
Auto-generated structured

meshes for evolving domains

Dissertation

zur Erlangung des Grades eines Doktors der

Naturwissenschaften

Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

vorgelegt von

Camilla Hahn

Wuppertal, 2021

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-20210914-112409-1
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20210914-112409-1

DOI: 10.25926/gmyp-7s53
[https://doi.org/10.25926/gmyp-7s53]

Contents

1 Introduction 1

2 Finite element method 5

2.1 Elliptic boundary value problems 5

2.1.1 Elliptic partial differential equations with boundary

conditions . 6

2.1.2 Weak solutions of elliptic PDEs 9

2.2 Introduction to finite elements 21

2.2.1 Error bounds . 25

2.2.2 Discretization of the linear elasticity equation via finite

elements . 29

3 Objective functionals 33

3.1 Shape optimization . 33

3.2 Survival probabilities . 35

3.2.1 Ceramic material . 35

3.2.2 Low cycle fatigue . 43

3.3 Discretization of the objective functionals 44

3.3.1 Discretization of the two-dimensional functional for ce-

ramic material . 45

3.3.2 Adjoint equation . 46

3.4 Derivative of the objective functional 48

3.4.1 Derivative with respect to U loc 49

3.4.2 Derivative with respect to local X loc 51

i

ii CONTENTS

4 Structured meshing 55

4.1 Introduction to mesh generation 56

4.1.1 Mesh morphing and re-meshing 56

4.2 Structured meshing . 58

4.2.1 Two-dimensional meshing 59

4.2.2 How to treat kinks . 68

4.2.3 Shape optimization on the structured mesh 68

4.2.4 Higher order finite elements 71

4.2.5 Adapting in three dimensions 72

5 Krylov subspace recycling 77

5.1 Krylov subspace methods . 78

5.1.1 MINRES . 78

5.2 Krylov subspace recycling . 82

5.3 Recycling MINRES for evolving geometries 87

5.3.1 Mapping on structured meshes 91

6 Implementation and numerical results 93

6.1 Details of the implementation 93

6.1.1 Assembling the linear system of equations 94

6.1.2 Simple test case . 97

6.1.3 Updating the mesh . 98

6.2 The objective functionals . 102

6.2.1 The functional for low cycle fatigue 102

6.2.2 Ceramic material . 104

6.2.3 Numerical results . 108

6.3 Three Dimensional Examples 112

6.4 Krylov subspace recycling . 115

6.4.1 Test of mapping an approximate invariant subspace . . 115

6.4.2 Poisson equation on a turbine blade 116

6.4.3 Gradient based shape optimization with linear elastic-

ity as governing PDE 117

7 Conclusion 119

List of Figures

2.1 Linear, quadratic and cubic Pt elements. 23

4.1 Visualization of the three steps of the meshing, T̃ , T ∞ and T .

From [7]. 60

4.2 Visualization of the cell boundary interaction that is not allowed. 61

4.3 Example for a strongly degenerated element. 62

4.4 Example of worst case element contortion when two nodes are

moved. 66

4.5 Higher order finite element meshes. 72

4.6 Triangulation of one cuboid in the 3D structured mesh. 73

4.7 Example of clustered point cloud representation of the surface

of a cylinder. 74

4.8 Visualization of the projection of the three dimensional surface

onto the two-dimensional plane. 75

5.1 Concept of the mapping of the grid points to the domain of

the previous optimization step. From [7]. 88

6.1 Convergence of the solution of the Poisson equation on the

unit circle. 97

6.2 Comparison of the solution of the Poisson equation on the pre-

sented meshing approach to a standard FEniCS triangulation. 98

6.3 The standard testing geometry. From [7]. 99

6.4 Mesh for the standard testing geometry. 100

6.5 Updating the shape in a controlled manor, with step size

bounded by h. Elements that are visited in the updating al-

gorithm are highlighted, nodes that change status are marked. 101

iii

iv LIST OF FIGURES

6.6 Computation of the probability of failure for LCF. 105

6.7 Assembly of the material derivative. 107

6.8 Solutions of the linear elasticity equation. 108

6.9 Convergence of ||dJ(X,U)
dX
||2/||(J(X+εV,U(X+εV))−J(X,U)

εV
)||2 for the

two-dimensional objective functional. From [8]. 109

6.10 Gradient in standard scalar product and smoothed gradient;

Nx = 64, Ny = 32. From [3]. 109

6.11 Optimizing the shape in a controlled manor, with step size

bounded by h. Displayed are iterations no. 1, 3, 5, 7, 9, 11,

13, 15 and 16. 110

6.12 Discretized turbine blade and zoom in on part of the mesh. . . 111

6.13 Discrete adjoint for LCF on blade. 112

6.14 Visualization of the solution of the Poisson equation on a ball

in 3D with n = 16. 112

6.15 Mesh for bent rod. 113

6.16 Mesh for rod with cooling channel. 113

6.17 Right hand side of linear elasticity equation. 114

6.18 Solution of the linear elasticity equation in three dimensions. . 114

6.19 Visualization of the changes in the geometry for the model

problem. 116

6.20 Test problem 1: Poisson equation on a turbine blade. Three con-

secutive positions of the hole. From [7]. 117

6.21 Convergence results for solving Poisson’s equation for 3 con-

secutive optimization steps. On the left, the residual norm

convergence. Right N the number of unknowns, number of

rMINRES iterations, and number of nodes changing from ac-

tive to inactive or vice versa. From [7]. 117

6.22 Test problem 2: subsequent shapes in the optimization of a bent

rod. From [7]. 118

LIST OF FIGURES v

6.23 Convergence results for solving the linear elasticity equation

for 3 consecutive optimization steps. On the left, the residual

norm convergence. Right N the number of unknowns, number

of rMINRES iterations, and number of nodes changing from

active to inactive or vice versa. From [7]. 118

vi LIST OF FIGURES

List of Algorithms

1 Adapt . 61

2 method coordinates-struct . 63

3 method connectivity . 63

4 Initialization status nodes . 64

5 Adapt mesh . 65

6 Determine active mesh T . 67

7 Pretreatment of kinks . 69

8 Update mesh . 70

9 Update status nodes . 71

10 Adapt 3D mesh . 76

11 Arnoldi iteration . 81

12 Lanczos iteration . 81

13 Unpreconditioned MINRES 82

14 The unpreconditioned MINRES algorithm, as found in [59] . 82

15 Recycling MINRES . 86

16 General assembly scheme . 95

17 Project global matrix onto T 95

18 Assembly scheme for structured meshes 96

19 Assembly of the right hand side 97

20 Update of the system matrix 102

21 Assembly of ∂J/∂U . 106

vii

viii LIST OF ALGORITHMS

List of Tables

6.1 L2-norm of the error of the Poisson equation for different mesh

sizes . 98

6.2 Comparison of error norms for the solution of the Poisson

equation. 99

6.3 Cosines of principal angles (cos(θi)) between the approximate

invariant subspace and the true invariant subspace correspond-

ing to the 20 smallest eigenvalues. From [7]. 116

ix

x LIST OF TABLES

Chapter 1

Introduction

Within the scope of meshing for finite element methods, two major problems

arise, where the solution of one often prevents the solution of the other. The

first problem is the accuracy of the mesh. Assuming polyhedral meshes, these

meshes can always only approximate non-polyhedral domains up to a certain

error. Nevertheless, modern meshing approaches manage to approximate

even complicated domains very well with unstructured meshes [34]. The sec-

ond problem is the computational cost. Especially in three dimensions, the

problem size very quickly exceeds the capacities of standard solvers. Highly

structured grids have proven to deliver speedup on modern computer archi-

tectures and especially GPU’s [16, 43]. Following either a structured or an

unstructured meshing approach always entails the loss of the advantages of

the other. Therefore, research in recent years focuses on the development

of new structured meshing approaches that succeed in capturing ever more

complicated domains, such as the cut cells method [5]. In the context of

shape optimization, where usually hundreds or thousands of the optimiza-

tion steps with subsequent but ever changing domains have to be solved,

an additional question arises. The domains do change in each optimization

step but in general these changes are not very large. Instead of creating en-

tirely new meshes in each step of optimization, many approaches of meshing

in shape optimization focus on morphing the mesh from one domain to the

next [50, 51].

1

2 CHAPTER 1. INTRODUCTION

In this work, we present a highly structured meshing approach that is based

on the concept of composite finite elements presented in [24, 25, 26]. It

possesses the advantages of structured meshes and is capable of resolving

boundaries accurately. Embedded in a gradient based, PDE constrained

shape optimization procedure, this highly structured approach leads to cost

reduction in the re-meshing and the assembly of the system matrix of the

governing PDE. We also present an approach to apply Krylov subspace re-

cycling to speed up the computations further.

GIVEN Project

This work was conducted as part of the GIVEN project (Shape Optimization

for Gas Turbines in Volatile Energy Networks). The project is concerned with

the development of a novel process for multi-objective shape optimization of

gas turbine blades. The rise of renewable energies has led to an increase of

volatility in the energy supply in energy networks in recent years. Not only

due to the resulting increase in the frequency of starts and shut downs of

the gas turbines in power plants, it has become inevitable to determine the

design decisions of gas turbines not only by efficiency but the durability of

the components as well. The GIVEN project combines a state of the art

adjoint fluid dynamics solver (TRACE) [4] for objectives such as efficiency

with a newly developed mechanic solver for objectives such as reliability or

material consumption, which is coupled with an ODE solver to simulate the

influence of a cooling channel.

Therefore, in this work we describe how to apply the previously described

meshing approach as the basis of a finite element solid mechanics solver for

gradient based shape optimization that is constrained by mechanic equations

such as the Poisson equation and the linear elasticity equation.

Outline

To obtain the described aim of this work, in Chapter 2 we provide the reader

with the foundations of the theory of partial differential equations, followed

by an introduction to finite element methods and fundamental convergence

3

results thereof. In Chapter 3 we describe the basic concepts of shape opti-

mization and sensitivity analysis. We introduce the two objective functionals

that are supposed to be optimized and discretize these functionals and their

adjoints with finite elements. In chapter 4, we give an overview of different

meshing techniques and describe our structured meshing approach in detail.

We address the challenges of two-dimensional and three-dimensional mesh-

ing. This is followed by Chapter 5, where we introduce the method of Krylov

subspace recycling and a novel approach to utilize this method on evolving

domains. In Chapter 6, we provide more details of the implementation of

the finite element solver on the structured meshes and give numerical results

for two and three-dimensional meshing and the solution of partial differential

equation on those meshes as well as examples of Krylov subspace recycling.

We conclude this work in Chapter 7 and give a brief summary as well as an

outlook to future interesting fields of research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Finite element method

The Finite element method (FEM) is a method to numerically solve partial

differential equations (PDEs). In this chapter, we give an introduction to

the analysis of partial differential equations and the corresponding theory of

solution of the equations considered in this work. Subsequently, the finite

element method is introduced as the method of choice to numerically solve

these problems.

2.1 Elliptic boundary value problems

In this work, we consider partial differential equations (PDEs) of second

order. The general form of these equations in n dimensions is

−
n∑

i,k=1

aik(x)∂i∂ku+
n∑
i=1

bi(x)∂iu+ c(x)u = f(x). (2.1)

With Schwarz’s theorem [17], the assigned matrix

A(x) := (aik(x)) (2.2)

is symmetric. Second order PDEs are categorized in three categories, elliptic,

hyperbolic and parabolic PDEs.

Definition 2.1.1. A second order linear partial differential equation in n

5

6 CHAPTER 2. FINITE ELEMENT METHOD

variables is called

• elliptic in x if A(x) is positive definite,

• hyperbolic in x if A(x) has one negative and n−1 positive eigenvalues,

• parabolic in x if A(x) is positive semi-definite but not definite and

(A(x), b(x)) has rank n,

• elliptic, hyperbolic or parabolic if the respective condition holds for all

points x in the domain.

As the problems this work is concerned with are elliptic, we focus on the

theory of these equations, more precisely on the theory of elliptic boundary

value problems. Without further conditions, PDEs in general do not possess

a unique solution. For an elliptic problem, correct boundary conditions have

to be provided to guarantee the existence of such a unique solution.

2.1.1 Elliptic partial differential equations with bound-

ary conditions

For elliptic problems there are three major kinds of boundary conditions.

They are introduced in this section.

Let Ω ∈ R3 be a domain with Lipschitz boundary ∂Ω, that is there exists an

N ∈ N and open sets U1, U2, ..., UN such that

1. ∂Ω ⊂
⋃N
i=1 Ui

2. For all i = 1, ..., N , ∂Ω ∩ Ui is the graph of a Lipschitz continuous

function.

This domain Ω wil be the domain on which the PDE is defined.

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 7

Dirichlet boundary conditions

With Ω defined as above, an elliptic (or coercive) boundary value problem

with Dirichlet boundary condition is given by

−
∑
i,k

∂i(aik(x)∂ku) + a0(x)u = f in Ω

u = g on ∂Ω,
(2.3)

where

a0(x) ≥ 0 for x ∈ Ω (2.4)

and A(x) is positive definite. f and g are arbitrary functions on Ω and ∂Ω,

respectively. This can be written more shortly as

Lu = f in Ω

u = g on ∂Ω,
(2.5)

we call L a second order elliptic partial differential operator.

As one can transform every Dirichlet boundary value problem to a homo-

geneous problem, we only consider problems with g = 0 in the following

section.

Neumann boundary conditions

Another important boundary condition is the Neumann boundary condition.

Contrary to the Dirichlet boundary condition, it gives the values of the so-

lution’s derivative on ∂Ω. So referring to the notation in (2.5), an elliptic

boundary value problem with Neumann boundary conditions is given by

Lu = f in Ω,∑
i,k

niaik∂ku = h on ∂Ω, (2.6)

where n := n(x) is the outward pointing normal defined almost everywhere

on ∂Ω. Hence for Neumann boundary conditions, the derivative of u in

8 CHAPTER 2. FINITE ELEMENT METHOD

direction of n is considered. Therefore we can reformulate the problem more

shortly

Lu = f in Ω,
∂u
∂n

= h on ∂Ω.
(2.7)

Neumann boundary conditions are also called natural boundary conditions in

contrast to the essential boundary conditions, the Dirichlet boundary condi-

tions, which are essential to obtain a uniquely solvable problem.

Robin boundary conditions

The last type of considered boundary conditions are Robin boundary condi-

tions. They are a weighted combination of Dirichlet and Neumann boundary

conditions, hence they have the following form

Lu = f in Ω,

α ∂u
∂n

+ βu = h on ∂Ω.
(2.8)

Of course, there also exist problems with multiple boundary conditions, so

called mixed boundary conditions. In contrast to Robin boundary conditions,

which are a combination of Dirichlet and Neumann boundary conditions on

the same part of the boundary, the boundary of the concerned domain is

divided into several parts with one boundary condition each. For example,

we can write a problem with mixed Dirichlet-Neumann boundary conditions

in the following form

Lu = f in Ω,

u = g on ∂ΩD,
∂u
∂n

= h on ∂ΩN ,

(2.9)

with ∂ΩN = ∂Ω\∂ΩD and where ∂ΩD is the part of the boundary where

Dirichlet conditions hold and ∂ΩN the part of the Neumann boundary con-

ditions. f, g and h will be described more precisely in the following sections.

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 9

2.1.2 Weak solutions of elliptic PDEs

A classical solution u to a Dirichlet or Neumann boundary problem lies in

C2(Ω) ∩ C0(Ω̄) or C2(Ω) ∩ C1(Ω̄), respectively. However, these solutions

often do not exist. Therefore, in the following we introduce the theory of

weak solutions, that guarantees solutions in a different (weaker) sense and

also lead to a formulation of the problem that is well tractable numerically.

The variational formulation and existence of solution

In this section we work out the existence and uniqueness of a weak solution

for the boundary value problems introduced above. This is in most parts

based on [10]. For this purpose we give some essential definitions and then

show the existence and uniqueness for Dirichlet-boundary problems. Follow-

ing this section we show this for Neumann-boundary problems as well.

Let Ω be an open subset of Rn with Lipschitz boundary. Sobolev spaces

are built on the function space L2(Ω) := {f : Ω → R|
∫

Ω
|f(x)|2dx < ∞}.

L2(Ω) becomes a Hilbert space with the scalar product

(u, v)0 :=

∫
Ω

u(x)v(x)dx (2.10)

and the corresponding norm

||u||0 =
√

(u, u)0. (2.11)

For a systematic definition of Sobolev spaces, we introduce weak deriva-

tives.

Definition 2.1.2. u ∈ L2(Ω) possesses the weak derivative ∂αu in L2(Ω)

provided that v ∈ L2(Ω) and

(φ, v)0 = (−1)|α|(∂αφ, u)0 for all φ ∈ C∞0 (Ω) (2.12)

10 CHAPTER 2. FINITE ELEMENT METHOD

with C∞0 (Ω) = {φ ∈ C∞(Ω)| supp(φ) is a compact subset of Ω}.

In the case that u is differentiable, the classical derivative equals the weak

derivative.

Definition 2.1.3 (Sobolev space). Given an integer m ≥ 0, let Hm(Ω) be

the set of all functions u ∈ L2(Ω) which possess weak derivatives ∂αu for all

|α| ≤ m. Then we call Hm(Ω) a Sobolev space.

We define a scalar product on Hm(Ω) by

(u, v)m :=
∑
|α|≤m

(∂αu, ∂αv)0 (2.13)

with the associated norm

||u||m :=
√

(u, u)m =

√∑
|α|≤m

||∂αu||20. (2.14)

Hm(Ω) is complete with respect to the norm || · ||m [2] and is thus a

Hilbert space.

The completion of C∞0 (Ω) regarding the Sobolev norm || · ||m is denoted by

Hm
0 (Ω). We need the next result to formulate the variational problem.

Theorem 2.1.4 (Characterization theorem [10]). Let V be a linear space,

and suppose that

a : V × V → R (2.15)

is a symmetric positive bilinear form, i.e., a(v, v) > 0 for all v ∈ V, v 6= 0.

In addition, let

` : V → R (2.16)

be a linear functional. Then the quantity

J(v) :=
1

2
a(v, v)− 〈`, v〉 (2.17)

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 11

attains its minimum over V at u if and only if

a(u, v) = 〈`, v〉 for all v ∈ V. (2.18)

Moreover, (2.18) has at most one solution.

Proof. For u, v ∈ V and t ∈ R we calculate

J(u+ tv) =
1

2
a(u+ tv, u+ tv)− 〈`, u+ tv〉

=
1

2

(
a(u, u) + ta(u, v) + ta(v, u+ t2a(v, v)

)
− 〈`, u〉 − t〈`, v〉

= J(u) + t(a(u, v)− 〈`, v〉) +
1

2
t2a(v, v).

(2.19)

Now let u satisfy condition (2.18), then it follows with t = 1:

J(u+ v) = J(u) +
1

2
a(v, v)

> J(u),
(2.20)

if v 6= 0 and as a is positive definite. It follows that J obtains its unique

minimum at u.

On the other hand, if J has a unique minimum at u, then for every v ∈ V ,

the derivative of the function t 7→ J(u+ tv) must vanish for t = 0. With the

calculation above, the derivative is a(u, v) − 〈`, v〉, which leads to condition

(2.18).

The Characterization Theorem can now be used to prove the following

proposition. The proof can be found in [10, p. 35].

Proposition 2.1.5 ([10]). Every classical solution of the boundary value

problem

−
∑
i,k

∂i(aik(x)∂ku) + a0(x)u = f in Ω

u = 0 on ∂Ω
(2.21)

12 CHAPTER 2. FINITE ELEMENT METHOD

is a solution of the variational problem

J(v) :=

∫
Ω

[
1

2

∑
i,k

aik∂iv∂kv +
1

2
a0v

2 − fv

]
dx→ min! (2.22)

among all functions in C2(Ω) ∩ C0(Ω̄) with zero boundary conditions.

By setting

a(u, v) :=

∫
Ω

[∑
i,k

aik∂iu∂kv + a0uv

]
dx (2.23)

and

〈`, v〉 :=

∫
Ω

fvdx, (2.24)

we can deduce from proposition 2.1.5 that if there exists a solution for our

boundary value problem, it is the solution of equation (2.18). What remains

is the question if there exists such a solution. This is not evident for classical

solutions. But by solving the variational problem on a suitable Hilbert space,

existence and even uniqueness of the (weak) solution can be achieved. For

better comprehension, we define weak solutions and then show their existence

and uniqueness.

Definition 2.1.6. A function u ∈ H1
0 (Ω) is called weak solution of the second

order elliptic boundary value problem

−
∑
i,k

∂i(aik∂ku) + a0u = f in Ω

u = 0 on ∂Ω,
(2.25)

with homogeneous Dirichlet boundary conditions, provided that

a(u, v) = (f, v)0 for all v ∈ H1
0 (Ω), (2.26)

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 13

where a is the associated bilinear form defined as

a(u, v) :=

∫
Ω

[∑
i,k

aik∂iu∂jv + a0uv

]
dx. (2.27)

Definition 2.1.7. Let H be a Hilbert space. A bilinear form a : H×H → R
is called continuous provided there exists C > 0 s.t.

|a(u, v)| ≤ C||u||||v|| for all u, v ∈ H. (2.28)

A symmetric bilinear form a is called H-elliptic or short elliptic or coercive,

provided for some α > 0,

a(v, v) ≥ α||v||2 for all v ∈ H. (2.29)

This induces the following norm

||v||a :=
√
a(v, v). (2.30)

The norm (2.30) is called energy norm.

A second order linear elliptic operator is called uniform elliptic if there exists

an α > 0 such that

ξ
′
A(x)ξ ≥ α‖ξ‖2, for ξ ∈ Rd, x ∈ Ω. (2.31)

Denote the space of continuous linear functionals on a normed linear space

V by V ′.

Theorem 2.1.8 (Lax-Milgram theorem (for convex sets)[10]). Let V be a

closed convex set in a Hilbert space H, and let a : H ×H → R be an elliptic

bilinear form. Then, for every ` ∈ H ′, the variational problem

J(v) :=
1

2
a(v, v)− 〈`, v〉 −→ min! (2.32)

has a unique solution in V.

14 CHAPTER 2. FINITE ELEMENT METHOD

Proof. J is bounded from below because of the following:

J(v) ≥ 1

2
α||v||2 − ||`|| · ||v||

=
1

2α
(α||v|| − ||`||)2 − ||`||

2

2α
≥ −||`||

2

2α
.

(2.33)

Let c1 := inf{J(v) : v ∈ V } and let (vn) be a minimizing sequence. We now

show that this is sequence is a Cauchy sequence. Therefore we consider

α||vn − vm||2 ≤ a(vn − vm, vn − vm)

= 2a(vn, vn) + 2a(vm, vm)− a(vn + vm, vn + vm)

= 4J(vn) + 4J(vm)− 8J

(
vn + vm

2

)
≤ 4J(vn) + 4J(vm)− 8c1.

(2.34)

The last estimate is true because V is a convex set and with this
(
vn+vm

2

)
is also in V . With J(vn), J(vm) → c1 it follows that ||vn − vm|| → 0 for

n,m→∞. It follows that (vn) is a Cauchy sequence in H and u = limn→∞ vn

exists .

Furthermore, as V is a closed set, it holds that u ∈ V . As J is continuous,

it follows that J(u) = limn→∞ J(vn) = infv∈V J(v).

It remains to show that u is the unique solution. Suppose there exist two solu-

tions u1 and u2. Then the sequence u1, u2, u1, u2, ... is a minimizing sequence.

But as we saw above, every minimizing sequence is a Cauchy sequence so it

must hold that u1 = u2.

With this theorem of Lax-Milgram we find the following

Theorem 2.1.9 (Existence theorem [10]). Let L be a second order uniformly

elliptic partial differential operator. Then the Dirichlet problem (2.25) always

has a weak solution in H1
0 (Ω). It is the minimum of the variational problem

1

2
a(v, v)− (f, v)0 −→ min! (2.35)

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 15

over H1
0 (Ω).

The result of this section is the established existence of a unique weak

solution of the elliptic Dirichlet boundary value problem in Sobolev spaces.

It is the solution of (2.26) where f is the right hand side of the boundary

value problem and a is the bilinear form associated to the left hand side.

This result can also be obtained for the problems with Neumann boundary

conditions. We examine this below.

Solutions of Neumann boundary value problems

We want to guarantee the existence of a unique weak solution not only for

a problem with Dirichlet boundary conditions, but also for those with Neu-

mann boundary conditions. To get there, we first need the theorem following

after introducing the cone condition. Consider the following notation

C(ζ, θ, l) := {x ∈ R3 : |x| < l, x · ζ > |x| cos(θ)} (2.36)

for the cone with height l, direction ζ, and opening angle θ. Thereby we can

define the cone property or cone condition

Definition 2.1.10. Let Ω̂ be a bounded open set in R3. For θ ∈]0, π
2
[,

l, r > 0, 2r ≤ l we denote by Π(θ, l, r) the set of all subsets Ω of Ω̂ satisfying

the cone condition, i.e. for any x ∈ ∂Ω there exists a cone Cx = Cx(ζx, θ, l),

where ζx denotes a unit vector in R3 such that

y + Cx ⊂ Ω, y ∈ B(x, r) ∩ Ω, (2.37)

where B(x, r) is the open ball with radius r centered at x.

Theorem 2.1.11 (Trace theorem [10]). Let Ω be bounded, and suppose Ω

has a Lipschitz boundary. In addition, suppose Ω satisfies the cone condition.

Then there exists a bounded linear mapping

γ : H1(Ω)→ L2(∂Ω), ||γ(v)||0,∂Ω ≤ c||v||1,Ω, (2.38)

such that γv = v|∂Ω for all v ∈ C1(Ω̄).

16 CHAPTER 2. FINITE ELEMENT METHOD

The proof of the trace theorem can be found in [10, p. 45].

Theorem 2.1.12. [10] Let ∂ΩD ⊂ ∂Ω be the part of the boundary where zero-

boundary conditions hold. Suppose the domain Ω satisfies the assumptions of

the trace theorem and suppose that ∂ΩD has positive two-dimensional mea-

sure. Then the variational problem J(v) := 1
2
a(v, v)− (f, v)0,Ω− (g, v)0,∂Ω →

min! has a unique solution in H1(Ω). The solution of the variational problem

lies in C2(Ω) ∩ C1(Ω̄) if and only if there exists a classical solution of the

boundary value problem

Lu = f in Ω,∑
i,k

niaik∂ku = g on ∂Ω, (2.39)

in which case the two solutions are identical.

The proof of the theorem makes use of the well known Green’s formula

Lemma 2.1.13 (Green’s formula [55]). For u, v ∈ C1(Ω̄) the following equa-

tion holds: ∫
Ω

v∂iudx = −
∫

Ω

u∂ivdx+

∫
∂Ω

vunids. (2.40)

The proof of this lemma can be found in several books, for example in [55].

Now we can provide the proof for theorem 2.1.12.

Proof. As a is a H1-elliptic bilinear form, the existence of an unique solution

u ∈ H1(Ω) follows from the theorem of Lax-Milgram. In particular,u is

characterized by

a(u, v) = (f, v)0,Ω + (g, v)0,∂Ω for all ∈ H1(Ω). (2.41)

Now let (2.41) hold for u ∈ C2(Ω) ∩ C1(Ω̄). For v ∈ H1
0 (Ω) it is γv = 0 and

we get with (2.41)

a(u, v) = (f, v)0, for all v ∈ H1
0 (Ω). (2.42)

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 17

One can see that u is also a solution of the Dirichlet problem and suppose

the boundary conditions are given. That is

Lu = f in Ω. (2.43)

For v ∈ H1(Ω), Green’s formula yields∫
Ω

v∂i(aik∂ku)dx = −
∫

Ω

∂ivaik∂kudx+

∫
∂Ω

vaik∂kunids. (2.44)

Hence,

a(u, v)− (f, v)0 − (g, v)0,∂Ω =

∫
Ω

v[Lu− f]dx+

∫
∂Ω

[
∑
i,k

niaik∂ku− g]ds.

(2.45)

From (2.41) and (2.43) it results that the second integral on the right side

of (2.45) vanishes. Suppose the function v0 = niaik∂ku− g does not vanish.

Then it is
∫
∂Ω
v2

0ds > 0. As C1(Ω̄) is dense in C0(Ω̄) it exists a v ∈ C1(Ω̄)

such that
∫
∂Ω
v0vds > 0. This is a contradiction, and the boundary condition

must me satisfied.

On the other hand, form (2.45) we see immediately that every classical so-

lution of (2.42) satisfies (2.43).

This result and the results of the previous section will be used in the next

section to establish the finite element method. Before that, we introduce the

two partial differential equation that we focus on in this work and that we

will revisit in later sections.

Poisson equation with Robin boundary conditions

The first PDE we want to examine is the Poisson equation with Robin bound-

ary conditions. Robin boundary conditions are closely linked to the Poisson

equation and the heat equation. In this work, we only consider Robin bound-

ary conditions for the Poisson equation, therefore we restrict ourselves to

show existence and uniqueness of the solution for this particular problem.

18 CHAPTER 2. FINITE ELEMENT METHOD

Theorem 2.1.14. [2] Let Ω be a bounded domain in Rd and let ∂Ω ly in

C1. Furthermore let b : ∂Ω → [0,∞) be measurable, bounded, such that the

measure of {z : b(z) 6= 0} is greater than zero. Then, for every f ∈ L2(Ω)

there exists a unique solution u ∈ H2(Ω) ∩H1(Ω̄)

−∆u = f (2.46)

∂u

∂ν
+ bγu = 0, (2.47)

with γ : H1(Ω̄)→ L2(∂Ω) denoting the trace operator.

Note that, for b = 0, (2.47) is a Neumann boundary condition. We give

a concept of the proof, for details see [2, Ch. 7.5]. We define the variational

formulation with linear form a : H1(Ω̄)×H1(Ω̄)→ R∫
Ω

∇u(x)∇v(x)dx+

∫
∂Ω

b(z)γu(z)γv(z)dσ =

∫
Ω

f(x)v(x)dx. (2.48)

One can show that a(·, ·) is elliptic. With the Lax-Milgram theorem it follows

that there exists a unique solution u ∈ H1(Ω̄) such that

a(u, v) =

∫
Ω

fvdx, for all v ∈ H1(Ω̄). (2.49)

With the theorem about local maximal regularity for solutions of the Poisson

equation [2] it follows that u ∈ H2(Ω). Finally, it is shown that every solution

of (2.49) satisfies the conditions of (2.47) and vice versa.

Linear elasticity theory

The other elliptic PDE we consider in larger detail is the linear elasticity

equation. The materials we are dealing with in this work have, to a certain

point, a linear elastic behavior under load. Ceramic material, for example,

has a linear elastic behavior as long as the stress remains below the ultimate

tensile strength. Therefore, we closely follow [10] in this section to derive the

linear elasticity equation and show existence and uniqueness of the solutions.

2.1. ELLIPTIC BOUNDARY VALUE PROBLEMS 19

Recall the Frobenius inner product

A : B = (A,B)F :=
∑
i,j=1

āijbij. (2.50)

Within the linear elasticity theory the variational problem arises to minimize

the energy

Π :=

∫
Ω

[
1

2
ε : σ − f · u]dx−

∫
∂Ω

g · u dx, (2.51)

where f : Ω→ R3 is the body force and g : Ω× S2 → R3 is the surface force

and S2 is the unit sphere in R3. Furthermore it is ε : σ :=
∑

ik εikσik. The

variables ε, σ and u are coupled by the kinematic equations

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.52)

or short ε = ε(u) := ∇u and the linear constitutive equations

ε =
1 + ν

E
σ − ν

E
tr (σ)I. (2.53)

This gives

σ =
E

1 + ν
(ε+

ν

1− 2ν
tr (ε)I). (2.54)

Substituting with Lamé ’s constants λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν)

we find

the common and in the course of this work often used formulation for σ

σ = λtr (ε(u))I + 2µ ε(u) (2.55)

and hence the energy density

1

2
σ : ε =

1

2
(λtr (ε)I + 2µ ε) : ε =

λ

2
(tr (ε))2 + µ ε : ε. (2.56)

20 CHAPTER 2. FINITE ELEMENT METHOD

To simplify the problem we can use the mixed method of Hellinger and

Reissner. With (2.56) we can rewrite Π

asΠ =

∫
Ω

[µ ε(v) : ε(v) +
λ

2
(div v)2 − f · v] dx+

∫
∂Ω1

g · v dx −→ min!,

(2.57)

where ∂Ω is divided into ∂Ω0 and ∂Ω1, and ∂Ω0 is the part where zero bound-

ary conditions hold.

We hence get a classical differential equation

div σ = −f in Ω

u = 0 on ∂Ω0,

σ · n = g on ∂Ω1,

(2.58)

where σ is defined as in (2.54). Now we want to apply the results of section

2.1.2 to this differential equation. Therefore we need the following inequality.

Theorem 2.1.15 (Korn’s inequality [10]). Let Ω ⊂ R3 be an open bounded

set with piecewise smooth boundary. In addition, suppose ∂Ω0 ⊂ ∂Ω has

positive two-dimensional measure. Then there exists a positive number C =

C(Ω, ∂Ω0) such that∫
Ω

ε(v) : ε(v)dx ≥ c||v||21 for all v ∈ H1
∂Ω(Ω). (2.59)

Here H1
∂Ω(Ω) is the closure of {v ∈ C∞(Ω)3, v(x) = 0 for x ∈ ∂Ω0} with

respect to the || · ||1-norm.

With this inequality we have that (2.57) is elliptic (see definition 2.1.7),

hence we can apply the Lax-Milgram-Theorem. The existence theorem fol-

lows immediately from this.

Theorem 2.1.16 (Existence theorem [10]). Let Ω ⊂ R3 be a domain with

piecewise smooth boundary and suppose ∂Ω0 has a positive two-dimensional

measure. Then the variational problem of linear elasticity theory has a unique

solution.

2.2. INTRODUCTION TO FINITE ELEMENTS 21

Now we can apply the results of the sections above, to state the variational

formulation for the linear elasticity PDE which is given by

B(u, v) =

∫
Ω

f · vdx+

∫
∂Ω1

g · vdA, ∀v ∈ H1
∂Ω(Ω), (2.60)

where the bilinear form on the left side is defined in the following way

B(u, v) =

∫
Ω

σ(u) : ε(v)dx = λ

∫
Ω

∇ · u∇ · v + 2µ

∫
Ω

ε(u) : ε(v)dx. (2.61)

2.2 Introduction to finite elements

This chapter is in most parts based on [10] and is supposed to provide an

introduction to the finite element method. The base of the finite elements

method is to not solve the variational problem (2.32) on Hm(Ω) but on a

discretized, finite-dimensional subspace, called Sh. To illustrate that the

initial space is a Sobolev-space over Rd one can also write Hm
h (Ω,Rd). The

idea is to partition Ω, for example in the three-dimensional case, by, not

necessarily regular, tetrahedra, cubes or rectangular parallelepipeds, etc. The

resulting grid possesses a finite number of grid points. Over these grid points

we can define basis functions and with the help of these basis functions we

are able to define an approximation of the weak solution over Hm
h (Ω,Rd). At

first there are certain constraints we need to demand from the resulting grid

to be able to make statements about the quality of the solutions resulting

from this method.

Definition 2.2.1. • A partition T = {T1, T2, ..., TM} of Ω into tetra-

hedra or rectangular parallelepipeds is called admissible provided the

following properties hold:

1. Ti ⊂ Ω is open for 1 = 1, ..., N ;

2. Ti ∩ Tj = ∅, i 6= j, i, j = 1, ..., N ;

3.
⋃N
i=1 T̄i = Ω̄.

22 CHAPTER 2. FINITE ELEMENT METHOD

• We will write Th instead of T when every element has diameter at most

2h.

• A family of partitions {Th} is called shape regular provided that there

exists a number κ > 0 such that every T ∈ Th contains a circle of radius

ρT with

ρT ≥ hT/κ,

where hT is half the diameter of T .

• A family of partitions {Th} is called uniform provided that there exists

a number κ > 0 such that every T ∈ Th contains a circle with radius

ρT ≥ h/κ.

Now we can give a formal definition of a finite element:

Definition 2.2.2. A finite element is a triple (T,Π,Σ) with the following

properties:

1. T is a polyhedron in Rd.

2. Π is a subspace of C(T) with finite dimension s.

3. Σ is a set of s linearly independent functionals over Π. These func-

tionals are also called interpolation conditions. Every p ∈ Π can be

uniquely identified by the s functionals in Σ.

Functions θ ∈ Π(T) are called local shape functions if they form a basis of

Π(T).

Note that with the local shape functions we can rewrite every u ∈ Π(T)

as u =
s∑
i=1

uiθi with ui ∈ R.

In this work, we focus on rather simple types of Pt-finite elements that are

defined below. For these elements, additionally s interpolation points (or

nodes) X1, ..., Xs ∈ T are needed, including at least the vertices of T . They

give a so called nodal basis of Π(T).

2.2. INTRODUCTION TO FINITE ELEMENTS 23

P1 P2 P3

Figure 2.1: Linear, quadratic and cubic Pt elements.

The most common finite elements are the Lagrange elements. These ele-

ments are determined by their following interpolation conditions ϕ at the s

interpolation points Xj

ϕj(θi) = θi(Xj) = δij, for i, j ∈ {1, ..., s}.

The most basic of these elements are polynomial triangle elements in the

two dimensional space and tetrahedral elements in the three dimensional

space, respectively, denoted by Pt. Let Pt denote the set of polynomials of

degree t and let T be a triangulation of Ω. Then Pt is defined by

Pt := {v ∈ L2(Ω) : v|T ∈ Pt ∀T ∈ T } ∩H1(Ω). (2.62)

P1, P2 and P3 are visualized in Figure 2.1.

In the next subsection, a common method to solve finite element problems

is introduced briefly.

Galerkin method

The standard approach to transform the analytical variational problem into

an algebraic form is the Galerkin method.

24 CHAPTER 2. FINITE ELEMENT METHOD

Consider the variational problem

J(v) :=
1

2
a(v, v)− 〈`, v〉 −→ min

Sh

!

in the subspace Sh. From the results of 2.1.2 we know that uh is a solution

of the problem provided

a(uh, v) = 〈`, v〉, for all v ∈ Sh. (2.63)

With the above base, (2.63) is equivalent to

a(uh, θi) = 〈`, θi〉, i = 1, 2, ..., N. (2.64)

For uh ∈ Sh, we assume that

uh =
N∑
k

zkθk, (2.65)

and this leads to the system of equations

N∑
k=1

a(θk, θi)zk = 〈`, θi〉, i = 1, 2, ..., N (2.66)

which we can write in matrix-vector form as

Az = b

and A is positive definite, if a is a Hm-elliptic bilinear form. Hence, this

approach still leads to a unique solution.

Through this approach the problem is reduced to a system of linear equations.

We consider the linear equations and suitable methods to solve them later on.

2.2. INTRODUCTION TO FINITE ELEMENTS 25

2.2.1 Error bounds

The Galerkin method establishes a finite element approach to numerically

solve elliptic PDE’s. However, it does not provide us with any knowledge

about the accuracy of the discrete solution. Therefore, this section gives

some of the fundamental statements concerning the quality of approximation

of and convergence towards the analytical solution. For the conforming finite

elements shown in the previous section, all convergence results base on the

following Lemma.

Lemma 2.2.3 (Céa’s Lemma[10]). Let the bilinear form a be Hm-elliptic.

Additionally let u and uh be the solution of the variational problem in Hm

and in Sh ⊂ Hm, respectively. Then it is

||u− uh||m ≤
C

α
inf
vh∈Sh

||u− vh||m. (2.67)

Proof. According to the definition of u and uh it holds that

a(u, v) = 〈`, v〉 for v ∈ Hm

a(uh, v) = 〈`, v〉 for v ∈ Sh.
(2.68)

As Sh ⊂ Hm it follows with subtraction that

a(u− uh, v) = 0 for v ∈ Sh. (2.69)

Let vh ∈ Sh. With v = vh−uh ∈ Sh it follows immediately from the equation

above that a(u− uh, vh − uh) = 0 and

α||u− uh||2m ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

≤ C||u− uh||m||u− vh||m.

(2.70)

By dividing by ||u− uh||m we find the Lemma’s assertion.

Céa’s Lemma states that the accuracy of the solution uh depends pri-

marily on a good choice of the functional spaces, so u is well approximated.

26 CHAPTER 2. FINITE ELEMENT METHOD

This can be controlled by the fineness of the partition and by the order of

the polynomials in the shape functions.

Most finite element methods are based on C0 elements, as higher order el-

ements are difficult and expensive to construct. Those elements lie only in

H1(Ω), thus higher order norms are not defined on this space. Therefore, in

the following we define mesh depended norms.

Definition 2.2.4. For a discretization Th on Ω and m ≥ 1 define

‖v‖m,h =

√∑
T∈T

‖v‖2
m,T . (2.71)

Obviously, ‖v‖m,h = |v‖m,Ω for v ∈ Hm(Ω).

A crucial advantage in speed of the finite element method is the concept

of affine families and the reference element.

Definition 2.2.5. A family of finite element spaces Sh for partitions Th
of Ω ⊂ Rd is called an affine family provided there exists a finite element

(T̂ , Π̂, Σ̂) called the reference element with the following properties:

• For every T ∈ Th, there exists an affine mapping BT : T̂ −→ T such

that

– Π̂ = Π ◦BT ,

– θ̂j = θj ◦BT and

– ϕ̂j(p ◦BT) = ϕj(p).

Through the reference element it is possible to calculate every required

solution only once on the reference element and then transform the solution

to solution on each element T . The following transformation formula assures

that we do not loose accuracy by using the reference element.

Lemma 2.2.6 (Transformation formula [10]). Let Ω and Ω̂ be affine equiv-

alent, that is there exists a bijective affine mapping

F : Ω̂→ Ω,

F x̂ = x0 +Bx̂
(2.72)

2.2. INTRODUCTION TO FINITE ELEMENTS 27

with a non-singular matrix B. Then, for v ∈ Hm(Ω) it is v̂ ◦ F ∈ Hm(Ω̂)

and there exists a constant c = c(Ω̂,m) such that

|v̂|m,Ω̂ ≤ ‖B‖
m · | detB|−1/2|v|m,Ω. (2.73)

With this and the generalization of definition 2.2.5, the following approx-

imation theorem can be stated for the C0 Pt-elements defined in (2.62).

Theorem 2.2.7 (Approximation theorem [10]). Let t ≥ 2 and let Th a

quasi-uniform triangulation of Ω. Then, for the interpolation with piecewise

polynomials of degree d − 1 the following inequality holds with a constant

c = c(Ω, κ, t)

‖u− Ihu‖m,h ≤ c · ht−m|u|t,Ω for u ∈ H t(Ω), 0 ≤ m ≤ t. (2.74)

As mentioned earlier, if a method converges at all depends on the quality

of the mesh. The presented results state the assumptions the discretization

method has to fulfill in order to deliver a solution that converges towards the

actual solution. These requirements are fulfilled if certain angle conditions

hold. These are conditions that have to be met by the angles of the finite

element cells. In [11] a comprehensive overview of these conditions can be

found. In practice, the condition that is mainly used is the maximum angle

condition. If the condition for two-dimensional triangulations holds, that

∃γ0 < π ∀Th ∈ {Th} ∀T ∈ Th : γT ≤ γ0, (2.75)

where γT is the maximal angle of a triangle T , then uh converges to u as

h −→ 0.

Non-conforming finite elements

In section 2.2 several assumption were made that are often violated in nu-

merical computations. In the following, we obtain generalizations of Céa’s

28 CHAPTER 2. FINITE ELEMENT METHOD

Lemma. In a first step we replace the original problem

a(u, v) = 〈`, v〉, v ∈ V (2.76)

by a sequence of finite dimensional problems

ah(uh, v) = 〈`h, v〉, v ∈ Vh, (2.77)

and uh ∈ Sh. With this generalization, it is not necessary anymore that

we can evaluate the bilinear form analytically, but approximate the integrals

with quadrature, for example. Strang’s first Lemma is a generalization of

Céa’s Lemma for this case.

Lemma 2.2.8 (Strang’s first lemma [10]). Assume that (ah(·, ·))h is a uni-

formly Sh-elliptic family of bilinear forms, that is there exists a positive con-

stant α independent of h such that

ah(v, v) ≥ α||v||2m,Ω, v ∈ Sh (2.78)

Then there exists a positive constant c independent of h such that

||u− uh|| ≤ c(inf
vh∈Sh

{||u− vh||m + sup
wh∈Sh

a(vh, wh)− ah(vh, wh)
||wh||

}

+ sup
wh∈Sh

{〈`, wh〉 − 〈`h, wh〉
||wh||

}).
(2.79)

The next generalization we need is the case that Sh is not a subspace

of V . This occurs for example, if it is not possible to exactly resolve the

boundary by the chosen finite elements.

Additionally to the assumption that ah(·, ·) is Sh-elliptic, we also need to

assume that it is uniformly bounded in the following sense

|ah(u, v)| ≤ C‖u‖h · ‖v‖h, u ∈ V + Sh, v ∈ Sh. (2.80)

Lemma 2.2.9 (Strang’s second lemma [10]). Assume that (ah(·, ·))h is a

uniformly Sh-elliptic and uniformly bounded family of bilinear forms, then

2.2. INTRODUCTION TO FINITE ELEMENTS 29

there exists a positive constant c independent of h such that

||u− uh||h ≤ c(inf
vh∈Sh

||u− vh||h + sup
wh∈Sh

|ah(u,wh)− 〈`h, wh〉|
||wh||h

). (2.81)

The first part of the upper bound is called approximation error and

the second part is called consistency error. In other words, the first part

of the upper bound is caused by the fact that we do not solve the problem

in the original space V but in an approximate finite dimensional space Sh,

the second part is caused by the approximation of the original problem by

quadrature, for example.

The results of this section lead to the following theorem.

Theorem 2.2.10 ([10]). Let Ω be a domain with C2-boundary. For a finite

element approximation with linear triangle elements and a quasi-uniform tri-

angulation, it holds that

||u− uh||1,Ω ≤ c h||u||2,Ω
≤ c h||f ||0,Ω.

(2.82)

The estimate still holds if a is replaced by

ah(u, v) :=

∫
Ωh

∑
k,`

ak`∂ku∂`v dx. (2.83)

2.2.2 Discretization of the linear elasticity equation via

finite elements

As an example, in the following we discretize the Linear Elasticity equation

via Lagrange finite elements in a formal way. This section has been published

in a similar form in [8]. Recall the linear elasticity equation

L(u, v) =

∫
Ω

f · v dx+

∫
∂ΩN

g · v dA, ∀v ∈ H1
D,h(Ω,R3),

30 CHAPTER 2. FINITE ELEMENT METHOD

where H1
D,h(Ω,R3) is the subspace of H1

h(Ω,R3) with functions u ∈ H1
h(Ω,R3)

vanishing on the boundary ¯∂ΩD.

The integrals in the equation are approximated via Gauss quadrature. In

a first step, Ω is partitioned by a finite mesh T represented by the N grid

points X = {X1, ..., XN}. This mesh gives as well Nel (Lagrange) finite el-

ements {T,Π(T),Σ(T)} with nsh local shape functions θT,m ∈ Π(T) which

are defined by the nodes XT
1 , ..., X

T
nsh
∈ T .

As in Definition 2.2.5 we assume that there exists a reference element {T̂ , Π̂, Σ̂}
and a bijective transformation for each element T ∈ Th BT : T̂ → T such

that Π̂ = Π ◦BT , θ̂j = θ ◦BT , j ∈ {1, ..., nsh} and

BT = BT (ξ̂, X) =

nsh∑
j=1

θ̂j(ξ̂)X
T
j , ξ̂ ∈ T̂ . (2.84)

To numerically calculate the integral, for each T ∈ T we chose qTl quadrature

points ξ̂Tl on the reference element T̂ with weights ω̂Tl . Reminding the form

of the bilinear form in section 2.1.2, we then have

L(u, v) = λ
∑
T∈Th

∫
T

∇ · u∇ · vdx+ 2µ
∑
T∈Th

∫
T

ε(u) : ε(v) dx

= λ
∑
T∈Th

∫
T

∇ · u(BT (ξ̂))∇ · v(BT (ξ̂))det (∇̂BT (ξ̂)) dξ̂

+ 2µ
∑
T∈Th

∫
T

ε(u(BT (ξ̂))) : ε(v(BT (ξ̂)))det (∇̂BT (ξ̂)) dξ̂

≈ λ
∑
T∈Th

qKl∑
l=1

ω̂Tl det (∇̂BT (ξ̂l))∇ · u(BT (ξ̂l))∇ · v(BT (ξ̂l))

+ 2µ
∑
T∈Th

qKl∑
l=1

ω̂Tl det (∇̂BT (ξ̂l))ε(u(BT (ξ̂l))) : ε(v(BT (ξ̂l))).

(2.85)

For each element T ∈ T and ξ ∈ T we can write u(ξ) in terms of the local

shape functions on the reference element: u(ξ) =
∑nsh

m=1 umθ̂m ◦ B
−1
T (ξ) and

2.2. INTRODUCTION TO FINITE ELEMENTS 31

hence

∇u(ξ) =

nsh∑
m=1

um ⊗ (∇̂BT (ξ̂)T)−1∇̂θm(ξ̂). (2.86)

With this, we also instantly get

∇ · u(x) =

nsh∑
m=1

tr
(
um ⊗ (∇̂BT (ξ̂)T)−1∇̂θm(ξ̂)

)
. (2.87)

Similar to the discretization of the bilinear form, the volume force can be

discretized in the following way

∫
Ω

f · v dx =
∑
T∈Th

qTl∑
l1

ω̂Tl det
(
∇̂BT (ξ̂l)

)
f(BT (ξ̂l)) · v(BT (ξ̂l)).

The discretization of the surface force is a bit different from the discretization

above, as it is not a volume but a surface integral. Here, not all elements

T are considered but there faces F that lie in ∂Ω. For each of these faces

F ∈ Nh, where Nh is the collection of these specific faces, the respective

element is identified by T = T (F) ∈ Th. One can assume that there also

exists a reference face F̂ on T̂ such that BT (F) : F̂ → F . Additionally, for the

quadrature, surface quadrature points ξ̂Fl and weights ω̂Fl have to be chosen,

as the face possesses one dimension less than the elements. And finally, for

the transformation the square root of the Gram determinant
√

det gF (ξ̂Fl) is

required instead of the determinant of the derivative of BT . It is

gF (ξ̂) = ∇̂F (BT

∣∣
F̂

)(ξ̂)
(
∇̂F (BT

∣∣
F̂

)
)T

(ξ̂),

and thus

∫
∂Ω

g · v A =
∑
F∈Nh

qFl∑
l=1

ω̂Fl

√
det gF (ξ̂Fl) g(BT (F)(ξ̂

F
l)) · v(BT (F)(ξ̂

F
l)).

32 CHAPTER 2. FINITE ELEMENT METHOD

The discretized equation can be rewritten in a shorter form, in terms of the

global degrees of freedom U = (uj)j∈{1,...,N}, uj ∈ R3 and the node coordinates

X, where it is understood that uj = 0 if Xj ∈ ∂ΩD. Then we have

L(X)U = F (X),

L(X)(j,r),(k,s) = L(erθj, esθk),

F(j,r) =
∫
Ω

f · erθjdx+
∫

∂ΩN

g · erθjdA;
(2.88)

with er, r = 1, 2, 3 the standard basis on R3.

Chapter 3

Objective functionals

In this chapter, we introduce the objectives and general setting that set

the stage for gradient based shape optimization. The work leading to this

thesis is concerned with optimizing the reliability of mechanic components.

Therefore, we start this chapter by briefly introducing the concept of shape

optimization [27], followed by the description of the two objectives that we

are considering in this work.

Parts of Section 3.2.1, Section 3.3 and Section 3.4 have been published in a

similar form in [8].

3.1 Shape optimization

For a given bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω, in shape

optimization the aim is to optimize the domain without any changes in its

inherent topology in order to optimize a given objective. During the opti-

mization process, the domain will evolve from one configuration Ωt to the

next. This can be described in a formal way by introducing an artificial time

dimension t ∈ R+.

Definition 3.1.1. Let Ω be defined as above and let {Ft}, t ∈ [0, t0] be a

33

34 CHAPTER 3. OBJECTIVE FUNCTIONALS

family of mappings with

Ft : Ω −→ Rd,

Ft = id + tV , t > 0,
(3.1)

where V ∈ (H1,∞(Ω))2 is a velocity field. Then, a new configuration of Ω at

time t is given by

Ωt = Ft(Ω) (3.2)

The objectives that are being optimized are given as integral functions

over Ω or ∂Ω. Consider such a functional

Jt =

∫
Ωt

f(t, xt)dx. (3.3)

Then, with (3.1) we can define the derivative of this functional as

J̇ := J̇(Ω;V) =
d

dt
Jt|t=0+, (3.4)

which is equal to

J̇ =

∫
Ω

ḟdx+

∫
Ω

fdivVdx, (3.5)

with the pointwise material derivative

ḟ =
∂f

∂t
+∇xu · V in Ω, (3.6)

as proven for example in [27]. In gradient based shape optimization, which

is rather called sensitivity analysis, these material derivatives are used as

search directions in the process to optimize the given domain. In the follow-

ing sections, we introduce two objective functionals that are differentiable in

the sense that we just introduced. These functionals measure the probability

of failure of components made of ceramic material under tensile load and

components that fail due to low cycle fatigue (LCF). As the idea of both

functionals is similar, we introduce only one in more detail.

3.2. SURVIVAL PROBABILITIES 35

3.2 Survival probabilities for mechanical com-

ponents

When designing a mechanical component, many different objectives have to

be considered. Next to efficiency or material consumption, reliability is a very

important factor to be considered for obvious reasons. When considering the

reliability or robustness of a mechanical component a common criterion is the

van Mises yield criterion [56]. This criterion unfortunately has the disadvan-

tage of not being differentiable. To overcome this issue, a probabilistic model

was proposed in [48] for LCF and in [9] for ceramic material. The functionals

of the probabilistic model have been proven to be differentiable. Both models

are categorized as PDE-constrained shape optimization problems. They are

introduced in the next sections.

3.2.1 Ceramic material

In this section, a functional is introduced giving the probability of failure for

a component made from ceramic material under tensile load. Tensile load is

a force applied to a body pulling in a certain direction. In the following, first

the governing partial differential equation is described and subsequently we

deduce the objective functional which will be derived following [9].

The state equation

Ceramic is a linear elastic material whose displacement under load is de-

scribed by the linear elasticity equation. We consider a compact body Ω ⊂ R3

which is filled with the ceramic material. Furthermore, we assume that the

boundary ∂Ω of Ω can be divided in three different parts

∂Ω = ∂ΩD ∪ ∂ΩNfixed
∪ ∂ΩNfree

. (3.7)

Here, ∂ΩD is the part of the boundary where Dirichlet-boundary conditions

hold. ∂ΩNfixed
is the part where surface forces may act. These two parts of the

boundary are fixed. We restrict these parts of the Neumann-boundary from

36 CHAPTER 3. OBJECTIVE FUNCTIONALS

being altered in the optimization process, since we want to find an optimal

shape under a given load. If we allow for this part of the boundary to be op-

timized as well, it would tend to simply minimize the area where the surface

forces are applied. And finally ∂ΩNfree
is the free part of the boundary which

can be modified in order to optimally comply with the design objective ’relia-

bility’, with implicit zero-Neumann-boundary conditions. Forces that act on

Ω are represented by functions f ∈ L2(Ω,R3) and g ∈ L2(∂ΩNfixed
,R3). The

volume force f that acts on the whole domain can be gravity, for example,

the surface force g is the tensile load.

Furthermore we assume that there is a bounded set Ω̂ ⊆ R3, such that Ω ⊆ Ω̂

for all admissible choices of the free portion of the boundary. The behavior of

ceramic material under load can be approximated as linear elastic. Hence, its

displacement is described by the linear elasticity equation, which is already

introduced in more detail in Section 2.1.2. With this, the governing PDE for

the present problem is given by

−div(σ(u(Ω))) = f on Ω

u(Ω) = 0 on ∂ΩD

σ(u(Ω))n̂ = g on ∂ΩNfixed

σ(u(Ω))n̂ = 0 on ∂ΩNfree
.

(3.8)

Derivation of the objective functional

Our aim is to optimize the reliability of a component made of ceramic mate-

rial. The main source of failure for those components is exposure to tensile

loading. The idea is to derive a functional that measures the probability of

failure of a ceramic component under such tensile loading. In order to obtain

this functional, it is necessary to comprehend the mechanical behavior of ce-

ramic material under load. Assume the domain Ω is filled with the ceramic

material and it is exposed to a tensile load σn. The component described by

Ω fails if a fracture occurs under the tensile load. Therefore the question is

what are the main drivers for those fracture and how to measure the proba-

bility that these drivers occur.

Ceramic material is produced in a process called Sintering. It is a process

3.2. SURVIVAL PROBABILITIES 37

that transforms material powder through a thermal treatment into a solid

structure [19]. From this process, small flaws arise in the material, which, in

the first place, have no influence on the quality of the material. Under load

however, these flaws may grow cracks and thus lead to failure. Hence, the

probability of failure heavily depends on the probability that these cracks oc-

cur. In a first step, we model these flaws and cracks. They can be described

by the following properties:

1. Their location x ∈ Ω

2. Their orientation µ

3. Their radius a ∈ R+

4. Their shape.

Following the common literature, we assume that the cracks are ”penny

shaped”. As there is no indication that the location, orientation, or the radius

is anyhow determined by the Sintering process or any other influences, we

assume that these features occur arbitrarily. With this assumption we can

find the configuration of a crack

(x, a, µ) ∈ (Ω̄× (0,∞)× S2) := C, (3.9)

with S2 the unit sphere in R3 and x and µ are uniformly distributed on Ω̄

and S2, respectively. The distribution of a will be discussed later on. We

call C the crack configuration space.

To go on, it is necessary to consider classical engineering analysis of spon-

taneous failure of mechanical components from brittle material under given

mechanical loads. The following section refers in wide parts to [23].

In linear fracture mechanics, the three dimensional stress field close to a crack

in a two-dimensional plane close to the tip of the crack is of the form

σ =
1√
2πr
{KI σ̃

I(φ) +KII σ̃
II(φ) +KIII σ̃

III(φ)}+ regular terms, (3.10)

38 CHAPTER 3. OBJECTIVE FUNCTIONALS

where r is the distance to the crack front and φ the angle of the shortest

connection point considered to the crack front with the crack plane.

For our purposes the stress intensity factor KI is key, as it describes the

influence of mode I load to the stress field.

With the tensile load σn it is

KI :=
2

π
σn
√
πa. (3.11)

A crack becomes critical, i.e. a fracture occurs, if KI exceeds a critical value

KIc . Obviously we can neglect compressive load, that is negative values for

σn. With this and following [9], we set

σn := (n · σ(∇u)n)+ = max{n · σ(∇u)n, 0}. (3.12)

As KI determined we define the following:

Definition 3.2.1. Let C be the crack configuration space, then we call

Ac := Ac(Ω,∇u) = {(x, a, n) ∈ C : KI(a, σn(x)) > KIc}

the set of critical crack configurations.

Construction of the probability measure

In Definition 3.2.1 we introduce the set Ac. Ac contains all crack configura-

tions that would lead to failure of Ω given the displacement u, which itself

depends on the load σn. As there is no other indication, we assume that

the number of cracks in a component determines the probability of failure

of said component. Hence, we want to minimize the probability of Ac not

being empty. To model this, the following section requires a foundation in

probability theory. We provide the most important definitions here and refer

the reader for further comprehension to [32].

Definition 3.2.2 (Topological space). Let Ω 6= ∅ be an arbitrary set. A

collection of sets τ ⊂ 2Ω is called topology, if the following conditions hold.

3.2. SURVIVAL PROBABILITIES 39

1. ∅,Ω ∈ τ .

2. If A,B ∈ τ , then A ∩B ∈ τ .

3. For an arbitrary family F ∈ τ , it follows that
⋃
A∈F

A ∈ τ .

A pair (Ω, τ) is called topological space, sets A ∈ τ are called open, sets

A ∈ Ω with Ac ∈ τ are called closed.

Definition 3.2.3 (Borel algebra). Let Ω 6= ∅ be a set. A collection of subsets

A ⊆ 2Ω is called σ-Algebra, if the following conditions hold.

1. Ω ∈ A.

2. If A ∈ A ⇒ Ac ∈ A.

3. For A1, A2, · · · ∈ A it follows that
∞⋃
n=1

An ∈ A.

Now let (Ω, τ) be a topological space. Then the σ-Algebra σ(τ) generated

by τ ,

σ(τ) :=
⋂
A⊂2Ω,
A⊃τ

A, (3.13)

is called Borel σ-Algebra and is denoted by B(Ω) := B(Ω, τ) := σ(τ). Ele-

ments A ∈ B(Ω) are called Borel sets.

Definition 3.2.4 (Measure). Let A be a σ-Algebra. A function µ : A →
[0,∞] is called a measure if

• µ(∅) = 0.

• For A1, A2, · · · ∈ A and A ⊂
∞⋃
n=1

An it follows that µ(A) ≤
∞∑
n=1

µ(An).

A normed measure is called probability measure.

Definition 3.2.5 (Hausdorff space). A topological space X is called a Haus-

dorff space, if ∀x, y ∈ X x 6= y: ∃ neighborhoods Ux, Vy with Ux ∩ Vy = ∅.

With this, we can give a first Lemma concerning Ac.

40 CHAPTER 3. OBJECTIVE FUNCTIONALS

Lemma 3.2.6 ([9]). Ac is in the Borel σ-Algebra on C, i.e. is measurable

on C.

Let us come back to the aim of this section. We want to minimize the

probability that the set of critical configurations Ac is not empty. Now that

we established that Ac is measurable, we can try to construct a measure that

counts the configurations in Ac, that is the critical cracks depending on the

tensile load σn.

Let A ⊆ Ω̄, Λ ⊆ S2, and let (A × (a, b] × Λ) ⊆ C. We want to specify the

measure

N((A× (a, b]× Λ)) = number of cracks.

The probability of failure would than equal the probability of that measure

N of Ac to be larger than zero. To find the distribution of N we have to

state the properties that N should have, given the natural properties of the

cracks.

1. Cracks are uniformly distributed over Ω with an average number z of

cracks per unit volume.

2. Two cracks can always be distinguished.

3. Orientations are uniformly distributed over S2 and are independent of

the crack’s location.

4. The distribution of the crack’s radius is independent from location and

orientation.

5. The number of flaws/cracks of non intersecting volumes A1, ..., An ⊆ Ω

is statistically independent of each other.

Given these properties it follows with [63] and [30][Corollary 7.4.] that N is

a Poisson point process (PPP).

To understand this assertion we introduce point processes and especially the

Poisson point process. For this purpose, we introduce the Radon measure.

3.2. SURVIVAL PROBABILITIES 41

Definition 3.2.7 (Radon measure). Let ν be a measure on the σ-algebra of

Borel sets of a Hausdorff topological space X. If

1. ν is an inner regular, that is for any Borel set B,

ν(B) = sup{ν(K)|K ⊆ B is compact} and

2. ν is locally finite, that is for every x ∈ X there is an open neighborhood

U s.t. ν(U) <∞,

then ν is called a Radon measure.

R(C) are the Radon measures on C. Then RC(C) are the counting mea-

sures on R(C) that is γ ∈ RC(C) if γ(B) ∈ N0 for all measurable B ⊂ C. The

definition of a point process is to be found for example in [30].

Now we can identify the specifications we stated for N with the properties

in the definition above. We want to have uniformly distributed cracks. From

this it follows that N is nonatomic. From the second specification it follows

that N is simple. And from the fifth specification it is obvious that N has

independent increments. With these three properties, as mentioned above,

Corollary 7.4. from [30] indicates that N is a Poisson point process.

Definition 3.2.8 ((heterogeneous) Poisson Point Process). Given a Radon

measure ν. A Poisson Point Process N is a Point Process such that

1. For every measurable B it holds that

P (N(B) = n) = e−ν(B)ν(B)n

n!
∼ Po(ν(B)),

2. N(B1), ..., N(Bk) are independent for pairwise disjoint B1, ..., Bk.

ν(B) is the intensity measure of the PPP.

The component Ω fails if a fracture occurs, that is N(Ac) ≥ 1. With

this, we can give the survival probability of the component Ω, given the

displacement field u ∈ H1(Ω,R3) as

ps(Ω|∇u) = P (N(Ac(Ω∇u)) = 0) = exp{−ν(Ac(Ω,∇u))}, (3.14)

42 CHAPTER 3. OBJECTIVE FUNCTIONALS

which is obviously Weibull distributed. We aim to maximize the survival

probability of our component. With the above survival probability the prob-

lem to minimize the intensity measure arises! Therefore we need to find

a more explicit representation of the intensity measure ν(Ac(Ω,∇u)). The

domain of ν is the crack configuration space C := (Ω̄ × (0,∞) × S2). As

the location is uniformly distributed on Ω and the orientation is isotropic, it

follows that

ν = dx⊗ νa ⊗
dn

4π
, (3.15)

with dx the Lebesgue measure on R3, dn the surface measure on S2 and a

certain positive Radon measure νa on (R+,B(R+)). As the surface area of

S2 is equal to 4π, we norm the measure by this value.

As previously mentioned, there is a critical value KIc that must not be ex-

ceeded to avoid failure. Therefore, Ac only contains configurations with a

radius a such that KI(a) > KIc . This is true for all ac >
π
4

(
KIc

σn

)2

. Due to

these considerations, the intensity measure is given by

ν(Ac(Ω,∇u)) =
1

4π

∫
Ω

∫
S2

∞∫
ac

dνa(a)dndx. (3.16)

Following the common literature, we assume that dν(a) = c · a−m̃da, with a

certain constant c > 0 and m̃ > 1. Then we can easily calculate the inner

integral

∞∫
ac

dνa(a) = c̃

(
π

4

(
KIc

σn

)2
)−m̃+1

With this and setting m := 2(m̃− 1), with the assumption that m̃ ≥ 3
2

holds

and in assembling all constant values in the positive constant
(

1
σm

0

)
we find

3.2. SURVIVAL PROBABILITIES 43

our objective functional to be

J(Ω,∇u) := ν(Ac(Ω,∇u)) =
1

4π

∫
Ω

∫
S2

(
σn
σ0

)m
dndx. (3.17)

The optimization problem

In the sections above we have derived the state equation and the objec-

tive functional. The convexity of the objective functional is proved in [9].

Assembling the state equation and the objective functional yield the PDE-

constrained optimization problem:

Definition 3.2.9. The problem of optimal reliability for a ceramic com-

ponent Ω ∈ R under a given volume load f ∈ L2(Ω̂),R3 and surface load

g ∈ L2(∂ΩNfixed
,R3) is defined as the shape optimization problem:

Find Ω∗ ⊂ Ω̂ such that J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)) ∀Ω ⊂ Ω̂ and such that

the minimization problem is solved

min J(Ω, u(Ω))

s.t.

−div(σ(u(Ω))) = f on Ω

u(Ω) = 0 on ∂ΩD

σ(u(Ω))n̂ = g on ∂ΩNfixed

σ(u(Ω))n̂ = 0 on ∂ΩNfree

(3.18)

3.2.2 Low cycle fatigue

In material science, fatigue describes the failure of material when exposed

to cyclic and varying stress. Low cycle fatigue is one of several categories of

fatigue. It describes failure that occurs in cases of cyclic stress. The cyclic

stress exceeds the yield stress and thus leads to a lower number of cycles

until failure occurs, compared to high cycle fatigue where a large number of

cycles of smaller stress amplitude eventually leads to failure. In the context

of the GIVEN project, we consider gas turbine blades, made of polycristalline

metal. The failure mechanism here is fundamentally different from the one

44 CHAPTER 3. OBJECTIVE FUNCTIONALS

introduced in the section before, as the initial crack occurs at the boundary

of the component and propagates from there, into the component until it

becomes to large leading to a fracture and the failure of the component.

The functional measuring the probability of failure for these components

made from polycristalline metal with a Low Cycle Fatigue (LCF) failure

mechanism is constructed via the same principles as the functional for ce-

ramic material in the section above. It is a Weibull type functional depending

on the solution of a governing PDE modeling the displacement of the com-

ponent under load. The displacement of these materials also shows a linear

elastic behavior, hence the governing PDE for this problem is the linear elas-

ticity equation.

According to [48], the objective functional for this problem is given by

J(Ω, u) :=

∫
∂Ω

1

Ndet(σ(x))m̄
dA. (3.19)

Here, Ndet is the solution of the Coffin-Manson-Basquin equation (CMB)

ε(x) =
σ
′

f

E
(2Ndet(x))b + ε

′

f (2Ndet(x))c, (3.20)

with x ∈ ∂Ω, ε(x) the strain field and σ
′

f , ε
′

f , b and c are parameters pro-

prietary to the considered material. Ndet can be interpreted as the estimate

of the deterministic number of cycles until a fracture occurs. Obviously, an

inverse operation is needed to obtain Ndet. This leads to a computation of

the LCF-functional that is not as straightforward as the computation of the

ceramic functional and thus is further addressed in Section refsec:impl-lcf.

3.3 Discretization of the objective function-

als

To compute the objective functionals introduced in Section 3.2 we discretize

them via the finite element method, same as we have already discretized the

linear elasticity equation in Section 2.2.2. We do this exemplarily for the two

3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONALS 45

dimensional functional to measure the probability of failure for a ceramic

component in the following section. Subsequently, we consider how to obtain

the discrete derivatives of this functional via a discrete adjoint approach.

3.3.1 Discretization of the two-dimensional functional

for ceramic material

Recall the inner integral of the objective functional (3.17) in two dimensions

I(f) =

∫
S1

(
(n · σ(Du)n)+)m dn.

Since solving this integral analytically yields the Appell hypergeometric func-

tion it seems to be more appropriate to interpolate this integral. Therefore

we transform the integrand via polar coordinates to

I(f) =

∫ 2π

0

((
cos2(ϕ)σ11 + 2 cos(ϕ) sin(ϕ)σ12 + sin2(ϕ)σ22

)+
)m

ϕ. (3.21)

As it is a periodic function over its whole period, the trapezoidal rule is the

method of choice as it shows exponential convergence in this case [58]. Recall

the trapezoidal rule with n interpolation points, the integrally limits a, b and

h = b−a
n

T (n)(f) = h

(
1

2
f(a) +

1

2
f(b) +

n−1∑
i=1

f(a+ ih)

)
. (3.22)

The function is integrated over its period, in this case f(a) = f(b). Thus for

the present integral it yields

T (n)(f) =
2π

n

(
(σ+

11)m +
n−1∑
i=1

((
cos2

(
i2π

n

)
σ11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ12 + sin2

(
i2π

n

)
σ22

)+
)m)

.

(3.23)

By setting T (n)(f) = p, we can know discretize the objective functional

46 CHAPTER 3. OBJECTIVE FUNCTIONALS

as in Section 2.2.2. It is

J(Ω, u) =
∑
T∈Th

∫
T

p (σ (x) , ϕ) dx

=
∑
T∈Th

∫
K̂

p (σ (BT (x̂)) , ϕ) det
(
∇̂BT (x̂)

)
dx̂

≈
∑
T∈Th

qT̂l∑
l=1

ω̂Tl p
(
σ
(
BT

(
ξ̂Tl

))
, ϕ
)

det
(
∇̂BT

(
ξ̂Tl

))

≈
∑
T∈Th

qT̂l∑
l=1

ω̂Tl T
(n) (f)

(
σ
(
BT

(
ξ̂Tl

)))
det

(
∇̂BT

(
ξ̂Tl

))

=
∑
T∈Th

qT̂l∑
l=1

ω̂Tl
2π

n

((
σ
(
BT

(
ξ̂Tl

))+

11

)m

+
n−1∑
i=1

((
cos2

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
12

+ sin2

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
22

)+
)m)

· det
(
∇̂BT

(
ξ̂Tl

))
.

(3.24)

3.3.2 Adjoint equation

In the prior section we derived the PDE - constrained optimization problem

(3.18) and discretized it via the finite element method. For the gradient

based optimization we need to compute the material derivative of J(X,U)

with respect to X. This is

dJ(X,U(X))

dX
=
∂J(X,U(X))

∂X
+
∂J(X,U(X))

∂U

∂U(X)

∂X
, (3.25)

which obviously has to be equal to 0 to be minimal.

The computation of ∂U(X)
∂X

is very expensive. Therefore, we avoid computing

this term by applying the discrete adjoint approach.

3.3. DISCRETIZATION OF THE OBJECTIVE FUNCTIONALS 47

Consider the derivative of the state equation

∂L(X)

∂X
U(X) + L(X)

∂U(X)

∂X
=
∂F (X)

∂X

⇔ ∂U(X)

∂X
= L(X)−1

[
∂F (X)

∂X
− ∂L(X)

∂X
U(X)

]
.

(3.26)

Now we can substitute ∂U(X)
∂X

in 3.25 by 3.26 and obtain

dJ(X,U(X))

dX
=
∂J(X,U(X))

∂X

+
∂J(X,U(X))

∂U
L(X)−1

[
∂F (X)

∂X
− ∂L(X)

∂X
U(X)

]
.

(3.27)

Now we define

Λ :=
∂J(X,U(X))

∂U
L(X)−1 (3.28)

which leads (as L is symmetric) to the adjoint equation:

LT (X)Λ =
∂J(X,U(X))

∂U
(3.29)

This gives us the adjoint state method: The solution Ū of the following

system of equations

LT (X)Λ =
∂J(X,U(X))

∂U

L(X)U(X) = F (X)

∂J(X,U(X))

∂X
+ Λ

[
∂F (X)

∂X
− ∂L(X)

∂X
U(X)

]
= 0

(3.30)

is the solution of the problem (3.18). It is straightforward that this method

also applies to the functional describing the failure of low cycle fatigue.

48 CHAPTER 3. OBJECTIVE FUNCTIONALS

3.4 Derivative of the objective functional

In this rather technical section we describe the discretization of the adjoint

state method (3.30) for the two-dimensional objective functional for ceramic

material by first discretizing the derivatives of J with respect to U and with

respect to X. The other derivatives appearing in that system, as well as the

derivatives of the LCF-functional are already discretized in [21]. Different to

that paper we do not calculate the global derivatives but the local ones that is

with respect to the local degrees of freedom on each element. Also as we have

already done in the previous sections, we discretize the derivatives element-

wise. Hence, we calculate for every T the derivative of J loc with respect to

U loc and X loc which are eventually assembled to the global derivatives. We

consider each element T separately and calculate the derivative locally. For

each T ∈ Th set ωl = ω̂Tl · det ∇̂BT (ξ̂Tl) for l = 1, ..., qT̂l . Then we have for

each T

J loc(X,U(X)) =

qT̂l∑
l=1

ωl
2π

n

((
σ
(
BT

(
ξ̂Tl

))+

11

)m
+

n−1∑
i=1

((
cos2

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
12

+ sin2

(
i2π

n

)
σ
(
BT

(
ξ̂Tl

))
22

)+
)m)

.

(3.31)

3.4. DERIVATIVE OF THE OBJECTIVE FUNCTIONAL 49

3.4.1 Derivative with respect to U loc

For the derivative we need to take into account the positive part. For better

legibility, set σ11 := σ
(
BT

(
ξ̂l

))
11

and

T
(n)
i := cos2

(
i2π

n

)
σ
(
BT

(
ξ̂l

))
11

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

)
σ
(
BT

(
ξ̂l

))
12

+ sin2

(
i2π

n

)
σ
(
BT

(
ξ̂l

))
22
.

(3.32)

With this, we can right down for each T ∈ Th the local derivative with

respect to local U , with j = 1, ..., nsh being the index of the respective shape

function and for k = 1, 2 being the index of the dimension.

∂J loc(X,U(X))

∂U loc
j,k

=
∂

U loc
j,k

qT̂l∑
l=1

ωl
2π

n

((
σ+

11

)m
+

n−1∑
i=1

((
T

(n)
i (ξ̂l)

)+
)m)

=

qT̂l∑
l=1

ωl
2π

n

(
∂

U loc
j,k

(
σ+

11

)m
+

n−1∑
i=1

∂

U loc
j,k

((
T

(n)
i (ξ̂l)

)+
)m)

.

(3.33)

We start with the derivatives of σ. Remember

σil = µ(∇ilu+∇liu) + λδil

2∑
k=1

∇kku. (3.34)

Hence, the derivative of σ(u) is

∂σi`
∂Urs

= µ

(
∂∇i`u

∂Urs
+
∂∇`iu

∂Urs

)
+ λδi`

2∑
k=1

∂∇kku

∂Urs
. (3.35)

Therefore, we need the derivatives of ∇u with respect to U . On the local

50 CHAPTER 3. OBJECTIVE FUNCTIONALS

element, they are given by

∂∇̂u(ξ̂)i`
∂Urs

=

nsh∑
j=1

2∑
k=1

∂Ujk
∂U loc

rs

((
∇̂BT (ξ̂)

)−1
)
k`

∇̂kθ̂j(ξ̂)

=

nsh∑
j=1

2∑
k=1

δjrδis

((
∇̂BT (ξ̂)

)−1
)
k`

∇̂kθ̂j(ξ̂)

= δis

2∑
k=1

((
∇̂BT (ξ̂)

)−1
)
k`

∇̂kθ̂j(ξ̂).

(3.36)

Next, we calculate the derivative of
(
σ+

11

)m
. With simple chain rule, the

derivative yields

∂

U loc
j,k

(
σ+

11

)m
= 1{σ11>0}(ξ̂l)

∂σ
(
BT

(
ξ̂Tl

))
11

U loc
j,k

m
(
σ
(
BT

(
ξ̂Tl

))
11

)m−1

. (3.37)

In the same way, the remaining derivative is calculated

∂

U loc
j,k

((
T

(n)
i (ξ̂l)

)+
)m

= 1{T (n)
i >0}(ξ̂)

∂T
(n)
i (ξ̂l)

U loc
j,k

m
(
T

(n)
i (ξ̂l)

)m−1

, (3.38)

where, again, the derivative of T
(n)
i is easily calculated as

∂T
(n)
i (ξ̂l)

U loc
j,k

= cos2

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
11

∂U loc
jk

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
12

U loc
jk

+ sin2

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
22

U loc
jk

,

(3.39)

which completes the derivative with respect to local U .

3.4. DERIVATIVE OF THE OBJECTIVE FUNCTIONAL 51

3.4.2 Derivative with respect to local X loc

The derivative with respect to local X has the form

∂J loc(X,U(X))

∂XT
jk

=
∂

∂XT
jk

qT̂l∑
l=1

ωl
2π

n

((
σ+

11

)m
+

n−1∑
i=1

((
T

(n)
i (ξ̂l)

)+
)m)

=

qT̂l∑
l=1

[
∂ωl
∂XT

jk

· 2π

n

((
σ+

11

)m
+

n−1∑
i=1

((
T

(n)
i (ξ̂l)

)+
)m)

+ ωl
2π

n

(
∂

∂XT
jk

(
σ+

11

)m
+

n−1∑
i=1

∂

∂XT
jk

((
T

(n)
i (ξ̂l)

)+
)m)]

.

(3.40)

First, we want to calculate

∂ωl
∂X loc

jk

=
∂

∂X loc
jk

(
ω̂l det(∇̂BT (ξ̂l))

)
= ω̂l

∂

∂X loc
jk

(
det(∇̂BT (ξ̂l))

)
.

With the formula for the derivative of determinants

∂ det(A)

∂x
= det(A)tr

(
A−1∂A

∂x

)
(3.41)

we have

∂

∂X loc
jk

(
det
(
∇̂BT (ξ̂l)

))
= det

(
∇̂BT (ξ̂l)

)
tr

((
∇̂BT (ξ̂l)

)−1 ∂∇̂BT (ξ̂l)

∂X loc
jk

)
.

Thus, we need to closer excermine ∇̂BT (ξ̂). It is given by

∇̂BT (ξ̂l) =

(
∂Xloc

1

∂X̂1

∂Xloc
1

∂X̂2
∂Xloc

2

∂X̂1

∂Xloc
2

∂X̂2

)
=

nsh∑
r=1

(
X loc
r1

∂θ̂r(ξ̂l)

∂X̂1
X loc
r1

∂θ̂r(ξ̂l)

∂X̂2

X loc
r2

∂θ̂r(ξ̂l)

∂X̂1
X loc
r2

∂θ̂r(ξ̂l)

∂X̂2

)
. (3.42)

With this, its derivative is

∂∇̂BT (ξ̂l)i`
∂X loc

jk

=

nsh∑
r=1

∂X loc
ri

∂X loc
jk

∂θ̂r(ξ̂l)

∂X̂`

=

nsh∑
r=1

δrjδik
∂θ̂r(ξ̂l)

∂X̂`

= δik
∂θ̂j(ξ̂l)

∂X̂`

, (3.43)

52 CHAPTER 3. OBJECTIVE FUNCTIONALS

and thus the first part of the derivative is completed. Now we calculate the

derivatives of σ with respect to X loc
jk

∂σi`
∂Xrs

= µ

(
∂∇i`u

∂Xrs

+
∂∇`iu

∂Xrs

)
+ λδi`

2∑
k=1

∂∇kku

∂Xrs

, (3.44)

with

∂∇u
∂X loc

jk

=
∂

∂X loc
jk

(
nsh∑
r=1

ur ⊗
((
∇̂BT

T (ξ̂)
)−1

∇̂θ̂r(ξ̂)
))

=

nsh∑
r=1

ur ⊗

(
∂

∂X loc
jk

(
∇̂BT

T (ξ̂)
)−1
)
∇̂θ̂r(ξ̂).

For the derivative of the inverse we can apply the formula ∂A−1

∂x
= −A−1 ∂A

∂x
A−1.

With the consideration above we can calculate the remaining derivatives sim-

ilar to the derivatives with respect to u. The derivative of
(
σ+

11

)m
similar to

the derivative with respect to U is given by

∂

X loc
j,k

(
σ
(
BT

(
ξ̂Tl

))+

11

)m
=1{σ11>0}(ξ̂

T
l)
∂σ
(
BT

(
ξ̂Tl

))
11

X loc
j,k

·m
(
σ
(
BT

(
ξ̂Tl

))
11

)m−1

,

(3.45)

and the derivative of

((
T

(n)
i (ξ̂l)

)+
)m

∂

X loc
j,k

((
T

(n)
i (ξ̂l)

)+
)m

= 1{T (n)
i >0}(ξ̂)

∂T
(n)
i (ξ̂l)

X loc
j,k

m
(
T

(n)
i (ξ̂l)

)m−1

, (3.46)

3.4. DERIVATIVE OF THE OBJECTIVE FUNCTIONAL 53

with

∂T
(n)
i (ξ̂l)

X loc
j,k

= cos2

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
11

∂X loc
jk

+ 2 cos

(
i2π

n

)
sin

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
12

X loc
jk

+ sin2

(
i2π

n

) ∂σ
(
BT

(
ξ̂Tl

))
22

X loc
jk

.

(3.47)

54 CHAPTER 3. OBJECTIVE FUNCTIONALS

Chapter 4

Structured meshing for

evolving geometries

As we learned in Chapter 2, to numerically solve partial differential equations

on a domain Ω, a discretization of the given domain is necessary. Although

there exist so called meshfree methods [13], most methods to solve PDEs

base on discretization through meshes, which is what we focus on in this

work. There are many different approaches and methods to discretize a given

domain, and there is not the one best method. Depending on the problem,

one method may suit the cause better than the other. This may depend on

different factors. In some applications, it is important to resolve the boundary

with high accuracy, in other applications it is necessary to achieve real time

results in the calculations. If the domain changes over the cause of the

calculations, one might choose another approach as if different calculations

are performed on the ever same domain. In this chapter, we look at some

examples of different meshing techniques and highlight their advantages and

disadvantages. Subsequently, we consider more closely approaches used in

shape optimization. Finally, we introduce a structured meshing approach to

combine the best qualities of the different techniques.

55

56 CHAPTER 4. STRUCTURED MESHING

4.1 Introduction to mesh generation

The simulation of physical behavior on domains is a largely spread problem

in mathematics and computer science. The characteristics of the problem are

modeled mathematically, often resulting in a partial differential equation or a

system thereof. The best option would be to solve this problem analytically.

In practice, however, this is possible in only very rare cases. For the very

most partial differential equations, we only know that there exists a unique

solution, and in some cases, like the Navier-Stokes equation, we do not know

even that for certain.

Therefore, these problems are usually solved numerically. In Chapter 2, we

introduced the widely used approach of the Finite Element method. In this

approach, as in many related approaches, the problem is solved by discretiz-

ing the considered domain Ω ⊂ Rd, d ∈ {2, 3} by a partition or triangulation

as described in definition 2.2.1 T (Ω), that we will also refer to as mesh.

To find a suitable mesh generation approach, we have to answer several ques-

tions. The most fundamental one is the distinction between the following two

cases. Either, we want to simulate physical behavior that might change over

time, in other words is time dependent, but the domain stays unchanged; or

the domain evolves over time, as it is the case in shape optimization. In the

former, we might accept more computational cost to gain higher accuracy, as

the mesh has only to be generated once. In the latter, as mesh generation is

one of the key bottlenecks, the cost of the mesh generation is an important

factor in the decision for or a against a certain technique. Since the objective

of this work is shape optimization, in this work we focus on the latter.

In the setting of shape optimization, the next decision is to be made between

mesh morphing and re-meshing. These two approaches are described in the

next section.

4.1.1 Mesh morphing and re-meshing

In the following we assume an initial domain Ω0 ⊂ Rd and that we have

determined a deformation of this domain in form of a velocity field as de-

scribed in section 3.1, stemming from an optimization process. Recall the

4.1. INTRODUCTION TO MESH GENERATION 57

perturbation of identity Ft : Ω→ Rd,

Ft = id + tV , t > 0,

where V ∈ (H1,∞(Ω))d is the velocity field. This leads to a domain Ω1 :=

F1(Ω0) and then Ω2 and so on. To be able to obtain any convergence result,

we have to chose one approach to discretize every Ωt that arises during the

optimization process. We need to find a discretization T0 and a discretization

T1. There are two different general ideas on the discretizations of these new

domains. One is called re-meshing the other is referred to as mesh morph-

ing or mesh warping. Re-meshing means that in every optimizations step,

a (completely) new mesh is generated, with no knowledge of the previous

domain and triangulation used in the meshing process. This has the great

advantage that the mesh can be manufactured for the specific domain, in

general leading to stable meshes and thus stable and precise numerical cal-

culations. But meshing is time-consuming and as a usual shape optimization

process consists of many hundreds or even thousands of optimization steps,

re-meshing in every step will most likely lead to a slow process. This is

why recent research focuses on mesh morphing techniques instead. In the

following, we look at some basic concepts of mesh depended mesh morphing

techniques.

Assume Ω0 is discretized using a triangulation T0. Furthermore, assume from

the optimization process, an initial descent direction is given, for example the

material derivative u of the objective functional. The idea is to find a ’good’

displacement field to shift the triangulation T0 := T (Ω0) by moving its nodes,

giving the new triangulation T1 and hence implicitly the new domain Ω1. In

this way, only the locations of the nodes have to be updated, connectivity and

all other features of the mesh are kept. Depending on how the displacement

field is generated, this can reduce the computational cost enormously. But

what does ’good’ mean. First of all, as we are optimizing, the new domain

Ω1 should sufficiently decrease the value of the objective functional. And

equally important, the resulting triangulation must remain stable, meaning

allowing for numerically stable calculations. [54] provides a comparison of

58 CHAPTER 4. STRUCTURED MESHING

some mesh morphing methods that approach the issue from the angle of

mesh generation. It recommends the FEMWARP method [51], which takes

the solutions of Poisson equations that are informed by a displacement field

on the boundary to move the vertices of the mesh.

In recent years, in the specific setting of gradient based shape optimiza-

tion, research focuses on solving the problem on metric spaces with well

chosen scalar products. If chosen wisely, these scalar products act as implicit

smoothing, such as the scalar product that induces the Steklov-Poincaré met-

ric [50]. In this approach, instead of calculating the gradient in the standard

Euclidean scalar product, it is calculated in an alternative one. In practice,

it is computed by using the discretized shape derivative as a source term

for a linear elasticity equation. The resulting displacement of this elasticity

equation is the shape gradient in the Steklov-Poincaré sense. We will con-

sider this approach more closely in Section 6 as a smoothing operator in our

numerical examples.

Although these approaches show increasingly good results, they have two ma-

jor disadvantages. One is, that even when applying the most recent methods,

in many cases re-meshing becomes unavoidable after some steps of optimiza-

tion. The other is, that all of these methods are based on unstructured

meshes. Especially in a high performance computing (HPC) setting, struc-

tured grids are preferable for numerous reasons, such as lower memory con-

sumption of structured grids and to benefit from caching [15]. Therefore, in

the next section, we introduce a structured meshing approach, that comes

with lower computational cost than common re-meshing strategies and still

leads to stable meshes.

4.2 Structured meshing

Common structured grid methods are generated by a so-called mapping ap-

proach. These methods, like Arbitrary Lagrangian Eulerian (ALE) [29], use

a, generally uniform, reference grid, similar to the concept of a reference

element in the finite element method. The computations are performed on

this computational domain and then mapped to the actual domain. These

4.2. STRUCTURED MESHING 59

methods are highly robust and efficient, but it is clear that they are only

applicable to very simple domains. An interesting structured meshing ap-

proach that allows for more complicated domains is the method of Cut Cells

[5]. The basis is a Cartesian mesh, which is not adapted to the geometry of

the concerned domain. Instead, it determines the cells of the mesh that in-

tersect with the boundary of the domain. The part of each of these cells lying

outside the geometry are cut and the computations are only performed on

the remaining part of the cell. These meshes are generated fast, and are also

suited to discretize domains of highly complex geometry [5]. The problem

here is that the cut cells can be arbitrarily small and distorted, which makes

convergence theory and measuring the robustness very difficult. Related ap-

proaches are immersed boundary methods [37, 42]. These methods do not

resolve the boundary at all and are thus not suited for (gradient based) shape

optimization problems, since most objective functionals highly depend on the

shape of the surface of the domain.

The structured meshing approach that we introduce in this section is in-

spired by the idea of Composite Finite Elements introduced by Hackbusch

and Sauter in [24, 25, 26]. We believe that this method is a great way to

discretize shape optimization problems, since it results in highly structured

meshes that are still capable of resolving domains with rather complicated

boundaries. We will also see that the method allows to carry over knowledge

from one mesh to the next, reducing the computational cost in the mesh

generation process. Here, the method is described in two dimensions. It can

easily be extended to three dimensions, which we will discuss in Section 4.2.5.

4.2.1 Two-dimensional meshing

Recall the definition of the shape optimization problem (3.18) from section

3.1,

min
Ω

J(Ω, u)

s.t. Lu = b,
(4.1)

with Ω is a bounded domain with piece-wise Lipschitz boundary ∂Ω con-

60 CHAPTER 4. STRUCTURED MESHING

(a) (b) (c)

Figure 4.1: Visualization of the three steps of the meshing, T̃ , T ∞ and T .
From [7].

tained in a bounded set Ω̂ ⊂ R2. The functional is of the form J(Ω, u) :=∫
Ω
f(u(x))dx.

Furthermore, assume that an initial admissible shape Ω0 is given. We define

a rectangular area Ω̃ that contains Ω̂ and thus Ω0. In other words, all do-

mains Ωi, i = 1, 2, . . . , that stem from the optimization process will also

lie in Ω̃. Ω̃ is discretized by a regular grid T̃ := Th(Ω̃) with mesh size h.

The number of elements are denoted by Ñ el and the number of nodes by

Ñno. As in Figure 4.1a the boundary δΩ0 of the component to be optimized

is superimposed onto the grid, represented for example by a set of splines.

The mesh size h is assumed to be fine enough such that the following two

assumptions hold.

Definition 4.2.1 (Assumptions). If we assume that kinks in ∂Ω are specif-

ically declared and hence treated separately, then

1. If ∂Ω intersects an element T , it has exactly two intersections with the

boundary of T ; in other words, the cell never contains two separate

parts of the boundary, that is two parts that are not connected in the

area of the cell.

2. The boundary is locally sufficiently smooth, that is it is locally convex

(or concave) on the area of one cell, or locally monotone.

The stated assumptions are visualized in Figure 4.2 and can always be

satisfied by refining the grid. The grid is adapted to the boundary as follows.

For every edge in T̃ , we check if it intersects with the boundary of Ω. If

4.2. STRUCTURED MESHING 61

(a) Contradicts assumption 1 (b) Contradicts assumption 2

Figure 4.2: Visualization of the cell boundary interaction that is not allowed.

this is true, we move the vertex that lies closest to the intersection onto the

intersection. This simple procedure is given in Algorithm 1 and the result is

visualized in Figure 4.1b.

Algorithm 1 Adapt

for k = 1 : 2 : Ñ el do
n1, n2, n3 = connectivity(k)
for i, j ∈ {1, 2, 3} do

if xni
xnj

intersects with boundary then
move closest point to intersection of edge and boundary

end if
end for

end for

The adapted grid is denoted by T ∞ or T ∞i , where the index i indicates

the current optimization step. With this, the grid is divided in two parts;

cells, that lie inside Ωi and cells that lie outside of it. The cells that lie inside

of the domain, we call them active cells, form the active mesh Ti. Ti is the

actual computational domain. The computations are only performed on the

cells, i.e. elements lying inside the boundary. To refer to this mesh and to

distinguish it from T ∞i and T̃ , we will use the term active mesh or active

nodes, etc. Ti is a subset of T ∞i which itself is a perturbation of T̃ . This

means, all three meshes share the same connectivity, only to access Ti we

need to store the status of each cell as active or inactive. Let us consider

Algorithm 1 again. This strategy is highly local. It is not possible to control

62 CHAPTER 4. STRUCTURED MESHING

Figure 4.3: Example for a strongly degenerated element.

the regularity of the grid, that is it does not prevent cells from degenerating

and therefore the maximum angle condition (2.75) is violated. An example

of such a situation is given in Figure 4.3. It is clear that in a worst case

scenario, we cannot guarantee for the existence of a γ0 < π, hence the con-

vergence is not given. Therefore, some sort of pruning is needed to avoid

these kind of cells. To do this, a better understanding of the proposed mesh

generation approach is needed. So first, we describe the approach of the

proposed mesh generation step-by-step and then describe how we guarantee

to fulfill the maximum angle condition.

First T̃ is initialized. It is determined by Ω̃ and nx ∈ R and ny ∈ R, being

the discretization parameters in the first and second coordinate, respectively.

From this, the coordinates of the vertices i.e. the nodes of the grid T̃ are gen-

erated and a connectivity determining the cells. Both, coordinates of T̃ and

the connectivity have only to be generated once and will not change during

the complete optimization process. Therefore, they can be implemented as

functions of the respective indices. The method coordinates-struct is given in

Algorithm 2. The numbering is in positive direction of the x-axis first, then

in positive direction of the y-axis.

4.2. STRUCTURED MESHING 63

Algorithm 2 method coordinates-struct

Input Ω̃, nx, ny, index c
Output coordinates (xc, yc)

1: hx = (xmax(Ω̃)− xmin(Ω̃))/(nx − 1)

2: hy = (ymax(Ω̃)− ymin(Ω̃))/(ny − 1)
3: m, r = (c− 1) modulo nx
4: xc = xmin(Ω̃) + hx · r
5: yc = ymin(Ω̃) + hy ·m

The method connectivity is given in algorithm 3. We need to distinguish

the cases for even and odd element numbers since it is crucial for the imple-

mentation that all elements are oriented in the same direction, to avoid sign

errors in the computation.

Algorithm 3 method connectivity

Input Ω̃, nx, ny, index k
Output connectivity of element k : (nk,1, nk,2, nk,3)

1: m, r = (k − 1) modulo (2 ∗ (nx − 1))
2: if k modulo 2 then
3: nk,1 = nx ·m+ dr/2e
4: nk,2 = nk,1 + 1
5: nk,3 = nk,1 + nx
6: else
7: nk,1 = nx · (m+ 1) + r/2 + 1
8: nk,2 = nk,1 − 1
9: nk,3 = nk,1 − nx
10: end if

To make the following algorithms more legible, we write mesh instead of

T̃ , etc. or leave it out entirely, if it is clear that we are referring to a method

of the mesh. We think of the mesh as an object of a class with attributes

and methods, such as the connectivity or the coordinates.

After the initialization of the mesh T̃ , we generate T ∞i in two steps. At

first, we determine for all nodes if they lie inside or outside of Ω, nodes that

lie outside are assigned the value 0, nodes that lie inside are assigned the

64 CHAPTER 4. STRUCTURED MESHING

value −1, see Algorithm 4.

Algorithm 4 Initialization status nodes

Input mesh, Ω0

Output

1: initialize mesh.node-status = 0 ∈ RÑno

2: for k = 1 : 2 : Ñ el do
3: jloc = mesh.connectivity(k)
4: xloc = mesh.coordinates(jloc)
5: if xloc,1xloc,2 intersects ∂Ω0 then
6: if mesh.node-status[jloc[1] == 0 then
7: mesh.node-status[jloc[2]] == −1
8: else
9: mesh.node-status[jloc[2]] == 0
10: end if
11: end if
12: end for

After this, the actual adaption routine is applied, see Algorithm 5. As

already indicated above, the algorithm runs over all elements and checks if

their edges intersect the boundary of Ω. If that is the case, it moves the

closest node to this intersection. The node that has been moved is assigned

the status 1, indicating a boundary node. The coordinates of the node of

the adapted grid are stored in a lookup-table, that is initialized with the

coordinates of the structured grid T̃ .

In the last step, the active mesh T is determined, according to Algorithm

6. For better understanding, it is given as a for-loop but can also be imple-

mented in vector arithmetic. If all nodes of an element show an active status,

the element is assigned an active status as well. It rests to determine if an

element is an inner element or a boundary element. The latter is the case if

at least one node status is equal to 1.

We want to come back to the issue addressed earlier in this chapter. Due

to the highly local adapting approach, there might arise distorted elements.

These elements can naturally only appear at the boundary. If we restrict our-

selves to only move nodes once and with the assumptions stated in Definition

4.2.1, it is easy to see that we actually can control the maximum angle of an

4.2. STRUCTURED MESHING 65

Algorithm 5 Adapt mesh

Input mesh, Ω0

Output mesh T ∞

1: for k = 1 : 2 : Ñ el do
2: jloc = mesh.connectivity(k)
3: xloc = mesh.coordinates(jloc)
4: for every pair xloc,i, xloc,j do
5: xinter = intersection(xloc,1xloc,2, ∂Ω0)
6: if xinter then
7: if dist(xinter, xloc,i) ≤ dist(xinter, xloc,j) then
8: mesh.coordinates(jloc[i]) = xinter
9: mesh.node-status[jloc[i]] = 1
10: else
11: mesh.coordinates(jloc[j])) = xinter
12: mesh.node-status[jloc[j]] = 1
13: end if
14: end if
15: end for
16: end for

element if at most two nodes are moved. We can simply write down every

possible case and determine the worst case scenario among them. Without

loss of generality, let us assume that h = hx = hy. Since the nodes are

moved along the edges of the grid, each node can be moved in six different

directions and at most h/2 along the vertical or horizontal lines and
√

2h/2

along the diagonals, away from its original location in T̃ . If only one node

is moved, the largest angle appearing is α = arccos(−1/
√

(5)) ≈ 116◦. With

the adapt algorithm defined as it is, we only move the nodes along the axes

of the structured grid, that is in 6 possible directions. In the case that two

nodes are moved we have 3 different combinations of nodes that are moved

at the same time, each in one of the possible 6 directions. The only case

that is not possible is the case when both would move towards each other.

Therefore, 3 · 62− 3 scenarios are possible. For all of these 105 scenarios, one

can look at the worst case and see that for all of them, one can give bounds

for each angle, which only depend on the ratio of hx and hy. For example,

the maximum angle of the worst case scenario element displayed in Figure

66 CHAPTER 4. STRUCTURED MESHING

[ih,jh] [(i+1)h,jh]

[ih,(j+1)h] [(i+1)h,(j+1)h]

Figure 4.4: Example of worst case element contortion when two nodes are
moved.

4.4 is

α = arccos

(
− 3√

10

)
≈ 161◦.

It remains to consider the relatively rare case that all nodes have been

adapted to the boundary. In these cases, the maximum angle condition

might be violated, as we are not able to determine γ0 . Therefore, we imple-

ment a sort of pruning in the following way.

If all nodes of the considered element have the status 1, that is all of them

are boundary nodes, the maximum angle of this element is calculated. If it

exceeds a given tolerance γtol, the status of the element is set to 0, indicat-

ing an inactive element. The node at the maximum angle is moved to its

initial location in T̃ . If it lies inside Ω, it is assigned the status −1, that is

inner node, if it lies outside it is assigned the status 0, see Algorithm 6. In

other words, if the maximum angle of a boundary element exceeds a given

tolerance, we reject the element and reset it to its original form in T̃ . Thus,

the part of the boundary that was approximated by the given element, is

still approximated by the edge opposing the maximum angle. Through the

4.2. STRUCTURED MESHING 67

adapting procedure, it is guaranteed that the length of this edge is bounded

by 2
√

2h. With this and Theorem 2.2.10, we can state the following theorem.

Theorem 4.2.2. The triangulation Th as described above is admissible and

uniform, hence the assumptions of Strang’s lemma hold.

Furthermore, the maximum angles of all elements T ∈ T (and also in T ∞)

can be bounded by a constant κ, depending uniformly on γtol and therefore

the maximum angle condition is fulfilled.

Algorithm 6 Determine active mesh T
Input mesh T ∞
Output mesh T

1: initialize mesh.element-status = 0 ∈ RÑel

2: for k = 1 : Ñ el do
3: jloc = mesh.connectivity(k)
4: if all mesh.node-status[jloc] 6= 0 then
5: if all mesh.node-status[jloc] == −1 then
6: mesh.element-status[k] == −1
7: else
8: mesh.element-status[k] == 1
9: if all mesh.node-status[jloc] == 1 then
10: Calculate angles of element: anglesk
11: γmax = max(anglesk)
12: if γmax > γtol then
13: mesh.element-status[k] == 0
14: ia = argmax(anglesk)
15: mesh.coordinates[ia] = mesh.coordinates-struct(ia)
16: Determine all neighboring nodes of ia: neighborsa
17: if all mesh.node-status(neighborsa) 6= 0 then
18: mesh.node-status[ia] == −1
19: else
20: mesh.node-status[ia] == 0
21: end if
22: end if
23: end if
24: end if
25: end if
26: end for

68 CHAPTER 4. STRUCTURED MESHING

4.2.2 How to treat kinks

In Definition 4.2.1 we stated that kinks are treated separately. Since kinks

have a crucial influence on the stress on a domain and thus on the reliability

of a component, the tips of the kinks have to be resolved precisely. Therefore,

before adapting T̃ to T̃ ∞ for each of these tips we could simply move the

respective closest grid point onto the location of the tip, assign it the node

status 1 indicating boundary node and store the indices of these nodes in

a list Ikinks. This however implies that the assumptions that we stated do

develop the pruning routine we introduced in the previous section would not

hold anymore since these nodes are not moved along the edges of the mesh.

Additionally, if in Algorithm 5 the node that has to be removed from the

active mesh happens to be a node in Ikinks, that would mean that the tip of

that kink would not be resolved by the mesh anymore. Therefore, we need a

more evolved approach to treat these cases, see Algorithm 7. As these kinks

in a domain usually appear only in a very low number this is acceptable.

With this procedure we make sure that the choice of the node that is moved

to the tip of the kink will not lead to a degenerated element in the adapting

procedure which follows.

4.2.3 Shape optimization on the structured mesh

Previously, we introduced the meshing approach and described how to gen-

erate the initial mesh T . Now assume that from an optimization step, we

generated a displacement field ui : Ωi −→ Ω∗ which is an admissible descent

in the sense that Ωi+1 := Ωi + u(Ωi) ⊂ Ω∗. Now the mesh generation differs

from generating the initial mesh in several ways. First of all, we can skip the

initialization, since T̃ stays the same for any optimization step and therefore

the methods coordinates-struct and connectivity stay the same as well. We

can further assume that maxx∈Ωi
‖ui(x)‖ ≤ h. On the one hand this assump-

tion is satisfied in most steps of the optimization process anyway, due to

constraints on the regularity of the boundary. On the other hand we can em-

bed this assumption in the optimization process by enforcing it in an upper

boundary for the step length in the optimization process, for example. If we

4.2. STRUCTURED MESHING 69

Algorithm 7 Pretreatment of kinks

Input mesh T̃ , array Xkinks with location of kink tips

1: initialize list Ikinks
2: for x̂ in Xkinks do
3: Find element Tk that contains x̂
4: jloc = mesh.connectivity(k)
5: i = argmin(dist(x̂,mesh.coordinates-struct(jloc)))
6: ic = jloc[i]
7: mesh.coordinates[jloc[i]] = x̂
8: xsic−1 = mesh.coordinates-struct(ic − 1)
9: xsic−Nx

= mesh.coordinates-struct(ic −Nx)
10: xsic+1 = mesh.coordinates-struct(ic + 1)
11: xsic+Nx

= mesh.coordinates-struct(ic +Nx)
12: if either edge xsic−1x

s
ic−Nx

or edge xsic+1x
s
ic+Nx

intersect ∂Ω then
13: if dist(xinter, x̂) < constant c(h) then
14: Ipot = [ic − 1, ic −Nx, ic + 1, ic +Nx]
15: ic = Ipot[argmin(dist(x̂, XIpot))]
16: end if
17: end if
18: mesh.coordinates[ic] = x̂
19: mesh.node-status[ic] = 1
20: append(Ikinks, ic)
21: end for

bound the deformation of the domain in such a way, it is clear that ∂Ωi+1 can

only lie in the cells of T̃ that are boundary elements in Ti or their neighbor

elements. Therefore, in the adapt-algorithm, we only have to run through

those elements. This reduces the cost of the for-loop in this algorithm from

quadratic in h to only linear, compare Algorithm 8. The restriction to the

step length gives another advantage. Thereby we made sure that the status

of a node can never change from inner node to outer node or vice versa. It

can only change from inner node to boundary node and so on. Hence, the

algorithm to determine the status of the nodes that have not been adapted

in Algorithm 8 reduces to a short procedure described in Algorithm 9. The

boundary nodes are already determined in Algorithm 8. The very most of

the inner nodes can be found by setting the difference of the inner nodes of

Ti and the boundary nodes of T ∞i+1. After this, it only remains to determine

70 CHAPTER 4. STRUCTURED MESHING

Algorithm 8 Update mesh

Input mesh T ∞, old-mesh Ti
Output mesh T ∞i+1

1: initialize mesh.node-status = 0 ∈ RÑno

2: Kactive = find(old-mesh.element-status == 1)
3: check = 0
4: for k = 1 in Kactive do
5: jloc = mesh.connectivity(k)
6: xloc = mesh.coordinates(jloc)
7: for every pair xloc,i, xloc,j do
8: xinter = intersection(xloc,1xloc,2, ∂Ω0)
9: if xinter then
10: check = 1
11: if dist(xinter, xloc,i) ≤ dist(xinter, xloc,j) then
12: mesh.coordinates(jloc[i]) = xinter
13: mesh.node-status[jloc[i]] = 1
14: else
15: mesh.coordinates(jloc[j])) = xinter
16: mesh.node-status[jloc[j]] = 1
17: end if
18: end if
19: end for
20: if !check then
21: check = 0
22: for m in (neighbor elements of k) do
23: jloc = mesh.connectivity(m)
24: xloc = mesh.coordinates(jloc)
25: for every pair xloc,i, xloc,j do
26: xinter = intersection(xloc,1xloc,2, ∂Ω0)
27: if xinter then
28: check = 1
29: if dist(xinter, xloc,i) ≤ dist(xinter, xloc,j) then
30: mesh.coordinates(jloc[i]) = xinter
31: mesh.node-status[jloc[i]] = 1
32: else
33: mesh.coordinates(jloc[j])) = xinter
34: mesh.node-status[jloc[j]] = 1
35: end if
36: end if
37: end for
38: end for
39: end if
40: end for

4.2. STRUCTURED MESHING 71

the status of the nodes that have been boundary nodes in optimization step

(i) but are no longer boundary nodes in the current optimization step (i+1).

Algorithm 9 Update status nodes

1: jbound = find(mesh.node-status = 1)
2: jold−inner = find(old-mesh.node-statu s = −1)
3: jold−bound = find(old-mesh.node-statu s = 1)
4: jinner = jold−inner\jbound
5: mesh.node-status[jinner] = −1
6: jpotential = jold−bound\jbound
7: for j = in jpotential do
8: Determine all neighboring nodes of j: neighborsj
9: xloc = mesh.coordinates(jloc)
10: if any mesh.node-status(neighborsj) == −1 then
11: mesh.node-status[j] == −1
12: else if all mesh.node-status(neighborsj)! = 0 then
13: mesh.node-status[j] == 1
14: end if
15: end for

Finally, the active mesh has to be determined in the same ways as in the

initial step via Algorithm 6.

The proposed procedure brings other advantages in the assembly of the linear

system to be solved, which we discuss in chapter 6.

4.2.4 Higher order finite elements

Although we prefer to work with linear finite elements whenever possible,

in some cases higher order finite elements are necessary to maintain the

regularity of the problem. The presented meshing approach gives a rather

elegant way to obtain these higher elements. Recall the finite elements Pt

from section 2.2. The basis nodes for the linear P1-element lie on the corners

of the triangle. The basis nodes of the quadratic element P2 lie on the same

positions, additionally to one node on the middle of each edge. For the cubic

P3-element we find two equally distant basis nodes on each edge and one in

the center of the cell, additionally to the three nodes on the vertices of the

cell.

72 CHAPTER 4. STRUCTURED MESHING

Figure 4.5: Higher order finite element meshes.

That means for T̃h, the basis nodes for higher order finite elements lie on

the vertices of a grid T̃h/2 or T̃h/3, etc. We can make use of this circumstance

when creating a higher order finite element mesh. For simplicity, let us look

at the case of P2 finite elements. We proceed as follows. First, we create

the usual mesh Th. Second, we create a mesh T̃h/2. Through the structure

of the grid, it is easy to map the nodes of the original grid T̃h to those that

coincide with them on T̃h/2, with a mapping R : N −→ N. With this, we can

easily construct a connectivity for the elements defined on T̃h but the nodes

defined on T̃h/2. The coordinates of those nodes that exist in both meshes

are set to the ones of Th. The boundary nodes that only exists on the finer

grid are moved to the respective center of the edge between the two adapted

edges via vector arithmetic. To summarize, the mesh is adapted as usual but

the connectivity for the mesh now points to nodes and node indices that lie

on a once refined mesh.

4.2.5 Adapting in three dimensions

The three dimensional meshing is conducted similar to the two-dimensional

meshing. Again, the adapting process is split into three parts, additionally to

an initialization phase. The admissible cuboid Ω̃ is discretized by a regular

Nx×Ny×Nz tetrahedral finite element grid. The tetrahedrons are arranged

4.2. STRUCTURED MESHING 73

1

 3 4

5 6
7 8

2

1

 3 4

5 6
7 8

2 1

 3 4

5 6
7 8

2

1

 3 4

5 6
7 8

2 1

 3 4

5 6
7 8

2

1

 3 4

5 6
7 8

2

Figure 4.6: Triangulation of one cuboid in the 3D structured mesh.

according to the triangulation Type B in [36]. It has the advantage that

the connectivity is easier to determine as in other triangulations, since every

cuboid can be triangulated in exactly the same way, whereas most other

triangulations alternate the orientation of the triangulation from one cuboid

to the next. Additionally, if Ω̃ is uniformly partitioned, every simplex is of

the same volume.

The methods coordinates-struct and connectivity are build in the same way

as in two dimensions, but with six different cases in the connectivity.

The representation of Ω

Now we assume to have the boundary of Ω given as a list of clustered point

clouds, equipped with a triangulation as visualized in Figure 4.7. Each cluster

represents a part of the boundary of Ω. As the points form a surface, the

triangulation is achieved by projecting the points onto a two-dimensional

plane, see Figure 4.8. Therefore, for each cluster we store the information

over which plane it is defined. Naturally that means that the points are

pairwise distinguishable by their entries on that plane. Additionally, we

assume that points at the edges of each cloud lie in the adjacent cloud as

well, such that the boundary is closed. These points form the edges of the

74 CHAPTER 4. STRUCTURED MESHING

Figure 4.7: Example of clustered point cloud representation of the surface of
a cylinder.

component. On each cell of the boundary’s triangulation, we assume a linear

interpolation, such that the boundary is given as piecewise linear.

We distinguish three different classes of points: the first class contains points

that lie in the end of the edges. From the assumptions above it follows

that they lie on more than one edge and therefore belong to more than two

surfaces. Therefore, they may be the tip of a kink and have to be resolved

exactly; secondly the class of edge points: these points are points defining an

edge but are not corner nodes and therefore lie on exactly two surfaces. We

can assume that for each edge, these points form a one dimensional curve,

which has to be resolved by the mesh; and the last class of surface points

that lie on exactly one surface.

The adapting process

In the first part of the adaption process we determine if a node of the regular

grid T̃ lies outside or inside the given component Ω0. Each node is assigned

a status ’outside’ (0) or ’inside’ (−1). This is done by a for-loop over all line

segments in z-direction. For each of these line segments xixi+1, we check if

we have an intersection with the boundary of the component. If so, the node

xi+1 is assigned the opposed value of xi, if not it is assigned the same status.

We assume that node x0 always lies outside of Ω.

Again, in the second step we adapt the regular grid to the boundary. We first

4.2. STRUCTURED MESHING 75

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.00

0.02

0.04

0.06

0.08

0.10

(a) Point cloud in R3

0.10 0.05 0.00 0.05 0.10

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(b) Projection onto R2

Figure 4.8: Visualization of the projection of the three dimensional surface
onto the two-dimensional plane.

adapt the grid to the corner nodes, such that corners are perfectly retained in

the mesh. We simply drag the closest grid node in an euclidean sense to the

location of the respective corner node. The respective index and the indices

of the corresponding surfaces of a corner node are stored in a list of key

value pairs, with the index of the corner node being the key and the indices

of the corresponding surfaces being the values stored as a set. In a second

step, we adapt the mesh to the edges. For that purpose, we assume the edge

points to be a grid point of a linear interpolated curve. For each considered

element of the mesh, we check for all faces of the respective element if they

intersect with this curve. If that is the case, we move the closest node of

the face to the intersection and mark this node as edge node. The edge

nodes as well as the corner nodes are stored in a separate list. After adapting

the mesh to the corner nodes and edges, the rest of the mesh is adapted by

Algorithm 10. Instead of a for-loop over all elements, we can determine the

set of those elements that contain both inner nodes and outer nodes. This

set can be determined by vector arithmetic, though in Algorithm 10 we write

it as a for-loop. In the end of the process, each node is assigned a status,

’inside’, ’outside’ or ’boundary’ with the number indicating which part of the

boundary it belongs to.

76 CHAPTER 4. STRUCTURED MESHING

Algorithm 10 Adapt 3D mesh

1: elementscheck = []
2: for k = 1 : Ñ el do
3: Iloc = connectivity(k)
4: if any node-status(Iloc) == −1 and any node-status(Iloc) == 0 then
5: append(elementscheck, k)
6: end if
7: end for
8: for k in elementscheck do
9: Iloc = connectivity(k)
10: xloc = coordinates(Iloc)
11: for i = 1, · · · , 3 do
12: for j = i+ 1, · · · , 4 do
13: for S in surfaces do
14: xinter = intersection(S, xloc,i, xloc,j)
15: if xinter then
16: if dist(xinter, xloc,i) ≤ dist(xinter, xloc,j) then
17: coordinates(jloc[i]) = xinter
18: node-status[jloc[i]] = 1
19: else
20: coordinates(jloc[j])) = xinter
21: node-status[jloc[j]] = 1
22: end if
23: end if
24: end for
25: end for
26: end for
27: end for

Chapter 5

Krylov subspace recycling

In algorithms solving shape optimization problems, similar to topology opti-

mization, often hundreds or thousands of optimization steps are performed to

reach a converged optimal solution. When the problem is PDE constrained,

at least the same number of linear system of equations representing the con-

straint are solved. These systems are sparse and especially in three dimen-

sions very large. For decades, iterative solvers have been developed and

proven to be the method of choice to solve these large sparse systems, the

family of Krylov subspace methods in particular.

In many applications, such as simulations of physical behavior over time

(fluid dynamics, etc.) or shape and topology optimization, long sequences

of linear systems appear which are subject to only small changes over time.

In recent years, the method of Krylov subspace recycling gained popularity

[62], which aims to carry over information from one system to the next to

reduce the number of iterations in the respective iterative solve.

In this section, we will introduce the general idea of Krylov subspace meth-

ods, followed by a discussion of Krylov subspace recycling. Subsequently we

will propose an approach to apply a recycling method in the setting of shape

optimization, with numerical examples for the meshing technique proposed

in Chapter 4.

Section 5.2 and Section 5.3 have been published in a similar form in [7].

77

78 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

5.1 Krylov subspace methods

Krylov subspace methods are widely used iterative solvers for large sparse

linear systems. To introduce these methods, this chapter follows [20, 35, 57].

Assume a given linear system Ax = b, A ∈ Rn×n,b ∈ Rn and assume n

to be very large. The idea is to project a problem of dimension n into a

lower-dimensional space, a Krylov subspace, to find an approximate solution

here and then iteratively expand the dimension of the subspace.

Let x0 ∈ Rn be an initial guess with the residual r0 = b − Ax0. The

corresponding mth-Krylov subspace is the space defined by

Km(A, r0) := span{r0,Ar0,A
2r0, · · · ,Am−1r0} (5.1)

A Krylov subspace method finds the solution of the given linear system

by iteratively expanding the subspace in which the current solution lies. In

iteration m it finds a solution

xm ∈ x0 +Km, with (5.2)

rm ⊥ Lm, (5.3)

where Lm some subspace, for example Lm=Km. Krylov subspace methods

are advantageous for numerous reasons, for example for the fact that only

matrix-vector operations are needed and thus the system only needs to be

stored as an operator therefore. Additionally, most Krylov subspace methods

find, in exact arithmetic, the true solution in a finite number of steps, al-

though a very good approximation is often already derived after much fewer

steps.

5.1.1 MINRES

There exist many different iterative methods to solve large sparse systems of

equations. Which method to chose depends on the properties of the system

5.1. KRYLOV SUBSPACE METHODS 79

matrix. The most common methods can be divided in two approaches

Lm = Km, (Galerkin method), (5.4)

Lm = AKm, (Minimal residual method). (5.5)

One of the oldest and most renowned methods is the conjugate gradients

method (CG) introduced by Hestenes and Stiefel in 1952 [28] for symmetric

positive definite linear systems of equations, which can be categorized as a

Galerkin method. For the more general case that the system matrix A is

regular, GMRES (generalized minimal residuals) [45] is the standard tool to

solve the linear system of equations. As the name suggests, it is a minimal

residual method. Here, at iteration m, the approximate xm ∈ Km is the

vector that minimizes the norm of the residual ||rm‖ = ‖b−Axm‖ over Km.

MINRES [40] is a variation of GMRES for the special case of problems with

hermitian system matrix A.

In the following, we will derive MINRES for regular symmetric matrices step

by step. As it is sufficient for the purpose of this work, we only consider

real valued problems. Again we want to solve the equation Ax = b with

A ∈ Rn×n, with A is symmetric, sparse and n ∈ N is very large. With an

initial guess x0 and the residual r0, a minimal residual method finds in every

iteration k the solution of the minimization problem

xk := argminx∈Vk‖r(x)‖,

with Vk := x0 +Kk(A, r0) and

rk = b−Axk ∈ r0 + AKk(A, r0), rk ⊥ AKk(A, r0).

In words, in iteration k, the weighted image of the residual sk = Ark is added

to rk in a way that the norm ‖rk+1‖2, rk+1 := rk−ε · sk is minimized. This is

achieved by securing that the added vector rk+1 is orthogonal to all the images

s0, · · · , sk. In other words, in each iteration, we find an orthogonal basis of

the current supspace by expanding the orthogonal basis of the subspace of the

previous iteration. To deduce an algorithm to do so, consider the following.

80 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

A matrix H is called upper Hessenberg, if for all i > j + 1 : hij = 0, i.e. all

entries below the first subdiagonal equal zero. A Hessenberg reduction of A

is a orthogonal similarity transformation

AQ = QH. (5.6)

As we assume A to be very large, we only want to consider the first k columns

of AQ = QH. Let Qk denote the first k columns of Q and let H̃k be the

k + 1× k-upper-left section of H. It is

AQk = Qk+1H̃k. (5.7)

With qi denoting the ith-column vector of Q and hij denoting the entries of

H, the kth column of (5.7) can be written as

Aqk = h1,kq1 + · · ·+ hkkqk + hk+1kqk+1. (5.8)

That means the kth vector can be derived by a recursive orthogonalization

scheme. The Arnoldi iteration in Algorithm 11 is such a scheme which is

based on the Gram-Schmidt iteration. With this, the minimization problem

in iteration k can be rewritten as

‖b−Axk‖2 = ‖b−AQiy‖2 = ‖‖r0‖2Qk+1e1 −Qk+1H̃ky‖2. (5.9)

With Qk+1 being an orthonormal transformation with respect to Kk+1, this

reduces to

‖b−Axk‖2 = ‖‖r0‖2e1 − H̃ky‖2, (5.10)

which leads to solving a small least squares problem. From (5.8) it is obvious

that the columns of Q form a orthogonal basis of the Krylov subspaces that

are utilized in the Krylov subspace methods. Hence, the Arnoldi iteration

in Algorithm 11 can be used to successively produce the orthogonal basis

vectors we are looking for.

5.1. KRYLOV SUBSPACE METHODS 81

Algorithm 11 Arnoldi iteration

1: b arbitrary, q1 = b‖b‖
2: for k = 1, 2, 3, · · · do
3: v = Aqn
4: for j = 1, · · · , k do
5: hjk = qj · v
6: v = v − hjkqj
7: end for
8: hk+1,k = ||v||
9: qk+1 = v/hk+1,k

10: end for

Until this point, we have not made use of the fact that we assume A to be

symmetric. When we look at the inner for-loop in algorithm 11, it is obvious

that for increasing k, the computational cost becomes higher and higher.

This is because the new basis vector has to be orthogonalized against all the

existing basis vectors. For symmetric matrices, the Hessenberg matrix in

(5.6) reduces to a tridiagonal matrix. That means, the new basis vector only

needs to be orthogonalized against the previous two basis vectors, and thus

the inner for-loop in the Arnoldi Iteraion reduces to a so called three-term

recurrence. The corresponding algorithm is the Lanczos Iteration in Algo-

rithm 12.

Algorithm 12 Lanczos iteration

1: β0 = 0, q0 = 0, b = arbitrary, q1 = b/||b||
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: αn = qTnv
5: v = v − βn−1qn−1 − αnqn
6: βn = ||v||
7: qn+1 = v/βn
8: end for

Let us denote the tridiagonal matrix by Tk+1,k, emphasizing with this

notation that only this element in the subdiagonal is unequal to zero due to

the previous iterations. We see right away that we obtain a QR-factorization

82 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

of Tk+1,k with one simple Givens rotation:

Tk+1,k = Q̃k+1,kRk,k. (5.11)

This, together with (5.10) and the Lanczos iteration lead to MINRES.

Algorithm 14 The unpreconditioned MINRES algorithm, as found in [59]

1: x0 = arbitrary
2: v1 = b−Ax0

3: β1 = ‖v1‖2; η = β1;
4: γ1 = γ0 = 1;σ1 = σ0 = 0;
5: v0 = 0; w0 = w−1 = 0;
6: for i = 1, 2, 3, . . . do
7: Lanczos recurrence:
8: vi = 1

βi
vi; v = Avi

9: αi = vTi v;
10: vi+1 = v − αivi − βivi−1

11: βi+1 = ‖vi+1‖2

12: QR-factorization with Givens-Rotations:
13: δ = γiαi − γi−1σiβi;
14: ρ1 =

√
δ2 + β2

i+1;
15: ρ2 = σiαi + γi−1γiβi;
16: ρ3 = σi−1βi
17: γi+1 = δ/ρ1;σi+1 = βi+1

18: Update:
19: wi = (vi − ρ3wi−2 − ρ2wi−1)/ρ1

20: xi = xi−1 + γi+1ηwi

21: η = −σi+1η
22: if convergence criterion is satisfied then
23: break
24: end if
25: end for

5.2 Krylov subspace recycling

To motivate Krylov subspace recycling, we will look into the convergence

behavior of Krylov subspace methods, following [33] and [59]. A vector x ∈

5.2. KRYLOV SUBSPACE RECYCLING 83

Km(A, b) can be written as

x = c0b + c1Ab + c2A
2b + · · ·+ cm−1A

m−1b. (5.12)

This is nothing but a polynomial in A times b. It is well known [22] that in

every iteration m of the MINRES, the norm of the residual satisfies

‖rm‖2 = min
p∈Π

(0)
m

|p(A)r0|. (5.13)

With this, one can easily see that the relative residual norm in each step can

be bounded by

||rm||
‖|r0||

≤ min
pm∈Π

(0)
m

max
λ∈λ(A)

|pm(λ)|, (5.14)

where Π
(0)
m is the set of polynomials pm of degree m such that pm(0) = 1

and λ(A) is the set of eigenvalues of A. Obviously, the convergence rate

depends on the spectrum of the matrix. Many approaches to augment Krylov

subspace methods base on the idea to somehow remove an appropriate subset

of the eigenvalues, denoted by M such that the bound

min
pm∈Π

(0)
m

max
λ∈(λ(A)\M)

|pm(λ)| (5.15)

can be significantly smaller. The idea of Krylov subspace recycling [31] is

the following. Assume there is a series of linear systems

A(i)x = b(i), (5.16)

with A(i) ∈ Rn×n, b(i) ∈ Rn that change only little over time. Then, one

could assume that the spectrum of the matrices might change only little as

well. Krylov subspace recycling aims to carry over knowledge about the spec-

trum of the system matrix in iteration (i) to iteration (i+ 1) by recycling a

judiciously selected subspace of range(A(i)).

84 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

To avoid confusion and as the series of linear systems in this work clearly

stems from optimization processes, in the following we will refer to one it-

eration of this optimization process as optimization step, the term iteration

will from now on always refer to an iteration of the MINRES or (rMINRES).

Due to the normalizing condition pm(0) = 1, it is easy to see from (5.13) and

(5.15) that it is favorable to remove small eigenvalues. An approach to do

this is via deflation. Here, a suitable invariant subspace of the system matrix

range(A(i)) from one optimization step is recycled for the next optimization

step in the following way. Consider W(i) ∈ Rn×k with k very small and

range(W(i)) being a (nearly) invariant subspace of range(A(i)). As we as-

sume only small changes from the linear system of equations in optimization

step i to the one in optimization step i+ 1, we can assume that range(W(i))

is an approximate invariant subspace of range(A(i+1)). Before the actual

MINRES is started, we first optimize over range(W(i)). In [41] and [52] it

was shown that with this augmentation, the method nearly converges as if

the residual vector has almost no components lying in range(W(i)). Hence,

if range(W(i)) corresponds to the k absolute smallest eigenvalues, this leads

to an improved convergence.

The introduction above refers to a rather specific recycling subspace ap-

proach. A survey of general Krylov subspace recycling methods can be found

in [53]. Here, following [7], we will describe the recycling MINRES (rMIN-

RES) algorithm from [38, 62], which is a recycling version of the MINRES

algorithm introduced in the section before. As we are looking at the rMIN-

RES at one optimization step, for the sake of clarity we drop the index (i)

from here on. Consider at some optimization step the linear system Ax = b

with A ∈ Rn×n, and let the space to be recycled be defined as range(Wk)

with Wk ∈ Rn×k computed in the previous optimization step. We compute

C̃k = AWk and its thin QR decomposition C̃k = CkRk. Furthermore, as-

sume an initial guess x̃0 and corresponding residual r̃0 = b−Ax̃0. We first

update the initial guess, adding the optimal correction (in minimum residual

norm) from the space range(Wk). We set x0 = x̃0 + Wk(R
−1
k CT

k r̃0), which

gives the updated residual r0 = r̃0 −CkC
T
k r̃0 = (I−CkC

T
k)r̃0.

We implement recycling Lanczos as follows. Let v1 = r0/‖r0‖2. We use

5.2. KRYLOV SUBSPACE RECYCLING 85

the following augmented three-term recurrence

v2t2,1 = Av1 −Ckp1 − v1t1,1, (5.17)

vj+1tj+1,j = Avj −Ckpj − vjtj,j − vj−1tj−1,j, (5.18)

where tj,j = vTj Avj, pj = CT
kAvj, tj+1,j = ‖Avj−Ckpj−vjtj,j−vj−1tj−1,j‖2,

and tj−1,j = tj,j−1 was defined in the previous iteration, leading to the aug-

mented Lanczos relation (with T for tridiagonal)

AVj = CkPj + Vj+1Tj = CkPj + VjTj + vj+1e
T
j tj+1,j, (5.19)

where Pj = [p1 p2 . . . pj]. Note that the operator used in the Lanczos

recurrence, (I −CkC
T
k)A, is self-adjoint over the space range(Ck)

⊥, which

contains the space spanned by the Lanczos vectors, i.e., (I − CkC
T
k)A acts

like a symmetric matrix on the vectors in the Krylov subspace [53]. The

approximate solution in step j of the recycling MINRES algorithm is given

by xj = x0 + Wkz + Vjy, where y and z are determined by the minimum

residual condition. We have

rj = b−Axj = r0 −Ck(Rkz)−CkPjy −Vj+1Tjy (5.20)

= Vj+1

(
e1‖r0‖2 −Tjy

)
−Ck (Pjy + Rkz) (5.21)

Due to the orthogonality CT
kVj+1 = O, the minimization can be done in two

separate steps. The first step, solving for y, minimizes the residual over the

space range(Vj+1), which is independent of the minimization over the space

range(Ck). The minimization over range(Ck) simply requires that Pjy +

Rkz = 0, and hence that z = −R−1
k Pjy. Note that the Lanczos recurrence

is the same as for standard MINRES, and we use a similar change of basis

to develop a short term recurrence [40]. Using the thin QR decomposition

of the tridiagonal matrix Tj = Q(j+1)×j
j

Sj×jj , which is computed one column

at a time, we recursively define Ṽj through ṼjSj = Vj (which leads to an

additional three term recurrence, as for MINRES), set ỹ = QT

j
e1‖r0‖2, and

z = −R−1
k PjS

−1
j ỹ. We use the ṽj vectors to update the solution xj, so that

86 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

the O(n) vectors vj and ṽj can be discarded. For efficiency, the solution

update Wkz can be postponed until after convergence. If the number of

iterations is large, z can be updated recursively using an additional recurrence

for the O(k) vectors P̃jSj = Pj. For details, see [62, 38].

Algorithm 15 outlines the Recycling MINRES algorithm that includes

the recycle space into the search space. For details on updating the recycle

space, see [62, 38].

Algorithm 15 Recycling MINRES

1: r̃0 = p−Ax̃0

2: x0 = x̃0; p̂ = R−1
k (CT

k r̃0); r0 = r̃0 −CkC
T
k r̃0

3: v1 = r0/‖r0‖2; ỹ = e1‖r0‖2

4: for j = 1, 2, . . . do
5: v̂ = Avj
6: v̂ = v̂ −Ck(C

T
k v̂); pj = R−1

k (CT
k v̂)

7: . use modified Gram-Schmidt orthogonalization for updating v̂
8: tj−1,j = tj,j−1; v̂ = v̂ − vj−1tj−1,j

9: tj,j = vTj v̂; v̂ = v̂ − vjtj,j
10: tj+1,j = ‖v̂‖2; vj+1 = v̂/tj+1,j

11: S:,j = Gj−1Gj−2T:,j

12: . apply the previous two Given’s rotations to the new column of Tj

13: Compute Given’s rotation Gj such that S:,j = GjS:,j has sj+1,j = 0.
. see MINRES [22, p. 41–44]

14: ỹ = Gjỹ
15: ṽj = s−1

j,j (vj − ṽj−1sj−1,j − ṽj−2sj−2,j)

16: p̃j = s−1
j,j (pj − p̃j−1sj−1,j − p̃j−2sj−2,j)

17: xj = xj−1 + ṽj ỹj . ỹj is the jth entry of vector ỹ
18: p̂ = p̂− p̃j ỹj
19:

20: if |ỹj+1| ≤ ε‖r0‖2 then break

21: end for
22: x = xj + Wkp̂

While algorithm 15 allows any subspace to be recycled, we focus here on

approximate invariant subspaces, in particular, those corresponding to small

eigenvalues. First, this leads to substantially improved rates of convergence

as the condition number is significantly improved. Second, the small eigen-

values correspond to smooth modes that can be transferred effectively from

5.3. RECYCLING MINRES FOR EVOLVING GEOMETRIES 87

one iteration of the shape optimization to the next.

5.3 Recycling MINRES for evolving geome-

tries

As already mentioned in the introduction to this chapter, shape optimization

is on of the problems where long series of linear systems of equations arise.

Shape optimization problems are often governed by partial differential equa-

tions, as we have seen in Chapter 3. In Chapter 2, we have seen that through

discretization, these partial differential equations lead to large sparse systems

of equations. The solution of these PDEs depend on the domain Ω they are

defined on and as Ω changes over the course of the optimization procedure, so

does the linear system of equations and its solution. Therefore, if the changes

in the geometry are only small from one optimization step to the next, we

could assume that the changes in the system matrix are only small as well,

and Krylov subspace recycling would be applicable. But the changes in the

geometry lead to changes in the underlying mesh and thus may prevent a

straightforward application of Krylov subspace recycling. Several issues have

to be considered. Nodes may have changed their position, which would have

an impact on the entries of the corresponding system matrix. New nodes

might have been added or others removed and a re-meshing could mean that

the system matrix in one optimization step is completely different compared

to the next one. Hence, depending on the meshing technique, a mapping of

the matrix representing the subspace in one optimization step to the next

might be necessary.

Mapping between successive meshes

Let Ωi and Ωi+1 be two domains representing two immediately consecutive

shapes stemming from an iterative shape optimization procedure, see Figure

5.1. These domains are discretized by finite element meshes Ti and Ti+1,

respectively. In general, the meshes feature different connectivities and dif-

ferent numbers of nodes, Ni and Ni+1, respectively. Additionally, from opti-

88 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

Figure 5.1: Concept of the mapping of the grid points to the domain of the
previous optimization step. From [7].

mization step i, an approximate invariant subspace is given by range(W
(i)
k)

with W
(i)
k ∈ RNi×k, that is supposed to be recycled in optimization step

i + 1. The system in this step however is of dimension Ni+1. Therefore, we

are in need of a function that maps the Ni × k - dimensional matrix rep-

resenting the approximate invariant subspace of the system in optimization

step i to a Ni+1 × k - dimensional matrix, that hopefully still represents a

good approximate invariant subspace of the linear system in optimization

step i+ 1.

The mapping we propose exploits the fact that the algebraic systems we

consider are closely linked to the continuous finite element spaces Vh(Ωi, Ti)
and Vh(Ωi+1, Ti+1), determined by Ti and Ti+1, respectively. Recall the

Galerkin method from Chapter 2. The continuous equation

a(u, v) = 〈f, v〉, for all v ∈ H1
0 (Ω) (5.22)

is defined on the finite dimensional subspace Vh(Ω) with nodal basis functions

Φ1, . . . ,ΦN of the subspace such that (5.22) is equivalent to

a(uh,Φj) = 〈f,Φj〉, j = 1, . . . , N, (5.23)

with uh ∈ Vh(Ω). With uh =
∑N

j=1 ujΦj formulated in terms of the basis

5.3. RECYCLING MINRES FOR EVOLVING GEOMETRIES 89

functions, we obtain the system of equations

N∑
k=1

a(Φk,Φj)uj = 〈f,Φj〉, j = 1, . . . , N, (5.24)

or in matrix notation Ax = b. Now, consider the approximate invariant

subspace range(W
(i)
k) with W

(i)
k ∈ RNi×k. Instead of considering the coef-

ficients of the matrix in the algebraic sense, we can see the columns of the

matrix as vectors containing the coefficients of continuous functions defined

on the finite element space Vh(Ωi, Ti). These functions are defined as

w(i)
m (x) :=

Ni∑
j=1

(W
(i)
k)(j,m)Φ

(i)
j (x), m = 1, . . . , k, x ∈ Ωi, (5.25)

Φ
(i)
j (x) being the nodal basis functions of the finite element space Vh(Ωi, Ti).

If we are able to find a transformation F (x(i+1)) : Ωi+1 → Ωi, that maps each

node pl in Ti+1, l = 1, . . . , Ni+1 to a corresponding point xl in Ωi, we can

build the matrix representing the mapped approximate invariant subspace,

W̃
(i)
k ∈ RNi+1×k, in the following way:

(W̃
(i)
k)(l,m) := w(i)

m (F (pl)). (5.26)

In summary, this method consists of two steps: First, we define a map from

the nodes of the new mesh to points in the old domain (see Fig. 5.1); and

second, we interpolate the values of the matrix W
(i)
k via the functions de-

fined in (5.25) in the finite element space and evaluate these functions at the

points in Ωi corresponding to the nodes in of Ti+1.

Although the second step is straightforward, the first step can be challeng-

ing, depending on the meshing technique that is used. Therefore, we briefly

discuss general concepts to realize such a mapping for some of the meshing

techniques discussed in Chapter 4. If the update of the shape in the opti-

mization procedure is performed via mesh morphing, each node in Ti+1 can

be mapped uniquely to the corresponding node in Ti, hence the approximate

invariant subspace can be recycled without being transformed. Techniques

90 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

that work with a reference frame come with an inherent mapping from the

reference frame to the domain. Through this reference frame, we can map

each node in Ti+1 to a node in Ti and thus recycle the approximate invari-

ant subspace as in the mesh morphing case. For meshing techniques that

do not have such an inherent mapping the task becomes more difficult. If

we assume, for example, a general re-meshing scheme without a prescribed

number of nodes or restrictions on the connectivity, then the optimization

procedure does not provide any information about the relation between the

two domains Ωi and Ωi+1; see Figure 5.1. Additionally, the two meshes gener-

ally may differ in the number of nodes and thus basis functions. Therefore, a

more sophisticated mapping of the approximate invariant subspace of the lin-

ear system matrix derived from mesh Ti to an approximate invariant subspace

for the system matrix derived from mesh Ti+1 becomes inevitable. If no other

information is available, the simplest map from Ωi+1 to Ωi is F (x) := x. This

choice, however, does not guarantee that F [x] ∈ Ωi. Therefore, we suggest

to choose F (x) as the minimizer, in a suitable norm, of the distance between

the given point x and points in Ωi, i.e., F (x) := arg minx̃i∈Ωi
||x̃i−x||, which

implies the identity for x ∈ Ωi. Another approach would be to extrapolate

the w
(i)
m (·) in a simple way. We discuss this idea in more detail in section 6.4.

A special case of re-meshing is mesh refinement (and coarsening), especially

adaptive mesh refinement (AMR) [6]. Although in this case the two systems

will certainly differ in dimension, the new nodes will definitely lie inside Ωi.

Additionally, for the new nodes the global evaluation in (5.25) reduces to a

local evaluation on the respective refined element; a mapping of approximate

invariant subspaces between AMR meshes is described in [61]. The discussed

approach results in two obvious challenges: The first is already addressed

at the end of section 5.2. To reduce the condition number of a system, it

sometimes can be desirable to remove the absolute largest eigenvalues rather

than the smallest ones or both the smallest and the largest. Yet, the large

eigenvalues often correspond to high frequency modes which are clearly very

difficult to approximate by the presented approach. We therefore restrict

ourselves to remove small eigenvalues, which generally is a good choice. The

second challenge is that small changes in the geometry do not necessarily re-

5.3. RECYCLING MINRES FOR EVOLVING GEOMETRIES 91

sult in small changes in the eigenvectors of the system matrix. In such cases,

the approximate invariant subspace of the system matrix for the new geome-

try and mesh, computed by the mapping described above, is not sufficiently

accurate that it leads to a fast convergence rate. This issue is addressed in

[7].

5.3.1 Mapping on structured meshes

In Section 4.2.1 we introduced a structured meshing approach. It turns out

that the specific nature of this approach facilitates the construction of a suit-

able mapping F . This is why, as a proof of concept, we introduce a quite

simple mapping adjusted for this specific meshing technique, which still leads

to a considerable speed up in many of our test cases.

Consider the linear systems A(ρ(i))x(i) = b(i) and A(ρ(i+1))x(i+1) = b(i+1)

and W(i) ∈ RN
(i)
a ×k, with range(W(i)) approximating the invariant subspace

corresponding to the k smallest eigenvalues of A(ρ(i)). As in this meshing

approach the initial connectivity of the mesh is kept for all optimization

steps, we can uniquely identify each node in iteration (i + 1) with a node

in iteration (i). We distinguish between three cases to determine the matrix

W̃(i) representing the mapped approximate invariant subspace : (1) Matrix

entries corresponding to inner nodes that stay inner nodes are kept; (2) ma-

trix entries corresponding to nodes that change from inner node to boundary

node or vice versa are recalculated according to (5.25); and (3) matrix entries

corresponding to nodes that change from inactive to active are calculated in

the following way. Assuming only small changes in the geometry, these nodes

must be boundary nodes or close to boundary nodes. It is therefore likely

that the values of former active nodes in their neighborhood provide a better

approximation than a value resulting from interpolating former active and

inactive nodes. We therefore propose for these points the following extrap-

olation: Consider that the status of node x̃
(i+1)
` changes from inactive to

active. From the set of nodes that share a finite element, we consider only

the subset of nodes that were active in iteration (i). For each active node,

x
(i+1)
` we have such a set S

(i,`)
a . We set the entries of W̃(i) corresponding to

92 CHAPTER 5. KRYLOV SUBSPACE RECYCLING

these nodes to the weighted mean of the values at S
(i,`)
a , given by

(W̃(i))(`,j) =
1

|S(i,`)
a | − 1

∑
s∈S(i,`)

a

∑
m ||sm − x

(i+1)
` ||2 − ||s− x(i+1)

` ||2∑
m ||sm − x

(i+1)
` ||2

(W∞,(i))(s,j),

(5.27)

with weights corresponding to the distance between the neighbors’ location

on the old grid and x
(i+1)
` . The numerical results will be presented in Section

6.4.

Chapter 6

Implementation and numerical

results

In this chapter, we combine the results of the previous chapters. In the

first section, we provide details concerning the implementation of the finite

element method on the structured meshes introduced in Chapter 4. This is

followed by the description of the implementation of the objective functionals

in two dimensions introduced in Chapter 3. Here, we will also look at some

results from the corresponding shape optimization procedure. After this, we

will see some results for the three dimensional case and finally, we will discuss

results of the implementation of the Krylov subspace method introduced in

Chapter 5.

6.1 Details of the implementation

The implementation of the solver on the structured grid follows the princi-

ples of implementation of the finite element method. We will describe the

approach in the next section for the assembly of the linear system of equa-

tions for the linear elasticity equation in detail and transfer the procedure to

the implementation of the objective functionals and their derivatives in the

sections that follow.

93

94 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

6.1.1 Assembling the linear system of equations

The linear elasticity equation is discretized via the finite element method as

we have already seen in Section 2.2.2. To build the system matrix, the natural

approach would be to calculate the entries node by node. That would result

in two for-loops in the assembly and thus would lead to N2 calculations,

when N is the number of active nodes in T . Lets recall the discretization of

the bilinear form (2.85).

L(u, v) ≈ λ
∑
T∈Th

qTl∑
l=1

ω̂Tl det (∇̂BT (ξ̂l))∇ · u(BT (ξ̂l))∇ · v(BT (ξ̂l))

+ 2µ
∑
T∈Th

qTl∑
l=1

ω̂Tl det (∇̂BT (ξ̂l))ε(u(BT (ξ̂l))) : ε(v(BT (ξ̂l))).

(6.1)

The discertization suggest a different approach which is element oriented

[12]. Instead of calculating every entry for every pair of nodes, as the dis-

cretization suggests for every element T ∈ Th we additively calculate the

local s× s-system matrix, where s is the local degree of freedom. This leads

to N el · s2 calculations needed. Hence, this approach is linear in the number

of elements and quadratic only in the local degrees of freedom. Additionally

to that, it is important to consider that the system matrix is sparse. In each

row, there will only be entries in those columns corresponding to nodes that

are put on the same elements as the considered node. Hence, instead of as-

sembling the full matrix, it is more effective to assemble an array of stencils,

that is vectors containing only the non-zero coefficients per row, which can

then efficiently be transformed into a sparse matrix or can be used directly

as a matrix operator in a sparse solver. For a problem lying in Rd and with

P1 elements, that is the degrees of freedom lie on the nodes of the vertices of

the mesh, the general assembly scheme for the Poisson matrix is described

in Algorithm 16. The algorithm to build the system matrix for the linear

elasticity equation works similar but is less comprehensible as it represents

a bilinear form.

6.1. DETAILS OF THE IMPLEMENTATION 95

Algorithm 16 General assembly scheme

initialize array Ls ∈ RÑno×7 with 0
for Tk ∈ T do

Iloc =connectivity(k)
` = L(Tk)
for j = 1, 2, 3 do

Determine neighbor indices j1, j2, j3 ∈ 1, · · · , 7
Ls[Iloc[j]][(j1, j2, j3)] += `[j][]

end for
end for

We initialize a tensor L on the nodes of T̃ (Ω) with zero entries and then

let the for-loop run only over the finite elements of T (Ω). The connectivity,

which is defined for T ∞(Ω) will link the cell of the element in T with the

indices of the nodes of T ∞(Ω). This gives an array of stencils that is defined

on T ∞(Ω), with zeros in the entries corresponding to nodes that lie outside of

T . Therefore, when building the operator from the stencils at the same time

we need to project the data onto T . Exemplary, we give a scheme to build a

sparse matrix from the array of stencils in Algorithm 17. For simplicity we

assume zero-Dirichlet-boundary conditions.

Algorithm 17 Project global matrix onto T
initialize list rows
initialize list columns
initialize list data
for i in active− nodes do

append(rows, repeat(i, 7))
append(columns, neighbors(i))
append(data,Ls[i])

end for
Id = Dirichlet-boundary nodes
I0 = find(node-status) == 0
Ir = Id ∪ I0

Build sparse matrix Lsp(rows, columns, data)
remove rows and columns Ir: Lr = Lsp\L[Ir][Ir]

As the cost of assembling the system matrix is quadratic in s, higher order

96 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

finite elements are in general avoided. Another advantage of this element-wise

approach is the reference element. Recall for example the discretization of the

gradient of the displacement u(ξ) =
∑s

m=1 umθ̂m ◦ B
−1
T (ξ). Like every other

function, it can be computed via the shape functions on the reference element

as can be their derivatives and then be transformed to the values of the

actual local element. These shape functions only have to be computed once.

Therefore, the only thing that has to be computed for every element is the

local transformation from reference element to local element. This highlights

an additional great advantage of structured meshes. The local values of the

system matrix on element Tk do not depend on its global location, but only

on the shape of the considered element, that is the length of the edges and

the angles. Since all the inner elements are of the same size and shape, for

those elements we need to calculate these values only once and assign the

result to all inner elements. This changes the assembly of the system matrix

to the one in Algorithm 18.

Algorithm 18 Assembly scheme for structured meshes

initialize array Ls ∈ RÑno×7 with 0
`inner = L(Tinner), where Tinner is a random inner element
for Tk ∈ T do

if element-status(k)! = 0 then
if element-status(k) == −1 then

` = `inner
else

Iloc =connectivity(k)
` = L(Tk)

end if
for j = 1, 2, 3 do

Determine neighbor indices j1, j2, j3 ∈ 1, · · · , 7
Ls[Iloc[j]][(j1, j2, j3)] += `[j][]

end for
end if

end for

The right hand side of the equation is computed in a similar way. We

initialize a vector b ∈ RÑno
and we run a for-loop over all T ∈ T ∞. Then we

6.1. DETAILS OF THE IMPLEMENTATION 97

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.8

0.6

0.4

0.2

(a) Nx = Ny = 16

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.8

0.6

0.4

0.2

(b) Nx = Ny = 32

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.8

0.6

0.4

0.2

(c) Nx = Ny = 64

Figure 6.1: Convergence of the solution of the Poisson equation on the unit
circle.

project the vector b from T ∞ onto T , see Algorithm 19.

Algorithm 19 Assembly of the right hand side

initialize b := Ñno

for T ∈ T do
if element-status(k)! = 0 then

Iloc =connectivity(T)
b[Iloc] += b(xIloc)

end if
end for
Id = Dirichlet-boundary nodes
I0 = find(node-status == 0)
Ir = Id ∪ I0

remove rows Ir: br = b\b[Ir]

6.1.2 Simple test case

As a first test, we compute the solution of the Poisson equation on the unit

circle. The code is implemented as a Python3 project [60] with interpreter

version 3.6.2. For this purpose, we define the Dirichlet-boundary conditions

for the equation with the true solution u(x, y) = x2 + y2 − 1, so that we are

able to compare the computed solution with the true solution. We compute

the solutions on grids with N = 16, N = 32, N = 64 as visualized in Figure

6.1, as well as for N = 128, which we do not visualize here because the grid is

too fine to be resolved properly. For each mesh size we calculate the L2-norm

98 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

(a) FEniCS triangulation

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.8

0.6

0.4

0.2

(b) Structured triangulation

Figure 6.2: Comparison of the solution of the Poisson equation on the pre-
sented meshing approach to a standard FEniCS triangulation.

of the error, as displayed in Table 6.1.

N 16 32 64 128
L2-norm 1.7718× 10−3 2.5176× 10−4 3.4303× 10−5 9.1292× 10−6

Table 6.1: L2-norm of the error of the Poisson equation for different mesh
sizes

Subsequently, we compare our solution for Nx = Ny = 32 with the so-

lution of the given problem solved with FEniCS [1] for Python. The unit

circle is discretized via a standard Delaunay triangulation [14]. As it is not

possible to prescribe the exact number of discretization points, we specify

the number of nodes that resolve the boundary and aim for a similar amount

of nodes as in our discretization. Both solutions are visualized in Figure 6.2.

We compare the error of the solutions in the L2-norm and in the L∞-norm,

see Table 6.2. We can see that the error that arises from the structured

meshing approach is comparable in both norms to the one that arises when

solving on the FEniCS-mesh.

6.1.3 Updating the mesh

In this section, we introduce a model problem that we will refer to in other

sections as well. We consider a bent rod, see Figure 6.3, that is supposed

to be made out of ceramic material. It has diameter 0.1m and length 0.6m

6.1. DETAILS OF THE IMPLEMENTATION 99

FEniCS CFE
boundary nodes 102 102
vertices 688 711 (N = 32)
L2 4.203563201× 10−4 2.517583282× 10−4

Max 1.633036056× 10−3 9.930186560× 10−3

Table 6.2: Comparison of error norms for the solution of the Poisson equation.

Figure 6.3: The standard testing geometry. From [7].

and is bent in the middle. It is clamped at the left part of the boundary,

i.e. it is the part of the boundary ∂ΩD where zero-boundary conditions hold.

On the right side of the boundary we apply tensile load, here that is surface

force in the positive direction of the x-axis. This is the part of the Neumann-

boundary that is not to be changed in the optimization ∂ΩNfixed
. The rest of

the boundary has implicit zero-Neumann-boundary condition and is the part

of the boundary that can be deformed in the optimization ∂ΩNfree
. We use

this geometry for the obvious reason that we know what the optimal shape is

supposed to look like. The most robust geometry in this setting is a straight

rod. That makes it easier to control and validate the optimization. To design

the model problem more interesting we rotate the domain by α = 0.2. We set

Ω̃ to be the rectangle [−0.08, 0.62] × [0.05, 0.4] and discretize with Nx = 61

and Ny = 31, see Figure 6.4. As a first example, we generate a sequence

of shapes, starting with the one visualized in Figure 6.4 and ending with a

100 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component

Figure 6.4: Mesh for the standard testing geometry.

straight rod, while keeping the left and right part of the boundary fixed. We

restrict the changes in the boundary in each step such that the step length

does not exceed the given h. We update the mesh according to Algorithm 8.

The intermediate shapes and the final shape with their corresponding meshes

are visualized in Figure 6.5.

Updating the system matrix

As already hinted in Section 4.2.3, one of the major advantages of the pre-

sented structured mesh generation method is the assembly of the system

matrix when we update the mesh. As only nodes in a restricted neighbor-

hood of the boundary change their location and the connectivity is kept, it is

possible to preserve the system matrix from the previous iteration and only

update those entries effected by the change of location. This can be done, for

example, in the following way. Assume that in Algorithm 18, we have stored

the local parts of the system matrix ` in an Ñ el × s × s-array La. Further

assume that in Algorithm 8, we have stored the indices of all elements that

we have visited in the algorithm, which are highlighted in Figure 6.5, in Ielv .

By design, this includes at least all elements that have been inner boundary

6.1. DETAILS OF THE IMPLEMENTATION 101

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component
status change
visited elements

Figure 6.5: Updating the shape in a controlled manor, with step size bounded
by h. Elements that are visited in the updating algorithm are highlighted,
nodes that change status are marked.

elements in the previous optimization step and all elements that are bound-

ary elements in the present optimization step. Under the assumption that

we made in Section 4.2.3, that is that the step length in the optimization is

bounded by h, it follows that Ielv contains all elements where nodes might

have changed their location. With this, we can update the system matrix via

a for-loop over all elements in Ielv , calculate the local system matrix anew, add

its values to the respective entries in the global system matrix and subtract

them by the respective entries stored in La, see Algorithm 20. This leads to

a comparable cost in the computation of the local entries on the initial grid,

as we already only have to explicitly compute the local stiffness matrices for

boundary elements, but it saves the cost of the full assembly.

102 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

Algorithm 20 Update of the system matrix

project Lr back to Lsp

for k in Ielv do
` := −La

Iloc =connectivity(k)
if element-status[k]! = 0 then

` += L(Tk)
end if
Lsp[Iloc][Iloc] = `

end for
Id = Dirichlet-boundary nodes
I0 = find(node-status) == 0
Ir = Id ∪ I0

remove rows and columns Ir: Lr = Lsp\L[Ir][Ir]

6.2 The objective functionals

The implementation of the objective functionals and their derivatives fol-

lows the same principals that we have already applied in Section 6.1.1 when

assembling the linear system. As they are similar for both functionals, we

will not describe the implementation of the objective functional and its ad-

joint for the two of them in full detail. Instead we describe how to compute

the LCF-functional followed by the implementations of the adjoint of the

objective functional for ceramic material.

6.2.1 The functional for low cycle fatigue

As we already stated in Section 3.2.2, in this section we will go into more

detail about how to derive the probability of failure for LCF, as it is not as

straight forward as is the one for ceramic material under tensile load. The

implementation is entirely based on the work done in [46]. In this PhD the-

sis, a flow chart is provided, which contributes to the understanding of the

implementation, thus we reproduce it here with minor changes, see Figure

6.6.

Reconsider (3.19) from Section 3.2.2. The probability of failure solely de-

pends on the deterministic life cycle prediction Ndet which itself depends on

6.2. THE OBJECTIVE FUNCTIONALS 103

the material parameters and the solution of the linear elasticity equation u

on Ω. Therefore, in the following section we will describe how to obtain the

value of Ndet, assuming that the functional is discretized via finite elements

analoguous to the discretization done in Section 3.4. Ndet is the solution

of the Coffin-Manson-Basquin (CMB) equation, which we can rewrite as a

function of x := Ndet

CMB : R+ −→ R, CMB(x) =
σ
′

f

E
(2x)b + ε

′

f (2x)c. (6.2)

Hence, if we know the value of CMB, which is the strain ε, we can obtain

Ndet by inverting the given function. Since ε here is the elastic-plastic strain,

we use the Ramberg-Osgood (RO) equation

εel−pl =
σel−pl

E
+
σel−pl

K

1/n

, (6.3)

and the method of Neuber shake down [39] to derive εel−pl from the purely

elastic stress σ(u) stemming from the linear elasticity equation. We write

εel−pl to emphasize the difference to the elastic strain that we encountered

earlier. The coefficients E, K and n are the material parameters Young’s

modulus, strain hardening coefficient and strain hardening exponent, respec-

tively. The Ramberg-Osgood equation, that we can rewrite as a function,

here of x := σel−pl, as well

RO : R+ −→ R, RO(x) =
x

E
+
x

K

1/n

, (6.4)

gives the dependency of the elastic-plastic strain and the elastic-plastic stress,

while the Neuber shake-down

σvM
2

E
=
σel−pl

2

E
+ σel−pl

σel−pl

K

1/n

(6.5)

provides a way to derive the elastic-plastic stress from the elastic van Mises

stress only. Rewriting this again as a function of the elastic-plastic stress, we

104 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

obtain Ndet from the chain of functions

Ndet = CMD−1 ◦RO ◦ SD−1(
σel

2

E
). (6.6)

Since the van Mises stress σvM is fully determined by the material parameters

and the solution u of the linear elasticity equation, we now have the means to

determine Ndet as visualized in Figure 6.6. We obtain the inverse functions

in the following way. We compute the values of the respective functions for

all values that can possibly be obtained, that is we create a vector of values

from zero to some value depending on Young’s modulus,

σel−pl = linspace(0,
√
E/10, 1000)2.

The squaring is a technicality to resolve the function better for values closer

to the origin. Then we compute the respective values of the functional, here

the Neuber shake down and store them in a second vector,

σvM = SD(σel−pl) := σel−pl
2

/E + σel−plσel−pl/K1/n.

And finally, create a spline function with the values of σvM as sampling

points and the values of σel−pl as values. Thereby, we have created the

inverse function of the Neuber shake down,

SD−1 = CubicSpline(σvM ,σel−pl).

For the inverse of the CMB function, we can proceed in the same way. The

rest of the LCF functional is computed in the same way as the functional

for ceramic material, i.e. the integral is approximated via Gauss-quadrature

and the whole functional is discretized via finite elements.

6.2.2 Ceramic material

The computation of the derivatives follows the same principles as the assem-

bly of the system matrix earlier in this chapter. We already calculated the

6.2. THE OBJECTIVE FUNCTIONALS 105

Start

Input: T ∈ T ∞, u defined on the nodes of T

van-Mises stress σvM(u)

Inverse Neuber shakedown σel−pl = SD−1(σvM(u))

Ramberg-Osgood function εel−pl = RO(σel−pl)

Inverse Coffin-Manson-Basquin function Ndet = CMB−1(εel−pl)

Output: Deterministic life prediction Ndet

Stop

Figure 6.6: Computation of the probability of failure for LCF.

106 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

local finite element discretization of the derivatives of the discrete adjoint in

Section 3.3.1. Therefore, in this section we will only describe the global as-

sembly of the derivatives and refer the reader for details to said Section 3.3.1.

The process is visualized in the flow chart in Figure 6.7. First we assemble

the linear elasticity equation as described in Section 6.1.1 and solve the sys-

tem, at least in two dimensions, with a direct sparse solver. The system is

solved on the active mesh T ∞, hence the solution u is defined on the active

mesh T as well. For the further assembly, this solution is projected back on

the whole grid T ∞. With this we can compute the partial derivatives ∂J/∂U ,

whose assembly we provide exemplary for all assemblies in Algorithm 21.

Algorithm 21 Assembly of ∂J/∂U

Input mesh T ∞, array U ∈ RÑno×d solution of linear elasticity equation

Initialize arrayJ∂u ∈ RÑno×d with zeros
Compute q̂p, q̂w quadrature points and weights on T̂ref
Compute ∇θ̂(q̂p) values of the derivatives of the shape functions
for k = 1, · · · , Ñ el do

if mesh.element-status[k]! = 0 then
Iloc =mesh.connectivity(k)
xloc = mesh.coordinates[Iloc]
uloc = U [Iloc]
J∂u[Iloc] += J loc∂u (uloc, xloc, q̂p, q̂w,∇θ̂)

end if
end for
Id = Dirichlet-boundary nodes
I0 = find(mesh.node-status) == 0
Ir = Id ∪ I0

remove rows Ir: J
a
∂u = J∂u\J∂u[Ir]

As the partial derivative is the right hand side for the adjoint equation,

we once more have to project the result of the assembly onto the mesh T .

The system matrix of the adjoint equation is the system matrix L of the

governing linear elasticity equation and is solved in the same way. Now, the

partial derivatives ∂J
∂X

, ∂F
∂X

and ∂B
∂X
U are assembled like the derivative ∂J/∂U ,

which then form the material derivative dJ/dX.

6.2. THE OBJECTIVE FUNCTIONALS 107

Start

Input: T ∞, Ω

Assembly Lu = b on T ∞ Solve u = L−1b on T

Assembly ∂J
∂U

on T ∞ Solve Λ = L−1 ∂J
∂U

on T

Assembly ∂J
∂X

on T ∞

Assembly ∂F
∂X

on T ∞

Assembly ∂B
∂X
U on T ∞

Output: dJ
dX

:= ∂J
∂X
− Λ

(
∂B
∂X
U − ∂F

∂X

)

Stop

Figure 6.7: Assembly of the material derivative.

108 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component

(a) Straight rod

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active cells
component

(b) Bent rod

Figure 6.8: Solutions of the linear elasticity equation.

6.2.3 Numerical results

In this section, we provide some examples of the computations of the shape

derivatives of the two functionals that we are considering in this work.

Ceramic Material

We consider the model problem of the bent rod introduced in Section 6.1.3.

As described earlier, it is clamped on the left boundary and the tensile load

is applied on the right part of the boundary. We assume that the rod is

made from a ceramic material, in this case Aluminium oxide (Al2O3) and set

the material parameters E = 300 GPa and µ = 0.21 accordingly. We chose

this material for the numerical tests since it is a technical ceramic with low

Weibull module m, which is favorable for the smoothness of the derivatives

of the objective functional. We consider the PDE-constrained optimization

problem that we described in equation (3.18).

As a first test, we solve the linear elasticity equation on the bent rod and on

the straight rod that we have seen in Section 6.1.3 as well and visualize it in

Figure 6.8. The resulting displacement is smooth and behaves as expected

from a material science perspective. We tested the implementation of the lin-

ear elasticity equation and the adjoints of the ceramic functional in an earlier

implementation and on a different mesh [8] with finite differences. We ana-

lyzed the convergence of the ratio of the norms of the finite element discrete

6.2. THE OBJECTIVE FUNCTIONALS 109

1e−04 1e−06 1e−08

0.
2

0.
6

1.
0

Epsilon

R
at

io

Epsilon Ratio

10−3 0.0603255
10−4 0.7180954
10−5 0.9672460
10−6 0.9966801
10−7 0.9996691
10−8 0.9999882

Figure 6.9: Convergence of ||dJ(X,U)
dX
||2/||(J(X+εV,U(X+εV))−J(X,U)

εV
)||2 for the

two-dimensional objective functional. From [8].

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

(a) Standard gradient

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

(b) Smoothed gradient

Figure 6.10: Gradient in standard scalar product and smoothed gradient;
Nx = 64, Ny = 32. From [3].

adjoint and the finite differences derivative, as displayed in Figure 6.9. We

compute the derivative according to the discretizations provided in Section

3.3 on the bent rod. The parameters are set to those of Aluminium oxide

and the Weibull parameter m = 2. To discretize Ω̃, we set with Nx = 61 and

Ny = 41. The derivative is displayed in Figure 6.10a. To be utilized in gra-

dient based optimization, the derivative needs smoothing, which we conduct

using a Dirichlet-to-Neumann map [47], that is closely related to the method

of Steklov-Poincaré gradients, introduced in Chapter 4. The smoothing is

performed by solving a linear elasticity equation on T (Ω) and using the part

of the solution on the boundary nodes as search direction. As system matrix,

110 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 6.11: Optimizing the shape in a controlled manor, with step size
bounded by h. Displayed are iterations no. 1, 3, 5, 7, 9, 11, 13, 15 and 16.

we reuse the system matrix of the governing linear elasticity equation and as

right hand side the previously computed shape derivative is used. The sys-

tem is modified by setting zero-Dirichlet-boundary conditions on those parts

of the boundary that are not to be changed, that is the previously defined

parts ∂ΩD and ∂ΩNfixed
. The smoothed gradient (on the whole domain Ω)

is visualized in Figure 6.10b.

To highlight what the present implementation is able to do, we perform sev-

eral steps of a basic gradient based optimization with the smoothed gradient,

as visualized in Figure 6.11. The step length is controlled only in the way

that it is bounded such that each step is moved by at most min(hx, hy). All

the meshes and gradients are computed fully automatically. For a more ad-

vanced application of the method in multi-objective optimization, we refer

the reader to [49].

6.2. THE OBJECTIVE FUNCTIONALS 111

0.00 0.02 0.04 0.06 0.08 0.10

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

active cells
component

(a) Turbine blade

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.020

0.015

0.010

0.005

0.000

0.005

active cells
component

(b) Zoom in on the mesh

Figure 6.12: Discretized turbine blade and zoom in on part of the mesh.

Low cycle fatigue

For the low cycle fatigue functional, we want to consider a second model

problem which is the two-dimensional slice of a turbine blade, visualized in

Figure 6.12. The turbine blade possesses a hole in the center, that is supposed

to be a cooling channel. We can see that the mesh can capture not only the

outer shape of the domain, but can also handle different topologies. We set

Ω̃ to be the rectangle of [−0.004, 0.09] × [−0.025, 0.055] and discretize with

nx = ny = 299. As this is a very fine mesh, in Figure 6.12b we provide an

enlarged view of a part of the mesh. Neumann-boundary conditions hold on

the outer part of the boundary, the part that defines the shape of the blade,

with constant load in direction of the outer normal. Additionally, we define

zero-Dirichlet-boundary conditions on the inner part of the boundary that

is supposed to describe the cooling channel. We calculate the LCF shape

derivative, visualized in Figure 6.13a. As the derivative is not smooth, we

smooth the gradient once again with the Dirichlet-to-Neumann map, same

as in the previous example, see Figure 6.13b.

112 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

0.00 0.02 0.04 0.06 0.08 0.10

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

(a) Standard gradient

0.00 0.02 0.04 0.06 0.08 0.10

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

(b) Smoothed Gradient

Figure 6.13: Discrete adjoint for LCF on blade.

6.3 Three Dimensional Examples

As a first model problem, we consider a ball centering at the origin and with

radius r = 0.1. We define Ω̃ as the cuboid [−0.11, 0.11]3 and discretize it

with n = 16 as visualized in Figure 6.14a. We solve the Poisson equation

(a) Mesh representation (b) Solution of Poisson equation

Figure 6.14: Visualization of the solution of the Poisson equation on a ball
in 3D with n = 16.

with the true solution u(x, y, z) = x2 + y2 + z2 − r2 and compare it to the

true solution, which gives an error in the L2-norm of êrel = 1.005 · 10−08, see

Figure 6.14b. As the second test case we consider the shape of a cylinder

that we can bent in the mid-section, similar to the rod in the two dimensional

case. It is 0.5m long and has radius 0.1m. We set Ω̃ to be the cuboid

[−0.1, 0.6] × [−0.2, 0.2] × [−0.2, 0.2]. We discretize by nx = ny = nz = 31.

6.3. THREE DIMENSIONAL EXAMPLES 113

Figure 6.15: Mesh for bent rod.

Figure 6.16: Mesh for rod with cooling channel.

The result is visualized in Figure 6.15. We can see that we are able to capture

the smooth parts and the edges of the boundary. In Figure 6.16, we see a

straight cylinder with a cooling channel. The solver for the linear elasticity

equation is also implemented in three dimensions. For the bent cylinder, we

compute the solution of the linear elasticity equation. We apply the force on

the right end of the cylinder, as visualized in Figure 6.17. The solution of

the linear elasticity equation is visualized in Figure 6.18.

114 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

Figure 6.17: Right hand side of linear elasticity equation.

Figure 6.18: Solution of the linear elasticity equation in three dimensions.

6.4. KRYLOV SUBSPACE RECYCLING 115

6.4 Krylov subspace recycling for evolving ge-

ometries

In this section, we give two examples of Krylov subsapce recycling on the

presented meshes, to demonstrate the efficacy of the method described in

Section 5. The first model problem that we consider is the turbine blade

introduced in Section 6.2.3, one which we solve the Poisson equation. For the

second one, we solve the linear elasticity equation on the bent rod introduced

in the same section. As well as some parts of Chapter 5, the results of this

section have been published in [7].

6.4.1 Test of mapping an approximate invariant sub-

space

As our first example, we consider a model problem solving the linear elasticity

equations on the bent rod that we already encountered in Section 6.1.3,

with a 181 × 121 nodes grid, resulting in 5507 active nodes. To get a first

impression of the quality of the approximation of the invariant subspace via

the mapping, we perform deformation steps of the shape in a controlled

way, see Figure 6.19b, and calculate the principal angles of the resulting

mapped approximate invariant subspaces and the true invariant subspace

corresponding to the smallest eigenvalues of the new system matrix, which

has been computed for the purpose of comparison only. We perform three

steps of deformation of the original shape, with Nrec = 15, and we calculate

the principal angles between the mapped approximate invariant subspace and

the invariant subspace corresponding to the 20 smallest eigenvalues according

to [20, p. 604]. We can see that most of the angles are rather small, i.e., our

approach approximates these spaces quite well. Note that we only consider

small geometric deformations.

116 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

active->active
active->inactive
inactive->active
initial shape
updated boundary

(a) The status changes for nodes near
the boundary for a small change in
shape. From [7].

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

initial shape
iteration 1
iteration 2
iteration 3

(b) Sequence of shapes for a model
problem. From [7].

Figure 6.19: Visualization of the changes in the geometry for the model
problem.

no. 1 · · · 8 9 10 11 12 13 14 15

i 1 0.992 · · · 0.945 0.939 0.935 0.935 0.913 0.872 0.806 0.150
i 2 0.983 · · · 0.904 0.843 0.785 0.722 0.551 0.331 0.153 0.102
i 3 0.987 · · · 0.933 0.908 0.899 0.844 0.781 0.700 0.476 0.217

Table 6.3: Cosines of principal angles (cos(θi)) between the approximate
invariant subspace and the true invariant subspace corresponding to the 20
smallest eigenvalues. From [7].

6.4.2 Poisson equation on a turbine blade

As a first example, we solve the Poisson equation on the turbine blade from

Section 6.2.3. The hole that is representing the cooling channel is artificially

moved to produce a change in the geometry. Ω̃ is discretized by Nx = 361

and Ny = 181. This leads to close to 12, 000 active nodes on T . On the

boundary of the blade, Robin-boundary conditions hold with constant heat

coefficients, and the temperature on the cooling channel boundary is chosen

to be two times lower than the one on the outer boundary. We perform

an initial solve using MINRES and then three rMINRES solves for three

consecutive changes of the domain; the geometries are visualized in Figure

6.20. A simple incomplete cholesky factorization IC(0) [44, p.312] is used as

preconditioner. Figure 6.21 demonstrates that a speed-up of more than 30%

is obtained. In this example, the number of nodes does not change, due to

6.4. KRYLOV SUBSPACE RECYCLING 117

(a) Initial domain (b) Domain 1 (c) Domain 2 (d) Domain 3

Figure 6.20: Test problem 1: Poisson equation on a turbine blade. Three consec-
utive positions of the hole. From [7].

the fact that the hole is moved in a very controlled way and without changes

in size. Nevertheless, the rows and columns of the matrix do not represent

the same nodes in the region of the hole.

Data for k = 15

Opt.
step

N #
its

active
(inac-
tive)

0 11, 893 275 -
1 11, 893 186 210 (210)
2 11, 893 186 210 (210)
3 11, 893 171 210 (210)

Figure 6.21: Convergence results for solving Poisson’s equation for 3 consec-
utive optimization steps. On the left, the residual norm convergence. Right
N the number of unknowns, number of rMINRES iterations, and number of
nodes changing from active to inactive or vice versa. From [7].

6.4.3 Gradient based shape optimization with linear

elasticity as governing PDE

In the second example, we consider the bent rod from Section 6.2.3 with

the same boundary conditions and the same load applied. For this example,

the deformation in the domain originates from steps of a gradient based

optimization with the gradients computed according to Section 6.2.2 and

smoothed with a Dirichlet-to-Neumann map, as we have already done in the

118 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

(a) Initial domain (b) Domain 1 (c) Domain 2 (d) Domain 3

Figure 6.22: Test problem 2: subsequent shapes in the optimization of a bent
rod. From [7].

Data for k = 20

Opt.
step

N #
its

active
(inac-
tive)

0 30, 108 98 -
1 30, 062 73 352 (375)
2 30, 030 76 362 (387)
3 29, 982 73 353 (376)

Figure 6.23: Convergence results for solving the linear elasticity equation
for 3 consecutive optimization steps. On the left, the residual norm conver-
gence. Right N the number of unknowns, number of rMINRES iterations,
and number of nodes changing from active to inactive or vice versa. From
[7].

previous section. Ω̃ is discretized by Nx = 301 and Ny = 201 which gives

approximately 15, 000 active nodes. As the linear elasticity equation bases

on a bilinear form, this leads to about 30, 000 unknowns. The resulting linear

system is ill-conditioned, therefore we allow for a drop tolerance of tol = 0.001

for the IC-preconditioning. Additionally, the matrix is reordered via reverse

Cuthill-McKee reordering [18]. As in the previous example, three rMINRES

solves are performed after the initial MINRES solve on three consecutive

configurations in the optimization process. The convergence is visualized in

Figure 6.23. Here we observe a speed up of the convergence of around 25%.

Chapter 7

Conclusion

In the present work, we presented an approach to automatically generate

structured finite element meshes for shape optimization applications. We

demonstrated for the two-dimensional case, that with few conditions posed

on the shape of the domains and the step length in the optimization, the

presented algorithm leads to stable meshes, that fulfill the conditions of the

standard convergence results in finite element analysis. We gave examples

by implementing solvers for the Poisson equation and the linear elasticity

equation in two and three dimensions and solved these equations on different

auto-generated meshes. Furthermore, we saw that this structured meshing

approach reduces the computational cost in the assembly of the linear system.

Additionally to that we described objective functionals for shape optimiza-

tion that measure the probability of failure of components made of ceramic

material and materials that are subject to low cycle fatigue. We computed

their discrete adjoint derivatives and applied them in gradient based shape

optimization.

In the scope of Krylov subspace recycling, we proposed an approach to make

Krylov subspace recycling accessible for re-meshing approaches in shape opti-

mization by introducing transformation, mapping basis vectors of subspaces

from one mesh representation to the next. We analyzed the accuracy of

the mapping by considering the principle angles between the subspaces and

performed several examples on two dimensional meshes, observing that the

119

120 CHAPTER 7. CONCLUSION

convergence improves through the recycling substantially.

In future research, a rigorous analysis of the three dimensional meshing is

necessary, to show that the approach fulfills the conditions for finite element

convergence theorems. Furthermore, the meshing should be paired with an

appropriate parallel solver to really benefit from this structured approach. It

would be also interesting to carefully add adaptive mesh refinement in a way

that does not counter the possible speed up gained through the presented

approach.

Bibliography

[1] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,

C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The fenics

project version 1.5. Archive of Numerical Software, 3(100), 2015.

[2] W. Arendt and K. Urban. Partielle Differenzialgleichungen. Eine

Einführung in analytische und numerische Methoden. Spektrum

Akademischer Verlag, Heidelberg, 2010.

[3] J. Backhaus, M. Bolten, O. T. Doganay, M. Ehrhardt, B. Engel, C. Frey,

H. Gottschalk, M. Günther, C. Hahn, J. Jaschke, P. Jaksch, K. Klam-

roth, A. Liefke, D. Luft, L. Mäde, V. Marciniak, M. Reese, J. Schultes,

V. Schulz, S. Schmitz, J. Steiner, and M. Stiglmayr. Given - shape

optimization for gas turbines in volatile energy networks. In S. Goet-

tlich, M. Herty, and A. Milde, editors, Mathematical MSO for Power

Engineering and Management, Mathematics in Industry, Cham, 2021.

Springer.

[4] K. Becker, K. Heitkamp, and E. Kügeler. Recent progress in a hybrid-

grid cfd solver for turbomachinery flows. In J. C. F. Pereira, A. Sequeira,

and J. M. C. Pereira, editors, V European Conference on Computational

Fluid Dynamics ECCOMAS CFD 2010, 2010.

[5] M. Berger. Chapter 1 - cut cells: Meshes and solvers. In R. Abgrall

and C.-W. Shu, editors, Handbook of Numerical Methods for Hyperbolic

Problems, volume 18 of Handbook of Numerical Analysis, pages 1–22.

Elsevier, 2017.

121

122 BIBLIOGRAPHY

[6] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic

partial differential equations. J. Comput. Phys., 53:84–512, 1984.

[7] M. Bolten, E. de Sturler, and C. Hahn. Krylov subspace recycling for

evolving structures, 2020.

[8] M. Bolten, H. Gottschalk, C. Hahn, and M. Saadi. Numerical shape op-

timization to decrease failure probability of ceramic structures. Comput.

Visual Sci., 2019.

[9] M. Bolten, H. Gottschalk, and S. Schmitz. Minimal failure proba-

bility for ceramic design via shape control. J. Optim. Theory Appl.,

166(3):983–1001, 2015.

[10] D. Braess. Finite elements. Theory, Fast Solvers, and Applications in

Solid Mechanics. Cambridge University Press, Cambridge, 1997.

[11] J. Brandts, A. Hannukainen, S. Korotov, and M. Kř̂ıžek. On angle

conditions in the finite element nethod. SeMA Journal, 56(1):81–95,

2011.

[12] S. Brenner and R. Scott. The Mathematical Theory of Finite Element

Methods. Springer Verlag, New York, 2008.

[13] J.-S. Chen, M. Hillman, and S.-W. Chi. Meshfree methods: Progress

made after 20 years. Engineering Mechanics, 143:04017001, 2017.

[14] B. Delaunay. Sur la sphère vide. a la mémoire de georges voronöı.

Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences

mathématiques et na, 6:793–800, 1934.

[15] P. J. Denning. The locality principle. Commun. ACM, 48(7):19–24, July

2005.

[16] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss. Cache

optimization for structured and unstructured grid multigrid. Electron.

Trans. Numer. Anal., 10:21–40, 2000.

BIBLIOGRAPHY 123

[17] O. Forster. Analysis 2. Springer Spektrum, Wiesbaden, 11 edition, 2017.

[18] A. George and J. W. Liu. Computer Solution of Large Sparse Positive

Definite Systems. Prentice Hall Professional Technical Reference, 1981.

[19] R. M. German and Z. Z. Fang. 1 - Thermodynamics of sintering, pages

3–32. Woodhead Publishing, 2010.

[20] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns

Hopkins University Press, Baltimore and London, 3 edition, 1996.

[21] H. Gottschalk and M. Saadi. Shape gradients for the failure probabil-

ity of a mechanic component under cyclic loading: a discrete adjoint

approach. Comput. Mech., 64(4):895–915, 2019.

[22] A. Greenbaum. Iterative methods for solving linear systems, volume 17

of Frontiers in Applied Mathematics. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1997.

[23] D. Gross and T. Seelig. Bruchmechanik. Mit einer Einführung in die

Mikromechanik. Springer-Verlag, Berlin Heidelberg, 2007.

[24] W. Hackbusch and S. Sauter. Adaptive composite finite elements for

the solution of pdes containing nonuniformely distributed micro-scales.

Matem. Mod., 8:31–43, 1996.

[25] W. Hackbusch and S. Sauter. Composite finite elements for problems

containing small geometric details. Comput. Visual. Sci., 1:15–25, 1997.

[26] W. Hackbusch and S. Sauter. Composite finite elements for the approx-

imation of pdes on domains with complicated micro-structures. Num.

Math., 75:447–472, 1997.

[27] J. Haslinger and R. A. E. Mäkinen. Introduction to shape optimization:

theory, approximation, and computation. SIAM, Philadelphia, 2003.

[28] M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving

linear systems. J. Res. Nat. Bur. Stand, 49:409–436, 1952.

124 BIBLIOGRAPHY

[29] C. Hirt, A. Amsden, and J. Cook. An arbitrary lagrangian-eulerian

computing method for all flow speeds. J. Comput. Phys., 14:227–253,

1974.

[30] O. Kallenberg. Random measures. Akademie Verlag, Berlin, 1982.

[31] M. Kilmer and E. de Sturler. Recycling subspace information for diffuse

optical tomography. SIAM J. Sci. Comput., 27(6):2140–2166, 2006.

[32] A. Klenke. Probability Theory. Springer, London, 2 edition, 2014.

[33] J. Liesen and P. Tichý. Convergence analysis of krylov subspace meth-

ods. GAMM-Mitteilungen, 27(2):153–173, 2004.

[34] S. H. Lo. Finite element mesh generation and adaptive meshing. Progr.

Struct. Eng. Mater., 4(4):381–399, 2002.

[35] A. Meister. Numerik linearer Gleichungssysteme. Vieweg, Braun-

schweig/Wiesbaden, 1999.

[36] R. Misener and C. A. Floudas. Piecewise-linear approximations of mul-

tidimensional functions. J. Optim. Theory Appl., 145:120–147, 2010.

[37] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Re-

view of Fluid Mechanics, 37(1):239–261, 2005.

[38] L. Motta Mello, E. de Sturler, G. Paulino, and E. C. Nelli Silva. Recy-

cling Krylov subspaces for efficient large-scale electrical impedance to-

mography. Comput. Methods Appl. Mech. Engrg., 199:3101–3110, 2010.

[39] H. Neuber. Theory of Stress Concentration for Shear-Strained Prismati-

cal Bodies With Arbitrary Nonlinear Stress-Strain Law. J. Appl. Mech.,

28(4):544–550, 12 1961.

[40] C. C. Paige and M. A. Saunders. Solutions of sparse indefinite systems

of linear equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.

BIBLIOGRAPHY 125

[41] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti.

Recycling krylov subspaces for sequences of linear systems. SIAM J.

Sci. Comput., 28:1651–1674, 2004.

[42] C. Peskin. Recycling krylov subspaces for sequences of linear systems.

J. Comp. Phys., 10:252–271, 1972.

[43] A. Reisner, L. N. Olson, and J. D. Moulton. Scaling structured multi-

grid to 500K+ cores through coarse-grid redistribution. SIAM J. Sci.

Comput., 40(4):C581–C604, 2018.

[44] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for In-

dustrial and Applied Mathematics(SIAM), USA, 2nd edition, 2003.

[45] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.

Comput., 7:856–869, 1986.

[46] M. Saadi. Shape Sensitivities for the Failure Probability of Mechanical

Components. PhD thesis, Bergische Universität Wuppertal, Wuppertal,

2020.

[47] S. Schmidt and V. Schulz. Impulse response approximations of dis-

crete shape Hessians with application in CFD. SIAM J. Contr. Optim.,

48(4):2562–2580, 2009.

[48] S. Schmitz, T. Seibel, T. Beck, G. Rollmann, R. Krause, and

H. Gottschalk. A probabilistic model for lcf. Comput. Mater. Sci.,

79:584–590, 2013.

[49] J. Schultes, M. Stiglmayr, K. Klamroth, and C. Hahn. Hypervolume

scalarization for shape optimization to improve reliability and cost of

ceramic components. Optim. Eng., 2021.

[50] V. Schulz, M. Siebenborn, and K. Welker. Efficient PDE constrained

shape optimization based on steklov-poincaré-type metrics. SIAM J.

Optim., 26:2800–2819, 2016.

126 BIBLIOGRAPHY

[51] S. M. Shontz and S. A. Vavasis. Analysis of and workarounds for element

reversal for a finite element-based algorithm for warping triangular and

tetrahedral meshes. BIT Numerical Mathematics, 50(4):863–884, 2010.

[52] V. Simoncini and D. Szyld. On the occurrence of superlinear convergence

of exact and inexact krylov subspace methods. Siam Review - SIAM

REV, 47:247–272, 01 2005.

[53] K. M. Soodhalter, E. de Sturler, and M. E. Kilmer. A sur-

vey of subspace recycling iterative methods. Technical Report

https://arxiv.org/abs/2001.10347, arXiv, 2020.

[54] M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, and T. S. Coffey.

A comparison of mesh morphing methods for 3d shape optimization. In

W. R. Quadros, editor, Proceedings of the 20th International Meshing

Roundtable, pages 293–311, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

[55] W. A. Strauss. Partielle Differentialgleichungen. Vieweg+Teubner,

Wiesbaden, 1995.

[56] G. Taylor and H. Quinney. The plastic distortion of metals. Phil. Trans.

R. Soc., London, 230:323–362, 1931.

[57] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadel-

phia, 1997.

[58] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent

trapezoidal rule. SIAM Review, 56(3):385–458, 2014.

[59] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems.

Cambridge Monographs on Applied and Computational Mathematics.

Cambridge University Press, 2003.

[60] G. van Roosum. Python tutorial. Technical Report CS-R9526, CWI, 05

1995.

BIBLIOGRAPHY 127

[61] S. Wang. Krylov Subspace Methods for Topology Optimization on Adap-

tive Meshes. PhD thesis, University of Illinois at Urbana-Champaign,

Department of Computer Science, 2007. Advisor: Eric de Sturler.

[62] S. Wang, E. de Sturler, and G. H. Paulino. Large scale topology opti-

mization using preconditioned Krylov subspace methods with recycling.

Int. J. Numer. Meth. Engng., 69:2441–2468, 2007.

[63] S. Watanabe. On discontinuous additive functionals and lévy measures

of a markov process. Japan J. Math., 34, 1964.

	Introduction
	Finite element method
	Elliptic boundary value problems
	Elliptic partial differential equations with boundary conditions
	Weak solutions of elliptic PDEs

	Introduction to finite elements
	Error bounds
	Discretization of the linear elasticity equation via finite elements

	Objective functionals
	Shape optimization
	Survival probabilities
	Ceramic material
	Low cycle fatigue

	Discretization of the objective functionals
	Discretization of the two-dimensional functional for ceramic material
	Adjoint equation

	Derivative of the objective functional
	Derivative with respect to Uloc
	Derivative with respect to local Xloc

	Structured meshing
	Introduction to mesh generation
	Mesh morphing and re-meshing

	Structured meshing
	Two-dimensional meshing
	How to treat kinks
	Shape optimization on the structured mesh
	Higher order finite elements
	Adapting in three dimensions

	Krylov subspace recycling
	Krylov subspace methods
	MINRES

	Krylov subspace recycling
	Recycling MINRES for evolving geometries
	Mapping on structured meshes

	Implementation and numerical results
	Details of the implementation
	Assembling the linear system of equations
	Simple test case
	Updating the mesh

	The objective functionals
	The functional for low cycle fatigue
	Ceramic material
	Numerical results

	Three Dimensional Examples
	Krylov subspace recycling
	Test of mapping an approximate invariant subspace
	Poisson equation on a turbine blade
	Gradient based shape optimization with linear elasticity as governing PDE

	Conclusion

