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1 Chapter 1

Introduction

Some of the most fascinating questions in our time are:

• What is the world made of?

• What are the smallest naturally occurring particles and what sticks them
together?

Quantum Chromo Dynamics (QCD) tries to find answers to these questions [25].
It is the theory of the strong interaction also called color force which is one of
the elementary forces of the standard model in particle physics. The color force
explains the binding between the quarks which are the smallest known particles
in the subatomic range: three quarks form a proton or a neutron from which the
nucleus is build. The quarks interact with help of gluons which are the carriers of
the color force.

Some results of QCD cannot be described from a pertubative point of view, i.e.
not from a derivation of a series in the coupling constant. For that reason, the
theory of QCD is simulated via a discretization of space-time on a lattice. This
scientific discipline is called Lattice Quantum Chromo Dynamics (Lattice QCD).
Here, a four-dimensional hypercubic lattice is used on which the quarks and gluons
are arranged: the quark fields are situated on the lattice points and the gluon fields
on the links in between. The goal of the simulations is the preferably accurate
computation of one or more expectation values, i.e. the statistical errors should
be as small as possible. This succeeds via running a Monte Carlo simulation to
generate ensembles of field configurations which implies high computational costs.
Mostly, the results are obtained with the famous and widely used Hybrid Monte
Carlo (HMC) method which is very costly. [21, 16]

The HMC method combines a Metropolis Monte Carlo method with a Molecular
Dynamics (MD) step such that a Markov chain of configurations is produced which
is the basis for the computation of the expectation values. In this context, Hamilto-
nian equations of motion have to be solved with a geometric numerical integration
scheme, i.e., the numerical method has to be time-reversible and volume-preserving.
The specialties in Lattice QCD are that the gluons are described as elements of the
special unitary Lie group SU(3,C). The quarks are described by complex vectors
with a spin and color index. The color index of the quarks transforms in the funda-
mental representation of SU(3). So, the Hamiltonian equations of motions arise in
the form of differential equations on Lie groups which have to be solved during the
MD step of the HMC method. In this step, geometric integration has to be used to
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4 1 Introduction

ensure that the equilibrium distribution of the Markov chain can be reached. The
geometric numerical integration of the Hamiltonian equations of motion causes the
main computational cost during the simulation. This is due to the quarks since the
inverse of the discretized Dirac operator appears in the action and enters the force
in the MD steps. Thus, the development of new less expensive geometric integration
schemes would be very helpful. [21, 16]

In Lattice QCD simulations, a second differential equation, the Wilson flow, occurs.
The Wilson flow is a smoothing procedure for the gauge field and can be used to
construct renormalized quantities. The Wilson flow is a differential equation on
a Lie group and underlies no constraints. Thus, it can be computed using any
numerical integration method on Lie groups.

The focus of this work is the development of better, i.e. less time-consuming al-
gorithms for the numerical integration of differential equations on Lie groups. We
concentrate on two main topics:

• the geometric numerical integration of the Hamiltonian equations of motion

• and the numerical integration of the Wilson flow.

Besides, we develop a method for the detection of the phase transition in finite
temperature QCD. For this purpose, we refine the exponential smoothing spline.

Structure. This thesis is split into three parts covering 7 chapters as follows:

I: Foundations (chapter 1 and 2):

The first part provides the foundations of Lattice QCD and numerical integration
on Lie groups in chapters 2 and 3.

In the first chapter, a brief introduction of Lattice QCD and its connection to the
differential equations on Lie groups is given. It starts with a short explanation
of lattice gauge fields and its most frequently used terms plaquettes and staples in
section 2.1. Then, the Hamiltonian equations of motion are considered in section 2.2.
Here, the Hamiltonian and its equations of motion are mentioned. Furthermore, we
concentrate on the derivation and the structure of these equations. Afterwards, we
turn to the computation of expectation values via the Hybrid Monte Carlo method
in section 2.3 and exhibit the importance of using a time-reversible and volume-
preserving numerical integration scheme for the Hamiltonian equations of motion.
Moreover, the Wilson Flow is discussed in 2.4. Finally, there is a summary 2.5 of
this chapter with focus on the occurring differential equations on Lie groups and an
outlook to the next chapters. For the whole chapter, it is assumed that the reader
has no prior knowledge of Lattice QCD.

Chapter 3 is split into two parts 3.1 and 3.2. Section 3.1 deals with the founda-
tions of numerical integration of differential equations on Lie groups. It starts with
some theory about differential equations on Lie groups and the possibility to reach
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a numerical solution via a local parameterization. Then, Runge-Kutta methods
are introduced for the general Abelian case Rn. The second section 3.2 focuses on
Runge-Kutta methods for Lie groups. Here, some well-known Runge-Kutta methods
for Lie groups (Lie-Euler, Crouch-Grossmann and Munthe-Kaas) are introduced.

II: Developments in Lie group methods (chapters 3,4 and 5):

The advancement in Lie group methods and exponential smoothing splines per-
formed in the framework of this thesis are described in chapters 4-6 in part II.

In chapter 4, Runge-Kutta methods for Lie group problems Ẏ = AY are devel-
oped based on the schemes described in section 3.2. First, a step size prediction
for Munthe-Kaas Runge-Kutta schemes is discussed in section 4.1 based on the
Abelian case. Then, the focus is put on the opportunity to use the Cayley mapping
as function for the local parameterization on the Lie group in section 4.2. Here,
Munthe-Kaas Runge-Kutta schemes are combined with the Cayley transform.

Chapter 5 deals with geometric integration methods on Lie groups. Here, the Hamil-
tonian system Ẏ = AY , Ȧ = F (Y ) with a coupled Lie group / Lie algebra problem
is solved by means of some geometric integration methods. After an introductory
section 5.1 concerning geometric integration in general, the Leapfrog method is
discussed in section 5.2. It includes the Abelian case and the non-Abelian case
using the exponential function and also the Cayley mapping as two different local
parameterizations. Afterwards, symmetric partitioned Runge-Kutta schemes are
developed in section 5.3. Starting from the Abelian case, symmetric partitioned
Munthe-Kaas Runge-Kutta schemes are discussed for three different variants. For
one of these modifications, order conditions are computed. The next section 5.4
deals with time-reversible projection methods in section. Based on the Abelian case,
time-reversible and projection schemes are developed and investigated for volume-
preservation. Then, they are adapted to the non-Abelian case. At the end, the
developed schemes are summarized with prospect on its possible usage for Lattice
QCD in section 5.5.

Chapter 6 explains the idea of exponential smoothing splines. These splines joining
the concepts of smoothing splines and exponential splines are needed for the deter-
mination of the critical temperature in Lattice QCD via the Wilson flow. They can
be used for any data with uncertainties which have to be approximated avoiding
oscillations not given in the data.

III: Simulation (chapter 6 and 7):

Finally, part III contains simulations of lattice gauge fields via a Hybrid Monthe
Carlo simulation as well as of the Wilson flow in SU(3,C) Yang-Mills theory. Here,
we concentrate on the numerical results of the aforementioned developed methods.
Furthermore, we investigate a phase transition in finite temperature QCD.

In chapter 7, the geometric integration methods (Cayley-Leapfrog, symmetric parti-
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tioned Munthe-Kaas Runge-Kutta schemes and the time-reversible projection method)
developed during this thesis are applied on a HMC simulation producing an ensem-
ble of lattice gauge fields. Paragraph 7.1 starts from a description of the model – a
pure gauge field in Lattice QCD – and explains all steps of the implementation of a
Hybrid Monte Carlo method for this model. Then, the focus is put on the geometric
integration inside the Molecular Dynamics step in general. Here, the investigations
of the different properties of the numerical scheme (i.e., convergence order, time-
reversibility, volume-preservation, computational cost, ...) are described.

Next, the numerical results of the different methods developed in chapter 5 are
presented in section 7.2. It starts with the standard Störmer-Verlet or Leapfrog
method for Lie groups. This scheme and its geometric properties are well-known, in
order that it is used as reference. Then, the Cayley-Leapfrog method derived in sec-
tion 4.2 is investigated. In the following, the focus is put on symmetric partitioned
Munthe-Kaas Runge-Kutta methods in part followed by a part on time-reversible
projection methods. Also here, the chapter closes with a summary in section 7.3.

The numerical simulation of the Wilson flow is described in chapter 8. It opens with
a short description of the model, a four-dimensional lattice gauge field in SU(3)-
Yang-Mills theory, in section 8.1. Then, the step size prediction is investigated for
a single configuration in paragraph 8.2 followed by section 8.3 on the determination
of the critical temperature using the Wilson flow. Here, a new method for the
detection of the critical temperature in finite temperature simulations is described
using the difference of the temporal and spatial Wilson energy computed at a certain
time point of the Wilson flow. This detection strongly depends on the usage of the
exponential smoothing spline described in chapter 6.

The thesis closes with a conclusion chapter 9. Here, the thesis is summarized and
it is stated which methods are suitable to be used in Lattice QCD. Also, the next
possible steps are described.

Results. Parts of this thesis are already published in [60], [62], [63], [64] and [66].

The outcome of part II and III can be condensed as the development of

• embedded Munthe-Kaas Runge-Kutta schemes (section 4.1),
applied on the Wilson flow (section 8.2), see [63],

• Munthe-Kaas Runge-Kutta schemes using the Cayley transform as local pa-
rameterization (section 4.2), see [65],

• the Störmer-Verlet scheme in Munthe-Kaas formulation with Cayley trans-
form as local parameterization (section 5.2),
applied on the Hamiltonian equations of motion (section 7.2.2), see [65],

• symmetric partitioned Munthe-Kaas Runge-Kutta schemes (section 5.3),
applied on the Hamiltonian equations of motion (section 7.2.3), see [60, 62, 64],
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• time-reversible projection schemes (section 5.4),
applied on the Hamiltonian equations of motion (section 7.2.4)

• exponential smoothing splines (chapter 6),
used for the energy difference scheme

• the energy difference scheme (section 8.3), see [66].





Part I

Foundations
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2 Chapter 2

Lattice QCD and Differential
Equations

Lattice QCD is the only known non-perturbative way to validate that the theory
of QCD is correct. It aims at computing expectation values of some operators, for
example, the mass of elementary particles. Afterwards, these values are used for
comparison with experimental data in order that the theory of QCD can be vali-
dated. In Lattice QCD, space-time is discretized as a four-dimensional equidistant
Euclidean lattice with lattice spacing a in order that the elementary particles, i.e.
quarks and gluons, investigated in QCD are situated on the lattice. The sites of
the lattice can be seen as quarks and the interconnecting lines between the quarks
as gluons carrying the color force.

The calculation of an expectation value of an operator comprises a large ensemble
of lattice configurations gained via the Hybrid Monte Carlo (HMC) method. In this
method, differential equations have to be solved for each lattice point of a lattice
configuration. Since the lattice spacing a should be quite small, lattices comprise
many grid points. A typical size of a lattice used in present-day research is of size
T × L3 = 128× 483 with time direction T and spatial directions L as described by
Bruno et al in table 1 in [10]. This means, many differential equations have to be
solved to get some expectation values. So, it is important to analyze and improve
the numerical integration methods used for the differential equations appearing in
Lattice QCD.

This thesis deals with the numerical integration schemes that are used to solve
the differential equations occurring in Lattice QCD or, more specifically, in the
SU(N) Yang-Mills theory. So, we work in the most simple frame of Lattice QCD
called pure gauge theory. Here, we concentrate on the gluons, the quarks are left
out. There are several introductory textbooks on SU(3) Yang-Mills theory and its
simulation, for example, the books of Gattringer and Lang [21], de Grand and del
Tar [16], Knechtli et al [34], Montvay and Münster [42] or Rothe [55]. In this chapter,
the most important concepts described in these books are summarized as they are
needed for the understanding of the simulations done in this work. First, lattice
gauge fields and all expressions needed for the computation of expectation values
are introduced in section 2.1. Then, there is a section 2.2 about the Hamiltonian
equations of motion. These are the differential equations needed for the Hybrid
Monte Carlo simulation which is explained in part 2.3. Next, the Wilson flow,
a second differential equation used in the context of Lattice QCD, is introduced
in section 2.4. Finally, the important aspects of this chapter are summarized in
paragraph 2.5 and it is stated in which context they will occur later on.

11



12 2 Lattice QCD and Differential Equations

2.1 Gauge Fields in Lattice QCD

This section opens with an introduction of lattice gauge fields in order that the
model and the simulations described in the simulation part can be understood.
Firstly, a field of link matrices and the structure of the lattice is explained. This
is important for the insight in the implementation of the code in chapters 7 and
8. Furthermore, the terms plaquette, staples and gauge invariance are explained
since they are used for the Hamiltonian equations of motion and the Wilson flow
mentioned in the next paragraphs 2.2 and 2.4 as well as for the simulations.

2.1.1 Lattice Gauge Fields

In the context of Lattice QCD, a lattice gauge field is a field of "gluons" which
carry the color force. The gluons are put on a d-dimensional equidistant grid with
lattice spacing a – the lattice.

In general, a d-dimensional lattice has size np := T×Ld−1 with time extension T and
space extension Ld−1. Each of the directions of the lattice is labeled with the Lorentz
index, which is an index of the space-time. The Lorentz index is denoted with a
Greek letter µ or ν taking the values from 0 to d − 1 labeling a specific direction.
Usually, the time direction has the value 0 in lattice computations. Furthermore,
the unit vector is marked with a hat in order that the unit vector in direction µ is
called µ̂. A special point of this grid can be labeled with the space-time argument
x. Related to this point, the next point in direction µ is at site x+aµ̂ which means
that you start from site x and go a distance of length a in direction µ. [21]

The "gluons" are the interconnecting lines between the grid points in order that they
are called links or, due to their shape, link matrices in this context. Mathematically,
they are elements of the special unitary Lie group SU(3,C) which means they are
unitary with determinant one. Link matrices are directional in order that a link
from site x in direction µ is called forward link Ux,µ. It connects the adjacent sites
x and x + aµ̂. A link from site x + aµ̂ to x in the opposite direction is the inverse
U−1
x,µ of Ux,µ. It is marked with U †x,µ because of the unitarity U−1

x,µ = U †x,µ. This
means, links marked with a dagger always point in a negative direction. Links with
forward and backward direction are depicted in figure 2.1. [21]

x x+ aµ̂

U †x,µ = Ux+aµ̂,−µ

x x+ aµ̂

Ux,µ

Figure 2.1: Links in forward and backward direction – Left: Link Ux,µ from site x in
direction µ. Right: Link U †x,µ in the reverse direction (from site x + aµ

in direction −µ).
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A d-dimensional lattice contains a lattice gauge field of size nl := d · T · Ld−1

whose elements are link matrices. A configuration [U ] is the set of all link variables
arranged on the lattice, i.e. values and positions of the link variables are fixed. An
ensemble {[U ]} of configurations [U ] comprises all available (i.e. already computed)
configurations [U ]1, [U ]2, . . . , [U ]n.

2.1.2 Plaquettes, Staples and Gauge Invariance

On a lattice, there are some frequently used terms called plaquette, staples and
gauge invariance. They occur in the context of the formulae used for the computa-
tions of the Hamiltonian equations of motion, the Wilson flow and the observables
of interest during the Monte Carlo simulations. All these terms are defined, for
example, in [16], [21], [34], [42] or [55].

Plaquette. The plaquette is an important term in Lattice QCD. It is the smallest
closed loop of links in the (µ, ν) plane starting at site x in direction µ and ending
at x as shown in figure 2.2. Formally, it is the product of contiguous link matrices
in order that

Px,µν([U ]) := Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν . (2.1)

For each space-time argument x and each plane (µ, ν) a plaquette Px,µν can be
computed. On the other hand, the plaquette can also be computed in the plane
(ν, µ) in order that its orientation points in the other direction

Px,νµ([U ]) := Ux,νUx+aν̂,µU
†
x+aµ̂,νU

†
x,µ . (2.2)

It always holds Px,νµ([U ]) = Px,µν([U ])† which can be proven by a simple calculation.
By convention, the plaquette usually is computed in anti-clockwise direction. In
general, there are 2(d− 1) plaquettes for each grid point on a d-dimensional lattice.
This implies that a 2-dimensional lattice contains the planes (0, 1) and (1, 0). On a
four-dimensional lattice, there are six planes nominated (0, 1), (0, 2), (0, 3), (1, 2),
(1, 3) and (2, 3) and each link Ux,µ is contained in three of them.

Ux,0

Ux+a0̂,1

U†
x+a1̂,0

U†
x,1

x

Figure 2.2: Plaquette – The plaquette is the shortest closed loop on the lattice.
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Staples. Moreover, each link Ux,µ is clutched with the sum of staples S(Ux,µ)
which embraces the link:

S(Ux,µ) =
∑
ν 6=µ

Ux+aµ̂,ν U
†
x+aν̂,µ U

†
x,ν + U †x+a(µ̂−ν̂),ν U

†
x−aν̂,µ Ux−aν̂,ν (2.3)

This term comes into play in the Hamiltonian equations of motion as well as in
the computation of the Wilson flow, so it is an important term in this work. The
staples is the sum of the 2(d− 1) products of every three link matrices starting at
site x+aµ̂ and ending at site x. So, the staples comprises 2 ·3 · (d−1) link matrices
in d dimensions.

Gauge invariance. It is essential that the computed physical quantities are gauge
invariant. A quantity is gauge invariant if a change of all elements of the configu-
ration [U ] according to a gauge transformation

Ux,µ → Ũx,µ = ΦxUx,µΦ†x+aµ̂ (2.4)

with randomly chosen special unitary matrices Φx does not change the value of the
quantity. The trace of the plaquette is the most simple gauge invariant quantity in
Lattice QCD. Thus, it is frequently used in lattice computations, for example, for
the computation of the Wilson gauge action. The gauge invariance of the trace of
the plaquette can be easily seen due to the invariance of Φx, i.e. Φx · Φ†x = I. Let
[U ] be a gauge field and [Ũ ] a gauge transformed field according to equation (2.4).
Then, the trace of the plaquette of the configuration [U ] has the same value as the
one of [Ũ ] since

Px,µν([Ũ ])
(2.1)
= Ũx,µŨx+aµ̂,ν(Ũx+aν̂,µ)†(Ũx,ν)

†

(2.4)
= ΦxUx,µΦ†x+aµ̂ · Φx+aµ̂Ux+aµ̂,νΦ

†
x+a(µ̂+ν)

· (Φx+aν̂Ux+aν̂,µΦ†x+a(µ̂+ν))
† · (ΦxUx,νΦ

†
x+aν̂)

†

= ΦxUx,µ Ux+aµ̂,νΦ
†
x+a(µ̂+ν) · Φx+a(µ̂+ν)U

†
x+aν̂,µΦ†x+aν̂ · Φx+aν̂Ux,νΦ

†
x

= ΦxUx,µ Ux+aµ̂,ν U
†
x+aν̂,µ Ux,νΦ

†
x . (2.5)

Due to the similarity-invariance of the trace (see equation (.2) in the appendix), it
holds

Tr(Px,µν([Ũ ]) = Tr
(

ΦxUx,µ Ux+aµ̂,ν U
†
x+aν̂,µ Ux,νΦ

†
x

)
= Tr

(
Ux,µ Ux+aµ̂,ν U

†
x+aν̂,µ Ux,νΦ

†
x Φx

)
= Tr

(
Ux,µ Ux+aµ̂,ν U

†
x+aν̂,µ Ux,ν

)
= Tr(Px,µν([U ])) (2.6)

in order that the trace of a plaquette is gauge invariant. In Lattice QCD, expectation
values are computed via Monte Carlo simulations on gauge invariant configurations.
Thus, it is very important that each simulation code is checked for gauge invariance.
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µ = 0

µ = 1 a

Figure 2.3: Lattice gauge field in 2 dimensions.

2.2 Hamiltonian Equations of Motion

Simulations in Lattice QCD aim at computing expectation values of some operators
using the HMC algorithm developed by Duane et al in [17]. The heart of the
simulations is the numerical integration in the Molecular Dynamics step. Here,
Hamiltonian equations of motion have to be solved in a Lie group context using
a geometric numerical integration method. The Hamiltonian and its equations of
motion are stated in sections 2.2.1 and 2.2.2. There are different ways to set up the
Hamiltonian equations of motion for Lattice QCD - either via considerations based
on rotations and the Hamiltonian as constant in time or the more formal derivative
of the Hamiltonian with respect to the Lie group and Lie algebra elements. These
approaches are considered in paragraph 2.2.3. Finally, we focus on the structure of
the differential equations of motion in section 2.2.4.

2.2.1 The Hamiltonian

The Hamiltonian equations of motion play an important role in HMC computations.
They are solved in a fictitious computing time and produce the field configurations
tending to the equilibrium distribution. The equations of motion depend on the
Hamiltonian

H([U ], [P ]) = EK([P ]) + SG([U ]) (2.7)

which is composed as sum of the kinetic energy an EK([P ]) and the Wilson gauge
action SG([U ]).
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Wilson action. Here, the Wilson action SG depends on all plaquettes of one con-
figuration [U ], more precisely on the sum of the traces of all plaquettes in clockwise
and anti-clockwise direction:

SG([U ]) =
∑
x

∑
µ 6=ν

β

(
1− 1

2N
Tr
(
Px,µν ([U ])

))
. (2.8)

N is the dimension of the matrices of the Lie group SU(N,C) and β a coupling
constant. This formula can be transformed to

SG([U ]) =
∑
x

∑
µ<ν

β

(
1− 1

2N
Tr
(
Px,µν ([U ]) + Px,νµ ([U ])

))
=
∑
x

∑
µ<ν

β

(
1− 1

2N
Tr
(
Px,µν ([U ]) + P†x,µν ([U ])

))
=
∑
x

∑
µ<ν

β

(
1− 1

N
Re
(
Tr
(
Px,µν ([U ])

)))
(2.9)

in order that it considers the real part of the trace of all anti-clockwise orientated
plaquettes. The last transformation holds due to the similarity transformation
Tr(U + U †) = 2ReTr(U) (see equation (.3) in the appendix). The formula for the
Wilson gauge action can be used for the computation of the Wilson flow and occurs
as one part of the Hamiltonian. The Wilson action is gauge invariant since it is a
sum of already gauge invariant plaquettes.

Kinetic energy. The momenta Px,µ, x = 0, . . . , np − 1, µ = 0, . . . , d − 1, are
complex, traceless and hermitian matrices of size N × N . They build the kinetic
energy

EK
(
[P ]
)

=
1

2

∑
x,µ

Tr
(
P 2
x,µ

)
. (2.10)

Hamiltonian. Both, the Wilson gauge action (2.9) and the kinetic energy (2.10)
build the Hamiltonian

H([U ], [P ]) =
1

2

∑
x,µ

Tr
(
P 2
x,µ

)
+
∑
x

∑
µ<ν

β

(
1− 1

N
Re (Tr (Px,µν [U ]))

)
(2.11)

of the lattice gauge field in order that it depends on the lattice gauge field [U ] and its
associated field of (fictitious) momenta [P ]. Its value never changes. The momenta
[P ] are associated to the links [U ] in order that every link Ux,µ corresponds to its
momentum Px,µ. The links represent the gluons but the momenta are fictitious in
order that the Hamiltonian is also a fictitious value.
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2.2.2 Hamiltonian Equations of Motion.

The formulae for the Hamiltonian equations of motion

∂H
∂Px,µ

= U̇x,µ and
∂H
∂Ux,µ

= −Ṗx,µ , (2.12)

can be derived in several ways: first of all, they can be computed in a direct approach
in order that the derivatives of the Hamiltonian H([U ], [P ]) with respect to Px,µ and
Ux,µ are simply computed in a Lie group, respective Lie algebra context. Here, one
has to know the procedure of computing derivatives of an operator with respect to
Lie group and Lie algebra valued elements which depends on the structure of the
Lie group and the Lie algebra. On the other hand, U̇x,µ and Ṗx,µ can be derived in a
more application oriented model via infinitesimal rotations for U̇x,µ and the energy
conservation of the Hamiltonian for Ṗx,µ.

Finally, the Hamiltonian equations of motion are stated in the following definition.

Definition 2.1 (Hamiltonian Equations of Motion). Let a d-dimensional lattice
gauge field be given. Then, the Hamiltonian equations of motion read

∂H
∂Px,µ

= U̇x,µ = iPx,µUx,µ , (2.13a)

∂H
∂Ux,µ

= −Ṗx,µ = −i β
N

{
Ux,µS(Ux,µ)

}
TA

(2.13b)

for x = 0, . . . , T ·Ld−1−1 and µ = 0, . . . , d−1. Here, β is the (prescribed) coupling
constant and N the dimension of the matrix which is usually set to N = 3 or
N = 2. The function S(Ux,µ) is called staples of Ux,µ as mentioned in equation (2.3)
in section 2.1. Here, the traceless and anti-hermitian operator {·}TA is given as{

Mx,µ

}
TA

=
1

2

(
Mx,µ −M †

x,µ

)
− 1

2N
Tr(Mx,µ −M †

x,µ) · IN (2.14)

with Mx,µ := Ux,µS(Ux,µ). The first part Mx,µ −M †
x,µ of (2.14) provides the skew-

symmetry of the result and the second part ensures that it traceless. using Mx,µ

defined as Mx,µ := Ux,µSx,µ − (Ux,µSx,µ)†.

Numerical Solution. The Hamiltonian equations of motion have to be solved
with a geometric integration scheme. This means, the numerical result of equation
(2.13a) must be in the Lie group SU(N). Furthermore, the numerical scheme has to
be time-reversible and the volume of the phase space has to be preserved. Theoret-
ically, the volume-preservation could be overcome by a multiplication of the inverse
of the Jacobian of the system. However, in practice, this requires a small phase
space with the result that this approach is not feasible for lattice computations.

The demanded performance of the properties time-reversibility and volume-preservation
can be motivated in two different ways: first of all, volume-preservation and time-
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reversibility is preserved by the flow of a Hamiltonian system (see paragraph 5.1).
Hence, a numerical integration scheme should do it as well. Second, it is absolutely
necessary for the Hybrid Monte Carlo step that the Hamiltonian equations of mo-
tion are solved using a time-reversible and volume-preserving scheme, in order that
the Markov chain tends to the correct equilibrium distribution exp(−SG([U ])).

In the following, it is shown how the Hamiltonian equations of motion can be
deduced using different approaches.

2.2.3 Derivation of the Hamiltonian Equations of Motion

The formula for the Hamiltonian equations of motion of lattice gauge fields can
be established via observations of the underlying special unitary Lie group and its
associated Lie algebra.

In the context of lattice gauge theory, the Lie group

SU(N,C) = {U ∈ CN×N | U † = U−1 and det(U) = 1} (2.15)

and its associated Lie algebra

su(N,C) = {A ∈ CN×N | A = −A† and Tr(A) = 0} (2.16)

are considered. Its elements are matrices of size N ×N . The Lie group SU(N,C)
consists of unitary matrices with determinant one and can be identified with the
(N + 1)-dimensional unit sphere

SN = {x ∈ RN+1 with ||x||2 = 1}. (2.17)

This means, every link matrix Ux,µ can be imagined to be situated on the unit
sphere SN . Moreover, each element A of the Lie algebra su(N,C) can be written as
weighted sum of its N2 − 1 generators T a,

A =
N2−1∑
a=1

λaT
a with λa ∈ R, T a ∈ Cn×n. (2.18)

The generators T a are traceless and anti-hermitian. Now, this knowledge can be
used to set up the Hamiltonian equations of motion.

Infinitesimal Rotations. The differential equation (2.13a),

U̇x,µ = iPx,µUx,µ ,

can be derived covering infinitesimal rotations. This approach is described in var-
ious text books about particle physics like, for example, in [67] or [14] and can be
explained as follows.
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It is possible to define small rotations

RN : SU(N,C)→ SU(N,C), Ux,µ → Ux,µ = RNUx,µ (2.19)

on the unit sphere SN which transform one element Ux,µ of the Lie group to a
slightly changed one

Ũx,µ = Ux,µ + εU̇x,µ +O(ε2) . (2.20)

On the other hand, this rotationRN can also be seen as infinitesimal transformation
build from the identity and an infinitesimal transformation δTN with very small δTN ,
i.e.,

RN = IN + δTN . (2.21)

All in all, this leads to a formula for changing the elements on the sphere:

Ũx,µ = RNUx,µ = (IN + δTN)Ux,µ = Ux,µ + δTNUx,µ . (2.22)

A combination of equations (2.20) and (2.22) leads to

U̇x,µ = 1
ε
δTnUx,µ = δ̃TN · Ux,µ . (2.23)

It can easily be shown that δ̃TN has to be traceless and anti-hermitian, i.e., δ̃TN =:
iPx,µ is in the Lie group su(N,C). Thus, we derived equation (2.13a).

Conserved quantity Hamiltonian. For a Hamiltonian function, there is an eas-
ier way depending on the fact that the Hamiltonian is a conserved quantity, i.e.,
dH/dt = 0. Gottlieb et al describe it in [22] and tel Tar and de Grand recapitulate
it in chapter 7.2.3 in [16].

The time derivative of the Hamiltonian reads

dH([U ], [P ])

d t
=

dEK([P ])

d t
+

dSG([U ])

d t

=
∑
x,µ

Tr
{
Px,µ

(
Ṗx,µ − i

β

N

(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ︸ ︷︷ ︸

=:Mx,µ

))}
(2.24)

with time derivatives

dEK([P ])

d t
=
∑
x,µ

Tr
{
Ṗx,µPx,µ

}
(2.25)
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and

dSG([U ])

d t
= −i β

N

∑
x,µ

Tr
{
Px,µ

(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ

)}
= −i β

N

∑
x,µ

Tr
{
Px,µ

(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ

)}
(2.26)

for the kinetic energy (2.10) and the Wilson gauge action (2.8). Based on equation
(2.24), we derive a formula for Ṗx,µ if the sufficient condition

Tr
{
Px,µ ·

(
Ṗx,µ − iMx,µ

)}
= 0 ∀ x, µ (2.27)

is fulfilled. Since Px,µ is traceless and hermitian, the second factor Ṗx,µ − iMx,µ of
equation (2.27) must be a multiple of the identity matrix, i. e.

Ṗx,µ − iMx,µ = c · IN . (2.28)

Now, we just have to compute the unknown variable c. Since a Lie algebra is a
linear space, the derivative Ṗx,µ of the traceless element Px,µ has also be traceless:

0 = Tr{Ṗx,µ} = Tr{c · IN + iMx,µ} = c ·N + i · Tr{Mx,µ} (2.29)

and it follows
c = − i

N
Tr{Mx,µ} . (2.30)

Finally, we get

Ṗx,µ = iMx,µ −
i

N
Tr{Mx,µ} · IN = i

β

N

{
Ux,µS(Ux,µ)

}
TA

(2.31)

which is equal to equation (2.13b).

Lie group derivative. The derivative ∂H([U ], [P ])/Ux,µ is computed as follows as
described in, for example, [37], [38] or [43]. Let Ux,µ be an element of a matrix Lie
group SU(N,C) and f be a function inside the group in order that

f :
(
SU(N,C)

)nl → C, [U ] 7→ f([U ]). (2.32)

The Lie group derivative ∂x,µf([U ]) is the derivative of the function f([U ]) with
respect to the Lie group element Ux,µ. It is defined in [37] as

∂x,µf([U ]) :=
∂

∂Ux,µ
f([U ]) = T a∂ax,µf([U ]), (2.33a)

with ∂ax,µf([U ]) =
d

ds
f
(
[exp(sX)U ]

)
|s=0 , (2.33b)
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and X(y, ν) =

{
T a if (y, ν) = (x, µ)
0 otherwise (2.33c)

and needs some explanation. First of all, the summation convention of Einstein is
used in (2.33a) in order that is a summation over a. Since each Lie algebra su(N,C)
is composed as weighted sum of N2 − 1 generators T a, the sum goes from a = 1 to
a = N2 − 1. Thus, equation (2.33a) can be denoted as

∂

∂Ux,µ
f(U) = ∂x,µf(U) = T a∂ax,µf(U) =

N2−1∑
a=1

T a∂ax,µf(U) . (2.34)

The derivatives ∂ax,µf(U) given in (2.33b) are total derivatives with respect to time
evaluated at time point s = 0. Here, the combination (y, ν) denotes all links
with arbitrary indices. This implies that all links called Uy,ν are replaced with
exp(sX)Uy,ν . Afterwards, its derivative is computed with respect to s followed by
an evaluation at s = 0, i.e., the expression exp(sX) is replaced with X. Finally, X
is set to T a if the index (y, ν) of the link is equal to x, µ, otherwise X is set to 0.
This means, all parts of the function f(U) depending on the links Ux,µ contribute
to the Lie group derivative ∂ax,µf(U), the others are set to 0. Both, the Hamiltonian
equation of motion ∂H([U ], [P ])∂Ux,µ and the Wilson flow depend on a Lie group
derivative of the Wilson gauge action SG([U ]) with respect to a link variable Ux,µ
and can be computed this way.

For the computation of the Lie group derivative of the Wilson gauge action SG([U ])
using notation (2.8), i.e.,

SG([U ]) =
∑
x

∑
µ6=ν

β

(
1− 1

2N
Tr
(
Px,µν

(
[U ]
)))

,

we consider its shape. SG([U ]) can be split into a part

SG([U ])(1) = − β

2N
Tr
(
Ux,µS(Ux,µ) +

(
Ux,µS(Ux,µ)

)†) (2.35)

and a part not containing the link Ux,µ. It follows

∂ax,µSG([U ]) = ∂ax,µS
(1)
G ([U ])

= − β
N
· d
ds

Tr
{

expsX Ux,µS(Ux,µ) +
(
expsX Ux,µS(Ux,µ)

)†}∣∣∣
s=0

(2.36)

since S(Ux,µ) consists of all links of the plaquette excluding Ux,µ. Moreover,

∂ax,µSG([U ]) = − β
N

Tr
{
XUx,µS(Ux,µ) +

(
XUx,µS(Ux,µ)

)†} (2.37)

= − β
N

Tr
{
T a
(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ

)}
(2.38)

=: − β
N

Tr
{
T aMx,µ

}
. (2.39)



22 2 Lattice QCD and Differential Equations

Thus, it holds

∂x,µSG([U ]) =
∑
a

T a∂ax,µSG([U ]) = − β
N

∑
a

T aTr
{
T aMx,µ

}
(2.40)

with Mx,µ := Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ. Using the identity

− β

N

∑
a

T aTr
{
T aMx,µ

}
= {Mx,µ}TA (2.41)

(see equation (2.58) of [34]), we get

∂x,µSG([U ]) = − β
N

∑
a

T aTr
{
T aMx,µ

}
= − β

N
{Mx,µ}TA = iṖx,µ . (2.42)

Lie algebra derivative. Also the Lie algebra derivative ∂H([U ], [P ])/∂Px,µ can be
computed in a similar way. Here, even a bit more theory has to be used since the
Lie algebra derivative depends on fundamental 2-forms. This approach is described
by Kennedy in [33] in detail and recapitulated in [34]. Shortly, it can be described
in the following way:

We can denote the derivatives

U̇x,µ =
∂H([U, P ])

∂Px,µ
and Ṗx,µ =

∂H([U, P ])

∂Ux,µ
(2.43)

with the Poisson bracket

{A,B} =
∂A

∂Px,µ

∂B

∂Ux,µ
− ∂A

∂Ux,µ

∂B

∂Px,µ
(2.44)

for a fundamental zero-form A. This leads to

U̇x,µ = {H, Ux,µ} =
∂H
∂Px,µ

∂Ux,µ
∂Ux,µ

− ∂H
∂Ux,µ

∂Ux,µ
∂Px,µ

(2.45)

and

Ṗx,µ = {H, Px,µ} =
∂H
∂Px,µ

∂Px,µ
∂Ux,µ

− ∂H
∂Ux,µ

∂Px,µ
∂Px,µ

. (2.46)

At the same time, it holds
{H, A} = ĤA (2.47)

with

Ĥ =
∂H
∂Px,µ

∂

∂Ux,µ
− ∂H
∂Ux,µ

∂

∂Px,µ
(2.48a)

=
∂H
∂pa

ea − ea(H)
∂

∂pa
. (2.48b)
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This formula includes some transformations. First, the traceless and hermitian
matrix Px,µ is denoted as sum of its generators Ta, i.e.,

Px,µ = −i
∑
a

paTa =: −ipaTa . (2.49)

Then, ea is a linear differential operator acting on Ux,µ similar to ∂ax,µ of equation
(2.33a). It holds −TaUx,µ ≡ ea(Ux,µ), i.e., the generators Ta are defined by the
linear differential operator. Furthermore, Einstein’s summation convention is used
– equation (2.48b) includes a summation over a.

It follows

U̇x,µ = {H, Ux,µ} = ĤUx,µ =
∂H
∂pa

ea(Ux,µ)− ea(H)
∂Ux,µ
∂pa

(2.50)

and Ṗx,µ = {H, Px,µ} = ĤPx,µ =
∂H
∂pa

ea(Px,µ)− ea(H)
∂Px,µ
∂pa

. (2.51)

We know the partial derivatives of H, Ux,µ and Px,µ with respect to pa, i.e.,

∂H
pa

= −ipa,
∂Ux,µ
pa

= 0,
∂Px,µ
pa

= −iTa , (2.52)

and the acting of the linear differential operator ea, i.e.,

ea(Ux,µ) = −TaUx,µ, ea(Px,µ) = 0, ea(H) = ea(SG) . (2.53)

Thus,

U̇x,µ = −ipa(−iTaUx,µ)− ea(SG) · 0 = iPx,µUx,µ (2.54)

and Ṗx,µ =
∂H
∂pa
· 0− ea(SG)Ta = −ea(SG)Ta . (2.55)

Equation (2.54) coincides with equation (2.13a) and (2.55) with (2.13b).

2.2.4 Structure of the Hamiltonian Equations of Motion.

Concerning the development of numerical integration methods, it is convenient to
change the notation of the Hamiltonian equations of motion from the indices (x, µ)
towards a single index j. Moreover, we have to care about the structure of the
single differential equations.

Change of notation. So far, the link matrix Ux,µ is an element of the Lie group
SU(N,C) and the momentum Px,µ is traceless and hermitian. For differential equa-
tions on Lie groups and its underlying theory, it is convenient to work in the appro-
priate Lie algebra. In case of SU(N,C), the appropriate special unitary Lie algebra
su(N,C) consists of traceless and anti-hermitian matrices. So, a multiplication with
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i =
√
−1 leads to a traceless and anti-hermitian element iPx,µ which is an element

of su(N,C). Furthermore, a single index j is more convenient for the development
of numerical integration methods than a combination of x and µ. Thus, the links
Ux,µ can be identified with Lie group elements Yj, the scaled momenta iPxµ with
Lie algebra elements Aj and the staples S(Ux,µ) with square matrices Sj. It holds

Ux,µ ↔ Yj, iPxµ ↔ Aj, S(Ux,µ)↔ Sj . (2.56)

The exchange of the indices (x, µ)↔ j can be done using the lexicographic index

j := np · µ+ x with np = T · Ld−1 (2.57a)

in both directions. The pair (x, µ) can be gained via

x = j mod np followed by µ = (j − x)/np . (2.57b)

The substitution has to be done for all nl := d·T ·Ld−1 positions of the link matrices.
Thus, the equations of motion (2.13) can be formulated in a more convenient way
as

Ẏj(t) = Aj(t) · Yj(t), (2.58a)

Ȧj(t) = − β
N

{
Yj(t)Sj(t)

}
TA

(2.58b)

for j = 0, . . . , nl − 1 with staples Sj and traceless anti-hermitian operator {·}TA
defined in (2.14). Here, the indices j of formula (2.58) and (x, µ) of equation (2.13)
can just be transformed according to the transformations (2.57).

Structure of the Hamiltonian equations of motion. Equation (2.58a) contains
the elements Aj and Yj at position j, i.e., it is a scalar equation. On the other hand,
equation (2.58b) depends on the link Yj and its staples Sj(t). Thus, 6(d−1) further
links – belonging to the staples – are involved in this equation. This set of links is
denoted as [Y ]s as denoted in the previous paragraph 2.1.2. In the following, the
notation of equation (2.58b) is changed into

Ȧj(t) = − β
N

{
Yj(t)Sj(t)

}
TA

=: F
(

[Yj(t)]s

)
(2.59)

with
[Yj]s := {Yj, Yσ1,j, . . . , Yσs,j} . (2.60)

being the set of the link matrix Yj itself and its s := 6(d−1) elements Yσ1,j, . . . , Yσs,j
of the staples S(Yj). The expression σk,j, k = 1, . . . , s, denotes computation of the
k-th element of the staples of Yj according to equation (2.3). So, the evaluation of
the functions F in (2.59) depends on more than one single element Yj(t) expressed
by [Yj(t)]s. For the development of integration methods on Lie groups, we neglect
this fact and treat equation (2.59) as a scalar one. It is just important for the
(parallel version of) the implementation.
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2.3 Hybrid Monte Carlo Method

In SU(3) Yang-Mills theory, expectation values are computed using a sophisticated
Monte Carlo method: the Hybrid Monte Carlo (HMC) method developed in 1980
by Duane et al [17]. It combines a Metropolis Monte Carlo method with a Molecular
Dynamics step. Here, a Hamiltonian (which is a conserved quantity) is introduced
for the Molecular Dynamics step. It is based on the gauge field [U ] and its associated
field [P ] of momenta and leads to Hamiltonian equations of motion which have to be
solved with a geometric numeric integration scheme. Hamiltonians are constant in
time with the result that the difference of two successive Hamiltonians - before and
after the numerical integration of one trajectory - just depends on the numerical
errors. It is intended that the numerical integration leads to a high transition
probability in the Monte Carlo method.

This section starts with a rough overview on expectation values and its computation.
Then, the Metropolis Monte Carlo methods are introduced with focus on Markov
chains and its stability criterion since this is the reason for the necessity of an
integration scheme which is volume-preserving and time-reversible. Finally, the
Hybrid Monte Carlo method is presented and explained.

Expectation values. Lattice gauge theory aims at computing expectation values
of some operators of the gauge field [U ]. Starting from field configurations [U ], the
operator A([U ]) leads to the expectation value 〈A〉 computed by the path integral

〈A〉 =
1

Z

∫
[dU ] p([U ]) A([U ]) (2.61)

with probability p([U ]), partition function Z =
∫

[dU ]p([U ]) and Haar measure [dU ].
Since the integral is of high dimension, the direct evaluation of the integral is not
possible. Theoretically, the expectation value 〈A〉 could be computed as a weighted
sum over all possible configurations {[U ]} with probability

p([U ]) = exp
(
−SG([U ])

)
(2.62)

that the configuration [U ] will occur:

〈A〉 =
∑
{[U ]}

A
(
[U ]
)
· p
(
[U ]
)
. (2.63)

Unfortunately, the number of all possible configurations is too large to be used in
practice. So, just an ensemble of field configurations {[U ]} can be selected for the
computation of 〈A〉. This is realized in a Monte Carlo simulation in order that the
selection is done randomly. However, this simple sampling leads to troubles because
the probability for the existence of most configurations is very small since the lattice
is very large: the statistical errors would be very large and thus the expectation
value quite inaccurate. Of course, this can be improved using more configurations.
The usage of an importance sampling technique is an alternative: configurations
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occurring with a higher probability will be preferably selected and the expectation
value is computed as

〈Ā〉 =
1

Nsample

∑
i

A([U ]i) . (2.64)

For the realization of the importance sampling, it is necessary that any random
initial configuration leads to configurations occurring with high probability. This
means, the equilibrium distribution concerning the probability distribution should
be met. This can be realized via Monte Carlo methods based on Markov processes.

Monte Carlo Methods. The Metropolis Monte Carlo (MMC) method by Rosen-
bluth et. al [40] is based on a Markov process and generates configurations which
tend to the equilibrium distribution. The Markov chain can be infinitely large and
each configuration can occur several times followed by arbitrary possible configu-
rations. For this purpose, the target distribution has to be known with the result
that the probability p([U ]) can be computed for any samples [U ]. The idea of the
MMC method is stated in the following algorithm:

Algorithm 2.2 (Metropolis Monte Carlo Method).

1. Start with a random field [U ]1. Set the index i to 1.

2. Generate a random field [U ]j.

3. Accept the new field [U ]j with transition probability

Tij = min
(
1, p([U ]j)/p([U ]i)

)
. (2.65)

This means,

[U ]i+1 =

{
[U ]j in case of acceptance,
[U ]i in case of a rejection

(2.66)

of the random field [U ]i. Set i := i+ 1 and proceed with step 2.

In algorithm 2.2, a Markov chain of configurations

[U ]1 → [U ]2 → [U ]3 → . . .→ (2.67)

is produced as proposed by Metropolis et al in [40]. Starting from configuration [U ]i,
the proposal of a random field [U ]j is alternated with an acceptance step according
to the transition probability (2.65). [U ]j is just a suggestion for the next link of the
Markov chain. Afterwards, the more probable configuration [Ui] or [Uj] is added in
the acceptance step which works as follows: if [U ]j occurs with higher probability
than [U ]i, i.e., p([U ]j) > p([U ]i), [U ]i+1 is set to [U ]j. Otherwise, a uniformly
distributed random number r ∈ [0, 1] is drawn and compared to p([U ]j)/p([U ]i). If
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r is smaller than or equal to

p([U ]j)

p([U ]i
= exp(−∆SG), ∆SG = SG([U ]j − SG([U ]i) , (2.68)

the new configuration [U ]j also is accepted. Otherwise, the new configuration is set
to [U ]i+1 := [U ]i in order that the old configuration is more probable than the new
one and occurs several (at least two) times in the Markov chain.

Markov Chains. Reaching the equilibrium distribution is based on the consider-
ation that the the Markov process can be described by a fixed point equation

π = πT with π ∈ Rn and T ∈ Rn×n (2.69)

using the following considerations according to, for example, [34] or [42]: let there
be n possible configurations [U ]1, . . . , [U ]n which occur with the probabilities pi :=
p([U ]i), i = 1, . . . , n. The probability to reach configuration [U ]j from [U ]i is given
by the transition probability

T
(

[U ]i → [U ]j

)
=: Tij (2.70)

such that all probable transition probabilities Tij can be collected in the transition
matrix T =

(
Tij
)
of size n× n. It holds∑

j

Tij = 1 (2.71)

and each configuration can be reached from any other one, i.e., Tij ≥ 0.

Furthermore, π(k) ∈ Rn contains the probabilities of all configurations occuring in
step k of the Markov chain. Then, the Markov process can be described by the
equation

π(k+1) = π(k)T = π(0)T k. (2.72)

This implies
lim
k→∞

π(0)T k = π (2.73)

with equilibrium distribution π and (2.69) immediately follows. The fixed point π
is unique if it holds

πj =
∑
i

πiTij ∀ j . (2.74)

This is the case if the sufficient but not necessary detailed balance condition

πjTji = πiTij ∀ i, j (2.75)

is fulfilled which can easily be shown: a summation over i and the usage of equation
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(2.71) leads to equation (2.74), i.e.,∑
i

πiTij =
∑
i

πjTji = πj
∑
i

Tji = πj ∀ i, j . (2.76)

Thus, the detailed balance condition (2.75) is essential to reach the equilibrium
distribution of the Markov chain.

HMC Algorithm and Molecular Dynamics Step. The Hybrid Monte Carlo
(HMC) method is a type of Markov Chain Monte Carlo (MCMC) method pub-
lished by Duane et al. [17] in 1987.

The idea is to combine a Molecular Dynamics step with an acceptance step and use
the Hamiltonian H (which is a constant in time) for the probability distribution
p = exp(−H). Since the Hamiltonian is a constant in time, this leads to a high
acceptance rate depending on the errors of the numerical integration method used
in the Molecular Dynamics step. For the Molecular Dynamics step, a fictitious
time and a grid of fictitious momenta [P ] are introduced such that the Hamiltonian
equations of motion

∂H
∂Px,µ

= U̇x,µ and
∂H
∂Ux,µ

= −Ṗx,µ (2.77)

can be solved numerically for the whole grid, i.e., for x = 0, . . . , np − 1 and
µ = 0, 1, 2, 3. Here, it holds that each momentum Px,µ is related to its link Ux,µ.
Due to the fact that the Hamiltonian is conserved in time, the Hamiltonians of
two successive configurations will be the same up to the numerical errors of the
integration method.

The HMC algorithm works as follows:

1. Start with an initial configuration ([U ]j, [P ]j) at time t = 0. Thereby, the
configuration of momenta has to be updated in each step and consists of
Gaussian distributed random numbers.

2. Reach the new configuration ([U ]k, [P ]k) by applying a Molecular Dynamics
step, i.e., integrate the system ([U ]j, [P ]j) numerically.

3. Accept the new configuration with transition probability

Tjk := min(1, pk
pj

) = min
(

1, exp(−∆H)
)
, ∆H := Hk −Hj.

Otherwise keep [U ]j and [P ]j.

4. Proceed with step 1.

As the transition probability depends only on the difference of the Hamiltonians
∆H, the acceptance rate is linked to the convergence order of the numerical inte-
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gration scheme used in step 2 of the Molecular Dynamics step. If the new configura-
tion [U ]k is accepted, it is added to the ensemble of link configurations. Otherwise,
the old configuration [U ]j is added (again) to the ensemble since this state is more
probable than the new one.

It is essential for the Hybrid Monte Carlo method that the Markov process converges
to the fixed point of the equilibrium distribution of the field configurations [U ]. To
ensure this, the numerical integration scheme still has to fulfill the detailed balance
condition (2.75) concerning the action S([U ]). Therefore, the numerical integra-
tion schemes used in the Molecular Dynamics Step have to be time-reversible and
should be volume-preserving. The time-reversibility is mandatory, while a missing
volume-preservation can be compensated theoretically by a proper scaling with the
determinant of the Jacobian of the whole system ∂([U ]j, [P ]j)/∂([U ]i, [P ]i). This is
discussed in [17]. The convergence order p of the numerical integration scheme is
just of interest to achieve a high acceptance rate because |∆H| is proportional to
the error of the integration scheme.

2.4 The Wilson Flow

The Wilson flow [38, 47, 36] is a gradient flow in lattice gauge theory. Starting from
an initial gauge field [V ]0 of size nl = dnp with np = T · Ld−1, the Wilson flow

[V ]0 → [V ]1 → [V ]2 → [V ]3 → . . .

is the solution of an ordinary differential equation

V̇x,µ(t) = Zx,µ(t
)
· Vx,µ(t) (2.78a)

with Zx,µ(t) = −∂SG([V (t)])

∂Vx,µ(t)
(2.78b)

for x = 0, . . . , np − 1, np = TLd−1, and µ = 0, . . . , d − 1. The indices (x, µ) of
the links Vx,µ depict that the link is situated between the grid points x and x+ aµ̂
with direction µ. Equation (2.78b) is computed via the principle of computing the
derivative of a function with respect to a Lie group element. Since the Wilson gauge
action is a part of the Hamiltonian, it is no surprise that the shape of Z = −∂SG/Vx,µ
is similar to the shape of the Hamiltonian equation Ṗx,µ = −∂H/∂Ux,µ. Finally, the
formula for Z : SU(N,C)→ su(N,C) is

Zx,µ(t) = −∂SG([V (t)])

∂Vx,µ(t)
= − β

N

{
Vx,µS(Vx,µ)

}
TA

(2.79)

with staples S(Vx,µ) defined in equation (2.3) and the traceless anti-hermitian op-
erator {·}TA stated in formula (2.14).
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Notation and structure. Using the lexicographic index j := µ · np + x described
in the previous section 2.2, we transform equation (2.78) and (2.79) to

V̇j(t) = Zj(t) · Vj(t) (2.80a)

with Zj(t) = − β
N

{
VjS(Vj)

}
TA

=: F ([Vj]s) (2.80b)

for j = 0, . . . , nl− 1. The values Vj(t) are elements of the special unitary Lie group
SU(N,C) and denote the link matrices. Zj is a Lie-algebra valued function from
the Lie group to the Lie algebra. It is already explained in the previous section
2.2 that the computation of Zj depends on the link Vj itself and its s := 6(d − 1)
elements of its staples S(Vj) leading to an expression Zj(t) = F ([Vj]s) according to
the right-hand side of equation (2.59).

So, equation (2.80) is a differential equation on a Lie group. In contrast to equation
(2.58a) of the Hamiltonian equation of motions, it is no scalar equation but depends
on the set [Vj]s. For the development of integration methods, we neglect this fact
and consider the first equation of (2.80) as a scalar differential equation on a Lie
group and the second one as an evaluation of an expression in the Lie algebra.

The differential equation is solved as initial value problem with initial values [V ]0 :=
[U ] arising from a configuration of link variables gained, for example, via the HMC
or the heat-bath algorithm. So, the shape of the Wilson flow (2.80) is very similar to
the one of the Hamiltonian equations of motion. Concerning numerical integration
schemes on Lie groups, the Wilson flow (2.80) could be solved with any numerical
method for Lie groups like the ones described in section 3.2 or chapter 4. No
geometric structure – except for the Lie group structure – needs to be obtained.

Observables. The Wilson flow (2.78) can be integrated numerically with initial
values [V (t0)] taken, for example, from HMC or heat bath configurations computed
for a particular value of the coupling constant β. The numerical integration is
performed up to a certain flow time and gauge invariant observables of interest are
measured during this computation. These observables are, for example, the energy
a4E(t) given in formula (2.1) in [37] and its related observable

W (t) = t
d

dt

{
t2〈E(t)〉

}
as proposed in [7].

In this work, two different gauge-invariant energies are considered, i.e. the Wilson
energy E� and the more symmetric field strength energy EFT . Thereby, the Wilson
energy is summed over all oriented plaquettes in anti-clockwise direction and is
defined as

a4E�(t) = 2
∑
x,µ<ν

ReTr
{

1− Px,µν
(
[V (t)]

)}
. (2.81)
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The field strength energy a4EFT (t) depends on the symmetric field strength tensor
Gµν as described in [37].

Field Strength Tensor. The field-strength tensor Gµ,ν is used in the computation
of the expectation values of the Wilson energy gained from the Wilson flow. It is
the sum of all smallest loops starting and ending at site x. It reads

a4EFT (t) =
1

4
GA
µνG

A
µν (2.82)

which can be computed as

a4EFT (t) = −1

2

∑
x,µ 6=ν

Tr
(
Gµν(x)Gµν(x)

)
, Gµν(x) = {Qµν(x)}TA. (2.83)

Here, Qµν(x) is the average of the four plaquettes in the (µ, ν) plane which have
the same orientation and start and end at x as shown in figure 1 of [37]:

Qµ,ν(x) =
1

4

{
Vx,µVx+aµ̂,νV

−1
x+aν̂,µV

−1
x,ν

+ Vx,νV
−1
x+aν̂−µ̂,µV

−1
x−aµ̂,νVx−aµ̂,µ

+ V −1
x−aµ̂,µV

−1
x−a(µ̂−ν̂),νVx−aµ̂−ν̂,µVx−aν̂,ν

+ V −1
x−aν̂,νVx−aν̂,µVx+a(µ̂−ν̂),νV

−1
x,µ

}
. (2.84)

It is important that the field strength tensor Gµ,ν does not simply contain the
plaquettes as defined in equation (2.1) but the product of contiguous link matrices
starting and ending at site x.

The different energies take approximately the same values. The computation of the
plaquette energy is easier whereas the field strength energy is more symmetric and
thus more accurate.

Critical Temperature. On the lattice, there is a critical temperature such that
the system behaves totally different below and above this value. We find out [66]
that the critical temperature can be detected using the Wilson flow. In doing so,
the Wilson energy a4E� or a4EFT is split into a temporal and spatial part Est and
Ess which consist of plaquettes with space-time indices (i.e. Est) and space-space
indices (i.e. Ess). For a Wilson Flow, both energy parts Ess and Est behave similar
for temperatures below the critical one and totally different for temperatures above
the critical one. Thus, we developed the energy difference method based on the
difference in the spatial and temporal part of the energies of the Wilson flow. The
method and its results are described in [66] and with more details also in chapter 8.
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2.5 Summary

In Lattice QCD, expectation values are computed using the Hybrid Monte Carlo
(HMC) algorithm which is a combination of a Metropolis and Molecular Dynamics
step. The HMC aims at reaching the equilibrium distribution, i.e. the fixed point
of the Markov chain. In this context, the Hamiltonian equations of motion have to
be solved numerically in the Molecular Dynamics step. They have the shape of a
coupled Lie group / Lie algebra differential equation

Ẏ (t) = A(t) · Y (t), (2.85a)

Ȧ(t) = F
(
[Y (t)]s

)
. (2.85b)

Here, Y (t) is an element of the special unitary Lie group SU(N,C), A(t) an element
of the associated special unitary Lie algebra su(N,C),

[Y (t)]s ∈ SU(N,C)1+6(d−1) (2.86)

a set of 1 + 6(d− 1) elements of SU(N,C) and the function

F : SU(N,C)1+6(d−1) → su(N,C) (2.87)

maps an element from a Lie group and its staples to its associated Lie algebra. This
means, equation (2.85a) is a scalar differential equation on a Lie group – in section
3.1.1, it will be shown that it has to be solved with a Lie group method.

On the other hand, equation (2.85b) can be solved with any general numerical
integration method because the second equation is a differential equation in a Lie
algebra which is a linear space. So, any numerical method known for the Abelian
case can be employed. The only difficulty is that equation (2.85b) depends on
1 + 6(d − 1) elements which causes no problems for a single equation. For the set
of nl coupled equations of motion, we have to care about the coupling. For the
method’s development, we neglect this fact and concentrate on single differential
equations.

It is very important that the numerical integration scheme applied on (2.85) fulfills
the geometric properties time-reversibility and volume-preservation. Otherwise, the
Markov chain would not reach the correct equilibrium distribution such that the
desired expectation value would not be computed correctly. So, we concentate on
the development of geometric numerical integration schemes in chapter 5.

Another differential equation in the context of Lattice QCD is the Wilson flow (2.80)
having the shape

V̇ (t) = Z(t) · V (t), (2.88a)
Z(t) = F

(
[V (t)]s

)
(2.88b)

similar to equations (2.85). Also here, V (t) is an element of the Lie group SU(N,C),
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Z(t) an element of its associated Lie algebra su(N,C) and F is given by the mapping
(2.87). This implies that Ȧ(t) and Z(t) can be computed the same way. Thus,
equation 2.88 is not a single but a coupled differntial equation. If we also neglect
the coupling in this part and consider Z(t) as already computed Lie-algebra valued
variable, equation (2.88a) and (2.85a) have the same shape.

So, both the Hamiltonian equations of motion and the Wilson flow have in com-
mon that they are solved numerically with a Lie group method. Additionally, the
Hamiltonian equations of motion need a geometric numerical integration method
including time-reversibility and volume-preservation.

Outlook on the next chapters. Numerical methods for differential equations on
Lie groups are considered in the next chapters 3, 4 and 5. Starting with some the-
ory about differential equations on Lie groups and its numerical integration schemes
described in chapter 3, some new methods are described in chapter 4: a step size
control for Munthe-Kaas Runge-Kutta schemes and a local parameterization us-
ingthe Cayley transform. Furthermore,some new geometric schemes are developed
in chapter 5: the Cayley-Leapfrog scheme, symmetric partitioned Munthe-Kaas
Runge-Kutta schemes and time-reversible projection schemes. Finally, these new
methods are simulated for lattice gauge fields in chapter 7 and 8.





3 Chapter 3

Numerical Integration of
Differential Equations on Lie
Groups

This chapter deals with the numerical solution of differential equation in matrix Lie
groups. Let G be a matrix Lie group and g its associated matrix Lie algebra. Now,
we assume that Y (t) is an element of G and A(Y (t)) an element of g which depends
somehow on Y (t). We consider the single scalar differential equation

Ẏ (t) = A(Y (t)) · Y (t) (3.1)

which is already known from the previous chapter for the special caseG = SU(N,C).
This equation occurs in the set of Hamiltonian equations of motion and in a slightly
modified way also in the set of differential equations describing the Wilson flow.

We will see that equation (3.1) is a differential equation on a Lie group, i.e., its
result has to be in the Lie group, again. So, the differential equation has to be
solved with a numerical integration scheme for Lie groups based on a local pa-
rameterization – which are also investigated in this chapter. The Lie-Euler method,
Crouch-Grossmann Runge-Kutta schemes and Munthe-Kaas Runge-Kutta methods
are mentioned and shortly described as examples of numerical integration schemes
on Lie groups.

This chapter is organized in two parts. First, there is a section 3.1 concerning the
foundations of numerical integration on Lie groups. It covers differential equations
on Lie groups in subsection 3.1.1 as well as the local parameterization used for the
numerical integration on Lie groups in subsection 3.1.2. Furthermore, Runge-Kutta
methods for the Abelian case and its convergence orders are mentioned in subsection
3.1.3. In this part, examples for Runge-Kutta schemes of convergence order one, two
and three are given. Then, the focus is put on well-known Runge-Kutta schemes
for Lie groups in a 2nd section 3.2. Here, the Lie-Euler method, Crouch-Grossmann
Runge-Kutta schemes and Munthe-Kaas Runge-Kutta methods are mentioned and
shortly described in the subsections 3.2.1, 3.2.2 and 3.2.3. All paragraphs close with
examples of convergence order one, two and three for the Abelian case which are
applied on these Lie group methods. Finally, the advantages and disadvantages of
Crouch-Grossmann and Munthe-Kaas schemes are discussed in paragraph 3.3. In
addition, the content is summarized with focus on the development of Runge-Kutta
methods for Lie group problems.

35
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3.1 Foundations

As Lie groups and Lie algebras are connected via differentiable manifolds and its
tangent space, this section starts with a recapitulation of differential equations on
manifolds. Then, the focus is put on local parameterization which are the theoretical
background of numerical solutions of differential equations on Lie groups. Both
sections are mainly taken from the book of Hairer et al [29]. Finally, Runge-Kutta
methods for the Abelian case are reminded in section 3.1.3 following the book of
Hairer et al [30].

First, the connection of Lie groups and Lie algebras via differential manifolds is
described in subsection 3.1.1 leading to differential equations on manifolds. Then,
the focus is put on the numerical solution of differential equations on manifolds
in paragraph 3.1.2. Afterwards, some foundations of numerical integration with
Runge-Kutta schemes are recapitulated in paragraph 3.1.3.

3.1.1 Differential Equations on Lie Groups

In this section, some theory about differential equations on Lie groups is introduced.
More precisely, the definition of Lie groups, Lie algebras and tangent spaces of man-
ifolds can be found here. Furthermore, it is shown that the solution of a differential
equation on a Lie group has to be in the Lie group as well following the line of Hairer
et al [29]. The differential equation Ẏ = A(Y )Y given in equation (3.1) serves as
starting point for the discussion about differential equations on matrix Lie groups.
Here, Y is in the Lie group G and A(Y ) in its associated Lie algebra g which are
defined as follows:

Definition 3.1 (Lie Group, [29]). A Lie group G is a group which is also a differ-
entiable manifold. Its product is a differentiable mapping G×G 7→ G .

Definition 3.2 (Lie Algebra). Let F be a field and g be a vector space over F . We
say that g is a Lie algebra if there exists a map

g× g→ g, (x, y) 7→ [x, y] (3.2)

such that

• [x, y] is bilinear over F .

• [x, x] = 0 for all x ∈ g.

• the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (3.3)

holds for all x, y, z ∈ g.



3.1 Foundations 37

Lie groups G and Lie algebras g are connected via differentiable manifolds and its
tangent spaces. For a deeper understanding on differential equations on manifolds,
some theory about differential manifolds, its tangent spaces and their connection is
needed:

Definition 3.3 (Differentiable Manifold, [29]). Let g : U 7→ Rm be a differentiable
function with U being a neighborhood of the point a ∈ Rn. Assume that g(a) = 0
and g′(a) has full rank m. Then,

M = {y ∈ U ; g(y) = 0} (3.4)

is a differentiable manifold.

Thus, the manifold contains a curve (or a surface) γ and the tangent space is a tan-
gent (or plane) described by γ̇(0) passing through the contact point a = γ(0) ∈M:
Definition 3.4 (Tangent Space of a Manifold, [29]). ,

TaM = {v ∈ Rn : ∃ γ : (−ε, ε) 7→ Rn with γ(t) ∈M ∀ t, γ(0) = a, γ̇(0) = v} .

It is known that the Lie algebra g can be identified with the tangent space TIG at
the identity of the differentiable manifold G. In general, the tangent space through
the contact point Y ∈ G is called TYG. For a Lie-algebra element A ∈ g, the
problem Ẏ = A · Y with Y ∈ G is a differential equation on the manifold G.

Theorem 3.5 (Differential Equation on a Manifold, [29]). LetM be a manifold of
Rn. The problem Ẏ = AY is a differential equation on the manifoldM if and only
if AY ∈ TYM ∀ Y ∈M.

Proof. Let A be an element of the Lie algebra g. Due to g = TIG, there exists a
path γ ∈ G with γ(0) = I and γ̇(0) = A. A multiplication with Y leads to the
element AY ∈ TYM as follows: For the element AY there exists a different path
γ̃ := γ · Y with γ̃(0) = Y and ˙̃γ = AY . By the definition of the tangent space, AY
is an element of the tangent space TYM. This leads to the following theorem:

Theorem 3.6 (Differential Equations on a Matrix Lie Group, [29]). Let G be a
matrix Lie group and g its Lie algebra. If A(Y ) ∈ g for all Y ∈ G and if yn ∈ G,
then the solution of Ẏ = A(Y )Y satisfies Y (t) ∈ G for all t.

Proof. As is the proof of 3.5, the element A(Y )Y is an element of the tangent space
TYG Thus, the result of Ẏ = A(Y )Y has to be in the Lie group G.

3.1.2 Numerical Integration via Local Parameterization

Differential equations on manifolds can be solved using a local parameterization of
the element of the manifold, i.e.

Y (t) = Ψ(Ω(t)) . (3.5)
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Differentiation with respect to time leads to

d

d t
Y (t) =

d

d t
Ψ(Ω(t)) =

d

d Ω
Ψ(Ω(t)) Ω̇(t) . (3.6)

Combining equation (3.6) with the initial differential equation (3.1) and the intro-
duced local parameterization (3.5) leads to

d

d Ω
Ψ(Ω(t)) Ω̇(t) = A ·Ψ(Ω(t)) . (3.7)

Here, the difficulty is that the inverse of the expression d
d Ω

Ψ(Ω(t)) has to be found
to set up the differential equation for Ω̇(t). This can be done via the definition of(

d

d Ω
Ψ(Ω)

)
H :=

(
d ΨΩ(H)

)
·Ψ(Ω) (3.8)

which is a theoretical construct with a special shape. Here, the expression ( d
d Ω

Ψ(Ω))H
on the left-hand side means that the so-far unknown d

d Ω
Ψ(Ω) is applied on an ele-

ment H of the tangent space of the manifold. The shape of the right-hand side is
similar to the right-hand side of equation (3.7). It is defined as the also unknown
expression d ΨΩ(H) times the local parameterization Ψ(Ω).

Inserting (3.8) on the left-hand side of (3.7) leads to(
d ΨΩ(Ω̇)

)
·Ψ(Ω) = A ·Ψ(Ω) (3.9)

such that

A = d ΨΩ(Ω̇) (3.10)

holds since the term Ψ(Ω) introduced in equation (3.8) can be neglected on both
sides. Applying the inverse of d ΨΩ leads to

Ω̇ =
(

d Ψ−1
Ω

)
A. (3.11)

Hence, we obtain a differential equation for Ω̇ such that an expression for the new
unknown d Ψ−1

Ω (A) has to be found. For initial-value problems, the parameteri-
zation has to be chosen such that the initial values agree with those used in the
parameterization, i.e. Ψ(Ωn) = Yn. This reasoning is based on the book of Hairer
et al [29] and leads to the local coordinate approach.

Assuming that this happened, the numerical integration on manifolds, i.e. the
mapping from Yn 7→ Yn+1, works as described in section IV of [29]:

• define a differential equation Ω̇ = f(Ω)

• solve Ωn+1 = Φ(Ωn) with numerical scheme Φ and initial value Ωn
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• define the numerical solution in the Lie group by Yn+1 = Ψ(Ωn+1)

The important things are that the local parameterization maps an element from
the tangent space of the manifold to the manifold and that the initial values of the
differential equation are mapped to the ones of the origin differential equation. So,
the differential equation is solved in the linear space of the tangent space and then
mapped back on the manifold via the parameterization . For initial value problems
Ẏ = AY with given Y (t0) = Yn, the mapping Ψ and the initial value Ω(t0) = Ωn

have to be chosen in a consistent way such that Ψ(Ωn) = Yn holds.

For Lie groups, the local parameterization is chosen as mapping Ψ : g 7→ G from the
Lie algebra g to the Lie group G. So, the differential equation is solved in the linear
space of the Lie algebra and its result is mapped to the Lie group. The mapping
can be, for example, the exponential map Ψ(Ω) = exp(Ω) or the Cayley transform
Ψ(Ω) = (I −Ω)−1(I + Ω) for quadratic Lie groups as explained in [29]. Usually, the
exponential map is used, therefore it is mentioned in the next paragraph.

Exponential Function as Local Parameterization. Exponential functions are
widely used in the context of physics as well as for Lie group methods. The expo-
nential function has the property that it maps an element from a Lie algebra to a
Lie group for all Lie groups. This is expressed in the next lemma:

Lemma 3.7 (Exponential Map, [29]). Consider a matrix Lie group G and its Lie
algebra g. The matrix exponential is a map

exp : g 7→ G,A 7→ exp(A) =
∑
k≥0

1

k!
Ak (3.12)

i.e., for A ∈ g we have exp(A) ∈ G. Moreover, exp is a local diffeomorphism in a
neighborhood of A = 0.

With focus on usage of the exponential function as local parameterization, also
the inverse of the derivative of the exponential map d exp−1

Ω (h) is of interest. This
expression is given as

d exp−1
Ω (H) =

∞∑
k=0

Bk

k!
adkΩ(H) (3.13)

with Bernoulli numbers Bk and adjoint operator adΩ(A) stated in the following
definitions 3.8 and 3.9.

Definition 3.8 (Bernoulli Numbers, [29], [5]). The Bernoulli numbers Bk are de-
fined by ∑

k≥0

Bk

k!
xk =

x

exp(x)− 1
. (3.14)

The first few Bernoulli numbers are B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0.
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Definition 3.9 (Adjoint Operator, [29], [61]). The adjoint operator adΩ(A) is a
linear operator

ad : g 7→ g, A 7→ adΩ(A) = [Ω, A] (3.15)

for a fixed Ω and uses matrix commutators [Ω, A] = ΩA−AΩ. The adjoint operator
can be used iteratively, such that adkΩ denotes the k-th iterated application of the
linear operator adΩ. It holds

adk+1
Ω =

[
Ω, adkΩ

]
. (3.16)

By convention, ad0
Ω(A) is set to A.

The dexpinv equation. The inverse of the derivative of the exponential func-
tion plays a special role in the development of numerical integration schemes for
differential equations on Lie groups. According to Iserles [32], we label equation
(3.13) as the dexpinv equation. In general, it is an infinite sum which can not be
written in a closed form. Nevertheless, there are Lie groups in which the dexpinv
equation can be denoted in a closed form, for example, for SO(3) and SU(2). For
the development of the Lie group methods, we assume that no closed form of the
dexpinv equation is known. Thus, the discussion of the model error in Munthe-Kaas
Runge-Kutta methods is based on equation (3.13).

3.1.3 Runge-Kutta Methods in the Abelian Case

Runge-Kutta methods are constructed by Runge, Heun and Kutta around the year
1900 as described by Hairer et all in section II.1 and II.2 in [30]. In general, Runge-
Kutta methods are defined for the Abelian case Rn. They represent a general form
for one-step schemes.

Definition 3.10 (Runge-Kutta Method, [30]). Let a differential equation

ẏ = f(y) with initial value y(t0) = yn (3.17)

be given. The method

yn+1 = yn + h

s∑
i=1

biki with ki = f(yn + h

s∑
j=1

aijkj), i = 1, . . . , s, (3.18)

is called Runge-Kutta method with s stages. Here, the stage number s and the
coefficients aij, bi for i, j = 1, . . . , s are given. The Runge-Kutta scheme is an
explicit method if it holds aij = 0 for i ≤ j, otherwise it is an implicit method.

Runge-Kutta methods are characterized by its coefficients. According to Butcher
[11], they can be described in a convenient way using Butcher tableaus:
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Definition 3.11 (Butcher Tableau, [11], [30]). The coefficients aij and bi, i, j =
1, . . . , s of the Runge-Kutta method described above can be denoted in the following
Butcher tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a1s
...

...
... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

in a compact way. The elements ci are defined as ci =
∑

j aij for i = 1, . . . , s.

Convergence Order. In this paragraph, the definitions for the terms consistency
and convergence order are stated since they are used in the rest of this thesis. The
convergence order depends on the local discretization error, which is defined as the
difference of the numerical one-step scheme Φh(yn) and the true solution y(t):

Definition 3.12 (Local discretization error, [30]). Let y(x) be the exact solution of
the differential equation (3.17) and yn+1 = Φh(yn) be the numerical approximation
after one step with step size h. The local discretization error is defined as

τ(h) := yn+1 − y(t0 + h) . (3.19)

In practice, τ(h) is computed as the difference between the numerical approximation
and the Taylor expansion of the exact solution. The consistency is based on the
local discretization error as follows:

Definition 3.13 (Consistency, [30]). A method Φh is consistent if the local dis-
cretization error (3.19) uniformly tends to zero:

||τ(h)|| ≤ ε(h), lim
h→0

ε(h) = 0 . (3.20)

The method is consistent of order p if

||τ(h)|| = O(hp+1) . (3.21)

The convergence for a consistent one-step scheme itself depends on the global dis-
cretization error:

Definition 3.14 (Global discretization error and convergence, [30]). Let y(T ) be
the exact solution of the differential equation (3.17) at the point T > t0, and
yn+M be the numerical approximation after M steps with step size hi = ti+1 − ti,
i = 0, . . . ,M − 1.
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Then, the global error
EM = yn+M − y(T )

is defined as the difference of the numerical approximation yn+M obtained after M
steps and the true solution y(T ).

For M →∞, we assume that hi → 0. The method is convergent if it holds

lim
M→∞

EM = 0.

Finally, one is interested in the convergence order of the numerical one step scheme:

Theorem 3.15 (Convergence Order). Let a differential equation (3.17) be given.
Assume that f(y) is continuous in y and satisfies the Lipschitz condition with respect
to y. Furthermore, let Φh a consistent one-step method of consistency order p.

Then, the method is of convergence order p if

||EM || = O(hp)

for h = max{h0, . . . , hM−1}, hi = ti+1 − ti and i = 0, . . . ,M − 1.

Thus, for one-step schemes, convergence follows from consistency. Moreover, the
convergence order can be obtained by investigating the consistency order. At the
end, order conditions can be computed by a comparison of the numerical approxi-
mation with the Taylor series of the exact solution. For Runge-Kutta methods, the
convergence order depends on the coefficients of the scheme. Moreover, there are
always the same order conditions depending on the coefficients of the scheme.

Definition 3.16 (Order Conditions for Runge-Kutta Methods, [30]). A Runge-
Kutta method has convergence order p if the coefficients bi, aij and ci =

∑
j aij

fulfill the following order conditions up to order p:

p = 1 :
∑
i

bi = 1, (3.22a)

p = 2 :
∑
i

bici =
1

2
, (3.22b)

p = 3 :
∑
i

bic
2
i =

1

3
,

∑
i,j

biaijcj =
1

6
. (3.22c)

In practice just these order conditions are checked instead of performing Taylor
expansions.

Examples. In the following, some simple (explicit) examples are given for Runge-
Kutta methods of convergence order p = 1, p = 2 and p = 3: the explicit Euler
scheme and the methods of Heun with 2 and 3 stages as mentioned in [30]. Its
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s p bi aij

Explicit Euler 1 1 b1 = 1

Heun 2 2 b1 = b2 = 1
2

a21 = 1

Heun 3 3 b1 = 1
4
, b2 = 0, b3 = 3

4
a21 = 1

3
, a32 = 2

3

Table 3.1: Some simple Runge-Kutta methods of convergence order 1,2,3. – s is the
stage number, p the convergence order, bi and aij the coefficients

coefficients are stated in table 3.1. In section 3.2, these examples are used to
illustrate the Crouch-Grossmann and Munthe-Kaas scheme.

p=1. The explicit Euler method is the most simple Runge-Kutta scheme with
convergence order p = 1. It has s = 1 stages and just the non-zero coefficient
b1 = 1. It is given by

yn+1 = yn + hk1 with k1 = f(yn). (3.23)

p=2. The method of Heun with s = 2 stages and non-zero coefficients b1 = b2 =
1
2
, a21 = 1 has convergence order p = 2. It reads for the general case

yn+1 = yn + h
2
(k1 + k2) with k1 = f(yn) and k2 = f(yn + hk1). (3.24)

p=3. The method of Heun with s = 3 stages and coefficients b1 = 1
4
, b3 = 3

4
,

a21 = 1
3
, a32 = 2

3
has convergence order p = 3. It reads

yn+1 = yn + h
4
(k1 + 3k3) (3.25)

with k1 = f(yn), k2 = f(yn + h
3
k1) and k3 = f(yn + 2

3
hk2).

The convergence orders can simply be checked using via definition 3.16.

3.2 Runge-Kutta Methods for Lie Groups

In this section, some well-known numerical integration methods for the Lie group
initial value problem

Ẏ (t) = A(Y (t)) · Y (t) with initial values Y (t0) = Yn (3.26)

are described. Here, Y is in the Lie group G, A in the Lie algebra g and Ẏ = AY
in TYG which is the tangent space of the Lie group at point Y . We know from
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theorem 3.6 that the result Y (t) has to be in the Lie group G. So, the numerical
integration scheme has to ensure this.

We start with the Lie-Euler method as introductory example in paragraph 3.2.1.
Then, Crouch-Grossmann (CGRK) and Munthe-Kaas Runge-Kutta (MKRK) schemes
are mentioned in 3.2.2 and 3.2.3. Both methods are illustrated using the simple ex-
amples of convergence order one, two and three given in table 3.1.

3.2.1 Lie-Euler

This paragraph starts with a demonstration that standard numerical integration
methods have to be adapted to the Lie group structure. Let the initial value Yn ∈ G
be given. For example, the standard Euler method

Yn+1 = Yn + hẎn (3.27)

cannot be used for matrix Lie groups since the Lie group is just closed under multi-
plication. This means that, in general, the result of (3.27) would not be in the Lie
group any more. Nevertheless, it gives a first hint how to solve differential equations
on Lie groups. Considering the Lie group initial value problem (3.26), the standard
Euler method can be rewritten as

Yn+1 = Yn + hẎn = Yn + hA(Yn)Yn =
(
I + hA(Yn)

)
Yn. (3.28)

Comparing the standard Euler method (3.28) to the truncated series of the expo-
nential map (3.12)

exp
(
hA(Yn)

)
=
∑
k≥0

1

k!

(
hA(Yn)

)k
=
(
I + hA(Yn) +

h2

2
A(Yn)2

)
+O(h3), (3.29)

leads to the result that they coincide up to and including terms of order h2. This
gives rise to the Lie-Euler method stated in definition 3.17:

Definition 3.17 (Lie Euler method). Let the initial value problem (3.26)

Ẏ (t) = A(Y (t)) · Y (t) with initial values Y (t0) = Yn

with Y, Yn ∈ G, A(Y ) ∈ g be given. Then, the method

Yn+1 = exp
(
hA(Yn)

)
Yn. (3.30)

is called Lie-Euler method.

It is the most simple numerical integration method for Lie groups and has conver-
gence order one which easily can be seen by a comparison of the Taylor expansions
of the exact solution Y (t0 +h) with the numerical approximation Yn+1. The Taylor
expansion of the exact solution leads to
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Y (t0 + h) = Yn + hA(Yn)Yn +
h2

2
Ÿ (t0) +O(h3). (3.31)

Here, the differential equation (3.26) with initial values Y (t0) = Yn are used. The
numerical approximation Yn+1 uses a part of the exponential function (3.29):

Yn+1 = exp
(
hA(Yn)

)
Yn

=
(
I + hA(Yn) +

h2

2
(A(Yn))2

)
Yn +O(h3)

= Yn + hA(Yn)Yn +
h2

2
(A(Yn))2Yn +O(h3). (3.32)

So, equations (3.31) and (3.32) coincide up to and including terms of order h. For
order 2, the terms Ÿ (t0) will not coincide with (A(Yn))2Yn in general. Thus, the
error of the numerical scheme is of order p = 2 and the Lie Euler scheme is a
numerical approximation of order p = 1 which is also described by Celledoni [12] in
a slightly different way.

The Lie-Euler method can be generalized to Runge-Kutta methods of Crouch-
Grossmann type.

3.2.2 Crouch-Grossmann Runge-Kutta

Crouch-Grossmann Runge-Kutta methods have been developed in 1993 by Crouch
and Grossmann [15]. They are based on the idea to take explicit Runge-Kutta
methods and replace the update step with a Lie-Euler step.

Definition 3.18 (Crouch-Grossman method, [29]). Let bi and aij with i, j =
1, . . . , s be real numbers. An explicit s-stage Crouch-Grossman method is given
by

Yn+1 = exp(hbsKs) · . . . · exp(hb1K1)Yn, (3.33a)

with increments Ki = A(Yi) for i = 1, . . . , s and internal stages

Yi = exp
(
hai,i−1Ki−1

)
· . . . · exp

(
hai1K1

)
Yn. (3.33b)

The result Yn+1 is per construction in the Lie group. A big advantage of the Crouch-
Grossmann method is that it is an explicit method. So, its computation is cheap
and it is suitable also for the solutions of differential equations in the field of Lattice
QCD. Indeed, methods of Crouch-Grossmann type are used for the computation of
the Wilson flow, for example, Lüscher used them in [37]. A disadvantage of this
method is that the development of higher-order methods involve additional order
conditions compared to the ones of a general Runge-Kutta scheme given in definition
3.16. For example, convergence order 3 is achieved with one additional convergence
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order ∑
i

bici

(1

2
bi +

s∑
j=i+1

bj

)
=

1

6
(3.34)

compared to classical Runge-Kutta methods. For the construction of a method of
order 4, 13 conditions including the 8 conditions for classical Runge-Kutta schemes
occur. This means, higher-order Crouch-Grossmann schemes can not use already
known sets of coefficients for higher-order Runge-Kutta schemes. Nevertheless, it
is possible to find coefficients for a higher-order scheme of Crouch-Grossmann type.
Owren and Marthinsen list the order conditions and construct a 4th order method
with s = 5 stages in [49].

Examples. The following examples illustrate Crouch-Grossmann schemes for con-
vergence order one, two and three. More precisely, the explicit Euler scheme and
the methods of Heun with 2 and 3 stages mentioned in table 3.1 are used here.

p=1. The one-stage Crouch-Grossmann Runge-Kutta scheme using the coeffi-
cients b1 = 1, and a11 = 0 of the explicit Euler method is stated as

Yn+1 = exp(hA(Yn))Yn. (3.35)

So, the Crouch-Grossmann scheme for order p = 1 coincides with the Lie-Euler
method (3.30).

p=2. For convergence order p = 2, the method of Heun with s = 2 stages (and
non-zero coefficients b1 = b2 = 1

2
, a21 = 1) can be adapted to a Crouch-Grossmann

scheme as
Yn+1 = exp(h

2
K2) · exp(h

2
K1) · Yn, (3.36a)

with increments K1 = A(Y1) and K2 = A(Y2) and internal stages

Y1 = Yn, and Y2 = exp
(
hK1

)
Yn. (3.36b)

Since there occur no extra order conditions for p = 1 and p = 2, all classical Runge-
Kutta schemes of convergence order one and two can just be adapted to CGRK
schemes. This means, the explicit Euler CGRK scheme and the CGRK method of
Heun with 2 stages have the same order conditions as in the classical RK scheme.

p=3. The method of Heun with 3 stages reads

Yn+1 = exp
(

3
4
h ·K3

)
· exp

(
0 · h ·K2

)
· exp

(
h
4
K1) · Yn

= exp
(

3
4
K3

)
· exp

(
h
4
K1

)
· Yn (3.37a)
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with increments K1 = A(Y1), K2 = A(Y2) and K3 = A(Y3) and internal stages

Y1 = Yn, Y2 = exp
(
h
3
A(Y1)

)
Yn, Y3 = exp

(
2
3
hA(Y2)

)
Yn. (3.37b)

Here, the non-zero coefficients for the s = 3 stages are b1 = 1
4
, b3 = 3

4
, a21 = 1

3
,

a32 = 2
3
. Due to b2 = 0, the stage Y2 does not occur in equation (3.37a) but it is

needed for the computation of stage Y3.

For convergence order 3, it has to be checked that the coefficients of the classical
RK method also fulfill the additional order condition (3.34) for Crouch-Grossmann
schemes. Obviously, the additional order condition (3.34)

b1c1 · (1
2
b1 + b2 + b3) + b2c2 · (1

2
b2 + b3) + b3c3 · (1

2
b3) =

3

8
6= 1

6
(3.38)

is not fulfilled such that the method has just convergence order p = 2. Nevertheless,
it is possible to develop a CGRK method of convergence order 3 with s = 3 stages
but care has to be taken for the method’s coefficients.

3.2.3 Munthe-Kaas Runge-Kutta

Munthe-Kaas developed in [45] and [46] Runge-Kutta schemes for Lie groups that
need no additional order conditions. The Munthe-Kaas Runge-Kutta method com-
bines general Runge-Kutta methods with the theorem of Magnus:

Theorem 3.19 (Magnus, [39], [29] ). Let G be a Lie group and g its associated Lie
algebra. The solution of the differential equation

Ẏ (t) = A(t)Y (t) (3.39)

with A(t) ∈ g and Y (t) ∈ G can be written as

Y (t) = exp(Ω(t))Yn (3.40a)

with initial value Yn ∈ G and Ω(t) defined by the derivative of the inverse exponen-
tial map

Ω̇(t) = d exp−1
Ω (A(t)), Ω(tn) = 0. (3.40b)

As long as ||Ω(t)|| < π the convergence of the d exp−1
Ω expansion

d exp−1
Ω (A) =

∑
k≥0

Bk

k!
adkΩ(A) (3.40c)

with Bernoulli numbers Bk and adjoint operator adΩ(A) = [Ω, A] is assured.

Proof. The proof of this theorem follows the idea of numerical integration via local
parameterization described in section 3.1.2 and is taken from section IV.7 of [28].
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We compute the derivative of equation (3.40a),

Ẏ (t) =
( d

dΩ
exp(Ω(t))

)
Ω̇(t)Yn

(3.8)
= d expΩ(Ω̇(t)) exp(Ω(t))Yn , (3.41)

and compare it with with equation (3.39). So, we yield

A = d expΩ(Ω̇(t)) . (3.42)

Afterwards, we apply the inverse operator (d expΩ)−1 and reach equation (3.40b).
The initial value Ωn takes the value Ωn = 0 to be consistent with the initial value
Yn.

The Magnus approach is formulated for general Lie group problems Y (t) = A(t)Y (t)
with A ∈ g and Y ∈ G. Here, the Lie algebra element A may depend on the Lie
group element Y or not. However, the term A(Y (t)) in (3.26) indicates that the Lie
algebra element A has a mathematical relation to the Lie group element Y . In the
context of the shape of differential equations on Lie groups, A(t), A(Y (t)) or even
AY (t) can be used as synonyms for each other:

A(t) ≡ A(Y (t)) ≡ AY (t) (3.43)

just the affiliation to the Lie group is of importance.
The definitions of the Bernoulli numbers Bk and the adjoint operator adΩ(A) are
already mentioned in definition 3.8 and 3.9 of section 3.1.1.

The theorem of Magnus contains the differential equation

Ω̇(t) = d exp−1
Ω (A(t)) =

∑
k≥0

Bk

k!
adkΩ(A(t)), Ω(t0) = 0 (3.44)

whose solution Ω(t) is used as local parameterization Y (t) = exp(Ω(t))Yn. Both,
Ω(t) and Ω̇(t) are situated in the Lie algebra g which is also a linear vector space.
Thus, the differential equation (3.44) can be solved in the Lie algebra using any
general Runge-Kutta scheme. For the numerical simulation, the infinite series of
the inverse of the derivative of the exponential map (called dexpinv equation) has
to be truncated in a suitable manner such that the convergence order of the Runge-
Kutta scheme will be preserved:

Ω̇(t) = d exp−1
Ω (A(t)) ≈

q∑
k≥0

Bk

k!
adkΩ(A(t)) =: fq(Ω, A) . (3.45)

The truncation index q induces a model error because fq(Ω, A) is just an approxi-
mation of the differential equation Ω̇(t) = d exp−1

Ω (A(t)). This model error should
be smaller or equal than the convergence order of the numerical method used for the
detection of the solution Ω. The model error is investigated in detail, for example,
by Striebel et al in [60].
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Munthe-Kaas developed an algorithm for the numerical computation of the result
of the Lie group differential equation Ẏ = AY in [46]. The algorithm is stated next
followed by theorem 3.21 about the order of the truncation index. It can also be
found in [29].

Algorithm 3.20. (Munthe-Kaas Runge-Kutta Method, [29])
Consider the problem (3.1) with A(Y ) ∈ g for Y ∈ G. Assume that the initial value
Y (t0) := Yn lies in the Lie group G. Then, the step Yn 7→ Yn+1 is defined as follows:

1. Consider the differential equation

d exp−1
Ω (A) ≈ Ω̇ =

q∑
k≥0

Bk

k!
adkΩ(A) =: fq(Ω, A) (3.46)

with initial value Ω(t0) = Ωn = 0.

2. Apply a Runge-Kutta method (explicit or implicit) with initial values Ωn = 0
and Yn to get an approximation Ωn+1 ≈ Ω(t0 + h).

3. Define the numerical solution by

Yn+1 = exp(Ωn+1) Yn. (3.47)

Note that the differential equation Ω̇ stated in equation (3.46) is slightly modified
compared to equation (3.45). It includes the model error.

Theorem 3.21 (Truncation Index, [29]). The method of algorithm 3.22 is of order p
if the truncation index in (3.46) satisfies q ≥ p−2 and the underlying Runge–Kutta
method is also of (classical) order p.

The proof of this theorem can be found in [29].

The truncation index q has to be adapted to the desired convergence order p of the
scheme: it has to satisfy q ≥ p − 2. Furthermore, the smallest possible value for q
is zero. Thus, the differential equations for convergence order p = 1 and p = 2 are
the same:

Ω̇(t) = f0(Ω, A) = A (3.48)

for Lie-algebra valued terms Ω and A.

Algorithm 3.22. (Munthe-Kaas Runge-Kutta Method of Convergence Order p)
Consider the problem (3.1) with A(Y ) ∈ g for Y ∈ G. Assume that the initial value
Y (t0) := Yn lies in the Lie group G. Then, the step Yn 7→ Yn+1 is defined as follows:

1. Consider the differential equation

d exp−1
Ω (A) ≈ Ω̇ =

p−2∑
k=0

Bk

k!
adkΩ(A) =: fp−2(Ω, A) (3.49)

with initial value Ω(t0) = Ωn = 0.
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2. Compute the approximation Ωn+1 ≈ Ω(t0 + h) by a Runge-Kutta scheme of
convergence order p:

Ωn+1 = Ωn + h

s∑
i=1

biKi, (3.50a)

with increments Ki = fp−2

(
Ω̄i, A(Ȳi)

)
(3.50b)

and internal stages Ω̄i = Ωn + h
s∑
j=1

aijKj, Ȳi = exp(Ω̄i)Yn (3.50c)

for i = 1, . . . , s.

3. Define the numerical solution of convergence order p by

Yn+1 = exp(Ωn+1) Yn

as described in equation (3.47).

Examples. The influence of the truncation index, respective the convergence or-
der, is shown in the following examples of convergence order one, two and three.
Again, the coefficients of the explicit Euler scheme and the methods of Heun of
order p = 2 and order p = 3 of table 3.1 are used for the approximation of the
initial value problem (3.26). Starting from the equations stated in formulae (3.50),
the increments Ki, i = 1, . . . , s have to be chosen properly – according to a combi-
nation of formula (3.46) and theorem 3.21 – to reach the desired convergence order
p. Moreover, the initial value Ωn is always set to zero.

p=1. For convergence order one, the Munthe-Kaas Runge-Kutta scheme using
the coefficients of the explicit Euler method (s = 1, b1 = 1) reads

Ωn+1 = hK1 = A(Yn) (3.51)

and leads to Yn+1 = exp(hA(Yn)) Yn. Thus, these coefficients lead to the Lie-Euler
method (3.30).

p=2. The method of Heun of order p = 2 (s = 2, b1 = b2 = 1
2
, a21 = 1) uses the

increments
Ki = f0

(
Ω̄i, A(Ȳi)

)
= A(Ȳi). (3.52)
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Finally, Ωn+1 is computed as

Ωn+1 =
1

2

(
K1 +K2

)
(3.53a)

with increments K1 = A(Yn) and K2 = A
(
exp
(
hA(Yn)

)
Yn
)

(3.53b)

and internal stages Ω̄i = h
s∑
j=1

aijKj, and Ȳi = exp(Ω̄i)Yn (3.53c)

p=3. For methods with convergence order p = 3, the differential equation

Ω̇(t) = f1(Ω, A) = A− 1

2
[Ω, A] (3.54)

has to be used. For example, the method of Heun with s = 3 stages and non-zero
coefficients b1 = 1

4
, b3 = 3

4
, a21 = 1

3
, a32 = 2

3
reads

Ωn+1 =
h

4
(K1 + 3K3), (3.55a)

with increments Ki, i = 1, 2, 3 defined by

Ki = f1(Ω̄i, A(Ȳi)) = A(Ȳi)−
1

2
[Ω̄i, A(Ȳi)]. (3.55b)

The internal stages are given by

Ω̄1 = Ωn = 0, Ω̄2 =
h

3
K1, Ω̄3 =

2h

3
K2, (3.55c)

Ȳ1 = Yn, Ȳ2 = exp(Ω̄2)Yn Ȳ3 = exp(Ω̄3)Yn. (3.55d)

Finally, Ωn+1 is mapped via equation (3.47) to Yn+1. It straightforwardly can be
shown that Yn+1 takes the same convergence order than Ωn+1.

The big advantage of the Munthe-Kaas Runge-Kutta method is that there are
no additional order conditions comparing this method with general Runge-Kutta
schemes. This means, any already known set of coefficients for Runge-Kutta schemes
can be simply used. On the other hand, Munthe-Kaas truncates the infinite series
given by Magnus in (3.46). This means, the function fq has to be adapted to the
convergence order and includes more and more Lie brackets with ascending order. In
general, a model error is introduced at this place because not the exact derivative of
the inverse of the exponential function is approximated by the Runge-Kutta method
but an approximation of it as mentioned in [60]. As discussed in paragraph 3.1.2,
there are Lie groups so as to the expinv equation can be expressed in a closed form.
For our considerations, we regard the general case and do not take into account the
closed forms.
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3.3 Summary

This chapter is split into two parts and can be summarized as follows: First, the
theory of differential equations needed for the development of its numerical solutions
is provided. Starting from a differential equation (3.1), i.e.,

Ẏ (t) = A(Y (t)) · Y (t)

on Lie groups with Y (t) being in a Lie group G and A(Y (t)) in an associated Lie al-
gebra g, the result has to be in a Lie group G. Numerical integration schemes on Lie
groups ensure the affiliation to a Lie group via the usage of a local parameterization
(3.5)

Y (t) = Ψ(Ω(t)).

Here, the expression (3.11)
Ω̇ =

(
dΨ−1

Ω

)
A

has to be identified such that Ωn+1 can be computed by a numerical method Ωn+1 =
Φ(Ωn) and afterwards be mapped to the Lie group via Yn+1 = Ψ(Ωn+1).

For Lie groups, the local parameterization should be a mapping from the associated
Lie algebra g to the Lie group G:

Ψ : g→ G, Ω 7→ Y (t) = Ψ(Ω(t)) (3.56)

such that (3.11) is a differential equation in the linear space of the Lie algebra g.
Usually, the exponential function is taken as local parameterization

In the second part, three kinds of Runge-Kutta schemes for differential equations on
Lie groups are introduced: the Lie Euler scheme, Crouch-Grossmann and Munthe-
Kaas Runge-Kutta methods which are all based on the exponential function as
local parameterization. The Lie-Euler is an extension of the abelian Euler scheme
attained via a comparison of the Euler scheme with the first two summands in the
series of the exponential function. It is the most simple Runge-Kutta scheme for Lie
groups. Moreover, it coincides with Crouch-Grossmann and Munthe-Kaas schemes
of convergence order one.

Crouch-Grossmann Runge-Kutta schemes are generalizations of the Lie-Euler scheme.
The intermediate steps Yi are computed as exponential functions of the increments
Ki for i = 1, . . . , s. This method suffers from the disadvantage that higher-order
schemes have more and more order conditions compared to general Runge-Kutta
schemes for the Abelian case.

Finally, Munthe-Kaas Runge-Kutta schemes are based on the theorem of Magnus
which uses the exponential function as local parameterization. The advantage of
Munthe-Kaas Runge-Kutta schemes is that any already known set of coefficients
of a certain convergence order can be used. The disadvantage is that, in general,
there occur more and more powers of the adjoint operator with ascending conver-
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gence order. This is due to the truncation of the inverse of the derivative of the
exponential map called dexpinv equation. This disadvantage disappears if the ex-
ponential mapping is exchanged to a mapping without truncation. As alternative,
the usage of the Cayley transform is possible (but just for quadratic Lie groups).
This approach is described later (in section 4.2).





Part II

Developments in Lie Group
Methods
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4 Chapter 4

Runge-Kutta Methods for Lie
Groups

Based on the well-known Runge-Kutta methods for Lie groups described in the
previous chapter, we focus on the development of new Munthe-Kaas Runge-Kutta
Methods here: a Munthe-Kaas Runge-Kutta scheme with step size control and a
Munthe-Kaas Runge-Kutta scheme using the Cayley transform as alternative local
parameterization.

We concentrate on the initial value problem (3.26) as before, namely

Ẏ (t) = A(t) · Y (t) with initial values Y (t0) = Yn, (4.1)

with Lie group element Y (t) and Lie algebra element A(t).

We open this chapter with a step size prediction for Munthe-Kaas Runge-Kutta
schemes evolved in section 4.1. Starting with a usual step size prediction in the
Abelian case Rn using embedded schemes in subsection 4.1.1, we develop embedded
Munthe-Kaas Runge-Kutta schemes for the non-Abelian case in subsection 4.1.2.
In a second section 4.2, we focus on another approach: the substitution of the
exponential function in the local parameterization on the Lie group. Here, the
Cayley transform is used as local parameterization in 4.2.1 and discussed in the
context of the Lie-Euler method and the Munthe-Kaas Runge-Kutta method in
paragraph 4.2.2.

4.1 Step Size Control

The Runge-Kutta methods for differential equations on Lie groups mentioned in
section 3.2 are also suitable to be used with a step size prediction. One example
is a step size prediction for Runge-Kutta methods of Crouch-Grossmann type es-
tablished in [20] by Fritzsch and Ramos. At the same time, we designed a step
size prediction for Munthe-Kaas Runge-Kutta schemes [63] based on a step size
control in the Abelian case. This development is explained in detail in this para-
graph. Then, the step size prediction is adapted to Lie group problems of the type
Ẏ (t) = A(Y (t))Y (t) and its solution via Munthe-Kaas Runge-Kutta schemes, also
with focus on embedded schemes. In both cases, an example with Bogacki-Shampine
coefficients [6] is outlined which is adapted to the Wilson flow (2.78).
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4.1.1 Step Size Prediction for the Abelian Case

Let the differential equation

ẏ(t) = f(y(t)) with y(t), f(y(t)) ∈ Rn (4.2)

be given. Considering numerical integration schemes, there exists an optimal step
size at each time point of the numerical integration. Here, optimal means that
the step size is as large as possible to perform as few steps as possible and save
computing time and at the same time small enough to meet a prescribed error
tolerance. Thus, the errors of a method are controlled in a suitable manner. This
is described by Hairer et al in section II.4 of [30] and recapitulated in this section.

Let a Runge-Kutta method for yn+1 with order p and a Runge-Kutta method ŷn+1 of
order p̂ = p+1 be given. The difference yn+1− ŷn+1 can be used as error estimation
in the following sense as

err =

√√√√ 1

n

n∑
j=1

( ||ŷn+1,j − yn+1,j||
ATOL+RTOL · ||ŷn+1,j||

)2

(4.3)

for yn+1, ŷn+1 ∈ Rn. Here, yn+1,j and ŷn+1,j describe the j-th component of the
vectors yn+1 and ŷn+1. The absolute and relative error tolerances are mentioned as
ATOL and RTOL. Starting from an initial step size h, the optimal step size hopt

for a method with convergence order p is computed as

hopt = h · p+1

√
1

err
. (4.4)

In practice, hopt is multiplied with a safety factor ρ which is a little bit smaller than
1 such that hopt is given as

hopt = h · p+1

√
1

err
· ρ, ρ < 1. (4.5)

This means, the new optimal step size is a bit smaller than permitted for safety
reasons. A step size control works in the following way:

Algorithm 4.1 (Step Size Control, [30]). Given is an initial value problem ẏ = f(y)
with initial value y(t0) = yn. A step size control is performed as follows:

1. Start from an initial step size h at time t0.

2. Compute two numerical solutions yn+1 and ŷn+1 with convergence order p and
p̂ = p+ 1.

3. Measure the error with an error measure like the error given in (4.3).

4. Compute the step size for the next step hopt with (4.5).
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a) If err ≤ 1, then take yn+1 as new value at time ti+1 = ti + h.

b) If err > 1, the step size was too large: compute yn+1 at time ti+1 =
ti + hopt.

5. Set h = hopt and proceed with step 2.

In step 4a, it is also possible to use the more accurate value ŷn+1.

Embedded Methods. The step size prediction even can be improved using the
combination of two Runge-Kutta methods employing the same function evaluations.
This kind of step size control is known as embedded method. Embedded methods
have the advantage that the increments ki just have to be computed once for both
methods. Often, this idea is combined with the first same as last (FSAL) trick: the
last increment of the method with more stages is set to the numerical result of the
method with less stages. Note that there is no general rule for the size of the stage
numbers s of the lower-order and ŝ of the higher-order method. Depending on the
coefficients, it may happen that s is smaller or larger than or even equal to ŝ. In
this paragraph, we just assume that p̂ = p+ 1 holds.

Definition 4.2 (Embedded Runge-Kutta Methods, [30]). Let the two Runge-Kutta
methods for yn+1 and ŷn+1 with order p and p̂ = p + 1 be given using the same
function values:

yn+1 = yn + h
s∑
i=1

biki, ŷn+1 = yn + h
ŝ∑
i=1

b̂iki, ki = f(yn + h
ŝ∑
j=1

aijkj) (4.6)

Then, the difference yn+1 − ŷn+1 can be used as cheap way of an error estimation.

Next, there is an example of an embedded method using the Bogacki-Shampine
coefficients suggested by Bogacki and Shampine in [6]. It has convergence order (2)3
such that ŷn+1 is the higher-order approximation with convergence order p̂ = 3 and
yn+1 the lower-order approximation with p = 2. The characteristic of this scheme
is that the higher-order approximation ŷn+1 determines the numerical result. The
coefficients are mentioned in table 4.1.

Examples 4.3 (Embedded Runge-Kutta with Bogacki-Shampine Coefficients, [6]).

ŷn+1 = yn + h
ŝ=3∑
i=1

b̂iki = yn +
2

9
hk1 +

1

3
hk2 +

4

9
hk3, (4.7a)

yn+1 = yn + h
s=4∑
i=1

biki = yn +
7

24
hk1 +

1

4
hk2 +

1

3
hk3 +

1

8
hk4 (4.7b)

k1 = f(yn), k2 = f(yn +
h

2
k1), k3 = f(yn +

3

4
hk2), k4 = yn+1 (4.7c)
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Table 4.1: Bogacki-Shampine coefficients
0

1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/ 3 4/9 0 ← b̂

7/24 1/4 1/3 1/8 ← b

The example combines the definition of embedded Runge-Kutta methods 4.2 with
the Bogacki-Shampine coefficients stated in table 4.1. Here, the last increment k4

of yn+1 is set as k4 := ŷn+1. Hence, ŷn+1 is computed with ŝ = 3 stages and yn+1

is calculated from previously computed increments k1, k2, k3 and the numerical
approximation of higher order ŷn+1. The main benefit is that an error control
without additional function evaluations is possible. All embedded Runge-Kutta
schemes for the Abelian case can be easily adapted to Runge-Kutta schemes for Lie
groups as described in the next part.

4.1.2 Step Size Control for Munthe-Kaas Runge-Kutta
Schemes

Step size predictions for Runge-Kutta methods of Munthe-Kaas type work similar
as general step size predictions for Runge-Kutta methods. Starting from the initial
value problem (4.1)

Ẏ (t) = A(t) · Y (t) with initial values Y (t0) = Yn,

the numerical approximations Yn+1 and Ŷn+1 with convergence order p and p̂ = p+1
are needed for the error estimation based on the difference of Yn+1 and Ŷn+1 such that
the optimal step size can be determined. Since Munthe-Kaas Runge-Kutta schemes
are solved in the Lie algebra and then mapped via the exponential function via

Yn+1 = exp(Ωn+1)Yn and Ŷn+1 = exp(Ω̂n+1)Yn, (4.8)

in the Lie group, the error of the method already occurs in the numerical approxima-
tions Ωn+1 and Ω̂n+1, i.e., the error estimation is based on the Lie algebra elements
Ωn+1 and Ω̂n+1. This is advantageous because (due to the linear structure of the
Lie algebra) a comparison of its elements is simpler than for Lie group elements.

Nevertheless, the formula for the error measure (4.3) has to be adapted to matrices
instead of vectors:

err =
||Ω̂n+1 − Ωn+1||

ATOL+RTOL · ||Ω̂n+1||
. (4.9)
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Since the numerical approximations Ωn+1 and Ω̂n+1 are elements of the matrix Lie
algebra g, the norms ||Ω̂n+1−Ωn+1|| and ||Ω̂n+1|| have to be chosen as matrix norms
like the Frobenius norm, the spectral norm or the row sum norm. ATOL and RTOL
are prescribed error tolerances as usual.

The numerical approximations Ωn+1 and Ω̂n+1 of convergence order p and p̂ = p+ 1
are computed via Munthe-Kaas Runge-Kutta schemes according to algorithm 3.22.
So, the differential equations

Ω̇ =

p−2∑
k=0

Bk

k!
adkΩ(A) =: fp−2(Ω, A) (4.10a)

and ˙̂
Ω =

p̂−2∑
k=0

Bk

k!
= adkΩ(A) =

p−1∑
k=0

Bk

k!
adkΩ(A) =: fp−1(Ω, A) (4.10b)

are considered and it holds

Ωn+1 = Ωn + h

s∑
i=1

biKi with Ki = fp−2

(
Ω̄i, A(Ȳi)

)
(4.10c)

and Ω̂n+1 = Ωn + h
ŝ∑
i=1

b̂iK̂i with K̂i = fp−1

(
ˆ̄Ωi, A( ˆ̄Yi)

)
(4.10d)

with Ωn = 0 and internal stages

Ω̄i = Ωn + h
s∑
j=1

aijKj, Ȳi = exp(Ω̄i)Yn for i = 1, . . . , s, (4.10e)

ˆ̄Ωi = Ωn + h
ŝ∑
j=1

âijK̂j,
ˆ̄Yi = exp( ˆ̄Ωi)Yn for i = 1, . . . , ŝ. (4.10f)

Afterwards, the results can be mapped from the Lie algebra g to the Lie group G
via equation (4.8).

So, the step size control for Lie group problems using the Munthe-Kaas Runge-
Kutta scheme is similar to the one for differential equations in the Abelian case.
Just the error measure has to be adapted to matrix Lie algebras and an additional
mapping to the Lie group is necessary. The whole procedure is explained in the
next algorithm.

Algorithm 4.4 (Step Size Control using Munthe-Kaas Runge-Kutta methods).
Given is an initial value problem (4.1)

Ẏ (t) = A(t) · Y (t) with initial values Y (t0) = Yn.

A step size control is performed as follows:

1. Start from an initial step size h at time t0.
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2. Identify Y and Ω due to

Y (t) = exp(Ω(t)) and Ω̇(t) = d exp−1
Ω (A(t)) (4.11)

3. Compute two numerical solutions Ωn+1 and Ω̂n+1 with convergence order p
and p̂ = p+ 1 according to equations (4.10).

4. Measure the error with an error measure like (4.9).

5. Compute the step size for the next step hopt with (4.5).

a) If err ≤ 1,

• compute Yn+1 = exp(Ωn+1)Yn

• and take Yn+1 as new value at time ti+1 = ti + h

b) If err > 1, the step size was too large.

6. Set h = hopt and proceed with step 3.

Embedded Munthe-Kaas Runge Kutta Methods. As mentioned before, em-
bedded Runge-Kutta schemes are computed using the same set of coefficients for
the different numerical approximations of convergence order p and p + 1. This
means, the increments ki, i = 1, . . . , s are the same for both approximations and
just computed once. For Munthe-Kaas Runge-Kutta schemes, there are different
increments Ki and K̂i, i = 1, . . . , s described by equations (4.10c) and (4.10d):

Ki = fp−2

(
Ω̄i, A(Ȳi)

)
and K̂i = fp−1

(
Ω̄i, A(Ȳi)

)
= fp−2

(
Ω̄i, A(Ȳi)

)
+

Bp−1

(p− 1)!
adp−1

Ω (A)

The difference depends on the truncation index of the Munthe-Kaas scheme accord-
ing to the desired convergence order. The truncation index induces a model error
and has to be at least p−2 for a desired convergence order p and p̂−2 for the desired
convergence order p̂. Thus, it is also possible to use the more accurate model with
truncation index p̂− 2 = p− 1 for both schemes, i.e. set

Ki = fp−1

(
Ω̄i, A(Ȳi)

)
=

p−1∑
k≥0

Bk

k!
adkΩ(A). (4.12)

Based on these considerations, the embedded Munthe-Kaas Runge-Kutta method
can be defined as follows:

Definition 4.5 (Embedded Munthe-Kaas Runge Kutta Methods). The embedded
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Munthe-Kaas Runge Kutta scheme reads

Ωn+1 = h
s∑
i=1

biKi and Ω̂n+1 = h

ŝ∑
i=1

b̂iKi, (4.13a)

and uses the increments

Ki = fp−1

(
Ω̄i, A(Ȳi)

)
with Ω̄i = h

s∑
j=1

aijKj and Ȳi = exp(Ω̄i)Yn (4.13b)

for all stages i = 1, . . . ,max(s, ŝ).

It is advantageous to use this embedded Munthe-Kaas Runge-Kutta scheme at step
3 of the step size prediction explained in algorithm 4.4. Next, we state an example
of an embedded Munthe-Kaas Runge-Kutta scheme with Bogacki-Shampine coeffi-
cients (see table 4.1). Here, Ωn+1 is computed with s = 4 stages and convergence
order p = 2 and Ω̂n+1 with ŝ = 3 stages and convergence order p̂ = 3 = p+ 1.

Examples 4.6 (Embedded MK-RK Method with Bogacki-Shampine Coefficients).
Applying the Bogacki-Shampine coefficients of table 4.1 on the embedded Munthe-
Kaas Runge-Kutta scheme (4.13) yields

Ω̂n+1 = h
(1

2
K1 +

1

3
K2 +

4

9
K3

)
(4.14a)

and Ωn+1 = h
( 7

24
K1 +

1

4
K2 +

1

3
K3 +

1

8
K4

)
(4.14b)

According to theorem 3.21 and formula (3.46), the increments Ki, i = 1, . . . , 4, are
computed as

Ki = f1

(
Ω̄i, A(Ȳi)

)
= A(Ȳi)−

1

2

[
Ω̄i, A(Ȳi)

]
(4.14c)

for a numerical approximation of order p̂ = 3. Here, the internal stages

Ω̄1 = Ωn = 0, Ω̄2 =
h

2
K1, Ω̄3 =

3

4
hK2, Ω̄4 = Ωn+1 (4.14d)

are used and Ȳi is set to Ȳi = exp(Ω̄i) for i = 1, . . . , 4.

Adaption to Lattice QCD. Our aim is the development of numerical schemes
for differential equations on Lie groups for Lattice QCD. Indeed, the embedded
Munthe-Kaas Runge-Kutta scheme can be used for the computation of the Wilson
flow (2.80), i.e.,

V̇j(t) = Zj(t) · Vj(t), (4.15a)
Zj = F ([Vj]), (4.15b)
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j = 0, . . . , nl−1, in Lattice QCD. The Wilson flow is a coupled differential equation
but we consider just the differential equation (4.15a) and suppose that the algebraic
equation (4.15b) is already computed. So, each of the nl equations of formula (4.15a)
has the shape of the single scalar equation (4.1) – Zj(t) is situated in the Lie algebra
su(N,C) and Vj(t) in the Lie group SU(N,C).

Compared to algorithm 4.4, the only difference is that the differential equation has to
be solved for nl instead of just one lattice points. So, the numerical approximations

{Ωn+1,0, . . . ,Ωn+1,nl−1} and {Ω̂n+1,0. . . . , Ω̂n+1,nl−1}

have to be computed. According to this, the error measure must be computed from
all nl single errors, for example with the Euclidean norm

err =

√√√√ 1

nl

nl−1∑
j=0

( ||Ω̂n+1,j − Ωn+1,j||
ATOL+RTOL · ||Ω̂n+1,j||

)2

. (4.16)

In chapter 8.2, an embedded Munthe-Kaas Runge-Kutta scheme for the Wilson flow
is described and simulated for a single configuration of a lattice gauge field.

4.2 The Cayley Transform

Almost all methods for solving the differential equations Ẏ = AY on Lie groups are
based on the usage of a local parameterization (3.5), i.e.,

Ψ : g→ G, Y (t) = Ψ(Ω(t)). (4.17)

of the Lie group. Here, Ψ must be a mapping from the Lie algebra to its associated
Lie group. Furthermore, there is a new unknown Ω(t) which is the solution of a dif-
ferential equation in the Lie algebra implicitly given by the local parameterization:

g→ g : Ω̇(t) = d Ψ−1
Ω(t)(A(t)) (4.18)

Usually, the exponential function is taken as local parameterization. The theorem
of Magnus (theorem 3.19) states that Lie group differential equation of the shape
Y (t) = A(t)Y (t) can be solved by using the mapping Y (t) = exp(Ω(t))Yn with
new unknown Ω being the result of Ω̇ = d exp−1

Ω . Unfortunately, d exp−1
Ω is an

infinite series based on powers of the adjoint operator which has some disadvantages.
First, the infinite series has to be truncated somewhere such that a model error is
introduced. Furthermore, it is difficult to develop higher-order methods since the
powers of the adjoint operator have to be considered in the computation of the
order conditions leading to unpleasant expressions.
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4.2.1 The Cayley Transform as Local Parameterization

The local parameterization can be considered in a more abstract way as already
mentioned in paragraph 3.1.1:

Algorithm 4.7 (Numerical solution of a Lie group IVP using a local parameteri-
zation). Given is a differential equation on a Lie group (4.1)

Ẏ (t) = A(t) · Y (t) with initial values Y (t0) = Yn,

i.e. Y (t) and Yn are elements of the Lie group G and A(t) an element of the
associated Lie algebra g. Then, a numerical solution can be obtained performing
the following steps

1. Identify a mapping

Ψ : g→ G, Y (t) = Ψ
(
Ω(t)

)
· Y (t0) (4.19)

from the Lie algebra to the corresponding Lie group with unknown Ω(t) ∈ g.

2. The function Ω(t) is the result of the initial value problem

Ω̇ = d Ψ−1
Ω

(
A(t)

)
. (4.20)

with initial value Ωn = 0 ∈ g.

3. Compute the numerical approximation Ωn+1 ≈ Ω(t0 + h) with any numerical
method in the Lie algebra g.

4. Finally, the approximation Ωn+1 is mapped to the Lie group:

Yn+1 = Ψ
(
Ωn+1

)
· Yn. (4.21)

Most frequently, the exponential function is chosen as mapping from the Lie algebra
to the Lie group. Since the only requirements on the mapping is that it maps from
the Lie algebra to the Lie group and that the derivative of its inverse function exists,
also other mappings can be chosen instead of the exponential function.

One example for a different local parameterization Ψ is the Cayley transform which
just exists for quadratic Lie groups

G = {Y |Y HPY = P} (4.22)

with given constant matrix P . The corresponding Lie algebra reads

g = {Ω|PΩ + ΩHP = 0}. (4.23)

The Lie group SU(N) used in Lattice QCD is an example of a quadratic Lie group
with identity matrix P . The Cayley transform is mentioned in the next lemma:
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Lemma 4.8 (Cayley transform, [29]). Consider a quadratic matrix Lie group G
and its Lie algebra g. The Cayley transform is defined as

g 7→ G : Ω 7→ cay(Ω) =
(
I − Ω(t)

)−1(
I + Ω(t)

)
. (4.24)

i.e., for A ∈ g we have cay(A) ∈ G. Moreover, cay is a local diffeomorphism in a
neighborhood of A = 0.

It is obvious that the Cayley transform is just applicable if the matrix I−Ω has full
rank such that is invertible. Indeed, this is the case for special unitary Lie groups
SU(N,C) because they are quadratic Lie groups with constant matrix P = I. The
appropriate Lie algebra su(N,C) consists of traceless and anti-hermitian matrices
such that its eigenvalues are pure imaginary and the matrix (I − Ω) is invertible.

For the solution of Ω̇ (needed in the second step of algorithm 4.7), the inverse of
the derivative of the Cayley mapping is given in the following definition.

Definition 4.9 (Inverse of the derivative of the Cayley mapping, [29]). The differ-
ential equation Ω̇(t) = d cay−1

Ω can be computed via

g 7→ g : d cay−1
Ω

(
A(t)

)
=

1

2

(
I − Ω(t)

)
A(t)

(
I + Ω(t)

)
. (4.25)

It is a differential equation in the Lie algebra g.

The Cayley transform has two big advantages compared to the exponential function:
it has a closed form, i.e. it introduces no model error. Furthermore, the computa-
tional effort is lower than for the dexpinv equation. This argument holds especially
for higher order methods since no powers of the adjoint operator are needed. Fur-
thermore, there are analytical formulae for the inverse of the matrices for N = 2
and N = 3.

All already investigated methods in this thesis can be adapted to a local parame-
terization using the Cayley transform provided that the underlying Lie group is a
quadratic one.

4.2.2 Numerical Integration with the Cayley Mapping

The different local parameterizations influence the shape of numerical integration
schemes on Lie groups for the initial value problem (4.1). This is shown for the
example of the Lie-Euler method. Following algorithm 4.7, Y (t) is described by the
parameterization Y (t) = Ψ(Ω(t))Yn where Ω(t) is given by the differential equation
Ω̇(t) = d Ψ−1

Ω (A(t)) in the Lie algebra.

For the exponential function, it holds Ω̇(t) = d exp−1
Ω (A(t)) which is an infinite

series as mentioned in equation (3.13). For convergence order p = 1, it is sufficient
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to use
Ω̇(t) = d exp−1

Ω (A(t)) ≈ A (4.26)

such that Ωn+1 is computed as Ωn+1 = hA(Yn).

Thus, the standard Lie-Euler method using the exponential function is given by

Yn+1 = exp
(
hA(Yn)

)
Yn (4.27)

as already stated in definition 3.17. The Lie-Euler method with Cayley transform
is formulated as

Definition 4.10 (Lie Euler method with Cayley transform). Let the initial value
problem (4.1)

Ẏ (t) = A(t) · Y (t) with initial values Y (t0) = Yn

with Y, Yn ∈ G, A(Y ) ∈ g be given. Then, the method

Yn+1 = cay
(
h
2
A(Yn)

)
Yn =

(
I − h

2
A(Yn)

)−1(
I + h

2
A(Yn)

)
Yn (4.28)

is called Cayley-Lie-Euler method.

Comparing equations (4.27) and (4.28), the exponential function is evaluated at
points hA(Yn) and the Cayley transform at h

2
A(Yn). At a first glance, this is a bit

confusing but due to the different shapes of Ω̇. For the exponential function, Ω̇ is
given as A(Yn). For the Cayley transform, Ω̇(t) is computed via equation (4.25).
With initial value Ωn = 0, Ωn+1 is computed as

Ωn+1 = Ωn + h
1

2
(I − Ωn)An(I + Ωn) = hA/2. (4.29)

The Lie-Euler method is a special case of Munthe-Kaas Runge-Kutta methods of
convergence order p = 1 for the different local parameterizations exp and cay. In
general, Munthe-Kaas Runge-Kutta schemes with Cayley transform used as local
parameterization are formulated as follows.

Algorithm 4.11 (Munthe-Kaas Runge-Kutta Method using the Cayley Mapping).
Given is a differential equation

Ẏ = A(t) · Y (t), Y (t) ∈ G,A(t) ∈ g . (4.30)

This differential equation is solved numerically following these steps:

1. Identify a mapping

Ψ : g→ G, Y (t) = cay(Ω(t)) · Y (t0)

=
(
I − Ω(t)

)−1(
I + Ω(t)

)
· Y (t0) (4.31)

from the Lie algebra to the corresponding Lie group with unknown Ω(t) ∈ g
and initial value Ω(t0) = Ωn = 0.
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2. Ω(t) is defined by the derivative of the inverse of the mapping Ψ:

Ω̇ = d cay−1
Ω

(
A(t)

)
=

1

2

(
I − Ω(t)

)
A(t)

(
I + Ω(t)

)
. (4.32)

3. Solve Ω̇ = d cay−1
Ω

(
A(t)

)
numerically, for example, with a Runge-Kutta method.

4. Map the solution Ωn+1 to the Lie group:

Yn+1 =
(
I − Ω(t)

)−1(
I + Ω(t)

)
· Y0 . (4.33)

Since there is no model error introduced in this case, the convergence order of the
numerical method is met in any case.

Crouch-Grossmann schemes can also be used either with the exponential function or
the Cayley transform. This is described, for example, for partitioned Runge-Kutta
methods in a Lie group setting by Engo [18] but not the subject of this thesis.

The Cayley transform as alternative local parameterization is used for the Leapfrog
scheme in paragraph 5.2.3. At the end, the Cayley transform is utilized in a simu-
lation of the Hamiltonian equations of motion by means of the Leapfrog scheme in
part 7.2.2.

4.3 Summary

In this chapter, Munthe-Kaas Runge-Kutta methods for differential equations on
Lie groups have been developed further.

Section 4.1 combines a step size prediction with Munthe-Kaas Runge-Kutta schemes.
Thus, a step size control using Munthe-Kaas Runge-Kutta schemes is achieved with
focus on cheap embedded schemes via algorithm 4.4 using equations (4.13). This
method can be applied, for example, on the Wilson flow. The step size control using
embedded Munthe-Kaas Runge-Kutta schemes with Bogacki-Shampine coefficients
for the Wilson flow and its numerical results can be found in section 8.2.

In section 4.2, the focus is put on the local parameterization of the Lie group
elements used for the numerical integration of differential equations on Lie groups.
It is suggested to use the Cayley transform instead of the exponential function.
The advantages of the Cayley transform are on the one side low computational cost
for matrix Lie groups of small size (N=2 or N=3) and on the other side the fact
that the inverse of its derivative can be computed as a closed form. Compared to
the exponential function, there is no additional model error introduced. Thus, the
differential equation in the Lia algebra, i.e., Ω̇ = d Ψ−1(A), remains the same for
all desired convergence orders. The Cayley transform has the small disadvantage
that it has to be ensured that the Lie group is a quadratic Lie group and that the
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inverse of I −Ω(t) indeed exists, i.e., that the matrix I −Ω(t) has full rank. These
points have to be investigated before the utilization of the Cayley transform. For
applications in Lattice QCD, the Cayley transform can be used without restriction
because special unitary Lie groups are quadratic and all eigenvalues of I −Ω(t) are
non-zero. In this topic, the exponential function could be replaced by the Cayley
transform in any numerical integration method for differential equations on Lie
groups.

We test the Cayley transform as local parameterization in the context of Lattice
QCD: the Hamiltonian equations of motion occurring in the Hybrid Monte Carlo
method are simulated with the Leapfrog method using the Cayley transform. This
geometric method is described in chapter 5.2 in subsection 5.2.3 and its application
on a lattice gauge field is shown in chapter 7 in paragraph 7.2.2. In a further step,
both schemes could be combined and also applied on the Wilson flow.





5 Chapter 5

Geometric Numerical
Integration

For Hamiltonian systems, a system of coupled differential equations

Ẏ (t) = A(Y (t)) · Y (t), Ȧ(t) = F (Y (t)) (5.1)

on a Lie group and its corresponding Lie algebra may arise. Here, Y is in the Lie
group, A in the Lie algebra and F is a Lie-algebra valued function which maps an
element from the Lie group to the Lie algebra. The first equation is a differential
equation on a Lie group as explained in chapter 3. It has the same shape and prop-
erties as equation (3.1) and arises from the derivative of the Hamiltonian H(Y,A)
with respect to the Lie algebra element A. The second equation Ȧ(t) = F (Y (t))
is a differential equation in the linear space of the Lie algebra such that it can be
solved with any general numerical integration method. It is closely related to the
derivative of the Hamiltonian H(Y,A) with respect to the Lie group element Y .
Compared to the Hamiltonian equations of motion for Lattice QCD computations
depending on F ([Y ]s), i.e., the function F depends on several Lie group elements,
we neglect this fact here. For the method’s development in this chapter, we assume
that we have two coupled scalar differential equations.

Hamiltonian systems have to be solved by geometric numerical integration schemes
for some reasons. First, the flow of the system preserves the geometric properties
such that the numerical integration scheme should do it as well. Moreover, geometric
integration is quite important for the development of schemes that occur in the
context of the Molecular Dynamics step of the HMC. Here, the numerical integration
scheme must be time-reversible and volume-preserving to compute the expectation
values in a correct way. So, the concept of geometric integration is introduced in
section 5.1 taken from [29]. It can also be found, for example, in the textbook of
Highham and Griffiths [24] or the recent overview article of Bou-Rabee and Sanz-
Serna [8].

The methods described in the previous chapter 4 can be used for the numerical time
integration of differential equations on Lie groups. In general, these methods are not
time-reversible and not volume-preserving such that numerical integration methods
with these properties have to be investigated in more detail. In this chapter, some
new geometric integration methods are developed with focus on its application in
Lattice QCD: the Cayley-Leapfrog method, symmetric partitioned Runge-Kutta
schemes and symmetric and symplectic projection schemes. All schemes are finally
applied on the Hamiltonian equations of motion for a lattice gauge field such that

71
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the numerical results are shown and discussed in chapter 7.

This chapter is organized as follows: it starts with a short introduction on geometric
integration in section 5.1 where the terms symmetry, time-reversibility, volume-
preservation and symplecticity are explained.
Then, a section 5.2 about the Leapfrog scheme follows. It opens with the common
Leapfrog or Störmer-Verlet scheme for the Abelian case in paragraph 5.2.1 and turns
to the Leapfrog scheme for Lie group / Lie algebra problems in paragraph 5.2.2.
Finally, the Cayley transform (described in section 4.2) is put in the context of the
Leapfrog method in paragraph 5.2.3.

In a next subsection 5.3, symmetric partitioned Runge-Kutta methods are ex-
plained. First, partitioned Runge-Kutta schemes for the Abelian case are mentioned
and then adapted to partitioned Munthe-Kaas Runge-Kutta methods. Afterwards,
the symmetry conditions for partitioned Munthe-Kaas Runge-Kutta methods are
investigated such that the schemes finally are adapted to be symmetric using three
different ways. Based on one of the symmetric schemes, order conditions for con-
vergence order 3 are developed and one example for a set of coefficients is derived.

The last section 5.4 deals with symmetric and symplectic projection schemes. Based
on symmetric projection methods symmetric and volume-preserving projection meth-
ods for Lie group / Lie algebra problems are evolved. Here, it is shown that the
dependence on the projection parameter is essential for the method.

5.1 Geometric Integration

In many applications, the Hamiltonian system

ẏ = J−1∇H(y) with J =

(
0 I
−I 0

)
, (5.2)

y ∈ R2n, H : R2n → R and J ∈ R2n×2n with blocks of identity matrices I of size n×n
has to be solved numerically. Here, some geometric numeric integration schemes
have to be used to preserve the geometric properties of the system. The term
geometric integration has been introduced by Sanz-Serna [56] and comprises the
terms symmetry, symplecticity, time-reversibility and volume-preservation (some-
times also called area-preservation) depending on the context. Most of the time,
the terms symmetry and symplecticity are used in mathematical literature and
time-reversibility and volume-preservation in applications meaning similar but at
the end different things. The solution of the system (5.2) can be described by its
flow ϕt(yn) mentioned in the next definition.

Definition 5.1 (Flow of a system, [29]). The flow ϕt(yn) describes the solution of
the differential equation

ẏ = f(y), y(t0) = yn with y, yn ∈ Rn, f : Rn → R
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described in (3.17) with respect to its initial values as

ϕt(yn) := y(t, t0, f). (5.3)

As mentioned in the introduction of this chapter, the flow ϕt preserves the geometric
properties symplecticity, symmetry and time-reversibility for Hamiltonian systems
(5.2) which are introduced in definitions 5.2 to 5.6.

Definition 5.2 (Symplecticity of a flow, [29]). A flow ϕt is symplectic if it holds(∂ϕt
∂yn

)T
J
(∂ϕt
∂yn

)
= J with J =

(
0 I
−I 0

)
. (5.4)

Symplecticity implies that the volume of the phase space stays constant which leads
to the definition for volume-preservation.

Definition 5.3 (Volume-Preservation of a flow). The flow ϕt preserves the volume
of the phase space if ∣∣∣det

(∂ϕt
∂yn

)∣∣∣ = 1. (5.5)

Volume-preservation and symplecticity are closely related to each other. Equation
(5.4) is equivalent to the fact that the determinant of the Jacobian ∂ϕt

∂yn
takes the

value one, i.e.

det
(∂ϕt
∂yn

)
= 1. (5.6)

This leads directly to the volume-preservation (5.5) whereas volume-preservation
does not imply symplecticity because the determinant of the Jacobian may take the
value −1.

The terms symmetry and time-reversibility are also closely linked together via the
term ρ-reversibility.

Definition 5.4 (ρ-reversible differential equation, [29]). The exact flow ϕt of a
ρ-reversible differential equation satisfies

ρ ◦ ϕt = ϕ−t ◦ ρ = ϕ−1
−t ◦ ρ (5.7)

Definition 5.5 (Symmetry of a flow, [29]). A flow ϕt is called symmetric if it
satisfies

ϕt ◦ ϕ−t = id or equivalently ϕt = ϕ−1
−t . (5.8)

Here ϕ−t means that the sign of the time of the flow is reversed in order that it
is computed backward in time. The expression ϕ−1 implies that the flow itself is
reversed. If both expressions coincide, i.e. ϕ−t = ϕ−1, the flow is symmetric. If the
flow is in addition ρ-reversible
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Definition 5.6 (Time-reversibility of a flow, [29]). A flow ϕt is time-reversible if it
holds

ρ ◦ ϕt ◦ ρ ◦ ϕt = id with ρ =

(
−I 0
0 I

)
, (5.9)

provided that ϕt is symmetric, i.e. ϕt = ϕ−1
−t .

The flow of a system (3.17) should be approximated by a numerical integration
method

Φh : Rn → Rn : yn 7→ yn+1 = Φh(yn, h, f) (5.10)

which preserves the geometric properties symplecticity, symmetry and time-reversibility.
The definition of these terms for numerical methods Φh are quite similar to the def-
initions of the terms for the flow:

Definition 5.7 (Symplecticity, [29]). The numerical one-step scheme Φh is sym-
plectic if it holds (∂Φh

∂yn

)T
J
(∂Φh

∂yn

)
= J with J =

(
0 I
−I 0

)
(5.11)

Definition 5.8 (Volume-Preservation, [29]). The numerical one-step scheme Φh is
volume-preserving if ∣∣∣det

(∂Φh

∂yn

)∣∣∣ = 1.

Volume-preservation is a direct consequence of symplecticity following from defini-
tion 5.7.

Definition 5.9 (Symmetry, [29]). A numerical one-step method Φh is called sym-
metric if it satisfies

Φh ◦ Φ−h = id or equivalently Φh = Φ−1
−h. (5.12)

Definition 5.10 (Adjoint, [29]). The function

Φ−1
−h =: Φ∗h (5.13)

is called adjoint of the method Φh. The adjoint can be computed using the method
Φh itself by exchanging the positive step size h against the negative step size −h
and the initial values yn versus the results yn+1 = Φ(yn).

Symmetry means that the numerical scheme Φh coincides with its adjoint Φ∗h. It can
be checked by setting yn+1 = Φh(yn), changing h↔ −h and yn+1 ↔ yn and solving
the equation for yn+1. If it holds yn+1 = Φh(yn) again, the scheme is symmetric.

Definition 5.11 (Time-reversibility, [29]). A numerical one-step method Φh is time-
reversible if it holds

ρ ◦ Φh ◦ ρ ◦ Φh = id with ρ =

(
−I 0
0 I

)
, (5.14)
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provided that Φh is symmetric, i.e. Φh = Φ−1
−h.

The condition for time-reversibility is equivalent to the condition

ρ ◦ Φh = (ρ ◦ Φh)
−1 = Φ−1

h ◦ ρ = Φ−h ◦ ρ (5.15)

These terms will be used for the development of geometric integration methods on
Lie groups in the next paragraphs of this chapter and also for the simulations in
chapter 7.

5.2 Störmer-Verlet or Leapfrog Method

The most popular geometric numerical integration method is the Leapfrog or Störmer-
Verlet method. For more information, Hairer et al provide an overview which can
be found in [27]. The Leapfrog scheme for the Abelian case and the formulation of
the Hamiltonian system is taken from [29].

5.2.1 The Abelian Case

The Hamiltonian system (5.2) can be stated as(
ṗ
q̇

)
= J−1

(
Hp

Hq

)
with J =

(
0 I
−I 0

)
and p, q,Hp,Hq ∈ Rn. (5.16)

Here, y is replaced by (p, q)>. This formulation is equivalent to the formulation of
the Hamiltonian equations of motion which read

ṗ = −Hq(p, q) and q̇ = Hp(p, q). (5.17)

Following the line of [28], the Leapfrog or Störmer-Verlet scheme for the partitioned
system (5.17) is defined as follows:

Definition 5.12 (Leapfrog or Störmer-Verlet, [29]). Let the initial value problem
(5.17) be given with initial values pn, qn ∈ Rn. The differential equations can be
integrated numerically as

pn+ 1
2

= pn − h
2
Hq(pn, qn),

qn+1 = qn + h
2

(
Hp(pn+ 1

2
, qn) +Hp(pn+ 1

2
, qn+1)

)
, (5.18)

pn+1 = pn+ 1
2
− h

2
Hq(pn+ 1

2
, qn+1)

which is called Leapfrog or Störmer-Verlet method.
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This Störmer-Verlet method is composed of two symplectic Euler steps

pn+1 = pn − hHq(pn+1, qn), qn+1 = qn + hHp(pn+1, qn) (5.19a)

or

pn+1 = pn − hHq(pn, qn+1), qn+1 = qn + hHp(pn, qn+1) (5.19b)

of convergence order 1. More precise, the symplectic Euler scheme (5.19a) is applied
on the initial values (p0, q0) with half step size to reach (pn+ 1

2
, qn+ 1

2
) and afterwards

the symplectic Euler scheme (5.19b) leads to (p1, q1):

pn+ 1
2

= pn −
h

2
Hq(pn+ 1

2
, qn), (5.20a)

qn+ 1
2

= qn +
h

2
Hp(pn+ 1

2
, qn) (5.20b)

qn+1 = qn+ 1
2

+
h

2
Hp(pn+ 1

2
, qn+1) (5.20c)

pn+1 = pn+ 1
2
− h

2
Hq(pn+ 1

2
, qn+1), (5.20d)

Finally, the combination of step (5.20b) and (5.20c) leads to the Störmer-Verlet
scheme (5.18). Due to the symmetry in the construction, the leading error terms of
the symplectic Euler schemes vanish in order that the Leapfrog scheme has conver-
gence order p = 2.

For separable Hamiltonians H(p, q) = T (p) +U(q), the Störmer-Verlet scheme sim-
plifies to

pn+ 1
2

= pn − h
2
Hq(qn),

qn+1 = qn + hHp(pn+ 1
2
), (5.21)

pn+1 = pn+ 1
2
− h

2
Hq(qn+1)

and the scheme turns to be explicit, i.e. it is composed of three single explicit Euler
steps with step size h or h

2
.

Furthermore, it is a geometric integration scheme in the sense that it is symplectic
and thus volume-preserving, symmetric and time-reversible. All these properties
are well-known and can be shown in a straightforward way. It is shown in [29]
that the composition of one or more symplectic, volume-preserving, symmetric or
time-reversible schemes is again symplectic, volume-preserving, symmetric or time-
reversible.
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The symplecticity can be shown by computing the determinant of the Jacobians(
∂(pn+ 1

2
, qn)

∂(pn, qn)

)
=

(
1 −h

2
Hqq(qn)

0 1

)
, (5.22)(

∂(pn+ 1
2
, qn+1)

∂(pn+ 1
2
, qn)

)
=

(
1 0

hHpp(pn+ 1
2
) 1

)
, (5.23)(

∂(pn+1, qn+1)

∂(pn+ 1
2
, qn+1)

)
=

(
1 −h

2
Hqq(qn+1)

0 1

)
(5.24)

of the three single steps which all take the values 1 in order that the single steps
are symplectic. Thus, also the combination of the steps is symplectic and volume
preservation follows immediately.

If the part T (p) of the Hamiltonian is symmetric, i.e. it holds T (p) = −T (−p),
the Leapfrog scheme is also time-reversible. Symmetry can be easily shown by ex-
changing (h, pn, qn)↔ (−h, pn+1, qn+1). Based on that, a comparison of ρ◦Ψh(p0, q0)
and Ψh(−p0, q0) shows that both terms coincide with the result that the Leapfrog
scheme is time-reversible.

It has to be mentioned that the scheme (5.18) is known as pqp-Leapfrog scheme but
there is also the possibility to use a qpq-Leapfrog scheme

qn+ 1
2

= pn −
h

2
Hp(pn, qn),

pn+1 = pn + hHq(pn, qn+ 1
2
), (5.25)

qn+1 = qn+ 1
2
− h

2
Hp(pn+1, qn+ 1

2
)

Both schemes (5.18) and (5.25) lead to different results of convergence order 2. The
Leapfrog scheme can also be rewritten as partitioned Runge-Kutta scheme as given
in definition 5.16 with two stages and coefficients a21 = b1 = b2 = 1

2
, â21 = 1, b̂2 = 1.

All other coefficients of the scheme are zero.

5.2.2 Leapfrog for Lie Groups

The system of differential equations on Lie groups and Lie algebras given in equation
(5.1) in the beginning of this chapter is achieved via the Hamiltonian system

Ẏ = HA = A · Y Ȧ = −HY = F (Y ). (5.26)

Here, Y is in the Lie group G, A in the Lie algebra g and F : G 7→ g a function that
maps from the Lie group G to the Lie algebra g. The proper initial values (Yn, An)
have to be a pair of Lie group / Lie algebra elements such that (Yn, An) ∈ G× g.

All in all, the initial value problem is given in the following definition.
Definition 5.13 (Lie group / Lie algebra initial value problem). Let G be a matrix
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Lie group and g its associated matrix Lie algebra. In addition, let Y (t) ∈ G,
A(Y (t)) ∈ g and F : G 7→ g be a Lie algebra-valued function.

Then, the differential equations

Ẏ (t) = A(Y (t)) · Y (t) with initial values An ∈ g, Yn ∈ G, (5.27a)

Ȧ(t) = F (Y (t)) with initial values Yn ∈ G (5.27b)

are defined as Lie group / Lie algebra initial value problem. Finally, the numerical
approximations Yn+1 are settled in the Lie group G and An+1 in the Lie algebra g.

An application of the Leapfrog scheme (5.18) for the Abelian case would lead to

An+ 1
2

= An − h
2
HY (An, Yn), (5.28a)

Yn+1 = Yn + h
2

(
HA(An+ 1

2
, Yn) +HA(An+ 1

2
, Yn+1)

)
, (5.28b)

An+1 = An+ 1
2
− h

2
HY (An+ 1

2
, Yn+1). (5.28c)

The computation of A is performed in the Lie algebra such that it can be treated
as an equation in the Abelian case. Unfortunately, the update of Y reads

Yn+1 = Yn +
h

2

(
An+ 1

2
· Yn + An+ 1

2
· Yn+1

)
(5.29)

in order that the result would not be in the Lie group any more because the matrix
Lie group is just closed under multiplication.

This problem is already considered in paragraphs 3.1.2 and the Lie group step in
the Leapfrog scheme has to be adapted according to one of the methods described
in section 3.2. Based on the local parameterization Y (t) = Ψ(Ω(t)) (see equation
(3.5)), the differential equation (5.27a) can be expressed as differential equation
Ω̇ =

(
d Ψ−1

Ω

)
A (see (3.11)) in the Lie algrebra whose result is mapped in the Lie

group via the local parameterization. The most common way is the choice of Ψ :=
exp with the result that Ω̇ can be expressed as Ω̇ = A for schemes of convergence
order two. This is a kind of Lie-Euler step described in equation (3.30). So, step
(5.28b) changes from (5.29) to

Ωn+1 = Ωn + hAn+ 1
2
, (5.30)

followed by the mapping Yn+1 = exp(Ωn+1)Yn. In particular, Ω̇ depends just on
a single variable in order that equation (5.30) turns to be explicit. Moreover, the
initial value Ωn takes the value 0.

All in all, the Lie group initial value problem (5.27) can be solved with the Leapfrog
method defined below.

Definition 5.14 (Leapfrog for Lie group / Lie algebra problems). Let the Lie
group / Lie algebra initial value problem (5.27) be given. Then, the Leapfrog or
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Störmer-Verlet scheme is defined as

An+ 1
2

= An + h
2
F (Yn),

Yn+1 = exp(hAn+ 1
2
)Yn, (5.31a)

An+1 = An+ 1
2

+ h
2
F (Yn+1).

Here, the aforementioned equations (5.1) are alternately solved starting and ending
with one half-step.

Another possibility is

Yn+ 1
2

= exp(h
2
An) Yn,

An+1 = An + hF (Yn+ 1
2
), (5.31b)

Yn+1 = exp(h
2
An+1)Yn+h

2
.

Both schemes are explicit and deliver different numerical solutions of convergence
order p = 2. As shown in paragraph 5.2.1 the Leapfrog method is volume-preserving
since it is composed of three volume-preserving steps. The time-reversibility follows
for separable Hamiltonians H(Y,A) = T (A)+U(Y ) with symmetric function T (A).
In the following, we concentrate on the shape of (5.31a) for our discussion.

The Leapfrog scheme is quite important because it is used as basis for the devel-
opment of other higher order methods. In Lattice QCD, for example, splitting
methods, Omelyan methods or force-gradient methods are widely known as higher-
order methods based on the Leapfrog scheme.

The common Leapfrog method (5.31) for Hamiltonian systems formulated as Lie
group / Lie algebra problems stated in definition 5.13 uses the exponential function
as local parameterization of the Lie group element Y (t). As mentioned in section
4.2, also other local parameterization are possible.

5.2.3 Leapfrog using the Cayley Mapping

Usually, the exponential function is used in the Leapfrog method for the mapping
between Lie algebra and Lie group:

g 7→ G : An+ 1
2
7→ Yn+1 = exp(hAn+ 1

2
) Yn. (5.32)

As mentioned in section 4.2, another possibility for quadratic Lie groups as, for
example, SU(N,C) is the usage of the Cayley mapping (4.24)

g 7→ G : Ω 7→ cay(Ω) =
(
I − Ω(t)

)−1(
I + Ω(t)

)
.
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such that the mapping g 7→ G reads

An+ 1
2
7→ Yn+1 = cay(h/2 An+ 1

2
) Yn

=
(
I − h/2 An+ 1

2

)−1(
I + h/2 An+ 1

2

)
Yn (5.33)

This is an alternative to the exponential function which introduces no model error.
Since the exchange of the mapping from the Lie algebra to the Lie group is no special
property of geometric integration schemes, the details can be found in section 4.2.
Here, just its geometric properties are discussed.

Taking the Cayley transform as local parameterization, the Leapfrog method (5.31)
for coupled Lie group / Lie algebra problems will turn into the Cayley-Leapfrog
method:

Definition 5.15 (Cayley-Leapfrog for coupled Lie group / Lie algebra problems).
Let the coupled Lie group / Lie algebra initial value problem mentioned in defini-
tion 5.13 be given. Then, the Cayley-Leapfrog or Cayley-Störmer-Verlet scheme is
defined as

An+ 1
2

= An +
h

2
F (Yn),

Yn+1 = cay(0.5hAn+ 1
2
)Yn, (5.34)

An+1 = An+ 1
2

+
h

2
F (Yn+1).

Here, the Lie-Euler step used in (5.31) is exchanged against a Cayley-Lie-Euler step.
Here, the aforementioned equations (5.1) are alternately solved starting and ending
with one half-step.

It is of interest if the Cayley-Leapfrog scheme is indeed a geometric integration
scheme. So, symmetry, time-reversibility and volume-preservation have to be inves-
tigated. For Lattice QCD, these properties are proven for the Lie group SU(3,C)
in a recent Bachelor thesis [44]. The time-reversibility holds for all quadratic Lie
groups and the volume-preservation for all Lie groups with determinant one. In
chapter 7.2.2, the Cayley-Leapfrog method is used in a HMC simulation of a lattice
gauge field, leading to promising results for the usage of this method.

5.3 Symmetric Partitioned Runge-Kutta Methods

Based on partitioned Runge-Kutta methods for the Abelian case in Rn, partitioned
Runge-Kutta methods for Lie group problems (5.1),

Ẏ (t) = A(t)Y (t), Ȧ(t) = F (Y (t)),
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can be developed and afterward adapted for being symmetric partitioned Runge-
Kutta schemes for geometric Lie group problems.

This section starts with partitioned Runge-Kutta schemes for Rn for the differential
equations

ẏ = f(y, z), z′ = g(y, z) (5.35)

and an investigation of its symmetry. Then, the partitioned Runge-Kutta scheme
is adjusted to Lie group problems (5.1) similar to [64]. This means, a Runge-
Kutta scheme for Lie groups has to be used for the first equation whereas the 2nd
equation goes along with the special case z′ = g(y). Using Munthe-Kaas Runge-
Kutta schemes, the partitioned Runge-Kutta scheme takes place in the Lie algebra
and is combined with a mapping from the Lie algebra to the Lie group whenever
an evaluation in the Lie group is needed. Afterwards, the symmetry of partitioned
Munthe-Kaas Runge-Kutta methods is discussed and the scheme is adapted to be
symmetric based on three different changes. Finally, a set of coefficients for one
version of a symmetric partitioned Munthe-Kaas Runge-Kutta method is derived.

5.3.1 The Abelian Case

We start with a short introduction of partitioned Runge-Kutta methods following
the ideas of Hairer et al stated in [29].

Definition 5.16 (Partitioned Runge-Kutta Method [29]). Let the differential equa-
tions ẏ = f(y, z) and ż = g(y, z) with initial values (y(t0), z(t0)) = (yn, zn) be given.
Furthermore, let s be an integer and aij, bi be real coefficients for i, j = 1, . . . , s.

The method

yn+1 = yn + h

s∑
i=1

biki, ki = f(yn + h

s∑
j=1

aijkj, zn + h

s∑
j=1

âijlj), (5.36a)

zn+1 = zn + h
s∑
i=1

b̂ili, li = g(yn + h
s∑
j=1

aijkj, zn + h
s∑
j=1

âijlj) (5.36b)

is called partitioned Runge-Kutta method with s stages. It is an explicit method if
it holds aij = âij = 0 for all i ≤ j, otherwise it is an implicit method.

In the Abelian case, the partitioned Runge-Kutta method Φh is symmetric if the
coefficients of its adjoint method Φ∗h = Φ−1

−h (see definition 5.10) in fulfill the well-
known symmetry conditions

bi = bs+1−i, aij + as+1−i,s+1−j = bj (5.37a)

b̂i = b̂s+1−i, âij + âs+1−i,s+1−j = b̂j (5.37b)
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for i, j = 1, . . . , s, see [29]. These symmetry conditions can be achieved exchang-
ing (yn+1, zn+1, h) against (yn, zn,−h) in the method Φh itself. Rearranging for
(yn+1, zn+1) leads to the adjoint method Φ∗h.

We are interested in equations of type (5.1) which is related to the special case

ẏ = f(y, z), z′ = g(y) (5.38)

with partitioned Runge-Kutta method

yn+1 = yn + h
s∑
i=1

biki, ki = f(yn + h

s∑
j=1

aijkj, zn + h

s∑
j=1

âijlj), (5.39a)

zn+1 = zn + h
s∑
i=1

b̂ili, li = g(yn + h

s∑
j=1

aijkj) (5.39b)

Here, the symmetry conditions (5.37) also have to be fulfilled. Now, we adapt the
scheme (5.39) to a Lie group / Lie Algebra problem (5.1).

5.3.2 The Non-Abelian Case

Concerning the system of differential equations Ẏ = AY, Ȧ = F (Y ), the partitioned
Runge-Kutta method has to be mixed with a Lie group Runge-Kutta method. Here,
it is possible to use either Crouch-Grossmann or Munthe-Kaas schemes. Moreover,
the local parameterization can be chosen in an arbitrary way. As an example, Engø
describes partitioned Runge-Kutta methods based on Crouch-Grossmann methods
in [18] which use either the exponential function or the Cayley transform as local pa-
rameterization. In this thesis, just partitioned Munthe-Kaas Runge-Kutta methods
based on the exponential function are used.

In general, Munthe-Kaas schemes are solved in the linear space of the Lie algebra
and use a projection to the Lie group whenever needed. Additionally, the function
fq = fp−2 has to be adapted according to the desired convergence order p of the
scheme. For example, for p = 2 it is sufficient to use f0(Ω, A) = A such that
a partitioned Munthe-Kaas Runge-Kutta scheme can coincide with the Leapfrog
method of definition 5.14. Next, the Munthe-Kaas Runge-Kutta method mentioned
in algorithm 3.22 in chapter 3 is adapted for partitioned Runge-Kutta methods:

Algorithm 5.17. (Partitioned Munthe-Kaas Runge-Kutta Method)
Let G be a matrix Lie group and g its associated Lie algebra and consider the Lie
group / Lie algebra problem (5.27)

Ẏ (t) = A(Y (t)) · Y (t) with initial values An ∈ g, Yn ∈ G,
Ȧ(t) = F (Y (t)) with initial values Yn ∈ G.

Then, the step (Yn, An) 7→ (Yn+1, An+1) is defined as follows:
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1. Consider the differential equations

(d exp−1
Ω (A) ≈) Ω̇ =

q∑
k≤0

Bk

k!
adkΩ(A) =: fq(Ω, A), Ȧ = F (Y )

with Ω(t0) = Ωn and initial values Yn, An and Ωn = 0.

2. Apply a partitioned Runge-Kutta method (explicit or implicit)

Ωn+1 = Ωn + h

s∑
i=1

biKi, An+1 = An + h

s∑
i=1

b̂iLi, (5.40a)

with increments

Ki = fq

(
Ω̄i, A(Ȳi)

)
, Li = F

(
exp(Ω̄i)Yn

)
(5.40b)

and internal stages

Ω̄i = Ωn + h
s∑
j=1

aijKj, Ȳi = exp(An + h
s∑
j=1

âijLj) Yn. (5.40c)

The initial values (Yn, An) and Ωn = 0 and lead to the approximations

Ωn+1 ≈ Ω(t0 + h) and An+1 ≈ A(t0 + h). (5.41)

3. Define the numerical solution by

(Yn+1, An+1) with Yn+1 = exp(Ωn+1) Yn. (5.42)

Here, the steps 1 and 3 are performed due to the local parameterization of the
Lie group which is also used in the computation of the internal stages Ȳi and the
increments Li. The partitioned Runge Kutta method itself is solved in the linear
space of the Lie algebra g for (Ωn+1, An+1) in step 2. Here, the specialty is that the
initial value Ωn is always set to zero for consistency of the initial values (Ωn, Yn)
with the transformation Y (t) = exp(Ω(t))Yn. Furthermore, the increments Li are
computed through a mapping F from the Lie group G to the Lie algebra g. Here,
the Lie group also has to be obtained via an application of the exponential function
on the term Ωn + h

∑s
j=1 aijKj.

Comparing the partitioned Munthe-Kaas Runge-Kutta scheme given in algorithm
5.17 with the partitioned Runge-Kutta scheme stated in equations (5.39) there are
a few differences:

1. there is an additional mapping Yn+1 = exp(Ωn+1)Yn,

2. the internal stages Ω̄i occur in the Lie algebra (through Ki) as well as in the
evaluation of the exponential function inside Li,
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3. the initial value Ωn is always 0.

So, it has to be checked if the symmetry conditions (5.37) are still valid.

Symmetry. The symmetry is investigated using the short-hand notation

(Yn+1, An+1) = Φh(Yn, An) (5.43)

with Φh being the partitioned Munthe-Kaas Runge-Kutta method. Φh would be
symmetric, if its adjoint Φ∗h(Yn, An) equals

Φ∗h(Yn, An) = Φ−1
−h(Yn+1, An+1), (5.44)

i.e. the values (Yn, An, Yn+1, An+1, h) have to be exchanged according to

(Yn, An, h)↔ (Yn+1, An+1,−h) and Ωn+1 ↔ −Ωn+1.

The replacement of Ωn+1 ↔ −Ωn+1 is implied by equation (3.47) for consistency
reasons: it has to hold

Yn+1 = exp(Ωn+1)Yn ⇔ Yn = exp(−Ωn+1)Yn+1.

Comparing the coefficients of Φ(Yn, An) with them of Φ∗(Yn, An) of equation (5.44)
leads to the symmetry conditions for general partitioned Runge-Kutta schemes for
Lie group / Lie algebra problems of type (5.27)

bi = bs+1−i (due to Ω∗n+1) (5.45a)

b̂i = b̂s+1−i (due to A∗n+1) (5.45b)

âij = b̂s+1−j − âs+1−i,s+1−k (due to Ȳi in K∗i ) (5.45c)
aij = −as+1−i,s+1−j (due to Ω̄i in K∗i ) (5.45d)
aij = bs+1−j − as+1−i,s+1−k (due to Ω̄i in L∗i ) (5.45e)
aij = di · bj (due to L∗i ) (5.45f)

for i, j = 1, . . . , s and constant di. Here, the conditions for Abelian partitioned
Runge-Kutta schemes stated in (5.37) can be found in the first four equations plus
two additional ones (5.45e) and (5.45f) concerning the coefficients aij. The three
conditions (5.45d-5.45f) for aij obviously lead to contradictions which are discussed
in the following.

Equation (5.45e) arises from the internal stages Ω̄i of the increments Ki inside the
Lie algebra. Its shape finally depends on the initial values Ωn = 0. The other
equations (5.45d) and (5.45f) are related to each other. They occur because the
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adjoint L∗i of Li = F
(
exp(Ω̄i)Yn

)
mentioned in equation (5.40b) reads

L∗i = F
(

exp(Ω̄∗i )Yn+1

)
= F

(
exp(Ω̄∗i ) exp(Ωn+1)Yn

)
= F

(
exp(Ω̄∗i + Ωn+1)Yn

)
(5.46)

if the matrices Ω̄∗i and Ωn+1 commute. Here, Yn is exchanged towards Yn+1 =
exp(Ωn+1)Yn. One simple case of commuting matrices is one matrix being a multiple
of the other, i.e. the coefficients aij must be a multiple of the coefficients bj for
j = 1, . . . , s. So, condition (5.45f) is a prerequisite for condition (5.45d).

Theoretically, all three conditions can be simultaneously fulfilled if all coefficients
bj and ai,j, j = 1, . . . , s, are zero. Since this choice destroys the numerical scheme
(the numerical approximations stays constant and not even convergence order one
would be fulfilled), this is not valid.

The conflict between the conditions (5.45e) and (5.45d) can be solved

• if one of the conditions disappears

• or if the increments Ki and Li are evaluated at different points,
i.e. a new set of coefficients (cij), i, j = 1, . . . , s is introduced.

Of course, also a combination of both solution leads to the desired result as described
in [64]. So, there are several ways of fixing the contradiction in the symmetry
conditions which are described next.

Symmetric Partitioned Munthe-Kaas Runge-Kutta Methods. Based on algo-
rithm 5.17, the partitioned Munthe-Kaas Runge-Kutta method can be turned into
a symmetric partitioned Runge-Kutta scheme.

Concerning the special case of a small convergence order p, i.e. p < 3, the increments

Ki = f0(Ωi, A(Ȳi)) = A(Ȳi)

do not depend on the internal stages Ω̄i for all i = 1, . . . , s. So, algorithm 5.17
can be applied without changes because condition (5.45e) vanishes and (5.45d) and
(5.45f) can be simultaneously solved. One example is the Leapfrog method for Lie
groups. Here, the partitioned Munthe-Kaas Runge-Kutta methods with coefficients

a21 =
1

2
, b1 =

1

2
, b2 =

1

2
, â21 = 1, b̂1 = 1 (5.47)

leads to the Leapfrog method introduced in definition 5.14.

For a general convergence order p > 2, just the increments Li, i = 1, . . . , s, have
to be adapted in the sense that the symmetry conditions (5.45d) - (5.45f) do not
occur altogether for an arbitrary convergence order. This can be achieved by one
of the following changes of the increments of algorithm 5.17:
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1.

Li = F
(

exp
(
Ω̄i

)
exp
(

1
2
Ωn+1

)
Yn

)
, (5.48)

2.

Li = F
(

exp(ω̄i)Yn

)
with ω̄i = Ωn + h

s∑
j=1

cijKj, (5.49)

3. or

Li = F
(

exp
(
ω̄i
)

exp
(

1
2
Ωn+1

)
Yn

)
with ω̄i = Ωn + h

s∑
j=1

cijKj. (5.50)

Case 1. In the first case, the focus can be put on avoiding the multiplication of
exponential functions inside the adjoint method. Here, an additional term X can
be introduced in the increments Li such that Li can be rewritten as

Li = F
(

exp(Ω̄i) ·X · Yn
)
. (5.51)

Now, the adjoint of Li reads

L∗i = F
(

exp
(
Ω̄∗i
)
X∗Y ∗n+1

)
= F

(
exp
(
Ω̄∗i
)
·X∗ · exp

(
Ω∗n+1

)
Y ∗n

)
. (5.52)

The first and the last term in Li and L∗i are similar. So we put our emphasis on
an expression for X such that X in Li has the same structure as X∗ · exp(Ωn+1) in
the adjoint L∗i . This would have the advantage that just the coefficients of Ω̄i and
Ω̄∗i have to be compared since the rest is of equal form. Indeed, according to (5.51)
the choice

X = exp
(

1
2
Ωn+1

)
(5.53)

leads to

Li = F
(

exp
(
Ω̄i

)
exp
(

1
2
Ωn+1

)
Yn

)
. (5.48)

The adjoint L∗i is composed of

Ω̄∗i , Ω∗n+1 = −Ωn+1 and Y ∗n = Yn+1 = exp(Ωn+1)Yn. (5.54)

Thus, it holds

L∗i = F
(

exp
(
Ω̄∗i
)
· exp

(
−1

2
Ωn+1

)
· exp

(
Ωn+1

)
Yn

)
= F

(
exp
(
Ω̄∗i
)
· exp

(
1
2
Ωn+1

)
Yn

)
(5.55)

such that the increment Li and its adjoint have the same structure. Thus, after
a change of the increments Li, i = 1, . . . , s, according to equation (5.48) just the
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symmetry conditions (5.45a)-(5.45e) have to be fulfilled and (5.45d) and (5.45f)
vanish.

Unfortunately, the numerical solution Ωn+1 has to be used in the term exp(Ωn+1)
has to be introduced inside the function F defining the increments Li, i = 1, . . . , s
for An+1. For this, the symmetric partitioned Munthe-Kaas Runge-Kutta method
turns to be fully implicit and the effort for its computation is increased dramatically
compared to the not symmetric partitioned Munthe-Kaas Runge-Kutta scheme.

Case 2. Second, a new set of coefficients can be introduced such that Ω̄i is replaced
by ω̄i either in the internal stages of Ki or Li for i = 1, . . . , s. For example, the
increments Li, i = 1, . . . , s from equation (5.40b) can be exchanged against

Li = F
(

exp(ω̄i)Yn

)
with ω̄i = Ωn + h

s∑
j=1

cijKj

mentioned in equation (5.49). In this case, equations (5.45d) and (5.45f) are replaced
through

cij = bs+1−j − cs+1−i,s+1−k (due to Ω̄i in L∗i ) (5.56)
cij = di · bj (due to shape of L∗i ) (5.57)

for i, j = 1, . . . , s and constant di.

Case 3. A combination of both changes (5.48) and (5.49) leads to the change
(5.50) and to the symmetry conditions

bi = bs+1−i, b̂i = b̂s+1−i, (5.58a)

aij = −as+1−i,s+1−j b̂j = âij + âs+1−i,s+1−j, (5.58b)
cij = −cs+1−i,s+1−j (5.58c)

for i, j = 1, . . . , s.

All in all, we have seen that there are three ways of deriving symmetric partitioned
Munthe-Kaas Runge-Kutta methods for the Lie group / Lie algebra problem (5.27)
for a general convergence order p. The increments Li can be computed according
to equation (5.48), (5.49) or (5.50). The next step in the development of the new
scheme would be a derivation of a set of coefficients. Here, it is essential that these
coefficients meet the order conditions for the desired convergence order.

Compared to the partitioned Runge-Kutta methods for the Abelian case, the incre-
ments Ki and Li, i = 1, . . . , s change. Li changes due to the choice (5.48),(5.49) or
(5.50) and Ki = fq due to the desired convergence order which depend to its trun-
cation index q = p− 2. So, some powers of the adjoint operator are included in Ki.
This leads to additional order conditions. The order conditions have to be computed
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by a comparison of the Taylor expansion of the exact solution (Y (t0 +h), A(t0 +h))
and the numerical approximation (Yn+1, An+1). Fortunately, this can be done via a
comparison of the numerical approximation (Ωn+1, An+1) with the Taylor expansion
of the exact solution (Ω(t0 + h), A(t0 + h)) as described by Striebel in [60]. If it
holds

||Ωn+1 − Ω(t0 + h)|| = O(hp+1) and ||An+1 − A(t0 + h)|| = O(hp+1), (5.59)

then also the approximation (Yn+1, An+1) is of convergence order p.

Example. We consider a symmetric partitioned Runge-Kutta scheme (5.40) with
increments Li computed according to formula (5.50). For this example, we compute
the order conditions

p = 1 :
∑
i

bi = 1,
∑
i

b̂i = 1 (5.60a)

p = 2 :
∑
i

biâi =
1

2
,

∑
i,j

b̂i

(
ci +

bj
2

)
=

1

2
(5.60b)

p = 3 :
∑
i,j

bi(aiâi − aij âj) =
1

6
,

∑
i,j

b̂i

(
ci +

bj
2

)2

=
1

3
(5.60c)

∑
i

biâij

(
cj +

1

2

∑
k

bk

)
=

1

6
,

∑
i,j

b̂i

(
cij +

1

2
bj

)
âj =

1

6
(5.60d)

as described before. Then, for convergence order p = 3 computed with s = 3 stages,
one set of coefficients

a21 = c11 = −
√

3

6
, a23 = c33 =

√
3

6
, b2 = 1, (5.61a)

â11 =
3 +
√

3

6
, â21 =

3 +
√

3

12
, b̂1 = b̂3 =

1

2
, (5.61b)

â23 =
3−
√

3

12
, â31 =

1

2
, (5.61c)

â33 = −
√

3

6
(5.61d)

is derived based on the order conditions (5.60) and the symmetry conditions (5.58).
Finally, these coefficients are used for the numerical simulation of a lattice gauge
field which is described in paragraph 7 and also in [64]. It is remarkable that the
convergence order is even. In fact, a convergence order of size p = 4 is achieved
although just a scheme of convergence order p = 3 is developed. This depends on
the symmetry of the scheme as described in [60], [64] and [62].

Probably, a usage of simply (5.48) or (5.49) would lead to less complicated order
conditions such that a development of the schemes should be considered in future
work. Here, the increments Li computed according to equation(5.49) seem promis-
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ing because the scheme will not become fully implicit. Another idea can be realized
using [70].

Concerning Lattice QCD, the numerical integration method has to be time-reversible
and volume-preserving. Time-reversibility could be easily computed via the con-
dition (5.15). In this case, this is not done but this property is checked via the
simulation of a lattice gauge field in chapter 7. The scheme is not constructed for
being volume-preserving. Theoretically, the volume-preservation can be ensured by
a division of the value of the determinant of the Jacobian ∂(Yn+1, An+1)/∂(Yn, An)
if the size of the Jacobian is small enough. In the case of Lattice QCD, the size of
the determinant is quite large such that this is no option.

All in all, this geometric scheme is developed in [64] with focus on its application
on Lattice QCD, i. e. for the usage inside the Molecular Dynamics step inside the
Hybrid Monte Carlo algorithm. Here, the crucial point is that the energy difference
of the Hamiltonian before and after the numerical integration scheme is small to
achieve a high acceptance rate. This could also be reached with a projection method
focusing on a constant Hamiltonian as mentioned in the next section.

5.4 Time-reversible Projection Schemes

This section is concerned with time-reversible and volume-preserving projection
methods for the solution of

Ẏ (t) = A(t)Y (t), Ȧ(t) = F (Y (t))

as given in equation (5.1). The idea is based on symmetric projection schemes in-
troduced by Hairer for ODE systems on a manifold in the Abelian case Rn. These
methods combine a symmetric scheme with a projection on the manifold, arising
in an overall symmetric and time-reversible scheme which preserves the constraint
defined by the manifold. We have generalized this scheme to projection schemes,
which join a symmetric, time-reversible and symplectic scheme (Leapfrog, for ex-
ample) with a projection on the manifold described by the Hamiltonian, resulting
in a scheme with the aforementioned properties which preserves the Hamiltonian
exactly. In a further step, we adapted the method to the non-Abelian case of matrix
Lie groups for equations of type (5.1) having in mind to reduce, for example, the
computational costs of simulations performed in Lattice QCD.

We start from symmetric projection schemes [26] and develop time-reversible and
volume-preserving projection schemes for the Abelian case. These results are gener-
alized and applied to the non-Abelian case of Lattice QCD where coupled differential
equations on Lie groups and Lie algebras arise. Here, the volume-preservation de-
pends on the properties of the projection parameter µ – the volume is preserved if µ
is constant, i.e., if it depends not on the initial values. Nevertheless, the method is
applied on a gauge field in SU(3,C) Yang-Mills theory which is described in section
7.2.4. Here, it is discussed if the numerical result implies volume-preservation or



90 5 Geometric Numerical Integration

not. This section is developed in close collaboration with Prof. Dr. M. Günther
and Prof. Dr. M. Striebel.

Projection Schemes

Our aim is the development of projection schemes for the Molecular Dynamics Step
of the Hybrid Monte Carlo method. For this purpose, the projection scheme has to
fulfill several properties:

• first of all, it has to be time-reversible to reach the correct fixed point of the
Markov chain;

• then, it should be volume-preserving; otherwise the Jacobian of a system of
huge dimension has to be computed;

• additionally, the Hamiltonian should remain constant.

If all these demands are met, one gets an overall time-reversible, volume-preserving
projection scheme that preserves the Hamiltonian.

This scheme would be very advantageous for its utilization in the Molecular Dynam-
ics step of the Hybrid Monte Carlo algorithm because the acceptance step can be
dropped such that each proposed new configuration is used. Usually, it is of interest
to achieve a high acceptance rate via a small difference in the Hamiltonian ∆H be-
fore and after the Molecular Dynamics step. Since |∆H| is proportional to the error
of the integration scheme, the convergence order p of a numerical integration scheme
used in the HMC should be high. Using the projection method, there is no need
for higher order methods or small step sizes, one large integration step is sufficient
provided that the projection method is time-reversible and volume-preserving.

In a first step, we will construct such schemes for the Abelian case.

5.4.1 Projection Schemes for the Abelian Case

Symmetric projection schemes have been introduced by Hairer [26] to solve numer-
ically the initial value problem

ẏ = f(y), y(t0) = yn (3.17)

in the Abelian case y ∈ R2n subject to an invariant manifold defined by a constraint
g(y) = 0. These schemes combine one step of a symmetric integration method Φh

with a symmetric forward and backward projection to obtain a symmetrical method
and at the same time to preserve the constraint: first of all, the initial value yn is
perturbed orthogonal to the manifold:

P µ
f : ỹn = yn +G>(yn)µ (5.62a)
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with G>(y) denoting the Jacobian of g(y). After that, one symmetric numerical
integration step is performed:

Φh : ỹn+1 = Φh(ỹn) . (5.62b)

Finally, the result is projected back to the manifold:

P µ
b : yn+1 = ỹn+1 +G>(yn+1)µ . (5.62c)

Here, the explicit perturbation P µ
f and implicit projection step P µ

b depend on a
parameter µ that is implicitly defined by the constraint g(y) = 0. This method is
not symplectic and not volume-preserving.

Our aim is to adapt the symmetric projection method to a simple time-reversible and
volume-preserving projection scheme in the case of general Hamiltonian equations
of motion given by (5.2) as

ẏ = f(y) = J−1∇H(y) with J =

(
0 I
−I 0

)
,

initial values y(t0) = yn and the energy-preserving constraint

g(y) = H(y)−H(yn) = 0 . (5.63)

Note that we regard the projection parameter µ as unknown constant, thus yielding
a parametrized family of numerical approximations yµh for step size h. At the end,
we are interested in the scheme yµopth defined by

g(y
µopt
h ) = H(y

µopt
h )−H(yn) = 0 . (5.64)

The aforementioned adaption can be realized by three steps:

1. replace the symmetric integration method with a symmetric and at the same
time time-reversible and volume-preserving one;

2. next, ensure that the overall scheme is volume-preserving;

3. and after all, make the overall scheme time-reversible.

The first step is very similar to the symmetric projection and can be realized, for
example, by use of the Leapfrog integration scheme or the implicit midpoint rule.The
new scheme

Ψµ
h := P µ

b ◦ Φh ◦ P µ
f . (5.65)

is still symmetric, but in general neither volume-preserving nor time-reversible.

Now, we investigate the volume-preservation. We see that the projection strongly
depends on its projection parameter µ as stated below and, hence, volume-preservation
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cannot be obtained. However, if we assume that the influence of the Jacobian of
the projection parameter is small, i.e. the projection parameter µ takes a constant
value, volume-preservation would be possible. Based on these considerations, the
overall scheme can be selected to be time-reversible.

Volume-Preservation

The volume is preserved, if

|det (DΨµ
h(yn))| = 1 with DΨµ

h(y) :=
∂Ψµ

h(y)

∂y
(5.66)

holds, i.e., it has to be checked whether the modulus of the determinant of the
Jacobian is equal 1. Since the result yn+1 = Ψµ

h(yn) is computed in three steps,
a short computation shows that the method is in general not volume-preserving
because the determinant of the Jacobian reads

|detDΨµ
h(yn)| =

∣∣∣∣det

(
DP µ

b (y)
∣∣∣
y=(Φh◦Pµf )(yn)

·DΦh(y)
∣∣∣
y=Pµf (yn)

·DP µ
f (yn)

)∣∣∣∣ (5.67)

=

∣∣∣∣det

(
DP µ

b (y)
∣∣∣
y=(Φh◦Pµf )(yn)

·DP µ
f (yn)

)∣∣∣∣ (5.68)

with detP µ
f (yn) = det

(
I +DG>(yn)µ+G>(yn)

∂µ(yn)

yn

)
, (5.69)

and detDP µ
b (y)

∣∣∣
y=(Φh◦Pµf )(yn)

= det
(
I −DG>(yn+1)µ

)−1

(5.70)

and is usually not equal to 1. Nevertheless, there is a simple way to ensure the
volume-preservation requiring three changes: first of all, replace the matrixDG>(y)
by a constant matrix C> such that the projection matrix G>(y) is replaced by C> ·y.
In doing so, the modulus of the determinant of the Jacobian reads

| detDΨµ
h(yn)| =

∣∣∣det(I − C>µ)−1 · det
(
I + C>µ+G>(yn)∂µ(yn)

yn

)∣∣∣ . (5.71)

Second, there has to be an additional sign flip in either the forward or the backward
projection to achieve this. A sign flip in the backward projection gives the overall
system

P µ
f : ỹn = yn + C>ynµ

Φh : ỹn+1 = Φh(ỹn) (5.72)
P µ
b : yn+1 = ỹn+1 − C>yn+1µ , µ : H constant .

Using the short-hand notation Ψµ
h defined in (5.65), we get

| detDΨµ
h(yn)| =

∣∣∣det(I + C>µ)−1 · det
(
I + C>µ+G>(yn)∂µ(yn)

yn

)∣∣∣ = 1 . (5.73)
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If the term ∂µ(yn)
yn

would be zero, i.e. we assume the projection parameter µ(yn)

being constant, the method given in (5.72) is volume-preserving.

The volume-preservation depends on the fact that the projection parameter µ is
independent of the initial values. It has to be investigated if this case occurs or if
µ(yn) has to be a function depending on the Hamiltonian and the initial value yn.

So, we assume that the projection parameter does not depend on the initial value
but can be chosen as constant value µopt such that equation (5.64) is fulfilled. For
a working scheme, this would have to be proven depending on the model and its
Hamiltonian H. Anyway, the argumentation is continued leading to - at a first
glance - promising results for Lattice QCD in paragraph 7.2.4. So, the volume-
preserving and time-reversible projection method is an example that illustrates the
necessity of critical examinations in the development of new methods.

Time-Reversibility

So far, we have a symmetric and symplectic projection scheme given in (5.72). It
is essential, that the scheme is also time-reversible, i.e., the condition

ρ ◦Ψµ
h = (ρ ◦Ψµ

h)−1 with ρ =

(
I 0
0 −I

)
(5.74)

consisting of blocks of size n× n has to be fulfilled. The overall system reads

Ψµ
h(y) =

(
I + C>µ

)−1 · Φh

((
I + C>µ

)
(y)
)

(5.75)

and with the time-reversibility of the inner one-step scheme Φh it can be shown that
it is sufficient to choose a matrix C with block-diagonal structure according to the
dimensions of q and p of y = (q, p)>.

Proof: for
Ψµ
h = B−1

µ · Φh ·Bµ with Bµ := I + C>µ .

we have two verify the condition for time-reversibility

ρΨµ
h = (ρΨµ

h)−1 ⇔ ρ ·Ψµ
h · ρ ·Ψ

µ
h = id,

or equivalently,
ρ ·B−1

µ · Φh ·Bµ · ρ ·B−1
µ · Φh ·Bµ

!
= id .

Using the time-reversibility of Φh and the fact that ρ is idempotent, we can replace
one of the one-step schemes Φh with ρ · Φ−1

h · ρ and get

id
!

= ρ ·B−1
µ · Φh ·

(
Bµ · ρ ·B−1

µ · ρ
)
· Φ−1

h · ρ ·Bµ .
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If we assume Bµ ·ρ·B−1
µ ·ρ = id we are done. A sufficient but not necessary condition

would be that the matrix Bµ, respective C, is block-diagonal.

Note that the time-reversibility does not depend on the fact that the projection
parameter µ is constant. So, the projection scheme (5.72) is always time-reversible.

5.4.2 Projection Schemes for the Non-Abelian Case

In the previous section, we developed the time-reversible and volume-preserving
projection scheme Ψµ

h := P µ
b ◦ Φh ◦ P µ

f described in (5.72) with block-diagonal
matrix C for the Hamiltonian equations of motion

ẏ = f(y) = J−1∇H(y) with J =

(
0 I
−I 0

)
and y(t0) = yn

in the Abelian case. Since y ∈ R2n, it can be split as y = (p, q)> in two parts
p, q ∈ Rn. Since we are interested in a scheme to solve the Hamiltonian equations
of motion in the non-Abelian case of Lattice QCD, we adapt the projection scheme
to the Lie group / Lie algebra problem

Ẏ (t) = A(Y (t)) · Y (t), Ȧ(t) = F (Y (t))

mentioned in (5.1). These equations also can be formulated similar to the Abelian
one:

ẏ = f(y) = J−1∇H(y), y = (Y,A)>, J =

(
0 I
−I 0

)
(5.76)

with Y ∈ G, A ∈ g and initial values (Yn, An) ∈ (G × g). Then, the projection
scheme reads in a first step

Ψµ
h(y) =

(
I + C>µ

)−1 · Φh

((
I + C>µ

)
(y)
)

(5.77)

and has to be adapted to the Lie group / Lie algebra structure. Here, it is convenient
to split the geometric integration method Φh in parts ΦY

h and ΦA
h related to the parts

in the Lie group and Lie algebra. This can also be done for the projection scheme
such that Ψµ

h reads

ΨY
h,µ(Y,A) =

(
I + C>Y µ

)−1 · ΦY
h

((
I + C>Y µ

)
Y, (I + C>Aµ

)
A
)

(5.78a)

ΨA
h,µ(Y,A) =

(
I + C>Aµ

)−1 · ΦA
h

((
I + C>Y µ

)
Y, (I + C>Aµ

)
A
)

(5.78b)

with different constant projection matrices CY and CA.

Due to the special structure of the system (5.76), the integration method Φh has
to be a time-reversible and volume-preserving integration method for coupled Lie
group / Lie algebra problems (5.1). Here, the Leapfrog scheme described in section
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5.2 could be used.

Choice of the projection matrices. The projection steps can be adapted to the
structure of the Lie group. Applying the time-reversible and volume-preserving
scheme (5.75) on the aforementioned differential equations on Lie groups / Lie
algebras (5.76), there is a problem in the perturbation step:

Y ∈ G → Y + µCY /∈ G . (5.79)

As the Lie group G is not closed with respect to addition, the results of the overall
projection scheme will not be elements of the Lie group. A simple way out the
choice CY = 0, i.e., the Lie group elements are not perturbed. A second approach
could be the perturbation step

Y ∈ G → Y · µCY ∈ G with CY ∈ G . (5.80)

The variables A ∈ g are elements of a linear space. Here, we have no problems with
the projection step. It reads

A→
(
I + µCA

)
· A . (5.81)

We make a very simple choice for the scaling of the Lie group and Lie algebra
elements. For the Lie group element, we take formula (5.79) with CY = 0. This
means, the element Y is never projected, it stays constant.

In addition, we set CA = I for a simple scaling of the Lie algebra element A. Hence,
the variable A is just scaled by a factor 1 + µ in the perturbation step.

According to equation (5.78) and with CY = 0 and CA = I, Ψµ
h =

(
ΨY
h,µ,Ψ

A
h,µ

)
reads

Ψµ
h(Yn, An) =

(
ΨY
h,µ(Yn, An)

ΨA
h,µ(Yn, An)

)
=

(
Yn+1

An+1

)
=

 ΦY
h

(
Yn, (1 + µ)An

)
1

1+µ
ΦA
h

(
Yn, (1 + µ)An

) . (5.82)

with
(I + C>Y µ)−1 = I and (I + C>Aµ)−1 =

1

1 + µ
I.

So, the result of the intermediate one-step integration scheme Φh = (ΦY
h ,Φ

A
h )> is

rescaled by a factor 1/(1 + µ) for ΦA
h .

Applying the aforementioned projection, the Lie group/Lie algebra structure is
preserved – ΦY

h is still in the Lie group, and ΦA
h in the corresponding Lie algebra.

Furthermore, the scheme is still symmetric, time-reversible and volume-preserving.
A big advantage of the projection scheme (5.82) is that there occurs no additional
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cost, except for the solution of the scalar equation

g̃(µ) := g(y
µopt
h ) = H(y

µopt
h )−H(yn) = 0 (5.83)

for the determination of µopt.

It has to be mentioned that there occur two open questions:

1. Takes the projection parameter µ a constant value? This is the prerequisite
for the volume-dependence.

2. Is the perturbation Y → Y + µ · 0 an appropriate choice? Or would it be
better to use the perturbation Y → µY · CY with CY ∈ G?

We test the projection method (5.82) for a 2-dimensional lattice gauge field in
SU(3). The results can be found in section 7.2.4.

5.5 Summary

In this chapter, different geometric integration methods for the initial value Lie
group / Lie algebra problem

Ẏ (t) = A(Y (t)) · Y (t), with initial values An ∈ g, Yn ∈ G
Ȧ(t) = F (Y (t)) with initial values Yn ∈ G

stated in (5.27) are developed. These new schemes are based on common Leapfrog,
partitioned Runge-Kutta and symmetric projection schemes which are adapted ac-
cording to the Lie group / Lie algebra structure of the problem and due to volume-
preservation, symmetry and time-reversibility.

Based on the results of section 5.2, the usual Leapfrog method with exponential
function can be replaced by a Leapfrog method with a different local parameteri-
zation: the Cayley-Leapfrog method. Here, the local parameterization Ψ : g → G,
Ψ(Ω) = exp(Ω) is replaced with Ψ(Ω) = cay(Ω). This approach is very promising
for quadratic Lie groups because the necessity of a truncation is omitted and thus
no additional model error is introduced.

In paragraph 5.3, symmetric partitioned Munthe-Kaas Runge-Kutta methods are
developed. First, it is investigated that adaption of symmetric partitioned Runge-
Kutta methods for the Abelian case towards Munthe-Kaas schemes for the non-
Abelian case do not lead to convergence orders higher than two. So, the increments
Ki or Li, i = 1, . . . , s of partitioned Munthe-Kaas Runge-Kutta methods must be
adapted. We suggest three possible options. Case 1 leads to a fully implicit par-
titioned MK-RK scheme whereas case 2 just introduces a new set of coefficients
such that the scheme could be explicit. Case 3 combines both changes. All schemes
lead to different symmetry conditions stated in paragraph 5.3.2. Concerning conver-
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gence, the new schemes require require a development of additional order conditions
depending on the adaption and the used truncation of d exp−1

Ω . For case 3, we com-
pute the order conditions up to p = 3 and derive one set of coefficients which is
applied on a lattice gauge field in SU(3,C) Yang-Mills theory as described in [64]
and section 7.2.3.
In a next step, one of the other suggested adaption should be worked out. Case 2
seems promising for the determination of an explicit symmetric partitioned Runge-
Kutta method. Furthermore, the development of symmetric partitioned Munthe-
Kaas Runge-Kutta methods using the Cayley transform makes sense. This class of
schemes would have the advantage that the order conditions are based on increments
having the same shape for all desired convergence orders.

In the last paragraph 5.4, a volume-preserving and time-reversible projection method
is suggested, first for the Abelian case and then for the non-Abelian one. At a first
glance, this projection seems promising but the volume-preservation suffers from the
dependence of the projection parameter upon the initial values. Here, it has to be
investigated if there are models with constraints g(µ) which are independent of the
input data, i.e. if a constant µ leads to a constraint with desired accuracy. Turning
to the non-Abelian case, there is a projection developed for a coupled Lie group
/ Lie algebra problem which is at least time-reversible (and in case of constant µ
also volume-preserving). This scheme is applied on the Hamiltonian equations of
motion for a lattice gauge field in section 7.2.4.





6 Chapter 6

Exponential Smoothing Splines

Sometimes, data with uncertainties have to be approximated avoiding undesired
oscillations. Usually, the well known smoothing splines [52] are taken for the ap-
proximation of data with uncertainties where some oscillations may occur. On
the other hand, the also well known exponential splines [57], [53] interpolate data
avoiding oscillations not given in the data but without regarding the errors of the
data.

The class of exponential smoothing splines combine both methods. They are de-
veloped in the master thesis of Werneburg [68] for the approximation of price-load
curves in financial mathematics and also explained in [66] with slightly changed for-
mula for the determination of the Lagrange parameter. In this chapter, the details
of the construction of the exponential smoothing spline used in [66] are explained.
Furthermore, the computation of the tension parameters is mentioned explicitly. In
the context of this thesis, exponential smoothing splines are needed for the deter-
mination of the phase transition in lattice QCD using the Wilson flow. They are
applied in the energy difference method [66] described in section 8.3.

This section opens with the idea of exponential smoothing splines denoted as min-
imization problem. Then, the formula (6.8) for the spline is stated in section 6.3
accompanied by the linear equations which lead to the coefficients of the spline.
Paragraph 6.4 is dedicate to the computation of the Lagrange parameter of the
minimization problem. Then, two examples are given in section 6.5, one of artifi-
cial data and one for the detection of the critical temperature in finite temperature
SU(3,C) Yang-Mills theory. Finally, this chapter closes with a summary in part
6.6.

6.1 Minimization Problem

Let there be n data points (xi, yi), with uncertainties wi of yi and i = 1, . . . , n.
The data should be approximated within the region of their errors and oscillations
should be avoided at the same time. The exponential smoothing spline is developed
for this purpose. It can be found by minimizing the energy function

xn∫
x0

[
f ′′(x)2 + Λ(x)2f ′(x)2

]
dx (6.1a)

99
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among all f ∈ C2(x0, xn) using the constraints

n∑
i=0

(
f(xi)− yi

wi

)2

≤ S and Λ(x) = λi > 0 (6.1b)

with x ∈ [xi, xi+1) for i = 0, . . . , n−1. Here, the piecewise constant tension functions
Λ(x) avoid undesired oscillations, the weights wi are correlated to the errors of yi
and the smoothing parameter S defines how much the approximated values f(xi)
may differ from yi.

The minimization problem (6.1) is solved by building a functional J combining the
minimization problem and the constraint. Afterwards, it is minimized with respect
to its parameters. For this purpose, a slack variable z is introduced which turns
equation (6.1b) in an equation:

n∑
i=0

(
f(xi)− yi

wi

)2

= S − z2. (6.2)

Then, a functional J(ε, p, z) is composed of the minimization problem (6.1a) and
the constraint (6.2) using a Lagrange parameter p. In addition, the calculus of
variation is used to replace f(x) by

f(x) = s(x) + εh(x) with 0 ≤ ε << 1 and h(x0) = 0 = h(xn). (6.3)

All in all, the functional reads

J(ε, p, z) :=

xn∫
x0

[(
s′′(x) + εh′′(x)

)2

+ Λ(x)2
(
s′(x) + εh′(x)

)2
]
dx (6.4)

+ p ·
{ n∑
i=0

(s(xi) + εh(xi)− yi
wi

)2

− S + z2

}
which has to be minimized with respect to its three parameters ε, p, z and evaluated
at ε = 0. A minimization of ∂J(ε, p, z)/∂ε leads to the shape of the exponential
smoothing spline.

6.2 Relation to Other Splines

The exponential smoothing spline is a generalization of already known splines. Con-
cerning the minimization problem (6.1) with

• Λ(x) = 0, S 6= 0, oscillations are allowed leading to the smoothing splines

s(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 (6.5)
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for x ∈ [xi, xi+1), i = 0, . . . , n− 1 developed in [52],

• S = 0,Λ(x) 6= 0, the data are met exactly, but the oscillations are suppressed
by the tension functions Λ(x) as described, e.g, in [13], [51], [57], [59], [53] or
in [54]. This leads to the exponential splines

s(x) = yi+1t+ yi(1− t) +
di+1

λ2
i

(
sinh

(
µit
)

sinh(µi)
− t
)

+
di
λ2
i

(
sinh(µi(1− t))

sinh(µi)
− 1 + t

)
(6.6)

for x ∈ [xi, xi+1), i = 0, . . . , n− 1 and

t =
x− xi
xi+1 − xi

, µi := λi · hi, hi := xi+1 − xi, (6.7)

• Λ(x) = 0 and S = 0, the famous cubic splines are met.

All splines are constructed as the function f(x) among all functions f(x) ∈ C2[x0, xn]
in order that the integrals are minimized while fulfilling the constraints.

6.3 The Exponential Smoothing Spline and its
Coefficients

The minimization problem (6.1) is solved by the exponential smoothing spline

s(x) = si+1t+si(1−t)+
di+1

λ2
i

(
sinh

(
µit
)

sinh(µi)
−t
)

+
di
λ2
i

(
sinh(µi(1− t))

sinh(µi)
−1+t

)
. (6.8)

It has the same shape as the exponential spline. The only difference to the parame-
terization of the exponential spline is that the data yi are replaced by the unknown
si := s(xi) since it holds s(xi) 6= yi in general. Concerning formula (6.8), the values
λi, µi and t are given by equations (6.7) for each interval [xi, xi+1) for i = 0, . . . , n−1.
The tension parameters λi are also pre-determined for i = 0, . . . , n− 1. According
to [53], the tension parameters λi can be chosen as uniformly distributed random
values in the interval [4hi, 15hi]. This is just one - the most simplest - of several
possibilities to determine the tension parameters, see [53].

The parameters si, si+1, di, di+1, i = 0, . . . , n − 1, are the unknowns, i.e 4n equa-
tions are needed for its calculation. They can be determined using the smoothing
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conditions

s(x−i )− s(x+
i ) = 0, i = 1, . . . , n− 1, (6.9a)

s′(x−i )− s′(x+
i ) = 0, i = 1, . . . , n− 1, (6.9b)

s′′(x−i )− s′′(x+
i ) = 0, i = 0, . . . , n, (6.9c)

and the jump equation(
s′′′(x−i )− Λ2(x−i )s′(x−i )

)
−
(
s′′′(x+

i )− Λ2(x+
i )s′(x+

i )
)

= 2p
s(xi)− yi

w2
i

(6.9d)

for i = 0, . . . , n. These equations imply that the splines of the subintervals [xi−1, xi)
and [xi, xi+1) are turned smoothly into each other. In equation (6.9), the limits

s(k)(x±i ) = lim
h→0,h>0

(xi ± h), for k = 0, 1, 2, 3, i = 0, . . . , n (6.10)

and natural boundary conditions s′′(x0) = s′′(xn) = 0 are used for the k-th deriva-
tive of the function s.

The smoothing condition (6.9b) and the jump equation (6.9d) lead to two linear
equations determining the unknowns s = (s0, . . . , sn)> and d = (d1, . . . , dn−1)>.
The values d0 = dn = 0 are already given through the natural boundary conditions
s′′(x0) = s′′(xn) = 0.

The first linear equation
Qs = Td (6.11)

depends on the smoothing condition (6.9b) and contains sparse matrices Q and T .
The matrix Q is a tridiagonal matrix with n− 1 rows and n+ 1 colums with entries

Qi,i = − 1

hi−1

, Qi,i+1 =
1

hi−1

+
1

hi
, Qi,i+2 = − 1

hi
. (6.12)

T a symmetric tridiagonal matrix of order n− 1 with entries

Ti,i = ti−1 + ti, ti := − cosh(µi)

λi sinh(µi)
+

1

λ2
ihi

(6.13a)

Tk,k+1 = Tk+1,k = t̃k, t̃k :=
1

λk sinh(µk)
− 1

λ2
khk

. (6.13b)

The indices i and k run from i = 1, . . . , n− 1 and k = 1, . . . , n− 2.

The second linear equation

Us−QTd = pD−2(s− y) (6.14)

with diagonal matrix D := diag(w0, . . . , wn)T and symmetric tridiagonal matrix U
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of size (n+ 1)× (n+ 1) arises from the jump equation (6.9d). U is given by

U1,1 := −λ
2
0

h0

, Un+1,n+1 := −λ
2
n

hn
, (6.15a)

Ui,i := −
(
λ2
i−1

hi−1

+
λ2
i

hi

)
for i = 2, . . . , n, (6.15b)

and Uj,j+1 = Uj+1,j :=
λ2
j

hj
for j = 1, . . . , n. (6.15c)

The details of the derivation of these two linear equations (6.11) and (6.14) can be
found in the appendix, see section .3.

6.4 Lagrange Parameter

The Lagrange parameter can be evolved by the minimization of the functional
J(ε, p, z) given in equation (6.4) with respect to p and z:

∂J(ε, p, z)

∂p
|ε=0 =

n∑
i=0

(s(xi)− yi
wi

)2

− S + z2 ∂J(ε, p, z)

∂z
|ε=0 = 2pz (6.16)

The minimization leads to

S − z2 =
n∑
i=0

(
s(xi)− yi

wi

)2

= ||D−1(s− y)||22 =: F (p)2 .

Using
s = −p(U −QTT−1Q− pD−2)−1D−2y

computed by a combination of the aforementioned linear equations (6.11), the La-
grange parameter can be computed by F (p)2 = S − z2 with

F (p) = ‖D−1(s− y)‖2 = ||pD−1
(
(U −QTT−1Q− pD−2)−1D−2y − y

)
||2.

The derivative of the functional J(ε, p, z) with respect to z leads to z = 0 in order
that F (p)2 − S = 0 has to be solved.

Finally, the Lagrange parameter p is still unknown and can be computed by F (p)2 =
S with

F (p) = ||pD−1(U −QTT−1Q− pD−2)−1D−2y − pD−2y||2 . (6.17)

This equation has to be solved for the unknown p, for example, with interval nesting
or a Newton iteration. Thereby, it must be taken into account that the starting
value p(0) = 0 should be avoided since it would lead to vectors s = 0, d = 0 and
therefore to a spline s(x) = 0.
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6.5 Example

The exponential smoothing spline can be used to approximate error-prone data in
many fields of applications. In this section, we show the advantage of the exponen-
tial smoothing spline, respective smoothing spline under tension, for an academic
example with random data and weights.

In this example, we created random data yi with random weights wi, i = 1, . . . , 14,
both uniformly distributed. The values are given in table 6.1 and shown in figure
6.1. Additionally, the exponential smoothing spline is drawn and compared to
the smoothing spline and the exponential spline. We see that the smoothing spline
approximates the data and the exponential spline interpolates them. The advantage
of the exponential smoothing spline is the approximation the data and at the same
time the suppression of oscillations not necessarily given in the data.

x 0.5 1 1.5 2 2.5 3 3.5

y 0.26 0.27 0.46 0.47 0.52 0.64 0.59

w 0.06 0.12 0.06 0.07 0.01 0.10 0.07

x 4 4.5 5 5.5 6 6.5 7

y 0.55 0.61 0.42 0.45 0.39 0.44 0.62

w 0.07 0.04 0.04 0.05 0.08 0.11 0.06

Table 6.1: Values of figure 6.1.
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Figure 6.1: Example of an exponential smoothing spline. – Academic example with
random data and random weights.

6.6 Summary

In this chapter, the exponential smoothing spline is introduced following the line of
section 2.3 in [68]. It has the advantage that data with statistical or measurement
errors can be approximated without oscillations not being part of the data. The
content of section 6.1, 6.3 and 6.4 is mainly taken from [68]. Here, the computation
of the Lagrange parameter is changed. Furthermore, the computation of the tension
parameters according to Rentrop [53] is explained in detail. However, the investi-
gation of the best approximation described in [68] is left out here. The exponential
smoothing spline is computed for an academic example with random data. This
serves as clarification of the shapes of the exponential smoothing spline and the
related exponential and smoothing spline.

In chapter 8, the exponential smoothing spline is used in the context of finite tem-
perature QCD. This second example is taken from [66]. Here, a method for the
detection of the finite temperature phase transition in SU(N) Yang-Mills theory is
developed based on the usage of this spline.
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7 Chapter 7

HMC in Lattice QCD

One of the main contents of this thesis is the development of geometric numerical in-
tegration methods for Lie groups and its application in Lattice QCD. In this chapter,
the Hamiltonian equations of motion occurring in the Hybrid Monte Carlo simula-
tion are implemented using the different geometric integration schemes explained in
chapter 5: the Cayley-Leapfrog method, the symmetric partitioned Munthe-Kaas
Runge-Kutta method and the projection scheme. For this purpose, lattice gauge
fields in SU(N) Yang-Mills theory are simulated.

This chapter is split into two parts. We start with the description of Hybrid Monte
Carlo simulations on lattice gauge fields in section 7.1 followed by a section 7.2
on the simulations of lattice gauge field using the different geometric numerical
integration methods described in chapter 5.

7.1 HMC Simulations on Lattice Gauge Fields

We simulate the Wilson action SG of lattice gauge fields in SU(N) Yang-Mills theory
(which is described in paragraph 2.1) in the context of a HMC simulation. Thereby,
the model consists of a field of links [U ] and a related field of fictitious momenta
[P ]. The links Uxµ belong to a special unitary Lie group SU(N,C) with N = 2
or N = 3 depending on the model. The momenta Pxµ are traceless and hermitian
and have the same size N ×N as the link matrices. The lattice has two dimensions
in order that its size is T × L with time extension T and space extension L.This
means, we simulate nl = 2 · T · L link matrices situated at the interconnecting
lines between two grid points. At each position of the grid, there exist 2 links and
its corresponding momenta. The details of the HMC simulation are obtained via
personal communication with Prof. Dr. F. Knechtli unless noted otherwise.

7.1.1 HMC

The Wilson gauge action is simulated by means of the Hybrid Monte Carlo method
which works as follows:

1. Start with a gauge field of links [U ]i.

2. Draw a field of Gaussian distributed momenta [P ]i.

109
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3. Compute the Hamiltonian H([U ]i, [P ]i).

4. Perform a trajectory of Molecular Dynamics Steps using a geometric integra-
tion scheme Φ:

([U ]i, [P ]i)→ ([U ]j, [P ]j) = Φ([U ]i, [P ]i) (7.1)

5. Compute the Hamiltonian H([U ]j, [P ]j).

6. Perform an acceptance step. Add the new field [U ]i+1 to the ensemble of field
configurations.

7. Proceed with step 2.

For the execution of the single steps of the simulation, some further information is
needed.

Representation of the Matrices for Links and Momenta. First of all, the
gauge field of links should be uniformly distributed and the momenta are drawn
from Gaussian distributed random numbers. In this thesis, we work with special
unitary Lie groups of dimension N = 2 and N = 3. Special unitary complex Lie
group and Lie algebra matrices of dimension N = 2 can be represented by the Pauli
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7.2)

These matrices are traceless and hermitian with the result that it holds σj = σ†j for
j = 1, 2, 3 as described, for example in [34].

Lemma 7.1. Every matrix U ∈ SU(2,C) can be represented by

U =
3∑
j=1

xjiσj + x4 · I2 =

(
x4 + ix3, x2 + ix1

−x2 + ix1, x4 − ix3

)
(7.3)

with complex i and a vector x ∈ R4 and ||x||2 = 1. I2 ∈ R2×2 is the identity matrix
and σ1, σ2 and σ3 are the Pauli matrices.

Lemma 7.2. The matrices A ∈ su(2,C) are traceless and anti-hermitian, in order
that they can be build from a linear combination of the Pauli matrices σ1, σ2, σ3 as

A = i

3∑
j=1

yjσj (7.4)

with yj ∈ R, j = 1, 2, 3 and complex i. [34]

The conjugated momenta of the links have to be Gaussian distributed with the
result that the fixed point of the Markov chain gained via the HMC method can be
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reached. Thus, the momenta are chosen as

P =
1√
2

3∑
j=1

yjσj =
1√
2

(
y3 y1 − iy2

y1 + iy2 −y3

)
. (7.5)

The elements U of the Lie group SU(3,C) can be build from elements of its as-
sociated Lie algebra su(3,C) via the exponential map. The generators of the Lie
algebra su(3,C) are the eight Gell-Mann matrices λj, j = 1, . . . , 8 in order that it
holds

A = i
8∑
j=1

yjλj ∈ su(3,C) (7.6)

with yj ∈ R, j = 1, . . . , 8 as described, for example, in [21].

2-Dimensional Gauge Field of SU(N,C) and its Hamiltonian. For the test
of geometric numerical integration schemes for the Molecular Dynamics step, 2-
dimensional lattice gauge fields with links being elements of the special unitary
Lie group SU(2,C) or SU(3,C) and periodic boundary conditions are used. In 2
dimensions, the Lorentz indices µ and ν take the values µ = 0 and ν = 1. The
Hamiltonian (7.22) can be adapted to

H([U ], [P ]) =
1

2

∑
x,µ

Tr
(
P 2
x,µ

)
+
∑
x

∑
µ<ν

β

(
1− 1

N
Re (Tr(Px,µν))

)
(7.7)

and N is set to N = 2 or N = 3. This means, the kinetic energy is computed
from all momenta and the Wilson gauge action from all anti-clockwise oriented
plaquettes. The sum

∑
µ<ν could be left out because there exists just the single

(µ = 0, ν = 1)-plane as shown in figure 2.3.

Molecular Dynamics Step. The heart of the HMC algorithm is the geometric
integration of the Hamiltonian equations of motion and the computation of the
Hamiltonians for the acceptance step. The geometric numerical integration schemes
developed during this thesis are intended to be used in Lattice QCD. Thus, they
are applied on the Hamiltonian equations of motion (2.13) which read

∂H
∂Px,µ

= U̇x,µ = iPx,µUx,µ,
∂H
∂Ux,µ

= −Ṗx,µ = −i β
N

{
Ux,µS(Ux,µ)

}
TA
.

with traceless anti-hermitian operator{
Mx,µ

}
TA

=
(
Mx,µ −M †

x,µ

)
− 1

N
Tr
(
Mx,µ −M †

x,µ

)
· I2 (7.8)



112 7 HMC in Lattice QCD

and staples

S(Ux,µ) = Ux+aµ̂,νU
†
x+aν̂,µU

†
x,ν + U †x+a(µ̂−ν̂),νU

†
x−aν̂,µUx−aν̂,ν . (7.9)

N is the dimension of the matrix (usually N = 3 or even N = 2) and β the coupling
constant. For the simulations in this chapter, β is set to β = 2.0. The identification
of the correct links inside the staples is realized via a lexicographical index inside
the code.

Acceptance Step. The new configuration [U ]j is accepted with transition proba-
bility min(1, exp(−∆H)) and ∆H = H([U ]j, [P ]j)−H([U ]i, [P ]i). This means, it is
accepted if the new Hamiltonian is smaller than the old one. Otherwise, a uniformly
distributed random number r ∈ [0, 1] is drawn. If r is smaller than exp(−∆H), the
new configuration is accepted, otherwise the old one. In any case, the more probable
and thus accepted configuration is added to the Markov chain of HMC configura-
tions. It is the origin for the next step with a new Gaussian distributed field of
momenta.

Thermalization. The HMC starts from a random configuration which might not
be close to the target distribution. So, it may take a while to get in the region of
the target distribution. This time is called thermalization phase. Usually, the ther-
malization phase is left out for the computation of the expectation values and thus,
the expectation values are computed from configurations after the thermalization.

Statistical Errors. Mean values 〈A〉 of Monte Carlo simulations go along with
statistical errors including auto-correlation effects. Statistical errors are computed
as

σ2 =
var(A)

N/2τint,A
(7.10)

with variance var(A) and integrated auto-correlation time

τint,A =
1

2
+
∞∑
t=1

Γ(t)

Γ(0)
. (7.11)

The auto-correlation Γ(t) is a measure for the independence of subsequent configu-
rations inside a Monte Carlo simulation. For a time series of N measurements Ai
from a Markov process, the auto-correlation is defined as

Γ(t) = Γij =
〈(
Ai − 〈Ai〉

)(
Aj − 〈Aj〉

)〉
(7.12)

with t = |i − j|. So, Γij does not depend on the indices i and j itself but on its
distance t. Furthermore, 〈Ai〉 = 〈Aj〉 =: a Thus, Γ(t) can be expressed as

Γ(t) =
〈(
Ai − a

)(
Ai+t − a

)〉
(7.13)
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The auto-correlation is defined, for example, in [21], [34] or [69]. In this thesis, the
statistical errors including auto-correlation effects are computed using the method
of Wolff explained in [69].

Validation. The model should be validated. For this purpose, the model is tested
for gauge invariance and the value of its plaquette is cross-checked with other ex-
isting programs. Starting from a field of links settled at the interconnecting lines of
a grid, the plaquette value can be computed via

P([U ]) =
∑
x

∑
µ<ν

Re
(
Tr
(
Px,µν([U ])

))
(7.14)

with
Px,µν([U ]) := Ux,µUx+aµ̂,νU

†
x+aν̂,µU

†
x,ν .

given in equation (2.1).

Another validation is the check of gauge invariance which can be done as proposed
in paragraph 2.1.2. Here, random special unitary matrices Vx ∈ SU(N,C) are put
at each grid point with the result that a gauge transformation

Ux,µ → Ũx,µ = VxUx,µV
†
x+aµ̂.

given in equation (2.4) changes each link Ux,µ to Ũx,µ. Finally, the plaquette values
P([Ũ ]) and P([U ]) defined in equation (7.14) must have exactly the same values
(up to rounding errors in the region of machine precision).

7.1.2 Tests for Geometric Integration

Inside the Hybrid Monte Carlo simulation, the Hamiltonian equation of motion are
solved with a geometric integration scheme in the Molecular Dynamics part.

The quality of the numerical integration scheme is tested by means of the conver-
gence order, its computational cost and a check of its geometric properties. Further-
more, the model itself is validated due to gauge invariance and the mean plaquette
value as described above..

Time-Reversibility. For the geometric integration scheme used inside the HMC
method, it is absolutely necessary that the scheme Φh is time-reversible, i.e.

ρ ◦ Φh ◦ ρ ◦ Φh = id with ρ =

(
I 0
0 −I

)
(7.15)
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(provided that Φh is symmetric, i.e. Φh = Φ−1
−h) stated in equation (5.14) in defini-

tion 5.11.

This is checked numerically as follows starting from an initial configuration ([U ]i, [P ]i):

1. Compute Φh([U ]i, [P ]i) = ([U ]i+1, [P ]i+1),

2. then put a minus in front of [P ]i+1,

3. compute Φh([U ]i+1,−[P ]i+1) =: ([U ]j,−[P ]j)

4. and flip the sign of the momenta [P ]j again.

Finally, compare ([U ]j, [P ]j) with ([U ]i, [P ]i). The fields should be the same up to
machine precision.

Volume-Preservation. The numerical method is volume-preserving if the abso-
lute value of the determinant of its Jacobian is equal to one:∣∣∣∂Φ([U ]i, [P ]i)

∂([U ]i, [P ]i)

∣∣∣ = 1. (7.16)

Theoretically, this can be overcome by a multiplication of the inverse of the Jaco-
bian. Due to the fact that the system is very large, this theoretical possibility is
not feasible in practice.

Since there is no general analytical formula for the computation of the Jacobian of
the geometric integration of a lattice gauge field, the Jacobian is computed from
difference formulae. These formulae depend on the structure of ([U ]i, [P ]i), respec-
tive on its implementation inside the code. Thus, the numerical investigation of
the volume-preservation will be discussed separately for each model in the following
paragraphs.

Convergence Order. The convergence order can be checked via the difference
of the Hamiltonian of the field configurations before and after the Molecular Dy-
namics step. More precisely, the mean value of the absolute difference of the old
Hamiltonian and the new one after the geometric integration and is computed by

∆H :=
1

n

n∑
i=1

∣∣∣H([U ]i, [P ]i)−H
(
φ([U ]i, [P ]i)

)∣∣∣ . (7.17)

∆H is the difference between two Hamiltonians computed before and after a whole
trajectory of numerical integration steps. The length of this trajectory is τ and
its value is set to τ = 1 unless it is mentioned that τ has a different value. For a
numerical integration scheme of convergence order p, a local error of size O(hp+1)
is expected, with the result that ∆H would have the value ∆H = c × hp+1 with
constant c. Due to the fact that the determination of ∆H, requires the computation
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of a whole trajectory of length τ , n = τ/h steps are computed in order that the
energy difference ∆H has the magnitude

∆H = c · hp+1 · n = c · τ · hp (7.18)

is expected as the result of the simulations. Finally, the mean value 〈∆H〉 is
taken for the investigation. For this purpose, the statistical errors including auto-
correlation effects are also considered.

The convergence check starts from a certain configuration after the thermalization.
From this configuration, all values of ∆H are collected, regardless if the new con-
figuration is accepted or not.

Computational Cost. For the computational cost, the computational time is mea-
sured. Since the numerical integration is performed on lattices of different size, the
computational time is scaled for comparison reasons. It is the time per trajectory
of length τ = 1 per link, i.e. the time is divided by d · T · Ld−1 with d = 2. The
computational cost is related to the step size of the applied integration scheme or
the even more relevant difference in the Hamiltonian. It strongly depends on the
implementation of the different schemes which is described in the next paragraph.

Implementation. The Runge-Kutta schemes are implemented in Matlab for 2-
dimensional lattice gauge fields in SU(2,C). According to equations (7.3) and
(7.5), the matrices of the Lie group and the Lie algebra have the shape

Y =
3∑
j=1

ujσj + u4I2 and A = i

3∑
j=1

ajσj (7.19)

with a1, a2, a3, u1, u2, u3 and u4 ∈ R, Pauli matrices σ1, σ2 and σ3 and identity
matrix I2 ∈ R2×2. The values uj, j = 1, 2, 3, 4 are drawn as uniformly distributed
random numbers with uj ∈ [−1, 1]. Afterwards, the vector u is normalized by a
division of ||u||2 [34]. The random numbers aj (j = 1, 2, 3) are Gaussian distributed
(with mean 0 and variance 1).

The matrices Y and A are represented by its sets of coefficients (u1, u2, u3, u4) and
(a1, a2, a3) in order that the code is quite efficient. Just the exponential function and
the Cayley transform require the computation of matrices. So, the implementation
the exponential function and the Cayley transform are of importance. In this work,
the matrix exponential exp(A) is computed via the matrix decomposition method
described by Moler and Van Loan in [41] based on a similarity transformation

A = UDU−1 followed by exp(A) = U exp(D)U−1. (7.20)
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Concerning the Cayley map cay(A) = (I − A)−1(I + A), the matrix

B =

(
a b
c d

)
leads to its inverse B−1 =

1

det(B)

(
d −b
−c a

)
. (7.21)

Afterwards, the matrices are stored again as set of coefficients.

Notation. For the geometric integration schemes, the equations of motion (2.13)
are denoted as

Ẏj(t) = Aj(t)Yj(t), Ȧj(t) = F ([Yj(t)]s) for j = 0, . . . , nl − 1 (7.22)

similar to equation (2.58) in section 2.2. For simplicity,

[Y ] := {Y0, . . . , Ynl−1} and [A] := {A0, . . . , Anl−1} (7.23)

describe the set of all Lie group, respective Lie algebra elements of one configura-
tion.The initial values are denoted as

[Yn] := {Yn,0, . . . , Yn,nl−1} and [An] := {An,0, . . . , An,nl−1} . (7.24)

Thus, one step of a numerical integration scheme can be denoted as(
[Yn], [An]

)
→ Φh

(
[Yn], [An]

)
=
(

[Yn+1], [An+1]
)
. (7.25)

Multiplying a field with a constant a ∈ R means that all components are multiplied
with this value in order that

a[A] = [aA]. (7.26)

Similarly, the sum of two fields means that the components are summed component
by component:

[A] + [B] = [A+B]. (7.27)

Inside the code, the Hamiltonian equations of motion are solved according to equa-
tion (2.13). Thus, the one-to-one correspondence (2.56), i.e.,

Ux,µ ↔ Yj and iPx,µ ↔ Aj ,

depending on the lexicographic index (2.57a), i.e.,

j := np · µ+ x with np = T · Ld−1 ,

is used for a change between the different notations.
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7.2 Geometric Integration Methods

In this section, the Hamiltonian equations of motion are solved with different nu-
merical integration schemes for a 2-dimensional gauge field of SU(2,C) or SU(3,C)
matrices. More precisely, the geometric numerical integration methods developed
in chapter 5 are adapted for a lattice gauge field. Thus, the methods are described
for a grid of coupled differential equations on Lie groups / Lie algebras

Ẏj(t) = Aj(t)Yj(t), Ȧj(t) = F ([Yj(t)]s) for j = 0, . . . , nl − 1

as described in equation (7.22). Here, we consider

• the Leapfrog method based on the exponential function as well as

• the Leapfrog method using the the Cayley mapping,

• the symmetric partitioned Runge-Kutta method and

• the time-reversible projection method.

In general, the Leapfrog method uses the exponential function as local parameter-
ization. This method is known as time-reversible and volume-preserving in order
that its numerical solution is taken as reference for the other methods. Next, all
four methods for coupled differential equations on Lie groups / Lie algebras are
adjusted to the Hamiltonian equations of motion in Lattice gauge theory. Further-
more, the three kinds of Runge-Kutta methods are implemented for 2-dimensional
lattice gauge fields in SU(2,C) Yang-Mills theory and the projection method in
SU(3,C) Yang-Mills theory. For a first insight in the geometric properties of the
schemes, the size of the matrices does not matter. The convergence order, the com-
putational cost as well as the geometric properties time-reversibility and volume-
preservation are checked as described in paragraph 7.1.2 and shown in figures 7.1
to 7.8. Here, a lattice of size 8× 8 is used in order that the number of link matrices
reads nl = 2 · 8 · 8 = 128.

7.2.1 Leapfrog Method

The Leapfrog or Störmer-Verlet Lie group method is known as geometric integration
scheme on Lie groups with convergence order p = 2. The Leapfrog scheme (5.31a)
adapted for the Hamiltonian equations of motion (7.22) of a lattice gauge field is
given by

An+ 1
2
, j = An, j +

h

2
F
(
[Yn, j]s

)
, j = 0, . . . , nl − 1,

Yn+1, j = exp
(
hAn+ 1

2
, j

)
Yn, j, j = 0, . . . , nl − 1, (7.28)

An+1, j = An+ 1
2
, j +

h

2
F
(
[Yn+1, j]s

)
, j = 0, . . . , nl − 1
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with initial values Yn, j ∈ SU(2,C) and An, j ∈ su(2,C) for j = 0, . . . , nl − 1.
The first index n, n + 1

2
or n + 1 denotes the initial values, intermediate steps

and the final results of the numerical scheme. The index j refers to the differ-
ent elements of the field. The Leapfrog scheme is used for a validation of the
Hybrid Monte Carlo program through the mean plaquette value by a cross-check
with other programs. The computed plaquette values are in good agreement with
other programs – the mean plaquette value for SU(2,C) gauge fields should take
the value 〈TrP([U ])〉 = 0.8669(2) (personal communication with F. Knechtli).
The results of the Leapfrog method concerning convergence, time-reversibility and
volume-preservation are shown in figures 7.1 to 7.2. Afterwards, the other developed
schemes are compared to these values.

7.2.2 The Cayley-Leapfrog Method

The Cayley-Leapfrog scheme is an adjustment of the Leapfrog scheme 7.28 for Lie
group / Lie algebra problems. Here, just the local parameterization is exchanged.
The Cayley-Leapfrog scheme for the differential equations (7.22) reads

An+ 1
2
, j = An, j +

h

2
F
(
[Yn, j]s

)
, j = 0, . . . , nl − 1,

Yn+1, j = cay
(
h
2
An+ 1

2
, j

)
Yn, j, j = 0, . . . , nl − 1, (7.29)

An+1, j = An+ 1
2
, j +

h

2
F
(
[Yn+1, j]s

)
, j = 0, . . . , nl − 1

with initial values Yj,n ∈ SU(2,C) and Aj,n ∈ su(2,C) for j = 0, . . . , nl − 1. This
scheme is based on the considerations of section 4.2 and definition 5.15 of subsection
5.2.3.

Convergence. The convergence order of the Cayley-Leapfrog method is shown in
figure 7.1. Here, the Cayley-Leapfrog method given in (7.29) is performed where the
mean value of the absolute difference of the Hamiltonian before and after one com-
puted trajectory is plotted versus the step size h of the single geometric integration
schemes. The Cayley-Leapfrog scheme has convergence order p = 2 with the result
that an overall error of order O(h2) is expected after one trajectory. Indeed, the
numerical result of the Cayley-Leapfrog scheme for Lie group/Lie algebra problems
has convergence order p = 2 as well as the shown numerical result of the (standard)
Leapfrog method.

Geometric Properties. The geometric properties which have to be fulfilled are
the time-reversibility stated in equation (7.15) and the volume-preservation stated
in equation (7.16). On the left-hand side of figure 7.2, the maximum point wise
difference of the initial values [Yn, An] and ρ ◦ Φ ◦ ρ ◦ Φ([Yn, An]) with ρ([Y,A]) =
[Y,−A] are shown. It can be seen that these values are in a region close to machine
precision for both methods. So, both methods are numerically time-reversible. The
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Figure 7.1: Leapfrog: convergence order – for the exponential map and the Cayley
transform. The Cayley-Leapfrog scheme (red circles) and the standard
Leapfrog scheme (blue crosses) both have convergence order p = 2.

right-hand side of figure 7.2 shows the value of the determinant of the Jacobian
J = ∂[Yn+1, An+1]/∂[Yn, An], computed via numerical differentiation. More precise,
the coefficients u1, u2, u3, u4, a1, a2, a3 from equation (7.19) for each of the nl links
are collected in a large vector v ∈ R7nl . Then, the Jacobian is obtained via the
one-sided forward difference operator

f(v + εei)− f(v)

ε
(7.30)

with unit vector ei and ε = 10−6. This means, we choose an initial lattice gauge
field and compute one trajectory. Then, we collect the coefficients to obtain f(v).
Afterwards, each value of the vector v is disturbed ... each value

This value is close to 1 in order that both methods are volume-preserving.

Computational Cost. The computational cost is illustrated in figure 7.3. Shown
is the CPU time for one Molecular Dynamics step (τ = 1, τ/h steps) inside the
HMC integration versus the step size h and the difference in the Hamiltonian. Both,
the Cayley transform and the exponential function are implemented as described
above. In doing so, the Cayley transform is ≈ 4.5 times faster than the exponential
function.
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Conclusion. It is widely known, that the Leapfrog method is suitable for the nu-
merical solution of the Hamiltonian equations of motion (7.22). Many numerical
schemes are based on this method. The Cayley-Leapfrog method exhibits the same
numerical results with less computing time. With the aforementioned results, it is
shown that the Cayley-Leapfrog method works better than the standard Leapfrog
method for lattice gauge fields. Different parameterizations of the Lie group el-
ements are not restricted to the Leapfrog or Störmer-Verlet method. Thus, the
Cayley transform can be used in any Lie group method as, for example, the Munthe-
Kaas or Crouch-Grossmann Runge-Kutta methods. The only requirements are that
the Lie group is a quadratic Lie group.

7.2.3 The Symmetric Partitioned Runge-Kutta Method

The symmetric partitioned Munthe-Kaas method explained in chapter 5.3 can also
be adapted to the system of differential equations (7.22) representing the Hamilto-
nian equations of motion for lattice gauge fields. For each coupled system of Lie
group / Lie algebra differential equations, the symmetric partitioned Munthe-Kaas
Runge-Kutta method stated in algorithm 5.17 with increments Li, i = 1, . . . , s for-
mulated according to equation (5.50) leads to a time-reversible result. Starting from
a gauge field of initial values ([Yn], [An]), the outcome ([Yn+1], [An+1]) is obtained
by the following algorithm.

Algorithm 7.3. (Symmetric partitioned MKRK method for Lattice Gauge Fields)

1. Start with initial values [Yn],[An] and [Ω(t0)] = [Ωn] = {0, . . . , 0}.

2. Consider the set of coupled differential equations

(d exp−1
Ωl

(Al) ≈) Ω̇l =

q∑
k≤0

Bk

k!
adkΩl(Al) =: fq(Ωl, Al),

Ȧl = F ([Yl]s)

for l = 0, . . . , nl − 1 in the Lie algebra.

3. Apply a partitioned Runge-Kutta method (explicit or implicit)

Ωn+1, l = h
s∑
i=1

biKi, l, (7.31a)

An+1, l = An, l + h

s∑
i=1

b̂iLi, l, (7.31b)
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with increments

Ki, l = fq

(
Ω̄i, l, A(Ȳi, l)

)
, (7.31c)

Li, l = F
(

exp(ω̄i, l) exp
(

1
2
Ωn+1, l

)
Yn, l

)
(7.31d)

and internal stages

Ω̄i, l = h

s∑
j=1

aijKj, l, (7.31e)

Ȳi, l = exp
(
An, l + h

s∑
j=1

âijLj, l

)
, (7.31f)

ω̄i, l = h

s∑
j=1

cijKj, l, (7.31g)

for l = 0, . . . , nl − 1. This leads to the approximations

Ωn+1, l ≈ Ωk(t0 + h) and An+1, l ≈ Ak(t0 + h). (7.32)

4. Define the numerical solution by
(
[Yn+1], [An+1]

)
with

Yn+1, l = exp
(
Ωn+1, l

)
Yn, l for l = 0, . . . , nl − 1. (7.33)

Due to the shape of the increments Li,l stated in equation (7.31d), the symmetric
partitioned Munthe-Kaas Runge-Kutta scheme is an implicit scheme. Thus, all nl ·s
increments Ki,l and Li,l (for i = 1, . . . , s and l = 0, . . . , nl − 1) are approximated
by a nonlinear equation. We use a fixed point iteration for the determination of all
values which works as follows:

1. We start with index j = 0 and equations (7.31c) and (7.31d) and set

K0
i,l and L0

i,l to zero for i = 1, . . . , s, l = 0, . . . , nl − 1.

2. In the next step, compute

Ω̄i, l, Ȳi, l and ω̄i, l via equations (7.31e), (7.31f) and (7.31g)

followed by

Kj+1
i,l and Lj+1

i,l for i = 1, . . . , s, l = 0, . . . , nl − 1.

3. Compute

δ = max

(
Kj+1
i,l −K

j
i,l

Kj+1
i,l

,
Lj+1
i,l − L

j
i,l

Lj+1
i,l

)
(7.34)
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for i = 1, . . . , s, l = 0, . . . , nl − 1.

4. If the value of equation (7.34) is small enough, take the values. Otherwise,
increment j and proceed with step 2.

In our example, we compute a 2-dimensional lattice gauge field with periodic bound-
ary conditions.Furthermore, we take a scheme with s = 3 stages using the coeffi-
cients derived in [64] and stated in equation (5.61). Algorithm 7.3 is developed in
order to have convergence order p = 3. Due to the symmetry of the method, the
convergence order is even with the result that a higher convergence order p = 4 is
achieved as described in [60].

During the simulations, a lattice of size 8×8 is simulated. In this case, 5000 trajec-
tories are computed with a thermalization phase of 500 additional trajectories. For
the fixed point iteration, a relative error of δ = 10−8 is chosen as stopping criterion
which is achieved after a few steps in case of our small investigated lattice. The
convergence, time-reversibility and the computational cost are explored as described
before.

The time-reversibility is checked for different relative errors in the fixed point iter-
ation in figure 7.4. This time, we investigate a lattice of size 32 × 32 because the
computation is quite fast. As expected, we see that the error of the time-reversibility
goes along with the relative error of the fixed point iteration. Thus, we choose a
relative error of δ = 10−8 (indicated with red plus signs) as stopping criterion of the
fixed point iteration.

The volume-preservation is just roughly checked since we did not create a volume-
preserving scheme. We investigated that the symmetric partitioned Runge-Kutta
method is not volume-preserving (see figure 1 of [60]).

In figure 7.5, we compare the convergence orders of the standard Leapfrog scheme
(blue crosses), the partitioned Munthe-Kaas Runge-Kutta scheme of convergence
order 2 (yellow circles) and the symmetric partitioned Munthe-Kaas Runge-Kutta
scheme of convergence order 4 (red plus signs). Here, the Leapfrog scheme serves
as a reference. It can be seen that the convergence results of the Munthe-Kaas
Runge-Kutta scheme of order 2 coincides with the Leapfrog scheme. Furthermore,
it is shown that the symmetric partitioned Munthe-Kaas Runge-Kutta scheme of
convergence order 4 indeed takes convergence order 4.

We are interested especially in a comparison of the computational cost of the
Leapfrog scheme and the symmetric partitioned Munthe-Kaas Runge-Kutta scheme
of convergence order 4. Thus, we investigate the CPU time per trajectory (divided
by the number of links) in dependence on the mean value of the absolute differences
in the Hamiltonian in figure 7.6. Again, the Leapfrog scheme is visualized via blue
crosses and the SPRK4 scheme via red plus signs. We see that the computational
cost of the SPRK4 scheme is lower than the one of the Leapfrog scheme for values
of 〈|∆H|〉 lower than 10−3. This means, the symmetric partitioned Munthe-Kaas



124 7 HMC in Lattice QCD

scheme of convergence order 4 is cheaper than the Leapfrog scheme for mean dif-
ferences in the Hamiltonian lower than approximately 10 − 3 in case of a 8 × 8
lattice gauge field of SU(2) matrices. This is a promising result and it indicates the
potential of Munthe-Kaas schemes.
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Figure 7.4: Time-reversibility of the symmetric partitioned MK-RK scheme – .
Shown is the time-reversibility (of one configuration) of the standard Leapfrog
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Figure 7.5: Convergence order of the SPRK scheme. – Shown are the mean value
of the absolute difference of 2 Hamiltonians before and after a MD step
with trajectory length τ = 1 versus the step size h. The symmetric par-
titioned MKRK scheme (red plus signs diamonds) exhibits convergence
order p = 4. The Leapfrog scheme (blue crosses) and the partitioned
MKRK scheme of convergence order 2 (yellow circles) show convergence
order p = 2.
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Figure 7.6: Computational cost of the symmetric partitioned Munthe-Kaas Runge-
Kutta scheme. – Shown is the CPU time of the symmetric partitioned
Munthe-Kaas Runge-Kutta scheme (blue) and the Leapfrog scheme
(red) versus the mean value of the absolute difference of 2 Hamiltonians
before and after a MD step with trajectory length τ = 1.

7.2.4 The Time-Reversible Projection Method

The projection method stated in formula (5.78) is applied on the Hamiltonian equa-
tions of motion used in the HMC

Ẏj(t) = Aj(t)Yj(t), Ȧj(t) = F ([Yj(t)]s) for j = 1, . . . , nl

which are stated in formula (7.22). For this problem, equation (5.82) has to be
adapted to a whole configuration of Lie group / Lie algebra elements:

Yn+1,j = ΦY
h

(
Yn,j, (1 + µ)An,j

)
, (7.35a)

An+1,j =
1

1 + µ
ΦA
h

(
Yn,j, (1 + µ)An,j

)
(7.35b)

for j = 0, . . . , nl − 1. The numerical method Φh can be chosen arbitrarily, it just
has to be a method for a field of coupled Lie group / Lie algebra problems which is
volume-preserving and time-reversible. For example, the Leapfrog methods (7.28)
or (7.29) can be chosen in order that ΦY

h denotes the influence of the method on
the Lie group elements [Y ] and ΦA

h the change of the Lie algebra elements [A]. The
parameter µ is a constant chosen in such a way that the constraint

g̃(µ) := H
(

[Yn+1], [An+1]
)
−H

(
[Yn], [An]

)
= 0 (7.36)
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described in equation (5.83) is small enough, i.e. close to zero. Here, the Hamilto-
nian is computed according to formula (7.7).

Due to its numerical implementation, the projection scheme implies a very small
change in the Hamiltonian. So, using projection schemes as geometric integra-
tion scheme inside the Hybrid Monte Carlo method, the proposed configuration
will be accepted in almost all cases regardless of the step size. This means, the
geometric properties time-reversibility and volume-preservation have to be inves-
tigated as well as the step-size dependence of the defect in the Hamiltonian. In
section 5.4.2, we have shown that the projection scheme (5.78) is time-reversible.
So, the adapted version (7.35) for a lattice gauge field is also time-reversible. The
volume-preservation is called into question. So, we study the volume-preservation
for the new projection scheme through a comparison with the pure Leapfrog scheme
without any projection – which is known to be volume-preserving.

The projection scheme (7.35) is implemented in MATLAB using the Leapfrog
scheme (7.28) for the inner one-step scheme Φh. Here, a code written by Prof.
Dr. M. Striebel is used which determines the parameter µ via the scalar equa-
tion (7.36) using the bisection method. The numerical tests are performed for an
SU(3,C) lattice gauge field on a small lattice of size 8 × 8 with periodic bound-
ary conditions. In doing so, we start from already thermalized configurations and
compute the mean value of 100 different configurations including statistical errors
– which are in most cases so small that they cannot be seen in the figures.

Numerical Results. The accuracy of the projection method just depends on the
stopping criterion of the bisection method used for the constraint g̃(µ). This means,
the difference in the Hamiltonian can be chosen with the result that it could always
be smaller than another geometric integration method. In figure, 7.7 we compare
the projection method using the Leapfrog scheme with a single Leapfrog scheme.
The difference ∆H in the Hamiltonians is computed after a whole trajectory in order
that the error of the Leapfrog method is of order h2. Thus, the stopping criterion
g(µ) of the projection method can be adapted in such a way that the difference in
the Hamiltonian is smaller than for the Leapfrog method.

Volume-Preservation. For the volume-preservation, we compute the absolute
value of the determinant of the Jacobian

DΨµ
h =

∂Ψµ
h

(
[Yn], [An]

)
∂
(
[Yn], [An]

)
of the system Ψµ

h

(
[Yn], [An]

)
. Here, the Jacobian is obtained via a one-sided nu-

merical differentiation with fixed perturbation ε = 10−6. In contrast to the Abelian
case in Rn, the computation of the Jacobian of a Lie-group/Lie-algebra is rather
involved and follows the calculus derived formula (2.3) in [38].
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Figure 7.7: Difference of 2 successive Hamiltonians. – Absolute value of the dif-
ference in the Hamiltonian of 2 successive configurations [Yn, An] and
[Yn+1, An+1] for Leapfrog method (blue circle) and projection method
with constraint g(µ) smaller than 10−4 (black diamond), 10−6 (black
square) and 10−8 (red diamond). Here, the mean value of 100 different
configurations including statistical errors is given.

Figure 7.8 compares the Leapfrog method (which is known as volume-preserving))
and the projection method with constraint g(µ) < 10−8 according to volume-
preservation. As discussed in section 5.4, the projection method is just volume-
preserving if the projection parameter is constant, i.e. does not depend on the
initial values. In our case of an SU(3,C) lattice gauge field, the results of both
schemes coincide. So, the numerical test results suggest the assumption that the
projection scheme indeed is volume preserving, i.e., the projection parameter µ is
constant or nearly constant. The errors are due to the discretization errors intro-
duced by numerical differentiation.

7.3 Summary

In this chapter, the geometric Lie group methods developed in chapter 5 are imple-
mented and tested in the context of lattice gauge fields in SU(N) Yang-Mills theory.
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the Jacobian of the system for Leapfrog (blue circle) and projection
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More precisely, lattice gauge fields [U ] with Wilson action SG([U ]) are simulated
with a Hybrid Monte Carlo method with the result that the target distribution
exp(−SG) is met.

The focus of this thesis is the development of geometric integration methods for Lie
group problems, particularly for the Hamiltonian equations of motion occurring in
the Molecular Dynamics step of the HMC. The Cayley-Leapfrog method, the sym-
metric partitioned Munthe-Kaas Runge-Kutta method and the projection method
designed in chapter 5 are tested in this chapter and compared with the standard
Leapfrog method. The computational costs of all three schemes are lower than the
one of the standard Leapfrog scheme. Furthermore, the methods are time-reversible.

The Cayley-Leapfrog scheme is also volume-preserving. It is the most promising
among the analyzed schemes. The only disadvantage is that it is just suitable for
quadratic Lie groups but the Lie group SU(N,C) used in Lattice QCD is quadratic.
So, the Cayley transform is suitable for Lattice QCD computations and could also
be used in any other numerical scheme apart from the standard Leapfrog scheme,
for example, in higher-order Munthe-Kaas Runge-Kutta schemes.

The symmetric partitioned Munthe-Kaas Runge-Kutta scheme is time-reversible.
The volume-preservation is not investigated here since the scheme suffers from its
implicitness. The system is highly implicit due to the term exp(1

2
Ωn+1) in the

increments Li, l. So, the scheme needs a lot of computing time in order that a
nonlinear system has to be solved in each step of the integration. The scheme is
just cheaper in case of very accurate solutions. Thus, the scheme might be applicable
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for Lattice QCD but there are better ones. For example, the symmetric partitioned
Munthe-Kaas Runge-Kutta scheme can be designed using the increments Li, l, i =
1, . . . , s, l = 0, . . . , nl − 1 stated in equation (5.49). Here, the appropriate order
conditions have to be computed. Then, new coefficients can be found to set up a
different symmetric partitioned Runge-Kutta scheme.

The projection scheme is designed to be time-reversible and volume-preserving as
stated in chapter 5.4. However, the volume-preservation depends on a constant
projection parameter µ. Although the numerical results indicate that violations of
the volume-preservation are small, this is not yet proven. So, thetime-reversible
projection scheme cannot be applied in Lattice QCD computations. Nevertheless,
further investigations may show that it could be suitable for differential equations
on Lie groups / Lie algebras.



8 Chapter 8

The Wilson Flow and Finite
Temperature QCD

This chapter deals with simulations of the Wilson flow. Starting from initial values
gained from Markov chain Monte Carlo simulations in Lattice QCD, the Wilson
flow can be computed in addition. Since it is a differential equation on a Lie group,
it can be computed with any of the Lie group methods described in paragraph
3.2 or developed in chapter 4, i.e. Crouch-Grossmann or Munthe-Kaas Runge-
Kutta schemes with or without step size prediction and with exponential function
or Cayley transform as local parameterization.

The first section introduces the model, a 4-dimensional lattice gauge field in SU(3,C)
Yang-Mills theory. Then, the step size prediction for Munthe-Kaas Runge-Kutta
schemes developed in section 4.1 is applied on the Wilson flow in section 8.2. It uses
standard Munthe-Kaas schemes based on the exponential function.Furthermore, we
describe in paragraph 8.3 that the Wilson flow can be used for the detection of the
critical temperature in Lattice QCD. This technique uses the difference between
the temporal and spatial Wilson energy and approximates the critical temperature
using the exponential smoothing spline described in chapter 6. These surveys are
published in [63] and [66].

8.1 The Model

For the simulation of the Wilson flow, the software DDHMC provided by M. Lüscher
is used. It simulates a 4-dimensional lattice with (time extension T and spacial
volume L3 and) periodic boundary conditions and SU(3,C) gauge field. Here,
Markov chains of gauge fields are computed following a probability distribution
proportional to the Boltzmann distribution of the Wilson action. The Markov chains
are computed for special values of β and taken as initial values for the Wilson flow.

Starting with initial values [V0] := [V (tn)] given by the Hybrid Monte Carlo method,
the Wilson flow is computed for a whole configuration of link matrices. At the same
time, some observables are measured in order that their expectation values can be
determined at the end.

131
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Notation. The lattice consists of nl := 4 ·T ·L3 link matrices. In this chapter, we
use two different notations for the Wilson flow:

V̇j(t) = Zj(t) · Vj(t), Zj = F ([Vj]s) for j = 0, . . . , nl − 1 (8.1)

as mentioned in equation (2.80) for the description of the algorithm and

V̇x,µ(t) = Zx,µ(t) · Vx,µ(t), Zx,µ(t) = −{Vx,µS(Vx,µ)}TA (8.2)

with x = 0, . . . T · L3 − 1 and µ = 0, 1, 2, 3 for the description of the formulae used
for the computation inside the code. (2.78) As in chapter 7, there is a one-to-one
correspondence between both notations. It holds

Vx,µ ↔ Vj and Zx,µ ↔ Zj = F ([Vj]s) (8.3)

related through the lexicographic index j := np · µ + x with np = T · Ld−1 stated
in equation (2.57a). The indices x and µ can also be computed from j via equation
(2.57b). A configuration [Vn] := [V (tn)] consists of nl elements. According to
equation (7.23), [Vn] can be denoted as

[Vn] = {Vn,0, . . . , Vn,nl−1} . (8.4)

The fields [Ωn+1] and [Ω̂n+1] appearing in the integration can be written down in
the same way as

[Ωn] = {Ωn,0, . . . ,Ωn,nl−1} and [Ω̂n] = {Ω̂n,0, . . . , Ω̂n,nl−1} . (8.5)

Wilson Energy. The Wilson energy a4E is of special interest. It can be gained via
the Wilson flow, taking the configurations of an HMC simulation as initial values.
For the simulations, the Wilson energies

a4E�(t) = 2
∑
x,µ<ν

ReTr{1− Px,µν([U ](t))}. (2.81)

and

a4EFT (t) =
1

4
GA
µνG

A
µν (2.82)

stated in paragraph 2.4 are studied. The simple Wilson energy a4E�(t) is used
for the investigation of the step size prediction and the more precise field strength
energy a4EFT for the detection of the critical temperature.

The step size prediction is based on the units [a4E] and [t/a2]. For the detection of
the critical temperature, a scaling towards the physical units [t/r2

0] and [t2E] has to
be done.
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Scale setting. During the simulations, the Wilson energy a4E is computed along
a simulation time in units [t/a2]. For physically interpretable simulations, both the
energy unit and the simulation time have to be re-scaled. The simulation time goes
from t/a2 to t/r2

0 and the energy unit is transformed from a4E to t2E. This means,
the energy of the Wilson flow is multiplied with its squared simulation time t/a2 in
order that the units are transformed according to a4E · (t/a2)2 = t2E. The scaling
of the simulation time is a bit more complicated. The value a/r0 can be computed
for each β using equation (8.13). Thus, the value of β leads to a constant factor
z = ln(a/r0) so as to a/r0 can be computed as exp(z).

Using this model, the step size prediction of the Munthe-Kaas Runge-Kutta method
and the detection of a phase transition by means of the Wilson flow are studied.

8.2 Step Size Control for Munthe-Kaas
Runge-Kutta Methods

We consider the step size control for Munthe-Kaas Runge-Kutta schemes described
in paragraph 4.1 for the Wilson flow (2.78), respective

V̇j(t) = Zj(t) · Vj(t), Zj = F ([Vj]s) for j = 0, . . . , nl − 1 (2.80)

with Vj ∈ SU(3,C), Zj ∈ su(N,C) and a function F : SU(3,C) → su(N,C) . In
this survey, the Wilson flow is computed for a single configuration with initial values
chosen from a Markov chain Monte Carlo simulation. The configuration consists
of a lattice gauge field of nl link variables. For the exploration of the step size
prediction, the observable of interest is the Wilson energy computed in units a4E
for the simulation time t/a2. That implies that the step size prediction is applied
on unscaled data which makes sense because it is done deep inside the simulation
code.

Starting from initial values [V (t0)] = [Vn], i. e. from a given configuration, the new
configuration [Vn+1] is reached using a step size control as described in the next
algorithm.

Algorithm 8.1 (Embedded Runge-Kutta Schemes for the Wilson Flow).

1. Start from the initial values [V (t0)] = [Vn] = {Vn,0, . . . , Vn,nl−1} in the Lie
group and choose an initial step size h.

2. Identify Vj(t) and Ωj(t) as

Vj(t) = exp(Ωj(t)) Vn,j(t) and Ω̇j(t) = d exp−1
Ωj

(Zj(t)). (8.6)

for j = 0, . . . , nl − 1.

3. Compute numerical approximations [Ωn+1] and [Ω̂n+1] in the Lie algebra with
convergence order p and p̂ = p+ 1. Use the embedded scheme (8.8) here.
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4. Determine the error err according to

err =

√√√√ 1

nl

nl−1∑
j=0

( ||Ω̂n+1,j − Ωn+1,j||
ATOL+RTOL · ||Ω̂n+1,j||

)2

(4.16)

in an appropriate matrix norm.

5. Compute the optimal step size hopt according to

hopt = h · p+1

√
1

err
· ρ, ρ < 1 . (8.7)

as already defined in equation (4.5).

• If err ≤ 1, accept the new step size.

– Compute [Vn+1] from [Ωn+1] or [Ω̂n+1].

– Take [Vn+1] as new value at time ti+1 = ti + h.

• If err > 1, the step size was too large. The step has to be repeated with
the smaller step size hopt computed in (8.7).

6. Set h := hopt and proceed with step 3.

In step 3, the following embedded Munthe-Kaas Runge-Kutta scheme is used:

Definition 8.2 (Embedded MKRK scheme for the Wilson Flow). Let the Wilson
flow (2.80) be given and use the parameterization Vj = exp(Ωj)Vn. The unknowns
[Ωn+1] and [Ω̂n+1] are computed from

Ωn+1,k = h

s∑
i=1

biKk,i and Ω̂n+1,k = h

s∑
i=1

b̂iKk,i (8.8a)

with increments

Kk,i = fp̂−2(Yk,i, Zk,i) =

p̂−2∑
k=0

Bk

k!
adkYk,i(Zk,i) (8.8b)

and internal stages

Yk,i = h

max(s,ŝ)∑
j=1

aijKk,j, Vk,i = exp(Yk,i) · Vk,n, Zk,i = F ([Vk,i]s) (8.8c)

for all nl points of the configuration. This means, the running index k = 0, . . . , nl−1
labels the elements of the lattice and i the stage numbers of the method.

Concerning step 5, the solutions [Vn+1] of convergence order p and [V̂n+1] of conver-
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gence order p̂ are reached for all lattice points via

Vn+1,k = exp(Ωn+1,k)Vn,k and V̂n+1,k = exp(Ω̂n+1,k)Vn,k (8.9)

for k = 0, . . . , nl − 1. It is sufficient just to compute [Vn+1] or V̂n+1 in order that
the result has convergence oder p or p̂.

Examples 8.3 (Embedded MK-RK scheme for the Wilson flow with BS coeffi-
cients). The combination of embedded MKRK scheme for the Wilson Flow de-
scribed in definition 8.2 with Bogacki-Shampine coefficients 4.1 reads

Ω̂n+1,k = h

(
1

2
Kk,1 +

1

3
Kk,2 +

4

9
Kk,3

)
(8.10a)

and Ωn+1,k = h

(
7

24
Kk,1 +

1

4
Kk,2 +

1

3
Kk,3 +

1

8
Kk,4

)
(8.10b)

with joint increments

Kk,i = fp̂−2(Yk,i, Zk,i) = Zk,i −
1

2
[Yk,i, Zk,i] (8.10c)

and coefficients k = 0, . . . , nl − 1 and i = 1, . . . , 4. The internal stages Yk,i and Zk,i
read

Yk,1 = 0, Yk,2 =
h

2
Kk,1, Yk,3 =

3

4
hKk,2, Yk,n = Ωn+1,k (8.10d)

and
Zk,i = F ([Vk,i]s) with Vk,i = exp(Yk,i) · Vk,n. (8.10e)

We implement algorithm 8.1 using the embedded MK-RK scheme of definition 8.2
with Bogacki-Shampine coefficients, i.e. we use the equations (8.10) in step 3.
Moreover, the maximum norm is used in equation (4.16). The parameters for the
step size control are set to ATOL=1e−3, RTOL=0, ρ = 0.8. Additionally, the step
size should not change too much which is controlled by

hopt = min(α · h,max(β · h, hopt))

following the suggestion in [30] with α = 0.5 and β = 2. This step size control leads
to schemes of convergence order (2)3.

We compare the Wilson energy (2.81) computed (via the Wilson flow) with a Runge-
Kutta method of order 2 with one computed with the aforementioned step size
prediction for a lattice of size 84 and β = 6.0. In Lattice QCD, a common step size
for Runge-Kutta methods of order p = 2 is h = 0.01. So, we compute the Wilson
flow up to a simulation time 15[ t

a2
] which takes 1500 steps. On the other hand,

we used the step size prediction specified before. This takes just 99 steps with the
result that it indicates that a step size prediction is very useful. The result is shown
in figure 8.1.
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Figure 8.1: Wilson energy computed with a Munthe-Kaas Runge-Kutta method – of
convergence order 2 (blue) and with step size control (red).

Discussion. In most cases, the Wilson flow is computed via a Runge-Kutta method
with fixed step size. Here, the expectation values of the observables of interest are
computed from many configurations including their statistical errors. The step size
prediction has two advantages: first, the computational effort is reduced since the
step size is adapted to the dynamics of the system. Then, the overall error can
be controlled leading to smaller statistical errors. The example is computed for a
single configuration of a small lattice of size 84, i.e. for 4 · 84 link variables. So far,
there is no parallel version of the step size prediction implemented. So, the next
natural step would be the development of a parallel version of this routine (the rest
of the DDHMC code is parallelized) in order that more configurations and larger
lattices can be computed leading to expectation values of observables of physical
interest. Here, the Wilson flows of different configurations are probably computed
at different time points with the result that the observables of interest finally have
to be interpolated to a prescribed time grid. Furthermore, the computation of the
error ||Ωn+1−Ω̂n+1|| should be explored and improved with focus on the used norm.
Perhaps the most interesting thing is the control of the statistical errors. They can
be reduced in a suitable way depending on the numerical error which is limited
through the control parameters. This has to be analyzed in a next step. Also the
control parameters ATOL,RTOL, and ρ can be approved.

8.3 Energy Difference Method for the Critical
Temperature

In lattice computations, there is a critical temperature in the sense that the system
behaves totally different below and above this temperature. Or, in other words:
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“At a critical temperature Tc ≈ 200 MeV, QCD predicts a transition between the
familiar confined hadron physics and a deconfined phase of quark gluon plasma
(QGP).” [50]

The Wilson flow can be used for the detection of this critical temperature instead
of using the Polyakov loop susceptibility. In this section, there is a new method for
the detection of the critical temperature developed: the energy difference method
which is based the Wilson flow. More precisely, the difference in the spatial and
temporal Wilson energy is used for the detection of the phase transition.

This section is organized as follows: it starts with a description of the relation of
lattice parameters and the temperature. Then, the computation of the temperature
via the Polyakov loop is explained followed by the detection of the temperature via
the new energy difference method. In both cases, the exponential smoothing spline
developed in chapter 6 is used. Finally, the results of a Monte Carlo simulation are
shown including a description of all steps necessary to reach the result.

Temperature. In Lattice QCD, simulations are performed on a 4-dimensional
lattice with time extension T , space extension L and coupling constant β which
sometimes is also called inverse temperature. The finite temperature T of a system
can be determined if the space extension L is much larger than the time extension,
i.e. L ≥ 4 · T as described in [9]. Then, it holds

T (β) =
1

T · a(β)
(8.11)

with lattice spacing a(β) which is not directly known. Nevertheless, the last equa-
tion can be transformed to an equation in physical units:

T (β)[MeV] =
r0/a(β)

T · r0

· ~c (8.12)

According to Sommer [58], the values ~c = 197.3 MeV fm and r0 = 0.49 fm can be
used here. The remaining unknown r0/a is the scale and can be computed via

ln(a/r0) = −1.6804− 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3 (8.13)

for 5.7 ≤ β ≤ 6.92 as explained in [48].

All in all, it is obvious that a fixed value for β is related to a fixed temperature of
the system. Thus, the critical temperature Tc can be attained via a detection of the
value for the critical βc through the formula

Tc(βc)[MeV] =
r0/a(βc)

T · 0.49
· 197.3 MeV. (8.14)

Usually, the critical Temperature Tc is investigated using the susceptibility of the
Polyakov loop which is explained next following the explanation of Lo in [35].
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Polyakov Loop. The Polyakov loop is the product of link matrices Ux,µ in time
dimension. Here, µ = 0 is fixed and the link matrix can be described as

Ux,0 = U0(~x, nt) (8.15)

with time index nt and index vector ~x describing the three space dimensions. So,
for each spatial lattice point in L3 there exists a Polyakov loop. The lattice average
PL of the Polyakov loop is defined as

PL =
1

L3

∑
~x

1

3
Tr

T∏
nt=1

U(~x, nt). (8.16)

Since the matrices U(~x, nt) are complex, the lattice average of the Polyakov loop is
also a complex number. Thus, its susceptibility χP is computed as variance of the
absolute value of PL:

χP := L3 ·
(
〈|PL|2〉 − 〈|PL|〉2

)
. (8.17)

This example motivates the determination of the critical temperature via the Polyakov
loop susceptibility according to Boyd et al [9] which is described here:

Algorithm 8.4. (Critical temperature via the Polyakov loop susceptibility)

1. Fix a lattice size T · L3

2. Let simulations run with various values of β around βc.
Compute the Polyakov loop susceptibility χP (β).

3. Take pairs of values (β, χp(β)) and fit a curve through these points.

4. The curve β, χP (β) contains a peak around βc. So, determine βc(χP , T, L) as
the value of β at which the curve has its maximum, e. g., through a spline.

5. Perform steps 2-4 for a new lattice with different spatial extension L.

Finally, the value βc(χP , T,∞) for an infinite volume is desired. It can be reached
via an extrapolation in 1/L3 towards 0.

This way of detecting the critical temperature is very expensive if not just a pure
gauge field is considered but in addition also a fermionic field. This does not depend
on the computation itself but on the large auto-correlation effects as described in
[69]. We develop an alternative way for the determination of the finite temperature
phase transition: the energy difference method.

In combination with the Wilson flow, the Polyakov loop indicates a phase transition
through the visualization of the lattice average PL in the complex plane as shown
in figure 8.2. The single Polyakov loops start at the center (0, 0) and enlarge its
distances from this point through the Wilson flow. For values of β which are smaller
than the critical value βc, the elements of PL build a small circle. On the other hand
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(if β > βc), the elements of PL form a star with up to 3 arms, with progression of
the Wilson flow, the elements are more far away from the center than in the other
case.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re

Im

β=6.02 < β
c

 

 

all points
0th time step
last time step

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re
Im

β=6.07 > β
c

 

 

all points
0th time step
last time step

Figure 8.2: Lattice average PL of the Polyakov loop along the Wilson flow – shown
are the single Polyakov loops.

Energy Difference Method. The energy difference method is based on the fact
that the Wilson energy (2.81) can be split in a spatial and a temporal part in order
that the temporal part of the energy a4Est(t) contains all plaquettes in the space-
time planes and the spatial part a4Ess(t) all plaquettes in the space-space planes.
Both sums contain 3 · T · L3 plaquettes in order that it can be expected that the
difference of the temporal and spatial energy is approximately zero. Indeed, this
is the case for some values of β, more precisely, for values smaller than the critical
value βc. For values of β larger than the critical value βc, the energy difference

∆E(t) := a4Ess(t)− a4Est(t) (8.18)

is non-zero. The energy can be computed via the Wilson energy (2.81) or the field
strength energy (2.82). In the first case, the energy is split in a temporal and spatial
part of the energy as

a4E�,st(t) = 2
∑

x,µ<ν,µ=0

ReTr{1− Px,0ν([U(t)])} (8.19a)

and a4E�,ss(t) = 2
∑

x,µ<ν,µ 6=0

ReTr{1− Px,µν([U(t)])} (8.19b)

depending on the plaquettes Px,µν([U(t)] in order that the energy difference reads

∆E�(t) := a4E�,ss(t)− a4E�,st(t). (8.20)
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Figure 8.3: Energy difference ∆E – for a lattice of size 8× 323.It holds ∆E ≈ 0 for
β = 6.02 < βc and ∆E 6= 0 for β = 6.07 > βc for t ≥ t∗, e.g. t∗ = 0.2

The field strength energy is partitioned the same way as

∆EFT (t) := a4EFT,ss(t)− a4EFT,st(t) (8.21)

with

a4EFT,ss(t) :=
1

4
GA
µνG

A
µν , a4EFT,st(t) :=

1

4
GA

0νG
A
0ν (8.22)

for µ, ν = 1, 2, 3, µ < ν and field-strength tensor Gµν . Equations (8.22) are com-
puted as described in equation (2.83) with a partitioning into a space-time and
space-space part similar to formulae (8.19).

The energy difference is depicted in figure 8.3. Here, the Wilson flow is computed
for β = 6.02 and β = 6.07 up to a flow time of 0.5[t/r2

0] on a lattice of size 8× 323.
Then, the energy difference ∆E(t, β) is shown. We see that the energy difference
is compatible with zero in the case of the small value of β and grows for the large
value of β. This already holds for small simulation times.

So, the critical temperature Tc(βc) for the phase transition can be determined by
finding the value of β at which the energies differ from each other. This survey is
performed at a specific chosen flow time t∗ which is chosen as large as needed to
overcome the cut-off effects in the beginning of a Wilson flow and as small as possible
to save computational time. The unit of the time is chosen as

√
t/r0 according to

the scale r0 defined in [58]. This works as described in the following algorithm.

Algorithm 8.5. Energy Difference Method

1. Fix a lattice size T · L3 with L ≥ 4 · T .

2. Let simulations run with various values of β around βc.
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Compute the energy difference ∆E(β) at a certain time point t∗ of the Wilson
flow.

3. Take pairs of values (β,∆E(β, t∗)) and fit a curve through these points.

Take into account that the values ∆E are expectation values gained via Monte
Carlo simulations. So, they come along with a statistical error δ∆E(β, t∗)
including auto-correlation effects.

4. The slope of the curve (β,∆E(β, t∗)) has its steepest slope at βc. So, determine
βc(∆E, T, L) as the value of β at which the slope of the curve has its turning
point, e. g., through a spline.

5. Perform steps 2-4 for a new lattice with different spatial extension (which
means the value of T is kept and the value of L changes).

The single steps need some more explanation. First of all, Boyd et al [9] mention
that the spatial extension L must be larger than four times the time extension T .
For our studies, we fix T = 8 and compute βc,∆E(T, L) for L = {32, 40, 48}.

Concerning step 3, the time point t∗ for the evaluation of the energy difference has
to be fixed. It should be as small as possible to save computing time and at the
same time large enough in order that the shape of the curve (β,∆E) allows the
determination of the critical value βc. Thus, we consider the curves (β,∆E) at dif-
ferent time points. In figure 8.4, the development of 〈a4∆E〉 is shown in dependence
of β for t/r2

0 = {0, 0.01, 0.005, 0.1, 0.15, 0.2}. Here, the function approximating the
values (β,∆E) includes a steep ascent for values of t∗ ≥ 0.01 in units t/r2

0. Ac-
cording to this, we choose t∗ = 0.0225[t/r2

0], respective t∗ = 0.15[
√
t/r0] for our

considerations.

The curve (β,∆E, δ∆E) has to be fitted by a function which approximates the data
as good as possible and at the same time avoids oscillations not included in the data.
For this purpose, the exponential smoothing spline (6.8) developed in chapter 6 is
used. It solves the minimization problem (6.1) with y ≡ ∆E(β, t∗), w ≡ δ∆E(β, t∗)
and S = 2 as shown in figure 8.5.

Point 4 of algorithm 8.5 leads to the values of the critical coupling βc(∆E, T, L).
Here we compute the maximum slope of the spline, i.e., the critical value βc(∆E, T, L)
takes the value of β at which the second order derivative of the spline is zero which
is also shown in figure 8.5.

Finally, we are interested in the value βc for an infinite large lattice. For this
purpose, a number of values βc(∆E, T, L) with different values of L are needed for
an extrapolation towards L = ∞. Here, we repeat steps 2-4 of algorithm 8.5. For
the extrapolation, also the errors δβc(∆E, T, L) have to be taken into account. They
are computed using the Gaussian error propagation law as described in [66].
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Figure 8.5: Critical values of β – for different lattices of size 8× 32,8× 40, 8× 48.
The data are approximated with an exponential smoothing spline and
the values of βc(L, t∗) are detected as turning point of the slope.

Simulation. In this part, the details of the simulation are described. We simulate
a lattice gauge field in SU(3,C) Yang-Mills theory. The simulations are performed
on a 4-dimensional lattice using a code which is based on the DDHMC code of
Prof. Dr. M. Lüscher. We added the computation of the lattice average of the
Polyakov loop, the Wilson energy and the field strength energy and the splitting in
the spatial and temporal part of the energies. For the processing of the data using
Matlab, an input routine of Dr. B. Leder is extended. So, we run Monte Carlo
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simulations on the three lattices 8 · 323, 8 · 403 and 8 · 483 for different values of β
to get initial values for the Wilson flow. Then, the Wilson flow is computed up to
t∗ = 0.15

√
t/r0. At this point, the difference in the spatial and temporal part of

the field strength energy is measured in order that pairs of data (βi,∆Ei, δ∆Ei),
i = 1, . . . , n for each lattice occur. These data are fitted through an exponential
smoothing spline explained in chapter 6. At the end βc(∆E, T, L) is computed
as turning point of the spline, i. e. the point with maximum slope as shown in
figure 8.5. Finally, the critical value βc(∆E, T,∞) is of interest. So, the data
βc(∆E, T, L) for L ∈ {32, 40, 48} are extrapolated towards infinity leading to the
final value. This is visualized in figure 8.6. In this picture, the critical value of β is
detected via the energy difference method (red) and the Polyakov loop susceptibility
(blue). Furthermore, the reference value (black) taken from [4] is shown. It can be
seen that all three values are in good agreement.

Computational Effort. Monte Carlo simulations aim at producing expectation
values from independent configurations. On the other hand, the Markov chain of
configurations is correlated, quantified by the auto-correlation τint. According to
equation (7.10), two configurations are considered to be independent if 2 τint HMC
steps are computed in between. In doing so, the number of independent configura-
tions is the number of all configurations divided by 2 · τint. For the computation of
the phase transition, we would like to have 100 independent configurations for each
observable. We start with computing several Monte Carlo simulations for different
values of β and different lattice sizes. In doing so, the Wilson flow is computed after
128 HMC steps of trajectory length 1. The number of initial configurations of the
Wilson flow for the different combinations is given in table 8.1. Then, we compute
the integrated auto-correlation times according to Wolff [69] using the program of
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Ns = 32 Ns = 40 Ns = 48
β = 6.03 220 281 401
β = 6.04 560 693 509
β = 6.05 2000 1597 2493
β = 6.055 - - 1981
β = 6.06 2000 4097 9297
β = 6.065 - - 3785
β = 6.07 2000 4861 3405
β = 6.08 397 437 548
β = 6.09 297 232 32
β = 6.10 397 132 312

Table 8.1: Number of computed configurations.
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Figure 8.7: Integrated auto-correlation times – of the Polyakov loop susceptibility
and the energy difference method.

Wolff for the Polyakov loop susceptibility and the energy difference method. These
auto-correlation times are depicted in figure 8.7. We see that the value for τint(χp)
is – except for the value β = 6.06 – always larger than the value for τint(∆E). Divid-
ing the values of table 8.1 by the values 2τint(χp) and τint(∆E) leads to the number
of independent configurations mentioned in table 8.2. Thus, the energy difference
method needs less configurations than the determination of the phase transition via
the Polyakov loop susceptibility.
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Ns = 32 Ns = 40 Ns = 48
χp ∆E χp ∆E χp ∆E

β = 6.03 62(20) 208(39) 166(38) 287(34) 72(22) 426(43)
β = 6.04 36(13) 312(56) 135(32) 683(73) 74(21) 508(45)
β = 6.05 101(26) 269(49) 134(31) 1034(112) 238(46) 1784(139)
β = 6.055 - - - - 70(20) 280(50)
β = 6.06 339(57) 119(29) 265(48) 86(23) 380(59) 132(31)
β = 6.065 - - - - 84(23) 173(37)
β = 6.07 63(19) 116(29) 85(23) 337(55) 540(74) 746(89)
β = 6.08 134(33) 215(46) 236(48) 198(44) 145(34) 193(40)
β = 6.09 72(23) 145(35) 70(22) 105(29) 246(47) 279(44)
β = 6.10 195(45) 198(42) 51(18) 61(19) 168(40) 143(34)

Table 8.2: Number of independent configurations.

8.4 Summary

In this chapter, the focus is put on the Wilson flow which is a differential equation
on the Lie group SU(3,C). Thus, the Wilson flow can be computed with any
numerical integration method for Lie groups as, for example, the Munthe-Kaas
Runge-Kutta scheme with step size prediction or Munthe-Kaas schemes using the
Cayley transform as local parameterization or a combination.

In section 8.2, we applied a Munthe-Kaas Runge-Kutta scheme with step size pre-
diction on one configuration of a four-dimensional lattice gauge field. This leads to
promising results in order that this investigation should be extended towards larger
lattices, more realistic simulations including many configurations and the control of
its statistical errors. In section 8.3, we developed a new method for the detection
of the critical temperature in finite temperature computations. Compared to the
standard way using the Polyakov loop susceptibility, the Wilson flow has to be com-
puted in addition, but just towards the time point t∗ which can be chosen as quite
small value, for example, as t∗ = 0.15[

√
t/r0]. In return, the auto-correlation errors

are much smaller which saves computing time at the end. This would be advanta-
geous for simulations including fermions. Indeed, the energy difference method is
used from other groups as one possibility for the detection of the finite temperature
phase transition [19, 2, 3, 1, 31]. In [2], it is indeed applied on fermions.
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Conclusion and Outlook

9.1 Conclusion

This work includes two different topics: simulations of gauge fields in Lattice QCD
and numerical solutions of differential equations on Lie groups.

The connection between these topics are the Hamiltonian equations of motion which
have to be solved in the Molecular Dynamics step of Hybrid Monte Carlo simulations
in Lattice QCD. The Hamiltonian equations of motion consist of many pairwise
coupled differential equations of shape

Ẏ (t) = A(t) · Y (t), Ȧ(t) = F ([Y (t)]s) (2.85)

on a Lie group and its associated Lie algebra as mentioned in chapter 2. Here, Y (t) is
a matrix Lie group element, A(t) an element of its associated matrix Lie algebra and
the function F a mapping from the Lie group to the Lie algebra. The underlying
theory for differential equations on Lie groups is stated in chapter 3. Thereby,
the applied numerical integration scheme for the Hamiltonian equations is required
to be time-reversible and volume-preserving. So, geometric numerical integration
schemes for coupled Lie group / Lie algebra problems are of interest. Here, the
focus is put on the one hand on the geometric properties time-reversibility and
volume-preservation and on the other hand on the numerical solution of differential
equations of Lie groups which may be used in the context of Lattice QCD. The
differential equation in the Lie algebra needs no special treatment and can be solved
with any known numerical integration scheme for the Abelian case. So, based on
differential equations on Lie groups and its numerical solution described in chapter
3, different new concepts for the numerical solution of differential equations on Lie
groups are evolved in chapter 4:

• a step size prediction for Munthe-Kaas Runge-Kutta schemes and

• the Cayley transform as local parameterization on the Lie group.

These concepts can be applied, for example, on the Wilson flow which is a differential
equation on a Lie group of shape

V̇ (t) = Z(t) · V (t) with Z(t) = F ([V (t)]s) (2.88)

with matrix Lie group element V (t) and matrix Lie algebra element Z(t). Partly
based on that, geometric numerical integration schemes for differential equations of

147
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type (2.85) are developed in chapter 5:

• the Cayley-Leapfrog method,

• symmetric partitioned Munthe-Kaas Runge-Kutta methods,

• a time-reversible projection method.

Finally, the different numerical integration schemes are tested in the context of gauge
fields in SU(N) Yang-Mills theory, either in a Hybrid Monte Carlo simulation or
just using the Wilson flow in the context of a lattice gauge field.

In the following, the different numerical methods are subsumed, embedded and
evaluated in the context of simulations in lattice gauge theory.

Step size prediction. A step size control for Munthe-Kaas Runge-Kutta schemes
is designed in chapter 4.1. Here, a step size control for embedded Runge-Kutta
schemes for the Abelian case is combined with Munthe-Kaas Runge-Kutta meth-
ods. In this case, it is convenient to compute all increments Ki, i = 1, . . . ,max{s, ŝ}
according to a truncation index q = max{p, p̂} − 2. Furthermore, the error mea-
sure has to be adapted for matrix Lie algebra elements. Finally, an example with
Bogacki-Shampine coefficients (2)3 is described for a single differential equation on
a Lie group. This example is adapted to the Wilson flow of a single configuration
and finally simulated in chapter 8.2 for a small (T = 8, L = 8) 4-dimensional lattice
using a program based on the DDHMC code of Lüscher. Here, just the feasibility
of a step size prediction for the Wilson flow is tested. Due to the shape of the Wil-
son flow - a steep descend followed by slowly varying values, the numerical results
look promising with the result that this kind of step size control would always be
advantageous for the Wilson flow. The step size prediction is just tested for single
configurations. This survey can be found in a compact form in [63].

Since the Wilson flow is used for the computation of expectation values of some
observables as, for example, the energy, ensembles of configurations should be con-
sidered. For the evaluation of the expectation values at certain time points, the
observables finally have to be interpolated on a time grid which can be done, for
example, using linear interpolation. The computation of expectation values could
be the next point in further work. Furthermore, the error norm and the param-
eters of the step size control could be improved. Based on that, the effect of the
step size control on auto-correlation effects can be investigated. In the best case, a
mechanism for the control of auto-correlation errors could be developed in this way.

Cayley transform. The second new concept is the usage of the Cayley transform
as possibility for a parameterization of the Lie group that can be used in any
numerical method for Lie groups. The goal of this development is the application
of the Cayley transform in Lattice QCD where almost all numerical integration
schemes are based on the Leapfrog or Störmer-Verlet scheme. So, the usage of the
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Cayley transform is explained in the context of the Lie-Euler scheme in section
4.2 which is re-used in the Leapfrog scheme in paragraph 5.2. In paragraph 7.2.2,
the Cayley-Leapfrog method is adapted for the Hamiltonian equations of motion
occurring in the HMC simulation of a 2-dimensional SU(2,C) gauge field in Lattice
QCD. The numerical results are obtained with a Matlab-program on a small lattice
of size 8× 8. They show that the method is time-reversible and volume-preserving.
Furthermore, the desired convergence order p = 2 is achieved. A comparison with
the standard Leapfrog scheme using the exponential function shows that the Cayley-
Leapfrog scheme is ≈ 4− 5 times faster than the standard scheme.

The results look very promising such that the Cayley transform should be inves-
tigated in more detail. In a recent bachelor thesis [44], Muniz proved the time-
reversibility and volume-preservation for the Cayley-Leapfrog scheme for the Lie
group SU(3,C). Furthermore, the aforementioned results are published in [65]. In
a next step, the Cayley-Leapfrog method could be tested on a 4-dimensional lattice
in SU(3,C) Yang-Mills theory, for example, with the aforementioned DDHMC-code.
Concerning the exponential function and the Cayley transform, I would expect that
the Cayley transform can be favored in all simulations of quadratic matrix Lie
groups, at least for special unitary Lie groups. Nevertheless, it should be investi-
gated if there may occur unpleasant surprises for the Cayley transform and also if
the auto-correlation is affected.

Symmetric partitioned Munthe-Kaas Runge-Kutta methods. Symmetric par-
titioned Munthe-Kaas Runge-Kutta methods are evolved in section 5.3. Here, par-
titioned Runge-Kutta methods for the Abelian case are adapted to the Lie group
/ Lie algebra structure of differential equations of type (2.85) leading to algorithm
5.17. For the special case of convergence order p = 2, partitioned Munthe-Kaas
Runge-Kutta methods work and coincide with the Leapfrog method. This happens
due to the truncation inside the Munthe-Kaas Runge-Kutta scheme. For a general
case p > 2, it can be shown that the symmetry conditions for the non-Abelian
case do not coincide with these of the Abelian case. More precisely, there are six
instead of four symmetry conditions and three of them lead to a contradiction or to
coefficients such that the whole method does not work (because the initial values
would be fixed). These contradictions can be overcome changing the increments
Li, i = 1, . . . , s in algorithm 5.17 according to the proposals (5.48),(5.49) or (5.50).
This change involves a variation of the symmetry conditions such that the dissent is
resolved. For a derivation of appropriate coefficients, some further work has to be
included. The order conditions have to be derived depending on the shape of the
symmetric partitioned Munthe-Kaas Runge-Kutta method and the desired conver-
gence order. This leads to the order conditions similar but not equal to them of the
partitioned Runge-Kutta method for the Abelian case.

One set of coefficients is derived for the choice (5.50) of increments Li, i = 1, . . . , s
and convergence order p = 3, i.e. Ki = fq with q = 1. Here, the scheme gets
fully implicit due to the shape of the increments Li. Nevertheless, this method is
implemented for a 2-dimensional gauge field in SU(2,C). This model is described
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in section 7.1.2 and the results of the simulation are discussed in section 7.2.3. It
can be seen that the method is time-reversible and has convergence order p = 4.
This depends on the symmetry of the scheme. The volume-preservation is not
investigated here, but since it is not involved in the development of the method, it
is assumed that the scheme is not volume-preserving. Due to the implicitness of the
scheme, a fixed point iteration is included in the implementation. In spite of that,
the computational cost for small step sizes is smaller than for the Leapfrog method.

The next natural step would be the investigation of symmetric partitioned Munthe-
Kaas Runge-Kutta methods with increments Li chosen according to equation (5.49)
so as to the increments Ki and Li depend on different coefficients but Li is not fully
implicit by construction. If this is successful, i.e. if there are symmetry and order
conditions without contradiction, a set of coefficients could be computed. Then, in
a next step, volume-preservation could be included.

Time-reversible projection methods. The time-reversible projection method is
designed to be a volume-preserving and time-reversible projection method. It is
developed for the Abelian and adapted for the non-Abelian case of coupled Lie group
/ Lie algebra problems. Unfortunately, this method is just volume-preserving if the
projection parameter µ derived by the constraint does not depend on the initial
values. This has to be checked for each model separately. Nevertheless, the method
is applied on a lattice gauge field of SU(3,C) matrices and leads to promising
results. It seems that the projection parameter µ is independent on the input data
in that case. In a next step, this should be investigated in more detail.

Exponential Smoothing Splines. Data with uncertainties need to be approx-
imated without insertion of oscillations not given in the data. The exponential
smoothing spline achieves this smooth approximation. It is stated in chapter 6
including all formulae for its computation. In this work, it is required for the com-
putation of the critical temperature using the energy difference method in section
8.3

Critical temperature and the energy difference method. During the Work
with the Wilson flow, we detected that the spatial and temporal Wilson energy
behave sometimes similar and sometimes totally different depending on the value of
β. More exact, there is a critical temperature Tc of the system related to a critical
value of β called βc with the result that the absolute value of the energy difference
∆E is approximately zero for values β < βc and larger than zero for values β > βc.
So, running simulations for a lattice of size T ×L3, an exponential smoothing spline
can be put through the data (β,∆E(β), δ∆E(β)) with errors δ∆E(β). The turning
point of this spline delivers the critical value βc(L). Fixing T and varying L leads to
more critical values for different lattice sizes. Finally, an extrapolation in 1/L3 leads
to the desired value for βc(∞) for infinite lattice size. We run various simulations in
order that βc can be determined. The energy difference method is very promising
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because its auto-correlation effects are smaller than the ones of the Polyakov loop
susceptibility which is the standard method. So, less simulations have to be run
than using the standard approach but with an additional computation of the Wilson
flow. However, the disadvantage of computing the Wilson flow is negligible because
just a few steps of the Wilson flow up to the simulation time t∗ = 0.0225[t2/r2

0] are
necessary. In next step, the energy difference method can be applied on a lattice
gauge field including fermions. This utilization is even more promising because the
auto-correlation errors are even larger in HMC simulations using fermions.

9.2 Outlook

Geometric Integration. The focus of this thesis is the development of geometric
numerical integration methods for coupled Lie group / Lie algebra schemes that
can be employed inside the Hybrid Monte Carlo algorithm of Lattice QCD com-
putations. Here, the usage of the Cayley transform in any geometric integration
scheme is very promising for Lattice computations and should be pursued. The
next natural step would be the replacement of the exponential function by the
Cayley transform in some HMC simulations and the investigation of the consumed
computation time and the expectation values obtained in that way. The Cayley
transform can also be used for the development of symmetric partitioned Munthe-
Kaas Runge-Kutta schemes in order that the increments Ki, i = 1, . . . , s do not
change due to a desired convergence order. Independently, the order conditions for
symmetric partitioned Munthe-Kaas Runge-Kutta schemes using the two other pro-
posed increments Li, i = 1, . . . , s should be developed and compared to its symmetry
conditions. Provided that there occur no contradictions, a set of coefficients can be
derived and tested for a lattice gauge field. In the best case, an explicit (or closely
related) symmetric partitioned Runge-Kutta scheme can be obtained. In addition,
the volume-preservation could be included in a further step. The time-reversible
projection scheme is volume-preserving if the projection parameter is independent
on the initial values. Since a lattice gauge field contains many links and momenta
which build the Hamiltonian contained in the constraint, this will likely be true and
has to be investigated in more detail. If the projection parameter is constant for a
chosen step size, this would be very advantageous for the HMC since the acceptance
step coincides with the constraint of the projection method. So, the acceptance step
can be dropped and any proposed new configuration will be accepted regardless of
the step size of the numerical integration method.

The Wilson Flow. The Wilson flow is the second big topic for the outlook. First
of all, it is used for the detection of the critical temperature of finite temperature
simulations. Up to now, just lattice gauge fields without fermions have been con-
sidered. In a next step, the fermions should be included in the simulations with the
result that the quality of the energy difference method can be investigated in that
case. Then, the step size prediction can be investigated in more detail. So far, we
have seen that a step size prediction for the Wilson flow is possible and makes sense.
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Here, the open question arises how the step size prediction can control the statis-
tical errors including its auto-correlation behavior. So, the absolute and relative
tolerances as well as the chosen matrix norm for the error control can be considered
more specifically.

Finally, all observed topics can be related to each other and used jointly. For
example, the open question arises if a step size control for geometric integration
schemes for coupled differential equations on Lie groups / Lie algebras is possible.
Furthermore, the developed schemes can be applied on different models occurring
in different topics, for example, in rigid body simulations or stochastic differential
equations on matrix Lie groups.
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Appendix

.1 Similarity Transformations

In this part, we list the similarity transformations for traces.

For square matrices U, V,W it holds

Tr
(
U + V

)
= Tr(U) + Tr(V ) (.1)

Tr
(
UV
)

= Tr
(
V U
)

(.2)

and for unitary matrices U

Re
(
Tr
(
U
))

=
1

2
Tr
(
U + U †

)
(.3)

Proof. The first two equations are obvious, and equation (.3) follows from

Tr
(
U + U †

)
= Tr

(
Re(U) + Im(U) + Re(U)− Im(U)

)
= Tr

(
2 · Re(U)

)
= 2 · Tr

(
Re(U)

)

.2 Example: Deriving Hamiltonian Equations of
Motion for SU(2)

This section expands section 2.2.3. We compute the Hamiltonian equations of
motion for the momenta Px,µ in the Lie group SU(2). The aim of this computation
is curiosity:

• How is the theoretical formula ∂x,µf(U) related to the formulas used for com-
putation of, for example, Ṗx,µ or Z(Vx,µ) ?

• Is it really quite easy to compute the derivatives of functions on Lie groups
with respect to Lie group elements?

161
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The Derivatives of the Wilson Gauge Action. We compute the derivatives ∂x,µ
of f(U) = −SG(U) for the Lie group SU(2) according to formula (2.33). Here, we
use the generators T 1 = i

2
σ1, T 2 = i

2
σ2, T 3 = i

2
σ3 with Pauli matrixes

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The generators T a of the Lie algebra are chosen in such a way that it holds
Tr(T aT b) = −1

2
δ (see (A.2) in [38]). We start with Ux,µ and S(Ux,µ). These matrices

have the initial values

Ux,µ =

(
u4 + iu3 u2 + iu1

−u2 + iu1 u4 − iu3

)
, S(Ux,µ) =

(
v4 + iv3 v2 + iv1

−v2 + iv1 v4 − iv3

)
according to lemma 7.1. (For the Lie group SU(2,C), it can be easily shown, that
the staples S(Ux,µ) is in SU(2,C).)

It follows Wx,µ = Ux,µ · S(Ux,µ) with

Wx,µ =

(
w4 + iw3 w2 + iw1

−w2 + iw1 w4 − iw3

)
and

w4 = u4v4 − u1v1 − u2v2 − u3v3 w3 = u3v4 + u4v3 + u2v1 − u1v2

w2 = u4v2 − u3v1 + u2v4 + u1v3 w1 = u3v2 + u4v1 − u2v3 + u1v4

in order that Mx,µ := Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ = Wx,µ −W †
x,µ looks like

Mx,µ =

(
w4 + iw3 w2 + iw1

−w2 + iw1 w4 − iw3

)
−
(
w4 − iw3 −w2 − iw1

w2 − iw1 w4 + iw3

)
=

(
w4 + iw3 − (w4 − iw3) w2 + iw1 − (−w2 − iw1)
−w2 + iw1 − (w2 − iw1) w4 − iw3 − ( w4 + iw3)

)
=

(
2iw3 2w2 + 2iw1

−2w2 + 2iw1 −2iw3

)
.

Using equation (2.39), we have

∂ax,µS(U) = −Tr
{
T aMx,µ

}
= −Tr

{
T a · 2

(
iw3 w2 + iw1

−w2 + iw1 −iw3

)}
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with

∂1
x,µS(U) = −Tr

{
T 1Mx,µ

}
= −Tr

{
i

2

(
0 1
1 0

)
· 2
(

iw3 w2 + iw1

−w2 + iw1 −iw3

)}
= −i · Tr

{(
w2 + iw1 −iw3

iw3 −w2 + iw1

)}
= −i ·

(
w2 + iw1 + (−w2) + iw1

)
= 2w1 ,

∂2
x,µS(U) = −Tr

{
T 2Mx,µ

}
= −Tr

{
i

2

(
0 −i
i 0

)(
2iw3 2w2 + 2iw1

−2w2 + 2iw1 −2iw3

)}
= −i · Tr

{(
w1 + iw2 −w3

−w3 −w1 + iw2

)}
= −i ·

(
w1 + iw2 + (−w1) + iw2

)
= 2w2 ,

∂3
x,µS(U) = −Tr

{
T 3Mx,µ

}
= −Tr

{
i

2

(
1 0
0 −1

)
· 2
(

iw3 w2 + iw1

−w2 + iw1 −iw3

)}
= −i · Tr

{(
iw3 w2 + iw1

w2 − w1 iw3

)}
= −i ·

(
iw3 + iw3

)
= 2w3 .

For simplicity, the factor β
N

is left out in the whole computation. At the end, we
receive the result:

∂

∂Ux,µ
f(U) = ∂x,µf(U) = T a∂ax,µf(U) = −T a∂ax,µS(U)

= −T 1 · 2w1 − T 2 · 2w2 − T 3 · 2w3

= − i
2

{(
0 1
1 0

)
· 2w1 +

(
0 −i
i 0

)
· 2w2 +

(
1 0
0 −1

)
· 2w3

}
= −i ·

(
w3 w1 − iw2

w1 + iw2 −w3

)
= −

(
iw3 w2 + iw1

−w2 + iw1 −iw3

)
= −1

2
Mx,µ (.4)

which coincides with the traceless and anti-hermitian operator {Mx,µ}TA because
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the trace of Mx,µ is zero (in the Lie group SU(2,C)).

Derivation via Hamiltonian equations of motion. The following derivative is
given in [62], the derivation is described in [23] and chapter 7.2.3 in [16]:

iṖx.µ =
i2

2

(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ

)
− i2

2N
Tr
(
Ux,µS(Ux,µ)− S(Ux,µ)†U †x,µ

)
· IN

=
i2

2

(
Mx,µ

)
− i2

2N
Tr
(
Mx,µ

)
· IN

= −1

2
Mx,µ (.5)

Note: the result for SU(2) matrices coincides with the theoretical result for SU(2)
matrices.

Formulae in Literature [38] Additionally, the formula (5.3) combined with (5.4)
in [38] give the same result:

Z
(
V (t)

)
= − ∂

∂S(Ux,µ)(t)
S
(
{V (t)}

)
= −

∑
µ6=ν

P
{
S(Ux,µ)(t) Vx+µ̂,ν(t) V

−1
x+ν̂,µ(t) V −1

x,ν (t)

+ S(Ux,µ)(t) V −1
x+ν̂−µ̂,µ(t) V −1

x−ν̂,µ(t) Vx−ν̂,ν(t)
}

given in [38]. Here, µ̂ and ν̂ denote the unit vectors in direction µ and ν and

P{M} =
1

2
(M −M †)− 1

6
tr(M −M †)

projects any matrix M of size 3× 3 to the Lie algebra su(3,C).

Notation adapted to the previous one:

• V (t) means U

• Vx+µ̂,ν(t) V
−1
x+ν̂,µ(t) V −1

x,ν (t) + V −1
x+ν̂−µ̂,µ(t) V −1

x−ν̂,µ(t) Vx−ν̂,ν(t) is the part of the
staple S(Ux,µ) in direction (µ, ν), the whole staple is the sum of the parts over
all possible directions (µ, ν) and (ν, µ)

•
∑

µ 6=ν P{Ux,µS(Ux,µ)} = 1
2
Mx,µ
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It follows

Z
(
U(t)

)
= − ∂

∂Ux,µ(t)
S
(
{U(t)}

)
= −

∑
µ6=ν

P
{
Ux,µ Ux+µ̂,ν U

−1
x+ν̂,µ U

−1
x,ν + Ux,µ U

−1
x+ν̂−µ̂,µ U

−1
x−ν̂,µ Ux−ν̂,ν

}
= −

∑
µ 6=ν

P
{
Ux,µS(Ux,µ)

}
= −1

2
Mx,µ (.6)

Comparison Finally, the result ∂/∂Ux,µf(U) given in (.4) coincides with

• e.g. Z(U) given as formula (5.3) in [38] (see equation (.6))

• or equation (1.8) in [62], derived like equation (7.4.5) of [16] (see equation (.5)
here).

Thus, the computation of a function with respect to a Lie group element is straight-
forward.

.3 Exponential Smoothing Spline

In this section, the coefficients of the exponential smoothing spline

s(x) = si+1t+si(1− t)+
di+1

λ2
i

(
sinh

(
µit
)

sinh(µi)
− t
)

+
di
λ2
i

(
sinh(µi(1− t))

sinh(µi)
−1+ t

)
(6.8)

are determined. They are computed as solution (s, d) of the linear equations

Qs = Td (6.11)
and Us−QTd = pD−2(s− y) (6.14)

which follow from the smoothing condition

s′(x−i )− s′(x+
i ) = 0, i = 1, . . . , n− 1, (6.9b)

and the jump equation(
s′′′(x−i )− Λ2(x−i )s′(x−i )

)
−
(
s′′′(x+

i )− Λ2(x+
i )s′(x+

i )
)

= 2p
s(xi)− yi

w2
i

(6.9d)

for i = 0, . . . , n.

The linear equations (6.11) and (6.14) are computed as follows.
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Preliminary Considerations. First, we compute the derivatives of the exponential
smoothing spline (6.8). Here, we use t′ = 1

hi
and (µit)

′ = λi according to the
notations

t :=
x− xi
xi+1 − xi

, µi := λi · hi, hi := xi+1 − xi (6.7)

and get

s′(x) =
si+1 − si

hi
+
di+1

λi

(
cosh(µit)

sinh(µi)
− 1

µi

)
+
di
λi

(
−cosh(µi(1− t))

sinh(µi)
+

1

µi

)
, (.7)

s′′(x) = di+1
sinh(µit)

sinh(µi)
+ di

sinh(µi(1− t))
sinh(µi)

, (.8)

s′′′(x) = di+1λi
cosh(µit)

sinh(µi)
− diλi

cosh(µi(1− t))
sinh(µi)

. (.9)

For x−i , i.e., the right-hand side of the left interval, it holds t = 1. On the other
hand, the left-hand side of the right interval is called x+

i and implies t = 0. Together
with sinh(0) = 0 and cosh(0) = 1, we get

s′(x+
i ) =

si+1 − si
hi

+
di+1

λi

(
1

sinh(µi)
− 1

µi

)
+
di
λi

(
−cosh(µi)

sinh(µi)
+

1

µi

)
, (.10)

s′′(x+
i ) = di , (.11)

s′′′(x+
i ) = di+1λi

1

sinh(µi)
− diλi

cosh(µi)

sinh(µi)
(.12)

and

s′(x−i ) =
si − si−1

hi−1

+
di
λi−1

(
cosh(µi−1)

sinh(µi−1)
− 1

µi−1

)
+
di−1

λi−1

(
−1

sinh(µi−1)
+

1

µi−1

)
, (.13)

s′′(x−i ) = di , (.14)

s′′′(x−i ) = diλi−1
cosh(µi−1)

sinh(µi−1)
− di−1λi−1

1

sinh(µi)
. (.15)

First Linear Equation. Now, we set

ti := − 1

λi

cosh(µi)

sinh(µi)
+

1

λiµi
and t̄i :=

1

λi

1

sinh(µi)
− 1

λiµi
(.16)

in order that equations (.13) and (.10) simplify to

s′(x+
i ) =

si+1 − si
hi

+ di+1t̄i + diti (.17)

and s′(x−i ) =
si − si−1

hi−1

− diti−1 − di−1t̄i−1 . (.18)
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Then, the smoothing condition (6.9b) leads to

si − si−1

hi−1

− si+1 − si
hi

= diti−1 + di−1t̄i−1 + di+1t̄i + diti (.19)

⇔ − 1

hi−1

si−1 +
( 1

hi−1

+
1

hi

)
si −

1

hi
si+1 = di−1t̄i−1 + di(ti−1 + ti) + di+1t̄i (.20)

for i = 0, . . . , n− 1. Here, the left-hand side can be denoted as Qs with tridiagonal
matrix Q of size (n− 1)× (n+ 1) with non-zero entries

Qi,i = − 1

hi−1

, Qi,i+1 =
1

hi−1

+
1

hi
, Qi,i+2 = − 1

hi
(6.12)

for i = 0, . . . , n− 1. Besides, the right-hand side of equation (.20) can be described
as Td with symmetric tridiagonal matrix T of order n− 1 and entries

Ti,i = ti−1 + ti, Tk,k+1 = Tk+1,k = t̄k. (6.13)

The indices i and k run from i = 1, . . . , n−1 and k = 1, . . . , n−2. Finally, we yield
the linear equation Qs = Td given by equation (6.11).

Second Linear Equation. The jump equation (6.9d), i.e.,

2p
s(xi)− yi

w2
i

=
(
s′′′(x−i )− Λ2(x−i )s′(x−i )

)
−
(
s′′′(x+

i )− Λ2(x+
i )s′(x+

i )
)

includes the functions s′′′(x−i ), s′′′(x+
i ), Λ2(x−i )s′(x−i ) and Λ2(x+

i )s′(x+
i ). With equa-

tions (.17) and (.18) and

Λ(x−i ) = λi−1 and Λ(x+
i ) = λi , (.21)

it reads

Λ2(x−i )s′(x−i ) = λ2
i−1

(
si − si−1

hi−1

− diti−1 − di−1t̄i−1

)
(.22)

and Λ2(x+
i )s′(x+

i ) = λ2
i

(
si+1 − si

hi
+ di+1t̄i + diti

)
. (.23)

Using the abbreviations ti and t̄i of equation (.16), s′′′(x−i ) and s′′′(x+
i ) can be

denoted as

s′′′(x−i ) = di

(
−λ2

i−1ti−1 +
1

hi−1

)
− di−1

(
λi−1t̄i−1 +

1

hi−1

)
(.24)

and s′′′(x+
i ) = di+1

(
λ2
i t̄i +

1

hi

)
− di

(
λ2
i ti −

1

hi

)
. (.25)
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So, the differences
(
s′′′(x−i )−Λ2(x−i )s′(x−i )

)
and

(
s′′′(x+

i )−Λ2(x+
i )s′(x+

i )
)
simplify

to (
s′′′(x−i )− Λ2(x−i )s′(x−i )

)
= di

(
−λ2

i−1ti−1 +
1

hi−1

)
− di−1

(
λ2
i−1t̄i−1 +

1

hi−1

)
−
(
λ2
i−1

(si − si−1

hi−1

− diti−1 − di−1t̄i−1

))
=

1

hi−1

di −
1

hi−1

di−1 −
λ2
i−1

hi−1

si +
λ2
i−1

hi−1

si−1 (.26)

and(
s′′′(x+

i )− Λ2(x+
i )s′(x+

i )
)

= di+1

(
λ2
i t̄i +

1

hi

)
− di

(
λ2
i ti −

1

hi

)
−
(
λ2
i

(si+1 − si
hi

+ di+1t̄i + diti

))
=

1

hi
di+1 +

1

hi
di −

λ2
i

hi
si+1 +

λ2
i

hi
si . (.27)

At the end, the equation

2p
s(xi)− yi

w2
i

=
(
s′′′(x−i )− Λ2(x−i )s′(x−i )

)
−
(
s′′′(x+

i )− Λ2(x+
i )s′(x+

i )
)

=
1

hi−1

di −
1

hi−1

di−1 −
λ2
i−1

hi−1

si +
λ2
i−1

hi−1

si−1 −
(

1

hi
di+1 +

1

hi
di −

λ2
i

hi
si+1 +

λ2
i

hi
si

)
= − 1

hi−1

di−1 +
( 1

hi−1

− 1

hi

)
di −

1

hi
di+1 +

λ2
i−1

hi−1

si−1 −
(λ2

i−1

hi−1

+
λ2
i

hi

)
si +

λ2
i

hi
si+1

(.28)

for i = 0, . . . , n is reached. Also here, the predefinitions s′′′(x−0 ) = Λ(x−0 ) = 0 and
s′′′(x+

n ) = Λ(x+
n ) = 0 have to be used. Finally, we define

ui :=
λ2
i

hi
and vj := uj + uj+1 . (.29)

Using

U :=


−u1, u1, 0

u1, −v1,
. . .

. . . . . . . . .
. . . −vn−2, un−1

0 un−1, −un−1

 , (.30)

equation (.28) can be rewritten in matrix notation as

Us−QTd = pD−2(s− y)
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which coincides with equation (6.14).
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