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Chapter 1

Introduction

Many decisions in life involve dealing with multiple conflicting objectives. For example, when select-
ing a portfolio out of a set of given market options, we would like to maximize our expected return
while minimizing the risks involved [59]. In general, there does not exist a solution that satisfies all
objectives simultaneously. In order to make an informed decision we need to have information about
the alternatives that are available to us.
The field of multiobjective optimization aims to, among other things, provide theoretical frameworks
and methods to provide information about the possible alternatives. Such alternatives are often char-
acterized by the concept of Pareto-optimality which was introduced by Francis Edgeworth (1945-1926)
and Vilfredo Pareto (1848-1923) over one hundred years ago: At a Pareto-optimal solution no objec-
tive can be improved without sacrificing another. For a decision maker it can be helpful to know the
whole set of Pareto-optimal solutions or an approximation of such a set.
The portfolio selection problem introduced by Markowitz [59] is a biobjective optimization problem
with a quadratic and a linear objective function. If the decision maker can articulate a preference
wrt. the ratio of expected return and risk then a solution can be determined that optimizes the weighted
sum of the objectives. The resulting problem is a singleobjective problem and can then be solved with
methods from the field of quadratic optimization.

1.1 Outline

In this thesis we consider several classes of multiobjective optimization problems, such as multiobjec-
tive continuous optimization problems, multiobjective convex quadratic and convex piecewise-linear
optimization problems.

Chapter 2 introduces notation, concepts and results that are important for this thesis. In Section 2.1
optimality criteria for singleobjective optimization problems are summarized. Linear complementarity
problems are also introduced as a solution method for convex quadratic optimization problems.
Multiobjective optimization problems are discussed in Section 2.2 and a summary of scalarization
techniques is given.

Chapter 3 reviews a class of multiobjective descent methods based on the steepest descent method by
Fliege et. al. [30]. Methods of this type can be interpreted as extensions of well-kown singleobjective
descent algorithms, such as the steepest descent method and Newtons method.
In the first part of Chapter 3 we consider the generalization of singleobjective descent methods to the
multiobjective case by reviewing different choices for descent directions and step sizes.
Afterwards we consider different choices for descent directions and review the convergence properties
of the resulting multiobjective descent algorithm. Using illustrative examples we conclude with a
comparison of multiobjective descent algorithms and the application of the weighted sum scalarization.
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6 CHAPTER 1. INTRODUCTION

Chapter 4 considers multiobjective convex quadratic optimization problems. First, two similar so-
lution approaches from the literature are discussed that provide an analytical representation of the
efficient set: A weight space decomposition by active sets as suggested by Goh and Yang [38] and a
parametric approach by Adelgren [1]. We show that these approaches are, in fact, very similar and
can be used in conjunction.
Afterwards, we consider special cases of multiobjective convex quadratic optimization problems that
are easier to solve since only polyhedral set have to be considered. Furthermore, we discuss the rela-
tionship of the weight space decomposition by active sets and the parameter space of the e-constraint prob-
lem. Finally, an application to multiobjective location theory is discussed.

Chapter 5 reviews an outer approximation method proposed by Oberdieck and Pistikopoulos [67]
who construct a multiobjective convex piecewise-linear optimization problem to approximate the weight
space decomposition of a multiobjective convex optimization problem. In order to discuss this approach
we consider the weight space decomposition by active sets for multiobjective convex quadratic opti-
mization problems. In particular, we discuss how the weight space decomposition for multiobjective
convex piecewise-linear optimization problems can be computed using multiobjective linear program-
ming techniques.
Furthermore, we consider results from the field of approximation of convex bodies by convex polyhe-
dra in order to provide a convergence result for the approach by Oberdieck and Pistikopoulos [67].
We conclude with an illustrative example.

Chapter 6 concludes the results from Chapters 3, 4 and Chapter 5.
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Notation

All Chapters
Ordering of Vectors in Rm, m≥ 2

a µ b ai ≤ bi∀i = 1, . . . , m
a ≤ b a µ b and a 6= b
a < b ai < bi∀i = 1, . . . , m

cl Closure of a set
bd Boundary of a set
XE Set of efficient solutions
Ynd Set of nondominated vectors

yN , y I Nadir and ideal point
Λ Weight space, Λ=

�

λ ∈ Rm : λ≥ 0,
∑m

i=1λi = 1
	

W W -Parameterization: W = {w ∈ Rm, w≥ 0, w1 = 1}
S Feasible set

Xopt(λ) Set of optimal solutions of the weighted sum problem for λ ∈ Λ
x̄(λ) Unique optimal solution of the weighted sum problem

Chapter 3
D(x) Descent cone in x ∈ Rn

Chapter 4
(MCP) Multiobjective convex optimization problems in canonical form
(MLP) Multiobjective linear optimization problem
(MQP) Multiobjective convex quadratic optimization problems in canonical form
(gMQP) Multiobjective convex quadratic optimization problems in general form

(MMLQP) Multiobjective convex mixed linear-quadratic optimization problems in general form
(pLCP) Parametric linear complementarity problem corresponding to (MQP)

(pmLCP) Parametric mixed-linear complementarity problem corresponding to (gMQP)
A = (I,J) Active setsA with index sets: I for lower bounds, J for linear inequality constraints.
ΛA(A ) Weight cell for efficient active set of (MQP) or (gMQP)
ΛB(B) Weight cell for complementary basis of (pLCP) or (pmLCP)
hk

B Hypersurfaces that define weight cells ΛB(B)
Chapter 5
ΛC(A ) Weight Cell for active setA
η Approximation error

dH(C1, C2) Hausdorff-distance between sets C1 and C2
d(x , y) Euclidean distance between two vectors x , y ∈ Rn

Epi f Epigraph of function f
C Bounded epigraph

T(x , Z) Approximation function of f (x)
P(Z) Bounded epigraph of T(x , Z)
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Chapter 2

Preliminaries

In this thesis the following notation for inequalities of vectors is used for a, b ∈ Rm with m≥ 2:

• a µ b⇔ ai ≤ bi∀i = 1, . . . , m

• a ≤ b⇔ a µ b and a 6= b

• a < b⇔ ai < bi∀i = 1, . . . , m

Note that when comparing two scalars a, b ∈ R that a ≤ b is used in canonical way.

2.1 Singleobjective Optimization

We refer to the books by Geiger and Kanzow [36, 37] and Nocedal and Wright [66] for a detailed
introduction into the field of nonlinear optimization.

Consider an optimization problem of the following form:

min
x∈Rn

f (x)

s.t. g(x)µ 0
h(x) = 0

(2.1)

with continuously differentiable functions f : Rn→ R, g : Rn→ Rp and h : Rn→ Rq. The feasible set
is given by

S := {x ∈ Rn : g(x)µ 0, h(x) = 0} .
Fritz-John and KKT points are used as optimality conditions for many differentiable continuous opti-
mization problems.

Definition 2.1. [37] A point x ∈ Rn satisfies the linear constraint independence constraint
qualification (LICQ) if the set

�∇g j(x) : j ∈ {i ∈ {1, . . . , p} : gi(x) = 0}	∪ {∇hl(x) : l ∈ {1, . . . , q}} (2.2)

is linearly independent.
The point x is then called regular point of (2.1).

11



12 CHAPTER 2. PRELIMINARIES

Definition 2.2. [37] A point x ∈ Rn is called Fritz-John point of (2.1) if there exist u0 ∈ R,
π ∈ Rp and µ ∈ Rq such that

u0∇ f ( x̄) +
p
∑

j=1

π j∇g j( x̄) +
q
∑

l=1

µl∇hl( x̄) = 0

g( x̄)µ 0, h( x̄) = 0

u0 ≥, π½ 0

π j(g j( x̄)) = 0 j = 1, . . . , p.

Definition 2.3. [37] A point x̄ ∈ Rn is called KKT point of (2.1) if there exist π ∈ Rp and µ ∈ Rq

such that the KKT conditions are satisfied:

∇ f ( x̄) +
p
∑

j=1

π j∇g j( x̄) +
q
∑

l=1

µl∇hl( x̄) = 0

g( x̄)µ 0, h( x̄) = 0

π½ 0

π j(g j( x̄)) = 0 j = 1, . . . , p.

The following results provide necessary optimality conditions for (2.1):

Theorem 2.4. [37] Let x̄ be a local minimum of (2.1). Then the following statements hold:

1. x̄ is a Fritz-John point of (2.1).

2. If x̄ is a regular point of (2.1), then x̄ is a KKT point of (2.1).

For problems with a convex objective function f (x) and a convex feasible sets the KKT conditions are
also sufficient optimality conditions:

Theorem 2.5. [37] Let f (x) and g(x) be convex functions and let h(x) = H x − h for some
H ∈ Rq×n and h ∈ Rq. Let x̄ be a regular point of (2.1). If x̄ is a KKT point, then x̄ is an optimal
solution of (2.1).

2.1.1 Quadratic Optimization Problems

Quadratic optimization problems arise from applications [59] as well as subproblems of nonlinear op-
timization methods [37].

Consider a convex quadratic programming problem in canonical form

min
x∈Rn

f (x) = 1
2 x TQx + cT x

s.t. Ax ½ b, x ½ 0
(2.3)

with Q ∈ Rn×n positive semidefinite, c ∈ Rn, A∈ Rp×n, b ∈ Rp.
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Corollary 2.6. [37] A regular point x̄ ∈ Rn of (2.3) is an optimal solution of (2.3) if and only if
there exist π ∈ Rp and y ∈ Rn such that

Qx̄ + c − ATπ− y = 0
Ax ½ b, x ½ 0
π½ 0, y ½ 0
π j(A j •x − b j) = 0 ∀ j = 1 . . . , p
yi x i = 0 ∀i = 1, . . . , n

(2.4)

Consider a convex quadratic programming problem in general form

min
x∈Rn

f (x) = 1
2 x TQx + cT x

s.t. Ax ½ b, xI+
½ 0, H x = h

(2.5)

with Q ∈ Rn×n positive semidefinite, c ∈ Rn, A∈ Rp×n, b ∈ Rp, I+ ⊆ {1, . . . , n}, H ∈ Rq×n, h ∈ Rq.

Corollary 2.7. [37] A regular point x̄ ∈ Rn of (2.5) is optimal solution of (2.5) if and only if there
exist π ∈ Rp, y ∈ R|I+| and µ ∈ Rq such that

Qx̄ + c − ATπ− (II+•)T yI+ +HTµ= 0
Ax ½ b, xI+

½ 0, H x = h
π½ 0, yI+ ½ 0
π j(A j •x − b j) = 0 ∀ j = 1, . . . , p
yi x i = 0 ∀i ∈ I+

Quadratic programming problems can be solved with a variety of method such as active set methods
[37, 82] and interior point methods [66]. An alternative approach is given by linear complementarity
problems.

2.1.2 Linear Complementarity Problems

For a more thorough investigation of linear complementarity problems we refer to the book by Cottle
[14]. The KKT conditions (2.4) for quadratic optimization problems in canonical form (2.3) can be
written as a so called linear complementarity problem [14] by introducing an additional variable s ∈ Rp

and an additional equation s = Ax − b:

�

In 0 −Q AT

0 Ip −A 0

�







y
s
x
π






=
�

c
−b

�

s ½ 0, y ½ 0, π½ 0, x ½ 0

s jπ j = 0 ∀ j = 1, . . . , p

yi x i = 0 ∀i = 1, . . . , n

Consider a linear complementarity problem of the form for some matrix K ∈ Rr×r .
�

Ir −K
�

(u, v) = q
u½ 0, v ½ 0
ui vi = 0 ∀i = 1, . . . , r

(LCP)

with M =
�

Ir −K
�

and z = (u, v). We denote the complementary variable of zi by ẑi for i = 1, . . . , r.
For example if z j = ui then ẑ j = vi .
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Definition 2.8. [14] Let B ⊂ {u1, . . . , ur} ∪ {v1, . . . , vr} be a set of variables with |B| = r. The
matrix MB consists of the columns of M corresponding to the variables in B.

1. B is called a basis of (LCP), if the matrix MB is regular.

2. B is called complementary, if for every i = 1, . . . , r either ui ∈ B or vi ∈ B.

3. The complement of B is denoted by N .

The variables in B (N) are called basic (nonbasic) variables, respectively. Let B be a complementary
basis. Setting ui = 0 for every ui 6∈ B and vi = 0 for every vi 6∈ B reduces the linear complementarity
problem (LCP) to

MB(uB, vB) = q
uB ½ 0, vB ½ 0 (2.6)

where uB := {ui ∈ B : i = 1, . . . , r} and vB := {vi ∈ B : i = 1, . . . , r}. The nonnegativity of the non-
basic variables and the complementarity condition is satisfied now. Since MB is regular we can write
the solution of (2.6) as

qB := M−1
B q (2.7)

Definition 2.9. [14] Let B be a complementary basis of (LCP). B is called feasible complemen-
tary basis of (LCP) if qB := M−1

B q ½ 0. The vector qB is referred to as the value of the basic
variables or basic value.

In order to solve (LCP) we want to find a feasible complementary basis of (LCP). This is the fundamental
idea for pivoting algorithms for solving linear complementarity problems. In order to guarantee that
(LCP) has a feasible complementary basis we study a special class of matrices:

Definition 2.10. [15] A matrix K ∈ Rr×r is called

1. column sufficient, if the following implication is satisfied:

(zi(Kz)i ≤ 0 ∀i = 1, . . . , r)⇒ zi(Kz)i = 0 ∀i = 1, . . . , r.

2. row sufficient, if K T is column sufficient.

3. sufficient, if K is column and row sufficient.

Proposition 2.11. [13] If K is positive semidefinite, then K is sufficient.

Proposition 2.12. [66] Let Q ∈ Rn×n be positive definite and let A ∈ Rp×n be of full rank. Then
the following matrices are regular matrices

K̃ =
�

Q AT

A 0

�

and K =
�

Q −AT

A 0

�

,

and K is positive definite.
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Proposition 2.13. [15] The following statements are equivalent:

(a) K is sufficient.

(b) The problem (LCP) has a (possibly empty) convex solution set for every right-hand-side q.

To find the solution, we start with an arbitrary basis and pivot variables in and out of the basis until a
basis with basic value qB ½ 0 is found. There are two kinds of pivots [14]:

• diagonal pivot: pivot ui and vi (one complementary pair)

• exchange pivot: two successive diagonal pivot with two different complementary pairs. This is
the pivot used in the simplex method for solving linear programming problems [37].

Definition 2.14. [14] Let B = (z1, . . . , zk, . . . , zr) be a complementary variable set.

• The diagonal pivot is defined as

diag(B, k) := (z1, . . . , ẑk, . . . , zr)

• The exchange pivot is defined as

exch(B, k, l) := (z1, . . . , ẑk, . . . , ẑl , . . . , zr)

where ẑk is the complementary variable wrt. variable zk.

Theorem 2.15. [13] Let (LCP) be a feasible linear complementarity problem with a sufficient
matrix K and let B be a complementary basis of (LCP). Then there exists a sequence of comple-
mentary bases connected by diagonal and exchange pivots that ends in a feasible complementary
basis.

Definition 2.16. [13]

1. Let B be a set of complementary variables. The complementary cone is defined as

C(B) = cone (MB) =

¨

∑

k∈B

αk M•k : α½ 0

«

.

2. Two complementary cones C(B1) and C(B2) are called adjacent if dim(C(B1) ∩ C(B2)) =
r − 1.

Proposition 2.17. [13, 1]

1. If B is a complementary basis. Then

C(B) =
�

a ∈ Rr : M−1
B a ½ 0

	

.

2. C(B) is full dimensional if and only if MB has full rank.
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Proposition 2.18. [13] If K is sufficient, then the relative interior of any two distinct complemen-
tary cones are disjoint.

Theorem 2.19. [13] Let B and B′ be two complementary bases of (LCP). If C(B) and C(B′) are
adjacent, then |B ∩ B′| ≥ r − 2.

The dictionary of a complementary basis B of (LCP) is defined as the r × r matrix

T (B) := −M−1
B MN .

The working tableau wrt. a complementary basis B of (LCP) is defined as the r × (2r + 1) matrix
�

T (B) Ir qB

�

(2.8)

Since we are only interested in complementary bases we use the following indexing of the variables
and the dictionary: The i-th entry of B corresponds to the variable of the i-th complementary pair, i.e.
B(i) = ui or vi . Similar to the simplex tableau [37] the tableau is often shown with the basic value as
an additional column. The resulting structure of the dictionary is visualized in Figure 2.1.

z1

z2

z3

z4

B

ẑ1 ẑ2 ẑ3 ẑ4

N

T (B)

Figure 2.1: Indexing of the dictionary.

We will shortly discuss how a diagonal pivot changes the working tableau.
The new dictionary and working tableau after a diagonal pivot can be computed using elementary row
transformations of the working tableau [14]. Consider performing a diagonal pivot B′ = diag(B, k)
with Tkk 6= 0. A column for the basic variable zk is included to visualize the basis exchange.

ẑ1 . . . ẑk . . . ẑr zk

z1 T11 . . . T1k . . . T1r 0 (qB)1
...

...
...

...
...

...
zk Tk1 . . . (Tkk) . . . Tkr 1 (qB)k
...

...
...

...
...

...
zr Tr1 . . . Trk . . . Tr r 0 (qB)r

After one elementary row transformation we have the following working tableau [14]:

ẑ1 . . . ẑk . . . ẑr zk

z1 T11 − T1k
Tk1
Tkk

. . . 0 . . . T1r − T1k
Tkr
Tkk

− T1k
Tkk

(qB)1 − T1k
Tkk
(qB)k

...
...

...
...

...
...

ẑk
Tk1
Tkk

. . . 1 . . . Tkr
Tkk

1
Tkk

(qB)k
Tkk

...
...

...
...

...
...

zr Tr1 − Trk
Tk1
Tkk

. . . 0 . . . Tr r − Trk
Tkr
Tkk

− Trk
Tkk

(qB)r − Trk
Tkk
(qB)k
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Consider performing an exchange pivot with zk and zl , where Tkk = 0. First, zk is exchanged with ẑl :

ẑ1 . . . ẑk . . . ẑl . . . ẑr zk zl

z1 T11 . . . T1k . . . T1l . . . T1r 0 0 (qB)1
...

...
...

...
...

...
...

...
zk Tk1 . . . 0 . . . (Tkl) . . . Tkr 1 0 (qB)k
...

...
...

...
...

...
...

...
zl Tl1 . . . Tlk . . . Tl l . . . Tl r 0 1 (qB)l
...

...
...

...
...

...
...

...
zr Tr1 . . . Trk . . . Tr l . . . Tr r 0 0 (qB)r

ẑ1 . . . ẑk . . . ẑl . . . ẑr zk zl

z1 T11 − T1l
Tk1
Tkl

. . . T1k . . . 0 . . . T1r − T1l
Tkr
Tkl

− T1l
Tkl

0 (qB)1 − T1l
Tkl
(qB)k

...
...

...
...

...
...

...
...

ẑl
Tk1
Tkl

. . . 0 . . . 1 . . . Tkr
Tkl

1
Tkl

0 (qB)k
Tkl

...
...

...
...

...
...

...
...

zl Tl1 − Tl l
Tk1
Tkl

. . . (Tlk) . . . 0 . . . Tl r − Tl l
Tkr
Tkl

− Tl l
Tkl

1 (qB)l − Tl l
Tkl
(qB)k

...
...

...
...

...
...

...
...

zr Tr1 − Tr l
Tk1
Tkl

. . . Trk . . . 0 . . . Tr r − Tr l
Tkr
Tkl

− Tr l
Tkl

0 (qB)r − Tr l
Tkl
(qB)k

After exchanging zl with ẑk the basic value of B after the exchange pivot is given by [14]:

























z1
...

ẑk
...
ẑl
...

zr

























=





























(qB)1 − T1l
Tkl
(qB)k − T1k

Tlk

�

(qB)l − Tl l
Tkl
(qB)k

�

...
(qB)k
Tkl
...

1
Tlk

�

(qB)l − Tl l
Tkl
(qB)k

�

...

(qB)r − Tr l
Tkl
(qB)k − Trk

Tlk

�

(qB)l − Tl l
Tkl
(qB)k

�





























Proposition 2.20. [13] Let B be a complementary basis of (LCP) and let k ∈ {1, . . . , r} be given.
B′ = diag(B, k) is a complementary basis of (LCP) if and only if Tkk(B) 6= 0.

Theorem 2.21. [13] Let K be a sufficient matrix and let B be a complementary basis of (LCP).
Let k, l ∈ {1, . . . , r} be with k 6= l and let B′ = exch(B, k, l). Then

dim(C(B \ {zk})∩ C(B′)) = r − 1⇔ Tk,k(B) = 0 and Tl,k(B)< 0

Proposition 2.20 and Theorem 2.21 show that the dictionary T (B) can be used to check whether a
pivot will lead to a basis of the linear complementarity problem. The following section discusses one
pivoting method to solve linear complementarity problems with sufficient matrices.
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2.1.3 The Criss-Cross Method

Two popular pivoting algorithms for solving linear complementarity problems with sufficient matrices
are Lehmke’s method [57] and the criss-cross method [3].

Algorithm 2.1: Criss-Cross Method [3]

Choose a complementary Basis B and compute T (B) and qB
while qB 6½ 0 do

Choose any k ∈ {1, . . . , r} with (qB)k < 0
if Tkk(B)< 0 then

Perform a diagonal privot with zk and update T (B) and qB
else

if {l ∈ {1, . . . , r} \ {k} : Tkl(B)< 0}= ; then
STOP, the linear complementarity problem is infeasible.

else
Choose any l ∈ {1, . . . , r} \ {k} with Tkl(B)< 0.
Perform a exchange pivot with zk and zl . Update T (B) and qB

Using a pivoting strategy to avoid cycling (for example a variant from Akkeles et. al. [3]) Algorithm
2.1 will either end with a feasible basis of the linear complementarity problem or detect infeasibility
after a finite number of iterations.

Theorem 2.22. [3] Let K be positive semidefinite. Then Algorithm 2.1 (with an appropriate
pivoting strategy) computes a feasible complementary basis or determines that the linear comple-
mentarity problem is infeasible in a finite number of iterations.

2.2 Multiobjective Optimization Theory

For a general introduction to the topic of multiobjective optimization we refer to the books by Ehrgott
[23] and Miettinen [62].
A multiobjective optimization problem is defined by m objective functions fi : Rn → R, i = 1, . . . , m,
and a feasible set S ⊆ Rn:

vmin
x∈S

fi(x) i = 1, . . . , m (2.9)

Alternatively we define the vector-valued objective function f (x), f : Rn→ Rm, component wise by

f (x) =





f1(x)
...

fm(x)



 .

Definition 2.23. [23] A feasible solution x ∈ S is called efficient or Pareto-optimal, if there does
not exist any x ′ ∈ S such that

f (x ′)≤ f (x)

In this case f (x) is called nondominated. The set of efficient solutions is called the efficient set
and is denoted by XE . The set of nondominated points is denoted by Ynd.
A feasible solution x ∈ S is called weakly efficient, if there does not exist any x ′ ∈ S such that

f (x ′)< f (x)

f (x) is then called weakly nondominated.
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Definition 2.24. Let Ynd be the nondominated set of (2.9). The ideal point y I ∈ Rm is defined
by

y I
i =min {yi , y ∈ Ynd} , i = 1, . . . , m.

The nadir point yN ∈ Rm is defined by

yN
i =max {yi , y ∈ Ynd} , i = 1, . . . , m.

The ideal point can be determined by computing the lexicographic minima of (2.9). The nadir point
in general assumes knowledge of the nondominated set, and can thus only be computed efficiently in
the biobjective case [23].
A common approach for computing efficient solutions of multiobjective optimization problems is to
solve a scalarized problem. Two of such approaches will be used in this thesis: The weighted sum and
the e-constraint scalarization [23].

2.2.1 The Weighted Sum Problem

The weighted sum problem of (2.9) for λ ∈ Rm, λ≥ 0 is given by

min
x∈S

m
∑

i=1

λi fi(x) (2.10)

Theorem 2.25. [23] Let x̄ be an optimal solution of (2.10) for λ ∈ Rm, λ≥ 0.

1. x̄ is weakly efficient.

2. If λ > 0, then x̄ is efficient.

3. If x̄ is the unique optimal solution of (2.10) then x̄ is efficient.

Theorem 2.26. [23] Let all objective functions fi(x), i = 1, . . . , m, be convex and let the feasible
set S be convex.
For every efficient point x ∈ XE there exists λ ∈ Rm, λ ≥ 0 such that x is an optimal solution of
the weighted sum problem (2.10) for λ.

The weighted sumscalarization can be used to compute all (weakly) efficient solutions of a multiobjec-
tive convex optimization problem (Theorem 2.25 and Theorem 2.26). In order to compute all efficient
solution it is enough to consider the set following (m− 1)-dimensional set [23]:

Λ=

¨

λ ∈ Rm : λ½ 0,
m
∑

i=1

λi = 1

«

Λ is called the weight space and can be parameterized by m− 1 variables in multiple ways [23]:

2.2.1.1 Parameterization of the Weight Space

The most common way is to use the following parameterization [23]:

Λ̄=

¨

λ ∈ Rm : λ½ 0, λm = 1−
m−1
∑

i=1

λi

«
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A different parameterization has advantages in some situations:

W =
�

w ∈ Rm : w= (1, w2, . . . , wm)
T , w½ 0

	

.

Note that Λ is bounded, while W is unbounded. An example for a subset of weights W1 in W and the
corresponding counterpart Λ1 in Λ can be seen in Figure 2.2. There exists a one-to-one correspondence
between the points in Λ̄ and points and rays in W .

w2

w3

1

2

3

4

1 2 3 4

W1

λ1

λ2

Λ̄

1

1

Λ̄1

Figure 2.2: Parameterization of a set in W and Λ for m= 3.

2.2.2 The e-constraint Scalarization

The e-constraint scalarization problem of (2.9) is given by

min
x∈S

fm(x)

s.t. fi(x)≤ εi i = 1, . . . , m− 1
(2.11)

The e-constraint scalarization problem can also be defined with any fi(x), i = 1, . . . , m, as the objective
function. Note that (2.11) can be infeasible, depending on the choice of ε.

Theorem 2.27. [23] Let x̄ be an optimal solution of (2.11) for ε ∈ Rm−1. Then the following
statements hold:

1. x̄ is weakly efficient.

2. If x̄ is the unique optimal solution of (2.11) then x̄ is efficient.

Theorem 2.28. [23] If x ∈ XE is an efficient solution, then there exists ε ∈ Rm−1 such that x is
the an optimal solution of the e-constraint scalarization problem.
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Definition 2.29. [23] Let f : Rn → Rm, S ⊆ Rn and y ∈ Rm be given. The level set of f on S at
level y is defined as

L( f , y, S) := {x ∈ S : f (x)µ y}
and the corresponding level curve is defined as

L=( f , y, S) := {x ∈ S : f (x) = y}
Furthermore, for S = Rn we denote L( f , y,Rn) by L( f , y) and L=( f , y,Rn) by L=( f , y).

Theorem 2.30. [24] Let x̄ ∈ S be given with y = f ( x̄). Then x̄ is efficient for (2.9) if and only if

L( f , y, S) = L=( f , y, S).

Proposition 2.31. [23] If all objective functions fi(x) are convex and S is convex, then the efficient
set is connected.

2.2.3 Multiobjective Linear Programming Problems

Consider a multiobjective linear programming problem in standard form:

vmin
x∈Rn

C x

s.t. Ax = b, x ½ 0
(MLP)

with cost matrix C ∈ Rm×n, matrix A∈ Rp×n of full rank, vector b ∈ Rp with p ≤ n. The feasible set is
denoted by S := {x ∈ Rn : Ax = b, x ½ 0}.
The weighted sum problem of (MLP) is given by

min
x∈Rn

λT C x

s.t. Ax = b, x ½ 0
(WLP)

Definition 2.32. [36] Let B ⊆ {1, . . . , n} be an index set and let AB be the matrix containing the
columns of A corresponding to B. B is called feasible basis of (MLP) if the matrix AB is regular
and

xB := (AB)
−1 b ½ 0. (2.12)

Let N be the complement of B, i.e. N = {1, . . . , n} \ B. The vector (xB, xN ) with xN = 0 and xB
defined as in (2.12) is called basic feasible solution of (MLP).

Definition 2.33. [27] A feasible basis B ⊆ {1, . . . , n} is called efficient basis of (MLP) if there
exists λ ∈ Λ such that (xB, xN ) with xB := (AB)−1 b and xN = 0 is an optimal solution of the
weighted sum scalarization problem (WLP) for λ.
The corresponding basic feasible solution x = (xB, xN ) is then called efficient basic solution.

Let EE be the set of efficient basic solution of the multiobjective linear programming problem (MLP).
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Definition 2.34. [48, 23] Let x ∈ EE be an efficient basic solution of (MLP). Then the correspond-
ing weight cell is defined by

Λ(x) =
�

λ ∈ Λ : λT C x ≤ λT C x ′ ∀x ′ ∈ S
	

.

Theorem 2.35. [48, 23] Let EE be the set of efficient basic feasible solution of the multiobjective
linear programming problem (MLP). Then

⋃

x∈EE

Λ(x) = Λ.



Chapter 3

Multiobjective Nonlinear
Optimization and Descent Methods

Multiobjective nonlinear optimization problems have been discussed with the emergence of the field
of multiobjective optimization and vector optimization. Two common solution approaches for these
kind of problems are scalarization techniques and heuristic methods, such as evolutionary algorithms.

Scalarization approaches formulate a related singleobjective problem that can be solved with com-
mon scalar optimization methods and yield an optimal solution that is feasible and at least weakly
efficient for the multiobjective problem. Some scalarizations have parameters that can be chosen to
compute different efficient points. For these scalarizations also parametric optimization can be applied
to compute an analytical description of the efficient set. Moreover, a variety of methods use preference
information from a decision maker to provide solutions which are as close as possible to the preferences
given, for example interactive methods and goal programming.
While evolutionary algorithms can be applied to scalarized problems, the direct application to the mul-
tiobjective case has the advantage that the final population computed by evolutionary methods already
consists of multiple possibly efficient solutions [83].

This chapter reviews an alternative approach introduced by Fliege and Svaiter [30] that is different
from the approaches discussed above in multiple ways. First, we discuss an optimality criterion for
locally efficient points using descent directions. Many of the results in this section are generalizations
of scalar nonlinear optimization theory for which a variety of books are available, for example the books
from Carl Geiger and Christian Kanzow [36, 37], and the books about multiobjective optimization by
Matthias Ehrgott [23] and Kaisa Miettinen [62].
After building a theoretical foundation a class of multiobjective descent methods is introduced. Several
multiobjective descent methods that were discussed in the literature can be understood as special cases
of this type of descent algorithm by changing a matrix that acts as a parameter in the algorithms. After
a summary of the theoretical properties this method is compared to the weighted sum approach.

23
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For this chapter we consider unconstrained multiobjective optimization problems in the following form

vmin
x∈Rn

f (x) (NLP)

with continuously differentiable objective functions f : Rn→ Rm, where

f (x) =





f1(x)
...

fm(x)



 .

We have to consider a weaker definition of efficiency and nondominance for the nonlinear case. For this
consider the neighborhood of x̄ in Rn with radius ε defined as Uε( x̄) := {x ∈ Rn : ‖x − x̄‖ ≤ ε}.

Definition 3.1. [62] Let x̄ ∈ Rn be given. x̄ is called

1. locally efficient, if there exists ε > 0 such that there does not exists any x ∈ Uε( x̄) such
that f (x)≤ f ( x̄).

2. locally weakly efficient, if there exists ε > 0 such that there does not exists any x ∈ Uε( x̄)
such that f (x)< f ( x̄).

In Section 3.1 we consider an optimality criterion for efficient solutions of multiobjective nonlinear
optimization problems. An extension of singleobjective descent methods to the multiobjective case
proposed by Fliege et. al. [30] is reviewed in Sections 3.2 and 3.3 and a convergence result from the
literature [34] is stated. We consider different choices for the search direction in Sections 3.3.1, 3.3.2
and 3.3.3 that can be understood as extensions of the steepest descent method, Newton method and
Quasi-Newton method from the singleobjective to the multiobjective case, respectively.
In Section 3.3.4 descent directions are considered that use a weighted sum of the gradients of the
objective functions. A compromise descent method is proposed that chooses descent directions by nor-
malizing the gradients of the objective functions. The differences between the methods discussed in
this chapter are visualized with a concrete example in Section 3.4. Finally, we compare the applica-
tion of a singleobjective descent method to the weighted sum problem and underline the differences
between these approaches in Section 3.4.1.
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3.1 Descent Directions and Optimality Conditions

In this section optimality conditions for the multiobjective nonlinear optimization problem (NLP) are
reviewed.

Definition 3.2. [30] Let x ∈ Rn. A vector d ∈ Rn is called (multiobjective) descent direction of
f in x if

∃t0 > 0 : f (x + td)< f (x) ∀t ∈ (0, t0].

Proposition 3.3. [30] Let x ∈ Rn be a point. If d ∈ Rn satisfies

∇ fi(x)
T d < 0 ∀i = 1, . . . , m,

then d is a descent direction of f in x .

Proof. This result is a direct generalization of scalar nonlinear optimization theory (see for example
Geiger and Kanzow [37]).

We denote the descent cone in a point x ∈ Rn by

D(x) =
�

d ∈ Rn : ∇ fi(x)
T d < 0 ∀i = 1, . . . , m

	

.

Figure 3.1 illustrates the gradients of two objective functions and descent cone D(x) for n= m= 2.

D(x)

∇ f1(x)
∇ f2(x)

x

Figure 3.1: Descent cone for m= 2 at a point x ∈ S.

Proposition 3.4 (Necessary Optimality Conditions with Cones). [30] If x is a (locally) weakly
efficient point of (NLP) then

D(x) = ;.

Now we formulate an algebraic optimality condition that can either be derived from scalar optimization
theory which is applied to the weighted sum problem of (NLP) or directly from the descent cone D(x).

Lemma 3.5 (Necessary Optimality Condition). [62] Let x̄ ∈ Rn with D( x̄) = ;. Then there exists
λ ∈ Rm with λ≥ 0 such that

m
∑

i=1

λi∇ fi(x) = 0.
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Definition 3.6. [30] x ∈ Rn is called critical (or Pareto-critical) if there exists λ ∈ Λ such that

m
∑

i=1

λi∇ fi(x) = 0.

Lemma 3.7 (Sufficient Optimality Condition for Convex Problems). [62] Let f be convex on Rn.
Then any critical point of (NLP) is weakly efficient for (NLP).

A general descent algorithm consists of two main steps. In each iteration a descent direction d ∈ Rn

at the current iterate x ∈ Rn is chosen, if possible, and then a step size t > 0 is determined such that
f (x + td)< f (x). The algorithm terminates if no descent direction can be computed.
In Section 3.2 a generalization of the well-known Armijo step size to the multiobjective case [30] is
reviewed followed by a short discussion about other choices of the step size. Thereafter several choices
for the descent direction are introduced in Section 3.3.
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3.2 Step Sizes

Assume a descent direction d ∈ D(x) is given. A sufficient descent in the scalar case can be achieved
by choosing a step size t by the Armijo rule which requires that t is chosen satisfying the following
equation for some parameter σ ∈ (0,1) [36]:

f (x + td)< f (x) +σt∇ f (x)T d (3.1)

The Armijo rule can be generalized to the multiobjective case by applying it for each objective function
separately [30].

Definition 3.8. Let d ∈ Rn be a descent direction of f (x) in x . t > 0 is called Armijo step-size
for σ ∈ (0,1) if

fi(x + td)< fi(x) +σt∇ fi(x)
T d ∀i = 1, . . . , m.

The existence of a step size satisfying the Armijo rule can be shown in a similar way as in the scalar
case:

Proposition 3.9. [36, 30, 31] Let x ∈ Rn be a point and let d ∈ Rn be a descent direction of f in
x and let σ ∈ (0,1). Then there exists some t0 > 0 such that

fi(x + td)< fi(x) +σt∇ fi(x)
T d ∀i = 1, . . . , m

holds for all t ∈ (0, t0].

Proof. A proof can be found in [30]. The statement follows directly from the scalar results (see for
example [36]).

To compute an Armijo step size the following algorithm can be used (with a step parameter β ∈ (0,1))
[30]:

Algorithm 3.1: Computing an Armijo step size

Input: Input f , point x ∈ Rn, descent direction d ∈ Rn, parameters σ ∈ (0, 1) and β ∈ (0, 1).
Set t = 1.
while ∃i ∈ {1, . . . , m} with fi(x + td)≥ fi(x) +σt∇ fi(x)T d do

Set t = β t
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The Armijo rule ensures a sufficient descent but may result in relatively small step sizes. In singleob-
jective optimization the Wolfe-Powell step size is used to avoid this behavior, by demanding that the
slope of f (x+ td) at t > 0 is not as steep as at t = 0 [36]. The Wolfe-Powell conditions with ρ ∈ (0,1)
are given by

f (x + td)≤ f (x) +σt∇ f (x)T d (Armijo rule)

∇ f (x + td)T d ≥ ρ∇ f (x)T d (3.2)

The set of step sizes satisfying the Wolfe-Powell conditions is denoted by TW P . Figure 3.2 illustrates
the definition of step sizes satisfying the Wolfe-Powell conditions. The dashed line is the graph of
f (x) + tσ∇ f (x)T d and is often referred to as the Armijo-Goldstein line [36]. At t = 1

2 the tangent
has the slope ρ∇ f (x)T d.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

f (x) + tσ∇ f (x)T d

ρ∇ f (x)T d =∇ f (x + 0.5d)T d

TW P

t

f (x + td)

Figure 3.2: Wolfe-Powell step sizes.

The existence of a Wolfe-Powell step size is guaranteed in the singleobjective case if f is bounded from
below [36]. Unfortunately this result can not be generalized to the multiobjective case by demanding
that t is a Wolfe-Powell step size for every objective function as the following example shows:

Example 3.10. Consider the following biobjective problem:

vminx∈R f1(x) = 3x2 − x + 1
f2(x) = x2 − 2x + 1

at the point x = 0 with the descent direction d = 1 and parameters σ = 1
4 and ρ = 1

2 . On the one
hand, to satisfy the Armijo rule for f1 the step size t has to satisfy

f1(x + td)≤ f1(x) +σt∇ f1(x)
T d⇔ t ≤ 1

4
.

On the other hand, t has to satisfy the Wolfe-Powell conditions, specifically

∇ f2(x + td)≥ ρ∇ f2(x)
T d⇔ t ≥ 1

2
,

which contradicts the Armijo rule for f1. Thus, there is no Wolfe-Powell step size of f in x in direction
d.
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Other choices for the step size cannot be extended to the multiobjective case for similar reasons. Con-
sider for example the exact and Curry step size [36]:

te = argmin
t>0

f (x + td) and tc =min
�

t > 0 : ∇ f (x + td)T d = 0
	

.

It is not clear how to extend these definitions to the multiobjective case. One could choose t such that
f (x + td) is a critical point of

vmin
t>0

f (x + td)

but it is not guaranteed that t yields a descent in every objective.

For these reasons we will only consider the Armijo rule for the selection of step sizes.

3.3 Search Directions

For a given point x ∈ Rn we want to determine if x is critical or, if not, compute a descent direction.
Demanding that d is a descent direction is equivalent to

max
i=1,...,m

∇ fi(x)
T d < 0. (3.3)

In accordance with the concept of steepest descent in scalar nonlinear optimization one might consider
minimizing (3.3) in the following way:

min
d∈Rn

max
i=1,...,m

∇ fi(x)
T d (3.4)

Note that if x is critical then the optimal solution of (3.4) is d = 0. But (3.4) is unbounded if x is not
critical [30]. Some feasible solutions of (3.4) are descent directions but not all. In order to compute
a particular descent direction we introduce a normalization term. There are many options available,
including a linear normalization term [30]. For the discussion of known methods we will only consider
a quadratic normalization term of the form dT H id for every objective i = 1, . . . , m, where each H i is a
symmetric positive definite matrix that is chosen either constant for every iteration or chosen differently
in every iteration. We will see that the choice of H i leads to descent algorithms motivated by different
methods in scalar nonlinear optimization.

min
d∈Rn

max
i=1,...,m

∇ fi(x)
T d +

1
2

dT H id (3.5)

Since the optimization problem (3.5) has an objective function that is not differentiable everywhere
we consider the differentiable formulation as a convex nonlinear optimization problem with quadratic
constraints by introducing an additional variable τ:

min
d∈Rn,τ∈R

τ

s.t. ∇ fi(x)T d + 1
2 dT H id ≤ τ ∀i = 1, . . . , m

(3.6)

Notice that the variable τ is used to ensure that any optimal solution (d,τ) of (3.6) with τ < 0 is a
descent direction.
The following results for the search direction problem (3.6) have been shown for special choices of the
normalization term [29, 70] in the literature:
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Proposition 3.11. [29, 70] Let x ∈ Rn. Then the following statements hold:

1. (3.6) has a unique optimal solution (d∗,τ∗) with τ∗ ≤ 0.

2. τ∗ = 0⇔ d∗ = 0

3. If τ∗ < 0, then d∗ is a descent direction of (NLP).

Proof. We follow the proof from [70] with the appropriate choice of the matrices H i for i = 1, . . . , m.

1. (d,τ) = (0, 0) is feasible for (3.6) and provides an upper bound for the optimal objective value
of (3.6). The nondifferentiable formulation (3.5) has a strictly convex objective function (since
all H i , i = 1, . . . , m, are positive definite) and linear inequality constraints. Thus, (3.6) has a
unique optimal solution with τ∗ ≤ 0.

2. We consider the two directions separately:

’⇒’: Let (d,τ∗) be an optimal solution of (3.6) with τ∗ = 0. Since d is feasible for (3.6) it must
satisfy

∇ fi(x)
T d +

1
2

dT H id ≤ τ∗ = 0 ∀i = 1, . . . , m,

which is equivalent to

1
2

dT H id ≤ −∇ fi(x)
T d ∀i = 1, . . . , m. (3.7)

If there exists i ∈ {1, . . . , m} with ∇ fi(x) = 0, then we can observe form (3.7) that

1
2

dT H id ≤ 0,

which can only hold if d = 0 since H i is positive definite for all i = 1, . . . , m.
Now, consider the case where ∇ fi(x) 6= 0 for all i = 1, . . . , m. Let α ∈ (0, 1) be given and
observe that (αd,τ∗) is a feasible solution of (3.6). Assume that d 6= 0. Using (3.7) we can
see the following:

∇ fi(x)
T (αd) +

1
2
(αd)T H i(αd) = α∇ fi(x)

T d +α2 1
2

dT H id
︸ ︷︷ ︸

≤−∇ fi(x)T d

≤ (α−α2)
︸ ︷︷ ︸

∈(0,1)

∇ fi(x)
T d

︸ ︷︷ ︸

<0

< 0 ∀i = 1, . . . , m

Which is a contradiction to the assumption that τ∗ = 0. Hence, d = 0.

’⇐’: Let (d,τ∗) be a optimal solution of (3.6) with d = 0. All constraints of (3.6) demand that
τ∗ ≥ 0. Thus, τ∗ =min({t : t ≥ 0}) = 0.

3. Let (d,τ∗) be a optimal of (3.6) with τ∗ < 0. By construction d is a feasible descent direction of
(NLP).

The following property has been shown by Fliege et. al. [29] for the choice H i =∇2 fi(x) and strongly
convex objective functions fi(x) for i = 1, . . . , m . Povalej [70] extended this result to the general case
where all H i are chosen positive definite.



3.3. SEARCH DIRECTIONS 31

Proposition 3.12. [29, 70] Let x ∈ Rn be given and let H i be positive definite for all i = 1, . . . , m.
Let (d∗,τ∗) be the optimal solution of (3.6). Then there exists λ ∈ Λ such that

d∗ = −
�

m
∑

i=1

λiH
i

�−1 m
∑

i=1

λi∇ fi(x). (3.8)

Proof. We follow the proof in [70] with the appropriate choice of the matrices H i for i = 1, . . . , m.:
According to Proposition 3.11 the search direction problem (3.6) has an optimal solution for every
x ∈ Rn. Then (d∗,τ∗) is a Fritz-John point of (3.6) (see Theorem 2.4). Thus, there exists λ ½ 0 such
that

m
∑

i=1

λi(∇ fi(x) +H id∗) = 0,
m
∑

i=1

λi = 1 and (3.9)

�

∇ fi(x)
T d∗ +

1
2
(d∗)T H id∗ −τ∗

�

λi = 0 ∀i = 1, . . . , m. (3.10)

Notice that the matrix
m
∑

i=1

λiH
i

is positive definite for all λ≥ 0. Thus, using (3.9) we get
m
∑

i=1

λi(∇ fi(x) +H id∗) = 0⇔
m
∑

i=1

λi∇ fi(x) +
m
∑

i=1

λiH
id∗ = 0

⇔
m
∑

i=1

λiH
id∗ = −

m
∑

i=1

λi∇ fi(x)

⇔ d∗ = −
�

m
∑

i=1

λiH
i

�−1 m
∑

i=1

λi∇ fi(x).

Theorem 3.13. [29, 70] Let x̄ ∈ Rn be given and let (d∗,τ∗) be the unique optimal solution of
(3.6). Then the following statements are equivalent:

1. x̄ is a critical point of (NLP).

2. τ∗ = 0

Proof. We follow the proof from [70] with the appropriate choice of the matrices H i for i = 1, . . . , m.

’⇒’ This statement follows directly from Proposition 3.11.

’⇐’ Proposition 3.12 shows that if (d,τ∗) is the optimal solution of (3.6) then there exists λ ∈ Λ such
that

m
∑

i=1

λi(∇ fi( x̄) +H id) = 0 (3.11)

Additionally, we know from the second part of Proposition 3.11 that if τ∗ = 0 holds then d = 0
and the terms H id vanish for all i = 1, . . . , m in (3.11). Hence, we know there exists λ ≥ 0 and
such that

m
∑

i=1

λi∇ fi( x̄) = 0,

which is equivalent to the condition for a critical point x̄ of (NLP).
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Proposition 3.14. [8] Let A ∈ Rn×n be a positive definite matrix and let amin(A) and amax(A) be
the smallest and largest eigenvalues of A, respectively. Then

amin(A) x T x ≤ x T Ax ≤ amax(A) x T x ∀x ∈ Rn.

The following proposition is an extension of Lemma 3.2 in Fliege et. al. [29] and Lemma 2 from Povalej
[70] to allow for a broader choice of matrices H i in the normalization term 1

2 dT H id for i = 1, . . . , m.

Proposition 3.15. [29, 34] Let X ⊂ Rn be a compact set and let H i(x) be symmetric positive
matrices such that the following conditions are satisfied:

1. For every θ > 0 there exists δ > 0 such that for all x , x ′ ∈ X the following statement holds:

‖x − x ′‖ ≤ δ⇒ ‖H i(x)−H i(x ′)‖ ≤ θ ∀i = 1, . . . , m. (3.12)

2. There exists a constant â > 0 such that

â = min
x∈X , ‖v‖=1, i=1,...,m

vT H i(x)v. (3.13)

Let (d(x),τ(x)) be the optimal solution of (3.6) for x ∈ X . Then the following statements hold:

1. The mapping x → τ(x) is continuous and d(x) is bounded on X .

2. The mapping x → d(x) is continuous on X .

Proof. This proof is very similar to the proof of Proposition 5.5 of the survey paper by Fukuda et. al. [34].
Since each objective function fi is continuously differentiable and the set X is compact there exists a
finite constant γ > 0 such that ‖∇ fi(x)‖ ≤ γ for all x ∈ X and all i = 1, . . . , m.
Let x ∈ X be given. Observe from (3.7) that

1
2

d(x)T H id(x)≤ −∇ fi(x)
T d(x) ∀i = 1, . . . , m.

Using the bounds â and γ and the Cauchy-Schwarz inequality we see that

1
2

â‖d(x)‖2 ≤ ‖∇ fi(x)‖ · ‖d(x)‖ ≤ γ‖d(x)‖

holds for every i = 1, . . . , m and x ∈ X . Which shows that ‖d(x)‖ is bounded by κ= 2 γâ , i.e.

‖d(x)‖ ≤ κ= 2
γ

â
(3.14)

Using Proposition 3.12 we know there exists λ ∈ Λ such that

m
∑

i=1

λi∇ fi(x) = −
m
∑

i=1

λiH
i(x)d(x) (3.15)

and such that the complementarity condition (3.10) is satisfied. Notice that λ j > 0 for some j ∈
{1, . . . , m} implies that

τ(x) =∇ f j(x)
T d(x) +

1
2

d(x)T H j(x)d(x).
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Using this fact and (3.15) and (3.13) we see that

τ(x) =
m
∑

i=1

�

λi∇ fi(x)
T d(x) +

1
2

d(x)T H i(x)d(x)
�

=

�

m
∑

i=1

λi∇ fi(x)

�T

︸ ︷︷ ︸

=−∑m
i=1 λi H i(x)d(x)

d(x) +
1
2

m
∑

i=1

λid(x)
T H i(x)d(x)

= −1
2

d(x)T
m
∑

i=1

λiH
i(x)d(x). (3.16)

Using Proposition 3.14 and (3.13) notice that

m
∑

i=1

λid(x)
T H i(x)d(x)≥

m
∑

i=1

λi amin(H
i(x))

︸ ︷︷ ︸

≥â

‖d(x)‖2 ≥
m
∑

i=1

λi â ‖d(x)‖2 = â ‖d(x)‖2 . (3.17)

Applying (3.17) to (3.16) leads to

τ(x) = −1
2

d(x)T
m
∑

i=1

λiH
i(x)d(x)≤ − â

2
‖d(x)‖2 , (3.18)

which is equivalent to

‖d(x)‖2 ≤ 2
â
‖τ(x)‖ . (3.19)

1. Let δ > 0 and x , y ∈ X be given such that ‖x − y‖ ≤ δ. Let i0 ∈ {1, . . . , m} such that

max
i=1,...,m

∇ fi(y)
T d(y) +

1
2

d(y)T H i(y)d(y) =∇ fi0(y)
T d(y) +

1
2

d(y)T H i0(y)d(y).

Notice that

τ(y) =∇ fi0(y)
T d(y) +

1
2

d(y)T H i0(y)d(y)

≤∇ fi0(y)
T d(x) +

1
2

d(x)T H i0(y)d(x)

=∇ fi0(y)
T d(x)−∇ fi0(x)

T d(x) +∇ fi0(x)
T d(x) +

1
2

d(x)T H i0(y)d(x)

+
1
2

d(x)T H i0(x)d(x)− 1
2

d(x)T H i0(x)d(x)

=
�∇ fi0(y)−∇ fi0(x)

�T
d(x) +

1
2

d(x)T
�

H i0(y)−H i0(x)
�

d(x) +∇ fi0(x)
T d(x) +

1
2

d(x)T H i0(x)d(x)
︸ ︷︷ ︸

≤τ(x)

≤




∇ fi0(y)−∇ fi0(x)




 ‖d(x)‖+ 1
2
‖d(x)‖2





H i0(y)−H i0(x)




+τ(x).

By interchanging the roles of x and y and using (3.14) and (3.12) we see that

‖τ(y)−τ(x)‖ ≤




∇ fi0(y)−∇ fi0(x)






︸ ︷︷ ︸

≤γ

‖d(x)‖
︸ ︷︷ ︸

≤κ
+

1
2
‖d(x)‖2

︸ ︷︷ ︸

≤κ2





H i0(y)−H i0(x)






︸ ︷︷ ︸

≤θ

,

which shows that the mapping x → τ(x) is continuous on X .
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2. We will now show that the mapping x → d(x) is continuous as well. Let x , y ∈ X be defined as
above.

Using the Cauchy-Schwarz inequality we see that

(∇ fi(y)−∇ fi(x))
T d(x)≤ ‖∇ fi(y)−∇ fi(x)‖ ‖d(x)‖

⇔(∇ fi(x)−∇ fi(y))
T d(x)≥ −‖∇ fi(y)−∇ fi(x)‖

︸ ︷︷ ︸

≤γ
‖d(x)‖

and therefore
(∇ fi(x)−∇ fi(y))

T d(x)≥ −γ‖d(x)‖ . (3.20)

Using (3.20) we observe that

τ(x) = max
i=1,...,m

�

∇ fi(x)
T d(x) +

1
2

d(x)T H i(x)d(x)
�

= max
i=1,...,m

�

∇ fi(x)
T d(x)−∇ fi(y)

T d(x) +∇ fi(y)
T d(x)

+
1
2

d(x)T H i(x)d(x)− 1
2

d(x)T H i(y)d(x) +
1
2

d(x)T H i(y)d(x)
�

= max
i=1,...,m

�

(∇ fi(x)−∇ fi(y))
T d(x) +

1
2

d(x)T (H i(x)−H i(y))d(x)

+∇ fi(y)
T d(x) +

1
2

d(x)T H i(y)d(x)
�

≥ −γ‖d(x)‖ − 1
2
θ ‖d(x)‖2 + max

i=1,...,m

�

∇ fi(y)
T d(x) +

1
2

d(x)T H i(y)d(x)
�

. (3.21)

Consider the following functions for i = 1, . . . , m and z ∈ Rn:

gi(z) :=∇ fi(y)
T z +

1
2

zT H i(y)z.

Notice that amin(∇2 gi(z))≥ â for all i = 1, . . . , m and z ∈ X . Thus, gi(z) is strongly convex with
modulus â, which is also the case for maxi=1,...,m gi(z) for all z ∈ X . Now, consider the following
inequality using the strong convexity and the fact that maxi=1,...,m gi(z) attains its minimum at
d(y):

max
i=1,...,m

�

∇ fi(y)
T d(x) +

1
2

d(x)T H i(y)d(x)
�

≥ max
i=1,...,m

�

∇ fi(y)
T d(y) +

1
2

d(y)T H i(y)d(y)
�

+
â
2
‖d(x)− d(y)‖2

=τ(y) +
â
2
‖d(x)− d(y)‖2 (3.22)

Applying (3.22) to (3.21) leads to the following inequality:

τ(x)≥ −γ‖d(x)‖ − 1
2
θ ‖d(x)‖2 +τ(y) +

â
2
‖d(x)− d(y)‖2

Which is equivalent to

τ(x)−τ(y)≥ −γ‖d(x)‖ − 1
2
θ ‖d(x)‖2 +

â
2
‖d(x)− d(y)‖2 . (3.23)

Now, let (x k)k be a sequence with
lim

k→∞
x k = y.
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The mapping x → τ(x) is continuous and thus (τ(x k))k converges against τ(y). Using (3.19)
and (3.23) it follows that the sequence (d(x k))k also converges, with

lim
k→∞

d(x k) = d(y),

showing that the mapping x → d(x) is continuous on X .

The assumptions of Proposition 3.15 are for example satisfied for any constant choice of H i .
Using Proposition 3.11 and Theorem 3.13 we can now check whether a given point is critical or not,
and if not, compute a descent direction. As a stopping criterion the optimal solution value τ∗ of the
search direction problem (3.6) or the norm of d∗ of the corresponding optimal solution of (3.6) can be
checked.
Using a choice of positive definite matrices H i for i = 1, . . . , m that satisfy the assumptions of Proposi-
tion 3.15 we can now formulate a general multiobjective descent method with Armijo step size.

Algorithm 3.2: General Multiobjective Descent Method

Choose a point x0 ∈ Rn and σ ∈ (0, 1). Set k = 0.
while Stopping criterion is violated at x k do

Choose a descent direction dk ∈ Rn as the solution of (3.6)
Compute a step size tk satisfying the Armijo rule (3.1) using Algorithm 3.1
Iterate: x k+1 = x k + tkdk

Set k = k+ 1

Theorem 3.16. [30, 70] Let (x k)k be a sequence produced by Algorithm 3.2 with matrices H i(x k)
satisfying the assumptions of Proposition 3.15 on a compact set X ⊆ Rn with x k ∈ X for all k ∈ N. If
the level sets L( f , f (x1)) are bounded then every accumulation point of (x k)k is a critical solution
of (NLP).

Proof. The proof for the choice H i = In can be found in Fliege and Svaiter [36]. The proof can be
extended to cover the general case for positive definite matrices H i(x) [34]:
Let τ(x k) be the optimal objective value of the search direction problem (3.6) in iteration k. First,
notice that the sequence ( fi(x k))k is strictly decreasing for all i = 1, . . . , m. Let x̄ be an accumulation
point of (x k)k. Since all functions fi are continuous functions we can see that

lim
k→∞

f (x k) = f ( x̄) and lim
k→∞

‖ f (x k)− f (x k+1)‖= 0.

Since the Armijo rule is satisfied in every iteration we also have in each iteration k

fi(x
k)− fi(x

k+1)≥ −tkσ∇ fi(x
k)T dk ≥ 0 ∀i = 1, . . . , m

and thus
lim

k→∞
tk∇ fi(x

k)T dk = 0 ∀i = 1, . . . , m (3.24)

Consider two cases:

• limsup
k→∞

tk > 0: In this case there exists a converging subsequence (x l)l of (x k)k such that

lim
l→∞

x l = x̄ and lim
l→∞

t l = t̄ ≥ 0. For every i = 1, . . . , m we have that

0= lim
l→∞
∇ fi(x

l)T d l ≤ lim
l→∞

�

max
i=1,...,m

∇ fi(x
l)T d l +

1
2
(d l)T H i(x)d l

�

≤ lim
l→∞

τ(x l) = τ( x̄).

Using that τ(x) ≤ 0 for all x ∈ Rn (see Proposition 3.11) it follows that τ( x̄) = 0 and using
Theorem 3.13 we can conclude that x̄ is critical.
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• limsup
k→∞

tk = 0: We know from Proposition 3.15 that the mapping x → d(x) is continuous and,

thus, that the sequence d(x k) is bounded and has a converging subsequence. Let (x l)l be such a
subsequence with (d(x l))l converging to d̄ and liml→∞ t l = 0. Notice that for all l = 1, . . .

max
i=1,...,m

∇ fi(x
l)T d l ≤ max

i=1,...,m
∇ fi(x

l)T d l +
1
2
(d l)T H i(x)d l ≤ τ(x l)< 0

and in the limit l →∞
max

i=1,...,m
∇ fi(x

l)T d̄ ≤ τ( x̄)≤ 0 (3.25)

Let r be an arbitrary but fixed positive integer. Since the sequence (t l)l converges to 0 we have
for large enough l that

t l < β
r

which shows that the Armijo rule is violated for t = β r at some x l , i.e. for all sufficiently large l
there exists i ∈ {1, . . . , m} such that

fi(x
l + β r d l)≥ fi(x

l) +σβ r∇ fi(x
l)T d l .

Considering an appropriate subsequence and after taking the limit we see that that for some
i ∈ {1, . . . , m}:

fi( x̄ + β
r d̄)≥ fi( x̄) +σβ

r∇ fi( x̄)
T d̄

which is true for any integer r > 0. Using Proposition 3.9 it follows that

max
i=1,...,m

∇ fi(x)
T d̄ ≥ 0.

Using (3.25) we conclude that τ( x̄) = 0 and thus show that x̄ is critical.

3.3.1 Steepest Descent Method

One of the first multiobjective descent methods discussed in the literature was a generalization of the
steepest descent method from scalar nonlinear optimization by Fliege and Svaiter [30]. This method
will be introduced now and we will discuss some general properties of Algorithm 3.2 using the steepest
descent variant. Setting H i = In for i = 1, . . . , m results in the following search direction problem:

min
d∈Rn,τ∈R

τ

s.t. ∇ fi(x)T d + 1
2 dT Ind
︸ ︷︷ ︸

=‖d‖2
2

≤ τ ∀i = 1, . . . , m (3.26)

Notice that the regularization term is now independent of the index i ∈ {1, . . . , m} and the search
direction problem (3.26) can be reformulated as a convex quadratic optimization problem:

min
d∈Rn,τ∈R

τ+ 1
2‖d‖2

2

s.t. ∇ fi(x)T d ≤ τ ∀i = 1, . . . , m
(3.27)

Since (3.27) is a strictly convex quadratic programming problem we can also consider it’s quadratic
dual problem [30]:

max
λ∈Rm

− 1
2‖
∑m

i=1λi∇ fi(x)‖2
2

s.t.
∑m

i=1λi = 1, λ½ 0
(3.28)

The dual formulation (3.28) has been used by Desideri [19, 20, 17, 18] in a multiobjective descent
algorithm. It is interesting to see that in fact Algorithm 3.2 chooses locally a steepest descent of a
weighted sum of the gradients for changing weights which are not set in advance. For m = 1 the
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method is the same as the well known steepest descent method [30].

As expected from a descent algorithm the choice of initial points is very important. Since Algorithm 3.2
compute a single critical point the algorithm has to be called from different initial points to compute
multiple possibly efficient points. However, it can not be guaranteed that different initial points lead
to different final solutions.
Figure 3.3 shows decision space on the left and objective space on the right for a quadratic biobjective
problem.

Example 3.17. Consider the following biobjective nonlinear optimization problem:

vminx∈R2 f1(x) =
1
2 (x

2
1 + x2

2)
f2(x) =

1
4 (x1 − 2)4 + 1

2 (x2 − 2)2;
(3.29)

In Figure 3.3 sequences generated by Algorithm 3.2 using steepest descent directions for different
initial points on a circle around the point (1, 1)T are depicted.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

XE

x1

x 2

Figure 3.3: Iteration paths for Example 3.17 with multiobjective steepest descent method.

We can observe that the step sizes are small close to the efficient set which can be explained with the
Armijo step size since both objectives have to be decreased simultaneously. Furthermore, we can see
that the final iterates are unevenly distributed over the efficient set. In particular many final iterates
lie in the minima of f1(x) or f2(x).

To improve the convergence close to the efficient set Fliege et. al. [29] proposed the multiobjective
Newton method:

3.3.2 Newton Method

Let fi be twice continuously differentiable on Rn for i = 1, . . . , m. Let x0 ∈ S and let each fi be strictly
convex on the level set

�

x ∈ Rn : fi(x)≤ fi(x0)
	

for all i = 1, . . . .m. In this case it is possible to choose
H i =∇2 fi(x), since all Hessian matrices are positive definite and the assumptions of Proposition 3.15
are satisfied.
The search direction problem for the Newton method [29] is then:

min
d∈Rn,τ∈R

τ

s.t. ∇ fi(x)T d + 1
2 dT∇2 fi(x)d ≤ τ ∀i = 1, . . . , m

(3.30)
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In comparison to the steepest descent method we have to solve a nonlinear problem with quadratic
constraints, which is more time expensive than solving the quadratic problem with linear constraints
in the case of the steepest descent method. Notice that the matrices H i =∇2 fi(x) depend now on the
current iterate x ∈ Rn for every i = 1, . . . , m.

The multiobjective Newton method can also be applied to nonconvex problems by first checking whether
all Hessian matrices ∇2 fi(x) are positive definite for all i = 1, . . . , m at the current iterate x ∈ Rn. If
not the direction of steepest descent as defined in Section 3.3.1 can be chosen, similar to the globalized
Newton method for singleobjective optimization [36].

Algorithm 3.3: Globalized Multiobjective Newton Descent Method

Choose a point x0 ∈ Rn and σ ∈ (0, 1). Set k = 0
while Stopping criterion is violated at x k do

if ∇2 fi(x k) is positive definite for all i = 1, . . . , m then
Compute a descent direction dk ∈ Rn as the solution of (3.30)

else
Compute a steepest descent direction dk ∈ Rn as the solution of (3.6)

Compute a step size tk satisfying the Armijo rule using Algorithm 3.1
Iterate: x k+1 = x k + tkdk

k = k+ 1

Under appropriate assumptions (for example Lipschitz-continuity of the Hessian matrices ∇2 fi(x))
and similar to the scalar case superlinear and quadratic convergence of the sequence computed by
Algorithm 3.2 was shown by Fliege et. al. [29].
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Figure 3.4: Iteration paths for Example 3.17 with multiobjective Newton method.

One numerical example that compares the convergence rate of the multiobjective steepest descent
method (Algorithm 3.2) and multiobjective Newton method (Algorithm 3.3) can be found in Example
3.23.
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Figure 3.4 shows iteration sequences of Algorithm 3.3 for Example 3.17. We can indeed observe that
the iteration paths have slightly less iterations as was the case for the multiobjective steepest descent
method (cp. Figure 3.3).
Computing the Hessian matrices may be too time-expensive in practice, for this reason we will also
consider approximations of the Hessian matrices as a choice for H i for i = 1, . . . , m.

3.3.3 Quasi-Newton Methods

Quasi-Newton methods for singleobjective optimization problems generate a sequence of positive def-
inite matrices Hk, updating the matrices after every iteration of the descent method. In the multiob-
jective case we update m such matrices H i

k for i = 1, . . . , m. An application of Quasi-Newton methods
to the multiobjective case has been proposed by Povalej [70] building on the multiobjective Newton
method by Fliege et. al. [29] where the Hessian matrices are updated separately for each objective
function fi(x), i = 1, . . . , m. Let (H i

k)k be a sequence of positive definite matrices for i = 1, . . . , m. The
Quasi-Newton equation or secant equation [36] for one fixed i ∈ {1, . . . , m} is given by

H i
k+1(x

k+1 − x k) =∇ fi(x
k+1)−∇ fi(x

k).

For this section we will use the following abbreviations also found in Geiger and Kanzow [36]:

H i = H i
k, H i

+ = H i
k+1, s = x k+1 − x k, y i =∇ fi(x

k+1)−∇ fi(x
k) ∀i = 1, . . . , m

With this notation the Quasi-Newton equation is H i
+s = y i .

Proposition 3.18. [36] Let s, y i ∈ Rn, i = 1, . . . , m, with s 6= 0. There exist positive definite
matrices Qi satisfying Qis = y i if and only if sT y i > 0 for all i = 1, . . . , m.

Proof. This is a direct extension to the multiobjective case of Lemma 11.5 in [36].

Hence, if sT y i > 0 is violated for some i ∈ {1, . . . , m} the Quasi-Newton equation cannot be solved by
positive definite matrices. The condition sT y i > 0 is referred to as the curvature condition [70].
There are several Quasi-Newton strategies for choosing H+. One of the most successful ones is the
BFGS (or Broydon-Fletcher-Goldfarb-Shanno) formula [36]:

H i
+ = H i +

y i(y i)T

sT y i
− H issT H i

sT s
∀i = 1, . . . , m (3.31)

The curvature condition is always satisfied for strictly convex functions. For more general cases the
method can be globalized by checking the curvature condition in each iteration. If the condition is
violated, let’s say in iteration k, it is not clear how to choose the next set of matrices. In the scalar case
the steepest descent method is usually used when the curvature condition is not met. In accordance
to this we will set all matrices H i

k+1 to In for i = 1, . . . , m. It should be noted that other choices are
possible, see for example [36].
Povalej [70] showed that the assumptions of Proposition 3.15 are satisfied if the objective functions
are strictly convex and twice continuously differentiable.
The resulting global Quasi-Newton method has some advantages over the multiobjective Newton
method since the possibly time-consuming computation of the Hessian matrices can be avoided.
One numerical example that compares the convergence rate of the multiobjective Newton method
(Algorithm 3.3) and the multiobjective Quasi-Newton method (Algorithm 3.4) can be found in Example
3.23.
Iteration paths for Example 3.17 are depicted in Figure 3.5. The iteration paths are similar to those of
the multiobjective Newton methods (see Figure 3.4).
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Algorithm 3.4: Globalized Multiobjective Quasi-Newton Descent Method

Choose a point x0 ∈ Rn and σ ∈ (0, 1). Set k = 0 and H i
0 = In, ∀i = 1, . . . , m.

while Stopping criterion is violated at x k do
Compute a descent direction dk ∈ Rn as the solution of (3.6)
Compute a step size tk satisfying the Armijo rule using Algorithm 3.1
Iterate: x k+1 = x k + tkdk

if the curvature condition is satisfied then
Compute H i

k+1 ∀i = 1, . . . , m according to the BFGS formula (3.31)
else

Set H i
k+1 = In ∀i = 1, . . . , m

k = k+ 1
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Figure 3.5: Iteration paths for Example 3.17 with multiobjective BFGS method.

3.3.4 Weight-based Descent Methods

In Proposition 3.12 it was shown that there exists λ ∈ Λ such that the optimal solution of (3.6) is given
by [30, 29, 70]

d = −
�

m
∑

i=1

λiH
i

�−1� m
∑

i=1

λi∇ fi(x)

�

. (3.32)

In the case of steepest descent (i.e. H i = In, i = 1, . . . , n) we get

dΛ(λ) = −
m
∑

i=1

λi∇ fi(x). (3.33)

Of course, dΛ(λ) is, in general, not a descent direction for every λ ∈ Λ. To avoid solving the quadratic
optimization problem (3.6) to compute a search direction one might also consider choosing a weight
λ ∈ Λ and use dλ(λ) to compute a direction.
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Definition 3.19. Let H i be positive definite matrices. λ ∈ Λ is called a feasible weight, if dλ(λ)
is a descent direction of (NLP). The set

Λd(x) =
�

λ ∈ Λ : ∇ fi(x)
T dΛ(λ)< 0 ∀ i = 1, . . . , m

	

is called the set of feasible weights.

The set of feasible weights are illustrated in Figure 3.6 for Example 3.17. For a set of points X ⊂ Rn

on a grid the interval

{λ1 : (λ1, 1−λ1) ∈ Λd(x)}

is depicted in black. We can observe that the set of feasible weights gets smaller the closer the iterate
is to a critical point.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

x1

x 2

Figure 3.6: Feasible weights for points of Example 3.17

Proposition 3.20. The set of feasible weights Λd(x) is a convex set

Proof. Note that

Λd(x) =
�

λ ∈ Λ : ∇ fi(x)
T dΛ(λ)< 0 ∀ i = 1, . . . , m

	

=

(

λ ∈ Λ : −∇ fi(x)
T

m
∑

j=1

λ j∇ f j(x)< 0 ∀ i = 1, . . . , m

)

=

(

λ ∈ Λ :
m
∑

j=1

λ j∇ fi(x)
T∇ f j(x)> 0 ∀ i = 1, . . . , m

)
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Let λ1, λ2 ∈ Λd(x) be two feasible weights and α ∈ [0,1]. Then

m
∑

j=1

λ j∇ fi(x)
T∇ f j(x) =

m
∑

j=1

�

αλ1
j + (1−α)λ2

j

�

∇ fi(x)
T∇ f j(x)

= α
m
∑

j=1

λ1
j∇ fi(x)

T∇ f j(x)

︸ ︷︷ ︸

>0

+(1−α)
m
∑

j=1

λ2
j∇ fi(x)

T∇ f j(x)

︸ ︷︷ ︸

>0

> 0

Which shows that (αλ1 + (1−α)λ2) ∈ Λd(x).

3.3.4.1 Compromise Descent

Consider normalizing the gradients of the objective functions:

Definition 3.21. Let x be a point where ‖∇ fi(x)‖ > ε for some ε > 0 for all i = 1, . . . , m. Then
the compromise direction d c is defined as:

d c(x) = − 1
m

m
∑

i=1

∇ fi(x)
‖∇ fi(x)‖

(3.34)

Remark 3.22. 1. d c is not necessarily a descent direction in x . It is easy to find examples where
n< m. For example

J f (x) =





−2 4
−1 −3
1 −6



 , d c(x) =
�

0.5990
1.0407

�

, J f (x)d c(x) =





2.9645
−3.7210
−5.6449





But note that there does exists a descent direction:

J f (x)
�

0.7339
0.2202

�

=





−0.5872
−1.3945
−0.5872



 .

2. For m= 2 we can prove, that at least ∇ fi(x)T d c ≤ 0 holds for i = 1,2:

Using Cauchy-Schwarz we get:

|〈∇ f1(x),∇ f2(x)〉|2 ≤ 〈∇ f1(x),∇ f1(x)〉〈∇ f2(x),∇ f2(x)〉
≤ ‖∇ f1(x)‖2 · ‖∇ f2(x)‖2

≤ 1

and
|〈∇ f1(x),∇ f2(x)〉|2 ≤ 1⇔−1≤ 〈∇ f1(x),∇ f2(x)〉 ≤ 1

〈∇ f1(x),−∇ f1(x)−∇ f2(x)〉= −〈∇ f1(x),∇ f1(x)〉
︸ ︷︷ ︸

=‖∇ f1(x)‖2=1

−〈∇ f1(x),∇ f2(x)〉
︸ ︷︷ ︸

≥−1

≤ 0

Similar equations hold true for ∇ f2(x).
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3. The compromise descent direction can be obtained by a weighted sum of the gradients with
weights

λ j =

�

m
∑

i=1

1
‖∇ fi(x)‖

�−1
1

‖∇ f j(x)‖
To use the compromise direction, we first check if any ∇ fi(x) vanishes. If yes, then x is critical.
Otherwise, we compute the compromise direction and check weather it is a descent direction. If d c(x)
is a descent direction then we multiply d c(x) by maxi=1,...,m ‖∇ fi(x)‖ since d c(x) is normalized and
using d c(x) would result in small steps. If d c(x) is not a descent direction, we use another search
direction problem, for example steepest descent direction given by (3.27).
The advantage of this procedure is that no optimization problem has to be solved, if the compromise
direction is a descent direction.

Algorithm 3.5: Multiobjective Compromise Descent

Choose a point x0 ∈ Rn and σ ∈ (0, 1). Set k = 0
while Stopping criterion is violated at x k do

Compute the compromise descent direction d c(x k) via (3.34)
if d c(x k) is descent direction in x k then

Set dk = d c(x k) ·maxi=1,...,m





∇ fi(x k)






else
Compute a steepest descent direction dk ∈ Rn as the solution of (3.6)

Compute a step size tk satisfying the Armijo rule using Algorithm 3.1
Iterate: x k+1 = x k + tkdk

k = k+ 1

The iteration paths of the compromise descent method for Example 3.17 are shown in Figure 3.7.
We can observe that the normalization of the gradients leads to a more even distribution of the final
solutions.
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Figure 3.7: Iteration paths for Example 3.17 with compromise descent method.
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3.4 Numerical Experiment

To visualize differences of the methods discussed in this chapter we consider the following triobjective
convex optimization problem:

Example 3.23. Fliege et. al. [29] suggested the following triobjective convex problem to illustrate the
convergence properties of the multiobjective descent methods reviewed in this chapter:

f1(x) =
1
n2

n
∑

j=1

j(x j − j)4

f2(x) = exp

 

n
∑

j=1

x j

n

!

+
n
∑

j=1

(x j)
2

f3(x) =
1

n(n+ 1)

n
∑

j=1

j(n− j + 1)exp(−x j)

This nonlinear triobjective optimization problem can be scaled with the number of variables. For this
numerical experiment we consider n= 100 variables.
The algorithm stopped when the norm of the descent direction d satisfies ‖d‖µ 0.001. The parameters
σ and β for the Armijo step size were each set to 0.5. A set of 200 random points in the box spanned
by (−2, . . . ,−2) and (2, . . . , 2) was randomly chosen. All methods were tested starting from this set of
initial points. The Algorithms were implemented in Matlab 2018a using the included solvers fmincon
and quadprog to solve the search direction problems. The computations were executed on an Intel
Core i5 processor with 3.2 GHz and 8 GB of ram. Table 3.1 shows the maximum and average num-
ber of iterations (which also coincides with the number of computations of the Hessian matrix for the
newton method), the average time for reaching the final iterate and the average number of function
evaluations (where one evaluation is an evaluation of the m-dimensional function f (x)). We observe
that the bulk of the function evaluations occurs during the computation of the Armijo step sizes.
The average runtimes depend highly on the performance of the solvers used and should only be un-
derstood in this context. We can observe a distinct reduction in the number of iterations when using
Newton and BFGS instead of the steepest descent method. This is expected and in accordance with
results from scalar nonlinear optimization [36].
The search direction problems for the Newton and BFGS variants have to be solved with fmincon,
which seems to be slower than quadprog in the case of the steepest descent method.
The BFGS method performs similar to the Newton method. Compromise descent showed the lowest
average times as in most iterations no search direction problem has to be solved.

Method Max It. Avg. It. Avg. time Avg. feval
Steepest Descent 121 89.91 0.15133 351.54

Newton 15 10.09 0.18721 48.62
BFGS 16 15.135 0.1380 59.53

Compromise Descent 28 22.31 0.0047889 140.91

Table 3.1: Numerical results for Example 3.23

It is difficult to assess the performance of these algorithms in general. This requires extensive numeri-
cal testing on different types of problems. For instance, Huber et. al. [47] provide a review of scalable
test problems.
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3.4.1 Comparison of Multiobjective Descent Method and Weighted Sum

An alternative approach for solving nonlinear multiobjective problems is to apply a scalarization method
and solve the scalarized problem for predetermined parameters. As an example, we will discuss the
weighted sum method in combination with Algorithm 3.2 for the special case m= 1.

Choose a fixed λ≥ 0 and use a scalar descent method to minimize λT f (x) [23].

Algorithm 3.6: Weighted Sum Descent Method

Choose a point x0 ∈ Rn and σ ∈ (0, 1). Set k = 0.
while Stopping criterion is violated at x k do

Choose a descent direction dk ∈ Rn of λT f (x)
Compute a step size tk satisfying the Armijo rule for λT f (x) using Algorithm 3.1
Iterate: x k+1 = x k + tkdk

k = k+ 1

Example 3.24. For the illustration of some properties of the weighted sum descent method and the
multiobjective steepest descent method consider the following nonconvex nonlinear biobjective prob-
lem:

vmin
x∈R2

f1(x) = cos(πx1) + cos(πx2)

f2(x) =
1
2 (x1 − 2)2 + 1

2 (x2 − 2)2
(3.35)

The second objective, f2, is strictly convex, but the first objective is periodic and has global minima at
(2a1+1, 2a2+1)T , global maxima at (2a1, 2a2)T and saddle points at (2a1, 2a2+1)T and (2a1+1, 2a2)T

for every pair of integers a1 and a2. f2 has a global minimum at (2, 2)T .
Every stationary point of f1, i.e. every point with integer coordinates, is also stationary for (3.35) (the
multiobjective problem) since ∇ f1(x) = 0 is a sufficient condition for critical points of f . The efficient
set of (3.35) is given by

conv(
�

(1,1)T, (3, 3)T
	

)∪ conv(
�

(1,3)T, (3, 1)T
	

).

To see this, consider that the minimum of f2(x) is the point (2, 2)T and the closest global minima of
f1(x) are the points (1,1)T , (−1,1)T , (−1,−1)T and (1,−1)T .
Due to the periodic nature of f1, (3.35) has many locally efficient sets. But not all stationary points of
(3.35) are locally weakly efficient. For example, all saddle points of f1 are not locally weakly efficient
for (3.35).
To compare multiobjective descent methods and weighted sum descent methods we consider here the
weighted sum for (the arbitrary choice) λ= (0.5,0.5)T and the steepest descent variant in both cases.
Figure 3.8 shows iteration paths, starting from initial points on the boundary of the box with corner
points (−4.5,−4.5) and (6.5,6.5) of the multiobjective descent method (left) and the weighted sum
descent (right). The level lines are those of the weighted sum function 0.5 f1(x) + 0.5 f2(x).
We can observe that the multiobjective descent method gets stuck in stationary points (which are
often saddle points of f1), whereas the weighted sum descent method can sometimes, of course not in
general, still converge to an efficient point. This behavior of multiobjective descent methods is a major
drawback.
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Figure 3.8: Iteration paths and final points multiobjective steepest descent (left) and weighted sum
descent (right) of Example 3.24.

We demonstrated using Example 3.24 that the multiobjective steepest descent algorithm has some ad-
ditional challenges regarding critical points which are not locally efficient. In the following we will
discuss the multiobjective Newton method in this context.

Some of the properties of descent methods in scalar nonlinear optimization can be generalized to the
multiobjective case in a way that is useful for multiobjective descent methods. One crucial property
for some methods, for example the globalized Newton method, however, do not remain true in the
multiobjective case. In the scalar case, we have the following:

Lemma 3.25. [36] Let f : Rn → R be twice continuously differentiable and x̄ ∈ Rn such that
∇2 f ( x̄) is positive definite. Then there exist constants δ > 0 and α > 0 such that

α‖d‖2 ≤ dT∇2 f (x)d

for every x ∈ Rn with ‖x − x̄‖ ≤ δ and all d ∈ Rn.

Lemma 3.25 shows that in a sufficiently small neighborhood of x̄ , the Hessian matrix of f (x) is pos-
itive definite. This result is crucial for the convergence results for the globalized Newton methods as
it guarantees that the Newton direction is well-defined close to a local minimum and thus the global-
ized Newton method will not use steepest descent directions close to the minimum and thus not have
zigzagging behavior [36].

In the multiobjective case Lemma 3.25 does not apply in general. It does however apply to the weighted
sum problem.
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Example 3.26. Consider the following biobjective optimization problem:

vmin
x∈Rn

f1(x) = x3 − 3x2 (3.36)

f2(x) = x2
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Figure 3.9: Function Graphs for Example 3.26.

The function graphs of f1(x) and f2(x) are shown in Figure 3.9. Notice that every x ∈ (0,2) is locally
efficient for (3.36). The second derivative of f1(x) is given by 6x − 6 which is strictly positive only on
the interval (1,∞). Thus for every x ∈ (0,1) the second derivative of f1 is negative and the multiob-
jective newton method can not use the newton direction.
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Conclusion

We have reviewed a class of descent methods for multiobjective nonlinear optimization problems that
generalizes methods such as the steepest descent method and the Newton method from the singleob-
jective to the multiobjective case. We have seen that these variants share some of the properties with
their singleobjective counterparts, such as general convergence results in the convex case.
We introduced the compromise descent method and compared the methods using a larger dimensional
triobjective convex optimization problem which visualizes the theoretical results from the literature
[29] . We compared the multiobjective steepest descent method to the application of the singleobjec-
tive steepest descent method to the weighted sum problem for one nonconvex problem and observed
that multiobjective descent methods have some additional challenges with critical solutions that are
not locally efficient.

The advantage of multiobjective descent methods is that no preference information, like a weight for
the weighted sum problem, has to be provided. However, we have also observed that the multiobjec-
tive descent methods converge favorably to particular critical points depending on the initial solution.
The choice of the initial solution for multiobjective descent methods is an interesting topic for future
research. Additionally, we have only discussed one weight-based descent methods. Since the set of
feasible weights is convex one might formulate an algorithm to find feasible weights in each iteration
in an efficient way, leading to a new variant of the multiobjective descent methods.
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Chapter 4

Multiobjective Convex Quadratic
Programming

Multiobjective convex quadratic optimization problems with linear constraints have been discussed in
the literature for quite some time. Actually, some solution techniques for quadratic programming with
linear constraints [60] were introduced alongside biobjective quadratic optimization in the context of
portfolio optimization [59] in the 1950s. Other applications for multiobjective quadratic programming
have arisen, for example in the fields of location analysis and radio therapy treatment planning [9].

The goal of many methods in portfolio optimization is the determination of efficient solutions [59]
and the corresponding weights representing these solutions. This can, for example, be achieved by
a parametric approach using the weighted sum scalarization, where the weights are incrementally
changed to explore the whole efficient set. This approach for biobjective problems was extended by
Goh and Yang [38] to the more general multiobjective case.
Using the KKT conditions of the weighted sum scalarization, multiobjective quadratic programming
problems can be interpreted as parametric linear complementarity problems for which the weights are
a parameter. Many solution techniques have been discussed for such problems where the parameter is
only found on the right-hand-side of a system of linear equations [2, 13, 44, 46].
Adelgren [1] considered multiparametric linear complementarity problems with parameters in more
positions and his results can also be applied to multiobjective quadratic programming problems.

51
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In this chapter we focus on multiobjective convex quadratic programming problems with linear con-
straints and strictly convex objective functions.

vmin fi(x) =
1
2 x TQi x + (c i)T x , i = 1, . . . , m

s.t. Ax ½ b, H x = h
(4.1)

with Qi ∈ Rn×n symmetric positive definite objective matrices and vectors c i ∈ Rn for all i = 1, . . . , m.
The linear constraints are given by matrices A∈ Rp×n and H ∈ Rq×n and vectors b ∈ Rp and and h ∈ Rq.
We assume that the matrix H has full rank.
The feasible set is denoted by S = {x ∈ Rn : Ax ½ b, H x = h} and throughout this chapter we assume
that S is not empty.
As the weighted sum will be used throughout this chapter we will use the following notation for λ ∈ Λ:

Q(λ) :=
m
∑

i=1

λiQ
i and c(λ) =

m
∑

i=1

λic
i

Notice that Q(λ) is a symmetric and positive definite matrix for every λ≥ 0.

This chapter consists of the following sections:

• In Section 4.1 we consider unconstrained and equality-constrained multiobjective convex quadratic
optimization problems. An optimality condition derived for this case will play an important role
in the following sections.

• In Section 4.2 two solution approaches by Goh and Yang [38] and Adelgren [1] for multiobjec-
tive convex quadratic optimization problems in canonical form are reviewed. We introduce the
weight space decomposition by efficient complementary bases and efficient active sets.

• In Section 4.3 an algorithm is proposed for the computation of all efficient complementary bases
and a set of test instances is solved. The two-phase approach proposed by Adelgren [1] is re-
viewed and compared to the algorithm discussed in Section 4.3.

• In Section 4.4 the results from Section 4.2 are generalized for multiobjective convex optimization
problems in general form with unbounded variables and linear equality constraints.

• In Section 4.5 we shortly consider the regularization of positive semidefinite matrices and provide
a justification for considering only multiobjective strictly convex quadratic optimization prob-
lems.

• In Sections 4.6, 4.7 and 4.8 particularly structured multiobjective convex quadratic optimization
problem are considered that have a polyhedral weight space decomposition. The first type of
problem (discussed in Section 4.6) consists of one convex quadratic and m−1 linear objectives.
This case has been considered by Hirschberger et. al. [45, 46].
In Section 4.7 a very similar case to the previous one is discussed where the objective matrices
are positive multiples of each other.
In Section 4.8 we consider multiobjective convex optimization problems with diagonal objec-
tive matrices and lower and upper bounds. For this case we show that the weight space is an
arrangement of hyperplanes and provide an upper bound for the number of efficient active sets.

• In Section 4.9 a parameter space decomposition for the e-constraint problem is introduced.

• In Section 4.10 we discuss an application of the results from Section 4.7 and Section 4.9 for a
problem in the field of location analysis.
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4.1 The Efficient Set of Unconstrained and Equality-constrained
Multiobjective Convex Quadratic Programming Problems

First, we consider multiobjective unconstrained nonlinear optimization problems with strictly convex
quadratic objective functions:

vmin
x∈Rn

fi(x) =
1
2 x TQi x + (c i)T x , i = 1, . . . , m (4.2)

with symmetric and positive definite objective matrices Qi and linear cost vectors c i ∈ Rn for i =
1, . . . , m.
The weighted sum scalarization problem of (4.2) can be written as

min
x∈Rn

Q(λ)x + c(λ). (4.3)

Corollary 4.1. [23] x ∈ Rn is efficient for (4.2) if and only if there exists λ ∈ Λ such that

x = −Q(λ)−1c(λ).

Proof. All objective functions are stricly convex and thus the KTT conditions are necessary and sufficient
for weak efficiency (see Theorem 2.4 and Theorem 2.5). Q(λ)x + c(λ) is a strictly convex function for
every λ≥ 0 and thus has a unique global minimum for every λ≥ 0. The KKT conditions for (4.2) with
weights λ≥ 0 are given by

m
∑

i=1

λi∇ fi(x) = 0

which is equivalent to

m
∑

i=1

λi(Q
i x + c i) = 0⇔Q(λ)x + c(λ) = 0⇔Q(λ)x = −c(λ)⇔ x = −Q(λ)−1c(λ).

A parametric representation of the efficient set XE can be defined using the optimal solution x̄(λ) of
the weighted sum problem (4.3):

x̄(λ) := −Q(λ)−1c(λ)

in the following way:
XE = { x̄(λ) : λ ∈ Λ}

4.1.1 Linear Equality Constraints

In this section we generalize the properties of unconstrained multiobjective quadratic programming
problems to multiobjective quadratic programming problems with q linear equality constraints in the
form:

vmin
x∈Rn

1
2 x TQi x + (c i)T x i = 1, . . . , m

s.t. H x = h
(4.4)

with a full-rank matrix H ∈ Rq×n, h ∈ Rq and the corresponding weighted sum problem with weights
λ ∈ Λ

min
x∈Rn

1
2 x TQ(λ)x + c(λ)T x

s.t. H x = h
(4.5)
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From Theorem 2.4 we know that x is a KKT point of (4.5) with multipliers µ ∈ Rq if and only if (x ,µ)
is a solution of

�

Q(λ) −HT

H 0

��

x
µ

�

=
�−c(λ)

h

�

. (4.6)

Proposition 2.12 shows that if H has full rank then there exists a unique solution of (4.6) for every
λ ∈ Λ.
Notice that for a fixed λ the equivalent system of equations (4.6) can be interpreted as the necessary
optimality condition for a n + q-dimensional singleobjective unconstrained quadratic programming
problem

min
z∈Rn+q

1
2

zT K(λ)z +
�−c(λ)

h

�T

z (4.7)

with K(λ) =
�

Q(λ) −HT

H 0

�

and z = (x ,µ)T .

Using normalized weights λ ∈ Λ we see that

m
∑

i=1

λi

�

Qi −HT

H 0

�

=
�
∑m

i=1λiQ
i −∑m

i=1λiH
T

∑m
i=1λiH 0

�

=
�

Q(λ) −HT

H 0

�

and
m
∑

i=1

λi

�−c i

h

�

=
�−c(λ)

h

�

.

Hence, the optimality condition for an efficient point of (4.4) can be interpreted as the optimality
conditions of the larger dimensional unconstrained problem (4.7).
The efficient set of (4.4) can be parameterized in the following way:

Corollary 4.2. [23] Let H have full rank. x ∈ Rn is efficient for (4.4) if and only if there exists
λ ∈ Λ and µ ∈ Rq such that

�

x
µ

�

=
�

Q(λ) −HT

H 0

�−1 �−c(λ)
h

�

.

Proof. Since H has full rank we can apply Proposition 2.12 and show that

K(λ) =
�

Q(λ) −HT

H 0

�

is regular and positive definite. Thus the necessary optimality condition is satisfied at exactly one point
and the inverse of K(λ) is defined. If H has full rank then the LICQ are satisfied and we can apply
Theorem 2.4.
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4.2 Multiobjective Convex Quadratic Problems in Canonical Form

In this section we will discuss the properties of multiobjective convex quadratic programming prob-
lems with linear inequality constraints and nonnegative variables. First, we will introduce a parametric
approach with linear complementarity problems using the weighted sum scalarization and investigate
properties of the weight space decomposition. For this, we will use results from the field of parametric
linear complementarity problems [1, 13].
Afterwards, we will connect the parametric approach using linear complementarity problems with the
concept of efficient active sets introduced by Goh and Yang [38].

We will now consider multiobjective problems in canonical form. Multiobjective convex quadratic
optimization problems in general form are discussed in Section 4.4.

vmin fi(x) =
1
2 x TQi x + (c i)T x i = 1, . . . , m

s.t. Ax ½ b, x ½ 0
(MQP)

with Qi ∈ Rn×n symmetric positive definite and c i ∈ Rn for all i = 1, . . . , m, A∈ Rp×n and b ∈ Rp.
Just like before, the feasible set is denoted by S = {x ∈ Rn : Ax ½ b, x ½ 0} and we assume that the
feasible set S is not empty.
The weighted sum scalarization problem of (MQP) for λ ∈ Λ is given by

min 1
2 x TQ(λ)x + c(λ)T x

s.t. Ax ½ b, x ½ 0
(WQP)

The optimal solution of the weighted sum scalarization problem (WQP) for λ ∈ Λ is denoted by x̄(λ).

Theorem 4.3 (Optimality Conditions for (MQP)). [23] Let x ∈ S be a regular solution of (MQP).
Then x is efficient for (MQP) if and only if there exist λ ∈ Λ, π ∈ Rp and y ∈ Rn such that

Q(λ)x + c(λ)− ATπ− y = 0 (4.8)

Ax − b ½ 0, x ½ 0 (4.9)

π½ 0, y ½ 0 (4.10)

x i yi = 0∀i = 1, . . . , n (4.11)

(A j•x − b j)π j = 0∀ j = 1, . . . , p (4.12)

Proof. ’⇒’: If there exist λ̄ ∈ Λ, π ∈ Rp and y ∈ Rn such that the KKT conditions for (WQP) are
satisfied then x is an optimal solution of (WQP) for λ̄ (see Corollary 2.6). x is also the unique
optimal solution of (WQP) for λ̄ because the objective function of (WQP) is strictly convex for
every λ ∈ Λ. Using Theorem 2.25 we see that x is an efficient solution of (MQP).

’⇐’: If x is an efficient solution of (MQP) then according to Theorem 2.26 there exists λ̄ ∈ Λ such
that x is the optimal solution of (WQP) for λ̄. Since x is a regular point of (WQP) x is also a
KKT point of (WQP) for λ̄ (see Corollary 2.6).
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Equation (4.9) and (4.10) ensure primal and dual feasibility. The nonlinear conditions (4.11) and
(4.12) are referred to as complementarity conditions. With the addition of slack variables s ∈ Rp

with s = Ax − b we can rewrite the KKT conditions as a parametric linear complementarity system
(cp. Section 2.1.2) [14]:

�

In 0 −Q(λ) AT

0 Ip −A 0

�

︸ ︷︷ ︸

=:M(λ)







y
s
x
π






=
�

c(λ)
−b

�

︸ ︷︷ ︸

=:q(λ)

s ½ 0, y ½ 0, π½ 0, x ½ 0

s jπ j = 0 ∀ j = 1, . . . , p

yi x i = 0 ∀i = 1, . . . , n

With u= (y, s), v = (x ,π) the parametric linear complementarity problem can be written as

M(λ)(u, v) = q(λ)
u½ 0, v ½ 0

ui vi = 0∀i = 1, . . . , r
(pLCP)

with r = n+ p and M(λ) ∈ Rr×2r .
For a fixed weight λ ∈ Λ we can solve this linear complementarity problem using Algorithm 2.1 and
compute a feasible complementary basis B. If we change λ the basis B may stay feasible or be infeasible
for the new weight. In the following we will discuss how to determine weights for which B is a feasible
complementary basis.
Recall from Section 2.1.2 that, for a fixed λ ∈ Λ, the basic value qB(λ) for a complementary basis B of
(pLCP) is given by

qB(λ) = (MB(λ))
−1q(λ).

Definition 4.4. A complementary basis B is called efficient, if there exists λ ∈ Λ such that B is a
feasible complementary basis with parameter λ, i.e. qB(λ)½ 0.
The set of efficient bases is denoted by Beff.

For every basis B there may be more than one weight where B is a feasible basis of the parametric linear
complementarity problem. The set of parameters for which a given complementary basis is feasible is
also referred to as invariancy region [2] or critical domains [13] in the literature.

Definition 4.5. Let B be a complementary basis of (pLCP). The set

ΛB(B) := {λ ∈ Λ : qB(λ)½ 0} (4.13)

is called the weight cell of B.

Before we investigate the properties of the weight cells ΛB(B) for an efficient complementary basis B
we consider an alternative approach introduced by Goh and Yang [38] using active sets in the next
section.
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4.2.1 Efficient Active Sets

An alternative way to describe the weight cells is an extension of the active set method for singleobjec-
tive optimization problems. We refer to the book by Geiger and Kanzow [37] for a general introduction
for active set methods in singleobjective optimization.

We review the approach proposed by Goh and Yang [38] to provide an analytic description of the
efficient set of (MQP). We will discuss this active set approach and show connections to the parametric
linear complementarity system (pLCP) in this section.

Definition 4.6. Let two index sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , p} be given. Then A = (I,J) is
called active set.

We denote the complements of I and J by Ī and J̄, respectively. The matrix II• denotes the matrix
containing the rows of the identity matrix In corresponding to the entries in I. Similarly, (AJ•) denotes
the matrix consisting of the rows of A with index j ∈ J.

Definition 4.7. An active set A = (I,J) is called efficient active set of (MQP), if there exists
λ ∈ Λ such that there exists a solution ( x̄ , ȳI, π̄J) of





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0





︸ ︷︷ ︸

=:K(λ)





x
yI
πJ



=





−c(λ)
0
−bJ



 (4.14)

that satisfies x̄ ∈ S and ( ȳI, π̄J)½ 0.
The systems of equations (4.14) is called the active set system.
The set of efficient active sets of (MQP) is denoted byAeff.

Definition 4.8. An active set of (MQP) is called regular if the system of equations (4.14) has a
unique solution for all λ ∈ Λ.

Notice that the active set system (4.14) is similar to the optimality condition discussed in Corollary 4.2
for a multiobjective quadratic optimization problem with the linear equality constraints xI = 0 and
AJ•x = bJ.

Proposition 4.9. [38] Let A = (I,J) be an efficient regular active set. Let ( x̄ , ȳI, π̄J) be the
unique solution of (4.14) with x̄ ∈ S, ȳI ½ 0 and π̄J ½ 0. Then x̄ is an efficient solution of
(MQP).

Proof. SinceA is regular we know that the LICQ are satisfied at x̄ . Setting ȳĪ = 0 and π̄J̄ = 0 we see
that ( x̄ , ȳ , π̄) satisfies the conditions of Theorem 4.3. Thus, x̄ is efficient.

Now we will discuss under which conditions the active set system (4.14) has a unique solution.

Proposition 4.10. Let ( x̄ , yI,πJ) be a solution of (4.14) for a given active set A = (I,J). If the
LICQ holds at x̄ thenA is regular.
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Proof. The matrix Q(λ) is positive definite for all λ ∈ Λ and the matrix

[II•, AJ•]

has full rank, since the LICQ are satisfied for x̄ . Using Proposition 2.12 we see that the matrix

K(λ) =





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0





is regular for every λ ∈ Λ.

Proposition 4.11. Let A = (I,J) be an active set. If (4.14) has a unique solution for one λ̄ ∈ Λ
thenA is regular.

Proof. Let λ̄ ∈ Λ such that K(λ̄) is regular. Consider the rank of the matrix K(λ̄) as defined in (4.14):

K(λ̄) =





Q(λ̄) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0





In order for K(λ̄) to be of full rank the the columns of K(λ) have to be linearly independent. Thus, the
matrix

[(II•)
T , (AJ•)

T ]

has to have full rank. Using Proposition 2.12 we see that K(λ) is regular for every λ ∈ Λ.

As in the case of efficient complementary bases we consider a decomposition of the weight space by
efficient active sets. The following definition was first considered by Goh and Yang [38].

Definition 4.12. Let A = (I,J) be an efficient active set. Then the corresponding weight cell
ΛA(A ) is defined as:

ΛA(A ) = �λ ∈ Λ : ∃ solution ( x̄ , ȳI, π̄J) of (4.14) for λ satisfying x̄ ∈ S and ( ȳI, π̄J)½ 0
	

.

We will now investigate the relationship between efficient active sets of (MQP) and efficient comple-
mentary bases of (pLCP).

Definition 4.13. LetA = (I,J) be an active set of (MQP). Then the corresponding complemen-
tary index set BA ofA is given by

BA ( j) =















π j if 1≤ j ≤ p and j ∈ J

s j if 1≤ j ≤ p and j 6∈ J

y j−p if j > p and ( j − p) ∈ I

x j−p otherwise

(4.15)
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Proposition 4.14. Let A be an efficient regular active set of (MQP). Then BA is efficient com-
plementary basis of (pLCP) and

ΛA(A ) = ΛB(BA ).

Proof. Let ( x̄ , ȳI, π̄J) be the unique solution of (4.14) forA and one λ ∈ ΛA(A ), i.e.





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0









x̄
ȳI
π̄J



=





−c(λ)
0
−bJ





and x̄ ∈ S, ȳI ½ 0 and π̄J ½ 0. Let s̄ ∈ Rp be defined as s̄ := Ax̄ − b. Note that s̄J = 0 and s̄J̄ ≥ 0.
Notice that ( x̄ , ȳI, π̄J, s̄J̄) is a solution of the following system of equations:





Q(λ) −(II•)T −(AJ•)T 0
−II• 0 0 0
−A 0 0 I•J̄











x
yI
πJ

sJ̄






=





−c(λ)
0
−b



 (4.16)

The matrix I•J̄ denotes the matrix containing the columns with indixes j ∈ J̄ of the identity matrix Ip.
Notice that (4.16) has a unique solution. Since x̄I = 0 we can remove the second equation and the
variables xI from (4.16) and reduce the system to the following:

�

(Q(λ))•Ī −(II•)T −(AJ•)T 0
−A•Ī 0 0 I•J̄

�







xĪ

yI
πJ

sJ̄






=
�−c(λ)
−b

�

. (4.17)

Since ( x̄ , ȳI, π̄J, s̄J̄) is the unique solution of (4.16) with x̄I = 0 we know that ( x̄Ī, ȳI, π̄J, s̄J̄) is the
unique solution of (4.17). By rearranging the variables and multiplying the first equation by −1 we
observe that the resulting system of equation (4.18)

�

(II•)T 0 −(Q(λ))•Ī (AJ•)T

0 I•J̄ −A•Ī 0

�







yI
sJ̄
xĪ

πJ






=
�

c(λ)
−b

�

(4.18)

is identical to
MB(λ)(yI, sJ̄, xĪ,πJ) = q(λ)

for B = BA . Since ( x̄Ī, ȳI, π̄J, s̄J̄)½ 0 we know that λ ∈ ΛB(BA ).

Definition 4.15. Let B be a complementary basis of (pLCP). Then the corresponding active set
AB = (IB,JB) of B is given by

IB =
�

j : y j ∈ B
	

and JB =
�

j : π j ∈ B
	

. (4.19)



60 CHAPTER 4. MULTIOBJECTIVE CONVEX QUADRATIC PROGRAMMING

Proposition 4.16. Let B be an efficient complementary basis of (pLCP). Then AB is an efficient
regular active set of (MQP) and

ΛB(B) = ΛA(AB).

Proof. We follow the proof of Proposition 4.14 in reverse:
Consider the index sets I = IB and J = JB as defined in (4.19) and the corresponding complements
Ī= {1, . . . , n} \ I and J̄= {1, . . . , p} \ J. Let ( ȳ , s̄, x̄ , π̄)½ 0 be a solution of the linear complementarity
problem (pLCP) for λ ∈ Λ and complementary basis B, i.e. the vector zB := ( ȳI, s̄J̄, x̄J̄,πJ) is the
unique solution to the system of linear equations

MB(λ)zB = q(λ).

Consider the equality constraint in (pLCP):

�

(II•)T 0 −(Q(λ))•Ī (AJ•)T

0 I•J̄ −A•Ī 0

�







yI
sJ̄
xĪ

πJ






=
�

c(λ)
−b

�

. (4.20)

Since x̄I = 0 we can add xI and the constraint xI = 0 to the system (4.20) without changing the
solution set of (4.20):





(II•)T 0 −(Q(λ)) (AJ•)T

0 I•J̄ −A 0
0 0 IĪ• 0











yI
sJ̄
x
πJ






=





c(λ)
−b
0



 (4.21)

The system of equations (4.21) has a unique solution ( ȳI, s̄J̄, x̄ , π̄J) with s̄J̄ ½ 0. Then, x̄ , ȳI,πJ are a
solution of





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0









x̄
ȳI
π̄J



=





−c(λ)
0
−bJ





with x̄ ∈ S, ȳI ½ 0 and π̄J ½ 0.

Corollary 4.17. The set of efficient complementary bases of (pLCP) is connected by diagonal
pivots and every efficient active set of (MQP) is regular if one of the following conditions holds:

1. Every efficient solution of (MQP) satisfies the LICQ.

2. The multiobjective problem (MQP) is only constrained by lower and upper bounds, i.e. the
feasible set if given by

S =
�

x ∈ Rn : 0µ x , x j ≤ u j , j ∈ Ju

	

for an index set Ju ⊆ {1, . . . , n} and u j > 0 for all j ∈ Ju.

Proof. 1. Follows from Proposition 4.10 and Proposition 4.14.

2. Follows from item 1, as the LICQ is satisfied for all x ∈ S.
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Corollary 4.18. Let B be a complementary index set with |B| = r and let AB = (I,J) be the
corresponding active set. B is a complementary basis if and only if the matrix

�

II•
AJ•

�

(4.22)

has full rank.

Proof. Follows from Proposition 4.14 and Proposition 4.11.
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4.2.2 Weight Cells

The dimension and other properties of the cells ΛB(B) for more general parametric linear complemen-
tarity problems have been investigated by Adelgren [2]. In this section we will discuss properties of
weight cells ΛB(B) of the parametric linear complementarity problem (pLCP).
The following extension of Proposition 4.10 was shown by Adelgren [1]:

Proposition 4.19. [1] Let B be a complementary basis of (pLCP). Exactly one of the following
statements holds:

1. det(MB(λ))> 0 for all λ ∈ ΛB(B) or

2. det(MB(λ))< 0 for all λ ∈ ΛB(B).

Proof. The proof can be found with Proposition 5.14 in Adelgren [1].

Definition 4.20. Let B be a complementary basis of (pLCP). Then the functions

(qB(λ))k : Rm→ R
are called basic value functions for k = 1, . . . , r.
The hypersurfaces that define the boundary segments of ΛB(B) in Λ are denoted in the following
way:

hk
B := {λ ∈ Rm : (qB(λ))k = 0}

Proposition 4.21. [1] Let B be an efficient complementary basis of (pLCP). Then the hypersur-
faces hk

B are semi-algebraic sets for all k = 1, . . . , r, i.e. hk
B is defined by polynomial equations for

k = 1, . . . , r. Additionally, the weight cell ΛB(B) is a semi-algebraic set, i.e. ΛB(B) is defined by
polynomial equations and inequalities.

Proof. We follow the proof of Proposition 5.14 in [1]. Since B is a complementary basis we can write
qB(λ) in the following way:

qB(λ) = (MB(λ))
−1q(λ) =

Adj(MB(λ))
det(MB(λ))

q(λ) (4.23)

Where Adj(MB(λ)) refers to the adjoint matrix of MB(λ). Notice that Adj(MB(λ))q(λ) is polynomial in
λ. Thus,

ΛB(B) = {λ ∈ Λ : sign(det(MB(λ)))Adj(MB(λ))q(λ)½ 0} .

Corollary 4.22. The weight cells ΛB(B) are closed and bounded sets.

Proof. Follows from Proposition 4.21 as the polynomials that describe ΛB(B) are continuous over Rm.
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Theorem 4.23. [13, 1] Let Beff be the set of efficient complementary bases of (pLCP).

Λ=
⋃

B∈Beff

ΛB(B).

Furthermore, the set Λ can be decomposed into cells ΛB(B), i.e.

relintΛB(B)∩ relintΛB(B′) = ;
for any B, B′ ∈ Beff, B 6= B′.

Proof. For every λ ∈ Λ we can solve the weighted sum scalarization problem (WQP) using the criss-
cross method (Algorithm 2.1) and compute an efficient complementary bases.

Now, assume that there exists λ ∈ ΛB(B) ∩ ΛB(B′) for some B, B′ ∈ Beff, B 6= B′. Recall that the
solution x̄ := x̄(λ) of the weighted sum problem (WQP) is unique for every λ ∈ Λ. Let AB = (I,J)
and AB′ = (I′,J′) be the regular active sets corresponding to B and B′, respectively. Notice that the
efficient active sets are not identicalAB 6=AB′ .
The optimal solution x̄ of the weighted sum problem (WQP) has to satisfy

x̄I∪I′ = 0 and AJ∪J′• x̄ = bJ∪J′ .

Consider i ∈ I′ \ I. The unique solution ( x̄ , ȳI, π̄I) of the active set system wrt. AB must satisfy the
equation x̄ i = 0. Thus λ ∈ bd ΛA(AB). Similarly if j ∈ J′ \J then x̄ satisfies A j• x̄ = b j forAB, showing
that λ ∈ bd ΛA(AB). By interchanging the roles of I and I′ or J and J′ we see that:

relintΛA(AB)∩ relintΛA(AB′) = ;.

4.2.3 Decomposition of the Efficient Set

Using the decomposition of the weight space by active sets of complementary bases we can also decom-
pose the efficient set. Recall that x̄(λ) is the unique optimal solution of the weighted sum scalarization
problem for λ ∈ Λ.

Definition 4.24. Let B be an efficient complementary basis of (pLCP) and let x̄(λ) be the optimal
solution of (WQP) for λ ∈ Λ. Then we define the corresponding subset of the efficient points by

X̄ (B) :=
�

x̄(λ) : λ ∈ ΛB(B)
	

.

Proposition 4.25. [38] Let Beff be the set of efficient complementary bases (pLCP) and let XE be
the efficient set of (MQP). Then the following statement holds:

XE =
⋃

B∈Beff

X̄ (B)

Proof. Follows from Theorem 4.23, Theorem 2.25 and Theorem 2.26
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Example 4.26. Consider the following biobjective problem with two variables:

min fi(x) =
1
2 x TQi x + (c i)T x , i = 1, 2

s.t. Ax ½ b, x ½ 0

with

Q1 =
�

4 −3
−3 5

�

, Q2 = I2, c1 =
�

3.5
−9.5

�

, c2 =
�−1

0

�

, A=
�

4 −1
−8 1

�

, b =
�

2
−6

�

After substituting λ2 = 1−λ1 we can write the parametric linear complementarity problem as







1 0 0 0 (−3λ1 − 1) 3λ1 4 −8
0 1 0 0 3λ1 (−4λ1 − 1) −1 1
0 0 1 0 −4 1 0 0
0 0 0 1 8 −1 0 0





























y1
y2
s1
s2
x1
x2
π1
π2























=









9λ1
2 − 1
− 19λ1

2−2
6









(4.24)

with x i yi = 0 for i = 1, . . . , n and s jπ j = 0 for j = 1, . . . , p and y, s, x ,π½ 0.
For λ = (0, 1)T the feasible basis of the linear complementarity problem (4.24) is B1 = (s1,π2, x1, x2)
with the corresponding efficient point x̄((0, 1)) = 1

65 (49, 2)T . For B1 the basic value is given by:







s1
π2
x1
x2






= qB1

(λ) =







0 (−3λ1 − 1) 3λ1
0 3λ1 (−4λ1 − 1)
1 −4 1
0 8 −1







−1








9λ1
2 − 1
− 19λ1

2−2
6









=
1

211λ1 + 65







64− 138λ1

51λ2
1 − 117

2 λ1 + 2
491
2 λ1 + 49

698λ1 + 2







0.2 0.4 0.6 0.8 1
0

1

2

3

4

ΛB(B1)

λ1

x1
x2
s1
π2

0.2 0.4 0.6 0.8 1
0

1

2

3

4

ΛB(B1)

λ1

x1
x2
s1
π2

0.2 0.4 0.6 0.8 1
0

1

2

3

4

ΛB(B2)

λ1

x1
x2
s1
s2

Figure 4.1: Basic values for B1 (left) and B2 (right) in Example 4.26.

The graphs of basic values as a function of λ1 for B1 are shown in the left part of Figure 4.1. The
basic value of π2 vanishes at approximately λ1 = 0.0353. The complementary basis B1 remains a
feasible basis for the parametric linear complementarity problem for all λ1 ∈ [0, 0.0353] , i.e. ΛB(B1) =
[0,0.0353].
Another efficient complementary basis can be found by a diagonal pivot of π2. The new basis B2 =
(s1, s2, x1, x2) is feasible for λ1 = 0.0353. In an analogous manner the basic values as a function of B2
can be computed. The graphs of these functions are shown on the right part of Figure 4.1.
The graphs of the basic functions of two additional efficient bases B3 = (x1, x2,π1, s2) and B4 =
(x1, x2,π1,π2) are illustrated in Figure 4.2. We can make the following observations:
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Figure 4.2: Basic values for B3 (left) and B4 (right) in Example 4.26.

• The bases B1 and B4 are connected by a pivot of the complementary variable pair s1/π1 but B1
and B4 are not adjacent, i.e. ΛB(B1)∩ΛB(B2) = ;.

• Basis B4 represents an active set with 2 active constraints and X̄ (B4) consists only of one point.
The basic values are linear in λ1 for this efficient basis. This property motivates Proposition 4.27.

The weight space decomposition of (4.24) can now be used to analytically describe the efficient set
which is illustrated in Figure 4.3. Additionally, the curves

C l =
�

(x1, x2) : x1 = (qBl
(λ))3 and x2 = (qBl

(λ))4, λ ∈ Λ	

are shown in dotted lines for l = 1, 2,3 to visualize the connection to active sets. For example C2 is the
efficient set of the unconstrained problem vminx∈Rn f (x) and a segment of C2 is a part of the efficient
set of (4.24).
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Figure 4.3: Decomposition of the Efficient Set of Example 4.26

Proposition 4.27. Let B be an efficient complementary basis of (MQP) and letAB = (I,J) be the
corresponding active set.
If dim X̄ (B) = 0 and |I|+ |J|= n then ΛB(B) is a convex polyhedron.

Proof. Let x̃ ∈ S be such that X̄ (B) = { x̃}. Since B is a complementary basis the efficient active set
AB = (I,J)) is regular and ΛB(B) = ΛA(AB) (see Proposition 4.16). Consider the active set system:





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0









x
yI
πJ



=





−c(λ)
0
−bJ



 (4.25)

Since only x̃ solves the systems of equations (4.25) we can insert x̃ into (4.25) and reduce it to

�−(II•)T −(AJ•)T
�

�

yI
πJ

�

= −c(λ)−Q(λ) x̃ . (4.26)

The matrix
�−(II•)T −(AJ•)T

�

is (by assumption) square and regular (otherwise B would not be a
basis of (pLCP)). Thus, we can formulate an explicit representation of the dual variables yI and πJ for
every λ ∈ Λ.

�

yI
πJ

�

=
�−(II•)T −(AJ•)T

�−1
(−c(λ)−Q(λ) x̃) (4.27)

The right-hand-side and thus the entries of the solutions yI and πJ of (4.26) consists of polynomials
of degree 1 wrt. λ. Hence, the non-negativity constraints yI ½ 0 and πJ ½ 0 are linear inequality
constraints in λ, i.e. the set

¦

λ ∈ Λ :
�

(II•)T (AJ•)T
�−1
(−c(λ)−Q(λ) x̃)½ 0

©

is a convex polyhedron.
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An example for efficient complementary basis with a few polyhedral weight cells is given in Example
4.47.

Example 4.28. Consider the following convex multiobjective quadratic problem (MQP):

vmin fi(x) =
1
2 x TQi x + (c i)T x , i = 1, . . . , m

s.t. Ax ½ b, x ½ 0

with

• n= 2, m= 3, p = 1

• Q1 =Q3 = I2 =
�

1 0
0 1

�

, Q2 =
�

2 0
0 1

�

• c1 =
�

0
−1.8

�

, c2 =
�−3.6

0

�

, c3 =
�−2
−2

�

• A=
�

1 1
�

, b = 2

The lexicographic minima of the unconstrained problem vminx∈Rn f (x) are

x1
lex =

�

0
1.8

�

, x2
lex =

�

1.8
0

�

, x3
lex =

�

2
2

�

.

The weight space decomposition is illustrated in the right part of Figure 4.4. There are two efficient
complementary bases B1 = (x1, x2,π1) (shown in green) and B2 = (x1, x2, s1) (shown in blue). The
corresponding points in the efficient set are shown in the left part of Figure 4.4.
We can observe that the curve (qB1

(λ))3 = 0 (shown as a dashed line in the right part of Figure 4.4) has
two unconnected segments common with weight space Λ. The weight cell ΛB(B1) is not connected.
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(qB1
(λ))3 = 0

λ1

λ
2

Weight Space

Figure 4.4: Decision Space (left) and Weight Space (right) of Example 4.28.

Observation 4.29. ΛB(B) can be unconnected.
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4.3 Determination of Efficient Bases

Recall the definition of the weight cells ΛB(B) for a given efficient complementary basis B:

ΛB(B) := {λ ∈ Λ : qB(λ)½ 0}
From the definition of ΛB(B) be can observe that the boundary of ΛB(B) consists of λ ∈ Λ for which
there exists k ∈ {1, . . . , r} such that (qB(λ))k = 0 or there exists some i ∈ {1, . . . , m} with λi = 0. Only
in the former case another efficient complementary basis B′ can be found with ΛB(B)∩ΛB(B′) 6= ;.
Goh and Yang [38] proposed an approach where for each k ∈ {1, . . . , r} the hypersurfaces hk

B :=
{λ ∈ Rm : (qB(λ))k = 0} that define the boundary of ΛB(B) are computed using symbolic calculations.
This approach is only valid if all efficient complementary bases are connected by diagonal pivots, i.e. ev-
ery efficient active set is regular.
The approach was extended by Adelgren [1] to cover

• a broader class of problems: parametric linear complementarity problems

• multiobjective quadratic optimization problems for which not every efficient active set is regular

• only the determination of efficient complementary bases B with dimΛB(B)≥ m− 2.

The approach by Adelgren is reviewed in Section 4.3.3. In the following we discuss an approach based
on the approaches by Goh and Yang [38] and Adelgren [1] to compute all efficient complementary
bases.

Recall the definitions of diagonal and exchange pivots from Definition 2.14. First, we show that it is
enough to only consider diagonal and exchange pivots for the determination of all efficient comple-
mentary bases:

Proposition 4.30. [1, 13] The set of efficient complementary bases of (pLCP) is connected by
diagonal and exchange pivots.

Proof. Proposition 5.54 from [1] (based on Lemma 3.8 from [13]) shows that if two efficient com-
plementary bases B and B′ share an (m − 2)-dimensional boundary segment then |B ∩ B′| ≥ r − 2,
which is equivalent to either B′ = diag(B, k) for some k ∈ {1, . . . , r} or B′ = exch(B, k, l) for some
k, l ∈ {1, . . . , r} with l 6= k.

Goh and Yang [38] considered a method where the boundary segments of two weight cells are deter-
mined using symbolic calculations. The following similar approach only considers individual points on
the boundary of ΛB(B) and does not require any symbolic calculations.
First, we discuss sufficient and necessary criteria for diagonal and exchange pivots leading to efficient
complementary bases.

Proposition 4.31. Let B be an efficient complementary basis of (pLCP) and let k ∈ {1, . . . , r}.
If B′ = diag(B, k) is a basis and there exists λ ∈ ΛB(B) such that (qB(λ))k = 0 then B′ is an efficient
complementary basis of (MQP).

Proof. Let λ be a weight such that λ ∈ ΛB(B) and (qB(λ))k = 0. Let T (λ) be the dictionary wrt. B and
λ. From Proposition 2.20 we know that Tkk(λ) 6= 0 for λ because B′ is a basis.
Recall the definition of the working tableau [T (λ) Ir qB(λ)] from Section 2.1.2.
The basic value qB′(λ) wrt. the new basis B′ can be computed from qB(λ) by a principal pivot of the
working tableau:

(qB′(λ))l = (qB(λ))l −
Tlk(λ)
Tkk(λ)

(qB(λ))k
︸ ︷︷ ︸

=0

= (qB(λ))l
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for l = 1, . . . , r. Since λ ∈ ΛB(B) we know that qB(λ)½ 0 showing that qB′(λ)½ 0 and ΛB(B′) 6= ;.

A similar result can be shown for exchange pivots:

Proposition 4.32. Let B be an efficient complementary basis of (pLCP) and let k, l ∈ {1, . . . , r}
with k 6= l.
If B′ = exch(B, k, l) is a basis and there exists λ ∈ ΛB(B) such that (qB(λ))k = 0 and (qB(λ))l = 0
then B′ is an efficient complementary basis of (MQP).

Proof. Let λ be a weight such that λ ∈ ΛB(B) and (qB(λ))k = (qB(λ))l = 0. Let T (λ) be the dictionary
wrt. B and λ. Consider the following two cases:

• There exists a complementary basis B′′ such that B′′ = diag(B, k) and B′ = diag(B′′, l) or B′′ =
diag(B, l) and B′ = diag(B′′, k).
In either case we can apply Proposition 4.31 twice, once for the pivot of the basic variable zk ∈ B
and again for zl ∈ B′.

• Otherwise, let T be the dictionary wrt. B and let λ ∈ ΛB(B) be given with (qB(λ))k = 0 and
(qB(λ))l = 0. Then according to Theorem 2.21

– Tkk = 0 and Tlk < 0 or

– Tl l = 0 and Tkl < 0.

Since both cases are symmetrical wrt. k and l we only consider the first case. The basic values for
B′ can be computed by principal pivots of the working tableau [T Ir qB(λ)]. The computation
of the new basic value after an exchange pivot can be found in Section 2.1.2.

qB′ =





























(qB(λ))1 − T1l
Tkl
(qB(λ))k − T1k

Tlk

�

(qB(λ))l − Tl l
Tkl
(qB(λ))k

�

...
(qB(λ))k

Tkl
...

1
Tlk

�

(qB(λ))l − Tl l
Tkl
(qB(λ))k

�

...

(qB(λ))r − Tr l
Tkl
(qB(λ))k − Trk

Tlk

�

(qB(λ))l − Tl l
Tkl
(qB(λ))k

�





























Note that since (qB(λ))k = (qB(λ))l = 0 it follows that qB′(λ) = qB(λ). Hence, qB′(λ)½ 0 and B′

is an efficient complementary basis.

Proposition 4.31 and 4.32 are sufficient criteria to check whether a given basis is efficient. The fol-
lowing two propositions show that if ΛB(B) ∩ΛB(B′) 6= ; then a weight λ ∈ ΛB(B) can be found that
satisfies the assumptions of Proposition 4.31 or 4.32.

Proposition 4.33. Let B and B′ be efficient complementary bases of (pLCP) with B′ = diag(B, k)
for some k ∈ {1, . . . , r}. If ΛB(B)∩ΛB(B′) 6= ; then there exists λ ∈ ΛB(B) such that (qB(λ))k = 0.

Proof. Let AB = (I,J) and AB′ = (I′,J′) be the active sets corresponding to B and B′, respectively.
Then exactly one of the following situations is possible:
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• k ≤ p, I′ = I and J′ = J∪ {k}
• k ≤ p, I′ = I and J= J′ ∪ {k}
• k > p, I= I′ ∪ {k− p} and J′ = J

• k > p, I′ = I∪ {k− p} and J′ = J

We will only consider the first case as all other cases can be handled analogously. Consider the active
systems (4.14) for λ ∈ ΛB(B)∩ΛB(B′):





Q(λ) −(II•)T −(AJ•)T

−II• 0 0
−AJ• 0 0









x
yI
πJ



=





−c(λ)
0
−bJ



 (4.28)

and






Q(λ) −(II•)T −(AJ•)T −(Ak•)T

−II• 0 0 0
−AJ• 0 0 0
−Ak• 0 0 0













x
yI
πJ

πk






=







−c(λ)
0
−bJ
−bk






(4.29)

Let ( x̄(λ), ȳI(λ), π̄J(λ)) be a solution of (4.3). Then ( x̄(λ), ȳI(λ), π̄J(λ), 0) is a solution of (4.3)
and since (4.3) has a unique solution for every λ ∈ Λ it is also unique. The variables πk and sk are
nonbasic in B and B′, respectively. Hence, it follows that 0 = πk = (qB(λ))k = (qB′(λ))k = sk at
λ ∈ ΛB(B)∩ΛB(B′).

Proposition 4.34. Let B and B′ be efficient complementary bases of (pLCP) with B′ = exch(B, k, l)
for some k, l ∈ {1, . . . , r} with k 6= l. If ΛB(B)∩ΛB(B′) 6= ; then there exists λ ∈ ΛB(B) such that
(qB(λ))k = 0 and (qB(λ))l = 0.

Proof. The proof is analogous to the proof of Proposition 4.33.

To determine whether a complementary index set is a basis we can use the dictionary (see Section
2.1.2, particularly Proposition 2.20 and Theorem 2.21). Alternatively, Proposition 4.14 can be used to
check if a given complementary index set is a complementary basis by checking if the corresponding
active set system has a unique solution for all λ ∈ Λ.

Our goal is to compute all efficient complementary bases of (pLCP). In general, the set of efficient
bases is not connected by diagonal pivots alone. However, we don’t have to consider every possible
exchange pivot: If B is a complementary basis and, for example, B′ = diag(B, k) and B′′ = exch(B, k, l)
are complementary bases for some k, l ∈ {1, . . . , r} with k 6= l then B′′ can be obtained form B′ by a
diagonal pivot, i.e. B′′ = diag(B′, l). This pivot can be considered when all adjacent bases of B′ are
computed. Thus, we only need to consider exchange pivots with k, l ∈ {1, . . . , r} if B′ = diag(B, k) is
not a basis.
Let B be an efficient complementary basis of (pLCP) and k ∈ {1, . . . , r} such that B′ = diag(B, k) is a
complementary basis. Consider the following nonlinear optimization problem:

Ψd(B, k) =











min
λ∈Rm

(qB(λ))k

s.t. qB(λ)½ 0

λ ∈ Λ
(4.30)
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Procedure 4.1: Compute Possible Adjacent Bases

DPivots = ;, EPivots = ;;
for k = 1, . . . , r do

if B′ = diag(B, k) is a complementary basis then
DPivots = DPivots ∪ {k};

else
for l = 1, . . . , r, l 6= k do

if B′ = exch(B, k, l) is a complementary basis and exch(B, l, k) 6∈ EPivots then
EPivots = EPivots ∪ {(k, l)};

Output: DPivots, EPivots

Proposition 4.35. Let B be an efficient complementary basis and let k ∈ {1, . . . , r} such that
B′ = diag(B, k) is a basis. If Ψd(B, k) = 0 then B′ is an efficient complementary basis.

Proof. Follows directly from Proposition 4.31.

Remark 4.36. Note that the converse of Proposition 4.35 is not true in general. More precisely, B
and B′ may be efficient complementary bases but ΛB(B)∩ΛB(B′) = ;. One occurrence for this can be
seen in Example 4.26 where B4 can be obtained from B1 via a diagonal pivot and both B1 and B4 are
efficient complementary bases but ΛB(B1)∩ΛB(B4) = ;.
For exchange pivots we can formulate a similar result using the following optimization problem:

Ψe(B, k, l) =











min
λ∈Rm

(qB(λ))k + (qB(λ))l

s.t. qB(λ)½ 0

λ ∈ Λ
(4.31)

Proposition 4.37. Let B be an efficient complementary basis and let k, l ∈ {1, . . . , r} with k 6= l
and B′ = exch(B, k, l) being a basis. If Ψe(B, k) = 0 then B′ is an efficient complementary basis.

Proof. Follows directly from Proposition 4.32.

For numerical reasons it is preferable to avoid the explicit enumeration of the inverse of the matrix
MB(λ). In fact, we observed during numerical experiments that the nonlinear optimization solver of
MATLAB, fmincon, evaluated the objective function of (4.30) for λ 6∈ Λ for which the regularity of
MB(λ) is not guaranteed. If MB(λ) was not regular fmincon stopped with an error message as the
objective function of (4.30) could not be evaluated.
To avoid this situation the following equivalent optimization problems are used:

Ψd(B, k) =











min
λ∈Rm, υ∈Rr

υk

s.t. MB(λ)υ= q(λ)
υ½ 0, λ ∈ Λ

(4.32)

Ψe(B, k, l) =











min
λ∈Rm, υ∈Rr

υk +υl

s.t. MB(λ)υ= q(λ)
υ½ 0, λ ∈ Λ

(4.33)

Notice that any λ ∈ ΛB(B) is feasible for (4.30) and (4.31). Similarly, (λ, qB(λ)) is feasible for (4.32)
and (4.33) for any λ ∈ ΛB(B).
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4.3.1 The Algorithm

We now have all the ingredients to formulate a strategy to compute all efficient complementary bases
of (MQP).
During the execution of Algorithm 4.2 two sets of complementary bases F and E are maintained. E
consists of all efficient bases for which all possible adjacent bases have been checked for efficiency. F
consists of all efficient bases for which adjacent bases have to be checked.
In the initialization of Algorithm 4.2 an initial efficient complementary basis of (pLCP) is computed.
Since we assume that the feasible set is nonempty and the objective functions fi(x) of (MQP) are
strictly convex for all i = 1, . . . , m we know that there exists at least one efficient complementary basis.
The time complexity of Algorithm 4.2 is discussed in Section 4.3.1.1.

Algorithm 4.2: Adjacency Search

Determine an initial efficient complementary basis B0 by solving the linear complementarity
problem for some λ ∈ Λ, for example λ= ( 1

m , . . . 1
m ), with Algorithm 2.1.

Set F = {B0} and E = ;
while F 6= ; do

Choose B ∈ F
F = F \ {B}
E = E ∪ {B}
Compute DPivots und EPivots with Procedure 4.1.
for each k ∈ DPivots do

B′ = diag(B, k)
if B′ 6∈ E ∩ F then

if Ψd(B, k) = 0 then
F = F ∪ {B′}

for each (k, l) ∈ EPivots do
B′ = exch(B, k, l)
if B′ 6∈ E ∩ F then

if Ψe(B, k, l) = 0 then
F = F ∪ {B′}

Output: Set of efficient complementary bases E

4.3.1.1 Worst-case Time Complexity

Several steps in Algorithm 4.2 have exponential worst-case time complexity. First, in order to com-
pute the initial efficient complementary basis a linear complementarity problem has to be solved. The
criss-cross method (see Section 2.1.3) has exponential worst-case time complexity [14]. The practical
performance of the criss-cross method is acceptable for the size of problems we consider here. How-
ever, there are polynomial-time algorithms available, for example the algorithm proposed by Kojima
et. al. [54] where an approximate solution of a linear complementarity problem (LCP) is computed
that satisfies

uk vk ≤ ε
for a small ε > 0. In order to find a feasible complementary basis from this solution a basis identification
algorithm has to be applied which can be done in polynomial time [5].
Another important step is the computation of Ψd(B, k) and Ψe(B, k, l). Since (4.32) and (4.33) are
nonconvex problems with possibly unconnected feasible sets, they are in general NP-hard problems
[63].
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In each iteration at most r diagonal pivots and r2−r
2 exchange pivots have to be considered [13]. A

particular complementary basis might be considered up to r+ r2−r
2 times as a possible adjacent efficient

bases unless it is found to be an efficient complementary basis in a previous iteration.
Additionally, the number of efficient complementary bases can be exponential in the number of com-
plementary variable pairs r = n+ p. To see this, consider the following instance of (MQP):

Example 4.38. Let n≥ 2, m≥ 2, p = 0 and c1 = 0 be given and consider the following problem:

vmin
x∈Rn

fi(x) =
1
2 x TQi x + (c i)T x i = 1, . . . .m

s.t. x ½ 0
(4.34)

Notice that the active set system

�

Q(λ) −(II•)T
−II• 0

��

x
yI

�

=
�−c(λ)

0

�

(4.35)

has a unique solution for all λ ∈ Λ and for all active sets of (4.34) since II• has full rank for all subsets
I of {1, . . . , n}.
The global minimum of f1 over Rn is the vector 0 and 0 is also feasible for (4.34). Thus, (0, . . . , 0)T

is an efficient solution of (4.34). Notice that x = 0 and yI = 0 solve (4.35) for λ = (1,0, . . . , 0)T for
every I ⊆ {1, . . . , n}. So all possible active sets and the corresponding complementary bases of (4.34)
are efficient, and (4.35) yields

1+
n
∑

k=1

�

n
k

�

efficient complementary bases because every subset of {1, . . . , n} yields an efficient active set of (4.34).

4.3.1.2 Notes on the Implementation

Algorithm 4.2 and the criss-cross method (Algorithm 2.1) were implemented in MATLAB 2018a. The
nonlinear optimization problems (4.32) or (4.33) were solved with the included nonlinear optimization
solver, fmincon, using the sqp method with default settings. The gradients of the nonlinear equality
constraints of (4.32) and (4.33) were explicitly computed and passed as an argument to fmincon. The
sets E and F are stored as lists. More efficient data structures could be used here but in the numerical
experiments it was observed that the bulk of the computational time (more that 90%) is used for the
computation of Ψd(B, k) and Ψe(B, k, l).
For the first efficient complementary basis B0 computed as the solution of (pLCP) for the initial weight
λ ∈ Λ we know a weight in ΛB(B0). If an adjacent basis B′ of B0 is found then an optimal solution
λ′ ∈ ΛB(B) of (4.32) or (4.33) is also in ΛB(B′) and can be used as an initial feasible solution for (4.32)
or (4.33) when the adjacent bases of B′ are considered.
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4.3.2 Computational Experiment

The time required to compute all efficient complementary solutions depends on the dimensions of the
problem (both m, n and r = n + p), the number of efficient complementary bases and the number
of adjacent efficient complementary bases of each efficient complementary basis which indicates the
number of pivots to be tested in each iteration.
The following numerical experiments aim to visualize the effect of the dimensions m, n, p on the time
required to run Algorithm 4.2.
It should be noted at this point that the dimensions of the parametric linear complementarity problem
(pLCP) only yield an upper bound for the number of efficient bases [13]. A given problem may only
have one efficient complementary bases, even if the number of variables is large. For example, if
the minimum of every objective function is feasible, then the multiobjective quadratic programming
problem may only have one efficient complementary basis.

4.3.2.1 The Test Instance

There are collections of test instances available in the literature for singleobjective quadratic program-
ming problems, for example the collection by Maros and Meszaros [61].

To test the performance of Algorithm 4.2 a set of random problem instances were computed with 2
to 6 objectives and 2 to 8 variables. For each combination of number of variables and objectives 10
distinct problems were generated.

The objective matrices Qi are random symmetric positive definite matrices computed in the following
way for i = 1, . . . , m: Each objective matrix Qi is computed by two regular matrices U and D with
Qi = U T DU . The entries of matrix U are uniformly generated random integers from the interval
[−5,5]. D is a diagonal matrix with uniformly generated diagonal entries random integers from the
interval [1, 5].
The feasible sets are identical for each n and consist of the box [0,5]×· · ·× [0,5] of the corresponding
dimension. The linear independence constraint qualification is guaranteed to be satisfied for each
feasible point. Thus, only diagonal pivots are considered for solving these problems.
The vectors c i are computed in the following way for i = 1, . . . , m:
For each objective a random integer vectors x i with entries in the interval [−1, 6] is computed. c i is
then set to c i = −Qi x i . The resulting objective functions fi(x) =

1
2 x TQi x+(c i)T x have their minimum

in x i for i = 1, . . . , m
This choice results in problems where most of the lexicographic minima are infeasible.
The efficient complementary bases of the test problems were computed using an implementation of
Algorithm 4.2 in MATLAB 2018a on an Intel i5-2400 processor with 3.2 GHz and 8 GB of RAM. The
average number of efficient bases, average total time, average number of calls to the solver fmincon
and average time per efficient bases are shown in Tables 4.1, 4.2, 4.3 and 4.4, respectively.

Table 4.1 shows that the number of efficient bases increases with the number of objectives and the
number of variables. Due to the construction of the problems this is to be expected as the minima of
the objective functions were placed mostly outside of the feasible set.

m\n 2 3 4 5 6 7 8
2 2.2 3.3 3.8 6.1 5.3 6.3 8.5
3 4.6 5.5 7.7 11.6 18.1 18.7 21.4
4 4.5 8.5 11.2 14.4 23.2 31.2 57.2
5 5.2 10.5 16.5 25.9 40.8 56.6 73.9
6 6.6 11.4 22.1 30.8 62.1 88.6 115.6

Table 4.1: Average Number of Efficient Bases computed by Algorithm 4.2
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The average time it took to compute the efficient complementary bases (cp. Table 4.2) is closely linked
to the amount of solver calls shown in Table 4.3.

m\n 2 3 4 5 6 7 8
2 0.045923 0.109 0.21662 0.41219 0.53495 1.0445 1.1453
3 0.063387 0.19475 0.55568 1.4651 2.7838 4.1779 5.1032
4 0.068963 0.27616 0.74217 2.0782 4.3808 8.3114 16.2376
5 0.069432 0.29767 1.1201 3.2825 7.1066 15.5916 26.1433
6 0.073817 0.37863 1.2704 3.3338 9.0906 22.253 38.3013

Table 4.2: Average Time (in seconds)

The number of adjacent bases increases exponentially with the number of complementary variables of
(pLCP). Hence, it is to be expected that the number of solver calls grows faster with the number of
variables than with the number of objectives.

m\n 2 3 4 5 6 7 8
2 6.1 13.9 21.1 43 49.3 66.8 97.7
3 8.3 19.6 39 71.9 136.8 182.9 244
4 8.8 24.7 52.3 91.3 174.6 285.7 595.8
5 9.5 26.1 64.1 141.6 272.7 481.1 736.8
6 9.5 30.5 77.4 161.1 383.9 680.7 1079

Table 4.3: Average Number of Solver Calls

The average time per bases (cp. Table 4.4) increases faster with the number of objectives than with the
number of variables.

m\n 2 3 4 5 6 7 8
2 0.021868 0.033967 0.064266 0.080295 0.10287 0.20877 0.16251
3 0.014522 0.037155 0.077106 0.13496 0.19398 0.24732 0.26287
4 0.016266 0.035465 0.068675 0.14622 0.19361 0.27282 0.28902
5 0.013776 0.03072 0.072058 0.12913 0.18848 0.28149 0.36559
6 0.011999 0.035796 0.069126 0.11792 0.15443 0.25656 0.34586

Table 4.4: Average Time (in seconds) per Basis
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4.3.3 Determination of Boundary Segments

Algorithm 4.2 did not consider which of the hypersurfaces

hk
B := {λ ∈ Rm : (qB(λ))k = 0}

for some k ∈ {1, . . . , r} actually is a (m−2)-dimensional boundary segment of ΛB(B) for some B ∈ Beff.

In this section we will discuss the two-phase approach introduced by Adelgren [1] for parametric linear
complementarity problems. The first phase consists of the determination of a complementary basis with
a full dimensional, i.e. in the case of (pLCP) (m− 1)-dimensional, weight cell. In the second phase all
complementary basis with weight cells of dimension (m− 1) and (m− 2) are computed by identifying
the (m− 2)-dimensional boundaries of the weight cells.
For the complete representation of the efficient set of (pLCP) it is enough to only consider efficient
complementary bases with dim(ΛB(B)) = m− 1 [23].
Recall that the dimension of the parameter space considered here is dim(Λ) = m− 1. In order for the
results from Adelgren [1] to apply directly we will assume that the matrix ∆q ∈ Rr×m defined such
that

q(λ) = q0 +∆qλ

has full rank. In the case that ∆q does not have full rank Adelgren and Wiecek [2] provide a scheme
to consider this case as well.
A smaller dimensional parametric linear complementarity problem is considered, from which the effi-
cient complemenatry bases and the weight cells of the original problem can be computed.

Definition 4.39. [1] The parametric complementary cone of an efficient complementary basis
B is defined as

C(B,λ) :=
�

a ∈ Rr : M−1
B a ½ 0

	

.

Using the parametric complementary cone of B we can see that [1]:

λ ∈ ΛB(B)⇔ qB(λ) ∈ C(B,λ)

Adelgren [1] showed the following extension of Proposition 4.30:

Proposition 4.40. [1] Let B and B′ be efficient complementary bases of (pLCP) with dim(ΛB(B)) =
dim(ΛB(B′)) = m − 1 and dim(ΛB(B) ∩ ΛB(B′))) = m − 2. Then there exists a sequence of effi-
cient complementary bases (B j) j , j = 1, . . . , J with dim(ΛB(B′)) ≥ m − 2 and dim(C(B j ,λ) ∩
C(B j+1,λ)) = m− 2 for j = 1, . . . , J − 1 and B1 = B and BJ = B′.

One of the consequences of Proposition 4.40 is that in order to compute all efficient bases B of (pLCP)
with a full dimensional weight cell ΛB(B) it is enough to consider efficient complementary bases B with
dim(ΛB(B))≥ m− 2.
Let B be an efficient complementary basis of (pLCP) with dim(ΛB(B) = m−1). Recall the definition of
the hypersurfaces hk

B for k ∈ {1, . . . , r}:
hk

B := {λ ∈ Rm : (qB(λ))k = 0}
We will now consider which of the hypersurfaces hk

B for k = 1, . . . , r can not be (m− 2)-dimensional
boundary segments of ΛB(B). We can see that under the following conditions that hk

B cannot be a
(m− 2)-dimensional boundary segments of ΛB(B) for some k ∈ {1, . . . , r} [1]:
• If (qB(λ))k is constantly zero on ΛB(B), then hk

B does not form a boundary segment of ΛB(B).

We denote the corresponding set of indices by

ZB := {k ∈ {1, . . . , r} : (qB(λ))k = 0 ∀λ ∈ Λ} .



4.3. DETERMINATION OF EFFICIENT BASES 77

• If hk
B for some k ∈ {1, . . . , r} does not intersect ΛB(B) , then hk

B does not form a boundary segment
of ΛB(B).
We denote the corresponding set of indices by

RB :=
�

k ∈ {1, . . . , r} : hk
B ∩ΛB(B) = ;	 .

• Additionally, we do not consider hypersurfaces hk
B for which the intersection with ΛB(B) is con-

tained in the intersection of ΛB(B) with another hypersurface, say hypersurface hl
B.

We denote the corresponding set of indices for k = 1, . . . , r by

Hk
B :=

�

l ∈ {1, . . . , r} \ ({k} ∪RB) :
�

hk
B ∩ΛB(B)

� ⊆ �hl
B ∩ΛB(B)

�	

.

The set ZB can be determined easily [1], for example, by maximizing (qB(λ))k over ΛB(B) for k =
1, . . . , m, or by using symbolic calculations. Adelgren [1] provides conditions to determine the sets Hk

B
and RB. Consider the following nonlinear optimization problem for some k, l ∈ {1, . . . , r} , k 6= l :

ΨH(B, k, l) :=



























max
λ∈Rm, α∈R

α

s.t. (qB(λ)) j ≥ 0 ∀ j ∈ {1, . . . , r} \ ({k, l} ∪ZB)
(qB(λ))k = 0

(qB(λ))l ≥ α
λ ∈ Λ

(4.36)

Proposition 4.41. [1] Let B be an efficient complementary basis of (pLCP) with dim(ΛB(B)) ≥
m− 2 and k, l ∈ {1, . . . , r} with l 6= k. Then l ∈ Hk

B if and only if the optimal objective value of
the nonlinear optimization problem (4.36) is zero.

The nonlinear optimization problem (4.36) can also be used to compute the set RB:

Proposition 4.42. [1] Let B be an efficient complementary basis of (pLCP) with dim(ΛB(B)) ≥
m− 2 and k ∈ 1, . . . , r with l 6= k. Then k ∈ RB if and only if there exists l ∈ {1, . . . , r} \ {k} such
that (4.36) is infeasible or has a strictly negative objective value.

Now, the sets ZB, RB and Hk
B for k = 1, . . . , r can be determined for a given complementary basis B.

To determine if an basis B has a full-dimensional weight cell ΛB(B) consider the following nonlinear
optimization problem:

Ψfull(B) :=











max
λ∈Rm, α∈R

α

s.t. (qB(λ))k ≥ α ∀k ∈ {1, . . . , r} \ZB

λ ∈ Λ
(4.37)

Proposition 4.43. [1] Let B be an efficient complementary basis of (pLCP). Then dim(ΛB(B)) =
m− 1 if and only if |ZB| ≤ r − (m− 1) and (4.37) has a strictly positive optimal objective value.

Notice that Proposition 4.43 does not provide a statement about the boundary segments of ΛB(B).
Now, consider the following optimization problem for k ∈ {1, . . . , r}:

Ψbd(B, k) :=



















max
λ∈Rm, α∈R

α

s.t. (qB(λ))l ≥ α ∀l ∈ {1, . . . , r} \ �{k} ∪ZB ∪Hk
B

�

(qB(λ))k = 0

λ ∈ Λ

(4.38)
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Proposition 4.44. [1] Let B be an efficient complementary basis of (pLCP). If (4.38) has a strictly
positive optimal objective value for some k ∈ {1, . . . , r} \ (ZB ∪RB) then hk

B forms a (m − 2)-
dimensional boundary of ΛB(B).

Proposition 4.44 can also be extended for exchange pivots. Consider the following nonlinear optimiza-
tion problem:

Ψexbd(B, k, l, B′) :=



























max
λ∈Rm, α∈R

α

s.t. (qB(λ)) j ≥ α ∀ j ∈ {1, . . . , r} \ �{k} ∪ZB ∪Hk
B

�

(qB′(λ))i ≥ α ∀i ∈ {1, . . . , r} \ �{l} ∪ZB′ ∪Hl
B′
�

(qB(λ))k = 0

λ ∈ Λ

(4.39)

Proposition 4.45. [1] Let B be an efficient complementary basis of (pLCP) with dim(ΛB(B)) =
m− 1 and let hk

B be a (m− 2)-dimensional boundary of ΛB(B). For any complementary basis B′

with B′ 6= B and |B∩B′| ≥ r−2 ΛB(B) and ΛB(B′) are adjacent along hk
B (i.e. ΛB(B)∩ΛB(B′) ⊆ hk

B)
if and only if one of the following conditions hold:

1. B′ = diag(B, k) and B′ is a complementary basis.

2. B′ = exch(B, k, l) for some l ∈ {1, . . . , r} \ {k}, B′ is a complementary basis and (4.39) has
a strictly positive optimal objective value.

Similar results for efficient complementary bases B with dim(ΛB(B)) = m−2 can also be found in [1].
Given a efficient complementary basis B of (pLCP) with a full-dimensional weight cell ΛB(B) we can
now follow the following steps to compute all (m− 2)-dimensional boundary segments of ΛB(B):

1. Determine the sets ZB, RB and Hk
B for k = 1, . . . , r.

2. Consider the set K0 = {1, . . . , r} \ (ZB ∪ RB ∪
�

k ∈ {1, . . . , r} : Hk
B 6= ;

	

). For each k ∈ K0

determine if whether hk
B forms a (m−2)-dimensional boundary of ΛB(B) using Proposition 4.44

or Proposition 4.45.

Notice that multiple nonlinear (in general) nonconvex optimization problems have to be solved in
order to determine the sets ZB, RB and Hk

B and then to determine the (m − 2)-dimensional bound-
ary segments of ΛB(B). This is a considerably higher effort for each efficient complementary basis
compared to Algorithm 4.2. Algorithm 4.2 solves only one nonlinear optimization problem for each
possible adjacent basis.
For multiobjective optimization problems where every or most weight cell are full dimensional Algo-
rithm 4.2 solves a considerably lower number of nonlinear optimization problems. One such instance
is given in Example 4.47.
However, for problems with many lower dimensional weight cells ΛB(B) the approach by Adelgren [1]
has some advantages. No efficient complementary bases B with dim(ΛB(B)) < m− 2 are computed.
The following example is a degenerate case and is an instance where the approach by Adelgren [1]
has a huge advantage over Algorithm 4.2:
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Example 4.46. Consider the following problem similar to Example 4.38:

vmin
x∈Rn

fi(x) =
1
2 x T In x + (c i)T x i = 1, . . . .m

s.t. x ½ 0
(4.40)

with c1 = 0 and c i = (1, . . . , 1)T for i = 2, . . . , m. Let A = I be an active set of (4.40). Then the
systems of equations

�

In −(II•)T
−II• 0

��

x
yI

�

=
�−c(λ)

0

�

(4.41)

is solved by x and yI with

x j =

¨

0 if j ∈ I

−∑m
i=2λi otherwise

for j = 1, . . . , n, and y j =
m
∑

i=2

λi for j ∈ I

Notice that for every I ⊆ {1, . . . , n} except for I = ; that (4.41) has no solution x ½ 0, yI ½ 0 for any
λ ∈ Λ with λi > 0 for any 2 ≤ i ≤ m. The efficient complementary basis corresponding to the active
setA = I with I= ; is given by B = (x1, . . . , xn). B is the only efficient complementary basis of (4.40)
with an (m− 1)-dimensional weight cell ΛB(B).

Example 4.46 illustrates a case where Algorithm 4.2 computes an exponential number of efficient
complementary bases whereas the approach by Adelgren [1] would only compute one efficient com-
plementary basis.
The following example has only (m−1)-dimensional weight cells. Thus, both approaches would com-
pute the same efficient complementary bases.

Example 4.47. Consider the following triobjective convex quadratic programming problem:

min f1(x) =
1
2 x T

�

4 1
1 2

�

x +
�−40
−24

�T

x

min f2(x) =
1
2 x T

�

8 2
2 16

�

x +
�−34
−24

�T

x

min f3(x) =
1
2 x T

�

6 3
3 12

�

x +
�−27
−3

�T

x

s.t.





−1 −1
0 −1
−1 1



 x ½





−9
−4
−5





x ½ 0

(4.42)

After substituting λ3 = 1 − λ1 − λ2 we can write the parametric linear complementarity problem of
(4.42) as

�

I2 0 −Q(λ) AT

0 I3 −A 0

��

u
v

�

=
�

c(λ)
−b

�

(4.43)

uk vk = 0 ∀k = 1, . . . , 5

u½ 0, v ½ 0

with u= (y1, y2, s1, s2, s3)T , v = (x1, x2, π1, π2, π3)T ,

Q(λ) =
�

6 3
3 12

�

+λ1

�−2 −2
−2 −10

�

+λ2

�

2 −1
−1 4

�

and c(λ) =
�−27
−3

�

+λ1

�−13
−21

�

+λ2

� −7
−21

�

.

Consider the complementary basis of (4.43) B1 = {s1, s2, s3, x1, x2} and the corresponding matrix
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MB1
(λ) =











0 0 0 2λ1 − 2λ2 − 6 2λ1 +λ2 − 3
0 0 0 2λ1 +λ2 − 3 10λ1 − 4λ2 − 12
1 0 0 1 1
0 1 0 0 1
0 0 1 1 −1











.

We can use symbolic calculations to compute the vector of basic values for the basis B:

qB1
(λ) =

1
det(MB1

(λ))











248λ2
1 − 360λ1λ2 − 612λ1 − 35λ2

2 + 216λ2 + 315
80λ2

1 − 155λ1λ2 − 423λ1 − 21λ2
2 + 78λ2 + 315

152λ2
1 − 178λ1λ2 − 54λ1 + 35λ2

2 + 276λ2 − 63
−88λ2

1 + 45λ1λ2 − 171λ1 + 49λ2
2 + 132λ2 + 315

−16λ2
1 + 27λ1λ2 + 135λ1 + 49λ2

2 + 138λ2 − 63











(4.44)

where det(MB1
(λ)) = 16λ2

1 − 32λ1λ2 − 72λ1 + 7λ2
2 + 54λ2 + 63.

The hypersurfaces hk
B1

that bound ΛB(B1) for k = 1, . . . , 5 are depicted in Figure 4.5.
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Figure 4.5: Hypersurfaces wrt. B1

We can observe that the hypersurfaces h2
B1

, h3
B1

and h5
B1

bound ΛB(B1). Furthermore, h1
B1

and h4
B1

do not
intersect ΛB(B1).
The efficient complementary bases and the corresponding efficient active sets can be found in Table
4.5. The decomposition of the weight space and the efficient set are depicted in Figure 4.6.

Efficient complementary basis Efficient Active Set Color
B1 = (s1, s2, s3, x1, x2) (;,;) blue
B2 = (π1, s2, s3, x1, x2) (;, {1}) magenta
B3 = (s1, s2,π3, x1, x2) (;, {3}) green
B4 = (s1, s2, s3, x1, y2) ({2} ,;) red

B5 = (π1, s2,π3, x1, x2) (;, {1,3}) cyan
B6 = (s1, s2,π3, x1, y2) ({2} , {3}) yellow

Table 4.5: Efficient complementary bases of(4.43)

We will revisit this example in Chapter 5.
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Figure 4.6: Decomposition of the weight space (left) and efficient set (right) in Example 4.47.

In conclusion, one should decide which approach to choose depending on the properties of the problem
at hand. Of course, these properties are hard to check in advance.
It should be noted at this point that the boundary-determination approach by Adelgren [1] can be
applied to a broader class of parametric linear complementarity problems.
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4.4 Multiobjective Convex Quadratic Programming Problems in
General Form

So far we have considered strictly convex multiobjective quadratic programming problems in canonical
form with linear inequality constraints and nonnegative variables. In this section we will also allow
unbounded variables and linear equality constraints. Many of the concepts discussed in Section 4.2
will be revisited here.
Consider a strictly convex multiobjective quadratic programming problem in general form:

vmin
x∈Rn

fi(x) =
1
2 x TQi x + (c i)T x i = 1, . . . , m

s.t. Ax ½ b, H x = h, xI+
½ 0

(gMQP)

with I+ ⊆ {1, . . . , n}, A∈ Rp×n, b ∈ Rp, H ∈ Rq×n, h ∈ Rq and Qi ∈ Rn×n symmetric positive definite for
i = 1, . . . , m.
Additionally, we assume that the matrix of equality constraints H has full rank and that the feasible set
S :=

�

x ∈ Rn : Ax ½ b, H x = h, xI+
½ 0

	

is not empty.
The weighted sum problem of (gMQP) for λ ∈ Λ is given by

min
x∈Rn

m
∑

i=1

λi

�

1
2

x TQi x + (c i)T x
�

s.t. Ax ½ b, H x = h, xI+
½ 0

(gWQP)

In the same way as Theorem 4.3 we can formulate the following optimality condition:

Theorem 4.48 (Optimality Conditions for (gMQP)). [23] Let x ∈ S be a regular feasible solution
of (gMQP). Then x is efficient for (gMQP) if and only if there exists λ ∈ Λ, π ∈ Rp, y ∈ R|I+| and
µ ∈ Rq such that

Q(λ)x + c(λ)− ATπ−HTµ− I•I+ y = 0 (4.45)

Ax − b ½ 0, xI+
½ 0, H x = h

π½ 0, y ½ 0

x i yi = 0 ∀i ∈ I+

(A j•x − b j)π j = 0 ∀ j = 1, . . . , p

Proof. Follows from Corollary 2.7 with Theorem 2.25 and Theorem 2.26 using the fact that the objec-
tive functions fi(x) are strictly convex for i = 1, . . . , m.

Using additional variables s = Ax − b we can write the system of equations (4.45) as a parametric
system of equations and inequalities similar to a mixed linear complementarity problem [14]:





I•I+ 0 −Q(λ) AT HT

0 Ip −A 0 0
0 0 −H 0 0





︸ ︷︷ ︸

=:M(λ)











y
s
x
π
µ











=





c(λ)
−b
−h





︸ ︷︷ ︸

=:q(λ)

(pmLCP)

s ½ 0, y ½ 0, π½ 0, xI+
½ 0

x ∈ Rn, µ ∈ Rq

s jπ j = 0 ∀ j = 1, . . . , p

yi x i = 0 ∀i ∈ I+
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The set of complementary variables Zcomp of (pmLCP) is given by

Zcomp = {x i : i ∈ I+} ∪ {yi : i ∈ I+} ∪
�

s j : j = 1, . . . , p
	∪ �π j : j = 1, . . . , p

	

and the set of free variables Zfree of (pmLCP) is given by

Zfree = {x i : i 6∈ I+} ∪
�

µ j : j = 1, . . . , q
	

.

The mixed linear complementarity problem (pmLCP) has in total r := n+ 2p + p+ + q variables with
r+ := p+ + p complementary variable pairs and r0 = q+ n− p+ free variables.

The following definition of a basis of (pmLCP) is slightly different from the definition usually found
in the literature (see for example [14]) to emphasize the role of complementary variables. The free
variables xJ̄+

and µ have no constraints apart from the linear equality constraint in (pmLCP). Thus we
include the free variables in every basis and only consider exchanging complementary variables:

Let B ⊂ Zcomp be a complementary index set and let λ ∈ Λ. Let M ′B(λ) ∈ Rr×r+ be the matrix of columns
of M(λ) corresponding to variables B ⊂ Zcomp and let Mfree(λ) ∈ Rr×r0 be the matrix consisting of the
columns of M(λ) corresponding to free variables Zfree. Consider the following square matrix

MB(λ) =
�

M ′B(λ) Mfree(λ)
�

. (4.46)

Definition 4.49. A complementary set of variables B is called a basis of (pmLCP) for λ ∈ Λ if the
matrix MB(λ) as defined in equation (4.46) is regular.

The basic values of a complementary basis B of (pmLCP) for λ ∈ Λ are given by

qB(λ) := (MB(λ))
−1q(λ). (4.47)

Note that the first r+ entries of qB(λ) correspond to complementary variables where nonnegativity is
required in (pmLCP).

Definition 4.50. Let B be a complementary basis of (pmLCP).

1. B is called feasible for λ ∈ Λ if

qB(λ)k ≥ 0 ∀k = 1, . . . , r+.

2. B is called an efficient complementary basis of (pmLCP) if there exists λ ∈ Λ with

qB(λ)k ≥ 0 ∀k = 1, . . . , r+.

3. The set
ΛB(B) := {λ ∈ Λ : qB(λ)k ≥ 0 ∀k = 1, . . . , r+}

is called the weight cell of B.

Definition 4.51. The functions (qB(λ))k : Rm→ R, k = 1, . . . , r+, are called basic value functions
of (pmLCP).
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The criss-cross method (Algorithm 2.1) can be applied to the mixed linear complementarity problem
(pmLCP) for a fixed weight λ ∈ Λ by keeping the free variables x i , i 6∈ I+ and µ in every basis and only
performing pivots with the complementary variable pairs.
The concept of efficient active sets can also be extended from multiobjective quadratic programming
problems in canonical form (MQP) to multiobjective quadratic programming problems in general
(gMQP) in the following way:

Definition 4.52. A pair of index setsA = (I,J)with I ⊆ I+ is called efficient active set of (gMQP),
if there exists λ ∈ Λ such that there exists a solution ( x̄ , ȳI, π̄J, µ̄) ∈ Rn×|I|×|J|×q of the active set
system







Q(λ) −(II•)T −(AJ•)T −HT

−II• 0 0 0
−AJ• 0 0 0
−H 0 0 0













x
yI
πJ

µ






=







−c(λ)
0
−bJ
−h






(4.48)

that satisfies x̄ ∈ S and ( ȳI, π̄J)½ 0.
The weight cell corresponding to an efficient active set is defined as

ΛA(A ) = �λ ∈ Λ : ∃( x̄ , ȳI, π̄J,µ) ∈ Rn×|I|×|J|×q solving (4.48) for λ with x̄ ∈ S and ( ȳI, π̄J)½ 0
	

.

The set of efficient active sets of (gMQP) is denoted byAeff.

We will refer to (4.48) as the active set system for an active setA = (I,J).

Definition 4.53. An active set A of (gMQP) is called regular if the system of equations (4.48)
has a unique solution for all λ ∈ Λ.

The following statements can be shown in an analogous way as for (MQP).

Proposition 4.54. [1] ΛB(B) is a semi-algebraic set for every efficient complementary basis B of
(pmLCP).

Proof. The proof is analogous to the proof of Proposition 4.21.

Proposition 4.55. IfA = (I,J) is a regular efficient active set of (gMQP) then BA is an efficient
complementary basis of (pmLCP) and ΛA(A ) = ΛB(BA ).

Proof. The proof is almost identical to the proof of Proposition 4.14 using the assumption that the
matrix of equality constraints H is regular.

Proposition 4.56. If B is an efficient complementary basis of (pmLCP), then AB is is a regular
efficient active set of (gMQP) and ΛB(B) = ΛA(AB).

Proof. The proof is almost identical to the proof of Proposition 4.16 using the assumption that the
matrix of equality constraints H is regular.
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Proposition 4.57. [38] Let Beff be the set of efficient complementary bases of (gMQP) and let
x̄(λ) be the optimal solution of (gWQP) for λ ∈ Λ. Let X̄ (B) be defined as

X̄ (B) :=
�

x̄(λ) : λ ∈ ΛB(B)
	

.

Then the following statement holds:
⋃

B∈Beff

X̄ (B) = XE

Proof. A feasible complementary basis of (pmLCP) can be computed for every λ ∈ Λ. Thus,
⋃

B∈Beff

ΛB(B) = Λ.

Applying Theorem 2.26 and 2.25 shows that every efficient point is an optimal solution of (gWQP) for
some λ ∈ Λ.
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4.5 Regularization of Positive Semidefinite Objective Matrices

Throughout this chapter we have assumed that all objective matrices Qi for i = 1, . . . , m are symmetric
positive definite and thus Q(λ) is symmetric positive definite for every λ ∈ Λ. This assumption limits
the applicability of the theory discussed in Chapter 4 to applications where the objective matrices may
only guaranteed to be symmetric positive semidefinite.
In this section we will discuss possible difficulties that are caused by singular objective matrices as well
as conditions under which a weight space decomposition is well defined and can be obtained.
Consider a multiobjective quadratic programming problem in general form:

vmin
x∈Rn

x TQi x + (c i)T x , i = 1, . . . , m

s.t. Ax ½ b, H x = h, xI+
½ 0

(4.49)

with positive semidefinite matrices Qi for i = 1, . . . , m.
The corresponding weighted sum problem of (4.49) is given by:

vmin
x∈Rn

x TQ(λ)x + c(λ)T x

s.t. Ax ½ b, H x = h, xI+
½ 0

(4.50)

The weighted sum problem (4.50) may be unbounded for some λ̄ ∈ Λ. In this case there exists at least
one i ∈ {1, . . . , m} such that the singleobjective problem

vmin
x∈Rn

x TQi x + (c i)T x

s.t. Ax ½ b, H x = h, xI+
½ 0

(4.51)

is unbounded. In this case (pmLCP) is infeasible for λ̄ and no active set can be assigned to the weight
λ̄.
Even if the weighted sum problem (4.50) is bounded for every λ ∈ Λ, the solution of (4.50) is not
unique in general.
Since (4.50) does in general not have a unique solution for λ ∈ Λ, we can in general not define a
weight space decomposition with non-overlapping weight cells. However, a special case of (4.49) is
discussed in Section 4.6 where only one objective is strictly convex and the other objectives are affine
functions .

4.5.1 Regularization of Objective Matrices

The regularization of convex optimization problems is a topic of ongoing research, see for example
Friedlander and Tseng [33]. The following approach for regularization was discussed in the literature
[38]. We will only briefly discuss how a multiobjective convex quadratic problem can be regularized
and how the weight space decomposition is affected by the modification.
Let ε > 0 be a (possibly small) number. Consider the following modified weighted sum problem

vminx∈Rn x T (Q(λ) + εIn)x + c(λ)T x
s.t. Ax ½ 0, H x = h, xI+

½ 0 (4.52)

First we show that the objective matrix Q(λ) + εIn is positive definite for all λ ∈ Λ:

Proposition 4.58 (Raleigh-Ritz). [16] Let Q ∈ Rn×n. Then the smallest eigenvalue emin of Q is
given by

emin = min
x∈Rn

�

x TQx : ‖x‖2 = 1
	

.



4.5. REGULARIZATION OF POSITIVE SEMIDEFINITE OBJECTIVE MATRICES 87

Proposition 4.59. Let Q ∈ Rn×n be positive semidefinite. Then the matrix Q + εIn is positive
definite for all ε > 0.

Proof. The smallest eigenvalue of Q+ εIn can be determined with Proposition 4.58:

emin = min
x∈Rn

�

x T (Q+ εIn)x : ‖x‖2 = 1
	

= min
x∈Rn







x TQx
︸ ︷︷ ︸

≥0

+ε x T x
︸︷︷︸

=1

) : ‖x‖2 = 1







≥ ε > 0

which shows that Q+ εIn is positive definite.

We can now modify the objective functions such that the weighted sum problem has a unique solution
for every λ ∈ Λ by adding the regularization term εIn to every objective matrix. In the following the
influence of this regularization is discussed:
Let x̄ be an optimal solution of (4.49) for one λ ∈ Λ with a corresponding active setA = (I,J). Then
there exists ȳI ½ 0, π̄J ½ 0 and µ̄ ∈ Rq such that ( x̄ , ȳI, π̄J, µ̄) is a solution of







Q(λ) −I T
I• −AT

J• −HT

−I T
I• 0 0 0

−AJ• 0 0 0
−H 0 0 0













x
yI
πJ

µ






=







−c(λ)
0
−bJ
−h






. (4.53)

Consider now the system of equations of the modified problem (4.52) for the same active setA = (I,J):






Q(λ) + εIn −I T
I• −AT

J• −HT

−I T
I• 0 0 0

−AJ• 0 0 0
−H 0 0 0













x
yI
πJ

µ






=







−c(λ)
0
−bJ
−h






(4.54)

After inserting ( x̄ , ȳI, π̄J, µ̄) into (4.54) we see that

(Q(λ) + εIn) x̄ − (II•)T ȳI − (AJ•)
T π̄J −HTµ+ c(λ)

=Q(λ) x̄ − (II•)T ȳI − (AJ•)
T π̄J −HTµ

︸ ︷︷ ︸

=−c(λ)

+c(λ) + ε x̄

=ε x̄
ε→0−−→ 0

This shows that if the weighted sum problem (4.50) has a unique solution then any solution of the
active set system (4.53) is an approximate solution for the active set system of the modified problem
(4.52). Consequently, the weight space decomposition of (4.49) can be approximated by that of (4.52).
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4.6 Multiobjective Mixed Linear and Convex Quadratic Problems

In this section we discuss a particular case of multiobjective convex quadratic programming problems
where only one objective is a convex quadratic function and the other objectives are linear. Opti-
mization problems of this type have been considered, for example, by Markowitz [59], Hirschberger
et. al. [46], Columbano et. al. [13] and Adelgren and Wiecek [2].
We motivate this section with the following biobjective quadratic programming problem in the field of
portfolio optimization proposed by Markowitz [59]: Given n possible assets with an expected return
of µ j j = 1, . . . , n and the positive definite covariance matrix Q ∈ Rn. The portfolio selection problem
according to Markowitz [59] consists of two objectives and a budget constraint. The first objective is to
minimize the risk and the second objective is to maximize the expected return. The portfolio selection
problem can be formulated in the following way:

vmin
x∈Rn

�

x TQx
−µT x

�

s.t.
n
∑

j=1

x j = 1

0≤ x j ≤ 1 ∀ j = 1, . . . , n

(4.55)

An interesting property shown by Markowitz [59] for the biobjective case and Hirschberger et. al. [46]
in the triobjective case is that the weight cells for the particular portfolio selection problems discussed
in the papers are connected intervals or convex polyhedrons, respectively.

We have assumed that every objective matrix Qi is symmetric positive definite for multiobjective con-
vex quadratic programming problems in general form (gMQP) which specifically excludes any linear
objective functions. In this section we will investigate multiobjective convex programming problems
with one strictly convex quadratic and (m− 1) linear objective functions.

Consider a multiobjective convex programming problem with one quadratic and (m− 1) linear objec-
tives in general form:

vmin
x∈Rn









1
2 x TQ1 x + (c1)T x

(c2)T x
...

(cm)T x









s.t. Ax ½ b, H x = h, xI+
½ 0

(MMLQP)

with I+ ⊆ {1, . . . , n}, p+ = |I+|, A ∈ Rp×n, b ∈ Rp, H ∈ Rq×n, h ∈ Rq. Let Q1 ∈ Rn×n be a symmetric
positive definite matrix. We also assume that the feasible set

S :=
�

x ∈ Rn : Ax ½ b, H x = h, xI+
½ 0

	

is not empty and that the matrix H is regular. Additionally, we assume that all singleobjective problems

min
x∈S

fi(x) (4.56)

are bounded for i = 1, . . . , m.
The weighted sum problem of (MMLQP) is given by

min λ1

�

1
2

x TQ1 x + (c1)T x
�

+
m
∑

i=2

λi(c
i)T x

s.t. Ax ½ b, H x = h, xI+
½ 0

(4.57)

Notice that the optimal solution of (4.57) for some λ ∈ Λ with λ1 = 0 is in general neither unique
nor efficient. The corresponding linear programming problem is not strictly convex and in general
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the weighted sum problem (4.57) may have more than one optimal solution for λ ∈ Λ with λ1 = 0.
However, we can still compute an efficient solution using a reoptimization routine [23]:

Letλ1 = 0 and let Xopt(λ) be the set of optimal solutions of (4.57). Since (4.57) is a linear programming
problem Xopt(λ) is a convex polyhedron. Consider the following quadratic optimization problem:

min
x∈Rn

f1(x)

s.t. x ∈ S
x ∈ Xopt(λ)

(4.58)

Proposition 4.60. The optimal solution of (4.58) is efficient for (MMLQP).

Proof. The optimal solution x∗ of (4.58) is unique since f1 is strictly convex and the feasible set of
(4.58) is convex. Assume there that exists x ′ ∈ S such that f (x ′) dominates f (x∗). Then x ′ is also
feasible for (4.58) with f1(x ′)≤ f1(x∗)which contradicts the fact that x∗ is the unique optimal solution
of (4.58).

Proposition 4.61. [44] ΛA(A ) is a polyhedron for all efficient active setsA ∈Aeff of (MMLQP).

Proof. A = (I,J) is an efficient active set if there exists λ ∈ Λ such that a solution ( x̄ , ȳI, π̄J, µ̄) of






λ1Q1 −(II•)T −(AJ•)T −HT

−II• 0 0 0
−AJ• 0 0 0
−H 0 0 0













x
yI
πJ

µ






=







−c(λ)
0
−bJ
−h






(4.59)

satisfies x̄ ∈ S, ȳI ½ 0 and π̄J ½ 0.
Recall the definition of the W-parameterization of the weight space from Chapter 2:

W= {w ∈ Rm : w½ 0, w1 = 1}
Consider the following system of equations for parameters w ∈W:







Q1 −(II•)T −(AJ•)T −HT

−II• 0 0 0
−AJ• 0 0 0
−H 0 0 0













x
yI
πJ

µ






=







−c1 −∑m
i=2 wic

i

0
−bJ
−h






(4.60)

Hirschnbergeret. al. [44] showed the following:

W(A ) :=
�

w ∈W : there exists a solution ( x̄ ′, ȳ ′
I
, π̄′

J
,µ′) of (4.60) with x̄ ′ ∈ S, ȳ ′

I
½ 0 and π̄′

J
½ 0

	

is a polyhedron since w is only found on the right hand side of (4.60).
Let w ∈W(A ) be given. Consider the following weight γ(w) ∈ Λ:

γ(w) :=
w

1+w2 + · · ·+wm

First, we will show that γ(w) ∈ ΛA(A ) for all w ∈W(A ). From w ∈W(A ) we know that there exists
x̄ ′ ∈ S, ȳ ′

I
½ 0, π̄′

J
½ 0 and µ′ ∈ Rq solving (4.60). Moreover, any solution ( x̄ ′, ȳI, π̄′

J
, µ̄′) of (4.60)

satisfies:

Q1 x̄ ′ − (II•)T ȳ ′ − (AJ•)
T π̄′ −HT µ̄′ = −c1 −

m
∑

i=2

wic
i . (4.61)
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Then
�

x̄ ′,
ȳ ′

1+w2 + . . . , wm
,

π̄′

1+w2 + . . . , wm
,

µ̄′

1+w2 + . . . , wm

�T

is a solution of (4.59) for λ= γ(w). This shows that

γ(w) ∈ ΛA(A ) ∀w ∈W(A ).
Since W(A ) is a polyhedron we can describe W(A ) by extreme points and extreme rays. Let E be the
set of extreme points of W(A ) and let R be the set of extreme rays of W(A ). Let r ∈ R and w ∈ E.
Note that r1 = 0 must hold for all r ∈ R. For t ≥ 0 consider the vector γ(w+ tr):

γ(w+ tr) =
w+ tr

1+ (w2 + tr2) + . . . , (wm + trm)

Taking the limit we see that

lim
t→∞γ(w+ tr) =

r

r2 + · · ·+ rm
∈ Λ

Since γ(w+ tr) ∈W(A ) for all t ≥ 0 we see that r
r2+···+rm

∈ ΛA(A ). Now consider the set

Γ := conv
�

{γ(w) : w ∈ E} ∪
§

r

r2 + . . . rm
: r ∈ R

ª�

.

So far we have shown that Γ ⊆ ΛA(A ). Now, consider λ ∈ ΛA(A )∩ {λ ∈ Λ : λ1 > 0}. Similar to the
first part of this proof it is easy to see that

λ

λ1
∈W(A ).

Also notice that

γ

�

λ

λ1

�

=
λ
λ1

1+ λ2
λ1
+ · · ·+ λm

λ1

=
λ

λ1 + · · ·+λm
= λ

which shows that
ΛA(A )∩ {λ ∈ Λ : λ1 > 0} ⊆ Γ .

ΛA(A ) and Γ are closed sets. Thus

cl(ΛA(A )∩ {λ ∈ Λ : λ1 > 0}) = ΛA(A ) ⊆ cl(Γ ) = Γ

which shows that
ΛA(A ) = Γ .

4.6.1 Computation of Polyhedral Weight Cells

There are multiple efficient methods available in the literature to compute the weight space decompo-
sition of (MMLQP), for example, a parametric procedure by Hirschberger et. al. [46] and the solution
approaches for parametric linear complementarity problems by Columbano et. al. [13] and Adelgren
and Wiecek [2].
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4.7 Multiobjective Convex Quadratic Problems with Identical Ob-
jective Matrices

In this section we will discuss a special case of multiobjective convex quadratic optimization that is
similar to the one discussed in Section 4.6.
Consider a multiobjective quadratic programming problem in general form

vmin
x∈Rn

fi(x) =
1
2 x TQi x + (c i)T x , i = 1, . . . , m

s.t. Ax ½ b, H x = h, xI+
½ 0

(SMQP)

with I+ ⊆ {1, . . . , n}, p+ = |I+|, A ∈ Rp×n, b ∈ Rp, H ∈ Rq×n, h ∈ Rq and Qi ∈ Rn×n symmetric positive
definite for i = 1, . . . , m and let there exist α ∈ Rm with α > 0 and αi = 1 such that

Qi = αiQ
1 for i = 2, . . . , m.

The feasible set is defined as

S =
�

x ∈ Rn : Ax ½ b, H x = h, xI+
½ 0

	

and we assume that S 6= ;.

Proposition 4.62. ΛB(B) is a convex polyhedron for every efficient complementary basis B ∈ Beff
of (SMQP).

Proof. Consider the following objective functions

f̃i(x) =

¨

1
2 x TQ1 x + (c1)T x for i=1
1
2 x TQ1 x + 1

αi
(c i)T x for i=2,. . . ,m

and the following multiobjective quadratic optimization problem

vmin f̃i(x) =
1
2 x TQ1 x + (c̃ i)T x , i = 1, . . . , m

s.t. Ax ½ b, H x = h, x I+ ½ 0
(4.62)

with c̃ i = 1
αi
(c i) for i = 1, . . . , m. The multiobjective optimization problems (SMQP) and (4.62) have

identical efficient sets, but the weighted sum problems of (SMQP) and (4.62) may have different
optimal solutions for the same weights λ ∈ Λ.
The weighted sum problem of (4.62) for λ ∈ Λ is given by

vmin
x∈Rn

m
∑

i=1

λi f̃i(x) = x TQ1 x +
m
∑

i=1

λi

αi
(c i)T x

s.t. Ax ½ b, H x = h, x I+ ½ 0
(4.63)

with the objective matrix Q1. Consider the parametric mixed linear complementary system of the KKT
conditions of (4.63):





I•I+ 0 −Q1 AT HT

0 Ip −A 0 0
0 0 −H 0 0















y
s
x
π
µ











=





c(λ)
−b
−h



 (4.64)

s ½ 0, y ½ 0, π½ 0, xI+
½ 0

x ∈ Rn, µ ∈ Rq

s jπ j = 0 ∀ j = 1, . . . , p

yi x i = 0 ∀i ∈ I+
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Observe that the parameters λ are only present in the right-hand-side of the parametric mixed lin-
ear complementary system (4.64). Let B be an efficient complementary basis of (4.64). Recall the
definition of the weight cell ΛB(B)

ΛB(B) = {λ ∈ Λ : qB(λ)½ 0}
where for (4.64) the basic value vector qB(λ) is given by

qB(λ) = M−1
B q(λ) (4.65)

where MB does not contain any parameter. Then ΛB(B) is described by linear equality and inequality
constraints. Hence, ΛB(B) is a convex polyhedron for all B ∈ Beff.

Objective functions based on the Euclidean norm can sometimes be written as quadratic functions.
Such functions have, for example applications in location analysis, which is the subject of Section
4.10.
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4.8 Multiobjective Convex Quadratic Programming Problems with
Diagonal Objective Matrices and Box Constraints

Consider a multiobjective strictly convex quadratic problem with box constraints:

vmin
x∈Rn

1
2

x TQi x + (c i)T x i = 1, . . . , m

s.t. l µ x µ u
(4.66)

with symmetric positive definite diagonal objective matrices Qi ∈ Rn×n and vectors c i ∈ Rn for i =
1, . . . , m and lower and upper bounds l and u satisfying l j ∈ R ∪ {−∞} and u j ∈ R ∪ {∞} for
j = 1, . . . , n.
Let U be the index set of variables x j with an upper bound, i.e.

U=
�

j ∈ {1, . . . , n} : u j <∞
	

.

The problem (4.66) can be transformed such that all lower bounds l j are either 0 or −∞ by setting
x ′j = x j − l j for j ∈ {1, . . . , n} : l j > −∞. For this reason we only consider problems where the lower
bounds l j are either −∞ or 0 for j = 1, . . . , n.
Now, consider the following notation:

vmin
x∈Rn

1
2

x TQi x + (c i)T x i = 1, . . . , m

s.t. xI+
½ 0, xU µ uU

(MDQP)

with symmetric positive definite diagonal objective matrices Qi ∈ Rn×n and vectors c iRn for i = 1, . . . , m
and with index sets I+ ⊂ {1, . . . , n} and U ⊂ {1, . . . , n} . Additionally, we assume that if j ∈ I+∩U, then
u j > 0.
The weighted sum problem of (MDQP) is given by

vmin
x∈Rn

1
2

x TQ(λ)x + c(λ)T x i = 1, . . . , m

s.t. xI+
½ 0, xU µ uU

(WDQP)

Proposition 4.63. [23] The feasible point x ∈ S is an efficient solution of (MDQP) if and only if
there exist y and π ∈ Rn such that:

Q(λ)x + c(λ)− (II+•)T y + (IU•)
Tπ= 0 (4.67)

0µ x µ u

y ½ 0, π½ 0

x j y j = 0 ∀ j ∈ I+ (4.68)

( x̄ j − u j)π j = 0 ∀ j ∈ U (4.69)

Proof. Follows from Corollary 2.7 with Theorem 2.25 and Theorem 2.26 using the fact that the objec-
tive functions fi(x) are strictly convex for i = 1, . . . , m.

The solutions of (WDQP) for a given weight λ ∈ Λ can be computed in O(n+m) time:
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Proposition 4.64. Let λ ∈ Λ and let x̂ be defined as

x̂ = −(Q(λ))−1c(λ).

Then the optimal solution x̄(λ) of the weighted sum scalarization problem (WDQP) is given by:

x̄(λ) j =







0 if j ∈ I+ and x̂ j < 0

u j if j ∈ U and x̂ j > u j

x̂ j otherwise

(4.70)

for j = 1, . . . , n.

Proof. Note that x̂ = −(Q(λ))−1c(λ) can be computed in O(m+ n) time as m additions of n entries is
necessary to compute Q(λ). Computing the inverse can be done in O(n) time as Q(λ) is a diagonal
matrix for all λ ∈ Λ. The vector x̂ is then computed by the multiplication of a diagonal matrix with a
vector, which can be done in O(n) time. Thus, the computation of x̂ takes O(n+m) time.

Let x̄ = x̄(λ) as defined in (4.70) for λ ∈ Λ. It is easy to see that x̄ is feasible for (MDQP). Let

Q(λ) x̄ + c(λ)− (II+•)T y + (IU•)
Tπ= 0

y ½ 0, π½ 0

x j y j = 0 ∀ j ∈ I+

( x̄ j − u j)π j = 0 ∀ j ∈ U

We partition the variable according to the bonding constraints. Let I ⊂ I+ be given such that x̂I = 0
and let J ⊂ U be given such that x̂J = uJ. Let the complements of I and J be denoted by Ī and J̄.
We will now show that x̄(λ) as defined in (4.70) is an efficient solution of (MDQP) and optimal solution
of (WDQP) for λ ∈ Λ using Proposition 4.64.
Notice that since Q(λ) is a diagonal matrix each variable x j is only contained in the j-th row of equation
(4.67) for j = 1, . . . , n:

Q(λ) x̄ + c(λ)− (II+•)T y + (IU•)
Tπ= 0 (4.71)

Notice that the complementarity conditions (4.68) and (4.69) demand that yĪ = 0 and πJ̄ = 0.

• For a variable x j with j ∈ {1, . . . , n} \ (I ∪ J) the corresponding line of equation (4.71) is given
by

Q j j(λ)
︸ ︷︷ ︸

>0

x j + (c(λ)) j = 0

which is equivalent to

x j = −
1

Q j j(λ)
(c(λ)) j = x̂ j .

• For j ∈ I first consider that

x̂ j = −
1

Q(λ) j j
︸ ︷︷ ︸

>0

c(λ) j < 0⇔ c(λ) j > 0. (4.72)

Now consider the corresponding row of (4.71):

Q(λ) j j x̄ j
︸︷︷︸

=0

+c(λ) j = y j ⇔ c(λ) j = y j

Using (4.72) we see that y j = c(λ) j > 0.
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• Similarly, for j ∈ J we see that

x̂ j = −
1

Q(λ) j j
︸ ︷︷ ︸

>0

c(λ) j > u j ⇔−c(λ) j >Q(λ) j ju j , (4.73)

Q(λ) j j x̄ j + c(λ) j +π j = 0 and

π j = −Q(λ) j j x̄ j
︸︷︷︸

=u j

−c(λ) j = −Q(λ) j ju j − c(λ) j
︸︷︷︸

<Q(λ) j j u j

> 0.

So in summary we found yI ≥ 0 andπJ ≥ 0 such that x̄ is a KKT point of (WDQP) for λ ∈ Λ. Using
Proposition 4.64 we see that x̄ is efficient for (MDQP).

4.8.1 Efficient Active Sets

Corollary 4.65. Every efficient active set of (MDQP) is regular.

Proof. The LICQ are satisfied at all feasible points. Thus, the conditions of Corollary 4.17 are satisfied.

In the following we will use a different notation: Let∆Q ∈ Rn×m be the matrix comprising all diagonal
elements of the matrices Qi i = 1, . . . , m, such that ∆Q ji = Qi

j j for i = 1, . . . , m and j = 1, . . . , n.
Similarly, let ∆c ∈ Rn×m be such that the i-th row of ∆c is equal to c i for i = 1 . . . , m. With this
notation we can write matrix vector multiplications of the form Q(λ)x as (∆Qx)λ for x ∈ Rn and
λ ∈ Λ.
Let ∆QJ ∗ uJ be defined as a kind of component-wise product of ∆QJ and uJ:

(∆QJ ∗ uJ)i j := (∆QJ)i j(uJ)i (4.74)

Now we consider the active sets of (MDQP). Note that every active set can be thought of as a participa-
tion of the index set {1, . . . , n} into three sets: Variables at their upper bound, variables at their lower
bound and variable between both bounds. In terms of efficient active set the first two sets are denoted
by I ⊆ I+ and J ⊆ U.
Let the index set of the remaining variables be defined as

K= {1, . . . , n} \ (I∪ J). (4.75)

Theorem 4.66. Let A = (J, I) be an efficient active set of (MDQP). Then the weight cell Λ(A )
is a convex polyhedron.

Proof. Recall from Definition 4.52 thatA is an efficient active set of (MDQP) if and only if there exists
λ ∈ Λ such that there exists a solution ( x̄ , ȳI, π̄J) of





Q(λ) −(II•)T (AJ•)T

−II• 0 0
AJ• 0 0









x
yI
πJ



=





−c(λ)
0

uJ



 (4.76)

satisfying x̄ ∈ S, ȳI ½ 0 and π̄J ½ 0.
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Given the active setA = (I,J) and K defined as in (4.75) we can partition the first set of equations in
(4.76) into three parts corresponding to I, J and K.
Let J ⊂ 1, . . . , n. c(λ)J denotes the vector with columns c j , j ∈ J . Similarly, QJJ denotes submatrix of
Q containing only entries of rows and columns j of Q in J .
Then we have that

Q(λ)x − (II•)T yI + (AJ•)
TπJ = −c(λ)

is equivalent to

QIIxI − yI = −c(λ)I (4.77)

QJJxJ +πJ = −c(λ)J (4.78)

QKKxK = −c(λ)K (4.79)

• First consider equation (4.77):

QII xI
︸︷︷︸

=0

−yI = −c(λ)I⇔ yJ = c(λ)I

The dual variables yI have to be nonnegative:

yJ = c(λ)I ½ 0⇔∆cIλ½ 0 (4.80)

• Similarly for equation (4.78) we see that:

QJJ xJ
︸︷︷︸

=uJ

+πJ = −c(λ)J⇔ πJ = −QJJuJ − c(λ)J.

The dual variables πJ have to be nonnegative:

πJ = −QJJuJ − c(λ)J ½ 0⇔−(∆QJ ∗ uJ +∆cJ)λ½ 0 (4.81)

Where ∆QJ ∗ uJ is defined as in (4.74).

• Now, consider equation (4.79):

QKKxK = −c(λ)K⇔ xK −Q−1
KK

c(λ)K

In order to be feasible xK has to satisfy the constraints of (MDQP), i.e. xK∩I+ ½ 0 and xK∩U µ
uK∩U. Notice that Q−1

K∩I+,K∩I+a is a rational function with constant numerator wrt. λ and

positive denominator for every a ∈ R|K∩I+|. Thus,

xK∩I+ ½ 0⇔−Q−1
K∩I+,K∩I+ c(λ)K∩I+ ½ 0

⇔−c(λ)K∩I+ ½ 0

⇔−∆cK∩I+λ½ 0 (4.82)

Now consider the upper bounds:

xK∩U µ uK∩U⇔−Q−1
K∩I+,K∩I+ c(λ)K∩I+ µ uK∩U

⇔ (∆cK∩U +∆QK∩U ∗ uK∩U)λ½ 0 (4.83)
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The inequalities (4.80), (4.81), (4.82) and (4.83) have to hold for every λ ∈ ΛA(A ). Hence, the
weight cell is given by:

ΛA(A ) =











λ ∈ Λ :







∆cI
−(∆QJ ∗ uJ +∆cJ)

−∆cK∩I+
∆QK∩U ∗ uK∩U +∆cK∩U






λ½ 0











This shows that ΛA(A ) is a convex polyhedron.

4.8.2 Arrangement of Hyperplanes

Let A = (I,J) be an active set and let K be defined as in (4.75), i.e. K = {1, . . . , n} \ (I ∪ J). The
corresponding weight cell ΛA(A ) is given by

ΛA(A ) =











λ ∈ Λ :







∆cI
−(∆QJ ∗ uJ +∆cJ)

−∆cK∩I+
∆QK∩U ∗ uK∩U +∆cK∩U






λ½ 0











(4.84)

Let j ∈ I+ be given. Consider the following hyperplane in Rm:

h j :=
¦

λ ∈ Rm : ∆cT
j λ= 0

©

and the half-spaces in Rm:

h+j :=
¦

λ ∈ Rm : ∆cT
j λ≥ 0

©

and h−j :=
¦

λ ∈ Rm : ∆cT
j λ≤ 0

©

.

Let A = (I,J) be an efficient active set of (MDQP). If j ∈ I then ΛA(A ) ⊆ h+j and if j 6∈ I then
ΛA(A ) ⊆ h−j . So every efficient active set of (MDQP) is either a subset of h+j or h−j for all j ∈ I+.
Similarly, consider j ∈ U and the hyperplane g j in Rm

g j :=
�

λ ∈ Rm : (∆Q j ∗ u j +∆c j)λ= 0
	

.

Also consider the corresponding half-spaces

g+j :=
�

λ ∈ Rm : (∆Q j ∗ u j +∆c j)
Tλ≥ 0

	

and g−j :=
�

λ ∈ Rm : (∆Q j ∗ u j +∆c j)
Tλ≤ 0

	

.

Notice that every efficient set is either a subset of g+j or g−j for every j ∈ U.
Hence, the hyperplanes h j , j ∈ I+ and g j , j ∈ U, decompose the weight space Λ into the weight cells
ΛA(A ). Such a decomposition is called an arrangement of hyperplanes [22].

Proposition 4.67. The weight space of (MDQP) is decomposed by an arrangement of at most 2n
hyperplanes.

Schulze et. al. [79] showed that the weight space decomposition of the following multiobjective un-
constrained combinatorial optimization problem is an arrangement of hyperplanes:

max
x∈Rn

n
∑

j=1

Pi j x j i = 1, . . . , m

x j ∈ {0, 1} j = 1, . . . , n

(MUCO)



98 CHAPTER 4. MULTIOBJECTIVE CONVEX QUADRATIC PROGRAMMING

with a cost matrix P ∈ Zm×n. The weight space decomposition of (MUCO) given by an arrangement of
the following hyperplanes [79]:

ĥ j =
�

λ ∈ Rm : (Pj•)
Tλ= 0

	

, j = 1, . . . , n.

The linear programming relaxation of (MUCO) was also discussed in Schulze et. al. [79] and shown
to have the same weight space decomposition as (MUCO).

By using this result we can consider a multiobjective linear programming problem with a weight space
decomposition that has the same arrangement of hyperplanes as (MDQP):

Theorem 4.68. The weight space decomposition of the following multiobjective linear program-
ming problem is the same arrangement of hyperplanes as for the weight space decomposition of
(MDQP):

vmin
�

∆cI+
∆QU ∗ uU +∆cU

�

(w, w′)T

s.t. 0µ wµ 1
0µ w′ µ 1

(4.85)

Let (w, w′) be an efficient basic solution of (4.85). Then the weight cell of (??) Λ(w, w′) corresponds
to ΛA(A ) forA = (I,J) with I=

�

j ∈ I+ : w j = 0
	

and J=
¦

j ∈ U : w′j = 0
©

.
The fact that the weight space of (MDQP) is an arrangement of at most 2n hyperplanes yields an upper
bound to the number of efficient active sets of (MDQP):

Lemma 4.69. [79, 12] The number of efficient active sets of (MDQP) is bounded by

m
∑

i=1

�

2n
i

�

.

Proof. Buck [12] showed that the number of cells of an arrangement of 2n hyperplanes in Rm−1 is
bounded by

m
∑

i=1

�

2n
i

�

.

Example 4.70. Consider the following instance of (MDQP) with n= 8 variables from the unit box and
m= 3 objectives given by ∆Q and ∆c:

∆Q =























3 1 2
4 1 1
2 1 4
2 3 3
4 3 4
3 2 1
3 2 3
2 3 3























, ∆c =























2 9 −9
8 −10 6
−8 −7 10
5 −4 −2

10 6 7
−7 −5 3
0 −10 5
−2 −7 −2























The weight space decomposition was computed using the multiobjective linear programming problem
(4.85) and the multiobjective linear programming solver bensolve [58] and can be seen in Figure 4.7.
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Figure 4.7: Weight Space Decomposition for Example 4.70

4.9 The e-constraint Scalarization for Multiobjective Convex Quadratic
Programming Problems

In this section we will discuss a useful connection between the weight space decomposition of (gMQP)
and another scalarization method: the e-constraint scalarization.

Recall the definition of a multiobjective convex quadratic programming problem in general form:

vmin
x∈Rn

fi(x) =
1
2 x TQi x + (c i)T x i = 1, . . . , m

s.t. Ax ½ b, H x = h, xI+
½ 0

(gMQP)

with a nonempty feasible set

S =
�

x ∈ Rn : Ax ½ b, H x = h, xI+
½ 0

	 6= ;.

Consider a multiobjective strictly convex quadratic programming problem (gMQP). Let e ∈ Rm−1 be a
real vector. Then the e-constraint problem of (gMQP) is given by:

min
x∈Rn

fm(x)

s.t. fi(x)≤ ei ∀ i = 1, . . . , m− 1
Ax ½ b, H x = h, xI+

, ½ 0
(4.86)

Any of the objective function fi(x) of (gMQP) can be chosen as the objective function of (4.86). In
comparison to the weighted sum scalarization not all parameter e ∈ Rm−1 lead to a nonempty feasible
set.

Proposition 4.71. Let e ∈ Rm−1 be a set of parameters. The e-constraint scalarization problem
(4.86) is either infeasible or has a unique solution.
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Proof. The level sets L( fi , ei) are convex compact sets in Rn for every i = 1, . . . , m−1 and S is a convex
polyhedron. Hence, the feasible set of (4.86) is convex and compact. The objective function fm(x) is
continuous and attains it’s minimum on the feasible set of (4.86).
Additionally, since fm(x) is strictly convex and the feasible set of (4.86) is convex the optimal solution
of (4.86) is unique.

We summirze a classical result [23] about the e-constraint scalarization:

Proposition 4.72. [23] A feasible point x ∈ S is an efficient solution of (gMQP) if and only if x
is an optimal solution of (4.86) for e= ( f1(x), . . . , fm−1(x)).

Proof. • First, consider an efficient solution x̄ ∈ S of (gMQP). The e-constraint scalarization prob-
lem (4.86) is then feasible for e = ( f1( x̄), . . . , fm( x̄)) and has a unique optimal solution x̃ ∈ S.
Assume that x̃ 6= x̄ . Since is a unique optimal solution of (4.86) it follows that fm( x̃) < fm( x̄)
which implies that f ( x̃) weakly dominates f ( x̄). Thus x̄ is not efficient.

• Now let x ∈ S be the optimal solution of (4.86) for e = ( f1(x), . . . , fm−1(x)). Assume there
exists x ′ ∈ S such that f (x ′) dominates f (x). Notice that x ′ is then feasible for (4.86) with
e = ( f1(x), . . . , fm−1(x)). x ′ is also an optimal solution of (4.86) since fm(x ′) ≤ fm(x) which
contradicts the uniqueness of optimal solutions of (4.86).

The e-constraint scalarization problem (4.86) has a compact convex feasible set and a strictly convex
objective function. For this reason the KKT conditions are necessary and sufficient for optimal solutions
of (4.86) under appropriate regularity assumptions. We can show a result analogous to Theorem 4.48
for the weighted sum problem:

Proposition 4.73. [23] Let x̄ be a regular point of (4.86) wrt. the constraints of (4.86). x̄ is an
optimal solution of (4.86) with parameters e ∈ Rm−1 if and only if there exists w ∈ Rm−1, π ∈ Rp,
y ∈ Rp+ and µ ∈ Rq such that

�

m−1
∑

i=1

wi(Q
i x + c i)

�

+Qm x + cm − ATπ−HTµ− I•I+ y = 0 (4.87)

Ax − b ½ 0, xI+
½ 0, H x = h

fi(x)− ei ≤ 0 ∀i = 1, . . . , m− 1

π½ 0, y ½ 0, w½ 0

x i yi = 0 ∀i ∈ I+

(A j•x − b j)π j = 0 ∀ j = 1, . . . , p

( fi(x)− ei)wi = 0 ∀i = 1, . . . , m− 1

4.9.1 Parameter Space Decomposition for e-constraint Scalarization Problems

The following definition of a minimal complete parameter set is an extension of the definition by
Hansen [42]:

Definition 4.74. A set E ⊆ Rm−1 is called minimal complete representation of the efficient set
of (gMQP) if for all x ∈ XE there exists exactly one e ∈ E such that x is the unique optimal solution
of the e-constraint scalarization problem (4.86) for parameters e.
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For example, the set
E= {( f1(x), . . . , fm−1(x)) : x ∈ XE)} (4.88)

is a minimal complete representation if all objective functions are strictly convex. Note that for every
e ∈ E the optimal solution x of (4.86) satisfies fi(x)− ei = 0 for all i = 1, . . . , m− 1.
Similar to the decomposition of the weight space Λ we can define a decomposition of the parameter
space for the e-constraint scalarization:

Definition 4.75. Let A = (I,J) be an efficient active set of (gMQP). Let x̄(λ) be the optimal
solution of the weighted sum problem of (gMQP) for λ ∈ Λ. Then the e-constraint parameter set
corresponding toA is defined as:

E(A ) :=
�

( f1( x̄(λ)), . . . , fm−1( x̄(λ))) : λ ∈ ΛA(A )	

Proposition 4.76. The set
⋃

A∈Aeff

E(A )

is a complete representation of the efficient set of (4.86).

Proof. From Proposition 4.57 we know that

XE =
⋃

A∈Aeff

X̄ (A ).

and with Proposition 4.72 it follows that
⋃

A∈Aeff

E(A )

is a complete representation of XE .

The e-constraint parameter space decomposition for Example4.70 is shown in Figure 4.8.

Corollary 4.77. If λ ∈ ΛA(A )∩ΛA(A ′) then e= ( f1( x̄(λ)), . . . , fm−1( x̄(λ))) satisfies e ∈ E(A )∩
E(A ′).

Corollary 4.77 can be used to show that the parameter space decomposition for the e-constraint scalar-
ization problem and the weighted sum scalarization problems share some properties:

Corollary 4.78. Let Aeff be the set of efficient active sets of (gMQP). Then the following state-
ments hold:

1. intE(A )∩ intE(A ′) = ; for all regular active setsA 6=A ′

2. E(A ) is a connected set if and only if ΛA(A ) is connected.

Proof. 1. Follows directly from Corollary 4.77

2. Follows from the fact that the efficient set is connected and that all objective functions are con-
tinuous.

In this section we have seen that the weight space decomposition of (gMQP) can be used to compute
a parameter space decomposition for the e-constraint problem as well. We will apply this result in a
particular context that arises in a problem from the field of location theory in Section 4.10.
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Figure 4.8: Weight Space Decomposition and e-constraint Parameter Decomposition for Example 4.70

4.10 Applications in Location Analysis

In this section, we consider an application of the results from Section 4.7 to a problem from the field
of location theory. For a general introduction to location theory we refer to the books by Nickel and
Puerto [64], Laporte et. al. [55] and Drezner and Hamacher [21].
The aim of this section is to provide a decomposition of the e-constraint parameter space for multiob-
jective constrained location problems with l2

2 and l2 norms, respectively.

Consider, for example, the placement of a new warehouse from which a number of customers have to
be supplied. We are interested in a location for the new warehouse that minimizes the distance from
the warehouse to the customers simultaneously. In general, there does not exist a location that mini-
mizes the distance to all customers. Thus, a decision about the placement of the new warehouse has
to take into account that the objectives, i.e. minimizing the distances to each customer, are conflict-
ing objectives. Multiobjective location problems have been studied in the literature, see for example
Wendell and Hurter [81], Juel and Love [49] and Pelegrin and Fernandez [69].
For this section we consider a multiobjective multidimensional location problem: Given m existing
locations ai ∈ Rn, i = 1, . . . , m, we want to find a new location x ∈ Rn such that the distances between
x and all existing locations are minimized simultaneously. For the distance measures we consider the
l2
2 and l2 norms. Consider the following multiobjective optimization problems:

vmin
x∈Rn

fi(x) = ‖x − ai‖2
2 i = 1, . . . , m (4.89)

vmin
x∈Rn

gi(x) = ‖x − ai‖2 i = 1, . . . , m (4.90)

Francis and Cabot [32] show the following result:

Proposition 4.79. [32] The efficient sets of (4.89) and (4.90) are given by conv
��

a1, . . . , am
	�

.

We will now consider the constrained case. Let S ⊆ Rn be given by linear equality and inequality
constraints as defined for (gMQP), i.e.

S =
�

x ∈ Rn : Ax ½ 0, xI+
½ 0, H x = h

	 6= ;.
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Consider the constrained multiobjective location problem with l2
2 norm:

vmin
x∈Rn

fi(x) = ‖x − ai‖2
2 i = 1, . . . , m

s.t. x ∈ S
(4.91)

Notice that the objective functions of (4.89) are quadratic functions for each i = 1, . . . , m, since

fi(x) = ‖x − ai‖2
2 = (x − ai)T (x − ai) = x T In x − 2(ai)T x + (ai)T ai for i = 1, . . . , m.

Thus, we can apply the results from Section 4.4 and Section 4.1.1 to (4.91). In particular, the weight
cells Λ(A ) are convex polyhedra for all efficient active setsA of (4.91) as shown in Proposition 4.62.
For applications it may be more relevant to consider the Euclidean norm and the following multiobjec-
tive optimization problem:

vmin
x∈Rn

gi(x) = ‖x − ai‖2 i = 1, . . . , m

s.t. x ∈ S
(4.92)

In the following we will now extend Proposition 4.79 to the constrained case:
Recall the definition of level sets L( f , y, S) and level curves L=( f , y, S) from Definition 2.29 for y ∈ Rm:

L( f , y, S) = {x ∈ S : fi(x)≤ yi ∀i = 1, . . . , m}
L=( f , y, S) = {x ∈ S : fi(x) = yi ∀i = 1, . . . , m}

Notice that for the functions f and g as defined in (4.91) and (4.92) we can observe the following for
y ∈ R, y ≥ 0:

L( fi , y, S) =
�

x ∈ S : ‖x − ai‖2
2 ≤ y

	

=
�

x ∈ S : ‖x − ai‖2 ≤py
	

= L(gi ,
p

y , S) ∀i = 1 . . . , m (4.93)

L(gi , y, S) =
�

x ∈ S : ‖x − ai‖2 ≤ y
	

=
�

x ∈ S : ‖x − ai‖2
2 ≤ y2

	

= L( fi , y2, S) ∀i = 1 . . . , m

Similarly, we can show the same for the level curves for every i = 1, . . . , m:

L=( fi , y, S) = LS
=(gi ,

p
y , S)

L=(gi , y, S) = LS
=( fi , y2, S)

In Theorem 2.30 it was shown that efficient solutions can be characterized by level sets and level
curves. For the efficient solutions of (4.91) and (4.92) we show the following result:

Proposition 4.80. The efficient sets of (4.91) and (4.92) are identical.

Proof. Let x̄ ∈ S be a feasible point with f ( x̄) = y . Notice that the function values of f (x) and g(x)
are always nonnegative. Let the vector ỹ be defined by

ỹi =
p

yi , i = 1, . . . , m.

Then according to Theorem 2.30

x̄ is efficient for (4.91) ⇔ L( f , y, S) = L=( f , y, S)
⇔ L(g, ỹ , S) = L=(g, ỹ , S)
⇔ x̄ is efficient for (4.92)
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The optimal solution of the weighted sum scalarization of (4.92) can, in general, not be determined
explicitly [65]. But we can consider the e-constraint scalarization of (4.91) and (4.92) for e ∈ Rm−1:

min
x∈S

‖x − am‖2
2

s.t. ‖x − ai‖2
2 ≤ ei i = 1, . . . , m− 1

(4.94)

min
x∈S

‖x − am‖2

s.t. ‖x − ai‖2 ≤ ei i = 1, . . . , m− 1
(4.95)

Notice that the feasible sets of (4.94) and (4.95) are given by

m−1
⋂

i=1

L( fi , ei , S) and
m−1
⋂

i=1

L(gi , ei , S),

respectively.
In particular, using (4.93) we can see that the feasible set of (4.94) for e ∈ Rm−1, e ½ 0, is identical to
the feasible set of (4.95) with parameter e′ defined as

e′i =
p
ei i = 1, . . . , m.

In addition, the global minima of the objective functions of (4.94) and (4.95) are attained at x = am

(in the unconstrained case).
Let E(A ) be a cell in the e-constraint parameter space of the e-constraint scalarization problem (4.94)
as defined in Section 4.9.1. Then the corresponding cell in the parameter space of (4.95) is given by

E′(A ) = �e′ ∈ Rm−1 : e ∈ E(A ), e′i =
p
ei , i = 1, . . . , m− 1

	

. (4.96)

Hence, the e-constraint parameter space decomposition for (4.92) can be computed from (4.91) and
vice-versa.
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4.11 Conclusion

In Chapter 4 we have reviewed a parametric solution approach for multiobjective convex quadratic
optimization problems using the weight space decomposition by efficient complementary bases of the
parametric linear complementarity problem (pLCP). We have shown that there exists a one-to-one cor-
respondence between efficient complementary bases and efficient active sets.
We proposed an algorithm for the determination of all efficient complementary bases without symbolic
computations. We considered a generalization of multiobjective convex problems in canonical form to
the general form.
Three special cases were discussed for which the weight cells are convex polyhedra. Multiobjective
convex quadratic problems with diagonal objective matrices and lower and upper bounds were dis-
cussed and it was shown that the weight space decomposition of such problems is an arrangement of
hyperplanes. This provides a polynomial bound on the number of efficient complementary bases (for
a fixed m). Furthermore, we have found a multiobjective linear programming problem with a weight
space decomposition that has the same arrangement of hyperplanes.
Furthermore, we considered the parameter space decomposition for the e-constraint scalarization that
can be computed using the weight space decomposition. An application of this relationship was used
to provide a method for the computation of the e-constraint parameter space decomposition for mul-
tiobjective location problems with l2 and l2

2 norms.

For multiobjective convex quadratic optimization problems with more than 3 objectives it is difficult
to use the analytic description of the efficient set provided by the weight space decomposition, as the
weight cells are in general m− 1-dimensional semi-algebraic sets [1].
An approach to approximate the weight cells is discussed in Chapter 5 using multiobjective convex
piecewise-linear optimization problems.
An interesting question is whether the weight space decomposition by active sets can be generalized
to other multiobjective convex optimization problems, such as multiobjective convex polynomial opti-
mization problems.
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Chapter 5

Approximation of Multiobjective
Convex Optimization Problems by
Multiobjective Piecewise-Linear
Problems

Many multiobjective optimization problems have a large number of efficient solutions - in the case of
continuous optimization the efficient set can be infinite.
From a theoretical or technical standpoint it may be difficult to compute a complete description of the
efficient set, even if an analytical description is available. We observed in Chapter 4 that the efficient
set of multiobjective convex programming problems can be described analytically using efficient active
sets and parametric optimization. However, we also observed that, apart from some special cases,
computing the analytical representation is difficult and in large-dimensional cases impractical.
Furthermore, for real-world problems the aim is often to find an efficient solution that satisfies the
preferences of the decision maker. For this task it may be sufficient to provide the decision maker with
an approximation of the efficient set or the nondominated set, respectively.
For these reasons a variety of approaches have been provided in the literature that aim to compute a
representation of the efficient set or the nondominated set, or both, for different types of multiobjective
problems [74].
One category of such approaches are point approximations for which different quality measures are
discussed in the literature, such as the Hausdorff distance between the nondominated set and the
representation set (referred to as coverage) and uniformity [77, 78]. Point approximations can be
computed using different techniques, for example dichotomic search [23, 71, 72] or evolutionary al-
gorithms [10, 83].
A number of approaches construct a piecewise-linear inner or outer approximation of the nondomi-
nated set of convex multiobjective optimization problems [7, 25, 26, 52, 53]. We refer to [74] for a
detailed survey.

In this chapter, we will consider an approach proposed by Oberdieck and Pistikopoulos [67] for approx-
imating the weight space decomposition of multiobjective convex quadratic optimization problems. In
this approach the objective functions are approximated by piecewise-linear functions. A weight space
decomposition of the multiobjective piecewise-linear problem can then be computed.
In Section 5.1 the weight space decomposition for multiobjective convex continuous optimization prob-
lems is introduced.
In Section 5.2 multiobjective convex piecewise-linear programming problems and the corresponding
formulation as a multiobjective linear programming problem are reviewed. Additionally, the weight
space decomposition for multiobjective convex piecewise-linear programming problems is introduced.

107
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The properties of the weight space decomposition for different types of multiobjective convex opti-
mization problems are summarized in Section 5.3 using results from Chapter 4 and the literature [23].
In Section 5.4 the outer approximation approach by Oberdieck and Pistikopoulos [67] is reviewed. We
discuss the convergence properties using results from the field of approximation of convex compact
sets by polyhedrons.
In Section 5.5 a we construct an approximation of the weight space decomposition of a triobjective
convex quadratic optimization problem and discuss the result.
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5.1 A Weight Space Decomposition for Multiobjective Convex Op-
timization Problems

In this section we will first discuss an extension of the weight space decomposition by active sets for
multiobjective convex quadratic optimization problems.
Consider a multiobjective convex programming problem with linear equality and inequality constraints:

vmin
x∈Rn

fi(x) i = 1, . . . , m

s.t. Ax ½ b, xI+
½ 0, H x = h

(MCP)

with convex objective functions fi(x) for i = 1, . . . , n, A ∈ Rp×n, b ∈ Rp, H ∈ Rq×n, h ∈ Rq and index
set I+ ⊆ {1, . . . , n} of nonnegative variables.
The feasible set is denoted by

S =
�

x ∈ Rn : Ax ½ b, H x = h, xI+
½ 0

	

.

Additionally, we assume that the objective functions fi(x), i = 1, . . . , m, are continuous, but not neces-
sarily differentiable, on S.
The weighted sum scalarization problem of (MCP) for λ ∈ Λ is given by

min
x∈Rn

∑m
i=1λi fi(x)

s.t. Ax ½ b, xI+
½ 0, H x = h

(WCP)

The set of optimal solutions of the weighted sum scalarization problem (WCP) is denoted by Xopt(λ)
for a fixed λ ∈ Λ.
In Definition 4.52 the efficient active sets for multiobjective convex quadratic optimization problems
(gMQP) are defined using the KKT conditions. Since we do not assume that the objective functions of
(MCP) fi(x) are differentiable for all i = 1, . . . , m we consider here the following definition of active
sets:

Definition 5.1. Let XE be the efficient set of (MCP). The active set A (x) = (I(x),J(x)) with
I ⊂ I+ of a feasible point x ∈ S is defined as:

I(x) =
�

j ∈ I+ : x j = 0
	

and J(x) =
�

j ∈ {1, . . . , p} : A j x = b j

	

. (5.1)

An active set Ā = (Ī, J̄) is called efficient active set of (MCP) if there exists x ∈ XE such that
A (x) = Ā .
The set of efficient active sets is defined as:

Aeff = {A (x) : x ∈ XE} (5.2)

For a given efficient active set Ā we can define the weights λ ∈ Λ such that there exists an optimal
solution x ∈ S of the weighted sum scalarization problem (WCP) withA (x) = Ā :

ΛC(Ā ) :=
�

λ ∈ Λ : ∃x ∈ Xopt(λ)∩ XE such that A (x) = Ā 	 (5.3)

In general, it is difficult to determine the set ΛC(A ) for multiobjective convex problems for which no
analytical or closed-formula solution of the weighted sum scalarization problem is available.
Two classes of multiobjective convex optimization problems have been discussed in this dissertation for
which the weight cells can be determined analytically: Multiobjective linear programming problems,
which were introduced in Section 2.2.3, and multiobjective convex quadratic optimization problems,
which were discussed in Chapter 4.

In Section 5.2 we will discuss another class of multiobjective convex optimization problems for which
a decomposition of the weight space can be computed explicitly.
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5.2 Multiobjective Convex Piecewise-Linear Programming Prob-
lems

Singleobjective convex piecewise-linear optimization problems arise in the field of location theory, in
particular when considering norms with polyhedral unit balls, see, for example, Hamacher and Nickel
[41].
Multiobjective convex piecewise-linear optimization problems will play an important role in this chap-
ter. We will shortly discuss how the efficient active sets and a decomposition of the weight space can
be computed for multiobjective convex piecewise-linear programming problems using multiobjective
linear programming techniques.
For a more detailed investigation see Fang et. al. [28] and in particular for the structure of the efficient
set Nickel and Wiecek [65].
Consider a multiobjective convex piecewise-linear optimization problem:

vmin
x∈Rn

fi(x) := max
k=1,...,K i

(G i
k•)

T x + g i
k i = 1, . . . , m

s.t. Ax ½ b, xI+
½ 0, H x = h

(5.4)

with matrices G i ∈ RK i×n and vectors g i ∈ RK i
for K i > 0, i = 1, . . . , m. The linear constraints are given

by a matrix A ∈ Rp×n, vector b ∈ Rp, matrix H ∈ Rq×n and vector h ∈ Rq. Each objective function is
given by the maximum of K i affine-linear functions (G i

k•)
T x + g i

k for each i = 1, . . . , m.
Notice that the objective functions fi(x), i = 1, . . . , m, are in general not differentiable over Rn. How-
ever, (5.4) can be reformulated as a multiobjective linear optimization problem [28]:

vmin
x∈Rn, α∈Rm

αi i = 1, . . . , m

s.t. (G i
k•)

T x + g i
k ≤ αi ∀k = 1, . . . , K i ∀i = 1, . . . , m

Ax ½ b, xI+
½ 0, H x = h

(5.5)

Let J = {1, . . . , n} \ I+ be the index set of unconstrained variables of (5.4). The multiobjective linear
programming problem (5.5) can then be transformed into standard form [40] by adding slack variables
s for the linear inequality constraints of (5.4) and ai

k for k = 1, . . . , K i and i = 1, . . . , m and by splitting
the unconstrained variables xJ and α:

vmin α+i −α−i i = 1, . . . , m
s.t. (G i

k•)
T x − (G i

kJ )
T zJ + ai

k −α+i +α−i = −g i
k ∀k = 1, . . . , K i ∀i = 1, . . . , m

Ax − A•JzJ − s = b, H x −H•JzJ = h
x ½ 0, z ½ 0, s ½ 0, α+ ½ 0, α− ½ 0,
ai

k ≥ 0 ∀k = 1, . . . , K i ∀i = 1, . . . , m

(5.6)

Recall the definition of efficient basic solutions of multiobjective linear programming problems from
Definition 2.33. Let EE be the set of efficient basic solutions of (5.6). Then for each x̃ ∈ EE , a corre-
sponding cell in Λ can be defined in the following way (see Definition 2.34):

Λ( x̃) =
�

λ ∈ Λ : λT C x̃ ≤ λT C x̃ ′ ∀ x̃ ′ ∈ S̃
	

,

where S̃ and C are the feasible set and the objective matrix of (5.6), respectively.
The weight space decomposition for (5.6) can be computed using a variety of methods, for example
the multiobjective simplex method [23], Benson’s method [25, 58] or dichotomic search [72].
Let x̃ ∈ EE be an efficient basic solution of (5.6) and let x̄ be the corresponding solution of (5.4), i.e. if
x̃ = (x , z, s,α+,α−, a) then x̄ is given by

x̄ i =

¨

x j if j ∈ I+

x j − z j otherwise
.

Then x̄ is an efficient solution of (5.4) and the weight cell Λ( x̃) can be associated withA ( x̄).
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Example 5.2. Consider the following multiobjective convex piecewise-linear optimization problem:

vmin
x∈R2

max









−8 2
9 −9
10 −6



 x +





−3
7
−10









max









−10 5
−7 3
3 −1



 x +





−3
7
−10









max









−7 −3
4 3
−7 6



 x +





−9
9
6









s.t. −x1 − x2 ≥ 2, x ½ 0

(5.7)

The set of efficient basic solutions of the linear programming formulation of (5.7) can be computed ,
for example, using the multiobjective linear solver bensolve [58]. The efficient basic solutions of (5.7)
are given by:

XE =
§�

0
0

�

,
�

0
0.9091

�

,
�

0
0.6667

�

,
�

0.4286
1.5714

�

,
�

0.3902
1.5122

�

,
�

0.4211
1.5789

�ª

The efficient active sets and the corresponding efficient basic solutions of (5.7) are given in Table 5.1.

Active Set Color in Fig. 5.1 Efficient basic solutions

A1 = ({1,2} ,;) turquoise
�

0
0

�

A2 = ({1} ,;) red
�

0
0.9091

�

,
�

0
0.6667

�

A3 = (;, {1}) green
�

0.4286
1.5714

�

,
�

0.4211
1.5789

�

A4 = (;,;) blue
�

0.3902
1.5122

�

Table 5.1: Efficient Active Sets in Example 5.2.

The weight space decomposition for the multiobjective linear programming problem can be seen in
Figure 5.1. The color of each cell corresponds to the active set of the corresponding efficient basic
solution.
As each cell corresponds to a particular efficient basic solution of (5.7) we can assign each weight cell
to a particular efficient active set of (5.7).
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Figure 5.1: Decomposition of the weight space for Example 5.2.
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5.3 Comparison of the Weight Space Decomposition by Active Sets
for Multiobjective Convex Optimization Problems

Table 5.2 summarizes the properties of the weight space decomposition by efficient active sets (and
efficient complementary bases in the case of multiobjective quadratic programming problems) for dif-
ferent types of multiobjective convex problems discussed in this thesis.

Problem Constraints Type of cells References Literature
MLP linear convex polyhedron Section 2.2.3 Isermann [48]
MDQP bounds arrangement of hyperplanes Section 4.8

MMLQP linear convex polyhedron Section 4.6
Markowitz [59],

Hirschberger et. al. [46]
MSQP linear convex polyhedron Section 4.7
MPLP linear union of convex polyhedrons Section 5.2
MQP linear semi-algebratic sets Sections 4.2 and 4.4 Adelgren [1]
MCP linear Section 5.1

Table 5.2: Types of weight cells for different convex multiobjective optimization problems with linear
constraints.

Consider approximating the weight space decomposition of a multiobjective convex quadratic pro-
gramming problem by constructing a multiobjective convex optimization problem for which an explicit
computation of the weight space decomposition by active sets is possible. In the case of multiobjective
linear programming problems and the special cases of multiobjective convex quadratic programming
problems discussed in Sections 4.6, 4.7 and 4.8 we know that the weight space is decomposed into
convex polyhedrons by efficient active sets.
However, the weight cells ΛC(A ) for multiobjective convex optimization problems are in general not
convex, as can be seen in Example 4.47 for multiobjective convex quadratic problems, and in Example
5.2 for multiobjective convex piecewise-linear optimization problems. But the weight space decom-
position of multiobjective convex piecewise-linear optimization problems consists of unions of convex
polyhedrons that can be nonconvex. Thus, from the selection of multiobjective convex optimization
problems discussed here, multiobjective convex piecewise-linear optimization problems seem to be a
good candidate for an approximation procedure.

In the following section, we discuss an approach by Oberdieck and Pistikopoulos [67] that approximate
the weight space decomposition of a multiobjective convex quadratic optimization problem using a
multiobjective convex piecewise-linear optimization problem. One step in this approach is the approx-
imation of each nonlinear convex objective function by a convex piecewise-linear objective function.
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5.4 An Outer Approximation Algorithm for Convex Functions

The approximation of functions by polyhedral structures is discussed in the literature in different con-
texts, for example in branch-and-cut algorithms [6, 56] and approximations of the nondominated set
for multiobjective convex optimization problems [53, 80].

In this section we will consider an approximation algorithm that was used by Oberdieck and Pistikopou-
los [67] to approximate convex quadratic functions. The procedure is similar to the outer approxima-
tion discussed by Bertsekas and Yu [6] for convex functions.

Let X ⊆ Rn be a compact polyhedron over which a continuously differentiable convex function f : X →
R is to be approximated. The aim of this section is to construct a piecewise-linear function T that is an
outer approximation of f over X satisfying

T(x)≤ f (x) ∀x ∈ X and | f (x)− T(x)| ≤ ε ∀x ∈ X

for some ε > 0.
Since f is convex and differentiable we know that for any z ∈ X that the following inequality holds:

f (x)≥ f (z) +∇ f (z)T (x − z) ∀x ∈ X

Using a set of finitely many points Z ⊆ X an outer approximation of f can be defined by

T(x , Z) =max
z∈Z

�

f (z) +∇ f (z)T (x − z)
� ∀x ∈ Rn.

It is easy to see that T(x , Z) is a convex piece-wise linear function and an outer approximation of f for
every set of points Z ⊆ X , Z 6= ;. Given an approximating point set Z ⊂ X the approximation error at
x ∈ X is defined as

η(x , Z) := f (x)− T(x , Z)

and the approximation error for the whole set X is defined as

η(X , Z) :=max
x∈X

η(x , Z).

Oberdieck and Pistikopoulos [67] formulated a minimax optimization problem to compute the approx-
imation error η(X , Z) in the case where f is a strictly convex quadratic function:

η(X , Z) = −min
x∈X

�

max
z∈Z

�

f (z) +∇ f (z)T (x − z)
�− f (x)

�

(5.8)

The minimax problem (5.8) is in general nonconvex and not differentiable. Algorithm 5.1 was pro-
posed by Oberdieck and Pistikopoulos [67] to compute a set of approximating points Z k such that
η(X , Z)≤ η∗ for a desired approximation error η∗ > 0.

Algorithm 5.1: Approximation Algorithm for Convex Functions [67]

Input: Convex function f , compact set X ⊆ Rn, desired approximation error η∗ > 0, initial set
of approximating points Z0

Set k := 0.
Compute η0 = η(X , Z0) and let zk be the corresponding optimal solution of (5.8).
while ηk > η

∗ do
Z k+1 := Z k ∪ �zk

	

.
Compute ηk+1 and zk+1 such that ηk+1 = η(X , Z k+1) = f (zk+1)− T(x , Z k+1).
Set k := k+ 1.

Output: Set of approximating points Z k
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In the upcoming sections we want to investigate the following questions about Algorithm 5.1:

• What are the convergence properties of Algorithm5.1?

• How can the new approximating point be computed in each iteration?

In order to answer these questions we consider a related field of research that considers the approxi-
mation of convex bodies by convex polyhedra.
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5.4.1 Approximation of Convex Bodies by Polyhedra

A summary of results about the approximation of convex sets by polyhedrons can be found in Bronstein
[11]. Kamenev [50, 51] investigated the convergence properties of a class of algorithms for construct-
ing approximations of convex bodies by convex polyhedrons, called Hausdorff algorithms or Hausdorff
schemes [50].

Definition 5.3. [8] The epigraph of f : Rn→ R over X ⊆ Rn is defined as the set

Epi f = {(x , y) ∈ X ×R : f (x)≤ y} .

The epigraph Epi f of a convex function f over a convex domain is also convex [73]. However, the
epigraph is unbounded. Let X be a closed convex polyhedron. Let y∗ be an upper bound for the largest
function value of f over X , for example

ymax =max
x∈X

f (x).

Then the following set C is convex and compact:

C= {(x , y) ∈ X × (−∞, y∗] : f (x)≤ y}

We call C the bounded epigraph of f and ymax the cut-off level. Given a set of approximating points
Z we can compute the bounded epigraph of T(x , Z):

P(Z) = {(x , y) ∈ X × (−∞, ymax] : T(x , Z)≤ y}
=
n

(x , y) ∈ X × (−∞, ymax] : max
z∈Z

�

f (z) +∇ f (z)T (x − z)
�≤ y

o

=
�

(x , y) ∈ X × (−∞, ymax] : f (z) +∇ f (z)T (x − z)≤ y ∀z ∈ Z
	

Notice that P(Z) is a bounded convex polyhedron and C ⊆ P(Z) for all non empty approximation point
sets Z ⊆ X . Hence, P(Z) is a polyhedral outer approximation of C. Algorithm 5.2 is a formulation
of Algorithm 5.1 in the context of approximating C by a sequence of polyhedrons Pk = P(Z k) with
approximating point sets Z k.

Algorithm 5.2: Outer Approximation Algorithm for Compact Convex Sets Using the Approx-
imation Error

Input: Compact convex set C, initial approximating point set Z0, desired error bound η∗ > 0
Compute P0 = P(Z0).
Determine p0 = (x0, y0) ∈ P0 such that η(P0) = f (x0)− y0.
Set η0 := f (x0)− y0 and k := 0.
while ηk > η

∗ do
Z k+1 = Z k ∪ �x k

	

.
Pk+1 = P(Z k+1).
Determine pk+1 = (x k+1, yk+1) ∈ Pk+1 such that η(Pk+1) = f (x k+1)− yk+1.
Set ηk+1 := f (x k+1)− yk+1 and k = k+ 1.

In order to analyze the convergence properties of Algorithm 5.2 we consider a different approximation
error:
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Definition 5.4. [39]

1. The (Euclidean) distance between two points x , y ∈ Rn is defined as:

d(x , y) = ‖x − y‖2

2. The (Euclidean) distance between a point x ∈ Rn and a set M ⊆ Rn is defined as:

d(x , M) =min
y∈M

d(x , y)

3. The Hausdorff distance of two sets C1, C2 ⊆ Rn is defined as:

dH(C1, C2) =max

�

sup
x∈C1

d(x , C2), sup
y∈C2

d(y, C1)

�

4. The approximation error for p = (xp, yp) ∈ P(Z) ⊂ Rn for some set of approximating points
Z is denoted by

η(p) = f (xp)− yp.

Kamenev [50] considered an approximation procedure that minimizes the Hausdorff distance between
a convex compact set C and an outer approximation polyhedron. Algorithm 5.3 is the method formu-
lated for the approximation of the bounded epigraph C.

Algorithm 5.3: Outer Approximation Algorithm for Compact Convex Sets Using Hausdorff
Distances [50]

Input: Compact convex set C, initial approxmating point set Z0, desired error bound δ∗ > 0
Compute P0 = P(Z0).
Determine p0 ∈ P0 and c0 = (x0, y0) ∈ C such that dH(P0,C) = d(p0, c0).
Set δ0 := d(p0, c0) and k := 0.
while δk > δ

∗ do
Z k+1 = Z k ∪ �x k

	

.
Pk+1 = P(Z k+1).
Determine pk+1 ∈ Pk+1 and ck+1 = (x k+1, yk+1) ∈ C such that dH(Pk+1,C) = d(pk+1, ck+1).
Set δk+1 := d(pk+1, ck+1) and k = k+ 1.

To compute the approximation error and to show a convergence result we consider the points where
the approximation error is attained.

It is a well-known fact that the Hausdorff-distance between a convex compact set and an enclosing
polyhedron is attained at an extreme point of the polyhedron [39]:

Proposition 5.5. [6, 39] For every w ∈ P there exists an extreme point v ∈ P such that d(v,C)≥
d(w,C).

This result can, for example, be shown using linear programming theory.
The following proposition is similar to the proof of Theorem 5.2.2 in Bard [4] and shows a similar
result to Proposition 5.5 for the approximation error η.

Proposition 5.6. [4] For every w ∈ P there exists an extreme point v ∈ P such that η(v)≥ η(w).
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Proof. [4] Let v1, . . . , v r be the extreme points of P with v i = (x i , y i) for i = 1, . . . , r. Then, for every
v̂′ ∈ P there exists α ∈ Rr ,

∑r
i=1αi = 1, α½ 0 such that

v̂ =
r
∑

i=1

αi v
i .

Using Jensen’s inequality:

η(v̂) = f ( x̂)− ŷ

= f

�

r
∑

i=1

αi x
i

�

−
r
∑

i=1

αi y i

≤
r
∑

i=1

αi f (x i)−
r
∑

i=1

αi y i

=
r
∑

i=1

αi

�

f (x i)− y i
�

=
r
∑

i=1

αiη(v
i)

Which shows that

η(v̂)≤
r
∑

i=1

αiη(v
i) (5.9)

Now assume that η(v̂)> η(v i) for i = 1, . . . , r. Then

r
∑

i=1

αiη(v
i)<

r
∑

i=1

αiη(v̂) = η(v̂)

which contradicts (5.9).
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In order to analyze the convergence properties of Algorithm 5.2 we show that the sequence of polyhedra
Pk, k ∈ N, computed by Algorithm 5.2 is a so-called Hausdorff sequence:

Definition 5.7. [51] Let C be a convex compact set. A sequence of polytopes (Pk)k is called a
Hausdorff sequence if there exists a constant γ > 0 such that

dH(P
k, Pk+1)≥ γdH(P

k,C) ∀k = 1, . . .

Notice that Algorithm 5.3 computed Hausdorff sequences with γ= 1 [50].

Proposition 5.8. Let (Pk)k be a sequence constructed by Algorithm 5.2. Then there exists β > 0
such that

ηk ≤ βdH(P
k,C), ∀k = 1, . . . .

Proof. Let p = (xp, yp) be an extreme point of Pk. Let c = (xc , yc) ∈ C be such that d(p,C) = d(p, c).
The situation is illustrated in Figure 5.2. Consider the point c′ = (xp, f (xp)).

C

c

p

c′

η(p)
t

d(p
, c)

Figure 5.2: Bounding the approximation error at an extreme point of Pk.

Consider the line segment t := f (xp)− f (xc). Since f is convex the following holds:

f (xc)≥ f (xp) +∇ f (xp)
T (xc − xp)⇔ f (xp)− f (xc)

︸ ︷︷ ︸

=t

≤∇ f (xp)
T (xp − xc) (5.10)

By assumption, ‖∇ f (x)‖ is continuous over X and X is a compact set. Hence, ‖∇ f (x)‖ attains it’s
maximum in X . This leads to a bound on t:

t ≤∇ f (xp)
T (xp − xc)≤ ‖∇ f (xp)‖‖xp − xc‖

︸ ︷︷ ︸

≤d(p,c)

≤max
x∈X
‖∇ f (x)‖ · d(p, c)

Now, consider the approximation error for p:

η(p)≤ t + |yc − yp|
︸ ︷︷ ︸

≤d(p,c)

≤
�

1+max
x∈X
‖∇ f (x)‖

�

· d(p, c)

Let p ∈ P be an extreme point such that ηk = η(p). Using the fact that d(p,C) ≤ dH(Pk,C) for all
p ∈ Pk we see that

ηk ≤
�

1+max
x∈X
‖∇ f (x)‖

�

d(p,C)≤
�

1+max
x∈X
‖∇ f (x)‖

�

︸ ︷︷ ︸

=:β

dH(P
k,C).
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Notice that β is independent of k.

Proposition 5.9. Let (Pk)k be a sequence constructed by Algorithm 5.2. Then there exists γ > 0
such that

dH(P
k, Pk+1)≥ γdH(P

k,C) ∀k = 1, . . .

Proof. Let p = (xp, yp) ∈ Pk be given such that ηk = f (xp)− yp and Z k+1 = Z k ∪ �xp

	

. Let c ∈ C be
the point c = (xp, f (xp)). Notice that the polyhedron Pk+1 is given by:

Pk+1 = Pk ∩ �(x , y) ∈ Rn+1 : y ≥ f (xp) +∇ f (xp)
T (x − xp)

	

(5.11)

Also obverse that c is on the graph of T(•, Z k+1) and T(xp, Z k+1) = f (xp).
Now, let q = (xq, yq) ∈ Pk+1 such that d(p, Pk+1) = d(p, q). The situation is illustrated in Figure 5.3.

C

q

p

c

η(p)
t ′

d(p
,q)

Figure 5.3: Bounding of dH(Pk, Pk+1).

We can observe the following:

η(p) = f (xp)− yp = f (xp)− yq
︸ ︷︷ ︸

=:t ′

+ yq − yp
︸ ︷︷ ︸

≤d(p,q)

(5.12)

Consider the distance t ′ and notice that c and q are points on the graph of T(•, Z k+1). Thus, it holds
that

t ′ = f (xp)− yq = T(xp, Z k+1)− T(xq, Z k+1).

Note that the subgradients of T(x , Z k+1) are bounded by gradients of f on Z k+1 [6]:

∂ T(x , Z k+1) =
�

v ∈ Rn : T(x , Z k+1)− T(x ′, Z k+1)≥ vT (x − x ′) ∀x ∈ Rn
	 ⊆ conv(

�∇f(x) : x ∈ Zk+1
	

)

Thus, all subgradients of T(x , Z k+1) are bounded for all k ∈ N and

max
v∈∂T(x ,Zk+1)

‖v‖ ≤max
x∈X
‖∇ f (x)‖. (5.13)

Using (5.13) we can see that

t ′ = T(xp, Z k+1)− T(xq, Z k+1)≤
�

max
x∈X
‖∇ f (x)‖

�

d(p, q). (5.14)

Using (5.12) and (5.14) we can observe that

η(p)≤ t ′ + d(p, q)≤
�

1+max
x∈X
‖∇ f (x)‖

�

d(p, q). (5.15)
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Since d(p, q) = d(p, Pk+1) we also know that d(p, q) ≤ dH(Pk, Pk+1). Applying this and the fact that
ηk ≥ dH(Pk,C) to (5.15) we observe that

dH(P
k,C)≤ ηk = η(p)≤

�

1+max
x∈X
‖∇ f (x)‖

�

d(p, q)≤
�

1+max
x∈X
‖∇ f (x)‖

�

dH(P
k, Pk+1).

This is equivalent to the following bound for dH(Pk, Pk+1) which holds for every k ∈ N:

dH(P
k, Pk+1)≥

�

1+max
x∈X
‖∇ f (x)‖

�−1
dH(P

k,C)

Proposition 5.9 shows that indeed the sequence computed by Algorithm 5.2 is a Hausdorff sequence.
We can now apply one of the main results from Kamenev [50, 51]:

Theorem 5.10. [50] Let (Pk)k be a sequence constructed by Algorithm 5.2 or by Algorithm 5.3,
respectively. Then the following statements hold:

1. If f is twice continuously differentiable, then

dH(C , Pk)≤ O(k
2
−n ) (5.16)

2. If f is once continuously differentiable, then

dH(C , Pk)≤ O(k
1
−n ) (5.17)

We have now established that Algorithm 5.2 and, by extension, Algorithm 5.1 do converge. Using
Proposition 5.8 we also know the following:

Proposition 5.11. Let (Pk)k be a sequence constructed by Algorithm 5.2.

1. If f is twice continuously differentiable, then

ηk ≤ O(k
2
−n ) (5.18)

2. If f is once continuously differentiable, then

ηk ≤ O(k
1
−n ) (5.19)

Proof. The result follows from Theorem 5.10 and Proposition 5.8.
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5.4.2 Implementation of the Approximation Scheme

In each iteration of Algorithm 5.2 a point pk+1 ∈ Pk has to be computed where the approximation
error η(pk+1) is maximal. This could, for example, be done by computing the optimal solution of the
minimax problem (5.8). However, as (5.8) is in general not convex, global optimization routines have
to be used to ensure that the correct point is found. The convergence proof (Proposition 5.11) relies
on the fact that, at least after a finite number of iterations, the approximation error decreases.
In order to ensure that the global optimum of (5.8) is found global optimization techniques can be
used. For further details consider, for example, Pardalos and Romeijn [68].
Proposition 5.6 shows that the maximum approximation error is attained at an extreme point of Pk.
Hence, a reliable approach is to compute all extreme points of Pk and compute the approximation
error at each point. Recall that Pk = P(Z k) is given by:

P(Z k) =
�

(x , y) ∈ X × (−∞, ymax] : f (z) +∇ f (z)T (x − z)≤ y ∀z ∈ Z k
	

where ymax is the cut-off level for the bounded epigraph. Notice that P(Z k) is defined by a set of linear
inequalities.
Computing all extreme points of a polyhedron from a description by linear inequalities, also referred to
as vertex enumeration, is a common subject in the field of computational geometry [76]. One method
to compute all extreme points is the double description method [35].
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Example 5.12. Consider the first objective function f1(x) from Example 4.47:

f1(x) =
1
2

x T
�

4 1
1 2

�

x +
�−40
−24

�T

x

We use Algorithm 5.2 to compute an approximation of f1(x) over the set

X = {x ∈ Rn : 0.1039≤ x1 ≤ 15.8961, −3.1668≤ x2 ≤ 19.1668} .
The graph of f1 over X is depicted in Figure 5.4. For selected iterations the approximation error ηk is
shown in Table 5.3. A selection of approximating polyhedra Pk is shown in Figure 5.5.
To enumerate the extreme points of Pk in each iteration k we used the ccdmex implementation of
the double desciption method from the MPT-toolbox [43]. The following results were obtained on a
machine with an Intel Core i5 processor with 3.2 GHz and 8 GB of ram.

0
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−100
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100
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x2

f 1
(x
)

Figure 5.4: Graph of the function f1 in Example 5.12

The sequence of approximation error behaves as expected, considering the approximation results given
in Proposition 5.11. As the number of vertecies of Pk increases in each iteration
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Figure 5.5: Approximating polyhedra of Example 5.12 after 10 (top left), 40 (top right), 80 (bottom
left), 300 (bottom right) iterations
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Iterations Approximation Error Time (in seconds)
10 40.7177 0.008
20 17.5871 0.021
30 12.9486 0.041
40 8.3292 0.068
50 6.8500 0.103
60 5.8895 0.145
70 5.0592 0.197
80 4.4458 0.258
90 3.9916 0.328

100 3.4737 0.410
200 1.6626 2.031
300 1.0967 5.777
400 0.8164 12.745
500 0.6443 23.997

1000 0.3224 190.939
2000 0.1604 1660.136

Table 5.3: Sequence of approximation errors in Example 5.12.

5.5 Approximation of the Weight Space Decomposition

In this section we will discuss the application of the approximation procedure reviewed in Section
5.4 to the multiobjective problems considered in this thesis. In the approximation scheme proposed by
Oberdiek and Pistikopoulos [67] all objective functions are approximated by piecewise-linear functions
in order to compute an approximation of the weight space decomposition.

Consider a multiobjective convex programming problem as introduced in Section 5.1.

vmin
x∈Rn

fi(x) i = 1, . . . , m

s.t. Ax ½ b, xI+
½ 0, H x = h

(5.20)

with strictly-convex objective functions fi(x) for i = 1, . . . , n, A ∈ Rp×n, b ∈ Rp, H ∈ Rq×n, h ∈ Rq and
index set of nonnegative variables I+ ⊆ {1, . . . , n}. In addition we assume that each objective function
fi is continuously differentiable and bounded on S for all i = 1, . . . , m.

We will now suggest the approximation scheme for approximating the weight space decomposition by
active sets of (5.20). We are most interested in a tight approximation of the objective functions over
the efficient set of (5.20). For this reason we choose the sets X i over which the function fi(x) is to be
approximated such that

L( fi , yN
i ) ⊆ X i ∀i = 1, . . . , m,

where yN is the nadir point of (5.20). This can be done, for example, by computing a bounding box
of L( fi , yN

i ). If the nadir point of (5.20) is not available a upper bound of the nadir point can be used
instead. The extreme points of X i can then be used as the initial set of approximation points.
Using Algorithm 5.2 we can then compute the approximating sets Z i for each objective function fi ,
i = 1, . . . , m. The outer approximation of (5.20) problem is then given by:

vmin
x∈Rn

Ti(x , Z i) i = 1, . . . , m

s.t. Ax ½ b, xI+
½ 0, H x = h

(5.21)

Consider that the approximation error for each objective is smaller than η∗.

min
x∈Rn

∑m
i=1λiTi(x , Z i)

s.t. Ax ½ b, xI+
½ 0, H x = h

(5.22)
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Let λ ∈ Λ be given. Consider the difference between the weighted sum of the original functions fi(x),
i = 1, . . . , m and the piecewise-linear functions Ti(x , Z i), i = 1, . . . , m:

Proposition 5.13. Let λ ∈ Λ be given and let Z i , i = 1, . . . , m, be the sets of approximating
points computed by Algorithm 5.2 with approximation error η∗ for each objective function fi(x),
i = 1, . . . , m. Then

∑m
i=1λiTi(x , Z i) is an outer approximation function of

∑m
i=1λi fi(x) and

m
∑

i=1

λi fi(x)−
m
∑

i=1

λiTi(x , Z i)≤ η∗.

Proof. It is easy to see for every λ ∈ Λ that

m
∑

i=1

λi fi(x)
︸︷︷︸

≥Ti(x ,Z)

≥
m
∑

i=1

λiTi(x , Z).

Now consider the difference between the weighted sums:

m
∑

i=1

λi fi(x)−
m
∑

i=1

λiTi(x , Z) =
m
∑

i=1

λi



 fi(x)− Ti(x , Z i)
︸ ︷︷ ︸

≤η∗





≤
m
∑

i=1

λiη
∗ = η∗

To assess the quality of the approximation of the weight space decomposition of (5.20) by the weight
space decomposition of (5.21) we consider the following:

Definition 5.14. Let X̃E be the efficient set of (5.21) and let X̃opt(λ) be the set of optimal solutions
of the weighted sum problem (5.22) of the outer approximation (5.21) for λ ∈ Λ .
Let ε ≥ 0 and let an active setA = (I,J) be given. Let Sε(A ) ⊆ S be given by:

Sε(A ) =
�

x ∈ S : xI µ ε, AJ•x − bJ µ ε
	

Then we define the following set in Rm:

Ωε(A ) :=
�

λ ∈ Λ : X̃E ∩ X̃opt(λ)∩ Sε(A ) 6= ;
	

.

The sets Ωε(A ) can be understood as approximations of the weight cells ΛA(A ) for a given active set
A .

Proposition 5.15. Let x̄(λ) be the optimal solution of the weighted sum problem of (5.20) for
λ ∈ Λ. Let X̃E be the efficient set of (5.21) and let X̃opt(λ) be the set of optimal solutions of the
weighted sum problem (5.22) for λ ∈ Λ of the outer approximation (5.21).
Let Z i be approximating point sets for i = 1, . . . , m such that there exists δ > 0 such that

d( x̄(λ), X̃opt(λ)∩ X̃E)≤ δ ∀λ ∈ Λ.

Then there exists ζ > 0 such that
ΛC(A ) ⊆ Ωε(A )

for any efficient active setA = (I,J) of (5.20) and ε = ζδ.
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Proof. LetA = (I,J) be an efficient active set of (5.20) and let λ ∈ ΛC(A ) be given. Let x̄ = x̄(λ) be
the optimal solution of the weighted sum problem of (5.20) for λ.
By assumption, there exits x̂ ∈ X̃opt(λ)∩ X̃E such that d( x̄ , x̂) = ‖ x̄ − x̂‖ ≤ δ.
Consider the active linear inequality constraints:





A j• x̂ − b j





=




A j• x̂ − A j• x̄ + A j• x̄ − b j







≤




A j•( x̂ − x̄)




+




A j• x̄ − b j







︸ ︷︷ ︸

=0

≤




A j•




‖ x̂ − x̄‖
︸ ︷︷ ︸

≤δ
≤




A j•




δ ∀ j ∈ J

Furthermore, consider the active nonnegativity constraints:

‖ x̂I‖= ‖ x̂I − x̄I + x̄I‖
≤ ‖ x̂I − x̄I‖+ ‖ x̄I‖

︸︷︷︸

=0

≤ ‖ x̂I − x̄I‖
≤ δ

By choosing the constant ζ independently of the active set.

ζ=max
�

1,‖A1•‖ , . . . ,




Ap•






	

we see that




A j• x̂ − b j





≤




A j•




δ ≤ ζδ ∀ j ∈ J

and
‖ x̂I‖ ≤ δ ≤ ζδ.

This shows that x̂ ∈ Sε(A ) for ε = ζδ. Since x̂ was also in X̃opt(λ)∩ X̃E we see that λ ∈ Ωε(A ).
Unfortunately, the assumptions of Proposition 5.15 are quite strong, and it is not clear if Algorithm 5.2
computes an outer approximation that satisfies these assumptions for a sufficiently small error bound
η∗. For this reason we formulate the following conjecture:

Conjecture 5.16. Let δ > 0 be given. Then there exists η∗ > 0 such that Algorithm 5.2 computes
approximating points sets Z i with approximation errors smaller than η∗ for each i = 1, . . . , m such
that the efficient set X̃E of the outer approximation (5.21) and the set optimal solutions X̃opt(λ)
of the weighted sum problem (5.22) for λ ∈ Λ satisfy

d( x̄(λ), X̃opt(λ)∩ X̃E)≤ δ ∀λ ∈ Λ
where x̄(λ) is the optimal solution of the weighted sum problem of (5.20) for λ ∈ Λ.

In order to proof a proposition similar to Conjecture 5.16 more assumption may be necessary. Addi-
tionally, other approximation error for Algorithm 5.2 may be considered.
Bertsekas and Yu [6] provide a framework for the approximation of singleobjective optimization prob-
lems and a convergence result that is similar to the assumption of Proposition 5.15. It may be possible
to extend this result to the weighted sum problem.

We consider a triobjective strictly convex ooptimization problem to visualize the approximation proce-
dure:
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Example 5.17. Consider the triobjective convex quadratic programming problem from Example 4.47:

min f1(x) =
1
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Figure 5.6: Weight Space Decomposition of (5.23).

The weight space decomposition of (5.23) is depicted in Figure 5.6. In a first step we approximate the
nadir point of (5.23) by the evaluation of objective function values on a dense grid of sample points.

yN =





−146, 89
−37, 375
27, 125





Using the nonlinear optimization solver fmincon we compute a bounding box X i of the set L( fi , yN
i )

for each i = 1, . . . , m.

X 1 = {x ∈ Rn : 0.10≤ x1 ≤ 15.89,3.17≤ x2 ≤ 19.17}
X 2 = {x ∈ Rn : 0.68≤ x1 ≤ 7.317,1.34≤ x2 ≤ 3.35}
X 3 = {x ∈ Rn : −0.96≤ x1 ≤ 10.95, 5.21≤ x2 ≤ 3.21}

The maximal function values of f1, f2 and f3 over X 1, X 2 and X 3 are approximately 81.57, 23.55 and
222.11, respectively.
Algorithm 5.2 was applied to each objective function fi(x),i = 1, 2,3, for 2000 iterations.
The approximation error and the computation time of Algorithm 5.2 can be found in Table 5.4 and
Table 5.5, respectively. The approximation of the weight space decomposition is shown in Figures 5.7
and 5.8.
After about 200 iterations we can observe that the all efficient active sets of (5.23) are present in the
weight space decomposition of the approximation problem (cp. Figures 5.6 and 5.7).
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Iteration 10 100 200 300 400 500 1000 2000
f1 40.718 3.474 1.663 1.097 0.816 0.644 0.322 0.160
f2 12.984 1.279 0.617 0.408 0.307 0.245 0.121 0,058
f3 34.752 3.196 1.427 0.952 0.707 0.540 0.275 0.137

Table 5.4: Approximation error

Iteration 10 100 200 300 400 500 1000 2000
f1 0.008 0.410 2.031 5.777 12.745 23.997 190.939 1660.136
f2 0.007 0.409 2.018 5.746 12.690 23.965 189.124 1623.037
f3 0.007 0.402 1.987 5.633 12.355 23.208 183.360 1579.276

Table 5.5: Time in seconds

In Figure 5.8 we can observe that the weight cells of the multiobjective piecewise-linear problem are
devided into smaller cells with increasing number of approximating points. The boundaries between
the weight cells of the approximation problem resemble the boundaries of the weight cells of (5.23).
However, consider the final approximation after 2000 iterations depicted in the bottom right of Figure
5.8. Even though the approximation error relatively small, for example, with η2000 = 0.16 for the first
objective function with a cut-off level of 81.57 the weight space decomposition still differs significantly
from the weight space decomposition of (5.23).

We can observe that some of the weight cells of the outer approximation problem (5.21) are rather long
cells. This can be attributed to the fact that the original problem has only 2 variables. The magenta,
green and red cells correspond to active sets for which the corresponding efficient points lie on lines
in R2 at the boundary of the efficient set (the decomposition of the efficient set can be seen in Figure
4.6). The yellow and cyan cells correspond to a single points, respectively.
In conclusion, we see that the approximation approach does indeed provide an approximation of the
weight space decomposition of (5.23) after a relatively small number of iterations. However, for larger
number of iterations the approximation becomes only slightly more accurate.
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Figure 5.7: Approximation of the Weight Space Decomposition after 10, 20, 30, 40, 80 and 200 Itera-
tions (from top left to bottom right).
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Figure 5.8: Approximation of the Weight Space Decomposition after 400, 500, 1000 and 2000 itera-
tions (from top left to bottom right.
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5.6 Conclusion

In this chapter we have defined a weight space decomposition for convex multiobjective optimization
problems. We have shown that the weight space of multiobjective convex piecewise-linear optimization
problems can be computed using a multiobjective linear programming problem. The corresponding
weight cells are unions of convex polyhedra and can be computed using known methods for multiob-
jective linear programming.
An approximation procedure proposed by Oberdieck and Pistikopoulos [67] was reviewed and using
results from the field of approximation of convex bodies by polyhedra [50] a convergence rate was
shown.
Finally, using a concrete example we have seen that the approximation procedure by Oberdieck and
Pistikopoulos [67] does produce a good approximation.

One interesting question for future research is the analysis of a measure of appropriation error in the
weight space and the relationship with the approximation error used in Algorithm 5.2.
Furthermore, it is interesting to consider other types of multiobjective convex optimization problems as
approximation problems. The main premise of the approximation scheme discussed in Section 5.5 was
to compute an approximation of the weight space of a given multiobjective convex quadratic optimiza-
tion problem by computing the weight space decomposition of a multiobjective convex piecewise-linear
optimization problem. Methods for approximating the weight space directly may provide better results.
An interesting approach was proposed by Ruzika and Halffmann [75] using a point approximation of
the weight space.
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Chapter 6

Conclusion

In this thesis several multiobjective optimization problems and solution techniques have been consid-
ered.
In Chapter 3 we reviewed a class of multiobjective descent algorithms that can be interpreted as an
extension of singleobjective descent methods. We introduced the class of weight-based descent meth-
ods, in particular the compromise descent method.

In Chapter 4 we investigated properties of multiobjective convex optimization problems. In particular,
we formulated a weight space decomposition by efficient complementary bases of the parametric linear
complementarity system that arises from the KKT conditions of the weighted sum problem and showed
that this approach is equivalent to the concept of efficient active sets. We have suggested an algorithm
to compute all efficient complementary bases.
Furthermore, we have discussed three particular cases for which the weight cells of multiobjective
convex optimization problems are convex polyhedra. For multiobjective convex optimization prob-
lems with diagonal objective matrices and lower and upper bounds a stronger result was shown: In
this case the weight space is an arrangement of hyperplanes and the number of efficient active set can
be bounded by a polynomial in the number of variables and objectives.
We have also considered a parameter space decomposition for the e-constraint scalarization and an
application to a problem from the field of location analysis.

In Chapter 5 we defined a weight space decomposition for general convex multiobjective problems and
applied this definition to multiobjective convex piecewise-linear optimization problems. We reviewed
an approach for the approximation of the weight space decomposition for multiobjective convex opti-
mization problems using an outer approximation by convex piecewise-linear functions of the objective
functions. A convergence result was shown for this algorithm.
An interesting question for future research is the generalization of the weight space decomposition to
other multiobjective convex problems.
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