
Rapid Prototyping System for Control of Inverters

and Electrical Drives

Vom Fachbereich
Elektrotechnik, Informationstechnik und Medientechnik

der Bergischen Universität Wuppertal
zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs
genehmigte Dissertation

vorgelegt von
mgr inż. Paweł Szczupak

aus Warschau, Polen

Wuppertal, 2008



Diese Dissertation kann wie folgt zitiert werden:  
 
urn:nbn:de:hbz:468-20080686 
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20080686] 



Acknowledgments

The work presented in this thesis was carried out during my Ph.D.

studies at the Institute for Electrical Machines and Drives at the Wup-

pertal University.

First of all I would like to thank my whole family, particularly my wife

Agnieszka for her love, patience and support.

I would like to thank Prof. Ralph Kennel for having accepted me in

his Institute and for undertaking the direction of this thesis. Next, I

thank sincerely Prof. Mario Pacas, from the University of Siegen, who

took in charge the coexamination.

I am also grateful to my colleagues at the EMAD Laboratory who

helped me during my stay at the Wuppertal University.



Contents

1 Introduction 1

2 Control systems 3

2.1 Digital Signal Processor or microcontroller . . . . . . . . . 3

2.2 Commercially available solution . . . . . . . . . . . . . . . 7

2.3 Embedded computers . . . . . . . . . . . . . . . . . . . . 8

3 Hardware description 17

3.1 19inch Rack and power supply . . . . . . . . . . . . . . . 17

3.2 PC/104 CPU module . . . . . . . . . . . . . . . . . . . . . 19

3.3 Interface card . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Bus Board . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 PWM Card . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Master - Slave operation of the PWM cards . . . . 34

3.5.2 Interrupt latency . . . . . . . . . . . . . . . . . . . 37

3.6 A/D and D/A cards . . . . . . . . . . . . . . . . . . . . . 39

3.7 HEX card . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Software description 43

4.1 Operating system . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Kernel space and user space . . . . . . . . . . . . . . . . . 46

4.3 Real-time operation . . . . . . . . . . . . . . . . . . . . . 47

4.4 RTAI installation . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 PC/104 control program . . . . . . . . . . . . . . . . . . . 51

I



Contents

5 Sensorless control of active rectifiers 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Voltage Oriented Control . . . . . . . . . . . . . . . . . . 57

5.3 Grid Voltage Estimation by Phase Tracking . . . . . . . . 60

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Grid inductance value mismatch . . . . . . . . . . 63

5.4.2 Supply voltage distortions . . . . . . . . . . . . . . 64

5.5 Phase disconnection problem . . . . . . . . . . . . . . . . 71

5.6 PC/104 system . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Sensorless Speed / Position Control of Servo Motors 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Alternating carrier injection principle . . . . . . . . . . . . 78

6.3 Estimation of the anisotropy . . . . . . . . . . . . . . . . 79

6.4 Sensorless control approach . . . . . . . . . . . . . . . . . 81

6.4.1 Demodulation of the carrier current . . . . . . . . 81

6.4.2 Sensorless position control of SMPMSM . . . . . . 82

6.4.3 Experimental results . . . . . . . . . . . . . . . . . 83

6.5 PC/104 system . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Model-based predictive control for electrical drives 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Cascaded Control of Induction Motor with PI Controllers 87

7.3 Predictive control . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 Experimental results . . . . . . . . . . . . . . . . . . . . . 91

7.5 PC/104 system . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusions 97

Bibliography 99

II



Contents

A PC/104 control program example 103

B Interface card GAL program 111

C VHDL program for FPGA on the PWM card 115

III



IV



List of Figures

3.1 Schematic of a typical switching-mode power supply unit 18

3.2 Slots of the Bus Board: a) PC/104 module slot, b) expan-

sion card slot . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Scheme of a 2-level inverter . . . . . . . . . . . . . . . . . 27

3.4 Scheme of the operation of the PWM card . . . . . . . . . 29

3.5 Generation of the PWM signals . . . . . . . . . . . . . . . 29

3.6 Sinusoidal PWM generation . . . . . . . . . . . . . . . . . 30

3.7 Space vectors in a complex plane . . . . . . . . . . . . . . 31

3.8 Dead-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Necessary connection of PWM cards for Master-Slave op-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Output pulses of one phase of Master and Slave PWM cards 36

3.11 Time shift between Master and Slave PWM signals . . . . 37

3.12 Interrupt latency of PC/104 system . . . . . . . . . . . . 38

3.13 Analog to digital converter card . . . . . . . . . . . . . . . 39

3.14 Digital to analog converter card . . . . . . . . . . . . . . . 40

4.1 Typical structure of a kernel module for PC/104 system . 52

5.1 3-phase sensorless PWM input rectifier . . . . . . . . . . . 56

5.2 Model of the PWM rectifier system . . . . . . . . . . . . . 57

5.3 Sensorless Voltage Oriented Control . . . . . . . . . . . . 58

5.4 Coordinate transformation from fixed αβ to rotating dq

reference frame . . . . . . . . . . . . . . . . . . . . . . . . 59

V



List of Figures

5.5 Grid voltage estimation through phase tracking . . . . . . 60

5.6 Measured δ and estimated δ̂ angle, and error between them 63

5.7 Influence of the grid inductance on the sensorless control

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8 Line currents (αβ) and supply voltage vector angle by 2%

unbalanced grid voltage . . . . . . . . . . . . . . . . . . . 66

5.9 Line currents (αβ) and supply voltage vector angle by 6%

unbalanced grid voltage . . . . . . . . . . . . . . . . . . . 67

5.10 Line currents (αβ) and supply voltage vector angle by

10% over-voltage . . . . . . . . . . . . . . . . . . . . . . . 69

5.11 Line currents (αβ) and supply voltage vector angle by

65% under-voltage . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Single grid phase (L3) disconnection . . . . . . . . . . . . 72

5.13 Control of the PWM rectifier in case of phase disconnection 73

5.14 Voltage angle δ . . . . . . . . . . . . . . . . . . . . . . . . 74

5.15 Reaction of the system on the L3 phase disconnection . . 75

6.1 Resulting current signal ic as a modulated space vector

in rotor coordinates . . . . . . . . . . . . . . . . . . . . . 78

6.2 Signal flow graph of the field angle estimation scheme

based on the proposed method . . . . . . . . . . . . . . . 82

6.3 Experimental results: rotor position δ and corresponding

estimated variables δ̂, ∆δ̂ . . . . . . . . . . . . . . . . . . 83

7.1 Structure of a typical cascaded controller . . . . . . . . . 86

7.2 Field-oriented drive control with PI controllers . . . . . . 88

7.3 Typical structure of a predictive controller . . . . . . . . . 90

7.4 Typical structure of a MPC controller . . . . . . . . . . . 91

7.5 Current control: Large signal response . . . . . . . . . . . 92

7.6 Current control: Small signal response . . . . . . . . . . . 93

VI



List of Figures

7.7 Current control: Large signal response at ω = 0.4 . . . . . 94

VII



VIII



1 Introduction

Nowadays in academic laboratories DSP-based solutions are used for

developing control methods. These systems provide very small latencies

and excellent performance. The main drawback of such a system is its

price. Also there is a software bundle, which has to be bought. The price

of the software is very often much higher than the cost of the hardware.

For an academic laboratory this is a real barrier and only few laboratory

projects can be equipped with such a system. There is also a problem

with respect to the limited possibility to expand standard DSP systems.

The user has limited number of PWM outputs, A/D converters making

these systems less flexible for research. Therefore there is a need to

provide a better solution. The idea is to use a PC/104 based system,

which can work in real-time environment. The PC/104 is very well

known in the industry, so academic projects can be directly implemented

in industrial environment. For the real-time environment the cost-free

Linux based system with a free RTAI (Real-Time Application Interface,

see chapter 4, section 4.3) extension is used. In this work the proposed

system is presented. Some application examples are presented as well.
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2 Control systems

2.1 Digital Signal Processor or microcontroller

Very often academic and industrial laboratories are using specialized Dig-

ital Signal Processors in their control systems. Digital signal processing

is a study of digital signals and their processing. Historically the origins

of signal processing are in electrical engineering, and a signal here means

an electrical signal carried by a wire or telephone line, or perhaps by a

radio wave. More generally, however, a signal is a stream of information

representing anything from stock prices to data from a remote-sensing

satellite. The processing of a digital signal is done by performing nu-

merical calculations. The introduction of the microprocessor in the late

1970’s and early 1980’s made it possible for DSP techniques to be used

in a much wider range of applications. During the 1980’s the increasing

importance of DSP led several major electronics manufacturers

• Texas Instruments with C6000 DSP family

• Reneasys with SuperH DPS family

• Freescale with SuperCore DSP family

to develop Digital Signal Processor chips - specialized microprocessors

with architectures designed specifically for the types of operations re-

quired in digital signal processing. These specialized processors are pro-

cessing data mostly using fixed-point arithmetic, but there are also pro-

cessors where floating-point arithmetic is implemented. Although some
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2 Control systems

of the mathematical theory underlying DSP techniques, such as Fourier

and Hilbert Transforms, digital filter design and signal compression, can

be fairly complex, the numerical operations required actually to imple-

ment these techniques are very simple. The architecture of a DSP chip

is designed to carry out such operations incredibly fast, processing hun-

dreds of millions of samples every second, to provide real-time perfor-

mance: that is, the ability to process a signal "live" as it is sampled and

then output the processed signal, for example to a loudspeaker or video

display. The DSPs are mostly used in such scientific areas as [3]:

• space (space photograph enhancement)

• medical (diagnostic imaging)

• military (radar, sonar)

• commercial (special video effects)

• telecommunication (voice compression)

and many other. For the control of electric drives and inverters the DSPs

are more and more used. The reasons for their popularity in this field

are:

• very low latencies (the reaction speed of the DSP on a trigger signal

is very high)

• very high calculation power

• programming flexibility

Although price of the processors is constantly falling, there are some

disadvantages of this solution:

4



2.1 Digital Signal Processor or microcontroller

• very high cost of the software used to program the DSPs (important

especially for the universities)

• long learning time (very important point for the academic labora-

tories, where students work in their projects)

• limited expansion possibility

In new projects it is not always known at the beginning how many in-

puts/outputs are needed. DSPs for have limited number of the PWM

outputs, which are necessary for inverter control. Some digital signal

processors have on-chip analog to digital converters, there is no possi-

bility to exchange them or to install additional A/D converters if more

signals have to be measured. Of course external A/D converters can be

used, but this increases cost of the system. Certainly a digital signal

processor alone is not enough to build any control system. Additional

hardware has to be designed or bought in order to set up a control sys-

tem.

Digital signal processors are not capable of multitasking. They are

able to process one program at a time. Therefore another system is

needed if - for example - a Graphical User Interface is used. It is mostly

a PC where necessary software is installed. This PC can also be used to

program the DSP. So for every laboratory project a PC has to be bought

with a license for the DSP software. As written before cost of the DSP

software is sometimes much higher than cost of the DSP itself. Naturally

one PC with one software license would be sufficient to program many

DSPs. But in case there are many students in the laboratory, each of

them has his own project and these projects are not connected together.

So each student has to write a piece of his code, program the DSP, install

the processor in his project and test its functioning. If there are errors,

the user has to remove DSP from project’s hardware and take it back

5



2 Control systems

to the PC to correct there the wrong code, program the DSP again and

again test it in the project. Such a laboratory work cannot be described

as optimal.

Consequently although DSPs have many advantages and can be suc-

cessfully used in many projects, the high cost and low hardware flexi-

bility makes them uninteresting for a research laboratory where many

different projects are performed. An example price of an development

bundle (DSP equipped evaluation board and software for it) from Spec-

trumDigital Inc. range from: 775USD for a simple TMS320F2812 DSP

to 9995USD for TI processor from C6000 family1. These complete bun-

dles need additional hardware if they are used for inverter and drive con-

trol. As mentioned above another PC with licensed software is needed

for software bundle.

Microcontrollers are processors developed especially for control pur-

poses. Unlike DSPs almost every microcontroller is equipped with on-

chip A/D converters and has many other I/O ports. Although their

processing power is not as high as of DSPs it is sufficient for standard

industry projects. The latency times of microcontrollers are also very

short. But the same disadvantages as for the DSP processors exist. Mi-

crocontrollers need additional hardware to work. A PC is needed with

dedicated software to program the devices. Very often it is necessary

to program in assembly language, what makes the microcontroller hard

to learn for students. More time is needed to master it. The microcon-

troller based system cannot be flexibly set up for different projects. The

PWM outputs number is also limited by the chip itself.

1http://www.spectrumdigital.com
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2.2 Commercially available solution

2.2 Commercially available solution

Among the commercially available solutions one is very often mentioned

in publications. It is a product of a dSPACE company. The most popular

is a DS1103 card. It is an ISA standard card, which has to be installed

into a Personal Computer. The important elements of this card are listed

below:

• Motorola PowerPC 604e / 400 MHz Superscalar microprocessor

• 2 general purpose timers

• 2MB program memory and 128MB data memory

• interrupts by host PC, CAN, slave DSP, serial interface, incremen-

tal encoders and 4 external inputs, PWM synchronous interrupts

• analog inputs: 16 channels 16-bit, 4 to 1 multiplexed, 4 sam-

ple&hold units, 4 ms sampling time; 4 channels 12-bit, sam-

ple&hold, 800 ns sampling time; ±10V input voltage range

• analog outputs: 8 channels 14-bit, 5 ms settling time, ±10 V output

voltage range

• 4 channels 8-bit digital I/O port individually programmable

• 6 channel incremental encoder input

• serial and CAN interfaces

• Texas Instruments DSP TMS320F240, 20 MHz, designed for motor

control

It can be seen from the parameters, that the DS1103 card is a combina-

tion of the very powerful RISC processor and the DSP processor from

7



2 Control systems

Texas Instruments. The DS1103 card should be bought with software

kit for programming the card. There is also special software to program

Graphical User Interface for projects, where DS1103 card is used. It is

possible to create a control desktop, where parameters of the running

control program can be changed or results of the measurements can be

shown. The latencies existing in this system are very low, with respect to

the use of the digital signal processor. Even though there are very many

advantages of this setup, there is one very important disadvantage. The

cost of the special academic license for a kit where DS1103 card with

software reaches about 9240EUR2. For this reason not every laboratory

can allow itself to buy such a system.

As written at the beginning of the chapter, the DS1103 card needs

a PC to work. Software for programming the card has to be installed

on this PC also. This is another cost for a laboratory. And just like in

previous solution one card for a whole laboratory would not be sufficient.

2.3 Embedded computers

Embedded systems are combinations of software and hardware designed

for one or few dedicated tasks. Any kind of processor can be used in

these systems, beginning from simple 8-bit processors and ending with

fast DSPs. Due to the fact, that embedded systems are tailored for

a special task, they can be optimized in their size. Their cost can be

reduced or reliability can be increased. Thus these systems are used in

such products like MP3 players from one side and factory controllers

from the other side.

Many embedded systems are equipped with peripherals to communi-

cate with other devices, for example:

2from: http://www.tobl.krakow.pl/

8



2.3 Embedded computers

• Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485

• Synchronous Serial Communication Interface: I2C, JTAG, SPI,

SSC and ESSI

• Universal Serial Bus (USB)

• Analog to Digital/Digital to Analog (ADC/DAC)

• General Purpose Input/Output (GPIO)

• PLL(s), Capture/Compare and Time Processing Units

• Ethernet, Controller Area Network

Depending on the processor installed in the embedded system it can

work with PC standard operating systems (Microsoft Windows, Linux),

real-time operating systems (MaRTE OS, Helium RTOS, Salvo, DrRtos,

NuttX RTOS and many more) or systems made specially for embedded

computers (DRYOS, FreeDOS, SymbianOS, Windows XP Embedded).

Because embedded systems got very popular, there was a need to

propose a standard for connectors and dimensions. One of the accepted

standards suggested by PC/104 Consortium is called PC/104. It defines

form factor of the system as well as computer bus. Modules in PC/104

standard can be of two bus types: 8-, and 16-bit. There is no backplane

in the PC/104 system, all components are stacked together using the

bus connectors. Signals of the bus connectors are compatible with PC

ISA signals3:

3from ISA and EISA Theory and Operation by Edward Solari
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2 Control systems

Signal name Signal description

BALE

Bus Address Latch Enable line is driven

by the platform CPU to indicate when

SA<19:0>, LA<23:17>, AENx, and

SBHE# are valid. It is also driven to a

logical one when an ISA add-on card or

DMA controller owns the bus.

SA<19:0>

Address lines are driven by the ISA bus

master to define the lower 20 address sig-

nal lines needed for the lower 1 MB of the

memory address space.

LA<23:17>

Latched Address lines are driven by the

ISA bus master or DMA controller to pro-

vide the additional address lines required

for the 16 MB memory address space.

SBHE#

System Byte High Enable line is driven by

the ISA bus master to indicate that valid

data resides on the SD<15:8> lines.

10



2.3 Embedded computers

AENx

Address Enable line is driven by the plat-

form circuitry as an indication to ISA re-

sources not to respond to the ADDRESS

and I/O COMMAND lines. This line is

the method by which I/O resources are

informed that a DMA transfer cycle is oc-

curring and that only the I/O resource

with an active DACKx# signal line can

respond to the I/O signal lines.

SD<15:0>

Data lines 0 - 7 or 8 - 15 are driven for an

8 data bit cycle, and 0 - 15 are driven for

a 16 data bit cycle.

MEMR#

Memory Read line is driven by the ISA

bus master or DMA controller to request

a memory resource to drive data onto the

bus during the cycle.

SMEMR#

System Memory Read line is to request

a memory resource to drive data onto

the bus during the cycle. This line is

active when MEMR# is active and the

LA<23:20> signal lines indicate the first

1 MB of address space.

MEMW#

Memory Write line is to request a me-

mory resource to accept data from the

data lines.

11



2 Control systems

SMEMW#

System Memory Write line is to request

a memory resource to drive data onto

the bus during the cycle. This line is

active when MEMW# is active and the

LA<23:20> signal lines indicate the first

1 MB of address space.

IOR#

I/O Read line is driven by the ISA bus

master or DMA controller to request an

I/O resource to drive data onto the data

bus during the cycle.

IOW#
I/O Write requests an I/O resource to ac-

cept data from the data bus.

MEMCS16#

Memory Chip Select 16 line is driven by

the memory resource to indicate that it is

an ISA resource that supports a 16 data

bit access cycle. It also allows the ISA bus

master to execute shorter cycles.

IOCS16#

I/O Chip Select 16 line is driven by an

I/O resource to indicate that it is an ISA

resource that supports a 16 data bit access

cycle. It also allows the ISA bus master

to execute shorter default cycles.

IOCHRDY

I/O Channel Ready line allows resources

to indicate to the ISA bus master that

additional cycle time is required.

12



2.3 Embedded computers

SRDY#

Synchronous Ready (or NOWS#) line is

driven active by the accessed resource to

indicate that an access cycle shorter than

the standard access cycle can be executed.

REFRESH#
Memory Refresh is driven by the refresh

controller to indicate a refresh cycle.

MASTER16#

MASTER16# line is only driven active by

an ISA add-on bus owner card that has

been granted bus ownership by the DMA

controller.

IOCHK#

I/O Channel Check line is driven by any

resource. It is active for a general error

condition that has no specific interpreta-

tion.

RESET

Reset line is driven active by the platform

circuitry. Any bus resource that senses

an active RESET signal line must imme-

diately tri-state all output drivers and en-

ter the appropriate reset condition.

BCLK

System Bus Clock line is a clock driven

by the platform circuitry. It has a 50% ±
approximately 5% (57 to 69 nanoseconds

for 8 MHz) duty cycle, at a frequency of

6 to 8 MHz (± 500 ppm).

13



2 Control systems

OSC

Oscillator line is a clock driven by the

platform circuitry. It has a 45 - 55% duty

cycle, at a frequency of 14.31818 MHz (±
500 ppm). It is not synchronized to any

other bus signal line.

IRQx

Interrupt Request lines allow add-on

cards to request interrupt service by the

platform CPU.

DRQx

DMA Request lines are driven active by

I/O resources to request service by the

platform DMA controller.

DACKx#

DMA Acknowledge lines are driven active

by the platform DMA controller to select

the I/O resource that requested a DMA

transfer cycle.

TC

Terminal Count line is driven by the plat-

form DMA controller to indicate that all

the data has been transferred.

Table 2.1: PC/104 signals definition

The mechanical dimensions of the PC/104 module are:

90x96mm (3.550x3775inch).

14



2.3 Embedded computers

Other standards defined by PC/104 Consortium:

Standard Description Version

PC/104-Plus
Incorporates both 104-ISA plus

120-pin PCI bus
V2.0

PCI-104 Includes only 120-pin PCI bus V1.0

EBX
5.75x8.00inch single board com-

puter
V2.0

EPIC
4.53x6.50inch single board com-

puter
V2.0.5

Table 2.2: PC/104 Consortium standards

Because of it’s advantages: small dimensions, compatibility with stan-

dard PC if x86 family processor is chosen, ISA bus compatible PC/104

connector and the price the PC/104 embedded computer was chosen to

be used as a control unit of the system proposed in this thesis. Dif-

ferently to the previous solutions no additional PC is necessary, when

PC/104 CPU module is used. Using appropriate operating system it

is possible to use PC/104 system for real-time application, but also for

code generation, debugging, data analysis, simulation and many more

tasks connected with control system design.
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3 Hardware description

As written before (chapter 2, section 2.3) a system based on an embedded

computer in the PC/104 standard was chosen. The system built in

Electrical Machines and Drives Institute consists of:

• 19inch Rack with power supply

• PC/104 CPU module (Arbor Em104-i613)

• Interface Card

• Bus Board

• PWM Card

• A/D Converter Card

• D/A Converter Card

• HEX Card

This chapter describes components of the proposed system. Cost of one

PC/104 control system range from: 1000EUR for a simple system where

minimal amount of expansion cards is used to 2000EUR for a system

where all slots are equipped cards.

3.1 19inch Rack and power supply

To mount electronic modules in a case, in September, 1992 a standard

was defined: EIA 310-D, IEC 60297 and DIN 41494 SC48D. First it was

17



3 Hardware description

introduced for railroad signalling relays, but nowadays it is commonly

used in telecommunication, computing and many other industries. This

type of a mounting system was chosen, because of its compatibility with

the industry standard. Therefore proposed PC/104 system can be easily

used in the industrial applications.

Voltage for the cards mounted in the 19inch Rack is supplied from

a switched-mode power supply. It is an electronic power supply unit,

where a switching regulator is used. It can be a fast switching transistor

generating rectangular voltage waveform with a defined duty cycle. This

rectangular waveform is filtered using a low-pass filter giving a constant

DC output voltage with the amplitude proportional to the duty cycle of

the rectangular voltage. Typical switching-mode power supply schematic

is shown in Fig. 3.1.

AC input
voltage Output

transformer

Chopper
controller

DC output
voltageOutput

rectifier
and filter

Inverter
“chopper”

Input rectifier
and filter

Figure 3.1: Schematic of a typical switching-mode power supply unit
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3.2 PC/104 CPU module

Input AC voltage is first filtered and rectified. Then the resulting

DC voltage is "chopped" by a fast switching transistor (for example a

MOSFET) with a high frequency (more than 20kHz to make it inaudible

for a human) into rectangular waveform. The duty cycle of this waveform

is set by a chopper controller. Next the voltage is transformed to needed

voltage levels and after filtering it is send to the output. Power supply

used in the proposed PC/104 system delivers voltages of: +5V, +15V

and -15V.

3.2 PC/104 CPU module

A product of Arbor Company was selected as a PC/104 CPU module

(Arbor Em104-i613 CPU module). The specifications1 are as follows

• CPU: Embedded Ultra Low Voltage Mobile Intel Celeron 650MHz

CPU

• MEMORY: One 144-pin SODIMM socket, up to 512MB

• 2nd Level Cache: CPU integrated with 256KB

• Chipset: VIA VT8606 with VT82C686B

• Expansion interface: PC/104

• Serial I/O: 1 high speed RS-232C port and 1 high speed RS-

232C/422/458 port

• Parallel I/O: SPP, EPP and ECP mode

• IDE: up to two ATAPI devices, Ultra DMA 33MB/s

• Floppy: 1 floppy port for two floppy disk drives

1see Arbor Em104-i613 CPU module data sheet
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• IrDA: SIR IrDA 1.1 compliant

• USB: 2 USB v1.1 ports

• KB/Mouse: a port for PS/2 keyboard and mouse

• LAN: Realtek RTL8100BL chipset for 10/100Mbps network

• VIDEO: Chipset VIA8606 with integrated Savage4 2d/3D Video

Accelerator, 4x AGP and 128-bit engine, resolution up to 1280 x

1024 @ 32bpp

• Flash: Compact Flash socket Type I/II

• Power requirement: +5V @ 2.09A

The module dimensions are a standard defined by PC/104 Consortium:

90x96mm. This way it fits directly into the 19inch Rack.

There are many other possible modules on the market which could be

chosen. This particular model was selected because of its price to calcula-

tion power ratio. Much cheaper modules could be selected, but they were

mostly equipped with older Intel 386 or 486 processors. These processors

wouldn’t be able to work under Linux system with RTAI and XWindows

(a Graphical User Interface for Linux similar to Microsoft Windows). On

the other side, there are much more powerful CPU modules, but their

price makes them uninteresting for the academic laboratory.

On the CPU module there is an Intel Celeron processor working with

a frequency of 650MHz. It is a processor from an x86 processors family.

Due to this fact it was not very hard to find an operating system for

the PC/104 system (see chapter 4, section 4.1). 256MB of memory is

installed on the PC/104 CPU module. A hard drive with space of 40GB

is connected to the IDE channel. There is enough space for an operating

system and user’s programs. The user can install any software which is
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compatible with an operation system of the PC/104 system - for example

Matlab/Simulink for data analysis. As it is a standard PC processor all

other PC software, for example word processors (like OpenOffice) or

graphical applications (like GIMP), can be used. Ethernet connector

allows use of Internet or local area network. This way the user can work

with the PC/104 system just like with a standard office PC, when the

real-time program is not operating.

USB ports allow connecting external devices to the CPU module. The

user can save his data to an USB memory stick or save it to an external

CD-Drive or hard disk. Therefore it is possible to exchange programs

between users, to test programmed code in different hardware set ups.

Saved results can further be analyzed on a more powerful machine using

specialized software.

3.3 Interface card

The interface card connects the PC/104 CPU module with the Bus Board

of the PC/104 system. The card is stacked on the PC/104 CPU module.

The tasks of the Interface card include:

• provide connection of 16-bit Data Bus of the PC/104 CPU module

with Data lines of the Bus Board

• transfer control signals of the PC/104 CPU module to the Bus

Board

• transfer interrupt signal from the PWM card to the PC/104 CPU

module

• conversion of 16-bit Address Bus of the PC/104 CPU module to

the Port Enable signals of the Bus Board

21



3 Hardware description

The Data Bus of the PC/104 CPU module is connected to the Data

lines of the Bus Board through octal bus transceivers 74245. These are

designed for asynchronous two-way communication between data buses.

The control function implementation minimizes external timing require-

ments. These devices allow data transmission from the PC/104 CPU

module Bus to the Bus Board or from the Bus Board to the PC/104

CPU module Bus depending on the logic level at the direction control

(DIR) input. The enable input (G) can be used to disable the device so

that the buses are effectively isolated2. On the Interface card the direc-

tion pin is connected to the IOR pin of the PC/104 CPU module. In this

way data is transferred from Bus Board into the PC/104 CPU module

during read operation. During write operation data is transferred in the

other direction. Enable input is connected to the Chip Select (CS) pin

from the GAL chip. When the CS pin is in active state, data can be

transferred. In inactive state buses are isolated.

Control signals, Write, Read and Reset signals, are transferred only

in the direction from PC/104 CPU module to the Bus Board. This is

done by a 74537 chip. It is an octal latch. There are two pins to control

operation of the latch. An Output Enable (OE) pin is usually used to

enable its outputs. In the case of PC/104 system this pin is directly con-

nected to GND (ground) setting the latch in an always enabled state. A

Control (C) pin is used to latch or put through the data. It is connected

to the VCC (supply voltage) so the output pins always follow the input

pins transferring the data3.

IRQ lines are transfered from the PWM card through a Schmitt-trigger

chip (7414) to the PC/104 CPU module. The user has a possibility to

choose IRQ line for the PWM card by jumpers. Jumper settings can be

taken from table below:

2see Fairchild DM74LS245 data sheet
3see Texas Instruments SN74AHC573 data sheet
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Jumper pins IRQ number

7 - 8 3

5 - 6 5

3 - 4 10

Table 3.1: Interface card jumper settings

The last task of the Interface card is to convert the address bus of the

PC/104 CPU module into the Port Enable signals for the Bus Board

slots. The conversion is done by a 74154 chip and a GAL22V10. 74154

is a 4-Line to 16-Line Decoder. It converts four binary-coded inputs into

one of 16 mutually exclusive outputs when its G1 and G2 inputs are in

active state. The 74154 generates first 16 Port Enable signals. In order to

generate next 8 signals the GAL is used. GAL acronym means a Generic

Array Logic and it is an extended version of Programmable Array Logic

devices. GALs are electronic devices, which are freely programmable.

Unlike PALs GALs can be erased and reprogrammed. Any logic circuitry

can be implemented in the GAL device. The GAL22V10 on the Interface

card is used to generate control signals for address decoder chip and bus

transceivers. Its program source code can be found in appendix B. Table

3.2 shows I/O addresses and corresponding Port Enable pins.
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Address Port Enable signal

0x280 PE0

0x282 PE1

0x284 PE2

0x286 PE3

0x288 PE4

0x28A PE5

0x28C PE6

0x28E PE7

0x290 PE8

0x292 PE9

0x294 PE10

0x296 PE11

0x298 PE12

0x29A PE13

0x29C PE14

0x29E PE15

0x2A0 PE16

0x2A2 PE17

0x2A4 PE18

0x2A6 PE19
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3.4 Bus Board

0x2A8 PE20

0x2AA PE21

0x2AC PE22

0x2AE PE23

Table 3.2: Address decoding

3.4 Bus Board

To connect all the elements of the PC/104 system a Bus Board is used.

It is a double layered card installed in the 19inch Rack. On the Bus

Board there are typically 12 slots for the cards used in the system and

one slot for the PC/104 module. To every slot are connected:

• 16 lines of Data Bus of the PC/104 CPU

• 2 Port Enable lines from an Interface Card

• 1 IRQ line (depending on the slot position it can be IRQ 3, 5 or

10)

• Read and Write signals

Figure 3.2 shows pins of the slot for PC/104 module and of one of the

slots for expansion cards. In this picture slot number 1 is presented.

There are Port Enable signal number 0 (address 0x280) and Port Enable

signal 1 (address 0x282) connected. This slot uses IRQ line number 3.

This IRQ line is also connected to slots 2 to 10. Slot 11 is connected to

IRQ number 5 and slot 12 to IRQ 10.
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PE0
PE1
PE2
PE3
PE4
PE5
PE6
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BRD

GND
GND

GNDGND

a) b)

Row A Row C Row A Row C

Figure 3.2: Slots of the Bus Board: a) PC/104 module slot, b) expansion

card slot

3.5 PWM Card

The most important expansion card in the PC/104 system is a PWM

Card. The tasks of the PWM card are:

• Pulse Width Modulation signals generation.

• control dead-time of the PWM pulses to protect an inverter
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• interrupt generation.

An inverter is an electronic device, which converts a constant DC

voltage into an AC voltage. A typical 2-level inverter structure can be

seen in Fig. 3.3.

T1 T2 T3

T4 T5 T6

DC voltage

3-phase
AC voltage

Figure 3.3: Scheme of a 2-level inverter

Switching devices T1 to T6 are turned on and off with a defined fre-

quency to generate width modulated pulses of voltage at the output

pins of the inverter. Control signals for the switches are generated by

the PWM card.

An Altera Cyclone FPGA EP1C3T100C8 chip is responsible for the

PWM calculations. A field-programmable gate array is a semiconductor

device containing programmable logic components called "logic blocks",

and programmable interconnects. Logic blocks can be programmed to

perform the function of basic logic gates such as AND, and XOR, or more

complex combinational functions such as decoders or simple mathema-

tical functions. In most FPGAs, the logic blocks also include memory

elements, which may be simple flip-flops or more complex blocks of me-

mory. A hierarchy of programmable interconnects allows logic blocks

to be interconnected as needed by the system designer, somewhat like
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a one-chip programmable breadboard. Logic blocks and interconnects

can be programmed by the customer or designer, after the FPGA is ma-

nufactured, to implement any logical function - hence the name "field-

programmable". The advantages of FPGAs include a shorter time to

market, ability to re-program in the field to fix bugs, and lower non-

recurring engineering costs. The drawback of an FPGA is that it has

to be programmed every time the chip is used. Due to this fact, there

is an additional chip on the card - an EEPROM (Electrically Erasable

Programmable Read-Only Memory) EPCS16 also from Altera. An EEP-

ROM is a non-volatile storage chip used in computers and other devices

to store small amounts of volatile data, e.g. calibration tables or device

configuration. EEPROMs are realized as arrays of floating-gate transis-

tors. After programming the EEPROM it keeps its memory until erasing

or another programming. The FPGA and EEPROM are connected to-

gether with a 4-wire serial interface designed by Altera. After supplying

voltage to the PWM card the EEPROM chip will transfer its program to

the FPGA. There is no more action from the user necessary. The EEP-

ROM chip can be programmed using the JTAG connector, which can

be found on the PWM card. A Personal Computer with Altera Quartus

software and Altera Byteblaster cable can be used, or the software can

be installed on the hard drive of PC/104 CPU module. The ByteBlaster

cable connects the Parallel Port of the PC or the PC/104 with the JTAG

interface implemented on the PWM card. The Quartus software is used

to write a program, compile it, simulate and then program the device.

An example of a program for the FPGA for 2-level inverter can be found

in appendix C. The main task of the program is to take values from

the PC/104 control program and generate pulses with the width propor-

tional to these values. Figure 3.4 shows schematically the operation of

the PWM card.
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T1
T2

Sinusoidal PWM

SVM

Direct

Control Program
va

vb

vc

PWM
card Inverter

T3
T4
T5
T6

Figure 3.4: Scheme of the operation of the PWM card

In the PC/104 control program three output values are calculated.

These values are sent to the PWM card. In the FPGA program values

are compared with a down-up-down running counter and on a match

point the output phase of the inverter is connected to high level of the

DC-link or it is connected to the low level. Because the counter is a

10bit one correct values are from 0 to 1024.

interrupt interrupt interrupt

va

vb

vc

T1

T2
T3

Tsampling

Tswitching

Figure 3.5: Generation of the PWM signals

Signals T2, T4 and T6 are negations of appropriately T1, T3 and T5

signals.
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What do the three values represent is dependent on the modulation

method chosen by the user. The PC/104 control program calculates

three values according to the modulation method chosen. In left block

in Fig. 3.4 two typically used modulation methods and a direct method

are listed:

• Sinusoidal PWM modulation

• Space Vector Modulation (SVM)

• setting directly the transistor in the on or off state

The first method is one of the simplest PWM signal generation meth-

ods. This method is based on comparison between a reference output

voltage and a triangle shaped carrier signal.

va

carrier

Figure 3.6: Sinusoidal PWM generation

The frequency of the triangle signal (called carrier signal) defines the

switching frequency of the inverter transistors. The maximal modulation
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index is defined by:

m =
ux

uc

(3.1)

and reaches 1.0 when the amplitude of the reference phase voltage ux is

equal to the amplitude of the carrier signal uc. In case of this modulation

method, the PC/104 control program has to calculate output voltage,

which should appear on the inverter output, and PWM card will generate

pulses accordingly.

The second method is based on a theory of space vector presented

in [7]. The output voltage of an inverter is represented by a rotating

voltage vector u. This vector can be represented by a combination of 8

vectors in a complex plane (Fig. 3.7).

Re

Im

u1

u2u3

u4

u5 u6

u0,7

u

Figure 3.7: Space vectors in a complex plane

Every vector means a defined switching state of the inverter. For

example vector u1 represents switching state of "100", what means that

the transistor T1 is switched on and transistors T2 and T3 are switched

31



3 Hardware description

off. Vectors u0 and u7 (called zero vectors because they don’t generate

voltage at the output of the inverter) are states of "000" and "111"

accordingly. In the complex plane every voltage vector can be achieved

by correct switching of two nearest space vectors and zero vectors. For

example vector u can be obtained combining vectors u3 and u4 and

zero vectors. The length of the vector u and its position can be set by

changing duration times of the corresponding space vectors: t3, t4, t0, t7.

These times are calculated by the PC/104 control program, converted

to the duration times of pulses for every output phase of the inverter

(ta, tb, tc) and then are sent to the PWM card.

The third method is the simplest one. It is actually not a modulation

method. Here the transistor signals are directly sent to the PWM card.

It means, that three PWM card values are simply a "1" or a "0" if the

transistor has to be switched on or off.

In order to avoid short circuit of the DC-link of the inverter, a dead-

time control has to be implemented. If the switch T1 is switched off,

switch T4 should be turned on (because its control signal is a negation

of the control signal of T1). In reality switches don’t turn off or on

immediately. There is always a delay time. Due to this fact, turning the

transistor T4 on before transistor T1 has switched off can lead to a short

circuit of the DC-link (Fig. 3.8). This would lead to a very high current

flowing through the DC-link capacitor and the T1 and T4 switches. This

could destroy the inverter.
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Tdead

T1

T4

T1

T4

DC-link

Figure 3.8: Dead-time

Therefore dead-time has to be implemented. The time between switch-

ing off T1 and switching on T4 is dependent on the parameters of the

transistors. To set the dead-time an 8 position switch is placed on the

PWM card.

0 1 2 3 4 5 6 Dead-time

- - - - - - - 5, 12µs

x - - - - - - 5, 08µs

- x - - - - - 5, 04µs

- - x - - - - 4, 98µs

- - - x - - - 4, 80µs

- - - - x - - 4, 48µs

- - - - - x - 3, 84µs

- - - - - - x 2, 56µs

Table 3.3: Setting the dead-time

33



3 Hardware description

Of course combinations of switch positions are also allowed.

The third task of the PWM card is an interrupt generation. As written

in chapter 4, section 4.5 every PC/104 control program works with the

interrupt generated by the PWM card. Figure 3.5 shows that interrupt

is generated every time the counter of the FPGA reaches maximal or

minimal value. The frequency of the interrupt is set in the PC/104

control program using command:

outw(Fschalt,PWMK);

where Fschalt is a variable, which can have values of: 1 to 15. PWMK

is the address of the slot, where PWM card is placed. The interrupt

frequency can be calculated using:

finterrupt =
2 ∗ 24410

1 + Fschalt
(3.2)

Possible frequencies are: 24410Hz to 3051Hz. Figure 3.5 also shows,

that the switching frequency of the inverter is equal to a half of the

interrupt frequency.

To control PWM card the both addresses of the slot, in which the

card is placed, are used. The PWMK address (for example 0x280) is

used to set the switching frequency and to send values for PWM pulses.

PWMKFr (0x282) is used to enable or disable outputs of the PWM

card. If 0x8000 value is sent to the PWMKFr the outputs of the card

are enabled. Sending 0x0000 to this address disables the outputs.

3.5.1 Master - Slave operation of the PWM cards

In many control systems only one inverter is used. One inverter can be

successfully controlled with one control system. Problem occurs when

there are more inverters in a system, for example:
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• drive system, where controlled inverter is supplied from a con-

trolled rectifier

• doubly fed machine supplied from two independent inverters

• a 2-axes plotter (2D), where motor for each axis is supplied from

its own inverter

In this case standard control solutions lack on independent PWM out-

puts. For such cases the PC/104 system can be easily prepared. As

written before one PWM card generates pulses for one inverter. Because

there are 12 slots in the 19inch Rack, another PWM card can be installed

in one of them. In this case one of the cards has to be set in a Mas-

ter mode (standard PWM card program is prepared for this operation).

The other card’s program has to be changed to a Slave mode operation.

The Slave card cannot generate the interrupt signal. The appropriate

connection of the cards is shown in Fig. 3.9.

PWM

Master

PWM

Slave

richt1

IRQ

Figure 3.9: Necessary connection of PWM cards for Master-Slave opera-

tion
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In this configuration both cards get their three values according to

the PC/104 control program. The values for one inverter can be totally

independent from the values for the second one. The only restriction of

this solution is, that the switching frequency of both inverters has to be

the same. As only Master card can control IRQ line, the Slave cards

has to use it for its own PWM generation. Typical output pulses of one

phase for Master and Slave cards are show in Fig. 3.10. The values for

Master and Slave cards are equal in this case.

Slave signal

Master signal

Figure 3.10: Output pulses of one phase of Master and Slave PWM cards

There is a very small time shift of 100ns between the Master and Slave

signals, but this will not cause problems in standard setups.
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0.5ms

Slave signal

Master signal

Figure 3.11: Time shift between Master and Slave PWM signals

3.5.2 Interrupt latency

As mentioned in chapter 2, section 2.1 the big advantage of Digital Signal

Processors is their very short latency time. Latency is defined as a

reaction time of a CPU on a trigger signal. In case of PC/104 system

it is the interrupt latency. Interrupt signal generated by the PWM card

is sent through the Interface card to the PC/104 CPU module. Celeron

processor reacts on this signal by starting the PC/104 control program.

To measure the reaction time of the CPU, a write operation to one of

the I/O ports is started at the beginning of the interrupt routine. This

operation generates appropriate Port Enable signal, which is measured

using oscilloscope. Figure 3.12 shows the measurement result.
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Figure 3.12: Interrupt latency of PC/104 system

Upper signal (number 1) is the IRQ line signal and the lower one

(channel 2) is the Port Enable signal. The up-down transition of the

IRQ line starts the interrupt routine. It can be seen, that the time from

the transition to the first write operation to the I/O port is between:

3µs and 4µs. This is a good result, but there is a notice to be made.

This result is achieved, when there are no other tasks operating in the

system. If any program would be running the maximum latency time

could increase up to 12µs. In case of highest possible interrupt frequency

(see equation 3.5) the user has to be careful when writing his control

program. Although the Celeron processor is fast and it is equipped with
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floating-point arithmetic unit, it can happen, that the real-time deadline

will not be kept. It can lead to a crash of the system and damage of the

hardware.

3.6 A/D and D/A cards

In every control system some analog values have to be measured. For

this purpose analog to digital converters are used. An A/D card in

the PC/104 system is equipped with two analog to digital converters.

Every converter is a one channel, 12bit and with a conversion time of

1.6µs. There are two converter chips used: MAX120 and MAX174, but

it doesn’t have an influence on the usage of the A/D card.

A/D
card

analog input digital output

Figure 3.13: Analog to digital converter card

An analog signal (for example a phase current) is sampled with a

constant frequency. The resulting 12bit digital value can be directly used

in the PC/104 control program. Amplitude of the analog input signal

can reach: ± 10V. The sampling frequency is in the PC/104 system

normally equal to the interrupt frequency. The two A/D converters can

be started in two different ways:

• simultaneously using Port Enable signal of one converter

• separately using Port Enable signal of each converter
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The choice between these two ways can be done using jumper found on

the A/D card.

Jumper setting Conversion start

1 - 2 converters start separately

3 - 4 converters start simultaneously

Table 3.4: Starting A/D converters

To start the conversion the user has to issue command:

outw(0x0, ADaddress);

Suppose the A/D card is placed in the first slot. The port addresses

connected with this slot are: 0x280 and 0x282. Writing a "0" on the

0x280 starts one converter. If the jumper is in 1 - 2 position, the second

converter will be started simultaneously. If the jumper is in 3 - 4 position,

the second converter has to be started by writing "0" to the second

address 0x282.

To analyze functioning of the PC/104 control program some values

can be given out from the PC/104 system to the oscilloscope. For this

purpose digital to analog converters are used.

D/A
card

digital input analog output

Figure 3.14: Digital to analog converter card
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A D/A converter card is equipped with two digital to analog convert-

ers. These are one channel, 12bit, 3µs settling time AD667 converters.

To give out a value on the D/A card output the user has to send a digital

value using:

outw(va, DAaddress);

where va is a variable from the PC/104 control program. The output

voltage of the D/A card can have amplitude of ± 10V.

3.7 HEX card

HEX card is equipped with a 16bit hexadecimal display and 16bit hex-

adecimal switch. It can be used to control flow of the PC/104 program.

When a value is written to the HEX card:

outw(va, HEXcard);

this value will be shown on the display. When there is a read operation

from the HEX card:

va = inw(HEXcard);

value of the switch will be saved as va variable. According to the set-

ting of the switch the user can control the function of the program, for

example:

hex_val = inw(HEXcard);

if (hex_val == 0x0001)

{

outw(0x8000, PWMKFr); // enable PWM card

}

else outw(0x0, PWMKFr); //disable PWM card
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If the value of the HEX card switch is set to 0x0001 the PWM card will

be enabled, else PWM card will be disabled.
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4.1 Operating system

For every laboratory project a kind of control software is needed. This

software has to be written in some programming language and has to

be compiled using some compiler. The compiler has to be run under an

operating system. So for the presented PC/104 system a kind of operat-

ing system has to be chosen. Due to the fact that PC/104 CPU module

uses Intel Celeron processor, it is compatible with the x86 processors

family. This means that every operating system which is prepared for

the PC standard can also be used with the PC/104 system. Because of

that, there exist many possible systems on the market which the user

can choose. That is why some requirements have to be set, so the best

solution can be found:

• freeware and open source system

This criterion is very important mainly for the academic research.

Suppose there are students doing their master or bachelor theses

and some PhD students doing their projects. Every user needs one

PC/104 system. For everyone’s system an operating system license

has to be bought. This leads to very high costs. By using freeware

systems overcomes this problem. Secondly users can install such a

system on their own computers for example to test their code at

home.

• real-time capable
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It is not easy to find a system which fulfils this point. Many oper-

ating systems capable of real-time operation are only commercially

available. Many are prepared for other processors than x86 family.

There are freeware x86 systems lacking real-time capability - these

systems can be upgraded using commercial real-time extensions,

but it increases the cost. Luckily there is a free solution for this

problem.

• multitasking

Multitasking is a capability of an operating system, where many

tasks can share one resource, CPU for example. Because there is

normally only one CPU in a system, a task blocks it and gives

it free after completing its work. If this happens fast enough,

the user sees it as if many processes were running simultaneously

in the system. In real-time systems the waiting real-time task

takes the control over the CPU every time it needs it. All other

tasks have to stop their use of the CPU immediately. The act

of reassigning a CPU from one task to another one is called a

context switching. Context switching itself takes some time and

care should be taken not to switch very often. Due to the fact,

that there are many processes running together, the problem of

memory protection appeared. One task cannot overwrite memory

belonging to another task. If such a write operation occurs it can

lead to a crash of the system and in a bad case to a damage of the

devices controlled by user’s real-time program (for example wrong

switching states can appear on the inverter outputs causing short

circuit of the DC-link). Today every multitasking system has its

own memory protection. Multitasking gives the user a possibility

to run his real-time control program and for example a software for

controlling the real-time program using Graphical User Interface.
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• user friendly

Because the user of the PC/104 can be a PhD student with some

experience but also a Master student or even Bachelor student

without much knowledge about operating systems and compilers

it is required for the system to be user friendly. It means, that the

user should be able to fulfil his work without deep knowledge of the

operating system itself. It has to be easy to print a piece of code or

save it on the USB memory stick or compact disc. Because many

students have their own PCs where mostly Microsoft Windows

system is installed, the chosen operating system has to be similar

to the Microsoft one.

Taking these requirements into account, the suitable operating system

can be chosen. A system which fulfils this criteria is Linux. Linux kernel

was first presented in 1991 by a Finnish software engineer Linus Benedict

Torvalds. The system is similar to the Unix operating system, which was

released in 1970. The Unix is one of the first really multitasking systems,

it is very stable and secure. Because of these properties Unix is often

chosen for the network servers. The disadvantages were that the Unix

system was not compiled for the x86 processor family and it was not

free. Linux on the contrary was at the beginning prepared only for the

Intel processors, what made it possible for every user of home PCs to

install and test it. Due to the fact that Linux was a free system with

an open source users could make their corrections to the code and share

it with others. Nowadays there is a big Linux community, which checks

the Linux kernel for errors and writes code to expand Linux to other

processors and systems.

Because of the popularity of Linux kernel, many companies prepared

their own Linux systems called distributions (distros). These are Linux

kernel equipped with additional commercially available software. Some-

45



4 Software description

times companies slightly modify the original Linux kernel for their dis-

tributions. Popular Linux distributions are:

• Slackware - one of the first Linux distributions

• SuSE Linux - it is a German translation of Slackware distribution.

SuSE is now owned by Novell, Inc. It is also freely available as

OpenSuSE.

• Debian - a freeware distribution

• Ubuntu - a distribution based on Debian

• Red Hat Enterprise Linux - an American company distribution,

freely available as Fedora

• CentOS and Mandriva - free distributions based on Red Hat

• Knoppix - a distribution which can be started from Live CD and

doesn’t need to be installed on a hard drive

For the PC/104 system a SuSE Linux 9.1 version was chosen.

4.2 Kernel space and user space

Linux kernel is a monolithic kernel. It means that the entire kernel runs

in kernel space in supervisor mode. In the kernel there are functions

necessary for the proper operation of the system (process management,

memory management, filesystem management etc.) called modules. In

the monolithic kernel all modules run in an area called kernel mode.

Kernel mode (also called supervisor mode) is a flag, which belongs to a

process running in the system. Having this flag the process can execute
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machine code operations such as modifying registers or disabling inter-

rupts. Programs running in kernel mode have to be written very care-

fully, because one error can lead to crash of the entire system. Drivers

for hardware components are typical kernel mode programs. Normally

monolithic kernel is a kernel mode task and all other applications are

user space tasks (these don’t have kernel mode flag). The idea of having

two different modes comes from the necessity of providing a secure sys-

tem (kernel) besides less secure applications. An error in an application

is not critical to the system.

4.3 Real-time operation

Real-time operation means that there is some kind of operational dead-

liness from event to system response. Real-time constraint is not met,

when the real-time computations are not finished before their deadline.

A real-time deadline has to be met, regardless of system load. The real-

time operation doesn’t mean, that the response time of the system is

very short. There are two types of real-time operation:

• Hard real-time operation

• Soft real-time operation

In the hard real-time the completion of a task after its deadline is useless,

it can lead to the critical crash of the system. In soft real-time a task,

which cannot be fulfilled, can be dropped and another task can begin.

Hard real-time is often found in embedded systems. It is also necessary

in the proposed PC/104 system.

Standard Linux kernel is not capable of real-time operation. All pro-

grams written by the user are managed by the kernel as user-space ap-

plications. Kernel has highest priority in the system, which automa-

tically makes it impossible for user’s program to be run in real-time.
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There is a solution proposed by a team from Dipartimento di Ingegneria

Aerospaziale from Politecnico di Milano. It is called RTAI what stands

for Real-Time Application Interface1. It is an extension to the Linux ker-

nel, which gives the user a possibility to write programs meeting hard

real-time constraints. RTAI is prepared for several architectures:

• x86 (32 bit or 64 bit systems)

• PowerPC (RISC microprocessor architecture created by the Apple-

IBM-Motorola alliance)

• ARM (32 bit RISC architecture proposed by ARM Limited)

• MIPS (acronym for Microprocessor without Interlocked Pipeline

Stages proposed by MIPS Technologies)

After installing the RTAI Linux kernel is not anymore the highest

priority task in the system. The RTAI modules take over control of the

system. Kernel modules written by the user get the highest priority. It

makes user’s program work truly in hard real-time.

4.4 RTAI installation

In order to be able to write real-time programs, the RTAI has to be

installed. Because it is an extension to the Linux kernel, it has to be

included during the compilation of the original kernel.

First the SuSE 9.1 Linux has to be installed. Installation procedure

is very easy and there is no need to explain it. The system starts from

a bootable CD or DVD and the user is guided through the complete

installation. After succesfull installation of the Linux system - RTAI

has to be installed. Due to the fact, that the SuSE kernel is a modified

1see https://www.rtai.org/
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version of the original Linux kernel, one needs to download an origi-

nal kernel from http://www.kernel.org. RTAI can be downloaded from

https://www.rtai.org/RTAI/ (here version 3.1 is used). When the down-

load is completed, the original Linux kernel (here version 2.6.7 is used)

has to be extracted:

# cd /usr/src

# tar xvjf linux-2.6.7.tar.bz2

# ln -s linux-2.6.7 linux

Next unpack the RTAI:

# cd /usr/src

# tar rtai-3.1.tar.bz2

# ln -s rtai-3.1 rtai

Now the original Linux kernel has to be patched, so the RTAI can take

control over the kernel.

# cd /usr/src/linux

# patch -p1 < ../rtai/rtai-core/arch/i386/

patches/hal6c1-2.6.7.patch

In order to be able to compile the patched kernel, the configuration file

from the SuSE Linux installation is needed:

# zcat /proc/config.gz > .config

Now the new kernel has to be configured:

# make menuconfig

Some modifications to the original configuration of SuSE have to be

made:
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• "Adeos" is selected (Adeos Support -> Adeos Support)

• "Loadable module support -> Module versioning support" is dis-

abled

• "Kernel hacking -> Compile the kernel with frame pointers" is

disabled

• "Processor type and features -> Use register arguments" is dis-

abled (CONFIG_REGPARM)

Compile the new kernel:

# make

# make modules_install install

If there were no errors the new kernel was compiled and installed suc-

cessfully. Now The RTAI can be configured:

# cd /usr/src/rtai

# make menuconfig

# make

# make install

If there were no errors, reboot the system. During boot up process choose

the new kernel from the GRUB menu. GRUB is one of the possible boot

loaders in SuSE Linux. It is installed during installation of the SuSE.

After successful booting of the new kernel the RTAI installation can be

tested:

# cd /usr/realtime/testsuite/kern/latency/

# ./run

If this test doesn’t start. Press Ctrl+Alt+F10 and check if there is a

message like:
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RTAI[hal]: ERROR, LOCAL APIC CONFIGURED

BUT NOT AVAILABLE/ENABLED

If it is the case, put "lapic" option to the new kernel in

/boot/grub/menu.lst file (shown is an example configuration):

title RTAI 3.1 kernel 2.6.7

root (hd0,0)

kernel /boot/vmlinuz-2.6.7-adeos

root=/dev/hda1 ro lapic

savedefault

boot

4.5 PC/104 control program

After successful RTAI test a control program for PC/104 can be written

(see chapter A). The user has to define what his program does. He is

also responsible for a stability of a system after starting his program.

As mentioned before in this chapter every PC/104 program has to be

written as the kernel module. Typical structure of such module is shown

in Fig. 4.1.
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init

cleanup

interrupt

kernel module

Figure 4.1: Typical structure of a kernel module for PC/104 system

Three main components of the PC/104 program can be seen:

• init function

• cleanup function

• interrupt routine

Init and cleanup functions are necessary parts of the kernel module. In

these functions it is defined what the system has to do when starting

given module and what at stopping it. Due to the fact that control

programs for the PC/104 are driven by an external interrupt generated

by the PWM card (see chapter 3, section 3.5), an interrupt routine is

also placed in the kernel module. Because this interrupt routine has to

have the highest priority in the system, it has to be declared as an RTAI

interrupt in the init function. To do that the user has to place two lines

in the init function:

rt_request_global_irq(nr_irq, (void*)isa_rtirq);

rt_enable_irq(nr_irq);
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4.5 PC/104 control program

where isa_rtirq is the name of interrupt function and nr_irq is the num-

ber of the IRQ line, which the PWM card uses (normally 3). These lines

connect the interrupt function with the hardware IRQ line. At the end

of the PC/104 process the IRQ line has to be freed, so the Linux kernel

can use it for different tasks. This is done in the cleanup function with

this piece of code:

rt_disable_irq(nr_irq);

rt_free_global_irq(nr_irq);

If the IRQ wouldn’t be freed at the end of the task, it could lead to

instability or the total crash of the system.

User’s control program has to be written in the interrupt routine.

Because floating-point operation are often used, care should be taken. It

is normally not allowed to make calculation using floating-point variables

in the kernel module. Therefore two functions (see A) are prepared,

which allow the user the use of CPU’s floating-point arithmetic unit.

These functions (isr_start() and isr_ende()) have to be placed at the

beginning and at the end of the interrupt routine respectively.
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5 Sensorless control of active rectifiers

5.1 Introduction

In the last years voltage controlled pulsewidth modulation (PWM) rec-

tifiers providing almost unity power factor as well as sinusoidal AC in-

put currents have been widely investigated with respect to harder re-

strictions in the European market for the harmonic current contents.

Therefore pulsewidth modulation converters are applied to applications

that require less harmonic currents and/or energy recovery, e.g. in drive

applications where the amount of regenerating energy demands to use

4-quadrant-operation. The input line current is controlled by adjusting

the AC side voltage of the bridge circuits. Unity power factor can be

obtained by aligning the AC-line currents with the AC-supply voltage.

The conventional control technique for PWM converters measures the

AC-line supply voltage and generates a rotating dq-reference frame in

which all AC-quantities become DC-values [8],[9] in stationary state.

This offers the well-known advantages of field or voltage oriented control

for PWM rectifier and the two-phase dq-theory. The underlying PWM

pattern is usually generated by a suboscillation method or space vector

PWM method transforming the voltage reference values to pulsewidth

modulated signals. Each pulse pattern is necessarily synchronized with

control algorithm, the pulses themselves are not. So it is important to

realize that there is not always access to each pulse data especially if

the PWM unit is outside the controller. Therefore sensorless strategy

relying on the exploration of the switching harmonics suffers under the
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5 Sensorless control of active rectifiers

lack of information about the instantaneous pulses. The aim was to

develop an algorithm which gets rid of the pulse pattern information in

each control cycle which focused the view to harmonics spectra lower

then the switching frequency.

Generally drive converters are equipped with two sensors. The AC-side

line currents sensors are needed for control and short circuit protection

whereas the DC-link serves for over- and under-voltage protection and

output voltage information. There is no direct access to the AC-side

line voltage by sensors and therefore no direct voltage orientated con-

trol (DVOC) is possible using these converters. An alternative control

strategy is the indirect voltage oriented control (IVOC), which is directly

related to the indirect field oriented control. In drive applications this

control strategy is widely spread and known as a reliable solution. Nev-

ertheless it requires an estimation of the grid voltage – if the norm of

the voltage vector is not required, at least the angle of the grid voltage

is needed.
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VOC

L
o
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uDC
ia

ib

ls
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Figure 5.1: 3-phase sensorless PWM input rectifier
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This chapter presents a sensorless control strategy for PWM rectifiers

and the estimation method of the voltage capable to gain unity power

factor and insensitivity against parameter variations like inductance sa-

turation interconnecting the grid voltage and output voltage of the con-

verter. It also shows the behavior of the proposed method, when there

are disturbances of the supply voltage. The control method is applicable

to PWM drive converters without hardware changes whether they use

space vector modulation method or hysteresis based modulations.

5.2 Voltage Oriented Control

Space vector notation of PWM rectifier electrical circuit supports a clear

understanding of the physical quantities in components and their beha-

vior.

rsis

is

f s
l̂

ls
û

grid
û

d

?

con vu

grid
û

ls
û?

convu

Figure 5.2: Model of the PWM rectifier system

The line current vector is is controlled by the converter and is directly

related to the voltage drop across the inductance l̂s. The inductance is

necessary to reduce the high harmonic switching content in the current

caused by the switching of the rectifier and to decouple the supply voltage

from the converter output voltage. The inductance voltage ûls
is equal

to the difference between the grid voltage ûgrid and the converter voltage

u
∗

conv. All values are vectors in space vector notation [10] (estimated

values are marked with a hat )̂.
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5 Sensorless control of active rectifiers

The control scheme is visualized in figure 5.3. Transformation in ro-

tating dq voltage oriented reference frame is done using an estimated

voltage angle. For high frequency analysis the resistive voltage drop can

be neglected leading to a simplified model. Only the inductance restricts

the high harmonic currents. The later explained sensorless method takes

advantage from this fact due to less required calculations.
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Figure 5.3: Sensorless Voltage Oriented Control

Using conventional voltage oriented control all quantities are referred

to a synchronous reference frame aligned with the supply voltage. There-

fore the control scheme is based on coordinate transformation between

stationary αβ- and synchronous dq-reference system.

In the dq reference frame, the AC-line current vector is divided into

rectangular components. The component iq determines the reactive

power whereas id determines the active power flow. If iq is controlled to

zero the minimum current for a given reactive power is ensured and the

power factor is one.
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Figure 5.4: Coordinate transformation from fixed αβ to rotating dq re-

ference frame

As in steady state the stator voltage can normally be considered si-

nusoidal, the voltage and flux orientation becomes equivalent except to

90◦ phase shift. This encouraged to consider the grid as a machine and

apply the well-known principle of field orientation. This leads to the

same simple and reliable principle as in revolving field machines. The

equations for the PWM rectifier system in the dq reference frame are:

ud = ls
did
dt

+ ud,conv − ωs · ls · iq (5.1)

0 = ls
diq
dt

+ uq,conv + ωs · ls · id

Usually the line voltages must be measured for calculation of the volt-

age angle necessary for coordinate transformation. To reduce costs of the

system, there is a possibility to estimate the line voltage. The estimated

voltage is used to calculate a voltage angle. Coordinate transformation

from fixed αβ coordinates to rotating dq reference frame is done using

the estimated voltage angle.
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5.3 Grid Voltage Estimation by Phase Tracking

Based on the PWM rectifier system model, the grid voltage estimation

is proposed to be a phase tracking method [14]. The current is passing

inductance l̂s causing a voltage ûls
. Neglecting resistive voltage drop

the voltage ûls
can be calculated as:

ûls,α = l̂
diα
dt

(5.2)

ûls,β = l̂
diβ
dt

while estimated grid voltage ûgrid is represented by equations:

ûgrid,α = ûls,α + u∗

conv,α (5.3)

ûgrid,β = ûls,β + u∗

conv,β

If value of the inductance l̂s is set correctly, the estimation error will

be small during the following sample period (figure 5.5).

Error
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a

b

grid
û

ls
û

conv
u

grid
u

d

Figure 5.5: Grid voltage estimation through phase tracking

As the currents depend on the voltage difference, any current variation

results in voltages over the inductance; this voltage is considered when
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calculating the next sample period. This scheme tracks continuously the

real voltage vector.

When the inductance value is estimated lower than the real inductance

value, the system will still find and detect the voltage vector, but the

dynamic response will decrease. This can be explained by the dynamic

transfer function of the tracking method.

Equation 5.4 shows, that the dynamic response of the phase tracking

estimation method decreases with increasing factor k, while k is the

relation between the real and estimated inductance ls/l̂s.

ûgrid =
ugrid

Tsks + 1
(5.4)

For the smallest possible factor k = 1 the fastest step response can be

expected. Faster responses (k < 1) lead to instability of the estimation

scheme.

61



5 Sensorless control of active rectifiers

5.4 Experimental results

The system parameters used in the laboratory set-up are:

Nominal line voltage 230Vrms

Nominal line current 7Arms

Grid filter inductance ls 3.5mH

Grid filter resistance rs 50mΩ

DC-Link capacitor C 750µF

Nominal DC-Link voltage UDC 750V

Switching frequency f 4kHz

Table 5.1: Laboratory set-up parameters

Figure 5.6 shows the measured δ and the estimated δ̂ voltage angles

and an error (in radians) between measured and estimated angle. The

shift between the estimation and measurement is caused by the estimated

voltage filter and is constant during operation.
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Figure 5.6: Measured δ and estimated δ̂ angle, and error between them

5.4.1 Grid inductance value mismatch

Figure 5.7 shows the results while there is a parameter mismatch in the

inductance ls. Using greater grid inductance decreases the input current

ripple (software parameters are unchanged). The voltage angle is esti-

mated correctly even while there are wrong inductance parameters. As

discussed before the estimated inductance only influences the dynamic

behavior and not the steady state estimation.
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Figure 5.7: Influence of the grid inductance on the sensorless control sys-

tem

5.4.2 Supply voltage distortions

The next tests show the behavior of the "phase tracking" control scheme

when there are disturbances in the grid voltage. The investigations took

place concerning the following grid voltage distortions:
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1. Unbalanced grid voltage

2. Over-voltage

3. Under-voltage (voltage sags)

Unbalanced grid voltage

In this test a change in the amplitude of the grid voltage in one of the

phases was made. The degree of grid voltage unbalance is defined as:

u =
en

ep

, (5.5)

where:

• en is the negative sequence grid voltage vector

• ep is the positive sequence grid voltage vector

Usually in the grid the voltage unbalance should not exceed 3%. The

tests presented in this paper were conducted with voltage unbalance of

2% and 6%.

Figure 5.8 shows the line currents [in stationary reference frame (αβ)],

estimated δ̂ and measured δ grid voltage angle by the 2% unbalanced

grid voltage. There is a low-pass filter of the estimated supply voltage,

which leads to the offset between measured and estimated angle, but it

is constant during operation.
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Figure 5.8: Line currents (αβ) and supply voltage vector angle by 2%

unbalanced grid voltage

Figure 5.9 shows the same situation, but by 6% unbalanced grid volt-

age. It is shown, that there are more line currents higher harmonics when

the measured grid voltage angle is used. Using the estimated angle lower

harmonic content of the line currents can be provided.
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Figure 5.9: Line currents (αβ) and supply voltage vector angle by 6%

unbalanced grid voltage

The grid voltage angle is estimated almost correctly in both cases.

The difference between estimated and measured voltage angle is caused

by the low-pass filter on the estimated supply voltage. The oscillations

of the voltage angle lead to the slightly higher harmonics in the input

current, but the operation of "phase tracking" control works fine.

Note: the estimated angle in figure 5.8(b) and 5.9(b) is calculated

parallel to the measured angle. The currents in figure 5.8 are sampled,
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that is why there is no switching frequency harmonic content seen.

Over-voltage

In the laboratory the over-voltage was simulated using an auto-

transformer. It was possible to achieve about 10% higher supply volt-

age than nominal value. The tested voltage amplitude value was set to

250Vrms. Using equation 5.6 the lowest possible DC-Link voltage can be

calculated.

UDC ≥ 2
√

2

m
√

3
· uLL + uls (5.6)

UDC ≥ 2
√

2

m
√

3
· uLL + iLXL

where:

a) ULL is the line-line voltage (in the test 432.5V )

b) uls is the voltage drop on the input filter inductance

c) m is the modulation index (1 by sinusoidal PWM, 1.154 by Space

Vector Modulation)

The proposed sensorless control of the PWM rectifier was working

correctly and stable under over-voltage condition. Line currents could

be controlled to flow in both directions (from the grid into the rectifier

and from the rectifier into the grid).

Figure 5.10 presents the line currents and estimated and measured

voltage angles. The harmonics content of current is high during the

test. Current ripple can be reduced using higher input filter inductance

or higher DC-Link voltage. Care must be taken when increasing the

filter inductance. Low inductance will lead to high current ripple. High
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value will give a low current ripple, but will reduce operation range

of the rectifier. To control the input current the voltage drop over this

inductance is used. But maximal value is limited by the DC-Link voltage

and modulation strategy. Consequently, a high current (high power)

through the inductance requires either a high DC-link voltage or a low

inductance (low impedance).

p/2

p/2

0

5ms

0

5A

-5A

d

d

(a) Estimated and measured angles, line currents

in αβ

0

5ms

5A

-5A

(b) ia and ib currents

Figure 5.10: Line currents (αβ) and supply voltage vector angle by 10%

over-voltage
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Under-voltage (voltage sags)

Voltage sags are the most common disturbances in real applications. In

the laboratory the under-voltage test was performed. The supply voltage

was reduced to 65% of nominal voltage. The estimated voltage angle was

not distorted by the voltage sag and the system was working stable. It

was possible to control the line currents in both directions (from the

grid into the rectifier and from the rectifier into the grid). The DC-Link

voltage was kept constant equal to the reference value of 750V .

Results presented in figure 5.11 show, that the estimated angle is equal

to the measured one. The currents are sinusoidal with low ripple due to

the high DC-Link voltage (see section 5.4.2).
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Figure 5.11: Line currents (αβ) and supply voltage vector angle by 65%

under-voltage

5.5 Phase disconnection problem

For proper operation of the 3-phase PWM rectifier controlled by sen-

sorless Voltage Oriented Control the availability of all the grid phases is

essential.
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Figure 5.12: Single grid phase (L3) disconnection

If there is a phase disconnection (as shown in fig. 5.12) the system

cannot work any more due to the lack of the rotating coordinate sys-

tem [15]. The transformation from stationary αβ- to the rotating dq-

coordinate system is not possible any more. The DC-link voltage and

the supply current cannot be controlled which may cause a destruction

of the rectifier or at least an interruption of the drive system operation.

For the conformity with the industry needs, the PWM rectifier should be

able to withstand such a disconnection during a time of at least 5 cycles

of the grid voltage (100ms for the 50Hz voltage supply system). The

DC-link voltage should be kept constant and the supply current should

be in phase with the grid voltage and sinusoidal in spite of the phase

disruption. In order to achieve this goal the sensorless "phase tracking"

control method proposed in [12] has to be modified.

In case of grid phase disconnection the control structure can be ex-

plained using fig. 5.13. It looks similar to the structure presented in

fig. 5.3. From the superposed control loop, DC-link voltage control, the

magnitude of the reference current is achieved. This is then multiplied

with the sin(α) signal to get the reference current. After comparison

with the measured is there is a fast current control loop with PI con-

troller with a voltage reference forwarded to the PWM modulator. As
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one grid phase is disconnected the according leg of the PWM rectifier

cannot be used. Therefore only 4 PWM signals are sent to the IGBTs.
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Figure 5.13: Control of the PWM rectifier in case of phase disconnection

The phase shift and frequency of the real current is is controlled with

an estimated sin(α) signal generated based on the information from the

period, before the phase disconnection occurred. From the estimated

ul,α and ul,β voltages the voltage angle δ is calculated using the arctan

function.
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5 Sensorless control of active rectifiers

�
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Figure 5.14: Voltage angle δ

During the normal operation (where all three phases are present) the

frequency f of the grid voltage is calculated. The angle δ changes from

+π to −π every 20ms (in case of 50Hz). It is very easy to detect this

step in the angle and to calculate the voltage frequency from it.

f = k ∗ fsampling (5.7)

where k is equal to the number of samples taken between the angle steps.

Knowing the frequency it is necessary to find out which phase is dis-

connected to calculate proper phase shift of the current. Suppose there

is no L3 in the system. The only voltage which is left is UL1−L2. Current

is should be now in phase with this voltage.

Knowing that, it is possible to calculate proper phase shift (φ) using

the last estimated value of the ugrid. From the knowledge of the phase

shift and the frequency signal sin(α) is achieved, where α = ω ∗ t + φ

and ω = 2 ∗ π ∗ f .
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Figure 5.15: Reaction of the system on the L3 phase disconnection

Figure 5.15 shows the operation of the presented control method dur-

ing disconnection of one of the grid phases. The line current in the

operating phase increases to keep the DC-link voltage constant, but it

still has sinusoidal shape. The system should withstand break in the

phase for 5 periods of the voltage signal (if the break lasts longer, sys-

tem can be turned off completely). It can be seen, that in the case shown

in fig. 5.15 the rectifier operates correctly for 116 ms, after this time the

missing phase was connected again. The rectifier reacts properly going

into the 3-phase operation mode. It is important to notice, that the

current in the disconnected phase, L3, was not measured. Only currents

of the phases L1 and L2 are measured and the L3 current is calculated.

Of course the scheme has some disadvantages. First: the amplitude of

the grid voltage has to be calculated in order to get sin(α) signal. It is

also supposed, that it does not change during the voltage disconnection.

Second: all three grid voltages (UL1−L2, UL2−L3 and UL3−L1) have to

be estimated during the conventional 3-phase operation of the PWM

rectifier.
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5 Sensorless control of active rectifiers

5.6 PC/104 system

This chapter showed the operation of the PWM rectifier controlled by the

proposed PC/104 system. Thanks to the use of the PC/104 it was pos-

sibly to build a hardware necessary to control the active rectifier. The

system consisted of one PWM card, three A/D converters cards, two

D/A converters cards and one HEX-card. Three A/D cards were neces-

sary on the beginning of the project. First the rectifier was controlled

using measured grid voltage, because it was important no to damage the

transistors of the rectifier during the test of the voltage oriented control

itself. The results could be observed using D/A converters. After con-

firming, that the VOC is working properly, the grid voltage estimation

method was implemented. The multitasking capability of the PC/104

allowed fast changing of the code and testing it. The estimated volt-

age was compared with the measured one during the operation of the

rectifier. During the test it was possible the switch between measured

and estimated voltage. The PC/104 system allows to control the flow of

the program on-line using the HEX-card. Setting appropriate values on

the HEX-card gave the possibility to change from measured voltage to

the estimated very fast during control software operation. The control

program for phase disconnection problem was also implemented on the

same system. At the end both programs, for standard 3-phase operation

and for phase disconnection were put together into one piece of code.

After confirmation of the proper rectifier operation, the PC/104 could

be reduced to only one PWM card and two A/D cards.
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6 Sensorless Speed / Position Control of

Servo Motors

This project was done by Dr.-Ing. Marco Linke and Dr.-Ing. Oscar

Cabral Ferreira using PC/104 system1.

6.1 Introduction

Many new estimation algorithms for speed detection or even position

detection of synchronous machines at low and zero speeds have been

proposed. High frequency injection methods are gaining more and

more attention [17], [18], [19]. Injection methods are normally not

applied to Surface Mounted Permanent Magnet Synchronous Machines

(SMPMSM), because the magnets are distributed rather homogenously

on the surface of the rotor resulting in very small saliencies.

This application refers to a concept published in [16], which takes

advantage of a fact, that these machines in spite of their homogenous

design provide a small amount of anisotropy produced by saturation of

the main flux. The high-frequency test signal is controlled to be in align-

ment with the saliency induced by saturation. The injection signal can

be described as an amplitude modulated space vector. A synchronous

tracking scheme evaluates the anisotropy - this concept avoids complex

demodulation algorithms which are sensitive to variations of machine

parameters and additional saliencies neglected by the model.

1this chapter is a part of a publication [22]
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6 Sensorless Speed / Position Control of Servo Motors

Alternating carrier injection with a displacement of π/4 rad with re-

spect to the saliency axis [18], suffers from inverter carrier voltage har-

monics generated by the dead time effect. This effect can be explained by

analysing the current trajectory transition between two switching sectors

(see [16]).

6.2 Alternating carrier injection principle

The phase angle of an alternating carrier voltage vector uc is kept in

alignment with the estimated d -axis in the dq-rotor reference frame (Fig.

6.1). As a consequence, the modulation has almost no effect on the

torque producing current component in the q-axis [20].
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Figure 6.1: Resulting current signal ic as a modulated space vector in

rotor coordinates

Based on this approach the superimposed carrier signal can be de-

scribed in stator coordinates as follows

u
(S)
c = uc cos(ωct)e

jω̂t (6.1)
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6.3 Estimation of the anisotropy

The carrier frequency ωc is chosen around 2 kHz to obtain a fast re-

sponse and to avoid interaction with the current control loop. As long

as the estimated rotor position coincides with the real rotor position δ

the test signal is a composition of two high frequency test signals as used

in conventional high-frequency injection methods [21] but rotating in di-

rections opposite to each other. As a result only the d -axis is excited

by the carrier (see Fig. 6.1). The resulting high-frequency current ic

(response of the electromagnetic circuits to the injection voltage uc is

also in alignment with the main flux. Like the voltage the current can be

also decomposed to a positive and negative sequence components, ic−

and ic+ respectively (Fig. 6.1). The amplitude of ic varies sinusoidally

with time. A small misalignment between the real and the estimated

rotor position produces an additional high frequency component

i
(δ̂)
c =

uc

ldlq
sin(ωct)

[

ld + (lq − ld)e
−j(δ̂−δ)

]

(6.2)

which can be detected to feed a rotor saliency tracking algorithm which

is sensitive even to the small anisotropies of SMPMSMs [20]. The current

signal (6.2) is not used to estimate the rotor position by calculations. It

serves as an error signal that is minimized by the tracking scheme in the

next sampling cycle.

6.3 Estimation of the anisotropy

The novel method generates a positive as well as a negative current

sequence component(see Fig. 6.1), both containing information about

the rotor position. The injected carrier voltage

u
(S)
c = uc cos(ωct)e

jδ̂a (6.3)
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6 Sensorless Speed / Position Control of Servo Motors

is always in alignment with the estimated position of the anisotropy

(estimated values are marked with a hat )̂:

δ̂a = ω̂at (6.4)

The anisotropy in a SMPMSM is mainly based on the saturation effect of

the main flux; it rotates with the same frequency ω as the rotor itself. In

difference to the field oriented system the subscript a generally indicates

an anisotropy-aligned coordinate system. Both coincide in the case of

surface mounted PMSM.

A transformation of the carrier voltage to field coordinates is done by

multiplying equation 6.3 by e−jδ. Consequently the differential stator

equation can be represented as follows:

u
(F )
c = uc cos(ωct)e

j(δ̂−δ) = l(F )
σ

di
(F )
c

dt
(6.5)

Stator resistance, induced voltage and cross coupling of the currents are

neglected in the differential stator equation [20]. This is only permitted if

the carrier frequency ωc is much higher than the fundamental frequency

(fi = 2kHz).

The real field angle δ is the unknown variable in this equation. The

solution of 6.5 in field coordinates is

i
(F )
c =

uc

ωc

sin(ωct)

[

1

lσd

cos(δ̂ − δ) + j
1

lσq

sin(δ̂ − δ)

]

(6.6)

Equation 6.6 can be discussed as follows: the carrier current amplitude

|ic| increases proportionally to the carrier voltage uc and decreases with

increasing carrier frequency. Moreover, the carrier current component

icq is directly proportional to the angle error ∆δ.

This offers an effective way to demodulate the rotor position informa-

tion. For small angles the sin-function from 6.6 behaves proportionally

to the angle error ∆δ. Hence, the next processing cycle is used to correct

the direction of carrier signal.
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6.4 Sensorless control approach

6.4 Sensorless control approach

6.4.1 Demodulation of the carrier current

Using high frequency injection methods for sensorless control, the signal

demodulation algorithm requires high performance in signal processing.

To reduce the calculation effort, the high-frequency current ic 6.6 is

transferred to a reference frame in a negative direction at approximate

carrier frequency. This is done by

i
(ωct+δ̂)
c = i

(S)
c e−j(ωct+δ̂) (6.7)

This transformation generates a high frequency current signal that is

easy to demodulate without referring to ma-chine parameters. Assuming

the remaining negative sequence current components of ic are rejected

by a low pass filter, transformation 6.7 applied to the current signals 6.6

results in

i
(ωct+δ̂)
p = uc

1

j4ωclσdlσq

[

(lσd + lσq) − (lσd − lσq)e
j(2δ−2δ̂)

]

(6.8)

It can easily be separated because it is transformed by 6.7 to about twice

the carrier frequency.

Equation 6.8 illustrates the current response containing the useful in-

formation about the misalignment of the estimated field angle with re-

ference to the real field angle. It is used as an error estimation angle

∆δ = δ − δ̂ (6.9)

The current response is further simplified to reduce processing power

necessary for demodulation. In the case of small error estimation angles

the current response is:

i
(ωct+δ̂)
p = uc

1

j4ωclσdlσq

[−j(lσd + lσq) − (lσd − lσq)2∆δ] (6.10)
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6 Sensorless Speed / Position Control of Servo Motors

This equation shows the real component of the current response in the

reference frame according to 6.7 being proportional to the error angle ∆δ.

This is used to track the field angle by a closed loop tracking system (Fig.

6.2).

Figure 6.2: Signal flow graph of the field angle estimation scheme based

on the proposed method

6.4.2 Sensorless position control of SMPMSM

As discussed in [16] the signal flow graph in Fig. 6.2 illustrates the

basic structure of the proposed sensorless scheme. The positive sequence

current has a real component proportional to the error angle ∆δ 6.10.

This signal is sampled with the sampling frequency of the current control

loop. The following PI-controller feeds a controlled oscillator to create
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6.4 Sensorless control approach

the estimated field angle. This results in a closed loop structure that

corrects the field angle stepwise by each sampling cycle. Hence, a high

sampling frequency ensures good and dynamical fast alignment with field

axis. The disturbances of the acquired signal are low, thus permitting

operation at low carrier amplitudes. The prominent advantage is the

tracking observer not depending on any machine parameters.

6.4.3 Experimental results

The experimental results of [16] are obtained using a commercial 6-pole

SMPMSM servo drive with 1.2 kW rated power.

The estimated position δ̂ is used as a feedback signal for field oriented

control. The central track of the diagram in Fig. 6.3 represents the

position error ∆δ̂ between the measured position δ and the estimated

position δ̂ (increased scale). The switching frequency is 8 kHz, the carrier

frequency is 2 kHz with a peak carrier current icmax of 200 mA. The

current control is processed using the same 12-Bit A/D converter also

used for sensing the fundamental currents.
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Figure 6.3: Experimental results: rotor position δ and corresponding es-

timated variables δ̂, ∆δ̂
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6 Sensorless Speed / Position Control of Servo Motors

6.5 PC/104 system

This chapter showed the operation of the PMSM motor controlled with-

out the position encoder using the proposed PC/104 system. The system

consisted of one PWM card, one A/D converters card, two D/A convert-

ers cards, one HEX-card and one special encoder card. First the motor

was controlled using measured rotor position, because it was important

no to damage the inverter during the test of the field oriented control.

The PI controllers were optimized during this test phase. On-line pa-

rameter setting was possible. The results could be observed using D/A

converters. After confirming, that the FOC is working properly, the po-

sition estimation method was implemented. The multitasking capability

of the PC/104 allowed fast changing of the code and testing it. The

estimated position signal was compared with the measured one during

the operation of the PMSM. As in previous test setup the on-line con-

trol of the program flow was possible with help of the HEX-card. By

setting appropriate values on the HEX-card it was possible to change

from measured position signal to the estimated one during control soft-

ware operation. After confirmation of the proper motor operation, the

PC/104 could be reduced to only one PWM card and one A/D card.
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7 Model-based predictive control for

electrical drives

This project was performed by Dr.-Ing. Arne Linder and MSc. Juan

Carlos Ramirez Martinez is continuing this work using PC/104 system.

All presented results originate from [24].

7.1 Introduction

Variable speed electrical drives are applied for various applications in the

industrial environment; its power bandwidth reaches from few watts, for

a small servo-motor, up to several hundreds of kilowatt for traction ap-

plications. The advances of the semiconductor technology, increased the

possibilities to supply AC machines in a superior way to control the

speed. Since then, the state-of-the-art in industrial drive applications

is the field oriented control for synchronous machines as well as asyn-

chronous machines; where PI controllers are used in cascade structure.

Undesirable side effects and nonlinearities of the machine are tackled

with precontrols or feed forward compensation techniques in such a way

that the quality of the achieved control meets the requirements of the

industrial drive applications. Now it rises the question, why new con-

trol techniques should be examined if the control techniques available

till now are enough for all requirements of the drive control. This can

be explained with the help of the classical control structure of an elec-

trical drive. As shown in Fig. 7.1, a position control scheme consists

of threefold cascaded control structure: current/torque control, speed
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7 Model-based predictive control for electrical drives

control and position control. The external control loop consists of an

integrator which describes the behavior of the inertia of the system or

the gear, and commands the inner control loop accordingly. For such a

cascaded structure, the inner loop is approximated first and then the con-

troller parameters corresponding to the outer loop are determined with

the so-called symmetrical optimum techniques. However, good control

properties can be achieved only if the time constants of the inner control

loop and the subsequent external control loop differs by a factor of at

least 7-10.

inverter machine
windings

current
controller

ϕ
*

I
*

position
controller

ω
*

speed
controller

gears
etc.

I

inertia

ω

ϕ

Figure 7.1: Structure of a typical cascaded controller

Consequently, with respect to position control loop, the current con-

troller must be about 50-100 times faster. It is clear that as a relatively

fast current controller is not realizable with the help of a cascade struc-
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7.2 Cascaded Control of Induction Motor with PI Controllers

ture, the dynamics achieved is no longer suitable for highly dynamic

drive applications. The predictive or precalculating controller which

needs no cascade control offers an alternative. Many publications pro-

pose controllers, which precalculate the control behavior merely for the

next sample step. Correspondingly, the optimization of the controlling

variable can also follow only for one sample step. Long Range Predictive

Control, however, are known to have a higher prediction horizon than

classical control; and as an advanced model is used for the calculation,

they are also called Model Predictive Controllers (MPC) or Model-based

Predictive Controllers. These strategies are relatively complex in com-

putations in comparison to ordinary linear controllers, because of the

longer prediction horizon. That is the reason why their implementa-

tion in the drive technology was not possible yet. The PC/104 system’s

Celeron processor with integrated floating-point unit can be a solution.

The schemes and results presented in the following chapters cannot be

obtained by any standard drive hardware (analogue or digital). A Rapid

Prototyping System is the only possibility to do research like that.

7.2 Cascaded Control of Induction Motor with PI

Controllers

Conventional PI controllers can always control one quantity with the

help of one reference input value. These are called as SISO (Single

Input, Single Output) type controllers. In contrast to this, there are

controller structures which can control several control parameters at the

same time; these are called MIMO (Multiple Input, Multiple Output)

controllers or multidimensional controllers. Thus when the current as

well as the speed is to be controlled with the help of PI-controllers,

which are SISO systems, the control structure must be implemented as
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7 Model-based predictive control for electrical drives

a cascaded control. Figure 7.2 shows the typical structure of a field ori-

ented control by means of cascaded PI controllers. The internal control

loop is formed by both current controllers for field producing and torque

producing stator current components. Both of the current controllers

are shown as a single complex variable controller to improve the clarity

of the signal flow graph. Outer loops with respect to the current control

loops are speed and flux control loops. The speed and flux controllers

can be seen in the outer loop of the signal flow graph.
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Figure 7.2: Field-oriented drive control with PI controllers

7.3 Predictive control

Initially the linear PID controllers, mostly made from analog operational

amplifiers, were introduced in the electric drive technology. These linear

controllers make use of an error signal from the given set point of the

controlled variable to generate an actuating signal. A controller of this
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7.3 Predictive control

type does not posses the knowledge about the process itself, rather it

is required to interpret in terms of the controller parameters. With

the large number of inexpensive microcomputers and the introduction

of digital control techniques associated with it in the drive technology,

the thoughts soon arose to precalculate their behavior with the help

of a mathematical model of the process to be regulated and to derive

optimum switching state from these precalculated values. The predictive

or forward estimation controllers were born.

Figure 7.3 shows the typical structure of a predictive controller for

a position control of an electric drive. The measured state variables,

namely the machine current I, the rotating speed ω and the mechanical

position angle ϕ are processed simultaneously (at the same time) in a

model of the machine and power electronics. With the help of this model,

one can obtain the exact information of the actual system state, which is

then transferred to the block called "prediction and calculation". This

functional block can be regarded as the heart of a predictive controller

system. It compares the actual system state with the reference values

of the drive position and then it selects the correct switching state of

the inverter corresponding to the implemented optimizing criteria. The

switching state, for which the estimated system response is in close prox-

imity with the desired one, is selected for control in the next switching

interval. The calculation of the optimum state in the block "prediction

and calculation" depends upon the desired optimal condition which can

be one of the optimal condition such as minimum current error, minimum

current distortion or similar. Also the amount of control expenditure for

the required reference state can be evaluated.
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Figure 7.3: Typical structure of a predictive controller

The predictive control algorithms can be categorized in three main

groups based on the operating principles of these strategies. These are

hysteresis based, trajectory based and model-based strategies. These

groups are not separated too much from each other and sometimes the

cross relationship is rather clear. Both hysteresis as well as trajectory

based predictive controllers use the actual system state to precalculate

the value of the controlled variable for the next sampling step. The

past history is not explicitly taken into consideration as it is exclusive in

the actual system state. There exists one kind of relationship between

hysteresis and trajectory based predictive control algorithms in this re-

gard, while the Model Predictive Control ( MPC) strategies are based

on completely different ideas.

Model-based predictive control takes into consideration the past and

optimizes the future switching state not only for the next cycle, but

up to a specified future horizon or control horizon. The model-based

controllers have a similar structure like conventional controllers, as they

also use an explicit and separate - identifiable model of the controlled

system for the predetermination of the system response and selection of

optimal correcting variables. But on contrary to conventional controllers
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7.4 Experimental results

used in the drive control applications (which determine the control val-

ues only for next switching step), the MPC controllers precalculate the

controlling variable values for number of steps ahead in the future [26].
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Figure 7.4: Typical structure of a MPC controller

The control strategy Generalized Predictive Control, abbreviated as

GPC belongs to the group of model based predictive controllers. It was

introduced by Clarke at the University of Oxford in 1987 [27, 28]. In its

simplest form, the GPC controller represents a linear SISO controller,

i. e. the system, which is to be controlled, has only one input and a

one output variable, but it can be easily extended to the multiple input

multiple output - MIMO controller.

7.4 Experimental results

Figure 7.5 shows the large signal response of the closed control loop;

wherein figure 7.5(a) shows the behaviour of a PI controller controlled

drive, while the results in figure 7.5(b) were obtained with a GPC con-
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7 Model-based predictive control for electrical drives

troller. In both cases, torque producing current component isq is given

a step change from isq
∗ = 0 to is isq

∗ = 0.4.
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Figure 7.5: Current control: Large signal response

The results show that the GPC controller generates a smaller over-

shoot than the PI-controller. The rise time is approximately identical

in both cases, because it is essentially limited by the available control

energy. It appears that no significant advantage is offered in this case

by the use of a model-based predictive controller.
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The small signal response of both controllers can be seen in Figure 7.6.

0.05

isq
isq

*

usq

*

0.1

0

0.2

isq

usq

*

0

0.4

0

t

1.0 2.0 ms

PI controller

(a) PI Controller

0.05

0

isq

isq

*

usq

*

0.1

isq

t

0 0

0.2

usq

*0.4

0.6

1.0 2.0 ms

GPC

(b) GPC Controller

Figure 7.6: Current control: Small signal response

It can be seen from the comparison of the output variable (controlled

variable) of the current control loop shown in Figure 7.6(a) obtained

with PI controller against the one obtained with GPC controller shown

in Figure 7.6(b) that the PI controller does not use available control

energy in an optimal way for the small step change of only ∆isq
∗ = 0.1.

While the model based predictive controller uses the maximum available

control variable energy in an optimal way. Hence, the GPC controller
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7 Model-based predictive control for electrical drives

shows up superior performance in the small signal response as compared

to the PI controller.

The measurements shown in Figure 7.7 were taken up with a nor-

malised rotating speed of the machine, ω = 0.4.
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Figure 7.7: Current control: Large signal response at ω = 0.4

As shown in Figure 7.7(a), the rise time is enormously extended be-

cause of the back EMF generated by the rotation of the machine with

a simple PI current controller. However, the GPC controller (Fig-

ure 7.7(b)) shows much better response, since the noise influence of the
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7.5 PC/104 system

back EMF from the past is known to the GPC controller. As a machine is

rarely operated in the standstill condition, the back EMF always exists.

Thus the MPC controller also shows better results than the PI-controller

in the large signal response.

7.5 PC/104 system

This chapter showed the implementation of the predictive controller for

motor control using the proposed PC/104 system. The system consisted

of one PWM card, one A/D converters card, two D/A converters cards,

one HEX-card and one special encoder card. First the motor was con-

trolled using standard PI controller. The PI controllers were optimized

during this test phase, so the best possible results could be achieved.

On-line parameter setting was possible. The results could be observed

using D/A converters. After confirming, that the PI controllers were

working properly, the predictive control method was implemented. The

multitasking capability of the PC/104 allowed fast changing of the code

and testing it. The predictive control method was compared with the

PI control during the operation of the motor. As in previous test setup

the on-line control of the program flow was possible with help of the

HEX-card. By setting appropriate values on the HEX-card it was pos-

sible to change from PI controllers to the predictive controllers during

control software operation. This test shows a very important advantage

of the PC/104 system. Due to the high memory amount necessary to

conduct the prediction of the control values, it is not possible to imple-

ment the predictive control on the Digital Signal Processors or on the

microcontrollers.
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8 Conclusions

There are many possible solutions to set up a control system for inverters

and drives. All have their advantages and disadvantages. Users have to

decide what the priorities in choosing the system are. When the cost

of the system is less important than the calculation power and high

sampling frequencies, the ready-made solutions are superior. But if the

cost plays more important role and the necessary sampling or switching

frequencies are in today’s typical region (about 12kHz) the use of PC/104

system seems to be optimal.

Another very important advantage of the system described in this

thesis, especially for university institutes, is that the PC/104 system can

be set up for many different projects with ease. Three example projects

(from many running at the Institute for Electrical Machines and Drives

today, where the PC/104 system is used) are shortly described and show,

that the system can be successfully applied where calculation power is

needed. It demonstrates great flexibility of the system.

Another benefit of the PC/104 system is due to the fact that Celeron

processor from x86 processor family is used, many software applications

can be installed on the hard drive. It brings the user possibility to create

a work station where all necessary tasks can be done without changing

the place. Linux system with C compiler is used to create control pro-

grams. Installing Microsoft Windows system on the same hard drive

would bring the user a possibility to program all the chips of expansion

cards (FPGA from PWM card, GAL from Interface card) in place using

Altera’s Quartus software and PALASM software. Simulation programs
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8 Conclusions

and applications for data analyzing can be used. OpenOffice and other

Linux applications can be used to do an office work.

Modularity of the PC/104 system is a very important topic. Every

part of the system can be easily exchanged. If one of the expansion cards

gets damaged it can be exchanged with a new one. There is no need to

configure the system again or to rewrite the control program. Damage

of the PC/104 CPU module is also not critical, another equal module

have to be installed because of the operating system drivers installed on

the hard drive. Failure of the hard drive means that operating system

and user’s programs are damaged and the PC/104 system cannot be

used anymore. User’s task is it to frequently make a backup of the hard

drive. It is easily made using an external DVD-burner or an external

hard drive connected through USB ports.

The use of the system is simplified to the minimum. Average student

is able to prepare his own system and learn how to program within 2 to

3 weeks (under assumption that C language is already known).
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A PC/104 control program example

This appendix presents an example of a typical PC/104 control program.

There are also files necessary to be able to compile and run this program.

All presented files must be placed in the same directory.

• rtai_isa.c - main program

#include <linux/kernel.h>

#include <linux/module.h>

#include <asm/io.h>

#include <math.h>

#include <asm/system.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_shm.h>

#include "pc104.h" //for PC/104 - system settings

#include <rtai_fifos.h>

#define cfile "rtai_isa"

static int Fschalt = 5; //switching frequency 4068Hz

int nr_irq=3; //interrupt 3 is used

short int ad_wert;

void mout (float f)

{
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A PC/104 control program example

int i1,i2;

i1= (int) f;

i2= (int) (f*1000000) - (i1*1000000);

printk ("%d.%06d\n", i1, i2);

}

int isa_rtirq(void)

{

static float angle, ualpha_ref, ubeta_ref;

short int moda, modb, modc;

static long hex_val;

isr_anfang(); //save the fpu registers

//Here starts user’s code

ad_wert = inw(0x294); //read A/D converter

outw(0x0, 0x294); //start the A/D converter

outw(1*DnachA, 0x28A); //set D/A output to 10V

outw(Fschalt, PWMK); //set the interrupt

// line in HIGH state

hex_val = inw(HEX_KARTE); //read Hex card value

outw(hex_val,HEX_KARTE); //write Hex card value

if ((hex_val & 0x0001) == 0x0001)

//if lowest bit is equal to 1

{
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outw(0x8000, PWMKFr); // enable PWM card

if (angle > 6.283)angle=0;

angle = angle + 0.03926875; //generate 50Hz angle

ualpha_ref = 0.95*sin(angle);

//generate rotating voltage vector

ubeta_ref = 0.95*cos(angle);

moda = (int)((ualpha_ref + 1.0) * 512.0);

//calculate values for the PWM card

modb = (int)((0.5 * 1.732 * ubeta_ref

- 0.5 * ualpha_ref + 1.0) * 512.0);

modc = (int)((-0.5 * 1.732 * ubeta_ref

- 0.5 * ualpha_ref + 1.0) * 512.0);

outw( (((moda)&0x3FF)|0x4000), PWMK);

// send values to the PWM card

outw( (((modb)&0x3FF)|0x8000), PWMK);

outw( (((modc)&0x3FF)|0xC000), PWMK);

outw(ualpha_ref * DnachA, 0x284);

//show alpha component

outw(ubeta_ref * DnachA, 0x286);

outw(ad_wert, 0x288);

else // if the lowest bit is not equal to 1

{

outw(0x0, PWMKFr); //disable PWM card

outw(0x0, 0x284); //set D/A converter output to 0
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A PC/104 control program example

outw(0x0, 0x286);

outw(0x0, 0x288);

}

outw(0*DnachA, 0x28A);

//set D/A output to 0 at the end of interrupt

//Here ends users code

isr_ende(); // restore fpu registers

rt_ack_irq(nr_irq);

return(IRQ_HANDLED);

}

int init_module (void)

{

printk("Start %s !\n", cfile);

outw(Fschalt,PWMK); //set the switching frequency

outw(0x8000, PWMKFr); //enable PWM card

rt_request_global_irq(nr_irq, (void*)isa_rtirq);

//set interrupt routine

//to be called when irq 3 occurs

rt_enable_irq(nr_irq); //enable irq 3

return (0);

}
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void cleanup_module (void)

{

outw(0x0, PWMKFr); //disable PWM card

outw(0x0, 0x284);

outw(0x0, 0x286);

outw(0x0, 0x288);

outw(0x0, 0x28A);

rt_disable_irq(nr_irq); //disable irq 3

rt_free_global_irq(nr_irq);

//free irq 3 from the interrupt routine

printk("Stop %s!\n", cfile);

return;

}

MODULE_LICENSE("GPL");

• Makefile - a file needed for compilation

obj-m := rtai_isa.o

KDIR := /lib/modules/$(shell uname -r)/build

PWD := $(shell pwd)

EXTRA_CFLAGS := -I/usr/realtime/include

-I/usr/include/ -ffast-math -mhard-float

TARGET := rtai_isa

default:

$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
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A PC/104 control program example

clean:

rm ${TARGET}.ko

rm ${TARGET}.o

rm .${TARGET}.*

rm ${TARGET}.mod.c

rm ${TARGET}.mod.o

rm -r .tmp_versions

• pc104.h - definitions file

#define AnachD 3.0531554e-4

#define DnachA 32767.0

#define PWMK 0x280

#define PWMKFr 0x282

#define HEX_KARTE 0x28C

char isr_first_time=0;

unsigned long cr0;

FPU_ENV linux_fpe __attribute__ ((__aligned__(16)));

FPU_ENV task_fpe __attribute__ ((__aligned__(16)));

void isr_anfang(void)

{

save_cr0_and_clts(cr0);

// To save Linux cr0 state. Always to be done.

save_fpenv(linux_fpe);

// To save Linux FPU environment.

if ( isr_first_time )

restore_fpenv(task_fpe);
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// To restore your FPU environment.

else

isr_first_time = 1;

}

void isr_ende(void)

{

save_fpenv(task_fpe);

// To save your FPU environment.

restore_fpenv(linux_fpe);

// To restore the previously

// saved Linux FPU environment.

restore_cr0(cr0);

// To restore Linux cr0. Always to be done.

}

• .runinfo - a file needed to run the program

latency:ksched+fifos:push rtai_isa

• run - a file, which starts the program

${DESTDIR}/usr/realtime/bin/rtai-load

• remove - a file, which stops the program

/sbin/rmmod rtai_isa

/sbin/rmmod rtai_fifos

/sbin/rmmod rtai_up

/sbin/rmmod rtai_hal
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A PC/104 control program example

Suppose all these files are placed in a directory /home/rtai/pc104/.

To compile the code user needs to write:

# make

If there were no errors, the executable file is created. This file can be

started by writing:

# ./run

When the program is written correctly, system should be stable and

should function normally. The PC/104 program should work instanta-

neously.

To stop PC/104 program one has to write:

# ./remove

The PC/104 control program will be removed from the memory and

Linux should return to its previous state.
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B Interface card GAL program

On the Interface card described in chapter 3, section 3.3 there is a GAL

chip for Port Enable signals generation. This chip is programmed with

a code shown in this appendix.

;PALASM Design Description

;------ Declaration Segment ------------

TITLE Address decoder ISA-Bus,for PC/104 system

PATTERN

REVISION

AUTHOR Christoph Klarenbach

COMPANY EMAD

DATE 25/07/05

CHIP _Decoder PAL22V10

;------ PIN Declarations ---------------

PIN 11 A1 ; INPUT

PIN 10 A2 ; INPUT

PIN 9 A3 ; INPUT

PIN 8 A4 ; INPUT

PIN 7 A5 ; INPUT

PIN 6 A6 ; INPUT

PIN 5 A97 ; INPUT
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B Interface card GAL program

PIN 4 A8 ; INPUT

PIN 3 IOWR ; INPUT

PIN 2 BALE ; Adresslatch enable

PIN 14 CS2 Comb ; Enable 16Bit-Decoder

PIN 15 IOCS16 Combinatorial ; OUTPUT

PIN 16 PE22 Combinatorial ; OUTPUT

PIN 17 PE21 Combinatorial ; OUTPUT

PIN 18 PE20 Combinatorial ; OUTPUT

PIN 19 PE19 Combinatorial ; OUTPUT

PIN 20 PE18 Combinatorial ; OUTPUT

PIN 21 PE17 Combinatorial ; OUTPUT

PIN 22 PE16 Combinatorial ; OUTPUT

PIN 23 CS Comb ; Enable Bus-Transceiver

;------ Boolean Equation Segment ------

EQUATIONS

PE16 = /(/IOWR*A5*/A4*/A3*/A2*/A1 *

/BALE*/A8* A97*/A6) ; Address 0x2A0h

PE17 = /(/IOWR*A5*/A4*/A3*/A2* A1 *

/BALE*/A8* A97*/A6) ; Address 0x2A2h

PE18 = /(/IOWR*A5*/A4*/A3* A2*/A1 * /BALE*/A8* A97*/A6)

PE19 = /(/IOWR*A5*/A4*/A3* A2* A1 * /BALE*/A8* A97*/A6)

PE20 = /(/IOWR*A5*/A4* A3*/A2*/A1 * /BALE*/A8* A97*/A6)

PE21 = /(/IOWR*A5*/A4* A3*/A2* A1 * /BALE*/A8* A97*/A6)

PE22 = /(/IOWR*A5*/A4* A3* A2*/A1 * /BALE*/A8* A97*/A6)

IOCS16 = /(/BALE*/A8* A97*/A6)

; 16Bit Bus-Transfer
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CS = /(/IOWR* /BALE*/A8* A97*/A6) ; Chip Select

CS2 = /(/IOWR*/A5* /BALE*/A8* A97*/A6)

; Chip Select Decoder 74154

;----- Simulation Segment ------------

SIMULATION

trace_on A1 A2 A3 A4 A5 A6 A97 A8 IOWR BALE

setf A5

setf A97

clockf

setf A1

clockf

setf A2

setf /A1

clockf

setf A1

clockf

setf A3

setf /A1

setf /A2

clockf

setf A1

clockf

setf /A1

setf A2

clockf

setf A1

clockf
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setf A4

setf /A5

clockf

clockf

clockf

trace_off

;-----
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C VHDL program for FPGA on the PWM

card

Here a program for the FPGA chip found on the PWM card can be seen.

This code is prepared to work with a two-level inverter (see chapter 3,

section 3.5).

-- standard high active Program for Altera Cyclone FPGA,

-- without Dead-time compensation

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity pwmtod is port (

clock0,clock1: in std_logic; -- richt0 = clock1

cnt_ein: in unsigned(6 downto 0);

reset,tastfrei: in std_logic;

PE0,PE1,write,read: in std_logic;

ein: in unsigned(9 downto 0);

fehler2: in std_logic;

pcfrei: inout std_logic;

richt0: inout std_logic;

freigabe: in unsigned (1 downto 0);

freigabe1_0: out std_logic;

riegel: inout std_logic;

interrupt: out std_logic;
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a_neg,b_neg,c_neg: inout std_logic;

a_pos,b_pos,c_pos: inout std_logic);

end pwmtod;

architecture archpwmtod of pwmtod is

signal cnt: unsigned(9 downto 0);

signal ein_11,ein_12,ein_13: unsigned(9 downto 0);

signal ein_21,ein_22,ein_23: unsigned(9 downto 0);

--signal cnt_a,cnt_b,cnt_c: unsigned(6 downto 0);

signal cnt_a,cnt_b,cnt_c: unsigned(7 downto 0);

signal vorcnt,freq: unsigned(3 downto 0);

signal sig_a,sig_b,sig_c: std_logic;

signal richt1: std_logic;

signal ueber: std_logic;

signal zaehler: std_logic;

signal a_merk: std_logic;

begin

freqact: process(clock0,PE0,PE1,write,

read,freq,reset,cnt,richt1,freigabe,ueber)

begin

if (clock0’event and clock0 = ’1’) then

if (freigabe = "00" and PE0 = ’0’ and write = ’0’) then

freq(0) <= ein(0);

freq(1) <= ein(1);

freq(2) <= ein(2);

freq(3) <= ein(3);

end if;

if (vorcnt = "0000")then
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vorcnt <= freq;

richt0 <= ’1’;

else

vorcnt <= vorcnt - 1;

richt0 <= ’0’;

end if;

if (freigabe = "01" and PE0 = ’0’ and write = ’0’) then

ein_11 <= ein;

elsif (freigabe = "10" and PE0 = ’0’ and write = ’0’)then

ein_12 <= ein;

elsif (freigabe = "11" and PE0 = ’0’ and write = ’0’)then

ein_13 <= ein;

end if;

if (write = ’0’ and PE1 = ’0’) then

PCfrei <= freigabe(1);

end if;

end if;

if read = ’0’ and PE1 = ’0’ then

freigabe1_0 <= richt1;

else

freigabe1_0 <= ’Z’;

end if;

if ueber = ’1’ then interrupt <= ’0’; end if;

if PE0 = ’0’ then interrupt <= ’1’; end if;

end process freqact;

pwmact: process(clock1,richt1)

begin

if (clock1’event and clock1 = ’1’) then
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if richt1 = ’1’ then

cnt <= cnt + 1;

elsif richt1 =’0’then

cnt <= cnt - 1;

end if;

if (cnt = "1111111101" and richt1 = ’1’) then

richt1 <= ’0’;

ueber <= ’1’;

elsif (cnt = "0000000010" and richt1 = ’0’) then

richt1 <= ’1’;

ueber <= ’1’;

else

ueber <= ’0’;

end if;

if ueber = ’1’ then

ein_21 <= ein_11;

ein_22 <= ein_12;

ein_23 <= ein_13;

end if;

if ein_21 = cnt and richt1 = ’1’ then

sig_a <= ’0’;

elsif ein_21 = cnt and richt1 = ’0’ then

sig_a <= ’1’;

end if;

if ein_22 = cnt and richt1 = ’1’ then

sig_b <= ’0’;

elsif ein_22 = cnt and richt1 = ’0’ then

sig_b <= ’1’;

end if;
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if ein_23 = cnt and richt1 = ’1’then

sig_c <= ’0’;

elsif ein_23 = cnt and richt1 = ’0’ then

sig_c <= ’1’;

end if;

end if;

end process pwmact;

acttod: process(clock0,reset,cnt,cnt_a,cnt_b,cnt_c,

sig_a,sig_b,sig_c,fehler2,PE1,riegel)

begin

if (clock0’event and clock0 = ’1’) then

if zaehler = ’0’ then

zaehler <= ’1’;

else zaehler <= ’0’;

end if;

if zaehler = ’0’ then

if cnt_a = "00000001" and sig_a = ’1’

and a_neg = ’0’ and riegel = ’0’ and reset = ’1’ then

a_pos <= ’1’;

end if;

if cnt_a = "00000001" and sig_a = ’0’

and a_pos = ’0’ and riegel = ’0’ and reset = ’1’ then

a_neg <= ’1’;

end if;

if sig_a = ’1’ then a_neg <= ’0’; end if;

if sig_a = ’0’ then a_pos <= ’0’; end if;

if sig_a = ’1’ and a_neg = ’1’ then

cnt_a(0) <= ’0’;
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cnt_a(1) <= cnt_ein(0);

cnt_a(2) <= cnt_ein(1);

cnt_a(3) <= cnt_ein(2);

cnt_a(4) <= cnt_ein(3);

cnt_a(5) <= cnt_ein(4);

cnt_a(6) <= cnt_ein(5);

cnt_a(7) <= cnt_ein(6);

end if;

if sig_a = ’0’ and a_pos = ’1’ then

cnt_a(0) <= ’0’;

cnt_a(1) <= cnt_ein(0);

cnt_a(2) <= cnt_ein(1);

cnt_a(3) <= cnt_ein(2);

cnt_a(4) <= cnt_ein(3);

cnt_a(5) <= cnt_ein(4);

cnt_a(6) <= cnt_ein(5);

cnt_a(7) <= cnt_ein(6);

end if;

if a_neg = ’0’ and a_pos = ’0’

then cnt_a <= cnt_a - 1; end if;

--------------------------------------

if cnt_b = "00000001" and sig_b = ’1’

and b_neg = ’0’ and riegel = ’0’ and reset = ’1’ then

b_pos <= ’1’;

end if;

if cnt_b = "00000001" and sig_b = ’0’

and b_pos = ’0’ and riegel = ’0’ and reset = ’1’ then

b_neg <= ’1’;

end if;
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if sig_b = ’1’ then b_neg <= ’0’; end if;

if sig_b = ’0’ then b_pos <= ’0’; end if;

if sig_b = ’1’ and b_neg = ’1’ then

cnt_b(0) <= ’0’;

cnt_b(1) <= cnt_ein(0);

cnt_b(2) <= cnt_ein(1);

cnt_b(3) <= cnt_ein(2);

cnt_b(4) <= cnt_ein(3);

cnt_b(5) <= cnt_ein(4);

cnt_b(6) <= cnt_ein(5);

cnt_b(7) <= cnt_ein(6);

end if;

if sig_b = ’0’ and b_pos = ’1’ then

cnt_b(0) <= ’0’;

cnt_b(1) <= cnt_ein(0);

cnt_b(2) <= cnt_ein(1);

cnt_b(3) <= cnt_ein(2);

cnt_b(4) <= cnt_ein(3);

cnt_b(5) <= cnt_ein(4);

cnt_b(6) <= cnt_ein(5);

cnt_b(7) <= cnt_ein(6);

end if;

if b_neg = ’0’ and b_pos = ’0’

then cnt_b <= cnt_b - 1; end if;

---------------------------------------

if cnt_c = "00000001" and sig_c = ’1’

and c_neg = ’0’ and riegel = ’0’ and reset = ’1’ then

c_pos <= ’1’;

end if;
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if cnt_c = "00000001" and sig_c = ’0’

and c_pos = ’0’ and riegel = ’0’ and reset = ’1’ then

c_neg <= ’1’;

end if;

if sig_c = ’1’ then c_neg <= ’0’; end if;

if sig_c = ’0’ then c_pos <= ’0’; end if;

if sig_c = ’1’ and c_neg = ’1’ then

cnt_c(0) <= ’0’;

cnt_c(1) <= cnt_ein(0);

cnt_c(2) <= cnt_ein(1);

cnt_c(3) <= cnt_ein(2);

cnt_c(4) <= cnt_ein(3);

cnt_c(5) <= cnt_ein(4);

cnt_c(6) <= cnt_ein(5);

cnt_c(7) <= cnt_ein(6);

end if;

if sig_c = ’0’ and c_pos = ’1’ then

cnt_c(0) <= ’0’;

cnt_c(1) <= cnt_ein(0);

cnt_c(2) <= cnt_ein(1);

cnt_c(3) <= cnt_ein(2);

cnt_c(4) <= cnt_ein(3);

cnt_c(5) <= cnt_ein(4);

cnt_c(6) <= cnt_ein(5);

cnt_c(7) <= cnt_ein(6);

end if;

if c_neg = ’0’ and c_pos = ’0’

then cnt_c <= cnt_c - 1; end if;

------------------------------------------

122



end if;

if (reset = ’0’ or fehler2 = ’0’or PCfrei = ’0’) then

riegel <= ’1’;

end if;

if (tastfrei = ’1’ and reset = ’1’

and fehler2 = ’1’ and PCfrei = ’1’)then

riegel <= ’0’;

end if;

if riegel = ’1’ or reset = ’0’ then

a_pos <= ’0’;

a_neg <= ’0’;

b_pos <= ’0’;

b_neg <= ’0’;

c_pos <= ’0’;

c_neg <= ’0’;

cnt_a(0) <= ’0’;

cnt_a(1) <= cnt_ein(0);

cnt_a(2) <= cnt_ein(1);

cnt_a(3) <= cnt_ein(2);

cnt_a(4) <= cnt_ein(3);

cnt_a(5) <= cnt_ein(4);

cnt_a(6) <= cnt_ein(5);

cnt_a(7) <= cnt_ein(6);

cnt_b(0) <= ’0’;

cnt_b(1) <= cnt_ein(0);

cnt_b(2) <= cnt_ein(1);

cnt_b(3) <= cnt_ein(2);

cnt_b(4) <= cnt_ein(3);

cnt_b(5) <= cnt_ein(4);
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cnt_b(6) <= cnt_ein(5);

cnt_b(7) <= cnt_ein(6);

cnt_c(0) <= ’0’;

cnt_c(1) <= cnt_ein(0);

cnt_c(2) <= cnt_ein(1);

cnt_c(3) <= cnt_ein(2);

cnt_c(4) <= cnt_ein(3);

cnt_c(5) <= cnt_ein(4);

cnt_c(6) <= cnt_ein(5);

cnt_c(7) <= cnt_ein(6);

end if;

end if;

end process acttod;

end archpwmtod;
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