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ABSTRACT

This thesis is concerned with improving and expanding projection based methods
for Hermitian interior eigenvalue problems. The focus is on methods of this type
utilizing a rational function based filtering approach. We outline various strategies
and novel variations to improve the efficacy of these methods and their suitability
for solving large sparse eigenvalue problems. The potential for improvement is
shown in numerical experiments.
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FOREWORD

The research presented in this thesis contains results and discussion that have been
previously presented and published. In the introduction of each of Chapters 3 and
5, a brief description of the portions of the respective chapter corresponding to
existing publications and distinguishing unpublished results is provided. We also
provide a summary here.

Chapter 3 is based on results and discussion shown in

• M. Galgon, S. Huber, and B. Lang,Mixed precision in subspace iteration-
based eigensolvers, PAMM, 18 (2018)

• A. Alvermann, A. Basermann, H.-J. Bungartz, C. Carbogno, D. Ernst,
H. Fehske, Y. Futamura, M. Galgon, G. Hager, S. Huber, T. Huckle,
A. Ida, A. Imakura, M. Kawai, S. Köcher, M. Kreutzer, P. Kus,
B. Lang, H. Lederer, V. Manin, A. Marek, K. Nakajima, L. Nemec,
K. Reuter, M. Rippl, M. Röhrig-Zöllner, T. Sakurai, M. Schef-
fler, C. Scheurer, F. Shahzad, D. Simoes Brambila, J. Thies, and
G. Wellein, Benefits from using mixed precision computations in the ELPA-
AEO and ESSEX-II eigensolver projects, Japan Journal of Industrial and
Applied Mathematics, 36 (2019), pp. 699–717

where the implementation of mixed–precision in the latter publication has been
provided by co-author Martin Galgon. These topics have also been previously
presented:

• S. Huber, M. Galgon, and B. Lang, Mixed precision in a large iterative
parallel eigensolver framework: BEAST, International Workshop on Eigen-
value Problems: Algorithms; Software and Applications, in Petascale Com-
puting, Mar. 2018

• , Recent developments and results for the BEAST eigensolver, in R-CCS
Cafe, RIKEN, Kobe, Japan, Oct. 2018
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Foreword

• , Using mixed precision in iterative eigensolvers, in GAMMAnnual Meet-
ing, Munich, Germany, Mar. 2018

Portions of the material and discussion shown in Chapter 4 has been presented:

• S. Huber and B. Lang, Optimizing rational filters for the scalable solution
of large eigenproblems, in 2021 SIAM Conference on Computational Science
and Engineering, Mar. 2021

Chapter 5 is based in part on results and discussion shown in

• S. Huber, Y. Futamura, M. Galgon, A. Imakura, B. Lang, and
T. Sakurai, Flexible subspace iteration with moments for an effective con-
tour integration-based eigensolver, Submitted to Numerical Linear Algebra
with Applications, (2020)

• C. L. Alappat, A. Alvermann, A. Basermann, H. Fehske, Y. Fu-
tamura, M. Galgon, G. Hager, S. Huber, A. Imakura, M. Kawai,
M. Kreutzer, B. Lang, K. Nakajima, M. Röhrig-Zöllner, T. Saku-
rai, F. Shahzad, J. Thies, and G. Wellein, ESSEX: Equipping Sparse
Solvers For Exascale, in Software for Exascale Computing - SPPEXA 2016-
2019, H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel,
eds., vol. 136, Springer International Publishing, Cham, 2020, pp. 143–187

Again, significant portions of the implementation required for the timing results
shown were performed by co–author Martin Galgon. Results have also been pre-
sented:

• S. Huber, Y. Futamura, M. Galgon, B. Lang, and T. Sakurai, Re-
ducing linear system size with moment based methods in the BEAST frame-
work, in 31st Advanced Supercomputing Environment (ASE) Seminar, Uni-
versity of Tokyo, Sept. 2017

• , Using the Moment to Reduce Linear System Size, in 18th SIAM Con-
ference on Parallel Processing for Scientific Computing, Tokyo, Japan, Mar.
2018

• , Contour Integration and Moments for the Solution of Large Eigenprob-
lems, in 2019 SIAM Conference on Computational Science and Engineering,
Spokane, USA, Feb. 24
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MOTIVATION AND OUTLINE

This thesis considers strategies for the efficient, accurate and robust solution of
large, sparse Hermitian interior eigenvalue problems. Traditionally, interior eigen-
value problems, which involve finding all eigenvalues and associated eigenvectors
for a given interval, have been considered particularly challenging in comparison
with problems involving finding the largest or even smallest eigenvalues and eigen-
vectors. Projected subspace methods, and in particular, contour integration-based
methods, such as FEAST and Sakurai–Sugiura methods (SSM) have been estab-
lished over the past two decades as some of the most promising strategies for the
scalable solution of these problems.

Efficient strategies for computation are important as these methods are applied in
more and more areas of scientific computation. For example, quantum mechanical
calculations for materials science and chemistry are a major area of application.
A significant portion of core hours worldwide are used to model materials at the
atomic level, and the solution of interior eigenproblems is often the most significant
bottleneck in these calculations. Improving these methods could save significant
computational resources, and enable the computational modelling of larger, more
realistic physical systems.

Furthermore, as the computational resources at hand expand, we require methods
that are well equipped to utilize them. Methods that are suitable for division into
smaller independent sub-problems are of particular interest, as these can be solved
in parallel across a computational platform. We will discuss in this thesis how these
methods are inherently parallelizable. The main objective in this work is then to
show how the efficiency of these methods may be improved while maintaining or
improving accuracy, robustness, and scalability.

We refer to efficiency as the relative cost of solution for an eigenproblem, which
is commonly measured in terms of absolute time, computational resources used,
energy usage, or a combination of these. Accuracy is defined in terms of the achiev-
able or achieved residual error of a method for a given problem. Higher accuracy
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Motivation and outline

is typically associated with a greater cost, particularly for the iterative methods
considered in this thesis. We are also concerned with how resilient a method is to
error or failure to solve the problem; this is the robustness of the method. And
finally, the scalability of a method describes the degree to which it can be broken
into small sub-problems that may be solved simultaneously. Improved scalability is
associated with being able to solve problems in a time proportionate to the amount
of computational resources available. These aspects of a numerical method con-
trol its applicability in high performance computing environments. They are the
qualitative or quantitative metrics that we use to evaluate the various algorithmic
possibilities explored in this thesis.

We begin in Chapter 1 by outlining basic definitions and ideas for the problems and
methods that we consider. This includes the general introduction of several fun-
damental iterative eigensolvers that form a basis for projected or filtered subspace
schemes.

We continue the introduction in Chapter 2, where we define subspace filtering as a
form of spectral projection. We focus on filters based on rational functions, which
can also be extended to project subspaces with multiple moments. This type of
filter is inherent to FEAST and SSM, the foundational algorithms of this thesis.
In fact, the original conception of these algorithms focused on the derivation of a
rational filter as an approximation of a contour integral, and they were commonly
labelled as contour integration-based eigensolvers. Further work has shown that
they may be used with general rational filters. We define a rational filter-based
eigensolver as a subtype of projected subspace methods, extensible to subspace
iteration. In this chapter, we also discuss the computational attributes required
and some algorithmic considerations for the efficient implementation of a projected
subspace method, and then outline the software framework, BEAST, that will be
used to implement and evaluate the algorithmic ideas under consideration.

In Chapter 3, we consider how we may save computational effort by reducing the
precision used for early subspace iterations, without affecting the overall achievable
residual accuracy. This chapter includes experiments and discussion shown in part
in [31], where we see that a single step of a subspace iteration computed in a lower
precision will generally cause stagnation of the entire method. However, as we have
originally shown in [8], convergence up to a certain residual threshold is typically
not slowed down by reduced precision for the entire algorithm.

Chapter 4 focuses on improving the applicability of rational filtering schemes for
increasing problem size via the interplay between these schemes and iterative linear
solvers. The construction of the projected subspace with a rational filter requires
the solution of shifted linear systems of equations. As the problems under consid-
eration grow in size, iterative linear solvers become necessary to solve these linear
systems in an efficient manner. However, the conditioning of these problems is
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controlled by the properties of the rational filter as well as the original (unshifted)
linear system. We consider whether we can predict the number of iterations re-
quired for an iterative linear solver, and use this prediction to create a rational
filter that reduces the overall iterative linear solver cost. We show that for the
sample problems considered, this may be more efficient and scalable than standard
choices of rational filter. This thesis is the first publication of this work.

We consider the flexible use of moments in rational filter-based methods in Chapter
5, bridging the original FEAST and SSM algorithms and reducing the cost of the
solution of linear systems. As we have originally discussed in [46], moments can be
effectively used to reduce the number of right hand sides needed in the solution of
linear systems over all subspace iterations. However, adaptivity in the number of
moments used may be helpful in improving the robustness of these methods and
preventing stagnation. We outline the flexible strategy used, and extend on [46]
by discussing several algorithmic considerations in greater detail. We also discuss
the scalability of these schemes, as we have also shown in [4]. Furthermore, we
consider the choice of quadrature degree with respect to the linear system solution
cost over a rational filter-based eigensolver. The thesis concludes with an outlook
for future work.
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CHAPTER 1

INTRODUCTION

1.1. Fundamentals from numerical linear algebra

We assume the reader is familiar with the basics of numerical linear algebra, includ-
ing vectors and matrices, and common operations, such as norms and products. We
furthermore assume knowledge of fundamental concepts of numerical and compu-
tational mathematics, such as error (e.g., discretization, machine) and convergence.
We proceed with a few basic definitions essential to the thesis. These can also be
found in any basic numerical methods textbook, e.g., [93].

1.1.1. Hermitian and Hermitian positive definite matrices

A Hermitian matrix A ∈ Cn×n has entries that satisfy ai,j = aj,i. In the real case,
this is clearly equivalent to a symmetric matrix. A Hermitian matrix is by definition
square. A positive definite matrix satisfies xHAx > 0 for all vectors x 6= 0.

1.1.2. Orthogonality and B-orthogonality

We define two vectors x and y as orthogonal if xHy = 0. If these vectors are also of
unit length (‖·‖ = 1), they are additionally orthonormal. This definition may be
extended to matrices or block vectors, X ∈ Cm×n, which are defined as orthogonal
if X’s columns xi for i = 1, . . . , n are orthonormal, satisfying xHi xj = δi,j.

1



1. Introduction

We may also define vectors x and y as B-orthonormal when they have unit length
with respect to B and xHBy = 0. A matrix X is B-orthogonal if the columns are
B-orthonormal, that is, XHBX = I for I the appropriately sized identity matrix.

1.1.3. Sparse matrices

The methods considered in this thesis are designed for sparse matrices, for which
most elements of the matrix are zero. This means that matrix operations and
storage are significantly cheaper (ideally growing linearly with matrix size) than
for dense matrices, which have mostly or all non-zero elements. In many cases,
especially for iterative methods, which generate successive approximate solutions
to a matrix problem, a method may be much cheaper to apply to a sparse than
a dense matrix. This implies that with the same computational power, we can
consider much larger sparse problems than dense ones.

1.1.4. Projection

A projector is a matrix P ∈ Cn×n satisfying PPx = Px for all x ∈ Cn. The
following properties are also true for general matrices, but are introduced here as
they reveal the desired action of a projector. The projected vector y = Px can be
written as a linear combination of the columns in P . For a projector P with columns
pi, i = 1, . . . , n, and x ∈ Cn, Px =

∑n
i=1 xipi. An alternative definition is that the

projected vector lies in the space spanned by the columns of P , span{p1, . . . , pn}.
Clearly, a set of vectors or matrix can also be projected. The vectors generated by
the product of this projection then lie in the space spanned by the columns of P .

1.1.5. Matrix decomposition

When considering eigenvalues and eigenvectors, as we will do next, it is important
to be able to decompose a matrix A ∈ Cm×n. This can be considered as writing A
as a product of other matrices, typically in some convenient form. Before turning
to eigendecompositions, we define the more general singular value decomposition
of a matrix. This is a decomposition satisfying

A = UΣV H , (1.1)

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, and Σ is a Cm×n matrix
with non-negative entries σi ≥ 0 only along the main diagonal.

2



1.2. Eigenvalues and eigenvectors

1.2. Eigenvalues and eigenvectors

If we consider a matrix pair (A,B), that is, two square matrices, A,B ∈ Cn×n,
we can define the eigenvectors as the vectors for which multiplication with A is
equivalent to multiplication with B and some constant λ ∈ C, an eigenvalue. The
generalized eigenvalue problem, or eigenproblem, is then finding x, λ that satisfy

Ax = λBx. (1.2)

This definition, and equivalent definitions in the remainder of this chapter, also
apply to standard eigenvalue problems, where B = I, and multiplication of an
eigenvector x with A is equivalent to multiplication with a scalar eigenvalue λ

Ax = λx. (1.3)

A pair x, λ satisfying (1.2) or (1.3) may be called an eigenpair of the generalized or
standard eigenproblem respectively. If a matrix pair is diagonalizable, it is possible
to find a set of linearly independent vectors X ∈ Cn×n such that

A = BXΛX−1 (1.4)

where Λ ∈ Cn×n is a diagonal matrix containing the eigenvalues λi along its di-
agonal, and the ith column of X contains the ith (normalized) eigenvector. This
may be referred to as the eigendecomposition of a matrix. Equivalently, if B is
invertible,

X−1B−1AX = Λ. (1.5)

Invertibility of B further implies that the generalized eigenvalue problem reduces
to a standard eigenvalue problem, satisfying

B−1A = XΛX−1 (1.6)

We define an eigenspace as a space spanned by a set of eigenvectors, span{xi | i =
1, . . . , n}. The spectrum is the set of eigenvalues {λi | i = 1, . . . , n} = diag(Λ). For
the sake of simplicity in definitions and notation, we assume that all eigenvalues and
eigenvectors are simple; that is, each eigenvalue corresponds to a single eigenvector
and vice-versa. However, the theory typically generalizes to problems beyond this
case.

3



1. Introduction

1.2.1. Hermitian eigenproblems

If A ∈ Cn×n is a Hermitian matrix and B ∈ Cn×n is Hermitian positive definite
(HPD), then the eigenproblem may be called Hermitian, and the matrix pair (A,B)
a definite pair. If this is the case then the problem is diagonalizable and several
convenient properties follow. Firstly, all eigenvalues are real. We can define the
largest and smallest eigenvalues in the spectrum as λmax and λmin respectively.
Next, the eigenvectors X are B-orthogonal, and thus X−1 = XHB. As the inverse
must satisfy X−1X = XX−1 = I, XHBX = XXHB. Our eigendecomposition
may also be written as

B−1A =
n∑
i=1

λixix
−1
i (1.7)

where x−1
i = xHi B. Since B is Hermitian positive definite, it is also invertible. We

assume that the eigenproblem is Hermitian in the remainder of this thesis.

1.2.2. Interior eigenproblem

The fundamental problem considered in this thesis is that of finding all eigenvalues
λ in a given interval Iλ =

[
λ, λ
]
with corresponding eigenvectors x, of a given

definite pair, (A,B). In this scenario, as stated above, we know that there exists
an eigendecomposition with real eigenvalues and B-orthogonal eigenvectors of the
form A = BXΛX−1. Thus, the fundamental problem is

Ax = λBx

λ ∈ Iλ =
[
λ, λ
]
.

(1.8)

We will define the block vector XIλ with columns made up of the eigenvectors
xi such that the corresponding eigenvalue is λi ∈ Iλ. The space spanned by the
columns of XIλ can be defined as

XIλ = span{xi |λi ∈ Iλ}. (1.9)

This space, as well as the entire eigenspace, is an invariant subspace under B−1A.
This means that the space does not change through multiplication with this matrix,
as B−1A(XIλ) ⊆ XIλ .
The type of eigenvalue problem under consideration changes the selection of meth-
ods that are available. We consider problems where the direct solution of the entire
eigenvalue problem, that is, simply finding all eigenvalues and eigenvectors, is not

4



1.3. Building blocks for iterative eigensolvers

feasible or efficient. We also assume that the interval of interest is not always lo-
cated at an edge of the spectrum (though this is one use case.) Depending on the
size of the problem under consideration and the computational resources at hand,
one possibility to refine the problem is to subdivide Iλ and solve each eigenprob-
lem separately. This problem, including the subsequent difficulty of ensuring the
B-orthogonality of eigenvectors across different sub-problems, is considered in [30].

1.2.3. Spectral projection

Let us assume that a block vector X is B-orthogonal and the columns of X are
the eigenvectors (or a selection thereof) of (A,B). We assume that D ∈ Rn×n is
a diagonal matrix with entries of either 1 or 0, and thus that D2 = D. Then,
XDXHB is a projector. This follows as

(XDXHB)(XDXHB) =

XD2XHB =

XDXHB.

Thus our matrix satisfies the definition of a projector, and will project into the
eigenspace spanned by the columns of X.

1.3. Building blocks for iterative eigensolvers

Most methods for obtaining the eigenvalues and eigenvectors of a matrix, or a ma-
trix pair, can be categorized as “direct,” obtaining a complete eigendecomposition
of a matrix, often via decomposition, or “iterative,” obtaining successively improv-
ing approximations of one, some, or all eigenvalues and eigenvectors via an iterative
scheme, and often relying on the projection of a vector or set of vectors. We will
consider eigensolvers of the second type in this thesis, beginning by briefly intro-
ducing several methods with foundational ideas and strategies. We will consider
only standard eigenvalue problems for the moment.

1.3.1. Power method

The most fundamental iterative method for eigenvalues problems is the power
method. A description and proof of convergence can be found in [82]. We out-
line the method in Algorithm 1. Here, the repeated multiplication of a vector v
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with a matrix A generates a sequence where Ajv will approach a scalar multiple of
x1, the eigenvector corresponding with the largest eigenvalue of A, assuming that
the associated eigenvalue λ1 satisfies λ1 > 0.

Algorithm 1: Power method
Choose a starting vector v0

while not converged do
vj = Avj−1

vj =
vj
‖vj‖

j = j + 1
end

The idea of successive applications of a set of vectors, in this case, the matrix A
itself, causing iterations to approach a desired eigenspace is an essential concept. A
related idea is to consider the entire subspace spanned by iterations of Ajv, which
collectively form a Krylov subspace.

1.3.2. Krylov subspace methods

The jth Krylov subspace built from a matrix A and vector v has the form

Kj(A, v) = span
{
v, Av,A2v, . . . Aj−1v

}
. (1.10)

Krylov subspaces are a fundamental building block of iterative methods in general;
they are defined and discussed in more detail in most standard texts on numerical
methods, for example [82]. In this context we could consider the power method
as providing only the final vector in Kj(A, v), Aj−1v. Krylov subspace methods,
in contrast, gather an approximate solution based on the subspace spanned by all
vectors. Thus they may be more powerful than a scheme considering just the final
vector, but the additional costs of storage and orthogonalization are also significant.

The most fundamental Krylov subspace method is the Arnoldi method, as described
in [82], which is an orthogonal projection method onto Kj(A, v).

The method begins with a single Arnoldi vector, and in each iteration, another
direction is added to the basis. In jth iteration, the algorithm will:

• Extend the Krylov subspace by one direction (multiply previous Arnoldi vec-
tor vj by A).

• Orthonormalize the resulting vector against all other Arnoldi vectors vi, i =
1, . . . j .

6
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• End if the new vector is completely linearly dependant on existing Arnoldi
vectors (no new directions possible for Krylov subspace).

After j iterations, the resulting vectors form an orthonormal basis of Kj(A, v).
From this basis, the j largest eigenvalues and eigenvectors of A may be extracted.
Alternative strategies are possible to obtain, e.g., the smallest j eigenvalues.

1.3.3. Basic subspace iteration

Subspace iteration, like the Arnoldi method, also constructs a subspace with j
vectors as an approximate basis for the largest j eigenvectors. However, it is in
principle more related to the power method in that it saves only the jth application
of A to a block of vectors Y . A simple subspace iteration, as introduced in [82] and
outlined in Algorithm 2, computes, for a standard eigenvalue problem, a subspace
corresponding to the j eigenvectors with largest eigenvalues.

Algorithm 2: Subspace iteration
Choose a starting block of j vectors Y
while not converged do

Compute U = AY
Orthogonalize U
Set Y = U

end

As in the power method, the repeated application of A causes the vectors in U to
approach the largest eigenvector. Together with the subsequent reorthogonalization
(via, e.g., aQR factorization) the vectors will approach a basis for the j eigenvectors
associated with the j largest eigenvalues. A proof of this is given in [82].

1.3.4. Rayleigh–Ritz

Algorithm 3: Rayleigh–Ritz
Input : A,B ∈ Cn×n, U approximate basis for XIλ
Output: Approximate eigenvectors X̃Iλ

Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute full sized approximate eigenvectors X̃Iλ = UW

The discussion in this section so far has focused on obtaining an approximate
subspace for the desired eigenvectors. Another important consideration is how we
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may extract the eigenpairs from that subspace. A standard combination with a
subspace iteration-type scheme is a Rayleigh–Ritz procedure, which, as described
in [82], may be used to extract the approximate eigenpairs. The algorithm, as
shown in Algorithm 3, computes the Ritz pairs λi, x̃i, i = 1, . . . , n, as approximate
eigenpairs of (A,B). These are shown in the algorithm in block form, as Λ and
X̃Iλ . As described in [65], this approximate solution is generated by an approximate
similarity transformation of (A,B) into the subspace spanned by the vectors of U .

This is also the standard method we will use for extracting eigenpairs in the re-
mainder of this thesis. If U contains not just an approximate basis for XIλ but other
directions that are not related to eigenvectors of (A,B), these Ritz pairs will also
be computed. We refer to these as spurious eigenpairs; they are easy to distinguish
from the desired eigenpairs when convergence of these eigenpairs has proceeded
towards a smaller residual threshold. Further discussion on spurious eigenpairs in
the context of subspace iteration methods can be found in [30].
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CHAPTER 2

SUBSPACE FILTRATION METHODS

2.1. Subspace filtration

A filter works like a sieve, and subspace iteration like shaking the sieve to separate
wanted eigenvector directions from unwanted. We want to know how to make a
good sieve that will get rid of the “dirt” quickly while not letting any “gold” fall
through the cracks. The general strategies considered in this thesis for solving
(1.8) involve constructing an approximate basis for the desired eigenvectors, that
is, those with eigenvalues in Iλ. Once this basis has been constructed, we can
subsequently use a suitable method to extract the approximate eigenvalues and
eigenvectors. Iterations of “filtering” a set of vectors for directions corresponding
to those of the desired eigenvectors may be used, as well as combined, in order to
construct this approximate basis. The idea of an approximate spectral projector
is inherently related to subspace filtration, as directions are “projected towards” or
“filtered” for the desired directions in XIλ .

2.1.1. Partial spectral projector

We begin by considering our ideal spectral projector in 1D, h,

h(x) =

{
1 for x ∈ Iλ
0 for x /∈ Iλ,

(2.1)
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2. Subspace filtration methods

Figure 2.1.: Visualization of (2.1).

which corresponds to the window function, as shown in Figure 2.1.

We can define a corresponding matrix function, h(B−1A). Given the eigende-
composition of B−1A, we require our filter to satisfy h(B−1A) = h(XΛX−1) =
Xh(Λ)X−1. With the above definition of h(x),

= Xh(Λ)X−1,

=
n∑
i=1

h(λi)xix
−1
i ,

= XIλX
−1
Iλ

where again, XIλ is a block vector containing the exact eigenvectors with eigenval-
ues in Iλ. Equivalently, given the B-orthogonality of the eigenvectors, h(B−1A) =
XIλX

H
Iλ
B. This is a spectral projector into XIλ .

As we cannot obtain this exact filter without prior knowledge of the eigendecom-
position, we may also consider what happens if we have a function h̃(B−1A) such
that, in 1D,

10
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h̃(x) ≈
{

1 for x ∈ Iλ
0 for x /∈ Iλ.

(2.2)

If h̃(B−1A) = Xh̃(Λ)X−1, this matrix will be an approximate spectral projector
into XIλ . This may be applied to a set of mU vectors Y ∈ Cn×mU to approximately
project them into XIλ . Here we define

U = h̃(B−1A)Y

where the projected vectors, U ∈ Cn×mU , act as an approximate basis for XIλ .
We may add a filtering scheme to subspace iteration in order to accelerate the pro-
cess (as discussed in [82]) or to search for eigenpairs with eigenvalues inside a given
interval, instead of just the largest. Subspace filtering techniques may be discussed
synonymously with projection or acceleration schemes, as the filter usually relies
on projection into the desired eigenspace, and accelerates the iteration. The filter
used, h̃, controls the quality of the resulting approximate eigenspace, and is the
focus of much of the research for subspace iterative methods.

Algorithm 4: Filtered subspace iteration
Choose a starting block of mU vectors Y
while not converged do

Compute U = h̃(B−1A)Y
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y = X

end

We observe that methods of this type allow us to reduce a large, sparse partial
eigenproblem to a dense problem proportional to the desired slice of the spectrum.
We next consider some common techniques for obtaining filtering functions of type
h̃. As in general with an interpolation problem, rational or polynomial approxima-
tion functions may allow us to obtain a good approximation of h.

2.2. Rational filters

The main filtering method we will consider in this thesis is those arising from
rational functions, which we define as a function of degree q that can be written as

11
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Figure 2.2.: Visualization of absolute value of rational filter (2.3), Gauss–Legendre
filter with q = 16.

r(x) =
f(x)

g(x)

where f(x) and g(x) are relatively prime monic polynomials with maximum degree
q. We will consider functions of the form

r(x) =

q∑
i=1

ωi
zi − x

(2.3)

where zi and ωi, the poles and weights, are chosen such that r(x) approximates
the window function (2.1). Typically zi and wi are chosen as complex values,
even though the eigenvalues we seek are real. This is in part because of the way
rational filters have traditionally been defined as arising from contour integrals,
as we will discuss below, but also because the distance between a pole zi and
the closest eigenvalue in the spectrum is significant in determining the cost of the
method, as we will discuss in Chapter 4. Note that it is possible to have a repeated
pole with power greater than one, but this case will not be considered here; some
consideration is given in [97]. The corresponding matrix function is defined as
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2.2. Rational filters

r(B−1A) =

q∑
i=1

ωi(ziI −B−1A)−1

=

q∑
i=1

ωi(ziI −B−1A)−1B−1B,

giving us the traditional final matrix form of

r(B−1A) =

q∑
i=1

ωi(ziB − A)−1B. (2.4)

Indeed, when we consider the filter applied to the eigendecomposition of (A,B),

r(B−1A) =

q∑
i=1

ωi(ziI −XΛX−1)−1

=

q∑
i=1

ωi(X(ziI − Λ)X−1)−1

= X(

q∑
i=1

ωi(ziI − Λ)−1)X−1

= Xr(Λ)X−1

Thus, r(B−1A) is an approximate spectral projector into XIλ . When it is applied
to a set of vectors Y , the numerical problem becomes the solution of a sequence of
linear system of equations with multiple right hand sides

r(B−1A)Y =

q∑
i=1

ωi(ziB − A)−1BY. (2.5)

We note that if A, B and Y are real, and if the weights wi and poles zi satisfy
wi = wi+q/2, zi = zi+q/2, i = 1, . . . , q/2 (that is, the poles are symmetrically placed
above and below the real axis), we only need to solve half the linear systems. This
occurs, as pointed out in [77], because wi(ziB−A)−1BY = wi(ziB − A)−1BY , and
thus
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r(B−1A)Y =

q∑
i=1

ωi(ziB − A)−1BY

=

q/2∑
i=1

ωi(ziB − A)−1BY +

q∑
i=q/2+1

ωi(ziB − A)−1BY

=

q/2∑
i=1

ωi(ziB − A)−1BY + ω̄i(z̄iB − A)−1BY

=

q/2∑
i=1

ωi(ziB − A)−1BY + ωi(ziB − A)−1BY

=

q/2∑
i=1

2Re(ωi(ziB − A)−1BY ).

2.2.1. Contour integration

An alternative approach, also resulting in a rational filter, comes from the perspec-
tive of contour integration. The following analysis is based on [65] and [2].

We restate the Cauchy integral formula, as defined in [2], which says that for Γ a
continuous, simply closed [2] curve surrounding a simply connected domain Ω ∈ C
, an analytic function f(z) and a point x /∈ Γ,

1

2πi

∫
Γ

f(z)dz

z − x =

{
0, x /∈ Ω

f(x), x ∈ Ω.
(2.6)

To restate this in simple terms, if a point x lies on the inside of a curve, the integral
formula will return the value of the function of f at that point. Otherwise, since
f(z)
z−x contains no poles inside the area of integration, the resulting integral is 0.

The simplest example of this is if f = 1, returning

c(x) =
1

2πi

∫
Γ

dz

z − x =

{
0, x /∈ Ω

1, x ∈ Ω.
(2.7)

If we consider Ω such that R(Ω) = Iλ, as illustrated in Figure 2.3, this equates to
the window function h on Iλ. In order to include the boundaries λ and λ in this
representation, we must assume that these lie (infinitesimally) inside Γ. We may
also make the simplifying assumption that λ and λ are not eigenvalues of (A,B).
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Γ

Ω

λλ

Figure 2.3.: Visualization of Ω, Γ and Iλ in complex plane.

We typically consider contours Γ such as circles or ellipses; the parametrization
will be discussed later. If we define the corresponding matrix function c(B−1A)
and apply it to the matrix pair, we obtain the exact spectral projector into XIλ :

c(B−1A) =
1

2πi

∫
Γ

(zB − A)−1Bdz

=
1

2πi

∫
Γ

(zB −BXΛX−1)−1Bdz

=
1

2πi

∫
Γ

(zI −XΛX−1)−1B−1Bdz

=
1

2πi

∫
Γ

n∑
i=1

1

z − λi
xix
−1
i dz

=
1

2πi

∫
Γ

n∑
i=1

h(λi)xix
−1
i dz

= XIλX
−1
Iλ
.

Using numerical quadrature, we may approximate (2.7) and obtain a rational filter
of the form (2.3). This is the historical approach to rational filters for interior
eigenvalue problems, with initial considerations by Sakurai and Sugiura in [86] and
Polizzi in [77]. We will consider their approaches and resulting algorithms in more
detail in the remainder of this work.
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2.2.2. Numerical integration

Numerical integration is used to compute an approximation for a definite integral,
using a sum with the integrand function f(x) evaluated at a sequence of points xi,
i = 1, . . . , q.

∫ b

a

f(x)dx ≈
q∑
i=1

wif(xi) (2.8)

We describe two simple numerical integration rules below in preparation for the
discussion in the context of contour integration. Further discussion can be found
in introductory numerical mathematics textbooks, e.g., [20]; introductions with a
perspective on contour-integration for eigenvalue problems are [65] and [30].

The simplest rules for numerical integration are Newton-Coates rules, which build
an approximation for an integral as an average over a series of points. When the
points are equispaced, we obtain a composite quadrature rule. We introduce a
simple rule below. This is followed by a rule based on orthogonal polynomials.

2.2.3. Composite midpoint rule

Let h = 1
q
. Then, the composite midpoint rule, for the equispaced points

xi =

(
i− 1

2

)
h, i = 1, . . . , q

is the composite form of the open Newton-Cotes formula of degree 1. The estimated
value of the integral over each sub-interval is the average value of of the integrand
at the interval midpoints, multiplied by the length of the sub-interval. This results
in the approximation

∫ 1

0

f(x)dx ≈ h

q∑
i=1

f(xi). (2.9)

2.2.4. Gauss-Legendre quadrature

For a quadrature rule of degree q, xi is the ith root of the monic Legendre polynomial
of degree q, a set of orthogonal polynomials defined by the recursive formula
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(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

where
P0(x) = 1, P1(x) = x.

The weights are defined as

wi =
2

(1− x2
i ) [P ′n(xi)]

2 , i = 1, . . . , n

and quadrature rule is thus ∫ 1

0

f(x)dx ≈
q∑
i=1

wif(xi). (2.10)

2.2.5. Mapping to a complex contour

The quadrature rules we have seen evaluate integrals over [0, 1], of form

∫ 1

0

f(x)dx. (2.11)

To use these approximations, we must define a transformation of our original in-
tegral over a contour Γ ∈ C to this domain. Integration by substitution gives
us

1

2πi

∫
Γ

f(z)dz =
1

2πi

∫ 1

0

s′(t)f(s(t))dt. (2.12)

where we require s to be a function of the form s : R→ C, satisfying the parametriza-
tion Γ = s(t), t = [0, 1).

Let us assume that Γ is a circle in the real/imaginary plane, as shown in Figure
2.4 with center

c =
λ+ λ

2
(2.13)

and radius

r =
λ− λ

2
. (2.14)
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ΓΓ

c

λλ

r

Figure 2.4.: Circular contour

Then, the parametrization

s = c+ re2πit t = [0, 1) (2.15)

satisfies the condition for substitution. We also require the derivative,

s′(t) = 2πire2πit t = [0, 1) . (2.16)

Thus,
1

2πi

∫ 1

0

s′(t)f(s(t))dt =

∫ 1

0

re2πitf(c+ re2πit)dt (2.17)

This is also possible for other contours Γ, assuming a parametrization exists. We
also consider elliptical contours. In this case, given an ellipse with height 2a, center
c and width 2r, we can consider the parametrization

s(t) = c+ r cos (2πt) + ai sin (2πt) t = [0, 1) . (2.18)

Here we have the derivative

s′(t) = −2πr sin (2πt) + 2πai cos (2πt) t = [0, 1) . (2.19)

We typically define the ellipse with regards to its eccentricity, which is defined as√
1− a2

r2
.
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ΓΓ

c

λλ

r

a

Figure 2.5.: Elliptical contour

Other contours, with, e.g., rectangular shapes, are also possible. Here, the possi-
bility of a computational advantage arises as the transformed quadrature points
are equally distanced from the real axis. This is a defining characteristic in the
difficulty of the linear systems, as we will discuss in Chapter 4.

2.3. Moments and rational filters

For a given function f(x), each moment extracts a different, related function or
measurement. For a function f(x), the pth moment is defined as

∫
zpf(z)dz. For

example, moments are commonly defined in statistics with regards to the proba-
bility density function where, in rough terms, the first moment corresponds to the
mean, the second to the variance, and the third to the skewness of the function,
etc. Moments are also seen in physics, where the value of the pth moment at some
point refers to the integral over space of the distance from that point multiplied
by the density of some physical quality (e.g., mass):

∫
rpρ(r)dr. If we consider

moments in the context of our filtering functions, they might be seen as giving us
different approximated “views” of the desired eigenspace XIλ . If some directions of
this space are not well represented in the filter corresponding to one moment, they
might be better represented in another.

Just as shown in the last section, a rational filter can be defined either indepen-
dently as an approximation of the window function on Iλ, given in (2.1), or as a
numerical quadrature rule approximating a contour integral around Iλ. The use of
moments in a projected subspace–based eigensolver has historically been defined in
terms of the latter case. In this thesis, we will only consider multi-moment filters
arising from contour integration rules. We consider, in 1D, the filters with different
values of p satisfying

1

2πi

∫
Γ

zp

z − xdz ≈ rp(x) (2.20)
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where

rp(x) =

q∑
j=1

ωjz
p
j

zj − x
. (2.21)

As before, the Cauchy integral formula, as defined in (2.6), may be used for this
integral, with f(x) = xp. Thus,

cp(x) =
1

2πi

∫
Γ

zp

z − xdz =

{
xp, x ∈ Iλ
0, x /∈ Iλ.

(2.22)

In this way, rp is a function representing an approximation of an alternative version
of the window function (2.1).

When we consider the resulting approximate spectral projector, the key feature we
desire from each of our filters is to preserve or amplify eigendirections with eigenval-
ues inside Iλ and to reduce directions with eigenvalues outside of Iλ. Theoretically,
the value of the window function inside of Iλ must simply be non-zero in order to
satisfy this requirement. Furthermore, we do not consider the different moment-
based filters in isolation, but as a whole, projecting a set of vectors according to
each filter, then gathering the entire set of vectors as an approximate basis for XIλ .
We begin by considering the application of (2.21) to the matrix pair (A,B), as

rp(B−1A) =
N∑
j=1

ωjz
p
j (zjB − A)−1B. (2.23)

As before in (2.4), in what can now be seen was the case of the 0th moment, this filter
will act on a set of random vectors and project them into the desired approximate
eigenspace. Indeed, in [58], the use of multiple moments was shown to equate
arithmetically to a single filter acting as an approximate projector on a block-
Krylov subspace to create a projected subspace. We highlight key points of this
analysis here, following the logic shown in [58], to guide the reader’s understanding.

We begin by re-defining r(x) as the (0th moment) rational function in (4.1). Then,
r(B−1A) is applied to Y to obtain U0

U0 =

q∑
i=1

wi(ziB − A)−1BY. (2.24)
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If we consider the subspace resulting from the combination of s moments, the full
subspace is constructed as

U =

[
U0,

q∑
j=1

wizi(ziB − A)−1BY, . . . ,

q∑
j=1

wiz
s−1
i (ziB − A)−1BY

]
, (2.25)

with the vectors corresponding to the p moment defined as

Up =

q∑
j=1

wiz
p
i (ziB − A)−1BY. (2.26)

Thus, the equivalent definition of the full subspace is

U =
[
U0, U1, . . . , U s−1

]
. (2.27)

We can decompose U0 into a the sum of the n eigenvectors of (A,B) as

U0 =
n∑
j=1

r(λj)xjx
H
j BY

=
n∑
j=1

q∑
i=1

wi
zi − λj

xjx
H
j BY.

Similarly, for the pth moment,

Up =
n∑
j=1

q∑
i=1

wiz
p
i

zi − λj
xjx

H
j BY. (2.28)

Finally, we assume that

q∑
i=1

wiz
p
i

{
6= 0, (p = −1)

= 0, (p = 0, 1 . . . , q − 2)
. (2.29)

The quadrature rules considered in this thesis (midpoint and Gauss–Legendre)
have positive weights, and are exact for polynomials up to at least degree q − 2.
Furthermore, according to Cauchy’s integral theorem, the integral of zp over the
closed curve Γ is 0, since this function is analytic in this region [2]. Therefore, this
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condition should be satisfied for all quadrature rules considered in this chapter.
Then, as shown in [85],

q∑
i=1

wiz
p
i

zi − λ
= λk

q∑
i=1

wi
zi − λ

. (2.30)

This means that

Up =
n∑
j=1

λpjr(λj)xjx
H
j BY (2.31)

and thus in block form,

Up = Xr(Λ)ΛpXHBY. (2.32)

If we define the sth block-Krylov subspace Ks = Ks(B
−1A, Y ), where Y is a block

vector, we obtain, via the eigendecomposition of B−1A,

Ks =
[
Y,XΛXHBY, (XΛXHB)2Y, (XΛXHB)s−1Y

]
(2.33)

or equivalently

Ks =
[
Y,XΛXHBY,XΛ2XHBY, . . . , XΛs−1XHBY

]
, (2.34)

then the subspace U can be written as

(Xr(Λ)XHB)Ks. (2.35)

Again, Xr(Λ)XHB is the approximate projector for the rational filter with 0th

moment into XIλ Thus, the generated subspace U is equivalent to the result of a
projector, acting on the vectors of an order-s block-Krylov subspace formed with
the matrix pair (A,B) and the block vector Y .

However, the full rank of the block Krylov subspace is not guaranteed, and it is
possible that linear dependence may occur, hampering the effectiveness of these
methods. This may be offset by orthogonalizing U after construction, increas-
ing subspace size, or limiting the number of moments. The effects and potential
countermeasures are discussed further in Chapter 5.
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2.4. Rational filter-based eigensolvers

We define a rational filter-based eigensolver, or RFE, as a projected subspace
method for solving (1.8) that utilizes a rational filter for approximate projection
into the desired eigenspace. This class of methods has often been summarized with
the label of “contour integral–based eigensolvers,” but we generalize the name here
to include rational filters beyond those deriving explicitly from contour integration.
As above, we consider rational filters r(x) of degree q with shifts, zi and weights
wi, i = 1, . . . , q, such that for x ∈ R

r(x) =

q∑
i=1

wi
zi − x

.

As we have seen up to this point, a rational filter, and thus an RFE may involve
multiple moments or simply the 0th moment. The FEAST algorithm, as introduced
by Polizzi [77], is the fundamental method for the single–moment case. In this
algorithm, a set of mU initial vectors Y ∈ Cn×mU , usually chosen randomly, is
projected by the approximate spectral projector based on the rational filtering
scheme r(B−1A). The result of this projection is an approximate basis for the
desired space, gathered into a block vector which we call U . A Rayleigh–Ritz step
is used to extract the eigenvectors and eigenvalues from U . If convergence is not
satisfactory, iterations may continue with the starting vectors of the next iteration
chosen as the approximate eigenvectors of the last iteration.

Algorithm 5: FEAST
Choose a starting block of mU vectors Y
while not converged do

Compute U =
∑q

i=1wi(ziB − A)−1BY
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y = X

end

2.4.1. RFEs with moments

Sakurai–Sugiura methods (SSM) were introduced in [86] as the first rational filter-
ing based eigensolver (though the methods were not introduced as iterative). The
initial conception of the algorithm extracted the eigenpairs via a Hankel matrix
[86]. A later version of the scheme using a Rayleigh–Ritz step for a more accurate
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extraction of the eigenpairs was given in [87]; this was extended to use a more
stable block Rayleigh–Ritz (SS–RR) procedure in [55]. The possibility of subspace
iteration has also been introduced in [58, 84] and will be discussed further in Chap-
ter 5. We introduce the method in Algorithm 6 with the possibility of multiple
iterations for completeness, but omit the details of how Y is selected for the time
being. We define Φi as (ziB − A)

Algorithm 6: Block SS–RR with subspace iteration
Choose a starting block of mU

s
vectors Y

while not converged do
Compute U =

[∑q
i=1wiΦ

−1
i BY, . . . ,

∑q
i=1 wiz

s−1
i Φ−1

i BY
]

Orthogonalize U
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y for next iteration

end

2.4.2. Convergence of an RFE

In [89], convergence bounds for the FEAST algorithm and all equivalent RFEs
compatible with Algorithm 5 were given. As seen in that work, if we assume the
n eigenvalues of (A,B) are ordered according to r(λ1) ≥ r(λ2) ≥ · · · ≥ r(λn), and
define P t as the B-orthogonal projector into the space spanned by the vectors of
U in the tth iteration of Algorithm 5, we obtain a convergence bound

‖(I − P t)xi‖ B ≤ c |r(λmU+1)

λi
|
t

i = 1, 2, . . . ,mU . (2.36)

We can observe that the convergence of the initial starting vectors towards the
desired eigenvectors is controlled by the value of the rational function at the eigen-
values. The value of r(λmU ) is clearly also important; a larger value of mU should
improve overall convergence, though the degree to which this occurs is controlled
by the spectrum, as will be discussed later. Of course, the numerical solution of the
linear systems of equations is an important factor to consider in determining the
overall convergence of the RFE. In [89] it was shown that, beyond a given degree
of accuracy, the error added by a (possibly iterative) inexact solution to the linear
systems of equations should not affect the rate of convergence as a whole. The
degree to which error in the linear systems can affect the solution has been shown
in more detail in [38].
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2.5. History of the RFE

In 2003, Sakurai and Sugiura released their contour–integral scheme with multiple
moments [86], which involved the construction of a Hankel matrix in order to
extract the approximate eigenpairs. Several updates have followed with a modified
extraction type: Rayleigh–Ritz [87], and block versions of the Rayleigh–Ritz [55],
Arnoldi [57], and Hankel [56] extraction methods for improved stability. These
works also include the generalization to non-Hermitian problems. Furthermore,
Sakurai–Sugiura methods have been extended to nonlinear eigenvalue problems [12,
98]. Beyn methods have also been introduced as a rational scheme with multiple
moments for nonlinear eigenvalue problems [17]; these also have been considered
further [94].

In 2009, Polizzi independently developed the FEAST method [77] for Hermitian
generalized eigenvalue problems, using a contour integration scheme within a pro-
jected subspace iteration method with Rayleigh–Ritz extraction. This scheme has
also been further developed for non-Hermitian [63] and nonlinear [37] problems,
as well as combined with Beyn methods for the solution of nonlinear problems
[19]. Error bounds have been shown [89], including with respect to the accuracy
of solution of the linear systems of equations [38]. The extension from contour–
integral based schemes to more general rational filters has also been considered,
for Zolotarev functions [42], and optimized rational functions [64, 96]. In [97], a
weighted least–squares formula for the weights of a rational function was also pro-
vided. An overview of possible choices of rational functions for an RFE was given
in [30]. This topic will be discussed further in Chapter 4.

2.6. Polynomial filters

A subset of rational filters that do not require the solution of a linear system of
equations is polynomial filters, which can be defined for a generic polynomial of
degree d as

p(x) =
d∑
i=0

ωix
i (2.37)

When applied to a Hermitian nonsingular matrix A = XΛXH , the subsequent
matrix function is

25



2. Subspace filtration methods

Figure 2.6.: Visualization of Chebyshev polynomial filter (2.37) with d = 100.

p(A) =
d∑
i=0

ωi(XΛXH)i

=
d∑
i=0

ωiX(Λ)iXH

= Xp(Λ)XH .

When applied to a set of vectors Y , this acts as an approximate spectral projector,

U =
d∑
j=0

ωiA
iY (2.38)

Assuming that p(x) is an approximation for the window function, the resulting
projected vectors satisfy

U ≈ XIλX
H
Iλ
Y (2.39)
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2.7. Additional algorithmic considerations

We note that the application of the filter for a generalized eigenvalue problem would
require inversion of the matrix B; thus we only consider the standard eigenvalue
problem here. A general overview of polynomial filtering may also be found in [82].

Algorithm 7: Polynomial filter-based subspace iteration
Choose a starting block of mU vectors Y
while not converged do

Compute U =
∑d

i=0 ωiA
iY

Compute Rayleigh quotients AU = UHAU , BU = UHU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y = X

end

2.6.1. Chebyshev polynomials

Chebyshev polynomials, as defined in, e.g., [95], are a common approximating
polynomial due to their optimal approximation properties in the uniform norm
and their ability to limit oscillatory activity in comparison to other polynomials,
especially at higher degrees. In this thesis, we use Chebyshev polynomials of the
first kind; that is

P (x) =
d∑
i=0

ciTi(x) (2.40)

where Ti(x) satisfies Ti(cos(θ)) = cos(iθ). The values of ci are selected such that
P (x) approximates the window function on [−1, 1]. Further details on calculating
the values of ci and Ti(x) for this approximation, as well as additional filters to
improve the approximation, are given in [34].

2.7. Additional algorithmic considerations

We have so far discussed how to apply a filtering scheme to a set of vectors to
obtain a basis, U , for the desired eigenspace XIλ . We now describe several other
important considerations of a subspace iterative algorithm.

As described in Algorithm 2, at the end of a subspace iteration, we have a set of
approximate eigenvectors and eigenvalues. Unsurprisingly, these eigenpairs may
converge at different rates. To reduce computational expense, eigenpairs that have
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converged to the desired tolerance may be removed from the starting subspace
vectors for the next iteration; the subspace may shrink accordingly [82]. It is
important to continue to orthogonalize the approximate eigenvectors in future it-
erations against these “locked” vectors. This topic is discussed in more detail in
[33, 65, 66].

The number of vectors included in U , mU , is also important in ensuring conver-
gence. Indeed, as shown in [65, 66], it is essential that mU is greater than m, the
true number of eigenvalues in Iλ. As discussed in [30], if this condition is not met,
it is essentially impossible to find all desired eigenpairs. Given m̃, an estimate for
m, the standard choice of mU ≈ 1.5 × m̃, the expected number of eigenvalues in
Iλ, has been shown in [32] and [89] to be an acceptable choice. We will discuss the
choice of subspace size with respect to a multiple-moment RFE in Chapter 5.

Updating the value of m̃ over subspace iterations is important for maintaining
this ratio and determining when all eigenvalues have been found. As discussed
in [32, 65, 89], the eigenvalues of UHBU approach the values of r(λi)2 or p(λi)2,
and thus may be used to count the number of eigenvalues in Iλ. These eigenvalues
correspond to the “filtered” value of the corresponding direction, so values closer to 1
are presumably directions that should be kept, and values close to 0 are presumably
spurious. Thus, the number of eigenvalues of UHBU with a value greater than 1/4,
or alternatively, singular values with a value greater than 1/2, may be used as an
estimate for m̃. As discussed in [32, 65], the rank of U also coincides in exact
arithmetic with m. In [32], the authors show that again, counting the singular
values of U with a value greater than 1/2 is a good metric for counting eigenvalues.

Another important aspect is forming this initial estimate for m̃. If the eigenvalue
problem is standard, the Kernel Polynomial Method (KPM) may be used to obtain
the approximate density of the spectrum [95]. Strategies for generalized problems
involving polynomial and rational filters have also been explored [27, 72].

2.8. Solving linear systems of equations

The most expensive part of a subspace iterative scheme is the construction of the
subspace basis U ; for a rational filter this cost is based in the cost of solving linear
systems of equations of the form

Φu = y. (2.41)

The matrices in these linear systems are shifted, such that Φ = A−zB, as required
to construct U . Again, the value z corresponds to a pole of the rational function.
Note that we consider u and y as belonging to block vectors; depending on the
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solver in use, the linear systems corresponding to the different pairs of columns can
be solved together or separately. In the context of this thesis, y is replaced by By;
we skip this notation in this section for the sake of simplicity. We note that the
number of columns of each of these blocks is expected to be small relative to the
matrix size.

The choice of linear solver is very important for the overall performance of an
RFE. The field of linear solvers is extremely broad and an area of active research.
Furthermore, performance is typically dependant on the properties of the linear
system under consideration. The shifted linear systems that we consider in this
thesis have in common that they are typically ill-conditioned (due to their shifted
nature) large, and sparse. In some cases we can limit our problem set to enforce
characteristics such as the normality of a matrix or real entries outside of the
diagonal (which itself contains a complex shift). Certain conditions, such as being
banded or based on a grid, or knowing details of the matrix structure can help
in choosing a particular solver or preconditioner. However, depending on such
conditions or knowledge is extremely limiting for the generality of the RFE and so
are avoided in this thesis. We discuss below some basics categories and principles
of linear solvers, as well as some general subtypes, which will arise as we consider
strategies for their efficient use within an RFE.

2.8.1. Direct solvers

Direct solvers for linear systems of equations are typically based on factorization.
The most common is the LU factorization; given the decomposition of a matrix Φ
into factors Φ = LU , with L lower and U upper triangular, the solution of (2.41)
may be given as

u = U−1L−1y (2.42)

As L and U are triangular matrices, the solution of these linear systems requires
O(n2) operations. In the general case, such a factorization requires O(n3) opera-
tions and O(n2) storage [93], even if the original matrix is sparse. This cost quickly
becomes prohibitive. Various mitigation schemes are available; depending on the
underlying matrix, reordering, approximation, or a differing factorization may be
appropriate. Some of these strategies are included in the software packages we
discuss in Section 2.10.4, but a general discussion is beyond the scope of this work.
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2.8.2. Iterative solvers

Iterative linear solvers generate approximate solutions such that, after k iterations,
Φuk ≈ y. There is a large variety to the way these approximate solutions may be
generated, including the basic relaxation schemes, Krylov subspace methods and
multigrid methods. Furthermore, the choice of preconditioner, while specific to
the problem under consideration, is often essential to obtaining good performance.
Generally we may hope for solution to a linear system of equations in O(n) op-
erations and storage for a sparse matrix. In practice, iterative methods may only
outperform direct methods for larger matrix sizes. Their convergence may depend
on the conditioning of the problem under consideration, slowing or even diverging
for the ill-conditioned shifted linear systems under consideration. At this point we
will focus on a few basic Krylov subspace methods which will be revisited in the
remainder of this thesis, mainly in Chapter 4.

2.8.2.1. GMRES

The Generalized Minimum Residual Method (GMRES) is aKrylov subspace method ;
that is, the provided solution uj satisfying Φuj ≈ b in the jth iteration lies in
u0 + Kj(Φ, r0), where Kj(Φ, r0) is the jth Krylov subspace and r0 is the initial
residual vector b− Φu0.

This method specifically minimizes the residual norm in the jth iteration over all
solution vectors in u0 + Kj(Φ, r0). We define the method below in Algorithm 8,
as given in [39]. We note that this involves the definition of the upper Hessenberg
matrix Hj ∈ Cj+1,j

Hj =



h1,1 h1,2 . . . . . . h1,j

h2,1 h2,2 . . . . . . h2,j

0
. . . . . . ...

... . . . . . . ...
0 . . . . . . hj,j−1 hj,j
0 . . . . . . 0 hj+1,j


(2.43)

As j increases, the cost of a GMRES iteration also increases. As n iterations may
be required (in exact arithmetic), this may become computationally infeasible. The
restarted GMRES method begins building a new Krylov basis every c iterations,
using the solution of the previous iteration as a starting guess for the solution.
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Algorithm 8: GMRES for the solution of Φu = y

Compute r0 = y − Φu0, h1,0 = ‖r0‖ 2

j = 0
while ‖rj‖ > tol do

vj+1 = rj/hj+1,j

j = j + 1
rj = Φvj
for i = 1, . . . , j do

hi,j = vHi rj
rj = rj − hi,jvi

end
hj+1,j = ‖rj‖ 2

if hj+1,j = 0 then
break

end
yj = argminy‖Hj+1,jy − ‖r0‖ 2e1‖ 2

uj = u0 + Vjyj, where Vj = [v1, . . . , vj]
end

2.8.2.2. Conjugate Gradients

The conjugate gradient (CG) method is also a Krylov subspace method, suitable
for symmetric positive definite matrices. The resulting approximate solution u
minimizes the energy norm, uHΦu of the error in the Krylov subspace Kj(Φ, r0)
[81]. The algorithm relies on the iterative search for a solution in “conjugate” (Φ-
orthogonal) directions, and is presented, as in [81], in Algorithm 9. The impressive
convergence rate bound for the CG method, related to the square root of the
condition number of the matrix, is a reason why it is a foundational and leading
method for iterative solvers.

2.9. Orthogonalization

Orthogonalization is an important component of a filtered subspace scheme. We
will now highlight some areas of these schemes where orthogonalization may be
helpful, and explain some basic strategies for orthogonalization. This is a brief
overview; a comprehensive discussion including recommended strategies and usage
for projected subspace methods may be found in [30].

There are two important points where orthogonality is considered in an RFE or
other projected subspace scheme. The first is regarding the vectors of U . These
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Algorithm 9: CG for the solution of Φu = y

Compute r0 = y − Φu0, p0 = r0

j = 0
while ‖Φuj − y‖ > tol do

αj =
rHj rj

pHj Φpj

uj+1 = uj + αjpj
rj+1 = rj − αjΦpj
βj =

rHj+1rj+1

rHj rj

pj+1 = rj+1 + βjpj
j = j + 1

end

are expected to form an approximate basis for XIλ . However, if the vectors of U
approach linear dependence, the robustness of the method is jeopardized. Thus, an
extra step to ensure stability is to orthogonalize U , and if needed, to remove any
rank-deficient columns. This is shown in Algorithm 10. This topic is also discussed
in more detail in Chapter 5, as RFEs with multiple moments are more sensitive to
rank deficiency, and the orthogonalization of U is required.

Algorithm 10: Filter based subspace iteration with orthogonalization of U
Choose a starting block of mU vectors Y
while not converged do

Compute U = h̃(B−1A)Y
Orthogonalize U
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y based on X

end

It is important to ensure the eigenvectors found by the algorithm are orthogonal
to each other. Within a subspace iterative method, the Rayleigh–Ritz algorithm
should return orthogonal eigenvectors; the resulting full-sized vectors should also be
orthogonal. However, if the spectrum is sub-divided into separate eigenproblems,
and these are solved separately, the resulting eigenvectors from different intervals
may not be orthogonal to each other. This problem and strategies for ensuring
orthogonalization are discussed in [30]. Orthogonalization strategies for RFEs with
multiple moments are discussed in Chapter 5.
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2.10. A software framework for iterative subspace
filtration

When considering the efficient solution of RFEs and other filtered subspace meth-
ods, it is helpful to define the software framework we are considering. The BEAST
eigensolver is a framework for large, sparse interior eigenvalue problems. It relies
on filtered subspace iterative schemes, as described above. These strategies are
implemented for use in a a high-performance computing environment. We will
give a general overview of the framework here, as it implements many of the ideas
provided and has generated results shown in the remainder of this thesis. Fur-
ther description of the framework is provided in [30], as well as in the context
of the larger ESSEX (Equipping Sparse Solvers for eXascale) [4, 9] and ELPA
(Eigenwert-Löser für Petaflop-Anwendungen) [73] projects. The BEAST framework
has provided the solution to a variety of eigenvalue problems, including very large
problems [4, 8, 31, 34, 35, 65].

Support for efficient (sparse) matrix and vector operations is provided by the back-
ground libraries, GHOST [67, 68, 69] and PHIST [90, 91, 92]. Efficient operations,
such as sparse matrix vector products are essential to the overall efficacy of the
framework. We present here the overall framework of BEAST, as relevant to the
remainder of this thesis, as well as highlighting some important computational con-
siderations. An overview is given in Figure 2.7. However, a complete description
of the software and its many options is outside the bounds of this work. Note-
worthy is that a significant advantage to the iterative schemes implemented here
is the ability to adjust parameters over iterations. This can include the choice of
degree for a polynomial or rational filter [33], the precision used [8, 31], or even the
type of filter under consideration [46]. These topics will be discussed further in the
remainder of this thesis as well.

2.10.1. Main algorithmic choices

Within BEAST, the user may choose which filtering scheme should be used. The
three main choices currently included in the framework are:

2.10.1.1. BEAST-C

BEAST-C is named for the original application of the BEAST framework to filters
arising from contour integration, based off of the FEAST algorithm [77], cf. Algo-
rithm 5. Implementations of filters arising from numerical quadrature using either
a Gauss–Legendre or midpoint quadrature rule are available, as described in [30].
Furthermore, a user defined filter, specifying the poles and weights of a generic
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Figure 2.7.: Algorithmic outline of BEAST.

rational filter, may be provided for this method. This option will be further ex-
plored in Chapter 4. This portion of the framework incorporates ideas from a large
body of work beyond the general algorithm described thus far, including the esti-
mation of the number of eigenvalues in the spectrum and choice of subspace size
[30, 32, 65, 66], as well as the adaptive choice of quadrature degree, [33].

2.10.1.2. BEAST-M

With BEAST-M, the moment based rational filtering scheme described in Algorithm
6 is implemented. As described further in Chapter 5 and [46], the choice of number
of moments is flexible, and may be chosen adaptively to minimize overall cost of
the eigensolver. A number of details regarding the implementation specific to this
scheme, such as orthogonalization and convergence, as well as an adaptive switch
to BEAST-C, are also described in Chapter 5.

2.10.1.3. BEAST-P

BEAST-P implements a polynomial filter, as described in Algorithm 7. As described
above, this is only available for standard eigenvalue problems. Further description
of some features and strategies for optimization of the polynomial are given in
[33, 34].
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2.10.2. Parallelism

A driving factor in the compatibility of subspace iteration schemes with large scale
computation is their capacity for parallelism. BEAST is a parallel, distributed mem-
ory library, using an MPI+X paradigm [74], where X is typically Open-MP [75].
Multiple levels of parallelism include:

• Parallelism over sub-intervals of Iλ. These become independent eigenprob-
lems. Orthogonalization of the solutions over the different intervals may be
required [30].

• Parallelism over quadrature nodes (for rational filters). In the case of rational
filters, the linear systems solved are independent of each other. The solutions
must, however, be gathered centrally after solution.

• Parallelism over columns of Y . In the case of rational filters, the solution of
linear systems over a block of right hand side may be independent, depending
on the linear solver in use. For polynomial filters, matrix multiplication is
independent over the columns of Y .

• Internal parallelism (data distribution, matrix and block vector operations)
provided by background libraries.

The scalability of these algorithms is a prerequisite for increasing problem size,
and at least the first three cases are very parallelizable. Further details on the
implementation of the parallel framework can be found in [30].

2.10.3. Precision

The precision of computations and storage of values within BEAST may be specified
to single (32 bit) or double (64 bit) machine precision. BEAST may begin in single
precision and switch to double precision after a convergence threshold has been
reached. Further details are described in Chapter 3 and [4, 8, 30]

2.10.4. Linear solvers

For BEAST-C and BEAST-M, the choice of linear solver is very relevant to the efficacy
of the algorithm as a whole. As previously mentioned, the cost of solving linear
systems of equations is expected to be the limiting factor of the overall eigensolver
cost. It is very important, therefore, to choose a linear solver that is equipped for
the solution of large, sparse linear systems of equations in a scalable and robust
manner. Furthermore, we desire flexibility in the precision used, as described above.
If an iterative linear solver is being considered, the difficulty of the shifted linear
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systems of equations becomes relevant. We therefore turn now to the choice of
direct and iterative linear solvers used in the remainder of this thesis. Several
other options are implemented in BEAST, including a direct linear solver for banded
systems, and a callback framework for extension to a user-defined solver package
that also implements the call within BEAST to the external packages discussed here.
Further details on these can be found in [30].

2.10.4.1. Direct solvers

Direct solvers are less sensitive to the shifted and thus ill-conditioned systems of
equations, making them a good choice if the problem under consideration is not too
large. With this solver type, the resulting factorization of (ziB−A) may be stored,
reducing the cost of multiple BEAST iterations, but requiring additional storage
proportional to O(n2). A number of software packages are available for the direct
solution of large, sparse linear systems. BEAST includes the option of calling either
MUMPS [10, 11] or STRUMPACK [80]. Both of these are distributed-memory,
parallel direct solvers for the solution of large linear systems. They allow for the
use of single or double precision arithmetic.

2.10.4.2. Iterative solvers

Iterative solvers are typically much better suited to sparse matrices than direct
methods, as they are able to take advantage of the reduced storage and computa-
tional costs associated with sparsity. They are therefore also typically suitable for
much larger problems than a direct method. The BEAST eigensolver allows for a
user defined iterative solver, possibly from another library via the callback scheme
described in [30]. A couple of solvers are included with the framework, including
the CARP-CG [41] implementation provided by PHIST, as described in [36]. More
details on the iterative solvers used this thesis can be found in Chapter 4.

2.11. Conclusion

We have outlined the underlying theory and definition of subspace filtration meth-
ods. We have focused particularly on rational filters and defined an RFE, which
will be a central theme of this thesis. We have also defined computational details
for the implementation of these methods, as required for efficient and scalable com-
putation. Next, we will consider ways to improve the efficiency of these schemes.
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CHAPTER 3

MIXED PRECISION

3.1. Introduction

In this chapter, we consider the effect of precision on the projected subspace eigen-
solvers implemented in BEAST. The “default” precision in modern computation is
IEEE double precision [54], using a 64 bit representation of each floating point
number. In contrast, single precision uses a 32 bit representation. The use of
other precisions is increasing, but still less common. A change in precision is as-
sociated with a change in cost; with a lower precision, less data must be stored
and computed. Reduced precision could result in reduced overall accuracy levels.
We explore this within the filtered subspace schemes considered, for given steps
within subspace iterations, as we have discussed and shown in part in [31], and
over subspace iterations, as we have originally shown in [8]. Related results have
also been shown in [30], discussed with the implementation of mixed precision in
the BEAST framework.

3.2. Background

The topic of mixed precision within numerical methods has been explored within
a variety of contexts [1], most comprehensively within linear solvers [13, 21, 22,
70]. These works have shown that using a combination of precisions will not,
under certain conditions, affect overall convergence, and may allow for significant
cost reduction of an algorithm. Many software libraries enable computations in
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either single or double precision, and some allow for extended precisions as well.
The FEAST software package [78], which implements the FEAST algorithm as
described in Algorithm 5, is among the libraries offering this flexibility.

Explorations in varying precision within a projection based algorithm has mainly
focused on the effect of error within the construction U , the approximate basis
for XIλ . In [89] and [38], the authors showed that, beyond a given threshold, the
convergence of the FEAST algorithm is not affected by a change in accuracy in
the solution of linear systems required to construct U , as described in Algorithm
5. Furthermore, the current version of the FEAST software package utilizes an
inverse residual iteration to allow for lower precision solution of linear systems
without affecting overall convergence [78].

In [44] and [60], it was shown that with a large enough basis for the subspace XIλ ,
that is, enough linearly independent columns in U , the convergence of Sakurai–
Sugiura methods, as described in Algorithm 6, is not affected by a certain amount
of error in the solution of linear systems of equations required to generate U .

Changing the precision of a computation can have dramatic effects on the speed of
computation, as well as the size of storage required. As discussed in [21], switching
from the standard double precision to single may significantly impact the perfor-
mance of sparse matrix computations. Halving the precision halves the storage
requirements, which not only reduces overall memory required, but allows for dou-
ble the values to be stored in the cache, resulting in fewer cache misses. The
reduced size also results in faster memory transfer. A vector unit can typically
perform twice as many operations per clock cycle. Understandably, many libraries
have incorporated support for different precisions.

3.3. Varying precision within a projected subspace
iteration

Does a change in precision in a single part of the algorithm affect convergence as
a whole? Theoretically, the loss of accuracy in single precision could cause it to
slow; an idea we will explore here.

In [21], we see that mixed-precision computation can speed computation while
maintaining overall accuracy levels. In this case, selected steps of various sparse
matrix algorithms (e.g., CG, iterative refinement for direct linear solvers) were per-
formed in single precision, and the remainder in double precision. Significant speed-
ups were achieved while maintaining double precision accuracy. Similar themes
have previously been partially explored for the FEAST eigensolver. Most signifi-
cantly, in [38], it was observed that an inexact linear system solution within the
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quadrature rule of FEAST may not affect the overall rate of convergence, if the
systems are solved to a sufficient residual tolerance. The presentation here builds
on what has previously been presented in [31] by exploring additional algorithmic
steps and results.

3.3.1. Algorithmic components

We refer back to Chapter 2 where the BEAST framework has been introduced.
We can consider the effect of a change in precision on a single component of the
algorithm for each algorithmic type.

Algorithm 11: BEAST framework, with isolated steps considered for single
precision execution numbered and in bold
Choose desired subspace size mU (> number of eigenvalues in Iλ) and initial
vectors Y

while not converged do
(1) Construct subspace U ← Y with BEAST-* scheme
(2) Orthogonalize U (optional for BEAST-P, -C) and (3) compute
singular values
Resize U according to rank and subspace size estimate
(4) Solve reduced eigenproblem AUW = BUWΛ, where AU := UHAU ,
BU := UHBU
Compute full approximate eigenvectors as X := UW
(5) Orthogonalize against converged eigenvectors, lock converged
eigenvectors
Set Y := BX (BEAST-P, -C) or Y := BXR (BEAST-M), where R is a
random matrix

end

3.3.2. Methodology

We consider the effect of single precision upon the different steps of the algorithms
contained within the BEAST framework. The outline in Algorithm 11 shows steps
that may be performed in single precision, while still allowing the method as a
whole to continue in double precision. For these experiments, computations were
performed in MATLAB. BEAST iterations were performed with a selected operation
in single precision. All variables for this step are cast to single precision, using
the MATLAB function single(). After the operation is completed, all modified
variables are cast to double precision (with double()) and the iteration continues
in double precision. A specified number of BEAST iterations are completed in this
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manner, before remaining iterations continue in double precision. We compare with
tests performed entirely in double precision.

3.3.3. Numerical experiments

We consider finding the solution of (1.3) for a 256 × 256 matrix A, Graph256, as
described in Table A.2. This matrix is derived from graphene modeling [23]. The
algorithm begins with random vectors such that mU = 30 (mU = 32 for BEAST-M).
BEAST-C and BEAST-M both used an elliptical contour with eccentricity 0.4 with
8 quadrature points on the half contour. BEAST-P ran with polynomial degree
300. BEAST-M used 4 moments for all iterations. In Figures 3.1 through 3.4 we
illustrate some characteristic results of single precision on convergence. In each
case, for the first four iterations, the selected step is performed in single precision.
The resulting convergence behaviour is compared with all steps being performed
in double precision for all iterations.

We observe the effect of constructing U in single precision for BEAST-C in Figure
3.1 (marked as (1) in Algorithm 11.) This involves using single precision to solve
the linear systems and sum the terms of the rational filter. In the first iteration,
the difference in residual values when single or double precision is used for this
operation is not significant; convergence of the minimum residual in the subspace
appears to be ≈ 10−5 in both cases. In subsequent iterations (2-4), there is an
observable difference in residuals depending on the precision used; at this point,
the single precision computation appears to stagnate at a residual threshold, and
presumably no further convergence can be expected. In iteration 5, all computa-
tions are performed in double precision again. Following the switch, we see that
convergence begins again, with no apparent impact from error in the previous
computations. Similar behaviour was seen for computing (1), (4), including with
other BEAST projection types. This implies that single precision can be used for
at least these operations up to some residual threshold without impacting overall
achievable convergence.

There are also operations for which single precision may have no effect at all on
overall convergence of the algorithm. As discussed in [32, 65, 89], and summarized
in Chapter 2, the singular values computed in (3) may be used to update the value
of mU , either by removing rank deficient columns, or by updating the estimate for
the number of eigenvalues in the interval and thus the number of columns needed
in mU . This topic will also be covered in more detail for moment-based methods
in Chapter 5. If all columns of U are linearly independent, and the subspace is not
undersized, which causes stagnation of convergence [32, 65], this value is unlikely
to be sensitive to the extra error induced by single over double precision. This
is seen in Figure 3.2, where single vs. double calculation of (3) does not appear
to significantly affect convergence. On the other hand, if the linear independence
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3.4. Precision changes over subspace iterations

of the vectors is not assured, as is more likely to occur for BEAST-M, the overall
convergence may indeed be damaged when the orthogonalization and computation
of the singular values are computed in single precision (2-3).

We also explore the interplay of varying precision with locking vectors over it-
erations, which requires orthogonalization against the locked vectors. Here, the
orthogonalization ((5) in Algorithm 11) takes place in single precision for the first
four iterations. As we see in Figure 3.4, any vectors “locked” after this operation
in reduced precision may be less accurate. Even when all computations proceed
in single precision in iteration 5, the final vectors must be orthogonalized against
those locked at reduced precision, reducing the accuracy achievable for the algo-
rithm as a whole. However, these results are easily avoidable if locking does not
take place in single precision iterations.
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Figure 3.1.: Double precision in all iterations (left) vs single precision (right) for
(1) in first four iterations of Algorithm 11 using type BEAST-C. Residuals of all Ritz
pairs computed are shown; the m = 16 values with minimal residual are shown as
blue circles, and spurious values as black diamonds. A version of this figure also
appears in [31].

3.4. Precision changes over subspace iterations

From the previous section, we can conclude, in rough terms, the effects of the low-
est precision used in a single step of the iteration apply to the achievable accuracy
of the iteration as a whole. Therefore, performance may be improved not by se-
lecting steps in the iteration to perform in a reduced (or increased) precision, but
by selecting iterations to perform in reduced precision. In this section, we make
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Figure 3.2.: As in Figure 3.1, with double precision in all iterations (left) vs single
precision (right) for (3) in first four iterations of Algorithm 11 using type BEAST-P.
A version of this figure also appears in [31].
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Figure 3.3.: As in Figure 3.1, with double precision in all iterations (left) vs sin-
gle precision (right) for (2-3) in first four iterations of Algorithm 11 using type
BEAST-M.
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Figure 3.4.: As in Figure 3.1, with double precision in all iterations (left) vs single
precision (right) for (5) in first four iterations of Algorithm 11 using type BEAST-C.

observations about the achievable convergence and performance behaviour of this
strategy.

We are concerned with how the convergence of a BEAST algorithm changes when all
steps of the iteration are performed in single precision. As observed in [8] and [30],
convergence with a given precision is not affected above the given precision limit.
For example, iterations in single precision may proceed to a given residual tolerance
before stagnating. Convergence may continue unaffected if the precision is changed
between iterations before the residual threshold of a given precision is reached. We
observe that in single precision, a residual threshold of 10−5 is typically achievable
before stagnation begins, but this may change depending on the problem and the
algorithm used.

In the below numerical experiment, which may also be found in [8], we test this
strategy, as well as observing the achievable performance gains from mixing pre-
cisions. The latter is highly variable depending on the computational setup used,
and thus the potential gain from mixed precision cannot be definitively deduced
from these experiments.

3.4.1. Numerical experiments

The BEAST algorithmic scheme for switching precision over iterations is shown in
Algorithm 12. We observe that if iterations begin in single precision, we may
decide at the end of each subspace iteration whether to switch from single to
double precision. In this experiment we set a residual threshold that, once reached
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Algorithm 12: BEAST framework with inter–iteration precision change
Choose desired subspace size mU (> number of eigenvalues in Iλ) and initial
vectors Y

while not converged do
Construct subspace U ← Y with BEAST-* scheme
Orthogonalize U (optional for BEAST-C, BEAST-P) and compute singular
values
Resize U according to rank and subspace size estimate
Solve reduced eigenproblem AUW = BUWΛ
AU := UHAU , BU := UHBU

Compute full approximate eigenpairs X := UW
Set Y := BX (BEAST-P, -C) or Y := BXR (BEAST-M), with R random
if single precision threshold reached then

Switch to double precision
end

end

by the smallest (non-converged) eigenpair, induces a change from single to double
precision, as described in Figure 3.5. We consider a standard eigenvalue problem
(1.3) for the Graph16M problem described in Table A.2.

The computation ran using 32 nodes of the Emmy HPC cluster at Friedrich-
Alexander-Universität Erlangen-Nürnberg. The method began in each case with
mU = 480 and random columns of Y . The residual tolerance was set to 10−10. In
the mixed precision case, all computations and storage took place in single preci-
sion; upon a switch to double precision, all vectors were cast from single to double
and the matrices were reloaded. This is associated with a small extra cost for
the mixed precision case. A polynomial degree of 10, 000 was used for BEAST-P,
and precision was switched from single to double once the smallest residual was
smaller than 10−5. The same precision tolerance was used for BEAST-C, which used
Gauss–Legendre quadrature with a circular contour and q = 8. Both BEAST-C
and BEAST-M used STRUMPACK for the direct solution of linear systems. The
BEAST-M method was somewhat more sensitive to the effects of single precision in
this case; a higher threshold of 10−4 was used as the threshold for the switch to
double precision, and the quadrature scheme used q = 16 for a circular contour.
BEAST-M ran with 4 moments in all iterations.

In Figure 3.5, we observe the convergence of the smallest residual in each of the
above cases. If the switch from single to double precision is well timed, convergence
may not be impeded at all by single precision in early iterations, and a small “catch-
up effect” may even appear directly after the switch, as also observed in [30].
The best choice of threshold appears somewhat method dependant; in the case of
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BEAST-M we observe a difference in residual from the first iteration and stagnation
even before the threshold of 10−4 has been reached, an effect that occurs earlier
and more strongly than for BEAST-P or BEAST-C. It is possible that generosity in
other parameters, e.g., increasing mU , would reduce the effect of error in this case
[44, 60].

The difference in time between mixed and double precision is shown in Table 3.1.
For BEAST-P in particular, the example where the number of iterations was equal
in both the mixed and double precision case, the reduction in cost from early
iterations conducted in single precision is clearly observable. For BEAST-C and
BEAST-M, we may assume that a similar reduction in cost took place for each RFE
iteration performed in single precision, but the extra iteration for the all–double
run of BEAST-C (apparently a random effect due to some spurious directions being
removed in early iterations) adds some uncertainty to this value. In any case, the
qualitative reduction in cost with mixed precision computation is clear. In the
case of BEAST-M, we observe an extra iteration in the mixed–precision case, due
to stagnation in early iterations, and thus a slow-down, rather than a speed-up,
from mixed precision is observed. We note that these effects are not expected to
generalize to all hardware or software situations; the use of accelerators or optimized
vector instructions could be used to generate a stronger effect for mixed precision
computations.

3.5. Conclusions

The precision used for storage and computation is an important aspect in con-
trolling the cost and convergence of a subspace projection scheme. Particularly
when the method is iterative, we can see that single precision can be used in early
iterations to reduce costs without impacting later convergence; later iterations in
double precision may continue to the desired residual threshold. It is particularly
interesting to observe a strategy to reduce cost without “adding back” costs in re-
duced convergence rates; suggesting that double precision in early iterations may
even be considered “overspending.” However, the extra knowledge required to use
these methods successfully in order to ensure stagnation does not occur does pre-
vent universal suitability. Furthermore, as discussed in [30], the results we have
seen suggest that higher precision computations will not have any effect unless all
steps proceed in higher precision and a reduced residual tolerance is required.
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Figure 3.5.: Smallest residual over BEAST iterations. This figure originally appeared
in [8].

Solver Time Mixed / Time Double
BEAST-P 0.8
BEAST-C 0.7
BEAST-M 1.2

Table 3.1.: Time ratio between a mixed precision solve and full double precision
solve (reference time)
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CHAPTER 4

OPTIMIZING RATIONAL FILTERS

4.1. Introduction

In this chapter, we consider how the rational filter used in an RFE affects the cost of
the method, and how we might improve the efficiency of these schemes through the
choice of rational filter. We focus on the cost of building the basis U for our desired
subspace through the solution of shifted linear systems of equations (ziB−A)−1BY ,
which is expected to be the most expensive portion of an RFE iteration. Here, the
shift zi corresponds to a pole of the rational filter used. We are interested in the
solution of large and sparse eigenproblems, implying that an iterative linear solver
would be appropriate for the linear systems that arise in these methods. However,
these shifted linear systems are typically very poorly conditioned, as the shifts zi
are chosen to be close to the eigenvalues of the matrix pair to profit convergence of
the RFE. A trade-off arises, where the cost of solving the linear systems in a single
RFE iteration must be balanced with the number of RFE iterations required. In
this chapter, we attempt to construct rational filters that will reduce the overall
cost of solution with iterative linear solvers.

We begin by exploring how convergence of an RFE is controlled by the rational
filter used and the relative location of the eigenvalues. This relationship has been
used in the past by other authors to guide the choice of rational filter in an RFE
beyond the use of quadrature rules, which we have seen already in Chapter 2. We
will introduce some of the pre-existing choices defined in other works and discuss
how they may affect the convergence of the resulting RFE and the iterative solver
for the linear systems. Then we turn to exploring how we should choose our
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rational filter. We introduce two iterative linear solvers and generate predictive
models for the expected iteration count of each of these, based on the underlying
rational filter. This prediction is also expanded to include the cost of linear solves
over all RFE iterations, based on the expected convergence rate for said rational
filter. Given these models, we may then generate a cost function and optimize over
possible rational filters. This is performed for a number of test problems, followed
by a comparison of the cost of using the resulting filter with filters arising from a
standard contour integration scheme. We conclude with a discussion of the benefits
of this work and ideas for future research.

4.2. Convergence of an RFE

As introduced in Chapter 2, RFEs use a rational filter to iteratively project an ini-
tial subspace in directions corresponding to the desired eigenvectors. The rational
filter r(x) of degree q consists of a series of shifts, zi, and weights wi, i = 1, . . . , q,
forming the function

r(x) =

q∑
i=1

wi
x− zi

. (4.1)

In matrix form, we consider the function r(B−1A) =
∑q

i=1 wi(A − ziB)−1B, or,
when applied to a (block) vector, r(B−1A)Y =

∑q
i=1wi(A− ziB)−1BY .

As discussed in [89], the values of r(λ) for the eigenvalues λi, i = 1, ..., n of (A,B)
determine the convergence of the RFE. Specifically, the convergence of the ith
eigenpair depends on the ratio

r(λmU+1)

r(λi)
(4.2)

assuming that the eigenvalues are ordered according to r(λ1) ≥ r(λ2) ≥ ... ≥ r(λN),
and that the subspace X̃Iλ contains mU vectors.

As previously discussed, we can consider the behaviour of the filter in 1D as cor-
responding to its action on vectors; directions corresponding to eigenvectors with
eigenvalues inside or outside Iλ will be amplified or reduced respectively according
to the value of r(x) at that eigenvalue.

The quality of the filter, therefore, defines the convergence of FEAST. It should
also be noted that the (presumably unknown a-priori) location of the eigenvalues
has a significant effect on the actual convergence behaviour. By observing (4.2),
we realize that the value r(λmU+1) controls the behaviour of FEAST. If r(λmU+1) is
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small, particularly in comparison with r(λm), withm the true number of eigenvalues
inside Iλ, the method will converge more quickly. It is easier to find a function r(x)
is that is (relatively) small at r(λmU+1) if more distance lies between λmU+1 and
λm; this occurs if eigenvalues are well separated, or if mU is larger relative to m.

Conversely, dense sections of the spectrum and narrow subspaces may have an
adverse effect on convergence. A steep drop of r(x) outside of Iλ will minimize the
worst-case convergence rate, which we observe when the spectrum and choice of
mU places λmU+1 very close to λm. Sharp bounds of the filter will conversely have
less of an effect on convergence if these values are well separated.

Given this relationship, several significant research findings have explored the choice
of rational filter. Though contour integration, usually with the Gauss-Legendre
(GL) rule, remains a standard choice, several other functions have been explored,
as we discuss in Section 4.3.

4.2.1. Numerical example - subspace size and convergence

The effect of the relative location of λmU+1 and λm on convergence is illustrated
in Figure 4.1. In this figure, we compare r(λmU+1)

r(λi)
for two values of mU , mU = 220

and mU = 320, for an equispaced spectrum

λi = −2 + ih, i = 0, . . . , 400

with h = 0.01.

We consider a typical choice of r(λ), the Gauss–Legendre quadrature rule, as de-
scribed in (2.10), with 16 poles on a circular contour surrounding Iλ = [−1, 1].
We see that a larger value of r(λmU+1)

r(λi)
, which may occur due to poorly separated

eigenvalues, or simply to a smaller choice of mU , affects the estimated convergence
rate of all eigenvalues inside Iλ.

In Figure 4.2, we illustrate how the convergence of an RFE may actually be affected
by the change in this ratio. We consider A a diagonal matrix with entries λ, and
consider the resulting estimated eigenpairs after a single BEAST-C iteration with
mU = 320 or mU = 220 initially random vectors. The filter is the same of that in
Figure 4.1. Here, we see that the change in theoretical convergence rate corresponds
to the actual difference.
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Figure 4.1.: (a) Figure 4.2.: (b)

Theoretical (a) and actual (b) effect of subspace size on convergence rate. In (b),
the smallest m = 201 residuals are visualized as circles and the remaining mU −m
residuals as dots.

4.3. Other rational filters

While SSM and FEAST were originally conceived as contour-integration based
eigensolvers, they can also be considered as relying on a more general rational
filter, as discussed in Chapter 2.

Recent research in this direction has included several types of rational filters; most
notably with Zolotarev approximation [42] and SLiSe/WiSe optimal filters [64, 96],
which will both be explained in more detail below. A definition for least-squares
rational filters [97] also generates weights for a filter from a set of poles. The field
of rational filter approximation in general is beyond the scope of this work; we will
focus here on the most prominent research directions so far. A broader discussion
applicable to RFEs can be found in [30].

4.3.1. Zolotarev

In [42], the authors considered a rational function for FEAST arising from an
elliptic filter: Zolotarev approximation [99].

In order to describe the properties of these functions, we introduce a modified
indicator function
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ind[−G,G](x) =

{
0 |x| > G

1 |x| ≤ G
(4.3)

where [−G,G] ⊂ (−1, 1).

We restrict our choice of rational functions of type (q, q); that is, functions that
can be written as f(x)

g(x)
, where f(x) and g(x) are real polynomials of degree at most

q.

We define the Zolotarev function of this type as

r(Z)
q =

sq(t(z)) + 1

2
(4.4)

where R satisfies

G =

√
R− 1√
R + 1

. (4.5)

We define
t(z) =

√
R

1 + z

1− z

and

sq(x) = xD

∏q−1
j=1(x2 + c2j)∏q
j=1(x2 + c2j−1)

, cj =
sn2(jK(κ)/(2q);κ)

1− sn2(jK(κ)/(2q);κ)

Here, sn(w, κ) = x is the Jacobi elliptic function, and K(κ) is the elliptic integral
for the modulus κ. These are defined in [42]. The constant D is chosen to satisfy

min
x∈[−R,−1]

sq(x) + 1 = max
x∈[1,R]

−sq(x) + 1

and κ =
√

1− 1/R2.

Due to its equioscillating behaviour, rZ(x) is shown in [42] to be the best uniform
approximation of the indicator function ind[−G,G](x) on [−G,G] and [− inf,−G−1]∪
[G−1, inf]. This behaviour was more generally described by Zolotarev in his original
definition of these approximations [99], which were chosen to meet these criteria.
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4.3.2. SliSe and WiSe

In contrast to filters arising from existing rational functions, such as those based
on Zolotarev or quadrature rules, SLiSe and WiSe rational filters are chosen by
optimization to minimize RFE iterations [64, 96]. These methods focus on sharp
drops outside of Iλ, minimizing the worst-case convergence ratio, and/or requiring
fewer vectors in the subspace U . As both weights and poles are determined by
non-convex optimization, their solution is considerably more complex than, e.g.,
least-squares minimizing weights for a provided set of poles. The original SLiSe
library [96] obtained rational functions minimizing the weighted least–squares error
between the window function over the desired interval, h(x) (2.1), and a rational
function, r(x):

∫ ∞
−∞

v(t)|h(t)− r(t)|2dt (4.6)

The authors discretized this problem and solved it using a residual level function
approach. The resulting optimization problem is non-linear and non-convex, but
has a differentiable objective function. The choice of weight function, v(t) may rely
on box constraints in the optimization problem to prevent poles from approaching
the real axis and support compatibility with iterative linear solvers.

This approach was iterated upon to give the WiSe rational functions in [64], where
the authors focused on finding a weight function v in the least squares problem
minimizing the worst case convergence ratio with a fixed gap parameter G ∈ (0, 1),
as (4.3):

min
v(t)

maxv(t)∈[−∞,−G−1]∪[G−1,∞] |r(v(t))|
minv(t)∈[−G,G] |r(v(t))|

and using this fixed choice of function v(t) in the optimization of (4.6). The choice
of G, as for Zolotarev functions, controls the size of the interval over which the
rational function must drop from ≈ 1 to ≈ 0; a value closer to 1 corresponds to
a narrower gap. This parameter is fixed; these filters may be distinguished by
this value. The two minimization problems are solved in a self-consistent fashion,
and thus the weight function does not need to be explicitly selected. However,
the second optimization problem is non-linear and the gradient is not known; the
authors use existing non–linear derivative–free optimization schemes in order to
solve find a global minima, which we will also utilize later in this chapter. The
initial filter is chosen as the corresponding Zolotarev filter for that degree; the
original SLiSe library also considers the Gauss–Legendre filter as a starting point.
As we see in Figure 4.3, the resulting poles approach the real axis. The resulting
optimized worst–case convergence ratio means that a smaller subspace size is likely
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needed for these filters. It is possible that a change in box constraints would produce
filters better suited for iterative methods; however, the filter may be inhibited by
the size of constraint needed to produce a filter truly suitable for iterative schemes.

4.3.3. Least-squares filters

Xi and Saad introduced a method [97] for determining weights based on a set of
poles to minimize the weighted least-squares error of a filter r(x) from the window
function, h(x) (2.1). To define this in more detail, let us assume that the spectrum
has been normalized such that Iλ = [−1, 1]. Then h(x) takes the value 1 on Iλ
and the value 0 elsewhere. As above, we consider a weighted least-squares error
function (4.6). Here we define the weight function v(t) such that

v(t) =


0 |t| > α

β |t| ≤ 1

1 otherwise.

(4.7)

Typical values for α are 10 or greater, and β is typically set to a small value, between
10−3 and 0.5. Assuming β < 1, the error of the filter r(x) is weighted most heavily
in [−α, α] \ [−1, 1]. This makes intuitive sense because the specific amplitude of
the eigenvectors corresponding to eigenvalues in [−1, 1] is less important; it is more
important that they are preserved in some magnitude while eigenvectors outside
the interval are dampened.

The definition for the weights wi, as seen below, is provided in general form in [97].

4.3.3.1. Calculation of least-squares weights

We assume that α, β, zi for i = 1, . . . q and Iλ are all defined. We additionally
define, for r = λ−λ

2
and c = λ+λ

2
,

αL = c− αr
αR = c+ αr.

Then, the weights wi for i = 1, . . . q can be found as the solution to the linear
equation

Gw = d. (4.8)
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4. Optimizing rational filters

where G ∈ Cq×q :

Gi,j =



1
αL−zj −

1
αR−zj + (β − 1)

(
1

λ−zj −
1

λ−zj

)
z̄i = zj

1
zj−z̄i

(
log
(
αR−zj
αL−zj

)
− log

(
αR−z̄i
αL−z̄i

))
+
(

β−1
zj−z̄i

)(
log
(
λ−zj
λ−zj

)
− log

(
λ−z̄i
λ−z̄i

))
otherwise

(4.9)

and d ∈ Cq is defined as

di = β log

(
λ− z̄i
λ− z̄i

.

)
(4.10)

We assume that the shifts zi, i = q
2

+ 1, . . . , q are complex conjugates of zi, i =
1, . . . , q, the weights wi, i = q

2
+ 1, . . . , q are also complex conjugates of wi, i =

1, . . . , q
2
.

4.3.4. Pole placement and iterative solvers

As we observe in Figure 4.3, the poles of the Zolotarev and WiSe filters come
much closer, relatively speaking, to the real axis than those for Gauss-Legendre
quadrature. This effect is compounded by narrow intervals and dense sections
of the spectrum. As matrix size grows, the density of the spectrum will also in-
crease. To gather m eigenvalues, a relatively smaller length Iλ will be required.
For Iλ 6= [−1, 1] the filters are scaled according to r = |λ − λ|. This helps them
obtain a comparatively very steep drop-off around x =

{
λ, λ
}
, and a resulting im-

proved worst case convergence rate. If the resulting linear systems (A− ziB)−1BY
are solved with a direct solver, this is irrelevant, as long as the shifted system is
not numerically singular. However, direct solvers become impractical or impossible
to use as problem size and the resulting computational and memory requirements
increase. Even if a matrix is sparse, its factorized components may not be. For an
n×n problem, the computational and storage requirements of an LU factorization
are O(n3) and O(n2) respectively [93]. For a scalable solution, we must then look
to iterative solvers, which hopefully are O(n) in both memory and computational
requirements. Here, the distance of a pole zi from the eigenvalues, which in the case
of Hermitian eigenproblems are confined to the real axis, control the behaviour of
the iterative linear solver with the shifted linear system, as we discuss in the follow-
ing section. These factors make the shifted linear systems of an RFE more difficult
to solve with an iterative method; many methods diverge. But it is also with
increased problem size that iterative methods for solving linear systems become
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4.3. Other rational filters

Figure 4.3.: Comparison of poles for rational filters, Iλ = [−1, 1]: Gauss-Legendre
quadrature (GL), Zolotarev (zolo) and WiSe filter. q = 16 (the 8 poles with positive
imaginary part are shown; the others are reflected across the y axis), G = 0.98 for
Zolotarev and WiSe filters.

Figure 4.4.: Various rational filters, Iλ = [−1, 1]: Gauss-Legendre quadrature (GL),
Zolotarev (zolo) and WiSe filter. q = 16, G = 0.98 for Zolotarev and WiSe filters.
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competitive in comparison with direct methods for larger matrix size. Indeed the
memory requirements for direct methods alone typically make them infeasible past
a given problem size. In addition, the desired problem size continues to increase
with general computational capacity. For this reason, filters such as Zolotarev and
SLiSe/WiSe may be extra challenging for a iterative solver with increasing problem
size. We also explore this numerically in Section 4.8.

The other existing strategy to reduce the cost of using an iterative linear solver is to
reduce the tolerance to which the linear systems are solved, as seen for the FEAST
algorithm in [38] and the inverse iteration in [79]. These authors demonstrate
that in early iterations, a larger residual error in the solution of the linear systems
may not affect the overall convergence of a subspace iterative method. In [79],
the authors show that for subsequent subspace iterations, a smaller residual error
for the linear systems may be achieved without additional linear solver iterations.
However, if the number of iterations required to reach even a large residual error
is high, this strategy may still be cost prohibitive. By considering the underlying
rational filter, we hope to reduce the “starting cost” for our iterative linear solver,
improving the efficacy of the strategies presented in these works.

4.4. Iterative solver convergence

As described above, the construction of a rational filter in an RFE requires the
solution of the shifted linear systems (A− ziB)U = BY, i = 1, . . . q. Let us define
Φi = (A − ziB). In order to easily relate the eigenvalues of Φi to the eigenvalues
being sought, we limit ourselves for the rest of this chapter to standard Hermitian
eigenvalue problems, with B = I.

These shifted linear systems are considered difficult to solve with iterative solvers;
we will now discuss why this is and consider techniques for reducing this difficulty.
As defined previously, zi is a complex shift. If zi is chosen close to the real axis,
it may be very near one of the eigenvalues of A. Let us define the eigenvalues of
Φ as γi, i = 1, . . . , n, ordered according to |γ1| ≥ |γ2| ≥ |γn| . This means the
eigenvalue of the shifted system with smallest magnitude, γn, will be the distance
between zi and the closest eigenvalue in the spectrum of A:

|γn| = min
j
|λj − zi| j = 1, . . . , n. (4.11)

This may be significantly smaller than λn, the smallest magnitude eigenvalue of
A. In general, we may expect eigenvalues close to 0 to slow convergence of an
iterative method. In particular, if a Krylov method is used, convergence at the
kth iteration depends in the worst case on the maximum value of the minimizing
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4.5. Kaczmarz sweeps and CG acceleration

monic polynomial (that is, the polynomial of degree k with value p(0) = 1; this is
referred to as the “normalizing condition”) at the eigenvalues of Φi.

From [71], we obtain the following bound for the residual for iterative methods like
GMRES, as well as a further discussion of general bounds for Krylov methods. A
similar bound holds for the conjugate gradient (CG) method

‖rk‖
‖r0‖

≤ κ(V ) min
pk

max
γi
|pk(γi)| (4.12)

where rk is the residual at the kth iteration and in the case of normal matrices,
κ(V ) = 1.

The normalizing condition means that if an eigenvalue d is very close to 0, obtaining
a value close to 0 at d and 1 at 0 is very difficult. Convergence may be inhibited.
We will explore this topic further for selected iterative methods, but the results
may be applicable for Krylov schemes in general.

Given our restriction to standard Hermitian eigenvalue problems, we expect Φ to be
normal and thus κ = | γ1

γN
| . Many of the results are likely applicable to generalized

eigenproblems as well, but such an extended analysis is beyond the scope of this
work.

4.5. Kaczmarz sweeps and CG acceleration

Finding a method that can handle the shifted linear systems as described above is
in general very challenging. The CGMN method has shown the ability to provide
reliable convergence for the shifted linear systems arising from contour-integration
based eigensolvers [3, 36]. We discuss this method and its implementation here,
stepping through the ideas and algorithms it is based on in chronological order.
In the remainder of this section, we consider the solution of a linear system of
equations, Φu = y, where Φ ∈ Cn×n, u ∈ Cn, y ∈ Cn. We refer to the ith row of Φ
as φi and the ith entry of y as yi.

4.5.1. Kaczmarz sweeps

The Kaczmarz method [61] applies orthogonal projections of the approximate solu-
tion iteratively onto the hyperplanes associated with each of the rows of a matrix.
At each step, the orthogonal projector associated with the ith linear equation is
applied. The iterative solution at the k + 1st step, uk+1, is thus defined as
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uk+1 = uk − ωyi − 〈φi, u
k〉

‖φi‖
φ̄i i = kmodn (4.13)

Algorithm 13: Kaczmarz sweep for the solution of Φu = y.
Input : Φ ∈ Cn×n, y ∈ Cn, u ∈ Cn, ω ∈ R
Output: un ∈ Cn

Function kaczsweep(Φ,y,u,w):
Set u0 = u
for each k, 0 ≤ k < n do

uk+1 = uk + ω
(yi−〈φi,uk〉)φ̄i

‖φi‖ , i = k

end

In fact, ω could be chosen as a distinct value ωi for each row. In this thesis, the
simplifying assumption of a single constant is made.

We can also perform this sweep through the rows of Φ in a different order, e.g.,
backwards. We call this method backwardkaczsweep. In anticipation of the coming
subsection, we also introduce here the symmetric double sweep doublekaczsweep,
consisting of successive forwards and backwards Kaczmarz sweeps.

4.5.2. CGMN

The acceleration of Kaczmarz sweeps with the conjugate gradient (CG) method was
first introduced as CGNM [18, 40]. We note that the definition and subsequent
analysis require a symmetric semidefinite matrix. The symmetry requirement is
satisfied for Φ when only the diagonal has a nonzero imaginary component, which
we assume to be the case for the remainder of this chapter. Here, the method relies
on the equivalence of Kaczmarz sweeps with successive overrelaxation (SOR) on the
normal equations; a coupling of a forward and backward sweep is thus equivalent
to symmetric successive overrelaxation (SSOR) and is symmetric, thus compatible
with CG.

4.5.3. Parallelization and block multicoloring

We utilize a shared memory implementation of CGMN as described in [6]. To
avoid write conflicts and performance bottlenecks in shared memory, we could use
a multicoloring approach, as has been previously considered [36]. In this strategy,
columns of the same color have no indices in common; this is called structural
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4.5. Kaczmarz sweeps and CG acceleration

Algorithm 14: CGMN for the solution of Φu = y

Input : Φ ∈ Cn×n, y ∈ Cn, ω ∈ Re
Output: u ∈ Cn

Function cgmn(Φ,y,w):
Choose a starting block of m vectors Y
Set u0 ∈ CN to arbitrary value
Set p0 = r0 = doublekaczsweep(Φ, y, u0, ω)− u0

while not converged do
qk = pk− doublekaczsweep(Φ,0, pk, ω)

αk = ‖rk‖ 2
/〈pk, qk〉

uk+1 = uk + αkp
k

rk+1 = rk − αkqk
βk = ‖rk+1‖ 2

/‖rk‖ 2

pk+1 = rk+1 + βkp
k

k = k + 1
end

orthogonality. However, better performance has been shown from a block multi-
coloring approach [3]. In this approach, structural orthogonality is only enforced
between different blocks of the same color. We rely on such an implementation
here, utilizing the improved RACE multicoloring strategy [5].

The matrix is first permuted to minimize bandwidth, using the Reverse-Cuthill-
McKee algorithm [24]. Then, the RACE block-coloring algorithm is performed, as
described in [5]. Kaczmarz sweeps may then be performed in parallel over blocks of
the same color, with each block assigned to a thread. Within a block, the sweeps are
performed sequentially, cycling through the rows. The full CGMN algorithm with
block-multicolored parallel Kaczmarz sweeps would then perform a forward sweep
over each color, followed by a backward sweep; the doublekaczsweep algorithm.
Other details associated with block multicoloring for CGMN, such as the possibility
of load balancing, are discussed further in [3].

A distributed memory parallelization has also been introduced. A strategy called
CARP-CG [41] involves averaging results obtained from different distributed pro-
cesses to obtain a final result. Although the use of this strategy is promising for
RFE methods[36], it is beyond the scope of this work.

4.5.4. Implementation of CGMN

The Kaczmarz sweeps are implemented in the GHOST library [67], and incorpo-
rated with the CGMN method as implemented in [6]. The weighting of ω = 1 is
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4. Optimizing rational filters

used for the Kaczmarz sweeps in the remainder of this work. As discussed above,
block-multicoloring occurs a-priori with the RACE library [5].

We also note that the definition above is for a single right hand side vector b and
solution x. The extension of the above definition to our use case with block vectors
requires only their substitution for the single vectors; the analysis is the same.

4.6. Predicting cost

For a given rational function, we would like to be able to predict the “cost" of using
CGMN to solve all the linear systems. We re-emphasize that this is by far the most
significant expense in projection-based methods. We may consider the cost as the
total number of CGMN iterations required over all poles and all RFE iterations, or,
keeping parallelism in mind, the maximum number of CGMN iterations required
for a pole over all RFE iterations. As described in Chapter 2, the linear systems of
FEAST can be solved independently and in parallel. When choosing to minimize
the maximum number of CGMN iterations per pole, we are focusing on the possible
reduction in cost or time for this parallel solution. It is the slowest of these linear
solves, with presumably the most costly solution of the linear system, that acts as
a barrier for the rest of the iteration.

4.6.1. Analyzing the behaviour of CGMN

We analyze the behaviour of CGMN on the shifted linear systems ΦU = Y , where
Φ = A−zI for A a 1000×1000 generated [30] (see Section 4.1.1) sparse matrix. A,
which we will name Gen1000-40pt01, has 40 eigenvalues inside [−0.01, 0.01] and the
remainder of its eigenvalues equidistantly located in [−1, 1] \ [−0.01, 0.01]. Thus,
the spectrum is relatively dense in a small interval around 0, and less dense away
from this interval. We consider the number of CGMN iterations required for all 64
random right hand side vectors in Y to reach a relative residual tolerance of 10−8

or 10−12. This is plotted in Figures 4.5 and 4.6 vs. the condition number of the
shifted system, that is,

‖Φ‖ · ‖Φ−1‖ =
maxi |z − λi|
mini |z − λi|

(4.14)

If λi is close to real(z), mini |z − λi| will be close to imag(z). The values are plotted
on lines associated with the distinct real values of z. These are also associated with
color, blue for shifts with small real value, moving to red away from the origin. We
observe that after a period of roughly (log-)linear growth, the number of iterations
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approaches a threshold, which appears correlated with the density of the spectrum
at that value of real(z).
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0.01 

0.1  
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2    

Figure 4.5.: (a)
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0.002

0.005

0.01 

Figure 4.6.: (b)

κ(Φ) vs. CGMN iterations for Gen1000-40pt01 with residual tolerance 10−8 (a)
and 10−12 (b). The distance of R(z) from 0 is shown as a color gradient. A line
of best fit for the linear growth portion of the (logarithmically scaled) data is also
shown, transformed back to its exponential form.

Next, we analyse the relationship for a larger matrix, now using an approximation
for the minimal distance between the pole and an eigenvalue of A. Here, A is a
graphene matrix, GraIII-11k-b, with 40 eigenvalues in Iλ. More specific details of
this system can be found in Table 4.1. Again, we consider the number of CGMN
iterations required to solve the system ΦU = Y to reach a relative residual toler-
ance of 10−8 or 10−12 with 64 random right hand side vectors in Y . We now use
the approximation |h/4 + imag(z)i| to approximate the distance from the smallest
eigenvalue, where h is the local density in Iλ, that is, h = λ−λ

m̃
. Since we predict

eigenvalues with spacing h, the expected value of the distance from an eigenvalue
along the real axis is h

4
. The separation in the imaginary plane is clearly just

the imaginary part of the pole z, as our eigenvalues are real. We thus form the
estimation for the condition number

κest(Φ) ≈ max {|λ1 − z|, |λn − z|}
|h/4 + imag(z)i| (4.15)

In Figures 4.7 and 4.8, we observe the linear relationship (up to some threshold)
between this estimate for the condition number and the number of CGMN iterations
required to meet this threshold. Here R(z) is in Iλ; the results shown in this figure
include various values of R(z). Unlike the change in C(z), this variation shows
little effect on the number of iterations as the density of eigenvalues is similar close
to all values of R(z) considered.
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Figure 4.7.: (a) Figure 4.8.: (b)

κest(Φ) vs. CGMN iterations for GraIII-11k-b matrix with residual tolerance 10−8

(a) and 10−12 (b). A line of best fit for the linear growth portion of the (logarithmi-
cally scaled) data is also shown, transformed back to its exponential form. Values
past the threshold of stagnation are shown in grey.

4.6.2. Condition number relationship

We have observed that for a sample shifted matrix Φ = A − zI, the number of
CGMN iterations required increases steadily as the shift approaches the real axis,
at least until some threshold for iterations is reached. We have used a linear fitting
to the (logarithmically scaled) linear growth portions of data for the GraIII-11k-b
problem in Figures 4.7 and 4.8. The line of best fit (an exponential expression when
transformed from logarithmic scaling) is similar, for a matching residual tolerance,
to the relationship shown between κ(Φ) and CGMN iterations for the Gen1000-
40pt01 problem. Thus, it appears that we are able to form a rough estimate for
the number of CGMN iterations for a general linear system of equations with the
relative residual tolerance 10−8

Ckpred(Φ) = 5.5× κest(Φ)0.9 (4.16)

or 10−12

Ckpred(Φ) = 7× κest(Φ)0.9. (4.17)

We can observe the efficacy of this estimate for more matrices, ranging in size from
1000× 1000 to ≈ 33000× 33000. Details for these systems can be found in Table
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Matrix n ‖A‖ 2 λ− λ
Gen1000-40pt01 1000 5 0.02
Gen10000-1 10000 1 0.02
Gen10000-100 10000 100 2

rgg_n_2_15_s0-a 32768 1 0.00058
SiO-b 33401 1 0.005

GraIII-11k-b 11604 1 0.0039

Table 4.1.: Sizes, norm, and length of search interval Iλ for 6 test matrices. Matrices
Gen* were generated [30]. GraIII-11k-b was generated from graphene modeling
[23] and two test matrices from the SuiteSparse Matrix Collection [25]. More
information for the last three matrices may also be found in Table A.1.

4.1. Each system ΦU = Y was solved to a relative tolerance of 10−8 using CGMN
for a block vector Y with 64 random columns.

These values are shown in Figure 4.9. We observe that this fit is reasonably good
for the linear growth (in logarithmic scaling) portion of the data. As we will
see in later sections, we are typically interested in predicting the relatively small
number of linear solver iterations required from a (relatively) small value of κest.
Furthermore, this relationship is not the only factor in determining the number of
linear solver iterations required for an RFE. Therefore, the rough estimate gained
thus far is sufficient for the time being.

We expect that although the fit is acceptable for our intended purpose with these
problems, it will lose predictive power if the linear systems under consideration are
very different from the ones considered here, especially if κest does not fall into
the range of values tested. However, if a new set of problems under consideration
requires a new estimate, the fit function for the expected number of linear solver
iterations is relatively cost effective to obtain, requiring the solution of some hun-
dreds of block linear systems of equations. It may be done a-priori for a subset of
the test problems under consideration.

We also observe that the number of CGMN iterations reaches a threshold for some
value of κest with each matrix problem. A predictive form for this threshold is not
known; though it appears to be correlated with the density of the spectrum around
real(z), or similarly, the overall matrix size. We expect to be mainly interested in
predicting values in the constant growth portion of linear solver iterations. This
is especially true for large matrices, where this threshold is expected to be beyond
the bound of a reasonable number of CGMN iterations. Furthermore, inclusion of
a bound would result in additional complications for our upcoming optimization
scheme. Therefore, explorations into this topic remain subjects of future research.

We note that this correlation between the number of linear solver iterations and
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4. Optimizing rational filters

Figure 4.9.: κest(Φ) vs. CGMN iterations for multiple eigenproblems (listed in Table
4.1) with residual tolerance 10−8, along with fitting function provided in (4.16).
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the condition number up to some threshold is likely true for other Krylov iterative
solvers. Galgon [30] observed an increase in the number of GMRES iterations
required for the solution of shifted linear systems with poles close to larger clusters
of eigenvalues. We know that the convergence behaviour of all Krylov subspace
methods is bounded by the maximum value of the minimizing polynomial on the
eigenvalues [93]. Therefore, we do anticipate that these results generalize, at least
in theory. However, this is difficult to explore, as most iterative solvers are unable
to solve these shifted linear systems, and often diverge. We perform a rudimentary
analysis for GMRES in the following section. Future research could include testing
to see if a relationship exists for other linear solvers, potentially combined with
appropriate preconditioners.

4.6.3. Analyzing the behaviour of GMRES

We next explore the prediction of number of iterations for a different iterative
linear solver, GMRES. A description of this solver is given in Section 2.8.2.1. We
used an implementation of restarted GMRES from the PETSc KSP library [14, 15,
16], with GMRES restarted every 30 iterations and using modified Gram-Schmidt
orthogonalization.

We observe the behaviour of restarted GMRES on the shifted linear systems
ΦU = Y with Φ = A − zI for the same test matrices as above. Our sample
problems were Gen1000-40pt01, and GraIII-11k-b, as described in Table 4.1. We
show, for a variety of shifts z, with various values of R(z) within Iλ, the average
number of GMRES iterations required for 64 problems to reach an absolute resid-
ual tolerance of 10−12, when starting with a random right hand side vector. This is
again compared with the condition number of the shifted matrix Φ, (4.14), for the
Gen1000-40pt01 matrix, as shown in Figure 4.10 and our estimate for the condition
number κest(Φ), (4.15) for the GraII-11k-b matrix, as shown in Figure 4.11.

We observe a linear relationship between the values, as shown by the line of best fit
provided in each graph. We also observe some distinction in the slope of this graph
between different problems. This is not too surprising; as with any linear solver,
we cannot expect a uniform estimate to be obtained across all matrices. However,
the slopes are similar, suggesting that with a rough estimate, we can obtain a
reasonable prediction for the number of GMRES iterations required, especially for
similar problems. Indeed, in Figure 4.12 we see the estimated vs actual GMRES
iterations plotted along with two possible linear estimations. Again, the average
number of GMRES iterations required for 64 right hand sides to reach a absolute
tolerance of 10−12 is shown. Both linear estimates appear reasonable, especially
when a rough estimate is sufficient.
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Figure 4.10.: GMRES iterations vs κ(Φ) for Gen1000-40-pt01 matrix. The distance
of R(z) from 0 is shown as a color gradient.

Figure 4.11.: κest(Φ) vs. GMRES iterations for GraIII-11k-b matrix.
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Matrix n ‖A‖ 2 λ− λ
Gen1000-40pt01 1000 5 0.02

SiH4-b 5041 1 0.0076
GraIII-1k-a 11604 1 0.085
GraIII-11k-b 11604 1 0.0039

Table 4.2.: Sizes, norm, and length of search interval Iλ for 4 test matrices. Matrix
Gen100-40pt01 was generated [30]. GraIII-11k-b was generated from graphene
modeling [23] and SiH4-b obtained from the SuiteSparse Matrix Collection [25].
More information for the last three matrices may also be found in Table A.1.

Interestingly, and without an obvious explanation, no threshold is observable for the
number of GMRES iterations as for the number of CGMN iterations. This means
that the linear relationship is likely more accurate for larger condition numbers,
in comparison to CGMN, though we are unlikely to be interested in the resulting
high iteration counts. It is certainly possible that this simply appears for much
larger values of κest. The expected growth rate of GMRES iterations is also much
faster than for CGMN. Perhaps with an appropriate preconditioner, the number
of GMRES iterations would be similarly decreased. However, from a theoretical
point of view, it is helpful to observe the behaviour of this basic iterative linear
solver.

We will use the following estimate for the number of GMRES iterations, Gkpred, in
the remainder of this chapter, unless otherwise stated,

Gkpred(Φ) = 30κest(Φ), (4.18)

as it appears slightly more accurate for increasing numbers of iterations. As with
CGMN, if this approach was to be applied to a different set of matrices (e.g., with
large changes in matrix size, matrix sparsity, etc.) it would likely be valuable to
generate a new estimate for this linear relationship for the set of matrices under
consideration. It is also possible that GMRES will not converge at all, and may
even diverge for some problems. The use of an appropriate preconditioner would
also potentially reduce the number of linear solver iterations required and increase
robustness, though this would again require a new estimate for the relationship
between condition number and linear solver iterations, which may be non-linear.

4.6.4. Predicting RFE iterations

As previously discussed, the convergence of an RFE algorithm in exact arithmetic
is a known function (4.2) of the value of the rational filter r(x) at the eigenval-
ues. We would like to be able to predict the convergence of an RFE without full
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Figure 4.12.: κest(Φ) vs. GMRES iterations for multiple systems.

knowledge of the eigenvalues. A prerequisite for an RFE is an approximation for
the number of eigenvalues in Iλ, m̃. With this value, we have an approximation
for the local density of eigenvalues in and around Iλ, and thus can generate ap-
proximations for λ1, . . . , λmU+1 (sorted such that r(λ1),≥ r(λ2),≥ . . . , r(λmU+1)).
Since r(x) cannot be expected to be monotonically decreasing, we need more than
mU + 1 evaluations of the function to estimate convergence. Furthermore, we want
to better capture oscillations in the underlying function r by additional evalua-
tions. We generate a sequence of approximate eigenvalues δj, j = 1, . . . , N with
equidistant spacing twice the expected eigenvalue density h = Iλ

2m̃
in the window

[max (λmin, c− 10r) ,min (λmax, c+ 10r)]. Again, λmin and λmax are the global min-
imum and maximum eigenvalues (or estimates of these); they are included in the
expression here to avoid unnecessary function evaluations outside of the spectrum.
We expect this expanded window to contain an approximation for r(λmU+1), as-
suming that the filter does not increase in value again far from Iλ. After evaluating
r(δ) and sorting according to r(δ1) ≥ r(δ2) ≥ . . . r(δN), we can determine the num-
ber of iterations expected for all eigenvalues inside Iλ to converge to the desired
residual tolerance, limited by the eigenvalue expected to converge most slowly, λm̃.
As we have doubled the frequency of function evaluations within the interval, we
use a modified ratio:
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lpred =
log(tolRFE)

log
(
r(δ4bmU/2c+1)

r(δ4bm̃/2c)

) . (4.19)

4.6.5. Choosing weights

A significant parameter in the choice of filter is the choice of weights, wi in equation
(4.1).

We choose weights that, given a set of poles zi, minimize the least-squares norm
from the (parametrized) window function, as defined in [97] and described in Sec-
tion 4.3.3. By using a weighted least-squares error function, we focus on ensuring
that outside of Iλ, the resulting rational function is close to 0, which is relatively
more important than ensuring values close to 1 inside Iλ. As previously noted, the
resulting least-squares problem that must be solved to compute the weights can
become very ill-conditioned. To reduce error, we use SVD-regularization, which is
effective to a given degree of instability. However, in our search for poles zi, we pe-
nalize sets which induce a problem that is ill-conditioned to the point of numerical
singularity. The penalty is chosen to be linearly proportional to the relative loss of
rank. This process is described in full in Algorithm 15.

Algorithm 15: Finding least-squares rational filter weights
Input : z1, . . . , zq ∈ C, β, α ∈ R
Output: w ∈ Cq, 1∑

rank
∈ R

Function lsrational(z1, . . . , zq,α,β):
Form G, d per (4.8)
if κ(G) > 1012 then

[U,Σ, V ] = svd(G)
Σ = diag([σ1, σ2, . . . , σq])
rank =

∑q
i=1 1 [σi > qεmach(maxi(σi)))] . Calculate rank of G

1∑
rank

= q
rank

. Inverse rank number
U = U [:, 1 : rank]
V = V [:, 1 : rank]
Σ = diag (σi) i = 1, . . . , rank
w = V Σ−1UHd

else
w = G−1d

1∑
rank

= 1

end
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4. Optimizing rational filters

4.7. Optimization

4.7.1. Cost function

We seek a filter r(x) that minimizes the total number of linear solver iterations for
the RFE solver, either for the most expensive pole or for the sum over all poles, as
described above. We assume an estimation has been obtained for the number of
iterations of the linear solver for solving a single (block) linear system of equations,
kpred. Here, the linear solver may be either CGMN or GMRES, and the estimate
is based on the condition number of the shifted matrix, as described in Section
4.6. We begin by fixing the value of q; optimization over this value is a separate
problem.

For the normalized eigenproblem, Iλ = [−1, 1], the values of the poles and weights
of the rational function, zi and wi, are chosen to obey:

Re(z) > 0 & Im(z) > 0, i = 1, . . . ,
q

4
α > 0, β > 0

Re(zi+ q
4
) = −Re(zi), i = 1, . . . ,

q

4

Re(zi+ q
2
) = −Re(zi), i = 1, . . . ,

q

4

Re(zi+ 3q
4

) = Re(zi), i = 1, . . . ,
q

4

Im(zi+ q
4
) = Im(zi), i = 1, . . . ,

q

4

Im(zi+ q
2
) = − Im(zi), i = 1, . . . ,

q

4

Im(zi+ 3q
4

) = − Im(zi), i = 1, . . . ,
q

4
[w1, . . . , wq] = lsrational([z1, . . . , zq] , α, β)

We may additionally define upper limits on our values of zi, to prevent poles from
travelling unreasonably far from the real axis or outside of Iλ:

10−3 < Re(z) < 1.1 & 10−10 < Im(z) < 10, i = 1, . . . ,
q

4
.

That is, we optimize over q
4
poles zi in the upper right-hand quadrant of the complex

plane. These are then symmetrically reflected over the complex plane to form the
remaining poles.

We will re-frame the optimization problem with a number of simplifying assump-
tions.
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4.7. Optimization

min
zi,i=1... q

4
,α,β

∑
k
∑
pred (4.20)

where the total expected number of linear solver iterations,
∑
k
∑
pred, is defined as

∑
k
∑
pred =

q∑
i=1

kpred(Φi)lpred(Φi, zi, wi)

or

min
zi,i=1... q

4
,α,β

∑
kmax
pred (4.21)

where the maximum number of linear solver iterations for a single pole,
∑
kmax
pred is

defined as

∑
kmax
pred = max

i=1...q
kpred(Φi)lpred(Φi, wi, zi).

The weights are chosen to minimize the least-squares error, as described in Sec-
tion 4.3.3 according to (4.8). We additionally restrict our choice of weights by
constricting β ∈ [0.0001, 2.0] and α ∈ [0.1, 100.0].

These can then be shifted and scaled to fit the original Iλ according to

zi = c+ rzi, i = 1, . . . , q

wi = rwi, i = 1, . . . , q.

We can then evaluate kpred(Φi) and lpred(Φi, wi, zi) to determine the cost at
[
z1, . . . , z q

4

]
.

An algorithmic summary of the evaluation of the cost function is shown in Algo-
rithm 16

4.7.2. Visualization of cost function

In the simplest case of q
4

= 1 we can visualize our cost function over the upper
right-hand quadrant of the complex plane.

We do this for a sample eigenproblem, GraIII-11k-b, defined in Table 4.1 with
additional matrix information in Table A.1. We visualize the cost for the unscaled
poles, zi in Iλ = [−1, 1]. The cost is actually calculated for the poles shifted and
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4. Optimizing rational filters

Algorithm 16: Evaluate cost function. Input values that are mutable are
shown in red.
Input : z = [z1, . . . , zq/4] ∈ C poles of r(x)

β, α ∈ R Parameters for least-squares rational weights
λ, λ Bounds for Iλ
λmin, λmax Estimates for global min and max eigenvalue
m̃ Expected number of eigenvalues in Iλ
δ Estimate for eigenvalues in and around Iλ

Output:
∑
k
∑
pred or

∑
kmax
pred

Function evaluatecost(z1, . . . , zq/4,β, α,λ, λ,λmin, λmax,m̃,δ):
z = [z;−z̄; z̄;−z]

[w, 1∑
rank

] = lsrational(z1, . . . , zq, β, α)

h = λ−λ
m̃

for i = 1, . . . , q/4 do
distexp = |h/4 + Im(zi)i| . Expected distance from closest ew
κest(Φi) = max(|λmax − |zi| | ), |λmin − |zi| | )/distexp

Estimate kpred(Φi) . Evaluate (4.16), (4.17) or (4.18)
end
Evaluate r(δi), sort such that r(δ1) ≥ r(δ2) ≥ · · · ≥ r(δend)

lpred = log(tolRFE)/ log
(
r(δmU+1)

r(δm̃)

)
. Evaluate (4.19)∑

k
∑
pred =

∑q/4
i=1 kpred(Φi)× lpred(Φi, zi, wi)× 1∑

rank∑
kmax
pred = lpred(Φi, zi, wi)× 1∑

rank
×maxi=1...q/4 kpred(Φi)

scaled to fit the interval Iλ specified in Table 4.1. We predict, using the cost function
described in Algorithm 16, the number of CGMN and RFE iterations required at
(unscaled) poles zi scattered in [0, 1]× [0, 2]. At each iteration, mU = 64, while the
actual number of eigenvalues in Iλ is 40. The residual tolerances of the RFE and
the linear solver were each chosen as at 10−8. The weights of the rational function
r(x) were determined by Algorithm 15, with fixed values of α = 4.5 and β = 0.01.

As we can see in Figure 4.15 even in two dimensions, we are optimizing over a highly
variable surface. Indeed, in optimizing

∑
Ck

∑
pred or

∑
Ck

max
pred we are optimizing

over the product of two surfaces. We visualize each of these distinctly; the CGMN
iterations per RFE iteration as seen in Figure 4.13, the estimated number of RFE
iterations, lpred in Figure 4.14, and the total number of CGMN iterations (

∑
Ck

∑
pred

and
∑

Ck
max
pred are equivalent here.)
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4.7. Optimization

Figure 4.13.: Total CGMN iterations per RFE iteration as a function of z.

4.7.3. Optimization scheme

We are optimizing a multi-dimensional function without an analytic form for the
gradient. Furthermore, our optimization space is bounded. These properties
limit the choice of optimization scheme. We search for a global minimum with
a fixed value of q using the derivative-free algorithm Adaptive Differential Evolu-
tion/rand/1/bin (aderand1bin) implemented in the BlackBoxOptim.jl library [28].
In [64], this library was shown to work well in finding global minima in a non-linear,
gradient-free manner. This method allows a multidimensional search of variables,
and searches for a global minimum, not just a local one. This is important, as we
are not sure of the shape of our surface, especially in high dimensions and could
inadvertently start at a poor choice, landing far from the global minimum. The
scheme also allows for bounded variables.

If the number of processes is not predetermined, we may be interested to know
what choice of q will minimize (4.21). To this end, we may search for a minimum
over the valid values of q (where q mod 4 = 0). The overall algorithm is described
in Algorithm 17.

Initial optimization results are more reliable for the minimization of
∑
kmax
pred than∑

k
∑
pred. This is the more relevant problem for parallel execution, due to the desire
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4. Optimizing rational filters

Figure 4.14.: RFE iterations as a function of z.

Algorithm 17: Optimize rational filter over degree
Input : Maximal degree for rational function qmax

zmin, zmax, bounds for poles zi
αmin, αmax, βmin, βmax bounds for LS-weight parameters
λ, λ Bounds for Iλ
λmin, λmax Estimates for global min and max eigenvalue
m̃ Expected number of eigenvalues in Iλ
δ Estimate for eigenvalues in and around Iλ

Output: Optimal degree q, poles z1, . . . , zq, weights w1, . . . , wq
Function optimizeoverdegree(zmin, zmax, αmin, αmax, βmin, βmax,
λ, λ,λmin, λmax,m̃,δ):

for q/4 = 1, . . . , qmax/4 do[∑
kmax
pred, zopt, wopt

]
= aderand1bin(evaluatecost(), zmin, zmax,

αmin, αmax, βmin, βmax,λ, λ,λmin, λmax,m̃,δ)
if
∑
kmax
pred < minq

∑
kmax
pred then

minq
∑
kmax
pred =

∑
kmax
pred

end
end
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4.8. Numerical Results

Figure 4.15.: Total CGMN iterations over all RFE iterations as a function of z.

for a balanced load over processes. Therefore we will use this as our optimization
problem going forward. We note that this also provides comparatively good results
in terms of the total number of overall linear solver iterations required, as we will
observe in Section 4.8.

4.8. Numerical Results

We can now consider testing our optimization scheme on a selection of eigenvalue
problems. We consider separately the two iterative linear solvers that were analyzed
earlier in this chapter, beginning with CGMN.

4.8.1. Numerical results for CGMN

We now consider the application of our filter optimization scheme to a variety of
standard eigenproblems. Three matrices come from graphene modeling [23] and
11 from the SuiteSparse Matrix Collection [25]. These test matrices have also
appeared in [33, 46] and will be used again in Chapter 5. Each interval contains 40
eigenpairs. Information on Iλ is given in Table 4.3. The entire spectrum for each
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4. Optimizing rational filters

matrix is scaled to fit the interval [−1, 1]. More information for the test matrices
can be found in Table A.1.

The optimized rational filter is obtained a–priori using an implementation in the
Julia programming language, where the external optimization library described
above may be easily utilized. The optimization scheme was time-limited to 80
seconds for each degree, after which further time did not seem to provide substantial
improvements in the quality of filter. It is likely that this step could be accelerated
with additional cores or parallelization.

An example filter can be seen in Figure 4.17. We see that the filter shows much
weaker drop-off away from the edges of Iλ relative to the Gauss–Legendre filter
of the same degree. The poles are, however, all much further from the real axis,
as seen in Figure 4.16. Furthermore, the poles of the optimized filter are all a
similar distance from the real axis, which should result in a more balanced number
of CGMN iterations over the different poles.

Figure 4.16.: (a) Figure 4.17.: (b)

Poles (a) and filter (b) of the optimized filter (Opt) for GraIII-11k-b problem with
q/2 = 10. The poles and filter of the Gauss–Legendre filter (GL) for the same
degree are shown for comparison.

The filters were tested within the BEAST framework on the Emmy cluster at Friedrich-
Alexander-Universität Erlangen–Nürnberg. For each eigenproblem, we compare
the Gauss-Legendre filter with our optimized filter generated for that problem from
Algorithm 17. We begin with mU = 64 randomly generated columns in Y . All lin-
ear systems were solved to a relative residual tolerance of 10−12. Each problem
was considered solved when 40 eigenpairs were found in Iλ to an absolute residual
tolerance of 10−8. Since all problems considered here are real, only q

2
(block) linear

systems need to be solved, assuming a symmetric rational function. As discussed
in Chapter 2, we solve for poles zi in the upper half of the complex plane and use

76



4.8. Numerical Results

symmetry to obtain the result over the whole rational function. The results below
accordingly contain the actual number of CGMN iterations required for a block
linear system solve; those corresponding to q

2
poles. More specifically, the number

of CGMN iterations reported for each block linear system solve is the maximal
number of CGMN iterations required over the mU = 64 columns in the block.

In Figures 4.18 and 4.19, we observe the actual total number of CGMN iterations
required for all poles

∑
Ck

∑
, or the actual maximum number of CGMN iterations

required for a single pole,
∑

Ck
max, over all RFE iterations. The value of

∑
Ck

∑
and

∑
Ck

max, as given by (4.20) and (4.21), is also shown in these figures for
each value. We show for each eigenproblem the Gauss-Legendre filter for degree q
that minimized

∑
Ck

∑
or
∑

Ck
max, according to the quantity in question. This

degree is listed together with the rest of the results in Table 4.3. We observe that
the degree minimizing these two quantities is typically very different. The RFE
solver was run with Gauss-Legendre filters up to a degree at which only one RFE
iteration was required, at which point no further decrease in cost is possible. For
comparison, the optimized filter gained (a-priori) from Algorithm 17 is optimized
simply to minimize

∑
Ck

max; here, the value of q predicted to minimize cost is
chosen in advance. The value of q is also listed in Table 4.3.

To highlight the differences in values, we also show in Figures 4.20 and 4.21 the
values normalized by the number of iterations required for the (optimal degree)
Gauss-Legendre filter. We observe that the value of

∑
Ck

max is typically reduced
to 1/2 or 1/3 for the problems under consideration. The value of

∑
Ck

∑
is also

typically reduced, even though this is not the quantity under consideration for
optimization. The reduction in

∑
Ck

max is promising, as it signifies a proportionate
reduction in cost when all linear systems in an RFE iteration are solved in parallel.
Here, as predicted in Section 4.3, the differing distances from the real axis for most
rational filters under consideration is expected to cause a significant imbalance in
the number of linear solver iterations required for the different poles. As the RFE
iteration requires all linear systems to be solved before continuing, an imbalance
in cost for the different poles means that if all linear systems are solved in parallel,
some processes will be waiting for the completion of the most expensive linear
solves. Therefore, the reduced value of

∑
Ck

max indicates improved load balancing,
which is important for the overall scalability of the algorithm. This suggests that
these strategies may result in RFEs that are better suited for large problems solved
in high performance computing environments.
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4. Optimizing rational filters

Figure 4.18.: Comparison of actual and predicted number of total CGMN iterations,∑
Ck

∑
and

∑
Ck

∑
pred for all poles required for all eigenpairs in the interval to

converge. Results are shown for the Gauss-Legendre degree minimizing this value,
and the optimized filter.
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4.8. Numerical Results

Figure 4.19.: Comparison of actual and predicted number of maximum CGMN
iterations for a single pole,

∑
Ck

max and
∑

Ck
max
pred required for all eigenpairs in the

interval to converge. Results are shown for the Gauss-Legendre degree minimizing
this value, and the optimized filter.
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4. Optimizing rational filters

Figure 4.20.: Comparison of actual total number of CGMN iterations for all poles,∑
Ck

∑
required for all eigenpairs in the interval to converge. Results for the opti-

mized filter are shown relative to those for the Gauss-Legendre degree minimizing
this value.
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4.8. Numerical Results

Figure 4.21.: Comparison of actual number of maximum CGMN iterations,∑
Ck

max for a single pole required for all eigenpairs in the interval to converge.
Results are shown relative to those for the Gauss-Legendre degree minimizing this
value.
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4.8. Numerical Results

In Table 4.3 we present a summary of results for all problems tested. We observe
here that the optimized filter is not perfect, and sometimes fails to find all eigenpairs
to the desired tolerance. This is observed to occur when the convergence of the RFE
stagnates, often for only a couple eigenpairs, above the desired residual tolerance.
This stagnation is not very surprising, as the optimizer is under pressure to place
poles further from the real axis, where they are “cheaper,” though this results in a
less effective filter. Furthermore, our estimate within the optimizer for the number
of RFE optimizations is based on an assumption of evenly distributed eigenvalues
in and around the interval, even though this is very likely not the case. A cluster
of eigenvalues around the edges of Iλ could cause significantly worse convergence
than expected.

Figure 4.22.: Time required for BEAST-C on linverse-b problem to converge with
Gauss–Legendre (GL) filter of various degrees vs. optimized (Opt.) filter. Results
are shown in red for the optimized filter and blue for Gauss-Legendre filters.

We also observe how the performance of an eigensolver may depend on the per-
formance of the linear solver with a given filter. We show in Figure 4.22 the time
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4. Optimizing rational filters

taken for a run of BEAST-C with a Gauss–Legendre filter over various degrees, up
to q/2 = 10, for which BEAST-C converges in a single iteration and has minimal
CGMN iterations per pole for a Gauss–Legendre filter, as well as the optimized
filter, also with degree q/2 = 10. All linear systems were solved in parallel during
each BEAST iteration, with one computational node for each linear system; thus q/2
nodes were used. Each node contains Xeon 2660v2 CPUs and a total of 20 cores.
We see that the difference in CGMN iterations, as given in Table 4.3, is associated
with a proportionate difference in time.

4.8.2. Numerical results for GMRES

The efficacy of the optimization scheme can also be explored with the GMRES
iterative linear solver. Since the number of GMRES iterations required increases
so much more quickly than for CGMN, making the experiments computationally
expensive, if not infeasible, the experiments here are limited to a couple of “easier”
problems.

We consider the eigenproblems SiH4-b and GraIII-11k-a, as described in Table 4.2,
with general matrix information in Table A.1. For each eigenproblem, we compare
our optimal filter from Algorithm 17 with the Gauss-Legendre filter over various
degrees (up to a degree required to reach convergence in a single RFE iteration.)
Here, the 40 eigenvalues for this problem within the interval listed in Table 4.2 are
found to a tolerance of 10−6, with mU = 64 initially randomly generated columns
in Y and all linear systems solved to an absolute residual tolerance of 10−12. The
average number of iterations required for all columns in the block linear system of
equations to reach the desired tolerance is reported. Again, only q

2
linear systems

need to be solved, assuming a symmetric rational function, and the results contain
the actual (averaged over the block) number of GMRES iterations required; those
corresponding to q

2
poles.

In Section 4.6.3 we observed variance across matrices in the line of best fit for
estimated condition number vs. GMRES iterations. In Figure 4.23 we observe
results for a filter with optimized poles generated with an estimated slope of 30 in
this linear relationship (as in (4.18)) as well as an estimated slope of 20; i.e.

Gkpred(Φ) = 20κest(Φ),

The number of actual iterations over all metrics tested for the two filters is very
similar, confirming the idea that even a rough estimate for the number of linear
solver iterations is useful for this optimization strategy, and can outperform a
standard rational filter choice.
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4.8. Numerical Results

In Figure 4.23 and 4.24 we compare a number of metrics for the various filters tested
for each eigenproblem: the total number of GMRES iterations over all iterations
of the RFE,

∑
Gk

∑
, the maximum value of GMRES iterations, Gk, for a single

RFE iteration, Gkmax, the number of RFE iterations, l, and the maximum number
of GMRES iterations over all RFE iterations,

∑
Gk

max. For both eigenproblems,
the reduction in GMRES iterations for the optimized vs. Gauss–Legendre filter is
massive.
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4.8. Numerical Results

Figure 4.24.: Comparison for SiH4-b eigenproblem of
∑

Gk
∑
, maximum Gk for a

single RFE iteration, l and
∑

Gk
max required for all eigenpairs in the interval to

converge. Results are shown in red for the optimized filter and blue Gauss-Legendre
filters of differing degrees.

Due to the significantly steeper increase in GMRES iterations with increasing ma-
trix condition number, the benefits of placing poles further from the real axis are
even stronger than for CGMN. As in the case of CGMN, the benefits of the opti-
mized poles also have powerful implications for load balancing, with a possible order
of magnitude reduction for

∑
Gk

max, as observed for the GraIII-11k-a problem.

However, the stronger rate of growth for GMRES vs CGMN with increasing con-
dition number makes the use of the former as a linear solver more complicated. As
problem size increases, so does the relative density of eigenvalues in the spectrum,
shrinking h and Iλ, and requiring the poles of a filter to lie closer to the real axis
for convergence of the RFE. This in turn drives up the relative condition number,
resulting in a greater increase in iterations for GMRES than for CGMN. Again, is
possible that an appropriate preconditioner could change the iteration growth rate,
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4. Optimizing rational filters

and make GMRES more competitive as a choice of iterative solver. This, as well
as testing other iterative linear solvers, remains a topic of future research.

4.8.3. Comparing to other optimized filters

The reason for comparison with Gauss-Legendre quadrature becomes clear after
comparison with some of the “optimal” schemes. Though Zolotarev and SLiSe/-
WiSe functions may provide fast convergence, the cost of the linear systems with
poles close to the real axis is unlikely to justify their use.

We illustrate this for one problem, as shown in Figure 4.25. Here, the 40 eigenvalues
for the matrix bcsstk37-a (as described in Table A.1) are solved with either a
Zolotarev or Gauss-Legendre filter of differing degrees. The RFE began with mU =
64 randomly generated columns of Y and solved all linear systems to a relative
residual tolerance of 10−12. We consider the maximum number of CGMN iterations
required for a column in the block linear system to reach the desired tolerance. All
40 eigenpairs were found to a residual tolerance of 10−8. The Zolotarev weights
and poles were generated using a value of R = 106, as defined in (4.5) except for
one comparison point with R = 104.

We observe that the total number of CGMN iterations required is much higher
when using Zolotarev functions. The maximum number of iterations per pole is
roughly equivalent when only one iteration is needed, but this requires a much
higher degree for Zolotarev functions than for Gauss-Legendre. Better behaviour
might be expected with a differing value of R. A larger value is associated with a
better worst case convergence rate, as the filter improves for eigenvalues lying close
to the boundaries of Iλ. However, the average case may not be improved, as we
see in Figure 4.25 for the Zolotarev filter with q/2 = 4. Here, a decreased value of
R = 104 improves the RFE convergence rate (not always to be expected) while also
decreasing the overall and per RFE iteration cost of CGMN. In general, we expect
that the average case behaviour of Gauss-Legendre will continue to outperform
Zolotarev functions when considering iterative solvers like CGMN.

88



4.8. Numerical Results

F
ig
ur
e
4.
25

.:
C
om

pa
ri
so
n
of

m
ax

im
um

C
G
M
N

it
er
at
io
ns

fo
ra

si
ng

le
po

le
,∑ C

k
m

a
x
an

d
∑ C

k
m

a
x

p
r
ed

re
qu

ir
ed

fo
ra

ll
ei
ge
np

ai
rs

in
th
e
in
te
rv
al

to
co
nv

er
ge
.
R
es
ul
ts

ar
e
sh
ow

n
in

bl
ue

fo
r
G
au

ss
-L
eg
en
dr
e
an

d
gr
ee
n
Zo

lo
ta
re
v
fil
te
rs

w
it
h
va
lu
e
R

=
10

6

of
di
ffe

ri
ng

de
gr
ee
s.

W
e
al
so

sh
ow

re
su
lt
s
in

or
an

ge
fo
r
on

e
Zo

lo
ta
re
v
fil
te
r
w
it
h
R

=
10

4
,q
/2

=
4.

89



4. Optimizing rational filters

4.9. Conclusions

In this chapter, we have considered the relationship between the rational filter in
an RFE and the resulting shifted linear systems required for the construction of
the basis of the desired eigenspace. Here, we have explicitly focused on the use of
iterative solvers for these linear systems, and explored whether the number of linear
solver iterations required may be predicted. We developed a simple optimization
problem, based on the predicted cost of solving all shifted linear systems over all
iterations. Previous work in optimizing filters for Hermitian eigenvalue problems
has focused on reducing the worst–case convergence ratio of the RFE [42, 64, 96].

The optimization problem is simple to describe, but its solution is not straight-
forward, as it is a bounded non-linear problem without a known gradient. Future
work could include a modification of the cost function such that a wider range
of optimization schemes are applicable, and perhaps improve the quality of filter
that arises. The improvement in linear system solver cost that we have seen so far
is substantial, but for the solution of very large problems, a further gain may be
needed in order to make the solution using an iterative linear solver truly feasible.
This could also include expanding the prediction of linear solver iterations to other
iterative solvers, perhaps with appropriate preconditioners. A block incomplete
Cholesky approach [62] has previously been used for the linear systems arising
from an RFE [4]. Furthermore, our filter optimization strategy could be combined
with the graduated residual strategies seen in [38, 79], increasing the residual tol-
erance in early RFE iterations and thus presumably reducing the overall number
of linear solver iterations required.

One promising possibility for future research is to re-run the optimizer and generate
a new filter after each RFE iteration with an updated estimate of the location of
the eigenvalues, information that is “free.” The computational cost of running the
optimizer is vastly outweighed by a single RFE iteration, especially with growing
problem size, as it runs in minutes on a workstation with a few cores, and pre-
sumably seconds on a single node in a high performance computing environment.
Whether the optimization procedure takes place a-priori or after each RFE itera-
tion, the increase in cost for the RFE should be basically insignificant, and vastly
outweighed by the presumed reduction in cost for the linear system solves.

An alternative strategy is to compute a set of filters a-priori with the properties
seen thus far. Up to this point, we have used information about the width of the
spectrum in the optimization of the filter. However, it is possible that a table of
filters for a range of expected spectral widths could be gathered in advance and
provided within BEAST for reasonably good results without requiring the user to
perform the optimization step. This would first require evaluating how well these
filters generalize to similar problems.
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4.9. Conclusions

The practical use of iterative linear solvers in an RFE is a long-standing and sig-
nificant problem. Though the approach we have shown in this chapter is a simple
one, and further work is likely needed to improve the feasibility of the approach
for truly large problems, the direction seems promising.
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CHAPTER 5

RFES WITH MULTIPLE MOMENTS

In Chapter 2, rational filter-based eigensolvers were introduced, including the def-
inition of RFEs with multiple higher order moments. In this chapter, we discuss
the various algorithmic choices that arise in these methods, as well as the subse-
quent consequences. We are interested in how these choices affect the accuracy,
robustness, and scalability of the overall scheme particular to a RFE with multi-
ple moments. As with all RFEs, a significant consideration is the solution of the
multiple linear systems that arise. One advantage immediately apparent from the
use of multiple moments is the ability to re-use the solution of linear systems in
the construction of U , a basis for a subspace containing the desired eigenvectors.
As the solution of linear systems is by far the most expensive component of these
schemes, this is a promising prospect for the overall cost reduction of our scheme.
There are two possible viewpoints, given the re-use of the solution of linear systems:
either to construct a larger subspace overall, hopefully obtaining a better approx-
imate basis for space spanned by the desired eigenvectors, or to use a constrained
subspace size, and reduce the cost per RFE iteration. Sakurai–Sugiura methods
have traditionally focused on the former strategy [59], but in this thesis, the latter
perspective will be extensively explored for potential cost reduction. As we will see
in this chapter, a constrained subspace size has implications for convergence. We
explore the expected heuristic behaviour with respect to various parameters and
algorithmic choices, and propose multiple schemes to reduce cost while maintain-
ing accuracy and robustness. Numerical results showing the potential efficiency of
these various strategies are shown. This chapter is built upon work that is available
elsewhere. In [46], we consider RFEs with a flexible number of moments, including
discussions and comparisons of iteration types, strategies for changing the number
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5. RFEs with multiple moments

of moments over iterations, the combined effect of subspace size and quadrature
rules, and numerical experiments showing the reduction in cost for linear systems
possible with a flexible choice of moments. In [4], we explore the scalability of
multi-moment RFEs with respect to quadrature degree. Here, we take the op-
portunity to expand on several important topics included in the implementation
of a multi-moment RFE, including the estimation of the number of eigenvalues
inside the interval and orthogonalization of the constructed basis for the desired
eigenspace. We also explore choosing and predicting quadrature degree to decrease
the cost of solving linear systems over an RFE.

5.1. Algorithmic overview

In Chapter 2, we introduced RFEs with multiple moments. We have considered the
construction of U , the basis for the desired eigenspace, from the perspective of a
contour integral as well as a general rational filter. We have also highlighted how the
approximate eigenpairs may be extracted from U . We will now introduce additional
algorithmic considerations, such as RFE iterations. We highlight the general flow
of an RFE with multiple moments in Figure 5.1. Corresponding sections discussing
relevant choices in detail are listed. The algorithmic flow is similar to a general
RFE, as described in Chapter 2.

5.1.1. Extraction of eigenvalues and eigenvectors

Sakurai–Sugiura methods were first introduced with the extraction of the desired
eigenvalues and eigenvectors from the generated subspace basis U via a Hankel
matrix composed with the distinct moments [85]. This is referred to as the block
SS–Hankel method.

Alternatively, and as is now common practice, the eigenpairs can be extracted
via a Rayleigh–Ritz technique, as described in Chapter 2. This method has the
advantage of preserving numerical stability if some eigenvalues are close together,
in comparison with methods using Hankel matrices [87]. This practice is called the
block SS–RR technique [56, 87]. For this approach, it is necessary that U be of full
numerical rank in order to provide a non-singular eigenproblem. Therefore, the
pre-processing of U via orthogonalization and removal of rank deficient columns is
imperative. Strategies for orthogonalization will be discussed later in this chapter.
The remainder of this chapter will assume approximate eigenpairs are extracted
via the Rayleigh–Ritz procedure.
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For zi, wi from
rational function

[5.2.2]

r(x) =

q∑
i=1

wi

x− zi
,

solve [5.3.2]

U0
i = wi(A−ziB)−1BY

Y

mY [5.1.3]

Construct U with s
moments [5.1.4]

[
q∑

i=1

U0
i ,. . . ,

q∑
i=1

zsiU
0
i

]

Orthogonalize U
[5.3.1]

U

Construct and solve
reduced eigenproblem

[5.1.1]
with eigenvectors W

W • Compute full
size
approximate
eigenvectors X

• Compute
residuals and
check
convergence
[5.1.6]

• Set Y for next
iteration [5.1.2]

X

Figure 5.1.: Algorithmic choices for multi-moment RFEs. The respective
(sub)sections detailing the different steps and choices are shown in brackets.

5.1.2. Subspace iteration

As shown in Chapter 2, a multi-moment RFE involves constructing a subspace
U , as defined in (2.25), formed by collecting the vectors from the application of
different moment-based filters to Y . When s moments are used, this may again be
defined as

U =
[
U0, U1, . . . , Us−1.

]
(5.1)

The portion of U corresponding to the pth subspace is again

Up =

q∑
i=1

wiz
p
i Φ
−1
i BY (5.2)

where Φi = (A− ziB). We note that in practice, zpi should be replaced by a factor
ζpi which is not scaled by Iλ in order to improve numerical stability [84]. For ease
of notational understanding, this is omitted in our description.

If this subspace does not allow us to extract accurate approximations of the de-
sired eigenvectors from its basis, we can repeat the application of our filter(s) in a
subspace-iterative based manner. In a single moment scheme (i.e. FEAST) we use
our approximate eigenvectors X̃Iλ as the initial vectors Y in the following iteration
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5. RFEs with multiple moments

[77]. When multiple moments are considered, we only need 1/s of the number of
vectors in X̃Iλ (assuming a full rank U) to form Y for the next RFE iteration. How
should we select our new vectors for Y ? We discuss two options below.

5.1.2.1. Outer iteration

In the so-called “outer iteration”, the mY initial vectors needed in the following it-
eration are chosen as a linear combination of the current approximate eigenvectors,
X̃Iλ , as only mY = mU

s
are needed in Y . This strategy was introduced for SSM in

[84]. Here, the linear combination is traditionally random, via multiplication with
a random matrix with values uniformly chosen in [0, 1] as

Y = X̃IλR (5.3)

where X̃Iλ ∈ Cn×mU , R ∈ RmU×mY , and thus Y ∈ Cn×mY . This random combina-
tion ensures that directions according to all approximated eigenvectors are included
in the new approximate subspace, where they will again be filtered. However, as
observed in [30], the choice of random values in R perturbs the vectors and may
lead to more “noise” in the filtered vectors of the next subspace. The evaluation of
different choices of R is beyond the scope of this work; some ideas are illuminated
in [30]. The linear combination of vectors also makes the analysis of the error more
difficult, as we will discuss next.

Algorithm 18: Block SS-RR with outer iteration
Choose a starting block of mY vectors Y
while not converged do

Compute U =
[∑q

i=1wiΦ
−1
i BY, . . . ,

∑q
i=1 wiz

s
iΦ
−1
i BY

]
Orthogonalize U
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Set Y = XR

end

5.1.2.2. Inner iteration

In the so-called “inner iteration” [58], the choice of Y in subsequent subspace iter-
ations of the RFE is U0, the subspace formed by applying the 0th moment filter
r(B−1A) to Y ,
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5.1. Algorithmic overview

U0 =

q∑
i=1

wiΦ
−1
i BY.

The resulting algorithm, as shown as Algorithm 19, does not require the approx-
imate eigenpairs for subsequent RFE iterations. If convergence to the desired
tolerance is not yet expected, the extraction of the approximate eigenpairs may be
skipped. This direct connection between the solution of the linear systems in one
RFE iteration and the right hand sides BY in the next may be contrasted with
the other iteration type we have seen so far. This is also reflected in the respective
names of “inner” and “outer” iteration types.

Algorithm 19: Block SS-RR with inner iteration
Choose a starting block of m vectors Y ;
while not converged do

Compute U =
[
U0,

∑q
i=1wiziΦ

−1
i BY, . . . ,

∑q
i=1wiz

s
iΦ
−1
i BY

]
if checking convergence then

Orthogonalize U
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem for (W,Λ) AUW = BUWΛ
Compute approximate eigenvectors X = UW
Compute residuals, Axi − λiBxi, [λ1, . . . λmU ] = diag(Λ), λ ∈ Iλ

end
Set Y = U0

end

As shown in Chapter 2, U0 = Xr(Λ)XHBY . We provide here illuminating high-
lights of the analysis in [58] to obtain the error bound for multiple inner iterations,
which is related to the error bound for single moment RFE iterations [89]. In the
second inner RFE iteration, the subspace U0

2 is formed as:

U0
2 = (Xr(Λ)XHB)U0

1

U0
2 = (Xr(Λ)2XHB)Y

and subsequently the tth single moment RFE iteration is equivalent to applying the
approximate projector (Xr(Λ)XHB) t times. The subspace U0

t is thus defined as

U0
t = (Xr(Λ)XHB)tY. (5.4)
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5. RFEs with multiple moments

As shown in [58] and restated in Chapter 2, a single iteration of a multi-moment
RFE is equivalent to applying the single moment filter to the sth block-Krylov
subspace based on the initial vectors:

U = Xr(Λ)XHBK,

where
K =

[
Y,XΛXHBY,XΛ2XHBY, . . . , XΛs−1XHBY

]
.

Substituting U0
t for Y in the expression for K, we obtain in the tth iteration the

subspace Kt:

Kt =
[
(Xr(Λ)XHB)tY, . . . , XΛs−1XHB(Xr(Λ)XHB)t−1Y

]
(5.5)

Kt = (Xr(Λ)XHB)tK. (5.6)

Thus, in the tth inner iteration,

U = (Xr(Λ)XHB)tK. (5.7)

This is equivalent to projected subspace iteration, now applied to a block Krylov
space of initial vectors. Since Xr(Λ)XHB = Xr(Λ)X−1 is by definition a diagonal-
izable matrix, the error theorem from [81], Theorem 5.2, holds when the eigenvalues
are extracted via Rayleigh–Ritz (i.e. Algorithm 19). We assume that the set of
vectors resulting from the application of the spectral projector with invariant sub-
space span{x1, x2, . . . , xmU} onto Y are of full rank. Thus we obtain the following
expression for the error after t iterations:

‖(I − P t)xi‖ 2 ≤ c

∣∣∣∣r(λmU+1)

r(λi)

∣∣∣∣t i = 1, 2, . . . ,mU , (5.8)

where P t is the orthogonal projector onto the space spanned by the columns of U .

This is equivalent, in the single moment case, to the convergence behaviour of the
FEAST algorithm over multiple iterations. Since the outer iteration uses a linear
combination of the extracted vectors X̃Iλ to form Y in the next iteration, this
error analysis is only appropriate for a single iteration of Algorithm 18. Although
no theoretical error analysis for the outer iteration is given, we can observe the
similarities in convergence between the two methods in subsequent experiments.
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5.1. Algorithmic overview

5.1.3. Subspace size

The choice of subspace size, mU , for an RFE with multiple moments is a critical
determinant of convergence, as it is for RFEs in general. As has previously been
shown for a single moment method [65, 66], mU should be at least as large as the
number of eigenvalues in Iλ, m. If this condition is not met, convergence will either
stagnate, if the filter is a close approximate of the window function, or proceed
slowly for some eigendirections, while failing to find all eigenpairs, as described in
[30]. This is of course also true in the case of multiple moments, as without enough
directions, the space spanned by U has too few dimensions to contain the complete
eigenspace spanned by XIλ .

The construction of the subspace basis U is defined in (2.25). By definition, mU =
s×mY . Therefore, in the linear systems defined in an RFE, only 1

s
as many right

hand sides are needed as for an iteration with a single moment RFE. How should
mU be chosen? Historically, a factor of enlargement, or subspace factor of 1.5× m̃
has been recommended for the FEAST algorithm, with m̃ the expected number of
eigenvalues in Iλ. An analytical argument for this choice was given in [89], with
initial explanations in [32].

SSM, with multiple moments, has instead traditionally relied on a subspace size
large enough to converge in a single iteration. Indeed, vectors are traditionally
added to U until the smallest singular values are below a given threshold, a sign that
the space is large enough to contain an accurate basis for the desired eigenvectors
[84]. This strategy may make convergence to a desired residual tolerance more
difficult, as the “break point” of the algorithm is chosen by numerical rank and not
according to a residual threshold.

Currently, our focus is on reducing the cost of linear system solves by reducing the
overall number of right hand sides summed over all RFE iterations, RHSovl. To
this end, we constrain mU as in the FEAST algorithm to approximately 1.5 × m̃.
This is expected to have consequences for the number of RFE iterations required.
Numerical experiments are considered in Section 5.1.5.

5.1.4. Multiple moments

As seen above, a subspace created with s moments is equivalent to a single moment
rational filter applied to a set of initial vectors expanded by an order-s block-Krylov
subspace. An alternative perspective is to consider the action of the filter belonging
to each moment separately, with form for the pth moment
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5. RFEs with multiple moments

Figure 5.2.: Visualization of filter functions (5.9) for various moments p.

rp(x) =

q∑
i=1

wiz
p
i

zi − x
. (5.9)

We can also anticipate the effect of a multi-moment RFE by observing the distinct
filter functions for various moments. In Figure 5.2, we see the filter function re-
sulting from various distinct moments. Here, we see that the filter function returns
to 0 inside Iλ for larger portions of the interval with increasing p. Realistically, we
must expect the projected subspace corresponding to each moment to decrease in
quality as p increases. How exactly this effect applies to the overall generated sub-
space is not analytically known, however, as the overall filter function with multiple
moments does not have a known form.

How many moments is a “good” choice for a subspace? A larger number of moments
leads to a larger overall subspace size, or if this is constrained, a smaller value ofmY

needed in an RFE iteration. However, the behaviour and analysis with increasing
numbers of moments encourages careful choice. As shown in [84], eigendirections in
the space spanned by the columns of U with eigenvalues outside of Iλ are reduced
by a factor of their scaled distance from the interval, raised to the power of −q+p.
The number of moments is recommended to be q/4, to keep this factor large enough
to speed up convergence.
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5.1. Algorithmic overview

When we consider the error analysis previously shown, we observe that at least for
the inner iteration, the error is independent from the number of moments. The
same initial starting vectors Y are treated by similar filter functions; as in the
generation of a traditional Krylov space, it is to be expected that the vectors of
this space approach linear dependency. The achievable residual error may also be
limited when multiple moments are used, as we observe in Section 5.1.5. The error
given by (5.8) depends onmU . Even if the initial choice ofmU is sufficiently large, a
reduction due to low rank will also affect the subsequent expected error reduction.

We can avoid stagnation of the residual above our desired tolerance by decreasing
the number of moments in later iterations. In a similar way to the adaptive strategy
described in [34], we can choose the number of moments adaptively. We can monitor
the value of the “smallest-not-converged” residual pair- that is, the smallest value
of Ax̃i − Bλ̃ix̃i, i ∈ 1, . . . ,mU that lies above the chosen residual threshold. If,
in repeated iterations, this value does not shrink by a factor of 100, stagnation is
determined to have set in, and the number of moments is decreased, typically with
a reduction to a single moment scheme.

5.1.5. Numerical experiments

We will begin by exploring the expected behaviour of SSM with regards to the
choice of number of moments and choice of initial vectors. This experiment has
been considered and discussed in [46].

We consider a small standard eigenproblem

Axi = λixi, λi ∈ Iλ = [−1, 1] (5.10)

with the diagonal matrix

A = diag (−2.99,−2.89, ..., 6.91) ∈ R100×100 (5.11)

A has m = 20 eigenvalues in Iλ.

We use the contour-integration based filter of Gauss–Legendre type with q = 16
quadrature points on the unit circle surrounding Iλ = [−1, 1]. In the first iteration,
the mY columns of Y ∈ Cn×mY were chosen randomly. In subsequent iterations,
Y = U0 or Y = X̃IλR depending on whether the inner or outer iteration type (see
Section 5.1.2) was currently in use. The subspace size was constrained to mU = 32,
and thus mY = 4, 8, or 32, depending on whether s was currently chosen as 8, 4,
or 1.

We wish to observe the behaviour induced by switching from inner to outer itera-
tions, as well as from changing the number of moments in use over RFE iterations.
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Figure 5.3.: Absolute maximum, minimum, and average of the 20 smallest residuals
for problem (5.10), as well as rank. mU is 32. The number of moments is written
in the background, with a vertical line indicating a change in number of moments.
A grey background indicates inner iteration types (see Algorithm 19); white outer
iteration types (Algorithm 18). Left: Inner iteration type for all RFE iterations.
Center: Inner iteration type for 8 RFE iterations, then switch to outer iteration
type. Right: Outer iteration type for all RFE iterations. Top row: 4 moments
for all RFE iterations. Bottom row: 4 moments for first 9 RFE iterations, then 1
moment for subsequent iterations. This figure also appears in [46].

The values of the smallest m = 20 residuals are shown for various configurations
of moments and iteration types, for an initial 4 moments in Figure 5.3 and 8 mo-
ments in Figure 5.4. Here we observe that using more moments, particularly in
conjunction with outer iterations, leads to stagnation of the residual error at a
given threshold. This effect, and the height of the stagnation threshold, may be
even stronger for larger, non-diagonal matrices. Furthermore, the numerical rank
of U when multiple moments are in use is reduced, restricting the theoretical error
bound for that iteration. These effects may be combated by switching to a single
moment RFE in later iterations. If this switch occurs, we observe that convergence
continues to the maximum expected quality.
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Figure 5.4.: As Figure 5.3, but with 8 moments. This figure also appears in [46].

5.1.6. Eigenvalue counting

An important remaining step is to be able to determine whether all eigenpairs in
Iλ have been computed to an acceptable tolerance. We need to know how many
eigenpairs are in the interval. We assume that a reasonable estimate is given a-
priori. However, this estimate may need to be updated over the course of running
the eigensolver. Fortunately, we can use information gained during an iteration to
generate a new estimate, typically with reasonably good accuracy, especially as the
quality of approximation of the eigenpairs improves over RFE iterations.

5.1.6.1. Singular values of U

Various techniques for counting the number of eigenvalues in the FEAST algorithm
are available, as illustrated in [32]. As introduced in Chapter 2, based on [32, 65, 89],
the singular values of U may be used to provide an estimate of this count. In floating
point arithmetic, we can count the number of singular values, σi, i = 1, . . . ,mU , of
U above a tolerance (σt). A best choice was shown to be σt = 0.5 in [32].

For moment based methods, orthogonalization is an essential step in ensuring the
full rank of U before a Rayleigh–Ritz step is performed. The singular values of U
can be obtained as a not-too-expensive by-product of this orthogonalization. If an
SVD decomposition is used to obtain an orthogonalization of U , the singular values
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5. RFEs with multiple moments

are computed as part of this process. If an (economy sized) QR decomposition is
used, the singular values can be extracted from the (smaller) matrix R.

5.1.6.2. Generation of τ values

An alternative metric for estimating the number of eigenvalues in Iλ was described
in [56], with the singular values scaled by the absolute values of the Ritz vectors.

Specifically, we define wi as the Ritz vector arising from the solution of the re-
duced eigenproblem in the Rayleigh–Ritz problem, UHAUwi = λiU

HBUwi, i =
1, . . . ,mU . We again define σi as the ith singular value of U .

Then, our metric τi is defined as

τi =

∑mU
j=1 |wi,j| 2∑mU
j=1 σj|wi,j| 2

i = 1, . . . ,mU . (5.12)

This metric was originally defined as a quality control measure for the computed
eigenpairs, to determine whether or not they are spurious. But it can equivalently
be used to track how many of the computed eigenpairs are associated with true
eigenpairs within the interval [83]. Assuming mU > m, and each true eigenpair is
associated with a computed eigenpair, a good estimate should result. Furthermore,
we expect the quality of the estimate to improve over RFE iterations.

5.1.6.3. Numerical experiment

These two metrics can now be compared in a numerical experiment. We consider
a standard eigenproblem with A = GraphI-1k, a 1152 × 1152 sparse, symmetric
real matrix with 301 eigenvalues in Iλ = [−0.7575, 1.1025]. This problem is also
described as No. 20 in Table 5.2.

We compare the values of τi and σi over RFE iterations with either 4 (as shown in
Figure 5.5) or 1 moment (as shown in Figure 5.6). We use an initially random block
vector Y , along with either 4 or 1 moment to obtain a full subspace size of mU =
452 or 450 respectively. All linear systems are solved using MATLAB’s backslash
function. The svd() function was used for the generation of the singular values,
and the eig() function for the calculation of Ritz values and vectors. Gauss–
Legendre quadrature was used, with 16 quadrature points on the entire circular
contour.

The values τi and σi are generated as described above. We count the number of
values below the thresholds [83].
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Figure 5.5.: τi vs. σi over 4 iterations. s = 4

τt = 10−4 × max
i=1,...,mU

τi

and
σt = 0.5.

As we see in Figures 5.5 and 5.6, the number of moments used makes an observable
difference in the quality of the metric. With 4 moments, the count resulting from
the τ ′is is clearly superior, especially after the first iteration. We can see a marked
drop off and good separation between the “good” values of τi, corresponding to
real eigendirections, and “bad” values, corresponding to spurious vectors. With 1
moment, the difference in quality disappears between σi and τi after the first couple
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Figure 5.6.: τi vs. σi over 4 iterations. s = 1.
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5.2. Extension of the BEAST framework

of iterations. Obviously the threshold chosen for counting τi is not well suited to
the single moment case, but this is less relevant than the possibility of a well placed
threshold; that is, a point at which the values exhibit a steep drop off. This is more
obvious for the values of σi in the 1 moment case.

5.2. Extension of the BEAST framework

The BEAST framework, as introduced in Chapter 2, has been extended beyond its
original form to include (iterative) SSM. This extension is also introduced in [46].
As discussed previously, we consider the SSM with a constrained subspace size,
meaning a change in the number of moments may be required to reach the desired
convergence threshold. Several extensions of a traditional SSM are therefore added
within the BEAST solver to support its iterative and adaptive nature. In particular,
the considerations discussed in this chapter are included. Most parameters may
be set or changed by the user as options. Suggested parameters are listed in this
chapter. In the cases where a collection of fixed algorithmic choices have been
made, this is stated in their respective description.

A variety of schemes are possible when multiple moments are used, including the
options discussed up to this point. We consider the possible combinations of the two
“switches” that we have discussed so far: the inner vs. outer iteration type, and the
flexible vs. fixed number of moments. These are labelled as BEAST-Mi,∗, BEAST-Mo,∗,
BEAST-M∗,x and BEAST-M∗,n respectively. An overview of the BEAST-M schemes is
given in Algorithm 20. In Section 5.2.3 we describe again the distinguishing features
between these methods along with some related RFEs.

Algorithm 20: BEAST-M
Choose a starting block of mY vectors Y ;
while not converged do

Compute U =
[
U0,

∑q
i=1wiziΦ

−1
i BY, . . . ,

∑q
i=1wiz

s
iΦ
−1
i BY

]
if checking convergence then

Orthogonalize U
Compute Rayleigh quotients AU = UHAU , BU = UHBU
Solve reduced eigenproblem AUW = BUWΛ for (W,Λ)
Compute approximate eigenvectors X = UW
Compute residuals Axi − λiBxi, [λ1, . . . λmU ] = diag(Λ), λ ∈ Iλ

end
optional Lock converged eigenpairs
optional Check if change in s needed (BEAST-M∗,x), otherwise BEAST-M∗,n
Set Y = U0 (BEAST-Mi,∗) or XR (BEAST-Mo,∗) for R ∈ RmU×mY

end
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5. RFEs with multiple moments

5.2.1. Definition of cost metrics

The main metric we will use for comparing of the cost of solving linear systems of
equations in an RFE is RHSovl, the number of right-hand sides in all linear systems
and over all iterations of the RFE. We are also interested in reducing the number of
block linear systems solved over all iterations of the RFE, which we label BLSovl.
These two metrics are both important for evaluating the cost of solving linear
systems. If a direct method is used, assuming the factorized components can be
stored, there is a single up-front factorization cost, followed by the repeated cost of
applying the factorized components to the (multiple) right hand sides. An example
of this approach is summarized in Algorithm 21. Here, the number of RHSovl is
significant as it represents the repeated component of solving the linear systems:
matrix-vector multiplication with the factorized components and the columns of
BY .

Algorithm 21: Example of direct solution of linear systems over iterations of
an RFE. Here, the direct linear solution is shown to rely on an lu decomposition
[93], but other factorizations may be used.
for i = 1, ..., q do

[L,U ] = lu(ziB − A)
end
while RFE not converged do

Solve U0 = U−1L−1BY
end

In this chapter, we focus on the solution of linear systems with a direct method.
If an iterative method is used, however, the metric of RHSovl is still effective in
measuring relative cost of linear system solves. If a non block-iterative method is
used, we must consider the separate iterative solution of Φu = y for each column
y in Y . Even when a method that does allow for block right hand sides is used,
the method and its computational design will control the relative importance of
RHSovl and BLSovl.

5.2.2. Quadrature rule

Sakurai–Sugiura methods have traditionally been introduced as contour integration-
based schemes. As discussed in Section 5.1.2, we can analyse the error in a subspace
generated with the numerical approximation of a contour integral and the combina-
tion of s moments. The choice of quadrature rule, including the value of q, remains
open to the user, assuming certain conditions are met, as discussed in Chapter 2.
Traditionally, SSM have relied on the midpoint quadrature rule, as defined in (2.9).
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5.2. Extension of the BEAST framework

Figure 5.7.: Filters arising from quadrature, q = 16 with Gauss–Legendre (GL) and
midpoint (MP) rules. Contour is an ellipse with eccentricity = 0.1, radius 1, and
center 0.

To avoid confusion: the definition of the midpoint rule given in (2.9) matches the
definition of the trapezoidal rule in [85], and subsequent works defining extensions
of SSM. On the other hand, the Gauss–Legendre quadrature rule, as defined in
(2.10), is more popular with FEAST. As originally shown and discussed in [46],
there is a reason for this difference in “standard” quadrature rules.

Interestingly, the effectiveness of a subspace generated with a given rule may depend
on the subspace size. We see that Gauss–Legendre has a steeper drop at the
boundary of the interval, but that the midpoint rule continues to decay further
from the boundary, eventually reaching a lower value than Gauss–Legendre. This
indicates that methods with a smaller subspace size may see faster convergence with
Gauss–Legendre quadrature, but beyond a certain threshold, convergence with the
midpoint rule may outperform it.

For further illumination, we show a numerical experiment from [46], performed
using MATLAB. We consider 37 standard eigenproblems, as defined in Table 5.2,
with additional matrix details in Table A.1, with BEAST-Mi,x and BEAST-Mo,x. In all
cases, the method began with 4 moments. The subspace factors of 1.5 and 4 were
tested. In all cases, Y was initially chosen randomly. The respective quadrature
rules were tested with q = 16 on the full elliptical contour with eccentricity 0.1.
Only the 8 linear systems corresponding to the upper half of the contour were
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5. RFEs with multiple moments

Table 5.1.: Average RHSovl for BEAST with midpoint and Gauss–Legendre quadra-
ture rules and different subspace sizes. The average was taken over the RHSovl for
31 sample problems listed in Table 5.2, for which all schemes found all eigenpairs.
This condition was not met for problems labelled (7,14,20,26,34); they are omitted
from the average. A version of this table appears in [46].

Iteration Type Quadrature Rule Subspace Factor Average RHSovl

BEAST-Mi,x Gauss–Legendre 1.5 3587
BEAST-Mi,x Midpoint 1.5 3514
BEAST-Mi,x Gauss–Legendre 4.0 5229
BEAST-Mi,x Midpoint 4.0 4545
BEAST-Mo,x Gauss–Legendre 1.5 3201
BEAST-Mo,x Midpoint 1.5 3723
BEAST-Mo,x Gauss–Legendre 4.0 5218
BEAST-Mo,x Midpoint 4.0 4366

solved, as all eigenproblems are real symmetric. All problems were solved to a
tolerance of 10−13.

The average RHSovl over all problems is shown for the different options in Table 5.1.
We observe that in general, Gauss–Legendre quadrature leads to a lower RHSovl

for a subspace width of 1.5× m̃ and the midpoint rule leads to a lower RHSovl for
a larger subspace width of 4 × m̃. This effect is increasingly pronounced for the
outer iteration. These results fit well with our observations from Figure 5.7. The
reasoning for the difference in default choice of quadrature rule for FEAST and
SSM is now more clear.

5.2.3. Numerical experiments

We are now prepared to test the efficacy of the strategies outlined so far. The data
and discussion shown here follows the original appearance in [46]. A summary chart
illustrating the distinguishing features of the various methods considered is shown
in Figure 5.8. We consider various permutations of the BEAST framework. Under
consideration are all four of our BEAST-M variants resulting from combinations of
BEAST-M∗,n, with a fixed number of moments, BEAST-M∗,x, with an adaptive value,
as well as BEAST-Mo,∗, with the outer iteration type and BEAST-Mi,∗, with the inner
iteration type. BEAST-C is again the single moment scheme described in Chapter 2
with both an adaptive BEAST-Cad and fixed number BEAST-Cn of quadrature nodes.
These strategies follow the definitions given in [33]. The results shown for BEAST-Cn
are for the degree providing the minimum RHSovl, assuming all eigenpairs are found
to the desired tolerance.
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5.2. Extension of the BEAST framework

Table 5.2.: Search intervals, along with respective eigenvalue counts m for 9 test
matrices from graphene modeling [23] and 10 test matrices from the SuiteSparse
Matrix Collection [25]. Problems are labeled by number (No.). More information
for these matrices can be found in Table A.1.
Matrix Interval A m No. Interval B m No.
laser [−0.100, 0.357] 307 1 [1.0000, 4.2389] 304 NA
SiH4 [25.0, 28.4] 301 2 [15.3, 16.4] 290 3
linverse [0.00, 0.62] 308 4 [2.62, 2.77] 304 5
Pres_Poisson [3.7, 10.0] 302 6 [1.000, 1.182] 300 7
Si5H12 [24.2, 24.7] 320 8 [41, 42] 274 9
bcsstk37 [8.0e5, 9.3e5] 297 10 [1.15e7, 1.30e7] 305 11
brainpc2 [275, 345] 313 12 [1900, 1920] 309 13
rgg_n_2_15_s0 [−2.00,−1.95] 282 14 [5.0, 5.5] 337 15
SiO [32.0, 32.4] 316 16 [57.0, 57.8] 283 17
Andrews [21.0, 21.4] 300 18 [11.20, 11.26] 298 19
GraI-1k [−0.7575, 1.1025] 301 20 [0.42, 1.58] 301 21
GraI-11k [−0.0475, 0.3925] 298 22 [0.935, 1.065] 289 23
GraI-119k [0.1375, 0.2075] 306 24 [0.9957, 1.0043] 304 25
GraII-1k [−0.7575, 1.1025] 292 26 [0.42, 1.58] 304 27
GraII-11k [−0.1375, 0.4825] 299 28 [0.949, 1.051] 299 29
GraII-119k [0.0975, 0.2475] 313 30 [0.9956, 1.0044] 303 31
GraIII-1k [−0.7575, 1.1025] 300 32 [0.42, 1.58] 331 33
GraIII-11k [−0.0975, 0.4425] 305 34 [0.952, 1.048] 319 35
GraIII-119k [0.1395, 0.2055] 310 36 [0.996, 1.004] 311 37
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Multiple moments?

Constrained subspace size?

Switch to BEAST-C?

sseig2beastcsseig

Outer or inner iterations?

Switch to BEAST-C?Switch to BEAST-C?

BEAST-Mo,xBEAST-Mo,nBEAST-Mi,xBEAST-Mi,n

Adaptivity in number of quadrature nodes?

BEAST-CadBEAST-Cn

yes

noBEAST-C

yes BEAST-Mnosseig

yesno
outerinner

yesnoyesno

yesno

Figure 5.8.: Overview of all computation schemes and choices considered in section
5.2. This figure also appears in [46].

We also compare with a larger subspace size, as is typically considered in SSM.
This is encapsulated in the sseig implementation of SS-RR, as well as with the
method sseig2beastc, where the method switches after a single outer iteration
from sseig to BEAST-C, and using the computed eigenvectors X̃Iλ as the starting
vectors Y for BEAST-C. The details of SS–RR implemented in the sseig software
are further described in [84].

We consider 37 sample eigenproblems as described in Table 5.2. For all problems
shown here, the eigenproblem is standard, with a real symmetric matrix A. BEAST
schemes used Gauss–Legendre quadrature and sseig schemes used the midpoint
rule with q = 16 on an elliptical contour with eccentricity 0.1. As all eigenproblems
are real, only q

2
= 8 linear systems need to be solved in each iteration of the RFE.

The counts of RHSovl and BLSovl include only counts from these linear systems. All
methods with multiple moments began with s = 4. The initial subspace size mU

was set for all BEAST methods to 452 (when multiple moments were used) or 450
(otherwise), approximately 1.5× m̃ for all problems. For sseig and sseig2beastc
the subspace size was set to a maximum ofmU = 1024. Locking of converged eigen-
vectors, as described in Chapter 2, was enabled for all BEAST methods. MATLAB
was used for these numerical experiments.
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Table 5.4.: Number of times a method failed to find all eigenpairs to desired toler-
ance (out of 37 problems).

Solver Total failed

BEAST-Cad 7
sseig 7
sseig2beastc 1
BEAST-Mi,n 8
BEAST-Mi,x 2
BEAST-Mo,n 8
BEAST-Mo,x 1

The absolute residual tolerance was set to 10−13. A method was deemed to have
succeeded if all eigenpairs were computed to this tolerance, otherwise it was de-
termined to have failed. A summary of the number of failures for each method is
shown in Table 5.4. As we see here, BEAST-M∗,x and sseig2beastc, the methods
allowing a switch to BEAST-C, behaved the most robustly in terms of ensuring that
all eigenvalues were found to the desired tolerance.

We observe the number of RHSovl and BLSovl in Figure 5.9. Clearly, increasing
the number of moments has a strong impact on the number of RHSovl. A reduced
subspace size also seems to have an impact, as we see a reduction in RHSovl for
the BEAST-M schemes when compared to sseig and sseig2beastc. It is therefore
BEAST-Mi,x and BEAST-Mo,x that stand out as the best choices of methods. Com-
paring these two, we see more outlier cases where the number of RHSovl is large for
BEAST-Mi,x. Here, we must consider the interplay of multiple effects; namely the
consideration of locking of converged eigenvalues, as discussed in Chapter 2. When
locking is enabled, the expected number of eigenpairs remaining in the interval
sinks as convergence begins. This is not a theoretical issue, but when only a few
eigenpairs remain, the 1.5 × m̃ factor guarantees a very small subspace. We con-
sider the example case shown in Figure 5.10. After convergence begins, eigenpairs
are locked, and the subspace shrinks. This reduction in subspace size appears be
correlated with a reduction in convergence rate, and the number of RFE iterations
required for the method increases.

5.3. Considerations for larger problems

Our considerations thus far have mainly been for smaller problems and numerical
results without significant consideration for performance and scalability. We now
turn to issues that arise as problem size and performance expectations increase.
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Figure 5.10.: Convergence and subspace size mU with BEAST-Mi,x (left) and
BEAST-Mo,x (right) for Problem 26, Table 5.2. A version of this figure also appears
in [46].

5.3.1. Rank and orthogonalization

One particular challenge of using multiple moments is correctly preserving the lin-
ear independence of the basis for the generated subspace, U . As we see in Figures
5.3 and 5.4, the rank of U may fall below s × mY . To avoid a rank-deficient
eigenproblem in the subsequent Ritz step, mU should be shrunk to rank(U). Fur-
thermore, U should be orthogonalized to avoid near-rank deficiency, and the de-
termination of rank at this point (via, e.g., a rank-revealing QR decomposition)
ensures that a rank-deficient eigenproblem can be avoided. However, removing
linearly independent directions may remove components of the basis of X̃Iλ , so
over-zealous trimming of the subspace must also be avoided.

One important question is how the numerical rank of a set of vectors can be ac-
curately determined. Given that a rank-revealing QR or SV D decomposition has
been computed, and we have obtained the singular values of U , these may be used
to determine the rank of U . In the performance-based implementation of BEAST,
experimentation showed that keeping columns of U associated with singular values
larger than 2 × εmach (a stricter cut-off than a standard εmach) may be helpful.
Stricter cut-off values were also tested, but an over-reduction of the rank may
also be detrimental, as discussed above. This cut-off factor is modifiable in the
implementation.

The QR decomposition of U is also a matter of consideration. Since U is often
rank deficient, a basic, e.g., Cholesky-QR may not be sufficient. Even a repeated
Cholesky-QR [29] may not be enough for the orthogonalization of these block vec-
tors if the condition number surpasses 108, as is the case for a rank-deficient sub-
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space. For the performance-based implementation of BEAST-M, we tested with
a Tall-Skinny QR (TSQR) [26], as provided by the Trilinos library [45] via the
PHIST library [91] and a numerically stabilized SVQB [88] routine, described in
Algorithm 22. The latter has been incorporated into BEAST [30]. The TSQR relies
on Householder reflections and is communication avoiding. Both methods appear
numerically stable for the problems tested, but the custom implementation of a
SVQB decomposition ran faster in some test cases and reduced dependence on
external libraries. This is therefore the default technique used in the the current
performance-based implementation of BEAST-M.

5.3.1.1. SVQB

The SVQB technique used returns a B-orthogonal matrix Q ∈ Cm×n and square
matrix M , not necessarily upper triangular, such that U = QM . After a SVQB
decomposition is performed, the singular values of U can be found via an SVD
of the (small) n × n matrix M . These can be used to determine the rank of U .
Further details of this method, including the B-orthogonality of Q, are shown in
[30].

Algorithm 22: SVQB orthogonalization
Set Q = U
Set M = In×n
for x iterations do

S = QHBQ
Compute D = diag(S) for the normalization of S
S = D−

1
2S D−

1
2

Solve the eigenproblem SW = WΛ
(optional) Replace all λ ∈ diag(Λ) < τthresh with λ = εmach
Compute Q = QD−

1
2WΛ−

1
2

Compute M = Λ
1
2WHD

1
2

end

As suggested in the original introduction of the SVQB [88], we include several tech-
niques to deal with a possibly rank-deficient U and to ensure its orthogonalization.
These are:

• Replacing eigenvalues below a given threshold τthresh(we use τthresh = 0; see
the optional step in the algorithm.)

• Repeating SVQB iterations, according to the number of iterations specified
in the algorithm, typically up to three times for very ill-conditioned vectors.
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5. RFEs with multiple moments

5.3.2. Solution of linear systems

As discussed in Chapter 2, the solution of linear systems is an algorithmic require-
ment for the BEAST-M framework. Either a direct or iterative linear solver may
be used, depending on the qualities of the linear systems to be solved. In this
chapter, we rely on direct solvers, which are less sensitive to the shifted and thus
ill-conditioned systems of equations. If a direct solver is used, the resulting factor-
ization of (ziB −A) may be stored, reducing the cost of multiple BEAST iterations.
As stated in Chapter 2.10.4, and [30], the BEAST framework incorporates support for
the STRUMPACK and MUMPS libraries for the direct solution of linear systems.

5.3.3. Numerical experiments

We have shown in the previous section that it is possible to reduce the number
of RHSovl in an RFE using BEAST-M. The natural question, originally considered
and discussed in [46], is what effect this reduction may have on the reduction
in computational cost for the RFE, e.g., in time taken to reach convergence. This
question is naturally dependant on a number of factors; the linear solver used (direct
or indirect), whether the factorization of a direct solver is stored, parallelization,
the kernel libraries used, etc. Needless to say, the difference in performance is highly
variable, and not all cases may be considered here. However, we can illustrate here
that a definitive difference in performance is possible.

We compare BEAST-Cn and BEAST-Mo,x for two larger standard eigenproblems, as
described in Table A.2. Testing was performed with 32 nodes of the Emmy cluster
at Friedrich-Alexander-Universität Erlangen–Nürnberg. Eigenpairs were computed
to a tolerance of 10−12, and locking was enabled. The Gauss–Legendre quadrature
rule with a circular contour was used with 16 quadrature nodes on the whole
contour. The direct solver STRUMPACK [80] was used to solve all linear systems.
The number of columns of U was set to 1.5 × m̃. BEAST-Mo,x started with four
moments.

We observe the results in Figure 5.11. Here, fewer RHSovl are required for BEAST-Mo,x
than BEAST-C, for both problems, and this reduction is also reflected in the time
taken for the RFE. The reduction in time seems to correspond with the reduction
in RHSovl, and this in turn appears problem dependant. To summarize, it is clear
that the use of multiple moments can lead to noticeable reductions in cost for an
RFE when a good selection of parameters is made.
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Figure 5.11.: Linear solve count and timings of BEAST-Mo,x vs. BEAST-C. In the
right-most figure, time for building U is shown in color and time for all other
components is shown in black. This figure also appears in [46].

5.3.4. Parallelism and quadrature nodes

As discussed previously, the construction of U via a rational filter requires the
solution of multiple linear systems of the form (ziB −A)−1BY for different values
of zi. Clearly, these linear systems can be solved independently, meaning that
this algorithmic step is embarrassingly parallelizable. Given increasing physical
problem sizes and computational resources, improvements to a method may come
in the form of increased numerical efficiency (as discussed previously) or speed.
In the previous section, we showed that the additional flexibility in the BEAST
algorithm may lead to improved numerical efficiency via a reduction in RHSovl.
Now, as shown and discussed in [4], we consider the potential for speed-up when
running in parallel with respect to the number of quadrature nodes. As the solution
of linear systems is by far the most costly effort in BEAST-M, parallel speed-up is
likely to have a significant effect. The additional efficiency from a reduced number
of RHSovl may also increase overall speed.

We consider a standard eigenproblem with matrix A=Graph1M, a real, symmetric
106 × 106 matrix. Further details may be seen in Table A.2. BEAST-M found 260
eigenpairs in the interval [−0.01, 0.01]. The BEAST-Mo,n variant was used with a fixed
number of moments to focus on the effect of changing the number of quadrature
nodes and scaling computational resources. Testing was performed on the Emmy
HPC cluster at Friedrich-Alexander-Universität Erlangen-Nürnberg. MUMPS was
used for the direct solution of all linear systems. BEAST-M ran with 4 moments, and
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5. RFEs with multiple moments

started with a random initial block vector Y with mY = 100 columns. A residual
tolerance of 10−8 was reached for all eigenpairs.

We observe the strong scaling of BEAST-M for different number of quadrature nodes
in Figure 5.12. We tested with two Gauss-Legendre quadrature rules, with 16
and 64 quadrature nodes on a circular contour. MUMPS was used to solve the
linear systems. As the problem is real and symmetric, only q

2
(8 or 32) linear

systems must actually be solved. We observe that overall scaling is dominated by
the construction of U , especially for smaller numbers of processes Np. For both
schemes, scaling for Np ≤ q is presumably dominated by being able to solve Np

linear equations simultaneously. After this point, parallelism in MUMPS allows Np
q

processes to work in parallel to solve each linear equation, leading to further scaling.
The number of quadrature nodes also controls the accuracy of the quadrature
scheme and thus the quality of the filter function; we therefore expect the number
of iterations to drop as the number of quadrature nodes increases. Indeed, for
q = 64, only one iteration was required for BEAST-M to find all eigenpairs. However,
for some values of Np, random spurious eigenpairs caused multiple iterations to
occur, causing some oscillatory behaviour in the graph. This occurred particularly
for low values of Np with q = 64. Regardless, we observe that when additional
computational resources are available, further speed-up may be possible with a
higher number of quadrature points.

This available increase in speed with additional quadrature points only occurs up to
a certain point; once only one iteration is required for BEAST-M, additional quadra-
ture points will only cause additional effort. Knowing how many quadrature nodes
are required to obtain full convergence in a single iteration is, however, compli-
cated, and the user may find that the increase of time due to additional iterations
may be easier to control than the number of integration points needed to guaran-
tee convergence in a single iteration without “wasted effort”. This will be explored
further in the next section. Another interesting consideration is comparison with
the behaviour of BEAST-C. In [33], an adaptive strategy was determined for the
quadrature degree q of BEAST-C, usually resulting in a relatively low number of q
and multiple iterations. This was shown to improve the efficiency of the method
with reduced RHSovl and BLSovl. It would be interesting to consider if this effect
carries over to speed-up in a parallel system.

5.4. Choosing the quadrature degree

In Chapter 4, we estimated the number of RFE iterations required for a given ra-
tional filter. This was used to generate new filters, based on reducing the cost of
iterative linear solvers over an RFE. We also wish to consider whether this predic-
tion is appropriate for established rational filters, such as those based on contour
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Figure 5.12.: Strong scaling of BEAST-M. The time for the total computation as well
as for the construction of U (summed over RFE iterations) is shown. A version of
this figure also appears in [4].
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integration, in an RFE with multiple moments. Specifically, can we predict the
degree of a contour integration rule that will have a low (ideally minimum) cost for
the solution of linear systems? Previous work [33] has focused on adaptively finding
the optimal degree for a single moment (FEAST based) RFE. This works well for
single moment solvers, where for a good quadrature rule, the degree minimizing
the number of RHSovl or BLSovl is typically quite low. Is this also true for RFEs
with multiple moments? And how well can we predict the degree required?

Predicting the “optimal” degree for a problem with a given rational filter is actu-
ally quite difficult. An under-prediction may result in many extra RHSovl from
an additional iteration, while an over-prediction results in extra RHSovl from the
“unnecessary” degree. This is represented in Figure 5.13. A simpler problem is to
predict the degree required such that only one RFE iteration is needed. Here, we
may accept a certain amount of “over-prediction”, or a higher degree than is really
needed, in order to avoid an extra RFE iteration in most cases. Our prediction
also relies on having a numerical bound for the expected error of our results. Such
a bound exists for the inner iteration type, (5.8), a bound equivalent to the single
moment RFE. We consider this in a numerical experiment, after first defining how
the single-iteration degree we have described may be predicted.

5.4.1. Predicting degree for a single iteration

As in Chapter 4, we consider formulating an estimation of (5.8) based on a sequence
of approximate eigenvalues δj. Without prior knowledge of the spectrum of the
matrix, we generate an equidistant spectrum according to the known approximate
density of Iλ. As before, we generate sample values for the rational filter at twice
the expected average frequency of the eigenvalues, and adjust the index in (5.8)
accordingly to obtain a prediction based on the estimated number of eigenvalues in
the interval. This means that the approximated eigenvalues δj are placed with even
spacing h = Iλ

2m̃
inside the interval [max (λmin, c− 10r) ,min (λmax, c+ 10r)]. Again,

λmax and λmin are the largest and smallest eigenvalues of the entire spectrum. Given
that the evaluated values are sorted according to r(δ1) ≥ r(δ2) ≥ . . . r(δmU+1), we
can evaluate (4.19) to calculate the predicted number of RFE iterations (lpred)
(restated here for convenience)

lpred =
log(tolRFE)

log
(
r(δ4bmU/2c+1)

r(δ4bm̃/2c)

) .
We can use this to predict a value of q for our quadrature rule such that only one
RFE iteration is required. Indeed, as lpred is not calculated as an integer, we can
search for the smallest value of q/2 such that lpred < 0.7. By choosing this smaller
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value, we are more sure that the degree selected will actually obtain convergence
in a single iteration.

5.4.2. Numerical experiments

We consider solving 29 eigenvalue problems, a subset of the problems seen in Table
5.2. These are referenced by matrix name and problem number in Table 5.5 and
problem number in Figure 5.14. As in our previous experiments in this chapter,
we use BEAST-M (specifically BEAST-Mi,n) with 4 moments. Here, we use the inner
iteration type so that we may predict the theoretical convergence rate, as described
in Section 5.1.2. The filter under consideration is Gauss–Legendre quadrature on an
elliptical contour with eccentricity 0.1. For each problem, we perform computations
with all integer values of q

2
up to a degree such that all eigenpairs in Iλ were

computed to a residual tolerance of 10−10 in a single RFE iteration. Again, as all
eigenproblems are real, only q

2
linear systems need to be solved in each iteration;

this “actual count” is reflected in the results. The subspace size mU was set to 452
for each iteration of the RFE and locking was disabled. MATLAB was used for all
computations.

An example of how the value of RHSovl changes over values of q along with the
number of RFE iterations required is shown in Figure 5.13, for the sample matrix
GraII-119k (problem 25) described in Table 5.2. Here we see that multiple local
minima appear when an increase in quadrature degree results in a decrease in RFE
iterations. We may now consider these local minima for our collection of problems.

In Figure 5.14 and Table 5.5 we compare the number of RHSovl required for three
different quadrature degrees, selected from the results for all degrees considered for
each problem. These are: the degree that actually minimizes RHSovl, the degree
such that our convergence criterion is satisfied in a single BEAST-M iteration, and
the degree that we predict will enable convergence in a single BEAST-M iteration,
as described above. Here we see that the degree that minimizes RHSovl is often
(though not always) low compared to the degree that achieves convergence in a
single iteration. There may also be problems for which multiple values of q obtain
a minimal value of RHSovl. As we see in Figure 5.14, even if RHSovl is higher
with the filter obtaining results in a single iteration than the filter degree with
minimal RHSovl, these results are typically similar. In the case of the predicted
degree being greater than the smallest degree such that only one RFE iteration
is required, the value of RHSovl was not actually computed. We assume in this
case that the number of RFE iterations remains 1, and can calculate the number
of RHSovl required as mY × q

2
. We see that in some cases, our prediction is not

large enough, and a substantial “overpayment” occurs from the required second
iteration. But otherwise we obtain what is typically an overestimate, but still a
relatively reasonably low cost for RHSovl.
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Figure 5.13.: RHSovl vs. q/2 for BEAST-M with problem 25 in Table 5.2.
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We note that as the rational filter defined by our quadrature rule is also scaled
by Iλ and the same estimate for δj is used for all matrices, the value of lpred is
relatively constant over problems; indeed, it is the same for all problems seen here.
This implies that an estimate for the degree required for a rational filter such that
an RFE is expected to converge in a single iteration may be generated a-priori.
Obviously, further knowledge about the spectrum would improve the estimation
through a better choice of δj.

5.5. Conclusion

RFEs with multiple moments are a powerful tool for interior eigenvalue problems,
but the repeated solution of large linear systems with many right hand sides is a
bottleneck in time and energy. The judicious choice of various parameters has a
noticeable effect on the potential overall cost of the solver, particularly those pa-
rameters corresponding to the cost of linear system solves. We have explored the
heuristic choice of the number of moments, which, while relevant to convergence,
may have a less direct effect on convergence than, e.g., the number of quadrature
nodes, especially for initial iterations. The choice of the number of moments is a
powerful parameter for controlling the cost of linear system solves, and thus the
overall eigensolver cost. We explored further heuristics within the context of an
iterative eigensolver, including best strategies for choosing the number of moments
on a given iteration, and the choice of starting vectors. In a broad comparison be-
tween methods, we provide evidence that a multi-moment flexible iterative method
may reduce the number of single linear solves over all iterations, and thus the po-
tential overall cost of an eigensolver. Furthermore, the flexibility of the method
ensures comparative robustness and accuracy. We provide further evidence for
performance capabilities in initial larger experiments.

We have also explored the prediction of the quadrature degree leading to a single
RFE iteration with multiple moments, and seen that a good choice here can also
reduce the cost of solving linear systems; however, a reliable prediction is not
yet assured. Future topics of exploration could include the adaptive choice of
quadrature degree in combination with multiple moments, extending the work of
[33]. We have seen that a low quadrature degree may not be optimal, but may
be less prone to “overshooting” than a high degree. However, this does reduce the
scalability of the method, which is improved with a higher degree. Furthermore, the
capacity for performance improvement with multiple moments and reduced right
hand sides clearly depends on the linear solver used. In these experiments, due to
the difficulty of solving these shifted linear systems, we tested with direct solvers.
In future work, the capacity for improvement dependant on the properties of the
linear solver used may be investigated. Results and exploration for an iterative
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Figure 5.14.: RHSovl of BEAST-M with selected values of q/2. Shown here are the
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all desired eigenpairs reach the residual threshold in a single BEAST-M iteration
(One iteration), and the value of q/2 such that convergence is expected in a single
BEAST-M iteration (Pred. one iteration).
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Table 5.5.: RHSovl, q/2 and iterations corresponding to Figure 5.14. No. cor-
responds to the problem number listed in Table 5.2. RHSovl is reported for three
quadrature degrees: the value of q/2 minimizing RHSovl (Min RHSovl), the smallest
value of q/2 such that all desired eigenpairs reach the residual threshold in a single
BEAST-M iteration (One iteration), and the value of q/2 such that convergence is
expected in a single BEAST-M iteration (Pred. one iteration).

Min RHSovl One iteration Pred. one iteration
Matrix No. q/2 RHSovl Iter. q/2 RHSovl q/2 RHSovl

laser 1 8 1,808 2 16 1,808 22 2,486
SiH4 3 4 1,808 4 17 1,921 22 2,486
Pres_Poisson 7 4 1,808 4 18 2,034 22 2,486
Si5H12 9 4 1,808 4 18 2,034 22 2,486
bcsstk37 10 4 1,808 4 17 1,921 22 2,486
bcsstk37 11 17 1,921 1 17 1,921 22 2,486
brainpc2 13 4 1,808 4 18 2,034 22 2,486
SiO 16 9 2,034 2 18 2,034 22 2,486
SiO 17 4 1,808 4 17 1,921 22 2,486
Andrews 18 17 1,921 1 17 1,921 22 2,486
Andrews 19 4 1,808 4 17 1,921 22 2,486
GraI-1k 20 6 2,712 4 24 2,712 22 4,884
GraI-1k 21 18 2,034 1 18 2,034 22 2,486
GraI-11k 22 6 2,034 3 19 2,147 22 2,486
GraI-11k 23 7 2,373 3 23 2,599 22 4,972
GraI-119k 24 10 2,260 2 20 2,260 22 2,486
GraI-119k 25 8 1,808 2 18 2,034 22 2,486
GraII-1k 26 5 2,260 4 23 2,599 22 4,840
GraII-1k 27 8 1,808 2 17 1,921 22 2,486
GraII-11k 28 23 2,599 1 23 2,599 22 4,752
GraII-11k 29 10 2,260 2 22 2,486 22 2,486
GraII-119k 30 8 1,808 2 16 1,808 22 2,486
GraII-119k 31 4 1,808 4 17 1,921 22 2,486
GraIII-1k 32 23 2,599 1 23 2,599 22 4,928
GraIII-1k 33 8 1,808 2 17 1,921 22 2,486
GraIII-11k 34 22 2,486 1 22 2,486 22 2,486
GraIII-11k 35 19 2,147 1 19 2,147 22 2,486
GraIII-119k 36 8 1,808 2 19 2,147 22 2,486
GraIII-119k 37 4 1,808 4 17 1,921 22 2,486
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linear solver would be of particular interest as the size of matrices to which these
methods are applied continues to grow, and may exceed the capacity of direct
solvers.
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CONCLUSIONS AND OUTLOOK

This thesis has focused on equipping projected subspace, and in particular rational
filter-based eigensolvers for the scalable solution of large and sparse eigenproblems.
We have begun by defining the algorithmic framework of RFEs in various forms
and described how these methods may be implemented. The rest of the thesis has
been concerned with various possibilities for improving the applicability of these
methods for efficient computation.

We have shown in Chapter 3 how the precision of computation used may be ad-
justed without impacting the convergence rate of a subspace iterative scheme. This
is a promising option as under the right circumstances, efficiency may be improved
without impacting accuracy or robustness. However, the “extra cost” may show up
in required user knowledge; a good understanding of the eigenproblems and meth-
ods under consideration may be required to avoid stagnation at a lower precision
before switching to higher precision in later subspace iterations.

In Chapter 4 we consider how to apply RFEs to larger problems where direct linear
solvers become infeasible and we rely on iterative methods for the solution of the
linear systems of equations arising from these methods. Though optimization of the
rational function for a subspace filtration-based eigensolver has been successfully
considered in the past, this is, to the best of our knowledge, a novel result in
optimizing the rational function of an RFE with the explicit inclusion of the cost of
the iterative linear solver. There is a good deal of potential for further expansion
in this area; so far, only two iterative linear solvers have been considered, and
only standard eigenvalue problems, but we anticipate that these strategies can
be generalized. Improved optimization techniques could also allow for a greater
improvement in the overall reduction in cost. Further improvement may be required
to make these methods truly applicable for large problems. We anticipate that a
certain amount of tuning will continue to be required before using these strategies
for a set of eigenproblems.
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Conclusions and outlook

In Chapter 5, we see that moments are a potential tool for reducing the cost of
solving linear systems of equations in an RFE. However, we show in this chapter
as well the need for care and flexibility in their use, particularly when the subspace
size is reduced to allow this efficiency. We show the potential for flexibility in the
number of moments over iterations of an RFE to allow for efficiency and robustness,
and highlight the potential for reduction in cost in numerical experiments. We
further showcase the scalability of these methods, observing that this improves
alongside the number of poles considered in the rational function. Also explored
is the choice of quadrature degree with respect to the cost of linear system solves.
We see that a high degree that allows the method to converge in a single iteration
is often optimal or close to optimal. Using the strategies from Chapter 4, we may
be able to predict a reasonably good choice of degree.

When considering future research directions, obvious ideas include exploring the
interplay of the different ideas visited in this thesis. Initial explorations with mixed
precision and RFEs with multiple moments have not been particularly promising,
as especially for larger problems, the convergence threshold for single precision is
high enough that stagnation typically sets in too early to make mixed precision
calculations efficient. Though we have observed that RFEs with multiple moments
are typically more sensitive to a loss in robustness or accuracy, it would be inter-
esting to explore how optimized rational filters could be used with these methods
to further reduce the cost of linear solvers.

In general, the largest barrier for the use of RFEs is likely the user knowledge
required to use them appropriately and tune them for good performance. Future
work to improve “auto–tuning” of these methods would improve the applicability
and availability across computational science.
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APPENDIX A

SUMMARY OF TEST PROBLEMS
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A. Summary of test problems

Table A.1.: Sample sparse matrices from graphene modeling [23] and the SuiteS-
parse Matrix collection [25]. Matrix size, average number of nonzeros per row
(nnzr; rounded), and the unscaled spectral range are shown. All problems have
been previously considered in [33, 46].

Name Size nnzr [λmin,λmax]
laser 3002 3 [−1.10, 4.25]
SiH4 5041 34 [−0.996, 36.8]
linverse 11999 8 [−4.70, 15.5]
Pres_Poisson 14822 48 [1.28e-5, 26.0]
Si5H12 19896 37 [−0.996, 58.6]
bcsstk37 25503 45 [−7.04e-5, 8.41e7]
brainpc2 27607 6 [−2000, 4460]
rgg_n_2_15_s0 32768 10 [−5.12, 17.4]
SiO 33401 39 [−1.67, 84.3]
Andrews 60000 13 [3.64e-16, 36.5]
GraI-1k 1152 13 [−3.43, 2.78]
GraI-11k 11604 13 [−3.43, 2.78]
GraI-119k 119908 13 [−3.43, 2.78]
GraII-1k 1152 13 [−3.43, 2.78]
GraII-11k 11604 13 [−3.43, 2.79]
GraII-119k 119908 13 [−3.43, 2.79]
GraIII-1k 1152 12 [−3.35, 2.73]
GraIII-11k 11604 12 [−3.35, 2.73]
GraIII-119k 119908 13 [−3.43, 2.78]

Table A.2.: Test matrices from topological insulator [43] and graphene modelling
[23]. The ScaMaC library [7] may be used to generate similar large and sparse
matrices, whose spectral properties have been previously studied [76]. Most of
these test problems have been previously considered, including in [4, 46]. The size,
average nonzeros per row, approximate global spectral bounds, suggested interval
with expected number of eigenvalues (m̂), and complex status are listed here for
each matrix.
Name Size nnzr [λmin,λmax] Interval m̂ Complex?
Graph16M 16000000 4 [−3.0, 3.0] [−0.0025, 0.0025] 318 No
Topi1M 1638400 12 [−4.8, 4.8] [−0.06, 0.06] 116 Yes
Graph1M 100000 4 [−3.0, 3.0] [−0.01, 0.01] 260 No
Graph256 256 4 [−3.0, 3.0] [−0.5, 0.5] 16 No
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