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Abstract

We study meson and baryon resonances in QCD using lattice techniques. Specifically,
we investigate the systems where two incoming stable hadrons strongly interact to form a
resonance which then later decays to produce the same outgoing stable hadrons except for
a difference in the phase. This phase shift encodes information about the resonance. On
the lattice, the Lüscher formalism connects the infinite volume phase shift to finite volume
spectra. In order to obtain the spectra on the lattice, we compute the necessary correlation
functions involving the two-hadron operator and the single-hadron operator which have the
quantum numbers of the resonance. We develop a new method to compute these two-point
correlation functions to reduce their computational costs which is prohibitively expensive
using conventional methods. Using this new method, we obtain the spectra and compute
the relevant phase shifts which enable us to extract the resonance parameters. This method
also facilitates the computation of three-point correlation functions with an electromagnetic
current insertion. Therefore, we extend our analysis, to compute these three-point functions,
which is related to the infinite volume transition form factor and resonant photocoupling
through the Briceno, Hansen, Walker-Loud formalism. In this thesis, we present results from
applying this method to extract the lowest-lying ρ meson resonance parameters (mρ ,gρππ ) in
the ππ channel, transition form factor (Vπγ→ππ(s,q2)) for a range of center of mass energies
(
√

s) and photon virtualities (q2), and resonant photocoupling (gρπγ ), as well as the first
results for the lowest-lying ∆ baryon resonance parameters (m∆,g∆πN) in the πN channel1.

1Common thesis between The Cyprus Institute and the University of Wuppertal in partial fulfillment of the
PhD requirements for a dual degree within the European Joint Doctorate Program High Performance Computing
for Life Sciences, Engineering And Physics (HPC-LEAP). The project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No’ 642069.





Abstract

In dieser Arbeit werden Meson und Baryon Resonanzen in QCD mit Gittermethoden studiert.
Der Fokus ist hier bei auf die Untersuchung der Systeme gelegt bei dennen stabile Hadrons
mit der Starken-Wechselwirkung interagieren. Diese Interaktion auch als Resonanz beze-
ichnet fuehrt zu einem Phasenschift der ausgehenden Teilchen. Mit der Differenz der Phase
können nun Ausagen über die Art der Resonanz getroffen werden. Aus dem sogenannten
Lüscher Formalismus folgt nun das die infinite Volumenphase mit dem finiten Volumen-
spektrum zusammenhängt, welches auf dem Gitter bestimmt werden kann. Für dies werden
die Berechnung bestimmter Korrelations Funktionen benötigt, die das Hadronensystem
beschreiben können.

In dieser Arbeit haben wir eine neue Methode entwickelt um diese Zwei-Punkt-Korrelations
Funktionen zu bestimmen. Diese Methode reduziert den erheblichen numerischen Aufwand
der Berechnung im Vergleich zu den konventionelen Methoden. Mit Hilfe des von uns en-
twickelten Verfahren wurden die Hadronenspektren und die jeweiligen Phasenshifts bestimmt,
so dass die entsprechenden Resonanzparameter berechnet werden konnten. Darüber hinaus
kann das Verfahren zur Bestimmung von Drei-Punkt Korrelations Funktionen unter Einbezug
des elektromagnetischen Strom benutzt werden. Die Drei-Punkt Funktionen können nun mit
dem Briceno-Hansen-Walker-Loud Formalismus zur die Bestimmung der Photonkopplung
der Resonanz benutzt werden.

In dieser Arbeit bestimmen wir der Parameter der ersten Rho-Resonanz (mρ ,gρππ ), für
den Pion-Pion Kanal, fuer den sogenannten Transition Form Faktor (Vπγ→ππ(s,q2)) für
verschiedene Energien im Massenmittelpunkt-Frame (

√
s) und verschiedene Photonenvir-

tualitäten (q2), die resonante Photonbindung, so wie Resultate (m∆,g∆πN) fuer die erste
Delta-Baryon Resonanz im Nukleon-Pionen Kanal.2.

2Verbreitet Diplomarbeit zwischen dem Cyprus Institute und der Universität Wuppertal zur teilweisen
Erfüllung der Promotionsvoraussetzungen für ein duales Studium im Rahmen des europäischen gemeinsamen
Promotionsprogramms High Performance Computing for Life Sciences, Ingenieurwesen und Physik (HPC-
LEAP). Das Projekt wurde aus Forschungsmitteln der Europäischen Union für Horizont 2020 finanziert und
Innovationsprogramm im Rahmen der Finanzhilfevereinbarung Nr. 642069
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Chapter 1

Introduction

The physical world can be most accurately described by the four fundamental forces (interac-
tions) of nature namely, gravitational, weak, electromagnetic and strong force in order of
their strengths. Among these four forces, most observable macroscopic phenomena can be
described by the gravitational and electromagnetic forces, while most of the visible mass is
due to the strong force. The Standard Model is the most comprehensive unified description of
three of the four forces; weak, electromagnetic and strong forces. The Standard model can be
thought of as a theory of interactions between fermions divided into categories: quarks and
leptons, mediated by vector bosons. (force carriers). This zoo of particles can be visualized
as in Fig. (1.1).
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2 Introduction

In this description of elementary particles, all the fermions interact via the weak inter-
actions, and all but neutrinos interact via the electromagnetic interactions and only quarks
interact via the strong interactions. The force carriers for weak interactions are the W± and
Z bosons, for electromagnetic interactions are the photons and for strong interactions are
the gluons. In addition, the recently discovered [1, 63] scalar boson called Higgs boson is
responsible for the mass of elementary particles through Higgs mechanism [131, 92, 120].
While most mass of the observable universe comes from composite particles protons and
neutrons, jointly called nucleons, only 1% of their mass is due to their constituent quarks,
and the rest is primarily due to strong interactions [254]. Such composite particles which
interact via strong interactions are called hadrons. The vast majority of hadrons observed in
nature are not stable under the strong interactions, but decay and have a short life-time, and
therefore defined as resonances.

This thesis investigates the theory of strong interactions to understand the properties
of resonances. We utilize non-perturbative lattice techniques to study the resonances. The
outline of the thesis can be discussed as follows:

• In Chapter 1, we start by discussing the origin of Quantum Chromodynamics, and
motivate the QCD action with an inclination towards discretizing it later. In this
context, we also emphasize on the two most defining properties of the strong force
and outline the regime of our investigation for which the lattice techniques are the best
available tools.

• Since the primary areas of investigation in the thesis are resonances, we establish the
framework of scattering in Chapter 2 by briefly summarizing the scattering S-matrix
formalism in quantum field theory, and exploring the pole structure of the S-matrix with
an example. Furthermore, we extend the example towards resonance photoproduction
by virtue of the Watson’s theorem and conclude the Chapter by motivating the need
for a non-pertubative treatment to characterize the resonances from the first principles.

• Chapter 3 introduces various lattice techniques relevant to the thesis which includes
different discretization schemes, numerical algorithms for lattice simulations and a
generic overview on the different sources of errors. As a forward looking approach in
applying novel techniques for the study of statistical systems, in this chapter, we also
present a novel study for using unsupervised learning for identifying phase transitions
in the Ising model.

• Equipped with the language of lattice techniques, in Chapter 4, we present schemati-
cally the methodologies to extract finite volume spectra starting from designing of the
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interpolators, projecting them into different irreps on the lattice, ingredients for com-
puting the correlation functions between these interpolators and finally the variational
method to obtain the energies. Next, we briefly review the Lüscher formalism which
connects these energies to infinite volume phase shifts and consequently the resonant
parameters. The importance of Lüscher analysis becomes apparent, when we shed light
on the interpretation of the spectrum of a resonant state, through a simple example.
After this, we concisely describe the Briceno, Hansen, Walker-Loud formalism which
relates the three point functions on the lattice and the resonance phase shifts to the
infinite volume transition form factor and resonant photocoupling.

• We apply all these techniques to study the low-lying meson ρ resonance and its
photoproduction in Chapter 5.

• Similarly we study the low lying ∆ baryon resonance in Chapter 6.

Results from this thesis have been presented in 3 journal publications (1 is still in
submission) and 6 proceedings for presentations at various conferences, as listed below.

1. L. Leskovec, C. Alexandrou, G. Koutsou, S. Meinel, J. W. Negele, S. Paul, M.
Petschlies, A. Pochinsky, G. Rendon, S. Syritsyn, “A study of the radiative transition
ππ → πγ∗ with lattice QCD,” C16-07-24 Proceedings, 34th International Sympo-
sium on Lattice Field Theory (Lattice 2016): Southampton, UK, July 24-30, 2016.
[arXiv:1611.00282 [hep-lat]] [159].

2. C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “P-wave ππ scattering and the ρ resonance from
lattice QCD,” Phys.Rev. D96 (2017) no.3, 034525 [arXiv:1704.05439 [hep-lat]] [11].

3. S. Paul, C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “ππ P-wave resonant scattering from lattice QCD
,” C17-06-18.1 Proceedings, EPJ Web Conf. 175 (2018) 05022, 35th International
Symposium on Lattice Field Theory (Lattice 2017): Granada, Spain, June 18-24,
2017.[DOI:10.1051/epjconf/201817505022] [208].

4. C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “πγ → ππ transition and the ρ radiative decay
width from lattice QCD,” Phys.Rev. D98 (2018) no.7, 074502 [arXiv:1807.08357
[hep-lat]] [12].

https://arxiv.org/pdf/1611.00282v1
http://arxiv.org/abs/arXiv:1704.05439
http://inspirehep.net/record/1665379/files/epjconf_lattice2018_05022.pdf
http://arxiv.org/abs/arXiv:1807.08357
http://arxiv.org/abs/arXiv:1807.08357


4 Introduction

5. L. Leskovec, C. Alexandrou, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “A Lattice QCD study of the ρ resonance ,” C18-
05-29 Proceedings, 13th Conference on the Intersections of Particle and Nuclear
Physics:29 May - 03 Jun 2018. Palm Springs, California, USA [arXiv:1810.01927
[hep-lat]] [160].

6. L. Leskovec, C. Alexandrou, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “Calculating the ρ radiative decay width with
lattice QCD ,” Proceedings, 36th International Symposium on Lattice Field Theory
(Lattice 2018): Michigan, USA, July 22-28, 2018. [arXiv:1811.10034 [hep-lat]] [161].

7. G. Rendon, C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, S. Paul, M.
Petschlies, A. Pochinsky, G. Silvi, S. Syritsyn, “Kπ scattering and the K∗(892) reso-
nance in 2+1 flavor QCD ,” Proceedings, 36th International Symposium on Lattice
Field Theory (Lattice 2018): Michigan, USA, July 22-28, 2018. [arXiv:1811.10750
[hep-lat]] [215].

8. S. Paul, G. Silvi, C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele„ M. Petschlies,
A. Pochinsky, G. Rendon, S. Syritsyn, “Towards the P-wave nucleon-pion scatter-
ing amplitude in the ∆(1232) channel ,” Proceedings, 36th International Sympo-
sium on Lattice Field Theory (Lattice 2018): Michigan, USA, July 22-28, 2018.
[arXiv:1812.01059 [hep-lat]] [209].

9. C. Alexandrou, C. Chrysostomou, A. Athenodorou, S. Paul “Unsupervised identifica-
tion of the phase transition on the 2D-Ising model,” [arXiv:1903.03506v1] [8].

1.1 Quantum Chromodynamics

1.1.1 Historical development

Historically, our understanding of the strong interactions can be traced back to the first hint
of the existence of color charge in experiments, namely when the ∆++ was discovered in
1951 [59]. Within the of quark model, which was first developed first by successively joining
together the concepts of spin, isospin, strangeness and the eightfold way, the flavor and
spin components of the ∆++ baryon is represented as, |∆++⟩= |u↑u↑u↑⟩, which is clearly a
highly symmetric configuration, requiring the introduction of additional quantum numbers,
since the ∆++ is a fermion. In 1965, after fourteen years of its discovery, the color charge
was introduced as a new quantum number with the group SU(3) [116, 127]. During these
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fourteen formative years, quarks were theoretically proposed by Gell-Mann [111] and Zweig
[257, 258] in 1964, while in 1968, quarks (partons) were first interpreted as point-like con-
stituents of the proton by Bjorken [40, 39, 38] and Feynman [97] through their (near-) scaling
behaviour of the structure functions measured in deep inelastic electron-proton scattering at
SLAC [42]. This discovery raised further questions, namely whether a new force holds the
quarks together inside a proton. In the quest to answer this question, C.L Smith pointed out
that one can measure the total fraction of proton momentum carried by quarks [167], and
the subsequent experiments showed that this fraction is only half of the total. This was the
first indirect evidence for the existence of gluons, which were later formally confirmed by
studying jet-physics in experiments [130, 91] and in theory [79, 227].
In the theoretical domain, the development of renormalizable non-Abelian gauge theories
by Hooft [234] in 1971 and the realization of Parisi that the key to constructing a field
theory of strong interactions would be asymptotic freedom [204], followed by Symanzik
showing the conditions for asymptotic freedom in scalar field theory [230], were connected
by Politzer [213], Gross and Wilczek [117] and finally formalized into a quantum field
theory of strong interactions by Fritzsch, Gell-Mann and Leutwyler [106] in 1973, known as
Quantum Chromodynamics(QCD).
QCD, when probed at high energies (short wavelengths) in deep inelastic scattering experi-
ments is weakly coupled and the partons (quarks and gluons) are described as asymptotically
free, which only scatter off one another through relatively small quantum corrections that can
be systematically calculated. But at longer wavelengths (low energies), of the order of the size
of a proton ≈ 1 f m = 10−15m, strongly confined towers of hadron resonances emerge, with
string-like potentials building up if we try to separate their partonic constituents. Therefore,
QCD is uniquely characterized by two defining properties namely, asymptotic freedom and
confinement. Nonetheless, both of these features are encoded within the definition of the
Lagrangian of QCD.

1.1.2 QCD action

In this section we define the QCD action from the QCD Lagrangian. The SU(3) gauge
invariant QCD Lagrangian is motivated from first principles.
In order to construct a theory satisfying local gauge symmetry, we consider a continuous
group of gauge transformations (also called local gauge transformations of the second kind),
represented by a set of SU(3) matrices Λ(x) and a quark of flavor q, represented by ψα

c,q(x)
with SU(3) color index c = 1,2,3 and Dirac spinor index α = 0,1,2,3. Suppressing all
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indices in the following, the field ψ(x) transforms like,

ψ(x)→ ψ
′(x) = Λ(x)ψ(x). (1.1)

For arbitrary space-time points x and y, let Vx denote the vector space of quark fields ψ(x) at x,
and Vy as vector space of quark fields ψ(y) at y. For local gauge invariance, we need to define
a function U along any curve from x to y, such that U(Λ(x)ψ(x)) = Λ(y)U(ψ(y)). This
mapping preserves probability and is independent of the local choice of basis. This function
is called a parallel transporter, U(x,y) : Vx →Vy. Let Cyx be some curve in space-time from
x to y. It may be parametrized as follows,

c(s), s ∈ [0,1], c(0) = x, c(1) = y.

Then,
U(Cyx)ψ(x) ∈Vy. (1.2)

If we define y = lima→0(x+aµ̂), where µ is a unit vector in the direction of µ∗, then we
can write U(x,y) ≡ U(Cyx), which transform as U(x,y) → U ′(x,y) = Λ(x)U(x,y)Λ(y)−1,
which is a probability preserving unitary basis transformation. Using U(x,y) we can define a
covariant derivative in the direction of µ by the limiting procedure:

Dµψ(x) = lim
a→0

1
a
[U(x,x+aµ̂)ψ(x+aµ̂)−ψ(x)] (1.3)

Since, U(x,y) is a SU(3) matrix and a continuous function of its arguments, for infinitesimal
a it can be represented as,

U(x,x+aµ̂) = exp
(
−igaAb

µ(x+
a
2

µ̂)Tb +O(a3)
)
. (1.4)

Here g is the bare gauge coupling and Ab
µ , b = 1,2, · · · ,8 1 are real-valued fields for each

generator Tb of the transformation group SU(3). The matrices Tb =
λb
2 where λb are Gell-

Mann matrices discussed in the Appendix A.
Expanding Eq. (1.4) in a and inserting it into definition Eq. (1.3) yields, in the limit a → 0,

for the continuum covariant derivative associated with the local SU(3) gauge symmetry,

Dµ = ∂µ − igAb
µTb, (1.5)

1for SU(N) this has N2 −1 real-valued components
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which has the correct gauge transformation properties and where Ab
µ represents the gauge

potential. Thus, we have defined a locally gauge invariant kinetic term for the quark fields.
To define a locally gauge invariant kinetic term for the gauge potential, we follow ideas from
the curvature tensor definition in general relativity, defining a field strength tensor as,

Fb
µν = ∂µAb

ν −∂νAb
µ +g fbcdAc

µAd
ν . (1.6)

where fbcd are called structure constants of the symmetry group SU(3) given in Appendix A.
Geometrically this can be interpreted as the plaquette [186] defined as,

U□(x; µ,ν) =U(x,x+aµ̂)U(x+aµ̂,x+aν̂ +aµ̂)

×U(x+aν̂ +aµ̂,x+aν̂)U(x+aν̂ ,x) (1.7)

The plaquette can be made locally gauge invariant if we take its trace. Inserting Eq. (1.4) in
Eq. (1.7) and using the Baker-Campbell-Haussdorff formula to expand to a6 we get,

Re(Tr(U□(x; µ,ν))) = Tr[1]− 1
4

g2a4Fµν

b Fb
µν +O(a6). (1.8)

Now we can write the QCD Lagrangian density that is renormalizable, conserves parity
and is invariant under time reversal,

LQCD[ψ, ψ̄,A] =−1
4

Fµν

b Fb
µν + ψ̄(iγµDµ −mq)ψ (1.9)

with ψ̄ = ψ†γ0 being the antiquark field. The fermionic part contains the covariant Dirac
operator M ≡ iγµDµ −mq with quark mass mq. The Dirac gamma matrices γµ satisfy
anti-commutation relation {γµ ,γν}= 2gµν . In Minkowski space-time the metric tensor is
gµν = diag(−1,1,1,1).
Thus, the QCD action with Minkowski space-time metric can be written as,

S M
QCD[ψ, ψ̄,A] =

∫
d4xMLQCD (1.10)

1.1.3 QCD Path Integral

For the purpose of this thesis, QCD as introduced above is quantized via the path integral
formulation [95, 96] where quark fields ψ are Grassmann variables. The expectation of a
physical observable Ô[ψ, ψ̄,A] is then formally given by the following functional integral
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following the convention of Ref. [212],

〈
Ô
〉
=

1
Z

∫
DADψDψ̄ O[ψ, ψ̄,A]eiSM

QCD[ψ,ψ̄,A] (1.11)

with partition function given by,

Z =
∫

DADψDψ̄ eiSM
QCD[ψ,ψ̄,A]. (1.12)

The gauge invariance of the physical observable is preserved in a fixed gauge because the
integrand and the measure in Eq. (1.11) is gauge-invariant in that fixed gauge.

1.1.4 QCD: Energy scale dependence description

Having written down the Lagrangian, one may proceed to construct the QCD Feynman
rules and calculate observables. The question is how do we extract the asymptotically free
behaviour at high energies and confining behaviour at low energies. These two mutually
exclusive behaviours depict that the parameters of the theory, or the degrees of freedom,
are dependent on the energy scale. At high energies, as the coupling g << 1, perturbative
treatment of the QCD Lagrangian is applicable and perturbative loop corrections give rise to
UV divergences [117] which need to be treated through a regularization procedure. In order
to keep the observables independent of the regularization scheme, regularization follows
redefining of the parameters of the theory as renormalized parameters which depend on the
renormalization scale µ (energy scale). The quantity which best captures the dependence of
the coupling (g(µ)) on the renormalization scale is αs(µ) = g2(µ)/4π . At next-to-leading
order (NLO) in the perturbative expansion, the β -function of QCD which is defined as the
change of the coupling g with respect to the logarithm of the energy scale µ , is [213, 117],

β (g)≡ µ
∂

∂ µ
g(µ) =− g3

16π2

(
11− 2N f

3

)
+O(g5), (1.13)

where N f is the number of dynamical quarks, typically between 2(first family) to 6(first,
second and third family). Since the β -function is always negative for N f ≤ 16, the inter-
actions between quarks and gluons vanishes at high energies. Thus, we show the defining
characteristics of asymptotic freedom of QCD is included in the theory. Equation (1.13) can
be solved for αs(µ) in terms of a subtraction point ΛQCD,

αs(µ) =
12π

(33−2N f ) log(µ2/Λ2
QCD)

(1.14)
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Fig. 1.2 The coupling of QCD as a function of a characteristic energy scale µ = Q, obtained
from matching the QCD perturbative calculation to a given order (as given in brackets) to the
experimental measurements of several quantities. There is also one point which is obtained
by matching to a lattice QCD calculation [31].

In Fig. 1.2, as µ approaches ΛQCD, the strength of the interaction quickly diverges,
illustrating the fact the standard perturbative tools fail and non-pertubative effects become
important. Thus, we successfully extracted the confining behaviour at low energies. Exper-
imentally ΛQCD ≈ 200 MeV which is of the order of the inverse size of the light hadrons.
This is consistent with our realization of hadrons being composed of strongly interacting
constituents when low-energy probes are used. In fact at low energies, these hadrons are
the effective degrees of freedom of QCD, and the details of their properties and interactions,
although sensitive to the short distance theory of QCD, can be studied in a systematic low-
energy expansion. In the low to medium energy limit, major contribution towards building
hadrons from quarks is from u, d and s quarks as mc ≈ 1.3GeV.
In the next chapter, we briefly review the theory of elastic scattering, to study the formation
of hadron resonances non-perturbatively.





Chapter 2

Scattering Theory

2.1 Introduction

Numerous past, ongoing and planned scattering experiments around the world are being
carried out to study the strong interactions. These experiments investigate different aspects
of QCD at various energy scales. Scattering cross-section from one of the early experiments
is shown in Fig. (2.1).

Fig. 2.1 Differential cross-section of e− p scattering as function of the invariant mass of the
proton decay products W . The electron energy is 10 GeV and the detector was placed at 6◦

with respect to the electron beam axis. The elastic scattering peak at W = mp has been scaled
down by a factor 8.5 [104].

Experiments at higher energies(> 2 GeV) probe the deep inelastic regime, where the
objective is to study the consequences of asymptotic freedom of quarks. On the other hand,
experiments at lower energies (< 2 GeV) aim at exploring the hadronic physics which is
attributed to the confining property of QCD.

In this chapter, the main objective is to provide a description for elastic low-energy
scattering relevant to the study of hadronic physics.
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2.2 S-matrix formalism

Since, we want to study scattering of particles with relativistic energies, we need the to
study scattering within the framework of quantum field theory. We begin by defining the
probability P of the incoming states to go to outgoing states, in terms of one-particle state
|φ⟩ as :

P =
∣∣∣out⟨{p1, p2, . . . , pn′}|{q1,q2, . . . ,qn}⟩ in

∣∣∣2 (2.1)

Here we have considered n incoming states q1,q2, · · · scattering into n outgoing p1, p2, · · ·
states, where p1, p2 · · · p′n represent the momenta of the outgoing states in 4-momentum
space, and q1,q2 · · ·qn represent the momenta of the ingoing states in 4-momentum space.
These states are eigenstates of the total Hamiltonian H, which can be written as H = H0 +V
where H0 is the free Hamiltonian and V is the interacting potential. These asymptotically
free in and out states (eigen states of the free Hamiltonian H0 in limits T = ∞ and T =−∞)
are related by the limit of a sequence of unitary operators. This limiting unitary operator is
called the S−matrix. In 4-momentum space this can represented as,

out⟨{p1, p2, . . . , pn′}|{q1,q2, . . . ,qn}⟩ in ≡ ⟨{p1, p2, . . . , pn′}|S|{q1,q2, . . . ,qn}⟩
= lim

T→∞

〈{
p1, p2, . . . , pn′

∣∣e−i2HT ∣∣{q1,q2, . . . ,qn}
〉
,

(2.2)

where the two states on the right of the equality are defined at a common time reference frame.
These asymptotically free states consist of several non-interacting particles that transforms
under the inhomogenous Lorentz group as a direct product of one-particle states, which are
labelled by their four momenta pµ , spin l with z−component m, and an additional discrete
label n for the particle type, which includes a specification of its mass, spin and charge. Since
S-matrix is defined in the limiting case, if the incoming particles do not interact, then S is just
the identity matrix. Therefore, it is convenient to isolate the interactive part of the S-matrix
into the T -matrix,

iT ≡ S− I (2.3)

Furthermore, due to momentum-conservation the expectation value of the T -matrix is pro-
portional to a four-dimensional delta-function, so all of the physics can be encapsulated in
the Lorentz invariant scattering amplitude, M, defined by,

⟨{p1, p2, . . . , pn′}|iT |{q1,q2, . . . ,qn}⟩= (2π)4
δ
(4) (pout −qin) iM (2.4)



2.2 S-matrix formalism 13

where pout = ∑
n′
i pi and qout = ∑

n
i qi. In typical theoretical calculations, the amplitude M is

computed for physically relevant scattering particles, which is then connected to quantities
that can be measured in experiments. In order to illustrate the multitude of properties of
the S-matrix we take the example of scattering of 2 spin-zero particles of equal masses into
2 spin-zero particles (also represented as 2 → 2) of equal masses in the next parts of the
chapter.

2.2.1 Case study: 2 → 2 scattering with equal masses

The kinematics of the system can be described in a Lorentz invariant way using 2 variables (3
4-momenta implies 12 independent components, then 4 on-mass-shell conditions |p⃗i|2 = m2

i

and 3 Lorentz Boosts and 3 rotations reduces the independent components to 2 kinematic vari-
ables). A convenient choice of variables could be from the Lorentz invariant Mandelstam vari-
ables (s, t and u). These variables are defined as,

s

t

u
s =

 4
 m

4
t=0

u=0

s-channel

s=
0

t = 4 m4

u =
 4 m 4

t-channel

u-channel

Fig. 2.2 Dalitz plot showing shaded region as
the kinematically accessible region for 2 → 2
elastic scattering of particles of equal masses

s = (p1 + p2)
2 = (p3 + p4)

2 (2.5)

t = (p1 − p3)
2 = (p2 − p4)

2 (2.6)

u = (p1 − p4)
2 = (p2 − p3)

2 (2.7)

where p1, p2 denote the 4-momenta of the
incoming particles and p3, p4 denote the
4-momenta of outgoing particles. As dis-
cussed, the kinematics of 2 → 2 can be de-
picted in 2-dimensional space with the phys-
ically significant non-orthogonal Mandel-
stam variables as shown in Fig. 2.2. This
type of representation of kinematic variables
is called Dalitz plot, which helps in under-
standing the kinematically accessible region,
and helps defining the threshold ( square of
the sum of masses of the two incoming particles at rest) represented here by the dotted
lines in each channel. The Mandelstam variables also carry another physical significance by
describing the channel of scattering as depicted in Fig. 2.3. In our subsequent discussions we
will consider s-channel elastic scattering.
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Fig. 2.3 Different physical channels corresponding to s, t and u.

Scattering cross-section

Noe we define a physical quantity which can be measured by experimentalists and is related
to the scattering amplitude. The differential scattering cross-section (relevant for experimen-
talists, defined as transition rate per flux or solid angle Ω) for a system of two incoming
particles with equal masses and center of mass energy

√
s in the center-of-mass frame is,(

dσ

dΩ

)
CM

=
1

64π2 s
|M2→2(s, t)|2. (2.8)

In Eq. 2.8, the scattering amplitude as discussed in the previous section must be a function of
only 2 kinematic variables, as such s and t.
Cross-section for elementary particle scattering are usually measured in milli-barns, de-
noted by mb. A barn is 10−24 cm2. The Fig. (2.1) is an example of one such result from
experiments.

Partial wave expansion

The elastic scattering amplitude can be conveniently represented in the basis of the free-
particle states, in which all variables are discrete, except for the total momentum and energy.
This is possible because the components of the momenta p⃗1, p⃗2 in a 2-particles state of
the definite total momentum P⃗CM = 0 and total center of mass energy E⋆ =

√
s form a 2

dimensional compact space, which is a 2−sphere. Any function on such a compact space
can be expanded in a series of generalized partial waves.

M2→2(s, t) =
1

4π
∑

l
Pℓ(t,s)Mℓ(s) (2.9)
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where Pℓ(t,s)≡ Pℓ(cosθ) a Legendre function of the scattering angle θ . θ is defined as,

cosθ =
p⃗1 · p⃗3

|p⃗1||p⃗3|
= 1+

t
2(s−4m2)

. Upon partial wave expansion, the θ dependence of the 2-sphere is absorbed in the Legendre
function, therefore the scattering amplitude for each partial wave ℓ, Mℓ(s) is only a function
of the s.

Implications of Unitarity

The symmetries of the Lagrangian/Hamiltonian are preserved through the S-matrix, con-
sequences of which are observed by measuring the invariant scattering amplitude M(s, t)
in experiments. Apart from symmetries, unitarity of the S−matrix enables us to put more
restrictions on the scattering amplitude Mαβ (s). Using the time reversal symmetry of the
theory of strong interactions and unitarity of S−matrix, we can write

Im
1

Mℓ(s)
=− 1

16π

√
s−4m2
√

s
Θ(

√
s−2m). (2.10)

This expression can be interpreted as Mℓ(s) having a branch-cut at s = 4m2, meaning it will
have two Riemann sheets when Mℓ(s) will be represented in the complex s−plane. The first
sheet will have Im(

√
s−4m2) > 0, which is defined as the physical sheet and the second

sheet will have Im(
√

s−4m2)< 0 which is defined as the unphysical sheet. These sheet can
be visualized in Fig. 2.4.
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Fig. 2.4 Sketch of the imaginary part of a typical single–channel amplitude in the complex
s-plane. The solid dots indicate allowed positions for resonance poles,the cross for a bound
state. The solid line is the physical axis (shifted by iε into the physical sheet). The two sheets
are connected smoothly along their discontinuities. (Assume m1 = m2 in our example) Fig
credits [206]

If we only consider contribution from the ℓ-th partial wave, then S(s) = Sℓ(s) = I+ iTℓ(s)
where

⟨{p1, p2, . . . , pn′}|iTℓ(s)|{q1,q2, . . . ,qn}⟩=
1

4π
(2π)4

δ
(4) (pout −qin) iPℓ(s, t)Mℓ(s).

(2.11)
Now upon applying the unitarity of S-matrix we can parametrize each partial wave Sℓ(s) with
real phase shift δℓ(s) as,

Sℓ(s) = e2iδℓ(s). (2.12)

We obtain the invariant scattering amplitude for each partial wave l as,

Mℓ(s) =
8π

√
s√

s−4m2

(
1

cotδℓ(s)− i

)
. (2.13)

This equation can be understood as the phase-shift representation of the invariant scattering
amplitude Mℓ(s).

2.2.2 Pole structure

The invariant scattering amplitude contains information about intermediate states of angular
momentum l in the form of pole singularities. The Mℓ(s) in the vicinity of a pole s0 takes the
form of Mℓ ∼ g2

s0−s [49]. The pole singularities can be classified into the following classes as
shown in Fig. (2.5):
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• Poles on the real axis of the physical sheet below the threshold (s = 4m2) are allowed
and are identified as bound states. Mℓ(s) takes the form Ml ∼ g2

s0−s , thus resulting in
the mass of the bound-state as

√
s0.

• Poles above the threshold on the real axis of the physical sheet are not allowed, as they
violate unitarity.

• Poles off the real axis on the physical sheet are not allowed, as they violate causality.

• Poles on the real axis of the unphysical sheet below the threshold are allowed, and these
particles are known as virtual bound-state ( or sometimes called anti-bound states).
Virtual states can arise in case when interactions are attractive, but not attractive enough
to form a bound state.

• Poles off the real axis of the unphysical sheet above the threshold are allowed, and
give rise to resonant (4th quadrant) and anti-resonant (1st quadrant) states. These poles
occur in complex conjugate pairs. The resonance poles are our area of interest.

Physical sheet
Unphysical sheet

Im(Ecm)

Re(Ecm)

Im(p*)>0

Im(p*)<0

(a)

Im(p*)

Re(p*)

(b)

Fig. 2.5 S-matrix poles in the (a) energy plane (b) momentum planes: the one in front is the
physical sheet and one in back is the unphysical sheet. The blue solid arrows indicate the
scattering states with a real momentum and a positive energy. The filled symbols represent
poles on the physical sheet, and the open symbols (△, □, and ◦) represent poles on the
unphysical sheet. The △ points represent anti-bound or virtual bound states, □ represent
anti-resonant states and ◦ represent resonant states.
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2.2.3 Remarks on Resonances and S-matrix formalism

In Eq. (2.13) if we use the definition tℓ(s) = 1
(cotδℓ(s)−i) , and focus only on narrow resonant

contributions, tℓ(s)1 can be described with a Breit-Wigner form,

tℓ(s) =
√

sΓ(s)
m2

R − s− i
√

sΓ(s)
, (2.14)

where mR is the mass of the resonance and Γ(s) is the decay width of the resonant particle.
This resonant contribution corresponds to the phase shift

δℓ(s) = arctan
√

sΓ(s)
m2

R − s
. (2.15)

Quantitative estimation of the phase shift δℓ(s) can be obtained near the resonance, because
of the sign change as s varies from s < m2

R to s > m2
R which results in a jump in the phase

shift by a value of π . We conclude that a phase shift of π is a characteristic behavior of the
presence of a narrow resonance in the scattering.
An important remark to emphasis is that unitarity is a necessary condition for obtaining reso-
nances in the S−matrix formalism. This condition eliminates the possibility of perturbative
treatment of the S−matrix, thus requiring the application of non-pertubative methods, to
study resonances of which lattice QCD is the only known way, starting from the QCD action.

2.2.4 Resonant transition form factors

Since we have discussed the nature of scattering phase near a resonance, Watson’s theorem,
which states that the phase of an amplitude leading to a final state with two strongly interacting
particles in a given partial wave is the same as the scattering phase of that pair, δℓ(E⋆2) [245],
enables us to calculate amplitudes in systems which have the same final states. Therefore,
the scattering phase δ (s) near resonance in a 2 → 2 system, can be utilized to extract the
transition amplitude in systems with the same 2-particle final state. One such system with
the same final state is the resonance photoproduction2, where an incoming QCD-stable state
interacts with a photon to produce the same resonance, and then decays into the same 2-
particle QCD-stable final state as in the 2 → 2 case. This 1 → 2 photoproduction is described
by the matrix element ⟨2|Jµ(0)|1⟩, which is constructed from the initial state |1⟩, the insertion
of the first order in perturbation theory QED current Jµ(0) = 2

3uγµu− 1
3dγµd, with u and

1Note that from Eq. (2.11) Tℓ(s) = 2
√

s√
s−4m2

tℓ(s)
2Photoproduction is actually 2 → 1, but due to time reversal symmetry of strong interactions the physics is

the same as 1 → 2
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d denoting the creation and annihilation up and down-quark fields 3 (defined without the
factor of e), the final state |2⟩ and four-momentum P = (

√
s+ P⃗2, P⃗). The 2-particle final

state is projected to l-th partial wave which contains the resonance and the polarization of the
system is described by εν(P,m) [68]. As a consequence of Lorentz symmetry the transition
amplitude V1→2 of such system is connected to the matrix element ⟨2|Jµ(0)|1⟩ in the ℓ= 1-th
(P) partial wave in the following way,

⟨2|Jµ(0)|1⟩= 2iV1→2(q2,s)
m

ε
νµαβ

εν(P,m)(p1)αPβ , (2.16)

where q = p1 −P is the photon four-momentum transfer. The transition amplitude V1→2

depends on both the photon four-momentum transfer q2 and the invariant mass s.
Lets denote the resonance in the two systems 2 → 2 and 1 → 2 as 2 → 1⋆ → 2 and

1 → 1⋆ → 2 respectively. Then using insights from previous sections and Eqs. (2.11) we can
write near resonance at s = sP ≈ m2

R + imrΓ,

T2→2(s)∼
G1⋆−2

sP − s
. (2.17)

where G1⋆−2 denotes the coupling between the resonance 1⋆ with the 2 particle final state.
Since the scattering phase goes through a shift of π resulting in a pole in 2 → 2 scattering
amplitude, Watson’s theorem ensures that the transition amplitude phase would also go
through a similar phase shift resulting in a pole in the 1 → 2 transition amplitude. Thus,

V1→2(0,s)∼
G1⋆−2G1⋆−1

sP − s
(2.18)

where G1⋆−1 denotes the coupling between the resonance 1⋆ with the 1 particle initial state.
From Eqs. (2.11) and (2.13), the 2 → 2 elastic scattering amplitude is related to the scattering
phase-shift as,

T2→2(s) =
16π

√
s√

s−4m2

(
1

cotδℓ(s)− i

)
. (2.19)

Motivated by Eqs.(2.17), (2.18) and the fact that the resonance decay width Γ(s) introduced
in Eq. (2.14) is often parametrized in terms of G1⋆−2, we write the photoproduction amplitude

3The position space current is denoted as Jµ(t, x⃗), and its Fourier transform will be labeled as J̃µ(t,Q).
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V1→2(q2,s) as,

V1→2(q2,s) =

√
16π√

s−4m2Γ(s)

F(q2,s)
cotδ (s)− i

=

√
16π√

s−4m2Γ(s)
F(q2,s)sinδ (s)eiδ (s), (2.20)

where the form factor F(q2,s) no longer has a pole in s, and becomes equal to the photocou-
pling G1⋆−1 for s = m2

R + imRΓR and q2 = 0. More generally, we define the resonant form
factor for arbitrary photon virtuality as

F1→1⋆(q2) = F(q2, m2
R − imRΓR). (2.21)

Note that Eq. (2.20) explicitly satisfies Watson’s theorem. Thus, now F near the resonance is
a regular function and can be Taylor expanded in q2 and s near resonance.

Therefore, for obtaining the transition amplitudes and resonance photocoupling, it is
necessary to compute the transition matrix element ⟨2|Jµ(0)|1⟩ exactly in Eq. (2.16) which
is then equated to the various model independent parametrizations of the resonant form factor
with the photocoupling G1⋆2 being one of the fitted parameter. These fitted parameters are
then used to compute the transition amplitude at different photon virtualities.

All in all, the necessary condition to compute the transition matrix element exactly
projected onto the ℓ-th partial wave which contains the resonance requires a non-perturbative
treatment, thus making the application of lattice QCD methods essential.



Chapter 3

Lattice methods

In this chapter, the formulation of QCD on the lattice will be introduced. The need to study
lattice techniques to probe non-perturbative phenomena of QCD from first principles at low
energies has been motivated in Sec. 1.1.4 and Sec. 2.2.3. For the presentation on the lattice,
we will proceed hereby introducing the following sub-topics:

• Application of Wick rotation (change of metric) and its consequences.

• Lattice Regularization and their artifacts.

• Overview of numerical simulations.

3.1 Wick rotation

Wick rotation is defined as the change of the metric from Minkowski to Euclidean as,

gµν = diag(−1,+1,+1,+1)→ δµν = diag(+1,+1,+1,+1) (3.1)

which manifests itself in the QCD Lagrangian and action in the following way,

tM =−itE (3.2)

d4xM =−id4xE (3.3)

L M
QCD =−L E

QCD (3.4)

SM
QCD = iSE

QCD (3.5)〈
ÔE〉= 1

Z E

∫
DADψDψ̄ O[ψ, ψ̄,A]e−SE

QCD[ψ,ψ̄,A] (3.6)

Z E =
∫

DADψDψ̄ e−SE
QCD[ψ,ψ̄,A]. (3.7)
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This change of metric, needs to preserve the physics of the quantum field theory of strong
interactions. Osterwalder and Schrader [200] worked out the necessary and sufficient condi-
tions for Green’s functions (correlation functions) in Euclidean field theory to be analytically
continued to a quantum field theory in Minkowski space. The validity of these conditions in
the context of general gauge theories and QCD in the continuum specifically, is still an active
area of research.

In Euclidean space-time, observables given in Eq. (3.7) take on a probabilistic interpreta-
tion namely, the probability e−SE

QCD[ψ,ψ̄,A] ∼ e−βH , has an equivalence with the Boltzmann
factor in statistical mechanics. This equivalence facilitates the application of analytical and
computational tools from statistical mechanics in Euclidean field theory. One of the most
powerful and widely used computational methods in statistical mechanics is the Monte Carlo
simulation of equilibrium configurations on a discrete lattice, which is then used to measure
correlation functions and relevant thermodynamic quantities. Lattice QCD uses a similar
work-flow, as will be discussed in the next sections.

3.2 Lattice Regularization

QCD as a quantum field theory can be regularized in Euclidean space-time by means of a
discrete space-time lattice. Discretization acts as a UV regulator which allows for low energy
non-perturbative computations by means of Monte Carlo methods.
We define a hyper-cubic space-time (4-D) lattice with a lattice spacing “a”, extending up
to aL (aT ) in the spatial directions (time direction). The boundary conditions chosen in
this thesis are periodic boundary conditions, but in principle, there exist regularization
schemes with different types of boundary conditions. This finite lattice spacing with periodic
boundary conditions imposes an ultra-violet cutoff on the momenta. On the lattice, the
allowed momentum values in any spatial direction are:

pn =±2πn
aL

, n = 1, · · · ,L/2 (3.8)

Having fixed the periodic boundary conditions for space-time, the next quantities are quark
fields, for which the fermionic nature of quarks enforces the use of anti-periodic boundary
conditions in the temporal extent of the lattice due to the spin-statistics theorem.
After the quark fields, we are left with 8 components of the gauge potential Ab

µ(x) in the
continuum which needs to be defined on the lattice. We define,

Aµ(x) =−gAb
µ(x)Tb (3.9)
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and using Eq. (1.4), we can write,

Uµ(x) ≡ U(x,x + aµ̂) = exp
(

i
∫ x+aµ̂

x
dxµAµ(x)

)
≃ exp

(
iaAµ(x+

a
2

µ̂)
)
. (3.10)

This definition further satisfies the property

U†
µ(x) =U−µ(x− µ̂), (3.11)

and expanding Eq. (3.10) upto O(a2),

Uµ(x) = I+ iaAµ(x)+O(a2). (3.12)

Thus, the parallel transporter function U(x,y) introduced in Eq. (1.2) and Eq. (1.4), are
unchanged and now U(x,y) represents a function which transports a quark field at discrete
space-time point x to another discrete space-time point y via a path linking them on the
hyper-cubic lattice preserving probability and local gauge invariance. Thus, Uµ(x) are SU(3)
matrices with elements that are bounded in the range [0,1]. In lattice terminology, Uµ(x)
are called the link variables. The set of all parallel transporter functions on the lattice,
U ≡ {Uµ(x)} for all x on a lattice is defined as a gauge configuration.
We have defined a discrete space-time lattice with quark fields and link variables with
appropriate boundary condition. The next objective is to define a gauge invariant measure on
the lattice for integration over the gauge fields, to calculate any observable using Eq. (3.7).
From Eq. (3.10), the mapping of Aµ(x) to Uµ(x) is continuous and regular, thus on the lattice,∫

DA ≡
∫

∏
x,µ

dUµ(x) =
∫

DU, (3.13)

where the product is over all lattice points x and directions µ . The gauge invariance of this
measure, known as the Haar measure has been shown rigorously in Ref. [125].
Now we can divide the continuum action into two parts: fermionic part (SE

F ) and gauge
part (SE

G). We discuss different types of discretization schemes for the fermionic and glu-
onic(gauge) actions in the subsequent sections and dropping the superscript E for Euclidean
action.
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3.2.1 Wilson Discretization

The gauge part can be written using Eq. (1.8) as,

SG,Wilson[U ] = β ∑
x

∑
1≤µ<ν≤4

Re
[

Tr(I− 1
3

Uµν(x))
]
, (3.14)

where Uµν(x)≡U□(x; µ,ν) and β = 6/g2. SG,Wilson[U ] is called the Wilson plaquette [251]
gauge action. In principle, one can omit the I matrix in front, as it has no impact on the
dynamics or the expectation values of the observable. For this discretization of gauge action,
it has been shown that the physical states are positive and there exists a positive self-adjoint
transfer matrix [169]. Also, in the infinite volume limit at strong coupling, the existence of a
mass gap was shown in Ref. [201].
Now for the fermionic action, we use the definition in Eq. (1.3) as the forward covariant
derivative, and similarly define a backward derivative to write the naive gauge invariant
action as the central derivative,

SF, naive[ψ, ψ̄,U ] = a4
∑
x,x′

ψ(x)M(x,x′)ψ(x′), (3.15)

where M(x) =
4

∑
µ=1

γµ

Uµ(x)δx,x+µ̂ −U−µ(x)δx,x−µ̂

2a
+m.

It is useful to study some of the properties of this definition by taking the Uµ(x) = 1, i.e.
for the case of free fermions. In this case we can perform the Fourier transform of M(x) to
obtain M̃(p);

M̃(p) = m+
i
a

4

∑
µ=1

γµ sin(pµ a). (3.16)

We can know invert to obtain the quark propagator and take the chiral and continuum
limits(m = 0 and a → 0);

M̃(p)−1|m=0 =
−ia−1

∑µ γµ sin(pµa)

a−2 ∑µ sin(pµa)2 . (3.17)

We observe that this definition of the discrete fermion matrix yields 16 poles instead of
1. This lattice artifact is known as the Fermionic doublers. In order to solve this, Wilson
[251, 252] proposed to add one additional term to Eq. (3.16) which doesn’t contribute to the
pole at p = 0, thus retaining the physical pole, but which induces a mass to the other 15 poles
which goes to infinity as a → 0, thus decoupling them in the continuum. In position space,
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the Wilson action becomes,

SF, Wilson[ψ, ψ̄,U ] = a4
∑
x,x′

ψ(x)M(x,x′)ψ(x′) (3.18)

M(x,x′) =− 1
2a

±4

∑
µ=±1

(1− γµ)Uµ(x)δx+µ̂,x′ +(m+
4
a
)δx,x′

where γ−µ =−γµ ,

M̃(p)Wilson = m+
i
a

4

∑
µ=1

γµ sin(pµ a)+
1
a

4

∑
µ=1

(1− cos(pµa)). (3.19)

Now we have Wilson action for flavor f as,

SWilson = SF,Wilson +SG,Wilson

3.2.2 Symanzik Improvement

The discretization artifacts in the Wilson action are, O(a) in SF,Wilson and O(a2 in SG,Wilson.
A systematic reduction of discretization errors by adding extra terms is called Symanzik
Improvement program [233, 231, 230, 232]. Following the Symanzik improvement scheme,
an irrelevant term, the so-called clover term is added to the Wilson action in such a way that
discretization errors to O(a) cancel.

Wilson-clover

In order to have a O(a) improvement for the fermionic action, we add the following term,

SIm,F = SF, Wilson + cSW a5
∑
x

∑
µ<ν

ψ̄(x)
1
2

σµν F̂µν(x)ψ(x) (3.20)

where cSW is called the Sheikholeslami–Wohlert coefficient [220] where the improved action
was obtained. Here F̂µν is the gluon field strength tensor and σµν = [γµ ,γν ]/2i. One possible
definition of F̂µν according to Ref. [110] is:

F̂µν(x) =− i
8a2 (Qµν(x)−Qνµ(x)) (3.21)

where Qµν(x) is,

Qµν(x) =Uµ,ν(x)+Uν ,−µ(x)+U−µ,−ν(x)+U−ν ,µ(x). (3.22)
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Fig. 3.1 Geometric representation of the clover term in terms of gauge links where the link
variables are depicted by arrows, and the direction of arrows represent the direction of the
link variables. Each dot represent the fermions on the lattice.

The geometric shape of this object resembles a clover leaf as shown in Fig. (3.1) so it is
called clover-improvement. The value of cSW requires tuning to achieve O(a) improvement.
A general scheme for constructing O(an) improvement without any doubling, based on the
principles of dimensionality of the lattice operators was given by Lüscher and Weisz in
Ref. [172] which is called on-shell improvement.

On-shell improvement O(a2) for the gauge action can be achieved by including 6-link
Wilson loops1 along with the 4-link plaquette in Eq. (3.18).

SIm,G = β

[
c0

3 ∑
x

∑
1≤µ<ν≤4

Re Tr(1−Uµν(x))+
c1

3 ∑
x

∑
1≤µ<ν<δ<γ≤6

Re Tr(1−Uµνδγ(x))

]
(3.23)

The values of c0 and c1 [172] are set to their tadpole-improved tree level values [157, 156].

c1 =
−1

(12u2
0)
, c0 =

5
3
, cSW =

1
ũ2

0
. (3.24)

Here u0 is the 4th root of the plaquette of the unsmeared gauge fields, and ũ0 is the 4th root
of the plaquette plaquette after stout smearing (discussed later in Sec. 4.5.2). It is found that
ũ0 is close to unity, which indicates that the tadpole-corrected tree-level value for cSW is
close to the non-perturbative value that gives full O(a) improvement. This has also been
confirmed using preliminary non-perturbative determinations of cSW using the Schrödinger
functional method [224, 170].

3.2.3 Other discretization schemes

Apart from Wilson-clover, there are other discretization schemes namely,

1A closed loop L , with n−2 spatial link variables and 2 temporal link variable, Wn ≡ Tr
[
∏(x,µ)∈L Uµ(x)

]
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• Overlap action [193–196]: This formulation is constructed to preserve chiral sym-
metry2 on the lattice and by definition gauge covariant and without any fermionic
doublers. It provides automatic O(a) improvement in the action. Since the definition
of the operator is not ultra-local, there are many numerical challenges in simulating
overlap fermions as discussed in Refs. [148, 143].

• Domain Wall action [146, 217, 109, 218]: This formulation constructs fermions on the
4-D interface of a 5-D lattice which becomes chiral in the limit of infinite 5-th dimen-
sion. Numerical simulations using Domain Wall fermions have been implemented in
Ref. [15].

• Twisted mass action [101–103, 225, 221]: This formulation is defined with two mass-
degenerate quark flavors of Wilson fermions and an additional mass term which
breaks the isospin symmetry between u and d quarks which importantly serves as an
infrared regulator to remove exceptional configurations. The definition also provides
automatic O(a) improvement on its operators. Numerical simulations using twisted
mass fermions at the physical point have been achieved for two flavors of degenerate
light quarks (N f = 2) in Ref. [3] and using in addition strange and charm quarks
(N f = 2+1+1) in Ref. [10, 98].

Symmetries on the lattice

After discussing different discretization schemes, we need to evaluate which symmetries are
preserved from the continuum and their consequences. Symmetries determine the universality
class of the discretized actions, and observables calculated using different actions but within
the same universality are expected to yield similar results when a → 0. The discretized action
in all schemes except for twisted mass discretization satisfies all these discrete symmetries:
charge conjugation (C ), parity (P), time-reversal (T ), isospin symmetry (mu =md) and also
local gauge symmetry by definition. In the twisted mass action, all symmetries except parity
and isospin symmetry are conserved, but these symmetries are restored in the continuum
limit. Apart from these symmetries, chiral symmetry which is an approximate symmetry in
the continuum at finite quark mass is satisfied by certain discretization schemes.
An essential symmetry that is not preserved upon discretization is the angular momentum
symmetry SU(2) (double cover of SO(3)) which includes half-integer spin representations).
This complicates the definition of spin on the lattice. The consequence of this broken
symmetry has been discussed in detail in the next chapter.

2Chiral symmetry is an approximate symmetry of the QCD Lagrangian, in which quarks are taken to be
massless.
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3.2.4 Observables on the lattice

The expression for the observables Ô as defined in Eq.(3.7), on the lattice can be written as,

〈
Ô
〉
=

1
Z

∫
DUDψDψ̄ O[ψ, ψ̄,U ]e−SQCD[ψ,ψ̄,U ] (3.25)

in which the integral over the fermionic fields can be performed using Grassmann calculus.

Grassmann calculus

Grassmann variables (ψ̄ , ψ) are defined by the following algebra,

{ψi,ψ j}= 0, (3.26)

which is appropriate for representing the anti-commuting fermionic fields. In Grassmann
calculus, using the Mathews-Salam formula [176, 175] we can perform Gaussian integrals
over Grassmann variables, such as:∫

dψdψ̄ ei
∫

d4x ψ̄Mψ = det(M), (3.27)

which we use to write the expectation value of a physical observable Ô[U ] (which is only a
function of gauge fields), as,

〈
Ô
〉
=

1
Z

∫
DU O[U ] eln [det(M(U))]−SIm,G. (3.28)

If the observable is a function of fermionic fields (Grassmann variables), it can writ-
ten as a product of equal number of fermionic (ψi1ψi2 · · ·ψin) and anti-fermionic fields
(ψ̄ j1ψ̄ j2 · · · ψ̄ jn), then using Wick’s theorem we can write,

〈
ψi1ψ j1 . . .ψinψ jn

〉
F
=

1
ZF

∫ N

∏
k=1

dψkdψkψi1ψ j1 . . .ψinψ jn exp

(
N

∑
l,m=1

ψ lMlmψm

)
= (−1)n

∑
P(1,2,...,n)

sign(P)
(
M−1)

i1 jP1

(
M−1)

i2 jP2
. . .
(
M−1)

in jPn

(3.29)

where the sum in the second line runs over all permutations P(1,2,3, · · · ,n) of the numbers
1,2,3, · · · ,n, and sign(P) is the sign of the permutation P. This combination of fermionic
fields is defined as the contraction of fermionic fields, thus, one can substitute the time-
ordered product of fermionic fields in the operator Ô with suitable factors of M−1 which no
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longer depend on ψ , ψ̄ . In the subsequent chapters, we will be using SIm = SIm,F +SIm,G,
and denote it with just S.

3.3 Lattice Simulations

In this section, we briefly discuss the general principles of developing algorithms used in
lattice simulations.

3.3.1 Monte Carlo

The integral over link variables defined in Eq. (3.28), whose measure is defined in Eq. (3.13),
is a high dimensional integral, which can be approximated by a Monte Carlo integration
weighted by importance sampling:

⟨O⟩= lim
N→∞

1
N

N

∑
n=1

O[Un], (3.30)

with each Un ≡ {Un
µ(x) |∀x ∈ Λ,and 1 ≤ µ ≤ 4} being a gauge configuration (which is a set

of all parallel transporters defined on the lattice Λ) sampled according to the probability
distribution density,

dP(U) =
e−S[U ]DU∫
D [U ]e−S[U ]

, (3.31)

the so-called Gibbs measure. The gauge field configurations Un are our random variables. In
order to generate gauge configuration with the probability density defined in Eq. (3.31), we
use the idea of Markov chains.

Markov Chain

A Markov Chain Monte Carlo is a stochastic process in which a finite set of configurations
Uτ1,Uτ2, · · · is generated sequentially according to some transition probability Pi j = P(Ui →
U j). The state of the system at any given simulation time τi will be a multi-dimensional
random variable, whose distribution depends only on the preceding state, i.e Pi j depends
only on the state Ui. A set of configurations generated in this way is called a Markov chain.
Monte Carlo integration with importance sampling preferentially chooses configurations that
have a strong weight. At the same time, it is assured that the sample average estimates the
ensemble average. This means that the sample is representative of the ensemble.
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One important restriction on transition probability in Markov chain Monte Carlo is, that
it must satisfy the so-called detailed balance condition,

e−S(U)P(U →U ′) = e−S(U ′)P(U ′ →U). (3.32)

There are many algorithms which satisfy this condition, one of which is the Metropolis
algorithm, which is given by,

1. Choose an arbitrary test configuration U .

2. Accept the configuration U ′ as a successor of configuration U with probability,

P(U →U ′) =

e−S(U ′)

e−S(U) if e−S(U ′) < e−S(U)

1 else
(3.33)

This step is called the Metropolis accept/reject step. Since the probability of transition
to a configuration U ′ is not 0, it ensures ergodicity.

Furthermore, there are advanced algorithms like Hybrid Monte Carlo [84], Langevin, Multi-
Boson, Over-relaxation and Microcanonical which optimize the step 1, by choosing a new
U ′ such that it improves computation of step size of the Markov chain and reduce auto-
correlation. These algorithms require the next Metropolis step to satisfy Eq. (3.32). Apart
from Metropolis, there are algorithms like the Heat Bath which combines steps 1 and 2 to
improve the acceptance rate by redefining U ′ in a way which already satisfies Eq. (3.32).

3.3.2 Solvers

As discussed in Sec. 3.2.4, M−1 i.e. the quark propagator, is required to calculate the
contractions of the fermionic fields in the observable O. In Eq. (3.20), we can define Wilson
Dirac operator D 3, such that D = a4M. Thus, we need to solve:

D(U)x = b (3.34)

The solution x is desired for an appropriately defined b and gauge configurations U . Given
the sparsity and dimensions of D, it is only feasible to consider iterative solvers for the
problem.

Typically iterative Krylov solvers such as Conjugate Gradient (CG), Bi-conjugate gradient
(BiCGstab), Generalized Conjugate residual (GCR) are used to solve Eq. (3.34) to reach to a

3This is the most commonly used notation in the community
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solution upto a predefined tolerance. The solution after nth iteration belongs to n-dimensional
Krylov subspace Kn spanned by

b, Db, D2b, · · · , Dn−1b.

It has been proven that the solution of a typical non-singular N ×N matrix D, belongs to KN .
A generic iterative Krylov solver builds up this space explicitly or implicitly in order to reach
to a solution of desired tolerance defined by the ratio of the norms of its residual rn = b−Dxn

calculated after n iterations and the right-hand side b. In each step xn is chosen such that it
minimizes the norm of the residual. Different methods vary by different definitions of the
norm. Furthermore, these iterative methods for Dirac propagator are implemented on the
normal equations which is, (DDT )y = b with x = yT b or normal residuals (DT D)x = b̃ with
b̃ = DT b.

But all these methods suffer from the condition of critical slowing down. Critical slowing
down can be explained as: the condition number κ(D) ≡ ||D|| · ||D−1|| is proportional to
(am)−1, thus, making the operator ill-conditioned as a → 0 (continuum limit) and m → 0
(chiral limit), which jeopardizes application of any iterative method directly to invert D close
to or at the physical point as shown in Fig. 3.2. Furthermore, one of the most computationally
expensive steps is the calculation of the matrix-vector product for a large matrix such as the
Dirac operator, Krylov solvers also suffer from the repeated computation of this matrix-vector
product as shown in Fig. 3.3.
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Fig. 3.2 Time to solution (in seconds) for a single solve versus quark mass for various Krylov
solvers and multigrid. The left plot is for the 243 ×128 lattice and the right is for 323 ×256.
Fig credits [199]
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Fig. 3.3 Comparison of the total number of Wilson matrix-vector operations until convergence
for CG, Eig-CG [226] and MG-GCR Fig credits [24]

.

In order to overcome these problems of the direct application of Krylov solvers on a
lattice, multigrid preconditioners [199]4 are used which involve application of different
Krylov subspace solvers with low tolerances to different coarse-grain sizes of the same
lattice, thus obtaining an approximate solution which is then used to define the preconditioner
of the Wilson-Dirac operator. In a nutshell, it can be understood as solving for low frequency
(slowly converging) eigen modes of the Wilson-Dirac operator on a coarse grid with high
tolerance (such that it converges relatively faster) and this solution is then relaxed onto the
actual fine grid which is used to define a preconditioner for solving for high frequency (fast
converging) eigen modes using a different Krylov subspace solver with a low tolerance;
this process is repeated over and over again till convergence [24]. Figures 3.2, 3.3 and 3.4
illustrate the advantage of using this multigrid preconditioner over conventional Krylov
subspace methods.

4A preconditioner P, for a system Ax = b is defined as AP−1 Px = b,where AP−1 is the preconditioner
operator, and we solve for Px instead of x.
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3.3.3 Error estimates

In lattice Monte Carlo simulations, the sources of errors can be primarily divided into two
categories:

• Systematic error: In general can’t be computed, but can be estimated. The origin of
these errors can be attributed to the following:

– Chiral Extrapolation: This arises due to unphysical quark masses in the simula-
tion, the results from which need to be chirally extrapolated to physical quark
masses. Simulating at larger than physical quark masses is computationally
cheaper, which is why in the past chiral extrapolations have been a source of
systematic error. This has been eliminated in recent simulations directly at the
physical point.

– Lattice Discretization: To estimate the effect of lattice discretization, one needs
to calculate the observable using configurations generated from simulations with
different lattice spacings. Nowadays with the advent of exact algorithms and
Symanzik improvement programs, there is a methodical way to estimate these
effects.
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– Finite volume: This effect could be attributed to the interaction of a particle with
its neighboring images(due to periodic boundary conditions). For large L and
T , this interaction is mediated by pion exchange, therefore it is reasonable to
compare the correlation length of the pion, 1/mπ to the spatial (L) and temporal
(T ) extent of the lattice. For T/mπ ∼ L/mπ >> 1, it has been shown in Ref. [172]
that the finite volume effects are exponentially suppressed. Thus, this source of
error can be estimated by calculating the observable in simulations with different
volumes of the box. One interesting remark would be, the idea of estimating the
volume dependence of correlation functions on the lattice, led to the formulation
of theory for studying resonances on the lattice [172, 171, 173].

– Excited state effects: In the subsequent chapter, the methodology for extracting
ground states from correlation functions have been discussed using exponential
fits to functions at t → ∞. If the ground state has excited state contamination then
the single exponential fits will result in high χ2 values. It will be observed that
we need multi-exponential fits and variational method with different smeared
interpolators for the same particle to extract its ground state with negligible
excited state effects.

• Statistical errors: Statistical errors arise from the variance in the value of the observable
over the Markov Chain, due to the statistical nature of Monte Carlo. These errors
depend on the number of gauge ensemble used and can be calculated exactly. In a
Markov Chain Monte-Carlo simulations, since the gauge configuration at a particular
Monte Carlo time t is generated by modifying the gauge configuration at a previous
Monte Carlo time t0, there is an autocorrelation between these two configurations.
Monte Carlo time-dependent autocorrelation for an observable O is computed by,

CO(t) =
⟨O(t0)O(t0 + t)⟩−⟨O(t0)⟩⟨O(t0 + t)⟩

⟨O2 (t0)⟩−⟨O(t0)⟩2 (3.35)

For practical purposes, we need the integrated autocorrelation time, to calculate the
degree of correlation between the configurations generated in the lattice simulations,
which is given by,

τ
int
auto =

∑
∞
t=1
(
⟨O(t0)O(t0 + t)⟩−⟨O⟩2)

⟨O2⟩−⟨O⟩2 (3.36)

Now, we describe a method of data analysis which takes into account these autocorre-
lation effects while computing an observable O.
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Jack-knife error estimation

Given an observable O with N gauge configurations, the most common and effective
way which takes into account autocorrelation, to estimate its error is through jackknife
resampling. In this method, binning is used to construct blocks of data in direction of
evolution of Monte-Carlo time, with bin-size B. The N samples are divided into NB

blocks of bin-size B. The block estimators are

ok =
1
B

B

∑
i=1

O(k−1)B+i (k = 1, · · · ,NB) (3.37)

The bin-width should exceed the autocorrelation time of the observable to ensure that
the NB can be treated as uncorrelated. The jackknife-based variance of the mean is
given by,

σ
2
jack =

NB −1
NB

NB

∑
k=1

[õk − Ō]2, (3.38)

where Ō= 1
N ∑

N
i=1 Oi is the mean of O over N measurements, and õk =

1
N−B

(
∑

N
i=1 Oi −Bok

)
.

In recent years, there have been a few developments towards the application of machine
learning algorithms in lattice QCD aiming to reduce the computational cost and minimize
the sources of error in calculating observables on the lattice [255, 219, 7]. In the first attempt
towards this direction, we have implemented a machine learning model to study the physics
of an Ising spin system. As Ising is a simple statistical physics system, it serves an ideal
testing ground for the development of new lattice techniques, which can later be extended to
lattice QCD. In the next section, we briefly summarize our effort in this direction.

3.4 Machine Learning techniques for the study of statisti-
cal systems

3.4.1 Introduction

Machine learning (ML) has been recently used as a very effective tool for the study and
prediction of data in various fields of physics, from statistical physics to theoretical high
energy physics. Numerical data from Lattice Field Theory can be studied using all three
types of ML models: Supervised [57, 256, 189], Unsupervised and Self-Learning. Examples
in supervised ML are classification tasks with Support Vector Machines (SVMs) or (convo-
lutional) Neural Networks applied to the discovery of phase transitions. For unsupervised



36 Lattice methods

learning, examples such as Principal Component Analysis (PCA) [244, 238, 137, 246, 99],
Restricted Boltzmann Machines (RBMs) [75, 108] and Autoencoders are used to gain insights
on the phase diagram of lattice models and discover parameters of fundamental Hamiltoni-
ans. Self-learning policies are also applied to Monte Carlo methods to improve statistical
sampling for physics formulated on lattices. Very recently, similar studies have been applied
for simulations of quantum fields on the lattice, such as the SU(2) gauge theory [247] with
increased complexity in the data due to the structure of the SU(2) gauge group. Within the
broader effort for the investigation of forward looking applications for the study of statistical
systems, such as Lattice Field Theories, using machine learning, part of this thesis was
devoted to the application of unsupervised learning for the study of phase transitions, with
specific application in the Ising model. The study is presented in what follows, and is based
on the following publication:

• C. Alexandrou, C. Chrysostomou, A. Athenodorou, S. Paul “Unsupervised identifica-
tion of the phase transition on the 2D-Ising model,” [arXiv:1903.03506v1][8]

3.4.2 The Ferromagnetic 2-Dimensional Ising Model

The general Hamiltonian of 2-D Ising model on the spin configurations is given by,

H =−J
N

∑
i, j=nn(i)

sis j −µh
N

∑
i=1

si , (3.39)

where J is the self-interaction between neighbouring spins, h the external magnetic field and
µ is the atomic magnetic moment. Note that in the first sum, the notation nn(i) represents
nearest-neighbour pairs; the sum is taken over all nearest-neighbouring pairs.

Swendsen-Wang algorithm

The MC simulation for the 2D-Ising model is conventionally performed using the Metropolis
algorithm. Since this algorithm is based on local updates, near the critical temperature where
the correlation length diverges, it faces the problem of critical slowing down. In order to
tackle this problem, we have implemented the Swendsen-Wang cluster algorithm [229, 243],
which is based on global updates of the spin configurations. This algorithm relies on the
formation of bonds between every pair of nearest neighbours(i j) that are aligned at a given
temperature T , with a probability pi j = 1− exp(−2βJ), where β = 1

kBT (kB ≡ Boltzmann
constant). A single cluster is defined as all the spins, which are connected via bonds. The
global update is defined as the collective flipping with a probability of 1/2, on all the spins in
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each cluster [147, 100]. This step works because of the so-called Fortuin-Kasteleyn mapping
of the Ising model on the random-cluster model. Thus, global updates enable us to produce
equilibrium configurations close to the Tc with a few thermalization steps.

Monte-Carlo simulation setup

In this study, we chose to investigate the case of zero external magnetic field (h = 0) and for
simplicity, we have set J = 1 and kB = 1. In this case, the theoretically calculated value of
the critical temperature is

Tc =
2

ln
(

1+
√

2
) = 2.269185 . (3.40)

To extract experimentally this quantity one has to investigate the order parameter of theory,
namely the magnetization. The first question that we address is whether we can get an
approximate estimate of this temperature by using unsupervised learning. To this purpose,
we choose a sequence of different values of temperature, and for each one, we start from a
frozen configuration of spins, perform a large enough number of thermalization sweeps and
then save the configuration. For every single temperature, we repeat the procedure 200 times.

Phase structure, observables and order parameters

The phase structure of the 2D-Ising model can be reduced to the study of the magnetic order
of the system [62]. If we suppose that there are N↑ spins pointing upwards and N↓ spins
pointing downwards, then the total magnetic moment would be N↑−N↓ (µ = 1). The largest
possible magnetic moment would, therefore, be N. Thus, we can define the magnetic order
parameter or magnetization per spin configuration naturally as:

m = (N↑−N↓)/N , (3.41)

while the average magnetization M = ⟨m⟩. M can get values between −1 and 1, and the
average of the absolute magnetization m̃ = ⟨|m|⟩ is just the magnetic order. Hence, if m̃ is
close to 0, then the system is highly disordered and, thus, not magnetised, with approximately
half of the spins pointing up and the other half pointing down. On the other hand, if m̃
is approximately 1, the system is ordered and, thus, magnetised with nearly all the spins
pointing in the same direction.
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The point T = Tc is called the critical point and separates the ordered T < Tc phase
and disordered T > Tc phase. At T = Tc the system is described by a second order phase
transition, i.e. à la Ehrenfest [141] the first derivative of the free energy with respect to the
external field which is the order parameter is continuous while the second derivative of the
free energy is discontinuous.

3.4.3 Deep Learning Autoencoders

Autoencoders are a variety of artificial neural networks utilized for learning data codings in an
unsupervised manner, efficiently [240, 241]. An autoencoder aims to define a representation
(encoding) for an assemblage of data, usually performing dimensionality reduction. An
autoencoder encodes the input data ({X}) from the input layer into a latent dimension ({z}),
and then uncompresses that latent dimension into an approximation of the original data
({X}). This drives the autoencoder to engage in dimensionality reduction, by learning how to
ignore the noise and recognise significant characteristics of the input data. The first layer of
an autoencoder might learn to encode simple, identifiable and local features, and the second
layer by using the output of the first layer learns to encode more complex and less local
features, until the final layer of the encoder learns to identify and encode the most complex
and global characteristics of the input data. As Fig. 3.5 shows, an autoencoder consists of
two components, the encoder function gφ and a decoder function fθ and the reconstructed
input is X = fθ (gφ (x)).

In the training phase, the autoencoder learns the parameters φ and θ together, where
fθ (gφ (x)) can approximate an identity function. Various metrics can be used to measure the
error between the original input X and the reconstruction X̃ , but the most simple and most
commonly used is the Mean Square Error (MSE) as this is provided in Eq. 3.42, where ndata

is the number of data points:

MSE(θ ,φ) =
1

ndata

ndata

∑
i=1

(Xi − fθ (gφ (Xi)))
2 . (3.42)
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Fig. 3.5 Basic structure of an autoencoder

Proposed Autoencoder Model

For the analysis of the proposed method, an eight-layer, fully connected (Dense), autoencoder
is proposed, as Fig. 3.6 shows, where the encoder compresses the configurations into a single
latent dimension. Through experimentation, we determine that the best model to detect the
transition consists of the encoder with the input layer, first, second and third hidden layers
having 625, 256, 64 and 1 neurons, respectively. The activation function used is relu, as
shown in Eq. 3.43, for all layers except the third hidden layer, where tanh was used, as shown
in Eq. 3.44. For the decoder, the first, second and third hidden layers use 64, 256, and 625
neurons, respectively. For the output layers, the number of neurons is set to be equal to the
number of values in the configuration under investigation. The activation function used is
relu, as given in Eq. 3.43, for all hidden layers, and for the output layer, tanh is used, as per
Eq. 3.44.

relu : y = max(0,x) =

{
x, if x > 0
0 if x ≤ 0

}
. (3.43)

tanh : y =
1− e−2x

1+ e−2x . (3.44)

For the proposed autoencoder model we use the so-called dropout realization technique [132].
The dropout regularization technique refers to dropping out neurons from each layer, ran-
domly, when training. Dropout is successfully used for reducing over-fitting in neural
networks by preventing complex co-adaptations on training data. For the training of the pro-
posed autoencoder model the data are split into training (66.66. . . %) and testing (33.33. . . %)
sets, and the training is performed for 2000 iterations. The implementation was performed
using Keras [65] and Tensorflow [2].
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Fig. 3.6 Proposed autoencoder model in the standard Machine Learning nomenclature.

3.4.4 Results

3.4.5 The latent dimension per configuration

Each configuration is re-expressed in the form of a vector, and then it is read as an input by
the autoencoder. One can think of the input as a column with entries of 1 and -1, placed
in some lexicographic order and having a length equal to L2. More precisely, for each
different lattice size L = Nx = Ny we feed to the network all the configurations produced for
all different temperatures, and we extract the latent dimension ziconf . In other words, each
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configuration is assigned a number, the latent dimension, which includes all the physically
necessary information so that the decoder re-creates the actual configuration. It should be
made clear that configurations for different lattice volumes have been fed separately into the
autoencoder, i.e. the autoencoder receives information for only one lattice volume, and thus,
it "knows" nothing about configurations produced for other volume sizes.

In order to identify signals of the phase structure of the 2D-Ising model, as a first step,
we investigate how the latent dimension ziconf behaves as a function of the temperature T for
each configuration. We produce 40000 configurations, namely 200 configurations for every
single temperature. The produced configurations are for 200 different values of temperatures
within the range T = 1−4.5 and separated by δT = 0.0175. We make sure that we cover
the whole range of temperatures between the two extreme cases of the Ising behaviour, the
nearly "frozen" at T ≃ 1, and the complete disordered T ≃ 4.5. Furthermore, we assume
that we have no prior knowledge of what is happening in between these two extremes. We
note that we could choose different temperature ranges that cover all possible phase regions;
for instance, we could choose instead T = 0.01−1000 with δT = 0.01, but of course, the
computational effort would be much more significant.

In Fig. 3.7 we show the latent dimension for each different configuration, as a function of
the temperature T , for four different lattice sizes, L = 25, 35, 50, 150.

3.4.6 The absolute average latent dimension

Since the latent dimension per configuration is symmetric with respect to the T axis, it would
be reasonable to define the average absolute latent dimension as a parameter indicating the
phase as

z̃ =
1

Nconf

Nconf

∑
i=1

|ziconf| . (3.45)

Fig. 3.7 shows that the latent dimension resembles the behaviour of the magnetization per
spin configuration as a function of the temperature. The absolute average magnetization
defines the order parameter of the system distinguishing the two different phases. For the
case of the autoencoder we can define an additional quasi-order parameter as the absolute
average latent dimension.

In the left-hand-side of Fig. 3.8 we provide the magnetisation as a function of the
temperature while on the right-hand side we provide the absolute latent dimension. Indeed
the absolute latent dimension looks similar to the magnetisation, albeit becoming steeper
as the lattice size increases. Clearly, the magnetization behaves as an order parameter with
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Fig. 3.7 The latent dimension for each configuration as a function of the temperature for four
different lattice volumes. The dashed line represents the analytically extracted value of the
critical temperature (Eq. 3.40). The red shaded area in the plot for L = 150 is the region
where (by fitting to a constant) we expect to find the Tc(L = 150). The color on the gradient
illustrator on the right denotes the temperature T .

the characteristics of a second order phase transition while the absolute latent dimension is
consistent with a first order phase transition. We can, therefore, conclude that the absolute
average latent dimension can be used as an order parameter to identify the critical temperature,
but cannot capture the right order of the phase transition. The fact that z̃ as a function of the
temperature becomes steeper as the lattice size increases suggests that the critical temperature
Tc(L) as a function of the lattice size L extracted from the autoencoder data will suffer less
from finite-size scaling effects. Traditionally, Tc(L) can be extracted by probing the peak of
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Fig. 3.8 The average magnetisation (m) and latent dimension (z̃) as a function of the tempera-
ture for five different lattice volumes.

the magnetic susceptibility χ at zero magnetic field h, where

χ =
L2

T

(
⟨m2⟩−⟨m⟩2) . (3.46)

According to finite size scaling theory, close enough to Tc, magnetic susceptibility χ scales
as

χ ∝ (t)−γ , (3.47)

where t = (T −Tc)/Tc is the reduced temperature and γ = 7/4 a critical exponent [62]. The
magnetic susceptibility measures the ability of a spin to respond due to a change in the
external magnetic field. In the same manner we define the latent susceptibility as

χz̃ =
L2

T

(
⟨z̃2⟩−⟨z̃⟩2) . (3.48)

3.4.7 The Latent Susceptibility and the Critical Temperature

In Fig. 3.9 we present Tc(L) extracted from fitting the latent susceptibility and the magnetic
susceptibility as a function of 1/L. Results obtained using the latent susceptibility suffer less
from finite-size scaling effects as compared to those when using the magnetic susceptibility.
Adopting, the usual finite-size scaling behaviour
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Fig. 3.9 The critical temperature Tc(L) extracted from fitting the magnetic (red) and the latent
(blue) susceptibilities as a function of 1/L to Eq. 3.49.

Tc(L)−Tc(L = ∞) ∝ L−1/ν , (3.49)

we fit both susceptibilities to the ansatz Tc(L) = Tc(L = ∞)+αL−1/ν . Our findings are listed
in Table 3.1.

Table 3.1 The results for Tc(L = ∞) and ν extracted by fitting the magnetic as well as the
latent susceptibilities to the ansatz Tc(L) = Tc(L = ∞)+αL−1/ν .

Susceptibility Tc(L = ∞) ν χ2/dof
Magnetic 2.265(8) 1.08(20) 0.15

Latent 2.266(4) 1.60(14) 0.41

As expected, fitting the data for Tc(L) resulting from the magnetic susceptibility yields
values of Tc(L = ∞) and ν which are consistent with the analytically extracted values
Tc = 2.269184 and ν = 1. Turning now to the case of the latent dimension, it appears that
the results of Tc(L) when fitted with a form of the known scaling behaviour of Eq. 3.49, yield
a value for Tc(L = ∞), which is in accordance with the theoretical expectation. This provides
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a good piece of evidence that the deep learning autoencoder does not only predict the phase
regimes of the 2D-Ising model as well as give an estimate for the critical temperature but can
also lead to a precise evaluation of the critical temperature.

3.4.8 Conclusion

We can conclude that the proposed deep learning (fully-connected) autoencoder can not only
identify, in an unsupervised manner, the phase structure of the 2D-Ising model but can also
lead to a precise extraction of the critical temperature at the limit of the infinite volume. As
shown in Fig. 3.9 the values of Tc(L) suffer from less finite size effects compared to those
usually extracted by using the peak of the magnetic susceptibility, and one would thus expect
that the autoencoder could give a more precise prediction for Tc. There are other several
related directions in which this study can be extended. Since our proposed autoencoder has
been tested just in one system, it would be important to investigate its generalisation to other
physical systems with non-trivial phase structure. Finally, our future plans involve the testing
of the autoencoder as a tool for the unsupervised extraction of the phase structure of physical
systems with continuous symmetries. These involve quantum field theories formulated on
the lattice such as the 3D φ 4 with O(2) symmetry [22] where the phase transition is of
second order and belongs to the same universality class as the 2D-Ising model, the 3D U(1)
gauge theory [23] for which the phase transition is of infinite order and belongs to the same
universality class as the 2D XY model, as well as the 3D SU(N) gauge theory [164] which
has a second-order phase transition for N ≤ 3, a weakly first order for N = 4 and first order
for N ≥ 5.

In the context of this thesis, we observe that the machine learning algorithms have the
potential to be used as novel computational methods to calculate observables in the finite
volume. Therefore, another promising avenue of the extension of this research is towards
calculating observables in lattice QCD.





Chapter 4

Hadron spectroscopy on the lattice

In this chapter, the methods of calculating finite volume spectra from lattice QCD will
be discussed concisely. In quantum field theory, we have field operators for every state
characterized by its quantum numbers which when operated on vacuum creates that state
with the desired quantum numbers. These quantum numbers respect the symmetries of
the Lagrangian. Similarly, on the lattice for creating a state with the desired quantum
numbers, we need to identify the symmetries which the lattice operator has to satisfy to
be well-defined on the lattice. Symmetries on the lattice were discussed in the previous
chapter where all symmetries except the explicit breaking of Poincare symmetry on the lattice
was discussed. In the first section of this chapter, we define the angular momentum on the
lattice and the connection with the continuum. Then we define the interpolating operators of
single meson and baryon, and two particle meson-meson and meson-baryon systems that
respect the symmetries of the lattice. Once we have the basic building blocks to define a
correlation function with these interpolating operators, we summarize various components
and techniques necessary to compute correlation functions. After this, we give a concise
overview of smearing, which is a lattice method used to make lattice calculations of ground
state spectra more robust and decrease its statistical errors. In the subsequent sections, we
describe different methodologies to extract discrete energies from these correlation functions
and use them to compute resonance parameters implementing the Lüscher formalism. Along
the same lines, if the final states of scattering are the same, one can proceed towards
calculating resonance transition form factors from the lattice, which will be briefly discussed
in the final section.



48 Hadron spectroscopy on the lattice

4.1 Angular momentum on the lattice

In the continuum, states are classified according to their angular momentum J, corresponding
to the irreducible representations (irreps) of SU(2), and parity P. SU(2) can be decomposed
into infinite irreducible representations, single-valued representations labelled by integer
angular momenta j = 0,1,2, · · · plus the double-valued representations labelled by j =
1/2,3/2,5/2, · · · . In order to include parity, we construct the irreps of SU(2)⊗{I,−I}. The
irreps are: single-valued integer spin irreps with parity +1, parity −1, double-valued half-
integer spin irreps with parity +1 and −1. Thus, all quantum mechanical spinors (fermions
and bosons) can be well represented by an element in any of the irreps of SU(2)⊗{I,−I}.
The 3-D shape of the spatial extent of the lattice determines the symmetry group of the lattice,
which is also called as the Little Group.
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Fig. 4.1 Finite discrete rotational symmetry group (right, OD) of the lattice compared with
infinite continuous rotational symmetry group (left, SU(2)) of the continuum. The red arrows
indicate the axes of rotations. The subduction mapping is shown diagrammatically in the
middle.

In order to construct an operator on the lattice, corresponding to a boson or fermion in
the continuum, we need to map the infinite irreps of the continuous symmetry group in the
continuum to the finite irreps of the discrete Little Group of the lattice. This mapping is a
many-to-one mapping, as depicted in Fig. 4.1. Therefore, we are interested in subducing the
irreps of the continuum onto the lattice irreps. The formula to compute the multiplicity mΛ

J
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of an irrep Λ of the finite Little Group in spin J is given by,

mΛ
J =

1
g ∑

k
nk χ

Λ
k χ

J
k , (4.1)

where there are nk elements in the conjugacy class k with irreducible character χΛ
k and

g = ∑k nk [188, 76]. The χJ
k (defined as the character in Representation theory) is the trace of

the SU(2) matrices for spin J of irrep and rotation θ which is fixed for a given conjugacy class
k. Using Eq. (4.1), we list the subduction of the SU(2) irreps to irreps of OD in Table. 4.1. In

Table 4.1 Subduction of SU(2) into OD

spin J Subduction into Λ of OD

0 A1
1/2 G1
1 T1
3/2 H
2 E ⊕ T2
5/2 G2 ⊕ H
3 A2 ⊕ T1 ⊕ T2
7/2 G1 ⊕ G2 ⊕ H
4 A1 ⊕ E ⊕ T1 ⊕ T2
9/2 G1 ⊕ 2H
5 E ⊕ 2T1 ⊕ T2
11/2 G1 ⊕ G2 ⊕ 2H
6 A1 ⊕ A2 ⊕ E ⊕ T1 ⊕ 2T2

order to sample various kinematic regimes (different values of center of mass energies) to
study scattering, it is necessary to define operators in frames with different center of mass
energies. Therefore, it is paramount to identify the symmetries in these moving frames, as
discussed in the next section.

4.1.1 Center of Mass frame

In the center of mass frame of the scattering particle(s), the spatial extent of the lattice is
a cube. Therefore, on the lattice, the continuous rotational symmetry is broken and the
symmetry group (Little group) is reduced to the discrete cubic group (O) [144, 30] called
the Octahedral group of all the 24 rotations of a cube. This group can be decomposed into 5
single-valued irreps.
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Bosons

The point group Oh is defined as: O⊗{I,−I} (Inversions), therefore it has 48 elements
and 10 single-valued irreps. Thus, we need to define a many-to-one mapping from single-
valued irreps of the continuum group SU(2)⊗{I,−I} to the single-valued irreps of Oh. The
character table for the Oh group in-terms of its conjugacy classes and irreps can be found in
Ref. [73, 74, 185].

Fermions

The double cover of the point group OD
h is constructed by introducing a new generator in Oh,

denoted by Ē which represents a rotation by 2π about any axis, thus it has 96 elements. Since
it is a generator, it adds another irrep containing just itself, in addition to 2 irreps created
by acting on two conjugacy classes of O. Thus, OD has 8 irreps and with the inclusion of
parity (space inversions), OD

h has 16 irreps. The parity doublets are denoted by gerade and
ungerade. It is worth noting that inclusion of Ē makes the extra 3 (6, with parity) irreps as
double-valued representation. Therefore, we need to define a many-to-one mapping from
double-valued irreps of the continuum group SU(2)⊗{I,−I} to the 3 (6) double-valued
irreps of OD

h . The character table for the OD
h group in-terms of its conjugacy classes and

irreps can be found in Ref. [73, 74, 185].

4.1.2 Moving frames

When the frame of reference is defined for a non-zero center of mass momentum (denoted
by P⃗), the spatial extent of the lattice is an irregular tetrahedron as shown in Fig. (4.2). The
discrete symmetry group of that irregular tetrahedron is a subgroup of OD

h . The various
symmetry groups for different moving frame momenta are listed in Table. (4.2). The change
in the shape of the lattice due to a Lorentz boost is depicted in Fig. (4.2).

Table 4.2 The reference frames (i.e., total momenta P⃗) and the associated Little Groups.

P⃗ [2π

L ] Little Group (Bosons) Little Group (Fermions)
(0,0,0) Oh OD

h

(0,0,1) D4h CD
4v

(0,1,1) D2h CD
2v

(1,1,1) D3d CD
3v
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Fig. 4.2 The 3-D shape of the spatial extent of the lattice in different moving frames is
depicted,

On the lattice, the inverse of the subduction identifies the spin content of a lattice energy
eigen-state transforming as an irrep Λ of OD

h ( or Oh). In the center of mass frame, the spin
content of the irreps of OD is shown in Table (4.3).

Table 4.3 Inverse Subduction of OD for identifying SU(2) Irreps in spectra

Λ of OD Spin J

G1 1/2, 7/2, 9/2, 11/2, · · ·
G2 5/2, 7/2, 11/2, 13/2, · · ·
H 3/2, 5/2, 7/2, 9/2, · · ·
A1 0, 4, 6, 8, · · ·
A2 3, 6, 7, 9, · · ·
E 2, 4, 5, 6, · · ·
T1 1, 3, 4, 5, · · ·
T2 2, 3, 4, 5, · · ·

Therefore, in order to extract such a lattice energy eigen-state, one needs to construct
interpolating fields projected into the irrep Λ. In the next section, we discuss the construction
of hadron interpolating fields.
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4.2 Interpolating field operators

In this section, we discuss the construction of hadron interpolating field operators, necessary
to compute relevant correlation functions for any observable on the lattice. The field operator
which creates a hadronic state when it operates on the vacuum is called an interpolating field
operator (also called interpolator). The quark sources are combined with elements of the
Clifford algebra to construct gauge invariant interpolators with definite quantum numbers.
Interpolators can be constructed to represent a single hadron or multiple hadrons. A general
overview on the construction of these interpolators is given in the subsequent section.

4.2.1 Single Hadron Interpolators

We start our discussion by constructing the interpolators for the hadrons of the quark con-
tents of mesons (ψ̄1, ψ2)1 and baryons(ψ̄1, ψ2, ψ3). To construct a general single hadron
interpolator OM/B in a particular lattice irrep Λ (with nth multiplicity in the continuum irrep
J) of the Little Group LG(P⃗) for a momentum P⃗, to represent a continuum state with spin J
and spin-component m, using the group projection method, we can write,

OΛ,r,n,P⃗
M/B (t) =

dim(Λ)

NLG(P⃗)
∑

R∈LG(P⃗)

Γ
Λ
r,r(R)UR OJm

M/B(t, P⃗)U†
R r ∈ {1, . . . ,dim(Λ)}, (4.2)

where dim(Λ) is the dimension of the irrep, NLG(P⃗) is the order of the Little Group, and ΓΛ are

the representation matrices of the elements (including rotations and reflections) R ∈ LG(P⃗)
[185] and UR is the unitary operator in the continuum which applies the transformation R.
This projection generates dim(Λ) lattice operators for a particle in the continuum with spin J.

Meson Interpolators

Thus, now we define a general meson interpolator of the form OM as,

OM(P⃗, t) = ∑
x⃗

ψ̄1(⃗x, t)Γψ2(⃗x, t) e−iP⃗·⃗x. (4.3)

where ψ1(⃗x, t) and ψ2(⃗x, t) represents two quark fields with appropriate flavors needed to
define the meson M. The C , P and T symmetries are preserved by the bilinear form of the
meson interpolator and choice of the Dirac structure (element of Clifford algebra). The list
of different choices of Dirac structures (Γ) for different mesons is given in Table. 4.4.

1Mesons not in the quark model like the exotic mesons, tetra-quarks, hybrid mesons and gluons are an
active field of research
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Table 4.4 Meson Interpolators

State J (spin) Charge Conjugation C Parity (P) Γ Particles

Scalar 0 + + i, γ0 f0, a0

Pseudoscalar 0 + - γ5, γ0γ5 π±, π0, η

Vector 1 - - γi, γ0γi ρ±, ρ0, ω

Axial vector 1 + + γiγ5 a1, f1

Tensor 1 - + γiγ j h1, b1

Baryon Interpolators

And now for a definition of a general baryon interpolator of the form OB, we refer to
Ref. [28, 30, 29]. In the scope of this thesis, we discuss only the construction of nucleon and
delta interpolators.
Nucleon Interpolating Operators: The most general form of a nucleon interpolating oper-
ator can be expressed as:

OB(⃗x, t,Γ1,Γ2) = εabc

[
ψ

aT
1 (⃗x, t) Γ1 ψ

b
2 (⃗x, t)

]
Γ2 ψ

c
3 (⃗x, t).

Here a,b and c are color indices, T denotes transposition. The Γ1 and Γ2 are the different
combinations of Dirac structures (combinations of Gamma matrices). q1, q2 ansd q3 are
quarks of different flavours. The quantity inside [ ] is defined as a diquark structure.

In order to construct 3-quark current interpolating fields, we can follow a prescription as
first described by [138]. In Ref. [138], the author introduces as an ansatz,

OB1 (⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 db(⃗x, t)

]
uc(⃗x, t) ,

OB2 (⃗x, t) = εabc
[

uT
a (⃗x, t)C db(⃗x, t)

]
γ5uc(⃗x, t)

where C is the charge conjugation matrix and T denotes transposition in spinor space.
The form of the nucleon interpolating operator ensures all quarks are in a s(or d) angular
momentum state( which implies the relative momenta between the quarks are 0).
Another much more formal way of constructing the 3-quark operators was described in
Ref [70]. We want to construct a spin-1/2 operator consisting of 3 of the d(= 4)-dimensional
Dirac spinors(quarks). So we are looking at a space of E = d × d × d, where d is the
4-dimensional space of Dirac spinors. Vectors of E are Lorentz-transformed by operators
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which are generated by that part of the total angular momentum of the nucleon representing
the spin angular momentum of that particle. E is reducible into direct sums of the irreducible
representations of the restricted Lorentz group SO+(1,3;R). So for a given spin n, we look
into the irrep D( j1, j2) (where n= j1± j2) of the restricted Lorentz group. The decomposition
of E in terms of irreps of the restricted Lorentz group is given as:

E = 5{D(0, 1
2) ⊕ D(1

2 ,0)} ⊕ 3{D(1
2 ,1) ⊕ D(1, 1

2)} ⊕ {D(3
2 .0) ⊕ D(0, 3

2)} (4.4)

Following the calculation in Ref. [70], for spin 1
2 operator we look into the 5 basis operators

belonging to D(0, 1
2) ⊕ D(1

2 ,0) and 3 basis operators belonging to D(1
2 ,1) ⊕ D(1, 1

2).
As in Ref. [70], we proceed to decompose these two irreps into irreps of the SU(3) group,
and isolate the ones corresponding to the non-strange baryon. We find,

OB1 (⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 db(⃗x, t)

]
uc(⃗x, t) ,

OB2 (⃗x, t) = εabc
[

uT
a (⃗x, t)C db(⃗x, t)

]
γ5uc(⃗x, t) ,

OB3 (⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 γ

ν db(⃗x, t)
] (

gµν −
1
4

γµγν

)
uc(⃗x, t).

As noticed, OB3 belongs to D(1
2 ,1) ⊕ D(1, 1

2), so it has contributions from spin 3
2 and spin 1

2 .
For ease of calculations, as pointed out in Ref. [154] we take the leading term gµν , then we
are reduced to

OB1 (⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 db(⃗x, t)

]
uc(⃗x, t) ,

OB2 (⃗x, t) = εabc
[

uT
a (⃗x, t)C db(⃗x, t)

]
γ5uc(⃗x, t) ,

OB3 (⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 γµ db(⃗x, t)

]
uc(⃗x, t)

In order to project OB3 to spin 1
2 , we follow the prescription in Ref. [153], which indepen-

dently confirms the choice of OB3 made in Ref. [58]. In Ref. [58], they have concluded,

ON1(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 db(⃗x, t)

]
uc(⃗x, t) , (4.5)

ON2(⃗x, t) = εabc
[

uT
a (⃗x, t)C db(⃗x, t)

]
γ5uc(⃗x, t) , (4.6)

ON3(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγ5 γt db(⃗x, t)

]
uc(⃗x, t) (4.7)

In Ref. [58], there is an interesting discussion on the diquark structure, and also they have
concluded that all the operators belong to distinct irreps of the parity-chiral group. The
comprehensive procedure of obtaining baryonic currents has been also discussed in Ref. [71].
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∆ Interpolating Operators: In order to construct the lowest lying baryon octet Delta
interpolating operator, we look at the Irrep D(1

2 ,1) ⊕ D(1, 1
2), and we follow [70] to get the

following,

O∆1(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγµ ub(⃗x, t)

]
uc(⃗x, t)

where µ = 1,2 and 3.
We also look at Irrep D(3

2 ,0)⊕ D(0, 3
2) from [70]. Using Fierz transformations, we construct

a few other interpolating operators of the following form, which have the same quantum
numbers,

O∆1(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγµ ub(⃗x, t)

]
uc(⃗x, t) (4.8)

O∆2(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγµγt ub(⃗x, t)

]
uc(⃗x, t) , (4.9)

O∆3(⃗x, t) = εabc
[

uT
a (⃗x, t)Cγµγtγ5 ub(⃗x, t)

]
γ5uc(⃗x, t) (4.10)

Though all are valid ∆-baryon interpolators, we find that in practice only the first one has
been used by lattice groups in the literature.

4.2.2 Two-Hadron Interpolators

In studying of scattering of two hadrons, we need to construct two-hadron interpolators to
understand the shift in energies when there is an existence of a resonance in the spectrum.
We can construct two hadron interpolators via the an outer product of two single hadron
interpolators. Thus an two hadron interpolator can be defined as,

Oh1h2(p⃗1, p⃗2, t) = Oh1(p⃗1, t)Oh2(p⃗2, t), (4.11)

where h1, h2 are either M for meson or B for baryon.

4.3 Correlation functions

We have constructed the relevant interpolators needed to study mesons and baryons (nucleons
and delta). By Wightman axioms [228] for quantum field theory and the Ostrader-Schrader
theorem [201, 200], we need to construct correlation functions through which we can describe
all the features (observables) of the quantum field theory. In Euclidean formulation, a time
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correlator of operators O(⃗x, t), Ō(⃗0,0) is given by,

C(p⃗, t) = ∑
x⃗

〈
O(⃗x, t) Ō(⃗0,0)

〉
e−ip⃗·⃗x (4.12)

The time correlator when written in energy basis is given by,

C(p⃗, t) = ∑
n
⟨Ω |O |n⟩

〈
n
∣∣ Ō ∣∣Ω〉e−t En(p⃗) = |Z0|2 e−t E0(p⃗)(1+O(e−t∆E(p⃗))) (4.13)

where Z0 = ⟨Ω |O |n⟩ represents the overlap of the state defined by O with the ground state,
E0(p⃗) is the ground state energy and ∆E is the energy difference between the ground state
and first excited state. We extract the ground state energy by taking t large enough so
that t∆E ≫ 1. The ground state energy E0(p⃗) is related to the mass of the hadron by the
relativistic dispersion relation,

E(p⃗) =
√

m2
H + p⃗2(1+O(a|p⃗|)), (4.14)

where a is the lattice spacing. We can calculate the energy of a moving hadron on the lattice
using the two-point correlation function of that hadron. From Sec. 3.2.4, using Grassmann
algebra and Wick’s theorem we can write the correlation function in terms of the propagator
M−1. In the next sections, we describe different propagators we need to calculate correlation
functions.

4.3.1 Building blocks for the correlation functions

Correlation functions on the lattice can be constructed with these fundamental blocks:

a. Point-to-all propagator: Writing the quark and anti-quark fields as ψ(t f , x⃗)a
α and

ψ̄(ti, x⃗i)
b
β

, where α,β are spin indices and a,b are color indices, the point-to-all propagator
S f from the fixed initial point xi = (ti, x⃗i) to any final point x f = (t f , x⃗ f ) on the lattice is the
matrix element of the inverse of the lattice Dirac operator M:

(~xf , tf) Sf (~xi , ti)
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S f (t f , x⃗; ti, x⃗i)
ab
αβ

= ⟨ψ(t f , x⃗ f )
a
α ψ̄(ti, x⃗i)

b
β
⟩ f

= ∑
t f ,⃗x f

M−1(t f , x⃗ f ; ti, x⃗i)
ac
αγ η

b
ti ,⃗xi,β

(t f , x⃗ f )
c
γ . (4.15)

η
b
ti ,⃗xi,β

(t f , x⃗ f )
a
α = δt f ,ti δ⃗x f ,⃗xi δ

ab
δαβ , a,b = 0,1,2, α,β = 0,1,2,3 .

where ηb
ti ,⃗xi,β

(t f , x⃗ f )
c
γ is the point source.

b. Sequential propagator: The sequential propagator describes the quark flow through
a vertex of a given flavor and Lorentz structure. It is obtained from a point-to-all propa-
gator by a second (sequential) inversion on a source built from the point-to-all propagator
S f (tseq, x⃗seq; ti, x⃗i) with an inserted vertex at timeslice tseq with spin structure Γ and momen-
tum insertion p⃗:

(~xf , tf) (~xi , ti)Sseq

Γ(~p)

Sseq(t f , x⃗ f ; tseq, p⃗,Γ; ti, x⃗i)

= ∑
x⃗seq

M−1(t f , x⃗ f ; tseq, x⃗seq)× Γeip⃗·⃗xseq S f (tseq, x⃗seq; ti, x⃗i) . (4.16)

c. Stochastic timeslice-to-all propagator: The stochastic timeslice-to-all propagator is
defined as the inversion of the Dirac matrix with a stochastic timeslice momentum source:

(~xf , tf) (~pi , ti)Sst

Sst(t f , x⃗ f ; ti, x⃗i) =

1
Nsample

Nsample

∑
r=1

φ
r
ti,p⃗i

(t f , x⃗ f )ξ
r
ti ,⃗0

(ti, x⃗i)
† , (4.17)

where

φ
r
ti,p⃗i

=M−1
ξ

r
ti,p⃗i

and ξ
r
ti,p⃗i

(t, x⃗) = δt,ti eip⃗i ·⃗x ξ
r
ti (⃗x) .

For each r = 1, . . . ,Nsample, ξ r
ti is a spin-color timeslice vector with independently distributed

entries for real and imaginary part, ξ r
ti (t, x⃗)

a
α ∼ Z2 × iZ2, so that the expectation values with
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respect to the stochastic noise, denoted as E
[ ]

, satisfy

E
[
ξ

r
ti (t, x⃗)

a
α

]
= 0, (4.18)

E
[
ξ

r1
ti1
(⃗x1)

a1
α1

(
ξ

r2
ti2
(⃗x2)

a2
α2

)∗]
= δ

r1,r2 δti1 ,ti2
δ⃗x1 ,⃗x2 ,δα1,α2 δ

a1,a2 . (4.19)

This technique provides a good way to efficiently evaluate all-to-all propagators with rea-
sonable cost. We apply spin-dilution to make use of the efficient one-end-trick [178] in our
contractions. In this case, the stochastic sources read

ξ
r
ti,p⃗i,α

(t, x⃗)b
β
= δt,ti δα,β eip⃗i ·⃗x ξ

r
ti (⃗x)

b, (4.20)

and the color timeslice vectors ξ r
ti have expectation values analogous to those in Eqs. (4.18)

and (4.19). The one-end-trick then allows for the representation of a product of quark
propagators by two stochastic propagators through a vertex is given again by Γ and p⃗ as

E
[
φ

r
ti,p⃗i,κ

(x)a
α (Γγ5)κλ

φ
r
ti,0,λ (z)

b∗
β ′ (γ5)β ′β

]
(4.21)

= S(tx,x; ti, x⃗i)
ac
ακ eip⃗i ·⃗xi (Γγ5)κλ

S(tz,⃗z; ti, x⃗i)
bc∗
β ′λ (γ5)β ′β

=
(

S(tx, x⃗; ti, x⃗i)eip⃗i ·⃗xi ΓS(ti, x⃗i; tz,⃗z)
)ab

αβ
.

Equation (4.21) used in addition γ5-hermiticity for the Dirac propagator, S(tx, x⃗; ty, y⃗)† =

γ5 S(ty, y⃗; tx, x⃗)γ5.

4.4 Signal enhancement methods

In practical applications several techniques are used to increase the overlap of the single
hadron interpolator with the ground state of the hadron of interest. From Eq. (4.13), if we
define Z =C(p⃗,0), then the overlap function is |Z0|/|Z|, which we want to maximize through
these techniques. These will be presented in the following sections.

4.4.1 Extended source

A very common method to increase the overlap of the ground state is called Gaussian/Wuppertal
smearing where the quark fields in the interpolator are enveloped by a gauge invariant func-
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tion of the spatial coordinates and link variables.

ψ
sm(⃗x, t) = ∑

y⃗
W (⃗x, y⃗;U(t))ψ (⃗y, t), (4.22)

where
W (⃗x, y⃗;U(t))≡ (I +αH (⃗x, y⃗;U(t)))n, (4.23)

with

H (⃗x, y⃗;U(t)) =
3

∑
k=1

(
Uk(⃗x, t)δ⃗x,⃗y−k̂ +U†

k (⃗x− k̂, t)δ⃗x,⃗y+k̂

)
. (4.24)

The parameters α and n are tuned to increase the overlap with the ground state. The operator
W (⃗x, y⃗;U(t)) depends on the gauge links.

4.5 Link Smearing

The calculation of propagators for correlation functions needs inversion of the Dirac operator.
The Dirac operator is riddled with violent short distance (Ultraviolet) fluctuations of the
gauge field, which makes inversions computationally expensive. The idea from statistics that
average of random variates fluctuate less than the variates themselves, can help ameliorate
this problem. In this case, the random variates are the neighbouring gauge link variables, and
this idea of averaging them is called smearing. Below are the sections, where we will discuss
different methodologies based on this common idea.

4.5.1 APE smearing

As motivated in the previous section, an envelop function can be designed for the link
variables which visually corresponds to averaging the gauge links locally over its neighbours
(”fattening“ of the links). In APE smearing, one takes the average over the given original
link and the six staples connecting its endpoints,

UAPE
µ (x) = ProjSU(3)

(
(1−α)Uµ(x)+

1
α

∑
ν ̸=µ

Sµν(x)

)
, (4.25)

where

Sµν(x) =Uν(x)Uµ(x+ ν̂)U†
ν (x+ µ̂)+U†

ν (x− ν̂),Uµ(x− ν̂)Uν(x− ν̂ + µ̂) (4.26)
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and the real parameter α can be adjusted to optimize the reduction in the noise. In every
iteration we perform in the smoothing procedure it is important to project UAPE

µ (x) onto the
SU(3) group. A visual description is depicted in Fig. 4.3.

+
1

(1 -= )

Fig. 4.3 UAPE
µ (x) defined as the weighted sum of Uµ(x) and its neighbouring staples Sµν .

4.5.2 Stout Smearing

This method involved redefinition of the each link variables as,

U ′
µ(x) = eiQµ (x)Uµ(x) (4.27)

where Qµ(x) is a traceless hermitian matrix constructed from staples

Qµ(x) =
i
2

(
Ω

†
µ(x)−Ωµ(x)−

1
3

Tr
[
Ω

†
µ(x)−Ωµ(x)

])
, (4.28)

with

Ωµ(x) =

(
∑

ν ̸=µ

ρµνSµν(x)

)
U†

µ(x),

where Sµν is defined in Eq. (4.26). The tunable parameters are ρµν .
All the smearing techniques we showed are iterative, thus they affect not just the neighbouring
sites, and as a result the asymptotic behaviour of the quark propagator needs to be checked to
ensure that no long-range effects remain.

4.6 Variational method

In a lattice calculation, we can have several interpolators for the same particle of interest, and
all of the interpolators can have overlap with the ground state of the hadron. This motivates a
variational technique for finding an optimal linear combination of interpolators. Assuming
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our choice of interpolators form a complete basis, we can define a correlation matrix as

Ci j
(
t − t ′

)
=
〈

O j(t)O j
(
t ′
)†
〉
= ∑

n
⟨Oi(0)|n⟩e−En(t−t ′)

〈
n|O j(0)†

〉
, (4.29)

where En is the finite volume energy of the nth state and ⟨Oi(0)|n⟩ the overlaps of the nth

state with the state created by the interpolator Oi from vacuum. To obtain these finite volume
energies En for a choice of the set of N interpolators, we need to solve the Generalized
EigenValue Problem (GEVP) [184, 173, 43, 198] defined as,

C(t)un(t) = λn(t)C (t0)un(t) 1 ≤ n ≤ N (4.30)

where t0 is fixed and small, un(t) are generalized eigenvectors and t > t0. The normalization
of the generalized eigenvectors is fixed by

uiC(t0)(u) j = δi j. (4.31)

At large t, the eigenvalues λn(t, t0), which are also referred to as principal correlators, behave
as

λn(t, t0) = e−En(t−t0). (4.32)

Ee f f
n (t, t0) =− ln

(
λn (t, t0)

λn (t +1, t0)

)
. (4.33)

To determine the energies En, we fit the eigenvalues either with the single-exponential form
of Eq. 4.32 or with the two-exponential form

λ
n(t, t0) = (1−B)e−En(t−t0)+Be−En(t−t0), (4.34)

which includes a small contribution from higher-lying excited states with energies E
′Λ,P⃗
n

[173, 43]. In order to extract energies reliably from the fit, one can perform stability analysis,
whereby given a fit range (tmin, tmax), we fix the tmax and vary tmin and study the variation
of χ2 of the fit. A good stable fit would correspond to almost constant values of χ2 upon
varying tmin.

Alternatively, due to charge conjugation symmetry, the entire C(t) is real-valued (in the
infinite statistics limit). Consequently, the overlap factors ⟨Oi(0)|n⟩ are also real-valued.
Thus, one can perform fits to each element of the correlation matrix for tmin ≤ t ≤ tmax using
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the model described as,

Ci j(t)≈
N states

∑
n=1

Zi,nZ j,ne−Ent , (4.35)

and this method is called Matrix fit analysis, where tmin has to be chosen large enough such
that contributions from n > Nstates become negligible. For an m×m correlation matrix, this
model has Nstates × (m+1) parameters. To ensure that the energies returned from the fit are
ordered, we used the logarithms of the energy differences, ln = ln(aEn −aEn−1), instead
of aEn (for n > 1) as parameters in the fit. To simplify the task of finding suitable start
values for the iterative χ2-minimization process, we also rewrote the overlap parameters
as Zi,n = Bi,nZi with Bi,n = 1 for n equal to the state with which Oi has the largest overlap.
Good initial guesses for Zi can then be obtained from single-exponential fits of the form
ZiZie−Ent to the diagonal elements Cii(t) in an intermediate time window in which the n-th
state dominates, and the start values of Bi,n can be set to zero.

The spectrum is the energy eigenvalues of the Hamiltonian, of the states with the quantum
numbers of the hadron described by the correlation matrix, which we obtain from the
fits. The spectrum will consist both of energies corresponding to levels with predominant
overlap to single hadron operators as well as energy levels with dominant overlap to multi-
hadron operators. However, not all energy levels can be clearly separated into these two
categories, thus labeling the levels as a single hadron state or a multi-hadron state is not
unique. Sometimes there are energy levels that couple both to single hadron operators and
multi hadron operators equally. Therefore, in order to interpret the spectrum, we need to take
into account the finite volume effects.

In the subsequent sections, we develop the formalism of taking into account the finite
volume effects. Only then we will be in a position to interpret the finite volume spectrum in
terms of hadrons in the continuum.

4.7 Elastic scattering of two particles in a finite volume

In this section, we review the Lüscher formalism which relates finite volume spectra with
infinite volume scattering phase shifts. We start with developing the kinematics needed to
introduce the formalism.

4.7.1 Kinematics

We consider interaction between two particles of masses m1 and m2 in a lattice box of
volume L3, with total 3-momentum P⃗. Since the interacting particles are in a box, they are
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constrained by the periodic boundary conditions, thus the total momentum is quantized.2

P⃗ = p⃗1 + p⃗2 =
2π

L
d⃗, (4.36)

d⃗ ∈ Z3

where p⃗1 and p⃗2 are momenta of the two particles in the laboratory frame (LF) i.e. the rest
frame of the box. In the centre of mass (CM) frame, the energy of the system can be written
as,

E∗ =
√

p∗2 +m2
1 +
√

p∗2 +m2
2 (4.37)

where p⃗∗ is the momentum of the particles in the CM frame. The CM frame energy is related
to the LF energy by,

EL =
√

P2 +E∗2. (4.38)

In the LF the CM is moving at v⃗, where

v⃗ = P⃗/EL (4.39)

Thus, CM frame is connected to the LF by a standard Lorentz Transformation,

p⃗ ∗ = γ⃗(p⃗1 − v⃗
√

p2
1 +m2

1) =−γ⃗(p⃗2 − v⃗
√

p2
2 +m2

2) (4.40)

where
γ⃗ =

1√
1− v2

v⃗
|v| = γ

v⃗
|v|

and we have used the shorthand notation,

γ⃗ p⃗ = γ p⃗∥+ p⃗⊥

where p⃗∥ and p⃗⊥ are components of p⃗, parallel and perpendicular to the center of mass
velocity: p⃗∥ = (p⃗ · v⃗)⃗v/v2 and p⃗⊥ = p⃗− p⃗∥.

In a special case, where we have two pions m = m1 = m2, thus,

p∗2 =
1
4
(E2

L −P2)−m2 (4.41)

2As opposed to, in the non interacting case, where the individual momenta are quantized.
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In the non-interacting case, since p⃗1 and p⃗2 are quantized, we can write

¯⃗p∗ = (2π/L)⃗n , n⃗ ∈ Pd⃗ =
{⃗

n
∣∣∣ n⃗ = γ⃗

−1(m⃗+ d⃗/2) , for m⃗ ∈ Z3
}
. (4.42)

From the energy shift in the interacting and the non interacting case, we extract the scattering
phase shifts. The formalism for relating this shift in energy with scattering phase shift, is
discussed in the next section.

4.7.2 Lüscher formalism

The Lüscher quantization condition for elastic scattering is,

det
(
I+ itℓ(s)

(
I+ iM P⃗

))
= 0 (4.43)

where tℓ(s) is the infinite-volume scattering amplitude, which is parametrised by the infinite-
volume scattering phase shift δℓ(s) given by,

tℓ(s) =
1

cotδℓ(s)− i
(4.44)

with s being the squared CM energy. The M P⃗ is a matrix-valued function that depends on
the finite-volume spectrum and volume. The quantization condition can be simplified for
each momentum frame according to the symmetries in that frame. Note that this is an exact
condition with no additional corrections due to finite volume, thus, the Lüscher quantization
condition eliminates all the finite volume effects in M P⃗ systematically to connect the M P⃗ to
the infinite volume t-matrix. The condition is identical for mesons and baryons, but only the
basis of representing the M P⃗ is different in both the cases.

Mesons

The M P⃗ for integer spin particles is related to its counterpart for spin-zero particles by a basis
transformation [171, 33]. Thus, it is worthwhile to discuss the scattering of spin zero mesons.
The matrix M P⃗ has the indices M P⃗

lm,l′m′ , where l, l′ label the irreducible representations of
SO(3) and m,m′ are the corresponding row indices, with P⃗ = 2π

L d⃗. The explicit expression
of M d⃗ is,

M d
lm,l′m′

(
q2)≡ (−1)l

γπ3/2

l+l′

∑
j=|l−l′|

j

∑
s=− j

i j

q j+1 Zd⃗
js
(
1;q2)Clm, js,l′m′ (4.45)
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Clm, js,l′m′ ≡ (−1)m′
il− j+l′

√
(2l +1)(2 j+1)(2l′+1)

(
l
m

j
s

l′

−m′

)(
l
0

j
0

l′

0

)
(4.46)

where γ = E/
√

s the Lorentz boost factor, Clm, js,l′m′ is expresses in terms of 3 j-Wigner
symbols related to the Clebsch-Gordon coefficients, and q⃗ = Lp⃗∗

2π
. The modified zeta function

Zd⃗
lm is defined as,

Zd⃗
lm
(
s;q2)≡ ∑

r∈Pd⃗

Ylm(r)
(r2 −q2)

s (4.47)

The Zd⃗
lm

(
s;q2) is finite for l ̸= 0, but the sum Eq. (4.47) converges slowly for practical

evaluation. A derivation of a suitable expression for numerical evaluation is given in the
Ref. [162]. It reproduces the known result in the special case m1 = m2 [216]. Assuming
δl>1 = 0, the matrix M is 4×4 in the basis lm = 00,10,11,1−1 and the expression M d

lm,l′m′

(4.45) leads to the following form for general d⃗,

M d⃗
lm,l′m′ =


00 10 11 1−1

00 w00 i
√

3w10 i
√

3w11 i
√

3w1−1

10 −i
√

3w10 w00 +2w20
√

3w21
√

3w2−1

11 i
√

3w1−1 −
√

3w2−1 w00 −w20 −
√

6w2−2

1−1 i
√

3w11 −
√

3w21 −
√

6w22 w00 −w20

 , (4.48)

The Ylm by the side denote the SO(3) basis in which the M matrix is written down. Here we
defined wlm to simplify the notation as,

wlm =
Zd⃗

lm

π3/2
√

2l +1 γ ql+1
(4.49)

The matrix M P⃗ can be further simplified by taking into account the symmetries for a given
Little Group (P⃗) and its irrep Λ. An example calculation of the quantization condition for
P⃗ = (0,0,0) in the irrep A+

1 , using the properties of Zd
lm

(
s;q2), results in,

tanδ0
(

p∗2)= π3/2q
Z00 (1;q2)

, l = 0 (4.50)

In another example, for A1 in C2v in a moving frame3 P⃗ = (1,1,0) is given by,

d = ex + ey,A1 of C2v : tanδ0 (p∗) =
π3/2γq

Zd
00 (1;q2)

if δ1 (p∗)≪ δ0 (p∗) . (4.51)

3In moving frames, parity is not a good quantum number, which is why A1 doesn’t have the +/− notation
as in CM frame.
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Baryons

For baryons, using the t-matrix parametrization and the total angular-momentum basis of the
interacting particles, we obtain

det[M P⃗
Jlm,J′l′m′ −δJJ′δll′δmm′ cotδJl] = 0, (4.52)

where MP⃗
Jlm,J′l′m′ contains the finite-volume spectra for the scattering of two particles with

spins s⃗1 and s⃗2 and total linear momentum P⃗. The angular momentum l⃗ is the contribution
from the lth partial wave such that the total angular momentum J⃗ is equal to l⃗+ s⃗1 + s⃗2. For
fixed J and l, we have −J ≤ m ≤ J. Thus, the M matrix represents the mixing of the different
angular momenta in finite volume. In the t-matrix, δJl denotes the infinite-volume phase
shift for a given J and l. It becomes quite evident from the addition of angular momenta that
M is an infinite-dimensional matrix, because of the infinitely many possible values of l. To
enable a lattice calculation, we need to select a cut-off lmax, and ignore higher partial waves.
This can be justified for small center-of-mass momenta p∗, because δ (p∗) ∝ (p∗)2l+1.

After imposing a cutoff lmax, the finite-dimensional matrix M can be further simplified
into a block diagonal form through a basis transformation of the irreps of the symmetry
groups of the lattice. Given a lattice symmetry group G with irrep Λ (from Table. 6.2), the
matrix element in the new basis can be written as

⟨ΛrJln |M P⃗ |Λ′r′J′l′n′⟩= ∑
m,m′

cΛrn
Jlm cΛ′r′n′

J′l′m′ M P⃗
Jlm,J′l′m′ , (4.53)

where the row r runs from 1 to the dimension of Λ, n labels the multiplicity of the irrep, and
cΛrn

Jlm and cΛ′r′n′
J′l′m′ are the relevant Clebsch-Gordan coefficients as calculated in [112].

From Schur’s lemma, we know that M P⃗ is block-diagonalized in the new basis,

⟨ΛrJln |M P⃗ |Λ′r′J′l′n′⟩= δΛΛ′δrr′M
Λ

Jln,J′l′n′. (4.54)

where M Λ

Jln,J′l′n′ is the matrix which forms the block diagonal for the matrix M P⃗. For an
example of moving frame with P⃗ = (0,0,1) for which the Little Group is C2v, this block
diagonal decomposition in terms of its irreps G1 and G2 is depicted in Fig. 4.4.

Once we have the M P⃗, after this we can proceed as we did for mesons to write the full
matrix element in terms of zeta functions and calculate the quantization conditions.
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G1

G2

MJlm,J′l′m′ M𝚲
Jln,J′l′n′

J 1/2 1/2 3/2 3/2

l 0 1 1 2

1/2 1/2 3/2 3/2
0 1 1 2

3/2 3/2
1 2

C4vD
[0,0,1]

Fig. 4.4 Block diagonalization of the M matrix in the irrep basis. The case shown is for the
CD

4v group.

Resonance parameters from lattice

As discussed in Sec. 2.2.3, a narrow resonant contribution to tℓ(s = E∗2) can be described4

by a Breit-Wigner (BW) form,

tℓ(s) =
√

sΓ(s)
m2

R − s− i
√

sΓ(s)
, (4.55)

which corresponds to the phase shift

δℓ(s) = arctan
√

sΓ(s)
m2

R − s
. (4.56)

The form of the decay width Γ(s) is chosen according to the decay channel of the scattering
resonance.

4.8 Spectrum interpretation: After taking FV effects

Now that we have discussed the finite volume effects through the Lüscher quantization
condition, we are in a position to resolve the finite volume spectra and understand all energy
levels. As as example, we will discuss a non-trivial case of finite volume spectra from
Ref. [49], in which we have elastic scattering of spin-zero mesons with a S-wave Breit

4Note that a typical Breit-Wigner model does not work for very broad resonance such as the σ and κ scalar
resonances [210].
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Wigner resonant contribution to the scattering amplitude. Thus we can write,

tanδ0 (E⋆) =
E⋆Γ(E⋆)

m2
R −E⋆2 with Γ(E⋆) =

g2

6π

m2
R

E⋆2 q⋆ (4.57)

where E⋆ is the center of mass energy, and q⋆ is the center of mass momentum. We choose
mR to be 1182 MeV and three increasing values of the coupling, g = {1.0,2.0,3.0}. For
a given lattice size L, equating Eqs. (4.50) and (4.57) for A+

1 irrep in the center of mass
frame, we can obtain E⋆ in terms of L for a fixed g. The values of E⋆ are plotted against L in
Fig. (4.5).

In lattice calculations, when we obtain finite volume spectra, it is ambiguous to associate
energy level to a specific particle in the continuum. The behaviour of the spectra can be
summarized as follows:

• Extra energy level: One can notice that at lower coupling, for all L, in the vicinity of
resonant energy, there is always an extra energy level (beyond those expected in the
non-interacting case), which quite often is misinterpreted as the resonance (and a fake
plateau is fitted to it and reported as the resonance mass). But as g increases, that extra
energy moves further away from the resonant energy level, thus resulting in spurious
values.

• Avoided level-crossing: This feature is quite evident at points where the non-interacting
levels intersect the resonant energy level. If we have a particular lattice simulation
at a lattice size L such that at that L, the non-interacting levels intersect the resonant
energy level, the finite volume spectra drift away from the resonant energy level, and
higher the coupling more is the difference from the resonant energy level. Thus, in this
case, assigning the continuum resonance to the extra energy level, would be incorrect.
Another important observation is that the phase shift changes from 0 to π gradually
with an increase in the coupling.

This behaviour shows that we always need to perform the Lüscher analysis to extract infinite
volume resonance parameters from finite volume spectra, in order to avoid erroneously
associating lattice energy levels to the resonance.

Another interesting scenario is that of finite volume spectra near a weakly attractive or
repulsive potential. Taking the same example from Ref. [49] in Fig. 4.6, the phase-shift
equation is tanδ0(q⋆) = a0 q⋆ where a0 is the scattering length.

In Ref. [172] it was shown that the energy shift of the lowest two-particle state is
proportional to −a0

mL3 where a0 is the s-wave scattering length.
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Fig. 4.5 Finite volume energy spectrum in two irreps A+
1 and A1 for a Breit-Wigner resonance

with three values of decay couplings. Plotted is the CM frame energy, E⋆ in MeV, against L in
f m. Scattering particles have mass 300 MeV and Breit-Wigner resonant mass is mR = 1182
MeV. Dashed black curves show non-interacting energy levels, and the gray band at 600
MeV indicates the kinematic threshold. Rightmost panel shows the elastic phase-shift in
degrees. Figure credits [49]
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Fig. 4.6 Finite volume spectrum in a rest-frame irrep and a moving-frame irrep for weak
attractive (green) and repulsive (red) elastic scattering. Non-interacting energy levels are
indicated by the dashed black lines and the gray band shows the kinematic threshold (2mπ ).
Plotted is CM-frame energy, E⋆ in MeV, against L in f m. Scattering particles have mass 300
MeV and the scattering length is |a|= 0.32 f m. Rightmost panel shows the corresponding
elastic phase-shift in degrees. Figure credits [49]

The distinguishing feature of the finite volume spectra for a weakly attractive potential is
the existence of an energy level below the threshold (Ethres. = 2

√
p2 +m2

π) with the phase
shift transitioning from 0 to π/4 very gradually. On the other hand, for the weakly repulsive
potential the phase shift transitioning from 0 to −π/4 very gradually. We can conclude that
qualitatively this behaviour is consistent with the results in Ref. [172].

4.9 Resonance photoproduction

Using the phase shifts computed from the Lüscher formalism, the Lellouch-Lüscher formal-
ism for 1→ 2 in Ref. [51, 155] can be utilized to calculate the electromagnetic transition form
factors. There have been studies on the lattice of transition form factors by calculating 3-point
correlation functions with the electromagnetic current insertion in finite volume, but the
intermediate state was always considered on lattices with pion mass in which it was a stable
hadron [202, 223, 203]. Also another drawback of these calculations is the Maiani-Testa
no-go theorem, according to which there is no simple relation between Euclidean-space
time correlators and the desired Minkowski-spacetime transition matrix elements, whenever
the initial or final states contain multiple hadrons [174]. Going beyond spectroscopy, Lel-
louch and Lüscher also found the relation between finite-volume and infinite-volume 1 → 2
transition matrix elements for the case of the nonleptonic weak decay K → ππ [155]. The
formalism was later extended to include all elastic states below the inelastic threshold [165]
and to moving frames [67], and more recently to multiple coupled two-body channels [129],
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matrix elements of arbitrary external currents with four-momentum transfer [50, 54], and
2 → 2 matrix elements [55] (see also Refs. [183, 32, 66, 4, 80, 5] for related work). This
generalization of the Lellouch Lüscher formula in Ref. [50] came to be known as the Briceno
Walker Loud formalism, which has been conveniently tailored for lattice calculations, as will
be discussed in Sec. 5.2.1.

4.9.1 Transition form factor

Following [50], we can write the relation between the generic finite-volume matrix element
|⟨1;L |Jµ(0)|2;L⟩|, and the infinite-volume matrix element H µ

2,1 = ⟨1 |Jµ(0)|2⟩

|⟨1;L |Jµ(0)|2;L⟩|=

√(
H µ

1,2

)
R
(
H µ

2,1

)
L3
√

2E1
(4.58)

where R is the finite volume residue of the fully-dressed two-hadron propagator defined as,

R
(

E2, P⃗
)
≡ lim

P0→E2

 (P0 −E2)(
I+ itℓ(s)

(
I+ iM P⃗

))
 . (4.59)

It can be observed that the denominator is the Lüscher quantization condition inside the
determinant. Thus, we can carry over the Lüscher formalism results developed in the previous
sections. The infinite-volume matrix element H µ

1,2 can be decomposed in terms of the infinite
volume transition amplitude.
The relation Eq. (4.58) takes into account in a relativistic and model-independent way, for
strong interactions between hadrons in QCD upto corrections which scale like O

(
e−mπ L).

The use of a single insertion of the vector current is accurate upto first order of pertubation
theory in QED. In the next chapter, we discuss the application of this formalism.





Chapter 5

Meson resonances & photoproduction

In the last decade, there have been extensive studies of low-lying meson resonances on the
lattice, starting with the ρ meson [11, 113, 177, 19, 123, 142, 94, 105, 151, 21, 211, 87, 249,
26, 61, 136, 118, 107, 17] that served as the first evidence for the practical applicability of
the Lüscher methodology for extracting resonance parameters. In this chapter we discuss the
implementation of the Lüscher formalism to study ρ resonance in ππ scattering. Further-
more, the ρ resonance parameters obtained are taken as input in the Briceno, Walker, Loud
formalism to extract resonance photoproduction transition form factor and coupling. This
chapter is based on the following two publications:

• C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “P-wave ππ scattering and the ρ resonance from
lattice QCD,” Phys.Rev. D96 (2017) no.3, 034525 [11].

• C. Alexandrou, L. Leskovec, S. Meinel, J. W. Negele, S. Paul, M. Petschlies, A.
Pochinsky, G. Rendon, S. Syritsyn, “πγ → ππ transition and the ρ radiative decay
width from lattice QCD,” Phys.Rev. D98 (2018) no.7, 074502 [12].

5.1 ρ resonance

The simplest QCD-unstable hadron1 is the ρ resonance, which decays into two pions with a
branching ratio of 99.9%. As such, it is considered a benchmark for hadron spectroscopy on
the lattice.

1In the scattering of n QCD-stable hadrons, unstable hadrons correspond to the poles off the real axis as
discussed in Sec. 2.2.2.
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5.1.1 Motivation

The ρ resonance appears as a pole in the I = 1 elastic P-wave ππ scattering amplitude. This
scattering amplitude plays an important role in many Standard Model processes, and its
energy dependence must be determined accurately as part of lattice calculations of matrix
elements involving the ρ [50], such as πγ → ρ(→ ππ) [52, 53] and B → ρ(→ ππ)ℓν̄ℓ.
Because the scattering is elastic, the energy dependence of the scattering amplitude can be
expressed in terms of a single real number, the phase shift. For a simple resonance, such as
the ρ , the phase shift starts near 0 at the threshold, then goes through π/2 when the invariant
mass is near the mass of the resonance and continues toward π as the invariant mass leaves
the resonance region.

While the Maiani-Testa theorem [174] prohibits the extraction of scattering amplitudes
directly from Euclidean correlation functions in infinite volume (except at the threshold),
Lüscher’s method [171] circumvents the basic assumptions of this theorem and takes ad-
vantage of the finite lattice volume. The energy levels of a two-hadron system in a finite
volume are shifted by the interactions between the hadrons. These energy shifts are related
to the infinite-volume scattering matrix via the Lüscher quantization condition [171] as
briefly summarized in the previous chapter. The Lüscher quantization condition provides a
(many-to-one) mapping between the discrete finite-volume multi-hadron spectrum and the
elastic scattering amplitude.

The relation was initially derived in the rest frame, and was extended to moving frames
and coupled-channels in Refs. [216, 149, 67, 129, 122, 51]. Further generalizations to
particles of unequal mass, arbitrary spin, and three-particle systems were given in Refs. [163,
56, 41]. Other methods that have been used to study resonances are the Hamiltonian effective
field theory approach [126], which is similar to the Lüscher method, the HALQCD approach
[139], where the Nambu-Bethe-Salpeter wave function is calculated and used to determine
a potential between two hadrons, and the method of Refs. [179, 14, 13], which relies on a
perturbative interpretation of the mixing of nearby states.

5.1.2 About ππ scattering

In this section we briefly describe the input parameters for elastic ππ P-wave scattering in
the I(JPC) = 1(1−−) channel in the continuum [69].
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From Eq. (2.15), a resonant contribution to the phase shift δℓ which depends on the
invariant mass (s) of the system and the partial wave ℓ of the scattering channel, is given by,

δℓ(s) = arctan
√

sΓ(s)
m2

R − s
. (5.1)

In this work, we consider two different Breit Wigner forms (BW I and BW II) for the ℓ= 1
decay width Γ(s):

• BW I: P-wave decay width:

ΓI(s) =
g2

ρππ

6π

k3

s
, (5.2)

where gρππ is the coupling between the ππ scattering channel and the ρ resonance,
and k is the scattering momentum defined via

√
s = 2

√
m2

π + k2. This form was used
in most previous lattice QCD studies.

• BW II: P-wave decay width modified with Blatt-Weisskopf barrier factors [242]:

ΓII(s) =
g2

ρππ

6π

k3

s
1+(kRr0)

2

1+(kr0)2 , (5.3)

where kR is the scattering momentum at the resonance position and r0 is the radius of
the centrifugal barrier.

In certain cases, for example in P-wave Nπ scattering, the phase shift is known to receive
both resonant and nonresonant (NR) contributions [168]. We also allow for this possibility in
our analysis of ππ scattering and write the full P-wave phase shift as

δ1(s) = δ
BW
1 (s)+δ

NR
1 (s). (5.4)

We investigate three different models for a nonresonant background contribution δ NR
1 :

• NR I: a constant nonresonant phase A:

δ
NR
1 (s) = A. (5.5)

• NR II: a nonresonant phase depending linearly on s:

δ
NR
1 (s) = A+Bs, (5.6)
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where A and B are free parameters.

• NR III: zeroth order nonresonant effective-range expansion (ERE):

δ
NR
1 (s) = arccot

2a−1
1√

s− sthres
, (5.7)

where a−1
1 is the inverse scattering length and sthres = 4m2

π is the ππ threshold invariant
mass.

5.1.3 Lattice parameters

Gauge Ensemble

Table 5.1 Details of the gauge-field ensemble. NL and NT denote the number of lattice
points in the spatial and time directions. The lattice spacing, a, was determined using the
ϒ(2S)−ϒ(1S) splitting. The ensemble was generated with N f = 2+1 flavors of sea quarks
with bare masses amu,d and ams, which lead to the given values of amπ , amN , and amηs . The
ηs is an artificial pseudoscalar ss̄ meson that can be used to tune the strange-quark mass
[78, 83]. The uncertainties given here are statistical only.

C13 MeV
N3

L ×NT 323 ×96
β 6.1

N f 2+1
csw 1.2493097

amu,d −0.285
ams −0.245

Ncon f ig 1041
a [fm] 0.11403(77)
L [fm] 3.649(25)

amπ 0.18295(36) 316.59(62)
amN 0.6165(23) 1066.84(40)
amηs 0.3882(19) 671.77(3.29)
mπL 5.865(32)

ZV 0.7903(2)

The parameters of the lattice gauge-field ensemble are given in Table 5.1. The gluon action
is a tadpole-improved tree-level Symanzik action [233, 231, 232, 172]. We use the same
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clover-improved Wilson action [251, 220] for the sea and valence quarks. The gauge links in
the fermion action are smeared using one level of stout smearing [191] with staple weight
ρ = 0.125. The lattice scale reported in Table 5.1 was determined from the ϒ(2S)−ϒ(1S)
splitting [78, 180] calculated with NRQCD [158] at the physical b-quark mass. The strange-
quark mass is consistent with its physical value as indicated by the ’‘ηs” mass [78, 83].

The pion mass and dispersion relation

0.000 0.025 0.050 0.075 0.100 0.125
(ap)2

0.05

0.10

0.15

(a
E

)2

(aE)2 = (amπ)2 + c2(ap)2

amπ = 0.18295± 0.00036
c2 = 1.0195 ± 0.0086

π dispersion relation

Fig. 5.1 Pion dispersion relation. The pion mass and speed of light determined from the
dispersion relation are consistent with a relativistic dispersion relation with the rest frame
pion energy.

To determine the ρ resonance parameters with the Lüscher method we need to know the
pion dispersion relation. We performed a fit of the pion energies using the form (aE)2 =

(amπ)
2 + c2(ap)2 in the range 0 ≤ p2 ≤ 3(2π/L)2, which yields amπ = 0.18295(36) and

c2 = 1.0195(86). Given that c2 is consistent with 1 within 2%, we use the relativistic
dispersion relation (aE)2 = (amπ)

2 +(ap)2 in the subsequent analysis.

5.1.4 Interpolating fields and two-point functions

We aim to determine the values of the scattering phase shift δ1(s) for many values of s near
the ρ resonance mass. The lattice volume we use (L ≈ 3.6 fm) allows us to obtain a sufficient
number of energy levels in the region of interest from only the single volume combined
with multiple moving frames, P⃗. In this work, we use the moving frames and irreducible
representations (Λ) listed in Table 5.2.
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Table 5.2 The reference frames (i.e., total momenta P⃗), associated Little Groups, and irre-
ducible representations used to determine the multi-hadron spectrum in the I(JPC) = 1(1−−)
channel. For the Little Groups and irreps with give both the Schönflies notation and the
subduction notation in parenthesis. Due to a reduction in symmetry, the Little Group irreps
Λ contain not only JP = 1− states, but also higher J, starting with J = 3. In the channel we
investigate, the J = 3 contributions have been shown to be negligible [93, 87].

P⃗ [2π

L ] Little Group Irrep Λ J
(0,0,0) Oh T−

1 1−,3−, . . .
(0,0,1) D4h (Dic4) A−

2 (A1) 1−,3−, . . .
(0,0,1) D4h (Dic4) E− (E) 1−,3−, . . .
(0,1,1) D2h (Dic2) B−

1 (A1) 1−,3−, . . .
(0,1,1) D2h (Dic2) B−

2 (B1) 1−,3−, . . .
(0,1,1) D2h (Dic2) B−

3 (B2) 1−,3−, . . .
(1,1,1) D3d (Dic3) A−

2 (A1) 1−,3−, . . .
(1,1,1) D3d (Dic3) E− (E) 1−,3−, . . .

Interpolating fields

The spectra in the frames and irreps listed in Table 5.2 are obtained from two-point correlation
functions constructed using two different types of interpolating fields: local single-hadron
quark-antiquark interpolating fields

{
Oq̄q
}

, and two-hadron interpolating fields
{

Oππ

}
.

We choose the quantum numbers JPC = 1−− and I = 1, I3 = 1 (corresponding to the ρ+

resonance2), and write

Oq̄q
(
t, P⃗
)
= ∑

x⃗
d̄(t, x⃗)Γu(t, x⃗)eiP⃗·⃗x , (5.8)

Oππ

(
t, p⃗1, p⃗2

)
=

1√
2

(
π
+(t, p⃗1)π

0(t, p⃗2)−π
0(t, p⃗1)π

+(t, p⃗2)
)
, (5.9)

where P⃗ = p⃗1 + p⃗2, and the single-pion interpolators are given by

π
+(t, p⃗) = ∑

x⃗
d̄(t, x⃗)γ5 u(t, x⃗)eip⃗·⃗x

π
0(t, p⃗) = ∑

x⃗

1√
2

(
ū(t, x⃗)γ5 u(t, x⃗)− d̄(t, x⃗)γ5 d(t, x⃗)

)
eip⃗·⃗x .

We do not include quark-antiquark interpolators with derivatives, as past calculations have
shown that such interpolators do not improve the determination of the spectrum near the ρ

resonance mass region [151].

2Due to the exact isospin symmetry in our lattice QCD calculation all three isospin components ρ+,ρ−,
and ρ0 are degenerate.
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In Eq. (5.8), we use two different Γ matrices, namely γi and γ0γi, which all overlap with
the I(JPC) = 1(1−−) quantum numbers. The single-hadron interpolators are projected to the
finite-volume irreps Λ of the Little Group LG(P⃗) for the momentum P⃗ using

OΛ, P⃗
q̄q (t) =

dim(Λ)

NLG(P⃗)
∑

R̂∈LG(P⃗)

χΛ(R̂)R̂Oq̄q(t, P⃗), (5.10)

where dim(Λ) is the dimension of the irrep, NLG(P⃗) is the order of the Little Group, and

χΛ(R̂) is the character of R̂ ∈ LG(P⃗) [185].
The second interpolator type, Eq. (5.9), is built from products of two single-pion interpo-

lators as discussed in Sec. 4.2.2, and projected to the irrep Λ of the Little Group. In this case,
the projection proceeds through the formula given in Ref. [94]:

OΛ, P⃗
ππ (t) =

dim(Λ)

NLG(P⃗)
∑

R̂∈LG(P⃗)

χΛ(R̂)
(

π
+(t, P⃗/2+ R̂p⃗)π

0(t, P⃗/2− R̂p⃗)

−π
0(t, P⃗/2+ R̂p⃗)π

+(t, P⃗/2− R̂p⃗)
)
, (5.11)

where

p⃗ =
P⃗
2
+

2π

L
m⃗, m⃗ ∈ Z3. (5.12)

An alternative method to construct the interpolators is the subduction method [187, 86, 214],
which gives the same types of interpolators as we find with the projection method.s

We use the schematic notation O1 for quark-antiquark interpolators with γi, O2 for
quark-antiquark interpolators with γ0γi, and O3, O4 for two-pion interpolators with the
m⃗ = (0, 0,±1) and m⃗ = (0,±1,±1) possible p⃗ in the given irrep.

Wick contractions

The correlation matrix CΛ,P⃗
i j (t) is obtained from the interpolators defined above as

CΛ,P⃗
i j (t f − ti) = ⟨OΛ,P⃗

i (t f )OΛ,P⃗
j (ti)†⟩ , (5.13)

where ti is the source time and t f is the sink time. The correlation matrix elements are
expressed in terms of quark propagators by performing the Wick contractions (i.e., by
performing the path integral over the quark fields in a given gauge-field configuration). The
resulting quark-flow diagrams are shown in Fig. 5.2 (for the case I = 1 considered here,
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further disconnected diagrams3 cancel due to exact isospin symmetry). In this section, we
use the generic notation q̄q for the i = 1,2 interpolators and ππ for the i = 3,4 interpolators
to describe our method.

q̄q ππ

q̄q

d̄Γiu d̄Γiu

d̄γ5u

ūγ5u

d̄Γiu

ππ

d̄γ5u

ūγ5u

d̄Γiu

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

Fig. 5.2 The Wick contractions corresponding to the correlation matrix elements of type
Cq̄q−q̄q (upper-left corner), Cππ−q̄q (lower-left corner), Cdirect

ππ−ππ and Cbox
ππ−ππ (lower-right

corner). The source location for the forward propagator is shown with a black circle around
the interpolating field, while a dotted circle indicates a sequential source. The red lines
indicate sequential propagators and the blue lines indicate stochastic all-to-all propagators.
The lower left diagram is not computed directly, and is instead obtained as the conjugate of
the upper right diagram.

The diagrams in Fig. 5.2 are obtained from point-to-all propagators, sequential prop-
agators and stochastic timeslice-to-all propagators as discussed in Sec. 4.3.1. The signal
enhancement methods implemented are:

a. Smearing: To enhance the dominance of the lowest lying states contributing to a
correlator we apply source and sink smearing to the propagator types listed above: for all
inversions of the Dirac matrix we replace D−1 →W

[
UAPE

]
D−1W

[
UAPE

]†, where W
[
UAPE

]
denotes the Wuppertal-smearing operator [124] using an APE-smeared gauge field [6] with
the parameters n = 25, αAPE = 2.5. Since the source and sink smearing is always applied,
we will not denote it explicitly.

b. Coherent sequential sources: In order to increase the available statistics for a fixed
number of gauge configurations we calculate all correlators for 8 equidistant source locations
separated in time by T/8 and with spatial source coordinates independently and uniformly
sampled over the spatial lattice. We then take results from all source locations and average
over them.

3These refer to the type of Wick contractions where a contraction line originating from a source goes back
to the same source i.e. sink is the source.
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To reduce the computational cost for the sequential propagators, we insert 2 point-to-all
propagators into a single sequential source before inverting the Dirac matrix on the latter:

Sseq = D−1
ξseq, (5.14)

ξseq(t, x⃗) = Γeip⃗·⃗x
(

δ
t,t(0)i

S f
(
t(0)i , x⃗; t(0)i , x⃗i

)
+δ

t,t(1)i
S f
(
t(1)i , x⃗; t(1)i , x⃗i

))
,

where t(1)i = t(0)i +T/2 mod T .

The correlation matrix is then built from these propagators as follows:

a. q̄q− q̄q correlators: The typical 2-point correlator with a single-hadron interpolator at
source and sink is constructed using point-to-all propagators:

Cq̄q−q̄q(t f − ti; p⃗ f ,Γ f ; p⃗i,Γi) =−∑
x⃗ f

Tr
(
(γ5 S f (t f , x⃗ f ; ti, x⃗i)γ5)

†̃

×Γ f S f (t f , x⃗ f ; ti, x⃗i)Γi
)
eip⃗ f ·⃗x f+ip⃗i ·⃗xi . (5.15)

Above, ( )†̃ denotes the Hermitian adjoint with respect to only spin-color indices. We use
the convention p⃗ f =−p⃗i.

The direct diagram of the Cππ−ππ correlation function is the product of two of the
previous correlators with Γi = γ5 = Γ f . However, translational invariance allows only one of
the x⃗i to be fixed. To perform the sum over x⃗i, we use the one-end-trick and define

Cq̄q−q̄q,oet(t f − ti;Γ f , p⃗ f ;Γi, p⃗i) =− ∑
α,β

∑
x⃗ f

(Γiγ5)αβ φti,0,β (t f , x⃗ f )
†̃

γ5 Γ f

×φti,p⃗i,α(t f , x⃗ f )eip⃗ f ·⃗x f , (5.16)

where φti,0,β and φti,p⃗i,α are the spin-diluted stochastic timeslice-to-all propagators from
Eqs. (4.17) and (4.20). The stochastic-sample index r is suppressed for brevity.

b. ππ − q̄q correlators: The only contribution to the I = 1 correlators with a two-pion
interpolator at the source and a single-hadron interpolator at the sink reads

Cq̄q−ππ(t f − ti;Γ f , p⃗ f ; p⃗i1, p⃗i2) =−∑
x⃗ f

Tr
(
S f (t f , x⃗ f ; ti, x⃗i1)

†̃
γ5 Γ f

×Sseq(t f , x⃗ f ; ti, p⃗i2; ti, x⃗i1)
)

eip⃗ f ·⃗x f+ip⃗i1 ·⃗xi1 , (5.17)
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where Sseq is the sequential propagator from Eq.(5.14).

c. ππ −ππ correlators: The direct diagram in the lower right panel of Fig. 5.2 is obtained
as the product of two q̄q− q̄q correlators as

Cdirect
ππ−ππ(t f − ti; p⃗ f1, p⃗ f2 , p⃗i1, p⃗i2) =Cq̄q−q̄q(t f − ti;γ5, p⃗ f1;γ5, p⃗i1)

×Cq̄q−q̄q,oet(t f − ti;γ5, p⃗ f2;γ5, p⃗i2) . (5.18)

The box-type diagram in the lower right panel of Fig. 5.2 requires point-to-all, sequential,
and stochastic propagators and is calculated in two steps:

Cbox
ππ−ππ(t f − ti, p⃗ f1, p⃗ f2 , p⃗i1, p⃗i2) =− 1

Nsample

Nsample

∑
r=1

∑
α,a

η
r
φ

(
t f , ti; p⃗ f1 ; x⃗i1

)a
α

×η
r
ξ

(
t f , ti; p⃗ f2, p⃗i2; x⃗i1

)a
α

eip⃗i1 ·⃗xi1 , (5.19)

where

η
r
ξ

(
t f , ti; p⃗ f2, p⃗i2 ; x⃗i1

)
= ∑

x⃗ f2

ξ
r
t f
(t f , x⃗ f2)

†̃
γ5 ×Sseq

(
t f , x⃗ f2; ti, p⃗i2 ; ti, x⃗i1

)
eip⃗ f2 ·⃗x f2 (5.20)

and

η
r
φ

(
t f , ti; p⃗ f1; x⃗i1

)
= ∑

x⃗ f1

S f (t f , x⃗ f1; ti, x⃗i1)
†̃ ×φ

r
t f ,0(t f , x⃗ f1)eip⃗ f1 ·⃗x f1 . (5.21)

In Eqs. (5.19), (5.20) and (5.21) we used γ5-Hermiticity of the quark propagator as well as
Γi j = γ5 = Γ f j , j = 1,2.

The ππ-ππ elements of the correlation matrix are constructed as

Cππ−ππ(t f − ti; p⃗ f1, p⃗ f2 , p⃗i1, p⃗i2) =
1
2

Cdirect
ππ−ππ(t f − ti; p⃗ f1 , p⃗ f2 , p⃗i1, p⃗i2)

−Cbox
ππ−ππ(t f − ti; p⃗ f1 , p⃗ f2, p⃗i1, p⃗i2). (5.22)

5.1.5 Spectrum results

We extract the energy levels EΛ, P⃗
n from the correlation matrices using two alternative meth-

ods. The first method, discussed in Sec. 5.1.5, is the variational analysis, also known as
the generalized eigenvalue problem (GEVP). The second method, discussed in Sec. 5.1.5,
employs multi-exponential fits directly to the correlation matrix.
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Variational analysis

We checked the GEVP spectrum for t0/a ∈ [2,9] and found that the central values are
independent of t0 within statistical uncertainties. We set t0/a = 3 for our main analysis,
which minimizes the overall statistical noise. The chosen fit types, fit ranges, corresponding
χ2 values, the energies, and other derived quantities are presented in Table 5.3. The operator
basis used is O1234 in all irreps except E, where we only use O123 because the energy level
dominantly overlapping with O4 is too far above the region of interest.

For each quantity y, the first uncertainty given is the statistical uncertainty, obtained from
single-elimination jackknife. The second uncertainty is the systematic uncertainty, estimated
using the prescription

σ
sys
y = max

(
|y′avg − yavg|,

√
|σ ′2

y −σ2
y |
)
, (5.23)

where yavg and σy are the central value and statistical uncertainty for the chosen fit range
specificed in Table 5.3, and y′avg, σ ′

y are the central value and statistical uncertainty obtained
with tmin/a increased by 1.
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Table 5.3 GEVP results for the energy levels. We set t0/a = 3 and use the one-exponential
form in Eq. (4.32) to fit the principal correlators. O1234 represents O1, O2, O3 and O4
interpolators have been utilized to construct the correlation matrix. The Fit Range column

denotes [ tmin
a , tmax

a ]. Also shown are the corresponding center-of-mass energy
√

sΛ, P⃗
n and

extracted phase shift δ1

(√
sΛ, P⃗

n

)
where n denotes the label on the energy levels from lowest

to the highest. The last column indicates whether the energy level is used our global analysis
of ππ scattering (see Sec. 5.1.7).

L
2π
|P⃗| Λ Basis n Fit range χ2

dof aEΛ, P⃗
n a

√
sΛ, P⃗

n δ1 [
◦] Included

0 T1 O1234 1 8-18 0.82 0.4588(16)(12) 0.4588(16)(12) 86.0(1.6)(1.2) Yes
0 T1 O1234 2 8-18 0.66 0.5467(16)(9) 0.5467(16)(9) 166.5(2.1)(1.3) Yes
0 T1 O1234 3 7-15 1.54 0.6713(41)(104) 0.6713(41)(104) 172.9(4.7)(168.1) No
1 A2 O1234 1 8-18 0.61 0.44536(73)(23) 0.39974(82)(25) 2.81(25)(9) Yes
1 A2 O1234 2 8-18 1.04 0.5124(20)(17) 0.4732(22)(18) 131.3(1.9)(1.6) Yes
1 A2 O1234 3 9-16 0.69 0.5983(31)(37) 0.5652(33)(39) 6.1(7.1)(8.3) No
1 E O123 1 8-18 1.43 0.5004(18)(14) 0.4603(20)(16) 93.7(1.7)(1.3) Yes
1 E O123 2 8-17 1.37 0.6136(25)(24) 0.58134(27)(26) 166.3(2.8)(2.7) Yes√
2 B1 O1234 1 8-18 1.23 0.5041(13)(10) 0.4207(16)(12) 8.84(89)(68) Yes√
2 B1 O1234 2 8-17 1.09 0.5557(26)(27) 0.4814(30)(31) 144.9(2.3)(2.4) Yes√
2 B2 O1234 1 8-18 0.56 0.5189(15)(11) 0.4384(18)(13) 19.9(1.7)(1.2) Yes√
2 B2 O1234 2 8-18 1.18 0.5634(26)(23) 0.4902(30)(27) 152.0(2.6)(2.4) Yes√
2 B2 O1234 3 8-16 1.28 0.6717(40)(49) 0.6116(44)(54) 158(14)(17) No√
2 B3 O1234 1 9-18 0.97 0.5376(38)(34) 0.4603(45)(39) 99.1(3.5)(3.1) Yes√
2 B3 O1234 2 9-18 1.15 0.6573(43)(49) 0.5958(48)(54) 174(15)(172) No√
2 B3 O1234 3 8-14 0.82 0.6780(67)(88) 0.6185(74)(96) 167.0(5.6)(6.9) No√
3 A2 O1234 1 8-18 0.68 0.5538(35)(49) 0.4371(44)(62) 15.5(3.4)(4.8) Yes√
3 A2 O1234 2 8-16 1.41 0.5905(35)(39) 0.4827(43)(48) 149(11)(13) Yes√
3 A2 O1234 3 8-16 1.10 0.6093(49)(50) 0.5055(59)(60) 156.5(7.5)(14.4) No√
3 E O123 1 8-16 0.71 0.5641(37)(41) 0.4501(47)(50) 44.4(5.0)(5.3) Yes√
3 E O123 2 7-16 0.72 0.6195(33)(54) 0.5178(39)(64) 160.6(3.3)(5.4) Yes
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Matrix fit analysis

4 8 12 16 20
t/a

10−7
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10−3
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2
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π L

ij

χ2

dof = 1.04

i = 1, j = 1

i = 1, j = 3

i = 1, j = 4

i = 3, j = 3

i = 3, j = 4

i = 4, j = 4

Fig. 5.3 Sample matrix fit with Nstates = 3 for |P⃗| = 2π

L ,Λ = A2 in the range between
tmin/a = 8 and tmin/a = 20.

An example matrix fit is shown in Fig. 5.3. In the matrix fits, we excluded the interpolating
fields O2, which are very similar to O1 and did not provide useful additional information. For
each (Λ, P⃗), we performed either 3×3 matrix fits (including O1, O3, O4) with Nstates = 3 or
2×2 matrix fits (including O1 and O3) with Nstates = 2. We set tmax = 20 and varied tmin. The
matrix fit results for aEΛ,P⃗

n are shown as the black diamonds in the right panels of Figs. 5.4
and 5.5. We observe that the results for all extracted energy levels stabilize for tmin ≳ 8.

Comparison between GEVP and MFA

The results obtained from the GEVP and the MFA are compared in Figs. 5.4 and 5.5. The
left panels show the effective energy

aEn
e f f (t) = ln

λn(t, t0)
λn(t +a, t0)

(5.24)
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of the GEVP principal correlators, while the right panes show the fit results aEn
f it from both

the GEVP and the MFA as a function of tmin (we did not find any significant dependence on
tmax). For the GEVP, we show both one- and two-exponential fits using Eqs. (4.32) and (4.34).
We find that the one-exponential GEVP fit results are very similar (both in central value and
uncertainty) to the MFA results, except for the n = 3 energy level of the |P⃗|=

√
22π

L ,Λ = B1

correlation matrix where the principal correlator obtained from the GEVP with the basis
O1234 does not show a plateau and we do not extract this energy level. Surprisingly, we found
that removing the second quark-antiquark operator O2 from the basis yields a stable plateau
and stable fit results for the n = 3 energy level, as shown in Fig. 5.6. Note that O2 ∼ q̄γ0γiq
has a very similar structure as O1 ∼ q̄γiq. For n = 1 and n = 2, the one-exponential fit results
for the chosen tmin/a = 8 change by less than 0.5σ when removing O2. We also performed
additional GEVP fits with a reduced basis in all other irreps, and found that none of the fitted
energies changed significantly (in fact, the reduced basis gives slightly larger uncertainties in
most cases). Given that the n = 3 energy in the B1 irrep is above the 4π and KK̄ thresholds,
we do not use this energy level in our further analysis.
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Fig. 5.4 Comparison between MFA and GEVP for the momentum frames and irreps L
2π
|P⃗|=

0,1,
√

2 and Λ = T1,A2,E,B1, respectively. The green circles on the left panel show the
effective energies En

e f f determined from the principal correlators. In the right panel we
present the fitted energies as they depend on the choice of tmin. Black diamonds are obtained
from MFA, red squares are obtained from the single exponential fits to the principal correlator
[see Eq. (4.32)], and blue circles are from two-exponential fits to the principal correlator
[see Eq. (4.34)]. Note that not all two-exponential fits are shown, as they can become
unstable. The red horizontal bands give the 1σ statistical-uncertainty ranges of the selected
one-exponential GEVP fits listed in Table 5.3.
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Fig. 5.5 As in Fig. 5.4, but for L
2π
|P⃗|=

√
2,
√

3 and Λ = B2,B3,A2,E.

Finally, we note that the two-exponential fits to the GEVP principal correlators find
plateaus at much smaller tmin but are significantly noisier compared to the MFA and one-
exponential GEVP fits. Overall, we have shown that the MFA and GEVP methods are
equivalent, and we use the one-exponential GEVP fit results given in Table 5.3 in our further
analysis. These results are also indicated with the red bands in Figs. 5.4 and 5.5.
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Fig. 5.6 Comparison between MFA and GEVP for the B1 irrep with |P⃗| =
√

22π

L as in
Fig. 5.4, but with O2 removed from the basis for the GEVP.

5.1.6 The Lüscher analysis: formalism

Even though we have some energy levels with quite large invariant mass (see Table 5.3),
we limit our energy region of interest below 0.55a−1 where we are safely away from the
4π (≈ 0.73) and KK̄ (≈ 0.6) thresholds [64] and can safely perform the elastic scattering
analysis of the Lüscher method.

The quantization condition for elastic ππ scattering is

det
(
1+ itℓ(s)(1+ iM P⃗)

)
= 0, (5.25)

where tℓ(s) is the infinite-volume scattering amplitude, which is related to the infinite-volume
scattering phase shift δℓ(s) via Eq. (4.44). The quantization condition (5.25) then reduces to
the following equations for each P⃗ and Λ:
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The scattering analysis can be performed in two different ways, and in this work we
present a comparison between the methods:

• In the first approach, Eqs. (5.26) are used to map each individual energy level (sΛ,P⃗
n )

to the corresponding value of the scattering phase shift δ1(s
Λ,P⃗
n ). One then fits a

phase-shift model to the extracted values of δ1(s
Λ,P⃗
n ).

• In the second approach, a model for the t-matrix is fitted directly to the spectrum
via the quantization condition [119]. This method has proven to be quite successful
in recent years [86–88, 250, 249, 89, 48]. Unlike the first approach, the t-matrix fit
method is also well-suited for more complicated coupled-channel analyses.
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5.1.7 The Lüscher analysis: results

Direct fits to the phases

The discrete P-wave phase shifts determined for several P⃗,Λ are listed in Table 5.3 with to
the invariant masses.

We then fit the models described in Sec. 5.1.2 to the phase shift points.
To correctly estimate the uncertainties of the model parameters, we include the uncertain-

ties in both
√

s and δ1 in the construction of the χ2 function. To this end, we define

χ
2 = ∑

P⃗,Λ,n
∑

P⃗′,Λ′,n′
∑

i∈
{√

sΛ,P⃗
n , δ1(s

Λ,P⃗
n )

} ∑

j∈
{√

sΛ′,P⃗′
n′ , δ1(s

Λ′,P⃗′
n′ )

}(yavg
i − fi)[C−1]i j(y

avg
j − f j), (5.27)

where i and j are generalized indices labeling both the data points for
√

s and δ1. The
covariance matrix C is therefore a 2N × 2N matrix, where N = 15 is the total number of
energy levels included in the fit (see the last column of Table 5.3). For i corresponding to a
√

s data point, the function fi is equal to a nuisance parameter
√

sΛ,P⃗
n ; for i corresponding to a

δ1 data point, the function fi is equal to the phase shift model evaluated at the corresponding√
sΛ,P⃗

n . The total number of parameters in the fit is thus equal to N plus the number of
parameters in the phase shift model.

When constructing the covariance matrix, we included the correlations between all
invariant-mass values and the correlations between all phase-shift values. We found that
the covariance matrix becomes ill-conditioned when including also the cross-correlations
between

√
s and δ1 as expected when dealing with fully correlated data. We therefore,

neglect these contributions in the evaluation of χ2. The cross-correlations are nevertheless
accounted for in our estimates of the parameter uncertainties, which are obtained by jackknife
resampling.
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Fig. 5.7 Comparison of fitting BW I versus fitting BW II to the phase shift data. The bands
indicate the 1σ statistical uncertainty.

Table 5.4 Comparison of the parameters for the resonant BW I and BW II.

Model χ2

dof amρ gρππ (ar0)
2

BW I 0.571 0.4599(19)(13) 5.76(16)(12)
BW II 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)

The fit of the simplest possible model, BW I, is shown as the blue curve in Fig. 5.7 and
the resulting parameters mρ and gρππ are given in the first row of Table 5.4. As before, the
first uncertainty given is statistical, and the second uncertainty is the systematic uncertainty
arising from the choice of tmin. To obtain the latter, we repeated the Breit-Wigner fit for the
phase shifts extracted with tmin +a for all energy levels, and then applied Eq. (5.23) to mρ

and gρππ . We follow the same procedure for all other models.
We then investigate the effect of adding the Blatt-Weisskopf barrier factors [242] to

the decay width appearing in the Breit-Wigner parametrization of δ1(s), which leads to
model BW II. The resulting fit is shown as the red curve in Fig. 5.7 (alongside the blue
BW I curve) and the resulting parameters are given in the second row of Table 5.4. The
BW II model appears to give a slightly better description of the data at high invariant mass,
but the parameters mρ and gρππ are essentially unchanged. Furthermore, the centrifugal
barrier radius r0 is consistent with zero at the 1.1σ level, indicating that it is not a very
significant degree of freedom. We note that this could be related to the high pion mass used
in our calculation, which limits the phase space available for the decay and suppresses the
centrifugal barrier effect.
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Fig. 5.8 Contribution of nonresonant background models as described in Sec. 5.1.2 to the
resonant Breit-Wigner BW I.

Table 5.5 Parameters of the phase shift model combining the resonant Breit-Wigner model
BW I and various nonresonant models.

Model χ2

dof amρ gρππ

NR I 0.586 0.4600(19)(13) 5.74(17)(14) A = 0.16(31)(18)◦

NR II 0.488 0.4602(19)(13) 5.84(21)(20) A =−2.9(2.7)(3.4)◦ a−2B = 19.2(16.6)(20.1)◦

NR III 0.552 0.4601(19)(13) 5.74(16)(13) aa−1
1 =−19.8(27.4)(98.1)

We continue by investigating whether there is a nonresonant contribution to the scattering
phase shift. We first add a nonresonant contribution to the resonant model BW I. In Fig. 5.8
we compare the resonant-only fit (blue curve) with the full fits for three different forms
of the nonresonant contributions (red curves). For clarity, we also show the nonresonant
contributions obtained from the full fits separately (orange curves). The fit results are given
in Table 5.5. We find that the parameters of each of the three parametrizations NR I (constant
phase), NR II (a nonresonant phase depending linearly on s), and NR III (zeroth-order
Effective Range Expansion4 are consistent with zero, and the results for mρ and gρππ also
do not change significantly.

4Defined as δ NR
1 = cot−1

(
−2a√
s−sthres

)
where a is the inverse scattering length
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Fig. 5.9 Contribution of nonresonant background models as described in Sec. 5.1.2 to the
resonant Breit-Wigner model BW II. None of the background phase shift models shows a
strong sign of deviation away from 0.

Table 5.6 Parameters of the phase shift model combining the resonant Breit-Wigner model
BW II and various nonresonant models.

Model χ2

dof amρ gρππ (ar0)
2

NR I 0.470 0.4599(19)(26) 5.83(20)(21) 15.8(23.5)(1825.8) A =−0.28(0.73)(12.56)◦

NR II 0.452 0.4596(20)(14) 5.77(21)(20) 107.0(440.9)(631.0) A = 1.3(4.5)(5.3)◦ a−2B =−19.8(16.0)(17.0)◦

NR III 0.421 0.4595(18)(8) 5.78(20)(9) 109.7(128.7)(117.6) aa−1
1 = 2.4(1.7)(2.4)

Performing the analogous analysis for the resonant model BW II gives the phase shift
curves shown in Fig. 5.9 and fit parameters in Table 5.6. Again, the parameters of the non-
resonant contribution are consistent with zero, and mρ and gρππ do not change significantly.
When adding the nonresonant contributions to the BW II model, the uncertainty of the
centrifugal barrier parameter r0 increases substantially.

Overall, we find that the minimal resonant model BW I is sufficient for a good description
of our results for the elastic I = 1 ππ P-wave scattering.

Fitting a t-matrix to the spectrum

For the t-matrix fit to the spectrum, we define the χ2 function as
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Fig. 5.10 Comparison of t-matrix fit and fit to the phase shifts for Breit-Wigner models I and
II.

Table 5.7 Comparison of t-matrix fits with direct fits to the phase shifts.

Fit type χ2

dof amρ gρππ (ar0)
2

BW I Fit to δ1 0.571 0.4599(19)(13) 5.76(16)(12)
BW I t-matrix fit 0.374 0.4609(16)(14) 5.69(13)(16)
BW II Fit to δ1 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)
BW II t-matrix fit 0.318 0.4603(16)(14) 5.77(13)(13) 9.6(5.9)(3.7)
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(√
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[avg]

−
√

sΛ′,P⃗′
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,

(5.28)

where the invariant-mass values
√

sΛ′,P⃗′
n′

[model]
are obtained by solving the inverse Lüscher

problem, i.e. determining the finite-volume spectrum from a given t-matrix model [119, 87].
Above, C is the matrix of covariances between all invariant-mass values labeled by P⃗,Λ,n (in
our case, this is a 15×15 matrix). The only fit parameters in this approach are the parameters
of the t matrix (for example, amρ and gρππ for the BW I model).

When fitting the t-matrix directly to the spectrum we consider only the two resonant
models, as results from Sec. 5.1.7 show no indication of a nonresonant phase contribution.
The parameters obtained from the t-matrix fits are compared to the parameters of the direct
fits to the phase shifts in Table 5.7. The plots of the models with parameters from the two
different fit approaches are compared in Fig. 5.10. The central values and uncertainties
obtained with the two methods are consistent, which confirms previous findings [119, 87]
that the two approaches are equivalent not only theoretically but also in practice. We note
that the values of χ2/dof are generally quite small. We have tested for the presence of
autocorrelations in the data using binning but found no significant effect.

Final result for the ρ resonance parameters

Given the discussion in the previous sections, we choose to quote the results of the t-
matrix fit with the resonant Breit-Wigner model BWI as our final values of amρ and gρππ

for the ensemble of gauge configurations used here [with amπ = 0.18295(36) and amN =

0.6165(23)]:

amρ = 0.4609(16)(14) 1.0 0.326

gρππ = 5.69(13)(16) 1.0

 . (5.29)

The phase shift curve of our chosen fit is shown in Fig. 5.11. Above, the first uncertainties
given are statistical, and the second uncertainties are the systematic uncertainties related
to the choice of tmin in the spectrum analysis. Also given in Eq. (5.29) is the statistical
correlation matrix for amρ and gρππ . The exponentially suppressed finite-volume errors in
mρ and gρππ are expected to be of order O(e−mπ L) ≈ 0.3%. Given that we have only one
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Fig. 5.11 Final result of fitting the resonant model BW I to the spectrum via the t-matrix fit.
The gray data points are the results of the individual phase shift extractions for each energy
level, and are not used in the t-matrix fit.

lattice spacing, we are unable to quantify discretization errors (except in the pion dispersion
relation, Sec. 5.1.3, where we find c2 to be consistent with 1 within 2%). Using the lattice
spacing determined from the ϒ(2S)−ϒ(1S) splitting (see Table 5.1), we obtain

mπ = 316.6(0.6)stat(2.1)a MeV,

mρ = 797.6(2.8)stat(2.4)sys(5.4)a MeV,

gρππ = 5.69(13)stat(16)sys. (5.30)

It is important to note that the lattice spacing uncertainty given here is statistical only. As
a consequence of the heavier-than-physical pion mass and lattice artifacts, different quantities
used to set the scale of an individual ensemble yield different results for a and hence for mπ

and mρ in units of MeV. We therefore prefer to report the dimensionless ratios

amπ

amN
= 0.2968(13)stat ,

amρ

amN
= 0.7476(38)stat(23)sys, (5.31)

in which the lattice scale cancels.
In Fig. 5.12 we compare our results for the ρ coupling and mass with the results of

previous studies performed by the CP-PACS collaboration (CP-PACS ’07) [19], the ETMC
collaboration (ETMC ’10) [94], the PACS-CS collaboration (PACS-CS ’11) [21], Lang et al.
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(Lang et al. ’11) [151], the Hadron Spectrum collaboration (HadSpec ’12 and HadSpec ’15)
[87, 249], Pellisier et al. (Pellisier et al. ’12) [211], the RQCD collaboration (RQCD ’15)
[26], Guo et al. (Guo et al. ’16) [118], Bulava et al. (Bulava et al. ’16) [61], and Fu et al. (Fu
et al. ’16) [107]. In the right half of the figure, we use the values of mπ and mρ in MeV as
reported in each reference. In the left half of the figure, we instead use the dimensionless
ratios amπ/amN and amρ/amN , where amπ and amN are the pion and nucleon masses in
lattice units computed on the same ensemble as amρ . The nucleon masses were obtained
from Refs. [192, 9, 166, 82, 152, 20, 27, 236].

We find that our value for the coupling gρππ is in good agreement with previous studies
both as a function of mπ and amπ/amN . Furthermore, it is consistent with the general
finding that gρππ has no discernible pion-mass dependence in the region between mπ,phys

and approximately 3mπ,phys.
Concerning the results for the ρ mass, the left and right panels Fig. 5.12 show very

different behavior. This discrepancy arises from the different methods used to set the
lattice scale on a single ensemble, which can lead to misleading conclusions. To avoid the
substantial ambiguities associated with the scale setting, we only consider the dimensionless
ratio amρ/amN in the following discussion.

The N f = 2+1 results for amρ/amN obtained with Wilson-Clover-based fermion actions
all approximately lie on a straight line leading to the experimental value (shown as the filled
green circle in Fig. 5.12). The N f = 2+1 data points using staggered fermions (Fu et al. ’16)
are consistent with that line except for one outlier.

The N f = 2 results are dispersed around the N f = 2+1 values in both directions. The
discrepancies between the different results could arise from any of several systematic effects,
such as excited-state contamination in the determination of the ππ spectrum or the nucleon
mass, various potential issues in fitting the data, and discretization errors which manifest
themselves for example in deviations from the relativistic continuum dispersion relation for
the single-pion energies. Additionally, the Lüscher method only addresses power-law finite
volume effects and does not take into account the exponentially suppressed finite-volume
effects which are estimated to scale asymptotically as O(e−mπ L). Note that for some of the
studies, these can be as high as O(10%) and it is thus not clear whether the asymptotic regime
is reached. An example for systematics associated with the pion dispersion relation can be
seen in the CP-PACS ’07 study, where the two different results for amρ at the same pion
mass were obtained using either the relativistic continuum dispersion relation or a free-boson
lattice dispersion relation. An example of systematic effects that might be associated with
the data analysis can be seen when comparing the Pellisier et al. ’12 results with the Guo
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Fig. 5.12 Comparison of our results for the ρ mass and coupling with previous lattice
QCD calculations. In the two left panels, we use the dimensionless ratios amρ/amN and
amπ/amN , while in the two right panels we use mπ and mρ in MeV as reported by each
collaboration (with different scale setting methods; the error bars do not include the scale-
setting ambiguities). The open red symbols mark calculations with N f = 2 gauge ensembles,
while the filled blue symbols denote calculations with N f = 2+1 sea quarks; the only study
so far that explicitly included the KK̄ channel, HadSpec ’15, is presented as a purple upward
facing triangle. The results of our present work are shown with filled black hexagons. In the
left-hand plots, the HadSpec ’15 results are offset horizontally by −1.8% so that they do not
overlap with the result of Bulava et al. ’16. In the right-hand plots, we offset our results by
−8 MeV to avoid overlap with Guo et al. ’16. The experimental values [207], where gρππ

was calculated from Γ using Eq. (5.2), are shown with filled green circles.
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et al. ’16 results at amπ/amN ≈ 0.3. Both studies used the same ensemble, but arrive at
significantly different values for the ρ resonance parameters.

Keeping these caveats in mind, it is nevertheless interesting to note that our N f = 2+1
results for both amρ/amN and gρππ agree well with the recent N f = 2 results from Guo et
al. ’16 at almost the same pion mass. This suggests that the effects of the dynamical strange
quark are small at mπ ≈ 320 MeV. The HadSpec ‘15 study, which explicitly included the KK̄
channel in their valence sector, provides further evidence that the strange quark does not play
a major role in the ρ resonance mass.

5.2 ππ → πγ transition & ρ radiative decay

The ρ resonance parameters determined on the lattice can be extended using the Briceno,
Hansen, Walker-Loud formalism to calculate the transition form factors for photoproduction
and the ρ resonant photocoupling as discussed in Sec. 4.9,

5.2.1 Introduction

A concise introduction to resonance photoproduction in lattice QCD has been discussed
in Sec. 4.9. The first numerical calculations involving the Lellouch-Lüscher formalism
were performed for K → ππ , providing an ab-initio Standard-Model prediction of direct CP
violation in this process [44, 140, 25]. More recently, the generalization of the formalism
by Briceño, Hansen, and Walker-Loud (BHWL) [50] was applied by the Hadron Spectrum
Collaboration to compute the πγ → ππ amplitude, with the ππ system in a P-wave, as
a function of photon virtuality and ππ invariant mass [52, 53]. This amplitude describes
ρ photoproduction and radiative decay [197, 150], and also plays an important role in
dispersion relations used to calculate the hadronic contributions to the anomalous magnetic
moment of the muon [134, 133, 72, 121]. Various theoretical aspects of the πγ → ππ process
have also been discussed in Refs. [235, 37, 16, 237, 128, 145, 135]. As far as the finite-
volume formalism is concerned, the πγ → ππ amplitude in the ρ resonance region is one
of the simplest 1 → 2 processes to study on the lattice, because the ππ scattering is almost
completely elastic in the relevant energy region.

In this section, we perform a lattice QCD calculation of the πγ → ππ transition building
upon Sec. 5.1 on ππ scattering. In contrast to the original Lellouch-Lüscher approach to the
nonleptonic K → ππ decay, where the lattice parameters need to be tuned such that the final
and initial hadronic states have equal energy, the BHWL formalism enables us to obtain the
πγ → ππ amplitude for all ππ energy levels and arbitrary momentum transfer.
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5.2.2 The πγ → ππ process

The resonance photoproduction process πγ → ρ is obtained from the more general process
πγ → ππ , where the final ππ state is in P-wave and couples strongly to the ρ resonance with
isospin I = 1, I3 = 1 and JPC = 1−−. Throughout this section (except where stated otherwise),
we allow the photon to be virtual, but continue to denote it as just γ . The ππ photoproduction
is described by the continuum infinite-volume matrix element ⟨ππ|Jµ(0)|π⟩, which is con-
structed from the initial state |π⟩, the insertion of the QED current Jµ (defined without the
factor of e) and the final state |ππ⟩ with I = 1 and four-momentum P = (

√
s+ P⃗2, P⃗). The

latter is projected to the P-wave, so that it couples to the ρ resonance, where the polarization
of the system is described by εν(P,m) [68]. Due to Lorentz symmetry, the matrix element
decomposes like

⟨ππ|Jµ(0)|π⟩= 2iVπγ→ππ(q2,s)
mπ

ε
νµαβ

εν(P,m)(pπ)αPβ , (5.32)

where q = pπ −P is the photon four-momentum transfer. Above, the current is taken in
position space, and the single-pion state is normalized as

⟨π, p⃗ ′
π |π, p⃗π⟩= 2E p⃗π

π (2π)3
δ

3(p⃗π − p⃗ ′
π). (5.33)

The P-wave two-pion states with polarization m are given by

|ππ,
√

s, P⃗,1,m⟩

=
1√
4π

∫
d̂⃗kcm Y ∗

1m(
̂⃗kcm)|ππ,

√
s, P⃗,̂⃗kcm⟩, (5.34)

where |ππ,
√

s, P⃗,̂⃗kcm⟩ is a two-pion state with total momentum P⃗, relative momentum

direction unit vector ̂⃗kcm in the center-of-momentum frame, and invariant mass
√

s. These
states are normalized according to

⟨ππ,
√

s′, P⃗′, ̂⃗k′cm|ππ,
√

s, P⃗,̂⃗kcm⟩
= 2E1 (2π)3 2E2 (2π)3

δ
3(⃗k− k⃗′)δ 3(P⃗− k⃗− P⃗′+ k⃗′),

(5.35)
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where E1 and E2 are the individual pion energies,

E1 =

√
m2

π + k⃗2, (5.36)

E2 =

√
m2

π +(P⃗− k⃗)2. (5.37)

These normalizations of states imply that the matrix element Eq. (5.32) is dimensionless and
that Vπγ→ππ has units of MeV−1. Notice that there is no explicit ρ label in the amplitude; this
is because the ρ is not a QCD asymptotic state, but rather a resonance in P-wave ππ scattering
with I = 1 associated with the pole in the scattering amplitude Tππ→ππ at sP ≈ m2

R − imRΓR.
The transition amplitude Vπγ→ππ depends on both the photon four-momentum transfer q2 and
the ππ invariant mass s. As discussed in Sec. 2.2.4, we write the photoproduction amplitude
Vπγ→ππ(q2,s) as

Vπγ→ππ(q2,s) =

√
16π

kΓ(s)
F(q2,s)

cotδ (s)− i

=

√
16π

kΓ(s)
F(q2,s)sinδ (s)eiδ (s), (5.38)

where the form factor F(q2,s) no longer has a pole in s, and becomes equal to the photo-
coupling gρπγ for s = m2

R + imRΓR and q2 = 0. More generally, we define the resonant form
factor for arbitrary photon virtuality as

Fπγ→ρ(q2) = F(q2, m2
R − imRΓR). (5.39)

We consider two physically observable quantities we can determine from |⟨ππ|Jµ(0)|π⟩|.
The first is the πγ → ππ cross section as a function of ππ invariant mass, which in the
center-of-momentum frame is given by [52]

σ(πγ → ππ;s,q2) =
e2

16π
k |p⃗π |

4|Vπγ→ππ(q2,s)|2
m2

π

. (5.40)

This cross section can be measured at q2 = 0, i.e., with a real photon. A second physically
observable quantity is related to the ρ resonance, which appears in the ππ system. The ρ

radiative decay width Γ(ρ → πγ) is determined by the photocoupling gρπγ = F(0,m2
R −
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imRΓR) as [206]

Γ(ρ → πγ) =
2
3

α

(
(m2

ρ −m2
π)

2mρ

)3 |gρπγ |2
m2

π

. (5.41)

5.2.3 Correlation functions

To determine the finite-volume matrix elements we are interested in, we need to compute
two-point functions for the single-pion system (JPC = 0−+, I = 1, I3 = 1) and for the two-
pion system (JPC = 1−−, I = 1, I3 = 1), as well as three-point functions with an insertion
of the electromagnetic current. The generalized eigenvectors obtained in the spectroscopic
analysis of the two-point functions are then used to construct optimized three-point functions.
The construction of two-point functions has already been discussed in Sec. 5.1.4.

The current insertion that represents the interactions between the photon and the hadrons
depends on the photon momentum q⃗, which combined with the initial and final state momenta
satisfies momentum conservation: P⃗+ q⃗− p⃗π = 0. For the current insertion operator we use

Jµ(tJ, q⃗) = ∑
x⃗

ei⃗q·⃗xJµ(tJ, x⃗), (5.42)

with the local current

Jµ(tJ, x⃗) = ZV

(2
3

ū(tJ, x⃗)γµu(tJ, x⃗)−
1
3

d̄(tJ, x⃗)γµd(tJ, x⃗)
)
. (5.43)

The renormalization coefficient ZV was determined in Ref. [114] and is listed in Table 5.1.
The three-point correlation functions are then obtained from the sink/source interpolators

and current insertion as

C p⃗π , P⃗,Λ,r
3, µ,i (tπ , tJ, tππ) = ⟨Op⃗π

π (tπ)Jµ(tJ, q⃗)OP⃗,Λ,r †
i (tππ)⟩, (5.44)

where tππ is the source time, tJ is the current insertion time and tπ is the sink time. The three-
point function is expressed in terms of quark propagators by evaluating Wick contractions.
Fig. 5.13 shows the quark-flow diagrams needed to calculate the C p⃗π , P⃗,Λ,r

3, µ,i three-point
functions. The current-disconnected diagrams labeled (a) and (b), i.e. the diagrams where
the quarks flow go from the current Jµ directly back to the current Jµ , are omitted in this
study. For the case of nucleon electromagnetic form factors, such current-disconnected
contributions are known to be of order 1% for the quark masses used here [115].

The Wick contractions depicted in Fig. 5.13 are constructed from point-to-all, sequential
and stochastic time-slice propagators defined in Sec. 4.3.1. In this section, we will use short
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(a)
Jµ

d̄Γiud̄γ5u

Jµ
(b)

d̄γ5u

ūγ5ud̄γ5u

(c) Jµ

d̄Γiud̄γ5u

(d) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(e) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(f) Jµ
ūγ5u

d̄γ5u

d̄γ5u

Fig. 5.13 The different topologies of Wick contractions that make up the three-point function
C p⃗π , P⃗,Λ,r

3, µ,i (tπ , tJ, tππ).

hand four-vector notation (x) instead of explicit spatial and temporal indices (t, x⃗). The tech-
nique builds upon and extends the scheme used in Sec. 5.1.4 for the construction of two-point
correlation functions. This combination of propagator types is optimized considering flexi-
bility to construct all required diagrams, minimal input of stochastic noise into correlation
functions and economy in the cost of producing quark propagators and contractions.

The quark propagator loops of the connected diagrams (c) and (d) in Fig. 5.13 are closed
using the stochastic time-slice propagator from current vertex Jµ to pion vertex d̄ γ5 u at
sink. Based on the application of point-to-all and stochastic propagator these diagrams are
factorized into elementary contractions. For diagram (c), we have

Tr
(
S f (xi;xJ)γµ S(xJ;x f )γ5 S(x f ;xi)Γi

)
= E

[
ηφ (xJ)

a
α ηξ (x f )

b
β

]
δ

ab (Γi γ5)βα
, (5.45)

ηφ (xJ) = S f (xJ;xi)
†

γ5γµ φtπ (xJ) ,

ηξ (x f ) = ξ
r
tπ (x f )

†
γ5 S f (x f ;xi),

where in our implementation, ηφ ,ξ are contracted, Fourier transformed and stored separately
as ηφ (tJ, q⃗) and ηξ (tπ , p⃗π) for each stochastic sample. Subsequently they are used to recom-
bine the diagram for all required momenta q⃗, p⃗π as well as any vertex Γi and P⃗ at the source.
Diagram (d) follows analogously by promoting the point-to-all propagator S f (x f ;xi) in Eq.
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(5.45) to a sequential propagator,

Tr
(
S f (xi1;xJ)γµ S(xJ;x f )γ5 S(x f ;xi2)×

γ5 eip⃗i2 x⃗i2 S f (xi2;xi1)Γi
)

(5.46)

= E
[
ηφ (xJ)

a
α ηξ (x f )

b
β

]
δ

ab (Γi γ5)βα
,

ηφ (xJ) = S f (xJ;xi1)
†

γ5γµ φtπ (xJ) ,

ηξ (x f ) = ξ
r
tπ (x f )

†
γ5 Sseq(x f ; tππ ,γ5, p⃗i2;xi1) .

For diagram (e) in Fig. 5.13, the one-end-trick setup in Eq. (4.21) leads to the factorization
of the diagram,

Tr
(
S f (xi1;xJ)γµ S(xJ;xi2)eip⃗i2 x⃗i2

× γ5 S(xi2;x f )γ5 S f (x f ;xi1)Γi
)

(5.47)

= E
[
η
(λ )
φ

(xJ)α η
(λ )

φ̄
(x f )β

]
(Γi γ5)βα

,

η
(λ )
φ

(xJ) = S f (xJ;xi1)
†

γ5γµ φtππ ,p⃗i2 ,λ
(xJ) ,

η
(λ )

φ̄
(x f ) = φtππ ,0,λ (x f )

† S f (x f ;xi1) .

Finally, diagram (f) is calculated as the product of propagator loop traces using again the
one-end-trick,

Tr
(
S(xi2;xJ)γµ S(xJ;xi2)γ5

)
eip⃗i2 x⃗i2

×Tr
(
S f (xi1;x f )γ5 S f (x f ;xi1)Γi

)
(5.48)

= E
[
φtππ ,0,λ (xJ)

†
γ5γµ φtππ ,p⃗i2 ,λ

]
×Tr

(
S f (x f ;xi1)

† S f (x f ;xi1)Γi γ5
)

All quark propagators are smeared at their source and sink side in the same way as in
Sec. 5.1.4.
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5.2.4 Optimized three-point functions

The spectral decomposition of the three-point function C p⃗π , P⃗,Λ,r
3, µ,i (tπ , tJ, tππ), keeping as before

only the ground-state contribution for the pion (for large tπ − tJ), is

C p⃗π , P⃗,Λ,r
3, µ,i (tπ , tJ, tππ)

= ∑
n

Z p⃗π

π Zn, P⃗,Λ†
i ⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV

× e−E p⃗π
π (tπ−tJ)e−E P⃗,Λ

n (tJ−tππ )

2E P⃗,Λ
n 2E p⃗π

π

. (5.49)

For the ππ system we want to project to the n-th state. This will allow us to have a definite

invariant mass,
√

sP⃗,Λ
n , and momentum transfer, (q2)p⃗π

n,P⃗,Λ
= (E P⃗,Λ

n −E p⃗π

π )2− q⃗2, in our matrix
element. To achieve this we utilize the orthogonality between the generalized eigenvectors
and overlap factors from Sec. 5.1.55,

vnP⃗,Λ
i (t0)ZmP⃗,Λ†

i =

√
2E P⃗,Λ

n eE P⃗,Λ
n t0/2

δnm, (5.50)

and construct the optimized three-point function [85, 34, 223]

Ω
p⃗π , P⃗,Λ,r
3, µ,n (tπ , tJ, tππ , t0)

= vnP⃗,Λ
i (t0)C p⃗π , P⃗,Λ,r

3, µ,i (tπ , tJ, tππ)

= ⟨Op⃗π

π (tπ)Jµ(tJ, q⃗)On, P⃗,Λ,r(tππ , t0)⟩. (5.51)

This gives

Ω
p⃗π , P⃗,Λ,r
3, µ,n (tπ , tJ, tππ , t0)

=

√
2E P⃗,Λ

n eE P⃗,Λ
n t0/2 Z p⃗π

π ⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗,Λ,r⟩FV

× e−E p⃗π
π (tπ−tJ)e−E P⃗,Λ

n (tJ−tππ )

2E P⃗,Λ
n 2E p⃗π

π

, (5.52)

and we see that the optimized three-point function overlaps only to the single definite state
|n; P⃗,Λ,r⟩.

5Note that this choice depends on the normalization of the generalized vectors [cf. Eq. (4.31)].
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5.2.5 Determining the finite volume matrix elements

To extract the finite-volume matrix elements ⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV from the correlation
functions, we construct the ratio

Rp⃗π , P⃗,Λ,r
µ,n (tπ , tJ, tππ) =

Ω
p⃗π , P⃗,Λ,r
3, µ,n (tπ , tJ, tππ , t0)Ω

p⃗π , P⃗,Λ,r †
3, µ,n (tπ , t ′, tππ , t0)

C p⃗π

π (∆t)λ
P⃗,Λ
n (∆t, t0)

, (5.53)

where C p⃗π

π is the pion correlator, λ
P⃗,Λ
n is the principal correlator of the variational analysis,

∆t = tπ − tππ is the source-sink separation, and t ′ = tππ + tπ − tJ . The t0 dependence of the
optimized three-point function cancels with the t0 dependence of the principal correlator.
Inserting Eq. (5.52) into Eq. (5.53) gives (for large time separations)

Rp⃗π , P⃗,Λ,r
µ,n (tπ , tJ, tππ) =

|⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV |2

4E P⃗,Λ
n E p⃗π

π

. (5.54)

The matrix elements determined from Eq. (5.53) still contain residual excited-state con-
tamination that decays exponentially for large ∆t, tJ − tππ , and tπ − tJ . We have data for
∆t/a = 8,10,12. There are several ways to proceed from this point on:

1) Set tJ − tππ = ∆t/2 and fit only the ∆t dependence of the matrix element with an
excited-state model, as for example in Ref. [81],

2) Fit both the ∆t and tJ − tππ dependence with an excited-state model,

3) Fit constants to the ratios (assuming that only the desired initial and final states
contribute), varying the time ranges to assess residual contamination.

We found that options 1) and 2) did not yield stable fits, because we have too few source-sink
separations and the statistical uncertainties are too large. We therefore use option 3), where
we investigate whether the various fits are statistically compatible, and estimate a systematic
uncertainty associated with the fit choice. In Fig. 5.14 we present results for the matrix
elements |⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV | at representative kinematic points (plots for the other
kinematic points are shown in the Appendix of Ref. [12]. As explained in the caption of
the figure, we perform fits for many different time ranges and then choose one that appears
to have plateaued for further analysis. To estimate the systematic uncertainty associated
with the fit range for the ratio, we compute the change in the central value when going from
the chosen fit to ∆t/a = 10, as marked with an X in Fig. 5.14. As a cross-check, we also
tested an alternative method for extracting the matrix elements, in which we did not use
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ratios, but fitted the three-point functions of Eq.(5.52) after dividing out the time dependence
and overlap factors. That method gives results consistent with the ratio method. Because
the ratio of Eq.(5.54) also depends on the energies E P⃗,Λ

n , we additionally include a second
systematic uncertainty associated with the choice of the fit range used in the spectrum analysis
of Sec. 5.1.5. The numerical results for all kinematic points are listed in the Appendix of
Ref. [12]. There, both systematic uncertainties have been added in quadrature to the statistical
uncertainties.
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Fig. 5.14 Examples of results for the finite-volume matrix elements
|⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV |. The left three panels show the data as a function of
tJ − tππ for the three different source-sink separations. The right panels show the fitted values
for multiple different fit ranges, which are indicated at the bottom. There, the first set of
numbers are the included source-sink separations, and the second set of numbers are the
distances from the mid-point that are included for each of these source-sink separations.
The blue bands show the chosen fit result, and the half-crosses mark the fits that are used to
estimate systematic uncertainties. The values of χ2/dof are also given. The quantity denoted
as LD is the kinematic factor appearing next to 2iVπγ→ππ/mπ in Eq. (5.32).
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.

5.2.6 Mapping from finite volume to infinite volume

Lellouch-Lüscher factors

The mapping between a finite-volume matrix element |⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV | calcu-
lated on the lattice and the corresponding infinite-volume matrix element
|⟨π, p⃗π |Jµ(0)|s,q2; P⃗, Λ, r⟩IV |, for our normalization of states, is [155, 50, 54, 66]

|⟨π, p⃗π |Jµ(0)|s,q2; P⃗, Λ, r⟩IV |2
|⟨π, p⃗π |Jµ(0, q⃗)|n, P⃗, Λ, r⟩FV |2

=
1

2E P⃗,Λ
n

16π

√
sP⃗,Λ

n

kP⃗,Λ
n

(
∂δ

∂E
+

∂φ P⃗,Λ

∂E

)∣∣∣∣
E=E P⃗,Λ

n

. (5.55)

Note that the current in the infinite-volume matrix element is evaluated in position space
at x⃗ = 0, while the current in the finite-volume matrix element is projected to momentum
q⃗. The energy-dependence of the ππ P-wave scattering phase shift δ has to be determined
from the Lüscher analysis on the same lattice. We use our Breit-Wigner fits from Sec. 5.1.7,
as already discussed in Sec. 5.2.2. The function φ P⃗,Λ in Eq. (5.55) appears in the Lüscher
quantization condition as

cotδ = cotφ
P⃗,Λ = ∑

l,m
c P⃗,Λ

lm wlm(k2
P⃗,Λ), (5.56)

where wlm is defined as

wlm(k2) =
ZP⃗

lm

(
1;(kL/(2π))2)

π3/2
√

2l +1γ( kL
2π
)l+1

, (5.57)

with the generalized zeta function ZP⃗
lm and the Lorentz gamma factor γ . The quantization

conditions for cotφ P⃗,Λ used are discussed in Sec. 5.1.6; the nonzero factors cP⃗,Λ
lm appearing

in elastic P-wave ππ scattering are also listed in Table 5.8. The right-hand side of Eq. (5.55),
known as the Lellouch-Lüscher factor, depends on the ππ system’s momentum P⃗, irreducible

representation Λ, invariant mass
√

sP⃗,Λ
n , and scattering momentum kP⃗,Λ

n . In Fig. 5.15 we
show the Lellouch-Lüscher factors as a function of invariant mass. Calculating the derivative
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L
2π

P⃗ Λ (l,m) cP⃗,Λ
lm

(0,0,0) T1 (0,0) 1
(0,0,1) A2 (0,0) 1

(2,0) 2
E (0,0) 1

(2,0) −1
(0,1,1) B1 (0,0) 1

(2,0) 1
2

(2,1) i
√

6

(2,2) −
√

3
2

B2 (0,0) 1
(2,0) 1

2
(2,1) −i

√
6

(2,2) −
√

3
2

B3 (0,0) 1
(2,0) −1
(2,2)

√
6

(1,1,1) A2 (0,0) 1

(2,1) −i
√

8
3

(2,2) −
√

8
3(Re + Im)

E (0,0) 1
(2,0) i

√
6

Table 5.8 Nonzero values of clm appearing in the quantization condition for elastic P-wave

ππ scattering. Above, the term with Re and Im means −
√

8
3(Re[w22]+ Im[w22]).

∂φ P⃗,Λ

∂E in practice means that we must calculate the derivative of wlm(k2):

∂φ P⃗,Λ

∂E
=

s2 − (m2
1 −m2

2)
2

2
√

s3
1

1+ cot2 φ P⃗,Λ

×∑
l,m

clm
∂wlm(k2)

∂k2 , (5.58)

where m1, m2 are the two hadron masses; in the case of ππ scattering m1 = m2 = mπ . In the
rest frame, the derivative of Zlm is again a zeta function:

∂

∂ k̂2
ZP⃗=⃗0

lm (s; k̂2) = sZP⃗=⃗0
lm (s+1; k̂2). (5.59)
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Since this does not hold in moving frames, we compute the derivative numerically.
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Fig. 5.15 The Lellouch-Lüscher factors as a function of invariant mass, for the momentum
frames and irreps used here. The thick black lines show the non interacting Lellouch-Lüscher
factors (without the phase-shift derivative). The thin blue lines and dashed red lines show the
full Lellouch-Lüscher factors, using the BW I and BW II models Sec. 5.1.2 for the scattering
phase shift. The bands indicate the statistical uncertainties.

In Fig. 5.15 we can see that the two different models for the phase shift δ , BW I and
BW II, are statistically compatible. Nevertheless, we use both Breit-Wigner models in our
analysis to quantitatively assess this.

The fitting systematic uncertainties in E P⃗,Λ
n enter in the Lellouch-Lüscher factors not only

via the explicit factor of E P⃗,Λ
n in Eq. (5.55), but also through the phase-shift parametrization

fitted to these energies via the Lüscher quantization condition. In Sec. 5.1.5, we estimated the
systematic uncertainties in E P⃗,Λ

n by comparing the results of exponential fits with start times
tmin and tmin +a. To correctly propagate these uncertainties to the Breit-Wigner parameters,
we then performed the Lüscher analysis and the Breit-Wigner fits for both sets of energies.
In the present work, we therefore also repeat the mappings of the πγ → ππ matrix elements
(and the subsequent analysis) for both sets of Breit-Wigner parameters.
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Lorentz decomposition of the infinite-volume matrix elements

The infinite-volume matrix elements ⟨s,q2; P⃗, Λ, r|Jµ(0, q⃗)|π, p⃗π⟩IV obtained from Eq. (5.55)
still carry the finite-volume irrep indices P⃗, Λ, r. The infinite-volume states ⟨s,q2; P⃗, Λ, r| are
linear combinations of the states labeled by the continuum polarization index m in Eq. (5.34).
The coefficients of these linear combinations are given by the irrep projection formula
Eq. (4.2). We form the same linear combinations of the polarization vectors on the right-hand
side of Eq. (5.32) to obtain the irrep-projected form-factor decompositions. Taking this into
account, we can determine the values of the infinite-volume transition amplitude Vπγ→ππ .

5.2.7 Fitting the amplitude V πγ→ππ

Parametrization of the infinite-volume transition amplitude

To allow the calculation of observables, the transition amplitude Vπγ→ππ(q2,s) determined
with lattice QCD at 48 discrete values of q2 and s needs to be fitted to an analytic parametriza-
tion. In Sec. 5.2.2, we factored out the ρ pole in s according to Watson’s theorem,

Vπγ→ππ(q2,s) =
F(q2,s)

m2
R − s− i

√
sΓi(s)

√
16πsΓi(s)

k
. (5.60)

What remains is the transition form factor F(q2,s), which should not have any additional
poles in s in our region of interest. To obtain a model-independent parametrization of F(q2,s),
we perform a two-dimensional Taylor expansion in the variables

S =
s−m2

R

m2
R

(5.61)

and

z =

√
t+−q2 −√

t+− t0√
t+−q2 +

√
t+− t0

, (5.62)

after dividing out the lowest expected pole in q2:

F(q2,s) =
1

1− q2

m2
P

∑
n,m

AnmznS m. (5.63)

The variable S was chosen to be dimensionless and small near the resonance. The definition
of z maps the complex q2 plane, cut along the real axis for q2 > t+, to the interior of the unit
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circle [46, 47, 45, 35, 36, 182]. The constant t0 determines which value of q2 is mapped to
z = 0; we choose t0 = 0. The constant t+ should be set to the lowest branch point. For the
QED current, the branch cut starts at (3mπ)

2 and the lowest pole is located at m2
ω . However,

because we neglect the disconnected contributions, we use t+ = (2mπ)
2 and mP = mρ .6 Anm

are the parameters to be filled.
In practice, the series in Eq. (5.63) needs to be truncated. We organize these truncations

into three different families:

F1) Combined order K:

F(q2,s) =
1

1− q2

m2
P

∑
n+m≤K

AnmznS m, (5.64)

F2) Order N in z, combined order K:

F(q2,s) =
1

1− q2

m2
P

N

∑
n=0

K−n

∑
m=0

AnmznS m, (5.65)

F3) Order N in z, order M in S :

F(q2,s) =
1

1− q2

m2
P

N

∑
n=0

M

∑
m=0

AnmznS m. (5.66)

The first two families, F1 and F2, cut the series at the combined z and S order, while the
third family F3 separately specifies the orders in z and S . In the limit of large K, N, M, all
parametrizations become equal.

In the construction of χ2, we take into account the uncertainties in all z and s values by
promoting these values to nuisance parameters, like we did (for the s values) in Sec. 5.1.7.
The covariance matrix, which we estimate using single-elimination jackknife, is therefore
a 3Ndata × 3Ndata matrix, where Ndata = 48 is the number of kinematic points. We added
the systematic uncertainties associated with the choices of fit ranges in the matrix element
fits and spectrum fits in quadrature to the diagonal elements of the covariance matrix. The
uncertainties of the best-fit parameters are obtained from the Hessian of χ2 at the minimum.

6Because m2
P > t+, it is not actually necessary to factor out the pole, but there is no harm in doing so.
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The fit results

For each of the different families of parametrizations F1-F3 we investigate several fits while
keeping the power of z below 3, and power of S below 4. We find that when the z-expansion
goes to order n = 3 or higher, the additional parameters are consistent with zero and no longer
contribute to the description of the data; similarly, for the S expansion, at order m = 4 the
parameters become statistically consistent with zero. We drop all parametrizations yielding
fit parameters with uncertainties larger than 100 times their central values. We also remove
parametrizations that lead to χ2

dof > 1.1, which includes those that are of 0-th order in the
z-expansion.

We name the parametrizations according to the type of Breit-Wigner, family of truncation,
and truncation limits. The parametrizations that survive the cuts are consistent with each
other within the uncertainties, and we choose “BWII F1 K2” as our nominal parametrization.

In Fig. 5.16 we present the fitted Vπγ→ππ combined with the data points in a three-
dimensional plot as a function of

√
s and q2. Fig. 5.17 instead shows a top-down view as a

density plot, where the discrete values of
√

s allowed by the finite volume for which we have
results appear as vertically aligned points.
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Fig. 5.16 Three-dimensional plot of the transition amplitude Vπγ→ππ (in lattice units) as a
function of

√
s and q2. The lattice QCD results are shown as the vertical bars, where the

widths and depths correspond to the uncertainties in a
√

s and a2q2, and the magenta sections
at the tops cover the range from Vπγ→ππ −σVπγ→ππ

to Vπγ→ππ +σVπγ→ππ
. Data points with

larger uncertainty are plotted with reduced opacity. The surface shows the central value of
the nominal fit function (“BWII F1 K2”).
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Fig. 5.17 Density plot of the fitted transition amplitude Vπγ→ππ (in lattice units, nominal
parametrization “BWII F1 K2”) in the a

√
s and (aq)2 plane. The locations of the discrete

lattice QCD data points are indicated by the orange points with error bars.

The slices of the fitted amplitude at these discrete values of
√

s are plotted as a function
of q2 in Fig. 5.18, where the upper panel shows the slices with

√
s ≥ mR while the lower

panel shows the slices with
√

s < mR. We can see that the parametrization describes both the√
s and q2 dependence of the data well.
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Fig. 5.18 The transition amplitude Vπγ→ππ (in lattice units, nominal parametrization “BWII
F1 K2”), sliced by value of invariant mass

√
s, as a function of q2. The shaded bands

correspond to the 1σ regions of the fitted parametrizations; their colors and brightness match
the data points at the same a

√
s, as indicated by the symbols in the legend.
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Fig. 5.19 The transition amplitude Vπγ→ππ as a function of the ππ invariant mass, for three
different values of q2. The top panel corresponds to the nominal parametrization “BWII F1
K2”, and the bottom panel corresponds to the parametrization “BWI F1 K2”.

Qualitatively, we can see two main features in Vπγ→ππ : the amplitude is falling off as q2

decreases, and shows the expected enhancement in
√

s attributed to the ρ resonance. The
amplitude vanishes at the threshold 2mπ , then rises and falls steeply as the resonance region
is crossed. This can also be seen in Fig. 5.19, where we plot Vπγ→ππ as a function of the
invariant mass for three different values of q2. In this figure, we show plots for both the
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nominal parametrization “BWII F1 K2” and for the parametrization “BWI F1 K2” that does
not include the Blatt-Weisskopf barrier factor. At large

√
s, these parametrizations show

some deviation. Nevertheless, for both parametrizations, the falloff of the amplitude at large√
s is slower than what would be expected for purely resonant behavior, indicating that the

πγ → ππ transition probability remains sizable even when the invariant mass is far above
the resonance position. This is also reflected in Figs. 5.20 and 5.21, where we plot the
function F(q2,s) that does not contain the Breit-Wigner factor. The slow falloff of Vπγ→ππ

as a function of
√

s corresponds to growing F . The other parametrizations show the same
behavior, confirming a nontrivial s-dependence of the function F(q2,s).

Fig. 5.20 Like Fig. 5.16, but for the function F(q2,s). The data points are divided by the
central value of the Breit-Wigner factor (cf. Eq. ((2.18))) to represent the same quantity.



120 Meson resonances & photoproduction

0.40 0.45 0.50 0.55

a
√
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
(q

2
,s

)

(aq)2 = 0.05

(aq)2 = −0.05

0.40 0.45 0.50 0.55

a
√
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
(q

2
,s

)

(aq)2 = 0.0

Fig. 5.21 The form factor F(q2,s), as a function of the ππ invariant mass, for two different
nonzero values of q2 (top) and for q2 = 0 (bottom). Plotted is the central value of the nominal
parametrization “BWII F1 K2” along with the two uncertainties: the inner (darker) shaded
region represents the statistical and systematical uncertainties, and the outer (lighter) region
includes also the parametrization uncertainty, estimated as the root-mean-square deviation of
the central values obtained from the different parametrizations with respect to the nominal
one.
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5.2.8 Observables

As discussed in Sec. 5.2.2 we consider two main observable quantities, both with a real
photon (q2 = 0): the πγ → ππ cross section and the ρ radiative decay width. The πγ → ππ

cross section of Eq. (5.40) evaluated with our nominal parametrization “BWII F1 K2” of
Vπγ→ππ(s,q2 = 0) is shown in Fig. 5.22. Note that we evaluated Eq. (5.40) using the heavier-
than-physical pion mass of this ensemble, mπ ≈ 320 MeV. Because the ρ resonance is
narrower than in nature, the peak value of the cross section is higher [53].
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Fig. 5.22 The two-pion photoproduction cross section as a function of the ππ invariant mass,
computed with the nominal parametrization “BWII F1 K2” of the amplitude, for our pion
mass of mπ ≈ 320 MeV. The inner (darker) shaded region indicates the statistical and sys-
tematic uncertainties, and the outer (lighter) shaded region also includes the parametrization
uncertainty, estimated as explained in the caption of Fig. 5.21.

To determine the ρ radiative decay width, Γ(ρ → πγ), we must first determine the
photocoupling gρπγ , which requires us to analytically continue the transition amplitude
Vπγ→ππ to the pole position. The resulting resonant form factor Fπγ→ρ(q2), defined in
Eq. (5.39), is presented in Fig. 5.23. We find that the imaginary part of the resonant form
factor is consistent with zero, and the real part slowly rises as a function of q2. The resonant
form factor at q2 = 0 is equal to the photocoupling, gρπγ = Fπγ→ρ(0). Our results for gρπγ ,
now for all fourteen amplitude parametrizations that gave good fits, are shown in Fig. 5.24.
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Fig. 5.23 The real and imaginary parts of the resonant form factor Fπγ→ρ(q2) obtained
by analytically continuing the nominal parametrization “BWII F1 K2” of the πγ → ππ

amplitude to the ρ resonance pole. The inner (darker) shaded region indicates the statis-
tical and systematic uncertainties, and the outer (lighter) shaded region also includes the
parametrization uncertainty, estimated as explained in the caption of Fig. 5.21.
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Fig. 5.24 The ρ meson photocoupling determined from the fourteen different parametriza-
tions of the πγ → ππ amplitudes. The bands indicate the value and uncertainties obtained
from the nominal parametrization “BWII F1 K2”, where the outer (lighter) band includes
(added in quadrature) the root-mean-square deviation between all parametrizations and the
chosen one.

We find that the photocouplings extracted from the different parametrizations are consis-
tent with each other. Nevertheless, we estimate a systematic uncertainty associated with the
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choice of parametrization as √
N

∑
i=1

(xi − xchosen)2

N −1
, (5.67)

where xi is the photocoupling determined from the i-th parametrizations, N = 14 is the
number of different parametrizations, and xchosen is the value obtained from the nominal
parametrization, “BWII F1 K2”. Our final result for the photocoupling is

|gρπγ |= 0.0802(32)(20), (5.68)

where the first uncertainty includes the statistical uncertainty and the systematic uncertainty
from the two-point and three-point function fits, while the second uncertainty is our estimate
from Eq. (5.67) of the parametrization dependence.

The kinematic factors in Eq. (5.41) lead to a strong pion-mass dependence of the ρ

radiative decay width. We can calculate the decay width for the physical pion mass under the
assumption that the pion-mass dependence of the photocoupling is negligible. This gives

Γ(ρ → πγ) = 84.2(6.7)(4.3)keV, (5.69)

where we used mρ = 775 MeV and mπ = 140 MeV. For comparison, the experimental value
of the ρ± radiative decay width is 68(7) keV [206].

5.2.9 Conclusion

All in all, we have determined the transition amplitude Vπγ→ππ(q2,s) with few-percent
uncertainty in a broad kinematic region around the ρ pole in invariant mass s and around
zero momentum transfer q2, using model-independent parametrizations based on a series
expansion in the variables z and S , defined in Eqs. (5.62) and (5.61). The results obtained
from several different truncations of the series are consistent with each other. One important
remark on our results is that although we have observed the expected enhancement of the
amplitude associated with the ρ resonance, but we find that for large

√
s the amplitude falls

off slower than the expected for a purely resonant behavior. In our analysis, we compared
two different Breit-Wigner parametrizations of the ππ scattering phase shift (with and
without a Blatt-Weisskopf barrier factor). These parametrizations yield consistent results for
Vπγ→ππ(q2,s) in most of the kinematic range, but differ for large

√
s.

By analytically continuing Vπγ→ππ(q2,s) to the ρ pole, we have also determined the
πγ → ρ resonant form factor and the ρ photocoupling. All truncations of the series used for
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Vπγ→ππ(q2,s), and both Breit-Wigner functions, lead to consistent results for the photocou-
pling, as can be seen in Fig. 5.24. Our final result for this coupling is |gρπγ |= 0.0802(32)(20),
which is 1.6σ above the value extracted from the measured ρ± radiative decay width [206]
using Eq. (5.41), |gρπγ |exp = 0.0719(37). Most of the past lattice studies of this quantity
[253, 77, 203, 223] were performed in the single-hadron approach, in which the coupling of
the ρ to the ππ system is not taken into account. In literature, till now the only other calcu-
lation of transition form factor and photocoupling of Refs. [52, 53] used the multi-hadron
approach at a pion mass of approximately 400 MeV and obtained a value of |gρπγ | around
0.12, as can be seen in Fig. 12 of [53].



Chapter 6

Towards ∆ Resonance &
photoproduction

The study of the ρ-meson presented in Chapter 5 has allowed us, beyond providing an
up-to-date estimate of the ρ-meson transition form-factor and decay-width, to develop the
formalism and methodology for the study of resonances using lattice QCD. With this as a
stepping stone, we will explore more complex 2 → 2 scattering systems. In this chapter, we
build the two and three-point correlation functions with projected interpolators needed to
study the lowest lying baryon resonance, the ∆ and present some preliminary results for the
GEVP spectra, as part of an on-going program for the study of resonance properties in the
meson-baryon system.

6.1 ∆ resonance

Here we explore nucleon-pion scattering in the I = 3/2 and JP = 3/2+ channel where the
lowest-lying baryon resonance, the ∆(1232), is located. This resonance has a mass of ≈ 1210
MeV and a decay width of Γ∆→Nπ ≈ 117 MeV [207]. The I = 3/2 P-wave Nπ channel is
the dominant decay mode, with a branching fraction of 99.4%. The PDG only lists one other
decay mode - Nγ with a branching fraction 0.6%. The process is almost completely elastic
[222], but nearby inelastic resonances with similar quantum numbers could have a small
contribution on the phase shift that needs to be taken into account in the analysis.

Previous studies of the ∆ coupling to the Nπ channel have used the Michael-McNeile
method to determine the coupling [14] as well as the Lüscher method [181, 239, 18]. With
either method, compared to the ρ-meson study of Chapter 5, the main challenge is the more
complex quark contractions involved. A main component of this thesis has been to develop
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an efficient methodology for computing the quark correlation functions for the Nπ/∆ system,
which we will highlight in this Chapter.

Gauge Ensemble

The parameters of the lattice gauge-field ensemble used in our study of the ∆-resonance
are given in Table 6.1. The gluon action is a tadpole-improved tree-level Symanzik action
[233, 231, 232, 172] and the fermionic action is 2+1 flavors of tree-level improved Wilson-
clover action [251, 220]. The gauge links in the fermion action are smeared using two
levels of HEX smearing [90]. The lattice scale reported in Table 6.1 was determined mass-
independently from the physical values of the ratios mπ/mΩ and mK/mΩ. The s quark
masses are tuned to have a mass close to physical. This ensemble was chosen because the
mstable

∆
> mπ +mN (when ∆ is treated as a QCD-stable hadron as in Ref. [90]), and from

Eq. (3.8), the mstable
∆

lies within the lowest and the highest energies of a πN state accessible
on the lattice, i.e. E lowest

πN < m∆ < Ehighest
πN .

Table 6.1 Details of the gauge-field ensemble. NL and NT denote the number of lattice points
in the spatial and time directions. The lattice spacing was obtained by the physical values of
the ratios mπ/mΩ and mK/mΩ. The ensemble was generated with N f = 2+1 flavors of sea
quarks with bare masses amu,d and ams, which lead to the given values of amπ , amN , and
amηs . The ηs is an artificial pseudoscalar ss̄ meson that can be used to tune the strange-quark
mass [78, 83]. The uncertainties given here are statistical only.

A7 MeV
N3

L ×NT 243 ×48
β 3.31

N f 2+1
csw 1.0

amu,d −0.0953
ams −0.040

Ncon f ig 600
a [fm] 0.116
L [fm] 2.8

amπ 0.1493(6) 254(1)
amN 0.6302(41) 1072(7)
mπL 3.6
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6.1.1 Interpolators and correlation functions

To extract the lattice spectrum in the nucleon and ∆ channel, we construct correlation matrices
from two-point functions of one and two-hadron interpolating fields with quantum numbers
of the Nucleon (N), Delta (∆) and Pion-Nucleon (πN) respectively. As building blocks, we
use the familiar single-hadron interpolating fields for the pion, nucleon and ∆ discussed in
Sec. 4.2. Our choices of total momenta for the πN system are listed in the first column of
Table 6.2.

Table 6.2 Choices of total momenta (and numbers of equivalent directions), along with the
relevant symmetry groups, irreducible representations Λ, and in parenthesis their angular
momentum content.

L
2π

P⃗re f [Ndir] Group Nelem Λ(J) : π( 0− ) Λ(J) : N( 1
2
+
) Λ(J) : ∆( 3

2
+
)

(0,0,0) [1] OD
h 96 A1u( 0 ,4, ...) G1g(

1
2 , 7

2 , ...)⊕G1u(
1
2 , 7

2 , ...) Hg(
3
2 , 5

2 , ...)⊕Hu(
3
2 , 5

2 , ...)

(0,0,1) [6] CD
4v 16 A2( 0 ,1, ...) G1(

1
2 , 3

2 , ...) G1(
1
2 ,

3
2 , ...)⊕G2(

3
2 , 5

2 , ...)

(0,1,1) [12] CD
2v 8 A2( 0 ,1, ...) G( 1

2 , 3
2 , ...) G(1

2 ,
3
2 , ...)

(1,1,1) [8] CD
3v 12 A2( 0 ,1, ...) G( 1

2 , 3
2 , ...) G(1

2 ,
3
2 , ...)⊕F1(

3
2 , 5

2 , ...)⊕F2(
3
2 , 5

2 , ...)

We apply group-theoretical subduction/projection to obtain operators that transform
irreducibly under rotations and reflections of the proper symmetry group as discussed in
Sec. 4.2 with Eq. (4.2). The single-hadron operators transform under rotations as

Rπ(t, x⃗)R−1 = π(t,R−1⃗x),

RN(t, x⃗)R−1 = S(R)N(t,R−1⃗x),

R∆(t, x⃗)α
k R−1 = A(R)kk′S(R)∆

α

k′(t,R
−1⃗x),

(6.1)

where A(R) =U1(ω,Θ,Ψ) denotes the 3-dimensional irrep of SU(2) with the variables ω ,
Θ and Ψ representing the parameters of the basis1, and S(R) is the 2-dimensional spinor
representation of SU(2),

S(R) =

[
U1/2(R) 0

0 U1/2(R)

]
. (6.2)

1If the basis is chosen as Euler angles basis, then these three are the Euler angles α , β and γ .
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Table 6.3 Multiplicities of irreps of the group OD
h (rest frame) in the subduction of half-

integer-J irreps of SU(2). The subscripts g/u indicate the parity gerade/ungerade (even/odd).

Irr\J J = 1/2 J = 3/2 J = 5/2 J = 7/2 J = 9/2
G1g/u 1 0 0 1 1
G2g/u 0 0 1 1 0
Hg/u 0 1 1 1 2

The inversions are given by

Iπ(t, x⃗)I−1 =−π(t,−⃗x),

IN(t, x⃗)I−1 = γtN(t,−⃗x),

I∆(t, x⃗)I−1 = γt∆(t,−⃗x).

(6.3)

Our choice of the Euclidean γ-matrices is the DeGrand-Rossi basis.
In moving frames, the choice of center of mass momentum P⃗ determines the relevant
symmetry group. Looking at Table 6.3, the J value of the hadron tells us in which irrep (of
the rest frame) it should be contained. It is possible to find the multiplicity m of the irrep
ΓΛ in the matrix M(R) realizing the transformation (e.g. S(R) for the single nucleon) using
the Eq. (4.1). The multiplicities m give us the numbers of multiplicities of the irreps for
the specific operator we want to project (see Table 6.3). This corresponds to the number of
independent projected operators we can extract for a specific irrep Λ and row r. In Figs. 6.1
and 6.2, we show schematically the decomposition of the transformation matrices S(R) for
the nucleon and A(R)⊗S(R) for the Delta in all frames relevant for this study.

Once we correctly identified the tensor decomposition in each irrep, we used our code to
project the N, ∆ and Nπ interpolators (the single π does not need projection). Most of the
projections lead to linearly dependent operators [190]. We made use of the Gram-Schmidt
procedure to construct linear combinations of operators orthogonal to each other. As an
example for the nucleon-pion system, we show one projected operator in the rest frame in
irrep Hg and row r = 1:

1
2

π(1,0,0)N2(−1,0,0)+
1
2

iπ(0,1,0)N2(0,−1,0)− 1
2

iπ(0,−1,0)N2(0,1,0)−
1
2

π(−1,0,0).N2(1,0,0).

The momentum directions are given in brackets and the subscript of the nucleon operator
labels the Dirac index. Taking into account all linearly independent operators, rows and
momentum directions in the 8 irreps of the 4 frames considered, we reach a total of 1720
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projected operators for Delta and the nucleon-pion system. In order to maximize the statistics,
we use all of them when building the correlation functions.

G1g

G1u

Oh
D

[0,0,0]

G1

G1

C4v
D

[0,0,1]

G

G

C2v
D

[0,1,1]

G

G

C3v
D

[1,1,1]

UR̃ [4x4]

NUCLEON

Fig. 6.1 Tensor decomposition of the nucleon transformation matrices. Applying Eq. (4.1) to
the nucleon transformation matrices S(R) tells us the multiplicity of the irreps containing
J = 1/2 in each frame. This information guides us in the projection of the single-nucleon
interpolator. It shows that in the rest frame we can have one projected interpolator for each of
the irreps G1g and G1u. On the other hand, in each moving frame, we can build two linearly
independent nucleon interpolators since the same irrep has a double multiplicity.

G

G

Hg

G1g

G1u

G1

G1

G1

G2

G1

G2

Hu

G

G

G

G

G

G

G

G

F1

F2

F1

F2

Oh
D

[0,0,0]

C4v
D

[0,0,1]

C2v
D

[0,1,1]

C3v
D

[1,1,1]

DELTAUR̃ [12x12]

Fig. 6.2 Tensor decomposition of the Delta transformation matrices. The transformation
matrix for the Delta comes from the tensor product A(R)⊗S(R) in Eq. (6.1) (with inversion
from Eq. (6.3)). Applying Eq. (4.1) shows the multiplicity of irreps containing J = 3/2. In
the rest frame, there are only single multiplicities, while in moving frames there are several
multiplicities. For example, for the group CD

2v the same irrep G appears 6 times. In fact, we
can build 6 independent projected operators for a single ∆ in this irrep.

The two-point functions obtained from the interpolators above are evaluated by Wick
contraction and factorization into products of diagram building blocks. The latter are
calculated numerically from point-to-all, sequential and stochastic propagators. Figure 6.3
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shows the topology types for the diagrams obtained from the ∆−∆ and ∆−πN two-point
correlation functions in the left panel. The right panel shows the same for the πN −πN
correlator. In both panels, each topology represents 2 to 4 actual diagrams.

∆ πN

∆

u(uΓiu) u(uΓiu)

d̄γ5u

u(uΓid)

u(uΓiu)

πN

d̄γ5u

u(uΓid)

u(uΓiu)

πN

πN

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

Fig. 6.3 Left panel: Two-point function contractions involving the ∆ interpolator. Grey circles
represent the ∆, green circles represent the π , and blue circles represent the N. A circle with
a solid outline represents a point source, while the dotted outline represents a sequential
source. The black arrow lines represent point-to-all propagators, and the red arrow lines
represent sequential propagators. Right panel: Two-point function contractions for πN −πN,
otherwise analogous to the left panel. The blue arrow lines represent stochastic propagators.

The computation of the πN → πN correlation functions is a computationally demanding
task. We developed a state-of-the-art method for segregating the stochastic source and
stochastic propagator part in all the πN → πN diagrams, which can be later recombined to
form the diagrams in Fig. 6.3. This procedure can be visually illustrated in Fig. 6.4.

Another major advantage of using this factorization scheme is the re-occurrence of these
factors in three-point functions (πN → J → N) with a current insertion J, as in Fig. 6.5. We
observe that the factors highlighted by green in two and three point functions in Fig. 6.4 and
Fig. 6.5 are exactly the same. Therefore, computing these factors once for the two-point
functions can be reused to compute the three-point functions, thus saving approximately
O(10)×Nconfigurations of computational resources.
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N

πN

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

c

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

d

d̄γ5u

u(uΓid)u(uΓid)

d̄γ5u

a

d̄γ5u

u(uΓid)

d̄γ5u

u(uΓid)

b

Fig. 6.4 The two factors of the two-point functions are represented by the green and the
orange highlights. For diagrams (b.), (c.) and (d.), the dotted line separates the two factors
along the point source and the product of stochastic source and propagators. In diagram
(a.), the dotted line separates the two factors along the point source and the product of two
stochastic one-end-trick propagators.

N

πN

d̄γ5u

u(uΓid)

J

u(uΓid)

c

d̄γ5u

u(uΓid)

J

u(uΓid)

d

d̄γ5u

u(uΓid)u(uΓid)

J

a

d̄γ5u

u(uΓid)

J

u(uΓid)

b

Fig. 6.5 The two factors of the three-point functions with a current insertion J, are represented
by the olive and the orange parts. The current insertion is represented by the yellow circle
containing J. The dotted line separates the two factors along the point source the product of
the stochastic source and propagators in the diagrams (b.), (c.) and (d.). In diagram (a.) the
dotted line separates the two factors along the point source and the product of two stochastic
one-end-trick propagators.
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6.1.2 Spectrum results
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Fig. 6.6 Effective-energy plots. Left panel: Rest frame P⃗ = 2π

L (0,0,0): group OD
h , irreps

Hg (forward-propagating) and Hu (backward-propagating). The ground state has maximum
overlap with the single-hadron ∆-like interpolator, while the first excited level shows an
expected shift in energy with respect to the first non-interacting nucleon-pion energy. Right
panel: Moving frame P⃗ = 2π

L (0,0,1): group CD
4v, irrep G1. The ground state has a dominant

overlap to the Nπ two-hadron interpolator, while the second energy level overlaps dominantly
with the ∆ operator. The other two levels display a shift in energy with respect to their non-
interacting counterparts, in the direction away from the resonance.

With a basis of projected interpolators we construct correlation matrices CΛ,r,m
i j and make use

of the variational method (Generalized EigenValue Problem) [43] to determine the energy
spectrum in each irrep, as defined in Sec. 4.6. Fig. 6.6 shows the effective energies and the fit
results for the chosen time ranges, in two irreps, one from the center of mass frame and one
from P⃗ = (0,0,1) moving frame. We perform single-exponential fits directly on the principal
correlators. To ensure that early-time excited-state contamination is negligible, we perform
stability tests by looking for a plateau while varying tmin in the fit time interval [tmin, tmax]

which is the same procedure implemented in Sec. 5.1.5.

6.1.3 Lüscher Analysis: Phase shift fit results

We implement the Lüscher analysis as discussed in Sec. 4.7.2 for baryons on the obtained
spectrum. The block-diagonalization of the matrix M P⃗ into its irreps Λ, was emphasized in
Sec. 4.7.2 with an example in the moving frame P⃗ = 2π

L (0,0,1) with symmetry group CD
4v.

We revisit that example by depicting the decomposition in Fig. 6.7 and further simplify the
quantization condition. With two irreps G1 and G2, Eq. (5.25) simplifies to one quantization
condition per irrep,

det(MG1
Jln,J′l′n′ −δJJ′δll′δnn′ cotδ

G1
Jl ) = 0, (6.4)
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G1

G2

MJlm,J′l′m′ M𝚲
Jln,J′l′n′

J 1/2 1/2 3/2 3/2

l 0 1 1 2

1/2 1/2 3/2 3/2
0 1 1 2

3/2 3/2
1 2

C4vD
[0,0,1]

Fig. 6.7 Block diagonalization of the M matrix in the irrep basis. The case shown is for the
CD

4v group.

det(MG2
Jln,J′l′n′ −δJJ′δll′δnn′ cotδ

G2
Jl ) = 0. (6.5)

This basis transformation, along with the angular-momentum content, is also shown schemat-
ically in Fig. 6.7. The angular-momentum content depicts the mixing of various partial waves
that contribute to the J = 3/2 channel.

The quantization conditions can be written in terms of w js functions (where |l − l′| ≤
j ≤ l + l′ and − j ≤ s ≤ j) that include the generalized Zeta functions. For the case of G2,
considering all relevant J, l values of the phase shift δJ,l present in the energy region of
interest, the quantization condition can be written as

9(w1,0 −w3,0)
2 −25

(
−cotδ

G2
3
2 ,1

+w0,0 −w2,0

)(
−cotδ

G2
3
2 ,2

+w0,0 −w2,0

)
= 0. (6.6)

The mixing between l = 1 and l = 2, is shown in Eq. (6.6). If we neglect contributions
from l = 2, we arrive at the quantization condition as used in Ref. [112].

Due to the existence of eigenstates with the same total angular momentum J, but different
orbital angular momenta l, we have mixtures in scattering amplitudes originating from nearby
∆ resonances. In this preliminary study, we are only interested in the phase shift δJ= 3

2 ,l=1.
Having fixed lmax, we neglect the contributions from higher partial waves. To extract the
resonance parameters, we directly fit the phase shift values obtained from the quantization
conditions in different irreps, to a phase shift model as already discussed as the first approach
in Sec. 5.1.6. From the fitted energy levels obtained from the GEVP, we use irreps Hg +Hu
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in OD
h (CM frame), G2 in CD

2v (moving frame with P⃗ = (0,0,1)) and G in CD
4v (moving frame

with P⃗ = (0,1,1))2.
For the ∆ resonance, the decay width can be expressed in effective field theory [205] to

lowest order as

Γ
LO
EFT (s) =

g2
∆−πN

48π

EN +mN

EN +Eπ

p∗3

m2
N
, (6.7)

with the dimensionless coupling g∆−πN and center-of-mass momentum p∗.
We also take the general P-wave decay width formed used in all lattice calculations, given

by,

Γ(s) =
g2

∆πN
6π

p∗3

s
(6.8)

Thus, the fit results of fitting the phase shift values obtained to these two models of decay
width are shown in Figs. 6.8 and 6.9.
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Fig. 6.8 The J = 3/2, P-wave, N-π scattering phase shift with the decay width written in
effective field theory to lowest order.

Table 6.4 Parameters for the resonant P-wave decay width and Lowest order EFT expansion
of decay width, along with the experimental value

Model χ2

dof m∆ g∆πN

ΓP−wave 0.42 1386(21) 18(5)
ΓLO

EFT 0.457 1391(19) 30(8)
Experimental 1232(1) 29.4(3)

2It should be noted that from Table. 6.2, G contains mixing from lower partial waves J = 1/2, ℓ= 0 But for
the current analysis, we neglect the J = 1/2, ℓ= 0 contributions.
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Fig. 6.9 The J = 3/2, P-wave, N-π scattering phase shift with general P-wave decay width.

In Table. 6.4, we provide the results for m∆ and g∆πN after analyzing 200 configurations.
Qualitative comparison with the experiment shows that the factorization scheme enables an
affordable calculation of the ∆-πN system at the full statistics of 600 configurations.

6.2 Conclusion

In this Chapter, we have computed the two-point functions with the state-of-the-art factoriza-
tion method which saves computational resources of the O(10) ·Ncon f igurations. The factors
computed for two-point functions can be reused to compute three-point functions with an
electromagnetic current insertion. We construct the correlation matrices using these two-point
functions for each relevant irrep of the symmetry group of the lattice. Using the spectra
extracted from the GEVP analysis of these correlation matrices in the Lüscher formalism, we
have computed phase-shift values in the CM frame and two moving frames. With the analysis
of 200 configurations at hand, we are restricted to few irreps for the analysis. Qualitative
comparison with the experiment yields reasonable agreement allowing us to proceed to the
full-statistics calculation employing this factorization method.

.





Chapter 7

Conclusion

In this thesis, we have presented a study of meson and baryon resonances in 2 → 2 scattering
via direct simulation of the theory of strong interactions using lattice techniques. We
have developed state-of-the-art methods to compute the correlation functions, utilized the
recently developed Multigrid preconditioned Krylov-subspace solver to compute the quark
propagators and successfully implemented the Lüscher formalism for studying meson and
baryon resonances. Furthermore, we built upon our computation of resonance parameters
to extract the transition form factors and coupling in resonance photoproduction using the
recently developed Briceno, Hansen, Walker-Loud formalism. In addition, we performed an
exploratory study of machine learning on the 2-D Ising model.

7.1 Summary of results

In the meson scattering sector, we have calculated the parameters for the narrow lowest
lying ρ meson resonance describing the elastic I = 1, P-wave ππ scattering using lattice
QCD with 2 + 1 flavors of clover fermions. Our calculation is performed with a pion
mass of mπ ≈ 320 MeV and a lattice size of L ≈ 3.6 fm. We find that at a pion mass of
amπ = 0.18295(36)stat we obtain gρππ = 5.69(13)stat(16)sys, amρ = 0.4609(16)stat(14)sys,
and amρ/amN = 0.7476(38)stat(23)sys, where the first uncertainty is statistical and the second
is the systematic uncertainty due to the choice of fit ranges. Our results for the ρ resonance
parameters, when compared in a scale invariant way i.e. by taking the ratio of the resonance
mass with the nucleon mass, are in agreement with other N f = 2+1 and N f = 2 results in the
literature. Moreover, the coupling gρππ shows no pion mass dependence which is compatible
with the general findings. For the ρ resonance photoproduction ππ → πγ , we implemented
the extension of the Lüscher formalism, Briceño, Hansen, Walker-Loud formalism to compute
the transition form factor and the photocoupling |Gρπγ | = 0.0802(32)(20). The model-
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independent parametrization of the transition form factor Vπγ→ππ(s,q2) shows no discernible
changes when the series is truncated at different values. It is worth noting that, for large

√
s

the amplitude falls off slower than the expected for a purely resonant behavior. Nevertheless,
the value of photocoupling obtained in 1.6σ away from the experimental value, which is
highly encouraging. Apart from ππ scattering, in the meson sector, on the same ensemble
there is an ongoing investigation for K∗ resonance in the P wave πK channel [215].

Our study of baryon scattering resonances includes the P-wave πN scattering analysis
where we have developed a state-of-the-art factorization method for evaluating the two-
point correlation functions which led to the reduction in computational cost by O(10)×
Nconfigurations. Moreover, we can reuse these factors, to evaluate three-point functions with
an electromagnetic current insertion. Our proof-of-concept analysis for obtaining scattering
phase-shifts, yield results which match qualitatively the experiment, paving the way for a
full-fledged analysis.

7.2 Outlook

In the case of the meson scattering study, future calculations at lower pion masses, larger
volumes, and additional values of the lattice spacing are needed to extrapolate to the physical
point and to obtain a better estimate of the systematic errors. One source of systematic errors
is the residual contamination from higher excited states in the analysis of the correlation
functions. Better control over this contamination can be achieved by using more than three
source-sink separations for three-point functions and employing more advanced analysis
methods [60] for analyzing two-point functions.

For the P-wave πN scattering, computations for the correlation functions for the full set
of statistics are still ongoing. In order to get the complete picture we would like to obtain the
GEVP spectra for all the irreps and perform the Lüscher analysis for the 2 → 2 πN system to
extract the ∆ resonance parameters. These resonance parameters can then be utilized to study
the ∆ photoproduction in the πN channel.
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Appendix A

Murray Gell-Mann matrices

The generators T b of the Lie group SU(3) are proportional to the 8 Gell-Mann matrices,
T b = 1

2λ b , which are listed below:

λ
1 =

0 1 0
1 0 0
0 0 0

 , λ
2 =

0 −i 0
i 0 0
0 0 0

 , λ
3 =

1 0 0
0 −1 0
0 0 0

 ,

λ
4 =

0 0 1
0 0 0
1 0 0

 , λ
5 =

0 0 −i
0 0 0
i 0 0

 , λ
6 =

0 0 0
0 0 1
0 1 0

 ,

λ
7 =

0 0 0
0 0 −i
0 i 0

 , λ
8 =

1√
3

1 0 0
0 1 0
0 0 −2

 .

The generators further satisfy the commutation relation known as Lie Brackets:

[T a,T b] = f abcT c, (A.1)

where f abc are structure constants given by,

fabc abc
1 123
1
2 147,246,257,345
−1

2 156,367√
3

2 458,678

(A.2)
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