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Abstract 

 
In the present study, a series of N-heterocyclic carbene (NHC) 

precursors derived from theophylline, theobromine, and caffeine have 

been synthesized. In this regard, ethyl p-toluenesulfonate (EtOTs) and 

diethyl sulfate (EtO)2SO2 were used as a new generation of alkylating 

agents to afford the ethylation of the NHC precursors at the N9 

position. The structures of all products were evaluated and confirmed 

by NMR spectroscopy, high-resolution mass spectrometry (HRMS), 

and in some cases by elemental analysis (EA). Based on the 

experimental data, due to several advantages such as ease of use, 

high availability, low cost, and high alkylating power, (EtO)2SO2 can 

be preferred to EtOTs as the alkylating agent. In the next part, 

different NHC precursors of various anions (e.g. PF6
-, BPh4

-, BF4
-, Cl-, 

and I-) were prepared by an ion-exchange reaction of the 

corresponding NHC precursors. The successful synthesis of the 

products was confirmed by NMR spectrometry, HRMS, and in some 

cases by EA. Moreover, regarding a great increase in biomedical 

applications of transition metal NHC complexes, it was decided to 

synthesize silver(I)-NHC complexes with general formulas of 

[Ag(NHC)(NH3)]+, [Ag(NHC)(Phosphine)]+ (Phosphine: PPh3, PTA), and 

[Ag(NHC)(X)] (X: Cl, I). Some other transition metal-NHC complexes of 

Ru(II), Rh(I), Rh(III), and Au(I) were prepared by following a 

transmetallation reaction from the corresponding [Ag(NHC)Cl] 

complexes. All synthesized complexes were characterized by NMR 

spectrometry, HRMS, EA analyses, and in some cases by single crystal 

X-ray diffraction. Finally, the formation of [Pd(NHC)(dmba)Cl] complex 

was examined by the reaction of [NHCH]Cl salts with [Pd(dmba)Cl]2 

dimer at 100 °C for 30-60 minutes.  
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1. Introduction 

1.1. N-Heterocyclic carbenes  
 

Carbenes, neutral compounds containing a divalent carbon atom with 

an electron sextet, have achieved considerable attention since 1855 

when the first assumption of a carbene species was made by Geuther 

and Hermann [1]. They suggested the formation of a divalent carbon 

atom called dichlorocarbene as the reaction intermediate during the 

alkaline hydrolysis of chloroform. The same reaction intermediate was 

also suggested by Nef for the Reimer–Tiemann reaction and the 

transformation of pyrrol to chloropyridine in chloroform in 1897 [2]. 

However, the existence of free radicals was doubted at that time and 

most chemists were not convinced of the existence of free radicals. 

Finally, three years later, Gomberg was able to characterize 

triphenylchloromethylene as the first example of a free radical through 

elemental analysis and chemical reactivity (Scheme 1) [3]. This finding 

received increasing attention from the scientific community and it 

made carbenes the subject of an intensive research area.   

    

 

 

 

 

 

 

 

 

For a long time, a large proportion of researches contributed 

significantly to the recognition of carbenes and their use in organic 

chemistry as reaction intermediates. In this regard, Staudinger and 

Kupfer reported their success in the recognition of carbene radical 

intermediates by studying the formation of methylene derivatives [4] 

and diazomethane [5]. some other important contributions came 

several years later when the methylene carbene was introduced as a 

linear species with two generate p-orbitals leading to a triplet state [6-

8]. In 1951, Lennard-Jones and Pople applied quantum mechanics to 

Scheme 1. Synthesis of the first stable free radical. 
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determine the geometry and properties of small molecules [9]. They 

proposed two different ground states for the methylene carbene but 

couldn’t determine which one was of the lowest energy. One of the 

ground states was suggested as a singlet state with triangular 

geometry containing three orbitals filled with paired electrons and an 

empty orbital. The other ground state they suggested was a triplet 

state with a linear geometry containing two orbitals filled with paired 

electrons and two orbitals filled with two unpaired electrons [9,10]. In 

the other research carried out in 1953, Duschenne and Burnelle 

confirmed that :CF2 had a nonlinear symmetrical structure with a 

singlet ground state bearing an sp2 hybridization, and nonbonding 

electrons occupied an orbital s character [11]. To accurately determine 

the ground state of carbenes, Zimmerman et al. tried to synthesize an 

isolable carbene on this presumption that steric protection would 

improve the stability of the carbene center. They attempted to 

synthesize an isolable carbene stabilized by bulky substituents 

(mesitylene) [12]. Although they couldn’t isolate the carbene, the 

analysis of rearrangement products proposed a triplet ground state 

with an unexpectedly nonlinear geometry for the carbene center 

(Scheme 2).    
 

 

 

 

 

 

 

 

In 1968, Hoffmann et al. could correctly determine the lowest splitting 

energy needed between both ground states to have methylene with a 

singlet state [13-15]. They also suggested that the π-overlap between 

the p- -substituents helps to favor the 

singlet state as the ground state (Scheme 3).    

 

 
 

 

 

 

 

 

Scheme 2. Synthesis of a triplet carbene and rearrangement products (1). 
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Throughout the 1970s and 1980s, a large number of theoretical works 

using quantum calculations were carried out to elucidate the 

electronic structures and the geometries of methylene moieties, for 

instance :CH2, :CHF, :CHBr, :CF2, and :CCl2 [16-20]. Finally, in 1991, 

Arduengo et al. reported the successful synthesis of the first 

extraordinary stable, isolable, and storable carbene incorporated into 

an N-heterocyclic carbene (NHC) (Scheme 4) [21,22]. They tried to 

carefully analyze the reaction by the measurement of the amount of 

H2 and NaCl formed as the by-products as well as the spectroscopic 

and X-ray analysis techniques (Figure 1) [22]. The obtained results 

confirmed the identity of NHC IAd as the first stable and storable carbene 

[21].       
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Scheme 3. Electronic states of a carbene (1). 

Scheme 4. Synthesis of the first stable NHC (21). 

Figure 1. The X-ray structure of NHC IAd (22). 
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The remarkable stability of the NHC IAd has been explained by two 

important factors including steric and electronic effects. First of all, 

the bulky adamantyl substituents cause the high steric shielding of 

the carbene carbon atom which increases the carbene lifetime. As a 

consequence, it was revealed that more sterically demanding 

substituents lead to the formation of more stable carbenes. As the 

second important factor, the orbital interaction of the empty p-orbital 

of the carbene carbon atom with the non-bonding electrons of the 

neighboring nitrogens delocalizes the lone pairs into the empty p-

orbital which causes more stability of the carbene (Scheme 5) [21,23]. 

 

  

       

 

 

 

 
 

On the other hand, This orbital interaction can increase the electron 

density on the carbene carbon atom (Scheme 5), and therefore N-

heterocyclic carbenes have been considered to be electron-rich 

compounds despite traditional carbenes which are regarded as 

electron-deficient compounds [21]. These significant findings have led 

to an increasing interest in the synthesis of various NHCs and their 

metal complexes [24-26].  

 

In continuing theoretical and practical studies, some new attractive 

features of NHCs as ligands for transition metal complexes were 

reported. For instance, N-heterocyclic carbenes are very electron-rich ligands 

-donor ligands such as amines, ether, and phosphines in 

organometallic chemistry [27-31]. It is also worth mentioning that the 

electronic properties of NHCs ligands can be altered by changing the 

nature of the azole ring. For example, the electron-donating power 

increases in the order benzimidazole < imidazole < imidazoline [32, 

33]. Moreover, the Π-acceptor power of NHCs can be considered as 

another feature of NHCs that is still open to dispute. Based on the 

theoretical and experimental studies, this property can be influenced 

by different factors like the metal, the co-ligands, the substituents on 

the NHC, and the orientation of the NHC ligand relative to the metal 

[21,34-37]. So, NHC ligands can form stable transition metal complexes 

Scheme 5. Stabilization of NHCs by the electronic effect (21,23). 
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caused by their strong -donor and weak π-acceptor properties [38-41]. In 

the light of all features mentioned above, NHCs have become a very 

attractive group of ligands that can be prepared, functionalized, and 

coordinated in a fairly simple manner, and form stable transition 

metal complexes.  
 

1.2. Synthesis of N-heterocyclic carbenes  

 

In the following years, many research groups from all over the world 

have released their reports on the synthesis of NHC ligands, their 

metal complexes, and potential applications of NHC-metal complexes 

in different fields such as synthetic chemistry as carbene transfer 

agent [42,43], medicinal chemistry [44-48], and catalysis [49-52]. The 

scientific studies revealed that NHCs, also known as imidazole-2-ylidene, 

can be generally obtained through deprotonation of the corresponding 

azolium salts for example imidazolium [53], triazolium [54], pyrazolium 

[55], and benzimidazolium salts [56] aided by a suitable base. Among 

these NHC precursors, imidazolium, and benzimidazolium salts with pKa of 

21-24 have recently attracted significant interest [57,58]. According to 

recent researches, imidazolium salts can be prepared with two different 

procedures. Based on the first method, the N,Ń-substituted imidazolium ring 

can be built up through a multicomponent reaction [59]. This method 

provides an opportunity for the preparation of many symmetrical as well 

as unsymmetrical sterically demanding imidazolium salts (Scheme 6, 

Scheme 7) [21].    

            

            

            

            

           

 

             

      

 

 

 

 

 

Scheme 6. Synthesis of symmetrical imidazolium salts (21). 
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Moreover, imidazolium salts can also be synthesized by alkylation of 

existing imidazoles at nitrogen atoms using suitable electrophiles [29]. 

According to this procedure, unsymmetrical N,Ń-substituted imidazolium 

salts can be obtained through alkylation of monosubstituted imidazoles 

(Scheme 7) [29,60-66]. 

 

In the following years with the growing tendency for Green Chemistry, 

more studies have focused on using naturally occurring imidazoles as 

NHC precursors. In this sense, xanthine derivatives (Figure 2) with 

imidazole moiety have recently attracted more attention.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These compounds are natural products that are often found in coffee, 

cacao, tea, and chocolate, so the low toxicity and high accessibility 

have made them the ideal potential NHC precursors. Moreover, 

biomedical studies of xanthine derivatives such as caffeine revealed 

Scheme 7. Synthesis of unsymmetrical imidazolium salts (21). 

HN

N
H

N

H
N

O

O

HN

N
N

N

O

O

N

N
N

H
N

O

O

N

N
N

N

O

O

N

N
N

N

O

O

O

Xanthine Theobromine Theophylline

Caffeine Pentoxifylline

Figure 2. The molecular structures of some common xanthine derivatives. 
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the fact that these compounds themselves have potential 

pharmaceutical properties that can be improved in combination with a 

metal center and form NHC-metal complexes with medical 

applications [67-69]. On the other hand, xanthine derivatives such as 

theophylline and theobromine can be functionalized before the 

synthesis of their corresponding imidazolium salts which can lead to 

the formation of very attractive systems for medical [70,71] and catalytic 

applications [72].  

 

The synthesis of NHCs derived from xanthines generally starts with 

the alkylation of xanthine derivatives at the N9 position to produce 

their corresponding imidazolium cations which are consequently 

subjected to the deprotonation reaction in the presence of a suitable 

base (Scheme 8). In this regard, there are many reports on the 

synthesis of different imidazolium salts using various alkylating 

agents such as trimethyloxonium tetrafluoroborate [70,73], iodoalkyl 

[69,71,74], dimethyl sulfate [68,75-77], or methyl tosylate [76].  

 

 

 

 

 

 

 

 

 

 

 

Based on the scientific studies, although [Me3O]BF4 can be used in 

stoichiometric amounts and mild reaction conditions for the alkylation 

of xanthines, the high-price of [Me3O]BF4 reagent and the need for 

anhydrous conditions can be considered as significant drawbacks of 

this procedure. As an alternative to this reagent, Cannon and Youngs 

employed iodomethane for the alkylation of caffeine [69]. Even though 

this alkylating agent has highly been desirable for its low-price in 

comparison with [Me3O]BF4 the reaction conditions such as the need 

for a large excess of the alkylating agent, long reaction time, and high 

reaction temperature can be regarded as some disadvantages of this 

procedure [71,74,78]. On another attempt, Youngs and et al. 

employed dimethyl sulfate for the alkylation of caffeine and were able 

to obtain the desired product in 72% yield [77]. Due to the low price of 

N

N
N
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Alkylating agent
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N
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Y

Alkylating agents: (CH3)3OBF4, I-R", (MeO)2SO2, MeOTs

Y: BF4, I, MeOSO3, TsO

Scheme 8. The general synthesis procedure of imidazolium salts derived from xanthines. 
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the reagent, short reaction time, and high reaction efficiency, dimethyl 

sulfate and similar alkylating agents such as diethyl sulfate, ethyl 

tosylate, and methyl tosylate have recently been investigated for the 

alkylation of xanthine derivatives and research in this area is still 

expanding [79,80]. 
  

1.3. Synthesis and applications of NHC-metal complexes 

 

In 1915 Chugaev reported the synthesis of a platinum complex of a 

non-cyclic N-stabilized carbene ligand which could be considered as 

the most significant contribution to the organometallic chemistry of 

NHC-metal complexes (Scheme 9) [81,82]. Unfortunately, cause of the 

lack of the required spectroscopic techniques they couldn’t reveal the 

first synthesis of a metal-carbene complex. Several years later, in 

1970, the structure of the synthesized complex was finally proposed 

by Rouschias and Shaw [83].     

 

In 1968 the synthesis of the first transition metal-NHC complexes was 

reported by Öfele [84] and Wanzlick [85,86]. Öfele prepared the first 

(NHC)Cr(CO)5 complex through the in situ deprotonation of the 

azolium cation by Brönstedt basic metallate anions upon heating 

(Scheme 10). In the following years, this procedure was used to 

prepare other NHC-metal complexes from benzimidazolium, 

pyrazolium, triazolium, and tetrazolium salts [87-89]. However, this 

synthesis procedure is limited by the availability of the suitable 

metallate precursor, which is governed by the nature and oxidation 

state of the metal center in the new complex as well as its ligand 

environment [90].      

 

 

 

 

Scheme 9. Synthesis of the Chugaev's platinum complex (1). 

Scheme 10. The synthesis of the first NHC-metal complex by Öfele. 

https://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Rouschias
https://pubs.rsc.org/en/results?searchtext=Author%3AB.%20L.%20Shaw
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In another work, Wanzlick reported the successful synthesis of a 

mercury bis-NHC complex using a different procedure. Based on this 

method, the complex was obtained from the reaction between the 

azolium cation and mercury(II) acetate as the basic anion which can 

provide the desired ligand by the in situ deprotonation of the azolium 

cation (Scheme 11) [85,86].  

 

 

 

    

 

 

Two years after the isolation of the first free NHC by Arduengo [22], 

the synthesis of the first homoleptic silver(I)-NHC complex was 

reported in 1993 [91]. But due to difficulties in obtaining free 

carbenes, only a limited number of silver(I)-NHC complexes were 

synthesized using this procedure. Several years later, Lin et al. 

reported a facile synthesis of gold(I) and silver(I)-NHC complexes from 

the reaction of azolium salts with metal precursors under basic phase 

transfer catalysis (PTC) conditions [92,93].  

 

Furthermore, silver(I)-NHC complexes were introduced as carbene 

transfer agents in transmetallation reactions to prepare different 

transition metal-NHC complexes [93]. This synthesis method has 

recently been established as a common method for the preparation of 

metal-NHC complexes with various transition metal centers such as 

Au(I) [94-101], Pd (II) [102-109], Pt(II) [110-112], Rh (I) [113-120], Rh 

(III) [121,122] Ru(II) [123-129], Ru (III) [125], Ru (IV) [130,131], Ir (I) 

[120,121,132-136], Ir (III) [121,137-139], Ni (II) [140,141], Cu (I) [142-

144], Cu (II) [145-147]. In addition to silver(I)-NHC complexes 

Tungesten carbene complexes have also been reported as an effective 

carbene transfer reagents for the synthesis of Pt, Pd, Au, and Rh 

complexes [148]. 

 

Synthesis of various transition metal-NHC complexes has led to 

enormous researches on potential applications of these complexes in 

organometallic chemistry [149-152].  

  

Scheme 11. The first Hg(II)-NHC complex synthesized by Wanzlick. 
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For the first time, in 1995, Herrmann et al. confirmed the catalytic 

activity of NHC transition metal complexes [153]. This work revealed 

that palladium-NHC complexes show high catalytic activity and a 

remarkably long lifetime which make them an excellent catalyst for 

several Heck reactions (Scheme 12). It was found that due to the 

–donor property of NHC ligands, they can produce stable 

metal-NHC complexes with high reactivity and relative selectivity for 

numerous chemical transformations [154-157].  

 

 

 

 

 

 

 

         

 

 

Since this finding, metal-NHC complexes have extensively been 

studied in organocatalysis [158-160]. Further works demonstrated 

that silver(I)-NHC complexes can not only act as efficient catalysts for 

a wide range of organic transformations [145,161-163] but also show 

promise as antimicrobial or potential anti-cancer agents [164-167]. 

The antimicrobial properties of silver are known for centuries and the 

successful application of different silver compounds such as silver 

nitrate [168] and silver sulfadiazine [169] in wound treatment has 

been documented. However, the mechanism of the antimicrobial 

action of silver compounds is not completely understood. It is 

assumed that the efficacy of silver compounds as antimicrobial agents 

can be attributed to the slow release of silver cation over a long time to 

prevent reinfection [71,170]. In 2004 silver(I)-NHC complexes were 

first introduced as a novel class of antimicrobial agents (Figure 3) 

[171]. The results revealed that the alkanol N-functionalized silver-

carbene complexes are soluble in aqueous media and they showed 

better bacteriostatic activity than silver nitrate, even at a much lower 

concentration. Moreover, it was also found that the counter ion can 

affect the water solubility of the silver(I)-NHC complexes for example 

Scheme 12. The first application of NHC-metal complexes as catalyts (21). 
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hydroxide as the counter ion can increase the water solubility of the 

complex.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In continuing studies, it was suggested that NHC ligands, -

donors, can form a stable silver-carbon bond that causes the slow 

release of silver cations which prevents reinfection [167,172,173]. On 

the other hand, several studies have revealed that silver(I)-NHC 

complexes can have a potential future in the treatment of cancer [174-

176].  

 

After the successful application of platinum-based drugs such as 

cisplatin in chemotherapy [177,178], severe side effects and the 

development of drug resistance have increased demand for new 

organometallic anticancer drugs. In this regard, silver with relatively 

low toxicity compared to platinum has received increasing attention in 

cancer chemotherapy. According to the organometallic studies, 

ligands as the delivery agent surrounding the silver can make 

significant effects on the character of silver(I) complexes such as 

toxicity. Thus xanthine derivatives as natural products with low 

toxicity have attracted significant attention. In addition to low toxicity 

and high availability, xanthine derivatives have themselves been used 

for their chemotherapeutic effects [179]. 

 

In 2006 Youngs et al reported the synthesis of silver(I)-NHC complex 

from caffeine, which was found to be active against resistant 

respiratory pathogens [69]. Three years later, the same group 

described the synthesis of a functionalized-theobromine by adding a 

hydroxyethyl group to the backbone of this ligand and confirmed that 

the silver(I) complex of this ligand can be effective against a variety of 

Figure 3. Some silver(I)-NHC complexes with antimicrobial activity. 
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cystic fibrosis relevant pathogens (Figure 4) [180]. Based on the 

obtained results, SCC8 by adding a hydroxyethyl group at the N1 

position shows a better water solubility compared to SCC1.   

 

 

 

 

 

 

 

 

 

 

 

As a consequence, the synthesis of metal complexes with 

functionalized NHCs has been considered one of the newest strategies 

to increase the effectiveness and bio-conjugation of metal-NHC 

complexes by adding biologically relevant groups to the backbone of 

the ligand [181-183].  

 

In further works, the biological activity of caffeine-based NHC 

complexes of gold(I) as anticancer agents has been reported [70]. 

However, due to the more favorable toxicological profile of silver(I)-

NHC complexes compared to gold(I)-NHC complexes they have recently 

been more evaluated for their anticancer and antimicrobial properties 

[184-189]. Here, it should be noted that synthesis and biological 

evaluation of transition metal-NHC complexes are still the subjects of 

intensive research. 
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Figure 4. Theobromine derived silver(I)-NHC with antimicrobial efficacy. 
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2. Amis and objectives 

Recently, N-heterocyclic carbenes (NHCs) and their metal complexes have 

attracted great interest and have widely been investigated due to their 

pharmaceutical properties.  Therefore, in this contribution, we firstly decided to 

examine the synthesis of some new NHC precursors derived from theophylline, 

theobromine, and caffeine.  These compounds contain an imidazolium ring 

which makes them an ideal choice for evaluation as potential precursors to 

NHCs. Moreover, they are widely found in foods and beverages, so high 

availability and low toxicity can be considered as their added benefits. In the 

present work, we examined the ethylation of the xanthine derivatives at the N9 

position utilizing ethyl p-toluenesulfonate (EtOTs) and diethyl sulfate (EtO)2SO2 

as the new generation of alkylating agents under solvent-free conditions. As the 

result, the synthesis of a series of NHC precursors with the following structures is 

expected in (Figure 5).  

 

       

 

                       

 

 

 

The second aim of this project is to synthesize a family of heteroleptic silver(I)-

NHC complexes, due to their biomedical properties such as antimicrobial and 

anticancer effects. In this context, it is worth noting that according to recent 

studies these complexes are generally prepared by a reaction of [NHCH]X salts (X: 

PF6
-, BF4

-, and halides) with silver(I) precursors. Thus, we should first test the 

formation of the NHC salts of various anions like PF6
-, BF4

-, BPh4
-, Cl-, and I- by 

following an ion-exchange reaction between the [NHCH]Y salts (Y: TsO- and 

EtOSO3
-) and the proper anion precursor. Next, the silver(I)-NHC complexes with 

the general formulas of [NHC-Ag-NH3]+, [NHC-Ag-Phosphine]+ (Phosphine: PPh3 

and PTA), and [NHC-Ag-Cl] would be synthesized from the newly synthesized 

NHC precursors. 

 

To keep up with our objectives of the synthesis of different transition metal-NHC 

complexes, we examine the formation of [RuCl2(NHC)(p-cymene)], 

Figure 5. The NHC precursors that are expected to be synthesized in this research. 
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[RhCl2(NHC)(Cp*)], [RhCl(NHC)(cod)], and [Au(NHC)Cl] complexes  (Figure 6) by 

following a transmetallation reaction from [NHC-Ag-Cl].  

 

 

 

 

 

 

 

  

 

 

 

 

 

Finally, we evaluate the synthesis of some Pd(II)-NHC complexes which can 

directly be synthesized from a reaction between [NHCH]Cl salts and the Pd(II) 

precursor in presence of a base. Two different Pd(II)-NHC complexes are 

proposed to be synthesized in this work (Figure 7).  
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Figure 6. The expected transition metal-NHC complexes obtained from the transmetallation 
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[Au(NHC)Cl]. 

Figure 7. Some Pd(II)-NHC complexes that may hold interest for evaluation in this work . 
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3. Results and discussion 

3.1. Synthesis of N-heterocyclic carbene ligands 

3.1.1. Synthesis of xanthine-derivatives  
 

In this research, we firstly examined the formation of various 

substituted imidazolium salts from naturally occurring derivatives of 

xanthine (Figure 8). Taking into account that these derivatives contain 

an imidazole ring, they could be used as N-heterocyclic carbene 

precursors. Moreover, they are natural products that are naturally 

presented in coffee beans, tea leaves, and cocoa beans, so their low 

toxicity and high availability can be considered as distinct advantages 

of these compounds.  

 

 

 

  

 

 

 

As the first set of experiments, two different derivatives of theophylline 

(1a and 2a) were synthesized and characterized according to the 

reported procedure [71]. More details are shown in Table 1.  
 

Table 1. The general synthesis procedure of the theophylline derivatives. 

 

Sample R X Yield (%) 

1a Bn Br 97 

2a BnCl Cl 67 

Theophylline                   Theobromine                   Caffeine                   
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The 1H and 13C-NMR results, as well as the HRMS and EA, confirmed 

the successful synthesis of 1a and 2a compounds. For example, the 

most relevant change found in the 1H and 13C-NMR spectra was the 

appearance of the new resonance signals in the aromatic region (Table 

2). 
 

Table 2. The 1H and 13C-NMR results for 1a and 2a in CDCl3. 

Sample  1H-NMR/δ (ppm) 13C-NMR/δ (ppm) 

1a 7.32-7.41 127-136 

2a 7.25-7.37 129-135 
 

 

3.1.2. Synthesis of imidazolium salts from xanthine-derivatives  
 

Imidazolium salts are synthesized in most cases using alkyl halides as 

the alkylating agent [71,77,190]. However, this method suffers from 

some drawbacks, for instance, harsh reaction conditions, long 

reaction time, large amounts of expensive reagents or catalysts, and 

costly processing equipment [191]. Moreover, when the synthesized 

imidazolium halide salts are used for ion-exchange reactions (e.g., to 

prepare imidazolium hexafluorophosphate or tetrafluoroborate, etc.), the 

presence of halide contamination in the product can be mentioned as 

another disadvantage of utilizing this group of alkylating agents [192].   

To overcome these drawbacks, we decided to use Alkyl sulfonates and 

dialkyl sulfates as the new generation of alkylating agents. So in the 

second part of this research, a family of imidazolium salts (1b, 1c, 2b, 

and 2c) was prepared by ethylation of xanthine-derivatives with EtOTs 

and (EtO)2SO2 under solvent-free conditions (Scheme 13).  

 

 

 

 

 

 

 

 

 
Scheme 13. The ethylation of xanthine-derivatives under solvent-free 

conditions. 
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The details of the optimized reaction conditions are reported in Table 

3.  
 

Table 3. The optimized ethylation reaction conditions of xanthine-derivatives. 

Sample Ethylating agent Eq. ratio T (°C) Time (h) Yield(%) 

1b EtOTs 3.6 150 2 87 

2b EtOTs 3.6 150 2 84 

1c (EtO)2SO2 2 130 2 87 

2c (EtO)2SO2 2 130 2 88 

 

The product structures were characterized and confirmed by 1H and 
13C-NMR spectroscopy, HRMS, and EA. In the 1H-NMR spectra of the 

products, the resonance signals of the ethyl group were observed as a 

quartet for -CH2CH3 and a triplet for -CH2CH3 at 5.65-5.75 and 1.50-

1.55 ppm, respectively. Moreover, the imidazolium protons were 

characterized at 9-10 ppm that is consistent with the general acidic 

proton shift of imidazolium salts (δ: 8-10 ppm) [193]. Furthermore, in 

the 13C-NMR spectra the imidazolium carbon (N-C-N), which later 

becomes the carbene centers, shows a chemical shift at 138-140 ppm. 

The HRMS also confirmed the formation of the expected products.  

 

Based on the experiments, (EtO)2SO2 is preferred to EtOTs as the alkylating 

agent, due to its several desirable features, namely ease of use (diethyl 

sulfate is found as a liquid reagent, while EtOTs is a crystalline solid at room 

temperature), low cost, and high availability. Moreover, it needs to be 

noted that diethyl sulfate shows a higher alkylating power, so the 

expected products were synthesized using lower amounts of diethyl 

sulfate at a lower reaction temperature in comparison with using 

EtOTs as the alkylating agent.  

  

Through the alkylation reaction with diethyl sulfate, it was found that 

diethyl sulfate can be decomposed to hydrogensulfate at temperatures 

above 130 °C to produce the xanthine-derivatives imidazolium 

hydrogensulfates as the product which shows higher water solubility 

than the same products with ethyl sulfate or tosylate as the counter-

ion (Table 4). The 1H and 13C-NMR analyses are consistent with the 

expected structures. In 1H-NMR spectra, signals of ethyl sulfate were 

disappeared, and instead, in some cases, a broad singlet signal was 

observed at 4-4.3 ppm that could be assigned to HSO4
-. Also, the existence of 
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HSO4
- as the counter-ion was approved by the mass spectrometry in the 

negative mode. 

 

   
Table 4. The effect of reaction temperature on the product structure of alkylation reaction 

using diethyl sulfate as the alkylating agent. 

Sample               Structure     Eq. ratio T(°C) Time(min)  Yield(%) 

    1c 

 

2 130 120 
 

     87 
 

    1d 

 

2 150 180 76 

    2c 

 

2 130 120 88 

    2d 

 

2 150 150 83 

        * the optimized reaction conditions have been shown in the table. 

 

As the final step, the generality of this procedure was examined by 

alkylation of other xanthine-derivatives (e.g. caffeine, theobromine, 

and theophylline). It is also worth noting that theobromine and 

theophylline as non-substituted xanthine-derivatives at N1 and N7 

positions gave us the chance to evaluate the effect of the -NH group on 
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this alkylation method. More details are available in Table 5. The 

structures of the products were also established by 1H and 13C-NMR analyses 

and mass spectrometry in positive and negative modes. The results confirmed 

the formation of the imidazolium salts of HSO4
- as the product.  

 

      
Table 5. Evaluation of xanthine-derivative structure effect on the alkylation reaction using 

diethyl sulfate as the alkylating agent. 

 Sample Structure  Eq. ratio   T (°C)    Time (min)   Yield(%) 

3d 

 

2 130 120 91 

4d 

 

2 160 95 65 

5d 

 

1.8 160 105 43 

         * the optimized reaction conditions have been shown in the table. 

 

3.1.3. Ion-exchange reactions of the imidazolium salts 
 

 Synthesis of [NHCH]PF6 salts 
 

The second goal of this project was the preparation of the imidazolium 

salts of various anions like PF6
-, BPh4

-, BF4
-, and halides by ion-

exchange reactions. 

  

In this regard, first, the hydrophobic imidazolium hexafluorophosphates 

[NHCH]PF6 were synthesized by the reaction of 1b-1d and 2b-2d with 

NH4PF6 in water as the solvent at room temperature. Due to the very low 

solubility of [NHCH]PF6 in water, the product was obtained as a white 
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precipitate which was easily separated from the reaction mixture by 

simple filtration [77]. The structures of the products were proved by 
1H, 13C, and 31P-NMR spectroscopy, HRMS, and EA.  

 

The disappearance of the resonance peaks of TsO-, EtOSO3
-, and 

HSO4
- in 1H and 13C-NMR spectra and the appearance of PF6

- signal 

as a heptate at -144 ppm in 31P-NMR spectrum confirm the successful 

synthesis of the products as expected.  

 

Quite interestingly, the experiments imply that in some cases the 

efficiency of the reaction increases in the sequence of counter-ion: 

HSO4
->EtOSO3

->TsO-, that it could be explained by the effect of 

counter-ion on the water solubility of the imidazolium salt. The 

[NHCH]HSO4 with the higher water solubility shows more reactivity in 

the reaction which leads to the high yield for [NHCH]PF6 as the 

product (Table 6).    
 

Table 6. The effect of counter-ion on the efficiency of the ion-exchange reaction to prepare 
[NHCH]PF6 salts. 

Entry                 Precursor      X- Yield(%)/[NHCH]PF6 

1 

 
    TsO 69 

  EtOSO3 74 

   HSO4 89 

2 

 
    TsO 77 

  EtOSO3 74 

   HSO4 79 

 

The performance of this procedure to provide other [NHCH]PF6 salts 

with various cations, was evaluated by alternating [NHCH]+ with the other 

ethylated xanthine-derivatives.  

 

Based on the results obtained in this part of the research, ethylated 

caffeine and theobromine hydrogensulfates can be converted to 

corresponding PF6
- salts, while after several additional attempts in 

different reaction conditions, it was found that the reaction of 

ethylated theophylline hydrogensulfate could not be successfully 
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carried out. The obtained product was characterized by 1H, 13C, and 
31P-NMR and mass spectrometry analyses. 

  

The 31P-NMR spectrum shows no PF6
-
 signals for the product which 

reveals that HSO4
- couldn’t be replaced by PF6

- successfully. But a 

strange change found in the 1H-NMR spectrum was the appearance of 

a group of three peaks with an integral ratio of 1:1:1 at 6.68-7.32 ppm 

(Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

To get more information about this group of signals, different 2D NMR 

analyses (e.g. 1H-13C HSQC (1JCH), 1H-13C HMBC (2,3JCH), 1H-1H COSY) 

were carried out.  

 

The HSQC analysis shows that this group of protons is bonded to a 

non-carbon atom and this finding was also proved by carrying out the 
1H-NMR analysis in different solvents with different polarities. This 

group of peaks disappears in a protic solvent like methanol which 

reveals that these protons exhibit hydrogen bondings and have to be 

attached to a heteroatom. 

 

On the other hand, the HMBC spectrum confirms that there are no 

correlations between this group of protons and carbon atoms in the 

product. For more detail, the possible correlations between protons 

Figure 9. The 1H-NMR spectrum of the product obtained from the ion-exchange reaction 
of ethylated theophylline with NH4PF6 (in DMSO, 400 MHz). 



3. Results and Dicussion 

  

 
22 

were examined by the 1H-1H COSY analysis. Surprisingly, no 

correlations were found between this group of protons and other 

protons in the product structure (Figure 10).  

 

Finally, we decided to do a mass spectrometry analysis in both 

positive and negative modes. Unfortunately, The mass spectrometry 

results couldn’t be helpful to identify the product structure.   

 

 

 Synthesis of [NHCH] BPh4/BF4 salts 
 

It should be noted that the ethylated xanthine-derivatives of various 

anions can also be obtained by alternating anions in [NHCH]X (X: TsO-

, EtOSO3
-, HSO4

-) with other anions. For example, in this work, 

[NHCH]BPh4 was synthesized with the same method from the reaction 

of 1b-1d and 2b-2d with NaBPh4 in water as the solvent. The products 

were fully characterized and confirmed by NMR spectroscopy and 

Mass spectrometry analyses.  

 

We also examined the synthesis of [NHCH]BF4 by the same method. 

According to the experiments, [NHCH]BF4 can be obtained from the 

Figure 10. The 1H-1H COSY spectrum of the product obtained from the ion-exchange 

reaction of ethylated theophylline with NH4PF6 (in DMSO, 400 MHz). 
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reaction of [NHCH]HSO4 (1d, 2d) with NaBF4 in a mixture of 

methanol: H2O (4:1) as the solvent. Based on the results, it should be 

considered that;  

 

First, the [NHCH]HSO4 can be converted to [NHCH]BF4 in this route 

while for other ethylated xanthine-derivatives of  TsO- or  EtOSO3
-, the 

anion can’t be successfully replaced by BF4
-.  

 

Second, the idea in this method is to utilize the solubility difference 

among [NHCH]HSO4 and NaBF4 as the starting materials and 

[NHCH]BF4 and NaHSO4 as the reaction products in the reaction 

solvent. Since they all show high solubility in water, it couldn’t be an 

ideal choice as the solvent in this reaction. After several attempts, it 

was found that NaBF4 and NaHSO4 (as the by-product) are soluble in 

a mixture of methanol: H2O (4:1), while [NHCH]HSO4 and [NHCH]BF4 

(as the expected product) show low solubility in the solvent and the 

product is obtained as a white precipitate which can easily be isolated 

from the reaction mixture by a simple filteration method. But it 

should be noted that the amount of solvent in the reaction should be 

as small as possible. Because using a high amount of solvent could 

lead to an increase in the solubility of the substrate and the product 

which can cause low efficiency of the reaction.  

 

Finally, the structures of the products (1h and 2h) were confirmed by 

NMR and mass spectrometry in positive and negative modes. The 19F-

NMR spectrum shows two resonance peaks at -148.35 and -148.41 

ppm for BF4
- due to the two isotopes for boron (B-10 and B-11), 

respectively. Moreover, the mass spectrometry analysis, in negative mode, 

proved the successful replacement of HSO4
- by BF4

- (Table 7).  
 

Table 7. The 19F-NMR and mass spectrometry analyses of the synthesized [NHCH]BF4. 

   Sample             Structure   19F-NMR/ δ (ppm) 
Mass analysis 

(Negative mode) 
(m/z) % 

 
1h 

 

-148.35, -148.41 87 N

N
N

N

O

O

Et

BF4



3. Results and Dicussion 

  

 
24 

Table 7. The 19F-NMR and mass spectrometry analyses of the synthesized [NHCH]BF4.  

 Sample             Structure   19F-NMR/ δ (ppm) 
Mass analysis 

(Negative mode) 
(m/z) % 

   2h 

 

-148.37, -148.42 87 

 

 

 Synthesis of [NHCH]Cl/I salts 
 

Keeping with our subject of exploring the synthesis of the ethylated 

xanthine-derivatives of various anions, it was decided to replace TsO-, 

EtOSO3
-, or HSO4

- with chloride. As a common method, this could be 

carried out over an ion-exchange column by the anion exchange of [NHCH]X (X: 

TsO-, EtOSO3
-, HSO4

-) with resin [194]. But some drawbacks to this 

method are that it needs costly equipment and expensive chemicals, 

mass transport takes longer than other methods, and a huge amount 

of solutions is required. So, this method is usually considered less 

desirable [195]. Another way to synthesize [NHCH]Cl salts from 

[NHCH]TsO could be a two-step ion-exchange reaction in ethanol 

[196]. Based on this method, first [NHCH]OH is obtained by the 

treatment of [NHCH]TsO with KOH in ethanol, and next the 

[NHCH]OH salt as the product would be converted to [NHCH]Y from its 

reaction with corresponding acids (HY). In the article, different acids 

like H2SO4 and HNO3 were examined and we decided to synthesize 

[NHCH]Cl by using HCl as a new acid in the second step. Here it 

should be noted that the key point in this method is the formation of 

[NHCH]OH salt in the first step which acts as the intermediate for the 

synthesis of [NHCH]Cl in the next step. After several attempts, it was 

found that any [NHCH]OH couldn’t be formed in the first step and 

unreacted starting materials were only obtained. 

  

More studies revealed that [NHCH]Cl salts can also be synthesized 

from the reaction between corresponding [NHCH]PF6 and TBAC in 

THF or acetone as the solvent [197]. Thus, it was decided to design a 

new two-step synthesis method of [NHCH]Cl salts from [NHCH]X (X: 

TsO-, EtOSO3
-, HSO4

-). Based on this procedure, the [NHCH]PF6 salt was 

first prepared as described before, and then it was treated with TBAC 
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in THF or acetone at room temperature for 2 h. Last, the product was 

obtained as a white precipitate which was isolated from the reaction 

mixture by a simple filteration method.   

 

This method was examined with 1e-4e as four different ethylated 

xanthine-derivatives (Table 8). All products were characterized and 

confirmed by NMR spectroscopy and HRMS. The 1H-NMR spectrum 

represents a more deshielded imidazolium proton which confirmed the 

synthesis of the expected product. Taking into account that Chloride ion 

is smaller than PF6
-, it exhibits a stronger coulombic interaction with an 

identical cation that can decrease the electron density around the 

imidazolium proton, so this proton shows a greater chemical shift. For 

example, 1f shows a signal for imidazolium proton at 10.1 ppm. 

Additionally, the 35Cl-NMR spectrum confirmed the formation of the 

expected product. For instance, the 35Cl-NMR spectrum of 1f shows 

the resonance peak for chloride ions at 69.39 ppm. 

 

Table 8. Synthesis of [NHCH]Cl salts from the reaction between [NHCH]PF6 and TBAC. 

Sample           Structure TBAC (Eq.) Solvent   Yield(%) 

1f 

 

 2 THF 85 

2f 

 

2 THF 75 

3f 

 

2 THF 97 

 

N

N
N

N

O

O

Et

Cl

N

N
N

N

O

O

Et

Cl

Cl

N

N
N

N

O

O

Et

Cl



3. Results and Dicussion 

  

 
26 

Table 8. Synthesis of [NHCH]Cl salts from the reaction between [NHCH]PF6 and TBAC.  

Sample           Structure TBAC (Eq.) Solvent   Yield(%) 

4f 

 

 2 Acetone 97 

 

 

This method was also evaluated for the synthesis of [NHCH]I salts. In this 

regard, [3,7-dimethyl-9-ethylxanthinium]I (5f) was obtained as a white 

precipitate from the reaction between [1,7-dimethyl-9-ethylxanthinium]PF6 

and TBAI in acetone at room temperature for 2 h. The product structure 

was characterized by NMR and mass spectrometry in positive and 

negative modes. Due to the disappearance of the PF6
- signal in the 31P-

NMR spectrum, it was found that PF6
- should be successfully replaced 

by I- which was also proved by the mass spectrometry in the negative 

mode. But here it has to be pointed out that the product changes 

color to black after a while that could come out of the reduction of 

iodide (I-) to iodine (I2). Thus the product was analyzed by NMR and mass 

spectrometry before and after changing the color. In both situations, the 
1H-NMR spectra show two additional signals at ~ 3.34 and 3.85 ppm 

with an integral ratio of 1:1. Moreover, the 13C-NMR spectra exhibit 

two groups of signals. Based on the NMR analysis and mass 

spectrometry in positive and negative modes, it implied that the 

product could contain a little amount of I2 which could be responsible 

for changing the color of the product to black and I3- as a counter ion 

which leads to the appearance of an additional group of signals with 

the upfield chemical shift in the 1H and 13C-NMR spectra.   
 

3.2. Synthesis of Ag(I)-NHC complexes 

3.2.1. Synthesis of [Ag(NHC)(NH3)]PF6/BPh4/BF4 complexes 
 

The first group of heteroleptic Ag(I)-NHC complexes with the general 

formula of [Ag(NHC)(NH3)]PF6 was synthesized from the reaction of the 

corresponding [NHCH]PF6 with Ag2O in the presence of NH3 (Scheme 

14) [198]. More details are presented in Table 9.  
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Table 9. The synthesized [Ag(NHC)(NH3)]PF6 complexes. 

Sample               Structure Yield(%) 

1 

 

78 

2 

 

77 

3 

 

68 

 

The synthesized complexes were also fully characterized by NMR, FT-

IR, HRMS analyses, and EA (due to a failure of the instrument, the 

purity of sample 3 wasn’t examined by EA). The most relevant 

changes in the 1H-NMR spectrum were the disappearance of the 

imidazolium proton at 9.30-9.60 ppm and the appearance of a new 

N
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Ag2O, NH3, Ethanol

RT, 30 min.

Scheme 14. Synthesis of [Ag(NHC)(NH3)]PF6 complexes 
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signal at ~ 3 ppm with an integral of 3 which could be referred to NH3 

ligand. Furthermore, the appearance of the signal at 184-186 ppm in 

the 13C-NMR which belonged to the ipso-carbon directly bonded to Ag, 

confirmed the successful synthesis of the expected product. In 

addition, the FT-IR spectrum exhibits two bands at high wavenumber 

(3300-3400 cm-1) for NH3 and a strong absorption at 833-835 cm-1 for 

PF6
- as the counterion. 

  

Crystals of complex 1 were of poor quality and the structure solution 

only confirmed the molecular connectivity but prevented a meaningful 

discussion of the geometrical parameters, while the single crystals of 

complexes 2 and 3 suitable for the X-ray diffraction analysis were 

obtained by slow diffusion of CHCl3 into acetone solution. The 

molecular structures of complexes 2 and 3 in the solid state are 

shown in Figure 11.  

 

 

     

 

 

 

 

 

 

 

 

 

 

We also examined this procedure for the synthesis of [Ag(9-ethyl-1,7-

dimethylxanthine-8-ylidene)(NH3)]PF6 from the corresponding [NHCH]PF6 

salt (4e) as an NHC precursor that isn’t substituted at the N1-position. 

After various attempts, we only obtained a dark brown residue as the 

product which was insoluble in common lab solvents. So, we weren’t 

able to characterize and confirm the product structure. 

Furthermore, it is worth noting that this procedure can also provide 

[Ag(NHC)NH3]+ complexes of other counterions. In this regard, [Ag(NHC)NH3]Y 

(Y: BPh4
-, BF4

-) complexes were prepared by the reaction of the 

Figure 11. The molecular structures of the cationic part of [Ag(NHC)(NH3)]PF6 complexes in 

the solid state. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms and 

PF6- anions have been omitted for more clarity. Selected interatomic distances [A°] and bond 

[°]: a) complex 2: Ag1-N1= 2.110(5), Ag1-C1= 2.060(5) A°, C1-Ag1-N1= 176.4(2)° b) complex 3: 

Ag1-N1= 2.119(3), Ag1-C1= 2.071(2) A°, C1-Ag1-N1= 172.96(2)°. 

 

 

a) b) 
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corresponding [NHCH]Y with Ag2O in the presence of NH3. All 

products were characterized by NMR, FT-IR, and HRMS techniques. It 

should be noted that due to the low solubility of [Ag(7-benzyl-9-ethyl-1,3-

dimethylxanthine-8-ylidene)(NH3)]BPh4 (4), we couldn’t analyse this structure 

by HRMS. On the other hand, we weren’t able to grow suitable single 

crystals from these two groups of Ag complexes for X-ray diffraction 

analysis.  

   

Last, we decided to examine the formation of a new heteroleptic Ag 

complex having diethylamine (DEA) instead of NH3 as the ligand. 

Thus, The [NHCH]PF6 salt (1e, 2e) was reacted with Ag2O in the 

presence of DEA at room temperature for about 4h. The product was 

obtained as a gray precipitate which was filtered and washed with cold 

ethanol and diethyl ether, respectively, and dried at room 

temperature. Based on the proposed mechanism for this reaction 

[198], a heteroleptic [Ag(NHC)(DEA)]+ complex was expected as the 

product, but the NMR and HRMS results confirmed the formation of a 

homoleptic [Ag(NHC)2]+ complex that it could be explained by the high 

degree of steric hindrance of DEA in comparison with NH3 as the 

ligand. So it was proposed that DEA could act as the base to generate 

free NHC which is treated by Ag2O in the next step to produce a 

homoleptic complex with the general formula of [Ag(NHC)2]PF6. But to 

overcome the steric hindrance of DEA, a larger amount of DEA was 

tested in the reaction. After several attempts, it was found that an 

increase in the amount of DEA can’t change the product structure 

and the same homoleptic [Ag(NHC)2]PF6 complex is obtained as the 

product (Scheme 15). The X-ray crystallography analysis of the 

product also confirmed the formation of a silver(I)-NHC homoleptic 

complex with a linear geometry at the metal center as the product 

(Figure 12).   

 

 

 

 

 

 

 

  

Figure 12. Molecular structure of the silver(I)-NHC homoleptic complex. 
NHC: 7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene. 
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3.2.2. Synthesis of [Ag(NHC)(Phosphine)]PF6 complexes 
 

The second group of the heteroleptic Ag complexes with the general 

formula of [Ag(NHC)(Phosphine)]PF6 was synthesized by following a 

ligand exchange procedure from the corresponding [Ag(NHC)(NH3)]PF6 

complex (1, 2, and 3), by treatment with PPh3 or PTA as the phosphine 

ligand in absolute ethanol (Scheme 16) [198].  

 

The [Ag(NHC)(PPh3)]PF6 complexes as the first group of the synthesized 

complexes were characterized by NMR analysis and HRMS. The 1H-

NMR spectra display the resonance signals of PPh3 in the aromatic region 

(7.20-7.55 ppm). Furthermore, for complexes 10 and 12, the resonance signal 

of the carbene carbon atom bonded to the Ag metal center was detected as a 

doublet in the range of 182-187 ppm as the result of 2J(13Ccarb.-31P) coupling by 

the 13C-NMR spectrometry.  

 

Moreover, in the 31P-NMR spectra, the appearance of a singlet in the 

region of 3.90-5.90 ppm and a heptate at ~ -144.17 ppm is referred to 

Ag-PPh3 and PF6, proved the successful synthesis of the expected products. 

Additionally, the HRMS analyses confirmed the structures of the products 

(Table 10).  

 

 

 

Scheme 15. The reaction between [NHCH]PF6 (1e and 2e) and Ag2O in the presence of 

diethylamine instead of NH3 as the ligand. 
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Table 10. The HRMS analysis of the synthesized [Ag(NHC)(Phosphine)]PF6 complexes. 

Sample 

 
 

          Structure 

Mass analysis (Positive mode)/(m/z) % 

Calc. Found 

10 

 

667.1387 667.1626 

11 

 

562.1244 562.1265 

12 

 

701.0997 701.1158 

Scheme 16. The general synthesis method of [Ag(NHC)(Phosphine)]PF6 complexes. 
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Table 10. The HRMS analysis of the synthesized [Ag(NHC)(Phosphine)]PF6 complexes. 

Sample 

 
 

          Structure 

Mass analysis (Positive mode)/(m/z) % 

Calc. Found 

13 

 

596.0854 596.1285 

14 

 

591.1074 591.1365 

15 

 

486.0931 486.1167 

 

 

Unfortunately, we weren’t able to study the product structure in the solid state 

by X-ray diffraction analysis. The X-ray diffraction analysis results 

showed a mixture of a bis-carbene complex of Ag and Ag(PPh3)4 as another 

crystal structure. It could be explained by the destruction of the product 

during the crystallization procedure.  

 

In the same way, the [Ag(NHC)(PTA)]PF6 complexes (11, 13, and 15) as the 

second group of phosphine complexes were prepared from the reaction between 

[Ag(NHC)(NH3)]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) in PPh3 place. 

The structures of the products were fully characterized and proved by 1H, 13C, 

and 31P-NMR analyses and HRMS. The HRMS results are summarized in Table 

10.  

 

By the X-ray diffraction analysis, we were faced with the same 

problem. The analysis showed a bis-carbene complex of Ag.  
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3.2.3. Synthesis of [Ag(NHC)Cl] complexes 
 

[Ag(NHC)Cl] complexes were prepared as the last group of heteroleptic 

silver complexes. Our inspiration for the synthesis of this type of silver 

complexes comes from the knowledge that [Ag(NHC)Cl] complexes are 

usually used in the synthesis of other metal-NHC complexes through 

transmetallation reactions [199,200]. The [Ag(NHC)Cl] complexes (16, 

17, and 18) were synthesized by treatment of the corresponding 

[NHCH]Cl salt with Ag2O in CH2Cl2 as the solvent [201-203]. This procedure 

generates an air-stable intermediate under mild reaction conditions 

and provides an easy way to synthesize a wide range of transition 

metal complexes, thus it is considered one of the most general synthesis 

methods of [Ag(NHC)Cl] complexes.  

 

The synthesized complexes were fully characterized by NMR, HRMS, 

and EA (The purity of complexes 16 and 17 were examined by EA, but 

complex 18 wasn’t evaluated by EA, due to a failure of the 

instrument).  

 

According to the 1H and 13C-NMR analyses of the synthesized complexes (16, 17, 

and 18), the disappearance of the imidazolium proton signal at 9-10 

ppm in 1H-NMR spectra, and the appearance of the new resonance 

peak referred to as the carbene carbon atom bonded to silver (CCarb.-

Ag) at 186-188 ppm in the 13C-NMR proved the successful synthesis of the 

expected complexes. The HRMS analysis proved the structures of the 

products as well. 

 

Finally, [3,7-dimethyl-9-ethylxanthinium]Cl (4f) was tested in the same 

reaction as an NHC proligand with non-substituted nitrogen at the N1 

position. Based on the synthesis method, compound 4f was reacted 

with Ag2O in CH2Cl2 as the solvent at room temperature for 4 h. After 

several attempts, it was determined that this reaction can’t be carried 

out in CH2Cl2 successfully. It could come out from the presence of an 

–NH group in the proligand structure which reduces the solubility of 

the NHC proligand in CH2Cl2 as a polar aprotic solvent. So, it was 

decided to change the reaction solvent to acetonitrile and methanol 

but the obtained results revealed no success in the reaction.   

 

The suitable crystals for X-ray diffraction studies were only obtained 

for complexes 16 and 17 by diffusion of diethyl ether into 

dichloromethane and chloroform into acetone solution, respectively 

(Figure 13). Complex 16 was detected as a dimeric structure 

containing an Ag2Cl2 core. The X-ray diffraction analysis of complex 
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17 displayed a trimeric structure with an Ag3Cl3 core. These 

structures are not unusual and the [Ag(NHC)Cl] complexes are widely 

known for their structural diversity [203]. The selected bond distances 

and angles are presented in Table 11 and Table 12. 

 

        

 

                                                                                                                                                                                                                                                                                                                    

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(a) 

(a) 

Figure 13. The molecular structures of complexes 16 and 17 in the solid state. Hydrogen 

atoms have been omitted for more clarity. 

a) Complex 16 

b) Complex 17 
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Table 11. Selected bond distances and angles for complex 16 with estimated standard 
deviations in parentheses. 

Bond Length (Å) Bond Angle (°) 

 
C(1)-Ag(1) 

 
2.102(2) 

 
C(1)-Ag(1)-Cl(1) 

 
149.50(7) 

    
Ag(1)-Cl(1) 2.4412(7) C(1)-Ag(1)-Cl(1)(a) 118.24(7) 

    
Ag(1)-Cl(1)(a) 

 
2.7212(7) 

 
Cl(1)-Ag(1)-Cl(1)(a) 

 
91.62(2) 

 
  C(1)-Ag(1)-Cl(1)(a) 

 
88.38(2) 

 
  Ag(1)-Cl(1)-Ag(1)(a) 

 
88.38(2) 

 
 

 

Table 12. Selected bond distances and angles for complex 17 with estimated standard 
deviations in parentheses. 

         Bond Length (Å)             Bond    Length (Å) 

Ag(1)-Ag(3) 3.2112(4) Ag(2)-Cl(1) 2.9008(7) 

Ag(1)-Cl(3) 2.9295(6) Ag(2)-C(21) 2.118(2) 

Ag(1)-Cl(1) 2.3967(6) Ag(3)-Cl(1) 2.7281(7) 

Ag(1)-C(1) 2.104(2) Ag(3)-Cl(2) 2.50947 

Ag(2)-Ag(3) 3.1095(4) Ag(3)-Cl(3) 2.9140(6) 

Ag(2)-Cl(2) 2.6573(7) Ag(3)-C(41) 2.110(2) 

           Bond        Angle (°)             Bond    Angle (°) 

Cl(1)-Ag(1)-Ag(3) 55.972(17) Cl(1)-Ag(1)-Cl(3) 86.936(18) 

Cl(3)-Ag(1)-Ag(3) 56.434(12) C(1)-Ag(1)-Ag(3) 136.89(6) 

C(1)-Ag(1)-Cl(1) 163.62(6) C(1)-Ag(1)-Cl(3) 108.73(6) 

Cl(1)-Ag(2)-Ag(3) 53.854(15) Cl(2)-Ag(2)-Ag(3) 50.851(15) 

Cl(2)-Ag(2)-Cl(1) 87.36(2) Cl(3)-Ag(2)-Ag(3) 61.040(13) 

Cl(3)-Ag(2)-Cl(1) 84.808(17) Cl(3)-Ag(2)-Cl(2) 98.819(19) 

C(21)-Ag(2)-Ag(3) 166.70(6) C(21)-Ag(2)-Cl(1) 119.74(6) 

C(21)-Ag(2)-Cl(2) 121.01(7) C(21)-Ag(2)-Cl(3) 132.08(6) 

Ag(2)-Ag(3)-Ag(1) 75.915(8) Cl(1)-Ag(3)-Ag(1) 46.727(14) 

Cl(1)-Ag(3)-Ag(2) 59.162(15) Cl(1)-Ag(3)-Cl(3) 81.470(19) 

Cl(2)-Ag(3)-Ag(1) 130.035(17) Cl(2)-Ag(3)-Ag(2) 55.209(16) 
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Table 12. Selected bond distances and angles for complex 17 with estimated standard 
deviations in parentheses. 

           Bond        Angle (°)             Bond     Angle (°) 

Cl(2)-Ag(3)-Cl(1) 94.29(2) Cl(2)-Ag(3)-Cl(3) 93.33(2) 

Cl(3)-Ag(3)-Ag(1) 56.896(13) Cl(3)-Ag(3)-Ag(2) 49.951(12) 

C(41)-Ag(3)-Ag(1) 97.55(7) C(41)-Ag(3)-Ag(2) 160.49(6) 

C(41)-Ag(3)-Cl(1) 128.81(7) C(41)-Ag(3)-Cl(2) 131.98(7) 

C(41)-Ag(3)-Cl(3) 111.01(6) Ag(1)-Cl(1)-Ag(2) 93.97(2) 

Ag(1)-Cl(1)-Ag(3) 77.300(18) Ag(3)-Cl(1)-Ag(2) 66.984(15) 

Ag(3)-Cl(2)-Ag(2) 73.940(19) Ag(2)-Cl(3)-Ag(1) 90.150(16) 

Ag(2)-Cl(3)-Ag(3) 69.010(14) Ag(3)-Cl(3)-Ag(1) 66.670(14) 

 

3.2.4. Theophylline and theobromine as NHC-precursors 
 

As previously mentioned, theophylline and theobromine were 

successfully ethylated at the N9 position using (EtO)2SO2 as the 

alkylating agent under solvent-free conditions. In the next step, the 

synthesized imidazolium salts were subjected to an ion-exchange 

reaction to produce [NHCH]PF6 salts which would be used to prepare 

various heteroleptic Ag(I)-NHC complexes.  

 

According to the experimental results, in [1,3-dimethyl-9-ethyl 

xanthinium]HSO4 (5d), hydrogensulfate can’t be replaced by PF6
-. So, 

it was decided to synthesize the homoleptic [Ag(NHC)2]+ complex which 

could be directly synthesized from compound 5d [77]. In this regard, 

compound 5d was dissolved in water and reacted with Ag2O at room 

temperature for 2.5 h. Next, the reaction suspension was filtered 

through celite to give a clear solution and the solvent was removed 

under vacuum. But at the end of the work-up process, the product 

was obtained as a dark precipitate which showed very low solubility in 

common laboratory solvents, so we couldn’t analyze the product.  

 

On the other hand, [3,7-dimethyl-9-ethyl xanthinium]HSO4 (4d) was 

successfully converted to the corresponding [NHCH]PF6  salt (4e) 

through the same ion-exchange reaction. Then compound 4e was 

evaluated as the NHC proligand to prepare [Ag(NHC)NH3]+ which could 

be subsequently used to produce [Ag(NHC)(Phosphine)]+ complexes. 

But experimental studies implied that this reaction couldn’t lead to 

the formation of the favorite product. On the second attempt, 
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compound 4e was also tested in another reaction to prepare the 

corresponding [Ag(NHC)2]+ complex [77]. In this sense, compound 4e 

was reacted with Ag2O in DMSO at 60 °C for 2.5 h. Then the product 

was worked up as reported [77], but the final product was obtained as 

an insoluble precipitate which couldn’t be characterized, due to its 

very low solubility in common laboratory solvents.   

  

On the third attempt, [3,7-dimethyl-9-ethyl xanthinium]Cl (4f) was tested to 

prepare the corresponding [Ag(NHC)Cl] by following a reaction between 

compound (4f) and Ag2O in different solvents like CH2Cl2, acetonitrile, and 

methanol. Unfortunately, all attempts were unsuccessful. Finally, [3,7-

dimethyl-9-ethyl xanthinium]I (5f) was investigated in another reaction to 

obtain another heteroleptic Ag(I)-NHC complex with the general formula of 

[Ag(NHC)(OAC)] [204,205]. The synthesis of the silver complex started with the 

reaction between compound 5f and silver acetate (in the molar ratio of 1:2) in 

methanol as the solvent. The reaction mixture was stirred at room 

temperature for 2.5 h. According to the results, this method didn’t work as 

expected. At the end of the reaction, an insoluble solid phase was obtained 

which was filtered and the filtrate was dried but no precipitate was left as 

expected.   

Finally, it was decided to continue on the project with other synthesized NHC-

precursors.  

       

3.3. Transmetallation reactions 

3.3.1. Synthesis of [RuCl2(NHC)(p-cymene)] complexes 
 

[RuCl2(NHC)(p-cymene)] complexes (19, 20, and 21) were synthesized 

via a transmetallation reaction from the corresponding Ag(NHC)Cl, by 

treatment with 0.5 Eq. of [RuCl2(p-cymene)]2 in CH2Cl2 at room 

temperature for 24 h [202,203]. Finally, the product was obtained as an 

orange-brown precipitate which was fully characterized by NMR and HRMS 

techniques.  

 

In the 1H-NMR  spectra of complexes 19 and 20, aromatic proton signals of p-

cymene ligand were observed as three broad multiplets in the range of 5.18-

5.52 ppm whereas aromatic protons of p-cymene ligand for complex 21 were 

detected as two doublets in the range of 5.21-5.67 ppm. For all synthesized 

complexes (19, 20, and 21), the methyl group on the p-cymene ligand shows a 

singlet in the range of 2.04-2.19 ppm. Moreover, the methyl groups of isopropyl 

substitution on the p-cyemen ligand for complexes 19 and 20 were detected as 

two inequivalent methyl groups which show two doublets at ~1.30 and 1.20 
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ppm, while the 1H-NMR spectrum of complex 21 shows a doublet at 1.35 ppm 

for the same methyl groups. Furthermore, complexes 19 and 20 show a broad 

singlet for –CH< at 2.75 ppm whereas the resonance signal of the same proton 

was found as a multiplet at 3.02 ppm for complex 21.   

 

By the 13C-NMR spectroscopy, the resonance peak of the carbene carbon atom 

bonded to Ru as the metal center appears in the range of 186-189 ppm. In 

addition, the characteristic signals of the aromatic carbon atoms of the p-

cymene ligand were observed in the range of 80-110 ppm. The methyl groups of 

the isopropyl on the p-cymene ligand were detected at 21-23 ppm and 18-19 

ppm as two inequivalent carbon atoms. Last, the signal at 30-31 ppm was 

assigned to –CH< group. The HRMS analyses also confirmed the structures of 

the products as expected.  

 

Suitable single crystals of complex 19 were grown by the vapor diffusion method 

from chloroform/n-Hexane (Figure 14). The X-ray diffraction analysis revealed 

the typical pseudo-octahedral piano-stool geometry around the Ru (II) metal 

center, with the η6-p-cymene ligand occupying three sites, the remaining three 

sites being occupying by the two chlorides and an NHC ligand.  Moreover, due 

to the π-acceptor property of NHC ligands, the bond length for Ru-Ccarb. was 

slightly shorter than that of the Ru-Carene bond. The selected X-ray diffraction 

data are presented in Table 13.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The molecular structure of complex 19 in the solid state. Hydrogen 
atoms have been omitted for more clarity. 
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Table 13. Selected bond distances and angles for complex 19 with estimated standard 
deviations in parentheses. 

      Bond       Length (Å)            Bond     Angle (°) 

Ru(2)-Cl(3) 2.4201(10) Cl(3)-Ru(2)-Cl(4) 82.67(3) 

Ru(2)-Cl(4) 2.4240(10) C(31)-Ru(2)-Cl(3) 87.34(10) 

Ru(2)-C(31) 2.095(4) C(31)-Ru(2)-Cl(4) 94.33(10) 

N(5)-C(31) 1.383(5) C(31)-Ru(2)-C(47) 104.47(14) 

N(8)-C(31) 1.359(5) C(31)-Ru(2)-C(48) 86.48(14) 

Ru(2)-C(47) 2.220(4) C(31)-Ru(2)-C(49) 97.86(15) 

Ru(2)-C(48) 2.163(4) C(31)-Ru(2)-C(50) 130.44(15) 

Ru(2)-C(49) 2.203(4) C(31)-Ru(2)-C(51) 163.76(14) 

Ru(2)-C(50) 2.237(4) C(31)-Ru(2)-C(52) 140.60(15) 

Ru(2)-C(51) 2.246(4) N(8)-C(31)-N(5) 105.2(3) 

Ru(2)-C(52) 2.204(4)   

 

3.3.2. Synthesis of [RhCl2(NHC)(Cp*)] complexes  
 

The compounds with the general formula of [RhCl2(NHC)(Cp*)] ( 22, 23, and 24) 

were synthesized by following a transmetallation route from the corresponding 

[Ag(NHC)Cl] complex using the synthesis method previously described [206, 207]. 

The products were fully characterized and confirmed by NMR and HRMS 

techniques.  

 

The 1H-NMR resonances for methyl groups on pentamethylcyclopentadiene 

(Cp*) ligand were found as a singlet with an integral of 15 at 1.50-1.70 ppm. 

In the 13C-NMR spectra of complexes 22 and 23, the metal-carbene 

carbon resonance was detected as a doublet at 183-184 ppm with the 

coupling constant of 53-55 MHz which is consistent with previously 

reported values for Rhodium-NHC complexes [208,209]. For all 

synthesized complexes, the aromatic carbon signals of the Cp* ligand were 

found as a doublet at 96-98 ppm with the coupling constant of 7-7.2 MHz 

resulting from 1JC-Rh coupling, and the methyl groups resonances were found 

in the range of 9.48-9.60 ppm. The HRMS data also proved the successful 

synthesis of the products as expected.  

 

In addition to NMR and HRMS characterization methods, the 

structures of complexes 22 and 23 were also confirmed by X-ray 

diffraction analysis (Figure 15). The suitable single crystals were 
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grown by slow vapor diffusion of diethyl ether into a concentrated 

solution of dichloromethane. The selected X-ray data for complexes 22 and 

23 are shown in Table 14. The X-ray diffraction analysis of complex 23 shows 

similar bond lengths but slightly different angles (Table 15).   

 

   

 

 

 

 

 

 

 

 

 

 
 

 

Table 14. Selected bond distances and angles for complex 22 with estimated standard 
deviations in parentheses. 

        Bond     Length (Å)            Bond    Length (Å) 

Rh(1)-Cl(2) 2.4098 (7) Rh(1)-C(19) 2.232(3) 

Rh(1)-Cl(1) 2.4186(8) Rh(1)-C(20) 2.149(3) 

Rh(1)-C(1) 2.0551(3) Rh(1)-C(21) 2.147(3) 

Rh(1)-C(17) 2.139(3) N(1)-C(1) 1.347(4) 

Rh(1)-C(18) 2.235(2) N(2)-C(1) 1.391(3 

           Bond        Angle (°)            Bond    Angle (°) 

Cl(2)-Rh(1)-Cl(1) 87.16(3) C(21)-Rh(1)-C(20) 38.65(11) 

C(21)-Rh(1)-Cl(2) 133.30(9) C(21)-Rh(1)-C(21) 38.85(11) 

C(21)-Rh(1)-Cl(1) 138.72(9) C(1)-Rh(1)-Cl(1) 96.19(8) 

C(21)-Rh(1)-C(18) 63.78(10) C(l)-Rh(1)-Cl(2) 95.56(8) 

C(21)-Rh(1)-C(19) 63.83(10)   

 

Figure 15. The molecular structure of complexes 22 and 23 in the solid state. Hydrogen 
atoms have been omitted for more clarity. 

a) Complex 22 b) Complex 23 
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Table 15. Selected angles for complex 23 with estimated standard deviations in parentheses. 

           Bond        Angle (°)            Bond     Angle (°) 

Cl(2)-Rh(1)-Cl(1) 87.68(2) C(21)-Rh(1)-C(20) 38.70(9) 

C(21)-Rh(1)-Cl(2) 135.43(6) C(17)-Rh(1)-C(21) 38.89(8) 

C(21)-Rh(1)-Cl(1) 136.10(7) C(1)-Rh(1)-Cl(1) 96.34(6) 

C(21)-Rh(1)-C(18) 64.06(8) C(l)-Rh(1)-Cl(2) 95.03(6) 

C(21)-Rh(1)-C(19) 64.16(8)   

 

3.3.3. Synthesis of [RhCl(NHC)(cod)] complexes  
 

In this part, we examined the formation of the complexes 25, 26, and 

27 with the general formula of [RhCl(NHC)(cod)] as an example of 

common rhodium(I)-NHC complexes by following a classical transmetallation 

reaction from the corresponding [Ag(NHC)Cl] complex, by treatment with 

[RhCl(cod)]2 in CH2Cl2 as the solvent at room temperature for 24 h 

[132,210,211]. The synthesized complexes were fully characterized 

using NMR and HRMS techniques. 

  

In the 1H-NMR spectra for complexes 25 and 26, CH protons of 1,5-

cyclooctadiene (cod) ligand were characterized as four inequivalent 

protons which exhibit their resonances in the range of 5.10-5.23 and 

3.03-3.31 ppm. Moreover, CH2 proton signals of cod ligand show a 

splitting pattern in the range of 1.70-2.52 ppm which is consistent 

with the previously recorded NMR spectra of [RhCl(NHC)(cod)] 

complexes [212].  

 

For complexes 25 and 26, the carbene carbon atom bonded to 

rhodium(I) shows a downfield chemical shift compared to the 

corresponding [Ag(NHC)Cl] complex by the 13C-NMR spectroscopy. 

Furthermore, the olefinic carbon atoms of cod ligand were detected as 

four doublets at 100.08-100.90 and 69.84-69.67 ppm as a result of 
1JRh-C coupling. The CH2 groups of cod ligand were also characterized as 

four signals with different chemical shifts in the range of 28.10-33.54 

ppm which proves the existence of four non-equivalent carbon atoms.  

 

The 1H and 13C-NMR spectra for complex 27 proved the product 

structure as expected but it should be noted that based on the 13C-

NMR spectrum, the product contains a little amount of unreacted 

[RhCl(cod)]2. The resonance signals for [RhCl(cod)]2 were observed as 

two doublets at 78.66 and 30.87 ppm. To overcome this problem, the 
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reaction was repeated with a lower amount of [RhCl(cod)]2 (0.4 Eq.) 

which afforded the pure product but in yield of 30%. In another 

attempt, the reaction was carried out at room temperature for 48 h 

but the product still contained [RhCl(cod)]2 impurities. So, it was 

concluded that this synthesis procedure can’t be successful to 

produce complex 27 as a pure product.     

  

Finally, we tried to grow suitable single crystals for X-ray diffraction 

analysis from the synthesized complexes. After several attempts, 

suitable single crystals of complex 26 were grown by slow diffusion of 

n-hexane into a dichloromethane solution (Figure 16). The crystallography 

data feature a typical square planar Rh-complex with the plane of the 

NHC ligand in an almost perpendicular arrangement to the 

coordination plane around the rhodium atom (Table 16).  

 

 

 

 

 

 

 

 

 

 

    

Table 16. Selected angles for complex 26 with estimated standard deviations in parentheses. 

 

 

  

 

 

 

 

          Bond             Angle (°) 

C(1)-Rh(1)-Cl(1) 90.87(15) 

C(1)-Rh(1)-C(17) 89.6(2) 

C(1)-Rh(1)-C(18) 89.5(2) 

C(1)-Rh(1)-C(21) 160.8(2) 

C(1)-Rh(1)-C(22) 162.9(2) 

Figure 16. The molecular structure of complex 26 in the solid state. Hydrogen 
atoms have been omitted for more clarity. 
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Due to the Π-donating property of the Cl ligand, the rhodium atom as 

the metal center being made more electron-rich and it affords a strong 

coordination bond between the rhodium and the olefinic cod double 

bond trans to Cl ligand. The X-ray diffraction analysis recorded an 

average bond length of 2.106(6) and 2.107(6) Å for Rh-C(17) and 

Rh-C(18), respectively. On the other hand, the carbene as a Π-

acceptor ligand decreases the electron density around the rhodium 

atom and the Rh-C bond to the cod ligand becomes significantly 

longer (2.213(6) Å) for the C(21)-C(22) double bond trans to the carbene 

ligand [213,214].  

 

3.3.4. Synthesis of [Au(NHC)Cl] complexes 
 

Complexes 28, 29, and 30 with the general formula of [Au(NHC)Cl] 

were synthesized as the last group of transition metal-NHC complexes 

obtained via a transmetallation reaction from the [Ag(NHC)Cl] complexes 

[202,203,215] (Scheme 17).  

     

            

   

   

   

   

   

  

   

The synthesized complexes were fully characterized by NMR and HRMS 

spectrometry analyses. The 1H-NMR spectra show a similar pattern to those of 

the corresponding [Ag(NHC)Cl] complexes, whereas in the 13C-NMR  spectra, 

the carbene carbon atom bonded to the Au atom is shifted upfield from ~ 186 

ppm for Ag-Ccarb. to ~ 177 ppm.  

 

The molecular structures of complexes 28-30 were studied by X-ray 

diffraction analysis. In this regard, suitable single crystals of 

complexes 28 and 29 were obtained by the slow vapor diffusion 

method from acetone/diethyl ether (Figure 18) whereas single crystals of 

complex 30 were grown using the same method from CH2Cl2/diethyl ether 

(Figure 18).  
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Scheme 17. The synthesis procedure of the [Au(NHC)Cl] complexes. 
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While the silver-NHC complexes 16 and 17 were found to be dimeric 

and trimeric, respectively, the analogous gold(I) complexes (28, 29) were 

monomeric with a linear geometry at gold(I) as the metal center [C(1)-

Au(1)-Cl(1)= 177.70(11)°-179.41(10)°]. Moreover, the Au-Ccarb. bond 

lengths [C(1)-Au(1)= 1.976(4)-1.987(2) Å] in complexes 28 and 29 are 

shorter than the Ag-Ccarb. bond lengths [C(1)-Ag(1)= 2.102(2)-2.118(2) 

Å] in complexes 16 and 17. This bond length difference arises from the 

smaller covalent radius of Au(I) [1.37 Å] compared to Ag(I) [1.46 Å] 

[202, 203].   

 

The X-ray diffraction data of complex 30 confirmed the same crystal 

structure with a linear geometry at the gold(I) center [C(1)-Au(1)-Cl(1)= 

176.45(10)°] and the bond distance of 1.996(4) Å  for Au-CCarb. bond.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)   b) 

Figure 18. The molecular structures of complexes 28 and 29 in the solid state. Hydrogen 

atoms have been omitted for more clarity. Selected interatomic distances [A°] and bond [°]: a) 

complex 28: Au1-C1= 1.976(4), Au1-Cl(1)= 2.2776(9) A°, C1-Au1-Cl(1)= 177.70(11)° b) 

complex 29: Au1-C1= 1.978(2), Au1-Cl(1)= 2.2796(8) A°, C1-Au1-Cl(1)= 179.41(10)°.  

Figure 18. The molecular structure of complexe 30 in the solid state. Hydrogen 
atoms have been omitted for more clarity. Selected interatomic distances [A°] 

and bond [°]: Au1-C1= 1.996(4), Au1-Cl(1)= 2.2836(10) A°, C1-Au1-Cl(1)= 
176.45(10)°. 
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3.4. Synthesis of Pd-NHC complexes  

3.4.1. Synthesis of [Pd(NHC)(dmba)Cl] complexes 
 

The last part of this project concerns the synthesis of Pd-NHC 

complexes which have recently attracted more attention due to their 

application in the field of organometallic chemistry and catalysis [216-

218]. In this regard, the formation of [Pd(NHC)(dmba)Cl] complexes were 

examined using the previously reported procedure [219]. Based on the 

proposed mechanism, the [Pd(dmba)Cl]2 dimer was firstly formed by heating 

PdCl2 with N,N-dimethylbenzylamine (dmba) in acetonitrile under reflux for 

30 minutes and it was sequentially reacted with the corresponding 

NHC precursor in the presence of K2CO3 (Scheme 18). Here it should 

be noted that no need for chromatography can be considered as one of 

the most important advantages of this procedure. 

   

 

 

 

 

   

   

 

 

 

 

 

 

 

(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Pd(dmba)Cl (31) as 

the first example of the Pd-NHC complexes was synthesized using the 

above mentioned method. First, a mixture of PdCl2 and dmba (1:1.03 

mmol) in acetonitrile was refluxed at 100 °C for about 30 minutes 

until PdCl2 was completely dissolved and a clear, light yellow solution 

was formed. Then K2CO3 was added to the reaction mixture and it was 

CH3CN, reflux, 30 min.

Scheme 18. The general synthesis procedure of [Pd(NHC)(dmba)Cl] complexes. 
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refluxed for a further 10 minutes. Finally, [7-benzyl-9-ethyl-1,3-

dimethylxanthinium]Cl (1f) was taken into the reaction flask, and the 

reflux continued for 1 hour. It is worth noting that based upon the 

article, the reaction mixture should finally be refluxed for 30 minutes, 

however, after several attempts it was found that an increase in 

reaction time to 60 minutes can raise the reaction yield from 42% to 

63%. Last, the product was worked up by following the noted 

procedure [219].  

 

The prepared complex (31) was characterized by NMR spectrometry, 

HRMS, and X-ray diffraction analyses. The most important change 

found in 1H and 13C-NMR was the disappearance of imidazolium 

signals at 10.01 and 138.71 ppm, respectively, and the appearance of 

carbene carbon atom resonance at 182.74 ppm by the 13C-NMR 

analysis which confirmed the formation of the Pd-carbene complex. 

Moreover, N,N-dimethylbenzylamine (dmba) ligand shows four 

resonance signals in the range of 6.03-7.02 ppm for aromatic protons 

by 1H-NMR spectroscopy. The >CH2 group of dmba ligand was also 

observed as two doublets at 4.03 and 3.87 ppm, and the –N(CH3)2 

group was detected by a doublet for methyl groups at 2.86 ppm.  

 

The HRMS analysis also confirmed the successful synthesis of the 

product as expected (calculated for C25H30ClN5NaO2Pd [M+Na]+: 596.1022, 

found: 596.1034 m/z). 

 

Furthermore, the single crystals of complex 31 were obtained by the slow 

vapor diffusion method from dichloromethane/n-hexane (Figure 19).  
        

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. The molecular structure of complex 31 in the solid state. Hydrogen atoms 
have been omitted for more clarity. 
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The X-ray crystallography data proved a slightly distorted square-planar 

geometry at the Pd(II) center with the NHC positioned trans to N,N-

dimethylbenzylamine ligand.  The selected bond lengths and angels were 

shown in Table 17. 
 

Table 17. Selected bond distances and angles for complex 31 with estimated standard 
deviations in parentheses. 

       Bond     Length (Å)           Bond     Angle (°) 

Pd(1)-C(1) 1.970(4) C(1)-Pd(1)-Cl(1) 94.06(11) 

Pd(1)-C(17) 2.006(4) C(1)-Pd(1)-N(1) 168.45(13) 

Pd(1)-N(1) 2.137(3) C(1)-Pd(1)-C(17) 89.77(16) 

Pd(1)-Cl(1) 2.4135(10) N(1)-Pd(1)-Cl(1) 92.72(10) 

  C(17)-Pd(1)-N(1) 83.08(15) 

 

 

Here it must be noted that, although the formation of complex 31 was 

proved by NMR, HRMS, and X-ray diffraction analyses, the purity of 

the product is open to question. For example, in the 1H-NMR 

spectrum, some additional signals were observed in the range of 7.30-

7.50 ppm, and the corresponding carbon atom was detected at 128.49 

ppm by the 13C-NMR spectroscopy. Moreover, the HMBC and 1H-1H 

COSY analyses didn’t display any correlation between this proton and 

other carbon atoms or other protons in the product structure. 

Furthermore, the 1H and 13C-NMR analyses of the product in DMSO-

d6 revealed the same pattern. 

    

So, for further information on what these signals could belong to, we 

decided to firstly synthesize dimer [Pd(Cl)(dmba)]2 that would be 

refluxed with the corresponding [NHCH]Cl salt in the presence of 

K2CO3 in the next step to produce the expected product.  

  

To prepare the dimer, a mixture of PdCl2 and dmba (in the optimized 

molar ratio of 1:1.05) in acetonitrile was refluxed at 100 °C until PdCl2 

was completely dissolved and a clear, bright yellow solution was 

obtained (in~ 30 minutes). After completion of the reaction, the volatile 

was evaporated in vacuo and the residue was washed with diethyl 

ether to get the final product as a yellow precipitate (Yield: 59%) [219]. 

The product structure was studied and confirmed by NMR analysis. In 

the 1H-NMR spectrum, the resonances for methyl groups of -N(CH3)2 were 

observed at 2.87 and 2.90 ppm, and the methylene group (-CH2(N(CH3)2)-) 

was characterized as a singlet at 3.96 ppm. Moreover, aromatic protons of 



3. Results and Dicussion 

  

 
48 

dmba ligand showed some resonances in the aromatic region (6.90-7.30 ppm) 

as expected. By the 13C-NMR spectroscopy, two sets of resonances with equal 

intensity were observed. It could come out of cis and trans isomers of the 

dimer which could presumably be converted to each other at ambient 

temperature slower than the NMR time scale (Scheme 19). 

  

 

 

 

 

 

 

 

 

By comparison the 1H-NMR spectrum for [PdCl(dmba)]2 with that for the 

synthesized Pd(II)-NHC complex, it was revealed that the same additional 

signals in the aromatic region are easily observable by the 1H-NMR 

spectroscopy of the dimer, as well. So, it is assumed that these additional 

signals could result from some impurities in the dimer.  

 

It seems to be necessary to purify the dimer before using it to synthesize the 

Pd(II)-NHC complex. Based on a proposed purification method [220] the dimer 

(47 mmol) should first be suspended in acetone followed by adding an excess 

amount of LiCl (150 mmol). Then the mixture is heated with vigorous stirring 

until the precipitate is completely dissolved. According to this procedure, with 

an excess amount of LiCl the salt Li[Pd(dmba)Cl2] is formed which is stable only 

in acetone in the absence of water.  By adding some water the chloro-bridged 

dimer is immediately formed. Next, the yellow solution obtained is filtered over 

celite and the short column of celite is washed with acetone. The filtrate is 

poured into a beaker of water to afford [PdCl(dmba)]2 as a yellow precipitate 

which is filtered and washed with water, methanol, and diethyl ether 

respectively. In this context, it is worth noting that the more quickly this process 

is performed better the yield of the reaction is obtained (maximum~ 30 

minutes). Unfortunately, I didn’t have enough time to evaluate this purification 

method but it will be worth trying that. 
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Scheme 19. Trans to cis conversion of [PdCl(dmba)]2. 
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As another alternative suggestion, the dimer could be prepared using a different 

procedure [220]. Based on this method, lithium tetrachloropalladate(II) 

(Li2PdCl4) is firstly synthesized from the reaction between PdCl2 and LiCl in the 

water at room temperature and in the next step, a solution of Li2PdCl4 in 

methanol is reacted with dmba in the presence of triethylamine (NEt3) at room 

temperature. The final product is isolated as a yellow residue in the yield of 

90%. But due to time constraints, I couldn’t repeat this procedure and evaluate 

the reaction efficiency.  
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4. Conclusion and outlook  

 

In this contribution, we have proposed a complete and optimized 

protocol for the synthesis of benzimidazolium salts in a good yield. In 

this regard, five different xanthine derivatives were ethylated at the N9 

nitrogen atom through heating the xanthine derivative with (EtO)2SO2 

and EtOTs as two different alkylating agents in solvent-free conditions 

(Figure 20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the next step, the obtained xanthinium salts were subjected to ion-

exchange reactions to get different xanthinium salts of various counterions 

which are adopted to react with Ag2O to obtain versatile coordinated 

silver(I)-NHCs. Furthermore, silver(I)-NHCs with the general formula of 

[Ag(NHC)Cl] were used as carbene transfer agents to produce the 

corresponding  Ru(II), Rh(I), Rh(III), and Au(I)-NHC complexes. 

 

In the last part of this work, a novel Pd(II)-NHC complex with the 

general formula of [(NHC)Pd(dmba)Cl] was synthesized and well 

characterized.  

 

The obtained metal-NHC complexes might be further considered not 

only for their catalytic activity but also for possible biomedical 

applications in the field of anticancer treatment. 

 

Figure 20. Different synthesized xanthinium salts. 
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5. Experimental  

5.1. General considerations 
 

All the manipulations were carried out under ambient conditions 

without protection from air and moisture. All silver and gold reactions 

were performed with the exclusion of light. Some of the necessary reagents 

such as [Ru(p-cymene)Cl2]2, [Rh(Cp*)Cl2]2, [Rh(cod)Cl]2 were synthesized in our 

laboratory while others were purchased from commercial suppliers and used 

without further purifications.  

 

       NMR spectrometry 

The NMR spectra were recorded either on a Bruker Avance 400 MHz 

or Bruker Avance Ⅲ 600 MHz spectrometer. Chemical shifts (δ) were 

given in ppm relative to tetramethylsilane [TMS] as an internal standard and 

the NMR peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), 

and multiplet (m).  

 

       FT-IR spectroscopy  

The FT-IR spectra were recorded using a Thermo Scientific Nicolet iS5 

spectrometer with an iD7 Diamant ATR accessory in the range of 

4000-400 cm-1. 

  

       MS spectrometry 

ESI-MS spectrometry analysis was performed on a Bruker Daltonics MicroTOF 

mass spectrometer in either positive or negative mode using acetonitrile or 

water as the solvent.  

 

       Elemental analysis  

CHN analysis was carried out by a staff of the in-house elemental 

analysis facility using an Elementar Vario EL system.  

 

       X-ray Crystallography analysis 

Some crystal data were collected using an Oxford Diffraction Gemini E 

Ultra Diffractometer [Mo-K  (λ = 0.71073 Å)] equipped with an EOS 

CCD detector and a four-circle kappa goniometer at 150 K. Data 

integration, scaling, and empirical absorption correction were 

developed with the CrysAlis Pro (Oxford Diffraction Ltd., CrysAlis Pro 
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171.33.42, 2009). The structures were solved using direct methods 

and standard difference map techniques and refined by full-matrix 

least-squares procedures on F2. The hydrogen atom sites were 

calculated from the geometry of the environment and at each 

Refinement cycle adjusted. All calculations were done with the 

Program Olex2  ) OlexSys Ltd. 2004-2018).  

 

Some other crystals were measured by using a Bruker-AXS Kappa 

Mach3 APEX-II diffractometer with an ImS anode for generating the X-

rays and an Incoatec Helios mirror as a monochromator at 100 K in 

Max Planck Institute for Coal Research in Mülheim. X-ray diffraction 

data were collected with APEX2 (Bruker AXS, 2005-2013). The data 

reduction and the absorption correction were carried out with SAINT 

Software (Bruker AXS, 2004) and SADABS (Bruker AXS, 2012), 

respectively. The structural solution was done using direct methods 

and refined using the least-squares method against F2. 

 

Moreover, there are some crystals, which were analyzed on an Enraf-

Nonius KappaCCD system equipped with an FR591 Mo-rotating anode 

and an Oxford Cryosystems Cryostream 700. The data integration was 

carried out with EVAL-14. 
 

5.2. Synthesis of N-heterocyclic carbene ligands 

5.2.1. Synthesis of xanthine-derivatives  
 

Two different xanthine-derivatives were synthesized from the reaction 

between a solution of theophylline monohydrate (5.509 g, 27.8 mmol) 

in 80 ml acetonitrile with a benzyl halide-derivative (138.7 mmol) in 

the presence of potassium carbonate (4.25 g, 30.8 mmol) as a base. 

The reaction mixture was refluxed for 24 h. After completion of the 

reaction, the suspension was filtered and washed with acetonitrile. 

Finally, the filtrate was evaporated in vacuo to afford the product as a 

white precipitate which was washed several times with diethyl ether 

and dried at room temperature [71].  
 

 7-benzyl-1,3-dimethylxanthine (1a) 
 

To synthesize 1a, theophylline monohydrate (5.509 g, 27.8 mmol) was 

reacted with benzyl bromide (16.5 mL, 138.7 mmol) as the benzyl 

halide. Yield: 7.3 g (97%). 
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1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.59 (s, 1H, C8H), 7.32-7.41 (m, 

5H, -C6H5), 5.52 (s, 2H, N7-CH2), 3.60 (s, 3H, N3-CH3), 3.42 (s, 3H, N1-

CH3). 

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 153.26 (C6═O), 151.65 (C2═O), 

148.86 (C4), 140.81 (C8H), 135.32 (ipso-C, -C6H5), 129.08, 128.62, 

127.95 (-C6H5), 106.99 (C5), 50.28 (N7-CH2), 29.97 (N3-CH3), 27.83 

(N1-CH3).   

 

ESI-HRMS (m/z): Calcd for C14H14N4O2Na [M+Na]+: 293.1009 Found: 

293.1016. 

 

Anal. Calcd for C14H14N4O2: C, 62.21; N, 20.73; H, 5.22. Found: C, 

62.09; N, 20.45; H, 5.12. 
 

 7-p-chlorobenzyl-1,3-dimethylxanthine (2a) 
 

To prepare 2a, theophylline monohydrate (5.509 g, 27.8 mmol) was 

reacted with 4-chlorobenzyl chloride (17.7 mL, 138.7 mmol) as the 

second benzyl halide. Yield: 5.50 g (67%).  

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.62 (s, 1H, C8H), 7.25-7.37 (m, 

4H, -C6H4Cl), 5.48 (s, 2H, N7-CH2), 3.60 (s, 3H, N3-CH3), 3.41 (s, 3H, 

N1-CH3).  

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 155.20 (C6═O), 151.58 (C2═O), 

148.84 (C4), 140.62 (C8H), 134.70 (ipso-C, -C6H4Cl), 133.85 (C-Cl), 

N
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129.30, (-C6H4Cl), 106.86 (C5), 49.62 (N7-CH2), 29.81 (N3-CH3), 28.00 

(N1-CH3).  

 

ESI-HRMS (m/z): Calcd for C14H13ClN4O2Na [M+Na]+: 327.0619 Found: 

327.0625. 

 

Anal. Calcd for C14H13ClN4O2: C, 55.18; N, 18.39; H, 4.30. Found: C, 55.24; 

N, 18.35; H, 4.19.  

 

5.2.2. Synthesis of xanthine-derived salts 

5.2.2.1. Xanthine-derived tosylate salts  
 

A vial (4 mL) was charged with the xanthine-derivative (1 Eq.) and 

EtOTs (3.6 Eq.) and it was heated at 150 °C for 2 h. After cooling to 

room temperature, some excess amount of diethyl ether was added to 

the reaction vial to precipitate the product as a white solid. The 

product was washed several times with diethyl ether and dried at 

room temperature. 

 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] TsO (1b) 
 

This compound was synthesized by the reaction between 1a  (0.1 g, 0.37 mmol) 

and EtOTs (0.267 g, 1.35 mmol, 3.6 Eq.). Yield: 0.151 g (87%).  

 

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.63 (s, 1H, C8H), 7.34-7.50 

(m, 7H, -C6H5, CH3(C6H4)SO3
-), 7.10 (d, 2H, CH3(C6H4)SO3

-, JHH = 8.4 

Hz), 5.71 (s, 2H, N7-CH2), 4.59 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.71 (s, 

3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 2.29 (s, 3H, CH3(C6H4)SO3
-), 1.54 

(t, 3H, -CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.06 (C6═O), 150.27 

(C2═O), 145.68 (CH3-C, CH3(C6H4)SO3
-), 139.51 (C4), 138.51 (C8H), 
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137.55 (C-SO3
-, CH3(C6H4)SO3

-), 134.14 (ipso-C, -C6H5), 128.67, 

128.04, 127.98, 127.47, 125.40 (-C6H5, CH3(C6H4)SO3
-), 107.09 (C5), 

51.21 (N7-CH2), 45.32 (N9-CH2), 31.66 (N3-CH3), 28.39 (N1-CH3), 20.72 

(CH3(C6H4)SO3
-), 15.03 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C16H19N4O2 [M]+ : 299.1503. Found: 

299.1519. 

 

Anal. Calcd for C23H26N4O5S: C, 58.71; N, 11.91; H, 5.57. Found: C, 59.03; 

N, 11.95; H, 5.59.  
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] TsO (2b)  
 

This compound was synthesized from a mixture of 2a (0.1 g, 0.33 

mmol) and ethyl p-toluenesulfonate (0.238 g, 1.19 mmol, 3.6 Eq.). 

Yield: 0.139 g  (84%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.60 (s, 1H, C8H), 7.44-7.49 

(m, 6H, -C6H4Cl, CH3(C6H4)SO3
-), 7.09-7.12 (m, 2H, CH3(C6H4)SO3

-), 

5.68 (s, 2H, N7-CH2), 4.58 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.71 (s, 3H, 

N3-CH3), 3.25 (s, 3H, N1-CH3), 2.29 (s, 3H, CH3(C6H4)SO3
-), 1.53 (t, 3H, 

CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.02 (C6═O), 150.25 

(C2═O), 145.68 (CH3-C, CH3(C6H4)SO3
-), 139.51 (C4), 138.61 (C8H), 

137.54 (C-SO3
-, CH3(C6H4)SO3

-), 133.43 (ipso-C, -C6H4Cl), 133.05 (C-

Cl), 130.09, 128.72, 127.97, 125.39 (-C6H4Cl, CH3(C6H4)SO3
-), 107.06 

(C5), 50.57 (N7-CH2), 45.34 (N9-CH2), 31.66 (N3-CH3), 28.39 (N1-CH3), 20.71 

(CH3(C6H4)SO3
-), 14.96 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C16H18ClN4O2 [M]+: 333.1113. Found: 

333.1193. 

 



5. Experimental  

  
 

 
56 

Anal. Calcd for C23H25ClN4O5S: C, 54.70; N, 11.09; H, 4.99. Found: C, 54.32; 

N, 10.76; H, 4.77.  
 

5.2.2.2. Xanthine-derived ethyl sulfate salts 
 

A mixture of the xanthine-derivative (1.0 mmol) and )EtO)2SO2 (2.0 

mmol) was heated at 130 °C for 2 h. Then the reaction mixture was 

cooled down to room temperature and some excess amount of diethyl 

ether was added to the reaction flask to precipitate the product as a 

white solid. The product was washed with diethyl ether and was dried 

at room temperature.  
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] EtOSO3 (1c) 
 

Compound 1c was prepared by the reaction of 1a (0.2 g, 0.74 mmol) 

and (EtO)2SO2 (194 µL, 1.48 mmol). Yield: 0.273 g (87%).  

  

 

 

 

 

 

 

1H-NMR (600 MHz, CDCl3): δ [ppm] ═ 9.99 (s, 1H, C8H), 7.62-7.66 (m, 

2H, o-C6H5), 7.34-7.41 (m, 3H, -C6H5), 5.80 (s, 2H, N7-CH2), 4.76 (q, 

2H, N9-CH2, JHH = 7.3 Hz), 4.06 (q, 2H, CH3CH2SO4
-, JHH = 7.1 Hz), 

3.85 (s, 3H, N3-CH3), 3.43 (s, 3H, N1-CH3), 1.68 (t, 3H, CH2CH3, JHH = 

7.3 Hz), 1.27 (t, 3H, CH3CH2SO4
-, JHH = 7.1 Hz).  

 
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 153.08 (C6═O), 150.29 

(C2═O), 139.55 (C4), 138.54 (C8H), 134.15 (ipso-C, -C6H5), 128.77, 

128.66, 128.03 (-C6H5), 107.11 (C5), 61.07 (CH3CH2SO4
-), 51.20 (N7-

CH2), 45.31 (N9-CH2), 31.67(N3-CH3), 28.39 (N1-CH3), 15.06 (-CH2CH3). 

  

ESI-HRMS (m/z): Calcd for C16H19N4O2 [M]+: 299.1503. Found: 299.1565.  
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 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] EtOSO3 (2c)  
 

To synthesize this product, 2a (0.2 g, 0.65 mmol) was reacted with the 

diethyl sulfate (172 µL, 1.31 mmol). Yield: 0.264 g (88%).  

 

 

 

 

 

 

 

1H-NMR (600 MHz, CDCl3): δ [ppm] ═  10.06 (s, 1H, C8H), 7.62 (d, 2H, 

o-C6H4Cl, JHH = 8.4 Hz ), 7.33-7.40 (m, 2H, m-C6H4Cl), 5.78 (s, 2H, N7-

CH2), 4.74 (q, 2H, N9-CH2, JHH = 7.3 Hz), 4.03 (q, 2H, CH3CH2SO4
-, JHH 

= 7.1 Hz), 3.85 (s, 3H, N3-CH3), 3.43 (s, 3H, N1-CH3), 1.68 (t, 3H, 

CH2CH3, JHH = 7.3 Hz), 1.27 (t, 3H, CH3CH2SO4
-, JHH = 7.1 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.06 (C6═O), 150.29 

(C2═O), 139.56 (C4), 138.61 (C8H), 133.44 (ipso-C, -C6H4Cl), 133.05 

(C-Cl), 130.09 (o-C6H4Cl), 128.73 (m-C6H5Cl), 107.10 (C5), 61.09 

(CH3CH2SO4
-), 50.58 (N7-CH2), 45.34 (N9-CH2), 31.68 (N3-CH3), 28.40 

(N1-CH3), 15.07 (-CH2CH3), 14.99 (CH3CH2SO4
-).  

 

ESI-HRMS (m/z): Calcd for C16H18ClN4O2 [M]+: 333.1113. Found: 333.1175. 
 

5.2.2.3. Xanthine-derived hydrogensulfate salts 
 

In this part, the same procedure was used as described above for the 

synthesis of derived-xanthinium ethyl sulfates. More details are 

available as follows: 
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] HSO4 (1d) 
 

A mixture of 1a (0.2 g, 0.65 mmol) and (EtO)2SO2 (194 µL, 1.48 mmol) 

was taken into a 4 mL vial and heated at 150 °C for 3 h. Last, the 

reaction mixture was cooled down to room temperature and then 

some excess amount of acetone was added to the reaction flask to 

precipitate the product as a white residue which was washed with 

acetone several times and dried at room temperature. Yield: 0.222 g 

(76%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.65 (s, 1H, C8H), 7.34-7.49 

(m, 5H, -C6H5), 5.71 (s, 2H, N7-CH2), 4.60 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 4.00 (broad s, HSO4
-), 3.72 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 

1.54 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.08 (C6═O), 150.29 

(C2═O), 139.54 (C4), 138.55 (C8H), 134.15 (ipso-C, -C6H5), 128.76, 

128.64, 128.03 (-C6H5), 107.10 (C5), 51.19 (N7-CH2), 45.31 (N9-CH2), 

31.66 (N3-CH3), 28.38 (N1-CH3), 15.05 (CH2CH3).   

  

ESI-MS (m/z): 299 [M]+, 96.96 [HSO4]
-.  

 

Anal. Calcd for C16H20N4O6S: C, 48.48; N, 14.13; H, 5.09. Found: C, 48.29; 

N, 13.92; H, 5.08.  
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] HSO4 (2d) 

   

2d was synthesized by the analogous method to that for 1d. A mixture 

of 2a (0.20 g, 0.66 mmol) and (EtO)2SO2 (172 µL, 1.31 mmol) (in a 4 

mL vial) was stirred at 150 °C for 2.5 h. Yield: 0.24 g (83%).  

 
 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.62 (s, 1H, C8H), 7.46-7.53 

(m, 4H, -C6H4Cl), 5.70 (s, 2H, N7-CH2), 4.59 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 4.28 (broad s, HSO4
-), 3.72 (s, 3H, N3-CH3), 3.25 (s, 3H, N1-CH3), 

1.54 (t, 3H, CH2CH3, JHH = 7.2 Hz).  
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13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.05 (C6═O), 150.28 

(C2═O), 139.56 (C4), 138.65 (C8H), 133.40 (ipso-C, -C6H4Cl), 133.07 

(C-Cl), 130.10 (o-C6H4Cl), 128.70 (m-C6H4Cl), 107.08 (C5), 50.55 (N7-

CH2), 45.33 (N9-CH2), 31.66 (N3-CH3), 28.37 (N1-CH3), 14.97 

(CH2CH3).  

 

ESI-MS (m/z): 333 [M]+, 96.96 [HSO4]
-.  

 

Anal. Calcd for C16H19ClN4O6S: C, 44.60; N, 13.00; H, 4.44. Found: C, 

44.35; N, 12.82; H, 4.32. 
 

 [1,3,7-trimethyl-9-ethylxanthinium] HSO4 (3d) 
 

Caffeine (0.2874 g, 1.480 mmol) and (EtO)2SO2 (388 µL, 2.955 mmol) 

were reacted together at 130°C for 2 h. The reaction mixture was 

cooled down to room temperature and some excess amount of 

acetone: toluene (3:7) was added to the reaction mixture and it was 

kept overnight. Finally, the crystalline product was obtained, which 

was filtered and washed with a little amount of acetone and dried 

under vacuum. Yield: 0.4335 g (91%). 

 

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 9.42 (s, 1H, C8H), 4.58 (q, 

2H, N9-CH2, JHH = 7.2 Hz), 4.07 (s, 3H, N7-CH3), 3.73 (s, 3H, N3-CH3), 

3.28 (s, 3H, N1-CH3), 1.53 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.31 (C6═O), 150.34 

(C2═O), 138.87 (C4), 138.76 (C8H), 107.87 (C5), 44.97 (N9-CH2), 35.61 

(N7-CH3), 31.58 (N3-CH3), 28.31 (N1-CH3), 15.06 (CH2CH3). 

   

ESI-MS (m/z): 223 [M]+, 96.96 [HSO4]
-. 

 

 [3,7-dimethyl-9-ethylxanthinium] HSO4 (4d) 
 

A mixture of theobromine (0.4 g, 2.220 mmol) and (EtO)2SO2 (580 µL, 

4.417 mmol) was taken into a 10 mL vial and heated at 160°C for 1:35 
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h. After cooling down to room temperature, some excess amount of 

acetone was added to the reaction flask to precipitate the product. The 

mixture was kept for 3-4 h until the product changes from sticky stuff 

to a fine white residue. Then it was filtered and washed with acetone 

several times and dried under vacuum. Yield: 0.4445 g (65%).  

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 12.10 (s, 1H, N1H), 9.34 (s, 

1H, C8H), 4.53 (q, 2H, N9-CH2, JHH = 7.2 Hz), 4.02 (s, 3H, N7-CH3), 

3.63 (s, 3H, N3-CH3), 1.50 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 153.56 (C6═O), 150.02 

(C2═O), 140.22 (C4), 138.51 (C8H), 108.32 (C5), 44.75 (N9-CH2), 35.38 

(N7-CH3), 30.37 (N3-CH3), 14.97 (CH2CH3). 

 

ESI-MS (m/z): 209 [M]+, 96.96 [HSO4]
-.  

  

Anal. Calcd for C9H14N4O6S: C, 35.29; N, 18.29; H, 4.61. Found: C, 

34.85; N, 18.03; H, 4.64.  
 

 [1,3-dimethyl-9-ethylxanthinium] HSO4 (5d)  
 

Theophylline (0.3 g, 1.665 mmol) was reacted with (EtO)2SO2 (396 µL, 

3.016 mmol) at 160°C for 1:45. The reaction mixture was cooled down 

to room temperature and then some excess amount of acetone was 

added to the reaction flask to precipitate the product as a white solid 

which was washed with acetone several times and last with diethyl 

ether. The product was finally dried at room temperature. Yield: 

0.2193 g  (43%).  

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 8.23 ( broad s, N7H), 8.10 (s, 

1H, C8H), 4.27 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.42 (s, 3H, N3-CH3), 

3.23 (s, 3H, N1-CH3), 1.39 (t, 3H, CH2CH3, JHH = 7.2 Hz). 



5. Experimental  

  
 

 
61 

13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 154.25 (C6═O), 151.02 

(C2═O), 148.40 (C4), 141.83 (C8H), 105.84 (C5), 41.49 (N9-CH2), 29.39 

(N3-CH3), 27.54 (N1-CH3), 16.28 (CH2CH3).  

 

ESI-MS (m/z): 209 [M]+, 96.96 [HSO4]-. 
 

5.2.2.4.  Xanthine-derived hexafluorophosphate salts 
 

[NHCH]PF6 was prepared by an ion-exchange reaction between 

[NHCH]X (X: TsO-, EtOSO3
-, HSO4

-) and NH4PF6 in water or ethanol as 

the solvent. The reaction mixture was stirred at room temperature for 

an indicated amount of time. Last, the reaction mixture was filtered 

and the residue was washed with water or ethanol and diethyl ether, 

respectively, and dried at room temperature [77].  
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] PF6 (1e)   
 

Compound 1e was synthesized using the method as described above 

from three different substrates (1b), (1c), and (1d).  

 

1b (0.5 g, 1.063 mmol) was dispersed in 20 mL water. Then NH4PF6 

(0.2 g, 1.227 mmol, 1.154 Eq.) was added to the reaction mixture. The 

mixture was stirred at room temperature for 30 minutes. Yield: 0.325 

g (69%).  

 

1c (0.1 g, 0.236 mmol) was dissolved in 10 mL water. Then NH4PF6 

(0.0403 g, 0.247 mmol, 1.05 Eq.) was added to the reaction mixture. 

The mixture was stirred at room temperature for 20 minutes. Yield: 

0.077 g (74%).  

  

1d (0.29 g, 0.740 mmol) was dissolved in 20 mL water. Then NH4PF6 

(0.127 g, 0.777 mmol, 1.05 Eq.) was added to the reaction mixture. 

The mixture was stirred at room temperature for 20 minutes. Yield: 

0.294 g (89%).   

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.60 (s, 1H, C8H), 7.32-7.49 

(m, 5H, -C6H5), 5.71 (s, 2H, N7-CH2), 4.59 (q, 2H, N9-CH2, JHH = 7.2 



5. Experimental  

  
 

 
62 

Hz), 3.72 (s, 3H, N3-CH3), 3.27 (s, 3H, N1-CH3), 1.54 (t, 3H, CH2CH3, 

JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.07 (C6═O), 150.28 

(C2═O), 139.51 (C4), 138.48 (C8H), 134.11 (ipso-C, -C6H5), 128.78, 

128.68, 128.00 (-C6H5), 107.11 (C5), 51.22 (N7-CH2), 45.30 (N9-CH2), 

31.66 (N3-CH3), 28.39 (N1-CH3), 15.07 (CH2CH3).  

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.19 (hept, PF6, JP-F = 711 

Hz). 

 

ESI-HRMS (m/z): Calcd for C16H19N4O2 [M]+: 299.1503. Found: 

299.1510. 

 

Anal. Calcd for C16H19F6N4O2P: C, 43.25; N, 12.61; H, 4.31. Found: C, 43.24; 

N, 12.64; H, 4.64.  
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] PF6 (2e) 
 

Compound 2e was synthesized from three different derived-

xanthinium salts as described below; 

  

2b (0.3 g, 0.594 mmol) was dispersed in 20 mL water. Then NH4PF6 

(0.1 g, 0.613 mmol, 1.03 Eq.) was added to the reaction mixture. The 

mixture was stirred at room temperature for 60 minutes. Yield: 0.219g 

(77%).  

 

2c (0.1 g, 0.218 mmol) was dissolved in 15 mL water. Then NH4PF6 

(0.0373 g, 0.229 mmol, 1.05 Eq.) was added to the reaction mixture. 

The mixture was stirred at room temperature for 20 minutes. Yield: 

0.077 g (74%). 

 

2d (0.283 g, 0.657 mmol) was dissolved in 20 mL water. Then NH4PF6 

(0.112 g, 0.690 mmol, 1.05 Eq.) was added to the reaction mixture. 

The mixture was stirred at room temperature for 20 minutes. Yield: 

0.248 g (79%). 
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.57 (s, 1H, C8H), 7.44-7.54 

(m, 4H, -C6H4Cl), 5.70 (s, 2H, N7-CH2), 4.59 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 3.72 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 1.54 (t, 3H, CH2CH3, 

JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.04 (C6═O), 150.27 

(C2═O), 139.52 (C4), 138.58 (C8H), 133.46 (ipso-C, -C6H4Cl), 133.01 

(C-Cl), 130.07, 128.74 (-C6H4Cl), 107.09 (C5), 50.59 (N7-CH2), 45.32 

(N9-CH2), 31.67 (N3-CH3), 28.40 (N1-CH3), 15.00 (CH2CH3). 

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.20 (hept, PF6, JP-F = 711 

Hz). 

 

ESI-HRMS (m/z): Calcd for C16H18ClN4O2 [M]+: 333.1113. Found: 

333.1118. 

 

Anal. Calcd for C16H18ClF6N4O2P: C, 40.14; N, 11.70; H, 3.79. Found: C, 40.72; 

N, 12.02; H, 3.32.  
 

 [1,3,7-trimethyl-9-ethylxanthinium] PF6 (3e) 
 

Compound 3d (0.4325 g, 1.412 mmol) was dissolved in 5 mL water 

and reacted with NH4PF6 (0.4403 g, 2.701 mmol) at room temperature 

for 1 h. Yield: 0.382 g (77%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.34 (s, 1H, C8H), 4.56 (q, 

2H, N9-CH2, JHH = 7.2 Hz), 4.05 (d, 3H, N7-CH3, JHH = 0.6 Hz ), 3.71 (s, 

3H, N3-CH3), 3.27 (s, 3H, N1-CH3), 1.50 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.31 (C6═O), 150.33 

(C2═O), 138.85 (C4), 138.69 (C8H), 107.88 (C5), 44.98 (N9-CH2), 35.63 

(N7-CH3), 31.57 (N3-CH3), 28.32 (N1-CH3), 15.09 (CH2CH3).   

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.21 (hept, PF6, JP-F = 711 

Hz).  
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ESI-MS (m/z): 223 [M]+, 144 [PF6]
-.  

 

 [3,7-dimethyl-9-ethylxanthinium] PF6 (4e) 
 

NH4PF6 (0.106 g, 0.650 mmol) was added into the mixture of 4d (0.2 g, 

0.653 mmol) in ethanol and it was stirred at room temperature for 1 

h. The product was filtered and washed with ethanol and diethyl ether, 

respectively. Yield: 0.1387 g (63%).  

 

 

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 12.15 (s, 1H, N1H), 9.32 (s, 

1H, C8H), 4.55 (q, 2H, N9-CH2, JHH = 7.2 Hz), 4.04 (s, 3H, N7-CH3), 

3.65 (s, 3H, N3-CH3), 1.51 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.64 (C6═O), 150.11 

(C2═O), 140.29 (C4), 138.53 (C8H), 108.42 (C5), 44.84 (N9-CH2), 35.52 

(N7-CH3), 30.47 (N3-CH3), 15.12 (CH2CH3).   
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.13 (hept, PF6, JP-F = 

711Hz).  

 

ESI-MS (m/z): 209 [M]+, 144 [PF6]
-.  

 

5.2.2.5. Xanthine-derived chloride salts 
 

[NHCH]Cl was synthesized from [NHCH]PF6 by an ion-exchange 

reaction. Based on this synthesis method [NHCH]PF6 (1.0 mmol) was 

suspended in THF or acetone and reacted with a solution of TBAC (2.0 

mmol). The reaction mixture was stirred at room temperature for 2 h. 

Finally, the reaction mixture was filtered and the residue was washed 

with a little amount of THF and diethyl ether and dried at room 

temperature [197].  
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] Cl (1f) 
 

1e (0.2416 g, 0.544 mmol) was suspended in 3 mL THF and reacted 

with a solution of TBAC (0.304 g, 1.094 mmol) in 2.5 mL THF. Yield: 

0.1548 g (85%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 10.01 (s, 1H, C8H), 7.32-7.54 

(m, 5H, -C6H5), 5.74 (s, 2H, N7-CH2), 4.62 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 3.72 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 1.55 (t, 3H, CH2CH3, 

JHH = 7.2 Hz).   

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.08 (C6═O), 150.29 

(C2═O), 139.53 (C4), 138.71 (C8H), 134.22 (ipso-C,-C6H5), 128.74, 

128.64, 128.09 (-C6H5), 107.03 (C5), 51.10 (N7-CH2), 45.30 (N9-CH2), 

31.69 (N3-CH3), 28.39(N1-CH3), 15.09 (CH2CH3). 

  
35Cl-NMR (54 MHz, DMSO-d6): δ [ppm] ═   69.4 (s, Cl-). 

 

ESI-HRMS (m/z): Calcd for C16H19N4O2 [M]+ : 299.1503. Found: 

299.1561. 
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] Cl (2f) 
 

2e (0.2604 g, 0.544 mmol) was suspended in 8 mL THF and reacted 

with a solution of TBAC (0.304 g, 1.094 mmol) in 3 mL THF. Yield: 

0.152 g (75%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 10.01 (s, 1H, C8H), 7.47-7.55 

(m, 4H, -C6H4Cl), 5.73 (s, 2H, N7-CH2), 4.61 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 3.72 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 1.55 (t, 3H, CH2CH3, 

JHH = 7.2 Hz).  
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13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.05 (C6═O), 150.27 

(C2═O), 139.53 (C4), 138.81 (C8H), 133.42 (ipso-C, -C6H4Cl), 133.14 

(C-Cl), 130.17 (o-C6H4Cl), 128.69 (m-C6H4Cl), 107.00 (C5), 50.44 (N7-

CH2), 45.33 (N9-CH2), 31.70 (N3-CH3), 28.39(N1-CH3), 15.01 (CH2CH3).  

 
35Cl-NMR (54 MHz, DMSO-d6): δ [ppm] ═  69.4 (s, Cl-).    

 

ESI-HRMS (m/z): Calcd for C16H18ClN4O2 [M]+: 333.1113. Found: 

333.1035. 
 

 [1,3,7-trimethyl-9-ethylxanthinium] Cl (3f) 
 

3e (0.2 g, 0.543 mmol) was suspended in 3 mL THF and reacted with 

a solution of TBAC (0.304 g, 1.094 mmol) in 2.5 mL THF. Yield: 0.136 

g (97%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.58 (s, 1H, C8H), 4.58 (q, 

2H, N9-CH2, JHH = 7.2 Hz), 4.07 (d, 3H, N7-CH3, JHH = 0.6 Hz ), 3.72 (s, 

3H, N3-CH3), 3.28 (s, 3H, N1-CH3), 1.51 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 153.32 (C6═O), 150.34 

(C2═O), 138.92 (C4), 138.85 (C8H), 107.82 (C5), 44.97 (N9-CH2), 35.59 

(N7-CH2), 31.61 (N3-CH3), 28.31 (N1-CH3), 15.12 (CH2CH3). 

 
35Cl-NMR (39 MHz, DMSO-d6): δ [ppm] ═  35.16 (s, Cl-).   

  

ESI-HRMS (m/z): Calcd for C10H15N4O2 [M]+: 223.1190. Found: 

223.1191. 
 

 [3,7-dimethyl-9-ethylxanthinium] Cl (4f) 
 

4e (0.120 g, 0.340 mmol) in 4 mL acetone was reacted with a solution 

of TBAC (0.190 g, 0.684 mmol) in 3 mL acetone. The product was 

obtained as a white precipitate which was washed with a little amount 

of acetone and diethyl ether, respectively. Yield: 0.0811 g (97%). 
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 12.11 (s, 1H, N1H), 9.59 (s, 

1H, C8H), 4.55 (q, 2H, N9-CH2, JHH = 7.2 Hz), 4.03 (s, 3H, N7-CH3), 

3.63 (s, 3H, N3-CH3), 1.50 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.64 (C6═O), 150.10 

(C2═O), 140.29 (C4), 138.69 (C8H), 108.37 (C5), 44.84 (N9-CH2), 35.47 

(N7-CH3), 30.49 (N3-CH3), 15.14 (CH2CH3).  

  

ESI-HRMS (m/z): Calcd for C9H13N4O2 [M]+: 209.1033. Found: 

209.1040. 
 

 [3,7-dimethyl-9-ethylxanthinium] I (5f) 
 

For more chance of working with 3,7-dimethyl-9-ethylxanthinium 

salts, [NHCH]I was synthesized through the same ion-exchange 

reaction between 4e (0.120 g, 0.339 mmol) and TBAI (0.253 g, 0.684 

mmol) in acetone as solvent at room temperature for 2 h. Finally, the 

reaction mixture was filtered and the residue was washed with 

acetone carefully to obtain the product as an off-white precipitate. 

Yield: 0.0655 g (58%).  

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.34 (s, 1H, C8H), 7.97 (d, 

1H, N1H, JHH = 0.5 Hz), 4.55 (q, 2H, N9-CH2, JHH = 7.2 Hz), 4.03 (s, 3H, 

N7-CH3), 3.65 (s, 3H, N3-CH3), 1.51 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.64 (C6═O), 150.10 

(C2═O), 140.29 (C4), 138.51 (C8H), 108.42 (C5), 44.87 (N9-CH2), 35.52 

(N7-CH3), 30.54 (N3-CH3), 15.10 (CH2CH3).  

  

ESI-MS (m/z): 209 [M]+, 126.9050 [I]-.  
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5.2.2.6. Xanthine-derived tetraphenylborate salts  
 

This product was prepared from three different substrates by the 

same method. According to this procedure, 1.05 Eq. of NaBPh4 was 

added to a mixture of [NHCH]X (X: TsO-, EtOSO3
-, HSO4

-) (1 Eq.) in 

water. The mixture was stirred at room temperature for about 30 

minutes. Last, the white solid residue was isolated as the product, 

washed with water and diethyl ether, respectively, and dried at room 

temperature [190].  
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] BPh4 (1g) 

 

 

 

 

 

 

 

 

NaBPh4 (0.076 g, 0.222 mmol, 1.05 Eq.) was added to a mixture of 1b 

(0.10 g, 0.212 mmol) in water (15 mL). Yield: 0.0835 g (63%). 

 

NaBPh4 (0.0846 g, 0.247 mmol, 1.05 Eq.) was added to a mixture of 

1c (0.1 g, 0.235 mmol) in water (15 mL). Yield: 0.115 g (77%).  

 

NaBPh4 (0.266 g, 0.777 mmol, 1.05 Eq.) was added to a mixture of 1d 

(0.293 g, 0.739 mmol) in water (20 mL). Yield: 0.338 g (74%).  

 
1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 9.60 (s, 1H, C8H), 7.37-7.48 

(m, 5H, -C6H5), 7.17-7.22 (m, 8H, o-CH, BPh4), 6.94 (t, 8H, m-CH, 

BPh4, JHH = 7.4 Hz), 6.80 (t, 4H, p-CH, BPh4, JHH = 7.2 Hz), 5.72 (s, 2H, 

N7-CH2), 4.58 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.71 (s, 3H, N3-CH3), 3.28 

(s, 3H, N1-CH3), 1.54 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 163.81-162.83 (q, C-B, JC-B = 

49 Hz), 153.08 (C6═O), 150.28 (C2═O), 139.51 (C4), 138.47 (C8H), 

135.49 (o-C6H5, BPh4), 134.11 (ipso-C, -C6H5), 128.79, 128.70, 128.02 

(-C6H5), 125.22 (m-C6H5, BPh4), 121.45 (p-C6H5, BPh4), 107.11 (C5), 

51.23 (N7-CH2), 45.30 (N9-CH2), 31.67 (N3-CH3), 28.41 (N1-CH3), 15.08 

(CH2CH3).  

X
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11B-NMR (193 MHz, DMSO-d6): δ [ppm] ═ -6.67.  

 

ESI-HRMS (m/z): Calcd for C40H39BN4O2Na [M+Na]+: 641.3065. 

Found: 641.3046. 
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] BPh4 (2g) 

 

 

 

 

 

 

 

 

NaBPh4 (0.071 g, 0.207 mmol, 1.05 Eq.) was added to a mixture of 2b 

(0.10 g, 0.198 mmol) in water (15 mL) (0.0935 g, 72%).  

NaBPh4 (0.0783 g, 0.229 mmol, 1.05 Eq.) was added to a mixture of 

2c (0.1 g, 0.218 mmol) in water (15 mL) (0.118 g, 83%).  

 

NaBPh4 (0.236 g, 0.690 mmol, 1.05 Eq.) was added to a mixture of 2d 

(0.283 g, 0.657 mmol) in water (20 mL) (0.381 g, 89%). 

  
1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 9.56 (s, 1H, C8H), 7.46-7.51 

(m, 4H, -C6H4Cl), 7.18 (d, 8H, o-CH, BPh4, JHH = 1.2 Hz ), 6.92 (t, 8H, 

m-CH, BPh4, JHH = 7.2 Hz), 6.79 (t, 4H, p-CH, BPh4, JHH = 7.2 Hz), 5.68 

(s, 2H, N7-CH2), 4.56 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.70 (s, 3H, N3-

CH3), 3.26 (s, 3H, N1-CH3), 1.52 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 164.10-162.48 (q, C-B, JC-B = 

49.3 Hz), 153.03 (C6═O), 150.26 (C2═O), 139.50 (C4), 138.56 (C8H), 

135.47 (m, o-C6H5, BPh4), 133.46 (ipso-C, -C6H4Cl), 133.03 (C-Cl), 

130.07, 128.73 (-C6H4Cl), 125.20, 121.42 (-C6H5, BPh4), 107.08 (C5), 

50.58 (N7-CH2), 45.30 (N9-CH2), 31.66 (N3-CH3), 28.39 (N1-CH3), 15.00 

(CH2CH3). 

  
11B-NMR (193 MHz, DMSO-d6): δ [ppm] ═ -6.67.  

 

ESI-HRMS (m/z): Calcd for C16H18ClN4O2 [M]+: 333.1113. Found: 333.1210.  
 

X

N

N
N

N

O

O

X: TsO- (2b), CH3CH2SO4
- (2c), HSO4

- (2d)

NaBPh4, H2O
N

N
N

N

O

O BPh4

3
2

1

6 5

4

7

8

9

Cl Cl



5. Experimental  

  
 

 
70 

5.2.2.7. Xanthine-derived tetrafluoroborate  
 

[NHCH]HSO4 (1.0 mmol) was dissolved in a certain amount of 

methanol:H2O (4:1) and reacted with NaBF4 (2.0 mmol) at room 

temperature for 30 minutes. After the reaction reached completion, 

the white precipitate was separated as the product and washed with a 

little amount of THF and diethyl ether, respectively, and dried at room 

temperature [191,192]. 
 

 [7-benzyl-9-ethyl-1,3-dimethylxanthinium] BF4 (1h) 
 

1d (0.1g, 0.252 mmol) was dissolved in 10 mL methanol:H2O (4:1) and 

reacted with NaBF4 (0.0582 g, 0.530 mmol). Yield: 0.0850 g (87%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.59 (s, 1H, C8H), 7.35-7.47 

(m, 5H, -C6H5), 5.71 (s, 2H, N7-CH2), 4.58 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 3.71 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-CH3), 1.53 (t, 3H, CH2CH3, 

JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.06 (C6═O), 150.27 

(C2═O), 139.51 (C4), 138.47 (C8H), 134.10 (ipso-C, -C6H5), 128.77, 

128.67, 127.99 (-C6H5), 107.11 (C5), 51.21 (N7-CH2), 45.29 (N9-CH2), 

31.66 (N3-CH3), 28.39 (N1-CH3), 15.06 (CH2CH3).  

 
19F-NMR (376 MHz, DMSO-d6): δ [ppm] ═ -148.35, -148.41.  

 

ESI-MS (m/z): 299 [M]+, 87 [BF4]-.  
 

 [7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthinium] BF4 (2h) 
 

2d (0.1g, 0.232 mmol) was dissolved in 5 mL methanol: H2O (4:1) and 

reacted with NaBF4 (0.0534 g, 0.486 mmol). Yield: 0.0690 g (71%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 9.56 (s, 1H, C8H), 7.45-7.52 

(m, 4H, -C6H4Cl), 5.69 (s, 2H, N7-CH2), 4.58 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 3.71 (s, 3H, N3-CH3), 3.25 (s, 3H, N1-CH3), 1.53 (t, 3H, CH2CH3, 

JHH = 7.2 Hz). 

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.03 (C6═O), 150.26 

(C2═O), 139.52 (C4), 138.57 (C8H), 133.45 (ipso-C, -C6H4Cl), 133.00 

(C-Cl), 130.07, 128.73 (-C6H4Cl), 107.09 (C5), 50.58 (N7-CH2), 45.31 

(N9-CH2), 31.67 (N3-CH3), 28.39 (N1-CH3), 15.00 (CH2CH3).  

 
19F-NMR (376 MHz, DMSO-d6): δ [ppm] ═ -148.37, -148.42. 

 

 ESI-MS (m/z): 333 [M]+, 87 [BF4]-.  

 
 

5.3. Synthesis of  silver(I)-NHC complexes 

5.3.1. Synthesis of [Ag(NHC)NH3] PF6/BPh4/BF4 complexes 

  

[NHCH]X (X: PF6
-, BPh4

-, BF4
-) (1.0 mmol) was suspended in ethanol 

and Ag2O (0.5 mmol), followed by aqueous ammonia was added to the 

mixture. The reaction mixture was stirred at room temperature for 30 

minutes to 4 hours. Then the reaction mixture was filtered and the 

product was obtained as an off-white residue which was finally 

washed with cold ethanol and diethyl ether, respectively, and dried at 

room temperature [198].   
 

 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] PF6 (1) 
 

1e (0.111 g, 0.25 mmol) was suspended in 2 mL ethanol. Ag2O (0.029 

g, 0.125 mmol) followed by aqueous ammonia (170 µL, 16.54 mol/L, 

2.6 mmol) was added to the mixture. Yield: 0.1105 g (78%). 
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.25-7.40 (m, 5H, -C6H5), 

5.72 (s, 2H, N7-CH2), 4.59 (broad q, 2H, N9-CH2), 3.72 (s, 3H, N3-CH3), 

3.50 (s, 3H, Ag-NH3), 3.24 (s, 3H, N1-CH3), 1.42 (broad t, 3H, 

CH2CH3).   

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 185.27 (C8-Ag), 152.93 

(C6═O), 150.57 (C2═O), 140.26 (C4), 136.56 (ipso-C, -C6H5), 128.58, 

127.88, 127.27 (-C6H5), 108.28 (C5), 52.86 (N7-CH2), 46.32 (N9-CH2), 

31.35 (N3-CH3), 28.15 (N1-CH3), 17.21 (CH2CH3).  

 

FT-IR analysis: the IR spectrum exhibits a strong PF6 absorption at 

833 cm-1 and two peaks at 3300-3400 cm-1 which can be referred to 

the coordinated ammonia.  

  
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.19 (hept, PF6, JP-F = 711 

Hz).  

 

ESI-HRMS (m/z): Calcd for C16H21AgN5NaO2 [M+Na]+: 446.0717. 

Found: 446.0686. 

 

Anal. Calcd for C16H21AgF6N5O2P: C, 33.82; N, 12.33; H, 3.73. Found: 

C, 33.57; N, 12.03; H, 3.22. 
  

 [Ag(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] PF6 (2) 
 

This complex was synthesized by the same method as mentioned above 

from the reaction between a suspension of 2e (0.119 g, 0.25 mmol) in 

2 mL ethanol and Ag2O (0.029 g, 0.125 mmol) in the presence of 

ammonia (170 µL, 16.54 mol/L, 2.6 mmol). Yield: 0.1163 g (77%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.28-7.45 (m, 4H, -C6H4Cl), 

5.71 (s, 2H, N7-CH2), 4.60 (q, 2H, N9-CH2, JHH = 7.0 Hz), 3.72 (s, 3H, 

N3-CH3), 3.23 (s, 3H, N1-CH3), 3.03 (s, 3H, Ag-NH3), 1.43 (t, 3H, 

CH2CH3, JHH = 7.0 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 152.92 (C6═O), 150.60 

(C2═O), 140.34 (C4), 135.63 (ipso-C, -C6H4Cl), 132.60 (C-Cl), 129.10 

(o-C6H4Cl), 128.56 (m-C6H4Cl), 108.22 (C5), 52.02 (N7-CH2), 46.35 (N9-

CH2), 31.39 (N3-CH3), 28.20 (N1-CH3), 17.26 (CH2CH3). Carbene 

carbon missing. 

 

FT-IR analysis: the IR spectrum shows a strong PF6 absorption at 

834.51 cm-1 and two peaks at 3300-3400 cm-1 which can be referred 

to the coordinated ammonia.   

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -144.19 (hept, PF6, JP-F = 711 

Hz).  

 

ESI-HRMS (m/z): Calcd for C16H20AgClN5NaO2 [M+Na]+: 480.0327. 

Found: 480.0328. 

 

Anal. Calcd for C16H20AgClF6N5O2P: C, 31.83; N, 11.60; H, 3.51. Found: C, 

32.28; N, 11.55; H, 3.56.  
 

 [Ag(1,3,7-trimethyl-9-ethylxanthine-8-ylidene)(NH3)] PF6 (3) 
 

A suspension of 3e (0.0920 g, 0.25 mmol) in 2 mL ethanol was reacted 

with Ag2O (0.029 g, 0.125 mmol) followed by aqueous ammonia (163 

µL, 16.54 mol/L, 2.7 mmol). Yield: 0.0840 g (68%).  
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1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 4.60 (q, 2H, N9-CH2, JHH = 

7.0 Hz), 4.08 (s, 3H, N7-CH3), 3.72 (s, 3H, N3-CH3), 3.26 (s, 3H, N1-

CH3), 3.06 (broad s, Ag-NH3), 1.46 (t, 3H, CH2CH3, JHH = 7.0 Hz).  

  
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 153.21 (C6═O), 150.68 

(C2═O), 139.83 (C4), 108.88 (C5), 46.04 (N9-CH2), 38.01 (N7-CH3), 

31.34 (N3-CH3), 28.17 (N1-CH3), 17.38 (CH2CH3). Carbene carbon 

missing.  

 

FT-IR analysis: the IR spectrum exhibits a strong PF6 absorption at 

833 cm-1 and two absorbing peaks at 3300-3400 cm-1 which can be 

referred to the coordinated ammonia.  

 

ESI-HRMS (m/z): Calcd for C10H18AgN5O2 [M+H ]+: 347.0506. Found: 

347.0275. 
 

 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] BPh4 (4)  
 

1g (0.0773 g, 0.125 mmol) was suspended in 2 mL ethanol and 

reacted with Ag2O (0.0145 g, 0.0626 mmol) followed by aqueous 

ammonia (98 µL, 16.54 mol/L, 1.62 mmol). The reaction mixture was 

stirred at room temperature for 4 h and the product was isolated by 

the same method as already mentioned. Yield: 0.0615 g (66%).   
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.27-7.37 (m, 5H, -C6H5), 

7.14-7.21 (m, 8H, o-C6H5, BPh4), 6.92 (t, 8H, m-C6H5, BPh4, JHH = 7.2 

Hz), 6.79 (t, 4H, p-C6H5, BPh4, JHH = 7.2 Hz), 5.71 (s, 2H, N7-CH2), 

4.57 (q, 2H, N9-CH2, JHH = 7.1 Hz), 3.70 (s, 3H, N3-CH3), 3.23 (s, 3H, 

N1-CH3), 3.09 (broad s, Ag-NH3), 1.42 (t, 3H, CH2CH3, JHH = 7.1 Hz). 

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 163.30 (q, C-B, JC-B = 49.2 

Hz), 152.94 (C6═O), 150.60 (C2═O), 140.30 (C4), 136.62 (ipso-C, -

C6H5), 135.46 (d, o-C6H5, BPh4, JC-B = 1.3 Hz ), 128.61, 127.91, 127.31 

(-C6H5), 125.22 (dd, m-C6H5, BPh4, JC-B = 5.5, 2.7 Hz), 121.44 (p-C6H5, 

BPh4), 108.27 (C5), 52.90 (N7-CH2), 46.32 (N9-CH2), 31.38 (N3-CH3), 28.20 

(N1-CH3), 17.26 (CH2CH3). Carbene carbon missing. 

 

FT-IR analysis: the IR spectrum exhibits two absorption peaks at 

3300-3400 cm-1 which can be referred to the coordinated ammonia.  
 

 (7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] BPh4 (5)  
 

2g (0.0815 g, 0.125 mmol) was suspended in 2 mL ethanol and 

reacted with Ag2O (0.0145 g, 0.0625 mmol), followed by aqueous 

ammonia (98 µL, 16.54 mol/L, 1.62 mmol). The reaction mixture was 

stirred at room temperature for 2 h. Yield: 0.097 g (73%).  

 

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.30-7.43 (m, 4H, -C6H4Cl), 

7.18 (m, 8H, o-C6H5, BPh4), 6.92 (t, 8H, m-C6H5, BPh4, JHH = 7.2 Hz), 

6.79 (t, 4H, p-C6H5, BPh4, JHH = 7.2 Hz), 5.70 (s, 2H, N7-CH2), 4.58 (q, 

2H, N9-CH2, JHH = 7.1 Hz), 3.71 (s, 3H, N3-CH3), 3.22 (s, 3H, N1-CH3), 

2.92 (broad, Ag-NH3), 1.42 (t, 3H, CH2CH3, JHH = 7.1 Hz). 

 
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 163.33 (q, C-B, JC-B = 49.4 

Hz), 152.95 (C6═O), 150.63 (C2═O), 140.36 (C4), 135.50 (m, o-C6H5, 

BPh4), 133.20 (ipso-C, -C6H4Cl), 132.63 (C-Cl), 128.59, 128.29 (-

C6H4Cl), 125.25 (dd, m-C6H5, BPh4, JC-B = 5.4, 2.7 Hz), 121.47 (p-C6H5, 
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BPh4), 108.25 (C5), 52.29 (N7-CH2), 46.38 (N9-CH2), 31.42 (N3-CH3), 

28.23 (N1-CH3), 17.29 (CH2CH3). Carbene carbon missing. 

  

FT-IR analysis: the IR spectrum exhibits two absorption peaks at 

3300-3400 cm-1 which can be referred to the coordinated ammonia. 

 

ESI-HRMS (m/z): Calcd for C16H17AgClN4O2 [M-NH3]+: 441.01. Found: 

441.0155. 
 

 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] BF4 (6)  
 

1h (0.0643 g, 0.166 mmol) was suspended in 2 mL ethanol and 

reacted with Ag2O (0.0193 g, 0.0833 mmol) followed by aqueous 

ammonia (108 µL, 16.54 mol/L, 1.79 mmol) at room temperature for 

30 minutes. Yield: 0.0655 g (77%).  

 

 

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 7.25-7.39 (m, 5H, -C6H5), 

5.71 (s, 2H, N7-CH2), 4.58 (broad q, 2H, N9-CH2), 3.71 (s, 3H, N3-CH3), 

3.23 (s, 3H, N1-CH3), 3.04 (s, 3H, Ag-NH3), 1.42 (broad t, 3H, 

CH2CH3). 

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 152.94 (C6═O), 150.60 

(C2═O), 140.29 (C4), 136.61 (ipso-C, -C6H5), 128.61, 127.91, 127.29 (-

C6H5), 108.27 (C5), 52.90 (N7-CH2), 46.33 (N9-CH2), 31.38 (N3-CH3), 

28.20 (N1-CH3), 17.27 (CH2CH3). Carbene carbon missing. 

 

FT-IR analysis: the IR spectrum exhibits two absorption peaks at 

3300-3400 cm-1 which can be referred to the coordinated ammonia. 

 

ESI-MS (m/z): Calcd for C16H21AgN5O2 [M-NH3]+: 405.05. Found: 

405.0522, [M+H]+: 425.0628. Found: 425.07, [M+Na+]+: 446.07. 

Found: 446.0787.   
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 [Ag(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(NH3)] BF4 (7)  
 

2h (0.0525 g, 0.125 mmol) was suspended in 2 mL ethanol and 

reacted with Ag2O (0.0145 g, 0.0626  mmol) followed by aqueous 

ammonia (82 µL, 16.54 mol/L, 1.36 mmol) at room temperature for 30 

minutes. Yield: 0.0450 g (66%).  

 
 

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 7.35-7.44 (m, 4H, -C6H4Cl), 

5.70 (s, 2H, N7-CH2), 4.59 (q, 2H, N9-CH2, JHH = 7.1 Hz), 3.71 (s, 3H, 

N3-CH3), 3.22 (s, 3H, N1-CH3), 2.99 (s, 3H, Ag-NH3), 1.43 (t, 3H, 

CH2CH3, JHH = 7.1 Hz). 

  
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 152.96 (C6═O), 150.61 

(C2═O), 140.33 (C4), 136.62 (ipso-C, -C6H4Cl), 128.63, 128.57, 127.98 (-

C6H4Cl), 108.28 (C5), 52.89 (N7-CH2), 46.35 (N9-CH2), 31.39 (N3-CH3), 28.21 

(N1-CH3), 17.28 (CH2CH3). Carbene carbon missing. 

 

FT-IR analysis: the IR spectrum exhibits two absorption peaks at 3300-

3400 cm-1 which can be referred to the coordinated ammonia. 

 

ESI-MS (m/z): Calcd for C16H17AgClN4O2 [M-NH3]+: 441.01 Found: 

441.0104, [M+H]+: 459.04. Found: 459.0203, [M+Na+]+: 482.03. 

Found: 482.0373.   
 

5.3.2. Synthesis of [Ag(NHC)2] PF6 complexes 

  

A suspension of [NHCH]PF6 (1.0 mmol) in absolute ethanol was 

reacted with Ag2O (0.5 mmol) in the presence of diethylamine. The 

reaction mixture was stirred at room temperature for 4 h. Last, the 

product was obtained as a white precipitate which was washed with cold 

ethanol and diethyl ether, respectively, and dried at room temperature [198].  
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 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)2] PF6 (8)  
 

1e (0.0555 g, 0.125 mmol) was suspended in 2 mL absolute ethanol 

and reacted with Ag2O (0.0145 g, 0.0626 mmol) followed by aqueous 

diethylamine (65 µL, 0.627 mmol). Yield: 0.0425 g (80%).  

 

 

 

 

 

 

 

 

 

1H-NMR (600 MHz, DMSO-d6): δ [ppm] ═ 7.25-7.33 (m, 10H, -C6H5), 

5.74 (s, 4H, N7-CH2), 4.56 (q, 4H, N9-CH2, JHH = 7.2 Hz), 3.73 (s, 6H, 

N3-CH3), 3.25 (s, 6H, N1-CH3), 1.39 (t, 6H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (151 MHz, DMSO-d6): δ [ppm] ═ 186.92, 185.56 (d, C8-Ag, JC-

Ag = 192, 214 Hz), 152.98 (C6═O), 150.61 (C2═O), 140.23 (C4), 136.59 

(ipso-C, -C6H5), 128.61, 127.88, 127.00 (-C6H5), 108.34 (C5), 52.69 

(N7-CH2), 46.35 (N9-CH2), 31.38 (N3-CH3), 28.19 (N1-CH3), 17.26 

(CH2CH3).  

 
31P-NMR (162 MHz, Acetone-d6): δ [ppm] ═ -144.27 (hept, PF6, JP-F = 

707 Hz).  

 

ESI-HRMS (m/z): Calcd for C32H36AgN8O4 [M]+: 703.1905. Found: 

703.1906.  
 

 [Ag(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)2] PF6 (9)  
 

2e (0.0598 g, 0.125 mmol) was suspended in 2 mL absolute ethanol 

and reacted with Ag2O (0.0145 g, 0.0625 mmol) followed by aqueous 

diethylamine (65 µL, 0.627 mmol). Yield: 0.0400 g (72%). 
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1H-NMR (400 MHz, Acetone-d6): δ [ppm] ═ 7.30-7.43 (m, 8H, -C6H4Cl), 

5.83 (s, 4H, N7-CH2), 4.79 (q, 4H, N9-CH2, JHH = 7.3 Hz), 3.88 (s, 6H, 

N3-CH3), 3.30 (s, 6H, N1-CH3), 1.60 (t, 6H, CH2CH3, JHH = 7.3 Hz). 

  
13C-NMR (101 MHz, Acetone-d6): δ [ppm] ═ 154.96 (C6═O), 152.47 

(C2═O), 142.06 (C4), 137.19 (ipso-C, -C6H4Cl), 135.15 (C-Cl), 130.77 

(o-C6H4Cl), 130.41 (m-C6H4Cl), 110.44 (C5), 54.25 (N7-CH2), 48.63 (N9-

CH2), 32.77 (N3-CH3), 29.36 (N1-CH3), 18.76 (CH2CH3).  

 
31P-NMR (162 MHz, Acetone-d6): δ [ppm] ═ -144.27 (hept, PF6, JP-F = 

707 Hz).  

 

ESI-HRMS (m/z): Calcd for C32H34AgCl2N8O4 [M]+: 771.1126. Found: 

771.1103.  
 

5.3.3. Synthesis of [Ag(NHC)(Phosphine)] PF6 complexes 

  

[Ag(NHC)(NH3)]PF6 (1.0 mmol) was suspended in absolute ethanol and 

the reaction mixture was treated in an ultrasound bath for 5 minutes. 

Then the phosphine (0.95 mmol) was added and the mixture was 

treated with ultrasounds for a further 10 minutes. Finally, the 

reaction mixture was stirred at room temperature for 30 min. The 

product was isolated as a white solid phase which was washed with 

ethanol and diethyl ether, respectively, and dried at room temperature 

[198].  
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 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(PPh3)] PF6 (10)  

 

A suspension of complex 1 (0.05 g, 0.088 mmol) in 2 mL absolute 

ethanol was reacted with the PPh3 (0.022 g, 0.084 mmol). Yield: 

0.0716 g (57%).  

  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.45-7.52 (m, 3H, p-C6H5, 

PPh3), 7.39 (m, 5H, -C6H5), 7.22-7.33 (m, 12 H, o- and m-C6H5, PPh3), 

5.73 (s, 2H, N7-CH2), 4.56 (broad q, 2H, N9-CH2), 3.72 (s, 3H, N3-CH3), 

3.23 (s, 3H, N1-CH3), 1.37 (broad t, 3H, CH2CH3). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 185.20, 187.0 (C8-Ag), 

152.97 (C6═O), 150.61 (C2═O), 136.50 (ipso-C, -C6H5), 133.30 (d, m-

C6H5, PPh3, J3
C-P ═ 17.0 Hz ), 132.44 (P-C,-PPh3), 130.33 (p-C6H5, 

PPh3), 129.00 (d, o-C6H5, PPh3, J2
C-P ═ 9.0 Hz), 128.60, 127.87, 126.99 

(-C6H5), 108.20 (C5), 52.68 (N7-CH2), 46.72 (N9-CH2), 31.39 (N3-CH3), 

28.20 (N1-CH3), 17.27 (CH2CH3). 

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ 5.81 (s, Ag-PPh3), -144.18 

(hept, PF6, JP-F = 711 Hz).  

 

ESI-HRMS (m/z): Calcd for C34H33AgN4O2P [M]+: 667.1387. Found: 

667.1626.  
 

 [Ag(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(PTA)] PF6 (11) 

  

Complex 1 (0.025 g, 0.0440 mmol) was reacted with PTA (0.0066 g, 

0.0420 mmol) in absolute ethanol as the solvent. Yield: 0.0230 g 

(80%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.20-7.46 (m, 5H, -C6H5), 

5.72 (s, 2H, N7-CH2), 4.56 (d, 5H, 2H (N9-CH2), 3H, PTA (NCH2N), JHH ═ 

12.6 Hz), 4.42 (d, 3H, PTA (NCH2N), JHH ═ 12.6 Hz), 4.16 (d, 6H, PTA 

(PCH2N), JP-H ═ 3.6 Hz), 3.71 (s, 3H, N3-CH3), 3.23 (s, 3H, N1-CH3), 

1.38 (broad t, 3H, CH2CH3). 

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 185.10, 187.9 (C8-Ag), 

152.98 (C6═O), 150.61 (C2═O), 128.62, 127.89, 127.04 (-C6H5), 72.09 

(d, NCH2N, PTA, J3
P-C ═ 5.90 Hz), 53.05 (N7-CH2), 50.16 (d, PCH2N, 

PTA, JP-C ═ 2.20 Hz), 46.68 (N9-CH2), 31.38 (N3-CH3), 28.20 (N1-CH3), 

17.27 (CH2CH3). 

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -86 (s, Ag-PTA), -144.17 

(hept, PF6, JP-F = 711 Hz). 

 

ESI-HRMS (m/z): Calcd for C22H30AgN7O2P [M]+: 562.1244. Found: 

562.1265.  
 

 [Ag(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(PPh3)] PF6 (12) 
 

A suspension of complex 2 (0.05 g, 0.083 mmol) in 2 mL absolute 

ethanol was reacted with PPh3 (0.021 g, 0.079 mmol). Yield: 0.0703 g 

(67%).  
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1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.49 (dd, 3H, p-C6H5, PPh3, 

JHH = 10.6, 4.1 Hz  ), 7.40 (dd, 6 H, -C6H4Cl and -PPh3, JHH = 7.5, 6.2 

Hz ), 7.21-7.36 (m, 10 H, -C6H5, PPh3), 5.72 (s, 2H, N7-CH2), 4.58 (q, 

2H, N9-CH2, JHH = 7.2 Hz), 3.72 (s, 3H, N3-CH3), 3.22 (s, 3H, N1-CH3), 

1.39 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 183.27, 182.02 (C8-Ag), 152.93 

(C6═O), 150.61 (C2═O), 135.58 (ipso-C, -C6H4Cl), 133.32 (d, m-C6H5, 

PPh3, J3
C-P ═ 16.7 Hz), 132.12 (P-C, -PPh3), 131.93 (C-Cl), 130.45 (p-

C6H5, PPh3), 129.02 (d, o-C6H5, PPh3, J2
C-P ═ 9.2 Hz), 128.76, 128.51 (-

C6H4Cl), 111.33 (C5), 52.09 (N7-CH2), 46.07 (N9-CH2), 31.40 (N3-CH3), 

28.19 (N1-CH3), 17.26 (CH2CH3). 

  
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ 6.86 (s, Ag-PPh3), -144.18 

(hept, PF6, JP-F = 711 Hz). 

 

ESI-HRMS (m/z): Calcd for C34H32AgClN4O2P [M]+: 701.0997. Found: 

701.1158.  
 

 [Ag(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(PTA)] PF6 (13) 
 

complex 2 (0.03 g, 0.050 mmol) was reacted with PTA (0.0074 g, 0.047 

mmol) in absolute ethanol as the solvent. Yield: 0.037 g (69%).  

 

 

 

 

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.22-7.40 (m, 4H, -C6H4Cl), 

5.70 (s, 2H, N7-CH2), 4.56 (d, 5H, 2H of N9-CH2, 3H, PTA (NCH2N), JHH 

= 12.6 Hz), 4.43 (d, 3H, PTA (NCH2N), JH-H ═ 12.6 Hz), 4.18 (d, 6H, PTA 

(PCH2N), J2
P-H ═ 3.5 Hz), 3.72 (s, 3H, N3-CH3), 3.22 (s, 3H, N1-CH3), 

1.40 (t, 3H, CH2CH3, JHH = 7.1 Hz). 
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13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 152.94 (C6═O), 150.61 

(C2═O), 132.58 (C-Cl), 128.54 (-C6H4Cl), 93.56 (C5), 72.08 (d, NCH2N, 

PTA, J3
P-C ═ 5.90 Hz), 52.07 (N7-CH2), 50.03 (d, PCH2N, PTA, JP-C ═ 

3.20 Hz), 45.45 (N9-CH2), 31.39 (N3-CH3), 28.19 (N1-CH3), 17.27 

(CH2CH3). Carbene carbon missing. 

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -85.88 (s, Ag-PTA), -144.15 

(hept, PF6, JP-F = 711 Hz). 

  

ESI-HRMS (m/z): Calcd for C22H29AgClN7O2P [M]+: 596.0854. Found: 

596.1285.  
 

 [Ag(1,3,7-trimethyl-9-ethylxanthine-8-ylidene)(PPh3)] PF6 (14) 
 

A suspension of complex 3 (0.0433 g, 0.088 mmol) in 5 mL absolute 

ethanol was reacted with PPh3 (0.022 g, 0.083 mmol). Yield: 0.0515 g 

(79%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 7.43-7.50 (m, 3H, p-C6H5, 

PPh3), 7.37 (t, 6H, m-C6H5, PPh3, JHH = 6.8 Hz), 7.25 (t, 6H, o-C6H5, 

PPh3, JHH = 8.5 Hz ), 4.63 (broad q, 2H, N9-CH2), 4.11 (s, 3H, N7-CH3), 

3.73 (s, 3H, N3-CH3), 3.27 (s, 3H, N1-CH3), 1.49 (broad t, 3H, 

CH2CH3). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.22 (C6═O), 150.68 

(C2═O), 133.25 (d, m-C6H5, PPh3, J3
C-P ═ 17.2 Hz ), 130.11 (p-C6H5, 

PPh3), 129.94 (d, o-C6H5, PPh3, J2
C-P ═ 8.6 Hz), 46.04 (N7-CH3), 37.96 

(N9-CH2), 31.35 (N3-CH3), 28.17 (N1-CH3), 17.42 (CH2CH3). Carbene 

carbon missing. 

 
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ 3.96 (s, Ag-PPh3), -144.16 

(hept, PF6, JP-F = 711 Hz). 

  

ESI-HRMS (m/z): Calcd for C28H29AgN4O2P [M]+: 591.1074. Found: 

591.1365.  
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 [Ag(1,3,7-trimethyl-9-ethylxanthine-8-ylidene)(PTA)] PF6 (15) 
 

Complex 15 was synthesized from a reaction between complex 3 

(0.0216 g, 0.0440 mmol) and PTA (0.0066 g, 0.0420 mmol). Yield: 

0.0185 g (67%).    

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ [ppm] ═ 4.60-4.65 (m, 1H, PTA 

(NCH2N)), 4.57 (d, 3H, PTA (NCH2N), JHH ═ 12.8 Hz), 4.43 (d, 3H, PTA 

(NCH2N), JHH ═ 12.8 Hz), 4.18 (d, 5H, PTA (PCH2N), JP-H ═ 3.8 Hz), 

4.12-4.08 (broad s, 2H, N9-CH2), 3.73 (s, 3H, N7-CH3), 3.29 (s, 3H, N3-

CH3), 3.26 (s, 3H, N1-CH3), 1.47 (broad t, 3H, CH2CH3, JHH ═ 6.2 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 153.26 (C6═O), 150.78 

(C2═O), 139.87 (C4), 108.91 (C5), 72.11 (d, NCH2N, PTA, J3
P-C ═ 5.90 

Hz), 50.10 (d, PCH2N, PTA, JP-C ═ 2.0 Hz),  45.99 (N7-CH2), 37.95 (N9-

CH2), 31.35 (N3-CH3), 28.16 (N1-CH3), 17.41 (CH2CH3). Carbene 

carbon missing.  
31P-NMR (162 MHz, DMSO-d6): δ [ppm] ═ -86.20 (s, Ag-PTA), -144.19 

(hept, PF6, JP-F = 711 Hz). 

  

ESI-HRMS (m/z): Calcd for C16H26AgN7O2P [M]+: 486.0931. Found: 

486.1167.  
 

5.3.4. Synthesis of (NHC)AgCl complexes  
 

[NHCH]Cl (1.0 mmol) was dissolved in an indicated amount of CH2Cl2 

or acetone as the solvent and reacted with Ag2O (0.50 mmol) at room 

temperature for 4 h. Next, the reaction mixture was filtered through 

celite and the filtrate was concentrated to 3 mL by rotary evaporator. 

Finally, the excess amount of diethyl ether was added to precipitate 

the product as a white solid phase. It was filtered and washed with 

diethyl ether and dried at room temperature [201-203].   
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 (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)AgCl (16)  
 

1f (0.05 g, 0.149 mmol) was reacted with Ag2O (0.0174 g, 0.0751 

mmol) in  7.5 mL CH2Cl2. Yield: 0.0445 g (67%).   

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ[ppm] ═ 7.26-7.39 (m, 5H, -C6H5), 

5.70 (s, 2H, N7-CH2), 4.58 (q, 2H, N9-CH2, JHH = 7.2 Hz), 3.71 (s, 3H, 

N3-CH3), 3.23 (s, 3H, N1-CH3), 1.44 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ[ppm] ═ 185.77 (C8-Ag), 152.96 

(C6═O), 150.59 (C2═O), 140.23 (C4), 136.55 (ipso-C, -C6H5), 128.59, 127.92, 

127.39 (-C6H5), 108.15 (C5), 52.88 (N7-CH2), 46.40 (N9-CH2), 31.38 (N3-

CH3), 28.19 (N1-CH3), 17.25 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C16H18AgClN4NaO2 [M+Na]+: 463.0061. 

Found: 463.0077.  

 

Anal. Calcd for C16H18AgClN4O2: C, 43.51; N, 12.69; H, 4.11. Found: C, 

43.36; N, 12.35; H, 3.95. 
 

 (7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)AgCl (17)  
 

2f (0.0554 g, 0.140 mmol) was reacted with Ag2O (0.0174 g, 0.0751 

mmol) in 7.5 mL CH2Cl2. Yield: 0.0475 g (66%).  

 

 

 

 

 

 

 

1H-NMR (400 MHz, Acetone-d6): δ[ppm] ═ 7.51-7.58 (m, 2H, m-C6H4Cl), 

7.34-7.36 (m, 2H, o-C6H4Cl), 5.81 (s, 2H, N7-CH2), 4.78 (q, 2H, N9-CH2, 
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JHH = 7.2 Hz), 3.89 (s, 3H, N3-CH3), 3.31 (s, 3H, N1-CH3), 1.59 (t, 3H, 

CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, Acetone-d6): δ[ppm] ═ 187.60 (C8-Ag), 154.87 

(C6═O), 152.35 (C2═O), 142.24 (C4), 137.22 (ipso-C, -C6H4Cl), 135.10 

(C-Cl), 131.48, 130.23 (-C6H4Cl), 110.12 (C5), 54.39 (N7-CH2), 48.48 

(N9-CH2), 32.78 (N3-CH3), 29.36 (N1-CH3), 18.61 (CH2CH3). 

  

ESI-HRMS (m/z): Calcd for C16H17AgCl2N4NaO2 [M+Na]+: 496.9672. Found: 

496.9661.  

 

Anal. Calcd for C16H18AgCl2F6N4O2P: C, 40.36; N, 11.77; H, 3.60. Found: C, 

39.88; N, 11.47; H, 3.41. 
 

 (1,3,7-trimethyl-9-ethylxanthine-8-ylidene)AgCl (18)  
 

Based on the same method, compound 3f (0.0387 g, 0.150 mmol) was 

reacted with Ag2O (0.0174 g, 0.0751 mmol)  in 4 mL CH2Cl2. Yield: 

0.0285 g (52%).  

 

 

 

 

 

 

1H-NMR (400 MHz, DMSO-d6): δ[ppm] ═ 4.56 (q, 2H, N9-CH2, JHH = 7.2 

Hz), 4.04 (s, 3H, N7-CH3), 3.70 (s, 3H, N3-CH3), 3.24 (s, 3H, N1-CH3), 

1.44 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (101 MHz, DMSO-d6): δ [ppm] ═ 185.25 (C8-Ag), 153.18 

(C6═O), 150.66 (C2═O), 139.77 (C4), 108.79 (C5), 46.09 (N7-CH3), 37.99 

(N9-CH2), 31.33 (N3-CH3), 28.14 (N1-CH3), 17.30 (CH2CH3). 

  

ESI-HRMS (m/z): Calcd for C10H15N4O2 [M-AgCl]+: 223.1190. Found: 

223.1218.  
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5.4. Transmetallation reactions 

5.4.1. Synthesis of [RuCl2(NHC)(p-cymene)] 
 

This group of Ru-complexes was synthesized by following a 

transmetallation reaction from the silver complex, by the reaction 

between [Ag(NHC)Cl] (1.0 mmol) and [RuCl2(p-cymene)]2 (0.5 mmol) in 

CH2Cl2 at room temperature for 24 h. Finally, the resulting orange-

brown solution was filtered through celite and the solvent was 

removed under vacuum to obtain the product as an orange-brown 

precipitate which was washed with diethyl ether and dried at room 

temperature [202,203].  
 

 (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(p-cymene)RuCl2 (19)  
 

complex 16 (0.0438 g, 0.099 mmol) was treated with [RuCl2(p-

cymene)]2 (0.0294 g, 0.048 mmol) in 6 mL CH2Cl2. Yield: 0.0431 g 

(72%). 

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3, 223K): δ [ppm] ═ 7.30-7.48 (m, 3H, -C6H5), 

6.89 (m, 2H, o-C6H5), 6.31 (d, 1H, N7-CH2, JHH = 17 Hz), 5.96 (d, 1H, N7-

CH2, JHH = 17 Hz), 5.51, 5.27, 5.19 (broad m, 4H, p-CH3C6H4CH(CH3)2), 5.42 

(broad q, 1H, N9-CH2), 4.44 (broad q, 1H, N9-CH2), 3.78 (s, 3H, N3-

CH3), 3.29 (s, 3H, N1-CH3), 2.74 (broad s, 1H, p-CH3C6H4CH(CH3)2), 2.04 (s, 

3H, p-CH3C6H4CH(CH3)2), 1.52 (m, 3H, -CH2CH3), 1.30 (d, 3H, p-

CH3C6H4CH(CH3)2, JHH = 4.9 Hz), 1.19 (d, 3H, p-CH3C6H4CH(CH3)2, 

JHH = 6.3 Hz). 

  
13C-NMR (101 MHz, CDCl3, 223K): δ [ppm] ═ 189.37 (C8-Ru), 151.52 

(C6═O), 150.87 (C2═O), 140.88 (C4), 138.58 (ipso-C, -C6H5), 129.19, 

127.38, 123.50 (-C6H5), 111.12 (C5), 107.77 ((CH3)2CH-C, p-

CH3C6H4CH(CH3)2), 94.64 (CH3-C, p-CH3C6H4CH(CH3)2), 86.37, 86.12, 

83.42, 82.78 (p-CH3C6H4CH(CH3)2), 53.69 (N7-CH2), 47.18 (N9-CH2), 
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32.57 (N3-CH3), 30.48 (p-CH3C6H4CH(CH3)2), 28.67 (N1-CH3), 22.57, 

22.32 (p-CH3C6H4CH(CH3)2), 18.01 (p-CH3C6H4CH(CH3)2), 17.70 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C26H32ClN4O2Ru [M-Cl]+: 569.1255. 

Found: 569.1257.  
 

 (7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)(p-cymene)RuCl2 (20)  
 

complex 17 (0.0471 g, 0.107 mmol) was reacted with [RuCl2(p-

cymene)]2  (0.0294, 0.048 mmol) in 6 mL CH2Cl2. Yield: 0.0495 g 

(76%). 

 

 

 

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3, 223K): δ [ppm] ═ 7.35-7.44 (d, 2H, o-

C6H4Cl, JHH = 7.5 Hz), 6.86 (m, 2H, m-C6H4Cl), 6.30 (d, 1H, N7-CH2, 

JHH = 17.2 Hz), 5.87 (d, 1H, N7-CH2, JHH = 17.2 Hz), 5.51, 5.30, 5.25 

(broad m, 4H, p-CH3C6H4CH(CH3)2), 5.42 (broad q, 1H, N9-CH2), 4.45 

(broad q, 1H, N9-CH2), 3.78 (s, 3H, N3-CH3), 3.29 (s, 3H, N1-CH3), 2.76 (broad s, 

1H, p-CH3C6H4CH(CH3)2), 2.05 (s, 3H, p-CH3C6H4CH(CH3)2), 1.52 (m, 3H, -

CH2CH3), 1.30 (d, 3H, p-CH3C6H4CH(CH3)2, JHH = 4.3 Hz), 1.22 (d, 3H, p-

CH3C6H4CH(CH3)2, JHH = 5.7 Hz).  
13C-NMR (101 MHz, CDCl3, 223K): δ [ppm] ═ 189.52 (C8-Ru), 151.48 

(C6═O), 150.78 (C2═O), 140.97 (C4), 137.18 (ipso-C, -C6H4Cl), 132.82, 

129.38, 125.03 (-C6H4Cl), 110.90 (C5), 108.04 ((CH3)2CH-C, p-

CH3C6H4CH(CH3)2), 94.68 (CH3-C, p-CH3C6H4CH(CH3)2), 86.37, 86.06, 

83.26, 83.04 (p-CH3C6H4CH(CH3)2), 53.41 (N7-CH2), 47.23 (N9-CH2), 

32.55 (N3-CH3), 30.58 (p-CH3C6H4CH(CH3)2), 28.69 (N1-CH3), 22.46 (p-

CH3C6H4CH(CH3)2), 18.09 (p-CH3C6H4CH(CH3)2), 17.76 (CH2CH3). 

 

ESI-HRMS (m/z): Calcd for C26H31Cl2N4O2Ru [M-Cl]+: 603.0863. Found: 

603.0874.  
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 (1,3,7-trimethyl-9-ethylxanthine-8-ylidene)(p-cymene)RuCl2 (21)  
 

complex 18 (0.0362 g, 0.099 mmol) was reacted with [RuCl2(p-

cymene)]2  (0.0294, 0.048 mmol) in 6 mL CH2Cl2. Yield: 0.0420 g 

(80%). 

 

 

 

 

 

 

1H-NMR (600 MHz, CDCl3): δ [ppm] ═ 5.47-5.66 (broad d, 2H, p-

CH3C6H4CH(CH3)2)), 5.26 (d, 2H, p-CH3C6H4CH(CH3)2, JHH = 6.1 Hz), 4.50-4.67 

(broad s, 2H, N9-CH2), 4.36 (s, 3H, N7-CH3), 3.77 (s, 3H, N3-CH3), 3.42 

(s, 3H, N1-CH3), 3.02 (m, 1H, p-CH3C6H4CH(CH3)2, 2.18 (s, 3H, p-

CH3C6H4CH(CH3)2), 1.41 (t, 3H, -CH2CH3, JHH = 7.3 Hz ), 1.35 (d, 6H, 

p-CH3C6H4CH(CH3)2, JHH = 6.9 Hz). 

  
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 186.12 (C8-Ru), 152.80 (C6═O), 

151.17 (C2═O), 140.76 (C4), 111.85 (C5), 109.36 ((CH3)2CH-C, p-

CH3C6H4CH(CH3)2), 99.08 (CH3-C, p-CH3C6H4CH(CH3)2), 86.22, 83.03, 81.27, 

80.52 (p-CH3C6H4CH(CH3)2), 46.70 (N9-CH2), 39.66 (N7-CH3), 32.51 (N3-

CH3), 30.89 (p-CH3C6H4CH(CH3)2), 28.58 (N1-CH3), 23.23, 22.11 (p-

CH3C6H4CH(CH3)2), 18.93 (p-CH3C6H4CH(CH3)2), 17.36 (CH2CH3). 

 

ESI-HRMS (m/z): Calcd for C20H28ClN4O2Ru [M-Cl]+: 493.0941. Found: 

493.0947.  
 

5.4.2. Synthesis of [RhCl2(NHC)(Cp*)] 
 

A mixture of [Ag(NHC)Cl] (1.0 mmol) and [Cp*RhCl2]2 (0.5 mmol) in 

CH2Cl2 as the solvent was stirred at room temperature for 24 h. The 

resulting red-brown solution was filtered through celite and the solvent 

was removed under vacuum and the product was obtained as an 

orange-brown precipitate. Last, the product was washed with diethyl 

ether and dried at room temperature [206,207].  
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 Cp*Rh(7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Cl2 (22) 
 

complex 16 (0.0177 g, 0.0400 mmol) was reacted with [Cp*RhCl2]2 

(0.0124, 0.0200 mmol) in 3 mL CH2Cl2. Yield: 0.0130 g (53%). 

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.26-7.32 (m, 2H, m-C6H5), 7.23 (t, 

1H, p-C6H5, JHH = 7.3 Hz), 6.89 (m, 2H, o-C6H5), 6.39 (d, 1H, N7-CH2, JHH = 

16.5 Hz), 5.98 (d, 1H, N7-CH2, JHH = 16.5 Hz), 5.25, 4.73 (broad s, 2H, N9-

CH2), 3.79 (s, 3H, N3-CH3), 3.24 (s, 3H, N1-CH3), 1.54 (s, 15H, Cp*), 1.49 (t, 

3H, CH2CH3, JHH = 7.3 Hz).  

 
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 183.71 (d, C8-Rh, JC-Rh = 54.5 Hz), 

151.73 (C6═O), 151.27 (C2═O), 141.13 (C4), 138.58 (ipso-C, -C6H5), 

128.56, 127.12, 124.67 (-C6H5), 111.72 (C5), 97.21 (d, C-CH3, Cp*, JRh-

C = 7.2 Hz), 54.78 (N7-CH2), 47.10 (N9-CH2), 32.50 (N3-CH3), 28.60 (N1-

CH3), 17.66 (CH2CH3), 9.49 (-CCH3, Cp*).  

 

ESI-HRMS (m/z): Calcd for C26H33Cl2N4NaO2Rh [M+Na]+: 629.0928. Found: 

629.0930.  
 

 Cp*Rh(7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Cl2 (23) 
 

complex 17 (0.0190 g, 0.0399 mmol) was reacted with [Cp*RhCl2]2 

(0.0124 g, 0.0200 mmol) in 3 mL CH2Cl2. Yield: 0.0140 g (55%). 
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1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.24-7.28 (m, 2H, o-C6H4Cl), 

6.92 (d, 2H, m-C6H4Cl, JHH =7.8 Hz), 6.21, 6.05 (broad s, 2H, N7-CH2), 

5,19, 4.84 (broad s, 2H, N9-CH2), 3.79 (s, 3H, N3-CH3), 3.25 (s, 3H, N1-

CH3), 1.56 (s, 15H, Cp*), 1.49 (t, 3H,CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 183.60 (d, C8-Rh, JC-Rh = 53.3 Hz), 

151.76 (C6═O), 151.20 (C2═O), 141.34 (C4), 136.90 (ipso-C, -C6H4Cl), 132.93 

(C-Cl), 128.65, 126.64 (-C6H4Cl), 111.52 (C5), 97.24 (d, C-CH3, Cp*, JRh-C = 

7.1 Hz), 54.35 (N7-CH2), 47.00 (N9-CH2), 32.51 (N3-CH3), 28.64 (N1-CH3), 

17.77 (CH2CH3), 9.52 (-CCH3, Cp*). 

 

ESI-HRMS (m/z): Calcd for C26H32Cl2N4O2Rh [M-Cl]+: 605.0952. Found: 

605.0957.  
 

 Cp* Rh(1,3,7-trimethyl-9-ethylxanthine-8-ylidene)Cl2 (24) 
 

Complex 18 (0.0322 g, 0.0881 mmol) was reacted with [Cp*RhCl2]2 

(0.0248, 0.0400 mmol) in 6 mL CH2Cl2. Yield: 0.0355 g (76%). 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 4.73-5.09 (broad d, 2H, N9-CH2), 

4.33 (s, 3H, N7-CH3), 3.75 (s, 3H, N3-CH3), 3.39 (s, 3H, N1-CH3), 1.66 

(s, 15H, Cp*), 1.39 (t, 3H,CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 152.94 (C6═O), 151.20 (C2═O), 

140.92 (C4), 112.06 (C5), 96.98 (d, C-CH3, Cp*, JRh-C = 7.0 Hz), 46.41 

(N7-CH3), 39.14 (N9-CH2), 32.54 (N3-CH3), 28.61 (N1-CH3), 17.55 

(CH2CH3), 9.55 (-CCH3, Cp*). Carbene carbon missing. 

   

ESI-HRMS (m/z): Calcd for C20H29N4O2Rh [M-2Cl] +: 459.1300. Found: 

459.1330. 
  

5.4.3. Synthesis of [RhCl(NHC)(cod)] 
 

[Ag(NHC)Cl] (1.0 mmol) was reacted with [RhCl(cod)]2 (0.45-0.5 Equiv.) 

in CH2Cl2 at room temperature for 24 h. The final yellow solution was 

filtered through celite and the solvent was removed under vacuum. 
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The product was obtained as a yellow precipitate which was washed 

with diethyl ether and dried at room temperature [210,211,132].  
 

 (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Rh(cod)Cl (25) 
 

Complex 16 (0.0352 g, 0.0797 mmol) was reacted with [RhCl(cod)]2 

(0.0196 g, 0.0397 mmol) in 3 mL CH2Cl2. Yield: 0.0210 g (48%).  

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.44 (d, 2H, o-C6H5, JHH = 7.3 

Hz), 7.33 (t, 2H, m-C6H5, JHH = 7.3 Hz), 7.23-7.29 (m, 1H, p-C6H5), 

6.25, 6.10 (d, 2H, N7-CH2, JHH = 14.8 Hz), 5.42-5.53 (m, 1H, N9-CH2), 

5.16-5.23 (m, 1H, CH-cod), 5.07-5.15 (m, 1H, CH-cod), 4.99-5.07 (m, 

1H, N9-CH2), 3.78 (s, 3H, N3-CH3), 3.31 (m, 3H, N1-CH3, 1H, CH-cod), 

3.03 (m, 1H, CH-cod), 2.25-2.52 (m, 3H, CH2-cod), 2.83-1.10 (m, 4H, 

CH2-cod), 1.71- 1.76 (m, 1H, CH2-cod), 1.69 (t, 3H,CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 193.49 (C8-Rh), 152.14 (C6═O), 150.81 

(C2═O), 140.08 (C4), 136.92 (ipso-C, -C6H5), 128.50, 127.66, 127.32 (-C6H5), 

109.00 (C5), 100.89, 100.12 (d, CH, cod, JRh-C = 6.8 Hz), 69.84, 69.67 (d, CH, 

cod, JRh-C = 14.3 Hz), 53.71 (N7-CH2), 46.33 (N9-CH2), 33.53 (CH2, cod), 31.89 

(N3-CH3), 31.59, 28.55, 28.11 (CH2, cod), 29.25 (N1-CH3), 17.67 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C24H30N4O2Rh [M-Cl]+: 509.1418. Found: 

509.1409. 
 

 (7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Rh(cod)Cl (26) 
 

Complex 17 (0.0635 g, 0.1334 mmol) was reacted with [RhCl(cod)]2 

(0.0329 g, 0.0604 mmol) in 3 mL CH2Cl2. Yield: 0.0520 g (72%). 
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1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.47 (d, 2H, o-C6H4Cl, JHH = 8.4 

Hz), 7.29 (m, 2H, m-C6H4Cl), 6.26, 5.99 (d, 2H, N7-CH2, JHH = 14.7 Hz), 

5.44 (m, 1H, N9-CH2), 5.10-5.23 (m, 2H, CH-cod), 5.06 (m, 1H, N9-

CH2), 3.78 (s, 3H, N3-CH3), 3.30 (m, 3H, N1-CH3, 1H, CH-cod), 3.08 

(m, 1H, CH-cod), 2.28-2.52 (m, 3H, CH2-cod), 2.16 (m, 1H, CH2-cod), 

1.75-2.08 (m, 4H, CH2-cod), 1.69 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 193.28 (d, C8-Rh, JRh-C = 52.9 

Hz), 152.12 (C6═O), 150.74 (C2═O), 140.23 (C4), 135.15 (ipso-C, -

C6H4Cl), 133.66 (C-Cl), 129.13, 128.65 (-C6H4Cl), 109.94 (C5), 101.08, 

100.54 (d, CH, cod, JRh-C = 6.7 Hz), 69.86, 69.66 (d, CH, cod, JRh-C = 

13.8 Hz), 53.19 (N7-CH2), 46.35 (N9-CH2), 33.41, 33.06 (CH2, cod), 

31.58 (N3-CH3), 29.22 (CH2, cod), 28.55 (N1-CH3), 28.19 (CH2, cod), 

16.89 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C24H29ClN4O2Rh [M-Cl]+: 543.10. Found: 

543.1097.  
 

 (1,3,7-trimethyl-9-ethylxanthine-8-ylidene)Rh(cod)Cl (27) 
 

Complex 18 (0.0291 g, 0.0796 mmol) was created with [RhCl(cod)]2 

(0.0196 g, 0.0360 mmol) in 3 mL CH2Cl2. Yield: 0.0370 g (99%).  

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 5.40-5.31 (m, 1H, N9-CH2), 5.09 

(dd, 2H, CH, cod, JHH = 21.0, 5.3 Hz), 4.90 (dq, 1H, N9-CH2, JHH = 14.2, 

7.0 Hz), 4.39 (s, 3H, N7-CH3), 3.76 (s, 3H, N3-CH3), 3.48-3.39 (m, 2H, 
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CH, cod), 3.35 (s, 3H, N1-CH3), 2.53-2.37 (m, 4H, CH2, cod), 2.01 (d, 

4H, CH2, cod, JHH = 9.5 Hz), 1.61 (t, 3H, CH2CH3, JHH = 7.2 Hz).  

 
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 191.11 (C8-Rh), 152.81 (C6═O), 

150.79 (C2═O), 139.61 (C4), 110.51 (C5), 100.59, 100.30 (d, CH, cod, 

JRh-C = 6.2, 6.3 Hz), 69.62, 68.88 (broad s, CH, cod), 46.04 (N9-CH2), 

37.42 (N7-CH3), 32.79 (CH2, cod, JRh-C = 5.6 Hz), 31.48 (N3-CH3), 28.81 

(N1-CH3), 28.72, 28.45, 28.00 (CH2, cod), 16.93 (CH2CH3). Two signals 

at 78.66 and 30.87 ppm are assigned to the remains of [RhCl(cod)]2.  

 

ESI-HRMS (m/z): Calcd for C18H25N4O2Rh [M-Cl]+: 433.11. Found: 

433.1149.  

5.4.4. Synthesis of [Au(NHC)Cl] 
 

[Ag(NHC)Cl] (1.0 mmol) was reacted with [Au(tht)Cl] (1.0 mmol) in 

CH2Cl2 at room temperature for 4 h. The resulting solution was 

filtered through celite and the solvent was removed under vacuum. 

The product was obtained as a white precipitate which was washed 

with diethyl ether and dried at room temperature [202,203,215]. 
 

 (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)AuCl (28) 
 

Complex 16 (0.0442 g, 0.100 mmol) was reacted with [Au(tht)Cl] 

(0.0320 g, 0.0998 mmol) in 5 mL CH2Cl2. Yield: 0.0340 g (64%). 

 

 

 

 

 

 

 

 

1H-NMR (600 MHz, CDCl3): δ [ppm] ═ 7.62 (d, 2H, o-C6H5, JHH = 6.7 

Hz), 7.27-7.36 (m, 3H, m-C6H5, p-C6H5), 5.78 (s, 2H, N7-CH2), 4.70 (q, 

2H, N9-CH2, JHH = 7.2 Hz), 3.79 (s, 3H, N3-CH3), 3.38 (s, 3H, N1-CH3), 

1.58 (t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 176.79 (C8-Au), 152.93 (C6═O), 

150.63 (C2═O), 139.33 (C4), 134.87 (ipso-C, -C6H5), 128.84, 128.73, 

128.59 (-C6H5), 108.16 (C5), 53.68 (N7-CH2), 46.71 (N9-CH2), 31.68 

(N3-CH3), 28.84 (N1-CH3), 17.33 (CH2CH3). 
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ESI-HRMS (m/z): Calcd for C16H18AuClN4NaO2 [M+Na]+: 553.0676. Found: 

553.0792.  

 

 (7-p-chlorobenzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)AuCl (29) 
 

Complex 17 (0.0476 g, 0.100 mmol) was reacted with [Au(tht)Cl] 

(0.0320 g, 0.0998 mmol) in 5 mL CH2Cl2. Yield: 0.0420 g (74%). 

 

 

 

 

 

 

1H-NMR (600 MHz, CDCl3): δ [ppm] ═ 7.58 (d, 2H, o--C6H4Cl, JHH = 8.4 

Hz), 7.28-7.31 (m, 2H, m-C6H4Cl), 5.74 (s, 2H, N7-CH2), 4.69 (q, 2H, 

N9-CH2, JHH = 7.2 Hz), 3.79 (s, 3H, N3-CH3), 3.38 (s, 3H, N1-CH3), 1.58 

(t, 3H, CH2CH3, JHH = 7.2 Hz). 

  
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 176.79 (C8-Au), 152.96 (C6═O), 

150.57 (C2═O), 139.40 (C4), 134.78 (ipso-C, -C6H4Cl), 133.29 (C-Cl), 

130.10, 129.04 (-C6H4Cl), 108.04 (C5), 52.96 (N7-CH2), 46.77 (N9-CH2), 

31.70 (N3-CH3), 28.86 (N1-CH3), 17.33 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C16H17AuCl2N4NaO2 [M+Na]+: 587.0286. Found: 

587.0291.  

 

 (1,3,7-trimethyl-9-ethylxanthine-8-ylidene)AuCl (30)  
 

Complex 18 (0.0365 g, 0.0988 mmol) was reacted with [Au(tht)Cl] 

(0.0320 g, 0.0998 mmol) in 5 mL CH2Cl2. Yield: 0.0295 g (55%). 
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1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 4.71 (q, 2H, N9-CH2, JHH = 7.2 Hz), 4.17 

(s, 3H, N7-CH3), 3.83 (s, 3H, N3-CH3), 3.43 (s, 3H, N1-CH3), 1.60 (t, 3H, 

CH2CH3, JHH = 7.2 Hz).   

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 177.33 (C8-Au), 153.28 (C6═O), 

150.71 (C2═O), 113.18 (C5), 46.47 (N7-CH3), 37.98 (N9-CH2), 31.65 (N3-

CH3), 28.76 (N1-CH3), 17.36 (CH2CH3).  

 

ESI-HRMS (m/z): Calcd for C10H14AuClN4NaO2 [M+Na]+: 477.0363. Found: 

477.0366.  
 

5.5. Synthesis of Pd-Complexes 

5.5.1. Synthesis of [(NHC)Pd(dmba)Cl] 
 

 (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Pd(dmba)Cl (31) 
 

As the last part of this work, the preparation of Pd(II)-NHC complexes 

with the general formula of [(NHC)Pd(dmba)Cl] was evaluated. In this 

regard, (7-benzyl-9-ethyl-1,3-dimethylxanthine-8-ylidene)Pd(dmba)Cl 

(31), as the first example of the Pd(II)-NHC complexes, was synthesized 

using the synthesis procedure as follows: 

    

On the first attempt, complex 31 was synthesized via a one-pot 

reaction. Based on this synthetic procedure, a two-necked flask was 

charged with PdCl2 (0.0161g, 0.091 mmol), CH3CN (370 µL; HPLC 

grade), and dmba (14 µL, 0.0942 mmol). One of the necks was 

equipped with a reflux condenser and the other was close with a glass 

stopper. The mixture was refluxed at 100 °C for 30 minutes until a 

clear, yellow solution was formed and PdCl2 was completely dissolved. 

Then K2CO3 (0.0314 g, 0.227 mmol) was added to the reaction 

mixture, and the mixture was stirred for 5-10 minutes until the 

solution changed color to bright canary yellow. Next, compound 1f 

(0.0320 g, 0.0956 mmol) was added in one portion, and the reaction 

continued for a further 1 h. Last, after cooling to room temperature, 

the reaction mixture was diluted with CH2Cl2 and filtered through 

celite, and the solvent was removed under vacuum to obtain the final 

product as a light yellow precipitate, Yield: 0.0347 g (63%) [219].  
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1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.70-7.75 (m, 2H, -C6H5), 7.18-

7.28 (m, 3H, -C6H5), 7.02 (d, 1H, C12H, JHH = 6.4 Hz), 6.96 (td, 1H, -

C13H, JHH = 7.3, 1.1 Hz), 6.70 (td, 1H, -C14H, JHH = 7.4, 1.1 Hz ), 6.03 

(dt, 2H, N7-CH2, -C15H, JHH = 12.8, 6.4 Hz),  5.87 (d, 1H, N7-CH2, JHH = 

14.3 Hz), 5.35 (dq, 1H, N9-CH2, JHH = 14.6, 7.3 Hz), 4.87 (dq, 1H, N9-

CH2, JHH = 14.5, 7.2 Hz), 4.03, 3.87 (d, 2H, -C16H2, JHH = 14.0, 14.1 

Hz), 3.83 (s, 3H, N3-CH3), 3.39 (s, 3H, N1-CH3), 2.86 (d, 6H, -N(CH3)2, 

JHH = 5.2 Hz), 1.65 (t, 3H, CH2CH3, JHH = 7.3 Hz).  

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 182.74 (C8-Pd), 152.59 (C6═O), 

150.75 (C2═O), 148.52, 148.12 (C10, C11 ), 139.88 (C4), 135.72 (C15), 

129.01, 128.25, 127.94 (-C6H5), 125.77 (C13), 124.17 (C14), 122.37 

(C12), 109.52 (C5), 72.36 (C16), 54.23 (N7-CH2), 50.75, 50.21 (-N(CH3)2), 

46.52 (N9-CH2), 31.63 (N3-CH3), 28.67 (N1-CH3), 16.54 (CH2CH3).  

    

ESI-HRMS (m/z): Calcd for C25H30ClN5NaO2Pd [M+Na]+: 596.1022. 

Found: 596.1034. 
 

In another attempt, complex 31 was synthesized using a multi-step 

reaction. First, the Pd(II) dimer -[Pd(dmba)Cl]2- was synthesized and in the 

next step, it was reacted with [7-benzyl-9-ethyl-1,3-dimethylxanthinium] Cl 

(1f) in the presence of K2CO3 as a base to obtain the corresponding Pd(II)-

NHC complex. More details are available as mentioned below.  
 

 

 Synthesis of [Pd(dmba)Cl]2 dimer  
 

A mixture of PdCl2 (0.0161 g, 0.091 mmol) and dmba (14 µL, 0.0942 

mmol) in CH3CN (185 µL; HPLC grade) was refluxed at 100 °C for 30 

minutes until PdCl2 was completely dissolved and a yellow, clear 

solution was obtained. Next, the solvent was evaporated in a vacuum 

to get the final product as a yellow fine precipitate which was washed 
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with diethyl ether and dried at room temperature, Yield: 0.01 g (40%) 

[219]. 

 

 

 

 

 

 

 

 

 
1H-NMR (600 MHz, CDCl3): δ [ppm] ═ 7.14-7.24 (dd, 1H, -C4H, J= 

27.6, 8.0 Hz), 7.00 (t, 1H, -C5H, JHH = 7.0 Hz), 6.90 (t, -C2H, -C3H, JHH 

= 6.7 Hz), 3.96 (2H, -C7H2), 2.90, 2.87 (6H, -N(CH3)2).  

 
13C-NMR (151 MHz, CDCl3): δ [ppm] ═ 146.93, 146.81 (C6), 143.07, 

142.94 (C1), 133.47, 132.95 (C4), 125.19, 121.49 (d, 2H, C2, C3, J= 8.2, 

3.6 Hz), 124.73 (C5), 73.35, 73.20 (-C7H2), 52.89, 52.61 (-N(CH3)2).   

 

 

 Synthesis of [(NHC)Pd(dmba)Cl] (31) 

 

In the second step, a mixture of compound 1f (10 mg, 0.0299 mmol) 

and the synthesized [Pd(dmba)Cl]2 (8.3 mg, 0.0150 mmol) was refluxed 

in the presence of K2CO3 (9.8 mg, 0.0710 mmol) at 100 °C for 1 h. 

Next, after cooling to room temperature, the reaction mixture was 

diluted with CH2Cl2 and filtered through celite, and the solvent was 

removed under vacuum to obtain the final product as a light yellow 

precipitate, Yield: 0.0110 g (64%) [219].    

  

 
 

 

 

 

 

 

 

 

1H-NMR (400 MHz, CDCl3): δ [ppm] ═ 7.73 (d, 2H, -C6H5, JHH = 6.7 Hz 

), 7.27-7.18 (m, 3H, -C6H5), 7.02 (d, 1H, C12H, JHH = 6.7 Hz), 6.96 (t, 

1H, -C13H, JHH = 7.3), 6.70 (t, 1H, -C14H, JHH = 6.9 Hz ), 6.04 (m, 2H, 
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N7-CH2, -C15H), 5.87 (d, 1H, N7-CH2, JHH = 14.3 Hz), 5.35 (dq, 1H, N9-

CH2, JHH = 14.6, 7.6 Hz), 4.87 (dq, 1H, N9-CH2, JHH = 14.5, 7.2 Hz), 

4.04, 3.87 (d, 2H, -C16H2, JHH = 14.1 Hz), 3.83 (s, 3H, N3-CH3), 3.40 (s, 

3H, N1-CH3), 2.86 (d, 6H, -N(CH3)2, JHH = 5.1 Hz), 1.65 (t, 3H, 

CH2CH3, JHH = 7.2 Hz). 

 
13C-NMR (101 MHz, CDCl3): δ [ppm] ═ 182.76 (C8-Pd), 152.61 (C6═O), 

150.77 (C2═O), 148.53, 148.13 (C10, C11 ), 139.89 (C4), 135.74 (C15), 

129.02, 128.26, 127.96 (-C6H5), 125.78 (C13), 124.18 (C14), 122.39 

(C12), 109.54 (C5), 72.38 (C16), 54.24 (N7-CH2), 50.76, 50.22 (-N(CH3)2), 

46.53 (N9-CH2), 31.64 (N3-CH3), 28.68 (N1-CH3), 16.55 (CH2CH3).  
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