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Chapter 1

Introduction

In this work our goal will be to study static two-point correlation functions
of the Heisenberg chain for small distances. The Heisenberg chain, which is
also called the XXZ chain, is described by the Hamiltonian

HXXZ = J
∞∑

k=−∞

(
σxkσ

x
k+1 + σykσ

y
k+1 + ∆

(
σzkσ

z
k+1 − 1

))
− h

2

∞∑
k=−∞

σzk ,

∆ =
1

2
(q + q−1) . (1.1)

The σαk are Pauli matrices which act on lattice site k, ∆ is the anisotropy
parameter, J the strength of the exchange coupling and h an external field
in z-direction. The Heisenberg model describes a magnetic insulator and is
the fundamental model for the description of antiferromagnetism in solids [1].
The one-dimensional Heisenberg model is of particular interest to us because
it is integrable. Integrable models are of interest, since exact solvability is a
very rare property for many-particle systems. An overview of the applications
of the Heisenberg model as well as the related Hubbard model in solid state
physics can be found in [2, 3]. The model was first studied by Bethe in
1931 [4] for ∆ = 1 and later for general ∆ in [5–8]. The particular case
of ∆ = 1 is also called the XXX model. Later it was discovered that the
Heisenberg model is linked to the so-called six-vertex model of statistical
physics [9–12] which added to our understanding of the model. After that
the original method of Bethe was further developed to the so-called algebraic
Bethe ansatz [13,14]. In [15–18] the technique of the quantum-transfer matrix
was introduced, which can be used to calculate the thermodynamic properties
of the XXZ model [18].

To motivate our interest in the study of short-distance static correlation
functions it should be noted that they can be observed experimentally using
various techniques. The experiments which are most relevant for our work are
electron spin resonance (ESR) measurements. Using linear response theory,
the moments of absorption lines can be related to short-distance static
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correlations [19–22]. An example for this is [23–25] where the authors used
the compound Cu(py)2Br2 in ESR experiments and found a good agreement
with the next-nearest neighbour functions obtained by theory.

Another example where correlation functions can be observed are neutron
scattering experiments [26, 27] that measure the dynamic structure factor of
the Heisenberg chain, which is connected to the dynamic two-point corre-
lations. In [28–30] the two- and four-spinon contributions to the dynamic
structure factor were calculated. Another measurable physical quantity is the
thermal conductivity of the chain which is determined by the dynamic current-
current correlation and thus by six-point dynamic correlation functions [31].
Such functions cannot be calculated as of today. The Drude weight however,
i.e. the zero frequency component of the thermal conductivity can be studied
using various other techniques [31–34]. The predicted behaviour could then
be verified in experimental works [35–37]. Even though the neutron scattering
and especially the heat transport examples are not directly connected to our
goal of calculating short-distance static correlation functions, they make it
obvious that studying correlations of the Heisenberg chain is a worthwhile
goal.

Apart from experiments there is of course a motivation to study the
Heisenberg model from the viewpoint of theoretical physics as well. Interacting
many-particle systems cannot ordinarily be solved exactly. As such, two
techniques which are used frequently in many-particle physics are perturbation
theory and simulations using large computer clusters. Both methods obviously
are restricted regarding the generality of their results. Integrable systems like
the Heisenberg chain present a different possibility to study many-particle
systems since many of their properties can be calculated exactly. Even though
integrability is a strong restriction too, the study of integrable systems may
contribute to our understanding of more generic many-particle systems.
Even a better understanding of the differences between integrable and non-
integrable models may help in advancing the generic theory. Additionally,
a better understanding of the integrable structure of the Heisenberg chain
may help our understanding of integrable systems in other fields like e.g.
conformal field theory [38–40]. At last, in our opinion a better understanding
of the structure of correlations of the Heisenberg model is a worthwhile goal
on its own.

In recent years there has been significant progress in understanding the
correlation functions of local operators of integrable spin-1

2 chains. The
development started when Jimbo et al. [41–43] found explicit expressions
for the density matrix of a finite subchain of the infinite XXZ chain at zero
temperature and with a vanishing magnetic field. Here the density matrix
was expressed in terms of multiple integrals. This was later extended to a
non-vanishing magnetic field in [44] and to finite temperatures in [45].

The next big step was the discovery that these multiple integrals can be
factorized [46] and that the resulting integrals can be written in an exponential
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form [47,48]. This made it possible to distinguish between an algebraic part
and a physical part. The algebraic part is tied to the representation theory
of the model’s symmetry algebra. In our case this will be the XXZ chain,
so the corresponding quantum group will be Uq(ŝl2). The physical part is
in essence defined by two transcendental functions related to the one-point
correlators and the two-point neighbour correlators, which depend on physical
parameters like temperature, length of the chain, magnetic field, etc.

Later it was discovered [49], that the density matrix can be expressed
in terms of fermionic annihilation operators b and c, acting on the space
of quasi-local operators which act on the states of the chain. By definition
quasi-local operators act on an infinite chain but act non-trivially only on a
finite segment of the chain. In [50] the corresponding creation operators b∗

and c∗ were constructed along with a bosonic creation operator t∗. These
creation operators generate a basis of the space of quasi-local operators [51],
called the fermionic basis. It should be noted that it is not trivially clear
that such a construction is possible on an infinite chain. The reason that this
is possible is likely the integrable structure of the XXZ chain. In [52] it was
explained how to calculate the expectation values of products of the creation
operators.

In this work we want to elucidate the construction in [50] and calculate
the fermionic operators explicitly on a computer. Using these operators,
we want to calculate correlation functions of the XXZ chain. This will be
achieved in two ways. First, we will use the exponential form of the density
matrix and try to go to bigger lengths as in [53]. Secondly, we want to express
local operators in terms of the fermionic basis and use [52] to calculate the
corresponding expectation values.

In [50] and [53] the inhomogeneous chain is considered, which entails that
every vertical line in the corresponding vertex model is associated with a
parameter ξj . The monodromy matrix can be represented graphically in this
form:

a
ζ

ξk ξk+1 ξl
= Ta,[k,l](ζ) .

k k + 1 · · · l

In past works this approach of introducing inhomogeneities has often
proven to be crucial because the additional parameters were needed for
regularization. In other works, these parameters were at least convenient
because they reduced the order of poles to one. In this work we will explain
most of the construction using the inhomogeneities ξj for the sake of generality.
However, the presented construction does not depend on the inhomogeneities.
We will carry out most of the explicit calculations for the homogeneous case,
i.e. ξj = 1. Our hope is that this will be more efficient on a computer since
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there are less parameters to handle. The downside of this approach is that
we will have to deal with poles of higher order.

In its ground state, the Heisenberg chain has three phases, shown in the
following diagram:

−1 1

−4

4
critical
massless

antiferromagnetic
massive

ferromagnetic

∆

h/J

We will restrict ourselves to the massless region i.e. q = eiπν where
ν ∈ (0, 1) or accordingly |∆| < 1. Since ∆ is invariant under q → q−1,
this covers the whole unit circle. In this work we want to concentrate on
the so-called algebraic part which does not depend on physical parameters.
This means that most of our work will be valid for all three regions of the
diagram. However, to explicitly calculate correlation functions, we will need
to solve the physical part of the problem as well. This is done by solving
different non-linear integral equations for the different regions (cf. [53,54]).
The restriction to the massless case is done mainly for convenience in order to
keep the treatment of the physical part simple. Our second restriction will be
that q shall not be a root of unity. It should be noted that the construction
can be extended to cover roots of unity, but it is practical to not cover this
case from the start.

Let O be a local operator, meaning that it acts as the identity on the
whole chain except for a finite portion. We call X = q2αS(0)O, where
S(k) = 1

2

∑k
j=−∞ σ

z
j , a quasi-local operator with tail α. This means that

there exist k ≤ l such that X acts as qασ
z
j for j < k and as the identity for

j > l. The length of X is defined as the minimum of l − k + 1. The spin of
an operator X is defined as its eigenvalue of the operator S = [S(∞), ·].

Let Wα be the space of all quasi-local operators with tail α and Wα,s the
subspace of those with spin s. We will follow [50] to construct the operators
b, c, b∗, c∗ and t∗ acting on

W =
⊕
α∈C
Wα . (1.2)
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These operators have the block structure

b : Wα−1,s+1 →Wα,s , c : Wα+1,s−1 →Wα,s ,

b∗ : Wα+1,s−1 →Wα,s , c∗ : Wα−1,s+1 →Wα,s ,

t∗ : Wα,s →Wα,s .

As a first step in our construction we will only consider operators acting
on a finite chain in chapter 2. The space of states for a chain segment will be
H[k,l] =

⊗l
j=k Vj , Vj ' C2, which we will identify with the interval [k, l]. If an

operator X ∈ EndH[j,m] is acting trivially outside the interval [k, l] ⊂ [j,m]
we denote it by X[k,l]. Like before the length `(X) of an operator X shall be
the number of lattice sites in the smallest interval outside of which X acts
trivially. We call the corresponding chain segment the support of X.

After constructing all operators in the finite case, we will see that they
satisfy so-called reduction relations. These relations will allow us to induc-
tively extend the operators to the infinite chain as the second step in the
construction. This will be done in chapter 3 where we also explain how to
construct a basis for the space of quasi-local operators W using the fermionic
creation operators in the infinite chain.

Having defined the action of the operators on an infinite chain we will show
how to calculate expectation values in chapter 4. Two different techniques
will be introduced, both relying on the fermionic operators. In chapter 5 we
will explain the implementation of the construction on the computer and
in chapter 6 the resulting correlation functions are presented. Finally, in
chapter 7, we shall show how both approaches for obtaining expectation
values can be connected.
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Chapter 2

Operators on the Finite Chain

In this chapter we confine ourselves to operators which act on the finite chain.
We will explain the construction of the fermionic operators for this case and
then obtain certain reduction relations. Using these relations, we can later
define the action of our operators on an infinite chain, which will be covered
in the next chapter.

2.1 Basic Definitions

In order to fix the notation, we will give some fundamental definitions in
this section. The notation as well as the basic definitions will be very similar
to [50] since this is our main reference. Let V ' C2 and M ' EndV . Now
let Vj ' V and Mj ' M for every j ∈ Z. The space of states of a segment
of the chain is H[k,l] =

⊗l
j=k Vj . We will identify such a segment with the

corresponding interval [k, l]. Furthermore we call the space of operators
acting on a segment [k, l] ⊂ Z

M[k,l] =

l⊗
j=k

Mj . (2.1)

For our L operators we will use two auxiliary spaces. On the one hand
we will use two-dimensional representations of Uq(sl2). These will be denoted
by small Latin characters as indices. On the other hand, we will use repre-
sentations of the q-oscillator algebra Osc. For these we will use capital Latin
indices.

For our first auxiliary space we will write

La,j(ζ) = ρ(ζ)L◦a,j(ζ) ∈Ma ⊗Mj , (2.2)
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where

L◦a,j(ζ) =


1 0 0 0
0 β(ζ) γ(ζ) 0
0 γ(ζ) β(ζ) 0
0 0 0 1

 , (2.3)

β(ζ) =
ζ − ζ−1

qζ − q−1ζ−1
, γ(ζ) =

q − q−1

qζ − q−1ζ−1
. (2.4)

It is easy to prove that

L◦a,j(ζ)−1 = L◦a,j(ζ
−1) . (2.5)

For the normalization factor ρ(ζ) see subsection 2.1.1.
Now we want to define L operators for our second auxiliary space. We fix

the q-oscillator algebra by giving the following relations for the generators
a,a∗ and q±D

qDaq−D = q−1a , qDa∗q−D = qa∗

aa∗ = 1− q2D+2 , a∗a = 1− q2D . (2.6)

The L operator is

LA,j(ζ) = σ(ζ)L◦A,j(ζ) ∈ OscA ⊗Mj , (2.7)

where

L◦A,j(ζ) =

(
1− ζ2q2DA+2 −ζaA
−ζa∗A 1

)
j

(
q−DA 0

0 qDA

)
j

, (2.8)

L◦A,j(ζ)−1 =
1

1− ζ2

(
qDA 0

0 q−DA

)
j

(
1 ζaA
ζa∗A 1− ζ2q2DA

)
j

. (2.9)

As before, see subsection 2.1.1 for the normalization factor σ(ζ).
We say that an operator X[k,l] ∈M[k,l] has spin s, if

S(X[k,l]) = sX[k,l] , (2.10)

where
S(X[k,l]) =

[
S[k,l], X[k,l]

]
, S[k,l] =

1

2

∑
j∈[k,l]

σzj . (2.11)

By defining it like this, an operator of spin s′ will change the spin of a state
it acts upon by s′: Suppose X[k,l] ∈ M[k,l] is of spin s′ and |ψ〉 ∈ H[k,l] has
spin s. Then

S[k,l]X[k,l]|ψ〉 =
(
S(X[k,l]) +X[k,l]S[k,l]

)
|ψ〉 = (s+ s′)X[k,l]|ψ〉 , (2.12)

i.e. X[k,l]|ψ〉 has spin s+ s′.
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In the following we will consider adjoint actions of operators. These will
act on the spaces Ma, OscA, M[k,l], etc. and will be denoted by boldface
letters b, c, . . . or blackboard boldface letters T,S, . . . . One example is the
adjoint action of the L operator

La,j(ζ)(X[k,l]) := La,j(ζ)X[k,l]La,j(ζ)−1 ∈Ma ⊗M[k,l] . (2.13)

Here we use X[k,l] ∈Ma ⊗M[k,l], which acts as identity on Ma. This means
that La,j(ζ) ∈ EndMa⊗EndM[k,l]. Indices are used to indicate the space that
an operator is acting on, e.g. x[k,l] ∈ EndM[k,l]. We will often drop the suffix
if an operand is present. If X[k,l] ∈M[k,l] it is implied that x ∈ EndM[k,l] in
x(X[k,l]).

We define the twisted transfer matrix as the trace over the adjoint action
of the monodromy matrix

Ta,[k,l](ζ) = La,l(ζ/ξl) · · ·La,k(ζ/ξk) , (2.14a)

Ta(ζ, α)(X[k,l]) = Ta,[k,l](ζ)qασ
z
aX[k,l]Ta,[k,l](ζ)−1 , (2.14b)

t∗(ζ, α)(X[k,l]) = tra
[
Ta(ζ, α)(X[k,l])

]
. (2.14c)

As noted in the introduction we keep the inhomogeneities ξj for this part of
the construction. The monodromy matrix may also be expressed in terms of
the adjoint actions of L operators

Ta(ζ, α)(X[k,l]) = La,l(ζ/ξl) · · ·La,k(ζ/ξk)(qασ
z
aX[k,l]) . (2.15)

We say that an operator x[k,l] ∈ EndM[k,l] has spin s, if[
S,x[k,l]

]
= s x[k,l] . (2.16)

We write s(x) = s if x has spin s. Analogous to the above definition, if
X[k,l] ∈ M[k,l] has spin s, then x(X[k,l]) ∈ M[k,l] has spin s + s(x). To
provide an overview we will now list the spins of some operators which will
be introduced later:

s(x) =


0 if x = t∗,q

1 if x = k, f , c, c̄,b∗

−1 if x = b, b̄, c∗
. (2.17)

Using a representation of OscA as auxiliary space we define the q operator
in a similar manner as the twisted transfer matrix

TA,[k,l](ζ) = LA,l(ζ/ξl) · · ·LA,k(ζ/ξk) , (2.18a)

TA(ζ, α)(X[k,l]) = TA,[k,l](ζ)q2αDAX[k,l]TA,[k,l](ζ)−1 , (2.18b)

q(ζ, α)(X[k,l]) = trA

[
TA(ζ, α)ζα−S(q−2S[k,l]X[k,l])

]
. (2.18c)
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The factor ζα−S in the definition of q[k,l](ζ, α) results in a very simple tq
equation:

t∗[k,l](ζ, α)q[k,l](ζ, α) = q[k,l](qζ, α) + q[k,l](q
−1ζ, α) , (2.19)

which will be shown in the next section. The reason for introducing the factor
q−2S[k,l] will be explained later.

We then define the spin reversal operator

J(X[k,l]) =
∏
j∈[k,l]

σxj ·X[k,l] ·
∏
j∈[k,l]

σxj . (2.20)

It is easy to see that

S ◦ J(X[k,l]) = −J ◦ S(X[k,l]) . (2.21)

Lastly, we set the transformation

φα(x[k,l](ζ, α)) = q−1N(α− S[k,l] − 1) ◦ J[k,l] ◦ x[k,l](ζ,−α) ◦ J[k,l] , (2.22)

where
N(x) = q−x − qx ,

which will be used later.

2.1.1 Crossing Symmetry

Since [49], [50] and [52] are inspired by conformal field theory (CFT), the
authors demand that the L operators obey the crossing symmetry relation

L·,j(ζ)−1 = σyjL·,j(q
−1ζ)tjσyj . (2.23)

We denote by (·)tj the transposition with respect to the quantum space Mj .
This symmetry fixes the normalization factors ρ(ζ) and σ(ζ) by the two
relations

σ(ζ)σ(q−1ζ) =
1

1− ζ2
(2.24)

and

ρ(ζ)ρ(q−1ζ) = q−1 1− ζ2

1− q−2ζ2
. (2.25)

Using both of these relations one can additionally show that

ρ(ζ) =
q−1/2σ(q−1ζ)

σ(ζ)
. (2.26)

These relations are used in the construction of the fused L operator in the
next section.
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It should be noted however, that the crossing symmetry is not needed for
the construction. If crossing symmetry is not demanded, a global factor for
the fused operator L{a,A},j(ζ) appears, which does not concern us since we
consider adjoint actions. Secondly, the tq equation becomes slightly more
complicated.

In this work we shall demand crossing symmetry for the sake of simplicity
and to be compatible with the literature.

2.2 Construction of k(ζ, α)

In this section we will consider the construction of the operator k[k,l]. Most
of the operators which will be considered in this work will be derived from
k[k,l]. Let us first introduce the fused L operator L{a,A},j :

L{a,A},j(ζ) = F−1
a,ALa,j(ζ)LA,j(ζ)Fa,A , (2.27a)

where Fa,A = 1− aAσ
+
a and thus F−1

a,A = 1 + aAσ
+
a . After some calculation it

can be brought to a form triangular on Ma:

L{a,A},j(ζ) =

(
1 0

γ(ζ)
β(ζ)σ

+
j 1

)
a

(
LA,j(qζ)q−σ

z
j /2 0

0 LA,j(q
−1ζ)qσ

z
j /2

)
a

.

(2.27b)
The corresponding monodromy matrix is therefore also triangular:

T{a,A},[k,l](ζ) =

L{a,A},l(ζ/ξl) . . . L{a,A},k(ζ/ξk) =

(
AA,[k,l](ζ) 0

CA,[k,l](ζ) DA,[k,l](ζ)

)
a

, (2.28)

AA,[k,l](ζ) = TA,[k,l](qζ)q−S[k,l] , DA,[k,l](ζ) = TA,[k,l](q
−1ζ)qS[k,l] . (2.29)

Using that [Fa,A, q
ασza+2αDA ] = 0 and qS(X[k,l]) = qS[k,l]X[k,l]q

−S[k,l] , it can
be shown with a short calculation that the adjoint action of the monodromy
matrix is also triangular:

T{a,A}(ζ, α)(X[k,l]) = F−1
a,A(Ta(ζ, α)TA(ζ, α)(X[k,l]))Fa,A (2.30a)

= T{a,A},[k,l](ζ)qασ
z
aq2αDAX[k,l]T

−1
{a,A},[k,l](ζ) (2.30b)

=

(
AA(ζ, α)(X[k,l]) 0

CA(ζ, α)(X[k,l]) DA(ζ, α)(X[k,l])

)
a

, (2.30c)

AA(ζ, α)(X[k,l]) = TA(qζ, α)qα−S(X[k,l]) (2.31a)

DA(ζ, α)(X[k,l]) = TA(q−1ζ, α)q−α+S(X[k,l]) . (2.31b)
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Before going on to defining k[k,l] we want to show that the tq equation
(2.19) can be easily derived from the above expression. This can be done by
taking the trace over both auxiliary spaces Ma and OscA. Let X[k,l] be an
operator of spin s and consider

tra,A

{
F−1
a,A(Ta(ζ, α)TA(ζ, α)(q−2S[k,l]X[k,l]))Fa,A

}
= ζ−α+s tra

{
Ta(ζ, α) trA

{
TA(ζ, α)ζα−S(q−2S[k,l]X[k,l])

}}
= ζ−α+s tra

{
Ta(ζ, α)q(ζ, α)(X[k,l])

}
= ζ−α+s t∗(ζ, α)q(ζ, α)(X[k,l])

on the one hand and the trace over (2.30c) on the other hand. The latter
gives us

trA
{
AA(ζ, α)(q−2S[k,l]X[k,l]) + DA(ζ, α)(q−2S[k,l]X[k,l])

}
= ζ−α+s trA

{
TA(qζ, α)(qζ)α−S(q−2S[k,l]X[k,l])

+TA(q−1ζ, α)(q−1ζ)α−S(q−2S[k,l]X[k,l])
}

= ζ−α+s
(
q(qζ, α)(X[k,l]) + q(q−1ζ, α)(X[k,l])

)
,

which then yields the tq equation (2.19) for our adjoint operators.
Apparently, only the diagonal part of T{a,A}(ζ, α)(X[k,l]) is used to de-

rive the tq equation. Now we want to consider the off-diagonal part of
T{a,A},[k,l](ζ, α). The operator k[k,l](ζ, α) is defined using this off-diagonal
part:

k(ζ, α)(X[k,l]) = trA

{
CA(ζ, α)ζα−S(q−2S[k,l]X[k,l])

}
(2.32a)

= tra,A

{
σ+
a Ta(ζ, α)TA(ζ, α)ζα−S(q−2S[k,l]X[k,l])

}
. (2.32b)

The operator k[k,l](ζ, α) is used to derive the annihilation operators
c̄[k,l](ζ, α), c[k,l](ζ, α) and f[k,l](ζ, α). In order to obtain these, we will need
to do a partial fraction decomposition of k[k,l](ζ, α). Before doing this we
will explain the analytic structure of k[k,l](ζ, α) in the next section.

2.3 Analytic Structure of k(ζ, α), q(ζ, α) and t∗(ζ, α)

In this section we want to explain the analytic structure of t∗[k,l](ζ, α),
q[k,l](ζ, α) and k[k,l](ζ, α). This is done in large parts in [50], but since
it is important for all following considerations it seems practical to present it
here.

An examination of (2.3) and (2.8) gives rise to the idea that t∗[k,l](ζ, α)

and q[k,l](ζ, α) are rational in ζ2, with possibly an additional factor ζ−α±S.
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This is particularly easy to see in the case of q[k,l](ζ, α), since the trace over
the auxiliary space is taken and only terms which are “balanced” in aA and
a∗A have a trace not equal to zero. The same argument applies to t∗[k,l](ζ, α),
but in a less obvious way. Since we are considering adjoint actions, the factors
ρ(ζ) and σ(ζ) will drop out and therefore do not need to be considered. To
examine the analytic structure in a more formal fashion we introduce

L̃◦a,j(ζ
2) = ζ−σ

z
j /2L◦a,j(ζ)ζσ

z
j /2 ,

L̃◦A,j(ζ
2) = ζ−σ

z
j /2−1L◦A,j(ζ)ζ−σ

z
j /2 .

Both operators and their inverse operators are rational functions in ζ2

and regular at ζ2 = ∞. The operators L̃◦a,j(ζ
2) and L̃◦a,j(ζ

2)−1 have poles
only at ζ2 = q−2 and ζ2 = q2 respectively. The operator L̃◦A,j(ζ

2) has a pole
at ζ2 = 0 and L̃◦A,j(ζ

2)−1 has one at ζ2 = 1.
Now denote by T̃a,[k,l](ζ2, α) und T̃A,[k,l](ζ2, α) the operators Ta,[k,l](ζ, α)

and TA,[k,l](ζ, α) in which the L operators have been replaced by L̃◦a,j(ζ
2)

and L̃◦A,j(ζ
2) respectively. These are again rational functions in ζ2 with poles

only at ζ2 = q±2ξ2
j and ζ2 = ξ2

j respectively. Additionally T̃A,[k,l](ζ, α)(X[k,l])

has a pole of order at most s at ζ2 = 0 if s > 0 is the spin of X[k,l]. For s ≤ 0
it is regular at ζ2 = 0. This can be shown by considering the adjoint action
of L̃◦A,j(ζ

2) on an operator Xj ∈Mj . L̃◦A,j(ζ2)(Xj) has a pole at ζ2 = 0 only
if Xj is of spin 1, i.e. maximal spin. More precisely, one can show by explicit
calculation, that (1− ζ2)L̃◦A,j(ζ2)(Xj) = O(ζ−2s). To generalize this to the
interval [k, l] and obtain the above statement, it is convenient to represent

X[k,l] in terms of the canonical basis e β
jα, where e

+
+ =

(
1 0
0 0

)
, e−− =

(
0 0
0 1

)
,

e−+ = σ+, e+
− = σ−.

It is easy to prove, that

Ta(ζ, α)(X[k,l]) = ζSG−1T̃a(ζ2, α)ζ−SG(X[k,l]) ,

TA(ζ, α)(X[k,l]) = ζSG−1T̃A(ζ2, α)ζSG−1(X[k,l]) ,

where G(X[k,l]) = G[k,l]X[k,l]G
−1
[k,l] and G[k,l] =

∏
j∈[k,l] ξ

σzj /2

j .
By using the first of these relations one can see, that t∗[k,l](ζ, α) is a

rational function in ζ2 with poles at ζ2 = q±2ξ2
j . In addition it has to be

regular for ζ2 =∞. To prove this, one has to write

t∗(ζ, α)(X[k,l]) = tra

{
ζSG−1T̃a(ζ2, α)ζ−SG (ζσ

z
a/2−σza/2X[k,l])

}
and use that [La,j(ζ, α), ζσ

z
j+σza ] = 0.

In much the same way one can prove that ζ−α±Sq[k,l](ζ, α) is a rational
function in ζ2. The poles in C× = C \ {0} are at ζ2 = ξ2

j and the operator is
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regular for ζ2 = ∞. At this point it should be noted that the spin s of an
operator X[k,l] is always an integer, which explains the sign of S in the factor
ζ−α±S.

At last we examine the operator k[k,l](ζ, α) from which the annihilation
operators are derived. Using the modified monodromy matrices we write it as

k(ζ, α)(X[k,l]) =

ζα+s+1G−1 tra,A

{
σ+
a T̃a(ζ2, α)T̃A(ζ2, α)G−1(q−2S[k,l]X[k,l])

}
.

If X[k,l] is of spin s, then ζ−α±s−1k(ζ, α)(X[k,l]) is a rational function in
ζ2 with poles at ζ2 = ξ2

j , q
±2ξ2

j . Moreover ζ−α−s+1k(ζ, α)(X[k,l]) is regular
for ζ2 = ∞. Also ζ−α−s−1k(ζ, α)(X[k,l]) has at most a pole of order s at
ζ2 = 0 if s > 0.

2.4 Partial Fraction Decomposition

As mentioned in section 2.2 we need a partial fraction decomposition of
the operator k[k,l](ζ, α). Instead of working with k[k,l](ζ, α) directly, it is
convenient to introduce

kskal(ζ, α)(X[k,l]) = ζ−α−s−1k(ζ, α)(X[k,l]) . (2.33)

From the last section we know that kskal(ζ, α) is rational in ζ2 and has
simple poles at ζ2 = ξ2

j , q
±2ξ2

j . Moreover kskal(ζ, α) has no poles at ζ2 = 0

for s ≤ 0 and at most a pole of order s in ζ2 = 0 for s > 0. Now we want to
define the residues and Laurent coefficients ρ(ε)

j (α) and κj(α) of kskal(ζ, α).
In [53] these are given as

kskal(ζ, α)(X[k,l]) =

 n∑
j=1

∑
ε=0,±

ρ
(ε)
j (α)

ζ2 − q2εξ2
j

+
s∑
j=1

κj(α)

ζ2j

 (X[k,l]) . (2.34)

Since we want to consider the homogeneous case, we will need a differ-
ent decomposition. In the homogeneous case the three series of poles at
ζ2 = ξ2

j , q
±2ξ2

j merge into three poles of higher order at ζ2 = 1, q±2. For
kskal(ζ, α)(X[k,l]) these poles have order `(X[k,l]) = l − k + 1. This leads to
the decomposition

kskal(ζ, α)(X[k,l]) =

 n∑
j=1

∑
ε=0,±

ρ
(ε)
j (α)

(ζ2 − q2ε)j
+

s∑
j=1

κj(α)

ζ2j

 (X[k,l]) . (2.35)
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2.5 Construction of c(ζ, α), b(ζ, α) and f(ζ, α)

The annihilation operators c[k,l], b[k,l] and f[k,l] are defined through the
decomposition of k[k,l] into its three series of poles:

k(ζ, α)(X[k,l]) =(
c̄(ζ, α) + c(qζ, α) + c(q−1ζ, α) + f(qζ, α)− f(q−1ζ, α)

)
(X[k,l]) . (2.36)

We demand that the three new operators are similar to k[k,l] in the sense
that for X[k,l] with spin s the operators c̄[k,l](ζ, α)X[k,l], c[k,l](ζ, α)X[k,l] and
f[k,l](ζ, α)X[k,l] can be written as ζα+s+1f[k,l](ζ

2). Here f[k,l](ζ
2) shall be ratio-

nal in ζ2 and have poles only at ζ2 = ξ2
j (j ∈ [k, l]). This way c̄[k,l](ζ, α)X[k,l]

produces the series of poles along the real axis while c[k,l](ζ, α)X[k,l] and
f[k,l](ζ, α)X[k,l] produce the other two series. In order to accommodate for the
pole at ζ2 = 0, we will allow f to have a pole at this point. The decomposition
(2.36) is realized by means of the relations

c̄(ζ, α)(X[k,l]) =
1

2πi

∮
Γ
ψ(ζ/ξ, α+ s+ 1)k(ξ, α)(X[k,l])

dξ2

ξ2
, (2.37)

c(ζ, α)(X[k,l]) =
1

4πi

×
∮

Γ
ψ(ζ/ξ, α+ s+ 1)

{
k(qξ, α) + k(q−1ξ, α)

}
(X[k,l])

dξ2

ξ2
, (2.38)

f(ζ, α)(X[k,l]) =
{
f sing(ζ, α) + f reg(ζ, α)

}
(X[k,l]) , (2.39)

f sing(ζ, α)(X[k,l]) =
1

4πi

×
∮

Γ
ψ(ζ/ξ, α+ s+ 1)

{
−k(qξ, α) + k(q−1ξ, α)

}
(X[k,l])

dξ2

ξ2
, (2.40)

where

ψ(ζ, α) =
1

2

ζ2 + 1

ζ2 − 1
ζα . (2.41)

Here Γ is a closed curve such that the poles of the integrands at ξ2
j ,

j ∈ [k, l], are inside the curve and the other poles q±2ξ2
j , q
±4ξ2

j , 0, ζ
2 outside.

The operator f(ζ, α) is split into two parts, namely f sing(ζ, α) and f reg(ζ, α)
which accommodates for the pole at ζ2 = 0.

We can then introduce additional annihilation operators using the trans-
formation φ from (2.22):

b̄[k,l](ζ, α) := φ(c̄)[k,l](ζ, α) , b[k,l](ζ, α) := φ(c)[k,l](ζ, α) . (2.42)

For the next step we want to express the annihilation operators in terms
of their residues or Laurent coefficients. This will allow for an efficient
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computation on the computer and at the same time provide an expansion
into modes. Such an expansion is useful because of certain properties of the
modes, which will be explained in detail later on. The expansion can be done
by inserting (2.34) into (2.37)–(2.40). Although we want to concentrate on
the homogeneous case, we will first provide expansions for the inhomogeneous
case for the sake of completeness. These were obtained in [53]:

c̄(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=1

ζ2 + ξ2
j

ζ2 − ξ2
j

·
ρ

(0)
j (α)

2ξ2
j

(X[k,l]) , (2.43)

c(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=1

∑
ε=±

ζ2 + ξ2
j

ζ2 − ξ2
j

·
qε(α+s−1)ρ

(ε)
j (α)

4ξ2
j

(X[k,l]) , (2.44)

f(ζ, α)(X[k,l]) = ζα+s+1

 s∑
j=0

ζ−2jκj(α)

qα+s+1−2j − q2j−α−s−1
(2.45)

−
n∑
j=1

∑
ε=±

ζ2 + ξ2
j

ζ2 − ξ2
j

·
ε qε(α+s−1)ρ

(ε)
j (α)

4ξ2
j

 (X[k,l]) , (2.46)

where

κ0 = −
n∑
j=1

∑
ε=0,±

ρ
(ε)
j (α)

2q2εξ2
j

. (2.47)

As mentioned above we want to focus on the homogeneous case, for which
the explicit expansion was not worked out in the literature. We will give a
mode expansion like the one above for this case, which will be obtained the
same way. The relations (2.37)–(2.40) hold for both cases. The difference
between the two cases is the insertion of different decompositions for the
operator kskal(ζ, α). For the homogeneous case we will of course use (2.35).
For all three integrals we have integrands of the form

ξ−2ψ(ζ/ξ, α+ s+ 1)k(qεξ, α)(X[k,l])

= ζα+s+1 ζ2 + ξ2

2ξ2(ζ2 − ξ2)
qε(α+s+1)kskal(q

εξ, α)(X[k,l]) . (2.48)

Using the expansion

ζ2 + ξ2

2ξ2(ζ2 − ξ2)
=

1

2

∞∑
k=0

(−1)k(ξ2 − 1)k +
1

ζ2 − 1

∞∑
k=0

(
ξ2 − 1

ζ2 − 1

)k
(2.49)

which is valid for |ξ2 − 1| < |ζ2 − 1| and |ξ2 − 1| < 1 we obtain expansions
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for the annihilation operators:

c̄(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=0

c̄j(α)

(ζ2 − 1)j
(X[k,l]) , (2.50)

c(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=0

cj(α)

(ζ2 − 1)j
(X[k,l]) , (2.51)

f(ζ, α)(X[k,l]) =

ζα+s+1

 n∑
j=0

fj(α)

(ζ2 − 1)j
+

s∑
j=0

κj(α)ζ−2j

qα+s+1−2j − q2j−α−s−1

 (X[k,l]) .

(2.52)

The coefficients for these expansions are

c̄j(α) = ρ
(0)
j (α) , j = 1, . . . , n , (2.53a)

c̄0(α) =
1

2

n∑
j=1

(−1)j−1c̄j(α) , (2.53b)

cj(α) =
1

2

(
q2j−α−s−1ρ

(−)
j (α) + qα+s+1−2jρ

(+)
j (α)

)
, j = 1, . . . , n ,

(2.54a)

c0(α) =
1

2

n∑
j=1

(−1)j−1cj(α) , (2.54b)

and

fj(α) =
1

2

(
q2j−α−s−1ρ

(−)
j (α)− qα+s+1−2jρ

(+)
j (α)

)
, j = 1, . . . , n ,

(2.55a)

f0(α) =
1

2

n∑
j=1

(−1)j−1fj(α) , (2.55b)

κ0(α) =
1

2

n∑
j=1

(−1)j
∑
ε=0,±

q−2εjρ
(ε)
j (α) . (2.55c)

To clarify this calculation, we want to provide an example. For brevity
we choose to do the calculation for c̄(ζ, α). Starting from (2.37) we obtain

c̄(ζ, α)(X[k,l]) =
1

2πi

∮
Γ
ζα+s+1 ζ2 + ξ2

2ξ2(ζ2 − ξ2)
kskal(ξ, α)(X[k,l])dξ2 , (2.56)
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where Γ is a small circle around ξ2 = 1. By inserting the two series (2.35)
and (2.49) we get

c̄(ζ, α)(X[k,l]) =
ζα+s+1

2πi

∮
Γ

n∑
j=1

ρ
(0)
j (α)

(ξ2 − 1)j

×

[
1

2

∞∑
k=0

(−1)k(ξ2 − 1)k +
1

ζ2 − 1

∞∑
k=0

(
ξ2 − 1

ζ2 − 1

)k]
(X[k,l])dξ2 (2.57)

which leads to

c̄(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=1

[
(−1)j−1

2
+

1

(ζ2 − 1)j

]
ρ

(0)
j (α)(X[k,l])

= ζα+s+1

[
1

2

n∑
j=1

(−1)j−1ρ
(0)
j (α)︸ ︷︷ ︸

:=c̄0(α)

+

n∑
j=1

ρ
(0)
j (α)

(ζ2 − 1)j

]
(X[k,l]) .

(2.58)

The last equation clearly gives us the above expansion for c̄(ζ, α) along with
the coefficients.

One additional point which should be explained in greater detail is how
f reg(ζ, α) is fixed. Above we have given the complete expansion for f(ζ, α)
for easy reference. To obtain this, one derives an expansion for f sing(ζ, α) in
the same way as explained above for c̄(ζ, α). Doing this yields

f sing(ζ, α)(X[k,l]) = ζα+s+1
n∑
j=0

fj(α)

(ζ2 − 1)j
(X[k,l]) . (2.59)

In order to obtain f reg(ζ, α) we use the decomposition (2.36):

(k(ζ, α)− c̄(ζ, α)

−c(qζ, α)− c(q−1ζ, α)− f sing(qζ, α) + f sing(q−1ζ, α)
)

(X[k,l])

=
(
f reg(qζ, α)− f reg(q−1ζ, α)

)
(X[k,l]) . (2.60)

We now have an equation which fixes the “q-difference” of f reg(ζ, α). We shall
denote the q-difference with respect to ζ with the operator ∆ζ :

∆ζf(ζ) := f(qζ)− f(q−1ζ) . (2.61)

It is possible to invert this operator on the space of Laurent polynomials,
which is easy to see when applying it to an arbitrary Laurent polynomial:

∆ζ

∑
j

ajζ
2j =

∑
j

(q2j − q−2j)ajζ
2j . (2.62)
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This obviously leads to the inverse action

∆−1
ζ

∑
j

ajζ
2j :=

∑
j

aj
q2j − q−2j

ζ2j . (2.63)

Inserting the expansions for k(ζ, α), c̄(ζ, α), c(ζ, α) and f sing(ζ, α) into (2.60)
gives us

ζ−α−s−1∆ζf
reg
[k,l](ζ, α) =

s∑
j=1

κj(α)

ζ2j
− c̄0(α)

−
(
qα+s+1 + q−α−s−1

)
c0(α)−

(
qα+s+1 − q−α−s−1

)
f0(α)

=
s∑
j=1

κj(α)

ζ2j
− 1

2

n∑
j=1

(−1)j−1
(
ρ

(0)
j (α) + q2jρ

(−)
j (α) + q−2jρ

(+)
j (α)

)
.

(2.64)

If we make the ansatz

f reg(ζ, α) = ζα+s+1
∑
j

ajζ
−2j (2.65)

⇒ ∆ζf
reg(ζ, α) = ζα+s+1

∑
j

(
qα+s+1−2j − q2j−α−s−1

)
ajζ
−2j (2.66)

we obtain
aj =

κj(α)

qα+s+1−2j − q2j−α−s−1
, j = 1, . . . , s (2.67)

and(
qα+s+1 − q−α−s−1

)
a0 =

1

2

n∑
j=1

(−1)j
∑
ε=0,±

q−2jερ
(ε)
j (α) =: κ0(α) . (2.68)

Now we have

f reg
[k,l](ζ, α) = ζα+s+1

s∑
j=0

κj(α)ζ−2j

qα+s+1−2j − q2j−α−s−1
. (2.69)

After obtaining expansions for c̄[k,l](ζ, α), c[k,l](ζ, α) and f[k,l](ζ, α) we
want to derive one for b[k,l](ζ, α). This can be done by inserting (2.51) into
(2.42):

b(ζ, α)(X[k,l]) = ζ−α−s+1
n∑
j=0

bj(α)

(ζ2 − 1)j
(X[k,l]) , (2.70)

where

bj(α) = φ(cj)(α) (2.71a)

= −q−1(qα−s − q−α+s)Jcj(−α)J . (2.71b)

We do not derive the expansion of b̄[k,l](ζ, α) since it is not needed for
our work. However, it should be clear that it can be obtained the same way
as above.
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2.6 Creation Operators

In the following we want to construct the creation operators t∗[k,l], b
∗
[k,l] and

c∗[k,l]. For the creation operators the distinction between the inhomogeneous
and the homogeneous case is much more involved than for the annihila-
tion operators. In order to keep things simple, we will concentrate on the
homogeneous case.

Let us first consider the operator t∗[k,l](ζ, α). As seen in section 2.3
t∗[k,l](ζ, α) is a rational function in ζ2 which is regular for ζ2 = ∞ and
has poles at ζ2 = q±2ξ2

j , which merge into two poles at ζ2 = q±2 for the
homogeneous case. For reasons that will become clear later, we are interested
in the mode expansion

t∗(ζ, α)(X[k,l]) =

∞∑
p=1

(ζ2 − 1)p−1t∗p(α)(X[k,l]) . (2.72)

The modes t∗p(α) are easily obtained by calculating t∗[k,l] with (2.14) and
performing a simple Taylor expansion, which takes very little time on a
computer. Still, we want to provide some more details on t∗[k,l].

In contrast to kskal(ζ, α), we know that t∗(ζ, α) does not necessarily
vanish for ζ2 =∞. Using the definition (2.14) one can find its asymptotic
behaviour:

t∗(ζ, α)(X[k,l]) ∼
(
qα+s + q−α−s

)
(X[k,l]) for ζ2 →∞ , (2.73)

if X[k,l] has spin s. To prove this, one considers

La,j(ζ)(qασ
z
aX[k,l]) −−−−→

ζ2→∞
qad(σzaσ

z
j /2−1/2)(qασ

z
aX[k,l])

= qad(σzaσ
z
j /2)(qασ

z
aX[k,l]) (2.74)

which leads to

Ta(ζ, α)(X[k,l]) = La,l(ζ) · · ·La,k(ζ)(qασ
z
aX[k,l])

→ qad(σzaσ
z
l /2) · · · qad(σzaσ

z
k/2)(qασ

z
aX[k,l])

= qασ
z
aqad(S[k,l]σ

z
a)(X[k,l])

= qασ
z
aqsσ

z
aX[k,l]

= q(α+s)σzaX[k,l] .

Knowing the asymptotic behaviour, we can write down the decomposition

t∗(ζ, α)(X[k,l]) =

 n∑
j=1

∑
ε=±

τ
(ε)
j (α)

(ζ2 − q2ε)j
+ qα+s + q−α−s

 (X[k,l]) . (2.75)
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Both formulas for t∗(ζ, α) will be used later. For the sake of completeness
we will give the modes t∗p in terms of the Laurent coefficients τ (ε)

j :

t∗1(α)(X[k,l]) =

 n∑
j=1

∑
ε=±

τ
(ε)
j (α)

(1− q2ε)j
+ qα+s + q−α−s

 (X[k,l]) , (2.76a)

t∗p(α)(X[k,l]) =

n∑
j=1

∑
ε=±

(
−j
p− 1

)
τ

(ε)
j (α)(X[k,l])

(1− q2ε)p+j−1
, p = 2, 3, . . . . (2.76b)

Next, we want to consider the creation operators b∗[k,l] and c∗[k,l]. As with
t∗[k,l] we are interested in the mode expansions

b∗(ζ, α)(X[k,l]) = ζα+s+1
∞∑
p=1

(ζ2 − 1)p−1b∗p(α)(X[k,l]) , (2.77)

c∗(ζ, α)(X[k,l]) = ζ−α−s+1
∞∑
p=1

(ζ2 − 1)p−1c∗p(α)(X[k,l]) . (2.78)

The reason will become clear in the next section.
The creation operators b∗[k,l] and c∗[k,l] are obtained in terms of f[k,l] and

t∗[k,l] by a tq-like equation given in [50]:

b∗(ζ, α)(X[k,l]) =
(
f(qζ, α) + f(q−1ζ, α)− t∗(ζ, α)f(ζ, α)

)
(X[k,l]) , (2.79)

c∗(ζ, α)(X[k,l]) = −φ(b∗)(ζ, α)(X[k,l]) . (2.80)

Using the Taylor expansion of t∗[k,l] and (2.52) and (2.77) we obtain a
formula for the modes b∗p(α):

b∗p(α)(X[k,l]) =

 n∑
j=0

(
−j
p− 1

)
qα+s+p−j − (−1)p+jqj−p−α−s

(q − q−1)p+j−1
fj(α)

+
s∑
j=0

(
−j
p− 1

)
qα+s+1−2j + q2j−α−s−1

qα+s+1−2j − q2j−α−s−1
κj(α)

−
n∑
j=0

t∗p+j(α)fj(α)−
s∑
j=0

p−1∑
k=0

(
−j
k

)
t∗p−k(α)κj(α)

qα+s+1−2j − q2j−α−s−1

 (X[k,l]) .

(2.81)

We can then derive (2.78) as well as the corresponding modes by using φ:

c∗p(α) = φ(b∗p)(α) (2.82a)

= q−1(qα−s − q−α+s)Jb∗p(−α)J . (2.82b)
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2.7 Reduction Relations

In this section we will discuss the so-called reduction relations. They describe
how the action of operators x[j,m] reduces to shorter intervals [k, l] on operators
of the form qα(σzj+···+σzk−1)X[k,l] where [k, l] ⊂ [j,m] is a proper subset. These
relations can be used to define the action of operators on an infinite chain
in terms of operators which act on the finite chain. There are two kinds of
reduction relations: left ones and right ones. The left reduction relations
are trivial in the sense that they follow directly from the symmetry of the
universal R Matrix. By contrast the proof of the right reduction relations is
much more involved.

2.7.1 Left Reduction

For the left reduction relations it is sufficient to consider the operators k[k,l]

and t∗[k,l] which obey the following relations:

t∗[k−1,l](ζ, α)(qασ
z
k−1X[k,l]) = qασ

z
k−1t∗[k,l](ζ, α)(X[k,l]) , (2.83)

k[k−1,l](ζ, α)(q(α+1)σzk−1X[k,l]) = qασ
z
k−1k[k,l](ζ, α)(X[k,l]) . (2.84)

These relations follow easily from the gauge symmetry of the R Matrix,
[La,j(ζ, α), qσ

z
j+σza ] = 0 and [LA,j(ζ, α), qσ

z
j+2DA ] = 0, as we will demonstrate

for the first relation:

t∗[k−1,l](ζ, α)(qασ
z
k−1X[k,l]) = tra

{
La,l · · ·La,k−1(qα(σza+σzk−1)X[k,l])

}
= qασ

z
k−1 tra

{
La,l · · ·La,k(qασ

z
aLa,k−1X[k,l])

}
= qασ

z
k−1 tra

{
La,l · · ·La,k(qασ

z
aX[k,l])

}
= qασ

z
k−1t∗[k,l](ζ, α)(X[k,l]) .

The shift of α in the second relation occurs because of the factor q−2S[k,l] in
the definition of k[k,l].

The left reduction relations for the operators c,b,b∗, c∗ follow from (2.84)
with (2.38), (2.22), (2.79) and (2.80) respectively. As a consequence, we
obtain the left reduction relations

x[k−1,l](ζ, α)(q(α+s(x))σzk−1X[k,l]) = qασ
z
k−1x[k,l](ζ, α)(X[k,l]) (2.85)

for the operators x = b,b∗, c, c∗, t∗.
We will use these relations to extend the action of the operators x[k,l] on

operators of the form qα(σzj+···+σzk−1)X[k,l] to the semi-infinite interval (−∞, l].
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2.7.2 Right Reduction

The right reduction relations are more complicated. The annihilation opera-
tors x = b, c do not extend the support of an operator X[k,l] they are acting
on to the right:

x[k,l+m](ζ, α)(X[k,l]) = x[k,l](ζ, α)(X[k,l]) . (2.86)

The proof is given in section 3.5 of [50]. This can be used to extend the
action of the annihilation operators to the semi-infinite interval [k,∞).

By inserting the mode expansions of the annihilation operators (2.51),
(2.70) we get

n+m∑
p=0

xp,[k,l+m](α)(X[k,l])

(ζ2 − 1)p
=

n∑
p=0

xp,[k,l](α)(X[k,l])

(ζ2 − 1)p
(2.87)

where x = b, c and n = l − k + 1 is the length of X[k,l]. By comparing the
coefficients, we can conclude that

xp,[k,l+m](α)(X[k,l]) =

{
xp,[k,l](α)(X[k,l]) p = 1, . . . , n

0 p = n+ 1, . . . ,m .
(2.88)

This means any operator X is annihilated by xp if p > `(X). This property
is the main reason for calling x annihilation operators.

The creation operators extend the support of an operator X[k,l] they are
acting upon indefinitely to the right. This is the reason for doing the mode
expansions (2.72), (2.77), (2.78). As we shall see, the modes xp, x = b∗, c∗, t∗

are finite in the sense that they extend the length of an operator X[k,l] at
most by p to the right:

`(xpX[k,l]) ≤ `(X[k,l]) + p . (2.89)

Right Reduction for t∗

To better understand the modes of the creation operators it makes sense to
consider the expansion of t∗ as it was done in section 3.4 in [50]. The authors
derive an expansion of the form

t∗[k,l+m](ζ, α)(X[k,l]) =
m∑
p=1

y
(p)
[k,l+p](ζ, α)(X[k,l]) + z

(m+1)
[k,l+m](ζ, α)(X[k,l]) .

(2.90)
The operators y

(p)
[k,l+p](ζ, α) and z

(m+1)
[k,l+m](ζ, α) are rational in ζ2. Close to

ζ2 = 1 they behave like y
(p)
[k,l+p](ζ, α) = O

(
(ζ2 − 1)p−1

)
and z

(m+1)
[k,l+m](ζ, α) =

O
(
(ζ2 − 1)m

)
. Comparing this to the Taylor expansion of t∗ (2.72) we can
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conclude that the pth coefficient t∗p,[k,l+m](α) extends the support at most by
p to the right:

t∗p,[k,l+m](α)(X[k,l]) = t∗p,[k,l+p](α)(X[k,l]) (2.91)

for p = 1, . . . ,m−1. Since the right-hand side of this equation is independent
of m, we may extend the action of the modes infinitely to the right:

t∗p,[k,∞)(α)(X[k,l]) = t∗p,[k,l+p](α)(X[k,l]) . (2.92)

Right Reduction for b∗ and c∗

The case of the fermionic creation operators is more complicated but combin-
ing lemma 3.1 and lemma 3.7 of [50] leads to an expression that is similar to
the above:

b∗[k,l+m](ζ, α)(X[k,l]) =
m∑
p=1

u
(p)
[k,l+p](ζ, α)(X[k,l]) + v

(m+1)
[k,l+m](ζ, α)(X[k,l]) ,

(2.93)
where u

(p)
[k,l+m](ζ, α) and v

(m+1)
[k,l+m](ζ, α) have the same properties as the oper-

ators y(p)
[k,l+p](ζ, α) and z

(m+1)
[k,l+m](ζ, α) above. By comparing with the Taylor

expansion (2.77) we obtain

b∗p,[k,l+m](α)(X[k,l]) = b∗p,[k,l+p](α)(X[k,l]) (2.94)

for m > p. From this it follows directly by applying φ that

c∗p,[k,l+m](α)(X[k,l]) = c∗p,[k,l+p](α)(X[k,l]) . (2.95)

As above we can use these relations to extend the support of the fermionic
creation operators infinitely to the right:

b∗p,[k,∞)(α)(X[k,l]) =b∗p,[k,l+p](α)(X[k,l]) , (2.96a)

c∗p,[k,∞)(α)(X[k,l]) =c∗p,[k,l+p](α)(X[k,l]) . (2.96b)

To sum up, we can write

x∗p,[k,l+m](α)(X[k,l]) = x∗p,[k,l+p](α)(X[k,l]) (2.97)

for m > p and xp = b∗p, c
∗
p, t
∗
p.

2.8 Shift in α

Up until now the variable α was not used which means it is still at our disposal.
We may shift it in such a way that the spin dependence in the mode expansions
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of creation and annihilation operators moves from the spectral parameter to
the Taylor and Laurent coefficients. For the annihilation operators we obtain
from the Laurent expansions (2.51) and (2.70)

x(ζ, α− s− s(x))(X[k,l]) = ζαs(x)
n∑
j=0

xp(α− s− s(x))(X[k,l])

(ζ2 − 1)j
(2.98)

where x = b, c and s(b) = −1, s(c) = 1.
The Taylor expansions (2.72), (2.77) and (2.78) for the creation operators

can be written as

x(ζ, α−s−s(x))(X[k,l]) = ζαs(x)
∞∑
p=1

(ζ2−1)p−1xp(α−s−s(x))(X[k,l]) (2.99)

where x = b∗, c∗, t∗. Here the spins are s(b∗) = 1, s(c∗) = −1 and s(t∗) = 0.
If we now insert the right reduction relations for the creation operators

(2.91), (2.94) and (2.95) we obtain

x[k,l+m](ζ, α− s− s(x))(X[k,l]) =

ζαs(x)
m∑
p=1

(ζ2 − 1)p−1xp,[k,l+p](α− s− s(x))(X[k,l]) +O
(
(ζ2 − 1)m

)
(2.100)

for all m ∈ N, which may be extended infinitely to the right by the inductive
limit m→∞,

x[k,∞)(ζ, α− s− s(x))(X[k,l])

= ζαs(x)
∞∑
p=1

(ζ2 − 1)p−1xp,[k,l+p](α− s− s(x))(X[k,l]) (2.101)

where x = b∗, c∗, t∗. Note that each summand is of finite length. The
inductive limit will be discussed in greater detail in section 3.1 .

2.8.1 Products of Operators

Using this shift in the variable α means that we must use different shifts for
each creation or annihilation operator in products of operators. Consider a
product of two operators x,y = b, c,b∗, c∗, t∗ acting on an operator X[k,l].
The shifts in α have to be arranged like this:

x(ζ, α− s− s(y)− s(x))y(ξ, α− s− s(y))(X[k,l]) . (2.102)

This is easy to understand if we remember, that by convention s is the
spin of the operator X[k,l], as in the expression Y := y(ξ, α− s− s(y))(X[k,l]).
Now x acts on Y , which means that s in x(ζ, α− s− s(x))(Y ) becomes the
spin of Y , which is s+ s(y).

27



2.9 Commutation Relations

The commutation relations of operators acting on the finite chain are discussed
in section 4 of [50]. There they are given in terms of so-called q-exact
forms. In the context of [50] a q-exact form is an operator of the form
g[k,l](ζ, α) = ∆ζh[k,l](ζ, α) if h[k,l](ζ, α) = ζα+S(f[k,l](ζ

2)) where f[k,l](ζ
2) is

rational in ζ2 and only has poles in C× at ζ2 = ξ2
j for j ∈ [k, l]. In the

homogeneous case this means that it will have a pole only at ζ2 = 1. As
defined before ∆ζ is the q-difference operator. In analogy to differential
calculus

∮
C g[k,l](ζ, α)dζ2

ζ2
= 0 for a cycle C which encloses ζ2 = 1 but not

ζ2 = 0, q±2ζ2. An example for a commutation relation is given in equation
(4.3) in [50] which is the relation for the operators t∗ and k where k ≤ m < l:

k[k,l](ξ, α)t∗(ζ, α+ 1)(X[k,m]) 'ξ
t∗[k,l](ζ, α)k(ξ, α)(X[k,m]) mod (ζ2 − 1)l−m . (2.103)

Here ‘'ξ’ means equality up to a q-exact form in ξ. For the construction
on the computer it will be important that we have only equality modulo a
power of (ζ2 − 1). We can obtain the commutation relation for the modes
of operators by inserting the Taylor expansions and comparing coefficients.
These relations will only hold for t∗p if p ≤ l−m, meaning that we may extend
the support of the operator X[k,m] at most to the interval [k, l] on which k[k,l]

is defined.
In the following section we will use different shifts for α. This is done for

convenience. Since α is a free parameter, we can introduce shifts in order to
shorten the following equations.

From this example we can derive the commutation relations for t∗ with c
and b. The derivation we provide is an additional explanation to the proof
of Corollary (4.2) in [50]. To obtain the relation for c we consider(

k[k,l](qξ, α) + k[k,l](q
−1ξ, α)

)
t∗(ζ, α+ 1)(X[k,m])

− t∗[k,l](ζ, α)
(
k(qξ, α) + k(q−1ξ, α)

)
(X[k,m])

= ∆ξ(qξ)
α+S (f ((qξ)2

))
+ ∆ξ(q

−1ξ)α+S (f ((q−1ξ)2
))

mod (ζ2 − 1)l−m

= (q2ξ)α+S(f(q4ξ2))− (q−2ξ)α+S(f(q−4ξ2)) mod (ζ2 − 1)l−m .

If we now multiply by ψ(ζ/ξ, α + s + 1)/(4πiξ2), integrate and use the
definition of c (2.38), the right-hand side vanishes and we obtain

c[k,l](ξ, α)t∗(ζ, α+ 1)(X[k,m])− t∗[k,l](ζ, α)c(ξ, α)(X[k,m])

= 0 mod (ζ2 − 1)l−m . (2.104)

Because t∗ has spin s(t∗) = 0 and is invariant under spin reversal coupled
with changing α to −α:

J[k,l] ◦ t∗[k,l](ζ,−α) ◦ J[k,l] = t∗[k,l](ζ, α) , (2.105)
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we can obtain the corresponding commutation relation for b by applying φ:

φ (t∗(ζ, α)c(ξ, α)) = q−1N(α− S− 1)Jt∗(ζ,−α)c(ξ,−α)J
= t∗(ζ, α)q−1N(α− S− 1)Jc(ξ,−α)J
= t∗(ζ, α)b(ξ, α) ,

φ (c(ξ, α)t∗(ζ, α+ 1)) = b(ξ, α)t∗(ζ, α− 1) ,

which leads directly to

b[k,l](ξ, α)t∗(ζ, α− 1)(X[k,m])− t∗[k,l](ζ, α)b(ξ, α)(X[k,m])

= 0 mod (ζ2 − 1)l−m . (2.106)

The proofs for most of the commutation relations are extremely compli-
cated and are given in section 4 of [50]. Here we will just provide an overview
for the finite and homogeneous case and give some additional remarks. Let
us first sum up all commutation relations. All operators commute with t∗:

[c(ζ), t∗(ζ ′)] = 0 , [b(ζ), t∗(ζ ′)] = 0 , (2.107a)

[c∗(ζ), t∗(ζ ′)] = 0 , [b∗(ζ), t∗(ζ ′)] = 0 , (2.107b)

[t∗(ζ), t∗(ζ ′)] = 0 . (2.107c)

The remaining operators obey the anticommutation relations

[c(ζ), c(ζ ′)]+ = 0 , [b(ζ),b(ζ ′)]+ = 0 , [c(ζ),b(ζ ′)]+ = 0 , (2.108a)

[c∗(ζ), c∗(ζ ′)]+ = 0 , [b∗(ζ),b∗(ζ ′)]+ = 0 , [c∗(ζ),b∗(ζ ′)]+ = 0 , (2.108b)

[b∗(ζ), c(ζ ′)]+ = 0 , [c∗(ζ),b(ζ ′)]+ = 0 , (2.108c)

[b∗(ζ),b(ζ ′)]+ = −ψ(ζ/ζ ′, α) , [c∗(ζ), c(ζ ′)]+ = −ψ(ζ/ζ ′,−α) . (2.108d)

The commutation relations which are explicitly proven in [50] are

[c(ζ), t∗(ζ ′)] = 0 , [b∗(ζ), t∗(ζ ′)] = 0 ,

[c(ζ), c(ζ ′)]+ = 0 , [c(ζ),b(ζ ′)]+ = 0 ,

[b∗(ζ), c(ζ ′)]+ = 0 , [b∗(ζ),b(ζ ′)]+ = −ψ(ζ/ζ ′, α) .

We will show that the rest of the relations except for (2.107c) and the first two
equations of (2.108b) follow easily from these. But first we want to note that
the commutation relation (2.107c) for the transfer matrix follows directly from
the properties of the universal R matrix, namely the Yang-Baxter equation.
The first two anticommutation relations of (2.108b) between the creation
operators are shown in the separate publication [55].
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The last commutation relation for the annihilation operators can be easily
derived by applying φ to a known relation and multiplying with the factor
N(α− S + 1):

N(α− S + 1)φ
(
[c(ζ), c(ζ ′)]+

)
= [b(ζ),b(ζ ′)]+ .

In much the same way we can show that c∗(ζ) and b(ζ ′) anticommute:

−N(α− S + 1)φ
(
[b∗(ζ), c(ζ ′)]+

)
= [c∗(ζ),b(ζ ′)]+ .

The commutativity of t∗(ζ) with b(ζ ′) has already been shown above and
the commutativity with c∗(ζ ′) can be easily shown, too:

−N(α− S)J[b∗(ζ), t∗(ζ ′)]J = [c∗(ζ), t∗(ζ ′)] .

Finally the only relation left is between c∗(ζ) and c(ζ ′) which we will
quickly derive from the second equation in (2.108d). Consider

b∗(ζ, α)b(ξ, α+ 1) = b∗(ζ, α)φ (c(ξ, α+ 1))

= b∗(ζ, α)q−1N(α− S)Jc(ξ,−α− 1)J
= q−1N(α− S + 1)JJb∗(ζ, α)Jc(ξ,−α− 1)J
= Jq−1N(α+ S + 1)Jb∗(ζ, α)Jc(ξ,−α− 1)J .

Together with N(−x) = −N(x) this leads to

Jb∗(ζ,−α)b(ξ,−α+ 1)J = −q−1N(α− S− 1)Jb∗(ζ,−α)Jc(ξ, α− 1)

= c∗(ζ, α)c(ξ, α− 1) .

In the same way we can get

Jb(ξ,−α)b∗(ζ,−α− 1)J = c(ξ, α)c∗(ζ, α+ 1) .

This shows that we can obtain the second equation in (2.108d) from the first
by changing α→ −α and reversing the spin.
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Chapter 3

Operators on the Infinite Chain

3.1 Inductive Limit

Up to this section we considered operators X[k,l] ∈ M[k,l] acting on a finite
portion of the infinite Heisenberg chain. We constructed several operators
x ∈ EndM[k,l] acting on these X[k,l] as x(X[k,l]) = x[k,l](X[k,l]), meaning that
they are of finite length as well.

Following reference [50] we want to define operators corresponding to the
x acting on the whole Heisenberg chain. For this we will use the reduction
relations discussed in section 2.7. In order to achieve this, we shall first
introduce the so-called quasi-local operators in the following section.

3.1.1 Quasi-Local Operators

We call operators X[k,l] ∈ M[k,l] local operators, because they act as the
identity outside of the interval [k, l]. Let

S(k) =
1

2

k∑
j=−∞

σzj (3.1)

and S be the adjoint action. We now call

X = q2αS(k−1)X[k,l] (3.2)

a quasi-local operator with tail α. As before we say that X has support [k, l]
and length `(X) = l−k+ 1. We could also say that an operator is quasi-local
if there exists k ≤ l such that X acts as qασ

z
j for j < k and as the identity

for j > l. In this case the length of X would be the minimum of l − k + 1.
We denote by Wα the space spanned by all quasi-local operators with tail

α and by Wα,s ⊂ Wα the subspace of operators of spin s.
We already know that the creation and annihilation operators change

the spin and accordingly shift α. It will become clear that this structure
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extends to the operators which act on the infinite chain, giving them the
block structure

b : Wα−1,s+1 →Wα,s , c : Wα+1,s−1 →Wα,s ,

b∗ : Wα+1,s−1 →Wα,s , c∗ : Wα−1,s+1 →Wα,s ,

t∗ : Wα,s →Wα,s .

This means that our quasi-local operators act on the space

W(α) =

∞⊕
s=−∞

Wα−s,s , (3.3)

where we may consider α ∈ C\{0} as a fixed parameter.

3.1.2 Annihilation Operators

We will start with the relatively easy annihilation operators x = c,b. For
these we found the left and right reduction relations (2.85),(2.86). The right
reduction relation allows us to directly extend the support of x indefinitely
to the right:

x[k,∞)(ζ, α− s(x))(X[k,l]) = x[k,l](ζ, α− s(x))(X[k,l]) . (3.4)

Here we use X[k,l] ∈ W(α) but the extension to the right would also be
possible for a local operator X[k,l] ∈M[k,l].

For the extension to the left on the other hand it is important to act on
quasi-local operators. For X[k,l] ∈M[k,l] we find

x(−∞,l](ζ, α− s(x))(q2αS(k−1)X[k,l])

= q2(α−s(x))S(k−1)x[k,l](ζ, α− s(x))(X[k,l]) . (3.5)

Combining these relations allows us to extend the support of an operator
x = c,b to the infinite chain. In other words, we can define the action of an
operator acting on the infinite chain in terms of finite operators.

We now want to define the action of an operator x ∈ EndW(α) on a
quasi-local operator X ∈ W(α). To do this we decompose X into quasi-local
operators X(s) of spin s:

X =
n∑

s=−n
X(s) , S

(
X(s)

)
= sX(s) . (3.6)

Here we use n = `(X). For finite length the spin of an operator is confined
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to −n ≤ s ≤ n. Then we can define

x(ζ)(X) =
n∑

s=−n
x(ζ)

(
X(s)

)
=

n∑
s=−n

x(−∞,∞)(ζ, α− s− s(x))
(
q2(α−s)S(k−1)X

(s)
[k,l]

)
=

n∑
s=−n

q2(α−s−s(x))S(k−1)x[k,l](ζ, α− s− s(x))
(
X

(s)
[k,l]

)
. (3.7)

So, we define the action on an infinite chain in terms of the previously
constructed finite operators.

Note that we write x(ζ) for an operator acting on the infinite chain
and x(ζ, α) for an operator acting on the finite chain. We will continue
to distinguish finite and infinite operators in this way. The reason for this
notation is that for the finite case α is a free variable, whereas in the infinite
case it is a fixed parameter specifying the space W(α) we act upon.

We now want to define the modes for the operators x(ζ). Using the
previously derived expansions for the annihilation operators we obtain

x(ζ)
(
X(s)

)
= q2(α−s−s(x))S(k−1)x(ζ, α− s− s(x))

(
X

(s)
[k,l]

)
= ζαs(x)

n∑
j=0

q2(α−s−s(x))S(k−1)xj(α− s− s(x))

(ζ2 − 1)j

(
X

(s)
[k,l]

)
where again n = `

(
X

(s)
[k,l]

)
. Thus we define

xp

(
X(s)

)
=

{
q2(α−s−s(x))S(k−1)xp(α− s− s(x))

(
X

(s)
[k,l]

)
p = 0, . . . , n

0 p > n

(3.8)
and obtain a Laurent expansion of the operators x(ζ) acting on the infinite
chain:

x(ζ) = ζαs(x)
∞∑
p=0

xp
(ζ2 − 1)p

. (3.9)

From this it follows per definition, that

xp(X) = 0 for p > `(X) , (3.10)

as for the finite case.

3.1.3 Creation Operators

Now we will define the action of the creation operators x = b∗, c∗, t∗ on
the infinite chain. For the creation operators we use the same left reduction
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relation as for the annihilators (2.85). This means that (3.5) is valid for
the creation operators as well. For the right reduction we need to treat the
creation operators differently from the annihilation operators. The reason is
that the creation operators enlarge the support of the operator they are acting
on. As we have seen in section 2.7 each mode xp of a creation operator can
extend the support by p to the right. This means that the creation operators
themselves enlarge the support indefinitely to the right. An expansion to
the right was already given by (2.97) for the modes and by (2.101) for the
operators themselves. Both relations also hold for operators X[k,l] ∈ W(α).
Since it is our goal to define the action of the creation operators on the
infinite chain in terms of finite operators, we write

x[k,∞)(ζ, α− s− s(x))(X[k,l])

= x[k,l+m](ζ, α− s− s(x))(X[k,l]) mod (ζ2 − 1)m . (3.11)

As for the annihilation operators we now want to obtain an expansion for
the creation operators. Let X(s) ∈ Wα−s,s and X

(s)
[k,l] ∈M[k,l], then

x(ζ)
(
X(s)

)
= q2(α−s−s(x))S(k−1)x[k,l+m](ζ, α− s− s(x))

(
X

(s)
[k,l]

)
mod (ζ2 − 1)m

= ζαs(x)
m∑
p=1

(ζ2 − 1)p−1q2(α−s−s(x))S(k−1)xp,[k,l+p](α− s− s(x))
(
X[k,l]

)
mod (ζ2 − 1)m . (3.12)

In the limit m→∞ this gives us an expansion

x(ζ) = ζαs(x)
∞∑
p=1

(ζ2 − 1)p−1x̃p (3.13)

where

x̃p

(
X(s)

)
= q2(α−s−s(x))S(k−1)xp,[k,l+p](α− s− s(x))

(
X

(s)
[k,l]

)
. (3.14)

We will use this expansion only for the bosonic creation operator t∗. The
reason is that the coefficients x̃p of the fermionic operators b∗, c∗ do not
satisfy easy anticommutation relations. For the fermionic operators we will
instead introduce the expansion

x(ζ) = ζαs(x)+2
∞∑
p=1

(ζ2 − 1)p−1xp . (3.15)
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As we will see in the next section the modes xp will satisfy the desired
anticommutation relations. Note that there is a typo in [50] where the
authors wrote −2 instead of +2 in the expansion of c∗.

We calculate the modes xp using

ζ−2 =
∞∑
k=0

(−1)k(ζ2 − 1)k , |ζ2 − 1| < 1 .

Inserting this in (3.13) we get

x(ζ) = ζαs(x)+2
∞∑
p=1

∞∑
k=0

(ζ2 − 1)p+k−1(−1)k x̃p

= ζαs(x)+2
∞∑
m=1

m−1∑
k=0

(ζ2 − 1)m−1(−1)k x̃m−k

= ζαs(x)+2
∞∑
m=1

(ζ2 − 1)m−1
m∑
l=1

(−1)m−l x̃l (3.16)

which gives us the modes

xp =

p∑
k=1

(−1)p−k x̃k (3.17)

for x = b∗, c∗.

3.1.4 Commutation Relations of Modes

In section 2.9 we discussed the various commutation relations and anticom-
mutation relations (2.107), (2.108) which our operators obey. These relations
are also valid for the new operators acting on W(α).

We now want to derive commutation relations for the modes xp ∈
EndW(α) acting on the infinite chain. Most of these relations are very
easy to show. We will provide a quick example for the modes cp. Let
c(ζ) ∈ EndW(α), then

[c(ζ), c(ξ)]+ = (ζξ)α
∞∑

k,l=0

[ck, cl]+
(ζ2 − 1)k(ξ2 − 1)l

= 0 ,

which means that
[ck, cl]+ = 0 , k, l ≥ 0 . (3.18)

The same structure applies to all commutation relations, except for
[b∗(ζ),b(ξ)]+ and [c∗(ζ), c(ξ)]+. These relations are the reason for intro-
ducing the additional factor ζ2 in the expansions of the fermionic creation
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operators. Using the known expansions for x∗ = b∗, c∗ and a corresponding
x = b, c we can write

[x∗(ζ),x(ξ)]+ = (ζ/ξ)αs(x
∗)ζ2

∞∑
p=1
k=0

(ζ2 − 1)p−1

(ξ2 − 1)k
[x∗p,xk]+

= −ψ(ζ/ξ, αs(x∗)) =
1

2

ξ2 + ζ2

ξ2 − ζ2
(ζ/ξ)αs(x

∗) . (3.19)

And with the already known expansion (2.49) we then obtain

∞∑
p=1
k=0

(ζ2 − 1)p−1

(ξ2 − 1)k
[x∗p,xk]+

=

∞∑
p=1

(ζ2 − 1)p−1[x∗p,x0]+ +

∞∑
p=1
k=1

(ζ2 − 1)p−1

(ξ2 − 1)k
[x∗p,xk]+

=
1

2

∞∑
k=0

(−1)k(ζ2 − 1)k +
1

ξ2 − 1

∞∑
k=0

(
ζ2 − 1

ξ2 − 1

)k
. (3.20)

This gives us

[x∗p,x0]+ =
1

2
(−1)p−1 , [x∗p,xk]+ = δp,k , (3.21)

which is consistent with the definition of the modes x0 (2.54), (2.71). At this
point it is also clear that the coefficients x̃∗p = x∗p + x∗p−1 would not satisfy
fermionic anticommutation relations.

With that, the commutation relations of the modes for p, k ≥ 1 are

[t∗p,xk] = 0 , (3.22)

where x = t∗,b∗, c∗,b, c. And

[bp,bk]+ = [bp, ck]+ = [cp, ck]+ = 0 , (3.23a)

[b∗p,b
∗
k]+ = [b∗p, c

∗
k]+ = [c∗p, c

∗
k]+ = 0 , (3.23b)

[b∗p, ck]+ = [c∗p,bk]+ = 0 , (3.23c)

[b∗p,bk]+ = [c∗p, ck]+ = δp,k . (3.23d)

3.2 Fermionic Basis

In this section we will show that the creation operators define a basis of the
space W(α) and how to construct a basis of the space W(α)

[1,n] using modes of
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the creation operators. Following reference [51], the interval [1, n] is chosen,
which can be done because of translational invariance. In [51] it is shown
how to choose elements from the family

(t∗1)pt∗i1 · · · t
∗
irb
∗
j1 · · ·b

∗
jsc
∗
k1 · · · c

∗
kt(q

2αS(0)) , (3.24)

i1 ≥ · · · ≥ ir ≥ 2, j1 > · · · > js ≥ 1, k1 > · · · > kt ≥ 1, p ∈ Z, r, s, t ≥ 0

in such a way that they form a basis of W(α)
[1,n].

3.2.1 Linear Independence

To show that the elements (3.24) form a basis we first need to establish that
they are linearly independent. Without the modes t∗i (i.e. for p = r = 0 in
3.24) this would be clear because they would be created by regular fermions
only. The operators t∗p lack corresponding annihilation operators however,
so we can not assume that they are regular bosons. Because of this, special
care has to be taken when showing that (3.24) are linearly independent. To
address this issue an operator

h∗(ζ) = (t∗1)−1t∗(ζ) =
∞∑
p=0

(ζ2 − 1)ph∗p (3.25)

is introduced, where obviously

h∗p = (t∗1)−1t∗p+1 . (3.26)

Note that τ = t∗1/2 is the shift by one lattice site to the right.
Then lemma 2.1 of [51] shows that the set of elements

(h∗1)m1(h∗2)m2 · · · (q(2αS(0)) , m1,m2, · · · ≥ 0 (3.27)

is linearly independent. In the proof of this lemma it is shown that the
operator h∗(ζ) can be expressed as

h∗(ζ) = (1− z2) exp

( ∞∑
ν=1

zν

ν
(I−ν − Iν)

)
(3.28)

where

z =
1− ζ2

1 + ζ2
(3.29)

and with bosonic operators Iν that satisfy

[Iµ, Iν ] = 2µδµ+ν,0 , (3.30)

Iν(q2αS(0)) = 0 for ν > 0 . (3.31)
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We feel that the last step in the proof, i.e. concluding linear independence
from (3.28), needs further explanation.

First we show that the modes of lnh∗(ζ) are linearly independent. Using
the Taylor expansion of the logarithm we write

lnh∗(ζ) =

∞∑
ν=1

zν

ν

(
I−ν − Iν − (1− (−1)ν−1)

)
=:

∞∑
ν=1

zν

ν
Iν (3.32)

Since the Iν are linearly independent, the operators Iν have to be independent
as well. We now write lnh∗(ζ) as an expansion in ζ2 around ζ2 = 1. Using

1

1 + ζ2
=

∞∑
k=0

(1− ζ2)k

2k+1

we get

lnh∗(ζ) =
∞∑
ν=1

[ ∞∑
k=1

(−1)k

2k
(ζ2 − 1)k

]ν
Iν
ν

=:
∞∑
ν=1

(ζ2 − 1)νη∗ν . (3.33)

It follows that
η∗p = O(Ip) , (3.34)

where the order O(Ip) means that Ip is the operator with the highest index.
Because of this trigonal shape the coefficients η∗p of lnh∗(ζ) are linearly
independent.

From this we can conclude that the coefficients of h∗(ζ) are independent
as well. To do this we give an alternative form of the expansion of lnh∗(ζ)
using (3.25). Knowing that h∗0 = 1, we can write

lnh∗(ζ) = −
∞∑
ν=1

1

ν

− ∞∑
p=1

(ζ2 − 1)ph∗p

ν . (3.35)

Again, we can observe a trigonal shape:

η∗p = O(h∗p) . (3.36)

Since no diagonal element is equal to zero, this is invertible:

h∗p = O(η∗p) . (3.37)

From this it follows that the coefficients of h∗(ζ) are linearly independent,
meaning that the elements (3.27) are independent.

Since the t∗p commute with all other operators (3.22), it is clear that the
elements (3.24) are linearly independent as mentioned above.
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3.2.2 Support Property

The support of the elements (3.24) themselves is unknown in general. In
order to construct a basis of W(α)

[1,n], elements have to be chosen which are
supported on the interval [1, n]. To achieve this, a family of operators BJ is
introduced, indexed by J ⊂ [1, n]. Writing l = |J | they are defined by

BJ =
∑
I,K

CIJ,Kb
∗
n · · ·

i1
c∗k1 · · ·

il
c∗kl · · ·b

∗
1(q2αS(0)) . (3.38)

The sum is taken over all subsets I,K ⊂ [1, n] with I = {i1, . . . , il} and
K = {k1, . . . , kl}. The operators c∗kp are placed at the ip-th slot counting
from the right, replacing the corresponding operator b∗ip . It is then shown in
section 3.1 of [51] that the support of these operators is contained in [1, n]
for a suitable choice of the coefficients CIJ,K .

For this proof the aforementioned “barred” operators c̄(ζ), b̄(ζ), c̄∗(ζ),
b̄∗(ζ) are used. Since they appear only in this chapter, we will not discuss
them at length. The crucial point in the context of this proof is their
support property. The annihilation operators do not change the support,
whereas the creation operators enlarge the support essentially to the left. For
X ∈ (W(α))[k,l] we have

supp x̄∗p(X) ⊂ [k − p+ 1, l + 1] , (x̄∗ = b̄∗, c̄∗) . (3.39)

The coefficients CIJ,K are now chosen in such a way that

BJ =
∑
I,K

CIJ,K b̄
∗
n · · ·

i1
c̄∗k1 · · ·

il
c̄∗kl · · · b̄

∗
1(q2αS(0)) . (3.40)

If this is true, obviously we have

supp BJ ⊂ [1,∞) ∩ (−∞, n] = [1, n] . (3.41)

The above statement is true, if the CIJ,K obey the equation

∆(x)∆(y)∆(z)∏l
i,j=1(1− xiyi)(1− xizi)

=
∑

Ci1,...,ilj1,...,jl;k1,...,kl

l∏
p=1

(x
ip−1
p y

jp−1
p z

kp−1
p ) .

(3.42)
Here x = (x1, . . . , xl), y = (y1, . . . , yl), z = (z1, . . . , zl) and ∆(x) =∏

1≤i<j≤l(xi − xj). The sum is taken over all positive integers ip, jp, kp
(p = 1, . . . , l). Decreasing series (i1 > · · · > il, etc.) are identified with
subsets I = {i1, . . . , il} ⊂ [1, n], etc. It can then be shown that the coefficients
CIJ,K coincide with the Littlewood-Richardson coefficients cλµ,ν (see [56]). The
exact correspondence is

CIJ,K = c
λ(I)
λ(J),λ(K) (3.43)
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with λ(I) = (λ1, . . . , λl) = (i1 − l, . . . , il − 1).
Now we can show the linear independence of the BJ , using the fact

that cλµ,∅ = δλ,µ. Using the mapping above, it is clear that λ(K) = ∅ for
K = {l, . . . , 1}. Then we get

BJ = ±b∗J̄c
∗
{1,...,l}(q

2αS(0)) + . . . (3.44)

where no term in “. . . ” contains the group c∗{1,...,l} and J̄ is the complement
of J with respect to [1, n]. From this it follows directly, that the BJ have to
be linearly independent.

3.2.3 Littlewood-Richardson Rule

The explicit form of the elements BJ is later needed to construct the fermionic
basis. To be able to calculate this form, one has to calculate the Littlewood-
Richardson coefficients cλµ,ν . We did this by using the Littlewood-Richardson
rule as explained in [56]. Here we want to give just a brief overview of the
necessary definitions to be able to formulate the Littlewood-Richardson rule.

Let us first define a partition to be a sequence

λ = (λ1, λ2, . . . ) (3.45)

of non-negative integers in decreasing order (λ1 ≤ λ2 ≤ . . . ). The length of
λ, denoted by `(λ) is the number of its non-zero entries. The weight of λ is
the sum of its parts: |λ| = λ1 + λ2 + . . . .

The diagram of a partition λ is the set of points (i, j) ∈ Z2 such that 1 ≤
j ≤ λi. Normally the points are represented as squares. For drawing diagrams,
we use the same convention as for matrices, where the first coordinate i is
the row index and the second coordinate j is the column index. For example
the diagram of the partition λ = (433) would be

The conjugate of the partition λ is the partition λ′ whose diagram is
the transpose of the diagram of λ. For the example above, we would have
λ′ = (3331).

For two partitions λ, µ we write λ ⊃ µ if the diagram of λ contains the
diagram of µ, i.e. λi ≥ µi for all i ≥ 1. Then the difference θ = λ − µ is
called a skew diagram. For example, if λ = (433) and µ = (321), the skew
diagram λ− µ is the shaded region in
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A skew diagram θ is called a horizontal strip if it has at most one square in
each column, i.e. θ′i ≤ 1.

A tableau T is then a sequence of partitions

λ = λ(r) ⊃ · · · ⊃ λ(1) ⊃ λ(0) = µ (3.46)

such that each skew diagram θ(i) = λ(i) − λ(i−1) for 1 ≤ i ≤ r is a horizontal
strip. Graphically this is represented by numbering each square of the
skew diagram θ(i) with the number i. For example say that λ(2) = (433),
λ(1) = (332) and λ(0) = (321). Then T would be

2
1

1 2

It is then clear, that the numbers must increase strictly down each column
and weakly from left to right along a row. The skew diagram λ− µ is called
the shape of T and the sequence (|θ(1)|, . . . , |θ(r)|) is called the weight of T .

Lastly, the word of a tableau T is the sequence w(T ) derived by reading
the numbers in T from right to left and top to bottom. In our example
this is w(T ) = (2121). A word w = a1 . . . aN in the symbols 1, . . . , n is
called a lattice permutation if for 1 ≤ r ≤ N and 1 ≤ i < n, the number
of occurrences of the symbol i in a1 . . . ar is not less than the number of
occurrences of i+ 1.

We can now formulate the Littlewood-Richardson rule:
Let λ, µ, ν be partitions. Then cλµ,ν is equal to the number of tableaux T of
shape λ− µ and weight ν such that w(T ) is a lattice permutation.

3.2.4 Basis of (W(α))[1,n]

With the BJ we now have a set of operators whose support is contained in
[1, n]. To construct a basis we apply annihilation operators on the BJ . Since
the annihilation operators preserve the support, the resulting operators will
also be contained in [1, n]. For a subset I = {i1, . . . , il} ⊂ [1, n] (i1 > · · · > il)
we write

xI = xi1 · · ·xil . (3.47)

In section 3.2 of [51] it is then proven, that the elements

b̄McN (BJ) (J ⊂ [1, n], M ⊂ [1, n− |J |], N ⊂ [1, |J |]) (3.48)

form a basis of (W(α))[1,n]. Since there is a total of 4n possible choices for
J,M,N and the support of these elements is contained in [1, n], it only
remains to show, that they are linearly independent. To prove this, we need
the anticommutation relations

[b∗p, b̄p′ ]+ = −t∗p−p′+1 , [b̄p, cp′ ]+ = 0 (3.49)
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which are proven in [50].
Since not every detail of the proof of theorem 3.3 in [51] may be obvious

to the reader, we will provide some additional details and a slight variation
to the original proof. The authors start with a combination∑

M,N,J

AM,N,J b̄McN (BJ) = 0 (3.50)

where the sum is taken over J ⊂ [1, n], M ⊂ [1, n − l], N ⊂ [1, l], l = |J |.
Since every term contains n − l number of b∗ and t∗, this sum has to be
separately zero for each l. Now chooseM0 ⊂ [1, n−l], N0 ⊂ [1, l] and multiply
by b̄[1,n−l]\M0

c[1,l]\N0
. After applying this factor, the only terms remaining

in (3.50) will be the ones for which M ⊂M0 and N ⊂ N0. Every other term
will contain a squared annihilation operator. It can then be shown recursively
that all coefficients AM,N,J have to be zero.

Starting with M0 = N0 = ∅, we obtain∑
|J |=l

A∅,∅,J b̄[1,n−l]c[1,l](BJ) = 0 . (3.51)

We know from (3.44) that BJ contains only one term with the group c∗[1,l],
which is the only term that does not vanish. Using this, we obtain∑

|J |=l

(±)JA∅,∅,J b̄[1,n−l]b
∗
J̄(q2αS(0)) = 0 (3.52)

where (±)J signifies some sign which depends on J . This can then be
represented using a determinant and J̄ = {j′1, . . . , j′n−l} as∑

|J |=l

(±)JA∅,∅,J det
(
t∗j′a−b+1

)
1≤a,b≤n−l

(q2αS(0))

= (t∗1)n−l
∑
|J |=l

(±)JA∅,∅,J det
(
h∗j′a−b

)
1≤a,b≤n−l

(q2αS(0))

= 0 . (3.53)

The last step is true because t∗1/2 is a shift by one place to the right and
therefore invertible. Since it was already proven that monomials in h∗p are
linearly independent, we know from the theory of symmetric functions that
the polynomials induced by the determinants must be independent as well.
From this it follows that

A∅,∅,J = 0 for J ⊂ [1, n] . (3.54)

Using the same construction one can now recursively show that all other
coefficients have to be zero as well. If we choose M0 = ∅ and N0 = {n1} we
can show that A∅,{n1},J = 0 by using the now known coefficients A∅,∅,J .

It then follows that all AM,N,J have to be zero. Thus the elements from
(3.48) have to be linearly independent and form a basis of (W(α))[1,n].
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Chapter 4

Expectation Values

In this chapter we will explain how to calculate correlation functions for the
XXZ model. This will be achieved using two different techniques: on the
one hand we will use a theorem [52] by Jimbo, Miwa and Smirnov and on
the other hand we will use the exponential form of the density matrix as
explained in [53].

4.1 JMS Theorem

The JMS theorem proven in [52] explains how to calculate the expectation
value of an operator constructed by applying a set of creation operators on
the vacuum:

t∗(ζ0
1 ) · · · t∗(ζ0

k)b∗(ζ+
1 ) · · ·b∗(ζ+

l )c∗(ζ−l ) · · · c∗(ζ−1 )(q2αS(0)) .

Using this theorem, we will show how to calculate expectation values
of operators, constructed by modes of creation operators instead of their
generating functions. This is done in order to easily calculate expectation
values of the elements of the fermionic basis. It is then possible to cover
arbitrary operators by expressing them in terms of the fermionic basis.

Before we can use the theorem, we need to explain how an expectation
value is defined in the context of [52]. In [49, 50] the authors considered
vacuum expectation values of local operators O:

〈q2αS(0)O〉 =
〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉

. (4.1)

This is only a formal expression, because the ground state |vac〉 is not defined
on an infinite chain. Zero-temperature expectation values for the infinite
chain are defined in a proper manner in [47] for the XXX model and in [48]
for the XXZ model. In these works the reduced density matrix is obtained as
a solution of the reduced quantum Knizhnik-Zamolodchikov equation. This
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was later generalized by Boos, Göhmann, Klümper and Suzuki in [57] to the
case of a finite temperature and non-zero magnetic field:

〈q2αS(0)O〉T,h = tr1,...,n

(
Dn(T, h)q2αS(0)O

)
(4.2)

where Dn(T, h) is the reduced density matrix for an interval of length n on
an infinite chain. The authors use a multiple integral representation of the
density matrix to derive a representation in terms of exponentials of fermionic
annihilation operators. Interestingly, this means that the fermionic structure
is not a special property of vacuum expectation values but is instead more
deeply tied to the model.

In [52] a generalization to the thermal expectation value is introduced.
The authors define a Matsubara space (named Trotter space by other authors)

HM = C2s1+1 ⊗ · · · ⊗ C2sn+1 , (4.3)

where sm is an arbitrary spin and an inhomogeneity τm is attached to each
component. Then the expectation value is

Zκ
{
q2αS(0)O

}
= lim

l→∞

trM tr[−l+1,l]

(
T[−l+1,l],M q2κS[−l+1,l]+2αS[−l+1,0]O

)
trM tr[−l+1,l]

(
T[−l+1,l],M q2κS[−l+1,l]+2αS[−l+1,0]

) ,

(4.4)
where trM is the trace over HM . In the context of [52] a missing argument
implies it to be one, e.g. T[−l+1,l],M = T[−l+1,l],M (1). This definition is then
simplified to be

Zκ
{
q2αS(k−1)X[k,m]

}
= ρ(1)k−1 〈κ+ α| tr[k,m](T[k,m],Mq

2κS[k,m]X[k,m])|κ〉
Λ(1, κ)m−k+1〈κ+ α|κ〉

(4.5)
where |κ〉 is an eigenvector of the vertical transfer matrix TM (1, κ) and 〈κ+α|
an eigenvector of TM (1, κ + α). Λ(1, κ) is then the eigenvalue of TM (1, κ)
corresponding to |κ〉. These vectors have to satisfy the condition

〈κ+ α|κ〉 6= 0 . (4.6)

The function ρ is defined as the ratio of the two eigenvalues corresponding to
the vectors chosen:

ρ(ζ) =
Λ(ζ, κ+ α)

Λ(ζ, κ)
. (4.7)

The fact that apparently two expressions are used for the generalized
expectation value may be a source of confusion. In [52] the authors start
with the expression (4.4) and then show that it simplifies to (4.5) if 〈κ+ α|
and |κ〉 are eigenvectors corresponding to the eigenvalues of largest modulus.
But then the expression (4.5) is used as the definition of the generalized
expectation value for arbitrary eigenvectors of the vertical transfer matrix
which only have to obey (4.6).
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It is then possible to calculate expectation values for different density
matrices by choosing appropriate values for sm and τm. This is demonstrated
in [58]. Since the two examples given in this paper are the ones most relevant
to us, we shall shortly explain them.

One example for such a choice is the case of zero temperature and finite
length. This can be obtained by choosing sm = 1

2 and τm = 1 form = 1, . . . , n
where n will be the length of the resulting system. Note that in [58] another
choice for τm is made, in order to obtain simpler integration paths for the
auxiliary functions. To make such a choice one has to change the definition
(4.4) where the spectral parameter is set to ζ = 1. The important point
is to choose the spectral parameter and the inhomogeneities so that the
R matrices become permutation operators, R12(0) = P12. It is easy to
understand graphically, what happens for the above-mentioned choice of
parameters. The numerator in (4.5) is represented graphically as

k

· · ·
m

X

× × ×
1

...

n
κ
+
α

κ

If we choose n = `(X[k,m]) = m− k + 1 and τm = 1 this becomes

k

· · ·
m

X

× × ×
1

...

n
κ
+
α

κ

=

κ

k · · · m

X

× × ×

κ+ α

Now it is clear that the functional Zκ becomes a matrix element for the two
states 〈κ+α| and |κ〉 on a chain of length n. These two states can be chosen
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freely, as long as they satisfy the condition (4.6). The choice of these states
will then fix the functions ρ and ω.

The second example given in [58] is that of thermal expectation values
for an infinite chain. These can be obtained by setting β2j−1 = η − β

N and
β2j = β

N for j = 1, . . . , N/2. Here the βm are the additive inhomogeneities
corresponding to the τm: τm = eβm . The crossing symmetry and unitarity of
the R matrix then yields the desired expectation values.

In [52] a set of relations regarding the generalized expectation values is
derived:

Zκ {t∗(ζ)(X)} = 2ρ(ζ)Zκ{X} , (4.8)

Zκ {b∗(ζ)(X)} =
1

2πi

∮
Γ

dξ2

ξ2
ω(ζ, ξ)Zκ{c(ξ)(X)} , (4.9)

Zκ {c∗(ζ)(X)} = − 1

2πi

∮
Γ

dξ2

ξ2
ω(ζ, ξ)Zκ{b(ξ)(X)} . (4.10)

The paper considers the homogeneous case, therefore Γ encircles ξ2 = 1.
From these relations follow the definitions for the functions ρ and ω :

ρ(ζ) =
1

2
Zκ
{
t∗(ζ)(q2αS(0))

}
, (4.11)

ω(ζ, ξ) = Zκ
{
b∗(ζ)c∗(ξ)(q2αS(0))

}
. (4.12)

The main result of the paper also follows directly from these relations:

Zκ
{
t∗(ζ0

1 ) · · · t∗(ζ0
k)b∗(ζ+

1 ) · · ·b∗(ζ+
l )c∗(ζ−l ) · · · c∗(ζ−1 )(q2αS(0))

}
=

k∏
p=1

2ρ(ζ0
p )× det

(
ω(ζ+

i , ζ
−
j )
)
i,j=1,...,l

. (4.13)

The choice of the parameters sm and τm is completely absorbed in the two
functions ρ(ζ) and ω(ζ, ξ). We can now use (4.13) to compute expectation
values for elements of the fermionic basis in terms of the two functions ρ(ζ)
and ω(ζ, ξ). To obtain the according thermal expectation value (4.2) we then
need to choose two appropriate functions which are derived in [58].

Before we consider the correct choice of functions, we will derive an
expression for the generalized expectation values when using the modes of
the fermionic creation operators. On the left-hand side we insert the Taylor
expansions for the creation operators and on the right-hand side we can do
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an expansion in all parameters. By comparison of coefficients we then obtain

Zκ
{
t∗p1 · · · t

∗
pk
b∗r1 · · ·b

∗
rl
c∗s1 · · · c

∗
sl

(q2αS(0))
}

=

2k
k∏
i=1

∂pi−1
(ζ0i )2

(pi − 1)!
ρ(ζ0

i )|(ζ0i )2=1

 l∏
i=1

∂ri−1

(ζ+i )2

(ri − 1)!

∂si−1

(ζ−i )2

(si − 1)!

(
ζ−i
ζ+
i

)α
(ζ+
i ζ
−
i )−2


det
(
ω(ζ+

i , ζ
−
j )
)
i,j=1,...,l

∣∣∣∣
(ζ+i )2=(ζ−i )2=1

. (4.14)

Note that the functions ρ and ω are defined differently in various works. Up
until now we used the definitions given in [52]. Let us first consider the
function ρ(ζ). In [58] it is defined in the same way as in [52]. In [53] however
a slightly different function is used, namely the function ρ̃(λ) which depends
on the additive spectral parameter λ = ln ζ. The function ρ(ζ) itself will
not enter the end result. Instead, a function ϕ(λ, α) will be used which is
introduced in [57]. The relation between ρ and ϕ can be seen using the
formula

ϕ(λ, 0) = −2T
∂

∂h
ln Λ(λ) (4.15)

from [57] (note that there is a mistake in this paper, as the factor −2 is
missing), where Λ(λ) is the largest eigenvalue of the quantum transfer matrix.
From this it follows that ϕ is related to the magnetization through

ϕ(0, 0) = −2m(T, h) . (4.16)

With the definition of ρ,

ρ(ζ) =
Λ(ζ, α+ κ)

Λ(ζ, κ)
(4.17)

from [52] (where the eigenvalues are named T ) and the relation

κ =
h

2ηT
(4.18)

from [58] we obtain

∂αρ(ζ, α)|α=0 = ∂κ ln Λ(ζ, κ) = 2ηT∂h ln Λ(ζ, κ) . (4.19)

It follows that
∂αρ(ζ, α)|α=0 = −ηϕ(λ, 0) . (4.20)

Note that this is not consistent with [58], where the sign of α was changed.
This can be seen by comparing equation (12) in [57] to equation (32) in [58].
This is consistent with

ρ(1) = 1 + 2ηαm(T, h) +O(α2) (4.21)
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from [58].
Let us now discuss the function ω. The function used up until now is

defined in [52]. In [53,57] another function is used, which is also called ω in
these papers. We will denote it by ˜̃ω. It is shown in [58] that ˜̃ω(µ1, µ2;α) =
−ω(ζ1, ζ2;α) + ω0(ζ1/ζ2;α) in the limit α → 0, for a certain function ω0

introduced in [50]. Since existing programs calculate the function ω̃(µ1, µ2) =
eα(µ2−µ1) ˜̃ω(µ1, µ2), we will express the expectation values in terms of this
function. It is important to note that ζ−αω0(ζ, α) = O(α2), which allows us
to just replace ω by ω̃ in the limit α→ 0, since (ζ1/ζ2)−αω(ζ1, ζ2;α) = O(α).
The reason for introducing ω0 at all is that it is used in [50] to calculate
vacuum expectation values for the fermionic basis. In this work however, it
is not important. We can then write

Zκ
{
t∗p1 · · · t

∗
pk
b∗r1 · · ·b

∗
rl
c∗s1 · · · c

∗
sl

(q2αS(0))
}

=
α→0

2k
k∏
i=1

∂pi−1
ζ2i

ρ(ln ζi)

(pi − 1)!

∣∣∣∣∣∣
ζ2i =1

× (−1)l det

 ∂ri−1

(ζ+i )2

(ri − 1)!

∂
sj−1

(ζ−j )2

(sj − 1)!

ω̃(ln ζ+
i , ln ζ

−
j )

(ζ+
i ζ
−
j )2

∣∣∣∣∣∣∣
(ζ+i )2=(ζ−i )2=1


i,j=1,...,l

.

(4.22)

To calculate multiple derivatives on the computer we then derived the formula

∂nζ2
f(ln ζ)

ζ2m
=

∞∑
k=0

Bm(n, k)
f (k)(ln ζ)

ζ2(n+m)
, (4.23a)

where

Bm(0, 0) = 1 , (4.23b)
Bm(n, k) = 0 if k < 0 or k > n , (4.23c)

Bm(n, k) =
1

2
Bm(n− 1, k − 1)− (n+m− 1)Bm(n− 1, k) else. (4.23d)

Using this it will become easy to compare to the results of [53] where correla-
tion functions are given in terms of derivatives of ω̃.

4.2 Exponential Form of the Density Matrix

We now want to calculate correlation functions using the exponential form of
the density matrix as in [53]. In [57] the following formula for the thermal
average D∗T,h is given

D∗T,h(O) = . . .
1

2
tr1

1

2
tr2

1

2
tr3 . . .

(
eΩ1+Ω2(O)

)
(4.24)
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where

Ω1 = lim
α→0

∫
Γ

dζ2
1

2πiζ2
1

∫
Γ

dζ2
2

2πiζ2
2

˜̃ω(µ1, µ2;α)b(ζ1, α)c(ζ2, α− 1) , (4.25a)

Ω2 = − lim
α→0

∫
Γ

dζ2
1

2πi
ϕ(µ1;α)h(ζ1, α) . (4.25b)

Here Γ is a closed contour around the inhomogeneities ξ2
j which excludes

all other poles of the integrands and µj = ln ζj . In the homogeneous case Γ
encircles only ζ2 = 1.

Note that there is an error in [53], as the operator Ω1 should not have
the factor −1 occurring there. This is likely a mistake arising from the usage
of different conventions. [53] uses the conventions of [50] itself, but builds
on [57], which uses the conventions of [49]. During this conversion a factor
−1 arises from the product b(ζ, α)c(ξ, α− 1).

The operator h(ζ, α) is introduced in [57] in order to accommodate for
a magnetic field. More precisely, this operator is needed when calculating
the expectation value of an operator uneven under spin reversal in the case
of a non-vanishing external field. It is thus clear, that h(ζ, α) is needed to
define the complete density matrix of the system. We on the other hand
restrict ourselves to expectation values of specific operators and can calculate
quantities like 〈σz1σzn〉 without h. In the case of uneven operators or operators
without a symmetry (like the emptiness formation probability P (n)) we only
consider the case of a vanishing external field, so we do not need to calculate
h. The reason that h is not needed in the case of a vanishing field is that
the eigenvalue Λ(ζ, κ) is even in κ. Then ϕ(λ) has to be zero for κ = h = 0,
which means that Ω2 has to be zero as well. For an operator which is even
under spin reversal, i.e. J(X) = X, it follows that 〈X〉T,h = 〈X〉T,−h. Using
that ω is an even function in h and ϕ is an uneven function in h, it follows
that any term in 〈X〉T,h containing a ϕ has to vanish. Thus Ω2 is unneeded
in this case as well.

Finally, the reason that the exponential form of the density matrix can be
computed efficiently is that the operators Ω1 and Ω2 are nilpotent as stated
in [53]. We have

Ω
bn/2c+1
1 = 0 and Ω2

2 = 0 (4.26)
where n is the length of the chain segment. The reason for this is the fermionic
nature of the operators b(ζ, α) and c(ζ, α).

Using the known expansions of the fermionic operators we can express Ω1

in terms of the modes bi, cj in the homogeneous case:

Ω1 = lim
α→0

n∑
i,j=1

ω̃(i−1,j−1)(α)

(i− 1)!(j − 1)!
bi(α)cj(α− 1) (4.27)

where
ω̃(i,j)(α) = ∂iζ21

∂j
ζ22

ω̃(ln ζ1, ln ζ2, α)

ζ2
1ζ

2
2

. (4.28)
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To compute the derivatives, we will use (4.23) as before for an easy comparison.
Once Ω1 is calculated we can compute expectation values using

D∗T,h(O) = . . .
1

2
tr1

1

2
tr2

1

2
tr3 · · ·

bn/2c∑
j=0

Ωj
1(O)

j!
. (4.29)
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Chapter 5

Construction on the Computer

In this chapter we want to explain how we constructed the fermionic operators
on a computer. Once the operators are constructed, we will use them to
explicitly compute short-range correlation functions using both techniques
discussed in the last chapter.

We will emphasize some problems inherent to the construction and will
explain which tests we performed to assure that the results are correct.

5.1 Form

For our computation we used two computer algebra systems, namely Mathe-
matica and Form. We assume that the reader has a basic familiarity with
Mathematica. In this section we will briefly introduce Form.

According to their website [59] “FORM is a Symbolic Manipulation
System. Its original author is Jos Vermaseren of Nikhef, the Dutch institute
for subatomic physics which is part of the Dutch physics granting agency
FOM.”

The website contains a documentation and some features are explained
in [60].

Compared to Mathematica, FORM is a rather “primitive” language, which
will become clear later. This has two advantages for our application. First,
FORM is much more efficient than Mathematica when manipulating algebraic
expressions like those we will encounter. Efficiency means that it is not only
faster but also needs much less memory, which is even more important to us
than speed. One of the main reasons for this larger efficiency is that FORM
stores expressions serially whereas Mathematica uses more complex trees.
This also means that FORM is not able to perform complex manipulations like
Mathematica. Secondly, some expressions are actually easier to manipulate
in FORM than they are in Mathematica. A good example will be the
construction of the operator k(ζ, α). To construct this operator explicitly, we
will need to handle expressions containing elements of the q-oscillator algebra,
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which do not commute. While it is possible to manage non-commuting
objects in Mathematica, in FORM such objects are “natural” and thus easier
to implement.

In this work we will not go into detail about the language itself. Instead
we will provide just a quick and simplified overview of the structure of a
typical FORM program. A FORM program consists of a series of modules,
which can be viewed as smaller programs which are executed sequentially and
share some variables. The basic objects on which a FORM program works are
expressions. Each expression is a sum of terms which are stored sequentially
in memory. Expressions are defined at the start of a module. After the
expressions are defined it is specified how they should be manipulated in
the form of executable statements. There are several ways to end a module,
but we will restrict ourselves to the “.sort” instruction here. It is the most
general end-of-module instruction, telling FORM to execute all expressions
and prepare them for the next module. Execution of an expression means
that the executable statements of the module are applied to the expression
term by term. Since each operation is applied to a single term at a time,
it is impossible to do substitutions like a + b → c since this would be an
operation on two terms. To do this, one would need to use a replacement
rule like a → c − b. After the execution, the resulting terms are brought
into a standard form. It is only at this point that trivial simplifications like
a+ b− a→ b are done. The reason is simply that for such a simplification
it might be necessary to consider more than one term. This makes the
placement of end-of-module instructions a delicate matter. Too many .sort
instructions will cause a slowdown due to overhead from too much sorting.
Not enough .sort instructions will cause terms to be processed which would
otherwise cancel out. The proper placement of .sort instructions is often an
art by itself. After all expressions are sorted, they are typically inherited by
the next module which then continues to process them.

The above can be illustrated by providing a small example for a simple
FORM program:

1 Symbols a, b, c;
2
3 Local A = (a + b)^3;
4 print;
5 .sort
6
7 id a = c - b;
8 print;
9 .end

• Line 1 tells FORM that a, b and c are simple symbols. A symbol is
Forms most basic datatype and generally commutes with everything.
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There are other datatypes like “Functions” which do not commute
among themselves.

• Line 3 defines a local expression labeled “A”. For this example, the
distinction between local and global expressions is of no consequence.
The expression A will behave as explained above.

• Line 4 lets FORM know that it should print the values of all expressions
at the end of the module. The printing generally occurs after sorting
the expressions.

• Line 5 marks the end of the current module. Since there was no
statement to manipulate A in the module, FORM will just bring A
into standard form. This implies working out the brackets.

• Line 7 is an executable statement which does the replacement a→ c−b.
It is also the first line of the second module. We do not need to define
an expression in this module, since it inherits A from the previous one.

• Line 8 again tells FORM to print out all expressions after sorting.

• Line 9 ends the program. Of course, this ends the current module too,
meaning that printing will occur before the program is terminated.

The output of our example program will be

Symbols a, b, c;

Local A = (a + b)^3;
print;
.sort

Time = 0.00 sec Generated terms = 4
A Terms in output = 4

Bytes used = 140

A =
b^3 + 3*a*b^2 + 3*a^2*b + a^3;

id a = c - b;
print;
.end

Time = 0.00 sec Generated terms = 10
A Terms in output = 1
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Bytes used = 36

A =
c^3;

As one can see, FORM prints out runtime statistics after each module.
The expression A is printed after sorting. Internally it is stored as a sequence
of 4 terms. The replacement in the second module is then applied to each
single term. This causes FORM to generate additional terms which can
be seen in the second printout of statistics. During the execution of the
replacement the expression A grows to 10 terms which then cancel out during
sorting, resulting in a single term in the output.

Before using FORM to construct the fermionic operators it should be
noted that FORM can be unstable. Even though FORM is being developed
since 1984, it should still be viewed as a work in progress. While using
FORM several errors presented themselves in various versions of the program.
At the time of this writing (2018/04/05) there are about 60 known errors
listed in the official issue tracker at github [61]. At the same time new
features are added constantly to the system. Even while using stable releases
some errors occurred which could be avoided by using newer commits from
github. As a first precaution it seems to be a good strategy to clone the
github repository and compile FORM on the machine on which it will be
executed. After compilation the automated test suite should be run to test
the resulting binaries. Since errors may occur even when using the presented
strategy all results should be checked vigorously. Luckily in our case there
are plenty of relations which can be tested for every single object constructed.
Additionally, the operators build on each other, so testing against known
results for correlation functions can be viewed as test for every operator
constructed. While working on the construction of the operators another
fact presented itself which may boost confidence in our results. Non-trivial
relations like reduction and commutativity depend on the correctness of the
involved operators in a very sensitive manner. Most of the time even small
errors in a program lead to objects which obey none of the checked relations.
So, if the operators constructed obey all checked relations they are almost
definitely correct.

Lastly, we shall specify the setup that was used for this work. Since
FORM relies on many different libraries, it is impractical to document all of
them. Instead we will focus on the most important parts. The final version of
FORM which was used is compiled from the commit 5721ce5 “[test] Detect
another syscall Valgrind error” using gcc 7.3.1. The optional libraries gmp
(6.1.2) and zlib (1.2.11) were used.
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5.2 Construction of t∗[1,n](ζ, α)

The operator t∗[1,n](ζ, α) is the most easy to construct on the computer. This
applies to the implementation as well as the required computational work.
The program is simply an implementation of formula (2.14).

We will compute the action of t∗[1,n](ζ, α) on the elements of the canonical

basis constructed with the e β
jα. The program constructs the “innermost” part

qασ
z
aX[1,n] for each element X[1,n] and then applies the La,j(ζ) one at a time.

A sorting occurs after each multiplication. After applying the L matrices, we
account for the trace by discarding every term containing a σ+

a or σ−a .
When t∗[1,n](ζ, α) is known, the expansion coefficients are obtained by

simply calculating

t̃∗j+1(ζ, α)X[1,n] :=

t∗(ζ, α)−
j∑

p=1

t∗p(α)(ζ2 − 1)p−1

X[1,n] (ζ2 − 1)−j

(5.1)
and using t∗p(α) = t̃∗p(1, α).

The operator t∗[1,n](ζ, α) is a good starting point because of its simplicity
and the fact that it commutes with virtually every other operator. This
provides us with an easy test for the construction of the other operators.

5.2.1 Testing t∗[1,n](ζ, α)

Before continuing with the other operators, we will test some basic properties
of t∗[1,n](ζ, α) in order to detect possible errors in our program. Since testing
does not require much computational work this can be easily done in Mathe-
matica. First, we will plot the operator, colouring every element of the matrix
which is not equal to zero. The below example shows t∗[1,n](ζ, α) for n = 2, 3, 4
from left to right. Before plotting, the basis was sorted according to spin.
The operators show the expected block structure, since s

(
t∗[1,n](ζ, α)

)
= 0.

Next, we will test its reduction relations and commutation with itself.
We start by testing the left reduction relation. Since t∗ enlarges the support
to the right this is very easy to test. An operator X ∈ M[1,n−1] of length
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`(X) = n− 1 is constructed. On the computer this is represented by a simple
list of 4n−1 unique symbols. Then

t∗[1,n](ζ, α)(qασ
z ⊗X) = qασ

z ⊗ t∗[1,n−1](ζ, α)(X) (5.2)

is tested. This is repeated for the modes t∗p,[1,n](α) for p = 1, . . . , n− 1.
For the right reduction relation, we will constrict ourselves to the modes

t∗p,[1,n](α). The reason is that the modes are easier to test, because the
enlargement of the support is controllable. Additionally, the modes are the
objects of interest and not the operator t∗[1,n](ζ, α) itself. For an operator
X ∈M[1,n−1] of length `(X) = n− p− 1 the equation

t∗p,[1,n](α)(X ⊗ id) = t∗p,[1,n−1](α)(X)⊗ id (5.3)

is tested, where id ∈M is the identity. This is done for p = 1, . . . , n− 1.
The last test to check whether t∗[1,n](ζ, α) and its modes were constructed

correctly are the commutation relations. All modes of the transfer matrix
should commute with each other. For a given interval length n the commuta-
tivity of t∗p,[1,n](α) and t∗m,[1,n](α) was tested for all partitions p+m = n.

All tests were successful for n = 2, 3, 4, 5.

5.3 Construction of k[1,n](ζ, α)

The first step in constructing the fermionic operators is the construction of
the operator k(ζ, α). As discussed before, most of the construction can be
done for the case of a finite chain. Since the inductive limit can be done for
the annihilation and creation operators, we can treat k(ζ, α) on a finite chain.
Considering a finite chain of length L, we will construct k[1,L](ζ, α). For our
program we changed formula (2.32) in order to express kskal,[1,L] in terms of
the fused L matrices L{a,A},j . This can be done since

L{a,A},j(X) = F−1
a,ALa,jLA,j(X)Fa,A (5.4)

if [Fa,A, X] = 0 and since [Fa,A, σ
+
a ] = 0 and [Fa,A, q

α(σza+2DA)] = 0.
Our program uses the formula

kskal,[1,L](ζ, α)(X[1,L]) =

tra,A
{
σ+
a L{a,A},L(ζ) · · ·L{a,A},1(ζ)

(
ζ−2s−1yσ

z
a+2DAq−2S[1,L]X[1,L]

)}
(5.5)

where again the operator X[1,L] is of spin s. We will also use y = qα because
it is only a single symbol.

It is then convenient to compute the action of kskal,[1,L](ζ, α) on the
canonical basis constructed with the e β

jα. This will also allow for easy
parallelization later.
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For each element of the basis the “innermost” part

ζ−2s−1qα(σza+2DA)q−2S[1,L]X[1,L]

is constructed first. The spin-1
2 auxiliary space is explicitly used, whereas

q2αDA is represented by a single non-commuting symbol. Then a single
fused L matrix L{a,A},j(ζ) is applied after which all symbols are commuted
and sorted. The bosonic operators are defined in such a way, that they
commute with every object but not amongst themselves. In each step a
standard ordering of the bosonic operators is enforced. In FORM this is done
with statements like id ad*a = 1 - N^2 or id N*a = a*N/q. Following this
the sorting process mentioned above occurs, after which the next L matrix
is applied. If the loop is finished, the elements e +

a+, e
−
a− and e −a+ can be

discarded because of the operator σ+
a and the trace tra. The remaining trace

trA can then be taken by discarding all terms which are not “balanced” in
a†A and aA and replacing y2DAqmDA → 1

1−y2qm .

5.3.1 Testing k[1,n](ζ, α)

As with t∗[1,n](ζ, α) we will start testing k[1,n](ζ, α) with a matrixplot for
n = 2, 3, 4.

Since s
(
k[1,n](ζ, α)

)
= 1 the plots show the expected block structure. The

basis is ordered from low to high spin.
Testing the left reduction relation is straight forward. The only difference

to t∗[1,n](ζ, α) is that α needs to be shifted since the spin of k[1,n](ζ, α) is not
zero. The right reduction relation is more complicated. It is given by lemma
3.4 in [50]:

k[k,l](ζ, α)(X[k,m]) = k(ζ, α)(X[k,m]) + ∆ζv[k,l](ζ, α)(X[k,m]) (5.6)

where k ≤ m < l and ∆ζv[k,l](ζ, α) is a q-exact operator. We did not under-
take the effort to construct v[k,l](ζ, α) on the computer to test this relation
in its entirety. Instead, we confirm that the difference k[k,l](ζ, α)(X[k,m])−
k(ζ, α)(X[k,m]) is q-exact. Since we constructed kskal,[1,L](ζ, α), we expect
the difference to be of the form ζ−α−S∆ζζ

α+Sf(ζ2), i.e. a rational function
in ζ2 with poles in C× only at ζ2 = q±2.
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After testing the reduction relations, we tested the commutation of
k[1,n](ζ, α) with the modes t∗p,[1,n](α). It follows from lemma 4.1 in [50], that

k[k,l](ξ, α)t∗(ζ, α+1)(X[k,m]) 'ξ t∗[k,l](ζ, α)k(ξ, α)(X[k,m]) mod (ζ2−1)l−m .
(5.7)

Using the mode expansion of t∗(ζ, α) we can conclude that(
k[1,n](ζ, α)t∗p,[1,n](α+ 1)− t∗p,[1,n](α)k[1,n](ζ, α)

)
(X[1,n]) 'ξ 0 (5.8)

for p = 1, . . . , n where `(X[1,n]) ≤ n − p. Note that the remaining q-exact
form may also depend on ζ in this case. It is thus not obvious for which
modes of t∗(ζ, α) it has to be taken into account. During our tests we made
the observation, that the exact form seems to be zero for all p = 1, . . . , n.
Taking into account the relevant proof of lemma 4.1, we believe that it may
be of order (ζ2 − 1)l−m, or rather (ζ2 − 1)n in our case. This is true for
n = 2, 3, 4 at least, which was tested explicitly.

All tests mentioned above were successfully conducted for n = 2, 3, 4.

5.4 Construction of ρ(ε)
j,[1,n](α) and κj,[1,n](α)

After constructing k[1,n](ζ, α) we will calculate its Laurent coefficients in order
to construct the fermionic annihilation operators. To do this kskal,[1,n](ζ, α) is
loaded and a loop counts down j = n, . . . , 1. For each j we go over ε = −1, 0, 1
and set

ρ
(ε)
j,[1,n](α) = (ζ2 − q2ε)j k

(j,ε)
skal,[1,n](ζ, α)

∣∣∣
ζ2=q2ε

(5.9)

κj,[1,n](α) = ζ2j k
(j,2)
skal,[1,n](ζ, α)

∣∣∣
ζ2=0

(5.10)

where

k
(j,ε)
skal,[1,n](ζ, α) = kskal,[1,n](ζ, α)

−
n∑

k=j+1

ε−1∑
δ=−1

ρ
(ε)
k,[1,n](α)

(ζ2 − q2ε)k
−

n∑
k=j+1

κk,[1,n](α)

ζ2k
. (5.11)

During traversal of the loop κ0(α) is accumulated which contains all ρ(α)
j .

Since the ρ(0)
j are only needed for κ0(α) they are discarded as soon as they

have entered κ0(α). Each time one of the Laurent coefficients is finished, a
sorting is done in order to keep k

(j,ε)
skal,[1,n](ζ, α) as small as possible.

We do not test the Laurent coefficients directly since they enter the
annihilation operators in a simple manner, which are tested thoroughly.
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5.5 Construction of the Fermionic Annihilation Op-
erators

Once the Laurent coefficients of kskal,[1,n](ζ, α) are known it is easy to con-
struct the operators c[1,n](ζ, α), b[1,n](ζ, α) and f[1,n](ζ, α). In a loop over
j = 1, . . . , n we construct cj,[1,n](α) and fj,[1,n](α) for every j by combining
ρ

(±)
j,[1,n]. After they are saved, fj,[1,n](α) is discarded to preserve memory and

bj,[1,n](α) is constructed by applying φ(cj,[1,n](α)).
This is done as follows: each term in cj,[1,n](α) carries an internal tag to

save the according spin which can easily be inverted. The parameter α occurs
only indirectly in y. This can be replaced by y → y−1. The transformation J(·)
can be done easily because of the way we represent matrices. As mentioned
before FORM treats every expression as a simple series of terms. In order
to represent a matrix, we represent every element as a series of terms which
carry tags bra^x and ket^y. The indices x and y are base 4 numbers where
we assign 0 to e+

+, 1 to e−+, 2 to e+
− and 3 to e−−. The transformation J(·) can

then be achieved simply by replacing bra^x → bra^(4^n-1-x) and ket^y
accordingly.

5.5.1 Testing the Fermionic Annihilation Operators

A matrixplot of the operators shows the expected block structure. For the
sake of brevity, we only show the plots for n = 4. First are the cj,[1,n](α),
where j = 0, . . . , 4 from left to right.

The bj,[1,n](α), where j = 0, . . . , 4 from left to right:

And the fj,[1,n](α), where j = 0, . . . , 4 from left to right:
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Note that these operators are “thinning out” as j grows. This is intuitively
in compliance with the annihilation property.

The left reduction relation given by (2.85) is, of course, the same for all
operators, including fj,[1,n](α). It is tested for n = 2, 3, 4 and j = 0, . . . , n− 1
for all three operators.

The right reduction relation is only tested for cj,[1,n](α) and bj,[1,n](α).
This is due to the fact that these two are more important than fj,[1,n](α) in
the sense that they are used by themselves, whereas fj,[1,n](α) only enters
in the creation operators which are tested separately. In addition, similar
to kskal,[1,n](ζ, α) the right reduction relation for fj,[1,n](α) would be more
difficult to implement. The reduction for cj,[1,n](α) and bj,[1,n](α) was given
by (2.86).

Next the commutation relations for the annihilation operators are tested.
It is tested that all modes of the annihilation operators anticommute with
each other (3.23a) and that they commute with the modes of the transfer
matrix t∗p,[1,n](α). Since the annihilation operators preserve the support, we
can simply check the anticommutation relations for all combinations of modes.
Care has to be taken in the case of the commutation relation with the transfer
matrix as explained before.

Another test which can be done for the annihilation operators is to confirm
that they obey their name-giving property. For fixed j and x = c, b we confirm
that xj,[1,n](α)(X[1,n]) = 0 if `(X[1,n]) < j.

As before, all tests were conducted for n = 2, 3, 4.

5.6 Construction of the Fermionic Creation Opera-
tors

For the creation operators we will construct only the modes b∗p,[1,n](α),
c∗p,[1,n](α) as the generating functions are not needed. First the b∗p,[1,n](α)

are constructed using (2.81) and then the corresponding modes c∗p,[1,n](α) are
obtained by applying φ (2.22). As before, a loop over all elements of the
canonical basis is used which can be executed in parallel. For each element
all modes are constructed one at a time. To preserve memory the four sums
comprising b∗p,[1,n](α) are calculated one after another, loading the needed
modes fj,[1,n](α) and κj,[1,n](α) only in a short scope when needed.

As explained in subsection 3.1.3, there is a subtle difference between
operators acting on the finite and infinite chain. This difference becomes
important in the case of the creation operators. Up until now it was sufficient
to just calculate every operator the way it was explained in chapter 2. In the
case of the b∗p,[1,n](α) we calculate everything according to chapter 2 as well,
but after that compute the alternating sums (3.17) in order to obtain the
modes acting on an infinite chain.
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5.6.1 Testing the Fermionic Creation Operators

As for the other operators we start with a simple matrixplot for the case
n = 4. We observe the expected block structure. The following image shows
the c∗p,[1,n](α), where p = 1, . . . , 4 from left to right:

And the next shows the b∗p,[1,n](α), where p = 1, . . . , 4 from left to right:

In contrast to the annihilation operators we do not observe an increasing
number of entries equal to zero with growing p. Again, this is in compliance
with our intuition from the support property of the creation operators (2.89).

The modes b∗p,[1,n](α), c∗p,[1,n](α) have to obey the general left reduction
relation (2.85), which is tested for n = 2, 3, 4 as for the other operators. The
right reduction relation (2.97) is the same as for the modes t∗p,[1,n](α) and is
also tested up to n = 4.

For the commutation relations we now can test all remaining relations
from (3.23) as well as the commutativity with the modes of the transfer
matrix.

5.7 Elements of the Fermionic Basis

In order to use the JMS theorem (4.13) to calculate expectation values, we
need to be able to express arbitrary operators X[1,n] ∈M[1,n] in terms of the
fermionic basis. The first step in achieving this is to construct the elements
of the fermionic basis. Following section 3.2 we will first list all the BJ (3.38).
This will give us 2n expressions, which are sums of products of creation
operators. At this point the operators are treated as symbols, making the
resulting expressions very small. Also the vacuum q2αS(0) is ignored at this
point.

The only difficulty in constructing the BJ is the computation of the
Littlewood-Richardson coefficients. We developed a small Python script to
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construct the BJ where the Littlewood-Richardson coefficients were calculated
using a simple backtrack algorithm.

We calculate the coefficients by directly decomposing a product of Schur
polynomials: SµSν =

∑
λ c

λ
µ,ν Sλ. Assuming µ ⊃ ν we construct every

possible tableau by starting from µ and then filling it one square at a time
according to ν. This produces a search tree over all possible ways to write
down a diagram of weight ν. Since there is a number of properties that a
tableau should obey, we can check every node of the tree for validity, thinning
it out considerably. At the lowest level of the tree we can then read out all
possible tableaux of shape λ− µ with weight ν such that w(T ) is a lattice
permutation.

As a simple example we shall compute B{3,2} for n=4. The sets J,K, I
in (3.38) obey |J | = |K| = |I|. In our example we have J = {3, 2}, so
|K| = |I| = 2. We know that CIJ,K = c

λ(I)
λ(J),λ(K), where λ(J) = (11). The

only possible candidates for K are {4, 1}, {3, 2}, {3, 1}, {2, 1}. This is due to
the fact that λ(K) is the weight of all tableaux and thus |λ(K)| has to be the
number of squares of each tableau. Additionally, we know that λ(I)− λ(J)
has to be the shape of each tableau and therefore |λ(I)− λ(J)| also has to
be equal to the number of squares. Since J is known, we can conclude that
|λ(I)− λ(J)| ≤ 2 and therefore |λ(K)| ≤ 2.

We will now construct every possible tableau for each candidate for K.
Choose K = {4, 1}, i.e λ(K) = (2). We have to append two squares with
number 1 to the basic diagram

0
0

.

Obviously, the squares with number 0 will be ignored when considering the
shape of the tableau. The number of possible choices for “filling” this diagram
can be reduced by constricting the diagram to have a maximum of two rows
and two columns. More than two rows would require |I| > 2 and more than
two columns would correspond to indices greater than 4. The only possible
diagram remaining is

0
0

1
1

which is not a tableau since the numbers other than 0 are not increasing
strictly down each column. This means there is no CIJ,K 6= 0 for K = {4, 1}.
The choices K = {3, 2}, {3, 1} lead to one possible diagram each:

0
0

1
2

0
0 1

.
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Both of these are valid tableaux and therefore CI{3,2},K = 1 for I = {4, 3}, {4, 2}
respectively. This leads to the combinations c∗3c∗2b∗2b∗1 and c∗3b

∗
3c
∗
1b
∗
1.

Only the choice K = {2, 1} remains. But since λ(K) = ∅ and cλµ,∅ = δλµ
we already know that the only contribution in this case is for I = J = {3, 2},
i.e. b∗4c∗2c∗1b∗1 with a coefficient of one.

It follows that

B{3,2} = c∗3c
∗
2b
∗
2b
∗
1 + c∗3b

∗
3c
∗
1b
∗
1 + b∗4c

∗
2c
∗
1b
∗
1 . (5.12)

Once we have calculated all BJ it is simple to obtain all basis elements
using (3.48). The same script that generates the BJ also prepends all possible
b̄M and cN . We then import these combinations into a small FORM program
to apply the commutation relations, obtaining all elements of the fermionic
basis.

All calculations described in this section can be done very quickly on a
normal laptop and thus do not require much optimization. Even for n = 5
the calculations take only about one second. Obtaining the basis elements as
explicit operators, i.e. inserting the explicit forms of the creation operators,
on the other hand takes considerably longer. The obvious way to achieve
this is to go through each basis element term by term. For each term we
apply the creation operators to the vacuum one after another from right to
left, reducing intermediate results to simple operators in M[1,n] instead of
EndM[1,n].

5.8 Change of Basis

After calculating the basis elements explicitly we now can express arbitrary
operators X[1,n] ∈M[1,n] in terms of the fermionic basis. As mentioned, this
is used to obtain expectation values of such operators using the JMS theorem.

Since the change of basis requires only the solution of a linear system
of equations, we will not explain the calculation here. It should suffice
to mention that the solution was implemented in FORM in order to save
memory.

5.9 Expectation Values of Basis Elements

We will now compute expectation values of the elements of the fermionic
basis, which is also done in Form. First the elements of the fermionic basis
are imported. Here we do not use the explicit form which is only needed
to perform the change of basis, but rather treat the creation operators as
symbols. Since we are interested in the spin zero sector, we only consider
elements of the basis which have equally many b∗p and c∗p.
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The modes t∗p of the transfer matrix can be treated easily by replacing
them according to (4.22) and (4.23):

t∗p →
2

(p− 1)!

n−1∑
k=0

B0(n− 1, k)ρ(k) (5.13)

where ρ(k) = ∂λρ(λ)|λ=0. We then expand ρ in α, meaning we replace

ρ(k) → δk,0 + αηϕ(k) . (5.14)

The determinant is then constructed using simple symbols Oij , identifying

b∗r1 · · ·b
∗
rl
c∗s1 · · · c

∗
sl

=̂ det(Ori,sj )i,j=1,...,N (5.15)

which keeps all expressions very small in terms of memory consumption.
Since FORM is a primitive language, it can not be used to compute such

a determinant with a predefined statement. Therefore we will use a simple
substitution scheme to compute the determinant according to Leibniz’s rule
detA = εi1,...,ina1,i1 · · · an,in .

We will first substitute

b∗r1 · · ·b
∗
rl
c∗s1 · · · c

∗
sl
→ (b∗r1c

∗
s1 · · · c

∗
sl

)(b∗r2c
∗
s1 · · · c

∗
sl

) · · · (b∗rlc
∗
s1 · · · c

∗
sl

) .
(5.16)

After that we will apply the rule

b∗rc
∗
s1 · · · c

∗
sl
→ e(s1)Or,s1 · · · e(sl)Or,sl . (5.17)

Note that the functions e, like the fermionic operators, are chosen to be
non-commuting, so that their order will be preserved. At this point it only
remains to replace the functions e with the Levi-Civita symbol

e(s1) · · · e(sl)→ εs1,...,sl , (5.18)

thus obtaining the Leibniz formula.
At last we will replace the symbols O according to (4.22):

Ori,sj →
∂ri−1

(ζ+i )2

(ri − 1)!

∂
sj−1

(ζ−j )2

(sj − 1)!

ω̃(ln ζ+
i , ln ζ

−
j )

(ζ+
i ζ
−
j )2

∣∣∣∣∣∣∣
(ζ+i )2=(ζ−i )2=1

(5.19)

and expand ω in α:
ω̃ → ω̃ + α ω̃′ . (5.20)
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5.10 Construction of Ω1

As presented before, when using the exponential form of the density matrix
we will confine ourselves to the case of operators which are even under spin
reversal or to a vanishing external field. In this case we will only need Ω1

to calculate the action of the density matrix. Expectation values are then
obtained by

〈O〉T,h =
1

2n
tr[1,...,n]

dn/2e∑
j=0

Ωj
1

j!
O

 . (5.21)

In order to save memory, we will not compute the Ωj
1 explicitly. Instead we

will only compute the action of these operators on O.
Our program performs a loop over the powers of Ω1. During the first

run we calculate Ω1O and save this vector as O1. Subsequent runs then
obtain Ω1Oj . Considering (4.27) it is clear that the factor ω̃(ij) contains the
information which of the annihilation operators were applied to each term. In
other words: given a vector Oj , the symbols ω̃(ij) tell us which combinations
of annihilation operators generated a given term in this vector. Because of
this we can filter out irrelevant terms in each subsequent run by observing the
prefactors. By irrelevant we mean terms which contain a specific annihilation
operator at least twice. These will of course drop out since the annihilators
are fermionic. Namely, when executing the double sum in (4.27) for a step
Ω1Oj we can, for every (i, j), discard terms that already contain ω̃(i−1,?) or
ω̃(?,j−1).

After computing every term of the sum in (5.21) we take the trace, which
requires a bit of housekeeping in Form. The reason is that Oj are interpreted
as vectors and are internally stored as sequences of terms. Each term carries
a tag, specifying to which element of the vector that term belongs. However,
it can easily be derived which elements of the vector need to be discarded.
Taking the trace is then done by filtering all terms for their appropriate tags.

The expansion of the ω̃(ij) according to (4.23) is done at the very last
step of the FORM program. Taking the limit α → 0 is then done in
Mathematica, since it proves difficult to handle in Form. At this point the
use of Mathematica no longer poses a problem, since the expressions are
small enough to be handled by it.

5.11 Parallelization

As mentioned before, the construction of the fermionic operators as well as
further calculations using these operators require much computational effort.
This becomes obvious if one considers that each operator consists of 16n

elements, each of which is a rational function in q and y. Of course, these
rational functions themselves grow with increasing n. As an example consider
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the operator b∗. We measure the required disc space for all modes of the
operator depending on n:

n Size of Files
1 187B
2 15KiB
3 764KiB
4 29MiB
5 937MiB

If we want to calculate expectation values for “big” systems, in our case
meaning interval lengths > 4, the question of parallelization naturally arises.

The action of all of the above operators on each element of the canonical
basis e β

jα is calculated separately which is the natural strategy for linear
maps. This approach already allows us a massive parallelization of our
computational work. Most calculations can be split into 4n parts, which is
sufficient for our purposes. However, if we want to distribute computations
among several computers, some kind of load balancing is needed, since the
required work can differ greatly depending on the chosen basis element. In
our test we observed that without active load balancing choosing a power of
2 for the number of jobs results in an extremely unbalanced load distribution.
The reason is most likely the block structure of the fermionic operators with
regard to spin. This results in jobs, which require very different amounts of
computation time. Choosing a prime number will yield much better results.

Later we chose to additionally use an existing system for active load
balancing, namely GNU Parallel [62]. Parallel is a tool that can distribute
jobs to several machines on demand and thus ensure that all machines are
fully used at all times. Another advantage of using this system is that issuing
jobs to multiple machines becomes much easier since less manual intervention
is needed. Of course, even with an active load balancing it is still beneficial
to choose a prime number of jobs.

5.12 Prospects for the Case n = 6

In the context of this work all fermionic operators were constructed for lengths
up to n = 5. Also, the algebraic parts of the correlation functions 〈σx1σxn〉
and 〈σz1σzn〉 have been computed up to the same length. We believe that
in principle it would be possible to calculate these objects for length n = 6
in several weeks using our programs on moderate hardware, meaning ∼ 10
consumer grade PCs. The difficulty that prevented this calculation in the
context of this work was that FORM uses a complicated setup of various
buffers and scratch files. The size of these needs to be set before a program is
run. However, if these setup parameters are chosen insufficiently the program
will at some point terminate unsuccessfully. Since the memory usage of the
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programs depends on the setup of buffer sizes, it is not practical to just
choose very large buffers. To construct the case n = 6 one would need to
spend some additional time to find sufficient settings or a machine with a
large amount of memory. Sadly, we did not have access to such a machine
for interactive testing.

5.13 The Function ω

In order to obtain numerical values for the functions ω and ω′ we use a
program that was developed by Michael Brockmann and Jens Damerau in C.
Later it received an update by Alexander Weiße which made sure that it no
longer depended on old and proprietary libraries. This is also the program
which was used in [53].

The program in question has a long and convoluted development history
and was used to compute numerous different quantities. For our purposes
it was therefore necessary to review parts of the code and to make some
small changes. With these changes the program now prints out a table which
contains the two functions ω and ω′ as well as their derivatives using a simple
CSV format that can be read by other programs like Mathematica.

The integrations performed by the program depend on two parameters
passed to it on execution: the number of points to use and the integration
interval, i.e. the cut-off to use. It should be noted that these two parameters
are not completely independent. Enlarging the interval while using the same
number of points reduces the “effective resolution” used for the integration.
Thus, the precision can decline when choosing a bigger interval. Since the
program provides no error control it is important to find some measure of
the numerical quality of the results. This importance is easily emphasized
when naively trying some integration parameters, since this quickly leads to
obviously wrong correlation functions like the example shown in figure 5.1.
These plots are shown in anticipation of the next chapter. Our goal here
is simply to illustrate how the numerical errors in ω(′) and their derivatives
enter into the final results. The two conventions used in the figure refer
to the derivatives of the functions ω and ω′. The x-convention always uses
derivatives ω(′)

ij where i ≥ j and the y-convention uses i ≤ j. In other words
one can obtain the y-graphs by taking the x-graphs and then substituting
ωij → ωji and ω′ij → −ω′ji. It is therefore clear that both conventions are
equivalent and all differences have to be caused by numerical errors.

Our first strategy for the choice of both parameters was the following:
We considered the non-linear integral equations (NLIEs) solved within the
program in order to obtain the auxiliary functions b and b̄ which are given in
equations (52), (53) of [53]. We shall write down these NLIEs for convenience:
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Figure 5.1: Correlation functions for n = 2 and n = 4 using two equivalent
conventions for ω with ∆ = 0.995 and T/J = 0.1. Integration parameters
are 214 points and cut-off C = 20.

ln b(x) = − πh

2(π − γ)T
− 2πJ sin(γ)

Tγch(πx/γ)
+

∫ ∞
−∞

dy
2π
F (x− y) ln(1 + b(y))

−
∫ ∞
−∞

dy
2π
F (x− y + η−) ln(1 + b̄(y)) (5.22a)

ln b̄(x) =
πh

2(π − γ)T
− 2πJ sin(γ)

Tγch(πx/γ)
+

∫ ∞
−∞

dy
2π
F (x− y) ln(1 + b̄(y))

−
∫ ∞
−∞

dy
2π
F (x− y − η−) ln(1 + b(y)) (5.22b)

where γ = −iη ∈ R, η− = η − iε and

F (x) =

∫ ∞
−∞

dk
sh((π − 2γ)k/2)eikx

2sh((π − γ)k/2)ch(γk/2)
. (5.23)

We choose to consider these equations because it seems plausible that they
would be the most difficult to solve. All other integral equations solved within
the program are linear and therefore should be less difficult to solve. The
asymptotic behaviour of the auxiliary functions is known to be b ∼ e−h/T

and b̄ ∼ eh/T for |x| � 1 (see chap. 13 in [3]). As we will see later there
are considerable numerical difficulties for certain sets of parameters, e.g.
∆ = 0.995, h = 5 and T/J = 0.1. For this choice of ∆ the asymptotic
behaviour of F (x) can easily be determined to be

F (x) ∼ 2π

π − γ
tan

(
γπ

π − γ

)
e−

2π
π−γ |x| .

68



For a sufficiently large cut-off C we can therefore estimate the error of a
single integration to be

ε(C) = 2 ln
(

1 + eh/T
)∫ ∞

C

dy
2π
F (y) =

ln
(
1 + eh/T

)
π

tan

(
γπ

π − γ

)
e−

2π
π−γC .

Even with the parameters presented above, the error of an integration becomes
as small as the machine precision (∼ 10−16) when choosing a relatively small
cut-off C ≥ 18. Considering figure 5.1 however it is clear that this cut-off is
insufficient for the procedure as a whole. It should be noted that increasing the
number of discretization points leaves the figure completely unchanged. Also,
considering the order of magnitude of the errors, a proliferation during the
iterative solution is likely not the dominant error source, since the observed
errors still depend on the chosen cut-off.

After these considerations we assume that the dominant numeric errors
arise in the “higher order” integral equations (54)–(63) presented in [53]. Since
the analysis of these would be much more involved, we moved to a more
direct and pragmatic measure of numerical quality. Due to the symmetry of
ω and ω′ we know that the following functions have to be zero:

ω′ii = 0 , ∆ωij = ωij − ωji = 0 , ∆ω′ij = ω′ij + ω′ji = 0 .

Thus, any non-zero value of these functions indicates numerical errors. In
figure 5.2, such errors are shown for three different derivatives of ω′. It
immediately seems plausible that such errors would lead to the behaviour
shown in figure 5.1. Like above, increasing the number of discretization
points does not change any of the graphs in figure 5.2. The same type of
error does not appear in the function ω. Figure 5.3 shows one derivative
of ω as an example. The graphs shows that the relative errors are of the
order of magnitude of the machine precision. This explains why there are
clearly discretization steps in the error graph. We shall call the errors shown
in figure 5.2 errors of type one. These errors only appear in derivatives of ω′

and do not depend on the number of discretization points. We verified this
for all functions ω(′)

ij where i, j ≤ 4. Instead, errors of type one only depend
on the chosen cut-off C. Here the error is inversely proportional to C, i.e.
doubling C halves the error.

Up until now we used an abundant number of integration points for all
graphs. Meaning that the effective resolution, i.e. the number of points
divided by the interval length was high enough so that only errors of type
one would emerge. We shall now show what happens if we increase C further
while using the same number of discretization points. It is to be expected
that at some point numerical errors emerge because the effective resolution
will decrease. Figure 5.4 shows how plateaus emerge in the function ω if
the resolution becomes too low. These plateaus also emerge in ω′ and all
derivatives. Such plateaus will also appear in the correlation functions but
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Figure 5.2: Some derivatives of ω′ as well as their errors for different cut-offs
using ∆ = 0.995, T/J = 0.1 and 217 discretization points. In the left column
the graphs for all three choices of C coincide.
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Figure 5.3: The function ω20 as well as its numerical errors for differet cut-offs
using ∆ = 0.995, T/J = 0.1 and 217 discretization points. Like before, in the
left picture the graphs for different cut-offs coincide.

0 2 4 6 8 10

−10

0

10

h

ω

C = 500

C = 1000

0 2 4 6 8 10
10−19

10−15

10−11

10−7

h

|ω′|

C = 500

C = 1000

C = 2000

Figure 5.4: The functions ω and ω′ at insufficient resolutions. ∆ = 0.995,
T/J = 0.1 and 217 points.

may be more subtle there and are best observed by considering ω(′) and its
derivatives directly. The function ω′ should be equal to zero. Here we can
observe the expected behaviour: increasing C means reducing the effective
resolution and thus increasing the error. We shall call these errors of type
two.

Figure 5.5 finally shows some examples of functions for different numbers
of discretization points. The function ω′11 shows the expected behaviour.
ω10 seems to be equal to zero as its modulus decreases with an increasing
resolution. There are various derivatives of ω showing this behaviour. The
figure confirms that errors of type one do not depend on the resolution. One
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Figure 5.5: Errors of derivatives of ω and ω′ for different numbers of dis-
cretization points (n), C = 400, T/J = 0.1, ∆ = 0.995.

can clearly see that plateaus emerge in the differences ∆ω′10 and ∆ω′21 but
their order of magnitude does not change with the resolution.

As we will see in the next chapter, in order to obtain the desired correlation
functions we need to insert ω and its derivatives into complicated rational
expressions. This is best demonstrated by the correlation functions for n = 5
shown in appendix B. Therefore, the question remains how the errors of
ω and its derivatives enter into the final results. This will be discussed in
section 6.3 along with the results.
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Chapter 6

Results of the Computation

Here we will present the results of our calculations on the computer. After
addressing both methods of obtaining correlation functions, we will show the
functions themselves and compare our results with other works.

6.1 JMS Theorem

In this section we shall show the results of the computation using the JMS
theorem. First, we will show the obtained elements for the fermionic basis
for several interval lengths. After that we will solve the linear system of
equations needed to express a given operator in terms of the fermionic basis.
Lastly, we shall show some correlation functions and other expectation values
obtained through the JMS theorem. In this section we will only compare our
results with [53]. Comparisons with other works are done in the next two
sections.

6.1.1 Elements of the Fermionic Basis

As explained above, the elements of the fermionic basis are calculated using a
Python script and a small FORM program. Here we will show the results of
these computations. For brevity we shall omit writing q2αS(0) in this section.
Every element shown is to be applied to this operator. For n = 1 there are
just four simple elements:

b∗1, t∗1, c∗1, 1 .

The case n = 2 can be compared to [51]. Note that there is an error in an
early version of this paper which was later corrected. There are 16 elements

b∗2b
∗
1, b∗1t

∗
2 − b∗2t

∗
1, b∗1t

∗
1, (t∗1)2, c∗2b

∗
1 + b∗2c

∗
1, b∗2,

c∗1t
∗
2 − c∗2t

∗
1, t∗2, c∗1b

∗
1, b∗1, c∗1t

∗
1, t∗1, c∗2c

∗
1,

c∗2, c∗1, 1 .
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The case n = 3 is already much more complicated, as expected. The 64
elements are

b∗3b
∗
2b
∗
1, b∗2b

∗
1t
∗
3 − b∗3b

∗
1t
∗
2 + b∗3b

∗
2t
∗
1, b∗2b

∗
1t
∗
2 − b∗3b

∗
1t
∗
1, b∗2b

∗
1t
∗
1,

b∗1t
∗
1t
∗
3 − b∗1(t∗2)2 + b∗2t

∗
1t
∗
2 − b∗3(t∗1)2, b∗1t

∗
1t
∗
2 − b∗2(t∗1)2,

b∗1(t∗1)2, (t∗1)3, c∗3b
∗
2b
∗
1 + b∗3c

∗
2b
∗
1 + b∗3b

∗
2c
∗
1, b∗3b

∗
2,

c∗2b
∗
1t
∗
3 − c∗3b

∗
1t
∗
2 + c∗3b

∗
2t
∗
1 + b∗2c

∗
1t
∗
3 − b∗3c

∗
1t
∗
2 + b∗3c

∗
2t
∗
1,

b∗2t
∗
3 − b∗3t

∗
2, c∗2b

∗
1t
∗
2 − c∗3b

∗
1t
∗
1 + b∗2c

∗
1t
∗
2 − b∗3c

∗
1t
∗
1,

b∗2t
∗
2 − b∗3t

∗
1, c∗1t

∗
1t
∗
3 − c∗1(t∗2)2 + c∗2t

∗
1t
∗
2 − c∗3(t∗1)2,

t∗1t
∗
3 − (t∗2)2, c∗2b

∗
2b
∗
1 + b∗3c

∗
1b
∗
1, b∗3b

∗
1,

c∗1b
∗
1t
∗
3 − c∗2b

∗
1t
∗
2 + c∗2b

∗
2t
∗
1 + b∗3c

∗
1t
∗
1, b∗1t

∗
3 − b∗3t

∗
1,

c∗1b
∗
1t
∗
2 − c∗2b

∗
1t
∗
1, b∗1t

∗
2, c∗1t

∗
1t
∗
2 − c∗2(t∗1)2, t∗1t

∗
2,

c∗1b
∗
2b
∗
1, b∗2b

∗
1, c∗1b

∗
1t
∗
2 − c∗1b

∗
2t
∗
1, b∗1t

∗
2 − b∗2t

∗
1,

c∗1b
∗
1t
∗
1, b∗1t

∗
1, c∗1(t∗1)2, (t∗1)2, c∗3c

∗
2b
∗
1 + c∗3b

∗
2c
∗
1 + b∗3c

∗
2c
∗
1,

c∗3b
∗
2 + b∗3c

∗
2, c∗3b

∗
1 + b∗3c

∗
1, b∗3, c∗2c

∗
1t
∗
3 − c∗3c

∗
1t
∗
2 + c∗3c

∗
2t
∗
1,

c∗2t
∗
3 − c∗3t

∗
2, c∗1t

∗
3 − c∗3t

∗
1, t∗3, c∗2b

∗
2c
∗
1 + c∗3c

∗
1b
∗
1,

c∗2b
∗
2 − c∗3b

∗
1, b∗2c

∗
1, b∗2, c∗2c

∗
1t
∗
2 − c∗3c

∗
1t
∗
1, c∗2t

∗
2 − c∗3t

∗
1,

c∗1t
∗
2, t∗2, c∗2c

∗
1b
∗
1, c∗2b

∗
1, c∗1b

∗
1, b∗1,

c∗2c
∗
1t
∗
1, c∗2t

∗
1, c∗1t

∗
1, t∗1, c∗3c

∗
2c
∗
1, c∗3c

∗
2, c∗3c

∗
1,

c∗2c
∗
1, c∗3, c∗2, c∗1, 1 .

We will provide the 256 elements for n = 4 in appendix A just to give an
idea of how fast the expressions grow when we move to longer intervals.

The computation of the basis elements is much less time consuming
compared to most other computations performed in this work. Since a
printout of the elements would not make any sense, we shall only give an
idea of the size of the expressions:

n # Elements Size of file
1 4 80B
2 16 431B
3 64 2,6KiB
4 256 19KiB
5 1024 161KiB
6 4096 1,6MiB
7 16384 18MiB

Even though we can easily compute basis elements for even larger intervals,
they are only useful for us if we can actually insert the explicit creation
operators and carry out the necessary multiplications. Since this step requires
much more computation time and memory, we refrain from going further.
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There remains one problem associated with this last multiplication. Even
though we know that all elements of the basis for an interval length of n
are operators of at most length n, this does not necessarily apply to every
single term which we need to compute: Consider as an example the element
c∗2b

∗
1 +b∗2c

∗
1 from the n = 2 basis. We know that `(c∗2b∗1 +b∗2c

∗
1) ≤ 2 but not

that `(c∗2b∗1) ≤ 2.

This means that we need to take the maximum possible length of every
term into account. In the case of n = 2 this means that we have to use the
creation operators constructed for an interval length of 3, which makes the
computations much more involved. This simple issue makes the use of the
JMS theorem very inefficient compared to using the exponential form of the
density matrix.

We confirmed explicitly that it is possible to compute expectation values
using the JMS theorem but for lengths greater than 3 this becomes very
inefficient.

6.1.2 Change of Basis

In order to express a local operator in terms of the fermionic basis, it remains
only to solve a linear system of equations. We shall provide some small
examples in this section. Consider the operator σz1σzn. We will express it in
terms of the basis for length n, but as explained before it will be necessary
to use creation operators of greater lengths in the process.

n = 2

For the basis of length n = 2 the use of operators acting on an interval
of length 3 is sufficient. To express an operator of length 2 it is therefore
necessary to solve a system of 64 equations. As an example consider

σz1σ
z
2 =(
q2 + 1

)2
y2

4(y2 − q2)(q2y2 − 1)
· (t∗1)2 +

(q2 − 1)2y
(
y2 + 1

)2
2(y2 − 1)(y2 − q2)(q2y2 − 1)

· (c∗2b∗1 + b∗2c
∗
1)

+

(
q4 − 1

)
y
(
y2 + 1

)
2 (q4y2 − q2 (y4 + 1) + y2)

· c∗1b∗1 +

(
q2 + 1

)2
y
(
y2 + 1

)
2(q2 − y2)(q2y2 − 1)

· t∗1

−
(
q2 + 1

)2 (
y2 + 1

)2
4(q2 − y2)(q2y2 − 1)

· id (6.1)
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and

σx1σ
x
2 =

+
q
(
q2 + 1

)
y2

4(q2 − y2)(q2y2 − 1)
·(t∗1)2 +

(q2 − 1)2
(
q2 + 1

)
y3

2q(y2 − 1)(q2 − y2)(q2y2 − 1)
·(c∗2b∗1 + b∗2c

∗
1)

−
(q2 − 1)qy

(
y2 + 1

)
2(q2 − y2)(q2y2 − 1)

· c∗1b∗1 −
q
(
q2 + 1

)
y
(
y2 + 1

)
2(q2 − y2)(q2y2 − 1)

· t∗1 −
y2

4q3
· b∗2b∗1

− q3

4(q2y2 − 1) (q6y2 − 1)
· c∗2c∗1 +

q
(
q2 + 1

) (
y2 + 1

)2
4(q2 − y2)(q2y2 − 1)

· id . (6.2)

Note that σx1σx2 contains two terms with spin ±2, while σz1σz2 contains only
terms of spin 0.

6.1.3 Expectation Values

Once an operator is expressed in the manner above, we can use the JMS
theorem to compute expectation values. More precisely, we compute expecta-
tion values for the elements of the fermionic basis. To obtain the expectation
value of an arbitrary operator expressed in terms of the fermionic basis, we
only need to compute the linear combination of known values.

As an example we shall provide the expectation values for the n = 2
fermionic basis:

〈b∗2b∗1〉 = 0, 〈b∗1t∗2 − b∗2t
∗
1〉 = 0, 〈b∗1t∗1〉 = 0,〈

(t∗1)2
〉

= 4− 8ϕαη, 〈c∗2b∗1 + b∗2c
∗
1〉 = ω̃′xα,

〈b∗2〉 = 0, 〈c∗1t∗2 − c∗2t
∗
1〉 = 0, 〈t∗2〉 = −ϕxαη,

〈c∗1b∗1〉 = −ω̃, 〈b∗1〉 = 0, 〈c∗1t∗1〉 = 0,

〈t∗1〉 = 2− 2ϕαη, 〈c∗2c∗1〉 = 0, 〈c∗2〉 = 0,

〈c∗1〉 = 0, 〈id〉 = 1 .

Being able to compute such expectation values, we can now calculate more
general values.

n = 2

As an example we shall provide the correlation functions 〈σz1σz2〉, 〈σx1σx2 〉 as
well as the emptiness formation probability P (n) = 2−n〈

∏n
j=1(1 + σzj )〉.

〈σz1σz2〉 = cth(η)ω̃ +
ω̃′x
η

(6.3)

〈σx1σx2 〉 = − ω̃

2sh(η)
− ch(η)ω̃′x

2η
(6.4)

P (2) =
1

4
− ϕ

2
+

cth(η)ω̃

4
+
ω̃′x
4η

. (6.5)
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The obtained correlation functions 〈σz1σz2〉 and 〈σx1σx2 〉 are the same as in [53].
The emptiness formation probability P (2) differs from the paper in the last
term, which is due to a typo in the paper. This can be verified by taking
the density matrix D2(T, h) from [57] (which was cited in [53]) and simply
evaluating

P (2) =
1

4
tr12 (D2(T, h)(1 + σz1)(1 + σz2)) (6.6)

by hand.

n = 3

As explained before, the computational effort needed to calculate expectation
values using the JMS theorem grows rapidly because it is necessary to use
operators acting on large intervals. Considering n = 3, the fermionic basis
already contains elements like

b∗2b
∗
1t
∗
3 − b∗3b

∗
1t
∗
2 + b∗3b

∗
2t
∗
1 .

Generally, to explicitly compute this basis element, we would need to use
operators of length 6. Since the main computational effort lies in constructing
the creation operators and multiplying them to obtain the basis elements, it
becomes clear that the strategy explained in this section is not suitable for
large intervals.

However, we do not know the actual length of the products above. Because
of this we tried to construct the fermionic basis for n = 3 using operators
only of length 4. Having constructed these elements we were able to show,
that they indeed form a basis of the length 3 subspace. This fact motivated
us to go further and try to obtain 〈σz1σz3〉 and 〈σx1σx3 〉 and P (3) using this
basis. The resulting functions

〈σz1σz3〉 = 2cth(2η)ω̃ +
ω̃′x
η

+
th(η)(ω̃xx − 2ω̃xy)

4
−

sh2(η)ω̃′xxy
4η

(6.7)

〈σx1σx3 〉 = − ω̃

sh(2η)
− ch(2η)ω̃′x

2η
− ch(2η)th(η)(ω̃xx − 2ω̃xy)

8
+

sh2(η)ω̃′xxy
8η

(6.8)

are, remarkably, the same as in [53]. Even the emptiness formation proba-
bility can be obtained using only n = 4 operators, even though it is more
complicated than the correlation functions, since it has no definite spin
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symmetry:

P (3) =
1

8
− 3ϕ

8
+

(
q4 + q2 + 1

)
ω̃

2 (q4 − 1)
+

(
q2 − 1

)
(ω̃xx − 2ω̃xy)

32 (q2 + 1)

+
3
(
q2 + 1

)
(−ϕxxω̃ + 2ϕxω̃x − 2ϕω̃xy + ϕω̃xx)

32 (q2 − 1)
+

3ω̃′x
8η

−
(
q2 − 1

)2
ω̃′xxy

128ηq2
+

(
q4 + 10q2 + 1

)
(−ϕxxω̃′x + ϕxω̃

′
xx − ϕω̃′xxy)

128ηq2
. (6.9)

This is, again, identical to the results of [53].
We refrain from using this approach for longer chains, as the essential

results are already visible at this point. The calculation of arbitrary expecta-
tion values using the fermionic basis and the JMS theorem was implemented
successfully. As explained before it seems that this approach is not ideally
suited for the computer. It is however noteworthy, that there is obviously
room for improvement using this approach. If it were possible to exactly
obtain the actual length of all single terms in the fermionic basis one could
choose the length of the involved operators optimally. For longer chains we
shall use the exponential form of the density matrix.

6.2 Exponential Form

As mentioned before, using the JMS theorem to calculate expectation values
presents the problem that we have to choose rather long intervals for the
construction of the fermionic operators. This problem does not arise when
using the exponential form of the density matrix due to the usage of anni-
hilation operators. Because of this we can calculate expectation values on
longer intervals using this approach.

The first objects which we computed using this approach were the corre-
lation functions presented above for n = 2, 3 to provide a comparison and
build confidence in our programs. In the next step we calculated P (2) and
P (3) for the case of a vanishing external field and compared the results to the
expressions presented above. As explained before in section 4.2 the function
ϕ vanishes in this case. As expected we were able to reproduce the results
of [53]:

P (2) =
1

4
+

cth(η)ω̃

4
+
ω̃′x
4η

. (6.10)

P (3) =
1

8
+

(
q4 + q2 + 1

)
ω̃

2 (q4 − 1)
+

(
q2 − 1

)
(ω̃xx − 2ω̃xy)

32 (q2 + 1)

+
3ω̃′x
8η
−
(
q2 − 1

)2
ω̃′xxy

128ηq2
. (6.11)
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After these basic checks we then went on to calculate the xx- and zz-
correlators for n = 4, 5. For the case n = 4 these functions are known
from [53] and are reproduced by our program. The correlation functions
〈σz1σz5〉 and 〈σx1σx5 〉 are printed out in appendix B due to their size.

6.2.1 Comparison with Kato et al.

We also compared our results to the work of Kato et al. in [63, 64]. The
authors show that the known multiple integral representations of correlation
functions can be reduced to one-dimensional integrals in the ground state.
These integrals are then solved analytically for the case that ∆ is equal to
certain roots of unity. The correlations 〈σz1σzn〉 and 〈σx1σxn〉 are given exactly
for n = 2, 3, 4 and η = 0, iπ2 ,

iπ
3 ,

iπ
4 ,

iπ
5 ,

iπ
6 ,

i2π
3 ,

i3π
4 , iπ. In the ground state

the functions b and b̄ given in [53] become zero which greatly simplifies the
calculation of the functions ω and ω′. Because of this it is easy to compute
these functions using Mathematica. Since we did not cover the case of q
being a root of unity, we compute all correlation functions for values slightly
above and below the given values of η and interpolate. Numerical problems
are generally expected, since expectation values may have poles if q is a
root of unity. The functions given above for n = 2, 3 obviously have a pole
only at η = 0, but starting with n = 4 more poles appear. These poles are
removed by the behaviour of the functions ω and ω′: At these points their
real parts vanish and their imaginary parts cancel each other out. As is to be
expected, the numerical problem becomes more severe for bigger values of n.
In this approach it is not surprising, that the quality of the results depends
on the chosen shift in a non-trivial manner. As expected, the differences
to Katos results will become smaller with smaller shifts, but below some
point numerical problems arise. For the majority of the results the relative
differences to the given values will become small (< 10−6) in this approach,
which we take as a reasonably good agreement with [63,64]. There are two
exceptions: On the one hand some values are predicted to be zero. In these
cases we cannot sensibly calculate the relative difference, but the resulting
absolute values are reasonably small (also < 10−6). On the other hand the
points η = 0 and η = iπ, i.e. ∆ = 1 and ∆ = −1, are very difficult to handle,
the first case more so than the second. For these cases it makes no sense
to evaluate values on both sides, since the definition of ω from [53] is only
valid for the massless regime, i.e. |∆| < 1. For this reason we try to take the
limits one-sided in these cases. If the shifts are chosen too small, the resulting
values will diverge due to numerical problems. Despite these problems, we
can control the relative errors at these points to be smaller than 0.01. In
conclusion we are certain that our results are in accordance to [63,64].

After the comparison with previous works we are reasonably certain that
our programs produce correct results for arbitrary interval lengths. This is
confirmed by various tests we applied to different objects. Our experience is
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that even a small error in one of the programs will lead to completely wrong
results. It may sometimes happen, that an existing error does not manifest
itself for an interval length of n = 2. But in our experience potential errors
occur very reliably for interval lengths of n ≥ 3.

6.2.2 Comparison with Lukyanov and Terras

We shall do a last comparison of our results with a previous work, even though
we are quite confident in our results at this point. Lukyanov and Terras
consider the long-distance asymptotic behaviour of the correlation functions
〈σx1σxn〉 and 〈σz1σzn〉 in their works [65, 66], using Gaussian conformal field
theory. A comparison with these asymptotics will not only be an additional
test for our results for T = h = 0. Rather, it will be interesting to see at
which distance the asymptotic expressions become good approximations of
the correlation functions. They obtain

〈σx1σxn〉 ∼
(−1)nA

nν

{
1− B

n4/ν−4
+O

(
n−2 log n, n8−8/ν

)}
− Ã

nν+1/ν

{
1 +

B̃

n2/ν−2
+O

(
n−2 log n, n4−4/ν

)}
+ . . . (6.12)

and

〈σz1σzn〉 ∼ −
1

π2νn2

{
1 +

B̃z

n4/ν−4

(
1 +

2− ν
2(1− ν)

)
+O

(
n−2 log n, n8−8/ν

)}

+
(−1)nAz

n1/ν

{
1− Bz

n2/ν−2
+O

(
n−2 log n, n4−4/ν

)}
+ . . . (6.13)

where A,B, Ã, B̃, Az, Bz, B̃z are functions depending only on ν which are
given in their work. In this context ν is given by ∆ = cos (π(1− ν)). The
reason for this choice is that [65,66] do not use the same Hamiltonian as we
do, but instead

HXXZ = −J
2

∞∑
k=−∞

(
σxkσ

x
k+1 + σykσ

y
k+1 + ∆

(
σzkσ

z
k+1 − 1

))
, J > 0 .

This choice is however unitary equivalent to ours, as the substitutions J → −J
and ∆→ −∆ are equivalent to the unitary transformation H → UHU with
U =

∏∞
j=−∞ σ

z
2j . Therefore we can consider their choice to be equivalent

to ours with the above choice for ∆. To compare our results to the given
asymptotics, we introduced an additional factor (−1)n to 〈σx1σxn〉 as opposed
to the original expressions, the reason being the transformation U .

To make a comparison to our results, we take the definition of the function
ω from [53]. For T = h = 0 the auxiliary functions b and b̄ given in this paper
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vanish. This makes the calculation of the functions ω and ω′ much easier,
since only simple integrals remain. These can then be solved numerically
using Mathematica.

Considering the above expressions, we see that the order in which we have
to observe the terms depends on ν. For the sake of simplicity, we shall only
distinguish between different terms of the expressions if they can be ordered
for general 0 < ν < 1. For this reason we shall consider two approximations
in the case of 〈σx1σxn〉: on the one hand we shall consider only the first term
A
nν , which is the leading term for general ν, and on the other hand we consider
the whole expression. In the case of 〈σz1σzn〉 we shall only consider the whole
expression. The reason is that only the term containing B̃z can be shown
to be of higher order than the rest. However, it makes no visible difference
whether we include it in our plots or not.

Looking at the figures 6.1 and 6.2 showing 〈σz1σzn〉 and 〈σx1σxn〉 respectively,
we observe that there are poles in the asymptotic expansion. For ∆→ −1, i.e.
ν → 0 there are rapid oscillations in all plots, becoming less prominent for
increasing n. These oscillations are no numerical error but rather a feature
of the functions B, B̃,Bz, B̃z. The visible poles in 〈σx1σxn〉 stem from the
function B, which has poles of order 2 at ν = 2

3+2l for l ∈ N. At these
positions q is a root of unity. As can be seen in the plots, the poles become
narrower with increasing n.

Aside from roots of unity, we observe the expected behaviour: For the
nearest neighbour functions the asymptotic expansion differs greatly from
the exact results. The agreement between the results becomes better with
increasing n. It is noteworthy, that the asymptotics agree very well with
the exact values even for short distances. Especially for the xx two-point
functions the results agree very well.

We take this as a successful plausibility check for our results for n = 5.
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Figure 6.1: Two-point correlators 〈σz1σzn〉 for n = 2, 3, 4, 5 in the ground state
and at zero magnetic field in the massless regime.

82



−1 −0.5 0 0.5 1

−0.7

−0.6

−0.5

−0.4

∆

〈σx1σx2 〉

Asymp. 1
Asymp. 2

Exact

−1 −0.5 0 0.5 1
0.2

0.3

0.4

0.5

0.6

∆

〈σx1σx3 〉

Asymp. 1
Asymp. 2

Exact

−1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

∆

〈σx1σx4 〉

Asymp. 1
Asymp. 2

Exact

−1 −0.5 0 0.5 1

0.2

0.4

0.6

∆

〈σx1σx5 〉

Asymp. 1
Asymp. 2

Exact

Figure 6.2: Two-point correlators 〈σx1σxn〉 for n = 2, 3, 4, 5 in the ground state
and at zero magnetic field in the massless regime.
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6.3 Correlation Functions

In this section we will present plots of the correlation functions presented
above as functions of T and h for different values of the other parameters.
For this purpose we will use the functions presented above and in appendix B.
The function ω, as well as its derivatives, are calculated using the program
mentioned in section 5.13.

We use the same choices of parameters as in [53] to compare our work
to the paper and to extend this work to n = 5. The only difference is our
choice of ∆ = 0.707 instead of ∆ = 1/

√
2. We make this change because in

the case ∆ = 1/
√

2 we have η = iπ
4 which means that q is a root of unity.

Coincidentally, for n = 2, 3, 4 there are no poles in 〈σz1σzn〉 or 〈σx1σxn〉 at
the point η = iπ

4 , which is why there was no problem in the paper with this
particular choice. However, moving to n = 5 makes poles appear at this
point. To get an idea of the poles appearing in the correlation functions we
shall give a short overview in table 6.1.

Table 6.1: Values of γ = −iη at which the correlation functions have poles.

n 〈σz1σzn〉 〈σx1σxn〉

2 πk πk

3 π k2 π k2

4 π k3 , π
2k+1

2 π k3

5 π k3 , π
k
4 π k3 , π

k
4

The first few correlation functions for n = 2, 3, 4 are shown in figures
6.3 and 6.4 depending on T . As expected these plots look like the ones
given in [53]. Here we can observe the expected behaviour: The transversal
functions alternate their signs with n, as do the longitudinal functions for
∆ > 0. Of course the alternating behaviour of the longitudinal functions
changes with sufficiently large external field h. For very large h the system
enters the ferromagnetic phase so the longitudinal correlations become equal
to one and the transversal correlations vanish for low temperatures. In the
case of negative ∆ the longitudinal correlations are always negative for low T
and change to positive at some “crossover temperature”. This effect is known
as “quantum-classical crossover” and was studied in [67–69]. We will compare
the crossover temperatures obtained from our results with [67], where the
crossover was studied numerically, later in subsection 6.3.1. Of course all
correlations vanish for sufficiently large temperatures.

The curves presented showcase a competition between three influences:
first the external field which aligns the spins in z direction. Second the longi-
tudinal exchange coupling which tends to produce an antiparallel (parallel)
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spin alignment for ∆ > 0 (∆ < 0). Third the transversal exchange coupling
which can be interpreted as a kinetic term of the Hamiltonian or quantum
fluctuation. Figures 6.3 and 6.4 suggest that the relative strength of these ef-
fects varies with temperature. At low temperatures the quantum fluctuations
seem to have a dominant influence, reducing the correlations from ±1. At
higher temperatures the influence of the fluctuations seems to weaken, as the
spins become aligned by the magnetic field or the longitudinal coupling in
the case ∆ < 0. The absence of this effect for ∆ > 0 might be explained by
the influence of the rising temperature contesting the longitudinal coupling.
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Figure 6.3: Two-point correlation functions for n=2,3,4 for different values of
∆ at h = 0 in the critical phase.
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Figure 6.4: Two-point correlation functions for n=2,3,4 for different values of
h at ∆ = 0.707 in the critical phase.
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Figure 6.5: Two-point correlation functions for n=2,3,4 for different values of
∆ at T/J = 0.1 in the critical phase.
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Figure 6.5 shows the correlation functions for varying external field h
for up to n = 4. As before, we can observe the expected behaviour. For
low enough h and positive ∆ the signs of the correlations alternate with
n. Increasing h aligns all spins so that the longitudinal correlations tend to
one and the transversal ones tend to zero, eventually reaching saturation at
the upper critical field hu = 4J(∆ + 1) shown in the phase diagram. The
points at which saturation is reached will become more sharply distinguished
if the temperature is decreased and will be smoothed out if T increases. An
interesting feature is that the correlations may depend non-monotonically on
h for intermediate fields.

Additionally we can see a clear difference to the results presented in [53]
for n = 4 and ∆ = 0.995. We strongly believe that our results are the
correct ones in this case. The reason is simply the choice of integration
parameters passed to the program: the plots in figure 6.5 were made with 222

discretization points and a cut-off of C = 8000. We can roughly reproduce
the plots shown in [53] if we choose 217 points and C = 250. Note that,
with this smaller choice of parameters, the plots change depending on the
convention used for the derivatives. In the paper the y-convention is used.
To reproduce these plots we chose the same convention. However, using the
lower choice for the integration parameters, the plots will change if we shift
to the x-convention which should obviously not be the case. Figure 6.6 shows
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Figure 6.6: Correlations for variable h and T/J = 0.1. The purple and black
curves are for the y- and x-convention. The difference has been shaded. For
all other curves both conventions coincide. Integration parameters are 217

points and C = 250.
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Figure 6.7: Left: Real part of the relative differences between the x- and
y-conventions. A superscript x/y indicates the x/y-convention. The pole
appears due to the correlation function being zero at this point. Right: The
imaginary part. Each point shows the maximal imaginary part between both
conventions for the derivatives of ω. Both for T/J = 0.1 and ∆ = 0.995.

this difference. By increasing the settings for the numerical integration the
difference area shown shrinks until both curves finally coincide. Using our
higher choice of parameters the curves for both conventions coincide nearly
perfectly. Figure 6.7 shows the relative difference between those two curves
using our choice of the integration parameters as well as the corresponding
imaginary part. It is clear that both error measures are reasonably small in
our case. The pole in the relative difference between both conventions is due
to the correlation function being zero at this position.

Moving on to the case n = 5 it is clear that we have even higher require-
ments for the numerical precision of ω than before. This becomes apparent
when we insert the values for ω that we used until now. The curve for variable
h and ∆ = 0.995, which was problematic for n = 4, becomes unmanageable
in the case n = 5. This is immediately obvious since we obtain correlation
functions with real and imaginary parts whose absolute values are greater
than 1000. As we explained before, the difference functions ω(′)

ij are a measure
for a specific type of numerical error which was dominant for the cases n ≤ 4.
For n = 5 it seems that other errors become dominant which can likely be
explained by the sheer complexity of the rational functions for the correlation
functions. One very simple criterion for the quality of the results is their
imaginary part. Obviously, it should be zero for all correlation functions, but
as mentioned above it becomes very large for the most problematic case. For
all functions shown so far (n ≤ 4) the absolute values of the imaginary parts
of the correlation functions are smaller than 10−7, which we believe to be
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Figure 6.8: Two-point functions for n = 5 and T/J = 0.1.
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Figure 6.9: Left: Relative difference between the real parts for both conven-
tions. Right: The imaginary part. Both for ∆ = 0.951 and T/J = 0.1. The
poles appear again due to zeros in the correlation function.

reasonable. For n = 5 we consider these imaginary parts as an additional
criterion for the quality of the results.

As first example of n = 5 two-point functions we consider the case of
variable field h which is shown in figure 6.8. The case ∆ = 0.995 is left out
because of the numeric problems mentioned earlier. We will provide error
plots for this case later. First we want to build some trust in the results
which are shown. As expected, the numerical difficulties become greater
with larger ∆, which is why we will examine the difference function and
imaginary part for ∆ = 0.951, as this is the largest value used in the plot.
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Figure 6.10: From left to right: Relative difference between the real parts for
both conventions, the real part and the imaginary part for ∆ = 0.995 and
T/J = 0.1.

These are presented in figure 6.9. As before with n = 4, both error measures
are reasonably small even in the case n = 5 and ∆ = 0.951. Next, we want
to show an example for unusable results which have to be rejected due to
numerical errors. Figure 6.10 shows the same quantities as above as well as
the real part for the case ∆ = 0.995, which we have spared out in figure 6.8.
It is immediately apparent that these results cannot be correct even though
the difference function seems to indicate a small error. This shows that we
cannot rely on a single criterion to gauge the numerical accuracy of our
results.

At this point it is clear that we can detect numerical errors in the function
ω well enough to be confident in our results. Most of the time errors can be
controlled by setting the right parameters for the integration. The case of
n = 5 and ∆ = 0.995 is the only case which we encountered so far where this
is not possible. Considering how close this case is to the point ∆ = 1 the
difficulties are not surprising. We believe that it would be possible to obtain
results for this case by improving the program responsible for calculating
ω. However, the time necessary would likely not be justified by the limited
results.

At last we show the correlation functions in dependence of the temperature
T in figure 6.11 and figure 6.12. The same considerations described above
were made concerning the numerical errors but for the sake of brevity these
will not be shown here. The errors of all presented results are reasonably
small.

It should be noted that all results for n = 5 exhibit the expected behaviour
which was already described above.
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Figure 6.11: Two-point functions for n = 5 and h = 0.
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Figure 6.12: Two-point functions for n = 5 and ∆ = 0.707.
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Figure 6.13: Relative differences between crossover temperatures obtained
from our results and [67].

6.3.1 Crossover Temperatures

In this section we will compute the crossover temperatures at which the
longitudinal correlations 〈σz1σzn〉 change their sign from negative to positive
for −1 < ∆ < 0 and h = 0. After that we will compare these temperatures to
the ones obtained in [67]. We do not expect an exact agreement between our
results and [67], as their results are obtained using a numerical diagonalization
for a finite chain of N = 18 sites. Because of finite-size effects we expect
that, in general, differences will grow with increasing n. However, it is not
known in advance at which value of n these effects will become significant.
Additionally, we expect some “noise” due to numerical inaccuracies.

Having already calculated the functions 〈σz1σzn〉 it is easy to obtain the
crossover temperatures T0(n,∆), as these are simply the roots of the corre-
lations. However, since the correlation functions are not known as a closed
expression but instead as a list of points, we cannot rely on predefined features
of e.g. Mathematica to find their roots. Instead, we search the lists of points
from left to right for the first neighbouring points with different signs. We
then interpolate between these points to find the crossover temperatures.
Interpolation is done using polynomials of different degrees. Starting from
the two identified points, we add the nearest 2k points on both sides to obtain
polynomials of degree 2k+ 1. We tested the procedure for degrees 1, 3 and 5,
measuring the relative change between these steps. Even for the step from
degree 1 to 3, over all obtained temperatures, the biggest relative change was
smaller than one percent, meaning that the choice of the degree only makes
a negligible difference. We then used a polynomial of 5th degree for the final
values since we had already prepared the needed code.

All obtained temperatures, as well as the corresponding values from [67]

94



are shown in appendix C. The relative differences

δT0(n,∆) =
T0(n,∆)− T̃0(n,∆)

T0(n,∆)
, (6.14)

where T0(n,∆) are the temperatures obtained from our results and T̃0(n,∆)
are the ones from [67], are shown in figure 6.13 as a heatmap. The biggest
differences can be observed for ∆ = −0.9 and have values around 6%. However,
the majority of the values lies well below 1%. The figure shows that, in
general, the differences grow with increasing n, as expected.

Along the ∆-axis we observe increasing deviations as ∆ moves towards
−1. One possible explanation for this might be our own numerical precision.
As mentioned before, this precision is limited by the computation of ω and its
derivatives. However, at h = 0 and |∆| ≤ 0.9 we do not expect big numerical
uncertainties in our calculations. To test our own precision we enlarged the
integration parameters for ω and verified that the δT0(n,∆) changed very
little. This suggests that the explanation for the differences lies in [67]. There
is little ground to assess the numerical precision of the paper or the influence
of finite-size effects. Regarding the finite-size effects however, the authors
included data for the correlation functions at ∆ = −0.9 for chain lengths
of N = 16 and N = 18 in tables 3 and 5. We did a simple comparison
of the provided correlation functions for the two different chain lengths at
T = 0.1, which is close to the crossover temperatures at ∆ = −0.9. The
differences between these values range from 3% to 19%. Although there is
no simple way to know how these finite-size effects translate to the crossover
temperatures, it seems reasonable to assume that the differences between our
results and [67] are caused by these finite-size effects.

In summary we believe that our results are in good agreement with the
literature.

6.3.2 Comparison with Dugave, Göhmann and Kozlowski

In [70,71] the large-distance asymptotic behaviour of the two-point functions
of the XXZ chain is derived for low temperatures by summing up the asymp-
totically dominant terms of their expansion into form factors of the quantum
transfer matrix.

By comparing this with our exact results we can establish a benchmark for
the asymptotics. This will show at which distances the asymptotic expansion
yields good results.

Before comparing we shall give a quick overview over the asymptotic
results. First define the well known bare energy e and kernel K:

e(λ) = cth(λ)− cth(λ+ η) , K(λ) = cth(λ− η)− cth(λ+ η) . (6.15)
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Then define the dressed charge Z, the density of Bethe roots ρ and the dressed
energy ε:

Z(λ) = 1 +

∫ Q

−Q

dµ
2πi

K(λ− µ)Z(µ) , (6.16)

ρ(λ) = −e(λ+ iγ/2)

2πi
+

∫ Q

−Q

dµ
2πi

K(λ− µ)ρ(µ) , (6.17)

ε(λ) = ε0(λ) +

∫ Q

−Q

dµ
2πi

K(λ− µ)ε(µ) , ε0(λ) = h− 4J(1−∆2)

ch(2λ)−∆
. (6.18)

The two points ±Q are called the Fermi points and Q > 0 is determined by

ε(Q) = 0 . (6.19)

In [72] it was proven that such a Q exists and is unique. With these quantities
we then define the Fermi momentum kF , the Fermi sound velocity v0 and
the dressed charge Z at the Fermi point:

kF = 2π

∫ Q

0
dλ ρ(λ) , v0 =

ε′(Q)

2πρ(Q)
, Z = Z(Q) . (6.20)

The asymptotic expressions mainly consist of products of an oscillating
part and an amplitude. The amplitudes Azz0,n and A−+

0,0 are complicated
expressions given in equations (90) and (97b) of [71]. The oscillating parts
can easily be understood with the above definitions. For the longitudinal
case the asymptotic behaviour is then described by

〈σz1σzm+1〉 − 〈σz1〉〈σzm+1〉 ∼

Azz0,0

(
πT/v0

sh(mπT/v0)

)2

+Azz0,1 cos(2mkF )

(
πT/v0

sh(mπT/v0)

)2Z2

. (6.21)

Here, the amplitude Azz0,0 is the leading term for ∆ < 0 whereas Azz0,1 is leading
for ∆ > 0. The asymptotic behaviour for the transversal case is described by

〈σ−1 σ
+
m+1〉 ∼ A

−+
0,0 (−1)m

(
πT/v0

sh(mπT/v0)

) 1
2Z2

. (6.22)

It should be noted that these expressions are numerically efficient and can be
computed on a laptop in short time. The datasets for the asymptotic parts
of the plots in this section were kindly provided by Frank Göhmann and have
been computed in ∼ 10 minutes each.

Figure 6.14 shows the comparison between the asymptotic and exact
results as functions of the distance m. It can be seen that the asymptotics
come very close to the exact results for surprisingly small distances, starting
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Figure 6.14: Comparison between asymptotic expansion and exact results for
∆ = 0.6, h = 1 and T/J = 0.04.

with m = 3, 4. This is of course dependent on the chosen parameters. For
example, close to the isotropic point the agreement becomes worse.

Figure 6.15 shows both results as a function of the external field h. Again,
for distancem = 4 the agreement is remarkable even for a non-trivial structure
as shown for the longitudinal case. An additional comparison was done for
slightly higher temperature T/J = 0.1, which is shown in figure 6.16. Here
we can see that the phase transition at the saturation field begins to be
smoothed out in the exact curve. The asymptotics do not reproduce this
behaviour but still match the exact curve well apart from this point.

Figure 6.17 shows the comparison for a higher temperature (T/J = 0.4).
Here we can see that exact and asymptotic data do not match as well as for
low temperature, which is the expected behaviour since the asymptotics are
derived for low temperatures. Like before, the most notable difference is near
the saturation field. Apart from that the curves coincide surprisingly well.

We can conclude that the asymptotic formulae derived in [70,71] are very
close to the exact results for surprisingly small values of the distance m. A
rough estimation for the temperatures for which the asymptotics are valid
would be T/J < 0.1. In addition this comparison provides just another test
to see that our results agree with other works.
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Figure 6.15: Comparison between asymptotic expansion and exact results for
∆ = 0.7, T/J = 0.04.
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Figure 6.16: Comparison for ∆ = 0.7 and T/J = 0.1.
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Figure 6.17: Comparison for ∆ = 0.7 and T/J = 0.4.
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Chapter 7

Proof of the Exponential Form

In the following chapter we want to provide a proof that the exponential
form of the density matrix explained above is correct. We will do this by
using the JMS theorem which is rigorously proven in [52]. A major part of
this proof is showing that a certain map

vα(·) = trα
(
eΩ0(·)

)
(7.1)

acts as a dual vacuum, meaning that

vα (t∗(ζ)X) = 2vα (X) , vα (b∗(ζ)X) = vα (c∗(ζ)X) = 0 . (7.2)

This is in fact already proven in [50]. However, we feel that some points
of this proof are insufficiently explained and also want to provide a more
“streamlined” proof using the results of [52]. Note that there is a typo in [50]
where the factor 2 is missing. Let us first give the following three definitions:

Definition.

• Generalized trace or κ-trace: For an operator X[k,l] ∈M[k,l] we define

trκ[k,l]
(
X[k,l]

)
=

tr[k,l]

(
q−κS[k,l]X[k,l]

)
tr[k,l]

(
q−κS[k,l]

) . (7.3)

• The operator Ω0 is the previously defined Ω were ω is replaced with ω0:

Ω0 = −
∮

dζ2
1

2πiζ2
1

∮
dζ2

2

2πiζ2
2

ω0(ζ1, ζ2;α)b(ζ1)c(ζ2) . (7.4)

• Function ω0:

ω0(ζ, α) = −
(

1− qα

1 + qα

)2

∆ζψ(ζ, α) . (7.5)

We may also write ω0(ζ, ξ;α) = ω0(ζ/ξ, α).
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7.1 Proof of the Vacuum Property

In the following we may sometimes switch between the additive and the
multiplicative representations of the spectral parameter. As before we use
ζ = eλ and q = eη. Let us first proof

Lemma 1. For a staggered choice of the inhomogeneities, i.e.

βj =

{
β2j−1 = η − β/N
β2j = β/N

the functional Zκ from [52] becomes

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1 tr[k,l]

(
DN (κ, α)X[k,l]

)
(7.6)

where DN (κ, α) is a homogeneous version of the generalized reduced density
matrix given in [58] and N is the Trotter number.

Proof. The functional is defined by (2.5) of [52]:

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1 〈κ+ α| tr[k,l]

(
T[k,l],Mq

2κS[k,l]X[k,l]

)
|κ〉

Λ(0, κ)l−k+1〈κ+ α|κ〉

where Λ(λ, κ) is the eigenvalue of largest modulus of the twisted vertical
transfer matrix t(ζ, κ) = trj

(
Tj,M (ζ)qκσ

z
j

)
. The vertical monodromy matrix

is defined as
Tj,M (λ) = Lj,N̄ (λ− βN ) · · ·Lj,1̄(λ− β1)

where we denote the horizontal or auxiliary spaces with barred numbers. For
products of monodromy matrices the shorthand notation

T[k,l],M = Tk,M · · ·Tl,M , Tj,M = Tj,M (0)

is used. Using staggered inhomogeneities and assuming that the Trotter
number is even we obtain

Tj,M = Lj,N̄ (−β/N)Lj,N−1(β/N − η) · · ·Lj,2̄(−β/N)Lj,1̄(β/N − η) .

Using the crossing symmetry

σyjLa,j(λ− η)σyj = b(λ− η)Lt1j,a(−λ)

and the definition

Y =

N/2∏
j=1

σy
2j−1
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we obtain

Tj,M = Lj,N̄ (−β/N)b(β/N − η)σy
N−1

Lt1
N−1,j

(−β/N)σy
N−1

· · ·

× Lj,2̄(−β/N)b(β/N − η)σy
1̄
Lt1

1̄,j
(−β/N)σy

1̄

= b(β/N − η)N/2Y Lj,N̄ (−β/N)Lt1
N−1,j

(−β/N) · · ·Lj,2̄(−β/N)Lt1
1̄,j

(−β/N)︸ ︷︷ ︸
=TQTMj (0)=:TQTMj

Y

= b(β/N − η)N/2Y TQTMj Y .

⇒ T[k,l],M = BY TQTMk · · ·TQTMl Y

where B ∈ C is some prefactor containing the b’s. Inserting this into the
definition of the functional we obtain

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1

〈κ+ α| tr[k,l]

(
TQTM[k,l] q2κS[k,l]X[k,l]

)
|κ〉

ΛQTM (0, κ)l−k+1〈κ+ α|κ〉

where we used that

Λ(0, κ) = b(β/N − η)N/2ΛQTM (0, κ) .

Note that the vectors 〈κ+ α| and |κ〉 are not the same as before. They now
refer to the eigenvectors of the quantum transfer matrix and not the simple
vertical transfer matrix as before. Comparing to equation (16) of [58] we
finally arrive at

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1 tr[k,l]

(
DN (κ, α)X[k,l]

)
,

where DN is now a homogeneous version of the generalized reduced density
matrix from [58] acting on the interval [k, l].

Remark 1. Note that the prefactor ρ(0)k−1 is consistent with the reduction
relations for the density matrix given by equation (19) of [58].

Next we shall consider the limit T →∞ of the case presented above. In
order to preserve as much generality as possible we will consider the case of
fixed κ = h

2ηT . This means of course that we will send h→∞ as well. The
results for finite h may later be recovered by setting κ = 0.

Lemma 2. In the limit N →∞ and T →∞ and for fixed κ, the functional
yields the κ-trace:

lim
N→∞
T→∞

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1 tr−2κ

[k,l]

(
X[k,l]

)
. (7.7)
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Proof. We know that in the Trotter limit and for finite α

lim
N→∞

tr[k,l]

(
DN (κ, α)X[k,l]

)
= lim

l→∞

tr[−l+1,l]

(
e−βHl+2ηκS[−l+1,l]q2αS[−l+1,k−1]X[k,l]

)
tr[−l+1,l]

(
e−βHl+2ηκS[−l+1,l]q2αS[−l+1,k−1]

) .

Therefore

lim
N→∞
T→∞

Zκ
{
q2αS(k−1)X[k,l]

}
= ρ(0)k−1 lim

l→∞

tr[−l+1,l]

(
q2κS[−l+1,l]q2αS[−l+1,k−1]X[k,l]

)
tr[−l+1,l]

(
q2κS[−l+1,l]q2αS[−l+1,k−1]

)
= ρ(0)k−1 tr[k,l]

(
q2κS[k,l]X[k,l]

)
tr[k,l]

(
q2κS[k,l]

)
= ρ(0)k−1 tr−2κ

[k,l]

(
X[k,l]

)
.

Before we continue we shall consider the functions ρ and ω in the limit
T →∞, as this will prove useful later. We will use the definitions of these
functions from [58] which are consistent with [52] in the above case.

Lemma 3. In the limit T → ∞ and for fixed κ, the functions ρ and ω
simplify to

lim
T→∞

ρ(ζ) =
qκ+α + q−κ−α

qκ + q−κ
(7.8)

and

lim
T→∞

ω(ζ, ξ) =

(
qκ − q−κ

qκ + q−κ
1 + qα

1− qα

)2

ω0(ζ, ξ) . (7.9)

Proof. Let us first consider the auxiliary function a(λ, κ) which we will need
for both ρ and ω. It is defined in [58] by the non-linear integral equation

ln(a(λ, κ)) = −2ηκ− 2Jsh(η)e(λ)

T
−
∫
C

dµ
2πi

K(λ− µ) ln(1 + a(λ, κ))

where

K(λ) = cth(λ− η)− cth(λ+ η) , e(λ) = cth(λ)− cth(λ+ η) .

The integration contour is shown in figure 7.1. Then, in the limit T →∞
the driving term simplifies to only −2ηκ. The integrand is then meromorphic
and, assuming λ lies inside of C, has no poles inside C. Hence

ln(a(λ, κ)) = −2ηκ ⇒ a(λ, κ) = q−2κ .

Now consider the function ρ. It is given by

ρ(ζ) = qα exp

{∫
C

dµ
2πi

e(µ− λ) ln

[
1 + a(µ, κ+ α)

1 + a(µ, κ)

]}
. (7.10)
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Figure 7.1: The contour C surrounds the real axis in counterclockwise direction.
Image from [58].

Inserting a(λ, κ) and using that e(µ− λ) has only one pole inside C which
has residue 1, this simplifies to

ρ(ζ) = qα exp

{
ln

[
1 + q−2κ−2α

1 + q−2κ

] ∫
C

dµ
2πi

e(µ− λ)

}
=
qκ+α + q−κ−α

qκ + q−κ

which proves the first part of the lemma.
The function ω is much more complicated. We shall first give its complete

representation in terms of integral equations.

ω(ζ, ξ;κ, α) = 2χαΨ(ζ, ξ)−∆χψ(χ) + 2(ρ(ζ)− ρ(ξ))ψ(χ)

where χ = ζ/ξ, ψ as before and

Ψ(ζ, ξ) =

∫
C
dm(ω)G(ω, µ) {qαcth(ω − λ− η)− ρ(ζ)cth(ω − λ)} .

As usual we use ζ = eλ and ξ = eµ. The integration measure is

dm(λ) =
dλ

2πiρ(ζ)(1 + a(λ, κ))

which simplifies to

dm(λ) =
dλ

2πiρ(ζ)(1 + q−2κ)
.

The function G(λ, µ) is given by

G(λ, µ) = q−αcth(λ− µη)− ρ(ξ)cth(λ− µ) +

∫
C
dm(ω)Kα(λ− ω)G(ω, µ)
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with the deformed kernel

Kα(λ) = q−αcth(λ− µ)− qαcth(λ+ µ) .

Noting that the integrand has only one pole inside C, we can conclude

G(λ, µ) = q−αcth(λ− µ− η)− ρ(ξ)cth(λ− µ)− Kα(λ− µ)

1 + q−2κ
.

We can then calculate Ψ in the limit T →∞:

Ψ(ζ, ξ) = − 1

1 + q−2κ
{qαcth(µ− λ− η)− ρ(ζ)cth(µ− λ) +G(λ, µ)}

= − 1

1 + q−2κ

{
qαcth(µ− λ− η)− ρ(ζ)cth(µ− λ)

+q−αcth(λ− µ− η)− ρ(ξ)cth(λ− µ)− Kα(λ− µ)

1 + q−2κ

}
= − 1

1 + q−2κ

{
Kα(λ− µ)− Kα(λ− µ)

1 + q−2κ

}
= − Kα(λ− µ)

(qκ + q−κ)2 .

At last we calculate ω. With ρ(ζ)− ρ(ξ) = 0 in the limit T →∞ and

∆χψ(χ) =
χα

2

{
qα
q2χ2 + 1

q2χ2 − 1
− q−α q

−2χ2 + 1

q−2χ2 − 1

}
=
χα

2

{
qαcth(λ− µ+ η)− q−αcth(λ− µ− η)

}
= −χ

α

2
Kα(λ− µ)

we conclude

ω(ζ, ξ;κ, α) =
χα

2

{
1− 4

(qκ + q−κ)2Kα(λ− µ)

}
=
χα

2

(
qκ − q−κ

qκ + q−κ

)2

Kα(λ− µ) .

Now only the comparison to ω0 remains:

ω0(ζ, α) = −
(

1− qα

1 + qα

)2

∆ζψ(ζ, α)︸ ︷︷ ︸
=− ζα

2
Kα(λ)

=
ζα

2

(
1− qα

1 + qα

)2

Kα(λ) ,

which proves part two of the lemma.
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We are now able to prove a homogeneous version of lemma 5.2 of [50].
Note that this lemma makes statements about operators acting on a finite
chain while [52] considers the infinite chain.

Lemma 4. For any local operator X[k,l] ∈M[k,l] we have

tr−2κ
[k,l+m]

(
t∗[k,l+m](ζ, α)X[k,l]

)
= 2

qκ+α + q−κ−α

qκ + q−κ
tr−2κ

[k,l]

(
X[k,l]

)
mod

(
ζ2 − 1

)m
(7.11)

and

tr−2κ
[k,l+m]

(
b∗[k,l+m](ζ, α)X[k,l]

)
=

(
qκ − q−κ

qκ + q−κ
1 + qα

1− qα

)2

×
∮

Γ

dξ2

2πiξ2
ω0(ζ, ξ;α) tr−2κ

[k,l]

(
c[k,l](ξ, α)X[k,l]

)
mod

(
ζ2 − 1

)m
.

Proof. To prove the first equation we shall use

Zκ {t∗(ζ)X} = 2ρ(ζ)Zκ{X}

which is shown in [52] for a quasi-local X ∈ W(α). In the following we shall
consider the staggered choice of inhomogeneities explained above and also take
the limits N →∞ and T →∞. As explained earlier in section 3.1, setting
X(s) = q2(α−s)S(k−1)X

(s)
[k,l] ∈ Wα−s,s where X

(s)
[k,l] ∈ M[k,l] and S

(
X

(s)
[k,l]

)
= s,

equation (3.12) is true. Inserting this into the above equation we obtain

lim
N→∞
T→∞

l.h.s = lim
N→∞
T→∞

Zκ
{
t∗(ζ)q2αS(k−1)X[k,l]

}
= lim

N→∞
T→∞

Zκ
{
q2αS(k−1)t∗[k,l+m](ζ, α)X[k,l]

}
mod

(
ζ2 − 1

)m
= ρ(0)k−1 tr−2κ

[k,l+m]

(
t∗[k,l+m](ζ, α)X[k,l]

)
mod

(
ζ2 − 1

)m
.

We have restricted ourselves to the case S(X) = 0, because any operator
with non-zero spin will vanish under the trace. The right-hand side directly
becomes

lim
N→∞
T→∞

r.h.s = 2
qκ+α + q−κ−α

qκ + q−κ
ρ(0)k−1 tr−2κ

[k,l]

(
X[k,l]

)
in the limit T →∞, which proves the first equation.

For the second equation we then shall use

Zκ {b∗(ζ)X} =

∮
Γ

dξ2

2πiξ2
ω(ζ, ξ)Zκ {c(ξ)X} .
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Similar to above we shall only consider operators of spin S(X) = −1 for the
same reason. It follows

lim
N→∞
T→∞

l.h.s. = lim
N→∞
T→∞

Zκ
{
b∗(ζ)q2(α+1)S(k−1)X[k,l]

}
= lim

N→∞
T→∞

Zκ
{
q2αS(k−1)b∗[k,l+m](ζ, α)X[k,l]

}
mod

(
ζ2 − 1

)m
= ρ(0)k−1 tr−2κ

[k,l+m]

(
b∗[k,l+m](ζ, α)X[k,l]

)
mod

(
ζ2 − 1

)m
.

On the right-hand side we need to consider annihilation operators for which
we will use equation (3.7). Then, similar to above we obtain

lim
N→∞
T→∞

r.h.s. = lim
N→∞
T→∞

∮
Γ

dξ2

2πiξ2
ω(ζ, ξ)Zκ

{
c(ξ)q2(α+1)S(k−1)X[k,l]

}
= lim

N→∞
T→∞

∮
Γ

dξ2

2πiξ2
ω(ζ, ξ)Zκ

{
q2αS(k−1)c[k,l](ξ, α)X[k,l]

}
=

∮
Γ

dξ2

2πiξ2

(
qκ − q−κ

qκ + q−κ
1 + qα

1− qα

)2

ω0(ζ, ξ;α)ρ(0)k−1 tr−2κ
[k,l]

(
c[k,l](ξ, α)X[k,l]

)
.

Remark 1. Of course there is a similar relation for the operators c∗ and b
which reads

tr−2κ
[k,l+m]

(
c∗[k,l+m](ζ, α)X[k,l]

)
= −

(
qκ − q−κ

qκ + q−κ
1 + qα

1− qα

)2

×
∮

Γ

dξ2

2πiξ2
ω0(ξ, ζ;α) tr−2κ

[k,l]

(
b[k,l](ξ, α)X[k,l]

)
mod

(
ζ2 − 1

)m
. (7.12)

It can be obtained using the according relation from [52] or by applying the
map φ to lemma 4.
Remark 2. In the above proof we used a crucial convention of [52]. As we
know the creation operators have the block structure

t∗ : Wα−s,s →Wα−s,s ,

b∗ : Wα−s+1,s−1 →Wα−s,s , c∗ : Wα−s−1,s+1 →Wα−s,s .

This implies that the functions ρ and ω in the JMS theorem depend on the
values α− s or rather α since we consider the s = 0 sector. In other words,
the functions generally do not depend on the same parameter as an operator
X but rather share the parameter of the complete operator on which the
functional acts. This fact becomes clear by applying the JMS theorem on
the definition of the function ω:

ω(ζ, ξ;α) = Zκ
{
b∗(ζ)c∗(ξ)q2αS(0)

}
.
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Next we want to expand lemma 4 to the infinite case. In order to do this,
let us first consider how to expand the κ-trace. Suppose −l+ 1 ≤ k ≤ m ≤ l.
Then

tr−2κ
[k,m]

(
X[k,m]

)
=

tr[k,m]

(
q2κS[k,m]X[k,m]

)
tr[k,m]

(
q2κS[k,m]

)
=

tr[−l+1,l]

(
q2κS[−l+1,l]q2αS[−l+1,k−1]X[k,m]

)
tr[−l+1,l]

(
q2κS[−l+1,l]q2αS[−l+1,k−1]

)
=

tr[−l+1,l]

(
q2κS[−l+1,l]

)
tr[−l+1,l]

(
q2κS[−l+1,l]q2αS[−l+1,k−1]

) tr−2κ
[−l+1,l]

(
q2αS[−l+1,k−1]X[k,m]

)
=

(
qκ + q−κ

qκ+α + q−κ−α

)k+l−1

tr−2κ
[−l+1,l]

(
q2αS[−l+1,k−1]X[k,m]

)
= ρ−k−l+1 tr−2κ

[−l+1,l]

(
q2αS[−l+1,k−1]X[k,m]

)
. (7.13)

We would now like to define the κ-trace on the infinite chain sending l→∞.
This is obviously not generally possible. If we set κ = −α/2 however, we
obtain

trα[k,m]

(
X[k,m]

)
= trα[−l+1,l]

(
q2αS[−l+1,k−1]X[k,m]

)
(7.14)

and can then define the κ-trace on a quasi-local operator q2αS(k−1)X[k,l] ∈
W(α):

trα
(
q2αS(k−1)X[k,l]

)
= trα[k,l]

(
X[k,l]

)
. (7.15)

Using this we can now prove

Lemma 5. For a quasi-local operator X, we have

trα (t∗(ζ)X) = 2 trα(X) , X ∈ Wα , (7.16a)

trα (b∗(ζ)X) =

∮
Γ

dξ2

2πiξ2
ω0(ζ, ξ;α) trα (c(ξ)X) , X ∈ Wα+1 , (7.16b)

trα (c∗(ζ)X) = −
∮

Γ

dξ2

2πiξ2
ω0(ξ, ζ;α) trα (b(ξ)X) , X ∈ Wα−1 . (7.16c)

Proof. All three equations are proven by taking lemma 4, setting κ = −α/2
and then expanding the trace to the infinite chain. As before, we will restrict
the spin to 0 or ±1. Let us consider the first equation of lemma 4:

l.h.s = trα[k,l+m]

(
t∗[k,l+m](ζ, α)X[k,l]

)
= trα

(
q2αS(k−1)t∗[k,l+m](ζ, α)X[k,l]

)
= trα

(
t∗(ζ)q2αS(k−1)X[k,l]

)
mod

(
ζ2 − 1

)m
and

r.h.s = 2 trα[k,l]
(
X[k,l]

)
= trα

(
q2αS(k−1)X[k,l]

)
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which proves the first equation.
The second equation is proven similarly. The factor before the integral in

lemma 4(ii) reduces to one when we set κ = −α/2. We obtain

l.h.s = trα[k,l+m]

(
b∗[k,l+m](ζ, α)X[k,l]

)
= trα

(
q2αS(k−1)b∗[k,l+m](ζ, α)X[k,l]

)
= trα

(
b∗(ζ)q2(α+1)S(k−1)X[k,l]

)
mod

(
ζ2 − 1

)m
and

trα[k,l]
(
c[k,l](ξ, α)X[k,l]

)
= trα

(
c(ξ)q2(α+1)S(k−1)X[k,l]

)
.

Inserting into lemma 4 proves the second equation.
The third part can then be proven completely analogously to the second

part.

Note that it would of course be possible to leave out lemma 4 and just
prove lemma 5 using the JMS theorem directly. We feel however that the
distinctions presented can be a source of confusion and therefore preferred to
present both cases.

We are now ready to prove

Theorem 1. The map trα
(
eΩ0(·)

)
acts as the dual vacuum on any quasi-local

operator X ∈ W(α), i.e.

trα
(
eΩ0t∗(ζ)X

)
= 2 trα

(
eΩ0X

)
, (7.17a)

trα
(
eΩ0b∗(ζ)X

)
= 0 , (7.17b)

trα
(
eΩ0c∗(ζ)X

)
= 0 . (7.17c)

Proof. The first equation follows easily from lemma 5 and the fact that t∗

commutes with the fermionic operators:

trα
(
eΩ0t∗(ζ)X

)
= trα

(
t∗(ζ)eΩ0X

)
= 2 trα

(
eΩ0X

)
.

To prove the second and third equations we shall consider a quasi-local
operator Y ∈ W(α) which is constructed as follows:

Y = B(n)C(n)q2αS(k−1)

where
B(n) = b∗(ζn) · · ·b∗(ζ1) , C(n) = c∗(ξn) · · · c∗(ξ1) .

Because of the first equation we may disregard any t∗. If an operator Y were
of the form B(n)C(m)q2αS(k−1) where n 6= m, i.e. being “unbalanced” in the
number of b∗’s and c∗’s, it would be mapped to zero:

trα
(
eΩ0B(n)C(m)q2αS(k−1)

)
= 0 , forn 6= m.
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This is simply because such an operator has a non-zero spin. As such, we may
always assume, without loss of generality, that any operator Y = x∗(ζ)X ∈
W(α) can be represented in the above way (where n = m). Let C(n)

j denote
C(n) where the j-th factor is omitted. Then consider

trα (Ω0Y ) =

∮
Γ

dx2

2πix2

∮
Γ

dz2

2πiz2
ω0(z, x) trα

(
b(z)c(x)B(n)C(n)q2αS(k−1)

)
= −

∮
Γ

dx2

2πix2
trα
(
c∗(x)c(x)B(n)C(n)q2αS(k−1)

)
= −

∮
Γ

dx2

2πix2
trα

(−1)nc∗(x)B(n)
n∑
j=1

(−1)n−jψ(x/ξj)C(n)
j q2αS(k−1)


= − trα

(−1)n
n∑
j=1

(−1)n−jc∗(ξj)B(n)C(n)
j q2αS(k−1)



= −
n∑
j=1

(−1)n−j trα

B(n) c∗(ξj)C(n)
j︸ ︷︷ ︸

=(−1)n−jC(n)

q2αS(k−1)


= −

n∑
j=1

trα
(
B(n)C(n)q2αS(k−1)

)
= −n trα(Y ) .

Here we used lemma 5 at the top.
Since the operator Ωm

0 Y is equal to a linear combination of operators of
the form B(n−m)C(n−m)q2αS(k−1), we obtain for 0 ≤ m ≤ n using linearity,

trα (Ωm
0 Y ) = −(n−m+ 1) trα

(
Ωm−1

0 Y
)

= (−1)m
n!

(n−m)!
trα(Y ) .

It then follows

trα
(
eΩ0Y

)
=

n∑
m=0

trα
(

Ωm
0

m!
Y

)

=
n∑

m=0

(−1)m
(
n
m

)
trα(Y )

=

{
1 , n = 0

0 , n 6= 0 .

which proves the second and third equations.
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7.2 Expectation Values for Vanishing External Field

We can now prove that the exponential form indeed produces correct expec-
tation values. We shall however restrict ourselves to one of two cases: first
the case of a vanishing external field (h = 0) and second the case of operators
which are even under spin reversal, i.e. J(X) = X.

The motivation to consider these two cases comes from [53]. The reason is
that in these two cases the operator Ω2 vanishes. Even though this operator
is not rigorously proven to render correct results, the authors of [53] have
confirmed that 〈X〉T,h = limα→0 trα

(
eΩ1+Ω2X

)
by comparing with various

known results. For the first case it is easy to see that Ω2 vanishes: since the
eigenvalue Λ(ζ, κ) is even in κ (see [58]) the function ϕ has to be uneven in
κ and therefore zero for κ = h = 0.

The second case is less obvious: we know that for an operator X even
under spin reversal, the expectation value is even in h: 〈X〉T,h = 〈X〉T,−h.
For finite α there is a similar property:

trα
(
eΩ1(κ,α)+Ω2(κ,α)X

)
= tr−α

(
eΩ1(−κ,−α)+Ω2(−κ,−α)X

)
. (7.18)

Since Ω2 is nilpotent (Ω2
2 = 0) and thus eΩ2 = 1 + Ω2 it follows that

trα
(
eΩ1+Ω2X

)
= trα

(
eΩ1X

)
+ trα

(
Ω2eΩ1X

)
. (7.19)

Using the properties ω(ζ, ξ;κ, α) = ω(ζ, ξ;−κ,−α) and
ϕ(ζ;κ, α) = −ϕ(ζ;−κ,−α), it follows that limα→0 trα

(
Ω2eΩ1X

)
= 0 and

thus
〈X〉T,h = lim

α→0
trα
(
eΩ1X

)
, (7.20)

showing that Ω2 is not needed in the second case as well.
We shall now prove

Theorem 2. For a quasi-local operator X ∈ W(α), in the case of a vanishing
external field, thermal expectation values are given by

〈X〉T,h=0 = lim
α→0

trα
(
eΩ1X

)
. (7.21)

Proof. Let us consider an operator

Y = t∗(θ1) · · · t∗(θk)X , X = B(n)C(n)q2αS(k−1) .

Like before, without loss of generality we restrict ourselves to the spin zero
case. Also set Ω̃ = Ω1 − Ω0, then

trα
(
eΩ1Y

)
= trα

(
eΩ0eΩ̃Y

)
= vα

(
eΩ̃Y

)
.

It is then immediately clear that

vα
(
eΩ̃Y

)
= 2kvα

(
eΩ̃X

)
.

111



Since the operator Ω̃mX is equal to a linear combination of operators of
the form B(n−m)C(n−m)q2αS(k−1) and due to the dual vacuum property of vα

it follows that

vα
(
eΩ̃Y

)
= 2k

n∑
m=0

1

m!
vα
(

Ω̃mX
)

=
2k

n!
vα
(

Ω̃nX
)
.

Now set ω̃ = ω − ω0 and σnm = (m,m+ 1, . . . , n) and consider

b(z)B(n)q2αS(k−1) =
n∑
i=1

(−1)i+1 (−ψ (ζi/z))B(n)
i q2αS(k−1) ,

b(z)B(n)
l q2αS(k−1) =

n−1∑
i=1

(−1)i+1
(
−ψ

(
ζσnl (i)/z

))
B(n)
l,σnl (i)q

2αS(k−1)

and

c(x)C(n)q2αS(k−1) =
n∑
i=1

(−1)n−iψ (x/ξi) C(n)
i q2αS(k−1) ,

c(x)C(n)
l q2αS(k−1) =

n−1∑
i=1

(−1)n−i−1ψ
(
x/ξσnl (i)

)
C(n)
l,σnl (i)q

2αS(k−1) .

It then follows that

Ω̃B(n)C(n)q2αS(k−1)

= −
∮

Γ

dz2

2πiz2

∮
Γ

dx2

2πix2
ω̃(z, x)b(z)c(x)B(n)C(n)q2αS(k−1)

= −
∮

Γ

dz2

2πiz2

∮
Γ

dx2

2πix2
ω̃(z, x)(−1)n

×

[
n∑
i=1

(−1)i+1 (−ψ (ζi/z))B(n)
i

] n∑
j=1

(−1)n−jψ (x/ξj) C(n)
j


=

n∑
i,j=1

(−1)i+j ω̃(ζi, ξj)B(n)
i C

(n)
j q2αS(k−1)

and similarly

Ω̃B(n)
l C

(n)
m q2αS(k−1) =

n−1∑
i,j=1

(−1)i+j ω̃
(
ζσnl (i), ξσnm(j)

)
B(n)
l,σnl (i)C

(n)
m,σnm(j) .

We can now prove by induction that

Ω̃n B(n)C(n)q2αS(k−1) = n! det (ω̃(ζi, ξj))i,j=1,...,n q
2αS(k−1) . (7.22)
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Clearly this is true for n = 1. To perform the induction step consider

Ω̃n+1 B(n+1)C(n+1)q2αS(k−1)

=
n+1∑
i,j=1

(−1)i+j ω̃(ζi, ξj)Ω̃
n B(n)

i C
(n)
j q2αS(k−1)

=

n+1∑
i,j=1

(−1)i+j ω̃(ζi, ξj)n! det
(
ω̃(ζσn+1

i (l), ξσn+1
j (m))

)
l,m=1,...,n

= n!
n+1∑
i=1

n+1∑
j=1

(−1)i+j ω̃(ζi, ξj) det
(
ω̃(ζσn+1

i (l), ξσn+1
j (m))

)
l,m=1,...,n

= n!

n+1∑
i=1

det (ω̃(ζl, ξm))l,m=1,...,n+1

= (n+ 1)! det (ω̃(ζi, ξj))i,j=1,...,n+1 ,

which proves (7.22). Here we are able to use Laplace’s expansion because σ
is the permutation that connects a matrix A to its minor matrix Aij .

It is then clear that

trα
(
eΩ1Y

)
= 2k det (ω̃(ζi, ξj))i,j=1,...,n . (7.23)

We obtain the same expression if we take Zκ {Y } and use the JMS theorem.
Since this theorem is valid for any κ and α we may choose κ = −α/2, which
sets ρ(ζ) = 1, and then send α → 0. Since this means that κ → 0 as well,
this proves the theorem in the case of a vanishing external field.

7.3 Operators Even Under Spin Reversal and the
Operator t(ζ)

Next we want to cover the case of an operator even under spin reversal. As
mentioned before, the construction given in [53] is not rigorously proven. We
also cannot give a complete proof for the exponential form. However, we
think that it might be helpful to establish a link between our problem and
the so-called missing t operator.

The proposed t operator would form a pair with t∗ like the fermionic
operators c, c∗ and b,b∗. Intuitively one would assume t, t∗ to be bosons
commuting with the fermionic operators. The operator t proposed in [58] is
however more complicated. As a starting point we shall define Ω2 in terms
of t. In the above work

Ω2 =

∮
dζ2

2πiζ2
ln(ρ(ζ))t(ζ) (7.24)
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is proposed. Starting from this the authors derive some properties that
t would need to obey so that the exponential form can give the complete
density matrix. This is done for the inhomogeneous case. The existence
of the t operator could not be proven for the general case so far. However,
as explained in [58], for n = 1, 2, 3 an operator t can be constructed that
obeys all required properties. This fact is remarkable, since the associated
system of equations that t needs to solve is strongly overdetermined. We
would like to derive the properties that an operator t would need to have
in the homogeneous case and then follow that Ω2 is not needed to calculate
the expectation value of an operator which is even under spin reversal. This
obviously will not give us a definite proof but instead a conjecture for our
statement. The only non-proven assumption would be the existence of t. But
according to [58] there is evidence that t does exist.

For an operator X = B(n)C(n)q2αS(0) ∈ W(α) we require Ω2 to obey

trα
(
eΩ1+Ω2t∗(θ1) . . . t∗(θm)X

)
=

 m∏
j=1

2ρ(θ)

 trα
(
eΩ0eΩ̃X

)
. (7.25)

Using the above definition of Ω2 suppose that

t(ζ)t∗(θ)− t∗(θ)t(ζ) = − (ζ/θ)α ψ(θ/ζ, α)t∗(θ) . (7.26)

Setting T ∗k...l = t∗(θk) · · · t∗(θl) it would then follow that

Ω2T ∗1...m

=

∮
dζ2

2πiζ2
ln(ρ(ζ))t(ζ)T ∗1...m

=

∮
dζ2

2πiζ2

1

2

ζ2 + θ2
1

ζ2 − θ2
1

ln(ρ(ζ))T ∗1...m +

∮
dζ2

2πiζ2
ln(ρ(ζ))t∗(θ1)t(ζ)T ∗2...m

=

∮
dζ2

2πiζ2

1

2

m∑
j=1

ζ2 + θ2
j

ζ2 − θ2
j

 ln(ρ(ζ))T ∗1...m + T ∗1...mΩ2

= T ∗1...m

Ω2 +
m∑
j=1

ln ρ(θj)


and therefore

eΩ2T ∗1...m =

 m∏
j=1

ρ(θ)

 T ∗1...m eΩ2 .

If we assume that
[t(θ),b∗(ζ)c∗(ξ)] = 0 (7.27)
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we obtain

eΩ2T ∗1...mX =

 m∏
j=1

ρ(θ)

 T ∗1...mX .

Assuming further that
[t(θ),b(ζ)c(ξ)] = 0 (7.28)

it would follow that
[Ω1,Ω2] = 0 (7.29)

and therefore

trα
(
eΩ1+Ω2 t∗(θ1) · · · t∗(θm)X

)
=

 m∏
j=1

ρ(θ)

 trα
(
eΩ0eΩ̃ t∗(θ1) · · · t∗(θm)X

)

=

 m∏
j=1

2ρ(θ)

 trα
(
eΩ0eΩ̃X

)
(7.30)

which is exactly the needed behaviour for Ω2. In contrast to [58] we have
now derived properties for the operator t rather than for its modes. Later
we will use these properties to derive equations for the modes of t. We will
do this for the inhomogeneous case to be able to compare to [58] and then
for the homogeneous case. First however, we shall list all other properties
that t and its modes need to obey.

In contrast to [53], the Ω2 which is considered here is not nilpotent. In
analogy to [58] we shall however require t to obey a similar property. We
assume that t has the following analytic structure:

t(ζ) =
∞∑
j=0

tj

(ζ2 − 1)j
. (7.31)

Also setting
ln ρ(ζ)

ζ2
=

∞∑
m=0

ln ρ̃m
(
ζ2 − 1

)m (7.32)

we have

eΩ2q2αS(0)X[1,l] = exp


∮

dζ2

2πi

∞∑
j=0

∞∑
m=0

ln ρ̃mtj

(ζ2 − 1)j−m

 q2αS(0)X[1,l]

= exp


∞∑
j=1

ln ρ̃j−1tj

 q2αS(0)X[1,l] .
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At this point we require t to obey the same reduction relations as the other
operators:

tj,[k,l]q
ασzkX[k+1,l] = qασ

z
ktj,[k+1,l]X[k+1,l] , 1 ≤ j ≤ l , k < 1 , (7.33a)

tj,[1,l]X[1,l−1] = tj,[1,l−1]X[1,l−1] , 1 ≤ j ≤ l , (7.33b)

tl+1,[1,l+1]X[1,l] = 0 . (7.33c)

Note that we require the left reduction only “to the left” of 1. We shall further
require that the modes have the projector property

t2
j = tj , j > 0 (7.34)

and that they commute among each other

[tj , tm] = 0 , j,m > 0 . (7.35)

Using these properties, it follows that

eΩ2q2αS(0)X[1,l] =
l∏

j=1

exp
{

ln ρ̃j−1tj,[1,l]
}
q2αS(0)X[1,l]

=
l∏

j=1

{
1− tj,[1,l] + ρ̃j−1tj,[1,l]

}
q2αS(0)X[1,l]

=
l∏

j=1

{
1− αη ϕ̃j−1tj,[1,l] +O(α2)

}
q2αS(0)X[1,l] (7.36)

where we have set
ρ̃j =: 1− αη ϕ̃j +O(α2) . (7.37)

We can obtain the ϕ̃j from (7.32):

ϕ̃j =

j∑
k=0

B1(j, k)

j!
ϕ(k) , (7.38)

where ϕ(k) = ∂kζϕ(ζ, 0)|ζ=1. The B1(n, k) are given recursively by

Bm(0, 0) = 1 , (7.39a)
Bm(n, k) = 0 if k < 0 or k > n , (7.39b)

Bm(n, k) =
1

2
Bm(n− 1, k − 1)− 1

2
(2n+ 2m− 2− k)Bm(n− 1, k) else.

(7.39c)

We shall now require that t is of order O(α−1). This was checked in [58] in
the inhomogeneous case for n = 1, 2, 3. Going further we will assume this to
be true in the homogeneous case and for arbitrary n. Define

t
(0)
j = lim

α→0
(1− qα) tj . (7.40)

116



We then have

tj = −
t

(0)
j

αη
+O(1) . (7.41)

It follows that

eΩ2q2αS(0)X[1,l] =

l∏
j=1

{
1 + ϕ̃j−1t

(0)
j,[1,l] +O(α)

}
q2αS(0)X[1,l] . (7.42)

We can now consider the case that X[1,l] is even under spin reversal. As
we know, the expectation value of such an operator is even in h: 〈X〉T,h =
〈X〉T,−h. Since 〈X〉T,h = limα→0 trα

(
eΩ1+Ω2X

)
, we require eΩ2q2αS(0)X[1,l]

to be even in h in the limit α→ 0. Since we know that the ϕ̃j are odd in h,
we know that all products of the ϕ̃j with an uneven number of factors have
to vanish.

Furthermore, we can observe that

t
(0)
i t

(0)
j = 0 . (7.43)

This was proven in [58] for n = 1, 2. Additionally the authors kindly provided
us with the data for the tj,[1,3] with which we were able to verify that the
above assumption also holds for n = 3. Assuming that this is generally true
in the homogeneous case, this means that the ϕ̃j only enter the result linearly.
It would therefore follow that for an even operator X

lim
α→0

trα
(
eΩ2q2αS(0)X[1,l]

)
= X[1,l] . (7.44)

If an operator t exists, which satisfies all above assumptions, we have
then proven that

〈X〉T,h = lim
α→0

trα
(
eΩ1X

)
, if J(X) = X . (7.45)

7.3.1 Left Reduction Relation of the Density Matrix

In the above section we have discussed which relations the operator t needs to
obey focusing only on the behaviour of the map trα

(
eΩ(·)

)
. There is however

one additional property that t needs to obey which follows from the known
reduction properties of the density matrix. In [58] the left reduction property
of the density matrix is given by

tr1

{
DN (ξ1, . . . , ξm|κ, α)qασ

z
1
}

= ρ(ξ1)DN (ξ2, . . . , ξm|κ, α) .

In the homogeneous case we would expect DN to obey the relation

tr1

{
DN,[1,m](κ, α)qασ

z
1
}

= ρ(1)DN,[2,m](κ, α) . (7.46)
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This places an additional restriction on t since we know from [58] that〈
X[1,m]

〉
T,h,α

= lim
N→∞

tr[1,m]

{
DN,[1,m](κ, α)X[1,m]

}
= trα

{
eΩq2αS(0)X[1,m]

}
.

(7.47)
We shall now show that (7.46) is true if t obeys the relations

t1,[1,m]

(
qασ

z
1X[2,m]

)
= qασ

z
1X[2,m] (7.48)

and

tj,[1,m]

(
qασ

z
1X[2,m]

)
= qασ

z
1tj,[2,m]

(
X[2,m]

)
, 1 < j ≤ m . (7.49)

The second of these relations is expected as it is just the regular left reduction
relation. The first is however very surprising.

Setting X[1,m] = qασ
z
1Y[2,m] and using the above relations as well as

ρ̃0 = ρ(1) we obtain

tr[1,m]

{
DN,[1,m](κ, α)qασ

z
1Y[2,m]

}
= trα

{
eΩq2αS(0)qασ

z
1Y[2,m]

}
= trα

q2αS(0)eΩ1,[1,m]

m∏
j=1

(
1− tj,[1,m] + ρ̃j−1tj,[1,m]

)
qασ

z
1Y[2,m]


= trα

q2αS(0)qασ
z
1eΩ1,[2,m] ρ̃0

m∏
j=2

(
1− tj,[2,m] + ρ̃j−1tj,[2,m]

)
Y[2,m]


= ρ̃0 trα

{
q2αS(0)qασ

z
1eΩ[2,m]Y[2,m]

}
= ρ(1) trα[1,m]

{
qασ

z
1eΩ[2,m]Y[2,m]

}
= ρ(1) trα[2,m]

{
eΩ[2,m]Y[2,m]

}
. (7.50)

The reduction relations for t as well as for Ω1 were used in the third step.
On the other hand consider similarly

tr[2,m]

{
DN,[2,m](κ, α)Y[2,m]

}
= trα

{
eΩq2αS(1)Y[2,m]

}
= trα[2,m]

{
eΩ[2,m]Y[2,m]

}
. (7.51)

We now have shown that

tr[1,m]

{
DN,[1,m](κ, α)qασ

z
1Y[2,m]

}
= ρ(1) tr[2,m]

{
DN,[2,m](κ, α)Y[2,m]

}
⇒ tr[2,m]

{
tr1

(
DN,[1,m](κ, α)qασ

z
1
)
Y[2,m]

}
= ρ(1) tr[2,m]

{
DN,[2,m](κ, α)Y[2,m]

}
⇒ tr1

(
DN,[1,m](κ, α)qασ

z
1
)

= ρ(1)DN,[2,m](κ, α) (7.52)

which proves that (7.46) is true if the above reduction relations for t apply.
The right reduction of the density matrix follows trivially from the right

reduction of the t operator that was already assumed earlier. As such it
places no further restrictions on t.
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7.4 Relations for Modes of t(ζ)

In the above section we explained that the operator t needs to obey (7.26).
Here we will derive the implications of this for the modes of t. We shall
provide the relations and compare them to the ones derived in [58].

7.4.1 Inhomogeneous Case

We will first discuss the inhomogeneous case as this will allow us to verify
that (7.26) is compatible with the relations given in [58].

For the sake of readability, we shall write down the three relations derived
in [58]:

tjt
∗
k = t∗jtk for j 6= k ,

tjt
∗
j = t∗j ,

t∗jtj = 0 .

In the inhomogeneous case the modes of t are the residues at the places
of the inhomogeneities:

tj = resζ=ξj t(ζ)
dζ2

ζ2
. (7.53)

For the creation operators the modes are the specializations

t∗j = t∗(ξj) . (7.54)

We therefore consider the closed integral over (7.26) around ξj and set θ = ξk:∮
ξj

dζ2

2πiζ2
(t(ζ)t∗(ξk)− t∗(ξk)t(ζ)) =

1

2

∮
ξj

dζ2

2πiζ2

ζ2 + ξ2
k

ζ2 − ξ2
k

t∗(ξk)

⇒ tjt
∗
k − t∗ktj = δjkt

∗
k , (7.55)

which seems like a contradiction to [58]. To understand that this is actu-
ally no contradiction we shall shortly explain the general properties of the
creation operators in the inhomogeneous case. For the creation operators
x∗ = t∗, c∗,b∗ [50] states that if X[k,m] ∈ M[k,m] and m < j ≤ l then
x∗[k,l](ζ, α)X[k,m] is regular at ζ2 = ξ2

j and x∗[k,l](ξj , α)X[k,m] ∈M[k,j] is inde-
pendent of l. Furthermore the inductive limit of x∗[k,l](ξj , α)X[k,m] is well
defined only if m < j which is implied in all relations given in [58].

Given this restriction we know that the first equation from [58] given above
is only defined on the subspace M[1,l] with l < j, k. On this subspace the
right-hand side is always zero because the tk obey the annihilation property:

tjt
∗
k = t∗jtk = 0 , j 6= k . (7.56)
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Since we do not know the exact behaviour of t and the paper gives no details
about the subspace on which the relations are defined it is conceivable that
this equation could be defined for l < k but l ≥ j. Our tests on the computer
show however that the equation is not fulfilled in this case. This leads us to
believe that the authors intended to claim this relation only on the smaller
subspace l < j, k. On this subspace and in the case j 6= k our equation
yields the same result. This means that in this case our results are indeed
compatible with [58]. An interesting difference is that in contrast to [58] our
equation is well defined in the case l < k but l ≥ j. Using the operator t
which was provided to us by the authors we can verify that this operator
does fulfil our equation even in the case l ≥ j.

Now consider the second and third equations of [58] given above. Our
equation (7.55) becomes

tjt
∗
j − t∗jtj = t∗j

and it is clear that this is only well defined on the subspace with l < j. On
this subspace however the equation simplifies to

tjt
∗
j = t∗j

which is the second equation of [58]. The only remaining difference to the
paper is now the relation t∗jtj = 0. From our equations it is clear that this
property is only needed on the subspace l < j on which this is true because
of the annihilation property. We believe that the same restriction applies
to [58] although this is never specified explicitly in the paper. Using the data
for t provided to us we verified on the computer that

t∗j,[1,3]tj,[1,3]X[1,l] = 0 , l < j , j = 1, 2, 3

as we expected and that

t∗j,[1,3]tj,[1,3]X[1,l] 6= 0 , l = j , j = 1, 2, 3 .

It is therefore clear that our results are in agreement with [58] even though
there seems to be a contradiction at first glance.

7.4.2 Homogeneous Case

To obtain relations for the homogeneous case one needs to insert the appro-
priate expansions into (7.26). This means the known expansions for t and t∗

as well as

ζ2 + θ2

ζ2 − θ2
= −1 + 2

∞∑
k=0

(
θ2 − 1

)k
(ζ2 − 1)k+1

+ 2

∞∑
k=0

(
θ2 − 1

)k
(ζ2 − 1)k

, |1− θ2| < |1− ζ2| .
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We then obtain

2

∞∑
p=1
j=0

(
tjt
∗
p − t∗ptj

) (θ2 − 1
)p−1

(ζ2 − 1)j
=

−
∞∑
m=1

t∗m
(
θ2 − 1

)m−1
+2

∞∑
k=0
m=1

t∗m

(
θ2 − 1

)k+m−1

(ζ2 − 1)k+1
+2

∞∑
k=0
m=1

t∗m

(
θ2 − 1

)k+m−1

(ζ2 − 1)k
.

From this it follows that the modes tj have to obey the following relations:

2
(
t0t
∗
p − t∗pt0

)
= t∗p (7.57a)

tjt
∗
p − t∗ptj = t∗p−j+1 + t∗p−j , j > 0 , (7.57b)

where we have set t∗p = 0 if p ≤ 0.
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Chapter 8

Conclusion

In this work we used the fermionic structure that was first discovered in [49]
to calculate thermal expectation values of the XXZ Heisenberg chain in
an external field. We retraced the construction which was expanded in
several different papers and added some explanations where we felt that the
original literature was unclear. To calculate correlation functions explicitly we
constructed all needed fermionic operators for the homogeneous case explicitly
on the computer. In order to obtain these, new programs were developed. To
our knowledge this has not previously been done for the homogeneous case
or for length n = 5.

We believe that it would be possible to obtain correlation functions for
n = 6 using our programs in a reasonable time on moderate hardware. The
problems in constructing the fermionic operators for n = 6 were already
discussed in chapter 5, but we believe they would be solvable given more time.
One restriction that would apply to the case n = 6 would be the numerical
precision of ω. As we explained, errors can be detected but it might be
necessary to optimize the C program that calculates ω to obtain correlations
for ∆ > 0.9.

In addition to the calculations using the exponential form we expressed
the operators σz1σzn and σx1σxn in terms of the fermionic basis and then used
the JMS theorem to obtain the correlation functions. To our knowledge this
has not previously been done explicitly. As discussed before this method
does not seem feasible for large n, especially compared to the method of the
exponential form. However, an open question that should be investigated
further is whether it is possible to explicitly express certain operators like
e.g. σz1σzn in terms of the fermionic basis. This could either be a solution to
the inverse problem or an asymptotic expression valid for large n. Since the
computational difficulties of this approach arise solely in the construction
of the operators and the basis transformation, such representations would
make it possible to calculate expectation values of the involved operators for
large n. We would like to stress that even the explicit construction of the
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fermionic operators would become unnecessary if we had a closed expression
for certain operators in terms of the fermionic basis. As such we believe that
even n > 10 would be possible in this scenario. This estimation refers to the
algebraic part of the problem. Of course the issue of the numerical precision
of ω would still need to be solved like in the case of the exponential form.

We provided a proof for the correctness of the method of the exponential
form using the JMS theorem. Although such a proof is in principle already
done in [50] our proof is more general as it is valid for finite temperatures
and non-vanishing external fields, at least in the case of operators which
are even under spin reversal. Our proof still relies on the existence of the
operator t however. Even though a proof of its existence still eludes us,
there is strong evidence for it. An open question for future work would be
the extension of the proof to the case of an external field and operators not
even under spin reversal. It is shown in [57] that the operator h enters the
exponential form of the density matrix in this case. As noted in [58] this
operator seems to be connected to t. We believe that by further investigating
this connection it would be possible to generalize our proof. In the end the
operator h would no longer be needed since everything could be expressed in
terms of t. Nevertheless, it may still be practical to use h since a direct rule
for its construction is known which is very similar to the expression for k. An
additional benefit of such a work might be a hint to a possible construction of
t since it is known how to construct h in general. Another possible approach
to further investigate the operator t would be to use the freedom of choice
remaining when choosing Ω2 in [58]. Choosing this operator differently might
lead to a simpler structure of t.

The calculation of exact and explicit results in a true many-particle system
is a rare feat in physics and to our knowledge only possible for integrable
models. For this reason we think that the theory of the fermionic basis
presented in this work is quite impressive. For the Heisenberg chain it provides
us with the knowledge of static short-distance correlations which complements
the asymptotic results nicely. As we have shown, asymptotic formulae for
low temperatures [72] allow the calculation of correlation functions for n ≥ 5
to a very reasonable precision. At the same time it seems realistic to derive
asymptotics for the high-temperature case. The case of the massive regime
was not explicitly covered in this work. However, the algebraic part of the
construction, which was the focus of our work, does not depend on physical
parameters. As such, to calculate expectation values for the massive regime,
one would only need to obtain the function ω for this case. The rest of
the procedure would remain the same. A program for the massive case has
already been created by Trippe and Damerau [73]. In this case, the experience
is that the numerics are easier. This is likely because the integration contours
are finite in both directions, resulting in finite integrals in the NLIEs. As
in the massless case, there are asymptotic formulae which are close to the
exact results for relatively small n. These were derived in [74,75]. Here the
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authors derived form factor series representations of the two-point correlation
functions in the ground state. These are obtained using the algebraic Bethe
ansatz applied to the ordinary and the quantum transfer matrix respectively.

As explained before, short-distance static correlation functions can also be
observed experimentally, e.g. in electron spin resonance (ESR) experiments.
Using linear response theory, the moments of absorption lines can be related
to short-distance static correlations [19, 20]. In [23] the authors used the
compound Cu(py)2Br2 in ESR experiments and found a good agreement
with the next-nearest neighbour functions. Since longer distances relate to
higher moments of absorption lines, correlation functions become difficult
to measure. One simple reason for this is that the “tails” of the absorption
lines become difficult to measure due to a low signal-to-noise ratio. This
experimental difficulty, among others, is discussed in the paper. However,
measurements for longer distances may become possible in the future as
experimental methods improve.

We would also like to mention that there are recent works on the calcu-
lation of short-distance static correlations for the Heisenberg chain. These
are of special interest to us because they make use of the construction of the
fermionic basis as well. In [76] the authors developed a method to “guess” the
coefficients of an expansion of quasi-local operators into a sum of products of
creation operators. This method is similar to the operator product expansion
(OPE) of quantum field theory and makes use of the fact that the theory
developed in [52] is valid for arbitrary Matsubara data (see section 4.1), i.e.
spectral parameters and choice of representations on the horizontal lines. The
idea is that the algebraic part does not depend on the choice of the Matsubara
data which fixes the physical parameters. It is therefore possible to choose
the Matsubara data in such a way that one- and two-point functions can be
easily calculated. The OPE can then be fixed by considering the expectation
values of an operator and its expansion. The so-obtained expansion can
then be used with other data corresponding to a physical case. This method
allows to perform computations for up to 11 sites, but is only performed for
the XXX case. In [77] the method is expanded to obtain the entire density
matrix of the XXX chain for up to 10 sites, but with the restriction of sl2
invariance, i.e. in the absence of an external field. In [78] the method was
then applied to calculate the density matrix of the XXZ chain for up to 8 sites,
however only for the case of an unbroken Uq(sl2) symmetry. Even though
the author is able to do computations for larger intervals than we are, the
restriction to Uq(sl2) symmetry is a very strong one. It restricts the author
to the case of a vanishing external field and also forbids the calculation of
two-point functions which we are interested in. In [79] the authors prove
that for operators invariant under Uq(sl2) the correlation functions do not
contain the function ω′. For this reason it follows that none of the correlation
functions calculated in our work are accessible through the OPE technique.
As the author states, it would be complicated to remove this restriction.
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We believe that in the case of broken symmetry it would not be possible to
obtain results for 8 sites since all expressions would become significantly more
complicated. The main reason that the author did not expand the method
is probably that his interest is focused on CFT. Unbroken quantum group
symmetry corresponds to a fixed twist q−S which corresponds to a central
charge of c = 1− 6ν2/(1− ν) in the scaling limit rather than c = 1. Since we
are more interested in the lattice model, we are naturally interested in the
case of broken quantum group symmetry, too. As such it seems to be unclear
whether the method of OPE is superior to the method of the exponential
form, although it would be interesting to develop it further. An additional
advantage of our method might be that we already computed all fermionic
operators for arbitrary spin. In our case we concentrate on the spin zero
sector but, using the fermionic basis, it would be possible to calculate other
contributions and with them objects like form factors.

In the end we think that the study of the fermionic basis is interesting
not only to obtain measurable quantities like correlation functions but also to
enhance our understanding of the structure of the Heisenberg model or even
integrable models in general. An interesting question in this context could
be if it is possible to obtain the construction of the fermionic basis directly
from the appropriate quantum groups, like Uq(ŝl2) in our example. Such
connections would extend our general understanding and might allow us to
develop much more efficient methods for the calculation of static correlation
functions of integrable spin chains.
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Appendix A

Fermionic Basis for n = 4
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3−b∗4c
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1b
∗
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∗
2 +b∗4c

∗
2b
∗
1t
∗
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∗
1t
∗
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c∗2b
∗
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1b
∗
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2−b∗4c
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∗
1t
∗
1 , b∗3b
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∗
2−b∗4b
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∗
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1t
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∗
4−

c∗1b
∗
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1t
∗
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∗
4 + c∗2b
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1t
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3 − c∗2b

∗
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3 + c∗3b
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∗
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3 − c∗3b
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3(t∗1)2−b∗3c

∗
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∗
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∗
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1t
∗
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∗
2−b∗4c

∗
2(t∗1)2 , b∗1t

∗
2t
∗
4−b∗1(t∗3)2 +
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b∗3t
∗
1t
∗
3 − b∗4t

∗
1t
∗
2 , c∗1b

∗
1t
∗
1t
∗
4 − c∗1b

∗
1t
∗
2t
∗
3 + c∗2b

∗
1(t∗2)2 − c∗2b

∗
2t
∗
1t
∗
2 − c∗3b

∗
1t
∗
1t
∗
2 +

c∗3b
∗
2(t∗1)2 − b∗3c

∗
1t
∗
1t
∗
2 + b∗4c

∗
1(t∗1)2 , b∗1t

∗
1t
∗
4 − b∗1t

∗
2t
∗
3 + b∗3t

∗
1t
∗
2 − b∗4(t∗1)2 ,

c∗1b
∗
1t
∗
1t
∗
3−c∗1b

∗
1(t∗2)2 +c∗2b

∗
1t
∗
1t
∗
2−c∗3b

∗
1(t∗1)2 , b∗1t

∗
1t
∗
3−b∗1(t∗2)2 , c∗1(t∗1)2t∗3−

c∗1t
∗
1(t∗2)2 + c∗2(t∗1)2t∗2 − c∗3(t∗1)3 , (t∗1)2t∗3 − t∗1(t∗2)2 , c∗2b

∗
3b
∗
2b
∗
1 + b∗4c

∗
1b
∗
2b
∗
1 ,

b∗4b
∗
2b
∗
1 , c∗1b

∗
2b
∗
1t
∗
4−c∗2b∗2b∗1t∗3 +c∗2b

∗
3b
∗
1t
∗
2−c∗2b∗3b∗2t∗1 +b∗4c

∗
1b
∗
1t
∗
2−b∗4c∗1b∗2t∗1

, b∗2b
∗
1t
∗
4−b∗4b

∗
1t
∗
2 +b∗4b

∗
2t
∗
1 , c∗1b
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2b
∗
1t
∗
3− c∗2b

∗
2b
∗
1t
∗
2 + c∗2b

∗
3b
∗
1t
∗
1 +b∗4c

∗
1b
∗
1t
∗
1 ,

b∗2b
∗
1t
∗
3 − b∗4b

∗
1t
∗
1 , c∗1b

∗
2b
∗
1t
∗
2 − c∗2b

∗
2b
∗
1t
∗
1 , b∗2b

∗
1t
∗
2 , c∗1b

∗
1t
∗
1t
∗
4 − c∗1b

∗
1t
∗
2t
∗
3 +

c∗1b
∗
2t
∗
1t
∗
3 − c∗2b

∗
1t
∗
1t
∗
3 + c∗2b

∗
1(t∗2)2 − c∗2b

∗
2t
∗
1t
∗
2 + c∗2b

∗
3(t∗1)2 + b∗4c

∗
1(t∗1)2 ,

b∗1t
∗
1t
∗
4 − b∗1t

∗
2t
∗
3 + b∗2t

∗
1t
∗
3 − b∗4(t∗1)2 , c∗1b

∗
1(t∗2)2 − c∗1b

∗
2t
∗
1t
∗
2 − c∗2b

∗
1t
∗
1t
∗
2 +

c∗2b
∗
2(t∗1)2 , b∗1(t∗2)2 − b∗2t

∗
1t
∗
2 , c∗1b

∗
1t
∗
1t
∗
2 − c∗2b

∗
1(t∗1)2 , b∗1t

∗
1t
∗
2 , c∗1(t∗1)2t∗2 −

c∗2(t∗1)3 , (t∗1)2t∗2 , c∗1b
∗
3b
∗
2b
∗
1 , b∗3b

∗
2b
∗
1 , c∗1b

∗
2b
∗
1t
∗
3 − c∗1b

∗
3b
∗
1t
∗
2 + c∗1b

∗
3b
∗
2t
∗
1

, b∗2b
∗
1t
∗
3 − b∗3b

∗
1t
∗
2 + b∗3b

∗
2t
∗
1 , c∗1b

∗
2b
∗
1t
∗
2 − c∗1b

∗
3b
∗
1t
∗
1 , b∗2b

∗
1t
∗
2 − b∗3b

∗
1t
∗
1

, c∗1b
∗
2b
∗
1t
∗
1 , b∗2b

∗
1t
∗
1 , c∗1b

∗
1t
∗
1t
∗
3 − c∗1b

∗
1(t∗2)2 + c∗1b

∗
2t
∗
1t
∗
2 − c∗1b

∗
3(t∗1)2 ,

b∗1t
∗
1t
∗
3 − b∗1(t∗2)2 + b∗2t

∗
1t
∗
2 − b∗3(t∗1)2 , c∗1b

∗
1t
∗
1t
∗
2 − c∗1b

∗
2(t∗1)2 , b∗1t

∗
1t
∗
2 −

b∗2(t∗1)2 , c∗1b
∗
1(t∗1)2 , b∗1(t∗1)2 , c∗1(t∗1)3 , (t∗1)3 , c∗4c

∗
3b
∗
2b
∗
1 + c∗4b

∗
3c
∗
2b
∗
1 +

c∗4b
∗
3b
∗
2c
∗
1 + b∗4c

∗
3c
∗
2b
∗
1 + b∗4c

∗
3b
∗
2c
∗
1 + b∗4b

∗
3c
∗
2c
∗
1 , c∗4b

∗
3b
∗
2 + b∗4c

∗
3b
∗
2 + b∗4b

∗
3c
∗
2

, c∗4b
∗
3b
∗
1 + b∗4c

∗
3b
∗
1 + b∗4b

∗
3c
∗
1 , b∗4b

∗
3 , c∗3c

∗
2b
∗
1t
∗
4 + c∗3b

∗
2c
∗
1t
∗
4 − c∗4c

∗
2b
∗
1t
∗
3 +

c∗4c
∗
3b
∗
1t
∗
2−c∗4c∗3b∗2t∗1−c∗4b∗2c∗1t∗3+c∗4b

∗
3c
∗
1t
∗
2−c∗4b∗3c∗2t∗1+b∗3c

∗
2c
∗
1t
∗
4−b∗4c∗2c∗1t∗3+

b∗4c
∗
3c
∗
1t
∗
2−b∗4c

∗
3c
∗
2t
∗
1 , c∗3b

∗
2t
∗
4− c∗4b

∗
2t
∗
3 + c∗4b

∗
3t
∗
2 +b∗3c

∗
2t
∗
4−b∗4c

∗
2t
∗
3 +b∗4c

∗
3t
∗
2

, c∗3b
∗
1t
∗
4 − c∗4b

∗
1t
∗
3 + c∗4b

∗
3t
∗
1 + b∗3c

∗
1t
∗
4 − b∗4c

∗
1t
∗
3 + b∗4c

∗
3t
∗
1 , b∗3t

∗
4 − b∗4t

∗
3

, c∗3c
∗
2b
∗
1t
∗
3 + c∗3b

∗
2c
∗
1t
∗
3 − c∗4c

∗
2b
∗
1t
∗
2 + c∗4c

∗
3b
∗
1t
∗
1 − c∗4b

∗
2c
∗
1t
∗
2 + c∗4b

∗
3c
∗
1t
∗
1 +

b∗3c
∗
2c
∗
1t
∗
3 − b∗4c

∗
2c
∗
1t
∗
2 + b∗4c

∗
3c
∗
1t
∗
1 , c∗3b

∗
2t
∗
3 − c∗4b

∗
2t
∗
2 + c∗4b

∗
3t
∗
1 + b∗3c

∗
2t
∗
3 −

b∗4c
∗
2t
∗
2 + b∗4c

∗
3t
∗
1 , c∗3b

∗
1t
∗
3 − c∗4b

∗
1t
∗
2 + b∗3c

∗
1t
∗
3 − b∗4c

∗
1t
∗
2 , b∗3t

∗
3 − b∗4t

∗
2

, c∗2c
∗
1t
∗
2t
∗
4 − c∗2c

∗
1(t∗3)2 − c∗3c

∗
1t
∗
1t
∗
4 + c∗3c

∗
1t
∗
2t
∗
3 − c∗3c

∗
2t
∗
1t
∗
3 + c∗4c

∗
1t
∗
1t
∗
3 −

c∗4c
∗
1(t∗2)2 + c∗4c

∗
2t
∗
1t
∗
2 − c∗4c

∗
3(t∗1)2 , c∗2t

∗
2t
∗
4 − c∗2(t∗3)2 − c∗3t

∗
1t
∗
4 + c∗3t

∗
2t
∗
3 +

c∗4t
∗
1t
∗
3 − c∗4(t∗2)2 , c∗1t

∗
2t
∗
4 − c∗1(t∗3)2 + c∗3t

∗
1t
∗
3 − c∗4t

∗
1t
∗
2 , t∗2t

∗
4 − (t∗3)2 ,

c∗3b
∗
3c
∗
2b
∗
1 + c∗3b

∗
3b
∗
2c
∗
1 + c∗4c

∗
2b
∗
2b
∗
1 + c∗4b

∗
3c
∗
1b
∗
1 + b∗4c

∗
2b
∗
2c
∗
1 + b∗4c

∗
3c
∗
1b
∗
1 ,

c∗3b
∗
3b
∗
2 − c∗4b

∗
3b
∗
1 + b∗4c

∗
2b
∗
2 − b∗4c

∗
3b
∗
1 , c∗3b

∗
3b
∗
1 − c∗4b

∗
2b
∗
1 − b∗4b

∗
2c
∗
1 , b∗4b

∗
2

, c∗2b
∗
2c
∗
1t
∗
4 + c∗3c

∗
1b
∗
1t
∗
4 − c∗3c

∗
2b
∗
1t
∗
3 − c∗3b

∗
2c
∗
1t
∗
3 + c∗3b

∗
3c
∗
1t
∗
2 − c∗3b

∗
3c
∗
2t
∗
1 −

c∗4c
∗
1b
∗
1t
∗
3 +c∗4c

∗
2b
∗
1t
∗
2−c∗4c

∗
2b
∗
2t
∗
1−c∗4b

∗
3c
∗
1t
∗
1 +b∗4c

∗
2c
∗
1t
∗
2−b∗4c

∗
3c
∗
1t
∗
1 , c∗2b

∗
2t
∗
4−

c∗3b
∗
1t
∗
4 − c∗3b

∗
2t
∗
3 + c∗3b

∗
3t
∗
2 + c∗4b

∗
1t
∗
3 − c∗4b

∗
3t
∗
1 + b∗4c

∗
2t
∗
2 − b∗4c

∗
3t
∗
1 , c∗3b

∗
1t
∗
3 −

c∗3b
∗
3t
∗
1 − c∗4b

∗
1t
∗
2 + c∗4b

∗
2t
∗
1 + b∗2c

∗
1t
∗
4 − b∗4c

∗
1t
∗
2 , b∗2t

∗
4 − b∗4t

∗
2 , c∗2b

∗
2c
∗
1t
∗
3 +

c∗3c
∗
1b
∗
1t
∗
3−c∗3c

∗
2b
∗
1t
∗
2−c∗3b

∗
2c
∗
1t
∗
2 +c∗3b

∗
3c
∗
1t
∗
1−c∗4c

∗
1b
∗
1t
∗
2 +c∗4c

∗
2b
∗
1t
∗
1 +b∗4c

∗
2c
∗
1t
∗
1

, c∗2b
∗
2t
∗
3 − c∗3b

∗
1t
∗
3 − c∗3b

∗
2t
∗
2 + c∗3b

∗
3t
∗
1 + c∗4b

∗
1t
∗
2 +b∗4c

∗
2t
∗
1 , c∗3b

∗
1t
∗
2 − c∗4b

∗
1t
∗
1 +

b∗2c
∗
1t
∗
3−b∗4c

∗
1t
∗
1 , b∗2t

∗
3−b∗4t

∗
1 , c∗2c

∗
1t
∗
1t
∗
4−c∗2c

∗
1t
∗
2t
∗
3 +c∗3c

∗
1(t∗2)2−c∗3c

∗
2t
∗
1t
∗
2−

c∗4c
∗
1t
∗
1t
∗
2 + c∗4c

∗
2(t∗1)2 , c∗2t

∗
1t
∗
4 − c∗2t

∗
2t
∗
3 + c∗3(t∗2)2 − c∗4t

∗
1t
∗
2 , c∗1t

∗
1t
∗
4 −

c∗1t
∗
2t
∗
3 + c∗3t

∗
1t
∗
2 − c∗4(t∗1)2 , t∗1t

∗
4 − t∗2t

∗
3 , c∗2b

∗
3b
∗
2c
∗
1 + c∗3b

∗
3c
∗
1b
∗
1 + c∗4c

∗
1b
∗
2b
∗
1

, c∗2b
∗
3b
∗
2 − c∗3b

∗
3b
∗
1 + c∗4b

∗
2b
∗
1 , b∗3b

∗
2c
∗
1 , b∗3b

∗
2 , c∗2b

∗
2c
∗
1t
∗
3 − c∗2b

∗
3c
∗
1t
∗
2 +

c∗3c
∗
1b
∗
1t
∗
3 + c∗3b

∗
3c
∗
1t
∗
1 − c∗4c

∗
1b
∗
1t
∗
2 + c∗4c

∗
1b
∗
2t
∗
1 , c∗2b

∗
2t
∗
3 − c∗2b

∗
3t
∗
2 − c∗3b

∗
1t
∗
3 +

c∗3b
∗
3t
∗
1 + c∗4b

∗
1t
∗
2 − c∗4b

∗
2t
∗
1 , b∗2c

∗
1t
∗
3 − b∗3c

∗
1t
∗
2 , b∗2t

∗
3 − b∗3t

∗
2 , c∗2b

∗
2c
∗
1t
∗
2 −

c∗2b
∗
3c
∗
1t
∗
1 + c∗3c

∗
1b
∗
1t
∗
2 − c∗4c

∗
1b
∗
1t
∗
1 , c∗2b

∗
2t
∗
2 − c∗2b

∗
3t
∗
1 − c∗3b

∗
1t
∗
2 + c∗4b

∗
1t
∗
1 ,

b∗2c
∗
1t
∗
2−b∗3c

∗
1t
∗
1 , b∗2t

∗
2−b∗3t

∗
1 , c∗2c

∗
1t
∗
1t
∗
3− c∗2c

∗
1(t∗2)2 + c∗3c

∗
1t
∗
1t
∗
2− c∗4c

∗
1(t∗1)2

, c∗2t
∗
1t
∗
3 − c∗2(t∗2)2 + c∗3t

∗
1t
∗
2 − c∗4(t∗1)2 , c∗1t

∗
1t
∗
3 − c∗1(t∗2)2 , t∗1t

∗
3 − (t∗2)2 ,

c∗3c
∗
2b
∗
2b
∗
1 + c∗3b

∗
3c
∗
1b
∗
1 + b∗4c

∗
2c
∗
1b
∗
1 , c∗3b

∗
3b
∗
1 + b∗4c

∗
2b
∗
1 , c∗3b

∗
2b
∗
1 + b∗4c

∗
1b
∗
1 ,
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b∗4b
∗
1 , c∗2c

∗
1b
∗
1t
∗
4 − c∗3c

∗
1b
∗
1t
∗
3 + c∗3c

∗
2b
∗
1t
∗
2 − c∗3c

∗
2b
∗
2t
∗
1 − c∗3b

∗
3c
∗
1t
∗
1 − b∗4c

∗
2c
∗
1t
∗
1

, c∗2b
∗
1t
∗
4 − c∗3b

∗
1t
∗
3 + c∗3b

∗
3t
∗
1 + b∗4c

∗
2t
∗
1 , c∗1b

∗
1t
∗
4 − c∗3b

∗
1t
∗
2 + c∗3b

∗
2t
∗
1 + b∗4c

∗
1t
∗
1

, b∗1t
∗
4 − b∗4t

∗
1 , c∗2c

∗
1b
∗
1t
∗
3 − c∗3c

∗
1b
∗
1t
∗
2 + c∗3c

∗
2b
∗
1t
∗
1 , c∗2b

∗
1t
∗
3 − c∗3b

∗
1t
∗
2 ,

c∗1b
∗
1t
∗
3− c∗3b

∗
1t
∗
1 , b∗1t

∗
3 , c∗2c

∗
1t
∗
1t
∗
3− c∗3c

∗
1t
∗
1t
∗
2 + c∗3c

∗
2(t∗1)2 , c∗2t

∗
1t
∗
3− c∗3t

∗
1t
∗
2 ,

c∗1t
∗
1t
∗
3− c∗3(t∗1)2 , t∗1t

∗
3 , c∗2b

∗
3c
∗
1b
∗
1 + c∗3c

∗
1b
∗
2b
∗
1 , c∗2b

∗
3b
∗
1− c∗3b

∗
2b
∗
1 , b∗3c

∗
1b
∗
1

, b∗3b
∗
1 , c∗2c

∗
1b
∗
1t
∗
3 + c∗2b

∗
3c
∗
1t
∗
1 − c∗3c

∗
1b
∗
1t
∗
2 + c∗3c

∗
1b
∗
2t
∗
1 , c∗2b

∗
1t
∗
3 − c∗2b

∗
3t
∗
1 −

c∗3b
∗
1t
∗
2 + c∗3b

∗
2t
∗
1 , c∗1b

∗
1t
∗
3 + b∗3c

∗
1t
∗
1 , b∗1t

∗
3 − b∗3t

∗
1 , c∗2c

∗
1b
∗
1t
∗
2 − c∗3c

∗
1b
∗
1t
∗
1 ,

c∗2b
∗
1t
∗
2 − c∗3b

∗
1t
∗
1 , c∗1b

∗
1t
∗
2 , b∗1t

∗
2 , c∗2c

∗
1t
∗
1t
∗
2 − c∗3c

∗
1(t∗1)2 , c∗2t

∗
1t
∗
2 − c∗3(t∗1)2 ,

c∗1t
∗
1t
∗
2 , t∗1t

∗
2 , c∗2c

∗
1b
∗
2b
∗
1 , c∗2b

∗
2b
∗
1 , c∗1b

∗
2b
∗
1 , b∗2b

∗
1 , c∗2c

∗
1b
∗
1t
∗
2 − c∗2c

∗
1b
∗
2t
∗
1

, c∗2b
∗
1t
∗
2 − c∗2b

∗
2t
∗
1 , c∗1b

∗
1t
∗
2 − c∗1b

∗
2t
∗
1 , b∗1t

∗
2 − b∗2t

∗
1 , c∗2c

∗
1b
∗
1t
∗
1 , c∗2b

∗
1t
∗
1 ,

c∗1b
∗
1t
∗
1 , b∗1t

∗
1 , c∗2c

∗
1(t∗1)2 , c∗2(t∗1)2 , c∗1(t∗1)2 , (t∗1)2 , c∗4c

∗
3c
∗
2b
∗
1 +c∗4c

∗
3b
∗
2c
∗
1 +

c∗4b
∗
3c
∗
2c
∗
1 +b∗4c

∗
3c
∗
2c
∗
1 , c∗4c

∗
3b
∗
2 +c∗4b

∗
3c
∗
2 +b∗4c

∗
3c
∗
2 , c∗4c

∗
3b
∗
1 +c∗4b

∗
3c
∗
1 +b∗4c

∗
3c
∗
1

, c∗4c
∗
2b
∗
1 + c∗4b

∗
2c
∗
1 + b∗4c

∗
2c
∗
1 , c∗4b

∗
3 + b∗4c

∗
3 , c∗4b

∗
2 + b∗4c

∗
2 , c∗4b

∗
1 + b∗4c

∗
1 ,

b∗4 , c∗3c
∗
2c
∗
1t
∗
4 − c∗4c

∗
2c
∗
1t
∗
3 + c∗4c

∗
3c
∗
1t
∗
2 − c∗4c

∗
3c
∗
2t
∗
1 , c∗3c

∗
2t
∗
4 − c∗4c

∗
2t
∗
3 + c∗4c

∗
3t
∗
2 ,

c∗3c
∗
1t
∗
4−c∗4c∗1t∗3+c∗4c

∗
3t
∗
1 , c∗2c

∗
1t
∗
4−c∗4c∗1t∗2+c∗4c

∗
2t
∗
1 , c∗3t

∗
4−c∗4t∗3 , c∗2t

∗
4−c∗4t∗2 ,

c∗1t
∗
4−c∗4t∗1 , t∗4 , c∗3b

∗
3c
∗
2c
∗
1 +c∗4c

∗
2b
∗
2c
∗
1 +c∗4c

∗
3c
∗
1b
∗
1 , c∗3b

∗
3c
∗
2 +c∗4c

∗
2b
∗
2−c∗4c∗3b∗1

, c∗3b
∗
3c
∗
1−c∗4b∗2c∗1 , c∗4c

∗
1b
∗
1−b∗3c∗2c∗1 , c∗3b

∗
3−c∗4b∗2 , c∗4b

∗
1 +b∗3c

∗
2 , b∗3c

∗
1 , b∗3

, c∗3c
∗
2c
∗
1t
∗
3−c∗4c∗2c∗1t∗2 +c∗4c

∗
3c
∗
1t
∗
1 , c∗3c

∗
2t
∗
3−c∗4c∗2t∗2 +c∗4c

∗
3t
∗
1 , c∗3c

∗
1t
∗
3−c∗4c∗1t∗2 ,

c∗2c
∗
1t
∗
3−c∗4c

∗
1t
∗
1 , c∗3t

∗
3−c∗4t

∗
2 , c∗2t

∗
3−c∗4t

∗
1 , c∗1t

∗
3 , t∗3 , c∗3c

∗
2b
∗
2c
∗
1 +c∗4c

∗
2c
∗
1b
∗
1

, c∗3c
∗
2b
∗
2− c∗4c

∗
2b
∗
1 , c∗3b

∗
2c
∗
1 + c∗4c

∗
1b
∗
1 , c∗2b

∗
2c
∗
1 , c∗3b

∗
2− c∗4b

∗
1 , c∗2b

∗
2 , b∗2c

∗
1

, b∗2 , c∗3c
∗
2c
∗
1t
∗
2 − c∗4c

∗
2c
∗
1t
∗
1 , c∗3c

∗
2t
∗
2 − c∗4c

∗
2t
∗
1 , c∗3c

∗
1t
∗
2 − c∗4c

∗
1t
∗
1 , c∗2c

∗
1t
∗
2

, c∗3t
∗
2 − c∗4t

∗
1 , c∗2t

∗
2 , c∗1t

∗
2 , t∗2 , c∗3c

∗
2c
∗
1b
∗
1 , c∗3c

∗
2b
∗
1 , c∗3c

∗
1b
∗
1 , c∗2c

∗
1b
∗
1

, c∗3b
∗
1 , c∗2b

∗
1 , c∗1b

∗
1 , b∗1 , c∗3c

∗
2c
∗
1t
∗
1 , c∗3c

∗
2t
∗
1 , c∗3c

∗
1t
∗
1 , c∗2c

∗
1t
∗
1 , c∗3t

∗
1 ,

c∗2t
∗
1 , c∗1t

∗
1 , t∗1 , c∗4c

∗
3c
∗
2c
∗
1 , c∗4c

∗
3c
∗
2 , c∗4c

∗
3c
∗
1 , c∗4c

∗
2c
∗
1 , c∗3c

∗
2c
∗
1 , c∗4c

∗
3 ,

c∗4c
∗
2 , c∗3c

∗
2 , c∗4c

∗
1 , c∗3c

∗
1 , c∗2c

∗
1 , c∗4 , c∗3 , c∗2 , c∗1 , 1 .
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Appendix B

Correlation Functions for n = 5

In the following we choose to set ωij = ∂iλ∂
j
µω̃(λ, µ)λ=µ=0 to shorten the

expressions.

〈σz1σz5〉 ={
−8η2q2

{
112ω11ω20 − 112ω10ω21 − 120ω2

21 + 120ω11ω22 + 40ω21ω30 + 12ω22ω31

− 8ω2
31 − 40ω10ω32 − 12ω21ω32 + 4ω30ω32 + 8ω11ω33 − 4ω20ω33

− 20ω11ω40 − 3ω22ω40 + 2ω31ω40 + 20ω10ω41 + 6ω21ω41 − 2ω30ω41

− 32q14 (9216ω + 18112ω11 − 12864ω20 − 3084ω22 + 3016ω31 + 148ω33 − 240ω40 − 111ω42)

− 6ω11ω42 + 3ω20ω42

+ q18
(
−51200ω2

10 + 25600ω11 − 9216ω20 − 233488ω11ω20 + 155136ω2
20 − 15288ω2

21

+ 14016ω22 + 15288ω11ω22 + 11240ω21ω30 − 2048ω2
30 − 18560ω31 − 6144ω20ω31

− 1236ω22ω31 + 824ω2
31 + 1236ω21ω32 − 412ω30ω32 − 1856ω33 − 824ω11ω33

+ 412ω20ω33 + 2304ω40 − 2548ω11ω40 + 1536ω20ω40 + 309ω22ω40 − 206ω31ω40

− 618ω21ω41 + 206ω30ω41 + 4ω10 (58372ω21 − 25856ω30 + 637 (−2ω32 + ω41))

+ 512ω (−864 + 100ω11 − 303ω22 + 202ω31 + 4ω33 − 3ω42)

+1392ω42 + 618ω11ω42 − 309ω20ω42)

+ q12
(
−456704ω2

10 + 151552ω11 − 142848ω20 − 77136ω11ω20 + 81408ω2
20

− 16920ω2
21 − 69504ω22 + 16920ω11ω22 + 21000ω21ω30 − 5120ω2

30 + 69376ω31

− 15360ω20ω31 − 900ω22ω31 + 600ω2
31 + 900ω21ω32 − 300ω30ω32 + 3712ω33

− 600ω11ω33 + 300ω20ω33 − 5760ω40 − 2820ω11ω40 + 3840ω20ω40 + 225ω22ω40

− 150ω31ω40 − 450ω21ω41 + 150ω30ω41 + 4ω10 (19284ω21 − 13568ω30 + 705 (−2ω32 + ω41))

+ 256ω (−2880 + 1784ω11 − 318ω22 + 212ω31 + 20ω33 − 15ω42)

−2784ω42 + 450ω11ω42 − 225ω20ω42)
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+ q4
(
7168ω2

10 − 7296ω2
20 + 840ω2

21 − 576ω22 + 7296ωω22 − 2200ω21ω30

+ 640ω2
30 + 384ω31 − 4864ωω31 + 1920ω20ω31 − 84ω22ω31 + 56ω2

31

+ 84ω21ω32 − 28ω30ω32 − 192ω33 − 640ωω33 + 28ω20ω33 − 480ω20ω40

+ 21ω22ω40 − 14ω31ω40 − 42ω21ω41 + 14ω30ω41

− 4ω10 (3932ω21 − 1216ω30 − 70ω32 + 35ω41)

− 2ω11 (−768 + 3584ω − 7864ω20 + 420ω22 + 28ω33 − 70ω40 − 21ω42)

+144ω42 + 480ωω42 − 21ω20ω42)

+ q28
(
120ω2

21 − 40ω21ω30 − 12ω22ω31 + 8ω2
31 + 12ω21ω32 − 4ω30ω32

+ 4ω20ω33 + 3ω22ω40 − 2ω31ω40 + 4ω10 (28ω21 + 10ω32 − 5ω41)

− 6ω21ω41 + 2ω30ω41 − 2ω11 (56ω20 + 60ω22 + 4ω33 − 10ω40 − 3ω42)

−3ω20ω42)

+ 8q6
(
2176ω2

10 − 1968ω2
20 − 228ω2

21 − 120ω22 + 1968ωω22 − 260ω21ω30

+ 112ω2
30 + 80ω31 − 1312ωω31 + 336ω20ω31 + 12ω22ω31 − 8ω2

31 − 12ω21ω32

+ 4ω30ω32 + 8ω33 − 112ωω33 − 4ω20ω33 − 84ω20ω40 − 3ω22ω40

+ 2ω31ω40 + 6ω21ω41 − 2ω30ω41

+ ω10 (−4168ω21 + 1312ω30 − 76ω32 + 38ω41)

+ ω11 (128− 2176ω + 4168ω20 + 228ω22 + 8ω33 − 38ω40 − 6ω42)

−6ω42 + 84ωω42 + 3ω20ω42)

+ q2
(
4096ω2

10 − 3840ω2
20 + 216ω2

21 − 960ω22 + 3840ωω22 − 840ω21ω30 + 256ω2
30

+ 640ω31 − 2560ωω31 + 768ω20ω31 + 36ω22ω31 − 24ω2
31 − 36ω21ω32 + 12ω30ω32

+ 64ω33 − 256ωω33 − 12ω20ω33 − 192ω20ω40 − 9ω22ω40 + 6ω31ω40

+ 18ω21ω41 − 6ω30ω41 − 4ω10 (1524ω21 − 640ω30 − 18ω32 + 9ω41)

+ ω11 (1024− 4096ω + 6096ω20 − 216ω22 + 24ω33 + 36ω40 − 18ω42)

−48ω42 + 192ωω42 + 9ω20ω42)

+ q24
(
−7168ω2

10 + 7296ω2
20 − 840ω2

21 − 576ω22 − 7296ωω22 + 2200ω21ω30

− 640ω2
30 + 384ω31 + 4864ωω31 − 1920ω20ω31 + 84ω22ω31 − 56ω2

31 − 84ω21ω32

+ 28ω30ω32 − 192ω33 + 640ωω33 − 28ω20ω33 + 480ω20ω40 − 21ω22ω40

+ 14ω31ω40 + 42ω21ω41 − 14ω30ω41 + 4ω10 (3932ω21 − 1216ω30 − 70ω32 + 35ω41)

+ 2ω11 (768 + 3584ω − 7864ω20 + 420ω22 + 28ω33 − 70ω40 − 21ω42)

+144ω42 − 480ωω42 + 21ω20ω42)
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+ q16
(
456704ω2

10 + 151552ω11 − 142848ω20 + 77136ω11ω20 − 81408ω2
20 + 16920ω2

21

− 69504ω22 − 16920ω11ω22 − 21000ω21ω30 + 5120ω2
30 + 69376ω31 + 15360ω20ω31

+ 900ω22ω31 − 600ω2
31 − 900ω21ω32 + 300ω30ω32 + 3712ω33 + 600ω11ω33

− 300ω20ω33 − 5760ω40 + 2820ω11ω40 − 3840ω20ω40 − 225ω22ω40 + 150ω31ω40

+ ω10 (−77136ω21 + 54272ω30 + 5640ω32 − 2820ω41)

− 256ω (2880 + 1784ω11 − 318ω22 + 212ω31 + 20ω33 − 15ω42)

+450ω21ω41 − 150ω30ω41 − 2784ω42 − 450ω11ω42 + 225ω20ω42)

+ q10
(
51200ω2

10 + 25600ω11 − 9216ω20 + 233488ω11ω20 − 155136ω2
20 + 15288ω2

21

+ 14016ω22 − 15288ω11ω22 − 11240ω21ω30 + 2048ω2
30 − 18560ω31 + 6144ω20ω31

+ 1236ω22ω31 − 824ω2
31 − 1236ω21ω32 + 412ω30ω32 − 1856ω33 + 824ω11ω33

− 412ω20ω33 + 2304ω40 + 2548ω11ω40 − 1536ω20ω40 − 309ω22ω40 + 206ω31ω40

+ 618ω21ω41 − 206ω30ω41 − 4ω10 (58372ω21 − 25856ω30 + 637 (−2ω32 + ω41))

− 512ω (864 + 100ω11 − 303ω22 + 202ω31 + 4ω33 − 3ω42)

+1392ω42 − 618ω11ω42 + 309ω20ω42)

− 8q22
(
2176ω2

10 − 1968ω2
20 − 228ω2

21 + 120ω22 + 1968ωω22 − 260ω21ω30

+ 112ω2
30 − 80ω31 − 1312ωω31 + 336ω20ω31 + 12ω22ω31 − 8ω2

31 − 12ω21ω32

+ 4ω30ω32 − 8ω33 − 112ωω33 − 4ω20ω33 − 84ω20ω40 − 3ω22ω40

+ 2ω31ω40 + 6ω21ω41 − 2ω30ω41 + ω10 (−4168ω21 + 1312ω30 − 76ω32 + 38ω41)

+6ω42 + 84ωω42 + 3ω20ω42 − 2ω11 (64 + 1088ω − 2084ω20 − 114ω22 − 4ω33 + 19ω40 + 3ω42))

+ q26
(
−4096ω2

10 + 3840ω2
20 − 216ω2

21 − 960ω22 − 3840ωω22 + 840ω21ω30

− 256ω2
30 + 640ω31 + 2560ωω31 − 768ω20ω31 − 36ω22ω31 + 24ω2

31 + 36ω21ω32

− 12ω30ω32 + 64ω33 + 256ωω33 + 12ω20ω33 + 192ω20ω40 + 9ω22ω40

− 6ω31ω40 − 18ω21ω41 + 6ω30ω41 + 4ω10 (1524ω21 − 640ω30 − 18ω32 + 9ω41)

−48ω42 − 192ωω42 − 9ω20ω42 + 2ω11 (512 + 2048ω − 3048ω20 + 108ω22 − 12ω33 − 18ω40 + 9ω42))

+ q20
(
−74752ω2

10 + 109056ω11 − 53760ω20 − 118704ω11ω20 + 48768ω2
20 + 3672ω2

21

+ 8640ω22 − 3672ω11ω22 − 8520ω21ω30 + 2432ω2
30 − 4224ω31 + 7296ω20ω31

+ 612ω22ω31 − 408ω2
31 − 612ω21ω32 + 204ω30ω32 + 576ω33 + 408ω11ω33

− 204ω20ω33 − 384ω40 + 612ω11ω40 − 1824ω20ω40 − 153ω22ω40 + 102ω31ω40

+ 4ω10 (29676ω21 − 8128ω30 + 306ω32 − 153ω41)

+ 306ω21ω41 − 102ω30ω41 − 432ω42 − 306ω11ω42 + 153ω20ω42

+32ω (−13824 + 2336ω11 − 1524ω22 + 1016ω31 − 76ω33 + 57ω42))
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− q8
(
−74752ω2

10 − 109056ω11 + 53760ω20 − 118704ω11ω20 + 48768ω2
20 + 3672ω2

21

− 8640ω22 − 3672ω11ω22 − 8520ω21ω30 + 2432ω2
30 + 4224ω31 + 7296ω20ω31

+ 612ω22ω31 − 408ω2
31 − 612ω21ω32 + 204ω30ω32 − 576ω33 + 408ω11ω33

− 204ω20ω33 + 384ω40 + 612ω11ω40 − 1824ω20ω40 − 153ω22ω40 + 102ω31ω40

+ 4ω10 (29676ω21 − 8128ω30 + 306ω32 − 153ω41)

+ 306ω21ω41 − 102ω30ω41 + 432ω42 − 306ω11ω42 + 153ω20ω42

+32ω (13824 + 2336ω11 − 1524ω22 + 1016ω31 − 76ω33 + 57ω42))}
− 4ηq2

(
−1− q2 − q4 + q8 + q10 + q12

){
−256ω20ω

′
10 − 288ω22ω

′
10 − 64ω31ω

′
10 − 32ω33ω

′
10 + 64ω40ω

′
10 + 24ω42ω

′
10

+ 256ω10ω
′
20 + 288ω21ω

′
20 − 64ω30ω

′
20 − 48ω32ω

′
20 + 24ω41ω

′
20 + 64ω′21

− 256ωω′21 − 288ω20ω
′
21 + 48ω31ω

′
21 + 12ω33ω

′
21 − 12ω40ω

′
21 − 9ω42ω

′
21

+ 64ω11ω
′
30 + 64ω20ω

′
30 + 48ω22ω

′
30 + 32ω31ω

′
30 − 16ω40ω

′
30 − 64ω10ω

′
31

− 48ω21ω
′
31 − 32ω30ω

′
31 − 12ω32ω

′
31 + 6ω41ω

′
31 + 16ω′32 − 64ωω′32

+ 48ω11ω
′
32 − 48ω20ω

′
32 + 12ω31ω

′
32 − 3ω40ω

′
32 − 64ω10ω

′
40 − 48ω21ω

′
40

+ 16ω30ω
′
40 − 16ω′41 + 64ωω′41 + 36ω20ω

′
41 + 9ω22ω

′
41 − 6ω31ω

′
41

+ 12ω10ω
′
42 − 9ω21ω

′
42 + 3ω30ω

′
42 + 4ω′43 − 16ωω′43 + 6ω11ω

′
43 − 3ω20ω

′
43

− 24q8
(
12288ω′10 + 1840ω′21 + 156ω′32 + 20ω′41 + 15ω′43

)
− 2q2

(
1216ω31ω

′
10 + 224ω33ω

′
10 + 64ω40ω

′
10 − 168ω42ω

′
10

− 4352ω10ω
′
20 + 2208ω21ω

′
20 − 1024ω30ω

′
20 − 144ω32ω

′
20 + 72ω41ω

′
20

− 960ω′21 + 4352ωω′21 + 144ω31ω
′
21 + 12ω33ω

′
21 − 36ω40ω

′
21 − 9ω42ω

′
21

− 1216ω11ω
′
30 − 224ω31ω

′
30 + 32ω40ω

′
30 + 1216ω10ω

′
31 − 144ω21ω

′
31

+ 224ω30ω
′
31 − 12ω32ω

′
31 + 6ω41ω

′
31 + 288ω′32 − 1024ωω′32

+ 144ω11ω
′
32 + 12ω31ω

′
32 − 3ω40ω

′
32 − 64ω10ω

′
40 + 96ω21ω

′
40

− 32ω30ω
′
40 − 48ω′41 + 64ωω′41 − 6ω31ω

′
41

+ ω22

(
−2208ω′10 + 144ω′30 + 9ω′41

)
+ 36ω10ω

′
42 − 9ω21ω

′
42 + 3ω30ω

′
42

+ ω20

(
4352ω′10 − 2208ω′21 + 1024ω′30 − 144ω′32 − 132ω′41 − 3ω′43

)
+32ωω′43 + 6ω11ω

′
43

)
+ 2q14

(
1216ω31ω

′
10 + 224ω33ω

′
10 + 64ω40ω

′
10 − 168ω42ω

′
10

− 4352ω10ω
′
20 + 2208ω21ω

′
20 − 1024ω30ω

′
20 − 144ω32ω

′
20 + 72ω41ω

′
20

+ 960ω′21 + 4352ωω′21 + 144ω31ω
′
21 + 12ω33ω

′
21 − 36ω40ω

′
21

− 9ω42ω
′
21 − 1216ω11ω

′
30 − 224ω31ω

′
30 + 32ω40ω

′
30 + 1216ω10ω

′
31

− 144ω21ω
′
31 + 224ω30ω

′
31 − 12ω32ω

′
31 + 6ω41ω

′
31 − 288ω′32

− 1024ωω′32 + 144ω11ω
′
32 + 12ω31ω

′
32 − 3ω40ω

′
32 − 64ω10ω

′
40

+ 96ω21ω
′
40 − 32ω30ω

′
40 + 48ω′41 + 64ωω′41 − 6ω31ω

′
41

+ ω22

(
−2208ω′10 + 144ω′30 + 9ω′41

)
+ 36ω10ω

′
42 − 9ω21ω

′
42 + 3ω30ω

′
42

+ ω20

(
4352ω′10 − 2208ω′21 + 1024ω′30 − 144ω′32 − 132ω′41 − 3ω′43

)
+32ωω′43 + 6ω11ω

′
43

)
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− 2q10
(
−4288ω31ω

′
10 + 544ω33ω

′
10 + 192ω40ω

′
10 − 408ω42ω

′
10

− 9984ω10ω
′
20 − 5280ω21ω

′
20 + 3456ω30ω

′
20 + 336ω32ω

′
20 − 168ω41ω

′
20

− 7232ω′21 + 9984ωω′21 − 336ω31ω
′
21 + 36ω33ω

′
21 + 84ω40ω

′
21 − 27ω42ω

′
21

+ 4288ω11ω
′
30 − 544ω31ω

′
30 + 192ω40ω

′
30 − 4288ω10ω

′
31 + 336ω21ω

′
31

+ 544ω30ω
′
31 − 36ω32ω

′
31 + 18ω41ω

′
31 − 800ω′32 + 3456ωω′32

− 336ω11ω
′
32 + 36ω31ω

′
32 − 9ω40ω

′
32 − 192ω10ω

′
40 + 576ω21ω

′
40

− 192ω30ω
′
40 − 208ω′41 + 192ωω′41 − 18ω31ω

′
41

+ 3ω22

(
1760ω′10 − 112ω′30 + 9ω′41

)
− 84ω10ω

′
42 − 27ω21ω

′
42 + 9ω30ω

′
42

+ ω20

(
9984ω′10 + 5280ω′21 − 3456ω′30 + 336ω′32 − 492ω′41 − 9ω′43

)
−128ω′43 + 192ωω′43 + 18ω11ω

′
43

)
+ 2q6

(
−4288ω31ω

′
10 + 544ω33ω

′
10 + 192ω40ω

′
10 − 408ω42ω

′
10

− 9984ω10ω
′
20 − 5280ω21ω

′
20 + 3456ω30ω

′
20 + 336ω32ω

′
20 − 168ω41ω

′
20

+ 7232ω′21 + 9984ωω′21 − 336ω31ω
′
21 + 36ω33ω

′
21 + 84ω40ω

′
21 − 27ω42ω

′
21

+ 4288ω11ω
′
30 − 544ω31ω

′
30 + 192ω40ω

′
30 − 4288ω10ω

′
31 + 336ω21ω

′
31

+ 544ω30ω
′
31 − 36ω32ω

′
31 + 18ω41ω

′
31 + 800ω′32 + 3456ωω′32

− 336ω11ω
′
32 + 36ω31ω

′
32 − 9ω40ω

′
32 − 192ω10ω

′
40 + 576ω21ω

′
40

− 192ω30ω
′
40 + 208ω′41 + 192ωω′41 − 18ω31ω

′
41

+ 3ω22

(
1760ω′10 − 112ω′30 + 9ω′41

)
− 84ω10ω

′
42 − 27ω21ω

′
42 + 9ω30ω

′
42

+ ω20

(
9984ω′10 + 5280ω′21 − 3456ω′30 + 336ω′32 − 492ω′41 − 9ω′43

)
+128ω′43 + 192ωω′43 + 18ω11ω

′
43

)
+ q16

(
64ω31ω

′
10 + 32ω33ω

′
10 − 64ω40ω

′
10 − 24ω42ω

′
10

− 256ω10ω
′
20 − 288ω21ω

′
20 + 64ω30ω

′
20 + 48ω32ω

′
20 − 24ω41ω

′
20

+ 64ω′21 + 256ωω′21 − 48ω31ω
′
21 − 12ω33ω

′
21 + 12ω40ω

′
21 + 9ω42ω

′
21

− 64ω11ω
′
30 − 32ω31ω

′
30 + 16ω40ω

′
30 + 64ω10ω

′
31 + 48ω21ω

′
31

+ 32ω30ω
′
31 + 12ω32ω

′
31 − 6ω41ω

′
31 + 16ω′32 + 64ωω′32 − 48ω11ω

′
32

− 12ω31ω
′
32 + 3ω40ω

′
32 + 64ω10ω

′
40 + 48ω21ω

′
40 − 16ω30ω

′
40

+ 3ω22

(
96ω′10 − 16ω′30 − 3ω′41

)
− 16ω′41 − 64ωω′41 + 6ω31ω

′
41

− 12ω10ω
′
42 + 9ω21ω

′
42 − 3ω30ω

′
42 + 4ω′43 + 16ωω′43

−6ω11ω
′
43 + ω20

(
256ω′10 + 288ω′21 − 64ω′30 + 48ω′32 − 36ω′41 + 3ω′43

))
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+ 2q4
(
−2880ω31ω

′
10 + 96ω33ω

′
10 − 64ω40ω

′
10 − 72ω42ω

′
10

− 1792ω10ω
′
20 − 4704ω21ω

′
20 + 256ω30ω

′
20 − 336ω32ω

′
20 + 168ω41ω

′
20

+ 2816ω′21 + 1792ωω′21 + 336ω31ω
′
21 − 12ω33ω

′
21 − 84ω40ω

′
21 + 9ω42ω

′
21

+ 2880ω11ω
′
30 − 96ω31ω

′
30 − 32ω40ω

′
30 − 2880ω10ω

′
31 − 336ω21ω

′
31

+ 96ω30ω
′
31 + 12ω32ω

′
31 − 6ω41ω

′
31 + 416ω′32 + 256ωω′32

+ 336ω11ω
′
32 − 12ω31ω

′
32 + 3ω40ω

′
32 + 64ω10ω

′
40 − 96ω21ω

′
40 + 32ω30ω

′
40

+ ω22

(
4704ω′10 + 336ω′30 − 9ω′41

)
− 128ω′41 − 64ωω′41 + 6ω31ω

′
41

+ 84ω10ω
′
42 + 9ω21ω

′
42 − 3ω30ω

′
42 − 40ω′43 − 32ωω′43 − 6ω11ω

′
43

+ω20

(
1792ω′10 + 4704ω′21 − 256ω′30 − 336ω′32 + 12ω′41 + 3ω′43

))
− 2q12

(
−2880ω31ω

′
10 + 96ω33ω

′
10 − 64ω40ω

′
10 − 72ω42ω

′
10

− 1792ω10ω
′
20 − 4704ω21ω

′
20 + 256ω30ω

′
20 − 336ω32ω

′
20 + 168ω41ω

′
20

− 2816ω′21 + 1792ωω′21 + 336ω31ω
′
21 − 12ω33ω

′
21 − 84ω40ω

′
21 + 9ω42ω

′
21

+ 2880ω11ω
′
30 − 96ω31ω

′
30 − 32ω40ω

′
30 − 2880ω10ω

′
31 − 336ω21ω

′
31

+ 96ω30ω
′
31 + 12ω32ω

′
31 − 6ω41ω

′
31 − 416ω′32 + 256ωω′32

+ 336ω11ω
′
32 − 12ω31ω

′
32 + 3ω40ω

′
32 + 64ω10ω

′
40 − 96ω21ω

′
40 + 32ω30ω

′
40

+ ω22

(
4704ω′10 + 336ω′30 − 9ω′41

)
+ 128ω′41 − 64ωω′41 + 6ω31ω

′
41

+ 84ω10ω
′
42 + 9ω21ω

′
42 − 3ω30ω

′
42 + 40ω′43 − 32ωω′43

−6ω11ω
′
43 + ω20

(
1792ω′10 + 4704ω′21 − 256ω′30 − 336ω′32 + 12ω′41 + 3ω′43

))}
+
(
−1 + q4

)3 (
1 + q2 + 2q4 + q6 + q8

)(
ω′32ω

′
41 − ω′31ω

′
42 + ω′21ω

′
43

+ q4
(
−7040ω′20ω

′
31 + 7040ω′10ω

′
32 − 160ω′31ω

′
40 + 160ω′30ω

′
41 − 33ω′32ω

′
41

+33ω′31ω
′
42 + 11ω′21

(
640ω′30 − 3ω′43

)
− 160ω′10ω

′
43

)
+ q8

(
−7040ω′20ω

′
31 + 7040ω′10ω

′
32 − 160ω′31ω

′
40 + 160ω′30ω

′
41 − 33ω′32ω

′
41

+33ω′31ω
′
42 + 11ω′21

(
640ω′30 − 3ω′43

)
− 160ω′10ω

′
43

)
+ q12

(
ω′32ω

′
41 − ω′31ω

′
42 + ω′21ω

′
43

)
+ q2

(
320ω′20ω

′
31 − 320ω′10ω

′
32 − 80ω′31ω

′
40 + 80ω′30ω

′
41 + 6ω′32ω

′
41 − 6ω′31ω

′
42

−80ω′10ω
′
43 + ω′21

(
−320ω′30 + 6ω′43

))
+ q10

(
320ω′20ω

′
31 − 320ω′10ω

′
32 − 80ω′31ω

′
40 + 80ω′30ω

′
41 + 6ω′32ω

′
41 − 6ω′31ω

′
42

−80ω′10ω
′
43 + ω′21

(
−320ω′30 + 6ω′43

))
+ 4q6

(
−96ω′20ω

′
31 + 96ω′10ω

′
32 + 120ω′31ω

′
40 − 120ω′30ω

′
41 + 13ω′32ω

′
41

−13ω′31ω
′
42 + 120ω′10ω

′
43 + ω′21

(
96ω′30 + 13ω′43

)))}
/
(
1179648η2q10

(
−1− q2 − q4 + q8 + q10 + q12

))
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〈σx1σx5 〉 ={
−8η2q2

{
512ω2

10 + 128ω11 − 512ωω11 + 272ω11ω20 − 192ω2
20 − 272ω10ω21

− 168ω2
21 − 48ω22 + 192ωω22 + 168ω11ω22 + 128ω10ω30 + 248ω21ω30

− 64ω2
30 + 32ω31 − 128ωω31 − 192ω20ω31 − 12ω22ω31 + 8ω2

31

− 56ω10ω32 + 12ω21ω32 − 4ω30ω32 − 16ω33 + 64ωω33 − 8ω11ω33

+ 4ω20ω33 − 28ω11ω40 + 48ω20ω40 + 3ω22ω40 − 2ω31ω40 + 28ω10ω41

− 6ω21ω41 + 2ω30ω41 + 12ω42 − 48ωω42 + 6ω11ω42 − 3ω20ω42

+ q14
(
−306688ω2

10 − 159872ω11 + 133632ω20 − 266928ω11ω20 + 170304ω2
20

− 26568ω2
21 + 31152ω22 + 26568ω11ω22 + 18264ω21ω30 − 3136ω2

30 − 25376ω31

− 9408ω20ω31 − 2268ω22ω31 + 1512ω2
31 + 2268ω21ω32 − 756ω30ω32 − 368ω33

− 1512ω11ω33 + 756ω20ω33 + 1152ω40 − 4428ω11ω40 + 2352ω20ω40

+ 567ω22ω40 − 378ω31ω40 − 1134ω21ω41 + 378ω30ω41

+ 4ω10(66732ω21 − 28384ω30 + 1107(−2ω32 + ω41))

+ 16ω(129024 + 19168ω11 − 10644ω22 + 7096ω31 + 196ω33 − 147ω42)

+276ω42 + 1134ω11ω42 − 567ω20ω42)

+ q10(218112ω2
10 + 166144ω11 − 110592ω20 − 180432ω11ω20 + 79488ω2

20

− 2808ω2
21 − 9888ω22 + 2808ω11ω22 − 4824ω21ω30 + 1920ω2

30 + 6592ω31

+ 5760ω20ω31 − 972ω22ω31 + 648ω2
31 + 972ω21ω32 − 324ω30ω32 − 224ω33

− 648ω11ω33 + 324ω20ω33 − 468ω11ω40 − 1440ω20ω40 + 243ω22ω40

− 486ω21ω41 + 162ω30ω41 + 36ω10(5012ω21 − 1472ω30 − 26ω32 + 13ω41)

− 96ω(−3072 + 2272ω11 + 828ω22 − 552ω31 + 20ω33 − 15ω42)

− 162ω31ω40 + 168ω42 + 486ω11ω42 − 243ω20ω42)

+ q26(80896ω2
10 + 27648ω20 − 21120ω2

20 − 360ω2
21 + 2400ω22 + 21120ωω22

− 1800ω21ω30 + 640ω2
30 − 1600ω31 − 14080ωω31 + 1920ω20ω31 − 324ω22ω31

+ 216ω2
31 + 324ω21ω32 − 108ω30ω32 + 32ω33 − 640ωω33 + 108ω20ω33

− 480ω20ω40 + 81ω22ω40 − 54ω31ω40 − 162ω21ω41 + 54ω30ω41

− 4ω10(10596ω21 − 5(704ω30 − 6ω32 + 3ω41))

− 2ω11(22400 + 40448ω − 21192ω20 − 180ω22 + 108ω33 + 30ω40 − 81ω42)

− 24ω42 + 480ωω42 − 81ω20ω42)
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+ q30(−512ω2
10 + 192ω2

20 + 168ω2
21 − 48ω22 − 192ωω22 − 248ω21ω30

+ 64ω2
30 + 32ω31 + 128ωω31 + 192ω20ω31 + 12ω22ω31 − 8ω2

31

− 12ω21ω32 + 4ω30ω32 − 16ω33 − 64ωω33 − 4ω20ω33 − 48ω20ω40

− 3ω22ω40 + 2ω31ω40 + 4ω10(68ω21 − 32ω30 + 14ω32 − 7ω41)

+ 6ω21ω41 − 2ω30ω41 + 2ω11(64 + 256ω − 136ω20 − 84ω22

+ 4ω33 + 14ω40 − 3ω42)

+ 12ω42 + 48ωω42 + 3ω20ω42)

+ q4(−80896ω2
10 + 27648ω20 + 21120ω2

20 + 360ω2
21 + 2400ω22

− 21120ωω22 + 1800ω21ω30 − 640ω2
30 − 1600ω31 + 14080ωω31

− 1920ω20ω31 + 324ω22ω31 − 216ω2
31 − 324ω21ω32 + 108ω30ω32

+ 32ω33 + 640ωω33 − 108ω20ω33 + 480ω20ω40 − 81ω22ω40

+ 54ω31ω40 + 162ω21ω41 − 54ω30ω41

+ 4ω10(10596ω21 − 5(704ω30 − 6ω32 + 3ω41))

+ 2ω11(−22400 + 40448ω − 21192ω20 − 180ω22 + 108ω33 + 30ω40 − 81ω42)

− 24ω42 − 480ωω42 + 81ω20ω42)

− q6(89600ω2
10 − 56064ω20 − 58944ω2

20 + 4488ω2
21 + 624ω22 + 58944ωω22

− 7064ω21ω30 + 1856ω2
30 − 1184ω31 − 39296ωω31 + 5568ω20ω31

+ 444ω22ω31 − 296ω2
31 − 444ω21ω32 + 148ω30ω32 − 176ω33 − 1856ωω33

− 148ω20ω33 + 192ω40 − 1392ω20ω40 − 111ω22ω40 + 74ω31ω40 + 222ω21ω41

− 74ω30ω41 − 4ω10(26668ω21 − 9824ω30 + 187(−2ω32 + ω41))

+ ω11(104320− 89600ω + 106672ω20 − 4488ω22 + 296ω33 + 748ω40 − 222ω42)

+ 132ω42 + 1392ωω42 + 111ω20ω42)

+ q20(−218112ω2
10 + 166144ω11 − 110592ω20 + 180432ω11ω20 − 79488ω2

20

+ 2808ω2
21 − 9888ω22 − 2808ω11ω22 + 4824ω21ω30 − 1920ω2

30 + 6592ω31

− 5760ω20ω31 + 972ω22ω31 − 648ω2
31 − 972ω21ω32 + 324ω30ω32 − 224ω33

+ 648ω11ω33 − 324ω20ω33 + 468ω11ω40 + 1440ω20ω40 − 243ω22ω40

+ 162ω31ω40 + 486ω21ω41 − 162ω30ω41

− 36ω10(5012ω21 − 1472ω30 − 26ω32 + 13ω41)

+ 96ω(3072 + 2272ω11 + 828ω22 − 552ω31 + 20ω33 − 15ω42)

+ 168ω42 − 486ω11ω42 + 243ω20ω42)
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+ q16(306688ω2
10 − 159872ω11 + 133632ω20 + 266928ω11ω20 − 170304ω2

20

+ 26568ω2
21 + 31152ω22 − 26568ω11ω22 − 18264ω21ω30 + 3136ω2

30 − 25376ω31

+ 9408ω20ω31 + 2268ω22ω31 − 1512ω2
31 − 2268ω21ω32 + 756ω30ω32 − 368ω33

+ 1512ω11ω33 − 756ω20ω33 + 1152ω40 + 4428ω11ω40 − 2352ω20ω40 − 567ω22ω40

+ 378ω31ω40 + 1134ω21ω41 − 378ω30ω41

− 4ω10(66732ω21 − 28384ω30 + 1107(−2ω32 + ω41))

− 16ω(−129024 + 19168ω11 − 10644ω22 + 7096ω31 + 196ω33 − 147ω42)

+ 276ω42 − 1134ω11ω42 + 567ω20ω42)

+ q2(2048ω2
10 + 1200ω11ω20 − 768ω2

20 + 648ω2
21 − 648ω11ω22 + 552ω21ω30

− 256ω2
30 − 768ω20ω31 − 108ω22ω31 + 72ω2

31 + 108ω21ω32 − 36ω30ω32

− 72ω11ω33 + 36ω20ω33 + 108ω11ω40 + 192ω20ω40 + 27ω22ω40 − 18ω31ω40

− 54ω21ω41 + 18ω30ω41 − 4ω10(300ω21 − 128ω30 − 54ω32 + 27ω41)

+ 54ω11ω42 − 27ω20ω42 − 64ω(32ω11 − 12ω22 + 8ω31 − 4ω33 + 3ω42))

+ q28(−2048ω2
10 − 1200ω11ω20 + 768ω2

20 − 648ω2
21 + 648ω11ω22 − 552ω21ω30

+ 256ω2
30 + 768ω20ω31 + 108ω22ω31 − 72ω2

31 − 108ω21ω32 + 36ω30ω32

+ 72ω11ω33 − 36ω20ω33 − 108ω11ω40 − 192ω20ω40 − 27ω22ω40 + 18ω31ω40

+ 54ω21ω41 − 18ω30ω41 + 4ω10(300ω21 − 128ω30 − 54ω32 + 27ω41)

− 54ω11ω42 + 27ω20ω42 + 64ω(32ω11 − 12ω22 + 8ω31 − 4ω33 + 3ω42))

+ q18(157696ω2
10 + 194048ω11 − 132096ω20 + 226960ω11ω20 − 119040ω2

20

− 9768ω2
21 − 27840ω22 + 9768ω11ω22 + 16312ω21ω30 − 4352ω2

30 + 24704ω31

− 13056ω20ω31 − 1284ω22ω31 + 856ω2
31 + 1284ω21ω32 − 428ω30ω32 + 704ω33

− 856ω11ω33 + 428ω20ω33 − 1536ω40 − 1628ω11ω40 + 3264ω20ω40

+ 321ω22ω40 − 214ω31ω40 − 4ω10(56740ω21 − 19840ω30 + 814ω32 − 407ω41)

− 642ω21ω41 + 214ω30ω41 − 528ω42 + 642ω11ω42 − 321ω20ω42

− 64ω(−18432 + 2464ω11 − 1860ω22 + 1240ω31 − 68ω33 + 51ω42))

+ q12(−157696ω2
10 + 194048ω11 − 132096ω20 − 226960ω11ω20 + 119040ω2

20

+ 9768ω2
21 − 27840ω22 − 9768ω11ω22 − 16312ω21ω30 + 4352ω2

30 + 24704ω31

+ 13056ω20ω31 + 1284ω22ω31 − 856ω2
31 − 1284ω21ω32 + 428ω30ω32

+ 704ω33 + 856ω11ω33 − 428ω20ω33 − 1536ω40 + 1628ω11ω40 − 3264ω20ω40

− 321ω22ω40 + 214ω31ω40 + 4ω10(56740ω21 − 19840ω30 + 814ω32 − 407ω41)

+ 642ω21ω41 − 214ω30ω41 − 528ω42 − 642ω11ω42 + 321ω20ω42

+ 64ω(18432 + 2464ω11 − 1860ω22 + 1240ω31 − 68ω33 + 51ω42))
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+ q24(89600ω2
10 + 56064ω20 − 58944ω2

20 + 4488ω2
21 − 624ω22 + 58944ωω22

− 7064ω21ω30 + 1856ω2
30 + 1184ω31 − 39296ωω31 + 5568ω20ω31 + 444ω22ω31

− 296ω2
31 − 444ω21ω32 + 148ω30ω32 + 176ω33 − 1856ωω33 − 148ω20ω33 − 192ω40

− 1392ω20ω40 − 111ω22ω40 + 74ω31ω40 + 222ω21ω41 − 74ω30ω41

− 4ω10(26668ω21 − 9824ω30 + 187(−2ω32 + ω41))

− 132ω42 + 1392ωω42 + 111ω20ω42 − 2ω11(52160 + 44800ω − 53336ω20

+ 2244ω22 − 148ω33 − 374ω40 + 111ω42))

+ q22(−193024ω2
10 + 25344ω20 − 45120ω2

20 − 5976ω2
21 + 4848ω22

+ 45120ωω22 + 5640ω21ω30 − 1216ω2
30 − 5536ω31 − 30080ωω31

− 3648ω20ω31 − 756ω22ω31 + 504ω2
31 + 756ω21ω32 − 252ω30ω32

− 304ω33 + 1216ωω33 + 252ω20ω33 + 576ω40 + 912ω20ω40 + 189ω22ω40

− 126ω31ω40 − 4ω10(25884ω21 − 7520ω30 + 498ω32 − 249ω41)

− 378ω21ω41 + 126ω30ω41 + 228ω42 − 912ωω42 − 189ω20ω42

+ 2ω11(−25664 + 96512ω + 51768ω20 + 2988ω22 − 252ω33 − 498ω40 + 189ω42))

+ q8(193024ω2
10 + 25344ω20 + 45120ω2

20 + 5976ω2
21 + 4848ω22 − 45120ωω22

− 5640ω21ω30 + 1216ω2
30 − 5536ω31 + 30080ωω31 + 3648ω20ω31 + 756ω22ω31

− 504ω2
31 − 756ω21ω32 + 252ω30ω32 − 304ω33 − 1216ωω33 − 252ω20ω33

+ 576ω40 − 912ω20ω40 − 189ω22ω40 + 126ω31ω40

+ 4ω10(25884ω21 − 7520ω30 + 498ω32 − 249ω41)

+ 378ω21ω41 − 126ω30ω41 + 228ω42 + 912ωω42 + 189ω20ω42

−2ω11(25664 + 96512ω + 51768ω20 + 2988ω22 − 252ω33 − 498ω40 + 189ω42))}
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+ (−1 + q2)3(1 + q2)2(1 + q2 + 2q4 + q6 + q8){
−32(1− 10q2 − 256q4 − 342q6 − 514q8 − 342q10 − 256q12 − 10q14 + q16)ω′20ω

′
31

+ 32ω′10ω
′
32 − 320q2ω′10ω

′
32 − 8192q4ω′10ω

′
32 − 10944q6ω′10ω

′
32 − 16448q8ω′10ω

′
32

− 10944q10ω′10ω
′
32 − 8192q12ω′10ω

′
32 − 320q14ω′10ω

′
32 + 32q16ω′10ω

′
32 + 8ω′31ω

′
40

+ 112q2ω′31ω
′
40 + 256q4ω′31ω

′
40 − 240q6ω′31ω

′
40 − 272q8ω′31ω

′
40 − 240q10ω′31ω

′
40

+ 256q12ω′31ω
′
40 + 112q14ω′31ω

′
40 + 8q16ω′31ω

′
40 − 8ω′30ω

′
41 − 112q2ω′30ω

′
41

− 256q4ω′30ω
′
41 + 240q6ω′30ω

′
41 + 272q8ω′30ω

′
41 + 240q10ω′30ω

′
41 − 256q12ω′30ω

′
41

− 112q14ω′30ω
′
41 − 8q16ω′30ω

′
41 − 3ω′32ω

′
41 + 2q2ω′32ω

′
41 + 30q6ω′32ω

′
41 − 58q8ω′32ω

′
41

+ 30q10ω′32ω
′
41 + 2q14ω′32ω

′
41 − 3q16ω′32ω

′
41 + 3ω′31ω

′
42 − 2q2ω′31ω

′
42 − 30q6ω′31ω

′
42

+ 58q8ω′31ω
′
42 − 30q10ω′31ω

′
42 − 2q14ω′31ω

′
42 + 3q16ω′31ω

′
42 + 8ω′10ω

′
43 + 112q2ω′10ω

′
43

+ 256q4ω′10ω
′
43 − 240q6ω′10ω

′
43 − 272q8ω′10ω

′
43 − 240q10ω′10ω

′
43 + 256q12ω′10ω

′
43

+ 112q14ω′10ω
′
43 + 8q16ω′10ω

′
43 + ω′21(

32(1− 10q2 − 256q4 − 342q6 − 514q8 − 342q10 − 256q12 − 10q14 + q16)ω′30

−(−1 + q2)4(3 + 10q2 + 22q4 + 10q6 + 3q8)ω′43)
}

− 2η(−1− q2 − q4 + q8 + q10 + q12){
−16ω31ω

′
21 − 4ω33ω

′
21 + 4ω40ω

′
21 + 3ω42ω

′
21 + 16ω21ω

′
31 + 4ω32ω

′
31 − 2ω41ω

′
31

− 16ω11ω
′
32 − 4ω31ω

′
32 + ω40ω

′
32 − 4ω20ω

′
41 − 3ω22ω

′
41 + 2ω31ω

′
41 + 4ω10ω

′
42

+ 3ω21ω
′
42 − ω30ω

′
42 − 2ω11ω

′
43 + ω20ω

′
43

+ q4(8064ω31ω
′
10 + 960ω33ω

′
10 − 1024ω40ω

′
10 − 720ω42ω

′
10 + 11264ω10ω

′
20

+ 5952ω21ω
′
20 − 3200ω30ω

′
20 − 480ω32ω

′
20 + 240ω41ω

′
20 + 1920ω′21 − 11264ωω′21

+ 464ω31ω
′
21 − 28ω33ω

′
21 − 116ω40ω

′
21 + 21ω42ω

′
21 − 8064ω11ω

′
30 − 960ω31ω

′
30

+ 160ω40ω
′
30 + 8064ω10ω

′
31 − 464ω21ω

′
31 + 960ω30ω

′
31 + 28ω32ω

′
31 − 14ω41ω

′
31

+ 768ω′32 − 3200ωω′32 + 464ω11ω
′
32 − 28ω31ω

′
32 + 7ω40ω

′
32 + 1024ω10ω

′
40

+ 480ω21ω
′
40 − 160ω30ω

′
40 + 96ω′41 − 1024ωω′41 + 14ω31ω

′
41

− 3ω22(1984ω′10 − 160ω′30 + 7ω′41) + 124ω10ω
′
42 + 21ω21ω

′
42 − 7ω30ω

′
42

− ω20(11264ω′10 + 5952ω′21 − 3200ω′30 + 480ω′32 + 604ω′41 − 7ω′43)

+ 48ω′43 + 160ωω′43 − 14ω11ω
′
43)
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+ q20(−384ω31ω
′
10 − 192ω33ω

′
10 − 128ω40ω

′
10 + 144ω42ω

′
10 − 3584ω10ω

′
20

− 1344ω21ω
′
20 + 512ω30ω

′
20 − 96ω32ω

′
20 + 48ω41ω

′
20 + 896ω′21

+ 3584ωω′21 + 16ω31ω
′
21 + 4ω33ω

′
21 − 4ω40ω

′
21 − 3ω42ω

′
21 + 384ω11ω

′
30

+ 192ω31ω
′
30 − 64ω40ω

′
30 − 384ω10ω

′
31 − 16ω21ω

′
31 − 192ω30ω

′
31 − 4ω32ω

′
31

+ 2ω41ω
′
31 + 128ω′32 + 512ωω′32 + 16ω11ω

′
32 + 4ω31ω

′
32 − ω40ω

′
32 + 128ω10ω

′
40

− 192ω21ω
′
40 + 64ω30ω

′
40 − 32ω′41 − 128ωω′41 − 2ω31ω

′
41

+ 3ω22(448ω′10 + 32ω′30 + ω′41) + 44ω10ω
′
42 − 3ω21ω

′
42 + ω30ω

′
42

+ ω20(3584ω′10 + 1344ω′21 − 512ω′30 − 96ω′32 + 148ω′41 − ω′43)

− 16ω′43 − 64ωω′43 + 2ω11ω
′
43)

+ q18(−8064ω31ω
′
10 − 960ω33ω

′
10 + 1024ω40ω

′
10 + 720ω42ω

′
10 − 11264ω10ω

′
20

− 5952ω21ω
′
20 + 3200ω30ω

′
20 + 480ω32ω

′
20 − 240ω41ω

′
20 + 1920ω′21 + 11264ωω′21

− 464ω31ω
′
21 + 28ω33ω

′
21 + 116ω40ω

′
21 − 21ω42ω

′
21 + 8064ω11ω

′
30 + 960ω31ω

′
30

− 160ω40ω
′
30 − 8064ω10ω

′
31 + 464ω21ω

′
31 − 960ω30ω

′
31 − 28ω32ω

′
31 + 14ω41ω

′
31

+ 768ω′32 + 3200ωω′32 − 464ω11ω
′
32 + 28ω31ω

′
32 − 7ω40ω

′
32 − 1024ω10ω

′
40

− 480ω21ω
′
40 + 160ω30ω

′
40 + 96ω′41 + 1024ωω′41 − 14ω31ω

′
41

+ 3ω22(1984ω′10 − 160ω′30 + 7ω′41)− 124ω10ω
′
42 − 21ω21ω

′
42 + 7ω30ω

′
42

+ ω20(11264ω′10 + 5952ω′21 − 3200ω′30 + 480ω′32 + 604ω′41 − 7ω′43)

+ 48ω′43 − 160ωω′43 + 14ω11ω
′
43)

+ q6(32(4608 + 3632ω20 − 972ω22 + 440ω31 − 20ω33 + 52ω40 + 15ω42)ω′10

+ 31104ω21ω
′
20 − 6272ω30ω

′
20 + 768ω32ω

′
20 − 384ω41ω

′
20 − 32256ω′21

+ 116224ωω′21 − 31104ω20ω
′
21 − 1584ω31ω

′
21 + 228ω33ω

′
21 + 396ω40ω

′
21

− 171ω42ω
′
21 − 14080ω11ω

′
30 + 6272ω20ω

′
30 − 768ω22ω

′
30 + 640ω31ω

′
30

− 32ω40ω
′
30 + 1584ω21ω

′
31 − 640ω30ω

′
31 − 228ω32ω

′
31 + 114ω41ω

′
31 − 1152ω′32

− 6272ωω′32 − 1584ω11ω
′
32 + 768ω20ω

′
32 + 228ω31ω

′
32 − 57ω40ω

′
32 − 96ω21ω

′
40

+ 32ω30ω
′
40 + 1664ωω′41 + 84ω20ω

′
41 + 171ω22ω

′
41 − 114ω31ω

′
41

− 4ω10(29056ω′20 − 3520ω′31 + 416ω′40 − 3ω′42)− 171ω21ω
′
42 + 57ω30ω

′
42

− 32ωω′43 + 114ω11ω
′
43 − 57ω20ω

′
43)

− q16(32(−4608 + 3632ω20 − 972ω22 + 440ω31 − 20ω33 + 52ω40 + 15ω42)ω′10

+ 31104ω21ω
′
20 − 6272ω30ω

′
20 + 768ω32ω

′
20 − 384ω41ω

′
20 + 32256ω′21

+ 116224ωω′21 − 31104ω20ω
′
21 − 1584ω31ω

′
21 + 228ω33ω

′
21 + 396ω40ω

′
21

− 171ω42ω
′
21 − 14080ω11ω

′
30 + 6272ω20ω

′
30 − 768ω22ω

′
30 + 640ω31ω

′
30

− 32ω40ω
′
30 + 1584ω21ω

′
31 − 640ω30ω

′
31 − 228ω32ω

′
31 + 114ω41ω

′
31 + 1152ω′32

− 6272ωω′32 − 1584ω11ω
′
32 + 768ω20ω

′
32 + 228ω31ω

′
32 − 57ω40ω

′
32 − 96ω21ω

′
40

+ 32ω30ω
′
40 + 1664ωω′41 + 84ω20ω

′
41 + 171ω22ω

′
41 − 114ω31ω

′
41

− 4ω10(29056ω′20 − 3520ω′31 + 416ω′40 − 3ω′42)− 171ω21ω
′
42 + 57ω30ω

′
42

− 32ωω′43 + 114ω11ω
′
43 − 57ω20ω

′
43)
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+ 2q14(16(9216 + 1424ω20 + 1644ω22 − 824ω31 + 20ω33 − 68ω40 − 15ω42)ω′10

− 26304ω21ω
′
20 + 9536ω30ω

′
20 − 17152ω′21 + 22784ωω′21 + 26304ω20ω

′
21

− 1392ω31ω
′
21 + 204ω33ω

′
21 + 348ω40ω

′
21 − 153ω42ω

′
21 + 13184ω11ω

′
30

− 9536ω20ω
′
30 − 320ω31ω

′
30 + 80ω40ω

′
30 + 1392ω21ω

′
31 + 320ω30ω

′
31

− 204ω32ω
′
31 + 102ω41ω

′
31 − 1216ω′32 + 9536ωω′32 − 1392ω11ω

′
32 + 204ω31ω

′
32

− 51ω40ω
′
32 + 240ω21ω

′
40 − 80ω30ω

′
40 − 128ω′41 − 1088ωω′41 − 588ω20ω

′
41

+ 153ω22ω
′
41 − 102ω31ω

′
41 − 4ω10(5696ω′20 + 3296ω′31 − 272ω′40 − 87ω′42)

− 153ω21ω
′
42 + 51ω30ω

′
42 − 64ω′43 + 80ωω′43 + 102ω11ω

′
43 − 51ω20ω

′
43)

− 2q8(16(−9216 + 1424ω20 + 1644ω22 − 824ω31 + 20ω33 − 68ω40 − 15ω42)ω′10

− 26304ω21ω
′
20 + 9536ω30ω

′
20 + 17152ω′21 + 22784ωω′21 + 26304ω20ω

′
21

− 1392ω31ω
′
21 + 204ω33ω

′
21 + 348ω40ω

′
21 − 153ω42ω

′
21 + 13184ω11ω

′
30

− 9536ω20ω
′
30 − 320ω31ω

′
30 + 80ω40ω

′
30 + 1392ω21ω

′
31 + 320ω30ω

′
31

− 204ω32ω
′
31 + 102ω41ω

′
31 + 1216ω′32 + 9536ωω′32 − 1392ω11ω

′
32 + 204ω31ω

′
32

− 51ω40ω
′
32 + 240ω21ω

′
40 − 80ω30ω

′
40 + 128ω′41 − 1088ωω′41 − 588ω20ω

′
41

+ 153ω22ω
′
41 − 102ω31ω

′
41 − 4ω10(5696ω′20 + 3296ω′31 − 272ω′40 − 87ω′42)

− 153ω21ω
′
42 + 51ω30ω

′
42 + 64ω′43 + 80ωω′43 + 102ω11ω

′
43 − 51ω20ω

′
43)

+ q22(4ω33ω
′
21 − 4ω40ω

′
21 − 3ω42ω

′
21 − 16ω21ω

′
31 − 4ω32ω

′
31 + 2ω41ω

′
31

+ 16ω11ω
′
32 − ω40ω

′
32 + 2ω31(8ω′21 + 2ω′32 − ω′41) + 4ω20ω

′
41 + 3ω22ω

′
41

− 4ω10ω
′
42 − 3ω21ω

′
42 + ω30ω

′
42 + 2ω11ω

′
43 − ω20ω

′
43)

− 2q10(32(−2304 + 5208ω20 − 552ω22 − 184ω31 + 52ω33 + 138ω40 − 39ω42)ω′10

+ 17664ω21ω
′
20 − 2496ω30ω

′
20 + 672ω32ω

′
20 − 336ω41ω

′
20 − 31872ω′21

+ 166656ωω′21 − 17664ω20ω
′
21 + 1680ω31ω

′
21 − 180ω33ω

′
21 − 420ω40ω

′
21

+ 135ω42ω
′
21 + 5888ω11ω

′
30 + 2496ω20ω

′
30 − 672ω22ω

′
30 − 1664ω31ω

′
30 + 528ω40ω

′
30

− 1680ω21ω
′
31 + 1664ω30ω

′
31 + 180ω32ω

′
31 − 90ω41ω

′
31 − 1344ω′32 − 2496ωω′32

+ 1680ω11ω
′
32 + 672ω20ω

′
32 − 180ω31ω

′
32 + 45ω40ω

′
32 + 1584ω21ω

′
40 − 528ω30ω

′
40

− 96ω′41 + 4416ωω′41 − 828ω20ω
′
41 − 135ω22ω

′
41 + 90ω31ω

′
41 + 135ω21ω

′
42

− 45ω30ω
′
42 − 4ω10(41664ω′20 + 1472ω′31 + 1104ω′40 + 189ω′42)

− 48ω′43 + 528ωω′43 − 90ω11ω
′
43 + 45ω20ω

′
43)
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+ 2q12(32(2304 + 5208ω20 − 552ω22 − 184ω31 + 52ω33 + 138ω40 − 39ω42)ω′10

+ 17664ω21ω
′
20 − 2496ω30ω

′
20 + 672ω32ω

′
20 − 336ω41ω

′
20 + 31872ω′21

+ 166656ωω′21 − 17664ω20ω
′
21 + 1680ω31ω

′
21 − 180ω33ω

′
21 − 420ω40ω

′
21

+ 135ω42ω
′
21 + 5888ω11ω

′
30 + 2496ω20ω

′
30 − 672ω22ω

′
30 − 1664ω31ω

′
30

+ 528ω40ω
′
30 − 1680ω21ω

′
31 + 1664ω30ω

′
31 + 180ω32ω

′
31 − 90ω41ω

′
31

+ 1344ω′32 − 2496ωω′32 + 1680ω11ω
′
32 + 672ω20ω

′
32 − 180ω31ω

′
32 + 45ω40ω

′
32

+ 1584ω21ω
′
40 − 528ω30ω

′
40 + 96ω′41 + 4416ωω′41 − 828ω20ω

′
41 − 135ω22ω

′
41

+ 90ω31ω
′
41 + 135ω21ω

′
42 − 45ω30ω

′
42

− 4ω10(41664ω′20 + 1472ω′31 + 1104ω′40 + 189ω′42) + 48ω′43 + 528ωω′43

− 90ω11ω
′
43 + 45ω20ω

′
43)

+ q2(384ω31ω
′
10 + 192ω33ω

′
10 + 128ω40ω

′
10 − 144ω42ω

′
10 + 3584ω10ω

′
20

+ 1344ω21ω
′
20 − 512ω30ω

′
20 + 96ω32ω

′
20 − 48ω41ω

′
20 + 896ω′21 − 3584ωω′21

− 16ω31ω
′
21 − 4ω33ω

′
21 + 4ω40ω

′
21 + 3ω42ω

′
21 − 384ω11ω

′
30 − 192ω31ω

′
30

+ 64ω40ω
′
30 + 384ω10ω

′
31 + 16ω21ω

′
31 + 192ω30ω

′
31 + 4ω32ω

′
31 − 2ω41ω

′
31

+ 128ω′32 − 512ωω′32 − 16ω11ω
′
32 − 4ω31ω

′
32 + ω40ω

′
32 − 128ω10ω

′
40

+ 192ω21ω
′
40 − 64ω30ω

′
40 − 32ω′41 + 128ωω′41 + 2ω31ω

′
41

− 3ω22(448ω′10 + 32ω′30 + ω′41)− 44ω10ω
′
42

+ 3ω21ω
′
42 − ω30ω

′
42 − 16ω′43 + 64ωω′43 − 2ω11ω

′
43

+ω20(−3584ω′10 − 1344ω′21 + 512ω′30 + 96ω′32 − 148ω′41 + ω′43))
}}

/
(
2359296η2q10(1 + q2)2(−1− q4 + q6 + q10)

)
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Appendix C

Crossover Temperatures

Here we list all crossover temperatures obtained from our results (T0) alongside
the values given in [67] (T̃0), as well as the relative differences δT0 = T0−T̃0

T0
.

Values for T0 are rounded to improve readability.

Table C.1: Crossover temperatures and relative differences for ∆ = −0.1

n T0 T̃0 |δT0|

2 4.9664 4.966 9.0 · 10−5

3 3.3229 3.323 3.5 · 10−5

4 2.5608 2.561 8.9 · 10−5

5 2.0729 2.073 5.8 · 10−5

Table C.2: Crossover temperatures and relative differences for ∆ = −0.2

n T0 T̃0 |δT0|

2 2.4316 2.432 1.8 · 10−4

3 1.6433 1.643 1.9 · 10−4

4 1.2752 1.275 1.6 · 10−4

5 1.0374 1.037 3.7 · 10−4
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Table C.3: Crossover temperatures and relative differences for ∆ = −0.3

n T0 T̃0 |δT0|

2 1.5608 1.561 1.3 · 10−4

3 1.0708 1.071 1.8 · 10−4

4 0.8392 0.839 2.0 · 10−4

5 0.6875 0.687 6.8 · 10−4

Table C.4: Crossover temperatures and relative differences for ∆ = −0.4

n T0 T̃0 |δT0|

2 1.1029 1.103 5.9 · 10−5

3 0.7713 0.771 3.7 · 10−4

4 0.6116 0.612 7.2 · 10−4

5 0.5054 0.505 8.5 · 10−4

Table C.5: Crossover temperatures and relative differences for ∆ = −0.5

n T0 T̃0 |δT0|

2 0.8070 0.807 4.1 · 10−5

3 0.5777 0.578 5.0 · 10−4

4 0.4641 0.464 2.6 · 10−4

5 0.3876 0.388 9.6 · 10−4

Table C.6: Crossover temperatures and relative differences for ∆ = −0.6

n T0 T̃0 |δT0|

2 0.5888 0.589 3.1 · 10−4

3 0.4342 0.434 4.1 · 10−4

4 0.3540 0.355 2.7 · 10−3

5 0.2993 0.300 2.3 · 10−3

Table C.7: Crossover temperatures and relative differences for ∆ = −0.7

n T0 T̃0 |δT0|

2 0.4128 0.413 5.0 · 10−4

3 0.3163 0.318 5.3 · 10−3

4 0.2626 0.264 5.3 · 10−3

5 0.2252 0.227 7.9 · 10−3
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Table C.8: Crossover temperatures and relative differences for ∆ = −0.8

n T0 T̃0 |δT0|

2 0.2624 0.265 1.0 · 10−2

3 0.2114 0.215 1.7 · 10−2

4 0.1798 0.184 2.3 · 10−2

5 0.1570 0.161 2.6 · 10−2

Table C.9: Crossover temperatures and relative differences for ∆ = −0.9

n T0 T̃0 |δT0|

2 0.1292 0.137 6.0 · 10−2

3 0.1111 0.118 6.2 · 10−2

4 0.0981 0.104 6.1 · 10−2

5 0.0879 0.092 4.7 · 10−2
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