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lengths fixed at 1.0759 Å and all three H-C-H bond angles equal.
The HFCC is plotted as a function of ρ, the angle between the
three-fold rotational axis and any one of the three C–H bonds. . . . 32

3.2 Convergence of the T = 300 K thermally averaged HFCC vs Jmax

plotted for 13CH3 (blue circles) and 13CD3 (orange squares) relative
to the ZPVC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 CH3 (ν2) simulated (top and bottom) and experimental (middle)
emission spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 A comparison between Theory and Experiment for the Raman spec-
trum of CH3. (Reproduced from Fig 1 of Ref. 150) . . . . . . . . . 58

vii





List of Tables

3.1 Calculated and experimental vibrational energies (in cm−1) for 12CH3,
13CH3, and 13CD3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Vibrational energies, Evib, (in cm−1) and expectation values of HFCC
(in G) computed for 13CH3 using the TROVE variational and the
perturbed-rigid-molecule (PRM) approaches (see text). . . . . . . . 30

3.3 The calculated and experimental HFCC (in G) of 13CH3. The values

listed are the electronic HFCC at equilibrium geometry, A
(eq)
iso , the

total HFCC value including ZPVC (T = 0 K) and temperature (T =

96 K) correction, A
(tot)
iso , as well values of the ZPVC (/temperature)

effects with respect to the equilibrium. . . . . . . . . . . . . . . . . 31

3.4 Thermal contribution to HFCC (in G) in 13CH3 and 13CD3. . . . . 33

4.1 Theoretical Rotational Term Values (N ≤ 5, in cm−1) of CH3 Com-
puted with TROVE Using Different Equilibrium Structure Param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Vibrational band centers (cm−1) of 12CH3 from variational calcula-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Band Centers νfi and Vibrational Transition Moments µfi for CH3:
Transitions originating in the vibrational ground state except for
one hot band (2ν2 ← ν2). . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 CH3 Character Table, The D3h(M) group . . . . . . . . . . . . . . . 65

B.2 The nuclear spin wavefunction for CH3 under the symmetry opera-
tions of the D3h(M) group . . . . . . . . . . . . . . . . . . . . . . . 66

ix





Dedicated To My Parents

xi





Chapter 1

Introduction

1.1 Spectroscopy on Free Radicals

The experimental study of free radicals started in 1900 when Moses Gomberg

discovered triphenylmethyl radical. The term radical had been used in the 18th

century by Antoine Lavoisier in his book Elementary Treatise of Chemistry pub-

lished in 1789; but its meaning is different from the modern one. Spectroscopic

observation of free radicals was not an easy task initially due to short lifetime and

the lack of adequate instrumentation. Electric Discharge was a tool to produce

some radicals such as methine (CH·)[1]. George Porter and others developed flash

photolysis in 1950s. This invention have been applied to study the spectroscopy

of free radicals with high resolution[2]. Quantum Mechanics was also an essential

tool to study the spectroscopy of molecules. Herzberg was one of the pioneers of

the application of quantum mechanics in spectroscopy. His work in this field were

summarized by him in his a series of books termed ”Molecular Spectra and Molec-

ular Structure” with three volumes (I, II, and III). Radar research during world

war II led to the developments in microwave instrumentation. This fortunately

helped the development of a very important tool in the spectroscopy of radicals.

In 1944, the Russian physicist Zavoisky observed the first ESR spectrum. One

of the unique molecular parameters that can be obtained from ESR experiments

is the hyperfine coupling constant (hfcc). The hfcc is a characteristic feature for

different radical types.

In the 1960s and 1970s, Alan Carrington and his research group pioneered the

application of microwave spectroscopy to a number of small-size radicals[3]. With

1
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the development of matrix isolation techniques, infrared spectroscopy was cap-

bale of detecting free radicals[4]. After the invention of the laser, a new powerful

spectroscopic tool, laser magnetic resonance (LMR), was developed to study para-

magnetic molecules. With LMR more than 100 free radicals has been detected.

1.2 Free Radicals in Space

The discovery of interstellar molecules dated back to the 1930s when the observa-

tion of optical absorption lines were assigned to diatomic radicals.

1.3 The Methyl Radical

The methyl radical is considered as one of the most important free radicals with

a fundamental role in several processes. In hydrocarbon combustion processes[5],

in atmospheric chemistry[6], in the chemistry of semiconductor processing[7], in

the chemical vapor deposition of diamond[8], and in many chemical processes

of current industrial and environmental interest. It is also present in planetary

atmospheres [9], in the atmospheres of Saturn[10] and Neptune[11], and in the

interstellar medium[12]. It is thought that CH3 may be one of the most abundant

free radicals in the interstellar medium[9]. Because of its central role in this variety

of situations, its structural and spectroscopic parameters have been the subject of

numerous studies. Different spectroscopic techniques have been devoted to deter-

mine the absolute concentration of CH3 in the gas phase, including UV/visible[13],

infrared[14], and Raman spectroscopies[15–21].

Under many experimental circumstances it is important to know the absolute

concentration of a radical. This can only be carried out if accurate transition

moments are available[22].

CH3 has no permanent dipole moment, because of its D3h symmetry. However,

there is a possibility for ∆K=±3 transitions. Therefore the pure rotational tran-

sitions are dipole forbidden and very weak. And due to its planar geometry in the

electronic ground state, most one-photon transitions to excited electronic states

cannot be observed[23]. IR spectroscopy has become one of the most suitable
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methods for its detection and it is often necessary to rely on theoretical calcula-

tions of of transition moments which cannot be always easily measured, especially

in case of vibrationally excited states.

In summary, the development and application of theoretical quantitative spectro-

scopic predictions for of methyl radicals can benefit several fields of research.





Chapter 2

Theoretical Foundations

Nowadays, ab initio quantum mechanical calculations on small molecules can pre-

dict their structure and high-resolution spectra with high accuracy[24]. Moreover,

in some cases, the theoretical prediction can offer suggestions to improve the ex-

perimental results[25, 26]. For some molecular properties, the desired accuracy

required from experimental measurements is still a challenge and the aid from

theoretical calculations are highly desirable, like the rovibrational transitions line

intensities of molecules[27].

2.1 The Molecular Schrödinger Equation

In theoretical chemistry, the quantum mechanical calculations are based on the

molecular Schrödinger equation. According to the postulates of quantum mechan-

ics all molecular observables can be obtained by solving a suitable Schrödinger

equation. For an isolated molecule with n electrons and N nuclei, the molecu-

lar Schrödinger equation in the time-independent nonrelativistic version can be

written as

Ĥmolec |Ψmolec
n,v,J ({ri}, {RK})〉 = Emolec |Ψmolec

n,v,J ({ri}, {RK})〉 (2.1)

where the molecular Hamiltonian, Ĥmolec, is

5
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Ĥmolec =
1

2

M∑
K

p̂2
K

mK

+
1

2me

N∑
i

p̂2
i +

1

4πε0

∑
K<L

ZKZL
|RK −RL|

+
1

4πε0

∑
i<j

1

|ri − rj|
− 1

4πε0

NM∑
iK

ZK
|ri −RK |

(2.2)

in which the first and second terms represents the nuclear and electronic ki-

netic energy, respectively. The third and fourth terms are the nuclear-nuclear

and electronic-electronic potential energy terms, respectively. Finally the nuclear-

electronic potential energy is represented by the fifth term.

In Eq 2.1, |Ψmolec
n,v,J ({ri}, {RK})〉 is the molecular wavefunction in terms of the

electronic, {ri}, and nuclear coordinates, {RK}.

2.2 The Born–Oppenheimer Approximation

A milestone step for solving Schrödinger equation is through the Born–Oppenheimer

approximation [28, 29]. Several studies investigate the breakdown of this ap-

proximation [30–37]. The approximation separates the solution of the molecular

Schrödinger equation into two steps.

The electronic Schrödinger equation

Ĥelec |ψelec
n ({ri}, {RK})〉 = Eelec

n (RK) |ψelec
n ({ri}, {RK})〉 (2.3)

where Ĥelec is

Ĥelec =
1

4πε0

∑
K<L

ZKZL
|RK −RL|

+
1

2me

N∑
i

p̂2
i−

1

4πε0

NM∑
iK

ZK
|ri −RK |

+
1

4πε0

∑
i<j

1

|ri − rj|
(2.4)

and the nuclear Schrödinger equation



Chapter 2. Theory 7

[
1

2

M∑
K

p̂2
K

mK

+ Eelec
n (RK)

]
|ψnuc
v,J ({RK})〉 = Emolec

n,v,J |ψnuc
v,J ({RK})〉 (2.5)

One important consequence of the the Born–Oppenheimer approximation is the

concept of a potential energy surface[38] which plays a central role in many areas

of chemistry, molecular structure, reaction dynamics, and spectroscopy.

2.3 The Electronic Schrödinger Equation

For the electronic Schrödinger equation 2.3, an analytical solution is difficult to

find even for the simplest molecular system, the hydrogen molecular cation, H+
2 , (a

quantum mechanical three-body problem). Therefore, several numerical methods

have been developed to solve the electronic Schrödinger equation directly after the

rise of quantum mechanics[39]. The era of using computers as a tool for compu-

tational chemistry are based on the ideas of linear combination of atomic orbitals

(LCAO), basis sets, and electron correlation. This is known as the molecular

orbital theory (MOT) approach in solving the electronic Schrödinger equation.

However, development in an alternative approach known as Valence bond theory,

is still going.

Among those methods the Hartree-Fock (HF) method[39] played an important

rule. In HF method the N-electron wavefunction is represented by a single Slater

determinant of N spin-orbitals. Then the eigenvalues and eigenfunctions are ob-

tained with the application of the variational principle. The solution is based on

an approximate electronic wavefunction and the difference between the Hartree-

Fock energy, EHF, and the true eigenvalue, Eexact, of the electronic Schrödinger

equation is termed the ’correlation energy’

Ecorr = Eexact − EHF (2.6)

Electronic structure calculations are based on approximating the molecular or-

bitals (MOs). The unknown MOs are expressed as a linear expansion in terms

of a set of known mathematical functions known as basis set. Not any type of

functions can be used, they should be physically reasonable. Although the Slater-

type functions are more accurate, the common approach is to use Gaussian-type
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functions in ab initio calculations because they are computationally more efficient

with regard to two-electron integrals calculations.

For post-Hartree-Fock electronic structure calculations, a type of basis sets have

been developed by Dunning and co-workers known as correlation consistent basis

sets. This type of basis functions has been employed in our work here in building

the PES and in computing electric and magnetic molecular properties[39].

To account for the correlation energy Eq. 2.6, many electron correlation methods

have been developed. The goal is a better description of the correlation effect

than the one provided by Hartree-Fock methods. For the electron correlation

methods currently exists there is no ultimate choice for a specific method and this

will depends on the question in hand and the type of molecule under study, for

example an open-shell or a closed-shell molecule. In other words, different methods

for different applications is the common way in the literature.

The configuration interaction (CI) treatment of electron correlation is one of the

earliest approaches. The CI wave function is built as a linear combination of

excited Slater determinants (configurations) and the expansion coefficients are

determined according to the variational principle. A perfect trial CI wavefunction

would be a type of full configurations. However, due to computational efficiency,

the CI wavefunction is truncated to certain excitation orders. The acronyms CIS,

CISD, CISDT would refer to truncated CI wavefunctions with linear combination

up to singly, doubly, and triply excited determinants, respectively[39].

Based on perturbation theory, the Møller-Plesset (MP) treatment of electron cor-

relation is one approach developed in 1934 and the most popular version of it is

the second-order Møller-Plesset perturbation theory (MP2)[39].

A very successful method in the treating the electron correlation problem is the

coupled-cluster (CC) method. In analogues fashion to CI methods, with regard

to the idea of generating the correlated wavefunction in terms of an expansion

of excited determinants is repeated here. The trunction of the expansion would

similarly produce CCSD, CCSDT, etc methods in the CC family. However, the

form of the expansion in CC methods is different from the one used in CI methods.

One of the methods, CCSD(T), has been termed the gold standard of Quantum

Chemistry[39].
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To conclude this section, we have discussed three types of correlated wavefunction-

based methods. In our work in chapters 3, 4, and 5 we have applied the CCSD(T)

method with the UHF as a reference. The type of basis set we have employed is

of the correlation-consistent type. With electronic structure calculations, we have

computed the potential energy surface and the associated molecular properties

(hyperfine coupling constant, dipole moment, and polarizability surfaces). More

details are in the following chapters.

2.4 The Nuclear Schrödinger Equation

Nuclear motion calculations is now a mature field and the level of development that

has been achieved in solving of the nuclear Schrödinger equation has been termed

the ”fourth age of quantum chemistry”[40]. Several methods have been developed

from the Rigid-Rotor Harmonic Oscillator basic model to advanced models with

perturbation and variational approaches[41].

2.4.1 Rigid-Rotor Harmonic Oscillator

A primitive and important model for vibration–rotation spectroscopy is based on

the harmonic-oscillator and rigid-rotor approximations. Molecular vibrations are

independent normal modes. The equilibrium bond length do not change when

the molecule rotates, a rigid body. With second derivatives of the electronic

energy with respect to the variations in nuclei positions we form the molecular

Hessian. Upon diagonalizing of this force constant matrix, harmonic frequencies

are obtained. This is available for quantum-chemical methods like HF, MP2, and

CCSD(T).

This model is useful as a starting point and contribute a large part of the rovi-

brational energies but it can not be applied for real-life problems in spectroscopy

and more advanced methods are needed.
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2.4.2 Vibrational Pertrubation Theory

A successful approach to solve the nuclear Schrödinger equation for semi-rigid

molecules with small amplitude motions is the second-order vibrational Pertur-

bation Theory (VPT2)[42–46]. A extension to a fourth-order (VPT4) has been

developed and applied to equilibrium molecular structure [47] and transition state

theory[48].

In cases when resonance is present second-order vibrational perturbation theory is

not a appropriate choice. And generally, it is not adequate for vibrationally excited

states and large-amplitude motions. The variational approach is more applicable

in treatment of such cases.

2.4.3 Variational Methods

The general steps in variational calculations[49] are

(1) Specify a coordinate system.

(2) Determine the form of the kinetic energy operator.

(3) Calculate the ab initio Born-Oppenheimer potential energy surface.

(4) Fit the obtained PES to a suitable function

(5) Choose a set of basis functions to represent the Hamiltonian as a matrix.

(6) Calculate the matrix elements.

(7) Diagonalize the Hamiltonian matrix.

To compute Infrared or Raman intensities two additional steps are required

(8) Compute the ab initio dipole moment surface and fit it to an appropriate

function

(9) Compute the ab initio polarizability surface and fit it to an appropriate function

The variational approach is more accurate than perturbative approach but it is

computationally more expensive.

2.4.3.1 Semi-rigid treatments

Based on the Watson Hamiltonian, variational approaches to compute the vibra-

tional energies of polyatomic molecules have been developed[50]. The methodology
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is similar to those methods developed to solve the electronic Schrödinger equa-

tion. The vibrational wavefunction can be represented as a Hartree product and

a self-consistent-field can be performed, the so-called vibrational self-consistent-

field (VSCF) method. The VSCF method to include correlation can be extended

to vibrational configuration interaction (VCI) [50] and vibrational coupled-cluster

(VCC) methods[51].

This variational approach is limited to near-equilibrium structure for polyatomic

molecules and is not suitable for large amplitude motions. The rotational part is

not included either; however, a recent attempt has been made to apply a rovibra-

tional Hamiltonian at the second order vibrational Møller–Plesset perturbation

theory (VMP2)[52]

2.4.3.2 Large Amplitude Motions

The treatment of large amplitude motions (LAM) in polyatomic molecules with

variational methods is described in section 2.5.

2.5 TROVE

Theoretical ROVibrational Energies (TROVE) [53–57] is a computer program de-

veloped to compute rovibrational energies and the associted molecular properties

(IR intensities, Raman scattering cross sections, vibrational effects on molecular

properties, etc)

2.5.1 Potential Energy Function

Based on the Born-Oppenheimer approximation to construct the rovibrational

Hamiltonian, we need to build the molecular potential energy hypersurface or

simply the potential energy surface (PES). One way to build the PES in which

the nuclear motion can vibrate and rotate can be obtained by solving the electronic

Schrodinger equation (section 2.3) in series of caluclations for a set of molecular

geomteries. Each calculation represents a unique geometry of the molecule under

study. The produced data from these computations will be fitted in a functional

form in a final step to represent the PES.
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The analytical function of PES is expressed in terms of pre-defined internal co-

ordinates, ξi. For example, the calculated points of the potential energy surface

of CH3 in the electronic ground state is fitted to a totally-symmetric sixth-order

power series expansion in terms of six variables

ξk = (rk − re) exp
(
− (rk − re)

2
)
, k = 1, 2, 3, (2.7)

ξ4 = (2α1 − α2 − α3)/
√

6 (2.8)

ξ5 = (α2 − α3)/
√

2 (2.9)

ξ6 = 1− 2/
√

3 sin([α1 + α2 + α3]/6) (2.10)

where rk−re denotes the displacement from the equilibrium value re of the distance

between C and Hk, α1, α2, and α3 are the instantaneous values of the bond angles

∠(H2–C–H3), ∠(H1–C–H3), and ∠(H1–C–H2), respectively.

2.5.2 The Kinetic Energy Operator

The second essential part in our soultion of the nuclear Schrodinger equation in

molecular spectroscopy is a proper form for the Hamiltonian in terms of the kinetic

energy operator (KEO) within the Eckart conditions[58]. To construct the KEO,

we need to choose a suitable coordinate system. There are two main types of

coordinates, Cartesian and internal coordinates.

The KEO has a very simple form in terms of the Cartesian coordinates.

T̂ =
1

2

∑
F=X,Y,Z

N∑
i=1

P̂ 2
iF

mi

(2.11)

where P̂iF (i = 1 . . . N , F = X, Y, Z) is the momentum conjugate to the Cartesian

coordinate RiF (RiX , RiY , RiZ) in the chosen laboratory-fixed axis system XY Z.

Inspite of the simplicity of Eq. 2.11, it does not allow us to distinguish between

the different types of nuclear motion, the translational, vibrational, and rotational

motions. In order to separate these motions and treat them independently in case

of weak coupling we need to transforn to a suitable type of coordinate system.
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The goal is to express the nuclear Hamiltonian in terms of 3N new generalized

coordinates

Ξ = (RCM
X , RCM

Y , RCM
Z , θ, φ, χ, ξ1, ξ2, . . . , ξ3N−6). (2.12)

The translational motion is described by three coordinates; where RCM
F (F = X,

Y , Z) is the F -coordinate of the nuclear center of mass; To define the orienta-

tion of the xyz axis system relative to the XY Z system, we use the Euler angles

(θ, φ, χ)[59]. This will describe the over-all rotation of our molecular system. Fi-

nally, the vibrational motion is described by the internal coordinates ξn.

Another useful definition to facilitate the transformation of the kinetic energy

operator T̂ to a new coordinate system is the generalized momenta

Π̂ = (P̂CM
X , P̂CM

Y , P̂CM
Z , Ĵx, Ĵy, Ĵz, p̂1, p̂2, . . . p̂3N−6), (2.13)

where P̂CM
F (F = X, Y, Z) is the momentum conjugate to the translational coordi-

nate RCM
F , (Ĵx, Ĵy, Ĵz) are the xyz components of the total angular momentum,[59]

and p̂n = −i~∂/∂ξn (n = 1, . . . , 3N − 6) is the momentum conjugate to the vi-

brational coordinate ξn.

The transformation from generalized momenta Πλ to the Cartesian conjugate mo-

menta PiF (i = 1..N , F = X, Y, Z), is defined by

PiF =
3N∑
λ=1

sλ,iF Πλ, (2.14)

where sλ,iF is a Jacobian matrix with elements

sλ,iF =
∂qλ
∂RiF

. (2.15)

The rovibrational kinetic energy can be written as [60]:

T =
1

2

N∑
i=1

∑
F=X,Y,Z

m−1
i PiFPiF =

1

2

3N∑
λ=1

3N∑
µ=1

ΠλGλ,µ Πµ, (2.16)

where

Gλ,µ =
∑

α=x,y,z

N∑
i=1

sλ,iαsµ,iα
mi

. (2.17)
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Now, the matrix elements sλ,iα define the expression for the kinetic energy in terms

of the momenta conjugate to the generalized coordinates Ξ.

The form of Eq. 2.15 is unknown and to find a solution we assume that the square

matrix with elements sλ,iF can be represented with the chain rule:

N∑
i=1

∑
F=X,Y,Z

∂Ξλ

∂RiF

∂RiF

∂Ξµ

= δλ,µ, (2.18)

or

N∑
i=1

sλ,i · ti,µ = δλ,µ. (2.19)

With the definition

tiF,µ =
∂RiF

∂Ξµ

, (2.20)

where the vectors ti,µ have the XY Z coordinates (tiX,µ, tiY,µ, tiZ,µ).

An analytical solution of equation 2.19 is not feasible. If the ti,µ-vectors are

known, a numerical solution can be preformed. Therefore, by solving Eq.(2.19)

via numerical techniques, we can obtain the sλ,i-vectors. The xyz coordinates of

the ti,λ′-vectors are given as [61]

tiα,α′ = δα,α′ (translation)

tiα,β =
∑

γ εαβγR
MS
iγ (rotation)

tiα,n = ∂RMS
iα /∂ξn (vibration).

(2.21)

To summarize this subsection, obtaining ti,µ numerically will produce sλ,iF . This

will give us Gλ,µ in Eq. 2.17 and finally we will obtain the KEO in a new form.

2.5.3 Basis Functions

The next step in the variational method after building the PES and constructing

the KEO is to choose a set of basis functions to represent the Hamiltonian as

a matrix. Then finally calculating the matrix elements and diagonalizing the

Hamiltonian to obtain the eigenvalues (rovibrational energies) and eigenfunctions.
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The rigid symmetric rotor wavefunctions |J, k,m〉 are the usual representation of

the rotational basis set [59]. The quantum numbers J , k, andm are associated with

the total angular momentum, its projection onto the z axis of the molecular axis

frame and its projection onto the Z axis of the laboratory axis frame, respectively.

The harmonic oscillator basis functions can be used as a candidate for the bending

motions in molecules.

For stretching vibrational motion, a harmonic oscillator function could be a can-

didate. However, the PES of diatomic molecules as well as polyatomic molecules

can be better described by Morse basis functions. The Morse potential

VMorse(r) = D y2 = D [1− exp(−a∆r)]2 (2.22)

In equation (2.22), r is the internuclear distance describing the stretching motion

and ∆r = r − re is the displacement from the equilibrium value re, D is the

dissociation energy, a is a parameter determining the curvature of the potential at

r = re, and y = 1− exp(−a∆r).

A Morse potential has favorable properties with regard to good convergence and

simple expressions for matrix elements.

2.5.4 Computational steps

Obtaining theoretical rovibrational intensities with TROVE consists of the fol-

lowing computational steps:

1. Solution of the vibrational problem

(a) Construction of the Hamiltonian (in terms of the internal coordinates)

• Expansion of the kinetic energy term

• Expansion of the potential energy function

• Expansion of the electric dipole function (or any other property)

(b) Construction of starting vibrational basis sets

• Solution of the 1D Schrödinger equations.

• Solutions of the reduced Hamiltonian problems.
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• Construction of the symmetry-adapted vibrational basis set.

(c) Calculation of the matrix elements for

• The vibrational part of the Hamiltonian operator

• The dipole moment function.

(d) Diagonalizaitons of the vibrational Hamiltonian matrices

• for each irreducible representation

2. Solution of the rovibrational problem

(a) Construction of the rovibrational basis set (as a direct product of)

• the J=0 eigenfunctions

• and rigid-rotor wavefunctions

(b) Construction of the rovibrational Hamiltonian matrices

• for each J ≥ 0 and irreducible representation Γ

(c) Diagonalizations of the Hamiltonian matrices

3. The intensity calculations,

• Each pair of the rovibrational eigenvectors from Step 2c are correlated

with the dipole moment XY Z components

• The correlation is restricted to the selection rules.

• The body-fixed xyz components of the dipole moment from Step 1c are

transformed to the XY Z-frame using the Wigner-matrices.
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Figure 2.1: TROVE algorithm
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Chapter 3

ESR – Hyperfine structure

∗

We present the first variational calculation of the isotropic hyperfine coupling con-

stant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and

300 K. It is based on a newly calculated high level ab initio potential energy surface

and hyperfine coupling constant surface of CH3 in the ground electronic state. The

rovibrational energy levels, expectation values for the coupling constant, and its

temperature dependence were calculated variationally by using the methods im-

plemented in the computer program TROVE. Vibrational energies and vibrational

and temperature effects for coupling constant are found to be in very good agree-

ment with the available experimental data. We found, in agreement with previous

studies, that the vibrational effects constitute about 44% of the constant’s equi-

librium value, originating mainly from the large amplitude out-of-plane bending

motion and that the temperature effects play a minor role

3.1 Introduction

The importance of the nuclear motion contributions to various electromagnetic

molecular properties is by now well understood. [62–80] The zero-point vibra-

tional corrections (ZPVC) are proved to be non-negligible for the electron param-

agnetic resonance (EPR)[79, 81], nuclear magnetic resonance (NMR) [69, 76, 82]

∗Reproduced from J. Chem. Phys., 143:244306/1–7, 2015, with permission of the AIP Pub-
lishing
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and non-linear optical (NLO) properties. [70, 83] The so-called pure vibrational

contributions to NLO properties [84] are often comparable or even larger in mag-

nitude than that due to electronic motions[64, 65, 70–72]. Moreover, some of

the experimentally observed effects, such as temperature dependence and isotope

shifts of electric and magnetic properties are entirely due to the effect of molecular

vibrations and rotations. [76]

Several successful methods for evaluating the rovibrational contributions to vari-

ous molecular properties were formulated using the perturbation theory (PT) ap-

proach over the last few decades [66, 67, 85, 86]. The applications of the PT-based

approaches are however limited to quasi-rigid molecules vibrating harmonically

within a single minimum potential energy surface (PES). For molecules exhibiting

large amplitude anharmonic motions, due to the poor convergence of the PT ex-

pansion, the rovibrational wave functions and subsequent contributions to molec-

ular properties must be obtained by variational methods. This, however, is much

more computationally demanding and requires a more sophisticated numerical de-

scription of the PES. Thus, it is only applicable to small molecules. Only recently a

few general variational methods have been proposed capable of solving the rovibra-

tional problem accurately for very highly excited states. These methods are rou-

tinely applicable to molecules with an arbitrary geometrical structure[54, 55, 87–

89]. One of them, TROVE,[54, 55] has been applied to compute the ZVPC-,

temperature-, and isotope-dependence of the isotropic spin-spin coupling constants

of NH3[76]. The response theory approach has been developed for the vibrational

configuration interaction method allowing accurate calculations of the pure vi-

brational contributions to the NLO properties[90, 91]. In these and a few other

[71, 78, 80] studies, the importance of a proper variational treatment of the large

amplitude vibrations in obtaining accurate estimates of molecular properties has

been emphasized.

In the present work we report the first comprehensive variational calculations of

the rovibrational contributions to the isotropic hyperfine coupling constant of the

carbon-13 atom in the methyl radical CH3, which we henceforth refer to as HFCC.

The methyl radical is important in combustion processes and as an intermediate

in many chemical reactions, [92] it has been observed in interstellar space, [9] and

it is an example of a molecule with large vibrational contribution to HFCC that

accounts for up to about 41% of the total value.[79] CH3 has been the subject

of many theoretical studies [93–104] characterizing the electronic structure and
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vibrational motion. The most recent works [103, 104] reported the ab initio cal-

culated PES and dipole moment surface and the variational rovibrational energy

calculations for CH3. Also, there have been a number of theoretical studies of

the HFCC for 13CH3[79, 105–107]. To the best of our knowledge, in all previous

studies of the HFCC the vibrational effects were described by means of PT. In the

present work, we have computed the new PES and HFCC surface for CH3 in the

ground electronic state.

For the PES we used the explicitly correlated coupled cluster CCSD(T)-F12 level [108]

with the correlation consistent basis set cc-pVQZ-F12, [109] while the HFCC was

computed by means of the conventional CCSD(T) with the augmented correla-

tion consistent basis set aug-cc-pVTZ-J [110, 111]. We expect these methods to

yield an adequate accuracy for at least low energy levels, sufficient to converge the

rovibrational contributions to HFCC at the room temperature and below. The

PES and HFCC surfaces were used to compute the rovibrational energy levels,

ZPVC, and temperature corrections to HFCC by means of the variational method

TROVE[54, 55]. The resulting vibrational energies and total value of the HFCC

at a temperature T = 96 K were found to be in good agreement with experiment,

as well as with results of previous theoretical studies. For illustrative purposes

we compared the variationally computed expectation values of HFCC with those

obtained from the perturbed-rigid-molecule (PRM) approach. As expected, the

results confirm that PRM is not reliable for the expectation values of CH3 in the

excited out-of-plane bending states.

3.2 Computational Details

The calculations of the HFCC have been carried out within the framework of the

Born-Oppenheimer approximation following a conventional three-step approach.

First, the ab intito calculations of the ground state potential energy surface and

the electronic contribution to HFCC are performed, which are followed by the cal-

culations of the rovibrational energy levels and wave functions. The HFCC values

associated with the rovibrational states of interest or their Boltzmann distribution

are evaluated by averaging the ab initio HFCC function over the corresponding

rovibrational wave functions.



Chapter 3. HFCC 22

3.2.1 Electronic structure calculations

The electronic energies for the ground electronic state of CH3 were computed on

a grid of 22 640 symmetry-unique molecular geometries employing the open-shell

RCCSD(T)-F12b [108, 112] level of theory (explicitly correlated F12 restricted cou-

pled cluster included single and double excitations with a noniterative correction

for triples) and the F12-optimized correlation consistent polarized valence basis set

cc-pVQZ-F12 [109]. In correlated calculations the carbon inner-shell electron pair

was treated as frozen core. The diagonal fixed-amplitude ansatz 3C(FIX) [113]

and a Slater geminal exponent value of β=1.0 (Ref.[114]) were used. To evaluate

the many-electron integrals in F12 theory, three additional auxiliary basis sets

are required. For the resolution of the identity basis and the two density fitting

basis sets, we utilized the corresponding OptRI,[115] cc-pV5Z/JKFIT,[116] and

aug-cc-pwCV5Z/MP2FIT [117] basis sets, respectively. Calculations were carried

out using the MOLPRO program [118]. The analytical representation for the PES

was obtained in a least-squares fitting procedure using the functional form from

Ref.[119]. By varying 248 parameters we achieved a fitting root-mean-square de-

viation (rms) of 0.9 cm−1. The values of the fitted parameters are given in the

supplementary material [120] together with a Fortran 90 routine for calculating

the PES.

For the coupling-constant surface, the geometry-dependent values of the isotropic

hyperfine coupling constant (also known as Fermi contact term) for carbon were

obtained† as, see Appendix A,

A
(N)
iso =

2

3
µ0 µN gN ρ(N) (3.1)

for 19 959 symmetry-unique molecular geometries.

In Eq. (3.1), the index N labels a specific nucleus (carbon in our case), µ0 is the

vacuum permeability, µN is the nuclear magneton, gN is the nuclear g factor, and

ρ(N) is the spin density at the carbon nucleus. The hyperfine coupling constant

is an important parameter in EPR spectroscopy; it describes the hyperfine split-

ting and structure of an observed spectrum. A non-vanishing HFCC is due to

†In units of T (tesla) when all quantities on the right hand side of Eq.(3.1) are in SI units;
another customary unit is the Gauss (G); 1G = 10−4 T.
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interaction between the magnetic moments of the unpaired electron and the nu-

clei in the molecule. It is usually reported in the literature in units of magnetic

field strength (G or T) required to produce the resonance condition. To obtain

the HFCC in Hz, the right hand side of Eq. (3.1) should be multiplied by the

conversion factor geµB/h (Hz T−1), where ge is the g-factor of free electron, µB is

the Bohr magneton, and h is the Planck constant. In the static view of CH3 as

a planar molecule, there is no direct contribution from the unpaired electron to

the HFCC and the main contribution comes from spin polarization effects. The

out-of-plane vibration allows and adds the direct contribution from the unpaired

electron to the equilibrium value of the HFCC.

We have calculated the HFCC employing the all-electron unrestricted open-shell

CCSD(T) level of theory to account for spin polarization effects and the basis set

aug-cc-pVTZ-J [110, 111] designed to ensure the proper nuclear-cusp behaviour

of the electronic wave function and thus a good description of the HFCC. The

calculations were performed with the CFOUR program. [121] We have fitted the

calculated points to the totally-symmetric sixth-order power series expansion [122]

in terms of six variables

ξk = (rk − re) exp
(
− (rk − re)

2
)
, k = 1, 2, 3, (3.2)

ξ4 = (2α1 − α2 − α3)/
√

6 (3.3)

ξ5 = (α2 − α3)/
√

2 (3.4)

ξ6 = 1− 2/
√

3 sin([α1 + α2 + α3]/6) (3.5)

where rk − re denotes the displacement from the equilibrium value re of the dis-

tance between C and Hk, α1, α2, and α3 are the instantaneous values of the

bond angles ∠(H2–C–H3), ∠(H1–C–H3), and ∠(H1–C–H2), respectively. The fac-

tor exp (−(rk − re)
2) in Eq. (3.2) ensures a physically reasonable asymptotic be-

haviour of the power series at large distances rk[123]. In a least-squares fitting

procedure we determined 185 expansion parameters that reproduce the HFCC

data with the rms of 0.11G. The optimized parameters together with the For-

tran 90 function for calculating the HFCC surface are given in the supplementary

material[120].
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3.2.2 Nuclear Motion Calculations

The ab initio PES was used to compute the rovibrational energy levels of CH3

employing the variational approach and computer program TROVE[54, 55]. In

TROVE the rovibrational Hamiltonian is defined by the power-series expansions

of its kinetic energy (KEO) and potential energy (PES) operators in terms of

internal coordinates around the equilibrium or reaction-path configuration. In the

present work the expansions of the kinetic and potential parts were truncated after

the 6-th and 8-th order terms, respectively, and the six internal coordinates are:

three ri = C–Hi (i = 1..3) stretching coordinates, two symmetry-adapted bending

coordinates ξ4 and ξ5, as given in Eqs. (3.4,3.5), and one out-of-plane bending

coordinate τ (see Ref.[124] for details). The size of the vibrational basis set is

controlled by the polyad number P

P = 2(nr1 + nr2 + nr3) + nξ4 + nξ5 + nτ/2 (3.6)

where ni are the quantum numbers defined in connection with the primitive basis

functions,[54] each describing i-th vibrational degree of freedom. They are essen-

tially the principal quantum numbers associated with the local mode vibrations

of CH3. The vibrational basis set contains only products of primitive functions

for which P ≤ Pmax. We found that Pmax = 10 was sufficient to converge the

vibrational energies below 7000 cm−1 to better than 0.05 cm−1 and the thermally

averaged values of HFCC at a temperature T = 300 K to better than 0.002%.

The rovibrational basis functions are generated as products of vibrational basis

functions and symmetric-top rotational eigenfunctions and the rovibrational wave

functions are obtained variationally by diagonalizing the full rovibrational Hamil-

tonian matrix[54]. Since TROVE uses symmetry-adapted basis functions, and the

total-angular-momentum quantum number J is a good quantum number, the di-

agonalization of the Hamiltonian matrix for each irreducible representation of the

D3h symmetry group, and each value of J , is done separately. Another important

consequence of molecular symmetry is that the nuclear spin statistical factors[59]

for the X̃ 2A′′2 electronic state of CH3 are zero for the irreducible representations

A′2 and A′′2, besides for each of the doubly degenerate representations E ′ and E ′′



Chapter 3. HFCC 25

only one degenerate component need be treated, thus reducing the total computa-

tional expenses for CH3 by a factor of two. For CD3, all statistical weight factors

are non-zero thus only the second argument is viable.

3.2.3 Hyperfine Coupling Constant Expectation Values

The vibrational and rovibrational expectation values of the HFCC were computed

for 13CH3 and 13CD3 using the ab initio calculated coupling constant surface and

the TROVE wave functions. The thermal average values for different temper-

atures were computed by summing over all rovibrational states the expectation

values multiplied with the corresponding Boltzmann and degeneracy factors. For

an ensemble of molecules in thermal equilibrium at absolute temperature T, the

thermal average of the isotropic HFCC, A, is given by

〈A〉T =
1

Q

∑
i

gi exp

(
− E

(i)
rv

kT

)
〈A〉i (3.7)

where gi is the degeneracy of the ith state with the energy E
(i)
rv relative to the

ground state energy, k is the Boltzmann constant, Q is the internal partition

function defined as

Q =
∑
i

gi exp

(
− E

(i)
rv

kT

)
(3.8)

and 〈A〉i is an expectation value of the operator Â in a rovibrational state i

〈Â〉i = 〈Φ(i)
rv |Â|Φ(i)

rv 〉. (3.9)

The calculation of the quantities in Eqs. (3.7)–(3.9) requires the eigenvalues E
(i)
rv

and eigenvectors Φ
(i)
rv which are obtained variationally with TROVE.

The degeneracy factor is computed as (2J + 1)gns, where gns is the nuclear spin

statistical weight taking values in D3h symmetry group in order (A′1, A′2, E ′, A′′1,

A′′2, E ′′) as (8, 0, 4, 8, 0, 4) for 13CH3, and (2, 20, 16, 2, 20, 16) for 13CD3 (Note

that the symmetry of the electronic wave function is A′′2). The convergence of
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the thermal averaged values of HFCC at T = 300 K with respect to the maximal

rotational excitation, defined by Jmax, is shown on Fig. 3.2. The values are plotted

relative to the ZPVC (see Table 3.4). The energy spectrum of the heavier molecule

CD3 has a higher density than that of CH3. In addition, CD3 has more states

allowed by spin statistics. Consequently, in CD3, more rovibrational states become

populated at a given temperature and so, higher J-values must be considered in

the theoretical calculations in order to obtain converged values of the thermal

averages. The computed values of the partition functions used to normalize the

thermally averaged values for T = 300 K(96 K) are 737.08(127.10) for 13CH3, and

7519.94(1194.11) for 13CD3.

3.3 Results

The planar equilibrium geometry of the electronic ground state, X̃ 2A′′2, of CH3

has D3h geometrical symmetry. The normal modes ν1 and ν2 of CH3 have non-

degenerate symmetries A′1 and A′′2, respectively, and associated principal quantum

numbers v1 and v2. The normal modes ν3 and ν4 are of doubly-degenerate symme-

tries E ′ and E ′′, respectively, the associated quantum numbers here are v`33 and v`44 .

The calculated 24 lowest vibrational energy levels of 12CH3, 13CH3 and 13CD3 are

listed in Table 3.1 where they are compared with the results of other theoretical

studies[103, 104] and experiment [18, 125–127]. Each vibrational state is assigned

by the symmetry in D3h(M) and vibrational quantum numbers (v1, v2, v
`3
3 , v

`4
4 )

obtained from the basis function with the largest contribution to the vibrational

eigenfunction. The agreement with experiment is generally good, the standard

deviation for six states is 3.2 cm−1 which is a little improvement over the previous

theoretical results of 4.6 cm−1 (Ref. [103]) and 7.4 cm−1 (Ref. [104]). The complete

list of computed vibrational energies up to 8000 cm−1 for three isotopologues can

be found in the supplementary material[120].

The calculated expectation values of the HFCC for 13CH3 given in Table 3.2 for a

number of vibrational states show a very strong dependence on v2, the quantum

number of the out-of-plane vibration. This is due to both the nonrigid character

of the out-of-plane motion and the strong dependence of the coupling constant on

the out-of-plane coordinate (see Fig. 3.1). Even though we need only consider one

minimum of the PES here so that no tunneling motion takes place, the accurate

treatment of the nonrigid character of the out-of-plane vibrational mode is very
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important. This is evident from the comparison (Table 3.2) of HFCC expecta-

tion values obtained as described above with the results of a more conventional

PRM approach, commonly used to compute vibrational corrections to molecular

properties[67, 79]. The PRM results in Table 3.2 were obtained variationally in the

present work by expanding the TROVE Hamiltonian in normal coordinates with

the KEO, PES, and HFCC parts truncated after zero-, quartic- and second-order

terms, respectively. All expectation values in Table 3.2 were obtained variationally

but it is obvious that the use of normal coordinates and the restrictive truncation

of the various series expansions introduce substantial changes in the expectation

values. The PRM results deviate most from those of the nonrigid-model TROVE

calculation for excited states of the out-of-plane bending mode. For such states,

the deviations reach values around 10 G or 10-20%.

A ’true’ PRM calculation, using perturbation theory to solve the rovibrational

Schrödinger equation, would introduce additional approximations and we surmise

it would produce results deviating even more from the nonrigid-model values. A

complete list of HFCC vibrational expectation values for 13CH3 and 13CD3 is given

in the supplementary material[120].

In Table 3.3, we give the theoretical equilibrium-geometry value of the HFCC

for 13CH3, the ZPVC, and the value resulting from the thermal averaging at T =

96 K. These values are compared with the results of the previous theoretical studies

and experiment. In the previous theoretical studies, different electronic structure

methods and basis sets were used to compute the potential and coupling constant

surfaces, the vibrational corrections were treated by means of perturbation theory.

As can be seen from the table the HFCC value is strongly dependent on the ZPVC,

which in this work is found to constitutes about 44% of the equilibrium value.

The temperature correction originating in excited rotation-vibration states (i.e.,

the correction obtained on top of ZPVC) at T = 96 K is 0.02 G and thus tiny;

it obviously increases with increasing temperature and attains a value of 1.0 G

(see Table 3.4) for T = 300 K. For 13CD3 the ZPVC is approximately 25% of

the equilibrium HFCC value (25.8 G); the additional T = 300 K temperature

correction has a small value of 1.7G.
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3.4 Discussion and Summary

Table 3.3 confirms that for the theoretical, thermally averaged values of the HFCC

of 13CH3, the differences between the value at equilibrium A
(eq)
iso and the vibra-

tionally/thermally averaged value A
(tot)
iso are dramatic. As mentioned previously,

these differences are solely due to the effect of the ZPVC. Analysis of the con-

tributions from the individual vibrational modes has shown that the dominant

vibrational effect originates from the out-of-plane bending mode (corresponding

to the ‘umbrella-flipping’ inversion of ammonia NH3). Other vibrational modes

contribute only slightly since the associated fundamental and overtone states are

hardly populated at T = 96 K. In Fig. 3.1 we show the dependence of the HFCC

in 13CH3 on the out-of-plane vibrational coordinate ρ, which is defined as the an-

gle between the three-fold rotational axis and any one of the three C–H bonds.

Clearly, the strong dependence of the HFCC on ρ along with the effect of delocal-

ization of the out-of-plane vibrational wave functions, due to the large amplitude

character of the vibration, makes the corresponding expectation value and thus

the contribution to the ZPVC quite substantial.

Our CCSD(T) equilibrium value A
(eq)
iso agrees well with the results of previous

QCISD(T) [106] and MCSCF [107] calculations (Table 3.3), with slightly larger

deviation from the B3LYP result,[79] which is known to overestimate the spin

polarization effect[128]. The deviations can also be partly attributed to the effect

of the different basis sets used in electronic structure calculations. We employed

the basis set aug-cc-pVTZ-J, specifically designed for core properties. In several

studies [111, 129, 130] this basis set has proved to yield coupling constants in good

agreement with experiment.

We conclude that with the high-level electronic structure method and compre-

hensive variational treatment of the rovibrational motion employed in the present

work, we were able to obtain reliable values of the HFCC for 13CH3 and 13CD3

in very good agreement with experiment (Table 3.3). In particular, we calculate

realistically the large vibrational contribution to the HFCC, which we found to be

44% of the equilibrium value.

In agreement with previous studies, the large vibrational contribution can be at-

tributed to the large amplitude out-of-plane bending motion. For the temperatures

considered in this study (T < 300 K) the thermal effects play a minor role.
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Table 3.1: Calculated and experimental vibrational energies (in cm−1) for
12CH3, 13CH3, and 13CD3.

v1 v2 v
`3
3 v`44 Γ‡ 12CH3

13CH3
13CD3

Present work Ref. [103].§ Ref. [104].¶ Experiment‖ Present work Present work

0 0 00 00∗∗ A
′
1 [6466.9] [6449.2] [6445.9] – [6446.4] [4742.1]

0 1 00 00 A
′′
2 601.1 596.3 591.7 606.5 596.1 447.4

0 2 00 00 A
′
1 1278.3 1278.9 1266.2 1288.1 1267.7 944.6

0 0 00 11 E
′

1389 1387.5 1388.4 1397 1384.1 1022.8
0 1 00 11 E

′′
2001.8 1997 1991.8 – 1992.1 1475.7

0 3 00 00 A
′′
2 2006 2025.6 1994.2 2019.2 1989.2 1476.4

0 2 00 11 E
′

2688.8 2690 2674 – 2673.7 1977.6
0 0 00 20 A

′
1 2752.4 2748.2 2750.7 – 2742.4 2022.6

0 0 00 22 E
′

2770.9 2766.1 2767.8 – 2761.1 2039.5
0 4 00 00 A

′
1 2771.8 2829 2763.2 – 2749.6 2034.9

1 0 00 00 A
′
1 3003.4 2991.5 2988.5 3004.4 3002.6 2154.1

0 0 11 00 E
′

3159.5 3144.6 3142.6 3160.8 3147.3 2362.0
0 1 00 20 A

′′
2 3378.6 3371.1 3367.1 – 3365.0 2482.5

0 1 00 22 E
′′

3395.2 3388.5 3382.9 – 3380.7 2498.3
0 3 00 11 E

′′
3426.6 3447 3407.5 – 3405.5 2514.0

1 1 00 00 A
′′
2 3595.1 3575.5 3572.8 – 3587.5 2595.2

0 5 00 00 A
′′
2 3564.5 3686 3557.7 – 3536.3 2616.8

0 1 11 00 E
′′

3736.2 3716 3710.2 – 3719.5 2793.7
0 2 00 20 A

′
1 4075.1 – 4057.5 – 4056.1 2989.4

0 2 00 22 E
′

4091.8 – 4073.1 – 4072.1 3005.2
0 0 00 31 E

′
4128.4 – 4107.7 – 4114.7 3026.1

0 0 00 33 A
′
1 4144.9 – 4138.9 – 4140.4 3053.9

0 0 00 33 A
′
2 4150.1 – 4138 – 4135.4 3052.4

0 4 00 11 E
′

4200.2 – 4179.7 – 4172.7 3076.2
1 2 00 00 A

′
1 4258.4 – 4234.3 – 4246.0 3091.2
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Table 3.2: Vibrational energies, Evib, (in cm−1) and expectation values
of HFCC (in G) computed for 13CH3 using the TROVE variational and the

perturbed-rigid-molecule (PRM) approaches (see text).

v1 v2 v
l3
3 vl44 Γ†† Evib HFCC

TROVE PRM

0 0 00 00 A′1 0.0 37.1 37.6
0 1 00 00 A′′2 596.2 52.8 55.8
0 2 00 00 A′1 1267.7 64.5 70.5
0 0 00 11 E′ 1384.1 39.4 38.6
0 3 00 00 A′′2 1989.2 74.6 83.1
0 1 00 11 E′′ 1992.2 54.6 57.0
0 2 00 11 E′ 2673.7 66.0 71.6
0 0 00 20 A′1 2742.4 52.2 40.2
0 4 00 00 A′1 2749.6 76.0 93.9
0 0 00 22 E′ 2761.1 42.9 39.6
1 0 00 00 A′1 3002.6 39.0 39.3
0 0 11 00 E′ 3147.3 38.5 39.6
0 1 00 20 A′′2 3364.9 58.7 58.2
0 1 00 22 E′′ 3380.7 57.6 67.7
0 3 00 11 E′′ 3405.5 75.5 73.9
0 5 00 00 A′′2 3536.3 90.5 101.5
1 0 00 01 A′′2 3587.5 55.9 58.2
0 0 11 01 E′′ 3719.5 54.6 58.5
0 2 00 20 A′1 4056.1 68.9 72.3
0 2 00 22 E′ 4072.1 67.7 72.3
0 0 00 31 E′ 4114.7 51.7 41.6
0 0 00 33 A′2 4135.4 44.7 40.6
0 0 00 33 A′1 4140.9 49.9 40.6
0 4 00 11 E′ 4172.7 84.5 93.1
1 2 00 00 A′1 4246.0 67.2 86.2
0 6 00 00 A′1 4353.7 98.5 94.9
0 2 11 00 E′ 4371.5 66.3 72.4
1 0 00 11 E′ 4385.0 42.3 40.3
0 0 11 11 A′2 4510.3 40.6 40.5
0 0 11 11 E′ 4518.1 40.9 40.3
0 0 11 11 A′1 4526.4 41.6 40.6
0 1 00 31 E′′ 4742.2 63.5 58.9
0 1 00 33 A′′2 4765.3 62.9 67.9
0 1 00 33 A′′1 4766.1 58.7 59.0
0 3 00 20 A′′2 4801.4 78.1 74.0
0 3 00 22 E′′ 4813.1 77.8 83.1
1 3 00 00 A′′2 4959.3 76.8 80.6
0 5 00 11 E′′ 4964.7 83.7 99.9
1 1 00 11 E′′ 4984.3 66.4 59.5
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Table 3.3: The calculated and experimental HFCC (in G) of 13CH3. The

values listed are the electronic HFCC at equilibrium geometry, A
(eq)
iso , the total

HFCC value including ZPVC (T = 0 K) and temperature (T = 96 K) correction,

A
(tot)
iso , as well values of the ZPVC (/temperature) effects with respect to the

equilibrium.

Method/Basis set A
(eq)
iso A

(tot)
iso A

(tot)
iso − A

(eq)
iso T (K) Ref.

P(CI)/DZ 22.2 35.1 12.9(58%) 96 [105]

QCISD(T)/TZVP 27.8 37.7 9.9(36%) 96 [106]

MCSCF/cc-pVTZus2st 27.7 37.3 9.6(35%) 0 [107]

B3LYP/Huz-IIIsu3 29.9 42.2 12.3(41%) 0 [79]

CCSD(T)/aug-cc-pVTZ-J 25.8 37.1 11.3(44%) 0/96 This work

Experiment 27.0 38.3 – 96 [131]
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Figure 3.1: The HFCC in 13CH3 calculated at the CCSD(T)/aug-cc-pVTZ-J
level of theory for molecular geometries with all three C–H bond lengths fixed
at 1.0759 Å and all three H-C-H bond angles equal. The HFCC is plotted as a
function of ρ, the angle between the three-fold rotational axis and any one of

the three C–H bonds.
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Table 3.4: Thermal contribution to HFCC (in G) in 13CH3 and 13CD3.

Temp.(K) 13CH3
13CD3

0 37.068 34.239
96 37.092 34.275
300 38.076 35.917
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Figure 3.2: Convergence of the T = 300 K thermally averaged HFCC vs
Jmax plotted for 13CH3 (blue circles) and 13CD3 (orange squares) relative to the

ZPVC.



Chapter 4

Infrared Intensities

∗

We present the first variational calculation of a room temperature ab initio line

list for the CH3 radical. It is based on a high level ab initio potential energy

surface and dipole moment surface of CH3 in the ground electronic state. The

rovibrational energy levels and Einstein A coefficients were calculated variationally

using the methods implemented in the computer program TROVE. Vibrational

energies and vibrational intensities are found to be in very good agreement with

the available experimental data.

4.1 Introduction

In the infrared region, CH3 intense out-of-plane bending mode, ν2, located at

606 cm−1, provides a convenient band for concentration measurements, and this

feature has been used extensively for this purpose [22, 132–134]. However, this

method relies on the knowledge of the transition intensities associated with the

corresponding transition dipole moment, µ2, of the ν2 band.

In this chapter we apply a high level ab initio potential energy and dipole mo-

ments surfaces to compute a room temperature line list for CH3 using the TROVE

program [53–56].

∗Adapted with permission from (J. Phys. Chem. A 2019, 123, 4755). Copyright 2019
American Chemical Society.

35
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4.2 The methyl radical quantum numbers

At equilibrium, the three protons of electronic-ground-state X̃ 2A′′2 CH3, a sym-

metric top molecule, form an equilateral triangle with the C nucleus at the centre-

of-mass of the planar structure with D3h point group symmetry (see Table A-10

of Ref.59).

Six coordinates are required to define the internal vibrational motion of a tetratomic

molecule, of which, in the case of CH3, two are doubly degenerate. The standard

Herzberg convention [135] labels the symmetric stretch and symmetric bend as v1

and v2 respectively, and the asymmetric stretch and asymmetric bend as v3 and

v4 respectively. The latter two are degenerate, and as a result additional quantum

numbers are required in the form of the vibrational angular momenta l3 and l4,

respectively.

The rotation of CH3 is specified by the total angular momentum N † , its projec-

tion on the body-fixed axis (molecular symmetry axis) K and the parity τrot or,

alternatively the symmetry of the rovibrational states Γ in the molecular symmetry

group[59] D3h(M) to which CH3 belongs.

The rigorous selection rules which determine the allowed electric dipole transitions

of CH3 are ∆N = N ′ −N ′′ = 0,±1 (N ′′ +N ′ ≥ 1) with symmetry selection rules

A′1 ↔ A′′1, A′2 6↔ A′′2, and E ′ ↔ E ′′.

4.3 The dipole moment surface

The ab initio dipole moment surface (DMS) for the electronic ground state of CH3

was computed using the MOLPRO[118] program package. Frozen-core calculations

were carried out for 19 369 symmetry-unique geometries using the spin-restricted

open-shell coupled cluster theory RCCSD(T) [136, 137] and the augmented corre-

lation consistent valence basis set aug-cc-pVTZ [138, 139] employing the two-point

stencil central finite differences with the electric field strength of 0.002 a.u.

The DMS was determined on a six-dimensional grid consisting of 19369 geometries

with coordinates in the ranges ri = 0.8 Å – 1.20 Å for bond distances and αi = 80◦

†In the case of open-shell molecules, like CH3, the total angular momentum is denoted as N
exculding the non-zero eletron spin angluar momentum, S, and denoted as J with the inclusion
of S.
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– 120◦ for bond angles, where i = 1, 2, 3. The ri is the instantaneous value of the

internuclear distance C–Hi, and the bond angles are given as α1 = ∠(H2CH3), α2

= ∠(H1CH3), and α3 = ∠(H1CH2). The DMS is finally, employing the so-called

symmetrized molecular-bond representation [124], expressed analytically with a

mathematical function in terms of the internal coordinates of the molecule.

4.4 The intensity simulations with TROVE

4.4.1 General formulas

The line strengths, S(f ← i), for any rovibrational transition between the en-

ergy levels must satisfy the selection rules. After calculating S(f ← i), Einstein

coefficients and absorption intensities can be computed.

For a transition from an initial state i with rotation-vibration wavefunction |Φ(i)
rv 〉

to a final state f with rotation-vibration wavefunction |Φ(f)
rv 〉. The line strength[59,

140, 141] S(f ← i) of a rovibrational transition is

S(f ← i) = gns

∑
Mf ,Mi

∑
A=X,Y,Z

∣∣〈Φ(f)
rv |µ̄A|Φ(i)

rv

〉∣∣2 , (4.1)

where the nuclear spin statistical weight factor[59] is denoted as gns and the elec-

tronically averaged component of the molecular dipole moment along the space-

fixed axis[59] A = X, Y , or Z is denoted as µ̄A. The quantum numbers Mi (Mf )

are the projections of the total angular momentum N̂ on the Z axis for the initial

(final) states.

The intensity of a spectral line at temperature T is determined by

I(f ← i) =
8π3NAν̃if
(4πε0)3hc

e−Ei/kT

Q

[
1− exp(−hcν̃if/kT )

]
S(f ← i). (4.2)

Here ν̃ is the absorption wavenumber, and Eq. (4.2) refers to the transition from

the state i with energy Ei to the state f with energy Ef , where hcν̃if = Ef−Ei. Q
is the partition function defined as Q =

∑
j gj exp(−Ej/kT ), where gj is the total

degeneracy of the state with energy Ej and the sum runs over all energy levels of
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the molecule, and other symbols have their usual meanings. The total degeneracy

gj is given by (2N + 1) times the electron spin degeneracy (2S + 1 = 2) and times

the nuclear spin degeneracy which is 4, 0, 2, 4, 0, 2 for A′1, A
′
2, E

′, A′′1, A
′′
2, and E ′′

symmetries respectively (see Appendix B). The ground electronic state of CH3 is

a doublet (X̃ 2A′′2) with a small splitting[96, 126] in the rovibrational energy levels

due to spin-rotation interactions, around 0.01 cm−1, which we therefore chose to

ignore in the present work.

Yurchenko et al. [140] have given, in their Eq. (21), a detailed expression for the

line strength of an individual rovibrational transition within an isolated electronic

state of an XY3 pyramidal molecule. Assuming that the populations of the lower

(initial) states are Boltzmann-distributed, we limit the intentity calculations to

transitions starting from levels below Emax
i /hc = 4 000 cm−1. With this limitation,

Boltzmann factors of exp(−Ei/kT ) > 4× 10−9 enter into Eq. (4.2) for T = 300 K.

Since it is safe to limit the lower-state energies to be below 4000 cm−1, it is

sufficient to consider rotational states with N 625. We compute a line list in the

wavenumber range 0–10 000 cm−1; the upper energy limit (i.e., the maximum value

of the final-state energy) corresponds to a term value of Emax/hc = 14,000 cm−1.

4.4.2 Computational details

The variational nuclear-motion calculations are done with a symmetry-adapted

basis set. With such a basis set, the Hamiltonian matrix becomes block diagonal

according to the irreducible representations of the D3h(M) molecular symmetry

group:[59] A′1, A′2, A′′1, A′′2, E ′, and E ′′. The A′2 and A′′2 matrices are of no interest

for CH3 as the corresponding states have zero nuclear spin statistical weights and

do not exist in nature[59] (Appendix B).

The calculation of the matrix elements 〈Φ(f)
rv |µ̄A|Φ(i)

rv 〉 in Eq. (4.1) is the bottle-

neck in the spectrum simulations. Here, the wavefunctions Φ
(w)
rv are given as

superpositions of symmetry-adapted basis functions (see Eq. (65) of Yurchenko et

al. [56]):

|Φ(w)
rv 〉 =

∑
V Kτrot

C
(w)
V Kτrot

|NwKmw τrot〉 |V 〉, w = i or f, (4.3)
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with the C
(w)
V Kτrot

as expansion coefficients. In Eq. (4.3), the symmetrized rota-

tional basis functions are denoted |NwKmw τrot〉 with τrot (= 0 or 1) defining the

rotational parity, and |V 〉 is a vibrational basis function. In order to accelerate

this part of the calculation, we pre-screened the expansion coefficients C
(f)
V Kτrot

. All

terms with coefficients less than the threshold value of 10−13 were discarded in the

intensity calculation.

The evaluation of the dipole moment matrix elements 〈Φ(f)
rv |µ̄A|Φ(i)

rv 〉 has been

made more efficient in a two-step procedure. In the first step, an effective line

strength is evaluated for a given lower state i:

SAi,V K = 〈Φ(i)
rv |µ̄A|φV K〉. (4.4)

Here, φV K is a short-hand notation for the primitive basis function |NwKmw τrot〉
×|V 〉. From the Si,V K-values obtained, we compute, in the second step, the line

strength S(f ← i) as

S(f ← i) = gns

∑
mi,mf

∑
A=X,Y,Z

∣∣∣∣∣∑
V,K

C
(f)
V Kτrot

SAi,V K

∣∣∣∣∣
2

. (4.5)

We had to compute a very large number of transitions satisfying the selection

rule |Nf − Ni| 6 1, where Ni and Nf are the values of the angular momentum

quantum number N for the initial and final state, respectively. Consequently,

we saved memory by organizing the calculation of the rovibrational eigenstates

and the S(f ← i)-values such that at a given time, only eigenvectors for states

with two consecutive N -values, N and N + 1, are available for the computation

of S(f ← i)-values [57].

4.4.3 The J=0-contraction

The vibrational basis set |V 〉 is obtained in TROVE using a multi-step contraction

and symmetrization procedure, starting from local primitive basis set functions,

each depending on one variable only (see Refs. 54–56 and references therein).

Thus, a compact representation of the vibrational basis set is obtained in a form

optimized for the, non-rotating, molecule of interest assuming a zero total angular

momentum (J = N + S = 0). The final vibrational basis set is represented by



Chapter 4. IR 40

the eigenfunctions of the purely vibrational part of the Hamiltonian; we call these

eigenfunctions the ‘J = 0 basis’.

4.5 Results

4.5.1 Refinement of the potential energy surface

The potential energy surface (PES) employed for the electronic ground state of

CH3 in the present work is based on the ab initio surface reported in Ref.120,

which we denote as PES-1 (see Chapter 3).

The analytical form of PES-1[120] is given in terms of the ab initio cc-pVQZ-

F12 values of the equilibrium structural parameters, re = 1.07736927 Å and αe =

120◦,[120] for the electronic ground state of CH3. In the present work, we optimized

the value of re in a least-squares fitting to experimentally derived to rotational

energy spacings within the vibrational states of CH3. The fitting produced re =

1.0762977119 Å; αe = 120◦ by symmetry. We use these optimized values of the

equilibrium structural parameters. All results presented below are based on the

analytical potential energy function called PES-2, obtained from PES-1[120] by

replacing the ab initio cc-pVQZ-F12 value of re by the adjusted value given here.

The remaining PES-2 parameter values are identical to those of PES-1 and can

be obtained from the supplementary material to Ref. 120. The new equilibrium

parameters are given in Table 4.1.

4.5.2 Basis set convergence and empirical adjustment of

the vibrational band centers

The dimensions of the Hamiltonian matrix blocks to be diagonalized are important

in determining the accuracy of the computed energies and wavefunctions for highly

excited rovibrational states. Consequently it is imperative to determine empiri-

cally the smallest basis set with which the required eigenvalue accuracy (i.e., the

optimum basis-set size for ‘convergence’) can be attained.
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In TROVE, the size of the vibrational basis set is controlled by polyad number

truncation.[53–55] For CH3, the polyad number P is defined as:

P = 2(n1 + n2 + n3) + n4 + n5 + n6, (4.6)

where ni are the principal quantum numbers associated with the primitive func-

tions φni
(ξi). The primitive vibrational basis functions are products of one-dimensional

basis functions φni
(ξi), and only products with P ≤ Pmax are included in the prim-

itive vibrational basis.

An even tighter level of convergence could be achieved for the vibrational term

values if these were calculated with different Pmax-values and the resulting pro-

gression of term values were extrapolated to the complete vibrational basis set

limit [142]. However, for the purpose of generating line lists this is not considered

necessary. The corrections from the extrapolation will be small compared with the

term-value errors caused by the imperfection of the underlying potential energy

surface. Instead, we pragmatically aim for a higher accuracy by resorting to an

empirical approach: The theoretical vibrational term values are replaced by the

available accurate, experimentally derived vibrational band-centre values. In this

manner, we are adjusting the vibrational band centers ‘manually’; this empirical

adjustment also shifts the rotational energy-level structure towards better agree-

ment with experiment. We call this procedure the EBSC scheme as it can be

regarded as an Empirical Basis Set Correction.

We adopt the EBSC scheme for the vibrational bands ν2, 2ν2, ν1, ν1
4 , and ν1

3 , for

which accurate experimental data are available, in combination with PES-2, where

we have adjusted the equilibrium structure of the molecule to fit the experimentally

derived pure rotational term values. The vibrational basis set was truncated at

the polyad number Pmax = 32. We incorporate experimental information in the

EBSC scheme, and so we obviously depart from a purely ab initio approach. This

is considered justified by the accuracy improvement that can be achieved in the

computation of an extensive rovibrational line list.

To improve the accuracy of the predicted vibrational band-centers, a more thor-

ough refinement of the PES would be required. However, the available accurate

experimental data for the vibrationally excited states of CH3 is severely limited,

and so we opted for the EBSC approach in conjunction with the re-refinement.

For all bands that are not EBSC-corrected, the predicted vibrational term values
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are determined to a significant extent by the ab initio data, and so their accuracy

is limited. However, we have improved the prediction of the rotational structures,

and that will facilitate the assignments of future experimental spectra for CH3.

In Table 4.2, the vibrational term values below 5000 cm−1 of the methyl radical,

calculated variationally in the present work from PES-2, are compared with the

available experimental data. The EBSC substitution was made in the N > 0

TROVE calculations of the present work, in that the theoretical vibrational term

values (obtained for Pmax = 32) were replaced by the experimental values in Ta-

ble 4.2. This table also shows the effect of the polyad number Pmax on the vibra-

tional energy.

4.5.3 Vibrational transition moments

The vibrationalnal transition moments are defined as

µV ′V =

√ ∑
α=x,y,z

|〈V ′ | µ̄α | V 〉|2 (4.7)

where |V ′〉 and |V 〉 denote J = 0 vibrational wavefunctions and µ̄α is the electronically-

averaged dipole moment in the molecular frame. For calculation of vibrational

transition moments we used our ab initio PES-1 and truncated the vibrational ba-

sis set at polyad number Pmax = 32. A number of computed transition moments

for the strongest lower lying bands are listed in Table 4.3 where they are compared

with the available experimental data. The agreement with experiment is good.

From our experience, we do not believe that the ‘upgrade’ of the ab initio dipole

moment surface from CCSD(T)/aug-cc-pVTZ to CCSD(T)/aug-cc-pVQZ will sig-

nificantly affect the values of µfi which implies that the ab initio DMS is usually

converged at this level. The complete list of theoretical transition moments is

given as Supporting Information[143].

4.5.4 Intensity simulations

The simulation of absorption spectra at a given temperature T and within a partic-

ular wavenumber interval requires knowledge of the upper and lower-state energies
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and the Einstein coefficients A(f ← i) [or the line strengths S(f ← i); the relation-

ship between A(f ← i) and S(f ← i) is described in Ref. 140] for all transitions

in the chosen wavenumber range. In practice, however, the transitions with inten-

sities below a chosen limit are discarded. The most straightforward presentation

of the spectral data is a ‘stick’ diagram with the stick heights representing the

integrated absorption coefficients from Eq. (4.2). We report here such simulations

for the CH3 absorption bands in the wavenumber interval 600–1200 cm−1 for the

out-of-plane bending mode ν2. The line strengths in Eq. (4.2) are computed from

Eq. (4.1) with the spin statistical weights gns from Ref. 120. The simulations are

based on PES-2 and the computed DMS described above. The partition-function

value used was Q = 732.734, obtained at 300 K as a summation over all varia-

tional term values (N ≤ 25) below 36871.73 cm−1. We have computed 22 805 378

transitions.

Figure 4.1 shows the simulated (T = 300 K) simulated emission spectrum (TROVE)

at two different levels of theory (rovibrational and pure vibrational) and exper-

imental spectrum of CH3 for the 600-1200 cm−1range. Our intensities based on

the ab initio DMS are in very good qualitative agreement with experiment. This

can be better appreciated in the 2000K vibrational simulation in Figure 4.1 where

the first four band systems (575–625 cm−1, 650–700 cm−1, 725–750 cm−1, and

775–800 cm−1) are shown in more detail. There is no large deviation from the

experimental intensities observed around 600–800 cm−1.

Hermann and Leone [144] produced the methyl radical after a molecular photo-

fragmentation process of the methyl iodide. With the dissociation of the C-I

bond, they suggested that the initial energy of the CH3 radical is concentrated

in the ν2 vibrational mode and due to the strongly repulsive nature of the disso-

ciated molecule, the fragments will be in highly excited states. Excitation up to

ν2 = 10 has observed in their emission experiment. Therefore, in order to simulate

the emission spectrum at elevated temperatures with our incomplete line list a

one-band model (the fundamental ν2 band in this case) from our the parent rovi-

brational line list has been employed for the other hot vibrational bands of the ν2

mode.

The procedure is as follows: after producing the 300 K cross sections using the

ExoCross code [145], we filtered the ν2 band with Gaussian profile of hwhm=8.5

cm−1 from 0 to 1200 cm−1 for 1201 points. Then we shifted the center of the ν2

cross sections to zero (-606.453100 cm−1) and normalized it. The following step
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is to run a local version of ExoCross, using the vibrational transition moments to

produce the vibrational band intensity at the band centers νfi together with the

ν2 band-profile, scaled by the vibrational intensity. Our results compared to the

experiment is shown in Figure 4.1 on page 48. The details of the model can be

found in [146].

Our complete CH3 line list is given as Supporting Information[143].

It provides transition energies, line strengths, Einstein coefficients A(f ← i) and

the temperature dependent partition function Q(T ). We expect the line list to

be applicable for temperatures below 300 K. However, the simulated spectra

will become increasingly inaccurate with increasing temperature. The line list

is given in the ExoMol format[147] which can be used together with the ExoCross

program[145] to generate spectra of CH3.

4.6 Conclusion

We report here simulations of spectra for the methyl radical, extending over a

significant portion of the infrared spectral region. The positions and intensi-

ties calculated for the transitions are in excellent agreement with experiment, as

demonstrated by detailed comparisons with observed room temperature spectra.

The CH3 line list of the present work will facilitate detections of the methyl radical

in space. In the present work we have generated, refined, and validated the poten-

tial energy and dipole moment surfaces required for the spectral simulations, and

we have established the level of accuracy attainable in variational nuclear-motion

calculations with our computational resources. We have produced a methyl radical

line list consisting of 22.8 million transitions between 3,671,465 energy levels for

rovibrational states up to Nmax = 25 and energies up to 20 000 cm−1.
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Table 4.1: Theoretical Rotational Term Values (N ≤ 5, in cm−1) of CH3

Computed with TROVE Using Different Equilibrium Structure Parameters.

States Term values cm−1

N K τrot Obs. Obs.-Ia Obs.-IIb

1 1 0 14.3189 0.032377 0.004027
2 0 1 57.4396 0.112005 -0.002023
2 2 0 38.1186 0.092340 0.017004
2 1 0 52.6112 0.106875 0.002511
3 3 0 71.3965 0.179934 0.038989
3 2 0 95.5353 0.203902 0.014649
3 1 0 110.0032 0.219365 0.001200
4 0 0 191.2473 0.375024 -0.004034
4 4 0 114.1491 0.295456 0.070301
4 2 0 172.0038 0.353500 0.012772
4 3 0 147.9203 0.327970 0.035289

Ia Using re = 1.07736927 Å and αe = 120.0◦

IIa Obtained using re = 1.0762977119 Å and αe = 120.0◦
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Table 4.2: Vibrational band centers (cm−1) of 12CH3 from variational calcu-
lations.

Γ State Ref. Obs.a Pmax = 24b Pmax = 32c

A′1 2ν2 [125] 1288.1 1279.77 1288.09

2ν4 2737.63 2739.64

4ν2 2773.65 2776.85

ν1 [18] 3004.0 3002.71 3004.41

2ν2 + 2ν4 4070.04 4073.58

3ν3
4 4118.59 4120.58

ν1 + 2ν2 4258.97 4260.53

6ν2 4391.99 4397.00

ν1
3 + ν1

4 4537.94 4538.93

4ν4 5371.39 5364.55

2ν2 + 3ν3
4 5475.84 5480.07

4ν2 + 2ν4 5601.91 5607.20

E ′ ν1
4 [127] 1397.0 1385.99 1387.26

2ν2 + ν1
4 2688.80 2691.60

2ν2
4 2759.77 2762.04

ν1
3 [126] 3160.8 3158.88 3160.82

3ν1
4 4074.69 4075.46

2ν2 + 2ν2
4 4087.92 4091.72

A′′1 ν2 + 3ν3
4 4767.07 4770.24

ν2 + ν1
3 + ν1

4 5113.76 5115.37

3ν2 + 3ν3
4 6235.97 6240.33

ν2 + ν1
3 + 2ν2

4 6492.93 6494.01

3ν2 + ν1
3 + ν1

4 6504.24 6507.12

E ′′ ν2 + ν1
4 2000.24 2002.22

ν2 + 2ν2
4 3388.24 3391.11

3ν2 + ν1
4 3426.45 3430.06

ν2 + ν1
3 3736.40 3736.96

ν2 + 3ν1
4 4726.62 4728.61

3ν2 + 2ν2
4 4835.22 4839.85

ν1 + ν2 + ν1
4 4980.92 4983.16

a Experimental values of band centers
b Computed using the Pmax = 24 basis set in conjunction with the PES[120].
c Computed using the Pmax = 32 basis set in conjunction with the PES[120].
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Table 4.3: Band Centers νfi and Vibrational Transition Moments µfi for
CH3: Transitions originating in the vibrational ground state except for one hot

band (2ν2 ← ν2).

States νfi/cm−1 calc. µfi/D obs. µfi/D Ref.

f i

2ν2 ν2 678.81355 0.25684684 0.31(6) [134]

ν2 0 602.43041 0.204031249 0.215(25) [22, 132, 133]

ν1
3 0 3158.83077 0.039997347 0.03(27) [148, 149]

ν1
4 0 1387.26389 0.029311184

2ν3 + ν4 0 4529.7417 0.020487697

ν1 + ν1
4 0 4383.55759 0.008656491

2ν2 + ν1
3 0 4396.17926 0.004860513

2ν2
3 0 6294.76133 0.00461563

ν1 + ν1
3 0 6076.67626 0.003205084

2ν2
4 0 2762.04731 0.003133693

ν1
3 + 2ν4 0 5864.94413 0.002415629

3ν1
4 0 4075.46453 0.00185917

2ν2 + ν1
3 + ν1

4 0 5789.15677 0.001301802

4ν2 0 5856.38651 0.00116353
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Figure 4.1: CH3 (ν2) simulated (top and bottom) and experimental (middle)
emission spectrum



Chapter 5

Raman Intensities

Infrared absorption/emission spectroscopy (IR) is an essential tool for detecting

rovibrational transitions. However, there are many transitions which cannot be

observed with this technique. Not because of their weak transition intensities and

the requirements of special techniques but fundamentally due to selection rules.

Raman spectroscopy represents a complementary tool to IR absorption/emission

spectroscopy techniques. Some rovibrational and fundamental vibrational transi-

tions can only be detected with Raman spectroscopy. For the methyl radical, the

ν1 fundamental band can only be observed by Raman spectroscopy as well as two

other fundamental bands, ν3 and ν4. While the most intense band, ν2, can only

be observed with infrared absorption/emission spectroscopy and it is reported in

chapter 4. In this report, we successfully simulated the Raman spectrum of the ν1

fundamental band the methyl radical as well as the 2ν2 band. We conclude that

with our variational treatment we are able to predict accurately Raman transitions

in the electronic ground state of CH3 in agreement with the available experimental

data[150].

5.1 Introduction

The field of high-resolution infrared (IR) spectroscopy is important in many branches

in science. Modeling high-resolution spectra with advanced theoretical and compu-

tational techniques is certainly a powerful tool to this field. Theoretical prediction

of the rovibrational absorption spectra of many small molecules has a long history

and now it is well developed [40]. Calculations for IR intensities are implemented in

49
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many software packages [151]. IR absorption/emission spectroscopy is an essential

tool for detecting rovibrational transitions. However, there are many transitions

which cannot be observed with this technique. Not because of their weak tran-

sition lines and the requirements of special techniques but fundamentally due to

selection rules.

Another, complementary technique to IR spectroscopy is the Raman scattering

of light. In other words, Raman spectroscopy can provide information that can

not be extracted from IR spectroscopy. Moreover, it is now a tool for planetary

exploration[152, 153]. For the methyl radical, the ν1 fundamental band can only

be observed by Raman spectroscopy as well as two another fundamental bands,

ν3 and ν4.

Modeling high-resolution Raman spectrum is still missing and is not well developed

like IR. Theoretical attempts to model Raman spectrum (computed energies and

intensities) with electronic structure methods started in the 1980s for closed-shell

self-consistent field (SCF) wave functions [154–156]. To include electron correla-

tion effects to SCF wave functions, DFT [157–159] methods and post-Hartree-Fock

methods [160–163] have been developed. Relativistic effects are also important in

some cases and have been applied to some diatomic [164] and triatomic molecules

[165] with heavy atoms using the Dirac-Hartree-Fock method.

The development of electronic structure methods for computing Raman inten-

sities is still an active area of research for example: studying new systems like

crystalline materials [166], investigating new phenomena like hyper-Raman [167],

and application to surface-enhanced Raman Scattering [168].

Theoretical study of the Raman effect will include computations of the molecu-

lar polarizability tensor. However, if the study extended to include the magnetic

dipole and electric quadrupole tensors we would be able to investigate the opti-

cal activity phenomena, namely the Raman Optical activity (ROA) [169]. The

conventional electronic optical activity is limited to molecules with chromophores.

On the other hand, vibrational Raman optical activity (VOA) could be applied to

chiral molecules which lack a chromophore. A drawback of VOA is that optical

activity will be proportional to the frequency of infrared region which is smaller in

magnitude compared to the UV region. Raman optical activity can overcome this

weakness in VOA because we can use visible and UV light to obtain the Raman

spectrum.
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Electronic structure methods have been developed to deal with ROA [170, 171].

There is a recent observation also of paramagnetic ROA in which the ROA is

measured in the presence of static magnetic field [172] to enhance the Raman

signal. The ability of surface-enhanced Raman scattering (SERS) to enhance

Raman intensities encourage researchers to extend this technique to ROA [173–

175].

The weak intensity of Raman spectroscopy can be greatly enhanced with the

resonance Raman technique[176–179]. In a recent study[180], shows that some

terms from the theory of resonance Raman could also be important to nonresonant

cases.

Most of electronic structure methods are based on the double-harmonic approx-

imation. The expansion of the potential energy function with respect to the vi-

brational coordinates (rotational motions are ignored here) is truncated after the

quadratic term. The second approximation arise when we take into account only

the linear term in the expansion of the porlarizability tensor components. To

model high-resolution Raman spectra this assumption is no longer valid for high

accuracy calculations.

In this paper we apply a high level ab initio potential energy and polarizabil-

ity surfaces to compute Raman transitions for CH3 using the TROVE [54, 55]

program.

5.2 Theory and Computational Details

To compute the Raman transition variationally, we need first to compute the mul-

tidimensional surfaces for the electronic energies and the electronic polarizability

surface of CH3.

5.2.1 Ab initio calculations

The ab initio energies required for constructing the PES for the electronic ground

state of CH3 were calculated with the MOLPRO program package. Frozen-core

calculations were carried out for 24000 symmetry-unique geometries at the ROHF-

RCCSD(T)/aug-cc-pVTZ level of theory.
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5.2.2 Raman transitions

When linearly polarized incident radiation interacts with a molecule, radiation

will be scattered in all directions. For a freely orientable molecules in a sample,

this can described in terms of the average of the transition matrix elements of

the polarizability tensor expressed as the Cartesian components of the laboratory

fixed axis system. We discuss here the rovibrational Raman transitions within the

electronic ground state. The Raman intensity for a molecule in the gas phase at

thermal equilibrium can be expressed as the differential scattering cross section

[
dσk
dΩ

(ν0)

]
Stokes

=
( π
ε0

)2

× (ν0 − νk)4 × exp(−Ei/kT )

Zv

×
∑
FF ′

| 〈Φ′

rv|αFF ′ |Φ′′

rv〉 |2
(5.1)

Here F (F = X,Y ,Z) is the F-coordinate of the laboratory fixed frame, ε0 is

the vacuum permittivity, ν0 is the wavenumber of the incident laser beam, νk is

the wavenumber of the incident laser beam (A laser source is needed to observe

the weak, by nature, Raman intensity), Zv is the vibrational partition function,

〈Φ′
rv|αFF ′|Φ′′

rv〉 is a transition matrix element of the polarizability tensor, T is the

absolute temperature, Ei is the energy of the initial state, k is the Boltzmann

constant, and Ω is the solid angle.

For the most important case when the angle between the incident and scattered

radiations is 90◦, it turns out that for a symmetric transition polarizability tensor

and under the following experimental conditions:

(1) X-axis of the laboratory fixed frame (X, Y, Z) is the laser beam direction.

(2) Y-axis of the laboratory fixed frame (X, Y, Z) is the laser beam polarization.

(3) No analyzer and both components, X and Y, are considered for the Raman

signal polarization.

The differential Raman scattering cross section for a rovibrational transition is

then
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[
dσk
dΩ

(ν0)

]
Stokes

=
( π
ε0

)2

× (ν0 − νk)4 × exp(−Ei/kT )

Zv

×| 〈Φ′

rv|αY Y |Φ
′′

rv〉 |2 + | 〈Φ′

rv|αY X |Φ
′′

rv〉 |2
(5.2)

For the efficient evaluation of transition polarizability tensor components, 〈Φ′
rv|αρσ|Φ

′′
rv〉,

we apply the transformation properties under rotation of the irreducible transition

polarizability tensor components. The irreducible tensor components are related

to the Cartesian components (ρ, σ = X, Y, Z) by

αρσ =
∑
jm

Aρσ,jmα
(j)
m (5.3)

where Aρσ,jm is the unitary transformation matrix

For rovibrational transitions, the matrix elements of the the irreducible transition

polarizability tensor, in terms of the rovibrational basis function |JKM, v〉, are

given as

〈α(j)
m 〉 = 〈J ′

K
′
M

′
, v

′ |α(j)
m |J

′′
K

′′
M

′′
, v

′′〉 (5.4)

to relate the space-fixed irreducible tensor components α
(j)
m to their molecule-

fixed components α
(j)

m′ , we use the angular momentum transformation matrices

D
(j)

m′ ,m
(θ, φ, χ) (where (θ, φ, χ) are the standard Euler angles [59])

α(j)
m =

∑
m′

α
(j)

m′D
(j)

m′ ,m
(θ, φ, χ) (5.5)

Now equation 5.4 can be separated into independent rotational and vibrational

parts

〈α(j)
m 〉 =

m
′
=j∑

m′=−j

〈J ′
K

′
M

′ |D(j)

m′ ,m
(θ, φ, χ)|J ′′

K
′′
M

′′〉 〈v′|α(j)

m′ |v
′′〉 (5.6)
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For a symmetric top molecule the value of a rotational matrix element using

Winger 3-j symbol [181] is

〈J ′
K

′
M

′ |D(j)

m′ ,m
(θ, φ, χ)|J ′′

K
′′
M

′′〉 = [2J
′
+1][2J

′′
+1]

(
J

′′
j J

′

−M ′′
m

′
M

′

)(
J

′′
j J

′

−K ′′
m K

′

)
(5.7)

Computing rovibrational intensities for Raman Scattering are treated now by the

so-called Placzek invariants [182] Gfi

(Gfi) =
∑
j

(G(j))fi = |(α(j)
m )fi|2 (5.8)

in which

(G(j))fi = [2J
′
+1][2J

′′
+1]

m=j∑
m=−j

(
J

′′
j J

′

−M ′′
m M

′

)2 m
′
=j∑

m′=−j

(
J

′′
j J

′

−K ′′
m

′
K

′

)2

〈v|α(j)

m′ |v〉
2

(5.9)

The irreducible tensor components α
(j)

m′ are given by

α
(0)
0 = − 1√

3
[αxx + αyy + αzz] (5.10)

α
(2)
2 =

1

2
[(αxx − αyy) + i(αxy + αyx)] (5.11)

α
(2)
1 = −1

2
[(αxz + αzx) + i(αyz + αzy)] (5.12)

α
(2)
0 =

1√
6

[2αzz − αxx − αyy] (5.13)

α
(2)
−1 =

1

2
[(αxz + αzx)− i(αyz + αzy)] (5.14)

α
(2)
−2 =

1

2
[(αxx − αyy)− i(αxy + αyx)] (5.15)
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To relate the isotropic averages of the quadratic products of the components of

the Cartesian polarizability tensor in terms of Placzek rotational invariants, we

have

〈|αρσαρ′σ′ |〉 =
∑
jm

Aρσ,jmA
∗
ρ′σ′ ,jm

α(j)
m α(j)∗

m (5.16)

where

〈|αρσαρ′σ′ |〉 =
∑
jm

A
(j)

ρσ,ρ′σ′G
(j) (5.17)

and

A
(j)

ρσ,ρ′σ′ =
1

2j + 1

∑
m

|Aρσ,jmA∗ρ′σ′ ,jm
| (5.18)

Therefore

〈|αxx|〉2 =
1

3
G(0) +

2

15
G(2) (5.19)

and

〈|αxy|〉2 =
1

10
G(2) (5.20)

Then a general equation for a symmetric Raman scattering we will have the dif-

ferential cross section in terms of Placzek invariants as

[
dσk
dΩ

(ν0)

]
Stokes

=
( π
ε0

)2

× (ν0 − νk)4 × exp(−Ei/kT )

Zv

× 1

30
(10G(0) + 7G(2))

(5.21)
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5.3 Results

The methyl radical has four fundamental modes: the symmetric stretch, ν1(A
′
1),

the out-of-plane bending, ν2(A
′′
2), the degenerate asymmetric stretch, ν3(E

′
), and

the degenerate in-plane bending, ν4(E
′
), modes. Vibrational modes with A

′
1 sym-

metry are only Raman active and have no infrared activity. While vibrational

modes with E′ symmetry are both IR and Raman active. We study here the

symmetric C-H stretch mode, ν1(A
′
1), of CH3 in the electronic ground state.

The experimental value of the ν1 vibrational term value has been reported be-

fore from resonance Raman spectroscopy[16] at 3002.4 cm−1 and from coher-

ent anti-Stokes Raman (CARS) spectroscopy[15] at 3004.8 cm−1 and at 3004.4

cm−1 in another CARS study[17]. Further CARS studies[18, 19] have produced

similar values. With force field analysis an estimation of 3044 cm−1 has been

reported[183] and with anharmonic correction calculations[96] a value of 2992.6

cm−1 was obtained. Several calculations for ν1 have been reported with ab initio

methods[97, 98, 102, 184] and with vibrational methods[103, 104]. The best pre-

diction was 3002.0 cm−1 with a vibrational many-body method, the vibrational

configuration interaction (VCI) method[102]. Our computational work produced

[143] 3004.4 cm−1.

To simulate the Raman spectrum for the methyl radical, we have computed the

Placzek rotational invariants for a symmetric transition of the polarizability tensor.

Equation 5.21 is then used to produce the spectrum of CH3 in the wavenumber

range from 0 to 6000 cm−1. This is shown in Figure 5.1. Comparing the simu-

lated spectrum to a one obtained from a nonresonant Raman experiment is not

currently possible because no such spectrum is available in the literature, as we

know. However, a resonance Raman spectrum of CH3 has been published [16].

The difference between nonresonant Raman spectra and their resonant counter-

parts is that in the case of resonance, the incident laser radiation energy on our

sample corresponds to that of the electronic transition. In this case of resonance

the intensities of the Raman vibrational bands are greatly enhanced. Another

advantage of resonance experiments is that it is possible to select to enhance a

particular vibrational mode of the molecule.

Comparing our simulated Raman spectrum (Figure 5.1) to the published resonance

Raman spectrum [16] may not seem completely fair. In spite of this difference

between the simulated and experimental spectra, we were able to simulate some
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of the Raman active modes in CH3. The fundamental vibrational mode ν1 at

3004.4 cm−1 is clearly shown. The out-of-plane fundamental mode, ν2, of CH3 is

IR active only but the first overtone of this mode is Raman active. We are able to

predict this overtone mode at 1288.09 cm−1. The two modes, ν1 and 2ν2, showed

rotational structure.

“The two fundamental modes ν3 (at 3160.8 cm−1) and ν4 (at 1397.0 cm−1) are Ra-

man active but they are not assigned in the resonance Raman experiment. How-

ever, around both wavenumber values there is weak, but visible rotational structure

in the experimental resonance Raman spectrum, possibly caused by these bands.

Above 3160.8 cm−1, the position of the ν3 band, there are two bands noticeable in

the experimental resonance Raman of Fig. 5.1, whereas three bands are present in

the simulated spectrum. The two bands in the experimental spectrum are assigned

as ν1 + 2ν2 and 2ν1, respectively, while TROVE suggests the labelling ν2 + ν3, 4ν4,

and 2ν1 for the three bands visible in the simulation. It is conceivable, however,

that the resonance Raman technique favors other vibrational transitions than non-

resonant Raman, so possibly the significant bands must be assigned differently in

the two spectra.”[150]

As mentioned before, CH3 belongs to the D3h(M) molecular symmetry group and

therefore the fundamental ν1 band was not observed in the several IR studies on

the methyl radical. This IR inactive mode is still important to be observed; for ex-

ample, in the studies on the energy distribution in methyl halide photodissociation

dynamics. The solution to this problem came from Raman scattering studies and

despite the weak intensity of Raman bands the ν1 band was successfully observed.

Based on the theory of rotation and vibration of molecules, in this chapter we

were able successfully to predict computationally the position and intensity of the

Raman active ν1 fundamental band.
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Chapter 6

Summary

The experimental study of free radicals started in 19th century. Due to the im-

portance of these molecules in chemical reactions and to the chemical science in

general, several spectroscopic observations of free radicals started but it was not an

easy task at the beginning due to their short lifetimes.The methyl radical is one of

the most important free radicals and plays a central role in combustion processes,

in atmospheric chemistry, in the chemistry of semiconductor processing, in the

chemical vapor deposition of diamond, and in many chemical processes of current

industrial and environmental interest. It is also present in planetary atmospheres,

and in the atmospheres of Saturn and Neptune. It is thought that CH3 may be

one of the most abundant free radicals in the interstellar medium.

Because of the central role of the methyl radical in this variety of situations,

its structural and spectroscopic parameters have been the subject of numerous

studies. A number of different spectroscopic techniques have been used to deter-

mine its absolute concentration in the gas phase, including UV/visible, infrared,

and Raman spectroscopies. For certain experimental circumstances it is impor-

tant to know the absolute concentration of a radical and this can only be carried

out if accurate transition moments are available. Since the methyl radical has

no electric-dipole-allowed rotational transitions (D3h symmetry), IR spectroscopy

(rovibrational transitions) has become one of the most suitable methods for its

detection. Accurate transition moments cannot be easily measured for transitions

between vibrationally excited levels and it is particularly important to be able to

rely on theoretical calculations.
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Based on the theory of the rotation and vibration of polyatomic molecules, imple-

mented as the computer program TROVE, we have studied the vibrational energy

levels and the rovibrational transitions of the methyl radical. Several computer

programs are available to study the rotation-vibration spectroscopy of molecules

but the main advantage of TROVE is the numerical preparation of the kinetic

energy operator on-the-fly. In other words, it is a general program not limited to

a particular type of molecule. Provided that the potential energy surface for the

molecule under study is available as a mathematical function, it can be used as

input for TROVE along with the construction of the KEO. In addition to complete

the variational calculations, primitive basis sets such as harmonic oscillator and

rigid-rotor wavefunctions will be used during the calculations. Matrix elements

will be evaluated and the final Hamiltonian will be diagonalized. The output will

be the rovibrational energies for a specific electronic state, usually but not neces-

sarily the electronic ground state. If the electric dipole moment surface and the

polarizability surface are given (as functions of the vibrational coordinates) in the

input file for the TROVE calculations, the infrared and Raman intensities can be

calculated.

The methyl radical has four fundamental modes: the symmetric stretch, ν1(A
′
1),

the out-of-plane bending, ν2(A
′′
2), the degenerate asymmetric stretch, ν3(E

′
), and

the degenerate in-plane bending, ν4(E
′
), modes. Vibrational modes with A′1 sym-

metry are only Raman active and have no infrared activity. While vibrational

modes with E ′ symmetry are both IR and Raman active. The most intense band,

ν2(A
′′
2), can only be observed with infrared absorption/emission spectroscopy. In

chapter 4 the first variational calculation of a room temperature ab initio line list

for the CH3 radical is reported. It is based on a high level ab initio potential en-

ergy surface and dipole moment surface of CH3 in the ground electronic state. The

rovibrational energy levels and Einstein A coefficients were calculated variationally

using the methods implemented in the computer program TROVE. Vibrational

energies and vibrational intensities are found to be in very good agreement with

the available experimental data.

Due to selection rules, Raman scattering spectroscopy represents a complementary

tool to IR absorption/emission spectroscopy techniques. Certain fundamental vi-

brational transitions can only be detected with this technique. In chapter 5, we

successfully simulated the Raman spectrum of the ν1(A
′
1) fundamental band of the

methyl radical as well as the overtone 2ν2 band. With our variational treatment
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we are able to predict accurately Raman transitions in the electronic ground state

of CH3 in agreement with the available experimental data.

Not only rovibrational energies and intensities of polyatomic molecules can be

studied with the TROVE computer program but also the role of the vibrational

contribution to molecular properties can be computed and its significance in par-

ticular situations can be investigated. In chapter 3, we present the first variational

calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in

the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a calcu-

lated high level ab initio potential energy surface and hyperfine coupling constant

surface of CH3 in the ground electronic state. The rovibrational energy levels, ex-

pectation values for the coupling constant, and its temperature dependence were

calculated variationally. Vibrational energies and vibrational and temperature

effects for coupling constant are found to be in very good agreement with the

available experimental data. We found, in agreement with previous studies, that

the vibrational effects constitute about 44% of the constant’s equilibrium value,

originating mainly from the large amplitude out-of-plane bending motion and that

the temperature effects play a minor role.

Since the development of quantum mechanics, theoretical chemistry has played a

great role in the field of molecular science. The main goal is to model and predict

experiments in difficult situations and also to help in interpreting experimental

results. Herzberg was one of the pioneers of the application of quantum mechanics

in spectroscopy and his work in this field were summarized by him in his a series

of books termed ”Molecular Spectra and Molecular Structure” in 1939, 1945, and

1966 respectively. A half a century after the publication of these series of books

and the research in the field of theoretical molecular spectroscopy is still under

development. For example, extending highly accurate rovibrational methods to

larger molecules and exploring inactive infrared and Raman vibrational modes

with non-linear methods.





Appendix A

How to obtain the Hyperfine

Coupling Constant in MHz or

Gauss from the ab initio spin

density

To compute the electron-nucleus hyperfine coupling constant (HFCC), we do com-

pute a first-order property which is the spin density [185]. The result will be in

atomic units and it needs to be converted to MHz or Gauss as measured in exper-

iments.

For example, the HFCC (in atomic units) for 13C in the methyl radical is

ANiso =
1

3
µ0µBµNgegN 〈SZ〉−1 ρ(N) (A.1)

where

ANiso is the isotropic hyperfine coupling constant

µ0 is the vacuum permeability = 4π × 10−7 [J · s2 · c−2 ·m−1]

µB is the Bohr magneton = 9.27×10−24 [J · T−1]

ge is the electronic g-factor = 2.002

〈SZ〉−1 is the electron spin expectation value =1
2

for 13C
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µN is the nuclear magneton = 5.05×10−27 [J · T−1]

gN is the nuclear g-factor = 1.4048

and at the its equilibrium geometry (H-C-H = 120◦ and C-H = 1.0759 Å) at the

UHF-CCSD(T)/aug-cc-pVTZ-J level of theory

ρ(N) is the spin density = 0.064832 [a−3
0 ]

This will give

A
13C
iso = 72.88[MHz] = 26.01[G] (A.2)



Appendix B

Nuclear Spin Statistics for CH3

Upon permutation of the nuclei, A
′
2 and A

′′
2 (from the D3h(M) group) satisfy the

following condition for the internal wavefunction, Φ
12CH3
int , of the methyl radical

P(23) Φ
12CH3
int = (-1) Φ

12CH3
int

We can define the Φint as a rovibronic wavefunction,Φevr, and a nuclear spin wave-

function, Φns.

Φint = ΦevrΦns

with the necessary condition for their symmetry representations

Γint ⊂ Γevr
⊗

Γns

Table B.1: CH3 Character Table, The D3h(M) group

D3h(M) E (123) (23) E∗ (123)∗ (23)∗

D3h E 2C3 3C2 σh 2S3 3σv

A
′
1 1 1 1 1 1 1 αzz, αxx + αyy

A
′′
1 1 1 1 –1 –1 –1 Γ∗

A
′
2 1 1 –1 1 1 –1 Ĵz

A
′′
2 1 1 –1 –1 –1 1 Tz

E
′

2 –1 0 2 –1 0 (Tx, Ty),(αxx − αyy, αxy)

E
′′

2 –1 0 –2 1 0 (Ĵx, Ĵy), (αxz, αyz)
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Table B.2: The nuclear spin wavefunction for CH3 under the symmetry oper-
ations of the D3h(M) group

Φns E (123) (23) E∗ (123)∗ (23)∗

ααα 1 1 1 1 1 1

ααβ αβα βαα 3 0 1 3 0 1

αββ βαβ ββα 3 0 1 3 0 1

βββ 1 1 1 1 1 1

total 8 2 4 8 2 4

Applying the projection operator on the nuclear spin wavefunctions

ai =
1

h

∑
R

χΓ[R]χΓi [R]∗

we obtain

Γns = 4A
′
1

⊕
2E

′

For Γns with A
′
1 (multiplicity=4) and E

′
(mulitplicity=2)

Γe
⊗

Γvr
⊗

Γns = Γint Γe
⊗

Γvr
⊗

Γns = Γint

A
′′
2 A

′
1 A

′
1 A

′′
2 A

′′
2 A

′
1 E

′
E

′′

A
′′
2 A

′′
1 A

′
1 A

′
2 A

′′
2 A

′′
1 E

′
E

′

A
′′
2 A

′
2 A

′
1 A

′′
1 A

′′
2 A

′
2 E

′
E

′′

A
′′
2 A

′′
2 A

′
1 A

′
1 A

′′
2 A

′′
2 E

′
E

′

A
′′
2 E

′
A

′
1 E

′′
A

′′
2 E

′
E

′
A

′
1

⊕
A

′
2

⊕
E

′

A
′′
2 E

′′
A

′
1 E

′
A

′′
2 E

′′
E

′
A

′′
1

⊕
A

′′
2

⊕
E

′′

allowed rovibrational states

zero-statistical weights

Γint must span A
′
2 or A

′′
2
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eters. In Martin Kaupp, Michael Bühl, and Vladimir G. Malkin, editors,

Calculation of NMR and EPR Parameters: Theory and Applications, pages

153–173. Wiley-VCH Verlag GmbH & Co. KGaA, 2004.



Bibliography 74

[70] M. Torrent-Sucarrat, J. M. Luis, and B. Kirtman. Variational calculation

of vibrational linear and nonlinear optical properties. J. Chem. Phys., 122:

204108/1–10, 2005.

[71] J. M. Luis, H. Reis, M. Papadopoulos, and B. Kirtman. Treatment of non-

linear optical properties due to large amplitude anharmonic vibrational mo-

tions: Umbrella motion in NH3. J. Chem. Phys., 131:034116/1–9, 2009.

[72] C. C. Chou and B. Y. Jin. Vibrational contributions to static linear and

nonlinear optical coefficients: from two-level to two-band system. Theor.

Chem. Acc., 122:313–324, 2009.

[73] T. B. Pedersen, J. Kongsted, T. D. Crawford, and K. Ruud. On the impor-

tance of vibrational contributions to small-angle optical rotation: Fluoro-

oxirane in gas phase and solution. J. Chem. Phys., 130:034310/1–7, 2009.
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