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1Chapter 1

Introduction

Nowadays, motivated by the energy transition, the efficient and robust optimization of electrical
energy converters, for example, electrical machines or transformers, steadily grow in importance.
Due to financial reasons and the lack of space of embedded systems and integrated circuits, the
Computer Aided Design (CAD) modeling and system engineering of such devices is frequently
done at the limit of what is technically feasible. However, the industrial series manufacturing
introduces uncertainties due to production-related tolerances in the devices. For example, this
may be the rotor and/or stator diameter, the position of the permanent magnets, material impurities
in the iron or tolerance affected electrical components (resistances, capacitances, inductances).
Consequently, commercial devices slightly differ from the reference model which may be cause a
reduced performance or malfunctions.

A physical description of such devices yields a complex multiphysics model that defines, for ex-
ample, the magnetic field, the movement of the rotor, the heating of iron as well as the supply
circuit which drives the engine. The mathematical modeling of such quantities yields a coupled
system of partial differential equations (PDEs) for the magnetic field and heating and differen-
tial algebraic equations (DAEs) for the electric circuit, [21]. The efficient and robust design of
electrical energy converters requires precise information about the field distribution and thus the
space discretization of 2D and 3D field devices yields a coupled system of DAEs with frequently
millions of unknowns. Numerical simulations of such high-resolution coupled systems are com-
putational expensive and the simulation time takes several hours until a solution is computed, see
e.g. the 2D transformer model using spatial discretization from FEMM, [6], discussed in Chapter
7. Furthermore, the analysis of electric devices with tolerances, often referred to as Uncertainty
Quantification (UQ), [45–49], requires to solve the coupled system with its millions of unknowns
multiple times (for various parameter values within the tolerance). Therefore, the standard time-
integration methods, [28], are not well-suited to perform this task.

To set up the system of equations for coupled problems, single-rate time-integration requires
access to the modeling layer for each software-package which are involved in a mixed mode sim-
ulation, [23]. Several well know approaches can be applied for the efficient transient simulation
of coupled systems, whereas co-simulation often referred to as waveform relaxation or dynamic
iteration scheme is frequently used, [2,3,8,20,24]. Especially, when the monolithic description of
a complex multiphysics model is not realizable and/or suitable software tools for the subsystems
are available, then it is a relevant choice. Co-Simulation tries to exploit that different parts of the
multiphysics model acts on various time scales (usually slow changes in the magnetic field and
faster changes in the circuit), [3, 8]. For example, this may be a pulse weight modulated (PWM)
signal which drives a field device, [24]. The idea is to split the multiphysics model into submodels.
This allows to define subsystems which can be handled separately with its own time-integrator.
Here suitable time stepping methods can be used to capture the structural properties and the dy-
namics of each subsystem. Then, co-simulation works on certain time periods (windows), where
the information between the subsystems are only exchanged at communication points. Here,
convergence can be achieved by solving multiple times the subsystems on a small time interval
(dynamic iteration). Co-simulation applied to coupled ordinary differential equations (ODEs) is
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2 1 Introduction

well understood and always convergent, [4]. Our focus is on time-integration of field/circuit cou-
pled problems. A space discretization of the field, [34, 35], yields a coupled system of DAEs
(DAE-DAE coupling). DAEs are structurally different from ODEs. Here, convergence and the
number of required repeated model simulations within each window depends on the design of the
coupling interface, i.e., how the subsystems communicate with each other, and the computational
order amongst others, [24]. However, co-simulation for DAEs might fail if a contraction condition
is not fulfilled, [2, 3, 20, 24].

Convergence and contraction of co-simulation with application for field/circuit coupled problems
was investigated, e.g. in [8, 24, 32, 52]. The standard way of decoupling for field devices linked
with circuits is to separate between the field and circuit part, i.e., cutting at EM device bound-
aries. Here, Co-simulation has proven to be unconditionally stable and convergent as long as the
computation starts with the field subproblem. However, our numerical investigations show that
the coupling between field and circuit is commonly weak for the standard type of decoupling
such that each subsystem has to be solved many times to ensure a certain accuracy in the solution
which ends in a high computational effort.

The primary goal of this thesis is to develop new coupling interfaces for field/circuit coupled
problems such that the coupling between both becomes stronger. This would also improve the
computational time for UQ, where the general Polynomial Chaos (gPC) expansion is applied
for the first time to co-simulation. Furthermore, when co-simulation is used to solve (random)
coupled systems, it can suffer from the uncertainties such that it affects the convergence of the dy-
namic iteration process. Therefore, we aim to assess the divergence probability of co-simulation
during the simulation. This requires the computation of the probability density function of the
contraction factor, where we focus on two different method (the Kernel Density Estimation and
the gPC based spectral method) to perform this task. The results can be used for an effective time
window size control. It also offers the opportunity for varying the time window size to further
improve the simulation speed.

Overview

This thesis is basically split into two main parts. The first part is about new coupling strategies for
an efficient transient simulation of multiscale problems. This may be, for example, a transformer
or an electrical machine coupled to a circuit with fast changing signals, e.g. Pulse-width modu-
lated converter. The convergence and the speed of contraction, i.e., the number of repeated model
simulations, of co-simulation depend on the computational sequence in which the subsystems are
solved iteratively as well as on the interface modeling amongst others. By numerical simulation
tests, the previous (standard) interfaces have revealed to be inefficient with respect to the com-
putational effort, since the number of required repeated simulations to provide a certain accuracy
in the solution becomes large. To tackle this problem, we propose new specific interfaces for an
more efficient way of coupling the subsystems such that the co-simulation process becomes more
contractive. The second main part is about UQ and probability estimation for multiscale models
solved within a co-simulation framework. Generally, contraction of a dynamic iteration can only
be ensured if certain contraction properties are fulfilled. However, introducing uncertainties may
have impact on these contraction properties and can destroy the convergence. Consequently, one
is interested to analyze stochastics within the co-simulation to state the probability of divergence.
Furthermore, we aim to calculate sensitivities for multiscale models.
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This thesis is structured as follows: Chapter 2 introduces into circuit modeling by the technique
of modified nodal analysis (Chapter 2.1) and into the modeling of field devices and its magneto-
quasistatic formulation using Maxwell’s equations in macroscopic form as well as into the space
discretization of PDEs (Chapter 2.2). The problem formulation for the field/circuit coupled sys-
tem is stated in Chapter 2.3, followed by a DAE-index analysis of the resulting equation.

Chapter 3 is the first major part of this thesis and starts with an introduction to co-simulation.
Chapter 3.1 treats the idea of the dynamic iteration for coupled problems. It is split into parts on
partitioning of timelines into windows, on partitioning of the coupled problem into subsystems as
well as on the dynamic iteration process consisting of an extrapolation step followed by several
dynamic iteration steps (Chapter 3.1.1). In Chapter 3.1.2, the rate of convergence of co-simulation
is analyzed for different splittings of the subsystems using the well known (standard) recursion
estimate. Afterwards, co-simulation and its convergence is closely studied for field/circuit coupled
problems (Chapter 3.1.3), where it is assumed that the circuit and the field is treated separately
within the dynamic iteration process (standard way of splitting). Here, by numerical simulations,
we demonstrate that cutting at the EM device boundaries does not works best with respect to
the computational effort. Therefore, Chapter 3.2.1 and Chapter 3.2.2 introduce new coupling
strategies for a better performance of co-simulation. These are the R-splitting and the LR-coupling
interfaces. Both approaches were presented at COMPUMAG 2015 and SCEE 2016, [36, 37]. It
also includes the convergence theory based on an extended version (fine structure analysis) of the
(standard) error recursion estimate. Chapter 3.2.3 covers the fine structure analysis for coupled
DAE systems and proves the inaccuracy of the standard recursion estimation even for a simple
coupled circuit. The results were presented at ECMI 2014, [39].

The second major part of this thesis is about UQ applied to co-simulation. Therefore, Chapter 4
introduces into two basic concepts. These are the Sobol decomposition (often referred to as full
decomposition) discussed in Chapter 4.1 and the more effective Polynomial Chaos (PC) expan-
sion method (referred to as truncated decomposition) closely studied in Chapter 4.2. However,
the Sobol decomposition method becomes inefficient for higher dimensional problems, since the
computational cost increases exponentially with the dimension (curse of dimensionality). Here,
the PC expansion method tries to break the exponential growth by a suitable approximation tech-
nique. It is based on a truncated and weighted sum of orthogonal polynomials (Chapter 4.2.1),
where the weighting is done by coefficient functions. Chapter 4.2.2 states the generalized form
referred to as gPC expansion followed by the calculation methods to find the unknown coefficient
functions (Chapter 4.2.3). Here, we shortly introduce into the Galerkin approach, whereas the
Collocation approach is studied more detailed, since it will be used for all our calculations. Fi-
nally, Chapter 4.2.4 discusses how sensitivity indices can be derived from a gPC expansion. The
gPC based UQ algorithm combined with co-simulation was presented at SCEE 2014, [38]. The
Collocation approach requires to solve multiple probabilistic integrals. Therefore, Chapter 5 gives
insight into multivariate quadrature formulas to solve such integrals even for high dimensional
problems. These are the tensor-product grid and the sparse grid techniques discussed in Chap-
ter 5.1 and Chapter 5.2. Furthermore, we aim to reconstruct the probability density function of
the contraction factor as precise as possible to assess the divergence probability of co-simulation
when uncertainties are introduced. Commonly, density estimators try to reconstruct the probabil-
ity density from a given set of samples. Thus, Chapter 6.1 introduces into estimate the contraction
factor online, i.e., during the co-simulation. Then, based on these set of samples we apply the
Kernel Density Estimation as well as the spectral approach, which is closely discussed in their
corresponding chapters (Chapter 6.2 and Chapter 6.3). Both methods with its application in co-
simulation were presented at SCEE 2016, [36].
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Chapter 7 presents the simulation results and shows the importance and applicability of the pro-
posed methods. Furthermore, it proves the theoretical results numerically. These are: the fast con-
traction and higher order co-simulation for an RL-circuit (Chapter 7.1), the new R-splitting and
LR-coupling approaches with applications for field/circuit coupled problems (Chapter 7.2.1 and
Chapter 7.2.2), the accuracy of the lower bound estimation of the contraction factor for algebraic-
to-algebraic coupling structures, the probability density function estimation of the contraction
factor for uncertain co-simulation models (Chapter 7.4) as well as the calculation of sensitiv-
ity indices within a co-simulation framework. Finally, the conclusions and outlook are given in
Chapter 8.



2Chapter 2

Modeling and Simulation of Electric
Circuits and Magnetoquasistatic
Devices

Many techniques are known for modeling the physical behavior of electric components. These
may be, for example, the electric current flow through conductors and wires or the propagation
of electric fields in electrical machines and transformers. In any case, the modeling requires a
mathematical description, where always a compromise between accuracy and complexity of the
model has to be found. Using commercial simulation tools, such as PSpice (Simulation Program
with Integrated Circuit Emphasis) by OrCAD, the modeling of electric circuits is commonly done
by the technique of Modified Nodal Analysis (MNA), [21], where electric components (resis-
tances, inductances, capacitances, diodes, etc.) are considered as idealized lumped elements by
disregarding the spatial distribution. Some of them with a linear behavior, e.g. Ohm’s law for the
voltage-current relation of a resistor, or a non-linear behavior, e.g. the voltage-current relation for
diodes or transistors.

MNA uses the voltage-current relation as well as Kirchhoff’s circuit laws to set up the correspond-
ing system of equations, where the equations are set up piecewise for each element. In the end, the
electric circuit is described by a set of differential equations and additional algebraic constraints,
thus that the problem can be stated as a system of differential algebraic equations (DAEs), [22].
However, for many electric devices, such as transformers or electrical machines, the description
by a few lumped elements may be too inaccurate. Here, the behavior and its physical quantities,
e.g. fluxes in field devices, are mathematically described by partial differential equations (PDEs),
which are mostly computational expensive to solve.

Typically, field devices are powered by electric circuits. The simulation of field devices coupled
to circuits is referred to as mixed mode simulation, [23]. Setting up the mixed mode simulation
yields a system of partial differential algebraic equations (PDAEs) with expensive PDE part only
where necessary, [3, 8]. This chapter will introduce into different models and their modeling as
well as the coupling of field devices with circuits. Modified nodal analysis is roughly introduced
in Chapter 2.1. Chapter 2.2 focus on modeling of magnetoquasistatic (MQS) devices and its
discretized formulation, [24]. Finally, the discretization enables for coupling field devices with
circuits by extend the classic MNA, [2, 3, 8, 20, 24], Chapter 2.3. This chapter concludes with a
structural analysis of the spatial discretized PDAE model.

2.1 Electric Networks

Electric circuits are commonly modeled via the technique of MNA, [21]. Its idealized lumped
basic elements are resistors, capacitors, inductors, diodes as well as time-dependent sources (cur-
rent and voltage sources). The classical MNA yields a system with unknown node voltages and
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6 2 Modeling and Simulation of Electric Circuits and Magnetoquasistatic Devices

branch currents (currents through voltage sources and inductors). It can be extend by add addi-
tional equations for the fluxes and charges (flux/charge oriented MNA), [21, 22].

MNA uses the voltage-current relation of the lumped elements stated as branch equations as well
as the Kirchhoff’s circuit laws to state the topological relations:

Kirchhoff’s current law (KCL): The algebraic sum of all currents within a node is zero:

n

Â
k=1

ik = 0,

where n is the total number of branches connected to the node, see Fig. 2.1 (left).

Kirchhoff’s voltage law (KVL): The algebraic sum of all potential differences (voltages) around
any closed loop is zero:

n

Â
k=1

vk = 0,

where n is the total number of voltages within a closed loop, see Fig. 2.1 (right).

V (t)
i1

R i2
i3 L

i4
v4

R1

v1

R2 v2

R3

v3

Figure 2.1: (left) KCL for a node with four branches. (right) KVL for a closed loop with four
voltages.

Generally, MNA consists of three steps. The first step is to state the Kirchhoff’s circuit laws of
the circuit. Here, for each node of the circuit one states the currents flowing in and out of the
node, where the sum of the currents meeting at a point is zero (KCL). Then, one uses the branch
equations in terms of the voltage nodes to replace as many branch currents as possible, e.g. the
current through a resistor can be expressed as the potential difference among its two contacts (two
nodes) multiplied by the conductance. The simplest kind of circuit modeling via MNA only deals
with linear lumped elements, such as resistances, conductances, capacitances, voltage and current
sources. However, the technique of MNA also allows for non-linear elements. Therefore, we
consider the general case including diodes, transistors, etc..

To state the conventional form of MNA, one has to decompose the equations according to their
element types. Assuming that the branches are enumerated in the following order: first all ca-
pacitive branches, then all resistive branches, then all inductive branches, then all voltage source
branches and finally all current source branches. The incidence matrices AC,AR,AL,AV and AI
state the node-branch relation for each element type, i.e., capacitances, resistances, inductances,
independent voltage- and current sources, where each row refers to a network node. Then, all
incidence matrices can be summarized block-wise in an overall incidence matrix

A = (AC,AR,AL,AV ,AI) (2.1)
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of size A 2 {�1,1,0}n⇥b for a circuit with n nodes (excluding the ground potential) and b
branches, where each subindex refers to the respective branch type. Therefore, the circuit topol-
ogy is represented by its incidence matrix A, where every column of A corresponds to one branch,
i.e., the matrix A state the node-branch relation for the overall digraph. For large circuits, the inci-
dence matrix A is typically sparse, while �1 specifies a current which leaves a node, 1 specifies a
current which enters a node and 0 specifies the independency between nodes and branches, since
they are not in contact with each other.

Using the block-wise notation (2.1), the MNA in flux/charge oriented form can be stated as DAE,
[21, 22]

AC
d
dt

q+ARgR(A>
R u, t)+ALiL +AV iV +AIiS(t) = 0 (2.2a)

A>
V u�vS(t) = 0 (2.2b)

q�qC(A>
C u, t) = 0 (2.2c)

d
dt

f �A>
L u = 0 (2.2d)

f �fL(iL, t) = 0 (2.2e)

with time variable t 2 [t0, te], independent sources iS(t), vS(t) and given functions qC(v, t), gR(v, t)
and fL(i, t) for characterizing the relations for their respective circuit element. For a network con-
sisting of n nodes and a total number of b = nC + nL + nG + nV + nI, nC, nL, nG, nV , nI 2 N0
branches, the unknowns of the system are the node potentials u 2 Rn, the currents through in-
ductors iL 2 RnL and voltage sources iV 2 RnV as well as the charges q 2 RnC and fluxes f 2 RnL

(where nV , nC and nL denote their respective number). Equation (2.2a) states the Kirchhoff’s cur-
rent law for circuits and (2.2b) assigns all voltage sources to their respective branch equations. By
deleting all unknowns for the charges and fluxes, (2.2) can be reduced to a smaller system often
referred to as the traditional MNA, where energy conservation is no longer guaranteed, [31].

In practice, oftentimes the physical behavior of many electric devices cannot be described suf-
ficiently accurate by a few idealized lumped elements. Here, the modeling requires the treat-
ment of PDEs. Especially for field devices the set of Maxwell’s equations named after J. C.
Maxwell, [25], is the basis to describe electromagnetic phenomena. The coupling of DAEs (2.2)
for circuits with PDEs for field devices yields (after space discretization) an enlarged spatially dis-
cretized PDAE system. The coupling is based on an extended version of the classic MNA by plug
in the spatially discretized PDE system to the circuit using the idea of controllable sources. The
idea is simple and straight forward by inserting an additional unknown current iM to the branch
equation using the incidence matrix AM. Then Kirchhoff’s Current law (2.2) is extended by the
contribution of the field device AMiM:

AC
d
dt

q+ARgR(A>
R u, t)+ALiL +AV iV +AIiS(t)+ AMiM = 0. (2.3)

In order to achieve a uniquely solvable system, the equation for the device which describe the
unknown currents in terms of the applied voltage drops to the field device are given by vM =A>

Mu,
where u includes all node potentials of the circuit.

Now, Chapter 2.2 introduces into the modeling of field devices using the magnetoquasistatic for-
mulation which can be obtained by some reasonable assumptions (simplifications) of Maxwell’s
theory.



8 2 Modeling and Simulation of Electric Circuits and Magnetoquasistatic Devices

2.2 Magnetoquasistatic Approximation for Field Devices

In general Maxwell’s partial differential equations in macroscopic formulation are the fundamen-
tal theory to describe electromagnetic phenomena. The set of Maxwell’s equations reads, [25]:

—⇥E =�∂B
∂ t

, —⇥H =
∂D
∂ t

+J, —D = r, —B = 0, (2.4)

with electric field strength E, magnetic flux density B, magnetic field strength H, electric flux
density D, electric charge density r and the electric current density J. Within this thesis, we limit
ourselves to 2D regions (W ✓ R2). All quantities in (2.4) depend on time t 2 [t0, te] and space
r 2 W and thus Maxwell’s equations describe an time and space dependent problem which has to
be solved. In order to apply Maxwell’s macroscopic equations, one has to specify the relations
between D and E, H and B as well as E and J. The constitutive material relations are given (by
definition)

D = eE, H = vB, J = sE (2.5)

where e is the permittivity, v is the reluctivity and s is the conductivity. Using the magnetic vector
potential A : [t0, te]⇥W ! R2 for the field quantities E and B it follows:

B = —⇥A and E =�∂A
∂ t

�—j, (2.6)

where j : [t0, te]⇥W ! R is the electric scalar potential. Using the magnetic vector potential
formulation, the problem can be stated in magnetoquasistatic form, [26]:

s

∂A
∂ t

+—⇥ (v—⇥A) =�r—j. (2.7)

Equation (2.7) is of parabolic type and often referred to as curl-curl equation, where it is assumed
that the electric flux density D behaves constant over the time:

∂D
∂ t

= 0. (2.8)

The assumption of (2.8) implies that the field does not change quickly. Consequently, eq. (2.7)
only holds for a certain range of frequencies, [26]. However, the curl-curl equation describes the
applications in this thesis sufficiently accurate, since all engineering test examples operates within
a low frequency domain, e.g. a low frequency power inverter transformers.

Boundary and Initial Conditions: Maxwell’s Equations (2.4) as well as the material relations
(2.5) are defined on an infinite domain W. However, in practice one is interested only in the so-
lution of (2.7) for a finite domain with boundary ∂W, where the center of the truncated domain is
given by the device (unless symmetries of the device are exploited). Introducing spatially borders
is possible for parabolic PDEs as long as the boundaries are defined far enough from the MQS
device, where the surrounding is typically modeled by air. Depending on the problem, one has to
apply boundary conditions of different type for modeling the behavior in the outside of the trun-
cated problem, [33]. These are the Dirichlet- and Neumann boundary conditions. Furthermore, to
exploit symmetric geometries of the device and its resulting electromagnetic symmetries requires
to use anti-periodic boundary conditions, where we refer to [24] for details.

The Dirichlet condition directly specifies the values of the tangential part of the solution of the
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magnetic vector potential on the boundary:

A(r)⇥n = Ad 8 r 2 ∂W, (2.9)

where Ad are predefined values and n is the outward-pointing normal unit vector. In many cases,
the Dirichlet condition is given as a constant value such as Ad = 0 (the field goes to zero at the
borders).

The Neumann condition specifies the values that the first derivative of the solution, i.e., the tan-
gential parts of the magnetic field strength, is to take on the boundary of the domain, [24]:

H(r)⇥n = Hn 8 r 2 ∂W, (2.10)

where Hn are predefined values and n is the outward-pointing normal unit vector.

Furthermore, the given parabolic PDE in (2.7) is time dependent with solution on the finite time
interval [t0, te]. Generally, we set initial conditions to define the solution at t0 = 0 and we are
interested in the fields and fluxes at t � 0. Therefore, beside boundary values one has to define
appropriate initial values (IVs) for the magnetic vector potential for the entire domain W at time-
point t0:

A(t0,r) = A0(r) 8 r 2 W, (2.11)

where in many applications A0(r) = 0 is a reasonable choice.

Magnetoquasistatic Solid Conductor Model - A Discretized Formulation

A mixed mode simulation requires the coupling of MQS devices with circuits. In practice, differ-
ent conductor models such as solid conductors and stranded conductors are known, [24]. Within
this work we focus on solid conductors, which is a massive bar with contact surfaces on both
sides, see Fig. 2.2. For those models the coupling with a circuit is done by defining parts of the
device surface region as circuit branches thus that the circuit communicates with the MQS device
only by lumped elements. For coupling, the surface regions which are connected to the circuit
have to be linked to the boundary. Therefore, only appropriate boundary conditions have to be
defined, where commonly conditions of Dirichlet type (2.9) are applied.

x

y

z

vM

iM

Figure 2.2: MQS solid conductor model connected to a circuit by two wires. vM is the voltage
drop applied to the coils and iM is the resulting current through the solid conductor.
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We focus on the spatial discretized formulation of Maxwell’s equation’s (2.4) and material rela-
tions (2.5). A prominent approach for the discretization of electromagnetic devices in space is the
finite element method (FEM), [34,35], and finite integration technique (FIT), see e.g. [24], where
for 2D problems typically triangular elements are used. In the following we state the spatially
form of the curl-curl equation, whereas we refer to [24] for details.

The magnetic field of MQS devices given in magnetoquasistatic formulation (2.7) can be de-
scribed by the spatially discretized curl-curl equations in terms of the discretized magnetic vector
potential a 2 RnM , where nM depends on the discretization of the MQS device in space. The
discretized curl-curl equation reads:

M
s

d
dt

a+k
n

a�M
s

XMvM = 0, (2.12)

where all branch currents through the MQS device are gathered in a (total) current vector iM given
by

iM = X>
Mk

n

a. (2.13)

The quantities are the conductivity M
s

, the nonlinear curl-curl matrix k
n

, the voltage drop ap-
plied to the conductive region of the MQS device vM and XM is the distribution matrix for the
corresponding current iM.

The discretized curl-curl equation (2.12) corresponds to a differential algebraic equation with
corresponding initial values a(t0) = a0. Therefore, the next chapter states the coupled system
consisting of MQS devices and circuit elements.

2.3 Coupled Field/Circuit Problems

In the previous Chapter 2.1 and Chapter 2.2 the modeling of electric circuits and MQS devices
has been introduced. For circuits, the behavior can be modeled using idealized lumped elements
by disregarding the spatial distribution. The related system can be stated via MNA to a set of
differential algebraic equations, [21, 22]. The situation is different for MQS devices, where a
sufficiently accurate description is often not reasonable by a few lumped and idealized elements.
The mixed mode simulation (as one system) of circuits with MQS devices requires a coupling
between (2.2) and (2.12), [20, 24].

The voltage drop vM applied to the coils of the MQS devices includes all nodes which are connect
to the conductive surfaces. Therefore, as last step, the extended Kirchhoff’s Current law (2.3)
is merged with the spatially discretized curl-curl equation for MQS devices (2.12) by the total
current iM of the MQS device using its corresponding expression (2.13). Finally, the coupled
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system can be described as differential algebraic equation, [24]:

AC
d
dt

q+ARgR(A>
R u, t)+ALiL +AV iV +AIiS(t)+ AMiM = 0 (2.14a)

q�qC(A>
C u, t) = 0 (2.14b)

d
dt

f �A>
L u = 0 (2.14c)

f �fL(iL, t) = 0 (2.14d)

A>
V u�vS(t) = 0 (2.14e)

M
s

d
dt

a+k
n

a�M
s

XM A>
Mu = 0 (2.14f)

iM �X>
Mk

n

a = 0 (2.14g)

with unknown node potentials u 2 Rn, currents through MQS devices, inductors and voltage
sources iM 2 RnM , iL 2 RnL , iV 2 RnV , charges and fluxes q 2 RnC , f 2 RnL and the additional
magnetic vector potential a 2 RnM of the MQS device.

Differential algebraic equations are generally more difficult to solve as ordinary differential equa-
tions. The difficulty of DAEs is stated by its DAE-Index, [27]. Therefore, the next chapter
introduces into the differential index analysis with respect to field/circuit coupled problems.

DAE-Index Analysis

From the numerical point of view DAEs are mostly harder to solve by time-integration methods
as ODEs, [28], and require a special numerical treatment. The minimum number of differential
steps required to transform a DAE into an ODE is known as the differential index of the DAE
and referred to as DAE-index, [27, 28]. One can say that the DAE-index number indicates the
difficulty to solve the DAE by numerical methods. That is the higher the index the more difficult
the DAE to solve.

The structural requirements for a circuit to achieve a certain index is well known and posed in
[21]. The DAE-index for field/circuit coupled problems was studied by several authors for linear
and non-linear, 2D and 3D MQS devices, e.g. [24, 29, 30, 32]. One can show that under certain
conditions regarding the local passivity of all lumped network elements and under some structural
requirements of the network, the DAE-index for (2.14) is at most two. This is considered in the
following for the traditional MNA, where fluxes and charges are eliminated.

Sorting (2.14) into terms of a differential matrix (dynamic part), non-differential vector (static
part) and a vector consisting of all current and voltage sources (source part) yields the form, [24]:

0

B

B

@

AC 0 0
0 I 0
0 0 0
0 0 M

s

1

C

C

A

d
dt

0

@

ACqC
fL

M
s

a

1

A

+

0

B

B

@

ARgR(A>
R u, t)+ALiL +AV iV +AMX>

Mk
n

a
�A>

L u
A>

V u
k

n

(a)a�M
s

XMA>
Mu

1

C

C

A

+

0

B

B

@

AIiS(t)
0

�vS(t)
0

1

C

C

A

= 0,

(2.15)
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or more general:

A d
dt

d(x, t)+b(x, t)� f(t) = 0, (2.16)

with unknown solution x> =
�

u>, i>L , i>V , a>
�

.

Index-0:
The DAE (2.15) has index-0 if and only if no voltage sources are included, a tree containing
capacitors only and

i) no MQS devices are included in the network, or

ii) the network consists of MQS devices with conductive regions only, i.e., M
s

has full
rank.

Index-1:
Assuming that at least one MQS device, one voltage source are included or there is no tree
containing capacitors only. Then the DAE (2.15) has index-1 if and only if there is neither

i) a cutset consisting of inductances, current sources and MQS devices only (LIM-
cutset), nor

ii) a loop consisting of capacitances and at least a voltage source only (CV-loop).

Index-2:
Assuming that at least one MQS device or one voltage source are included or there is no
tree containing capacitors only. Then the DAE (2.15) has index-2 if and only if there is
either

i) a cutset consisting of inductances, current sources and MQS devices only (LIM-
cutset), or

ii) a loop consisting of capacitances and at least a voltage source only (CV-loop).

Remark 1. Within this work we will focus on DAEs (2.15) with DAE-index at most index-1. Thus
we assume that neither LIM-cutset nor CV-loop are included.

Now, having ensured that the DAE (2.15) is of DAE-index at most one, the following section
discusses its time-integration.

2.3.1 Time-Integration for Field/Circuit Coupled Problems

The DAE (2.15) is solved in time by using numerical time-integration methods such as Backward
Differentiation Formulas (BDF) or implicit Runge-Kutta (RK) methods, [28]. Here, the solution
is computed on an discrete time-grid by dividing the simulation interval [t0, te] into N + 1 time-
points:

t0 < t1 < t2 < .. . tn · · ·< tN = te, (2.17)

with fixed step-size h = (te � t0)/N or non-equidistant by using various step-sizes.

For non-equidistant time-points, the size of h essentially depends on how the unknowns of the
system behave in time. Here, the step-size has to be chosen smaller in time-regions of high dy-
namics, i.e., where the system variables change faster. Dealing with field/circuit coupled problems
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one usually has different time scales. This comes from the physics, where the field only changes
slowly compared to possible changes in the circuit part.

For single rate time-integration, the solution of all unknowns of x in (2.15) is computed at each
time point, where the step size h (defined equidistant by the user or non-equidistant by the time-
integration method) must be adapted with respect to the fastest changing signal. However, most
of the unknowns of (2.15) are field quantities, i.e., the line integrated magnetic vector potentials,
where the number of degrees of freedom (DOF) depends strongly on the size of triangular ele-
ments. In practice usually thousands of DOF for the field part. This makes the standard single
rate time-integration for (2.15) inefficient.

The way to avoiding this problem is referred to as co-simulation scheme or dynamic iteration,
[2, 3, 24], where each subsystem (circuit and field) is treated separately on their own time scales
using their own time-integrators with appropriate step sizes. The method of co-simulation will be
discussed next.

2.4 Conclusions

Within this chapter it has been shown that the type of equation can be different when physical
phenomena are modeled in mathematics.

First we stated the network equations for electric circuits by the technique of modified nodal
analysis. This results in a system consisting of differential equations and algebraic constraints.
Introducing Maxwell’s equations in differential form on macroscopic level leads (under reason-
able assumptions) to a magnetoquasistatic formulation for electric field devices (MQS devices)
using partial differential equations (PDEs). Merging circuits and MQS devices as one system
of equation requires a mixed mode simulation to solve the partial differential algebraic equation
model. Using spatial discretization for the MQS device, the PDAE model can be transformed into
a system of DAEs, where the underlying DAE-index depends on the network structure. Due to
different time scales the computation of those models can be very time-consuming. Therefore,
Chapter 3 will discuss the co-simulation strategy for solving such problems in time domain but
much more efficient.





3Chapter 3

Co-Simulation

In Chapter 2, the modeling of field/circuit coupled problems was discussed. It has been shown that
a spatial discretization of MQS devices yields a coupled system of differential algebraic equations.
For field/circuit coupled problems, single-rate time-integration is inefficient due to the different
time scales of the subsystems (usually slow changes in field and faster changes in the circuit).
Furthermore, the structural properties of each subsystem can be different due to various modeling
techniques. Here suitable time-integration methods must be chosen such that each integrator can
capture the structural properties. Moreover, to set up the system of equations for the coupled
problem, single-rate time-integration requires access to the modeling layer for each software-
package which is involved in the mixed mode simulation. Within this chapter, we focus on a
coupling approach of the involved software-packages which requires only the coupling variables
to be available.

The coupling of software-packages is a standard procedure for simulating multiphysics problems.
Each software-package is used to compute the solution of its own subproblem, i.e., each subsys-
tem is treated separately. This can be, for example, the flux in a transformer coupled to the heat
transport in the iron-core supplied by a circuit. The prominent approach for this task is known
as co-simulation, waveform relaxation method or dynamic iteration, where the information be-
tween the subproblems are only exchanged at communication points. Thus, co-simulation works
on certain time periods often referred to as time windows, where convergence can be achieved
by solving multiple times the subsystems (iteration), Chapter 3.1. The Co-simulation applied
to coupled ODEs is always convergent, see e.g. [4]. Our main focus is on time-integration of
field/circuit coupled problems, see Chapter 3.1.3, which yields a coupled systems of DAEs, see
Chapter 2.3. In contrast to the case of ODE coupling, the co-simulation of DAEs might fail if a
certain contraction condition is not fulfilled [2,3,20], Chapter 3.1.2. Here, the convergence as well
as the speed of contraction, i.e., the number of repeated model simulations, depends on the design
of the coupling interface [36], i.e., how the subsystems communicates with each other, and the
computational order amongst others. One can show that the design of the coupling interface is the
most crucial factor in co-simulation. The development of coupling interfaces with its application
in electric networks is a major topic of this thesis.

For field/circuit coupled problems the standard approach of decoupling is to separate between the
field and circuit part, i.e., cutting at EM device boundaries [36]. Here, the dedicated coupling
variables in Chapter 2.3 are replaced by controlled sources (source coupling), [8, 20, 24]. This
allows to define field and circuit subsystems which can be handled separately. Previous investi-
gations have shown that co-simulation is always convergent as long as the iteration starts with the
computation of the field subproblem, i.e., solving the curl-curl equation (2.12) first, e.g. [3,8,24].
However, our numerical investigations show that the coupling between field and circuit is com-
monly weak for the standard type of decoupling. Thus, oftentimes co-simulation requires a large
number of iteration steps to ensure an accurate solution, i.e., each subsystem have to be solved
many times. To reduce the number of iteration steps we propose new decoupling approaches,
where convergence follows directly from the coupling interface [36, 37], Chapter 3.2. Thus, the
convergence of co-simulation is independent from embedded electric circuits or EM devices. Fur-
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thermore, numerical investigations show that using dedicated coupling interfaces can enhance the
contraction, i.e., they reduce the computational effort in order to achieve a predefined level of
accuracy, see Chapter 7.

Afterwards, we will introduce uncertainties into co-simulation (subsystems with uncertain com-
ponents), [38]. This can be for example: uncertainties in resistors, conductors or inductors in
electric circuits or production-related tolerances in electrical machines, e.g. the number of turns,
the rotor/stator diameter or material impurities. Introducing uncertainties in this mode might af-
fect the dynamic iteration and can destroy convergence. Hence, one is interested to analyze the
stochastic behavior of co-simulation. Details are discussed in Chapter 6, [37].

This chapter is outlined as follows: Chapter 3.1 introduces into the different steps of co-simulation.
These are the partitioning into time windows, the partitioning into subsystems as well as the ex-
trapolation step followed by (one or more) dynamic iteration steps. Then, Chapter 3.1.1 and
Chapter 3.1.2 introduce into the Gauss-Seidel-type iteration scheme as the main concept of dy-
namic iteration that we consider within this thesis. Then, Chapter 3.1.3 focus on co-simulation
for field/circuit coupled problems and shows how to avoid divergence in practice. Applications to
field/circuit coupled problems are given in Chapter 7.

3.1 Dynamic Iteration for Coupled Problems

Within this chapter it is assumed that the differential index of the resulting DAE (2.16) is at
most one. This restriction can be assured for electric networks by avoiding LIM-cutsets and CV-
loops [21], see Chapter 2.3. This allows to refer to the more general system (2.16) without losing
its validity for the field/circuit coupled problem (2.15). Then by decomposing (reordering) the
system into differential equations and algebraic constraints the coupled problem can be addressed
as semi-explicit differential algebraic initial-value problem (DAE-IVP)

ẏ = f(t,y,z) with initial values y(t0) = y0, (3.1a)
0 = g(t,y,z) with initial values z(t0) = z0, (3.1b)

where f and g are vector functions consisting of differential and algebraic unknowns

y 2 [t0, te]! Rny and z 2 [t0, te]! Rnz . (3.2)

The index-1 assumption implies that the DAE-IVP (3.1) has a non-singular Jacobian ∂g/∂z and
the initial values y0, z0 are consistent, i.e., they solve the algebraic equation (3.1b). Finally, the
unknown solution vector can be summarized as:

x> = [y>,z>] with x 2 [t0, te]! Rny+nz , (3.3)

where the vector y is composed of variables that are defined by the first derivatives with respect to
time and z is composed of variables that are not described by any derivatives. The DAE-IVP (3.1)
solves the problem exact and is referred to as strongly coupled problem or monolithic problem.

Remark 2 (Partitioning for field/circuit coupled problems). For system (2.15) and index-1 the dif-
ferential and algebraic part consist of y = (q,f ,a)> and z = (u, il, iV )>, with algebraic unknown
node potentials u and currents iL, iV and differential unknown charges q, fluxes f and magnetic
vector potentials a.
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The following part introduces into the different steps of co-simulation: the partitioning of the
timeline into time windows, the partitioning into subsystems as well as the extrapolation step and
iteration steps.

Step 1: Partitioning into Time Windows

To enhance convergence, the process of co-simulation works on certain time periods, where con-
vergence can be achieved by solving multiple times the subsystems [3, 8, 20, 24]. To this end, the
simulation time [t0, te] is split into time periods of length [Tn, Tn+1] with

t0 = T0 < T1 < · · ·< Tn < Tn+1 < · · ·< TN = te, (3.4)

where the time-points Tn are termed as synchronization points or communication points of the co-
simulation procedure. The information transport between the subsystems is only managed at the
points Tn, (n= 1, . . . ,N). Then, co-simulation operates on these time periods with communication
step size Hn := Tn+1�Tn, where each subsystem may employ a dedicated time-integrator with step
sizes h, see (2.17), on Hn to compute the solution of the coupled problem. The communication
step sizes Hn are commonly referred to as time windows or macro steps in contrast to the micro
steps h of the numerical time-integration method.

Step 2: Partitioning into Subsystems

In the general case, the strongly coupled problem (3.1) consists of r subsystems. Investigations
about the co-simulation of r subsystems have been published in [3]. However, later we will
restrict ourselves to r = 2 subsystems. This can be, for example, a field model (extracted from the
underlying PDE after space discretization) coupled to a circuit model (extracted by MNA) [8,24].

By reordering the system (3.1) into terms of differential and algebraic equations, the vector func-
tions f and g can be decomposed as f> = [f>1 , . . . , f>r ] and g> = [g>1 , . . . ,g>r ], where the i-th sub-
problem is defined as (i = 1, . . . ,r) [20, 24]:

ẏi = fi(t,y>1 , . . . ,y>r ,z>1 , . . . ,z>r ) with initial values yi(t0) = yi,0, (3.5a)

0 = gi(t,y>1 , . . . ,y>r ,z>1 , . . . ,z>r ) with initial values zi(t0) = zi,0. (3.5b)

Again, the index-1 assumption for each subproblem (3.5) implies the non-singularity of the Ja-
cobian ∂gi/∂zi for i = 1, . . . ,r. However, it is important to note that having ensured that each
subproblem is at most of index-1 does not warrant index-1 for the coupled problem (3.1). This is
demonstrated in [24].

The overall (consistent) initial value can be decomposed as well:

y>0 = [y>1,0, . . . ,y>r,0], z>0 = [z>1,0, . . . ,z>r,0].

Now that we have split the strongly coupled system into r subsystems, we are prepared to start co-
simulation on these time windows consisting of an extrapolation step followed by (one or more)
iteration steps.
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Step 3: Constant Extrapolation

Assuming that a solution (approximation) x̃ of (3.3) has already been computed on [Tn�1,Tn]. To
proceed with the next time window [Tn,Tn+1], we employ constant extrapolation, see [2]:

 

ỹ|(0)[Tn,Tn+1]
(t)

z̃|(0)[Tn,Tn+1]
(t)

!

=

✓

ỹ|[Tn�1,Tn](Tn)
z̃|[Tn�1,Tn](Tn)

◆

for all t 2 [Tn,Tn+1], (3.6)

where the solution of the last time point from the previous time window serves as initial guess for
constant extrapolation.

The splitting error for constant extrapolation (3.6) is of order O(H). It is possible to improve
the order of co-simulation by using polynomials of higher degree for the extrapolation step, e.g.
linear, quadratic, see [52]. However, constant extrapolation is the most common guess to start up
co-simulation.

Step 4: Dynamic Iteration

The extrapolation step is followed by (one or more) iteration steps, where the waveform relax-
ation on time window [Tn,Tn+1] is defined by iteration operators for the differential and algebraic
unknown, see [2]:

y|y,[Tn,Tn+1] : C1([Tn,Tn+1],Rny)!C1([Tn,Tn+1],Rny),

y|z,[Tn,Tn+1] : C0([Tn,Tn+1],Rnz)!C0([Tn,Tn+1],Rnz).

The updated solution for the k-th iteration on [Tn,Tn+1] can be stated as
 

ỹ|(k�1)
[Tn,Tn+1]

(t)

z̃|(k�1)
[Tn,Tn+1]

(t)

!

!
 

ỹ|(k)[Tn,Tn+1]
(t)

z̃|(k)[Tn,Tn+1]
(t)

!

=

✓

y|y,[Tn,Tn+1]

y|z,[Tn,Tn+1]

◆

 

ỹ|(k�1)
[Tn,Tn+1]

(t)

z̃|(k�1)
[Tn,Tn+1]

(t)

!

, (3.7)

where (k�1) addresses the old iteration step.

Now, using constant extrapolation (3.6) and iteration (3.7), each subproblem can be handled as
separate subsystem on time window Hn, where the partitioning can be managed by introducing
controlled sources for the coupling variables (source coupling), see [24]. The related source
coupling is discussed in Chapter 3.1.3.

The decoupling by controlled sources ensures to have each subsystem (3.5) defined by its own
DAE-IVP (i = 1, . . . ,r) with consistent initial values [20, 24]:

˙̃yi,n = Fi

⇣

ỹ(k)n , ỹ(k�1)
n , z̃(k)n , z̃(k�1)

n

⌘

, with initial values ỹ(k)i,n (Tn) = ỹ(k�1)
i,n (Tn),

0 = Gi

⇣

ỹ(k)n , ỹ(k�1)
n , z̃(k)n , z̃(k�1)

n

⌘

, with initial values z̃(k)i,n (Tn) = z̃(k�1)
i,n (Tn),

(3.8)

where Fi, Gi are referred to as splitting functions. Consequently, for system (3.1), any co-
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simulation procedure can be encoded by splitting functions F, G:

ẏ = f(y,z) $ ˙̃y= F
⇣

ỹ(k), ỹ(k�1), z̃(k), z̃(k�1)
⌘

0 = g(y,z) 0 = G
⇣

ỹ(k), ỹ(k�1), z̃(k), z̃(k�1)
⌘

,
(3.9)

with F> = (F>
1 , . . . ,F>

r ) and G> = (G>
1 , . . . ,G>

r ). System (3.9) is referred to as weakly coupled,
where the splitting functions F, G must fulfill the compatibility condition, see [2]:

F(y,y,z,z) = f(y,z) and G(y,y,z,z) = g(y,z). (3.10)

Now, applying both steps, i.e., constant extrapolation (3.6) and dynamic iteration (3.7), for each
time window Hn, (i = 1, . . . ,N) on [t0, te]. The dynamic iteration approach computes the solu-
tion of each subsystem (3.5) sequentially and iteratively on Hn. Therefore, each subsystem is
solved with coupling terms fixed to the (best) so far known approximation. Then, co-simulation
is stopped after a finite number of k iteration steps and yields the approximation

x̃(k) =
✓

ỹ(k)
z̃(k)

◆

with ỹ(k) 2 [t0, te]! Rny , z̃(k) 2 [t0, te]! Rnz , (3.11)

where the (overall) piecewise composed solution satisfies, [20],

x̃ 2C1 �[t0, te],Rny)⇥C0([t0, te],Rnz
�

, (3.12)

i.e., the differential unknowns y are at least one times differentiable with respect to time and the
algebraic unknowns z are continuous.

Now, Chapter 3.1.1 discusses the Gauß-Seidel-type iteration scheme, where we set up the standard
recursion estimate to derive conditions for a convergent iteration scheme.

3.1.1 Gauss-Seidel-Type Iteration Scheme

Using the Gauß-Seidel-type iteration scheme [20, 24], each time-integration for one part of the
unknowns assumes values from another part of the unknowns to be available. For the other part
of the unknowns it is similarly. Then, after integration over the time window, we have new time
profiles for the unknowns of all parts of the partition. With these new time profiles we can re-
start the Gauss-Seidel-type iteration process over the same time window to further update the
profiles. Thus the solution of the i-th subsystem on the n-th time window x̃|i,[Tn,Tn+1] includes
recent solutions (time profiles) and old time profiles supplied from the other subsystems. This
yields the following definition of the Gauß-Seidel scheme, see [24].

Definition 1 (Gauss-Seidel-type Iteration, [24]). Let ỹ(k)i,n , z̃(k)i,n and ỹ(k�1)
i,n , z̃(k�1)

i,n be the solution of
the i-th subsystem on the n-th time window after a finite number of k and k�1 iteration steps. Con-
sequently, recent solutions and old solutions supplied from other subsystems occur. The IVP for
the i-th subsystem (i = 1, . . . ,r) of the partition (3.8) define a Gauß-Seidel-type iteration scheme
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with encoded splitting functions

Fi

⇣
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n

⌘
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(3.13a)

Gi

⇣
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⌘
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(k)
i,n , z̃

(k�1)
i+1,n , . . . , z̃

(k�1)
r,n ).

(3.13b)

Using the Gauß-Seidel-type iteration scheme, one has to decide, which of the r subsystems is
computed first, where the computational order basically affects the iteration operators in (3.7).

For r = 2 subsystems, the following example shows the resulting splitting functions.

Example 1. We consider (3.1) to be split into r = 2 subsystems. Furthermore, it is assumed
that the data exchange between the subsystems is solely organized by differential or algebraic
unknowns (not mixed). This claim is ensured for all our engineering test examples in Chapter 7,
since the subsystems are split in such a way that only a single variable is used for the information
transport. Assuming that subsystem 1 is defined by algebraic equations (AE) only, e.g. a circuit
with voltage, current sources and resistors, coupled with subsystem 2 given by an index-1 DAE,
e.g. system (2.12). Starting Gauß-Seidel-type dynamic iteration for the AE-DAE coupled problem
one has to define which subsystem is computed first.

For subsystem 2 (DAE) first, there are basically two possibilities: the old waveform z̃(k�1)
1 enters

subsystem 2 by differential equation or algebraic constraint depending on the coupling. For sim-
plification we skip the tilde in the following. The splitting functions (3.9) for both cases reads:

(old algebraic waveform enters differential equation)

F(y(k),y(k�1),z(k),z(k�1)) :=


f2(0, z(k�1)
1 ,y(k)2 ,z(k)2 )

�

,

G(y(k),y(k�1),z(k),z(k�1)) :=

"

g1(0,z(k)1 ,y(k)2 ,z(k)2 )

g2(0,0,y(k)2 ,z(k)2 )

#

,

or (old algebraic waveform enters algebraic constraint)

F(y(k),y(k�1),z(k),z(k�1)) :=
h

f2(0,0,y(k)2 ,z(k)2 )
i

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

g1(0,z(k)1 ,y(k)2 ,z(k)2 )

g2(0, z(k�1)
1 ,y(k)2 ,z(k)2 )

3

5 .

For subsystem 1 (AE) first, there are again two possibilities: the old differential ỹ(k�1)
2 or old al-

gebraic waveform z̃(k�1)
2 enters algebraic constraint of subsystem 1. Then, the splitting functions

(3.9) for both cases reads:
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(old differential waveform enters algebraic constraint)

F(y(k),y(k�1),z(k),z(k�1)) :=
h

f2(0,z(k)1 ,y(k)2 ,z(k)2 )
i

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

g1(0,z(k)1 , y(k�1)
2 ,z(k)2 )

g2(0,0,y(k)2 ,z(k)2 )

3

5 ,

or (old algebraic waveform enters algebraic constraint)

F(y(k),y(k�1),z(k),z(k�1)) :=
h

f2(0,0,y(k)2 ,z(k)2 )
i

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

g1(0,z(k)1 ,y(k)2 , z(k�1)
2 )

g2(0,z(k)1 ,y(k)2 ,z(k)2 )

3

5 .

For contraction, i.e., that x̃|(k)[Tn,Tn+1]
(t) is a better solution as x̃|(k�1)

[Tn,Tn+1]
(t), it matters if old differen-

tial or algebraic waveforms enters differential or algebraic equation [2, 20, 24]. Here, the wrong
computational order can cause divergence. This is discussed in the next chapter, where we ana-
lyze the more general case of DAE-DAE coupling. Then, Chapter 3.1.3 treats the Gauss-Seidel
iteration scheme with its application to field/circuit coupled problems (2.14). Here, the results for
DAE-DAE coupling can be exploit to establish an always convergent co-simulation procedure.

3.1.2 DAE-DAE Coupling

As shown previously, co-simulation starts with an extrapolation step followed by iteration steps.
However, the convergence of dynamic iteration requires to be already sufficiently close (in the
neighborhood) to the solution of the strongly coupled problem (3.1) (exact solution). Here, using
constant extrapolation as initial guess for the extrapolation step is mostly sufficient as long as the
time window has been chosen small enough.

Now, convergence of a dynamic iteration is analyzed: Starting from the definition of the neigh-
borhood of a solution, we define how to measure the distance of the approximation x̃ to the exact
solution x. Following [20], the Gauss-Seidel-type dynamic iteration yields an estimation for the
errors in the differential and algebraic variables of (3.11). Finally, we deduce different conver-
gence rates for various splitting functions (3.9).

Definition 2 (Neighborhood). Let x|[Tn, Tn+1] be the exact solution on the n-th time window. The
distance d > 0 from the exact solution defines a neighborhood

Un,d := {x|[Tn, Tn+1] 2C1([Tn, Tn+1],Rny)⇥C0([Tn, Tn+1],Rnz) :

kỹn �ynk2,•, kz̃n � znk2,•  d},
(3.14)

where k ·k2,• := supt2[Tn, Tn+1] k ·k2 denotes the maximum norm in time and L2-norm in space.

Now, starting from two solutions X, X̃ on the n-th time window [Tn,Tn+1] and performing k
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iteration steps. The distance between two waveforms is measured from the differences

d

(k)
y,n := sup

t2[Tn,Tn+1]
kY(k)

n (t)� Ỹ(k)
n (t)k2, (3.15a)

d

(k)
z,n := sup

t2[Tn,Tn+1]
kZ(k)

n (t)� Z̃(k)
n (t)k2. (3.15b)

For convergence, the differences tends to zero as k tends to infinity, i.e., the updated waveforms
become closer to the exact solution. Figure 3.1 shows the solution in a node potential of a circuit
obtained by Gauss-Seidel iteration on a fixed time window Hn = [0.4ms, 0.5ms] for different
iteration steps.

4 4.2 4.4 4.6 4.8 5
·10�4

�1.5

�1
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time [s]

vo
lta
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ṽ(0)

ṽ(1)
v(2)
v

time window

Figure 3.1: Dynamic iteration on time window Hn = [4ms, 5ms]. (red) solution (waveforms) for
k = 0,1,2 iterations and (black) exact solution obtained by solving the monolithic
model.

Now, for DAE-DAE coupling one can derive an recursion estimate for the dynamic iteration of
two waveforms in Un,d .

Lemma 3 (Recursion Estimate, [20]). Let a dynamic iteration (3.9) be given, with consistent
splitting functions F, G, where F, G are Lipschitz-continuous on Un,d, G is totally differentiable
on Un,d and G(k)

z is invertible on Un,d. Then there is a constant C > 1, such that for two waveforms
X(k�1)

n , X̃(k�1)
n 2 Un,d on a time window Hn < Hmax the following recursion estimate holds

 

d

(k)
y,n

d

(k)
z,n

!

 K

 

d

(k�1)
y,n

d

(k�1)
z,n

!

+ "initial offset", (3.16)

with recursion matrix and contraction factor

K :=
✓

CHn CHn
C CHn +an

◆

and an := (1+Cd)kG�1
z(k)Gz(k�1)k2,• +Cd, (3.17)

with Jacobian Gz(k) := ∂G
∂z(k) and Gz(k�1) := ∂G

∂z(k�1) .

Proof. We only give a sketch of the proof. For those who are interested in details, see [20, 24].
The proof is basically split into the recursion estimate (3.16) for the differential and algebraic un-
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knowns d

(k)
y,n and d

(k)
z,n , respectively. The consistency (3.10) of the splitting functions F, G implies

that the differential function F is Lipschitz-continuous on the neighborhood (3.14) with Lipschitz
constant LF > 0 and G is totally differentiable on Un,d with Lipschitz-continuous derivatives.

Inserting two waveforms X(k�1)
n , X̃(k�1)

n 2Un,d yields two differential equations. Subtracting one
from the other measures the differences at each time point t 2 Hn. Now for the ODE-part after the
integration for Tn < t  Tn+1, Lipschitz continuity yields the estimate

|D(k)
y,n(t)| |D(0)

y,n(Tn)|+
t

Z

Tn

LF(|D(k)
y,n|+ |D(k�1)

y,n |+ |D(k)
z,n|+ |D(k�1)

z,n |)dt. (3.18)

For the algebraic unknowns with Z(k) =F(Y(k),Y(k�1),Z(k�1)) and Z̃(k) =F(Ỹ(k), Ỹ(k�1), Z̃(k�1))
the difference yields an estimate for the algebraic unknowns

|D(k)
z,n| LF(|D(k)

y,n|+ |D(k�1)
y,n |+ |D(k�1)

z,n |), (3.19)

with Lipschitz constant LF > 0. Now by inserting (3.19) into (3.18) yields (after reordering)
the maximum upper bound for (3.15a) on the respective window Hn. For (3.15b) it is the same
strategy.

Now, using (3.17) the condition for contraction yields a compact expression.

Lemma 4 (Contraction Condition, [20]). Let the splitting functions F, G fulfill the assumption of
Lemma 3. Then for Hn < Hmax and d small enough the map (for all k)

 

d

(k�1)
y,n

d

(k�1)
z,n

!

!
 

d

(k)
y,n

d

(k)
z,n

!

is contractive for
kG�1

z(k)Gz(k�1)k2,• < 1. (3.20)

Proof. For k iteration steps of (3.16) the rougher recursion estimate for the map d

(0)(y,z) !
d

(k)(y,z) implies the multiplication by the k-th power of the recursion matrix K. Consequently,
the map is contractive for a spectral radius r(K)< 1. Thus, the claim for convergence is deduced
by inspecting the eigenvalues of the recursion matrix K:

l1,2 =
1
2

✓

an +2CHn ±
q

a

2
n +4C2Hn

◆

. (3.21)

See [20] for more details.

Remark 5. Within Chapter 3.2 we will use the spectral radius condition to establish coupling in-
terfaces with always contractive behavior. Thus, the claim is shifted from the structural properties
of splitting functions to the network topology.

The eigenvalues (3.21) determine the convergence rate of the dynamic iteration process. Conse-
quently, the convergence rates are prescribed by the structural properties of the coupling interface.
A close consideration of Lemma 3 and Lemma 4 yields the following:

Corollary 6 (Convergence Rates, [24]). Given a splitting
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i) with
4C2Hn < a

2
n ,

the dynamic iteration yields the convergence rate an +O(Hn).

ii) with vanishing Jacobian
Gz(k�1) = 0,

i.e., no algebraic constraint depends on old algebraic iterates, the contraction factor van-
ishes, i.e., an = 0, (simple coupling) and the dynamic iteration process yields the conver-
gence rate O(

p
Hn).

iii) with vanishing Jacobian
Gz(k�1) = 0 and Gy(k�1) = 0,

i.e., no algebraic constraint depends on old iterates, the dynamic iteration process yields
the convergence rate O(Hn).

In practice, convergence of co-simulation with at least convergence rate O(
p

Hn) is intended,
which is basically guaranteed for a vanishing contraction factor an. That is, the coupling interface
must be designed in such a way that algebraic-to-algebraic coupling is avoided, i.e., that no alge-
braic constraint depends on old algebraic iterates. Then, for Hn < Hmax the strength of coupling is
basically controlled by the leading constant C in (3.17) having impact to the speed of contraction.

With application to field/circuit coupling the dynamic iteration is always convergent (for H <
Hmax) as long as the co-simulation starts with the computation of the field first, Chapter 3.1.3,
where the splitting into subsystems is done by cutting at the EM device boundaries. However,
numerical investigations show that for the standard way of splitting the strength of coupling is
commonly weak. Thus, within Chapter 3.2 we propose new dedicated coupling interfaces which
may enhance the coupling strength. Therefore, the interfaces reduce the computational effort,
since co-simulation requires less iteration steps to achieve a prescribed tolerance. Numerical
investigations for various interfaces with application in field/circuit coupling are given in Chapter
7.

3.1.3 Field/Circuit Co-Simulation

Within this chapter the dynamic iteration for field/circuit coupled problems (2.14) is closely stud-
ied, where it is assumed that the circuit subsystem eqs. (2.14a) to (2.14e) is at most of index-1.
Then, the system consisting of a circuit (denoted by subscript C) and field (denoted by subscript
M) can be addressed as semi-explicit DAE-IVP:

ẏM = fM(t,zM,zC), with yM(t0) = yM,0 ẏC = fC(t,yC,zC), with yC(t0) = yC,0

0 = gM(t,yM,zM), with zM(t0) = zM,0 0 = gC(t,yC,zC,zM), with zC(t0) = zC,0
(3.22)

where the differential and algebraic unknowns of the circuit and the field are summarized in their
corresponding vectors yM, zM, yC and zC, [24].

Now, two basic concepts can be used for the coupling. This is the source coupling and the pa-
rameter coupling. However, within this work we focus only on the source coupling approach and
refer for the parameter coupling to [24].
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Source Coupling

In order to calculate the circuit and the field subsystem separately on Hn, the field must be supplied
by an input signal which is defined by the circuit coupling node, whereas the circuit needs the
current of the MQS device to ensure a balanced node vM. The idea is the following: having
split the strongly coupled problem into a circuit and MQS device subsystem, one has to locate
the coupling variables which are responsible for the information transport. These are the voltage
drops vM =A>

Mu applied to the MQS device in (2.14f) and the current iM through the MQS device.
The incidence matrix A>

M is structured such that vM includes only the nodes of the circuit which
are connect to the conductive surfaces, whereas AM stamps the current iM back to the circuit by
the extended Kirchhoff’s Current law (2.14a).

This can be done by time-depended sources, such that each subsystem stands alone without open
branches. Figure 3.2 shows the source coupling between circuit and field. The input for the field

iM

vM

iM

vM
circuit field

AC
d
dt

q(AT
Cu)

· · ·+AMiM

M
s

d
dt â+k

n

(â)â�XMiM = 0

XT d
dt a+RMiM �vM = 0

Figure 3.2: Source coupling between field and circuit.

on the n-th time window is given as

vM(t) = A>
Mu(k�1), for t 2 [Tn,Tn+1], (3.23)

where u(k�1) is the solution of all node potentials of the circuit. Then vM(t) is used to update
the current through the MQS device iM, where the current waveform serves as data for the time-
dependent current source of the circuit

iS(t) = i(k)M (t), for t 2 [Tn,Tn+1] (3.24)

to further update the node potentials.

Remark 7. The coupling of the circuit with the MQS device as shown in Fig. 3.2 ensures to remain
in the index-1 case. However, introducing time-dependent sources can change the differential
index of the subsystems. For the case of a current source driven MQS device, the field subsystem
becomes index-2, since the interface produces a LIM-cutset. Furthermore, the index-1 condition
for the circuit is no longer ensured, since a capacitively grounded node vM produce a CV-loop,
see Chapter 2.3.

Splitting Schemes

For the field/circuit coupled problem different splitting functions are obviously possible. Their
structure depends on the computational order (field or circuit first) and on the network topology.
When the Gauß-Seidel-type dynamic iteration starts with the computation of the field first, the
mutual algebraic dependence is avoided, since the old iterate of the circuit, whether differential
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or algebraic, enters differential equation of the field (field first):

F(y(k),y(k�1),z(k),z(k�1)) :=

2

4

fM(z(k)M , y(k�1)
C ,z(k�1)

C )

fC(y(k)C ,z(k)C )

3

5 , (3.25a)

G(y(k),y(k�1),z(k),z(k�1)) :=

"

gM(y(k)M ,z(k)M )

gC(y(k)C ,z(k)C ,z(k)M )

#

, (3.25b)

Therefore, the contraction factor an vanishes and convergence with window-wise convergence
rate O(Hn) can be directly deduced from their related splitting functions, see Cor. 6 (iii).

Now, starting the computation with the circuit, the convergence depends on whether differential
or algebraic equation is entered by the algebraic iterate iM of the MQS device (circuit first):

F(y(k),y(k�1),z(k),z(k�1)) :=

2

4

fM(z(k)M ,z(k)C )

fC(y(k)C ,z(k)C , z(k�1)
M )

3

5 , (3.26a)

G(y(k),y(k�1),z(k),z(k�1)) :=

"

gM(y(k)M ,z(k)M )

gC(y(k)C ,z(k)C )

#

, (3.26b)

or

F(y(k),y(k�1),z(k),z(k�1)) :=

"

fM(z(k)M ,z(k)C )

fC(y(k)C ,z(k)C )

#

, (3.27a)

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

gM(y(k)M ,z(k)M )

gC(y(k)C ,z(k)C , z(k�1)
M )

3

5 . (3.27b)

Splitting (3.26) occurs for a capacitively grounded coupling node vM, since the node becomes a
differential formulation and thus convergence is guaranteed. However, for a non-differential node
vM the splitting yields mutual algebraic dependent subsystems (algebraic-to-algebraic coupling),
see Cor. 6 (i), where convergence is only guaranteed if the contraction condition of Lemma 4 is
fulfilled.

To summarize, the following applies to field/circuit coupled problems (3.22), [24]. Let all sub-
systems be at most of index-1. Using the source coupling with controlled sources (3.23) and
(3.23) with voltage driven MQS device, the Gauß-Seidel-type dynamic iteration of Def. 1 for the
field/circuit coupled problem (3.22) is unconditionally stable and convergent with convergence
rate O(Hn), if

i) the iteration starts with the computation of the MQS device.

ii) the iteration starts with the computation of the circuit with capacitively grounded coupling
node vM.
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3.1.4 Conclusions

Within this chapter the fundamental steps of co-simulation were introduced: the timeline parti-
tioning, the splitting into subsystems, the extrapolation as well as the dynamic iteration. Finally,
based on the results of the DAE-DAE coupling and its corresponding recursion estimate, we state
the condition for a convergent field/circuit co-simulation.

3.2 Coupling Interfaces

Recall that a convergent co-simulation scheme implies to have the spectral radius of the underlying
recursion matrix K in (3.16) smaller than one. Thus, based on the definition of the contraction
factor (3.17), guaranteed convergence can be deduced by inspecting the corresponding splitting
functions. Consequently, co-simulation is always convergent by avoiding the mutual algebraic
dependence of the subsystems (algebraic-to-algebraic coupling). This can be always ensured
for simple coupled or fully differential coupled subsystems, since the Jacobian Gz(k�1) = 0 or
Gz(k�1) = 0 and Gy(k�1) = 0 vanish, see Cor. 6. Otherwise, the contraction condition (3.20) is not
automatically fulfilled and divergence might occur.

As shown in the previous chapter, the Gauß-Seidel scheme for field/circuit coupled problems
is always convergent as long as the dynamic iteration process starts the computation with the
MQS device. The reverse order (computation of the circuit first) is also unconditionally stable
for a capacitively grounded coupling node. The resulting splitting functions are (3.25) and (3.26).
Both splittings yield the fully differential coupling with window-wise convergence rate O(Hn),
see Cor. 6 (iii).

Now, assume to have a splitting scheme that fulfills the contraction conditions of Cor. 6 (ii) or
(iii). The eigenvalues of the iteration matrix K is solely affected by the window size Hn and
constant C, where C is an estimate for the leading coefficients and is indicator for the strength
of the coupling, having impact to the speed of the contraction. Consequently, the smaller the
constant C, the stronger the coupling. One can observe by numerical simulations that the coupling
strength is mostly weak for system (3.22) with splitting (3.25) (split at the EM device boundaries
and compute the field first), see Chapter 7.2. This is reflected in the number of repeated model
simulations (number of iterations) of the field and circuit subsystem which are required to achieve
a predefined accuracy.

An extension of the standard recursion estimate of Lemma 3 shows that the coupling strength is
basically affected by components which are in the surrounding of the interface, i.e., close to the
controlled sources. Using dedicated coupling interfaces may enhance the convergence properties
and reduces the computational effort. Therefore, we develop new coupling interfaces with better
performances (faster contraction), such that it will beat the standard coupling approach with split-
ting (3.25). These are the R-splitting and LR-coupling techniques, see Chapter 3.2.1 and Chapter
3.2.2. Here, general stability and contraction follows directly from the network structure. These
properties are independent from embedded electric circuits or embedded EM devices, which en-
ables to use the interfaces for various applications. A numerical comparison of both coupling
approaches with the standard coupling approach is given in Chapter 7.2.

Furthermore, we show that the standard contraction theory is to coarse even for a simple circuit,
Chapter 3.2.3. Therefore, we proof contraction via fine structure analysis, i.e., without estimation.
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The result fits to the essential results of R-splitting and LR-coupling.

3.2.1 R-splitting

We expand the standard coupling interface with controlled sources by introducing or identifying
an R-link in the respective location. The R-link may model a resistive wire with a capacitive cou-
pling between the isolated potentials. Using decoupling with controlled time-dependent sources,
see Chapter 3.1.3, this situation is sketched in Fig. 3.3, where network 1 (NW 1) and network
2 (NW 2) signify each an arbitrary network (circuit or EM device). Two resistances in series is
rather academic in practice. In fact, R-splitting can be introduced by split a lumped resistance R
into two resistances in series, where the shift is done by a ratio parameter w:

RNW 1 := wR and RNW 2 := (1�w)R with w 2 (0,1) . (3.28)

Assumption 1. It is assumed that NW 1 and NW 2 is at most of differential index-1.

Consequently, by identifying an R-link, both subsystems remain index-1 with non-singular Ja-
cobian ∂g1/∂z1 and ∂g2/∂z2, since neither LIM-cutset nor CV-loop are caused by controlled
sources.

Since the coupling node UCo as well as the coupling current ICo is of algebraic type, an old alge-
braic constraint depends on an old algebraic iterate. Thus, R-splitting creates a mutual algebraic
dependency between the subsystems, such that a contraction factor an occurs for both computa-
tional sequences, see Cor. 6 (i). Consequently, (3.20) is not trivially fulfilled and convergence is
only ensured for an < 1. Again, the coupled problem can be abstractly addressed by the splitting
functions

F(y(k),y(k�1),z(k),z(k�1)) :=

"

f1(y(k)1 ,z(k)1 ,0,0)
f2(0,0,y(k)2 ,z(k)2 )

#

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

6

4

g1(y(k)1 ,z(k)1 ,0, z(k�1, k)
2 )

g2(0, z(k, k�1)
1 ,y(k)2 ,z(k)2 )

3

7

5

,

(3.29)

where the boxes denote the old algebraic iterate for subs. 1 first or subs. 2 first, respectively.

Now the standard recursion estimate (3.16) with lumped errors for the algebraic and differential
variables will be improved. Using the R-splitting strategy, the contraction factor an is defined by
the ratio of the coupling resistances RNW 1 and RNW 2, which enables to improve the convergence
rate.

Extended Splitting Functions

In contrast to address the coupled problem via general splitting functions (3.29) we also take
additional differential equations and algebraic constraints into account, which are defined by the
components in the surrounding of the controlled sources. These are the equations for the coupling
unknowns UCo and ICo and the constraint for the node potential U1 (of subs.1 and subs. 2):

0 = (UB1,y1 �UCo,z̄1) ·GNW 1 + ICo,z̄1(t) and 0 = (U1,z̄2 �UB2,y2) ·GNW 2 + ICo,z̄2 ,

0 =U1,z̄2 �UCo,z̄2(t).
(3.30)
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RNW 1

ICo(t)

U (k,k�1)
Co

I(k�1,k)
Co

UCo(t)

ICo

RNW 2UB1 UB2U1UCo

NW 1 NW 2

Figure 3.3: R-splitting between two subsystems.

Here, y1, y2 and z1, z2 refer to the unknowns of NW 1 and NW 2, whereas the subscript bar-
notation is used to address explicitly to the additional unknowns which are located in the outside
of NW 1 and NW 2. Furthermore, the conductances GNW 1 and GNW 2 are the inverse of the
resistances RNW 1 and RNW 2. The embedding (coupling) of NW 1 and NW 2 to subs. 1 and subs.
2 is done by the additional current terms

A f1 ·GNW 1UCo,z̄1 , A f2 ·GNW 2U1,z̄2 , (3.31)

where the incidence matrices A f1 and A f2 stamp the currents to their respective branch equation
of NW 1 and NW 2. Now, the procedure is the same as for the extended Kirchhoff’s Current law
(2.3) to couple MQS devices with circuits. Note that these are the currents flowing into the gates
of NW 1 and NW 2 and that they enter differential equation for capacitively grounded nodes UB1

and UB2 .

Using eq. (3.30) and currents (3.31), the following (extended) splitting scheme defines the parti-
tioned system (for subs. 1 first):

F
⇣

y(k),z(k),y(k�1),z(k�1)
⌘

:=

"

f1(y1
(k),z1

(k))+A f1 ·GNW 1 ·U (k)
Co,z̄1

f2(y2
(k),z2

(k))+A f2 ·GNW 2 ·U (k)
1,z̄2

#

,

G
⇣

y(k),z(k),y(k�1),z(k�1)
⌘

:=

2

6

6

6

6

6

6

6

4

g1(y1
(k),z1

(k))

(U (k)
B1,y1

�U (k)
Co,z̄1

) ·GNW 1 + I(k�1)
Co,z̄1

(t)

g2(y2
(k),z2

(k))

(U (k)
1,z̄2

�U (k)
B2,y2

) ·GNW 2 + I(k)Co,z̄2

U (k)
1,z̄2

�U (k)
Co,z̄2

(t)

3

7

7

7

7

7

7

7

5

,

(3.32)

where f1, f2 includes the ODE-part and g1, g2 includes the algebraic constraints of NW 1 and
NW 2. Now, we are prepared to state an extended version of (3.16).

Theorem 8 (Extended Recursion Estimate for R-splitting). Let a dynamic iteration (3.9) be given,
with consistent splitting functions F and G, where F, G are Lipschitz-continuous on Un,d and G
is totally differentiable on Un,d. Then, using the R-splitting approach with capacitively grounded
nodes UB1 and UB2 , there are constants

C :=

0

@

G2
NW 2

GNW 1 [1�L f (1+LF)Hn]
+

G2
NW 2

1�L f (1+LF)Hn
Hn �GNW 2

1� (L f (1+LF)+GNW 1)Hn

1

A (3.33)

and Cy1 , Cz1 , Cy2 , Cz2 , CUCo , CU1 > 0, where LF, L f are Lipschitz constants and GNW 1, GNW 2 are
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the conductances of the R-splitting interface, such that for two waveforms x(k�1)
n , x̃(k�1)

n 2Un,d on
a time window Hn < Hmax the following extended recursion estimate holds:

0

B

B

B

B

B

B

B

B

B

B

B

@

d

(k)
y1

d

(k)
z1

dU (k)
Co,z̄1

d

(k)
y2

d

(k)
z2

dU (k)
1,z̄2

d I(k)Co,z̄2

1

C

C

C

C

C

C

C

C

C

C

C

A

 Ke
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B

B

B

B

B

B

B
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B

B

@

d

(k�1)
y1

d

(k�1)
z1

dU (k�1)
Co,z̄1

d

(k�1)
y2

d

(k�1)
z2

dU (k�1)
1,z̄2

d I(k�1)
Co,z̄2

1

C

C

C

C

C

C

C

C

C

C

C

A

+"initial offset", (3.34)

with extended recursion matrix and contraction factor

Ke =

0

B

B

B

B

B

B

B

B

B

B

B

@

0 . . . . . . Cy1Hn
... 0 Cz1Hn

. . . CUCo

Cy2Hn
Cz2Hn

... CU1

0 . . . . . . an +CHn

1

C

C

C

C

C

C

C

C

C

C

C

A

and an =
GNW 2

GNW 1
(3.35)

Proof. Basically we extend the proof of Lemma 3 by taking additional terms of R-splitting into
account. The proof is split into two parts: starting with subs. 1 the estimation technique is applied
for all unknowns. Then the estimation is done for subs. 2 while we use the inequalities of the
coupling variables to link both subsystems together. Due to the symmetry of the R-splitting inter-
face, the estimation also holds for the computational sequence of subs. 2 first. For simplification
we use the notation G1, G2 instead of GNW 1, GNW 2.

Subs. 1: Assume that the co-simulation starts with the computation of subs. 1 first. For the
algebraic unknowns of NW1, with z1 = F1(y1), the estimation

|D(k)
z1 | LF|D(k)

y1 |, (3.36)

holds, where LF is the maximum of the Lipschitz constants of fi with respect to yi and zi. For the
ODE-part after the integration for Tn < t  Tn+1, Lipschitz continuity yields

|D(k)
y1 | |D(k�1)

y1 (tn)|+
t

Z

Tn

L f (|D(k)
y1 |+ |D(k)

z1 |)+G1 · |DU (k)
Co,z̄1

|dt, (3.37)

with Lipschitz constant L f (assumed by Lipschitz continuity, consistency of F). Using the alge-
braic constraint (3.30) for the coupling node UCo and solving for d

(k)
y1 yields

d

(k)
y1  1

1� (L f (1+LF)+G1)Hn
· |D(k�1)

y1 (tn)|

+
1

1� (L f (1+LF)+G1)Hn
·Hn ·d I(k�1)

Co,z̄1
,

(3.38)
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and for the algebraic part of NW1

d

(k)
z1 

L
f

1� (L f (1+LF)+G1)Hn
· |D(k�1)

y1 (tn)|

+
L

f

1� (L f (1+LF)+G1)Hn
·Hn ·d I(k�1)

Co,z̄1
.

(3.39)

Again, starting from the algebraic constraint of UCo and using the estimation |DU (k)
B1,y1

|  |D(k)
y1 |

yields

dU (k)
Co,z̄1

 1
1� (L f (1+LF)+G1)Hn

· |D(k�1)
y1 (tn)|

+

✓

1
G1

+
1

1� (L f (1+LF)+G1)Hn
·Hn

◆

·d I(k�1)
Co,z̄1

.

(3.40)

Subs. 2: Similarly, by using the same technique for subsystem 2, the corresponding inequalities
for (3.36) and (3.37) reads:

|D(k)
z2 | LF|D(k)

y2 |, (3.41)

|D(k)
y2 | |D(k�1)

y2 (tn)|+
t

Z

Tn

L f (|D(k)
y2 |+ |D(k)

z2 |)+G2 · |DU (k)
1,z̄2

|dt. (3.42)

With the algebraic equation U1 =UCo and (3.40) we obtain

d

(k)
y2  1

1�L f (1+LF)Hn
· |D(k�1)

y2 (tn)|

+
G2

(1� (L f (1+LF)+G1)Hn)(1�L f (1+LF)Hn)
·Hn · |D(k�1)

y1 (tn)|

+

✓

1
1�L f (1+LF)Hn

· G2

G1
+

G2

(1� (L f (1+LF)+G1)Hn)(1�L f (1+LF)Hn)
·Hn

◆

·Hn ·d I(k�1)
Co,z̄1

(3.43)

And for the algebraic part of NW2

d

(k)
z2 

L
f

1�L f (1+LF)Hn
· |D(k�1)

y2 (tn)|

+
L

f

G2

(1� (L f (1+LF)+G1)Hn)(1�L f (1+LF)Hn)
·Hn · |D(k�1)

y1 (tn)|

+

✓

L
f

1�L f (1+LF)Hn
· G2

G1
+

L
f

G2

(1� (L f (1+LF)+G1)Hn)(1�L f (1+LF)Hn)
·Hn

◆

·Hn ·d I(k�1)
Co,z̄1

(3.44)

Starting from the algebraic constraint of the coupling current ICo. With |DU (k)
B1,y2

| |D(k)
y1 | and the
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algebraic equation U1 =UCo, where we use (3.40) as estimation, we obtain for the diagonal link:

d I(k)Co,z̄2
 G2

1�L f (1+L
f

)Hn
|D(k�1)

y2 (tn)|

� G2

1� (L f (1+LF)+G1)Hn
· |D(k�1)

y1 (tn)|

+
G2

2
(1�L f (1+LF)Hn)(1� (L f (1+LF)+G1)Hn)

·Hn · |D(k�1)
y1 (tn)|

+

2

6

6

6

6

4

G2

G1
|{z}

=an

+

0

@

G2
2

G1 [1�L f (1+LF)Hn]
+

G2
2

1�L f (1+LF)Hn
Hn �G2

1� (L f (1+LF)+G1)Hn

1

A

| {z }

=C

·Hn

3

7

7

7

7

5

d I(k�1)
Co,z̄2

.

(3.45)
This concludes the proof.

Now, analogously to Lemma 4 one can define a condition such that co-simulation behaves con-
tractive.

Lemma 9 (Contraction Condition). Let Ass. 1 be fulfilled and let Hn < Hmax and d small enough.
Then, for a co-simulation with R-splitting technique the map (for all k)

⇣

d

(k�1)
y1 , d

(k�1)
z1 , . . . ,d (k�1)

y2 , d

(k�1)
z2

⌘>
!
⇣

d

(k)
y1 , d

(k)
z1 , . . . ,d (k)

y2 , d

(k)
z2

⌘>

is contractive for
GNW 2 < GNW 1 (3.46)

independently of the type of NW 1 and NW 2.

Proof. The proof is based on inspecting the eigenvalues of the extended recursion matrix Ke. The
information transport is solely managed by one unknown. Consequently, the recursion matrix Ke
is an upper triangular matrix. Its eigenvalues are the diagonal elements

l1,...,6 = 0, l7 =
GNW 2

GNW 1
+CHn, (3.47)

which implies for the spectral radius r(Ke) =
GNW 2
GNW 1

+CHn. This concludes the proof.

Thus, the strength of the coupling is determined by the ratio of the coupling resistances. Here,
the constant C as well as an can be controlled by resistance splitting. That is, for an increasing
resistance R2 the contraction factor an and the constant C decreases. Thus, the spectral radius can
be reduced close to zero for a suitable choice of the ratio parameter w in (3.28).

Typically, the dynamic iteration for field/circuit coupled problems starts with the computation of
the field, since the contraction factor vanishes and co-simulation is unconditional stable for split-
ting 3.25, see Chapter 3.1.3. However, R-splitting provides much faster contraction and accepts
much larger time window sizes for convergence.

The question arises how to choose the ratio for optimal convergence. Our investigations suggest
that a shift of the full resistance R to subs. 2, i.e., RNW 1 = 0, RNW 2 = R, yields optimal con-
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vergence, since the contraction factor an vanishes and the constant C is kept as small as possible.
However, such a split would violate the underlying splitting functions (3.32), since the old al-
gebraic iterate of subs.2 enters the differential equation of subs. 1 (node UB1 ). Therefore, the
convergence with window-wise convergence rate O(Hn) is guaranteed, see Cor. 6 (iii) (simple
coupling), and the corresponding splitting functions read (for subs.1 first):

F(y(k),y(k�1),z(k),z(k�1)) :=

2

4

f1(y(k)1 ,z(k)1 ,0, z(k�1)
2 )

f2(0,0,y(k)2 ,z(k)2 )

3

5 ,

G(y(k),y(k�1),z(k),z(k�1)) :=

"

g1(y(k)1 ,z(k)1 ,0,0)
g2(0,z(k)1 ,y(k)2 ,z(k)2 )

#

.

(3.48)

Again, using eq. (3.30) and currents (3.31), the extended splitting scheme defines the partitioned
system (for subs. 1 first). Following the proof of Theorem 8 yields the same structure for the
constant C but an = 0 (as expected). Consequently, the optimal ratio parameter for R-spitting is
w = 0.

Assumption 2 (Avoiding Index-2). The data exchange between the subsystem is organized via
controlled current and voltage sources. Note that for the limits of the ratio parameter (w = 0, w =
1), the subsystem which is supplied by the voltage source becomes index-2 if a CV-loop is created.
Therefore, it is assumed that the sources are placed in such a way that all subsystems remain an
index-1 problem.

Practical aspects: the current ICo is maximal damped within the first iteration of co-simulation.
This becomes important for the co-simulation of MQS devices coupled to a circuit, where the
inrush current is typically large (several times their normal full-load current) for a few cycles of
the input waveform. Figure 3.4 shows how the R-splitting approach may affects the inrush current
when a transformer is energized for the first time. With R-splitting (Fig. 3.4 (left)) the current
behaves damped and the co-simulation model is fully updated after one iteration step (no splitting
error) such that the waveforms for further iterations steps remains the same. However, using the
standard way of field/circuit coupling (Fig. 3.4 (right)) the current reaches two times their normal
full-load current. Thus co-simulation requires several iteration steps to be close to the reference
solution. Numerical investigations with application in field/circuit coupling are given in Chapter
7.2.1.
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Figure 3.4: Inrush current of a transformer computed by co-simulation with Hn = 0.01s and k =
1, . . . ,20 iteration steps. (left) for R-splitting with GNW2 ⌧ GNW1 (fast contraction).
(right) for the standard splitting (slow contraction).
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3.2.2 LR-coupling

Similar to the previous chapter, we expand the coupling interface by introducing or identifying an
LR-link consisting of two resistances and one inductance, which may model some physical wire
in the respective location with additional inductive parts. Again, using decoupling with controlled
sources, this situation is sketched in Fig. 3.5, where NW 1 and NW 2 signify each an arbitrary
network (circuit or EM device). Note that for both computational sequences, i.e, subs. 1 or subs. 2
first, an algebraic iterate enters algebraic equation which creates again a mutual algebraic depen-
dency of the subsystems. Thus, the splitting (3.29) is also valid for the LR-coupling approach and
the standard recursion estimate yields the general coupling of Cor. 6 (i), i.e., convergence with
window-wise convergence rate an +O(Hn). However, the extended recursion estimate shows
for the LR-coupling that the contraction factor an vanishes and convergence with window-wise
convergence rate O(Hn) is guaranteed. Therefore, it is thus obviously that the standard recursion
estimate might be too coarse to detect convergence.

RNW 1

ICo(t) UCo(t)

ICo,z̄2

L

IL,ȳ2

RNW 2UB1,y1 UB2,y2UCo,z̄1 U1,z̄2 U2,z̄2

NW 1 NW 2

Figure 3.5: LR-coupling between two subsystems. [36]

Extended Splitting Functions

The additional equations for subs.1 and subs. 2 are

0 = (UB1,y1 �UCo,z̄1) ·GNW 1 + ICo,z̄1(t) and 0 = ICo,z̄2 + I,L,ȳ2
(3.49a)

0 = (U2,z̄2 �UB2,y2) ·GNW 2 � IL,ȳ2 , (3.49b)
0 =U1,z̄2 +UCo,z̄2(t), (3.49c)

where the current through the inductance is a differential unknown with respect to time:

d
dt

IL =
U1 �U2

L
. (3.50)

Similar to the R-splitting approach, the coupling of NW 1 and NW 2 to subs. 1 and subs. 2 is
done by the additional currents terms

A f1 ·GNW 1UCo,z̄1 and A f2 ·GNW 2U2,z̄2 , (3.51)
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with incidence matrices A f1 and A f2 . The following (extended) splitting scheme defines the par-
titioned system for subs. 1 first:

F
⇣

ỹ(k), z̃(k), ỹ(k�1), z̃(k�1)
⌘

:=

2

6

4

f1(y1
(k),z1

(k))+A f1 ·GNW 1 ·U (k)
Co,z̄1

f2(y2
(k),z2

(k))+A f2 ·GNW 2 ·U (k)
2,z̄2

(U (k)
2,z̄2

�U (k)
1,z̄2

)/L

3

7

5

G
⇣

ỹ(k), z̃(k), ỹ(k�1), z̃(k�1)
⌘

:=

2

6

6

6

6

6

6

6

6

6

4

g1(y1
(k),z1

(k))

(U (k)
B1,y1

�U (k)
Co,z̄1

) ·GNW 1 + I(k�1)
Co,z̄1

(t)

g2(y2
(k),z2

(k))

I(k)Co,z̄2
+ I(k)L,ȳ2

(U (k)
2,z̄2

�U (k)
B2,y2

) ·GNW 2 � I(k)L,ȳ2

U (k)
1,z̄2

+U (k)
Co,z̄2

(t)

3

7

7

7

7

7

7

7

7

7

5

(3.52)

with ODE-part f1, f2 and algebraic constraints g1, g2 of NW 1 and NW 2.

Theorem 10 (Extended Recursion Estimate for LR-coupling). Let all assumptions of Theorem 8
be fulfilled. Then, using LR-coupling there is a constant

CICo := c · (
L f

GNW 1
+CHn), (3.53)

with C := c ·L f /(1�C0Hn �GNW 1Hn) and c := 1/
⇣

1�C0Hn +
L f +GNW 2

GNW 2
Hn +(L f +GNW 2)Hn

⌘

,
where L f is a Lipschitz constant and GNW 1, GNW 2 are the conductances of the LR-coupling
interface, such that for two waveforms x(k�1)

n , x̃(k�1)
n 2 Un,d on a time window Hn < Hmax the

following extended recursion estimate holds
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+"initial offset", (3.54)

with recursion matrix
0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 . . . . . . Hn
... 0 Hn

. . . 1
GNW 1

+Hn

Hn
Hn

1
GNW 1

+Hn
... Hn
0 . . . . . . CICoHn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (3.55)
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Proof. Again, we extend the proof of Lemma 3 by taking additional terms of the LR-splitting
into account. The proof is split into two parts: starting with subs. 1 the estimation technique is
applied for all unknowns. Then the estimation is done for subs. 2 while we use the inequalities
of the coupling variables to link both subsystems together. For simplification we use the notation
G1, G2 instead of GNW 1, GNW 2.

Subs. 1: For the algebraic unknowns of NW1, with z1 = F1(y1), the estimation

|D(k)
z1 | LF|D(k)

y1 |, (3.56)

holds, where LF is the maximum of the Lipschitz constants of fi with respect to yi and zi. For the
ODE-part after integrating for Tn < t  Tn+1, Lipschitz continuity yields

|D(k)
y1 | |D(k�1)

y1 (tn)|+
Tn+1
Z

Tn

L f (|D(k)
y1 |+ |D(k)

z1 |)

+G1 · |DU (k)
Co,z̄1

|dt,

(3.57)

with Lipschitz constant L f . Insert (3.56) into (3.57) and with algebraic constraint for U (k)
Co,z̄1

we
obtain

d

(k)
y1  1

1�C0Hn �G1Hn
(|D(k�1)

y1 (tn)|+Hn ·d I(k�1)
Co,z̄1

), (3.58)

where C0 := L f (1+L
f

). Then inserting (3.58) into (3.56) and solving for d

(k)
z1 yields

d

(k)
z1  LF

1�C0Hn �G1Hn
(|D(k�1)

y1 (tn)|+Hn ·d I(k�1)
Co,z̄1

). (3.59)

Subs. 2: Similarly, using the same technique for subsystem 2, the corresponding estimate for
d I(k)Co,z̄2

reads

d I(k)Co,z̄2
 c · |D(k�1)

ỹ2
(tn)|+CHn · |D(k�1)

y1 (tn)|

+CICoHn ·d I(k�1)
Co,z̄1

,
(3.60)

with constants c := 1/
⇣

1�C0Hn +
L f +G2

G2
Hn +(L f +G2)Hn

⌘

, CICo := c · ( L f
G1

+CHn) and C :=
c ·L f /(1�C0Hn �G1Hn). This concludes the proof.

Again, the claim for contraction can be deduced by inspecting the spectral radius of Ke.

Lemma 11 (Contraction Condition). Let Ass. 1 be fulfilled. Then, for a co-simulation with LR-
splitting technique, there is a window size

Hn < Hmax,

such that the map (for all k)
⇣

d

(k�1)
y1 , d

(k�1)
z1 , . . . ,d (k�1)

y2 , d

(k�1)
z2

⌘>
!
⇣

d

(k)
y1 , d

(k)
z1 , . . . ,d (k)

y2 , d

(k)
z2

⌘>

is contractive independently of the type of NW 1 and NW 2.
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Proof. The proof is the same as for Lemma 9.

3.2.3 Exact Recursion Analysis

This chapter covers the fine structure analysis for coupled DAEs of Chapter 3.1.2. It shows that
using the standard theory no contraction could be inferred for our test circuit. However, by a
detailed analysis we can prove the convergence.

Circuit Splitting

We investigate a simple RL-circuit. The modeling via modified nodal analysis yields a DAE (2.2)
of index-1. By using the strategy of source coupling the circuit can be modeled as two coupled
networks, see Fig. 3.6. Note that the decoupling uses the LR-coupling approach as well as the
R-splitting for a reverse assembly of the inductance and resistance. Furthermore, the strongly
coupled system corresponds to the same as subsystem 2, since node UCo and U1 coincide. This
makes our model rather academic, but it shows the possibility of deviations between convergence
analysis and application in co-simulation, which we want to highlight.

Uin(t)

I(k,k�1)
in

ICo(t)

U (k,k�1)
Co

I(k�1,k)
Co

UCo(t)

I(k�1,k)
Co

L I(k,k�1)
L

R

U0

U (k,k�1)
Co U (k,k�1)

1 U (k,k�1)
2

Figure 3.6: Decoupled RL-circuit with source-coupling. The first/second superscript notation
(k)/(k � 1) denotes the old and new differential/algebraic iterates for subs. 1/subs.
2 first. [39]

The two subsystems for our co-simulation read in the form of (2.16):

Subs. 1: 0 =

✓

0 1
�1 0

◆✓

UCo
Iin

◆

�
✓

�ICo(t)
�Uin(t)

◆

, (3.61a)

Subs. 2: 0 =

0

B

B

@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 L

1
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C

A

0

B

B

@

U̇1
U̇2
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İL

1

C

C

A

+

0

B

B

@

0 0 1 1
0 G 0 �1
�1 0 0 0
�1 1 0 0

1

C

C

A

0

B

B

@

U1
U2
ICo
IL

1

C

C

A

�

0

B

B

@

0
0

�UCo(t)
0

1

C

C

A

, (3.61b)

with inductance L, conductance G= 1/R, supply voltage Uin(t), unknown node potentials U1, U2, UCo
and unknown currents Iin, IL, ICo, where the nodes UCo and ICo are the coupling variables for the
information transport between both systems.
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Standard Structure Analysis

Next we use the standard theory of Chapter 3.1.2 to analyze the convergence for the coupled
system (3.61). To this end, we generalize system (3.61) to the following semi-explicit form:

ẏ2 = f2(y2,z2),

0 = g1(z1,z2), 0 = g2(z1,y2,z2),
(3.62)

with non-singular Jacobians ∂gi/∂zi, i = 1,2, where subsystem 1 is merely a system of algebraic
equations and subsystem 2 is a DAE. This corresponds to a AE-DAE coupling of example 1. The
variables of the subsystems are

z1 :=
⇥

UCo, Iin
⇤> and y2 := IL, z2 :=

⇥

U1, U2, ICo
⇤>

. (3.63)

The corresponding splitting functions read (for subs. 1 first):

F(y(k),y(k�1),z(k),z(k�1)) :=
h

f2(0,0,y(k)2 ,z(k)2 )
i

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

g1(0,z(k)1 ,0, z(k�1)
2 )

g2(0,z(k)1 ,y(k)2 ,z(k)2 )

3

5 .
(3.64)

Notice that the old algebraic iterate z(k�1)
2 (the current I(k�1)

Co ) enters algebraic equation of subs. 1.
The reverse computational sequence yields the splitting functions (for subs. 2 first):

F(y(k),y(k�1),z(k),z(k�1)) :=
h

f2(0,0,y(k)2 ,z(k)2 )
i

,

G(y(k),y(k�1),z(k),z(k�1)) :=

2

4

g1(0,z(k)1 ,0,z(k)2 )

g2(0, z(k�1)
1 ,y(k)2 ,z(k)2 )

3

5 .
(3.65)

Here, the old algebraic iterate z(k�1)
1 (the node potential U (k�1)

Co ) enters algebraic equation of subs.
2. Therefore, both computational sequences create a mutual algebraic dependency and does not
fulfill (3.20) trivially, i.e.,

kG�1
z(k)Gz(k�1)k2,• < 1.

Consequently, following the standard recursion estimate of Lemma 3 divergence of a co-simulation
might occur for an � 1. Thus, the convergence analysis for the coupled problem requires the cal-
culation of the contraction factor, i.e., the Jacobians G�1

z(k) , Gz(k�1) .

Splitting the Jacobian of G(y(k),y(k�1),z(k),z(k�1)) into parts of Gy(k) ,Gy(k�1) ,Gz(k) and Gz(k�1)
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yields for

Subsystem 1 first: Gz(k) =

0

B

B

B

B

@

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 G 0 0 0
�1 0 1 0 0

1

C

C

C

C

A

) G�1
z(k) =

0

B

B

B

B

@

0 1 0 0 �1
0 0 0 R 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

1

C

C

C

C

A

, Gz(k�1) =

0

B

B

B

B

@

1
0
0
0
0

1

C

C

C

C

A

,

Subsystem 2 first: Gz(k) =

0

B

B

B

B

@

0 0 0 1 1
0 0 1 0 0
0 0 0 1 0
0 G 0 0 0
�1 0 0 0 0

1

C

C

C

C

A

) G�1
z(k) =

0

B

B

B

B

@

0 0 0 0 �1
0 0 0 R 0
0 1 0 0 0
0 0 1 0 0
1 0 �1 0 0

1

C

C

C

C

A

, Gz(k�1) =

0

B

B

B

B

@

0
0
0
0
1

1

C

C

C

C

A

,

and finally for

Subsystem 1 first : kG�1
z(k)Gz(k�1)k2 = k

�

0 0 0 0 1
�>k2 = 1,

Subsystem 2 first : kG�1
z(k)Gz(k�1)k2 = k

�

�1 0 0 0 0
�>k2 = 1.

(3.66)

It is obviously that both computational sequences does not fulfill the contraction condition (3.20)
and convergence cannot be inferred directly by the standard theory. However, the exact fine
structure analysis proves the convergence of co-simulation for system (7.6). Moreover, it shows
that the iteration process is contractive with the best possible speed of contraction, i.e., no splitting
errors occur after both subsystems are updated once.

Exact Fine Structure Analysis

We aim to calculate the recursion matrix Ke explicitly for all unknowns (3.63). As usual, D(k)
X Xi :=

X (k)
i (t)� X̃ (k)

i (t) measures the difference of two waveforms on the n-th time window after k iter-
ations steps. For simplicity of notation the subindex n is skipped.

Assuming that the Gauß-Seidel scheme starts with subsystem 1 first. Following the relations to
old and new iterates we find for the algebraic variables by taking differences:

D(k)
z1 Iin =�D(k�1)

z1 ICo, D(k)
z1 UCo = DUin = 0,

D(k)
z2 ICo =�D(k)

y2 IL, D(k)
z2 U1 = D(k)

z1 UCo = 0, D(k)
z2 U2 =

1
G

D(k)
y2 IL.

(3.67)

Notice that the coupling node U (k)
Co is given by the time-dependent source Uin(t) and thus D(k)

z1 UCo =
0 holds. From the differential equation for the induction current IL we obtain

d
dt

⇣

D(k)
y2 IL

⌘

=
D(k)

z2 U1 �D(k)
z2 U2

L
=

1
G ·LD(k)

y2 IL

and thus we find for any t 2 [Tn,Tn +Hn]

|D(k)
y2 IL(t)|= |D(k)

y2 IL(tn)| · e(t�tn)/(G·L) = |D(k�1)
y2 IL(tn)| · e(t�tn)/(G·L). (3.68)

With (3.68) in (3.67) and by using absolute values, we finally find the exact error propagation (for
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subs. 1 first):
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=:Kexact
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|D(k�1)
y2 IL(tn)|, (3.69)

where 0 is zero matrix and

A =

2

4

0 0 0
1 0 0
0 0 0

3

5 .

The spectral radius of the exact recursion matrix yields r(Kexact) = 0, since all eigenvalues are
zero. Consequently, the recursion (3.69) satisfies the spectral radius condition r(Kexact) < 1
trivially for splitting (3.64). Therefore, co-simulation is contractive and the iteration process is
finished after all unknowns are updated only once. It should be noted that the result is in line with
Theorem 8 of R-splitting, since no resistance between the current and voltage source is involved,
i.e., R1 = 0, the contraction factor an vanishes.

Furthermore, the exact recursion estimate matches the numerical results of Chapter 7.1.

Remark 12 (Information loss by lumping). Clearly, the relation between Kexact and K is the
lumping of all differential and algebraic unknowns in (3.69). Applying the maximum norm, we
obtain the estimate



|D(k)y|
|D(k)z|
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|D(k�1)y|
|D(k�1)z|
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+ g :=
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|D(k�1)y|
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+



C
C

�

|D(k�1)y(tn)|,

with C = (1+ 1
G)e

(t�tn)/(G·L) and r(K) = 1. The result fits the calculations of (3.66).

Thus without fine structure analysis, the contraction disappears from the estimate even for our
simple test circuit.

Conclusions

It has been shown that the standard theory of co-simulation does not always detects convergence.
This holds already for a simple electric circuit, which we have investigated. Therefore, we an-
alyzed the coupled system by express the exact error propagation (fine structure analysis) and
proved the convergence for our example. Clearly, the information about stability and contraction
disappeared during lumping, which we have demonstrated.
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Uncertainty Quantification

The Computer Aided Design (CAD) modeling and system engineering of complex devices is be-
coming increasingly important. Frequently, the modeling process results in a system of equations,
for example, an ODE, DAE, PDE or PDAE system, with an appropriate large number of variables
(model inputs) and outputs. In practice, it is desirable to have knowledge about the impact (high
or low sensitivity) of the system variables to the output behavior, where the measurement of sen-
sitivities requires mathematical algorithms. The information about sensitivities can be used for
various purposes: the reduction of complex models, i.e., models with a large number of variables
and high computational effort are replaced by "cheaper" models. Here, the calculation of sensi-
tivities can be used to set up a reduced order model by setting variables with low sensitivity as a
constant, [41]. The resulting system is of lower dimension and can be computed faster. Further-
more, the industrial CAD of complex electric circuit, e.g., integrated circuits on silicon wafers or
circuits with radio-frequency application can benefit from sensitivity analysis. These circuits are
often of size of a few micrometer and thus parasitic effects must be taken into account. Here, a
sensitivity analysis can support the layouting-process. In addition, the knowledge about the im-
pact of electric components such as resistors, conductors and inductors to the behavior of electric
circuits can be used for reducing manufacturing costs, since the information can be exploit to use
components with low tolerance only where necessary.

Uncertainty Quantification (UQ) refers to a family of methods to calculate sensitivities. UQ is
based on a description of a system whose components (parameters) are considered as random
variables with given distributions such as normal or uniform distribution. Therefore, UQ will
attempt to answer the following questions:

• which system parameters have the most impact to the system behavior?

• which system parameters have less impact to the system behavior?

• how do the system parameters interact?

The concept of UQ unites a set of different methods, which can be classified into local and global
sensitivity approaches. Local approaches evaluate changes in the model outputs with respect to
variations in a single input, [42–44]. The input variable are typically changed once a time in small
increments and the effect of this perturbation on the model output is calculated by using local
sensitivity indices:

Si|[p%] =

�

�Y[+p%]�Y[�p%]

�

�

Y0
, (4.1)

where Y[+p%], Y[�p%] is the model response for a variation of ±p% and Y0 is the nominal output
value. For the global sensitivity analyzes, several approaches are known such as (amongst others)
the weighted average of local sensitivities, partial rank correlation coefficients, multiparametric
sensitivity analysis, Fourier amplitude sensitivity analysis, Monte-Carlo method as well as the
Sobol decomposition method, [41, 46–49].

41
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Within this chapter we focus on variance-based methods, see e.g. [45], often referred to as analysis
of variance (ANOVA), which belong to the family of global approaches. The variance-based
calculation of sensitivities offers the advantage to measure sensitivities across the whole input
space (global). Furthermore, they can handle non-linear responses, i.e., they can also measure the
effect of interactions in non-linear systems.

The classic Sobol decomposition belongs to the family of variance-based methods. However, it
is useless for high dimensional problems, since the computational effort increases exponentially
with the amount of uncertain variables, Chapter 4.1.1. This problem is referred to as curse of
dimensionality. In practice, one can observe that only a few variables have a major impact to
the model output. This phenomena is often referred to as effective dimension. Now, different
methods try to exploit this circumstance to break the curse of dimensionality. Therefore, we fo-
cus on the general Polynomial Chaos (gPC) expansion, Chapter 4.1, where stochastic systems are
approximated by a truncated series of orthogonal basis functions, [9]. The received sensitivities
are only approximations of the exact values computed by the (full) Sobol decomposition method.
The most expensive part of the gPC expansion is to determine some coefficient functions. For this
purpose, two main concepts can be used: the Stochastic Galerkin approach as intrusive method
and the Stochastic Collocation approach which is a non-intrusive methods [9, 45, 50], Chapter
4.2.3. We focus on the Stochastic Collocation approach, which requires to solve multiple proba-
bilistic integrals. The efficient calculation of multiple integrals is a separate problem. Therefore,
the numerical treatment of such integrals is discussed in Chapter 5.

This chapter is outlined as follows: Chapter 4.1 introduces into the decomposition of the variance
of a stochastic model via Sobol decomposition and into the calculation of Sobol based sensitivi-
ties. Afterwards the Polynomial Chaos (PC) expansion is discussed in Chapter 4.2. Then, orthog-
onal basis functions of a Polynomial Chaos expansion are introduced in Chapter 4.2.1 followed
by the concept of the gPC expansion, Chapter 4.2.2, which is an extension of the PC approach.
Finally, this chapter concludes with the calculation of the gPC based sensitivity indices, Chapter
4.2.4.

4.1 The Sobol Decomposition

The concept to decompose the variance of the output of a model in fractions which can be at-
tributed to system variables was first developed by I. M. Sobol in 1990, [41]. The advantage
of the Sobol decomposition is to determine the contribution of each variable and their mutual
interactions to the model output variance.

From a perspective of a black-box concept, any model may be considered as a function

y = f (x), (4.2)

with n variables stored in a vector x = (x1, . . . ,xn) and y is a chosen univariate model output, e.g. a
selected node potential or branch current of a circuit or the electric field strength of a field device.
We define the n-dimensional unit hypercube for the entire domain as

Kn := [0, 1]n. (4.3)

Following [41] it is possible to decompose such a model function f as a series of functions. The
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function decomposition reads

f (x) = f0 +
n

Â
i=1

fi (xi)+ Â
1i< jn

fi j (xi,x j)+ · · ·+ f12...n (x1,x2, . . . ,xn) , (4.4)

where the unknown functions fi, fi j up to f12...n have to be determined. All functions in (4.4) are
constructed such that they are orthogonal to each other with respect to the L2-norm:

Z

Kn

fu (xu) · fv (xv)dx = 0 8 u 6= v. (4.5)

The unknown function terms in (4.4) can be constructed recursively by

fi1,...,is (xi1 , . . . ,xis) =
Z

Kn�s

f (x)dx⇠[i1,...,is]

�
 

f0 +
n

Â
i=1

fi (xi)+ Â
1i< jn

fi j (xi,x j)+ · · ·
!

,

(4.6)

where the recursion starts with the calculation of the leading (constant) term f0 given by integra-
tion over the entire domain:

f0 =
Z

Kn

f (x)dx. (4.7)

The subscript dx⇠[i1,...,is] in (4.6) denotes the integration over the entire domain except the vari-
ables xi1 , . . . ,xis .

Remark 13. Equation (4.6) requires to solve multiple integrals of dimension n� s. In particular
for spatial discretized PDAE systems of Chapter 2.3 such integrals cannot be solved analytically.
Consequently, the numerical treatment by quadrature formulas is required to compute approxi-
mations, which is discussed in Chapter 5.

4.1.1 Sobol Sensitivity Analysis

The aim is to determine how much of the system output is affected by each of the input parameters,
either due to a single parameter or due to interactions between them. Sobol sensitivity analysis is
based on a decomposition of the variance of the system output into a sum of partial variances of
the input parameters.

From now on, assuming n random input variables Xi, (i = 1, . . . ,n) in a stochastic model stored in
a random variable vector X = (X1, . . . ,Xn), where the variables are mutually independent and (for
now) uniformly distributed. Furthermore, each variable is considered to range over some finite
interval which may be assumed, after rescaling, to be in the unit hypercube (4.3).

Under some probabilistic interpretation of the input variables in (4.2), the model output Y = f (X)
is a random variable with expectation value

IE(Y ) =
Z

Kn

f (X)dX (4.8)
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and (total) variance
Var(Y ) =

Z

Kn

f 2(X)dX� IE(Y )2. (4.9)

Now, the Sobol decomposition (4.4) allows to decompose the variance (4.9) of a stochastic model
as a finite sum of partial variances. In other words, we are interested in the decomposition of the
output variance of a model into contributions from effects of single variables, combined effects of
pairs of variables, and so on.

Analogously to the decomposition (4.4) such a decomposition of variances (4.9) exists and is
given by

D(Y ) =
n

Â
i=1

Di(Y )+ Â
1i< jn

Di j(Y )+ · · ·+D12...n(Y ), (4.10)

where we used the abbreviation:

D(Y ) = Var(Y ), Di(Y ) = Var[IE(Y |Xi)], Di j(Y ) = Var[IE(Y |Xi,Xj)]�Di(Y )�D j(Y ),

and so on.

The partial variances in (4.10) are given explicitly by

Di1,...,is(Y ) =
Z

Ks

f 2
i1,...,is (Xi1 , . . . ,Xis)dX[i1,...,is], (4.11)

with functions fi1,...,is (Xi1 , . . . ,Xis) already defined in (4.6). The subscript dX[i1,...,is] denotes the
integration over all remaining random variables Xi1 , . . . ,Xis .

Assuming that the multiple integral in (4.6) can be solved without errors, the decomposition of
the variance (4.9) by (4.10) is exact.

Now, Sobol indices specify the sensitivity of the input variables to the system output and identify
the variable or the set of variables that have the most influence to the system output, i.e., it provides
insight into which system parameter contributes most to the variability of the system output. Once
the partial variances are received, the calculation of sensitivities can be done by a simple scaling.
The Sobol index for the subset of variables Xi1 , . . . ,Xis is defined as

Si1,...,is :=
Di1,...,is(Y )

D(Y )
. (4.12)

In general, the higher the sensitivity indice value, the higher the impact to the model. Here, one
distinguishes between main effects and high order effects.

• The main effect (first order contribution) describes the contribution from a single variable
Xi to the model output variance and is often referred to as first-order contribution. Its
sensitivity index reads Si =

Di
D .

• The second-order contribution Si j =
Di j
D is the proportion of the variance of the model output

that appears due to the interactions of two variables Xi, Xj.

• This can be easily extended to higher-order contributions: Si jk =
Di jk
D , . . . .
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The Sobol indices (4.12) sum up to 1:

1 =
n

Â
i=1

Si + Â
1i< jn

Si j + · · ·+S12...n, (4.13)

since Si1,...,is is defined by the partial variance for each set of variables divided by the total variance.

Total-Effect: Furthermore, in order to measure the main effect and all higher-order effects of a
single variable Xi, one can define the total-order sensitivity index

ST
i := Si +Si j + · · ·+S1...i...n. (4.14)

Computational Effort

The Sobol decomposition (4.4) requires to compute

n

Â
k=0

✓

n
k

◆

= 2n

function terms. In addition, the decomposition into partial variance (4.10) requires the computa-
tion of 2n multiple integrals. Thus, the computational effort to identify all sensitivity indices of a
model function (4.2) using the Sobol sensitivity analysis is given by

2n +2n = 2n+1.

Consequently, the complexity of an UQ algorithm based on Sobol decomposition is O(2n).

Obviously, the determination of sensitivities for the full range of input variables and interactions
between each set of variables makes the method computational expensive, which is the main
drawback. However, in practice one can observe that the contribution of higher-order effects de-
creases with increasing number of parameters which are considered in interaction with each other.
Therefore, usually one is not interested in all Sobol sensitivity indices. To detect sensitive param-
eters it is mostly sufficient to calculate sensitivities up to a certain order, e.g. third-order indices.
This circumstance can be exploit to reduce the computational effort. Chapter 4.2 introduces the
generalized Polynomial Chaos approach which attempts to break the curse of dimensionality by
truncation.

4.2 The Polynomial Chaos Expansion

The Polynomial Chaos (PC) expansion, also often referred to as PC expansion, allows to ana-
lyze stochastic processes of uncertain models with significant reduced effort as the full Sobol
decomposition. The main idea of the PC expansion is that a reduced model for the output can be
expressed as a series expansion consisting of orthogonal polynomials. The strategy is, in a certain
sense, similar to the Sobol decomposition of Chapter 4.1. The Polynomial Chaos approach has
its origin in 1938 developed by N. Wiener [18, 19]. He has proven that each normal distributed
random variable can be represented by an infinite sum of Hermite polynomials. Later, D. Xiu
extend the concept to the generalized Polynomial Chaos (gPC) expansion, such that it can be used
for a broad range of distributions, see [9]. Roughly speaking, the gPC expansion express random
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variables with arbitrary distributions, e.g. normal-, uniform distribution, etc., as a polynomial
function (sequence), where the distribution is already known.

There are other methods which can be used for a sensitivity analysis. One prominent approach
is the Monte-Carlo analysis [49], which is based on a brute force sampling of the random pa-
rameter space. Compared to Monte-Carlo, the implementation of an algorithm based on the gPC
expansion is more complex, however the gPC expansion can be much more efficient, [45].

4.2.1 Orthogonal Polynomials

This chapter gives insight into the main properties of orthogonal polynomials. The most fre-
quently used orthogonal polynomials in mathematics are the Hermite polynomials, the Laguerre
polynomials, the Jacobi polynomials, the Chebyshev polynomials as well as the Legendre polyno-
mials. All this types of polynomials are orthogonal with respect to the inner product for a measure
with support in a real interval. A sequence of such polynomials is referred to as orthogonal poly-
nomial sequence.

First we introduce into the univariate case of orthogonal polynomial sequences. Afterwards, the
concept can be easily extend to multivariate case. It enables to use the gPC expansion for stochas-
tic models with an arbitrary number of random input variables. In fact, depending on the distri-
bution of the random input variables, different types of orthogonal polynomials have to be used
for the gPC expansion, Chapter 4.2.2. Finally, the gPC method requires the scaling of orthogonal
polynomials. The result is a sequence of orthonormal polynomials. Thus, we introduce into the
construction of orthonormal polynomial sequences and state the main advantage.

The Univariate Case

Let p̃ : [a,b]! R+ be weight function [45]. We define the weighted inner product of two func-
tions.

Definition 3 (Weighted Inner Product). Let p̃ with p̃ : [a,b] ! R+ be weight function of two
functions f ,g : [a,b] ! R. Furthermore let f ,g 2 L2. The inner product of two functions on a
finite interval [a,b] with respect to the weight function p̃ is defined as

h f ,gi p̃ :=
b
Z

a

f (x) ·g(x) · p̃(x)dx. (4.15)

Let Qn (x) , n 2 N0 be a polynomial with deg Qn = n:

Qn (x) = anxn +an�1xn�1 + · · ·+a0, an 6= 0. (4.16)

Two polynomials are said to be orthogonal if their inner product becomes zero. Now, we aim to
define a sequence (Qn)n2N0

of orthogonal polynomials. The orthogonal sequence with respect to



4.2 The Polynomial Chaos Expansion 47

its weight function p̃ is defined as

hQn,Qmi p̃ = gndnm, with gn :=
b
Z

a

Q2
n (x) p̃(x)dx, (4.17)

where dnm is the Kronecker delta function

dnm =

(

1, if n = m,

0, if n 6= m.
(4.18)

Usually, the polynomial sequence is required to be orthonormal and its polynomials Q̃n are re-
ferred to as orthonormal polynomials if (4.17) holds for gn = 1. The orthonormal polynomial
sequence

�

Q̃n
�

n2N0
can be constructed from orthogonal polynomials by scaling:

Q̃n = Qn/
p

gn, (4.19)

with gn already defined in (4.17). The gPC expansion exploit the property of orthonormal poly-
nomial sequences, which will be discussed in Chapter 4.2.3.

The question arises which family of polynomials should be used to construct the orthogonal se-
quence. The candidates are the Hermite polynomials, the Laguerre polynomials, the Jacobi poly-
nomials, the Chebyshev polynomials and the Legendre polynomials. In fact, the type of basis
polynomials is related to the distribution of the random variables which should be approximated
as gPC expansion. The correlation between the distribution of random variables and its corre-
sponding polynomials is topic of Chapter 4.2.2. However, within this work we focus on uniformly
distributed variables, where Legendre polynomials are used. Thus, we state the Legendre polyno-
mials, the scaling to construct the orthonormal polynomial sequence as well as the transformation
of uniformly distributed random variables to coincide with its domain of definition.

Legendre Polynomials: With respect to the gPC expansion for uniformly distributed random
variables, the Legendre polynomials are the best choice of basis functions [9, 40, 45].

Definition 4 (Legendre polynomials). The n-th Legendre polynomial Pn : [�1,1]! R, n 2 N0 is
defined by the Rodrigues formula

Pn (x) :=
1

2nn!
· dn

dxn

⇣

�

x2 �1
�n
⌘

, (4.20)

or by recursion

(n+1)Pn+1 (x) = (2n+1)xPn (x)�nPn�1 (x) , (n = 1,2, . . .) with P0 = 1; P1 = x. (4.21)

The Legendre polynomials fulfill the property of orthogonality with respect to the inner product
(4.17) on the finite interval [�1,1] for p̃ = 1

2 . The scaling to construct the orthonormal sequence
is given by

P̃n = Pn/gn with gn =
p

2n+1. (4.22)
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The Multivariate Case

Within this thesis, the multivariate polynomial sequence is used within the gPC expansion to
approximate the stochastic process of models whose input is a random input vector. From now
on, it is useful to think of each variable as a random variable stored in a random input vector
X = (X1, . . . ,Xn). The following requires the assumption of independency.

Assumption 3. Consider the domain D = [a1,b1]⇥ [a2,b2]⇥ · · ·⇥ [an,bn]. It is assumed that all
random variables Xi 2 [ai,bi], (i = 1,2, . . . ,n) are mutual independent.

First, one has to define the corresponding multivariate weight function. With Ass. 3, the multi-
variate weight function p̃X : D ! R+ is defined as the product of the univariate weight functions:

p̃X :=
n

’
i=1

p̃i (Xi) , with p̃i : R! R+ (4.23)

Now, the construction of multivariate orthogonal polynomial sequences consisting of polynomials
up to a certain degree is straightforward by using the multiindex notation.

Definition 5 (Multivariate Polynomial). Let Ass. 3 be fulfilled and let b = (b1,b2, . . . ,bn) 2 Nn
0

be a multiindex with cardinality |b | :=
n
Â

i=1
bi. Furthermore, let Q

bi be univariate orthogonal

polynomial with deg Q
bi = bi. Then, the multivariate orthogonal polynomial F

b

with deg F
b

=
|b | is defined as

F
b

(X) :=
n

’
i=1

Q
bi (Xi) . (4.24)

Hence, the corresponding multivariate orthogonal polynomials can be constructed by multiplying
univariate orthogonal polynomials with respect to a given multiindex. It is straightforward to
proof that (4.17) also holds for multivariate orthogonal polynomial sequences

�

F
b

�

b2Nn
0
.

Corollary 14 (Inner product of multivariate polynomials). Let Ass. 3 be fulfilled. Furthermore, let
a,b 2 Nn

0 be two multiindices. The corresponding multivariate polynomials F
a

,F
b

constructed
by (4.24) also fulfill the orthogonality (4.17) on D with respect to the multivariate weight function
p̃X as constructed by (4.23).

Now, similar to the univariate case, using normalized univariate polynomials (4.19) in (4.24), the
sequence

�

F̃
b

�

b2Nn
0

is referred to as multivariate orthonormal sequence if

hF̃
a

,F̃
b

ip̃X = d

ab

8 F̃ 2
�

F̃
b

�

b2Nn
0
, with d

ab

=

(

0, if a 6= b

1, if a = b ,
(4.25)

is satisfied, where d

ab

is the n-dimensional Kornecker delta function with d

ab

= d

a1b1 . . .danbn .

In practice, the domain of distribution of random variables differs from the domain where Legen-
dre polynomials are defined, i.e. from [�1,1]. Therefore, a linear transformation is required to be
able to use Legendre polynomials as basis polynomials.

Linear Transformation: Assuming that the random input vector X = (X1, . . . ,Xn) is defined on
the domain D= [a1,b1]⇥ [a2,b2]⇥ · · ·⇥ [an,bn], where each variable is independent and uniformly
distributed on their respective interval, i.e., Xi 2 U (ai,bi) , (i = 1, . . . ,n).



4.2 The Polynomial Chaos Expansion 49

An appropriate linear transformation for each variable Xi, (i = 1, . . . ,n) enables to define a trans-
formed random input vector X̃ :=

�

X̃1, . . . , X̃n
�

with X̃i 2 U (�1,1). The mapping from [ai,bi] to
[�1,1] is done by the "shifting" function (for i = 1, . . . ,n):

X̃i =
bi �ai

2
Xi +

bi +ai

2
. (4.26)

Usually, the transformation is already considered in the polynomial sequence and its correspond-
ing polynomials are referred to as "shifted polynomials".

Example 2. Table 4.1 shows the polynomial sequence
�

F
b

�

b2Nn
0

and their corresponding multi-
index b for n = 3 random variables up to a polynomial degree of two, i.e., cardinality |b | 2:

deg F
b

b F
b

0 (0,0,0) Q0 (X1)Q0 (X2)Q0 (X3)
1 (1,0,0) Q1 (X1)Q0 (X2)Q0 (X3)
1 (0,1,0) Q0 (X1)Q1 (X2)Q0 (X3)
1 (0,0,1) Q0 (X1)Q0 (X2)Q1 (X3)
2 (2,0,0) Q2 (X1)Q0 (X2)Q0 (X3)
2 (0,2,0) Q0 (X1)Q2 (X2)Q0 (X3)
2 (0,0,2) Q0 (X1)Q0 (X2)Q2 (X3)
2 (1,1,0) Q1 (X1)Q1 (X2)Q0 (X3)
2 (0,1,1) Q0 (X1)Q1 (X2)Q1 (X3)
2 (1,0,1) Q1 (X1)Q0 (X2)Q1 (X3)

Table 4.1: Shows all polynomials and their related multiindex up to a polynomial degree of two,
where Q0, Q1, Q2 are the univariate polynomials.

4.2.2 The generalized Polynomial Chaos Expansion

The mathematician N. Wiener was the first one who has introduced the way to approximate
stochastic Gaussian processes by using Hermite polynomials. In the literature, his method is often
referred to as homogeneous chaos or Wiener chaos, see [18]. Later R. Cameron and W. Martin
extend the concept of homogeneous chaos and proved that such an expansion converges for an
arbitrary stochastic process, [19]. Based on the results of Cameron-Martin, the mathematician
D. Xiu generalized the homogeneous chaos to various continuous and discrete distributions, [9].
This applies to the most physical systems.

Homogeneous Chaos

According to N. Wiener, a stochastic process of a model whose random input vector X consists
of normal distributed variables can be represented as a series expansion consisting of orthogonal
polynomials (homogeneous chaos)

f =
•

Â
j=0

f jHj(X), (4.27)

where Hj are the Hermite polynomial and f j are the corresponding coefficient functions, which
have to be computed from a limited number of model simulations, see Chapter 4.2.3. The homo-
geneous chaos only provides optimal convergence for stochastic processes which are of Gaussian
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type [18, 19]. However, an extension of (4.27) for further stochastic processes with different dis-
tributions exists as well. This leads to the generalized form of the homogeneous chaos known as
the generalized Polynomial Chaos expansion.

The gPC Expansion

As mentioned the gPC framework is able to handle various stochastic processes. In the probability
theory, the fact that a value of a random variable would equal to a desired sample is specified by its
density function. One prominent function is the density function of Gaussian type of distribution.
The gPC expansion for the multivariate case, i.e., at least two random variables, requires the theory
of probability spaces. That is, the density function is generalizable to the concept of multivariate
distributions.

Definition 6 (Joint Density Function). Let X = (X1, . . . ,Xn) be random input vector defined on
D 2 Rn, and let all random variables Xi, (i = 1, . . . ,n) be independent distributed with given
density function fXi : Di ! R+. Let (x1,x2, . . . ,xn) be a sample out of the probability space. The
function fX : D ! R+ with

fX(x1,x2, . . . ,xn) = fX1(x1) · fX2(x2) · · · · · fXn(xn) (4.28)

is joint density function of the random input vector X.

For optimal convergence of the gPC expansion, it matters that the joint density function of the
random input vector X is equal or at least similar to the weight function p̃X of the multivariate ba-
sis polynomials F

b

. Table 4.2 shows the distribution of a random variable and the corresponding
polynomial for optimal convergence as well as the domain of definition, [40].

Distribution Polynomial Domain of definition Density- and weight function
Normal Hermite (�•,•) 1p

2p

exp
�

�1
2 x2�

Gamma Laguerre [0,•) exp(�x)xa�1 1
G(a)

Beta Jacobi [�1,1] G(a+b )
G(a)G(b )2a+b�1(x+1)a�1(1� x)b�1

Uniform Legendre [�1,1] 1
2

Table 4.2: Polynomial and corresponding distribution.

In practice, the distribution of random variables of a stochastic process can be different, e.g. some
of them are normal distributed while others are uniformly distributed. However, this does not
represent a restriction of the scope of the gPC expansion. Here, appropriate basis polynomials
have to be used with respect to Table 4.2. Therefore, the homogeneous chaos (4.27) can be
extended to a series expansion consisting of suitable (multivariate) orthogonal polynomials:

f =
•

Â
j=0

f jF j(X). (4.29)

In order to use this approach in practice the series is truncated to a finite number of terms. There-
fore, for the most of non-academic model functions the gPC expansion only provides an approx-
imation of the exact Sobol decomposition. However, the gPC expansion provides an adequate
accuracy with much less computational effort.
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The truncated sum consists of P terms, which is prescribed by the problem dimension n and the
maximum polynomial degree p, where the dimension is given by the number of random variables.
Therefore, the number of terms can be controlled by the polynomial degree p, which is the only
degree of freedom.

Corollary 15 (Computational Effort, [40]). Let deg Fi  p for j = 0, . . . ,P� 1, i.e., the gPC
expansion is of order p, and n is the number of random variables of the stochastic process. Then,
the gPC expansion (4.29) is truncated after

P+1 =

✓

n+ p
p

◆

=
(n+ p)!

n!p!
(4.30)

terms.

Thus, eq. (4.35) can be written as a truncated formulation using a finite number of P terms:

fgPC (X, t) =
P�1

Â
j=0

f j(t)F j(X). (4.31)

Definition 7 (Approximation Error). The approximation error caused by the gPC expansion of
order p is defined as

d (X, p,n) :=
�

� f (X, t)� fgPC (X, t)
�

� . (4.32)

Figure 4.1 shows the growth of terms as a function of n and p.
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Figure 4.1: Number of terms of a gPC expansion for a given dimension n and maximum polyno-
mial degree p.

In fact, the calculation of the unknown coefficient functions f j in (4.31) is the most time-consuming
part. Here, two different approaches are basically known: the Stochastic Galerkin method and the
Stochastic Collocation method. Within Chapter 4.2.3 we focus on the Stochastic Collocation ap-
proach as the method of choice, whereas the Stochastic Galerkin approach is introduced briefly.

4.2.3 Calculation of the gPC Coefficient Functions

The major challenge of the gPC expansion is to determine the unknown coefficient functions.
For this task, two approaches exist: the Stochastic Galerkin approach (intrusive method) and the
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Stochastic Collocation approach (non-intrusive method) [9, 45, 50], where the related method is
termed as intrusive or non-intrusive gPC expansion.

Intrusive method: The main idea of the intrusive gPC expansion is to replace all random vari-
ables and dependent variables in the related equations with their gPC expansion (for j = 0,1, . . . ,P�
1 ):

*

f

 

t,
P�1

Â
j=0

f j(t)F j(X),X

!

,Fl(X)

+

(4.33)

The inner product yields a coupled system of deterministic equations which can be solved in the
same way as the origin deterministic model. Due to the fact that introducing uncertainties is
mostly the second step after setting up the deterministic model, the whole program code has to
be reimplemented. This task becomes expensive for multiphysics simulations, since it requires
the interplay between different software-packages. Therefore, the Galerkin approach is not being
considered further within this thesis.

Non-intrusive method: The non-intrusive gPC expansion allows to compute the unknown coef-
ficient functions without changing the model itself (the program code). This is the main benefit
and makes the application of a gPC based UQ to co-simulation straightforward. The non-intrusive
gPC expansion considers the stochastic model from a perspective of a black-box and tries to cal-
culate the coefficient functions by using the strategy of random space sampling technique. Thus, it
calculates the coefficients from a limited number of model simulations. For multivariate stochas-
tic models, i.e, more than one random variable, one has to solve multiple (probabilistic) integrals.
The spatial structure of the sampling grid and the number of points depends on the sampling tech-
nique. The most common technique is based on quadrature, where the underlying gPC method
is referred to as quadrature-based non-intrusive gPC expansion. Using full grids, the number of
grid points growth exponentially with the number of random variables. To bypass this problem,
numerical techniques based on sparse grid can be used to reduce the numerical effort. This is
topic of Chapter 5.

Stochastic Collocation Approach

The collocation approach predict the unknown coefficient functions by a limited number of model
simulations. The calculation is done explicitly by solving probabilistic integrals:

f j(t) :=
h f (t,X),F j(X)i p̃X

hF2
j(X)ip̃X

, for j = 0, . . . ,P�1, (4.34)

where the nominator h f (t,X),F j(X)ip̃X as well as the denominator hF2
j(X)ip̃X requires the nu-

merical treatment of multiple integrals. Now that we have defined the unknown coefficient func-
tions, we are prepared to state the generalized non-intrusive gPC expansion.

Definition 8 (Generalized Non-Intrusive Polynomial Chaos Expansion). Let Ass. 3 be fulfilled
and let b = (b1, . . . ,bn)2Nn

0 be given multiindex. Furthermore, let F
b

: D !R be a multivariate
basis polynomial with polynomial degree |b | = b1 + · · ·+ bn  p and let p̃X : D ! R+ be the
corresponding weight function. The generalized non-intrusive gPC expansion of order p is defined
as

fgPC (X, t) := Â
|b |p

f
b

(t)F
b

(X) (4.35)

with coefficient function f
b

given by (4.34) and orthogonal basis polynomials F
b

.



4.2 The Polynomial Chaos Expansion 53

Using orthonormal polynomials F̃ j, see Chapter 4.2.1, as polynomial basis in (4.31) the denomi-
nator yields hF̃2

j(X)ip̃X = 1 and (4.34) simplifies to

f j(t) =
Z

D

f (t,X)F̃ j (X) p̃X (X)dX, for j = 0, . . . ,P�1, (4.36)

with multivariate weight function p̃X : D ! R as given in (4.23).

Remark 16. Let Ass. 3 be fulfilled. For a uniformly distributed random input vector X, the joint
density function fX is constant on D, where the class of Legendre polynomials has to be chosen as
orthogonal polynomial sequence in (4.31), see Table 4.2. Therefore, (4.36) further simplifies to

f j =
1
2n

Z

D

f (t,X)F̃ j (X)dX, for j = 0, . . . ,P�1. (4.37)

4.2.4 Polynomial Chaos based Sensitivity Indices

Chapter 4.1 shows the possibility to determine stochastic quantities by the Sobol decomposi-
tion. However, the amount of effort increases exponentially with the number of random vari-
ables, which makes the method impracticable for higher dimensional problems. As an alternative,
approximations of the mean value and variances can be derived by extract it directly from its
approximating gPC expansion.

Once all unknown coefficient functions in (4.35) are determined, the mean value and variance of
the model output Y = f (X) can be directly obtained by [45]:

IE(Y ) = f0F0, and DgPC(Y ) = Var

"

Â
0<|b |p

f
b

F
b

#

= Â
0<|b |p

f 2
b

IE
h

F2
b

i

.

(4.38)

By using orthonormal polynomials F̃
b

as basis, see Chapter 4.2.1, the inner product yields hF̃2
b

i=

IE
h

F̃2
b

i

= 1 and (4.38) corresponds to:

IE(Y ) = f0, and DgPC(Y ) = Â
0<|b |p

f 2
b

, (4.39)

i.e., a simple summation of the square number of all coefficient functions, whereas the mean value
is given by the constant f0. The error in the variance (4.9) due to truncation is

Err[Var(Y ),DgPC(Y )] = |Var(Y )�DgPC(Y )| . (4.40)

Remark 17.

• The accuracy of the mean value derived by (4.39) is only affected by the numerical integra-
tion error done by solving the probabilistic integral (4.36) ones.

• But, the accuracy of the variance derived by (4.39) depends on numerical integration errors
which are done by solving the probabilistic integral P� 1 times as well as the truncation
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error of the gPC expansion. This is discussed in Chapter 5.

In contrast to identify sensitivity indices by the Sobol decomposition, a gPC based UQ allows to
approximate sensitivities directly by simple regrouping and summation.

Definition 9 (gPC based Sensitivity Indices, [45]). Let f
b

be the coefficient functions of an gPC
expansion (4.35). Furthermore, for an index set (i1, . . . , is) we define a set of multi-indices qi1,...,is
as

q i1, . . . , is := {b 2 Nn
0 : bk > 0 for k 2 {i1, . . . , is}, bk = 0 for k 62 {i1, . . . , is}}.

The partial gPC based sensitivity index for a subset of variables Xi1 , . . .Xis is defined by the sum
of the squares of the gPC coefficient functions:

SgPCi1,...,is(Y ) := Â
b2q i1,...,is

|b |p

f 2
b

IE
h

F2
b

i

/DgPC, (4.41)

with variance DgPC as defined in (4.38). Using orthonormal polynomials as basis polynomials,
(4.41) simplifies to

SgPCi1,...,is(Y ) := Â
b2q i1,...,is

|b |p

f 2
b

/ Â
0<|b |p

f 2
b

. (4.42)

Analogously, one can define the total-order gPC sensitivity indices as an approximation of the
(exact) total-order Sobol sensitivity indices in (4.14), which involves the main effect and all cross
effects up to a certain order:

SgPCT
i := SgPCi +SgPCi j +SgPCi jk + . . . (4.43)

Remark 18. We will use the gPC based sensitivity indices in Chapter 7.5, where we focus on
the behavior of the stochastic process during the co-simulation procedure. We analyze the rate of
convergence of the stochastic quantities by extracting mean value and variance directly from its
gPC representation.

The objective is to approximate Sobol indices as best as possible by gPC sensitivity indices. Here,
the limiting factor is the order p in (4.35) that states the maximum number of random variables
which can be considered in interaction. Only if the stochastic model is well approximated by the
gPC expansion of order p, one can expect that (4.42) are good approximations of (4.12).

Remark 19. In practice one has made the observation, the more parameters are considered in
mutual interaction the smaller are their corresponding sensitivity indices, see e.g. [51]. Thus, it is
mostly sufficient to use basis polynomials up to a certain degree, e.g. in particular for high dimen-
sional problems 1  p  3 is frequently a good compromise between accuracy and computation
effort.
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Multivariate Quadrature

Within this chapter, we aim to calculate definite integrals of functions of more than one variable:

In [ f ] =
Z

D

f (z )dz , z 2 D. (5.1)

In the majority of cases multiple integrals cannot be analytically solved, since the function f
may has a difficult form. This may be the case if f is a model function received from a mod-
eling process of electric networks, see Chapter 2. For example, the spatial discretized PDAE
system for field/circuit coupled problems discussed in Chapter 2.3. We aim to analyze sensitiv-
ities for such a spatial discretized PDAE system, which requires to solve multiple integrals of
(5.1) multiple times. Therefore, suitable techniques are used to solve the integrals by numerical
integration which is referred to as quadrature, see e.g. [54]. In numerical analysis, quadrature
formulas are approximations of definite integrals, usually stated as a weighted sum of function
values at specified points within the domain of integration, see e.g. [57, 58]. Thus, multivariate
quadrature formulas are based on a set of points (often referred to as nodes) arranged in a grid
and a set of corresponding weights, see e.g. [53]. The full set of nodes is commonly referred to as
tensor-product grid or full grid. Numerical integration techniques based on tensor-product grids
are computational expensive for high dimensional problems, since the amount of data increases
exponentially with the dimension (curse of dimensionality). In order to avoid the exponential
growth of data, we introduce into the so-called sparse grid technique [57]. Sparse grids break the
curse of dimensionality, [59], of common tensor-product grids and reduce the computational ef-
fort for high dimensional problems. This becomes important particularly for a sensitivity analysis
of field/circuit coupled problems tackled by co-simulation, since the computation of the field is
expensive and thus the user aim to minimize the repeated model simulations. Consequently, us-
ing numerical quadrature for the probabilistic integrals (4.36) of the (sample-based) non-intrusive
gPC expansion only provides approximations of the unknown coefficient functions.

Problem Definition

The modeling process of field/circuit coupled problems yields a system of differential algebraic
equations. Introducing random processes, the system (2.15) corresponds to the following form:

E(p) ẋ+A(p)x = f(t) , x 2 [t0, te]! Rn, (5.2)

with dynamic part E, static part A and time depended sources f, where the matrices E and A
include some physical parameters p = (p1, . . . , pQ)

T which are assumed to be uncertain, i.e., we
suppose that a subset of parameters are not known exactly. Again, all uncertain parameters are
considered to be independent random variables.

Now, by separation of system (5.2) into subsystems, the Gauss-Seidel type iteration scheme of

55
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Def. 1 defines splitting functions

˙̃y = F
⇣

t, ỹ(k)(t,p), ỹ(k�1)(t,p), z̃(k)(t,p), z̃(k�1)(t,p)
⌘

,

0 = G
⇣

t, ỹ(k)(t,p), ỹ(k�1)(t,p), z̃(k)(t,p), z̃(k�1)(t,p)
⌘

.
(5.3)

Within this thesis, we aim to compute statistics of the solution x̃(t,p) = (ỹ(t,p), z̃(t,p))> for
t 2 [t0, te] for the coupled problem (5.3). Statistics of uncertain systems can be computed by the
non-intrusive gPC expansion as introduced in Chapter 4.2.2. The computation of the expectation
value (4.8) and variance (4.9) are approximated by (4.38). Thus, non-intrusive gPC expansion
requires the sampling of the random parameter space by a grid G = {p(1), . . . ,p(m)} with grid
points p(i). The spatial arrangement of the grid points is topic of this chapter.

First, Chapter 5.1 introduces into the concept of tensor-product grids. Then, based on these gen-
eral concept, sparse grids can be easily constructed, see Chapter 5.2.

5.1 Tensor-Product Grids

First, this chapter introduces into univariate quadrature. Afterwards, the concept can be easily
extended to higher dimensions by using the cartesian product of their univariate sets.

Definition 10 (Univariate Quadrature). Consider the univariate function f : [a,b]!R to be inte-
grated within the interval [a,b]. The univariate quadrature formula of order N is defined as

Q1
N [ f ] :=

N

Â
i=1

w

(i) · f (p(i)), (5.4)

with N given nodes p(i) 2 [a,b] and weights w

(i). All nodes p(i) for i = 1, . . . ,N are stored in a
1-D univariate grid G1

N = {p(1), . . . , p(N)}.

Now, multivariate quadrature formulas are constructed based on such univariate quadrature for-
mulas. The construction is straightforward by nesting univariate grids, where the resulting multi-
variate quadrature is referred to as tensor-product grid or full grid, [55].

Definition 11 (Multivariate Quadrature). Consider a multivariate function f : D ! R on D =
D1⇥ · · ·⇥Dk ⇥ · · ·⇥Dn ✓Rn with Dk = [ak,bk]. The subscript (k) denotes the k-th direction. The
multivariate quadrature formula is constructed as tensor-product (nesting) of their univariate
sets:

Qn[ f ] := Q(1)
N1

⌦ · · ·⌦Q(k)
Nk

⌦ · · ·⌦Q(n)
Nn
[ f ] =

N1

Â
i1=1

w

(i1)
1 · · ·

Nk

Â
ik=1

w

(ik)
k · · ·

Nn

Â
in=1

w

(in)
n · f (p(i)), (5.5)

with given nodes p(i) = (p(i1)1 , . . . , p(in)n ) and weights (w(i1)
1 , . . . ,w(in)

n ) for i = 1, . . . ,m, where

Q(k)
Nk
[ fk] =

Nk

Â
ik=1

w

(ik)
k · fk(p(ik)k ), k = 1, . . . ,n,

is a set of univariate quadrature formulas with corresponding 1-D grids G(k)
Nk

.
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The related tensor-product grid consisting of m = N1 · · ·Nn nodes p(i) in (5.5) is a set of the form

G = G(1)
N1

⌦ · · ·⌦G(n)
Nn

=
n

p(i) : p(ik)k 2 G(k)
Nk
, i = 1, . . . ,m, k = 1, . . . ,n

o

. (5.6)

Typically, all weights in (5.5) are concentrated in an overall weight, where the merging is done by
multiplication:

w

(i) =
n

’
k=1

w

(ik)
k . (5.7)

Quadrature formulas are given for a broad class of different integrations problems. One of the
most important and widespread methods are the Gaussian quadrature formulas [53, 60]. From
the structural property point of view, all these formulas only differ in the way how the nodes are
located within the domain of integration. Within this thesis, we focus on the Gauss-Legendre
quadrature, since they are most suitable for solving probabilistic integrals of the gPC expansion
of Chapter 4.2 when uniform distributer variables are involved. Figure 5.1 (left) shows the two-
dimensional tensor-product grid G 2 on [�1,1]2 and (right) the total number of nodes for an tensor-
product grid with Nk nodes in each directions in dependence of the dimension of integration n.
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Figure 5.1: (left) Two-dimensional tensor-product grid G 2 with 49 nodes. (right) Exponential
growth of nodes for a tensor-product grid with Nk nodes in each direction.

Quadrature Error

Recall that the non-intrusive gPC expansion requires to determine the unknown coefficient func-
tions f j(t) by the inner product h f (t,X),F̃ j(X)ip̃X for j = 0, . . . ,P� 1. The subsequent calcu-
lation of the variance of a model output suffers from truncation by the gPC expansion and thus
(4.39) is only an approximation of (4.9) with error (4.40). However, (4.40) assumes to solve the
probabilistic integrals (4.36) analytically, i.e., it ignores quadrature errors.

Definition 12 (Quadrature Error). Let In [ f ] be the exact integration value and Qn[ f ] be its ap-
proximation obtained by quadrature. We define the error caused by (5.5) as

En [ f ] := |In [ f ]�Qn [ f ]| . (5.8)

Solving the probabilistic integrals (4.36) by quadrature (5.5) with a finite number of nodes usually
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provides only an approximation of the exact integration value:

f̂ j(t) =
m

Â
i=1

w

(i) f (t,p(i))F̃ j

⇣

p(i)
⌘

. (5.9)

Therefore, the quadrature error (5.8) for each coefficient function is
�

� f j � f̂ j
�

� and finally the error
in the variance (4.39) caused by quadrature reads

Err
⇥

DgPC(Y ), D̂gPC(Y )
⇤

=

�

�

�

�

�

P�1

Â
j=1

f 2
j � f̂ 2

j

�

�

�

�

�

. (5.10)

Rounding Errors

Numerical quadrature (5.5) requires the function evaluation of the model function f for all nodes
(p(1), . . . ,p(m)) 2 G . The received function value on a computer is denoted as f̂ (p(i)), where
typically f̂ (p(i)) 6= f (p(i)) holds due to rounding errors etc.. Consequently, the quadrature to find
the coefficient functions of gPC expansion reads:

ˆ̂f j(t) =
m

Â
i=1

w

(i) f̂ (t,p(i))F̃ j

⇣

p(i)
⌘

. (5.11)

It follows for the error

| f̂ j(t)� ˆ̂f j(t)|=

�

�

�

�

�

m

Â
i=1

w

(i)
⇣

f (t,p(i))� f̂ (t,p(i))
⌘

F̃ j

⇣

p(i)
⌘

�

�

�

�

�

. (5.12)

Under the assumption that
�

� f
�

p(i)�� f̂
�

p(i)�
�

�  e for all p(i) 2 G and |F̃ j
�

p(i)� |  max
p2G

|f j(p)|
we find an upper bound for the error caused by inaccuracies in function evaluations:

| f̂ j(t)� ˆ̂f j(t)|
"

m

Â
i=1

w

(i)

#

max
p2G

|f j(p)| · e. (5.13)

It follows for the error in the variance caused by inaccuracies in function evaluations:

Err
h

D̂gPC(Y ), ˆ̂DgPC(Y )
i

=

�

�

�

�

�

P�1

Â
j=1

f̂ 2
j � ˆ̂f 2

j

�

�

�

�

�

. (5.14)

Accumulation of Errors and Numerical Stability

The truncation error (4.40), the quadrature error (5.10) as well as the rounding error (5.14) accu-
mulates within gPC procedure. Here, the upper bound for the error in the variance can be stated
as

|Var(Y )� ˆ̂DgPC(Y )| Err[Var(Y ),DgPC(Y )]+Err
⇥

DgPC(Y ), D̂gPC(Y )
⇤

+Err
h

D̂gPC(Y ), ˆ̂DgPC(Y )
i

,
(5.15)

where Var(Y ) is the exact value and ˆ̂DgPC(Y ) is the computed value.



5.1 Tensor-Product Grids 59

An important aspect of quadrature formulas is their numerical stability. Using negative weights
may be lead to an amplification of errors caused by function evaluations, [61]. Again, consider the
rounding error (5.12) caused by a computation procedure. The upper bound is given by (5.13),

where the error e is not amplified if all weights are positive, since
m
Â

i=1
w

(i) = 1 holds. Within

Chapter 5.1.1 we discuss Gaussian quadrature formulas, which are numerically stable.

5.1.1 Gaussian Quadrature

Within this chapter, we discuss the Gaussian quadrature named after the mathematician Carl
Friedrich Gauss [60]. The class of Gaussian quadrature includes different methods, where its
numerical stability is the major advantage of all formulas, since the quadrature weights are strictly
positive. Furthermore, by a suitable choice of all nodes p(i), i = 1, . . . ,N within the domain of
integration [a,b] and weights w

(i), the Gaussian quadrature yields exact results for all polynomials
with maximum polynomial degree 2N � 1. Consequently, no quadrature error (5.8) occurs and
the formula reads

b
Z

a

Qn(x)dx =
N

Â
i=1

w

(i) ·Qn(p(i)).

Now, consider the integrand g which can be split into two parts g = p̃ · f , where f is approximated
by a polynomial Qn in [a,b] at nodes p(i) and p̃ is related weight function, see Table 4.2. The
received integral can be computed exactly and the method has the form:

b
Z

a

g(x)dx =
b
Z

a

p̃(x) f (x)dx ⇡
b
Z

a

p̃(x)Qn (x)dx =
N

Â
i=1

w

(i) f (p(i)). (5.16)

It can be extended to the multivariate case by (5.5). Notice that the domain of integration is
not limited to finite intervals. The nodes p(i) are simply the roots of a polynomial belonging
to the class of orthogonal polynomials. Within this work we only consider uniformly distributed
random variables. Therefore, with respect to Table 4.2 we take a close look to the Gauss-Legendre
quadrature which is based on Legendre polynomials of Def. 4.

Gauss-Legendre quadrature

Using the roots of the Legendre polynomials as nodes p(i) for i = 1, . . . ,N in (5.16) the method
is referred to as Gauss-Legendre quadrature of order N and yields exact results for polynomials
with degree 2N � 1 or less, [54]. The corresponding weights of the Gauss-Legendre quadrature
can be obtained by

w

(i) =
2

⇣

1� x(i)2
⌘

⇥ d
dx Pn (x)

⇤2
x=x(i)

, (5.17)

where Pn is Legendre polynomial with deg Pn = n, see [53].

Notice that (5.16) fits the form of the probabilistic integrals (4.36) to find the coefficient functions
f j(t) of the non-intrusive gPC expansion, Chapter 4.2.3, from which sensitivity indices can be
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derived. Recall that the multivariate case requires to solve probabilistic integrals of the form:

f j(t) =
Z

D

f (t,X)F̃ j (X) p̃X (X)dX, for j = 0, . . . ,P�1, (5.18)

where f is model function, F̃ is orthonormal multivariate polynomial constructed by (4.24) and
p̃X is multivariate weight function obtained by (4.23). Dealing with uniformly distributed random
variables within the gPC expansion, Legendre polynomials should be used as basis polynomials.
Consequently, for a fixed number of nodes, the Gauss-Legendre quadrature yields the best nu-
merical result for the probabilistic integral (5.18). For uniformly distributed random variables,
the multivariate weight function p̃X is constant, see Table 4.2, and F̃ j for j = 0, . . . ,P� 1 is
orthonormal multivariate Legendre polynomial. Therefore, the multivariate quadrature to find
approximations of the gPC coefficient functions (4.37) reads

f j(t)⇡
1
2n ·

N1

Â
i1=1

w

(i1)
1

N2

Â
i2=1

w

(i2)
2 · · ·

Nn

Â
in=1

w

(in)
n f

⇣

p(i)
⌘

F̃ j

⇣

p(i)
⌘

, for j = 0, . . . ,P�1, (5.19)

where p(i) = (p(i1)1 , . . . , p(in)n ) are the roots of the Legendre polynomials and w

(i) = (w(i1)
1 , . . . ,w(in)

n )
are the corresponding weights computed by (5.17).

Accuracy: As mentioned, the univariate Gauss-Legendre quadrature of order N is exact for all
polynomials Qn with degree at most 2N �1. The accuracy of the multivariate quadrature can be
derived by consider the accuracy of the univariate set. Then, the multivariate Gauss-Legendre
quadrature with corresponding tensor-product grid G = G(1)

N1
⌦ · · ·⌦G(n)

Nn
, see (5.6), is exact for all

polynomials

P 2 span

(

n

’
k=1

xqk
k : qk  2Nk �1 for all k

)

. (5.20)

In particular, if the number of nodes is the same in each direction , i.e., N1 = N2 = · · ·= Nn, then
Gauss-Legendre quadrature is exact for all polynomials with monomial degree 2N �1 or less.

5 y5 xy5 x2y5 x3y5 x4y5 x5y5

4 y4 xy4 x2y4 x3y4 x4y4 x5y4

3 y3 xy3 x2y3 x3y3 x4y3 x5y3

2 y2 xy2 x2y2 x3y2 x4y2 x5y2

1 y xy x2y x3y x4y x5y
0 1 x x2 x3 x4 x5

0 1 2 3 4 5

Table 5.1: Accuracy of the Gauss-Legendre quadrature using three nodes in both directions.

Table 5.1 shows all monomial for which a two-dimensional Gauss-Legendre quadrature with N1 =
N2 = 3 nodes provides exact results.

Suppose that the gPC expansion (4.35) is of order p. Consequently, basis polynomials F j with
maximum monomial degree of p appear. For dimension n = 2 and order p = 5, these are all
monomial of Table 5.1 up to the diagonal element. Now, the objective is to approximate the
coefficient functions of the gPC expansion using quadrature as good as possible. The common
Gauss-Legendre quadrature with Nk nodes for k = 1, . . . ,n in the k-th direction is exact for all
polynomials with deg F  2 ·min{N1,N2, . . . ,Nn}�1, see (5.20). However, such a high accuracy
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is not required. This is the point where sparse grids become important, see Chapter 5.2. Here,
few integration nodes are enough to yield a good approximation of integrals.

5.2 Sparse Grid Quadrature

Sparse grids were originally developed by S. A. Smolyak [57]. They are based on a particular
sparse construction referred to as Smolyak construction and enables to approximate multiple inte-
grals of (5.1) in an more efficient way [56,57]. Compared to the full set of nodes of tensor-product
grids, sparse grids balance computational effort and accuracy in an appropriate manner, since the
resulting grid is much more sparse. The number of nodes get independent of the dimension of
integration up to a logarithmic factor and thus sparse grids break the curse of dimensionality.

Recall that the Gaussian quadrature formulas are able to integrate the full monomial space (5.20)
up to a degree of 2 ·min{N1,N2, . . . ,Nn}�1 exactly, see e.g. Table 5.1. However, in the majority
of cases such an accuracy is not required. Here, sparse grids provide smaller set of nodes that are
not exact for the full monomial space but for all polynomials up to a certain total degree.

Definition 13 (Smolyak Quadrature). For k = 1, . . . ,n we define the difference quadrature formula

D1
N [ fk] := (Q1

N �Q1
N�1) [ fk] with Q1

0 [ fk] := 0, (5.21)

where

Q1
N [ fk] =

N

Â
i=1

w

(i) fk(p(i)),

is the univariate quadrature formula with corresponding 1-D grid G1
N. The multivariate Smolyak

quadrature of level l is defined as

Qn
l [ f ] := Â

|k|l+n�1

⇣

D1
Nk1

⌦ · · ·⌦D1
Nkn

⌘

[ f ] , (5.22)

where k is multiindex and |k|=
n
Â

i=1
ki.

Remark 20. Using the supremum-norm |k|• = max{k1, . . . ,kn} in (5.22) one obtains quadrature
formulas based on tensor construction (5.5).

The underlying sparse grid is a set of the form

Gl = {pl,i : 1  i  Nl ⇢ [�1,1]n}, (5.23)

with increasing density of nodes from the middle to the edges, see Fig. 5.2.

Accuracy: For a given dimension n and maximum polynomial degree d we consider the polyno-
mial space

Pn
d := span{xi1

1 · xi2
2 · · · · · xin

n |(i1, i2, . . . , in) 2 Nn
0, i1 + i2 + · · ·+ in  d}.

The multivariate Smolyak quadrature Qn
l with corresponding sparse grid Gl is exact for all poly-

nomials in Pn
l , see [58], i.e.,

En
l [ f ] = 0 for all f 2 Pn

l .
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Figure 5.2: (left) Two-dimensional sparse grid of level l = 5 with 613 nodes in [�1,1]2. (right)
Three-dimensional sparse grid of level l = 5 with 2070 nodes in [�1,1]3.

Remark 21. Suppose that the univariate quadrature formula Ql is exact for all polynomials with
degree at most s. Furthermore, assuming that the multivariate quadrature (5.22) uses the same
level l for every direction. Then, the Smolyak quadrature provides exact results for all monomials

Â
|i|s

cixi1
1 . . .xin

n , ci 2 R. (5.24)

These are all monomials up to the diagonal elements of Table 5.1. The important aspect is that
it is exactly the required (optimal) accuracy to solve the probabilistic integrals (4.36) of the non-
intrusive gPC expansion of order p, provided that s = p.

Conclusions

Within this chapter, the tensor-product grid and sparse grid based quadrature formulas were in-
troduced. It was shown that tensor-product grids provide a high accuracy. However, they are
oversized with respect to the number of nodes to find approximations of probabilistic integrals of
the gPC expansion. Here sparse grids are well suited, since they are exact for all monomials up
to a certain total degree, which fits exactly the structural property of the multivariate orthogonal
polynomial basis of the gPC expansion.
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Density Estimation in Co-Simulation

In this chapter, we consider time-dependent coupled problems including uncertain parameters.
These may be, for example, uncertainties in electric circuits or production-related tolerances in
electrical machines. In practice, various circumstances could cause the consideration of uncertain-
ties within the modeling process: tolerances in resistances, inductances and capacitances, varia-
tions in the diameter of the rotor and stator or the displacement of permanent magnets of electrical
machines. The uncertain parameters are modeled as random variables with their corresponding
probability density function (PDF).

The modeling and analysis of uncertainties within the computer-aided development process is
well known and several approaches have been developed and optimized in recent time. However,
when co-simulation is used to solve uncertain coupled systems (5.3), the uncertainties may be
affect the convergence of the dynamic iteration process, since the splitting scheme may be defines
(one or more) random variables as old iterates. That is, the iterative solution determined by co-
simulation becomes a random process and the contraction factor (3.17) becomes stochastic too
with its own PDF. Consequently, uncertainties in co-simulation can cause divergence.

Now, the objective is to reconstruct the PDF of the random variable an as precise as possible
to assess the divergence probability of co-simulation under the effect of uncertainties. Several
well known approaches can be found in the literature for measuring the PDF of random variables,
see [14]. One prominent technique is the so-called Kernel Density Estimation (KDE). These
method is based on a brute-force sampling of the random parameter space, see [16]. A different
approach is the spectral method developed by J. Li and Y. Marzouk from the Massachusetts
Institute of Technology. The spectral approach determines the PDF analytically by covering the
stochastic process using the gPC expansion of Chapter 4, see [1].

The KDE and spectral approach are entirely different and provide specific benefits. To our knowl-
edge, both methods have never been applied to co-simulation with respect to PDF measuring
problems. Thus, a comparison within a co-simulation process is of great interest. In general,
dealing with uncertain components in a co-simulation framework was an unknown field of re-
search and was investigated by us for the first time in [38].

To calculate statistics on a timeline [t0, te] an initial value problem of system (5.3) has to be re-
solved m times for all parameter-sets out of W. Consequently, we have to solve the problem

˙̃y= F
⇣

t, ỹ(k)(p(i)), ỹ(k�1)(p(i)), z̃(k)(p(i)), z̃(k�1)(p(i))
⌘

,

0 = G
⇣

t, ỹ(k)(p(i)), ỹ(k�1)(p(i)), z̃(k)(p(i)), z̃(k�1)(p(i))
⌘

,
(6.1)

sequential for each Hn ✓ [t0, te] and iterative for a fixed number of iteration steps k for all grid
points i = 1, . . . ,m. However, numerical time-integration methods only yield a discrete solution
computed on a finite set of time points tn (microsteps) with t0 < t1 < · · · < tn < tn+1 < · · · <
te. Consequently, the output for the different realizations of the parameters is the overall but

63
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discrete solution x̃(tn,p(i)) for all i = 1, . . . ,m. Finally, for a fixed grid point p(i), interpolation
over the entire timeline yields the continuous solution x̃(p(i))(k). Based on these set of simulations
(waveforms) we compute statistics for either the complete time interval or just at the final time.

This chapter is structured as follows: The KDE as well as the spectral method requires a set of
samples from which a probability density function can be reconstructed. Therefore, Chapter 6.1
introduce into estimate the contraction factor of a co-simulation procedure. Then, Chapter 6.2 and
Chapter 6.3 gives inside into the KDE and spectral method where the samples are used to estimate
the corresponding PDF. A comparison of both methods with respect to the attainable accuracy and
their computational cost is done numerically in Chapter 7.4.

6.1 Lower Bound Estimate for Purely Algebraic Coupling

In multiphysics the data exchange is frequently managed by algebraic constraints which are en-
tered by coupling variables of algebraic type. In such cases the dynamic iteration yields the
window-wise convergence rate an +O(Hn), see Cor. 6 (i). In the following, we investigate cou-
pled DAEs with the assumption of purely algebraic-to-algebraic coupling.

Assumption 4 (Purely Algebraic-to-Algebraic Coupling). Assuming that all subsystems remains
an index-1 problem such that the co-simulation scheme can be encoded by splitting functions F
and G. Furthermore it is assumed, that the coupling of the subsystems is organized by algebraic
constrains and that only old algebraic iterates enter the coupling equations. Then, the differential
functions f1, f2, i.e., the ODE parts, are decoupled and the particular splitting scheme reads:

F(·, ·, ·, ·) =

2

4

f1

⇣

y(k)1 ,z(k)1 ,0,0
⌘

f2

⇣

0,0,y(k)2 ,z(k)2

⌘

3

5 , G(·, ·, ·, ·) =

2

6

6

4

g1

✓

y(k)1 ,z(k)1 ,0, z(k�1,k)
2

◆

g2

✓

0, z(k,k�1)
1 ,y(k)2 ,z(k)2

◆

3

7

7

5

, (6.2)

where the boxed superscript denotes the computational sequence of subs. 1 or subs. 2 first.

When co-simulation is used for the simulation of multiphysics coupled problems with mutual
algebraic dependence, one is interested to measure the contraction factor online, i.e., during the
co-simulation procedure. However, oftentimes physical principles are described by non-linear
models and for these kind of models the computation of the Jacobians G�1

z(k) and Gz(k�1) in (3.20) is
time-consuming. Especially for real-world problems, the Jacobians can not be calculated within
an appropriate timeframe. To bypass this problem, we propose an lower bound estimate for the
contraction factor based on the partial solution x̃(p(i))|(k)[Tn,Tn+1]

for a given grid point p(i) and various
iteration steps k in (6.1). The accuracy of the estimate is analyzed numerically in Chapter 7.3.

Knowledge about the contraction factor during the co-simulation can be used for an effective
time window size control, such that non-equidistant communication point t0 = T0 < T1 < · · · <
Tn < Tn+1 < · · ·< TN = te can be defined with respect to the dynamic of the system. It offers the
opportunity for varying the time window size Hn to ensure the convergence and the fast contraction
over the entire simulation time. A second field of application is related to coupled systems with
uncertain parameters. Here, the estimation of the contraction factor enables to set-up a set of
samples that can be used to measure the corresponding probability density function, see Chapter
6.2 and Chapter 6.3.
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Now, the idea is to exploit the iterative behavior of waveforms on the time window Hn, i.e., the
waveform relaxation.

Lemma 22 (Lower Bound Estimate). Let X(k)(t), X̃(k)(t) be two waveforms on the n-th time win-
dow Hn after the k-th iteration. The error after k iteration steps is measured by the difference
d

(k)
n = kX(k)

n (t)� X̃(k)
n (t)k2,•. Furthermore, let Ass. 4 be fulfilled. Consequently, the Jacobians in

(3.20) exist, i.e., G�1
z(k) 6= 0 and Gz(k�1) 6= 0, and a contraction factor an occurs for both computa-

tional sequences, see Cor. 6. Then, for the Gauß-Seidel-type dynamic iteration approach of Def.
1 and Hn  Hmax the contraction factor is bounded from below by

an �
 

d

(k)
z,n

d

(0)
z,n

!1/k

�CHn, (6.3)

with lumped errors d

(k)
z,n , d

(0)
z,n and constant C > 0.

Proof. The proof is basically the same as for the contraction condition of Lemma 4. For algebraic-
to-algebraic coupling the error propagation for the differential and algebraic part after k iteration
steps reads:

 

d

(k)
y,n

d

(k)
z,n

!

 K̃k

 

d

(0)
y,n

d

(0)
z,n

!

with K̃ =

✓

0 CHn
0 CHn +an

◆

, (6.4)

where the k-th power of the iteration matrix K̃ yields

K̃k = (an +CHn)
k
✓

0 CH
an+CHn

0 1

◆

. (6.5)

Inserting (6.5) in (6.4) yields an error bound for the algebraic unknowns:

d

(k)
z,n  (an +CHn)

k
d

(0)
z,n . (6.6)

Further suppose that the error of the solution (waveforms) of the algebraic, using an extrapolation
step as initial guess for the coupling variables, is greater than zero. Then, we found that the
contraction factor is bounded from below by

an �
k
q

d

(k)
z,n/d

(0)
z,n �CHn. (6.7)

This concludes the proof.

Hence (6.3) enables to estimate the contraction factor for Hn small enough. However, when co-
simulation is applied to multiphysics problems no analytic solution is available and thus the errors
d

(k)
n , d

(0)
n cannot be calculated directly (exactly). Therefore in practice, the errors can be predicted

via Richardson Extrapolation.

Richardson Extrapolation

In order to measure errors in co-simulation, different approaches have already been used in appli-
cations of network simulations, see [5,10–12]. Within this thesis, we focus on estimates based on
Richardson Extrapolation.
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Suppose that co-simulation has reached the communication point Tn�1. An error estimate for all
unknowns of the system on the next time window Hn = [Tn�1, Tn] can be deduced as follows:

In each time window, the subsystems are integrated twice. At first, one step with the time window
size Hn is carried out which yields the numerical solution X(k)

n (t). Then, the same step is executed
using two steps with the half time window size Hn/2 yielding the more accurate solution X(k)

n/2(t).

Finally, the error of the solution X(k)
n (t) can be estimated by

d

(k)
n =

2p+1

2p+1 �1
kX(k)

n (t)�X(k)
n/2(t)k+O(H p+2

n ), (6.8)

where p denotes the degree of the polynomials that are used to approximate the input data of the
sources.

6.2 The Kernel Density Estimation Approach

Kernel density estimates are closely related to histograms. The technique of histogram can de-
liver exact results for uniformly distributed random variables x 2 U (a,b) with discontinuities at
the two boundaries a and b. However, in contrast to determine stochastic distributions by sim-
ple histograms, the KDE approach allows to get PDFs with properties such as smoothness and
continuity. This allows to calculate PDFs with arbitrary function profiles.

Definition 14 (Kernel Density Estimator). Let X =
�

x(1), . . . ,x(m)
�

be an independent sample
drawn from some distribution with unknown density pX. Via KDE, the PDF can be estimated by

p̂X =
1

mh

m

Â
i=1

K

 

x� x(i)

h

!

, (6.9)

where K : R!R+ is a non-negative function that integrates to one and has mean zero and h > 0
is smoothing parameter.

Smoothness or continuity of the resulting distribution p̂X can be controlled by using a suit-
able kernel K(x). Here, well known kernel-functions are the gaussian-, cauchy-, picard- and
epanechnikov-kernel [14]. In practice, the gaussian-kernel is often used due to its convenient
mathematical properties:

K(x) =
1p
2p

e�x2/2 (6.10)

Note that the usage of uniform distributed kernel-functions in (6.9) is also allowed and coincides
with the standard histogram technique. To avoid the effect of oversmoothing or undersmoothing,
the KDE method requires judicious choice of the bandwidth h. For example, smaller h makes the
KDE more accurate but more noisy, whereas large values for h obscures much of the underlying
structure. The effect of the smoothing parameter is shown in Fig. 6.1. The example shows
that one should be careful with the choice of the smoothing parameter. Starting from the same
set of samples X and using a gaussian-kernel. The reconstructed PDF is completely different
depending on the choice of the smoothing parameter h. For h = 1 and h = 3 the estimated PDF
is undersmoothed. The choice of h = 4 yields a PDF which is very similar to the exact PDF.
However, a further increase of h cause the effect of oversmoothing. By Scott’s rule-of-thumb the
choice of h can be chosen optimal in some sense, see [13]. However, by using MATLAB-routines
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Figure 6.1: Probability density function using the same set of samples for different smoothing
parameter h. (gray) is exact PDF. (black) is reconstructed PDF. (blue) set of samples
with underlying gaussian-kernel.

the KDE approach combined with an smoothing parameter control is already implemented such
that the setting of the smoothing parameter is not further treated in this thesis.

For uncertain coupled problems we aim to estimate the PDF of the contraction factor an by using
the KDE approach (6.9) with gaussian-kernel (6.10). The sampling of the random parameter
space of system (6.1) can be done arbitrary via the Monte-Carlo sampling methods or structural
by using tensor-product grids or sparse grids as discussed in Chapter 5.1 and Chapter 5.2. For
the structural sampling, the parameter space will be sampled with respect to their distributions,
e.g. uniform, normal. Then, a repeated co-simulation of system (6.1) with different parameter
realizations out of W for all grid points p(i) 2 G results in a set of samples of scattered values for
the contraction factor an =

⇣

a

(1)
n , . . . ,a(m)

n

⌘

calculated by (6.3). Now, the KDE technique tries to
estimate the underlying PDF based on these finite amount of input data.

6.3 The Spectral Approach

The spectral approach to determine PDFs is based on the concept of the gPC expansion discussed
in Chapter 4.2. The method has been introduced for the first time by J. LI and Y. Marzouk,
see [1]. The idea is to approximate the stochastic process via the gPC expansion and reconstruct
the corresponding PDF of the observed output analytically.



68 6 Density Estimation in Co-Simulation

Suppose that the system (6.1) is sampled by a grid G = {p(1), . . . ,p(m)} of tensor-product or sparse
type with grid points p(i). The approximation of the output x̃(t,p) by the gPC expansion in a fixed
time point tn (microstep) requires the calculation of the truncated sum

x̃gPC (tn,p) =
P�1

Â
j=0

f j(tn)F̃ j(p), (6.11)

with orthonormal basis polynomials F̃ j satisfying the condition IE(F̃ j,F̃i) = d ji and unknown
coefficients f j(tn). Then, after co-simulation has reached some final time te for all p2W, statistical
data can be reconstruct by quadrature formulas using the same grid points p(i) 2 G :

f j(tn)⇡
m

Â
i=1

w

(i)x̃(tn,p(i))F̃ j(p(i)) for j = 0, . . . ,P�1. (6.12)

Consequently, to calculate the gPC expansion (6.11) for all outputs x̃ 2 Rn and each microstep
tn (n = 0, . . . ,N) requires the computation of (N +1) ·m ·n function evaluations of (6.1).

However, usually only one up to a few outputs are considered within the UQ analysis such that the
number of global approximations by (6.11) is reducible. Furthermore, the computational effort
can be reduced if the global approximations x̃gPC (t,p) for t 2 [t0, te] are only computed at the
communication points Tn with t0 = T0 < T1 < · · · < Tn < Tn+1 < · · · < TN = te. According to the
different time scales of the subsystems, the procedure has the main advantage that each output is
given by (6.11) on the same discretized time-grid, i.e., x̃gPC (Tn,p) for n = 0, . . . ,N.
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Figure 6.2: Illustrates the mapping of distribution via the spectral method. (bottom, right) distri-
bution of the variable. (top, right) mapping function of the stochastic process. (top,
left) resulting probability density function.
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We now aim to construct the PDF for the contraction factor an of the coupled problem (6.1)
within a fixed time window Hn. Therefore, the lower bound estimate (6.3) applied to the solutions
x̃(t,p(i)) 2 Hn for i = 1, . . . ,m (waveforms for all sample points p(i) on Hn) generates a distributed
set of scattered values an =

⇣

a

(1)
n , . . . ,a(m)

n

⌘

. This step is the same as for the KDE method. Then,
the approximation of the stochastic process of an by the gPC expansion based on these finite set
of data is given by

angPC(p) =
P�1

Â
j=0

an j F j(p). (6.13)

For simplicity, we abbreviate (6.13) as

X̄(p) = angPC(p). (6.14)

Now we want to deduce a PDF for X̄ , say p̂X̄ . Suppose we want to evaluate this PDF at some
x 2 R. Then

p̂X̄(x) = Â
x̂2Rx

pX(x̂ )
�

�

�

DX̄
⇣

x̂

⌘

�

�

�

with Rx = {x̂1, . . . , x̂N}, (6.15)

where x̂1, . . . , x̂N are the N roots of the polynomial X̄(p)� x = 0, see [1]. In other words, many
possible x̂ may gives use this particular x and all of them contribute to the probability density at
position x. For one dimension X̄ : R!R the denominator becomes the absolute value of the first
derivative:

�

�

�

DX̄(x̂ )
�

�

�

= |dX̄/dx evaluated at x̂ |.

Remark 23. To generalize (6.15) to multiple dimensions, i.e., more than one random variable, the
quantity |DX̄ (p)| becomes the absolute value of the Jacobian-determinant. Here, some further
steps are required for dim(X̄) 6= dim(p), see [1]. Furthermore, the root-finding becomes much
more difficult.

Figure 6.2 illustrates the non-linear mapping of a uniformly distributed random variable. The
stochastic process is approximated by a second order gPC expansion (p = 2), i.e., polynomials
with degree at most two are involved.

Notice that the drawn PDF is only exact if the stochastic process is exactly represented by the
gPC expansion. Due to truncation, this requirement shall not apply for the most cases. However,
an increase in the order of the gPC expansion provides a better approximation and thus a better
estimate of the PDF by (6.15).
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Numerical Examples

Within this chapter the theoretical results and new methods of Chapter 3 - 6 are numerically
verified. For this purpose, we take different examples from the electrical engineering.

Modeling Aspects and Simulator Packages

The circuit part is modeled via modified nodal analysis (MNA), see Chapter 2, by the Octave
Circuit Simulator (OCS) package. The field device is a single phase isolated transformer modeled
in 2D. The modeling is done with the Finite Element Method Magnetics (FEMM) software pack-
age. The spatial discretization of the 2D surface is done by triangulation, see [24], and thus the
problem can be traced back to a common DAE-DAE coupling, see Chapter 3.1.2. The OCS pack-
age communicates with the Field Device Simulator (FIDES), see [7], for magnetoquasistatic field
simulations, see Chapter 2.2. For the time-integration of all subsystems the microsteps are chosen
small enough such that the total time points are sufficient to render the dynamics of the systems
(field and circuit). Consequently, time-integration inaccuracies can be neglected, since they are
comparatively small compared to the co-simulation splitting errors. The coupling of the circuit
with the field device is done by add additional unknowns (coupling variables) to the network equa-
tions (source coupling), see eq. (2.3). The circuit is excited by an additional controlled current or
voltage source driven by the previously computed waveform (branch current or node voltage on
Hn) of the field device provided that they share two nodes (including the ground-potential), see
Chapter 2.3. For the inverse computational sequence the way of update the field is the same. The
strongly coupled network (monolithic model) is simulated by using the FIDES and OCS packages
as well. Here, the magnetoquasistatic equations (2.12) are solved along the timeline together with
the circuit equations (2.2) by using the same time stepping scheme.

All simulations ran on a common PC with Macintosh Operating System (OS X 10.10.5): proces-
sor type Intel Core i5, 2.9 GHz, L2-Cache (per core): 256 KB, RAM: 8 GB.

The following topics are discussed in their corresponding chapters:

Chapter 7.1: the convergence and the contraction of the RL-circuit studied in Chapter 3.2.3 are
numerically verified. The results were first presented at ECMI 2014 and published in [39].

Chapter 7.2: the R-splitting and LR-coupling with their application in field/circuit coupled
problems are considered. Basically, the theoretical results of Chapter 3.2 are numerically
verified. Both splittings are compared to the standard way of coupling (cutting at the EM
device boundaries) with respect to the convergence rate and the speed of contraction. The
results were presented at COMPUMAG 2015 and SCEE 2016 and published in [36, 37].

Chapter 7.3: the accuracy of the lower bound estimate of the contraction factor given in Chapter
6.1 is numerically verified with application in a field/circuit co-simulation, see [37].

71
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Chapter 7.4: the KDE and the spectral approach of Chapter 6 are used to estimate the corre-
sponding probability density function of the contraction factor for an uncertain field/circuit
coupled problem. The results were first published in [37].

Chapter 7.5: the non-intrusive gPC expansion discussed in Chapter 4.2.2 is applied to co-
simulation. Basically, the propagation of stochastic quantities (expectation and standard
deviation) are considered within the dynamic iteration process. The results were presented
at SCEE 2014 and published in [39].

7.1 Fast Contraction and Higher Order Co-Simulation

The RL-circuit as discussed in Chapter 3.2.3 (see Fig. 3.6) is numerically verified with respect
to the convergence rate and the number of iteration steps that are required to attain a predefined
accuracy. The following set of parameter-values are employed: resistance R = 10kW and induc-
tance L = 1mH. The circuit is supplied by a voltage source Uin(t) = 1V · sin(wt) with angular
frequency w = 2p ·5 ·103s�1 ( f = 5kHz).

To investigate contraction and convergence, the co-simulation is studied within a fixed time inter-
val [t0, t0+Hn] with initial time t0 = 0.4ms and time window size Hn = 10�4s. This is sufficient to
cover a half of the period of the input voltage source Uin. The accuracy of the solutions on the n-th
time window after k iterations X̃(k)(t) is measured by comparing with a reference solution Xm(t)
computed by a monolithic simulation (strongly coupled): D(k)

n (t) = Xm(t)� X̃(k)
c (t) and lumped

error d

(k)
n := supt2Hn

kD(k)
n k2. For both splitting functions (3.64) and (3.65) (subs. 1 and subs. 2

first) a constant extrapolation of the initial value is used as initial guess X̃(0)(t) on Hn.

Contraction and Convergence: Fig. 7.1 (left) shows convergence and (right) contraction for
both computational sequences. Thus, we have convergence even so the estimate (3.66) does
not indicate this behavior, see eq. (3.66). Moreover, both subsystems are precisely solved,
i.e., no more splitting errors occur, after each subsystem is updated only once, where the solu-
tion of each subsystem (waveforms on Hn) is bounded by the time-integrator accuracy of about
AbsTOL = RelTOL = 10�6. The tolerances are used to limit the local discretization error. If the
difference between a high-accuracy and low-accuracy time-integration on Hn is higher than one
of the tolerances, then the microsteps size hn will be reduced. However, the time-integration can
meet much better accuracies for very small time window sizes. The simulation results confirm ex-
actly the theoretical result predicted by the fine structure analysis, see eq. (3.69), since the spectral
radius of the corresponding (exact) recursion matrix is zero and thus no splitting errors occur after
one iteration. Additionally, we observe two different convergence rates for the different compu-
tational sequences. For subs. 1 first the window-wise convergence O(Hn) is observed, whereas
for subs. 2 first a higher order co-simulation of O(H2

n ) is achieved. This can be explained as fol-
lows: Constant extrapolation produces an splitting error of O(Hn). For subs. 2 first, the coupling
variable UCo is extrapolated constantly. This variable is coupled to the algebraic node potential
U1. Using Kirchhoff’s Current law it follows for the coupling current ICo � IL = 0. However, the
inductor as dynamic element is involved in subs. 2 with differential current:

d
dt

IL =
UL

L
, with UL =U1 �U2.

Consequently, the coupling current ICo is improved during time-integration and the convergence
rate is improved from O(Hn) to O(H2

n ). For subs. 1 first, the coupling variable ICo is constantly
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Figure 7.1: Convergence and contraction for the LR-circuit given in Fig.3.6. (Left) lumped error
for different time window sizes Hn and one iteration step per window. (Right) lumped
error in dependence of iteration steps k on [0.4, 0.5]ms (Hn = 0.1ms). [39]

extrapolated. Due to the fact that subs. 1 is merely a system of algebraic equations, see eq. (3.61),
the effect of higher order co-simulation is no longer existent.

Conclusions

The theoretical results of Chapter 3.2.3 are verified by numerical simulations. The co-simulation
model is solved without splitting errors after each subsystem is updated only once, whereas the
standard recursion estimate (3.20) does not indicate this behavior. Furthermore, we showed that a
higher order co-simulation with constant extrapolated coupling variable is feasible by exploiting
network topology in the surrounding of the interface (controlled sources). These result is in
line with the theoretical result for the LR-coupling approach of Chapter 3.2.2 for DAE-DAE
coupled problems, see Chapter 3.1.2, where the order is improved from an +O(Hn) to O(Hn),
see Theorem 10.

7.2 Coupling Interfaces in Application

In this chapter the R-splitting and LR-coupling as introduced in Chapter 3.2.1 and Chapter 3.2.2
are numerically verified with their applications for field/circuit coupled problems, see Chapter 2.3.
Both splittings will be compared to the standard way of cutting at the EM device boundaries where
co-simulation is unconditional stable for the computational sequence of field first, see Chapter
3.1.3. The computational effort is measured in terms of the number of iteration steps and finally
we count the total number of solved linear systems as quantitative measure.

7.2.1 R-Splitting for Field/Circuit Coupled Problems

Now, the advantage of R-splitting as alternative splitting approach for co-simulation is high-
lighted. Recall that the contraction factor and the constant of the extended recursion deduction
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Figure 7.2: (top, left) Field/circuit co-simulation test circuit, (top, middle) specification of the
transformer, (top, right) non-linear BH-curve, (bottom, left) sinusoidal input voltage,
(bottom, middle) primary and secondary voltage, (bottom, right) inrush current.
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an =
G2

G1
, C = G2

 

G2

G1 [1�L f (1+LF)Hn]
+

G2
1�L f (1+LF)H

H �1

1� (L f (1+LF)+G1)H

!

, (7.1)

with Lipschitz constants LF, L f and conductances G1 = 1/R1, G2 = 1/R2, see Theorem 8. There-
fore, the coupling strength of co-simulation with R-splitting is specified by the ratio of the cou-
pling resistances. That is, for an increasing resistance R2 the constant C and the contraction factor
an decreases, i.e., both quantities benefit from resistance splitting. In other words, R-splitting is
able to affect co-simulation in an appropriate and positive manner such that the coupling between
both subsystems becomes strong.

The electrical engineering test example is shown in Fig. 7.2 (top, left): an electric circuit coupled
to a EM device (transformer model).

EM device: The field part is a single phase isolated transformer with a non-linear BH-curve (non-
linear model) typically used in low frequency applications, for example, in power supply units of
electrical devices. The resistances of the coil windings are extracted from the PDE model in
FEMM, see [6]: internal resistance RM,1 = 0.449W (primary side) and RM,2 = 0.062W (secondary
side). This transformer has 260 turns on the primary and 90 turns on the secondary side without
load (no-load test). Thus, the secondary voltage is scaled to a third of its primary voltage, see Fig.
7.2 (bottom, middle). Usually, when electrical devices like electrical machines or transformers
are turned on, instantaneous an high input current occurs, see Fig. 7.2 (bottom, right). Especially,
when transformers are magnetized for the first time a high magnetizing current flows for several
cycles, since the magnetizing flux operates in the saturation region of its BH-curve. The occurred
current is referred to as the inrush current, input surge current or switch-on surge [62]. Particularly,
when the transformer operates in no-load, i.e., with its secondary side open, the current can be 10
to 15 times larger than the mean value and can flow for several cycles. These circumstance makes
our test circuit difficult for co-simulation. However, it shows the potential of R-splitting.

Circuit: The circuit part is a two-stages low-pass filter supplied by a sinusoidal voltage source
Uin = Asin(wt) at low frequency f = 60Hz with amplitude A = 170V. As resistances and capaci-
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tances we choose: Ri = 10W, R = 20W and C1 =C2 = 1nF. The setting yields corner frequencies
of approximately 16 MHz for the first and 8 MHz for the second stage low-pass filter. Conse-
quently, the amplitude is not attenuated at the input (primary side) of the transformer.

Coupling: The coupling of field and circuit is managed by the software package FIDES, see
[7]. The data exchange between both subsystem is organized via controlled current and voltage
sources (source coupling), see Chapter 3.1.3. In fact, the resistance R is split into two resistances
in series: R1 := wR, R2 := (1�w)R with w 2 [0,1], see Fig. 7.3. For a splitting ratio w 2 (0,1)
the controlled sources are directly connected to resistances which ensures the mutual algebraic de-
pendence of the subsystems. As a consequence, source-coupling does not change the differential
index property. Note that for the limits of the ratio parameter (w = 0 and w = 1) the subsystem
which is coupled by the controlled voltage source becomes index-2, if there is a loop of capaci-
tances and at least one voltage source only (CV-loop), see Chapter 2.3. Therefore, it is assumed
that the controlled sources are placed in such a way that both (all) subsystems remain an index-1
problem for all w 2 [0,1]. This leads to the following:

Remark 24 (Avoiding Index-2). When R-splitting with w 2 [0,1] is used for a field/circuit coupled
problem (2.14) with arbitrary circuit part (provided index-1), then Ass. 2 (index-1 assumption) is
particularly fulfilled for voltage driven MQS devices.

With respect to (7.1), the ratio parameter has been chosen small such that the contraction fac-
tor becomes small. However, the contraction factor must not disappears completely, since the
dependence of the circuit and the field shall remain algebraic for both computational sequences
(field and circuit first). For our test simulation the ratio parameter of R-splitting has been chosen
as w = 0.05. Consequently, the resistance R is split into parts of R1 = 1W and R2 = 19W. By
following Theorem 8 a contraction factor of an = 1/19 occurs.

Simulation settings: Co-simulation is performed on G = [t0, tend ]. The strongly coupled system,
see Fig. 7.2, is computed on G as well and serves as our reference solution. The strongly as well
as the weakly coupled system is solved by the same time stepping scheme ode23s (Rosenbrock
method) with accuracy AbsTOL = RelTOL = 10�5. The microsteps hn of time-integration are
chosen such that the number of total time points are sufficient to render the dynamics of the
respective system. Consequently, only the multi-window propagation of splitting errors within
the dynamic iteration process occurs.

Convergence and Computational Effort

Two different test scenarios are performed. First, we investigate the maximum possible window
size for convergence which serves as indicator for the strength of the coupling. Secondly, the
computational effort is analyzed for the R-splitting and the standard coupling approach.

Window Size: Co-simulation is studied on G= [0,10]s with various time window sizes Hn. Figure
7.3 (right) shows the error in the primary current of the transformer by using the R-splitting and
the standard approach (for the computational sequence of field first), for different window sizes
Hn and increasing iteration steps k per window. Cutting at the EM device boundaries is already
divergent for time window sizes Hn > 2.5ms, whereas R-splitting supports time window sizes up
to Hn = 10s. and thus obviously R-splitting accepts much larger time windows. The simulation
result proves Theorem 8 numerically: The strength of coupling between field and circuit can be
affected by the resistances R1 and R2. For R2 ! • it follows an = 0 and C = 0 and thus the
co-simulation with R-splitting interface is converged for every Hn ✓ [t0, tend ].
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Figure 7.4: (left) Error of co-simulation measured in the primary current of the transformer in the
time interval [0, 0.01]s with Hn = 10�3s. (right) Computational effort for R-splitting
and cutting at the EM device boundaries (field first) in terms of solved linear systems
of equations. [37]

Computational Effort: Now, co-simulation is studied on a smaller time interval G = [0,0.01]s
with constant time window size Hn = 10�3s. Thus, still a half of the first period (switching-
on phase) of the input voltage source Uin is covered including the high inrush current peak, see
Fig. 7.2 (bottom, right). Figure 7.4 compares the computational effort for both approaches (R-
splitting and standard approach). With R-splitting the coupling becomes stronger and the number
of required iteration steps decreases to achieve a predefined accuracy, see Fig. 7.4 (left). Here,
R-splitting only requires two iteration steps to be close to the reference solution. Consequently,
the coupled system is solved within the tolerance after the circuit and the field is updated only
once, whereas the standard coupling approach requires k = 17 iteration steps to be in a similar
scale of errors. To assess platform (computer system) independent, the computational effort is
measured in terms of linear systems. Cutting at the EM device boundaries requires to solve 84047
linear systems, whereas the R-splitting approach only requires to solve 9872 linear systems, see
Fig. 7.4(right). Consequently, the computational effort can be reduced by 90% to achieve the
same accuracy in the solution of about 10�5. A further reduction of the ratio parameter w , i.e.,
for w < 1/19, only yields a slightly improvement, since the contraction factor is close to zero and
the coupling strength is basically determined by its constant C.
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Inrush Currents in Field/Circuit Coupled Problems

The inrush current through the transformer is limited by the equivalent circuit resistance (primary
side surrogate resistance). The number of iteration steps which are required within the dynamic
iteration process for field/circuit coupled problems are primary affected by the amplitude of the
inrush current during the switch-on phase. By cutting at the EM device boundaries into circuit and
field, the information about the surrogate resistance is shifted to the circuit subsystem and thus
the field device responds with its maximum inrush current for several cycles. Here, by shifting
the resistance from the circuit to the field limits the current through the primary coil.

To demonstrate the impact of inrush currents in co-simulation, we compare two different settings.
First, we chose R-splitting with ratio parameter w as before (a = 1/19). Consequently, a major
part of resistance R is displaced to the field. Then, we investigate the standard decoupling ap-
proach, i.e., w = 1, with the computational sequence of field first. The co-simulation is tested on
G = [0,0.02]s with time window size Hn = 10�3s. This is approximately one period of the input
voltage source Uin and is sufficient to cover the non-linear start-up phase of the transformer.

Figure 7.5 (top) shows the primary (inrush) current through the transformer for the field/circuit
test example of Fig. 7.3 for R-splitting (top,left) and for the standard approach (top, right). Figure
7.5 (bottom) shows the related error in the primary current measured by comparing with the
reference solution (primary current obtained by solving the monolithic model Fig. 7.2 (bottom,
right)) for an increasing number of iteration steps. For R-splitting the primary current is already
close to the reference solution after one iteration step has been performed. However, cutting at
the boundaries induces a high inrush current of about 2 times of the mean current during the first
iteration. Therefore, co-simulation requires further iteration steps to adjust the deviation.

7.2.2 LR-Coupling for Field/Circuit Coupled Problems

In this chapter the LR-coupling approach given in Chapter 3.2.2 is treated as a further alternative
to the standard coupling approach of Chapter 3.1.3. To highlight the advantage of LR-coupling,
our focus is on the convergence rate and on the speed of contraction of a dynamic iteration process.

The engineering test example for co-simulation is a transformer typically used in low frequency
applications connected by a wire to a supply voltage source, see Fig. 7.6(top, left).

EM device: The transformer model is the same as in Chapter 7.2.1. The transformer operates
without a load resistance (no-load test) and thus the secondary current becomes zero. Again
a high inrush current occurs during the switch-on phase, see Fig. 7.6 (bottom, right). Further
technical details can be found in Chapter 7.2.1.

Circuit: The circuit part consists of a first order RC low-pass filter followed by a second order
RLC low-pass filter. The circuit is excited by a sinusoidal supply voltage source at low fre-
quency f = 60 Hz and amplitude A = 170V. The following parameter values are used: Ri =
10W, RW = 2kW, CW1 =CW2 = 1nF and L = 1nH. These particular choice yields corner frequen-
cies of fg1 = 1/(2p ·Ri ·CW1)= 16 MHz for the first order low-pass filter and fg2 = 1/(RW ·CW2)=
500 kHz, fg3 = 1/(

p
LW ·CW ) = 1 GHz for the second order low-pass filter. Consequently, the

supply voltage Uin is not attenuated at the input of the transformer.

Coupling: Again, the data exchange between the subsystems is managed by controlled sources
(source coupling), where the LR-coupling approach is used to couple field and circuit part. To this
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Figure 7.5: (top, left) Inrush current of the transformer using the R-splitting (w = 0.05) for k =
1, . . . ,20 iterations (fast contraction). (top, right) Inrush current using the standard
approach and field first for k = 1, . . . ,20 iterations (slow contraction). (bottom, left
and bottom, right) Contraction of field/circuit co-simulation. Splitting errors in the
primary current of the transformer in dependence of the number of iterations.

end, the resistance RW is split into two resistances RW,1 = 1kW and RW,2 = 1kW, where RW,2, LW
and CW2 is shifted to the field, see Fig. 7.7. For the computational sequence of subs. 1 and subs. 2
first both subsystems are mutual algebraically coupled by eq. (3.49a), see DAE-DAE coupling of
Chapter 3.1.2. Therefore, the convergence is not guaranteed by following the standard recursion
estimate of Lemma 3. However, our numerical results show the benefit of LR-coupling compared
to the (for the computational sequence of field first) unconditionally stable standard approach of
Chapter 3.1.3.

Convergence and Contraction

Convergence Analysis: To verify the rate of convergence, we inspect the splitting error in the
primary and secondary voltage as well as in the primary current of the transformer. To start up co-
simulation, we employ constant extrapolation for the coupling variables ICo and UCo. Starting with
zeros as initial setting, we first solve the model (strongly and weakly coupled) up to t0 = 0.001s
for consistency. Then, convergence is investigated on the first time window [t0, t0 +Hn] by using
consistent initial values. Since co-simulation is performed on a fixed time window Hn, the error
is not propagated to subsequent windows (no error transport), which ensures to measure the pure
splitting error.

For LR-coupling as well as for the standard field/circuit coupling approach the same equidistant
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Figure 7.6: (top, left) Field/circuit co-simulation test circuit, (top, middle) specification of the
transformer, (top, right) non-linear BH-curve, (bottom, left) sinusoidal input voltage,
(bottom, middle) primary and secondary voltage, (bottom, right) inrush current
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Figure 7.7: LR-coupling for the field/circuit co-simulation model. Subs. 1 is a purely circuit,
whereas subs. 2 consists of a circuit and a field device. [36]

microsteps are used for the time stepping methods. Hence no interpolation techniques are required
to measure errors, since each time-integrator provides a solution on the same discretized grid
t0 < t1 < · · ·< tn < tn+1 < · · ·< te. The errors are given with respect to the corresponding reference
solution computed by a monolithic simulation. Figure 7.8 shows the error in the primary and
secondary voltages of the transformer for various time window sizes Hn. It shows that the gain of
accuracy per iteration is O(Hn) for both approaches. This result fits to the predicted convergence
rate of Theorem 10 for LR-coupling and proves the convergence rate numerically.

However, a higher convergence rate of O(H2
n ) is achieved concerning the primary current of the

transformer, see Fig. 7.8 (right, solid line). This behavior can be explained as follows: the old
iterate I(k�1)

Co (coupling current) which enters subs. 1 is directly linked to the induction current I(k)L

by the Kirchhoff’s current law 0 = I(k�1)
Co + I(k)L . Recall that I(k)L is differential, thus it is obtained

by time-integration. With CW2 small enough (in our case CW2 = 1nF) the capacitance connected to
ground can be neglected and thus only a negligible current is flowing through the capacitor against
ground. Again, Kirchhoff’s current law for the node UP yields a direct link between the induction
current and the primary current and 0 = I(k)p + I(k)L holds for slow alternating node potential UP and
CW2 small enough. Therefore, the convergence of the primary current is enhanced during time-
integration. However, the lumped error in all unknowns will remain unaffected. Consequently,
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Figure 7.8: (left) Convergence concerning the primary and secondary voltages and (right) conver-
gence concerning the primary current. The figures show the splitting error in depen-
dence of the time window sizes Hn and one iteration per time window. [36]

LR-coupling provides overall convergence rate O(Hn), while the error behavior of the primary
current benefits from its surrounding circuit structure.

To confirm the effect of higher order, we repeat co-simulation with an increased capacitance
CW2 = 100nF as well as for an increased frequency f = 6 kHz. Now, the current through the
capacitance becomes more important. Notice that this current is governed by the node potential
UP which offers convergence rate O(Hn), see Fig. 7.8 (left). Consequently, the gain of accuracy
per iteration is reduced to O(Hn), since the primary current of the transformer do not longer
benefit from its surrounding network structure.

Window Size: We investigate co-simulation by using the LR-coupling approach with respect
to the maximum time window size for convergence. The time-integration of all subsystems is
done by the implicit Euler method with a Newton tolerance of 10�5. For the standard coupling
approach, co-simulation starts the computation with the field where convergence is guaranteed.
However, for the LR-coupling approach, co-simulation starts the computation with the circuit
which creates a mutual algebraic dependence between the subsystems. Figure 7.9 shows the so-
lutions (waveforms) of the primary voltage within the first time window Hn, i.e., the time interval
[0,Hn], for an increasing number of iteration steps k = 1, . . . ,10. By cutting at the EM device
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Figure 7.9: Waveforms of the primary voltage on the time interval [0,Hn] for increasing iteration
steps k = 1, . . . ,10. (left) for the standard approach and Hn = 2.5ms, (right) for the
LR-coupling and Hn = 10s (figure shows only a cutout). [36]
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boundaries (standard coupling approach) the maximum possible time window size for conver-
gence (already tested in Chapter 7.2.1) is Hn = 2.5ms, see Fig. 7.9 (left). Now, LR-coupling en-
ables to use time window sizes up to Hn = 10s (maximum tested window), where Fig. 7.9 (right)
shows only a cutout. However, the use of large window sizes usually increases the number of
iteration steps to achieve a certain tolerance. Consequently, a fair comparison of both approaches
is to use the same window size and count the number of iteration steps which are required to be
close to the reference solution (strongly coupled model).This is analyzed next.

Contraction: Now, we analyze contraction on the time interval G = [0,0.02]s, which is about one
cycle of the supply voltage Uin. First, a constant time window size for both types of coupling is
applied. Here, the largest possible window size of the standard approach, i.e., where the standard
approach is still convergent, is used to proceed sequentially over G, i.e., H = 2.5ms.
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Figure 7.10: (left) Contraction of field/circuit co-simulation. Figures show the splitting error in
the primary and secondary voltages on the full time interval [0,0.02]s with (left)
constant time window size Hn = 2.5ms for both approaches and (right) different time
window sizes. For a given time window Hn the dashed line refers to the standard
approach, whereas the solid line refers to the splitting error of the LR-coupling. [36]

Figure 7.10 shows the splitting error in the primary and secondary voltages of the transformer
plotted against the number of iteration steps per window. It shows that both approaches are con-
vergent. Again, the speed of contraction of co-simulation with given Hn is affected by the constant
CICo of eq. (3.53) reflecting the strength of the coupling. It appears that LR-coupling requires less
iteration steps to be close to the reference solution. Recall that the convergence rate which is
determined by the diagonal element of the recursion matrix in (3.54) is CICoO(Hn). Therefore, the
number of iteration steps for a given time window Hn and predefined accuracy depends on the size
of the constant CICo . Consequently, the number of required iterations decreases with decreasing
time window sizes, see Fig. 7.10 (right). It shows that the benefit of the LR-coupling approach is
lost once the time window size dropped below a certain value of about 10�4s. The balance of the
number of iteration steps, the time window size and the time-integration accuracy is a common
problem is co-simulation is difficult to determine, since all quantities are mutually affect each
other.
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Conclusions

The theoretical results of the R-splitting and LR-coupling approach of Chapter 3.2.1 and Chapter
3.2.2 were confirmed by numerical simulations. Their benefit in co-simulation has been tested for
field/circuit coupled problems (2.14). Therefore, we analyzed the convergence and contraction for
both approaches. We numerically verified the convergence rate of O(Hn) for the R-splitting and
LR-coupling, see Theorem 8 and Theorem 10, respectively. Furthermore, we showed numerically
that R-splitting enables to enhance the strength of coupling by shifting a major part of the coupling
resistance to the field-subsystem.

Cutting at the EM-device boundaries is always convergent for the computational sequence of field
first. However, we showed that both splittings support larger time windows and require much less
iteration steps to achieve a predefined accuracy. Consequently, both approaches enable to reduce
the computational effort, which we verified in terms of solved linear systems. For our choice of
parameter values, R-splitting is more contractive as the LR-coupling. The examples demonstrate
the interplay between iteration steps, time window size and desired time-integration accuracy. It
shows that a combined window size and sweep control enables to further improve the efficiency.

7.3 Accuracy of the Lower Bound Estimator for Purely
Algebraic-to-Algebraic Coupling

Within this chapter, the accuracy of the lower bound estimation of Chapter 6.1 is numerically
verified. To this end the R-splitting of Chapter 3.2.1 is used, where the contraction factor is
known analytically and given by the ratio of the coupling resistances, see Theorem 8. Recall
that R-splitting fulfills the purely algebraic-to-algebraic coupling condition, since only old alge-
braic unknowns enter algebraic constraints. Consequently, ineq. 6.3 is a lower bound for an in
(3.35) and thus the accuracy of the estimate can be easily verified by comparison of the exact and
approximative value.

Simulation settings: We consider the engineering test example already introduced in Chapter
7.2.1. This is a transformer connected by a two-stage low-pass filter to a sinusoidal voltage source
at low frequency ( f = 60 Hz), see Fig. 7.3. For further technical details see Chapter 7.2.1. As
resistances and capacitances we choose Ri = R = 20W and C1 =C2 = 1nF, which result in a low-
pass filter with two equal corner frequencies of approximately fg = 8 MHz. As a consequence,
the signal of the supply voltage Uin is not attenuated at the input (primary side) of the transformer.
The problem is simulated on the time interval [0,0.01]s, which is approximately one period of the
supply voltage.

Remark 25. R-splitting gives the opportunity for several test cases with convergence and diver-
gence characteristic by a different choice of the ratio parameter w . For the limits w = 0 and
w = 1 the subsystems are coupled via an ordinary differential equation in subs. 1 or subs. 2,
since one coupling node becomes differential. Thus, the algebraic-to-algebraic splitting structure
(6.2) is not given and (6.3) is not valid.

The accuracy has been tested for two different time window sizes of Hn = 10�3s (T1) and Hn =
10�6s (T2). Then, co-simulation works sequentially along the time-axis and iteratively on Hn
with k = 5 iteration steps per window.
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T1: Table 7.1 shows that the lower bound (6.3) is fulfilled for each tested an. But, the estimation
becomes less accurate for larger values of an. This can be explained as follows: the contraction
factor an and the constant C increase for an decreasing resistance R2, that is, the coupling becomes
weaker. Consequently, the impact of the second term (CHn) of the diagonal element in (6.4) is
getting more important. However, it can be observed that the upper bound estimate meet the
convergence/divergence behavior of co-simulation (compare the first, second and last column).

Table 7.1: Accuracy of the lower bound estimation for different values of an

Exact an Estimated an abs. Error window size Hn co-simulation

0.0502 0.035 0.017 Hn = 10�3s convergent
0.33 0.280 0.05 Hn = 10�3s convergent
0.96 0.472 0.488 Hn = 10�3s convergent
19 5.832 13.168 Hn = 10�3s divergent

T2: Remember that the coupling for our test example (with R-splitting) becomes weaker for
an increasing contraction factor an, since the constant C increases, too. Table 7.2 shows the
simulation results for a reduced time window Hn = 10�6s, which yields much smaller errors for
all tested an. These confirms our theoretical result that a smaller time window size Hn increases
the accuracy of the lower bound estimator even for weakly coupled problems. The fact that the
error of the estimator can be reduced by the size of the time window will be important in Chapter
7.4. Here, the lower bound is used to create a set of samples to measure the PDF of the contraction
factor by using the KDE and the spectral approach of Chapter 6.

Table 7.2: Accuracy of the lower bound estimation for different values of an

Exact an Estimated
an

abs. Error window size Hn co-simulation

0.0502 0.049 0.001 Hn = 10�6s convergent
0.33 0.32 0.01 Hn = 10�6s convergent
0.96 0.89 0.07 Hn = 10�6s convergent
19 18.1 0.1 Hn = 10�6s divergent

Conclusions

We numerically verified the way to estimate the contraction factor online (during co-simulation)
by using the lower bound estimate of Chapter 6.1. The accuracy of the estimate depends on
whether the subsystems are strongly or weakly coupled as well as on the time window size Hn.
Here, the choice of a suitable small time window is the only way to control the accuracy. There-
fore, the lower bound estimate requires to split the simulation time into small time windows to
estimate the contraction factor precisely even for weakly coupled problems. However, the re-
quirement for small time windows is in contradiction with the aim of reducing the computation
effort of co-simulation, where it is desirable to enlarge the time windows to proceed faster over
the time-axis. To bypass this problem, one can define non-equidistant communication points with
small time intervals [Tn,Tn+1] only where necessary. Here, an effective time window size control
algorithm in co-simulation is of great interest. Furthermore, we showed that the lower bound
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is always fulfilled for our test example and convergence/divergence of co-simulation is always
detected.

7.4 PDF estimation by using the KDE and Spectral Method

This chapter discusses the KDE and the spectral method introduced in Chapter 6. Both strategies
are applied to co-simulation in order to estimate the probability density of the contraction factor.
The simulation results are compared with a reference PDF (exact solution) determined as follows:

Following [17], the exact PDF is given by a mapping function f(X), where X is a random input
vector with joint density fX : Rn ! R+, see Def. 6. For univariate stochastic processes the exact
PDF of the contraction factor an = f(x ), where x is a random variable with density f

x

: [a,b]!
R+, is given by the transformation formula for densities:

p̂(an) = f
x
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f

�1 (an)
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, with f : R! R. (7.2)

A generalized form for multivariate transformations is also given in [17].

Again we investigate the field/circuit co-simulation example already introduced in Chapter 7.2.1,
see Fig. 7.3. The R-splitting approach of Chapter 3.2.1 is applied as coupling strategy. The
parameter settings are made in the same way as in the previous Chapter 7.3. Only one parameter
in the co-simulation model is assumed to be uncertain, where the coupling resistances R1 or R2
are considered to be uniformly distributed (for i = 1,2):

Ri ⇠ U (10 W�dRi, 10 W+dRi), (7.3)

with variations of dR1 = 1W and dR2 = 7W. Remember, these two resistances affect the conver-
gence of the co-simulation, see Chapter 3.2.1. As a consequence, the iteration process becomes
stochastic with an stochastic contraction factor. For our test example two different cases occur:
we have to distinguish between the linear and non-linear case, since resistance R1 is located in the
nominator, whereas resistance R2 is located in the denominator:

(linear) case 1: hR1i
R2

, (non-linear) case 2: R1

hR2i
, (7.4)

where h·i denotes the uncertain resistance. Generally, the mapping function f is not explicitly
known in co-simulation and the density cannot be derived by (7.2). However, by using the R-
splitting approach the mapping function f is given by (7.4). Therefore, eq. (7.2) enables to
calculate the exact PDF and allows for an comparison between the KDE (6.9) and the spectral
method (6.15).

Now, the task is to estimate the PDF of the contraction factor as precise as possible from a set of
samples. Our algorithm works in the following manner:

Step 1: For each sample point, the reference model (strongly coupled system) is solved in time-
domain up to t0 to obtain consistent initial values. Then, co-simulation is started on [t0, t0 +Hn]
with k iteration steps for each sample point p(i) 2 G using its corresponding initial values x0(p(i)).
The error in the solution Xk

n(t) is measured by Richardson Extrapolation, see Chapter 6.1. There-
fore, we restart the computation for each sample point by using two steps with the half of the
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window size [t0, t0 +Hn/2] ! [Hn/2,Hn/2 +Hn/2]. The comparison of both solutions Xk
n(t) and

Xk
n/2(t) gives an estimate for the error in Xk

n(t) by (6.8). Furthermore, constant extrapolation of
the initial value is used for the initial guess X̃(0)(t) on Hn and Hn/2. Consequently, the gain of
accuracy per iteration within the dynamic iteration process caused by Richardson Extrapolation
is O(H2

n ).

Step 2: Note that R-splitting fulfills the purely algebraic-to-algebraic coupling condition of Ass.
4, since no old differential unknowns occur and thus the lower bound (6.3) holds for our test cir-
cuit. Consequently, samples for an can be derived by (6.3) using Hn small enough, see Chapter
7.3. Now as a finale step, by using these finite set of samples we estimate the PDF by the KDE
(6.9) and the spectral approach (6.15).

Simulation settings: Co-simulation is performed on the time interval [0.01,0.01 + Hn]s with
time window size Hn = 10�6s. The window size was chosen (small enough) with respect to the
numerical results of Chapter 7.3. We perform k = 5 iteration steps on Hn. The weakly coupled
system as well as the strongly coupled system (serves as reference solution for comparison) is
solved by using the same time stepping scheme ode23s (Rosenbrock method) with an accuracy
of AbsTOL = RelTOL = 10�4. For the spectral approach the Legendre polynomials are used
as basis polynomials up to degree one (p = 1) for the linear case 1 and degree two (p = 2) for
the non-linear case 2, see (7.4). Consequently, the number of polynomials in (4.31) is P = 2
for the linear and P = 3 for the non-linear case. The unknown coefficient functions of the gPC
expansion are determined via the stochastic collocation method as introduced in Chapter 4.2.3.
The probabilistic integrals are approximated by the Gauss-Legendre quadrature of Chapter 5 with
various number of quadrature points. For the KDE method the Gaussian kernel is used as single
distribution for each sample, see Chapter 6.2. Here, the parameter space is sampled within the
predetermined scope of uncertainty by using equidistant grid points.

Numerical Results

Figure 7.11 shows the estimated PDF by using the spectral and the KDE approach for a various
number of samples. The exact PDF is obtained by the transformation formula for densities (7.2).
For the linear test case 1 in (7.4), the spectral method becomes more accurate. In fact, due to the
linear mapping the spectral method is able to reconstruct the stochastic process precisely when at
least linear polynomials are used within the gPC expansion (6.13), see Fig. 7.11 (right). Here,
the KDE approach requires a large number of samples to reconstruct uniform distributions. For
test case 2 in (7.4), the mapping function f becomes non-linear. Figure 7.11 (left) shows the
simulation results. The spectral method is too coarse as long as polynomials up to second order
are used as polynomial basis for the approximation in (6.13). However, using polynomials of
higher order reduces the error. Here, for a large number of model simulations of (6.1) the KDE
approach becomes close to the exact solution and provides much better results. However, it should
be remembered that the spectral approach only required to determine the unknown coefficients
f0, f1 and f3 belonging to the polynomial of zero, first and second order, which required to solve
the model (6.1) three times. This is only a fraction of the computational cost of the KDE approach.
However, it gives an idea of how the distribution looks like.

Now, the error in the estimated PDF (linear test case 1) caused by Richardson Extrapolation as
well as by an variation of the time window size Hn is investigated. Therefore, Fig. 7.12 compares
the accuracy of the PDF obtained by the KDE approach (by using an equidistant grid with 104

samples) and by the spectral approach (with maximum polynomial degree p= 1) with and without
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Figure 7.11: (right) Probability density function of the contraction factor an for resistance R1
uncertain (linear mapping function f ) and (left) for resistance R2 uncertain (non-
linear mapping function f ) by using the spectral approach and the KDE approach
for an increasing number of sample points. [37]

Richardson Extrapolation in dependence of the time window size Hn. The accuracy is measured
in the expectation value. Naturally, the error of the lower bound estimate (6.3) increases with an
increasing time window size, since for larger window sizes the reduction per iteration is governed
by the additional term C ·Hn, see Fig. 7.12 (right).

Furthermore, for an increasing window sizes the inaccuracy of Richardson Extrapolation increases
too, that is, Richardson Extrapolation induces an additional error. Here, using Richardson Ex-
trapolation as error estimator, instead of the reference solution obtained by solving the strongly
coupled problem (3.1), yields approximately the same scale of error as long as Hn is not too large.
For our test example, the estimation provides errors of about 10�3 as long as we use time window
sizes Hn  10�10s. Notice that there is the possibility to use larger window sizes if one is not
interested in such high accuracy of about 10�4.

Conclusions

The way of estimating the contraction factor during the co-simulation with a lower bound was
studied. The lower bound was used to calculate a set of sample points from which a probability
density function can be reconstructed. Knowledge about the distribution may be help to detect di-
vergence of co-simulation models with uncertain components. We demonstrated that the spectral
and the KDE approach are suitable techniques for estimating the distribution of the contraction
factor. Especially for the linear test case, the usage of basis polynomials up to the first order in
the gPC expansion is sufficient to render the model behavior. Here, the spectral method becomes
highly effective and provides exact results. However, for the non-linear test case both methods
become computational expensive. Here, again the KDE approach requires a large number of sam-
ple points, whereas the spectral approach needs higher order polynomials to meet the exact PDF.
Consequently, for the multivariate case (many uncertain parameters) both methods become ineffi-
cient with applications in co-simulation. That is, for the spectral method the computational effort
to calculate the stochastic momenta of the gPC expansion increases in terms of (15), whereas the
KDE method requires a large number of model simulations for a dense sampling of the random
parameter space. Hence, the aim is to reduce the computational effort. Therefore, the calcula-
tion of the gPC based sensitivity indices, see Chapter 4.2.4, can be used for an efficient random
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Figure 7.12: (left) Expectation value evaluated with the KDE (with 104 samples) and the spec-
tral method (with maximum polynomial degree p = 1) with and without Richardson
Extrapolation in dependence of the time window sizes Hn. (right) Error in the expec-
tation value for different time window sizes Hn. [37]

parameter space sampling. This seems to be useful especially for the spectral approach, where
the coefficient functions of the gPC expansion are already computed and the information about
sensitivities can be easily extracted, see Chapter 4.2.4. Of course, the results of both methods are
first and foremost dependent on the accuracy of the underlying sample points, i.e., the contraction
factor estimate, from which a PDF should be reconstructed. Here, we numerically verified that
Richardson Extrapolation is suitable to measure the splitting error in co-simulation. However, we
showed that the accuracy of Richardson Extrapolation as well as of the lower bound estimate is
strongly dependent on the time window size Hn. For our numerical test example, a window size
Hn  10�10s is required to achieve an error of approximately 10�3.

7.5 Uncertainty Quantification in Co-Simulation for Coupled
Electric Circuits

We consider a linear test circuit including uncertainties. The decoupling into subsystems is again
managed via controlled sources and the splitting is organized such that no algebraic constraint
depends on an old algebraic iterate (for the computational sequence of subs. 1 first). Thus, no
contraction factor an occurs and consequently uncertainties does not destroy the convergence of
co-simulation. However, it is of great interest to analyze the stochastic process of the expectation
value as well as the variance and their propagation within a dynamic iteration procedure. To this
end, again the non-intrusive gPC expansion of Chapter 4.2.2 is applied to analyze the stochastic
behavior for our circuit.

Our engineering test circuit is a two-stage RLC lowpass filter given in Fig. 7.13 with uncertain
components p = (R1, R2, C1, C2)

>, where we consider all components in p of the i-th subsystem
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to be independent and uniformly distributed random variables (for i = 1,2):

Ci ⇠ U (1pF�dCi,1pF+dCi) and Ri ⇠ U (10kW�dRi,10kW+dRi), (7.5)

where ±dCi, ±dRi denote the variation from their respective nominal values. The variations will
be held variable and specified different for the various numerical tests. Furthermore, we assume
the inductance L = 1mH and supply voltage Uin(t) = 1V · cos(wt) with an angular frequency
w = 2p ·5 ·103s�1. The split into subsystems is organized at node U3 with corresponding coupling

Uin(t)

Iin

hR1i L1 IL1

hC1i

hR2i L2 IL2

hC2i

U0

U1 U2 U3 U4 U5

Figure 7.13: Two-stage RLC lowpass filter powered by a supply voltage source Uin(t). The nota-
tion h·i denotes the uncertain parameters. [38]

node UCo and current ICo. Thus the information transport between both systems is done by these
two additional variables only. Figure 7.14 shows the resulting co-simulation model. Notice that
for such a splitting, both subsystems can be described by the same (index-1) DAE (5.2) with
solution x 2 [t0, te] ! Rn. The only difference is in the right-hand side f(t) (including all time
dependent sources) of one of the subsystems, since the additional current source ICo(t) is included
due to the source coupling approach.

Uin(t)
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hC1i ICo(t)
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U (k)
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U0
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3 U (k)

4 U (k)
5

Figure 7.14: Decoupled two-stage RLC lowpass filter using the source-coupling with uncertain
components R1,R2,C1,C2. The first/second superscript notation (k)/(k�1) denotes
the old and new differential/algebraic iterates for subs. 1/subs. 2 first. [38]

Coupling Analysis: Their mutual dependence can be stated as follows: for the computational
sequence of subs. 1 first, the algebraic iterate ICo of subs. 2 enters the differential equation to
further update subs. 1, since the capacitance C1 ensures that the coupling node UCo becomes
differential. For the reverse computational sequence of subs. 2 first, the algebraic iterate UCo
enters the algebraic equation of subs. 2. Instantaneously the DAEs for the split circuits in semi-
explicit form read:

ẏ1 = f1(y1(p),z1(p),z2(p)), ẏ2 = f2(y2(p),z2(p)),
0 = g1(y1(p),z1(p)), 0 = g2(y1(p),y2(p),z2(p)),

(7.6)
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where the variables of the subsystems are allocated as follows:

y1 :=
⇥

UCo, IL1

⇤>
, z1 :=

⇥

U1, U2, Iin
⇤>

, y2 :=
⇥

U5, IL2

⇤>
, z2 :=

⇥

U3, U4, ICo
⇤>

.

Now, when starting the Gauß-Seidel-type dynamic iteration with subsystem 1, the corresponding
splitting functions read (for subs. 1 first):

F :=

2

4

f1(y(k)1 (p),z(k)1 (p), z(k�1)
2 (p) )

f2(y(k)2 (p),z(k)2 (p))

3

5 , G :=

"

g1(y(k)1 (p),z(k)1 (p))
g2(y(k)1 (p),y(k)2 (p),z(k)2 (p))

#

. (7.7)

Thus, no algebraic constraint depends on old algebraic iterate. Therefore, the simple coupling
condition of Cor. 6 (ii) is valid and co-simulation yields the minimum convergence rate O(

p
Hn).

Hence, introducing uncertainties does not manipulate the properties of convergence and the dy-
namic iteration is unconditionally stable for splitting (7.7) using time window sizes Hn < Hmax.

Simulation Settings: Co-simulation is studied on a single time window [t0, t0 +Hn] with t0 =
0.4ms. Consequently, no error propagation to subsequent windows occurs and such only the
splitting errors of a dynamic iteration appear. The non-intrusive gPC expansion with polynomials
up to a maximum polynomial of degree three is used, which enables to detect momenta up to
the third order, i.e., interactions up to three parameters can be identified. The gPC coefficient
functions (4.36) are computed by the stochastic collocation method of Chapter 4.2.3. Here, the
Gauss-Legendre quadrature of order five based on a tensor-product grid G = {p(1), . . . ,p(m)} is
used, see Chapter 5, which requires to solve the model 81 times. We choose AbsTOL=RelTOL=
10�4 for the respective time-integrator accuracy.

Our algorithm works in the following way: For each sample-point p(i) 2 G , the reference model
(strongly coupled system) is solved in time domain up to t0 to obtain consistent initial values
x0(p(i)). Then, constant extrapolation of the initial value is used as initial guess on time window
Hn. Now, co-simulation is performed on [t0, t0 +Hn] with k iteration steps for each sample p(i).
The output for the different realizations of the parameters is a discrete solution x̃(tn,p(i))(k). Based
on these set of simulation results, we compute the stochastic momenta (depending on step k)
by evaluate the multiple integral (4.36) in each microstep t0 < t1 < · · · < tn < tn+1 < · · · < te.
Therefore, the expectation value and variance (4.39) as well as sensitivity indices (4.41) can be
computed for all discrete time points tn. Finally, interpolation over the entire timeline yields the
(overall) solution x̃(p(i))(k).

Numerical Results

Sensitivity analysis: For the parameter variations in (7.5) we choose dR1 = dR2 = 1kW (10%)
for the resistances and dC1 = dC2 = 0.5pF (50%) for the capacitances. Figure 7.15 shows the
total-order sensitivity indices for the reference model (without co-simulation) in the time interval
[0,0.5]ms. The result serves as the reference solution for comparison. Now, first we compute
total-order gPC sensitivity indices (4.43) for the different uncertain parameters in a co-simulation
environment. Therefore, a sensitivity analysis is performed on the single time window Hn = 0.1ms
for k = 1, . . . ,10 iteration steps with respect to the (output) node U5. Figure 7.16 shows the total-
order sensitivity indices SgPCT for R1, R2, C1 and C2 computed on the specified single time
window Hn. It shows that the sensitivity index for the capacitance C2 yields the largest value.
Note that the capacitance C2 is directly connected to the output U5. The result is in line with the
general observation in UQ, that components which are located close to the output have a higher
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Figure 7.15: Total-order sensitivities indices for R1,R2,C1 and C2 in [0,0.5]ms computed by solv-
ing the strongly coupled model.

impact than components which are topological located further away. Furthermore, the example
shows that the number of iteration steps which are required to be in the same scale of sensitivities
as for the reference model differs from each other. That is, the sensitivities related to C2 requires
the most number of iteration steps. However, one can see that order of magnitude of sensitivities
can already assessed after few iteration steps.

As a second step the accuracy of the gPC based sensitivity indices obtained within a co-simulation
framework is investigated for a set of different variations dRi, dCi. To this end, we suppose
uniform distributed variables with the following variation for the resistances and the capacitances
around the nominal respective values in (7.5):

dRi = 1kW . . .5kW (10%�50%), dCi = 0.1pF . . .0.5pF (10%�50%). (7.8)

The error in the solution on the n-th time window after k iteration steps x̃(k)(t) is measured by
comparing with the reference solution xm(t) computed by a monolithic simulation:

D(k)
n (t) = xm(t)� x̃(k)(t), d

(k)
n := kD(k)

n k•.

We focus on the error in the gPC based sensitivity indices. The final error which corresponds to a
given variation (7.8) involves all sensitivities, since it is measured by averaging.

Figure 7.17 shows the average error in the total-order sensitivity indices for k = 1,3,5,10 iteration
steps in co-simulation. One can see that the error increases for an increasing level of variation
(uncertainty). This is due to the fact that the number of model simulations is fixed whereas
the variation increases. Consequently, the predetermined number of 81 samples is no longer
sufficient for a dense sampling of the parameter space. Furthermore, a continuous improvement
up to k = 10 iteration steps can be observed in cases of high variations (uncertainties) for Ci and
Ri. Accordingly, slight variations in the co-simulation model requires less iteration steps, whereas
the level of variations in the capacitances mainly control the error size.
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Figure 7.16: Total-order sensitivity indices (solid blue lines) on the time interval
[0.4ms,0.4ms + Hn]ms with Hn = 0.1ms (single time window) for the param-
eters R1(top, left), R2(top, right), C1(bottom, left) and C2(bottom, right) for
k = 1, . . . ,10 iteration steps: Ri ⇠ U (9kW,11kW), Ci ⇠ U (0.5pF,1.5pF). The red,
magenta, green and cyan solid lines denote the total sensitivity indices computed for
the strongly coupled model (without co-simulation).

Convergence and Contraction: Next, we investigate convergence and contraction of the ex-
pectation value and standard deviation for splitting (7.7). The results are compared with the
monolithic, deterministic solution. Therefore, all nodes U1, . . . ,U5 are involved, which requires
a sensitivity analysis for every single node. However, the number of model simulations remains
the same but the number of probabilistic integrals to determine the unknown coefficient functions
is five times larger. Based on the coefficient functions, we finally compute expectation value and
standard deviation for each node (output).

Again, we suppose variations of dR1 = dR2 = 1kW (10%) for the resistances and dC1 = dC2 =
0.5pF (50%) for the capacitances. Figure 7.18 shows the results. All quantities have almost
the same rate of convergence of about O(Hn) for window sizes 10�8s  Hn  10�4s, whereas a
further reduction of the window size does not further reduce the error in the expectation value
and standard deviation, see Fig. 7.18 (left). This behavior differs to the deterministic solution,
where an improvement up to the machine precision can be observed. The reasons are different: the
accumulation of errors limits the accuracy. The Gauss-Legendre quadrature of order five produces
an numerical quadrature error (5.10) in each coefficient function f j (t) of (4.35). Additionally, the
representation of the stochastic process by the gPC expansion is only an approximation, since
only a finite number of terms are involved. Consequently, an truncation error (4.40) occurs.

Figure 7.18 (right) shows the splitting error in the expectation value and the standard deviation
on Hn = 10�4s for different iteration steps. It shows that the expectation value requires much less
iterations than the standard deviation. Here, the expectation value is already well approximated
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Figure 7.20: Expectation value and standard deviation for the coupling node U3 for k = 1, . . . ,10
iteration steps on a single time window Hn = 10�4s. [38]

after four iteration steps, whereas the standard deviation requires about ten iteration steps to be
in the same scale of error. This is because the expectation value is exactly represented by the
first coefficient function f0 of the gPC expansion, see (4.39), and thus no truncation error (4.40)
occurs. However, for the standard deviation this is different, since it is obtained by the square
root of the variance given by the finite sum over all remaining coefficient functions, see (4.39).
Consequently, the truncation error as well as the accumulation of quadrature errors and rounding
errors require further iteration steps in co-simulation. Figure 7.19 and Fig. 7.20 show explicitly
the waveforms of the expectation value and the standard deviation on Hn = 10�4s for different
iteration steps for the coupling nodes U3 and for the output U5.

Conclusions

It has been shown for our test circuit, that the number of iteration steps to achieve a predefined
accuracy is mainly controlled by the level of uncertainty. Co-simulation with components includ-
ing high uncertainties naturally requires a large number of iterations within the dynamic iteration.
Regarding the convergence rate of stochastic processes, uncertainties in time-dependent compo-
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nents (capacitances and inductances) have a greater impact than static components (resistances).
Concerning our test example, the speed of contraction for the expectation value and standard de-
viation differs from each other, that is different number of iteration steps are required to achieve a
suitable accuracy.



8Chapter 8

Summary

Instead of single-rate time-integration of field devices and circuits, the co-simulation is discussed
within this thesis. The standard way of co-simulation for field/circuit coupled problems is the sep-
arate treatment of field devices and electric circuits. Here, the Gauß-Seidel-type dynamic iteration
is unconditionally stable and convergent for the computational sequence of voltage driven field de-
vices first. However, our numerical investigations show that the coupling strength becomes weak
and dynamic iteration may be requires a lot of iteration steps to attain a certain time-integration
accuracy. This is reflected in a high computational effort, since all subsystems have to be solved
frequently in time, where the repeated computation of the field problem is the most computational
expensive part. This thesis deals with different strategies to couple field devices with circuits in
an more efficient way. The new coupling approaches were mathematically investigated, analyzed
and simulated with their application in electrical engineering.

It has been shown by numerical simulations that inrush currents generated from field devices, e.g.
transformers or electrical machines, during the switching-on phase suffer from co-simulation for
the standard decoupling approach (cutting at the field device boundaries). Here the field subsys-
tem responds with a much higher inrush current peak compared to the (exact) computed inrush
current when single-rate time-integration is applied. This is because the information about the
circuit surrogate resistance, which limits the current through the field device, is missing when the
field subsystem is computed iteratively. This becomes crucial in co-simulation, since the infor-
mation transport from the field to the circuit is managed by a controlled current source excited by
the computed inrush current obtained from the previous iteration. Consequently, the number of
iteration steps (the computational effort) of co-simulation can be reduced by controlling the inrush
current splitting error. Therefore, we proposed the R-splitting and LR-coupling techniques as two
alternatives to the standard coupling approach. The basic concept for both is roughly the same:
relocate parts of the primary side surrogate resistance from the circuit to the field subsystem such
that the field devices are not able to respond with their maximum inrush current (only limited by
the internal resistances of the coil windings). In other words: of the beginning of dynamic iter-
ation the field device subsystem should have knowledge about network components that reduce
the maximum inrush current peak. From the co-simulation point of view, the number of repeated
model simulations is strongly related to the strength of coupling between the subsystems. Natu-
rally, the stronger the coupling, the larger the communication points (time window size) can be
set for convergence. It has been proved mathematically that the coupling strength benefits from
both splittings, which we numerically verified for a transformer-circuit engineering test example.
However, using large time window sizes typically increase the number iteration steps. Using the
same time window size allows us to compare the splitting error for the different interfaces with
respect to the number of iteration steps. Here, field/circuit co-simulation using the R-splitting and
LR-coupling requires much less iterations to attain the same accuracy as the standard approach
(cutting at the field device boundaries). Consequently, both interfaces enable the user to reduce
the computational effort. In terms of solved linear systems of equations the amount of effort with
R-splitting has been reduced by 90%. However, at least for our numerical test example, the error
reduction per iteration of co-simulation with R-splitting is much better than for co-simulation with
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LR-coupling. Furthermore, by the extended recursion estimate we proved that co-simulation with
R-splitting is unconditionally stable and convergent independently of the computational sequence
of the subsystems (field or circuit first), i.e., the contraction factor vanishes. The principles were
analyzed within an more general framework for coupled (index-1) DAEs such that the (extended)
splitting scheme also holds for further applications, e.g. semiconductor/circuit problems, see [24].

Furthermore, we aimed to compute statistics for co-simulation models with uncertain behaviors,
i.e., with uncertain parameters. Here, we focused on estimate the probability density function
for the contraction factor online to detect divergence during the co-simulation procedure. This
enables for a combined window size and sweep control to further improve the efficiency. The
KDE and the spectral method were tested as two different concepts for that purpose. Numeri-
cal investigations show that both schemes are able to reconstruct density functions from a finite
number of samples. For uniformly distributed random processes with linear impact, the spectral
method enables to compute the density function exactly and is much more efficient than the KDE
approach. However, for random processes with a nonlinear impact, both schemes become com-
putational expensive, since they require a dense sampling pattern of the random parameter space.
This becomes difficult in co-simulation for models, whose subsystems are expensive to compute,
e.g. field devices.

Outlook

New interesting problems and questions arise: the possibility of estimate the density function
of the contraction factor enables to assess the divergence probability of a co-simulation proce-
dure. The measurement of densities becomes difficult for a field/circuit co-simulation, since the
treatment of the field subproblem is computational expensive. Here, sensitivity indices should be
exploited for an effective parameter space sampling to reduce the number of repeated simulations.
Furthermore, the implementation and numerical validation of a macrostep size control within a
dynamic iteration process using density functions is obvious and of great interest.

Within this thesis, the LR and R splitting are proposed and analyzed as an extension of source
coupling. However, [24] proposes also the parameter coupling which includes still sources for
the information transport between the subsystems and additional lumped elements, where it is
numerically shown that it provides better convergence and contraction. Thus, our new splittings
should be also analyzed within the parameter coupling. Furthermore, the question arises how
useful the new splitting techniques are for circuits which are coupled to field devices sharing more
than one coupling node (more than one coupling variables are involved). Here, a co-simulation
of a circuit coupled to a permanent-magnet synchronous engine seems to be appropriate for this
task.
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