
Efficient Cryptographic Constructions
with Strong Security Guarantees

Rafael Kurek

University of Wuppertal

Dissertation

submitted to the School of Electrical, Information and Media Engineering
in accordance with the requirements for award of the degree

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

September 2020

ii

The PhD thesis can be quoted as follows:

urn:nbn:de:hbz:468-20210126-102205-4
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20210126-102205-4]

DOI: 10.25926/5k9s-v129
[https://doi.org/10.25926/5k9s-v129]

Erklärung zur Disseration
Hiermit erkläre ich, Rafael Kurek, geboren am 18.11.1989 in Gelsenkirchen,

1. dass ich die eingereichte Arbeit selbstständig verfasst habe;

2. dass ich bei der Abfassung der Arbeit nur die in der Dissertation angegebenen
Hilfsmittel benutzt und alle wörtlich oder inhaltlich übernommenen Stellen als
solche gekennzeichnet habe;

3. dass ich die Dissertation in der gegenwärtigen oder einer anderen Fassung nicht
schon einem anderen Fachbereich einer wissenschaftlichen Hochschule vorgelegen
habe.

Ort, Datum

Unterschrift

iii

Overview of Publications

Short Digital Signatures and ID-KEMs via Truncation Collision Resistance. Tibor Jager
and Rafael Kurek. In Proceedings of the International Conference on the Theory
and Application of Cryptology and Information Security - ASIACRYPT 2018.

Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH. Tibor
Jager, Rafael Kurek, and Jiaxin Pan. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptology and Information Security -
ASIACRYPT 2018.

Efficient Forward-Secure Threshold Signatures. Rafael Kurek. In Proceedings of the
International Workshop on Security - IWSEC 2020.

Efficient Forward-Secure Threshold Public Key Encryption. Rafael Kurek. In Pro-
ceedings of the Australasian Conference on Information Security and Privacy -
ACISP 2020.

Efficient Adaptively-Secure IB-KEMs and VRFs via Near-Collision Resistance. Tibor
Jager, Rafael Kurek, and David Niehues. Preprint.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor Tibor Jager for introducing
me into research and for teaching me so much about cryptography and IT security. I
am also very thankful for letting me travel to so many conferences, workshops and in
particular to the University of Maryland, College Park. These travels were always very
inspiring to me and allowed me to get to know a great and unique research community.
My gratitude goes also to Jiaxin Pan for accepting to co-referee this dissertation. I
would also like to thank Tibor Jager, Jiaxin Pan, and David Niehues for being such
good coauthors. It was always more fun and more fruitful to work with you than on my
own.
I extend my gratitude to Jonathan Katz for hosting me at the University of Maryland,
College Park. During this visit, I had a very wonderful and enlightening time.
I would also like to thank Gareth Davies for reading lots of my work and sharing his
experience on writing research papers. Thanks to Peter Chvojka and Pascal Bemmann
with whom I had the pleasure to travel to Australia for Asiacrypt 2018. This journey
would not have made so much fun without you. Also big thanks to all the other members
of the ITSC research group in Wuppertal: Saqib Kakvi, Lin Lyu, Denis Diemert, Jan
Drees, Kai Gellert, Tobias Handirk, and Jutta Maerten. Thank you for all the great
moments we could share.
In the end, I would like to thank my family and my friends outside the university for
their understanding over the years and supporting me in everything I decided to do.
Last but not least, I am very grateful that I met Marie while studying in Bochum. Thank
you so much for supporting, understanding, and believing in me. Thank you for all the
wonderful and great moments we could share.

v

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Notation . 5
2.2 Basic Primitives . 5
2.3 Bilinear Pairings . 9

3 Simple and Efficient PRFs with Tight Security via All-Prefix Uni-
versal Hash Functions 10
3.1 Introduction . 10
3.2 All-Prefix Universal Hash Functions . 14

3.2.1 First Construction (Almost-Universal) . 15
3.2.2 Second Construction (Universal) . 16

3.3 Augmented Cascade PRFs . 18
3.4 The Augmented Cascade with Encoded Input . 18

3.4.1 Preparation for the Security Proof . 19
3.4.2 Security Proof . 20
3.4.3 Proof of Lemma 3.6 . 23
3.4.4 Proof of Lemma 3.7 . 23

3.5 Applications . 24
3.5.1 Efficient and Tightly-Secure PRF from Matrix Diffie-

Hellman Assumptions . 24
3.5.2 More Efficient LWE-based PRFs. 28
3.5.3 Further Examples of Matrix Distributions . 31

3.6 Discussions . 32

4 Efficient Forward-Secure Threshold Signature and Public-Key En-
cryption Schemes 34
4.1 Introduction . 34
4.2 Thresholds and Key Distribution . 39

4.2.1 Adversary Types in the Threshold Setting.. 39
4.2.2 Communication Model. 41
4.2.3 A Concrete Distributed Key Generation Protocol 41

4.3 Forward-Secure Signature Schemes . 43
4.3.1 A Concrete Single User Scheme . 44

4.4 Hierarchical Identity-Based Encryption Schemes (HIBE) 47
4.4.1 A Concrete HIBE Scheme . 48

4.5 Forward-Secure Threshold Signature Schemes . 50
4.5.1 New Forward-Secure Threshold Signature Scheme 51
4.5.2 Proof of Correctness. 55
4.5.3 Proof of Security. 56

4.6 Forward-Secure Threshold PKE Schemes. 63

vi

Contents

4.6.1 New Forward-Secure Threshold PKE Scheme . 65
4.6.2 Proof of Correctness. 69
4.6.3 Proof of Security. 70

4.7 Discussions . 78

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance 82
5.1 Introduction . 82
5.2 Blockwise Partitioning via Near-Collision Resistance . 84

5.2.1 Blockwise Partitioning. 86
5.2.2 Blockwise Partitioning Via Near-Collision Resistance. 87

5.3 Adaptively Secure IB-KEM with Short Ciphertexts . 89
5.3.1 Proof of Correctness . 91
5.3.2 Proof of Security . 91

5.4 A Digital Signature Scheme . 96
5.4.1 Proof of Correctness . 98
5.4.2 Proof of Security . 98

5.5 Discussions . 98

BIBLIOGRAPHY 100

vii

CHAPTER 1

Introduction

Digital devices, systems, and networks effect more and more parts of everyday life.
However, due to the complexity of modern digital technology a variety of techniques
and mechanisms are required in order to secure communication and to protect sensitive
data. The science dealing with secure communication and data protection is called
cryptography.

Proving security. In classical cryptography, the approach to build cryptographic schemes
can be described as “make it and break it”. Schemes were supposed to be secure if they
were able to withstand all known attacks. However, this approach did not take into
account future attacks and therefore the security guarantees given by classical cryptog-
raphy were rather limited. The groundbreaking work of Goldwasser and Micali [GM84],
which introduced the idea of using rigorous and formal security proofs, led to a paradigm
shift in constructing cryptographic schemes and to what is known as modern cryptog-
raphy. Instead of testing constructions against all known attacks, modern cryptography
attempts to provide security proofs in well-defined models. In order to guarantee any
reasonable security properties, such models need to reflect the real world very accurately.
Accordingly, they have to take into account as many conceivable threats and violations
of the desired security guarantees as possible. A security proof is designed as an exper-
iment between a challenger and an adversary, who attempts to break the cryptographic
scheme. The design of the experiment determines the security notion, which covers a
security guarantee and a threat model [KL14]. The security guarantee defines what an
adversary should not be able to learn or to do. For digital signature schemes, such
a guarantee could be that an adversary should not be able to forge a signature or to
extract the secret signing key from the information given to it. The threat model de-
scribes the abilities and the strength of the adversary. For digital signature schemes, the
adversary might be allowed to query the signatures for arbitrary messages. There are
different ways to allow these queries to the adversary. For instance, the adversary could
be allowed to make these queries only selectively, which means prior to the first output
of the challenger. Another option would be to allow to make these queries adaptively.
In the case of adaptive queries, the adversary can make one query after another and
adapt its queries depending on the responses to the previous queries. Since an adaptive
adversaries is able to adjust its behavior to the information it gained so far it has more
power. Obviously, a threat model that allows adaptive queries is a stronger model and
more realistic when dealing with adversarial behavior in the real world. We say that a
cryptographic scheme that tolerates adaptive queries provides strong security guarantees
compared to schemes that tolerate only non-adaptive queries.

1 Introduction

Real-world attacks. In security proofs the adversary is usually treated blackbox, which
means that on the one hand it is unknown how the adversary behaves but on the other
hand any behavior within the rules dictated by the threat model is allowed. However,
the crucial point about these rules is that they might restrict the adversary to a behavior
that deviates from its behavior in the real world. Indeed, a lot of cryptographic schemes
which were proven secure were successfully attacked in practice because the attacks
were not covered in the threat model. One famous example for such an attack is the
so-called Logjam Attack [ABD+15]. The Logjam Attack makes use of precomputation in
order to successfully attack the Diffie-Hellman key exchange mechanism [DH76] which
is the main key exchange mechanism in TLS and known to be secure in “standard”
threat models. Another famous example is the so-called Bleichenbacher Attack of RSA-
OAEP[BR95], which describes an adaptive chosen ciphertext attack against the RSA
Encryption Standard PKCS#1 [Ble98]. This attack makes use of an oracle that gives
information about the validity of a ciphertext. By doing so it leaks partial information
about the encrypted message and, when queried adaptively, it reveals the entire message.
Although there exist several security proofs for RSA-OAEP [FOPS01, Sho01, KOS10],
none of them provide a threat model that matches the real-world requirements for the
version standardized in PKCS#1.

Efficiency. It is desirable to construct cryptographic schemes that can be proven secure
within a model that deals with arbitrary adversarial behavior and therefore provide
strong security guarantees in the real world. However, strong security guarantees are
often at the expense of the efficiency of a construction. For digital signature schemes, this
fact can be illustrated by a comparison between selectively-secure and adaptively-secure
digital signature schemes. The selectively-secure digital signature scheme introduced in
[BB04c] is much more efficient than conceptual similar digital signature schemes with
adaptive security [Wat05, HJK11, BHJ+13]. The public key in the scheme from [BB04c]
as well as its signatures consist of much fewer elements and also the underlying groups
enable faster computation due to smaller size. Designing efficient cryptographic schemes
with strong security guarantees is not only challenging in terms of digital signatures.
Similar challenges occur for public key encryption schemes and other cryptographic
schemes as well; see [BB04a, Wat05, Wat09, Lew12, CLL+13, AHY15].

Overview of this thesis. This thesis bridges the gap between cryptographic constructions
with strong security guarantees and efficient execution. Here, strong security mainly
refers to security against adaptive adversaries. For instance, this may refer to several
kinds of queries which depend on the respond to previous queries as well as corrupting
machines depending on prior corruptions. Efficiency refers to improvements in speed and
savings in space. Those are achieved by lower computational costs, fewer communication
rounds or smaller elements like keys, ciphertexts, and digital signatures. The thesis is
composed of a preliminary chapter and three main parts:

Chapter 2. This chapter introduces some basic notation and conventions and recalls
basic cryptographic primitives and bilinear pairings.

Chapter 3. A pseudorandom function (PRF) is a function that is computationally in-
distinguishable from a real random function. Due to the fact that a huge amount
of applications requires “randomness”, PRFs are a very important and founda-

2

1 Introduction

tional cryptographic primitives. Moreover, they can be used to obtain simple and
efficient constructions of message authentication codes, symmetric encryption, key
derivation algorithms, and form useful building blocks for many other primitives;
see [GGM84, BG90, Gol01, Bel06, Kra10].
Chapter 3 introduces efficient and tightly-secure pseudorandom functions (PRFs).
These PRFs are secure against adaptive adversaries and have only a logarithmic
loss in the security proof, and short secret keys. These PRFs are very simple and
efficient variants of well-known constructions, including those of Naor-Reingold
[NR97] and Lewko-Waters [LW09]. This chapter also introduces the currently
most efficient LWE-based PRF from a weak LWE-assumption. This construction
is a variant of the PRF of Banerjee et al. [BPR12] but with a much smaller modulus
than the original construction.

Technically, this chapter introduces all-prefix universal hash functions (APUHFs),
which are hash functions that are (almost-)universal, even if any prefix of the
output is considered. Besides a simple and very efficient construction of APUHFs,
it is also presented how APUHFs can be combined with the augmented cascade of
Boneh et al. [BMR10].
The results in this chapter are based on collaborations with Tibor Jager and Jiaxin
Pan. The notion of all-prefix universality and the augmented cascade with encoded
input are mainly due to Tibor Jager and myself. The applications are mainly due
to Jiaxin Pan. The results appeared at Asiacrypt 2018 [JKP18].

Chapter 4. In order to mitigate the damage due to secret key exposure there exist differ-
ent approaches. Two of these approaches are forward-secure schemes and threshold
schemes. Forward-secure schemes allow to evolve the secret key in regular time pe-
riods, while the public key remains fixed. Thus, every adversary with an outdated
secret key cannot forge signatures or decrypt ciphers for time periods in the past.
In an (n, k)-threshold scheme the secret key is distributed among n shares and it
requires the presence of at least k+ 1 key shares to restore the secret key, whereas
any subset of k key shares is insufficient. Due to the fact that forward security and
thresholds improve security guarantees against secret key exposure in a different
manner, their combination to forward-secure thresholds (FST) can even reinforce
these guarantees.
Chapter 4 introduces a forward-secure threshold signature scheme and a forward-
secure threshold encryption scheme. Both are based on bilinear pairings with
groups of prime order. Compared to existing schemes, the ones proposed here
are much more efficient since they have a non-interactive key update procedure
and also a non-interactive signing procedure and decryption procedure, respec-
tively. Additionally, both schemes do not require a trusted dealer and have opti-
mal resilience as well as small signatures and small ciphertexts, respectively. Both
schemes are proven secure against adaptive adversaries and robust against mali-
cious adversaries. The signature and the encryption scheme are the first schemes
which achieve all of these properties and that can also be implemented on stan-
dardized elliptic curves.
The results in this chapter are my own work and are based on [Kur20a, Kur20b].
The articles are going to appear at ACISP 2020 and IWSEC 2020, respectively.

3

1 Introduction

Chapter 5. In the random oracle model (ROM) [BR93a] a cryptographic hash function
is modeled as an oracle that implements a truly random function. This approach
provides a very powerful tool to prove security of cryptosystems. For example,
it enables to adaptively “program” a hash function to map certain input values
to specific output values in the security proof. However, the random oracle is a
hypothetical concept and in practice it requires implementation with a standard
cryptographic hash function, like SHA-3. Hence, the security guarantees for the
real world are restricted.
Chapter 5 presents adaptively-secure variants of the selectively-secure pairing-
based IB-KEM and digital signature scheme of Boneh and Boyen [BB04a, BB04c].
Both are proven secure in the standard model, based on q-type assumptions, and
have public key size O(λ), where λ denotes the security parameter. The IB-KEM
and the digital signature scheme have only a single group element as ciphertext and
signature, respectively. Moreover, the security reductions are quadratically tighter
than in the corresponding schemes by Jager and mysself [JK18, Asiacrypt 2018].
As a technical contribution blockwise partitioning is introduced. It leverages the
assumption that a cryptographic hash function is Near-Collision Resistant to prove
full adaptive security of cryptosystems.
The results in this chapter are based on collaborations with Tibor Jager and David
Niehues. The concept of Near-Collision Resistance is due to David Niehues and
inspired by Truncation Collision Resistance from Tibor Jager and myself [JK18,
Asiacrypt 2018]. The construction of IB-KEM and digital signatures are mainly
due to myself. The results are part of an ongoing submission.

4

CHAPTER 2

Preliminaries

We start with introducing some basic notation and conventions in Section 2.1. In Section
2.2, we recall basic cryptographic primitives which are used in the subsequent chapters
of this thesis. Additionally, we introduce the concept of bilinear pairings in Section 2.3.

2.1 Notation

Let λ ∈ N denote a security parameter. All our results are in the asymptotic setting, that
is, we view all expressions involving λ as functions in λ. This includes the running time
tA = tA(λ) and success probability εA = εA(λ) of adversaries. Similarly, all algorithms
implicitly receive the security parameter 1λ as their first input. We call an algorithm
efficient, if it runs in (probabilistic) polynomial time in λ.
For a finite set A, we write a← A to denote the action of sampling a uniformly random
element a from A. If A is a probabilistic algorithm, then a ← A(x) denotes the action
of running A(x) on input x with uniform coins and output a.
For a bit string a = (a1, . . . , an) ∈ {0, 1}n and v, w ∈ N with v ≤ w, we write av:w to
denote the substring (av, . . . , aw) of a and aw := a1:w . The set {0, 1}∗ denotes the set
of all possible bit strings.
For a multiplicative group GX with random generator [1]X and prime order q we write
[a]1 shorthand for [1]aX . More generally, for a matrix A = (aij) ∈ Zn×mq , we define [A]1
as the implicit representation of A in GX :

[A]X :=

[a11]X ... [a1m]X

[an1]X ... [anm]X

 ∈ Gn×m
X .

2.2 Basic Primitives

In this section, we recall the formal definitions of basic cryptographic primitives as well
as their security notions.

Hash Functions. Let H be a family of hash functions H : {0, 1}∗ → Y, where Y is a
finite set. Collision resistance is defined via the following game between an adversary A
and a challenger. The challenger picks a hash function H from H uniformly at random
and sends a description of H to A. A outputs two bitstrings x and x′.

2 Preliminaries

Definition 2.1. Let A be an adversary. We say that it (tA, εA)-breaks the Collision
resistance of H if it runs in time tA and

Pr[A(H)→ (x, x′) s.t. H(x) = H(x′) ∧ x 6= x′)] ≥ εA.

Pseudorandom Functions. Let K,D be sets such that there is an efficient algorithm
that samples uniformly random elements k ← K. Let F : K × D → G be an efficiently
computable function. We define the PRF experiment between a challenger and an ad-
versary A as follows. Initially, the challenger generates a random key k ← K and tosses
a coin b← {0, 1}. The challenger provides adversary A with the following oracles.

• Query(x). On input x ∈ D the challenger computes F (k, x) if b = 1 and R(x) if
b = 0, where R : D → G is a random function. When the adversary terminates
and outputs a bit b′, then the experiment outputs 1 if b = b′, and 0 otherwise.

• Guess(b′). On input a bit b′ it outputs 1 if b = b′, else 0. The experiment termi-
nates.

Let x1, . . . , xQ ∈ D be the sequence of queries issued by A throughout the security
experiment. We assume that we always have Q ≥ 1, as otherwise the output of A is
independent of b. Furthermore, we assume that A never issues the same query twice.
More precisely, we assume xu 6= xv for u 6= v. This is without loss of generality, since
both F (k, ·) and R(·) are deterministic functions.

Definition 2.2. Let A be an adversary. We say that it (tA, εA, Q)-breaks the pseudo-
randomness of F , if it runs in time tA, issues Q queries in the PRF security experiment,
and

|Pr[Guess(b′) = 1]− 1/2| ≥ εA.

Digital Signatures. A widely used primitive are digital signature schemes, which belong
to the class of public-key cryptography [DH76]. Their main goal is to provide authenticity
and integrity. The following definitions are adapted from [GMR88].

Definition 2.3. A digital signature scheme Σ is defined via the following algorithms:

• KeyGen(1λ) → (vk, signk). The key generation algorithm outputs a pair of
verification and signing key (vk, signk).

• Sign(signk,M)→ σ. On input a message M and a signing key signk, it outputs
a signature σ.

• Verify(vk,M, σ)→ b, where b ∈ {0, 1}. On input a verification key vk, a message
M , and a signature σ, it outputs either 0 or 1.

The correctness can be defined as usual: For all (vk, signk) output by KeyGen(1λ) and
all messages M from the message space it holds that

Pr[Verify(vk,M,Sign(signk,M)) = 1] = 1.

Existential Unforgeability under a chosen message attack (EUF-CMA). The
EUF-CMA security game is defined via the following game between a challenger and an
adversary A. The challenger runs KeyGen(1λ) to obtain (vk, signk) and forwards vk
to A. Then, the adversary has access to the following oracles.

6

2 Preliminaries

• SignQuery(M). On input a message M from the message space the challenger
computes and outputs a signatures σ ← Sign(signk,M).

• Finalize(σ∗,M∗). If M has not been queried to SignQuery then it checks whether
Verify(vk,M∗, σ∗) = 1. If this is true it outputs 1, else 0. The experiment
terminates.

Definition 2.4. Let A be an adversary playing the EUF-CMA security game for a
signature scheme Σ. We say that it (tA, εA)-breaks the EUF-CMA security of Σ if it
runs in time tA, (M,σ) 6= (M∗, σ∗), and

Pr[Finalize(σ∗,M∗) = 1] ≥ εA.

We will also make use of a slightly different security notion for signature schemes. It is
weaker on the one hand, because the adversary is only allowed to make one signature
query, but it is stronger on the other hand, because it is allowed to forge a signature for
the same message it queried a signature. Only the signature must differ.

Strong Existential Unforgeability under a one chosen message attack (sEUF-
1CMA). The sEUF-1CMA security game is defined via the following game between a
challenger and an adversary A: The challenger runs KeyGen(1λ) to obtain (vk, signk)
and forwards vk to adversary A. Then the adversary is allowed to query both of the
following oracles only once.

• SignQuery(M). On input a message M from the message space the challenger
computes and outputs a signatures σ ← Sign(signk,M).

• Finalize(σ∗,M∗). If the adversary queried a signature for M∗ beforehand and
received σ ← σ∗ then the challenger returns 0. Else the challenger checks whether
Verify(vk,M∗, σ∗) = 1. If this is true it outputs 1, else 0. The experiment
terminates.

Definition 2.5. Let A be an adversary playing the sEUF-1CMA security game for a
signature scheme Σ. We say that it (tA, εA)-breaks the sEUF-1CMA security of Σ if it
runs in time tA, (M,σ) 6= (M∗, σ∗), and

Pr[Finalize(σ∗,M∗) = 1] ≥ εA.

Identity-Based Encryption (IBE). The concept of IBE was introduced by Shamir
[Sha84]. In IBE schemes the public keys are the identities of users. The corresponding
secret keys are issued by a trusted central authority to the users. Due to the fact that
public key encryption schemes (PKE) have usually much higher computational costs
than symmetric key encryption schemes it is a common approach to use a PKE only to
encrypt a short secret key from a symmetric key encryption scheme and then to use the
symmetric key encryption scheme together with this key to encrypt the message, which
is usually much larger than the symmetric key. This concept is called key encapsula-
tion. The notion of Identity-Based Key Encapsulation (IB-KEM) and the corresponding
security notion were introduced by Bentahar et al. [BFMLS05, BFMS08].

7

2 Preliminaries

Definition 2.6. An identity-based key encapsulation mechanism(IB-KEM) Π consists
of the following four PPT algorithms:

• Setup(1λ)→ (mpk,msk). On input the security parameter, it outputs the public
parameters mpk and the master secret key msk.

• KeyGen(msk, id)→ USKid. On input the master secret key msk and an identity
id it returns the user secret key USKid.

• Encap(mpk, id) → (C,K). On input the public parameters mpk and an identity
id it returns a tuple (C,K), where C is ciphertext encapsulating K with respect
to identity id.

• Decap(USKid, C, id) = K. On input the user secret key USKid together with
identity id and a ciphertext C it returns the decapsulated key K or an error
symbol ⊥.

For correctness we require that for all pairs (mpk,msk) generated by Setup(1λ), all
identities id ∈ I, all (K,C) output by Encap(mpk, id) and all USKid generated by
KeyGen(msk, id) the following equation is satisfied:

Pr[Decap(USKid, C, id) = K] = 1.

IND-ID-CPA security. IND-ID-CPA seurity for an IB-KEM Π is defined via the
following game between a challenger and an adversary A. The challenger computes
Setup(1λ)→ (mpk,msk) and sends mpk to A. The adversary has access to the following
oracles.

• KeyQuery(id). On input an identity id, the challenger computes and outputs the
secret key KeyGen(msk, id)→ USKid.

• Challenge(id∗). The adversary submits a challenge identity id∗. The challenger
picks a bit b and a key K0 from the key space uniformly at random. Then, it
computes Encap(mpk, id)→ (C,K1). It returns (C,Kb) to A.

• Guess(b′). The adversary outputs its guess b′ ∈ {0, 1}. The challenger outputs 1
if b = b′, else 0. The game stops.

The adversary is allowed to make multiple queries to KeyQuery(id) and one query to
Challenge(id∗) in any order, but with the restriction that it does not query a key for
id∗. Guess(b′) can only be queried after Challenge(id,M0,M1).

Definition 2.7. Let A be an adversary playing the IND-ID-CPA security game for an
IB-KEM Π. We say that it (tA, εA)-breaks the IND-ID-CPA security of Π, if it runs in
time tA and

|Pr[Guess(b′) = 1]− 1/2| ≥ εA.

We include the running time of the security experiment into the running time tA of A.
This will later allow us to simplify our security analysis.

8

2 Preliminaries

2.3 Bilinear Pairings

Bilinear pairings describe a bilinear mapping that is non-degenerate and efficiently com-
putable. They are a widely used and established tool in modern cryptography. Moreover,
they enable an abstract and simple view on elliptic curves.

Definition 2.8. Let G1, G2, and GT be cyclic groups of prime order q with generators
g1, g2, gT . We call e : G1 ×G2 → GT a bilinear pairing if:

1. e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zq,

2. e(g1, g2) 6= 1T ,

3. e can be efficiently computed.

If G1 = G2 we call it a Type-1 pairing. If G1 6= G2 and there is an efficiently computable
isomorphism from G2 to G1 we call it a Type-2 pairing and if there is no efficiently
computable isomorphism from G2 to G1 we call it a Type-3 pairing. For more information
we refer to [BLS01, CHM10].

9

CHAPTER 3

Simple and Efficient PRFs with Tight Security via

All-Prefix Universal Hash Functions

We construct efficient and tightly secure pseudorandom functions (PRFs). These PRFs
are secure against adaptive adversaries and have only a logarithmic security loss and
short secret keys. Moreover, these PRFs are very simple and efficient variants of
well-known constructions, including those of Naor-Reingold [NR97] and Lewko-Waters
[LW09]. Most importantly, in combination with the construction of Banerjee et al.
[BPR12] we obtain the currently most efficient LWE-based PRF from a weak LWE-
assumption with a much smaller modulus than the original construction. Technically,
we introduce all-prefix universal hash functions (APUHFs), which are hash functions
that are (almost-)universal, even if any prefix of the output is considered. We give sim-
ple and very efficient constructions of APUHFs, and show how they can be combined
with the augmented cascade of Boneh et al. [BMR10]. Along the way, we develop a new
and more direct way to prove security of PRFs based on the augmented cascade.
The results in this chapter are based on collaborations with Tibor Jager and Jiaxin Pan.
The notion of all-prefix universality and the augmented cascade with encoded input are
mainly due to Tibor Jager and myself. The applications are mainly due to Jiaxin Pan.
The results appeared at Asiacrypt 2018 [JKP18].

3.1 Introduction

A pseudorandom function (PRF) is a function that is computationally indistinguishable
from a real random function. Due to the fact that a huge amount of applications re-
quires “randomness” PRFs are a very important foundational cryptographic primitive;
see [GGM84, BG90, Gol01, Bel06, Kra10] for example. One possibility to construct PRFs
is to construct them from one-way functions (via pseudorandom generators) [GGM86].
However, this approach is rather inefficient. We aim at constructing efficient PRFs from
as-weak-as-possible assumptions and with tight security proof.

Tight security. In a cryptographic security proof, we often consider an adversary A
against a primitive like a PRF, and describe a reduction B that runs A as a subroutine
to break some computational problem which is assumed to be hard. Let (tA, εA) and
(tB, εB) denote the running time and success probability of A and B, respectively. Then
we say that the reduction B loses a factor `, if

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

tB
εB

= ` · tA
εA
.

A reduction is usually considered “efficient”, if ` is bounded by a polynomial in the
security parameter. We say that a reduction is “tight”, if ` is small. Our goal is to
construct reductions B such that ` is as small as possible. Ideally we would like to
have ` = O(1) constant. To illustrate this let us define WF(B) := tB

εB
and WF(A) :=

tA
εA

as the work factors of B and A, respectively. We say that a computational hard
problem provides κ bits of security against B if 2κ > WF(B) and analogously, that a
cryptographic scheme provides κ′ bits of security against A if 2κ

′
> WF(A). Let us

assume for the security loss that ` = 230, which is a reasonable and generally considered
loss. Now if we want that the cryptographic scheme provides 80 bits of security we need
that the computational hard problem provides 110 bits of security, because

WF(B) = ` · WF(A) < 230 · 280 = 2110.

Usually a higher work factor of a computational hard problem can be achieved by larger
group sizes, for instance for the discrete logarithm problem or factorization problem.
However, larger groups increase computational costs. Hence, if we had ` = 1 we would
have WF(B) = 280 and thus we could choose smaller algebraic groups to instantiate the
cryptographic scheme. It is worth to mention that for many cryptographic constructions
and primitives a constant loss of O(1) is impossible to achieve [Cor02, KK12, HJK12,
LW14, BJLS16]. However, even in such cases it is worth to seek for the optimal security
loss to achieve efficiency improvements.

State of the art. The augmented cascade framework of Boneh et al . [BMR10] covers
many constructions of efficient number-theoretic PRFs like the general Matrix-DDH-
based construction of [EHK+13a] (with the well-known algebraic constructions of Naor-
Reingold [NR97] and Lewko-Waters [LW09] as special cases) and also the LWE-based
PRF of Banerjee, Peikert, and Rosen [BPR12].

For these constructions, the size of the secret key and the loss in the security proof
grow linearly1 with the length n of the function input. This means that efficiency
and security both depend on n and by this also on the size of the input space. The
general approach to extend the input space to {0, 1}∗ is to apply a collision-resistant hash
function H : {0, 1}∗ → {0, 1}n, where n = 2λ and λ denotes the security parameter, to
the input before processing it in the PRF. This approach results in secret keys consisting
of n = O(λ) elements (where the concrete type of elements depends on the particular
instantiation of the augmented cascade) and a security loss of ` = n = O(λ).

Contributions. We introduce all-prefix universal hash functions (APUHFs) as a special
type of hash functions that are universal, even if the output of the hash function is
truncated. We also describe a very simple and efficient construction, which is based on
the hash function of Dietzfelbinger et al . [DHKP97], as well as a generic construction
from pairwise independent hash functions with range {0, 1}n for some n ∈ N.

1Here, we count the number of elements, not their bit size that increases with the security parameter.
This a common approach in literature.

11

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Then we show that by combining the augmented cascade with an APUHF, we are
able to significantly improve both the asymptotic size of secret keys and the security loss
of these constructions. Specifically, we achieve keys consisting of only a slightly super-
logarithmic number of elements m = ω(log λ) and an only logarithmic security loss
O(log λ). Both the number of elements in the secret key and tightness are independent
of the input size n, except for the key of the APUHF, which consists of n bits when
instantiated with the APUHF of Dietzfelbinger et al . [DHKP97]. Based on this generic
result, we then obtain simple variants of algebraic PRFs based on a large class of Matrix-
DDH assumptions [EHK+13a], which include the PRFs of Naor and Reingold [NR97]
and its generalization by Lewko and Waters [LW09] as special cases.

Furthermore, we obtain a simple variant of the PRF of Banerjee, Peikert and
Rosen [BPR12] (BPR). This PRF is based on the learning-with-errors (LWE) assump-
tion [Reg05], and has the property that the required size of the LWE modulus depends
on the length of the PRF input. More precisely, the lower bound on the LWE modulus
p is exponential in the input length n = Θ(λ). We observe this in almost all the well-
known LWE-based PRFs such as [BLMR13, BP14]. In order to improve efficiency and
to base security on a weaker LWE assumption, it is thus desirable to make p as small as
possible. We show that simply encoding the PRF input with an APUHF before process-
ing it in the original BPR construction makes it possible to reduce the lower bound on
the LWE modulus p from exponential to only slightly super-polynomial in the security
parameter, which yields a weaker assumption and a significant efficiency improvement
(see Section 3.5.2 for details). Furthermore, even for an arbitrary polynomially-bounded
input size n, our construction requires to store only m = ω(log λ) matrices, independent
of the size n of the input space {0, 1}n, plus a single bitstring of length n when instan-
tiated with the APUHF of Dietzfelbinger et al . [DHKP97]. In contrast, the original
construction from [BPR12] requires Θ(n) matrices.

A similar improvement of the LWE modulus p was achieved by a different BPR
variant due to Döttling and Schröder in [DS15], via a technique called on-the-fly adap-
tation. However, their construction requires to run λ · ω(log λ) copies of the BPR PRF
in parallel, while ours requires only a single copy plus an APUHF. Thus, our approach
is significantly more efficient, and also more direct, as it essentially corresponds to the
original BPR function, except that an APUHF is applied to the input. This simplic-
ity gives not only a useful conceptual perspective on the construction of tightly secure
PRFs, but it also makes schemes easier to implement securely.

Another advantage of our approach is that the resulting PRF construction is ex-
tremely simple. It is essentially identical to the augmented cascade from [BMR10],
except that an APUHF h is applied to the input before it is processed by the PRF.
More precisely, let F̂m be a PRF that is constructed from an m-fold application of an
underlying function F via the augmented cascade construction from [BMR10]. Then,
our construction F̂ (K,x) has the form

F̂ (K,x) := F̂m(s, h(x)),

where the key of our new function is a tuple K = (s, h) consisting of a random key s
for the augmented cascade construction and a random function h ← H from a family
H = {h : {0, 1}n → {0, 1}m} of APUHFs.

12

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

We remark that we require an additional property called perfect one-time secu-
rity(“1-uniformity”) of the underlying function F of the augmented cascade, and thus
technically our variant of [BMR10] is slightly less general. However, this is a minor
restriction, as we show that this property is satisfied by all known instantiations of
the augmented cascade. Furthermore, our security proof assumes that the reduction
“knows” sufficiently close approximations of the number of queries Q and the advantage
εA of the adversary. Thus, the proof shows how such non-black-box knowledge can be
used to achieve more efficient PRFs with short keys and very tight security from weaker
assumptions.

Technical approach. An augmented cascade PRF with m-bit input is a function F̂m :
Sm×K×{0, 1}m → K with key space Sm×K. In the sequel, let (s1, . . . , sm, k) ∈ Sm×K
be a key for F̂m and h : {0, 1}n → {0, 1}m. For a string a ∈ {0, 1}m we write av:w to
denote the substring (av, . . . , aw) ∈ {0, 1}w−v+1 of a. Let j be an integer with j ≤ m
(we will explain later how to choose j in a suitable way). An augmented cascade PRF
F̂m has the property, that for each j ∈ {1, . . . ,m}, it can be implemented equivalently
as a two-step algorithm as follows.

1. In the first step, the function F̂m processes only the first j bits h(x)1:j ∈ {0, 1}j of
h(x), to compute an intermediate value kx that depends only on the first j bits of
h(x):

kx = F̂ j((s1, ..., sj), k, h(x)1:j)

2. Then the remaining m− j bits are processed, starting from kx, by computing

y = F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

The resulting function is identical to the function F̂m. This specific way to implement
F̂m will be useful to describe our approach.

In the security proof, let x(1), . . . , x(Q) denote the sequence of pairwise distinct oracle
queries issued by the adversary in the PRF security experiment. Further let us assume
that h(x(u))1:j 6= h(x(v))1:j for u 6= v. We show that the security of F̂m is implied by
the security of F̂ j , which is a PRF with shorter input. The intuition behind the security
argument can be described in two steps.

1. We replace F̂ j with a random function R, which is computationally indistinguish-
able due to the security of F̂ j . The intermediate value kx = R(h(x)1:j) is an
independent random value for each oracle query made by the adversary, because
we assume h(x(u))1:j 6= h(x(v))1:j for u 6= v.

2. Next we argue that F̂m is distributed like a random function as well. We achieve
this by identifying an additional property required from F̂m−j that we call perfect
one-time security. This property guarantees that

Pr
kx←K

[
F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m) = y

]
=

1

|K|

13

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

for all ((sj+1, ..., sm), h(x)j+1:m, y) ∈ Sm−j × {0, 1}m−j ×K. This is sufficient to
show that indeed now the function

F̂m−j((sj+1, ..., sm), R(h(x)1:j), h(x)j+1:m)

is a random function, because we supposed h(x(u))1:j 6= h(x(v))1:j for u 6= v.

It remains to ensure the assumption that h(x(u))1:j 6= h(x(v))1:j for all u 6= v is
true with “sufficiently large” probability and for some “sufficiently small” value of j.
In order to do so we use the all-prefix universal hash function, in combination with an
argument which on a high level follows similar proofs from [BH12] and [DS15]. The
main difference is that we use the all-prefix universality to argue that setting j :=⌈
log(2Q2/εA)

⌉
= O(log λ) is sufficient to guarantee that, h(x(u))1:j 6= h(x(v))1:j with

sufficiently large probability for all u 6= v. Here, Q is the number of oracle queries made
by the adversary in the PRF security experiment and εA is its advantage.

Due to the fact that j = O(log λ) we only have to require security of a “short-
input” augmented cascade F̂ j with j = O(log λ). For our algebraic instantiations based
on Matrix-DDH problems, this results in a tightness loss of only O(log λ). For our
application to the LWE-based PRF of Banerjee, Peikert and Rosen [BPR12], this gives
us that we require only a weaker LWE assumption. Furthermore, we need only that
m ≥ j for all possible values of j and j =

⌈
log(2Q2/εA)

⌉
= O(log λ). Hence, it is

sufficient to set m = ω(log λ) slightly super-logarithmic, which results in short secret
keys and efficient evaluation for all instantiations.

Why all-prefix universal hash functions? We want to emphasize that we indeed require
an all-prefix universal hash function that works for any possible prefix length j. We
need this to enable that the construction and the security proof become independent of
particular values Q and εA of a particular adversary, because j depends on these values
via the definition j =

⌈
log(2Q2/εA)

⌉
. All-prefix universality guarantees basically that

a suitable value of j exists for any efficient adversary. This is also required to achieve
tightness. See Section 3.6 for further discussion.

More related work. There were several other works about the domain extension of PRFs.
The first one is due to Levin [Lev87]. It shows that larger inputs can be hashed with a
universal hash function if the underlying PRF has a sufficiently large domain. Otherwise
it is vulnerable to the so called “birthday attack”. The framework of Jain, Pietrzak, and
Tentes [JPT12] works for small domains, but has a rather lossy security proof and is
not very efficient, as it needs O(log q) invocations of the underlying pseudo-random
generator (PRG), where q is the upper bound of queries to the PRF. Additionally, as
the authors already mention, it seems not to work for number-theoretic PRFs like the
Naor-Reingold PRF. It was revisited by Chandran and Garg [CG14]. Bernam et al .
show how to circumvent the “birthday attack” using Cuckoo Hashing [BHKN13] via two
invocations of the original PRF.

3.2 All-Prefix Universal Hash Functions

In this section, we define all-prefix almost universal hash functions and describe two
constructions. The first one is based on the almost-universal hash function of Dietzfel-

14

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

binger et al . [DHKP97], and yields an all-prefix almost-universal hash function. The
second one is based on pairwise independent hash functions with suitable range, and
yields an all-prefix universal hash function. We start by recalling the standard definition
of universal hash functions.

Definition 3.1[CW79]. A family H of hash functions mapping finite set {0, 1}n to
finite set {0, 1}m is universal, if for all x, x′ ∈ {0, 1}n with x 6= x′ holds that

Pr
h←H

[h(x) = h(x′)] ≤ 2−m.

We also consider almost-universal hash functions, as defined below.

Definition 3.2. A family H of hash functions mapping finite set {0, 1}n to finite set
{0, 1}m is almost-universal, if for all x, x′ ∈ {0, 1}n with x 6= x′ holds that

Pr
h←H

[h(x) = h(x′)] ≤ 2−m+1.

Universal and almost-universal hash functions can be constructed efficiently and
without additional complexity assumptions, see e.g. [CW79, DHKP97, IKOS08].

We introduce the following definition.

Definition 3.3. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m. We
say that H is a family of all-prefix universal hash functions, if for all x, x′ ∈ {0, 1}n with
x 6= x′ and all w = 1, . . . ,m holds that

Pr
h←H

[h(x)1:w = h(x′)1:w] ≤ 2−w.

Note that all-prefix universality essentially means that for all prefixes of length w the
truncation of h to its first w bits h(x)1:w is a universal hash function. We also introduce
the slightly weaker notion of all-prefix almost-universality.

Definition 3.4. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m. We
say that H is a family of all-prefix almost-universal hash functions (APUHFs), if for all
x, x′ ∈ {0, 1}n with x 6= x′ and all w ∈ [m] holds that

Pr
h←H

[h(x)1:w = h(x′)1:w] ≤ 2−w+1.

3.2.1 First Construction (Almost-Universal)

We construct a simple and efficient APUHF family based on the almost-universal hash
function of Dietzfelbinger et al . [DHKP97], which is defined as follows. Let m,n ∈ N
with m ≤ n. Let

Hn,m := {ha : a ∈ [2n − 1] and a is odd} (3.1)

be the family of hash functions, which for x ∈ Z2n is defined as

ha(x) := (ax mod 2n) div 2n−m, (3.2)

15

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

where div 2n−m keeps the m most significant bits.
Before we prove that this function is all-prefix almost-universal, we first state the fol-
lowing lemma of Dietzfelbinger et al . [DHKP97].

Lemma 3.1 ([DHKP97]). Let n and m be positive integers with m = 1, . . . , n. If
x, y ∈ Z2n are distinct and ha ∈ Hn,m is chosen at random, then

Pr[ha(x) = ha(y)] ≤ 2−m+1

Thus, Hn,m is a family of almost-universal hash functions in the sense of Definition 3.2.

All-prefix almost-universality of Hn,m. Now we prove that the hash function family
Hn,m of Dietzfelbinger et al . [DHKP97] is not only almost-universal, but also satisfies
the stronger property of all-prefix almost-universality.

Theorem 3.1. Hn,m is a family of all-prefix almost-universal hash functions in the sense
of Definition 3.4.

Proof. Let ω,m, n be any positive integers with ω ≤ m ≤ n. Note that if ha(·) is a
function in Hn,m then ha(·)1:ω is a function in Hn,ω. Further note that Lemma 3.1 holds
for all ω = 1, . . . , n, which proves the claim.

In the sequel, we will sometimes write h instead of ha, when it is clear from the
context that h is be chosen uniformly random from Hn,m.

3.2.2 Second Construction (Universal)

While the almost-universal construction from Section 3.2.1 is already sufficient for all our
applications, it is natural to ask whether also all-prefix universal hash functions (not
almost-universal) can be constructed. We will show that each pairwise-independent
family of hash functions with range {0, 1}n is also a family of all-prefix universal hash
functions. To this end, let us first recall the notion of pairwise independent hash func-
tions.

Definition 3.5. Let H be a family of hash functions with domain {0, 1}n and range
{0, 1}m. We say that H is pairwise independent, if for all x, x′ ∈ {0, 1}n with x 6= x′ and
all y, z ∈ {0, 1}m holds that

Pr
h←H

[h(x) = y ∧h(x′) = z] = 2−2m.

We first show that pairwise independence implies all-prefix pairwise independence, which
is defined below. Then we show that this implies all-prefix universality. Let us write xi
to denote the i-th bit of the bit string x.

Definition 3.6. Let H be a family of hash functions mapping {0, 1}n to {0, 1}m. We
say that H is all-prefix pairwise independent, if for all x, x′ ∈ {0, 1}n with x 6= x′ and all
y, z′ ∈ {0, 1}m holds that

Pr
h←H

[h(x)1:w = y1:w ∧h(x′)1:w = z1:w] = 2−2w

for all w = 1, . . . ,m.

16

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Lemma 3.2. IfH is pairwise independent, then it is also all-prefix pairwise independent.

Proof. We have

Pr
h←H

[h(x)1:j = y1:j ∧h(x′)1:j = z1:j]

= Pr
h←H

 ⋃
y′∈{0,1}m−j

h(x) = (y1:j ‖ y′)

∧
 ⋃
z′∈{0,1}m−j

h(x′) = (z1:j ‖ z′)

=

∑
y′∈{0,1}m−j

∑
z′∈{0,1}m−j

Pr
h←H

[
h(x) = (y1:j ‖ y′)∧h(x′) = (z1:j ‖ z′)

]
=

∑
y′∈{0,1}m−j

∑
z′∈{0,1}m−j

1

22m
=

2m−j · 2m−j

22m
=

1

22j
.

Now, it remains to show that all-prefix pairwise independence implies all-prefix univer-
sality.

Lemma 3.3. If H is all-prefix pairwise independent, then it is also all-prefix universal.

Proof. It holds that

Pr
h←H

[h(x)1:j = h(x′)1:j] =
∑

y1:j∈{0,1}j
Pr
h←H

[h(x)1:j = y1:j ∧h(x′)1:j = y1:j] (3.3)

=
∑

y1:j∈{0,1}j

1

22j
=

1

2j
,

where (3.3) holds because of Lemma 3.2.

Example instantiation. Let n ∈ N and let

Hn := {ha,b : a, b ∈ {0, 1}n}

be the family of hash functions

ha,b : GF (2n)→ GF (2n);x 7→ ax+ b,

where the arithmetic operations are in GF (2n).Since it is well-known that Hn is pairwise
independent we leave the following theorem without proof.

Theorem 3.2. Hn is a family of all-prefix universal hash functions.

Note that in the explicit construction of GF (2n) the choice of the irreducible polynomial
has big impact on the efficiency of the arithmetic operations.

17

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Input: Key (s1, ..., sm, k0) ∈ Sm ×K and (x1, ..., xm) ∈ Xm

For i = 1, ...,m :
ki ← F ((si, ki−1), xi)

Return km.

Figure 3.1: Definition of function F̂m of Boneh et al . [BMR10].

3.3 Augmented Cascade PRFs

Boneh et al . s[BMR10] showed how to construct a PRF

F̂m : (Sm ×K)×Xm → K

with key space (Sm ×K) and input space X from an augmented cascade of functions

F : (S ×K)×X → K

The augmented cascade construction is described in Figure 3.1. Boneh et al . [BMR10]
prove that F̂m is a secure PRF, if F is parallel secure in the following sense.

Definition 3.7[BMR10]. For a function F : (S × K) × X → K define F (Q) as the
function

F (Q) : (S ×KQ)× (X × [Q])→ K; ((s, k1, ..., kq), (x, i)) 7→ F ((s, ki), x) .

We say that A (tA, εA, Q)-breaks the Q-parallel security of F : (S ×K)×X → K, if it
(tA, εA, Q)-breaks the pseudorandomness of F (Q) in the sense of Definition 2.2.

Theorem 3.3 ([BMR10]). From each adversary Athat (tA, εA, Q)-breaks the pseudo-
randomness of F̂m, one can construct an adversary Bthat (tB, εB, Q)-breaks the Q-
parallel security of F (Q) with

tB = Θ(tA) and εB ≥
εA
m

Note that the security loss of this construction is linear in the length m of the input of
function F̂m.

3.4 The Augmented Cascade with Encoded Input

In this section, we show that APUHFs enable the instantiation of augmented cascade
PRFs [BMR10] with shorter keys of sligtly super-logarithmic size ω(log λ). The security
proof loses only a factor O(log λ), independent of the input size of the PRF, assuming
that (reasonably close bounds) on the number of queries Q and the success probability
1/2+εA of the PRF adversary A are known a priori. In contrast, the loss of the previous
security proof of [BMR10] is linear in the input size of the PRF (which is usually linear
in λ), but does not assume any a priori knowledge about A. We consider the special
case with input space X = {0, 1}, which encompasses the MDDH-based construction of

18

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Escala et al . [EHK+13a] and thus includes in particular both the instantiations of Naor-
Reingold [NR97] and Lewko-Waters [LW09]. Let Hn,m be a family of all-prefix almost-
universal hash functions according to Definition 3.4, and let F : (S ×K)× {0, 1} → K
be a function. We define the corresponding augmented cascade PRF with Hn,m-encoded
input as the function

F̂Hn,m : Sm ×K ×Hn,m × {0, 1}n → K

((s1, ..., sm), k, h, x) 7→ F̂m((s1, ..., sm), k, h(x)) (3.4)

where F̂m is the augmented cascade construction of Boneh et al . [BMR10], applied to
F as described in Figure 3.1.

Remark 3.1. Note that evaluating the PRF requires only m recursions in the augmented
cascade, and that, accordingly, the secret key consists of only m elements and the de-
scription of h, while the input size can be any polynomial number of n bits, with possibly
n� m. We will later show that it suffices to set m = ω(log λ) slightly super-logarithmic,
thanks to the input encoding with an all-prefix almost-universal hash function. Also the
security loss of this construction is only O(log λ) and independent of the size of the input
n.

3.4.1 Preparation for the Security Proof

In this section we describe a few technical observations which will simplify the security
proof. Furthermore, we define perfect one-time security as an additional property of a
function F (s, x, k), which will also be required for the proof. We will argue later that the
Matrix-DDH-based instantiations of the augmented cascade of [EHK+13a], including the
functions of Naor-Reingold [NR97] and Lewko-Waters [LW09], all satisfy this additional
notion. Moreover, we will show that the LWE-based PRF of [BPR12] can be viewed as
an augmented cascade and it is perfectly one-time secure.

An observation about the augmented cascade. The following observation will be useful
to follow the security proof more easily. Suppose we want to compute

z = F̂m((s1, ..., sm), k, h(x))

then, due to the recursive definition of F̂m, we can equivalently proceed in the following
two steps.

1. Let i ∈ [m]. We first process the first i bits h(x)1:i of h(x) with (s1, . . . , si, k), and
compute and “intermediate key” kx as

kx := F̂ i((s1, . . . , si), k, h(x)1:i)

2. Then we process the remaining m − i bits h(x)i+1:m of h(x) with the remaining
key elements (si+1, . . . , sm, kx) by computing

z = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

We formulate this observation as a lemma.

19

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Lemma 3.4. For all i = 1, . . . ,m, we have

F̂m((s1, ..., sm), k, h(x)) = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

where kx := F̂ i((s1, . . . , si), k, h(x)1:i).

Perfect One-Time Security. We will furthermore require an additional security property
of F , which we call perfect one-time security, and show that this property is satisfied by
all instantiations of function F considered in this section. We demand that F (s, x, k)
is identically distributed to a random function R(x), if it is only evaluated once. This
must hold over the uniformly random choice k ← K, and for any s ∈ S and x ∈ {0, 1}.
Definition 3.8. We say that a function F : S ×K × {0, 1}m → K is perfectly one-time
secure, if

Pr
k←K

[
F (s, k, x) = k′

]
=

1

|K|
for all (s, x, k′) ∈ S × {0, 1}m ×K.

Perfect one-time security basically guarantees uniformity of the hash function, if it is
evaluated only once (“1-uniformity”).
The following lemma follows directly from Definition 3.8. It will be useful to prove
security of our variant of the augmented cascade.

Lemma 3.5. Let m ∈ N and F : S × K × {0, 1} → K be perfectly one-time secure.
Then the augmented cascade F̂m constructed from F is also perfectly one-time secure.
That is

Pr
k←K

[
F̂m((s1, ..., sm), k, x) = k′

]
=

1

|K|
for all ((s1, ..., sm), k′, x) ∈ Sm ×K × {0, 1}m.

Proof. For a uniformly random chosen k it holds that Pr [F (s1, k, x1) = k1] = 1
|K| for

all (s1, k, x1) ∈ S ×K × {0, 1} because of the perfect one-time security of F . Thus the
input for the second iteration stays uniformly random. Due to the recursive construction
executing all the following iterations will keep this distribution, which gives us the perfect
one-time security of F̂m.

3.4.2 Security Proof

Now we are ready to prove the following theorem.

Theorem 3.4. Let m = ω(log λ) be (slightly) super-logarithmic, Hn,m be a family of
all-prefix almost universal hash functions and F be perfectly one-time secure. From
each adversary A that (tA, εA, Q)-breaks the pseudorandomness of F̂Hn,m with Q/εA =
poly(λ) for some polynomial poly, we can construct an adversary B that (tB, εB, Q)-breaks
the pseudorandomness of F̂ j , where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

20

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Proof. In the sequel let j = j(λ) be defined such that

j :=
⌈
log(2Q2/εA)

⌉
(3.5)

Observe that we have j(λ) ≤ m(λ) for sufficiently large λ, because the fact that we have
Q/εA = poly(λ) for some polynomial poly and j < log(2Q2/εA) + 1 together yield that
j = O(log λ), while we have m = ω(log λ).

Remark 3.2. Note that although we have j = O(log(2Q2/εA)) = O(log λ), the constant
hidden in the big-O notation depends on the adversary.

We describe a sequence of games, where Game 0 is the original PRF security experiment,
and in the last game the probability that the experiment outputs 1 is 1/2, such that no
adversary can have any advantage. Let Xi denote the event that the experiment outputs
1 in Game i, and let Oi denote the oracle provided by the experiment in Game i.

Game 0. This is the original security experiment. In particular, we have

O0(x) =

{
F̂Hn,m((s1, ..., sm), k, h, x) if b = 1

R(x) if b = 0

where R is a random function. Therefore, by definition, it holds that

Pr [X0] = 1/2 + εA

Game 1. We change the way how the oracle implements function F̂Hn,m . That is, we
modify the behaviour of O1 in case b = 1, while in case b = 0 oracle O1 proceeds identical
to O0. Recall that

F̂Hn,m((s1, ..., sm), k, h, x) = F̂m ((s1, ..., sm), k, h(x))

O1 implements this function in a specific way. Using the observation from Lemma 3.4,
it computes F̂m ((s1, ..., sm), k, h(x)) in two steps:

1. kx := F̂ j((s1, . . . , sj), k, h(x)1:j),

2. z := F̂m−j((sj+1, ..., sm, kx, h(x)j+1:m),

where j is as defined above, and we use that j ≤ m. By Lemma 3.4, this is just a specific
way to implement function F̂m, so the change is purely conceptual and we have

Pr [X1] = Pr [X0]

Game 2. This game is identical to Game 1, except that we replace the function F̂m

implemented by oracle O1 partially with a random function. More precisely, oracle
O2 chooses a second random function Rj : {0, 1}j → K. If b = 1, then it computes
z = O2(x) as

1. kx := Rj(h(x)1:j)

2. z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

21

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

If b = 0, then it proceeds exactly like O1. The proof of the following lemma is postponed
to Section 3.4.3.

Lemma 3.6. From each Athat runs in time tA and issues Q oracle queries one can
construct an adversary B that (tB, εB, Q)-breaks the pseudorandomness of F̂ j where

tB = Θ(tA) and εB = |Pr [X1]− Pr [X2]| (3.6)

Game 3. This game is identical to Game 2, but O3 performs an additional check. When-
ever Amakes an oracle query x, O3 checks whether there has been a previous oracle query
x′ such that

h(x)1:j = h(x′)1:j

If this holds, then O3 raises event coll, and the experiment outputs a random bit and
terminates. Note that the check is always performed, for both values b ∈ {0, 1}. Since
both games are identical until coll, we have

|Pr [X2]− Pr [X3]| ≤ Pr [coll]

Again, the proof of the following lemma is postponed, to Section 3.4.4.

Lemma 3.7. If F is perfectly one-time secure, then Pr [coll] ≤ εA/2 and Pr
[
X3 | coll

]
=

1/2.

We finish the proof of Theorem 3.4 before we prove Lemmas 3.6 and 3.7. We have

Pr [X3] = Pr [X3 | coll] · Pr [coll] + Pr
[
X3 | coll

]
· (1− Pr [coll]) (3.7)

Recall that X3 denotes the probability that the experiment outputs 1, which happens if
and only if A outputs b′ with b = b′. By construction of the experiment, we abort and
output a random bit in Game 3, if coll occurs. In combination with Lemma 3.7 we thus
get

Pr [X3 | coll] = Pr
[
X3 | coll

]
= 1/2

Plugging this into (3.7) yields

Pr [X3] = 1/2 · Pr [coll] + 1/2 · (1− Pr [coll]) = 1/2 (3.8)

Lower bound on εB. Finally, using (3.8), the bounds from Lemmas 3.6 and 3.7, and the
fact that Pr [X0] = Pr [X1], we obtain a lower bound on εB:

1/2 + εA = Pr [X0] = Pr [X1] ≤ Pr [X2] + εB ≤ 1/2 + εA/2 + εB

⇐⇒ εB ≥ εA/2

Furthermore, by Lemma 3.6, algorithm B runs in time tB = Θ(tA) and issues Q oracle
queries.

22

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

3.4.3 Proof of Lemma 3.6

Adversary B plays the pseudorandomness security experiment with function F̂ j . Let
O denote the PRF oracle provided to B in this game. B runs A as a subroutine by
simulating the security experiment as follows.

Initialization. B samples a bit b ← {0, 1}, a hash function h ← Hn,m, and picks
(sj+1, ..., sm), where si ← S for all i = j + 1, . . . ,m

Handling of oracle queries. Whenever A queries x ∈ {0, 1}n, B proceeds as follows.

• If b = 0, then B proceeds exactly like the original experiment. That is, it responds
with R(x), where R : {0, 1}n → K is a random function.

• If b = 1, then B computes h(x) and queries O to obtain kx := O(h(x)1:j). Then it
computes

z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

and returns z to A.

Finalization. Finally, when A terminates, then B outputs whatever A outputs, and
terminates.

Analysis of B. Note that the running time of B is essentially identical to the running
time of A plus a minor number of additional operations, thus we have tB = Θ(tA). If
O(x) = F̂ j((s1, ..., sj , k), h(x)1:j), then by Lemma 3.4 it holds that z = F̂m((s1, ..., sm, k),
h(x)). Thus, the view ofA is identical to Game 1. IfO(x) implements a random function,
then its view is identical to Game 2. This yields the claim.

3.4.4 Proof of Lemma 3.7

In order to show that Pr [coll] ≤ εA/2, we prove that all queries of Aare independent
of h, regardless of b = 0 or b = 1, until coll occurs. This allows us to derive an upper
bound on coll. Consider the sequence of queries x1, . . . , xQ made by A. Recall that we
assume xu 6= xv for u 6= v without loss of generality.

The case b = 0. In this case, O3(xi) is a random function R(xi), and therefore all
information observed by Ais independent of h, until coll occurs. Thus, the view of Ais
equivalent to a world in which the experiment does not choose h at the beginning, but
only after Ahas made all queries, and only then computes h(xi)1:j for all i = 1, . . . , Q
and outputs a random bit if a collision occurred. By the almost-universality, we thus
obtain that

Pr [coll | b = 0] ≤
Q∑
i=2

i− 1

2j−1
≤ Q2

2j
≤ Q2εA

2Q2
=
εA
2
.

Note that we use here that j ≥ log(2Q2/εA), which holds due to the definition of j in
(3.5).

23

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

The case b = 1. We may assume without loss of generality that Q > 0, as otherwise A
receives no information about b and thus we would have εA = 0. Consider the first query
O3(x1) of A. The oracle proceeds as follows. At first it computes kx1 := Rj(h(x1)1:j).
Since Rj is a random function, this value is independent of h. In the next step it
computes z1 := F̂m−j((sj+1, ..., sm), kx1 , h(x1)j+1:m), which is still uniformly random.
To see this, note that the perfect one-time security of F guarantees perfect one-time
security of F̂m−j as shown in Lemma 3.5. Thus A gains no information about h at this
point and the next query cannot be adaptive with regard to h.

Now if A queries O3(x2), then the experiment will evaluate the random functions
Rj on a different position than in the first query, unless

h(x1)1:j = h(x2)1:j (3.9)

Due to the fact that the response to x1 was independent of h and the almost-universality
of h, (3.9) happens with probability at most 1/2j−1. Therefore, again by the perfect one-
time security of F , A receives another uniformly random value z2, which is independent
of h, except with probability at most 1/2j−1. Continuing this argument inductively over
all Q queries of A, we see that on its i-th query A will receive a random response which
is independent of h, except with probability (i − 1)/2j−1, provided that all previous
responses were independent of h. A union bound now yields

Pr [coll | b = 1] ≤
Q∑
i=2

i− 1

2j−1
≤ Q2

2j
≤ Q2εA

2Q2
=
εA
2
.

It remains to show that Pr
[
X3 | coll

]
= 1/2. Let us consider the case b = 1. If coll

occurs, then there are no collisions, such that the oracle calls random function Rj on
always different inputs, each time receiving an independent, uniformly random value.
Applying the perfect one-time security of F̂m−j again, the response of the oracle to each
query is therefore uniformly distributed and independent of all other queries. Thus,
provided that no collision occurs, the view in case b = 1 is perfectly indistinguishable
from the case b = 0, which yields the claim.

3.5 Applications

3.5.1 Efficient and Tightly-Secure PRF from Matrix Diffie-Hellman
Assumptions

We recall the definition of the matrix Diffie-Hellman (MDDH) assumption and the pseu-
dorandom function (PRF) from [EHK+13a]. We consider a variant where an all-prefix
almost-universal hash function is applied to the input before it is processed by the PRF.
We note that the MDDH assumption generalizes the Decisional Diffie-Hellman (DDH)
and Decisional d-Linear (d-LIN) assumptions, and, moreover, it gives us a framework
to analyze the algebraic structure behind the Diffie-Hellman-based cryptographic prim-
itives. Thus, our results can be carried on to the Naor-Reingold PRF (based on the
DDH assumption) [NR97] and the Lewko-Waters PRF (based on the d-LIN assumption)
[LW09].

24

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Notations and the MDDH Assumption. Let G := (G1, [1]1, q) be a description of multi-
plicative group G1 with random generator [1]1 and prime order q. Following the “implicit
notation” of [EHK+13b], we write [a]1 shorthand for [1]a1. More generally, for a matrix
A = (aij) ∈ Zn×mq , we define [A]1 as the implicit representation of A in G1:

[A]1 :=

[a11]1 ... [a1m]1

[an1]1 ... [anm]1

 ∈ Gn×m
1 .

Let us first recall the definition of the matrix Diffie-Hellman (MDDH) assumption
[EHK+13b, EHK+13a].

Definition 3.9. Matrix distribution. Let `, d ∈ N and ` > d. We call D`,d a matrix
distribution if it outputs matrices in Z`×dq of full rank d in polynomial time, namely, it
is efficiently samplable. We define Dd := Dd+1,d.

Without loss of generality, we assume the first d rows of A← D`,d form a full-rank
and invertible matrix, and we denote it by A and the rest `− d rows by A.

Definition 3.10. Transformation matrix. Let D`,d be a matrix distribution and A

be a matrix from it. The transformation matrix of A is defined as T := A · A−1 ∈
Z(`−d)×d
q .

The D`,d-MDDH problem is to distinguish the two distributions ([A]1, [Aw]1) and
([A]1, [u]1) where A← D`,d, w← Zdq and u← Z`q.
Definition 3.11D`,d-Matrix Diffie-Hellman assumption, D`,d-MDDH. [EHK+13b,
EHK+13a] Let D`,d be a matrix distribution. We say that adversary A (tA, εA)-breaks
the D`,d-Matrix Diffie-Hellman (D`,d-MDDH) assumption in group G1, if A runs in time
tA and

|Pr[A(G, [A]1, [Aw]1) = 1]− Pr[A(G, [A]1, [u]1) = 1]| ≥ εA,

where the probability is taken over A← D`,d,w← Zdq ,u← Z`q.

Examples of D`,d-MDDH. [EHK+13b, EHK+13a] define distributions Ld, Cd, SCd,
ILd, and Ud which corresponds to the d-Linear, d-Cascade, d-Symmetric-Cascade, d-
Incremental-Linear, and d-Uniform assumption, respectively. All these assumptions are
proven secure in the generic group model [EHK+13b, EHK+13a] and form a hierarchy
of increasingly weaker assumptions.

A simple example is the L1-MDDH assumption for d = 1, which is the DDH as-
sumption: Choose a,w, z ← Zq, and the DDH assumption states that the following two
distributions are computationally indistinguishable:

([1, a, w, aw]1) ≈c ([1, a, w, z]1).

This can be represented via the L1-MDDH assumption which states the following two
distributions are computationally indistinguishable:

([a1]1 , [
aw
w]1) =: ([A]1 , [Aw]1) ≈c ([A]1 , [u]1) := ([a1]1 , [

z
w]1).

For d = 1 the transformation matrix T contains only one element, and for L1-MDDH
the corresponding transformation matrix is T = 1

a .

25

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

We give more examples of matrix distributions from [EHK+13b, EHK+13a] for d = 2
in Section 3.5.3.

The PRF construction of [EHK+13a] and its security. Let G := (G1, P, q) be a descrip-
tion of a multiplicative group G1 with random generator [1]1 and prime order q. Let D`,d
be a matrix distribution and we assume that (`− d) divides d and define t := d/(`− d).

Following the approach of Section 5.3 of [EHK+13a], we choose a random vector
h← Zdq , and, for i = 1, ...,m and j = 1, ..., t, we choose Ai,j ← D`,d and compute trans-

formation matrices T̂i,j := Ai,jA
−1
i,j ∈ Z(`−d)×d

q and define the aggregated transformation
matrices

Ti :=

T̂i,1
...

T̂i,t

 ∈ Zd×dq ,

and S := (T1, ...,Tm). Here, for i ∈ {1, ...,m}, we require that Ti has full rank. We
note that this requirement can be satisfied by all the matrix distributions described
in [EHK+13a] with overwhelming probability. This implies the distribution of our Ti’s
is statistically close to that in [EHK+13a], up to a negligibly small statistical distance
of 1/(q − 1). Thus, their security results can be applied here.

Now let S := Zd×dq , K := Gd
1, and X := {0, 1}. The basis of the PRF construction

from [EHK+13a] is the function FMDDH : S ×K ×X → K defined as

FMDDH(T, [h]1, x) :=

{
[h]1 if x = 0

[T · h]1 if x = 1
(3.10)

By applying the augmented cascade of Boneh et al . [BMR10] (Figure 3.1) to FMDDH,

Escala et al . [EHK+13a] obtain their PRF FmMDDH with key space (Z(d×d)
q)m × Gd

1 and
domain {0, 1}m:

FmMDDH : (Z(d×d)
q)m ×Gd

1 × {0, 1}m → G1

FmMDDH(S, [h]1, x) :=

[(∏
i:xi=1

Ti

)
· h

]
1

(3.11)

where S := (T1, ...,Tm). The following theorem was proven in [EHK+13b, EHK+13a].

Theorem 3.5 ([EHK+13a, Theorem 12]). From each adversary A that (tA, εA, Q)-
breaks the security of FmMDDH with input space {0, 1}m we can construct an adversary
Bthat (tB, εB)-breaks the D`,d-MDDH assumption in G1 with

tB = Θ(tA) and εB ≥
εA
dm

Note that d is a constant, so that the security loss is linear in the size m of the input
space.

26

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Our construction. By additionally encoding the input with an APUHF as described in
(3.4), we finally obtain the function F

Hn,m

MDDH : Sm ×K ×Hn,m × {0, 1}n → K as

F
Hn,m

MDDH(S, [h]1, h, x) = FmMDDH(S, [h]1, h(x)) =

 m∏
i:h(x)i=1

Ti

 · h

1

(3.12)

In order to apply Theorem 3.4 to show that this particular instance of the augmented
cascade with encoded input is a secure PRF with key space Sm×K×Hn,m and domain
{0, 1}n, we merely have to prove that function FMDDH is perfectly one-time secure.

Lemma 3.8. Function FMDDH from (3.10) is perfectly one-time secure.

Proof. We have to show that

Pr
[h]1←Gd

1

[
FMDDH(T, [h]1, x) = [h′]1

]
=

1

|G1|d
.

for all (T, x, [h′]1) ∈ S × {0, 1} ×Gd
1.

If x = 0 then FMDDH(T, [h]1, 0) = [h]1, which is a random vector in Gd
1 by definition. If

x = 1 then FMDDH(T, [h]1, 1) = [Th]1, which is again a random vector, due to the fact
that T is a full-rank matrix.

By combining Theorem 3.4 with Theorem 3.5 we now obtain the following result, which
shows that setting m = ω(log λ) is sufficient to achieve tight security.

Theorem 3.6. Let m = ω(log λ) be (slightly) super-logarithmic and Hn,m be a family
of all-prefix almost universal hash functions. From each adversary A that (tA, εA, Q)-

breaks the security of F
Hn,m

MDDH with Q/εA = poly(λ) for some polynomial poly we can
construct an adversary B′ that (t′B, ε

′
B)-breaks the D`,d-MDDH assumption in G1 with

t′B = Θ(tA) and ε′B ≥
εA
2dj

where j = O(log λ).

Proof. Theorem 3.4 shows that from each adversaryA that (tA, εA, q)-breaks the pseudo-

randomness of F
Hn,m

MDDH with Q/εA = poly(λ) for some polynomial poly, we can construct

an adversary B that (tB, εB, Q)-breaks the pseudorandomness of the function F jMDDH

with input space {0, 1}j , where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

Theorem 3.5 in turn shows that from each adversary Bthat (tB, εB, Q)-breaks the secu-
rity of F jMDDH we can construct an adversary B’ that (t′B, ε

′
B)-breaks the D`,d-MDDH

assumption in G1 with

t′B = Θ(tB) and ε′B ≥
εB
dj
≥ εA

2dj

which yields the claim.

27

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Comparison to the DDH-based PRF of [NR97]. One particularly interesting instantia-
tion of FmMDDH is based on the L1-MDDH assumption, which is an improvement over the
famous Naor-Reingold construction based on the DDH (namely, L1-MDDH) assump-
tion from [NR97]. In FmMDDH, we sample Ai from D`,d and then compute the aggregated
transformation matrices Ti. For the L1 distribution, we can equivalently pick random
elements Ti from Zq.

Let G1 be a group of prime order q, S := Zq, K := G1, X := {0, 1}n andm = ω(log λ)
as above. Then we choose T1, ..., Tm, a← Zq and obtain a PRF with domain {0, 1}n as

F
Hn,m

DDH (S, [a]1, h, x) =

 m∏
i:h(x)i=1

Ti

 · a

1

.

Note that the resulting PRF is identical to the original Naor-Reingold function [NR97],
except that an APUHF h is applied to the input x before it is processed in the Naor-
Reingold construction. For the original construction from [NR97] both the size of the
secret key and the tightness loss of the security proof (based on the DDH assumption in
G1) are linear in the bit-length of the function input. We show that merely by encoding
the input with an APUHF one can obtain shorter secret keys of size m = ω(log λ) and
with security loss O(log λ) (based on the same assumption as [NR97]), even for input
size n� m.

Comparison to the Matrix-DDH PRF of [DS15]. Döttling and Schröder [DS15] also
described a variant of the Matrix-DDH-based PRF of [EHK+13b]. Their PRF is the
function

FDS15
MDDH(S, [h]1, x) :=

 m∏
j=1

(Ti + x2j · I)

 · h

1

(3.13)

where S, [h], and m are as in our construction, and x ∈ Zq. Thus, in comparison, our
construction from (3.12) uses the same value of m, but is somewhat simpler that (3.13)
and also slightly more efficient to evaluate. In particular, the computation of the terms
of the form (x2j · I) is replaced with a single evaluation of the APUHF h. Another
difference is that the domain of their function is restricted to x ∈ Zq, while in our case
x ∈ {0, 1}n can be any bit string of polynomially-bounded length n = n(λ).

3.5.2 More Efficient LWE-based PRFs

We recall the learning with error (LWE) assumption. Then we apply our results to the
LWE-based PRF from Banerjee, Peikert and Rosen [BPR12].

Definition 3.12. Learning With Errors assumption, LWE Let p be a modulus, N
be a positive integer, and χα := DZp,α be a Gaussian distribution with noise parameter
α. Let h ← ZNp be a random vector. We say that adversary A (tA, εA)-breaks the
LWEp,N,α assumption if it runs in time tA and

|Pr[A(h,h>s + e) = 1]− Pr[A(h, u) = 1]| ≥ εA,

28

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

where h← ZNp , s← ZNp , e← χα and u← Zp.
Let b·e be the rounding function, which rounds a real number to the largest integer

which does not exceed it. Let p ≥ q. For an element h ∈ Zp, we define the rounding
function b·eq : Zp → Zq as bheq := b(q/p)he, and for a vector h ∈ ZNp , the rounding
function bheq is defined component-wise.

The PRF construction of [BPR12] and its security. Let S := χN×Nα and K := ZNp ,
and X := {0, 1}. We assume that S ∈ S has full rank. The basis of the PRF of [BPR12]
is the function FLWE : S ×K ×X → K,

FLWE(S,h, x) :=

{
h if x = 0

S · h if x = 1
(3.14)

We apply a slightly different augmented cascade transformation in Figure 3.1 to

obtain the PRF of [BPR12] with key space (χ
(N×N)
α)m × ZNp and domain {0, 1}m:

FmLWE : (χ(N×N)
α)m × ZNp × {0, 1}m → Zq

FmLWE(S,h, x) :=

⌊(
m∏

i:xi=1

Si

)
· h

⌉
q

(3.15)

where S := (S1, ...,Sm) and h ← ZNp . Different to Figure 3.1, we apply the rounding
function on the output of Figure 3.1.

Theorem 3.7 ([BPR12, Theorem 5.2]). Let χα = DZ,α be a Gaussian distribution with
parameter α > 0, let m be a positive integer that denotes the length of message inputs.
Define B := m(Cα

√
N)m for a suitable universal constant C. Let p, q be two moduli

such that p > q ·B ·Nω(1).
From each adversary A that (tA, εA, Q)-breaks the security of FmLWE with input

space {0, 1}m (for an arbitrary positive integer m) we can construct an adversary Bthat
(tB, εB)-breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥
εA

m ·N

Note that B is an important parameter, since it determines the size of the LWE
modulus p and contains the expensive term Nm/2, which is exponential in m. Thus, a
smaller m can give us a smaller p, which in turn yields a weaker LWE assumption and
a much more efficient PRF. In the following, we apply our results to FmLWE to reduce m
from polynomial to logarithmic in security parameter λ.

Our construction. By additionally encoding the input with an APUHF as described in

(3.4), we finally obtain F
Hn,m

LWE : (χ
(N×N)
α)m × ZNp ×Hn,m × {0, 1}m → ZNq as

FmLWE(S,h, h(x)) :=

 m∏
i:h(x)i=1

Si

 · h

q

(3.16)

29

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

In order to apply Theorem 3.4 to show that this particular instance of the augmented
cascade with encoded input is a secure PRF with key space Sm×K×Hn,m and domain
{0, 1}n, we have to prove that function FLWE is perfectly one-time secure.

Lemma 3.9. Function FLWE from (3.14) is perfectly one-time secure.

Proof. We have to show that

Pr
h←Zp

[
FLWE(S,h, x) = h′

]
=

1

pN
.

for all (S, x,h′) ∈ S × {0, 1} × ZNp .

If x = 0 then FLWE(S,h, 0) = h, which is a random vector in ZNp by definition. If
x = 1 then FLWE(S,h, 1) = S · h, which is again a random vector, due to the fact that
S is a full-rank matrix.

We recall the following useful notations and corollary for the proof of Theorem 3.8
given below. We define an error sampling function E : {0, 1}j → ZN and for x ∈ {0, 1}j

and j ∈= 1, . . . ,m we define the randomized version of F jLWE as F̃ jLWE(x) =
(∏j

i:xi=1 Si

)
·

h + E(x). The proof of Theorem 5.2 and Lemma 5.5 in [BPR12] show that F̃ jLWE is
pseudorandom based on the decisional LWE assumption and it holds that FmLWE(x) =⌊(∏m

i>j∧xi=1 Si

)
· F̃ jLWE(x)

⌉
q
, except with negligible probability. We summarize this in

the following corollary.

Corollary 3.1. Let all the parameters be defined as in Theorem 3.7. There exists an
efficiently randomized error sampling function E : {0, 1}j → ZN , such that, from each

adversary A that (tA, εA, Q)-breaks the security of F̃ jLWE(x) =
(∏j

i:xi=1 Si

)
· h + E(x)

with input x ∈ {0, 1}j (for j ∈ {1, . . . ,m}) we can construct an adversary Bthat (tB, εB)-
breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥
εA

m ·N
.

Moreover, except with probability 2−Ω(N), we have

FmLWE(x) =

 m∏
i>j∧xi=1

Si

 · F̃ jLWE(x)

q

.

Theorem 3.8. Let m = ω(log λ) be (slightly) super-logarithmic and Hn,m be a family
of all-prefix almost universal hash functions. Let χα = DZ,α be a Gaussian distribution
with parameter α > 0, let m be a positive integer denotes the length of message inputs.
Define B := m(Cα

√
N)m for a suitable universal constant C. Let p, q be two moduli

such that p > q ·B ·Nω(1).
From each adversary A that (tA, εA, Q)-breaks the security of F

Hn,m

LWE with Q/εA =
poly(λ) for some polynomial poly we can construct an adversary B′ that (t′B, ε

′
B)-breaks

30

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

the LWEp,N,α assumption with

t′B = Θ(tA) and ε′B ≥
εA

2j ·N
− 2−Ω(N)

where j = O(log λ).

Proof. The proof is the same as the one for Theorem 3.4. The only difference is between
Games 1 and 2. Here we do one intermediate game transition Game 1’: We simulate

O1(x) by returning FmLWE(x) =
⌊(∏m

i>j∧xi=1 Si

)
· F̃ jLWE(x)

⌉
q

and O0 by returning a

random vector in ZNq .
By the second statement of Corollary 3.1, the difference between Games 1 and 1’ is

bounded by the statistical difference 2−Ω(N). Moreover, the difference between Games
1’ and 2 is bounded by the security of F̃ jLWE. By the first statement of Corollary 3.1 we
can conclude the proof.

Comparison to the LWE PRF of [DS15]. Döttling and Schröder [DS15] describe a
different variant of the BPR PRF. Their approach is to instantiate their Construction 1
with the BPR PRF and then obtain the following function

FDS15
LWE (K,h, x) =

L⊕
i=1

λ⊕
j=1

F 2i

LWE(S,h,Bin(j)||H2i,j(x))

where L = ω(log λ), for each j = 1, . . . , λ the function H2i,j : {0, 1}n → {0, 1}i+1 is
chosen from a suitable universal hash function family with range {0, 1}i+1, and S is
chosen the same as ours.

Compared with FDS15
LWE , our variant has shorter secret keys: instead of having L · λ

many hash functions, we only have a single one. In terms of computation efficiency,
instead of running Hi and F iLWE for L ·λ times, we only run the hash function and FmLWE

once.

3.5.3 Further Examples of Matrix Distributions

Let us recall some further examples for matrix distributions from [EHK+13b, EHK+13a]
for completeness and self-containedness.

L2 : A =
(
a1 0
0 a2
1 1

)
, C2 : A =

(
a1 0
1 a2
0 1

)
, IL2 : A =

(
a1 0
0 a1+1
1 1

)
,

SC2 : A =
(
a1 0
1 a1
0 1

)
, U2 : A =

(
a1 a2
a3 a4
a5 a6

)
,

where a1, . . . , a6 ← Zq. The corresponding transformation matrices are as follow,

L2 : T = (
1

a1
,

1

a2
), C2 : T = (± 1

a1a2
,∓ 1

a2
), IL2 : T = (

1

a1
,

1

a1 + 1
)

SC2 : T = (± 1

a2
1

,∓ 1

a1
), U2 : T = (

a4a5 − a3a6

a1a4 − a2a3
,
a1a6 − a2a5

a1a4 − a2a3
).

31

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

The advantage of SCd and ILd is that they can be represented by one group element
and have the same security guarantee as the d-Linear assumption.

3.6 Discussions

On the necessity of the “all-prefix” property. A natural question that arises is whether
the “all-prefix” property is really necessary, or whether it is sufficient to use a standard
universal hash function with fixed output space {0, 1}j instead. However, it turns out
that it is indeed necessary. To see this, recall that j depends on the particular values
of Q and εA of a particular given adversary, via the definition j =

⌈
log(2Q2/εA)

⌉
in

(3.5). One may wonder why we set j so precisely, depending on the given adversary,
rather than simply choosing j sufficiently large such that it would work for any efficient
adversary. The purpose of this precise choice is to balance between two properties that
we need to obtain tight security:

1. On the one hand, we need j to be sufficiently large, such that the probability of a
collision of (the j-bit prefix of) the universal hash function is sufficiently unlikely.

2. On the other hand, we have to keep j short enough, in order to get a tight reduction.

This is why the value j depends on the given adversary, specifically on the particular
values of Q and εA. We stress that this particular choice of j is only required in the
security proof, but not in the PRF construction itself. That is, we do not simply fix
j to be the largest value of j such that the collision probability is sufficiently small for
any adversary, because then for certain adversaries j, could be “too large” such that the
reduction would not be tight. Similarly, if we used a standard universal hash function
with output length j, j would also fixed to some specific value in the construction of the
PRF, and thus would again make the PRF construction only tightly secure for certain
adversaries that match this particular choice of j, but not necessarily for all efficient
adversaries.

For example, using a standard UHF with m = ω(log λ) suffices to bound the collision
probaility, but this yields only super-logarithmic tightness, and thus would be worse
than in the construction of Döttling and Schröder [DS15], while we achieve logarithmic
tightness with an APUHF.

Hence, the important new feature that all-prefix universality provides is that it
guarantees that a suitable choice of j exists for any efficient adversary. This makes the
construction independent of a particular class of adversaries that match a certain fixed
value of j, while at the same time it ensures that the security proof depends tightly on the
particularly given adversary. Hence, using an APUHF instead of a standard universal
hash function is not just sufficient, but also necessary in order to capture all efficient
adversaries and to keep the security proof tight.

We note that Döttling and Schröder [DS15] also use multiple instances of the un-
derlying pseudorandom function, with increasing security, in order to achieve tightness.
Essentially, we replace these multiple instances with a single instance, in combination
with an all-prefix universal hash function. From an abstract high-level perspective, in
our approach each prefix implicitly corresponds to one PRF instance of [DS15]. This
makes our construction significantly more efficient.

32

3 Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions

Conclusion. We have introduced all-prefix (almost-)universal hash functions (APUHFs)
as a tool to generically improve the augmented cascade construction of pseudorandom
functions by Boneh, Montgomery, and Raghunathan [BMR10]. By generically applying
an APUHF to the function input before processing it in the augmented cascade, we are
able to reduce both the key size and the tightness of the security proof by one order of
magnitude. We gave simple and very efficient constructions of such function families,
based on the almost-universal hash function family of Dietzfelbinger et al . [DHKP97],
which can be evaluated by essentially a single modular multiplication, and generically
on pairwise-independent hash functions.

For the instantiation based on Matrix-DDH assumptions of [EHK+13b], which in-
cludes the classical constructions of Naor-Reingold [NR97] and the Lewko-Waters [LW09]
as special cases, this yields asymptotically short keys consisting of only ω(log λ) elements
and tight security with loss only O(log λ). These parameters are similar to the respec-
tive constructions of Döttling and Schröder [DS15], but our instantiation is conceptually
much simpler and slightly more efficient.

For the LWE-based instantiation based on Banerjee, Peikert and Rosen [BPR12]
(BPR), we are able to reduce the required size of the LWE modulus p from exponential to
super-polynomial in the security parameter, which significantly improves efficiency and
allows to prove security under a weaker LWE assumption. Again, the latter is similar
to a result from [DS15], but we replace their relatively expensive generic construction,
which requires to run λ ·ω(log λ) instances of the BPR function in parallel, with a single
instance plus an all-prefix almost-universal hash function.

We believe that APUHFs may have many further applications in cryptography be-
yond pseudorandom functions. This may include, for example, constructions of more
efficient cryptosystems with tight provable security, such as digital signatures or public-
key encryption schemes. In particular constructions using arguments similar to pseudo-
random functions based on the augmented cascade, such as [CW13, GHKW16], seem to
be promising targets.

33

CHAPTER 4

Efficient Forward-Secure Threshold Signature and

Public-Key Encryption Schemes

The purpose of forward-secure threshold schemes is to mitigate the damage of secret
key exposure. We construct a forward-secure threshold signature scheme and a forward-
secure threshold encryption scheme. Both of them are based on bilinear pairings with
groups of prime order. Compared to existing schemes, our schemes are much more effi-
cient since they have a non-interactive key update procedure and also a non-interactive
signing procedure and decryption procedure, respectively. Additionally, our schemes do
not require a trusted dealer and have optimal resilience as well as small signatures and
small ciphertexts, respectively. We prove our signature scheme EUF-CMA forward se-
cure and our encryption scheme CCA forward secure, both against adaptive adversaries.
Moreover, both schemes are robust against malicious adversaries. Our schemes are the
first which achieve all of these and that can also be implemented on standardized elliptic
curves.
The results in this chapter are my own work and are based on [Kur20a, Kur20b]. The
articles are going to appear at ACISP 2020 and IWSEC 2020, respectively.

4.1 Introduction

Forward-secure threshold schemes. In a standard digital signature or public-key en-
cryption scheme, exposure of the secret key results in the adversary being able to sign or
decrypt arbitrary messages and all hope of security is lost. There are different approaches
to mitigate the damage due to an adversary that gains access to stored keys. Two of
these approaches are forward-secure schemes and threshold schemes. Forward-secure
schemes allow to evolve the secret key in regular time periods, while the public key re-
mains fixed. Thus, every adversary with an outdated secret key cannot forge signatures
or decrypt ciphers for time periods in the past. In an (n, k)-threshold scheme the secret
key is distributed among n shares and it requires the presence of at least k+1 key shares
to restore the secret key, whereas any subset of k key shares is insufficient. Due to the
fact that forward security and thresholds improve security guarantees against secret key
exposure in a different manner, their combination to forward-secure thresholds(FST) can
even reinforce these guarantees. Given a forward-secure threshold signature scheme, an
adversary that aims at forging a signature for time period t has not only to compromise
k + 1 of the stored keys to gain sufficient key material but it also has to gain all of this
key material until time period t expires. Depending on the scheme, the adversary has

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

to gain all of this key material even in one specific time period. Since the capacities of
an adversary can be assumed to be restricted, this combination provides additional se-
curity. The same holds for forward-secure encryption schemes where an adversary needs
to compromise k + 1 of the stored keys until time period t expires in order to decrypt
a cipher for time period t. Beyond the generic protection against key exposure there
are further use cases of forward-secure threshold schemes. In general, every use case of
thresholds applies also to forward-secure thresholds as the time component adds only
security, and vice versa. However, one can also imagine systems where both properties
are required. For instance, imagine a company A which is going to sell one of its divisions
to company B if at least k out of n managers agree on the sale. If a competing company
C also wants to buy this division from A, it might try to forge a signed contract which
says that A sells to C. However, such a contract would only be valid if A was still in
possession of this division, that is if the time period of the forgery was prior to the time
period of signing the original contract.

Difficulties of constructing forward-secure threshold schemes. Unfortunately, the
added benefits of combining forward-secure and threshold schemes invoke some tech-
nical challenges. These challenges occur especially in regard to efficiency.

Necessity of a trusted dealer. There is a potential risk in relying on trusted dealers to
distribute the secret key shares among all parties such that they should be avoided.

Necessity of secret point-to-point connections. Due to the design of the protocol, se-
cret point-to-point connections might be required for key generation, key update
or even signing(decrypting). Since these connections are expensive and might be
prone to attacks they should be avoided.

Communication rounds. The efficiency of a scheme is crucially determined by the num-
ber of communication rounds. Whereas the key generation happens only once
and is not a major issue, the costs for signing(decrypting) and especially key up-
date play a much bigger role. In signing(decrypting), the optimum would be that
valid signature(decryption) shares can be computed non-interactively. That is, a
signature(decryption) is requested and the signature(decryption) shares are sent
back without further interaction among the parties. Thus, there is only one com-
munication round and no overhead. In literature, such schemes are also called
non-interactive threshold schemes [LJY16, LY13a, Sho00].1 For key update, it
is desirable to have no communication at all, i.e. a non-interactive procedure.
Besides efficiency, the reason is that some key storage hosts might be offline or
temporary unavailable. In the case of interactive key update this unavailability
could block the update procedure entirely or exclude the unavailable parties from
further signing procedures because of outdated key material.

Sizes of keys, signatures, and ciphertexts As for ordinary digital signature (PKE) schemes,
the challenge to construct a scheme with small signatures(ciphertexts) and small

1The term “non-interactive” stems from the fact that users are able to deliver valid signature shares
without interacting with each other. The communication round we count here is still there.

35

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

keys also arises and seems to be even harder. To illustrate the difficulties it suffices
to take a look at näıve solutions: in terms of forward security, a näıve solution
would be to generate and define a pair of public and secret key for each time
period and then to delete the secret keys successively. Though in practice, this
would yield huge parameters. For signature schemes, a näıve solution to create
a (n, k)-threshold signature scheme would be to define a signature as valid if and
only if at least k + 1 out of n parties sign a message with a single user scheme.
However, this would not only increase the total signature size but also leak which
parties signed and which refused to do so. Consequently, both of these solutions,
especially the combination of them, are highly undesirable. For this reason, more
effort is required to construct a satisfactory solution.

Our contribution. We present a highly efficient forward-secure threshold signature
scheme and a highly efficient forward-secure threshold encryption scheme. Both of
our schemes are based on bilinear pairings, which can be implemented on standard-
ized pairing-friendly curves with groups of prime order. More precisely, the schemes
require no trusted dealer. Secret channels are only required during the key generation,
i.e. there are no secret channels for signing (decrypting) and key updating required. They
provide a non-interactive key update and signing(decryption) procedure. In addition, the
schemes provide short signatures and ciphertexts of constant size. The schemes have
optimal resilience, i.e., they can tolerate (n− 1)/2 compromised parties and are proven
secure against adaptive and robust against malicious adversaries. We give a precise de-
scription of the adversary types in Section 4.2.1 and a precise comparison with previous
work in Fig. 4.1 for the signature scheme and in Fig. 4.2 for the encryption scheme.
Furthermore, it is possible to add pro-active security to our scheme. This enables se-
curity against mobile adversaries, i.e. against adversaries which can switch between the
parties they corrupt. We discuss this concept and our techniques in Section 4.7.

Technical approach. At first glance, it might seem that it suffices to combine a key
distribution protocol with an arbitrary forward-secure signature scheme and decryption
scheme, respectively. However, this approach might result in an inefficient FST scheme,
where the number of communication rounds in signing(decrypting) would be higher than
in the secret extraction from the distribution protocol. Also, the key update procedure
could be interactive, instead of non-interactive. Furthermore, it might be even impossible
to simulate the security experiment in the security proof. In this case the security of the
scheme could not be guaranteed.

Since similar arguments hold for our encryption scheme we focus here only on the
signature scheme. We show a simply modified version of the distributed key generation
(DKG) protocol by Gennaro et al. [GJKR07] which allows to transform the forward-
secure single user signature scheme by Drijvers and Neven [DN19] into a highly efficient
forward-secure threshold signature scheme. Basically, the reason for the efficiency of our
FST scheme is that the scheme by Drijvers and Neven can be viewed as an aggregatable
or key-homomorphic signature scheme. That is, if (σ1, σ2) is a valid signature under
public key pk and (σ′1, σ

′
2) is a valid signature under public key pk′, then (σ1σ

′
1, σ2σ

′
2)

is a valid signature under public key pk · pk′. Additionally, the public and initial secret
key are elements in different groups from a bilinear pairing: gx2 and hx. These facts
enable distribution of the initial secret hx into n shares hxi , i ∈ [n], which can be used to

36

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

reconstruct hx via Lagrange interpolation (in the exponent). Subsequently, the partial
signatures can be aggregated non-interactively into a signature for public key gx2 .

More precisely, the single user scheme by Drijvers and Neven is defined over a bilinear
pairing e : G1 × G2 → GT . The public key is defined as gx2 ∈ G2, where x ← Zq. The
initial secret key is hx ∈ G1 and is frequently updated in a binary tree-based fashion like
in the forward-secure encryption scheme from HIBE due to Canetti et al. [CHK03a].2

In order to sign a message m at time period t, we extract a secret key with the following
structure:

(gr2, h
x · F (t)r, gr1) ∈ G2 ×G1 ×G1,

where r ← Zq is picked uniformly at random and F is a function depending on the time
t. Then, the signature can be computed as

(hx · F (t)r+r
′ · g(r+r′)·m

1 , gr+r
′

2) = (hx · F̃ (t,m)r+r
′
, gr+r

′

2) =: (σ1, σ2) ∈ G1 ×G2,

where r′ ← Zq is picked uniformly at random and F̃ (t,m) := F (t) · gm1 . For verification
it is checked if the following equality holds:

e(σ1, g2) = e(h, gx2) · e(F̃ (t,m), σ2).

In order to perform key distribution, we make use of the modified DKG protocol. In
the original protocol all parties get a share xi ∈ Zq of the secret x ∈ Zq. However, in
order to guarantee forward security, we have to define the initial secret as hx ∈ G1 and
for all i ∈ [n] the initial secret shares as hxi ∈ G1 instead of x and xi, respectively. The
initial secret shares are adapted in the binary tree-bases fashion and all values hxi and
xi have to be erased. We discuss the security of this modified version in Section 4.2.3.

For threshold k and a set V of at least k + 1 parties, the signature can then be
computed as

(σ1, σ2) =

(∏
i∈V

σLi
1,i ,

∏
i∈V

σLi
2,i

)
=

(∏
i∈V

hxi·Li · F (t,m)Ri·Li ,
∏
i∈V

gRi·Li
2

)
=
(
hx · F (t,m)R , gR2

)
,

where the Li are interpolation coefficients and R =
∑

i∈V Ri · Li. Indeed, this is a valid
signature for public key gx2 , which is dropped automatically by the DKG protocol.

It is worth mentioning the fact that during key update the initial secret key is not
randomized in the exponent but in the “main” group G1, i.e. hx ·R̃, where R̃ is a random
value. This way of randomization enables a non-interactive key update since otherwise
all parties had to secretly share the random exponent r ∈ Zq in order to be able to
interpolate their partial signatures. Additionally, the multiplication of two secrets in
the exponent, x · r, could require 2k + 1 instead of k + 1 parties for reconstruction.
For instance this is the case for polynomial sharing schemes like Shamir’s secret sharing
scheme. In terms of signing, it is easy to see that this forward-secure threshold scheme
is non-interactive: getting a signing request for a message m, all parties Pi, i = 1, . . . , n

2Here we describe only a simplified view. For more details see [CHK03a].

37

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

can either just broadcast their signature share (σ1,i, σ2,i) or deny signing. Then, the
signature can be easily computed via Lagrange interpolation. The robustness against
malicious behavior stems from the fact that the DKG protocol not only drops the
common public key gx2 ∈ G2 but also the individual public keys gxi2 ∈ G2. Thus, it is
possible to check every individual signature share for validity:

e(σ1,i, g2) = e(h, gxi2) · e(F (t,m), σ2,i)

⇔ e(hxi · F (t,m)Ri , g2) = e(h, gxi2) · e(F (t,m), gRi
2).

Related work. The first works on threshold signature schemes are due to Boyd [BOY86]
and Desmedt and Frankel [DF90]. In [LY13a], Libert and Yung construct a non-
interactive threshold-signature scheme based on bilinear pairings with groups of com-
posite order, which is secure against adaptive and robust against malicious adversaries.3

Further, they suggest how a FST signature scheme with these properties could be built
in composite order groups. However, when compared to groups of prime order groups
of composite order must be very large in order to guarantee security. Large groups
result in very expensive computation and much larger keys as well as signaturues and
ciphertexts,respectvely. In [LJY16], Libert et al. construct a non-interactive threshold-
signature scheme, which is secure against adaptive and robust against malicious adver-
saries and which requires only groups of prime order. The first forward-secure signature
scheme is presented by Bellare and Miner [BM99] and later improved by Abdalla and
Reyzin [AR00]. Krawczyk [Kra00] presents a general framework to make a signature
scheme forward secure. However, the extension to FST signature schemes is restricted
to eavesdropping adversaries and lacks efficiency. Drijvers and Neven [DN19] propose a
forward-secure single user signature scheme and a forward-secure multi user signature
scheme in the random oracle model [BR93b]. These schemes are based on bilinear pair-
ings with groups of prime order. The first FST signature schemes are due to Abdalla
et al. [AMN01] and Tzeng and Tzeng [TT01]. The latter is broken by Wang et al.
[WQFX06]. In [LCT03], Liu et al. propose a forward-secure threshold scheme based
on the standard single user signature scheme by Guillou and Quisquater [GQ90]. Un-
fortunately, Liu et al. do not provide a security proof for their scheme. Chow et al.
[CGHY08] present a FST scheme based on the forward-secure scheme by Abdalla and
Reyzin [AR00]. Yu and Kong [YK07] propose a FST signature scheme based on bilinear
pairings with prime order groups. In Figure 4.1, we compare the existing FST signature
schemes with our scheme in more detail. We only analyze the second scheme from Ab-
dalla et al. since the first one requires all parties to be available for signing. The scheme
by Liu et al. is omitted since it cannot be properly specified without a security proof.
The scheme by Tzeng and Tzeng was broken and is omitted aswell.
For PKE, the combination of forward-secure and threshold mechanisms to a forward-
secure threshold PKE (FST-PKE) was proposed by Libert and Yung [LY13b]. Their
proposed scheme is CCA forward-secure against adaptive adversaries and robust against
malicious adversaries. One drawback is that their scheme requires bilinear pairings with

3Adaptive adversaries can corrupt parties at any time. Static adversaries need to corrupt the parties
before the protocol execution begins. Malicious adversaries can influence the output behavior of the
corrupted parties. Eavesdropping can only read internal data. For a proper overview see Section
4.2.1.

38

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

[AMN01] [CGHY08] [YK07] ours

Type RSA RSA pairing pairing
Trusted dealer yes yes yes no
Adversary type mobile halting adaptive malic. static malic. adaptive malic.

Key update interactive non-int. interactive non-int.
Compromised

parties tolerated
(n− 1)/3 (n− 1)/2 (n− 1)/2 (n− 1)/2

Uncompr. parties
for signing

2k + 1 k + 1 k + 1 k + 1

Communication
rounds in signing

2L 2 4 +1 private 1

Number of
signature elements

3 3 3 3

Figure 4.1: L denotes the security parameter, n the number of parties, k the threshold.
The adversary types are described in Section 4.2.1. Malic. and non-int.
abbreviate malicious and non-interactive, respectively. One communication
round is defined as sending one message and getting one message back. If
not specified, the communication rounds are broadcasts. The number of
signature elements also includes one element for the time as it is needed for
verification.

groups of composite order and a trusted dealer. The only FST-PKE based on pairings
with groups of prime order is due to Zhang et al.[ZXZ13]. It is proven CCA forward
secure against static and robust against malicious adversaries in the Random Oracle
Model and requires a trusted dealer as well. In Figure 4.2. we compare these existing
FST-PKE schemes with our scheme in more detail.

4.2 Thresholds and Key Distribution

In this section, we introduce the common typification of adversaries in threshold settings.
This typification is crucial to derive concrete security guarantees from the security proof.
Additionally, we introduce the required communication model for the key distribution
protocol we use in our FST schemes and the key distribution protocol itself.

4.2.1 Adversary Types in the Threshold Setting.

We rephrase the adversary typification from [AMN01]. We assume a network of n
parties with a threshold k < n. The typification is arranged into two categories. The
first category describes in which manner an adversary has to pick which parties it wants
to compromise. We distinguish between the following manners:

• static: The adversary has to pick k of the parties it wants to compromise before
the first execution of a protocol. The remaining parties can be compromised at
any time after this execution.

39

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

[LY13b] [ZXZ13] ours

Group order composite prime prime
Trusted dealer yes yes no
Adversary type adaptive malic. static malic. adaptive malic.
Key update and

decryption
non-int. non-int. non-int.

Compromised
parties tolerated

(n− 1)/2 (n− 1)/2 (n− 1)/2

Uncompr. parties
for decryption

k + 1 k + 1 k + 1

|pk| log T T log T
|sk| log2 T T log2 T

Figure 4.2: n denotes the number of parties, k the threshold. The adversary types are
described in Section 4.2.1. Malic. and non-int. abbreviate malicious and
non-interactive, respectively. Note that [ZXZ13] requires the public key for
updating the secret key, which leads to secret keys of size T as well.

• adaptive: The adversary can pick which party it wants to compromise at any time
during the execution of a protocol. Especially the adversary can decide which
party it wants to compromise next based on information it gained so far.

• mobile: As adaptive but it can also switch from compromising one party to another
one as long as it does not exceed the threshold during a time period. Whenever it
compromises a party during a potential key update protocol this party is counted
as compromised during both time periods: before and after the update.

The second category describes the power an adversary might have over a compromised
party. We distinguish between the following adversaries:

• eavesdropping : The adversary learns all the secret information of a party but
cannot change its behavior.

• halting : As eavesdropping but it can also stop this party from participating in the
execution of protocols.

• malicious: As halting but it can also cause this party to divert from a protocol in
any possible fashion.

Additionally, every type of adversary can listen to all broadcast communications. Both
categories are arranged in order of increasing strength, i.e. the strongest adversary
is mobile malicious. We prove our scheme secure against adaptive and robust against
malicious adversaries. We explain in the discussions why mobile adversaries can generally
not be tolerated while having a non-interactive key update procedure.

40

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.2.2 Communication Model.

We assume the existence of a broadcast channel between all parties in our protocol. Ad-
ditionally, we assume the possibility to create private point-to-point connections between
all parties during key generation. We work in a synchronous model, i.e. all parties are
synchronized in time with a global clock. No trusted third party or dealer is required.

4.2.3 A Concrete Distributed Key Generation Protocol

Here, we introduce a modified variant of the distributed key generation (DKG) protocol
by Gennaro et al.[GJKR07], which will be a major building block of our FST schemes.
The basic idea behind the DKG protocol by Gennaro et al. [GJKR07] is to make use of
Shamir’s secret sharing scheme [Sha79] in the exponent of a cyclic group. In the original
DKG protocol a set of n parties generates a pair of secret and public key (x, gx) ∈ Zq×G,
where G is a multiplicative group of prime order q and generated by g. The public output
of the protocol provides not only the common public key gx, but also user public keys
gxi , where xi is the secret share of party Pi. This protocol does not require a trusted
dealer and is robust against malicious behavior. We will make small modifications to
the original DKG protocol to satisfy the requirements for forward security.

Shamir’s secret sharing. Our FST schemes make use of Shamir’s secret sharing tech-
nique [Sha79]. The idea behind Shamir’s approach is to use the fact that it takes at least
k+1 points to (re-)construct a polynomial of degree k, where k points are not sufficient.
An (n, k)-threshold is created as follows: The secret is defined as the constant term x
of a polynomial of degree k. The other coefficients ai, i = 1, . . . , k are chosen uniformly
at random. Let a(Z) = x+ a1Z + · · ·+ akZ

k. Then, for i = 1, . . . , n a share (i, a(i)) is
secretly given to party Pi. Afterwards, any set of at least k + 1 parties can reconstruct
the secret s by interpolating the polynomial a(0) which equals by definition x, whereas
any set of at most k parties cannot.

Modifications to the DKG protocol. We instantiate the protocol with the groups G1

and G2 from the bilinear pairing we will use in our FST schemes. Therefore, it provides
[x]2 ∈ G2, which serves as the public key in our FST schemes, as well as the values
[xi]2 ∈ G2 for all parties Pi, which serve to verify the signature and decryption shares,
respectively, and to provide robustness of the schemes. Furthermore, the secret is defined
as [hx]1 ∈ G1 for random h, x ∈ Zq instead of simply x ∈ Zq as in the original protocol.
The corresponding secret key shares are [hxi]1 ∈ G1 instead of xi ∈ Zq and in order to
fulfill the requirements of our FST schemes, they are adapted to a binary tree fashion.
The initial secret key share for party Pi is:

sk0,i := ([1]ri2 , [hxi]1[h0]ri1 , [h1]ri1 , . . . , [h`+1]ri1) ∈ G2 ×G`+2
1 ,

where ri ← Zq is picked uniformly at random and where each value [hX], X = 0, . . . , `+1
corresponds to one level of depth in a binary tree. The value [1]ri2 is required to verify
signatures. To guarantee forward security, it is crucial that the plain values [hxi]1 and
xi for i = 1, . . . , n are erased from every storage.

41

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Protocol DKG(n, k):
Generation of shared secret x:

1. a) Each party Pi chooses two random polynomials ai(Z) and bi(Z) over
Zq of degree k:

ai(Z) = ai0 + ai1Z + · · ·+ aikZ
kand

bi(Z) = bi0 + bi1Z + · · ·+ bikZ
k.

b) Pi computes and broadcasts Cis = [1]ais2 [h̃]bis2 ∈ G2 for s = 0, . . . , k.

c) Pi computes sij = ai(j) and s′ij = bi(j) mod q for j = 1, . . . , n and
sends sij , s

′
ij secretly to Pj .

d) For i = 1, . . . , n each party Pj checks whether or not

[sij]2[h̃]
s′ij
2 =

k∏
s=0

(Cis)
js . (4.1)

If there is an i ∈ [n] such that the check fails, Pj broadcasts a com-
plaint against Pi.

e) If a dealer Pi receives a complaint from Pj , he broadcasts the values
sij and s′ij satisfying Equation (4.1).

f) Each party disqualifies any player that either received more than
k complains or answered to a complaint with values that does not
satisfy Equation (4.1).

2. Each party defines the set QUAL, which indicates all non-disqualified
parties.

3. The shared secret is defined as [hx]1 = [h
∑

i∈QUAL ai0]1 ∈ G1. Each party

Pi computes [hxi]1 := [h]
∑

j∈QUAL sij
1 ∈ G1 and sets its initial share of this

secret as

sk0,i := ([1]ri2 , [hxi]1[h0]ri1 , [h1]ri1 , . . . , [h`+1]ri1) ∈ G2 ×G`+2
1 ,

where ri ← Zq is picked uniformly at random.
Extracting y := [x]2 ∈ G2:

4. a) Each party Pi, i ∈ QUAL computes and broadcasts the values Ais =
[ais]2 ∈ G2 for s = 0, . . . , k.

b) For each i ∈ QUAL, each party Pj checks whether or not

[sij]2 =
k∏
s=0

(Ais)
js . (4.2)

If there is an i ∈ QUAL such that the check fails, Pj complaints
about Pi by broadcasting sij and s′ij that satisfy Eq. (4.1) but not
Eq. (4.2).

c) For all parties Pi who received at least one valid complaint in this
phase, the other parties run a reconstruction of ai(Z) and Ais for
s = 0, . . . , k in the clear, using the values sij .

d) Each party computes the common public key as y =
∏
i∈QUALAi0 ∈

G2 and the user public keys pkj as [xj]2 =
∏
i∈QUAL

∏t
k=0(Aik)

jk for
all j ∈ [n]. Except of all public keys and the initial secret share all
parties erase all other values from their storage.

Figure 4.3: Our modified version of the DKG protocol due to Gennaro et al..

42

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.3 Forward-Secure Signature Schemes

In this section, we provide definitions of single user and threshold signature schemes
with forward security as well as their security definitions. Eventuallly, we present the
single user signature scheme with forward seucrity from [DN19], which is one building
block of our FST signature scheme. The following definitions of forward-secure digital
signatures and its security are due to Bellare and Miner [BM99].

Definition 4.1. Forward-secure digital signatures. A forward-secure digital sig-
nature scheme Σ for T time periods is defined as a quadruple of algorithms: Σ =
(KeyGen,KeyUpdate,Sign,Verify), where:

• KeyGen(1λ, T)→ (pk, sk0). On input the security parameter and the maximum
number of time periods T it outputs a public key pk and an initial secret key sk0.

• KeyUpdate(skt)→ skt+1. If the input is a secret key for a time period t < T , it
outputs a secret key for the next time period t+ 1 and deletes the input from its
storage. Else it outputs ⊥.

• Sign(t, skt,m) → σ. On input a time period t with the corresponding secret key
skt and a message m from the message space it outputs a signature σ together
with the time period t.

• Verify(pk, t,m, σ) → b, where b ∈ {0, 1}. If σ is a valid signature for m at time
period t and under public key pk, then Verify outputs 1, else 0.

The signing procedure is a protocol and contains of various steps: share-sign, share-
verify, and combine. For simplicity we defined the input only as a time period and
message and omit the key material held by all participating parties

Definition 4.2. Correctness. Let (pk, sk0) and skt be the output of KeyGen and
KeyUpdate(ski) for i = 0, . . . , t− 1, respectively. We call Σ correct if for all messages
m from the message space and all time periods t ∈ {0, . . . , T − 1} it holds that

Pr[Verify(pk, t,m,Sign(t, skt,m))] = 1.

The EUF-CMA security for forward-secure signatures is similar to the one for stan-
dard digital signatures. In the case of forward-secure signatures, we allow the adversary
not only to query signatures, but also to update the secret key to the next time period
and to obtain the secret key at a time period of its choice. The adversary has two ways
to win. First, by delivering a valid signature for a time period prior to the one of com-
promising the secret key. Second, by delivering a valid signature for an arbitrary time
period if it never compromised the secret key. In both cases, the adversary cannot win
by delivering a message and signature for a specific time period if it had queried a signa-
ture for this message during this time period. EUF-CMA security. The EUF-CMA
security experiment for a forward-secure signature scheme Σ is defined as follows: The
challenger defines an (initially) empty set S and runs the KeyGen(1λ, T) algorithm to
obtain a pair of public and initial secret key (pk, sk0). Then, it sends the public key pk
to the adversary A. The adversary has access to the following oracles:

43

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• KeyUpdate. For all time periods t < T − 1 it updates the current time period t
and the secret key skt to t+ 1 and skt+1, respectively.

• Signing(t,m). On input the current time period t and a message m it adds (t,m)
to the set S and runs Sign(t, skt,M). Then, it returns the resulting signature σ
to A.

• Break-In. The challenger records the break-in time t̃ ← t and sends the secret
key skt̃ to A. This oracle can only be queried once. Afterwards, KeyUpdate and
Sign cannot be queried anymore.

• Finalize(t∗,m∗, σ∗). If (t∗,m∗) ∈ S, then it returns 0. If t̃ is defined and t∗ > t̃,

then it returns 0. If t̃ is defined and t∗ < t̃, then it returns Verify(pk, t∗,m∗). If t̃
is not defined (i.e. Break-In was never queried), then it returns Verify(pk, t∗,m∗).
Afterwards, the game terminates.

Definition 4.3. EUF-CMA forward security. Let A be an adversary playing the
EUF-CMA security experiment for a forward-secure digital signature scheme Σ for T
time periods. It (tA, εA)-breaks the EUF-CMA forward security of Σ for T time periods,
if it runs in time tA and

Pr[Finalize(t∗,m∗, σ∗) = 1] > εA.

4.3.1 A Concrete Single User Scheme

Here, we present the forward-secure digital signature scheme Σ for T = 2` time periods
by Drijvers and Neven [DN19]. It is defined via the following common parameters and
algorithms:

• Common parameters. Let M be the message space and let H : M → {0, 1}κ
be a hash function mapping messages to bits strings of length κ such that 2κ < q.
The common parameters consist of PG, the description of a cryptographic Type-3
pairing group, the description of H, the maximum number of time periods T = 2`

as well as random group elements [1]1, [h]1, [h0]1, . . . , [h`+1]1 ← G1, and [1]2, [h̃]2 ←
G2, where h, h0, . . . , h`+1 ∈ Zq and where [1]1 and [1]2 are generators of G1 and
G2, respectively.

• KeyGen(1λ, T). Pick x ← Zq uniformly at random. Then, compute the public
key pk := [x]2 and the initial secret key

sk0 := ([1]r2, [hx]1[h0]r1, [h1]r1, . . . , [h`+1]r1) ∈ G2 ×G`+2
1 ,

where r ← Zq is picked uniformly at random. Delete x from the storage.

• KeyUpdate(skt). We assume the time periods 0, . . . , 2`−1 as being organized as
leaves of a binary tree of depth `, sorted in increasing order from left to right. That
is, 000 . . . 0 is the first and 111 . . . 1 is the last time period. Further, we interpret the
path from the root of the tree to a leaf node t as binary representation t = t1 . . . t`,
where we take the left branch for ti = 0 and the right one for ti = 1. We proceed

44

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

in the same way for internal nodes ω = ω1 . . . ωs, where s < `. Let r ← Zq be
picked uniformly at random. Then, we associate to each node ω a secret key:

(c, d, es+1, . . . , e`+1) =

(
[1]r2, [hx]1

(
[h0]1

s∏
v=1

[hv]
wv
1

)r
, [hs+1]r1, . . . , [h`+1]r1

)

=

(
[r]2, [hx+ h0r +

s∑
v=1

hvwvr]1, [hs+1r]1, . . . , [h`+1r]1

)
.

Given such a secret key, we produce a secret key for a descendant node ω′ =
ω1 . . . ωs′ , where s′ > s as

(c′, d′, e′s+1, . . . , e
′
`+1)

=

(
c[1]r

′
2 , d

s′∏
v=s+1

ewv
v

(
[h0]1

s′∏
v=1

[hv]
wv
1

)r′
, es′+1[hs′+1]r

′
1 , . . . , e`+1[h`+1]r

′
1

)

=

(
[r + r′]2, [hx+ h0r +

s∑
v=1

hvwvr]1[

s′∑
v=s+1

hvwvr]1[h0r
′ +

s′∑
v=1

hvwvr
′]1,

[hs′+1(r + r′)]1, . . . , [h`+1(r + r′)]1

)
=

(
[r + r′]2, [hx+ h0(r + r′) +

s′∑
v=1

hvwv(r + r′)]1,

[hs′+1(r + r′)]1, . . . , [h`+1(r + r′)]1

)
,

where r′ ← Zq is picked uniformly at random.
Let Ct be the smallest subset of nodes that contains for each time period t, . . . , T−1
an ancestor or the leaf itself, but no nodes of ancestors or leafs for time periods
0, . . . , t− 1. For time period t we define the secret key skt as the set of the secret
keys associated to all nodes in Ct. In order to update the secret key to time
period t+ 1 determine Ct+1 and compute the secret keys for all nodes in Ct+1 \Ct.
Afterwards, delete skt and all used re-randomization exponents r′. 4

• Sign(t, skt,m). Let M := H(m) ∈ {0, 1}κ be the hash value of message m ∈ M
and t1 . . . t` the bit representation of time period t. Derive the signing key skt =

4 Example: Let T = 23. Then t0 = 000, t1 = 100, t2 = 010,... . Given a substring xy, we can compute
xy0 and xy1. Hence, for time period t2 the set Ct2 consists of the node keys for 01 and 1. From 01 it
can compute the secret key for t2 = 010 and t3 = 011. From 1 it can compute the secret key for all
time periods greater t3: 100, 101, 110, 111. The keys for time periods t0 = 000 and t1 = 001 cannot
be computed from this set. If we update to time period t3, we need to compute 011 and erase the
node key for 01. Thus Ct3 consists of the key for 011 and the node key 1. Then, also the key for 010
cannot be computed anymore.

45

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

(c, d, e`+1) and pick r′ ← Zq. Then, compute and output

(σ1, σ2) :=

(
d · eM`+1

(
[h0]1

∏̀
v=1

[hv]
tv
1 [h`+1]M1

)r′
, c[1]r

′
2

)

=

(
[hx+ h0r +

∑̀
v=1

hvtvr]1[h`+1rM]1[h0r
′ +
∑̀
v=1

hvtvr
′ + h`+1Mr′]1

, [r + r′]2

)
=

(
[hx+ h0(r + r′) +

∑̀
v=1

hvtv(r + r′) + h`+1(r + r′)M]1, [r + r′]2

)
.

• Verify(pk, t,m, σ). On input σ = (σ1, σ2) ∈ G1 × G2 message m, public key pk
and time period t compute M = H(m) and output 1 if

e(σ1, [1]2) = e([h]1, pk) · e([h0]1
∏̀
v=1

[hv]
tv
1 [h`+1]M1 , σ2),

else output 0.

Remark 4.1. Note that we interpret the hashes as elements in Zq, which is possible
since the image of our hash function is of size 2κ < q. Henceforth, we will describe a
message only as M and implicitly assume this to be the hash of a real message m ∈M,
that is M := H(m).

This scheme was shown secure under a Type-3 pairing variant of the Bilinear Diffie-
Hellman Inversion Assumption q̄-BDHI∗ [BB04a, BBG05], where q̄ = `+1 and ` = log T :

Definition 4.4. q̄-BDHI∗3 Assumption.
Let PG = (G1,G2,GT , e, q) be the description of a cryptographic Type-3 pairing group
and let [1]1 and [1]2 be random generators of G1 and G2, respectively. Let A be an
adversary. We say that it (tA, εA)-breaks the q̄-BDHI∗3 assumption, if it runs in time tA
and

Pr[A(PG, [1]1, [α
1]1, [α

2]1, . . . , [α
q̄]1, [1]2) = e([1]1, [1]2)(αq̄+1)] ≥ εA,

where α← Zq.

Theorem 4.1 ([DN19, Theorem 1]). Let A be an adaptive adversary that (tA, εA)-
breaks the EUF-CMA forward security of Σ from [DN19] for T time periods. Given
A, we can build an adversary B that (tB, εB)-breaks the q̄-BDHI∗3 assumption, where
q̄ = `+ 1 such that

tB = O(tA) and εB ≥
1

T ·QH
εA − negl(λ),

where QH is the number of random-oracle queries and negl(λ) is negligible.

46

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.4 Hierarchical Identity-Based Encryption Schemes (HIBE)

In this section, we provide definitions of hierarchical identity-based encryption (HIBE)
schemes and their security. Eventuallly, we present the HIBE scheme from [BBG05],
which is one building block of our FST encryption scheme. The following definitions of
hierarchical identity-based encryption schemes and their security are reproduced from
[CHK03b].

Definition 4.5. Hierarchical identity-based encryption (HIBE). A hierarchical
identity-based encryption scheme (HIBE) ΠHIBE of depth ` is defined via the following
algorithms:

Setup(1λ, `) → (pk, sk0). On input the security parameter and the depth of the tree,
it returns a master public key mpk and a master secret key skε.

KeyDerive(id, skid′) → skid′ . On input an identity id and a secret key for identity
id′, which is a prefix of id, it outputs a secret key for identity id′.

Enc(id, pk,M) → C. On input an identity id, master public key mpk, and a message
M , it outputs a cipher text C.

Dec(id, skid, C)→M . On input an identity id, the corresponding secret key skid, and
a ciphertext C, it outputs a message M .

Definition 4.6. Correctness. Let (mpk, skε)←KeyGen and skid ←
KeyDerive(id, skid′) for id′ = ε or any id′, which is a prefix of id. We call ΠHIBE

correct if for all messages M and identities id it holds that

Pr[Dec(id, skid,Enc(id,mpk,M))] = 1.

IND-ID-CPA security. Security against chosen plaintext attacks (IND-ID-CPA) for
an HIBE ΠHIBE is defined by the following game between a challenger and an adversary
A. The challenger computes Setup(`)→ (mpk, skε) and sends mpk toA. The adversary
has access to the following oracles.

• KeyQuery(id). On input an identity id, the challenger computes and outputs the
secret key skid.

• Challenge(id∗,M0,M1). The adversary submits a challenge identity id∗ and two
messages M0,M1. The challenger picks a bit b uniformly at random and responds
with a challenge ciphertext C∗ = HIBE.Enc(id,Mb).

• Guess(b′). The adversary outputs its guess b′ ∈ {0, 1}. The challenger outputs 1
if b = b′, else 0. The game stops.

The adversary is allowed to make multiple queries to KeyQuery(id) and one query to
Challenge(id∗,m0,m1) in any order, but with the restriction that it does not query a
key for id∗ or a prefix of it. Guess(b′) can only be queried after Challenge(id,M0,M1).

Definition 4.7. Let A be an adversary playing the CPA security game for an HIBE
ΠHIBE . It (tA, εA)-breaks the IND-ID-CPA security of ΠHIBE , if it runs in time tA and

|Pr[Guess(b′) = 1]− 1/2| ≥ εA.

47

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.4.1 A Concrete HIBE Scheme

Here, we present an instantiation of the HIBE encryption scheme ΠHIBE by Boneh et
al.[BBG05]. In general, this scheme allows the identities to be vectors id = (t1, . . . , ts) ∈
Zsq, where s = 1, . . . , ` + 1. In order to represent the time periods in our FST scheme,
we restrict the identities at the first ` levels to single bits. The lowest level remains
unrestricted. In our FST encryption scheme it will contain the hashed verification key
of a strong one-time signature scheme. Overall, identities at depth s = 1, . . . , ` + 1 are
vectors id = (t1, . . . , ts), such that ti ∈ {0, 1} for i = 1 . . . ` and t`+1 ∈ Zq. The message
space is assumed to be G3. The scheme ΠHIBE is defined via the following algorithms:

• Common parameters. The common parameters consist of PG, the descrip-
tion of a cryptographic Type-3 pairing group as well as random group elements
[1]1, [h]1, [h0]1, . . . , [h`+1]1 ← G1, and [1]2 ← G2, where h, h0, . . . , h`+1 ∈ Zq and
where [1]1 and [1]2 are generators of G1 and G2, respectively.

• Setup(1λ, `). Pick x ← Zq uniformly at random. Then, compute the master
public key pk := [x]2 and the master secret key msk = [hx]1.

• KeyDerive(skt1,...,ts , (ts+1, . . . , ts′)). The secret key skt1,...,ts for an identity of
depth s ≤ `+ 1 is defined as

(c, d, es+1, . . . , e`+1) =

(
[r]2, [hx+ (h0

s∏
v=1

hvtv)r)]1, [hs+1r]1, . . . , [h`+1r]1

)
,

(4.3)

where r ← Zq is picked uniformly at random.
Given the parent secret key skt1,...,ts , all descendant secret keys skt1,...,ts,...ts′ , where
s < s′ ≤ `+ 1 can be computed as

(c′, d′, e′s′+1, . . . , e
′
`+1)

=

(
c[1]r

′
2 , d

s′∏
v=s+1

ewv
v

(
[h0]1

s′∏
v=1

[hv]
wv
1

)r′
, es′+1[hs′+1]r

′
1 , . . . , e`+1[h`+1]r

′
1

)

=

(
[r + r′]2, [hx+ h0(r + r′) +

s′∑
v=1

hvwv(r + r′)]1,

[hs′+1(r + r′)]1, . . . , [h`+1(r + r′)]1

)
,

where r′ ← Zq is picked uniformly at random.
Having the master secret key [hx]1, all secret keys can be computed directly.

• Enc(pk, id,M). Let M ∈ G3 and id = (t1, . . . , ts), where
s ∈ [`+ 1]. Compute and output

C =

(
e([h]1, pk)r ·M, [r]2, [h0 +

s∑
v=1

hvtv)r]1

)
∈ G3 ×G2 ×G1

48

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

where r ← Zq is picked uniformly at random.

• Dec(id, skid, C). On input an identity id = (t1, . . . , ts), the corresponding secret
key skid = (c, d, es+1, . . . , e`+1), and a ciphertext C = (C1, C2, C3) compute and
output:

C1 · e(C3, c)/e(d,C2) = M. (4.4)

Correctness. For a valid ciphertext and a valid secret key, we have

e(C3, c)

e(d,C2)
=

e([(h0 +
∑s

v=1 hvtv)r]1, [r]2)

e([hx+ (h0 +
∑s

v=1 hvtv)r]1, [r]2)
(4.5)

=
1

e([hx]1, [r]2)
=

1

e([h]1, npk)r
, (4.6)

where mpk = [x]2. Putting Eq. (4.5) in Eq. (4.4) gives us

C1 ·
1

e([h]1, pk)r
=
e([h]1, pk)r ·M
e([h]1, pk)r

= M.

This scheme was shown secure under a Type-3 pairing variant of the Decisional Bilinear
Diffie-Hellman Inversion Assumption q̄-DBDHI∗ [BB04a, BBG05], where q̄ = `+ 1:

Definition 4.8. q̄-DBDHI∗3 Assumption.
Let PG = (G1,G2,GT , e, q) be the description of a cryptographic Type-3 pairing group
and let [1]1 and [1]2 be random generators of G1 and G2, respectively. Let A be an
adversary. We say that it (tA, εA)-breaks the `-DBDHI∗3 assumption, if it runs in time
tA and ∣∣∣∣Pr

[
A
(
PG, [1]1, [α]1, [α

2]1, . . . , [α
q̄]1, [1]2, V0

)
= 1
]
−

Pr
[
A
(
PG, [1]1, [α]1, [α

2]1, . . . , [α
q̄]1, [1]2, V1

)
= 1
] ∣∣∣∣ ≥ εA

where α← Zq, V0 = e([1]1, [1]2)α
q̄+1

and V1 ← GT .

Theorem 4.2 ([BBG05]). Let A be an adaptive adversary that (tA, εA)-breaks the
IND-ID-CPA security of ΠHIBE from [BBG05] with depth `+ 1. Given A, we can build
an adversary B that (tB, εB)-breaks the q̄-DBDHI∗3 assumption, where q̄ = ` + 1 such
that

tB = O(tA) and εB ≥
1

2`+1
· εA.

Note that Theorem 3.1 in [BBG05] refers to the selective security notion called IND-sID-
CPA security. Here, we have the adaptive security notion IND-ID-CPA, which is implied
by IND-sID-CPA with an exponential loss. For the concrete definition of IND-sID-CPA
security see [BBG05].

49

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.5 Forward-Secure Threshold Signature Schemes

In this section, we introduce our FST signature scheme, which is much more efficient
than the state of the art. This scheme is basically a threshold-version of the single user
scheme of Drijvers and Neven [DN19]; see Sec. 4.3.1. We start with formal definitions
of FST signature schemes and their security.
The first definition of FST signature schemes was introduced by Abdalla et al. [AMN01].
Here, we adopt the definition by Chow et al. [CGHY08]. The only difference between
these two is that updating the secret key shares does not require an interactive protocol
between all parties and can be accomplished by each party on its own.

Definition 4.9. Forward-secure threshold signatures. A forward-secure threshold
signature scheme (T, n, k)-ΣFST for T time periods, n parties, and threshold k is defined
as a quadruple of the following components:

• KeyGen(1λ, T, n, k) → (pk, pk1, sk0,1, . . . , pkn, sk0,n). On input the security pa-
rameter λ in unary, the maximum number of time periods T , the total number of
parties n, and the threshold k, this protocol produces a common public key pk and
user public keys pki and initial secret key shares sk0,i for all parties i ∈ [n]. The
secret shares are only known to the belonging parties.

• KeyUpdate(skt,j)→ skt+1,j . If the input is a secret key share for a time period
t < T − 1, it outputs a secret key share for the next time period t+ 1 and deletes
the input from its storage. Else it outputs ⊥.

• Sign(t,m) → (t, σ). If run by at least k + 1 honest and uncompromised signers
on input the current time period t and a message m from the message space this
protocol outputs a signature σ together with the time period t.

• Verify(pk, t,m, σ) → b, where b ∈ {0, 1}. If σ is a valid signature for m at time
period t and under public key pk, then Verify outputs 1, else 0.

Definition 4.10. Correctness. Let (pk, (pk0,i)i∈[n], (sk0,i)i∈[n])←KeyGen
and (skt,i) ← KeyUpdate(skj−1,i) for j = 1, . . . , t and i ∈ [n]. We call (T, n, k)-
ΣFST correct if for all messages m, all time periods t ∈ {0, . . . , T − 1}, and all subsets
U ⊆ {skt,1, . . . skt,n} of size at least k + 1 held by uncorrupted parties it holds that

Pr[Verify(pk, t,m,Sign(t,m)) = 1] = 1.

Note that the secret keys are an implicit input to Sign.

EUF-CMA forward security. EUF-CMA security against adaptive(static) 5 adversaries
is defined by the following security experiment between a challenger and an adversary A.
Let S be an (initially) empty set, which denotes the signature queries and let B and G
be the sets of indices, which denote the corrupted and uncorrupted parties, respectively.
At the beginning B is empty and G = {1, . . . , n}. The challenger (on behalf of the
uncorrupted parties) and the adversary (on behalf of the corrupted parties) run the key

5In the static security experiment, the adversary has to decide which k parties it wants to corrupt
before KeyGen gets executed.

50

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

generation protocol KeyGen(1λ, n, k, T). The adversary gets the common public key
pk, all user public keys (pki)i∈[n] as well as the initial secret key shares of the corrupted
parties (sk0,j)j∈B. The adversary has access to the following oracles:

• Break-In(t, j). On input the current time period t and index j ∈ G the challenger
checks if |B| < k. If this holds, the challenger removes j out of G and adds it to B.
If skt,j is already defined, it is delivered to A. If |B| = k, the challenger sets t̃← t
and outputs (skt̃,j)j∈G . 6 Afterwards, this oracle cannot be queried anymore.

• KeyUpdate. For all time periods t < T − 1 it updates the current time period t
and the secret key shares (skt,j)j∈G to t+ 1 and skt+1,j , respectively.

• Signing(t,m). On input the current time period t and a message m from the
message space it adds (t,m) to the set S. Then, the challenger (on behalf of the
uncorrupted parties) and the adversary A (on behalf of the corrupted parties) run
the signing protocol Sign. The output of this execution is delivered to A.

• Finalize(t∗,m∗, σ∗). If (t∗,m∗) ∈ S, then it returns 0. If t̃ is defined and t∗ > t̃,

then it returns 0. If t̃ is defined and t∗ < t̃, then it returns Verify(pk, t∗,m∗). If t̃
is not defined (i.e. Break-In was never queried), then it returns Verify(pk, t∗,m∗).
Afterwards, the game terminates.

Definition 4.11. EUF-CMA forward security. Let A be an adaptive (a static)
adversary playing the EUF-CMA security experiment for a forward-secure threshold
signature scheme (T, n, k)-ΣFST . It (tA, εA)-breaks the EUF-CMA security of (T, n, k)-
ΣFST , if it runs in time tA and

Pr[Finalize(t∗,m∗, σ∗) = 1] > εA.

We extend the robustness notion of threshold signature schemes by Gennaro et al.[GJKR07]
to FST signature schemes. Essentially, the difference is the added KeyUpdate proce-
dure.

Definition 4.12. Robustness. A forward-secure threshold signature scheme ΣFST is
(n, k1, k2)-robust if in a group of n parties, even in the presence of an adversary who
halts up to k1 and corrupts maliciously k2 parties, Keygen, KeyUpdate, and Sign
complete successfully.

4.5.1 New Forward-Secure Threshold Signature Scheme

Here, we introduce our FST signature scheme. We show how the modified DKG protocol
from Fig. 4.3 allows to create a FST signature scheme, which is much more efficient than
the state of the art. Eventually, we prove our FST scheme EUF-CMA forward secure
against adaptive and robust against malicious adversaries.

6Note that this case is only possible for time periods t > 0, i.e. after KeyGen had finished. Else, the
adversary would have no way to win the security experiment.

51

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

The scheme. For simplicity, we assume the common parameters to be given in our
scheme. Note that this assumption does not contradict no need of a trusted dealer
as such a dealer is not required for generation and sharing the public and secret key
material. The common parameters could be either from a proposed standardization or
commonly generated by all parties. For instance, this can be achieved by a coin-flipping
protocol as in [BOGW88]. Let (T, n, k)-ΣFST = (KeyGen,KeyUpdate,Sign,Verify)
be a FST signature scheme defined as follows:

• Common parameters. Let H be a family of hash functions H : {0, 1}∗ → Zq
mapping bits strings to elements in Zq. The common parameters consist of PG,
the description of a cryptographic Type-3 pairing group, the description of H
picked randomly from H, the maximum number of time periods T = 2` as well
as random group elements [1]1, [h]1, [h0]1, . . . , [h`+1]1 ← G1, and [1]2, [h̃]2 ← G2,
where h, h0, . . . , h`+1, h̃ ∈ Zq and where [1]1 and [1]2 are generators of G1 and G2,
respectively.

• KeyGen(1λ, T, n, k). The n parties run the DKG(n, k) protocol from Figure 4.3.
Subsequently each party Pi holds an initial secret key share

sk0,i := ([ri]2, [hxi]1[h0ri]1, [h1ri]1, . . . , [h`+1ri]1) ∈ G2 ×G`+2
1

as well as the public keys pkj = [xj]2 for all j ∈ [n]. The common public key
pk = [x]2 ∈ G2 is published.7

• KeyUpdate(skt,i). We assume the time periods 0, . . . , 2` − 1 are organized as
leaves of a binary tree of depth `, sorted in increasing order from left to right.
That is, 000 . . . 0 is the first and 111 . . . 1 is the last time period. Further, we
interpret the path from the root of the tree to a leaf node t as binary representation
t = t1 . . . t`, where we take the left branch for tz = 0 and the right one for tz = 1.
We proceed in the same way for internal nodes ω = ω1 . . . ωs, where s < `. Let
ri ← Zq be picked uniformly at random. Then, we associate to each party Pi and
each node ω a secret key:

(ci, di, ei,s+1, . . . , ei,`+1) =

(
[ri]2, [hxi + h0ri +

s∑
v=1

hvwvri]1, [hs+1ri]1, . . . , [h`+1ri]1

)
.

Given such a secret key, we produce a secret key for a descendant node ω′ =
ω1 . . . ωs′ , where s′ > s as

(c′i, d
′
i, e
′
i,s′+1, . . . , e

′
i,`+1)

=

(
ci[1]

r′i
2 , di

s′∏
v=s+1

ewv
i,v ([h0]1

s′∏
v=1

[hv]
wv
1)r

′
i , ei,s′+1[hs′+1]

r′i
1 , . . . , ei,`+1[hi,`+1]

r′i
1

)

7 Note that the secret share xi is computed commonly by all parties and the randomness ri is computed
locally by party Pi and is not a share of another random value. This approach is more efficient than
computing random values commonly, especially to different bases.

52

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

=

(
[ri + r′i]2, [hxi + h0(ri + r′i) +

s′∑
v=1

hvwv(ri + r′i)]1,

[hs′+1(ri + r′i)]1, . . . , [h`+1(ri + r′i)]1

)
,

where r′i ← Zq is picked uniformly at random.
Let Ct be the smallest subset of nodes that contains for each time period t, . . . , T−1
an ancestor or the leaf itself, but no nodes of ancestors or leafs for time periods
0, . . . , t− 1. For time period t, we define the secret key skt,i of party Pi as the set
of its secret keys associated to all nodes in Ct. In order to update the secret key
to time period t+ 1 it determines Ct+1 and computes the secret keys for all nodes
in Ct+1 \ Ct. Afterwards, it deletes skt,i and all used re-randomization exponents
r′i.

• Sign(t,m). Let M := H(m) be the hash value of message m ∈M and t = t1 . . . t`
the bit representation of time period t. Let W be the set of indices of all parties
participating in signing M . W.l.o.g. we assume that W contains at least k + 1
distinct indices. The participating parties run the signing protocol from Figure
4.4.8

8 Note that signing happens with respect to a time period. Since time periods are encoded in full bit
length (even if they start with zero) they are low in the binary tree. Hence, they only have left ei,`+1

as going down one level in depth erases one value ei,x, x ∈ {1, . . . `, }.

53

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Sign(t,M, P1, ..., Pn):

1. Share-Sign. At request of a signature for message M at time t = t1 . . . t`,
each party Pi, i ∈ W signs M under its signing key (ci, di, ei,`+1) derived
from skt,i. The resulting signatures are

(σ1,i, σ2,i) =

(
di · eMi,`+1 · [(h0 +

∑̀
v=1

hvtv + h`+1M)r
′
i]1, ci · [r′i]2

)
,

where r′i ← Zq is picked uniformly at random. Each party Pi, i ∈ W sends
its signature to all other parties.

2. Share-Verify. All parties in W use the public keys pki, i ∈ W to verify
if all the received signatures are valid. That is,

e(σ1,i, [1]2) = e([h]1, pki) · e([h0 +
∏̀
v=1

hvtv + h`+1M]1, σ2,i). (4.7)

3. Combine. Let V ⊆ W indicate a set of users sending valid signatures.
Assuming V contains at least k + 1 distinct indices. Each party can
now compute the Lagrange coefficients Li and aggregate the signatures as
follows:

(σ1, σ2) := (
∏
i∈V

σLi
1,i,
∏
i∈V

σLi
2,i).

Figure 4.4: The signing protocol of our FST scheme.

Remark 4.2. Note that the set V might be of size greater than k + 1, while k + 1
partial signatures are sufficient to construct the final signature. Hence, the final sig-
nature is not unique if not every party takes all partial signatures for constructing
it. However, all signatures constructed in Step 4 are nevertheless indistinguishable
from a signature created in a single user protocol because it is easy to re-randomize
both σ1 and σ2. Especially seeing two valid signatures (σ1, σ2) and (σ′1, σ

′
2) it can-

not be deduced how many signers were involved in signing. For this reason we
do not have to force the parties to aggregate all partial signatures and thus, avoid
overhead in computation.

• Verify(pk, t,m, σ). On input σ = (σ1, σ2) ∈ G1 × G2 message m, public key pk
and time period t compute M = H(m) and output 1 if

e(σ1, [1]2) = e([h]1, pk) · e([h0]1
∏̀
v=1

[hv]
tv
1 [h`+1]M1 , σ2) (4.8)

else output 0.

54

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4.5.2 Proof of Correctness.

In order to show that (σ1, σ2) is a valid signature for message M at time period t under
the common public key pk = [x]2 we have to show first that we can determine the set
V, which indicates the correct signature shares. That is, we have to show that we can
check whether the partial signatures (σ1,i, σ2,i), i ∈ W are correct. Let (σ1,i, σ2,i) be an
honestly generated signature. Then,

σ1,i = die
M
i,`+1([h0]1

∏̀
v=1

[hv]
tv
1 [h`+1]M1)r

′
i

= [hxi + h0ri +
∑̀
v=1

hvtvri]1[hi,`+1riM]1 · [h0r
′
i +
∑̀
v=1

hvtvr
′
i + h`+1r

′
iM]1

= [hxi + (h0 +
∑̀
v=1

hvtv + hi,`+1M)(ri + r′i)]1, (4.9)

where we used the fact that ei,`+1 = [hi,`+1ri]1 and σ2,i = [ri + r′i]2. The signature
(σ1,i, σ2,i) with σ1,i as in (4.9) and with σ2,i satisfies (4.7), since

e([hxi + (h0 +
∑̀
v=1

hvtv + hi,`+1M)(ri + r′i)]1, [1]2)

= e([hxi]1, [1]2) · e([(h0 +
∑̀
v=1

hvtv + hi,`+1M)(ri + r′i)]1, [1]2)

= e([h]1, [xi]2) · e([h0 +
∑̀
v=1

hvtv + hi,`+1M]1, [ri + r′i]2).

For this reason, we can indeed check whether a signature (σ1,i, σ2,i) for message M at
time period t is valid under public key [xi]2 and thus include i into set V. It remains to
show that all partial signatures (σ1,i, σ2,i), i ∈ V interpolate to a valid signature under
the common public key [x]2. For this purpose we set R :=

∑
i∈V Li(ri + r′i). Then,

σ1 =
∏
i∈V

σLi
1,i =

∏
i∈V

[hxi + (h0 +
∑̀
v=1

hvtv + h`+1M)(ri + r′i)]
Li
1

= [h
∑
i∈V

Li · xi]1[(h0 +
∑̀
v=1

hvtv + h`+1M)(
∑
i∈V

Li(ri + r′i))]1

= [hx]1[(h0 +
∑̀
v=1

hvtv + h`+1M)R]1,

where
∑

i∈V Li · xi = x. Furthermore,

σ2 =
∏
i∈V

σLi
2,i = [

∑
i∈V

Li(ri + r′i)]2 = [R]2.

55

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Overall, we have

e(σ1, [1]2) = e([hx+ (h0 +
∑̀
v=1

hvtv + h`+1M)R]1, [1]2)

= e([hx]1, [1]2) · e([(h0 +
∑̀
v=1

hvtv + h`+1M)R]1, [1]2)

= e([h]1, [x]2) · e([h0 +
∑̀
v=1

hvtv + h`+1M]1, σ2),

which shows that (σ1, σ2) fulfills (4.8) and therefore is a valid signature for message M
at time period t under public key pk = [x]2.

4.5.3 Proof of Security.

As preparation for the security reduction we describe in Figure 4.5 the simulation of the
key generation protocol DKG and in Figure 4.6 the simulation of the signing protocol
Sign. The simulation of the DKG protocol is basically due to Gennaro et al. [GJKR07].
As the DKG protocol we instantiate the simulation with the groups G1 and G2 from
the bilinear pairing we use in our FST signature scheme and make the same adjustments
in order to enable forward security. We explain these adjustments in Sec. 4.2.3.

Simulation of DKG. During key generation, the adversary is allowed to control at most
k parties. Otherwise, it would gain access to the secret key at time period 0 and by
definition it would have no possibility to win the security experiment of the signature
scheme. First, we assume a static adversary as in the proof in [GJKR07]. Then, we show
how to extend the security to adaptive adversaries. We explain in Section 4.7 why this
approach is reasonable. W.l.o.g. we assume the compromised parties to be P1, . . . , Pk.
Let B := {1, . . . , k} indicate the set of parties controlled by the adversary A and let
G := {k + 1, . . . , n} indicate the set of honest parties, which are run by the simulator.

56

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Protocol DKGSim(y = [x]2, n, k):

1. The simulator performs the Steps 1a-1f, 2, and, 3 on behalf of the un-
corrupted parties exactly as in the DKG(n, k) protocol. Additionally, it
reconstructs the polynomials ai(Z), bi(Z) for i ∈ B. Then:

• The set QUAL is well-defined and G ⊆ QUAL and all polynomials
are random for all i ∈ G.

• The adversary sees ai(Z), bi(Z) for i ∈ B, the shares (sij , s
′
ij) =

(ai(j), bi(j)) for i ∈ QUAL, j ∈ B and Cis for i ∈ QUAL, s =
0, . . . , k.

• The simulator knows all polynomials ai(Z), bi(Z) for i ∈ QUAL as
well as all shares sij , s

′
ij , all coefficients ais, bis and the public values

Cis.

2. The simulator performs as folllows:

• Computes Ais = [ais]2 ∈ G2 for i ∈ QUAL \ {n}, s = 0, . . . , k.

• Sets A∗n0 = y ·
∏
i∈QUAL\{n}(A

−1
i0).

• Sets s∗nj = snj = an(j) for j = 1, . . . , k.

• Computes A∗ns = (A∗n0)λs0 ·
∏k
i=1([s∗ni]2)λsi ∈ G2 for s = 1, . . . , k,

where the λiss are the Lagrange interpolation coefficients.

a) The simulator broadcasts Ais for i ∈ G\{n} and A∗ns for s = 0, . . . , k.

b) It performs for all uncorrupted parties the verification of (4.2) on
the values Aij for i ∈ B. In case of a fail it broadcasts a complaint
(sij , s

′
ij). Since the adversary controls at most k parties and the

simulator behaves honestly, only secret shares of corrupted parties
can be reconstructed.

c) Afterwards it performs the Steps 4c and 4d of the DKG(n, k) pro-
tocol.

Figure 4.5: The simulation of the DKG protocol from Figure 4.3.

57

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

SignSim(t,M, (σ1, σ2))

1. The signature is requested. The simulator is in possession of the polyno-
mials ai(Z), bi(Z) for all i ∈ [n]. At request of a signature for message M
at time t = t1 . . . t` it uses these information to construct valid signature
shares for M on behalf of all uncorrupted parties: for j = k + 1, . . . , n it
computes σ′1,j as

∏
i∈QUAL\{n}

k∏
s=0

(His)
js ·
(
Ĥn0

)
·
k∏
s=1

(
(Ĥn0)λs0 ·

k∏
i=1

([h]
s∗ni
1)λsi

)js
.

Then, it picks rj ← Zq uniformly at random and computes σ1,j as

σ′1,j · ([(h0 +
∑̀
v=1

hvtv + h`+1M)rj]1.

Afterwards, it computes σ2,j as:

σ
∑k

s=1 λs0·js+1
2 · [rj]2.

2. The simulator sends (σ1,i, σ2,i) for all i = k+1, . . . , n to the corrupted par-
ties P1, . . . , Pk. The simulator might receive partial signatures on behalf
of the corrupted parties.

3. The simulator does nothing.

4. The adversary can use any set V of at least k + 1 partial signatures to
construct the final signature:

(σ1, σ2) = (
∏
i∈V

σLi
1,i,
∏
i∈V

σLi
2,i),

where Li are Lagrange coefficients. The simulator does nothing.

Figure 4.6: The simulation of the signing protocol from Figure 4.4.

Simulation of Sign. Note that during the simulation of the signing protocol the simulator
already simulated the distributed key generation protocol and is therefore in possession
of the secret shares x1, . . . , xk and the polynomials ai(Z), bi(Z) for all i ∈ [n].
It follows from the DKG protocol that the secret shares for all parties Pj , j ∈ [n]
are defined as xj :=

∑
i∈QUAL sij mod q. For DKGSim these are defined as xj :=∑

i∈QUAL\{n} sij + s∗nj mod q, where the values s∗nj for j = k + 1, . . . , n, i.e. for j ∈ G,
are not explicitly known. From DKGSim we also derive that the corresponding public

58

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

keys equal:

[xj]2 =
∏

i∈QUAL\{n}

[sij]2 · [s∗nj]2 =
∏

i∈QUAL\{n}

k∏
s=0

(Ais)
js

k∏
s=0

(A∗ns)
js ,

where the values A∗ns include the common public key y = [x]2. Hence, in order to
compute the secret share [hxj]1 for j ∈ G either the corresponding value [hx]1 or s∗nj
seem to be required. Although these values are unknown to the simulator it is possible
to use a valid signature (σ1, σ2) for message M to extract a valid signatures for all parties
Pj , j ∈ G. For this purpose define:

• His := [hais]1 ∈ G1 for all i ∈ QUAL \ {n}, s = 0, . . . , k, where ais are the
coefficients of the polynomials computed during DKGSim

• H∗n0 :=
∏
i∈QUAL\{n}H

−1
i0 [hx]1 ∈ G1.

• s∗nj := snj = an(j) for j = 1, . . . , k

• H∗ns := (H∗n0)λs0 ·
∏k
i=1[hs∗ni]

λsi
1 ∈ G1 for k = 1, . . . , t, where λiss are the Lagrange

interpolation coefficients

• Ĥn0 :=
∏
i∈QUAL\{n}(H

−1
i0)σ1 ∈ G1

Analogously to [xj]2 the value [hxj]1 is defined as

∏
i∈QUAL\{n}

k∏
s=0

(His)
js ·

k∏
s=0

(H∗ns)
js .

To obtain a valid signature under public key pkj compute an intermediate σ′1,j as:

∏
i∈QUAL\{n}

k∏
s=0

(His)
jsĤn0

k∏
s=1

(
(Ĥn0)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js

∏
i∈QUAL\{n}

H−1
i0 σ1

k∏
s=1

(
(

∏
i∈QUAL\{n}

H−1
i0 σ1)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(∏
i∈QUAL\{n}

H−1
i0 [hx+ (h0 +

∑̀
v=1

hvtv + h`+1M)r]1

)

·
k∏
s=1

((∏
i∈QUAL\{n}

(H−1
i0)[hx+ (h0 +

∑̀
v=1

hvtv + h`+1M)r]1
)λs0

k∏
i=1

[hs∗ni]
λsi

)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(∏
i∈QUAL\{n}

(H−1
i0)[hx]1

)
[(h0 +

∑̀
v=1

hvtv + h`+1M)r]1

·
k∏
s=1

((∏
i∈QUAL\{n}

(H−1
i0)[hx]1

)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js k∏
s=1

(
[(h0 +

∑̀
v=1

hvtv + h`+1M)rλs0]1

)js

59

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
jsH∗n0

k∏
s=1

(
H∗ns

)js
[(h0 +

∑̀
j=1

hjtj + h`+1M)(r
k∑
s=1

λs0j
s + r)]1

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(k∏
s=0

H∗ns
)js

[(h0 +
∑̀
v=1

hvtv + h`+1M)(r

k∑
s=1

λs0j
s + r)]1

= [hxj]1[(h0 +
∑̀
v=1

hvtv + h`+1M)(r
k∑
s=1

λs0j
s + r)]1.

Then, pick a uniformly random rj ← Zp and re-randomize σ1,j and σ2,j as:

σ′1,j [(h0 +
∑̀
v=1

hvtv + h`+1M)rj]1 and σ
∑k

s=1 λs0·js+1
2 [rj]2. (4.10)

Note that without re-randomization the computations would all be deterministic. This
would allow an adversary two re-compute the original signature from two different sig-
nature shares and thus to distinguish the simulated game from the original security
game.

Lemma 4.1. The protocols DKG and DKGSim are indistinguishable.

Proof. Compared to the original protocol, our modifications to DKG and DKGSim
have no impact on the adversarie’s view. That is, the broadcasted messages are as in the
original protocol instantiated with G2, the view of the corrupted parties is also the same,
and the storing of the secret key shares by the uncorrupted parties is done internally
and cannot be seen. Thus, for static adversaries the proof is the same as in the original
version and can be found in Theorem 2 of [GJKR07]. In order to manage adaptive
adversaries, the simulator has to guess prior to step 1 of DKGSim which parties the
adversary is going to corrupt. Whenever the adversary corrupts a party Pj , j ∈ B the
simulator delivers all values computed and stored on behalf of this party. The adversary
takes over the role of Pj . The simulator aborts if its guess was wrong. The simulation
is successful with probability at least 1/

(
n
k

)
.

Lemma 4.2. The protocols Sign and SignSim are indistinguishable.

Proof. We compare the information seen by the adversary in each step of both protocols.

1. In both protocols the adversary sees or sends the signing request for message M
at time t.

2. The adversary receives signature shares, which are all valid and uniformly random.
The adversary is allowed to send valid or invalid signature shares on behalf of the
corrupted parties or to halt these parties. This has no impact as their are sufficient,
i.e. k + 1, uncorrupted parties left to sign the message.

3. The adversary can check the validity of the received signature shares. All the
shares sent by the simulator are valid and uniformly random.

60

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

4. For every set of at least k + 1 valid partial signatures the adversary can construct
a valid signature for the public key y. Since all partial signatures are valid and
uniformly random all possible final signatures are valid and uniformly random, as
well.

We conclude that in each step both protocols have the same probability distribution and
that the view of the adversary is identical. Thus, both of them are indistinguishable.

Theorem 4.3. The scheme (T, n, k)-ΣFST is (n, k1, k2)-robust, if k1 + k2 ≤ k and
n ≥ 2k + 1. In particular, the scheme is (n, 0, k)-robust, i.e. robust against malicious
adversaries.

Proof. Here, we argue for the strongest case, i.e. (n, 0, k). The only protocols where
the adversary on behalf of the compromised parties may interact with honest ones are
KeyGen and Sign. Hence, we have to show that the adversary is not able to prevent
the honest parties from executing these protocols successfuly. For KeyGen, instantiated
with the DKG protocol, it follows from the proof in [GJKR07]. Basically, the reason is
that any party who deviates from the protocol is either disqualified or its correct secret
share is reconstructed by the honest majority. For Sign, we make use of the fact that
the DKG protocol delivers for all parties Pi the elements [xi]2, where xi is their share of
the secret. Functioning as public keys pki they allow the other parties to check validity
in (4.7) of the submitted partial signatures. Hence, only signatures which are valid for
message M will be aggregated. It follows that k parties can neither manipulate nor
prevent the key generation or the final signature as long as n ≥ 2k + 1.

Theorem 4.4. Let A be an adaptive adversary that (tA, εA)-breaks the EUF-CMA
security of (T, n, k)-ΣFST and let Σ be the single user signature scheme from [DN19].
Given A, we can build an adversary R that (tR, εR)-breaks the EUF-CMA forward
security of Σ for T time periods such that

tR = O(tA) and εR ≥
(
n

k

)−1

εA.

Proof. We show how R simulates A’s EUF-CMA security experiment instantiated with
ΣFST perfectly and how it uses the challenge provided by A to win its own EUF-CMA
security experiment instantiated with Σ. Simulator R receives a public key y ∈ G2

at the beginning of it s EUF-CMA forward security experiment. Then, R guesses the
first k parties A might compromise. Let B′ denote the set of indices of these parties.
W.l.o.g. we assume these parties to be P1, . . . , Pk. Further let G = {1, . . . , n} and B = ∅
denote the indices of the uncompromised and compromised parties from the perspective
of A. Then, R and A continue with the key generation procedure KeyGen. During this
procedure, the adversary is allowed to make k queries to Break-In. The procedures for
adversary A are simulated by R as follows.

• KeyGen. To simulate the KeyGen protocol for A the simulator runs the
DKGSim protocol on input (y, n, k). A receives all information to compute the
initial secret key shares of the compromised paroties as well as the common public
key pk = y and the user public keys pki for i = 1, . . . , n. Additionally to all public
keys, R holds the initial secret keys sk0,i for all i ∈ B′.

61

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• KeyUpdate. Whenever A asks to execute KeyUpdate, thenR asks for KeyUp-
date in the EUF-CMA forward security game of Σ.

• Signing(t,M). Whenever A sends a signing query for message M at time period t,
B forwards this query to its own signing oracle and receives a signature (t, σ1, σ2).
Then, B runs the SignSim protocol with input (t,M, (σ1, σ2), y).

• Break-In(j, t). Adversary A queries the break-in oracle on input an index j and
the current time period t. Simulator R checks if |B| < k. If this holds and j 6∈ B′,
then R aborts. Else R removes j out of G and adds it to B. If skj,t is already
defined, it is delivered to A. If |B| = k and j ∈ G, the challenger R sets t̃← t and
computes the secret keys skt,j for all j ∈ G as follows. First, it queries the break-in
oracle in the EUF-CMA security experiment of Σ. It obtains the secret key skt,
which consists of tuples of the form

(c, d, es+1, . . . , e`+1) =

(
[r]2, [hx+ (h0 +

s∑
v=1

hvwv
r)]1, [hs+1r]1, . . . , [h`+1r]1

)
,

which correspond to either internal nodes ω = ω1 . . . ωs, where s ≤ ` or to the leaf
representing time period t. It defines similar to SignSim:

– His := [hais]1 for all i ∈ QUAL\{n}, s = 0, . . . , k, where ais are the coefficients
of the polynomials computed during DKGSim.

– H∗n0 :=
∏
i∈QUAL\{n}(H

−1
i0)[hx]1.

– s∗nj := snj = an(j) for j = 1, . . . , k.

– H∗ns := (H∗n0)λs0 ·
∏k
i=1[hs∗ni]

λsi
1 for s = 1, . . . , k, where λsis are the Lagrange

interpolation coefficients.

– H̄n0 :=
∏
i∈QUAL\{n}(H

−1
i0 · d) for each tuple (c, d, . . .) separately.

Then, for all tuples on the stack it computes dj as:

∏
i∈QUAL\{n}

k∏
s=0

(His)
js ·
(
H̄n0

)
·
k∏
s=1

(
(H̄n0)λs0 ·

k∏
i=1

[hs∗ni]
λsi
1

)js
.

for all values x from {c, ei+1, . . . , e`+1} it computes xj as:

x
∑k

s=1 λs0·js+1

In order to guarantee a perfect simulation R re-randomizes the secret keys of all
parties in the same fashion as the signatures in (4.10). Finally, it outputs skt,j for
all j ∈ G as the stack of tuples of the form (cj , dj , ej,i+1, . . . , ej,`+1).

Analogously to the signature in SignSim it holds that

dj =
∏

i∈QUAL\{n}

k∏
k=0

(His)
js ·
(
H̄n0

)
·
k∏
s=1

(
(H̄n0)λs0 ·

k∏
i=1

[hs∗ni]
λsi
1

)js

62

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

= [hxj + (h0 +
s∏

v=1

hvwv)(r
k∑
s=1

λk0j
s + r)]1.

Overall, these stack form valid secret keys skt,j for all j ∈ G and their simulation
is perfect.

• Finalize(M∗, (t∗, σ∗1, σ
∗
2)). At the end, A submits the challenge (M∗, (t∗, σ∗1, σ

∗
2)).

B forwards this challenge to the Finalize procedure in its own EUF-CMA security
experiment.

Together with Lemma 4.1 and Lemma 4.2 it follows that the simulation of the security
experiment for A is perfect. Both, A as well as R have to provide a valid forgery for the
same public key and under the same restriction of the time period t̃ from the Break-In
procedure. Hence, R wins its security game whenever A provides a valid forgery and R
guesses the corrupted parties correctly, which happens with probability at least

(
n
k

)−1
.

Note that a forgery (M∗, (t∗, σ∗1, σ
∗
2)) is only valid if no signature for (t∗,M∗) was queried.

The running time of R is the running time of A plus some small overhead. Overall, we
have

tR = O(tA) and εR ≥
(
n

k

)−1

· εA.

4.6 Forward-Secure Threshold PKE Schemes

In this section, we introduce our FST encryption scheme. As in the signature scheme,
we will make use of the DKG protocol presented in Section 4.2.1. We start with formal
definitions of FST-PKE schemes and their security. We adapt the definition of FST-PKE
and its security from Libert and Yung [LY13b].

Definition 4.13. Forward-secure threshold public key encryption scheme
(FST-PKE) A forward-secure threshold public key encryption scheme (T, n, k)-ΠFST

for T time periods, n parties, and threshold k is defined via the following components:

• KeyGen(1λ, n, k, T) → (pk, (pki)i∈[n], (sk0,i)i∈[n]). On input the security param-
eter in unary, the maximum number of time periods T , the maximum number of
parties n, and a threshold k, it outputs a common public key pk, user public keys
(pki)i∈[n], and initial secret key shares , (sk0,i)i∈[n].

• KeyUpdate(skt,i) → skt+1,i. On input a secret key share for a time period
t < T − 1, it outputs a secret key share for the next time period t+ 1 and deletes
the input from its storage. Else it outputs ⊥.

• Enc(t, pk,M) → C. On input a time period t, a common public key pk, and a
message M , it outputs a ciphertext C.

63

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• Dec(t, C) → M . If run by at least k + 1 honest and uncompromised parties on
input a time period t and a ciphertext C, it outputs a message M .

The key generation procedure can be either a protocol between all parties or executed
by a trusted dealer. The key update procedure is assumed to be non-interactive. The
decryption procedure is a protocol and contains of various steps: ciphertext-verify, share-
decrypt, share-verify, and combine. For simplicity we defined the input only as a time
period and a ciphertext and omit the key material held by all participating parties.

Definition 4.14. Correctness. Let (pk, (pk0,i)i∈[n], (sk0,i)i∈[n])←KeyGen
and (skt,i) ← KeyUpdate(skj−1,i) for j = 1, . . . , t and i ∈ [n]. We call (T, n, k)-
ΠFST correct if for all messages M , all time periods t ∈ {0, . . . , T − 1}, and all subsets
U ⊆ {skt,1, . . . skt,n} of size at least k + 1 held by uncorrupted parties it holds that

Pr[Dec(t,Enc(t, pk,M)) = M] = 1.

Note that the secret keys are an implicit input to Dec.

We adapt the robustness notion of threshold signature schemes by Gennaro et al.[GJKR07]
to FST public key encryption schemes.

Definition 4.15. Robustness. A forward-secure threshold PKE (T, n, k)-ΠFST is
(n, k1, k2)-robust if in a group of n parties, even in the presence of an adversary who halts
up to k1 and corrupts maliciously k2 parties, Keygen and Dec complete successfully.

Note that malicious adversaries can either deviate from the protocol in any way and
especially halt some parties. Hence, they are stronger than halting adversaries, see
[AMN01].

CCA forward security. Chosen ciphertext attack (CCA) forward security against adap-
tive (static)9 adversaries is defined by the following game between a challenger and an
adversary A. Let B and G be the sets of indices, which denote the corrupted and uncor-
rupted parties, respectively. Initially B is empty and G = {1, . . . , n}. The challenger (on
behalf of the uncorrupted parties) and the adversary (on behalf of the corrupted parties)
run KeyGen(1λ, n, k, T). The adversary receives the common public key pk, all user
public keys (pki)i∈[n] and the initial user secret key shares (ski,0)i∈B. The adversary has
access to the following oracles:

• Break-In(t′, j). On input time period t′ and index j ∈ G, the challenger checks if
|B| < k. If this holds, the challenger removes j out of G and adds it to B. If skt,j
is already defined, i.e. after KeyGen had finished, it is delivered to A. If |B| = k,
the challenger outputs skt,j for all j ∈ G. 10

• Challenge(t∗,M0,M1). The adversary submits a time period t∗ and two messages
M0,M1. The challenger picks a bit b uniformly at random and responds with a
challenge ciphertext C∗ = Enc(t∗, pk,mb).

9In the static security model the adversary has to submit its choice of k parties it wants to corrupt
before receiving the public key. In the adaptive model it can corrupt the parties at any time. For a
proper overview see [AMN01].

10Note that this case can only occur for time periods t > 0, i.e. after KeyGen had finished. Otherwise
the adversary would have no possibility to win the security game.

64

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• Dec(t, C). On input time period t and ciphertext C, the challenger (on behalf of
the uncorrupted parties) and the adversary A (on behalf of the corrupted parties)
run the decryption protocol Dec(t, C). The output of this execution is delivered
to A. If Challenge(t∗,M0,M1) has already been queried and C∗ is the response
to this query then query Dec(t∗, C∗) is disallowed.

• Guess(b′). The adversary outputs its guess b′ ∈ {0, 1}. The challenger outputs 1
if b = b′, else 0. The game stops.

The adversary is allowed to make k + 1 queries Break-In(t′, j) one query Chal-
lenge(t∗,m0,m1), and multiple queries Dec(t, C), in any order, subject to 0 ≤ t∗ <
t′k+1 < T , where t′k+1 is the time period of the k+1-th query to Break-In. After Break-
In(t′k+1, j), Dec(t, C) cannot be queried anymore. Guess(b′) can only be queried after
Challenge(t∗,M0,M1). For all queries the time periods must be in [0, . . . , T − 1].

Definition 4.16. Let A be an adaptive (static) adversary playing the CCA forward-
security game for a FST-PKE (T, n, k)-ΠFST . It (tA, εA)-breaks the CCA forward secu-
rity of (T, n, k)-ΠFST , if it runs in time tA and

|Pr[Guess(b′) = 1]− 1/2| ≥ εA.

Remark 4.3. The only difference between the CPA and CCA security game is that the
adversary has no access to the decryption oracle in the former game.

4.6.1 New Forward-Secure Threshold PKE Scheme

Here, we introduce our FST encryption scheme. We show how the modified DKG
protocol from Fig. 4.3 allows to create a FST-PKE scheme, which is much more efficient
than the state of the art. Eventually, we prove our FST-PKE scheme CCA forward
secure against adaptive and robust against malicious adversaries.

The scheme. Again, we assume the common parameters to be given in our scheme. As
explained in Section 4.5.1 this does not contradict no need of a trusted dealer. Our
FST-PKE scheme (T, n, k)-ΠFST is defined as follows.

• Common parameters. Let H be a familiy of hash functions H : {0, 1}∗ → Zq
mapping bits to elements in Zq. Let Σ = (Sig.KeyGen,Sig.Sign,Sig.Verify)
be a signature scheme. The common parameters consist of PG, the description of
a cryptographic Type-3 pairing group, the description of hash function H picked
randomly from H, the description of Σ, the maximum number of time periods
T = 2` as well as random group elements [1]1, [h]1, [h0]1, . . . , [h`+1]1 ← G1, and
[1]2, [h̃]2 ← G2, where h, h0, . . . , h`+1, h̃ ∈ Zq and where [1]1 and [1]2 are generators
of G1 and G2, respectively.

• KeyGen(1λ, n, k, T). The n parties run the DKG(n, k) protocol from Figure 4.3.
Subsequently each party Pi holds an initial secret key share

sk0,i := ([ri]2, [hxi]1[h0ri]1, [h1ri]1, . . . , [h`+1ri]1) ∈ G2 ×G`+2
1

65

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

as well as the public keys pkj = [xj]2 for all j ∈ [n]. The common public key
pk = [x]2 ∈ G2 is published. 11

• KeyUpdate(skt,i). We assume the T time periods 0, . . . , 2`−1 as being organized
as leaves of a binary tree of depth ` and sorted in increasing order from left to right.
This means, 00 . . . 0 is the first and 11 . . . 1 is the last time period. The path from
the root of the tree to a leaf node t equals the bit representation t1 . . . t`, where
we take the left branch for tz = 0 and the right one for tz = 1. Prefixes of time
periods correspond to internal nodes ω = ω1, . . . , ωs, where s < `. Let r′i ← Zq be
picked uniformly at random. Then, we associate to each party Pi, i ∈ [n] and each
node ω a secret key:

(c, d, es+1, . . . , e`+1)s =

(
[r]2, [hx+ h0r +

s∑
v=1

hvwvr]1, [hs+1r]1, . . . , [h`+1r]1

)
.

(4.11)

Given such a secret key, we derive a secret key for a descendant node ω′ = ω1 . . . ωs′ ,
where s′ > s as

(c′, d′, e′s+1, . . . , e
′
`+1)

=

(
c[1]r

′
2 , d

s′∏
v=s+1

ewv
v

(
[h0]1

s′∏
v=1

[hv]
wv
1

)r′
, es′+1[hs′+1]r

′
1 , . . . , e`+1[h`+1]r

′
1

)

=

(
[r + r′]2, [hx+ h0r +

s∑
v=1

hvwvr]1[

s′∑
v=s+1

hvwvr]1[h0r
′ +

s′∑
v=1

hvwvr
′]1,

[hs′+1(r + r′)]1, . . . , [h`+1(r + r′)]1

)
=

(
[r + r′]2, [hx+ h0(r + r′) +

s′∑
v=1

hvwv(r + r′)]1,

[hs′+1(r + r′)]1, . . . , [h`+1(r + r′)]1

)
,

where r′i ← Zq is picked uniformly at random.
We define Ct as the smallest subset of nodes that contains an ancestor or leaf for
each time period t, . . . , T − 1 , but no nodes of ancestors or leafs for time periods
0, . . . , t − 1. For time period t, we define the secret key ski,t of party Pi as the
set of secret keys associated to all nodes in Ct. To update the secret key to time
period t+1, determine Ct+1 and compute the secret keys for all nodes in Ct+1 \Ct.
Afterwards, delete ski,t and all used re-randomization exponents r′i.

11 Note that the secret share xi is computed commonly by all parties and the randomness ri is computed
locally by party Pi and is not a share of another random value. This approach is more efficient than
computing random values commonly, especially to different bases.

66

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• Encrypt(pk, t,M). Let M ∈ G3 be the message and t1 . . . t` the bit representation
of time period t. First, run Sig.KeyGen→ (vk, signk) and compute H(vk) =:
V K. Then, pick a uniformly random r ← Zq and compute (C1, C2, C3) as(

e([h]2, pk)r ·M, [1]r2, [(h0 +
∑̀
v=1

hvtv + h`+1V K)r]1

)
∈ G3 ×G2 ×G1

and Sig.Sign(signk, (C1, C2, C3),)→ σ. Output the ciphertext

C = ((C1, C2, C3), vk, σ).

• Decrypt(t, (C1, C2, C3), vk, σ). Let W be the set of indices of all participating
parties. W.l.o.g. we assume that W contains at least k + 1 distinct indices. The
participating parties run the decryption protocol from Figure 4.7.12

12 Note that decryption happens with respect to a time period. Since time periods are encoded in full
bit length (even if they start with zero) they are low in the binary tree. Hence, the corresponding
keys have only left ei,`+1 as going down one level in depth erases one value ei,x, x ∈ {1, . . . , `}.

67

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Dec(t, (C1, C2, C3), vk, σ, P1, ..., Pn):

1. Ciphertext-Verify. At decryption request of ((C1, C2, C3), vk, σ)
at time t = t1 . . . t`, each party Pi, i ∈ W checks whether
Sig.Verify(vk, (C1, C2, C3), σ) = 1 and whether the ciphertext is valid
for time period t and for the hashed verification key V K = H(vk). That
is, it checks whether the following equation holds.

e([h0 +
s∑

v=1

hvtv + h`+1V K]1, C2) = e(C3, [1]2).

If one or both checks fail it aborts.

2. Share-Decrypt. Else each party picks a uniformly random vi ← Zq and
uses its secret key ski,t = (ci, di, ei,`+1) to compute a decryption share
(c′i, d

′
i), where

d′i := die
V K
i,`+1[(h0 +

∑̀
v=1

hvtv + h`+1V K)vi]1 and c′i := ci[vi]2.

Afterwards, each party Pi,∈ W sends (c′i, d
′
i) secretly to all other parties.

3. Share-Verify. All parties in W use the public keys pkj , j ∈ W to check
if the contributed decryption shares are valid. That is, if

e(d′j , [1]2) = e([h]1, pkj) · e([h0 +
∑̀
v=1

hvtv + h`+1V K]1, c
′
j).

4. Combine. Let V ⊆ W indicate a set of parties sending valid decryption
shares. If V contains at least k + 1 distinct indices then the decryption
key (c′, d′) is computed as

c′ =
∏
i∈V

c′Li
i and d′ =

∏
i∈V

d′Li
i ,

where Li =
∏
j∈V,j 6=i(−i)/(j − i) are the Lagrange coefficients.

5. Finally, the plaintext is computed as

C1 · e(C3, c
′)/e(d′, C2) = M. (4.12)

Figure 4.7: The decryption protocol of our FST-PKE.

Remark 4.4. Note that the subset V ⊆ W from the decryption protocol (Fig. 4.7)
might be of size greater than k+ 1, while k+ 1 partial decryption shares are sufficient to

68

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

decrypt the ciphertext. For this reason aggregating only k + 1 decryption shares avoids
computational overhead.

Remark 4.5. The secret keys in our FST-PKE have a binary tree structure in the
sense of [CHK03b], except for the lowest level. In Theorem 4 from [CHK03b], it is
shown that encryption schemes, which have a binary tree structure on all levels, imply
forward security. Although it is possible to remove the lowest level and the strong one-
time signature scheme in our construction, doing so would result in a scheme which is
only forward secure against CPA instead of CCA.

4.6.2 Proof of Correctness.

We have to prove that (c′, d′) is a valid decryption key for ciphertext C = (C1, C2, C3, vk, σ)
under t.V K and the common public key pk = [x]2. To that end we show first that set
V, which indicates the correct decryption shares, can be determined. That is, we show
that we can check whether the decryption shares (c′i, d

′
i), i ∈ W are correct. Let (c′i, d

′
i)

be an honestly generated decryption in Step 2 of the protocol. Then,

d′i = di · eV Ki,`+1[(h0 +
∑̀
v=1

hvtv + h`+1V K)r′i]1

= [hxi + (h0 +
∑̀
v=1

hvtv)ri]1[h`+1riV K]1[(h0 +
∑̀
v=1

hvtv + h`+1V K)r′i]1

= [hxi + (h0

∏̀
v=1

hvtv + h`+1V K)(ri + r′i)]1, (4.13)

where we used the fact that ei,`+1 = [h`+1ri]1. Furthermore,

c′i = [ri + r′i]2. (4.14)

If a decryption share (c′i, d
′
i) satisfies (4.13) and (4.14) then the validity check in Step 3

is correct, because

e(d′i, [1]2) = e([hxi + (h0 +
∑̀
v=1

hvtv + h`+1V K)(ri + r′i)]1, [1]2)

= e([hxi]1, [1]2) · e([(h0 +
∑̀
v=1

hvtv + h`+1V K)(ri + r′i)]1, [1]2)

= e([h]1, [xi]2) · e([(h0 +
∑̀
v=1

hvtv + h`+1V K)]1, [ri + r′i]2)

= e([h]1, pki) · e([h0 +
∑̀
v=1

hvtv + h`+1V K]1, c
′
i).

For this reason, we can indeed check whether a decryption share (c′i, d
′
i) for message C

under t, V K and user public key [xi]2 is correct and thus include i into set V. It remains

69

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

to show that all decryption shares (c′i, d
′
i), i ∈ V interpolate to a valid decryption key

under the common public key gx2 . For this purpose, we set R :=
∑

i∈V Li(ri + r′i). Then,

d′ =
∏
i∈V

d′Li
i = [h

∑
i∈V

Li · xi]1[(h0 +
∑̀
v=1

hvtv + h`+1V K)(
∑
i∈V

Li(ri + r′i))]1

= [hx]1[(h0 +
∑̀
v=1

hvtv + h`+1V K)R]1,

where
∑

i∈V Li · xi = x and
∑

i∈V Li · (ri + r′i) = R. Furthermore,

c′ =
∏
i∈V

c′Li
i = [

∑
i∈V

Li(ri + r′i)]2 = [R]2.

Overall, we have for a valid ciphertext

C1 · e(C3, c
′)/e(d′, C2)

= M · e([h]1, pk)r
e([(h0 +

∏`
v=1 hvtv + h`+1V K)r], [R])

e([hx + (h0 +
∑`

v=1 hvtv + h`+1V K)R]1, [r]2)

= M · e([hx]1, [r]2)
e([(h0 +

∏`
v=1 hvtv + h`+1V K)r]1, [R]2)

e([hx+ (h0
∑`

v=1 hvtv + h`+1V K)R]1, [r]2)

= M.

4.6.3 Proof of Security.

For our FST signature scheme, we showed that it is secure if the forward-secure single
user signature scheme of Drijvers and Neven is secure. It is also possible to construct
a forward-secure single user encryption scheme in the same fashion as our FST scheme
and it is also possible to show that this single user scheme is secure. However, in order to
show that our FST encryption scheme is secure we cannot construct a reduction from the
single user to the threshold scheme. For the signature scheme this is possible because
on query of a signature the reduction forwards this query to its own signing oracle.
Then, it uses the received signature to compute the corresponding signature shares. In
the encryption scheme however, the reduction would simply receive the plaintext from
which it cannot compute valid decryption shares it needs to output to the attacker of
the FST encryption scheme. We circumvent this issue by a reduction from the HIBE
scheme from Boneh et al. [BBG05]; see Section 4.4.1. We interpret the identities as time
periods. Then, on query of a decryption the reduction makes a user secret key query
for the “identity” which corresponds to the appropriate time period of the ciphertext.
Given this user secret key it can provide valid decryption shares.
Similar to the proof of our FST signature scheme, we need to simulate the key generation
protocol DKG and the decryption protocol Decrypt. We start with the simulation of
Decrypt in Figure 4.5. For the simulation of DKG we refer to Section 4.5.3. According
to Definition 4.16, the adversary is allowed to control up to k parties during the key
generation and decryption procedure. First, we assume a static adversary as in the

70

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

proof in [GJKR07]. In the proof of Theorem 4.7, it is shown how to achieve security
against adaptive adversaries. In Section 4.7, it is explained why this approach gives a
more efficient scheme than the use of composite order groups as in [LY13b].
W.l.o.g. we assume the corrupted parties to be P1, . . . , Pk. Let B := {1, . . . , k} indicate
the set of corrupted parties, controlled by the adversary A, and let G := {k + 1, . . . , n}
indicate the set of uncorrupted parties, run by the simulator.

71

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

DecSim(t, (C1, C2, C3), vk, σ), (c, d))

1. The decryption is requested. Let t = t1 . . . t`. The simulator performs the
validity checks from Step 1 of protocol Dec. If one of these checks fail it
aborts.

2. Else, the simulator uses the polynomials ai(Z), bi(Z) for all i ∈ [n] and
the decryption key (c, d) for t, V K to compute valid decryption shares on
behalf of all uncorrupted parties: for j = k + 1, . . . , n it computes d′′j as

∏
i∈QUAL\{n}

k∏
s=0

(His)
jsĤn0

k∏
s=1

(
(Ĥn0)λs0 ·

k∏
i=1

[hs∗ni]
λsi
1

)js
.

Then, it picks wj ← Zq uniformly at random and computes d′j as

d′′j [(h0 +
∑̀
v=1

hvtv + h`+1V K)wj]1.

Afterwards, it computes c′j as:

c
∑k

s=1 λs0·js+1[wj]2.

Then, the simulator sends (c′j , d
′
j) for all j = k + 1, . . . , n to the cor-

rupted parties P1, . . . , Pk. The simulator might receive decryption shares
on behalf of the corrupted parties.

3. The simulator does nothing.

4. The adversary can use any set V of at least k+1 partial decryption shares
to construct the final decryption key:

(c′, d′) = (
∏
i∈V

cLi
i ,
∏
i∈V

dLi
i),

where Li =
∏
j∈V,j 6=i(−i)/(j− i) are Lagrange coefficients. The simulator

does nothing.

5. The adversary can use the decryption key (c, d) to decrypt the ciphertext.
The simulator does nothing.

Figure 4.8: The simulation of the decryption protocol.

Note that during the simulation of the decryption procedure the simulator already ex-
ecuted DKGSim (Fig. 4.5). Therefore, it is in possession of the secret shares x1, . . . , xk
and the polynomials ai(Z), bi(Z) for all i ∈ [n]. In the DKG protocol (Fig. 4.3) the

72

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

secret shares for all parties Pj , j ∈ [n] are defined as xj :=
∑

i∈QUAL sij mod q. In
DKGSim however, the shares are defines as xj :=

∑
i∈QUAL\{n} sij + s∗nj mod q, where

the values s∗nj for j = k+ 1, . . . , n, i.e. for j ∈ G, are not explicitly known. Moreover, in
DKGSim the public key of user Pj , j ∈ [n] is

[xj]2 =
∏

i∈QUAL\{n}

g
sij
2 g

s∗nj

2 =
∏

i∈QUAL\{n}

k∏
s=0

(Ais)
js

k∏
s=0

(A∗ns)
js ,

where the values A∗ns include the common public key y = [x]2. Hence, in order to
compute the secret share hxj for j ∈ G either the corresponding value [hx]1 or s∗nj
is required. Although these values are not known to the simulator it is still able to
simulate the role of the uncompromised parties during the decryption of a valid ci-
phertext (t, C1, C2, C3, vk, σ). In order to do so it requires a valid secret key (c, d)
for time t together with the hashed verification key V K = H(vk), i.e. for the string
t, V K. If the simulator is an adversary breaking the CPA security of the HIBE scheme
from Section 4.4.1 this key can be requested in its own security experiment. Let

t = t1 . . . t` and (c, d) =
(

[r]2, [hx+ (h0 +
∑`

v=1 hvtv + h`+1V K)r]1

)
. Define consis-

tently with DKGSim:

• His := [hais]1 for all i ∈ QUAL \ {n}, s = 0, . . . , k

• H∗n0 :=
∏
i∈QUAL\{n}(H

−1
i0)[hx]1

• s∗nj := snj = an(j) for j = 1, . . . , k

• H∗ns := (H∗n0)λs0
∏k
i=1[hs∗ni]

λsi
1 for s = 1, . . . , k

• Ĥn0 :=
∏
i∈QUAL\{n}(H

−1
i0 d)

Thus, pkj = [hxj]1, j ∈ G are defined as

∏
i∈QUAL\{n}

k∏
s=0

(His)
js

k∏
s=0

(H∗ns)
js .

To obtain a valid decryption share for party Pj , j ∈ G compute an intermediate d′′j as:

∏
i∈QUAL\{n}

k∏
s=0

(His)
jsĤn0

k∏
s=1

(
(Ĥn0)λs0

k∏
i=1

([hs∗ni]1)λsi
)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(∏
i∈QUAL\{n}

H−1
i0 d

) k∏
s=1

(
(

∏
i∈QUAL\{n}

H−1
i0 σ1)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(∏
i∈QUAL\{n}

H−1
i0 [hx+ (h0 +

∑̀
v=1

hvtv + h`+1V K)r]1

)
k∏
s=1

((∏
i∈QUAL\{n}

H−1
i0 [hx+ (h0 +

∑̀
v=1

hvtv + h`+1V K)r]1
)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js

73

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(∏
i∈QUAL\{n}

H−1
i0 [hx]1

)
[(h0 +

∑̀
v=1

hvtv + h`+1V K)r]1

·
k∏
s=1

((∏
i∈QUAL\{n}

H−1
i0 [hx]1

)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js
·
k∏
s=1

(
[(h0 +

∑̀
v=1

hvtv + h`+1V K)rλs0]1

)js

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
jsH∗n0

k∏
s=1

(
H∗ns

)js
[(h0 +

∑̀
j=1

hjtj + h`+1V K)(r
k∑
s=1

λs0j
s + r)]1

=
∏

i∈QUAL\{n}

k∏
s=0

(His)
js
(k∏
s=0

(
H∗ns

)js)
[(h0 +

∑̀
v=1

hvtv + h`+1V K)(r

k∑
s=1

λs0j
s + r)]1

= [hxj + (h0 +
∑̀
v=1

hvtv + h`+1V K)(r
k∑
s=1

λs0j
s + r)]1.

To re-randomize, pick a uniformly random wj ← Zp and compute d′j and c′j as

d′′j [(h0 +
∑̀
v=1

hvtv + h`+1V K)wj] and c
∑k

s=1 λs0js+1[wj]2. (4.15)

Again, without re-randomization the computations would all be deterministic. This
would allow an adversary two re-compute the original user secret key from two different
decryption shares and thus to distinguish the simulated game from the original security
game.

Lemma 4.3. The protocols Dec and DecSim are indistinguishable.

Proof. We compare the information seen by the adversary in each step of both protocols:

1. In both protocols the adversary sees or sends the decryption request for message
(C1, C2, C3, vk, σ) at time t.

2. The adversary receives decryption shares, which are all valid and uniformly ran-
dom. The adversary is allowed to send valid or invalid decryption shares on behalf
of the corrupted parties or to halt these parties. This has no impact as their are
sufficient, i.e. k + 1, uncorrupted parties left to provide valid decryption shares.

3. The adversary can check the validity of the received decryption shares. All the
shares sent by the simulator are valid and uniformly random.

4. For every set of at least k + 1 valid decryption shares the adversary can construct
a valid decryption key for the public key y. Since decryption shares are valid
and uniformly random all possible final decryption keys are valid and uniformly
random, as well.

5. The adversary decrypts the ciphertext correctly in both protocols.

We conclude that in each step both protocols have the same probability distribution and
that the view of the adversary is identical. Thus, both of them are indistinguishable.

74

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Theorem 4.5. The scheme (T, n, k)-ΠFST from Section 4.6 is (n, k1, k2)-robust if k1 +
k2 ≤ k and n ≥ 2k + 1. In particular, the scheme is (n, 0, k)-robust, i.e. robust against
malicious adversaries.

Proof. We argue for the strongest case, i.e. (n, 0, k). To show that (T, n, k)-ΠFST is
(n, 0, k)-robust we analyze all protocols where the adversary on behalf of the uncom-
promised parties may interact with the honest ones, i.e. KeyGen and Decrypt. More
precisely, we show that the adversary is incapable to prevent the honest parties from
executing these protocols successfully. The KeyGen protocol is instantiated with the
DKG protocol from [GJKR07], which was shown to be robust against malicious adver-
saries. The reason for this is that a party which deviates from the protocol specification
is either disqualified or its secret share is reconstructed by the honest parties. In the
case of the Decrypt protocol the adversary has two options to attempt cheating. One
option is to try manipulating the ciphertext. This however, is prevented in Step 1 of
the decryption protocol by checking the ciphertext for validity. The second option is to
try manipulating or denying decryption shares. This is prevented in Step 3 by using the
user public keys [xi]1, i ∈ [n] to check if the decryption shares are valid. Hence only valid
decryption shares are aggregated and the message is decrypted correctly. Moreover, the
adversary is allowed to control or halt at most k parties. Thus, a valid decryption share
can still be computed as long as n ≥ 2k + 1.

Theorem 4.6. Let n ≥ 2k+ 1 and let A be a static adversary that (tA, εA)-breaks the
CCA forward security of (T, n, k)-ΠFST from Section 4.6. Given A, we can build an
adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE from [BBG05], an
adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of signature scheme Σ,
and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision resistance of hash function H,
such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ + εA′ > εA.

Proof. Conceptually, we follow the proofs from Sections 4 and 6 in [BCHK07], which
were also reproduced in Section 4.1 in [BBH06]. In [BCHK07], a CPA-secure HIBE
with ` + 1 levels and identities of length n + 1 bits is turned into a CCA-secure HIBE
with ` levels and identities of length n bits. The reason for the shorter identities in the
CCA-secure scheme is that this framework uses one bit of the identity as a padding.
This padding guarantees that decryption queries do not correspond to prefixes of the
challenge identity. In our scheme however, the first ` levels are single bits and the deep-
est level has elements in Zq, which makes it impossible to spend one bit of each identity
for the padding. However, in our scheme the adversary is only allowed to make decryp-
tion queries with respect to time periods (plus a value in Zq). Since time periods are
always encoded with full length they cannot correspond to prefixes of each other. Thus
a padding is not necessary.
We start with describing an adversary A′ playing the CPA security game for HIBE
ΠHIBE and simulating the CCA forward security game for a static adversary A.
At the beginning, A sends its choice of the k parties it wants to corrupt to A′. Let B
denote the set of the indices of these parties and G := {1, . . . , n} \ B. Adversary A′ runs
Sig.KeyGen to obtain (vk∗, signk∗). Then it computes H(vk∗) := V K∗. Moreover,

75

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

it receives a master public key mpk := [x]2 ∈ G2 from its own security experiment. In
order to simulate the KeyGen procedure adversary A′(on behalf of the uncompromised
parties) runs the DKGSim protocol on input ([x]2, n, k). Both adversaries receive all
information to compute the secret key shares of the compromised parties and the user
public keys pki for all i ∈ [n] as well as the common public key pk = mpk = [x]2. Af-
terwards, A has access to the following procedures, which are simulated by A′ as follows.

• Break-In(t′, j).On input a time period t′ = t1 . . . t` adversary A′ queries Key-
Query on all nodes from the set Ct′ , which was defined in the KeyUpdate pro-
cedure in 4.6. According to the definition of Ct′ these are all the nodes which allow
the computation of the secret keys for all time periods t > t′ but for no time period
t < t′. As a response it obtains tuples of the form

(c, d, es+1, . . . , e`+1) =

(
[r]2, [hx+ (h0 +

s∑
v=1

hvwv)r]1, [hs+1r]1, . . . , [h`+1r]1

)
,

which correspond to internal nodes ω = ω1 . . . ωs, where s ≤ `. In order to compute
the secret keys skt′,j for all j ∈ G it proceeds as follows. It defines equivalently to
DecSim:

– His := [hais]1 for all i ∈ QUAL \ {n}, s = 0, . . . , k

– H∗n0 :=
∏
i∈QUAL\{n}(H

−1
i0)[hx]1

– s∗nj := snj = an(j) for j = 1, . . . , k

– H∗ns := (H∗n0)λs0
∏k
i=1[hs∗ni]

λsi
1 for s = 1, . . . , k

– H̄n0 :=
∏
i∈QUAL\{n}(H

−1
i0 d) for each tuple (c, d, . . .) separately.

It computes for all tuples a corresponding value dj as:

∏
i∈QUAL\{n}

k∏
s=0

(His)
jsH̄n0

k∏
s=1

(
(H̄n0)λs0

k∏
i=1

[hs∗ni]
λsi
1

)js

and for all values x̃ from {c, ei+1, . . . , e`+1} it computes x̃j as

x̃
∑k

s=1 λs0·js+1.

In order to guarantee a perfect simulation, A′ re-randomizes the secret keys of all
parties in the same fashion as the decryption shares in (4.15). Finally, it outputs
skt′,j for all j ∈ G as the stack of tuples of the form (cj , dj , ej,i+1, . . . , ej,`+1).
Analogously to the decryption in DecSim we have

dj = [hxj + (h0 +

s∑
v=1

hvwv)(r
′
k∑
s=1

λk0j
s + r′)]1.

Overall, these stacks form valid secret keys skt′,j for all j ∈ G and their simulation
is perfect. If Challenge(t∗,M0,M1) was already queried then all break-in queries
with t′ 6 t∗ are invalid.

76

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

• Challenge(t∗,M0,M1). Adversary A submits two messages M0,M1 and challenge
time period t∗. Adversary A′ forwards (t∗.V K∗,M0,M1) to Challenge in its own
security game and receives a ciphertext (C1, C2, C3) which equals(

e([h]1, pk)r ·Mb, [r]2, [(h0 +
∑̀
v=1

hvtv + h`+1V K
∗)r]1

)
∈ G3 ×G2 ×G1,

where b is a uniformly random bit. Afterwards, it computes a signature σ∗ ←
Sig.Sign(signk∗, (C1, C2, C3)) and outputs the challenge ciphertext

C∗ = (C1, C2, C3, vk
∗, σ∗).

If Break-In on input t′ 6 t∗ was previously queried then the challenge query is
invalid.

• Dec(t, C1, C2, C3, vk, σ). Whenever A asks for a decryption then A′ proceeds as
follows. First, it checks if vk = vk∗ and Sig.Verify(vk, (C1, C2, C3), σ) = 1 or if
vk 6= vk∗ and H(vk) = V K∗. If one of these conditions is true then A′ aborts and
outputs a uniformly random bit to Guess in its own security game. Else it queries
KeyQuery(t, V K) to obtain the decryption key skt,V K = (c, d). Then, it sim-
ulates the decryption procedure by running DecSim(t, (C1, C2, C3), vk, σ, (c, d)).
Since t, V K is unequal to and no prefix of t∗, V K∗ the query to KeyQuery is
valid. Dec cannot be queried on input (t∗, C∗).

• Guess(b′). Adversary A outputs its guess b′ ∈ {0, 1}, which A′ forwards to Guess
in its own experiment.

We denote Forge the event that A′ aborts during a decryption query because of the
first condition and Coll that it aborts because of the second condition. Together with
Lemma 4.1 and Lemma 4.3 it can be seen that adversary A′ provides a perfect simulation
to A as long as any of these two events do not happen. Thus,

|εA − εA′ | 6 Pr[Forge ∪Coll] = Pr[Forge] + Pr[Coll]. (4.16)

In order to determine Pr[Forge] note that if Forge occurs then A has submitted a valid
ciphertext (C1, C2, C3, vk

∗, σ∗), which means that σ∗ is a valid signature for message
(C1, C2, C3) under verification key vk∗. We show how to build an adversary A′′ that
breaks the sEUF-1CMA security of Σ using A.
Adversary A′′ plays the sEUF-1CMA security game with respect to Σ. At the be-
ginning, it receives a verficiation key vk∗ from its challenger. After A has submit-
ted its choice of corrupted parties adversary A′′ picks a uniformly random x ← Zq
and executes DKGSim([x]2, n, k) on behalf of the uncorrupted parties. Since A′′ is
in possession of x it is able to simulate all secret keys queried to Break-In. If A
makes a valid query Dec(t, C1, C2, C3, vk

∗, σ∗) then A′′ outputs (C1, C2, C3, σ
∗) as a

forgery to its own security experiment. If A makes a query Challenge(t∗,M0,M1)
then A′′ picks a bit b uniformly at random and computes Encrypt(pk, t∗,Mb) →
(C1, C2, C3). Afterwards, it queries the signing oracle in its own security experiment
on input (C1, C2, C3). It receives a signature σ and returns (t∗, C1, C2, C3, vk

∗, σ) to

77

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

A. If A happens to query Dec(C1, C2, C3, vk
∗, σ∗) then, A′′ submits ((C1, C2, C3), σ∗)

as its forgery. Note that if the challenge oracle was already queried we still have
((C1, C2, C3), σ) 6= ((C1, C2, C3), σ∗). It follows that

Pr[Forge] = εA′′ . (4.17)

It remains to determine Pr[Coll] for H by building an adversary A′′′ that breaks the
collision resistance of H. It is eadsy to see that adversary A′′′ can simulate the CCA
forward security game for A perfectly by running KeyGen and Sig.KeyGen. When-
ever a collision occurs it forwards the corresponding inputs to H to its own challenger.
It follows that

Pr[Coll] = εA′′′ . (4.18)

Putting (4.17) and (4.18) in (4.16) gives us εA 6 εA′ + εA′′ + εA′′′ .
It is easy to see that all algorithms run in approximately the same time. This completes
the proof.

Theorem 4.7. Let n ≥ 2k+ 1 and let A be an adaptive adversary that (tA, εA)-breaks
the CCA forward security of (T, n, k)-ΠFST from Section 4.6. Given A we can build an
adversary A′ that (tA′ , εA′)-breaks the CPA security of HIBE ΠHIBE from [BBG05], an
adversary A′′ that (tA′′ , εA′′)-breaks the sEUF-1CMA security of a signature scheme Σ,
and an adversary A′′′ that (tA′′ , εA′′′)-breaks the collision resistance of H, such that

tA′′′ ≈ tA′′ ≈ tA′ ≈ tA and εA′′′ + εA′′ +

(
n

k

)
εA′ > εA.

Proof. Adversary A′ proceeds as in the proof of Theorem 4.6. The only difference is
that it guesses in advance of step 1 of DKGSim which parties the adversary is going
to corrupt. Whenever the adversary corrupts a party Pj , j ∈ B then it takes over the
role of this party and receives all values computed and stored on behalf of this party by
A′. If at the end A outputs a bit but has not corrupted at least k parties then A′ adds
some artificial corruptions to the set B uniformly at random such that it has exactly k
corrupted parties. Adversary A′ aborts the simulation and outputs uniformly random
bit if a guess was wrong (either of A or A′). The simulation is successful with probability
1/
(
n
k

)
.

4.7 Discussions

From static to adaptive adversaries. To protect against adaptive adversaries we used
complexity leveraging. This approach results in an additional security loss of

(
n
k

)
, where

n denotes the number of parties and k a threshold. Although, this loss seems to be quite
big, in practice n is relatively small. For instance for a threshold scheme with 10, 20 or 30
parties the maximum loss is 28, 218 and 228, respectively. Libert and Yung [LY13b] also
achieve security against adaptive adversaries for their FST-PKE. Even their suggestions
for FST signature schemes [LY13a] would achieve security against adaptive adversaries.

78

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

However, in order to circumvent complexity leveraging they make use of bilinear pairings
of composite order. This approach is known as the dual system approach and prior to
their work it was only used to achieve full security for (Hierarchical-)IBE and attribute-
based encrpytion schemes [Wat09, LOS+10, LW10]. Although the dual system approach
is a very powerful tool to obtain full security or security against adaptive adversaries,
it lacks efficiency when implemented. The reason for this is that groups of composite
order require a much bigger modulus to guarantee the same level of security than elliptic
curves on groups of prime order.13 It can be seen that the security loss in our scheme
can be compensated by a slightly bigger modulus. This modulus remains much smaller
compared to one of composite order and thus results in a much more efficient scheme.
Finally, it should be mentioned that there exist several techniques to transfer the dual
system approach to prime order groups [Wat09, Fre10, LW10]. However, they result in
larger ciphertexts and seem also to be less efficient in terms of communication rounds for
decryption. Moreover, it is not clear whether they can be instantiated without a trusted
dealer. We leave it as an open problem to use these techniques to achieve the same
efficiency and advantages as our forward-secure threshold schemes, i.e. a non-interactive
key update and signing(decryption) procedure, no trusted dealer, and the possibility to
implement the scheme on standardized elliptic curves.

Sizes of keys, signatures, and ciphertexts. In [DN19], Drijvers and Neven analyzed the
signature and key sizes in the context of their forward-secure single user scheme. The
structure of the signatures and keys in our threshold scheme is the same structure as
of the signatures and keys in their single user scheme. The only difference is that the
common parameters in the threshold version have one additional element in G2. As
pointed out in [DN19], a signature consists of one element in G1, one element in G2 and
one bit string of length `, where T = 2` is the maximum number of time periods. For all
time periods, the secret key contains at most one node key at every level d = 1, . . . , `.
For level d the node key consists of 1 element in G2 and `− d+ 2 elements in G1, which
leads to at most ` elements in G2 and `2/2+3`/2 elements in G1. The public key and the
common parameters consist of `+ 4 elements in G1, 3 elements in G2, and a description
of the hash function and the pairing group. This includes the additional element in
G2. For a BLS12-381 curve one element in G1 requires 32 bits and one element in G2

requires 40 bits. Assuming T = 230, this yields a signature size of 84 bytes and a secret
key shares of size of at most 16800 bytes. The elements from the public key and the
common parameters require 1208 bytes. For the FST-PKE, we also need in the common
parameters a description of a strong one-time secure signature scheme. The key sizes for
the encryption scheme are the same as for the signature scheme. A ciphertext consists
of one element from G1, G2, and G3 plus the signature and verification key of the strong
one-time secure signature scheme.

The (im-)possibility of mobile adversaries and non-interactive key update. A mobile
adversary can switch between the parties it corrupts. We want to emphasize that in
general, it is not possible to tolerate such adversaries while having non-interactive key
update. The reason is that an adversary could for instance compromise all parties but
only one party per time period. Thus, it could update the secret key shares to the time

13For comparison of concrete sizes see the common recommendations: https://www.keylength.com/.

79

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

period of the last compromise and reconstruct the secret key without ever exceeding
the threshold during one time period, which by security definition basically means that
the adversary broke the scheme without having k + 1 key shares for one time period.
This attack is even possible for interactive key updates that require interaction of fewer
parties than the threshold. However, prevention against this attack can be given by
proactive security. In a nutshell, proactive security means that we can refresh the secret
key shares in a way such that all shares which were not refreshed cannot be used to
reconstruct the secret key anymore (as long as the amount of these shares do not exceed
the threshold). Unfortunately, this refreshing requires interaction between the parties
or between each party and a trusted dealer, such that allowing mobile adversaries or
having non-interactive key updates can be seen as a trade-off. Indeed, our FST schemes
can be proactivized.

On the distinction between proactive and forward security. Prevention against mobile
adversary can be given by proactive security. In a nutshell, proactive security means
that we can refresh the secret key shares in a way such that all shares which were not
refreshed cannot be used to reconstruct the secret key anymore (as long as the amount
of these shares do not exceed the threshold). Unfortunately, this refreshing requires
interaction between the parties or between each party and a trusted dealer, such that
allowing mobile adversaries or having non-interactive key updates can be seen as a trade-
off. We explain the differences between proactive and forward security in more details
below. In forward security, the public key is fixed but the secret key changes in regard
to the time period. The time period is also embedded in the secret key. If the secret
key of time period t gets exposed, it is possible to sign signatures for all time periods
t′ > t, but it is still infeasible to do so for time periods t′ < t. Proactive security is an
additional interactive security mechanism for secret sharing. This mechanism changes
the secret shares, but not the secret itself and as in forward security, the public key
remains unchanged. Since proactive security does not embed the time period it can be
seen as a parallel time line when combined with forward security. For instance, let k1

be shares from a time period t and k2 be shares from the same time period t but after
proactivization. Further, let k1 + k2 > k + 1, but k1, k2 < k + 1, where k denotes the
threshold. Then, it is not possible to reconstruct the secret from the shares k1 and
k2, although they belong to the same time period. Overall, proactivization can provide
additional security but it must be executed carefully since every set of players of size at
most k which did not participate in proactivizing is forever excluded from signing.

Tolerating mobile adversaries. In order to proactivize the key material in our schemes,
the users had to run the DKG protocol where each party Pi sets the constant term
of polynomial ai to 0. Then, the resulting share held by each party after this DKG
execution is multiplied to all terms d′i in its secret key shares. It is also worth men-
tioning that in order to tolerate mobile adversaries, having a non-interactive key update
procedure and a separate protocol for proactivization is still preferable to having an
interactive key update procedure. The reason is that the former allows different levels of
granularity. For instance, key update could happen every hour and proactivization once
per day. Proactive security was introduced by Ostrovsky and Yung [OY91]. Herzberg et
al. proposed techniques to achieve robust proactivization for polynomial secret sharing
[HJKY95, HJJ+97].

80

4 Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes

Conclusion. We proposed a forward-secure threshold schemes signature and encrption
scheme. Bot of them improve the state of the art in many aspects. The main advantages
of our schemes are the non-interactive key update and signing(decryption) procedure,
the fact that it can be implemented on standardized pairing-friendly curves and, that
no trusted dealer is required. Our signature, ciphertext and key sizes are also quite
short. We proved our scheme secure against adaptive and robust against malicious
adversaries.Morever, it is possible to add a proactivization procedure to our schemes in
order to tolerate mobile adversaries.

81

CHAPTER 5

Efficient Adaptively-Secure Cryptosystems via Near-

Collision Resistance

We construct adaptively-secure variants of the selectively-secure pairing-based IB-KEM
and digital signature of Boneh and Boyen [BB04a, BB04c]. Both are proven secure in
the standard model, based on q-type assumptions, and have public key size O(λ), where
λ denotes the security parameter. The IB-KEM and the digital signature scheme have
only a single group element as ciphertext and signature, respectively. Moreover, the se-
curity reductions are quadratically tighter than in the corresponding schemes by Jager
and myself [JK18, Asiacrypt 2018]. As a technical contribution we introduce blockwise
partitioning, which leverages the assumption that a cryptographic hash function is Near-
Collision Resistant to prove full adaptive security of cryptosystems.
The results in this chapter are based on collaborations with Tibor Jager and David
Niehues. The concept of Near-Collision Resistance is due to David Niehues and inspired
by Truncation Collision Resistance from Tibor Jager and myself [JK18, Asiacrypt 2018].
The construction of IB-KEM and digital signatures are mainly due to myself. The re-
sults are part of an ongoing submission.

5.1 Introduction

In the random oracle model (ROM) [BR93a] a cryptographic hash function is mod-
eled as an oracle that implements a truly random function. This approach provides
a very powerful tool to prove security of cryptosystems. For example, it enables to
adaptively “program” a hash function to map certain input values to specific output
values in the security proof. However, the random oracle is a hypothetical concept
and in practice it requires implementation with a standard cryptographic hash function,
like SHA-3. This approach incurs the assumption that the implemented hash func-
tion is “secure enough” for the given application, but does not require precise security
properties. In addition to these missing security properties, there are also well-known
difficulties of instantiating random oracles up to the point that a scheme can be proven
secure in the ROM, but being insecure when implemented[CGH98]. A fundamental
question is to which extent the ROM is indeed necessary to obtain practical construc-
tions of cryptosystems. By advancing our proof techniques for cryptographic schemes,
we may eventually be able to construct secure schemes in the standard model with the
same efficiency as corresponding schemes with security proofs in the ROM. It is known

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

that for some primitives a programmable random oracle is indeed inherently necessary
[Nie02, FLR+10, HMS12, FF13]. But for adaptively-secure identity-based encryption
schemes and standard signatures schemes, there are no such impossibility results.

Techniques to achieve adaptive security. In the context of identity-based encryption,
the established standard security notion is called adaptive security [BF01]. This notion
considers an adversary that is able to choose the identities for which it requests secret
keys or a challenge ciphertext adaptively in the security experiment. A weaker notion is
given by so-called selective security [BB04a], where the adversary has to announce the
“target identity” associated with a challenge ciphertext at the beginning of the security
experiment, even before seeing the public parameters. There exists also a distinction
between adaptive and selective security for signature schemes [BLS04, BB04c]. In the
case of signature schemes, the adversary can either query signatures adaptively or it has
to announce for which messages it wants to receive signatures before seeing the public
parameters. The advantage of “selective” security is that it is much easier to achieve
and therefore yields more efficient constructions. The ROM can then be used to convert
a selectively-secure scheme into an adaptively-secure one with negligible performance
overhead, and thus yields an efficient and adaptively-secure construction. This generic
transformation is based on “programming” the random oracle, which essentially means
that it is possible to adaptively modify the mapping of function inputs to outputs in a way
that is convenient for the security proof. Although this is very useful to achieve efficient
and adaptively-secure constructions, programming the random oracle is considered as
particularly unnatural, because no fixed function can be as freely programmed as a
random oracle. There exist techniques to achieve adaptive security in the standard model
by realizing certain properties of a random oracle with a concrete construction (i. e., in
the standard model). This includes admissible hash functions [BB04b], programmable
hash functions [Wat05, HK08, HJK11, FHPS13, CFN15], and extremely lossy functions
[Zha16]. However, these typically yield significantly less efficient constructions and are
therefore less interesting for practical applications than corresponding contructions in
the random oracle model.

Truncation Collision Resistance by Jager and Kurek. A different approach to obtain
adaptive security is to use Truncation Collision Resistance [JK18] of a cryptographic
hash function to achieve adaptive security. In contrast to the aforementioned approaches,
this does not introduce a new “algebraic” construction of a hash function. Instead, the
idea is to formulate a concrete hardness assumption that on the one hand is “weak
enough” to appear reasonable for standard cryptographic hash functions, such as SHA-
3, but which at the same time is “strong enough” to be used to achieve adaptive security.
It is shown that this indeed yields very efficient and adaptively-secure constructions, such
as identity-based encryption with a single group element overhead and digital signatures
that consist of a single group element. However, the main disadvantages of the con-
structions in [JK18] are that very strong computational hardness assumptions (so-called
q-type assumptions with very large q) are required, and that the reductions are extremely
non-tight.

Our contributions. We introduce blockwise partitioning as an approach to leverage the
assumption that a cryptographic hash function is near-collision resistant. Near-collision
resistance is inspired by the notion of Truncation Collision Resistance by Jager and

83

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Scheme |mpk| |C| Security Assumption ROM Security Loss

[BF01] 2 1 adap. DBDH Yes O(qkey)
[Wat05] n+ 3 2 adap. DBDH No O(t2 + (n · qkey · ε−1)2)
[Wat09] 13 10 adap. DLIN+DBDH No O(qkey)
[Lew12] 25 6 adap. DLIN No O(qkey)

[CLL+13] 9 4 adap. SXDH No O(qkey)
[AHY15] O(λ) 8 adap. DLIN No O(log(λ))
[BB04a] 4 2 selec. qDBDHI No O(1)
[JK18] O(λ) 1 adap. qDBDHI No O(t7A/ε

4
A)

Ours O(λ) 1 adap. qDBDHI No O(t3A/ε
2
A)

Figure 5.1: Comparison of IB-KEMs based on pairings with prime order groups and
short ciphertexts. |mpk| is the number of group elements in public keys
(descriptions of groups and hash functions not included), n the length of
identities, λ the security parameter. All public keys include at least one
element from the target group of the pairing, except for [BF01]. |C| is the
number of group elements in the ciphertexts when viewed as a KEM, re-
spectively. “Adap.” means adaptive IND-ID-CPA security as defined below,
“selec.” is selective security in the sense of [BB04a]. The security loss is
defined as the value L that satisfies tB/εB = L · tA/εA, where tA,εA and
tB,εB are the running time and advantage probability of the adversary and
reduction, respectively. qkey is the number of identity key queries

Kurek [JK18]. It essentially captures the same intuition and therefore can be considered
equally reasonable. We show that Near-Collision Resistance yields more efficient cryp-
tographic schemes. More precisely, we construct a new variant of the pairing-based
identity-based encryption schemes of Boneh and Boyen [BB04a]. In comparison to
[BB04a], we achieve adaptive security instead of selective security and do not require
the random oracle model. Our scheme is based on a q-type assumption and a ciphertext
consists only of a single group element. In comparison to the corresponding construc-
tion from Jager and Kurek [JK18], the q of the required q-type assumption is reduced
quadratically, while the tightness of the reduction is improved quadratically, as well. We
also construct a signature scheme with adaptive security in the standard model, where
a signature is only a single element from a prime-order group, which achieves the same
quadratic improvement over a construction from [JK18]. Again, we do not require the
random oracle model. We compare existing identiy-based encryption schemes and signa-
tures in Fig. 5.1 and Fig. 5.2, respectively. We compare Truncation Collision Resistance
with near-collision resistance in Section 5.5.

5.2 Blockwise Partitioning via Near-Collision Resistance

Confined guessing [BHJ+13, BHJ+15] is a technique to construct efficient and adaptively-
secure digital signature schemes. It has been used for instance in [DM14, Alp15]. Un-
fortunately, it is only applicable to signatures, but not to identity-based schemes such

84

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Scheme |pk| |σ| Security Assumption ROM Security Loss

[BLS04] 2 1 adap. CDH Yes O(qSig)
[BB04c] 5 2 selec. qDH No O(1)
[Wat05] n+ 3 2 adap. CDH No O(n · qSig)
[HJK11] n+ λ+ 3 2 adap. qDH No O(n2 · qSig)

[BHJ+13] O(log λ) 3 adap. CDH No O((ε−1 · qm+1
Sig)c/m)

[JK18] O(λ) 1 adap. qDH No O(t7A/ε
4
A)

Ours O(λ) 1 adap. qDH No O(t3A/ε
2
A)

Figure 5.2: Comparison of short signature schemes based on pairing with prime or-
der groups. The column |G| refers to the order of the underlying groups
(prime or composite), |pk| is the number of group elements in public keys,
n is the length of messages, and λ the security parameter. All pub-
lic keys include one element from the target group of the pairing, except
for [BLS04, HJK11, BHJ+13]. The column |σ| refers to the number of group
elements in the signature. “Adaptive” security means EUF-CMA security,
“selec.” security is from [BB04c]. The remaining columns state the assump-
tion the proof is based on, whether the Random Oracle Model is used, and
the security loss of the reduction, where qSig is the number of signing queries,
tA and εA the running time and advantage of the adversary, and the loss is
computed as explained in Figure 5.1. The values m and c are system param-
eters influencing keys and signature sizes. Note that [HJK11] present also
other trade-offs with larger public keys consisting and shorter signatures, but
always strictly larger than one group element.

85

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

as identity-based key encpsulation mechanisms (IB-KEMs). We propose blockwise par-
titioning as a similarly technique, and show how it can be used to construct efficient
IB-KEMs and signature schemes with adaptive security. It is based on the near-collision
resistance of a cryptographic hash function, which is inspired by the closely related no-
tion of truncation collision resistanceby Jager and Kurek [JK18]. The main advantage
of near-collision resistance is that it enables a more fine-grained guessing compared to
truncation collision resistance, which results in more efficient constructions due to tighter
security reductions and weaker hardness assumptions. Additionally, near-collision resis-
tance enables the use of hash functions with smaller output length.The constructions
in [JK18] require a hash function output length of 4(λ + 1), where λ is the security
parameter. Here, a hash function output length of 2λ + 3 is sufficient. Due to the fact
that in practice the common output length for collision-resistant hash functions is ap-
proximately 2λ this is basically optimal. In particular, for many practical construction
collision resistant hash function are used to map long idetities to short strings anyway.
In this section we describe the framework and assumptions for blockwise partitioning
and give some more technical intuition. Moreover, we state and prove a technical lemma
that provides useful properties of blockwise partitioning for security proofs.

5.2.1 Blockwise Partitioning.

Let H : {0, 1}∗ → {0, 1}n be a hash function. W.l.o.g. we assume that n =
∑`

i=0 2i. One
can generalize this to arbitrary n, but this would make the notation rather cumbersome
without providing additional insight or clarity. Then we can view the output space
{0, 1}n of the hash function as a direct product of sets of exponentially-increasing size

{0, 1}n = {0, 1}20 × · · · × {0, 1}2` .

For a hash function H we define functions H1, . . . ,H` such that

Hi : {0, 1}∗ → {0, 1}2i and H(x) = H0(x)|| · · · ||H`(x).

One can consider each Hi(x) as one “block” of H(x). Note that blocks have exponentially
increasing size and there are blog nc+ 1 blocks in total.

Remark 5.1. Note that in this chapter the notation Hi has a different meaning than in
Chapter 3.

Using blockwise partitioning. Let t = t(λ) be a polynomial and let ε = ε(λ) be a non-
negligible function such that ε > 0 and t/ε < 2λ for all λ ∈ N. In the security proofs
of our cryptosystems, t and ε are (approximations of) the running time and success
probability of the adversary. We define an integer n′ depending on (t, ε) as

n′ := dlog(4t · (2t− 1)/ε)e. (5.1)

Note that if n ≥ 2λ+ 3, then we have 0 ≤ n′ ≤ n as we show in Lemma 5.1 below.
The value n′ uniquely determines an index set I = {i1, . . . , iω} ⊆ {0, . . . , `} such

that n′ =
∑

i∈I 2i, where ` := blog nc. The key point in defining n′ as in Eq. (5.1) is
that it provides the following two properties simultaneously:

86

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Guessing from polynomially-bounded range. In order to transform a cryptographic
scheme from selective to adaptive security the reductions has to “predict” a certain
hash values H(x∗). Think of x∗ as the challenge identity in an IB-KEM security
experiment, or the message from the forgery in a signature security experiment.
Blockwise partitioning enables to do this from a polynomially bounded range as
as follows.

Consider the following probabilistic algorithm BPSmp On input λ, t, and ε it
computes n′ as in Eq. (5.1). Then it chooses Ki ← {0, 1}2

i
uniformly random for

i ∈ I and defines Ki = ⊥ for all i 6∈ I. Finally it outputs

(K0, . . . ,K`)← BPSmp(1λ, t, ε).

The joint range of all hash functions Hi with i ∈ I is {0, 1}2i1 ×· · ·×{0, 1}2iω , has
size

2n
′

= 2
∑

i∈I 2i .

Hence, we have
Pr [Hi(x

∗) = Ki for all i ∈ I] = 2−n
′
.

Note that 2n
′

is polynomially bounded, due to the definition of n′ in Eq. 5.1.

Upper bound on the collision probability. In Lemma 5.1 below we will show that near-
collision resistance of H guarantees that the probability that an adversary running
in time t outputs any two values x 6= x′ such that

Hi(x) = Hi(x
′) for all i ∈ I (5.2)

is at most ε/2. In the context of IB-KEMs x and x′ could be adaptively chosen
identities. In the context of digital signature schemes, x and x′ could be adaptively
chosen messages. Note that this does not mean that the collision probability is
negligible. In fact, this is not even possible due to the polynomially-bounded space.
However, there will be no collision with probability at least ε/2, which means that
collisions are sufficiently unlikely: an adversary that runs in some time t and has
some advantage ε will be often enough successful without finding a collision.

5.2.2 Blockwise Partitioning Via Near-Collision Resistance.

We give a formal definition of near-collision resistance and then provide a technical
lemma which will be useful for security proofs based on blockwise partioning of hash
function outputs.

Definition 5.1. Near-collision resistance Let H = {H : {0, 1}∗ → {0, 1}n} be a
family of hash functions. For n′ ∈ {1, . . . , n}, we say that an adversary A = (A1,A2)
n′-breaks the near-collision resistance of H, if it runs in time tA, A1 on input n′ outputs
an index set I ⊆ {1, ..., n} with |I| = n′ and

Pr
H←H

[
(x0, . . . xQ)← A2(H) :

∃u, v s.t. H(xu)[i] = H(xv)[i] for all i ∈ I

]
>
tA(tA − 1)

2n′+1
,

87

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

where H(·)[i] denotes the i-th bit of H. We say that H is near-collision resistant,
if there exists no adversary A n′-breaking the near-collision resistance of H for any
n′ ∈ {1, . . . , n}.
The following lemma will be useful to apply blockwise partitioning in security proofs.

Lemma 5.1. Let H : {0, 1}∗ → {0, 1}n be a hash function, t be a polynomial, and
let ε be a non-negligible function such that ε > 0 and t/ε < 2λ for all λ. Let n′ :=
dlog(4t · (2t− 1)/ε)e as in Eq. 5.1 and define set I such that n′ =

∑
i∈I 2i. Let A be an

algorithm that outputs (X(1), . . . , X(Q), X∗) and runs in time t and let

(K0, . . . ,K`)← BPSmp(1λ, t, ε),

where BPSmp is the algorithm described above.

1. Let coll be the event that there exists x, x′ ∈ {X(1), . . . , X(Q), X∗} such that

Hi(x) = Hi(x
′) for all i ∈ I. (5.3)

Let badChal be the event that there exists i ∈ I such that Pr [Hi(X
∗) 6= Ki]. If

H is drawn uniformly at random from a family of near-collision resistant hash
functions in the sense of Definition 5.1, then we have

(ε− Pr [coll]) · Pr [¬badChal] ≥ ε2/(32t2 − 16t).

Moreover, coll and badChal are independent of each other.

2. Let badEval be the event that there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗ such
that Hi(x) = Ki for all i ∈ I. Then we have

badEval =⇒ coll∨ badChal.

Proof. The proof uses the following inequalities and identities from [JK18, JN19].

n′ ∈ {1, . . . , 2k + 3}, 2t(2t− 1)

2n′
≤ ε

2
, and

1

2n′
≥ ε

16t2 − 8t
(5.4)

For a complete overview we start by rephrasing the proof of these identites and inequal-
ities from [JK18, JN19]. We start by proving n′ ∈ {1, . . . , 2λ+ 3}.

n′ = dlog(4t(2t− 1)/ε)e ≤
⌈
log
(

4 · 2λ(2t− 1)
)⌉

≤
⌈
log
(

8 · 2λt
)⌉
≤
⌈
log
(

2λ2λ+3
)⌉

= 2λ+ 3

Since 4t(2t− 1) = 8t2 − 4t > 1 for all t ∈ N and ε ∈ (0, 1], we have log(4t(2t− 1)/ε) > 0
and therefore j ≥ 1.

We proceed to prove 2t(2t− 1)/2n
′ ≤ ε/2.

2t(2t− 1)

2n′
=

2t(2t− 1)

2dlog(4t(2t−1)/ε)e ≤
ε2t(2t− 1)

4t(2t− 1)
=
ε

2

88

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Finally, we have

1

2n′
=

1

2dlog(4t(2t−1)/ε)e ≥
1

2
· ε

4t(2t− 1)
=

ε

16t2 − 8t
.

Now we are ready to continue with proving Property 1 by showing Pr[coll] < ε/2. Assume
an algorithm A running in time tA and outputting (X(1), . . . , X(Q), X∗) such that there
exist x, x′ ∈ {X(1), . . . , X(Q), X∗} such that Eq. (5.3) holds with probability at least ε/2.
By the definition of I and the functions Hi, this gives us that H(x) and H(x′) agree
on at least n′ positions. From A, we can construct an algorithm B that n′-breaks the
near-collision resistance of H. In order to do so, B simply outputs (X(1), . . . , X(Q), X∗)
provided by A. The running time tB of B is at most 2tA, since B does nothing more
than executing A and transmitting its outputs. Therefore, we get

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2n′
≥ tB(tB − 1)

2n′+1
,

where the second inequality follows from Eq. (5.4). This contradicts the assumptions
that H is near-collision resistant. Next, we determine Pr [¬badChal]. We have that
the events coll and badChal are independent of each other because (K0, . . . ,K`) is cho-
sen independently from (X(1), . . . , X(Q), X∗). Moreover, each Ki with i ∈ I is chosen

uniformly at random from {0, 1}22i

and thus we have

Pr [¬badChal] = Pr [Hi(X
∗) = Ki for all i ∈ I] =

1

2
∑

i∈I 2i
= 2−n

′
,

where the last equation follows by definition of n′. Finally, to prove Property 1, we
calculate

(εA − Pr[coll])2−n
′ ≥

(
εA −

εA
2

) εA
16t2A − 8tA

=
ε2
A

32t2A − 16tA
,

where the first inequality follows from Eq. (5.4). To show Property 2, we explain that
if badEval occurs, then either badChal or coll must occur. This is because if there exists
x ∈ {X(1), . . . , X(Q)} with x 6= X∗ with Hi(x) = Ki for all i ∈ I, then we have either
that also Hi(X

∗) = Ki for all i ∈ I and then coll occurs or we have that there exists
an index i ∈ I such that Hi(X

∗) 6= Ki and then badChal occurs. This concludes the
proof.

5.3 Adaptively Secure IB-KEM with Short Ciphertexts

In this section, we present a new IB-KEM that is adaptively secure and where the ci-
phertext consists of only a single element. Compared to the only other construction with
these properties[JK18], the q̄ of the required q̄-type assumption is reduced quadratically,
while the tightness of the reduction is improved quadratically, as well. Due to near-
collision resistance, we are also able to reduce the output length of the hash function to
roughly half of the output length required in [JK18], which reduces computational costs
while guaranteeing the same level of security.

89

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash functions,
let ` = blog(2λ+ 3)c, and let PG be the description of a cryptographic Type-1 pairing
group. We construct the IB-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as
follows.

• Setup(1λ). Choose a random hash function H ← H, a random generator [1]1 ∈
G1, and random elements x0, . . . , x` ∈ Z∗q . Define the master secret key msk as

msk = (x0, . . . , x`) ∈ Z`+1
q .

For i ∈ N and m ∈ N0 define bi(m) as the function that, on input of integer m,
outputs the i-th bit of the binary representation of m. For msk = (x0, . . . , x`) and
m = 0, . . . , 2`+1 − 1 define

F (msk,m) :=
∏̀
i=0

x
bi(m)
i . (5.5)

The public parameters are defined as

mpk = (PG, H, [F (msk, 0)]1, . . . , [F (msk, 2`+1 − 1]1).

• KeyGen(msk, id). Let

u(id) =
∏̀
i=0

(Hi(id) + xi) ∈ Zq. (5.6)

Then the private key for identity id is computed as

USKid = [1/u(id)]1.

• Encap(mpk, id). Observe that

u(id) =
∏̀
i=0

(Hi(id) + xi) = d0 +

2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id). Using H(id) and
mpk first [u(id)]1 is computed as

[u(id)]1 =

d0 +

2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
1

= [d0]1 ·
2`−1∏
m=1

[F (msk,m)]dm1 .

Note that this does not require knowledge of x0, . . . , x` explicitly.

Finally, the ciphertext and key are computed as

(C,K) = ([u(id)]r1, e([1]1, [1]1)r) ∈ G1 ×GT .

90

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

for a uniformly random r ← Zq.

• Decap(USKid, C, id). To recover K from a ciphertext C for identity id and a
matching user secret key [1/(u(id))]1, compute and output e(C,USKid).

5.3.1 Proof of Correctness

Let C be a ciphertext for identity id computed as above. Let [1/(u(id))]1 be a user
secret key for identity id. Then we have

e(C,USKid) = e([u(id)]r1, [1/(u(id))]1) = e([1]1, [1]1)r = K.

5.3.2 Proof of Security

The security of this construction is based on the q̄-DBDHI assumption for Type-1 pairing
groups [BB04a, BBG05]. It is the same assumption as for the scheme of [BB04a]. To
simplify notation in the security proof, we re-randomize the group elements with an
element y ← Z∗q . This has no impact on the hardness of the assumption because [1]1 ←
G1 is picked uniformly random anyway.

Definition 5.2. q̄-BDHI1 Assumption.
Let PG = (G1,GT , e, q) be the description of a cryptographic Type-1 pairing group

and let [1]1 be a random generator of G1. Let A be an adversary. We say that it
(tA, εA)-breaks the q̄-DBDHI1 assumption, if it runs in time tA and∣∣∣∣Pr

[
A
(
PG, [y]1, [yα]1, [yα

2]1, . . . , [yα
q̄]1, V0

)
= 1
]
−

Pr
[
A
(
PG, [y]1, [yα]1, [yα

2]1, . . . , [yα
q̄]1, V1

)
= 1
] ∣∣∣∣ ≥ εA

where y, α← Z∗q , V0 = e([y]1, [y]1)1/α and V1 ← GT .

Remark 5.2. In [BBG05], it is shown that the q̄-DBDHI assumption and the q̄-DBDHI∗

assumption from Definition 4.8 are equivalent. However, note that here Definition 4.8
refers to Type-3 pairing groups, whereas Definition 5.2 refers to Type-1 pairings. In
order to show equivalence, the same type of pairing is required.

We start by defining the strength of the q̄-DBDHI assumption. We set

q̄ := 4λ+ 7 + j + 2
∑

i∈[blog(2λ+3)c]0
Ki 6=⊥

(
22i − 1

)
.

Using j ≤ blog(2λ+ 3)c+ 1 and the following lemma, we obtain

q̄ ≤ 4λ+ 8 + blog(2λ+ 3)c+ 32t2A/εA.

91

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Lemma 5.2. Let I = {i : Ki 6= ⊥} be as above, then

2 ·
∑

i∈[blog(2λ+3)c]0
i∈I

(
22i − 1

)
≤

32t2A
εA

.

Proof.

2 ·
∑

i∈[blog(2λ+3)c]0
Ki 6=⊥

(
2(2i) − 1

)
< 2 ·

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

2(2i) <
∏

i∈[blog(2λ+3)c]0
Ki 6=⊥

2(2i) (5.7)

= 2 · 2

∑
i∈[blog(2λ+3)c]0

Ki 6=⊥
(2i)

= 2`

= 2 · 2dlog(4tA(2tA−1)/εA)e ≤ 8tA(2tA − 1)

εA

≥ 2 ·
16t2A
εA

=
32t2A
εA

,

where Inequality (5.7) holds, because a + b < ab for all a, b ≥ 2. This concludes the
proof.

Theorem 5.1. Let Π from Section 5.3 be instantiated with a family H of near-collision
resistant hash functions in the sense of Definition 5.1. Let A be an adversary that
(tA, εA)-breaks the IND-ID-CPA security of Π. Given A, we can build an adversary B
that, given (sufficiently close approximations of) tA and εA, (tB, εB)-breaks the q̄-DBDHI
assumption with q̄ ≤ 4λ+ 9 + blog(2λ+ 3)c+ 32t2A/εA such that

tB = O(32t2A/εA) and εB ≥ ε2
A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

Proof. Consider the following sequence of games. We denote with Gi the event that
Game i outputs 1 and with Ei := Pr [1← Gi]− 1/2 the advantage of A in Game i.

Game 0. This is the original IND-ID-CPAΠ
A(λ) security experiment. By definition, we

have
E0 = Pr[IND-ID-CPAAΠ(λ) = 1]− 1/2 = εA.

Game 1. This game is identical to Game 0, except that the challenger runs K̄ =
(K0, . . . ,K`) ← BPSmp(tA, εA) from Theorem 5.1. Furthermore, it defines I :=
{i : Ki 6= ⊥}. Let Q be the set of all queries that the adversary queries to
KeyGen(mpk,msk, ·), and let Q∗ := Q ∪ {id∗}, where id∗ is the challenge query. Ad-
ditionally, the challenger raises event coll, aborts and outputs a random bit if there exist
id, id′ ∈ Q such that id 6= id′, but Hi(id) = Hi(id

′) for all i ∈ I. Since coll is defined
exactly as in Lemma 5.1 we have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll]

92

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Game 2. In this game, the challenger raises event badChal which occurs if there exists
an index i ∈ I such that Hi(id

∗) 6= Ki and it raises event badEval if there exists id ∈ Q
such that Hi(id) = Ki for all i ∈ I. If either badChal or badEval occur it aborts and
outputs a random bit. By Property 2 of Lemma 5.1 we have badEval =⇒ coll∨ badChal
and by Property 1 we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥
ε2
A

32t2A − 16tA

Game 3. In this game, we change the way msk and mpk are generated by the challenger.
It samples α← Z∗q , x̃i ← Z∗q and sets for all i = 0, . . . , blog(n)c

xi :=

{
x̃i · α−Ki if Ki 6= ⊥
x̃i otherwise.

If xi = 0 for any 0 ≤ i ≤ blog(n)c, then the challenger aborts and outputs a random
bit. This happens iff x̃iα = Ki. Since x̃iα is distributed uniformly at random in Z∗q ,
the probability that this happens for any of the O(log λ) many xi is negligible and we
therefore have

E3 = E2 − negl(λ).

Game 4. In this game, the way the challenger chooses [1]1 is changed. Let j = |I| be the
number of non-wildcard positions in K̄. The challenger then first defines the polynomial
W (Z) ∈ Zq[Z] as

W (Z) := Zj−1

blog(n)c∏
i=0
Ki 6=⊥

∏
−22i+1≤k≤22i−1

k 6=0

(x̃iZ + k) . (5.8)

The challenger samples [y]1 ← G1 and sets [1]1 := [y]
W (α)
1 . If [1]1 = 1G1 , which happens

iff W (α) ≡ 0 mod p, the challenger outputs a random bit and aborts. It can be seen
that the distribution of [1] changes only if W (α) ≡ 0 mod p. By Lemma 5.2, we have
deg(W) ≤ blog(n)c + 8 + 32t2A/εA. Since α is uniformly random in Z∗q , we have by

the Schwartz-Zippel Lemma Pr [W (α) = 0] ≤ deg(W)
q−1 . Due to the fact that deg(W) is

polynomial in λ and q ∈ 2O(λ) by the properties of GrpGen, we have

E4 = E3 − negl(λ).

The previous steps now enable us to construct a an adversary B against the q̄-DBDHI
that perfectly simulates Game 4. B operates as follows.

93

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Initialization of B. B runs K̄ = (K0, . . . ,K`)← BPSmp(tA, εA) at the beginning of the
experiment and by doing so it also determines the index set I := {i : Ki 6= ⊥} according
to Lemma 5.1. Moreover, it receives a q̄-DBDHI instance (PG, [y]1, [yα]1, . . . , [yα

q̄]1, V),

where q̄ = 4λ + 6 + j + 2
∑

i∈[blog(n)c]0
Ki 6=⊥

(
22i − 1

)
, where j = |I| is the number of non-

wildcard positions in K̄, and where either V = e([y]1, [y]1)1/α or V ← GT . In order to
define [1]1, B samples x̃i ← Z∗q for all i = 0, . . . , blog(n)c. Then it (implicitly) sets

xi′ :=

{
x̃i′ · Z −Ki′ if Ki 6= ⊥
x̃i′ otherwise

.

It continues with compututing coefficients ϕ0, . . . ϕq̄−4λ−8 ∈ Zq such that

W (Z) = Zj−1

blog(n)c∏
i=0
Ki 6=⊥

∏
−22i+1≤k≤22i−1

k 6=0

(x̃iZ + k) =

q̄−4λ−8∑
k=0

ϕkZ
k.

B defines

[1]1 :=

q̄−8λ−8∏
k=0

[yαk]ϕk
1 = [y

q̄−4λ−8∑
k=0

ϕkα
k]1 = [yW (α)]1.

If [1]1 = 1G, meaning W (α) ≡ 0 mod q, B aborts and outputs a random bit. Afterwards
B proceeds with computing [F (msk,m)]1 for m = 0, ..., 2`+1− 1, where ` = blog(n)c and

F (msk,m) =
∏`
i′=0 x

bi′ (m)
i′ as in Equation (5.5). That is, it computes ψm,0, . . . , ψm,q̄ ∈ Zq

for all m = 0, ..., 2`+1 − 1 such that

W (Z) ·
∏̀
i′=0

x
bi′ (m)
i′ =

q̄∑
k=0

ψm,kZ
k.

For all m = 0, . . . , 2`+1 − 1 it sets

[F (msk,m)]1 :=

q̄∏
k=0

[yαk]
ψm,k

1 = [yW (α) ·
∏̀
i′=1

x
bi′ (m)
i′]1.

Finally B outputs mpk = (PG, H, [F (msk, 0)]1, . . . , [F (msk, 2`+1 − 1]1) to A.
In order to respond to KeyGen queries and the challenge query for id∗, B defines a

polynomial Pid(Z) ∈ Zq[Z], which will assume the role of u(id). Let xi′ = x̃i′ · Z −Ki′ if
Ki 6= ⊥ and xi′ = x̃i′ else. Then

Pid(Z) :=

blog(n)c∏
i′=1

(xi′ +Hi′(id)) .

Note that the values xi′ may contain Z. We require the following lemma by Ya-
mada [Yam17] to proceed with the description of B.

94

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

Lemma 5.3 (Lemma 14 in [Yam17]). Let id ∈ {0, 1}∗ then there exist ζid ∈ Z∗q and
Rid(Z) ∈ Zq[Z] such that

W (Z)

Pid(Z)
=

{
ζid
Z +Rid(Z) if Hi(id) = Ki for all i ∈ I
Rid(Z) else

.

Answering key queries. When B receives a key query for id ∈ {0, 1}∗ from A, it checks
whether Hi(id) = Ki for all i ∈ I and if so aborts and outputs a random bit. If there
is an index i ∈ I such that Hi(id) 6= Ki let Rid(Z) =

∑q̄
k=0 Z

kρid,k ∈ Zq[Z] such that
Rid(Z) = W (Z)/Pid(Z), which is guaranteed to exist by Lemma 5.3. First B computes
the coefficients ρid,k ∈ Zq for all k. Then it computes and returns

[1/u(id)]1 :=

q̄∏
k=0

[yαk]
ρid,k
1 = [y

q̄∑
k=0

αkρid,k]1 = [yRid(α)]1 = [yW (α)/Pid(α)]1.

Answering challenge. When B receives the challenge id∗ ∈ {0, 1}∗, it checks whether
there exists i ∈ I such that Hi(id) 6= Ki. If this is true then it aborts and outputs a
random bit. Else, let ζ := ζid∗ ∈ Zq and R(Z) := Rid∗(Z) =

∑q̄
k=0 Z

kγk ∈ Zq[Z] such
that W (Z)/Pid∗(Z) = ζ/Z + R(Z) as guaranteed by Theorem 5.3. B then computes
coefficients γk ∈ Zq of R.

Using that W (Z) =
∑q̄−4λ−8

k=0 ϕkZ
k it also computes

K̃ := V ζ·ϕ0e

(
[y],

q̄−4λ−8∏
k=1

[yαk−1]ζϕk

)
e

(
q̄∏

k=0

[yαk]γk ,

q̄−4λ−8∏
k=0

[yαk]ϕk
1

)
(5.9)

Afterwards it samples L← Zq and computes and outputs

K := K̃L and C := [1]L.

Finally, when A outputs its guess b′ to B, then B also outputs b′ as solution to the
q̄-DBDHI instance.

Analysis of B. Recapping the construction of B, we observe that mpk and all answers of
B are distributed identically to the challenger’s interactions withA in Game 4. Analyzing
B’s response to the challenge id∗, we distinguish the following two cases depending on
the q̄-DBDHI instance.
Let V = e([y]1, [y]1)1/α. Then we have for the first part of (5.9)

V ζ·ϕ0e

(
[y]1,

q̄−4λ−8∏
k=1

[yαk−1]ζϕk
1

)
= e([y]1, [y]1)ζ·ϕ0/αe

(
[y],

q̄−4λ−7∏
k=1

[yαk−1]ζϕk

)

= e

(
[y]1, [y

q̄−4λ−8∑
k=0

ζϕkα
k−1]1

)
= e ([y]1, [y]1)ζW (α)/α

95

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

and for the second part

e

(
q̄∏

k=0

[yαk]γk1 ,

q̄−4λ−8∏
k=0

[yαk]ϕk
1

)
= e ([yR(α)]1, [yW (α)]1) = e ([y]1, [y]1)R(α)W (α) .

Together we have that

K̃ = e ([y]1, [y]1)ζ·W (α)/α+R(α)·W (α) = e ([y]1, [y]1)W (α)2/Pid∗ (α) = e ([1]1, [1]1)1/Pid∗ (α) ,

where we use [yW (α)]1 = [1]1 and Lemma 5.3 multiplied by W (Z) on both sides.
Then if we implicitly set s := L/Pid∗(α) we have

K = K̃L = e ([1]1, [1]1)L/Pid∗ (α) = e ([1]1, [1]1)s and C = [1]L1 = [1]
Pid∗ (α)·s
1 .

Since Pid∗(α) = u(id∗) we have that C is a correct encapsulation of K.
In case that V ← GT we have that K̃L is uniformly random in GT . Thus K = K̃

and C do not match. Overall it can be seen that B simulates Game 4 perfectly. Plugging
the game sequence and the reduction together gives us

εB ≥ ε2
A/(32t2A − 16tA)− negl(λ).

Running time of B. The running time tB of B consists of the running time tA ofAplus the
time required to compute a valid public key mpk and the time to respond to oracle queries
by A. For computing mpk and these responses the most time consuming operations are
exponentiation. Each computation needs at most q̄ exponentiations. By Lemma 5.2 we
have q̄ ≤ 4λ+ 8 + blog(n)c+ 32t2A/εA = O(t2A/εA) and thus

tB = tA +O(q̄) = O(t2A/εA).

This completes the proof.

5.4 A Digital Signature Scheme

In this section we describe a new digital signature scheme that is adaptively secure and
where the signature consist of a single group element. Again, compared to the only
other construction with those properties [JK18] the q̄ of the required q̄-type assumption
is reduced quadratically, while the tightness of the reduction is improved quadratically,
as well. Due to near-collision resistance, we are also able to reduce the output length of
the hash function to roughly half of the output length required in [JK18], which reduces
computational costs while guaranteeing the same level of security.

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash
functions, let ` = blog(2λ+ 3)c, and let PG be the description of a cryptographic Type-1
pairing group. We construct the digital signature scheme Σ = (KeyGen,Sign,Verify)
as follows.

• KeyGen(1λ). Choose a random hash function H ← H, a random generator
[1] ∈ G1, and random elements x0, . . . , x` ∈ Z∗q . Define the secret signing key

96

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

signk as

signk = (x0, . . . , x`) ∈ Z`+1
q .

For i ∈ N and m ∈ N0 define bi(m) as the function that, on input of integer m,
outputs the i-th bit of the binary representation of m. For signk = (x0, . . . , x`)
and m = 0, . . . , 2`+1 − 1 define

F (signk,m) :=
∏̀
i=0

x
bi(m)
i . (5.10)

The verification key is defined as

vk = (PG, H, [F (signk, 0)]1, . . . , [F (signk, 2`+1 − 1]1).

• Sign(signk,M). Let

u(M) =
∏̀
i=0

(Hi(M) + xi) ∈ Zq. (5.11)

Then the signature for message M is computed as

σ = [1/u(M)]1.

• Verify(vk,M, σ). Observe that

u(M) =
∏̀
i=0

(Hi(M) + xi) = d0 +
2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(M). Using H(M) and
vk first [u(M)]1 is computed as

[u(M)]1 =

d0 +

2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
1

= [d0]1 ·
2`−1∏
m=1

[F (msk,m)]dm1 .

Note that this does not require knowledge of x0, . . . , x` explicitly.

Finally, the algorithm output 1 if

e([u(id)]1, σ) = e([1]1, [1]1)

and else 0.

97

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

5.4.1 Proof of Correctness

Let σ be a signature for message M computed as above. Then we have

e([u(M)]1, σ) = e([u(M)]1, [1/(u(M))]1) = e([1]1, [1]1).

5.4.2 Proof of Security

The security of this construction is based on the q̄-BDHI assumption for Type-1 pairing
groups [BB04a]. For consistency with the q̄-dBDHI assumptuion, we re-randomize the
group elements with an element y ← Z∗q . This has no impact on the hardness of the
assumption because [1]1 ← G1 is picked uniformly random anyway.

Definition 5.3. q̄-BDHI1 Assumption.
Let PG = (G1,GT , e, q) be the description of a cryptographic Type-1 pairing group

and let [1]1 be a random generator of G1. Let A be an adversary. We say that it
(tA, εA)-breaks the q̄-BDHI1 assumption, if it runs in time tA and∣∣∣Pr

[
A
(
PG, [y]1, [yα]1, [yα

2]1, . . . , [yα
q̄]1
)

= e([y]1, [y]1)1/α
]∣∣∣ ≥ εA

where y, α← Z∗q .
Due to the fact that security of this signature scheme can be shown analogously to

the one for IBKEM we leave the following theorem without a proof.

Theorem 5.2. Let Σ from Section 5.4 be instantiated with a family H of near-collision
resistant hash functions in the sense of Definition 5.1. Let A be an adversary that
(tA, εA)-breaks the EUF-CMA security of Σ. Given A, we can build an adversary B
that, given (sufficiently close approximations of) tA and εA, (tB, εB)-breaks the q̄-BDHI1

assumption with q̄ ≤ 4λ+ 9 + blog(2λ+ 3)c+ 32t2A/εA such that

tB = O(32t2A/εA) and εB ≥ ε2
A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

5.5 Discussions

Comparison to confined guessing and Truncation Collision Resistance. In order to
generically construct adaptively secure cryptosystems from selectively secure ones, all
techniques aim at reducing the size of an exponential-sized target space to a polynomial-
sized one. Both, near-collision resistance as well as Truncation Collision Resistance
[JK18], provide that on the one hand it is sufficiently easy to guess some amount of bits
of a hash value, but on the other hand, collisions on this bits are sufficiently unlikely.
This approach is similar in spirit to extremely lossy functions [Zha16]. In the case of
near-collision resistance, the index set I as defined in Section 5.2.1, may contain multiple
indices. This is a major difference of our approach to confined guessing and Truncation
Collision Resistance, where always only single blocks are guessed, because it enables to
define n′ in a much more fine-grained way, as any integer between 0 and n. In contrast,
[BHJ+13, BHJ+15] and [JK18] were only able to pick values n′ of exponentially increasing

98

5 Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance

size, such that n′ = 22j for some j, which is the reason why our reductions can improve
tightness and the strength of the required assumptions quadratically.

Conclusion. We introduced and used the concept of blockwise partitioning via near-
collision resistance in order to construct efficient and adaptively-secure cryptosystems.
This concept enables to reduce the target space, e.g. a identity or message space, to
polynomial size and thus to improve the tightness of a cryptographic reduciton. We
construct an adaptively-secure IBKEM, where ciphertexts consist of a single element, as
well as adaptively-secure digital signature schemes, where signatures consist of a single
element as well. The only schemes with those properties are due to Jager and Kurek
[JK18]. Compared to [JK18], our schemes even more efficient. The reason is that we we
improve the tightness of the cryptographic reductions quadratically and are able to use a
cryptographic hash function with roughly half of the output size. Both leads to smaller
cryptographic groups without loss of security and hence to more efficient schemes.

99

Bibliography

BIBLIOGRAPHY

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, San-
tiago Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy:
How Diffie-Hellman fails in practice. In 22nd ACM Conference on Computer
and Communications Security, October 2015.

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A frame-
work for identity-based encryption with almost tight security. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of
LNCS, pages 521–549. Springer, Heidelberg, November / December 2015.

[Alp15] Jacob Alperin-Sheriff. Short signatures with short public keys from homo-
morphic trapdoor functions. In Jonathan Katz, editor, PKC 2015, volume
9020 of LNCS, pages 236–255. Springer, Heidelberg, March / April 2015.

[AMN01] Michel Abdalla, Sara K. Miner, and Chanathip Namprempre. Forward-
secure threshold signature schemes. In CT-RSA, volume 2020 of Lecture
Notes in Computer Science, pages 441–456. Springer, 2001.

[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature
scheme. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS, pages 116–129. Springer, Heidelberg, December 2000.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based
encryption without random oracles. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223–
238. Springer, Heidelberg, May 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without
random oracles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 443–459. Springer, Heidelberg, August 2004.

[BB04c] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 56–73. Springer, Heidelberg, May 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Heidelberg,
May 2005.

[BBH06] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure pub-
lic key threshold encryption without random oracles. In David Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, pages 226–243, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

100

Bibliography

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. SIAM Journal on Com-
puting, 36(5):1301–1328, 2007.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 602–619. Springer, Heidelberg, August 2006.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001.

[BFMLS05] K. Bentahar, P. Farshim, J. Malone-Lee, and N.P. Smart. Generic construc-
tions of identity-based and certificateless kems. Cryptology ePrint Archive,
Report 2005/058, 2005. https://eprint.iacr.org/2005/058.

[BFMS08] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart.
Generic constructions of identity-based and certificateless KEMs. Journal
of Cryptology, 21(2):178–199, April 2008.

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures
and message authentication based on non-interative zero knowledge proofs.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–
211. Springer, Heidelberg, August 1990.

[BH12] Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudo-
random functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 357–368. Springer, Heidelberg, March 2012.

[BHJ+13] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, Jae Hong Seo,
and Christoph Striecks. Practical signatures from standard assumptions.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 461–485. Springer, Heidelberg, May 2013.

[BHJ+15] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph
Striecks. Confined guessing: New signatures from standard assumptions.
Journal of Cryptology, 28(1):176–208, January 2015.

[BHKN13] Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness
preserving reductions via Cuckoo hashing. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 40–59. Springer, Heidelberg, March 2013.

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibil-
ity of tight cryptographic reductions. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
273–304. Springer, Heidelberg, May 2016.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 1–12. Springer, Heidelberg, Au-
gust 1998.

101

https://eprint.iacr.org/2005/058

Bibliography

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS,
pages 514–532. Springer, Heidelberg, December 2001.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, September 2004.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
431–448. Springer, Heidelberg, August 1999.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Alge-
braic pseudorandom functions with improved efficiency from the augmented
cascade. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 131–140. ACM Press, October 2010.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In STOC, 1988.

[BOY86] C. BOYD. Digital multisignatures. Cryptography and Coding, pages 241–
246, 1986.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic
pseudorandom functions. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 353–370. Springer,
Heidelberg, August 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Hei-
delberg, April 2012.

[BR93a] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BR93b] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, CCS ’93, pages
62–73, New York, NY, USA, 1993. ACM.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages
92–111. Springer, Heidelberg, May 1995.

102

Bibliography

[CFN15] Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash func-
tions go private: Constructions and applications to (homomorphic) signa-
tures with shorter public keys. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
254–274. Springer, Heidelberg, August 2015.

[CG14] Nishanth Chandran and Sanjam Garg. Balancing output length and query
bound in hardness preserving constructions of pseudorandom functions. In
Willi Meier and Debdeep Mukhopadhyay, editors, INDOCRYPT 2014, vol-
ume 8885 of LNCS, pages 89–103. Springer, Heidelberg, December 2014.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In 30th ACM STOC, pages 209–218.
ACM Press, May 1998.

[CGHY08] Sherman S. M. Chow, H. W. Go, Lucas Chi Kwong Hui, and Siu-Ming Yiu.
Multiplicative forward-secure threshold signature scheme. I. J. Network
Security, 7:397–403, 2008.

[CHK03a] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 255–271. Springer, Heidelberg, May 2003.

[CHK03b] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 255–271. Springer, 2003.

[CHM10] Sanjit Chatterjee, Darrel Hankerson, and Alfred Menezes. On the efficiency
and security of pairing-based protocols in the type 1 and type 4 settings.
volume 2010, page 388, 08 2010.

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee.
Shorter ibe and signatures via asymmetric pairings. In Michel Abdalla and
Tanja Lange, editors, Pairing-Based Cryptography – Pairing 2012, pages
122–140, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature
schemes. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 272–287. Springer, Heidelberg, April / May 2002.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. Syst. Sci., 18(2):143–154, 1979.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual
system groups. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 435–460. Springer, Heidelberg, August
2013.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990.

103

Bibliography

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theory, 22:644–654, 1976.

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pent-
tonen. A reliable randomized algorithm for the closest-pair problem. Journal
of Algorithms, 25(1):19–51, 1997.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in
the standard model. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 335–352. Springer,
Heidelberg, August 2014.

[DN19] Manu Drijvers and Gregory Neven. Forward-secure multi-signatures. Cryp-
tology ePrint Archive, Report 2019/261, 2019. http://eprint.iacr.org/
2019/261.

[DS15] Nico Döttling and Dominique Schröder. Efficient pseudorandom functions
via on-the-fly adaptation. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 329–350.
Springer, Heidelberg, August 2015.

[EHK+13a] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar.
An algebraic framework for diffie-hellman assumptions. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages
129–147, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[EHK+13b] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, Heidelberg, August 2013.

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction
technique: The case of Schnorr signatures. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 444–460. Springer, Heidelberg, May 2013.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph
Striecks. Programmable hash functions in the multilinear setting. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 513–530. Springer, Heidelberg, August 2013.

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton,
Martijn Stam, and Stefano Tessaro. Random oracles with(out) programma-
bility. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 303–320. Springer, Heidelberg, December 2010.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
Rsa-oaep is secure under the rsa assumption. In Joe Kilian, editor, Advances
in Cryptology — CRYPTO 2001, pages 260–274, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

104

http://eprint.iacr.org/2019/261
http://eprint.iacr.org/2019/261

Bibliography

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 44–61. Springer, Heidel-
berg, May / June 2010.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Hei-
delberg, August 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-
secure encryption without pairings. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
1–27. Springer, Heidelberg, May 2016.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20:51–83, 05 2007.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270 – 299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, April 1988.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cam-
bridge University Press, Cambridge, UK, 2001.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 216–231. Springer, Hei-
delberg, August 1990.

[HJJ+97] Amir Herzberg, Markus Jakobsson, Staniss Jarecki, Hugo Krawczyk, and
Moti Yung. Proactive public key and signature systems. Proceedings of the
ACM Conference on Computer and Communications Security, 01 1997.

[HJK11] Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from
weaker assumptions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 647–666. Springer, Heidelberg,
December 2011.

[HJK12] Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters signatures with
optimal security reduction. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 66–83.
Springer, Heidelberg, May 2012.

105

Bibliography

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In Don Copper-
smith, editor, CRYPTO’95, volume 963 of LNCS, pages 339–352. Springer,
Heidelberg, August 1995.

[HK08] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their
applications. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 21–38. Springer, Heidelberg, August 2008.

[HMS12] Goichiro Hanaoka, Takahiro Matsuda, and Jacob C. N. Schuldt. On the
impossibility of constructing efficient key encapsulation and programmable
hash functions in prime order groups. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 812–831.
Springer, Heidelberg, August 2012.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryp-
tography with constant computational overhead. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 433–442. ACM Press, May
2008.

[JK18] Tibor Jager and Rafael Kurek. Short digital signatures and ID-KEMs via
truncation collision resistance. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 221–
250. Springer, Heidelberg, December 2018.

[JKP18] Tibor Jager, Rafael Kurek, and Jiaxin Pan. Simple and more efficient prfs
with tight security from lwe and matrix-ddh. In Thomas Peyrin and Steven
Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, pages 490–
518, Cham, 2018. Springer International Publishing.

[JN19] Tibor Jager and David Niehues. On the real-world instantiability of admis-
sible hash functions and efficient verifiable random functions. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 303–332. Springer, Heidelberg, August 2019.

[JPT12] Abhishek Jain, Krzysztof Pietrzak, and Aris Tentes. Hardness preserv-
ing constructions of pseudorandom functions. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 369–382. Springer, Heidelberg,
March 2012.

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash,
revisited. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 537–553. Springer, Heidelberg,
April 2012.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of rsa-oaep
under chosen-plaintext attack. In Tal Rabin, editor, Advances in Cryptology

106

Bibliography

– CRYPTO 2010, pages 295–313, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[Kra00] Hugo Krawczyk. Simple forward-secure signatures from any signature
scheme. In Proceedings of the 7th ACM Conference on Computer and Com-
munications Security, CCS ’00, pages 108–115, New York, NY, USA, 2000.
ACM.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer, Heidelberg, August 2010.

[Kur20a] Rafael Kurek. Efficient forward-secure threshold public key encryption. In
Joseph K. Liu and Hui Cui, editors, Information Security and Privacy,
The 25th Australasian Conference on Information Security and Privacy,
ACISP2020. Springer Nature, 2020.

[Kur20b] Rafael Kurek. Efficient forward-secure threshold signatures. In Aoki Kazu-
maro and Akira Kanaoka, editors, Advances in Information and Computer
Security,15th International Workshop on Security, IWSEC 2020. Springer
Nature, 2020.

[LCT03] Li-Shan Liu, Cheng-Kang Chu, and Wen-Guey Tzeng. A threshold GQ
signature scheme. In Jianying Zhou, Moti Yung, and Yongfei Han, editors,
ACNS 03, volume 2846 of LNCS, pages 137–150. Springer, Heidelberg, Oc-
tober 2003.

[Lev87] Leonid A. Levin. One way functions and pseudorandom generators. Com-
binatorica, 7(4):357–363, Dec 1987.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilin-
ear groups in the prime order setting. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 318–
335. Springer, Heidelberg, April 2012.

[LJY16] Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distribu-
tively: Fully distributed non-interactive adaptively-secure threshold signa-
tures with short shares. Theor. Comput. Sci., 645:1–24, 2016.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based en-
cryption and (hierarchical) inner product encryption. In Henri Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer,
Heidelberg, May / June 2010.

[LW09] Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from
the decisional linear assumption and weaker variants. In Ehab Al-Shaer,
Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 2009, pages
112–120. ACM Press, November 2009.

107

Bibliography

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryp-
tion and fully secure HIBE with short ciphertexts. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 455–479. Springer, Heidel-
berg, February 2010.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure
is difficult. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 58–76. Springer, Heidelberg,
May 2014.

[LY13a] Benôıt Libert and Moti Yung. Adaptively secure non-interactive threshold
cryptosystems. Theoretical Computer Science, 478:76 – 100, 2013.

[LY13b] Benôıt Libert and Moti Yung. Adaptively secure non-interactive threshold
cryptosystems. Theoretical Computer Science, 478:76 – 100, 2013.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity the-
oretic proofs: The non-committing encryption case. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Heidelberg,
August 2002.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In 38th FOCS, pages 458–467. IEEE Computer
Society Press, October 1997.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks
(extended abstract). In Proceedings of the Tenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’91, pages 51–59, New York,
NY, USA, 1991. ACM.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 47–53. Springer, Heidelberg, August 1984.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EU-
ROCRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer, Heidel-
berg, May 2000.

[Sho01] Victor Shoup. Oaep reconsidered. In Proceedings of the 21st Annual Inter-
national Cryptology Conference on Advances in Cryptology, CRYPTO ’01,
page 239–259, Berlin, Heidelberg, 2001. Springer-Verlag.

108

Bibliography

[TT01] Wen-Guey Tzeng and Zhi-Jia Tzeng. Robust forward-secure signature
schemes with proactive security. In Kwangjo Kim, editor, PKC 2001, vol-
ume 1992 of LNCS, pages 264–276. Springer, Heidelberg, February 2001.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random ora-
cles. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 114–127. Springer, Heidelberg, May 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, August 2009.

[WQFX06] Hong Wang, Gang Qiu, Dengguo Feng, and Guo-Zhen Xiao. Cryptanalysis
of tzeng-tzeng forward-secure signature schemes. IEICE Transactions, 89-
A:822–825, 2006.

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs
and verifiable random functions via generalized partitioning techniques. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, vol-
ume 10403 of LNCS, pages 161–193. Springer, Heidelberg, August 2017.

[YK07] Jia Yu and Fanyu Kong. Forward secure threshold signature scheme from bi-
linear pairings. In Yuping Wang, Yiu-ming Cheung, and Hailin Liu, editors,
Computational Intelligence and Security, pages 587–597, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508.
Springer, Heidelberg, August 2016.

[ZXZ13] Xiujie Zhang, Chunxiang Xu, and Wenzheng Zhang. Efficient chosen ci-
phertext secure threshold public-key encryption with forward security. In
Proceedings of the 2013 Fourth International Conference on Emerging Intel-
ligent Data and Web Technologies, EIDWT ’13, page 407–413, USA, 2013.
IEEE Computer Society.

109

	Introduction
	Preliminaries
	Notation
	Basic Primitives
	Bilinear Pairings

	Simple and Efficient PRFs with Tight Security via All-Prefix Universal Hash Functions
	Introduction
	All-Prefix Universal Hash Functions
	First Construction (Almost-Universal)
	Second Construction (Universal)

	Augmented Cascade PRFs
	The Augmented Cascade with Encoded Input
	Preparation for the Security Proof
	Security Proof
	Proof of Lemma 3.6
	Proof of Lemma 3.7

	Applications
	Efficient and Tightly-Secure PRF from Matrix Diffie-Hellman Assumptions
	More Efficient LWE-based PRFs
	Further Examples of Matrix Distributions

	Discussions

	Efficient Forward-Secure Threshold Signature and Public-Key Encryption Schemes
	Introduction
	Thresholds and Key Distribution
	Adversary Types in the Threshold Setting.
	Communication Model.
	A Concrete Distributed Key Generation Protocol

	Forward-Secure Signature Schemes
	A Concrete Single User Scheme

	Hierarchical Identity-Based Encryption Schemes (HIBE)
	A Concrete HIBE Scheme

	Forward-Secure Threshold Signature Schemes
	New Forward-Secure Threshold Signature Scheme
	Proof of Correctness.
	Proof of Security.

	Forward-Secure Threshold PKE Schemes
	New Forward-Secure Threshold PKE Scheme
	Proof of Correctness.
	Proof of Security.

	Discussions

	Efficient Adaptively-Secure Cryptosystems via Near-Collision Resistance
	Introduction
	Blockwise Partitioning via Near-Collision Resistance
	Blockwise Partitioning.
	Blockwise Partitioning Via Near-Collision Resistance.

	Adaptively Secure IB-KEM with Short Ciphertexts
	Proof of Correctness
	Proof of Security

	A Digital Signature Scheme
	Proof of Correctness
	Proof of Security

	Discussions

	BIBLIOGRAPHY

