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Abstract
The possibility to send information “into the future” has turned out to be sur-
prisingly useful. It does not only allow revealing data at a required time which
is needed for instance when publishing the results of a census or elections, but it
helps to achieve properties that are difficult to achieve otherwise, e.g., ensuring
that results of some protocol are unbiased. Currently, there are three known ap-
proaches that enable information to be kept secret until some specified future time
has not passed. Historically the first approach suggested by May [May93] relies on
a trusted entity which at a required time point essentially reveals the secret infor-
mation. Later, the approach which requires execution of a sequential computation
has been proposed by Rivest et al. [RSW96] who used the term Time-Lock Puzzle
(TLP) to denote it. The third approach, known as Time-Lock Encryption (TLE)
introduced by Liu et al. [LJKW18], aims to avoid both the dependency on a trusted
entity and the need to perform a sequential computation. This thesis focuses on
the latter two approaches with the objective of improving their practicality.
The main barrier in deploying time-lock encryption is that its constructions

are not practical yet. Specifically, the only known construction of TLE requires
Extractable Witness Encryption (EWE) and there are currently no efficient instan-
tiations of this primitive. On the other hand, time-lock puzzles can be instantiated
efficiently, however it is often necessary to encrypt several messages independently,
which results in the wasting of computational resources.
To overcome the above-mentioned limitations, we observe that many applica-

tions allow for a trusted setup. Therefore we equip TLE and TLPs with a trusted
setup and examine the possible efficiency gains. We denote TLE and TLPs with a
trusted setup by Offline Time-Lock Encryption (OTLE) and Timed-Release En-
cryption (TRE), respectively.
Instead of focusing directly on OTLE, we introduce a new notion of Extractable

Offline Witness Encryption (EOWE) which is extractable witness encryption with
a trusted setup. OTLE can be directly built from EOWE in a similar way as TLE
can be built from EWE. But since EOWE is a more general notion, it has also
broader applicability than OTLE. We remark that the notion of Offline Witness
Encryption (OWE) has been originally proposed by Abusalah et al. [AFP16], who
build this primitive by combining indistinguishability obfuscation with a specific
type of IND-CCA-secure Public-Key Encryption (PKE). The advantage of the
resulting construction in comparison to existing constructions of witness encryp-
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tion is that the most expensive computation is executed in the trusted setup which
yields very efficient encryption. To build extractable OWE we proceed similarly as
in [AFP16]. Concretely, we rely on extractability obfuscation in combination with
a new variant of puncturable encryption [GM15] which we introduce. Additionally,
by replacing extractability obfuscation with indistinguishability obfuscation in our
construction, one directly obtains OWE, however with stronger security guaran-
tees than the original construction. Moreover, we propose an efficient instantiation
of a puncturable encryption scheme which results in a shorter ciphertext size than
the original proposal of Abusalah et al.
The main idea of our timed-release encryption scheme is providing the ability to

encrypt an arbitrary number of messages with respect to only one time-lock puzzle
in a way that all these messages are decryptable using the solution of the puzzle.
Hence, TRE achieves the so-called “solve one, get many for free” property, which
has not been achievable before. We show that such an encryption scheme can be
generically built from any TLP and any IND-CPA-secure PKE scheme. To further
extend the capabilities and practicality of TRE, we propose a notion of sequential
timed-release encryption (sTRE) which allows encryption of messages with respect
to different time parameters. As a building block for sTRE we introduce a notion
of sequential time-lock puzzle (sTLP). sTLP allows generation of puzzles which
corresponds to an increasing sequence of time parameters. These puzzles can be
solved using only one sequential computation which provides the solutions at points
in time that are determined by time parameters. In this way, the task of solving
puzzles can be delegated to a public server which makes TRE more economically
and ecologically sustainable.
Lastly, we observe that our notion of TRE is similar to the concurrently intro-

duced notion of Timed Public-Key Encryption (TPKE) by Katz et al. [KLX20]
which has two types of decryption: slow decryption, with runtime determined by a
time parameter, and fast decryption, with runtime independent of the time param-
eter. TPKE serves as a building block for non-malleable timed commitments and
therefore it aims to provide non-malleability of ciphertexts. The known construc-
tion of TPKE has an inefficient encryption algorithm whose runtime is essentially
the time that is necessary to solve the related time-lock puzzle and hence is propor-
tional to the time parameter. We apply techniques used in constructing TRE to
TPKE and obtain two constructions with efficient encryption. The first construc-
tion is generic with encryption time which depends logarithmically on the time
parameter. The runtime of encryption in our second construction is independent
of the time parameter, however, this construction is not generic.
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1 Introduction
The topic of this dissertation can be perhaps surprisingly expressed by the words
of a Roman Stoic philosopher:

We should always allow some time to
elapse, for time discloses the truth.

Seneca

These words are almost 2000 years old, but despite that their main idea plays
a crucial role in recent avenues of cryptography. Before we describe this idea in
more detail, let’s start at the beginning and explain how the notion of time has
been introduced in cryptography.
The oldest known application of cryptography was ensuring secret communica-

tion between two or more parties. Some forms of ciphers were already used in
ancient Egypt. Surprisingly, recommendations to use ciphers can be found also in
books like Kamasutra, which lists the art of secret writing as one of the 64 arts
that every woman should practise [Kah67]. I leave an explanation of why this
should be useful for a woman, to the imagination of the reader. For centuries,
designing ciphers had been indeed an art, and only very recently (around 1980),
when the heuristic approach was replaced by precise mathematical proofs, the art
became a science.
One of the key principles of modern cryptography is the use of formal definitions,

which (among other things) require to specify a threat model. The threat model
defines the power of an adversary under our consideration. One could hope to
build primitives which are secure even using unlimited resources and time. Such
adversaries are denoted as unbounded adversaries and primitives secure against
such adversaries are referred to as unconditionally secure. It is not always possi-
ble to build unconditionally secure primitives and even if this security is feasible
for some primitives, often their practicality is questionable. In order to assume
more realistic adversaries, so-called computational security has been introduced,
in which efficient adversaries are considered. The notion of efficiency has been
taken from complexity theory, where efficient means algorithms whose runtime is
upper bounded by some polynomial in the input length of the given algorithm. At
the same time, we usually require that the algorithms of which some cryptographic
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primitive consist, should be efficient as well. In other words, this requirement en-
sures the practical usefulness of the primitive. In this way, the notion of time has
found its place in cryptography.
Let’s return to ciphers. Modern terminology practically stopped using the word

cipher in the late twentieth century and employed a new term - an encryption
scheme. In this thesis, we also focus on building encryption schemes. There are
two standard notions for an encryption scheme: private-key encryption and public-
key encryption. The task of these schemes is to allow two parties to communicate
secretly and hence to ensure confidentiality. The crucial difference between the two
is when communicating using private-key encryption, both parties have to share
the secret key in advance. On the other hand, a public-key encryption scheme
makes use of two types of keys: a public key and a secret key. As the names
suggest, the public key is made public and allows any party to encrypt messages
which can be decrypted only using the corresponding secret key. Security for
these two primitives roughly says that without the knowledge of the secret key it
is impossible to obtain any information about encrypted messages. This is exactly
the point where the encryption schemes considered in this work deviates from the
standard notion.
Instead of using a secret key for decryption, we would like ciphertexts to be

decryptable by anyone at some specified point in time in the future. The purpose
and usefulness of such an encryption scheme might be at the first sight not obvious,
however, there are many applications where such functionality is desirable:

1. Often there is a legal obligation that some data must be publicly available
at the specified point in time. This is for instance the case for results of
elections or census data.

2. An interesting application is the so-called responsible disclosure of security
flaws. Security flaws have been repeatedly discovered in different applications
and internet protocols [ASS+16, BSY17, PDM+18]. It is a good practice to
give vendors some time to fix founded flaws and at the same time making
them public is an important measure of how to avoid similar flaws in the
future.

One might argue, that desired properties in the above-mentioned applications
are easily achievable for example by publishing the information on a given date on
your favorite website. But the true advantage of using the encryption scheme is
that we do not require that an entity, which intended to send the message in the
future, must be present at decryption time.

3. Ability to automatically reveal messages at a specific time in the future
allows providing an unbiased lottery. One encrypts the results of a lottery
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and makes ciphertext public before the betting phase starts. In this way, the
results of the lottery can not be biased.

4. Another application is to deploy this type of encryption scheme in different
internet protocols where several possible dishonest parties are involved. As
it has been observed in [RSW96, BN00], this enables us to guarantee that
either all parties learn an output of the protocol execution or no one does.
This property is called fairness and it is not easily achievable otherwise.

Currently, there are three main approaches that have been proposed in order to
enable “sending information into the future” - Timed-Release Crypto/Encryption
(TRE), Time-Lock Puzzles (TLPs), and Time-Lock Encryption (TLE).

Timed-Release Crypto/Encryption. The problem of sending messages into the
future was firstly discussed by May [May93] who has introduced the notion of
timed-release crypto and proposed a solution based on trusted agents. The sug-
gested idea makes use of a standard private or public-key encryption scheme in
order to encrypt messages. These ciphertexts are then published and hence ac-
cessible to everyone. Corresponding secret keys are handed to so-called trusted
agents that release them after some pre-determined amount of time has passed.
This idea has been further developed in a plethora of other works [DOR99, CLQ05,
CHKO06, CHS07, CY08] which have started to use the term timed-release encryp-
tion to denote this approach based on a trusted entity.

Time-Lock Puzzles. A few years later after introducing the idea of timed-release
crypto, Rivest et al. [RSW96] have described the broad applicability of timed-
release cryptography and at the same time have proposed a new solution using
time-lock puzzles. A time-lock puzzle (TLP) allows sealing messages in such a
way that one is able to obtain the original message only by executing an expen-
sive sequential computation which takes a pre-determined amount of time even
on a parallel computer. The construction of Rivest et al. [RSW96] is based on
a sequential squaring in an RSA group and has a property that creating a puz-
zle is much faster than solving the given puzzle. Finding such puzzles seems to
be rather difficult. Bitansky et al. [BGJ+15] built time-lock puzzles based on
randomized encodings, however, this construction is not practical. The possibil-
ity of constructing time-lock puzzles in the random oracle model was studied by
Mahmoody et al. [MMV11] who ruled out black-box constructions of TLPs from
one-way permutations and collision-resistant hash functions.

Time-Lock Encryption. To overcome the limitations of the previous two ap-
proaches, concretely the need for a trusted entity or execution of an expensive
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computation, Liu et al. [LJKW18] came up with the idea of reusing an existing
expensive computation in combination with an appropriate type of an encryp-
tion scheme. Specifically, they have shown that time-lock encryption (TLE) can
be directly obtained from an Extractable Witness Encryption (EWE) scheme by
defining a suitable relation. Hence, we can view TLE as a special case of the more
general primitive that is extractable witness encryption, which has a plethora of
other applications outside of timed cryptography. As an example of an existing
computation, which provides a good estimation of time, the mining of blocks in the
Bitcoin blockchain is considered. Although this solution is the most preferable, the
practical constructions of (extractable) witness encryption for the above-mentioned
type of relation are not known yet, and hence, it can not be used in practice at
the current time.
We provide a summary of the properties that are achievable by the above-

mentioned primitives in Figure 1.1. We are interested in the following aspects:
if they require a trusted setup, interaction at decryption time, an expensive com-
putation executed by a receiver, or use of heavy cryptographic primitives which are
not practical yet. We indicate by a bullet point that a timed primitive currently
has a given property.

TRE TLP TLE
Trusted setup •
Interaction at decryption time •
Expensive computation •
Heavy crypto primitives •

Figure 1.1: Comparison of timed primitives

Overview of the thesis. This thesis only focuses on the latter two of the above-
mentioned approaches. We aim to improve the efficiency of both TLPs and TLE
and hence broaden their applicability. Even though we use different techniques and
building blocks while pursuing our goal, in both cases we apply the same approach.
From the broader perspective, one could describe our approach as follows: we allow
in both primitives for a trusted setup and try to optimize the remaining algorithms
of the given primitive. The thesis consists of three chapters:

Chapter 2 contains preliminaries where we define the notation, cryptographic
primitives, and assumptions which are used in the thesis.

Chapter 3 is dedicated to a variant of witness encryption. We have already men-
tioned that the limiting factor of time-lock encryption with respect to its
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practicality is that there is currently only one known construction of this
primitive and the proposed construction is based on witness encryption: this
primitive is currently only achievable using impractical techniques. We focus
on a variant of witness encryption introduced by Abusalah et al. [AFP16]
which allows for a trusted setup. Such witness encryption with a trusted
setup is called offline witness encryption (OWE). We propose an extractable
variant of OWE (EOWE). One can observe that EOWE for an NP relation
defined in the same way as in [LJKW18], directly yields time-lock encryp-
tion with trusted setup. We denote this type of TLE by offline time-lock
encryption. Therefore we focus on building extractable offline witness en-
cryption which has broader applicability than TLE and along the way we
obtain offline time-lock encryption for free. The novelty of our construction
is a generic technique that yields both OWE and EOWE achieving stronger
security guarantees and smaller ciphertext size than the original proposal
of Abusalah et al. [AFP16]. This is achieved by relying on a new primitive
denoted as one-time puncturable tag-based encryption which might have fur-
ther interesting applications. Moreover, we show an efficient instantiation of
our one-time puncturable tag-based encryption scheme.

Chapter 4 discusses encryption schemes that are based on time-lock puzzles. As
noted by Malavolta et al. [MT19] the practicality of time-lock puzzles is
limited by the fact that most applications require several messages to be
encrypted independently and solving all puzzles is usually infeasible. To
mitigate this issue, they allow a trusted setup that is designed in such a
way that homomorphic evaluations on puzzles can be performed. Hence,
instead of solving all puzzles independently, one can at first homomorphi-
cally combine puzzles and after that solve possibly only one puzzle. This
is sufficient for many applications. In this dissertation, we focus on a new
approach that also relies on a trusted setup but in contrast to [MT19] we
are able to decrypt many ciphertexts by solving one puzzle only. To denote
this novel approach we use the term timed-release encryption and we show
how we can build this primitive generically from any inherently sequential
problem. Moreover, we introduce a new type of time-lock puzzle, called a
sequential time-lock puzzle (sTLP). sTLP produces a set of puzzles for dif-
ferent hardness parameters at once in a way that it is sufficient to execute
only one sequential computation in order to solve all puzzles. We use this
primitive as a building block for sequential timed-release encryption which
enjoys the properties of sequential time-lock puzzles and basic timed-release
encryption. To instantiate an sTLP, we propose a new assumption whose
hardness can be reduced to factoring in the Strong Algebraic Group Model.
The last section of the chapter is dedicated to Timed Public-Key Encryption
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(TPKE) which has been recently proposed by Katz et al. [KLX20]. We ex-
amine the relation between TRE and TPKE and propose two constructions
of TPKE which are more efficient (in the sense of runtime of the encryption
algorithm) than the state-of-the-art construction.

1.1 Publication Overview
The thesis is based on the following research papers.

1. Offline Witness Encryption with Semi-Adaptive Security. Peter
Chvojka, Tibor Jager, and Saqib A. Kakvi. ACNS 20: 18th International
Conference on Applied Cryptography and Network Security.

2. Constructions of Incremental and Homomorphic Timed-Release
Encryption. Peter Chvojka, Tibor Jager, Daniel Slamanig and Christoph
Striecks. Cryptology ePrint Archive, Report 2020/739. http://eprint.iacr.org
/2020/739. To be submitted in spring 2021.

3. Non-Malleable Timed Commitments (working title). Peter Chvojka
and Tibor Jager. To be submitted in spring 2021.
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2 Preliminaries

2.1 Notation
We denote our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit
string of all ones and by |x| we denote the length of the bit string x. We use
x

$← S to indicate that we choose x uniformly at random from a set S. We use
Funs[X ,Y ] to denote the set of all functions from X to Y . We use the notation
[n] to denote the set {1, . . . , n}. For a set {a1, . . . , an} we use notation (ai)i∈[n]
and in similar way we use this notation also for sets of tuples. All algorithms
may be randomized. For any probabilistic polynomial-time (PPT) algorithm A,
we define x← A(1λ, (ai)i∈[n]) as the execution of A with inputs security parameter
1λ, a1, . . . , an and fresh randomness and then assigning the output to x. Sometimes
we let an algorithm run using explicit random coins r and in that case we write
x ← A(1λ, (ai)i∈[n]; r). We write (xi ← A(ai))i∈[n] to denote running n times the
algorithm A with fresh randomness on inputs a1, . . . , an and assigning the output
to x1, . . . , xn. We denote by max(a, b) the function which returns the maximum
element of two comparable elements a and b. We say that an algorithm is efficient
if it is a PPT algorithm. We use poly(·) to denote some polynomial and polylog(·)
to denote a polylogarithmic function. All adversaries are non-uniform which is
usually denoted as A = {Aλ}λ∈N. In security definitions, we assume that A keeps
a state between invocations.
In Chapter 4, we want to also capture the parallel complexity of certain compu-

tations. Therefore we use circuits to model parallel algorithms where the parallel
time of an algorithm is determined by the depth of the corresponding circuit. The
total running time of an algorithm is determined by the total size of the corre-
sponding circuit and bounds the number of processors.

2.2 NP Language
Definition 2.2.1. A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial
poly : N → N and polynomial-time algorithm V (called the verifier for L) such
that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(|x|) s.t. V (x,w) = 1.
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If x ∈ L and w ∈ {0, 1}poly(|x|) satisfy V (x,w) = 1, then we call w a witness for x.

2.3 Cryptographic Primitives
2.3.1 One-Time Signatures
A digital signature scheme allows one to “sign” a message in such a way that
the recipient of the message is able to verify its authenticity (the fact that the
message comes from a claimed sender) and integrity (the message has not been
modified during a transmission). In order to sign a message, a signer has to at
first generate a public verification key and a secret key. The secret key is used for
signing and the public verification key is used by other parties to verify signatures.
In our applications, we require rather weak security for a digital signature scheme,
namely security against adversaries that are able to see a signature on one message
of their choice. Such signature schemes are called one-time signatures because they
are used to issue only one signature per public verification key.

Definition 2.3.1. A one-time signature scheme OTS with message spaceM con-
sists of three efficient algorithms OTS = (Gen, Sign,Vrfy) such that:

• (vkOT, skOT) ← Gen(1λ) is a probabilistic algorithm that takes as input the
security parameter 1λ and outputs a public verification key vkOT and a signing
key skOT.

• σ ← Sign(skOT,m) is a probabilistic algorithm that takes as input a signing
key skOT and a message m and outputs a signature σ.

• m ← Vrfy(vkOT,m, σ) is a deterministic algorithm that takes as input a
verification key vkOT, a message m, and a signature σ and outputs either 0
(reject) or 1 (accept).

We say OTS is correct if for all λ ∈ N, all m ∈M, it holds that

Pr[Vrfy(vkOT,m, Sign(skOT,m)) = 1 : (vkOT, skOT)← Gen(1λ)] = 1.

Definition 2.3.2. A OTS scheme OTS is a strong one-time signature scheme if
for all non-uniform PPT adversaries F = {Fλ}λ∈N there is a negligible function
negl(·) such that for all λ ∈ N

AdvOTS
F = Pr

Vrfy(vkOT,m, σ) = 1
∧(m,σ) 6= (m′, σ′)

:
(vkOT, skOT)← Gen(1λ)
(m,σ)← FSIGN(·)

λ (vkOT)

 ≤ negl(λ),

where SIGN(·) is a single query oracle which on inputm′ returns σ′ ← Sign(skOT,m
′).
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2.3.2 Public-Key Encryption
A public-key encryption (PKE) scheme allows private communication among par-
ties without a need to share any secret information at an earlier point in time. One
party (the receiver) generates a so-called public key/secret key pair and makes the
public key accessible to everyone. Other parties can use the public key to encrypt
messages for the receiver. The resulting ciphertexts are decryptable only using
the corresponding secret key. Under the assumption that the receiver has kept the
secret key for itself, only the receiver and the party, which has sent the ciphertext,
know its content.

Definition 2.3.3. A public-key encryption scheme PKE with message space M
consists of three efficient algorithms PKE = (Gen,Enc,Dec) such that:

• (pk, sk)← Gen(1λ) is a probabilistic algorithm that takes as input the secu-
rity parameter 1λ and outputs a public/secret key pair.

• c← Enc(pk,m) is a probabilistic algorithm that takes as input a public key
pk and a message m, and outputs a ciphertext c.

• m← Dec(sk, c) is a deterministic algorithm that takes as input a secret key
sk and a ciphertext c and outputs m ∈M∪ {⊥}.

We say PKE is correct if for all λ ∈ N and all m ∈M, it holds that

Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)← Gen(1λ)] = 1.

We consider two standard security notions for public-key encryption, concretely
security against a chosen plaintext attack (CPA) and chosen ciphertext attack
(CCA).

Definition 2.3.4. A PKE scheme PKE is IND-CPA secure if for all non-uniform
PPT adversaries A = {Aλ}λ∈N there is a negligible function negl(·) such that for
all λ ∈ N

AdvPKE,CPA
A =

∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← Gen(1λ)
(m0,m1)← Aλ(pk)

b
$← {0, 1}; c← Enc(pk,mb)

b′ ← Aλ(c)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where we require that |m0| = |m1|.
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We state also an alternative definition of IND-CPA-secure public-key encryption,
where an adversary submits only one message to the challenger and is given either
encryption of the provided message (real message) or encryption of a random
message. This variant is often denoted as real or random CPA (RoR-CPA) security
and it is equivalent to Definition 2.3.4. We use this definition later in some of our
proofs, which allows us to make an overall proof simpler.

ExpRoRbA(λ):
(pk, sk)← Gen(1λ)
m0 ← Aλ(pk)
m1

$←M, s.t. |m0| = |m1|
c← Enc(pk,mb)
return b′ ← Aλ(c)

Figure 2.1: Real or Random security experiment for PKE.

Definition 2.3.5. Consider the security experiment ExpRoRbA(λ) in Figure 2.1.
A PKE scheme PKE is RoR-CPA secure if for all non-uniform PPT adversaries
A = {Aλ}λ∈N there is a negligible function negl(·) such that for all λ ∈ N

AdvPKE,RoR
A =

∣∣∣Pr[ExpRoR0
A(λ) = 1]− Pr[ExpRoR1

A(λ) = 1]
∣∣∣ ≤ negl(λ).

Definition 2.3.6. A PKE scheme PKE is IND-CCA secure if for all non-uniform
PPT adversaries A = {Aλ}λ∈N there is a negligible function negl(·) such that for
all λ ∈ N

AdvPKE,CCA
A =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← Gen(1λ)
(m0,m1)← ADEC(·)

λ (pk)
b

$← {0, 1}; c∗ ← Enc(pk,mb)
b′ ← ADEC(·)

λ (c∗)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle DEC(c) returns m ← Dec(sk, c) with the restriction that after
giving adversary Aλ the challenge ciphertext c∗, Aλ is not allowed to query the
oracle DEC(·) for the challenge ciphertext c∗. We require that |m0| = |m1|.

2.3.3 Homomorphic Encryption
An extension of public-key encryption is homomorphic encryption (HE) which
allows to evaluate some circuit C over a tuple of ciphertexts (cj)j∈[`]. The result
of this evaluation is a ciphertext whose decryption is the same as evaluating the
circuit on inputs (mj)j∈[`] where mj is decryption of cj for all j ∈ [`].
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Definition 2.3.7. A homomorphic encryption scheme HE for a circuit class C =
{Cλ}λ∈N is a PKE scheme with one additional algorithm Eval defined as follows:

• c ← Eval(pk, C, (cj)j∈[`]) is a probabilistic algorithm that takes as input a
public key pk, a circuit C ∈ Cλ, and a set of ciphertexts (cj)j∈[`] and outputs
an evaluated ciphertext c.

A HE scheme is correct, if for all λ ∈ N, all circuits C ∈ Cλ, all inputs (m1, . . . ,m`),
all (pk, sk) in the support of Gen(1λ), and all cj in the support of Enc(pk,mj) it
holds that

Pr[Dec(sk,Eval(pk, C, (cj)j∈[`]) = C((mj)j∈[`])] = 1.

A HE scheme is secure if it is an IND-CPA-secure PKE scheme in the sense of
Definition 2.3.4. We say that HE is compact if there exists a polynomial poly(·)
such that for all λ ∈ N, all circuits C ∈ Cλ, all inputs (m1, . . . ,m`), all (pk, sk) in
the support of Gen(1λ), and all cj in the support of Enc(ppe,mj) it holds that∣∣∣Eval(pk, C, (cj)j∈[`])

∣∣∣ = poly(λ, |C((mj)j∈[`])|).

A scheme HE which is homomorphic for all polynomial-sized circuits is called
fully homomorphic (FHE).

2.3.4 Tag-Based Encryption
The notion of tag-based encryption (TBE) has been introduced by MacKenzie,
Reiter and Yang [MRY04], who have shown that a tag-based encryption scheme
can be lifted to an IND-CCA-secure public-key encryption scheme via the so-called
CHK transformation [CHK04]. Similarly to a public-key encryption scheme, a
tag-based encryption scheme consists of a tuple of algorithms (Gen,Enc,Dec), but
encryption and decryption algorithm additionally take as input some tag t.

Definition 2.3.8. A tag-based encryption scheme TBE with message space M
consists of three efficient algorithms TBE = (Gen,Enc,Dec) such that:

• (pk, sk)← Gen(1λ) is a probabilistic algorithm that takes as input the secu-
rity parameter 1λ and outputs a public/secret key pair.

• c ← Enc(pk,m, t) is a probabilistic algorithm that takes as input a public
key pk, a message m and a tag t, and outputs a ciphertext c.

• m ← Dec(sk, t, c) is a deterministic algorithm that takes as input a secret
key sk, a tag t, and a ciphertext c and outputs m ∈M∪ {⊥}.
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We say TBE is correct if for all λ ∈ N, all m ∈M and all tags t, it holds that

Pr[Dec(sk, t,Enc(pk,m, t)) = m : (pk, sk)← Gen(1λ)] = 1.

For the security of a TBE scheme, we require a weak form of security which
has been introduced by Kiltz [Kil06], who has shown that this security notion
is sufficient for the CHK transformation in order to obtain an IND-CCA-secure
public-key encryption scheme.

Definition 2.3.9. A TBE scheme TBE is selective-tag weakly secure against chosen
ciphertext attacks if for all non-uniform PPT adversaries A = {Aλ}λ∈N there is a
negligible function negl(·) such that for all λ ∈ N

AdvTBE
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

t∗ ← Aλ
(pk, sk)← Gen(1λ)

(m0,m1)← ADEC(·,·)
λ (pk)

b
$← {0, 1}; c← Enc(pk,mb, t

∗)
b′ ← ADEC(·,·)

λ (c)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle DEC(c, t) returns Dec(sk, t, c) with the restriction that Aλ is
not allowed to query the oracle DEC for the target tag t∗ and we require that
|m0| = |m1|.

2.3.5 Functional Encryption
A functional encryption (FE) scheme [BSW11, O’N10] is a generalization of public-
key encryption which allows to generate a secret key with respect to some function
f . Decrypting a ciphertext using the given secret key leads to the value f(m),
where m is the message encrypted in the ciphertext, and security of FE guarantees
that no other information about m is leaked.

Definition 2.3.10. A functional encryption scheme FE for a class of functions
F = {Fλ}λ∈N consists of four efficient algorithms (Gen,KeyGen,Enc,Dec). Let Xλ
be the input space of Fλ and let Yλ be the output space of Fλ.

• (pk,msk) ← Gen(1λ,F) is a probabilistic algorithm that takes as input the
security parameter 1λ and a class of functions F and outputs a public key
pk and a master secret key msk.

• skf ← KeyGen(msk, f) is a probabilistic algorithm that takes as input a
master secret key msk and a function f ∈ Fλ and outputs a secret key skf
for f .
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• c ← Enc(pk, x) is a probabilistic algorithm that takes as input a public key
pk and a message x ∈ Xλ and outputs a ciphertext c.

• f(x) ← Dec(skf , c) is a deterministic algorithm that takes as input a secret
key skf and a ciphertext c and outputs f(x) ∈ Yλ ∪ {⊥}.

We say FE is correct if for all λ ∈ N, for all f : Xλ → Yλ ∈ Fλ, for all x ∈ Xλ it
holds that

Pr

Dec(skf , c) = f(x) :
(pk,msk)← Gen(1λ,F)
skf ← KeyGen(msk, f)

c← Enc(pk, x)

 = 1.

Definition 2.3.11. An FE scheme FE is IND-CPA secure if for all non-uniform
PPT adversaries A = {Aλ}λ∈N there is a negligible function negl(·) such that for
all λ ∈ N

AdvFE
A =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk,msk)← Gen(1λ,F)
(x0, x1)← AKEYGEN(·)

λ (pk)
b← {0, 1}, c← Enc(pk, xb)

b′ ← AKEYGEN(·)
λ (c)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle KEYGEN(f) returns KeyGen(msk, f) with the restriction that Aλ
only queries the oracle with functions f such that f(x0) = f(x1).

Example: Identity-Based Encryption. A generalization of PKE is identity-
based encryption (IBE) [BF01], where the public key, also called identity, can
be an arbitrary string and in order to decrypt a ciphertext a secret key for the
corresponding identity is required. An IBE scheme can be obtained from an FE
scheme as in Definition 2.3.10 by setting the message space X := ID ×M rep-
resenting pairs of identities and messages (id,m) and F being an equality testing
functionality. A secret key skfid∗ for identity id∗ is generated with respect to fid∗
defined as:

fid∗((id,m)) =

m if id = id∗,

⊥ otherwise.

2.3.6 Obfuscation
In the past years, great attention has been dedicated to the area of obfuscation,
which has a plethora of exciting applications. Obfuscation is usually defined for
a class of circuits Cλ, which consists of circuits of size bounded by poly(λ). An
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obfuscator takes as input any circuit from the class and outputs another circuit
(obfuscated circuit) with the same input/output behaviour as the original circuit,
however, the obfuscated circuit should be “unintelligible” in some sense. Several
variants of obfuscations have been proposed, though some of them are unachievable
[BGI+01]. In our applications, we rely on two weaker variants of obfuscation
namely indistinguishability and extractability obfuscation.
Indistinguishability obfuscation (iO) has been defined by Barak et al. [BGI+01]

and its purpose is to hide implementation details of a circuit. This intuition is
formalized in the following way:

Definition 2.3.12. A uniform PPT machine iO is called an indistinguishability
obfuscator for a circuit class Cλ if the following conditions are met:

• Preserving Functionality: For all λ ∈ N, C ∈ Cλ and x ∈ {0, 1}λ, we have

Pr[C(x) = C̃(x) : C̃ ← iO(1λ, C)] = 1.

• Indistinguishability: For all non-uniform PPT distinguishers D = {Dλ}λ∈N
there exists a neglible function negl(·) such that, for all C0, C1 ∈ Cλ with
C0(x) = C1(x) for all inputs x ∈ {0, 1}λ, the following holds:

AdviO
D = Pr[Dλ(iO(1λ, C0)) = 1]− Pr[Dλ(iO(1λ, C1)) = 1] ≤ negl(λ).

Another variant of obfuscation that we consider, is extractability obfuscation
(eO) also sometimes called differing input obfuscation. In the security definition
of extractability obfuscation, we allow circuits to differ in their input/output be-
haviour. Whenever an adversary is able to distinguish between obfuscations of
two circuits, we require that it must know the corresponding input on which the
given circuits produce different outputs. We define extractability obfuscation ac-
cording to Boyle, Chung and Pass [BCP14] and we consider one of their variants,
specifically, we consider eO with distributional auxiliary input.

Definition 2.3.13. A uniform PPT machine eO is called an extractability obfus-
cator w.r.t. distributional auxiliary input for a circuit class Cλ if the following
conditions are met:

• Preserving Functionality: For all λ ∈ N, C ∈ Cλ and x ∈ {0, 1}λ, we have

Pr[C(x) = C̃(x) : C̃ ← iO(1λ, C)] = 1.

• Extractability: for all non-uniform PPT distinguishers D = {Dλ}λ∈N, for
every polynomial p(λ) and for every efficiently samplable distribution D over
Cλ × Cλ × {0, 1}∗ there exist a non-uniform PPT extractor E = {Eλ}λ∈N and
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polynomial q(λ) such that for every λ ∈ N, it holds with overwhelming
probability over (C0, C1, aux) ∈

D
Cλ × Cλ × {0, 1}∗ that∣∣∣Pr[Dλ(eO(1λ, C0), C0, C1, aux) = 1]− Pr[Dλ(eO(1λ, C1), C0, C1, aux) = 1]

∣∣∣
≥ 1

p(λ) =⇒ Pr[C0(x) 6= C1(x) : x← Eλ(C0, C1, aux)] ≥ 1
q(λ) .

2.3.7 Randomized Encoding
A randomized encoding [IK00] scheme allows for encoding a “complex” computa-
tion specified by a function f and input x, using a representation f̂(x) which is
simpler to compute. The security essentially guarantees that the distribution of
randomized encoding depends only on the encoded value f(x) and does not reveal
further information about x.

Definition 2.3.14 (Randomized Encoding [BGJ+16]). A randomized encoding
scheme RE consists of two algorithms RE = (Encode,Decode) satisfying the follow-
ing requirements:

• M̂(x)← Encode(M,x, T, 1λ) is a probabilistic algorithm that takes as input
a machineM , input x and time bound T and outputs a randomized encoding
M̂(x). Encode can be computed by a uniform circuit of depth polylog(T ) ·
poly(|M |, |x|, λ) and total size T · poly(|M |, λ).

• y ← Decode(M̂(x)) is a deterministic algorithm that takes as input a ran-
domized encoding M̂(x) and computes an output y ∈ {0, 1}λ. Decode can
be computed in (sequential) time T · poly(|M |, |x|, λ).

We say that RE is correct if for every input x and machineM such that, on input
x, M halts in T steps and produces a λ-bit output, it holds that y = M(x) with
overwhelming probability over the coins of Encode.

Definition 2.3.15 (Security [BGJ+16]). A randomized encoding scheme RE is
secure of there exists a PPT simulator Sim satisfying: for any polynomial-size
distinguisherD = {Dλ}λ∈N and polynomialsm(·), n(·), T (·), there exist a negligible
function negl(·), such that for all λ ∈ N, machines M ∈ {0, 1}m(λ), inputs x ∈
{0, 1}n(λ)

∣∣∣Pr[Dλ(M̂(x)) = 1 : M̂(x)← Encode(M,x, T (λ), 1λ)]−

Pr[Dλ(Ŝy) = 1 : Ŝy ← Sim(y, 1m(λ), 1n(λ), T (λ), 1λ)]
∣∣∣ ≤ negl(λ),

where y is the output of M(x) after T (λ) steps.
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Definition 2.3.16 (Succinct Randomized Encoding [BGJ+16]). A succinct ran-
domized encoding scheme is a randomized encoding scheme RE = (Encode,Decode)
in the sense of Definition 2.3.14 but it additionally fulfils that Encode(M,x, T, 1λ)
can be computed in (sequential) time polylog(T ) · poly(|M |, |x|, λ).
We say a succinct randomized encoding scheme is secure if it is a secure RE

scheme in the sense of Definition 2.3.18.
Definition 2.3.17 (Reusable Randomized Encoding [BGJ+16]). A reusable ran-
domized encoding scheme consists of algorithms RE = (Preproc,Encode,Decode)
satisfying the following requirements:

• (Û ,K)← Preproc(m,n, T, 1λ) is a probabilistic algorithm that takes as input
bounds m, n, T on machine size, input size, and time, as well as a security
parameter 1λ. It outputs an encoded state Û and a short secret key K ∈
{0, 1}λ. Preproc can be computed by a uniform circuit of depth polylog(T ) ·
poly(m,n, λ) and total size T · poly(m,λ).

• M̂(x) ← Encode(M,x,K) is a probabilistic algorithm that takes as input a
machine M , input x, a secret key K ∈ {0, 1}λ and outputs a randomized
encoding M̂(x). Encode can be computed in sequential time polylog(T ) ·
poly(m,n, λ).

• y ← Decode(Û , M̂(x)) is a deterministic algorithm that takes as input an
encoded state Û and a randomized encoding M̂(x) and computes an output
y ∈ {0, 1}λ. Decode can be computed in (sequential) time T · poly(m,n, λ).

We say that RE is correct if for every m,n, T, λ, n-bit input x, and m-bit machine
M such that M(x) halts in T steps, it holds that y = M(x) with overwhelming
probability over the coins of Preproc,Encode.
Definition 2.3.18 (Security [BGJ+16]). A reusable randomized encoding scheme
RE is secure if there exists a PPT simulator Sim satisfying: for any polynomial-
size distinguisher D = {Dλ}λ∈N and polynomials m(·), n(·), T (·), there exists a
negligible function negl(·) such that for all λ ∈ N, for all machines and inputs
(M1, x1), . . . , (Mk, xk) ∈ {0, 1}m(λ)+n(λ)

∣∣∣∣∣∣Pr
Dλ(Û , (M̂i(xi))i∈[k]) = 1 :

(Û ,K)← Preproc(m(λ), n(λ), T (λ), 1λ)
(M̂i(xi)← Encode(Mi, xi, K))i∈[k]

−
Pr
[
Dλ(Û , (Ŝyi)i∈[k]) = 1 : (Ŝyi)i∈[k] ← Sim((yi)i∈[k],m(λ), n(λ), T (λ), 1λ)

] ∣∣∣∣∣∣
≤ negl(λ),

where yi is the output of Mi(xi) after T (λ) steps.
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2.4 Bilinear Groups
Definition 2.4.1. Let G1,G2 and GT be cyclic groups of prime order p and g1 ∈
G1, g2 ∈ G2 be generators of G1 and G2, respectively. Then a bilinear group is a
tuple (p,G1,G2,GT , g1, g2, e), where e : G1×G2 → GT is an efficiently computable
map (also called pairing) fulfilling the following properties:

1. Bilinearity: for all x, x′ ∈ G1 and y, y′ ∈ G2 holds

e(x · x′, y) = e(x, y) · e(x′.y) and e(x, y · y′) = e(x, y) · e(x.y′),

2. Non-degeneracy: gT = e(g1, g2) is a generator of GT .

Notice that bilinearity implies the following: for all a, b ∈ Zp holds

e(ga1 , gb2) = e(g1, g2)ab = e(gb1, ga2).

If G1 = G2, we say that the pairing is symmetric, otherwise we say that the pairing
is asymmetric.

2.5 Assumptions
In this section, we define some standard assumptions which are later used as a
basis for the cryptographic primitives of our interest. We introduce the Decisional
Diffie-Hellman assumption only for purpose of explanation of the decision linear
assumption.
Let GrpGen denote a polynomial-time group generation algorithm which on input

1λ outputs a description of a cyclic group G of order p, where p is λ-bit prime,
together with its generator g ∈ G.

Definition 2.5.1 (Decisional Diffie-Hellman Assumption (DDH)). The Decisional
Diffie-Hellman assumption holds relative to GrpGen if for all non-uniform PPT
adversaries A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all
λ ∈ N

AdvDDH
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

(p,G, g)← GrpGen(1λ)
x, y

$← Zp, b
$← {0, 1}

if b = 0 : z := x · y
if b = 1 : z $← Zp

b′ ← Aλ(p,G, g, gx, gy, gz)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).
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We now define the decision linear assumption [BBS04] in a so-called gap group
[OP01]. A group generation algorithm GrpGen(1λ) of a gap group on input 1λ,
outputs additionally to the description of cyclic group G of order p and a generator
g also the description of a Diffie-Hellman verification function DDHvf. DDHvf takes
as input a tuple (g1, g

x
1 , g

y
1 , g

z
1) and outputs 1 if and only if x · y = z mod p and

0 otherwise. That means that the Decisional Diffie-Hellman problem is easy in
gap groups. We denote by G∗ the set of generators of the group G, concretely
G∗ := G \ {1}, where 1 is the neutral element of G
An example of a gap group is a symmetric bilinear group, hence G1 = G2. If

a pairing is symmetric, then the DDH problem in G1 is indeed easy. To see this,
notice that given a DDH tuple (g1, g

x
1 , g

y
1 , g

z
1), we can efficiently test if z = x · y in

Zp by executing the following check:

e(gx1 , g
y
1) = e(gz1, g1).

This is the case if and only if e(g1, g1)xy = e(g1, g1)z, which holds if and only if
x · y = z mod p.

ExpDLINb
A(λ):

(p,G, g,DDHvf)← GrpGen(1λ)
g1, g2

$← G∗, x, y $← Zp, b
$← {0, 1}

if b = 0 : z := x+ y

if b = 1 : z $← Zp
b′ ← Aλ(p,G,DDHvf, g1, g2, g, g

x
1 , g

y
2 , g

z)
return b′

Figure 2.2: Security experiment for the DLIN assumption.

Definition 2.5.2 (Decision Linear Assumption (DLIN)). Consider the security
experiment ExpDLINb

A(λ) in Figure 2.2. The decision linear assumption holds
relative to GrpGen if for all non-uniform PPT adversaries A = {Aλ}λ∈N there
exists a negligible function negl(·) such that for all λ ∈ N

AdvDLin
A =

∣∣∣Pr[ExpDLIN0
A(λ) = 1]− Pr[ExpDLIN1

A(λ) = 1]
∣∣∣ ≤ negl(λ).

Next, we recall a definition of the sequential squaring assumption which was
implicitly introduced by Rivest et al. [RSW96]. In this assumption we consider
the parallel running time of an adversary and therefore we model the adversary
as a circuit. Let p be an odd prime number. We say that p is a strong prime, if
p = 2p′+ 1 for some prime number p′. Let GenMod be a probabilistic polynomial-
time algorithm which on input 1λ outputs two λ-bit strong primes p and q, and
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modulus N that is the product of p and q. Let ϕ(·) denote Euler’s totient function.
We denote by QRN the cyclic group of quadratic residues which has order |QRN | =
ϕ(N)

4 = (p−1)(q−1)
4 . We remark that it is possible to efficiently sample a random

element x from QRN by sampling r $← Z∗N and setting x := r2 mod N .

ExpSSbA(λ):
(p, q,N)← GenMod(1λ)
x

$← QRN

if b = 0 : y := x2T (λ) mod N
if b = 1 : y $← QRN

return b′ ← Aλ(N, T (λ), x, y)

Figure 2.3: Security experiment for the sequential squaring assumption.

Definition 2.5.3 (Sequential Squaring Assumption (SS)). Consider the security
experiment ExpSSbA(λ) in Figure 2.3. The sequential squaring assumption with gap
0 < ε < 1 holds relative to GenMod if there exists a polynomial T̃ (·) such that for
all polynomials T (·) ≥ T̃ (·) and for every non-uniform polynomial-size adversary
A = {Aλ}λ∈N, where the depth of Aλ is at most T ε(λ), there exists a negligible
function negl(·) such that for all λ ∈ N

AdvSS
A =

∣∣∣Pr[ExpSS0
A(λ) = 1]− Pr[ExpSS1

A(λ) = 1]
∣∣∣ ≤ negl(λ).

Some works [MT19, KLX20] also consider a stronger version of the SS assump-
tion, the so-called strong sequential squaring assumption.

ExpSSSbA(λ):
(p, q,N)← GenMod(1λ)
st← A1,λ(N, T (λ))
x

$← QRN

if b = 0 : y := x2T (λ) mod N
if b = 1 : y $← QRN

return b′ ← A2,λ(x, y, st)

Figure 2.4: Security experiment for the strong sequential squaring assumption.

Definition 2.5.4 (Strong Sequential Squaring Assumption (SSS)). Consider the
security experiment ExpSSSbA(λ) in Figure 2.4. The strong sequential squaring
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assumption with gap 0 < ε < 1 holds relative to GenMod if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every non-uniform
polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is at
most T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N

AdvSSS
A =

∣∣∣Pr[ExpSSS0
A(λ) = 1]− Pr[ExpSSS1

A(λ) = 1]
∣∣∣ ≤ negl(λ).

Definition 2.5.5 (The Factoring Assumption). The factoring assumption holds
relative to GenMod if for every non-uniform PPT adversary A = {Aλ}λ∈N there
exists a negligible function negl(·) such that for all λ ∈ N

AdvFactor
A = Pr

N = p′q′ :
(p, q,N)← GenMod(1λ)

p′, q′ ← Aλ(N),
such that p′, q′ ∈ N; p′, q′ > 1

 ≤ negl(λ).

2.6 The Random Oracle Model
The Random Oracle Model (ROM) is an idealized model which was introduced
by Bellare and Rogaway [BR93]. It is used as a means to prove the security
of cryptographic primitives which use as a building block a cryptographic hash
function, whenever the proof for the given primitive using standard security notions
of hash functions is not known.
In the ROM, the given hash function H : X → Y (where the set Y is finite)

is treated as a random function to which everyone (i.e., adversaries and honest
parties) has only so-called oracle access. Concretely, it means that when analysing
security in the ROM the hash function H is replaced by a random function O ∈
Funs[X ,Y ] (recall that Funs[X ,Y ] denotes the set of all functions from X to Y)
and everyone is allowed to evaluate O on arbitrary inputs.
There are three properties of the random oracle model which are particularly

useful in security proofs:

1. The value of H(x) is uniform.
This allows to build up a random oracle on the fly which is known as lazy
sampling. The main idea is to think about a random oracle as a possibly
infinite lookup table T. On a query x, it is checked if x is in T. If this is
the case, the value T[x] is returned. Otherwise, a uniform random value y is
sampled from Y , which is then returned and stored in the table as T[x] := y.

2. The reduction can see all queries made by an adversary to a random oracle
and hence learn these queries. This property is called extractability.
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3. The value of H(x) can be set by the reduction, as long as this value is
uniform. This property is called programmability.

For more insightful discussion about the ROM see [KL14, KM15].

2.7 The Strong Algebraic Group Model
The Strong Algebraic Group Model (SAGM) was introduced by Katz et al. [KLX20]
as a variant of the Algebraic Group Model (AGM) [FKL18] and makes it possible
to consider time-sensitive assumptions, such as (Gap) Sequential Squaring. In the
SAGM the running time of an algebraic algorithm is defined by the number of
its algebraic steps with respect to some cyclic group G and algorithms are given
access to actual group elements. In our case, G corresponds to the group QRN of
quadratic residues modulo N , for some N output by GenMod. Therefore, we use
multiplication to denote the group operation. In the strong AGM, all algorithms
are treated as strongly algebraic.

Definition 2.7.1 (Strongly algebraic algorithm [KLX20]). An algorithm A over
G is called strongly algebraic, if in each (algebraic) step A does arbitrary local
computation and then outputs1 one or more tuples of the following form:

1. (y, y1, y2) ∈ G3, where y = y1y2 and y1, y2 were either previously received by
A or output by A in previous steps;

2. (y, y1) ∈ G2, where y = y−1
1 and y1 was either provided as input to A or was

output by A in some previous step.

The running time of A is the number of algebraic steps it takes.

Parallel computation is captured in the SAGM by allowing an algorithm to
output multiple group elements at once (in one step, which counts as one query),
but it is required that all of them can be represented by a sequence of previously
output group elements. There are two ways how the running time of an adversary
is measured: the number of group operations and the standard running time in
some underlying computational model. Hence the running time is defined as a
pair (t1, t2), which is understood in the following sense: running in time t2 in
the underlying computational model and using t1 algebraic steps. For a more
detailed description of SAGM and its relation to AGM and the Generic Group
Model (GGM) [Sho97] we refer to the original paper by Katz et al. [KLX20].

1Here it is required that A outputs group elements at intermediate steps of its computation.
The final output of A can be distinguished by requiring A to output a special indicator when
generating its final output.
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3 (Extractable) Offline Witness
Encryption

Author’s Contribution. The content of this chapter is joint work with Tibor
Jager and Saqib A. Kakvi [CJK20]. The author has made the following contribu-
tions:

• formally defining semi-adaptive security of extractable offline witness encryp-
tion;

• discussing the constructions of extractable offline witness encryption and
one-time puncturable tag-based encryption;

• proving security of the proposed construction of extractable offline witness
encryption;

• formally defining semi-adaptive security of offline witness encryption;

• constructing an offline witness encryption scheme and proving its security.

For completeness, we include also sections about instantiation of one-time punc-
turable encryption.
Additionally, Section 3.4 is written by the author.

3.1 Introduction, Contributions and Related Work
Witness encryption (WE) [GGSW13] can be seen as a generalization of standard
public-key encryption, where instead of encrypting messages and decrypting ci-
phertexts using a public/secret key pair, an instance/witness pair (x,w) of some
NP language L is used. In more detail, witness encryption is defined with respect
to a language L and allows to encrypt a message using an instance x which might
or might not be in L. The knowledge of a witness w that x is indeed in the lan-
guage enables decryption of a ciphertext to obtain the original message. We note
that there might exist several witnesses for x and decryption should be successful
for any of them. However, if there is no such a witness and hence x is not in
L, then a produced ciphertext should hide the content of the message. As one
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might expect, witness encryption is closely related to proof systems. Faonio et al.
[FNV17] have shown equivalence of predictable arguments of knowledge and an ex-
tractable variant of witness encryption. Similarly, 1-bit laconic arguments can be
built from WE and they also imply a variant of WE [BISW18]. The construction
of WE from 1 group element laconic arguments has been presented in [BIOW20].
Since the seminal paper of Garg, Gentry, Sahai and Waters [GGSW13], witness
encryption has turned out to be a versatile building block for cryptography with
a plethora of applications.

Applications of WE. One of the applications of witness encryption is “non-
interactive” payment for solving some (possibly well known) problem, e.g., the
Riemann hypothesis. Anyone could deposit a prize for solving the given problem
in a bank, encrypt the access details using the problem and publish the ciphertext
with the bank details in a way that they are freely accessible. The first person with
a valid solution to the problem can decrypt the ciphertext and hence gain access
to the prize. An advantage of this approach is that we are able to access the prize
without the entity that deposited the prize being present. The broad applicability
of witness encryption has been presented already by Garg et al. [GGSW13], who
gave constructions of a public-key, identity-based and attribute-based encryption
schemes from witness encryption. There are many other applications of witness en-
cryption and its variants in secure computation [BL18, CDG+17, GLS15, KNY14],
constructions of new primitives [BMSZ16, BH15, BGI14, GKP+13a, LJKW18] or
indeed novel constructions of known primitives [AJN+16, BGI+17, FNV17].

Variants and Extensions of Witness Encryption. There are several interesting
variants and extensions of WE.

• Functional Witness Encryption (FWE) additionally allows to encrypt mes-
sages with respect to some function F . Decryption using a valid witness w
reveals the value F (m,w) instead of revealing the message m. This general-
ization of WE has been introduced by Boyle et al. [BCP14] and is equivalent
to extractability obfuscation.

• Reusable Witness Encryption (RWE) introduced by Zhandry[Zha16] is key-
encapsulation scheme with a setup which outputs parameters and master
decryption key (allowing CCA-type security). Parameters are used by both
encryption algorithm and decryption algorithm. This type of witness en-
cryption yields attribute-based encryption with short ciphertexts.

• Extractable Witness Encryption (EWE) offers stronger security than stan-
dard WE and hence broadens its applicability. The notion of EWE was
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proposed in [GKP+13a]. EWE guarantees that anyone who is able to distin-
guish encryptions of two messages under a statement x must “know” a corre-
sponding witness w. As we have already mentioned this variant is equivalent
to predictable arguments of knowledge [FNV17] and has applications such
as time-lock encryption [LJKW18], secret sharing for NP [KNY14], running
Turing machines on encrypted data [GKP+13a], asymmetric password-based
cryptography [BH15], and functional signatures [BGI14].

• Witness Selector [BL18] guarantees that hiding property holds not only if
there does not exist a witness for an instance but even if it is computationally
hard to find a witness. Therefore from the perspective of security, a witness
selector scheme guarantees stronger security than WE but weaker security
than EWE.

• Offline Witness Encryption (OWE) was proposed by Abusalah et al. [AFP16]
in order to improve the efficiency of the encryption in WE. Similarly to
RWE, OWE has a setup algorithm that outputs public encryption and pub-
lic decryption parameters. The encryption can be usually realized with tools
of classical public-key cryptography, however, decryption is typically more
expensive and requires for example an obfuscation. Therefore OWE is es-
pecially useful in scenarios when there is a disparity in the powers of the
encryptor and decryptor, such as in the case of Asymmetric Password-Based
Encryption [BH15].

Contributions. We introduce a new notion of Extractable Offline Witness En-
cryption (EOWE) which is an offline variant of extractable witness encryption
proposed by Goldwasser et al. [GKP+13a]. The known constructions of EWE are
based either on multilinear maps [BS02, BS03, FHHL18, GGH12, GGH13] or ex-
tractability obfuscation, hence these constructions are not practical or even feasible
yet. Specifically, the constructions of EWE based on extractability obfuscation re-
quire obfuscating a circuit that internally checks if the given instance/witness pair
is valid. If this is the case, the circuit outputs a decrypted message. In particular,
the encryption algorithm in this solution is impractical, because it requires obfus-
cating a circuit and moreover the ciphertext is the obfuscated circuit. As a stepping
stone to efficiency improvements of the encryption algorithm, we allow for trusted
setup in a similar manner as [AFP16]. We introduce a novel generic technique to
construct extractable offline witness encryption. This technique is flexible enough
that it can be adjusted to obtain standard offline witness encryption. Moreover,
our approach leads to stronger security and reduced ciphertext overhead compared
to the original proposal of Abusalah et al. [AFP16]. Concretely, our construction
is the first one achieving adaptive chosen-message security. The prior work only
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provided selective security, where an adversary has to commit to the “challenge”
messages m0,m1 even before seeing the public parameters of the scheme.
The basic idea is to combine public-key encryption with obfuscation. At the

first sight, one could think that any combination of IND-CCA-secure public-key
encryption with iO should lead to Offline Witness Encryption. Unfortunately, this
straightforward approach does not seem to work and a more delicate method is
needed. The construction of Abusalah et al. [AFP16] uses Naor-Yung [NY90] style
double encryption which requires encrypting a message twice using IND-CPA-
secure public-key encryption and a statistical simulation-sound zero-knowledge
proof (SSS-NIZK). Even though Abusalah et al. propose an efficient instantia-
tion of SSS-NIZK using a Groth-Sahai-like pairing-based proof system [GS08], the
proof consists of a rather large number of group elements and it grows linearly
with the size of the message. In this thesis, we rely on a novel approach. We
show that puncturable tag-based encryption [GM15] can be used to obtain (ex-
tractable) offline witness encryption which has a more efficient instantiation that
requires only one ciphertext, no zero-knowledge proofs, and achieves stronger se-
curity guarantees. The improved security and efficiency extend the applicability
of offline witness encryption schemes in cryptography.
We propose a new variant of puncturable tag-based encryption which we denote

as one-time puncturable encryption and show that this variant is sufficient for
our construction. Moreover, we provide an efficient instantiation of this primitive
based on the tag-based public-key encryption of Kiltz [Kil06].

Applications of Semi-Adaptive Offline Witness Encryption. Even though our
constructions do not achieve full adaptive security, there are interesting applica-
tions where semi-adaptive security suffices. One example is the already discussed
non-interactive payment for solving some problem. In this scenario, the problem
is fixed once and for all. Another application is the more recent primitive of Time-
Lock Encryption (TLE) introduced by Liu et al. [LJKW18]. Because we discuss
TLE in more detail later in Section 3.4, we provide here only a short overview.
TLE has several interesting applications including, but not limited to: responsible
disclosure, pre-distribution of digital media, sealing of auction tenders, and pub-
lication of grades. As we explain later, the instance in the case of TLE is release
time, which in many scenarios might be fixed at the time of executing the setup.
Therefore, the use of semi-adaptive EOWE is reasonable in this case as well. As
OWE and EOWE are relatively new primitives, one can expect more applications
to follow in the near future.

Related Work. The notion of offline witness encryption was firstly considered
by Abusalah, Fuchsbauer and Pietrzak [AFP16], who constructed it by combin-
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ing indistinguishability obfuscation with Naor-Yung style IND-CCA-secure PKE.
This work also introduced Offline Functional Witness Encryption (OFWE), where
encryption is applied to a message and some function F from a supported function
family: given a witness w for the corresponding instance x the value F (m,w) is
returned. Similarly, one could define also Extractable Offline Functional Witness
Encryption (EOFWE). Both constructions of Abusalah et al. achieve only selec-
tive security which is weaker security than our semi-adaptive security and at the
same time, they rely on more complex primitives like simulation-sound NIZKs.
Therefore the ciphertext size of our scheme is smaller. We note that our con-
structions of OWE and EOWE can be simply adjusted to the functional setting
of OFWE and EOFWE, however, this adjustment means that the constructions
are only selectively secure. We discuss this in more detail later. Moreover, we
believe that their construction can be adapted to yield an EOWE and EOFWE,
by replacing the indistinguishability obfuscator with an extractability obfuscator.
Recently, two new works on OWE of Pal and Dutta have appeared [PD20, PD19].

The work [PD20] provides constructions for all four primitives - OWE, EOWE,
OFWE, and EOFWE. It achieves semi-adaptive security for OWE and EOWE and
shorter ciphertext size than our work by using private-key encryption, however,
it relies on iO and eO, respectively, and puncturable witness PRF which itself re-
quires iO. Therefore, the mentioned constructions are less efficient than ours in the
sense of runtime of the setup and the encryption algorithm. The proposed OFWE
and EOFWE achieve only selective security and suffer the same efficiency limita-
tions. The work [PD19] considers OWE and OFWE. The constructions are based
on randomized encodings in the CRS model, extractable witness pseudorandom
functions (PRFs), and rely on sub-exponential assumptions. Both constructions
achieve only selective security. We remark that known constructions of extractable
witness PRFs are based on multilinear maps which are comparable to iO.
Goldwasser et al. [GKP+13a] have defined extractable WE and construct it from

multilinear maps. Boyle, Chung and Pass [BCP14] consider extractable functional
witness encryption and they show its equivalence with extractability obfuscation.
We remark that Boyle et al. use the term functional WE instead of extractable
FWE, however, the term extractable functional witness encryption is more appro-
priate for their definition.
Reusable Witness Encryption (RWE) has been proposed by Zhandry [Zha16]

which similarly to OWE has a setup algorithm. But RWE is defined as a key
encapsulation mechanism, the setup outputs one type of parameters which are
used by both encryption and decryption algorithm, and additionally, it outputs a
master decryption key.
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3.2 Definitions of (Extractable) Offline Witness
Encryption

Before stating our definition of Extractable Offline Witness Encryption and ex-
plaining the intuition behind it, we recap the notions of Witness Encryption and
Offline Witness Encryption. Witness Encryption for an NP language L is a pair of
algorithms (Enc,Dec). The encryption algorithm takes an instance x (not necessar-
ily from L) and a message m as input and outputs a ciphertext c. The decryption
algorithm takes as input a ciphertext c and a witness w and outputs a message m
if w is a witness for the instance x. However, if the instance x is not in the lan-
guage, then informally no efficient adversary is able to get any information about
the encrypted message from the ciphertext. Offline Witness Encryption has been
proposed by Abusalah, Fuchsbauer and Pietrzak [AFP16] in order to improve the
efficiency of witness encryption. OWE has an additional algorithm Setup in which
the most costly computation should be executed. This allows to improve the ef-
ficiency of the encryption and therefore this variant of WE is useful in scenarios
where there is a discrepancy in computational power between encryptor and de-
cryptor, as is quite often the case. The setup algorithm produces two types of
public parameters: one type used by the encryption algorithm and the other one
by the decryption algorithm.
Next, we recall the definition of OWE.

Definition 3.2.1. An offline witness encryption scheme OWE for an NP language
L (with corresponding relation R) with message spaceM is defined as a triple of
efficient algorithms OWE = (Setup,Enc,Dec):

• (ppe, ppd) ← Setup(1λ) is a probabilistic algorithm that takes as input the
security parameter 1λ and outputs parameters ppe for encryption and pa-
rameters ppd for decryption.

• c ← Enc(ppe, x,m) is a probabilistic algorithm that takes as input the en-
cryption parameters ppe, an instance x, and a message m ∈M and outputs
a ciphertext c.

• m/⊥ ← Dec(ppd, c, w) is a deterministic algorithm that takes as input the
decryption parameters ppd, a ciphertext c, and a witness w and outputs
m ∈M if (x,w) ∈ R and ⊥ otherwise.

We say OWE is correct if for all λ ∈ N , for all messages m ∈ M, for all x ∈ L and
for all w such that (x,w) ∈ R, we have

Pr[Dec(ppd,Enc(ppe, x,m), w) = m : (ppe, ppd)← Setup(1λ)] = 1.
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ExpOWEA(λ):
x← Aλ
(ppe, ppd)← Setup(1λ)
(m0,m1)← Aλ(ppe, ppd)
b

$← {0, 1}; c∗ ← Enc(ppe, x,mb)
b′ ← Aλ(c∗)
return (b′ = b ∧ x /∈ L)

Figure 3.1: Security experiment for OWE.

The security of OWE is defined using the experiment in Figure 3.1. This ex-
periment defines security in the semi-adaptive setting, where the adversary must
commit to the instance, but not the messages, before seeing parameters.

Definition 3.2.2. Consider the security experiment ExpOWEA(λ) in Figure 3.1.
An offline witness encryption scheme OWE for a language L with correspond-
ing relation R is semi-adaptively secure, if for all non-uniform PPT adversaries
A = {Aλ}λ∈N (where we require that A’s output satisfies |m0| = |m1|) there is a
negligible function negl(·) such that for all λ ∈ N

AdvOWE
A =

∣∣∣∣Pr[ExpOWEA(λ) = 1]− 1
2

∣∣∣∣ ≤ negl(λ).

Finally, we discuss Extractable Offline Witness Encryption (EOWE). Syntacti-
cally EOWE is the same as OWE but from the security perspective, we require
that if the adversary can distinguish between encryptions of two messages of its
choice under some instance x, then it must “know” a corresponding witness w.
Our definition of extractability is similar to the definition of extractable WE in-
troduced by Goldwasser et al. [GKP+13a]. To make the above intuition precise
we define the following experiment:

ExpEOWEA(λ, x):
(ppe, ppd)← Setup(1λ)
(m0,m1)← Aλ(ppe, ppd, x)
b

$← {0, 1}; c∗ ← Enc(ppe, x,mb)
b′ ← Aλ(c∗)
return b′ = b

Figure 3.2: Security experiment for EOWE.
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Definition 3.2.3. Consider the security experiment ExpEOWEA(λ, x) in Figure 3.2.
An extractable offline witness encryption scheme EOWE for a language L with cor-
responding relation R is semi-adaptively secure, if for all non-uniform PPT adver-
saries A = {Aλ}λ∈N (where we require that A’s output satisfies |m0| = |m1|), for
every polynomial p(λ) there exist a non-uniform PPT extractor E = {Eλ}λ∈N and
a polynomial q(λ) such that for every λ ∈ N and for all x ∈ {0, 1}∗, it holds that∣∣∣∣Pr[ExpEOWEA(λ, x) = 1]− 1

2

∣∣∣∣ ≥ 1
p(λ)

=⇒ Pr[(x,w) ∈ R : w ← Eλ(x)] ≥ 1
q(λ) .

Our constructions of OWE and EOWE cleverly combine only two building
blocks. One of them is obfuscation, specifically indistinguishability or extractabil-
ity obfuscation. The details regarding obfuscation can be found in Section 2.3.6.
The second primitive is puncturable tag-based encryption. Since we require a
novel security notion for puncturable tag-based encryption which is weaker than
the standard security notions considered in other works, we discuss this primitive
in the next section. Later, we also show how to efficiently instantiate it from a
concrete tag-based encryption scheme.

3.3 Puncturable Tag-Based Encryption
Puncturable Encryption (PE) extends the capabilities of classical public-key en-
cryption. In addition to the algorithms (Gen,Enc,Dec), it provides a puncturing
algorithm Punct, which is capable of adjusting the secret key in a way that some
ciphertext become “undecryptable”. This concept was firstly discussed by Ander-
son [And97], however, the formal definition of PE was later given by Green and
Miers [GM15] who also construct this primitive. In our work, we focus on the
tag-based variant of puncturable encryption in which the encryption and the de-
cryption algorithm also take some tag t as input. The puncturing of the secret
key is as well done with respect to a tag t. The resulting punctured secret key
is able to decrypt all ciphertexts which have not been encrypted with the tag on
which the key was punctured. This property is sometimes referred to as “all-but-
one” decryption. A standard puncturable tag-based encryption allows repeated
puncturing on several different tags. However, as we show for our construction
it is sufficient to puncture on one tag only. We denote such PE as one-time
puncturable encryption. Syntactically, we differ from the standard definition by
allowing an alternative decryption algorithm PDec which uses the punctured secret
key for decrypting ciphertexts. In this way, the original secret key and punctured
secret key can have different forms.

30



Definition 3.3.1. A one-time puncturable tag-based encryption scheme PE for
message space M and tag space T is defined as a tuple of efficient algorithms
PE = (Gen,Punct,Enc,Dec,PDec):

• (pk, sk)← Gen(1λ) is a probabilistic algorithm that takes as input the secu-
rity parameter 1λ and outputs public key pk and an unpunctured secret key
sk.

• skt∗ ← Punct(sk, t∗) is a probabilistic algorithm that takes as input an un-
punctured secret key sk and a single tag t∗ ∈ T and outputs a secret key
punctured at t∗ denoted by skt∗ .

• c← Enc(pk,m, t) is a probabilistic algorithm that takes as input the public
key pk, a message m ∈M, and a tag t ∈ T and outputs a ciphertext c.

• m/⊥ ← Dec(sk, c, t) is a deterministic algorithm that takes as input the
unpunctured secret key sk, a ciphertext c, and a tag t ∈ T and outputs
m ∈M or ⊥.

• m/⊥ ← PDec(skt∗ ,m, t) is a deterministic algorithm which takes as input a
punctured secret key skt∗ , a ciphertext c, and a tag t ∈ T with t 6= t∗ and
outputs m ∈M or ⊥.

We say PE is correct if for all λ ∈ N, for all key pairs (pk, sk) ← Gen(1λ), all
messages m ∈M and for all tags t, t′ ∈ T , where t′ 6= t, we have

Pr[Dec(sk,Enc(pk,m, t), t) = m] = 1 ∧ Pr[Dec(sk,Enc(pk,m, t), t′) = ⊥] = 1.

and further for any tag t∗, all punctured keys skt∗ $← Punct(sk, t∗) and all tags
t 6= t∗, we have

Pr[PDec(skt∗ ,Enc(pk,m, t), t) = m] = 1∧Pr[PDec(skt∗ ,Enc(pk,m, t∗), t) = ⊥] = 1.

For our construction, we require relatively weak security, namely selective indis-
tinguishability from random. Our security definition deviates from the standard
definition of Green and Miers [GM15] by not giving the adversary access to a de-
cryption oracle since we are puncturing only on one tag. We define the security of
PE via the experiment in Figure 3.3.

Definition 3.3.2. Consider the security experiment ExpPEA(λ) in Figure 3.3. We
say a one-time puncturable tag-based encryption scheme PE is secure, if for all
non-uniform PPT adversaries A = {Aλ}λ∈N (where we require that A’s output
satisfies |m0| = |m1|) there is a negligible function negl(·) such that for all λ ∈ N

AdvPE
A =

∣∣∣∣Pr[ExpPEA(λ) = 1]− 1
2

∣∣∣∣ ≤ negl(λ).
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ExpPEA(λ):
t∗ ← Aλ, b

$← {0, 1}
(pk, sk)← Gen(1λ)
skt∗ ← Punct(sk, t∗)
(m0,m1)← Aλ(pk, skt∗)
c← Enc(pk,mb, t

∗)
b′ ← Aλ(c)
return b = b′

Figure 3.3: Security experiment for PE.

3.4 Offline Time-Lock Encryption
Before stating technical details of our constructions, we explain how extractable
offline witness encryption can be used to build a variant of time-lock encryption.
Time-lock encryption [LJKW18], as a means for sending messages into the fu-
ture, has numerous advantages compared to other approaches which either rely on
trusted agents or execution of expensive computations. The construction proposed
by Liu et al. [LJKW18] make use of extractable witness encryption. Because we
want to rely on offline EWE, we adjust the definition of TLE by introducing an
additional setup algorithm. We denote such TLE as offline time-lock encryption
(OTLE). Before defining OTLE we state the definition of computational reference
clock introduced in [LJKW18].

Definition 3.4.1 (Computational Reference Clock). A computational reference
clock is a stateful probabilistic machine C(1λ) that takes as input the security
parameter 1λ and outputs an infinite sequence w1, w2, . . . in the following way.
The initial state of C is w0. It runs a probabilistic algorithm fC which computes
wT := fC(wT−1) and outputs wT .

To abbreviate the process of executing the clock T times in a row, starting from
initial state and outputting the state wT of C, we use notation wT ← C(1λ, T ).

Definition 3.4.2. We say that language L with corresponding relation R is asso-
ciated to C, if L is an NP language and for all x ≤ T , it holds that

Pr
[
(1x, wT ) ∈ R : wT ← C(1λ, T )

]
= 1.

Definition 3.4.3. A computational reference clock C with associated NP language
L (and corresponding relation R) is secure if for all non-uniform PPT adversaries
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A = {Aλ}λ∈N, all T ∈ N, there is a negligible function negl(·) such that for all
λ ∈ N

AdvCA =
∣∣∣∣Pr

[
(1T , wT ) ∈ R : wT ← ACλ(T )

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where C returns the value w := fC(w) and the initial state of the C is w := w0.
The adversary A is allowed to make at most T − 1 queries to C in total.

As an instantiation of a computational reference clock Liu et al. [LJKW18]
suggested to use the Bitcoin blockchain. Now, we state the definition of offline
time-lock encryption.

Definition 3.4.4 (Offline Time-Lock Encryption). An offline time-lock encryption
shceme (OTLE) for computational reference clock C(1λ) with message spaceM is
a tuple of efficient algorithms OTLE = (Setup,Enc,Dec) such that

• (ppe, ppd) ← Setup(1λ) is a probabilistic algorithm which takes as input
the security parameter 1λ and outputs parameters ppe for encryption and
parameters ppd for decryption.

• c ← Enc(ppe, T,m) is a probabilistic algorithm which takes as input the
encryption parameters ppe, an integer T ∈ N, and a message m and outputs
a ciphertext c.

• m/⊥ ← Dec(ppd, c, w) is a deterministic algorithm which takes as input the
decryption parameters ppd, a ciphertext c, and w ∈ {0, 1}∗ and outputs
m ∈M or ⊥.

We say OTLE is correct if for all λ, T, T ′ ∈ N, where T ′ ≥ T and all m ∈ M we
have

Pr[Dec(ppd,Enc(ppe, T,m), C(1λ, T ′)) = m : (ppe, ppd)← Setup(1λ)] = 1.

Definition 3.4.5. We say that OTLE is secure if for all non-uniform PPT adver-
saries A, for all T ∈ N, there is a negligible function negl(·) such that for all
λ ∈ N

AdvOTLE
A =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(ppe, ppd)← Setup(1λ)
(m0,m1)← ACλ(ppe, ppd, T )

b
$← {0, 1}; c← Enc(ppe, T,mb)

b′ ← ACλ(c)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where C returns the value w := fC(w) and the initial state of the C is w := w0.
The adversary A = {Aλ}λ∈N is allowed to make at most T −1 queries to C in total
and we require that |m0| = |m1|.

33



Construction of OTLE. To construct an offline time-lock encryption scheme
we can directly use an extractable offline witness encryption scheme EOWE =
(EOWE.Setup, EOWE.Enc, EOWE.Dec). Let C be a secure computational reference clock
and let L be the NP language associated with C. Let EOWE = (EOWE.Setup, EOWE.Enc,
EOWE.Dec) be an extractable offline witness encryption for L. Then OTLE =
(Setup,Enc,Dec) defined as

• Setup(1λ) := OWE.Setup(1λ)

• Enc(ppe, T,m) := OWE.Enc(ppe, 1T ,m)

• Dec(ppd, c, w) := OWE.Dec(ppd, c, w)
is a secure offline time-lock encryption scheme. The proof is straightforward adap-
tation of the proof of Theorem 1 from [LJKW18].

3.5 Constructions
In this section, we provide constructions and security proofs of our offline witness
encryption and extractable offline witness encryption. Both constructions follow
the same template and make use of one-time puncturable tag-based encryption
together with obfuscation (see Section 2.3.6). We start by presenting the con-
struction of OWE. After that, we give the construction with the proof for EOWE.

3.5.1 Construction of OWE
Let PE = (PE.KeyGen, PE.Enc, PE.Punct, PE.Dec) be a one-time puncturable encryp-
tion and iO an indistinguishablity obfuscator for a circuit class Cλ. Our construc-
tion of offline witness encryption OWE = (Setup,Enc, Dec) for a language L is given
in Figure 3.4. We assume that the decryption circuit is padded to the maximum
length of sizes of all circuits appearing in the security proof, hence, all circuits
have the same size.
Theorem 3.5.1. Let PE = (PE.KeyGen, PE.Enc, PE.Punct, PE.Dec) be a secure one-
time puncturable tag-based encryption and iO be a secure indistinguishability ob-
fuscator. Then (Setup,Enc,Dec) defined in Figure 3.4 is a semi-adaptively secure
offline witness encryption.
Proof. Correctness of the scheme is implied by the correctness of the puncturable
encryption scheme and the indistinguishability obfuscator. To prove security we
define a series of games G0−G1 which are computationally indistinguishable. The
individual games differ in how we realize our setup and the decryption circuit. For
i ∈ {0, 1} we denote by Gi = 1 the event that the adversary A = {Aλ}λ∈N outputs
in Gi values x and b′ such that b′ = b ∧ x /∈ L.
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Setup(1λ) Csk(c, w)
(sk, pk)← PE.Gen(1λ) Parse c as (cpe, t)
C̃sk ← iO(1λ, Csk) if R(t, w) = 1
ppe := pk, ppd := C̃sk m← PE.Dec(sk, cpe, t)
return (ppe, ppd) return m

return ⊥

Enc(ppe, x,m) Dec(ppd, c, w)
cpe ← PE.Enc(ppe,m, x) return m← C̃sk(c, w)
return c← (cpe, x)

Figure 3.4: Construction of OWE

Game 0. Game G0 (Figure 3.5) corresponds to the original security experiment,
where we use the Setup, Enc, and Csk directly from our construction.

G0(1λ) Csk(c, w)
x

$← Aλ Parse c as (cpe, t)
(ppe, ppd)← Setup(1λ) if R(t, w) = 1
(m0,m1)← Aλ(ppe, ppd) m← PE.Dec(sk, cpe, t)
b

$← {0, 1} return m
c∗ ← Enc(ppe, x,mb) return ⊥
b′ ← Aλ(c∗)
return (b′ = b ∧ x /∈ L)

Figure 3.5: Game G0

We now define in Figure 3.6 an alternative setup algorithm Setup′. This algo-
rithm differs from Setup in that we additionally puncture the secret key sk on the
challenge tag x.

Setup′(1λ, x)
(sk, pk)← PE.Gen(1λ)
sk∗ ← PE.Punct(sk, x)
C̃sk∗,x ← iO(1λ, Csk∗,x)
ppe := pk, ppd := C̃(sk∗,x)
return (ppe, ppd)

Figure 3.6: Alternative setup
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Game 1. In G1 (Figure 3.7) we run our alternative setup algorithm Setup′, which
punctures the secret key sk on the tag x. The decryption circuit uses the punctured
key sk∗ and returns ⊥ if target tag x is equal to tag t of the ciphertext.

G1(1λ) Csk∗,x(c, w)
x← Aλ Parse c as (cpe, t)
(ppe, ppd)← Setup′(1λ, x) if R(t, w) = 1

(m0,m1)← Aλ(ppe, ppd) if x = t

b
$← {0, 1} return ⊥

c∗ ← Enc(ppe, x,mb) m← PE.PDec(sk∗, cpe, t)
b′ ← Aλ(c∗) return m
return (b′ = b ∧ x /∈ L) return ⊥

Figure 3.7: Game G1

Lemma 3.5.1. From any PPT adversary A = {Aλ}λ∈N we can construct a PPT
distinguisher D = {Dλ}λ∈N such that

AdviO
D = |Pr[G0 = 1]− Pr[G1 = 1]| .

To prove the lemma we construct a distinguisher D = {Dλ}λ∈N which breaks
the security of iO as follows.
The distinguisher Dλ:
1. Runs x← Aλ.

2. Generates (sk, pk)← PE.Gen(1λ).

3. Punctures the key sk∗ ← PE.Punct(sk, x).

4. Constructs C0 := Csk, C1 := Csk∗,x.

5. Submits C0, C1 to the iO challenger and obtains C̃ as a reply.

6. Runs (m0,m1)← Aλ(ppe, ppd) where ppe := pk, ppd := C̃.

7. Picks b $← {0, 1} uniformly at random and computes c∗ ← Enc(pk, x,mb).

8. Runs b′ ← Aλ(c∗).

9. Returns the truth value of b = b′.
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If C̃ ← iO(1λ, C0), then D simulates G0, otherwise it simulates G1. Moreover,
both circuits have the same input/output behaviour. Circuit Csk∗,x can potentially
differ from Csk only on inputs where t = x and in this case Csk∗,x outputs ⊥.
However, A has to provide x /∈ L and that means for t = x, that R(t, w) = 0 and
hence Csk outputs ⊥ too. Thus, it must hold

|Pr[G0 = 1]− Pr[G1 = 1]| = |Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| .

Hence, we can conclude that |Pr[G0 = 1]− Pr[G1 = 1]| = AdviO
D as required.

Now we show that we can construct an adversary against the security of the PE
scheme.
Lemma 3.5.2. From any PPT adversary A = {Aλ}λ∈N we can construct a PPT
adversary B = {Bλ}λ∈N such that

AdvPE
B =

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ .
We construct an adversary B = {Bλ}λ∈N which breaks the security of the punc-

turable encryption scheme.
The adversary Bλ:
1. Runs x← Aλ and sends x to its challenger.

2. Receives public key pk and punctured secret key sk∗ from the challenger.

3. Constructs obfuscation of the circuit Csk∗,x and runs (m0,m1)← Aλ(ppe, ppd)
where ppe := pk, ppd := C̃sk∗,x.

4. Outputs (m0,m1) to the challenger and obtains ciphertext c∗ as a response.

5. Returns b′ ← Aλ(c∗).

It is easy to see that B perfectly simulates G1. Hence, we have

AdvPE
B =

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ .
Combining Lemmas 3.5.1 and 3.5.2 we obtain following:

AdvOWE
A =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣
≤ |Pr[G0 = 1]− Pr[G1 = 1]|+

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣
= AdviO

D + AdvPE
B ,

which concludes our proof.

37



3.5.2 Construction of EOWE
Our construction of EOWE is similar to the construction of OWE. It also relies on
puncturable encryption, but the principal difference is that in EOWE we use eO
instead of iO. Let PE = (PE.KeyGen, PE.Enc, PE.Punct, PE.Dec) be a puncturable
encryption and eO an extractability obfuscator for a circuit class Cλ. Our con-
struction of extractable offline witness encryption EOWE = (Setup,Enc,Dec) for
a language L is given in Figure 3.8. We assume that the decryption circuit is
padded to the maximum length of sizes of all circuits appearing in the security
proof, hence, all circuits have the same size.

Setup(1λ) Csk(c, w)
(sk, pk)← PE.Gen(1λ) Parse c as (cpe, t)
C̃sk ← eO(1λ, Csk) if R(t, w) = 1
ppe := pk, ppd := C̃sk m← PE.Dec(sk, cpe, t)
return (ppe, ppd) return m

return ⊥

Enc(ppe, x,m) Dec(ppd, c, w)
cpe ← PE.Enc(ppe,m, x) return m← C̃sk(c, w)
return c := (cpe, x)

Figure 3.8: Construction of EOFWE

Theorem 3.5.2. Let PE = (PE.Gen, PE.Enc, PE.Punct, PE.Dec) be a secure one-
time puncturable tag-based encryption and eO be a secure extractability obfuscator.
Then (Setup,Enc,Dec) defined in Figure 3.8 is semi-adaptively secure extractable
offline witness encryption.
Proof. Correctness of the scheme is implied by the correctness of the puncturable
encryption scheme and the extractability obfuscator. To prove security we define
a series of games G0−G1. The individual games differ in how we realize our setup
algorithm and decryption circuit. For i ∈ {0, 1} we denote by Gi(1λ, x) = 1 the
event that the adversary A = {Aλ}λ∈N outputs b′ in game Gi(1λ, x) such that
b′ = b.

Game 0. Game G0 (Figure 3.9) corresponds to the original security experiment,
where we use the Setup, Enc, and Csk directly from our construction.
Next, we define an alternative setup algorithm Setup′ in Figure 3.10. This

algorithm differs from Setup in that we additionally puncture the secret key sk on
the challenge tag x.
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G0(1λ, x) Csk(c, w)
(ppe, ppd)← Setup(1λ) Parse c as (cpe, t)
(m0,m1)← Aλ(ppe, ppd, x) if R(t, w) = 1
b

$← {0, 1} m← PE.Dec(sk, cpe, t)
c∗ ← Enc(ppe, x,mb) return m
b′ ← Aλ(c∗) return ⊥
return b′ = b

Figure 3.9: Game G0

Setup′(1λ, x)
(sk, pk)← PE.Gen(1λ)
sk∗ ← PE.Punct(sk, x)
C̃sk∗,x ← eO(1λ, Csk∗,x)
ppe := pk, ppd := C̃(sk∗,x)
return (ppe, ppd)

Figure 3.10: Alternative setup

Game 1. In G1 (Figure 3.11) we now run our alternative setup algorithm Setup′,
which punctures the secret key sk on the tag x. The decryption circuit now uses
the punctured key sk∗.

G2(1λ, x) Csk∗,x(c, w)
(ppe, ppd)← Setup′(1λ, x) Parse c as (cpe, t)

(m0,m1)← Aλ(ppe, ppd, x) if R(t, w) = 1
b

$← {0, 1} if x = t
c∗ ← Enc(ppe, x,mb) return ⊥
b′ ← Aλ(c∗) m← PE.PDec(sk∗, cpe, t)
return b′ = b return m

return ⊥

Figure 3.11: Game G1

Lemma 3.5.3. For every PPT adversary A = {Aλ}λ∈N, for every polynomial
p(λ) there exist a PPT extractor E = {Eλ}λ∈N and polynomial q(λ) such that for

39



every λ ∈ N and for all x ∈ {0, 1}∗ holds
∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]

∣∣∣ ≥ 1
p(λ)

=⇒ Pr[(x,w) ∈ R : w ← Eλ(x)] ≥ 1
q(λ) .

Assume there exist an adversary A = {Aλ}λ∈N and polynomial p(λ) for which
holds ∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]

∣∣∣ ≥ 1
p(λ) .

The games differ only in the circuit that is obfuscated. Thus, we can use these
to construct a distinguisher D = {Dλ}λ∈N to distinguish the obfuscations of these
circuits. First, we show how to construct an efficient sampler for our circuits.
The circuit sampler S(1λ, x):
1. Generates (sk, pk)← PE.Gen(1λ) and runs sk∗ ← PE.Punct(sk, x).

2. Constructs Csk, Csk∗,x.

3. Sets aux := (pk, x).

4. Returns (Csk, Csk,x, aux).

Now we construct a distinguisher D = {Dλ}λ∈N as follows.
The distinguisher Dλ(C̃, Csk, Csk∗,x, aux):
1. Parses aux as (pk, x).

2. Runs (m0,m1)← Aλ(pk, C̃, x).

3. Randomly picks b $← {0, 1} and computes c∗ $← Enc(pk, x,mb).

4. Runs b′ ← Aλ(c∗).

5. Returns the truth value of b = b′.

If C̃ is an obfuscation of Csk, D perfectly simulates G0, whereas if C̃ is an
obfuscation of Csk∗,x, it perfectly simulates G1. Hence, D can distinguish the
obfuscated circuits with probability at least 1

p(λ) . The security of eO guarantees
that there is an extractor E which extracts an input on which the given circuits
differ with probability at least 1

q(λ) . Notice that the decryption circuits produce
different outputs only in the case where tag t is equal to our challenge x and
R(t, w) = 1. This is guaranteed by correctness of puncturable tag-based encryption
scheme. Hence, the extractor E returns (c, w) = ((cpe, x), w) such that R(x,w) = 1,
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which means we obtain a valid witness for our instance x with probability at least
1

q(λ) . Therefore, we obtain required extractor E from Lemma 3.5.3.
Now we show that we can construct an adversary against the security of the PE

scheme.
Lemma 3.5.4. From any PPT adversary A = {Aλ}λ∈N, for any x ∈ {0, 1}∗ we
can construct a PPT adversary B = {Bλ}λ∈N such that

AdvPE
B =

∣∣∣∣Pr[G1(1λ, x) = 1]− 1
2

∣∣∣∣ .
This lemma is proven in the same way as Lemma 3.5.2. For any x ∈ {0, 1}∗, we

construct an adversary B = {Bλ}λ∈N which breaks the security of the puncturable
encryption scheme.
The adversary Bλ:
1. Sends x to its challenger.

2. Receives public key pk and punctured secret key sk∗ from the challenger.

3. Constructs obfuscation of the circuit Csk∗,x and runs (m0,m1)← Aλ(ppe, ppd)
where ppe := pk, ppd := C̃sk∗,x.

4. Outputs (m0,m1) to the challenger and obtains ciphertext c∗ as a response.

5. Returns b′ ← Aλ(c∗).

It is easy to see that B perfectly simulates G1. Hence, we have

AdvPE
B =

∣∣∣∣Pr[G1(1λ, x) = 1]− 1
2

∣∣∣∣ .
Combining Lemmas 3.5.3 and 3.5.4 we obtain following:∣∣∣∣Pr[ExpEOWEA(1λ, x) = 1]− 1

2

∣∣∣∣ =
∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1] + Pr[G1(1λ, x) = 1]− 1

2

∣∣∣∣
≤
∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]

∣∣∣+ ∣∣∣∣Pr[G1(1λ, x) = 1]− 1
2

∣∣∣∣
=
∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]

∣∣∣+ AdvPE
B

Assuming that ∣∣∣∣Pr[ExpEOWEA(1λ, x) = 1]− 1
2

∣∣∣∣ ≥ 1
p(λ)
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we obtain: ∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]
∣∣∣+ AdvPE

B ≥
1

p(λ)
⇐⇒∣∣∣Pr[G0(1λ, x) = 1]− Pr[G1(1λ, x) = 1]

∣∣∣ ≥ 1
p(λ) −AdvPE

B .

Because AdvPE
B is a negligible function, there exists a polynomial p′(λ) such that

1
p(λ) −AdvPE

B ≥ 1
p′(λ) . By Lemma 3.5.3, this implies the existence of an extractor

E which outputs a witness w such that (x,w) ∈ R with probability at least 1
q(λ)

for some polynomial q(λ), which concludes our proof.

Encrypting large messages. In order to encrypt large messages using our (ex-
tractable) offline witness encryption, a message must be split into blocks of appro-
priate size and after that, each block must be encrypted as a separate message.
Hence, if a message consists of n blocks, we must produce n ciphertexts. One
can avoid this by using (E)OWE as a Key Encapsulation Mechanism (KEM) and
encrypt a random key κ for a block cipher. Then we can encrypt an arbitrary
message using the block cipher with the key κ, which is our Data Encapsulation
Mechanism (DEM). This results in a final ciphertext size of one OWE ciphertext
and n DEM ciphertext blocks.

(Extractable) Offline Functional Witness Encryption. Abusalah et al. [AFP16]
have constructed Offline Functional Witness Encryption (OFWE) which addition-
ally encrypts a function F from some supported function family with a message.
Anyone who knows a witness w for a given instance x learns the value F (m,w).
Security of OFWE guarantees indistinguishability of encryptions of (x, (m0, F0))
and (x, (m1, F1)) as long as either x /∈ L or for all w such that (x,w) ∈ R holds
that F0(m0, w0) = F1(m1, w1). Similarly, extractable OFWE can also be defined
which guarantees that if the adversary can distinguish encryptions of (x, (m0, F0))
and (x, (m1, F1)), then it must know w such that (x,w) ∈ R and at the same time
F0(m0, w) 6= F1(m1, w). Our generic constructions, can be used to build these
two primitives by puncturing on the tuple (x, (m0, F0), (m1, F1)). However, this
requires to know all these values in advance and therefore we are able to prove
only selective security. Proofs for OFWE and EOFWE are direct adaptations of
the corresponding proofs for OWE and EOWE, respectively.
Next, we discuss an instantiation of our scheme and compare it with other con-

structions. Mainly we focus on instantiating a one-time puncturable tag-based
encryption scheme because all other schemes are based on obfuscation and more-
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over there has not been so much progress in building practical obfuscation, as
compared to that of encryption schemes.

3.6 Instantiation of Puncturable Encryption Scheme
As one might expect, standard puncturable encryption schemes [DGJ+18, GM15,
GHJL17], that allows repeatedly puncturing of the secret key, are not very efficient
and therefore their deployment in our framework would harm the overall efficiency
of our constructions. Since tag-based encryption schemes require similar “all-but-
one” decryption in order to prove security, it is reasonable to assume that tag-based
encryption schemes can be turned into one-time puncturable encryption schemes.
And that is exactly the approach which we take. Concretely, we show that tag-
based encryption due to Kiltz [Kil06] can be modified to yield one-time PE. The
advantage of this scheme is its efficiency with ciphertext size only 5 group elements.
Hence the total ciphertext size of our constructions for short messages is the size
of the instance |x| plus 5 group elements. In the case of long messages consisting
of n blocks, the ciphertext size is |x| plus 5n group elements.
The OWE scheme of Abusalah et al. [AFP16] can be instantiated with ElGamal

encryption and a type of Groth-Sahai’s NIZK proof which leads to ciphertext size
of 32 group elements plus |x|. For messages consisting of n blocks the construction
in [AFP16] requires ciphertext of size 24 + 8n group elements plus |x|. We believe
that one can adjust the construction by replacing iO with eO and obtain EOWE.
However, both of these constructions would achieve only selective security.
There are two other constructions of OWE [PD20, PD19] which have appeared

only recently. In [PD19] only the constructions of OWE and OFWE are given and
it is not clear if they can be adjusted to the extractable setting. Both constructions
are based on Naor-Yung style encryption in a similar manner as [AFP16], which
requires encrypting the given message twice using IND-CPA-secure PKE. But
instead of a non-interactive zero-knowledge proof, the extractable witness PRF
is used, whose known constructions rely on multilinear maps. Additionally, the
constructions require a randomized encoding scheme with sub-exponential security.
The resulting schemes achieve only selective security and by instantiating IND-
CPA-secure PKE with ElGamal Encryption one can obtain the ciphertext of size
|x| + |y| + 4 group elements, where y is the output of extractable witness PRF
and |y| can be bounded by a constant that is independent of the PKE scheme.
For messages consisting of n blocks the ciphertext size is |x| + |y| plus 4n group
elements.
The second work [PD19] constructs OWE, EOWE, OFWE and EOFWE. All

constructions follow the same template and rely either on iO or eO which are
combined with private-key encryption, a pseudorandom generator (PRG), and a
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puncturable witness PRF (pWPRF). We note that currently known constructions
of pWPRFs are based on obfuscation. The ciphertext size even for long messages is
|x|+|r|+|c| where r is the output of the PRG and c is the ciphertext of the private-
key encryption scheme. The main disadvantage of this approach is expensive
encryption which requires executing the evaluation algorithm of a pWPRF which
in other words means running an obfuscated circuit.

3.6.1 PE from Kiltz’s Tag-Based Encryption Scheme
In this section, we describe an efficient one-time puncturable tag-based encryption
scheme based on the tag-based encryption scheme of Kiltz [Kil06]. The scheme
is given in Figure 3.12. Specifically, the Gen,Enc algorithms of both schemes are
identical. Dec algorithm of Kiltz’s scheme contains an implicit test if a ciphertext
is consistent with a tag t. In our scheme, we execute this test explicitly to ensure
the required correctness properties. Hence, our Dec is roughly the alternative
way of decryption that is described in the correctness section of Kiltz’s tag-based
encryption. The only thing left is to specify Punct and PDec algorithms. PDec
is similar to the original decryption algorithm proposed by Kiltz but instead of
sampling values s1, s2 uniformly at random, we construct them in a specific way.
That allows us to decrypt messages without explicitly using the values of the
original secret key. To enforce correctness properties of a puncturable tag-based
encryption scheme, we have to include a consistency check of the validity of a
given ciphertext, however, this time without the knowledge of the secret key. This
is possible using DDHvf. The construction of values s1, s2 is defined in the PDec
algorithm.
Similarly to Kiltz’s tag-based encryption, the security of our scheme is based on

the decision linear assumption (DLin) in a gap group. We remark that our proof
is an adaptation of Kiltz’s original proof. As we have already mentioned, as a
concrete instantiation we can assume a symmetric bilinear group that naturally
provides an oracle to decide the DDH problem.

Theorem 3.6.1. Assume the DLin assumption holds. Then (Gen,Punct,Enc,
Dec,PDec) defined in Figure 3.12 is a secure one-time puncturable encryption
scheme.

Proof. Correctness properties of the scheme can be verified by simple calculations.
To prove security we define two games G0 and G1 and show that these are

computationally indistinguishable. For i ∈ {0, 1} we denote by Gi = 1 the event
that the adversary A = {Aλ}λ∈N outputs b′ in game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment, where we
use the Enc algorithm directly from our construction to produce the challenge
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Gen(1λ) Enc(pk,m, t)
g1

$← G∗, x1, x2
$← Z∗p, y1, y2

$← Zp r1, r2
$← Zp

Pick g2, g ∈ G s.t. gx1
1 = gx2

2 = g C1 := gr1
1 , C2 := gr2

2
u1 := gy1

1 , u2 := gy2
2 D1 := gt·r1ur1

1 , D2 = gt·r2ur2
2

pk := (g1, g2, u1, u2, g), sk := (x1, x2, y1, y2) K := gr1+r2

return (pk, sk) E := K ·m
return c = (C1, C2, D1, D2, E)

Dec(sk, c, t) PDec(skt∗ , c, t)
Parse c as (C1, C2, D1, D2, E) Parse c as (C1, C2, D1, D2, E)
if (Ct·x1+y1

1 6= D1) ∨ (Ct·x2+y2
2 6= D2) if DDHvf(g1, g

t · u1, C1, D1) = 0
retrurn ⊥ ∨DDHvf(g2, g

t · u2, C2, D2) = 0
K := Cx1

1 · Cx2
2 return ⊥

return m := E ·K−1 Γ := Cs1
1 · Cs2

2 , ∆ := D1 ·D2
K := (Γ/∆)1/(t∗−t)

return m := E ·K−1

Punct(sk, t∗)
Parse sk as (x1, x2, y1, y2)
s1 := y1 + t∗ · x1
s2 := y2 + t∗ · x2
return skt∗ := (s1, s2)

Figure 3.12: Construction of one-time puncturable tag-based encryption

ciphertext.

Game 1. In G1 the values C1, C2, D1, D2 of the challenge ciphertext are computed
exactly as in G0 but we compute value E by sampling z $← Zp uniformly at random
and computing E := m · gz.
Lemma 3.6.1. From any PPT adversary A = {Aλ}λ∈N we can construct a PPT
adversary B = {Bλ}λ∈N such that

AdvDLin
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

To prove this lemma we construct an adversary B as follows.
The adversary Bλ(p,G,DDHvf, g1, g2, g, g

x
1 , g

y
2 , g

z):
1. Runs Aλ to obtain t∗.

2. Randomly samples values s1, s2
$← Zp and sets skt∗ := (s1, s2).

3. Computes u1 := g−t
∗ · gs1

1 , u2 := g−t
∗ · gs2

2 , set pk := (g1, g2, u1, u2, g).
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4. Runs (m0,m1) ← Aλ(pk, skt∗), samples b $← {0, 1}, and computes the chal-
lenge ciphertext as c = (gx1 , g

y
2 , (gx1 )s1 , (gy2)s2 ,mb · gz).

5. Runs b′ ← Aλ(c).

6. Returns the truth value of b = b′.

Notice that pk and skt∗ are distributed correctly. Moreover, if z = x + y, then
c is indeed a well formed encryption of mb under pk and hence B simulates G0
perfectly. On the other hand if z $← Zp, then B simulates G1 perfectly. Therefore
we can conclude that

|Pr[G0 = 1]− Pr[G1 = 1]| = AdvDLin
B

as required.
Lemma 3.6.2. Pr[G1 = 1] = 1/2.
Because z is chosen uniformly at random from Zp, the element gz is a uniform

element of G. Therefore also mb · gz is uniformly distributed element which is
independent of mb and hence also independent of b. The other components of
ciphertext are clearly independent of mb. Thus, the adversary gets no information
about b and can do no better than guessing. Hence it has a success probability of
exactly 1

2 .
By combining Lemmas 3.6.1 and 3.6.2 we obtain following:

AdvPE
A =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣ =
∣∣∣∣Pr[G0 = 1]− Pr[G1 = 1] + Pr[G1 = 1]− 1

2

∣∣∣∣
= AdvDLin

B ,

which concludes the proof.

3.7 Conclusion and Open Problems
We have constructed the first extractable offline witness encryption scheme which
can be used for building a variant of time-lock encryption with a trusted setup. The
security achieved by our construction requires that time is fixed in advance before
running the setup, however, this seems to be sufficient for many applications. All
currently known constructions of an (extractable) offline witness encryption scheme
either achieve selective security, where an adversary has to provide an instance
and challenge messages before seeing public parameters, or semi-adaptive secu-
rity, where messages are provided adaptively by an adversary after seeing public
parameters and an instance must be known beforehand. Therefore an interesting
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open problem is to construct (E)OWE scheme with full-adaptive security. Another
common denominator of known constructions is that they rely on indistinguisha-
bility/extractability obfuscation. It would be interesting to provide some evidence
that this is indeed necessary or give a construction that relies on some weaker
primitives. One could also focus on more efficient constructions of E(OWE) for
some concrete “non-trivial” languages instead of arbitrary languages. Concerning
OFWE and EOFWE, all current constructions are only selectively secure. Hence,
it seems that novel techniques are needed to achieve even semi-adaptive security
for these two primitives. A different option would be to focus purely on OTLE
and examine new ways of how to build it.
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4 Encryption Schemes from
Time-Lock Puzzles

The content of this chapter is based on two independent works which are closely
related. Both works focus on encryption schemes which require executing some
amount of sequential computation in order to decrypt ciphertexts. At first, we
study so-called Timed-Release Encryption (TRE) that we originally introduced
in [CJSS20]. After that we discuss the notion of Timed Public-Key Encryption
(TPKE) which has been introduced in concurrent work of Katz et al. [KLX20].

Author’s Contribution. The content of Sections 4.2-4.4 is joint work with Tibor
Jager, Daniel Slamanig and Christoph Striecks [CJSS20]. The author has made
the following contributions:

• formally defining syntax and security of sequential time-lock puzzles;

• defining the gap sequential squaring assumption and showing its hardness in
the Strong Algebraic Group Model;

• constructing and proving the security of sequential time-lock puzzle from the
gap sequential squaring assumption in the Random Oracle Model;

• formally defining syntax and security of sequential timed-release encryption;

• proving the security of the basic construction of timed-release encryption;

• constructing a generic sequential timed-release encryption scheme and prov-
ing its security;

• noting that the constructions of timed-release encryption and sequential
timed-release encryption allow public verifiability and that they can be ad-
justed to support homomorphic encryption;

• all discussion about practical applications of (sequential) timed-release en-
cryption.
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For completeness, we also include sections about integrating functional features
into timed-release encryption, discussions about variants of time-lock puzzles, op-
timal amortized costs of sequential timed-release encryption, and combining se-
quential timed-release encryption with public servers.
The content of Section 4.5 is joint work with Tibor Jager. At the time of

writing the thesis, this work is not finished yet. The author has made the following
contributions:

• realizing that the construction of timed-release encryption can be adjusted
to yield timed public-key encryption achieving weak IND-CCA security;

• defining timed-release encryption secure against pre-processing;

• defining time-lock puzzles secure against pre-processing;

• proving that the basic timed-release encryption scheme is secure against pre-
processing if the underlying time-lock puzzle is secure against pre-processing;

• discussing the generic construction of timed public-key encryption and prov-
ing its security;

• constructing timed public-key encryption from the strong sequential squaring
assumption and proving its security.

4.1 Introduction, Contributions and Related Work
In this chapter, we focus on the approach which requires performing some kind
of sequential computation in order to decrypt a message. This idea was already
suggested in 1996 by Rivest et al. in [RSW96], who used the term time-lock puzzle
(TLP) to denote it. The proposed solution relies on a private-key encryption
scheme (Enc,Dec) and sequential squaring in ZN where N is the product of two
large primes p and q. Specifically, the puzzle Z is produced in the following way:

• generate randomly a modulus N ,

• pick a hardness parameter T ∈ N and two values x, k $← ZN ,

• compute values y := x2T mod N and c1 := y + k mod N ,

• encrypt a message m using k, via c2 := Enc(k,m),

• output Z := (N, T, x, c1, c2).

To solve the puzzle Z := (N, T, x, c1, c2), the following steps are executed:
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• compute value y := x2T mod N ,

• recompute the secret key k := c1 − y mod N ,

• decrypt the ciphertext m := Dec(k, c2).

It is straightforward to see that value y can be computed as the sequence of 2T
repeated squarings - x2, (x2)2 = x22

, (x22)2 = x23
, . . . x2T mod N . However, the

crucial observation is that the knowledge of primes p and q allows the compu-
tation of the value y much faster than by sequential squaring and therefore the
creation of the puzzle is much more efficient than solving it. Concretely, knowing
the factorization of N and thus the order ϕ(N) of the multiplicative group Z∗N ,
one can compute x2T mod N by computing at first t := 2T mod ϕ(N). Then it is
sufficient to compute y := xt mod N . This discrepancy between runtimes of gener-
ating and solving the puzzle instance is an important property of TLPs when the
required amount of time until the puzzle should be solved is very large. However,
constructing time-lock puzzles that have this property seems to be difficult. Until
now, there exist only two constructions that have this property. The first one is the
already-mentioned proposal of Rivest et al. and the second one was suggested by
Bitansky et al. [BGJ+16] and relies on succinct randomized encodings. The known
constructions of succinct randomized encodings are based on indistinguishability
obfuscation and therefore this construction is not practical yet. Moreover, Mah-
moody et al. [MMV11] have shown that it is impossible to construct time-lock
puzzles from one-way permutations and collision-resistant hash functions in the
random oracle model in black-box way.

Applications of TLPs. Time-lock puzzles have found their place in different ap-
plications such as sealed-bid auctions [RSW96], fair contract signing [BN00], zero-
knowledge arguments [DN00], and non-malleable commitments [LPS17]. Most of
the applications, however, require creating several time-lock puzzles, meaning that
it is necessary to execute multiple expensive computations usually in parallel. This
is considered to be one of the main drawbacks in deploying TLPs.

Variants and Extensions of Time-Lock Puzzles. In recent years several vari-
ants and extensions of TLPs have been proposed to either overcome the difficulty
in building them, or improve their practicality, or strengthen their security guar-
antees.

• Weak Time-Lock Puzzles (wTLPs) were proposed by Bitansky et al. [BGJ+16]
and this variant relaxes the requirement on the time which is needed for gen-
erating a puzzle. Concretely, it allows an efficient parallel computation in the
generation of the puzzle. wTLPs can be built from randomized encodings.
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• Time-Lock Puzzles with Pre-processing (ppTLPs) have an additional algo-
rithm which allows executing solution-independent pre-processing whose run-
time can be proportional to the hardness parameter T . Similarly to wTLPs,
ppTLPs have been introduced by Bitansky et al. [BGJ+16] who have con-
structed them from reusable randomized encodings which in turn can be
based on the Learning With Errors (LWE) assumption.

• Homomorphic Time-Lock Puzzles (HTLPs) are the first proposal which aims
to improve on the applicability of TLPs and overcome the already-mentioned
limitation when an application requires solving possibly a large number of
puzzles. This variant was introduced in [MT19] by Malavolta and Thyagara-
jan(MT19 henceforth) and allows for a trusted setup which produces public
parameters. The main advantage of the setup is that it allows homomorphic
evaluation of some circuit C over a tuple of puzzles (Zi)i∈[n] which results in
a new puzzle Z. The solution s of the resulting puzzle Z has a property that
it is equal to the value C((si)i∈[n]) where (si)i∈[n] are corresponding solutions
of the puzzles (Zi)i∈[n]. Therefore if an application requires the execution of
some computation on solutions of puzzles, then instead of solving all puzzles,
it is sufficient to firstly combine all puzzles, and then to solve possibly only
one puzzle. MT19 has proposed three constructions for HTLPs - linearly ho-
momorphic TLP (LHTLP) which allows only additions, multiplicatively ho-
momorphic (MHTLP) supports only multiplications, and fully homomorphic
(FHTLP) which supports both operations at the same time. All of these con-
structions are based on the (strong) sequential squaring assumption and the
first two are essentially relying on Paillier encryption [Pai99], however, the
third one is based on sub-exponentially hard indistinguishability obfuscation.
We remark that MT19 provides also constructions that support aggregation
of puzzles which might have different hardness parameters. The resulting
puzzle is then solvable in time which corresponds to the largest hardness
parameter among all aggregated puzzles. An improved construction of a
fully homomorphic time-lock puzzle has been later given by Brakerski et al.
in [BDGM19]. The construction combines a multi-key fully-homomorphic
encryption (MK-FHE) scheme [LTV12] with LHTLP. Basically, MK-FHE
is used to encrypt a message with a fresh key and an LHTLP to lock the
respective MK-FHE secret keys. To ensure compatibility of both primitives,
Brakerski et al. require an MK-FHE scheme with a linear decryption algo-
rithm.

• Timed Public-Key Encryption (TPKE) was proposed by Katz, Loss and
Xu [KLX20] and compared to TLPs it has a key generation algorithm which
outputs a public/secret key pair and supports two types of decryption - slow
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decryption, which requires the execution of an expensive sequential compu-
tation in order to decrypt a ciphertext and fast decryption, which is efficient
and makes use of the secret key. This primitive is used in [KLX20] as a build-
ing block for a non-malleable timed commitment. A timed commitment was
originally introduced by Boneh and Naor [BN00] and it allows to prove that
a commitment is well-formed, moreover one can prove that the given value
is indeed the committed value and additionally it has a force open algorithm
which is able to open commitment by executing a sequential computation.

Contributions. The work in this chapter discusses two aspects of time-lock puz-
zles: broadening their applicability and achieving some form of non-malleability.
At first, we aim for improving the practicality of time-lock puzzles and in partic-
ular, we try to address the problem that in many scenarios several independent
puzzles have to be solved in parallel. Therefore our approach can be seen as an
alternative to the approach of MT19. However, it is more convenient to have an
approach that supports the decryption of many messages by solving only one puz-
zle, the so-called “solve one, get many for free” property. Therefore we propose
a new primitive denoted as Timed-Release Encryption (TRE) which similarly to
HTLP has a trusted setup. We stress that we require from TRE very different
functionality compared to TRE schemes based on trusted agents. Specifically, we
require that the setup of TRE outputs public encryption and public decryption
parameters and it must run in time which is only logarithmic in the hardness pa-
rameter T . Messages are then encrypted using the encryption algorithm which
takes as input public encryption parameters and its runtime is independent of T .
One is able to decrypt all messages encrypted using the same public parameters
by performing an expensive sequential computation which is determined by the
corresponding public decryption parameters. The runtime of decryption should
be determined by the hardness parameter T . Clearly, this primitive provides the
desirable “solve one, get many for free” property.
We show how to construct such a TRE scheme in a generic way, without relying

on the algebraic structure of the underlying sequential problem. Our construction
is rather simple and combines only two primitives - a public-key encryption scheme
(PKE) and a time-lock puzzle. However, we should stress that our definition of a
TLP slightly deviates from the original definition given by Rivest et al. [RSW96].
In this thesis, we abstract from the fact that TLPs are used to encrypt messages.
Hence, for us a TLP provides core functionality of a puzzle that needs a certain
amount of time to be solved, without considering any messages. To build TRE,
we generate a puzzle Z with corresponding solution s and use this solution as
random coins for generating a public/secret key pair of PKE. The public key and
puzzle Z are the output of the trusted setup and hence they represent our public
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encryption and public decryption parameters, respectively. Messages are then
encrypted by simply running the encryption algorithm of a PKE scheme using a
public key. To decrypt a ciphertext it is sufficient to solve the puzzle Z once and
then use the solution s to compute the corresponding secret key. Note that when
a PKE scheme in our construction is a partially homomorphic encryption scheme,
e.g., ElGamal [ElG84], or a fully homomorphic encryption scheme, e.g., BGV
[BGV12], this immediately yields (fully) homomorphic TRE (HTRE). Therefore,
in this way we are able to obtain the “solve one, get many for free” property
for both, the result of a homomorphic evaluation of many ciphertexts, but also
if we want to decrypt all ciphertexts individually. Moreover, our HTRE scheme
fulfils the basic definition of HTLPs from MT19, where the time required to solve
the puzzles starts with the generation of the parameters. Hence, our construction
can be viewed as the first generic construction for basic HTLPs. The alternative
variant of HTLPs proposed in MT19 is HTLPs with a reusable setup, where the
parameters generated by setup can be used to produce many puzzles in a way that
for every single puzzle the time only starts to run from the point where the puzzle
is generated (this characteristic is also inherited by [BDGM19]). However, there
is no need to use such an HTLP in any of the applications discussed in [MT19],
on the contrary, in some applications, it is even more desirable when the runtime
of the puzzle is counted from the point of running the setup algorithm.
To further mitigate the negative impacts of executing an expensive computation

from an economic and an ecological perspective, we propose a variant of TLP which
takes as input an increasing sequence of hardness parameters (Ti)i∈[n] and produces
a set of puzzles and solutions (Zi, si)i∈[n]. The crucial property which we require
is that the knowledge of the solution si−1 of the puzzle Zi−1 enables solving the
puzzle Zi in time which is determined by hardness Ti − Ti−1. This simply means,
there is no need to start from the beginning to solve the following puzzles. We call
a TLP with this property a sequential Time-Lock Puzzle (sTLP) and we use it
as a building block for sequential Timed-Release Encryption (sTRE) that fulfils a
similar property. The advantage of sTRE is the possibility of outsourcing the task
of solving puzzles to an external entity that can perform an expensive computation
instead of letting each receiver perform this wasteful computation. We note that
providing a useful security definition for an sTLP, which is sufficient for building
an sTRE scheme, is not so trivial. We provide a detailed explanation of why this
is the case later when we formally define sequential TLPs. To instantiate an sTLP
we introduce the gap sequential squaring assumption, which similarly to other
gap assumptions [OP01] states that computational variant of sequential squaring
assumption is hard even given an oracle which takes as input a hardness parameter
T ′ and a value y′ and outputs 1 if and only if y′ = x2T ′ mod N . As evidence for the
hardness of this assumption, we provide an analysis in the strong algebraic group
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model (SAGM) and in particular, we show that our assumption holds as long as
factoring is hard. We observe that our construction of (sequential) timed-release
encryption has the interesting property of public verifiability. Specifically, given a
candidate solution with respect to public decryption parameters, one can efficiently
check if the given solution is correct, by generating a public/secret key pair of
the underlying PKE scheme using the solution and comparing if the generated
public key matches the public encryption parameters of (s)TRE. This property is
particularly useful when the task of solving puzzles is outsourced.
Finally, we discuss the possibilities of achieving the non-malleability of time-

locked messages. One can observe that our definition of TRE has many similari-
ties with the concurrently introduced notion of timed public-key encryption. The
security of TPKE is defined in a similar manner as IND-CCA security of PKE
and it requires that the time needed for decryption of some ciphertext starts to
run from the point when the ciphertext is created. We observe that if one relaxes
this requirement and allows that the time required for decryption starts with the
generation of the public/secret key pair, then our TRE construction can be ad-
justed to yield a TPKE scheme. Recall that the setup of our TRE computes a
public/secret key pair by running the generation algorithm of some PKE scheme
using the solution of a puzzle Z as random coins. Hence, if the setup additionally
outputs the secret key, this can be used for the fast decryption of TPKE. In some
scenarios, this relaxed security notion does not need to be sufficient and therefore
we propose two constructions that satisfy the original security notion and are more
efficient than the construction of Katz et al. [KLX20] (to the best of our knowledge
this is currently the only known construction). The mentioned inefficiency stems
from the fact that encryption of a single message takes roughly time T , where T
is the hardness parameter. Therefore encryption and slow decryption have similar
running times which is not practical for most applications. Our first construction
is generic and allows us to encrypt messages exponentially faster than running
the slow decryption algorithm. We remark that the construction in [KLX20] is
not generic and is based on the strong sequential squaring assumption. Our sec-
ond construction relies on the strong sequential squaring problem too however the
runtime of encryption is independent of the hardness parameter.

Applications of (s)TRE. The crucial observation made in MT19 is that many
applications admit a trusted setup. In this way, an HTLP can be used even in
scenarios that require a rather large number of time-locked messages. Specifically,
MT19 present applications to e-voting, multi-party coin flipping as well as multi-
party contract signing, or more recently verifiable timed signatures [TBM+20],
again yielding several further interesting applications. As we explain in detail
later, our timed-release encryption can be used as a replacement of HTLPs in all
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of these applications which results in some efficiency improvements and therefore
can be viewed as a preferable solution. The main disadvantage of HTLPs compared
to TRE is that one must wait until all puzzles of interest are available, then execute
the homomorphic evaluation to produce a resulting puzzle: only after that can the
resulting puzzle be solved. For instance, if we consider an example of e-voting
where the voting phase takes some fixed time T , then only after the voting phase
is over can one start with solving a puzzle which takes additional time T . On
the other hand, with TRE we can start executing the sequential computation
immediately after the setup is performed and hence the results can be available at
the end of the voting phase. Moreover, we are able to use TRE also in applications
that require to have access to all time-locked messages in full and not only to the
result of a homomorphic evaluation. As a novel application, we combine (s)TRE
with Functional Encryption which allows us to time-lock functional keys.

Related Work. In addition to the already-mentioned works regarding TLPs,
HTLPs, TPKE, and timed commitments, there are several concurrent works that
have recently appeared. The work of Ephraim et al. [EFKP20] focuses on concur-
rent non-malleable time-lock puzzles. The proposed construction in [EFKP20] is
efficient however it relies on the auxiliary-input random oracle model. The basic
idea of their construction is as follows. The random oracle is evaluated on the
string s||r where s is the solution and r is some randomness. The output of the
random oracle is used as random coins for the puzzle generation algorithm of any
TLP. Moreover, they introduce also so-called public verifiable time-lock puzzles,
which have the property that everyone is able to efficiently verify if the given so-
lution is a valid solution of the puzzle and even the case that a puzzle does not
have any solution is efficiently verifiable. In this way, publicly verifiable TLPs
can be seen as an intermediate notion between standard TLPs and timed commit-
ments. We remark that our construction of TRE attains a similar notion of public
verifiability.
Non-malleable TLPs have also been constructed in the plain model by Dachman

et al. [DKP20], however, the construction is not very efficient. The main objective
of the work is a construction of non-malleable codes and non-malleable TLPs are
obtained only as a by-product.
Burdges et al. [BD20] have introduced the notion of Delay Encryption (DE).

Delay Encryption is defined as a Key Encapsulation Mechanism (KEM), however,
this choice has no consequences for comparison with our TRE. Similarly to TRE,
DE has a trusted setup algorithm that takes as input the hardness parameter
T . However, the runtime of the setup of a DE scheme can be polynomial in the
hardness parameter, while in TRE we only allow setup algorithms with a runtime
that is logarithmic in the hardness parameter. DE provides efficient encapsulation
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and decapsulation algorithms (their runtime is independent of T ) with respect to
arbitrary identities (similarly to Identity-Based Encryption) and a slow extraction
algorithm whose runtime is determined by the hardness parameter. The construc-
tion of Burdges et al. [BD20] is based on isogenies.
Finally, we discuss Multi-Instance Time-Lock Puzzles (MITLP) proposed by

Abadi and Kiayias [AK21] which are similar to our notion of sequential timed-
release encryption. MITLP allows to generated puzzles with respect to consecu-
tive multiples of one hardness parameter T in a way that all puzzles can be solved
sequentially without a need to perform parallel computation. Concretely, a multi-
instance time-lock puzzle has a setup algorithm that takes as input the hardness
parameter T and some positive integer n. The setup outputs a public/secret key
pair. Both the public and the secret key are used to generate n puzzles which
correspond to hardness parameters T, 2T, . . . , nT . One can solve all puzzles se-
quentially using the public key. Abadi et al. construct this primitive generically
from any time-lock puzzle and a commitment scheme and the construction also
provides public verifiability. The main idea is chaining the generated puzzles where
the message which is supposed to be decrypted as the last is encrypted first and
then the information which is needed for decrypting that message is included in the
ciphertext which should be decrypted as penultimate. This process is repeated un-
til all messages are encrypted. This, however, requires that all messages of interest
must be known at the time when MITLP is generated. This is in contrast to our
sTRE which allows encrypting an arbitrary number of messages with respect to
different hardness parameters at any time. Moreover, we support an arbitrary in-
creasing sequence of hardness parameters as opposed to only consecutive multiples
of one hardness parameter. In MITLP, the time needed for decryption is counted
from the point of generating ciphertexts where in sTRE the time is counted from
the point of running the setup. Additionally, sTRE uses only public parameters
for encryption.

4.2 Time Lock-Puzzles
In this section, we state a new definition for time-lock puzzles and explain how it
relates to the old definition. Afterwards, we give a brief overview of other variants
of time-lock puzzles and discuss possible instantiations of time-lock puzzles that
fulfil our new definition.

Definition 4.2.1. A time-lock puzzle is pair of algorithms TLP = (Gen, Solve) with
the following syntax.

• (Z, s)← Gen(1λ, T ) is a probabilistic algorithm that takes as input the secu-
rity parameter 1λ and a hardness parameter T ∈ N and outputs a puzzle Z

57



ExpTLPbA(λ):
(Z, s)← Gen(1λ, T (λ))
if b = 0 : c := s

if b = 1 : c $← S
return b′ ← Aλ(Z, c)

Figure 4.1: Security experiment for time-lock puzzles.

together with the unique solution s of the puzzle. We require that Gen runs
in time at most poly(log T, λ) for some polynomial poly.

• s← Solve(Z) is a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s ∈ S, where S is a finite set. We require that Solve runs
in time at most T ·poly(λ). There is also a lower bound on the running time,
which is part of the security definition.

We say TLP is correct if for all λ, T ∈ N it holds

Pr[s = s′ : (Z, s)← Gen(1λ, T ), s′ ← Solve(Z)] = 1.

For security we require that the solution of a TLP is indistinguishable from
random, unless the adversary has sufficient running time to solve the puzzle.

Definition 4.2.2. Consider the security experiment ExpTLPbA(1λ) in Figure 4.1.
We say that a time-lock puzzle TLP is secure with gap 0 < ε < 1, if there exists a
polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-
size adversary A = {Aλ}λ∈N, where the depth of Aλ is bounded from above by
T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N it holds

AdvTLP
A =

∣∣∣Pr
[
ExpTLP0

A(λ) = 1
]
− Pr

[
ExpTLP1

A(λ) = 1
]∣∣∣ ≤ negl(λ).

Relation to prior definitions.

Syntactically, a time-lock puzzle as defined by Rivest et al. [RSW96], Bitan-
sky et al. [BGJ+16] and Malavolta and Thyagarajan [MT19] has the algorithm
Gen which receives s as an additional input and outputs a puzzle Z. This imme-
diately yields a timed-release encryption (TRE) scheme by viewing s as a message
that is encrypted. Our definition enables a slightly simpler generic construction of
(homomorphic) TRE. Intuitively, our new definitions relates to the prior one in a
similar way like a key encapsulation mechanism relates to an encryption scheme.
Concretely, let TLP = (Gen, Solve) be a puzzle according to our new definition.
Then we obtain a puzzle TLP′ = (Gen′, Solve′) of the old form as follows:
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• Gen′(1λ, T,m) computes (Z, s)← Gen(1λ, T ) outputs Z ′ = (Z,m⊕ s).

• Solve′(Z ′ = (Z, c)) computes s← Solve(Z) and outputs c⊕ s.

Regarding security, the original definition of Bitansky et al. [BGJ+16] requires
that no adversary is able to tell for any pair of solutions, which solution is contained
in the given puzzle, unless the adversary has sufficient running time to solve the
puzzle.

Other Variants of TLPs.

Bitansky et al. [BGJ+16] have proposed two weaker notions of time-lock puzzle.
The first one relaxes the runtime requirement for Gen algorithm and instead of
requiring a runtime of poly(log T, λ) it allows the execution of Gen in “fast parallel
time”. This type of puzzle is denoted as a weak TLP. The second one is denoted as
TLP with pre-precessing and allows for an (expensive) setup. Next, we define these
two variants, however, we adjust the original definitions to match our definition
for TLPs.

Definition 4.2.3 (Weak Time-Lock Puzzles [BGJ+16]). A weak time-lock puzzle
(wTLP) wTLP = (Gen, Solve) is satisfying the syntax and completeness require-
ments of Definition 4.2.1, but with the following relaxed efficiency requirement for
the Gen algorithm: Gen can be computed by a uniform circuit of size poly(T, λ)
and depth poly(log T, λ).
We say wTLP is secure if it is a secure TLP in the sense of Definition 4.2.2.

Definition 4.2.4 (Time-Lock Puzzles with Pre-processing [BGJ+16]). A time-lock
puzzle with pre-processing (ppTLP) is a tuple of algorithms ppTLP = (Preproc,Gen,
Solve) with the following properties:

• (P,K)← Preproc(1λ, 1T ) is a probabilistic algorithm that takes as input the
security parameter 1λ and a difficulty parameter 1T and outputs a state P
and a short string K ∈ {0, 1}λ. Preproc can be computed by a uniform
circuit of total size T · poly(λ) and depth poly(log T, λ).

• (Z, s) ← Gen(K) is a probabilistic algorithm that takes as input the secret
key K and outputs a puzzle Z together with a solution s. Gen can be
computed in (sequential) time poly(log T, λ).

• s ← Solve(P,Z) is a deterministic algorithm that takes as input a state
P and puzzle Z and outputs a solution s. Solve can be computed in time
T · poly(λ).

59



A time-lock puzzle with pre-processing is correct if for all λ, for all hardness pa-
rameters T it holds

Pr
[
s = s′ : (P,K)← Preproc(1λ, 1T ), (Z, s)← Gen(K), s′ ← Solve(P,Z)

]
= 1.

Definition 4.2.5 (Security of ppTLP [BGJ+16]). We say that ppTLP is secure
with gap 0 < ε < 1, if there exists a polynomial T̃ (·) such that for all polynomials
T (·) ≥ T̃ (·) and every polynomial-size adversary A = {Aλ}λ∈N, where the depth
of Aλ is bounded from above by T ε(λ), there exists a negligible function negl(·)
such that for all λ ∈ N, for all k = poly(λ) it holds∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

b
$← {0, 1}

(P,K)← Preproc(1λ, 1T )
((Zi, s0,i)← Gen(K))i∈[k]

(s1,i
$← S)i∈[k]

b′ ← Aλ(P, (Zi, sb,i)i∈[k])


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

4.2.1 Instantiating TLPs from Sequential Squaring
The instantiation of a TLP from the sequential squaring assumption (Defini-
tion 2.5.3) is straightforward:

• Gen(1λ, T ): Run (p, q,N) ← GenMod(1λ). Compute t := 2T mod |QRN |,
where |QRN | = (p−1)(q−1)

4 . Randomly sample x $← QRN and compute the
value s := xt mod N . Set Z := (N, T, x) and output (Z, s).

• Solve(Z): Compute s := x2T mod N by repeated squaring.

The security of this construction is directly implied by the security of the se-
quential squaring assumption.

4.2.2 Instantiating TLPs from Randomized Encodings
Time-lock puzzles and their variants can be instantiated using different variants of
randomized encodings [IK00, AIK06]. This was shown by Bitansky et al. [BGJ+16]
and here we provide short overview of their results. We remark that the security
of our TLP when based on the one from [BGJ+16] (where the adversary outputs
two solutions (s0, s1) and obtains a puzzle for one of them) can be argued in an
analogous way to the construction of KEMs from PKE.
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Constructions.

Let RE be a randomized encoding scheme. For s ∈ {0, 1}λ and T ≤ 2λ, let MT
s

be a machine that, on any input x ∈ {0, 1}λ outputs the string s after T steps.
Furthermore, MT

s is described by 3λ bits (which is possible for large enough λ).
Then the (w)TLP is constructed as follows:

• Gen(1λ, T ) : Sample s $← {0, 1}λ, M̂T
s (0λ) ← RE.Encode(MT

s , 0λ, T, 1λ) and
output (Z := M̂T

s (0λ), s).

• Solve(Z) : Return RE.Decode(Z).

Theorem 4.2.1 (Thm 3.7 [BGJ+16]). Let 0 < ε < 1. Assume that, for ev-
ery polynomial bounded function T (·), there exists a non-parallelizing language
L ∈ Dtime(T (·)) with gap ε. Let RE in above construction be a secure succinct
randomized encoding in the sense of Definition 2.3.16. Then, for any ε < ε, the
above construction is a time-lock puzzle with gap ε.

Succinct REs can be constructed assuming the existence of one-way functions
and indistinguishability obfuscation (cf. [KLW15]). If we relax the succinctness
requirement on RE, we obtain wTLP.

Theorem 4.2.2 (Thm 3.10 [BGJ+16]). Let 0 < ε < 1. Assume that, for ev-
ery polynomial bounded function T (·), there exists a non-parallelizing language
L ∈ Dtime(T (·)) with gap ε. Let RE in above construction be a secure succinct
randomized encoding in the sense of Definitions 2.3.14 and 2.3.18. Then, for any
ε < ε, the above construction is a weak time-lock puzzle with gap ε.

Using the fact that garbled circuits yield randomized encodings (cf. e.g., for
discussion [App17]), we have the following:

Corollary 4.2.1. Assuming the existence of one-way functions, there exists a
randomized encoding scheme.

Hence, we can construct wTLPs from one-way functions.
Time-lock puzzles with pre-processing are constructed using a reusable random-

ized encoding scheme RE that can be obtained assuming sub-exponential hardness
of the LWE problem [GKP+13b]. The construction of ppTLP is as follows:

• Preproc(1λ, T ) : Sample (Û ,K ′)← RE.Preproc(3λ, λ, T, 1λ) and return (P :=
Û ,K := K ′).

• Gen(K) : Sample s $← {0, 1}λ, M̂T
s (0λ) ← RE.Encode(MT

s , 0λ, K) and output
(Z := M̂T

s (0λ), s).

61



• Solve(P,Z) : Return RE.Decode(P,Z).

For the construction we have the following:

Theorem 4.2.3 (Thm 4.8 [BGJ+16]). Let 0 < ε < 1. Assume that, for every
polynomial bounded function T (·), there exists a non-parallelizing language L ∈
Dtime(T (·)) with gap ε. Then, for any ε < ε, the above construction is a time-lock
puzzle with pre-processing with gap ε.

Remark 4.2.1. As mentioned in [MT19], for certain applications (e.g., e-voting or
sealed-bid auctions) it might be perfectly acceptable to run an expensive setup
ahead of time.

4.3 Sequential Time-Lock Puzzles
In this section, we introduce sequential time-lock puzzles along with their security
and propose an instantiation which we prove secure under a new assumption called
the gap sequential squaring assumption. We also show that this assumption holds,
assuming that factoring is hard in the strong algebraic group model (SAGM) of
Katz et al. [KLX20].
Sequential time-lock puzzles are a particularly useful generalization of basic

TLPs, which yield practical timed-release encryption schemes. To this end, we
generalize Definition 4.2.1 by allowing the Gen algorithm to take multiple different
time parameters as input, which then produces a corresponding set of puzzles.

Definition 4.3.1. A sequential time-lock puzzle is tuple of algorithms sTLP =
(Gen, Solve) with the following syntax.

• (Zi, si)i∈[n] ← Gen(1λ, (Ti)i∈[n]) is a probabilistic algorithm which takes as
input the security parameter 1λ and n non-negative integers (Ti)i∈[n] and
outputs n puzzles together with their solutions (Zi, si)i∈[n] in time at most
poly((log Ti)i∈[n], λ). Without loss of generality we assume in the sequel that
the set (Ti)i∈[n] is ordered and hence Ti < Ti+1 for all i ∈ [n− 1].

• si ← Solve(Zi, si−1) is a deterministic algorithm that takes as input a puzzle
Zi and a solution for puzzle Zi−1 and outputs a solution si, where we define
s0 := ⊥. We require that Solve runs in time at most (Ti − Ti−1) · poly(λ),
where we define T0 := 0.

We say a sequential time-lock puzzle is correct if for all λ, n ∈ N, for all sets of
hardness parameters (Tj)j∈[n] such that ∀j ∈ [n − 1] : Tj < Tj+1, for all i ∈ [n] it
holds

Pr
[
si = s′i : (Zj, sj)j∈[n] ← Gen(1λ, (Tj)j∈[n]), s′i ← Solve(Zi, si−1)

]
= 1.
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ExpsTLPbAi(λ):
(Zj, sj)j∈[n] ← Gen(1λ, (Tj(λ))j∈[n])
(yj := F(Tj(λ), sj))j∈{[n]\{i}}
if b = 0 : yi := F(Ti(λ), si)
if b = 1 : yi $← Y
return b′ ← Ai,λ((Zj, yj)j∈[n])

Figure 4.2: Security experiment for sequential time-lock puzzles.

In order to define a security notion for sequential time-lock puzzles that is useful
for our application of constructing particularly efficient timed-release encryption
schemes, we need to introduce an additional function F : N × S → Y that takes
as input a pair a hardness parameter T ∈ N together with a solution s ∈ S
and outputs elements of some set Y . Instead of requiring that elements si are
indistinguishable from random, we require that yi = F(Ti, si) is indistinguishable
from random. We explain the necessity for the function F after the following
definition.

Definition 4.3.2. Consider the security experiment ExpsTLPbAi(1
λ) in Figure 4.2.

We say that a sequential time-lock puzzle sTLP is secure with gap 0 < ε < 1 and
with respect to the function F, if for all polynomials n in λ there exists a polynomial
T̃ (·) such that for all sets of polynomials (Tj(·))j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥
T̃ (·), for all i ∈ [n] and every polynomial-size adversary Ai = {Ai,λ}λ∈N, where the
depth of Ai,λ is bounded from above by T εi (λ), there exists a negligible function
negl(·) such that for all λ ∈ N it holds

AdvsTLP
Ai =

∣∣∣Pr
[
ExpsTLP0

Ai(λ) = 1
]
− Pr

[
ExpsTLP1

Ai(λ) = 1
]∣∣∣ ≤ negl(λ).

On the need for function F.

The novelty of our security definition is that it is defined with a respect to some
function F. Let us explain why this is necessary.
Our ultimate goal is to build a sequential timed-release encryption scheme based

on a sequential time-lock puzzle. The setup of sTRE generates a set of public
parameters which correspond to an increasing sequence of hardness parameters.
We consider sTRE to be secure if an adversary whose runtime T is less than Ti
can not get any useful information about plaintext from the ciphertext which was
encrypted with respect to hardness parameter Ti (see Definition 4.4.2). The main
idea of our construction is to use solutions of the puzzles as random coins which
are used by the algorithm Gen of a PKE scheme to produce a set of public keys
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pk1, . . . , pkn. To prove the security with respect to an adversary whose runtime is
T < Ti, a reduction must be able to simulate all public keys pk1, . . . , pki−1 perfectly
and therefore it must also know the corresponding solutions s1, . . . , si−1.
One option would be to compute the required solutions s1, . . . , si−1 directly in

the reduction. In this case the runtime of the reduction is at least T + Ti−1 where
T is the runtime of the adversary and time Ti−1 is needed to compute the solutions
s1, . . . , si−1. Depending on the values T, Ti−1 and Ti the runtime of the reduction
can be larger as Ti, therefore this approach does not work.
Another option is to provide the solutions s1, . . . , si−1 to a reduction as part of

the sTLP instance. Unfortunately, this does not work either, because given the
value si−1 one can compute the solution si in time Ti−Ti−1. Therefore the reduction
would only be able to break the assumption that a puzzle for hardness parameter
Ti is secure against adversaries which run in time less than Ti − Ti−1 and we can
not achieve any security for adversaries whose runtime T is Ti − Ti−1 ≤ T < Ti.
Our solution to overcome this difficulty is to construct a TRE scheme which

does not directly use the real solutions si, but instead it uses values F(Ti, si) where
one can think of F as a hard-to-invert function. This way we are able to formulate
a hardness assumption for TLPs where the reduction in the security proof of
the TRE scheme receives F(T1, s1), . . . ,F(Ti−1, si−1),F(Ti+1, si+1), . . . ,F(Tn, sn) as
additional “advice” that can be used to provide a proper simulation. At the same
time it is reasonable to assume that no adversary (our reduction, here) is able to
distinguish F(Ti, si) from random, even if it runs in time up to T < Ti, which is
exactly the upper bound that we have on the TRE adversary.
We remark that Malavolta et al. [MT19, Section 5.4] also describe a similar

approach that allows using multiple hardness parameters at once. The technical
difficulty described here should arise in their construction as well. However, they
provide only informal description without any security proof, hence this is not clar-
ified. We believe that a similar assumption involving an “advice” for the reduction
is also necessary for a security proof of the construction suggested in their work.

4.3.1 Instantiating Sequential TLPs from Sequential Squaring
In order to obtain a sequential TLP, we define a variant of the sequential squaring
assumption in which an adversary is given oracle access to a decisional sequential
squaring verification function DSSvf. DSSvf is defined with respect to values x
and N , and it takes as input a hardness parameter T ′ and a value y′ ∈ QRN and
outputs 1 if y′ = x2T ′ mod N , otherwise it outputs 0. The assumption essentially
states that the computational sequential squaring assumption remains hard, even
if the adversary is given access to DSSvf, akin to other gap assumptions [OP01].
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Definition 4.3.3 (The Gap Sequential Squaring (GSS) Assumption). The gap
sequential squaring assumption with gap 0 < ε < 1 holds relative to GenMod if
there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for
every polynomial-size adversary A = {Aλ}λ∈N, where the depth of Aλ is bounded
from above by T ε(λ), there exists a negligible function negl(·) such that for all
λ ∈ N it holds

AdvGSS
A = Pr

y = x2T mod N :
(p, q,N)← GenMod(1λ), x $← QRN

y ← ADSSvf(·,·)
λ (N, T (λ), x)

 ≤ negl(λ),

where DSSvf(·, ·) is an oracle which takes as input a hardness parameter T ′ and a
value y′ and outputs 1 if and only if y′ = x2T ′ mod N .

Now we are ready to construct our sequential TLP:

• Gen(1λ, (Ti)i∈[n]): Run (p, q,N) ← GenMod(1λ). Randomly sample x $←
QRN and compute values ti := 2Ti mod |QRN |, si := xti mod N for all i ∈ [n]
where |QRN | = (p−1)(q−1)

4 . Set T0 := 0 and output ((N, x, Ti, Ti−1), si))i∈[n].

• Solve((N, x, Ti, Ti−1), si−1): Compute value sTi−Ti−1
i−1 mod N by repeated squar-

ing.

Theorem 4.3.1. If the gap sequential squaring assumption with gap ε holds rel-
ative to GenMod and F is modelled as a random oracle, then for any ε < ε, the
TLP = (Gen, Solve) defined above is a secure sequential time-lock puzzle with gap ε
and with respect to the function F.

Proof. Let T̃GSS(λ) be the polynomial whose existence is guaranteed by the GSS
assumption. Let polyRO(λ) be the fixed polynomial which bounds the time required
to execute Step 1 and simulate random oracle answers as specified in Step 2 of the
adversary Bλ defined below. Set T (λ) := (polyRO(λ))1/ε. Set T̃sTLP := max(T̃GSS, T ).
For any n which is polynomial in λ, any tuple (Tj(·))j∈[n] fulfilling that ∀j ∈ [n]

holds Tj(·) ≥ T̃sTLP(·), any i ∈ [n], from any polynomial-size adversary Ai =
{Ai,λ}λ∈N, where the depth of Ai,λ is bounded from above by T εi (λ), we can con-
struct a polynomial-size adversary B = {Bλ}λ∈N whose depth is bounded from
above by T εi (λ) such that

AdvGSS
B = AdvsTLP

Ai .

Intuitively, an adversary can not distinguish F(Ti, si) from random without ask-
ing (Ti, si) to F, since F is a random oracle. More formally, let Query be the event
that Ai asks (Ti, si) to F, where si is the correct solution of the puzzle (N, Ti, x).
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Then, by arguing as in Shoup’s Difference Lemma [Sho04], we get:

AdvsTLP
Ai =

∣∣∣Pr
[
ExpsTLP0

Ai(λ) = 1
]
− Pr

[
ExpsTLP1

Ai(λ) = 1
]∣∣∣

=
∣∣∣∣Pr

[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

+ Pr
[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

− Pr
[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]
− Pr

[
ExpsTLP1

Ai(λ) = 1 ∧ Query
] ∣∣∣∣

=
∣∣∣∣Pr

[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]
− Pr

[
ExpsTLP1

Ai(λ) = 1 ∧ Query
] ∣∣∣∣

≤Pr[Query].

The second equation follows from the fact that if Query does not happen, then
the value yi is uniformly distributed in both experiments. Therefore the event
ExpsTLP0

Ai(λ) = 1∧Query occurs if and only if ExpsTLP1
Ai(λ) = 1∧Query, so that

we get

Pr
[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

= Pr
[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]
.

The last inequality follows from the fact that both Pr
[
ExpsTLP0

Ai(λ) = 1 ∧ Query
]

and Pr
[
ExpsTLP1

Ai(λ) = 1 ∧ Query
]
are numbers between 0 and Pr[Query].

Hence, in order to complete the proof, we show that Pr[Query] is negligible,
provided that the gap sequential squaring (GSS) assumption holds. To this end,
we define an adversary B which breaks the GSS assumption.
The adversary Bλ(N, T (λ), x):
1. Sets Zj := (N, Tj(λ), Tj−1(λ), x)j∈[n], where Ti(λ) := T (λ) and for all j ∈ [n]

randomly samples values yj from the image of F.

2. Runs Ai,λ((Zj, yj)j∈[n]). It initializes an empty list Q. When Ai,λ makes a
query (T ′(λ), s′) to F, Bλ answers it as follows:

• If there is an entry in Q of the form ((T ′(λ), s′), y) for some y, it returns
y.

• If T ′(λ) = Tj(λ) for some j ∈ [n] and DSSvf(T ′(λ), s′) = 1, stores
((T ′(λ), s′), yj) in Q. If i = j then it outputs s′ as a solution to the GSS
problem. Otherwise, it returns yj to Ai,λ.

• Otherwise, it samples a uniform random value y from the image of F,
stores ((T ′(λ), s′), y) in Q and returns y to Ai,λ.

Notice that B consistently simulates the random oracle for Ai. Moreover, when
Query occurs, then B outputs the correct solution to the GSS problem. Hence,

Pr[Query] ≤ AdvGSS
B .
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Additionally, B fulfils the depth constraint:

depth(Bλ) = polyRO(λ) + depth(Ai,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

On the other hand T (·) ≥ T̃sTLP(·) ≥ T̃GSS(·) as required.
This concludes the proof.

4.3.2 Hardness of the Gap Sequential Squaring Assumption
Now we show that the gap sequential squaring problem is at least as hard as
factoring N in the Strong Algebraic Group Model (SAGM) (see Section 2.7). In
order to prove the hardness of the Gap Sequential Squaring Problem, we use the
following well-known fact which states that we can factor N if a multiple of ϕ(N)
is known. The following lemma extends Lemma 1 of [KLX20] from a success
probability of 1/2 to a success probability negligibly close to 1, which is required
for our proof.

Lemma 4.3.1. Let (p, q,N)← GenMod(1λ) and let m = αϕ(N) for some positive
integer α ∈ Z+. There exists a PPT algorithm Factor(N,m) that on input (N,m)
outputs p′, q′ ∈ N, p′, q′ > 1 such that N = p′q′ with probability at least 1− 2−λ.

Proof. Lemma 1 of [KLX20] guarantees an existence of efficient Factor(N,m) al-
gorithm which has success probability at least 1/2. By running this algorithm
λ-times with independent randomness, we obtain claimed success probability.

We are now ready to state and prove the hardness of the GSS assumption.

Theorem 4.3.2. If the factoring assumption holds relative to GenMod, then the
gap sequential squaring assumption with gap ε holds relative to GenMod in the
SAGM for any 0 < ε < 1.

Proof. We show that for any positive integer T the gap sequential squaring assump-
tion holds against adversaries which perform at most T −1 algebraic steps. Notice
that this means that the gap ε = logT (T −1). Since limT→∞ logT (T −1) = 1, ε can
be defined arbitrary close to 1 by choosing T̃ appropriately. Let A be a strongly
algebraic adversary which executes at most T −1 algebraic steps and asks at most
` queries to DSSvf oracle. Let x ∈ QRN be the group element which is given to A
as part of its challenge. Following [KLX20], we recursively define for any y ∈ QRN

output by A the discrete logarithm of y with respect to A and x, DLA(x, y) ∈ Z+

as follows:

1. DLA(x, x) = 1.
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2. If A outputs (y, y1, y2) in an algebraic step, then DLA(x, y) = DLA(x, y1) +
DLA(x, y2).

3. If A outputs (y, y1) in an algebraic step, then DLA(x, y) = −DLA(x, y1).

Now we can make the following observation. Assume that x is a generator of
QRN . If A outputs a solution s′ of a puzzle (N, T ′, x) in one of its queries to the
DSSvf oracle or as the solution to the puzzle challenge, and at the same time it
holds that DLA(x, s′) 6= 2T ′ , then |QRN | divides 2T ′ − DLA(x, s′). This is because
1 = s′(s′)−1 = x2T ′ (xDLA(x,s′))−1 = x2T ′−DLA(x,s′) mod N . Because DLA(x, s′) 6=
2T ′ this implies that 2T ′ −DLA(x, s′) is a multiple of the order of the group QRN .
Recall that |QRN | = ϕ(N)/4. Hence 4(2T ′ − DLA(x, s′)) is multiple of ϕ(N). By
Lemma 4.3.1 we are able to factor N with probability at least 1− 2−λ.
With this in mind, we are ready to construct an adversary B breaking the

factoring assumption
The adversary B(N):
1. Samples randomly x $← QRN and runs A on input (N, T, x).

2. WheneverA asks a query (T ′, s′) to DSSvf, B recursively computes DLA(x, s′)
and proceeds in the following way:
a) If 2T ′ = DLA(x, s′) then it returns 1 to A.
b) Otherwise, it sets m := 4(2T ′ − DLA(x, s′)) and executes the factoring

algorithm from Lemma 4.3.1. If the factoring algorithm is successful, it
outputs the corresponding factors as a solution to the factoring problem.
Else it outputs 0 to A.

3. When A returns a solution s, B computes DLA(x, s), sets m := 4(2T ′ −
DLA(x, s′)), calls the factoring algorithm from Lemma 4.3.1 and returns
whatever this algorithm returns.

Let us analyse the success probability of B. Let FACTOR be the event that B
successfully outputs the factorization of N and GSS be the event that A outputs
the correct solution of the gap sequential squaring problem. Let GNR denote the
event that the sampled x in Step 1 is a generator. Because x is sampled uniformly
at random and QRN has ϕ(|QRN |) = (p′−1)(q′−1) generators, this event happens
with overwhelming probability. Concretely, Pr[GNR] = 1− 1

p′
− 1

q′
+ 1

p′q′
.

In Step 2(b) we have that 2T ′ 6= DLA(x, s′) and hence if s′ was the solution
of the given puzzle, then we should be able to factor N with probability at least
1 − 2−λ by Lemma 4.3.1. Notice that B answers a DSSvf-query incorrectly only
if s′ is a solution of the puzzle and the factoring algorithm was unsuccessful. Let
FAILi denote the event that B answered the i-th DSSvf query incorrectly and let
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FAIL denote the event that it answered any of the ` queries incorrectly. Then
Pr[FAILi|GNR] ≤ 1

2λ . Hence, the probability of FAIL can be upper bounded by a
union bound:

Pr[FAIL|GNR] = Pr
[∨̀
i=1

FAILi|GNR
]
≤ `

2λ .

We obtain that B answers all DSSvf-queries correctly with probability

Pr[FAIL|GNR] = 1− Pr[FAIL|GNR] ≥ 1− `

2λ .

If the event FAIL does not occur, then B perfectly simulates the Gap Sequential
Squaring experiment. Perfect simulation guarantees that in Step 3, A outputs
a correct solution with probability AdvGSS

A . Therefore Pr[GSS|FAIL] = AdvGSS
A .

However, we are interested in Pr[GSS|GNR ∧ FAIL], which can be bounded as
follows:

AdvGSS
A = Pr[GSS|FAIL]

= Pr[GSS|GNR ∧ FAIL] Pr[GNR] + Pr[GSS|GNR ∧ FAIL] Pr[GNR]
≤ Pr[GSS|GNR ∧ FAIL] Pr[GNR] + Pr[GNR].

Hence,

Pr[GSS|GNR ∧ FAIL] Pr[GNR] ≥ AdvGSS
A − Pr[GNR] = AdvGSS

A −
1
p′
− 1
q′

+ 1
p′q′

.

Now, because A can perform at most T − 1 group operations and the only group
element given as input is x, it must hold DLA(x, s) < 2T−1 (this is formally proven
in [KLX20, Claim in Theorem 2]. Therefore 2T 6= DLA(x, s), which implies that
ϕ(N)|4(2T − DLA(x, s)). By using Lemma 4.3.1 we are able to factor N with
probability at least 1−2−λ. Hence, Pr[FACTOR|GNR∧FAIL∧GSS] ≥ 1−2−λ. We
conclude that

AdvFactor
B = Pr[FACTOR]

= Pr[FACTOR|GNR] Pr[GNR] + Pr[FACTOR|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR ∧ FAIL] Pr[FAIL|GNR] Pr[GNR]
≥ Pr[FACTOR|GNR ∧ FAIL ∧ GSS] Pr[GSS|GNR ∧ FAIL] Pr[FAIL|GNR] Pr[GNR]

≥ (1− 1
2λ )(1− `

2λ )(AdvGSS
A −

1
p′
− 1
q′

+ 1
p′q′

),

which completes the proof.
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Extension to the Strong Sequential Squaring Assumption.

Malavolta et al. [MT19] and Katz et al. [KLX20] also consider the so-called strong
sequential squaring assumption which is stated in Definition 2.5.4 and involves a
two-stage adversary A = {(A1,λ,A2,λ)}λ∈N.
It is straightforward to define a strong gap sequential squaring assumption

(SGSS), with a two-stage adversary A = {(A1,λ,A2,λ)}λ∈N where A1,λ is un-
bounded, but independent of the sequential squaring challenge, while A2,λ is
bounded and additionally has access to a DSSvf oracle as defined in Definition 4.3.3.
We note that the hardness of the strong gap sequential squaring assumption can
be proven in similar way as the hardness of the GSS assumption. Although the
GSS assumption is sufficient for building a sequential TLP, the SGSS assumption
might be useful for future applications.

4.4 (Sequential) Timed-Release Encryption
In this section, we give generic constructions of (sequential) timed-release encryp-
tion schemes based on (sequential) TLPs. There exist several definitions for TRE
and we base ours on that of Unruh [Unr14]. However, we introduce two additional
algorithms Setup and Solve which leads to better modularity and applicability of
TRE, as we illustrate in Section 4.4.5.

Definition 4.4.1. A sequential timed-release encryption scheme TRE with message
spaceM is a tuple of algorithms TRE = (Setup,Enc, Solve,Dec) with the following
syntax.

• (ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Ti)i∈[n]) is a probabilistic algorithm that takes
as input the security parameter 1λ and a set of hardness parameters (Ti)i∈[n]
with Ti < Ti+1 for all i ∈ [n − 1] and outputs a set of public encryption
parameters and public decryption parameters (ppe,i, ppd,i)i∈[n]. We require
that Setup runs in time poly((log Ti)i∈[n], λ).

• si ← Solve(ppd,i, si−1) is a deterministic algorithm that takes as input public
decryption parameters ppd,i and the solution from a previous iteration si−1,
where s0 := ⊥ and outputs a solution si. We require that Solve runs in time
at most (Ti − Ti−1) · poly(λ).

• c ← Enc(ppe,i,m) is a probabilistic algorithm that takes as input public
encryption parameters ppe,i and message m ∈ M and outputs a ciphertext
c.
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• m/⊥ ← Dec(Ti, si, c) is a deterministic algorithm that takes as input a hard-
ness parameter Ti, a solution si and a ciphertext c and outputs m ∈ M or
⊥.

We say a sequential timed-release encryption scheme is correct if for all λ, n ∈ N,
for all sets of hardness parameters (Tj)j∈[n] such that ∀j ∈ [n− 1] : Tj < Tj+1, for
all i ∈ [n] and for all messages m ∈M it holds

Pr

m = m′ :
(ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Tj)j∈[n])

si ← Solve(ppd,i, si−1)
m′ ← Dec(Ti, si,Enc(ppe,i,m))

 = 1.

Note that the above definition also defines “non-sequential” TRE, by setting
n = 1. In that case the value Ti is not needed as an input for the Dec algorithm,
however, for sequential TRE, this value is necessary. For ease of the notation, the
definition of Dec is unified.

Definition 4.4.2. A sequential timed-release encryption scheme is secure with gap
0 < ε < 1 if for all polynomials n in λ there exists a polynomial T̃ (·) such that for
all sets of polynomials (Tj)j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for all i ∈ [n]
and every polynomial-size adversary Ai = {Ai,λ}λ∈N, where the depth of Ai,λ is
bounded from above by T εi (λ), there exists a negligible function negl(·) such that
for all λ ∈ N it holds

AdvTRE
Ai =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(ppe,i, ppd,i)i∈[n] ← Setup(1λ, (Tj(λ))j∈[n])
(m0,m1)← Ai,λ((ppe,i, ppd,i)i∈[n])

b
$← {0, 1}; c← Enc(ppe,i,mb)

b′ ← Ai,λ(c)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

We require that |m0| = |m1|.

4.4.1 Basic TRE Construction
For our constructions we use a (sequential) time-lock puzzle and a public-key
encryption scheme. For security of a PKE scheme we require IND-CPA security,
since this is sufficient to construct a TRE scheme achieving Definition 4.4.2. A
stronger CCA-style security notion for TRE would be achievable by using IND-
CCA secure PKE. However, we consider this as not very useful for TRE, since
it is unclear where in an application a “CCA-oracle” could plausibly exist in an
application before the release time is reached since the decryption key is hidden
until this point in time. After the release time, the ciphertext will be decryptable
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anyway, so we have no security expectations. However, some applications may
require the non-malleability of ciphertexts, which could be achieved via an IND-
CCA-secure public-key encryption scheme, for instance. We discuss this later in
Section 4.5 when talking about Timed Public-Key Encryption.

Construction.

Let TLP = (TLP.Gen, TLP.Solve) be a TLP with solution space S and let PKE =
(PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Figure 4.3 describes our construc-
tion of a TRE scheme. As we have already mentioned, the hardness parameter T
is not necessary as input for Dec, hence we leave it out of the construction.

Setup(1λ, T ) Solve(ppd)
(Z, s)← TLP.Gen(1λ, T ) s← TLP.Solve(ppd)
(pk, sk)← PKE.Gen(1λ; s) return s
return ppe := pk, ppd := Z

Enc(ppe,m) Dec(s, c)
return c← PKE.Enc(ppe,m) (pk, sk)← PKE.Gen(1λ; s)

return m← PKE.Dec(sk, c)

Figure 4.3: Construction of TRE

Theorem 4.4.1. If TLP = (TLP.Gen, TLP.Solve) is a secure time-lock puzzle with
gap ε and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is an IND-CPA-secure public-key
encryption scheme, then for any ε < ε, TRE = (Setup, Solve,Enc,Dec) defined in
Figure 4.3 is a secure timed-release encryption scheme with gap ε.

Proof. Observe that correctness of the scheme is directly implied by the correctness
of the PKE scheme and the TLP.
To prove security we define two games G0 and G1 and show that these are

computationally indistinguishable. For i ∈ {0, 1} we denote by Gi = 1 the event
that the adversary A = {Aλ}λ∈N outputs b′ in game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment, where we use
the Setup directly from our construction.

Game 1. In G1 we replace Setup with the alternative setup algorithm Setup′
from Figure 4.4, in which we sample s′ uniformly at random from S and use it as
randomness for PKE.Gen.
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Setup′(1λ, T )
(Z, s)← TLP.Gen(1λ, T ); s′ $← S
(pk, sk)← PKE.Gen(1λ; s′)
return ppe := pk, ppd := Z

Figure 4.4: Alternative setup

Let T̃TLP(λ) be the polynomial whose existence is guaranteed by the security of
TLP. Let polyPKE(λ) be the fixed polynomial which bounds the time required to
run PKE.Gen and PKE.Enc. Set T := (polyPKE(λ))1/ε. Set T̃TRE := max(T̃TLP, T ).
Lemma 4.4.1. From any polynomial-size adversary A = {Aλ}λ∈N, where the
depth of Aλ is bounded from above by T ε(λ) for some T (·) ≥ T̃TRE(·) we can con-
struct a polynomial-size adversary B = {Bλ}λ∈N, where the depth of Bλ is bounded
by T ε(λ) with

AdvTLP
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

To prove this lemma we construct an adversary B as follows.
The adversary Bλ(Z, s):
1. Runs (pk, sk)← PKE.Gen(1λ, s).

2. Runs (m0,m1)← Aλ(pk, Z).

3. Samples b $← {0, 1} uniformly at random and computes c← PKE.Enc(pk,mb).

4. Finally, runs b′ ← Aλ(c) and returns the truth value of b′ = b.

Note that if s is the solution of the puzzle Z, then B simulates G0 perfectly. If s
is random, then it simulates G1 perfectly. Moreover, B meets the depth constraint:

depth(Bλ) = polyPKE(λ) + depth(Aλ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃TRE(·) ≥ T̃TLP(·). Thus, we can conclude that

|Pr[G0 = 1]− Pr[G1 = 1]| = AdvTLP
B

as required.
Now we can show that we can construct an adversary B′ against the security of

the PKE scheme.
Lemma 4.4.2. From any polynomial-size adversary A = {Aλ}λ∈N we can con-
struct a polynomial-size adversary B′ = {B′λ}λ∈N such that

AdvPKE
B′ =

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ .
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The proof of this lemma is straightforward. Notice that in G1 we use fresh
randomness which is independent of the puzzle Z. We construct B′ as follows.
The adversary B′λ(pk):
1. Runs (Z, s)← TLP.Gen(1λ, T ).

2. Runs (m0,m1)← Aλ(pk, Z).

3. Outputs (m0,m1) to its experiment and receives c.

4. Finally returns b′ ← Aλ(c).

Adversary B′ simulates G1 perfectly. Since A has polynomially-bounded size, this
proves the lemma. By combining Lemmas 4.4.1 and 4.4.2 we obtain following:

AdvTRE
A =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣ ≤ |Pr[G0 = 1]− Pr[G1 = 1]|+
∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣
= AdvTLP

B + AdvPKE
B′ ,

which concludes the proof.

4.4.2 Sequential TRE
Next, let sTLP = (sTLP.Gen, sTLP.Solve) be a sequential TLP in the sense of Def-
inition 4.3.1 and let PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be a PKE scheme. Let
F : N × S → Y be a function that maps the hardness parameter space N and
the solution space S of TLP to the randomness space of algorithm PKE.Gen. Our
constructions of a sequential TRE scheme TRE = (Setup,Enc, Solve,Dec) is given
in Figure 4.5.

Setup(1λ, (Ti)i∈[n]) Solve(ppd,i, si−1)
(Zi, si)i∈[n] ← sTLP.Gen(1λ, (Ti)i∈[n]) si ← sTLP.Solve(ppd,i, si−1)
((pki, ski)← PKE.Gen(1λ; F(Ti, si)))i∈[n] return si
return (ppe,i := pki, ppd,i := Zi)i∈[n]

Enc(ppe,i,m) Dec(Ti, si, c)
return c← PKE.Enc(ppe,i,m) (pki, ski)← PKE.Gen(1λ; F(Ti, si))

return m← PKE.Dec(ski, c)

Figure 4.5: Construction of sequential TRE
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Theorem 4.4.2. If sTLP = (sTLP.Gen, sTLP.Solve) is a secure sequential time-lock
puzzle with gap ε and w.r.t. function F and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is
an IND-CPA-secure public-key encryption scheme, then for any ε < ε, TRE =
(Setup,Enc, Solve,Dec) defined in Figure 4.5 is a secure sequential timed-release
encryption with gap ε.

Proof. Note that correctness of the scheme is directly implied by the correctness
of the PKE scheme and the sequential TLP.
To prove security we define two games G0 and G1. For j ∈ {0, 1} we denote by

Gj = 1 the event that the adversary Ai = {Ai,λ}λ∈N outputs b′ in the game Gj

such that b = b′.

Game 0. Game G0 is the original security experiment with scheme TRE.

Game 1. In G1 we replace Setup with the alternative setup algorithm Setup′ from
Figure 4.6, which takes as input i. For all j ∈ [n] \ {i} we produce keys pkj using
F(Tj, sj). The remaining key pki is generated using fresh randomness sampled
uniformly from the image of the function F.

Setup′(1λ, (Tj)j∈[n], i)
(Zj, sj)j∈[n] ← sTLP.Gen(1λ, (Tj)j∈[n])
((pkj, skj)← PKE.Gen(1λ; F(Tj, sj)))j∈{[n]\{i}}

yi
$← Y, (pki, ski)← PKE.Gen(1λ; yi)

return (ppe,j := pkj, ppd,j := Zj)j∈[n]

Figure 4.6: Alternative setup

Let T̃sTLP(λ) be the polynomial whose existence is guaranteed by the security
of sTLP. Let polyPKE(λ) be the fixed polynomial which bounds the time required
to run PKE.Gen n-times and to run PKE.Enc once. Set T := (polyPKE(λ))1/ε. Set
T̃TRE := max(T̃sTLP, T ).
Lemma 4.4.3. For any n which is polynomial in λ, for any set of polynomials
(Tj(·))j∈[n] fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃TRE(·), for any i ∈ [n], from any
polynomial-size adversary Ai = {Ai,λ}λ∈N, where the depth of Ai,λ is bounded from
above by T εi (λ), we can construct a polynomial-size adversary Bi = {Bi,λ}λ∈N whose
depth is bounded from above by T εi (λ) such that

AdvsTLP
Bi = |Pr[G0 = 1]− Pr[G1 = 1]| .

To prove this claim we construct an adversary Bi as follows.
The adversary Bi,λ((Zj, yj)j∈[n]):
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1. Runs ((pkj, skj)← PKE.Gen(1λ; yj))j∈[n].

2. Runs (m0,m1) $← Ai,λ((pkj, Zj)j∈[n]).

3. Samples b $← {0, 1} uniformly at random and computes c← PKE.Enc(pki,mb).

4. Runs b′ ← Ai,λ(c) and returns the truth value of b′ = b.

If yj = F(Tj, sj) for all j ∈ [n], then Bi simulates G0 perfectly. If the yi is
random, then it simulates G1 perfectly. Therefore we obtain

Pr[G0 = 1] = Pr
[
ExpsTLP0

Bi(1
λ) = 1

]
and Pr[G1 = 1] = Pr

[
ExpsTLP1

Bi(1
λ) = 1

]
and thus

AdvsTLP
Bi =

∣∣∣Pr
[
ExpsTLP0

Bi(1
λ) = 1

]
− Pr

[
ExpsTLP1

Bi(1
λ) = 1

]∣∣∣
= |Pr[G0 = 1]− Pr[G1 = 1]| .

Moreover, Bi fulfils the depth constraint:

depth(Bi,λ) = polyPKE(λ) + depth(Ai,λ) ≤ T ε(λ) + T
ε
i (λ) ≤ 2T εi (λ) = o(T εi (λ)).

Also Ti(·) ≥ T̃TRE(·) ≥ T̃sTLP(·) as required.
Finally, we show that we can construct an adversary against security of the PKE

scheme.
Lemma 4.4.4. For any n which is polynomial in λ, for any set of polynomials
(Tj(·))j∈[n] fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃TRE(·), for any i ∈ [n], from
any polynomial-size adversary Ai = {Ai,λ}λ∈N we can construct a polynomial-size
adversary B′ = {B′λ}λ∈N such that

AdvPKE
B′ =

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ .
The proof is essentially identical to the corresponding step from proof of Theo-

rem 4.4.1, adopted to the sequential setting. We construct B′ as follows.
The adversary B′λ(pk):
1. Runs (Zj, sj)j∈[n] ← sTLP.Gen(1λ, (Tj)j∈[n]).

2. For all j ∈ {[n] \ {i}} sets pkj := PKE.Gen(1λ; F(Tj, sj)). The i-th public key
is defined as pki := pk.

3. Runs adversary (m0,m1)← Ai,λ((pkj, Zj)j∈[n]).

4. Sends (m0,m1) to the challenger and receives c.
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5. Finally, it returns b′ ← Ai,λ(c).

Note that adversary B′ simulates G1 perfectly, which yields Lemma 4.4.4.
Finally, combining Lemmas 4.4.3 and 4.4.4 we obtain

AdvTRE
Ai =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣ = |Pr[G1 = 1]− Pr[G2 = 1]|+
∣∣∣∣Pr[G2 = 1]− 1

2

∣∣∣∣
≤ AdvsTLP

Bi + AdvPKE
B′ ,

which concludes the proof.

4.4.3 Properties of TRE Construction
In this section, we discuss some interesting properties which are achievable by our
generic construction of (sequential) timed-release encryption.

Homomorphic Timed-Release Encryption.

Our construction of sequential timed-release encryption can be simply adjusted to
the homomorphic setting. At first we define the notion of homomorphic sequential
timed-release encryption and then we explain how we can achieve it.

Definition 4.4.3. A homomorphic sequential timed-release encryption scheme
HTRE for a circuit class C = {Cλ}λ∈N is a sequential TRE scheme with one additional
algorithm Eval defined as follows:

• c ← Eval(ppe,i, C, (cj)j∈[l]) is a probabilistic algorithm that takes as input
public parameters ppe, a circuit C ∈ Cλ and a set of ciphertexts (cj)j∈[l],
which were all produced using the same public encryption parameters ppe,i,
and outputs a ciphertext c.

A HTRE scheme is correct if for all λ, n ∈ N, for all sets of hardness parameters
(Tj)j∈[n] such that ∀j ∈ [n − 1] : Tj < Tj+1, for all i ∈ [n], all circuits C ∈ Cλ, all
inputs (m1, . . . ,m`), all (ppe,i, ppd,i) in support of Setup(1λ, (Tj)j∈[n]), and all ci,j
in the support of Enc(ppe,i,mj), the following conditions are satisfied:

• There exists a negligible function negl(·) such that

Pr[Dec(Solve(ppd,i, si),Eval(ppe,i, C, (ci,j)j∈[`]))) 6= C((mj)j∈[`])] ≤ negl(λ).

A HTRE scheme is secure, if it is a secure TRE scheme.
Moreover, homomorphic timed-release encryption should also satisfy compact-

ness. We say that HTRE is compact if there exist two polynomials poly(·) and
poly′(·) such that for all λ, n ∈ N, for all sets of hardness parameters (Tj)j∈[n]
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such that ∀j ∈ [n − 1] : Tj < Tj+1, for all i ∈ [n], all circuits C ∈ Cλ, all inputs
(m1, . . . ,ml), all (ppe,i, ppd,i) in support of Setup(1λ, (Ti)i∈[n]), and all ci,j in the
support of Enc(ppe,i,mj), the following conditions are satisfied:

•
∣∣∣Eval(ppe,i, C, (ci,j)j∈[l])

∣∣∣ = poly(λ, |C((mj)j∈[l])|).

• The runtime of Eval(ppe,i, C, (ci,j)j∈[l]) is bounded by poly′(λ, |C|).

To obtain homomorphic sequential timed-release encryption it is sufficient to
use homomorphic encryption in the construction depicted in Figure 4.5.

Theorem 4.4.3. Let TLP = (TLP.Gen, TLP.Solve) be a secure time-lock puzzle and
PKE = (PKE.Gen, PKE.Enc, PKE.Dec, PKE.Eval) be a secure homomorphic encryption
scheme. Let (Setup,Enc, Solve,Dec) be as defined in Figure 4.5 and define Eval as
follows:

Eval(ppe,i, C, (cj)j∈[l])
c← PKE.Eval(ppe,i, C, (cj)j∈[l]))

Then (Setup,Enc, Solve,Dec,Eval) is a secure homomorphic sequential timed-release
encryption.

Proof. Notice that correctness and security are directly implied by the previous
proof. The reason is that TRE and HTRE have the same correctness and security
definitions and this relation holds also between standard public-key encryption
and homomorphic encryption. It remains to prove compactness. The first condi-
tion of compactness is trivially fulfilled by the compactness of the homomorphic
encryption scheme. Moreover, notice that the Eval algorithm is independent of T .
Therefore, the second condition of compactness is also satisfied.

Publicly Verifiable Timed-Release Encryption.

The notion of publicly verifiable time-lock puzzles was suggested in [EFKP20].
This type of TLPs enables public verification if the provided solution of the puzzle
is indeed the real solution. In the case that a puzzle does not have a solution,
it should be also possible to verify this fact. In more detail, a publicly verifiable
time-lock puzzle consist of (Gen, Solve,Vrfy) where Solve additionally with solution
s outputs a proof π that solution s is correct and Vrfy takes as input a puzzle Z,
a solution s together with a proof π and outputs 0 or 1.
We observe that our construction of timed-release encryption provides also a

similar form of public verifiability with respect to public parameters ppe, ppd pro-
duced by the setup. At first, notice that because we generate a time-lock puzzle
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in the setup which is trusted and we assume perfect correctness of the underlying
TLP, the case that TLP does not have a solution can not happen. Therefore,
if someone claims to provide a candidate solution s for a puzzle generated in the
setup, it is sufficient to run the Gen algorithm of the underlying public-key encryp-
tion scheme with the randomness s and check if the resulting public-key matches
the public-key which was produced during the setup. Hence the Vrfy algorithm is
simply

Vrfy(ppe, ppd, s, π)
(pk, sk)← PKE.Gen(1λ; s)

return ppe = pk

where s is a candidate solution, ppe, ppd are public encryption/decryption parame-
ters from our TRE construction and π := ⊥. Notice that if a public-key encryption
scheme is perfectly complete, then for one pk there can not be different secret keys
output by PKE.Gen which would behave differently in their decryption behaviour.
In this case, the correctness of the decryption is guaranteed. There might also
be another s′ 6= s which could generate the same public/secret key pair, but as
long as we are interested only in the correctness of decryption, this case is not
interesting for us. If one would like to enforce that only the real solution of the
puzzle should pass the verification, then there are two options. Let us denote by
R the randomness space of PKE.Gen algorithm for which it produces different keys.
If S ⊆ R, then there does not exist another value s′ 6= s which would yield the
same public-key. If R ⊂ S, then one can apply a collision-resistant hash function
and then finding another s′ 6= s such that H(s) = H(s′) would be infeasible.

Optimal amortized costs.

As we have already discussed in the introduction, our timed-release encryption
scheme achieves the “solve one, get many for free” property which in other words
means it allows to decrypt a large number of ciphertexts by solving only one
puzzle. This is in contrast to homomorphic time-lock puzzles which are useful
in applications where one is interested only in the result of some computation
applied to messages encrypted in the corresponding puzzles, however, if access to
all messages is needed, then indeed all puzzles have to be solved independently
when relying on HTLPs.
We remark that our scheme allows to decrypt an arbitrary number of messages

which are encrypted using the same public encryption parameters. Hence for
n independently time-locked messages m1, . . . ,mn our scheme is the first one to
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achieve an optimal amortized cost of decryption per ciphertext of

n · TPKE.Dec + TTLP

n

where TPKE.Dec is the time required to run the decryption algorithm of PKE scheme
and TTLP is the time required to solve the puzzle. Note that this approaches TPKE.Dec
with increasing n. This also holds for our sequential TRE scheme.

Sequential TRE with public servers.

Another interesting property achievable by our notion of sequential timed-release
encryption is the possibility to combine it with some public server whose task
is to compute solutions si which correspond to hardness parameters Ti. Here is
particularly useful that the solution si can be computed from the solution si−1 in
time which is determined by the hardness parameter Ti − Ti−1 and therefore one
sever is sufficient to compute all solutions. The validity of published solutions can
be publicly verified as explained earlier and consequently the solutions can be used
to decrypt an arbitrary number of ciphertexts. Moreover, the server is independent
of these ciphertexts, which is not achievable by prior constructions. Hence, the
burden of executing the expensive computation is delegated to a server and for
decrypting parties it is sufficient to wait until the required solution is published.
At this point, it is useful to remark that the above-mentioned proposal is indeed

different from the notion of timed-release encryption which relies on trusted agents.
The main difference is that we only require a trusted setup, however, the latter
one requires a trusted party that is not only involved in running the setup but
must be trusted the whole time until confidentially releasing the secret keys at
a specified point in time. We note that when combining sequential TRE with a
public server, there is no way for the server to reveal solutions before the specified
time has passed.
Our notion of (sequential) TRE relies on a trusted setup which is not required

by standard TLPs. This might be problematic especially in scenarios where the
trusted setup should be performed by a third-party server or in the case when the
server becomes unavailable. To mitigate these issues, one could run n servers in
parallel. Messages can be split into shares using a (k, n)-threshold secret sharing
scheme (e.g., [Sha79]) and public parameters of each server would be used to
encrypt a share of the message. The security of the threshold secret sharing scheme
guarantees that the message remains hidden even if k − 1 servers would collude.
At the same time, k shares are sufficient to recover the message and therefore even
if (n− k) servers are unavailable, messages would be still recoverable.
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4.4.4 Integrating Timed-Release Features into Functional
Encryption

Our timed-release encryption enables us to incorporate timed-release features in
functional encryption (FE). For details regarding FE see Section 2.3.5 where we
also discuss one concrete variant of functional encryption, namely identity-based
encryption (IBE). At first, we formally define a new primitive which combines
properties of both functional and timed-release encryption. Then we construct
this primitive generically and finally, we discuss one possible application.

Timed-Release Functional Encryption.

We introduce the notion of a (sequential) timed-release functional encryption
(TRFE) scheme. Similarly to FE, TRFE provides a public key pk that is used
for encryption of arbitrary messages and a master secret key msk which is asso-
ciated with a class of functions F . However, in TRFE the master secret key msk
is used to generate a decryption key dki which is associated with both a function
f ∈ F and a hardness parameter Ti. In order to decrypt, one has to compute
the solution si which corresponds to the hardness parameter Ti. Then using the
solution si and decryption key dki, one can obtain value f(x) from a ciphertext c
that is encryption of the message x under pk.

Definition 4.4.4. A (sequential) TRFE scheme TRFE for a class of functions
F = {Fλ}λ∈N consists of five efficient algorithms (Setup,KeyGen,Enc, Solve,Dec).
Let Xλ be the input space of Fλ and let Yλ be the output space of Fλ.

• (pk,msk, (ppe,j, ppd,j)j∈[n]) ← Setup(1λ,F , (Tj)j∈[n]) is a probabilistic algo-
rithm that takes as input the security parameter 1λ, a class of functions F ,
and hardness parameters (Tj)j∈[n] with T1 < . . . < Tn and outputs a public
key pk, a master secret key msk, and public encryption and decryption pa-
rameters PP := (ppe,j, ppd,j)j∈[n]. We require that Setup runs in time at most
poly((log Tj)j∈[n], λ).

• dki ← KeyGen(msk, (ppe,j)j∈[n], f, i) is a probabilistic algorithm that takes as
input the master secret key msk, public encryption parameters (ppe,j)j∈[n], a
function f ∈ Fλ, and index i ∈ [n] and outputs a decryption key dki.

• c ← Enc(pk, x) is a probabilistic algorithm that takes as input a public key
pk and a message x ∈ Xλ and outputs a ciphertext c.

• si ← Solve(ppd,i, si−1) is a deterministic algorithm that takes as input public
decryption parameters ppd,i and the solution from a previous iteration si−1,
where s0 = ⊥, and outputs the solution si. We require that Solve runs
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in time at most (Ti − Ti−1) · poly(λ) where Ti and Ti−1 are the associated
hardness parameters for si and si−1, respectively.

• f(x′) ← Dec(dki, Ti, si, c) is a deterministic algorithm that takes as input a
decryption key dki, a hardness parameter Ti, a solution si, function f , and
ciphertext c and outputs f(x′) ∈ Yλ ∪ {⊥}.

We say a sequential timed-release functional encryption scheme for class of func-
tions F is correct if for all λ, n ∈ N, for all sets of hardness parameters (Tj)j∈[n]
such that T1 < . . . < Tn, for all f ∈ Fλ, i ∈ [n],x ∈ X , it holds:

Pr

Dec(dki, Ti, si, c) = f(x) :

(pk,msk,PP)← Setup(1λ,F , (Tj)j∈[n])
dki ← KeyGen(msk, (ppe,j)j∈[n], f, i)

si ← Solve(ppd,i, si−1), s0 := ⊥
c← Enc(pk, x)

 = 1.

Definition 4.4.5. A (sequential) TRFE scheme TRFE is IND-CPA secure with
gap 0 < ε < 1 if for all polynomials n in λ there exists a polynomial T̃ (·) such
that for all sets of polynomials (Tj)j∈[n] fulfilling that ∀j ∈ [n] : Tj(·) ≥ T̃ (·), for
all i ∈ [n] and every polynomial-size adversary Ai = {Ai,λ}λ∈N, where the depth
of Ai,λ is bounded from above by T εi (λ), there exists a negligible function negl(·)
such that for all λ ∈ N it holds

AdvTRFE
Ai =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′:

(pk,msk,PP)← Gen(1λ,F , (Tj)j∈[n])
(x0, x1)← AKEYGEN(·,·)

i,λ (pk,PP)
b← {0, 1}, c← Enc(pk, xb)

b′ ← AKEYGEN(·,·)
i,λ (c)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle KEYGEN(f, h) returns KeyGen(msk, (ppe,j)j∈[n], f, h) with the re-
striction that if Aλ queries the oracle with function f ∈ F at index h ∈ [i − 1],
then it must hold f(x0) = f(x1).

Construction of TRFE.

Let TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) be a(sequential) timed-release
encryption scheme and FE = (FE.Gen, FE.KeyGen, FE.Enc, FE.Dec) be a functional
encryption scheme. We construct a timed-release functional encryption scheme
TRFE = (Setup,KeyGen,Enc, Solve,Dec) as given in Figure 4.7. Let the mes-
sage space of TRE be the functional secret key space of FE which is the output of
FE.KeyGen.
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Gen(1λ,F , (Tj)j∈[n]) Enc(pk, x)
(pk,msk)← FE.Gen(1λ,F) return c← FE.Enc(pk, x)
(ppe,j, ppd,j)j∈[n] ← TRE.Setup(1λ, (Tj)j∈[n])
return (pk,msk, (ppe,j, ppd,j)j∈[n])

KeyGen(msk, (ppe,j)j∈[n], f, i) Dec(dki, Ti, si, c)
skf ← FE.KeyGen(msk, f) ci := dki
ci ← TRE.Enc(ppe,i, skf ) skf := TRE.Dec(Ti, si, ci)
return dki := ci return f(x) := FE.Dec(skf , c)

Solve(ppd,i, si−1)
return si := TRE.Solve(ppd,i, si−1)

Figure 4.7: Construction of TRFE.

Theorem 4.4.4. If TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) is a secure se-
quential timed-release encryption scheme with gap ε and FE = (FE.Gen, FE.KeyGen,
FE.Enc, FE.Dec) is an IND-CPA-secure functional encryption scheme, then for any
ε ≤ ε, TRFE = (Setup,KeyGen,Enc, Solve,Dec) defined in Figure 4.7 is an IND-
CPA-secure timed-release functional encryption scheme with gap ε.

Proof. Correctness of the TRFE scheme is implied by the correctness of the TRE
scheme and the correctness of the FE scheme.
To prove security, we proceed in a sequence of games G0 and G1. For j ∈ {0, 1} we

denote by Gj = 1 the event that the adversary Ai = {Ai,λ}λ∈N outputs b′ in game
Gj such that b = b′. We denote the functional secret key space by K. We remark
that in the proof we use an alternative security definition for sequential TRE,
where security is defined using two experiments and in one experiment adversary
is always given an encryption of the message m0, in the second experiment it is
always given an encryption of m1 (in the similar way how security of a sTLP is
defined). This definition is equivalent to the original one.

Game 0. Game G0 is the original security experiment.

Game 1. In G1, all KEYGEN-queries for indices k with i ≤ k ≤ n are answered by
sampling a decryption key of an appropriate length from K uniformly at random
and encrypting it using TRE.
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Lemma 4.4.5. Let q be the total number of KEYGEN-queries of type (f, k) where
i ≤ k ≤ n. There exists a negligible function negl(·) such that

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ negl(λ).

This can be shown by a hybrid argument where we go over all q queries in a
step-by-step fashion. Since the proof is always the same depending on the index
of the actual query, we show the proof for the `-th query only. Hence we define a
sequence of hybrid games G0,` for ` ∈ {0, 1, . . . , q}. In G0,` the first ` queries with
index j ≥ i are answered by sampling a secret key uniformly at random from K.
Notice that G0 = G0,0 and G1 = G0,q. Now we show that games G0,`−1 and G0,` are
indistinguishable. Assume that `-th query to KEYGEN-oracle is for index k ≥ i.
Let T̃TRE(λ) be the polynomial whose existence is guaranteed by the security of

sTRE. Let polyFE(λ) be the fixed polynomial which bounds the time required to
run FE.Gen, FE.Enc and answer the queries of Ai,λ as described in Step 2 of the
adversary Bk,λ defined below. Set T := (polyFE(λ))1/ε. Set T̃FTRE := max(T̃TRE, T ).
Claim 4.4.1. For any n which is polynomial in λ, any set of polynomials (Tj(·))j∈[n]
fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃FTRE(·), for any i ∈ [n], from any polynomial-
size adversary Ai = {Ai,λ}λ∈N, where the depth of Ai,λ is bounded from above by
T
ε
i (λ), we can construct a polynomial-size adversary Bk = {Bk,λ}λ∈N whose depth

is bounded from above by T εk(λ) such that

AdvTRE
Bk = |Pr[G0,`−1 = 1]− Pr[G0,` = 1]| .

The adversary Bk,λ((ppe,j, ppd,j)j∈[n]):
1. Runs (pk,msk)← FE.Gen(1λ,F) and sets d := 0

2. Runs (x0, x1) ← Ai,λ(pk, (ppe,j, ppd,j)j∈[n]) and it answers KEYGEN-queries
(f, h) as follows. At first if i ≤ h ≤ n sets d := d+ 1. Then

• If f /∈ Fλ ∨ h /∈ [n] returns ⊥.
• If (h ∈ [i− 1]) ∨ (i ≤ h ≤ n ∧ d < `), it runs skf ← FE.KeyGen(msk, f),
ch ← TRE.Enc(ppe,h, skf ) and returns ch.

• If i ≥ h ≥ n ∧ d = `, it computes sk0 ← FE.KeyGen(msk, f) and
samples randomly sk1

$← K such that |sk0| = |sk1|, sends (sk0, sk1) to
its challenger and receives c as answers. It returns c.

• Otherwise, computes skf $← K, ch ← TRE.Enc(ppe,h, skf ) and returns ch.

3. Picks randomly b $← {0, 1} and computes c← FE.Enc(pk, xb).

4. Runs b′ ← Ai,λ(c), answers KEYGEN-queries as before and outputs the truth
value of b = b′.
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If c is the encryption of sk0, then B simulates G0,`−1 perfectly, otherwise it simulates
G0,` perfectly. Therefore

AdvTRE
Bk = |Pr[G0,`−1 = 1]− Pr[G0,` = 1]| ,

as claimed.
Furthermore, B meets the depth constraint:

depth(Bk,λ) = polyFE(λ) + depth(Ai,λ) = T ε(λ) + T
ε
i (λ) ≤ T ε(λ) + T

ε
k(λ) ≤ 2T εk(λ)

= o(T εk(λ)).

Also Ti(·) ≥ T̃FTRE(·) ≥ T̃TRE(·) as required. This proves the claim.
Ai makes at most q queries for indices k, where i ≤ k ≤ n and q is some

polynomial in security parameter. Because AdvTRE
Bk ≤ negl′(λ) for some negligible

function negl′(·), and the sum of q negligible functions is still negligible function
for q which is polynomial in the security parameter. Hence, we can conclude

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ negl(λ),

where negl(·) is some negligible function.
Now we construct an adversary against the security of the FE scheme.

Lemma 4.4.6. For any n which is polynomial in λ, for any set of polynomials
(Tj(·))j∈[n] fulfilling that ∀j ∈ [n] holds Tj(·) ≥ T̃TRE(·), for any i ∈ [n], from
any polynomial-size adversary Ai = {Ai,λ}λ∈N we can construct a polynomial-size
adversary B′ = {B′λ}λ∈N such that

AdvFE
B′ =

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ .
The adversary B′λ(pk):
1. Runs (ppe,j, ppd,j)j∈[n] ← TRE.Setup(1λ, (Tj)j∈[n]).

2. Runs (x0, x1)← Ai,λ(pk, (ppe,j, ppd,j)j∈[n]) and answers KEYGEN-queries (f, h)
as follows:

• If f /∈ Fλ ∨ h /∈ [n], it returns ⊥.
• If h < i forwards f to KEYGEN-oracle of B′λ, encrypts the answer skf

under ppe,h computing ch ← TRE.Enc(ppe,h, skf ) and returns ch.

• Otherwise, samples randomly skf $← K of appropriate length, computes
ch ← TRE.Enc(ppe,h, skf ) and returns ch.

3. Forwards (x0, x1) to its challenger and receives c.

85



4. Runs b′ ← Ai,λ(c), answers KEYGEN-queries as before and outputs b′.

B simulates the TRFE experiment perfectly, which yields Lemma 4.4.6.
Finally, combining Lemmas 4.4.5 and 4.4.6 we obtain

AdvFTRE
Ai =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣ = |Pr[G0 = 1]− Pr[G1 = 1]|+
∣∣∣∣Pr[G1 = 1]− 1

2

∣∣∣∣
≤ negl(λ) + AdvFE

B′ ,

which concludes the proof.

Application to locked-key IBE.

Since identity-based encryption is a special case of functional encryption, as an
interesting application of TRFE we can time-lock secret keys of an IBE scheme.
In more detail, the central authority in an IBE scheme can attach hardness pa-
rameters to generated keys. As a consequence, those keys become usable only
sequentially. This, for example, enables an IBE key authority to produce all secret
keys in the beginning and afterwards go off-line.

4.4.5 Applications
Subsequently, we discuss the applications in [MT19] when we use our (homomor-
phic) TRE approach in contrast to HTLPs of MT19. All the following applications
have in common that they require decrypting a set of encrypted messages at some
given time. Our approach to TRE allows decrypting an arbitrary number of mes-
sages at a specified time by solving one puzzle. In [MT19] this is achieved by a
homomorphic evaluation of puzzles and then solving one or more resulting puzzles.
The drawback of this solution is that one needs to wait until all puzzles of interest
have been collected, then execute a homomorphic evaluation, and only after that,
the resulting puzzles can be solved. Our scheme allows starting to solve the puzzle
immediately after Setup is run. In all of these applications we are able to use our
TRE approach without any homomorphic property.
E-voting. We focus on designing an e-voting protocol in absence of a trusted
party, where voters can cast their preference without any bias. Similarly to [MT19],
we neither consider privacy nor authenticity of the votes. The crucial property of
our TRE is that the setup can be reused for producing an arbitrary number of ci-
phertexts and for that reason it is enough to run Solve only once. The output s of
Solve allows obtaining the secret key which is then used to decrypt all ciphertexts
that have been produced using the corresponding ppe. Therefore, if we encrypt all
votes using the same ppe, we are able to decrypt all ciphertexts at the same time.
Then it is easy to obtain the final result by combining decrypted plaintexts. We

86



assume a scenario with n voters and m candidates. All voters have access to a
public append-only bulletin board. The e-voting protocol consists of an election
setup, a voting phase and a counting phase. The election setup outputs public
parameters which can be used during the voting phase and the counting phase.
During the voting phase, every voter Vi outputs a vote for a candidate of its pref-
erence. In the counting phase, the votes are counted and the candidate with a
maximum number of votes is announced. In order to avoid any bias, the votes
have to be kept secret during the voting phase. Our e-voting protocol is given in
Figure 4.8.

Election Setup
Run (ppe, ppd)← TRE.Setup(1λ, T ) and publish public parameters to be
accessible by all the voters.
Run s← TRE.Solve(ppd).

Voting Phase
Every voter Vi simply encrypts its preferred candidate Cj.
Compute vi ← TRE.Enc(ppe, Cj) and output vi.

Counting Phase
For all vi run Cj ← TRE.Dec(s, vi).
Output the candidate Cj with the maximum number of votes.

Figure 4.8: E-voting protocol

Notice that the security of the TRE scheme guarantees that all votes remain
hidden during the whole voting phase. In the e-voting protocol proposed in [MT19],
we have to wait until the voting phase is finished and then we can combine puzzles
from the voting phase to m resulting puzzles (one per candidate where votes are
encoded as 0 and 1 respectively). Then, these m puzzles can be solved, which
requires at least time T and solving m puzzles in parallel. Hence, it requires time
T after the voting phase is over to be able to announce the results. This is in
contrast to what we can do with our TRE, in which we can encrypt the respective
encoding of the candidate i ∈ [m] directly, and can start to solve a single puzzle
immediately after Setup is run and hence the results are available at the beginning
of the counting phase.
Multi-Party Coin Flipping. In multi-party coin flipping, we assume n parties
which want to flip a coin in the following way: 1) The value of the coin is unbiased
even if n−1 parties collude and 2) all parties agree on the same value for the coin.
The approach proposed in [MT19] relies on HTLPs and their protocol consists of

87



three phases: Setup, Coin Flipping, and Announcement of the result. Similarly to
the e-voting protocol, one is only able to start solving the puzzle in the last phase
and hence obtains the results after time T . We are able to avoid this problem, by
using our TRE approach, where we can start to solve the puzzle already after the
setup phase.
Sealed-Bid Auctions. Here we consider an auction with n bidders. The pro-
tocol consists of two phases: a bidding phase and an opening phase. Bids should
be kept secret during the bidding phase and later revealed in the opening phase.
Time-lock puzzles are used in this scenario to mitigate the issue that some bidders
can go offline after the bidding phase. If we only use standard time-lock puzzles,
then the number of puzzles that have to be solved in the opening phase is equal
to the number of bidders who went offline. In [MT19] this problem was resolved
by using HLTPs. Again, this solution has the same issues as the ones discussed
above and can be avoided using our TRE approach.
Multi-Party Contract Signing. In multi-party contract signing, we assume n
parties which want to jointly sign a contract. The parties are mutually distrusting
and the contract is valid only if it is signed by all parties. The protocol in [MT19]
consists of four phases: setup, key generation, signing, and aggregation, and com-
bines aggregate signatures from RSA with multiplicatively homomorphic time-lock
puzzles with a setup that allows producing puzzles for different hardness parame-
ters. We remark that this type of time-lock puzzles are in some sense equivalent
to our sequential timed-release encryption.1 The protocol runs in ` rounds and
in the i-th round every party should create a puzzle with hardness T`−i+1 which
contains a signature of the required message. Hence, the hardness of the puzzles
decreases in every round. If some parties have not broadcasted their puzzles in
any round, the parties will homomorphically evaluate puzzles from the previous
round and solve the resulting puzzle.
Consider a scenario, where in the i-th round some party does not broadcast

its puzzle. Then if we do not take the time for the homomorphic evaluation
into account, we need time T`−i+1 to solve the resulting puzzle after this event
happened. On the other hand, if we use sequential TRE, we can obtain the result
in time T`−i+1 after the setup was executed. Moreover, we can combine sequential
TRE with an arbitrary aggregate signature scheme, because we do not need to
perform any homomorphic evaluation.
Remark 4.4.1. Note that in all of these applications we could use Offline Time-
Lock Encryption instead of Timed-Release Encryption. Since OTLE relies on
extractability obfuscation, which is not practical or even feasible yet, we discussed

1Though they only discuss them informally in [MT19] and as mentioned in Section 4.3 it seems
that it is not possible to prove it secure as it is proposed.
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all applications using TRE. This also enables better comparability with HTLPs.

4.5 Timed Public-Key Encryption
Timed Public-Key Encryption (TPKE) has been proposed by Katz et al. [KLX20]
concurrently with our notion of Timed-Release Encryption. The main conceptual
difference between the two is that TPKE has an additional decryption algorithm
that allows for fast decryption using a secret key. Moreover, the security definition
of TPKE requires that the time which is needed for decryption without the secret
key starts to run from the point of creating a ciphertext and the scheme should
be IND-CCA secure. TPKE has been used as a building block for non-malleable
timed-commitments, which explains the need for IND-CCA security. There is cur-
rently only one known construction of TPKE scheme which has some inefficiency
issues. Concretely, the time required to encrypt a single message is proportional to
the hardness parameter T . We solve this issue in two ways. One can observe that
if we allow that time starts to run from the point of running the setup algorithm,
then our TRE scheme can be adjusted to TPKE. In case that such a security ad-
justment is not desirable, we propose two constructions of TPKE which are more
efficient than the one described by Katz et al. [KLX20].
At first we recall the definition of a timed public-key encryption scheme as stated

in [KLX20].
Definition 4.5.1. A timed public-key encryption scheme TPKE with message space
M is tuple of algorithms TPKE = (KGen,Enc,Decf ,Decs) with following syntax.

• (pk, sk)← KGen(1λ, T ) is a probabilistic algorithm that takes as input the se-
curity parameter 1λ and a hardness parameter T and outputs a public/secret
key pair.

• c← Enc(pk,m) is a probabilistic algorithm that takes as input a public key
pk and a message m and outputs a ciphertext c in time at most te.

• m ← Decf (sk, c) is a deterministic fast decryption algorithm that takes as
input a secret key sk and a ciphertext c and outputs m ∈ M∪ {⊥} in time
at most tfd.

• m ← Decs(pk, c) is a deterministic slow decryption algorithm that takes as
input a public key pk and a ciphertext c and outputs m ∈M∪ {⊥} in time
at most tsd.

We say TPKE is correct if for all λ, T ∈ N and all m ∈M holds:

Pr
[
Decf (sk, c) = Decs(pk, c) = m :

(pk, sk)← KGen(1λ, T )
c← Enc(pk,m)

]
= 1.
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As the names of the decryption algorithms in Definition 4.5.1 suggest, it should
hold that tfd is much smaller than tsd. Now we state the original security definition,
however, adjusted to the computational model which is used in this thesis.

Definition 4.5.2. A TPKE scheme TPKE is IND-CCA secure with gap 0 < ε < 1
if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and
every polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is
at most T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N it
holds

AdvTPKE
A =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← KGen(1λ, T (λ))
(m0,m1, st)← ADEC(·)

1,λ (pk)
b

$← {0, 1}; c∗ ← Enc(pk,mb)
b′ ← ADEC(·)

2,λ (c∗, st)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle DEC(c) returns Decf (sk, c) with the restriction that A2,λ is not
allowed to query the oracle DEC(·) for decryption of the challenge ciphertext c∗.
We require that |m0| = |m1|.

We also assume relaxation of the above security definition and let the time
required to decrypt messages using the slow decryption starts with the running of
KGen. Because this security definition is weaker we denote it as weak IND-CCA
security.

Definition 4.5.3. A TPKE scheme TPKE is weak IND-CCA secure with gap 0 <
ε < 1 if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·)
and every polynomial-size adversary A = {Aλ}λ∈N, where the the depth of Aλ is
at most T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N it
holds

AdvTPKE
A =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(pk, sk)← KGen(1λ, T (λ))
(m0,m1)← ADEC(·)

λ (pk)
b

$← {0, 1}; c∗ ← Enc(pk,mb)
b′ ← ADEC(·)

λ (c∗)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the oracle DEC(c) returns Decf (sk, c) with the restriction that after giving
adversary Aλ the challenge ciphertext c∗, Aλ is not allowed to query the oracle
DEC(·) for the challenge ciphertext c∗. We require that |m0| = |m1|.
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KGen(1λ, T ) Decs(pk, c)
(Z, s)← TLP.Gen(1λ, T ) Parse pk as (pk′, Z)
(pk′, sk′)← PKE.Gen(1λ; s) s← TLP.Solve(Z)
return pk := (pk′, Z), sk := sk′ (pk′, sk′)← PKE.Gen(1λ; s)

return m← PKE.Dec(sk′, c)

Enc(pk,m) Decf (sk, c)
Parse pk as (pk′, Z) return m← PKE.Dec(sk′, c)
return c← PKE.Enc(pk′,m)

Figure 4.9: Construction of weak IND-CCA secure TPKE

4.5.1 Weak IND-CCA-secure TPKE
To obtain TPKE from our TRE construction we simply let Setup of TRE output
a secret key, which can be then used for fast decryption.

Theorem 4.5.1. Let TLP = (TLP.Gen, TLP.Solve) be a secure time-lock puzzle with
gap ε and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) be an IND-CCA-secure public-key
encryption scheme, then TPKE = (KGen,Enc,Decf ,Decs) defined in Figure 4.9 is
a weak IND-CCA-secure timed public-key encryption scheme with gap ε for any
ε < ε.

Proof. The proof of this theorem is essentially the same as the proof of The-
orem 4.4.1. We only have to argue that in each game we are able to answer
decryption queries. In the game G1 this can be done using sk of the underlying
PKE scheme. In the game G2, where we build a reduction against CCA security
of the underlying PKE scheme, we can use decryption oracle DEC(·) to answer
decryption queries.

We note that the constructed TPKE can be used in the construction of non-
malleable timed commitment via the framework of Katz et al. [KLX20], however,
the security definition of non-malleable timed commitment must be adjusted to
allow the time required to perform forced open of a commitment starts with the
generation of the parameters. Notice that this would lead to the “solve one, get
many for free” property in a sense that by solving one puzzle many commitments
can be opened at once.

4.5.2 Generic Construction of IND-CCA-secure TPKE
Now we build a TPKE scheme achieving the original IND-CCA security notation
generically from any timed-release encryption. For security, we require a slightly
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stronger security notion than the one assumed in Definition 4.4.2. We allow an
adversary to execute some preprocessing at the beginning of an experiment and
we define security using two experiments. In the first experiment, an adversary
is given an encryption of the message of its choice and in the second experiment,
the adversary is given an encryption of the random message. We require that even
with pre-processing the adversary is not able to distinguish between these two
experiments unless the adversary has sufficient running time to decrypt messages.
Defining security using two experiments allows us for a simpler security proof of
TPKE.

ExpTRE-PPbA(λ):
st← A1,λ
(ppe, ppd)← Setup(1λ, T (λ))
m0 ← A2,λ(ppe, ppd, st)
m1

$←M s.t. |m0| = |m1|
c← Enc(ppe,mb)
return b′ ← A2,λ(c)

Figure 4.10: Security experiment for TRE secure against pre-processing.

Definition 4.5.4. Consider the security experiment ExpTLP-PPbA(λ) depicted in
Figure 4.10. A timed-release encryption is secure against pre-processing with gap
0 < ε < 1 if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·)
and every polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth of
A2,λ is at most T ε(λ), there exists a negligible function negl(·) such that for all
λ ∈ N it holds

AdvTRE-PP
A =

∣∣∣Pr
[
ExpTRE-PP0

A(λ) = 1
]
− Pr

[
ExpTRE-PP1

A(λ) = 1
]∣∣∣ ≤ negl(λ).

We can build TRE secure against pre-processing from a TLP and PKE similarly
as in our basic construction of TRE in Figure 4.3, however, the TLP has to be
also secure against pre-processing. Therefore we define a stronger security notion
for TLPs, where an adversary can execute some pre-processing at the beginning
of the game, and even with the pre-processing the solution of the puzzle should
be indistinguishable from random unless the adversary has sufficient running time
to solve the puzzle. Notice that if we instantiate a TLP with sequential squaring,
then this security notion is directly implied by the strong sequential squaring
assumption (Definition 2.5.4).

Definition 4.5.5. Consider the security experiment ExpTLP-PPbA(λ) depicted in
Figure 4.11. We say that a time-lock puzzle TLP is secure against pre-processing
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ExpTLP-PPbA(λ):
st← A1,λ, b

$← {0, 1}
(Z, s0)← Gen(1λ, T (λ))
s1

$← S
return b′ ← A2,λ(Z, sb, st)

Figure 4.11: Security experiment for TLP secure against pre-processing.

with gap 0 < ε < 1, if there exists a polynomial T̃ (·) such that for all polynomials
T (·) ≥ T̃ (·) and every polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the
depth of A2,λ is at most T ε(λ), there exists a negligible function negl(·) such that
for all λ ∈ N it holds

AdvTLP-PP
A =

∣∣∣Pr
[
ExpTLP-PP0

A(λ) = 1
]
− Pr

[
ExpTLP-PP1

A(λ) = 1
]∣∣∣ ≤ negl(λ).

Now we show that the construction in Figure 4.3 yields a TRE scheme secure
against pre-processing if the TLP is also secure against preprocessing. In the proof
we uses the RoR-CPA security definition for PKE.

Theorem 4.5.2. If TLP = (TLP.Gen, TLP.Solve) is a secure time-lock puzzle against
pre-processing with gap ε and PKE = (PKE.Gen, PKE.Enc, PKE.Dec) is an RoR-CPA-
secure public-key encryption scheme, then for any ε < ε, TRE = (Setup, Solve,Enc,
Dec) defined in Figure 4.3 is a secure timed-release encryption scheme against
pre-processing with gap ε.

Proof. This proof is similar to the security proof of our basic TRE construction.
Correctness of the scheme is directly implied by the correctness of the PKE scheme
and the TLP.
To prove security, we define a sequence of games G0 − G3. For i ∈ {0, 1, 2, 3}

we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ = 1 in game Gi.

Game 0. Game G0 corresponds to the experiment ExpTLP-PP0
A, where A is given

encryption of the message m0.

Game 1. In G1 we sample s uniformly at random from S and use it as randomness
for Gen of PKE.
Let T̃TLP(λ) be the polynomial whose existence is guaranteed by the security of

TLP. Let polyPKE(λ) be the fixed polynomial which bounds the time required to
run PKE.Gen and PKE.Enc. Set T := (polyPKE(λ))1/ε. Set T̃TRE := max(T̃TLP, T ).
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Lemma 4.5.1. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
the depth of A2,λ is bounded from above by T ε(λ) for some T (·) ≥ T̃TRE(·) we can
construct a polynomial-size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ
is at most T ε(λ) with

AdvTLP-PP
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

We construct an adversary B = {(B1,λ,B2,λ)}λ∈N as follows.
The adversary B1,λ:
1. Runs st← A1,λ.

2. Outputs the state st.

The adversary B2,λ(Z, sb, st):
1. Runs (pk, sk)← PKE.Gen(1λ; sb).

2. Runs m0 ← A2,λ((pk, Z), st).

3. Computes c← PKE.Enc(pk,m0).

4. Finally, runs b′ ← A2,λ(c) and returns b′.

If the challenger picks b = 0, then sb is the real solution of Z and B perfectly
simulates G0, otherwise sb is random value and B perfectly simulates G1. Hence,
we obtain

AdvTLP-PP
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyPKE(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃TRE(·) ≥ T̃TLP(·) as required.

Game 2. In G2 instead of encrypting the message m0, we compute c as an en-
cryption of a random message.
Lemma 4.5.2. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N we can
construct a polynomial size adversary B′ = {B′λ}λ∈N such that

|Pr[G1 = 1]− Pr[G2 = 1]| = AdvPKE,RoR
B′ .

Notice that in G2 we use fresh randomness which is independent of the puzzle
Z. We construct B′ as follows.
The adversary B′λ(pk):
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1. Runs st← A1,λ.

2. Runs (Z, s)← TLP.Gen(1λ, T ).

3. Runs m0 ← A2,λ((pk, Z), st).

4. Outputs m0 to its experiment and receives c.

5. Finally returns b′ ← A2,λ(c).

If the challenger picks b = 0, then c is an encryption of the value m0 and B′
perfectly simulates G1, otherwise c is an encryption of a random message and B′
perfectly simulates G2. Hence, we obtain

AdvPKE,RoR
B′ = |Pr[G1 = 1]− Pr[G2 = 1]| .

Game 3. In game G3 we use the real solution of the puzzle as randomness for
Gen of PKE.
Let T̃TLP(λ), polyPKE(λ), T := (polyPKE(λ))1/ε, and T̃TRE are defined as before in

game G1.
Lemma 4.5.3. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
the depth of A2,λ is bounded from above by T ε(λ) for some T (·) ≥ T̃TRE(·) we can
construct a polynomial-size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ
is at most T ε(λ) with

AdvTLP-PP
B = |Pr[G2 = 1]− Pr[G3 = 1]| .

This lemma can be proven in a similar way as Lemma 4.5.1.
Notice that G3 corresponds to ExpTLP-PP1

A. By combining Lemmas 4.5.1-4.5.3
we obtain following:

AdvTRE-PP
A = |Pr[G0 = 1]− Pr[G3 = 1]|

=
∣∣∣∣∣

2∑
i=0

(Pr[Gi = 1]− Pr[Gi+1 = 1])
∣∣∣∣∣ ≤

2∑
i=0
|Pr[Gi = 1]− Pr[Gi+1 = 1]|

≤ 2AdvTLP-PP
B + AdvPKE,RoR

B′ ,

which concludes the proof.
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We can now construct a TPKE scheme as follows. Let TBE = (TBE.Gen, TBE.Enc,
TBE.Dec) be a tag-based encryption scheme, OTS = (OTS.Gen, OTS.Sign, OTS.Vrfy) be
a signature scheme, and TRE = (TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) be a TRE
scheme. Figure 4.12 describes our construction of a TPKE scheme. Notice that
we run TRE.Setup in the Enc algorithm of TPKE. Since the runtime of TRE.Setup is
poly(log T, λ), the Enc algorithm has also runtime poly′(log T, λ). We remark that
in the TPKE construction of Katz et al. [KLX20] the Enc algorithm runs in time
T ·poly′′(λ) and hence our construction provides significant efficiency improvement.

KGen(1λ, T ) Decf (sk, c)
(pk1, sk1)← TBE.Gen(1λ) Parse c as (vkOT, ppd, c1, c2, σ)
pk := (pk1, T ), sk := sk1 if OTS.Vrfy(vkOT, (ppd, c1, c2), σ) = 1
return (pk, sk) return m← TBE.Dec(sk, vkOT, c1)

return ⊥

Enc(pk,m) Decs(pk, c)
(ppe, ppd)← TRE.Setup(1λ, T ) Parse c as (vkOT, ppd, c1, c2, σ)
(vkOT, skOT)← OTS.Gen(1λ) if OTS.Vrfy(vkOT, (ppd, c1, c2), σ) = 1
c1 ← TBE.Enc(pk1, vkOT,m) s← TRE.Solve(ppd)
c2 ← TRE.Enc(ppe,m) return m← TRE.Dec(s, c2)
σ ← OTS.Sign(skOT, (ppd, c1, c2)) return ⊥
return c := (vkOT, ppd, c1, c2, σ)

Figure 4.12: Generic construction of TPKE.

Theorem 4.5.3. If TBE = (TBE.Gen, TBE.Enc, TBE.Dec) is a tag-based encryp-
tion scheme that is selective-tag weakly secure against chosen ciphertext attacks,
OTS = (OTS.Gen, OTS.Sign, OTS.Vrfy) is a strong one-time signature scheme, TRE =
(TRE.Setup, TRE.Solve, TRE.Enc, TRE.Dec) is a secure timed-release encryption scheme
against pre-processing with gap ε, then for any ε < ε, (KGen,Enc,Decf ,Decs) de-
fined in Figure 4.12 is an IND-CCA-secure timed public-key encryption scheme
with gap ε.
Proof. Correctness of the scheme is implied by the correctness of the tag-based
encryption scheme, the signature scheme, and the timed-release encryption scheme.
To prove security we define two games G0 − G1. For i ∈ {0, 1} we denote by

Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs b′ in the game
Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment. Decryption
queries are answered using sk1.
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Game 1. In G1 instead of encrypting the given message twice, we compute c2 as
an encryption of a random message.
Let T̃TRE(λ) be the polynomial whose existence is guaranteed by the security of

TRE. Let polyB(λ) be the fixed polynomial which bounds the time required to
execute Steps 1–3 and answer decryption queries in Step 4 of the adversary B2,λ
defined below. Set T := (polyB(λ))1/ε. Set T̃TPKE := max(T̃TRE, T ).
Lemma 4.5.4. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
the depth of A2,λ is bounded from above by T ε(λ) for some T (·) ≥ T̃TPKE(·) we can
construct a polynomial-size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ
is at most T ε(λ) with

AdvTRE-PP
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

We construct an adversary B = {(B1,λ,B2,λ)}λ∈N as follows.
The adversary B1,λ:
1. Runs (pk1, sk1)← TBE.Gen(1λ).

2. Runs (m0,m1, st)← A1,λ(pk1) and answers decryption queries exactly as in
Decf using the key sk1.

3. Outputs the state st′ = (pk1, sk1,m0,m1, st).

The adversary B2,λ(ppe, ppd, st′):
1. Parses st′ as (pk1, sk1,m0,m1, st).

2. Randomly picks b $← {0, 1}, sends mb to the challenger, and obtains a ci-
phertext c2 as a response.

3. Runs (vkOT, skOT)← OTS.Gen(1λ), and computes c1 ← TBE.Enc(pk1, vkOT,mb),
σ ← OTS.Sign(vkOT, (ppd, c1, c2)).

4. Runs b′ ← A2,λ((vkOT, ppd, c1, c2, σ), st). Decryption queries are answered as
before.

5. Returns the truth value of b = b′.

If c2 is an encryption of the value mb, then B perfectly simulates G0, otherwise
c2 is an encryption of a random message and B perfectly simulates G1. Hence, we
obtain

AdvTRE-PP
B = |Pr[G0 = 1]− Pr[G1 = 1]| .

Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃TPKE(·) ≥ T̃TRE(·) as required.
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Lemma 4.5.5. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N we can
construct polynomial-size adversaries F = {Fλ}λ∈N and B′ = {B′λ}λ∈N such that
|Pr[G1 = 1]− 1/2| ≤ AdvOTS

F + AdvTBE
B′ .

Let A = {(A1,λ,A2,λ)}λ∈N be an adversary in game G1. Let (vk∗OT, pp∗d, c∗1, c∗2, σ∗)
be the challenge ciphertext and let FRG denote the event thatA = {(A1,λ,A2,λ)}λ∈N
submits a valid ciphertext (vk∗OT, ppd, c1, c2, σ) to the decryption oracle in G1, where
(pp∗d, c∗1, c∗2, σ∗) 6= (ppd, c1, c2, σ). We prove the lemma in two steps. At first we
prove that

Pr[FRG] ≤ AdvOTS
F . (4.1)

In the second step we prove the following:∣∣∣∣Pr[G1 = 1 ∧ FRG] + 1
2 Pr[FRG]− 1

2

∣∣∣∣ ≤ AdvTBE
B′ . (4.2)

Notice that∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣ ≤ ∣∣∣∣Pr[G1 = 1 ∧ FRG]− 1
2 Pr[FRG]

∣∣∣∣+∣∣∣∣Pr[G1 = 1 ∧ FRG] + 1
2 Pr[FRG]− 1

2

∣∣∣∣
≤1

2 Pr[FRG] +
∣∣∣∣Pr[G1 = 1 ∧ FRG] + 1

2 Pr[FRG]− 1
2

∣∣∣∣ .
We start with the first inequality. Assuming that the event FRG has happened,

we construct a forger F against the strong one-time signature scheme.
The adversary Fλ(vk∗OT):
1. Runs (pk1, sk1)← TBE.Gen(1λ).

2. Runs (m0,m1, st)← A1,λ(pk1) and answers decryption queries exactly as in
Decf using the key sk1. If A1,λ(pk1) submits a valid ciphertext (vk∗OT, ppd, c1,
c2, σ) to its decryption oracle before requesting the challenge ciphertext, then
output the forgery ((ppd, c1, c2), σ) and stop.

3. Otherwise, samples b $← {0, 1} and runs (ppe, pp∗d)← TRE.Setup(1λ, T ), c∗1 ←
TBE.Enc(pk1, vk∗OT,mb), c∗2 ← TRE.Enc(ppe,m′), where m′

$← M is a random
message such that |m′| = |m0|.

4. Obtains signature σ∗ on (pp∗d, c∗1, c∗2) from SIGN(·).
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5. Runs A2,λ((vk∗OT, pp∗d, c∗1, c∗2, σ∗), st) and answers decryption queries as before.
If A2,λ submits a valid ciphertext (vk∗OT, ppd, c1, c2, σ) to its decryption oracle,
then we must have (pp∗d, c∗1, c∗2, σ∗) 6= (ppd, c1, c2, σ). Therefore, it outputs
((ppd, c1, c2), σ) as a forgery.

It is easy to see that Pr[FRG] ≤ AdvOTS
F .

Now we prove the second inequality. We construct an adversary B′ which breaks
the security of the tag-based encryption scheme as follows.
The adversary B′λ:
1. Runs (vk∗OT, sk∗OT)← OTS.Gen(1λ) and outputs tag vk∗OT to its challenger.

2. Obtains pk1 from the challenger.

3. Runs (m0,m1, st)← A1,λ(pk1) and answers queries (vkOT, Z, c1, c2, σ) to the
decryption oracle as follows:

• If vkOT = vk∗OT checks if OTS.Vrfy(vk∗OT, (ppd, c1, c2), σ) = 1. If so, it
outputs a random bit to its challenger and aborts. Otherwise, it returns
⊥.

• If vkOT 6= vk∗OT and OTS.Vrfy(vkOT, (ppd, c1, c2), σ) = 0, then returns ⊥.
• If vkOT 6= vk∗OT and OTS.Vrfy(vkOT, (ppd, c1, c2), σ) = 1, then forwards

(c1, vkOT) to the challenger and returns the response to A1,λ.

4. Forwards messages (m0,m1) to the challenger and obtains c∗1.

5. Runs (ppe, pp∗d)← TRE.Setup(1λ, T ), samples m′ $←M such that |m′| = |m0|
and computes c∗2 ← TRE.Enc(ppe,m′), σ∗ ← OTS.Sign(sk∗OT, (pp∗d, c∗1, c∗2)).

6. Runs b′ ← A2,λ((vk∗OT, pp∗d, c∗1, c∗2, σ∗), st) and answers decryption queries as
before.

7. Outputs b′.
Notice that B′ never requests a decryption for the tag vk∗OT and moreover it

provides a perfect simulation until the event FRG occurs. It follows that:

AdvTBE
B′ = |Pr[G1 = 1 ∧ FRG] + 1

2 Pr[FRG]− 1
2 |.

By combining Lemmas 4.5.4-4.5.5 we obtain following:

AdvTPKE
A =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣
≤ |Pr[G0 = 1]− Pr[G1 = 1]|+

∣∣∣∣Pr[G1 = 1]− 1
2

∣∣∣∣
≤ AdvTRE-PP

B + AdvOTS
F + AdvTBE

B′ ,

which concludes the proof.
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4.5.3 Construction of IND-CCA-secure TPKE from SSSA
Finally, we construct an IND-CCA-secure TPKE scheme where the running time
of the encryption algorithm is independent of the hardness parameter T . Let
TBE = (TBE.Gen, TBE.Enc, TBE.Dec) be a tag-based encryption scheme, PKE =
(PKE.Gen, PKE.Enc, PKE.Dec) be a public-key encryption scheme and OTS = (OTS.Gen,
OTS.Sign, OTS.Vrfy) be a signature scheme. The construction is given in Figure 4.13
and it is not generic anymore. We rely on the strong sequential squaring assump-
tion and we use algebraic properties of the underlying group QRN .

KGen(1λ), T Decs(pk, c)
(pk1, sk1)← TBE.Gen(1λ) Parse c as (vkOT, x, c1, c2, σ)
(p, q,N)← GenMod(1λ) if OTS.Vrfy(vkOT, (x, c1, c2), σ) = 1
ϕ(N) := (p− 1)(q − 1) Compute y := x2T mod N
g

$← QRN (pk′, sk′)← PKE.Gen(1λ; y)
t := 2T mod ϕ(N)/4 return m← PKE.Dec(sk′, c′)
h := gt mod N return ⊥
return (pk := (pk1, N, T, g, h), sk := sk1)

Enc(pk,m) Decf (sk, c)
r

$← [bN/4c] Parse c as (vkOT, x, c1, c2, σ)
Compute x := gr mod N if OTS.Vrfy(vkOT, (x, c1, c2), σ) = 1
Compute y := hr mod N return m← TBE.Dec(sk, vkOT, c1)
(pk2, sk2)← PKE.Gen(1λ; y) return ⊥
(vkOT, skOT)← OTS.Gen(1λ)
c1 ← TBE.Enc(pk1, vkOT,m)
c2 ← PKE.Enc(pk2,m)
σ ← OTS.Sign(skOT, (x, c1, c2))
return c := (vkOT, x, c1, c2, σ)

Figure 4.13: Construction of TPKE

Theorem 4.5.4. If TBE = (TBE.Gen, TBE.Enc, TBE.Dec) is a tag-based encryp-
tion scheme that is selective-tag weakly secure against chosen ciphertext attacks,
OTS = (OTS.Gen, OTS.Sign, OTS.Vrfy) is a strong one-time signature scheme, PKE =
(PKE.Gen, PKE.Enc, PKE.Dec) is an RoR-CPA-secure public-key encryption scheme
and the strong sequential squaring assumption with gap ε holds relative to GenMod,
then (KGen,Enc,Decf ,Decs) defined in Figure 4.13 is an IND-CCA-secure timed
public-key encryption scheme with ε, for any ε < ε.
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Proof. Correctness of the scheme is implied by the correctness of the tag-based
encryption scheme, the signature scheme, and the public-key encryption scheme.
To prove security we define a sequence of games G0 − G3. For i ∈ {0, 1, 2, 3} we

denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs b′ in
the game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment. Decryption
queries are answered using sk1.
Let GNR denote the event that the sampled g in KGen is a generator of QRN .

Recall that N = pq where p = 2p′ + 1 and q = 2q′ + 1. Because g is sampled
uniformly at random and QRN has ϕ(|QRN |) = (p′ − 1)(q′ − 1) generators, this
event happens with overwhelming probability. Concretely, Pr[GNR] = 1− 1

p′
− 1

q′
+

1
p′q′

. Therefore the following holds.
Lemma 4.5.6.

Pr[G0 = 1] = Pr[G0 = 1|GNR] Pr[GNR] + Pr[G0 = 1|GNR] Pr[GNR]
≤ Pr[G0 = 1|GNR] Pr[GNR] + Pr[GNR]

= Pr[G0 = 1|GNR]
(

1− 1
p′
− 1
q′

+ 1
p′q′

)
+ 1
p′

+ 1
q′
− 1
p′q′

.

Game 1. In G1 we sample r uniformly at random from [|QRN |].
Lemma 4.5.7.

|Pr[G0 = 1|GNR]− Pr[G1 = 1|GNR]| ≤
(

1
p

+ 1
q
− 1
N

)
.

At first we remark that for upper bounding the difference between the games we
use a statistical argument. Because r appears only in the exponent of the group
generator, we later sample a random element x from the group QRN which can
be done efficiently. Since the only difference between the two games is in the set
from which we sample r, the advantage of any adversary can be upper bounded
by the statistical distance between two random variables X and Y both defined
on domain [bN/4c] as follows:

Pr[X = r] = 1/ bN/4c ∀r ∈ [bN/4c] and Pr[Y = r] =

4/ϕ(N) ∀r ∈ [ϕ(N)/4]
0 otherwise

Clearly, X has the same distribution as a sampling in G0 and Y has the same
distribution as a sampling in G1. The following computation proves the lemma:
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SD(X, Y ) = 1
2

∑
r∈[bN/4c]

|Pr[X = r]− Pr[Y = r]| =

1
2

ϕ(N)/4∑
r=1
|Pr[X = r]− Pr[Y = r]|+

bN/4c∑
r=ϕ(N)/4+1

|Pr[X = r]− Pr[Y = r]|
 =

1
2

ϕ(N)/4∑
r=1

∣∣∣∣∣ 1
bN/4c −

4
ϕ(N)

∣∣∣∣∣+
bN/4c∑

r=ϕ(N)/4+1

∣∣∣∣∣ 1
bN/4c − 0

∣∣∣∣∣
 ≤

1
2

ϕ(N)/4∑
r=1

∣∣∣∣∣ 4
N
− 4
ϕ(N)

∣∣∣∣∣+
bN/4c∑

r=ϕ(N)/4+1

∣∣∣∣∣ 1
bN/4c − 0

∣∣∣∣∣
 =

1
2

(
ϕ(N)/4

∣∣∣∣∣4(ϕ(N)−N)
ϕ(N)N

∣∣∣∣∣+ (bN/4c − ϕ(N)/4) 1
bN/4c

)
=

1
2

(
(N − ϕ(N))

N
+ 1− ϕ(N)/4

bN/4c

)
≤ 1

2

(
(N − ϕ(N))

N
+ 1− ϕ(N)/4

N/4

)
=

1
2

2(N − ϕ(N))
N

= (N − (N − p− q + 1))
N

= p+ q − 1
N

= 1
p

+ 1
q
− 1
N
.

Game 2. In G2 we sample y uniformly at random from QRN .
Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-

sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–3 and answer decryption queries in Step 4 of the adversary B2,λ
defined below. Set T := (polyB(λ))1/ε. Set T̃TPKE := max(T̃SSS, T ).
Lemma 4.5.8. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ) with

AdvSSS
B = |Pr[G1 = 1|GNR]− Pr[G2 = 1|GNR]| .

We construct an adversary B = {(B1,λ,B2,λ)}λ∈N as follows.
The adversary B1,λ(N, T ):
1. Runs (pk1, sk1)← TBE.Gen(1λ).

2. Samples g $← QRN and computes h := g2T mod N by repeated squaring.

3. Sets pk := (pk1, N, T, g, h), runs (m0,m1, st) ← A1,λ(pk) and answers de-
cryption queries exactly as in Decf using the key sk1.

4. Outputs st′ = (pk1, sk1,m0,m1, st).
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The adversary B2,λ(x, y, st′):
1. Parses st′ as (pk1, sk1,m0,m1, st).

2. Randomly picks b $← {0, 1}.

3. Computes (sk2, pk2) ← PKE.Gen(1λ; y), (vkOT, skOT) ← OTS.Gen(1λ), c1 ←
TBE.Enc(pk1, vkOT,mb), c2 ← PKE.Enc(pk2,mb), σ ← OTS.Sign(vkOT, (x, c1, c2)).

4. Runs b′ ← A1,λ((vkOT, x, c1, c2, σ), st). Decryption queries are answered as
before.

5. Returns the truth value of b = b′.

If the event GNR happens, then g must be generator of QRN and therefore there
must exist some r such that x = gr mod N . Hence, if y = x2T mod N , then B
perfectly simulates G1, otherwise y is a random value and B perfectly simulates
G2. Therefore, we obtain

AdvSSS
B = |Pr[G1 = 1|GNR]− Pr[G2 = 1|GNR]| .

Adversary B1 computes h by T consecutive squarings and because T is polyno-
mial in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃TPKE(·) ≥ T̃SSS(·) as required.

Game 3. In G3 instead of encrypting the given message twice, we compute c2 as
an encryption of a random message.
Lemma 4.5.9. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N we can
construct a polynomial size adversary B′ = {B′λ}λ∈N such that

|Pr[G2 = 1|GNR]− Pr[G3 = 1|GNR]| = AdvPKE,RoR
B′ .

We construct an adversary B′ as follows.
The adversary B′λ(pk2):
1. Runs (pk, sk)← KGen(1λ) as described in the construction.

2. Runs (m0,m1, st) ← A1,λ(pk) and answers decryption queries exactly as in
Decf using the key sk.

3. Randomly samples b $← {0, 1}, x $← QRN , and computes (vkOT, skOT) ←
OTS.Gen(1λ), c1 ← TBE.Enc(pk, vkOT,mb).
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4. Sends mb to challenger and obtain ciphertext c2 as a response.

5. Signs the ciphertext σ ← OTS.Sign(skOT, (x, c1, c2)).

6. Runs b′ ← A1,λ((vkOT, x, c1, c2, σ), st). Decryption queries are answered as
before.

7. Returns the truth value of b = b′.

If c2 is an encryption of the value mb, then B′ perfectly simulates G2, otherwise
c2 is an encryption of a random value and B′ perfectly simulates G3. Hence, we
obtain

AdvPKE,RoR
B′ = |Pr[G2 = 1|GNR]− Pr[G3 = 1|GNR]| .

Lemma 4.5.10. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N we
can construct polynomial-size adversaries F = {Fλ}λ∈N and B′′ = {B′′λ}λ∈N such
that

|Pr[G3 = 1|GNR]− 1/2| ≤ AdvOTS
F + AdvTBE

B′′ .

Let A = {(A1,λ,A2,λ)}λ∈N be an adversary in game G3. Let (vk∗OT, x
∗, c∗1, c

∗
2, σ

∗)
be the challenge ciphertext and let FRG denote the event that A submits a
valid ciphertext (vk∗OT, x, c1, c2, σ) to the decryption oracle in the game G3, where
(x∗, c∗1, c∗2, σ∗) 6= (x, c1, c2, σ). We prove the lemma in two steps. At first we prove
that

Pr[FRG|GNR] ≤ AdvOTS
F . (4.3)

In the second step we prove the following:∣∣∣∣Pr[G3 = 1 ∧ FRG|GNR] + 1
2 Pr[FRG|GNR]− 1

2

∣∣∣∣ ≤ AdvTBE
B′′ . (4.4)

Notice that∣∣∣∣Pr[G3 = 1|GNR]− 1
2

∣∣∣∣ ≤ ∣∣∣∣Pr[G3 = 1 ∧ FRG|GNR]− 1
2 Pr[FRG|GNR]

∣∣∣∣+∣∣∣∣Pr[G3 = 1 ∧ FRG|GNR] + 1
2 Pr[FRG|GNR]− 1

2

∣∣∣∣
≤ 1

2 Pr[FRG|GNR] +
∣∣∣∣Pr[G3 = 1 ∧ FRG|GNR] + 1

2 Pr[FRG|GNR]− 1
2

∣∣∣∣ .
We start with the first inequality. Assuming that the event FRG has happened,

we construct a forger F against the strong one-time signature scheme.
The adversary Fλ(vk∗OT):
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1. Runs (pk, sk)← KGen(1λ) as described in the construction.

2. Runs (m0,m1, st) ← A1,λ(pk) and answers decryption queries exactly as in
Decf using the key sk. If A1,λ submits a valid ciphertext (vk∗OT, x, c1, c2, σ) to
its decryption oracle before requesting the challenge ciphertext, then outputs
the forgery ((x, c1, c2), σ) and stops.

3. Otherwise, samples b $← {0, 1}, x $← QRN and runs (sk2, pk2)← PKE.Gen(1λ),
c∗1 ← TBE.Enc(pk, vk∗OT,mb), c∗2

$← PKE.Enc(pk2,m
′), where m′ $← M is a

random message such that |m′| = |m0|.

4. Obtains signature σ∗ on (x∗, c∗1, c∗2) from SIGN(·).

5. Runs b′ ← A2,λ((vk∗OT, x
∗, c∗1, c

∗
2, σ

∗), st) and answers decryption queries as
before. If A2,λ submits a valid ciphertext (vk∗OT, x, c1, c2, σ) to its decryption
oracle, then we must have (x∗, c∗1, c∗2, σ∗) 6= (x, c1, c2, σ). Hence, it outputs
((x, c1, c2), σ) as a forgery.

It is easy to see that Pr[FRG|GNR] ≤ AdvOTS
F .

Now we prove the second inequality. We use A to construct B′′ which breaks
the security of the tag-based encryption scheme:
The adversary B′′λ:
1. Runs (vk∗OT, sk∗OT)← OTS.Gen(1λ) and outputs tag vk∗OT to its challenger.

2. Obtains pk1 from the challenger.

3. Runs (p, q,N)← GenMod(1λ), samples g $← QRN uniformly at random, and
it computes ϕ(N) := (p− 1)(q − 1), t := 2T mod ϕ(N)/4, h := gt mod N . It
sets pk := (pk1, N, T, g, h).

4. Runs (m0,m1, st) ← A1,λ(pk) and answers decryption queries of the form
(vkOT, x, c1, c2, σ) as follows:

• If vkOT = vk∗OT checks if OTS.Vrfy(vk∗OT, (x, c1, c2), σ) = 1. If so, it
outputs a random bit to its challenger and aborts. Otherwise, it returns
⊥.

• If vkOT 6= vk∗OT and OTS.Vrfy(vkOT, (x, c1, c2), σ) = 0, then returns ⊥.
• If vkOT 6= vk∗OT and OTS.Vrfy(vkOT, (x, c1, c2), σ) = 1, then forwards

(c1, vkOT) to the challenger and returns the response to A1,λ.

5. Forwards messages (m0,m1) to the challenger and obtains c∗1. It computes
x∗

$← QRN , (sk2, pk2)← PKE.Gen(1λ), randomly samples m′ $←M such that
|m′| = |m0| and runs c∗2 ← PKE.Enc(pk2,m

′), σ∗ ← OTS.Sign(sk∗OT, (x∗, c∗1, c∗2)).
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6. Outputs b′ ← A2,λ((vk∗OT, x
∗, c∗1, c

∗
2, σ

∗), st). Decryption queries are answered
as before.

Notice that B′′ never requests a decryption for the tag vk∗OT and moreover it
provides a perfect simulation until the event FRG occurs. It follows that:

AdvTBE
B′′ =

∣∣∣∣Pr[G3 = 1 ∧ FRG|GNR] + 1
2 Pr[FRG|GNR]− 1

2

∣∣∣∣ .
By combining Lemmas 4.5.6-4.5.10 we obtain following:

AdvTPKE
A =

∣∣∣∣Pr[G0 = 1]− 1
2

∣∣∣∣
≤
∣∣∣∣Pr[GNR] Pr[G0 = 1|GNR] + Pr[GNR]− 1

2

∣∣∣∣
≤ Pr[GNR]

( 2∑
i=0
|Pr[Gi = 1|GNR]− Pr[Gi+1 = 1|GNR]|+

∣∣∣∣Pr[G3 = 1|GNR]− 1
2

∣∣∣∣
)

+ Pr[GNR]

≤
(

1− 1
p′
− 1
q′

+ 1
p′q′

)(
1
p

+ 1
q
− 1
N

+ AdvSSS
B + AdvPKE,RoR

B′ + AdvOTS
F

+ AdvTBE
B′′

)
+ 1
p′

+ 1
q′
− 1
p′q′

,

which concludes the proof.

4.6 Conclusion and Open Problems
We have proposed a new notion of (sequential) timed-release encryption which
helps to overcome the barrier of deployment of time-lock puzzles in real-world
applications. Our solution allows encrypting several messages with respect to one
puzzle in such a way that by solving the puzzle we can decrypt all corresponding
ciphertexts. This is achieved in our work by producing a puzzle in a trusted
setup, which is reasonable for many interesting applications like e-voting, sealed-
bid auctions, etc. Additionally, we are able to produce a set of puzzles with
respect to different hardness parameters in a way that running only one sequential
computation is sufficient in order to solve all of them. In this way, we can avoid
wasting computational resources and make applications more sustainable. The
advantage of our approach is that it is generic and hence can rely on different
time-lock puzzles.
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Moreover, we have provided more efficient constructions for timed public-key
encryption which is used as a building block for non-malleable timed commit-
ments. The state-of-the-art construction suffers from encryption whose runtime is
proportional to the hardness parameter. Our constructions either have exponen-
tially faster encryption with respect to the hardness parameter or the runtime of
encryption is completely independent of the hardness parameter.
One of the most interesting open problems in the field of time-lock puzzles

is to provide new constructions of them. There are currently only two known
constructions, one based on succinct randomized encodings which are currently
feasible only using iO and therefore this construction can not be considered to be
practical yet, and the second one based on sequential squaring. With advancements
in building quantum computers, it is highly desirable to design a time-lock puzzle
that would even be secure against quantum adversaries. Another possible research
direction is homomorphic time-lock puzzles: all known constructions are based
on sequential squaring. It would be interesting to investigate the possibility of
building HTLP generically from any TLP.
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