Efficient rational filter-based
Interior eigensolvers

Dissertation

Bergische Universitat Wuppertal
Fakultat fur Mathematik und Naturwissenschaften

eingereicht von
Sarah Huber, M. Sc.
zur Erlangung des Grades eines Doktors der Naturwissenschaften

Betreut durch Prof. Dr. Bruno Lang

Tag der Disputation: 02.06.2021

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-20210706-133415-9
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20210706-133415-9]

DOI: 10.25926/egqy-8b34
[https://doi.org/10.25926/egqy-8b34]

ACKNOWLEDGMENTS

I would like to thank Prof. Bruno Lang for the opportunity to write this thesis,
and for his invaluable support and guidance throughout the process.

I further wish to thank my fellow members of the ESSEX-II project, especially
Christie Alappat, Andreas Alvermann, Georg Hager and Jonas Thies for helpful
software and organizing access to computational resources.

Professors Yasunori Futamura, Akihiro Ida, Akira Imakura, Toshiyuki Imamura,
and Tetsuya Sakurai, along with Masatoshi Kawai and other members of their
research groups, hosted me in fruitful research visits to Tsukuba, Tokyo and Kobe
and provided direction on some of the topics considered in this thesis.

I am grateful to my fellow Angewandte Informatik group members, past and
present, for a pleasant work environment and many an interesting discussion during
coffee breaks. In particular, Martin Galgon was involved with helpful discussion
and assistance on many mathematical, computational, and technical issues related
to this thesis. I am also grateful to him, along with Liam Huber, for proofreading
this work.

Finally, I wish to thank my family, and in particular, Liam, for their support and
encouragement of my studies.

ABSTRACT

This thesis is concerned with improving and expanding projection based methods
for Hermitian interior eigenvalue problems. The focus is on methods of this type
utilizing a rational function based filtering approach. We outline various strategies
and novel variations to improve the efficacy of these methods and their suitability
for solving large sparse eigenvalue problems. The potential for improvement is
shown in numerical experiments.

This research has been supported by the Deutsche Forschungsgemeinschaft through the priority
project Software for Exascale Computing (SPPEXA) within the ESSEX-II project (SPP 1648).

I1I

FOREWORD

The research presented in this thesis contains results and discussion that have been
previously presented and published. In the introduction of each of Chapters 3 and
5, a brief description of the portions of the respective chapter corresponding to
existing publications and distinguishing unpublished results is provided. We also
provide a summary here.

Chapter 3 is based on results and discussion shown in

e M. GALGON, S. HUBER, AND B. LANG, Mized precision in subspace iteration-
based eigensolvers, PAMM, 18 (2018)

e A. ALVERMANN, A. BASERMANN, H.-J. BUNGARTZ, C. CARBOGNO, D. ERNST,

H. FEHSKE, Y. FUTAMURA, M. GALGON, G. HAGER, S. HUBER, T. HUCKLE,
A. IpA, A. IMAKURA, M. KawAl, S. KOCHER, M. KREUTZER, P. Kus,
B. LANG, H. LEDERER, V. MANIN, A. MAREK, K. NAKAJIMA, .. NEMEC,
K. REUTER, M. RipPL, M. ROHRIG-ZOLLNER, T. SAKURAI, M. SCHEF-
FLER, C. SCHEURER, F. SHAHZAD, D. SIMOES BRAMBILA, J. THIES, AND
G. WELLEIN, Benefits from using mixed precision computations in the ELPA-
AEO and ESSEX-II eigensolver projects, Japan Journal of Industrial and
Applied Mathematics, 36 (2019), pp. 699-717

where the implementation of mixed—precision in the latter publication has been
provided by co-author Martin Galgon. These topics have also been previously
presented:

e S. HUBER, M. GALGON, AND B. LANG, Mixed precision in a large iterative
parallel eigensolver framework: BEAST, International Workshop on Eigen-
value Problems: Algorithms; Software and Applications, in Petascale Com-
puting, Mar. 2018

, Recent developments and results for the BEAST eigensolver, in R-CCS
Cafe, RIKEN, Kobe, Japan, Oct. 2018

Foreword

, Using mixed precision in iterative eigensolvers, in GAMM Annual Meet-
ing, Munich, Germany, Mar. 2018

Portions of the material and discussion shown in Chapter 4 has been presented:

e S. HUBER AND B. LANG, Optimizing rational filters for the scalable solution
of large eigenproblems, in 2021 STAM Conference on Computational Science
and Engineering, Mar. 2021

Chapter 5 is based in part on results and discussion shown in

e S. HUBER, Y. FUTAMURA, M. GALGON, A. IMAKURA, B. LANG, AND
T. SAKURAI, Flexible subspace iteration with moments for an effective con-
tour integration-based eigensolver, Submitted to Numerical Linear Algebra
with Applications, (2020)

e C. L. ArarprAT, A. ALVERMANN, A. BASERMANN, H. FEHSKE, Y. FU-
TAMURA, M. GALGON, G. HAGER, S. HUBER, A. IMAKURA, M. KAWATI,
M. KREUTZER, B. LANG, K. NAKAJIMA, M. ROHRIG-ZOLLNER, T. SAKU-
RAI, F. SHAHZAD, J. THIES, AND G. WELLEIN, ESSEX: Equipping Sparse
Solvers For Fxascale, in Software for Exascale Computing - SPPEXA 2016-
2019, H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel,
eds., vol. 136, Springer International Publishing, Cham, 2020, pp. 143-187

Again, significant portions of the implementation required for the timing results
shown were performed by co-author Martin Galgon. Results have also been pre-
sented:

e S. HUBER, Y. FUTAMURA, M. GALGON, B. LANG, AND T. SAKURAI, Re-
ducing linear system size with moment based methods in the BEAST frame-
work, in 31st Advanced Supercomputing Environment (ASE) Seminar, Uni-
versity of Tokyo, Sept. 2017

, Using the Moment to Reduce Linear System Size, in 18th STAM Con-
ference on Parallel Processing for Scientific Computing, Tokyo, Japan, Mar.
2018

e — Contour Integration and Moments for the Solution of Large Figenprob-
lems, in 2019 SIAM Conference on Computational Science and Engineering,
Spokane, USA, Feb. 24

VI

CONTENTS

Acknowledgments |
Abstract i
Foreword \)
Contents VI
Motivation and outline X1
1. Introduction 1
1.1. Fundamentals from numerical linear algebra 1
1.1.1. Hermitian and Hermitian positive definite matrices 1

1.1.2. Orthogonality and B-orthogonality 1

1.1.3. Sparse matrices 2

1.1.4. Projection 2

1.1.5. Matrix decomposition 2

VII

CONTENTS

1.2. FEigenvalues and eigenvectors
1.2.1. Hermitian eigenproblems
1.2.2. Interior eigenproblem

1.2.3. Spectral projection

1.3. Building blocks for iterative eigensolvers

1.3.1. Power method
1.3.2. Krylov subspace methods

1.3.3. Basic subspace iteration

1.3.4. Rayleigh-Ritz

2. Subspace filtration methods

2.1. Subspace filtration
2.1.1. Partial spectral projector
2.2. Rational filters
2.2.1. Contour integration
2.2.2. Numerical integration.
2.2.3. Composite midpoint rule
2.2.4. Gauss-Legendre quadrature . . .
2.2.5. Mapping to a complex contour . .
2.3. Moments and rational filters
2.4. Rational filter-based eigensolvers
2.4.1. RFEs with moments
2.4.2. Convergence of an RFE
2.5. History of the RFE
2.6. Polynomial filters
2.6.1. Chebyshev polynomials
2.7. Additional algorithmic considerations . .
2.8. Solving linear systems of equations . . .

2.8.1. Direct solvers

VIII

SRS B e RS RS, SRS s S G S JU

o

CONTENTS

2.8.2. ITterative solvers L. 30

2.9. Orthogonalization 31
2.10. A software framework for iterative subspace filtration 33
2.10.1. Main algorithmic choices 33
2.10.2. Parallelism o 35
2.10.3. Precision 35
2.10.4. Linear solvers 35
2.11.Conclusiono 36
. Mixed precision 37
3.1. Imtroduction 37
3.2. Background 37
3.3. Varying precision within a projected subspace iteration 38
3.3.1. Algorithmic components 39
3.3.2. Methodology 39
3.3.3. Numerical experiments 40

3.4. Precision changes over subspace iterations 41
3.4.1. Numerical experiments 43

3.5. Conclusions 45
. Optimizing rational filters a7
4.1. Introduction A7
4.2. Convergenceof an RFE 0. 48
4.2.1. Numerical example - subspace size and convergence 49

4.3. Other rational filters 0L 50
4.3.1. Zolotarev 50
4.3.2. SliSeand WiSe 52
4.3.3. Least-squares filters 53
4.3.4. Pole placement and iterative solvers 54

IX

CONTENTS

4.4. Tterative solver convergence o6
4.5. Kaczmarz sweeps and CG acceleration o7
4.5.1. Kaczmarz sweeps o7
4.5.2. CGMN 58
4.5.3. Parallelization and block multicoloring 58
4.5.4. Implementation of CGMN 59

4.6. Predicting cost L 60
4.6.1. Analyzing the behaviour of CGMN 60
4.6.2. Condition number relationship 62
4.6.3. Analyzing the behaviour of GMRES 65
4.6.4. Predicting RFE iterations 67
4.6.5. Choosing weights L. 69

4.7. Optimization 70
4.7.1. Cost function L 70
4.7.2. Visualization of cost function 71
4.7.3. Optimization scheme L. 73

4.8. Numerical Results o 75
4.8.1. Numerical results for CGMN 75
4.8.2. Numerical results for GMRES 84
4.8.3. Comparing to other optimized filters 88

4.9. Conclusions 90
5. RFEs with multiple moments 93
5.1. Algorithmic overview 94
5.1.1. Extraction of eigenvalues and eigenvectors 94
5.1.2. Subspace iteration L. 95
5.1.3. Subspacesize 99
5.1.4. Multiple moments 99
5.1.5. Numerical experiments 101

CONTENTS

5.1.6.

5.2. Extension of the BEAST framework

5.2.1.
0.2.2.
5.2.3.

5.3. Considerations for larger problems

5.3.1.
5.3.2.
5.3.3.
5.3.4.

5.4. Choosing the quadrature degree

5.4.1.
5.4.2.

5.5. Conclusion

Eigenvalue counting

Definition of cost metrics
Quadraturerule L.

Numerical experiments

Rank and orthogonalization
Solution of linear systems

Numerical experiments

Parallelism and quadrature nodes

Predicting degree for a single iteration

Numerical experiments

Conclusions and outlook

A. Summary of test problems

List of Figures

List of Tables

List of Notations

Bibliography

129

131

133

136

139

141

XI

MOTIVATION AND OUTLINE

This thesis considers strategies for the efficient, accurate and robust solution of
large, sparse Hermitian interior eigenvalue problems. Traditionally, interior eigen-
value problems, which involve finding all eigenvalues and associated eigenvectors
for a given interval, have been considered particularly challenging in comparison
with problems involving finding the largest or even smallest eigenvalues and eigen-
vectors. Projected subspace methods, and in particular, contour integration-based
methods, such as FEAST and Sakurai-Sugiura methods (SSM) have been estab-
lished over the past two decades as some of the most promising strategies for the
scalable solution of these problems.

Efficient strategies for computation are important as these methods are applied in
more and more areas of scientific computation. For example, quantum mechanical
calculations for materials science and chemistry are a major area of application.
A significant portion of core hours worldwide are used to model materials at the
atomic level, and the solution of interior eigenproblems is often the most significant
bottleneck in these calculations. Improving these methods could save significant
computational resources, and enable the computational modelling of larger, more
realistic physical systems.

Furthermore, as the computational resources at hand expand, we require methods
that are well equipped to utilize them. Methods that are suitable for division into
smaller independent sub-problems are of particular interest, as these can be solved
in parallel across a computational platform. We will discuss in this thesis how these
methods are inherently parallelizable. The main objective in this work is then to
show how the efficiency of these methods may be improved while maintaining or
improving accuracy, robustness, and scalability.

We refer to efficiency as the relative cost of solution for an eigenproblem, which
is commonly measured in terms of absolute time, computational resources used,
energy usage, or a combination of these. Accuracy is defined in terms of the achiev-
able or achieved residual error of a method for a given problem. Higher accuracy

XIII

Motivation and outline

is typically associated with a greater cost, particularly for the iterative methods
considered in this thesis. We are also concerned with how resilient a method is to
error or failure to solve the problem; this is the robustness of the method. And
finally, the scalability of a method describes the degree to which it can be broken
into small sub-problems that may be solved simultaneously. Improved scalability is
associated with being able to solve problems in a time proportionate to the amount
of computational resources available. These aspects of a numerical method con-
trol its applicability in high performance computing environments. They are the
qualitative or quantitative metrics that we use to evaluate the various algorithmic
possibilities explored in this thesis.

We begin in Chapter 1 by outlining basic definitions and ideas for the problems and
methods that we consider. This includes the general introduction of several fun-
damental iterative eigensolvers that form a basis for projected or filtered subspace
schemes.

We continue the introduction in Chapter 2, where we define subspace filtering as a
form of spectral projection. We focus on filters based on rational functions, which
can also be extended to project subspaces with multiple moments. This type of
filter is inherent to FEAST and SSM, the foundational algorithms of this thesis.
In fact, the original conception of these algorithms focused on the derivation of a
rational filter as an approximation of a contour integral, and they were commonly
labelled as contour integration-based eigensolvers. Further work has shown that
they may be used with general rational filters. We define a rational filter-based
eigensolver as a subtype of projected subspace methods, extensible to subspace
iteration. In this chapter, we also discuss the computational attributes required
and some algorithmic considerations for the efficient implementation of a projected
subspace method, and then outline the software framework, BEAST, that will be
used to implement and evaluate the algorithmic ideas under consideration.

In Chapter 3, we consider how we may save computational effort by reducing the
precision used for early subspace iterations, without affecting the overall achievable
residual accuracy. This chapter includes experiments and discussion shown in part
in [31], where we see that a single step of a subspace iteration computed in a lower
precision will generally cause stagnation of the entire method. However, as we have
originally shown in [8], convergence up to a certain residual threshold is typically
not slowed down by reduced precision for the entire algorithm.

Chapter 4 focuses on improving the applicability of rational filtering schemes for
increasing problem size via the interplay between these schemes and iterative linear
solvers. The construction of the projected subspace with a rational filter requires
the solution of shifted linear systems of equations. As the problems under consid-
eration grow in size, iterative linear solvers become necessary to solve these linear
systems in an efficient manner. However, the conditioning of these problems is

XIV

controlled by the properties of the rational filter as well as the original (unshifted)
linear system. We consider whether we can predict the number of iterations re-
quired for an iterative linear solver, and use this prediction to create a rational
filter that reduces the overall iterative linear solver cost. We show that for the
sample problems considered, this may be more efficient and scalable than standard
choices of rational filter. This thesis is the first publication of this work.

We consider the flexible use of moments in rational filter-based methods in Chapter
5, bridging the original FEAST and SSM algorithms and reducing the cost of the
solution of linear systems. As we have originally discussed in [46], moments can be
effectively used to reduce the number of right hand sides needed in the solution of
linear systems over all subspace iterations. However, adaptivity in the number of
moments used may be helpful in improving the robustness of these methods and
preventing stagnation. We outline the flexible strategy used, and extend on [46]
by discussing several algorithmic considerations in greater detail. We also discuss
the scalability of these schemes, as we have also shown in [4]. Furthermore, we
consider the choice of quadrature degree with respect to the linear system solution
cost over a rational filter-based eigensolver. The thesis concludes with an outlook
for future work.

XV

CHAPTER 1

INTRODUCTION

1.1. Fundamentals from numerical linear algebra

We assume the reader is familiar with the basics of numerical linear algebra, includ-
ing vectors and matrices, and common operations, such as norms and products. We
furthermore assume knowledge of fundamental concepts of numerical and compu-
tational mathematics, such as error (e.g., discretization, machine) and convergence.
We proceed with a few basic definitions essential to the thesis. These can also be
found in any basic numerical methods textbook, e.g., [93].

1.1.1. Hermitian and Hermitian positive definite matrices

A Hermitian matrix A € C*"*" has entries that satisfy a; ; = @;;. In the real case,
this is clearly equivalent to a symmetric matrix. A Hermitian matrix is by definition
square. A positive definite matrix satisfies 27 Az > 0 for all vectors z # 0.

1.1.2. Orthogonality and B-orthogonality

We define two vectors x and y as orthogonal if 2y = 0. If these vectors are also of
unit length (||-|| = 1), they are additionally orthonormal. This definition may be
extended to matrices or block vectors, X € C™*", which are defined as orthogonal
if X’s columns w; for i = 1,...,n are orthonormal, satisfying z5z; = §; ;.

1. Introduction

We may also define vectors x and y as B-orthonormal when they have unit length
with respect to B and ! By = 0. A matrix X is B-orthogonal if the columns are
B-orthonormal, that is, X BX = I for I the appropriately sized identity matrix.

1.1.3. Sparse matrices

The methods considered in this thesis are designed for sparse matrices, for which
most elements of the matrix are zero. This means that matrix operations and
storage are significantly cheaper (ideally growing linearly with matrix size) than
for dense matrices, which have mostly or all non-zero elements. In many cases,
especially for iterative methods, which generate successive approximate solutions
to a matrix problem, a method may be much cheaper to apply to a sparse than
a dense matrix. This implies that with the same computational power, we can
consider much larger sparse problems than dense ones.

1.1.4. Projection

A projector is a matrix P € C™" satistfying PPx = Px for all x € C". The
following properties are also true for general matrices, but are introduced here as
they reveal the desired action of a projector. The projected vector y = Px can be
written as a linear combination of the columns in P. For a projector P with columns
pi,i=1,...,n,and x € C", Px =3 ", x;p;. An alternative definition is that the
projected vector lies in the space spanned by the columns of P, span{pi,...,pn}-
Clearly, a set of vectors or matrix can also be projected. The vectors generated by
the product of this projection then lie in the space spanned by the columns of P.

1.1.5. Matrix decomposition

When considering eigenvalues and eigenvectors, as we will do next, it is important
to be able to decompose a matrix A € C™*™. This can be considered as writing A
as a product of other matrices, typically in some convenient form. Before turning
to eigendecompositions, we define the more general singular value decomposition
of a matrix. This is a decomposition satisfying

A=UxVH, (1.1)

where U € C™*™ and V € C™*" are unitary matrices, and ¥ is a C™*" matrix
with non-negative entries o; > 0 only along the main diagonal.

1.2. Eigenvalues and eigenvectors

1.2. Eigenvalues and eigenvectors

If we consider a matriz pair (A, B), that is, two square matrices, A, B € C"*",
we can define the eigenvectors as the vectors for which multiplication with A is
equivalent to multiplication with B and some constant A € C, an eigenvalue. The
generalized eigenvalue problem, or eigenproblem, is then finding xz, A that satisfy

Az = \Bx. (1.2)

This definition, and equivalent definitions in the remainder of this chapter, also
apply to standard eigenvalue problems, where B = I, and multiplication of an
eigenvector x with A is equivalent to multiplication with a scalar eigenvalue A

Az = M. (1.3)

A pair z, A satisfying (1.2) or (1.3) may be called an eigenpair of the generalized or
standard eigenproblem respectively. If a matrix pair is diagonalizable, it is possible
to find a set of linearly independent vectors X € C™*™ such that

A=BXAX™! (1.4)

where A € C"" is a diagonal matrix containing the eigenvalues); along its di-
agonal, and the i"* column of X contains the i (normalized) eigenvector. This
may be referred to as the eigendecomposition of a matrix. Equivalently, if B is
invertible,

X 'BTAX = A. (1.5)

Invertibility of B further implies that the generalized eigenvalue problem reduces
to a standard eigenvalue problem, satisfying

B'A=XAX"! (1.6)

We define an eigenspace as a space spanned by a set of eigenvectors, span{z; |1 =
1,...,n}. The spectrum is the set of eigenvalues {\; |7 =1,...,n} = diag(A). For
the sake of simplicity in definitions and notation, we assume that all eigenvalues and
eigenvectors are simple; that is, each eigenvalue corresponds to a single eigenvector
and vice-versa. However, the theory typically generalizes to problems beyond this
case.

1. Introduction

1.2.1. Hermitian eigenproblems

If A € C"" is a Hermitian matrix and B € C™*" is Hermitian positive definite
(HPD), then the eigenproblem may be called Hermitian, and the matrix pair (A, B)
a definite pair. If this is the case then the problem is diagonalizable and several
convenient properties follow. Firstly, all eigenvalues are real. We can define the
largest and smallest eigenvalues in the spectrum as Apna.c and Ay, respectively.
Next, the eigenvectors X are B-orthogonal, and thus X' = X B. As the inverse
must satisfy X !X = XX ! = I, X¥BX = XX"B. Our eigendecomposition
may also be written as

=1

where z;' = ¥ B. Since B is Hermitian positive definite, it is also invertible. We
assume that the eigenproblem is Hermitian in the remainder of this thesis.

1.2.2. Interior eigenproblem

The fundamental problem considered in this thesis is that of finding all eigenvalues
A in a given interval I, = [A, X} with corresponding eigenvectors x, of a given
definite pair, (A, B). In this scenario, as stated above, we know that there exists
an eigendecomposition with real eigenvalues and B-orthogonal eigenvectors of the
form A = BXAX~!. Thus, the fundamental problem is

Az = \Bx

Aely =[N\ (18)

We will define the block vector X, with columns made up of the eigenvectors
x; such that the corresponding eigenvalue is A\; € I,. The space spanned by the
columns of X7 can be defined as

Xr, = span{z; | \; € I\ }. (1.9)

This space, as well as the entire eigenspace, is an invariant subspace under B~ A.
This means that the space does not change through multiplication with this matrix,
as B_IA(X]A) - XIA'

The type of eigenvalue problem under consideration changes the selection of meth-
ods that are available. We consider problems where the direct solution of the entire
eigenvalue problem, that is, simply finding all eigenvalues and eigenvectors, is not

1.3. Building blocks for iterative eigensolvers

feasible or efficient. We also assume that the interval of interest is not always lo-
cated at an edge of the spectrum (though this is one use case.) Depending on the
size of the problem under consideration and the computational resources at hand,
one possibility to refine the problem is to subdivide I, and solve each eigenprob-
lem separately. This problem, including the subsequent difficulty of ensuring the
B-orthogonality of eigenvectors across different sub-problems, is considered in [30].

1.2.3. Spectral projection

Let us assume that a block vector X is B-orthogonal and the columns of X are
the eigenvectors (or a selection thereof) of (A, B). We assume that D € R™*" is
a diagonal matrix with entries of either 1 or 0, and thus that D? = D. Then,
XDX!" B is a projector. This follows as

(XDX"B)(XDX"DB) =
XD*XHpB =
XDXHB.

Thus our matrix satisfies the definition of a projector, and will project into the
eigenspace spanned by the columns of X.

1.3. Building blocks for iterative eigensolvers

Most methods for obtaining the eigenvalues and eigenvectors of a matrix, or a ma-
trix pair, can be categorized as “direct,” obtaining a complete eigendecomposition
of a matrix, often via decomposition, or “iterative,” obtaining successively improv-
ing approximations of one, some, or all eigenvalues and eigenvectors via an iterative
scheme, and often relying on the projection of a vector or set of vectors. We will
consider eigensolvers of the second type in this thesis, beginning by briefly intro-
ducing several methods with foundational ideas and strategies. We will consider
only standard eigenvalue problems for the moment.

1.3.1. Power method

The most fundamental iterative method for eigenvalues problems is the power
method. A description and proof of convergence can be found in [82]. We out-
line the method in Algorithm 1. Here, the repeated multiplication of a vector v

1. Introduction

with a matrix A generates a sequence where A’v will approach a scalar multiple of
x1, the eigenvector corresponding with the largest eigenvalue of A, assuming that
the associated eigenvalue \; satisfies A\; > 0.

Algorithm 1: Power method
Choose a starting vector vy
while not converged do

V; = A’Uj_l
Y
Ui = Tyl
J=7+1
end

The idea of successive applications of a set of vectors, in this case, the matrix A
itself, causing iterations to approach a desired eigenspace is an essential concept. A
related idea is to consider the entire subspace spanned by iterations of A7v, which
collectively form a Krylov subspace.

1.3.2. Krylov subspace methods

The j* Krylov subspace built from a matrix A and vector v has the form

K;(A,v) = span {U, Av, A%, .. .Aj’lv}) (1.10)

Krylov subspaces are a fundamental building block of iterative methods in general;
they are defined and discussed in more detail in most standard texts on numerical
methods, for example [82]. In this context we could consider the power method
as providing only the final vector in K;(A4,v), A7~'v. Krylov subspace methods,
in contrast, gather an approximate solution based on the subspace spanned by all
vectors. Thus they may be more powerful than a scheme considering just the final
vector, but the additional costs of storage and orthogonalization are also significant.

The most fundamental Krylov subspace method is the Arnoldi method, as described
in [82], which is an orthogonal projection method onto K;(A,v).

The method begins with a single Arnoldi vector, and in each iteration, another
direction is added to the basis. In j* iteration, the algorithm will:

e Extend the Krylov subspace by one direction (multiply previous Arnoldi vec-
tor v; by A).

e Orthonormalize the resulting vector against all other Arnoldi vectors v;, i =
1,...7.

1.3. Building blocks for iterative eigensolvers

e End if the new vector is completely linearly dependant on existing Arnoldi
vectors (no new directions possible for Krylov subspace).

After j iterations, the resulting vectors form an orthonormal basis of K;(A,v).
From this basis, the j largest eigenvalues and eigenvectors of A may be extracted.
Alternative strategies are possible to obtain, e.g., the smallest 7 eigenvalues.

1.3.3. Basic subspace iteration

Subspace iteration, like the Arnoldi method, also constructs a subspace with j
vectors as an approximate basis for the largest j eigenvectors. However, it is in
principle more related to the power method in that it saves only the j** application
of A to a block of vectors Y. A simple subspace iteration, as introduced in [82] and
outlined in Algorithm 2, computes, for a standard eigenvalue problem, a subspace
corresponding to the j eigenvectors with largest eigenvalues.

Algorithm 2: Subspace iteration
Choose a starting block of j vectors Y
while not converged do

Compute U = AY

Orthogonalize U

Set Y =U
end

As in the power method, the repeated application of A causes the vectors in U to
approach the largest eigenvector. Together with the subsequent reorthogonalization
(via, e.g., a QR factorization) the vectors will approach a basis for the j eigenvectors
associated with the j largest eigenvalues. A proof of this is given in [82].

1.3.4. Rayleigh—Ritz

Algorithm 3: Rayleigh-Ritz

Input : A, B € C"*", U approximate basis for Xj,
Output: Approximate eigenvectors X I

Compute Rayleigh quotients Ay = UT AU, By = UYBU
Solve reduced eigenproblem for (W, A) AgW = ByWA
Compute full sized approximate eigenvectors X n, =U0W

The discussion in this section so far has focused on obtaining an approximate
subspace for the desired eigenvectors. Another important consideration is how we

1. Introduction

may extract the eigenpairs from that subspace. A standard combination with a
subspace iteration-type scheme is a Rayleigh—Ritz procedure, which, as described
in [82], may be used to extract the approximate eigenpairs. The algorithm, as
shown in Algorithm 3, computes the Ritz pairs \;, Z;,1 = 1,...,n, as approximate
eigenpairs of (A, B). These are shown in the algorithm in block form, as A and
X 1,- Asdescribed in [65], this approximate solution is generated by an approximate
similarity transformation of (A, B) into the subspace spanned by the vectors of U.

This is also the standard method we will use for extracting eigenpairs in the re-
mainder of this thesis. If U contains not just an approximate basis for X7, but other
directions that are not related to eigenvectors of (A, B), these Ritz pairs will also
be computed. We refer to these as spurious eigenpairs; they are easy to distinguish
from the desired eigenpairs when convergence of these eigenpairs has proceeded
towards a smaller residual threshold. Further discussion on spurious eigenpairs in
the context of subspace iteration methods can be found in [30].

CHAPTER 2

SUBSPACE FILTRATION METHODS

2.1. Subspace filtration

A filter works like a sieve, and subspace iteration like shaking the sieve to separate
wanted eigenvector directions from unwanted. We want to know how to make a
good sieve that will get rid of the “dirt” quickly while not letting any “gold” fall
through the cracks. The general strategies considered in this thesis for solving
(1.8) involve constructing an approximate basis for the desired eigenvectors, that
is, those with eigenvalues in I,. Once this basis has been constructed, we can
subsequently use a suitable method to extract the approximate eigenvalues and
eigenvectors. Iterations of “filtering” a set of vectors for directions corresponding
to those of the desired eigenvectors may be used, as well as combined, in order to
construct this approximate basis. The idea of an approximate spectral projector
is inherently related to subspace filtration, as directions are “projected towards” or
“filtered” for the desired directions in A7, .

2.1.1. Partial spectral projector

We begin by considering our ideal spectral projector in 1D, h,

1 f I
hz) =4 T ED (2.1)
0 for z ¢ I,

2. Subspace filtration methods

0.8

T
1

0.6 -]

0.2+]

A A
Figure 2.1.: Visualization of (2.1).

which corresponds to the window function, as shown in Figure 2.1.
We can define a corresponding matrix function, h(B~1A). Given the eigende-

composition of B~'A, we require our filter to satisfy h(B71A) = h(XAX™!) =
Xh(A)X~!. With the above definition of h(z),

= Xh(A) X,
i=1
= X, X!
where again, X, is a block vector containing the exact eigenvectors with eigenval-

ues in I,. Equivalently, given the B-orthogonality of the eigenvectors, h(B~!1A) =
X, X{!B. This is a spectral projector into Xj, .

As we cannot obtain this exact filter without prior knowledge of the eigendecom-

position, we may also consider what happens if we have a function B(BflA) such
that, in 1D,

10

2.2. Rational filters

~ {1foer]A (2.2)

h(z) ~
0 for z ¢ I,.

If fL(BflA) = XFfVL(A)Xfl, this matrix will be an approximate spectral projector
into X7,. This may be applied to a set of my vectors Y € C"*™V to approximately
project them into X7,. Here we define

U=h(B'A)Y

where the projected vectors, U € C"*™V act as an approximate basis for A7, .

We may add a filtering scheme to subspace iteration in order to accelerate the pro-
cess (as discussed in [82]) or to search for eigenpairs with eigenvalues inside a given
interval, instead of just the largest. Subspace filtering techniques may be discussed
synonymously with projection or acceleration schemes, as the filter usually relies
on projection into the desired eigenspace, and accelerates the iteration. The filter
used, iz, controls the quality of the resulting approximate eigenspace, and is the
focus of much of the research for subspace iterative methods.

Algorithm 4: Filtered subspace iteration

Choose a starting block of my vectors Y

while not converged do
Compute U = h(B~'A)Y
Compute Rayleigh quotients Ay = U? AU, By = UYBU
Solve reduced eigenproblem for (W, A) AgW = ByWA
Compute approximate eigenvectors X = UW

Set Y =X
end

We observe that methods of this type allow us to reduce a large, sparse partial
eigenproblem to a dense problem proportional to the desired slice of the spectrum.
We next consider some common techniques for obtaining filtering functions of type
h. As in general with an interpolation problem, rational or polynomial approxima-
tion functions may allow us to obtain a good approximation of h.

2.2. Rational filters

The main filtering method we will consider in this thesis is those arising from
rational functions, which we define as a function of degree ¢ that can be written as

11

2. Subspace filtration methods

10° |
102 |

10+ |

106

108 L

A A

Figure 2.2.: Visualization of absolute value of rational filter (2.3), Gauss—Legendre
filter with ¢ = 16.

f(x)

r(z) =—=

g(z)

where f(z) and g(z) are relatively prime monic polynomials with maximum degree
q. We will consider functions of the form

r(z) = Z (2.3)

2 — X
i=1 7"

where z; and w;, the poles and weights, are chosen such that r(x) approximates
the window function (2.1). Typically z; and w; are chosen as complex values,
even though the eigenvalues we seek are real. This is in part because of the way
rational filters have traditionally been defined as arising from contour integrals,
as we will discuss below, but also because the distance between a pole z; and
the closest eigenvalue in the spectrum is significant in determining the cost of the
method, as we will discuss in Chapter 4. Note that it is possible to have a repeated
pole with power greater than one, but this case will not be considered here; some
consideration is given in [97]. The corresponding matrix function is defined as

12

2.2. Rational filters

q
r(B'A) =) wi(ul — B7'A)™!
=1

q
=> wi(zI - B'A)'B7'B,

i=1

giving us the traditional final matrix form of

r(B™'A) = iwi(ziB —A)'B. (2.4)

i=1

Indeed, when we consider the filter applied to the eigendecomposition of (A, B),

q
r(BA) =) wi(zml — XAX)™

i=1

Thus, r(B~'A) is an approximate spectral projector into X;,. When it is applied
to a set of vectors Y, the numerical problem becomes the solution of a sequence of
linear system of equations with multiple right hand sides

r(B'A)Y = Eq:wi(ziB — A)'BY. (2.5)

=1

We note that if A, B and Y are real, and if the weights w; and poles z; satisfy
Wi = Wiyq/2, % = Zitq/2, ¢ = 1,...,q/2 (that is, the poles are symmetrically placed
above and below the real axis), we only need to solve half the linear systems. This
occurs, as pointed out in [77], because w;(z; B — A) ' BY = w;(2;B — A)~!BY, and
thus

13

2. Subspace filtration methods

q
r(B'A)Y =) wi(xB — A)"'BY

=1
q/2 q

= wi(zB—A)'BY + Y wi(zB—A)'BY
i=1 i=q/2+1
q/2

= wi(zB—A)'BY +&;(5B - A)"'BY
=1
q/2

= wi(zB— A)"'BY +wi(%B - A)'BY
=1
q/2

= 2Re(wi(%B — A)"'BY).

i=1

2.2.1. Contour integration

An alternative approach, also resulting in a rational filter, comes from the perspec-
tive of contour integration. The following analysis is based on [65] and [2].

We restate the Cauchy integral formula, as defined in [2|, which says that for " a
continuous, simply closed [2] curve surrounding a simply connected domain Q € C
, an analytic function f(z) and a point x ¢ T',

1 [f(2)dz {0, z ¢ Q (26)

21 Jp z—x f(x), x € Q.

To restate this in simple terms, if a point = lies on the inside of a curve, the integral
formula will return the value of the function of f at that point. Otherwise, since
@ contains no poles inside the area of integration, the resulting integral is 0.

—T

The simplest example of this is if f = 1, returning

c(x)—i/r dz :{o,x¢9 2

C2miJrz—z 1, z €.

If we consider €2 such that R(Q2) = I, as illustrated in Figure 2.3, this equates to
the window function & on I,. In order to include the boundaries A and X in this
representation, we must assume that these lie (infinitesimally) inside I'. We may
also make the simplifying assumption that A and X are not eigenvalues of (A, B).

14

2.2. Rational filters

Figure 2.3.: Visualization of €2, I and [, in complex plane.

We typically consider contours I' such as circles or ellipses; the parametrization
will be discussed later. If we define the corresponding matrix function ¢(B~'A)
and apply it to the matrix pair, we obtain the exact spectral projector into X7, :

o(B1A) = Qim /F (2B — A)"'Bd:

1
(zB BXAXY™'Bdz
27r1
(2 — XAX Y 'B'Bdz
T omi r

27r1/zz— Titi
2%1/2]1 i

= X, X\

Using numerical quadrature, we may approximate (2.7) and obtain a rational filter
of the form (2.3). This is the historical approach to rational filters for interior
eigenvalue problems, with initial considerations by Sakurai and Sugiura in [86] and
Polizzi in [77]. We will consider their approaches and resulting algorithms in more
detail in the remainder of this work.

15

2. Subspace filtration methods

2.2.2. Numerical integration

Numerical integration is used to compute an approximation for a definite integral,
using a sum with the integrand function f(x) evaluated at a sequence of points x;,
1=1,...,q.

b q
[t~y wisw) 28)

We describe two simple numerical integration rules below in preparation for the
discussion in the context of contour integration. Further discussion can be found
in introductory numerical mathematics textbooks, e.g., [20]; introductions with a
perspective on contour-integration for eigenvalue problems are [65] and [30].

The simplest rules for numerical integration are Newton-Coates rules, which build
an approximation for an integral as an average over a series of points. When the
points are equispaced, we obtain a composite quadrature rule. We introduce a
simple rule below. This is followed by a rule based on orthogonal polynomials.

2.2.3. Composite midpoint rule

Let h = %. Then, the composite midpoint rule, for the equispaced points

is the composite form of the open Newton-Cotes formula of degree 1. The estimated
value of the integral over each sub-interval is the average value of of the integrand
at the interval midpoints, multiplied by the length of the sub-interval. This results
in the approximation

/O f)de b (). (2.9)

2.2.4. Gauss-Legendre quadrature

For a quadrature rule of degree ¢, z; is the i* root of the monic Legendre polynomial
of degree ¢, a set of orthogonal polynomials defined by the recursive formula

16

2.2. Rational filters

(n+1)P(x) = (2n+ DzP,(x) — nP,_1(x).

where
Py(z) =1, Pi(x)=uz.

The weights are defined as

and quadrature rule is thus

/0 f)de =S wif () (2.10)

2.2.5. Mapping to a complex contour

The quadrature rules we have seen evaluate integrals over [0, 1], of form

/01 f(z)dx. (2.11)

To use these approximations, we must define a transformation of our original in-
tegral over a contour I' € C to this domain. Integration by substitution gives
us

L T L) (2.12)

2mi Jr 2ri Jy

where we require s to be a function of the form s: R — C, satisfying the parametriza-
tion I' = s(t), t = [0, 1).

Let us assume that I" is a circle in the real /imaginary plane, as shown in Figure
2.4 with center

A4A
=212 (2.13)
2
and radius .
r= % (2.14)

17

2. Subspace filtration methods

Figure 2.4.: Circular contour

Then, the parametrization
s=c+re™ t=10,1) (2.15)
satisfies the condition for substitution. We also require the derivative,

s'(t) = 2mire®™™ ¢t =100,1). (2.16)

Thus,

L s'(t) f(s(t))dt = / re?™ f (¢ + re®™)dt (2.17)

2mi J, 0

This is also possible for other contours I', assuming a parametrization exists. We
also consider elliptical contours. In this case, given an ellipse with height 2a, center
c and width 27, we can consider the parametrization

s(t) = ¢+ rcos (2mt) 4+ aisin (2nt) t=1[0,1). (2.18)

Here we have the derivative

s'(t) = —2mrsin (27t) + 2waicos (27t) t=[0,1). (2.19)

We typically define the ellipse with regards to its eccentricity, which is defined as

a2

2’

18

2.3. Moments and rational filters

Figure 2.5.: Elliptical contour

Other contours, with, e.g., rectangular shapes, are also possible. Here, the possi-
bility of a computational advantage arises as the transformed quadrature points
are equally distanced from the real axis. This is a defining characteristic in the
difficulty of the linear systems, as we will discuss in Chapter 4.

2.3. Moments and rational filters

For a given function f(x), each moment extracts a different, related function or
measurement. For a function f(z), the p* moment is defined as [2P f(z)dz. For
example, moments are commonly defined in statistics with regards to the proba-
bility density function where, in rough terms, the first moment corresponds to the
mean, the second to the variance, and the third to the skewness of the function,
etc. Moments are also seen in physics, where the value of the p/® moment at some
point refers to the integral over space of the distance from that point multiplied
by the density of some physical quality (e.g., mass): [rPp(r)dr. If we consider
moments in the context of our filtering functions, they might be seen as giving us
different approximated “views” of the desired eigenspace Xj,. If some directions of
this space are not well represented in the filter corresponding to one moment, they
might be better represented in another.

Just as shown in the last section, a rational filter can be defined either indepen-
dently as an approximation of the window function on I, given in (2.1), or as a
numerical quadrature rule approximating a contour integral around I. The use of
moments in a projected subspace—based eigensolver has historically been defined in
terms of the latter case. In this thesis, we will only consider multi-moment filters
arising from contour integration rules. We consider, in 1D, the filters with different
values of p satisfying

1 2P

2mi Jpz—x

dz = rP(z) (2.20)

19

2. Subspace filtration methods

where

rP(x) = L (2.21)

As before, the Cauchy integral formula, as defined in (2.6), may be used for this
integral, with f(x) = zP. Thus,

p p I
cp(:c):i./ T ge={TTED (2.22)
2mi Jrz—x 0, x & I,.

In this way, 7P is a function representing an approximation of an alternative version
of the window function (2.1).

When we consider the resulting approximate spectral projector, the key feature we
desire from each of our filters is to preserve or amplify eigendirections with eigenval-
ues inside I, and to reduce directions with eigenvalues outside of I. Theoretically,
the value of the window function inside of I, must simply be non-zero in order to
satisfy this requirement. Furthermore, we do not consider the different moment-
based filters in isolation, but as a whole, projecting a set of vectors according to
each filter, then gathering the entire set of vectors as an approximate basis for A7, .
We begin by considering the application of (2.21) to the matrix pair (A4, B), as

N
r’(B™'A) =Y w;z¥(%B - A)7'B. (2.23)
j=1

As before in (2.4), in what can now be seen was the case of the 0 moment, this filter
will act on a set of random vectors and project them into the desired approximate
eigenspace. Indeed, in [58|, the use of multiple moments was shown to equate
arithmetically to a single filter acting as an approximate projector on a block-
Krylov subspace to create a projected subspace. We highlight key points of this
analysis here, following the logic shown in [58], to guide the reader’s understanding,.

We begin by re-defining 7(z) as the (0" moment) rational function in (4.1). Then,
r(B~1A) is applied to Y to obtain U°

q
U= wi(xB - A)"'BY. (2.24)

=1

20

2.3. Moments and rational filters

If we consider the subspace resulting from the combination of s moments, the full
subspace is constructed as

q q
U= U wz(zB—A)"'BY, ... wz "(zB—-A)'BY|, (225
j=1

j=1
with the vectors corresponding to the p moment defined as

q
U => w2l (%B— A)~'BY. (2.26)

j=1
Thus, the equivalent definition of the full subspace is

U=[U°U',... . U], (2.27)

We can decompose U? into a the sum of the n eigenvectors of (A, B) as

j=1

>y

i H
= A zjr; BY.

1o T Aj

Similarly, for the p"* moment
= w;A?
j=1 =1 "

Finally, we assume that

#0,(p=—1)
sz {: Op—01.. g2 (2.29)

The quadrature rules considered in this thesis (midpoint and Gauss—Legendre)
have positive weights, and are exact for polynomials up to at least degree ¢ — 2.
Furthermore, according to Cauchy’s integral theorem, the integral of 2P over the
closed curve I' is 0, since this function is analytic in this region |2]|. Therefore, this

21

2. Subspace filtration methods

condition should be satisfied for all quadrature rules considered in this chapter.
Then, as shown in [85],

q D q
w; 2 w;
=)k —. 2.
This means that .
U =" Nr(\j)zaf' BY (2.31)
j=1
and thus in block form,
UP = Xr(AM)AP X" BY. (2.32)

If we define the s block-Krylov subspace K, = K,(B7A,Y), where Y is a block
vector, we obtain, via the eigendecomposition of B71A,

K, = [Y,XAX"BY, (XAX"B)*Y,(XAX"B)*"'Y] (2.33)

or equivalently

K, = [Y,XAX"BY, X\’X"BY, XA ' X"BY], (2.34)
then the subspace U can be written as

(Xr(MX"B)K,. (2.35)

Again, Xr(A)X® B is the approximate projector for the rational filter with 0™
moment into X7, Thus, the generated subspace U is equivalent to the result of a
projector, acting on the vectors of an order-s block-Krylov subspace formed with
the matrix pair (A, B) and the block vector Y.

However, the full rank of the block Krylov subspace is not guaranteed, and it is
possible that linear dependence may occur, hampering the effectiveness of these
methods. This may be offset by orthogonalizing U after construction, increas-
ing subspace size, or limiting the number of moments. The effects and potential
countermeasures are discussed further in Chapter 5.

22

2.4. Rational filter-based eigensolvers

2.4. Rational filter-based eigensolvers

We define a rational filter-based eigensolver, or RFE, as a projected subspace
method for solving (1.8) that utilizes a rational filter for approximate projection
into the desired eigenspace. This class of methods has often been summarized with
the label of “contour integral-based eigensolvers,” but we generalize the name here
to include rational filters beyond those deriving explicitly from contour integration.
As above, we consider rational filters r(x) of degree ¢ with shifts, z; and weights
w;, ©=1,...,q, such that for z € R

@)=Y

As we have seen up to this point, a rational filter, and thus an RFE may involve
multiple moments or simply the 0/ moment. The FEAST algorithm, as introduced
by Polizzi 77|, is the fundamental method for the single-moment case. In this
algorithm, a set of my initial vectors Y € C™™V usually chosen randomly, is
projected by the approximate spectral projector based on the rational filtering
scheme 7(B71A). The result of this projection is an approximate basis for the
desired space, gathered into a block vector which we call U. A Rayleigh—Ritz step
is used to extract the eigenvectors and eigenvalues from U. If convergence is not
satisfactory, iterations may continue with the starting vectors of the next iteration
chosen as the approximate eigenvectors of the last iteration.

Algorithm 5: FEAST

Choose a starting block of my vectors Y

while not converged do
Compute U = Y7 w;(z:B — A)"'BY
Compute Rayleigh quotients Ay = UT AU, By = UYBU
Solve reduced eigenproblem for (W, A) AgW = ByWA
Compute approximate eigenvectors X = UW

Set Y =X
end

2.4.1. RFEs with moments

Sakurai-Sugiura methods (SSM) were introduced in [86] as the first rational filter-
ing based eigensolver (though the methods were not introduced as iterative). The
initial conception of the algorithm extracted the eigenpairs via a Hankel matrix
[86]. A later version of the scheme using a Rayleigh-Ritz step for a more accurate

23

2. Subspace filtration methods

extraction of the eigenpairs was given in [87|; this was extended to use a more
stable block Rayleigh-Ritz (SS-RR) procedure in [55]. The possibility of subspace
iteration has also been introduced in [58, 84| and will be discussed further in Chap-
ter 5. We introduce the method in Algorithm 6 with the possibility of multiple
iterations for completeness, but omit the details of how Y is selected for the time
being. We define ®; as (z;B — A)

Algorithm 6: Block SS-RR with subspace iteration

Choose a starting block of = vectors Y’

while not converged do

Compute U = [YF w;®;'BY, ..., Y1 wizl '@ 'BY]
Orthogonalize U

Compute Rayleigh quotients Ay = U AU, By = U BU
Solve reduced eigenproblem for (W, A) AyW = ByWA
Compute approximate eigenvectors X = UW

Set Y for next iteration
end

2.4.2. Convergence of an RFE

In [89], convergence bounds for the FEAST algorithm and all equivalent RFEs
compatible with Algorithm 5 were given. As seen in that work, if we assume the
n eigenvalues of (A, B) are ordered according to r(A;) > r(Ay) > --- > r()\,), and
define P! as the B-orthogonal projector into the space spanned by the vectors of
U in the ¢ iteration of Algorithm 5, we obtain a convergence bound

Am !
WI—PMMBSdﬁffﬂM i=1,2,...,my. (2.36)

We can observe that the convergence of the initial starting vectors towards the
desired eigenvectors is controlled by the value of the rational function at the eigen-
values. The value of (A,) is clearly also important; a larger value of my should
improve overall convergence, though the degree to which this occurs is controlled
by the spectrum, as will be discussed later. Of course, the numerical solution of the
linear systems of equations is an important factor to consider in determining the
overall convergence of the RFE. In [89] it was shown that, beyond a given degree
of accuracy, the error added by a (possibly iterative) inexact solution to the linear
systems of equations should not affect the rate of convergence as a whole. The
degree to which error in the linear systems can affect the solution has been shown
in more detail in [38§].

24

2.5. History of the RFE

2.5. History of the RFE

In 2003, Sakurai and Sugiura released their contour—integral scheme with multiple
moments [86], which involved the construction of a Hankel matrix in order to
extract the approximate eigenpairs. Several updates have followed with a modified
extraction type: Rayleigh-Ritz [87], and block versions of the Rayleigh-Ritz [55],
Arnoldi [57], and Hankel [56] extraction methods for improved stability. These
works also include the generalization to non-Hermitian problems. Furthermore,
Sakurai-Sugiura methods have been extended to nonlinear eigenvalue problems |12,
98]. Beyn methods have also been introduced as a rational scheme with multiple
moments for nonlinear eigenvalue problems [17]; these also have been considered
further [94].

In 2009, Polizzi independently developed the FEAST method [77] for Hermitian
generalized eigenvalue problems, using a contour integration scheme within a pro-
jected subspace iteration method with Rayleigh-Ritz extraction. This scheme has
also been further developed for non-Hermitian [63] and nonlinear [37] problems,
as well as combined with Beyn methods for the solution of nonlinear problems
[19]. Error bounds have been shown [89], including with respect to the accuracy
of solution of the linear systems of equations [38]. The extension from contour—
integral based schemes to more general rational filters has also been considered,
for Zolotarev functions [42], and optimized rational functions [64, 96]. In [97], a
weighted least—squares formula for the weights of a rational function was also pro-
vided. An overview of possible choices of rational functions for an RFE was given
in [30]. This topic will be discussed further in Chapter 4.

2.6. Polynomial filters

A subset of rational filters that do not require the solution of a linear system of
equations is polynomial filters, which can be defined for a generic polynomial of
degree d as

plz) = 3 wir' (2.37)

When applied to a Hermitian nonsingular matrix A = XAX? the subsequent
matrix function is

25

2. Subspace filtration methods

107! L

1072 |

1073

1074 L

A A

Figure 2.6.: Visualization of Chebyshev polynomial filter (2.37) with d = 100.

p(A) = Z wi XAXT)!

=0

When applied to a set of vectors Y, this acts as an approximate spectral projector,

d
U=> wAY (2.38)
j=0

Assuming that p(z) is an approximation for the window function, the resulting
projected vectors satisfy

U~ X, X]'Y (2.39)

26

2.7. Additional algorithmic considerations

We note that the application of the filter for a generalized eigenvalue problem would
require inversion of the matrix B; thus we only consider the standard eigenvalue
problem here. A general overview of polynomial filtering may also be found in [82].

Algorithm 7: Polynomial filter-based subspace iteration
Choose a starting block of my vectors YV
while not converged do
Compute U = Z?:o w; ATY
Compute Rayleigh quotients Ay = UT AU, By = UHU
Solve reduced eigenproblem for (W, A) AyW = ByWA
Compute approximate eigenvectors X = UW

Set Y =X
end

2.6.1. Chebyshev polynomials

Chebyshev polynomials, as defined in, e.g., [95], are a common approximating
polynomial due to their optimal approximation properties in the uniform norm
and their ability to limit oscillatory activity in comparison to other polynomials,
especially at higher degrees. In this thesis, we use Chebyshev polynomials of the
first kind; that is

d
P(z) =Y cTi(x) (2.40)

=0
where T;(x) satisfies T;(cos(f)) = cos(if). The values of ¢; are selected such that
P(z) approximates the window function on [—1, 1]. Further details on calculating

the values of ¢; and T;(x) for this approximation, as well as additional filters to
improve the approximation, are given in [34].

2.7. Additional algorithmic considerations

We have so far discussed how to apply a filtering scheme to a set of vectors to
obtain a basis, U, for the desired eigenspace X7,. We now describe several other
important considerations of a subspace iterative algorithm.

As described in Algorithm 2, at the end of a subspace iteration, we have a set of
approximate eigenvectors and eigenvalues. Unsurprisingly, these eigenpairs may
converge at different rates. To reduce computational expense, eigenpairs that have

27

2. Subspace filtration methods

converged to the desired tolerance may be removed from the starting subspace
vectors for the next iteration; the subspace may shrink accordingly [82]. Tt is
important to continue to orthogonalize the approximate eigenvectors in future it-
erations against these “locked” vectors. This topic is discussed in more detail in

33, 65, 66].

The number of vectors included in U, my, is also important in ensuring conver-
gence. Indeed, as shown in [65, 66|, it is essential that my is greater than m, the
true number of eigenvalues in I. As discussed in [30], if this condition is not met,
it is essentially impossible to find all desired eigenpairs. Given m, an estimate for
m, the standard choice of my = 1.5 x m, the expected number of eigenvalues in
I, has been shown in [32]| and [89] to be an acceptable choice. We will discuss the
choice of subspace size with respect to a multiple-moment RFE in Chapter 5.

Updating the value of m over subspace iterations is important for maintaining
this ratio and determining when all eigenvalues have been found. As discussed
in [32, 65, 89|, the eigenvalues of U BU approach the values of r(\;)? or p(\;)?,
and thus may be used to count the number of eigenvalues in I. These eigenvalues
correspond to the “filtered” value of the corresponding direction, so values closer to 1
are presumably directions that should be kept, and values close to 0 are presumably
spurious. Thus, the number of eigenvalues of U BU with a value greater than 1/4,
or alternatively, singular values with a value greater than 1/2, may be used as an
estimate for m. As discussed in [32, 65|, the rank of U also coincides in exact
arithmetic with m. In [32], the authors show that again, counting the singular
values of U with a value greater than 1/2 is a good metric for counting eigenvalues.

Another important aspect is forming this initial estimate for m. If the eigenvalue
problem is standard, the Kernel Polynomial Method (KPM) may be used to obtain
the approximate density of the spectrum [95]. Strategies for generalized problems
involving polynomial and rational filters have also been explored [27, 72].

2.8. Solving linear systems of equations

The most expensive part of a subspace iterative scheme is the construction of the
subspace basis U; for a rational filter this cost is based in the cost of solving linear
systems of equations of the form

du =y. (2.41)

The matrices in these linear systems are shifted, such that & = A — 2B, as required
to construct U. Again, the value z corresponds to a pole of the rational function.
Note that we consider v and y as belonging to block vectors; depending on the

28

2.8. Solving linear systems of equations

solver in use, the linear systems corresponding to the different pairs of columns can
be solved together or separately. In the context of this thesis, y is replaced by By;
we skip this notation in this section for the sake of simplicity. We note that the
number of columns of each of these blocks is expected to be small relative to the
matrix size.

The choice of linear solver is very important for the overall performance of an
RFE. The field of linear solvers is extremely broad and an area of active research.
Furthermore, performance is typically dependant on the properties of the linear
system under consideration. The shifted linear systems that we consider in this
thesis have in common that they are typically ill-conditioned (due to their shifted
nature) large, and sparse. In some cases we can limit our problem set to enforce
characteristics such as the normality of a matrix or real entries outside of the
diagonal (which itself contains a complex shift). Certain conditions, such as being
banded or based on a grid, or knowing details of the matrix structure can help
in choosing a particular solver or preconditioner. However, depending on such
conditions or knowledge is extremely limiting for the generality of the RFE and so
are avoided in this thesis. We discuss below some basics categories and principles
of linear solvers, as well as some general subtypes, which will arise as we consider
strategies for their efficient use within an RFE.

2.8.1. Direct solvers

Direct solvers for linear systems of equations are typically based on factorization.
The most common is the LU factorization; given the decomposition of a matrix &
into factors ® = LU, with L lower and U upper triangular, the solution of (2.41)
may be given as

u=U"'L"y (2.42)

As L and U are triangular matrices, the solution of these linear systems requires
O(n?) operations. In the general case, such a factorization requires O(n?) opera-
tions and O(n?) storage [93], even if the original matrix is sparse. This cost quickly
becomes prohibitive. Various mitigation schemes are available; depending on the
underlying matrix, reordering, approximation, or a differing factorization may be
appropriate. Some of these strategies are included in the software packages we
discuss in Section 2.10.4, but a general discussion is beyond the scope of this work.

29

2. Subspace filtration methods

2.8.2. lterative solvers

Iterative linear solvers generate approximate solutions such that, after k iterations,
duy ~ y. There is a large variety to the way these approximate solutions may be
generated, including the basic relaxation schemes, Krylov subspace methods and
multigrid methods. Furthermore, the choice of preconditioner, while specific to
the problem under consideration, is often essential to obtaining good performance.
Generally we may hope for solution to a linear system of equations in O(n) op-
erations and storage for a sparse matrix. In practice, iterative methods may only
outperform direct methods for larger matrix sizes. Their convergence may depend
on the conditioning of the problem under consideration, slowing or even diverging
for the ill-conditioned shifted linear systems under consideration. At this point we
will focus on a few basic Krylov subspace methods which will be revisited in the
remainder of this thesis, mainly in Chapter 4.

2.8.2.1. GMRES

The Generalized Minimum Residual Method (GMRES) is a Krylov subspace method;
that is, the provided solution w; satisfying ®u; ~ b in the 4*" iteration lies in
uyg + K;(®,79), where K;(®,rg) is the j¥ Krylov subspace and rq is the initial
residual vector b — ®uy.

This method specifically minimizes the residual norm in the ;™ iteration over all
solution vectors in ug + K;(®,r9). We define the method below in Algorithm 8§,
as given in [39]. We note that this involves the definition of the upper Hessenberg
matrix H; € C/+HJ

-h171 h172 Ce. . hl,j T
h2’1 h272 R R hg’j
=Y (2.43)
0 hjj—1 hy,
L 0 0 hyy1y

As j increases, the cost of a GMRES iteration also increases. As n iterations may
be required (in exact arithmetic), this may become computationally infeasible. The
restarted GMRES method begins building a new Krylov basis every c iterations,
using the solution of the previous iteration as a starting guess for the solution.

30

2.9. Orthogonalization

Algorithm 8: GMRES for the solution of ¢u =y
Compute To =Y — @UQ, hLQ = ||7“0|| 2
7=0
while ||7;|| > tol do
Vjs1 =T/ hjt
j=7+1
r; = (I)Uj
fori=1,...,7do
hi,j = 'UZHT']'
Tj = Tj — hi,jvi
end

i1 = lIrill
if hj—i—l,j = (then
| break
end
y; = argmin, [[H;1;y — [Irofl e[,
uj = ug + Vjy;, where V; = [vq, ..., vj]
end

2.8.2.2. Conjugate Gradients

The conjugate gradient (CG) method is also a Krylov subspace method, suitable
for symmetric positive definite matrices. The resulting approximate solution u
minimizes the energy norm, u®u of the error in the Krylov subspace K;(®,rq)
[81]. The algorithm relies on the iterative search for a solution in “conjugate” (-
orthogonal) directions, and is presented, as in [81], in Algorithm 9. The impressive
convergence rate bound for the CG method, related to the square root of the
condition number of the matrix, is a reason why it is a foundational and leading
method for iterative solvers.

2.9. Orthogonalization

Orthogonalization is an important component of a filtered subspace scheme. We
will now highlight some areas of these schemes where orthogonalization may be
helpful, and explain some basic strategies for orthogonalization. This is a brief
overview; a comprehensive discussion including recommended strategies and usage
for projected subspace methods may be found in [30].

There are two important points where orthogonality is considered in an RFE or
other projected subspace scheme. The first is regarding the vectors of U. These

31

2. Subspace filtration methods

Algorithm 9: CG for the solution of du =y
Compute rg =y — Pug, pg = ro
j=20
while ||®u; — y|| > tol do
H

Tj 'r'j
P ®p;
Ujt1 = Uj + Q;p;
i1 =1 — a;Pp;
5' _ T+l

= L

Q; =

H

Tj T4
Pj+1 = Tj41+ B;p;
J=7+1

end

are expected to form an approximate basis for X7,. However, if the vectors of U
approach linear dependence, the robustness of the method is jeopardized. Thus, an
extra step to ensure stability is to orthogonalize U, and if needed, to remove any
rank-deficient columns. This is shown in Algorithm 10. This topic is also discussed
in more detail in Chapter 5, as RFEs with multiple moments are more sensitive to
rank deficiency, and the orthogonalization of U is required.

Algorithm 10: Filter based subspace iteration with orthogonalization of U
Choose a starting block of my vectors Y

while not converged do

Compute U = h(B~'A)Y

Orthogonalize U

Compute Rayleigh quotients Ay = UT AU, By = UYBU

Solve reduced eigenproblem for (W, A) AyW = ByWA

Compute approximate eigenvectors X = UW

Set Y based on X
end

It is important to ensure the eigenvectors found by the algorithm are orthogonal
to each other. Within a subspace iterative method, the Rayleigh—Ritz algorithm
should return orthogonal eigenvectors; the resulting full-sized vectors should also be
orthogonal. However, if the spectrum is sub-divided into separate eigenproblems,
and these are solved separately, the resulting eigenvectors from different intervals
may not be orthogonal to each other. This problem and strategies for ensuring
orthogonalization are discussed in [30]. Orthogonalization strategies for RFEs with
multiple moments are discussed in Chapter 5.

32

2.10. A software framework for iterative subspace filtration

2.10. A software framework for iterative subspace
filtration

When considering the efficient solution of RFEs and other filtered subspace meth-
ods, it is helpful to define the software framework we are considering. The BEAST
eigensolver is a framework for large, sparse interior eigenvalue problems. It relies
on filtered subspace iterative schemes, as described above. These strategies are
implemented for use in a a high-performance computing environment. We will
give a general overview of the framework here, as it implements many of the ideas
provided and has generated results shown in the remainder of this thesis. Fur-
ther description of the framework is provided in [30], as well as in the context
of the larger ESSEX (Equipping Sparse Solvers for eXascale) [4, 9] and ELPA
(Eigenwert-Loser fiir Petaflop-Anwendungen) [73| projects. The BEAST framework
has provided the solution to a variety of eigenvalue problems, including very large
problems [4, 8, 31, 34, 35, 65].

Support for efficient (sparse) matrix and vector operations is provided by the back-
ground libraries, GHOST [67, 68, 69] and PHIST [90, 91, 92|. Efficient operations,
such as sparse matrix vector products are essential to the overall efficacy of the
framework. We present here the overall framework of BEAST, as relevant to the
remainder of this thesis, as well as highlighting some important computational con-
siderations. An overview is given in Figure 2.7. However, a complete description
of the software and its many options is outside the bounds of this work. Note-
worthy is that a significant advantage to the iterative schemes implemented here
is the ability to adjust parameters over iterations. This can include the choice of
degree for a polynomial or rational filter [33], the precision used [8, 31|, or even the
type of filter under consideration [46]. These topics will be discussed further in the
remainder of this thesis as well.

2.10.1. Main algorithmic choices

Within BEAST, the user may choose which filtering scheme should be used. The
three main choices currently included in the framework are:

2.10.1.1. BEAST-C

BEAST-C is named for the original application of the BEAST framework to filters
arising from contour integration, based off of the FEAST algorithm [77], cf. Algo-
rithm 5. Implementations of filters arising from numerical quadrature using either
a Gauss—Legendre or midpoint quadrature rule are available, as described in [30].
Furthermore, a user defined filter, specifying the poles and weights of a generic

33

2. Subspace filtration methods

s 7 s Y s 7
BEAST-C
Solve Az = BAx for e Parallelized so-
T w
A€ [Av)‘] lution of LS r ~
Input: BEAST-M e Get full-size
. eigenvectors
o Matrices A o Parallelized e Solve reduced
Hermitian, B P> like BEAST-C [”] eigenproblem > e Compute
HPD directly residuals
Orthog. U avleich-Ri
e Approx. #EV o rthoe (Rayleigh-Ritz) e Adjust method
in [\, A] BEAST-P parameters
. J
e Initial random e Parallelized
block vectors over columns
Y of Y
N\ J - J . J

Figure 2.7.: Algorithmic outline of BEAST.

rational filter, may be provided for this method. This option will be further ex-
plored in Chapter 4. This portion of the framework incorporates ideas from a large
body of work beyond the general algorithm described thus far, including the esti-
mation of the number of eigenvalues in the spectrum and choice of subspace size
[30, 32, 65, 66|, as well as the adaptive choice of quadrature degree, [33].

2.10.1.2. BEAST-M

With BEAST-M, the moment based rational filtering scheme described in Algorithm
6 is implemented. As described further in Chapter 5 and [46], the choice of number
of moments is flexible, and may be chosen adaptively to minimize overall cost of
the eigensolver. A number of details regarding the implementation specific to this
scheme, such as orthogonalization and convergence, as well as an adaptive switch
to BEAST-C, are also described in Chapter 5.

2.10.1.3. BEAST-P

BEAST-P implements a polynomial filter, as described in Algorithm 7. As described
above, this is only available for standard eigenvalue problems. Further description
of some features and strategies for optimization of the polynomial are given in
[33, 34].

34

2.10. A software framework for iterative subspace filtration

2.10.2. Parallelism

A driving factor in the compatibility of subspace iteration schemes with large scale
computation is their capacity for parallelism. BEAST is a parallel, distributed mem-
ory library, using an MPI+X paradigm [74], where X is typically Open-MP [75].
Multiple levels of parallelism include:

e Parallelism over sub-intervals of I,. These become independent eigenprob-
lems. Orthogonalization of the solutions over the different intervals may be
required [30].

e Parallelism over quadrature nodes (for rational filters). In the case of rational
filters, the linear systems solved are independent of each other. The solutions
must, however, be gathered centrally after solution.

e Parallelism over columns of Y. In the case of rational filters, the solution of
linear systems over a block of right hand side may be independent, depending
on the linear solver in use. For polynomial filters, matrix multiplication is
independent over the columns of Y.

e Internal parallelism (data distribution, matrix and block vector operations)
provided by background libraries.

The scalability of these algorithms is a prerequisite for increasing problem size,
and at least the first three cases are very parallelizable. Further details on the
implementation of the parallel framework can be found in [30].

2.10.3. Precision

The precision of computations and storage of values within BEAST may be specified
to single (32 bit) or double (64 bit) machine precision. BEAST may begin in single
precision and switch to double precision after a convergence threshold has been
reached. Further details are described in Chapter 3 and [4, 8, 30|

2.10.4. Linear solvers

For BEAST-C and BEAST-M, the choice of linear solver is very relevant to the efficacy
of the algorithm as a whole. As previously mentioned, the cost of solving linear
systems of equations is expected to be the limiting factor of the overall eigensolver
cost. It is very important, therefore, to choose a linear solver that is equipped for
the solution of large, sparse linear systems of equations in a scalable and robust
manner. Furthermore, we desire flexibility in the precision used, as described above.
If an iterative linear solver is being considered, the difficulty of the shifted linear

35

2. Subspace filtration methods

systems of equations becomes relevant. We therefore turn now to the choice of
direct and iterative linear solvers used in the remainder of this thesis. Several
other options are implemented in BEAST, including a direct linear solver for banded
systems, and a callback framework for extension to a user-defined solver package
that also implements the call within BEAST to the external packages discussed here.
Further details on these can be found in [30].

2.10.4.1. Direct solvers

Direct solvers are less sensitive to the shifted and thus ill-conditioned systems of
equations, making them a good choice if the problem under consideration is not too
large. With this solver type, the resulting factorization of (z; B — A) may be stored,
reducing the cost of multiple BEAST iterations, but requiring additional storage
proportional to O(n?). A number of software packages are available for the direct
solution of large, sparse linear systems. BEAST includes the option of calling either
MUMPS [10, 11] or STRUMPACK [80]. Both of these are distributed-memory,
parallel direct solvers for the solution of large linear systems. They allow for the
use of single or double precision arithmetic.

2.10.4.2. Iterative solvers

[terative solvers are typically much better suited to sparse matrices than direct
methods, as they are able to take advantage of the reduced storage and computa-
tional costs associated with sparsity. They are therefore also typically suitable for
much larger problems than a direct method. The BEAST eigensolver allows for a
user defined iterative solver, possibly from another library via the callback scheme
described in [30]. A couple of solvers are included with the framework, including
the CARP-CG [41] implementation provided by PHIST, as described in [36]. More
details on the iterative solvers used this thesis can be found in Chapter 4.

2.11. Conclusion

We have outlined the underlying theory and definition of subspace filtration meth-
ods. We have focused particularly on rational filters and defined an RFE, which
will be a central theme of this thesis. We have also defined computational details
for the implementation of these methods, as required for efficient and scalable com-
putation. Next, we will consider ways to improve the efficiency of these schemes.

36

CHAPTER 3

MIXED PRECISION

3.1. Introduction

In this chapter, we consider the effect of precision on the projected subspace eigen-
solvers implemented in BEAST. The “default” precision in modern computation is
IEEE double precision [54], using a 64 bit representation of each floating point
number. In contrast, single precision uses a 32 bit representation. The use of
other precisions is increasing, but still less common. A change in precision is as-
sociated with a change in cost; with a lower precision, less data must be stored
and computed. Reduced precision could result in reduced overall accuracy levels.
We explore this within the filtered subspace schemes considered, for given steps
within subspace iterations, as we have discussed and shown in part in [31], and
over subspace iterations, as we have originally shown in [8]. Related results have
also been shown in [30], discussed with the implementation of mixed precision in
the BEAST framework.

3.2. Background

The topic of mixed precision within numerical methods has been explored within
a variety of contexts [1], most comprehensively within linear solvers [13, 21, 22,
70]. These works have shown that using a combination of precisions will not,
under certain conditions, affect overall convergence, and may allow for significant
cost reduction of an algorithm. Many software libraries enable computations in

37

3. Mixed precision

either single or double precision, and some allow for extended precisions as well.
The FEAST software package 78|, which implements the FEAST algorithm as
described in Algorithm 5, is among the libraries offering this flexibility.

Explorations in varying precision within a projection based algorithm has mainly
focused on the effect of error within the construction U, the approximate basis
for X7,. In [89] and [38], the authors showed that, beyond a given threshold, the
convergence of the FEAST algorithm is not affected by a change in accuracy in
the solution of linear systems required to construct U, as described in Algorithm
5. Furthermore, the current version of the FEAST software package utilizes an
inverse residual iteration to allow for lower precision solution of linear systems
without affecting overall convergence |[78|.

In [44] and [60], it was shown that with a large enough basis for the subspace X7, ,
that is, enough linearly independent columns in U, the convergence of Sakurai-
Sugiura methods, as described in Algorithm 6, is not affected by a certain amount
of error in the solution of linear systems of equations required to generate U.

Changing the precision of a computation can have dramatic effects on the speed of
computation, as well as the size of storage required. As discussed in [21], switching
from the standard double precision to single may significantly impact the perfor-
mance of sparse matrix computations. Halving the precision halves the storage
requirements, which not only reduces overall memory required, but allows for dou-
ble the values to be stored in the cache, resulting in fewer cache misses. The
reduced size also results in faster memory transfer. A vector unit can typically
perform twice as many operations per clock cycle. Understandably, many libraries
have incorporated support for different precisions.

3.3. Varying precision within a projected subspace
iteration

Does a change in precision in a single part of the algorithm affect convergence as
a whole? Theoretically, the loss of accuracy in single precision could cause it to
slow; an idea we will explore here.

In |21], we see that mixed-precision computation can speed computation while
maintaining overall accuracy levels. In this case, selected steps of various sparse
matrix algorithms (e.g., CG, iterative refinement for direct linear solvers) were per-
formed in single precision, and the remainder in double precision. Significant speed-
ups were achieved while maintaining double precision accuracy. Similar themes
have previously been partially explored for the FEAST eigensolver. Most signifi-
cantly, in [38], it was observed that an inexact linear system solution within the

38

3.3. Varying precision within a projected subspace iteration

quadrature rule of FEAST may not affect the overall rate of convergence, if the
systems are solved to a sufficient residual tolerance. The presentation here builds
on what has previously been presented in [31] by exploring additional algorithmic
steps and results.

3.3.1. Algorithmic components

We refer back to Chapter 2 where the BEAST framework has been introduced.
We can consider the effect of a change in precision on a single component of the
algorithm for each algorithmic type.

Algorithm 11: BEAST framework, with isolated steps considered for single
precision execution numbered and in bold

Choose desired subspace size my (> number of eigenvalues in 7)) and initial
vectors Y’

while not converged do
(1) Construct subspace U < Y with BEAST-* scheme

(2) Orthogonalize U (optional for BEAST-P, -C) and (3) compute
singular values

Resize U according to rank and subspace size estimate

(4) Solve reduced eigenproblem AyW = ByW A, where Ay := U2 AU,
BU = UHBU

Compute full approximate eigenvectors as X := UW

(5) Orthogonalize against converged eigenvectors, lock converged
eigenvectors

Set Y := BX (BEAST-P, -C) or Y := BXR (BEAST-M), where R is a
random matrix

end

3.3.2. Methodology

We consider the effect of single precision upon the different steps of the algorithms
contained within the BEAST framework. The outline in Algorithm 11 shows steps
that may be performed in single precision, while still allowing the method as a
whole to continue in double precision. For these experiments, computations were
performed in MATLAB. BEAST iterations were performed with a selected operation
in single precision. All variables for this step are cast to single precision, using
the MATLAB function single(). After the operation is completed, all modified
variables are cast to double precision (with double()) and the iteration continues
in double precision. A specified number of BEAST iterations are completed in this

39

3. Mixed precision

manner, before remaining iterations continue in double precision. We compare with
tests performed entirely in double precision.

3.3.3. Numerical experiments

We consider finding the solution of (1.3) for a 256 x 256 matrix A, Graph256, as
described in Table A.2. This matrix is derived from graphene modeling [23]. The
algorithm begins with random vectors such that my = 30 (my = 32 for BEAST-M).
BEAST-C and BEAST-M both used an elliptical contour with eccentricity 0.4 with
8 quadrature points on the half contour. BEAST-P ran with polynomial degree
300. BEAST-M used 4 moments for all iterations. In Figures 3.1 through 3.4 we
illustrate some characteristic results of single precision on convergence. In each
case, for the first four iterations, the selected step is performed in single precision.
The resulting convergence behaviour is compared with all steps being performed
in double precision for all iterations.

We observe the effect of constructing U in single precision for BEAST-C in Figure
3.1 (marked as (1) in Algorithm 11.) This involves using single precision to solve
the linear systems and sum the terms of the rational filter. In the first iteration,
the difference in residual values when single or double precision is used for this
operation is not significant; convergence of the minimum residual in the subspace
appears to be &~ 1075 in both cases. In subsequent iterations (2-4), there is an
observable difference in residuals depending on the precision used; at this point,
the single precision computation appears to stagnate at a residual threshold, and
presumably no further convergence can be expected. In iteration 5, all computa-
tions are performed in double precision again. Following the switch, we see that
convergence begins again, with no apparent impact from error in the previous
computations. Similar behaviour was seen for computing (1), (4), including with
other BEAST projection types. This implies that single precision can be used for
at least these operations up to some residual threshold without impacting overall
achievable convergence.

There are also operations for which single precision may have no effect at all on
overall convergence of the algorithm. As discussed in [32, 65, 89], and summarized
in Chapter 2, the singular values computed in (3) may be used to update the value
of my, either by removing rank deficient columns, or by updating the estimate for
the number of eigenvalues in the interval and thus the number of columns needed
in my. This topic will also be covered in more detail for moment-based methods
in Chapter 5. If all columns of U are linearly independent, and the subspace is not
undersized, which causes stagnation of convergence [32, 65|, this value is unlikely
to be sensitive to the extra error induced by single over double precision. This
is seen in Figure 3.2, where single vs. double calculation of (3) does not appear
to significantly affect convergence. On the other hand, if the linear independence

40

3.4. Precision changes over subspace iterations

of the vectors is not assured, as is more likely to occur for BEAST-M, the overall
convergence may indeed be damaged when the orthogonalization and computation
of the singular values are computed in single precision (2-3).

We also explore the interplay of varying precision with locking vectors over it-
erations, which requires orthogonalization against the locked vectors. Here, the
orthogonalization ((5) in Algorithm 11) takes place in single precision for the first
four iterations. As we see in Figure 3.4, any vectors “locked” after this operation
in reduced precision may be less accurate. Even when all computations proceed
in single precision in iteration 5, the final vectors must be orthogonalized against
those locked at reduced precision, reducing the accuracy achievable for the algo-
rithm as a whole. However, these results are easily avoidable if locking does not
take place in single precision iterations.

All double Single (1)
— 100 1 — 10° 1
S 5 P
S s | i | 8 a5 I \
~< 10 ~< 10 o o o
| |
g 10—10_ ' g 10—10_ .
J— _ ' p— _
10~ = I I I o e e
1 2 3 1 2 3 4 5
iteration 1teration

Figure 3.1.: Double precision in all iterations (left) vs single precision (right) for
(1) in first four iterations of Algorithm 11 using type BEAST-C. Residuals of all Ritz
pairs computed are shown; the m = 16 values with minimal residual are shown as
blue circles, and spurious values as black diamonds. A version of this figure also
appears in [31].

3.4. Precision changes over subspace iterations

From the previous section, we can conclude, in rough terms, the effects of the low-
est precision used in a single step of the iteration apply to the achievable accuracy
of the iteration as a whole. Therefore, performance may be improved not by se-
lecting steps in the iteration to perform in a reduced (or increased) precision, but
by selecting iterations to perform in reduced precision. In this section, we make

41

3. Mixed precision

All double

0
— 10 Y T ‘
< i ‘
< 107°4 |
| ¢ !
Y 10710 5 '
=
— 107 I I
1 2 3
1teration

Figure 3.2.: As in Figure 3.1, with double precision in all iterations (left) vs single
precision (right) for (3) in first four iterations of Algorithm 11 using type BEAST-P.

A version of this figure also appears in [31].

. All double
:;; 10 I T i
< 105 0
¥=1010— I
<
— 107 ——

Figure 3.3.: As in Figure 3.1, with double precision in all iterations (left) vs sin-
gle precision (right) for (2-3) in first four iterations of Algorithm 11 using type

BEAST-M.

42

1 2 3
1teration

0
1075 - |

' i

10—10 —_
[
1071 - I I
1 2 3

1teration

Single (2-3)

0
W]
10548 § 11
10710+ :
_ i
107 717171717
123456

1teration

3.4. Precision changes over subspace iterations

All double Single (5)

0 0

= T 1 71 F T

N o I | | T s |

~< 107°- ~< 1077 - U

| | [] [] ‘

g-;lo—l()_ ' E;?10—10— .

< < o

_ — ‘ _ _

10~ = I I U o e e

1 2 3 1 2 3 4 5
iteration 1teration

Figure 3.4.: As in Figure 3.1, with double precision in all iterations (left) vs single
precision (right) for (5) in first four iterations of Algorithm 11 using type BEAST-C.

observations about the achievable convergence and performance behaviour of this
strategy.

We are concerned with how the convergence of a BEAST algorithm changes when all
steps of the iteration are performed in single precision. As observed in [8] and [30],
convergence with a given precision is not affected above the given precision limit.
For example, iterations in single precision may proceed to a given residual tolerance
before stagnating. Convergence may continue unaffected if the precision is changed
between iterations before the residual threshold of a given precision is reached. We
observe that in single precision, a residual threshold of 107° is typically achievable
before stagnation begins, but this may change depending on the problem and the
algorithm used.

In the below numerical experiment, which may also be found in [8], we test this
strategy, as well as observing the achievable performance gains from mixing pre-
cisions. The latter is highly variable depending on the computational setup used,
and thus the potential gain from mixed precision cannot be definitively deduced
from these experiments.

3.4.1. Numerical experiments

The BEAST algorithmic scheme for switching precision over iterations is shown in
Algorithm 12. We observe that if iterations begin in single precision, we may
decide at the end of each subspace iteration whether to switch from single to
double precision. In this experiment we set a residual threshold that, once reached

43

3. Mixed precision

Algorithm 12: BEAST framework with inter—iteration precision change

Choose desired subspace size my (> number of eigenvalues in I)) and initial
vectors Y’

while not converged do
Construct subspace U < Y with BEAST-* scheme

Orthogonalize U (optional for BEAST-C, BEAST-P) and compute singular
values
Resize U according to rank and subspace size estimate
Solve reduced eigenproblem AyW = ByWA
AU = UHAU, BU = UHBU
Compute full approximate eigenpairs X := UW
Set Y := BX (BEAST-P, -C) or Y := BXR (BEAST-M), with R random

if single precision threshold reached then
| Switch to double precision

end

end

by the smallest (non-converged) eigenpair, induces a change from single to double
precision, as described in Figure 3.5. We consider a standard eigenvalue problem
(1.3) for the Graph16M problem described in Table A.2.

The computation ran using 32 nodes of the Emmy HPC cluster at Friedrich-
Alexander-Universitit Erlangen-Niirnberg. The method began in each case with
my = 480 and random columns of Y. The residual tolerance was set to 10710, In
the mixed precision case, all computations and storage took place in single preci-
sion; upon a switch to double precision, all vectors were cast from single to double
and the matrices were reloaded. This is associated with a small extra cost for
the mixed precision case. A polynomial degree of 10,000 was used for BEAST-P,
and precision was switched from single to double once the smallest residual was
smaller than 10~°. The same precision tolerance was used for BEAST-C, which used
Gauss—Legendre quadrature with a circular contour and ¢ = 8. Both BEAST-C
and BEAST-M used STRUMPACK for the direct solution of linear systems. The
BEAST-M method was somewhat more sensitive to the effects of single precision in
this case; a higher threshold of 10~ was used as the threshold for the switch to
double precision, and the quadrature scheme used ¢ = 16 for a circular contour.
BEAST-M ran with 4 moments in all iterations.

In Figure 3.5, we observe the convergence of the smallest residual in each of the
above cases. If the switch from single to double precision is well timed, convergence
may not be impeded at all by single precision in early iterations, and a small “catch-
up effect” may even appear directly after the switch, as also observed in [30].
The best choice of threshold appears somewhat method dependant; in the case of

44

3.5. Conclusions

BEAST-M we observe a difference in residual from the first iteration and stagnation
even before the threshold of 10™* has been reached, an effect that occurs earlier
and more strongly than for BEAST-P or BEAST-C. It is possible that generosity in
other parameters, e.g., increasing my, would reduce the effect of error in this case
[44, 60].

The difference in time between mixed and double precision is shown in Table 3.1.
For BEAST-P in particular, the example where the number of iterations was equal
in both the mixed and double precision case, the reduction in cost from early
iterations conducted in single precision is clearly observable. For BEAST-C and
BEAST-M, we may assume that a similar reduction in cost took place for each RFE
iteration performed in single precision, but the extra iteration for the all-double
run of BEAST-C (apparently a random effect due to some spurious directions being
removed in early iterations) adds some uncertainty to this value. In any case, the
qualitative reduction in cost with mixed precision computation is clear. In the
case of BEAST-M, we observe an extra iteration in the mixed—precision case, due
to stagnation in early iterations, and thus a slow-down, rather than a speed-up,
from mixed precision is observed. We note that these effects are not expected to
generalize to all hardware or software situations; the use of accelerators or optimized
vector instructions could be used to generate a stronger effect for mixed precision
computations.

3.5. Conclusions

The precision used for storage and computation is an important aspect in con-
trolling the cost and convergence of a subspace projection scheme. Particularly
when the method is iterative, we can see that single precision can be used in early
iterations to reduce costs without impacting later convergence; later iterations in
double precision may continue to the desired residual threshold. It is particularly
interesting to observe a strategy to reduce cost without “adding back” costs in re-
duced convergence rates; suggesting that double precision in early iterations may
even be considered “overspending.” However, the extra knowledge required to use
these methods successfully in order to ensure stagnation does not occur does pre-
vent universal suitability. Furthermore, as discussed in [30], the results we have
seen suggest that higher precision computations will not have any effect unless all
steps proceed in higher precision and a reduced residual tolerance is required.

45

3. Mixed precision

109 BEAST-P BEAST-C BEAST-M
s Double Double == Double
f: = = = Mixed = = = Mixed b = = = Mixed
~ 105 © Single © Single T © Single
g ¢$ Double $ Double * ¢$ Double

10710

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 71 2 3
BEAST iteration

Figure 3.5.: Smallest residual over BEAST iterations. This figure originally appeared
in [8].

Solver Time Mixed / Time Double
BEAST-P 0.8
BEAST-C 0.7
BEAST-M 1.2

Table 3.1.: Time ratio between a mixed precision solve and full double precision
solve (reference time)

46

CHAPTER 4

OPTIMIZING RATIONAL FILTERS

4.1. Introduction

In this chapter, we consider how the rational filter used in an RFE affects the cost of
the method, and how we might improve the efficiency of these schemes through the
choice of rational filter. We focus on the cost of building the basis U for our desired
subspace through the solution of shifted linear systems of equations (z; B—A) ! BY,
which is expected to be the most expensive portion of an RFE iteration. Here, the
shift z; corresponds to a pole of the rational filter used. We are interested in the
solution of large and sparse eigenproblems, implying that an iterative linear solver
would be appropriate for the linear systems that arise in these methods. However,
these shifted linear systems are typically very poorly conditioned, as the shifts z;
are chosen to be close to the eigenvalues of the matrix pair to profit convergence of
the RFE. A trade-off arises, where the cost of solving the linear systems in a single
RFE iteration must be balanced with the number of RFE iterations required. In
this chapter, we attempt to construct rational filters that will reduce the overall
cost of solution with iterative linear solvers.

We begin by exploring how convergence of an RFE is controlled by the rational
filter used and the relative location of the eigenvalues. This relationship has been
used in the past by other authors to guide the choice of rational filter in an RFE
beyond the use of quadrature rules, which we have seen already in Chapter 2. We
will introduce some of the pre-existing choices defined in other works and discuss
how they may affect the convergence of the resulting RFE and the iterative solver
for the linear systems. Then we turn to exploring how we should choose our

A7

4. Optimizing rational filters

rational filter. We introduce two iterative linear solvers and generate predictive
models for the expected iteration count of each of these, based on the underlying
rational filter. This prediction is also expanded to include the cost of linear solves
over all RFE iterations, based on the expected convergence rate for said rational
filter. Given these models, we may then generate a cost function and optimize over
possible rational filters. This is performed for a number of test problems, followed
by a comparison of the cost of using the resulting filter with filters arising from a
standard contour integration scheme. We conclude with a discussion of the benefits
of this work and ideas for future research.

4.2. Convergence of an RFE

As introduced in Chapter 2, RFEs use a rational filter to iteratively project an ini-
tial subspace in directions corresponding to the desired eigenvectors. The rational
filter r(z) of degree g consists of a series of shifts, z;, and weights w;, i =1,...,q,
forming the function

r(z) = Z o (4.1)

x— 2z
i=1 v

In matrix form, we consider the function r(B™'A) = >°7 w;(A — %B)"'B, or,
when applied to a (block) vector, r(B~'A)Y = > w;(A— zB)"'BY.

As discussed in [89], the values of r()) for the eigenvalues \;, i = 1,...,n of (4, B)
determine the convergence of the RFE. Specifically, the convergence of the "
eigenpair depends on the ratio

(4.2)

assuming that the eigenvalues are ordered according to 7(A1) > 7(A2) > ... > 7(Ay),
and that the subspace X, contains m vectors.

As previously discussed, we can consider the behaviour of the filter in 1D as cor-
responding to its action on vectors; directions corresponding to eigenvectors with
eigenvalues inside or outside I, will be amplified or reduced respectively according
to the value of r(x) at that eigenvalue.

The quality of the filter, therefore, defines the convergence of FEAST. It should
also be noted that the (presumably unknown a-priori) location of the eigenvalues
has a significant effect on the actual convergence behaviour. By observing (4.2),
we realize that the value (A, +1) controls the behaviour of FEAST. If (A, +1) is

48

4.2. Convergence of an RFE

small, particularly in comparison with r(\,,), with m the true number of eigenvalues
inside I, the method will converge more quickly. It is easier to find a function r(x)
is that is (relatively) small at (A, +1) if more distance lies between A, +1 and
Am; this occurs if eigenvalues are well separated, or if my is larger relative to m.

Conversely, dense sections of the spectrum and narrow subspaces may have an
adverse effect on convergence. A steep drop of r(z) outside of I, will minimize the
worst-case convergence rate, which we observe when the spectrum and choice of
my places A, +1 very close to A,,. Sharp bounds of the filter will conversely have
less of an effect on convergence if these values are well separated.

Given this relationship, several significant research findings have explored the choice
of rational filter. Though contour integration, usually with the Gauss-Legendre
(GL) rule, remains a standard choice, several other functions have been explored,
as we discuss in Section 4.3.

4.2.1. Numerical example - subspace size and convergence

The effect of the relative location of A, +1 and A, on convergence is illustrated

Amy

in Figure 4.1. In this figure, we compare TT/\;’H for two values of my, my = 220

and my = 320, for an equispaced spectrum

N =—2+4ih, i=0,...,400

with A = 0.01.

We consider a typical choice of r()\), the Gauss—Legendre quadrature rule, as de-

scribed in (2.10), with 16 poles on a circular contour surrounding I, = [—1,1].
We see that a larger value of r(/\TT/\‘i ;’1), which may occur due to poorly separated

eigenvalues, or simply to a smaller choice of my, affects the estimated convergence
rate of all eigenvalues inside 1.

In Figure 4.2, we illustrate how the convergence of an RFE may actually be affected
by the change in this ratio. We consider A a diagonal matrix with entries A, and
consider the resulting estimated eigenpairs after a single BEAST-C iteration with
my = 320 or my = 220 initially random vectors. The filter is the same of that in
Figure 4.1. Here, we see that the change in theoretical convergence rate corresponds
to the actual difference.

49

4. Optimizing rational filters

100

Lo, ’ o : * oo J

i — @]
_
S

H
<

|| AN

r(A)
= X r(Amp=220+1) 1
0 f o 1
O 7(Amy=22041)/7(Ni)
O r(Amy=32041)/7(X)
10*10 I L
0 0.5 1 15 2 16
[Al
Figure 4.1.: (a) Figure 4.2.: (b)

Theoretical (a) and actual (b) effect of subspace size on convergence rate. In (b),
the smallest m = 201 residuals are visualized as circles and the remaining my —m
residuals as dots.

4.3. Other rational filters

While SSM and FEAST were originally conceived as contour-integration based
eigensolvers, they can also be considered as relying on a more general rational
filter, as discussed in Chapter 2.

Recent research in this direction has included several types of rational filters; most
notably with Zolotarev approximation [42]| and SLiSe/WiSe optimal filters [64, 96],
which will both be explained in more detail below. A definition for least-squares
rational filters [97] also generates weights for a filter from a set of poles. The field
of rational filter approximation in general is beyond the scope of this work; we will
focus here on the most prominent research directions so far. A broader discussion
applicable to RFEs can be found in [30].

4.3.1. Zolotarev

In [42], the authors considered a rational function for FEAST arising from an
elliptic filter: Zolotarev approximation [99].

In order to describe the properties of these functions, we introduce a modified
indicator function

50

4.3. Other rational filters

0 |z|>G
1 |z| <G

ind[_G(;] (ZL’) = {
where [-G, G| C (—1,1).

We restrict our choice of rational functions of type (¢, q); that is, functions that
can be written as %, where f(x) and g(x) are real polynomials of degree at most
q.

We define the Zolotarev function of this type as

sq(t(2)) +1
réz) _ 5 . 4)
where R satisfies
a— VR -1 .
VR +1
We define -
z
=) = \/}_{1 -z
and o
o (@) = op RO Fen) G ()20
q L@ e) T TR)/ 20

Here, sn(w, k) = x is the Jacobi elliptic function, and K (k) is the elliptic integral
for the modulus . These are defined in [42]. The constant D is chosen to satisfy

i 1= _ 1
pehin sq() + o sq() +

and kK = /1 — 1/R2.

Due to its equioscillating behaviour, 7Z(z) is shown in [42] to be the best uniform
approximation of the indicator function indj_¢ ¢(x) on [-G, G] and [—inf, -G~ '|U
[G~!,inf]. This behaviour was more generally described by Zolotarev in his original
definition of these approximations [99], which were chosen to meet these criteria.

51

4. Optimizing rational filters

4.3.2. SliSe and WiSe

In contrast to filters arising from existing rational functions, such as those based
on Zolotarev or quadrature rules, SLiSe and WiSe rational filters are chosen by
optimization to minimize RFE iterations |64, 96]. These methods focus on sharp
drops outside of), minimizing the worst-case convergence ratio, and/or requiring
fewer vectors in the subspace U. As both weights and poles are determined by
non-convex optimization, their solution is considerably more complex than, e.g.,
least-squares minimizing weights for a provided set of poles. The original SLiSe
library [96] obtained rational functions minimizing the weighted least—squares error
between the window function over the desired interval, h(x) (2.1), and a rational
function, r(x):

/Oo v(t)|h(t) — r(t)[Pdt (4.6)

The authors discretized this problem and solved it using a residual level function
approach. The resulting optimization problem is non-linear and non-convex, but
has a differentiable objective function. The choice of weight function, v(t) may rely
on box constraints in the optimization problem to prevent poles from approaching
the real axis and support compatibility with iterative linear solvers.

This approach was iterated upon to give the WiSe rational functions in [64], where
the authors focused on finding a weight function v in the least squares problem
minimizing the worst case convergence ratio with a fixed gap parameter G € (0, 1),
as (4.3):

. NaXy(t)e[—oo,—~G-1U[G~1 0] r(v(t))]
min "
v(t) min,ej—a,a [r(v(t))|

and using this fixed choice of function v(t) in the optimization of (4.6). The choice
of GG, as for Zolotarev functions, controls the size of the interval over which the
rational function must drop from ~ 1 to ~ 0; a value closer to 1 corresponds to
a narrower gap. This parameter is fixed; these filters may be distinguished by
this value. The two minimization problems are solved in a self-consistent fashion,
and thus the weight function does not need to be explicitly selected. However,
the second optimization problem is non-linear and the gradient is not known; the
authors use existing non-linear derivative—free optimization schemes in order to
solve find a global minima, which we will also utilize later in this chapter. The
initial filter is chosen as the corresponding Zolotarev filter for that degree; the
original SLiSe library also considers the Gauss-Legendre filter as a starting point.
As we see in Figure 4.3, the resulting poles approach the real axis. The resulting
optimized worst—case convergence ratio means that a smaller subspace size is likely

52

4.3. Other rational filters

needed for these filters. It is possible that a change in box constraints would produce
filters better suited for iterative methods; however, the filter may be inhibited by
the size of constraint needed to produce a filter truly suitable for iterative schemes.

4.3.3. Least-squares filters

Xi and Saad introduced a method [97] for determining weights based on a set of
poles to minimize the weighted least-squares error of a filter r(z) from the window
function, h(z) (2.1). To define this in more detail, let us assume that the spectrum
has been normalized such that I, = [—1,1]. Then h(z) takes the value 1 on I,
and the value 0 elsewhere. As above, we consider a weighted least-squares error
function (4.6). Here we define the weight function v(¢) such that

0 |t|>a
o) =48 1< (47)

1 otherwise.

Typical values for « are 10 or greater, and [is typically set to a small value, between
1073 and 0.5. Assuming 3 < 1, the error of the filter () is weighted most heavily
in [—a,a] \ [—1,1]. This makes intuitive sense because the specific amplitude of
the eigenvectors corresponding to eigenvalues in [—1, 1] is less important; it is more
important that they are preserved in some magnitude while eigenvectors outside
the interval are dampened.

The definition for the weights w;, as seen below, is provided in general form in [97].
4.3.3.1. Calculation of least-squares weights

We assume that «, 3, z; for © = 1,...q and I, are all defined. We additionally

A—A A+A
define, for r = == and ¢ = %,

ap =c—ar

aRp = c+ar.

Then, the weights w; for ¢ = 1,...q can be found as the solution to the linear
equation

Gw = d. (4.8)

53

4. Optimizing rational filters

where G € C7*19 .

(_1 1 1 1 _—

aL=z ar—z +H(B-1) (A—Zj N X—Zj) %=

1 QR—Zj o aR—2%;

Zj=Zi (10g (T—Za) log (a?—z}-)) (4~9)
\+ (zf:i{) <10g (i::) — log (g)) otherwise

and d € C? is defined as

-
<.
N\

-z
d; = Blo . 4.10
Blog (A —) (4.10)
We assume that the shifts z;, ¢ = £ +1,...,¢ are complex conjugates of z;, i =
1,...,q, the weights w;, 7 = £ +1,...,¢q are also complex conjugates of w;, i =

q
1.4

4.3.4. Pole placement and iterative solvers

As we observe in Figure 4.3, the poles of the Zolotarev and WiSe filters come
much closer, relatively speaking, to the real axis than those for Gauss-Legendre
quadrature. This effect is compounded by narrow intervals and dense sections
of the spectrum. As matrix size grows, the density of the spectrum will also in-
crease. To gather m eigenvalues, a relatively smaller length I, will be required.
For I, # [—1,1] the filters are scaled according to » = [X — A|. This helps them
obtain a comparatively very steep drop-off around z = { A,X}, and a resulting im-
proved worst case convergence rate. If the resulting linear systems (A — z;B) ! BY
are solved with a direct solver, this is irrelevant, as long as the shifted system is
not numerically singular. However, direct solvers become impractical or impossible
to use as problem size and the resulting computational and memory requirements
increase. Even if a matrix is sparse, its factorized components may not be. For an
n X n problem, the computational and storage requirements of an LU factorization
are O(n?) and O(n?) respectively [93]. For a scalable solution, we must then look
to iterative solvers, which hopefully are O(n) in both memory and computational
requirements. Here, the distance of a pole z; from the eigenvalues, which in the case
of Hermitian eigenproblems are confined to the real axis, control the behaviour of
the iterative linear solver with the shifted linear system, as we discuss in the follow-
ing section. These factors make the shifted linear systems of an RFE more difficult
to solve with an iterative method; many methods diverge. But it is also with
increased problem size that iterative methods for solving linear systems become

o4

4.3. Other rational filters

10° ‘ KK
* *
& o o &
§ GL
zolo
107" ¢ i
B Q O WiSe O Q
E;
el
10—2 L @ @
O O
103 ‘ : ‘ ‘
15 -1 -0.5 0 0.5 1 15
real(z)
Figure 4.3.: Comparison of poles for rational filters, I, = [—1,1]: Gauss-Legendre

quadrature (GL), Zolotarev (zolo) and WiSe filter. ¢ = 16 (the 8 poles with positive
imaginary part are shown; the others are reflected across the y axis), G = 0.98 for

Zolotarev and WiSe filters.

10°

1072 ¢

1074 L

1076 L

1078 ¢

10-1 ‘ ‘
0 0.5 1 15

X

Figure 4.4.: Various rational filters, I, = [—1, 1]: Gauss-Legendre quadrature (GL),
Zolotarev (zolo) and WiSe filter. ¢ = 16, G = 0.98 for Zolotarev and WiSe filters.

55

4. Optimizing rational filters

competitive in comparison with direct methods for larger matrix size. Indeed the
memory requirements for direct methods alone typically make them infeasible past
a given problem size. In addition, the desired problem size continues to increase
with general computational capacity. For this reason, filters such as Zolotarev and
SLiSe/WiSe may be extra challenging for a iterative solver with increasing problem
size. We also explore this numerically in Section 4.8.

The other existing strategy to reduce the cost of using an iterative linear solver is to
reduce the tolerance to which the linear systems are solved, as seen for the FEAST
algorithm in [38] and the inverse iteration in [79]. These authors demonstrate
that in early iterations, a larger residual error in the solution of the linear systems
may not affect the overall convergence of a subspace iterative method. In [79],
the authors show that for subsequent subspace iterations, a smaller residual error
for the linear systems may be achieved without additional linear solver iterations.
However, if the number of iterations required to reach even a large residual error
is high, this strategy may still be cost prohibitive. By considering the underlying
rational filter, we hope to reduce the “starting cost” for our iterative linear solver,
improving the efficacy of the strategies presented in these works.

4.4. lterative solver convergence

As described above, the construction of a rational filter in an RFE requires the
solution of the shifted linear systems (A — z;B)U = BY, i =1,...q. Let us define
®;, = (A — z;B). In order to easily relate the eigenvalues of ®; to the eigenvalues
being sought, we limit ourselves for the rest of this chapter to standard Hermitian
eigenvalue problems, with B = I.

These shifted linear systems are considered difficult to solve with iterative solvers;
we will now discuss why this is and consider techniques for reducing this difficulty.
As defined previously, z; is a complex shift. If z; is chosen close to the real axis,
it may be very near one of the eigenvalues of A. Let us define the eigenvalues of
® as v;, i = 1,...,n, ordered according to |y1| > |y2| > |y.|. This means the
eigenvalue of the shifted system with smallest magnitude, ~,, will be the distance
between z; and the closest eigenvalue in the spectrum of A:

Y| =min|A\; — 2| j=1,...,n. (4.11)
j

This may be significantly smaller than \,, the smallest magnitude eigenvalue of
A. In general, we may expect eigenvalues close to 0 to slow convergence of an
iterative method. In particular, if a Krylov method is used, convergence at the
k' iteration depends in the worst case on the maximum value of the minimizing

26

4.5. Kaczmarz sweeps and CG acceleration

monic polynomial (that is, the polynomial of degree k with value p(0) = 1; this is
referred to as the “normalizing condition”) at the eigenvalues of ®;.

From [71], we obtain the following bound for the residual for iterative methods like
GMRES, as well as a further discussion of general bounds for Krylov methods. A
similar bound holds for the conjugate gradient (CG) method

&l
7ol

< w(V) minmax pi ()| (4.12)

i

where 7}, is the residual at the k" iteration and in the case of normal matrices,
(V) =1.

The normalizing condition means that if an eigenvalue d is very close to 0, obtaining
a value close to 0 at d and 1 at 0 is very difficult. Convergence may be inhibited.
We will explore this topic further for selected iterative methods, but the results
may be applicable for Krylov schemes in general.

Given our restriction to standard Hermitian eigenvalue problems, we expect ® to be
normal and thus xk =]3—;] . Many of the results are likely applicable to generalized
eigenproblems as well, but such an extended analysis is beyond the scope of this
work.

4.5. Kaczmarz sweeps and CG acceleration

Finding a method that can handle the shifted linear systems as described above is
in general very challenging. The CGMN method has shown the ability to provide
reliable convergence for the shifted linear systems arising from contour-integration
based eigensolvers [3, 36]. We discuss this method and its implementation here,
stepping through the ideas and algorithms it is based on in chronological order.
In the remainder of this section, we consider the solution of a linear system of
equations, ®u = y, where ® € C™", 4 € C", y € C*. We refer to the i'* row of ®
as ¢; and the 7" entry of y as v;.

4.5.1. Kaczmarz sweeps

The Kaczmarz method [61] applies orthogonal projections of the approximate solu-
tion iteratively onto the hyperplanes associated with each of the rows of a matrix.
At each step, the orthogonal projector associated with the i** linear equation is
applied. The iterative solution at the k + 1% step, u**!, is thus defined as

o7

4. Optimizing rational filters

¢ — . k —
W = g ww@ i = kmodn (4.13)

el

Algorithm 13: Kaczmarz sweep for the solution of du = y.
Imput : e C" yecCueC’,welk

Output: u" € C”

Function kaczsweep (®,y,u,w):

Set u = u
for each k, 0 <k <n do
. _uk 71, .
Uk+1 = Uk + Cd_(yl <|(|b(;)7|| >>¢ , 1= k

end

In fact, w could be chosen as a distinct value w; for each row. In this thesis, the
simplifying assumption of a single constant is made.

We can also perform this sweep through the rows of ® in a different order, e.g.,
backwards. We call this method backwardkaczsweep. In anticipation of the coming
subsection, we also introduce here the symmetric double sweep doublekaczsweep,
consisting of successive forwards and backwards Kaczmarz sweeps.

4.5.2. CGMN

The acceleration of Kaczmarz sweeps with the conjugate gradient (CG) method was
first introduced as CGNM [18, 40]. We note that the definition and subsequent
analysis require a symmetric semidefinite matrix. The symmetry requirement is
satisfied for ® when only the diagonal has a nonzero imaginary component, which
we assume to be the case for the remainder of this chapter. Here, the method relies
on the equivalence of Kaczmarz sweeps with successive overrelaxation (SOR) on the
normal equations; a coupling of a forward and backward sweep is thus equivalent
to symmetric successive overrelaxation (SSOR) and is symmetric, thus compatible
with CG.

4.5.3. Parallelization and block multicoloring

We utilize a shared memory implementation of CGMN as described in [6]. To
avoid write conflicts and performance bottlenecks in shared memory, we could use
a multicoloring approach, as has been previously considered [36]. In this strategy,
columns of the same color have no indices in common; this is called structural

58

4.5. Kaczmarz sweeps and CG acceleration

Algorithm 14: CGMN for the solution of du =y

Input : ¢ C"", ye C", weRe

Output: v € C"

Function cgmn (®,y,w):

Choose a starting block of m vectors Y
Set u’ € CV to arbitrary value

Set p° = r’ = doublekaczsweep(®,y,u’,w) — u
while not converged do

¢" = p*— doublekaczsweep(®,0, p* w)
a = [I*]1%/ (0", ")

bt = uF 4 agp”

PR — ok gt

Be = [+ %/ [lr)|*

pEH = ph L g,

k=k+1

end

0

orthogonality. However, better performance has been shown from a block multi-
coloring approach [3|. In this approach, structural orthogonality is only enforced
between different blocks of the same color. We rely on such an implementation
here, utilizing the improved RACE multicoloring strategy [5].

The matrix is first permuted to minimize bandwidth, using the Reverse-Cuthill-
McKee algorithm [24]. Then, the RACE block-coloring algorithm is performed, as
described in [5]. Kaczmarz sweeps may then be performed in parallel over blocks of
the same color, with each block assigned to a thread. Within a block, the sweeps are
performed sequentially, cycling through the rows. The full CGMN algorithm with
block-multicolored parallel Kaczmarz sweeps would then perform a forward sweep
over each color, followed by a backward sweep; the doublekaczsweep algorithm.
Other details associated with block multicoloring for CGMN, such as the possibility
of load balancing, are discussed further in [3].

A distributed memory parallelization has also been introduced. A strategy called
CARP-CG [41] involves averaging results obtained from different distributed pro-
cesses to obtain a final result. Although the use of this strategy is promising for
RFE methods|36], it is beyond the scope of this work.

4.5.4. Implementation of CGMN

The Kaczmarz sweeps are implemented in the GHOST library [67], and incorpo-
rated with the CGMN method as implemented in [6]. The weighting of w = 1 is

59

4. Optimizing rational filters

used for the Kaczmarz sweeps in the remainder of this work. As discussed above,
block-multicoloring occurs a-priori with the RACE library [5].

We also note that the definition above is for a single right hand side vector b and
solution x. The extension of the above definition to our use case with block vectors
requires only their substitution for the single vectors; the analysis is the same.

4.6. Predicting cost

For a given rational function, we would like to be able to predict the “cost" of using
CGMN to solve all the linear systems. We re-emphasize that this is by far the most
significant expense in projection-based methods. We may consider the cost as the
total number of CGMN iterations required over all poles and all RFE iterations, or,
keeping parallelism in mind, the maximum number of CGMN iterations required
for a pole over all RFE iterations. As described in Chapter 2, the linear systems of
FEAST can be solved independently and in parallel. When choosing to minimize
the maximum number of CGMN iterations per pole, we are focusing on the possible
reduction in cost or time for this parallel solution. It is the slowest of these linear
solves, with presumably the most costly solution of the linear system, that acts as
a barrier for the rest of the iteration.

4.6.1. Analyzing the behaviour of CGMN

We analyze the behaviour of CGMN on the shifted linear systems ®U =Y, where
® = A—zI for A a 1000 x 1000 generated [30] (see Section 4.1.1) sparse matrix. A,
which we will name Gen1000-40pt01, has 40 eigenvalues inside [—0.01, 0.01] and the
remainder of its eigenvalues equidistantly located in [—1,1] \ [—0.01,0.01]. Thus,
the spectrum is relatively dense in a small interval around 0, and less dense away
from this interval. We consider the number of CGMN iterations required for all 64
random right hand side vectors in Y to reach a relative residual tolerance of 1078
or 10712, This is plotted in Figures 4.5 and 4.6 vs. the condition number of the
shifted system, that is,

max; [z — A

ol - fo~H = (4.14)

min; [z — A
If \; is close to real(z), min; |z — A;| will be close to imag(z). The values are plotted
on lines associated with the distinct real values of z. These are also associated with
color, blue for shifts with small real value, moving to red away from the origin. We
observe that after a period of roughly (log-)linear growth, the number of iterations

60

4.6. Predicting cost

approaches a threshold, which appears correlated with the density of the spectrum
at that value of real(z).

10* - T 0.01

=570
10°} | 2
0.5 .
v o L, 100 L 0. 005
g g
g 2
< — =
5 013 3 3
S0t ERs E
9 T 10% L
© o
0.01 0.002
0.005
100} 1 0.002
10" |]
10° 10° 104 T 100 102 00 o 0
maxj-1..x|z — Ajl/minj=y x|z — Ay maxj-1,.n|z — Aj|/minj_1, x|z — Aj|
Figure 4.5.: (a) Figure 4.6.: (b)

k(®) vs. CGMN iterations for Gen1000-40pt01 with residual tolerance 1078 (a)
and 107'? (b). The distance of R(z) from 0 is shown as a color gradient. A line
of best fit for the linear growth portion of the (logarithmically scaled) data is also
shown, transformed back to its exponential form.

Next, we analyse the relationship for a larger matrix, now using an approximation
for the minimal distance between the pole and an eigenvalue of A. Here, A is a
graphene matrix, Gralll-11k-b, with 40 eigenvalues in I,. More specific details of
this system can be found in Table 4.1. Again, we consider the number of CGMN
iterations required to solve the system ®U =Y to reach a relative residual toler-
ance of 1078 or 1072 with 64 random right hand side vectors in Y. We now use

the approximation |h/4 + imag(2)i| to approximate the distance from the smallest
eigenvalue, where h is the local density in [, that is, h = A;mA Since we predict
eigenvalues with spacing h, the expected value of the distance from an eigenvalue
along the real axis is %. The separation in the imaginary plane is clearly just
the imaginary part of the pole z, as our eigenvalues are real. We thus form the

estimation for the condition number

max {|A1 — 2, [An — 2[}
|h/4 + imag(2)i]

Kest(P) ~ (4.15)

In Figures 4.7 and 4.8, we observe the linear relationship (up to some threshold)
between this estimate for the condition number and the number of CGMN iterations
required to meet this threshold. Here R(z) is in I; the results shown in this figure
include various values of R(z). Unlike the change in C(z), this variation shows
little effect on the number of iterations as the density of eigenvalues is similar close
to all values of R(z) considered.

61

4. Optimizing rational filters

10° | | | 10°

T T
y = 5.1020% y = 6.6420%

10t ¢ 10° b

=
=3
T

10% |

CGMN Iterations
CGMN Iterations

=
<
T

10" £ E| 10!
10° 10! 10? 10° 10! 10° 10° 10! 10? 10° 10! 10°
[|A = 2I|]2/]h/4 + imag(2)i] ||A = zI|]2/]h/4 + imag(2)i]

Figure 4.7.: (a) Figure 4.8.: (b)

Kest(P) vs. CGMN iterations for Gralll-11k-b matrix with residual tolerance 1078
(a) and 10712 (b). A line of best fit for the linear growth portion of the (logarithmi-
cally scaled) data is also shown, transformed back to its exponential form. Values
past the threshold of stagnation are shown in grey.

4.6.2. Condition number relationship

We have observed that for a sample shifted matrix ® = A — zI, the number of
CGMN iterations required increases steadily as the shift approaches the real axis,
at least until some threshold for iterations is reached. We have used a linear fitting
to the (logarithmically scaled) linear growth portions of data for the Gralll-11k-b
problem in Figures 4.7 and 4.8. The line of best fit (an exponential expression when
transformed from logarithmic scaling) is similar, for a matching residual tolerance,
to the relationship shown between x(®) and CGMN iterations for the Gen1000-
40pt01 problem. Thus, it appears that we are able to form a rough estimate for
the number of CGMN iterations for a general linear system of equations with the
relative residual tolerance 103

pred(P) = 5.5 X Kegr (D)7 (4.16)

or 10712

Ckpred(q)> =T7X "iest<q))o.9' (417)

We can observe the efficacy of this estimate for more matrices, ranging in size from
1000 x 1000 to ~ 33000 x 33000. Details for these systems can be found in Table

62

4.6. Predicting cost

Matrix n A, A=A
Gen1000-40pt01 1000) 0.02
Gen10000-1 10000 1 0.02

Gen10000-100 10000 100 2
rgg n_2 15 s0-a 32768 1 0.00058
Si0-b 33401 1 0.005

Gralll-11k-b 11604 1 0.0039

Table 4.1.: Sizes, norm, and length of search interval I for 6 test matrices. Matrices
Gen* were generated [30]. Gralll-11k-b was generated from graphene modeling
[23] and two test matrices from the SuiteSparse Matrix Collection [25]. More
information for the last three matrices may also be found in Table A.1.

4.1. Each system ®U =Y was solved to a relative tolerance of 107® using CGMN
for a block vector Y with 64 random columns.

These values are shown in Figure 4.9. We observe that this fit is reasonably good
for the linear growth (in logarithmic scaling) portion of the data. As we will
see in later sections, we are typically interested in predicting the relatively small
number of linear solver iterations required from a (relatively) small value of k.
Furthermore, this relationship is not the only factor in determining the number of
linear solver iterations required for an RFE. Therefore, the rough estimate gained
thus far is sufficient for the time being.

We expect that although the fit is acceptable for our intended purpose with these
problems, it will lose predictive power if the linear systems under consideration are
very different from the ones considered here, especially if k. does not fall into
the range of values tested. However, if a new set of problems under consideration
requires a new estimate, the fit function for the expected number of linear solver
iterations is relatively cost effective to obtain, requiring the solution of some hun-
dreds of block linear systems of equations. It may be done a-priori for a subset of
the test problems under consideration.

We also observe that the number of CGMN iterations reaches a threshold for some
value of k.g with each matrix problem. A predictive form for this threshold is not
known; though it appears to be correlated with the density of the spectrum around
real(z), or similarly, the overall matrix size. We expect to be mainly interested in
predicting values in the constant growth portion of linear solver iterations. This
is especially true for large matrices, where this threshold is expected to be beyond
the bound of a reasonable number of CGMN iterations. Furthermore, inclusion of
a bound would result in additional complications for our upcoming optimization
scheme. Therefore, explorations into this topic remain subjects of future research.

We note that this correlation between the number of linear solver iterations and

63

4. Optimizing rational filters

105 F T LI | T T T T
| % Genl000-40pt01
* Genl0000-1
| * Genl0000-100 ok x % % |
10*L| % Gralll-1lk-b W% £
L 0.90 »*]
[|— — —y =5.50z /*/*
I % 1ggn 215 s0-a A F Ok K ke
= i SiO-b ¥ 1
9 103 L ¥ |
© g *]
g 5]
]
10% *E £
5 e s
| 4/‘** |
10'F :
03 1
100 10! 10? 103 10* 10°

|A = 2I{|2/[h/4 + imag(2)i]

Figure 4.9.: kest (P) vs. CGMN iterations for multiple eigenproblems (listed in Table
4.1) with residual tolerance 1078, along with fitting function provided in (4.16).

64

4.6. Predicting cost

the condition number up to some threshold is likely true for other Krylov iterative
solvers. Galgon [30] observed an increase in the number of GMRES iterations
required for the solution of shifted linear systems with poles close to larger clusters
of eigenvalues. We know that the convergence behaviour of all Krylov subspace
methods is bounded by the maximum value of the minimizing polynomial on the
eigenvalues [93|. Therefore, we do anticipate that these results generalize, at least
in theory. However, this is difficult to explore, as most iterative solvers are unable
to solve these shifted linear systems, and often diverge. We perform a rudimentary
analysis for GMRES in the following section. Future research could include testing
to see if a relationship exists for other linear solvers, potentially combined with
appropriate preconditioners.

4.6.3. Analyzing the behaviour of GMRES

We next explore the prediction of number of iterations for a different iterative
linear solver, GMRES. A description of this solver is given in Section 2.8.2.1. We
used an implementation of restarted GMRES from the PETSc KSP library [14, 15,
16], with GMRES restarted every 30 iterations and using modified Gram-Schmidt
orthogonalization.

We observe the behaviour of restarted GMRES on the shifted linear systems
®U =Y with ® = A — zI for the same test matrices as above. Our sample
problems were Gen1000-40pt01, and Gralll-11k-b, as described in Table 4.1. We
show, for a variety of shifts z, with various values of R(z) within I, the average
number of GMRES iterations required for 64 problems to reach an absolute resid-
ual tolerance of 107!2, when starting with a random right hand side vector. This is
again compared with the condition number of the shifted matrix ®, (4.14), for the
Genl1000-40pt01 matrix, as shown in Figure 4.10 and our estimate for the condition
number ke (P), (4.15) for the Grall-11k-b matrix, as shown in Figure 4.11.

We observe a linear relationship between the values, as shown by the line of best fit
provided in each graph. We also observe some distinction in the slope of this graph
between different problems. This is not too surprising; as with any linear solver,
we cannot expect a uniform estimate to be obtained across all matrices. However,
the slopes are similar, suggesting that with a rough estimate, we can obtain a
reasonable prediction for the number of GMRES iterations required, especially for
similar problems. Indeed, in Figure 4.12 we see the estimated vs actual GMRES
iterations plotted along with two possible linear estimations. Again, the average
number of GMRES iterations required for 64 right hand sides to reach a absolute
tolerance of 107! is shown. Both linear estimates appear reasonable, especially
when a rough estimate is sufficient.

65

4. Optimizing rational filters

y = 27.72z10 3

2R
g 10 0.1
+
o]
H =
E% 2
= 0.01
@}
0.001

10° .
10? 10°

maxj—; N[z — Aj|/minji—; x|z — A

Figure 4.10.: GMRES iterations vs x(®) for Gen1000-40-pt01 matrix. The distance
of R(z) from 0 is shown as a color gradient.

10 f

y = 17.519;1»04\

—_
S
To
Ll

GMRES Iterations

—_
S
o
7

101 I I
10° 10 10? 10°

|A = 2I||2/|h/4 + imag(2)i]

Figure 4.11.: kegt(P) vs. GMRES iterations for Gralll-11k-b matrix.

66

4.6. Predicting cost

Matrix n IAl, A=A
Gen1000-40pt01 1000 5 0.02
SiH4-b 2041 1 0.0076
Gralll-1k-a 11604 1 0.085
Gralll-11k-b 11604 1 0.0039

Table 4.2.: Sizes, norm, and length of search interval I, for 4 test matrices. Matrix
Genl100-40pt01 was generated [30]. Gralll-11k-b was generated from graphene
modeling [23] and SiH4-b obtained from the SuiteSparse Matrix Collection [25].
More information for the last three matrices may also be found in Table A.1.

Interestingly, and without an obvious explanation, no threshold is observable for the
number of GMRES iterations as for the number of CGMN iterations. This means
that the linear relationship is likely more accurate for larger condition numbers,
in comparison to CGMN, though we are unlikely to be interested in the resulting
high iteration counts. It is certainly possible that this simply appears for much
larger values of k5. The expected growth rate of GMRES iterations is also much
faster than for CGMN. Perhaps with an appropriate preconditioner, the number
of GMRES iterations would be similarly decreased. However, from a theoretical
point of view, it is helpful to observe the behaviour of this basic iterative linear
solver.

We will use the following estimate for the number of GMRES iterations, o kpreq, in
the remainder of this chapter, unless otherwise stated,

Gkprea(®) = 30Kest(P), (4.18)

as it appears slightly more accurate for increasing numbers of iterations. As with
CGMN,; if this approach was to be applied to a different set of matrices (e.g., with
large changes in matrix size, matrix sparsity, etc.) it would likely be valuable to
generate a new estimate for this linear relationship for the set of matrices under
consideration. It is also possible that GMRES will not converge at all, and may
even diverge for some problems. The use of an appropriate preconditioner would
also potentially reduce the number of linear solver iterations required and increase
robustness, though this would again require a new estimate for the relationship
between condition number and linear solver iterations, which may be non-linear.

4.6.4. Predicting RFE iterations

As previously discussed, the convergence of an RFE algorithm in exact arithmetic
is a known function (4.2) of the value of the rational filter r(x) at the eigenval-
ues. We would like to be able to predict the convergence of an RFE without full

67

4. Optimizing rational filters

10° ¢ : : .-
' Cen1000-40pt01]
Gralll-11k-b 7
X Gralll-11k-a
SiH4-b
10? 3 —Y—y:?)OX
" [y=20x
g
S
o]
—
Q
= 10° L .
n [i
=
o
=
(@]
107 F E
10! -

100 10! 102 10°
|A = 21|[2/|h/4 + imag(2)]]|

Figure 4.12.: kest(®) vs. GMRES iterations for multiple systems.

knowledge of the eigenvalues. A prerequisite for an RFE is an approximation for
the number of eigenvalues in I, m. With this value, we have an approximation
for the local density of eigenvalues in and around I, and thus can generate ap-
proximations for Ay, ..., Ay, 41 (sorted such that r(A1), > r(A2), > ..., r(Amy+1))-
Since r(x) cannot be expected to be monotonically decreasing, we need more than
my + 1 evaluations of the function to estimate convergence. Furthermore, we want
to better capture oscillations in the underlying function r by additional evalua-
tions. We generate a sequence of approximate eigenvalues 0;, j = 1,..., N with
equidistant spacing twice the expected eigenvalue density h = 21—;1 in the window
[max (Apin, ¢ — 10r) , min (Apax, ¢ + 107)]. Again, Ayin and Apax are the global min-
imum and maximum eigenvalues (or estimates of these); they are included in the
expression here to avoid unnecessary function evaluations outside of the spectrum.
We expect this expanded window to contain an approximation for r(Am,,+1), as-
suming that the filter does not increase in value again far from I,,. After evaluating
r(d) and sorting according to r(d1) > r(ds) > ...7(dy), we can determine the num-
ber of iterations expected for all eigenvalues inside I, to converge to the desired
residual tolerance, limited by the eigenvalue expected to converge most slowly, Az.
As we have doubled the frequency of function evaluations within the interval, we

use a modified ratio:

68

4.6. Predicting cost

log(tolRFE)

Lprea = .
e r(54LmU/2J+1)
10g< 7“(54Lm/2j))

(4.19)

4.6.5. Choosing weights

A significant parameter in the choice of filter is the choice of weights, w; in equation
(4.1).

We choose weights that, given a set of poles z;, minimize the least-squares norm
from the (parametrized) window function, as defined in [97] and described in Sec-
tion 4.3.3. By using a weighted least-squares error function, we focus on ensuring
that outside of I, the resulting rational function is close to 0, which is relatively
more important than ensuring values close to 1 inside I,. As previously noted, the
resulting least-squares problem that must be solved to compute the weights can
become very ill-conditioned. To reduce error, we use SVD-regularization, which is
effective to a given degree of instability. However, in our search for poles z;, we pe-
nalize sets which induce a problem that is ill-conditioned to the point of numerical
singularity. The penalty is chosen to be linearly proportional to the relative loss of
rank. This process is described in full in Algorithm 15.

Algorithm 15: Finding least-squares rational filter weights
Input :2z,...,2,€C, 3, 0eR

Output: w € C9, le - € R

Function lsrational(zy,...,2,,a,3):

Form G, d per (4.8)

if x(G) > 10" then

U, %, V] = svd(G)

Y = diag([o1, 09, . ..,04))

rank = >7 1[0; > g€macn(max;(0;)))] > Calculate rank of G
L — _« > Inverse rank number

> vank rank

U=U][;,1:rank]

V =V1[,1:rank]

Y =diag(o;) ¢=1,...,rank
w=VXTlUHd

else

w=G_Gd

1 —
Zrank o 1

end

69

4. Optimizing rational filters

4.7. Optimization

4.7.1. Cost function

We seek a filter r(z) that minimizes the total number of linear solver iterations for
the RFE solver, either for the most expensive pole or for the sum over all poles, as
described above. We assume an estimation has been obtained for the number of
iterations of the linear solver for solving a single (block) linear system of equations,
kprea. Here, the linear solver may be either CGMN or GMRES, and the estimate
is based on the condition number of the shifted matrix, as described in Section
4.6. We begin by fixing the value of ¢; optimization over this value is a separate
problem.

For the normalized eigenproblem, I, = [—1, 1], the values of the poles and weights
of the rational function, z; and w;, are chosen to obey:

Re(z) >0 & Im(z) >0, izl,...,%
a>0,8>0

Re(zi14) = —Re(z), = 1,...,%
Re(zi14) = —Re(z), 1=1, .,%
Re(z;,30) = Re(z), i=1, .,%

q

Im(z0) =Im(z), i=1,..., 2
Im(zyg) = —Im(z), i=1, %

q

Im(zH%q) =—Im(z), i=1, I

[wy, ..., w,| = lsrational([z,..., 2], q, f)

We may additionally define upper limits on our values of z;, to prevent poles from
travelling unreasonably far from the real axis or outside of I,:

107% <Re(z) < 1.1 & 107" <Im(z) <10, i=1,...,

b

That is, we optimize over { poles z; in the upper right-hand quadrant of the complex
plane. These are then symmetrically reflected over the complex plane to form the
remaining poles.

We will re-frame the optimization problem with a number of simplifying assump-
tions.

70

4.7. Optimization

mlIl Z pred (420>

;— q
Zizz_l"'l’azﬁ

where the total expected number of linear solver iterations, » k> s defined as

pred’

E p'r’ed E kpred pred (I)u Zis wz)

or
min g max 4.21
zi,izl..&,a,ﬁ pred ()

where the maximum number of linear solver iterations for a single pole, k1% is
defined as

Z E‘?& = zglla}z kpred(q)i)lpred((Dia Wy, Zz)

The weights are chosen to minimize the least-squares error, as described in Sec-
tion 4.3.3 according to (4.8). We additionally restrict our choice of weights by
constricting # € [0.0001, 2.0] and « € [0.1,100.0].

These can then be shifted and scaled to fit the original I according to

zi=c+rz, 1=1,...,¢q
w; =rw;, t=1,...,q.
We can then evaluate &y eq(®P;) and lyreq(P;, w;, z;) to determine the cost at [zl, e Z%])

An algorithmic summary of the evaluation of the cost function is shown in Algo-
rithm 16

4.7.2. Visualization of cost function

In the simplest case of ¢ = 1 we can visualize our cost function over the upper
right-hand quadrant of the complex plane.

We do this for a sample eigenproblem, Gralll-11k-b, defined in Table 4.1 with
additional matrix information in Table A.1. We visualize the cost for the unscaled
poles, z; in I, = [—1,1]. The cost is actually calculated for the poles shifted and

71

4. Optimizing rational filters

Algorithm 16: Evaluate cost function. Input values that are mutable are

shown in red.
Input : z=[z,..., 2,4 € C poles of r(z)

[, € R Parameters for least-squares rational weights
A, A Bounds for T,
Amin, Amax Estimates for global min and max eigenvalue
m Expected number of eigenvalues in I,
) Estimate for eigenvalues in and around I,

Output: Z Sred OT D ko

Function evaluatecost(zi, ..., Zg4,8, @A, A\ Amin, Amaz,M,0)

z=2,-2;Z;— 7]
[w, Zimk] = lsrational(z,..., 2, 3, @)
=
fori=1,...,q/4 do
distexp = |h/4 + Im(2;)i] > Expected distance from closest ew
Kest(Pi) = max(|Amax — |2i|), [Amin — [2i] [) /distexp
Estimate kpyeq(P;) > Evaluate (4.16), (4.17) or (4.18)
end
Evaluate 7(6;), sort such that 7(d;) > 7(d2) > -+ > r(dena)
lpred = log(tolrrg)/ log(%) > Evaluate (4.19)
Z pred — Z kprea(®i) X lpred(q)wzzaw1) X Zrlank
> e = p,ﬂed(@l,zl,wz) X m X Max;—1.q/4 kpred(Pi)

scaled to fit the interval I specified in Table 4.1. We predict, using the cost function
described in Algorithm 16, the number of CGMN and RFE iterations required at
(unscaled) poles z; scattered in [0, 1] x [0,2]. At each iteration, my = 64, while the
actual number of eigenvalues in I, is 40. The residual tolerances of the RFE and
the linear solver were each chosen as at 107%. The weights of the rational function
r(z) were determined by Algorithm 15, with fixed values of & = 4.5 and § = 0.01.

As we can see in Figure 4.15 even in two dimensions, we are optimizing over a highly
variable surface. Indeed, in optimizing Zol{%}ed or Y ckpty we are optimizing
over the product of two surfaces. We visualize each of these distinctly; the CGMN
iterations per RFE iteration as seen in Figure 4.13, the estimated number of RFE
iterations, l,..q in Figure 4.14, and the total number of CGMN iterations (D Ck:

and) ok are equivalent here.)

pred

72

4.7. Optimization

-4.75
—4.50
425
s
D\L&i
4.00 &
S
g
375 —
3.50
325

0.2 04 0.6 0.8

Figure 4.13.: Total CGMN iterations per RFE iteration as a function of z.

4.7.3. Optimization scheme

We are optimizing a multi-dimensional function without an analytic form for the
gradient. Furthermore, our optimization space is bounded. These properties
limit the choice of optimization scheme. We search for a global minimum with
a fixed value of ¢ using the derivative-free algorithm Adaptive Differential Evolu-
tion/rand/1/bin (aderandibin) implemented in the BlackBoxOptim.jl library [28|.
In [64], this library was shown to work well in finding global minima in a non-linear,
gradient-free manner. This method allows a multidimensional search of variables,
and searches for a global minimum, not just a local one. This is important, as we
are not sure of the shape of our surface, especially in high dimensions and could
inadvertently start at a poor choice, landing far from the global minimum. The
scheme also allows for bounded variables.

If the number of processes is not predetermined, we may be interested to know
what choice of ¢ will minimize (4.21). To this end, we may search for a minimum
over the valid values of ¢ (where ¢ mod 4 = 0). The overall algorithm is described
in Algorithm 17.

Initial optimization results are more reliable for the minimization of) k%% than

> kg;e 4 This is the more relevant problem for parallel execution, due to the desire

73

4. Optimizing rational filters

30.0

275

25.0

225

20.0

175

15.0

125

10.0

02 0.4 06 08 10
Re(2)

Figure 4.14.: RFE iterations as a function of z.

=

Algorithm 17: Optimize rational filter over degree

Input : Maximal degree for rational function gy
Zmin, Zmax, bounds for poles z;
Qmin, Omaxs Bmin, Bmax bounds for LS-weight parameters
), A Bounds for I,
Amin, Amax Estimates for global min and max eigenvalue
m Expected number of eigenvalues in I
0 Estimate for eigenvalues in and around I,
Output: Optimal degree g, poles 2, ..., z,, weights wy, ..., w,
Function optimizeoverdegree (Zmin, Zmax; ¥mins ¥max, Smins Bmax;
2 A Amins Amazs 0,00 8
for q/4 = 1, ..., quax/4 do

[kB zopt, Wop | = aderandibin(evaluatecost(), Zmin, Zmax;

Qmin, ®max; Bmin) Bmax;&a)‘7)\min7)\maxamaé)
: max : max
if Z pred < ming Z kpred then
: max __ max
‘ min, z pred — Z pred

end

end

74

4.8. Numerical Results

~30000

27500

25000

pred

Né&
22500 ¢,

20000

0.5 ——

17500

0.2 04 0.6 0.8 10

Figure 4.15.: Total CGMN iterations over all RFE iterations as a function of z.

for a balanced load over processes. Therefore we will use this as our optimization
problem going forward. We note that this also provides comparatively good results
in terms of the total number of overall linear solver iterations required, as we will
observe in Section 4.8.

4.8. Numerical Results

We can now consider testing our optimization scheme on a selection of eigenvalue
problems. We consider separately the two iterative linear solvers that were analyzed
earlier in this chapter, beginning with CGMN.

4.8.1. Numerical results for CGMN

We now consider the application of our filter optimization scheme to a variety of
standard eigenproblems. Three matrices come from graphene modeling [23| and
11 from the SuiteSparse Matrix Collection [25]. These test matrices have also
appeared in [33, 46] and will be used again in Chapter 5. Each interval contains 40
eigenpairs. Information on 7, is given in Table 4.3. The entire spectrum for each

75

4.