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Chapter 1

Introduction

The interest in describing dynamics, e.g. the vibration of strings and beams,
started in the 17th century by the publication of Newton’s Philosophia Naturalis
Principia Mathematica, [New87]. Since then the questions of how to model a
system arises and in [CCD81] the beginning of the vibration theory is described
from the first mathematical formulations by Isaac Newton and Leonhard Euler.
These developments are summarized by Joseph-Louis de Lagrange in Mécanique
Analytique, see [Lag11]. The port-Hamiltonian formulation is an extension of
the Hamilton formalism, which was introduced by Hamilton. The Hamilton for-
malism is a further development of the Lagrange formalism. In both formalism
the idea is to start from the kinetic and the potential energy to get the partial
differential equation model of the system, see [Lan12]. Up to now a model is
always just an approximation of the reality and one way, on which this thesis
is based, is the port-Hamiltonian way of modelling, see [DMSB09]. Port-based
network modeling of complex physical systems leads to port-Hamiltonian sys-
tems. Therefore, we introduce modeling in the port-Hamiltonian framework.
Here, the idea is to use an energy-based perspective by modeling physical sys-
tems. The idea is that a physical system can be viewed as the interconnection
of simpler systems, which exchange energy. This structure implies that port-
Hamiltonian systems are closed under power conserving interconnections. The
important role of the energy is taken into account with the introduction of the
energy norm and the state space as energy space. Therefore, one introduce
power conjugated variables, which are connected via the Bond graphs. These
are introduced in [Bre82] and lead to the introduction of Dirac structures, see
for example [DvdS99]. The power conjugated variables are denoted by flow and
effort and their product equals power. In this thesis we restrict ourselves to the
introduction of port variables, see the introduction of the boundary flow and
boundary effort in Chapter 3.

The advantages of the port-Hamiltonian approach is on the one hand that the
model comes from differential geometry and so it is useful for model reduction
and on the other hand it fits for a functional analysis approach and therefore
also systems theory.

For finite-dimensional systems there is by now a well-established theory [vdS06,
EMvdS07, DMSB09]. The port-Hamiltonian approach has been extended to the
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6 CHAPTER 1. INTRODUCTION

infinite-dimensional situation by a geometric differential approach [vdSM02,
MM05, JvdS09, ZLMV10] and also by a functional analytic approach [Vil07,
ZLMV10, JZ12, JMZ15, Aug16, JZ18]. In this thesis we take the functional
analytic point of view. This approach has been successfully used to derive
simple verifiable conditions for well-posedness [LGZM05, Vil07, ZLMV10, JZ12,
JMZ15, JK19b], stability [JZ12, AJ14] and stabilization [RZLG17, RLGMZ14,
AJ14, SZ18] and robust regulation [HP18].
The port-Hamiltonian systems considered in this thesis can be formulated as a
partial differential equation

∂

∂t
x(ζ, t) = P1

∂

∂ζ
(Hx)(ζ, t) + P0(Hx)(ζ, t), t > 0, ζ ∈ (0, 1).

Also for the more general class of port-Hamiltonian systems, which we consider
in Chapter 6, a similar partial differential equation describes the system.
This class of partial differential equations covers (coupled) wave and beam
equations and in particular infinite networks of these equations, that means
a network with an infinite number of edges.
A functional analytic approach to the partial differential equation is the formu-
lation as an abstract Cauchy problem.

(ACP)

{
ẋ(t) = Ax(t), t > 0,

x(0) = x0.

There has been an enormous development in the study of the Cauchy problem
(ACP) and its well-posedness, see for example [BC16, Eng13, JZ12, LGZM05,
vdSM02, Vil07, ZLMV10] and the references therein. These systems are also
known as port-Hamiltonian systems, Hamiltonian partial differential equations
or systems of linear conservation laws.
For more information we refer to [JZ12, JZ18]. In the following we denote
by port-Hamiltonian systems infinite-dimensional linear port-Hamiltonian sys-
tems. Thus, having the results of well-posedness, i.e. existence of mild solutions
in mind, this thesis answers the further questions:

1. Which port-Hamiltonian systems are exactly controllable?

2. Which port-Hamiltonian operators are discrete Riesz spectral operators?

3. How can well-posedness of infinite-dimensional systems of port-Hamilto-
nian system characterized? And what is about well-posedness of port-
Hamiltonian systems on the semi-axis?

In the following, we give a brief overview on this thesis. To introduce port-
Hamiltonian systems and port-Hamiltonian operators in Chapter 3, we recall
some basics of functional analysis, strongly continuous semigroups and evolution
equations, and systems theory in Chapter 2. This Chapter is mainly based on
[Wer00, EN00, TW09, JZ12, RW94], and [Wei94]. In this thesis we focus on
port-Hamiltonian systems on a one-dimensional spatial domain.
With this basics in mind, we start in Chapter 3 with the definition of port-
Hamiltonian systems and port-Hamiltonian operators following the functional
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analytic approach. In Chapter 3, 4 and 5 we focus on port-Hamiltonian systems
without internal damping on a finite interval. This is a special class of port-
Hamiltonian systems, which however is rich enough to cover in particular the
wave equation, the transport equation and the Timoshenko beam equation,
and also coupled beam and wave equations each with possibly damping on the
boundary. For more information on this class of port-Hamiltonian systems we
refer to the monograph [JZ12] and the survey [JZ18].
After introducing the class of port-Hamiltonian systems in 3.1, in 3.2 we formu-
late generation theorems for this class of systems and in 3.3 we formulate port-
Hamiltonian systems as boundary control and observation systems. All these
definitions and results are motivated and illustrated by examples as the wave
equation. The results listed there can mostly be found in [LGZM05], [Vil07],
[ZLMV10],[JZ12], [JMZ15], [Aug16] or [JZ18]. In Section 3.4 we give a new
result about the location of the spectrum of a special class of port-Hamiltonian
system. In Chapter 4 we consider port-Hamiltonian systems with full boundary
control and without internal damping. The main result shows that well-posed
port-Hamiltonian systems, with state space L2(0, 1;Cd) and input space Cd,
are exactly controllable and is published in [JK19a].
In Chapter 5 the Riesz basis property of port-Hamiltonian systems is studied.
Here, we do not follow the ideas of [Tre00a, Tre00b] as Villegas in [Vil07] but
we combine results of systems theory and complex analysis. In Section 5.1 we
give a general introduction in bases of Hilbert spaces and in Section 5.2 we give
a general characterization of discrete Riesz spectral operators and their proper-
ties. In the following Section 5.3 we specify our ideas in the port-Hamiltonian
setting and without any technical condition, we give a characterization for the
Riesz basis property and show that this is equivalent to the fact that system op-
erator generates a strongly continuous group. Moreover, we get in this situation
some more information about the location of the spectrum: Then, the spectrum
consists of eigenvalues only, located in a strip parallel to the imaginary axis and
they can decomposed into finitely many sets having each a uniform gap. The
results of this chapter are published in [JKZ20].
In Chapter 6 we consider generalizations of the port-Hamiltonian systems stud-
ied so far. We allow port-Hamiltonian systems with internal damping and
consider two kinds of generalizations. In Section 6.1 we consider infinite-
dimensional networks of infinite-dimensional port-Hamiltonian systems on a
finite interval and in Section 6.2 we consider infinite-dimensional port-Hamilto-
nian systems on the semi-axis. This class includes in particular infinite networks
of transport, wave and beam equations, or even combinations of these. We for-
mulate equivalent conditions for contraction C0-semigroup generation and these
results can be found in [JK19a].
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Chapter 2

Preliminaries

In this chapter we introduce some basic notations and ideas of functional anal-
ysis, evolution equations and systems theory.
In the following X and Y will always be complex and separable Hilbert spaces.
We denote the space of all bounded linear operators from X to Y by L(X,Y ).
To shorten notation we write L(X) := L(X,X).
We use the notation s − A := sI − A, where I denotes the identity operator,
and define the resolvent set of a linear operator A : D(A) ⊂ X → X as

ρ(A) := {s ∈ C | s−A : D(A) ⊂ X → X is bijective}.

For each s ∈ ρ(A) we denote the resolvent operator of A by (s − A)−1 : X →
D(A). The spectrum of A is defined as the set σ(A) := C \ ρ(A). The point
spectrum σp(A) is defined by

σp(A) = {s ∈ C | ∃x ∈ D(A), x 6= 0, Ax = sx},

and consists of eigenvalues of A. We note that in general σp(A) ( σ(A).

Definition 2.0.1. ([Wer00, Definition V.5.1]) Let A : D(A) ⊂ X → X be a
densely defined linear operator. Then the (Hilbert space) adjoint operator A∗

of A is defined as

D(A∗) : = {y ∈ X | ∃w ∈ X, ∀z ∈ D(A) such that 〈Az, y〉 = 〈z, w〉};
A∗y : = w.

The operator A is called self-adjoint if A∗ = A, and skew-adjoint if A∗ = −A.
Note that A∗ = A implies D(A) = D(A∗) in particular.

A further important property of a linear operator is dissipativity.

Definition 2.0.2. The operator A : D(A) ⊂ X → X is called dissipative if
Re 〈Ax, x〉 6 0 for every x ∈ D(A).

Moreover, we introduce the Sobolev spacesWm,2(I) for I ⊂ R open interval and
m ∈ N. For this purpose, we define the weak derivative of a function f ∈ L2(I),
which is a generalization of the derivative.

9



10 CHAPTER 2. PRELIMINARIES

Definition 2.0.3. ([Wer00, Definition V.1.11]) Let I ⊂ R be an open interval
and m ∈ N. A function f ∈ L2(I) is m-times weakly differentiable if there exists
a function g ∈ L2(I), also denoted by dm

dxm f , such that

〈g, ϕ〉 = (−1)m〈f, d
m

dxm
ϕ〉 ∀ϕ ∈ D(I), (2.1)

where

D(I) := {ϕ ∈ C∞(I) | supp(ϕ) := {x : ϕ(x) 6= 0} ⊂ I is compact} = C∞c (I)

denotes the set of C∞-functions with compact support. D(I) is also called the
set of test functions.

Now we are in the situation to give the definition of Sobolev spaces.

Definition 2.0.4. Let I ⊂ R be an open interval and m ∈ N. Then the Sobolev
space of m-th order over I is given by

Wm,2(I) := {f ∈ L2(I) | d
k

dxk
f ∈ L2(I) exists for all k 6 m}

with norm

‖f‖m,2 =

 ∑
06k6m

∥∥∥∥ dkdxk f
∥∥∥∥2

L2(I)

 1
2

.

Thus, the Sobolev space of first order on the interval (0, 1) with values in Cd is
given by

W1,2(0, 1;Cd) = {f ∈ L2(0, 1;Cd) | d
dx
f ∈ L2(0, 1;Cd) exists}.

A more detailed introduction into Sobolev spaces can be found in [Ada75].

2.1 Preliminaries on evolution equations

Within this section we give a short overview of the theory of evolution equations,
i.e., equations which describe the development of a system in time. We consider
the following so called abstract Cauchy problem

(ACP)

{
ẋ(t) = Ax(t), t > 0,

x(0) = x0,
(2.2)

where A : D(A) ⊂ X → X denotes a closed and densely defined linear operator.
This leads to the question whether (2.2) has a unique solution. This property
is also known as the well-posedness of (2.2). For a bounded operator A ∈ L(X)
or a matrix A ∈ Cn×n the solution of (ACP) is given by x(t) = etAx0 where

etA :=
∞∑
n=1

(tA)n

n!
, t > 0. (2.3)

However, (2.3) does not make sense for general unbounded operators A.
In the following we introduce the concepts for solutions of (ACP), c.f. [EN00,
Section II.6].
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Definition 2.1.1. Let x : [0,∞)→ X be a continuous function. Then:

1. The function x is called classical solution of (ACP) if x is differentiable,
x(t) ∈ D(A) for all t > 0 and x satisfies equation (ACP).

2. The function x is called mild solution of (ACP) if
∫ t

0 x(s)ds ∈ D(A) and

x(t, x0) := x(t) = x0 +A

∫ t

0
x(s)ds, t > 0. (2.4)

Using the concepts of solution we can now introduce well-posedness for the
abstract Cauchy problem.

Definition 2.1.2. The abstract Cauchy problem (ACP) is well-posed if

1. D(A) is dense in X;

2. For every x0 ∈ D(A) there exists a unique classical solution;

3. For every sequence (xn)n∈N ⊂ D(A) with limn→∞ xn = 0 it holds
limn→∞ x(t;xn) = 0 uniformly on compact intervals [0; t0].

Well-posedness of (ACP ) is closely related to the notion of C0-semigroups, see
also Theorem 2.1.8. They can be seen as a generalization of the exponential
function. C0-semigroups goes back to the work of Hille and Yoshida [Hil48]
and [Yos48] and are studied in detail in the monographs by Engel and Nagel
[EN00], Pazy [Paz83] and Goldstein [Gol85].

Definition 2.1.3. A family (T (t))t>0 ∈ L(X) of bounded operators is called a
strongly continuous (operator) semigroup, or C0-semigroup for short, if it has
the following properties:

1. T (t+ s) = T (s)T (t) for all t, s > 0,

2. T (0) = I,

3. limt↘0 ‖T (t)x− x‖ = 0 for all x ∈ X.

If property 1. holds for all t, s ∈ R, the family (T (t))t>0 ∈ L(X) is called a
strongly continuous group, or C0-group for short.

The strong continuity implies that T (·)x ∈ C(R+, X) for every x ∈ X.
The following example shows that the notation of C0-semigroups is also consis-
tent for bounded operators A.

Example 2.1.4. Let A ∈ Cn×n or A ∈ L(X). Then T (t) = etA, t > 0, is a
C0-semigroup and even a C0-group.

For a C0-semigroup (T (t))t>0 we define its generator.

Definition 2.1.5. The operator A : D(A) ⊂ X → X with

Ax : = lim
t↘0

T (t)x− x
t

D(A) = {x ∈ X | lim
t↘0

T (t)x− x
t

exists in X}

is called the (infinitesimal) generator of the C0-semigroup (T (t))t>0.
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In the following we mention some of the important properties of generators of
C0-semigroups.

Lemma 2.1.6. ([EN00, Lemma II.1.3]) Let A be the generator of a C0-semi-
group (T (t))t>0. Then the following holds:

1. x ∈ D(A) implies T (t)x ∈ D(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x ∀t > 0.

2. For every x ∈ X and every t > 0 it holds
∫ t

0 T (s)x ds ∈ D(A) and

T (t)x− x = A

∫ t

0
T (s)x ds.

3. For every x ∈ D(A) and every t > 0 it holds

T (t)x− x =

∫ t

0
T (s)Ax ds.

Proposition 2.1.7. ([EN00, Theorem II.1.4]) Let (T (t))t>0 be a C0-semigroup
on X with generator A. Then A is linear, closed, densely defined and determines
the C0-semigroup (T (t))t>0 uniquely.

The next theorem describes the relationship between the well-posedness of the
abstract Cauchy problem (ACP) and the generator of a C0-semigroup and is a
combination of Corollary II.6.9 and Proposition II.6.2 in [EN00].

Theorem 2.1.8. Let A : D(A) ⊂ X → X be a closed linear operator. Then
the following statements are equivalent:

1. The abstract Cauchy problem (2.2) is well-posed.

2. A generates a C0-semigroup on X.

In particular, for every x0 ∈ D(A) the unique classical solution of (2.2) is given
by x(t) := T (t)x0.

In the following, we mention some properties of C0-semigroups, which can be
found in [EN00].

Proposition 2.1.9. ([EN00, Proposition I.5.5]) For a C0-semigroup (T (t))t>0

on X there exist constants M > 1 and ω ∈ R such that

‖T (t)‖ 6Meωt, t > 0. (2.5)

Definition 2.1.10. Let (T (t))t>0 be a C0-semigroup on X. Then (T (t))t>0 is

� a bounded C0-semigroup if there exists M > 0 such that ‖T (t)‖ 6 M ,for
all t > 0;
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� a contractive C0-semigroup, if it is bounded with M = 1, i.e., ‖T (t)‖ 6 1.

Moreover, a C0-group (T (t))t∈R is called a unitary group, if ‖T (t)x‖ = ‖x‖ ∀x ∈
X and t ∈ R.

Definition 2.1.11. Let (T (t))t>0 be a C0-semigroup on X with generator A.
Then its growth bound is defined by

ω0(A) := inf{ω ∈ R | ∃Mω > 1 such that ‖T (t)‖ 6Mωeωt, t > 0}. (2.6)

Furthermore,

s(A) := sup{Re s | s ∈ σ(A)} (2.7)

denotes the spectral bound of A.

If the growth bound ω0 is negative, then the corresponding C0-semigroup is
called exponentially stable. We note that for an exponentially stable C0-semi-
group the right half plane {s ∈ C | Re s > 0} of C lies in the resolvent set ρ(A)
of its generator A, c.f. [EN00, Theorem V.1.11].
Now, we describe some properties of the resolvent operator.

Proposition 2.1.12. ([EN00, Theorem II.1.10]) Let A be the generator of a
C0-semigroup (T (t))t>0 with growth bound ω0 ∈ R and ω ∈ R, M > 1 are the
constants described in Proposition 2.1.9. Then for all s ∈ C with Re s > ω0, it
holds that s lies in the resolvent set of A, i.e., s ∈ ρ(A) and the integral

R(s) :=

∫ ∞
0

e−stT (t)x ds (2.8)

exists for all x ∈ X and R(s) = (s − A)−1. Moreover, the following estimate
for the resolvent holds:∥∥(s−A)−1

∥∥ 6 M

Re s− ω
for all Re s > ω (2.9)

Definition 2.1.13. The linear operator A : D(A) ⊂ X → X has compact
resolvent if there exists an s ∈ ρ(A) such that the operator (s − A)−1 is a
compact operator.

Note that by [EN00, Proposition II.4.25] A has compact resolvent if the em-
bedding of D(A) equipped with the graph norm in X is compact.
In Theorem 2.1.8 we have seen the relation between the abstract Cauchy prob-
lem (ACP) and the corresponding C0-semigroup. Thus, the question occurs
under which conditions A generates a contraction C0-semigroup. It is answered
by Hille and Yoshida in 1948, c.f. [Hil48] and [Yos48], and reformulated in a
more applicable way by Lumer and Phillips in 1961, [LP61], which we state
here.

Theorem 2.1.14. ([EN00, Theorem II.3.15]) Let A : D(A) ⊂ X → X be
a linear, densely defined, and closed operator on a Hilbert space X. Then A
generates a contraction C0-semigroup on X if and only if
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1. A is dissipative and

2. s−A : D(A) ⊂ X → X is surjective for one (and then for all) s > 0.

A simpler characterization of generators of contraction C0-semigroups is given
in the following corollary.

Corollary 2.1.15. ([EN00, Corollary II.3.17]) Let A : D(A) ⊂ X → X be a
linear, densely defined, and closed operator on a Hilbert space X. Then A gen-
erates a contraction C0-semigroup on X if and only if A and A∗ are dissipative.

We now formulate the Theorem of Stone, which characterizes generators of
unitary groups.

Theorem 2.1.16. ([EN00, II.3.24]). Let A : D(A) ⊂ X → X be a linear,
densely defined, and closed operator on a Hilbert space X. Then the following
statements are equivalent:

1. A generates a unitary group (T (t))t∈R on X;

2. A is skew-adjoint,

3. A and −A both generate a contraction C0-semigroup.

We close this section with the result that the generation of C0-semigroups is
inherited on closed subspaces. We recall that a closed subspace V ⊂ X is called
(T (t))t>0-invariant if T (t)V ⊆ V for all t > 0.

Proposition 2.1.17. ([CZ95, Lemma 2.5.3]) Let A generate a C0-semigroup
(T (t))t>0 on X. In this case the restriction (T (t)|V )t>0 is again a C0-semigroup
with generator A|V on V , where A|V = Av for v ∈ D(A|V ) = D(A) ∩ V and
(T (t)|V )t>0 is generated by the part of A in V .

2.2 Preliminaries on systems theory

The standard formulation of systems in system theory extends the formulation
of a partial differential equation as a (homogenous) abstract Cauchy problem
taking into account the interaction of the system with its environment. Thus,
in addition to the state space X, we need an input space U and an output
space Y . In general, X,U, and Y may be Banach spaces, but within this thesis
we focus on the Hilbert space setting. Thus, in the following X,U , and Y are
supposed to be Hilbert spaces. In this setting the operators in the standard
formulation of a system are not necessary bounded in general, but they are
bounded in a weaker way. To see this we introduce the extrapolation and the
interpolation space.

Therefore, we need to introduce some notation and concepts, which are well-
known and can be found in e.g. [EN00, Chapter II] and [TW09, Chapter 2].

Definition 2.2.1. Let A : D(A) ⊂ X → X be the generator of a C0-semigroup
(T (t))t>0. Hence, ρ(A) 6= ∅ and let be s ∈ ρ(A).
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1. Then the extrapolation space X−1 is defined as the completion of X with
respect to the norm

‖x‖
−1

=
∥∥(s−A)−1x

∥∥ , x ∈ X.

2. The interpolation space X1 is defined as D(A) equipped with the norm

‖x‖
1

= ‖(s−A)x‖ , x ∈ X.

Note that the definitions of X1 and X−1 are independent of the choice of s ∈
ρ(A), since different s ∈ ρ(A) lead to equivalent norms. The following inclusions
are dense with a continuous embedding:

X1 ⊂ X ⊂ X−1.

Note that the space X1 is a Hilbert space and A can be seen as an operator
in L(X1, X). Then we consider the restriction and the continuous extension of
(T (t))t>0 to the interpolation and the extrapolation space, respectively.

Proposition 2.2.2. Let A be the generator of a C0-semigroup on X. Then the
following statements hold:

1. (T1(t))t>0, the restriction of (T (t))t>0 to X1, is a C0-semigroup on X1,
with generator

A1x = Ax, x ∈ D(A1), D(A1) = D(A2).

2. (T−1(t))t>0, the continuous extension of (T (t))t>0 to X−1, is a C0-semi-
group on X−1, whose generator A−1 ∈ L(X,X−1), is the unique bounded
extension of A.

Moreover, we can identify X−1 with the dual space of D(A∗) with respect
to the pivot space X, that is X−1 = D(A∗)′. Now, let A−1 ∈ L(X,X−1)
be the extension of the operator A describing the dynamics of the system,
B ∈ L(U,X−1) denotes the control operator, C ∈ L(X1, Y ) the observation
operator and D ∈ L(U, Y ) the bounded feedthrough operator mapping from the
input to the output. Then the standard formulation in system theory for a
control system Σ(A,B,C,D) is given by

ẋ(t) = A−1x(t) +Bu(t), t > 0, x(0) = x0, (2.10)

y(t) = Cx(t) +Du(t), t > 0. (2.11)

Note that we denote by Σ(A,B) a control system Σ(A,B,C,D) with C = D = 0
and by Σ(A,C) an observation system Σ(A,B,C,D) with B = D = 0. We
consider the first equation (2.10) as an abstract inhomogeneous Cauchy problem
on the extrapolation space X−1 and we give its mild solution for x0 ∈ X ⊂ X−1.
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Definition 2.2.3. For x0 ∈ X and u ∈ L2(0, t;U) the mild solution of (2.10)
is given by the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0
T−1(t− s)Bu(s)ds, t > 0. (2.12)

We note that even for initial values x0 ∈ X the values x(t) of the solution may lie
in the extrapolation space X−1: The control operator is a map B ∈ L(U,X−1),
T−1(t) acts on X−1, and thus

∫ t
0 T−1(t− s)Bu(s)ds ∈ X−1.

To ensure that the solution x(t) lies in X we introduce the idea of admissibility
of control operators following Chapters 4, 6, and 11 in [TW09].

Definition 2.2.4. A control operator operator B ∈ L(U,X−1) is an admissible
control operator for (T (t))t>0 if for all t > 0∫ t

0
T−1(t− s)Bu(s) ds ∈ X

for every u ∈ L2(0, t;U).

Admissibility implies that the mild solution x of (2.10) satisfies x ∈ C(0, t;X)
for every initial condition x0 ∈ X and every u ∈ L2(0, t;U).

Proposition 2.2.5. ([TW14, Proposition 4.4.6]) Let B ∈ L(U,X−1) be an
admissible control operator for (T (t))t>0. Then for ω > ω0(A) exists a constant
Mω > 0 such that

‖(s−A−1)−1B‖L(U,X) 6
Mω√

Re s− ω
for Re s > ω. (2.13)

In the same manner as in the motivation of admissibility for control operators,
it might happen that for x ∈ D(A) the solution x does not lie in the domain of A
implying that Cx(t) is not well-defined. To avoid this we introduce admissibility
for observation operators.

Definition 2.2.6. An observation operator C ∈ L(X1, Y ) is an admissible
observation operator for (T (t))t>0 if there exists a positive constant K > 0 such
that ∫ ∞

0
‖CT (t)x0‖2 dt 6 K ‖x0‖2 , x0 ∈ D(A).

Definition 2.2.7. A system Σ(A,B) with an admissible control operator B ∈
L(U,X−1) is exactly controllable, if there exists a time τ > 0 such that for all
x1 ∈ X there exists a control function u ∈ L2(0, τ ;U) such that the correspond-
ing mild solution satisfies x(0) = 0 and x(τ) = x1.

Note that this definition of exactly controllable is often also denoted as exactly
controllable in finite time.

Definition 2.2.8. A system Σ(A,C) with an admissible observation operator
C ∈ L(X1, Y ) is exactly observable, if there exists a positive constant k such
that ∫ τ

0
‖CT (t)x0‖2 dt > k ‖x0‖2 , x0 ∈ D(A).
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This is equivalent to the fact, that every initial state x0 ∈ X can be uniquely
and continuously reconstructed from the output y ∈ L2(0, τ ;Y ).

Furthermore, we note that the concepts of controllability and observability are
dual in the following sense.

Proposition 2.2.9. ([TW09, Theorem 11.2.1]) Let B ∈ L(U,X−1) an admis-
sible control operator for the C0-semigroup (T (t))>0 generated by A. Then the
system Σ(A,B) is exactly controllable if and only if Σ(A∗, B∗) is exactly ob-
servable.

In the following we formulate the so-called Hautus test giving a necessary condi-
tion for exact observability. In [RW94] the Hautus test is formulated for systems
which are exactly observable in infinite time, i.e., there exists a positive con-
stant k̃ such that

∫∞
0 ‖CT (t)x0‖2 dt > k̃ ‖x0‖2 , x0 ∈ D(A). Of course, this

concept of exact observability follows from our notion of exact observability.

Theorem 2.2.10. ([RW94, Theorem 1]) Let A be the generator of an exponen-
tially stable C0-semigroup and let C ∈ L(X1, Y ) be an admissible observation
operator. If the system Σ(A,C) is exactly observable, then there exists a positive
constant m such that

1

|Re s|2
‖(s−A)x‖2 +

1

|Re s|
‖Cx‖2 > m ‖x‖2 , Re s < 0, x ∈ D(A). (2.14)

Partial differential equations which can be handled via control and observation
of the boundary occur frequently in applications. Therefore, we introduce the
so-called boundary control and observation systems. In Theorem 2.2.22 we will
see that these kind of systems even fit in the standard formulation (2.10)-(2.11).
The following is extracted from the Chapters 11 and 13 in [JZ12].

Definition 2.2.11. Let X,U, and Y denote Hilbert spaces and let A : D(A) ⊂
X → X and B : D(A) → U be linear operators. Then S(A,B) is a boundary
control system if the following hold:

1. The operator A : D(A) ⊂ X → X with D(A) = D(A)∩ ker(B) and Ax =
Ax for x ∈ D(A) is the infinitesimal generator of a strongly continuous
semigroup on X.

2. There exists a right inverse B̃ ∈ L(U,X) of B in the sense that for all
u ∈ U we have B̃u ∈ D(A), BB̃u = u and AB̃ : U → X is bounded.

If it holds additionally for a linear operator C : D(A)→ Y the statement

3. the operator C is bounded from D(A) to Y , where D(A) is equipped with
the graph norm of A,

then the triple S(A,B,C) is a boundary control and observation system.

Note that a boundary control system is a boundary control and observation
system with C = 0.
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Remark 2.2.12. In the literature, see e.g. Staffans [Sta05] or Tucsnak and Weiss
[TW09], there exists a slightly more general formulation of boundary control
systems taking into account that D(B) 6= D(A) and D(C) 6= D(A), but then
they have to satisfy D(A) ⊂ D(A) and D(A) ⊂ D(C).

We write operators of Definition 2.2.11 as a system of the following form:

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t),

y(t) = Cx(t), t > 0.

(2.15)

Now we are interested in classical and mild solutions of (2.15).

Definition 2.2.13. Let S(A,B,C) be a boundary control and observation
system, with initial value x0 ∈ D(A) and u ∈ C2(0,∞;U). A function x :
[0,∞) → X is a classical solution of the boundary control and observation
system if x ∈ C1(0,∞;D(A)) and x(t) satisfies the first two equations of (2.15)
for every t > 0.

Lemma 2.2.14. ([JZ12, Lemma 13.1.5]) Let S(A,B,C) be a boundary control
and observation system and x0 ∈ D(A) and u ∈ C2(0, t;U) satisfying Bx0 =
u(0). Then the unique classical solution on [0, t] of (2.15) is given by

x(t) = T (t)x0 +

∫ t

0
T (t− s)AB̃u(s) ds−A

∫ t

0
T (t− s)B̃u(s) ds, (2.16)

where B̃ is described in Definition 2.2.11. This implies

y(t) = CT (t)x0 + C

∫ t

0
T (t− s)AB̃u(s) ds− CA

∫ t

0
T (t− s)B̃u(s) ds.

In general, we are also interested in mild solutions, since the initial value x0

might be an arbitrary element of X, not necessary in the domain of A, and we
also want to allow arbitrary input functions u ∈ L2(0, t;U). Nevertheless, the
solution x should be a continuous function with values in X and the output y
should be a L2-function. This leads to the definition of well-posedness.

Definition 2.2.15. The boundary control and observation system S(A,B,C)
is called well-posed if there exist a t > 0 and mt > 0 such that for every initial
value x0 ∈ D(A) and every input function u ∈ C2(0, t;U) with u(0) = Bx0 the
classical solution x and y satisfy

‖x(t)‖2X +

∫ t

0
‖y(s)‖2ds 6 mt

(
‖x0‖2X +

∫ t

0
‖u(s)‖2ds

)
.

There exists a rich literature on well-posed systems, see e.g. Staffans [Sta05] or
Tuscnak and Weiss [TW14]. In general, it is not easy to verify well-posedness
for a boundary control and observation system. Nevertheless, the following
proposition allows us to do so for a special class of systems.
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Proposition 2.2.16. ([JZ12, Proposition 13.1.4]) Let S(A,B,C) be a boundary
control and observation system (2.15). If every classical solution of (2.15)
satisfies

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 ,

then the system is well-posed.

Now we formulate the mild solution of a well-posed boundary control system
and observation system.

Definition 2.2.17. Let S(A,B,C) be a well-posed boundary control and ob-
servation system with initial value x0 ∈ X and u ∈ L2(0, t;U). Then the
function x(t) given in (2.16) is called mild solution and x ∈ C(0,∞, X).

Lemma 2.2.18. ([JZ12, Lemma 13.1.5]) Let S(A,B,C) be a well-posed bound-
ary control and observation system with initial value x0 ∈ X and u ∈ L2(0, t;U).
Then the unique mild solution x is given by

x(t) = T (t)x0 +

∫ t

0
T−1(t− s)(AB̃ −A−1B̃)u(s) ds, (2.17)

where B̃ is described in Definition 2.2.11.

For the class of boundary control and observation systems we introduce the
concept of transfer functions following Chapter 12 in [JZ12].

Definition 2.2.19. Let S(A,B,C) be a boundary control and observation
system. For s ∈ ρ(A) and u ∈ U , G(s)u is the unique solution of

sx = Ax, x0 ∈ D(A),

u = Bx,

y = Cx.

Then y = G(s)u, G(s) ∈ L(U, Y ), and G : ρ(A)→ L(U, Y ) is called the transfer
function of the system S.

For the following proposition we define the weighted L2-spaces. For any Hilbert
space H a function v is an element of the weighted L2-space L2

µ(0,∞;H)
if and only if e−µtv ∈ L2(0,∞, H). L2

µ(0,∞;H) equipped with the norm
‖v‖L2

µ(0,∞;H) :=
∥∥e−µtv

∥∥
L2(0,∞;H)

is a Hilbert space.

Proposition 2.2.20. ([JZ12, Theorem 12.1.3] and [Wei94, Proposition 4.1 and
Proposition 3.2]) The transfer function of a well-posed system S(A,B,C) is
given by

G(s) = C(s−A)−1(AB̃ − sB̃) + CB̃, s ∈ ρ(A).

For a well-posed system there exists a µ > w0 such that the transfer function
equals the Laplace transform of the linear and bounded mapping

L : L2
µ(0,∞;U)→ L2

µ(0,∞;Y ).

Furthermore, the transfer function is bounded on the right half plane Cµ :=
{s ∈ C | Re s > µ}.
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However, the boundedness of the transfer function on a right half plane does
not imply the convergence along the real axis. But convergence along the real
axis implies a suitable representation of the feedthrough operator.

Definition 2.2.21. [JZ12, Definition 13.1.11] A well-posed boundary control
and observation system S(A,B,C) with transfer function G is called regular if
lims∈R,s→∞G(s) exists. In this case the feedthrough operator D is defined as

D := lim
s∈R,s→∞

G(s).

The next assertion can be found in Chapter 13, Section 1 in [JZ12] and makes
the connection between boundary control and observation systems and the stan-
dard formulation in system theory.

Theorem 2.2.22. Every regular well-posed boundary control and observation
system S(A,B,C) (2.15) can equivalently formulated in the standard formula-
tion (2.10)-(2.11) in system theory with a control operator B = (AB̃ −A−1B̃).

So far, we have only considered open-loop systems, that is, the input u(t) is
independent of the output y(t), see Figure 2.1. Systems, where input and
output are connected via a feedback law

u(t) = Fy(t) + v(t), (2.18)

are called closed-loop systems, see Figure 2.2. Here F denotes the so called
feedback operator and v(t) the new input.

S(A,B,C)
u y

Figure 2.1: open-loop system S(A,B,C)

S(A,B,C)

F

v u y

+

Figure 2.2: closed-loop system S(A,B,C) with feedback F

The proofs of the following results about feedback systems can be found in
[Wei94] and [Sta05]. We give a brief overview on closed-loop systems and start
with the considerations which operators are admissible as a feedback operator.
Then we will see that not only well-posedness is preserved under an admissible
feedback operator, but also exact controllability.
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Definition 2.2.23. ([Wei94, Proposition 4.9]) Let the system S(A,B,C) be
a regular boundary control and observation system (2.15) and we denote by
D ∈ L(U, Y ) the corresponding feedthrough operator. Assume that for the
transfer function G holds

lim
r→∞

sup
ω∈R
‖G(iω + r)−D‖ = 0. (2.19)

Then, an operator F ∈ L(Y, U) is called an admissible feedback operator for a
regular boundary control and observation system (2.15), if I−DF is invertible.

Proposition 2.2.24. ([JZ12, Theorem 13.1.12]) Let S(A,B,C) be a well-posed
boundary control and observation system (2.15). Assume that F is an admissi-
ble feedback operator. Then the closed-loop system S(A, (B− FC),C), i.e.,

ẋ(t) = Ax(t), x(0) = x0,

v(t) = (B− FC)x(t),

y(t) = Cx(t), t > 0.

(2.20)

with input v and output y is a well-posed boundary control and boundary obser-
vation system.

Proposition 2.2.25. ([Wei94, cf. Remark 6.5]) Let S(A,B,C) be a well-posed
boundary control and observation system (2.15). Assume that F is an admissi-
ble feedback operator. Then the closed-loop system S(A, (B−FC),C) is exactly
controllable if and only if the open-loop system S(A,B,C) is exactly control-
lable.
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Chapter 3

Introduction to
port-Hamiltonian systems

Here, we consider a special class of partial differential equation on a one-di-
mensional space, which has an additional structure motivated by the structure
of the port-Hamiltonian systems. Thus, we consider linear port-Hamiltonian
systems on infinite-dimensional spaces, which we model as boundary control
and observation systems as introduced in Chapter 2. Well-known examples in
physics and other applications are the transport equation, the wave equation
modelling a vibrating string or a transmission line, and beam equations mod-
elling the Timoshenko beam. This class of systems makes use of the physical
structure of the equations. A nice feature of the port-Hamiltonian setting is
that it allows us to consider in particular boundary control and observation,
which is important in applications, e.g. for the wave equation. Having this at
hand we can also consider systems having an input and an output.

3.1 Class of port-Hamiltonian systems

In this first section we introduce port-Hamiltonian systems which have nei-
ther input nor output. In the following section we provide the class of port-
Hamiltonian systems with an input to control and an output to observe these
systems.

Assumption 3.1.1. Let P1 ∈ Cd×d be an invertible Hermitian matrix, P0 ∈
Cd×d a skew-symmetric matrix,

[
W̃1 W̃0

]
a full row rank d× 2d matrix, and

H(ζ) a positive d × d Hermitian matrix for a.e. ζ ∈ (0, 1) satisfying H,H−1 ∈
L∞(0, 1;Cd×d). Since H(ζ) is positive definite and P1 a Hermitian matrix,
P1H(ζ) is similar to a Hermitian matrix, and thus, the matrix P1H(ζ) can be
diagonalized as P1H(ζ) = S−1(ζ)∆(ζ)S(ζ), where ∆(ζ) is a diagonal matrix and
S(ζ) is an invertible matrix for almost every ζ ∈ (0, 1). We suppose the technical
assumption that S−1, S, ∆ : [0, 1]→ Cd×d are continuously differentiable.

Note that, for instance, in [Kat95, Chapter II] conditions for P1H such that
S−1, S, ∆ : [0, 1]→ Cd×d are continuously differentiable, are described.

23



24 CHAPTER 3. PORT-HAMILTONIAN SYSTEMS

With this assumption in mind, we introduce that type of partial differential
equation which is the main subject of this thesis.

Definition 3.1.2. Let Assumption 3.1.1 be fulfilled. A system which is given
by the following partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)), ζ ∈ (0, 1), t > 0

x(ζ, 0) = x0(ζ), (3.1)

0 =
[
W̃1 W̃0

] [(Hx)(1, t)
(Hx)(0, t)

]
, t > 0,

is called a port-Hamiltonian system.

Remark 3.1.3. To shorten the notation, we use the term port-Hamiltonian sys-
tem instead of linear, first order port-Hamiltonian system.

The energy, also denoted as Hamiltonian, of a port-Hamiltonian system can be
described by

E(t) =
1

2

∫ 1

0
x(ζ, t)∗H(ζ)x(ζ, t)dζ. (3.2)

We choose all states with finite energy as the state space X, i.e., all functions
x such that 1

2

∫ 1
0 x(ζ, t)∗H(ζ)x(ζ, t)dζ is finite. Due to the requirements on H

in Assumption 3.1.1 these are all functions, which are square integrable over
the unit interval. Thus, we set the state space X = L2(0, 1;Cd) and we equip
it not with the standard L2-norm, but with the inner product

〈f, g〉 =
1

2

∫ 1

0
f(ζ)∗H(ζ)g(ζ) dζ, f, g ∈ L2(0, 1;Cd).

Then the squared norm of an element x ∈ X equals the energy of the state x of
the port-Hamiltonian system and therefore, the norm is called energy norm on
the energy space X. We point out, that the energy norm and the standard L2-
norm on X are equivalent. For the energy of port-Hamiltonian systems holds
the following power balance equation, which can be proved by integration by
parts, cf. [JZ12, Lemma 7.1.5].

Proposition 3.1.4. Let x denote the classical solution of the port-Hamiltonian
system (3.1). Then the balance equation

dE

dt
(t) =

1

2
[((Hx)(ζ, t))∗P1(Hx)(ζ, t)]10 (3.3)

holds.

The power balance equation (3.3) explains the name of this class of systems by
taking into account that the energy can also change via the boundary of the
system.
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Remark 3.1.5. Without loss of generality it is possible to consider only port-
Hamiltonian systems on the unit interval instead of port-Hamiltonian systems
on an arbitrary interval [a, b]. In fact, there is an isometric isomorphism α
between the corresponding state spaces:

α : L2(a, b;Cd)→ L2(0, 1;Cd)

x(·) 7→ x

(
· − a
b− a

)
In what follows, we give some examples to illustrate that there are many physical
systems which fit in the class of port-Hamiltonian systems. These and further
examples can also be found in [Vil07], [JZ12], [JMZ15], [Aug16] or [JZ18], just to
mention a few. Examples for a more general class of port-Hamiltonian systems
can be found in Chapter 6 of this thesis as well.

Example 3.1.6. The following partial differential equation is called transport
equation.

∂x

∂t
(ζ, t) =

∂

∂ζ
(c(ζ)x(ζ, t)) , x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), t > 0, (3.4)

0 = (cx)(1, t)− µ(cx)(0, t), µ ∈ C, t > 0, (3.5)

where c(ζ) : [0, 1] → R is a bounded, continuously differentiable function such
that c(ζ) > 0 for ζ ∈ [0, 1]. This is the simplest port-Hamiltonian system with
P1 = 1, P0 = 0 and a complex valued function H(ζ) = c(ζ). The boundary
conditions 3.5 can reformulated in the port-Hamiltonian setting as[

1 −µ
] [(cx)(1, t)

(cx)(0, t)

]
= 0, µ ∈ C, t > 0.

1

5

10

15

x(ζ + 1
4 )

1

5

10

15

Figure 3.1: Sketch of the translation shift for c ≡ 1 and µ=2

The energy of the system is described by

E(t) =
1

2

∫ 1

0
c(ζ) |x(ζ, t)|2 dζ.

Example 3.1.7. The vibrating string can be described by the wave equation.
We consider a string which is clamped at the left side and freely vibrating at
the right side.
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Figure 3.2: vibrating wave clamped at ζ = 0

∂2ω

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂ω

∂ζ
(ζ, t)

)
, x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), t > 0, (3.6)

0=

[ ∂ω
∂t (0, t)

T (1)∂ω∂ζ (1, t)

]
, t > 0, (3.7)

where w(ζ, t) is the vertical position of the string at position ζ and time t,
T (ζ) > 0 is the Young’s modulus of the string, and ρ(ζ) > 0 is the mass
density. We introduce as the new state variables

x1(ζ, t) := ρ(ζ)
∂ω

∂t
(ζ, t) the momentum, and

x2(ζ, t) :=
∂ω

∂ζ
(ζ, t) the strain.

Hence, we can model the wave equation (3.6) as

∂

∂t

[
x1

x2

]
(ζ, t) =

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

]
x(ζ, t)

)
(3.8)

0 =

[
0 0 1 0
0 1 0 0

] [
(Hx)(1, t)
(Hx)(0, t)

]
,

where x =
[
x1 x2

]>
.

Moreover, the energy of the system can be written in the chosen state variables
as

E(t) =
1

2

∫ 1

0

|x1(ζ, t)|2

ρ(ζ)
+ T (ζ) |x2(ζ, t)|2 dζ.

Example 3.1.8. The Timoshenko beam equations model the effects in a vibrating
beam and take into account shear and rotational effects. A beam, which is
clamped at both sides, i.e., at ζ = 0 and at ζ = 1, can be modelled by

ρ(ζ)
∂2ω

∂t2
(ζ, t) =

∂

∂ζ

(
K(ζ)

(
∂ω

∂ζ
(ζ, t)− Φ(ζ, t)

))
, ζ ∈ (0, 1), t > 0,

Iρ(ζ)
∂2Φ

∂t2
=

∂

∂ζ

(
EI(ζ)

∂Φ

∂ζ
(ζ, t)

)
+K(ζ)

(
∂ω

∂ζ
(ζ, t)− Φ(ζ, t)

)
,

∂ω

∂t
(0, t) =

∂Φ

∂t
(0, t) =

∂ω

∂t
(1, t) =

∂Φ

∂t
(1, t) = 0, x(ζ, 0) = x0(ζ),

where ω(ζ, t) denotes the transverse displacement of the beam and Φ(ζ, t) the
rotation angle of a filament of the beam. All physical parameters are positive
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and continuously differentiable functions of ζ. K(ζ) denotes the shear modulus,
EI(ζ) is the product of Young’s modulus of elasticity and the moment of inertia
of a cross section, ρ(ζ) is the mass per unit length and Iρ(ζ) denotes the rotary
moment of inertia of a cross section.
In order to model the Timoshenko beam as a port-Hamiltonian system, we
introduce new state variables

x1(ζ, t) =
∂ω

∂ζ
(ζ, t)− Φ(ζ, t) the shear displacement,

x2(ζ, t) = ρ(ζ)
∂ω

∂t
(ζ, t) the momentum,

x3(ζ, t) =
∂Φ

∂ζ
(ζ, t) the angular displacement,

x4(ζ, t) = Iρ(ζ)
∂Φ

∂t
(ζ, t) the angular momentum.

The Timoshenko beam can be modelled as a port-Hamiltonian system using
these new state variables. It can be written in the form of (3.1) with

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , H(ζ) =


K(ζ) 0 0 0

0 1
ρ(ζ) 0 0

0 0 EI(ζ) 1
0 0 0 1

Iρ(ζ)

 ,

P0 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 ,
and [

W̃1 W̃0

]
=


0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 .
The energy of the system is given by

E(t) =
1

2

∫ 1

0
K(ζ) |x1(ζ, t)|2 +

1

ρ(ζ)
|x2(ζ, t)|2

+ EI(ζ) |x3(ζ, t)|2 +
1

Iρ(ζ)
|x4(ζ, t)|2 dζ.

3.2 Generation theorems

To study the whole class of systems instead of considering each example sepa-
rately, we aim to formulate port-Hamiltonian systems as abstract Cauchy prob-
lems (2.2). Hence, we introduce the port-Hamiltonian operator associated to
(3.1) and study the question which port-Hamiltonian operators generate (con-
tractive) C0-semigroups.
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Definition 3.2.1. Let P0, P1,H satisfy Assumption 3.1.1 and define X :=
L2(0, 1;Cd). Then the operator A : D(A) ⊂ X → X defined by

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (3.9)

D(A) :=

{
x ∈ X | Hx ∈ W1,2(0, 1;Cd) and

[
W̃1 W̃0

] [(Hx)(1)
(Hx)(0)

]
= 0

}
(3.10)

is called port-Hamiltonian operator.

For port-Hamiltonian systems the boundary conditions are often equivalently
reformulated via the boundary flow and the boundary effort. We introduce
them in the following.

Definition 3.2.2. For a port-Hamiltonian system we define the boundary flow
fδ,Hx and the boundary effort eδ,Hx as[

fδ,Hx
eδ,Hx

]
:=

1√
2

[
P1 −P1

I I

] [
(Hx)(1)
(Hx)(0)

]
. (3.11)

Define W̃B =
[
W̃1 W̃0

]
. Then

W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
= 0⇔WB

[
fδ,Hx
eδ,Hx

]
= 0, (3.12)

where

WB = W̃B

√
2

[
P1 −P1

I I

]−1

= W̃B
1√
2

[
P−1

1 I

−P−1
1 I

]
. (3.13)

Thus, we get an equivalent formulation of the boundary conditions of a port-
Hamiltonian system, which is useful for the next corollary.

The following assertion can be found in [LGZM05], [JZ12, Thereom 7.2.4], and
[Aug16] and characterizes the generation of contraction C0-semigroups for port-
Hamiltonian operators.

Theorem 3.2.3. Let A be a port-Hamiltonian operator given by (3.9)-(3.10).

Let W̃B be a matrix with full row rank. Then the following statements are
equivalent.

1. A is the generator of a contraction C0-semigroup on X,

2. A is dissipative,

3. WBΣW ∗B > 0, where Σ :=

[
0 I
I 0

]
.

If one of the above conditions is fulfilled, then A has a compact resolvent. Fur-
thermore, A generates a unitary C0-group if and only if WBΣW ∗B = 0 holds
true.
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Remark 3.2.4. Note that for symmetric matrices M ∈ Cd×d we write M > mI
with a real constant m if 〈v,Mv〉 > m ‖v‖2 for all v ∈ Cd.
The proof of Theorem 3.2.3 can be found in [LGZM05, Theorem 4.1] and [JZ12,
Theorem 7.2.4] and is even a Corollary of Theorem 6.1.3 in Chapter 6.
Furthermore, the generation of C0-semigroups for port-Hamiltonian operators
is characterized in [JMZ15].

Theorem 3.2.5. Let A be a port-Hamiltonian operator. Let Z+(ζ) be the
span of the eigenvectors of P1H(ζ) corresponding to the positive eigenvalues
of P1H(ζ) and Z−(ζ) be the span of the eigenvectors of P1H(ζ) correspond-
ing to the negative eigenvalues of P1H(ζ). Then the following statements are
equivalent:

1. A is the generator of a C0-semigroup on X,

2. W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0) = Cd.

Using Theorem 2.1.16 we formulate the following corollary:

Corollary 3.2.6. Let A be a port-Hamiltonian operator and let Z+(ζ) and
Z−(ζ) be defined as in Theorem 3.2.5. Then the following statements are equiv-
alent:

1. A is the generator of a C0-group on X,

2. W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0) = W̃1H(1)Z−(1)⊕ W̃0H(0)Z+(0) = Cd.

With the knowledge of this generation theorems, we consider the Examples
3.1.6-3.1.8 again and study which of these port-Hamiltonian systems are well-
posed.

Example 3.2.7. Continuation of Example 3.1.6. For the transport equation we
define the associated port-Hamiltonian operator on X = L2(0, 1;C)

Ax =
∂

∂ζ
(cx) , x ∈ D(A),

D(A) = {x ∈ X | cx ∈ W1,2(0, 1;C) and
[
1 −µ

] [(cx)(1)
(cx)(0)

]
= 0, µ ∈ R}.

Since for general port-Hamiltonian systems Re 〈Ax, x〉 is not easy to determine
to check the dissipativity, Theorem 3.2.3 gives an equivalent easy checkable
matrix condition. But for this system we can even determine Re 〈Ax, x〉 using
integration by parts

Re 〈Ax, x〉 = Re 〈 ∂
∂ζ

(cx), cx〉 =
1

2

[
〈cx, ∂

∂ζ
(cx)〉+ 〈 ∂

∂ζ
(cx), cx〉

]
=

1

2

[
|cx|2 |10 −〈

∂

∂ζ
(cx), cx〉+ 〈 ∂

∂ζ
(cx), cx〉

]
=

1

2

[
|(cx)(1)|2 − |(cx)(0)|2

]
.



30 CHAPTER 3. PORT-HAMILTONIAN SYSTEMS

The boundary conditions implies |(cx)(1)|2 = µ2 |(cx)(0)|2 and so

Re 〈Ax, x〉 =
1

2

[
|(cx)(1)|2 − |(cx)(0)|2

]
=

1

2
(µ2 − 1) |(cx)(0)|2 .

Thus, it holds Re 〈Ax, x〉 6 0 if and only if |µ| 6 1 and hence A generates a
contraction C0-semigroup if and only if |µ| 6 1.
Nevertheless, in this example, the matrix condition in Theorem 3.2.3 also an-
swers the question whether A generates a contraction C0-semigroup much faster:
W̃B =

[
1 −µ

]
implies WB = 1√

2

[
1 + µ 1− µ

]
and thus WBΣW ∗B = 1−|µ| >

0 if and only if |µ| 6 1. Furthermore, we can use Theorem 3.2.5 to study
whether A generates a C0-semigroup for |µ| > 1. Since P1H(ζ) = H(ζ) = c(ζ),
it holds Z+(1) = C and Z−(0) = {0}. Thus, A generates a C0-semigroup even
for |µ| > 1.

Example 3.2.8. Continuation of Example 3.1.7. Again, we consider the wave
equation which is in Example 3.1.7 written as the port-Hamiltonian system (3.8)

and we define the associated port-Hamiltonian operator for x =
[
x1 x2

]>
as

Ax =

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

]
x

)
, x ∈ D(A),

D(A) =

{
x ∈ X | Hx ∈ W1,2(0, 1;C2) and W̃B

[
(Hx)(1)
(Hx)(0)

]
= 0

}
,

(3.14)

where H =

[ 1
ρ(ζ) 0

0 T (ζ)

]
and W̃B =

[
0 0 1 0
0 1 0 0

]
describes the boundary con-

ditions. These boundary conditions of A model the situation where the string
is clamped at the left side and free vibrating at the right side. Then it holds
due to (3.13)

WB =
1

2

[
0 −1 1 0
1 0 0 1

]
(3.15)

and thus, WBΣW ∗B = 0. Hence, A generates a contraction C0-semigroup and
moreover a unitary C0-group. To illustrate that a port-Hamiltonian operator
does not always generate a unitary C0-group, we consider in a slightly mod-
ified setting the port-Hamiltonian operator (3.14) with boundary conditions
described by

W̃B =

[
0 0 κ 1
0 1 0 0

]
, κ > 0,

which model a vibrating string with an amplifier at the left end and free at the
right end. Then it holds

WB =
1√
2

[
−1 −κ κ 1
1 0 0 1

]

and WBΣW ∗B =

[
−2κ 0

0 0

]
, which is not a positive semi-definite matrix. Thus,

due to Theorem 3.2.3 the wave equation equipped with these boundary condi-
tions does not generate a contraction C0-semigroup.
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In the following, we study the question, whether the operator generates at
least a C0-semigroup. Theorem 3.2.5 gives a helpful characterization for C0-
semigroup generation of port-Hamiltonian operators. This part of the example
can also be found in [JMZ15]. Defining γ =

√
T (ζ)/ρ(ζ), the matrix function

P1H can be factorized as

P1H =

[
γ −γ
ρ−1 ρ−1

]
︸ ︷︷ ︸

S−1

[
γ 0
0 −γ

]
︸ ︷︷ ︸

∆

[
(2γ)−1 ρ/2
(2γ)−1 ρ/2

]
︸ ︷︷ ︸

S

. (3.16)

Then, P1H has eigenvalues γ and −γ with corresponding eigenvectors
[
T (ζ)
γ(ζ)

]
,

and
[
−T (ζ)
γ(ζ)

]
, respectively. Since the eigenspaces are one-dimensional Z+(ζ)

and Z−(ζ) are each the span of the corresponding single eigenvector, it equals

W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0) =

[
0 0
0 1

] [
γ(1)
T (1)

]
⊕
[
κ 1
0 0

] [
−γ(0)
T (0)

]
=

[
0

T (1)

]
⊕
[
−κγ(0) + T (0)

0

]
= C2.

Thus, the port-Hamiltonian system (3.8) is well-posed.

Example 3.2.9. Continuation of example 3.1.8. The port-Hamiltonian operator
associated to the port-Hamiltonian system of the Timoshenko beam is given by

Ax =

([
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
d

dζ
+

[
0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

])
(

K(ζ) 0 0 0

0 1
ρ(ζ)

0 0

0 0 EI(ζ) 1

0 0 0 1
Iρ(ζ)

x), x ∈ D(A),

D(A) =

{
x ∈ X | Hx ∈ W1,2(0, 1;Cd) and

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

] [
(Hx)(1, t)
(Hx)(0, t)

]
= 0

}
,

where x =
[
x1 x2 x3 x4

]>
. Then it holds WB =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

]
and more-

over, WBΣW ∗B = 0. Thus, by Theorem 3.2.3 A generates a unitary C0-group.

3.3 Boundary control and observation port-Hamilto-
nian systems

Since most of the systems in applications are connected with their environ-
ment, we introduce port-Hamiltonian systems with inputs and outputs. In a
first step, we add only an input to the port-Hamiltonian system. Thus, we con-
sider infinite-dimensional linear port-Hamiltonian systems on a one-dimensional
spatial domain with boundary control of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), (3.17)

u(t) = W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
, t > 0.
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Again, Assumption 3.1.1 has to be fulfilled. These systems are called boundary
control port-Hamiltonian systems. To formulate port-Hamiltonian systems with
input as boundary control systems, we introduce a port-Hamiltonian operator
without boundary conditions. The following is extracted from Chapters 11 and
13 in [JZ12].

Definition 3.3.1. The operator

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (3.18)

on X := L2(0, 1;Cd) with the domain

D(A) :=
{
x ∈ X | Hx ∈ W1,2(0, 1;Cd)

}
(3.19)

is called the (maximal) port-Hamiltonian operator.

Furthermore, we introduce the input operator B : D(A)→ Cd by

Bx = W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
. (3.20)

Then the partial differential equation (3.17) can be written as a boundary con-
trol system

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t).

The first important question is whether the port-Hamiltonian system (3.17)
is well-posed in the sense that for every initial condition x0 ∈ X and every
u ∈ L2(0, t;Cd) equation (3.17) has a unique mild solution, cf. Definition 2.2.15.
Moreover, we see that the port-Hamiltonian operator A associated to the max-
imal port-Hamiltonian operator with

Ax = Ax, x ∈ D(A), (3.21)

D(A) : =

{
x ∈ D(A) | W̃B

[
(Hx)(1)
(Hx)(0)

]
= 0

}
(3.22)

equals the port-Hamiltonian operator defined in Definition 3.2.1. The following
results gives a characterization for well-posedness of port-Hamiltonian systems.

Theorem 3.3.2. ([Vil07, ZLMV10, JZ12]) The port-Hamiltonian system (3.17)
is well-posed if and only if the port-Hamiltonian operator A generates a strongly
continuous C0-semigroup on X.

We recall, that A generates a contraction C0-semigroup on X if and only if A is
dissipative on X, cf. Theorem 3.2.3. There can be found matrix conditions to
guarantee generation of a contraction C0-semigroup, too. Matrix conditions for
the generation of strongly continuous semigroups are given in Theorem 3.2.5.
Now we understand well-posedness for boundary control systems and add as
next step an output to these systems.
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Definition 3.3.3. Systems of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), (3.23)

u(t) = W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
,

y(t) = W̃C

[
(Hx)(1, t)
(Hx)(0, t)

]
, t > 0,

satisfying Assumption 3.1.1 and where W̃C is a full row rank k × 2d-matrix,

k ∈ {0, · · · , d}, such that the matrix
[
W̃B

W̃C

]
has full row rank are called boundary

control and observation port-Hamiltonian system.

The case k = 0 refers to a system without observation, that is, every definition
or statement of the port-Hamiltonian system (3.23) also applies to the boundary
control port-Hamiltonian system (3.17).
We define C : D(A)→ Ck by

Cx = W̃C

[
(Hx)(1, t)
(Hx)(0, t)

]
. (3.24)

Then we can write the port-Hamiltonian system (3.23) in the following form

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t), (3.25)

y(t) = Cx(t).

We recall, that if A, defined by (3.9)-(3.10), generates a strongly continuous
semigroup on the state space X, then the port-Hamiltonian system (3.23) is a
boundary control and observation system.
We note that for x0 ∈ D(A) and u ∈ C2(0, t;Cd), t > 0, satisfying Bx0 = u(0),
the boundary control and observation port-Hamiltonian system S(A,B,C) pos-
sesses a unique classical solution, cf. Lemma 2.2.14.
For technical reasons we formulate the boundary conditions of (3.23) equiv-
alently via the boundary flow and the boundary effort denoted by fδ,Hx and
eδ,Hx. Using Definition 3.2.2 we can write the port-Hamiltonian system (3.23)
equivalently as

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), (3.26)

u(t) = WB

[
fδ,Hx
eδ,Hx

]
,

y(t) = WC

[
fδ,Hx
eδ,Hx

]
, t > 0,
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where analogously to WB in (3.13) the matrix WC is defined as

WC = W̃C
1√
2

[
P−1
1 I

−P−1
1 I

]
. (3.27)

The port-Hamiltonian system (3.23) is uniquely described by S(A,B,C) given
by (3.21), (3.22), (3.20) and (3.24). In the following we give an example for a
boundary control and observation port-Hamiltonian system.

Example 3.3.4. Continuation of Example 3.1.7 and 3.2.8. We consider the wave
equation with an input and an output, namely

∂x

∂t
(ζ, t) =

[
0 1
1 0

]
∂

∂ζ

[ 1
ρ(ζ) 0

0 T (ζ)

]
x(ζ, t), x(ζ, 0) = x0(ζ), ζ ∈ (0, 1),

u(t) =

[
0 0 2 0
0 0 0 2

] [
fδ,Hx
eδ,Hx

]
, (3.28)

y(t) =

[
1
2 0 0 0
0 1

2 0 0

] [
fδ,Hx
eδ,Hx

]
, t > 0.

Well-posedness is a fundamental property of boundary control and observation
systems. In general it is not easy to show that a boundary control and observa-
tion system is well-posed, for the port-Hamiltonian system (3.23) well-posedness
is already satisfied if A generates a C0-semigroup, cf. [ZLMV10, Theorem 3.3]
and [JZ12, Theorem 13.2.2].

Theorem 3.3.5. The port-Hamiltonian system (3.23) is well-posed if and only
if the operator A defined by (3.9)-(3.10) generates a strongly continuous semi-
group on X.

There is a special class of port-Hamiltonian systems for which well-posedness
follows immediately.

Definition 3.3.6. A port-Hamiltonian systems (3.23) is called impedance pas-
sive if

Re 〈Ax, x〉 6 Re 〈Bx,Cx〉 (3.29)

for every x ∈ D(A). If we have equality in (3.29), then the port-Hamiltonian
system is called impedance energy preserving.

The fact that a port-Hamiltonian system is impedance energy preserving can
be characterized by an easy checkable matrix condition.

Theorem 3.3.7. ([LGZM05, Theorem 4.4]) The port-Hamiltonian system de-
scribed in (3.23) is impedance energy preserving if and only if it holds[

WBΣW ∗B WBΣW ∗C
WCΣW ∗B WCΣW ∗C

]
=

[
0 I
I 0

]
, (3.30)

where Σ =

[
0 I
I 0

]
.
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Remark 3.3.8. Every impedance energy preserving port-Hamiltonian system
(3.23) is well-posed; WBΣW ∗B = 0 even implies that A generates a unitary
strongly continuous group, cf. [JMZ15, Theorem 1.1].

Example 3.3.9. Continuation of Example 3.1.7, 3.2.8, and 3.3.4. The system
(3.28) is impedance energy preserving, since it holds WBΣW ∗B = 0, WCΣW ∗C =
0 and WBΣW ∗C = WCΣW ∗B = I.

Using the following balance equation we get another property of impedance
passive port-Hamiltonian systems.

Lemma 3.3.10. ([JZ12, Theorem 11.3.5]) Consider the boundary control and
observation port-Hamiltonian system (3.26) such that the associated port-Ha-
miltonian operator A generates a C0-semigroup. If the number of outputs k = d,
then the following balance equation holds:

d

dt
‖x(t)‖2 =

[
u∗(t) y∗(t)

] [WBΣW ∗B WBΣW ∗C
WCΣW ∗B WCΣW ∗C

]−1 [
u(t)
y(t)

]
(3.31)

Remark 3.3.11. For an impedance energy preserving port-Hamiltonian system
the balance equation (3.31) becomes

d

dt
E(t) =

d

dt
‖x(t)‖2 =

[
u(t)∗ y(t)∗

] [0 I
I 0

] [
u(t)
y(t)

]
= 2Re 〈u(t), y(t)〉. (3.32)

Thus, it is easy to see that for impedance energy preserving systems with input
u(t) = 0 there is no change of energy.

Well-posedness implies the existence of B̃ ∈ L(Cd, X) with ran B̃ ⊂ D(A) and
AB̃ ∈ L(Cd, X). Applying Lemma 2.2.18 we get the mild solution.

Lemma 3.3.12. The unique mild solution of (3.23) with an initial value x0 ∈
L2(0, 1;Cd) and u ∈ L2(0, t;U) is given by

x(t) = T (t)x0 +

∫ t

0
T−1(t− s)(AB̃ −A−1B̃)u(s) ds.

Here the operator B̃ : Cd → L2(0, 1;Cd) can be defined as

(B̃u)(ζ) := (H(ζ))−1 (S1ζ + S2(1− ζ))u,

where S1 and S2 are d× d-matrices given by[
S1

S2

]
:=

[
P1 −P1

I I

]−1

W̃ ∗B(W̃BW̃
∗
B)−1.

Then the port-Hamiltonian control system can be written equivalently in the
standard control operator formulation (2.10)

ẋ(t) = A−1x(t) +Bu(t), x(0) = x0, t > 0,

where B ∈ L(Cd, X−1) is given by

B := AB̃ −A−1B̃. (3.33)
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We recall that a boundary control and observation system with transfer function
G is regular, if lims∈R,s→∞G(s) exists. Regularity of this system ensures, among
other things, that the feedthrough operator D ∈ L(U, Y ) exists and can be
described via the transfer function, cf. Definition 2.2.21.

Lemma 3.3.13. ([JZ12, Lemma 13.2.2]) Under the standing assumptions every
well-posed port-Hamiltonian system (3.23) is regular and it holds

lim
Re s→∞

G(s) = lim
s→∞,s∈R

G(s). (3.34)

Therefore, the conditions in Definition 2.2.23 are fulfilled and we define for reg-
ular port-Hamiltonian operators admissibility of feedback operators and recall
the properties of the closed-loop system.

Definition 3.3.14. A d× d-matrix F is called an admissible feedback operator
for a regular port-Hamiltonian system (3.23) with feedthrough operator D, if
I −DF is invertible.

Proposition 3.3.15. ([JZ12, Theorem 13.1.12]) Let S(A,B,C) be a well-posed
port-Hamiltonian system (3.23). Assume that F is an admissible feedback op-
erator. Then the closed-loop system S(A, (B− FC),C), i.e.,

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), (3.35)

v(t) = (B− FC)x(t),

y(t) = Cx(t), t > 0,

with input v and output y is a well-posed port-Hamiltonian system.

We recall that the open-loop system is exactly controllable, if and only if the
closed-loop system is exactly controllable. In Chapter 4 we will see that well-
posed port-Hamiltonian control systems are always exactly controllable. We
close this chapter with a section about the spectrum of port-Hamiltonian sys-
tems.

3.4 Spectrum of port-Hamiltonian systems with
P1H(ζ) diagonal

Since a well-posed port-Hamiltonian operator A has compact resolvent, the
spectrum of A consists of isolated eigenvalues only and every point in the spec-
trum is an eigenvalue which has finite algebraic as well as finite geometric
multiplicity, cf. [GGK90, Theorem XV.2.3].

For arbitrary generators of C0-semigroups it is well-known that the spectrum
lies in a left half-plane, cf. Proposition 2.1.12. Having the generation theorems
for C0-groups in mind, see [EN00, page 79], this implies that the spectrum of
operators generating a C0-group lies in a strip parallel to the imaginary axis.
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Next, for port-Hamiltonian operators with P1H(ζ) diagonal and P0 = 0 we
prove the same results.

Since the eigenvalues of P1H(ζ) are the same as the eigenvalues ofH(ζ)
1
2P1H(ζ)

1
2

it follows by Sylvester’s law of inertia that the number of positive and negative
eigenvalues of P1H(ζ) equal those of P1. Let d1 denote the number of positive
and d2 = d − d1 the number of negative eigenvalues of P1. If P1H(ζ) is diag-

onal, the matrix P1H(ζ) can be written as P1H(ζ) =
[

Λ(ζ) 0
0 Θ(ζ)

]
without loss

of generality, where Λ(ζ) = diag(λi(ζ)) ∈ Cd1×d1 corresponds to the positive
eigenvalues and Θ(ζ) = diag(θi(ζ)) ∈ Cd2×d2 to the negative ones.

We split the variable x(ζ) =
[
x+(ζ)

x−(ζ)

]
∈ Cd with x+(ζ) ∈ Cd1 and x−(ζ) ∈ Cd2 .

Then we formulate the following proposition, which is part of [JZ12, Theorem
13.3.1].

Proposition 3.4.1. Let AK be defined as

AK

[
x+(ζ)
x−(ζ)

]
=

d

dζ

([
Λ(ζ) 0

0 Θ(ζ)

] [
x+(ζ)
x−(ζ)

])
D(AK) =

{[
x+(ζ)
x−(ζ)

]
∈ W1,2(0, 1;Cd) | K

[
Λ(1)x+(1)
Θ(0)x−(0)

]
+Q

[
Λ(0)x+(0)
Θ(1)x−(1)

]}
,

where K,Q ∈ Cd×d such that
[
K Q

]
has full row rank. Then it holds: AK

generates a C0-semigroup on X = L2(0, 1;Cd) if and only if K is invertible.

Proposition 3.4.2. Let A be a port-Hamiltonian operator (3.9)-(3.10) with
P1H(ζ) diagonal and P0 = 0. If A generates a C0-semigroup, then its eigenval-
ues lie in a strip parallel to the imaginary axis.

Proof: In the first part of the proof we give a condition under which s ∈ C is
an eigenvalue. Then, we use this condition to show that there are no eigenvalues
in a certain left half-plane. We start with the characterization of the eigenvalues
of A.

Let s ∈ C be arbitrarily. Then z is a solution of sz = Az if and only if

sz(ζ) =
d

dζ

[
Λ(ζ) 0

0 Θ(ζ)

]
z(ζ), ζ ∈ [0, 1]. (3.36)

The solution of (3.36) is given by

zi(ζ) =

 ci
λi(ζ)

e
s
∫ ζ
0

1
λi(y)

dy
for 1 6 i 6 d1

ci
θi(ζ)

e
s
∫ ζ
0

1
θi(y)

dy
for d1 + 1 6 i 6 d.

The number s is an eigenvalue of A if and only if there exist constants ci such

that z ∈ D(A). We split the variable z(ζ) =
[
z+(ζ)

z−(ζ)

]
∈ Cd with z+(ζ) ∈ Cd1

and z−(ζ) ∈ Cd2 , and we define W̃1H(1) =:
[
V1 V2

]
and W̃0H(0) =:

[
U1 U2

]
,
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where U1, V1 ∈ Cd×d1 and U2, V2 ∈ Cd×d2 . Then, z ∈ D(A) if and only if

0 =
[
W̃1 W̃0

] [(Hz)(1)
(Hz)(0)

]
=
[
V1 V2

] [z+(1)
z−(1)

]
+
[
U1 U2

] [z+(0)
z−(0)

]
=
[
V1 U2

] [z+(1)
z−(0)

]
+
[
U1 V2

] [z+(0)
z−(1)

]
= K

[
Λ(1)z+(1)
Θ(0)z−(0)

]
+Q

[
Λ(0)z+(0)
Θ(1)z−(1)

]
,

where K :=
[
V1 U2

] [ Λ(1)−1 0

0 Θ(0)−1

]
and Q :=

[
U1 V2

] [ Λ(0)−1 0

0 Θ(1)−1

]
. Since

A is the generator of a C0-semigroup, K is invertible, see Proposition 3.4.1.
Thus, s is an eigenvalue of A if and only if

0 =

[
Λ(1)z+(1)
Θ(0)z−(0)

]
+K−1Q

[
Λ(0)z+(0)
Θ(1)z−(1)

]
= (I +K−1QG(s))

[
Λ(1)z+(1)
Θ(0)z−(0)

]
,

where it is easy to verify that G(s) = diag(gi(s)) with

gi(s) =

e
−s
∫ 1
0

1
λi(y)

dy
for 1 6 i 6 d1

e
s
∫ 1
0

1
θi(y)

dy
for d1 + 1 6 i 6 d.

(3.37)

Summarising, s ∈ C is an eigenvalue of A if and only if

det(KG−1(s) +Q) = 0.

Thus, in order to prove that all eigenvalues of A lie in a strip, it is sufficient
to show that there exists a constant s0 ∈ R such that det(KG(s)−1 + Q) 6= 0
for Re s 6 s0. Due to (3.37), we can write G(s) = diag(e−his) with hi positive
for i = 1, . . . , d. Thus, it yields G(s)−1 = diag(ehis) and the determinant of
KG(s)−1 +Q can be written as a sum of exponentials with 0 6 h̃j < h̃j+1.

det(KG(s)−1 +Q) =
N∑
j=1

aje
h̃js,

where N ∈ N and aj 6= 0. Then

e−h̃1s det(KG(s)−1 +Q) =
N∑
j=1

aje
(h̃j−h̃1)s → a1 6= 0 for Re s→ −∞

and thus, det(KG(s)−1 + Q) 6= 0 for Re s < s0 and some s0 ∈ R. Thus, all
eigenvalues of A lie in a strip. �



Chapter 4

Exact controllability of
port-Hamiltonian systems

In this chapter, we consider infinite-dimensional linear port-Hamiltonian sys-
tems on a one-dimensional spatial domain with boundary control. In Chapter
3, Definition 3.3.3 we have seen that these systems are of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0, 1), (4.1)

u(t) = W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
, t > 0,

and Assumption 3.1.1 is fulfilled.

Provided the port-Hamiltonian system (4.1) is well-posed, we aim to charac-
terize exact controllability. Exact controllability is a desirable property of a
controlled partial differential equation and has been extensively studied, see for
example [Kom94, CZ95, TW09]. Triggiani [Tri91] showed that exact controlla-
bility does not hold for many hyperbolic partial differential equations. However,
in this chapter we prove, that the port-Hamiltonian system (4.1) is exactly con-
trollable whenever it is well-posed. The main result of this chapter is published
in [JK19a].

4.1 Sufficient condition for exact controllability

This section is devoted to the main result of this chapter, that is, we show
that every well-posed port-Hamiltonian system (4.1) is exactly controllable.
We remind the definition of exact controllability and start this section with a
characterization of exact controllability via optimizability. For the definition of
exact controllability see Definition 2.2.7. The definition of optimizability and
the following statement is extracted from [RW97].

Definition 4.1.1. Let S(A,B) denote a boundary control system and let x be
its mild solution. Then S(A,B) is called optimizable if for every initial value

39
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x0 ∈ X there exists an input function u ∈ L2(0,∞;U) such that∫ ∞
0
‖x(t)‖2 dt <∞.

Note that exact controllability implies optimizability.

Proposition 4.1.2. ([RW97, Corollary 2.2]) The system S(A,B) is exactly
controllable if S(A,B) is optimizable and −A generates a bounded C0-semi-
group.

Since impedance energy preserving systems are impedance passive as well, the
following statement is useful for the consideration of impedance passive systems.

Proposition 4.1.3. ([Vil07, Theorem 5.1] and [HP18, Lemma 7]) A boundary
control and observation port-Hamiltonian system with boundary conditions de-
scribed using WB such that WBΣW ∗B > 0 is exponentially stable. An impedance
passive port-Hamiltonian system can be exponentially stabilized via a feedback
u(t) = −ky(t), k > 0.

Exact controllability for impedance energy preserving boundary control and
observation port-Hamiltonian system has been studied in [JZ18].

Proposition 4.1.4. ([JZ18, Corollary 10.7]) An impedance energy preserving
port-Hamiltonian system (3.23) is exactly controllable.

For completeness we include the proof of Proposition 4.1.4.
Proof: As the port-Hamiltonian system (3.23) is impedance energy pre-
serving the corresponding operator A generates a unitary strongly continuous
group, cf. Remark 3.3.8. Thus, −A generates a bounded strongly continuous
semigroup and exact controllability is equivalent to optimizability, cf. Proposi-
tion 4.1.2. Thus it is sufficient to show that the port-Hamiltonian system (3.23)
is optimizable. Let x0 ∈ X be arbitrarily. Using Proposition 4.1.3 that for every
k > 0 the choice u(t) = −ky(t) leads to a mild solution in L2(0,∞;X). This
shows optimizability of system (3.23) and concludes the proof. �
Now we can formulate the main result of this chapter.

Theorem 4.1.5. Every well-posed port-Hamiltonian system (4.1) is exactly
controllable.

For the proof of this result we need the following lemmas.

Lemma 4.1.6. Let
[
W1 W0

]
∈ Cd×2d have full row rank with W1,W0 ∈ Cd×d.

Then, there exist invertible matrices R̃1, R̃0 ∈ Cd×d such that

[
W1 W0

] [R̃1

R̃0

]
= I.

Proof: Let
[
W1 W0

]
have full row rank with rankW1 = d − k, k ∈

{0, . . . , d}, and rankW0 = d− ` with ` ∈ {0, . . . , d}. Clearly d− k + d− ` > d,
or equivalently, k + ` 6 d.
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By W d−k
1 we denote the first d− k rows of W1 and W k

1 denotes the last k rows.
Similarly, by W d−`

0 we denote the last d − ` rows of W0 and by W `
0 the first `

rows. That is

W1 =

[
W d−k

1

W k
1

]
and W0 =

[
W `

0

W d−`
0

]
.

Without loss of generality, using row reduction and the fact that it yields
rank

[
W1 W0

]
= d, we may assume that W k

1 = 0 and that W d−k
1 and W d−`

0

have full row rank.
We choose right inverses Rd−k1 ∈ Cd×(d−k) for W d−k

1 and Rd−`0 ∈ Cd×(d−`) for
W d−`

0 . Thus,

W d−k
1 Rd−k1 = I and W d−`

0 Rd−`0 = I.

Clearly, the columns of Rd−k1 and Rd−`0 are linearly independent and are not
elements of the kernel of W1 and W0, respectively.
Let Rk1 ∈ Cd×k consisting of columns spanning the kernel of W1, and let
R`0 ∈ Cd×` consisting of columns spanning the kernel of W0. We define R1 =[
Rd−k1 Rk1

]
∈ Cd×d and R0 =

[
R`0 Rd−`0

]
∈ Cd×d. Thus, R1 and R0 are

invertible and it yields

W1R1 +W0R0

=

[
Id−k 0(d−k)×k

0k×(d−k) 0k×k

]
+

[
0`×` W l

0R
d−`
0

0(d−`)×` Id−`

]
.

Thus, W1R1 +W0R0 := M is invertible as an upper triangular matrix and we
define R̃1 := R1M

−1 and R̃0 := R0M
−1 to obtain the assertion of the lemma.�

Lemma 4.1.7. Let α 6= 0 and S(A,B) be a well-posed port-Hamiltonian sys-
tem. Then the port-Hamiltonian system S(A, αB) is well-posed as well. More-
over, the system S(A,B) is exactly controllable if and only if S(A, αB) is
exactly controllable.

Proof: The well-posedness of the scaled system follows immediately. The
controllability of the two systems is equivalent, since we can scale the input
function u of one system by α or 1

α to get an input for the other system without
changing the mild solution.
Using the results above, we can now give the proof of the main result of this
chapter.

Proof of Theorem 4.1.5: We start with an arbitrary port-Hamiltonian
system (4.1) described by the tuple S(A,B).
By Lemma 4.1.7, this system is exactly controllable if and only if for some α > 0
the system S(A, αB) is exactly controllable. We aim to prove that there exists
an α > 0 such that the system S(A, αB) is exactly controllable.
Thus, we aim to write the system S(A, αB) as a closed-loop system of an
exactly controllable system S(A,Bo,Co). To construct S(A,Bo,Co) we find an
impedance energy preserving system S(A,Bo, C̃) which is exactly controllable
by Proposition 4.1.4.
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By (3.20) and (3.27), the operator B is described by a full row rank d × 2d-
matrix

WB =
[
W1 W0

]
.

Using Lemma 4.1.6 there exists a matrix R =

[
R1

R0

]
∈ C2d×d such that

WBR = I

and R1, R0 ∈ Cd×d are invertible. If W0 = 0, without loss of generality we may
assume that R0 = I and R1 = W−1

1 .

We now consider the port-Hamiltonian system S(A,Bo, C̃), where

Box =
[
R−1

1 0
] [fδ,Hx
eδ,Hx

]
and

C̃x =
[
0 R∗1

] [fδ,Hx
eδ,Hx

]
.

Obviously, the port-Hamiltonian system S(A,Bo, C̃) is impedance energy pre-
serving. Then it follows from Proposition 4.1.4 that S(A,Bo, C̃) is exactly
controllable.
If W0 = 0, then S(A,B) = S(A,Bo) and thus the statement is proved with
α = 1.
We now assume that W0 6= 0. In this case we consider the port-Hamiltonian
system S(A,Bo,Co), where

Cox =
[
αR−1

1 αR−1
0

] [fδ,Hx
eδ,Hx

]
.

The constant α > 0 will be chosen later. The matrix
[
R−1

1 0

αR−1
1 αR−1

0

]
is invertible

and the port-Hamiltonian system S(A,Bo,Co) is still exactly controllable, since
changing the output does not influence controllability.
The port-Hamiltonian system S(A,Bo,Co) is regular, see Theorem 3.3.5 and
Lemma 3.3.13. By D we denote the feedthrough operator of S(A,Bo,Co) and
we choose

α =

{
2 ‖D‖ ‖W0R0‖ , D 6= 0

1, D = 0.

Then α > 0 and the matrix

F =
1

α
W0R0

is an admissible feedback operator for S(A,Bo,Co) as ‖DF‖ < 1 (which implies
invertibility of I −DF ).
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We now consider the closed-loop system as shown in Figure 4.1 and obtain

ẋ(t) = Ax(t), x(0) = x0,

uα(t) = α(uo(t)− Fyo(t))
= α(Bo − FCo)x(t)

=
(
α
[
R−1

1 0
]
−W0R0

[
αR−1

1 αR−1
0

]) [fδ,Hx
eδ,Hx

]
= αWB

[
fδ,Hx
eδ,Hx

]
.

Thus, the closed-loop system equals the port-Hamiltonian system S(A, αB). As
the open-loop system S(A,Bo,Co) is exactly controllable, by Theorem 2.2.25
the port-Hamiltonian system S(A, αB) is exactly controllable.

1
α S(A,Bo,Co)

F = 1
αW0R0

uα uo yo
+

Figure 4.1: S(A, αB) as a closed-loop system

Thus, every well-posed port-Hamiltonian system is exactly controllable. �
We close this section with an example, where we apply Theorem 4.1.5.

Example 4.1.8. Continuation of Example 3.1.7 and 3.2.8. In Example 3.1.7 we
have seen that an (undamped) vibrating string can be modelled as the port-
Hamiltonian system (3.8). Its boundary control is given by[

W̃1 W̃0

] [(Hx)(1, t)
(Hx)(0, t)

]
= u(t), (4.2)

where
[
W̃1 W̃0

]
is a 2 × 4-matrix with rank 2. Using the diagonalization of

P1H, see equation (3.16) and Theorem 3.2.5, it is easy to see that the port-
Hamiltonian system (3.8), (4.2) is well-posed if and only if

W̃1

[
γ(1)
T (1)

]
⊕ W̃0

[
−γ(0)
T (0)

]
= C2,

cf. [JMZ15], or equivalently if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are lin-

early independent. By Theorem 4.1.5 the port-Hamiltonian system (3.8), (4.2)

is exactly controllable if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are linearly in-

dependent. Here we consider W̃1 := I and W̃0 :=
[−1 0

0 1

]
, see also Example

3.2.8. Then the port-Hamiltonian system (3.8), (4.2) is exactly controllable if
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the vectors
[
γ(1)
T (1)

]
and

[
γ(0)
T (0)

]
are linearly independent, i.e., it depends not only

on the boundary conditions but also on the physical coefficients T (ζ) and ρ(ζ)
whether the associated port-Hamiltonian operator A generates a C0-semigroup.

4.2 Closing remarks and open problems

In this chapter we have studied the notion of exact controllability for a class
of linear port-Hamiltonian systems on a one dimensional spacial domain with
full boundary control and no internal damping. We showed that for this class
well-posedness implies exact controllability. Further, we applied the obtained
results to the wave equation. By duality a well-posed port-Hamiltonian system
S(A,B,C) with state space L2(0,∞;Cd) and output space Cd is exactly observ-
able. An interesting problem for future research is the characterization of exact
controllability for port-Hamiltonian systems with internal damping, i.e., port-
Hamiltonian systems where P0 is not necessarily skew-adjoint. We note, that
the condition that W̃B has full rank cannot be neglected, as in general with-
out full boundary control a port-Hamiltonian system is not exact controllable.
Further results for the approximate observability of port-Hamiltonian systems
with internal damping can be found in [JZ21]. In particular, there is shown
port-Hamiltonian systems with internal damping are not exactly controllable
in general.
Another open question is the characterization of exact controllability for port-
Hamiltonian systems of higher order, see [Vil07]. However, for these systems
even the characterization of well-posedness is an open problem.



Chapter 5

Riesz bases of
port-Hamiltonian systems

It is well-known that the eigenvectors of a compact self-adjoint operator form
an orthonormal basis of the underlying Hilbert space. In the 1960s Dunford
and Schwartz [DS71] introduced the more general notion of spectral operators.
Further, Curtain [Cur84] analysed discrete spectral operators, i.e., spectral op-
erators with compact resolvent, and the class of Riesz spectral operators was
formulated in [CZ95] and extended in [GZ01] to characterize also operators with
multiple eigenvalues. For Riesz spectral operators its eigenvectors still form a
basis, but this basis is assumed to be Riesz basis. Since a Riesz basis is isomor-
phic to an orthonormal basis, many of the nice properties of compact self-adjoint
operators carry over to Riesz spectral operators. For instance, solutions of the
abstract differential equation ẋ(t) = Ax(t) + Bu(t), with A a Riesz spectral
operator, can still described by an eigenfunction expansion of non-harmonic
Fourier series. This enables that many properties of these infinite-dimensional
systems such as stability, stabilizability and controllability can be characterized
in an elegant manner, see e.g. [CZ95, CZ20].

In this chapter, we investigate the Riesz basis property of a special class of
infinite-dimensional systems, namely port-Hamiltonian systems on a one-di-
mensional spatial domain. Here by the Riesz basis property we mean that the
associated system operator is a discrete Riesz spectral operator, see Definition
5.2.2.

First, we start with a short introduction to the concept of bases in a infinite-
dimensional vector space and define Riesz bases. Then we give two toy examples
in which the Riesz basis consisting of eigenvectors of a port-Hamiltonian op-
erator can be computed exactly and in which we see that these methods are
limited to these simplified situations. Finally we give a characterization for
discrete spectral operators, where it is not necessary to determine eigenvalues
and eigenfunctions. The main result of this chapter is published in [JKZ20] at
arXiv and also submitted.
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5.1 Preliminaries of bases

Although there is a wide theory of bases in the Banach space setting, we will
only consider Hilbert spaces, due to the fact that we study port-Hamiltonian
systems on the Hilbert space X = L2(0, 1,Cd). Nevertheless, we start to recall
some notations and definitions, which also hold in the Banach space setting and
can for example be found in [GW19, You80, CZ95, AK06].

We recall that a finite sequence of vectors (xn)Nn=1 is linearly independent if the
only linear combination for the null is trivial, i.e.,

N∑
n=1

anxn = 0⇔ an = 0 for n = 1, . . . , N.

A Hamel basis is a sequence of vectors with which each element of the vector
space can be represented as a finite linear combination.
In the setting of finite-dimensional vector spaces the term basis usually means
a Hamel basis. Due to the axiom of choice also each infinite-dimensional vector
space has a Hamel basis, but it consists of more than countable elements and
thus, the possibilities of their applications are limited.

In 1927 Julius Schauder introduced an additional type of basis, cf. [Sch27],
the so called Schauder basis. This has the advantage that such a basis of an
infinite-dimensional separable space is countable.

Definition 5.1.1. Let be X a Banach space. A sequence (xn)n∈N in X is
a basis of X, if every x ∈ X has a unique representation with a sequence of
complex numbers (an)n∈N such that

x =
∞∑
n=1

anxn. (5.1)

Thus, in the following the term basis of infinite-dimensional spaces means a
Schauder basis and thus, every x ∈ X can be uniquely represented as a con-
vergent series. In general, a Schauder basis is not a Hamel basis, since infinite
linear combinations are allowed and so the linear span of a Schauder basis must
be dense in X, but it may not be the entire space.

In the above definition the convergence in (5.1) holds in the norm topology
limn→∞ ‖x−

∑n
i=1 aixi‖ = 0. In the following definition we introduce the more

restrictive concept of unconditional basis.

Definition 5.1.2. An unconditional bases is a basis, where (5.1) converges
unconditionally, i.e., also all reorderings of the series (5.1) are convergent.

Definition 5.1.3. Let X be a Hilbert space. A sequence (xn)n∈N in X is called
an orthonormal basis of X, if (xn)n∈N is a basis and

〈xn, xm〉 =

{
1, if n = m,

0, if n 6= m.
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Example 5.1.4. It is known that the sequence ( 1√
2π
ein·)n∈N is an orthonormal

basis of L2(0, 2π;C), cf. [Wer00]. Using the variable transformation x 7→ x
2π ,

we see that (e2πin·)n∈N is an orthonormal basis of L2(0, 1;C).

We define the term equivalence for bases and introduce Riesz bases afterwards.

Definition 5.1.5. Two bases (xn)n∈N and (yn)n∈N for a Banach space X are
equivalent if and only if there exists a boundedly invertible operator T : X → X
such that Txn = yn for all n ∈ N.

Definition 5.1.6. A Riesz basis is a basis which is equivalent to an orthonormal
basis.

Remark 5.1.7. Due to Definition 5.1.6 and 5.1.5 a Riesz basis is equivalent to
every orthonormal basis.

Definition 5.1.8. A basis (xn)n∈N of a Hilbert space X is bounded if

0 < inf
n
‖xn‖ < sup

n
‖xn‖ <∞.

Remark 5.1.9. A Riesz basis is a bounded basis (xn)n∈N since every Riesz basis
is obtained from an orthonormal basis (en)n∈N by application of a bounded
invertible operator. Therefore, we have

1

‖T−1‖
6 ‖xn‖ 6 ‖T‖ ∀ n ∈ N. (5.2)

The following lemma provides an important property of Riesz bases and illus-
trates the relationship between Riesz bases and unconditional bases.

Lemma 5.1.10. The following statements are equivalent:

1. The sequence (xn)n∈N is a Riesz basis of X.

2. The sequence (xn)n∈N is complete in X and there exist positive constants
m1 and m2 such that for an arbitrary number N ∈ N and arbitrary scalars
an ∈ C, n = 1, . . . , N , it holds

m1

N∑
n=1

|an|2 6

∥∥∥∥∥
N∑
n=1

anxn

∥∥∥∥∥
2

6 m2

N∑
n=1

|an|2 . (5.3)

3. The sequence (xn)n∈N is a bounded unconditional basis.

Proof: The proof of 1.)⇔ 2.) can be found for example in [GW19, Theorem
2.2] and the proof of the equivalence 1.)⇔ 3.) in [Hei11, Theorem 7.13]. �
We close this section with a generalization of the concept of Riesz bases.

Definition 5.1.11. A sequence of closed subspaces {Xn}n∈N in a Hilbert space
X is a Riesz basis of subspaces of X if span{Xn}n∈N is dense and there exists an
isomorphism T ∈ L(X), such that {TXn}n∈N is a system of pairwise orthogonal
subspaces of X.
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Remark 5.1.12. If a sequence of vectors (xn)n∈N in X is a Riesz basis of X,
that is, there exists an isomorphism T ∈ L(X), such that (Txn)n∈N is an
orthonormal basis of X, then clearly {spanxn}n∈N is a Riesz basis of subspaces
of X.

The following toy examples show that in special and simplified situations the
eigenvalues and eigenfunctions of a port-Hamiltonian operator can be deter-
mined exactly. Since this is difficult in general, we give a characterization of
the Riesz basis property which is easy to verify in Theorem 5.3.3.

5.1.1 Toy examples

The first example is a port-Hamiltonian equation, i.e., a port-Hamiltonian sys-
tems with d = 1 and the second one is a wave equation with constant coeffi-
cients.

Lemma 5.1.13. We consider a port-Hamiltonian operator on the interval [0, 1],
i.e.

Ax = P1
∂

∂ζ
(Hx) + P0(Hx),

on

D(A) = {x ∈ L2(0, 1;C)|Hx ∈ W1,2(0, 1;C) & w̃1(Hx)(1) + w̃0(Hx)(0) = 0}

with H,H−1 ∈ L∞(0, 1;C) and H(ζ) ∈ (0,∞), w̃1, w̃0 ∈ C, such that A gener-
ates a C0-semigroup. Then it holds: The eigenvectors of the operator A form
a Riesz basis if and only if A generates a C0-group.

Proof: Without loss of generality we may assume P1 > 0 and even P1 = 1. It
holds that A generates a C0-group if and only if w̃1 6= 0 and w̃0 6= 0 cf. Theorem
3.2.5. Since A generates a C0-semigroup by assumption, we have w̃1 6= 0,
cf. Theorem 3.2.5.
The eigenvalue problem (Hx)′(ζ) + P0(Hx)(ζ) = µx(ζ) is equivalent to

d

dζ
(Hx)(ζ) = (µH−1(ζ)− P0)(Hx)(ζ)

and we get the solution

(Hx)(ζ) = ce
∫ ζ
0 µH

−1(s)−P0ds with c ∈ R, c 6= 0.

Since H,H−1 ∈ L∞(0, 1;C), the integral is well-defined. Thus,

x(ζ) = H−1(ζ)(Hx)(ζ) ∈ L2(0, 1;C). (5.4)

Furthermore, (5.4) yields Hx ∈ W1,2(0, 1;C). Therefore, to get that x ∈ D(A),
only the boundary condition w̃1(Hx)(1) + w̃0(Hx)(0) = 0 has to be fulfilled.

We define G(ζ) :=
∫ ζ

0 H
−1(s)ds. This yields G(0) = 0 and G(1) > 0, since G(ζ)

is monotonic increasing. Thus, with (Hx)(1) = ceµG(1)e−P0 and (Hx)(0) = c
the boundary condition becomes

w̃1ce
µG(1)e−P0 + w̃0c = 0.



5.1. PRELIMINARIES OF BASES 49

If w̃0 = 0, this equation has no solution and thus, we have no eigenvalue and
therefore A is not a Riesz operator. We define k := e−P0 . For w̃0 6= 0, we obtain
eigenvalues (µn)n∈N with multiplicity one, namely

w̃1ce
µG(1)e−P0 + w̃0c = 0

⇔ eµG(1) =
−w̃0

w̃1k

⇔ ln(eµG(1)) = ln(
−w̃0

w̃1k
)

⇔ µnG(1) = ln

(∣∣∣∣−w̃0

w̃1k

∣∣∣∣)+ i

[
· arg

(
−w̃0

w̃1k

)
+ 2πn

]

⇔ µn =
ln
(∣∣∣−w̃0

w̃1k

∣∣∣)+ i
[
· arg

(
−w̃0
w̃1k

)
+ 2πn

]
G(1)

with eigenvectors

xn(ζ) = H−1(ζ)eµnG(ζ)e−P0ζ (5.5)

= H−1(ζ)e(a+ib)G(ζ)e−P0ζe
2πin

G(ζ)
G(1) (5.6)

see (5.4), where a :=
ln
(∣∣∣−w̃0

w̃1k

∣∣∣)
G(1) and b :=

arg
−w̃0
w̃1k

G(1) . Finally, we have to show that

these eigenvectors (xn)n∈N form a Riesz basis. Since the point spectrum has
a uniform gap, we can apply Theorem 1.1 in [Zwa10] and it suffices to prove
that the span of eigenvectors (xn)n∈N is dense in L2(0, 1;C). Suppose that
x ∈ span{(xn)n∈N}⊥, i.e., for every n ∈ N∫ 1

0
x∗(ζ)xn(ζ)dζ = 0

⇔
∫ 1

0
x∗(ζ)H−1(ζ)e(a+ib)G(ζ)e−P0ζe

2πin
G(ζ)
G(1) dζ = 0

⇔
∫ 1

0
x∗(G−1(G(1)z))e(a+ib)G(1)ze−P0G−1(G(1)z)e2πinzG(1)dz = 0

⇔
∫ 1

0
x̃∗(z)e2πinzdz = 0

with

x̃∗(z) = x(G−1(G(1)z))e(a+ib)G(1)ze−P0G−1(G(1)z)G(1) for z ∈ [0, 1].

Here we first used the substitution z = G(ζ)
G(1) and dζ = G(1)

H−1(ζ)
dz since G′(ζ) =

H−1(ζ). Since (e2iπnz)n∈N is an orthonormal basis of L2(0, 1;C), see Example
5.1.4, x̃∗(z) = 0 for z ∈ [0, 1]. Therefore, x(G−1(G(1)z)) = 0 for z ∈ [0, 1],
which implies x(ζ) = 0 and thus, the eigenvectors of A form a Riesz basis. �
The second example can be found in [DH20].

Example 5.1.14. We consider the wave equation with constant coefficients T and
ρ on the one-dimensional spatial domain with viscous damping on the right side
and boundary control and boundary observation at the other side.
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∂2

∂t2
ω(ζ, t) =

1

ρ

∂

∂ζ
(Tω(ζ, t))

0 = T
∂

∂ζ
ω(1, t) +

κ

ρ

∂

∂t
ω(1, t)

u(t) =
∂

∂ζ
ω(0, t)

y(t) =
∂

∂t
ω(0, t), ζ ∈ (0, 1), t > 0,

where κ > 0 describes the damping constant. Then the associated port-
Hamiltonian operator is described by

Ax =

[
0 1
1 0

]
∂

∂ζ

([1
ρ 0

0 T

]
x

)
, x ∈ D(A),

D(A) =

{
x ∈ X | Hx ∈ W1,2(0, 1;C2) and

[
−κ 1 0 0
0 0 0 1

T

] [
(Hx)(1)
(Hx)(0)

]
= 0

}
.

Solving the equation Aϕn = snϕn yields the eigenvectors

ϕn(ζ) =

[
cosh( ρT snζ)

1
ρT sinh( ρT snζ)

]

and the eigenvalues sn = s0 +
√

T
ρ iπn, where s0 = 1

2

√
T
ρ ln

(√
ρT−κ√
ρT+κ

)
.

Using the mapping

M :=

[
cosh( ρT s0ζ) −

√
ρT sinh( ρT s0ζ)

i sinh( ρT s0ζ) −i
√
ρT cosh( ρT s0ζ)

]
we see that (ϕn)n∈N is a Riesz basis, since

(Mϕn)n∈N =

([
cos(nπζ)
sin(nπζ)

])
n∈N

is an orthonormal basis of X = L2(0, 1;C2).

5.2 Discrete Riesz spectral operators

The study of the Riesz basis property for infinite-dimensional port-Hamiltonian
systems has started with the thesis by Villegas [Vil07, Chapter 4]. Using results
on first order eigenvalue problems by Tretter [Tre00a, Tre00b], he obtained a
sufficient condition. However, it is not easy to see when this technical sufficient
condition is satisfied.
Many systems have a Riesz basis of eigenfunctions, see e.g. [GX04, XG03].
In the monograph [GW19, Section 4.3] Guo and Wang study the Riesz basis
property for a closely related class of systems, that is, hyperbolic systems of
the form ∂x

∂t = K(ζ)∂x∂ζ + C(ζ)x with K and C diagonal. Note, that (almost)
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every port-Hamiltonian system on a one dimensional spatial domain can be
transformed into a hyperbolic system of this form. However, in general not
with a diagonal C. Furthermore, the boundary conditions will be more general,
see [ZLMV10, JZ12] or the proof of Lemma 5.3.5. Therefore, the main result
of this chapter generalizes their theorem [GW19, Theorem 4.11]. We remark,
that in this situation the notions of Riesz basis of subspaces and Riesz basis
with parentheses are equivalent. Moreover, in [XW11] the Riesz basis property
is investigated for operators perturbed by output feedback.
The main result shows that a linear infinite-dimensional port-Hamiltonian sys-
tem on a one-dimensional spatial domain has the Riesz basis property if and
only if the system operator generates a strongly continuous group. Here it is
important to note that we do not need constant coefficients, nor extra assump-
tion. Since the group property is equivalent to a simple matrix condition, our
results enable us to check very quickly whether the Riesz basis property holds,
see also the examples in Section 5.4. Our proof combines methods from complex
analysis, differential equations and mathematical systems theory. In particular,
we use the fact that every well-posed port-Hamiltonian control system (5.15) is
exactly controllable in finite time, cf. Chapter 4.
We start with the definition of discrete Riesz spectral operators.

Definition 5.2.1. For an operator A on X we call γ ⊂ σ(A) a compact spectral
set if γ is a compact subset of C which is open and closed in σ(A). The spectral
projection on the spectral subset γ is defined as

E(γ) =
1

2πi

∫
Γ
(s−A)−1ds,

where Γ is a closed Jordan curve containing every point of γ and no point of
σ(A) \ γ.

In this chapter operators with compact resolvent are of particular interest.
The spectrum of these operators is a denumerable set of points with no finite
accumulation point, cf. [DS71, Lemma XIX.2]. Furthermore, every point in the
spectrum is an eigenvalue which has finite algebraic as well as finite geometric
multiplicity, cf. [GGK90, Theorem XV.2.3]. If (sn)n∈N is the spectrum of
an operator with compact resolvent we write En := E((sn)), n ∈ N, for the
spectral projection regarding the n-th eigenvalue.

Definition 5.2.2. Let A be an operator with compact resolvent and countable
spectrum σ(A) = (sn)n∈N. Then A is a discrete Riesz spectral operator, if

1. for every n ∈ N there exists Nn ∈ L(X) such that AEn = (sn +Nn)En,

2. the sequence of closed subspaces (En(X))n∈N is a Riesz basis of subspaces
of X.

3. N :=
∑

n∈NNn is bounded and nilpotent.

Remark 5.2.3. If A is a discrete Riesz spectral operator, then clearly En com-
mute with A and A is equivalent to the infinite matrix

A = diag(A1, A2, . . . , An, . . . ),
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where An is a square matrix which corresponds to the restriction A|EnX of A.
Then A =

∑
n∈N inAnEn, where in is the (natural) inclusion operator and An

is identified with (sn +Nn)|EnX .

Remark 5.2.4. Discrete Riesz spectral operators are spectral operators in the
sense of Dunford and Schwartz [DS71]. However, we additionally assume that
the operator has a compact resolvent, which are discrete operators in the sense
of Dunford and Schwartz [DS71, Definition XIX.1]. Every discrete Riesz spec-
tral operator is a Riesz spectral operator in the sense of Guo and Zwart [GZ01]
and these are again spectral operator in the sense of Dunford and Schwartz.
In Curtain and Zwart [CZ95] a slightly stronger notion is considered, where all
eigenvalues have to be simple. However, they do not require that the operator
has a compact resolvent.

Furthermore, we emphasize that a port-Hamiltonian operator which generates
a C0-semigroup is closed and that its resolvent is compact, see [Aug16].
Moreover, we introduce a term for a set of complex numbers each of which are
not to close together.

Definition 5.2.5. A set (sn)n∈N ⊂ C has a uniform gap, if

inf
n 6=m
|sn − sm| > 0 for n,m ∈ N.

Riesz bases of subspace have the following useful characterizations.

Proposition 5.2.6. ([Zwa10, Definition 1.4]) Let A be an operator with com-
pact resolvent and σ(A) = (sn)n∈N. Then the sequence of subspaces (En(X))n∈N
is a Riesz basis of subspaces of X if and only if there exist positive constants
m1 and m2 such that it holds

m1 ‖x‖2 6
∑
n∈N
‖Enx‖2 6 m2 ‖x‖2 , x ∈ X.

Lemma 5.2.7, Lemma 5.2.8, Proposition 5.2.9 and Proposition 5.2.10 will be
useful for the proof of the main result of this chapter.

Lemma 5.2.7. Let A be a discrete Riesz spectral operator and M := ‖N‖,
where N is given by Definition 5.2.2. Then there exists a constant C > 0 such
that for s ∈ ρ(A) with d(s, σ(A)) > M we have

‖(s−A)−1‖ 6 C

d(s, σ(A))
, (5.7)

where d(s, σ(A)) denotes the distance from s to the spectrum of A.

Proof: Let σ(A) = (sn)n∈N, En, Nn, N as in Definition 5.2.2 and s ∈ ρ(A)
with d(s, σ(A)) > M be arbitrary. Since En is a spectral projection, it
commutes with A and the resolvent of A. By the definition of a discrete
spectral operator we have

s−A =

∞∑
n=1

((s− sn)−Nn)En
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and identifying (s−sn)−Nn with the matrix corresponding to ((s−sn)−Nn)|EnX
we obtain

(s−A)−1 =
∞∑
n=1

((s− sn)−Nn)−1En.

Then it holds for x ∈ X

‖(s−A)−1x‖2 =
∥∥∥∑
n∈N

((s− sn)−Nn)−1Enx
∥∥∥2

6
∑
n∈N

∥∥((s− sn)−Nn)−1Enx
∥∥2

6 sup
n∈N

∥∥((s− sn)−Nn)−1
∥∥2∑

n∈N

∥∥Enx∥∥2

6 m2 sup
n∈N

∥∥((s− sn)−Nn)−1
∥∥2 ‖x‖2 ,

where m2 is the positive constant of the Riesz basis of subspaces (En)n∈N,
cf. Proposition 5.2.6. Using

((s− sn)−Nn) = (s− sn)

(
I − 1

(s− sn)
Nn

)
we get

((s− sn)−Nn)−1 =
1

(s− sn)

kn∑
j=0

1

(s− sn)j
N j
n,

where kn denotes the degree of nilpotency of Nn. Thus, for s ∈ ρ(A) such that
d(s, σ(A)) > M , it holds

∥∥((s− sn)−Nn)−1
∥∥ 6 kn+1∑

j=1

1

|(s− sn)|j
M j−1 6

kn+1∑
j=1

1

d(s, σ(A))j
M j−1

6
1

d(s, σ(A))

∞∑
j=0

(
M

d(s, σ(A))

)j
which concludes the proof. �

Lemma 5.2.8. Let A be a discrete Riesz spectral operator and generator of a
C0-semigroup, and P ∈ L(X). Then there exist constants K,M > 0 such that
for s ∈ ρ(A) with d(s, σ(A)) > M we have s ∈ ρ(A+ P ) and

∥∥(s− (A+ P ))−1
∥∥ 6 K

d(s, σ(A))
.

Proof: By Lemma 5.2.7 there exists M1, C > 0 such that

‖(s−A)−1‖ 6 C

d(s, σ(A))
,
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for s ∈ ρ(A) with d(s, σ(A)) > M1. Set M := max{M1, 2‖P‖C}. Let s ∈ ρ(A)
with d(s, σ(A)) > M . Then I − P (s−A)−1 is invertible and we obtain∥∥(s− (A+ P ))−1

∥∥ = ‖(s−A)−1[I − P (s−A)−1]−1‖

6
C

d(s, σ(A))

1

1− ‖P‖ ‖(s−A)−1‖

6
2C

d(s, σ(A))

which concludes the proof for K = 2C. �

Proposition 5.2.9. ([DS71]) Let A be an operator with σ(A) = (sn)n∈N such
that the family of spectral subspaces is a Riesz basis of subspaces of X. Then A
has the representation A = S +N , where the scalar part S is defined as

Sx :=
∑
n∈N

snEnx,

D(S) = {x ∈ X |
∞∑
n=1

∥∥snEnx∥∥2
<∞},

and Nn := NEn = (A − sn)En. Furthermore, Nn is quasi-nilpotent, i.e.,
σ(Nn) = {0} for all n ∈ N.

Proposition 5.2.10. Let A be a generator of C0-group on X with compact re-
solvent. The eigenvalues are counted with algebraic multiplicity. If the following
conditions

I. The span of the (generalized) eigenvectors form a dense set in X,

II. The eigenvalues can be decomposed into finitely many sets each having a
uniform gap,

are both fulfilled, then A is a discrete Riesz spectral operator.

Proof: By [Zwa10, Theorem 1.1 and Theorem 1.6] it follows that the family
of spectral subspaces is a Riesz basis of subspaces of X.
Thus, A has the representation A = S + N , cf. Proposition 5.2.9 where S
denotes the scalar part of the spectral operator A and N :=

∑
n∈NNn, where

Nn = (A−sn)En and Nn is quasi-nilpotent. To prove that A is a discrete Riesz
spectral operator it remains to show that N is bounded and nilpotent.
We can identify Nn with a square matrix corresponding to Nn|EnX and thus
Nn is bounded and nilpotent.
Since the eigenvalues of A can be decomposed into finitely many sets each
having a uniform gap and their algebraic multiplicity is finite, the degree of the
nilpotent matrices Nn is bounded. Thus, N is nilpotent.
Finally, we verify that N is bounded. Without loss of generality we assume that
A generates an exponentially stable C0-group. Then by [LW83], there exists an
invertible and positive operator L ∈ L(X) such that

〈Ax,Lx〉+ 〈x, LAx〉 = −〈x, x〉 ∀x ∈ D(A). (5.8)
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We define An := AEn = (sn + Nn)En, where En denotes the n-th spectral
projection, and we identify An and Nn with the corresponding matrices on
EnX. From now on we fix n. Then we get for x ∈ X

〈AEnx, LEnx〉+ 〈Enx, LAEnx〉 = −〈Enx,Enx〉

or equivalently

〈AnEnx, LnEnx〉+ 〈Enx, LnAnEnx〉 = −〈Enx,Enx〉, (5.9)

where Ln := E∗nLEn = L∗n. As L is self-adjoint, Ln is self-adjoint as well. Again
we identify Ln with the corresponding matrix on EnX and obtain on EnX

(sn +Nn)∗Ln + Ln(sn +Nn) = −I.

Thus we have
N∗nLn + LnNn = −I + rnLn (5.10)

with rn := −2Re sn. Multiplying (5.10) from the right by Nkn−j+1
n and from

the left by (N∗n)kn−j with j = 2, 3, . . . , kn results in

(N∗n)kn−j+1LnN
kn−j+1
n + (N∗n)kn−jLnN

kn−j+2
n

= −(N∗n)kn−jNkn−j+1
n + rn(N∗n)kn−jLnN

kn−j+1
n

and thus it holds

‖L1/2
n Nkn−j+1

n ‖2 6‖Nkn−j
n ‖‖Nkn−j+1

n ‖+ |rn| ‖Ln‖ ‖Nkn−j
n ‖‖Nkn−j+1

n ‖
+ ‖Nkn−j

n ‖‖Ln‖‖Nkn−j+2
n ‖. (5.11)

Since Ln is boundedly invertible on EnX, we get

m‖Nkn−j+1
n ‖2 6 ‖L1/2

n Nkn−j+1
n ‖2 for some m independent of n. (5.12)

For j = 2 we use Nkn
n = 0 and obtain

m‖Nkn−1
n ‖ 6 ‖Nkn−2

n ‖+ |rn| ‖Ln‖ ‖Nkn−2
n ‖.

Since A is the generator of a C0-group, we have R := supn∈N |rn| < ∞. More-
over, with M := supn∈N ‖Ln‖ <∞ and C := 1 +RM , this implies

‖Nkn−1
n ‖ 6 C

m
‖Nkn−2

n ‖. (5.13)

For j = 3, . . . , kn we get using (5.12), (5.11), and (5.13) and by induction over
j

‖Nkn−j+1
n ‖ 6 ‖Nkn−j

n ‖
j−1∑
l=1

C

ml
M l−1. (5.14)

In particular, for j = kn and using kn 6 K, this implies

‖Nn‖ 6
kn−1∑
l=1

C

ml
M l−1 6

K−1∑
l=1

C

ml
M l−1.

Together with Proposition 5.2.6 this implies that N is bounded. �
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5.3 Discrete Riesz spectral port-Hamiltonian opera-
tors

We consider first order linear port-Hamiltonian systems on a one-dimensional
spatial domain of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), (5.15)

0 =
[
W̃1 W̃0

] [(Hx)(1, t)
(Hx)(0, t)

]
,

where ζ ∈ [0, 1] and t > 0 and the Assumption 3.1.1 is fulfilled. In Chapter 3
and 4 a detailed introduction in these kind of systems is given.
Furthermore, we emphasize that a port-Hamiltonian operator which generates
a C0-semigroup is closed and that its resolvent is compact, see Theorem 3.2.3.
Having the Definition 2.2.15 of well-posedness and Theorem 3.3.5 in mind
which shows that for a port-Hamiltonian boundary control system (5.15) well-
posedness is already satisfied if A generates a C0-semigroup, we recall the fol-
lowing definition.

Definition 5.3.1. We call the port-Hamiltonian system (5.15) a well-posed
control system if A generates a C0-semigroup on X and there exist τ > 0
and mτ > 0 such that for all x0 ∈ D(A) and u ∈ C2([0, τ ];Cd) with u(0) =[

(Hx0)(1,0)
(Hx0)(0,0)

]
the classical solution x of (5.15) satisfies

‖x(τ)‖2X 6 mτ

(
‖x0‖2X +

∫ τ

0
‖u(t)‖2dt

)
.

In the following, we assume that the port-Hamiltonian system (5.15) is a well-
posed control system.
Well-posedness implies that for every initial condition x0 ∈ X and every L2

control function u the port-Hamiltonian control system has a unique mild so-
lution, cf. Theorem 3.3.12. Due to Theorem 4.1.5 well-posed port-Hamiltonian
control systems are always exactly controllable in finite time. As a consequence
of exact controllability we obtain that the eigenspaces span the state space.

Proposition 5.3.2. Consider a well-posed port-Hamiltonian control system
(5.15) and assume that A generates a C0-group on X. Let σ(A) = (sn)n∈N.
Then

X = spann∈NE((sn))X,

where E((sn)) is introduced in Definition 5.2.1.

Proof: Follows from [JZ99, Lemma 7.3] together with Proposition 4.1.5. �
By Z+(ζ), we denote the span of the eigenvectors of P1H(ζ) corresponding to
the positive eigenvalues of P1H(ζ) and by Z−(ζ) the span of the eigenvectors
of P1H(ζ) corresponding to the negative eigenvalues of P1H(ζ).

We are now in the position to formulate our main result.
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Theorem 5.3.3. Let A be a port-Hamiltonian operator and the generator of a
C0-semigroup. Then the following is equivalent:

1. A is a discrete Riesz spectral operator.

2. A is the generator of a C0-group.

3. W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0) = W̃1H(1)Z−(1)⊕ W̃0H(0)Z+(0) = Cd.

If one of the equivalent conditions are satisfied, then σ(A) = σp(A) lie in a
strip parallel to the imaginary axis, the eigenvalues (counted according to the
algebraic multiplicity) can be decomposed into finitely many sets each having a
uniform gap and A satisfies the spectrum determined growth assumption, that
is, ω0(A) = s(A).

The proof of Theorem 5.3.3 will be given in the next Section 5.3.1.

Remark 5.3.4. It is particularly easy to check if a port-Hamiltonian operator
A is the generator of a unitary C0-group, cf. Theorem 3.2.3. This is actually

the case if and only if WBΣW ∗B = 0, where WB := [ W̃1 W̃0 ]
[
P1 −P1
I I

]−1
and

Σ :=
[

0 I
I 0

]
. In this case A is even a skew-adjoint operator by Stone’s Theorem,

cf. Theorem 2.1.16, which implies that the normalized eigenvectors form an
orthonormal basis of X.

5.3.1 Proof of the Main Result

In the following section we give the proof of Theorem 5.3.3. Let us first assume
that one and therefore all of the conditions of the theorem are satisfied. As the
resolvent of A is compact the spectrum consists of isolated eigenvalues only.
That the eigenvalues lie in a strip parallel to the imaginary axis and that they
can be decomposed into finitely many sets each having a uniform gap will be
shown in the proof of the implication 2)⇒ 1). Finally, ω0(A) = s(A) is implied
by [GZ01, Theorem 2.12].

5.3.2 Proof of the equivalence 2)⇔ 3) of Theorem 5.3.3

The operator A generates a C0-group, if and only if A and −A generates a C0-
semigroup, [EN00, Section II.3.11]. In Theorem 3.2.5 it is shown that A is the

generator of a C0-semigroup if and only if W̃1H(1)Z+(1)⊕W̃0H(0)Z−(0) = Cd.
Since D(−A) = D(A) and σp(P1H) = −σp(−P1H) it follows that −A generates

a C0-semigroup if and only if W̃1H(1)Z−(1)⊕ W̃0H(0)Z+(0) = Cd.

5.3.3 Proof of the implication 2)⇒ 1) of Theorem 5.3.3

The following lemma will be useful.

Lemma 5.3.5. Let s ∈ C and P1, P0 and H fulfil the conditions for a port-
Hamiltonian operator in Assumption 3.1.1. Then the solutions of the system of
ordinary differential equations

sx(ζ) =

(
P1

d

dζ
+ P0

)
(Hx)(ζ), ζ ∈ [0, 1], (5.16)
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denoted by x(ζ) = Ψs(ζ)x(0), satisfy

M̃e−|Re s|c̃0ζ ‖v‖ 6 ‖Ψs(ζ)v‖ 6Me|Re s|c0ζ ‖v‖ , v ∈ Cd, ζ ∈ [0, 1],

with constants M, M̃ > 0, and c̃0, c0 > 0 independent of s and ζ.

Proof: Writing x̃ = Hx, (5.16) can be equivalently formulated as

H(ζ)P1x̃
′(ζ) = sx̃(ζ)−H(ζ)P0x̃(ζ).

We write s = iω + r with ω, r ∈ R and diagonalize P1H(ζ) = S−1(ζ)∆(ζ)S(ζ),
see Assumption 3.1.1. Thus, H(ζ)P1 = S∗(ζ)∆(ζ)S−∗(ζ) and we get

∆(ζ)S−∗(ζ)x̃′(ζ) = iωS−∗(ζ)x̃(ζ) +
(
rI − S−∗(ζ)H(ζ)P0S

∗(ζ)
)
S−∗(ζ)x̃(ζ).

Using the substitution z = S−∗x̃ gives the equivalent differential equation

z′(ζ) = iω∆−1(ζ)z(ζ) +
(
r∆−1(ζ) +Q(ζ)

)
z(ζ), (5.17)

where

Q(ζ) := −∆−1(ζ)S−∗(ζ)H(ζ)P0S
∗(ζ)− (S−∗)′(ζ)S∗(ζ).

Thus, equation (5.16) is equivalent to equation (5.17). Due to the fact that
P1H(ζ) has real eigenvalues, ∆(ζ) is a diagonal, real matrix and iω∆−1(ζ) is
a diagonal, purely imaginary matrix. We write ∆−1(ζ) = diagk=1,...,n(αk(ζ))

with αk(ζ) : [0, 1] → R and define Φω(ζ) = diag(exp(−iω
∫ ζ

0 αk(τ)dτ)) which
satisfies

‖Φω(ζ)‖L(Cd) = 1, ζ ∈ [0, 1].

Multiplying (5.17) with Φω(ζ), we get

Φω(ζ)z′(ζ)− iω∆−1(ζ)Φω(ζ)z(ζ) = Φω(ζ)
(
r∆−1(ζ) +Q(ζ)

)
z(ζ)

or equivalently

(Φω(ζ)z(ζ))′ =
(
r∆−1(ζ) + Φω(ζ)Q(ζ)Φ−1

ω (ζ)
)

Φω(ζ)z(ζ).

Using the substitution y = Φωz, this ordinary differential equation becomes

y′ = (r∆−1(ζ) +Qω(ζ))y(ζ), (5.18)

where Qω(ζ) := Φω(ζ)Q(ζ)Φ−1
ω (ζ). There exist constants c0, c1 > 0, indepen-

dent of ω, such that

2 max
ζ∈[0,1]

‖r∆−1(ζ) +Qω(ζ)‖ 6 |r| c0 + c1. (5.19)

The solution y of (5.18) satisfies

d

dζ
‖y(ζ)‖2 =y(ζ)∗[(r∆−1(ζ) +Qω(ζ)) + (r∆−1(ζ) +Qω(ζ))∗]y(ζ). (5.20)
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This together with (5.19) implies

−(|r| c0 + c1)‖y(ζ)‖2 6 d

dζ
‖y(ζ)‖2 6 (|r| c0 + c1)‖y(ζ)‖2,

and thus

e−(|r|c0+c1)ζ ‖y(0)‖2 6 ‖y(ζ)‖2 6 e(|r|c0+c1)ζ ‖y(0)‖2 .

As the mapping x 7→ y is boundedly invertible on L2(0, 1;Cd), with norm
independent on ω, the statement follows. �
Next we state some results from complex analysis.

Definition 5.3.6. ([AI95, II.1.27]) An entire function f is called an entire
function of exponential type, if there exist constants C and T such that |f(s)| 6
CeT |s| for all s ∈ C. Further, an entire function f of exponential type is said to
be of sine type, if

1. the zeros of f lie in a strip {s ∈ C | |Im s| 6 h} for some h > 0 and

2. there exist ω̂ ∈ R and positive constants c and C such that

c 6 |f(r + iω̂)| 6 C

for every r ∈ R holds.

Proposition 5.3.7. ([AI95, Proposition II.1.28] (Levin 1961)) If f is of sine
type, then its set of zeros counted with algebraic multiplicity is a finite unification
of sets each having a uniform gap.

Lemma 5.3.8. A complex number s ∈ C is an eigenvalue of a port-Hamiltonian
operator A if and only if

det
[
W̃1H(1)Ψs(1) + W̃0H(0)

]
= 0,

where Ψs is described in Lemma 5.3.5.

Proof: For every x(0) ∈ Cd there exists a solution of the differential equation
sx(ζ) = (P1

d
dζ +P0)(Hx)(ζ), ζ ∈ [0, 1]. The complex number s is an eigenvalue

of A if and only if x ∈ D(A) and Ax = sx. Using Lemma 5.3.5 this is equivalent
to

x(ζ) = Ψs(ζ)x(0) and
[
W̃1 W̃0

] [(Hx)(1)
(Hx)(0)

]
= 0.

Inserting the first equation in the second, we get that s is an eigenvalue of A if

and only if det
[
W̃1H(1)Ψs(1) + W̃0H(0)

]
= 0. �

Now we are in the situation to give the proof of the implication 2)⇒ 1).

Proof of the implication 2) ⇒ 1) of Theorem 5.3.3: Assertion 2)
implies that the eigenvalues lie in a strip parallel to the imaginary axis. Thus,
thanks to Proposition 5.3.2 and Proposition 5.2.10 it suffices to show that the
eigenvalues (sn)n∈N of A (counted according to the algebraic multiplicity) can
be decomposed into finitely many sets having each a uniform gap.
Using Proposition 5.3.7, this is implied by the existence of an entire function g
of exponential type with
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i) g has exactly the zeros (sn)n∈N and

ii) there exist r, c, C > 0 such that for every ω ∈ R: c 6 |g(r + iω)| 6 C.

Note that f : C→ C, defined by f(s) := g(is) is a sine-type function if g is an
entire function of exponential type and satisfying the above conditions i) and
ii). We define g : C→ C by

g(s) := det
[
W̃1H(1)Ψs(1) + W̃0H(0)

]
. (5.21)

By Lemma 5.3.8, a complex number s ∈ C is an eigenvalue of the operator A if
and only if g(s) = 0.
Ψs described in Lemma 5.3.5 is an entire function, cf. [Was87, Theorem 24.1]
and thus g is an entire function as well. Clearly, g has the zeros (sn)n∈N. Since
the determinant of a matrix equals the product of its eigenvalues and every
eigenvalue is smaller or equal the norm of the matrix, it yields

|g(s)| 6
∥∥∥[W̃1H(1)Ψs(1) + W̃0H(0)

]∥∥∥n .
Using Lemma 5.3.5 it holds |g(s)| 6 c2e

|Re s|c3 for some constants c2, c3 > 0, and
thus, g is bounded on lines parallel to the imaginary axis and grows at most
exponentially.
Next, we show that g is bounded away from zero on some line parallel to the
imaginary axis. Since the control operator B of the port-Hamiltonian system
(5.15) is admissible, see Lemma 3.3.12, it yields that for ω > ω0(A) exists a
constant Mω > 0 such that

‖(s−A−1)−1B‖L(Cd,X) 6
Mω√

Re s− ω
for Re s > ω, (5.22)

see Proposition 2.2.5. Let r > ω0(A) and we assume that g is not bounded away
from zero on r+iR, i.e., there exists a sequence ωk ∈ R such that g(r+iωk)→ 0.
Since all zeros of g have real part less or equal to the growth bound ω0(T ) of
the C0-semigroup generated by A, it holds true that g(r + iωk) 6= 0. Let u0 be
an arbitrary vector in Cd. By Proposition 2.2.20 the solution xr+iωku0 of

(r + iωk)x(ζ) =

(
P1

d

dζ
+ P0

)
(Hx)(ζ)[

W̃1 W̃0

] [(Hx)(1)
(Hx)(0)

]
= u0,

is given by

xr+iωku0 = (((r + iωk)−A−1)−1(AB̃ − (r + iωk)B̃) + B̃)u0

= ((r + iωk)−A−1)−1Bu0

and xr+iωku0 (0) fulfils[
W̃1H(1)Ψr+iωk(1) + W̃0H(0)

]
xr+iωku0 (0) = u0.
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Let Mk :=
[
W̃1H(1)Ψr+iωk(1) + W̃0H(0)

]
. Since g(r + iωk) = det(Mk) → 0

and 1 = det(I) = det(Mk) det(M−1
k ), we have det(M−1

k ) → ∞. Hence, M−1
k

has an eigenvalue νk with |νk| → ∞. Choose uk,0 as a normalized eigenvector
to νk. Then it yields

xr+iωkuk,0
(0) = M−1

k uk,0 = νkuk,0,

which implies ‖xr+iωkuk,0
(0)‖Cd → ∞. We note that the function xr+iωkuk,0

is given
by

xr+iωkuk,0
(ζ) = Ψr+iωk(ζ)xr+iωkuk,0

(0).

Using that the inverse of Ψr+iωk is a bounded function, see Lemma 5.3.5, we
get

‖xr+iωkuk,0
‖L2((0,1);Cd) →∞. (5.23)

However, since we also have xr+iωkuk,0
= ((r+ iωk)−A−1)−1Buk,0, equation (5.23)

is in contradiction with the uniform boundedness of ((r+ iωk)−A−1)−1Bu0,k,
see equation (5.22). Thus the entire function g is of exponential type and
satisfies condition i) and ii). This concludes the proof. �

5.3.4 Proof of the implication 1)⇒ 2) of Theorem 5.3.3

We start with some characterizations of the resolvent and the spectrum of port-
Hamiltonian operators.

Lemma 5.3.9. Let Λ ∈ C([0, 1];Cd) with Λ(ζ) diagonal, invertible and positive
definite for every ζ ∈ [0, 1], Q ∈ Cd×d singular and A : D(A) ⊂ L2(0, 1;Cd) →
L2(0, 1;Cd) defined by Ax = Λx′ and D(A) = {x ∈ W1,2(0, 1;Cd) | x(1) +
Qx(0) = 0}. Then there exist real constants γ < 0 and a, b > 0 such that∥∥(s−A)−1

∥∥ > aeb|s| for real s ∈ ρ(A) with s < γ.

Proof: Let 0 6= x(0) ∈ kerQ. We define Fs(ζ) := s
∫ ζ

0 Λ−1(τ)dτ for s ∈ R
and ζ ∈ [0, 1]. Note that Fs and Λ commute as both are diagonal. There exists
γ0 < 0 such that I − e2Fs(1) is invertible if s < γ0. Further, let s ∈ ρ(A) with
s < γ0 and define

g(ζ) = 2seFs(1)−Fs(ζ)g0 = 2ses
∫ 1
ζ Λ−1(τ)dτg0 (5.24)

with g0 := eFs(1)(I − e2Fs(1))−1x(0). Then the solution of

Λx′ = sx+ g (5.25)

is given by

x(ζ) = eFs(ζ)x(0) +

∫ ζ

0
eFs(ζ)−Fs(τ)Λ−1(τ)g(τ)dτ

= eFs(ζ)x(0)− eFs(ζ)+Fs(1)

∫ ζ

0
(−2sΛ−1(τ))e−2Fs(τ)dτ g0

= eFs(ζ)x(0)− eFs(ζ)+Fs(1)(e−2Fs(ζ) − I)g0

= eFs(ζ)(I − e2Fs(1))e−Fs(ζ)g0 − e−Fs(ζ)+Fs(1)g0 + e−Fs(ζ)+Fs(1)g0

= eFs(ζ)−Fs(1)g0 −
1

2s
g(ζ).
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In particular x(1) = 0 and thus (s − A)−1g = x. As Λ ∈ C([0, 1];Cd) is
a diagonal and invertible matrix-valued function with positive entries on its
diagonal, there exists λ0 > 0 such that the diagonal elements of Λ are bounded
by λ0. First using (5.24) we can estimate

‖g‖L2((0,1);Cd) 6 c
√
|s| ‖g0‖ , c > 0,

and

‖x‖L2(0,1;Cd) >
∥∥∥eFs(·)−Fs(1)g0

∥∥∥
L2(0,1;Cd)

− 1

2|s|
‖g‖L2((0,1);Cd)

=

(∫ 1

0

∥∥∥e−s ∫ 1
τ Λ−1(σ)dσg0

∥∥∥2
dτ

) 1
2

− 1

2|s|
‖g‖L2((0,1);Cd)

>

(∫ 1

0
e2|s|(1−τ)λ0 ‖g0‖2 dτ

) 1
2

− 1

2|s|
‖g‖L2((0,1);Cd)

>
1

4|s|2λ0

(
e2|s|λ0 − 1

)
‖g‖L2((0,1);Cd) −

1

2|s|
‖g‖L2((0,1);Cd) .

This completes the proof of lemma. �

Lemma 5.3.10. Let A be a port-Hamiltonian operator, which generates a C0-
semigroup. Furthermore, let A be a discrete Riesz spectral operator and let
(sn)n∈N denote its eigenvalues. Then there exists a constant K > 0 such that
for every n ∈ N within the ball {s ∈ C | |s− sn| 6 K |Re sn|2} there lie at most
d eigenvalues.

Proof: Without lost of generality we assume that A generates an expo-
nentially stable C0-semigroup. By Proposition 4.1.5 the corresponding port-
Hamiltonian control system (5.15) with control operator B is exactly control-
lable in finite time. Then the dual system, described by A∗ and B∗, is exactly
observable and it yields due to the Hautus Test, cf. Theorem 2.2.10, that there
exists a positive constant m such that

‖(s−A∗)x‖2 + |Re s| ‖B∗x‖2 > m |Re s|2 ‖x‖2 , Re s < 0, x ∈ D(A∗). (5.26)

No matter that there may exist generalized eigenvectors, we consider only eigen-
vectors corresponding to different eigenvalues of A∗. As σ(A) = σ(A∗), it
suffices to prove the statement for A∗. Choose arbitrary e1, . . . ed+1 normed
eigenvectors of the operator A∗ to the eigenvalues λ1, . . . , λd+1 with λn 6= λm
for n 6= m ∈ 1, . . . , d+ 1.
Since B∗ ∈ L(D(A∗),Cd) the d+ 1 vectors B∗en are linearly dependent in Cd,
i.e, there exists scalars a1, . . . , ad+1 ∈ C with

∑d+1
n=1 |an|

2 = 1 such that

a1B
∗e1 + . . . ad+1B

∗ed+1 = 0. (5.27)

Consider x =
∑d+1

n=1 anen. Then x ∈ D(A∗) with B∗x = 0, and

‖x‖2 =
∥∥∥d+1∑
n=1

anen

∥∥∥ > m1 > 0,
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by Proposition 5.2.6. It follows with the Hautus Test (5.26) at the point s =
λd+1

mm1 |Reλd+1|2 6 ‖(λd+1 −A∗)x‖2 =
∥∥∥ d∑
n=1

an(λd+1 − λn)en

∥∥∥2

6 m2

d∑
n=1

|an|2 |λd+1 − λn|2 .

Thus,

d+ 1

d+ 1

mm1

m2
|Reλd+1|2 6

d∑
n=1

|λd+1 − λn|2 .

Since the eigenvalues are arbitrary chosen, this implies that in the ball with
radius mm1

(d+1) m2
|Reλd+1|2 around λd+1 lies at most d eigenvalues. Hence, the

statement follows. �

Now we are in the position to prove the implication 1)⇒ 2).

Proof of the implication 1)⇒ 2) of Theorem 5.3.3: We assume that
A does not generate a C0-group.

Since A is a port-Hamiltonian operator, we denote by S the matrix-valued
function such that P1H(ζ) = S−1(ζ)∆(ζ)S(ζ), see Assumption 3.1.1. Since the

eigenvalues of P1H(ζ) and H(ζ)
1
2P1H(ζ)

1
2 are the same, it follows by Sylvester’s

law of inertia that the number of positive and negative eigenvalues of P1H(ζ)
equal those of P1. Let d1 denote the number of positive and d2 = d − d1 the
number of negative eigenvalues of P1. Thus without loss of generality ∆ can be

written as ∆(ζ) =
[

Λ(ζ) 0
0 Θ(ζ)

]
, where Λ(ζ) ∈ Cd1×d1 correspond to the positive

eigenvalues and Θ(ζ) ∈ Cd2×d2 to the negative ones.

Let S ∈ L(X) be the multiplication operator (Sx)(ζ) := S(ζ)x(ζ). By assump-
tion S is invertible and we obtain

SAS−1z(ζ) =∆(ζ)(z(ζ))′

+ ∆′(ζ)z(ζ) + S(ζ)(S−1)′∆(ζ)z(ζ) + S(ζ)P0H(ζ)S−1(ζ)z(ζ)

D(SAS−1) ={z ∈ W1,2(0, 1;Cd) |
[
W̃1 W̃0

] [
(HS−1z)(1)

(HS−1z)(0)

]
= 0}.

The operator SAS−1 generates a C0-semigroup, too. We split the variable

z(ζ) =
[
z+(ζ)

z−(ζ)

]
∈ Cd with z+(ζ) ∈ Cd1 and z−(ζ) ∈ Cd2 , and we define

W̃1H(1)S−1(1) =:
[
V1 V2

]
and W̃0H(0)S−1(0) =:

[
U1 U2

]
, where U1, V1 ∈

Cd×d1 and U2, V2 ∈ Cd×d2 . Then, z ∈ D(SAS−1) if and only if z ∈ W1,2(0, 1;Cd)
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and

0 =
[
W̃1 W̃0

] [(HS−1z)(1)
(HS−1z)(0)

]
=
[
V1 V2

] [z+(1)
z−(1)

]
+
[
U1 U2

] [z+(0)
z−(0)

]
=
[
V1 U2

] [z+(1)
z−(0)

]
+
[
U1 V2

] [z+(0)
z−(1)

]
= K

[
Λ(1)z+(1)
Θ(0)z−(0)

]
+Q

[
Λ(0)z+(0)
Θ(1)z−(1)

]
,

where K :=
[
V1 U2

] [ Λ(1)−1 0

0 Θ(0)−1

]
and Q :=

[
U1 V2

] [ Λ(0)−1 0

0 Θ(1)−1

]
. Since

SAS−1 is the generator of a C0-semigroup and this property is invariant under
bounded perturbations, K is invertible, see [JZ12, Theorem 13.3.1].

Let T ∈ L(X) be defined by T
[
z+(ζ)

z−(ζ)

]
:=
[

z+(ζ)

z−(1−ζ)

]
. Clearly, T is invertible.

Then the operator A := T SAS−1T −1 on X is given by

Az(ζ) =

[
Λ(ζ) 0

0 −Θ(1− ζ)

]
z′(ζ) +R(ζ)z(ζ)

D(A) =
{
z ∈ W1,2(0, 1;Cd) |

K

[
Λ(1) 0

0 Θ(0)

]
z(1) +Q

[
Λ(1) 0

0 Θ(0)

]
z(0) = 0

}
,

where z 7→ R(·)z(·) is a bounded multiplication operator on X. Let K̃ :=

K
[

Λ(1) 0
0 Θ(0)

]
and Q̃ := Q

[
Λ(1) 0

0 Θ(0)

]
. By assumption, the matrix K̃ is invertible.

As a bounded perturbation of a generator of C0-group generates again a C0-
group, we obtain that the operator

Ãz(ζ) =

[
Λ(ζ) 0

0 −Θ(1− ζ)

]
z′(ζ)

D(Ã) =
(
z ∈ W1,2(0, 1;Cd) | z(1) = K̃−1Q̃z(0)

}
generates a C0-semigroup, but not a C0-group. In particular, Q1 := K̃−1Q̃ is
singular.

Since A is a discrete Riesz spectral operator, due to Lemma 5.3.10, there is a
K > 0 such that in the ball with radius K |Re s|2 around every eigenvalue s
of A lie at most d eigenvalues. Thus there exist sequences (tn)n∈N ⊂ R and
(rn)n∈N ⊂ (0,∞) with tn → −∞ and rn →∞ such that the ball with center tn
and radius rn lie in ρ(A). By Lemma 5.2.8 we get

‖(tn − Ã)−1‖ → 0.

However, for the operator Ã the Lemma 5.3.9, is applicable which implies that
‖(tn − Ã)−1‖ → ∞. This leads to a contradiction. �
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5.4 Examples

5.4.1 Wave equation with boundary feedback

We consider the one-dimensional wave equation with boundary feedback as in
[XW11], but we allow for spatial dependent mass density and Young’s modulus,
given by

wtt(ζ, t) =
1

ρ(ζ)

∂

∂ζ
(T (ζ)wζ(ζ, t)), ζ ∈ [0, 1], t > 0,

w(0, t) = 0,

u(t) = T (1)wζ(1, t), (5.28)

y(t) = wt(1, t),

u(t) = −κy(t), κ > 0,

where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) describes the displacement of the
point ζ of the string at time t, T (ζ) > 0 is the Young’s modulus of the string,
ρ(ζ) > 0 is the mass density, and κ > 0. We model this system as a port-

Hamiltonian system. Therefore we introduce the state variable x =
[
x1(ζ,t)
x2(ζ,t)

]
with x1 = ρ(ζ)∂w∂t (momentum), x2 = ∂w

∂ζ (strain) and the state space X =

L2(0, 1;Cd). Since the meaning of w(0, t) = 0 is that in the point ζ = 0 the
string is fixed for all times, we model this boundary condition as ∂w

∂t w(0, t) = 0.
Then the closed-loop system (5.28) can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
= P1

∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
,

0 =

[
0 0 1 0
κ 1 0 0

] [
H(1)x(1, t)
H(0)x(0, t)

]
, (5.29)

where P1 = [ 0 0
0 1 ],H(ζ) =

[ 1
ρ(ζ)

0

0 T (ζ)

]
, W̃1 = [ 0 0

κ 1 ], W̃0 = [ 1 0
0 0 ] and κ > 0. We

define the corresponding port-Hamiltonian operator A

Ax := P1
∂

∂ζ
(Hx),

D(A) = {x ∈ X | Hx ∈ W1,2(0, 1;C2) and
[
W̃1 W̃0

] [(Hx)(1)
(Hx)(0)

]
= 0}

and remind that due to Theorem 3.3.5 the system has a unique mild solution if
A generates a C0-semigroup. To show that the port-Hamiltonian operator A is
a discrete Riesz spectral operator, it is sufficient due to Theorem 5.3.3 to prove
that A generates a C0-group. So we have only to check that W̃1H(1)Z+(1) ⊕
W̃0H(0)Z−(0) = Cd and W̃1H(1)Z−(1) ⊕ W̃0H(0)Z+(0) = Cd, where Z+(ζ)
denotes the span of the eigenvectors of P1H(ζ) corresponding to the positive
eigenvalues of P1H(ζ) and Z−(ζ) is the span of the eigenvectors of P1H(ζ)
corresponding to the negative eigenvalues of P1H(ζ). Defining γ =

√
T (ζ)/ρ(ζ),
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the matrix function P1H can be factorized as

P1H =

[
γ −γ
ρ−1 ρ−1

]
︸ ︷︷ ︸

S−1

[
γ 0
0 −γ

]
︸ ︷︷ ︸

∆

[
(2γ)−1 ρ/2
(2γ)−1 ρ/2

]
︸ ︷︷ ︸

S

.

It is easy to see that Z+(ζ) = span
[
T (ζ)
γ(ζ)

]
and Z−(ζ) = span

[
−T (ζ)
γ(ζ)

]
. Then it

holds for κ 6= −T (1)
γ(1) and κ 6= T (1)

γ(1)

W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0) =

[
0

κγ(1) + T (1)

]
⊕
[
−γ(0)

0

]
= C2,

W̃1H(1)Z−(1)⊕ W̃0H(0)Z+(0) =

[
0

−κγ(1) + T (1)

]
⊕
[
γ(0)

0

]
= C2.

Thus, A is a discrete Riesz spectral operator for κ 6= −T (1)
γ(1) and κ 6= T (1)

γ(1) .

In contrast to [XW11] we do not need determine the eigenvalues exactly, which
is only possible if ρ and T are constant. For spacial varying coefficients like
ρ(ζ) = eζ and T (ζ) = ζ + 1 the problem is not analytically solvable, see [JZ12,
Exercise 12.1].

5.4.2 Timoshenko beam with boundary damping

In Example 3.1.8 and 3.2.9 it is shown that the Timoshenko beam with bound-
ary damping can be formulated as port-Hamiltonian system: It can be written
in the form of (5.15), with

P1 =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
, H(ζ) =

K(ζ) 0 0 0

0 1
ρ(ζ)

0 0

0 0 EI(ζ) 1

0 0 0 1
Iρ(ζ)


and

P0 =

[
0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

]
,

where the K(ζ) denotes the shear modulus, EI(ζ) is the product of Young’s
modulus of elasticity and the moment of inertia of a cross section, ρ(ζ) is the
mass per unit length and Iρ(ζ) denotes the rotary moment of inertia of a cross
section. All these physical parameters are positive and continuously differen-
tiable functions of ζ. To model the fact that the beam is clamped in at ζ = 0
and controlled at ζ = 1 by the force and moment feedback, we add the boundary
condition [

0
0
0
0

]
= [ W̃1 W̃0 ]

[
(Hx)(1,t)
(Hx)(0,t)

]
with [ W̃1 W̃0 ] =

[
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 α1 0 0 0 0 0 0
0 0 1 α2 0 0 0 0

]
and α1, α2 are given positive gain feedback constants.
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For shortness, we define the ζ-depending functions γ1 = 1√
ρ(ζ)K(ζ)

and γ2 =

1√
Iρ(ζ)EI(ζ)

. Then we diagonalize P1H(ζ) and it holds

P1H(ζ) =


0 1

ρ(ζ) 0 0

K(ζ) 0 0 0
0 0 0 1

Iρ(ζ)

0 0 EI(ζ) 0



=

[ 0 γ1 0 −γ1
0 1 0 1
γ2 0 −γ2 0
1 0 1 0

]


√
EI(ζ)
Iρ(ζ)

0 0 0

0
√
K(ζ)
ρ(ζ)

0 0

0 0 −
√
EI(ζ)
Iρ(ζ)

0

0 0 0 −
√
K(ζ)
ρ(ζ)




0 0 1
2γ2

1
2

1
2γ1

1
2

0 0

0 0 − 1
2γ2

1
2

− 1
2γ1

1
2

0 0

.

Thus,

Z+(ζ) = span{
[
0 0 γ2(ζ) 1

]>
,
[
γ1(ζ) 1 0 0

]>} and

Z−(ζ) = span{
[
0 0 −γ2(ζ) 1

]>
,
[
−γ1(ζ) 1 0 0

]>}.
Since W̃1H(1) =

 0 0 0 0
0 0 0 0

K(1)
α1
ρ(1)

0 0

0 0 EI(1)
α2
Iρ(1)

 and W̃0H(0) =

 0 1
ρ(0)

0 0

0 0 0 1
Iρ(0)

0 0 0 0
0 0 0 0

,

we have

W̃1H(1)Z+(1)⊕ W̃0H(0)Z−(0)

= span{

 0
0
0

γ−1
2 (1)+α2
Iρ(1)

,
 0

0
γ−1
1 (1)+α1
ρ(1)

0

,[ 0
1

Iρ(0)

0
0

]
,

[
1
ρ(0)

0
0
0

]
} = C4

and

W̃1H(1)Z−(1)⊕ W̃0H(0)Z+(0) =

span{

 0
0
0

−γ−1
2 (1)+α2
Iρ(1)

,
 0

0
−γ−1

1 (1)+α1
ρ(1)

0

,[ 0
1

Iρ(0)

0
0

]
,

[
1
ρ(0)

0
0
0

]
} = C4.

Recall that WB = [ W̃1 W̃0 ]
[
P1 −P1
I I

]−1
, cf. Equation 3.13. Since WBΣWB 6= 0, A

does not generate a unitary C0-group, but nevertheless A generates a C0-group
and is by Theorem 5.3.3 a discrete Riesz spectral operator.

Xu and Feng dedicate the paper [XF02] to this example and they proved under
the extra assumption that all physical constants are independent of ζ that the
eigenvectors and generalized eigenvectors of the operator form a Riesz basis.
This example is also revisited in [Vil07] using another approach. Using our
main theorem, we can easy verify that the associated system operator is a
discrete Riesz spectral operator.
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5.5 Closing remarks and open problems

We have shown that a port-Hamiltonian system of the form (5.15) is a Riesz
spectral operator if and only if it generates a C0-group. Many (hyperbolic) sys-
tems can be written into this form, with as main exception the Euler-Bernoulli
beam equation. Of course the basis property of this equation is well-studied,
and many results are known, see e.g. [GW19]. However, we assert that the main
result of this chapter does not hold for the Euler-Bernoulli beam equation.

In Theorem 5.3.3 we have shown that if the port-Hamiltonian systems (5.15)
is a Riesz spectral operator, then the eigenvalues (counted according to the
algebraic multiplicity) can be decomposed into finitely many sets each having
a uniform gap. If we count the eigenvalues without multiplicity, then [JZ01a,
Theorem 2] shows that they can be decomposed into at most d sets each having
a uniform gap. We claim that this results holds true if we count the eigenvalues
according to the algebraic multiplicity.

One may ask whether the main theorem of this chapter (Theorem 5.3.3) holds
if we drop the assumption that P0 is skew-symmetric. Our proof uses the
fact that every well-posed port-Hamiltonian control system (5.15) is exactly
controllable in finite time and this property is only known in the case that P0

is skew-symmetric. Thus, if P0 is an arbitrary d × d-matrix, then our proof
carries over to this more general case, provided we add the assumption that the
corresponding port-Hamiltonian system is exactly controllable in finite-time.
However, we assert that even when P0 is not skew-symmetric, the system (5.15)
is exactly controllable in finite time, and thus this extra assumption would not
be needed.

Guo and Wang [GW19] studied the Riesz basis property for a closely related
class of systems, that is, hyperbolic systems of the form ∂x

∂t = K(ζ)∂x∂ζ +C(ζ)x
with K and C diagonal. They showed that for their class of systems the state
space can be split into two parts, one part generated by a C0-group and the
other generated by an operator without spectrum, see [GW19, Theorem 4.10].
In particular, the spectrum of their operators always lies in a strip parallel to
the imaginary axis. This result does not generalize to our system class as the
following lemma shows.

Lemma 5.5.1. We consider the port-Hamiltonian system

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
1 0
0 1

2

]
∂

∂ζ

[
x1(ζ, t)
x2(ζ, t)

]
+

[
0 1
−1 0

] [
x1(ζ, t)
x2(ζ, t)

]
, (5.30)

0 =

[
1 0 0 1
0 1 0 0

] [
x(1, t)
x(0, t)

]
. (5.31)

The system operator associated to (5.30)-(5.31) generates a C0-semigroup, but
there exists a sequence of eigenvalues which real parts converge to −∞.

Proof: By Theorem 3.2.5 it is easy to see that the operator associated to
(5.30)-(5.31) generates a C0-semigroup. To show that there exists a sequence of
eigenvalues which real parts converge to −∞, we characterize the eigenvalues
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of the port-Hamiltonian operator. If a complex number s is an eigenvalue of
the port-Hamiltonian operator associated to the system (5.30)-(5.31), then

sx =

[
1 0
0 1

2

]
x′ +

[
0 1
−1 0

]
x

⇔ x′ = s

[
1 0
0 2

]
x−

[
1 0
0 2

] [
0 1
−1 0

]
x

⇔ x′ = s

[
1 0
0 2

]
x−

[
0 1
−2 0

]
x

⇔ x′ =

(
s

[
1 0
0 2

]
+

[
0 −1
2 0

])
x.

Due to Lemma 5.3.8, s ∈ C is an eigenvalue if and only if

det

([
1 0
0 1

]
Ψs(1) +

[
0 1
0 0

])
= 0, (5.32)

where

Ψs(1) = exp

(
s

[
1 0
0 2

]
+

[
0 −1
2 0

])
.

To obtain the eigenvalues of the matrix s[ 1 0
0 2 ] +

[
0 −1
2 0

]
=
[
s −1
2 2s

]
we determine

the zeros of

det

([
s− µ −1

2 2s− µ

])
= (s− µ)(2s− µ) + 2 (5.33)

= µ2 − 3sµ+ 2(s2 + 1). (5.34)

Thus the determinant (5.33) has the zeros

µ1,2 =
3s

2
±

√(
−3s

2

)2

− 2(s2 + 1) =
3s±

√
s2 − 8

2
. (5.35)

These are the eigenvalues of
[
s −1
2 2s

]
to the eigenvectors v1 =

[
1

s−µ1
]

and v2 =[
1

s−µ2
]
. Note that µ1,2 are s-dependent. Thus, we get

exp

([
s −1
2 2s

])
= V (s)

[
eµ1 0
0 eµ2

]
V (s)−1,

where V (s) consists of the eigenvectors v1 and v2, i.e., V (s) =
[

1 1
s−µ1 s−µ2

]
.
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Thus, (5.32) is equivalent to

det

([
1 0
0 1

]
V (s)

[
eµ1 0
0 eµ2

]
V (s)−1 +

[
0 1
0 0

])
= 0

⇔det

((
V (s)

[
eµ1 0
0 eµ2

]
+

[
0 1
0 0

]
V (s)

)
V (s)−1

)
= 0

⇔det

(
V (s)

[
eµ1 0
0 eµ2

]
+

[
0 1
0 0

]
V (s)

)
= 0

⇔det

([
1 1

s− µ1 s− µ2

] [
eµ1 0
0 eµ2

]
+

[
0 1
0 0

] [
1 1

s− µ1 s− µ2

])
= 0

⇔det

([
eµ1 eµ2

(s− µ1)eµ1 (s− µ2)eµ2

]
+

[
s− µ1 s− µ2

0 0

])
= 0

⇔det

[
eµ1 + s− µ1 eµ2 + s− µ2

(s− µ1)eµ1 (s− µ2)eµ2

]
= 0

⇔(eµ1 + s− µ1)(s− µ2)eµ2 − (eµ2 + s− µ2)(s− µ1)eµ1 = 0

⇔(µ1 − µ2)eµ2+µ1 + (s− µ1)(s− µ2)eµ2 − (s− µ1)(s− µ2)eµ1 = 0. (5.36)

By equation (5.33) and (5.35) the determinant of

[
s− µ −1

2 2s− µ

]
is described

by a polynomial p(µ) = (µ − µ1)(µ − µ2). Evaluating p(µ) at µ = s, we get,
using again (5.33),

p(s) = (s− µ1)(s− µ2) = s2 − 3s2 + 2s2 + 2 = 2. (5.37)

Using (5.37), equation (5.36) is equivalent to

(µ1 − µ2)eµ2+µ1 + 2eµ2 − 2eµ1 = 0. (5.38)

Now, we consider the asymptotic behaviour of the zeros of (5.33). Since it holds√
s2 − 8−

√
s2 =

8

s
(√

1− 8
s2

+ 1
) ,

it holds for s = x+ iy

lim
x→−∞

8

(x+ iy)
(√

1− 8
(x+iy)2

+ 1
) = 0.

In the following, the o(1)-notation is used for Re s→ −∞. Thus, µ1−2s = o(1),
i.e., limRe s→−∞ µ1 − 2s = 0. Analogously, it holds µ2 − s = o(1). This implies

eµ1 = e2s+o(1) = e2seo(1),

eµ2 = es+o(1) = eseo(1),

µ1 − s = o(1) + s,

µ2 − µ1 = −s+ o(1).
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Using equation (5.37) it holds

µ2 − s =
2

µ1 − s
=

2

s+ o(1)
and

µ1 − µ2 = (µ1 − s)− (µ2 − s) = s+ o(1)− 2

s+ o(1)
.

We aim to apply the Theorem of Rouché, c.f. [BC63, Theorem 12.2].

For a closed contour C in the left halfplane with Re s very small, it holds

gµ(s) = eµ1 [(µ1 − µ2)eµ2 + 2eµ2−µ1 − 2]

= e2seo(1)[(s+ o(1)− 2

s+ o(1)
)eseo(1) + 2e−seo(1) − 2].

We have to show that the approximation of gµ(s) by

g(s) = e2s[(s− 2

s
)es + 2e−s − 2]

is good, i.e.,
|gµ(s)− g(s)|
|g(s)|

< 1.

It holds for Re s very small

|gµ(s)− g(s)|
|g(s)|

=

∣∣eµ1 [(µ1 − µ2)eµ2 + 2eµ2−µ1 − 2]− e2s[(s− 2
s )es + 2e−s − 2]

∣∣∣∣e2s[(s− 2
s )es + 2e−s − 2]

∣∣
=

∣∣∣e2seo(1)[(s+ o(1)− 2
s+o(1))eseo(1)+ 2e−seo(1) − 2]− e2s[(s− 2

s )es+ 2e−s− 2]
∣∣∣∣∣e2s[(s− 2

s )es + 2e−s − 2]
∣∣

=

∣∣∣(s+ o(1)− 2
s+o(1))eo(1)eo(1)+ 2e−2seo(1)− 2e−seo(1)−

[
(s− 2

s ) +2e−2s −2e−s
]∣∣∣∣∣(s− 2

s ) + 2e−2s − 2e−s
∣∣

=

∣∣(s− 2
s )(1+ o(1))+ 2e−2s(1+ o(1))− 2e−s(1+ o(1))− (s− 2

s )− 2e−2s+ 2e−s
∣∣∣∣(s− 2

s ) + 2e−2s − 2e−s
∣∣

=

∣∣((s− 2
s ) + 2e−2s − 2e−s

)
(1 + o(1))− (s− 2

s )− 2e−2s + 2e−s
∣∣∣∣(s− 2

s ) + 2e−2s − 2e−s
∣∣

=

∣∣((s− 2
s ) + 2e−2s − 2e−s

)
o(1)

∣∣∣∣(s− 2
s ) + 2e−2s − 2e−s

∣∣
= o(1).

Thus, it is sufficient to get information about the zeros of

e2s[(s− 2

s
)es + 2e−s − 2].
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To get some information about the asymptotic behaviour of its zeros we bring
the polynomial of exponentials in the standard form introduced in [BC63, Chap-
ter 12]. It holds

e2s

[(
s− 2

s

)
es + 2e−s − 2

]
=

1

s
es
[(
s2 − 2

)
e2s − 2ses + 2s

]
=

1

s
es

n∑
j=0

pj(s)e
βjs, 0 = β0 < β1 < · · · < βn.

(5.39)

Let mj denotes the degree of the polynomial in pj(s). We aim to draw the dis-
tributional diagram. Thus, we need the points with coordinates (βj ,mj), draw
the upper boundary part of the convex hull of (βj ,mj) and get a polygonal
graph. Then it is not possible that points lie above the polygonal graph, but
some may lie below it. The points below the polygonal graph does not effect
the asymptotics of the zeros, see [BC63, Chapter 12.8]. Thus, due to equation
(5.39) we draw the points (2, 2), (0, 1), (1, 1) and get the following distributional
diagram with only one line segment with slope 1

2 .

−1 1 2 3

−1

1

2

3

βj

mj

Figure 5.1: Distributional Diagram

Applying Theorem 12.10.d in [BC63], we get that the zeros of (5.39) lie asymp-

totically along a curve |s
1
2 es| = c, where c ∈ R denotes a constant and the slope

1
2 is taken into account. It holds

|s
1
2 es| = c⇔

∣∣∣|s| 12 e
1
2
·i(arg(s)+2kπ)es|

∣∣∣ = c⇔ |s|
1
2 eRe s = c

⇔Re s+
1

2
ln(|s|) = ln(c)⇔ Re

(
s+

1

2
ln(|s|) + i arg(s)

)
= c̃

⇔Re (s+
1

2
ln s) = c̃,

where c̃ := ln(c). We define s = x + iy and by Lemma 12.3 in [BC63] we get
that the curve is asymptotic to the curve x + 1

2 ln(|y|) = c̃. Then the zeros
lies along a curve with x = c̃ − 1

2 ln(|y|) and thus, there exists a sequence of
eigenvalues which real parts converge to −∞. �
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The following example shows that the equivalence 1) ⇔ 2) in Theorem 5.3.3
does not hold for generators A of C0-semigroups (T (t))t>0 on Hilbert spaces
even if we additionally assume that there exists a admissible control operator
B ∈ L(Cd, X−1) for (T (t))t>0 such that the control system ẋ(t) = Ax(t)+Bu(t)
is exactly controllable in finite time.

Example 5.5.2. Let A : D(A) ⊂ `2 → `2 be defined by (Ax)n = (snxn)n,
(sn)n∈N = (−2n)n∈N, and D(A) = {x ∈ `2(N) |

∑
n∈N(1 + |sn|2) |xn|2 < ∞}.

Clearly, A is a discrete Riesz spectral operator, generates a C0-semigroup, but
not a C0-group. Here

X−1 = `2−1 = {(xn)n∈N |
∑
n∈N

|xn|2

(1 + |sn|2)
<∞}.

Hence, we can identify B ∈ L(C, `2−1) with a sequence (bn) ∈ `2−1. Let (bn)n∈N =

(
√

2n)n∈N. Then it holds (bn)n∈N ∈ `2−1, since

∑
n∈N

(
√

2n)2

1 + (2n)2
=
∑
n∈N

2n

1 + 22n
<
∑
n∈N

2n

22n
<∞. (5.40)

To proof the admissibility of B we use the Carleson measure criterion by Weiss,
[Wei88]. Since the eigenvalues sn = −2n are real, we only have to check that
there exists a constant M > 0 independent of h such that∑

−sn∈R(h,0)

|bn|2 6Mh for any h > 0, (5.41)

where R(h, 0) := {z ∈ C | 0 6 Re z 6 h and |Im z| 6 h} denotes a rectangle in
the right complex half plane at the imaginary axis. It holds

∑
−sn∈R(h,0)

∣∣∣√2n
∣∣∣2 =

k∑
n=1

2n 6 2 · 2k, (5.42)

where k := maxi h − 2i > 0. To verify that (A,B) is exactly controllable in
finite time, we use one of the dual equivalences in [JZ01b, Theorem 2] for one-
dimensional output operators and formulate the assertion for diagonal systems
with one-dimensional input operators.

Theorem 5.5.3. The diagonal system (A,B) is exactly controllable in infinite
time if and only if the following two conditions hold:

1. The eigenvalues sn are properly spaced, i.e.,

inf
n6=m

∣∣∣∣sn − smRe sn

∣∣∣∣ > 0 and (5.43)

2. there exists a constant C > 0 such that C |Resm| 6 |bm|2.
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Here, we use the above theorem for an exponential stable semigroup. Thus,
exact controllability in infinite time is equivalent to exact controllability in
finite time. It holds∣∣∣∣2n − 2m

2n

∣∣∣∣ > ∣∣∣∣2n − 2m−1

2n

∣∣∣∣ =
∣∣1− 2−1

∣∣ > 0. (5.44)

Thus, we see that the sequence of eigenvalues is properly spaced and it holds
|Re sm| 6 |bm|2 as well and therefore, exact controllability in finite time follows.



Chapter 6

Generalization of
port-Hamiltonian systems

So far, we have only considered port-Hamiltonian systems of order 1. In the
following section we consider port-Hamiltonian systems of order N . Then not
only the Timoschenko beam but also the Euler-Bernoulli beam can be modelled
as a port-Hamiltonian system, namely a port-Hamiltonian system of order 2.
Port-Hamiltonian systems of N -th order on a bounded interval are well-studied,
see for example [Vil07],[LGZM05], [AJ14] and [Aug16].

We consider the well-posedness of a class of hyperbolic partial differential equa-
tions on a one dimensional spatial domain, i.e., whether the associated oper-
ator generates a contraction C0-semigroup. This class includes coupled wave
and beam equations and in particular infinite networks of these equations, that
means networks with an infinite number of edges.

Figure 6.1: Arbitrary infinite-
dimensional network Figure 6.2: Infinite-dimensional tree

In this chapter equivalent conditions for contraction C0-semigroup generation
are derived. We consider these equations on a finite interval as well as on a
semi-axis. In particular, contraction C0-semigroup generation has been studied
in Chapter 3 and [LGZM05, JZ12, AJ14, Aug16, JMZ15]. In this chapter we
aim to generalize these results to the infinite-dimensional situation and to the
semi-axis.

The results of this chapter are published in [JK19b].

75
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6.1 Port-Hamiltonian systems in the infinite-dimen-
sional setting

We consider on the interval [0, 1] a system of partial differential equations of
the form

∂x

∂t
(ζ, t) =

(
N∑
k=0

Pk
∂k

∂ζk

)
(H(ζ)x(ζ, t)), ζ ∈ (0, 1), t > 0, (6.1)

x(ζ, 0) = x0(ζ),

where PN is an invertible operator on a Hilbert space H and Pk ∈ L(H),
k = 0, · · · , N , with P ∗k = (−1)k+1Pk, k = 1, · · · , N . Here L(H) denotes the
set of linear bounded operators on H. H(ζ) is a positive operator on H for
a.e. ζ ∈ (0, 1) satisfying H,H−1 ∈ L∞(0, 1;L(H)).
To give an example of a port-Hamiltonian system of order 2 we consider the
Euler-Bernoulli beam.
The equation of the Euler-Bernoulli beam models the transversal vibration of
an elastic beam where the cross section of the beam is also vertical to the
neutral axis after the bending. An extension of the Euler-Bernoulli beam is the
Timoshenko beam model, which takes shear and rotational inertia effects into
account, see Example 3.1.8.

Example 6.1.1. The Euler-Bernoulli beam is described by the partial differential
equation

ρ(ζ)
∂2ω

∂t2
(ζ, t) +

∂2

∂ζ2

(
EI(ζ)

∂2ω

∂ζ2
(ζ, t)

)
= 0, t > 0, (6.2)

where ω(ζ, t) describes the transverse displacement of the beam. All physical
parameters are positive and continuously differentiable functions of ζ. Here
ρ(ζ) denotes the mass per unit length and EI(ζ) is the product of Young’s
modulus of elasticity and the moment of inertia of the cross section. Using the
state variables

x1(ζ, t) := ρ(ζ)
∂ω

∂t
(ζ, t)

x2(ζ, t) :=
∂2ω

∂ζ2
(ζ, t)

we model the Euler-Bernoulli beam equation (6.2) as a port-Hamiltonian system
of order 2.

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 −1
1 0

]
∂2

∂ζ2

([ 1
ρ(ζ) 0

0 EI(ζ)

] [
x1(ζ, t)
x2(ζ, t)

])
, (6.3)

There are also examples of port-Hamiltonian systems of higher order. An ex-
ample for a port-Hamiltonian system of order 3 is the Airy equation, which is
described in [MNS18].

Example 6.1.2. The Airy equation is the linear part of the Korteweg-de Vries
equation, which describes waves on shallow water. The Airy equation on a
one-dimensional spacial domain is given by

∂ω

∂t
(t, ζ) +

∂3ω

∂ζ3
(ζ, t) = 0, t > 0, ζ ∈ (0, 1). (6.4)
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This equation can be written as a port-Hamiltonian system of order 3 with
H = 1, P0 = P1 = P2 = 0, and P3 = −1.

In order to guarantee unique solutions of equation (6.1), we have to impose
boundary conditions, which will be of the form

W̃B(Φ(Hx))(·, t) = 0. (6.5)

We assume W̃B ∈ L(H2N , HN ) and that the operator Φ is
given by

Φ :WN,2(0, 1;H)→ H2N , Φ(x) := [Φ1(x) Φ0(x)]T ,

where Φi(x) :=
[
x(i) . . . dN−1x

dζN−1 (i)
]T

for i ∈ {0, 1} and WN,2(0, 1;H) denotes

the Sobolev space of order N , cf. Definition 2.0.4. Clearly, whether or not
equation (6.1) possesses unique and non-increasing solutions depend on the

boundary conditions, or equivalently on the operator W̃B. The partial differ-
ential equation (6.1) with the boundary conditions (6.5) can be equivalently
written as an abstract Cauchy problem

ẋ(t) = Ax(t),

x(0) = x0,

where A is the linear operator on the Hilbert space X := L2(0, 1;H) given by

Ax :=
N∑
k=0

Pk
∂k

∂ζk
(Hx), x ∈ D(A), (6.6)

D(A) =
{
x ∈ X | Hx ∈ WN,2(0, 1;H) and W̃BΦ(Hx) = 0

}
. (6.7)

We denote A as port-Hamiltonian operator of order N . Again, as in Chapter
3, we equip X not with the standard scalar product of L2(0, 1;H) but with the
inner product 〈f,Hg〉.
We define

Q = (Qij)16i6N
16j6N

=

{
(−1)i−1Pi+j−1 if i+ j 6 N + 1

0 else.
(6.8)

Clearly, Qij ∈ L(H), i.e. Q ∈ L(HN ) and

Q =



P1 P2 P3 · · · PN−1 PN
−P2 −P3 −P4 · · · −PN 0

P3 P4 . .
.

. .
.

0 0

−P4 . .
.

. .
.

. .
. ...

... . .
.

. .
. ...

(−1)N−1PN 0 · · · · · · · · · 0


.
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Thus, Q ∈ L(HN ) is a selfadjoint block operator matrix and invertible due to
the fact that PN is invertible. Let

WB :=
[
W1 W0

]
:= W̃B

[
Q −Q
I I

]−1

and Σ :=

[
0 I
I 0

]
∈ L(HN ×HN ),

where W1,W0 ∈ L(HN ). Let P ∈ L(H). We call P negative semi-definite, in
short P 6 0, if 〈x, Px〉H 6 0 for all x ∈ H. We define ReP = 1

2(P + P ∗)
and ImP = 1

2i(P − P
∗). Thus, P = ReP + iImP and ReP 6 0 if and only if

〈x,RePx〉H = Re 〈x, Px〉H 6 0.

The aim of this section is to give equivalent conditions for the fact that A
generates a contraction C0-semigroup on X. Under a weak condition, we show
that AH generates a contraction C0-semigroup if and only if the operator A
is dissipative. Moreover, equivalent conditions in terms of the operator W̃B

are presented. We note that the mentioned weak condition is in particular
satisfied if the Hilbert spaceH is finite-dimensional. However, even ifH is finite-
dimensional, our result contains new equivalent conditions for the contraction
C0-semigroup characterization in [Vil07, LGZM05] and [AJ14].

Thus, we consider the operator A on the Hilbert space X = L2(0, 1;H), where
H is a (possibly infinite-dimensional) Hilbert space.

We start to collect all assertions, before we introduce some technical definitions
and lemmas, and give the proofs of the following theorems and corollaries at
the end of this section.

Theorem 6.1.3. Let A be given by (3.9)-(3.10). Further, assume

ran (W1 −W0) ⊆ ran (W1 +W0). (6.9)

Then the following statements are equivalent:

1. The operator A generates a contraction C0-semigroup on X;

2. A is dissipative, that is, Re 〈Ax, x〉 6 0 for every x ∈ D(A);

3. ReP0 6 0, W1 +W0 is injective and WBΣW ∗B > 0;

4. ReP0 6 0, W1 +W0 is injective and there exists V ∈ L(H) with ‖V ‖ 6 1
such that WB = 1

2(W1 +W0)
[
I + V I − V

]
;

5. ReP0 6 0 and u∗Qu− y∗Qy 6 0 for every [ uy ] ∈ ker W̃B.

Remark 6.1.4. 1. Condition (6.9) is in general not satisfied: Let N = 1,
H = `2 and WB =

[
W1 W0

]
∈ L(`2 × `2, `2) with W1ei := ei+1 + ei

and W0ei := ei+1 − ei, where {ei}i∈N is an orthonormal basis of `2. Then
ran(W1 −W0) = `2 whereas e1 6∈ ran(W1 +W0).

2. We point out that the implications 1⇒ 2, 4⇒ 3, and the equivalence 2⇔
5 hold even without the additional condition (6.9). Moreover, condition
(6.9) is not needed for the fact that 2 implies the injectivity of W1 +W0.
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3. We note that WB is not uniquely determined, only the kernel of WB is.
However, if WB does not satisfy condition (6.9), then in general it is not
possible to choose another operator instead of WB with the same kernel
such that condition (6.9) holds.

4. If H is finite-dimensional, then A has a compact resolvent, see [AJ14,
Theorem 2.3]. However, in general, A does not have a compact resolvent.

Take for example N = 1, P1 = 1, P0 = 0, H = `2, W̃B = [I L] and
H(ζ) = I`2 . Here L denotes the left shift on H, that is, Lei = ei+1.
Thus, A generates the left shift semigroup on X = L2(0, 1; `2), which is
isometric isomorph to the left shift on X = L2(0,∞;C). However, 0 is a
spectral point of A, but not in the point spectrum.

As a corollary of Theorem 6.1.3 we obtain the well-known contraction C0-
semigroup characterization for the case of a finite-dimensional Hilbert space
H, see [AJ14]. However, we remark that Conditions 3 and 4 are new even in
the finite-dimensional situation.

Corollary 6.1.5. Let A be given by (3.9)-(3.10) and assume that H is finite-
dimensional. Then, assertions 1 to 5 in Theorem 6.1.3 are equivalent, and,
moreover, they are equivalent to

6. ReP0 6 0, WB surjective and WBΣW ∗B > 0;

7. ReP0 6 0, WB surjective and there exists V ∈ L(H) with ‖V ‖ 6 1 such
that WB = 1

2(W1 +W0)
[
I + V I − V

]
.

Remark 6.1.6. If H is infinite-dimensional, then in general Conditions 6 and
7 of the previous corollary are not equivalent to the fact that A generates a
contraction C0-semigroup. In the following we give two counterexamples.
Let H = `2(N), N ∈ N, and Pi and H are operators satisfying the general
assumptions. First, we consider WB =

[
W1 W0

]
with W1 := 3

2R and W0 :=
1
2R, where R denotes the right shift on `2(N). Then ran(W1−W0) = ran(W1 +
W0), W1 + W0 is injective and WBΣW ∗B > 0 but WB is not surjective. Thus,
A generates a contraction C0-semigroup on X, but Conditions 6 and 7 are not
satisfied. Conversely, for the choice WB =

[
I − L −I − L

]
, where L denotes

the left shift on `2(N), surjectivity of WB holds, ran(W1−W0) ⊆ ran(W1 +W0)
and WBΣW ∗B > 0, but W1 + W0 is not injective. Thus, for these boundary
conditions the Conditions 6 and 7 of the previous corollary are satisfied, but A
does not generate a contraction C0-semigroup on X.

Next, we characterize the property of unitary group generation of A.

Theorem 6.1.7. Let A be given by (3.9)-(3.10). Further assume

ran (W1 −W0) = ran (W1 +W0). (6.10)

Then the following statements are equivalent:

1. A generates a unitary C0-group on X;

2. Re 〈Ax, x〉 = 0 for every x ∈ D(A);
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3. ReP0 = 0, W1 +W0 and −W1 +W0 are injective and WBΣW ∗B = 0;

4. ReP0 = 0, W1+W0 and −W1+W0 are injective and there exists V ∈ L(H)
with ‖V ‖ = 1 such that WB = 1

2(W1 +W0)
[
I + V I − V

]
;

5. ReP0 = 0 and u∗Qu− y∗Qy = 0 for every ( uv ) ∈ ker W̃B.

Corollary 6.1.8. Let A be given by (3.9)-(3.10) and assume that H is finite-
dimensional. Then, assertions 1 to 5 in Theorem 6.1.7 are equivalent, and,
moreover, they are equivalent to

6. ReP0 = 0, WB surjective and WBΣW ∗B = 0;

7. ReP0 = 0, WB surjective and there exists V ∈ L(H) with ‖V ‖ = 1 such
that WB = 1

2(W1 +W2)
[
I + V I − V

]
.

In order to prove these statements it is convenient to introduce the following
linear combinations of the boundary values [LGZM05], which is a generalization
of Definition 3.2.2.

Definition 6.1.9. For x ∈ H−1WN,2(0, 1;H) we define so called boundary port
variables, namely boundary flow and boundary effort, by[

f∂,Hx
e∂,Hx

]
:=

1√
2

[
Q −Q
I I

]
Φ(Hx) = RextΦ(Hx), (6.11)

where Q is defined by (6.8) and Rext := 1√
2

[
Q −Q
I I

]
∈ L(H2N ).

Remark 6.1.10. Thanks to the invertibility of Q, the operator Rext is invertible.
As well as in Chapter 3 we use the boundary port variables to reformulate the
domain of the operator A:

D(A) =
{
x ∈ X | Hx ∈ WN,2(0, 1;H) and W̃BΦ(Hx) = 0

}
=

{
x ∈ X | Hx ∈ WN,2(0, 1;H) and WB

[
f∂,Hx
e∂,Hx

]
= 0

}
,

where WB = W̃BR
−1
ext.

Next, we determine the adjoint operator of A. We define Q̃ = −Q and[
f̃∂,Hx
ẽ∂,Hx

]
= R̃extΦ(Hx) with R̃ext =

1√
2

[
Q̃ −Q̃
I I

]
.

Lemma 6.1.11. The adjoint operator of the operator A defined in (6.6) with
domain (6.7) and a boundary operator WB of the form WB = S

[
I + V I − V

]
where S, V ∈ L(HN ) and S is injective, is given by

A∗y = P ∗0 y −
N∑
k=1

Pk
dk

dζk
y, y ∈ D(A∗), (6.12)

D(A∗) =

{
y ∈ WN,2(0, 1;H) : S

[
I + V ∗ I − V ∗

] [f̃∂,y
ẽ∂,y

]
= 0

}
. (6.13)
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Proof: The statement can be proved in a similar manner as Proposition
3.4.3 in [Aug16], where the statement is shown for finite-dimensional Hilbert
spaces H. �

Definition 6.1.12. We define the operators A0 : D(A0) ⊆ X → X and (A∗)0 :
D((A∗)0) ⊆ X → X by

A0x :=
N∑
k=0

Pk
∂k

∂ζk
x, (A∗)0y := P ∗0 y −

N∑
k=1

Pk
dk

dζk
y

D(A0) = D(A∗0) =WN,2(0, 1;H).

Remark, that A0 and (A∗)0 are extensions of A and A∗, respectively. Integration
by parts yields the following lemma.

Lemma 6.1.13. We have for x ∈ WN,2(0, 1;H)

Re 〈A0x, x〉 = Re 〈f∂,x, e∂,x〉HN + Re 〈P0x, x〉
= Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) + Re 〈P0x, x〉,

Re 〈(A∗)0x, x〉 = Re 〈f̃∂,x, ẽ∂,x〉HN + Re 〈P0x, x〉

= Φ1(x)∗Q̃Φ1(x)− Φ0(x)∗Q̃Φ0(x) + Re 〈P0x, x〉.

Furthermore, we need some technical results. First, we give a generalization of
the technical Lemma 7.3.2 in [JZ12] for N > 1 and arbitrary Banach spaces Z.

Lemma 6.1.14. Let Z be a Banach space and V ∈ L(Z). Then it holds

ker
[
I + V I − V

]
= ran

[
I − V
−I − V

]
,

where
[
I + V I − V

]
∈ L(Z × Z,Z) and

(
I−V
−I−V

)
∈ L(Z,Z × Z).

Proof: Assume ( xy ) ∈ ker
[
I + V I − V

]
. Thus, it holds

x+ V x+ y − V y = 0.

For l := 1
2(x− y) ∈ Z we get

(I−V )l =
1

2
(x−y)− 1

2
V (x−y) = x and (−I−V )l = −1

2
(x−y)− 1

2
V (x−y) = y.

Thus, it follows ( xy ) ∈ ran
[
I−V
−I−V

]
. Conversely, assume ( xy ) ∈ ran

[
I−V
−I−V

]
.

Then, we have

[
I + V I − V

]
( xy ) =

[
I + V I − V

] [ I − V
−I − V

]
l = 0

for some l ∈ Z and the lemma is proved. �
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Lemma 6.1.15. ([KZ15, Lemma 2.4]) Let W =
[
W1 W0

]
∈ L(H2N , HN )

such that W1 +W0 is injective and

ran(W1 −W0) ⊆ ran(W1 +W0).

Then there exist an unique operator V ∈ L(HN ) such that

W =
[
W1 W0

]
=

1

2
(W1 +W0)

[
I + V I − V

]
. (6.14)

Moreover,

ker
[
W1 W0

]
= ker

[
I + V I − V

]
,

and [
W1 W0

] [0 I
I 0

] [
W1 W0

]∗
> 0⇔ V V ∗ 6 I.

Lemma 6.1.16. Let A0 be defined as in Definition 6.1.12. For an arbitrary
element ( uv ) ∈ HN ×HN there exists a function x ∈ D(A0) such that Φ(x) =
( uv ).

Proof: We give a constructive proof: Consider ( uv ) ∈ HN ×HN where

u =

u1

...
uN

 and v =

 v1

...
vN

 ,
with entries u1, . . . , uN , v1, . . . , vN ∈ H. To construct a proper function x, we
define two polynomials, Pu(ζ) and Pv(ζ), by

Pu(ζ) :=
N∑
i=0

ui+1

i!
(ζ − 1)i and Pv(ζ) :=

N∑
i=0

vi+1

i!
ζi.

Furthermore, we define the functions ϕ0 ∈ C∞[0, 1] and ϕ1 ∈ C∞[0, 1] such that
ϕ0|[0,ε] = 0 and ϕ0|[1−ε,1] = 1 and analogously ϕ1|[0,ε] = 1 and ϕ1|[1−ε,1] = 0
hold. Thus, for

x := (ϕ0 · Pu + ϕ1 · Pv)IHN ∈ C∞([0, 1];HN ) ⊆ D(A0)

we get Φ(x) = ( uv ). �

Lemma 6.1.17. Let A be defined by (3.9)-(3.10). Then A is dissipative if and
only if A− P0 is dissipative and it holds ReP0 6 0.

Proof: “⇒”: Let A be dissipative. Hence, the operator A−P0 is dissipative
if ReP0 6 0 holds. We will prove Re 〈P0z, z〉 6 0 for all z ∈ H: Let z ∈ H and
Ψ(ζ) ∈ C∞c (0, 1) with ζ ∈ [0, 1] an arbitrary, scalar-valued function with Ψ 6≡ 0.
We define

x := Ψ(ζ)z ∈ C∞c ((0, 1);H) ⊆ D(A)
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and it yields, since the derivation equals zero at the boundary,

0 > Re 〈Ax, x〉 = Re 〈P0x, x〉 = Re 〈P0Ψz,Ψz〉

= Re

∫ 1

0
|Ψ(ζ)|2 〈P0z, z〉Hdζ

= ‖Ψ‖2 Re 〈P0z, z〉H .

“⇐”: We assume ReP0 6 0 and Re 〈(A− P0)x, x〉 6 0 for all x ∈ D(A). Thus,
we get for x ∈ D(A)

Re 〈Ax, x〉 = Re 〈(A− P0)x, x〉+ Re 〈P0x, x〉 6 0 .

Thus, we get the assertion of the lemma. �

We are now in the position to prove the main results of this section.

Proof of Theorem 6.1.3: The implication 1 ⇒ 2 follows by the Lumer-
Phillips Theorem, cf. Theorem 2.1.14, and the equivalence 3 ⇔ 4 has been
shown in Lemma 6.1.15.

Next, we prove the equivalence 2⇔ 5: Lemma 6.1.13 implies for x ∈ D(A)

Re 〈Ax, x〉 = Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) + Re 〈P0x, x〉.

Note that x ∈ WN,2(0, 1;H) satisfies x ∈ D(A) if and only if
(

Φ1(x)
Φ0(x)

)
∈ ker W̃B.

This proves the implication 5⇒ 2.
We now assume that 2 holds. Then Lemma 6.1.17 shows that ReP0 6 0 and
that A− P0 is dissipative, that is,

Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) 6 0

for every x ∈ WN,2(0, 1;H) satisfying
(

Φ1(x)
Φ0(x)

)
∈ ker W̃B. Further, by Lemma

6.1.16, for an arbitrary element ( uv ) ∈ ker W̃B there exists a function x ∈ D(A)

such that
(

Φ1(x)
Φ0(x)

)
= ( uv ). This proves 5.

Next, we prove the implication 2⇒ 4: Lemma 6.1.17 shows that ReP0 6 0 and
that A− P0 is dissipative, that is, using Lemma 6.1.13

Re 〈f∂,x, e∂,x〉HN 6 0, x ∈ D(A). (6.15)

For an arbitrary element ( fe ) ∈ kerWB ⊆ HN × HN a function x ∈ D(A)

exists due to Lemma 6.1.16 such that RextΦ(x) =
(
f∂,x
e∂,x

)
= ( fe ). By equation

(6.15) we get e∗f + f∗e 6 0 for all ( fe ) ∈ kerWB, where WB :=
[
W1 W0

]
. For

y ∈ ker(W1+W0) we have WB( yy ) = 0 and thus y∗y+yy∗ 6 0. Since the norm of
an element is non negative, it follows y = 0 and therefore ker(W1 +W0) = {0},
which shows the injectivity of W1 + W0. Due to this fact, by Lemma 6.1.15
there exists an operator V satisfying (6.14). It remains to show that ‖V ‖ 6 1.
Let l ∈ HN be arbitrarily. By Lemma 6.1.14 we obtain

(
I−V
−I−V

)
l ∈ kerWB.
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From Lemma 6.1.16 we follow that a function x ∈ D(A0) exists, such that

RextΦ(x) =
(
f∂,x
e∂,x

)
=
(
I−V
−I−V

)
l. Therefore,

(
f∂,x
e∂,x

)
∈ kerWB and even x ∈

D(A). In conclusion, we obtain using (6.15)

2Re 〈f∂,x, e∂,x〉HN = 〈f∂,x, e∂,x〉HN + 〈e∂,x, f∂,x〉HN

= 〈(I − V )l, (−I − V )l〉HN + 〈(−I − V )l, (I − V )l〉HN

= 2〈l, (−I + V ∗V )l〉HN 6 0 (6.16)

and therefore ‖V ‖ 6 1.

Finally, we show the implication 4 ⇒ 1: A is a closed operator, see [Aug16,
Lemma 3.2.2]. To prove that A generates a contraction C0-semigroup, it is
sufficient to verify that A and A∗ are dissipative, cf. Theorem 2.1.15. Let

x ∈ D(A). Then, we have
(
f∂,x
e∂,x

)
∈ kerWB and from Lemma 6.1.14 it follows

that there exists an l ∈ HN such that
(
f∂,x
e∂,x

)
=
(
I−V
−I−V

)
l. Using Lemma 6.1.13

and Lemma 6.1.15, we obtain

2Re 〈Ax, x〉L2 = 2Re 〈f∂,x, e∂,x〉HN + 2〈P0x, x〉
6 2〈l, (−I + V ∗V )l〉HN 6 0.

Now we consider the adjoint operator A∗: Let y ∈ D(A∗). By Lemma 6.1.11, we

obtain
(
f̃∂,y
ẽ∂,y

)
∈ kerS

[
I + V ∗ I − V ∗

]
. Applying Lemma 6.1.14 and Lemma

6.1.15 to the operator V ∗, there exists m ∈ HN such that
(
f̃∂,x
ẽ∂,x

)
=
(
I−V ∗

−I−V ∗
)
m.

Using again Lemma 6.1.13 we get

2Re 〈A∗y, y〉L2 6 2〈m, (−I + V V ∗)m〉HN 6 0, (6.17)

which concludes the proof. �

Proof of Corollary 6.1.5: We want to apply Theorem 6.1.3 for the proof
of Corollary 6.1.5. Therefore, we have to check condition (6.9).
If dimH < ∞, then W1 + W0 injective implies the surjectivity of W1 + W0

and hence condition (6.9). Due to this and Remark 6.1.4.2 assertions 1, 2, 3,
4 and 5 of Theorem 6.1.5 are equivalent. The implications 3 ⇒ 6 and 4 ⇒ 7
follows, since we have W1 + W0 injective, and thus, W1 + W2 is also surjec-
tive. Clearly, it follows that WB is surjective. A straightforward calculation
shows the implication 7 ⇒ 6. In order to show 6 ⇒ 3 we prove that in the
finite-dimensional setting the surjectivity of WB and WBΣW ∗B > 0 implies the
injectivity of W1 +W0. From

WBΣW ∗B > 0⇔W0W
∗
1 +W1W

∗
0 > 0,

we obtain

W1W
∗
1 +W0W

∗
1 +W0W

∗
0 +W1W

∗
0

= (W1 +W0)(W1 +W0)∗ > (W1 −W0)(W1 −W0)∗ > 0.
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Let x be in ker(W1 +W0)∗. This yields x ∈ ker(W1 −W0)(W1 −W0)∗. With

‖(W1 −W0)∗x‖2 = 〈(W1 −W0)∗x, (W1 −W0)∗x〉
= 〈x, (W1 −W0)(W1 −W0)∗x〉 = 〈x, 0〉 = 0

we get x ∈ ker(W1 −W0)∗ and thus, x ∈ kerW ∗1 ∩W ∗0 . Since WB is surjective,
W ∗B is injective and thus x = 0. This implies that W1 +W0 is injective. �

Proof of Theorem 6.1.7: Without loss of generality again we consider
just the case H = I. In the following proof we will often apply Theorem 6.1.3
to the operators A and −A. So, first of all, we have to verify, that also the
boundary condition operator W̄B of −A satisfies the condition (6.9).
We define analogously to (6.11) the boundary flow and the boundary effort for
−A: [

f̄∂,x
ē∂,x

]
:=

1√
2

[
−Q Q
I I

]
Φ(Hx). (6.18)

Therefore, it yields f̄∂,x = −f∂,x and ē∂,x = e∂,x. Due to D(A) = D(−A), we
get

D(A) =

{
x ∈ WN,2(0, 1;H)|WB

[
f∂,x
e∂,x

]
= 0

}
=

{
x ∈ WN,2(0, 1;H)|W̄B

[
f̄∂,x
ē∂,x

]
= 0

}
=

{
x ∈ WN,2(0, 1;H)|W̄B

[
−f∂,x
e∂,x

]
= 0

}
and thus,

W̄B =
[
−W1 W0

]
. (6.19)

It is easy to check that under condition (6.10) the operator W̄B satisfies (6.9).
Then the equivalences 1 ⇔ 2 ⇔ 5 follow by Theorem 6.1.3 applied for A and
−A.
1 ⇒ 4: Let A be the generator of a unitary group. Then, due to Theorem
[JZ12, Theorem 6.2.5] A and −A are generators of contraction C0-semigroups.
It follows ReP0 = 0, W1 +W0 and −W1 +W0 are injective and Re 〈Ax, x〉 = 0
for all x ∈ D(A) by Theorem 6.1.3. Thus, we get with the estimation (6.16)

0 = 2Re 〈Ax, x〉 = 2〈l, (−I + V ∗V )l)〉HN for all l ∈ HN (6.20)

and therefore ‖V ‖ = 1.
4 ⇒ 3: Let ReP0 = 0, ‖V ‖ = 1, W1 + W0 and −W1 + W0 injective. Define
S := 1

2(W1 +W0) and with the technical Lemma 6.1.15 (Lemma 2.4 in [KZ15])
it yields

WBΣW ∗B = S
[
I + V I − V

] [0 I
I 0

]
(S
[
I + V I − V

]
)∗

= S(2I − 2V V ∗)S∗ = 0.
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The implication 3 ⇒ 1 follows analogously to the proof of 3 ⇒ 1 in Theorem
6.1.3 for the operator −A. However, instead of the boundary effort and the
boundary flow for A we need to consider them for −A and have to determine
the boundary condition operator W̄B for −A. �

6.1.1 Examples for port-Hamiltonian systems in the infinite-
dimensional setting

In this section we now illustrate our results by a number of examples. Networks
of discrete partial differential equations on infinite networks are also considered
in [Mug14].

Further examples on the interval (0, 1) with a finite-dimensional Hilbert space
H can be found in [JZ12] and [Aug16]. In the following we consider examples
on the bounded interval (0, 1) with an infinite-dimensional Hilbert space H.

Example 6.1.18. Choose H = `2(N) and consider the operator A given by

Af =
∂

∂ζ
f (6.21)

on the domain

D(A) =
{
f ∈ W1,2(0, 1; `2(N))|

[
I −L

]
Φ(f) = 0

}
. (6.22)

This means that the network is a path graph, see Figure 6.3.

Figure 6.3: Path graph

Clearly, A denotes a port-Hamiltonian operator with N = 1, P1 = I, P0 = 0 and
WB = [W1 W0 ] = 1

2

[
I + L I − L

]
. Here L denotes the left shift and L∗ = R

the right shift, i.e., L : `2(N)→ `2(N) is defined by L(x1, x2, . . .) 7→ (x2, x3, . . .)
and R : `2(N) → `2(N) is given as R(x1, x2, . . .) 7→ (0, x1, x2, . . .). Clearly, it
yields W1 + W0 = I, and thus, condition (6.9) is fulfilled. Therefore, we can
apply Theorem 6.1.3 and check assertion 3: W1 +W0 is injective and

WBΣW ∗B =
1

4

[
I + L I − L

]
Σ
[
I + L I − L

]∗
=

1

4

[
I − L I + L

] [
I + L∗ I − L∗

]
=

1

4
((I − L)(I + L∗) + (I + L)(I − L∗)) =

1

4
(2I − 2LL∗) = 0.

Hence, A generates a contraction C0-semigroup. In the finite-dimensional set-
ting we would expect thatA also generates a unitary C0-group, sinceWBΣW ∗B =
0. However, we can apply Theorem 6.1.7, since condition (6.10) is fulfilled:
ran(L) = ran(I), because the left shift is surjective. Using assertion 3 of Theo-
rem 6.1.7, we can conclude that A does not generate a unitary C0-group, since
−W1 +W0 = −L and the left shift is not injective.
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Example 6.1.19. We choose again H = `2(N) and consider the operator A given
by

Af =
∂

∂ζ
f (6.23)

on the domain

D(A) =
{
f ∈ W1,2(0, 1; `2(N))|

[
I T

]
Φ(f) = 0

}
, (6.24)

where T : `2(N)→ `2(N) is defined by

T (x1, x2, . . .) 7→
1

2
(−x3 − x4,−x5 − x6,−x7 − x8, . . .).

These boundary conditions imply that the network is a binary tree, see Figure
6.4.

f1 f2

f3 f4 f5 f6

f7 f8 f9 f10f11 f12f13 f14

Figure 6.4: Binary tree

We write f ∈ W1,2(0, 1; `2(N)) as f = (f1, f2, . . .)
T , where fi ∈ W1,2(0, 1;Cd)

denotes a function on the i-th edge of the binary tree. Clearly, A denotes a port-
Hamiltonian operator with N = 1, P1 = I, P0 = 0 and WB = 1

2

[
I − T I + T

]
.

It yields W1 +W0 = I, and thus, condition (6.9) is fulfilled.
W1 +W0 is injective and T ∗ : `2(N)→ `2(N) is given by

T ∗(x1, x2, . . .) 7→
1

2
(0, 0,−x1,−x1,−x2,−x2, . . .).

We obtain

WBΣW ∗B =
1

4
(2I − 2TT ∗) =

1

4
I.

Hence, A generates a contraction C0-semigroup.

6.2 Port-Hamiltonian systems on the semi-axis

In this section, we consider port-Hamiltonian systems on the semi-axis, i.e.,
systems of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ), ζ ∈ (0,∞), t > 0, (6.25)

0 = W̃B(Φ(Hx))(·, t), (6.26)
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where P1 is an invertible Hermitian d× d-matrix, P0 ∈ Cd×d, W̃B ∈ Ck×d with
k ∈ {0, 1, · · · , d} and H(ζ) ∈ Cd×d is positive definite for a.e. ζ ∈ [0,∞) sat-
isfying H,H−1 ∈ L∞(0,∞;Cd×d). Since P1 is an invertible Hermitian matrix,
its eigenvalues are real and nonzero.
Here W̃B ∈ L(HN , H̃N ), where H̃ is a subspace of H, and Φ is given by

Φ :WN,2(0,∞;H)→ HN , Φ(x) := Φ0(x).

The contraction C0-semigroup property has been shown for some specific ex-
amples [EN00, I.4.16], [MNS18], and related results can be found in [BK13],
[EKF19], [KPS08], [KS99] and [SSVW15]. In the following we provide a char-
acterization of the contraction C0-semigroup property of the operator A. Again
A generates a contraction C0-semigroup if and only if the operator A is dissi-
pative. The main difference to the port-Hamiltonian systems on a bounded
interval is that the number of boundary conditions depends on P1.
We consider the port-Hamiltonian operator A, associated to the system (6.25),

Ax = P0Hx+ P1
∂

∂ζ
(Hx) with (6.27)

D(A) =
{
x ∈ L2(0,∞;Cd) | Hx ∈ W1,2(0,∞;Cd), W̃B(Hx(0)) = 0

}
(6.28)

on the space X = L2(0,∞;Cd).
We denote by d1 the number of positive and by d2 = d − d1 the number of
negative eigenvalues of P1 and write

P1 = S−1∆S = S−1

[
Λ 0
0 Θ

]
S, (6.29)

with a unitary matrix S ∈ Cd×d, a positive definite diagonal matrix Λ ∈ Rd1×d1 ,
and a negative definite diagonal matrix Θ ∈ Rd2×d2 . We define ∆ =

(
Λ 0
0 Θ

)
.

In the following, first we formulate the main results of this section, then we give
a technical lemma and finally the proof of the main result.

Theorem 6.2.1. Assume A is given by (6.27)-(6.28), W̃B ∈ Ck×d with k 6 d2

has full row rank. Then the following statements are equivalent:

1. A generates a contraction C0-semigroup on X;

2. Re 〈Ax, x〉 6 0 for every x ∈ D(A);

3. ReP0 6 0 and y∗P1y > 0 for every y ∈ ker W̃B;

4. ReP0 6 0, k = d2 and W̃B = B
[
U I

]
S, with B ∈ Cd2×d2 invertible,

U ∈ Cd2×d1 and Λ + U∗ΘU > 0.

Further, we are able to characterize the property of unitary group generation
for port-Hamiltonian operators on the semi-axis.

Theorem 6.2.2. Let A be given by (6.27)-(6.28), W̃B ∈ Ck×d with k 6
min{d1, d2} has full row rank. Then the following statements are equivalent:
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1. A generates a unitary C0-group on X;

2. Re 〈Ax, x〉 = 0 for every x ∈ D(A);

3. Re P0 = 0 and y∗P1y = 0 for every y ∈ ker W̃B;

4. k = d1 = d2, Re P0 = 0 and W̃B =
[
U1 U2

]
S, where U1, U2 ∈ Cd1×d1

are invertible with Λ + U∗1U
−∗
2 ΘU−1

2 U1 = 0.

For the proof of the main statements we need the following technical assertions.

Lemma 6.2.3. 1. Assume Λ ∈ Rd1×d1 is a positive, invertible diagonal ma-
trix and y ∈ L2(0,∞;Cd1). Then the function

x(t) :=

∫ ∞
0

e−sΛ
−1

Λ−1y(s+ t) ds, t > 0, (6.30)

satisfies x ∈ W1,2(0,∞;Cd1) and x− Λx′ = y.

2. Let Θ ∈ Rd2×d2 be a negative, invertible diagonal matrix, y ∈ L2(0,∞;Cd2)
and x0 ∈ Cd2. Then the differential equation

x−Θx′ = y, x(0) = x0, (6.31)

has a unique solution satisfying x ∈ W1,2(0,∞;Cd2).

Proof Part 1: Λ > 0 and y ∈ L2(0,∞;Cd1) imply that x(t) is well defined for
every t > 0. Minkowski’s integral inequality shows x ∈ L2(0,∞;Cd1). Further,
the solution of x− Λx′ = y, or equivalently, of x′ = Λ−1x− Λ−1y is given by

x(t) = etΛ
−1
x(0)−

∫ t

0
e(t−s)Λ−1

Λ−1y(s) ds, t > 0.

The choice of x(0) =
∫∞

0 e−sΛ
−1

Λ−1y(s) ds, implies (6.30). Moreover, x′ =
Λ−1x− Λ−1y and hence x ∈ W1,2(0,∞;Cd1).
Part 2: We first note that (6.31) is equivalent to x′ = Θ−1x−Θ−1y. Now the
statement of the lemma follows from ODE-Theory for linear stable systems,
since Θ < 0 and y ∈ L2(0,∞;Cd2), see [HP05, Proposition 3.3.22]. �

Proof of Theorem 6.2.1: Thanks to the Theorem of Lumer-Phillips,
cf. Theorem 2.1.14, it holds 1 implies 2.
Next, we show the implication 2⇒ 3. Using integration by parts and P ∗1 =
P1, it yields 2Re 〈P1

d
dζx, x〉 = −x(0)∗P1x(0), since limζ→∞ x(ζ) = 0 for x ∈

W1,2(0,∞;Cd). Thus, for x ∈ D(A) we have

2Re 〈Ax, x〉 = 2Re 〈P1
d

dζ
x+P0x, x〉 = −x(0)∗P1x(0)+2Re

∫ ∞
0

x(ζ)∗P0x(ζ) dζ.

(6.32)
Choosing x ∈ W1,2(0,∞;Cd)\{0} with x(0) = 0, we obtain ReP0 6 0. For
every y ∈ Cd and every ε > 0 there exists a function x ∈ W1,2(0,∞;Cd) such
that x(0) = y and the L2-norm of x is less than ε. Choosing this function in
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equation (6.32) and letting ε go to zero implies the second assertion in 3.

In order to prove the implication 3⇒ 4, for x ∈ D(A) we define
[
f1
f2

]
:= Sx(0).

Using (6.29), the second condition in 3 can be written as

[
f∗1 f∗2

] [ Λ 0
0 Θ

] [
f1

f2

]
> 0, for

[
f1

f2

]
∈ ker W̃BS

−1. (6.33)

Since W̃BS
−1 is a full row rank k× d-matrix with k 6 d2, its kernel has dimen-

sion d−k. By the assumptions on Λ and Θ, we have d−k 6 d1, or equivalently,
k > d2. Thus k = d2.
We write W̃BS

−1 =
[
U1 U2

]
with U1 ∈ Cd2×d1 and U2 ∈ Cd2×d2 . Assuming

U2 is not invertible, there exists u ∈ Cd2 such that [ 0
u ] ∈ ker W̃BS

−1 which

is in contradiction to (6.33), since Θ < 0. Thus, the matrix W̃BS
−1 is of the

form B
[
U I

]
, with U ∈ Cd2×d1 and B ∈ Cd2×d2 invertible. Hence, (6.33) is

equivalent to

[
f∗1 f∗2

] [ Λ 0
0 Θ

] [
f1

f2

]
> 0 and Uf1 + f2 = 0, for

[
f1

f2

]
∈ Cd1+d2 (6.34)

which is equivalent to Λ + U∗ΘU > 0. This shows 4.
It remains to show that 4 implies 1. Due to the fact that ReP0 6 0, and
bounded, dissipative perturbations of generators of contraction C0-semigroups,
again generate a contraction C0-semigroup, see [EN00, Theorem III.2.7], with-
out loss of generality we may assume P0 = 0.
First, we prove the dissipativity of the operator A. Let x ∈ D(A) and define[
f1
f2

]
:= Sx(0), where the unitary matrix S is given by (6.29). This implies

Uf1 + f2 = 0 as W̃B = B
[
U I

]
S.

Thus, it yields

Re 〈Ax, x〉 = −〈x(0), P1x(0)〉Cd = −〈x(0), S−1

[
Λ 0
0 Θ

]
Sx(0)〉Cd

= −〈Sx(0),

[
Λ 0
0 Θ

]
Sx(0)〉Cd = −(f∗1 Λf1 + f∗2 Θf2)

= −(f∗1 Λf1 + f∗1U
∗ΘUf1) 6 0

by the last assertion of 4.
Further, thanks to the Theorem of Lumer-Phillips, cf. Theorem 2.1.14, it re-
mains to show that for every y ∈ L2(0,∞;Cd) there exists x ∈ D(A) such that
x− Ax = y. Equivalently, by (6.29) it is sufficient to show that for every y1 ∈
L2(0,∞;Cd1) and y2 ∈ L2(0,∞;Cd2) there exist functions x1 ∈ W1,2(0,∞;Cd1)
and x2 ∈ W1,2(0,∞;Cd2) such that

x1 − Λx′1 = y1, x2 −Θx′2 = y2 and Ux1(0) + x2(0) = 0.

Let y1 ∈ L2(0,∞;Cd1) and y2 ∈ L2(0,∞;Cd2) be arbitrarily. Lemma 6.2.3.1 im-
plies the existence of x1 ∈ W1,2(0,∞;Cd1) with x1(0) =

∫∞
0 e−sΛ

−1
Λ−1y1(s) ds

and x1 − Λx′1 = y1. Finally, Lemma 6.2.3.2 shows that there exists a function
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x2 ∈ W1,2(0,∞;Cd1) with x2(0) = −Ux1(0) and x2−Θx′2 = y2. This concludes
the proof. �

Proof of Theorem 6.2.2: Since A generates a unitary C0-group if and
only if A and −A generate contraction C0-semigroups, cf. Theorem 2.1.16, the
equivalence of assertions 1, 2, and 3 follows directly from Theorem 6.2.1 for −A
and A.
Formulating assertion 4 of Theorem 6.2.1 for −A , we get Re (−P0) 6 0, k = d1,

W̃B = B̄
[
I Ū

]
S

and Θ + Ū∗ΛŪ 6 0, where B̄ ∈ Kd1×d1 is invertible. Thus, assertion 4 of
Theorem 6.2.1 for −A and A is equivalent to ReP0 = 0, k = d1 = d2 and
W̃B = B̄

[
I Ū

]
S = B

[
U I

]
S with B and B̄ invertible. It yields B̄ = BU

and B = B̄Ū with B, B̄ invertible. Therefore, we get ŪU = I and Ū , U
invertible. Thus, we have Θ + Ū∗ΛŪ 6 0 ⇔ U∗ΘU + Λ 6 0. Choosing
U1 = BU and U2 = B we get the assertion. �

6.2.1 Examples for port-Hamiltonian systems on the semi-axis

Example 6.2.4. Let A be given by (6.27)-(6.28) on the semi-axis (0,∞).

1. Let P1 < 0, that is, d2 = d, and ReP0 6 0. In this situation A with domain

D(A) = {x ∈ X | Hx ∈ W1,2(0,∞;Cd) and (Hx)(0) = 0}

generates a contraction C0-semigroup on X.

2. Let P1 > 0, that is, d2 = 0 and ReP0 6 0. Then A with domain

D(A) = {x ∈ X | Hx ∈ W1,2(0,∞;Cd)}

generates a contraction C0-semigroup on X.

3. We consider again the wave equation as in Example 3.1.7 but now on the
semi-axis. There, an (undamped) vibrating string can be modelled by

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, t > 0, ζ ∈ [0,∞), (6.35)

where w(ζ, t) is the vertical position of the string at place ζ and time t,
T (ζ) > 0 is the Young’s modulus of the string, and ρ(ζ) > 0 is the mass
density, which may vary along the string. We assume that T and ρ are
positive functions satisfying ρ, ρ−1, T, T−1 ∈ L∞[0,∞). By choosing the
state variables x1 = ρ∂w∂t (momentum) and x2 = ∂w

∂ζ (strain), the partial
differential equation (6.35) can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

])
= P1

∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (6.36)
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where P1 = [ 0 1
1 0 ] and H(ζ) =

[ 1
ρ(ζ)

0

0 T (ζ)

]
.

The boundary conditions for (6.36) are

W̃B(Hx)(0, t) = 0,

where W̃B is a k × 2-matrix with rank k ∈ {0, 1, 2}, or equivalently, the
partial differential equation (6.35) is equipped with the boundary condi-
tions

W̃B

[ ∂w
∂t (0, t)

T ∂w
∂ζ (0, t)

]
= 0.

The matrix P1 can be factorized as

P1 =

[
1 −1
1 1

] [
1 0
0 −1

] [
1/2 1/2
−1/2 1/2

]
,

This implies d2 = 1. Thus, by Theorem 6.2.1 the corresponding operator

(Ax)(ζ) =

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

]
x(ζ)

)
,

D(A) =
{
x ∈ W1,2(0, 1;C2) | W̃B(Hx)(0, t) = 0

}
,

generates a contraction C0-semigroup on L2(0, 1;C2) if and only if

W̃B =
b

2

[
u− 1 u+ 1

]
for b ∈ C\{0} and u ∈ C. More precisely, the partial differential equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, t > 0, ζ ∈ [0,∞),

(u− 1)
∂w

∂t
(0, t) + (u+ 1)T (0)

∂w

∂ζ
(0, t) = 0, t > 0,

ρ(ζ)
∂w

∂t
(ζ, 0) = z0(ζ), ζ > 0,

∂w

∂ζ
(ζ, 0) = z1(ζ), ζ > 0,

where u ∈ C and z0, z1 ∈ L2[0,∞), possesses a unique solution satisfying∫ ∞
0

ρ(ζ)

[
∂w

∂t
(ζ, t)

]2

+ T (ζ)

[
∂w

∂ζ
(ζ, t)

]2

dζ 6
∫ ∞

0

z2
0(ζ)

ρ(ζ)
+ T (ζ)z2

1(ζ)dζ

for t > 0, which means that the energy of the system is non-increasing.

6.3 Closing remarks and open problems

The following example illustrates the connection between port-Hamiltonian sys-
tems in the infinite-dimensional setting and on the semi-axis.
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Example 6.3.1. We consider the port-Hamiltonian operator

A∞x =
d

dζ
x,

D(A∞) =W1,2(0,∞;R)

on the semi-axis, which generates a contraction C0-semigroup on the space X =
L2(0,∞;R), namely the translation shift (T (t))t>0 with (T (t)f)(ζ) = f(ζ + t).
Since X ' Y := L2(0, 1; `2) via the isomorphism J given by

J : L2(0,∞;R)→ L2(0, 1; `2)

f(x) 7→ g(x) =


g1(ζ)
...

gn(ζ)
...

 with gn(ζ) = f(ζ + (n− 1))

Figure 6.5: Sketch of the isomorphic map J

Therefore, we can conclude that Ag = JA∞J
−1g = d

dζ g with

D(A) =
{
x ∈ HN (0, 1; `2(N))|W̃BΦ(x) = 0

}
=
{
g ∈ H1(0, 1; `2(N)) with

g(ζ) =


g1(ζ)
...

gn(ζ)
...

 |gn(1) = gn+1(0) ∀n ∈ N}

generates also a contraction semigroup on L2(0, 1; `2). Since Ag is a port-
Hamiltonian operator with N = 1, P0 = 0 and P1 = I ∈ L(`2(N)) we may get
the same result via Theorem 6.1.3.
On yields W̃B =

[
2I −2L

]
and thus

WB =
[
2I −2L

] [
Q −Q
I I

]−1
=
[
2I −2L

] [
I I
−I I

]−1

=
[
I −L

] [
I I
−I I

]
=
[
I + L I − L

]
=
[
W1 W2

]
,

where
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L : `2(N) → `2(N), L(x1, x2, . . .) 7→ (x2, x3, x4 . . .) denotes the left shift and
R : `2(N)→ `2(N), R(x1, x2, . . .) 7→ (0, x1, x2, . . .) denotes the right shift. Thus,
we are in the situation of Example 6.1.18 and can verify using Theorem 6.1.3
that A generates a contraction C0-semigroup.

Remark 6.3.2. Furthermore, Jacob and Wegner give in [JW19] a characteri-
zation of the generation of C0-semigroups on the semi-axis. Results for more
general networks of port-Hamiltonian systems are obtained in [WW20]. An
open problem is still the characterization of (contraction) C0-semigroups for
port-Hamiltonian systems of higher order.
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