Prediction Rating and Performance
Improvement for Segmentation
Networks by Time-Dynamic
Uncertainty Estimates

Dissertation

Bergische Universitat Wuppertal
Fakultat fir Mathematik und Naturwissenschaften

eingereicht von
Kira Maag, M. Sc.
zur Erlangung des Grades eines Doktors der Naturwissenschaften

Betreut durch Prof. Dr. Hanno Gottschalk und Dr. Matthias Rottmann

Wuppertal, 03.08.2021

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-urn:nbn:de:hbz:468-20211007-111502-8
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20211007-111502-8

DOI: 10.25926/jtyb-cd34
[https://doi.org/10.25926/jtyb-cd34]

Acknowledgments

First of all, I wish to thank Hanno Gottschalk and Matthias Rottmann for raising
my interest in computer vision, for giving me the opportunity to work under
their supervision and for their support while doing so. I have benefited greatly
from their knowledge of basics for neural networks, deep learning to the latest ai-
technologies and enjoyed the very pleasant working atmosphere during our several
meetings. [am grateful to Andreas Frommer for also being a part of his research

group.

In addition, I would like to thank Peter Schlicht and Fabian Hiiger for motivating
the scope of automated driving, for great workshops including fruitful discus-
sions and for also making this thesis possible. My work was founded in part by

Volkswagen AG.

I also wish to thank all my colleagues of the Al Group, i.e., Applied Computer
Science and Stochastic Group, for an awesome time. In particular, I thank my
seat neighbors, Robin Chan and Pascal Colling, for proofreading this thesis.

Last but not least, I thank my family and friends for mental and continuous
support.

Foreword

Parts of this thesis have already been published in the following works:

e K. MAAG, M. ROTTMANN, AND H. GOTTSCHALK, Time-dynamic esti-
mates of the reliability of deep semantic segmentation networks, IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), (2020),
pp- 502-509. (© 2020 IEEE

e K. MAAG, M. ROTTMANN, S. VARGHESE, F. HUGER, P. SCHLICHT,
AND H. GOTTSCHALK, Improving video instance segmentation by light-
weight temporal uncertainty estimates, IEEE International Joint Conference

on Neural Networks (IJOCNN), (2021). © 2021 IEEE

Parts of these publications are incorporated in Chapters 2, 3 and 4.

o K. MAAG, Fulse negative reduction in video instance segmentation using un-
certainty estimates, IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), (2021). (© 2021 IEEE

Parts of this publication are incorporated in Chapter 5.

III

Contents

Acknowledgments
Foreword
Contents

1 Introduction

2 Review of Basic Material and Related Work
2.1 Neural Networks
2.1.1 Feed Forward Neural Networks
2.1.2 Convolutional Neural Networks
2.1.3 Semantic Segmentation
2.1.4 Instance Segmentation
2.1.5 Depth Estimation
2.1.6 Evaluation Metrics
2.2 Uncertainty Quantification
2.3 Object Tracking
2.3.1 Related Work L.

CONTENTS

VI

2.3.2 Evaluation Methods 36
2.4 Classification and Regression Methods for the Prediction of the IoU 39

2.4.1 Linear Regression 40
2.4.2 Gradient Boosting oL 40
2.4.3 Shallow Neural Networks 42
2.4.4 Performance Measures 42
2.5 Datasets L 43

Time-Dynamic Estimates of the Reliability of Deep Semantic Seg-

mentation Networks 45
3.1 Related Work 47
3.2 Method 48
3.2.1 Tracking Segments over Time 48
3.2.2 Segment-wise Metrics and Time Series 51
3.2.3 Prediction of the IoU from Time Series 53
3.3 Numerical Results o0 56
3.3.1 VIPER Dataset 56
3.3.2 KITTI Dataset 61
3.4 Discussion 66

Improving Video Instance Segmentation by Light-weight Temporal

Uncertainty Estimates 69
4.1 Related Work o 72
4.2 Method 72
4.2.1 Tracking Method for Instances 73
4.2.2 Temporal Instance-wise Metrics 74
4.2.3 IoU Prediction 7
4.3 Numerical Results 78
4.3.1 Evaluation of our Tracking Algorithm 78
4.3.2 Meta Classification and Regression 80

CONTENTS

4.3.3 Advanced Score Values 86
4.4 Discussiono 88

5 False Negative Reduction in Video Instance Segmentation using

Uncertainty Estimates 91
5.1 Related Work 94
5.2 Method 95
5.2.1 Detection Algorithm 95

5.2.2 Metrics 98

5.2.3 Meta Classification 100

5.3 Numerical Results 101
5.3.1 Meta Classification 103

5.3.2 Ewvaluation of the Detection Method 105

5.4 DIsScussiono 109

6 Conclusions & Outlook 113
List of Figures 117
List of Tables 120
List of Algorithms 122
List of Notations 123
Bibliography 125

VII

Chapter

Introduction

In recent years, neural networks have demonstrated outstanding performance
in computer vision tasks like image classification [154, 156], object detection
[129, 130], semantic segmentation [25, 141], instance segmentation [13, 59], face
recognition [26, 27] and depth estimation [142, 165]. In 2012, the approach of Alex
Krizhevsky et al. [83] achieved such impressive results in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC-2012) for image classification that
consequently research on neural networks was further intensified. Their deep con-
volutional neural network won the competition with a test error rate of 15.3%
compared to 26.2% obtained by the second-best method. The application areas
of computer vision tasks are diverse, such as in sports performance analysis [114],
agriculture [153] as well as in safety critical ones like medical diagnosis [77] and
automated driving [24]. Over the last years, more and more technical assistance
systems have been developed which customer can choose to install in their vehi-
cles. These systems include for example traffic sign recognition, adaptive cruise
control and lane keeping assistance. In automated driving, the human driver be-
comes less necessary and the vehicle is guided by the system. To this end, infor-
mation of the environment is extracted from different sensors like camera, radar or
LiDAR. Computer vision tasks like object detection, semantic segmentation and
instance segmentation are usually applied to monocular images, but several cam-
eras are attached to the vehicle to increase the field of vision. These tasks serve as
important tools for scene understanding. State-of-the-art approaches are mostly
based on convolutional neural networks. However, neural networks as statistical
models produce probabilistic predictions, which are therefore prone to error with
a certain probability. A well-known failure in the perception of an automated
vehicle is the Uber accident from 2018 [115]. A 49-year-old pedestrian crossing
the street was not detected by the system and thus, struck by the ego car. The
different sensors identified this pedestrian a few seconds before the accident as car,

1 Introduction

bicycle or other, i.e., something that has been detected but does not belong to any
predefined class. As a result of these class changes, the path of the person could
not be clearly determined and the speed was incorrectly estimated as the person
was predicted to be a vehicle. The accident occurred due to the failed perception.
This example demonstrates the importance of understanding and minimizing the
errors of neural networks. For this reason, the reliability of neural networks in
terms of prediction quality estimation [33, 136] and uncertainty quantification
[44] is of highest interest, in particular in safety critical applications like medical
diagnosis [120, 169] and automated driving [70, 87]. Furthermore, two different
errors arise when using object detection methods, namely false positive and false
negative object predictions, respectively. False positives are objects predicted by
the neural network which do not appear in the image, and false negatives are
objects which are overlooked by the network and thus, not detected.

In this thesis, we propose methods for prediction quality rating and performance
improvement in terms of accuracy by using time-dynamic uncertainty estimates.
In particular, we present a false positive detection method and a reduction ap-
proach minimizing non-detected objects of a neural network. We consider the
problems of semantic segmentation, i.e., the pixel-wise classification of image
content, and instance segmentation, which consists of categorizing as well as lo-
calizing objects by predicting each pixel that corresponds to a given instance.
Our methods serve as post-processing steps, applicable to any semantic or in-
stance segmentation network, which we test on different datasets and networks.
The main focus of our methods lies on the application of automated driving. Using
the availability of image sequences, we obtain further information of predictions
without much effort for enhancing our approaches.

For the first time, the tasks of temporal meta classification and meta regres-
sion for semantic and instance segmentation are presented, which were previously
introduced only for single frames and semantic segmentation in [136]. Meta clas-
sification refers to the task of predicting whether a predicted segment/instance
intersects with the ground truth or not. As performance measure for prediction
quality, the commonly used intersection over union (loU) is considered which
quantifies the degree of overlap of prediction and ground truth [72]. In semantic
segmentation, an object is called false positive if the IoU is equal to zero and in
instance segmentation, if the loU is less than 0.5. Hence, the meta classification
task corresponds to (meta) classifying between IoU = 0 and IoU > 0 for every
predicted segment and to classifying between loU < 0.5 and loU > 0.5 for every
predicted instance, respectively. Meta regression is the task of predicting the loU
for each predicted segment /instance directly. This prediction of the IoU serves
as a performance estimate. Therefore, both meta classification and regression are
able to reliably evaluate the quality of a segmentation obtained from a neural
network. For learning both tasks, segment/instance-wise metrics are constructed

characterizing uncertainty and geometry of a given object. By tracking objects
over time, time series of single-frame metrics are generated. To this end, we in-
troduce a light-weight tracking approach for predicted segments/instances. Our
tracking algorithm matches objects based on their overlap in consecutive frames
by shifting objects according to their expected location in the subsequent frame
predicted via linear regression. For instance segmentation, we extend this set of
single-frame metrics by novel and truly time-dynamic ones. These metrics are
based on survival time analysis, on changes in the shape, on expected position
of instances in an image sequence and on depth estimation. From the respective
set of metrics, we estimate the prediction quality on segment/instance-level by
means of temporal uncertainties.

Moreover, we employ meta classification to improve the network performance in
terms of accuracy for instance segmentation networks. These networks provide
for each instance a confidence value, also called score, which is not well calibrated
[53]. These scores can have low values for correctly predicted instances and high
ones for false predictions. During inference of instance segmentation networks,
all instances with score values below a threshold are removed. This is done to
balance the number of false positive and false negative instances. Nevertheless, it
can happen that correctly predicted instances disappear, while many false posi-
tives remain. For this reason, meta classification is used as advanced score value
improving the networks’ prediction accuracy by replacing the score threshold by
the estimated probability of correct classification during inference.

Furthermore, we focus on the reduction of non-detected objects by an instance
segmentation network. In applications like automated driving, the detection of
road users, i.e., the reduction of false negatives, is of highest interest. In other
words, it is preferable to predict road users incorrectly to missing them. We use a
relatively small score threshold value during inference and apply our light-weight
false negative detection algorithm to these remaining instances to find possible
overlooked ones. This approach is based on inconsistencies in the time series of
tracked instances such as a gap in the time series or a sudden end and uses this
information of previous frames to detect these cases. Subsequently, new instances
are constructed that the neural network may have missed. Since the sensitivity
toward predicting instances of road user can be greatly increased by our algorithm
to reduce false negatives, we use meta classification as false positive detector. As
a result, our fused approach reduces the number of false negative instances and
improve the networks’ performance.

This thesis is structured as follows. In Chapter 2, we present the basics on neural
networks containing semantic segmentation, instance segmentation, depth esti-
mation, the motivation as well as related work on uncertainty quantification. In
addition, the object tracking task and related work are introduced. The basics
also include different methods for meta classification and regression. Following

1 Introduction

in Chapter 3, we describe our prediction rating method for semantic segmenta-
tion. In more detail, our method consists of the tracking algorithm for segments,
the construction of segment-wise metrics using uncertainty and geometric infor-
mation as well as temporal meta classification and regression. We conclude this
chapter with numerical results and a brief discussion. We proceed analogously in
Chapter 4 for instance segmentation and explain the differences to segments, the
time-dynamic metrics as well as how we use meta classification to improve the
networks’ performance. Subsequently in Chapter 5, we propose and evaluate our
temporal false negative detection approach consisting of a detection step fused
with uncertainty based meta classification. Finally, in Chapter 6, we discuss the
results of this thesis and provide an outlook on interesting extensions.

Chapter

Review of Basic Material and Related
Work

This chapter gives an overview of basic material that is employed in the remainder
of this thesis. Firstly, in Sec. 2.1, we introduce the basics of neural networks
including feed forward and convolutional neural networks, respectively, which
are mainly based on the textbook [51]. In addition, the network architectures for
semantic segmentation, instance segmentation and depth estimation are described
as well as associated performance metrics. Afterwards, it is explained why the
uncertainty evaluation of neural networks is of high interest and the related work
on this topic is presented in Sec. 2.2. Secondly, we turn to object tracking, which is
an essential task in video applications and the basis for the methods developed in
this thesis. Related work and evaluation tools for object tracking are introduced
in Sec. 2.3. Next, in Sec. 2.4, we discuss classification and regression methods
which we use for our meta classification and regression tasks. Finally, the details
of datasets used in this thesis are given in Sec. 2.5.

2.1 Neural Networks

Deep learning is a subset of machine learning in artificial intelligence, which is
motivated by the functionality of the human brain. The function of the brain can
be imitated by creating similar patterns to make decisions on given data. Neural
networks form a particular type of deep learning models and have applications in
computer vision, for example for automated driving and medical diagnosis.

2 Review of Basic Material and Related Work

input hidden output

Figure 2.1: A feed forward neural network with input neurons (blue), neurons in the
hidden layers (pink), output neurons (green) and bias units (yellow) is shown.

2.1.1 Feed Forward Neural Networks

The origins of artificial neurons date back to 1943 [106]. At this period, simplified
models of a (McCulloch-Pitts) neural network were used for the computation
of logical and arithmetic functions. The feed forward neural networks (FFNs)
or multilayer perceptrons are originated by this McCulloch—Pitts neural network
model and are the basis for deep learning models. An exemplary network structure
of a FFN is shown in Fig. 2.1. A neural network consists of an input and output
layer as well as hidden layers, whose number may vary. In addition, there are bias
units that do not receive any input themselves. If there is a connection between
all neurons of consecutive layers, the network is called fully-connected, as depicted
in Fig. 2.1. The power of the connection between two neurons is expressed by
weights. Neural networks learn through weight adjustments. If the network is
only passed through from input to output, it is called a feed forward network
(as the name says). The output of the network can be determined by a chain of
functions based on the order of the layers

fla,w)=(fOo fE Vo oDz, w) (2.1)

with a number of layers I’ as well as given input data x and weights w. So each
layer [represents a function of the previous layer [— 1

Bl — f(l)(h(lfl)) — ¢(l)(W(l)h(l*1) + b(l)) — ¢(l)(a(l)) Vi=1,...,0 (2.2)

where K0 € R¥" is the output using f@ : RN — RN o0 . RN _ RN©
the activation function applied on activation a® € R¥" with N®, the number

2.1 Neural Networks

of neurons in layer [. The weight vector of the bias unit of layer [is denoted
by b ¢ RN “ and the weight matrix between neurons of layer [— 1 and [by
WO e RNOxNID,

In addition to feed forward neural networks, other well-known architectures are
considered, such as recurrent neural networks (RNNs) [104]. These networks are
designed to handle a series of inputs with no predefined size limit (in comparison
to FFNs). During training, RNNs use additional information from prior inputs
influencing the production of the current output. The networks’ output is affected
by weights applied on inputs and additionally by a hidden state vector provid-
ing the context based on prior input. In [163], the time-delay neural networks
(TDNNS) are introduced which are able to recognize relationships between time-
delayed events. To obtain time-invariants, the inputs of multiple time steps are
applied simultaneously by the TDNN. A typical application for these networks
is speech recognition. Furthermore, spiking neural networks (SNNs) have also
become widely known [102]. These networks are more similar to biological neu-
ral networks than FFNs. Using bio-inspired neuron and synapse models, SNNs
mimic the functionality of the human brain. The main difference between both
networks is that the neurons of the SNN (in comparison to those of a FEN) do not
transfer information during every propagation cycle but only when a membrane
potential attains a certain threshold. Reaching this threshold, the neuron gives a
signal to the other neurons which as a result decrease or increase their potentials.

Universal Approximation Theorem The question in deep learning is how accu-
rate the function f(x,w) obtained by a neural network approximates the function
f*:R* - R. Given the input data x and labels y, we assume that there is a
correct labeling function, i.e., f*(x) = y. The universal approximation theorem
states that feed forward neural networks are able to approximate (f(z,w) = y)
any continuous function to any degree of accuracy on a closed and bounded subset
of R™ (see [67]). To fulfill the property, the FEN requires at least one hidden layer
and a non-linear activation function. A proof for the sigmoid activation function
is introduced in [31]. In a more recent work [151], the universal approximation
property for the ReLLU function is also shown.

Activation Function The activation functions are applied to the hidden layers
and the output layer. The choice of activation functions in neural networks de-
pends on the type of function that is approximated. If a nonlinear function is to
be approximated, a nonlinear activation function is required in the hidden layers.
In Fig. 2.2 three different activation functions are shown, which are explained in
the following. The sigmoid function and its derivative are defined by

1 o e
s(a) = and §'(a) = e

(2.3)

2 Review of Basic Material and Related Work

24 — tanh 1
1

sigmoid !

—— ReLU |

|

1

14 === 1
|

I

}

1

|

O 1 1
|

1

1

|

1

14 1

&

|

N}

I

—_
o4
—_
[N
w

Figure 2.2: Activation functions.

This function is differentiable which is relevant for the training of a neural network.
The output of a network is compared with the true labeled data (ground truth)
and the resulting difference should be minimized. The rapidly flattening ends of
the sigmoid function lead to the wanishing gradient problem [65], which means
that the gradients of the weights in early layers decrease towards zero, causing
numerical problems. An improvement is the hyperbolic tangent which is described
by a scaled sigmoid function

et — @) , 4 . e—2a
tanh(a) = prp— with tanh'(a) = =k (2.4)
At the origin the derivative has higher values resulting in faster convergence than
using the sigmoid function, however, at the edges the same vanishing gradient
problem occurs [7]. A solution is to use the rectified linear unit (ReLU) defined
by the function
g(a) = max{0,a}, (2.5)

which outperforms sigmoid and tanh in practice [101]. The ReLU activation
function is inspired by the human brain where the percentage of active neurons
at the same time is rather low, i.e., for all negative inputs ReLU returns zero [50].
Meanwhile and due to the piece-wise linear parts of ReL U, the computation of its
derivative is very efficient and can prevent the vanishing gradient problem. Note,
the non-differentiability in zero is not a problem in practice.

The presented activation functions can be used in the hidden layers as well as in
the output layer. If a binary classification problem is considered, the sigmoid or
tanh functions are suitable choices as activation functions for the output layer.
Both functions return a value in [0, 1] which can be interpreted as probability for a

2.1 Neural Networks

binary variable having the value 1. However, for example in image segmentation,
more classes are needed and thus, we want to obtain a probability distribution
over c¢ different classes. A possible activation function is the softmaz function
[19] which is used in the last layer to provide a probability distribution over pre-
defined classes. The softmax function for activation a; € R of neuron i (see (2.2))
is given by

aq

softmax(a;) = < €(0,1), (2.6)

j=1

that indicates the probability of predicting the input of the neural network be-
longing to class i. We obtain >¢_, softmax(a;) = 1.

Loss Function First, we introduce the theoretical basics of learning models in
general [146]. We define the input set X, the label set) and the training data
S = ((zW,yM), ..., (2™ y™)) with n examples. The training data is generated
by a probability distribution D over X representing the environment. Moreover,
we assume a correct labeling function f* : X — Y with y® = f*(2) V 4. The
learner shall construct a prediction rule rgs : X —) to classify the examples. By
A(S), we denote the rule returned by a learning algorithm A after receiving the
training data S. The error of rs corresponds to the probability that rg(z) is not
equal to f*(x) on a random example x generated by the distribution D. More
formally, the error of the prediction rule is defined by

Lp g+ (rs) = D({z - rs(x) # [*(2)}) (2.7)

where D(A) describes how likely an observation of example z € A is with A =
{r e X :7m(x) =1}, m: X — {0,1}. The goal of the learning algorithm is to find
a rs(x) minimizing the error. In general the correct labeling function f* and the
probability distribution D are unknown, information can only be extracted from
the training data. For this reason, we consider the empirical error (also called
risk) over the training examples defined by

el) rs(e®) £ 0}
n

LS (7’ 3) (28)
As the training data is available and depicts a small representation of the environ-

ment, it is useful to employ them for the training error. This paradigm is called
Empirical Risk Minimization (ERM) [161].

Minimizing the empirical risk may lead to an overfitting problem of the ERM
learning rule [75], i.e., the performance on the training set is very high, while the
performance on the true environment is poor. A solution would be to restrict the
set of classifiers (hypothesis class) before actually presenting the training data

2 Review of Basic Material and Related Work

to the learner. This restriction is called inductive bias. Consequently, the errors
made during learning can be divided into the estimation and the approximation
error [118]. The latter depends on the inductive bias, so this error is determined
by the chosen hypothesis class. The estimation error is caused due to the fact
that the empirical risk is only an estimate of the true risk. As the total error shall
be reduced, the bias-complexity trade-off [47] occurs. If the size of the hypothesis
class is increased, the approximation error decreases on the one hand and the
estimation error increases on the other hand.

Maximum likelihood estimation [3] is the task of estimating distribution param-
eters w based on the training set S for modeling the underlying distribution P,,.
The maximum likelihood estimator is an empirical risk minimizer for the log loss
function

— log(Pu () (2.9)
given parameters w and input x. This formula is also called negative log-likelihood

of input x under the condition that the data is independently and identically
distributed according to P,. Minimizing the empirical risk

argmin S (= log(Pu(2))) = arg max 3 log(Pu(@®)) (2.10)

i=1 w i=1
is equivalent to the maximum likelihood principle. Then, the true risk of param-
eter w is given by

E,[— log(P ZP)1og(Py(z)) (2.11)
=Y P(z) log (M) + > P(z) log (P(lx)> (2.12)
= DxiL(P(z)||Puw()) + H(P(z)) (2.13)

where we assume that the data is distributed as P(x), not necessarily P, (z). The
true risk corresponds to the combination of the (Shannon) entropy H(P(x)) [147]
and the Kullback-Leibler divergence Dxy,(P(x)||Pw(x)) [84]. The latter measures
the divergence between two probabilities.

In practice, after calculating the output of the neural network, this value is com-
pared with the ground truth value. This is done by means of the loss function.
The error should be as small as possible, so the loss function has to be minimized.
We consider the multi-class classification problem with ¢ classes. For this, we de-
fine the one-hot-encoded label vector y(z) € {0, 1}¢ consisting of zeros, only at
the position 7 it has the value 1, if ¢ corresponds to the true class of the input
x. Let ¢; := softmax(a;) be the output of the softmax function in the last layer.
Thus, we define the cross-entropy (see (2.11)), a commonly used loss function, by

L@y) = - wilog(ds) (2.14)

=1

10

2.1 Neural Networks

In multi-class classification problems, the predicted probabilities ¢ shall converge
to the original probability distribution y, and this is accomplished by minimizing
the cross-entropy loss, which measures the difference between these two proba-
bility distributions. Furthermore, minimizing the cross-entropy achieves a faster
convergence and more robustness during training with noisy examples (general-
ization) compared to other loss functions, see [73].

Stochastic Gradient Descent Algorithm The loss function is minimized us-
ing the stochastic gradient descent (SGD) algorithm [14]. We start with initial
weights, descend by a learning rate € in the direction of the minimum and ad-
just the weights accordingly. This process is repeated until a stopping condition
is met, e.g. a local minimum is reached or a predefined number of iterations is
exceeded. Descending by the learning rate e, i.e., the step in the direction of the
steepest descent, is described by

wi=w — € Vy,L (2.15)

where £ denotes the average over the loss function L({,y) applied to the n training
examples

LG,y (2.16)

In practice, we do not use all n examples from the training dataset, instead so-
called minibatches are considered using only m < n training examples. Note,
this can reduce the computing effort. We define analogously the gradient of the
minibatch by

1 & X ,
Vil =—3 VLG, y"). (2.17)
i=1

In each weight update, different randomly sampled minibatches are created. For
convex problems, the gradient of the minibatch V,,£ is an unbiased estimator for
gradient V,,L:

E[V,L] = V,L. (2.18)
By the law of large numbers [148], we obtain
1 & . ,
; — Iim — 58 (0)
Jim Vi, £ = lim — ;VwL(y y) (2.19)
=E[V, L5, y")] (2.20)
=V.,L. (2.21)

To guarantee the convergence of the SGD, the sufficient conditions

dep=00 and > € <oo (2.22)
k=1 k=1

11

2 Review of Basic Material and Related Work

shall be satisfied [133]. In applications, it is common that the learning rate is
reduced over the number of iterations. To study the corresponding convergence
rate, the error between the loss function after k iterations L*(7, y) and the minimal
possible loss L*(,y) is considered. If we apply the SGD to a convex problem,
this error is (’)(ﬁ) and for a strongly convex problem O(3) [15].

Learning (descending) can be comparatively slow in the SGD, for this reason,
various methods have been developed to speed up learning, such as the method
of momentum [126]. This method collects an exponentially decreasing average
of past gradients v (called velocity) and moves in this direction, i.e., the former
gradients gain less importance. The update of the weights is modified to

vi=av—e-V,L (2.23)
wi=w+v (2.24)

where a € [0, 1) denotes a hyperparameter determining how fast the contribution
of the former gradient decays exponentially. The step size increases if many
consecutive gradients have the same direction. The SGD with momentum is
often used in segmentation networks, e.g. instance segmentation [13, 59].

A modified version of the momentum method is introduced in [155], called Nes-
terov momentum, which is also considered in segmentation tasks like semantic
segmentation [24]. The weight update remains the same and only the position
where the gradient is evaluated varies. The gradient is evaluated at new position

Wintermediate = W + QU (225)

after the current velocity is deployed. This modification works like a correction
step. When the momentum leads into the wrong direction, the gradient can
correct this during the same update iteration.

Another gradient descent method is the adaptive moment estimation (Adam)
[80]. The learning rates are adjusted depending on the estimation of the first and
second moments of the gradient. This optimizer is also well-known in the field
of deep learning and is for example commonly-used in depth estimation [90]. In
summary, all optimization algorithms presented are widely used, and there is no
consensus on which optimizer to choose. We refer to [143] for a comparison of
different optimization methods for different learning tasks.

Backpropagation The gradients used by the stochastic gradient descent algo-
rithm (or other gradient based optimization methods) are determined by back-
propagation [139]. The architecture of neural networks allows for efficient com-
putation of gradients by making use of already-computed derivatives of weights.
The backpropagation procedure can be summarized in the following three steps:

12

2.1 Neural Networks

1. Forward propagation:
— Initialization of weights w
— Input z is propagated forward through the network
— Calculation of g
2. Error calculation:
— Error is determined using the loss function L({,y)
3. Backward propagation:
— Error is propagated back through the network (from output to input)
— Weights are changed depending on the effect on the error
— Computation of the gradients

For a deeper understandmg, we consider an example of applied backpropagation.
We denote by w;) the Welght of neuron ¢ in layer [— 1 to neuron j in layer [, by

g) the actlvatlon and by hj the output of neuron j in layer [using the activation
function ¢ : R — R (the same in all hidden layers). We compute the gradient of
the loss function L = L(§,y) for an example (z,y):

oL 9L 9a

= . . 2.26)
0] 0] @ (
Ow;; Oda;” Ow;;
In the following, we replace -2 (l) by 5 which is referred to as the error of neuron
j in layer [. Next, we reformufate the latter fraction into
da) o N(=1
oa;" (l (- 1 (-1
ol = o (l e Z wy - hy) =Ry (2.27)

5]

where NU=1 is the number of neurons in layer [— 1. Using this equation and the
definition of the neuron error, we obtain

oL N
5 (l):(;](l)hl(l 1)\V/izl,...,N(l_l)vjzl,...,N(l) (228)
wi7j

13

2 Review of Basic Material and Related Work

as formulation of the gradient. For the hidden layers the error §](-l) can be rewritten
as

N+ (14+1)
oL Oay,

st : 92.29
J = 84! (I+1) 8@5-1) ()
N+ (1+1)
)
- Z sy (2.30)
P a9 ()
a;
N+
l +1 [+1
=¢'(@) S Wit et (2.31)
k=1

resulting in the following representation of the gradient of the loss function

N(l+1)

R Z sty =1, NV vy =1 NO.

(2.32)

Regularization Previously, we have focused on the training of neural networks,
although the algorithms have to achieve good results even with new input. The
error caused by new input is called generalization error. Overfitting describes
the gap between this error and the training error. Regularization refers to any
change made to the learning algorithm to prevent overfitting and thus, reduce
this generalization error.

One possibility to regularize is to add a penalty parameter Q(w) with hyperpa-
rameter A € [0,00) to the loss function

L=L+)\-Quw). (2.33)

Typically the weights of the bias unit are not penalized, here w describes all
weights except the ones from the bias unit. A commonly used regularization is
the application of a ¢s-penalization, also known as weight decay [54],

1 1

Qw) = §||w||§ =Sw . (2.34)
The loss function and its derivative are modified to
5 A
L=L+ §wTw (2.35)
Vol = VL + w (2.36)
and the weight update changes to
w:=w — (VL + Aw) (2.37)
=(1—eNw—€eV,L (2.38)

14

2.1 Neural Networks

(here, for simplification the SGD update rule). Using this penalty term, the
weight vector shrinks by a constant factor in each iteration multiplicative by the
learning rate €. As a result, the model capacity is reduced which can help to
prevent overfitting. However, we obtain non-sparsity as the weights are non-zero
(are only decreased and maybe close to zero), and this regularization is not robust
to outliers due to the squared term.

Similar to weight decay, the ¢;-penalization [157] can be considered for regular-
ization

Q(w) = [lwlly = Jwl. (2.39)

We rewrite again the loss function and its derivative

L =L+ \Nuwl (2.40)
Vol = VL + \-sign(w) . (2.41)

By /¢;-regularization, a sparse solution is obtained as weights are forced to be zero
during the training process. The associated features are no longer considered
which can be interpreted as feature selection. One drawback is the piece-wise
non-differentiable solution resulting in a more expensive computation since it is
not solvable in terms of matrix measurement [134].

Another method preventing overfitting is early stopping [11]. The intuition is that
training too much can also lead to overfitting. To this end, the training set is
split into two disjoint sets, the training and the validation set. The latter has
the task of estimating the generalization error. The training error is expected to
decrease steadily over time, while the validation error begins to rise again after
a certain time. For this reason, we want to stop training when the validation
error is small and has not measurably improved for a number of epochs. The
problem of which criterion is used for stopping is addressed in [127]. Using this
early stopping during training, the generalization error shall be reduced. This
method is widely employed due to its effectiveness, ease of use and the reduced
computational effort as the number of training epochs is decreased. There is just
one problem if the amount of training data is very limited since not all available
training data can be used by employing early stopping.

Dropout is another regularization method where neurons drop out randomly [64].
For each training iteration, independent mask vectors are formed deciding whether
a neuron (of the input or a hidden layer) is switched off or not. We denote by
N = >V N® the number of neurons of the input and all hidden layers where
N® is the corresponding number of neurons in layer { and !’ the number of
layers. By u € {0,1}", we define the mask vector. The probability for a neuron
dropping out is a hyperparameter which is chosen before training. Typically,
the probability for an input neuron to stay on is 80% and for neurons in the
hidden layers 50%. Dropout training consists of neurons dropping out, forward

15

2 Review of Basic Material and Related Work

and backward propagation performed by the reduced network, a weight update,
followed by the application of dropout again (the previously dropped out neurons
turn on with their weights from the previous iteration). The goal of this training
is to minimize E,[£] receiving the mask parameter ;. Although, this expectation
includes an exponential number of terms (2V), we get an unbiased estimate of
the gradient by sampling values of . In practice, 10 to 20 mask are sufficient.
Each reduced model defined by p outputs a probability distribution p(y|z,).
Computing the arithmetic mean over all masks

Zp pyle, 1) (2.42)

with p(u) denoting the probability distribution used for sampling u, we obtain
the output of the neural network including dropout. In summary, dropout is an
effective method for reducing overfitting and yields large improvements over other
regularization approaches in various computer vision tasks [152]. There is just
one drawback, dropout increases the training time in comparison to a standard
neural network of the same architecture.

2.1.2 Convolutional Neural Networks

In fully-connected feed forward networks, the number of parameters and thus,
the computing effort increases rapidly with the complexity of the model. The
convolutional neural networks (CNNs) [88] offer a solution by replacing the matrix
multiplication by convolution operations in at least one layer. Convolutions reduce
the connections between neurons and decrease the number of parameters. A
convolutional layer consists of a convolution, a nonlinear activation function (like
ReLU) and in general a pooling step.

In Sec. 2.1.1, we have introduced the universal approximation theorem for feed
forward neural networks. Analogously, in [180, 189] a universal approximation
theorem for CNNs is formulated. Any continuous function can be approximated
(up to an arbitrary accuracy) by a CNN if the depth of the neural network is
large enough.

Convolution The convolution operation [18] for two functions oy : Z — R and
0y : Z — R in the discrete case is defined by

(01 % 02)(p Zol coo(lp—mn) VpEZ (2.43)

where * denotes the convolution. The function o; is referred to as input, the
function o, as kernel and the output as feature map. If the input is a gray scaled

16

2.1 Neural Networks

4 9 ¢ aw-+bx+ | bw+cx+
w X
dy+ez | ey+iz
d e f * = —
y . fiw+éx+ ew—+fx+
o h) : i gy+hz | hy+iz

Figure 2.3: An example of convolution with a kernel size of 2 x 2 and stride of 1.

image, the kernel is also two-dimensional and the convolution is changed to

(01%02)(pq) =YD o1(m,me) - 02a(p—m,q—1m2) V (p,q) €Z*. (2.44)

nmo N2

We can equivalently rewrite this equation to

(01 % 02)(2201 (p—m,q—n2) - 02(n,m) V(p,q) € z? (2.45)

moon2

as the convolution is a commutative operation. In case of an RGB image a third
dimension is added

(01%02)(p 22201 p—n1,q—12,d)-02(n1,m2,d) ¥ (p,q) €z, (2.46)

nmo n2

The commutative property of convolution (see (2.44) and (2.45)) is obtained by
kernel flipping, i.e., the kernel is flipped relative to the input. Kernel flipping
is only of interest from a theoretical perspective and thus, in the application of
neural networks cross-correlation is used

(01 % 02)(Z Z o1(p + 1, q +n2) - 02(11,m2) (2.47)

n n2

which is the same as a convolution, without flipping the kernel. An example is
shown in Fig. 2.3. The number of pixels by which the kernel is moved on the
image is called stride. If the stride is smaller than the dimension of the kernel,
many parameters of the previous equation are jointly used, which is also visible
in Fig. 2.3. Convolutions reduce the dimension of the image and support the
network to become invariant to small translations of the input.

Pooling Pooling is the last step in the convolutional layer. Pooling summarizes
different regions of the input image (or feature maps) and replaces the output
with a summarized statistic of adjacent outputs. This operation reduces the
number of parameters and improves statistical efficiency. There are different

17

2 Review of Basic Material and Related Work

04 | 09 | 03 | 08

03 | 05 | 07 | 0.2 0.9 | 0.8

max pooling

02 | 03] 06 | 0.1 0.7 | 0.6

05 | 0.7 1] 02 | 04

Figure 2.4: Example of max pooling with a kernel size of 2 x 2 and stride of 2.

pooling methods, such as max pooling [190], which is the most commonly used
one. Max pooling chooses the maximum of neighboring values, see Fig. 2.4.
Similar to the use of convolutions, a reduction of parameters and dimensions is
caused by the application of pooling. Other well-known pooling functions are
averaging, applying the fo-norm and the weighted average based on the distance
from the center pixel [16]. The idea of pooling is that the exact position of a
feature is not so important, rather the position in relation to other features.

Zero Padding The convolution (Fig. 2.3) and pooling (Fig. 2.4) examples are
called wvalid, i.e., the kernel size and the stride are adjusted such that the ker-
nel does not cross the boundary. Zero padding adds zeros to the input image
(or feature maps) to ensure validity and to reduce dimensional shrinkage due to
convolutions and pooling. We consider a gray scaled image as input with size of
gz X gy, a kernel with size k, x k, and stride 5. The resulting output after passing
the image through a convolution has a size of

(gx - ko + 1) y <9y—sky + 1) (2.48)

S

(see [36]). For validity, it is required that both fractions result in integer values.
Zero padding describes the approach to add a boundary of new entries with a
value of zero to the input image. An example is given in Fig. 2.5 (left). The
output size is modified to

_ 2. - 2.
(W + 1) > <W + 1) (2.49)

using zero padding where p defines the number of boundaries with zero entries by
which the input image is extended. As before, the fractions have to be integers.
By using zero padding, valid input images with arbitrary kernel sizes and strides
can be obtained. A problem, which can be solved by zero padding, is the reduction
of the dimensionality. This reduction decreases the computational effort and the

18

2.1 Neural Networks

,,

Figure 2.5: Left: An example of deconvolution with an input size of 4 x4 (pink), a kernel
size of 2 x 2, stride of 1 and zero padding of 1. The operation results in an output of size
5 x 5 (green). Right: Another example with an input size of 2 x 2 (pink), a kernel size
of 2 x 2, stride of 1, zero padding of 1 and one row with zeros. The operation results in
an output of size 4 x 4 (green).

number of parameters, however, it can happen that the output is reduced down to
a size of 1 x 1. Reducing the size of the filters also prevents this problem, although
small filters provide less information. Therefore, zero padding counteracts the
reduction and allows the application of multiple stacked convolutional layers, in
turn allowing the construction of ever deeper neural networks.

Deconvolution The deconvolution [131] undoes a convolution. While the con-
volution operation combines multiple feature inputs to a single output, the de-
convolution operation associates a single input to multiple outputs. The input
and output dimensions are switched. Thus, the deconvolution operation provides
a method for increasing the output dimension. We need this dimensionality in-
crease for networks in which the input and output dimension shall be equal. One
possibility of deconvolution is zero padding. Using zero padding, the input di-
mension is kept or increased with several zero padding levels. In Fig. 2.5 (left)
an example is shown in which the dimension is increased. Another variant of
deconvolution is to add zeros between the single entries of the input image. This
method is additionally combined with zero padding in Fig. 2.5 (right). Note,
these operations are also called transposed [36] or backward convolutions, since
they can be reformulated as convolutions with padding.

Unpooling Unpooling is another method of increasing output dimensions [184].
Instead of summarizing information from areas as in pooling, unpooling uses
information to extend a value to an area. As an example, the max unpooling
(complement to max pooling) is given in Fig. 2.6. In a network, max pooling is

19

2 Review of Basic Material and Related Work

0.8 || 0.3 max unpooling

0.6 | 04 0 0 0.4 0

Figure 2.6: Example of max unpooling with stored pooling indices from Fig. 2.4.

x identity
weight ReLU weight | E{’) ReLlU
T layer layer

f(x,w) f(x,w)"i‘%

Figure 2.7: Architecture of a residual block. Input z is feet into a weight layer, followed
by ReLU activation and another weight layer. The resulting output of these stacked
layers is added to identity x (using the shortcut connection).

applied first and the pooling indices of the maximum values per area are stored.
After further different layers, the max unpooling is used and the current values
are placed at the previously stored indices, while the empty values are filled with
zeros (or densified by convolutions). The dimension of the input in max pooling
has to be equal to the dimension of the output in max unpooling and vice versa.
There are further unpooling methods, e.g. nearest neighbor, where the areas are
not filled up with zeros, instead the current values are copied.

Residual Block In many works on visual recognition tasks very deep models,
i.e., a high number of used layers, show great performance improvements com-
pared to the the use of more shallow neural networks [48, 49, 96]. However,
as depth increases, accuracy becomes saturated and then quickly degrades [60].
This degradation problem is tackled in [61] by introducing deep residual learn-
ing. While in common neural networks each layer feeds its output into the next
layer, in networks using residual blocks each layer additionally is merged with
the output of stacked layers, see Fig. 2.7. These shortcut connections do not add
additional parameters or increase computational complexity, they just perform

20

2.1 Neural Networks

pooling indices

semantic

input image segmentation

encoder decoder

Figure 2.8: Architecture of a semantic segmentation network with an RGB image as
input. The convolutional layers (blue) are followed by a pooling step (pink) during
downsampling, while the pooling indices are passed to the unpooling step (yellow)
during upsampling. Last, the semantic segmentation is obtained using the softmax
function (green).

identity mapping. We can perform an identity mapping directly by relying only
on skip connections. The stacked layers do not directly fit a desired underlying
mapping R(x), instead these layers explicitly fit a residual mapping of

flz,w) =R(z) — =z (2.50)

where the original mapping is modified to f(z,w) + z. It is easier to optimize
the residual mapping than the original one. As the outputs from previous layers
are added to the outputs of stacked layers using skip connections, the training of
very deep networks becomes possible. Note, the network architectures presented
in [61] using these shortcut connections are called ResNets.

2.1.3 Semantic Segmentation

A fully convolutional network (FCN) is a neural network in which all fully-
connected layers are replaced by convolutional layers [96]. The benefits of the FCN
compared to feed forward neural networks are the reduced number of weights and
the arbitrary dimension of the input. FCNs first perform downsampling (convo-
lution, pooling) for dimension reduction, followed by upsampling (deconvolution,
unpooling) to restore the input dimension. Semantic image segmentation is the
pixel-wise classification of image content within a pre-defined label space. The ob-
jects contained in the image are of interest as well as their position. Fig. 2.8 shows
an exemplary network architecture for a semantic segmentation. The pooling in-
dices are stored during downsampling and passed to corresponding unpooling
layer in the mirrored upsampling step. The pixel-wise classification as output is

21

2 Review of Basic Material and Related Work

obtained by applying the argmax function pixel-wise to the softmax layer. Dur-
ing training, the cross-entropy loss is applied pixel-wise to prediction (after the
softmax layer) and ground truth, and afterwards averaged. This pixel-wise ap-
proach corresponds to the assumption that the presence of a class in a pixel is
independent of the other pixels.

Since information is lost during downsampling, a possible solution is the use of
skip layers. Skip layers combine upsampling with the output of previous layers
to retain information of shallow layers for the upsampling step, for example con-
cerning the position of objects. Another development, which is used in many
efficient neural network architectures [25, 141, 186], are the so-called depthwise
separable convolutions. This convolution replaces a full convolution operation by
splitting the convolution into two separate layers. The first layer is given by a
depthwise convolution where a single convolution kernel is used per channel. The
second layer consists of an 1 x 1 convolution (pointwise convolution). The depth
of this kernel corresponds to the number of channels of the input. The pointwise
convolution creates linear combinations of the input channels as new features.
Contrary, in a full convolution operation the kernel consists of as many channels
as the number of dimensions. Due to this split into two layers, the computing
effort can be reduced and the networks can be made more efficient.

The MobilenetV2 [141] and the Xception65 network, a modified version of Xcep-
tion network [25], use this depthwise separable convolutions and are used as back-
bone networks for the DeepLabv3+ [24], which is a semantic image segmentation
network. The architecture of the DeepLabv3+ network is shown in Fig. 2.9.
Atrous convolution (also known as dilated convolution [183]) generalizes the stan-
dard convolution operation and is used to extract features obtained by the back-
bone network, a deep CNN, with arbitrary resolution by adding space between
the values in a kernel. It is defined for each location ¢ by

(01 %7 02)(q) = %:01(61 + 7k) - 02(k) (2.51)

where o0 denotes input, o, the kernel and 7 the atrous rate which corresponds
to the stride using to sample the input. For the standard convolution 7 = 1 is
valid. The principle of depthwise convolution can also be applied to atrous convo-
lutions. Consequently, the computing effort can be significantly reduced, and the
MobilenetV2 as well as the Xception65 network can be used as a backbone. The
DeepLabv3+ backbone is followed by the application of the Atrous Spatial Pyra-
mid Pooling module consisting of an 1 x 1 convolution, three atrous convolutions
with different rates and image pooling. Combining with a pointwise convolution,
an atrous separable convolution is applied. The decoder module concatenates
the upsampled encoder features with the low-level features from the backbone
network. Due to the large number of channels in the low-level features, an 1 x 1
convolution is applied before concatenation to reduce the number of channels. To

22

2.1 Neural Networks

1 x 1 conv

3 X 3 conv
=06

. /4
oge | = atrous conv | { 3% 3O I"" -

3 X 3 conv
7 =18

pooling
encoder

upsamling

low-level by 4
features l

. . _ | upsamling | | semantic
by 4 segmentation

Figure 2.9: Architecture of the DeepLabv3+ network. The input image is feed into a
deep CNN (backbone network) including atrous convolutions followed by the Atrous
Spatial Pyramid Pooling module. In the decoder, the encoder features are upsampled
and concatenated with the low-level features extracted by the backbone network. To
obtain the semantic segmentation, a convolution and an upsampling are applied before.

refine the features, 3 x 3 convolutions are used followed by upsampling to obtain
the semantic segmentation.

2.1.4 Instance Segmentation

Object detection describes the task of identifying and localizing objects of a set of
given classes. With respect to image data, state-of-the-art approaches are mostly
based on convolutional neural networks. On the one hand, localization can be
performed by predicting bounding boxes. This corresponds to ordinary object
detection [48, 129, 130]. On the other hand, localization can be done by predicting
each pixel that corresponds to a given instance. This is also known as instance
segmentation, which is an extension of object detection. For this reason, in some
instance segmentation networks an already existing object detection model is
extended by adding a mask branch [13, 59]. We distinguish between one-stage and
two-stage instance segmentation networks. An example of a two-stage network,
the Mask-R CNN [59], architecture is given in Fig. 2.10. This network extends
Faster R-CNN [130], an object detection network, by adding a branch for the
mask prediction to the branch for recognition using bounding boxes. An input

23

2 Review of Basic Material and Related Work

region ROI
proposal pooling

?'ﬁ'J@
\ } | '

class & box mask

backbone

feature map

Figure 2.10: Architecture of a two-stage instance segmentation network. The image
serves as input for the backbone network (including a FPN) and results in a feature
map. Using the feature map, the RPN and ROI pooling, ROIs are obtained. For each
ROI there is a branch for the class and box prediction as well as a branch for the mask
prediction.

image is fed into the backbone consisting of a standard feature extraction pyramid
(for example ResNet50 or ResNet101 [61]) and a feature pyramid network (FPN).
The FPN is an improvement over the standard pyramid, which takes the high
level features from the first pyramid and passes them to the lower layers. Thus,
the features on each level have access to the lower and higher level features.
The resulting feature map is scanned by the region proposal network (RPN)
that locates areas containing objects, also called regions of interest (ROIs). ROI
pooling describes the step of cropping a part of the feature map and resizing it
to a predefined size. Then, for each ROI, in one branch the class and bounding
box coordinates and in another branch the mask representation is predicted by a
CNN and merged into an instance segmentation. On the resulting instances the
non-mazimum suppression (NMS) is applied to reduce the predicted instances of
one instance to the one with highest confidence. Then a confidence threshold is
chosen to discard instances with low confidence values. The detection confidence,
also called score value, corresponds to the estimated class probability given an
instance. During the training, a multi-task loss function is defined for each ROI

L = Lcls + Lbom + Lmask . (252)

The class loss L. corresponds to the log loss for the true class. For the bounding
box loss Ly, a robust ¢1-loss is applied to the difference of the bounding box
coordinates (top left corner, height and width) between prediction and ground

24

2.1 Neural Networks

feature extraction ﬁ

mask coeflicients

prediction | NMS

instance
segmentation

assembly| —

. prototype prediction 4I

Figure 2.11: Architecture of an one-stage instance segmentation network. An image
serves as input for the backbone network consisting of a feature extraction pyramid
and a FPN. One branch predicts the prototypes and the other one predicts the mask
coefficients and applies a NMS. Both outcomes are merged together and results in the
instance segmentation.

truth [48]. The robust ¢;-loss is less sensitive to outliers and given by

0.522, if || <1

|z| — 0.5, otherwise.

smoothy, (z) = { (2.53)

The mask loss L. is defined by the pixel-wise binary cross-entropy between
prediction and ground truth.

The presented network structure is a two-stage instance segmentation method. In
the first step, ROIs are generated and in the second step, these ROIs are classified
and segmented. To obtain real-time speed, an one-stage instance segmentation
approach is introduced in [13], the YOLACT network, where the localization step
is omitted. While the YOLO network [129] is well-known for its real-time speed
in object detection, the YOLACT network fulfills this property analogously for
instance segmentation. The architecture of this one-stage network is given in
Fig. 2.11. The instance segmentation is divided into two simpler and parallel exe-
cutable tasks after the backbone. The first branch uses a fully convolutional net-
work to produce a set of prototype masks (similar semantic segmentation masks)
of the same size as the input image. Visually and spatially similar instances are
depicted in the prototypes which number is independent of the number of classes.
In contrast to semantic segmentation, this model has no loss on the prototypes,
instead the loss function L (2.52) is applied to the final mask after assembly. The
second branch adds a prediction of a mask coefficients vector for each prototype
to an object detection (bounding box and class prediction). Afterwards, a NMS
is applied. The instance masks are formed by linear combinations of prototypes
and coefficients. The resulting instance segmentation is obtained by using a con-
fidence threshold. This confidence (score) value reflects how confident the model
is about its instance prediction with corresponding class probability and how well
the predicted instance fits the ground truth instance.

25

2 Review of Basic Material and Related Work

2.1.5 Depth Estimation

Depth estimation is another computer vision task where the goal is to obtain a
representation of the spatial structure of a scene, reconstructing the appearance
and the three-dimensional shape of objects in the image. Applications of depth
estimation are for instance in automated driving [56], scene understanding and
robotics [34]. For measuring the distance relative to a camera, monocular or stereo
images are often considered using supervised, semi-supervised or self-supervised
methods. We focus on supervised depth estimation from monocular images. The
seminal work for this task is [142]. The depth is estimated from monocular cues,
like size and texture, in images by supervised learning minimizing a regression
loss.

Using neural networks for depth estimation is gaining popularity. The depth is
predicted by learning depth cues through gradient-based methods. An example of
a deep CNN for supervised depth estimation from monocular images is presented
in [90]. This network utilizes Local Planar Guidance (LPG) layers at multiple
stages of the decoding phase for an effective guidance of densely encoded fea-
tures. The network architecture is shown in Fig. 2.12. The backbone network is
used as a dense feature extractor (DFE) and followed by a denser version [177]
of the Atrous Spatial Pyramid Pooling module (see Sec. 2.1.3) with dilation rates
7 € {3,6,12,18,24}. In general, the encoding-decoding scheme reduces the fea-
ture map resolution to h/8 and then returns to the original resolution h for dense
prediction. During the decoding phase, LPG layers are employed to locate ge-
ometric guidance to the desired depth estimation at each stage. For the finest
estimation, an 1 x 1 reduction layer is used. The outputs of the different lay-
ers are concatenated and fed to a convolutional layer to produce the final depth
estimation.

The main idea for the Local Planar Guidance layer is to define direct and explicit
relations between the final output and the internal features in an effective way.
This layer is not intended to directly estimate the depth values for the particular
scale, instead in combination with the other LPG layers and the reduction, each
output contributes to the final depth estimate through the last convolutional
layer. A k x k LGP layer starts with 1 x 1 convolutions to obtain a feature map
of size h/k x h/k x 3. To create a unit normal vector (ny,ns,n3), the first two
channels of this feature map are considered as the polar # and azimuthal ¢ angles
and converted by

ny = sin(0) cos (¢), ng =cos(p), nz = sin(f)sin(¢). (2.54)

The last channel of the feature map defines the perpendicular distance ny between
plane and origin using the sigmoid function. To guide features, these local plane

26

2.1 Neural Networks

h/4 h !
T B -
dense h/8

feature

upsampling v
) /

Foeed] - - Besee]

777777777777777777777777 /N—l

h/2 LPG 4 >< 41— |— downsamphng

h/2 ! ﬁ

h

‘ e ‘4" - ‘4’ ﬁ

Figure 2.12: Architecture of a depth estimation network. The input image is fed into
the feature extractor which is followed by a Atrous Spatial Pyramid Pooling (ASPP)
module for contextual information extraction. In the decoding phase, the LPG layers
output estimations with full spatial resolution h which are concatenated for final depth
estimation. In addition, skip layers (dashed lines) link the base network and internal
outputs with corresponding spatial resolutions.

upsampling‘L‘ RD1x1 ‘ﬁ

coefficient estimations n;,7 = 1,...4, are adopted to k x k local depth cues using

the ray-plane intersection
Ty

N1, + MoV, + Ng

(2.55)

where (u,,v,) are k x k normalized and patch-wise coordinates of pixel z. This
results in locally-defined relative depth estimations by using only four parameters.
As features at the same spatial position in different stages are used to predict the
final depth, the global shapes can be learned at coarser scales and local details at
finer scales to obtain an efficient representation.

The loss function used for training is based on the scale invariant logarithmic
error (silog) [38]

| A A)
=~ 2 (log . —logy.)* — —5(3_log . — logy.)* (2.56)

where Z denotes the number of pixels of an image having valid ground truth
values, 9, the depth ground truth and ¢, the depth prediction per pixel z. This

27

2 Review of Basic Material and Related Work

definition is specific for a single image. For an overall silog metric, the mean
over all training images is considered. Higher values of A focus the network on
minimizing variance of the error (here A = 0.85 is used) since the loss can be
reformulated to the sum of the variance and a weighted squared mean of the
error in log space. The training loss used in [90] is defined as

L=10\/L, (2.57)

since scaling of the loss function range improves convergence and the final training
result. Note, the silog also serves as performance measure for the quality of
depth estimation networks. The definition of this measure corresponds to the loss
function (2.56) without the parameter \.

2.1.6 Evaluation Metrics

There are different evaluation metrics for neural networks. In semantic segmenta-
tion, the mean intersection over union and in object detection as well as instance
segmentation, the mean average precision are often used as performance mea-
sures. These metrics are possibilities to assess the prediction quality of neural
networks.

Intersection over Union The intersection over union (loU, also known as Jac-
card index [72]), is a commonly used performance measure for semantic segmen-
tation. The loU € [0, 1] quantifies the degree of overlap of prediction and ground
truth, it is equal to zero if and only if any predicted pixel does not intersect with
the ground truth. In Fig. 2.13 the object-level definition of the loU is given,
as well as a few examples. To evaluate the prediction performance of a neu-
ral network in semantic segmentation, the mean IoU is used. To this end, the
IoU is calculated for each class on pixel-level (not, as shown in the examples, on
object-level) and then averaged over classes.

Mean Average Precision The calculation of the average precision [40] is illus-
trated by the following example. In Fig. 2.14, different ground truth and predicted
objects are given in two images. In object detection, each predicted object re-
ceives a score value. This value describes the confidence of the network prediction
for an object. The score values associated with the predicted objects are given
in Table 2.1. The predicted objects are sorted by the score value and matched
in this order with ground truth objects using the IoU on object-level. The pre-
diction ps has an loU value equal to or greater than 0.5 with ground truth gs
and thus, p, is considered as a true positive with matched ground truth g;. The
next prediction ps also has a large overlap with ground truth g3, however, once

28

2.1 Neural Networks

area of overlap
IoU = =

area of union

I

IoU =0.93 IoU =0.19

Figure 2.13: Intersection over union on object-level. Green boxes correspond to ground
truth (provided by humans) and red boxes to predictions obtained by neural networks.

Image 1 Image 2

Y&

P2

g3

g1

D4
Y41 92

Figure 2.14: Two input images for average precision calculation. Green boxes correspond
to ground truth objects g;, ¢ = 1,2, 3, and red boxes to predicted objects p;, i =1,...,4.

the ground truth object is matched, it cannot be matched with other predictions.
Therefore, ps is treated as false positive. To match a prediction with a ground
truth object, the IoU has to be greater than or equal to a threshold, here 0.5.
To calculate the precision and recall in the next step, the true and false positives
are accumulated. The precision is the percentage of correct positive predictions
to all predicted objects and is given by

. true positives
precision =

. 2.58
all predicted objects (2.58)

The recall is the percentage of true positive objects detected to all ground truth

objects

true positives
recall =

_ 2.59
all ground truth objects (2:59)

Plotting the precision and recall values for varying thresholds, we are able to
measure the degree of detection ability, and the resulting precision-recall curve

29

2 Review of Basic Material and Related Work

Table 2.1: From left to right the following data is given: image number, predicted
object, associated score value, matched ground truth object, loU, true positive or false
positive, accumulated true positives, accumulated false positives, precision and recall.

image | prediction | score | gt | IoU | tp/fp | acc tp | acc fp | precision | recall
2 D4 097 | g3 | >05]| tp 1 0 1 0.33
2 D3 086 | g3 | >05] fp 1 1 0.5 0.33
1 Do 073 | g1 | >205] tp 2 1 0.67 0.67
1 D1 057 | - | <05 | fp 2 2 0.5 0.67
1.0 =eemmeemcneanes 3 1.0 semmmeemmenann. 3
0.9 0.9
=
S 0.81 £0.8
£0.7 0.7
joN
0.61 0.6
0.5 0.51
0.0 02 04 06 0.0 02 04 06
recall recall

Figure 2.15: Left: The precision and recall values are given by asterisks and the corre-
sponding precision-recall curve corresponds to the blue line. The pink line represents
the interpolation of this curve. Right: The area under the curve is divided into two
areas, Al and A2.

is shown in Fig. 2.15 (left). The precision-recall curve evaluates the performance
of an object detection network. A strong performance is achieved when both
measures are high, and to provide an overall measure of different networks, the
area under precision-recall curve (AUPRC) is calculated. The average precision
can be interpreted as an approximated AUPRC' by interpolating the given points.
The intention is to reduce the effects of wobbling in the curve. The n points of
the curve are interpolated as follows

> (rns1 — ra) max p(7) (2.60)

n 7127"77,+1

where p(7) is the corresponding precision value to recall 7. By applying this
equation, we obtain the two areas that are given in Fig. 2.15 (right) as estimated
AUPRC'. By calculating the total area, we achieve an average precision value of
AP = Al + A2 = 0.56. The mean average precision (mAP) results of the average
over all classes.

30

2.2 Uncertainty Quantification

-person:, 0.95

person: 0.30

Figure 2.16: Top: Pixel-wise entropy heatmap obtained by the softmax output of a
semantic segmentation network. Bottom: Two predictions of an instance segmentation
network.

2.2 Uncertainty Quantification

Semantic segmentation, i.e., the pixel-wise classification of image content, and
instance segmentation, i.e., the identification and localization of objects of a set
of given classes represented by pixel-wise masks, are important tools for scene un-
derstanding. With respect to image data, state-of-the-art approaches are mostly
based on convolutional neural networks. In recent years, CNNs have demon-
strated outstanding performance for these two tasks. There is the drawback that
neural networks as statistical models produce probabilistic predictions prone to
error, and it is necessary to understand these errors. Prediction quality estimates
[33, 136] as well as uncertainty quantification [44] of neural networks are of highest
interest in safety critical applications like medical diagnosis [120, 169] and auto-
mated driving [70, 87]. However, semantic segmentation networks do not provide
uncertainty values by default. In Fig. 2.16 (top), the pixel-wise entropy applied to
the softmax output of a semantic segmentation network is shown providing pixel-
wise uncertainties. We observe segment filling dispersion caused by a misspecified
loss function as neighboring pixels are assumed to be independent. This results
in a non-convergence of the uncertainty. In instance segmentation networks such
as YOLACT [13] as well as Mask R-CNN [59] uncertainty estimations are given,
however, these are not well adjusted. In [53], it is observed that an increasing
model capacity and a lack of regularization are correlated with the miscalibration
of the model. The instance segmentation networks provide a confidence value
(the opposite of uncertainty), the score value, for each instance which can have

31

2 Review of Basic Material and Related Work

high values for false predictions and low ones for correct predictions. In Fig. 2.16
(bottom left), an uncertain prediction of a rider is shown where many instances
are predicted, but only with low confidences. In contrast, in Fig. 2.16 (bottom
right), an example of the overconfidence of a neural network is given. The stand
with bags is predicted to be a person with a score value of 95%, while the real
person in the background has a confidence of only 30%. During inference of in-
stance segmentation networks, all instances with score values below a threshold
are removed. It can happen that correctly predicted instances disappear, while
many false positives remain. For these reasons, different methods are developed
which provide uncertainty estimates for segmentation neural networks.

We distinguish between two types of uncertainty, epistemic uncertainty caused
by a lack of knowledge and aleatoric uncertainty due to inherent randomness
[71]. Aleatoric (also called statistical) uncertainty refers to the variability in the
outcome of an experiment that is due to inherent random effects. A typical
example of aleatoric uncertainty is coin flipping. Even the best fitting model
cannot provide a definite answer, head or tail, only the probabilities of both
outcomes can be determined. As a consequence, this type of uncertainty cannot be
reduced by any additional source of information due to the stochastic component.
On the other hand, epistemic (also called systematic) uncertainty is caused by
a lack of information, e.g. about the best fitting model. For instance, when
asked about the meaning of the italian word “testa”; the possible answers can be
head or tail, same as for the coin flipping. In contrast to uncertainty caused by
randomness like coin flipping, in this example the uncertainty can be reduced by
using additional information. Consequently, epistemic uncertainty refers to the
reducible part of uncertainty and is considered throughout this work.

Related Work A very important type of uncertainty is the model uncertainty
resulting from the fact that the ideal model parameters are unknown and have
to be estimated from data. Bayesian models are one possibility to consider these
uncertainties [103]. Therefore, different frameworks based on variational approxi-
mations for Bayesian inference exist [4, 37]. Recently, Monte-Carlo (MC) Dropout
[44] as approximation to Bayesian inference has aroused a lot of interest. In classi-
fication tasks, the uncertainty score can be directly determined on the network’s
output [44]. Threshold values for the highest softmax probability or threshold
values for the entropy of the classification distributions (softmax output) are com-
mon approaches for the detection of false predictions (false positives) of neural
networks, see e.g. [63, 93]. Uncertainty metrics like classification entropy or the
highest softmax probability are usually combined with model uncertainty (MC
Dropout inference) or input uncertainty, see [44] and [93], respectively. Alterna-
tively, gradient-based uncertainty metrics are proposed in [119], and an alterna-
tive to Bayesian neural networks is introduced in [86] where the idea of ensemble

32

2.2 Uncertainty Quantification

learning is used to determine uncertainties. Some of these uncertainty measures
have also been transferred to semantic segmentation tasks, such as MC Dropout
[89], which also achieves performance improvements in terms of segmentation ac-
curacy [78]. The works presented in [76] and [169] also make use of MC Dropout
to model uncertainty and filter out predictions with low reliability. This line of
research is further developed in [70] to detect spatial and temporal uncertainty
in the semantic segmentation of videos. Based on MC Dropout, structure-wise
metrics are presented in [138] as well as voxel-wise uncertainty metrics based on
maximum softmax probability in [66]. In semantic segmentation tasks, the con-
cepts of meta classification and meta regression are introduced in [136]. Meta
classification refers to the task of predicting whether a predicted segment inter-
sects with the ground truth or not. To this end, the object-wise intersection over
union, as performance measure for semantic segmentation, is considered. The
meta classification task corresponds to (meta) classifying between loU = 0 and
IoU > 0 for every predicted segment. Meta regression is the task of predicting
the IoU for each predicted segment directly. The main aim of both tasks is to
have a model that is able to reliably assess the prediction quality of a seman-
tic segmentation obtained from a neural network. As input both methods use
segment-wise metrics extracted from the segmentation network’s softmax output.
This idea is extended in [137] by adding resolution dependent uncertainty, also
applied to semantic segmentation, and in [144] to object detection. Similar works
on a single object per image basis are introduced in [33] and [68], instead of hand
crafted metrics they utilize additional CNNs. In [39], performance measures for
the segmentation of videos are introduced, these measures are also based on image
statistics and can be calculated without ground truth. Some methods for uncer-
tainty evaluation are transferred to object detection, such as the MC Dropout
[81]. False positive detection is presented based on MC Dropout and an ensemble
approach in [120]. In [87], false positive objects are assigned high uncertainties
using two methods, loss attenuation and redundancy with multi-box detection.
Based on a dropout sampling approach for object detection [110], the work of
[112] investigates the semantic and spatial uncertainty in instance segmentation.

In object detection and instance segmentation, the problem of miscalibrated score
values (gap between prediction confidence and network accuracy) is addressed by
confidence calibration [53]. For single object localization, a Platt scaling [125]
inspired method is introduced in [124] where the predictions are recalibrated in
a post-processing step. A modification of the standard softmax layer varying
the probabilistic confidence score is presented in [117] for the object detection
task. In [85], additional information of the regression output is employed to
estimate calibrated confidences with respect to image location and bounding box
size. An uncertainty-aware neural network is proposed in [185] using smoothed
labels with respect to pixel-wise uncertainty and a relaxed sigmoid function to
produce calibrated output. For long-tailed (many categories with few training

33

2 Review of Basic Material and Related Work

object detection and tracking

pA Bj

I = =
U LT

t t+1

t+1 A S\

Figure 2.17: Multiple object tracking. Object detection is performed in frame ¢ as well
as in t + 1 and a tracking algorithm is applied to the objects found (here pedestrians).
The objects in frame ¢ assign random IDs (given by different colors). In the right panel
the results of the tracked objects are shown.

samples) object detection and instance segmentation, a post-processing method
reweighs the predicted scores of each class by its training sample size to obtain
calibrated confidence scores [121]. The task of medical image segmentation is
tackled in [107] which is based on model ensembling for confidence calibration of
fully convolutional networks using batch normalization.

2.3 Object Tracking

While most works, like those presented before, focus on uncertainty quantification
for single frames, there is often video data available. To use the benefit of videos
over single frames, object tracking methods can be applied. Object tracking is an
essential task in video applications, such as automated driving, robot navigation
and many others [109]. The task of object tracking consists of detecting objects
and then propagating the location of objects to subsequent frames, eventually
studying their behavior [182]. There are two levels of object tracking, single object
tracking (SOT) and multiple object tracking (MOT). In SOT, the appearance of
the object is known and the task is to track this object using the information
from previous frames, while MOT requires the detection of multiple objects in the
frames, also objects which leave or enter frames. An illustration for two frames is
given in Fig. 2.17. The main difficulty in tracking multiple objects simultaneously
is caused by occlusions and interactions between objects. An example is shown in
Fig. 2.18. The objects are represented by bounding boxes and pixel-wise masks.
The individual IDs of the objects are given by the different colors. For single as

34

2.3 Object Tracking

Figure 2.18: An example of multiple object tracking, where pedestrians are tracked.

well as multiple object tracking different methods are proposed.

2.3.1 Related Work

In this section, we discuss different approaches for single and multiple object
tracking.

Single Object Tracking In most works, the target object is represented as an
axis-aligned [170] or rotated [82] bounding box such as in the following approaches.
A popular strategy for single object tracking is the tracking-by-detection approach
[5]. A discriminative classifier is trained online while performing the tracking
to separate the object from the background only by means of the information
where the object is located in the first frame. Another approach for tracking-
by-detection uses adaptive correlation filters that model the targets appearance,
the tracking is then performed via convolution [12]. In [32] and [160], the track-
ers based on correlation filters are improved with spatial constraints and deep
features, respectively. Another object tracking algorithm [113] combines Kalman
filters and adaptive least squares to predict occluded objects where the detector
shows deficits. In contrast to online learning, there are also tracking algorithms
that learn the tracking task offline and perform tracking as inference, only. The
idea behind these approaches [10, 62] is to train a similarity function on pairs of
video frames offline instead of training a discriminative classifier online. In [10],
a fully-convolutional siamese network is introduced. This approach is improved
by making use of region proposals [91], angle estimation and spatial masking [58]
as well as memory networks [178]. Another approach for single object tracking
with bounding boxes is presented in [179] where semantic information is used for
tracking. Most algorithms and also the ones described here use bounding boxes,
mostly for initializing and predicting the position of an object in the subsequent
frames. In contrast, [28] uses coarse binary masks of target objects instead of rect-
angles. There are other procedures that initialize and/or track an object without

35

2 Review of Basic Material and Related Work

bounding boxes, since a rectangular box does not necessarily capture the shape
of every object well. In [74], a temporal quad-tree algorithm is applied, where the
objects are divided into squares getting smaller and smaller. Other approaches
use semantic image segmentation such as [55], where the initialization includes
a segmentation for predicting object boundaries. A segmentation-based tracking
algorithm is presented in [35] based on an adaptive model. The approaches pre-
sented in [6] and [150] are also based on segmentation and use particle filters for
the tracking process. There is also a superpixel-based approach [181] that creates
binary masks and starts from a bounding box initialization.

Multiple Object Tracking The tracking task (association problem) in [191],
[149] and [187] is solved by dual matching attention networks, a CNN using
quadruplet losses and a CNN based on correlation filters, respectively. Another
approach for object association involves finding a network flow via backpropa-
gation [145]. The previously described algorithms use one model for the object
detection and another for the association problem. The work of [168] presents a
shared model for both tasks. A focus on the improvement of long-term appear-
ance models is demonstrated in [79] based on a recurrent network. Most works,
including those described here, work with bounding boxes, while there are other
methods that use a binary segmentation mask representation of the object [166].
Starting from a bounding box initialization, binary masks are created based on
a fully-convolutional siamese approach [166]. In [2] and [123], segmentation and
tracking are jointly solved using a pixel-level probability model and a recurrent
fully convolutional network, respectively. To perform the detection, segmentation
and tracking tasks simultaneously, the Mask R-CNN network is extended by a
tracking branch [176], by 3D convolutions to incorporate temporal information
[162] and by a mask propagation branch [9]. In contrast, the sub-problems classi-
fication, detection, segmentation and tracking are treated independently in [97].
Another work for multiple object tracking is based on the optical flow and the
Hungarian algorithm [20].

2.3.2 Evaluation Methods

There exists different metrics for the evaluation of object tracking methods, some
of them are described in the following. These metrics are designed to evaluate
not only the tracking process, but also the prediction of the objects by the neural
network. To this end, we define for each frame ¢ of an image sequence (with a
length of T') the ground truth objects by {g1,..., 9.} and the predicted objects
by {p1,...,pm}. In Fig. 2.19 some cases for matches and non-matches between
ground truth and predicted objects are shown. Mismatches are incremented as
the associated predicted object changes. The same applies to switches between

36

2.3 Object Tracking

mismatch

switch switch
t t+1 t+2 t+3 t+4 t+5

Figure 2.19: Optimal matches and error measures between ground truth and predicted
objects. (a): False positives. (b): False negatives. (c): Matched ground truth go and
predicted object ps (true positives). The zoom shows the distance between the geometric
centers of the two objects. (d): Mismatch error. First, g3 and ps are matched. After
two frames, there is another match with p4 and after another three frames, it switches
back to p3. We count two mismatch errors in this case. (e): First, g4 and p5 are matched
for one frame. In the next two frames, the objects are not close enough to be a match
before they are matched ones again. There are two cases of a switch between matched
and non-matched for the ground truth object g4.

37

2 Review of Basic Material and Related Work

matched and non-matched, it will count up after the first match as soon as the
status changes.

For the tracking evaluation metrics, we define some terms in frame ¢:
e gt,: number of ground truth objects
e fn,: number of false negatives
e fp,: number of false positives
e {p,: number of true positives
e mme;: number of mismatch errors
e smn;: number of switches between matched and non-matched

e di: distance between geometric centers of the ground truth object g; and its
associated predicted object

Two well-known object tracking metrics are MOTP and MOTA [8]. The multiple
object tracking precision .
MOTP — thTl 2 dy
D=1 Py
is the distance between geometric centers of matched pairs of ground truth and
predicted objects, averaged by the total number of matches. The multiple object

tracking accuracy

(2.61)

ST (fn, + fo, + mme,)

MOTA=1— (2.62)
Zthl gty
is based on three error ratios: the ratio of false negatives
T
fn = L?lf " (2.63)
2—1 9t
the ratio of false positives
Yy
fp ==t (2.64)
21 9t

and the ratio of mismatches over the total numbers of ground truth objects in all

frames .
D1 mmey

mme = ————— . (2.65)
Zthl gt

The following metrics are focused on the evaluation of object detection. The

tT:1 tp,

2.66
Z?zl(tpt + fpi) ()

precision =

38

2.4 Classification and Regression Methods for the Prediction of the IoU

relates the true positives to all predicted objects and the
ZtT:1 i,
23:1(75]71: + fny)

relates the true positives to all ground truth objects [182]. The F-measure [22] is
a combination of recall and precision, defined by

Ethl 2 - tp, .
ZtT=1<2 lpy + fnt +fpt)

The FAR metric [109] is a different representation of the sum of false positives
and is given by

recall = (2.67)

F-measure =

(2.68)

Z?ﬂ Ips
FAR = =—=—/~—¢
f T

-100. (2.69)
These described measures are summed up over all frames of an image sequence.
The metrics described in the following do not describe the ground truth objects
frame-wise, instead a ground truth object can occur in several frames and is
assigned a common ID. We define by GT' all ground truth objects of an image
sequence which are identified by different IDs. We divide these ground truth
objects into three cases: mostly tracked MT, partially tracked PT and mostly
lost ML (see [109]). An object is mostly tracked if it is tracked for at least 80% of
frames, out of the total number of frames in which it appears. It is independent
whether the ground truth object is matched with one same predicted object or
different predicted objects. An object is mostly lost if it is only tracked for less
than 20% and the other cases are partially tracked. We focus on the object
tracking metrics described here as these are well-known.

2.4 Classification and Regression Methods for the
Prediction of the loU

For the quality evaluation of neural networks, which we discuss in detail in Chap-
ter 3 and Chapter 4, we use the object-wise intersection over union as a perfor-
mance measure. In Chapter 3, we consider the task of (meta) classifying between
IoU =0 and IoU > 0 for every predicted object obtained by a semantic segmen-
tation to identify false positive segments. In Chapter 4, we consider the problem
of instance segmentation and thus, we classify between IoU < 0.5 and loU > 0.5
for every predicted instance. Moreover, we predict the IoU for each predicted ob-
ject directly (meta regression) to evaluate the quality of a segmentation obtained
from a neural network. In the following, we consider different classification and
regression methods, such as linear models, gradient boosting as well as shallow
neural networks with corresponding evaluation metrics [57].

39

2 Review of Basic Material and Related Work

2.4.1 Linear Regression

A general linear regression model is given by
y=u1x8+¢ (2.70)

where y denotes the true loU values, x the input variables, 5 the coefficients and
€ the error term. The task of fitting a linear model is to minimize the residual
sum of squares and thus, to estimate the coefficients

min(|ly — 23 + A 3)). @)

To prevent overfitting a regularization term Q(5) with parameter A is added (see
Sec. 2.1.1, paragraph Regularization). Using ¢;-penalization, the coefficient vector
is thinned out, i.e., coefficients are set to zero, while using the /-penalization,
large coefficients are reduced.

A linear model to binary classification is the logistic regression. The logistic
regression is fitted by

mﬁiﬂ(z —yilog(9(8 i) — (1 — yi) log(1 — (B z:))) (2.72)

where

0, ifToU =0
%:{’ o (2.73)

1, if IoU >0,

x; denotes the i input variable and 9(-) the logistic function (equal to the sigmoid
function, see (2.3)). The least absolute shrinkage and selection operator (LASSO
[157]) method makes use of ¢;-penalization and is given by

I%MZ:—%baﬁwTMD—%1—y0bﬁ1—ﬂwﬂmﬁ+kmﬂﬂ (2.74)

where A denotes the regularization parameter. The LASSO method investigates
the predictive power of different combinations of input variables and serves as
feature selector [128, 158, 167]. Besides the standard LASSO method, there exists
also modifications such as using Bayesian models [122] or support vector machines
[135].

2.4.2 Gradient Boosting

Gradient boosting is a learning technique for classification and regression tasks
that generates a prediction model in the form of an ensemble of weak prediction
models [42, 43, 105]. Typically, binary decision trees are used as models. Decision

40

2.4 Classification and Regression Methods for the Prediction of the IoU

Algorithm 2.1: Gradient boosting

N
initialize model fy(z) = argminy L(y;, 3)

=1

2 form=1,...,M do
3 fori=1,...,N do
VL ()
4 " V fn—1(x;)
5 end
6 fit a regression tree to the pseudo-residuals r;,, giving regions

ijujzla"'yjm
7 for j=1,...,J, do
ﬁjm:argﬁmin > Ly, fm1(2) + B)

CCZ‘Eij

9 end

I
update fo(2) = fn—1(z) +_ Bjm - I(z € Rj,) where
j=1

I(z € Rj) ={1lif v € Rj,,0 else }
11 end

output f(z) = fu(x)

10

1

N

trees form a hierarchical structure from a set of training data with as few decision
paths as possible. This is done in a recursive way, starting at the root of the
tree, until the best and distinct class assignment is found based on the features.
Gradient boosting creates a strong learner by means of additive base learners like
decision trees. The approach is described in Algorithm 2.1. At each iteration
m, m = 1,..., M, a subsample {(z;,y;)}i=1,..n is randomly generated of the
training data. The gradients of the loss function L to be minimized are called
pseudo-residuals. Then the regression tree is fitted to these pseudo-residuals. The
decision tree is partitions into J,, disjoint regions { Rj,, };=1.... s, where the number
Jm depends on each iteration m. By minimizing the loss function, the coefficients
S for the individual regions are obtained. Subsequently, the model can be updated
using these coefficients 5. In summary, gradient boosting constructs an additive
regression model by fitting base learners in each iteration. For classification and
regression tasks, different loss functions are applied. For example, logistic loss can
be used for classification and squared loss for regression tasks. The possibility to
optimize different loss functions and the various hyperparameters available allow
gradient boosting to be quite flexible. Furthermore, this method can work with
different data like categorical or numerical values and also handle missing data.

41

2 Review of Basic Material and Related Work

2.4.3 Shallow Neural Networks

In Sec. 2.1, neural networks are introduced. Neural networks can be applied to
different tasks, especially shallow neural networks can be used for classification
and regression. In the following, we focus on the architectures considered for meta
classification and regression. For classification, the network contains only one hid-
den layer with a small number of neurons (50 ones). As activation function the
sigmoid function is used and as regularization a f5-penalization. The shallow neu-
ral network considered for regression also contains only one hidden layer (with 50
neurons). A ReLU activation function is applied as well as ¢1- and {s-penalization,
respectively. Classification and regression are simple problems compared to, for
example, object detection and semantic image segmentation. For this reason and
to prevent overfitting, only shallow neural networks are sufficient for these meta
classification and regression tasks.

2.4.4 Performance Measures

For the evaluation of the prediction quality of classification and regression models,
we introduce two metrics for each case.

Classification Measures To evaluate the prediction of a binary classification
model, the accuracy is often considered. The accuracy is the number of correctly
predicted observations divided by the total number of observations.

Another commonly used quality measure for the prediction of classification models
is the area under receiver operating characteristics curve (AUROC) [41]. To this
end, we apply the true categorized variable y, = {0 if loU = 0,1 if JoU > 0} and
the predicted variable

0, ifp,>3s
gp=4 TPe7S (2.75)
1, else

where § € [0, 1] is a threshold and py, € [0, 1] denotes the predicted probability for
an object k to be a false positive. The AUROC is based on the

number of true positives

sensitivity = 2.76
Y = humber of true positives + false negatives ()
(also called true positive rate) and on the
number of true negatives
specificity = & (2.77)

number of true negatives + false positives

(also called true negative rate). The ROC' is obtained by varying the decision
threshold 5 in a binary classification problem, here for the decision between loU =

42

2.5 Datasets

0 and > 0 (or JoU < 0.5 and IoU > 0.5). The sensitivity and specificity are
compared, so that in the best case (everything is predicted correctly) the AUROC
reaches a value of 1.

Regression Measures To evaluate the regression model, we use the coefficient
of determination R* [116]. Let y; be the IoU value of an object 7 and ¢; the
ToU predicted by the model, with corresponding mean values y and 4 over all
observations, respectively. The coefficient of determination is given by

R= . (2.78)

The higher the value of 0 < R? < 1 is, the more accurate is the fitting of the re-
gression model. R? = 0 corresponds to the baseline model (each value is predicted
as the mean) and R? =1 to a perfect prediction.

Furthermore, for regression models the standard errors o can be computed as the
square root of the mean squared error.

2.5 Datasets

In this section, we give an overview of the datasets which we consider in our exper-
iments. The KITTI dataset [45, 46] consists of real street scene images from Karl-
sruhe in Germany, and the MOT dataset [109] provides scenes from pedestrian
areas and shopping malls. The synthetic VIsual PERception (VIPER) dataset
[132] is obtained from the computer game GTA V and consists of more than
250K images acquired at different times of the day and under various weather
conditions. We focus on the images from the day category, i.e., bright images
and no rain, for further processing. Examples of raw images of these datasets
are shown in Fig. 2.20. We use these datasets for different tasks like semantic
segmentation, instance segmentation and depth estimation. The detailed infor-
mation about how many images and for which tasks we use the datasets is given
in Table 2.2. We provide the resolution of the images and the number of labeled
images for semantic segmentation, instance segmentation as well as depth estima-
tion. Furthermore, we give the splittings of the images into video sequences. The
KITTI dataset and the VIPER dataset have a framerate of 10 frames per second
(fps) and the MOT dataset of 30 fps. For semantic and instance segmentation,
the number of classes for the specific task are specified. The classes in seman-
tic segmentation cover the categories flat (e.g. road and sidewalk), construction
(e.g. building and wall), nature (vegetation and terrain), vehicle (e.g. car, bus

43

2 Review of Basic Material and Related Work

Figure 2.20: Top: Two raw images of the KITTI dataset. Center: VIPER dataset.
Bottom: MOT dataset.

Table 2.2: Overview of the datasets including the number of labeled images for the three
different tasks, i.e., semantic segmentation, instance segmentation and depth estima-
tion.

KITTI VIPER MOT
resolution 1,242 x 375 1,920 x 1,080 1,920 x 1,080
640 x 480

semantic segmentation | 142 (29 videos) 8,740 (33 videos) -
number of classes 19 23 -

instance segmentation | 8,008 (21 videos) - 2,862 (4 videos)
number of classes 2 - 1
tracking IDs v - v

depth estimation 24,268 (61 videos) — —

and train), sky, object (e.g. pole and traffic sign) and human (person and rider).
In the VIPER dataset, classes like chair and trash are added. In instance seg-
mentation, the classes correspond to the most important ones, persons and cars.
Since the MOT dataset is dealing with pedestrian areas and shopping malls, only
pedestrians are labeled. For both datasets, multi-object tracking IDs are available
for the instances [162].

44

Chapter

Time-Dynamic Estimates of the
Reliability of Deep Semantic
Segmentation Networks

Semantic segmentation, i.e., the pixel-wise classification of image content, is an
important tool for scene understanding (see Sec. 2.1.3). In recent years, neural
networks have demonstrated outstanding performance for this task. In safety
relevant applications like automated driving [70] and medical diagnosis [169], the
reliability of predictions and thus, uncertainty quantification is of highest interest.
While most works focus on uncertainty quantification for single frames, video
data is often available as well. In this thesis, we study uncertainties by taking
temporal information into account. To this end, we construct metrics that express
uncertainties in single frames. By tracking predicted segments over time, we
obtain time series of metrics that quantify the dynamics of predicted objects
(the prediction of one object instance corresponds to a segment). From this
information, we assess the prediction quality on segment-level.

In this chapter, we elaborate on the meta classification and regression approach
from [136] which provides a framework for post-processing a semantic segmenta-
tion. Our method aggregates pixel-wise uncertainty heatmaps obtained by the
softmax output of a semantic segmentation network on segments, such as pixel-
wise entropy, probability margin or variation ratio. An example of pixel-wise
variation ratio is given in Fig. 3.1 (right). In addition to these metrics, further
quantities derived from the predicted segments are used, for instance various mea-
sures corresponding to the geometry of segments. We extend these segment-wise
and single-frame metrics by taking time-dynamics into account. To this end, we
present a light-weight approach for tracking segments over time, matching them
according to their overlap in consecutive frames. This is accomplished by shifting

45

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Figure 3.1: Left: Semantic segmentation predicted by a neural network. Right: Pixel-
wise variation ratio.

segments according to their expected location in the subsequent frame. The time
series of metrics, yielding a structured dataset (metrics in columns and predicted
segments in lines), is presented to meta classifier /regressor to either classify be-
tween IoU = 0 and IoU > 0 or predict the IoU directly. For both prediction
tasks, we study different types of models and their dependence on the length of
the time series. Given the fact that for automated driving image sequences are
available, the proposed light-weight tracking algorithm uses information from con-
secutive frames to improve meta classification and regression performance with
only little additional effort.

A core assumption for our method is that a semantic segmentation network and
a video stream of input data are available. In our tests, we employ the publicly
available DeepLabv3+ network with two different network backbones (Sec. 2.1.3)
and apply them to the VIPER dataset and to the KITTI dataset (see Sec. 2.5).
For the VIPER dataset, there are labeled ground truth images for each frame,
while for the KITTI dataset, for only a few (142) frames ground truth is given. For
this reason, we use alternative sources of information to address the lack of ground
truth by incorporating pseudo ground truth provided by a stronger network. The
source code of our method is publicly available at http://github.com/kmaag/
Time-Dynamic-Prediction-Reliability. Our contributions are summarized as
follows:

e We propose our light-weight tracking approach for segments and the con-
struction of segment-wise metrics using uncertainty and geometry infor-
mation. In addition, we introduce the meta regression and classification
methods including the construction of their inputs consisting of time series
of metrics.

e For the KITTI dataset, we present alternative sources of information to
address the lack of ground truth annotation in video data.

e We perform meta classification and regression to assess the prediction qual-
ity of neural networks on segment-level. Moreover, we study the influence of
time-dynamics on meta classification and regression as well as the incorpo-
ration of various classification and regression methods. For meta regression,
we achieve R? values of up to 87.51% as well as for the meta classification,

46

http://github.com/kmaag/Time-Dynamic-Prediction-Reliability
http://github.com/kmaag/Time-Dynamic-Prediction-Reliability

3.1 Related Work

AUROC values of up to 88.68%. Furthermore, we compare our approach
with different baselines.

The remainder of this chapter is organized as follows. In Sec. 3.1, we demonstrate
the differences to related work. Our method is described in Sec. 3.2. In more
detail, in Sec. 3.2.1, we introduce our tracking algorithm for single-frame based
semantic segmentation networks applied to video data. This is followed by the
construction of segment-wise metrics using uncertainty and geometry information
in Sec. 3.2.2. In Sec. 3.2.3, we describe the meta regression and classification
methods including the construction of their inputs consisting of time series of
metrics. The numerical results are presented in Sec. 3.3. We study the impact of
time-dynamics on meta classification and regression as well as the incorporation
of various classification and regression methods. Finally, we discuss our results
and next steps to improve our methods in Sec. 3.4.

3.1 Related Work

In Sec. 2.3.1, the related work on multiple object tracking is presented. Most works
[5, 10, 12, 32, 58, 62, 82, 91, 113, 160, 170, 173, 178, 179] in the field of object
tracking make use of bounding boxes, while our approach is based on semantic
segmentation. There are some approaches using segmentation masks. However,
only a coarse binary mask is used in [28] and in [55], the segmentation is only used
for initialization. In [2, 35], segmentation and tracking are executed jointly. In
our procedure, a segmentation is inferred first, tracking is performed afterwards
making our method independent of the neural network. In addition to the different
forms of object representations, there are various algorithms for object tracking.
In the tracking-by-detection methods, a classifier for the difference between object
and background is trained and therefore, only information about the location of
the object in the first frame is given [5, 12, 32, 160]. We do not train classifiers
as this information is contained in the inferred segmentations. Another approach
is to learn a similarity function offline [10, 58, 62, 91, 178]. The works of [2, 6,
35, 150, 166] are based on segmentation and they use different tracking methods,
like probability models, particle filters and fully-convolutional siamese networks,
respectively. Our tracking method is solely based on the degree of overlap of
predicted segments in consecutive frames.

The related work on uncertainty quantification is introduced in Sec. 2.2. With
respect to uncertainty quantification, MC dropout is widely used, see [44, 76,
78, 169]. Whenever dropout is used in a segmentation network (we do not use
dropout), the resulting heatmap can be included into our framework. There are
alternative measures of uncertainty like gradient based ones [119] or measures
based on spatial and temporal differences between the colors and movements of

47

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

the objects [39]. We construct metrics based on aggregated dispersion measures
from the softmax output of a neural network on segment level. The works [33, 68]
closest to ours are constructed to work with one object per image, instead of hand
crafted metrics they are based on (post-processing) CNNs. We extend the work of
[136], where meta classification and regression for single frames are introduced, by
a temporal component. The authors post-processed semantic segmentation pre-
dictions in order to estimate the quality of each predicted segment. We construct
time series from the segment-wise uncertainty metrics and further, study addi-
tional methods for the meta classification and regression, e.g. gradient boosting
and neural networks.

3.2 Method

In this section, we present our light-weight tracking method and the construction
of segment-wise metrics based on object’s geometric and dispersion measures.
From this information, we assess the prediction quality on segment-level by means
of meta classification as well as regression. Furthermore, we predict false positive
segments by meta classification.

3.2.1 Tracking Segments over Time

We introduce a light-weight tracking algorithm for the case where semantic seg-
mentation is available for each frame of an image sequence. Semantic image
segmentation aims to segment objects in an image. It can be viewed as a pixel-
wise classification of image content (e.g. Fig. 3.1 (left)). To obtain a semantic
segmentation, the goal is to assign to each image pixel z of an input image x a
label y within a prescribed label space C = {yi,...,y.} with ¢ different class la-
bels. Here, this task is performed by a neural network that provides for each pixel
z a probability distribution f,(y|z,w) over the class labels y € C, given learned
weights w and an input image x. The predicted class for each pixel z is obtained
by

gz(x>w) :argmaxfz<y’$7w)' (31)

yeC

Let S, = {§.(x,w)|z € x} denote the predicted segmentation and K, the set of
predicted segments. A segment is defined as a connected component of which all
pixels belong to the same class (set of pixel locations). The idea of the proposed
tracking method is to match segments of the same class according to their overlap
in consecutive frames. We denote by {zi,...,z7} the image sequence with a

48

3.2 Method

length of T' and z; corresponds to the t”* image. Furthermore, we formulate the

overlap of a segment k with a segment j through

Nk
0,0 = o 5 (3.2)

Considering the movement of objects, we also compute geometric centers of pre-
dicted segments. The geometric center of a segment k € IC,, in frame ¢ is defined
as

];?t:(v) ht |k|zz (3-3)

zek

where z = (z,, z,) is given by its vertical and horizontal coordinates of pixel z.

Our tracking algorithm is applied sequentially to each frame t, t = 1,...,T, and
we aim at tracking all segments present in at least one of the frames. To give
the segments different priorities for matching, the segments of each frame are
sorted by size and treated in descending order. When a segment in frame ¢ is
matched with a segment from a previous frame, it is ignored in further steps,
and matched segments are assigned an unique ID. Within the description of the
matching procedure, we introduce parameters Cpear, Cover, Cdist and cpp, the re-
spective numerical choices are given in Sec. 3.3. More formally, our algorithm
consists of the following five steps to match segments k € K with segments in
frame t:

Tt—1

Step 1 (aggregatlon of segments). The minimum distance between segment
i € K, and all j € K, \ {i} of the same class is calculated. If the distance is less
than a constant c,.., the segments are so close to each other, they are considered
as one segment and receive a common ID.

Step 2 (shift). If the algorithm was applied to at least two previous frames,
the geometric centers (ki_s) and (k1) of segment k € K,, , are computed. The
segment from frame ¢ — 1 is shifted by the vector (k,_; — k;_3) and the overlap
O; with each segment j € l@xt from frame ¢ is determined. If O;j > coper OF
Jj = arg maxee O, x, the segments k and j are matched and receive the same
ID.

49

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Ojx

If there is no match found for segment k£ during this procedure, the quantity

d = min 136 = ke lle + [(ki1 — kui—a) — (e — Ke—1)|2 (3.4)

j€K,

is calculated for each available j and both segments are matched if d < cg;;. This
allows for matching segments that are closer to k_; than expected. The first
norm measures the distance of geometric centers while the second norm ensures
that the direction and shift of segment k from frame t — 2 to t — 1 is similar to
those of segment k from frame ¢t — 1 to segment j in frame t.

If segment k exists in frame ¢ — 1 and not in ¢t — 2, then step 2 is snnphﬁed only
the distance between the geometric center of k € let ,and j € ICxt is computed
and the segments are matched if the distance is smaller than cg;.

Step 3 (overlap). If t > 2, the overlap O, of the segments k € K

and j € I@xt in two consecutive frames is calculated. If O;i > coper OF J =
arg max;cg O i, the segments k and j are matched.

Tt—1

Ojk

Step 4 (regression). In order to account for flashing predicted segments, either
due to false prediction or occlusion, we implement a linear regression and match
segments that are more than one, but at most n;. — 2, frames apart in temporal
direction. If the ID of segment k € K,._, * € {t —ny,...,t — 1}, has not yet been

50

3.2 Method

assigned in frame ¢t and t > 4, i.e., three frames have already been processed, then
the geometric centers of segment k are computed in frames ¢ — ny,. to t — 1 (in
case k exists in all these frames). If at least two geometric centers are available, a

linear regression is performed to predict the geometric center (k). If the distance
between the predicted geometric center and the calculated geometric center of the
segment j € K, is less than a constant value ¢y, k and j are matched.

If no match was found for segment k, segment k € ’éxtmaz is shifted by the vector
(ke — k..), where tpae € {t —nyy, ..., t — 1} denotes the frame where k contains
the maximum number of pixels. If O, > Coper OF j = arg maxeg O; i applied
to the resulting overlap, k and j are matched.

Ojk

Step 5 (new IDs). All segments j € K,, that have not yet received an ID are
assigned with a new one.

In Fig. 3.2 our tracking algorithm is applied to a short image sequence of predicted
segments obtained by a semantic segmentation network. Note, our approach
allows multiple segments in one frame to have the same ID.

3.2.2 Segment-wise Metrics and Time Series

In the previous section, we presented the semantic segmentation and the result-
ing probability distribution f,(y|x,w) for pixel z of an image = and weights w.
The degree of randomness in f,(y|z,w) is quantified by (pixel-wise) dispersion
measures. We consider the normalized entropy

E,(z,w) = —@ S Flyfesw)og Lyl). (3.5)

o1

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

t+1

t+2

t+3

Figure 3.2: Our tracking method is applied to predicted segments obtained by a semantic
segmentation network in four consecutive frames. Each color corresponds to a different
ID.

the variation ratio
Vo(z,w) =1~ f.(§.(v,w)|z,w) (3.6)
and the probability margin

M, (z,w) =1— f(§.(z,w)|x,w) + fa(y|lz,w). (3.7)

max
yeC\{g:(z,w)}
A visualization of pixel-wise variation ratio is shown in Fig. 3.1 (right). Note,
that also other heatmaps (like MC Dropout variance) can be processed. To obtain
metrics per segment from these pixel-wise dispersion measures for each segment
k € K., we define mean dispersions D as

D=+Y D.(x) (3.8)

S z€k
where D, € {FE,,V.,M.} and S = |k| denotes the segment size. We further
distinguish between the inner k;, C k, where a pixel z € k;, if all eight neighboring
pixels of z are elements of k, and the boundary kys = k \ ki,. At segment level,
the segment size and the mean disperions are provided as metrics, divided into
inner and boundary. From these metrics, additional metrics are derived such as

52

3.2 Method

the relative segment sizes S = 5:/de and S;, = in/Sea as well as the relative
mean dispersions D = DS and D;, = D;,S;, where D € {E,V,M}. Our set of
metrics per segment is constructed by these measures and the geometric center k
(defined in (3.3)) as well as the mean class probabilities for each class y € C

P(ylk) = Zfz ylz, w) (3.9)

zek

In summary, we use the following set of metrics:

Uk = {D7Din7Dbdaf)7Bin : D e {Ea‘/aM}}
U{S, Sin, Spa, S, Sin } U{EY U {P(ylk) : y=1,...,c}. (3.10)

The separate treatment of inner and boundary in all dispersion measures is moti-
vated by typically large values of D, for z € ky; (see Fig. 3.1 (right)). In addition,
we find that poor or false predictions are often accompanied by fractal segment
shapes (Whlch have a relatively large amount of boundary pixels, measurable by
S and Sm) and/or high dispersions D;, on the segment’s inner. An example of
such a fractal segment is the sidewalk in the front right area of Fig. 3.1 (left). The
presented metrics are single-frame based and the proposed light-weight tracking
method provides the identification of predicted segments in consecutive frames.
Hence, we obtain time series for each of the defined metrics, that are subject to
further analysis.

3.2.3 Prediction of the loU from Time Series

A measure to determine the prediction accuracy of the segmentation network with
respect to the ground truth is the JoU (see Sec. 2.1.6). To this end, we define
by I, the set of connected components in the ground truth §,, analogously to
K, (the set of connected components in the predicted segmentation Sx) The
corresponding class of k' € K, is denoted by y.(z) € C (for any z € £). For
ke K, let KE={k €K, : g.(x,w) = y.(z) for z € kNK and k Nk # }. For
cach k € K, the IoU is given by
kN K| : :
IoU(k) = KUE|’ K= ¥. (3.11)

k'eKk

In our test, we use a slight modification, i.e., the adjusted IoU

kN K| B
FuEngr ¢t U 12

with QF = {q € K, : 0.(z,w) = y.(x), z € ¢gN K" and ¢ N K’ # 0} which
is less prone to fragmented objects. The motivation for adjusting the loU is

IOUadj(kZ) =

93

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Figure 3.3: Illustration of the different behaviors of calculated IToU and IoU,q; per
segment. Left: Visualization of IoU. Right: IoU,q;. Center: Corresponding ground
truth with zooms for the crucial areas. Center top: Zoom for ground truth. Center
bottom: Zoom for predicted segmentation. Green color corresponds to high IoU and
IoU ,q4; values, red color to low ones. The predicted segmentation shows the soil (class
terrain) divided into two segments by a palm tree (class vegetation). The IoU rates the
small segment on the right from the palm tree poor, although the prediction is well.
These problems are solved by the loU ,q;.

given in Fig. 3.3. It can happen that a ground truth segment is split into two
or more segments in the prediction. Even if the segments are well predicted, the
IoU values are low. In contrast, the JoU,q; does not penalize the prediction of a
segment if the remainder of the ground truth is well covered by other predicted
segments belonging to the same class.

In this work, we perform segment-wise predictions of the JoU ,q; (meta regression)
comparing different regression approaches and classify between loU,q; = 0 and
IoU,qg; > 0 (meta classification), both for every predicted segment. Both pre-
diction tasks (meta tasks) are performed by means of the metrics introduced in
Sec. 3.2.2. Note, that these metrics can be computed without the knowledge of the
ground truth. Our aim is to analyze to which extent they are suitable for the meta
tasks and how much we benefit from using time series. For each segment k € I@xt
in frame ¢, we have the metrics U and their information in previous frames due
to the segment tracking. Both meta tasks are performed by means of the metrics
Uk i=t—mn,,...,t, where n. describes the number of considered frames. An
overview of how the metrics as well as their time series are constructed and then,
used as input for meta classification and regression is shown in Fig. 3.4. For meta
classification, we define yj, = {0 if JoU,qg;(k) = 0,1 if JoU,qj(k) > 0} and we want
to predict this value by three different methods. These methods are the logistic
regression with ¢;-penalty (LASSO [157]), gradient boosting regression [43] and a
shallow neural network containing only a single hidden layer with 50 neurons. For
meta regression, we compare six different regression methods, this includes plain
linear regression, linear regression with /- and ¢s-penalization, gradient boost-
ing and two shallow neural networks — one with ¢;-penalization and one with /5.
An overview of the different methods for regression and classification is given in
Table 3.1. Details of these methods are described in Sec. 2.4.

o4

3.2 Method

neural
network

softmax —
output

dispersion
measures

semantic

segmentation £

time

—_— ||| —

series

meta classification

matched and regression

segments

metrics

Figure 3.4: Overview of meta classification and regression. A semantic segmentation is
predicted by a neural network, and the softmax output is considered for the constructed
metrics by means of dispersion measures. By tracking predicted segments, time series
of metrics can be obtained. These serve as input for meta classification and regression.

In addition to the presented time-dynamic components, we extend the approach
from [136] by incorporating further models for meta tasks, i.e., neural networks
and gradient boosting. For this reason, we consider linear models for meta tasks
and single-frame (n. = 0) based metrics as used in [136] as baseline. Another
approach, presented in [33], also performs meta regression, however, it is only
designed for one object per image and on a single-frame basis. As a consequence,
we cannot use this approach as a suitable baseline, since ~150 (#segments/image)
CNN inferences per image are unfeasible.

95

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Table 3.1: Overview of meta classification and regression methods. For classification,

we consider LR L1, , and for regression all of them.
methods
LR linear regression

LR L1 | linear / logistic regression with ¢;-penalization
linear regression with ¢5-penalization

gradient boosting

NN L1 | neural network with ¢;-penalization

neural network with ¢y-penalization

3.3 Numerical Results

In this section, we investigate the properties of the metrics defined in the previous
section and the influence of the length of the time series considered. Moreover,
different meta classification and regression methods are studied. We perform
our tests on two different datasets (see Sec. 2.5) for the semantic segmentation
of street scenes where also image sequences are available, the synthetic VIPER
dataset obtained from the computer game GTA V and the KITTI dataset with
real street scene images from Karlsruhe, Germany. In all our tests, we consider
the DeepLabv3+ network (see Sec. 2.1.3) for semantic segmentation for which
we use a reference implementation in Tensorflow [1]. The DeepLabv3+ imple-
mentation and weights are available for two network backbones. First, there is
the Xception65 network, a modified version of Xception [25]. Next, there is Mo-
bilenetV2 [141], a slim architecture designed for mobile devices. Primarily, we
use Xception65 for VIPER and MobilenetV2 for KITTI, for the latter we also
use Xception6) as a reference network to generate pseudo ground truth for the
meta tasks. For tracking segments with our procedure, we assign the parameters
defined in Sec. 3.2.1 with the following values: Cpeqr = 10, Coper = 0.35, cgise = 100
and ¢y, = 50. We study the predictive power of our 22 metrics and segment-wise
averaged class probabilities per segment and frame. From our tracking algorithm,
we get these metrics additionally from previous frames for every segment.

3.3.1 VIPER Dataset

The VIPER dataset consists of more than 250K 1,920 x 1,080 video frames and
for all frames there is ground truth available, consisting of 23 classes. We trained
an Xception65 network starting from backbone weights for ImageNet [140]. We
choose an output stride of 16 and the input image is evaluated within the frame-
work only on its original scale (DeepLabv3+ allows for evaluation on different
scales and averaging the results). For a detailed explanation of the chosen pa-
rameters we refer to [24]. We retrain the Xception65 network with 5,147 training

26

3.3 Numerical Results

Table 3.2: Correlation coefficients p with respect to IoU,q; for the VIPER dataset.

S 1050219 | E | —0.66755 | V| —0.80317 | M | —0.86945 | k, | 0.03538
Sin | 0.49912 | Ej, | —0.66908 | Vi, | —0.77783 | M, | —0.84164 | ky, | —0.04239
Spa | 055232 | By | —0.27683 | Vy | —0.42808 | My | —0.61155
S 10.52080 | E 0.42459 | V 0.34224 | M 0.38094
S | 0.52080 | By, | 0.46122 | Vi | 0.37873 | M, | 0.39900

' p = 0.55232 1 p = —0.66908 1 p = —0.80317 p = —0.86945
e 3

0 |

0 ToU oq5 L0 ToU 445 Lo ToU g5 Lo ToU o4 1

Figure 3.5: Correlations between rescaled metrics and IoU,q; for the VIPER dataset.

images and 847 validation images (during training with different numbers of im-
ages, we found that this number is sufficient). We only use images from the day
category (i.e., bright images, no rain) for training and further processing, achiev-
ing a mean IoU of 50.33%. If we remove the classes mobile barrier, chair and van
which are also underrepresented in the dataset (yielding IoUs below 10%), the
mean loU rises to 57.38%. The validation set is neither used for early stopping
nor for parameter tuning.

For further experiments, we consider the output probabilities and predictions of
13 video sequences consisting of 3,593 images in total. For each segment in the
segmentations of these images, we compute the JoU,q; and the 22 constructed
segment-wise metrics UF for each single frame t. To study the prediction power
of the metrics, we compute the Pearson correlation coefficients p € [—1, 1] be-
tween JoU,q; and each metric. The results are given in Table 3.2. The metrics
are standardized to zero mean and unit standard deviation. Furthermore, we
provide scatter plots of selected metrics relative to IoU,q; in Fig. 3.5. The mean
probability margin (M and M;,) and variation ratio measures (V and V;,) as well
as the mean entropies (E’ and Em) show strong correlations with IoU,q;. How-
ever, the geometric center and the relative dispersion measures are less correlated
with ToU ;.

We perform meta classification and regression in order to investigate the predictive
power of the combination of these metrics. From 3,593 images, we obtain roughly
309,874 segments (not yet matched over time) of which 251,368 have non-empty
inner. The latter are used in all numerical tests. We study the influence of time-

57

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Table 3.3: Results for meta classification and regression for the VIPER dataset and for
the different methods as well as for the naive and entropy baselines. The super script
denotes the number of frames where the best performance and in particular, the given
values are reached. The best classification and regression results are highlighted.

meta classification foU,g; = 0,> 0
naive baseline: ACC = 66.07% AUROC = 50.00%
entropy baseline: ACC = 68.43% £ 0.29% AUROC = 74.02% + 0.32%
LR L1
ACC 75.75% £ 0.49%8 | 77.88% £ 0.60%> 76.62% + 0.51%°
AUROC | 83.44% + 0.47%" | 86.01% 4 0.56%* | 84.52% =+ 0.50%"*
meta regression [oU ,q;

entropy baseline: o = 0.178 = 0.000 R? = 64.18% + 0.34%
LR LR L1
o 0.124 + 0.002° 0.124 £ 0.0027 0.124 £ 0.002°
R? 82.58% 4 0.45%5 | 82.56% =+ 0.43%" 82.57% =+ 0.44%°
NN L1
o 0.112 +0.002° 0.118 £ 0.002* 0.117 £ 0.0022
R? 85.82% 4+ 0.36%° | 84.36% =+ 0.51%* 84.58% + 0.44%?

dynamics on meta tasks, i.e., we firstly only present the segment-wise metrics U}
of a single frame ¢ to the meta classifier /regressor, secondly we extend the metrics
to time series with a length of up to 10 previous time steps UF, i = t—10,...,t—1.
We obtain 11 different inputs for the meta tasks models. The presented results are
averaged over 10 runs obtained by random sampling of the train/validation/test
splitting. In tables and figures, the corresponding standard deviations are given
in brackets and by shades, respectively. Out of the 251,368 segments with non-
empty inner, 85,291 have an IoU,q; = 0.

First, we present results for meta classification, i.e., detection of false positive
segments (foU,q; = 0), using 38,000 (randomly sampled) segments that are not
presented to the segmentation network during training. We apply a (meta) train/
validation/test splitting of 70%/10%/20% and evaluate the performance of differ-
ent models for meta classification in terms of classification accuracy and AUROC
(Sec. 2.4.4). The AUROC is obtained by varying the decision threshold in a bi-
nary classification problem, here for the decision between IoU,q; = 0 and > 0.
We achieve test AUROC values of up to 86.01% and accuracies of up to 77.88%.
Table 3.3 shows the best results for different meta classification methods, i.e.,
logistic regression, a shallow neural network and gradient boosting, see Table 3.1.
The super script denotes the number of frames where the best performance and
in particular, the given values are reached. We observe that the best results are
achieved when considering more than one frame. This observation is confirmed
in Fig. 3.6 (left) where the results for meta classification AUROC' as functions of
the number of frames, i.e., the maximum time series length, are given. Further-
more, significant differences between the methods for meta classification can be

o8

3.3 Numerical Results

e LR LI GB NN L2 e LRe LRL1» LRL2* GBe NNL1+ NN L2
0.86
0.86
3 w084 T T
< [shay
=0.84
< /-
o2
0.82
2 4 6 8 10 2 4 6 8 10

number of considered frames number of considered frames

Figure 3.6: Results for meta classification AUROC and regression R? as functions of
the number of frames for the VIPER dataset and different methods. Left: Meta classi-
fication. Right: Meta regression.

1.0 ~ f 106 i

0.8 1 Cgfe 10% 5
7 o
D g0, 10% 4
S 061 /7 {,;5 ' ,
FS /// o 103 i
g 041 e g
F§ // a 102 n
a, ’

0.2 4 4G)

s 10! 4
s
g
0.0 T T T T T 100_.: T T
0.00 0.25 0.50 0.75 1.00 10° 10t 102
10U aq; lifetime

Figure 3.7: Left: Predicted IoU,q; vs. IoU,gq;j for all non-empty segments. The dot size
is proportional to the segment size. Right: Segment lifetime (time series length) vs.
mean inner segment size, both on log scale.

observed, gradient boosting shows the best performance with respect to accuracy
and AUROC.

Next, we predict JoU ,q; values via meta regression to estimate prediction quality.
For this task, we state regression standard errors o and R? values (Sec. 2.4.4). We
achieve R? values of up to 85.82%. This value is obtained by gradient boosting
incorporating 5 previous frames. For this particular case, the correlation of the
calculated and predicted loU,q; is depicted in Fig. 3.7 (left) and an illustration
of the resulting quality estimate is given in Fig. 3.8. We also provide video
sequences' that visualize the [oU,q; prediction and the segment tracking. Results
for meta regression are also summarized in Table 3.3, the findings are in analogy to

'http://youtu.be/TQaV50NCV-Y

29

http://youtu.be/TQaV5ONCV-Y

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Figure 3.8: Bottom left: Ground truth image. Bottom right: Semantic segmentation
obtained by a neural network. Top left: Visualization of the true segment-wise IoU uq;
of prediction and ground truth. Top right: IoU,q; prediction obtained from meta
regression for the VIPER dataset. Green color corresponds to high IoU,q; values and
red color to low ones. For the white regions there is no ground truth available, these
regions are not included in the statistical evaluation.

those for meta classification. Gradient boosting performs best, and more frames
yield better results than a single one. The results for meta regression R? as
functions of the number of frames are shown in Fig. 3.6 (right). Fig. 3.7 (right)
depicts the correlation of the time series length and the mean inner segment
size. On average, a predicted segment exists for 4.4 frames, however, when we
consider only segments that contain at least 1,000 inner pixels, the average life
time increases to 19.9 frames.

The approach in [136] can be considered as a baseline for meta classification and
regression, since we extend this single-frame based method by time series and
further classification/regression models. The results in [136] have been compared
with the mean entropy per segment as a single-metric baseline and with a naive
baseline which is given by random guessing (randomly assigning a probability
to each segment and then thresholding on it). The classification accuracy is
the number of correctly predicted observations divided by the total number of
observations. It is maximized for the threshold being either 1 if we have more
IoU,q; > 0 than IoU,q; = 0 segments, or 0 else. The corresponding AUROC
value is 50%. For the entropy baseline, we use single-frame gradient boosting.
Table 3.3 includes these two baselines, both are clearly outperformed just as the
single-frame method using linear models [136] as shown in Fig. 3.6.

60

3.3 Numerical Results

Table 3.4: Train/val/test splitting, different compositions of training data and their
approximate number of segments.

splitting types of data / annotation no. of segments
R real ~ 3,400
RA real and augmented ~ 27,000
train RAP | real, augmented and pseudo ~ 27,000
RP real and pseudo ~ 27,000
P pseudo ~ 27,000
val real ~ 500
test real ~ 1,000

3.3.2 KITTI Dataset

For the KITTI dataset, we use both DeepLabv3+ networks (pre-trained on the
Cityscapes dataset [29], available on GitHub), however, for the evaluation, we
primarily use MobilenetV2. As parameters for the Xception65 network, we choose
an output stride of 8, a decoder output stride of 4 and an evaluation of the input on
scales of 0.75, 1.00 and 1.25 (averaging the results). For the MobilenetV2, we use
an output stride of 16 and the input image is evaluated within the framework only
on its original scale. In our tests, we use 29 street scene videos consisting of 12,223
images with a resolution of 1,242 x 375. Only 142 of these images are labeled.
An evaluation of the meta tasks requires a train/val/test splitting. Therefore,
the small number of labeled images seems almost insufficient. Hence, we acquire
alternative sources of useful information besides the (real) ground truth. First,
we utilize the Xception65 network with high predictive performance, its predicted
segmentations we term pseudo ground truth. We generate pseudo ground truth for
all images where ground truth is not available. The mean IoU performance of the
Xception65 network for the 142 labeled images is 64.54%, for the MobilenetV2 the
mean loU is 50.48%. In addition, to augment the structured dataset of metrics, we
apply a variant of SMOTE for continuous target variables for data augmentation
(see [17, 159]). SMOTE is an upsampling procedure which is used in cases of
class imbalance. It addresses the problem of imbalance between rare target classes
and most frequent ones. The procedure has been developed for nominal target
variables and is modified in [159] to work with continuous target variables. Data
augmentation is particularly important when only working with the scarce real
ground truth as in our tests, we observe that SMOTE prevents overfitting in
this scenario. An overview of the different compositions of training data and
the train/val/test splitting are given in Table 3.4. The train/val/test splitting
of the data with ground truth available is the same as for the VIPER dataset,
i.e., 70%/10%/20%. The shorthand “augmented” refers to data obtained from
SMOTE, “pseudo” refers to pseudo ground truth obtained from the Xception65
network and “real” refers to ground truth obtained from a human annotator.

61

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Table 3.5: Correlation coefficients p with respect to IoU,q; for the KITTI dataset.

S 0.61093 | E | —0.74185 | V | —0.85079 | M | —0.90278 | k, | —0.14323
Sin | 0.60773 | Ej, | —0.74343 | Vi, | —0.83448 | M;, | —0.88593 | ky | 0.04568
Spa | 0.67728 | Eyq | —0.40583 | Vig | —0.53066 | My | —0.66180
S | 0.72428 E 0.45695 x:/ 0.37841 J[4 0.43304
S, | 0.72428 | E; | 0.49676 | Vi, | 0.41446 | M, | 0.44651
p = 0.72428 1 p = —0.85079 p = —0.90278
1 1 .
1(5 ‘>
’ J
0 : 1 0
0 IoU o 1 0 IoU o 1 0 IoU o 1 0 IoU o 1

Figure 3.9: Correlations between rescaled metrics and IoU,qj for the KITTI dataset.

These additions are only used during training the meta classifier /regressor. We
employ the Xception65 network only for the generation of pseudo ground truth,
all tests are performed using the MobilenetV2. The KITTI dataset consists of 19
classes (4 classes less than VIPER).

To study the predictive power of the metrics, we compute (as for the VIPER
dataset) the Pearson correlation coefficients between IoU,q; and each metric, see
Table 3.5. Moreover, we provide scatter plots of a selection of metrics relative to
IoU ,q; in Fig. 3.9. Similar to the VIPER dataset, the JoU,q; is strongly correlated
with the mean dispersion measures, while the correlations between the geometric
center and the relative dispersion measures are rather weak. Compared to the
VIPER dataset, all correlation values are higher and also the metrics based on
the segment’s geometry show high correlations. The KITTI dataset also achieves
greater values for time series length of the segments obtained by the tracking
algorithm compared to the VIPER dataset. On average, a predicted segment
exists for 4.7 frames and when we consider only segments that contain at least
1,000 inner pixels, the average life time increases to 20.2 frames.

From the 12,223 chosen images, we obtain 452,287 segments of which 378,984
have non-empty inner. Of these segments, 129,033 have an JoU,q; = 0. A selec-
tion of results for meta classification AUROC and regression R? as functions of
the number of frames, i.e., the maximum time series length, is given in Fig. 3.10.
The approach of [136] corresponds to the single-frame results in these plots. In
contrast to the single-frame approach using only linear models, we increase the
accuracy by 6.78 percent points (pp) and the AUROC value by 5.04 pp. The

62

3.3 Numerical Results

e LRe LRL1* LRL2* GBe NNLI* NN L2 o R e RA o RAP e RP o P
0.88 0.88
N 0.86 8 0.86
S
0.84 - <
: A~ = = 0.84
0.82
2 4 6 8 10 2 4 6 8 10
number of considered frames number of considered frames
R eRA eRAP eRP eP eR eRA eRAP eRP eP
0.88
0.89

et -, M
K0.88 —— gy

.//’—'\0—0’0"—0‘_.\‘ ~
~ ~
S e *J\/\/\/\\
w:0.87 0.86

.__,/""'—-.-\"\0——*—0——0—4
0.86
0.85
2 4 6 8 10 2 4 6 8 10
number of considered frames number of considered frames

Figure 3.10: A selection of results for meta classification AUROC and regression R? as
functions of the number of frames for the KITTI dataset. Top left: Meta regression
for different methods. Top right: Meta classification via a neural network with fo-
penalization for different compositions of training data (see Table 3.4). Bottom left:
Meta classification via gradient boosting. Bottom right: Meta regression via gradient
boosting.

R? value for meta regression is increased by 5.63 pp. The meta classification
results for neural networks presented in Fig. 3.10 (top right) indeed show, that
an increasing length of time series has a positive effect on the performance. On
the other hand, the results in Fig. 3.10 (bottom left) show that gradient boost-
ing does not benefit as much from time series. In both cases, augmentation and
pseudo ground truth do not improve the models’ performance on the test set and
although, the neural network benefits a lot from time series, its best performance
is still about 1% below the performance of gradient boosting. With respect to
the influence of time series length, the results for meta regression with gradient
boosting in Fig. 3.10 (bottom right) are qualitatively similar to those in Fig. 3.10
(bottom left). However, we observe in this case that the incorporation of pseudo
ground truth slightly increases the performance. Noteworthily, for the R? values,
we achieve the best results with the training set consisting of real, augmented
and pseudo ground truth in two out of six models (see Table 3.6), demonstrating

63

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

Figure 3.11: Bottom left: Ground truth image. Bottom right: Semantic segmentation
obtained by a neural network. Top left: A visualization of the true segment-wise IoU ,q;
of prediction and ground truth. Top right: Prediction of loU,q; obtained from meta
regression for the KITTI dataset. Green color corresponds to high IoU,q; values and
red color to low ones. For the white regions, there is no ground truth available, these
regions are not included in the statistical evaluation.

that SMOTE helps in this case. Furthermore, gradient boosting trained with
real ground truth and gradient boosting trained only with pseudo ground truth
perform almost equally well. This shows that meta regression can be learned
when there is no ground truth but a strong reference model available. Note,
that this (except for the data augmentation part) is in accordance to our find-
ings for the VIPER dataset. Results for a wider range of tests (including those
previously discussed) are summarized in Table 3.6. As for the VIPER dataset,
significant differences between the methods for meta classification and regression
(see Fig. 3.10 (top left)) can be observed, the linear models achieve the lowest
results and gradient boosting performs best with respect to all evaluation metrics.
For this dataset, video sequences? are also provided. For meta classification, we
achieve accuracies of up to 81.20% and AUROC values of up to 88.68%. For
meta regression, we obtain R? values of up to 87.51%. This value is obtained
by gradient boosting incorporating 6 previous frames. For this particular case,
an illustration of the resulting quality estimate is shown in Fig. 3.11. As for the
VIPER dataset, we outperform the analogous baselines (see Table 3.6). Since the
labeled 142 images only yield 4,877 segments, we observe overfitting in our tests
for all models when increasing the length of the time series. This might serve as
an explanation that in some cases, time series do not increase performance. In
particular, we observe overfitting in our tests when using gradient boosting, this
holds for both datasets, KITTI and VIPER. It is indeed well-known that gradient
boosting requires plenty of data.

’http://youtu.be/YcQ-i9cHjLk

64

http://youtu.be/YcQ-i9cHjLk

3.3 Numerical Results

Table 3.6: Results for meta classification and regression for different compositions of
training data and methods for the KITTI dataset. The dataset for the entropy baseline
is selected such that the baseline performance is maximized. The super script denotes
the number of frames where the best performance and thus, the given value is reached.
The best results for each data composition are highlighted.
meta classification foU,qg; = 0,> 0

naive baseline: ACC = 65.95% AUROC = 50.00%
entropy baseline for P: ACC = 68.66% + 1.82% AUROC = 75.81% + 1.68%
LR L1
R 76.69% + 1.68%° | 81.20% + 1.02%* | 79.67% + 0.93%°
RA 76.60% + 1.31%" | 80.73% + 1.03%° | 78.62% + 0.61%"
ACC RAP 76.18% + 1.22%" | 79.64% + 1.03%" | 77.08% =+ 1.05%°
RP 76.52% + 0.80%° | 78.45% + 0.88%° | 76.35% + 0.67%°
P 75.96% £ 0.80%' | 77.56% £ 0.95%° | 75.68% + 0.67%""
R 85.13% + 0.84%" | 88.68% £ 0.80%° | 87.42% + 0.75%°
RA 85.00% + 1.05%" | 88.47% 4+ 0.73%" | 87.00% =+ 0.81%"°
AUROC RAP 85.39% + 0.97%°% | 87.80% + 0.82%> | 86.34% =+ 0.84%*°
RP 85.38% + 0.87%8 | 87.11% + 0.90%* | 85.70% + 0.88%
P 84.94% + 1.03%5 | 86.40% =+ 0.93%° | 85.12% + 0.92%

meta regression [oU ,q;

entropy baseline for RP: o = 0.167 £ 0.006 R?* = 71.05% + 2.58%
LR LR L1
R 0.128 + 0.0032 0.129 + 0.0032 0.128 + 0.0032
RA 0.134 4+ 0.0032 0.134 + 0.0033 0.134 + 0.0032
o RAP 0.129 + 0.0037 0.129 + 0.0037 0.129 + 0.0037
RP 0.128 + 0.0037 0.128 + 0.0027 0.128 + 0.0037
P 0.128 + 0.0037 0.129 4+ 0.0027 0.129 + 0.0037
R 83.48% + 0.99%% | 83.37% + 0.92%2 | 83.49% =+ 0.96%2
RA 82.06% + 0.96%2 | 82.09% + 0.94%> | 82.08% =+ 0.95%?
R? RAP 83.38% + 0.89%" | 83.35% 4+ 0.90%" | 83.40% + 0.92%"
RP 83.62% + 0.91%" | 83.54% + 0.88%" | 83.61% + 0.91%"
P 83.43% + 0.90%" | 83.36% + 0.86%" | 83.41% + 0.91%"
NN L1
R 0.114 + 0.0045 0.114 £ 0.005" 0.113 £ 0.005"
RA 0.116 + 0.0043 0.118 £+ 0.007* 0.116 + 0.005"
o RAP 0.112 + 0.0037 0.114 + 0.003 0.114 + 0.005
RP 0.112 + 0.002° 0.116 £ 0.004 0.115 + 0.0032
P 0.114 + 0.002'! 0.118 4 0.004* 0.117 £ 0.0043
R 87.02% + 1.00%° | 86.98% + 1.07%" | 87.16% + 1.25%"
RA 86.39% + 1.11%* | 85.94% + 1.76%" | 86.46% + 1.32%"
R? RAP 87.51% +0.61%" | 87.03% + 0.71%" | 86.97% + 1.10%"
RP 87.45% + 0.72%° | 86.51% + 0.88%" | 86.69% =+ 0.85%?
P 86.88% £ 0.67%'" | 86.13% £ 0.95%' | 86.24% =+ 0.99%3

65

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation
Networks

3.4 Discussion

In this chapter, we presented our post-processing methods, the meta classification
and regression, based on time-dynamics for semantic segmentation networks. To
this end, we introduced a light-weight tracking algorithm for semantic segmenta-
tion. From matched segments, we generated time series of metrics and used these
as inputs for the meta classifiers/regressors. The metrics are based on segments
geometry and dispersion measures extracted from the segmentation network’s
softmax output, such as pixel-wise entropy. In our tests, we studied the influence
of the time series length on different models for the meta tasks, i.e., gradient
boosting, neural networks and linear ones. Our results showed significant im-
provements in comparison to those presented in [136]. More precisely, in contrast
to the single-frame approach using only linear models, we increased the accuracy
by 6.78 pp and the AUROC by 5.04 pp. The R? value for meta regression was
increased by 5.63 pp. We have shown that the time-dynamic method outper-
forms the single-frame approach and achieves good results in the meta tasks. For
meta classification, classifying between loU,q; = 0 and IoU,q; > 0, we achieved
AUROC values of up to 88.68% for the KITTI dataset. For meta regression,
the direct prediction of the JoU,q; as quality estimate, we obtained R? values of
up to 87.51%. To further increase the rating measures (like R* and AUROC),
truly time-dynamic metrics can be developed, as the presented metrics are still
single-frame based.

An idea for a time-dynamic metric is the shape preservation of tracked segments
in consecutive frames, such as their size, width or height. Large deformations may
indicate poorly predicted segments. Moreover, roughness measures can indicate
the consistency of segments over time. To this end, time series of metrics, like size
or geometric center, are used to predict the size/geometric center of a segment
and compare this with the true value. Large deviations indicate that the segment
is not consistent over time. These proposed time-dynamic metrics are based on
time series of the segment’s geometry. For this, we consider time series of tracked
segments in more detail. In Fig. 3.12, a convex hull of a tracked car is shown.
This is a typical time series of a moving car that drives faster than the ego car and
thus, reduces its size over time. In contrast, the convex hull of a tracked segment
related to class car is given in Fig. 3.13. The unstable shape results of segments
building. At the beginning of the time series, the segment consists of one car
and after further frames, it becomes a large segment of the class car consisting
of several cars. If a segment varies over time, as in the example, it contradicts
the idea of metrics like shape preservation or consistent time series of object’s
geometry. In Fig. 3.14, time series for mean entropy, size and IoU .q; of a segment
of class car are shown. On the one hand, the time series are unstable and metrics
vary significantly over time. On the other hand, the cars on the right hand side

66

3.4 Discussion

vertical coordinate

vertical coordinate

3990 4010

4030 800 .
frame 4050 700 \@-\m"“

frame 4050 700 \\0\-'\1»

Figure 3.12: Convex hull of a tracked segment of class car in 85 consecutive frames.
There are 25 time steps between the two frames shown here.

are predicted poorly and this reduces the JoU,q; and increases the entropy value
for the whole segment, although all other cars are well predicted.

Another idea for a time-dynamic metric is based on survival analysis [111]. The
remaining lifetime of segments can be predicted by information of the lifetimes
of corresponding ground truth segments. Very short survival times suggest un-
certainty. However, the first problem is that for used datasets (as well as for all
other available datasets) ground truth data for multi-object tracking of segments
is not available. For this reason, temporal metrics based on time series of ground
truth data cannot be generated. Another consequence is that no evaluation of our
light-weight tracking algorithm is possible without available ground truth data.
These problems and the unstable time series, due to segments building, lead us
to investigate instances rather than segments in further experiments. In instance
segmentation, phenomena such as those shown in Fig. 3.13 do not appear due to

the different definition of instances and segments.

67

3 Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation

Networks

vertical coordinate

vertical coordinate

120 o

100 <
120 200 oo framy

frame

Figure 3.13: Convex hull of a tracked segment of class car in 104 consecutive frames.
There are 42 time steps between the two frames shown here.

0.2

100000 1
n
50000 1

Figure 3.14: Time series of selected metrics E, S and IoU adj- The time series are
constructed by tracking a segment of the class car in a video sequence. This segment is
tracked over 255 frames. Here, two consecutive frames of these time series are shown.

Green color corresponds to a high loU,q; value.

68

Chapter

Improving Video Instance Segmentation
by Light-weight Temporal Uncertainty
Eistimates

Object detection describes the task of identifying and localizing objects of a set
of given classes. With respect to image data, state-of-the-art approaches are
mostly based on convolutional neural networks. Localization can be performed,
for example, by predicting bounding boxes or predicting each pixel that corre-
sponds to a given instance. The latter is also known as instance segmentation
(see Sec. 2.1.4) which is an essential tool for scene understanding and considered
throughout this chapter. An example is given in Fig. 4.1. The reliability of neu-
ral networks in terms of prediction quality estimation [33, 136] and uncertainty
quantification [44] is of highest interest, in particular, in safety critical applica-
tions like medical diagnosis [120] and automated driving [87]. However, instance
segmentation networks such as YOLACT [13] and Mask R-CNN [59] do not give
well adjusted uncertainty estimations [53]. These networks provide a confidence
value, the score, for each instance which can have high values for false predictions
and low ones for correct predictions. Confidence calibration [53] addresses this
problem by adjusting the confidence values to reduce the error between the aver-
age precision (as a performance measure) and the confidence values [85]. During
inference of instance segmentation networks, all instances with score values below
a threshold are removed. It can happen that correctly predicted instances disap-
pear, while many false positives remain. For this reason, we do not use a score
threshold during inference and instead present an alternative based on an uncer-
tainty quantification method that gives more accurate information compared to
the simple score value. We utilize this uncertainty quantification to improve the
networks’ performance in terms of accuracy. Another approach to improve the

69

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

Figure 4.1: Left: Ground truth image with ignored regions (white). Right: Instance seg-
mentation obtained by the Mask R-CNN network. The bounding boxes drawn around
the instances represent the class, blue denotes cars and red pedestrians.

trade-off between false negatives and false positives has been introduced in [23].
Different decision rules are applied by introducing class priors which assign larger
weight to underrepresented classes.

In this thesis, for the first time, we introduce the tasks of meta classification and
meta regression for instance segmentation, which was previously introduced only
for semantic segmentation, see [136] and Sec. 3.2.3. A semantic segmentation
prediction is post-processed in order to estimate the quality of each predicted
segment. Meta classification refers to the task of predicting whether a predicted
instance intersects with the ground truth or not. A commonly used performance
measure is the intersection over union which quantifies the degree of overlap of
prediction and ground truth. In instance segmentation, a predicted object in-
stance is called false positive if the loU is less than 0.5. Hence, we consider
the task of (meta) classifying between loU < 0.5 and IoU > 0.5 for every pre-
dicted instance. We use meta classification to identify false positive instances
and to improve the overall network performance compared to the application of a
score threshold during inference. The task of meta regression is the prediction of
the IoU for each predicted instance. Both meta classification and regression are
able to reliably quantify the quality of an instance segmentation obtained from a
neural network. In addition, the prediction of the IoU serves as a performance
estimate. For learning both meta tasks, we use instance-wise metrics as input for
the classifier /regressor. In Chapter 3, single-frame metrics were introduced which
characterize uncertainty and geometry features of a given segment. By tracking
these segments over time, time series of single-frame metrics are generated. In
addition to those metrics applied to instance segmentation, we extend them by
novel and truly time-dynamic metrics. These metrics are based on survival time
analysis, on changes in the shape and on expected position of instances in an
image sequence. From this information, we estimate the prediction quality on
instance-level by means of temporal uncertainties. Additionally, for generating
time series, we propose a light-weight tracking approach for predicted instances.
Our tracking algorithm matches instances based on their overlap in consecutive
frames by shifting instances according to their expected location in the subsequent
frame predicted via linear regression.

In this chapter, we present post-processing methods for uncertainty quantification

70

and performance improvement in terms of accuracy. We only assume that a
trained instance segmentation network and image sequences of input data are
available. In our tests, we employ two publicly available networks, the YOLACT
and the Mask R-CNN network (see Sec. 2.1.4). We apply these networks to the
KITTTI and the MOT dataset for multi-object tracking and instance segmentation
(see Sec. 2.5). The source code of our method is publicly available at http://
github.com/kmaag/Temporal-Uncertainty-Estimates. Our contributions are
summarized as follows:

e We present a light-weight tracking algorithm for instances predicted by a
neural network and resulting time-dynamic metrics. These metrics then
serve as input for different models for meta classification and meta regres-
sion.

e We evaluate our tracking algorithm on the KITTI and the MOT dataset.

e We perform meta classification and regression to evaluate the quality of
two state-of-the-art instance segmentation networks, the YOLACT and the
Mask R-CNN network. Furthermore, we study different types of models for
meta tasks w.r.t. their dependence on the length of time series and compare
them with different baselines. For meta regression, we obtain R? values of
up to 86.85% and for meta classification, AUROC values of up to 98.78%
which is clearly superior to the performance of previous approaches.

e For the first time, we demonstrate successfully that time-dynamic meta clas-
sification performance can be traded for instance segmentation performance.
We compare the meta classification performance with the application of a
score threshold during inference. Meta classification reduces the number
of false positives by up to 44.03% while maintaining the number of false
negatives.

This chapter is structured as follows. In Sec. 4.1, we show the differences to related
work on uncertainty estimation and object tracking methods. This is followed by
the presentation of our method in Sec. 4.2. First, the tracking algorithm for
instances is presented in Sec. 4.2.1. Next, we describe our truly time-dynamic
metrics in Sec. 4.2.2 and the meta classification as well as regression models in
Sec. 4.2.3. The numerical results are presented in Sec. 4.3. We evaluate our
light-weight tracking algorithm and investigate the properties of our temporal
metrics. Furthermore, we perform meta regression and classification and study to
which extent false positive detection can be traded for additional object detection
performance. Finally, we conclude with a discussion in Sec. 4.4.

71

http://github.com/kmaag/Temporal-Uncertainty-Estimates
http://github.com/kmaag/Temporal-Uncertainty-Estimates

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

4.1 Related Work

We presented the related work on uncertainty quantification and confidence cal-
ibration in Sec. 2.2. For instance segmentation, only uncertainty estimation
methods based on dropout sampling [112] exist so far. While MC Dropout
[44, 70, 89, 169] is based on multiple runs of a network, our method can be
applied to any network as a post-processing step using only information of the
network output. In most confidence calibration works, the score value is adjusted
by modifying the network architecture [107, 185] or by using additional informa-
tion like training sample size [121] or bounding box positions [85]. Our method
does not modify the network architecture and uses more information of the net-
work output. In Chapter 3, we have introduced time-dynamic meta classification
and regression for semantic segmentation. In this chapter, meta classification and
regression are applied to instance segmentation. While we only provide time se-
ries of single-frame metrics in Chapter 3, we go beyond that and introduce truly
time-dynamic metrics that quantify temporal changes in geometry and expected
position complemented with quantities derived from a survival analysis. Further-
more, we demonstrate that time-dynamic meta classification performance can be
traded for instance segmentation performance.

Deep learning is widely considered in object tracking approaches as described in
Sec. 2.3.1. Methods for tracking instances are often based on the Mask R-CNN
network extending this network by a tracking branch [176], by 3D convolutions to
incorporate temporal information [162] or by a mask propagation branch [9]. Our
tracking method is solely based on the degree of overlap of predicted instances.
Following the tracking algorithm for segments (see Sec. 3.2.1), we introduce a
method to track instances. Hence, we get away with a simple algorithm and
less matching steps. For example, segments of the same class that are close to
each other are merged to one segment, while this contradicts the idea of instance
segmentation. Due to the lack of data in semantic segmentation, the tracking
performance was not evaluated in Chapter 3. For instance segmentation, we
evaluate our tracking algorithm and compare it with the deep learning approach
presented in [162]. Note, in contrast to tracking methods integrated into object
detection or instance segmentation networks, our approach is independent of the
network and serves as a post-processing step.

4.2 Method

Instance segmentation is an extension of object detection. In both tasks, multiple
bounding boxes with corresponding class affiliations are predicted. In instance
segmentation, an additional pixel-wise mask representation is included. In both

72

4.2 Method

tasks, first a score threshold is used to remove objects, and thereafter, a non-
maximum suppression is applied to avoid multiple predictions for the same ob-
ject. Our method is based on temporal information of these remaining instances.
We track instances over multiple frames in image sequences and generate time-
dynamic metrics. From this information, we estimate the prediction quality (meta
regression) on instance-level and predict false positive instances (meta classifica-
tion), also in order to improve the networks’ performance in terms of accuracy.
In the following, we describe our tracking approach, the temporal metrics as well
as the methods used for meta classification and regression.

4.2.1 Tracking Method for Instances

In this section, we introduce a light-weight tracking algorithm for predicted in-
stances in image sequences, where instance segmentation is available for each
frame. Since our method is a post-processing step, the tracking algorithm is inde-
pendent of the choice of an instance segmentation network. Each instance i of an
image z has a label y from a prescribed label space C. In Fig. 4.1 (left) a ground
truth image is shown. Therein, the white areas are ignored regions with unlabeled
cars and pedestrians. An evaluation for predicted instances in these regions is not
possible, therefore all instances where 80% of their number of pixels are inside an
ignored region are not considered for tracking and further experiments. Given an
image , 7, denotes the set of predicted instances not covered by ignored regions.
Following the procedure of the tracking algorithm for segments in Sec. 3.2.1, we
match instances of the same class in consecutive frames as follows: Instances are
matched according to their overlap or if their geometric centers are close to each
other. For this purpose, we shift instances according to their expected location in
the next frame using information from previous frames. We use a linear regres-
sion on t; consecutive frames to match instances that are at least one and at most
t; — 2 frames apart in temporal direction in order to account for flashing instances
(temporary false negatives or occluded instances). We define the overlap of two
instances ¢ and j by
5 ling|
YUl

(4.1)

(according to the formula of IoU) and the geometric center of instance i repre-
sented as pixel-wise mask in frame ¢ by

1

Z (2v, 21) (4.2)

it
| (Zv 7Zh)€i

where (z,, 2z,) describes the vertical and horizontal coordinate of pixel z. We
denote by {x; : t = 1,..., T} the image sequence with a length of 7. Our tracking
algorithm is applied sequentially to each frame ¢t = 1,...,7T. The instances in

73

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

frame 1 are assigned with random IDs. Then, the ones in frame ¢ — 1 follow
a tracking procedure to match with instances in frame t. To give priorities for
matching, the instances are sorted by size and passed in descending order. A
detailed description of how an instance i € Z,, , in frame ¢ — 1 is matched with
an instance j € fxt in frame ¢ is described in Algorithm 4.1. This is performed for
every instance i. If the instances ¢ and j are matched, the algorithm terminates
and instance j is excluded from further considerations in order to preserve the
instance uniqueness. When the algorithm has processed all instances ¢ € jxtfl,
the instances j € fwt that have not been matched (e.g. newly occurring instances)
are assigned with new IDs. Within the description of the tracking algorithm, we
introduce parameters c,, cq and ¢; as thresholds for overlap, distance and distance

after shifting according to linear regression, respectively.

4.2.2 Temporal Instance-wise Metrics

First, we consider the metrics introduced in Sec. 3.2.2 applied to instances. These
metrics are single-frame metrics based on an object’s geometry, like instance size
and geometric center, as well as dispersion measures extracted from the segmen-
tation network’s softmax output, such as an average over an instance’s pixel-wise
entropy. To calculate instance-wise metrics from any uncertainty heatmap (like
pixel-wise entropy), we compute the mean of the pixel-wise uncertainty values of
a given instance. In addition, an instance is divided into inner and boundary. The
ratio of pixels in the inner and the boundary indicates fractal shaped instances
which signals a false prediction. We analogously define uncertainty metrics for the
inner and boundary since uncertainties may be higher on an instance’s boundary.
To this end, for each pixel z, a probability distribution over the class labels y € C,
C ={v1,...,Y}, is required. In more detail, if the network provides a probability
distribution per pixel, the set of metrics is given by

U = {8, Sin, Spa, S, Sin} U {i} U{P(yli) : y=1,...,c}
U{D, Din, Dya. D, Dy, : D € {E,V,M}}. (4.3)

If the network does not provide a probability distribution for each pixel, but only
for the instance, we only use a smaller set of metrics presented in Sec. 3.2.2 that
can be computed from the predicted instance mask, i.e.,

Instead of calculating the mean of pixel-wise uncertainty heatmaps, we compute

the entropy E of the probability distribution for the instance and the relative
entropy £ = ES. We denote both sets of metrics by U’ independent of the

74

4.2 Method

Algorithm 4.1: Tracking algorithm

[y

/* shift */

2 if ¢t > 2 and instance i exists in frame t — 2 then

3 shift instance i from frame ¢ — 1 by the vector (i;_; — ;_2)

4 if maxeg O;; > c, then

5 ‘ match instances ¢ and j

6

7 else if minjefzt l7e — de-all2 + | (G—1 — i4—2) — (Je — i4-1)]|2 < cq then
8 ‘ match instances ¢ and j

9

10 end

11 /* distance */
12 if t > 1 and i does not exist in frame t — 2 then

13 if minjej% |7t — it—1]|2 < cq then
14 ‘ match instances ¢ and j

15 end

16 end

17 /* overlap */
18 if t > 1 and max; g O;; > ¢, then

19 ‘ match instances 7 and j
20 end
21 /* regression */
22 if t > 3 and instance © appears in at least two of the framest —1t;,...,t —1
then
23 compute geometric centers of instance 7 in frames ¢t — ¢; to t — 1 (in
case 1 exists in all these frames)
24 perform linear regression to predict the geometric center (i;)
25 | if min;; je — itll2 < ¢ then
26 match instances ¢ and j
27 else
28 shift instance i € jxtmaz by the vector (i, — 4;,,,.) where
tmaz € {t —t;,...,t — 1} denotes the frame where i contains the

maximum number of pixels

29 if Hlaneth Oi,j Z Co then
30 ‘ match instances ¢ and j
31 end

32 end

33 end

5

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

network. These metrics serve as a baseline in our tests and as a basis for the
following metrics.

Next, we define six additional metrics mostly based on temporal information
extracted from the tracking algorithm. Instance segmentation, as an extension of
object detection, provides a confidence value for each instance. We add this score
value, denoted by s, to our set of metrics.

The next metric is based on the variation of instances in consecutive frames.
Instance ¢ of frame ¢ — 1 is shifted such that ¢ and its matched counterpart j in
frame ¢ have a common geometric center. Then, we calculate the overlap (4.1)
as a measure of shape preservation f. Large deformations may indicate poorly
predicted instances.

In the following, time series of the previously shown metrics are constructed. For
each instance ¢ in frame t, we gather a time series of the geometric centers iy,
k=t—5,...,t — 1. If the instance exists in at least two previous frames, the

geometric center i; in frame ¢ is predicted using linear regression. The deviation

between geometric center and expected geometric center ||i; — 7|2 is used as a
time-dynamic measure denoted by d.. We proceed analogously with the instance
size S = |i| and compute the size deviation |S — S| =: d,. Small deviations d,
and d, indicate that the predicted instance is consistent over time.

The following metric is based on a survival analysis [111] of the instances. All
predicted instances that are matched in the previous 5 frames with the same
ground truth instance are chosen. A predicted instance ¢ and a ground truth
instance g are considered as a match if they have an IoU > 0.5. The associated
survival time of instance 7 in frame ¢ is described by the number of frames in which
ground truth instance g appears in consecutive frames. By the proposed tracking
method, we obtain time series for each of the previously presented single-frame
metrics Uy U {sy}, k =t —5,...,t. These serve as input for a Cox regression [30]
survival model which predicts the survival times v of instances. A higher value of
v indicates reliable instances, while a lower value suggests uncertainty.

The final measure is based on the height to width ratio of the instances. To this
end, we calculate the average height to width ratio of ground truth instances g

per class ¢ by

1 h
GT g
ry = D (4.5)
|gE| IS Wy

where h, denotes the height and w, the width of an instance g. We separate the
ratio by class, as for instance cars and pedestrians typically have different ratios
of height and width. False predictions can result in deviations of these typical
ratios. The ratio metric for a predicted instance i is given by 7 := (h;/w;)/r$T.

76

4.2 Method

softmax instance matched

output segmentation instances metrics
arg- tracking
max Ealgorithm
‘ [/

Figure 4.2: Overview of the metrics’ construction that only requires a sequence of the
softmax outputs. The information is extracted from the softmax output and further
downstream from the instance segmentation and the instance tracking (blue arrows).
The resulting metrics serve as input for the meta classifiers and regressors.

For the calculation of the ratio rST and the training of the survival model, only
the ground truth data of the training set is used. Thus, the metrics r and v
for instances in the test dataset can be determined without knowledge of ground
truth. In summary, we use the following set of metrics

Vi={UYU {s, f,d,,ds,v,r}. (4.6)

An overview of the metrics’ construction is shown in Fig. 4.2.

4.2.3 loU Prediction

The intersection over union is a measure to determine the prediction accuracy of
segmentation networks with respect to the ground truth. A predicted instance ¢
is matched with a ground truth instance g if its overlap is the highest compared to
the other ground truth instances and ¢ is not yet matched with another predicted
instance. Fach ground truth instance can be matched with at most one predicted
instance. The IoU is then calculated between these two instances ¢ and ¢g. In
this thesis, we perform instance-wise predictions of the IoU (meta regression)
comparing different regression approaches. In addition, we classify between loU
< 0.5 and JoU > 0.5 (meta classification) for all predicted instances. If the
IoU of a predicted instance is less than 0.5, this instance is considered as a false
positive. The metrics introduced in Sec. 4.2.2 serve as input for both prediction
tasks. Just like for the survival model, we compute time series of these metrics.
We have for an instance i € Z,, in frame ¢ the metrics V}, as well as V} from
previous frames ¢ < ¢ due to object tracking. Meta classification and regression
are performed by means of the metrics V}, k = t—n,, ..., t, where n, describes the
number of considered frames. For regression, we use gradient boosting regression
(C:17), shallow neural networks containing only a single hidden layer consisting
of 50 neurons with ¢; /¢5-penalization (NN L1/) and linear regression with
{1 /ls-penalization (LR L1/) as well as without penalization (LR). Gradient
boosting, a shallow neural network with fs-penalization and logistic regression
with ¢;-penalization are considered for classification. Details of the used methods
are described in Sec. 2.4. We analyze the benefit from using time series and the
extent to which the additional metrics V*\ U’ yield improvements.

7

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

4.3 Numerical Results

In this section, we evaluate our light-weight tracking algorithm and investigate
the properties of the metrics defined in the previous section. We perform meta
regression and classification and study the influence of the length of the time
series considered as well as different methods for the meta tasks. Furthermore,
we study to which extent false positive detection can be traded for additional
object detection performance and thus, serve as an advanced score. To this end,
we compare meta classification with ordinary score thresholds in terms of numbers
of false positives and false negatives. We perform our tests on the KITTI dataset
for multi-object tracking and instance segmentation, which contains 21 street
scene videos from Karlsruhe (Germany) consisting of 1,242 x 375 8,008 images.
Additionally, we use the MOT dataset with scenes from pedestrian areas and
shopping malls, which consists of 2,862 images with resolutions of 1,920 x 1,080
(3 videos) and 640 x 480 (1 video). For both datasets, annotated image sequences
are available [162]. In contrast to the KITTI dataset, the MOT dataset only
includes labels for the class pedestrian, but not for car. Details of both datasets
are shown in Sec. 2.5. In our experiments, we consider two different networks, the
YOLACT network and the Mask R-CNN which are introduced in Sec. 2.1.4. The
YOLACT network has a slim architecture designed for a single GPU. We retrain
the network using a ResNet-50 [61] backbone and starting from backbone weights
for TmageNet [140]. We choose 12 image sequences consisting of 5,027 from the
KITTI dataset (same splitting as in [162]) and 300 images from the MOT dataset
for training. As validation set, we use the remaining 9 sequences of the KITTI
dataset, achieving a mean average precision (mAP) of 57.06%. The Mask R-
CNN focuses on high-quality instance-wise segmentation masks. As backbone,
we use a ResNet-101 and weights for COCO [95]. We choose the same 12 image
sequences of the KITTI dataset as training set as well as 9 sequences as validation
set achieving a mAP of 89.87%. In the training of both networks, the validation
set is neither used for parameter tuning nor early stopping. We choose a score
threshold of 0 to use all predicted instances for further experiments. For instance
tracking (see Algorithm 4.1), we use the following values: ¢, = 0.35, ¢ = 100
and ¢; = 50. In our experiments, we use metrics extracted from the segmentation
network’s softmax output. The Mask R-CNN outputs a probability distribution
per pixel, while the YOLACT network only returns one probability per instance.
For this reason, the set U’ consists of more metrics for the Mask R-CNN network.

4.3.1 Evaluation of our Tracking Algorithm

For the evaluation of our tracking algorithm, we use common object tracking met-
rics introduced in Sec. 2.3.2. The following metrics precision, recall, F-measure

78

4.3 Numerical Results

Table 4.1: Mismatch ratio mmeé and MOTA results obtained by TrackR-CNN and by
our tracking approach.

TrackR-CNN ours

mme MOTA | mme MOTA
MOT | 0.0117 0.6657 | 0.0185 0.6589
KITTI | 0.0153 0.7993 | 0.0235 0.7911

and FAR are based on the errors of the object detection like false positive and false
negative objects. Furthermore, the multiple object tracking precision (MOTP)
corresponds to the averaged distance between geometric centers (geo) or bounding
box centers (bb) of matched ground truth and predicted instances. We consider
these metrics as performance measures for object tracking methods. Moreover,
the multiple object tracking accuracy (MOTA) focuses on the tracking of objects
and also of the detection. The MOTA is based on three error ratios, the ratio
of false negatives, false positives and mismatches (Twme). A mismatch error oc-
curs when the ID of a predicted instance that was matched with a ground truth
instance changes. In addition, we define by G'T all ground truth objects of an
image sequence which are identified by different IDs and divide these into three
cases. An object is mostly tracked (MT) if it is tracked for at least 80% of frames
(out of the total number of frames in which it appears), mostly lost (ML) if it is
tracked for less than 20%, else partially tracked (PT).

In [162], the TrackR-CNN is presented which tracks objects and performs instance
segmentation, both by means of a single neural network. To this end, the Mask
R-CNN network is extended by 3D convolutions to incorporate temporal infor-
mation. This method is tested on the MOT dataset and the validation dataset
of KITTI. To compare our approach with the TrackR-CNN method, we use the
instances predicted by this network and apply our tracking algorithm to these
instances to assess only the tracking quality (not the instance prediction quality
of the network). The performance metrics mainly evaluate the object detection,
while object tracking is only evaluated in the ratio of mismatches and MOTA. For
this reason, we consider the latter two performance metrics for our comparison
on the TrackR-CNN instances. The results are given in Table 4.1. We obtain
for the MOT dataset a slightly higher mismatch ratio than TrackR-CNN and a
MOTA value which is only 0.68 pp lower. For the KITTI dataset, the results are
similar. In summary, our results are slightly weaker in tracking performance than
TrackR-CNN, however, our algorithm does not use deep learning and is indepen-
dent of the choice of instance segmentation network which enables us to conduct
time-dynamic uncertainty quantification for any given instance segmentation net-
work.

For further tests, we use the YOLACT and the Mask R-CNN network for instance
prediction. The results of object tracking metrics and performance measures for

79

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

Table 4.2: Object tracking results and performance measures for the KITTT dataset.

precision recall ~F-measure FAR MOTPy, MOTPg,
YOLACT | 0.3186 0.7211 0.4420 294.20 3.34 2.68
Mask 0.5546 0.9379 0.6970 143.74 2.61 2.39
GT MT PT ML mimne MOTA
YOLACT 219 124 75 20 0.0539 —0.8746
Mask 219 204 13 2 0.0564 0.1281
1.0 .
10 5 /f
0.8 A i
2 pio
g ° e
=] 5 04- o
= /’
0.2 s
10! 4 Re
4
004 “
10° 10* 102 0.00 0.25 0.50 0.75 1.00
lifetime IoU

Figure 4.3: Left: Instance lifetime (time series length) vs. mean instance size, both on
log scale. Right: Predicted IoU vs. IoU for all predicted instances. The dot size is
proportional to the instance size.

the KITTTI dataset are shown in Table 4.2. Mask R-CNN mainly achieves better
results than YOLACT. This can be attributed to the fact that Mask R-CNN
achieves higher mAP values than YOLACT. In Fig. 4.3 (left) the correlation
between the instance lifetime and the mean instance size is depicted for the Mask
R-CNN. On average, a predicted instance exists for 6.0 frames and when we
consider only instances that contain at least 1,000 pixels, the average life time
increases to 16.0 frames. For the YOLACT network, a predicted instance exists
for 8.8 frames and this can be increased to 16.4 frames.

4.3.2 Meta Classification and Regression

While the KITTI dataset contains 10 frames per second videos of street scenes,
the MOT dataset contains mostly 30 fps videos of pedestrian scenes. Due to
slower motions, the data extracted from the images is very redundant and we get
fewer different instances. As an example, two consecutive frames with an offset
of two seconds are shown in Fig. 4.4. This shows the less variation in the MOT
videos and thus, the redundancy of the images. As a consequence, significant

30

4.3 Numerical Results

Figure 4.4: Two frames of the MOT dataset. Between both frames is a time gap of
two seconds, i.e., 60 frames. Top: Ground truth with ignored regions (white). Bottom:
Instance segmentation obtained by the Mask R-CNN. Each color correspond to an
instance ID.

Table 4.3: Correlation coefficients p with respect to IoU for the YOLACT network.

s | 0.87603 | ds | 0.27549 | S | 0.17161 0.26096 | E' | —0.29414
f 1080331 | v | 0.81413 | S;, | 0.17042 0.26096 | E 0.25904
de | 041061 | v | 0.74152 | Spq | 0.19498

<
3

"C/)?C/)

0.07208 | ip 0.02051

~
<

overfitting problems occur when applying meta classification and regression. Also
downsampling the frame rate is not an option due to the lack of data. Hence,
we only consider the KITTI dataset for further experiments. In the following, we
study the predictive power of the metrics, present the results of the meta tasks
and compare our methods with different baselines.

In order to investigate the predictive power of the metrics, we compute the Pear-
son correlation coefficients p between the metrics V* and the IoU. The results
for the YOLACT network are given in Table 4.3. The score value s, the shape
preservation metric f, the survival metric v as well as the ratio r demonstrate a
strong correlation with the loU. The corresponding scatter plots are shown in
Fig. 4.5. The YOLACT network only provides a probability distribution per in-
stance, while the Mask R-CNN outputs pixel-wise probability distributions. For
this reason, we obtain more metrics for the Mask R-CNN, see Table 4.4. As
for the YOLACT network, the Mask R-CNN demonstrates strong correlations
between the loU as well as the score value s and the shape preservation met-
ric f. Moreover, high correlations are shown for the mean entropy E and the
mean variation ratio V as well as for the mean variation ratio on the boundary

81

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

p = 0.87603 p = 0.80331 p=0.81413 p=0.74152
- 5 . 3

g 1 . 1 5.43- 6.4

| e

0]e 0| ——————= (.00 &—— 0.0 &——
0 IoU 1 0 IoU 1 0 ToU 1 0 IoU 1

Figure 4.5: Correlations between metrics and IoU for the YOLACT network. The dot
size is proportional to the instance size.

Table 4.4: Correlation coefficients p with respect to IoU for the Mask R-CNN.

s 0.73026 | S | 0.29241 | E | —0.70813 | V | —0.61669 | M | —0.32468
f 0.60332 | S;, | 0.28913 | E;, | 0.00395 | Vi, | —0.14498 | M;,, | —0.05736
d. | —0.10817 | Sy | 0.37846 | Epy | —0.42140 | Viy | —0.61522 | M,y | —0.64857
dy | 0.11985 | S | 0.45847 | E 0.45809 | V 0.46154 | M 0.46599
v 0.20490 | S;, | 0.45847 | E;,, | 0.45835 | Vi, | 0.46349 | M,, | 0.46821
r | —0.10071 | 7, | 0.15245 | i, 0.05788

Vie and the mean probability margin on the boundary M,,. As a consequence,
the single-frame metrics U? extracted from the network’s output can be used as
a baseline. For details of the construction of these metrics see Sec. 3.2.2. In
comparison to semantic segmentation where typically a cross-entropy loss (2.14)
and a softmax function (2.6) per pixel are used, the Mask R-CNN uses a binary
loss and the sigmoid function (2.3) per pixel. This results in a mask generation
without competition among classes and high values for the dispersion measures
like the pixel-wise entropy (see Fig. 4.6). The differences of the mean entropy
between predicted segments and instances for the KITTI dataset are shown in
Fig. 4.7. For segments, we obtain mean entropy values between 0 and 1 while for
instances these values are greater than 0.9. However, the results are similar in
both cases. For high uncertainty, i.e., high entropy values, the loU/IoU ,q; values
are very low and vice versa.

For meta classification (false positive detection: loU < 0.5 vs. IoU > 0.5) and
meta regression (prediction of the IoU), we use the KITTI validation set consist-
ing of 2,981 images. In our tests, we choose relatively low score thresholds, i.e.,
0.1 for YOLACT and 0.4 for Mask R-CNN. This is done to balance the num-
ber of false positives, such that the meta tasks obtain enough training data and
the tracking performance is not significantly degraded. As input for the meta
models, we use a combination of the presented metrics and further, study their
predictive power as well as the influence of time series. Firstly, we only present
the instance-wise metrics V; of a single frame ¢ to the meta classifier /regressor,

82

4.3 Numerical Results

LY
g ---

Figure 4.6: Left: Instance segmentation predicted by the Mask R-CNN. Right: Corre-
sponding pixel-wise entropy. The missing predictions of the cars are located in ignored
regions and for this reason, not considered.

1.00 1
0.81
0.981
g 0961 18 s
I, 0.4
0.941 |
I 0.2
0.92 001 | . . . | , .
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350
time series time series

Figure 4.7: Left: The mean entropy metric for all tracked instances as time series.
Right: Time series for all tracked segments where only time series with a length of at
least 50 frames are included. The instances are predicted by the Mask R-CNN and the
segments by the MobilenetV2 both for the KITTI dataset. The color corresponds to
the average IoU/IoU,q; value for each instance/segment, green color for high values
and red color for low ones.

secondly we extend the metrics to time series with a length of up to 10 previ-
ous time steps Vi, k = ¢ —10,...,t — 1. For the presented results, we apply a
(meta) train/validation/test splitting of 70%/10%/20% and average the results
over 10 runs obtained by randomly sampling the splitting. In tables and figures,
the corresponding standard deviations are provided.

For the YOLACT network, we obtain roughly 13,074 instances (not yet matched
over time) of which 4,486 have an IoU < 0.5. For the Mask R-CNN this ratio is
17,211/6,614. For meta classification, we consider as performance measures the
classification accuracy and AUROC (Sec. 2.4.4). For meta regression, we com-
pute the standard errors o and R? values (Sec. 2.4.4). In Fig. 4.8 the results
for regression R? (right) and for classification AUROC (left) as functions of the
number of frames for both networks are given. We observe that the methods
benefit from temporal information, although there are significant differences be-
tween them. The best results (over the course of time series lengths) for meta
classification and meta regression are given in Table 4.5. Gradient boosting shows

33

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

e LRLI GB NN L2 e LRe LRL1* LRL2* GB e NN LI+ NN L2
0.98
0.97 0.80
@) =
QQ:0.96 N 0.75 '/\./A/‘\“//.\._.
St
=0.95 ——t——o——2— 0.70
< —
0.94 0.65
0.93 0.60
2 4 6 8 10 2 4 6 8 10
number of considered frames number of considered frames
o LR LI GB NN L2 eLRe LRLl® LRL2+ GBe NNLI* NN L2
0.900
0.990 0.875
S0.985 0.8501 epmtmme™ S
=0.980 0.800 //'W'—k'_m
0.975 0.775
0.750
2 4 6 8 10 2 4 6 8 10

number of considered frames number of considered frames

Figure 4.8: Top left: Results for meta classification AUROC as functions of the number
of frames for the YOLACT network. Bottom left: Meta classification results for the
Mask R-CNN. Top right: Results for meta regression R? as functions of the number of
frames for the YOLACT network. Bottom right: Meta regression results for the Mask
R-CNN.

the best performance in comparison to linear models and neural networks with
respect to all classification and regression measures. For meta classification, we
achieve AUROC values of up to 98.78%. In Fig. 4.9, the influence of the metrics
V% on the meta classification performance for the YOLACT network is shown.
The time series length of used metrics corresponds to the highest AUROC' value
achieved by incorporating 5 previous frames for the linear model and 8 previous
frames for gradient boosting. In both plots, the score s, the shape preservation
metric f, the relative entropy E and metrics based on instance sizes have the most
influence on the performance. Furthermore, the influence gets smaller as the time
series length increases. For meta regression, the highest R? value of 86.85% for
the Mask R-CNN network is obtained by incorporating 10 previous frames. For
this specific case, the correlation of the calculated and predicted IoU is depicted
in Fig. 4.3 (right) and an illustration of the resulting quality estimate is shown
in Fig. 4.10. We also provide video sequences! that visualize the IoU prediction

http://youtu.be/6SoGmsAarTI

84

http://youtu.be/6SoGmsAarTI

4.3 Numerical Results

Table 4.5: Results for meta classification and regression for the different meta classi-
fiers and regressors. The super script denotes the number of frames where the best

performance and in particular, the given values are reached.

YOLACT
meta classification loU < 0.5,> 0.5
LR L1
ACC 90.22% + 3.06%2% | 92.62% =+ 2.48%° | 90.49% =+ 2.34%!
AUROC | 95.01% £ 1.60%° | 96.98% =+ 0.87%° | 95.04% + 1.19%3
meta regression foU
LR LR L1
o 0.165 £ 0.017° 0.164 £ 0.0137 0.165 £ 0.017°
R? 66.99% + 4.56%> | 67.34% + 4.10%" | 66.94% =+ 4.46%>
NN L1
o 0.130 £0.018° 0.142 £+ 0.021° 0.141 £ 0.0212
R? 79.87% + 2.66%° | 75.40% + 5.55%° | 75.89% =+ 5.19%>
Mask R-CNN
meta classification loU < 0.5, > 0.5
LR L1
ACC 93.43% £ 1.78%* 1 95.07% + 1.24%" | 94.31% + 1.65%"
AUROC | 98.26% =+ 0.86%° | 98.78% =+ 0.53%5 | 98.42% + 0.68%5
meta regression loU
LR LR L1
o 0.168 + 0.017 0.170 £ 0.0178 0.168 £ 0.017°
R? 81.75% 4+ 3.87%° | 81.36% + 3.76%° | 81.75% =+ 3.95%5
NN L1
o 0.142 £+ 0.020'" 0.149 + 0.020° 0.148 £ 0.025%
R? 86.85% + 3.96%" | 85.52% 4+ 4.19%° | 85.84% =+ 3.94%*

and instance tracking.

In Fig. 4.11 (right), we compare our best results for meta classification and re-
gression for both networks with the following baselines. Our results in Sec. 3.3
are compared with a single-metric baseline as the mean entropy. We apply as
single-metric also the mean entropy per instance as well as the score value using
single-frame gradient boosting. In addition, the approach in [136] can be consid-
ered as a baseline. For this, we only apply the metrics U’ for a single frame and
the linear models. For our time-dynamic extension introduced in Chapter 3 as
baseline, the metrics U’ are also used, however, as time series and as input for
the best performing meta model. The best results for each method are displayed
in Fig. 4.11 (right). We observe that our method using metrics V* and gradient
boosting outperforms all baselines. In Fig. 4.11 (left), a comparison is shown be-
tween metrics U, all single-frame metrics (U’ plus score and ratio) and all metrics
including the temporal ones. As shown before, the metrics U? are clearly outper-
formed. The single-frame metrics obtain significantly lower R? values compared
to all metrics V¢, This difference can be observed when applying linear models

85

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

E - FE S Sb(I'Sin'S'Sin f'd(: ds o Ev'gh'r“s v R Py

1.0 0.175
0.5 \ g 0.150
2 0.0 Eit—=t—p=—x | 30125
é —0.5 // %o.mo
58—1.0 20075
S_15 20.050] .
—2.0 £0.025 \‘z
—2.51 ¢ 0.000] Tttt
t t—2 t—4 t t—2 t—4 t—6 1—8
frame frame

Figure 4.9: Left: The weight coefficients for the 15 metrics and predicted class prob-
abilities P(y|i) denoted by P;, i = 0,1, computed with LASSO fits (linear regression
with ¢1-penalization). Right: Feature importance analysis of these metrics obtained by
gradient boosting. For both figures, the time series length corresponds to the number

of considered frames used to achieve the meta classification results in Table 4.5 for the
YOLACT network.

Figure 4.10: Left: A visualization of the true instance-wise IoU of prediction and ground
truth. Green color corresponds to high IoU values and red color to low ones. Right:
Instance-wise IoU prediction obtained from meta regression. Corresponding ground
truth and instance segmentation are shown in Fig. 4.1.

as well as neural networks, whereas it is rather small when using gradient boost-
ing. Gradient boosting has a strong tendency to overfitting and due to the small
amount of data, we suspect that the gap between the performance of different
metrics would also increase with more data. In summary, we outperform all base-
lines by using our time-dynamic metrics as input for meta classifiers/regressors.
We reach AUROC values of up to 98.78% for classifying between true and false
positives.

4.3.3 Advanced Score Values

In object detection, the score value describes the confidence of the network’s
prediction. During inference, a score threshold removes false positives. If the

36

4.3 Numerical Results

o U ® U'U{s,r} o V'

1.0 . .
0.70 0.9 4 : !
/’*—H—H—.—.—H ().8
0.65 + t
0.55 05 1
: $ AUROC YOLACT
0.4 l AUROC Mask R-CNN
0.50 0.3 o l?j YOLACT
2 4 6 8 10 R? Mask R-CNN

number of considered frames entropy score ms time ms ours

Figure 4.11: Left: Meta regression via linear regression with ¢;-penalization for vari-
ous input metrics and for the YOLACT network. Right: Different baselines for both
networks comparing AUROC and R? values. From left to right: mean entropy, score
value, single-frame MetaSeg (ms) approach [136] with linear models, our time-dynamic
extension presented in Chapter 3 using metrics U* and the best performing meta model,
our method using metrics V* and also the best performing meta model.

threshold is raised to a higher value, not only false positives are removed, but
also true positives. We study the network’s detection performance while varying
the score threshold. In total, we select 30 different score thresholds from 0.01
to 0.98. Meta classification provides a probability of observing a false positive
given a predicted instance. We threshold on this probability also with 30 dif-
ferent thresholds and compare this to ordinary score thresholding. To this end,
we feed gradient boosting as meta classifier with all metrics V* including 5 pre-
vious frames. In Fig. 4.12 the performance is stated in terms of the number of
remaining false positives and false negatives. Each point represents one of the
chosen thresholds. For the YOLACT network, the meta classification achieves a
lower number of errors, i.e., less false positives and false negatives. In compari-
son to score thresholding, we can reduce the number of false positives by up to
44.03% for the approximate same number of false negatives. This performance
increase is also reflected in the mAP. The highest mAP value obtained by score
thresholding is 57.04% while meta classification achieves 58.22%. In Fig. 4.13,
the mAP values for score and meta classification thresholding are given for the
YOLACT network. The gap between both methods is shown as well as the per-
formance increase by meta classification. When applying the Mask R-CNN, we
can reduce the number of false positives up to 43.33% for the approximate same
number of false negatives. The maximum mA P values for both methods are sim-
ilar. Score thresholding achieves an mAP of up to 89.87% and meta classification
of up to 89.83%. For both networks, we can improve the networks’ performance
by reducing false positives while the number of false negatives remains almost
unchanged. Our method can be applied after training an instance segmentation

87

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

8

i ® score 31 ® score
611 L . .

1 meta classification meta classification
s
91 & 21

® ®

false negatives (x10%)

4

10 15 00 25 50 75
false positives (x10%)

o
[Sa R

Figure 4.12: Left: Number of false positive vs. false negative instances for different
thresholds for the YOLACT network. Right: Results for the Mask R-CNN.

score meta classification

R
N S L
(e Ut o Ut

o
Ut

mean average pI’OCiSi()Il

0.30 1

Figure 4.13: Mean average precision values for different thresholds and the YOLACT
network.

network and does not increase the network complexity. Up to some adjustment
in the considered metrics, this approach is applicable to all instance segmentation
networks.

4.4 Discussion

In this chapter, we proposed post-processing methods for instance segmentation
networks, namely meta classification and meta regression. These methods are
based on temporal information and can be used for both uncertainty quantifica-
tion and accuracy improvement. We introduced and evaluated our light-weight
tracking algorithm for instances, that is independent of the instance segmentation
network. From tracked instances, we constructed time-dynamic metrics (time se-
ries) and used these as inputs for the meta tasks. On the one hand, these metrics

38

4.4 Discussion

Figure 4.14: Top: Ground truth of two different images with ignored regions (white).
Bottom: Instance segmentation obtained by the YOLACT network resulting in non-
detected ground truth instances, i.e., false negatives (cyan colored bounding box at the

top).

characterize uncertainty and geometry of instances. On the other hand, we used
truly time-dynamic ones based on survival time analysis, on changes in the shape
and on expected position of instances in an image sequence. In our tests, we
studied the influence of these metrics, various time series lengths and different
models for the meta classification and regression. For meta classification, clas-
sifying between loU < 0.5 and IoU > 0.5, we obtained AUROC' values of up
to 98.78% and for meta regression, direct prediction of the IoU, R? values of up
to 86.85% which is clearly superior to the performance of the baseline methods.
Using meta classification we also improved the networks’ prediction accuracy by
replacing the score threshold by the estimated probability of correct classification
during inference. We reduced the number of false positives by up to 44.03% while
maintaining the number of false negatives.

If we change the point of view in Fig. 4.12, we can reduce the number of false
negatives by up to 15.70% for the approximate same number of false positives
using meta classification. However, the number of false negatives, especially in
the YOLACT network, is still high with about 3K. In Fig. 4.14, two example
images of an instance segmentation are shown. In one instance segmentation
(left), two pedestrians are not detected. In this frame, both pedestrians are on the
sidewalk, although they may cross the street a few seconds later. For this reason,
the detection of pedestrians at an early stage is important to prevent hazardous
scenarios. In the other instance segmentation (right), the vehicle parking left of
the ego car is not detected, even though the vehicle is close. Due to the non-
detection, an accident can occur if the ego car is going to park on the left side or
moves to the left due to the narrow road. The two examples of the non-detected
instances illustrate the significance of minimizing false negative instances.

Up to now, we have focused on the detection of false positive segments and in-

39

4 Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates

stances. This is important since, for example, in automated driving, the flow of
traffic should not be impaired by falsely detected objects. On the other hand, we
have demonstrated in Fig. 4.14 that false negative objects can lead to dangerous
situations and therefore, should be minimized. In the following chapter, we study
the reduction of false negative instances in image sequences using uncertainty
information.

90

Chapter

False Negative Reduction in Video
Instance Segmentation using Uncertainty
Eistimates

Instance segmentation combines object detection, which means the task of catego-
rizing as well as localizing objects using bounding boxes, and semantic segmenta-
tion, i.e., the pixel-wise classification of image content. In instance segmentation,
the localization of objects is performed by predicting each pixel that corresponds
to a given instance. Thereby, instance segmentation provides precise localization
on instances of important classes. State-of-the-art approaches are mostly based
on convolutional neural networks. Neural networks as statistical models produce
probabilistic predictions prone to error. For this reason, it is necessary to under-
stand and minimize these errors. In safety critical applications like automated
driving [87] and medical diagnosis [120], the reliability of neural networks in terms
of uncertainty quantification [44] and prediction quality estimation [33] is of high-
est interest. The prediction quality estimation is also considered in Chapter 4 for
instances. Instance segmentation networks (for example Mask R-CNN [59] and
YOLACT [13]) provide for each object a score (confidence) value. However, these
scores do not correspond to a well-adjusted uncertainty estimation [53] as they
can have low values for correctly predicted instances and high values for false
predictions. This problem is addressed by confidence calibration [85] where the
confidence values are adjusted to improve the prediction reliability. During infer-
ence of an instance segmentation network, a score threshold is applied to remove
all instances with low confidences. This is done to balance the number of false
positive and false negative instances. Nevertheless, this can result in correctly
predicted instances vanishing as well as many false positives remaining. These
errors shall be reduced to improve network performance in terms of accuracy.

91

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

In applications such as automated driving, the detection of road users, i.e., the
reduction of false negative instances, is particularly important. In other words,
it is preferable to incorrectly predict the presence of road users than to missing
them. For this reason, we use a relatively small score threshold value during
inference and apply a light-weight false negative detection algorithm on these re-
maining instances to find possible overlooked ones. Since the number of predicted
instances can be greatly increased by our algorithm to reduce false negatives, we
use false positive detection based on uncertainty estimates to prune them. We
utilize this fused approach to improve the networks’ performance and to reduce
false negatives, i.e., attain a high recall rate, compared to using ordinary score
thresholds.

In this chapter, we introduce a false negative reduction method based on uncer-
tainty estimates for instance segmentation networks. Our approach serves as a
post-processing step applicable to any network. First, the predicted instances
obtained by a neural network are tracked in consecutive frames. Next, our light-
weight detection algorithm is applied which is based on inconsistencies in the time
series of the tracked instances such as a gap in the time series or a sudden end.
We detect these cases and construct new instances that the neural network may
have missed using the information of previous frames. To this end, we create time
series of the instances and shift the pixel-wise mask of a previous frame to the pre-
dicted current position of the new instance via linear regression. By this detection
method, the number of instances can be greatly increased and thus, we deploy
meta classification (see Sec. 4.2.3) to improve also the precision rate. Meta clas-
sification addresses the task of predicting if a predicted instance intersects with
ground truth or not. To quantify the degree of overlap between prediction and
ground truth, we consider the IoU. In object detection, meta classification refers
to the task of classifying between IoU < 0.5 and IoU > 0.5 and in semantic
segmentation between loU = 0 and loU > 0. Since instance segmentation is a
combination of both, we classify between loU < 7 (false positive) and loU > 7
(true positive) for all predicted instances using different thresholds 7 between 0
and 0.5. We use meta classification as false positive pruning after the application
of our detection algorithm to improve the overall network performance in compar-
ison to score thresholding during inference. As input for the meta classification
model, instance-wise metrics are constructed. These metrics characterize uncer-
tainty and features of a given instance like instance size, geometric center and
occlusion level. In addition, we apply a depth estimation network which can infer
in parallel to the instance segmentation network. Based on the resulting pixel-
wise heatmap (see Fig. 5.1), we construct further metrics aggregated per instance.
We complete our set of metrics with measures presented in Chapter 4 that are
based on expected position, changes in the shape and survival time analysis of
instances in an image sequence.

92

Figure 5.1: Top left: Ground truth image with ignored regions (white). The bounding
boxes drawn around the instances represent the class, red denotes pedestrians and blue
cars. The cyan colored bounding boxes highlight non-detected instances. Top right:
Instance segmentation. Bottom left: A visualization of the calculated instance-wise IoU
of prediction and ground truth. Green color corresponds to high IoU values. Bottom
right: Depth estimation map.

In this chapter, we present a post-processing method for performance improve-
ment and in particular, for false negative reduction based on uncertainty esti-
mates. We only assume that image sequences of input data and a trained in-
stance segmentation network are available. In our tests, we employ two instance
segmentation networks, YOLACT and Mask R-CNN (see Sec. 2.1.4), and deploy
these networks to the KITTT and the MOT dataset for multi-object tracking and
instance segmentation (see Sec. 2.5). The source code of our method is publicly
available at http://github.com/kmaag/Temporal-False-Negative-Reduction.
Our contributions are summarized as follows:

e We introduce a light-weight detection algorithm applied to tracked (by Al-
gorithm 4.1) predictions of an instance segmentation network to detect pos-
sible missed instances of this network. Furthermore, we construct efficient
time-dynamic metrics for meta classification.

o We study the properties of the metrics and the influence of different lengths
of time series which are used as input for the meta classification model.
We perform meta classification to detect false positive instances achieving
AUROC values of up to 99.30%.

e For the first time, we demonstrate successfully that a post-processing false
negative detection method can be traded for instance segmentation perfor-
mance. We compare our approach with the application of a score threshold
during inference. Our detection algorithm fused with uncertainty based
meta classification achieves AUPRC' values of up to 98.07%.

93

http://github.com/kmaag/Temporal-False-Negative-Reduction

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

The chapter is structured as follows. The related work on false negative reduction
methods is discussed in Sec. 5.1. In Sec. 5.2, we introduce our method including
the false negative detection algorithm in Sec. 5.2.1, the construction of instance-
wise metrics in Sec. 5.2.2 and meta classification in Sec. 5.2.3. In comparison to
Sec. 4.2.3, we refine the meta classification task using different thresholds and
computation rules. The numerical results are presented in Sec. 5.3. We study the
properties of the metrics and the influence of different lengths of the time series
which serve as input to the meta classifier. Furthermore, we evaluate to which
extent our detection algorithm fused with uncertainty based meta classification
can improve an instance segmentation performance and reduce false negative in-
stances. We conclude in Sec. 5.4.

5.1 Related Work

In this section, we present the related work on methods for false negative reduc-
tion, i.e., recall rate increase. For semantic segmentation, a method to achieve
a higher recall rate is proposed in [171] based on the loss function, classifier and
decision rule for a real-time neural network. The similar approach in [172] uses
an importance-aware loss function to improve the networks’ reliability. In [23],
the differences between the maximum likelihood and the Bayes decision rule are
considered to reduce false negatives of minority classes by introducing class priors
which assign larger weight to underrepresented classes. The following methods
address false negative reduction for the object detection task. In [174], a boosting
chain for learning successive boosting is presented. Using previous information
during cascade training, the model is adjusted to a very high recall rate in each
layer of the boosting cascade. An ensemble based method is proposed in [21]
where the number of false negatives is reduced by the different predictions of
the networks, i.e., some objects that are not detected by one network could be
detected by another one. In addition to false negative reduction, the number of
false positives is also decreased in [52] by training a neural network with differently
labeled images composed of correct and incompletely labeled images. In [164],
a set of hypotheses of object locations and figure-ground masks are generated
to achieve a high recall rate and thereafter, false positive pruning is applied to
obtain a high precision rate as well. For 3D object detection, a single-stage fully-
convolutional neural network is introduced in [175]. Instead of using a proposal
generation step, the model outputs pixel-wise predictions where each prediction
corresponds to a 3D object estimate resulting in a recall rate of 100%. In one work
[92] applied to instance segmentation, a high recall rate is ensured by generating
800 object proposals for any given image. This is followed by the application
of the maximum a-posteriori probability principle to produce the final set of in-
stances. In [188], a recurrent deep network using pose estimation is considered

94

5.2 Method

to improve instance segmentation in an iterative manner and to obtain a high
recall rate. Another approach [94] constructs a variational autoencoder on top of
the Mask R-CNN to generate high-quality instance masks and track multiple in-
stances in image sequences. To reduce false negative instance predictions, spatial
and motion information shared by all instances is captured.

In comparison to most of the described false negative detection approaches, our
method neither modifies the training process nor the network architecture, in-
stead our detection algorithm serves as post-processing step applicable to any
instance segmentation network. In Chapter 4, we have compared the ordinary
score thresholding during inference of an instance segmentation network with
meta classification as a post-processing step. Instead of using a score threshold,
meta classification, i.e., false positive detection, is used to improve the trade-off
between the number of false positive and false negative instances. However, the
number of detected false negative instances is limited to those predicted by the
network without using a score threshold, since no other instances are generated.
In this chapter, we go beyond this method and present a detection algorithm that
generates instances additionally to the predicted ones and thus, instances that
have been initially missed by the network can be detected.

5.2 Method

In instance segmentation (as extension of object detection), instances represented
as pixel-wise masks are predicted with corresponding class affiliations. During
inference, a score threshold is used to remove instances with low scores followed by
a non-maximum suppression to avoid multiple predictions for the same instance.
On these remaining instances, we apply our tracking Algorithm 4.1 to obtain time
series. Our false negative detection method is based on temporal information of
tracked instances. We detect inconsistencies in the time series and construct
new instances in these cases. As a result, the number of instances can be greatly
increased and thus, we deploy meta classification (false positive detection) to filter
them out. To this end, we present meta classification, which uses time-dynamic
metrics aggregated per predicted instance as input. Our method is intended to
improve the networks’ performance in terms of accuracy. An overview of the
method is shown in Fig. 5.2.

5.2.1 Detection Algorithm

In this section, we introduce our detection method to identify possible non-
detected instances in image sequences. We assume that an instance segmentation

95

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

instance instance |_ | false negative| meta depth
segmentation tracking detection classification estimation

l ‘ H

Figure 5.2: Overview of our approach which consists of false negative detection and false
positive pruning applied to tracked instances. For metrics construction, information is
extracted from instance geometry, instance tracking and depth estimation (blue arrows).
The resulting metrics serve as input for the meta classification.

is available for each frame, as our method serves as a post-processing step and is
independent of the choice of instance segmentation network. An example of an in-
stance segmentation with corresponding ground truth image is shown in Fig. 5.1.
The white areas within the ground truth image are ignored regions R with unla-
beled instances, here cars and pedestrians. All predicted instances where 80% of
their pixels are inside an ignored region are not considered for detection and fur-
ther experiments as an evaluation for these instances is not feasible. This overlap
O;,; of an instance i with an instance or region j is defined in (3.2). Given an
image x, the set of predicted instances not covered by ignored regions is denoted
by Z,. In addition to instance segmentation, we also assume a tracking of these
instances in the image sequences. To this end, we use our tracking algorithm for
instances (Algorithm 4.1). Instances are matched according to their overlap Oi,j
(4.1) in consecutive frames by shifting instances based on their expected location
in the subsequent frame. The tracking algorithm is applied sequentially to each
frame {z; : t = 1,..., T} of an image sequence of length T'. A detailed description
of how an instance i € fmhl in frame ¢t — 1 is matched with an instance j € fxt in
frame t, is given in Sec. 4.2.1.

Our detection method is based on inconsistencies in the time series of the tracked
instances such as a gap in the time series or a sudden end. We detect these
cases and construct new instances that may have been overlooked by the neural
network using the information of previous frames. To this end, time series of the
geometric centers (4.2) of the instances are created and the pixel-wise mask of an
instance of a previous frame is shifted to the predicted position of the new instance
using a linear regression. If #1%' < ¢ is the last frame in which instance i occurs,
then we adopt this pixel-wise mask as the representation for the new instance in
frame t. To avoid false positives, we track a lost instance for at most 10 frames
and check if the instance is mostly covered by another one or an ignored region.
A detailed description of our detection method is depicted in Algorithm 5.1.
An example how our detection algorithm works is shown in Fig. 5.3 applied to
the MOT dataset and predictions of the Mask R-CNN. This network does not
predict instances in frames ¢t + 2 and ¢ + 4 resulting in non-detected instances.
Our algorithm shifts the instance of the previous frame (here ¢t + 1 and t + 3) into
the following one via linear regression as there is a gap in the time series.

96

5.2 Method

Algorithm 5.1: False negative detection algorithm

1
2

© 00 N O ook~ W

10
11

12

13

14
15
16
17
18
19
20
21
22
23
24
25

Zdeteet .= (YWt =1,...,T
/* detect instances */
for i € UL, 7., do

G :={} /* time series of geometric centers */
tlast .= (/* last previous frame in which instance i occurs */
fort=1,...,7T do
if ¢ exists in frame t then
G :=GuU{i}
st =1t
end
if i does not exist in frame t and t — t'*' < 10 and |G| > 2 then
perform linear regression to predict the geometric center (i;)
using the geometric centers of the previous frames G
shift instance i € fxtlast by the vector (i; — igest) and denote the
resulting instance by 7*Pift
j:accltetect = i;iftect U {Z'shift}
end
end
end
/* check covering */

fort=1,...,7T do
for j € Zde! do
if O;r < 0.8 and max,; O;x < 0.95 then
:zxt = :zart U {j}
end
end
end

97

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

t t+1 t+2 t+3 t+4

Figure 5.3: Example of our false negative detection algorithm applied to five consecutive
images of the MOT dataset. Top: Ground truth images with non-detected instances by
the neural network (bounded by a green box). Bottom: Instance segmentation obtained
by the Mask R-CNN. In frames t42 and t+4 no instances are predicted, both instances
are constructed by our detection algorithm.

5.2.2 Metrics

In instance segmentation, the neural network provides information of the instances
like geometric characteristics or their attached class confidences derived from the
softmax probabilities. For example, a probability distribution over the classes
y € C for each pixel z or only for each instance is provided depending on the
network architecture. However, a probability distribution is not available for
the detected instances and thus, we construct metrics based on information that
is also obtainable for the detected ones. To this end, we use selected metrics
introduced in Sec. 4.2.2 and extend this set of metrics by new ones.

First, we add measures for an instance i introduced in Sec. 4.2.2 to our set of
metrics like the geometric center i (4.2), the predicted class ¢ and the score value
s which is provided by the instance segmentation network. We calculate the score
value for the detected instances as the average score value from the previous
frames of the respective instance. Furthermore, we use the size S of a whole
instance as well as of the inner S;, and boundary Syq and the relative instance
sizes S, Si,. The separate treatment of inner and boundary is motivated by poor
or false predictions that often results in fractal instance shapes, i.e., a relatively
large amount of boundary pixels, measurable by the relative measures.

Moreover, we define the occlusion measure o using instances in two consecutive
frames. Instance ¢ of frame t — 1 is shifted such that instance ¢ and its matched
counterpart in frame ¢ have a common geometric center. Then, the occlusion of

5.2 Method

instance ¢ in frame ¢ is given by O, g where K = Ukeizt\ @) k. Large occlusions
may indicate poorly predicted instances.

Besides an instance segmentation network, we consider a monocular depth esti-
mation network, which uses the same input images as the instance segmentation
network and can run in parallel. The motivation in using the extra depth esti-
mation network is to acquire additional sources of useful information about the
instances. Given an image z, the pixel-wise depth prediction is denoted by H,(x),
see Fig. 5.1 for an example. To obtain metrics per instance, we define the mean
depth as

H, = ; > H.(z), =€ {in,bd} (5.1)

* Zei*

as an additional metric, we also divide the inner and boundary. The relative mean

depth measures are calculated as H = HS and H;, = H;,Sin. A lower value of
mean depth indicates reliable instances, while a higher value suggests uncertainty.

Next, for each instance 7 in frame ¢, a time series of the mean depth H of the

5 previous frames is constructed. Using linear regression, the mean depth H in
frame t is predicted if the instance exists in at least two previous frames. The

deviation between expected mean depth and mean depth |H — H| is used as a
temporal measure denoted by d,. Small deviations dj, indicate consistency over
time of the instance.

Finally, we consider five further metrics explained in Sec. 4.2.2. Analogous to
the depth deviation dj,, we calculate the deviation of the instance size d, and of
the geometric center d.. For the survival analysis metric v, time series of metrics
are also considered. More precisely, time series of the previously presented single-
frame metrics (7, &, s, size and depth metrics) serve as input for a Cox regression to
predict the survival time of an instance ¢ in frame ¢t. A lower value of v indicates
uncertainty. The next metric r is based on the height to width ratio of the
instances. Deviations from this ratio for an instance i suggest false predictions.
The final measure f describes the variation of an instance in two consecutive
frames by calculating the overlap (4.1). Poorly predicted instances can result in
large deformations.

In summary, we use the following set of metrics

U' = {H, Hyn, Hya, H, Hi} U {0,dn} U {S. Sin, Ssas S, Sin}
U{i,é s, ds,de,v,r, f}. (5.2)

99

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

J4! g3

b3
g1 2

P2 g4
g2

Figure 5.4: Example image for object detection. Green boxes correspond to ground
truth objects gr, kK =1,...,4, and red boxes to predicted objects pr, k =1,...,4.

Table 5.1: Results of matched ground truth und predicted objects of Fig. 5.4 for the
object detection as well as semantic segmentation perspective. The predicted object/
ground truth is given with matched counterpart, the IoU value and decision of true
positiv or false positive/negative.

object detection semantic segmentation
prediction score gt IoU tp/fp gt IoU tp/ip
P1 0.95 g1 >05 tp g1 >0 tp
D2 0.83 0 >0.5 fp g1 >0 tp
D3 0.76 - <05 fp Go >0 tp
j 0.51 g4 >0.5 tp gp&gs >0 tp
ground truth prediction ToU tp/fn | prediction IoU tp/fn
[1 >05 tp pp&p >0 tp
go - <05 fn D3 >0 tp
g3 j >05 fn D4 >0 tp
94 D4 >05 tp P4 >0 tp

5.2.3 Meta Classification

Meta classification is used to identify false positive instances provided by a neural
network. A predicted instance is considered as a false positive, if the intersection
over union is less than a threshold 7. The IoU is a commonly used performance
measure that quantifies the degree of overlap of prediction and ground truth.
Meta classification refers to the task of classifying between IoU < 7 and IoU
> 7 for all predicted instances. Note, if an IoU threshold of 7 = 0 is considered,
we classify between IoU = 0 and IoU > 0. In object detection, classification is
typically between loU < 0.5 and IoU > 0.5 and in semantic segmentation between
IoU =0 and IoU > 0. Besides the IoU threshold, there is another difference in
the calculation procedure between object detection and semantic segmentation.
In Fig. 5.4 an example of ground truth and predicted objects is shown. The
corresponding matches are given in Table 5.1. First, predictions p; and p, have
an loU > 0.5 with ground truth object g; resulting in a true positive and a false

100

5.3 Numerical Results

positive for object detection as a ground truth object can be matched only once
(in comparison to semantic segmentation). Moreover, prediction p3 and ground
truth g, are matched only for semantic segmentation due to the IoU threshold. In
semantic segmentation, the IoU is calculated with all ground truth instances that
an object is covering, thus object p4 is matched with ground truth objects g3 and
gs4. For this reason, g3 is not considered to be a false negative as it would be the
case in object detection (loU of py with g4 is higher than with g3). In summary,
we obtain less false positives and false negatives in semantic segmentation. In
our experiments, we examine both calculation options for the network’ errors and
additionally threshold on different loU values. We denote by MOD the one-to-
one matching of predicted and ground truth object (object detection perspective)
and by MSS the many-to-many matching (semantic segmentation perspective).
Note, in Chapter 4, we have performed the evaluations according to the object
detection principle with an IoU threshold of 0.5.

We perform meta classification using the metrics introduced in Sec. 5.2.2 as input
for the classifier, in particular, we apply time series of these metrics. For an
instance i € Z,, in frame ¢, the metrics U} are obtained as well as U} from
previous frames ¢’ < t due to the tracking of the instances. Meta classification is
conducted by means of these time series of metrics U}, k =t —n,, ..., t where n,
describes the number of considered frames. As classifier model, we use gradient
boosting that performs best in comparison to linear models and shallow neural
networks as shown in Sec. 3.3 and Sec. 4.3.2. We study the benefit from using
time series and to which extent meta classification along with our false negative
detection method can improve the overall network performance compared to the
application of a score threshold during inference.

5.3 Numerical Results

In this section, we study the properties of the metrics introduced in the previ-
ous section and the influence of different lengths of the time series which serve
as input to the meta classifier. Furthermore, we evaluate to which extent our
detection algorithm fused with uncertainty based meta classification can improve
an instance segmentation performance and reduce false negative instances. To
this end, we compare this approach with ordinary score thresholds in terms of
numbers of false negatives and false positives, i.e., recall and precision rates.

We perform our tests on two datasets for multi-object tracking and instance seg-
mentation, which we have introduced in Sec. 2.5. The KITTI dataset contains 21
street scene image sequences from Karlsruhe consisting of 8,008 1,242 x 375 im-
ages. The MOT dataset containing 2,862 images with resolutions of 1,920 x 1,080

101

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

(3 image sequences) and 640 x 480 (1 image sequence) provides scenes from pedes-
trian areas and shopping malls. For both datasets annotated image sequences,
i.e., tracking IDs and instance segmentations, are available [162]. The KITTI
dataset includes labels for the classes car and pedestrian, while the MOT dataset
only contains labels for the class pedestrian.

In our experiments, we consider the Mask R-CNN and the YOLACT network
(see Sec. 2.1.4). The YOLACT network has a slim underlying architecture and
is designed for a single GPU. For training this network, we use a ResNet-50 [61]
as backbone and pre-trained weights for ImageNet [140]. We choose 12 image
sequences from the KITTI dataset consisting of 5,027 images and 300 images
(extracted from 2 sequences) from the MOT dataset for training. The remaining
9 sequences of the KITTI dataset serve as validation set (same splitting as in
[162] and Sec. 4.3). We achieve a mean average precision of 57.15%. Since we are
using 300 images of the MOT dataset for training, we split 2 of the 4 sequences
into train/validation and remove 90 frames (equal to three seconds) of each at
this splitting point due to redundancy in image sequences. We achieve a mAP of
52.37% on the remaining 2,382 images of the MOT dataset. The Mask R-CNN
is focused on high-quality instance-wise segmentation masks representations. For
training, we use a ResNet-101 as backbone and start from weights for COCO [95].
As training set, we choose the same 12 image sequences of the KITTI dataset and
the validation sets also remain the same. For the KITTI dataset, we obtain a
mAP of 89.79% and for the MOT dataset of 78.99%. During training of both
networks, the validation set is neither used for early stopping nor for parameter
tuning.

For our depth metrics extracted from a depth estimation, we use the network
introduced in [90]. This network utilizes local planar guidance layers at multiple
stages of the decoding phase for an effective guidance of densely encoded features
(see Sec. 2.1.5 for details). As backbone, we consider the DenseNet-161 [69] and
pre-trained weights for ImageNet. We train this network over a maximum of 50
epochs on 20,750 RGB images of the KITTT dataset where annotated depth maps
are available. The model which achieves the lowest scale invariant logarithmic
error (see (2.56)) on 672 validation images is used. This validation silog amounts
to 8.493. We also evaluate on the 9 image sequences of the KITTI dataset, that
we consider for further experiments, achieving a test silog of 9.459 on these 2,891
images (for 90 images no depth ground truth is available).

During inference, a score threshold is used to remove instances with low score
values followed by a non-maximum suppression to avoid multiple predictions for
the same instance. Since we compare our detection method with the application
of different score values, we apply none or a very low score threshold during
the inference. For the KITTI dataset, we choose a score threshold of 0 in both
networks to use all predicted instances for further experiments. For the MOT

102

5.3 Numerical Results

Table 5.2: A selection of correlation coefficients p with respect to IoU. For size and
depth measures, the metric with the highest correlation is given.

KITTI Sin | 0.42316 | i, 0.08567 | o | —0.04165 | d, 0.11309

& P:Im 0.56636 | ¢ | —0.23682 | f 0.09413 | d. | —0.04318
Mask R-CNN | s 0.64899 | r | —0.08192 | v | —0.27352 | d}, | —0.19601
KITTI Sin | 0.28690 | 1, 0.02200 | o 0.29603 | ds 0.08056

& f[m 0.38115 | ¢ | —0.31568 | f 0.07016 | d. | —0.07427
YOLACT s 0.79357 | r | —0.17465 | v | —0.14472 | d}, | —0.16114
MOT Sjm 0.51436 | 1, 0.01569 | o | —0.15981 | d, 0.09812

& H;, | 0.59056 | i, | —0.04090 | f 0.05827 | d. 0.03598
Mask R-CNN | s 0.66106 | r 0.00896 | v | —0.25305 | d;, | —0.04048
MOT Sin | 0.69746 | 7, | —0.01964 | 0 | —0.21768 | d, 0.13392

& :m 0.68968 | 4, | —0.12691 | f 0.05930 | d. | —0.01485
YOLACT s 0.67695 | r | —0.22188 | v | —0.03406 | d}, | —0.13630

dataset, we choose relatively low score thresholds, i.e., 0.3 for the Mask R-CNN
and 0.05 for the YOLACT network. In our experiments, we use 9 image sequences
of the KITTI dataset consisting of 2,981 images and 4 sequences of the MOT
dataset containing 2,382 images (equal to the validation sets used for instance
segmentation).

5.3.1 Meta Classification

First, we study the predictive power of the instance-wise metrics, which serve as
input for the meta classifier, by computing the Pearson correlation coefficients p
between selected metrics of U? and the JoU, see Table 5.2. For both networks and
both datasets, the score value s shows a strong correlation with the loU. The
relative instance size S;, as well as the relative mean depth D;,, demonstrate high
correlations for the MOT dataset (for both networks) and the KITTI dataset in
combination with the Mask R-CNN. Selected scatter plots for the MOT dataset
and the YOLACT network are shown in Fig. 5.5. For meta classification (false
positive detection: IoU < 7 vs. loU > 7), we use the set of metrics U’ as input
and investigate the influence of time series. We present this set of metrics U} of
a single frame ¢ to the meta classifier and then, the metrics are extended to time
series with a length of up to 10 previous time steps U}, k = t — 10,...,t — 1.
Furthermore, we use a (meta) train/validation/test splitting of 70%/10%/20%
and average the results over 10 runs for the KITTI dataset and 4 runs for the
MOT dataset by randomly sampling this splitting. For the presented results, on
the one hand, we choose the object detection perspective (MOD) with an IoU

103

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

p = 0.69746 p = 0.68968

p = —0.21768

g

S/',H,/Siw,,mu.l:
Hin/H'in,/n,u;l,

=]

(=]
o

IoU IoU IoU IoU

Figure 5.5: Correlations between metrics and loU for the MOT dataset and the
YOLACT network. The dot size is proportional to the instance size.

Table 5.3: Number of instances predicted by a neural network (PI), number of detected
instances (DI) using Algorithm 5.1, total number of instances (not yet matched over
time), instances with loU < 0.5 and IoU = 0.

PI DI PI+DI | IoU < 0.5 IoU =0
KITTI & Mask R-CNN | 19,239 11,787 | 31,026 20,337 13,036
KITTI & YOLACT 25,743 14,694 | 40,437 32,114 24,961
MOT & Mask R-CNN | 36,003 27,374 | 63,377 45,307 20,146
MOT & YOLACT 22,495 16,400 | 38,895 26,153 3,736

threshold of 7 = 0.5 and on the other hand, the semantic segmentation perspective
(MSS) classifying between loU = 0 and loU > 0.

We apply our detection algorithm to the predictions of both instance segmentation
networks for both datasets. The corresponding numbers of predicted instances
and instances obtained by the detection algorithm as well as the number of in-
stances with an JoU < 0.5 and JoU = 0 are provided in Table 5.3. The relatively
high number of false positive instances is the motivation to perform meta clas-
sification after the detection algorithm in order to get rid of false positives. As
performance measures for the meta classification, we consider the classification
accuracy and AUROC'. The best results are given in Table 5.4. We achieve
AUROC values up to 99.30%. Higher values are obtained by classifying between
IoU < 0.5 and IoU > 0.5. Furthermore, we notice that gradient boosting bene-
fits from temporal information which can also be observed in Fig. 5.6 where the
AUROC results as functions of the number of frames are given for both dataset
and the object detection calculation approach. For further experiments, we use
the number of considered frames where the best AUROC performance is reached,
respectively.

104

5.3 Numerical Results

Table 5.4: Meta classification results (with corresponding standard deviations) using
IoU thresholds 7 = 0.5 (MOD) and 7 = 0 (MSS). The super script denotes the
number of considered frames where the best performance and in particular, the given
values are reached.

MOD ACC AUROC
KITTI & Mask R-CNN | 95.64% + 0.74%" 99.04% 4 0.31%°
KITTI & YOLACT 96.22% + 1.15%" 99.30% + 0.34%"
MOT & Mask R-CNN | 93.60% + 3.42%° 98.25% + 0.93%”
MOT & YOLACT 87.66% + 5.45%° 96.22% + 1.22%°

MSS ACC AUROC
KITTI & Mask R-CNN | 86.57% + 3.64%* 95.38% + 1.57%"
KITTI & YOLACT 90.75% + 4.41%3 96.20% + 1.86%*
MOT & Mask R-CNN | 73.55% + 15.07%" 88.74% =+ 3.33%"
MOT & YOLACT 93.54% + 0.46%'° 90.68% =+ 3.07%>

—e— Mask R-CNN —e— YOLACT —e— Mask R-CNN —e— YOLACT
0.996 0.99
< < 0.97
= 0.990 =
0.988
0.95
0.986
2 4 6 8 10 2 4 6 8 10
number of considered frames number of considered frames

Figure 5.6: Left: Results for meta classification AUROC' as functions of the number of
frames for the KITTI dataset and MOD. Right: Results for the MOT dataset.

5.3.2 Evaluation of the Detection Method

Our detection method assumes that the instance segmentation by a neural net-
work and tracking IDs are given. We consider our tracking algorithm for instances
introduced in Sec. 4.2.1 where the tracking performance is measured by different
object tracking metrics (see Sec. 4.3.1). In the following, we compute object track-
ing metrics (introduced in Sec. 2.3.2) and apply these to the instances predicted
by a network and the additional instances obtained by our detection method. We
denote by GT all ground truth instances of an image sequence which are identified
by different tracking IDs and divide these into three cases. An instance is called
mostly tracked (MT) if it is tracked for at least 80% of frames (out of the total
number of frames in which it occurs), mostly lost (ML) if it is tracked for less

105

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

Table 5.5: Object tracking results for the instances obtained by our false negative de-
tection method (including those predicted by an instance segmentation network). The
values in brackets correspond to the outcomes for the predicted instances without using
the detection step.

KITTI MOT
Mask R-CNN YOLACT | Mask R-CNN YOLACT
GT [219 219 201 201
MT | 205 (204) 129 (124) | 123 (120) 45 (42)
PT |12 (13) 71 (75) | 72 (75) 92 (92)
ML | 2 2) 19 (20) | 6 6) 64 (67)

smn | 186 (189) 352 (379) | 797 (824) 552 (597)

than 20%, otherwise partially tracked (PT'). In addition, we compute the num-
ber of switches between matched and non-matched smn, i.e., a switch appears
when a ground truth instance is matched with a predicted instance in frame
t and non-matched in frame ¢ + 1 and vice versa. The results are shown in Ta-
ble 5.5. We observe that our algorithm can increase the number of mostly tracked
ground truth instances and reduce the number of switches between matched and
non-matched for both networks and datasets. Note, the Mask R-CNN mainly
achieves better results than YOLACT which can be observed by Mask R-CNN
achieving higher mAP values than YOLACT.

The score value describes the confidence of the network’s prediction and is chosen
during inference to balance the number of false negatives and false positives.
We select 15 different score thresholds between 0 and 1 to study the network’s
detection performance while varying this threshold. We apply our false negative
detection algorithm to the predicted instances and fuse this with uncertainty
based meta classification. Meta classification provides a probability of observing
a false positive instance and thus, we also threshold on this probability with
15 different values. In our tests, we consider 6 different IoU thresholds 7 for
meta classification and both calculation options. We feed the meta classifier
with all metrics U’ including the number of previous frames given in Table 5.4
independent of the IoU threshold. We compare ordinary score thresholding with
our method using the AUPRC as performance measure (see Sec. 2.1.6). As our
detection algorithm receives time series of predicted instances as input, certain
ground truth instances cannot be found. For this reason, we exclude ground truth
instances for further testing if the respective instance defined by its tracking ID
is never found by the instance segmentation network and in the frames before the
instance is first detected by the network. On the one hand, our method cannot
be applied to these instances, and on the other hand, the network shall also be
able to predict them, i.e., a ground truth instance defined by its tracking ID
should have been detected at least once. The number of ground truth instances
depends on the respective IoU threshold, i.e., at higher values, more ground truth

106

5.3 Numerical Results

Table 5.6: AUPRC results for score thresholding vs. our false negative detection al-
gorithm fused with meta classification thresholding for MOD and MSS calculation

procedure.
KITTI Mask R-CNN YOLACT Mask R-CNN YOLACT
T score ours score ours score ours score ours
0.5 91.17% 92.35% | 78.58% 81.43% | 91.39% 92.67% | 79.57% 82.60%
04 93.19% 93.81% | 81.03% 84.17% | 93.53% 94.28% | 82.64% 85.95%
0.3 93.98% 94.45% | 82.28% 85.83% | 94.50% 95.23% | 84.53% 88.19%
0.2 94.49% 94.88% | 81.83% 85.61% | 95.34% 96.08% | 85.19% 89.17%
0.1 94.67% 95.08% | 82.19% 86.06% | 95.84% 96.74% | 86.57% 90.29%
0.0 94.99% 95.39% | 83.87% 87.78% | 97.51% 98.07% | 91.80% 93.03%
MOD MSS
MOT Mask R-CNN YOLACT Mask R-CNN YOLACT
T score ours score ours score ours score ours
0.5 77.45% 79.05% | 62.32% 63.73% | 77.56% 78.50% | 63.72% 64.29%
0.4 82.44% 82.76% | 68.39% 69.71% | 82.79% 82.62% | 71.03% 71.02%
0.3 | 85.17% 85.02% | 71.29% 72.77% | 86.17% 85.26% | 75.26% 75.11%
0.2 | 86.94% 86.85% | 72.31% 74.22% | 88.67% 87.39% | 77.31% T7.99%
0.1 88.56% 88.43% | 73.89% 76.96% | 91.36% 89.49% | 80.60% 84.04%
0.0 |89.85% 89.48% | 76.11% 81.77% | 97.27% 94.40% | 91.58% 94.81%

instances are not detected. For the KITTI dataset and the Mask R-CNN, at most
0.96% and for the YOLACT network, 13.23% of the ground truth instances are
not found and for this reason, not considered for further evaluations. For the
MOT dataset and the Mask R-CNN, this holds for at most 2.19% and for the
YOLACT network 17.62% of the ground truth instances. The AUPRC results
are given in Table 5.6. Smaller foU thresholds increase the possibility of matches
between ground truth and predicted instances and consequently the AUPRC value
increases. We observe that our method performs better in most cases compared to
the use of a score threshold (or obtains similar values). Furthermore, the AUPRC
value increases for the MSS calculation option as the possibility of matches is
more likely. We obtain AUPRC values of up to 95.39% for the object detection
perspective and up to 98.07% for the semantic segmentation one. An example for
the precision-recall curves is shown in Fig. 5.7 using IoU thresholds of 7 = 0.5
(left) and 7 = 0 (right) for MOD and for the KITTI dataset in combination with
the YOLACT network. Each point represents one of the chosen score or meta
classification thresholds. Our detection method achieves a lower number of errors,
i.e., higher recall and precision rates. In particular, we can reduce the number of
false negative instances.

For further experiments, we bin the ground truth instances into different occlu-
sion levels. To this end, we calculate for each ground truth instance the IoU
with the other ones represented as bounding boxes denoted by IoUy. On the
one hand, for high loUy, values, the instance can be partially covered by other

107

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

1.0 1
0.91
0.81

041 o score 78.58% | 0.4 score 83.87%
037 @ ours 81.43% 0.31 @ ours 87.78%

0.4 0.5 0.6 07 08 04 05 06 07 08 09
recall recall

Figure 5.7: Precision-recall curves for different score as well as meta classification thresh-
olds for the YOLACT network and the KITTI dataset. Left: An IoU threshold of
7 = 0.5 is used. Right: IoU threshold 7 = 0.

instances or even cover others. On the other hand, for low IoUy, values or a value
of zero, detecting the ground truth instance through an instance segmentation
network is simpler as if the instance is occluded and located in a crowd of in-
stances. In Table 5.7, the number of ground truth instances and AUPRC' results
for the different occlusion levels are given for both datasets and the Mask R-CNN
considering an loU threshold of 7 = 0.4 and MOD. For the KITTI dataset,
most of the ground truth instances have an occlusion level of IoUy, = 0.0 and for
the MOT dataset of 0.0 < IoUy, < 0.1 as pedestrian areas and shopping malls
are provided. Our false negative detection approach outperforms ordinary score
thresholding in terms of AUPRC values. Moreover, our method can improve the
instance segmentation also in more difficult cases, i.e., at higher occlusion levels.
Our findings for the YOLACT network, the other IoU thresholds and MSS are
analogous. In Fig. 5.8, the comparison of ordinary score thresholding and our
detection method is shown in terms of the number of remaining false negatives
and false positives considering an occlusion level of 0.5 < IoUy, < 0.6. As before,
each point represents one chosen threshold. We achieve a lower number of false
negative and false positive instances. For an loU threshold of 7 = 0, this error
reduction is also reflected in the AUPRC values. The AUPRC' value obtained
by score thresholding is 98.93% while the detection algorithm fused with meta
classification achieves 99.86%. Note, in this case, we can detect up to 198 out of
202 ground truth instances. Remember, for lower IoU thresholds more ground
truth instances can be found by the neural network and thus, more instances are
considered for our evaluation.

In Fig. 5.9, an example of how our detection algorithm works is demonstrated
for a ground truth instance of class car and the KITTI dataset. The time series
of the instance size S and of the IoU between this ground truth instance and

108

5.4 Discussion

Table 5.7: Number of ground truth instances and AUPRC results for different occlusion
levels. For both datasets, the Mask R-CNN network, an IoU threshold of 7 = 0.4 and
MOD are considered.

KITTI MOT
occlusion level # gt | score ours # gt | score ours
IoUy = 0.0 5,207 | 97.51% 98.29% | 5,154 | 94.66% 96.28%
0.0 < IoUp < 0.1 | 2,875 | 96.96% 98.04% | 7,997 | 90.56% 91.30%
0.1 < IoUpw <0.2 | 1,848 | 97.56% 98.67% | 4,301 | 94.25% 95.67%
0.2 < IoUyw < 0.3 | 637 | 97.96% 98.92% | 1,842 | 95.05% 96.81%
0.3<IoUpw <04 | 320 | 98.05% 99.09% | 976 | 95.91% 97.82%
0.4 < IoUw <05 | 180 | 98.28% 99.34% | 609 | 96.17% 98.10%
0.5 <IoUpw <06 | 62 |9846% 99.52% | 194 | 96.82% 98.75%
0.6 <IoUw<0.7| 37 |9854% 99.60% | 106 | 96.98% 98.91%
0.7<IoUw <08 | 13 |98.69% 99.70% | 90 | 96.98% 98.90%
0.8 < IoUy <0.9 1 99.32% 99.86% 6 97.53% 99.20%

instances obtained by the YOLACT network are shown. We observe three areas
where the instance has an IoU = 0 and hence, has not been detected by the
network. Our detection algorithm is applied to the predicted instances, which
also results in time series of loU denoted by loU,. Since the procedure requires
at least two geometric centers of an instance to generate further instances, the
first plateau cannot be fixed, although the following two ones can be. Both
images, ground truth (top) and instance segmentation (bottom), represent frame
190 where the instance (bounded by a green box) is not detected by the network,
but by our method. We construct the car labeled with the pink bounding box in
the segmentation image. Noteworthy, though no score threshold is used during
inference, the network has not predicted any instance at this position. Also
note, both images correspond to the zoomed image sections and the ground truth
instance is relatively small which our algorithm can handle. Our false negative
reduction method consisting of the detection algorithm and meta classification
can be applied to any instance segmentation network after training and thus,
does not increase the network complexity.

5.4 Discussion

In this chapter, we proposed a post-processing method applicable to any instance
segmentation network to reduce the number of false negative instances by per-
forming a false negative detection and a false positive pruning step. Our light-
weight detection algorithm is based on inconsistencies in the time series of tracked
instances such as a gap in the time series or a sudden end. We detected these
cases and constructed new instances that the neural network may have missed

109

5 False Negative Reduction in Video Instance Segmentation using Uncertainty
Estimates

0.20 1
2 0.181 @ score 5\0'208 ® score
v ours = 0.175 ,
2.0.161 X0.150 o
§ 0.141 £0.125
= 0.121 % 0.100
&))
= 0.101 20.0751 4
»n 9]1) =4
= 0.081 . = 0.050] .
006 “Boa. o = 0.025 ® e o
V 0.000 1, i . . .
0 10 20 30 40 0 10 20 30 40
false positives (x10?) # false positives (x10%)

Figure 5.8: Number of false positive vs. false negative instances for different score and
meta classification thresholds for the MOT dataset and the Mask R-CNN network. An
occlusion level of 0.5 < ToUp, < 0.6 is used. Left: IoU threshold 7 = 0.4. Right: IoU
threshold 7 = 0.0.

using the information of previous frames. Since the number of instances can
be greatly increased, we employed meta classification to reduce false positive in-
stances. As input for the meta classification model, instance-wise metrics were
constructed characterizing uncertainty, geometry and depth of a given instance.
We studied the properties of the metrics, the influence of different time series
lengths on the meta classification model and various loU thresholds. Further-
more, two different calculation methods for meta classification were considered,
i.e., one-to-one matching of predicted and ground truth object (object detection
perspective) and many-to-many matching (semantic segmentation perspective).
We achieved AUROC' values of up to 99.30%. In our tests, we compared our
approach to the application of a score threshold during inference and improved
the networks’ prediction accuracy. We obtained AUPRC' values of up to 98.07%.
In particular, the number of false negative instances can be reduced. Moreover,
we studied occlusion levels for the ground truth instances in order to improve the
instance segmentation also in more difficult cases, i.e., we detected instances that
were occluded and located in a crowd of instances.

We have demonstrated that our light-weight detection method can improve in-
stance segmentation performance in terms of accuracy in comparison to ordinary
score thresholds. Especially, we reduce the number of false negative instances,
i.e., achieve higher recall rates. However, our method is limited to image se-
quences as our false negative detection algorithm is based on inconsistencies in
the time series of tracked instances. We use the availability of image sequences
in applications such as automated driving, for the detection of potentially missed
objects by a neural network and in addition, to enhance the meta classification
performance using instance-wise metrics characterizing temporal uncertainties as

110

5.4 Discussion

170 180 190, 200 210 220
rame

Figure 5.9: Left: Time series of size S for a ground truth instance of the KITTT dataset,
the calculated IoU between this ground truth instance and instances predicted by the
YOLACT network as well as the IoU, after the application of our detection method.
Top right: Corresponding ground truth image in frame 190 including the considered
instance (bounded by a green box). Bottom right: Instance segmentation followed by
our detection algorithm which constructs the car instance with the pink bounding box.

input. In applications, like medical diagnosis, image sequences are not necessarily
obtainable and thus, our method is not applicable.

111

Chapter

Conclusions & Outlook

In this thesis, we presented methods for the prediction quality rating and perfor-
mance improvements in terms of accuracy for semantic and instance segmentation
networks using time-dynamic uncertainty estimates. In particular, we increased
the recall rates, i.e., reduced the number of non-detected objects of the network.
Our methods serve as post-processing steps applicable to any semantic or instance
segmentation network and were tested on different datasets and networks demon-
strating their efficiency and improved performance. Furthermore, we used the
availability of image sequences to obtain more information of the neural networks
without additional computational overhead for enhancing our methods.

For semantic segmentation networks, we proposed a time-dynamic variant of meta
classification and meta regression. The first one tackles the task of false positive
detection and the second one serves as prediction quality estimate for neural net-
works. To this end, we constructed single-frame metrics based on dispersion and
geometry properties of segments extracted from the segmentation network’s soft-
max output, such as pixel-wise entropy. To obtain time series of these metrics, we
introduced a light-weight tracking algorithm for segments of the same semantic
class. Note, this tracking approach is also independent of the semantic segmen-
tation network. From matched segments over time, we generated time series of
metrics which served as inputs for the meta classifiers/regressors. In our tests, we
studied the influence of the time series length as well as different models for meta
tasks like gradient boosting, neural networks and linear ones. We observed that
gradient boosting performs best in comparison to the other methods and that our
results benefit from time series. More precisely, in contrast to the single-frame
approach [136] using only linear models, we increased the accuracy by 6.78 pp
and the AUROC by 5.04 pp for classification. For meta regression, the R? value
was increased by 5.63 pp. Our time-dynamic method showed significant improve-
ments in comparison to the single-frame approach achieving improved results in

113

6 Conclusions & Outlook

the meta tasks. For meta regression, the direct prediction of the loU,q; as quality
estimate, we obtained R? values of up to 87.51% for the KITTI dataset. For
meta classification, classifying between loU,q; = 0 and IoU,q; > 0, we achieved
AURQOC values of up to 88.68%.

In a next step, our intention was to develop further metrics, truly time-dynamic
ones, to increase the rating measures since the metrics for segments are still
single-frame based. Due to the properties of segments (connected components of
a certain class), we obtained unstable time series, for example, in cases where a
segment size increases over time since it contains more and more objects. This
unstable preservation of shape due to enlarging segments contradicts the idea of
constructing metrics based on shape preservation and object characteristics over
time. In addition, ground truth data for multi-object tracking of segments is not
available. For this reason, the construction of metrics based on ground truth data
and an evaluation of our light-weight tracking algorithm are not possible. This
led us to instance segmentation.

We transferred the tasks of meta classification and meta regression to the pre-
dictions obtained by an instance segmentation network. As input for the meta
models, we used metrics characterizing uncertainty and geometry of instances
(similar to those for segments). We adapted our light-weight tracking algorithm
to instances for temporal metrics and evaluated our method by different object
tracking metrics. From tracked instances, we obtained time series of single-frame
metrics as well as truly time-dynamic ones based on survival time analysis, on
changes in the shape and on expected position of instances in an image sequence.
In our tests, we studied the influence of these metrics on the meta tasks, various
time series lengths and different meta models. For meta regression, direct predic-
tion of the JoU, we achieved R? values of up to 86.85% and for meta classification,
classifying between IoU < 0.5 and loU > 0.5, AUROC values of up to 98.78%
which is clearly superior over the performance of the baseline methods (like mean
entropy or score as single-metric and the single-frame approach of [136]). More-
over, we used meta classification as advanced score value improving the networks’
prediction accuracy by replacing the score threshold by the estimated probability
of correct classification during inference. We reduced the number of false positives
by up to 44.03% while maintaining a constant number of false negatives.

Changing the perspective, we decreased the number of false negatives by up to
15.70% for the approximate same number of false positives using meta classifica-
tion. However, the number of non-detected instances in the considered datasets
is still high which may cause safety issues. For this reason, the detection of road
users, i.e., the reduction of false negative instances, is of highest interest and we
also focused on this problem.

We proposed a temporal post-processing method applicable to any instance seg-

114

mentation network to attain a high recall rate (low number of false negatives).
First, we used our light-weight false negative detection algorithm which is based
on inconsistencies in the time series of tracked instances such as a gap in the time
series or a sudden end. Using the information of previous frames, these cases were
detected and new instances were constructed that the neural network may have
initially missed. Our false negative detection method increases the sensitivity to-
wards the prediction of instances, possibly yielding an increased number of false
positives. In order to prune those mentioned false positives, we employed meta
classification. As input for the meta classifier, we used selected metrics charac-
terizing uncertainty and geometry as well as the depth of a given instance. We
studied the properties of the metrics, the influence of different time series lengths
on the meta classification model (here gradient boosting) and various IoU thresh-
olds considered for the evaluation. In our tests, we obtained AUROC values of up
to 99.30%. Furthermore, we compared our approach consisting of the detection
and false positive pruning step with the application of a score threshold during in-
ference improving the networks’ prediction accuracy. We achieved AUPRC values
of up to 98.07% and in particular, reduced the number of false negative instances.
In addition, we studied different occlusion levels for the ground truth instances
observing that our approach can enhance the instance segmentation also in more
difficult cases, e.g. we detected also instances that were occluded and located in
a crowd of instances.

As an extension of our work, it might be interesting to develop further metrics
for meta classification and meta regression based on the respective network struc-
ture. For example, we consider the YOLACT instance segmentation network [13]
where the instance masks are formed by prototypes and associated coefficients.
We did not use this provided information, instead we only considered the softmax
probability distribution per instance given by the network. Based on the infor-
mation typical of the network, new metrics could be created which might improve
the performance of our meta tasks which are able to reliably evaluate the quality
of a semantic or instance segmentation obtained from a neural network. More-
over, we focused on street scene images for automated driving in view and on
scenes from pedestrian areas and shopping malls. It could also be of interest to
investigate other applications, e.g. medical diagnosis. The Multimodal Brain Tu-
mor Image Segmentation (BRATS) dataset [108] consists of multi-contrast MR
scans of glioma patients and provides image sequences of these scans. On such a
dataset our time-dynamic methods for prediction quality rating and performance
improvements (in terms of false positives and false negatives detection) could be
tested.

115

List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

of Figures

Feed forward neural network 6
Activation functions L 8
Convolution 17
Max pooling 18
Deconvolution oo 19
Max unpoolingo 20
Residual block oo 20
Semantic segmentation network 21
DeepLabv3+ architecture 23
Two-stage instance segmentation network 24
One-stage instance segmentation network 25
Depth estimation network 27
Intersection over union 29
Input images for average precision calculation 29
Average precisiono 30
Pixel-wise entropy and instance segmentations 31
Multiple object tracking 0oL 34
An example for multiple object tracking 35

Optimal matches and error measures between ground truth and
predicted objectso 37

117

LIST OF FIGURES

118

2.20

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4

4.5
4.6
4.7

4.8

4.9

Raw images of different datasets

Semantic segmentation and variation ratio
Example for the application of our tracking method
HNlustration of the different behaviors of IoU and adjusted IoU

Overview of meta classification and regression
Correlation plots for the VIPER dataset

A selection of results for meta classification and regression for the

VIPER dataset
Predicted IoU vs. IoU and segment lifetime vs. segment size . . .
Visualization of meta regression for the VIPER dataset
Correlation plots for the KITTI dataset

A selection of results for meta classification and regression for the
KITTI dataset

Visualization of meta regression for the KITTI dataset
Convex hull of a segment of class car in frames 3984-4069
Convex hull of a segment of class car in frames 49-153

Time series of selected metrics and IoU

Visualization of an instance segmentation
Overview of the metrics’ construction
Instance lifetime vs. instance size and predicted IoU vs. IoU . . .

Ground truth, instance segmentation and instance tracking of the
MOT dataset

Correlation plots for the YOLACT network
Instance segmentation and pixel-wise entropy

The mean entropy metric for all tracked instances and segments as
time series L

Results for meta classification and regression for the YOLACT net-
work and Mask R-CNN

Weight coefficients and feature importance for meta classification
and the YOLACT network.

LIST OF FIGURES

4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.9
5.6
2.7

5.8

5.9

Visualization of meta regression for the Mask R-CNN network . . 86
Baselines for meta classification and regression 87
Number of false positive vs. false negative instances 88
Mean average precision values for the YOLACT network 88
Example of false negative instances 89
Instance segmentation and depth estimation 93
Overview of the false negative detection method 96
Example of the false negative detection method 98
Example for matching of ground truth and prediction 100
Correlation plots for the MOT dataset 104

Meta classification results for the KITTI and the MOT dataset . . 105

Precision-recall curves for the YOLACT network and the KITTI
dataset oL 108

Number of false positive vs. false negative instances for the MOT
dataset and the Mask R-CNN network 110

Time series of size and IoU for a ground truth instance of the
KITTI dataset 111

119

List of Tables

120

2.1
2.2

3.1
3.2
3.3

3.4
3.5
3.6

4.1
4.2

4.3

4.4

4.5

5.1
5.2

Average precision

Overview of the datasets,

Overview of meta classification and regression methods
Correlation coefficients for the VIPER dataset

Results for meta classification and meta regression for the VIPER
dataset

Train/val/test splitting
Correlation coefficients for the KITTI dataset

Results for meta classification and meta regression for the KITTI
dataset

Tracking results for TrackR-CNN and our approach

Object tracking results and performance measures for the KITTI
dataset

Correlation coefficients for the KITTI dataset and the YOLACT
networko

Correlation coefficients for the KITTI dataset and the Mask R-
CNN network

Results for meta classification and regression

Results of matched ground truth und predicted objects

Correlation coefficients

LIST OF TABLES

5.3
5.4
2.5
5.6
5.7

Number of predicted instances 104
Meta classification resultso 105
Object tracking results 106
AUPRC results for different IoU thresholds 107
AUPRC results for different occlusion levels 109

121

List of Algorithms

2.1 Gradient boosting
4.1 Tracking algorithm 0oL

5.1 False negative detection algorithm

122

List of Notations

Throughout this thesis, the following abbreviations and notations are used across
all chapters:

x input (image)

Yy label of input x

C label space

c number of classes

w learned weights of a neural network
z pixel

f2(y|z, w) probability distribution per pixel z
7. (x,w) predicted class per pixel z

predicted segmentation

the set of predicted segments/instances
ground truth segmentation

e
8
~
zqt\b

8

ICo the set of segments in the ground truth
T number of frames

T t'" image

Ok overlap of object k with object j

OM overlap of two objects j and k

ke /i geometric center of segment k/instance ¢ in frame ¢
E,(z,w) pixel-wise entropy

V. (z,w) pixel-wise variation ratio

M, (z,w) pixel-wise probability margin

D mean dispersion

H,(x) pixel-wise depth estimation

H mean depth

S segment /instance size

kin the inner of a segment

kpq the boundary of a segment

P(y|k) / P(yli) mean class probability

¢ class

S score value

123

List of Notations

f shape preservation

0 occlusion metric

d. geometric center deviation

dg size deviation

dp, depth deviation

v survival time

r ratio metric

uyv set of metrics

IoU intersection over union

ToU aq adjusted loU

mAP mean average precision

ACC accuracy

AUROC area under receiver operating characteristics curve
AUPRC area under precision-recall curve

o standard error

R? coefficient of determination

T IoU threshold for meta classification
MOTP multiple object tracking precision
MOTA multiple object tracking accuracy
mme mismatch ratio

smn number of switches

GT number of ground truth objects
MT number of mostly tracked objects
PT number of partially tracked objects
ML number of mostly lost objects

124

Bibliography

1]

2]

M. ABADI, A. AGARWAL, P. BARHAM, E. BREvVDO, Z. CHEN,
C. Citro, G. S. CoOrRrRADO, A. Davis, J. DEAN, M. DEVIN,

ET AL., TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, (2015).

C. AESCHLIMAN, J. PARK, AND A. C. KAk, A probabilistic framework
for joint segmentation and tracking, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, (2010), pp. 1371-1378.

J. ALDRICH, R.A. Fisher and the making of maximum likelihood 1912-1922,
Statistical Science, 12 (1997), pp. 162 — 176.

H. Artias, A wvariational bayesian framework for graphical models, Ad-
vances in Neural Information Processing Systems 12, (2000), pp. 209-215.

B. BABENKO, M. YANG, AND S. BELONGIE, Visual tracking with on-
line multiple instance learning, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), (2009), pp. 983-990.

V. BELAGIANNIS, F. SCHUBERT, N. NAVAB, AND S. ILIC, Segmentation
based particle filtering for real-time 2d object tracking, European Conference

on Computer Vision (ECCV), (2012), pp. 842-855.

Y. BENGIO, P. SIMARD, AND P. FRASCONI, Learning long-term dependen-
cies with gradient descent is difficult, IEEE transactions on neural networks,
5 (1994), pp. 157-66.

K. BERNARDIN AND R. STIEFELHAGEN, Fvaluating multiple object track-

ing performance: The clear mot metrics, EURASIP Journal on Image and
Video Processing, (2008).

125

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

126

G. BERTASIUS AND L. TORRESANI, Classifying, segmenting, and tracking
object instances in video with mask propagation, IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), (2020), pp. 9736-9745.

L. BERTINETTO, J. VALMADRE, J. HENRIQUES, A. VEDALDI, AND
P. TORR, Fully-convolutional siamese networks for object tracking, (2016).

C. BisHOP, Regularization and complexity control in feed-forward net-
works, Proceedings International Conference on Artificial Neural Networks

(ICANN), (1995), pp. 141-148.

D. S. BoLME, J. R. BEVERIDGE, B. A. DRAPER, AND Y. M. Lui,
Visual object tracking using adaptive correlation filters, IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, (2010),
pp- 2544-2550.

D. Borva, C. Zuou, F. X1A0, AND Y. J. LEE, Yolact: Real-time instance

segmentation, IEEE/CVF International Conference on Computer Vision
(ICCV), (2019), pp. 9156-9165.

L. BotrTou, Online algorithms and stochastic approximations, (1998).

L. Borrou AND O. BOUSQUET, The tradeoffs of large scale learning.,
Optimization for Machine Learning, 20 (2007).

Y.-L. Boureau, J. PONCE, AND Y. LECUN, A theoretical analysis of
feature pooling in visual recognition, International Conference on Machine

Learning (ICML), (2010), pp. 111-118.

K. W. BowyEr, N. V. CHawrA, L. O. HaLL, AaxpD W. P.
KEGELMEYER, Smote: Synthetic minority over-sampling technique, Jour-
nal of Artificial Intelligence Research (JAIR), 16 (2002), pp. 321-357.

R. BRACEWELL, The fourier transform and its applications, McGraw-Hill
Book, (1965).

J. BRIDLE, Training stochastic model recognition algorithms as networks
can lead to mazimum mutual information estimation of parameters, (1989).

S. BULLINGER, C. BODENSTEINER, AND M. ARENS, Instance flow based
online multiple object tracking, IEEE International Conference on Image

Processing (ICIP), (2017), pp. 785-789.

A. CASADO-GARCIA AND J. HERAS, Ensemble methods for object detec-
tion, European Conference on Artificial Intelligence (ECAI), (2020).

BIBLIOGRAPHY

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

L. CEHOVIN ZAJC, A. LEONARDIS, AND M. KRISTAN, Visual object track-

ing performance measures revisited, IEEE Transactions on Image Process-
ing, 25 (2015).

R. CHAN, MATTHIAS, ROTTMANN, F. HUEGER, P. SCHLICHT, AND
H. GorrscHALK, Metafusion: Controlled false-negative reduction of mi-
nority classes in semantic segmentation, IEEE International Joint Confer-
ence on Neural Networks (IJCNN), (2020).

L.-C. CHEN, Y. ZHU, G. PAPANDREOU, F. SCHROFF, AND H. ADAM,
Encoder-decoder with atrous separable convolution for semantic image seg-
mentation, European Conference on Computer Vision (ECCV), (2018).

F. CHOLLET, Xception: Deep learning with depthwise separable convo-
lutions, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (2017), pp. 1800-1807.

H.-R. Cnou, J.-H. LEE, Y.-M. CHAN, AND C.-S. CHEN, Data-specific
adaptive threshold for face recognition and authentication, IEEE Confer-
ence on Multimedia Information Processing and Retrieval (MIPR), (2019),
pp- 153-156.

G. G. CHRYSOS, S. MOSCHOGLOU, G. BOURITSAS, J. DENG, Y. PANA-
GAKIS, AND S. P. ZAFEIRIOU, Deep polynomial neural networks, IEEE
Transactions on Pattern Analysis and Machine Intelligence, (2021), pp. 1-
1.

D. ComaNICIU, V. RAMESH, AND P. MEER, Real-time tracking of non-
rigid objects using mean shift, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2 (2000), pp. 142-149 vol.2.

M. CorDTS, M. OMRAN, S. RAMos, T. REHFELD, M. ENZWEILER,
R. BENENSON, U. FRANKE, S. ROTH, AND B. SCHIELE, The cityscapes
dataset for semantic urban scene understanding, IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), (2016).

D. R. Cox, Regression models and life-tables, Journal of the Royal Statis-
tical Society. Series B (Methodological), 34 (1972), pp. 187-220.

G. CYBENKO, Approzimation by Superpositions of a Sigmoidal Function,
Springer-Verlag New York inc., 1989.

M. DANELLJAN, G. HAGER, F. S. KHAN, AND M. FELSBERG, Learning

spatially reqularized correlation filters for visual tracking, IEEE Interna-
tional Conference on Computer Vision (ICCV), (2015), pp. 4310-4318.

127

BIBLIOGRAPHY

[33]

[34]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

128

T. DEVRIES AND G. W. TAYLOR, Leveraging uncertainty estimates for
predicting segmentation quality, (2018).

S. C. D1IAMANTAS, A. OIKONOMIDIS, AND R. M. CROWDER, Depth esti-
mation for autonomous robot navigation: A comparative approach, IEEE
International Conference on Imaging Systems and Techniques, (2010),
pp- 426-430.

S. DUFFNER AND C. GARCIA, Pizeltrack: A fast adaptive algorithm for
tracking non-rigid objects, IEEE International Conference on Computer Vi-
sion (ICCV), (2013), pp. 2480-2487.

V. DuMOULIN AND F. VISIN, A guide to convolution arithmetic for deep
learning, (2016).

D. DuVvENAUD, D. MACLAURIN, AND R. ADAMS, Farly stopping as non-
parametric variational inference, International Conference on Artificial In-

telligence and Statistics (AISTATS), 51 (2016), pp. 1070-1077.

D. Ei1GeN, C. PUHRSCH, AND R. FERGUS, Depth map prediction from a
single image using a multi-scale deep network, Conference on Neural Infor-
mation Processing Systems (NIPS), (2014).

C. ERDEM, B. SANKUR, AND A. TEKALP, Performance measures for video
object segmentation and tracking, IEEE Transactions on Image Processing,

13 (2004).

M. EVERINGHAM, L. V. Goor, C. K. I. WiLLiams, J. WINN, AND
A. Z1SSERMAN, The pascal visual object classes challenge (voc2012), (2012).

T. FAWCETT, Roc graphs: Notes and practical considerations for re-
searchers, Machine Learning, 31 (2004), pp. 1-38.

J. FRIEDMAN, Greedy function approximation: A gradient boosting ma-
chine, The Annals of Statistics, 29 (2000).

J. H. FRIEDMAN, Stochastic gradient boosting, Computational Statistics
and Data Analysis, 38 (2002), pp. 367-378.

Y. GAL AND Z. GHAHRAMANI, Dropout as a bayesian approzimation: Rep-
resenting model uncertainty in deep learning, International Conference on

Machine Learning (ICML), (2016), pp. 1050-1059.

A. GEIGER, P. LeEnz, C. STILLER, AND R. URTASUN, Vision meets
robotics: The kitti dataset, The International Journal of Robotics Research,
32 (2013), pp. 1231-1237.

BIBLIOGRAPHY

[46]

[47]

48]

[49]

[54]

[55]

[56]

[57]

[58]

A. GEIGER, P. LENZ, AND R. URTASUN, Are we ready for autonomous
driving? the kitti vision benchmark suite, Conference on Computer Vision

and Pattern Recognition (CVPR), (2012).

S. GEMAN, E. BIENENSTOCK, AND R. DOURSAT, Neural networks and
the bias/variance dilemma, Neural Computation, 4 (1992), pp. 1-58.

R. GIRSHICK, Fast r-cnn, (2015).

R. GIRSHICK, J. DONAHUE, T. DARRELL, AND J. MALIK, Rich fea-
ture hierarchies for accurate object detection and semantic segmentation,
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (2013).

X. GLOROT, A. BORDES, AND Y. BENGIO, Deep sparse rectifier neural
networks, Journal of Machine Learning Research, 15 (2010).

I. GooprELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, MIT
Press, 2016.

S. GoswAMlI, False detection (positives and negatives) in object detection,
(2020).

C. Guo, G. PrEe1ss, Y. Sun, AND K. Q. WEINBERGER, On calibration

of modern neural networks, International Conference on Machine Learning
(ICML), (2017), p. 1321-1330.

S. HANSON AND L. PrRATT, Comparing biases for minimal network con-
struction with back-propagation, International Conference on Neural Infor-
mation Processing Systems (NIPS), (1988).

K. HARIHARAKRISHNAN AND D. SCHONFELD, Fast object tracking us-
ing adaptive block matching, IEEE Transactions on Multimedia, 7 (2005),
pp. 853-859.

V. HARISANKAR., V. V. SAJITH, AND K. P. SOMAN, Unsupervised depth
estimation from monocular images for autonomous vehicles, Fourth Inter-

national Conference on Computing Methodologies and Communication (IC-
CMC), (2020), pp. 904-909.

T. HAsTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The elements of statistical
learning: data mining, inference and prediction, Springer, 2009.

A. Hg, C. Luo, X. TiAN, AND W. ZENG, Towards a better match in

siamese network based visual object tracker, European Conference on Com-
puter Vision (ECCV) Workshops, (2018).

129

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[67]

[68]

[69]

[70]

130

K. HE, G. GKIOXARI, P. DOLLAR, AND R. GIRSHICK, Mask r-cnn, IEEE
International Conference on Computer Vision (ICCV), (2017), pp. 2980—
2988.

K. HE AND J. SUN, Convolutional neural networks at constrained time cost,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(2015), pp. 5353-5360.

K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image
recognition, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), (2016), pp. 770-778.

D. HELD, S. THRUN, AND S. SAVARESE, Learning to track at 100 FPS
with deep regression networks, Lecture Notes in Computer Science, (2016).

D. HENDRYCKS AND K. GIMPEL, A baseline for detecting misclassified
and out-of-distribution examples in neural networks, (2016).

G. E. HINTON, N. SRIVASTAVA, A. KRIZHEVSKY, I. SUTSKEVER,
AND R. SALAKHUTDINOV, Improving neural networks by preventing co-
adaptation of feature detectors, (2012).

S. HOCHREITER, Y. BENGIO, P. FRASCONI, AND J. SCHMIDHUBER,

Gradient flow in recurrent nets: the difficulty of learning long-term depen-
dencies, A Field Guide to Dynamical Recurrent Neural Networks, (2003).

K. HOEBEL, V. ANDREARCZYK, A. BEERS, J. PATEL, K. CHANG,
A. DEPEURSINGE, H. MULLER, AND J. KALPATHY-CRAMER, An ex-

ploration of uncertainty information for segmentation quality assessment,
(2020).

K. HORNIK, M. STINCHCOMBE, AND H. WHITE, Multilayer Feedforward
Networks are Universal Approzimators, vol. 2, 1989.

C. Huang, Q. Wu, AND F. MENG, Qualitynet: Segmentation quality

evaluation with deep convolutional networks, Visual Communications and
Image Processing (VCIP), (2016), pp. 1-4.

G. HuaNg, Z. Liu, L. VAN DER MAATEN, AND K. Q. WEINBERGER,
Densely connected convolutional networks, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (2017), pp. 2261-2269.

P. Huang, W. T. Hsu, C. CHiu, T. Wu, AND M. SUN, Efficient uncer-
tainty estimation for semantic segmentation in videos, European Conference
on Computer Vision (ECCV), (2018).

BIBLIOGRAPHY

[71]

[77]

78]

[79]

[30]

[81]

E. HULLERMEIER AND W. WAEGEMAN, Aleatoric and epistemic uncer-

tainty in machine learning: An introduction to concepts and methods,
(2020).

P. JACCARD, The distribution of the flora in the alpine zone, New Phytol-
ogist, 11 (1912), pp. 37-50.

K. JANOCHA AND W. CZARNECKI, On loss functions for deep neural net-
works in classification, Schedae Informaticae, 25 (2017).

B. A. JiLANi, T. RABIE, AND M. BAZIYAD, Autonomous motion track-
ing for dynamic objects using a temporal quad-tree algorithm, Advances
in Science and Engineering Technology International Conferences (ASET),
(2019), pp. 1-5.

A. JUNG, Ezplainable empirical risk minimization, (2020).

M. KAMPFFMEYER, A.-B. SALBERG, AND R. JENSSEN, Semantic seg-
mentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks, IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, (2016),
pp. 680-688.

J. KANG AND J. GWAK, FEnsemble of instance segmentation models
for polyp segmentation in colonoscopy images, IEEE Access, 7 (2019),
pp. 26440-26447.

A. KENDALL, V. BADRINARAYANAN, AND R. CIPOLLA, Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder architectures for
scene understanding, (2015).

C. Kivm, F. L1, AND J. M. REHG, Multi-object tracking with neural gating
using bilinear lstm, European Conference on Computer Vision (ECCV),

(2018).

D. KINGMA AND J. BA, Adam: A method for stochastic optimization,
International Conference on Learning Representations, (2014).

F. KrAaus AND K. DIETMAYER, Uncertainty estimation in one-stage ob-
ject detection, IEEE Intelligent Transportation Systems Conference (ITSC),

(2019), p. 53-60.

M. KRISTAN, J. MATAS, A. LEONARDIS, T. VoJIR, R. PFLUGFELDER,
G. FERNANDEZ, G. NEBEHAY, F. PORIKLI, AND L. CEHOVIN, A novel
performance evaluation methodology for single-target trackers, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 38 (2016), pp. 2137—
2155.

131

BIBLIOGRAPHY

[33]

[87]

[89]

[90]

[91]

132

A. KRIZHEVSKY, I. SUTSKEVER, AND G. HINTON, Imagenet classifica-

tion with deep convolutional neural networks, Neural Information Processing
Systems, 25 (2012).

S. KULLBACK AND R. A. LEIBLER, On Information and Sufficiency, The
Annals of Mathematical Statistics, 22 (1951), pp. 79 — 86.

F. KUPPERS, J. KRONENBERGER, A. SHANTIA, AND A. HASELHOFF,
Multivariate confidence calibration for object detection, IEEE/CVFE Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops,
(2020), pp. 1322-1330.

B. LAKSHMINARAYANAN, A. PRITZEL, AND C. BLUNDELL, Simple
and scalable predictive uncertainty estimation using deep ensembles, In-

ternational Conference on Neural Information Processing Systems (NIPS),
(2017), pp. 6405-6416.

M. T. L, F. DienL, T. BRUNNER, AND A. KNoOL, Uncertainty esti-
mation for deep neural object detectors in safety-critical applications, Inter-
national Conference on Intelligent Transportation Systems (ITSC), (2018),
pp. 3873-3878.

Y. LEcuN, L. BorTou, Y. BENGIO, AND P. HAFFNER, Gradient-based

learning applied to document recognition, Proceedings of the IEEE, 86
(1998), pp. 2278 — 2324.

H. LEg, S. T. KM, N. NAvAB, AND Y. RO, Efficient ensemble model
generation for uncertainty estimation with bayesian approximation in seg-
mentation, (2020).

J. H. LEg, M.-K. HAN, D. Ko, AND I. H. SuH, From big to small:
Multi-scale local planar guidance for monocular depth estimation, (2019).

B. L1, J. YAN, W. Wu, Z. ZHU, AND X. HU, High performance visual
tracking with siamese region proposal network, IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), (2018), pp. 8971-8980.

G. L1, Y. Xig, L. LIN, AND Y. YU, Instance-level salient object seg-
mentation, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), (2017).

S. LianG, Y. Li, AND R. SRIKANT, Principled detection of out-of-
distribution examples in neural networks, (2017).

C.-C. LiN, Y. Hung, R. FERris, AND L. HE, Video instance segmenta-
tion tracking with a modified vae architecture, IEEE/CVFE Conference on
Computer Vision and Pattern Recognition (CVPR), (2020).

BIBLIOGRAPHY

[95]

[100]

[101]

[102]

103]

[104]

[105]

[106]

T.-Y. LiN, M. MAIRE, S. J. BELONGIE, J. HAYS, P. PERONA, D. RA-
MANAN, P. DOLLAR, AND C. L. ZITNICK, Microsoft coco: Common ob-
jects in context, (2014).

J. LoNG, E. SHELHAMER, AND T. DARRELL, Fully convolutional networks

for semantic segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39 (2016), pp. 1-1.

J. LUITEN, P. TORR, AND B. LEIBE, Video instance segmentation 2019:
A winning approach for combined detection, segmentation, classification and
tracking., IEEE/CVF International Conference on Computer Vision Work-
shop (ICCVW), (2019), pp. 709-712.

K. MAAG, Fulse negative reduction in video instance segmentation using
uncertainty estimates, IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI), (2021).

K. MaAG, M. ROTTMANN, AND H. GOTTSCHALK, Time-dynamic esti-
mates of the reliability of deep semantic segmentation networks, IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), (2020),
pp. 502-509.

K. MAAG, M. ROTTMANN, S. VARGHESE, F. HUGER, P. SCHLICHT,
AND H. GOTTSCHALK, Improving video instance segmentation by light-

weight temporal uncertainty estimates, IEEE International Joint Conference
on Neural Networks (IJCNN), (2021).

A. L. Maas, A. Y. HANNUN, AND Y. N. ANDREW, Rectifier nonlinear-

ittes improve neural network acoustic models, International Conference on
Machine Learning (ICML) Workshop, (2013).

W. Maass, Networks of spiking neurons: The third generation of neural
network models, Neural Networks, 10 (1996), pp. 1659-1671.

D. J. C. MAcKAY, A practical bayesian framework for backpropagation
networks, Neural Computation, 4 (1992), pp. 448-472.

D. MAaNDIC AND J. CHAMBERS, Recurrent neural networks for prediction:
Learning algorithms,architectures and stability, (2001).

L. MASON, J. BAXTER, P. BARTLETT, AND M. FREAN, Boosting algo-

rithms as gradient descent, International Conference on Neural Information
Processing Systems (NIPS), (1999), pp. 512-518.

W. McCuLLocH AND W. PiTTS, A logical calculus of the ideas imma-
nent in nervous actiwity, Bulletin of Mathematical Biophysics, 5 (1943),
p. 115-133.

133

BIBLIOGRAPHY

[107]

[108]

109]

[110]

111
112]

113]

[114]

[115]

[116]

[117)

18]

[119]

134

A. MEHRTASH, W. M. WELLS, C. M. TEMPANY, P. ABOLMAESUMI,
AND T. KAPUR, Confidence calibration and predictive uncertainty estima-
tion for deep medical image segmentation, IEEE Transactions on Medical

Imaging, 39 (2020), pp. 3868 3378,

B. H. MENZE, A. JAKAB, S. BAUER, J. KALPATHY-CRAMER, K. FARA-
HANI, J. KirBY, Y. BURREN, N. Porz, J. StrorBooM, R. WIEST,

ET AL., The multimodal brain tumor image segmentation benchmark (brats),
IEEE Transactions on Medical Imaging, 34 (2015), pp. 1993-2024.

A. MILAN, L. LEAL-TAIXE, I. D. REID, S. RoTH, AND K. SCHINDLER,
Mot16: A benchmark for multi-object tracking, (2016).

D. MILLER, L. NICHOLSON, F. DAYOUB, AND N. SUNDERHAUF, Dropout
sampling for robust object detection in open-set conditions, (2017).

D. MOORE, Applied Survival Analysis Using R, 2016.

D. MORRISON, A. MiLAN, AND E. ANTONAKOS, Uncertainty-aware in-
stance segmentation using dropout sampling, (2019).

X. Mu, J. CHE, T. HU, AND Z. WANG, A video object tracking algorithm
combined kalman filter and adaptive least squares under occlusion, Interna-

tional Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), (2016), pp. 6-10.

[. NAMATEVS, L. ALEKSEJEVA, AND [. POLAKA, Neural network mod-
elling for sports performance classification as a complex socio-technical sys-
tem, Information Technology and Management Science, 19 (2016).

NATIONAL TRANSPORTATION SAFETY BOARD, Collision between wvehi-
cle controlled by developmental automated driving system and pedestrian,
tempe, arizona, march 18, 2018, Highway Accident Report, (2019).

J. NETER, M. H. KUuTNER, C. J. NACHTSHEIM, AND W. WASSERMAN,
Applied Linear Statistical Models, Irwin, Chicago, 1996.

L. NEUMANN, A. ZISSERMAN, AND A. VEDALDI, Relaxed softmaz: Effi-
cient confidence auto-calibration for safe pedestrian detection, (2018).

P. NivocGt AND F. GIROSI, On the relationship between generalization er-
ror, hypothesis complexity, and sample complexity for radial basis functions,
Neural Computation, 8 (1995).

P. OBERDIEK, M. ROTTMANN, AND H. GOTTSCHALK, Classification un-

certainty of deep neural networks based on gradient information, Artificial
Neural networks and Pattern Recognition (ANNPR), (2018).

BIBLIOGRAPHY

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

O. OzpDEMIR, B. WOODWARD, AND A. A. BERLIN, Propagating uncer-
tainty in multi-stage bayesian convolutional neural networks with application
to pulmonary nodule detection, (2017).

T.-Y. PaN, C. ZHANG, Y. L1, H. Hu, D. XuaN, S. CHANGPINYO,
B. GonNnag, AND W.-L. CHAO, On model calibration for long-tailed object
detection and instance segmentation, (2021).

T. H. PARK AND G. CASELLA, The bayesian lasso, Journal of the Ameri-
can Statistical Association, 103 (2008), pp. 681 — 686.

C. PAYER, D. STERN, T. NEFF, H. BiscHOF, AND M. URSCHLER,
Instance segmentation and tracking with cosine embeddings and recurrent

hourglass networks, Medical Image Computing and Computer Assisted In-
tervention (MICCAI), (2018).

B. PHAN, R. SarLAy, K. CZARNECKI, V. ABDELZAD, T. DENOUDEN,
AND S. VERNEKAR, Calibrating uncertainties in object localization task,
(2018).

J. PLATT, Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods, Advances in Large Margin Classi-
fiers, 10 (2000).

B. POLYAK, Some methods of speeding up the convergence of iteration meth-
ods, Ussr Computational Mathematics and Mathematical Physics, 4 (1964),
pp. 1-17.

L. PRECHELT, Early Stopping - But When?, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998, pp. 55-69.

J. RANSTAM AND J. COOK, Lasso regression, British Journal of Surgery,
105 (2018), pp. 1348-1348.

J. REDMON, S. DivvaLA, R. GIRSHICK, AND A. FARHADI, You only
look once: Unified, real-time object detection, IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), (2016), pp. 779-788.

S. REN, K. HE, R. GIRSHICK, AND J. SUN, Faster r-cnn: Towards real-
time object detection with region proposal networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39 (2015).

S. RIAD, The deconvolution problem: An overview, Proceedings of the
IEEE, 74 (1986), pp. 82-85.

135

BIBLIOGRAPHY

[132]

[133]

134]

[135]

[136]

[137]

[138)]

[139]

[140]

[141]

[142]

[143]

136

S. R. RICHTER, Z. HAYDER, AND V. KOLTUN, Playing for bench-
marks, IEEE International Conference on Computer Vision, ICCV, (2017),
pp. 2232-2241.

H. ROBBINS AND S. MONRO, A Stochastic Approximation Method, The
Annals of Mathematical Statistics, 22 (1951), pp. 400 — 407.

R. RosaLES, M. ScHMIDT, AND G. FUNG, Fast optimization methods for
1 reqularization: A comparative study and two new approaches, Science,

(2007).

V. RoTH, The generalized lasso, IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, 15 (2004), pp. 16-28.

M. RorTMANN, P. CoLLING, T. HAck, F. HUGER, P. SCHLICHT, AND
H. GOTTSCHALK, Prediction error meta classification in semantic segmen-
tation: Detection via aggregated dispersion measures of softmazx probabil-
ities, IEEE International Joint Conference on Neural Networks (LJCNN),
(2020).

M. ROTTMANN AND M. SCHUBERT, Uncertainty measures and predic-
tion quality rating for the semantic segmentation of nested multi resolution

street scene images, IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, (2019).

A. G. Roy, S. ConJETI, N. NAVAB, AND C. WACHINGER, Inherent

brain segmentation quality control from fully convnet monte carlo sampling,
(2018).

D. RUMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning repre-
sentations by back-propagating errors, Nature, 323 (1986), pp. 533-536.

O. RussAkovsKy, J. DENG, H. Su, J. KRAUSE, S. SATHEESH, S. MA,
Z. HUANG, A. KARPATHY, A. KHOSLA, M. BERNSTEIN, A. C. BERG,
AND L. FEI-FEI, ImageNet Large Scale Visual Recognition Challenge, In-
ternational Journal of Computer Vision (IJCV), 115 (2015), pp. 211-252.

M. SANDLER, A. HOWARD, M. ZHU, A. ZHMOGINOV, AND L.-C. CHEN,
Inverted residuals and linear bottlenecks: Mobile networks for classification,
detection and segmentation, (2018).

A. SAXENA, S. CHUNG, AND A. NG, Learning depth from single monocular
images, Advances in Neural Information Processing Systems, 18 (2006).

T. ScHAUL, I. ANTONOGLOU, AND D. SILVER, Unit tests for stochas-

tic optimization, International Conference on Learning Representations,
(2014).

BIBLIOGRAPHY

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

M. ScHUBERT, K. KAHL, AND M. ROTTMANN, Metadetect: Uncertainty
quantification and prediction quality estimates for object detection, IEEE
International Joint Conference on Neural Networks (LJCNN), (2021).

S. SCHULTER, P. VERNAZA, W. CHOI, AND M. CHANDRAKER, Deep net-
work flow for multi-object tracking, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), (2017).

S. SHALEV-SHWARTZ AND S. BEN-DAVID, Understanding machine learn-
ing. from theory to algorithms, (2013).

C. E. SHANNON, A mathematical theory of communication, The Bell Sys-
tem Technical Journal, 27 (1948), pp. 379-423.

A. N. SHIRYAYEV, On The Law of Large Numbers, Springer Netherlands,
Dordrecht, 1992, pp. 43-47.

J. SoN, M. BAeEk, M. CHO, AND B. HAN, Multi-object tracking with
quadruplet convolutional neural networks, Conference on Computer Vision
and Pattern Recognition (CVPR), (2017).

J. Son, I. JunG, K. PARK, AND B. HAN, Tracking-by-segmentation with
online gradient boosting decision tree, IEEE International Conference on

Computer Vision (ICCV), (2015), pp. 3056-3064.

S. SONODA AND N. MURATA, Neural network with unbounded activation

functions is universal approzimator, Applied and Computational Harmonic
Analysis, 43 (2015).

N. Srivastava, G. E. HinTtoN, A. KRIZHEVSKY, [. SUTSKEVER,
AND R. SALAKHUTDINOV, Dropout: a simple way to prevent neural net-
works from overfitting, Journal of Machine Learning Research, 15 (2014),
pp- 1929-1958.

P. SrivasTtava, K. MiSHRA, V. AwWASTHI, V. SAHU, AND P. K. PAL,

Plant disease detection using convolutional neural network, International
Journal of Advanced Research, 09 (2021), pp. 691-698.

F. SurLTANA, A. SUFIAN, AND P. DUTTA, Advancements in image classifi-
cation using convolutional neural network, Fourth International Conference
on Research in Computational Intelligence and Communication Networks

(ICRCICN), (2018), pp. 122-129.

I. SUTSKEVER, J. MARTENS, G. E. DAHL, AND G. E. HINTON, On the
importance of initialization and momentum in deep learning, (2013).

137

BIBLIOGRAPHY

[156]

[157]

[158]

[159]

160

[161]
162]

[163]

164]

[165)

[166]

[167]

[168]

138

L. THar, T. S. Hai, AND N. THUY, Image classification using support
vector machine and artificial neural network, International Journal of In-
formation Technology and Computer Science, 4 (2012), pp. 32-38.

R. TIBSHIRANI, Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society: Series B, 58 (1996), pp. 267-288.

R. TIBSHIRANI, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2012), pp. 1456-1490.

L. TorGco, R. RIBEIRO, B. PFAHRINGER, AND P. BRANCO, Smote for
regression, Progress in Artificial Intelligence, (2013), pp. 378-389.

J. VALMADRE, L. BERTINETTO, J. F. HENRIQUES, A. VEDALDI, AND
P. H. S. TORR, End-to-end representation learning for correlation filter

based tracking, IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), (2017).

V. VAPNIK, Principles of risk minimization for learning theory, 4 (1992).

P. VOIGTLAENDER, M. KRAUSE, A. OSEP, J. LUITEN, B. B. G. SEKAR,
A. GEIGER, AND B. LEIBE, MOTS: Multi-object tracking and segmenta-
tion, Conference on Computer Vision and Pattern Recognition (CVPR),
(2019).

A. WaIBEL, T. HANAzZAWA, G. HINTON, K. SHIKANO, AND K. LANG,
Phoneme recognition using time-delay neural networks, IEEE Transactions
on Acoustics, Speech and Signal Processing, 37 (1989), pp. 328 — 339.

L. WANG, J. SHI, G. SONG, AND I.-F. SHEN, Object detection combining
recognition and segmentation, Computer Vision (ACCV), (2007).

L. WANG, J. ZHANG, O. WANG, Z. L. Lin, anpD H. Lu, Sdc-
depth: Semantic divide-and-conquer network for monocular depth estima-

tion, IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (2020), pp. 538-547.

Q. WANG, L. ZuaNG, L. BERTINETTO, W. HU, AND P. H. TORR, Fust
online object tracking and segmentation: A unifying approach, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (2019),
pp- 1328-1338.

S. WaNG, B. NaAN, S. ROSSET, AND J. ZHU, Random lasso, The annals
of applied statistics, 5 (2011), pp. 468-485.

Z. WANG, L. ZHENG, Y. Liu, AND S. WANG, Towards real-time multi-
object tracking, (2019).

BIBLIOGRAPHY

[169]

[170]

171]

172]

[173]

[174]

[175]

[176]

[177]

178

[179]

[180]

K. WicksTroM, M. KAMPFFMEYER, AND R. JENSSEN, Uncertainty and
interpretability in convolutional neural networks for semantic segmentation
of colorectal polyps, Medical Image Analysis, 60 (2019).

Y. Wu, J. Lim, AND M. YANG, Online object tracking: A benchmark,
IEEE Conference on Computer Vision and Pattern Recognition, (2013),
pp. 2411-2418.

K. Xi1anG, K. WANG, AND K. YANG, A comparative study of high-recall

real-time semantic segmentation based on swift factorized network, Security
+ Defence, (2019).

K. Xiang, K. WANG, AND K. YANG, Importance-aware semantic seg-
mentation with efficient pyramidal context network for navigational assis-
tant systems, IEEE Intelligent Transportation Systems Conference (ITSC),
(2019).

Y. XIANG, A. ALAHI, AND S. SAVARESE, Learning to track: Online multi-

object tracking by decision making, IEEE International Conference on Com-
puter Vision (ICCV), (2015), pp. 4705-4713.

R. X1ao0, L. ZHu, AND H.-J. ZHANG, Boosting chain learning for ob-
ject detection, IEEE International Conference on Computer Vision (ICCV),

(2003).

B. YaNG, W. Luo, AND R. URTASUN, Pizor: Real-time 3d object detec-

tion from point clouds, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), (2018).

L. YANG, Y. FAN, AND N. Xu, Video instance segmentation, IEEE/CVF
International Conference on Computer Vision (ICCV), (2019), pp. 5187
5196.

M. Yang, K. Yu, C. ZHANG, Z. L1, AND K. YANG, Denseaspp for se-
mantic segmentation in street scenes, IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), (2018), pp. 3684-3692.

T. YANG AND A. B. CHAN, Learning dynamic memory networks for object
tracking, (2018).

R. Yao, G. Lin, C. SHEN, Y. ZHANG, AND Q. SHI, Semantics-aware

visual object tracking, IEEE Transactions on Circuits and Systems for Video
Technology, 29 (2019), pp. 1687-1700.

D. YAROTSKY, Universal approrimations of invariant maps by neural net-
works, (2018).

139

BIBLIOGRAPHY

[181]

[182]

[183]

184]

[185]

[186]

[187]

188]

[189]

[190]

[191]

140

D. Yeo, J. SoN, B. HAN, AND J. H. HAN, Superpizel-based tracking-by-
segmentation using markov chains, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), (2017), pp. 511-520.

A. YiLMAZ, O. JAVED, AND M. SHAH, Object tracking: A survey, ACM
Computing Surveys, 38 (2006), pp. 1-45.

F. Yu AND V. KOLTUN, Multi-scale context aggregation by dilated convo-
lutions, (2015).

M. D. ZEILER AND R. FERGUS, Visualizing and understanding convolu-
tional networks, European Conference on Computer Vision (ECCV), (2014).

J. Zuana, Y. DA1, X. Yu, M. HARANDI, N. BARNES, AND R. HART-
LEY, Uncertainty-aware deep calibrated salient object detection, (2020).

X. ZHANG, X. ZHOU, M. LIN, AND J. SUN, Shufflenet: An extremely
efficient convolutional neural network for mobile devices, IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), (2018),
pp. 6848-6856.

D. Zuao, H. Fu, L. X1a0, T. Wu, AND B. DA1, Multi-object tracking
with correlation filter for autonomous vehicle, Sensors, 18 (2018), p. 2004.

D. Zuou AND Q. HE, Poseg: Pose-aware refinement network for human
instance segmentation, IEEE Access, 8 (2020), pp. 15007-15016.

D.-X. Zuou, Universality of deep convolutional neural networks, Applied
and Computational Harmonic Analysis, 48 (2019).

Y. ZHOU AND R. CHELLAPPA, Computation of optical flow using a neural
network, IEEE 1988 International Conference on Neural Networks, (1988),
pp. 71-78 vol.2.

J. Zau, H. YANG, N. Liu, M. Kim, W. ZHANG, AND M.-H. YANG, On-
line multi-object tracking with dual matching attention networks, European
Conference on Computer Vision (ECCV), (2018).

	Acknowledgments
	Foreword
	Contents
	Introduction
	Review of Basic Material and Related Work
	Neural Networks
	Feed Forward Neural Networks
	Convolutional Neural Networks
	Semantic Segmentation
	Instance Segmentation
	Depth Estimation
	Evaluation Metrics

	Uncertainty Quantification
	Object Tracking
	Related Work
	Evaluation Methods

	Classification and Regression Methods for the Prediction of the IoU
	Linear Regression
	Gradient Boosting
	Shallow Neural Networks
	Performance Measures

	Datasets

	Time-Dynamic Estimates of the Reliability of Deep Semantic Segmentation Networks
	Related Work
	Method
	Tracking Segments over Time
	Segment-wise Metrics and Time Series
	Prediction of the IoU from Time Series

	Numerical Results
	VIPER Dataset
	KITTI Dataset

	Discussion

	Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates
	Related Work
	Method
	Tracking Method for Instances
	Temporal Instance-wise Metrics
	IoU Prediction

	Numerical Results
	Evaluation of our Tracking Algorithm
	Meta Classification and Regression
	Advanced Score Values

	Discussion

	False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates
	Related Work
	Method
	Detection Algorithm
	Metrics
	Meta Classification

	Numerical Results
	Meta Classification
	Evaluation of the Detection Method

	Discussion

	Conclusions & Outlook
	List of Figures
	List of Tables
	List of Algorithms
	List of Notations
	Bibliography

