' K∗(X)⊗K0(X) K0(A).

For λ ∈ Zt, let OX(λ) be the T -equivariant OX -module with WOX(λ) = {λ} and
OX(λ)λ = OX . For 1 ≤ i ≤ n, let ei ∈ Zt be the i-th unit vector, and write xi
and yi for the K-theory classes [OX(ei)] − 1 and [OX(−ei)] − 1, respectively. Then
xiyi + xi + yi = 0 for all i. Hence

K0(A) ∼=
K0(X)[x1, . . . , xt, y1, . . . , yt]

(xiyi + xi + yi | i = 1, . . . , t)
,

as was to be shown.

Remark 8.1.3. The K-theory of Proj(R) where R was a strongly Z-graded ring is
computed in [43], and the methods of the computation can likely be extended to compute
its Grothendieck-Witt theory.

Let (Zt − {0})/{±} be the quotient of Zt − {0} by the sign involution. A useful
system of representatives C of this is given by nonzero (a1, . . . , at) ∈ Zt such that the
first nonzero entry ai is positive; if t = 1, C consists of the positive integers.

Corollary 8.1.4. Let K(X)λ = K(Aλ) for all λ ∈ C. For each i, n ∈ Z, the map of

GW
[0]
0 (X)-modules

GW
[n]
i (X)⊕

⊕
λ∈C

Ki(X)λ −→ GW
[n]
i (A) (8.1.5)

induced by the dg form functor

A0 ×
⊕
λ∈C

HAλ −→ A

A0 ×
⊕
λ∈C

(Aλ, Bλ) −→ A0 ⊕

(⊕
λ∈C

Aλ ⊕B∨λ

)

96



herman rohrbach

is an isomorphism. In particular, the map

GW
[0]
0 (X)⊕

⊕
λ∈C

K0(X)λ −→ GW
[0]
0 (A)

(a, (bλ)λ) 7−→ a(0) +
∑
λ∈C

(H0(bλ(λ))− 2)
(8.1.6)

is an isomorphism.

Proof. Let λ ∈ Zt. If λ = 0, then Aλ is fixed by the standard duality on A. Otherwise,
(Aλ)∨ = A−λ. Thus, letting A+ = 〈Aλ | λ ∈ C〉, there is a semi-orthogonal decom-
position A = 〈A∨+,A0,A+〉, and the result follows from proposition 8.1.1 and corollary
6.2.3.

Furthermore, there is an automorphism on

GW
[0]
0 (X)⊕

⊕
λ∈C

K0(X)λ,

which is the identity on GW
[0]
0 (X) and given by [OX(λ)] 7→ [OX(λ)]− 1 for λ ∈ C. By

composing the map of GW
[0]
0 (X)-modules induced by (8.1.5) with this automorphism,

one obtains the −2 term on the right hand side of (8.1.6).

The following two definitions are instrumental in the statement and proof of Atiyah-
Segal completion for split tori.

Definition 8.1.7. Let RO = GW
[0]
0 (A). The map α : RO → GW

[0]
0 (X) which forgets the

equivariant structure is called the Hermitian augmentation map. Its kernel IO = kerα
is called the Hermitian augmentation ideal.

Definition 8.1.8. For any n, i ∈ Z, the kernel of the map GW
[n]
i (A)→ GW

[n]
i (X) is the

reduced Grothendieck-Witt group G̃W
[n]
i (A). The groups K̃i(A) and W̃[n](A) are defined

similarly.

By corollary 8.1.4,

IO ∼=
⊕
λ∈C

K0(X)

under the isomorphism 8.1.6.
For R = K0(A), the augmentation map α : R→ K0(X) has kernel I, which is given

by (x1, . . . , xt, y1, . . . , yt) under the isomorphism of corollary 8.1.2. For λ, µ ∈ Nt, let

xλyµ =
t∏
i=1

xλii y
µi
i .

The identity xiyi = −(xi + yi) on R shows that R is generated as a K0(X)-module by
monomials xλyµ with λ, µ ∈ Nt such that, for each i, either λi = 0 or µi = 0.
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The standard duality on A induces an involution ∗ : R → R, given by xi 7→ yi.

Let F0 : GW
[0]
0 (A) → K0(A) be the forgetful map. Note that F0 restricts to a map

F0 : IO → I. The following lemma shows that RO splits as GW
[0]
0 (X) and the ∗-fixed

points of I.

Lemma 8.1.9. Let I+ be the ∗-fixed points of I. The map F0 : IO → I is injective with
image I+.

Proof. Consider the following diagram

G̃W
[3]
0 (A) K̃0(A) G̃W

[0]
0 (A) W̃

[0]
0 (A)

GW
[3]
0 (A) K0(A) GW

[0]
0 (A) W[0](A)

GW
[3]
0 (X) K0(X) GW

[0]
0 (X) W[0](X)

F3 H0

F3 H0

F3 H0

of Karoubi sequences [72, theorem 6.1] of RO-modules. Note that K̃0(A) = I and

G̃W
[0]
0 (A) = IO. The image of the forgetful map F0 : IO → I is necessarily contained in

I+. Furthermore, I+ is generated as a K0(X)-module by elements of the form xλyµ +
xµyλ, where λ, µ ∈ Nt. Define a map G0 : I+ → IO by xλyµ +xµyλ 7→ H0(xλyµ). This
map is well-defined since H0(xλyµ) = H0(xµyλ).

Since W[n](A) ∼= W[n](X) for n ∈ Z, it follows that W̃[0](A) = 0. Therefore, the
hyperbolic map H0 : I → IO is surjective, and one may write F0 : H0(I) → I+ and
G0 : I+ → H0(I). Upon inspection, F0 and G0 are inverse to each other, thus concluding
the proof.

8.2 Atiyah-Segal completion for split tori

Let k be a field of characteristic other than 2, and let T be a split torus over k of rank
t ≥ 1. For ease of notation, let A = PerfT (k) be the category of perfect complexes of
T -representations, equipped with the standard duality. Recall the construction of the
motivic classifying space BgmT from definition 3.6.2 and example 3.6.14. The results
from the previous sections will be applied to obtain a formula for GW[n](BgmT ). More

precisely, it will be shown that GW
[n]
i (BgmT ) is the completion of GW

[n]
i (A) with respect

to the Hermitian augmentation ideal IO ⊂ GW
[0]
0 (A). The proof consists of the following

steps:

(i) show that GW
[n]
i (BgmT ) is the limit of Grothendieck-Witt groups of products of

projective spaces;
(ii) pass to the reduced Grothendieck-Witt groups of definition 8.1.8;
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(iii) use the isomorphism of lemma 8.1.9 to show that the reduced Karoubi fundamental
sequences induce short exact sequences

0 G̃W
[n]
0 (A) K̃0(A) G̃W

[n+1]
0 (A) 0,

and that they remain exact after taking the quotient by IrO for r ≥ 1;
(iv) show that the exact sequences in degree 0 extend to a long exact sequence of

pro-RO-modules by tensoring with Ki(k);
(v) show that IO-adic completion of KT (k) agrees with the I-adic completion;

(vi) construct a surjective map of long exact sequences of pro-RO-modules from the
pro-Karoubi sequence of the previous step to the pro-Karoubi sequence associated
with (P2r

k )t for r ≥ 1; and
(vii) use an induction argument on the diagram from the previous step to prove the

claim.

Step (i) will now be done by carefully considering the construction of BgmT . Let
(Ark, Ur, fr)r∈N be the admissible gadget over k with nice T -action from theorem 3.6.9.
In this case, Ur = Artk \{0} is a punctured affine space over k and Ur/T ∼= (Pr−1

k )t. Then
the geometric classifying space π : BgmT → Spec k is defined as

BgmT = colim
r

Ur/ = colim
r

(Pr−1
k )t.

Therefore, understanding the Grothendieck-Witt theory of products of projective spaces
is important for the computation of GW(BgmT ). The following result provides this
understanding for the even-dimensional case.

Proposition 8.2.1. Let P = (P2r
k )t be a product of even-dimensional projective spaces

over S with projections π : P → S and πi : P → P2r
k for each 1 ≤ i ≤ t. Let L be the

set {−r, . . . , r}t and let L′ be a set of representatives of (L − {0})/{±}. For nonzero
λ = (λ1, . . . , λt) ∈ L, let λ ∈ L′ be the image of λ in L′. Then there is an equivalence of
spectra

GW[n](k)⊕
⊕
λ∈L′

K(k) −→ GW[n](P)

induced by the functor

Perf(k)[n] ×
⊕
λ∈L′

Perf(k) −→ Perf(P)[n]

(A, (Bλ)λ∈L′) 7−→ π∗A+
∑
λ∈L′

H(π∗bλ(λ)),

where π∗bλ(λ) is the invertible sheaf on P given by the tensor product π∗1bλ1(λ1)⊗ · · · ⊗
π∗t bλt(λt). In particular, there is an equivalence of spectra

GW[n]((P2r
k )t) ' GW[n](k)⊕K(k)⊕

(2r+1)t−1
2 .
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Proof. The dg category Perf(P) has a semi-orthogonal decomposition into (2r+1)t pieces
by iterated application of theorem 7.4.1. These pieces are labeled A(λ) with λ ∈ L, and
the semi-orthogonal decomposition puts them in lexicographical order. One can think
of this decomposition as a t-dimensional cube of points with 2r + 1 points along each
edge, each of which represents a copy of Perf(k). The standard duality on Perf(P) is an
involution that sends A(λ) to A(−λ), and therefore fixes A(0, . . . , 0). Hence, additivity
theorem 6.2.2 gives the desired equivalence

GW[n](k)⊕
⊕
λ∈L′

K(k) −→ GW[n]((P).

For the explicit description of this morphism, note that each equivalence Perf(k)→ A(λ)
is given by

F 7→ π∗F ⊗ π∗1OP2r
k

(λ1)⊗ · · · ⊗ π∗tOP2r
k

(λt),

as a result of the repeated use of theorem 7.4.1. Additionally, note that #L′ = ((2r +
1)t − 1)/2, so that

GW[n]((P2r
k )t) ' GW[n](k)⊕K(k)⊕

(2r+1)t−1
2 ,

which finishes the proof.

Next, it is shown that computing the limit of Grothendieck-Witt groups of products
of projective spaces is a viable method for computing GW(BgmT ), which completes step
(i).

Proposition 8.2.2. The pro-group

“lim”
r∈N

GW
[n]
i ((P2r

k )t)

satisfies the Mittag-Leffler condition for all i ∈ Z. In particular,

GW
[n]
i (BgmT ) ∼= lim

r∈N
GW

[n]
i ((P2r

k )t)

for all i ∈ Z.

Proof. Note that
colim
r

(Pr−1
k )t ∼= colim

r
(P2r
k )t

as simplicial sheaves, so it may and will be assumed that

BgmT = colim
r

(P2r
k )t,

to leverage the previous result on products of even-dimensional projective spaces. Let
ιr : (P2r

k )t → (P2r+2
k )t be given by inclusion on the first r coordinates for each copy of

P2r. There is a commutative diagram

(P2r)t (P2r+2)t

S,

ιr

π2r
π2r+2
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so π∗2r
∼= ι∗rπ

∗
2r+2. Furthermore, ι∗rO(P2r+2)t(λ) = O(P2r)t(λ) for all λ ∈ Zt. For r ∈ N, let

Lr = {−r, . . . , r}t and L′r = (Lr − {(0, . . . , 0})/{±}. There is an equivalence

GW[n](k)⊕
⊕
λ̄∈L′r

K(k) −→ GW[n]((P2r
k )t)

which is given explicitly in terms of π∗2r and the hyperbolic functor by proposition 8.2.1,
and a similar equivalence exists for (P2r+2

k )t. It follows that the map on Grothendieck-
Witt spectra

ι∗r : GW[n]((P2r+2
k )t) −→ GW[n]((P2r

k )t)

is equivalent to a map which splits via the inclusion

GW[n](k)⊕
⊕

λ̄∈L′r K(k) −→ GW[n](k)⊕
⊕

λ̄∈L′r+1
K(k)

given by a 7→ a for a ∈ GW[n](k) and bλ̄ 7→ b
f(λ)

for bλ̄ in the copy of K(k) corresponding

to λ̄, where f : L′r → L′r+1 is the canonical inclusion. Therefore, on the level of stable

homotopy groups, ι∗r is a surjection onto GW
[n]
i ((P2r

k )t) for all i ∈ Z. Hence, the pro-
group (

GW
[n]
i ((P2r

k )t)
)
r∈N

satisfies the Mittag-Leffler condition for all i ∈ Z, so the lim1-term of the Milnor short
exact sequence (4.2.6)

lim1

r∈N
GW

[n]
i−1((P2r

k )t) −→ GW
[n]
i (BgmT ) −→ lim

r∈N
GW

[n]
i ((P2r

k )t)

vanishes and it ultimately follows that

GW
[n]
i (BgmT ) ∼= lim

r∈N
GW

[n]
i ((P2r

k )t)

for all i ∈ Z.

Corollary 8.2.3. There is an isomorphism

GW
[n]
i (BgmT ) ∼= lim

r∈N
GW

[n]
i (k)⊕Ki(k)⊕

(2r+1)t−1
2

for all i ∈ Z.

Proof. The result follows from proposition 8.2.2 and proposition 8.2.1.

Step (i) is finished, and GW
[n]
i (BgmT ) can be described as a pro-group by taking the

formal limit of Grothendieck-Witt groups of products of projective spaces.

Since (P2r
k )t ∼= Ur/T for some smooth scheme Ur, GW

[n]
i ((P2r

k )t) ∼= GW
[n]
T,i(Ur). More-

over, there is a surjective forgetful map

GW
[n]
i ((P2r

k )t) −→ GW
[n]
i (Ur).
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Let α′ be a map

GW
[n]
i ((P2r

k )t) −→ GW
[n]
i (k)

induced by pulling back to a k-valued point of (P2r
k )t. Note that α′ does not depend on

the choice of this k-valued point, and that α′ is surjective. The kernel of α′ is denoted

by G̃W
[n]
i ((P2r

k )t) and is also called the i-th reduced Grothendieck-Witt group. Now it
will be shown that there is a commutative diagram

0 G̃W
[n]
i (A) GW

[n]
i (A) GW

[n]
i (k) 0

0 G̃W
[n]
i ((P2r

k )t) GW
[n]
i ((P2r

k )t) GW
[n]
i (k) 0,

α

α′

where the map α is the Hermitian augmentation map induced by the canonical forgetful
dg form functor PerfT (k)[n] → Perf(k)[n]. It suffices to show that the composition

GW
[n]
i (A) −→ GW

[n]
i ((P2r

k )t)
α′−→ GW

[n]
i (k)

is the map α, because in that case the map between the reduced GW-groups can simply
be taken to be the map between kernels. Let ι : Spec k → (P2r

k )t be a k-valued point.
For λ ∈ Zt, ι∗O(P2r

k )t(λ) = OSpec k. Hence, the composition Perf(A) → Perf((P2r
k )t) →

Perf(k) is the same as the forgetful map Perf(A) → Perf(k), and the diagram com-
mutes. This observation makes it plausible that results for the reduced Grothendieck-
Witt groups extend to results for the Grothendieck-Witt groups themselves, as claimed
in step (ii), but the actual proof of this is deferred to the last moment.

For n ∈ Z, consider the diagram

. . . G̃W
[n+1]
i+1 (A) G̃W

[n]
i (A) K̃i(A) G̃W

[n+1]
i (A) G̃W

[n]
i−1(A) . . .

. . . GW
[n+1]
i+1 (A) GW

[n]
i (A) Ki(A) GW

[n+1]
i (A) GW

[n]
i−1(A) . . .

. . . GW
[n+1]
i+1 (k) GW

[n]
i (k) Ki(k) GW

[n+1]
i (k) GW

[n]
i−1(k) . . .

where the rows are the long exact Karoubi sequences of RO-modules coming from [72,
theorem 6.1], and where the columns are short exact. The top exact sequence will be
called the reduced Karoubi sequence.

Let R = K0(A) be the representation ring of T and RO = GW
[0]
0 (A) the Hermi-

tian representation ring as before. Note that I = K̃0(A) and IO = G̃W
[0]
0 (A) are the

augmentation ideal and the Hermitian augmentation ideal, respectively. Recall that
K0(k) ∼= Z.
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The image of the forgetful map RO → R is contained in the ∗-fixed points R+ of R.
By corollary 8.1.2, there is an isomorphism

R ∼=
Z[x1, . . . , xt, y1, . . . , yt]

〈xiyi + xi + yi | i = 1, . . . , t〉
,

where xi = [OSpec k(ei)]−1 and yi = [OSpec k(−ei)]−1, with ei ∈ Zt the i-th unit vector.
It follows that R is an integral domain. Furthermore, there is an isomorphism IO ∼= I+

by lemma 8.1.9. As a result of this, step (iii) can be initiated.

Lemma 8.2.4. For n ∈ Z, the reduced Karoubi sequence

G̃W
[n]
0 (A) K̃0(A) G̃W

[n+1]
0 (A) W̃[n+1](A)

Fn Hn+1

is isomorphic to

I+ I I/I+ 0 if n is even; and

I/I+ I I+ 0 if n is odd,
1−∗ 1+∗

where ∗ : K0(A)→ K0(A) denotes the involution induced by the standard duality, as in
section 8.1. Moreover, the forgetful maps Fn are all injective, so the sequence

0 G̃W
[n]
0 (A) K̃0(A) G̃W

[n+1]
0 (A) 0

Fn Hn+1
(8.2.5)

is short exact.

Proof. As W̃[n](A) = 0 for all n ∈ Z, the hyperbolic maps Hn are all surjective, so

G̃W
[n]
0 (A) = Hn(I). Thus the reduced Karoubi sequences are of the form

Hn(I) I Hn+1(I) 0.
Fn Hn+1

By the same argument as in the proof of lemma 8.1.9, H2(I) ∼= I+. Hence, Fn is injective
for even n and the sequence (8.2.5) is isomorphic to the short exact sequence

0 I+ I I/I+ 0,
1−∗

and it follows that Hn+1(I) is isomorphic to I/I+, the isomorphism I/I+ → Hn+1(I)
being given by ā 7→ Hn+1(a) for a ∈ I.

Now suppose that n is odd. Note that Fn(Hn(I)) = kerHn+1 consists of elements of
the form a−a∗, with a ∈ I. Let a ∈ kerFnHn. Then a = a∗, so a ∈ I+

∼= Fn−1(Hn−1(I)).
As HnFn−1 = 0, it follows that Hn(a) = 0. Thus kerFn = 0 and Fn is injective, and the
sequence (8.2.5) is isomorphic to the short exact sequence

0 I/I+ I I+ 0,
1−∗ 1+∗

as was to be shown.
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To complete step (iii), I+ must be analyzed in detail. Let I− be the image of the
inclusion 1− ∗ : I/I+ → I. Since the forgetful map RO → R is a ring map whose image
lies in the subring R+ ⊂ R, powers of IO correspond to powers of I+ ⊂ R+.

It will be useful to first collect some properties of I+ by exploiting the explicit
descriptions of R and R+, which are then used in the construction of the pro-Karoubi
sequence.

As a free abelian group, the augmentation ideal I is generated by monomials xλyµ

with λ, µ ∈ Nt and, for all i, either λi = 0 and µi 6= 0, or µi = 0 and λi 6= 0, as can be
seen from the relation xiyi = −(xi+yi) in R. Consequently, the Hermitian augmentation
ideal I+ is generated as a free abelian group by elements of the form xλyµ +xµyλ with
xλyµ one of the generators of I, up to the ordering of µ and λ. The following lemma
gives a finite set of ideal generators of I+ ⊂ R+.

Lemma 8.2.6. As an ideal of R+, I+ is generated by elements of the form xγ + yγ,
where γ ∈ {0, 1}t − {0}t. In particular, I+ is a finitely generated ideal with a generating
set of 2t − 1 elements.

Proof. Let J be the ideal generated by of the form xγ + yγ , where γ ∈ {0, 1}t − {0}t.
Since I+ is generated as a free abelian group by elements of the form xλyµ +xµyλ with
λ, µ ∈ Nt, it suffices to show that J contains these elements.

First, it will be shown by induction on n that J contains all elements of the form
xλ + yλ, where λ ∈ {0, . . . , n}t for arbitrary n ∈ N. For n = 1, this follows directly
from the definition of J . Now assume that xλ + yλ ∈ J for all λ ∈ {0, . . . , n}t and let
λ ∈ {0, . . . , n + 1}t. Then λ = µ + γ with µ ∈ {0, . . . , n}t and γ ∈ {0, 1}t such that
γi = 1 if and only if λi = n+ 1. Note that

(xµ + yµ)(xγ + yγ) = xλ + yλ + xµyγ + xγyµ,

and (xµ + yµ)(xγ + yγ) ∈ J . Moreover, µ− γ ∈ {0, . . . , n}t, so

xµyγ + xγyλ = xµ−γxγyγ + xγyγyµ−γ = (xµ−γ + yµ−γ)
t∏
i=1

(−(xi + yi))
γi

is contained in J . By induction, it follows that xλ + yλ ∈ J for all λ ∈ Nt, as claimed.
Now let λ, µ ∈ Nt and consider xλyµ + xµyλ. Note that

(xλ + yλ)(xµ + yµ) = xλ+µ + yλ+µ + xλyµ + xµyλ

is contained in J , and since xλ+µ + yλ+µ ∈ J , this yields xλyµ + xµyλ ∈ J .

One useful corollary of this shows that the quotients I+/I
m
+ are finitely generated

abelian groups.

Corollary 8.2.7. For λ ∈ Nt with n = max(λ1, . . . , λt) and m = dn2 e, the element
xλ + yλ is contained in Im+ . In particular, I+/I

m
+ is finitely generated as an abelian

group.
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Proof. If n = 1, then m = 1 and xλ + yλ ∈ I+. Assume that the result holds for all
n′ ≤ n and let λ ∈ {0, . . . , n + 1}t − {0, . . . , n}t. Let m = dn+1

2 e. The proof of lemma
8.2.6 gives

xλ + yλ = (xµ + yµ)(xγ + yγ)− (xµ−γ + yµ−γ)
t∏
i=1

(−(xi + yi))
γi (8.2.8)

with µ ∈ {0, . . . , n}t−{0, . . . , n−1}t, γ ∈ {0, 1}t and λ = µ+γ. As xµ+yµ,xµ−γ+yµ−γ ∈
Im−1

+ by assumption, xλ + yλ ∈ Im+ , and the desired result follows by induction.

Another useful corollary shows that the quotients I+/I
m
+ are moreover free abelian

groups.

Corollary 8.2.9. For all f ∈ R+, n ∈ Z nonzero and m ≥ 1, nf ∈ Im+ if and only if
f ∈ Im+ . In particular, I+/I

m
+ is a finitely generated free abelian group.

Proof. If f ∈ Im+ , then nf ∈ Im+ . Therefore, suppose that nf ∈ Im+ . If n is a unit,
f ∈ Im+ , so assume that n is not a unit. Applying (8.2.8) iteratively, nf can be written
as a sum

nf =
∑

aigi,

where ai ∈ Z and the gi are distinct products of at least m generators of I+. Since n does
not divide any of the gi, it follows that n | ai for all i, which yields f ∈ Im+ . Thus I+/I

m
+

is torsion-free, as well as finitely generated by corollary 8.2.7. Consequently, I+/I
m
+ is a

finitely generated free abelian group, as was to be shown.

The following lemma concludes step (iii), and paves the way for step (iv), which is
the construction of the long exact pro-Karoubi sequence.

Lemma 8.2.10. For each r ∈ N, the quotient of the reduced Karoubi sequence (8.2.5)
by IrO is isomorphic to one of the following two short exact sequences:

0
I+

Ir+1
+

I

Ir+I

I−
Ir+I−

0

0
I−
Ir+I−

I

Ir+I

I+

Ir+1
+

0.

1−∗

1+∗

Moreover, the terms in these sequences are finitely generated free abelian groups.

Proof. Applying −⊗RO RO/IrO to the reduced Karoubi sequence (8.2.5) (or equivalently
−⊗RO R+/I

r
+) yields exact sequences of RO-modules

I+

Ir+1
+

I

Ir+I

I−
Ir+I−

0

I−
Ir+I−

I

Ir+I

I+

Ir+1
+

0.

1−∗

1+∗
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Thus it remains to show that the first map in each of these two sequences is injective.
Let f ∈ I+ ∩ Ir+I. Then f = f∗, so f + f∗ = 2f . Since 1 + ∗ : I → I+ maps Ir+I to Ir+,
2f ∈ Ir+1

+ . It follows from 8.2.9 that f ∈ Ir+1
+ , so the first sequence is exact. A similar

argument shows that the second sequence is exact.

Again by corollary 8.2.9, I+/I
r+1
+ is a finitely generated free abelian group. The fact

that I/Ir+I is a finitely generated free abelian group is proven similarly. Then I−/I
r
+I−,

being a subgroup of a finitely generated free abelian group, is also a finitely generated
free abelian group.

For all i, Ki(k) = K0(k)⊗K0(k) Ki(k). By corollary 8.1.4,

G̃W
[n]
i (A) ∼=

⊕
λ∈C

Ki(k).

Similarly, K̃i(A) is a direct sum of copies of Ki(k). Hence, using K0(k) = Z,

G̃W
[n]
i (A) ∼= G̃W

[n]
0 (A)⊗Z Ki(k)

K̃i(A) ∼= K̃0(A)⊗Z Ki(k).

The diagram

G̃W
[n]
i (A) K̃i(A) G̃W

[n+1]
i (A)

G̃W
[n]
0 (A)⊗Z Ki(k) K̃0(A)⊗Z Ki(k) G̃W

[n+1]
0 (A)⊗Z Ki(k)

Fn Hn+1

commutes, so these isomorphisms are compatible with the reduced Karoubi sequence.
Together with this identification, lemma 8.2.10 is used to construct the long exact pro-
karoubi sequence.

Lemma 8.2.11 (Reduced pro-karoubi sequence). For all r ∈ N, the quotient of the
reduced Karoubi sequence

. . .
G̃W

[n+1]
i+1 (A)

IrOG̃W
[n+1]
i+1 (A)

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

K̃i(A)

IrOK̃i(A)

G̃W
[n+1]
i (A)

IrOG̃W
[n+1]
i (A)

. . .

by IrO is a long exact sequence of RO-modules. In particular, these sequences induce
a levelwise long exact sequence of pro-RO-modules, called the reduced pro-karoubi se-
quence.

Proof. The short exact sequence

0 Ir+I I I/Ir+I 0
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remains short exact after tensoring with Ki(k) since all the terms are free abelian groups.
Hence, by lemma 8.2.4,

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

∼=
In
Ir+In

⊗Z Ki(k) and
K̃i(A)

IrOK̃i(A)
∼=

I

Ir+I
⊗Z Ki(k)

for all n, i ∈ Z and r ∈ N, where In = I+ if n is even and In = I− otherwise. Additionally,
the short exact sequences

0
I+

Ir+1
+

I

Ir+I

I−
Ir+I−

0

0
I−
Ir+I−

I

Ir+I

I+

Ir+1
+

0

1−∗

1+∗

remain short exact after tensoring withKi(k), again because all the terms are free abelian
groups. Therefore, there is an isomorphism of long exact sequences

. . .
G̃W

[n+1]
i+1 (A)

IrOG̃W
[n+1]
i+1 (A)

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

K̃i(A)

IrOK̃i(A)

G̃W
[n+1]
i (A)

IrOG̃W
[n+1]
i (A)

. . .

. . .
In+1

Ir+In+1
⊗Ki+1(k)

In
Ir+In

⊗Ki(k)
I

Ir+I
⊗Ki(k)

In+1

Ir+In+1
⊗Ki(k) . . . ,0 0

which proves the result.

Step (v) boils down to the following lemma, which is useful for comparing comple-
tions. In particular, it can be used to show that the middle term of the pro-Karoubi
sequence is the I-adic completion of KT

0 (k).
For a linear algebraic group G, let B = PerfT (k) be the dg category of perfect com-

plexes of T -representations, and let RG = K0(B) be the representation ring, RG,O =

GW
[0]
0 (B) the Hermitian representation ring, IG = ker(K0(B) → K0(k)) the augmenta-

tion ideal and IG,O = ker(GW
[0]
0 (B)→ GW

[0]
0 (k)) the Hermitian augmentation ideal.

Lemma 8.2.12 (Filtration lemma). For a linear algebraic group G over k, the IG-adic
and IG,O-adic topologies on RG coincide.

Proof. Fix an embedding ι : G → H with H = SO2m+1(k) for some m ∈ N, which can
be realized as the composition of embeddings

G −→ GLm −→ SO2m −→ SO2m+1 .

Let FG : RG,O → RG be the forgetful map. It will be shown that

ι∗(IH)RG ⊂ FG(IG,O)RG ⊂ IGRG, (8.2.13)
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after which it suffices to show that the ι∗(IH)-adic and IG-adic topologies on RG coincide.

The second inclusion of (8.2.13) follows from the commutativity of

RG,O RG

GW0(k) K0(k).

FG

F

Since H is split reductive and all irreducible representations of H are symmetric by
[94, lemma 3.14], the forgetful map FH : RH,O → RH is surjective. The trivial map
φ : H → H given by g 7→ 1 induces morphisms φ∗ : RH → RH and φ∗ : RH,O → RH,O
which replace any H-representation by the trivial one. As elements of IH are of the
form a − b with φ∗a = φ∗b, the map 1 − φ∗ : RH → IH splits the inclusion IH → RH .
Similarly, 1− φ∗ : RH,O → IH,O splits IH,O → RH,O. Thus the commutative diagram

RH,O RH

IH,O IH

FH

1−φ∗ 1−φ∗

FH

shows that FH : IH,O → IH is surjective. Consequently, ι∗(IH) = ι∗(FH(IH,O)). There-
fore, the commutativity of

IH,O IH

RH,O RH

IG,O RG,O RG

FH

ι∗ ι∗

FG

shows that ι∗(IH) ⊂ FG(IG,O), which proves (8.2.13). Hence, the ι∗(IH)-adic and IG-adic
topologies on RG coincide by [29, corollary 6.1], and the result follows.

There is a canonical morphism GW
[n]
i (A) → GW

[n]
i ((P2r

k )t) for all r ∈ N, because
(P2r
k )t = Ur/T is a geometric quotient and therefore

GW
[n]
T,i(Ur)

∼= GW
[n]
i ((P2r

k )t)

for all n, i ∈ Z.

Step (vi), the construction of a surjective map of pro-Karoubi sequences, uses the

description of GW
[n]
i ((P2r

k )t) as a quotient of GW
[n]
i (A). Let P = P2r

k for some r ≥ 1 and

let G̃W
[n]
i (Pt) be the kernel of the surjective map GW

[n]
i (Pt)→ GW

[n]
i (k). Additionally,
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for n ∈ Z, consider the commutative diagram

. . . Jn J Jn+1 0

. . . G̃W
[n]
0 (A) K̃0(A) G̃W

[n+1]
0 (A) 0

. . . G̃W
[n]
0 (Pt) K̃0(Pt) G̃W

[n+1]
0 (Pt) 0

where the rows are exact and the columns are short exact. Then Jn → J is injective,

as G̃W
[n]
0 (A) → K̃0(A) is injective. Furthermore, G̃W

[n]
0 (Pt) → K̃0(Pt) is injective as a

result of the projective bundle formulae for GW and K.

Lemma 8.2.14. Fix n ∈ Z. For m ∈ N large enough, ImO G̃W
[n]
0 (A) ⊂ Jn.

Proof. As Jn = J ∩ G̃W
[n]
0 (A), it suffices to show that ImO ⊂ J for m large enough. Since

xi ∈ I is given by the class [O(ei)]− 1, the image of x2r+1
i is the class of an exact Koszul

complex on Pt, whence x2r+1
i ∈ J . For nonzero γ ∈ {0, 1}t,

(xγ + yγ)4r+2 =
4r+2∑
j=0

(
4r + 2

j

)
(xγ)4r+2−j(yγ)j ,

so j ≥ 2r + 1 or 4r + 2 − j ≥ 2r + 1. Hence, (xγ + yγ)4r+2 ∈ J . Consequently, as IO
is finitely generated by elements of the form xγ + yγ with nonzero γ ∈ {0, 1}t via the
isomorphism IO ∼= I+, the pigeonhole principle forces ImO ⊂ J for m large enough.

It is now possible to construct the crucial map of exact sequences of pro-RO-modules.
By [25], the pro-category of an abelian category is abelian. Between any two pro-objects,
there is an obvious zero map. See section A.3 for details.

Corollary 8.2.15. There is a natural surjective map of long exact sequences of pro-RO-
modules

. . . “lim”
r

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

“lim”
r

K̃i(A)

IrOK̃i(A)
“lim”
r

G̃W
[n+1]
i (A)

IrOG̃W
[n+1]
i (A)

. . .

. . . “lim”
r

G̃W
[n]
i ((P2r

k )t) “lim”
r

K̃i((P2r
k )t) “lim”

r
G̃W

[n+1]
i ((P2r

k )t) . . .

Moreover, the middle vertical arrow is an isomorphism for each i ∈ Z.

Proof. By lemma 8.2.14, for r ∈ N, the natural surjective map

G̃W
[n]
0 (A) −→ G̃W

[n]
0 ((P2r

k )t)
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factors through (G̃W
[n]
0 (A))/(ImO G̃W

[n]
0 (A)) for large enough m. This induces a natural

surjective map of pro-RO-modules

“lim”
r

G̃W
[n]
0 (A)

IrOG̃W
[n]
0 (A)

−→ “lim”
r

G̃W
[n]
0 ((P2r

k )t)

for each n ∈ Z. Furthermore, for all r ≥ 1 and n, i ∈ Z,

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

∼=
G̃W

[n]
0 (A)

IrOG̃W
[n]
0 (A)

⊗Z Ki(k)

G̃W
[n]
i ((P2r

k )t) ∼= G̃W
[n]
0 ((P2r

k )t)⊗Z Ki(k),

which allows the construction of canonical surjective maps

“lim”
r

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

−→ “lim”
r

G̃W
[n]
i ((P2r

k )t)

for all n, i ∈ Z. Finally, by the filtration lemma 8.2.12 and the proof of [57, lemma 8.3],
there is a composition of natural isomorphisms

“lim”
r

K̃i(A)

IrOK̃i(A)
−→ “lim”

r

K̃i(A)

IrK̃i(A)
−→ “lim”

r
K̃i((P2r

k )t).

It remains to be shown that the resulting diagram of pro-RO-modules commutes. This
follows from the fact that the diagram

G̃W
[n]
0 (A)

ImO G̃W
[n]
0 (A)

⊗Z Ki(k)
K̃0(A)

ImO K̃0(A)
⊗Z Ki(k)

G̃W
[n+1]
0 (A)

ImO G̃W
[n+1]
0 (A)

⊗Z Ki(k)

G̃W
[n]
0 ((P2r

k )t)⊗Z Ki(k) K̃0((P2r
k )t)⊗Z Ki(k) G̃W

[n+1]
0 ((P2r

k )t)⊗Z Ki(k)

commutes, where r,m ∈ N and m is large enough for the vertical maps to exist.

The Atiyah-Segal completion theorem for algebraic K-theory, the filtration lemma
and the reduced pro-Karoubi sequence can be combined to prove step (vii), the Atiyah-
Segal completion theorem for the higher Grothendieck-Witt groups of classifying spaces
of split tori.

Theorem 8.2.16. For all i, n ∈ Z, the canonical morphism

GW
[n]
i (A) −→ GW

[n]
i (BgmT )

is the completion of the RO-module GW
[n]
i (A) with respect to the augmentation ideal IO.
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Proof. Let

. . . A
[n+1]
i+1 A

[n]
i Bi A

[n+1]
i . . .

. . . A
′[n+1]
i+1 A

′[n]
i B′i A

′[n+1]
i . . .

be the surjective map of long exact sequences of pro-RO-modules of corollary 8.2.15,

where Bi → B′i is the isomorphism in K-theory. To show that each A
[n]
i → A

′[n]
i is an

isomorphism, a method is employed which could be called pro-Karoubi induction since
it closely resembles the classical Karoubi induction of [72, lemma 6.4]. For each n ∈ Z,
the diagram terminates on the right as

. . . A
[n+1]
1 A

[n]
0 B0 A

[n+1]
0 0

. . . A
′[n+1]
1 A

′[n]
0 B′0 A

′[n+1]
0 0

since the reduced Witt groups all vanish. Thus by the four-lemma, A
[n+1]
0 → A

′[n+1]
0

is injective, and therefore an isomorphism, for each n ∈ Z. Now fix i > 0 and assume

that A
[n+1]
j → A

′[n+1]
j is an isomorphism for all j < i and n ∈ Z. Then applying the

four-lemma to

. . . A
[n]
i Bi A

[n+1]
i A

[n]
i−1 . . .

. . . A
′[n]
i B′i A

′[n+1]
i A

′[n]
i−1 . . .

shows that A
[n+1]
i → A

′[n+1]
i is injective, and therefore an isomorphism, for all n ∈ Z.

Hence, by induction, the canonical maps

“lim”
r

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

−→ “lim”
r

G̃W
[n]
i ((P2r

k )t)

are isomorphisms of pro-groups for all i ∈ N and n ∈ Z. Passing to the actual limits,
one sees that the canonical morphism

lim
r

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

−→ G̃W
[n]
i (BgmT )

is an isomorphism. The exact sequence

0 G̃W
[n]
i (A) GW

[n]
i (A) GW

[n]
i (k) 0
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splits, so it remains exact when taking the quotient by IrO. Note that IrO GW
[n]
i (k) = 0,

because IO GW
[n]
i (k) ⊂ G̃W

[n]
i (A). Then the five-lemma yields that the middle vertical

arrow in the following commutative diagram is an isomorphism:

0 lim
r

G̃W
[n]
i (A)

IrOG̃W
[n]
i (A)

lim
r

GW
[n]
i (A)

IrOGW
[n]
i (A)

GW
[n]
i (k) 0

0 G̃W
[n]
i (BgmT ) GW

[n]
i (BgmT ) GW

[n]
i (k) 0,

which shows that the canonical morphism

GW
[n]
i (A) −→ GW

[n]
i (BgmT )

is the completion of the RO-module GW
[n]
i (A) with respect to the augmentation ideal IO

for all i, n ∈ Z, which concludes the proof of the Atiyah-Segal completion theorem.

9 Connected split reductive groups

We have already investigated the equivariant Grothendieck-Witt theory of split tori in
section 8.1. In this section, we turn our attention to the equivariant Grothendieck-Witt
theory of the larger class of connected split reductive groups. Throughout this chapter,
G will be a connected split reductive group over a field k of characteristic zero, which
encompasses general linear groups, special linear groups and other important examples.
The representation theory of connected split reductive groups is well-understood in char-
acteristic zero, and we will apply this understanding to G-equivariant Grothendieck-Witt
theory.

9.1 A semi-orthogonal decomposition of the derived category of rep-
resentations

First, it is necessary to determine how the standard semi-orthogonal decomposition of
PerfG(k) behaves under duality. Let k be a field of characteristic zero. The notation of
[22] will be used. Let (G,B, T ) be a triple consisting of a connected split reductive group
G over k with T ⊂ B ⊂ G, where B is a Borel subgroup and T is a maximal torus of rank
t. Let X(T ) ∼= Zt be the character lattice of T . Let Φ = Φ(G,T ) be a root system and
let Φ+ = Φ(B, T ) be the system of positive roots associated to B as in [22, proposition
1.4.4] and let ∆ ⊂ Φ+ be the set of simple positive roots. Let W = WG(T ) = W (Φ) be
the Weyl group, with longest element w0 ∈ W , which is the unique element such that
w0(Φ+) = −Φ+. Finally, let

C =
{
λ ∈ X(T ) | 〈λ, a∨〉 ≥ 0 for all a ∈ ∆

}
be a closed Weyl chamber, that is, a set of dominant weights. The orbit of C under the
action of W is X(T ).

112



herman rohrbach

Proposition 9.1.1. The pretriangulated dg category A = PerfG(k) admits a semi-
orthogonal decomposition

A = 〈Aλ | λ ∈ C〉,

where Aλ = 〈Mλ〉 is generated by the irreducible representation Mλ of highest weight λ.
Furthermore, Aλ ' Perf(k) as dg categories.

Proof. By the proof of [76, lemme 6] (or the theorem of the highest weight [22, theorem
1.5.6]), isomorphism classes of irreducible representations of G correspond bijectively to
C. Therefore, let {Mλ | λ ∈ C} be a set of representatives, and Aλ = 〈Mλ〉 the full
triangulated subcategory of A generated by Mλ. Let

Fλ : Perf(k) −→ Aλ

be given by Fλ(N) = N ⊗k Mλ, where N is equipped with the trivial G-action. The
proof of [76, lemme 5] shows that Mλ is absolutely irreducible, so EndGk (Mλ) ∼= k. It
follows that Fλ is fully faithful and essentially surjective. Furthermore, Fλ is exact.
Hence Aλ ' Perf(k) as dg categories.

Let λ, µ ∈ Zt/W such that λ 6= µ and let f : Mλ → Mµ be a morphism in A. By
Schur’s lemma f = 0, since Mλ and Mµ are not isomorphic. Hence Hom(Aλ,Aµ) =
0. Furthermore, since every representation of G splits into irreducible representations,
Exti(Mλ,Mµ) = 0 for all i > 0.

It remains to be shown that the Aλ generate A. Let M be a finite dimensional
G-representation. Then each irreducible G-representation in the decomposition of M is
contained in one of the Aa, whence M ∈ 〈Aa | a ∈ Zt/W 〉, which finishes the proof.

Example 9.1.2. Here is an example (c.f. [14, example 1.2]) that shows that Ext1(A,B)
does not always vanish for irreducible representations A and B of G when k is a field
of nonzero characteristic. Let k = F2, G = GL2, and let V be the standard two-
dimensional representation of G. Then Λ2V and Sym2 V are non-isomorphic irreducible
G-representations, and the exact sequence

0 −→ Λ2V −→ V ⊗ V −→ Sym2 V −→ 0

does not split. Hence Ext1(Sym2 V,Λ2V ) 6= 0.

The non-vanishing of Ext-groups of irreducible representations is the most important
obstruction to a proof of proposition 9.1.1 in arbitrary characteristic.

Corollary 9.1.3. The G-equivariant K-theory of k is given by

KG
i (k) ∼=

⊕
λ∈C

Ki(k) ∼= KG
0 (k)⊗Z Ki(k)

for all i ∈ N.

Proof. This follows from additivity for K-theory and the semi-orthogonal decomposition
of proposition 9.1.1.
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Recall the theorem of the highest weight [22, theorem 1.5.6], which states that ev-
ery irreducible G-representation has a unique highest weight. The following lemma is
folklore.

Lemma 9.1.4. Let V be an irreducible G-representation with highest weight λ. Then
the dual representation V ∗ has highest weight −w0λ.

Proof. Let ΩV ⊂ X(T ) be the set of weights of V . Note that ΩV ∗ = −ΩV . As λ is the
highest weight of V and ΩV ∗ is W -invariant, all weights in ΩV ∗ are of the form

−w0λ+
∑

b∈w0(∆)

mbb

with mb ∈ Z≥0. Note that w0(∆) ⊂ −Φ+, so for b ∈ w0(∆) and mb ∈ Z≥0,

mbb = −
∑
a∈∆

naa

with na ∈ Z≥0, as ∆ is a base for Φ+. Hence all weights in ΩV ∗ are of the form

−w0λ−
∑
a∈∆

naa,

and it follows that −w0λ is the highest weight of V ∗, as was to be shown.

The following corollary is a direct consequence of the above lemma.

Corollary 9.1.5. The duality functor ∗ : A → A on A = PerfG(k) sends Aa to A−w0a,
where a ∈ C.

Let C+ ⊂ C be the set of dominant weights fixed by −w0, and let D be a set of
representatives for the set of orbits (C −C+)/(−w0) of elements of C that are not fixed
by −w0.

Example 9.1.6. Let G = GLn. The maximal torus of diagonal matrices has weight
lattice Zn with standard unit vectors ei. The roots Φ = Φ(G,T ) of G are all elements
of the form ei − ej with 1 ≤ i, j ≤ n and i 6= j. Letting B ⊂ G be the Borel subgroup
of upper triangular matrices, the positive roots Φ+ = Φ(B, T ) are all elements ei − ej
with i < j, and the simple roots ∆ are the elements ei − ei+1. The Weyl group W is
generated by the reflections sij : Zn → Zn that switch ei and ej . The longest element
w0 ∈W with respect to Φ+ is the product

w0 =
∏
i<j

sij .

For example, if n = 3, then w0 = s12s13s23 = s13, and if n = 4, then w0 = s14s23. In
general, there is an isomorphism W → Sn, sij 7→ (i j), and under this isomorphism
w0 = (1 n)(2 n−1) · · · (dn/2e bn/2c+1), so w0 can be thought of as swapping the linear
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order on {1, . . . , n}, sending the lowest number to the highest number, the second lowest
to the second highest, and so on. If n is odd, there is a middle number which is fixed by
w0. The dominant weights of G are given by

C =

{
n∑
i=1

miei | mi ∈ Z,mi ≥ mi+1

}
.

Then the −w0-fixed points C+ ⊂ C are weights of the form

λ+ =

dn/2e∑
i=1

miei −
n∑

i=bn/2c+1

mn+1−iei,

still satisfying mi ≥ mi+1.

Proposition 9.1.7. With notation as before, the G-equivariant GW-theory of k is given
by

GW
[0]
G,i(k) ∼=

⊕
λ+∈C+

GW
[0]
i (k)⊕

⊕
λ∈D

Ki(k).

Proof. This follows from corollary 9.1.5 and corollary 6.2.3.

10 Grothendieck-Witt spectra of Grassmannians

After computing the cohomology of projective spaces, one can take a few different di-
rections for further computations in algebraic geometry, but perhaps the most natural
generalization is to consider Grassmannians. Projective spaces are themselves edge cases
of Grassmannians, and their combinatorics generalizes to other Grassmannians through
the theory of Young diagrams.

In this chapter, we compute the Grothendieck-Witt spectra of a certain class of
Grassmannians. This will in turn enable us to compute the higher Grothendieck-Witt
groups of the geometric classifying spaces BgmGLn of general linear groups, which is an
important step in proving a general Atiyah-Segal completion theorem for Grothendieck-
Witt theory.

10.1 Semi-orthogonal decompositions for Grassmannians

Let k be a field of characteristic zero. Let n = d + e be some positive integer. Let
X = Gr(d, n) be the Grassmannian of d-dimensional subspaces in kn, with tautological
bundle U of rank d and dual bundle T of rank e. These bundles fit together in an exact
sequence

0 −→ T −→ O⊕nX −→ U −→ 0.

Let ∆ = detU be the determinant of the tautological bundle.
We can replace Spec k and kn with a base scheme S over k, and kn with a vector

bundle V over S. For now, we refrain from stating results in such generality to ensure a
clear exposition.
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Figure 10.1.1: Young diagram for the partition (4, 3, 3, 1).

We will follow [14], and eventually expand on the results obtained there by intro-
ducing duality. Since we are working in characteristic zero, we could have followed [49]
instead. Write X as the homogeneous space G/P , where G = GLn and P is the parabolic
subgroup (

GLd ∗
0 GLe

)
,

which contains both the Levi subgroup H = GLd×GLe and the Borel subgroup B of
upper triangular matrices. As usual, let T ⊂ B be the maximal split torus of diagonal
matrices. From now on, we will write G1 = GLd and G2 = GLe, as well as Ti = Gi∩T for
i = 1, 2. The theory of vector bundles on X is intimately related to the representation
theory of G1, which we will exploit. The character lattice of T1 = T ∩G1 is Zd, and its
positive roots are of the form

(0, . . . , 0, 1, 0, . . . , 0,−1, 0 . . . , 0).

There is a natural partial order ≤ on T1 for which λ ≤ µ if and only if µ− λ is a sum of
positive roots. The dominant weights α of G1 are non-increasing tuples (α1, . . . , αd) ∈
Zd. Dominant weights with non-negative entries correspond to partitions, which can be
visualized as Young diagrams. The Young diagram of a partition (α1, . . . , αd) has d rows
of blocks, where the i-th row consists of αi blocks, see figure 10.1.1 for an example.

Young diagrams, in turn, correspond to Schubert cells, which are subschemes of
Grassmannians that form cellular decompositions, and the intersection theory of these
Schubert cells is called Schubert calculus. The Young diagrams considered here do not
correspond to the usual Schubert cells, but to twisted versions of these; here, the gen-
erator of A corresponding to a partition α is the Schur functor of α applied to the
standard representation of GLd, twisted by a power of the determinant of the standard
representation, as we will see later.

The degree |α| of a weight α ∈ Zd is the sum
∑
αi of its entries. A representation has

degree m if all its weights have degree m, and a representation is called polynomial if all
its weights are partitions. Let V be the standard representation of G1 of dimension d.
The determinant detV = ΛdV of V is a irreducible representation with highest weight
(1, . . . , 1). For a partition α and a vector space (or G1-representation) W , let

ΛαW =
d⊗
i=1

ΛαiW,
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and similarly when replacing W with a vector bundle E on X. Furthermore, each
partition α allows the definition of the Schur functor Lα and the Weyl functor Kα, both
of which are functors Vect(k)→ Rep(G1).

In particular, LαV is the induced representation with highest weight α, and since k
has characteristic zero, it is irreducible. For the explicit constructions of the Schur and
Weyl functors, see [14, section 2]. There is an equivalence of categories LX : Rep(P )→
VectG(X) by [19, theorem 2.7]. Composing LX with the inclusion Rep(G1) ⊂ Rep(P )
induced by the projection P → G1 allows us to study G-equivariant vector bundles on
X in terms of G1-representations, which are more easily understood.

In representation theory and Schubert calculus, it seems to be customary to focus on
polynomial representations, which is often justified by the remark that representations of
GLd can be tensored with the determinant representation with highest weight (1, . . . , 1)
to obtain polynomial representations, but the dual of a polynomial representation need
not be polynomial. We explain here how the determinant representation interacts with
duality and how we can use this to obtain a satisfying theory of duality on Young dia-
grams, which makes a computation of the Grothendieck-Witt theory of Grassmannians
possible.

Let Pd,e ⊂ Zd be the set of partitions whose Young diagrams have at most d rows
and at most e columns. Such partitions correspond to the Schubert cells of X and
are visualized by Young diagrams that fit in a (d × e)-frame. For α ∈ Pd,e, write
α = (α1, . . . , αd) with αi ≥ αi+1 for all i = 1, . . . , d − 1. For any m ∈ Z and α ∈ Pd,e,
we write m+ α for (m+ α1, . . . ,m+ αd) ∈ Pd,e+m.

Definition 10.1.2. Let α ∈ Pd,e be a partition. The transpose αT of α is the partition
αT ∈ Pe,d obtained by transposing the Young diagram of α.

Since X is a projective scheme with an ample line bundle, we define

A = Perf(X) = Chb(Vect(X))/Acb(Vect(X))

as in remark 5.5.6. Note that the homotopy category H0A is the usual bounded derived
category Db(X) of X. For i ∈ N, we let Ci ⊂ Rep(G1) be the full subcategory of the
category of finite dimensional polynomial G1-representations consisting of those repre-
sentations whose irreducible components have highest weight α ∈ Pd,e such that |α| = i.
Let (Pd,e)i ⊂ Pd,e be the subset of partitions of degree i. The bounded derived dg
category Perf(Ci) is generated as a pretriangulated dg category by the irreducible repre-
sentations with highest weight α ∈ Pd,e with |α| = i. By pulling back G1-representations
along the projection P → G1, we can define, for each i ∈ N, a fully faithful dg functor

Φi : Perf(Ci)→ A (10.1.3)

which sends M to LX(M), see [14, p. 6, 11] and note that this can really be constructed
as a dg functor. By [14, theorem 5.6], there is a semi-orthogonal decomposition

A = 〈A0, . . . ,Ade〉, (10.1.4)
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whereAi is the quasi-essential image of the dg functor Φi, which is the full dg subcategory
of A on objects quasi-isomorphic to objects in the image of Φi. For each dominant
weight λ ∈ Zd of G1, fix a representative Mλ for the isomorphism class of irreducible
representations of weight λ. Then Perf(Ci) is generated by the irreducible representations
Mα with highest weight α ∈ (Pd,e)i. For α, β ∈ (Pd,e)i such that α 6= β, Schur’s
lemma ensures that Hom(Mα,Mβ) = 0 in the category of G1-representations. Since
the base field k has characteristic zero, every G1-representation splits into irreducible
representations and it follows that

Exti(Mα,Mβ) = Hom(Mα,Mβ[i]) = 0

in the triangulated category H0 Perf(Ci). Hence, there is a semi-orthogonal decomposi-
tion

Perf(Ci) = 〈〈Mα〉 | α ∈ (Pd,e)i〉, (10.1.5)

where the set of partitions Pd,e can be equipped with any linear order to fulfill the
conditions of definition 5.6.10. The semi-orthogonal decompositions (10.1.4) and (10.1.5)
enable a computation of the K-theory of X: by additivity for K-theory

K(A) '
de⊕
i=0

K(Ai) '
⊕
α∈Pd,e

K(k),

where the final equivalence follows from the fact that 〈Mα〉 ' Perf(k) for each α ∈ Pd,e.
Note that |Pd,e| =

(
n
d

)
.

10.2 Duality on Young diagrams

We would like to use the semi-orthogonal decompositions from the previous section for
the computation of Witt groups and Grothendieck-Witt groups, but there is a problem:
the standard duality on A does not permute the factors of the decompositions, and we
cannot use the relevant additivity theorems. We will now present a way to overcome
this problem when either d or e is even. The inspiration for this solution came from
a combination of the solution for projective spaces as presented in section 7.4, and the
semi-orthogonal decomposition of proposition 9.1.1, which is permuted by the duality
by corollary 9.1.5.

The case when both d and e are odd remains open, though the author expects the
existence of an approach that unifies all the cases, in a similar fashion to [7, theorem
6.1], the results of which we will compare with that of our approach in due course.

First, we must understand the duality on A. Since, by [14, lemma 5.1], A is generated

by exterior powers Λα
TU with α ∈ Pd,e where αT ∈ Pe,d is the transpose of α ∈ Pd,e, it

suffices to understand the duals of generators.
Recall from example 9.1.6 that the longest element w0 of the Weyl group of GLe

inverts the ordering of a dominant weight λ ∈ Ze, when seen as an ordered e-tuple.
Also recall that U is the tautological bundle associated with the standard d-dimensional
representation of G1 and ∆ = detU is the line bundle associated with the determinant
representation with highest weight (1, . . . , 1).
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α = (4, 3, 3, 1) α∨ = (3, 1, 1, 0)

Figure 10.2.2: the dual of a Young diagram.

α = (4, 2, 1, 1) α∨ = (3, 3, 2, 0)

Figure 10.2.3: an example of a half partition and its dual.

Lemma 10.2.1. Let α ∈ Pd,e. Then

(Λα
TU)∨ = Λd−w0αTU ⊗∆−e,

where ∆−e = (∆∨)e.

Proof. Because the duality ∨ : Aop → A commutes with tensor products and Λα
TU is

invariant under permutations of the entries of αT , it suffices to show

(ΛiU)∨ = Λd−iU ⊗∆−1

for 0 ≤ i ≤ d, but this follows from the perfect pairing ΛiU ⊗ Λd−iU → ∆: it gives an
isomorphism

ΛiU −→ Hom(Λd−iU ,∆),

and taking the dual on both sides gives the desired result.

Inspired by the above lemma, we make a few definitions to help us organize our data.

Definition 10.2.4. Let α ∈ Pd,e. Let w0 be the longest element of the Weyl group of
GLd. The dual partition α∨ of α in Pd,e is the partition e − w0α. Note that if |α| = i,
then |α∨| = de − i. Therefore, we call α a half partition of Pd,e if α has weight de′, so
that |α| = |α∨|.

Note that if |α| = i, then |α∨| = de− i, and that the degree of a weight is invariant
under w0. Additionally, note that the dual of the transpose αT ∈ Pe,d of some α ∈ Pd,e is
w0(d−αT ) ∈ Pe,d, where w0 is the longest element of the Weyl group of G2. This duality

119



on atiyah-segal completion for hermitian k-theory

on partitions is best described pictorially with Young diagrams, see figure 10.2.2. The
dual of a Young diagram is obtained by rotating the diagram 180 degrees and swapping
the filled part with the empty part of the (d×e)-frame. For an example of a half partition
in a 4× 4-frame, see figure 10.2.3.

10.3 The Grothendieck-Witt spectrum of an even Grassmannian

We call the Grassmannian X = Gr(d, d + e) even if de is even. From here on, we
assume that e is even (so the Grassmannian is even) and let e′ = e/2. We return to
the semi-orthogonal decomposition of A. The functor − ⊗ ∆ : A → A is an equiv-
alence of pretriangulated dg categories. Then we obtain the twisted semi-orthogonal
decomposition

A = 〈A0 ⊗∆−e
′
, . . . ,Ade ⊗∆−e

′〉. (10.3.1)

The reason for this twist is explained by the following results.

Lemma 10.3.2. The standard duality ∨ : Aop → A acts on the semi-orthogonal decom-
position (10.3.1) as

(Ai ⊗∆−e
′
)∨ = Ade−i ⊗∆−e

′

for each i ∈ {0, . . . , de}.

Proof. Let α ∈ Pd,e be a partition of degree i. Then Λα
TU ⊗ ∆−e

′
is a generator of

Ai ⊗∆−e
′
. Combining lemma 10.2.1 with definition 10.2.4, we obtain

(Λα
TU ⊗∆−e

′
)∨ = Λ(αT )∨U ⊗∆−e

′
,

which is a generator of Ade−i ⊗∆−e
′

since |(αT )∨| = de− i.

From now on, let Bi = Ai ⊗ ∆−e
′
. As an immediate corollary, we obtain a par-

tial calculation of the Grothendieck-Witt spectrum GW(X). This calculation holds in
arbitrary characteristic due to the results of [14].

Corollary 10.3.3. There is a natural equivalence

GW[n](X) ' GW[n](Bde′)⊕
de′−1⊕
i=0

K(Bi).

In particular,
W[n](X) 'W[n](Bde′).

Proof. This is an application of the additivity theorem 6.2.2 for Grothendieck-Witt the-
ory since (Bi)∨ = Bde−i for all 1 ≤ i ≤ de′; in particular, (Bde′)∨ = Bde′ .

As K(Bi) splits into copies of K(k), it remains to compute GW[n](Bde′). For 0 ≤
i ≤ de, define Di = Perf(Ci) ⊗ (detV )−e

′
as a pretriangulated dg subcategory of

Perf(Rep(G1)). By [14, theorem 5.8] and [19, section 3.1.4], the dg functor

Φ′ : Dde′ −→ Bde′
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given by M ⊗ (detV )−e
′ 7→ LX(M) ⊗ ∆−e

′
is a duality-preserving equivalence. The

twisted version of the semi-orthogonal decomposition (10.1.5) is

Dde′ = 〈〈Mα−e′〉 | α ∈ (Pd,e)de′〉, (10.3.4)

using the isomorphism Mα ⊗ detV −e
′ ∼= Mα−e′ for α ∈ Pd,e. Note that this semi-

orthogonal decomposition does not exist in prime characteristic, because the irreducible
representations Mα do not form an exceptional collection, see example 9.1.2.

Lemma 10.3.5. For a partition α ∈ Pd,e,

M∗α−e′
∼= Mα∨−e′ .

Proof. By lemma 9.1.4,
M∗α−e′

∼= M−w0(α−e′).

Since w0(m) = m for all m ∈ Z, −w0(α−e′) = −w0α+e′. On the other hand, definition
10.2.4 yields

α∨ − e′ = e− w0α− e′ = −w0α+ e′,

which concludes the proof.

In particular, if α is a half partition, then Mα−e′ and its dual have highest weights of
the same degree. Hence, to study how Dde′ behaves under duality, we need to understand
the combinatorics of half partitions. We will distinguish between two kinds of half
partitions.

Definition 10.3.6. A symmetric half partition α ∈ Pd,e is a half partition (see definition
10.2.4) such that α∨ = α. A half partition is called asymmetric if it is not symmetric.
The Young diagram of a symmetric partition is also called symmetric.

Lemma 10.3.7. Let d′ = bd2c. There are
(
d′+e′

e′

)
symmetric half partitions in Pd,e.

Proof. Note that Young diagrams in the (d×e)-frame correspond to binary sequences of
length d+ e, containing d zeroes and e ones. Given such a binary sequence, if we think
of a Young diagram as a path starting in the lower left corner of the frame, each zero
in the sequence means going up one row, and each one means going one column to the
right. For example, the Young diagram (4, 3, 3, 1) in the (4×4)-frame corresponds to the
binary sequence 10110010, read from left to right. A Young diagram is symmetric if and
only if the corresponding binary sequence is a palindrome. If d is odd, it follows that the
middle bit in the binary sequence of a symmetric Young diagram must be a one, since e
is even by assumption. Thus a symmetric Young diagram is completely determined by
the first d′ + e′ bits of the corresponding binary sequence, e′ of which must be zero. It
follows that the number of different symmetric Young diagrams in the (d× e)-frame is(

d′ + e′

e′

)
,

as was to be shown.
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The total number of asymmetric half partitions in Pd,e is harder to determine, but
can be expressed using a recursive formula. Ultimately, we are more interested in the
symmetric half partitions because the asymmetric half partitions only contribute to the
hyperbolic part of the Grothendieck-Witt spectrum. For i ∈ N, |(Pd,e)i| is the total
number of partitions of degree i in Pd,e.

Lemma 10.3.8. The total number of half partitions |(Pd,e)de′ | is even, and given by the
recursive formula

|(Pd,e)de′ | =
e∑
j=1

|(Pd−1,j)de′−j |.

Proof. An α ∈ (Pd,e)de′ is given by a d-tuple (α1, . . . , αd) such that 0 ≤ αi ≤ e and
αi ≥ αi+1 for all 0 ≤ i ≤ d. Note that α1 6= 0 since de′ 6= 0 by assumption. If α1 = j
for some j ∈ N, then αi ≤ j for all i ≥ 2. Hence (α2, . . . , αd) ∈ (Pd−1,j)de′−j , and the
recursive formula follows.

Finally, here is a computation of the Grothendieck-Witt spectrum of Dde′ . Let Ad,e
be the number of asymmetric half partitions of Pd,e.

Lemma 10.3.9. There is an equivalence

GW[n](Dde′) '
(d
′+e′
e′ )⊕
i=1

GW[n](k)⊕

Ad,e
2⊕
j=1

K(k).

Proof. On the one hand, the duality ∨ : (Pd,e)de′ → (Pd,e)de′ sends asymmetric half par-
titions to asymmetric half partitions, leaving no asymmetric half partition fixed. Hence,
if α is an asymmetric half partition, Mα−e′ is different from its dual and contributes a

copy of K(〈Mα−e′〉) to the direct sum decomposition of GW[n](Dde′) by additivity.
On the other hand, if α is a symmetric half partition, Mα−e′ is self-dual and con-

tributes a copy of GW[n](〈Mα−e′〉) to the direct sum decomposition.
By proposition 9.1.1, 〈Mα−e′〉 ' Perf(k), which finishes the proof.

Putting everything together, we obtain our main result for Grothendieck-Witt spec-
tra of Grassmannians.

Theorem 10.3.10. Let p =
(
d′+e′

e′

)
and q = 1

2(
(
d+e
e

)
− p). There is an equivalence

GW[n](X) '
p⊕
i=1

GW[n](k)⊕
q⊕
j=1

K(k).

Proof. By corollary 10.3.3, copies of GW[n](k) are contributed solely by

GW[n](Dde′),

and lemma 10.3.9 tells us that there exactly p of such copies.
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Furthermore, the exceptional collection of A consisting of bundles LαU has
(
d+e
e

)
members, one for each partition in Pd,e. Only p of these generators are self-dual, and the
rest occur in dual pairs. Each such dual pair contributes exactly one copy of K(k) by the
additivity theorem 6.2.2 and the fact that 〈Mα−e′〉 ' Perf(k). The result follows.

10.4 The Grothendieck-Witt theory of the classifying space of a gen-
eral linear group

We shift our attention to the classifying space of the general linear group G = GLd over
a field k of characteristic zero. The Grassmannians Xr = Gr(d, r) form an admissible
gadget for BgmG by example 3.6.15. Since we have computations of the Grothendieck-
Witt spectrum of Xr when r − d is even, we define

BgmG = colim
r

Xd+2r,

where the inclusion fr : Xd+2r → Xd+2r+2 is induced by the embedding kd+2r ⊂ kd+2r+2

sending the standard unit vector ei to ei+1. In other words, we pad the ambient space
kd+2r with a coordinate on the left and on the right.

To show that, for i, n ∈ Z,

GW
[n]
i (BgmG) ∼= lim

r
GW

[n]
i (Xd+2r),

it must be shown that the tower of GW
[0]
0 (k)-modules {GW

[n]
i+1(Xd+2r)}r∈N satisfies the

Mittag-Leffler condition since this will force the lim1-term of the Milnor exact sequence
(4.2.6) to vanish. We have the following stronger result.

Lemma 10.4.1. For each n ∈ Z and r ∈ N, the pullback map

f∗r : GW[n](Xd+2r+2) −→ GW[n](Xd+2r)

is a split epimorphism of spectra, up to homotopy. In particular, f∗r is split surjective
on stable homotopy groups.

Proof. For r ∈ N, let Ar = Perf(Xd+2r), Ur the universal bundle of Xd+2r and ∆r =
detUr. We must construct a map of spectra

g : GW[n](Xd+2r)→ GW[n](Xd+2r+2)

for each r ∈ N, such that f∗r g is the identity.
Fix r ∈ N. Then Ar has a semi-orthogonal decomposition

Ar = 〈Ar,0, . . . ,Ar,2dr〉

as in (10.1.4). By twisting the above semi-orthogonal decomposition by ∆−rr , we obtain
a semi-orthogonal decomposition

Ar = 〈Br,0, . . . ,Br,2dr〉,
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where Br,i = Ar,i ⊗∆−rr as in (10.3.1).

By corollary 10.3.3,

GW[n](Xd+2r) ' GW[n](Br,dr)⊕
dr−1⊕
i=0

K(Br,i)

GW[n](Xd+2r+2) ' GW[n](Br+1,d(r+1))⊕
d(r+1)−1⊕

i=0

K(Br+1,i).

We construct a map g : GW[n](Xd+2r)→ GW[n](Xd+2r+2) on each of the summands by
constructing corresponding functors of pretriangulated dg categories. For 0 ≤ i ≤ dr,
let Gi : Br,i → Br+1,i+1 be the dg functor given by LαUr ⊗∆−rr 7→ Lα+1Ur+1 ⊗∆−r−1

r+1 .
For α, β ∈ (Pd,2r)i and j 6= 0,

HjBr,i(LαUr, LβUr) ∼= HjBr,i(LαUr ⊗∆−rr , LβUr ⊗∆−rr )

∼= HjBr+1,i+1(Lα+1Ur+1 ⊗∆−r−1
r+1 , Lβ+1Ur+1 ⊗∆−r−1

r+1 )

∼= HjBr+1,i+1(Lα+1Ur+1, L
β+1Ur+1)

∼= 0

since higher ext groups between irreducibles vanish by [49, lemma 3.2]. Furthermore

δα,βk ∼= H0Br,i(LαUr, LβUr)
∼= H0Br,i(LαUr ⊗∆−rr , LβUr ⊗∆−rr )

∼= H0Br+1,i+1(Lα+1Ur+1 ⊗∆−r−1
r+1 , Lβ+1Ur+1 ⊗∆−r−1

r+1 )

∼= H0Br+1,i+1(Lα+1Ur+1, L
β+1Ur+1),

where δα,β is the Kronecker delta of α and β, by the Littlewood-Richardson rule (see
[49, section 3.3]). It follows that Gi : Br,i → Br+1,i+1 is a quasi-fully faithful dg functor
for each i, and f∗r |Br+1,i+1Gi is the identity on Br,i by construction since

f∗r (Lα+1Ur+1 ⊗∆−r−1
r+1 ) = f∗r (LαUr+1 ⊗∆−rr+1) = LαUr ⊗∆−rr .

Moreover, gdr is a dg form functor as a consequence of lemma 10.3.5. Hence we obtain
maps

gi : K(Br,i) −→ K(Br+1,i+1)

gdr : GW[n](Br,dr) −→ GW[n](Br+1,d(r+1))

whose sum g splits the pullback map f∗r : GW[n](Xd+2r+2) → GW[n](Xd+2r), as was to
be shown.

As a corollary, we obtain a computation of GW
[n]
i (BgmG).
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Corollary 10.4.2. For i, n ∈ Z,

GW
[n]
i (BgmG) ∼= lim

r
GW

[n]
i (Xd+2r).

Proof. By lemma 10.4.1, the map

f∗r : GW
[n]
i (Xd+2r+2)→ GW

[n]
i (Xd+2r)

is a split surjection for all i, n ∈ Z. Hence, the tower {GW
[n]
i+1(Xd+2r)} satisfies the

Mittag-Leffler condition for all i, n ∈ Z, and the lim1-term of the Milnor exact sequence
(4.2.6) vanishes. The result follows.

A Appendix

In this appendix, we compute the total Grothendieck-Witt ring of the projective plane
over a quadratically closed field.

We also prove a lifting criterion for closed immersions of schemes and we show that
the category of pro-objects on an abelian category is itself abelian.

A.1 The total Grothendieck-Witt ring of the projective plane

The results in this section are joint work with Thomas Hudson.

In this thesis, we mostly consider the additive structure of Grothendieck-Witt theory,
but it also possesses a natural ring structure, as already noted after definition 6.1.17 of
the Grothendieck-Witt spectrum. Computing the ring structure of a cohomology theory,
even in special cases, significantly increases our understanding of the theory and is often
closely related to intersection theory.

Let k be a quadratically closed field of characteristic not two and X be a scheme
of finite type over k. As in chapter 7, we consider the Grothendieck-Witt groups of
the pretriangulated dg category Perf(X) with duality induced by L[n] where L is a line
bundle over X and n ∈ Z.

Definition A.1.1. The total Grothendieck-Witt ring GWtot(X) of X is the ring

GWtot(X) =
⊕

GW
[i]
0 (X,L),

where the sum runs over i ∈ Z and L ∈ Pic(X), with sum induced by the direct sum
and product induced by the tensor product of symmetric forms, up to lax similitude as
defined in [6].

Since we will only consider the classical triangular Grothendieck-Witt groups GW
[n]
0

in this section, we will drop the subscript 0 from the notation. We use the Euler class
in Grothendieck-Witt theory as defined in [31, section 2.4] for computations in the ring
GWtot. These classes can be used in computations involving the multiplicative structure,
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since they satisfy a Whitney formula. For a vector bundle V → X of rank r over X, the
Euler class e(V ) of V is an element of GW[r](X,detV ∨).

Another useful tool will be the twisted hyperbolic map

HLn : K0(X)→ GW
[n]
0 (X,L), [M ] 7→

[
M ⊕ [M,M∨[n]⊗ L]],

(
0 1

can 0

)]
.

When X is a projective space Pnk , we write H i
n for the twisted hyperbolic map H

O(i)
n ,

and when L = O, we write Hn instead of HOn .
First, we recall the computation of the additive structure of GWtot(k) from example

6.1.9. The shifted Grothendieck-Witt groups of k are

GW[0](k) = Z GW[1](k) = 0

GW[2](k) = Z GW[3](k) = Z/2Z.

We show how to organize them into a ring. The additive generator α ∈ GW[2](k) is
the hyperbolic form H2(k[1]), where k[1] is the usual shift of k regarded as a complex
concentrated in degree zero, and α2 = 4 in GW[0](k). The only nonzero element β ∈
GW[3](k) is the hyperbolic form H3(k[1]). Note that H3(k[1]) = H3(k[2]), so since H3

is additive, −H3(k) = H3(k), whence 2β = 0. Furthermore, β2 ∈ GW[6](k) is a class of
the form

k k2 k

k k2 k,

sitting in degrees [−4,−2]. Hence β2 = H6(k[2] + k[3]) = 0. Since GW
[5]
0 (k) ∼=

GW
[1]
0 (k) = 0, αβ = 0.
Summarizing, we see that

GWtot(k) ∼= Z[α, β]/(α2 − 4, β2, αβ, 2β).

Next, we prove a result about the vanishing of powers of e(O(1)) for projective spaces.
Let P = Pnk and O = OP.

Proposition A.1.2. The class e(O(1)) in GW[1](P,O(−1)) satisfies e(O(1))n+1 = 0.

Proof. The Euler sequence

0 O(−1) O⊕n+1 Q 0

is exact (Q denotes the universal quotient bundle), and it remains exact if we tensor it by
O(1). Hence e(O(1)⊕n+1) vanishes by [31, proposition 22], and by repeated application
of the Whitney formula [31, theorem 21], e(O(1)⊕n+1) = e(O(1))n+1, which concludes
the proof.
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We can also compute the square of the Euler class, as follows.

Proposition A.1.3. The square of the euler class e(O(1)) in GW
[2]
0 (P,O) is given by

e2(O(1)) = H0
2 (O(1))−H0

2 (O).

Proof. By the Whitney formula [31, theorem 21] for quadratic Euler classes,

ei(O(1)) = e(O(1)⊕i)

for all i ∈ N. Hence, [31, proposition 14] yields

e2(O(1)) = H0
2 (O(1)) + [O[1]⊕2,−φ],

where φ : O⊕2 → [O⊕2,O] is the canonical map induced by the determinant pairing
O⊕2 ⊗ O⊕2 → O given by (a1, a2) ⊗ (b1, b2) 7→ a1b2 − a2b1. There is an isomorphism
O[1]→ [O[1],O[2]] given by 1 7→ (1 7→ 1). One checks that −φ is isometric to the map(

0 1
− evO 0

)
: O[1]⊕ [O[1],O[2]] −→ [O[1],O[2]]⊕ [[O[1],O[2]],O[2]],

so that [O[1]⊕2,−φ] = H0
2 (O[1]). It follows that

e2(O(1)) = H0
2 (O(1)−O),

as was to be shown.

Now assume that n = 2s. Then the projective bundle formula 7.4.3 yields

GW
[n]
0 (P,O) ∼= GW

[n]
0 (k)⊕K0(k)⊕s,

where the embedding π∗ : GW
[n]
0 (k)→ GW[n](P,O) is the pullback along the structure

map π : P→ Spec k and K0(k)⊕s → GW[n](P,O) is given by

(F1, . . . ,Fs) 7→
s∑
i=1

H0
n(Fi ⊗O(i)).

The twisted Grothendieck-Witt groups GW
[n]
0 (P,O(1)) can be described similarly, but

the pullback must be twisted by a special element µ : GW
[2s]
0 (P,O(1)). The exact Euler

sequence

0 −→ O(−1) −→ O2s+1 −→ Q −→ 0,

that we saw in the proof of the above proposition, is an exact sequence of finite locally
free sheaves on P. We call Q the quotient bundle on P. Note that Q has rank 2s, and
therefore e(Q) ∈ GW[2s](P, detQ∨). Since

detQ⊗ detO(−1) ∼= detO2s+1,
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it follows that detQ ∼= O(1). By [31, proposition 14],

e(Q) = [ΛsQ∨[s], (−1)sφs] +H1
2s

(
s−1∑
i=0

(−1)i[ΛiQ∨]

)
,

where φs : ΛsQ∨[s] → [ΛsQ∨[s],O(−1)[2s]] is the canonical isomorphism. Now let
µ = [ΛsQ∨[s], (−1)sφs], which lives in GW[2s](P,O(−1)).

Note that the class µ is (up to sign) a twist of the canonical symmetric form ΛsΩP/k⊗
ΛsΩP/k → ωP/k.

When we write µ ∈ GW[2s](P,O(1)), we understand this to be an element lax similar
to µ, obtained by multiplying µ with the canonical element of GW[0](P,O(2)) induced
by the symmetric bilinear form O(1) ⊗ O(1) → O(2), which is itself lax similar to
1 ∈ GW[0](P). Similarly, we may write e(O(1)) ∈ GW[1](P,O(1)), when strictly speaking
e(O(1)) is an element of GW[1](P,O(−1)).

By theorem 7.4.10, there is an isomorphism

GW
[n]
0 (P,O(1)) ∼= GW

[n−2s]
0 (k)⊕K0(k)⊕s,

where K0(k)⊕s → GW
[n]
0 (P,O(1)) is given as before, and the map

GW
[n−2s]
0 (k)→ GW

[n]
0 (P,O(1))

is given by a 7→ µπ∗a.
We further restrict our attention to the projective plane. Let P = P2

k with projection

map π : P→ Spec k and s = 1. Let 1 = [OP, 1] ∈ GW[0](P) be the unit, or an element lax
similar to the unit. We keep in mind the following table to keep track of each component
of the total Grothendieck-Witt ring. By abuse of notation, we simply denote π∗α and
π∗β by α and β, respectively.

i 0 1

component K0(k) GW
[n]
0 (k) K0(k) GW

[n−2]
0 (k)

GW
[0]
0 (P,O(i)) ZH0

0 (O(1)) Z1 ZH1
0 (O(1)) Zαµ

GW
[1]
0 (P,O(i)) ZH0

1 (O(1)) 0 ZH1
1 (O(1)) (Z/2)βµ

GW
[2]
0 (P,O(i)) ZH0

2 (O(1)) Zα ZH1
2 (O(1)) Zµ

GW
[3]
0 (P,O(i)) ZH0

3 (O(1)) (Z/2)β ZH1
3 (O(1)) 0

Note that α = −H0
2 (O) and β = H0

3 (O). Let ε = e(O(1)) = H1
1 (O(1)). We have

already computed ε2 − α = H0
2 (O(1)) and ε3 = 0 in proposition A.1.3 and proposition

A.1.2. Furthermore, we have already shown that α2 = 4, β2 = 0 and αβ = 0. Using
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the explicit definition of the Euler class and the exact Karoubi sequences for GW, we
compute

αε = H0
2 (O[1])H1

1 (O(1)) = 2H1
3 (O(1)[1]) = −2H1

3 (O(1))

αε2 = 4− 2H0
0 (O(1))

βε = 0

µε = H0
3 (O(1) +O) = H0

3 (O(1)) + β

µε2 = αµ− 2H1
0 (O(1))

αµε = 2H0
1 (O(1))

αµε2 = 4H1
2 (O(1)) + 4µ

µ2 = 10− 3H0
0 (O(1))

µH0
0 (O(1)) = H1

2 (Q(1)[1]) = −H1
2 (3O(1)−O) = −2H1

2 (O(1)). (A.1.4)

These equations identify the ring structure on GWtot(P).

Theorem A.1.5. The total Grothendieck-Witt ring GWtot(P) is given as

GWtot(P) ∼= GWtot(k)[a0, a1, a2, a3, b0, b1, b2, b3]/I,

where I is the ideal generated by the relations (A.1.4), and where ai = H0
i (O(1)) and

bi = H1
i (O(1)) for i = 0, 1, 2, 3.

Proof. This follows from the addititive structure of GWtot(P) combined with the rela-
tions (A.1.4).
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Furthermore, we obtain the following expressions for the additive generators of
GWtot

0 (P):

H0
0 (O(1)) =

4− αε2

2
=

10− µ2

3

H0
1 (O(1)) =

αµε

2
H0

2 (O(1)) = ε2 − α
H0

3 (O(1)) = µε+ β

H1
0 (O(1)) =

4− αε2

2

H1
1 (O(1)) =

µ(α− ε2)

2

H1
2 (O(1)) =

µ(αε2 − 4)

4

H1
3 (O(1)) =

−αε
2

.

Also note that e(O(2)) = H0
1 (O(1)), so 2e(O(2)) = αµε, and

H0
0 (O(1)−O) = −1

2αε
2,

so that H0
0 (O(1)−O)2 = 0, since ε4 = 0. This recovers a result from [95, example 5.3].

A.2 A lifting criterion for closed immersions of schemes

The valuative criteria in algebraic geometry are an important tool to determine sepa-
ratedness and universal closedness of morphisms of schemes. For an explanation of the
valuative criteria, see [77, Tag 01KA] and [77, Tag 01KY], or the original results [35,
proposition 7.2.3 and théorème 7.3.8].

In this appendix, we prove a variation for closed immersions of the valuative criteria,
which can be useful in proving directly that a morphism of schemes is a closed immersion,
rather than proving that it is both proper and a monomorphism.

Theorem A.2.1 (extensive criterion). Let f : X → Y be a quasi-compact morphism of
schemes. Then f is a closed immersion if and only if it is right orthogonal to all ring
extensions, that is, if for all solid commutative diagrams

SpecA X

SpecB Y,

a

g f

b

h

where g corresponds to an extension of rings B → A, there exists a unique dotted arrow
h : SpecB → X such that hg = a and fh = b.
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The concept of orthogonality is a useful categorical notion, closely related to factor-
ization systems. Here is the definition of orthogonality in an arbitrary category.

Definition A.2.2. Let f : A→ B be a morphism in a category C. Let S be a collection
of morphisms in C. Then f is

(i) left orthogonal to S if, for each s ∈ S and each commutative diagram

A S

B T,

f sh

there exists a unique lift h making the triangles commute; and
(ii) right orthogonal to S if, for each s ∈ S and each commutative diagram

S A

T B,

s fh

there exists a unique lift h making the triangles commute.

Let Ring be the category of commutative rings. Every ring homomorphism factors
as a surjective ring homomorphism followed by an injective one, by passing through the
image. The following proposition shows that this defines an orthogonal factorization
system on Ring. Several other such factorization systems are studied in [1].

Proposition A.2.3. Let φ : A→ B be a morphism in Ring. Then

(i) φ is surjective if and only if φ is left orthogonal to every injective ring homomor-
phism; and

(ii) φ is injective if and only if every surjective ring homomorphism is left orthogonal
to φ.

Proof. We only prove (i), the proof of (ii) being similar. First, suppose that φ is surjective
and let ψ : C → D be an injective map of rings. Given a commutative square

A C

B D,

α

φ ψ

β

γ

there exists a lift γ : B → C given by γ(b) = α(a), where a ∈ A is such that φ(a) = b.
This map is a well-defined and unique lift, since if a, a′ ∈ A satisfy φ(a) = φ(a′), then
ψ(α(a)) = ψ(α(a′)) by the commutativity of the diagram, and by the injectivity of ψ,
α(a) = α(a′).
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Conversely, suppose that φ is left orthogonal to every injective ring homomorphism.
Then the commutative diagram

A φ(A)

B B

φ

admits a unique lift B → φ(A) which is both surjective and injective, and therefore an
isomorphism. It follows that φ is surjective.

Note that the above proof only used properties of Set, namely the existence of
images, and surjective and injective maps. Therefore this factorization system exists
on any category C with a forgetful functor to Set in which the set-theoretic image is
well-defined.

By using the anti-equivalence between the category of affine schemes and the category
of commutative rings, one obtains the extensive criterion for closed immersions of affine
schemes, or simply the affine extensive criterion.

Proposition A.2.4 (affine extensive criterion). A morphism f : X → Y of affine
schemes is a closed immersion if and only if it is right orthogonal to all ring extensions.

Proof. This statement is a formal equivalent of proposition A.2.3, since closed immer-
sions of affine schemes correspond to surjective ring homomorphisms.

The affinification of a scheme X is the affine scheme that best approximates X. It is
a universal construction that turns out to be useful for studying morphisms of schemes
that are left orthogonal to some class of affine morphisms. For the remainder of this
section, let X be a scheme.

Definition A.2.5. The affinification of the scheme X is the canonical map affX : X →
SpecOX(X) of [33, remark 3.7], which corresponds to the identity on OX(X) under
the adjunction Γ a Spec between Spec : Ring → Aff and the global section functor
Γ : Aff → Ring.

Sometimes we will drop the subscript X from the notation of affX , if no ambiguity
arises. We collect some elementary properties of the canonical map affX , which will play
a role in the proof of theorem A.2.1.

Lemma A.2.6. If affX is a split monomorphism, then X is an affine scheme.

Proof. Write S = SpecOX(X). Let s : S → X be a morphism such that s affX = idX .
Then

affX s affX = idS affX

and since both affX s and idS are morphisms of affine schemes, it follows that affX s = idS
by [59, proposition 2.3.25]. Hence affX is an isomorphism and X is an affine scheme, as
was to be shown.
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Proposition A.2.7. The largest quasi-coherent OSpecOX(X)-module contained in the
kernel of the canonical morphism of sheaves φ : OSpecOX(X) → aff∗OX is zero. If X
is quasi-compact, then φ is injective. If, moreover, X is quasi-separated, then φ is an
isomorphism.

Proof. Let M ⊂ OX(X) be the OX(X)-module corresponding to the largest quasi-
coherent OSpecOX(X)-module contained in the kernel of φ. By definition,

φ(M̃(D(f))) = φ(M [ 1
f ]) = 0

for all f ∈ OX(X). In particular, the above equation holds for f = 1, and since
φ : OSpecOX(X)(SpecOX(X))→ aff∗OX(SpecOX(X)) is simply the identity on OX(X),
it follows that M = 0. Note that this is equivalent to the affinification morphism
aff : X → SpecOX(X) being scheme-theoretically surjective.

If X is quasi-compact, then kerφ is quasi-coherent by [77, Tag 01R8], so φ is injective.
In this case, aff is a dominant morphism.

If X is quasi-compact quasi-separated, then φ is an isomorphism by [59, proposition
2.3.12].

We are now ready to prove the extensive criterion for closed immersions.

proof of theorem A.2.1. First assume that f is right orthogonal to ring extensions. Being
a closed immersion is a local condition, so Y may be assumed affine. In particular, Y is
quasi-compact and therefore X is quasi-compact. Hence there exists a finite affine cover
{Xi}i∈I of X. Then the source of the epimorphism

π :
∐
i∈I

Xi −→ X

is affine. Hence aff π is the morphism of affine schemes corresponding to the ring exten-
sion

OX(X) −→
∏
i∈I
OX(Xi).

Write f ′ : SpecOX(X)→ Y for the unique morphism satisfying f ′ aff = f . By assump-
tion, there exists a unique lift h in the diagram∐

i∈I
Xi X

SpecOX(X) Y.

π

aff π
f

f ′

h

As π is an epimorphism, it follows that h aff = idX . Hence aff is a split monomorphism,
so X is affine by lemma A.2.6. Consequently, f is a closed immersion by proposition
A.2.4.
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Now assume that f is a closed immersion. Let α : A→ B be a ring extension. Since
being a closed immersion and being a ring extension are both local properties, we reduce
to the case that Y is affine. By applying the global sections functor to the commutative
diagram

SpecB X

SpecA Y,

b

f

a

h

we obtain a commutative diagram

B OX(X)

A OY (Y ),

in which a unique dotted arrow exists by proposition A.2.3, and this arrow corresponds
to a unique lift h : SpecA→ X. Hence f is right orthogonal to ring extensions, as was
to be shown.

Using the above theorem and proposition A.2.7, it can be shown that the scheme-
theoretic image defines an orthogonal factorization system on the category of quasi-
compact quasi-separated schemes.

Remark A.2.8. Stefan Schröer pointed out to me an alternative proof of one implication
of theorem A.2.1, which uses the valuative criterion. Assume that f : X → Y is right
orthogonal to all ring extensions. For each field k, each commutative diagram

Spec k × Spec k X

Spec k Y

f

admits a unique lift. Here, Spec k × Spec k → Spec k corresponds to the diagonal mor-
phism k → k × k. In other words, X(k) → Y (k) is injective for each field k, so f is
universally injective. Then f is separated by [77, Tag 05VE]. By [77, Tag 01KF], f
is also universally closed. From Serre’s criterion, it follows that X is affine. Hence, by
proposition A.2.4, f is a closed immersion.

A.3 Pro-abelian categories

See [25] and [45]. Let A be a category. The category Pro(A) of pro-objects in A is
defined as the category of functors X : I → A, where I is a cofiltered category. For
X : I → A and Y : J → A in Pro(A), the morphism set Pro(A)(X,Y ) is defined as
the limit of the functor Iop×J : A(X(−), Y (−))→ Set. One usually writes Xi for X(i)
with i ∈ I. Here is a useful characterization of cofiltered categories.
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Lemma A.3.1. Let I be a category with a terminal object ∗. The following are equiva-
lent.

(i) The category I is cofiltered.
(ii) Every solid diagram

k j

j′ i

in I can be completed to a commutative square.
(iii) Every non-empty finite diagram in I admits a cone.

Proof. If each finite diagram in I admits a cone, then I is obviously cofiltered, so (iii)
implies (i).

If (ii) holds, then taking i = ∗ in the diagram yields the first condition for I to be
cofiltered. Now suppose given f, g : j → i. Then there is a commutative diagram

k j

j i

h1

h2 f

g

and another commutative diagram

k′ k

k j.

h′1

h′2 h1

h2

Hence h = h2h
′
2 = h1h

′
1 and fh = gh. Thus I is cofiltered, and (ii) implies (i).

Now suppose that (i) holds and that F : D → I is a finite diagram in I. Let i ∈ I
such that there exists an arrow i→ F (d) in I for each d ∈ I, which is possible by iterated
application of (i), since D has finitely many objects. Fix d0 ∈ D. There are finitely many
arrows d → d0 in D and so a finite number of compositions i → F (d) → F (d0). Hence
there exists i0 → i such that all compositions i0 → i→ F (d) and i0 → i→ F (d)→ F (d0)
are equal. Replace i by i0 and fix a new d0 ∈ D. Continuing iteratively, this yields a
cone over F in I, and it follows that (i) implies (iii), which finishes the proof.

Lemma A.3.2. Let I and J be cofiltering categories. Then I × J is cofiltering.

Proof. Let (i, j) and (i′, j′) be objects of I × J . Then there exist i′′ ∈ I and j′′ ∈ J such
that

i

i′′

i′

j

j′′

j′
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by assumption, whence

(i, j)

(i′′, j′′)

(i′, j′).

Now suppose given a diagram

(i, j) (i′, j′)
fi×fj

gi×gj

in I × J . Then there exist maps hi : i′′ → i and hj : j′′ → j such that fihi = gihi
and fjhj = gjhj . Hence (fi × fj)(hi × hj) = (gi × gj)(hi × hj). It follows that I × J is
cofiltering.

Let X : I → A and Y : J → A be pro-objects, and A an object of A. Then

Pro(A)(X,A) = colim
i
A(Xi, A),

so a map f : X → cA is nothing but a choice of i ∈ I and a map Xi → A. Two maps
Xi → A and Xi′ → A determine the same map X → cA if there exist i′′ ∈ I and maps
i′′ → i and i′′ → i′ such that the diagram

Xi′′ Xi

Xi′ A

commutes. Then a map f : X → Y is given concretely as follows. Since

Pro(A)(X,Y ) = lim
j

colim
i
A(Xi, Yj) = lim

j
Pro(A)(X, cYj),

a map f : X → Y is a map of sets φ : J → I together with a family (fj)j∈J of maps
fj : Xφj → Yj such that for every map j′ → j in J , there exist i ∈ I and maps i→ φ(j)
and i→ φ(j′) such that the diagram

Xi

Xφ(j′) Xφ(j)

Yj′ Yj

commutes. Furthermore, given maps of pro-objects f : X → Y and g : Y → X, gf = idX
if and only if each gψ(i)fi : Xφ(ψ(i)) → Xi factors through a structure map of X.

The explicit description of arrows in Pro(A) is often useful when proving fundamen-
tal properties of Pro(A).
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Definition A.3.3. A functor F : I → J of cofiltered categories is cofinal if for each
j ∈ J , there exist i ∈ I and an arrow F (i)→ j.

Lemma A.3.4. Let X : J → A be a pro-object in A and let F : I → J be a cofinal
functor of cofiltered categories. Then the pro-object X ′ : I → J → A is canonically
isomorphic to X.

Proof. For i ∈ I, X ′i = XF (i). Hence there is a canonical map f : X → X ′ given by the
underlying map of sets of F : I → J and fi : XF (i) → X ′i for each i ∈ I, where fi is the
identity map of XF (i).

Construct a map g : X ′ → X as follows. For each j ∈ J , choose a G(j) in I such
that there exists an arrow FG(j) → j, and choose such an arrow, which is possible
by the cofinality of F ; this is the crux of the proof. Then G : J → I is a map of
sets. For each j ∈ J , let gj : X ′G(i) → Xj be the chosen map X(FG(j)) → j). Then

gF (i)fi : X ′GF (i) → X ′i is an arrow X(FGF (i)→ F (i)), and fG(j)gj : XFG(j) → Xj is an

arrow X(FG(j)→ j). It follows that f is an isomorphism with inverse g.

From now on, A is an abelian category. This section presents a self-contained proof
of the fact that Pro(A) is also abelian [25].

For a pro-object X : I → A, the cofiltered category I may always be assumed to have
a final object 0, which is mapped to the zero object of A, since the inclusion I → I+ is
cofinal and X is the composition I → I+ → A, so that X : I → A and X+ : I+ → A are
canonically isomorphic. Therefore from now on, all pro-objects X : I → A are assumed
to have small pointed cofiltered index category I, whose base point is mapped to the
zero object of A.

There is a constant functor c : A → Pro(A) which sends an object A of A to the
constant pro-object with value A. The zero object 0 of A is mapped to the zero object
c0 of Pro(A).

Lemma A.3.5. The coproduct X q Y of pro-objects X and Y (indexed by I and J ,
respectively) in A exists, and is equal to X × Y : I × J −→ A given by (i, j) 7→ Xi × Yj.
The inclusion map s : X → X qY is given by the family (si,j)(i,j)∈I×J where si,j : Xi →
Xi q Yj is the canonical inclusion. The other inclusion map is defined similarly.

Proof. It needs to be shown that X q Y satisfies the universal property for coproducts.
Let T be a pro-object in A indexed by a small pointed cofiltered category K, together
with maps f : X → T and g : Y → T , and let φ : K → I and ψ : K → J be their
respective maps of index sets. Define h : X q Y → T as the family (fk q gk)k∈K . Then
(hs)k = (fk q gk)sk = fk and (ht)k = gk, so hs = f and ht = g.

Suppose that h′ : X q Y → T is another map satisfying both h′s = f and h′t = g,
given by a map (α, β) : K → I × J and a family h′k : Xα(k) q Yβ(k) → Tk. As h′s = f ,
h′ksα(k) = fk as maps of pro-objects, so there exist i ∈ I and maps i→ φ(k) and i→ α(k)
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such that the diagram

Xi Xφ(k)

Xα(k) Tk

fk
h′ksα(k)

commutes. Similarly, there exists a commutative diagram

Yj Yψ(k)

Yβ(k) Tk.

gk

h′ktβ(k)

Hence there is a commutative diagram

Xi q Yj Xφ(k) q Yψ(k)

Xα(k) q Yβ(k) Tk,

hk
h′k

and it follows that hk = h′k as maps of pro-objects. Hence h = h′, as was to be shown.

Lemma A.3.6. The category Pro(A) is additive.

Proof. Let X,Y ∈ Pro(A), indexed by small cofiltering categories I and J , respectively.
By definition

Pro(A)(X,Y ) = lim
j

colim
i
A(Xi, Yj).

Since A is abelian, and Ab has all small limits and colimits, it follows that the morphism
set Pro(A)(X,Y ) is an abelian group. Hence Pro(A) is pre-additive.

Note that

Pro(A)(c0, X) = lim
i
A(0, Xi) = 0.

Thus c0 is a zero object of Pro(A).

By lemma A.3.5, Pro(A) has finite coproducts, so it follows from [77, Tag 09SE]
that Pro(A) has finite products. Hence Pro(A) is additive.

The following result is key for the construction of kernels and cokernels of morphisms
of pro-objects.

Lemma A.3.7. Let f : X → Y be a map in Pro(A) given as a map of index sets
φ : J → I together with a family fj : Xφ(j) → Yj. Then the category K whose objects
are compositions

Xi Xφ(j) Yj
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and whose morphisms are commutative diagrams

Xi′ Xφ(j′) Yj′

Xi Xφ(j) Yj

is cofiltered.

Proof. Given j, j′ ∈ J , there exists j′′ ∈ J lying over both as J is cofiltered. This yields

Xi′ Xφ(j′) Yj′

Xi′′ Xφ(j′′) Yj′′

Xi Xφ(j) Yj ,

and an i′′ ∈ I and dashed arrows making both rectangles commute exist by the fact that
f is a map of pro-objects and lemma A.3.1(iii). A similar argument shows that there is
a cone over each parallel pair of arrows k′ ⇒ k in K.

Lemma A.3.8. Let f : X → Y be a map of pro-objects in A, given by φ : J → I and
fj : Xφ(j) → Yj as usual. Then ker f exists and its pro-object is given by

ker f : K −→ A, k 7−→ ker k

where K is as in lemma A.3.7. The structure maps of ker f are those induced by com-
mutative diagrams

ker k′ Xi′ Yj′

ker k Xi Yj .

k′

k

The canonical map kerf → X is given by id : Xi → Xi, where the source is identified
with the kernel of Xi → X0 → Y0.

Proof. It must be shown that ker f is really a kernel of f that satisfies the relevant
universal property.

Let Z : L→ A be a pro-object and ψ : I → L a map of sets. Let g : Z → X be a map
of pro-objects given by a family gi : Zψ(i) → Xi such that fg = 0. It will be shown that
g factors uniquely through ker f → X. Let k ∈ K be a composition Xi → Xφ(j) → Yj .
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Then there are an l ∈ L and a diagram

Zl

Zψ(i) Zψ(φ(j))

ker k Xi Xφ(j) Yj

hk

gφ(j)

fj

such that the pentagon commutes and the composition Zl → Yj is zero. Hence a unique
dashed arrow hk exists by the universal property of ker k. The map hk does not depend
(as a map of pro-objects) on the choice of l ∈ L. If l′ ∈ L is another object such that
Zl′ → Zψ(i) → Xi → Xφ(j) → Yj is zero, then there exists l′′ ∈ L such that

Zl′′ Zl

Zl′ Zψ(i)

commutes, but then

Zl′′ Zl

Zl′ ker k

hk
h′k

also commutes by the uniqueness of the map Zl′′ → ker k, so that hk = h′k as maps of
pro-objects. Therefore, this construction defines a map of pro-objects h : Z →W . Note
that the composition Z → W → X is given, for each i, by a map Zl → Xi that factors
through gi : Zψ(i) → Xi and is thus the same as g.

Since the only choice involved in the construction of h was the choice of an l for each
k ∈ K, and it was shown that h does not depend on this choice, it follows that h is the
unique map through which g factors.

Example A.3.9. Here is an explicit characterization of the condition X = 0 for a
pro-object X : I → A. The canonical maps 0 → X and X → 0 must be inverse
isomorphisms. This means that for each i ∈ I, there must exist a morphism i′ → i in
I such that the structure map Xi′ → Xi is the zero map in A. In other words, the
subcategory I ′ ⊂ I spanned by morphisms i′ → i such that Xi′ → Xi is zero must be
cofiltered and cofinal in I.

Lemma A.3.10. Let f : X → Y be a morphism of Pro(A), given by fj : Xφ(j) → Yj.
Then coker f exists and is given by

coker f : K −→ A, k 7−→ coker k
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where K is as in lemma A.3.7. The structure maps of coker f are the unique maps
induced by commutative diagrams

Xi′ Xφ(j′) Yj′ coker k′

Xi Xφ(j) Yj coker k.

fj′

fj

The canonical map Y → coker f has components Yj → coker k, where k is a composition
Xi → Xφ(j) → Yj.

Proof. The proof is analogous to that of lemma A.3.8.

The following lemma gives a useful criterion for checking injectivity and surjectivity
of morphisms in Pro(A).

Lemma A.3.11. Let f : X → Y be a morphism in Pro(A). Let I, J , φ : J → I and
K be as in lemma A.3.7.

(i) If, for all k ∈ K, there exists a map k′ → k in K such that ker k′ = 0, then
ker f = 0.

(ii) If, for all k ∈ K, there exists a map k′ → k in K such that coker k′ = 0, then
coker f = 0.

Proof. Let K ′ ⊂ K be the full subcategory spanned by k′ ∈ K such that ker k′ = 0.
Then K ′ is cofiltered and cofinal in K by assumption. Hence ker f is isomorphic to the
composition K ′ → K → A by lemma A.3.4, which is the zero object of Pro(A), as was
to be shown.

The proof of (ii) is analogous.

Lemma A.3.12. Let f : X → Y be a morphism in Pro(A).

(i) The pro-object ker coker f is canonically isomorphic to

im f : K −→ A, k 7−→ im k

where K is as in lemma A.3.7. The canonical maps X → im f and im f → Y are
given by families Xi → im k and im fj → Yj, respectively, where k is a composition
Xi → Xφ(j) → Yj and fj is the composition Xφ(j) = Xφ(j) → Yj.

(ii) The pro-object coker ker f is canonically isomorphic to

coim f : K −→ A, k 7−→ coim k

where K is as in lemma A.3.7. The canonical maps X → coim f and coim f → Y
are given by families Xi → coim k and coim fj → Yj, respectively, where k and fj
are as above.
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(iii) The canonical map coim f → im f given by coim k → im k for each k ∈ K is an
isomorphism.

Proof. Note that coker f : K → A has the index category K of lemma A.3.7, so
ker coker f : L→ A has index category L whose objects are compositions

Yj′ Yj coker k,

where k is a composition Xi → Xφ(j) → Yj . Note that im f is the composition K →
L→ A, where the functor F : K → L is given by

k′ Yj′ Yj′ coker k′

k Yj Yj coker k.

It now suffices to show that F is cofinal by lemma A.3.4. Let l ∈ L be a composition
Yj′ → Yj → coker k. As J is cofiltered and f is a map of pro-objects, there exist j′′ ∈ J ,
i′′ ∈ I and a commutative diagram

Xi′′ Xφ(j′′) Yj′′

Yj′

Xi Xφ(j) Yj .

Let k′′ ∈ K be the top row of the diagram, and note that the bottom row is k, so that the
diagram represents a map k′′ → k in K, which induces a unique map coker k′′ → coker k.
Then the diagram

Yj′′ Yj′′ coker k′′

Yj′ Yj coker k

commutes, so it gives a map F (k′′) → l. Hence F is cofinal, as was to be shown. This
proves (i), and the proof of (ii) is similar.

Finally, (iii) follows from the fact that A is abelian, so that the canonical morphism
coim f → im f is a level isomorphism.

This yields the following useful theorem [25].

Theorem A.3.13. Let A be an abelian category. Then Pro(A) is a abelian.

Proof. By lemmas A.3.8 and A.3.10, Pro(A) has kernels and cokernels, and by lemma
A.3.12(iii), images and coimages coincide in Pro(A). Hence Pro(A) is abelian.
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