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1 Introduction

Multigrid (MG) methods are efficient methods to solve systems of partial differ-
ential equations (PDEs). They are iterative methods that have been developed
to solve scalar PDEs. The focus of this thesis is the solution of linear systems of
PDEs that arise from mathematical modeling of physical systems. In particular,
we are interested in the efficient solution of linear systems of equations, Au = f ,
that result from finite difference or finite element discretizations of PDEs. The
resulting systems are large and sparse.
An iterative method is a procedure that uses an initial guess to generate a se-
quence of improving approximate solutions, such that a new approximation is
derived from the previous one. In contrast, in the absence of rounding errors, di-
rect methods would provide an exact solution by a finite sequence of operations.
In general, iterative methods are preferred over direct methods for the solution
of large linear systems as they arise from the discretization of systems of PDEs.
The reason is that direct methods may be prohibitively computationally expen-
sive. Multigrid methods in particular are known to be optimal methods. They
can solve certain PDEs (to a given accuracy) in a number of operations that is
proportional to the number of unknowns. This excellent property distinguishes
multigrid methods from other iterative methods such as Krylov subspace meth-
ods. As a consequence of the growth of iteration costs, Krylov methods share
with direct elimination methods the disadvantage that the computational time
needed to solve a problem is not proportional (or nearly proportional) to the total
number of degrees of freedom.
In the 1960s R.P. Fedorenko [33] developed the first multigrid method for the so-
lution of the Poisson equation in a unit square. A. Brandt [15] and W. Hackbusch
[34] were able to show the efficiency of the multigrid approach in the 1970s. Since
then, other mathematicians have extended Fedorenko’s idea, not only for other
scalar PDEs, but also for systems of PDEs.
The growth of the computational cost for larger problems dictates the need to use
parallel computing, which decreases simulation time by using additional resources
simultaneously. Multigrid methods take order n of work to solve a sparse linear
system with n unknowns. That gives them excellent scaling potential, i.e. the
time to solution remains constant as the problem size together with the number
of parallel processors is proportionally increased.
Today, multigrid methods are used in nearly every field where partial differential
equations are solved by numerical methods. They have been shown to be efficient
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1 Introduction

iterative solvers for a variety of applications, such as fluid and solid mechanics.
However, there is a need to examine the solutions in these fields more closely.
Numerical modeling of those problems poses some difficulties which makes the
development of fast and efficient linear solvers challenging.
Examples that arise in fluid and solid mechanics are the Stokes equations and
Maxwell’s equations. The Stokes equations or the Stokes flow is a type of fluid
flow where advective inertial forces are small compared with viscous forces. This
describes a typical situation in flows where the fluid velocities are very slow, the
viscosities are very large, or the length-scales of the flow are very small. The
constant movement of the Earth crust caused by the mantle convection is one
application that can be described and simulated by means of the Stokes equa-
tions. Maxwell’s equations form the foundation of classical electromagnetism and
electric circuits such as power generation or electric motors. Discretizations of
these equations naturally lead to so called saddle point systems, a specific type
of linear systems. The name stems from the characteristics of the solution as will
be described in more detail in the course of this thesis.
Multigrid methods find an approximate solution to a linear system through two
complementary processes: relaxation and coarse-grid correction. Relaxation
cheaply removes parts of the error from the approximate solution, while coarse-
grid correction constructs a lower dimensional problem to remove the error re-
maining after relaxation. This thesis focuses on improving the efficiency of the
relaxation process for saddle point systems.
The classical multigrid algorithms are often referred to as geometric multigrid
methods since they are based on a hierarchy of grids and their operators depend
on the geometry of these grids. Algebraic multigrid (AMG) methods were de-
veloped by Brandt, McCormick, and Ruge [18] to overcome limitations due to
geometric properties of the mesh. In geometric multigrid, the grid hierarchy is
known and appropriate relaxation methods have to be defined to achieve multi-
grid optimality. Conversely, the goal of classical AMG, as stated in [52], is to
maintain simple relaxation methods and find a suitable coarse-grid correction.
The AMG method is a powerful extension that is based on a black-box idea, i.e.
it solely depends on matrix coefficients.
When considering multigrid algorithms, there is an enormous degree of freedom
in choosing the algorithmic components. The question is how to choose individ-
ual multigrid components for concrete situations. Local Fourier analysis (LFA)
is considered as the main analysis tool to establish quantitative convergence es-
timates and to optimize geometric multigrid components such as smoothers or
intergrid transfer operators. The idea was introduced by Brandt [15] and later
extended and refined in [16]. In the AMG setting, the evaluation of different
multigrid components cannot be established by LFA and is more complicated as
we describe and explain in Section 5.
Our research primarily focuses on the development of multigrid smoothers for

2



two-dimensional systems of PDEs, in both a geometric and algebraic multigrid
context. This thesis is structured as follows: in Chapter 2 we introduce the general
definition and classification of partial differential equations. Moreover, we study
different discretization methods, particularly the finite difference method and the
finite element method. Subsequently, an introduction into multigrid methods is
given in Chapter 3. After an overview of basic iterative methods, we give a de-
tailed description of geometric multigrid methods. We continue with basics about
LFA, an algebraic multigrid introduction and some parallelization aspects.
The main part of this thesis proceeds in Chapter 4 with the treatment of the
Stokes equations in the context of geometric multigrid methods. We employ LFA
to help us analyze and construct better algorithms for the solution of the Stokes
equations with multigrid methods. We develop and compare different smoothers
by using LFA. The well-known Vanka smoother [73] already serves as a good
smoother in geometric multigrid methods for the Stokes equations. However, due
to its overlapping sets, it is computationally expensive and not easy to paral-
lelize. To this end, we introduce a non-overlapping smoother in Chapter 4. We
analyze this non-overlapping smoother in comparison with well-known smoothers
for the Stokes equations. While doing this, we investigate the parallelization ca-
pacity of all these smoothers in comparison. Mismatching numerical results show
limitations of LFA which lead us to new algorithmic developments based on the
non-overlapping smoother.
Geometric multigrid methods serve as efficient solvers for saddle point systems.
However, the geometric multigrid methods are limited due to geometric properties
of the underlying grids. To this end, this chapter focuses on algebraic multigrid
methods to overcome this limitation and to address general matrix equations.
Algebraic multigrid methods are flexible methods since they are based on general
matrix equations. We primarily focus on extending the applicability of algebraic
multigrid to a broader class of problems, for example, the second-order definite
Maxwell’s equations (5.1). The difficulty of these equations is characterized by a
large near null-space where a pointwise smoother leads to a non-optimal method.
Although traditional AMG methods are based on simple pointwise smoothers,
non-pointwise smoothers are needed to overcome this problem, such as the over-
lapping Schwarz smoother by Arnold, Falk and Winther [5] or the distributive
relaxation by Hiptmair [40]. These methods are based on geometric multigrid
settings. There are also algebraic multigrid algorithms that are able to overcome
the difficulty of Maxwell’s equations [41, 42, 48, 62]. These methods are based
on projections into auxiliary spaces or on auxiliary nodal matrices and depend
on geometric information. This lack of fully algebraic algorithms motivates us to
the automatic construction of algebraic multigrid smoothers and complemetary
coarse-grid correction procedures. The theory developed in [30] provides guidance
in constructing these algorithms.
We finalize this thesis with the conclusion in Chapter 6.
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2 Partial differential equations

Differential equations have one basic characteristic in common: the equations re-
late functions to derivatives in such a way that the functions themselves can be
determined. The functions represent physical quantities and the derivatives rep-
resent their rates of change, whereas the equations define the relationship between
the two. We subdivide differential equations into ordinary differential equations
(ODEs) and partial differential equations (PDEs). ODEs contain functions of
one variable and the derivatives of those functions, while PDEs include partial
derivatives. This chapter focuses on the definition of different types of PDEs as
well as the introduction of discretization methods. We highlight important topics
that will be important in the remainder of this thesis. The content of this chapter
is mainly based on the textbooks [63, 72].

2.1 Definition and classification of partial
differential equations

In what follows, we call a bounded and connected subset of Rd, d ∈ N, a domain
and denote it by Ω and its boundary by ∂Ω.

Definition 2.1. (Partial differential equation) Let Ω ⊂ Rd and u(x) be a
k-times continuously differentiable function on Ω. A partial differential equation
(PDE) for the function u(x) that depends on x = (x1, . . . , xd) ∈ Ω is an equation
of the form:

F (x, u(x),
∂u(x)

∂x1

, . . . ,
∂u(x)

∂xd
,
∂2u(x)

∂x1∂x1

, . . . ,
∂2u(x)

∂x1∂xd
, . . . ) = 0,

where F depends on x, the value of u(x) and the partial derivatives of u(x) at x.

For the treatment of partial differential equations it is useful to introduce a classi-
fication scheme which identifies classes of equations with common characteristics.
In this section, we provide the basic classifications of PDEs. The type of an
equation determines the order, the homogeneity and the linearity. The order
of an equation refers to the highest order derivative included in the equation.
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2 Partial differential equations

Additionally, PDEs can be distinguished by their homogeneity. Some equations
are labeled as non-homogeneous. They include terms that do not depend on the
unknown function u. Moreover, four types of linearity can be identified. If F
depends only linearly on u and all partial derivatives, the PDE is called linear,
i.e. coefficient functions depend only on variables x, not on u or derivatives of
u. Semilinear PDEs are ones in which the coefficient functions of the partial
derivative of highest-order depend only on x, not on u or derivatives of u. A
PDE is called quasilinear if the coefficient functions of the partial derivatives of
highest degree depend only on x, u or lower-order derivatives of u. Otherwise,
the equation is called a non-linear PDE. We direct our attention to linear PDEs.
More specifically, we concentrate on second-order PDEs, which can be classified
according to the following definition:

Definition 2.2. (Classification of linear PDEs of second order) A linear
PDE of second order has the form

Au(x) :=
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
u(x) +

d∑
j=1

bj(x)
∂

∂xj
u(x) + c(x)u(x) = f(x).

Depending on the eigenvalues of the coefficient matrix A = (ai,j)
d
i,j=1, these PDEs

are called:

• elliptic - all eigenvalues of A have the same sign,
• parabolic - all eigenvalues of A, except for one vanishing eigenvalue, have

the same sign,
• hyperbolic - all eigenvalues of A have the same sign, except for one eigenvalue

that has the opposite sign.

A common and simple example for an elliptic second-order linear PDE is the
Poisson equation (2.1). In order to facilitate readability, we simplify our repre-
sentation such that u and f denote the appropriate functions that depend on
x.

Definition 2.3. (Poisson equation) An elliptic linear PDE of second order of
the following form,

−
d∑
i=1

∂2

∂x2
i

u(x) = f(x) ⇔ −∆u = f, (2.1)

is called Poisson equation.

The Poisson equation is a special case of the elliptic diffusion problem (2.2) where
a : Rd → R is chosen such that a(x) = 1. Different choices of the function a(x)
lead to diverse properties of the equation and thereby require various solution
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2.1 Definition and classification of partial differential equations

strategies. Some of the considerations in Chapter 5 are based on the diffusion
problem and its difficulties. However, for the sake of simplicity, we use the Poisson
equation as a model problem to introduce the basic principles.

Definition 2.4. (Elliptic diffusion equation) An elliptic linear PDE of second
order of the following form,

−∇(a(x)∇u) = f, (2.2)

is called elliptic diffusion equation.

2.1.1 Systems of PDEs

While the last section focuses on PDEs with only one variable function u, so-
called scalar PDEs, we now turn our attention to systems of PDEs. Here, we
search for more than one unknown function, i.e. we have a vector of functions
z = (z1, . . . , zq), q ∈ N. The target of this thesis lies in the solution of systems of
q partial differential equations involving q unknowns zl, l = 1, . . . , q.

Definition 2.5. (System of partial differential equation) Let Ω ⊂ Rd and
let zl, l = 1, . . . , q be k times continuously differentiable functions on Ω. A system
of q partial differential equations or system of PDEs for the functions zl(x) that
depends on x = (x1, . . . , xd) ∈ Ω is a system of equations of the form:

Fl,m(x, zl(x),
∂zl(x)

∂x1

, . . . ,
∂zl(x)

∂xd
,
∂zl(x)

∂x1∂x1

, . . . ,
∂2zl(x)

∂x1∂xd
, . . . ) = 0,

m = 1, . . . , q,

where Fl,m depends on x, the value of zl(x) and the partial derivatives of zl(x) at
x.

The classifications introduced for scalar PDEs can be generalized to systems of
PDEs. The term order for systems is used with two different meanings. The
most common definition refers to the equations of which the system is composed,
i.e. the order of the system is defined by the equation with highest order. We
use this definition throughout this thesis. However, it is also possible to assign
an order to the system as a whole. Homogeneity and linearity can be identified
analogously to the definition for scalar PDEs. We focus on second-order linear
systems of PDEs.

Definition 2.6. (Second-order linear systems of PDEs) Consider a linear
system of q partial differential equations of second order involving q unknowns zl,
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2 Partial differential equations

l = 1, . . . , q,

Az(x) =

A1,1 . . . A1,q
...

. . .
...

Aq,1 . . . Aq,q


z1(x)

...
zq(x)

 =

f1(x)
...

fq(x)

 ,

with

Al,mzm(x) :=
d∑

i,j=1

(al,m)i,j(x)
∂2

∂xi∂xj
zm(x) +

d∑
j=1

(bl,m)j(x)
∂

∂xj
zm(x) + c(x)zm(x).

Definition 2.7. The symbol of the expression Az(x) as given in Definition 2.6
is

ASymb(ξ) :=

A
Symb
1,1 . . . ASymb1,q
...

. . .
...

ASymbq,1 . . . ASymbq,q


with

ASymbl,m (ξ) :=
d∑

i,j=1

(al,m)i,j(x)(ıξ)(i,j) +
d∑
j=1

(bl,m)j(x)(ıξ)(j) + c(x),

where (ıξ)(i,j) := ıξi · ıξj and (ıξ)(j) := ıξj.
The principal part of the symbol is

Ap(ξ) :=

A
p
1,1 . . . Ap1,q
...

. . .
...

Apq,1 . . . Apq,q


with

Apl,m(ξ) :=
d∑

i,j=1

(al,m)i,j(x)(ıξ)(i,j),

where (ıξ)(i,j) := ıξi · ıξj.

In general, we need to be careful about defining the “principal part” of a system.
The naive approach of simply taking the “terms of highest order” may lead to
difficulties for some systems. This can be resolved by assigning weights to the
equations and unknowns of the operator Az(x). For the sake of simplicity, we do
not discuss this in detail and refer to [63].
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2.1 Definition and classification of partial differential equations

Definition 2.8. (Classification of second-order linear systems of PDEs)
Let Al,mzm(x) and Ap(ξ) be defined as given in Definition 2.6 and Definition 2.7.
Then, systems of PDEs can be defined as elliptic by

det Ap(ξ) 6= 0, ∀ξ 6= 0.

It is very rare that a real life phenomenon can be modeled by a single partial differ-
ential equation. Usually it takes a system of coupled partial differential equations
to yield a complete model. Therefore, we usually have multiple equations and
unknowns as formulated in Definition 2.5 and Definition 2.6.
In what follows, we list all systems of PDEs that are part of this thesis. However,
we are not diving into the characteristics here, but save the presentation of details
for later. One of the problems we deal with are the two-dimensional Stokes equa-
tions (2.3). For the purpose of indicating notations that are commonly used, we
characterize the three unknown functions z = (z1, z2, z3) of the two-dimensional
Stokes equations by u := (z1, z2)T and p := z3. For two-dimensional Maxwell’s
equations (2.4), we have the unknown functions z = (z1, z2).

Definition 2.9. (The two-dimensional Stokes equations)

−∆u +∇p = f , in Ω,

∇u = 0, in Ω,
(2.3)

where ∆ :=

(
∆

∆

)
. The Stokes problem can be classified as a second-order

linear elliptic system of PDEs. Here, we have a system with q = 3 equations and
unknowns.

Definition 2.10. (The second-order definite Maxwell’s equations)
The two-dimensional second-order curl-curl problem commonly referred to as
Maxwell’s equations is given by

∇×∇× z + βz = f , in Ω, (2.4)

where ∇× defines the curl operator, details can be found in Chapter 5. This
system consists of q = 2 equations and unknowns.

While a partial differential equation by itself usually has multiple solutions, unique-
ness is often a desirable property for a solution of a problem. Imposing initial
conditions, i.e. given values at a particular point, or boundary conditions, i.e.
given values on the domain’s boundary or parts of the boundary of the domain,
lead to initial value problems or boundary value problems respectively.
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2 Partial differential equations

2.1.2 Boundary conditions

Among various different boundary conditions, the following three common types
on a domain Ω ⊂ Rn will be studied.

• Dirichlet boundary conditions
If the solution z1 is given specific values at the boundaries, say

z1(x) = d(x), x ∈ ∂Ω,

where d : ∂Ω→ R is a known function, we have a Dirichlet-type boundary
condition.

• Neumann boundary conditions
If the derivative rather than the function itself is specified, we have a
Neumann-type boundary condition. Generally, Neumann conditions for a
unknown function z1 can be written in the following form:

∂z1

∂n
(x) = d(x), x ∈ ∂Ω,

where d : ∂Ω→ R is a known function and ∂z1/∂n is the partial derivative of
z1 with respect to the normal n of the boundary ∂Ω.

• Periodic boundary conditions
Some domains do not require boundary conditions, for example if a PDE is
defined on a torus. Here, the boundary conditions are termed as periodic.
An examplary definition of periodic boundary conditions in one dimension
on the domain Ω = [0, 1] for the unknown function z1 can be given by:

z1(0) = z1(1),

∂z1(0)

∂x1

=
∂z1(1)

∂x1

, x1 ∈ Ω.

To be formally correct, we have to prove the existence and uniqueness of the
solution of a PDE. To this end, we need a few prerequisites from functional
analysis. Important considerations are given in [12]. For example, the Lax-
Milgram theorem provides support to tackle elliptic PDEs. Especially for systems
of equations such as the Stokes equations and Maxwell’s equations the proof is
not straightforward. The existence of a solution for non-linear equations is even
more challenging. We do not go into detail, refer to [21] and assume the existence
of a unique solution of the PDEs that we consider in this thesis.
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2.2 Discretization methods

2.2 Discretization methods

An important step before numerically solving a PDE is to find a discrete algebraic
replacement of the continuous problem. This is based on the discretization of the
domain Ω into a discrete set of points. This set of points is denoted by Ωh and
it is called a grid or a mesh. We denominate the mesh size or grid width by h.
Discretization methods convert a PDE into a system of equations, which can then
be solved by linear algebra techniques. There are several discretization methods
in use, such as the finite volume (FV), finite element (FE), and finite difference
(FD) methods, here we focus on FD and FE discretization. Each method has
its specific approach to discretization. To maintain simplicity, we introduce the
methods based on scalar PDEs which can easily be generalized to systems of
PDEs.

2.2.1 Finite difference method

The approximation of the finite difference method replaces the derivatives in
the differential operator equation with differential quotients. For the sake of
simplicity, we consider the one-dimensional case first. Here, we have one unknown
function u and one equation with right-hand side f . A finite difference method is
related to the definition of the derivative of a function u at a point x ∈ R,

u′(x) := lim
h→0

u(x+ h)− u(x)

h
.

The definition indicates that in order to get good approximations, h must be
sufficiently small (h approaches zero, without vanishing). It remains to specify
the term “good approximation”. Actually, the approximation is good when the
error caused by replacing the derivative by the differential quotient approaches
zero when h approaches zero. It is possible to quantify this discretization error
using Taylor expansion,

u(x+ h) = u(x) + u′(x)h+O(h2),

where the O-notation denotes the difference between the Taylor polynomial of
degree one and the original function, which indicates that the error of the ap-
proximation is proportional to h2. We deduce an approximation for the first
derivative of the function u,

u′(x) =
u(x+ h)− u(x)

h
+O(h). (2.5)

The error created by replacing the derivative u′(x) by the differential quotient is
of order h. Approximation (2.5) is known as the forward difference approximation

11



2 Partial differential equations

of u′. In order to improve the accuracy, we define higher-order approximations of
the derivative by taking the points x− h and x+ h into account, e.g.

u(x+ h) ≈ u(x) + u′(x)h+
u′′(x)

2
h2 +

u′′′(x)

6
h3,

u(x− h) ≈ u(x)− u′(x)h+
u′′(x)

2
h2 − u′′′(x)

6
h3.

By simple calculation we obtain the central difference second-order approximation
of the first and the second derivative, respectively

u′(x) ≈ u(x+ h)− u(x− h)

2h
, (2.6)

u′′(x) ≈ u(x+ h) + u(x− h)− 2u(x)

h2
. (2.7)

Discretizing the one-dimensional Poisson equation (2.1) with Dirichlet boundary
conditions on the domain Ω = [0, 1] with n+1 equidistant grid points leads to the
linear system (2.8). Here, we consider the discretization on grid points such that
i = 0, . . . , n indicates the index of the grid point, xi = ih describes the location
on the grid, h := 1/n, ui := u(ih) and fi := f(ih).

− 1

h2
(ui−1 − 2ui + ui+1) = fi, for i = 1, . . . , n− 1,

u0 = u(0) = d(0),

un = u(1) = d(1).

(2.8)

Stencil notation makes use of the locality, i.e. computation is based on values of
neighboring arguments to the gridpoint ih. Using stencil notation, we are able to
represent operators in a compact way:

1

h2

[
−1 2 −1

]
ui =

[
0 1 0

]
fi for i = 1, . . . , n− 1,

with
[
s−1 s0 s1

]
wi =

1∑
κ=−1

sκwi+κ for i = 1, . . . , n− 1.
(2.9)

Since this thesis focuses on two-dimensional problems, we consider the two-dimensional
finite difference method in what follows. A second-order approximation of the
second derivative in two-dimensions is given by the combination of (2.7) in both
directions x1 and x2,

u′′(x1, x2) ≈ u(x1 + h, x2) + u(x1 − h, x2)

h2

+
u(x1, x2 + h) + u(x1, x2 − h)− 4u(x1, x2)

h2
.

12



2.2 Discretization methods

Representing the operator within this equation in stencil notation leads to:

1

h2

 1
1 −4 1

1

 . (2.10)

Having these representations at hand, we are able to define all components be-
longing to the two-dimensional Stokes equations discretized by the finite difference
method. It is important to note that the Stokes system consists of three different
unknowns and equations. Therefore, we establish the discretization based on the
different components. More details are presented in Chapter 4. The different
unknowns are denoted by ui,j = u(ih, jh), vi,j = v(ih, jh) and pi,j = p(ih, jh).
The central finite difference approximation to the first partial derivative of p in
the x1-direction ∂p/∂x1 is labeled as B1p. The Laplace operator, ∆, applied to u
is represented by A1u. In particular, the operators appear as

B1p =
pi+1,j − pi−1,j

2h
,

A1u =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
.

The discrete representation of the remaining components can be obtained in a
similar way. This results in the following finite difference representation of the
Stokes equations in two-dimensions:−A1 B1

−A1 B2

−BT
1 −BT

2

uv
p

 =

f1
f2
0

 . (2.11)

2.2.2 Finite element method

In this section we introduce the finite element (FE) method, an approach to
approximate the unknown exact solution u of a PDE based on basis functions
and the so-called weak form of a PDE. The basic idea is to subdivide the domain
Ω into smaller parts and locally approximate the PDE by simple equations. This
is followed by a recombination into a global system of equations which can then
be solved by a numerical method. A detailed description can be found below. The
basic references for this discretization method are the books of Dietrich Braess
[12] and Peter Monk [55]. The method can be structured into six different steps:

1. Establish the strong formulation.

2. Obtain the weak formulation.

3. Split the domain.

13



2 Partial differential equations

4. Choose approximations for the unknown functions u.

5. Choose weight functions.

6. Solve the system.

The details, advantages and connections between each step are described and
explained below. For the sake of simplicity, we introduce the method based on
model problem (2.1), the Poisson equation (−∆u = −∇2u = f) in one-dimension,
which can be easily adapted for higher dimensions and systems of PDEs. This
general form of a PDE is called the strong formulation (step 1). Equivalently, one
can formulate the so-called variational formulation or weak formulation (step 2).
The weak formulation means that instead of solving a differential equation of the
underlying problem, an integral equation is solved. In many cases, the original
formulation of the PDE is already a weak formulation. Then, we can skip the first
step of the method. Let us introduce a formal definition of the weak formulation.
We start by defining some standard spaces of functions:

Ck(Ω) : the set of k times continuously differentiable functions on Ω,

Ck
0 (Ω) : the set of functions φ ∈ Ck(Ω) having compact support in Ω,

Ck
0 (Ω)′ : the dual space of Ck

0 (Ω),

Lp(Ω), 1 ≤ p <∞ : the set of functions φ on Ω for which |φ|p is Lebesgue

integrable.

The fundamental Sobolev spaces are denoted W s,p(Ω), where s ∈ Z+, 1 ≤ p <∞,
and defined as:

W s,p(Ω) := {φ ∈ Lp(Ω) | ∂αφ ∈ Lp(Ω) for all |α| ≤ s} .

We set p = 2 in what follows. An alternative definition of Sobolev spaces for
p = 2 is to define the Hilbert spaces Hs(Ω), s ∈ Z+, with

Hs(Ω) :=
{
u ∈ C∞0 (Ω)′

∣∣∣u = U |Ω for some U ∈ W s,2 (Rn)
}
.

We stick to the L2-inner product 〈u, v〉 :=
∫

Ω
uv. Combining these informations

leads us to the variational formulation for the Poisson equation by assuming that
the solution u is in H1(Ω). We multiply the partial differential equation with
an arbitrary test function or weight-function v and compute an integral over the
whole domain Ω,

−
∫

Ω

v∇2u =

∫
Ω

fv.

14



2.2 Discretization methods

Applying Green’s identity
∫

Ω
v∇w = −

∫
Ω
∇vw +

∫
∂Ω
vwvi with w = ∇u and

assuming v = 0 on ∂Ω results in the weak formulation of the Poisson equation,∫
Ω

∇v∇u =

∫
Ω

fv for all v ∈ H1(Ω). (2.12)

The finite element discretization requires the reformulation into the weak form
(2.12), since a weak form lowers the continuity requirements on the approxima-
tion functions in contrast to the strong formulation. Note that the strong form
contains two separate partial derivatives of u. Therefore, it requires u to be
continuously differentiable until at least the second partial derivative. The new
formulation has lowered this requirement to only first partial derivatives by incor-
porating one of the partial derivatives into the weight-function v. Thereby, the
weak form allows the use of easy-to-construct and implement polynomials, which
are used to construct the approximation functions u as shown in step four. In
addition, the power of the weak formulation results from the fact that singular
solutions - solutions of the differential equation that cannot be obtained from the
general solutions - are allowed. This is due to the lower continuity requirement.
Assuming that the solution u of the Poisson problem is in the Hilbert space H1(Ω)
leads us to the properties of the weak form, namely, continuously differentiable
until first partial derivative only.
Next, in step three, we split the whole domain into smaller parts so-called ele-
ments. A finite element can be formally described as given in the next definition.

Definition 2.11. (Finite element) A finite element is given by three compo-
nents (T, PT ,ΣT ), where

• the element T ∈ Th is a discrete set while Th is a geometric domain,

• the space of functions PT (usually polynomials) is defined over the set T ,
and

• ΣT is a set of linear functionals defined over the space PT . These linear
functionals are called the degrees of freedom (dofs) of the finite element.

Even though there are many possibilities, the particular choice of the three com-
ponents of this general formulation has to fulfill some conditions. The element T
has to be chosen such that it is non-degenerate; PT has to be a finite-dimensional
vector space of functions that are convenient to implement, e.g. polynomials; and
the dofs have to be chosen so that they can uniquely determine a function in PT .
For the one-dimensional example (2.1), we make the simple choice of a discretiza-
tion into equidistant points xi = ih, with i = 1, . . . , n, being the so-called nodes,
c.f. Figure 2.1. In addition, we define the linear finite elements, s.t.

• T = [xi, xi+1], i ∈ N,

15



2 Partial differential equations

• PT = polynomials p(x) of degree at most one, i.e. p(x) = a + bx, with
a, b ∈ R,

• ΣT = {αk, 1 ≤ k ≤ 2}, the set of degrees of freedom for the element T .

1

0
x1=h x5 x6x2 x3 x4

(a)

1

0
xi xi+1

(b)

Figure 2.1: Basis functions for the six-node discretization (a) and two basis
functions on one exemplary element (b).

We define the so-called basis functions or shape functions, φi(x) ∈ PT , x ∈ Ω,
consistent with the set of dofs αm, where

αm(φi) := δmi =

{
1, if m = i,

0, otherwise.
(2.13)

We can define the dofs αm, such that

α1(u) = u(xi), α2(u) = u(xi+1), (2.14)

holds for each element. Instead of using the combination of (2.13) and (2.14), we
equivalently define the basis functions φi(x) globally such that

φi(xj) := δij =

{
1, if i = j,

0, otherwise.
(2.15)

The choice of basis functions φi(x) as in (2.15) means that they are equal to one
only at node xi and zero at all the other nodes. It follows that every φi(x) is only
non-zero at elements that share node xj, as can be seen in Figure 2.1a. Figure
2.1b demonstrates that two of these basis functions can approximate an arbitrary
linear polynomial on one element with an appropriate choice of weights. Given
these facts about shape functions, we can write an approximation function ũ of
u as

ũ(x) =
n∑
i=1

αiφi(x),
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2.2 Discretization methods

i.e., as a linear combination of the piecewise continuous linear polynomials φi(x)
so that the dofs αi serve as coefficients. Furthermore, we express the weight
function v (step 5) as

v(x) =
n∑
j=1

vjφj(x).

Now let us rewrite the weak form (2.12) by using the approximation function
ũ(x) ∈ H1(Ω) and the weight function v(x) ∈ H1(Ω). First, we define the bilinear
and linear forms a and l

a(u, v) :=

∫
Ω

∇v∇u and l(v) :=

∫
Ω

fv.

Then, we can rewrite the weak form (2.12) as

a(u, v) = l(v) u, v ∈ H1(Ω).

We insert the two approximations in our weak form and obtain

a

(
N∑
j=1

vjφj(x),
N∑
i=1

αiφi(x)

)
= l

(
N∑
j=1

vjφj(x)

)
.

Using the properties of a bilinear form and the underlying function space, after
some transformation steps we eventually obtain the following equation:

N∑
j=1

vj

n∑
i=1

a (φj(x), φi(x))αi =
N∑
j=1

vjl(φj(x)).

This can be written in the compact form,

vTAu = vT f ⇒ Au = f , (2.16)

where

vT = (v1, . . . , vn), uT = (α1, . . . , αn), fT = (l(φ1(x)), . . . , l(φn(x))),

A =

a (φ1(x), φ1(x)) . . . a (φ1(x), φn(x))
...

...
a (φn(x), φ1(x)) . . . a (φn(x), φn(x))

 .

Step six consists of solving the resulting system (2.16), whereby this thesis focuses
on multigrid methods as the solution method.
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2 Partial differential equations

Finite element method for Maxwell’s equations

In Chapter 5 we focus on Maxwell’s equations, therefore we briefly describe the
finite element discretization of these equations into the so-called Nédélec elements
here. Consequently, we obtain elements that are suitable for the discretization of
Maxwell’s equations. More details can be found in [55].
We have seen a simple form of FEM for the Poisson equation where it is appropri-
ate to define simple basis functions in the space H1(Ω). However, for Maxwell’s
equations we need to derive edge based finite elements (curl conforming elements)
which are based on the function space

H(curl; Ω) :=
{
u ∈

(
L2(Ω)

)3 |∇ × u ∈
(
L2(Ω)

)3
}
.

The strong formulation of Maxwell’s equations, as introduced in (2.4), can be
equivalently formulated by the following weak form,

(∇× u,∇× v) + (βu, v) = (f, v) for all v ∈ H(curl; Ω). (2.17)

Assuming that Ω is discretized by a quadrilateral or triangular mesh, T , in two
dimensions, Nédélec elements represent basis functions in H(curl, T ) spaces. The
three components (T, PT ,ΣT ) that we use in this thesis are defined as given in
Definition 2.11. For Nédélec elements we specify T by the splitting of T into
squares or triangles s.t. one element, T , is a square or triangle. Moreover, the
degrees of freedom given in ΣT are associated with the edges ei of T . Figure 2.2
illustrates a reference element for the choice of discretization into squares or tri-
angles. One dof for u relates to each edge. Therefore, there are c = 4 dofs related
to each element on a square and c = 3 dofs related to each element on a triangle,
s.t.

αi(u) =

∫
ei

ti · u, i ∈ {1, . . . , c},

for every edge, ei, in the reference element. The vector ti is the tangential unit
vector of the edge ei. Therefore, the degrees of freedom αi for the edge elements
are the average value of tangential components of the vector field on each edge.
One exemplary choice of the direction for the unit tangential vectors is illustrated
in Figure 2.2.
Let φ denote the global edge basis function and let x = (x1, x2)T ∈ Ω be a point.
The reference basis functions of the Nédélec elements are given by the requirement
αi(φj) = δij [4, 56, 66], s.t.

φ0(x) =

(
−x2

x1

)
, φ1(x) =

(
−x2

x1 − 1

)
, φ2(x) =

(
1− x2

x1

)
,
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x1

x
2

0

1

2

(a) triangular element

x1

x
2

1

2

3

0

(b) quadrilateral element

Figure 2.2: The degrees of freedom of two-dimensional Nédélec elements in a
reference configuration on a triangular grid (a) and a quadrilateral grid (b).

for triangular elements, and

φ0(x) =

(
1− x2

0

)
, φ1(x) =

(
0
x1

)
, φ2(x) =

(
x2

0

)
, φ3(x) =

(
0

1− x1

)
,

for quadrilateral elements. A visualization of one exemplary basis function φj for
triangular and quadrilateral elements is given in Figure 2.3.

(a) triangular element (b) quadrilateral element

Figure 2.3: Reference basis functions of the Nédélec discretization on a refer-
ence element.

In order to preserve tangential continuity in the global setting, we need to use the
so-called Piola mappings to obtain the global basis functions [4].

Definition 2.12. (Affine element transformation) Let K̂ be the reference
element and x̂ be a variable on the reference element. An affine element K
(triangle or quadrilateral) is obtained by the affine element transformation

K 3 x = FK(x̂) = BK x̂+ bK ,

from the reference element K̂ to an element K in the mesh. Here, BK denotes
the Jacobian (a matrix of all first-order partial derivatives of the vector-valued
function) of the transformation FK(x̂).
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2 Partial differential equations

Definition 2.13. (Piola mapping) Let Ω0 ∈ Rn, let F be a nondegenerate
mapping from Ω0 onto F (Ω0) = Ω and let φ ∈ L2(Ω0,Rn). The covariant Piola
mapping F curl is defined by

F curl(φ) = B−Tφ ◦ F−1.

The shape function φj(x) on element K = FK(K̂) are transformed by

φj(x) =
(
B−T φ̂

)
◦ F−1

K (x).

The curl operator in two-dimensions is transformed by

curlφ =
1

detBK

curl φ̂
(
F−1
K (x)

)
.

More details can be found in [22, 24]. To guarantee global continuity with Piola-
mapped elements, special care has to be taken with regard to the orientation of
geometric entities. In particular the interplay between local and global orientation
is significant. It is common to direct edges in a fashion that gives a consistent
orientation of the boundary of each element. However, this may result in two
adjacent elements with different direction of their common edge. In this setting,
two adjacent elements would naturally disagree on the direction of their tangential
on a common edge. To ensure global continuity, it is necessary to introduce
appropriate sign changes for the mapped basis functions. That means for two
corresponding basis functions: we change the sign of one function such that both
basis functions that correspond to the same global degree of freedom have the
same orientation. Thus, the basis functions can be obtained by first mapping the
nodal basis functions from the reference element and then correcting those basis
functions with a change of sign. The global Nédélec basis functions are non-zero
only in the two elements who share the edge that is related to the basis function.
As already described in the context of finite element methods for the Poisson
equation, we can write an approximation function ũ of u as linear combination of
the vector polynomials φj(x). By using a weight function, we rewrite the weak
form (2.17) in the same manner as described in the last subsection. A more
detailed treatment can be found in [56, 57]. In this way, we are able to construct
a compact form of Maxwell’s equations based on Nédélec elements, such that we
obtain a linear system of the form

Au = f ,

with A = N + Z, where N is the discrete approximation of the weak form of the
curl-curl term in (2.4), and Z is the discrete approximation to the weak form of
the β term in (2.4).
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2.3 Classification of the linear systems arising from
systems of PDEs

As we have already seen, after the discretization of a linear PDE of second order
by finite difference or finite elements, we obtain linear systems of equations. The
matrices of these systems and the systems themselves can be classified with regard
to several aspects. Since the subject of this thesis is the solution of so-called saddle
point systems, we define such systems in the next definition.

Definition 2.14. (Saddle point systems) We consider a block linear system
of the form (

A BT
1

B2 −C

)(
x
y

)
=

(
f
g

)
, (2.18)

where A ∈ Rt×t, B1, B2 ∈ Rs×t and C ∈ Rs×s with s ≤ t. It is obvious that, under
suitable partitioning, any linear system can be transferred in the form (2.18). We
exclude the case where A, B1 or B2 are zero. A saddle point system, is a block
system of form (2.18) that satisfies one or more of the following conditions.

1. A is symmetric, i.e. A = AT

2. the symmetric part of A, namely H = 1
2
(A+ AT ), is positive semidefinite

3. B1 = B2 = B

4. C is symmetric (C = CT ) and positive semidefinite

5. C = Θ, where Θ is the zero matrix

Note that condition 5 implies condition 4. The most basic case is obtained when
all the above conditions are satisfied. In this case A is symmetric positive semidef-
inite and we have a symmetric linear system of the form(

A BT

B 0

)(
x
y

)
=

(
f
g

)
. (2.19)

This system arises as the first-order optimality conditions for the following equality-
constrained quadratic programming problem

min J(x) = xTAx− fTx
subjected to Bx = g.

In this case the variable y represents the vector of Lagrange multipliers. Any
solution (x∗, y∗) of (2.19) is a saddle point for the Lagrangian

L(x, y) = xTAx− fTx+ (Bx− g)Ty,

hence the name “saddle point system” given to Definition 2.14.
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This chapter focuses on solving linear systems of equations resulting from the
discretization of PDEs. Although, the core of this thesis lies in the solution of
systems of PDEs, due to simplicity, we introduce the basic principles of multi-
grid methods with regard to scalar PDEs. In addition, we restrict ourselves to
the standard model problem, the Poisson problem (2.1) in the course of Chapter
3. Subsequently, we deal with the difficulties of linear systems that arise from
systems of PDEs and adapt multigrid components appropriately. We stress that
the term “multigrid” does not refer to a single algorithm, but rather categorizes
a whole class of methods.
We motivate the fundamental components of the geometric and algebraic multi-
grid methods, establish analysis techniques for these methods and reflect upon
parallelization aspects of multigrid methods. In the remainder of this thesis we
refer to geometric multigrid methods as multigrid methods and use the term al-
gebraic multigrid methods wherever those occur. The content of this chapter is
mainly based on the textbooks [23, 71].

3.1 Basic iterative methods

Consider solving the linear system

Au = f , (3.1)

where A ∈ Rn×n is a real positive definite matrix and u, f ∈ Rn are n-dimensional
vectors. Solving such linear systems has been a topic of research for many years.
When solving partial differential equations in scientific or engineering applications
large sparse matrices often appear. A sparse matrix is defined by a matrix of
which most of the elements are zero. We distinguish between direct and iterative
solution approaches for solving such systems. The drawback of direct methods like
Gaussian elimination lies in the computational cost and the amount of storage
required [70]. For this reason, in this work we solve sparse linear systems by
iterative algorithms.
The idea of an iterative method is to start with an initial guess u0 and improve this
guess through a sequence of updating steps. Given that the sparse linear system
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3 Multigrid methods

of equations (3.1) has a unique solution u = A−1f and ũ is an approximation to
the solution, we can define the error, e, by

e = u− ũ. (3.2)

Unfortunately, we cannot compute the error since we do not know the solution
u. Therefore, we introduce a computable measure that indicates how well the
current solution fulfills the system of equations, the residual r. It is defined by

r = f − Aũ.

Using the definition of r and e and that Au = f , we see the following relationship
between the error and the residual,

Ae = r. (3.3)

To improve the approximation, ũ, we solve (3.3) for e and then compute a new
approximation using the definition of the error,

ũ← ũ + e.

This idea of residual correction is the basis of almost all iterative methods to solve
systems of linear equations. In what follows, we use the notation u(k) to denote
the current approximation, while the new, updated approximation is denoted
u(k+1). In practice, u(k+1) will be computed, and afterwards u(k+1) plays the role
of u(k). This procedure is continued until convergence to the solution is obtained.
We will specify the convergence of a method in Theorem 3.1. Next, we consider
the splitting,

A = D − L− U,

where D is the diagonal of A, and −L and −U are the strictly lower and upper
triangular parts ofA, respectively. One classical stationary linear iterative method
that can be introduced using this splitting is the so-called Jacobi method. The
term stationary linear refers to the fact that the update rule is linear in the
unknown u and does not change from one iteration to the next. First, we rewrite
(3.1) in the following way,

Au = f ⇔ Du = (L+ U)u + f .

Thus, a new approximation is computed by the iteration

u(k+1) = D−1(L+ U)u(k) +D−1f = (I −D−1A)u(k) +D−1f = u(k) +D−1r(k).

By assuming this new iteration u(k+1) as intermediate solution and then improving
through a weighted average, we get the ω-Jacobi method,

u(k+1) = (1− ω)u(k) + ω(u(k) +D−1r(k)) = u(k) + ωD−1r(k), (3.4)
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where ω ∈ R, ω > 0. In contrast to the Jacobi method, the Gauss-Seidel method
uses components of the new approximation as soon as they are computed, which
changes the iteration to

u(k+1) = (I − (D − L)−1A)u(k) + (D − L)−1f = u(k) + (D − L)−1r(k).

A weighted version of the Gauss-Seidel method is called successive over-relaxation
(SOR) and has the form,

u(k+1) = (I − (
1

ω
D − L)−1A)u(k) + (

1

ω
D − L)−1f = u(k) + (

1

ω
D − L)−1r(k).

(3.5)

The order in which the components of u(k) are updated is significant for the per-
formance of Gauss-Seidel and SOR methods, while the performance of the Jacobi
method is independent of the order. Changing the order results in variations of
the GS method. Instead of sweeping through the components in ascending order,
so-called lexicographic Gauss-Seidel (GS-LEX), we might sweep through the com-
ponents in descending order, alternate between ascending and descending orders
or update all the even components first and then update all the odd components.
The latter procedure is called the red-black Gauss-Seidel method (GS-RB).
The general form of stationary iterative methods such as Jacobi, ω-Jacobi, Gauss-
Seidel and SOR can be written as

u(k+1) = (I −M−1A)u(k) +M−1f = u(k) +M−1r(k), (3.6)

where M−1 can be seen as an approximation to A−1, with M = D,M = 1
ω
D,M =

(D−L) and M = ( 1
ω
D−L) for Jacobi, ω-Jacobi, Gauss-Seidel and SOR, respec-

tively. The convergence of such a method is established by the spectral radius in
the following way.

Theorem 3.1. Let S = I −M−1A be the so-called iteration matrix. A linear
iterative method is convergent (i.e. lim

m→∞
(S)m = 0) iff the spectral radius of the

iteration matrix S is strictly less than one, i.e.

ρ(S) < 1.

ρ(S) is called the convergence factor.

3.2 Geometric multigrid methods

Multigrid (MG) methods have been proven useful in a variety of applications.
The benefit results from the fast h-independent convergence in combination with
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the computational work of order O(n); meaning that the convergence factor of
the method is small and bounded, independent of the number of grid points, n,
and that the number of arithmetic operations is proportional to the number of
grid points. These facts imply what is often called the optimality of multigrid
methods. In the 1960s, Fedorenko [33] and Bakhvalov [7] were the first to show
the optimality of multigrid methods. Fedorenko proved convergence of multigrid
methods for the Poisson equation in the unit square discretized by the finite
difference method, while Bakhvalov extended his investigations to general elliptic
boundary value problems with variable coefficients. Since the 1980s multigrid
methods became a fastly growing field of research, due to their efficiency in a
wide range of applications. For example, systems of PDEs can usually be treated
by multigrid with efficiency similar to that of scalar equations. Nevertheless,
for more challenging equations like saddle point systems, the solution process
is more complicated. A crucial point is the selection of optimal components
and parameters. We start with the basic principles of multigrid methods, which
is followed by some adjustments with respect to more challenging systems of
equations.

3.2.1 Stationary iterative methods

Next, we analyze the behavior of stationary iterative methods to motivate the use
of these methods in multigrid. We gain valuable insight by applying stationary
iterations to the discretized version of the two-dimensional Poisson problem (2.1).
A rectangular domain is discretized with (n − 1)2 interior grid points. For each
gridpoint (ih, jh) the discretized Poisson equation appears as

1

h2
(−ui,j−1 − ui−1,j + 4ui,j − ui,j+1 − ui+1,j) = fi,j, 1 ≤ i, j ≤ n− 1. (3.7)

This leads to the linear system

Ahuh = fh,

with Ah ∈ R(n−1)2×(n−1)2 , h = 1/n and uh, fh ∈ R(n−1)2 . If the right-hand side
fi,j of (3.7) is set to zero it is called homogeneous Poisson equation or Laplace
equation. For the purpose of motivating the use of iterative methods, it is sufficient
to work with the homogeneous system, since the exact solution is known (u = 0)
and the error of the approximation ũ is simply −ũ. The Poisson problem serves
as model problem, however the following observations can be made for a large
class of problems.
We apply stationary iterations to the homogeneous system of equations with an
initial guess consisting of the vectors (or Fourier modes)

ũ = sin (kπih) sin (lπjh) , i, j = 1, . . . , n− 1, k, l = 1, . . . , n− 1. (3.8)
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The integers k, l are called frequencies. Notice that small values of k, l correspond
to long, smooth waves, which are called low frequencies; while large values cor-
respond to highly oscillatory waves, which are called high frequencies. We now
observe how different modes behave under iteration. We call the following proce-
dure Fourier mode study. It is based on the introduction given in [23]. We first
apply the weighted Jacobi iteration with ω = 4/5 to problem (3.7).
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Figure 3.1: Number of iterations needed to reduce the error of vi,j as defined
in (3.9) by a factor of 103 on a grid of size 33×33 using ω-Jacobi with ω = 4/5.

In Figure 3.1 the number of iterations needed to reduce the error by a factor
of 103 is given. We observe that the stationary iterations are able to reduce
high frequencies much better than low frequencies. This reduction of oscillatory
error components is called the “smoothing property”; for this reason, this sort
of an iterative method is called a smoother or relaxation method. Figure 3.1
shows two possibilities to visualize the number of iterations. Figure 3.1b illus-
trates a complete representation including all combinations of indices i and j. A
two-dimensional view is given in Figure 3.1a such that the number of iterations
corresponding to indices i = j is illustrated. Here, both figures serve as good rep-
resentations of the number of iterations. This might not always be the case. The
two-dimensional view could neglect combinations of indices i and j that possess
a different behavior. Whereas the three-dimensional representation may be less
descriptive and clear. By way of illustration, we use the two-dimensional repre-
sentation within the course of this thesis.
We now turn to a more analytical approach. Again, we consider the weighted Ja-
cobi iteration applied to the model problem (3.7) and we recall that S = I−M−1A
is the iteration matrix of the Jacobi method. It follows that the eigenvalues of S
and A are related by

λ
(k,l)
S = 1− ω

4
λ

(k,l)
A , k, l = 1, . . . , n− 1.

The eigenvalues of A are given by

λ
(k,l)
A = 4− 2 (cos (kπh) + cos (lπh)) , k, l = 1, . . . , n− 1,
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with corresponding eigenvectors v(k,l) given by

v
(k,l)
i,j = sin (kπih) sin (lπjh) , i, j, k, l = 1, . . . , n− 1. (3.9)

We see that the eigenvectors of A are the Fourier modes in (3.8). These results
imply that the eigenvalues of S are

λ
(k,l)
S = 1− ω

2

(
2− cos (kπh)− cos (lπh)

)
, k, l = 1, . . . , n− 1,

while the eigenvectors of S are the same as the eigenvectors of A. Note that, if
0 < ω ≤ 1, then |λ(k,l)

S | < 1 and the weighted Jacobi iteration converges. We
discuss these convergence properties in more detail in Section 3.3. Let e(0) be the
error of an initial guess used in the weighted Jacobi method. Since it is possible
to expand arbitrary vectors in terms of a set of eigenvectors, it is also possible to
represent e(0) using the eigenvectors of A in the form

e(0) =
n−1∑
k,l=1

ck,lv
(k,l),

where the coefficients ck,l ∈ R give the “amount” of each mode in the error. After
m sweeps of the iteration, the error is given by

e(m) = (I −M−1A)me(0).

Then, we have

e(m) = (I −M−1A)me(0) =
n−1∑
k,l=1

ck,l(I −M−1A)mv(k,l) =
n−1∑
k,l=1

ck,lλ
(k,l)
S v(k,l).

The last equality follows because the eigenvectors of A and (I −M−1A) are the

same and it holds that (I −M−1A)v(k,l) = λ
(k,l)
S v(k,l). This expansion shows that

after m iterations, the kth and lth mode of the initial error has been reduced by
a factor of λ

(k,l)
S . We will see that this property is not shared by all stationary

iterations.
The complement to the smoother is the coarse-grid correction, which constitute
the process of eliminating the low frequency components. The idea is as follows:
assume that a relaxation method has been applied until only smooth error com-
ponents remain, as seen in Figure 3.2. This smooth error looks more oscillatory
on a coarser grid. Therefore, it is possible to smooth again on the coarser grid
and thereby eliminate more error frequencies. This procedure may be repeated
multiple times using grids that become more and more coarse. Incorporating
transfer operators and a coarse-grid solver leads to the approximate solution of
the system. These low and high frequency eliminations are used in multigrid
methods. For the sake of simplicity, we focus on the description of a two-grid
method which can be easily expanded by recursion to a multigrid method.
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3.2 Geometric multigrid methods

Figure 3.2: Error of an arbitrarily chosen initial guess and right-hand side zero
on a grid of size 33 × 33. Before (left), after application of one (center) and
three iteration steps using GS-LEX.

3.2.2 Two-grid methods

The combination of a relaxation method and a coarse-grid correction (which con-
sists of restriction, a direct solver and prolongation) results in a two-grid method.
We define the method in a formal way, starting with a detailed view on the dif-
ferent components, followed by a description of the entire two-grid method.

Smoother

In the previous section, we have observed the error smoothing effect of iterative
methods such as the Jacobi method. This is due to the elimination of high
frequency error components. The following outlines how the smoothing factor
can be introduced after the formal definition of low and high modes. First, we
introduce the so-called error propagation operator Sh resulting of a reformulation
of the linear iterative method (3.6). In order to address the influence of the
operators due to the mesh size h, we add the subscript notation. In addition, we
specify Sh(ω) to distinguish between weighted iterative methods with different
weighting factors ω. Using Equations (3.3) and (3.2) it follows that

e
(k+1)
h =

(
I −M−1

h Ah
)

e
(k)
h = Sh(ω)e

(k)
h = Skh(ω)e

(0)
h . (3.10)

From this equation it becomes clear that the iteration converges if and only if
the spectral radius ρ(Sh(ω)) = ρ(I −M−1

h Ah) (also called the convergence factor
of Sh(ω)) is strictly smaller than one. Now, we describe how the operator Sh(ω)
influences the error, starting with the formal definition of low and high frequencies.

Definition 3.2. Let v
(k,l)
h be an eigenvector of Ah as given in (3.9). Then

v
(k,l)
h is a low frequency component :⇐⇒ 1 ≤ max(k, l) <

n

2
,

v
(k,l)
h is a high frequency component :⇐⇒ n

2
≤ max(k, l) < n.
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An iterative method is called a smoother if it eliminates the high frequency com-
ponents of the error. For this reason, the definition of the smoothing factor rests
on high frequencies only.

Definition 3.3. Let λ
(k,l)
h be an eigenvalue of Sh(ω). The smoothing factor

µ(Sh(ω)) := max
{
λ

(k,l)
h :

n

2
≤ max(k, l) ≤ n

}
of Sh(ω) represents the worst factor by which high-frequency error components
are reduced per relaxation step.

The smoothing factor indicates the smoothing properties of the weighted Jacobi
method as introduced in Section 3.2.1

µh(Sh(ω)) = max
{∣∣∣1− ω

2
(2− cos(kπh) + cos(lπh))

∣∣∣ :
n

2
≤ max(k, l) ≤ n

}
= max

{∣∣∣1− ω

2

∣∣∣ , |1− 2ω|
}
.

This shows that the method has a good smoothing effect on the error for the
Poisson problem with the optimal choice of ω = 4/5. Since the eigenvectors of
the iteration matrix of the Gauss-Seidel and SOR methods are not the same as
the eigenvectors of Ah, the analysis of these smoothers is not straightforward. A
detailed analysis can be found in Section 3.3, where we introduce an analysis tool
called local Fourier analysis. In that section, we also compare different orderings
of the grid points. It turns out that the smoothing properties depend on the right
choice of relaxation parameters and, in the case of the Gauss-Seidel iteration,
also on the ordering of grid points. In the following paragraph we assume that an
appropriate relaxation method was chosen and we denote the error propagation
operator Sh as the relaxation or smoothing operator.

Coarse-grid correction

After eliminating the high frequency error components through a relaxation method,
the coarse-grid correction is applied consisting of these five consecutive steps:

1. Compute the residual: rh = fh − Ahuh.

2. Restrict the residual to the coarse grid: rH = RH
h rh.

3. Compute the error on the coarse grid by solving the system: AHeH = rH .

4. Prolongate the error to the fine grid: eh = P h
HeH .

5. Update the approximation: uh = uh + eh.
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This results in the coarse-grid correction operator BH
h , which influences an error

as follows:

e
(k+1)
h = BH

h e
(k)
h := (I − P h

HA
−1
H RH

h Ah)e
(k)
h . (3.11)

Next, we specify and list some standard examples of the multigrid components:
restriction, prolongation, choices of coarse grids as well as coarse-grid operators.

Choices of coarse grids and coarse-grid operators

In this paragraph, we present some common choices for the coarse grid. The
simplest choice is standard coarsening, where the coarse grid has twice the grid
spacing of the next finest grid. If the mesh size h is doubled in one direction
only, it is denoted by semicoarsening, i.e., H = (2h, h) (x-semicoarsening) or
H = (h, 2h) (y-semicoarsening). If the coarse-grid points are distributed in the
fine grid in a checkerboard manner, it is denoted by red-black coarsening. The
corresponding grids are based on the fact that the coarse-grid points are a subset
of the fine-grid points. In Chapter 4, we consider coarsening hierarchies where
this is not the case.
We define two different coarse-grid operators AH . One choice is to use the direct
analog of Ah on the coarse grid. For our model problem, this means

AH =
1

H2

 0 −1 0
−1 4 −1
0 −1 0


H

.

Another choice is the so-called Galerkin coarse-grid operator which is defined by

AH = RH
h AhP

h
H , (3.12)

where RH
h and P h

H are appropriate transfer operators.

Restriction and prolongation operators

The idea of multigrid methods only works if we find sufficient restriction operators
RH
h and prolongation operators P h

H to transfer the error to the coarse grid and
fine grid, respectively. In what follows, we introduce some standard operators for
the Poisson problem. In Chapters 4 and 5 we introduce some additional operators
that are useful for problems like the Stokes equations and Maxwell’s equations.
The choice of intergrid transfer operators RH

h and P h
H is closely related to the

choice of the coarse grid. Here, we restrict ourselves to standard coarsening.
A restriction operator RH

h maps h-grid functions to H-grid functions. For the
sake of simplicity, we represent the restriction operator with the stencil notation
introduced in Equation (2.9). Here, the point at the center denotes the fine-grid
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point that corresponds to the current coarse-grid point. The entry at the center,
as well as the surrounding entries, demonstrate the impact of the fine-grid error
values on the coarse-grid error values. We use h on the bottom right and H on
the top right of the stencil to demonstrate that the operator maps the error from
the fine grid, with grid width h, to the coarse grid, with width H. We define two
well-known restriction operators.

Definition 3.4. The injection operator 1

H
h

,

is the simplest example for a restriction operator since it identifies grid functions
at coarse-grid points with corresponding grid functions at fine-grid points.

Improving the representation of the error on the coarse grid while generating a
computationally more expensive restriction operator leads to the full weighting
(FW) operator.

Definition 3.5. The full weighting (FW) restriction operator is given by the
stencil

1

16

1 2 1
2 4 2
1 2 1

H
h

.

A prolongation operator P h
H maps H-grid functions to h-grid functions. Again, we

represent the prolongation with a stencil notation, where the point at the center
denotes the current fine-grid point. The labels h and H are reversed and we use
open brackets to demonstrate that the operator works in the opposite direction
than the restriction operator. We define the bilinear interpolation operator, which
is the adjoint of the full weighting operator up to a constant factor.

Definition 3.6. The bilinear interpolation operator is given by the stencil

1

4

 1 2 1
2 4 2
1 2 1

h
H

.

Two-grid cycle

Having defined all components, we are able to set up a two-grid method. The full
two-grid cycle consists of a certain number of pre-smoothing steps ν1, followed by
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coarse-grid correction, and terminates with additional post-smoothing steps ν2.
This leads to the two-grid operator ETG,

ETG := Sν2h B
H
h S

ν1
h = Sν2h (I − P h

HA
−1
H RH

h Ah)S
ν1
h .

The two-grid cycle in algorithmic form is presented in Algorithm 3.1.

Algorithm 3.1: Two-grid cycle

1 Presmoother
for j = 1 : ν1 do

uh ← uh +M−1
h rh

end for
2 Coarse-grid correction

rh ← fh − Ahuh
rH ← RH

h rh
eH ← A−1

H rH
eh ← P h

HeH
uh ← uh + eh

3 Postsmoother

for j = 1 : ν2 do
uh ← uh +M−1

h rh
end for

So far, we have not discussed the influence of choosing different components.
This will be shown by experiments and an analysis in the latter part of this
thesis. However, there are no simple rules of how to choose sufficient components,
especially for more complicated problems. An additional question we have to
answer is: how to solve the coarse-grid equation (step three in the coarse-grid
correction process, well-known as the residual equation) efficiently. The answer
is an iterative method, namely the two-grid method. This leads to a recursive
procedure, the so-called multigrid method.

3.2.3 Multigrid methods

We can easily expand two-grid methods by recursion to multigrid methods to solve
the coarse-grid equation efficiently. Once we transfer the error to the coarser grid,
the situation is basically the same as before, since the coarse-grid problem is not
much different from the original problem. Therefore, we can apply the two-grid
method to the coarse-grid problem, which does not differ from applying the two-
grid method to the original problem. We just introduce more grids and recursively
apply this idea until a direct solution of the residual equation is possible. This
leads to a multigrid method. Depending on the number of recursive two-grid
steps on each grid level, we distinguish different types of multigrid methods, the
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V-cycle and the W-cycle. The names are motivated by the resulting hierarchy
structure of the grids, as seen in Figure 3.3. The V-cycle repeats each recursive
step on each grid once, while for the W-cycle the number of consecutive steps is
set to two.

Two-grid cycle: Three-grid cycle: Four-grid cycle:

Figure 3.3: Structure of one multigrid V-cycle (left) and W-cycle (right) for
different numbers of grid levels.

Having defined two-grid methods and multigrid methods, we are interested in the
efficiency of these procedures. We want to know why these methods are considered
efficient and how they perform compared to other iterative methods. Therefore,
we prove convergence results, demonstrate computational work and explain the
efficiency of two-grid methods and multigrid methods.

Multigrid efficiency

Two facts, h-independent fast convergence and a computational cost of O(n), con-
stitute that multigrid methods are considered optimal methods. We will derive
estimates for the multigrid convergence factor by proving the h-independent fast
convergence of two-grid methods. In addition, a computational cost of O(n) per
multigrid cycle is obtained. We start with two-grid convergence estimates. There
are several possibilities to prove the h-independent convergence of the two-grid
method; we use the smoothing and approximation properties to prove conver-
gence. A detailed explanation of this theoretical approach is given in [35].

Definition 3.7. Smoothing property
The error propagation operator Sh possesses the smoothing property, if there
exists a function ϑ(ν), that is independent of h, such that for sufficiently large
ν ∈ Z+

‖AhSνh‖2 ≤ ϑ(ν)h−γ,

for a number γ > 0 and ϑ(ν)→ 0 as ν →∞.

The smoothing property states that the smoother reduces the high frequency
components of the error. One can measure the smoothness of an error eh by a
norm involving differences of the value of this error on different grid points. We
choose the A2

h-norm and recall the relation eνh = Sνhe0
h which results in ‖Sνh‖A2

h
=

‖AhSνh‖2 as a measure for the efficiency after ν smoothing steps.
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Definition 3.8. Approximation property
The approximation property holds if there exists a constant C1, independent of
h, such that

‖BH
h A

−1
h ‖2 = ‖(A−1

h − P
h
HA
−1
H RH

h )‖2 ≤ C1h
γ,

with the same γ as in the smoothing property, Def. 3.7.

Notice that this estimate measures how well the coarse-grid solution approximates
the fine-grid solution. This means that we measure the accuracy between uh =
A−1
h fh and P h

HuH , where uH = A−1
H RH

h fh. The combination of these two properties
results in the h-independent convergence of two-grid methods with ν1 = ν, ν2 = 0.

Theorem 3.9. Convergence of the two-grid method
Suppose the smoothing property and the approximation property hold and let
ρ ∈ (0, 1) be a fixed number. Then there exists a number of smoothing steps ν
such that

‖ETG‖2 = ‖S0
hB

H
h Sνh‖2 ≤ ‖BH

h A
−1
h ‖2 · ‖AhSνh‖2 ≤ C1ϑ(ν) ≤ ρ < 1.

Proof. Choose ν̃ such that ϑ(ν) ≤ ρ
C1

for all ν > ν̃. Then we have

‖ETG‖2 = ‖S0
hB

H
h Sνh‖2 = ‖BH

h Sνh‖2 = ‖BH
h A

−1
h AhSνh‖2

= ‖(A−1
h − P

h
HA
−1
H RH

h )(AhSνh)‖2

≤ ‖A−1
h − P

h
HA
−1
H RH

h ‖2‖AhSνh‖2

≤ C1h
γϑ(ν)h−γ = C1ϑ(ν) ≤ ρ.

The convergence theorem indicates that the two-level method converges at a rate
that is independent of h if sufficiently many smoothing steps are applied. If a
given two-grid method converges sufficiently well, i.e., with a small convergence
factor and independent of h, then the corresponding multigrid method will have
similar convergence properties due to the recursive definition. It is sufficient to
analyze pre-smoothing for a two-grid method ([67], L.4.4). We know that the po-
sitions of the presmoothing and postsmoothing can be interchanged or cumulated
at the beginning or at the end of the whole two-grid method without changing
the asymptotical rate of convergence.
In the next paragraph, we demonstrate the computational cost of multigrid meth-
ods. A reasonable measure for the computational cost is the number of arithmetic
operations. We define the grid width hk and the grid Ωhk on level k, whereby
Ωh0 denotes the coarsest grid. Due to the recursive definition of the multigrid
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method, the computational work Wl per multigrid cycle on Ωl can recursively be
given by

W1 := W 0
1 +W0, Wk+1 := W k

k+1 + γkWk (k = 1, . . . , l),

where W0 denotes the computational cost of the solution on the coarsest grid
Ωh0 and W k

k+1 stands for the computational cost needed for one two-grid cycle
with fine grid Ωhk+1

and coarse grid Ωhk , excluding the cost for the solution of
the residual equation on the coarser level k + 1. This leads to the definition of
computational cost with l grid levels,

Wl :=
l∑

k=1

γl−kW k−1
k + γl−1W0, for l ≥ 1.

We focus on standard coarsening. Therefore, we have nk ≈ 4nk−1, where nk
denotes the number of grid points on grid Ωhk . Due to boundary effects nk is only
approximately equal to 4nk−1, therefore “≈” means equality up to lower order
terms. We assume that multigrid components require a number of arithmetic
operators per point on each grid which is bounded by a small constant C2. This
constant is independent of k, s.t.

W k−1
k / C2nk (k = 1, . . . , l).

Again, ” / ” means equality up to lower order terms. Additionally, we assume
that the coarsest grid Ω0 is chosen such that W0 is negligibly small, i.e., of order
O(1). Straightforward calculation leads to the following computational cost for
the V- and W-cycles.

V-cycle (γ = 1) : Wl =
l∑

k=1

W k−1
k +W0 =

4

3
C2nl,

W-cycle (γ = 2) : Wl =
l∑

k=1

2l−kW k−1
k + 2l−1W0 = 2C2nl.

This estimate shows that the number of arithmetic operations needed for one
multigrid V- or W-cycle is proportional to the number of grid points on the finest
grid for standard coarsening. Together with the existence of the small and h-
independent upper bound for the convergence of the multigrid cycle, this means
that multigrid methods achieve an h-independent reduction of the error in O(n)
operations. This is why we call multigrid methods optimal methods.
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3.3 Local Fourier analysis

In this section, we introduce the local Fourier analysis (LFA), which is considered
the core of the theoretical understanding of multigrid methods [15]. However, we
use LFA not as a theory, but as a tool to measure the quality of geometric multi-
grid components. It is used for the design and comparison of concrete algorithms
for challenging problems. We introduce the basic ideas and formalism of LFA and
show its influence on the convergence of the multigrid method.
LFA serves as a successful analysis tool since it often provides accurate perfor-
mance predictions and it is applicable to a variety of problems (including systems
of PDEs), while being based on reasonable assumptions. In Section 3.2, we used
eigenvectors to show that stationary iterative methods, including, e.g., the Jacobi
iteration, are smoothers. For the Jacobi method, the eigenvalues give us infor-
mation about the smoothing property. This complete analysis of convergence
properties is not possible for all kinds of problems and operators because it can
be difficult to find eigenvectors and eigenvalues of the operators. This is where the
key idea of LFA takes effect. We gain insight into the convergence and smooth-
ing properties of operators by applying them to so-called Fourier modes. The
following outlines how and why this simplification works. We write the operator
as a constant stencil and neglect boundary conditions by analyzing on an infinite
grid. Due to these assumptions, eigenfunctions of operators are given by simple
exponential functions, so-called Fourier modes. We denote them by ϕ(θ,x) and
define:

ϕ(θ,x) := eıθ·x/h.

Here, x varies in the given infinite grid Gh and θ is a vector of parameters that
characterizes the frequency of the grid function (more details are given below).
These modes serve as basis functions and span the whole space of bounded infinite-
grid functions. Therefore, each infinite-grid function can be represented by a
linear combination of Fourier modes and it is sufficient to consider the effect of an
operator Ah on Fourier modes rather than on the real eigenfunctions. We are able
to predict the smoothing behavior with the formal eigenvalue or Fourier symbol
Ãh(θ), i.e.,

Ahϕh(θ,x) = Ãh(θ)ϕh(θ,x).

As we will see in the course of this thesis, a symbol with values smaller than one
indicates that the error is damped, while values significantly smaller than one refer
to a good smoothing behavior. Values that are considered to be small and there-
fore indicate a good smoothing behavior differ from problem to problem. LFA
analyzes not only the smoothing methods but also the effect of the whole two-grid
process, which increases the predictive power of the convergence behavior. In the
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latter part of this section, we discuss difficulties that arise when analyzing the
two-grid method as well as more sophisticated smoothers. Therefore, we intro-
duce the invariance property to overcome these difficulties. We establish some
notation first.

3.3.1 Terminology

Again, we restrict ourselves to two-dimensional problems and standard coarsening.
We write x = (x1, x2) and assume a fixed grid width h = (h1, h2). LFA is based
on the simplification of neglecting boundary conditions; therefore, we extend the
problem to an infinite grid, i.e.,

Gh = {x = kh := (k1h1, k2h2),k ∈ Z2}. (3.13)

The so-called Fourier modes or Fourier functions are the fundamental quantities
of LFA. They are defined as follows.

Definition 3.10.

ϕ(θ,x) = eıθ·x/h := eıθ1x1/h1eıθ2x2/h2 for x ∈ Gh,

where θ = (θ1, θ2) and ı2 = −1.

Since ϕ(θ,x) is periodic in θ with period 2π, we consider θi to vary continuously

in an interval of length 2π. Here, we use the interval
[
−π

2
, 3π

2

)2
. The coarse grid

GH with H = (2h1, 2h2) is defined similarly to Gh by

GH = {x = kH,k ∈ Z2}.

On the grid Gh, as well as on GH , we consider discrete operators in stencil nota-
tion, as defined in (2.9). In what follows, let Ah be a stencil operator and not a
matrix anymore. For a scalar Toeplitz operator Ah, i.e., a matrix in which each
descending diagonal from left to right is constant, we have

Ah=̂[sκ]h, (κ = (κ1, κ2) ∈ Z2),

Ahwh(x) =
∑
κ∈V

aκwh(x+ κh),

with constant coefficients aκ ∈ R and V taken to be a finite index set. In (2.9)
we recognize the index set V for the one-dimensional Poisson problem reaches
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from −1 to 1, i.e., V = {−1, 0, 1}, since the stencil consists of three values. For
a two-dimensional stencil, i.e.,

[sκ]h =


...

...
...

· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...

 ,

the index set V consists of 2-tuples. The size of the stencil depends on the number
and location of non-zero values in the corresponding system matrix.

Definition 3.11. We call Ãh(θ) :=
∑
κ∈V

aκe
ıθ·κ the symbol of Ah.

Lemma 3.12. For all modes ϕ(θ,x) it holds that

Ahϕh(θ,x) = Ãh(θ)ϕh(θ,x).

Proof. By Definition 3.10 and Definition 3.11, it holds that ϕ(θ,x) = eıθ·x/h :=
eıθ1x1/h1eıθ2x2/h2 and Ãh(θ) :=

∑
κ∈V

aκe
ıθ·κ. Therefore,

Ahϕh(θ,x) =
∑
κ∈V

aκϕh(θ,x+ κh) =
∑
κ∈V

aκe
ıθ·x+κh

h

=
∑
κ∈V

aκe
ıθ1

x1+κ1h1
h1 e

ıθ2
x2+κ2h2

h2 =
∑
κ∈V

aκe
ıθ1

(
x1
h1

+κ1
)
e
ıθ2

(
x2
h2

+κ2
)

=
∑
κ∈V

aκe
ıθ1

x1
h1 eıθ1κ1e

ıθ2
x2
h2 eıθ2κ2 =

∑
κ∈V

aκe
ıθ1κ1eıθ2κ2e

ıθ1
x1
h1 e

ıθ2
x2
h2

=
∑
κ∈V

aκe
ıθ·κeıθ·

x
h

= Ãh(θ)ϕh(θ,x)

Example 3.13. The symbol of the two-dimensional Laplace stencil, −∆h, defined
in (2.10), is given by Ãh(θ1, θ2) = 4−2 cos θ1−2 cos θ2

h2
.

For the smoothing and two-grid analysis, we again have to distinguish high and
low frequency components on Gh with respect to GH . The definition is based
on the phenomenon that only those modes ϕ(θ,x) with θ ∈ [−π

2
, π

2
)2 are distin-

guishable on GH . One recognizes that

ϕ(θ,x) ≡ ϕ(θ′,x) for x ∈ GH iff θ = θ′(modπ). (3.14)

This leads to the definition of high and low frequencies for standard coarsening:
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Definition 3.14. Let ϕh(θ, ·) be a Fourier mode. Then,

ϕh(θ, ·) is a low frequency mode :⇐⇒ θ ∈ T low :=
[
−π

2
,
π

2

)2

,

ϕh(θ, ·) is a high frequency mode :⇐⇒ θ ∈ T high :=

[
−π

2
,
3π

2

)2∖[
−π

2
,
π

2

)2

.

3.3.2 Smoothing analysis

Lemma 3.15. Let the error-propagation symbol, S̃h(ω,θ), for a smoother Sh(ω)
on the infinite grid Gh satisfy

Sh(ω)ϕh(θ,x) = S̃h(ω,θ)ϕh(θ,x), θ ∈
[
−π

2
,
3π

2

)2

,

for all ϕh(θ,x), with

S̃h(ω,θ) = I − M̃−1
h (θ)Ãh(θ).

Then, the corresponding smoothing factor for Sh(ω) is given by

µ(ω) = µ (Sh(ω)) = max
θ∈T high

{∣∣∣S̃h(ω,θ)
∣∣∣} . (3.15)

Remark 3.16. If Ah is not a scalar operator, i.e., it corresponds to the dis-

cretization of a system of PDEs, then
∣∣∣S̃h(ω,θ)

∣∣∣ in (3.15) can be modified to be

the absolute value of the eigenvalues of Sh(ω,θ), i.e., |λSh|.

Example 3.17. We consider the weighted Jacobi relaxation (3.4) applied to the
two-dimensional Poisson problem, i.e., Mh := ωDh, where Dh is given by

Dh =
1

h2

 0
0 4 0

0

 ,
with symbol D̃h(θ) = 4

h2
. The error propagation symbol of the weighted Jacobi

relaxation for the Poisson problem is

S̃h(ω,θ) = I − ωD̃−1
h (θ)Ãh(θ) = 1− ω4− 2 cos θ1 − 2 cos θ2

4
.

Using Definition 3.3, we have

µ(ω) = max
{
|1− 2ω| ,

∣∣∣1− ω

2

∣∣∣} . (3.16)

The choice ω = 0.8 is optimal [71].
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3.3 Local Fourier analysis

The symbol S̃h(ω,θ) indicates the influence of a relaxation method on the er-
ror. As a result, the smoothing factor µ(ω) in (3.16) identifies the smoothing
properties of the weighted Jacobi method. We reach the best possible smooth-
ing factor with ω = 0.8, namely µ(0.8) = 0.6. The smoothing behavior of the
weighted Jacobi method with ω = 0.8 corresponding to different frequencies θ
is visualized in Figure 3.4. The LFA smoothing analysis gives a good prediction
for the actual multigrid performance (if we assume that we have a coarse-grid
correction operator that annihilates low-frequency error components and leaves
high-frequency components unchanged). Figure 3.4 illustrates that low frequen-

cies, i.e., θ ∈
[
−π

2
, π

2

)2
, are not eliminated by the relaxation method. Lemma

3.15 indicates that the smoothing factor is based on high frequencies only, i.e.,

θ ∈ [−π
2
, 3π

2
)2
∖[
−π

2
, π

2

)2
. In addition, the smoothing factor is based on the least

damped high frequencies. Consequently, a lower value implies a better smoothing
behavior, while µ(ω) = 1 indicates that the error is not damped and values larger
than one predict that the relaxation method enlarges the error.
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Figure 3.4: The spectral radius of the smoothing error-propagation symbol for
weighted Jacobi relaxation with ω = 0.8 and different frequencies θ.

The next fundamental example shows how LFA is used to analyze the smoothing
behavior of GS-LEX. GS-LEX is a classical relaxation method which has been
used, generalized and analyzed for a variety of PDEs [71]. GS-LEX has natural
smoothing properties, but the complete analysis presented in Section 3.2 cannot
be applied. LFA, however, is applicable and shows the smoothing properties of
GS-LEX.

Example 3.18. We consider the weighted GS-LEX relaxation (3.5) applied to
the two-dimensional Poisson problem, i.e., Mh := ( 1

ω
Dh − Lh) is given by

Mh =
1

h2

 0
−1 4/ω 0

−1

 ,
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with symbol 1
h2

(
4
ω
− e−ıθ1 − e−ıθ2

)
. The error propagation symbol of the weighted

GS relaxation for the Poisson problem is

S̃h(ω,θ) = 1− 4− e−ıθ1 − e−ıθ2 − eıθ1 − eıθ2
4/ω − e−ıθ1 − e−ıθ2

.

One can show that the optimal value of ω is not exactly but very close to one
[71]. Therefore, we assume ω = 1, which results in

µ(ω) = 0.5.

The smoothing behavior of the weighted GS method with ω = 1 corresponding
to different frequencies θ is visualized in Figure 3.5.
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Figure 3.5: The spectral radius of the smoothing error-propagation symbol for
weighted GS-LEX with ω = 1 and different frequencies θ.

A natural question is: what is considered to be a good smoothing factor? A first
answer is: it depends on the problem. Problems that are considered to be easier
problems are expected to have smaller smoothing factors than harder problems.
Indeed, there is not a definite answer, however, we compare different factors in
the course of this thesis to generate an understanding of good smoothing factors,
especially for the Stokes equations.

3.3.3 Two-grid analysis

The basis for the efficient performance of a multigrid method is the interplay
between smoothing and coarse-grid correction. Thus, it is appropriate to perform
at least a two-grid analysis which takes both the smoother and the coarse-grid
correction into account. To perform a two-grid local Fourier analysis, we consider
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3.3 Local Fourier analysis

the fine and coarse grids Gh and GH . In the transition from the fine to the

coarse grid, each low-frequency θ = θ(0,0) ∈
[
−π

2
, π

2

)2
is coupled with three high-

frequencies, meaning that those three frequencies coincide with the low-frequency
on the coarse grid, that is,

ϕh(θ
(0,0),x) = ϕh(θ

(1,1),x) = ϕh(θ
(1,0),x) = ϕh(θ

(0,1),x) for x ∈ GH .

Interpreting the Fourier components as coarse-grid functions gives

ϕh(θ
(0,0),x) = ϕH(2θ(0,0),x) for x ∈ GH .

Because of this, it is appropriate to subdivide the Fourier space into the corre-
sponding four-dimensional subspaces as follows:

Definition 3.19. The four-dimensional space of harmonics is defined by

Fh := span
{
ϕh
(
θξ, ·

)
: ξ = (ξ1, ξ2) , ξj ∈ {0, 1}

}
,

with θ = θ(0,0) ∈ T low :=
[
−π

2
,
π

2

)2

and θξ = θ + ξπ, where ξ = (0, 0), (1, 1), (1, 0), (0, 1).

The four modes ϕ
(
θξ, ·

)
(and sometimes also the corresponding frequencies

θξ) are called harmonics (of each other). We use the ordering of ξ =
(0, 0), (1, 1), (1, 0), (0, 1) for the four harmonics.

The operator BH
h , defined in Equation (3.11), intermixes Fourier components

with each other. This is a consequence of the fact that the two different grids,
Gh and GH , are involved. However, specifying the symbols for each operator of
the two-grid method leads to the invariance property with respect to the space of
harmonics Fh. Due to this property, a block-matrix representation of the two-grid
operator on the Fourier space can be obtained, which simplifies the computation
of the spectral radius of the iteration matrix of the method.

Definition 3.20. Fourier representation of the fine-grid operator
The Fourier representation of the fine-grid operator Ah=̂[sκ]h w.r.t. Fh is given
by

Âh (θ) =


Ãh
(
θ(0,0)

)
0 0 0

0 Ãh
(
θ(1,1)

)
0 0

0 0 Ãh
(
θ(1,0)

)
0

0 0 0 Ãh
(
θ(0,1)

)
 ,

with Fourier symbols Ãh
(
θξ
)

as defined in Definition 3.11.
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Definition 3.21. Fourier representation of the restriction operator
The restriction operator RH

h maps the four Fourier harmonics onto one coarse-
grid function. The Fourier representation of the restriction RH

h =̂[rκ]Hh w.r.t. Fh
is given by

R̂H
h (θ) =

(
R̃H
h

(
θ(0,0)

)
R̃H
h

(
θ(1,1)

)
R̃H
h

(
θ(1,0)

)
R̃H
h

(
θ(0,1)

))
,

with Fourier symbols R̃H
h

(
θξ
)

:=
∑
κ∈V

rκe
ıθξ·κ, such that

RH
h ϕh

(
θξ, ·

)
= R̃H

h

(
θξ
)
ϕH
(
2θ(0,0), ·

)
.

Definition 3.22. Fourier representation of the prolongation operator
The prolongation operator P h

H maps one coarse-grid function onto the four Fourier
harmonics. The Fourier representation of the prolongation P h

H=̂]pκ[hH w.r.t. Fh is
given by

P̂H
h (θ) =


P̃ h
H

(
θ(0,0)

)
P̃ h
H

(
θ(1,1)

)
P̃ h
H

(
θ(1,0)

)
P̃ h
H

(
θ(0,1)

)


with Fourier symbols P̃ h
H

(
θξ
)

:=
∑
κ∈V

pκe
ıθξ·κ, such that

P h
HϕH

(
2θ(0,0), ·

)
=
∑
ξ

P̃ h
H

(
θξ
)
ϕH
(
θξ, ·

)
.

Definition 3.23. Fourier representation of the coarse-grid operator
We distinguish two types of coarse-grid operators. Let θ = θ(0,0) and θ ∈ T low.

1. The Fourier representation of coarse-grid operator AH=̂[aκ]H w.r.t. Fh is
given by

ÃH
(
2θ(0,0)

)
=
∑
κ∈V

sκe
ı2θ·κ,

such that AHϕH
(
2θ(0,0), ·

)
= ÃH

(
2θ(0,0)

)
ϕH
(
2θ(0,0), ·

)
.

2. The Fourier representation of the Galerkin coarse-grid operatorAH = RH
h AhP

h
H

w.r.t. Fh is given by

ÃH
(
2θ(0,0)

)
= R̃H

h

(
2θ(0,0)

)
Ãh
(
2θ(0,0)

)
P̃ h
H

(
2θ(0,0)

)
.

Definition 3.24. Invariance property of the two-grid operator
The two-grid operator ETG leaves the harmonic space Fh invariant for an arbitrary
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frequency θ ∈ T low = [−π
2
, π

2
)2, which means Fh remains unchanged under ETG.

This invariance property results from the following relations:

I : Fh(θ)→ Fh(θ),

Ah : Fh(θ)→ Fh(θ),

RH
h : Fh(θ)→ span

{
ϕH
(
2θ(0,0), ·

)}
,

AH : span
{
ϕH
(
2θ(0,0), ·

)}
→ span

{
ϕH
(
2θ(0,0), ·

)}
,

P h
H : span

{
2ϕH

(
θ(0,0), ·

)}
→ Fh(θ),

Sh : Fh(θ)→ Fh(θ).

Summarizing, the Fourier space F turns out to be invariant under the two-grid
operator,

ETG : Fh(θ)� Fh(θ).

Definition 3.25. Two-grid convergence factor
The spectral radius of the two-grid iteration matrix and thus the asymptotic
two-grid convergence factor can be approximated by

ρ(ETG) := sup
θ∈T low

ρ
(
ÊTG(θ)

)
,

where

ÊTG(θ) =
(
Ŝh(θ)

)ν2
B̂H
h (θ)

(
Ŝh(θ)

)ν1
=
(
Ŝh(θ)

)ν2 (
Î − P̂ h

H(θ)
(
ÂH(2θ)

)−1

R̂H
h (θ)Âh(θ)

)(
Ŝh(θ)

)ν1
Example 3.26. We perform a two-grid LFA for the two-dimensional Poisson
equation solved by a multigrid method with bilinear interpolation, full-weighting
restriction and a Galerkin coarse-grid operator. We perform the two-grid analysis
with the GS-LEX smoother. From Example 3.13, we have

Ãh
(
θξ
)

=
4− 2 cos(θ1 + ξ1π)− 2 cos(θ2 + ξ2π)

h2
,

which results in

Âh(θ) =


4−2 cos θ1−2 cos θ2

h2
0 0 0

0 4−2 cos(θ1+π)−2 cos(θ2+π)
h2

0 0

0 0 4−2 cos(θ1+π)−2 cos θ2
h2

0

0 0 0 4−2 cos θ1−2 cos(θ2+π)
h2

 .
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In addition, we obtain for the bilinear interpolation operator P h
H (Def. 3.6) the

symbols

P̃ h
H

(
θξ
)

=
∑
κ∈V

pκe
ıθξ·κ = (1 + cos(θ1 + ξ1π))(1 + cos(θ2 + ξ2π))

and thereby

P̂ h
H =


(1 + cos θ1)(1 + cos θ2)

(1 + cos(θ1 + π))(1 + cos(θ2 + π))
(1 + cos(θ1 + π))(1 + cos θ2)
(1 + cos θ1)(1 + cos(θ2 + π))

 .

The symbol for the full-weighting restriction operator (Def. 3.5) is

R̃H
h

(
θξ
)

=
∑
κ∈V

rκe
ıθξ·κ =

1

4
(1 + cos(θ1 + ξ1π)) (1 + cos(θ2 + ξ2π)) .

We obtain R̂H
h as introduced in Definition 3.21. From Example 3.18 we know the

Fourier symbol of weighted GS-LEX with weight ω = 1 can be represented by

S̃h(θ) =
eıθ1 + eıθ2

4− e−ıθ1 − e−ıθ2
,

and the corresponding smoothing factor is µ(ω) = 0.5. From the representations
of Âh, P̂

h
H , R̂H

h , Î and the solution on the coarse grid ÂH = R̂H
h ÂhP̂

h
H , we obtain

the representation of B̂H
h , i.e.,

B̂H
h = Î − P̂ h

H(θ)
(
ÂH(2θ)

)−1

R̂H
h (θ)Âh(θ).

In order to extend it to ÊTG, we include the representations of Ŝh in the analysis
and obtain the two-grid convergence factor

ρ(ETG) = sup
θ∈T low

ρ
(
ÊTG(θ)

)
= sup
θ∈T low

ρ
((
Ŝh(θ)

)ν2
B̂H
h (θ)

(
Ŝh(θ)

)ν1)
= 0.15.

Figure 3.6 shows the convergence behavior of the two-grid method as a function
of the frequencies θ ∈ T low.

For the GS-RB smoother, the definition of a smoothing factor is not straight-
forward. The GS-LEX smoother from Example 3.18 has the property that all
ϕ(θ, x) are eigenfunctions of the smoothing operator. This is not the case for
GS-RB. In the two-grid analysis in the last section, we made the more general as-
sumption that only the invariance property is fulfilled for the smoothing operator
under consideration, see Definition 3.24. In order to analyze the two-grid method
using GS-RB relaxation, we introduce some basic definitions and relations that
are crucial to perform a Fourier analysis.
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Figure 3.6: The spectral radius of the two-grid symbol with GS-LEX as a
function of the frequencies θ ∈ T low for the two-dimensonal Poisson equation.

Lemma 3.27. We use the ordering of ξ = (0, 0), (1, 1), (1, 0), (0, 1) for the four
harmonics ϕ(θξ, x). We distinguish four types of grid points within the infinite
grid Gh, namely

G
(0,0)
h :=

{
x = κh|κ ∈ Z2, κ1, κ2 even

}
,

G
(1,1)
h :=

{
x = κh|κ ∈ Z2, κ1, κ2 odd

}
,

G
(1,0)
h :=

{
x = κh|κ ∈ Z2, κ1 odd, κ2 even

}
,

G
(0,1)
h :=

{
x = κh|κ ∈ Z2, κ1 even, κ2 odd

}
.

Due to the relation

eıθqeıπq =

{
eıθq for q even,

−eıθq for q odd,

the following relations are valid:

ϕh
(
θ(1,1),x

)
=

{
ϕh
(
θ(0,0),x

)
for x ∈ G(0,0)

h ∪G(1,1)
h ,

−ϕh
(
θ(0,0),x

)
for x ∈ G(1,0)

h ∪G(0,1)
h .

ϕh
(
θ(1,0),x

)
=

{
ϕh
(
θ(0,0),x

)
for x ∈ G(0,0)

h ∪G(0,1)
h ,

−ϕh
(
θ(0,0),x

)
for x ∈ G(1,0)

h ∪G(1,1)
h .

ϕh
(
θ(0,1),x

)
=

{
ϕh
(
θ(0,0),x

)
for x ∈ G(0,0)

h ∪G(1,0)
h ,

−ϕh
(
θ(0,0),x

)
for x ∈ G(0,1)

h ∪G(1,1)
h .

(3.17)
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In addition, we define four functions Ψ1, . . . ,Ψ4:

Ψ1(x) :=
1

4

(
ϕh
(
θ(0,0),x

)
+ ϕh

(
θ(1,1),x

)
+ ϕh

(
θ(1,0),x

)
+ ϕh

(
θ(0,1),x

))
,

Ψ2(x) :=
1

4

(
ϕh
(
θ(0,0),x

)
+ ϕh

(
θ(1,1),x

)
− ϕh

(
θ(1,0),x

)
− ϕh

(
θ(0,1),x

))
,

Ψ3(x) :=
1

4

(
ϕh
(
θ(0,0),x

)
− ϕh

(
θ(1,1),x

)
− ϕh

(
θ(1,0),x

)
+ ϕh

(
θ(0,1),x

))
,

Ψ4(x) :=
1

4

(
ϕh
(
θ(0,0),x

)
− ϕh

(
θ(1,1),x

)
+ ϕh

(
θ(1,0),x

)
− ϕh

(
θ(0,1),x

))
.

(3.18)

Using (3.17) it can be easily verified that

Ψ1(x) =

{
ϕh
(
θ(0,0),x

)
for x ∈ G(0,0)

h ,

0 for x /∈ G(0,0)
h .

Ψ2(x) =

{
ϕh
(
θ(0,0),x

)
for x ∈ G(1,1)

h ,

0 for x /∈ G(1,1)
h .

Ψ3(x) =

{
ϕh
(
θ(0,0),x

)
for x ∈ G(1,0)

h ,

0 for x /∈ G(1,0)
h .

Ψ4(x) =

{
ϕh
(
θ(0,0),x

)
for x ∈ G(0,1)

h ,

0 for x /∈ G(0,1)
h .

(3.19)

The general definition of the red-black Gauss-Seidel relaxation operator SRB
h is

SRB
h = SB

h SR
h ,

where the corresponding grid Gh := {x = κh | κ ∈ Z2} is divided into two disjoint
subsets GR

h and GB
h , s.t.

GR
h := {x = κh ∈ Gh | κ1 + κ2 even} = G

(0,0)
h ∪G(1,1)

h ,

GB
h := {x = κh ∈ Gh | κ1 + κ2 odd} = G

(1,0)
h ∪G(0,1)

h ,
(3.20)

and

SR
h ϕh(θ, x) =

{
A(θ)ϕh(θ, x) for x ∈ GR

h ,

ϕh(θ, x) for x ∈ GB
h .

For the sake of clarity, we replace ϕξ by ϕh
(
θξ, x

)
, Ψj(x) by Ψj and A(θξ) by Aξ.
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The combination of (3.17), (3.19) and (3.20) yields, for example with ξ = (1, 0),

SR
h ϕ

(1,0) =

{
A(1,0)ϕ(1,0) for x ∈ GR

h

ϕ(1,0) for x ∈ GB
h

=


A(1,0)ϕ(1,0) for x ∈ G(0,0)

h

A(1,0)ϕ(1,0) for x ∈ G(1,1)
h

ϕ(1,0) for x ∈ G(1,0)
h

ϕ(1,0) for x ∈ G(0,1)
h

=


A(1,0)ϕ(0,0) for x ∈ G(0,0)

h

−A(1,0)ϕ(0,0) for x ∈ G(1,1)
h

−ϕ(0,0) for x ∈ G(1,0)
h

ϕ(0,0) for x ∈ G(0,1)
h

= A(1,0)Ψ1 − A(1,0)Ψ2 −Ψ3 + Ψ4

Similar results are obtained for ξ = (0, 0), (1, 1), (0, 1), such that

SR
h ϕ

ξ =


A(0,0) (Ψ1 + Ψ2) + (Ψ3 + Ψ4) ξ = (0, 0),

A(1,1)(Ψ1 + Ψ2) + (−Ψ3 −Ψ4) ξ = (1, 1),

A(1,0)(Ψ1 −Ψ2) + (−Ψ3 + Ψ4) ξ = (1, 0),

A(0,1)(Ψ1 −Ψ2) + (Ψ3 −Ψ4) ξ = (0, 1).

Inserting Ψ1, . . . ,Ψ4 as defined in (3.18) yields:

SR
h ϕ

ξ =
1

2


A(0,0)

(
ϕ(0,0) + ϕ(1,1)

)
+
(
ϕ(0,0) − ϕ(1,1)

)
ξ = (0, 0),

A(1,1)
(
ϕ(0,0) + ϕ(1,1)

)
+
(
−ϕ(0,0) + ϕ(1,1)

)
ξ = (1, 1),

A(1,0)
(
ϕ(1,0) + ϕ(0,1)

)
+
(
ϕ(1,0) − ϕ(0,1)

)
ξ = (1, 0),

A(0,1)
(
ϕ(1,0) + ϕ(0,1)

)
+
(
−ϕ(1,0) + ϕ(0,1)

)
ξ = (0, 1).

Next, we perform steps that lead us to the representation of the coefficient ma-
trix ŜR

h (θ) as shown in (3.21). Therefore, we convert the representation in the
following way

A(0,0)
(
ϕ(0,0) + ϕ(1,1)

)
+
(
ϕ(0,0) − ϕ(1,1)

)
→ A(0,0)




1
0
0
0

+


0
1
0
0


+




1
0
0
0

−


0
1
0
0




=


A(0,0) + 1
A(0,0) − 1

0
0

 .

49



3 Multigrid methods

This can be done in a similar way for ξ = (1, 1), (1, 0), (0, 1). We obtain

ŜR
h (θ) =

1

2


A(0,0) + 1 A(1,1) − 1
A(0,0) − 1 A(1,1) + 1

A(1,0) + 1 A(0,1) − 1
A(1,0) − 1 A(0,1) + 1

 , (3.21)

with Aξ = I − ωh2

4
Âh(θ

ξ). Similar steps lead to the representation of the symbol
SR
h corresponding to the performance of the smoother on “black” grid points as

shown in (3.22).

ŜB
h (θ) =

1

2


A(0,0) + 1 −A(1,1) + 1
−A(0,0) + 1 A(1,1) + 1

A(1,0) + 1 −A(0,1) + 1
−A(1,0) + 1 A(0,1) + 1

 . (3.22)

Example 3.28. We perfom a two-grid analysis for the two-dimensional Poisson
equation with the red-black Gauss-Seidel smoother (GS-RB). We use the coarse-
grid operator B̂H

h from Example 3.26, namely bilinear interpolation, full-weighting
restriction and the Galerkin coarse-grid operator.
From the representation of the GS-RB symbol as given in Lemma 3.27 in com-
bination with the coarse-grid correction symbols, we can compute the two-grid
convergence factor. We obtain,

ρ(ETG) = 0.0625.

Figure 3.7 shows the convergence behavior of the two-grid method in as a function
of the frequencies θ ∈ T low.

(a)
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Figure 3.7: The spectral radius of the two-grid symbol with GS-RB as a func-
tion of the frequencies θ ∈ T low for the two-dimensonal Poisson equation.
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3.3.4 Practical guidelines

A first introduction into practical guidelines on the use of LFA can be found
in [23, 71, 75]. An extension of this theory is obtained through the so-called
LFA Lab by Rittich [64]. The LFA Lab is a software package that provides
automated computations of Fourier matrix symbols to simplify the usage of LFA.
The automated LFA (aLFA) by Kahl and Kintscher [46] provides a new way
of applying LFA that simplifies its application even further. It is carried out
in position space and allows the treatment of operators on arbitrary repetitive
structures, i.e. it is not limited to simple systems on rectangular grids. Thereby
aLFA fully automates the process of LFA and can be used in a wide range of
applications and for different kinds of operators. We employ the aLFA tool in
Chapter 4 for the analysis of the Stokes equations.
In the following paragraph, we explain the results that are produced by these
tools, with a focus on the generated graphics. Furthermore, we evaluate the
advantages and disadvantages of available alternatives to visualize the smoothing
and two-grid convergence factors without using one of these tools. We highlight
a basic fact of practical LFA in Remark 3.29 that we already used in the previous
subsections.

Remark 3.29. For practical use, a discrete form of the frequencies θ resulting
from sampling over only a finite set is considered. In this thesis, we discretize the

frequency interval
[
−π

2
, 3π

2

)2
into a finite set with 33× 33 values.

We recapitulate the main facts of LFA. The smoothing and two-grid convergence
factors are indicators for the performance of the multigrid method. The smoother
has to eliminate high frequencies. As a result, the analysis of the smoothing be-
havior is based on the quality of high frequency elimination. An illustration can

be found in Figure 3.4. As expected, frequencies θ ∈ T low =
[
−π

2
, π

2

)2
are not

damped by the smoother. The corresponding modes are left out of the com-
putation of the smoothing factor, as seen in Lemma 3.15. Visualization of the
smoothing behavior is very consistent throughout different tools and papers. The
only inconsistency is the frequency interval. In classical LFA theory, the required
interval range is 2π. We may shift the interval in R2, where common choices are

[−π, π)2 and
[
−π

2
, 3π

2

)2
.

Some researchers neglect the smoothing factor and focus on the two-grid method
as a whole. The entire method has to eliminate high and low frequencies. There-
fore we consider an interval range of 2π for the analysis of the two-grid method.
As stated previously, c.f. Section 3.3.3, applying the two-grid operator to the

modes ϕ(θ, x) with θ ∈
[
−π

2
, 3π

2

)2
intermixes Fourier components with each

other; i.e., we can no longer distinguish the Fourier modes. This means the

modes corresponding to the frequencies θ ∈ T low :=
[
−π

2
, π

2

)2
coincide with
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θ ∈
[
−π

2
, π

2

)
×
[
π
2
, 3π

2

)
, θ ∈

[
π
2
, 3π

2

)
×
[
−π

2
, π

2

)
and θ ∈

[
π
2
, 3π

2

)2
. In particular, for

an exemplary choice of ϕ(θ, x) with θ =

(
θ1

θ2

)
=

(
−π

2

−π
2

)
, it holds:

ϕ

((
−π

2

−π
2

)
,x

)
= ϕ

((
−π

2
π
2

)
,x

)
= ϕ

((
π
2

−π
2

)
,x

)
= ϕ

((
π
2
π
2

)
,x

)
.

Due to this reason, we visualize the convergence behavior in the low mode interval[
−π

2
, π

2

)2
, i.e., we compute and plot the maximum value over the four smoothing

values for each frequency θ ∈ T low.
Alternatively, it is possible to plot the results on the entire interval, i.e., θ ∈[
−π

2
, 3π

2

)2
. Since we cannot distinguish the modes within this interval, it is not

an accurate presentation. However, it shows exactly what we are interested in: the
convergence property of the multigrid method. To this end, we have to put more
effort into the visualization: we apply the operator to each of the four coinciding
basis Fourier modes of the harmonic space Fh. From there, we compute the
norm of the resulting vector. This presentation highlights the performance of the
operator on the basis modes, while the presentation in this thesis focuses on the
“intermixture” of those.
A significant factor for LFA is the Fourier basis that we choose (in this thesis
ϕ(θ,x) = eıθ·x/h). The performance prediction of the two-grid method that we
obtain by LFA is the same for different choices of bases. However, either the same
Fourier basis must be used at all times throughout the analysis or we use a simple
transformation to combine the analysis of operators that are based on different
bases. We discuss more details and further aspects in Chapter 4.

3.4 Classical Algebraic multigrid methods

Geometric multigrid methods were critical to the early development of multigrid
methods and still play an important role today. Nevertheless, there are classes of
problems for which geometric techniques are too difficult to apply or cannot be
used at all. These classes can be addressed by algebraic multigrid (AMG) meth-
ods as introduced in [23, 29, 69]. The development of AMG methods started in
the 1980s to solve linear systems. They are based on multigrid concepts, but in a
way that requires no explicit knowledge of the problem geometry. Therefore, we
should use the term multilevel rather than multigrid. For historical reasons, we
stick to the term multigrid. One of the motivations for AMG methods is the fact
that they are solely based on matrix coefficients. Due to this fact, these methods
serve as efficient methods for solving unstructured grid problems and they have
been shown to work well over a wide range of applications [71].
The execution of AMG methods is a two-part process. The first part, the so-
called setup phase, is followed by the solution phase. The second part uses the
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components constructed in the setup phase in order to solve the original ma-
trix equation in a multigrid-like process. This second part is straightforward and
requires no additional description. The setup phase comprises determining a se-
quence of smaller matrices that serve as coarse-level matrices. In addition, the
associated inter-level transfer operators are determined automatically. A detailed
description about this classical algebraic multigrid method can be found in one
of the next paragraphs.
Since the coarse levels, inter-level transfer operators and coarse-level equations
are determined based solely on matrix entries, the coarsening process is fully au-
tomatic. This is the main reason for AMG’s flexibility in adapting itself to specific
requirements of the problem to be solved. Nevertheless, the setup phase causes
extra overhead, which makes AMG less efficient than geometric multigrid. Having
said that, algebraic multigrid should not be regarded as a competitor for geomet-
ric multigrid. Instead, AMG should be regarded as a complementary method
that is applicable to solve problems which are out of reach of geometric multi-
grid. The main conceptual difference between geometric and algebraic multigrid
results from the fact that geometric multigrid employs fixed grid hierarchies. Ge-
ometric multigrid methods enforce an efficient interplay between smoothing and
coarse-grid correction by selecting an appropriate smoothing procedure. On the
other hand, AMG methods focus on the selection of appropriate coarser levels
and interpolation operators, while using a simple relaxation method.
One part of this thesis concentrates on algebraic multigrid smoothing methods
for saddle point systems. The focus on smoothers stems from challenging applica-
tions that need more sophisticated smoothers, unlike classical AMG theory which
attempts to maintain simple smoothers. We introduce the classical AMG method
for scalar elliptic PDEs in the next paragraph, which can easily be modified for
systems of PDEs since the ideas behind AMG are more general. This is followed
by some insights into developments which expand the classical AMG theory. In
Chapter 5 we use this knowledge to construct automatic AMG smoothers for
systems of PDEs.

3.4.1 Terminology

In this thesis, we always define the restriction as the transpose of interpolation
in AMG settings. In addition, we neglect the superscript and subscript notation,
i.e.,

R = P T ,

and we stick to the Galerkin coarse-grid operator

AH = P TAP.
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A smoother is denoted by M , where the smoothing iteration is given in (3.10),

e(k+1) =
(
I −M−1A

)
e(k) = S(ω)e(k) = Sk(ω)e(0).

We assume that MT + M − A is symmetric and positive definite (s.p.d.). The
following result is well known (and easily seen),

MT +M − A is s.p.d. ⇔ ‖I −M−1A‖A < 1.

The operator

M̃ = MT (MT +M − A)−1M,

will be frequently used in the definitions and analysis later on. Note that (I −
M̃−1A) = (I − M−1A)(I − M−TA), hence M̃ is a symmetrized version of the
smoother M . The iteration matrix ETG of the standard two-grid method is given
by

ETG = (I −M−TA)(I − P (P TAP )−1P TA)(I −M−1A).

3.4.2 Algebraic smoothness

Before we construct an algebraic multigrid hierarchy, we first need a good char-
acterization of smooth error. In AMG, error not eliminated by the smoother is
called smooth error, i.e., the error e fulfills Se ≈ e and must be eliminated by
coarse-grid correction. In contrast to the geometric definition, in the AMG set-
ting, the smooth error may be geometrically oscillatory. We should replace the
term smooth by slow to converge. For historical reasons, we stick to the terms
smooth and algebraically smooth for multigrid and algebraic multigrid. A good
example to illustrate the difference between algebraic and geometric smooth error
is the diffusion equation (2.2). This example shows that for coefficients a� 1 the
error after some iteration steps of a simple pointwise smoother is geometrically
smooth, but for a = 1 the error is geometrically oscillatory. It makes perfect
sense that such an error can only be effectively reduced by means of a coarser
grid if that grid is obtained by coarsening in directions in which the error really
changes smoothly in the geometric sense. This coarsening procedure is denoted
by coarsening in the direction of geometric smoothness. In addition, interpolation
has to treat the discontinuities correctly. Indeed, this is exactly what AMG does.
Next, we need to characterize the geometric smoothness in some algebraic way.
It is easy to verify that the eigenmodes of the system matrix A corresponding to
the smallest eigenvalues are those which typically cause the slowest convergence
of relaxation and, therefore, correspond to what we defined as an algebraically
smooth error. We call those eigenmodes small eigenmodes for short. That means
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that smoothing damps large eigenmodes, while coarse-grid correction has to han-
dle the remaining small eigenmodes of A. The smallest of the eigenmodes of
A, the so-called near null-space, is of particular importance. The assumption in
AMG is that only geometrically smooth functions are in the near null-space. This
is easy to see for the diffusion equation. Any linear function is in the kernel of
the differential operator. The same is true for the discrete differential operator
A (away from boundaries). That means that the near null-space of A for this
problem consists of any vector that is almost linear. This gives us an algebraic
way to characterize geometric smoothness, as we see in the the next section. For
applications where the near null-space contains geometrically oscillatory functions
(such as electromagnetics), the approach of coarsening in directions of geometric
smoothness is not sufficient. More details about such applications are covered in
Chapter 5.

3.4.3 Classical AMG

In the following, we introduce the classical AMG algorithm of Brandt, Mc-
Cormick, Ruge, and Stüben [23, 65, 69]. We highlight the main facts to un-
derstand the construction of the classical version and show how we use knowledge
of the near null-space to design an AMG algorithm. However, we do not go into
detail, since in this thesis we focus on an extension of the classical theory to de-
velop AMG smoothers.
The classical AMG method is based on the assumption that geometrically smooth
functions are in the near null-space of A. Geometric smoothness can be character-
ized in an algebraic way as follows: we assume that A is symmetric and positive
definite and has been scaled so that its largest eigenvalue equals 1. Furthermore,
let v be a normalized eigenvector of A (i.e., ||v|| = 1) that corresponds to a small
eigenvalue of A. By multiplying the eigenvalue problem Av = λv with vT , we
see that a small eigenmode (i.e., an eigenmode corresponding to an eigenvalue
λ� 1) satisfies

λ = vTAv� 1. (3.23)

Due to the assumption that geometrically smooth functions are in the near null-
space of A, we can assume that A has row sum zero, which leads to the following
estimate

vTAv =
∑
i,j

ai,jvivj =
1

2

∑
i,j

(−ai,j)(vi − vj)2 +
∑
i

v2
i

∑
j

ai,j

=
1

2

∑
i,j

(−ai,j)(vi − vj)2 =
∑
i<j

(−ai,j)(vi − vj)� 1.
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In addition, we assume that ai,j > 0 (which is true for M-matrices [71]). We obtain
an algebraic way to detect geometrically smooth error due to the fact that smooth
error varies slowly in the direction of relatively large negative coefficients of the
matrix. Large coefficients are defined with the so-called strength of connection
term (Definition 3.30), which measures large coefficients relative to the largest
off-diagonal entry in a row.

Definition 3.30. Given a threshold 0 < ζ ≤ 1, we say that variable ui strongly
depends on variable uj if

−ai,j ≥ ζ max
k 6=i
−ai,k.

This measure determines which variables are strong representatives of the errors
left by relaxation. Definition 3.30 guides the construction of coarse grids. In
classical AMG, a coarse grid is a subset of the fine grid and the points are chosen
such that the grid is coarsened in the direction of strong connections of the matrix
A. The coarsening procedure partitions the grid into C-points (points on the
coarse grid) and F-points (points not on the coarse grid). The algorithm is split
into two phases. We determine a strength matrix by assigning weights to each
point i based on the strength of connection as defined in Definition 3.30. The
first phase consists of creating an independent set of fine-grid points based on the
strength matrix. In the second phase additional C-points are choosen to satisfy
interpolation requirements. The interpolation scheme as described below requires
each pair of strongly connected F-points to be strongly connected to a common
C-point.
Since the geometrically smooth error e is identified by small eigenmodes and the
residual r = Ae, we obtain from (3.23) that smooth error can be identified by
small residuals,

λ2 = eTAe = rT r� 1.

We assume that r is not only small but also that,

ri = (Ae)i =
∑
j

ai,jej = 0. (3.24)

We can then define interpolation by rewriting Equation (3.24) at F-point i in
terms of the coefficients of A,

ai,iei = −
∑
j∈Ci

ai,jej −
∑
j∈Fi

ai,jej −
∑
j∈Ni

ai,jej,

where the sets Ci, Fi, Ni are defined as follows,

Ci : C-points strongly connected to i,

Fi : F -points strongly connected to i,

Ni : all points weakly connected to i.
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The set Ci contains the points that the F -point i will interpolate from. Therefore,
we just need to rewrite the ej’s in the last two terms with regard to either the
interpolatory points in Ci or the F -point i. We obtain an equation that involves
only the F -point and its interpolatory points, which we can use directly to define
interpolation weights.
The definition of the coarse-grid correction B = I − P (P TAP )−1P TA and the
interpolation operator P yields the setup phase. We do not describe the solve
phase here as it is similar to geometric multigrid.

3.5 New class of algebraic multigrid methods

In this section we concentrate on AMG methods and theory that extend the clas-
sical AMG theory introduced in the last section. Although the classical method
works remarkably well for a wide variety of problems, some of the assumptions,
made in its derivation, limit its applicability. There have been many other AMG
algorithms that have been developed to extend the applicability of AMG to new
classes of problems, e.g. [20]. Here, we introduce the theory that we need in Chap-
ter 5 to construct AMG components for challenging equations such as second-
order definite Maxwell’s equations (2.4), [53, 77].
AMG theory drives AMG algorithm development. A basic theoretical concept
is the so-called weak approximation property that, if satisfied by interpolation,
implies convergence of the two-grid algorithm. As shown in Definition 3.31, this
approximation property relates the accuracy of interpolation to the spectrum of
the system matrix. In other words, eigenmodes with small associated eigenvalues
must be interpolated well. Let Q : Rn → Rn be a projection onto range(P ), i.e.,

Q = PR,

holds for some restriction-like operator R : Rn → Rnc such that RP is equal to the
identity on Rnc which we denote by Ic. We think of R as defining the coarse-grid
variables, i.e., uc = Ru. For any vector v ∈ range(P ), we have Qv = v. Thus,
I −Q can be used to measure the defect of interpolation.

Definition 3.31. (Weak approximation property)
Let Q = PR be any projection onto range(P ). Then the weak approximation
property is satisfied if there is a constant K such that

〈(I −Q)v, (I −Q)v〉
〈Av,v〉

=
‖(I −Q)v‖2

2

‖v‖2
A

≤ K ∀v ∈ Rn\{0}. (3.25)

An important characteristic of inequality (3.25) is that an eigenvector v of matrix
A corresponding to a small eigenvalue causes a small denominator. Therefore, the
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weak approximation property, i.e., the inequality (3.25) is fulfilled for some K if
the numerator is also small. The weak approximation property, as introduced in
Definition 3.31, implies that the elimination of small eigenmodes is solely based on
the interpolation operator. That means it is limited to simple pointwise smoothers
and a particular type of coarse grids. Due to this limitation, a new approxima-
tion theory was developed in [30] and holds for a broader class of problems and
algorithms. The development of this theory is motivated by Maxwell’s equations
for which more sophisticated smoothers are needed. The extended approximation
property is given in the next definition.

Definition 3.32. Let Q = PR be any projection onto range(P ) and let M̃ be a
smoothing operator. Then the weak approximation property is satisfied if there
is a constant K such that

‖(I −Q)v‖2
M̃

‖v‖2
A

≤ K ∀v ∈ Rn\{0}.

Theorem 3.33 gives a convergence result by means of this definition.

Theorem 3.33. Let Q = PR be any projection onto range(P ) and let M̃ be a
smoothing operator. Assume that the approximation property in Definition 3.32
is satisfied for some constant

K = sup
v

‖(I −Q)v‖2
M̃

‖v‖2
A

.

Then K ≥ 1 and

‖ETG‖2
A ≤ 1− 1

K
.

The proof of Theorem 3.33 can be found in [30]. Theorem 3.33 gives conditions
that the interpolation operator P must satisfy in order to achieve fast convergence
of the multigrid method. Here, small eigenmodes v must either be interpolated
well by P or they must be handled by the smoother. The goal in practice is
to minimize K while maintaining sparsity in P . The “best” P possible that
fulfills Theorem 3.33 and therefore gives good AMG convergence is called ideal
interpolation operator and is denoted by P0. P0 as given in Lemma 3.34 is the
absolute minimizer of K. Although P0 is usually not sparse, it often serves as a
good guidance to generate practical approaches for building P . Define S : Rns →
Rn, where ns = n−nc, such that RS = 0. We think of range(S) as the “smoother
space”, i.e., the space on which the smoother must be effective. Note that S
is not unique (but range(S) is). The variables, STu, are analogous to F-points.
Note also that S and RT define an orthogonal decomposition of Rn. That is, any
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vector v can be written as v = Svs + RTvc for some vs ∈ Rns and vc ∈ Rnc . In
the classical AMG setting, the coarse variables are a subset of the fine variables.
That is, in the context of the above framework,

R =
(
0 I

)
, S =

(
I
0

)
. (3.26)

Here, the unknowns are assumed to be ordered so that the matrix has the block
form

A =

(
Aff Afc
Acf Acc

)
.

Lemma 3.34. Assume we are given a coarse grid and Definition 3.32 is satisfied
for some K. Then, the absolute minimizer of Theorem 3.33 is given by

P0 = (I − S(STAS)−1STA)RT =

(
−A−1

ffAfc
I

)
.

P0 is called the ideal interpolation operator.

The proof of Lemma 3.34 can be found in [30]. A general form of the absolute
minimizer P0 as introduced in [19] is given by

P∗ = (I − S(STAS)−1STA)RT (RRT )−1. (3.27)

With the assumption that R is normalized such that RRT = I it holds that
P0 = P∗. This assumption is fulfilled by the choice of R in (3.26). However
it limits the operators that can be represented as seen in [19]. The generalized
formula for P∗ overcomes this limitations and enables the following theoretical
considerations, c.f. [19]. A sharp theory was developed in [31] that gives additional
insight for two-grid convergence theory and development of AMG methods. The
sharp theory is very similar in form to Theorem 3.33,

Theorem 3.35. Let M̃ be a smoother and ΠM̃(P ) := P (P TM̃P )−1P TM̃ be any
projection onto range(P ). Assume that

K# = sup
v

‖(I − ΠM̃(P ))v‖2
M̃

‖v‖2
A

.

Then, K ≥ 1 and

‖ETG‖2
A = 1− 1

K#

.
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The proof of Theorem 3.35 can be found in [31]. Based on this result, necessary
and sufficient conditions for constructing the components of efficient algebraic
multigrid (AMG) methods have been established in [31]. The main foundation for
constructing efficient two-grid methods is that we need complementary smooth-
ing and coarse-grid operators. Consequently, the so-called optimal interpolation
operator was developed in [19]. Using Theorem 3.35 it is straightforward to de-
rive the optimal two-grid convergence rate ||ETG||2A with respect to P for a given
smoother M . This general form of optimal P is derived as introduced in the
following lemma:

Lemma 3.36. Let P : Rnc → Rn be full rank and let λ1 ≤ λ2 ≤ · · · ≤ λn
and v1,v2, . . . ,vn denote the eigenvalues and orthonormal eigenvectors of the
generalized eigenvalue problem

Av = λM̃v.

Then the minimal convergence rate of the two-grid method is given by

‖ETG(P#)‖2
A = 1− 1

K#

, K# =
1

λnc+1

,

where the optimal interpolation operator P# satisfies

range(P#) = range((v1 · · ·vnc)).

For the sake of definiteness we set P# = (v1 · · ·vnc) throughout the thesis.

The proof of Lemma 3.36 can be found in [19]. The ideal interpolation operator
P∗ is different in general from the optimal operator P# and this difference can
lead to substantial changes in convergence rates of the resulting two-grid method
in certain cases. Chapter 5 shows how we use the different theoretical approaches
to develop algorithms for systems of equations such as Maxwell’s equations.

3.6 Parallel multigrid methods

Generally speaking, parallel programming is used to make execution of software
faster. That means, we decrease simulation time by using additional resources
simultaneously. This enables the solution, modeling and understanding of large
real world phenomena that cannot be achieved by serial computing, due to time
consuming simulations or the lack of memory. A compact overview about parallel
computing can be found in [8].
In parallel computing, a computational task is typically broken down into several
similar subtasks that can be processed independently. Therefore, these subtasks
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can be solved simultaneously by a given number of processors. Afterwards, the
results are combined to obtain the overall solution. Although parallel and serial
computing demand different considerations, it is likely that efficient numerical
algorithms for parallel computing will come from the parallelization of algorithms
that are already very efficient in the serial environment. It is needless to say that
the underlying hardware architecture influences the execution of algorithms. How-
ever, in the scope of this thesis we ignore the effect of different parallel computer
architectures regardless. An important point to consider in parallel computing
is the communication of data between processors. Assuming that each proces-
sor has its own memory not shared by others, there are usually several points
where information must be exchanged. The same is true for some components in
a multigrid algorithm, such as relaxation and residual calculation. The goal in
parallel computing is to reduce communication costs as far as possible to avoid
so called communication overhead. Therefore, it is desirable to keep the number
of communications at a low level and achieve a good load-balancing between pro-
cessors to avoid idle-time.
Section 3.2.3 shows that multigrid methods require O(n) operations to solve a
sparse linear system with n unknowns. As a consequence, they have good scaling
potential on parallel computers, since the work per processor can be bounded
as the problem size and number of processors are proportionally increased. The
parallelization approaches for multigrid algorithms can be classified into two cat-
egories. The simpler and more common approach involves no significant changes
to the overall structure of the basic multigrid algorithm. Here, parallel computa-
tions are executed within each level while the different grids (or levels) are still
processed in sequential order. The second approach is elementarily different and
seeks to overcome the parallel limitation inherent in the sequential processing of
different grids. However, in general this approach is more complicated and has
been shown to be not as efficient as standard sequential processing of grid levels
[44].
In this thesis, we consider solely the parallel computations within levels. To be
more precise, we focus on serial implementations and discuss parallelization po-
tentials of the specific multigrid components. Some multigrid components may be
highly parallel while others are not. A critical multigrid component with respect
to parallelism is usually the smoothing procedure. The computation of other
components in multigrid can be performed in parallel for all grid points, since
computations at different grid points are independent of each other. The paral-
lelization property of smoothing procedures depends on the selected smoothing
method. Some of the best smoothers do not parallelize well, e.g., GS-LEX. Since
this thesis focuses on smoothing techniques, we compare parallel features of the
well-known ω-JAC, GS-LEX and GS-RB smoothers. ω-Jacobi is fully parallel
since new values are independent of each other, all updates can be computed si-
multaneously. GS-LEX instead has dependencies since we want to use the most
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3 Multigrid methods

recent values of the unknown wherever possible. Therefore, GS-LEX is not sat-
isfactorily parallel. In case of GS-RB each step of the Gauss-Seidel relaxation
consists of two steps. In the first step, all red grid points are treated simulta-
neously and independently. In the second step, all black grid points are treated,
using the updated values at the red points. For GS-RB the degree of parallelism
is 1/2 times the number of grid points, i.e., it is highly parallel. Discretizations
with larger stencils require multicolor Gauss-Seidel relaxation or JAC-RB to ob-
tain good parallelization properties. More details on parallelization properties
of smoothers are discussed in Chapter 4, especially in the context of the Stokes
equations. We also refer to [6, 27]. The degree of parallelism of multigrid is dif-
ferent on different grid levels (small on coarse grids, high on fine grids) due to
the number of processors that can contribute to the computation. On the coarse
grids, the degree of parallelism decreases substantially. Methods for parallelizing
geometric multigrid have been known for some time and most of algebraic multi-
grid can be parallelized using existing technology.
The potential for optimality (i.e., convergence independently of problem size)
mixed with the potential for parallel implementation makes multigrid an attrac-
tive algorithm to solve large-scale problems. For AMG, reasonable scalability can
be obtained if both the solve phase and the setup phase are implemented effi-
ciently. While most parts of AMG can be parallelized in a straightforward way,
the coarse-grid selection process within the AMG setup is inherently sequential.
Several software packages that contain parallel multigrid methods to solve matrix
equations have been developed for both the geometric as well as the algebraic
setting.
For parallel geometric multigrid software, we refer to the ExaStencils project [50].
Here, the focus lies in the automatic generation of stencil codes for applications
with exascale performance. The domain of ExaStencils is multigrid stencil codes
on (semi-)structured grids. The software is based on a domain-specific approach
with languages at several layers of abstraction. At every layer, the corresponding
language expresses not only computational directives but also domain knowledge
of the problem.
In the algebraic multigrid setting, we refer to two well-known software packages,
the HYPRE software library [32] and RAPtor [10]. Both are general, high per-
formance algebraic multigrid solvers. HYPRE is a library of linear solvers that
offers a comprehensive suite of scalable solvers for large-scale scientific simulation,
featuring parallel multigrid methods for both structured and unstructured grid
problems. The HYPRE library is highly portable and supports a number of lan-
guages. RAPtor is a software framework that supports adaptive mesh refinement.
It attempts to provide detailed simulation data and efficiently perform parameter
studies at high resolution.
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multigrid smoothers for the
Stokes equations

Systems of PDEs can be treated by multigrid, usually with an efficiency similar to
that of scalar equations. For scalar PDEs, we have scalar unknowns z1 : Ω→ R,
while systems of PDEs are composed of vector-valued unknowns, i.e., z : Ω→ Rd.
In this thesis, we focus on a special case of discretized systems of PDEs, namely
saddle point systems. Large linear systems of saddle point type arise in a wide
variety of applications throughout computational science and engineering. A com-
mon saddle point system is the Stokes system, which represents a slow viscous
flow. In recent years, there has been a surge of interest in saddle point systems
and numerous solution techniques have been proposed for this type of system.

4.1 The Stokes equations

We introduce the Stokes equations in two dimensions here. Let Ω be a domain in
R2 with boundary ∂Ω, and f be a given vector function that describes an external
force. Solving the two-dimensional Stokes equations means finding a fluid velocity
u = (u, v) and pressure p such that the system described in (2.3) is fulfilled. We
rewrite the Stokes system in coordinate notation,

∆u+ ∂x1p = f1, (4.1)

∆v + ∂x2p = f2, (4.2)

∂x1u+ ∂x2v = 0, (4.3)

where ∂x1 := ∂/∂x1 and ∂x2 := ∂/∂x2. The discretization of the Stokes equations,
which naturally leads to saddle point systems, causes some difficulty. Instability
arises, for example, when using central differences of the first-order derivatives
(2.6), if all variables are located at the grid points. One remedy for the instability
in the case of the Stokes equations is to use a staggered distribution of unknowns,
the so-called Marker-and-Cell (MAC) scheme. The idea of the MAC scheme is to
place the unknowns (u, v, p) in different locations. More specifically, the discrete
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4 Construction of geometric multigrid smoothers for the Stokes equations

pressure unknowns p are located in the center of each cell and the discrete values of
the velocity unknowns are located on the midpoint of vertical edges (x1-component
u) and on the midpoint of horizontal edges (x2-component v), as seen in Figure
4.1.

(a) (u, v, p) variables (b) variable u

(c) variable v (d) variable p

Figure 4.1: Location of unknowns (u, v, p).

The discrete analog of the x1-coordinate momentum equation (4.1) is defined at
vertical edges, the discrete x2-coordinate momentum equation (4.2) at horizontal
edges, and the continuity equation (4.3) at cell centers using central difference
schemes. We introduce the following indexing system with regard to the under-
lying grid: i is the column index and j is the row index, ranging from 1 : n or
1 : n + 1, where n is the number of cells in one direction. The discrete pressure
unknowns are pi,j, where i = 1, . . . , n, j = 1, . . . , n, and the velocity unknowns are
ui,j with i = 1, . . . , n+ 1, j = 1, . . . , n and vi,j with i = 1, . . . , n, j = 1, . . . , n+ 1.
Using this indexing system, the MAC scheme can be written as

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
+
pi,j − pi−1,j

h
= f i,j1 (4.4)

4vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1

h2
+
pi,j − pi,j−1

h
= f i,j1 (4.5)

ui+1,j − ui,j
h

+
vi,j+1 − vi,j

h
= 0. (4.6)
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ui-1,j

ui,j+1

ui,j ui+1,j

ui,j-1

pi-1,j pi,j

(a) equation for u

vi,j+1

vi,j

vi,j-1

vi-1,j vi+1,j

pi,j

pi,j-1

(b) equation for v

ui,j ui+1,j

vi,j+1

vi,j

(c) equation for p

Figure 4.2: Local stencils of MAC scheme.

Then, the discretization of the entire two-dimensional Stokes system with stag-
gered distribution of unknowns has the form A1 B1

A1 B2

−BT
1 −BT

2

uv
p

 =

f1
f2
0

 , (4.7)

where A1 denotes the negative discrete Laplace operator, A1 = −∆h, and BT
1 and

BT
2 are the discrete divergence operators, BT

1 = (∂x1)h/2 and BT
2 = (∂x2)h/2. The

corresponding system matrix thus reads

A =

 A1 B1

A1 B2

−BT
1 −BT

2

 =

 −∆h (∂x1)h/2
−∆h (∂x2)h/2

−(∂x1)h/2 −(∂x2)h/2

 . (4.8)

One of our interests in this work is to develop efficient multigrid methods to
solve the Stokes equations discretized by the MAC scheme. We discuss how the
multigrid components of smoothing, restriction, interpolation and solution on the
coarsest grid are generalized to saddle point systems. Again, a key point of an
efficient multigrid method is the right choice of the relaxation procedure. The
design of efficient smoothers for solving systems of PDEs often requires special
attention. The relaxation method should smooth the error for all unknowns in
the equations, which is not an easy task. Therefore, we focus on constructing ap-
propriate relaxation schemes to smooth the error of the unknown functions. The
other multigrid components can immediately be extended to systems of PDEs.
Although this gives us a stable discretization, a zero diagonal block appears in
the discrete system. For multigrid, this zero block hampers a basic numerical
treatment of the problem, which would be to relax the discrete equations directly
in a decoupled way. More specifically, decoupled iterative solution methods use
blocks on the main diagonal in an equation-wise fashion. Unfortunately, this
equation-wise relaxation is not possible due to the zero diagonal block. Moreover,
a first obvious choice for these so-called strong off-diagonal operators in the dif-
ferential system is collective smoothing: it updates all unknowns in the system at
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4 Construction of geometric multigrid smoothers for the Stokes equations

a certain grid point simultaneously. However, for staggered grids the unknowns
are not defined at the same locations. It is thus not immediately clear how to de-
fine standard collective relaxation. In summary, we obtain a challenging system
of equations that is not straightforward to solve. Due to the properties of the
Stokes equations, we need to put more effort into the construction of multigrid
smoothers.
We present a generalization of collective relaxations, so-called box relaxation, in
Section 4.2.2. Another approach is to use distributive relaxation, as described
in Section 4.2.2, which can be regarded as a generalization of decoupled relax-
ation. Other discretization strategies for the Stokes system that are based on
non-staggered grids have been developed [71]; these are beyond the scope of this
thesis. We start the discussion on multigrid methods for staggered discretizations
with a description of some appropriate transfer operators. Afterwards, we return
to our main interest: suitable smoothing procedures.

4.2 Multigrid components for the Stokes equations
on staggered grids

4.2.1 Transfer operators

Transfer operators on staggered grids depend on the relative locations of the
unknowns with respect to the fine grid and the coarse grid, as seen in Figures 4.3
and 4.4. We use transfer operators that are well-known for the Stokes system.
The restriction operator RH

h for each of the three equations in the system can
be obtained separately in a straightforward generalization of the scalar case. It
is dictated by the staggered grid as follows: at u- and v-grid points, we consider
six-point restrictions, and at p-grid points, four-point cell-centered restrictions
defined as follows:

Definition 4.1. The restriction operators for the Stokes equations on staggered
grids are given by

RH
h

∣∣
u

=


1
8

1
4

1
8

∗
1
8

1
4

1
8

 , RH
h

∣∣
v

=


1
8

1
8

1
4
∗ 1

4
1
8

1
8

 , RH
h

∣∣
p

=


1
4

1
4

∗
1
4

1
4

 ,
where ∗ denotes the resulting coarse-grid point.

Let us motivate the choice of the restriction operator RH
h

∣∣
u

that transfers a degree
of freedom corresponding to x-component u, as visualized in Figure 4.3. Point
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4.2 Multigrid components for the Stokes equations on staggered grids

0 corresponds to a degree of freedom u on the coarse grid, and points 1, . . . , 6
correspond to degrees of freedom on the fine grid. The restriction operator maps
the degrees of freedom that correspond to the fine-grid points to the coarse-grid
point with the weighting factors from Definition 4.1.

1 2 3

4 5 6

0

Figure 4.3: Sketch of a restriction operator for a degree of freedom that cor-
responds to the velocity x-component u denoted by 0.

The derivations of the restriction operators RH
h

∣∣
v

and RH
h

∣∣
p

are similar. Note that

RH
h

∣∣
u

and RH
h

∣∣
v

are only defined for interior edges. When considering Dirichlet
boundary conditions, we have prescribed values for the dofs on boundary edges.
For the prolongation operator P h

H , there are two appropriate interpolation schemes:
the transpose of the restriction operator and bilinear interpolation. Let us focus
again on the degrees of freedom that correspond to the velocity x-component u.
Then, bilinear interpolation of neighboring coarse-grid unknowns in the staggered
grid can be applied as described in Definition 4.2. We have four types of fine-grid
dofs in relation to coarse-grid dofs. A visualization can be found in Figure 4.4.
Point 0 is a degree of freedom of u on the fine grid and points 1, . . . , 4 or 1, 2 are
degrees of freedom on the coarse grid. The prolongation operator maps the dofs
that correspond to coarse-grid points to one fine-grid point with the weighting
factors from Definition 4.2.

Definition 4.2. Let uH be the coarse-grid function that approximates the fine-
grid function uh. The bilinear interpolation operator for the Stokes equations on
staggered grids for the degrees of freedom u is defined by

uh =
3

8
uH1 +

3

8
uH2 +

1

8
uH3 +

1

8
uH4

uh =
1

8
uH1 +

1

8
uH2 +

3

8
uH3 +

3

8
uH4

uh =
3

4
uH1 +

1

4
uH2

uh =
1

4
uH1 +

3

4
uH2 .

The derivation for the prolongation operators for function v is similar. We use
piecewise constant interpolation for the pressure unknown p. Note that for the
prolongation, we must take boundary condition corrections, at the domain bound-
aries into account [26].

67



4 Construction of geometric multigrid smoothers for the Stokes equations

0

2

34

1

(a)

0

2

34

1

(b)

2

1

0

(c)

2

1

0

(d)

Figure 4.4: Sketch of a prolongation operator for a degree of freedom corre-
sponding to x-component u denoted by 0.

Analogously to the scalar case, the solution on the coarsest grid can be obtained
with any suitable solver. However, the discrete system on the coarsest grid may
be much larger than in the scalar case. Therefore, the efficiency of a numerical
algorithm used for solving the coarsest grid problem may be more important than
for scalar equations. We compare rediscretization and the Galerkin coarse-grid
operator defined in (3.12) in the course of this chapter.

4.2.2 Relaxation methods

A general form of a linear relaxation or smoothing method for scalar PDEs is
given by the error propagation operator

Sh(ω) := I −M−1
h Ah, (4.9)

where Mh represents the interation matrix of the relaxation scheme, c.f. (3.10).
This representation may not always be feasible for systems of PDEs. For the
Stokes equations discretized on staggered grids, two general types of relaxation
methods can be distinguished, box relaxation and decoupled relaxation.

Box relaxation

The basic idea of box relaxation is to solve the discrete Stokes equations locally
“cell by cell” (or “box by box”). This means all five unknowns of one box are
updated collectively, involving the respective four momentum equations at the
cell boundaries and one continuity equation in the center of the box, c.f. Figure
4.5 and 4.2 and Equations (4.4)-(4.6). This results in an overlapping updating
process of 5× 5 systems of equations. This method was first introduced in [73].

68



4.2 Multigrid components for the Stokes equations on staggered grids

u1 u2

v1

v2

p

(a) All five unknowns of one box (b) Two overlapping boxes

Figure 4.5: Unknowns updated collectively by box relaxation.

Using this scheme, each velocity component is updated twice and the pressure
once per relaxation. Here, one relaxation or one relaxation step refers to relaxing
each box once, while one box relaxation refers to one relaxation of one box. A
well-known process is relaxation in a Gauss-Seidel manner (lexicographically or
with an appropriate coloring). That means, after smoothing all unknowns of one
cell collectively, we use the updated values for the relaxation of the next cell.
Due to the overlap of the collectively updated unknowns, it is not possible to
describe this relaxation scheme in the form given in (4.9). More details are given
in Section 4.4.2. This relaxation method is commonly referred to as overlapping
Schwarz smoother or symmetric coupled Gauss-Seidel (SCGS). Especially in the
context of the Stokes equations, we use the term Vanka smoother. Box relaxation
turns out to have robust smoothing properties [71].

Decoupled relaxation

While the box smoothing method is clearly collective in type, it differs from
another general class of relaxation methods on staggered grids, so-called decou-
pled or noncollective relaxation schemes. For these kind of smoothers, the error
propagation operator Sh(ω) is given in a slightly different form than introduced
in (4.9). The so-called distributive relaxation approach is a well-known class of
noncollective relaxation schemes as described in [17, 74, 76]. It consists of a
predictor-corrector sequence of updating steps starting with a transformation of
the original system such that a decoupled smoother can be applied afterwards.
A general way to “transform” smoothers can be described in the following way:
Instead of solving Au = f , one may solve

Z1AZ2û = f .

Here, we choose Z1 and Z2 such that the splitting

Z1AZ2 = M −N (4.10)

leads to a convergent iterative method. As introduced in Section 3.1, an iterative
method with a splitting A = M̃ − Ñ for a system Au = f can be given by
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4 Construction of geometric multigrid smoothers for the Stokes equations

M̃u(k+1) = Ñu(k) + f . With the splitting (4.10) we have A = Z−1
1 MZ−1

2 −
Z−1

1 NZ−1
2 , which leads to

u(k+1) = u(k) − Z2M
−1Z1(Au(k) − f).

If Z1 = I, we have an r-transforming iteration which is a general form of dis-
tributive relaxation. Here we have AZ2û = f instead of Au = f , i.e. we use
u = Z2û. An algorithmic formulation of the distributive relaxation can be found
in Algorithm 4.1. The distributive Gauss-Seidel (DGS) relaxation scheme for
saddle point systems is given by

A =

(
A1 A3

A2

)
, Z2 =

(
I A−1

1 A3(A2A
−1
1 A3)−1V

−(A2A
−1
1 A3)−1V

)
⇒ AZ2 =

(
A1

A2 V

)
.

In general, we choose V such that the resulting operator AZ2 is suited for noncol-
lective relaxation. For the Stokes equations, the zero block in A should disappear.

Algorithm 4.1: General Form of distributive relaxation

1 Relax transformed system
û(k+1) = û(k) +M−1(f − AZ2û

(k))

2 Update

u(k+1) = Z2û
(k+1) = u(k) − Z2M

−1(Au(k) − f)

Therefore, we use V = ∆h, where the operator has to be taken with respect to
the pressure unknown p. This leads to the operator

A =

 −∆h (∂x)h/2
−∆h (∂y)h/2

−(∂x)h/2 −(∂y)h/2

 , Z2 =

I (∂x)h/2
I (∂y)h/2

∆h


⇒ AZ2 =

 −∆h

−∆h

−(∂x)h/2 −(∂y)h/2 −∆h

 .

We use operator AZ2 to obtain the distributive relaxation method for the Stokes
equations on staggered grids, as described in Algorithm 4.1. Note thatM is chosen
to be an approximation of AZ2. Here we use a standard GS-LEX type relaxation
with respect to the operator AZ2, for details see [3]. The SIMPLE algorithm [61]
(Semi-Implicit Method for Pressure-Linked equations) is another example of a
distributive scheme, but it does not serve as a good smoother [14]. A variant of
the pressure correction steps in SIMPLE type algorithms leads to Braess-Sarazin
smoothing iterations [13, 14, 79], which can be described as follows: we assume
the Stokes system has the form,

Lū = f̄(
A BT

B

)(
u
p

)
=

(
f
g

)
.

(4.11)
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We notice that the solution of a system similar to the original Stokes system is
more easily determined,

W v̄ = b̄(
αD BT

B

)(
û
p̂

)
=

(
b
d

)
.

(4.12)

The similarity between W and L guides the following considerations, where we
assume that W ≈ L.

ū = L−1f̄

↔ ū = ū− L−1Lū+ L−1f̄

! ū = ū−W−1(Lū− f̄)

Therefore, (4.11) can be solved by iterations of the form,(
u(k+1)

p(k+1)

)
:=

(
u(k)

p(k)

)
−
(
αD BT

B

)−1 [(
A BT

B

)(
u(k)

p(k)

)
−
(
f
g

)]
. (4.13)

Note that (
αD BT

B

)−1

=

(
1
α
D−1(I −BTQBD−1) D−1BTQ

QBD−1 −αQ

)
,

where we assumeD to be the diagonal of the system matrixA andQ = (BD−1BT )−1.
Then, the vectors in (4.13) are obtained by implementing the formulas

BD−1BT p̂ = BD−1b− αd and û =
1

α
D−1(b−BT p̂),

where b = Au(k) +Bp(k) − f and d = Bu(k) − g.

Box, DGS and Braess-Sarazin smoothers work well and serve as efficient smooth-
ing methods for the Stokes system [14, 73, 76]. In contrast to the Vanka smoother,
the Braess-Sarazin smoother is non-local, i.e., a linear saddle point system for all
degrees of freedom has to be solved. For this reason, we call it a global smoother,
which might not be as efficient as local coupled methods like the Vanka smoother.
The numerical tests presented in Section 4.5 will confirm this statement for the
Braess-Sarazin smoother. The main reason for the larger computing times of the
Braess-Sarazin smoother are the higher computational costs of one smoothing
step. The Vanka smoother is, however, more expensive than DGS. The use of
box relaxation may be considered as more straightforward and more convenient

71



4 Construction of geometric multigrid smoothers for the Stokes equations

than that of distributive relaxation. Additional smoothers in multigrid meth-
ods for solving the Stokes equations as for example the well-known Uzawa-type
smoother or the MINRES-type method have been studied in a number of papers
[9, 43, 49, 59, 60, 78]. The analysis of several smoothers based on different dis-
cretization techniques can be found in [28, 36, 37, 51, 54]. In the light of the above
arguments, we exploit the potential of the Vanka relaxation method and focus on
the development of a box smoother that is less expensive but still efficient.

4.2.3 The Triad smoother

The basic idea of the Triad smoother is to update three unknowns collectively,
involving two momentum equations at cell boundaries and the continuity equation
in the center of the box. This results in a non-overlapping updating process of
3× 3 systems of equations, as seen in Figure 4.6.

u1

v1

p

(a) All three unknowns of one Triad box (b) Two non-overlapping boxes

Figure 4.6: Unknowns updated collectively by Triad relaxation.

Using this scheme, only one velocity component in each direction and one pressure
component are updated simultaneously. Due to the non-overlapping boxes, the
corresponding error-propagation operator Sh can be represented as introduced in
(4.9),

Sh(ω) := I −M−1
h Ah,

where Ah in stencil representation is given by
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(4.14)

and Mh can be represented by

Mh :=
1

ω
Dh − Lh =

− 1
h2

− 1
h

− 1
h2

+ 4
h2

+ 1
h

+ 4
h2

+ 1
h

+ 1
h

+ 1
h

 ,
− 1

h2

− 1
h2
− 1
h

 (4.15)

for a Gauss-Seidel-type updating process and

Mh :=
1

ω
Dh =

1

ω

+ 4
h2

+ 1
h

+ 4
h2

+ 1
h

+ 1
h

+ 1
h

 , (4.16)

for Jacobi-type updating steps. The Triad smoother is also referred to as unsym-
metric coupled Gauss-Seidel (UCGS) [73]. We stick to the term Triad smoother
in this thesis.
For the Stokes system, the Vanka smoother is the most efficient smoother among
all of the known ones. However, due to the overlap, computational costs are
high and parallel implementation aspects are not satisfying. The Triad smoother
seems to be a good alternative to the Vanka smoother, since it has no overlap
and therefore reduces computational costs. In addition, this relaxation method
has better parallelization properties. These characteristics are examined in de-
tail in the next section. Before developing the symmetric coupled Gauss-Seidel
(Vanka) smoother, the unsymmetric coupled (Triad) smoother was initially tried,
but it was observed to have poor smoothing and often led to divergence for the
Stokes equations [73]. In this thesis we describe the conditions that lead to poor
smoothing of the Triad smoother. In addition, we modify the relaxation method
to generate an efficient smoother with good smoothing properties.

73



4 Construction of geometric multigrid smoothers for the Stokes equations

4.3 Computational work

We start with a comparison of the Vanka smoother and the Triad smoother with
regard to computational effort and parallel implementation aspects. Since the
Braess-Sarazin smoother is a decoupled smoother, it is easy to see that it requires
considerably more communication on parallel computers than coupled multigrid
methods with Vanka-type smoothers. Due to this fact, we exclusively focus on
the comparison of the Vanka and Triad smoothers.
The obvious difference between these two smoothers is the number of unknowns
and equations that are included in one box, while the number of boxes that have
to be updated is the same for both smoothers per relaxation. To be more specific,
we compute the arithmetic operations that we need for one relaxation step. In
addition, we compare some parallel implementation aspects such as the required
coloring and the communication effort that is needed for computations in parallel.

Number of arithmetic operations

One box relaxation step consists of several arithmetic operations for updating the
corresponding residual and for solving a local system of equations. We give an
example of one Vanka box smoothing step. Here, we solve a system of equations
that consists of a 5× 5 matrix and five unknowns, c.f. Figure 4.5,
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u1

u2

v1

v2

p

 =


f11

f12

f21

f22

f33

 . (4.17)

The right-hand side has to be updated to include values that are not included
in the matrix system on the left-hand side of the equation. For example, the
right-hand side of the first equation of system (4.17) is updated as follows: we
indicate unknown u1 with ui,j to use the indexing system introduced in (4.4) and
Figure 4.2a. Then, we have that unknowns ui,j, ui+1,j and pi,j are contained in
the left-hand side, and the right-hand side appears as

f
(k+1)
11 = f

(k)
11 −

1

h2
(−ui−1,j − ui,j−1 − ui,j+1)− 1

h
(−pi−1,j) .

Thus, six arithmetic operations are needed to update the right-hand side of the
first equation of system (4.17). One obtains the remaining number of arithmetic
operations for the other equations analogously. We use the following well-known
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formula from [1] to compute the number of arithmetic operations to solve a system
of n linear equations,

Total number of arithmetic operations =

(
n3

3
+
n2

2
− 5

6
n

)
+

(
n3

3
+ n2 − 1

3
n

)
.

Table 4.1 shows the number of arithmetic operations that are needed to perform
one relaxation step of the Vanka and Triad smoother. N2 denotes the number of
boxes that are included in the considered grid with periodic boundaries.

# operations Vanka smoother Triad smoother

compute rhs 24 ·N2 16 ·N2

solve system 115 ·N2 28 ·N2

Total number 139 ·N2 44 ·N2

Table 4.1: Number of arithmetic operations for one relaxation step.

We notice that one smoothing step of the Vanka smoother requires approximately
as many operations as three smoothing steps of the Triad smoother.

Parallel implementation aspects

The required colorings to perform the smoothing steps in parallel are visualized
in Figure 4.7. The Vanka smoother needs five different colors, while the Triad
smoother requires a red-black coloring (i.e. two colors) only.

(a) The Vanka smoother (b) The Triad smoother

Figure 4.7: Coloring schemes.
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An important parallelization aspect is the “dependencies”, i.e., all neighboring
unknowns that are needed to update an unknown. To perform a method in par-
allel without read and write conflicts it is necessary to avoid simultaneous updates
of dependent unknowns. The coloring scheme is based on depenencies. The un-
knowns of one Triad box depend on the unknowns of adjacent cells. Consequently,
a red-black coloring is sufficient. That means all unknowns of the red boxes can
be updated simultaneously and the unknowns of the black Triad boxes can be up-
dated simultaneously. The coloring scheme of the Vanka smoother is illustrated in
Figure 4.7a. Due to the additional unknowns that are included in one Vanka box
compared to the Triad box, the unknowns do not solely depend on the adjacent
boxes. Due to the MAC scheme as given in Equations (4.4) - (4.6) a five coloring
is sufficient to perform the Vanka smoother in parallel.
The repetition of the red-black pattern of the Triad smoother is visualized in
Figure 4.7b. The five color Vanka pattern is illustrated in Figure 4.8.

Figure 4.8: Repetition of the coloring pattern of the Vanka smoother.

The communication effort differs due to the different numbers of unknowns that
are updated within each box smoothing step. Moreover, the dependence on up-
dated unknowns of neighboring cells leads to further differences. For the Vanka
smoother, 12 neighboring cells depend on five updates of the current box smooth-
ing step, c.f. Table 4.2.

Vanka smoother Triad smoother

Total number of communications 60 ·N2 12 ·N2

Table 4.2: Number of communication steps for one relaxation step.
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We notice that one smoothing step of the Vanka smoother requires as many com-
munication steps as five smoothing steps of the Triad smoother. These results
show the low computational cost in combination with good parallelization prop-
erties of the Triad smoother. This motivates us to consider the Triad smoother
within a multigrid cycle to solve the Stokes equations. In what follows, we com-
pare the Triad smoother and the Vanka smoother. We analyze both smoothers
by means of local Fourier analysis (LFA). In addition, we show numerical results
and thereby highlight the impact of boundary conditions on the efficiency of the
smoothers. This is followed by an adjustment of the Triad smoother to improve
its convergence behavior.

4.4 LFA for the Stokes equations

We employ LFA to analyze the convergence properties of multigrid methods for
the Stokes equations and thereby compare the Triad and Vanka smoother.

4.4.1 Terminology

In order to describe LFA for staggered grids, we first introduce some terminology.
We consider two-dimensional infinite uniform grids Gh = G1

h ∪G2
h ∪G3

h where

Gj
h = {xj := kh+ δj,k ∈ Z2},with δj =


(0, h/2) if j = 1,

(h/2, 0) if j = 2,

(h/2, h/2) if j = 3,

(4.18)

c.f. Equation (3.13). Here, the grids that correspond to the velocity unknowns u
and v, depicted in Figures 4.1b and 4.1c, are denoted by G1

h and G2
h. Moreover,

the grid that corresponds to pressure unknown p is denoted by G3
h, as visualized

in Figure 4.1d. The coarse grid, GH , is defined similarly. As a reminder, the
functions ϕ(θ, x) are called Fourier modes or Fourier functions with frequency θ
and form the basis of the Fourier space Fh, see Definition 3.19. For staggered
grids, the Fourier basis is given by the span{ϕ1(θ, x), ϕ2(θ, x), ϕ3(θ, x)} for θ ∈[
−π

2
, 3π

2

)2
, with

ϕ1(θ, x) =
(
eıθx

1/h 0 0
)T
, ϕ2(θ, x) =

(
0 eıθx

2/h 0
)T
,

ϕ3(θ, x) =
(
0 0 eıθx

3/h
)T
.

The frequencies θ do not have to be the same for each basis component ϕj,
j = 1, 2, 3. However, throughout the course of this thesis we use identical values
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4 Construction of geometric multigrid smoothers for the Stokes equations

for each Fourier basis component. We use the stencil notation and consider the
operator Ah of the Stokes system,

Ah =

 −∆h (∂x1)h/2
−∆h (∂x2)h/2

−(∂x1)h/2 −(∂x2)h/2

 ,

with stencils

−∆h =
1

h2

 −1
−1 4 −1

−1

 , (∂x1)h/2 =
1

h

[
−1 0 1

]
, (∂x2)h/2 =

1

h

 1
0
−1

 .
Each entry in the symbol Ãh is computed as the (scalar) symbol of the correspond-
ing block of Ah, following Definition 3.11. Since Ah is a 3× 3 block operator, its
symbol is a 3× 3 matrix,

Ãh(θ) =

 1
h2

(4− 2 cos θ1 − 2 cos θ2) 0 2ıh sin θ1
2

0 1
h2

(4− 2 cos θ1 − 2 cos θ2) 2ıh sin θ2
2

−2ıh sin θ1
2

−2ıh sin θ1
2

0

 .

(4.19)

The error-propagation symbol S̃h(ω,θ) for a relaxation scheme Mh is given by

S̃h(ω,θ) = I − M̃−1
h (θ)Ãh(θ),

c.f. Lemma 3.15, where M̃h and Ãh are the symbols for Mh and Ah respectively.
High and low frequencies for standard coarsening are given by

θ ∈ T low :=
[
−π

2
,
π

2

)2

, θ ∈ T high :=

[
−π

2
,
3π

2

)2∖[
−π

2
,
π

2

)2

,

c.f. Definition 3.14. The smoothing factor is given by

µ(ω) = µ (Sh(ω)) = max
θ∈Thigh

{∣∣∣λS̃h(ω,θ)

∣∣∣} ,
c.f. (3.15) and Remark 3.16. In other words, the error-propagation operator Sh(ω)
is block-diagonalized by the matrix of Fourier modes, Φh. We index the columns
of Φh by the continuous index, θ, and the rows by their spatial location, x, such
that the entries of the matrix are specified by ϕh(θ, x).

Remark 4.3. The influence of boundary conditions is not taken into account
when applying LFA, since the modes ϕh(θ, x) are defined on the infinite grid
Gh. Experience with LFA show that it often serves as an exact prediction tool
for problems with periodic boundary conditions, but degradation in performance
may be seen with Dirichlet boundary conditions [58], c.f. Section 4.5.

We start with a smoothing analysis of the Vanka and the Triad smoother. This
is followed by a two-grid analysis.
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4.4 LFA for the Stokes equations

4.4.2 Vanka smoother

We start with the smoothing analysis of the Vanka smoother without coloring.
Due to the overlapping cells, certain degrees of freedom are updated multiple
times over the course of a single sweep of relaxation. Therefore, classical LFA
techniques fail. LFA is based on the assumption that the iteration matrix Mh can
be written as a Toeplitz operator, c.f. Section 3.3.1. It is not apparent that the
same is true for overlapping smoothers.
An extension of the classical LFA analysis for the Vanka smoothers was first in-
troduced by Sivaloganathan in [68]. Unfortunately, the paper includes several
misprints. MacLachlan and Oosterlee generalized the LFA techniques to analyze
overlapping smoothers for other PDEs and discretizations [51]. Their paper pro-
vides theoretical results in order to use the Fourier ansatz. A necessary assump-
tion is that the error-propagation operator for coupled (overlapping) relaxation is
block-diagonalized by the Fourier matrix, regardless of the distribution of degrees
of freedom within the box. The key step in proving this is to show the follow-
ing inductive step: if the errors before relaxation on degrees of freedom within a
box Vi,j satisfy a generalized LFA ansatz, then the errors after relaxation on Vi,j
satisfy the same ansatz advanced by one cell. MacLachlan and Oosterlee show
that the error-propagation matrix for any coupled relaxation is an infinite-grid
block-multilevel-Toeplitz matrix [51]. This means that we can attempt to analyze
these techniques using classical multigrid smoothing and two-grid Fourier analysis
tools to measure the effectiveness of the resulting multigrid cycles.
This thesis provides practical guidelines to obtain the smoothing symbol S̃h(θ)
of the Vanka smoother to analyze this relaxation method. For more details and
a generalization to other overlapping smoothers, we refer to [51]. One box that
consists of the five unknowns visualized in Figure 4.5a can be described by the
index set Vi,j =

{(
i, j − 1

2

)
,
(
i− 1

2
, j
)
, (i, j) ,

(
i+ 1

2
, j
)
,
(
i, j + 1

2

)}
. The update

equation for one box is then given by

Unew
i,j = Uold

i,j + ωA−1
i,jR

old
i,j ⇐⇒ Unew

i,j − Uold
i,j = ωA−1

i,jR
old
i,j

⇐⇒ 1

ω
Ai,j

(
Eold
i,j − Enew

i,j

)
= Rold

i,j ,
(4.20)

where Uold
i,j and Unew

i,j are the approximations before and after relaxation, respec-
tively, Eold

i,j and Enew
i,j are the errors before and after relaxation, respectively, Rold

i,j

is the residual before relaxation at the nodes in Vi,j, Ai,j denotes the subsystem
connecting the unknowns in Vi,j, c.f. (4.17), and ω is a relaxation parameter. Be-
fore we relax on Vi,j, the number of times the variables have been updated differs,
as visualized in Figure 4.9. The grey box includes the unknowns in Vi,j and the
number of lines denotes the number of updates, i.e.,

Twice:
(
i− 1

2
, j − 1

)
,
(
i+ 1

2
, j − 1

)
,
(
i− 3

2
, j
)
,
(
i, j − 3

2

)
,
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(
i− 1, j − 1

2

)
Once:

(
i− 1

2
, j
)
,
(
i, j − 1

2

)
,
(
i+ 1, j − 1

2

)
,
(
i− 1, j + 1

2

)
, (i, j − 1) ,

(i− 1, j)

Not updated:
(
i+ 1

2
, j
)
,
(
i+ 3

2
, j
)
,
(
i− 1

2
, j + 1

)
,
(
i+ 1

2
, j + 1

)
,
(
i, j + 1

2

)
,

(
i+ 1, j + 1

2

)
,
(
i, j + 3

2

)
, (i, j), (i+ 1, j) , (i, j + 1)

ll

ll l ll

ll l l

ll l

l

Figure 4.9: Number of updates prior to consider Vi,j .

Assume that before relaxation, the error components in u, v, p are defined by

eu = σu · eıθ·x/h, ev = σv · eıθ·x/h, ep = σp · eıθ·x/h,

with Fourier coefficients σ. During the smoothing process, the error in terms of
the number of updates is given by

eu = σ′′ue
ıθ·x/h, ev = σ′′ve

ıθ·x/h, ep = σ′pe
ıθ·x/h, eu = σ′ue

ıθ·x/h, ev = σ′ve
ıθ·x/h.

We substitute these expansions into the residual equations associated with the
five unknowns before the relaxation on Vi,j, where rk,l is the residual in the ap-
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proximation to the unknowns for each dof (k, l),

ri− 1
2
,j =

(
1

h2

(
4σ′u − σ′′ue−ıθ2 − σ′′ue−ıθ1 − σueıθ1 − σueıθ2

)
+

1

h

(
σpe

1
2
ıθ1 − σ′pe−

1
2
ıθ1
))

e
ıθ·x

i− 1
2 ,j
/h

ri+ 1
2
,j =

(
1

h2

(
4σu − σ′′ue−ıθ2 − σ′ue−ıθ1 − σueıθ1 − σueıθ2

)
+

1

h

(
σpe

1
2
ıθ1 − σpe−

1
2
ıθ1
))

e
ıθ·x

i+1
2 ,j
/h

ri,j− 1
2

=

(
1

h2

(
4σ′v − σ′′ve−ıθ2 − σ′′ve−ıθ1 − σ′veıθ1 − σveıθ2

)
+

1

h

(
σpe

1
2
ıθ2 − σ′pe−

1
2
ıθ2
))

e
ıθ·x

i,j− 1
2
/h

ri,j+ 1
2

=

(
1

h2

(
4σv − σ′ve−ıθ2 − σ′ve−ıθ1 − σveıθ1 − σveıθ2

)
+

1

h

(
σpe

1
2
ıθ2 − σpe−

1
2
ıθ2
))

e
ıθ·x

i,j+1
2
/h

ri,j =
1

h

(
−σ′ue−

1
2
ıθ1 + σue

1
2
ıθ1 − σ′ve−

1
2
ıθ2 + σve

1
2
ıθ2
)
eıθ·xi,j/h.

Substituting the appropriate Fourier expansions for the errors before and after
relaxation at the nodes in Vi,j gives the update equation (4.20),


4
h2

− 1
h2

0 0 1
h

− 1
h2

4
h2

0 0 − 1
h

0 0 4
h2

− 1
h2

1
h

0 0 − 1
h2

4
h2

− 1
h

− 1
h

1
h

− 1
h

1
h

0





1
ω

(σ′u − σ′′u) e
ıθ·x

i− 1
2 ,j
/h

1
ω

(σu − σ′u) e
ıθ·x

i+1
2 ,j
/h

1
ω

(σ′v − σ′′v ) e
ıθ·x

i,j− 1
2
/h

1
ω

(σv − σ′v) e
ıθ·x

i,j+1
2
/h

1
ω

(
σp − σ′p

)
eıθ·xi,j/h

 =


ri− 1

2
,j

ri+ 1
2
,j

ri,j− 1
2

ri,j+ 1
2

ri,j

 .

Now, this system of five equations can be rearranged into a system of equations
directly corresponding to the five updated Fourier coefficients,

L


σ′u
σ′v
σ′′u
σ′′v
σ′p

 = Q

σuσv
σp

 .
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These equations may then be solved collectively, expressing

(
σ′u σ′v σ′′u σ′′v σ′p

)T
= L−1Q

σuσv
σp

 =

[
S1

S2

]σuσv
σp

 ,

where L is a five-by-five matrix and Q is a five-by-three matrix. The smoothing
factor S2 maps the initial error coefficient of the Fourier mode into that after a
sweep of the element-wise overlapping Vanka relaxation. Based on these amplifi-
cation factors, we can then perform a classical smoothing analysis for the Vanka
smoother. Figure 4.10 shows the smoothing factors as a function of the Fourier
frequencies, θ, for the Vanka smoother. Computing the smoothing factors

µ = max
θ∈Thigh

{∣∣∣λS̃h(ω,θ)

∣∣∣} ,
where S̃h(ω,θ) := S2, we get for the Vanka smoother

µ = 0.59.
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Figure 4.10: The spectral radius of the smoothing error-propagation symbol
for the weighted Vanka relaxation with ω = 0.8 and different frequencies θ.

4.4.3 Triad smoother

The LFA analysis for the Triad smoother is based on a simple expansion of the
assumptions of LFA for scalar PDEs. We assume that the matrix Ah is now a
block matrix, where each block is an infinite-grid Toeplitz matrix. Then, each
block in Ah may be diagonalized with LFA.
We start with a smoothing analysis as described in Section 3.3 for scalar PDEs and
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extended in Section 4.4. The smoothing symbol S̃h(ω,θ) for Triad-type smoothers
is given by

S̃h(ω,θ) = I − M̃−1
h (θ)Ãh(θ),

with I the identity matrix, Ãh(θ) as given in (4.19) and the symbol of the block
iteration matrix M̃h

M̃h(θ) =


1
h2

(
4
ω
− e−ıθ1 − e−ıθ2

)
0 1

h

(
1
ω
e

1
2
ıθ1 − e− 1

2
ıθ1

)
0 1

h2

(
4
ω
− e−ıθ1 − e−ıθ2

)
1
h

(
1
ω
e

1
2
ıθ2 − e− 1

2
ıθ2

)
1
ωh
e−

1
2
ıθ1 1

ωh
e−

1
2
ıθ2 0

 ,

for a Gauss-Seidel updating process, as defined in (4.15), and

M̃h(θ) =
1

ω

 4
h2

0 1
h
e

1
2
ıθ1

0 4
h2

1
h
e

1
2
ıθ2

1
h
e−

1
2
ıθ1 1

h
e−

1
2
ıθ2 0

 ,

for a Jacobi updating process, as defined in (4.16). On the basis of parameter
studies we figured out that the weighting factor ω = 0.8 promises good smoothing
behavior. Moreover, the smoothing analysis results show that the most promising
Triad-type smoother is based on a weighted Gauss-Seidel updating process with
ω = 0.8 and smoothing factor

µ = 0.87,

as seen in Table 4.3. Figure 4.11 shows the smoothing factors of this promising
smoother as a function of the Fourier frequencies, θ.

GS (ω = 1) GS (ω = 0.8) Jacobi (ω = 1) Jacobi (ω = 0.8)

µ 1.00 0.87 1.00 0.92

Table 4.3: Smoothing factors for different Triad-type relaxation methods.

4.4.4 Two-grid analysis

The classical LFA smoothing factor, where the coarse-grid correction is assumed
to be an ideal operator that annihilates the low-frequency error components and
leaves the high-frequency components unchanged, serves as a good indication for
the multigrid convergence behavior. Nevertheless, it sometimes fails to accu-
rately predict the multigrid performance. Therefore, we additionally analyze the
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Figure 4.11: The spectral radius of the smoothing error-propagation symbol
for the Triad relaxation based on a weighted Gauss-Seidel updating process with
ω = 0.8 and different frequencies θ.

two-grid method. We compare the Triad and Vanka smoother, including paral-
lelization aspects such as a coloring scheme.
We start with the introduction of coarse-grid correction symbols. For systems
of PDEs that are discretized on staggered grids, the analysis is challenging due
to the different location of unknowns. In that case, LFA of transfer operators
cannot be done as in the scalar case. MacLachlan and Oosterlee [51] discussed
Fourier representations of grid-transfer operators for general staggered meshes in
the context of systems of PDEs. Here, we have three types of grid points on the
fine and coarse grid. The restriction operator can be decomposed based on the
partitioning of dofs associated with the location of the unknowns on the grid.
Osterlee and MacLachlan introduced, explained and proved the need to modify
LFA due to this staggering. We emphasize this statement in Remark 4.4. More
details can be found in [37, 51].

Remark 4.4. When calculating the symbol of a restriction operator that mixes
different types of dofs, we must split it into the different types of dofs that it
restricts from and to. If the restriction operator is defined on a staggered grid, we
have GH = G1

H ∪G2
H ∪G3

H (c.f. (4.18)) and the symbols depend on the location
x of the unknowns.

In the next paragraph, we show how to determine the symbol of a restriction
operator defined on a staggered mesh. A similar structure for interpolation is
established subsequently. Let ϕh(θ

ξ, x) = eıθ
ξx/h. We have the following equality

ϕh(θ
ξ, x) = eıξπx/hϕH(2θ(0,0), x), for all x ∈ GH .

Note that this equality is different to the classical theory and was developed
by MacLachlan and Oosterlee in [51]. The following relations are based on this

84



4.4 LFA for the Stokes equations

update of the classical theory. Due to the definition of GH = G1
H ∪G2

H ∪G3
H , we

have

x =



(
2jh, 2(l + 1

2
)h
)T

, for j, l ∈ Z, if x ∈ G1
H ,(

2(j + 1
2
)h, 2lh

)T
, for j, l ∈ Z, if x ∈ G2

H ,(
2(j + 1

2
)h, 2(l + 1

2
)h
)T

, for j, l ∈ Z, if x ∈ G3
H .

Note that the following relations hold,

eıξπx/h =


eıξ1π2jeıξ2π2leıξ2π = eıπξ2 = (−1)ξ2 , for j, l ∈ Z, if x ∈ G1

H ,

eıξ1π2jeıξ1πeıξ2π2l = eıπξ1 = (−1)ξ1 , for j, l ∈ Z, if x ∈ G2
H ,

eıπξ1eıπξ2 = (−1)ξ1(−1)ξ2 , for j, l ∈ Z, if x ∈ G3
H .

Then, the Fourier representation of RH
h is given by the (3× 12) matrix

R̂H
h (θ) =

(
R̃H
h (θ(0,0)) R̃H

h (θ(1,1)) R̃H
h (θ(1,0)) R̃H

h (θ(0,1))
)
,

where R̃H
h (θξ) is given in Definition 4.5 (c.f. Definition 3.21). Note that the

matrices R̃H
h (θξ) are diagonal matrices since the restriction operators of different

type of unknowns are not coupled,

R̃H
h (θξ) =

R̃H
h (θξ)

∣∣
u

R̃H
h (θξ)

∣∣
v

R̃H
h (θξ)

∣∣
p

 .

Definition 4.5. We call R̃H
h (θξ) :=

∑
κ∈V

rκe
ıθξ·κeıξπx/h the symbol of RH

h .

Based on the definition of the restriction operators in Definition 4.1, we are able
to compute the entries of R̂H

h (θ). We show the computation of the symbol for the

restriction operator RH
h

∣∣
u
, i.e., the first row of the matrix R̂H

h (θ).

R̃Hh (θ(0,0))
∣∣
u
=

1

8
e−ıθ1e−

1
2 ıθ2 +

1

4
e−

1
2 ıθ2 +

1

8
eıθ1e−

1
2 ıθ2 +

1

8
e−ıθ1e

1
2 ıθ2 +

1

4
e

1
2 ıθ2 +

1

8
eıθ1e

1
2 ıθ2 ,

R̃Hh (θ(1,1))
∣∣
u
= −1

8
e−ıθ1e−

1
2 ıθ2 − 1

4
e−

1
2 ıθ2 − 1

8
eıθ1e−

1
2 ıθ2 − 1

8
e−ıθ1e

1
2 ıθ2 − 1

4
e

1
2 ıθ2 − 1

8
eıθ1e

1
2 ıθ2 ,

R̃Hh (θ(1,0))
∣∣
u
=

1

8
e−ıθ1e−

1
2 ıθ2 +

1

4
e−

1
2 ıθ2 +

1

8
eıθ1e−

1
2 ıθ2 +

1

8
e−ıθ1e

1
2 ıθ2 +

1

4
e

1
2 ıθ2 +

1

8
eıθ1e

1
2 ıθ2 ,

R̃Hh (θ(0,1))
∣∣
u
= −1

8
e−ıθ1e−

1
2 ıθ2 − 1

4
e−

1
2 ıθ2 − 1

8
eıθ1e−

1
2 ıθ2 − 1

8
e−ıθ1e

1
2 ıθ2 − 1

4
e
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The calculations for the restriction operators RH
h

∣∣
v

and RH
h

∣∣
p

are similar. In

addition, an equivalent calculation (see the work of MacLachlan and Oosterlee
[51]) gives the symbols of bilinear interpolation operators P̂ h

H(θ). The Fourier
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4 Construction of geometric multigrid smoothers for the Stokes equations

representation of the coarse-grid operator can be given similarly to the scalar
case as defined in Definition 3.23. We analyze the two-grid method based on
the smoothing operators as introduced in the previous section. Based on the
updated restriction and prolongation operators, we perform the analysis of the
two-grid method with Triad and Vanka smoothing procedures, i.e., we compute
the two-grid convergence factor as defined in Definition 3.25 with ν1 = ν2 = 2.
The asymptotic convergence factor is given by the spectral radius

ρ(ETG) := sup
θ∈T low

ρ
(
ÊTG(θ)

)
,

where

ÊTG(θ) =
(
Ŝh(θ)

)ν2
B̂H
h (θ)

(
Ŝh(θ)

)ν1
=
(
Ŝh(θ)

)ν2 (
Î − P̂ h

H(θ)
(
ÂH(2θ)

)−1

R̂H
h (θ)Âh(θ)

)(
Ŝh(θ)

)ν1
.

Two-grid results based on different multigrid components are shown in Tables 4.4
and 4.5.

P h
H (RH

h )T (RH
h )T bil. bil. mix mix

AH Gal. Red. Gal. Red. Gal. Red.

ρ(ETG) 0.49 0.13 0.08 0.20 0.11 0.15

Table 4.4: Two-grid convergence factors based on the Vanka smoother with
ω = 0.8.

P h
H (RH

h )T (RH
h )T bil. bil. mix mix

AH Gal. Red. Gal. Red. Gal. Red.

ρ(ETG) 0.50 0.34 0.34 0.43 0.34 0.43

Table 4.5: Two-grid convergence factors based on the Triad smoother with
ω = 0.8.

On the basis of parameter studies we figured out that the weighting factor ω = 0.8
promises good smoothing behavior. Therefore, we use this factor. We noticed that
a two-grid method based on a Triad-type smoother diverges without a weighting
factor, i.e. ω = 1. Apart from that, variations of ω result in rather small devia-
tions of the convergence results. In addition, we use two pre- and postsmoothing
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4.4 LFA for the Stokes equations

steps during the course of this section. Moreover, we distinguish three prolon-
gation operators, namely bilinear interpolation, the transpose of restriction and
piecewise linear pressure interpolation mixed with bilinear velocity interpolation
(denoted by “bil.”, “(RH

h )T” and “mix” in Tables 4.5 and 4.4). On the coarse
grid, we use either the Galerkin operator or a rediscretization. In particular, we
compare the results that we obtain by using different relaxation methods, Triad-
type and Vanka-type smoothers. The convergence results of the Vanka smoother
in Table 4.4 show its excellent smoothing behavior. The most promising Vanka-
type smoother is based on a Gauss-Seidel updating process. In addition, the best
combination of the two-grid components for the Triad smoother is a Galerkin
coarse-grid operator with bilinear interpolation. The same is true for the Triad
smoother. The predicted performance of the Triad smoother shows the potential
of this relaxation method. The results in Tables 4.3 and 4.5 show good smooth-
ing characteristics and good two-grid convergence. As visualized in Figures 4.12
and 4.13 and highlighted in Tables 4.4 and 4.5, the best combinations of MG
components lead to the convergence factor

ρ(ETG) = 0.08,

for the Vanka smoother, and

ρ(ETG) = 0.34,

for the Triad smoother.

(a)
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Figure 4.12: The spectral radius of the two-grid symbol for the Vanka relax-
ation based on a weighted Gauss-Seidel updating process with ω = 0.8 and
different frequencies θ.

In addition, we perform an analysis based on a colored smoothing procedure as
visualized in Figure 4.7. A red-black coloring scheme for the Triad smoother
is similar to the red-black scheme for the Laplace operator, see Lemma 3.27
and Example 3.28. The implementation of a five coloring scheme for the Vanka
smoother is more challenging.
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(a)

-1.5 -1 -0.5 0 0.5 1

1

-1.5

-1

-0.5

0

0.5

1

2

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(b)

Figure 4.13: The spectral radius of the two-grid symbol for the Triad relaxation
based on a weighted Gauss-Seidel updating process with ω = 0.8 and different
frequencies θ.

Therefore, we use a tool to perform the analysis of the two-grid operators with
colored smoothers. The so-called aLFA: automated local Fourier analysis by
Kintscher [47] is an open source Python package that is easy to use and adapt.
The framework is described in [46]. The main purpose of this framework is to
enable the reliable and easy-to-use analysis of complex methods on repetitive
structures, i.e., multigrid methods with complex (overlapping) block smoothers.
It is easy to use and easy to adapt. Therefore, it reduces the effort required to per-
form the analysis. This is especially true for the coloring scheme and the two-grid
operators. For example, the adjustment of the classical theory to compute the
transfer operators, introduced within this section, is not necessary. However, the
framework does have some limitations. Each individual operator in the analysis
is allowed to change each value of the unknowns at most once. Due to this limi-
tation, a sequential overlapping smoother cannot be analyzed with the approach.
This does not limit the application for colored smoothers.
We analyze the two-grid method with the five-color Vanka smoother and the
two-color Triad smoother. Again, the methods are based on a Galerkin coarse-
grid operator, bilinear interpolation and two pre- and postsmoothing steps, i.e.
ν1 = ν2 = 2. The convergence factors are

ρ(ETG) = 0.06,

for the five-color Vanka smoother, and

ρ(ETG) = 0.28,

for the two-color Triad smoother. Even though the analysis shows that the Vanka
smoother promises better results, we have to keep in mind that the Triad smoother
is cheaper, i.e., less arithmetic operations are needed per smoothing step, and eas-
ier to parallelize, i.e., a two-coloring scheme is sufficient. However, as introduced
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4.5 Numerical results

in Remark 4.3, LFA neglects boundary conditions. Therefore, we examine the
numerical results of the two-grid method for different boundary conditions to de-
termine their influence. We compare periodic and Dirichlet boundary conditions.

4.5 Numerical results

In this section, we show convergence results of a two-grid and of a V-cycle multi-
grid method for the Stokes equations. We start with periodic boundary conditions
and observe convergence behavior as predicted by LFA in the previous section.
That means we employ a two-grid method for a homogeneous problem with pe-
riodic boundary conditions based on a 33 × 33 staggered grid. We apply 20
two-grid cycles with two pre- and postsmoothing steps and start with a random
initial guess. We measure the convergence via the 2-norm of the error, i.e. we com-
pute ||ek||2/||ek−1||2 after k = 20 two-grid cycles. This gives a convergence factor
of ρ = 0.32 for the weighted Gauss-Seidel-type Triad smoother and ρ = 0.07 for
the weighted Gauss-Seidel-type Vanka smoother. These numerical results verify
the LFA convergence results as given in Section 4.4.4. In addition, Figure 4.14
shows convergence results for the Vanka and the Triad smoother as well as the
Braess-Sarazin smoother for a multigrid method.
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Figure 4.14: Convergence behavior of the multigrid method for the Stokes
system with periodic boundary conditions.

We use the Braess-Sarazin smoother here to have an additional reference value.
Figure 4.14 shows the two-norm of the residual for different numbers of multigrid
V-cycles (iterations) for the Stokes equations. The figure is based on a 33 × 33
staggered fine grid and a 3× 3 coarse grid on the domain Ω = (0, 1)2 discretized
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4 Construction of geometric multigrid smoothers for the Stokes equations

by the finite difference method. We use two pre- and postsmoothing steps and
the zero solution as initial guess. The right-hand side is set to

f1 = 8π2 · sin(2πx1
1) · sin(2πx1

2)− 2π · sin(2πx1
1) · sin(2πx1

2),

f2 = 8π2 · cos(2πx2
1) · cos(2πx2

2) + 2π · cos(2πx2
1) · cos(2πx2

2),

where the values xj correspond to the grid points of the discretized domain
Ωj
h = {xj := kh + δj,k ∈ Z2}, with δ1 = (0, h/2) and δ2 = (h/2, 0). Figure 4.14

presents the convergence factors corresponding to the different unknowns u, v, p
individually. The convergence factors are obtained by computing the 2-norm of
the residual, i.e. we compute ||rk||2 after each V-cycle. We notice good conver-
gence factors for the three relaxation methods. However, the Vanka smoother
converges even faster than the Braess-Sarazin smoother and the Triad smoother.
In order to verify the LFA results for the colored smoothing procedures, we again
apply 20 two-grid cycles with two pre- and postsmoothing steps and start with a
random initial guess. This gives a convergence of ρ = 0.28 for the two-color Triad
smoother and ρ = 0.06 for the five-color Vanka smoother. Based on the lower
computational cost of the Triad smoother in combination with the parallelization
potential, a natural idea is to increase the number of smoothing steps to improve
the convergence behavior. Therefore, we apply 20 two-grid cycles with four pre-
and postsmoothing steps for the Triad smoother which leads to the convergence
factor ρ = 0.15. These additional smoothing steps improve the convergence of
the two-grid method while we still have less computational costs compared to the
Vanka smoother.
Next, we show convergence results for the Stokes system with Dirichlet bound-
ary conditions. Again, practical two-grid convergence factors for a homogeneous
problem discretized on a 33×33 grid are given. We apply 20 two-grid cycles with
two pre- and postsmoothing steps and start with a random initial guess. That
gives a convergence of ρ = 0.70 for the Triad smoother and ρ = 0.08 for the
Vanka smoother. In addition, we discretize on a 33 × 33 grid with the domain
Ω = (0, 1)2, use two pre- and postsmoothing steps and employ the zero solution
as an initial guess as depicted in Figure 4.15.

The right-hand side is set to

f1 = 2π2 · sin(πx1
1) · sin(πx1

2) + π · cos(πx1
1),

f2 = 2π2 · cos(πx2
1) · cos(πx2

2)− π · sin(πx2
2).

We choose zero boundary conditions for the x-component u and ± cos(πy) and
± cos(πx) for the y-component v of the velocity unknown. Figure 4.15 shows good
convergence for the Vanka and Braess-Sarazin smoother (similar to that in the
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Figure 4.15: Convergence behavior of the multigrid method for the Stokes
system with Dirichlet boundary conditions.

periodic case). In contrast, the Triad smoother does not show satisfactory conver-
gence for Dirichlet boundary conditions. An increase in the number of smoothing
steps leads to better convergence results. However, we get a convergence factor
of ρ = 0.57 if we apply six pre- and postsmoothing steps which causes as much
computational costs as using the Vanka smoother. The poor convergence behav-
ior of the Triad smoother results from the boundary treatment, as it does not
treat the unknowns at the boundary (or near the boundary) in an appropriate
way. The unknowns at the boundary are predefined and therefore do not need
to be relaxed. The idea of the Triad smoother is to relax three unknowns at the
same time, which is not possible with Dirichlet boundary conditions regardless of
the choice of the three unknowns. An illustration with an examplary choice of
Triad boxes is given in Figure 4.16.

Figure 4.16: Examplary choice of Triad boxes with Dirichlet boundary condi-
tions.

We notice the boxes include three unknowns whenever possible. Close to the
boundary we have boxes with two unknowns only. At one corner we have a “box”
that consists of one unknown only. Needless to say, different boundary treatment
is possible. We tried different boundary treatments, but we could not find one that
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4 Construction of geometric multigrid smoothers for the Stokes equations

fixes the issue. Figure 4.17 illustrates the incorrect treatment by a visualization
of the approximate solution after 20 multigrid cycles.

(a) (b) (c)

Figure 4.17: Approximate solution of the Stokes equations with Dirichlet
boundary conditions after 20 multigrid cycles based on the Triad smoother.

4.6 Algorithm development

The results of the local Fourier analysis, c.f. Section 4.4, and the numerical results
for periodic boundary, c.f. Section 4.5, in combination with parellelization prop-
erties and computational work show the potential of the Triad relaxation method.
However, numerical results for the Stokes system with Dirichlet boundary condi-
tions raise the issue of the Triad method. In what follows, we show how to fix
this issue. For this purpose more computational work is needed. The idea is to
repeat the relaxation process four times while changing the unknowns contained
in one box after each iteration. In addition, we vary the order in which the boxes
are updated. This idea is illustated in Figure 4.18.

(a) (b) (c) (d)

Figure 4.18: New algorithm for the Triad relaxation method. The order of the
procedure is performed as visualized in the figures from left to right.

The order of the iteration is visualized from left to right, i.e., Figure 4.18a illus-
trates the first iteration and Figure 4.18d the last one. The order of relaxing each
box in Figures 4.18a and 4.18b is column-wise starting at the top left. The boxes in
Figures 4.18c and 4.18d are relaxed in lexicographical order, i.e., row-wise starting
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4.6 Algorithm development

with the bottom left box. This new algorithm improves the convergence results.
The two-grid convergence factor of the updated version of the Triad smoother for
a homogeneous problem with Dirichlet boundary conditions is ρ = 0.11. Again,
we applied 20 two-grid cycles with two pre- and postsmoothing steps starting with
a random initial guess. Results of a multigrid method are visualized in Figure
4.19.
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Figure 4.19: Convergence behavior of the multigrid method for the Stokes
system with Dirichlet boundary conditions including the new Triad algorithm.

The modified procedure causes four times more computational work. In compari-
son with the results given in Section 4.3 this leads to a higher number of arithmetic
operations for the Triad smoother compared to the Vanka smoother. We have
a total number of 139 · (N − 1)2 for the Vanka smoother versus 176 · (N − 1)2

operations for the updated Triad smoother. Moreover, the new Triad procedure
convergences almost as good as the Vanka smoother. We have ρ = 0.11 for
the Triad smoother compared to ρ = 0.08 for the Vanka smoother. The paral-
lelization properties of the Triad smoother have changed due to the modification.
Beforehand, the Triad smoother had the potential for easier and more efficient
implementation in parallel compared to the Vanka smoother. Now, one of the four
iteration processes has the same parallelization properties as the original Triad
smoother. The sequential processing of the four steps limits the parallelization
properties.
In conclusion, for the Stokes equations with periodic boundary conditions the
two-grid and multigrid convergence of the well-known Vanka smoother is better
than the convergence of the Triad smoother. However, the Triad smoother has
better parallelization properties and is less expensive than the Vanka smoother.
For the Stokes equations with Dirichlet boundary conditions the good conver-
gence of the Vanka smoother remains unchanged, while the convergence of the
Triad smoother is not satisfying. However, the modified Triad smoother leads
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4 Construction of geometric multigrid smoothers for the Stokes equations

to convergence results that are almost as good as the convergence results of the
Vanka smoother. For a more complete comparison, the algorithms would have to
be implemented in parallel, but this is out of the scope of this thesis.
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5 Automatic construction of
algebraic multigrid smoothers

The preceding chapter shows the efficiency of geometric multigrid methods for
saddle point systems. However, the geometric multigrid method is limited due to
geometric properties of the underlying grid. To this end, this chapter focuses on
algebraic multigrid methods to overcome this limitation and to address general
matrix equations. The objective is the development of algorithms that automat-
ically construct advanced smoothing techniques when needed. This is especially
important in the algebraic multigrid setting, when no geometric information is
given. The classical algebraic multigrid (AMG) method [18, 52] was originally de-
veloped as a black box solver to address general matrix equations. This powerful
idea is based on the fact that the method focuses on matrix coefficients only. The
classical AMG method of Ruge and Stüben [52] works well for a variety of problem
classes. However, it is limited, since it is based on properties of M-matrices [71].
To address this, a new class of algorithms was developed based on the multigrid
theory, which is denoted by AMGe [20, 25, 39, 45]. The classical AMG methods
as well as the new class of algorithms assume a simple pointwise smoother and
put effort into the construction of a complementary coarse-grid correction to elim-
inate the so-called algebraically smooth error left over by the relaxation method.
Here, we want to address broader classes of problems, for example the second-
order definite Maxwell equations as given in Equation (5.1). The difficulty of this
equation is characterized by a large near null-space where a pointwise smoother
leads to a non-optimal method. To overcome this problem, non-pointwise
smoothers are needed, such as the overlapping Schwarz smoother by Arnold,
Falk and Winther [5] or the distributive relaxation by Hiptmair [40]. These
methods are based on geometric multigrid settings. There are also algebraic
multigrid algorithms that are able to overcome the difficulty of Maxwell’s equa-
tions [11, 41, 42, 48, 62]. These methods, that we denote as algebraic extended
Hiptmair smoother and auxiliary space Maxwell solver (AMS) are based on pro-
jections into auxiliary spaces or on auxiliary nodal matrices and they depend on
geometric information. This lack of fully algebraic algorithms motivates us to
the automatic construction of algebraic multigrid smoothers and complementary
coarse-grid correction procedures. The theory developed in [30] provides guidance
in constructing these algorithms.
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5 Automatic construction of algebraic multigrid smoothers

5.1 Model problem - Maxwell’s equations

The two-dimensional second-order definite Maxwell problem commonly referred
to as Maxwell’s equations, serves as our main model problem,

∇×∇× z + βz = f , in Ω, (5.1)

where β > 0 is the spatially varying electrical conductivity, z is the unknown
electric field to be computed and f is the known right-hand side. The domain,
Ω, is an open, bounded and connected Lipschitz domain in R2, and we impose
Dirichlet boundary conditions. We use Ω = [0, 1]2 and β = 0.1 throughout this
thesis. Note that Equation (5.1) involves two two-dimensional curl operators, the
two-dimensional curl of a vector-valued function, w = (w1, w2)T : Ω → R2, and
the two-dimensional curl of a scalar function v : Ω→ R, defined as

curl v :=

(
∂x2v
−∂x1v

)
, curl w := ∂x1w2 − ∂x2w1,

respectively. The curl operators give rise to the standard Sobolev space,

H(curl,Ω) := {v ∈ L2
(
Ω,R2

)
| curl v ∈ L2 (Ω)},

where L2 denotes the space of square Lesbesgue integrable functions. We therefore
discretize our model problem using linear Nédélec’s H(curl,Ω)-conforming finite
elements [56] as introduced in Section 2.2.2. The resulting linear system is denoted
by

Au = f , (5.2)

with A = N + Z, where N is the discrete approximation of the weak form of
the curl-curl term in (5.1), and Z is the discrete approximation of the weak form
of the β term in (5.1). The discrete unknown is denoted by the vector u and
the discrete right-hand side by the vector f . As introduced in Section 2.2.2,
we distinguish discretization into squares or triangles. An exemplary choice of
corresponding structured grids is illustrated in Figure 5.1. The linear Nédélec
edge dofs are denoted by dots on edges in the figures. The set of dofs is indicated
by V = {1, . . . , n}. The system matrix A can be represented using the stencil
notation on the two grids in Figure 5.1,
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for the horizontal edge unknowns and
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 ,
for the vertical unknowns on the quadrilateral grid. In additon, we have the
stencils,
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for the unknowns on the triangular grid.

(a) quadrilateral grid (b) triangular grid

Figure 5.1: Location of unknowns

5.1.1 The difficulty of Maxwell’s equations

The difficulty of using AMG methods to solve Maxwell’s equations results from
the kernel of the curl operator. Using the identity

∇× (∇ψ) = 0, (5.3)

we see that gradients of scalar functions ψ lie within the kernel of the curl oper-
ator. Thus, the kernel includes the gradients of all differentiable scalar functions
ψ. Since the gradient of a smooth function is smooth and the gradient of an os-
cillatory function is oscillatory, it is obvious that the kernel contains both smooth
and oscillatory functions. An example of a high frequency component in the near
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null-space is given in Figure 5.2. For further details, consult [42]. The discrete
null-space analogue of (5.3) is

NG = Θ,

where the matrix G is a discrete gradient operator and Θ denotes the zero matrix.
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Figure 5.2: High frequency component in the near null-space for the two-
dimensional definite Maxwell equation on a quadrilateral grid.

The matrix G is trivial to construct. In particular, each row contains at most two
non-zeros (with value ±1) and corresponds to an edge between two nodes of the
associated nodal mesh. To explain this in more detail, we construct a minimal
example.

Example 5.1. Let us assume Figure 5.3 denotes one part of a quadrilateral grid
with edge dofs 1, . . . , 7 as labeled in the figure. Then, the relevant sub-blocks of
the curl matrix N and gradient matrix G needed to evaluate the product NG for
edge dof 4 are given by

N =
(
1 −1 −1 2 −1 −1 1

)
, G =



−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1


.

The columns (and rows) of matrix N correspond to edge dofs 1, . . . , 7. The
columns of matrix G correspond to nodes in the associated grid and the rows
correspond to the edge dofs. It is easy to see that the product NG equals zero.
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1 2

3 4 5

6 7

Figure 5.3: Part of a quadrilateral grid with edge dofs 1, . . . , 7.

5.1.2 Geometric multigrid methods for Maxwell’s equations

Geometric multigrid methods with the overlapping Schwarz smoother by Arnold,
Falk and Winther (AFW) [5] or with distributive relaxation proposed by Hiptmair
[40] are efficient solvers for Maxwell’s equations discretized on quadrilateral grids.
We use these relaxation methods to motivate the construction of two different
AMG smoothers.
First, we review the idea of the geometric relaxation procedures. The geometric
overlapping Schwarz smoother for Maxwell’s equations is a box relaxation method.
The edge points are clustered into small overlapping boxes Vi,j (see Figure 5.4).
We solve the systems Ai,jui,j = fi,j, where (i, j) indicates the index of the current
box, fi,j is some right-hand side, ui,j is a subvector that contains all unknown
edges/degrees of freedom (dofs) of box Vi,j, and Ai,j is a principal submatrix of
the Maxwell matrix A that belongs to box Vi,j. The number of boxes corresponds
to the number of nodal points in the grid. The boxes contain all geometric nearest
neighbor edges of the nodal points as depicted in Figure 5.4.

Figure 5.4: Geometric idea of grid separation on quadrilateral grids.

Geometric distributive relaxation for Maxwell’s equations uses a gradient matrix
G that is constructed such that each row corresponds to an edge between two
nodes in the associated nodal mesh, as described in Section 5.1.1.
Equivalently, the matrix G can be constructed such that it uses the same blocks
Vi,j as the overlapping Schwarz smoother. As described above, each block Vi,j
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defines a submatrix Ai,j of the Maxwell matrix A. We can compute the eigenvec-
tors corresponding to the smallest eigenvalue, the so-called smallest eigenvector,
of each submatrix Ai,j . Then, we define the columns of the gradient matrix G
with these eigenvectors. That means, each column of the matrix G is the smallest
eigenvector corresponding to one of the submatrices Ai,j. Therefore, the number
of columns of the matrix G equals the number of boxes Vi,j. Neglecting sets at the
boundaries, the matrix G ends up being exactly the same as the discrete gradient
matrix defined above. In order to illustrate this, we give a minimal example.

Example 5.2. We consider one box Vi,j := {4, 6, 7, 9} in a given quadrilateral
grid, see Figure 5.5. On the one hand, the gradient matrix as described in Example
5.1 is given by

G1 =



−1 1
−1 1

−1 1
−1 1

−1 1
−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1



,

where the number of columns corresponds to the number of nodal points in the
associated grid. We highlight the column that solely includes values that corre-
spond to interior edge dofs. On the other hand, the smallest eigenvector of the
submatrix Ai,j is (

1 1 −1 −1
)T
.

We use this eigenvector to build the matrix G2, s.t.

GT
2 =

(
0 0 0 1 0 1 −1 0 −1 0 0 0

)
,

where the number of columns corresponds to the number of boxes Vi,j. It is easy
to see that G2 = G1 in the interior of the grid.

Now, we have two different ways to define the gradient matrix G. After the
construction of G, the distributive relaxation method applies G as a projector for
the Maxwell matrix A defining a new matrix GTAG. Then, a pointwise Gauss-
Seidel smoother is applied to this new matrix.
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1 2
3 4 5

6 7
8 9 10

11 12

Figure 5.5: Part of a quadrilateral grid with edge dofs 1, . . . , 12.

5.2 Automatic construction of AMG smoothers

In AMG, we do not have access to a geometric grid or a finite element mesh.
Instead, the graph of the matrix serves as a kind of grid where the graph vertices
are the (grid) points. The distance between two points is the length of the shortest
path in the graph, and the diameter of a set of points is the maximum distance
over all pairs of points. The two-grid theory (see Theorem 3.33) implies that small
eigenmodes must be handled either by relaxation or coarse-grid correction. For
some problems, an optimal method requires using a non-pointwise smoother to
damp some of the near null-space components on the fine grid, instead of taking
all of the near null-space components to the coarse grid. Since eigenmodes that
cannot be handled efficiently by coarse-grid correction have to be eliminated by
the smoother, the idea is to devise an automatic algorithm to first construct sets
with a diameter smaller than (or equal to) the coarsening factor d that contain
near null-space components, then use those sets to build smoothers similar to
those in Section 5.1.2. In this thesis, the coarsening factor is chosen to be d = 2.
Since the geometry of the underlying discretization is not of interest in AMG,
for the sake of simplicity, we stick to the quadrilateral discretization of Maxwell’s
equations to motivate the construction of our algorithms. However, the methods
can be applied to any linear system. We start with an automatic construction of
sufficient sets.

5.2.1 Automatic construction of sets

A simple strategy to find the corresponding sets is given in Algorithm 5.1. Due
to the underlying finite element mesh, we can associate AMG grid points with
edges on the mesh. As a result, points associated with edges of the same finite
element are all distance-one neighbors of each other (see Figure 5.6).
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5 Automatic construction of algebraic multigrid smoothers

Algorithm 5.1: Find near null-space sets

X = ∅
K = all sets with diameter ≤ d
for J ∈ K do

for all J that include near null-space components do
X ← X ∪ {J}

end for
end for

A natural first idea for constructing diameter-two sets is to visit each degree
of freedom and collect its distance-one neighbors to form Vi,j. Although this
approach does generate diameter-two sets, it does not generate all such sets. And
in the Maxwell case, it misses the most important sets to capture.

(a) (b)

Figure 5.6: Example of distance-one neighbors on quadrilateral grids. The
box indicates a given initial grid point, (i, j), and dots indicate distance-one
neighbors of (i, j).

Since the distance-one neighbor sets do not account for all diameter-two subdo-
mains, they are not sufficient as box smoothing sets Vi,j. Accordingly, we construct
a method that generates all sets with diameter two that include a near null-space
component. The algorithm can be found in Algorithm 5.2 and is explained in the
following.
For all degrees of freedom, first the algorithm constructs a set that includes all
distance d = 2 neighbors (illustrated by crosses in Figure 5.7). Thereafter, a set
Vk,l is constructed that includes the initial dof k (marked by a rectangle in Figure
5.7), a distance-two neighbor l and all common distance-one neighbors of k and l.
Based on these sets, we construct matrices Ak,l. All matrices are checked if they
are nearly singular and we keep only the sets that include a near null-space, i.e.
where the corresponding matrix is nearly singular.
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5.2 Automatic construction of AMG smoothers

Algorithm 5.2: Construct near null-space sets with diameter two

Set X := ∅, Vpoint = V
for k = 1 : |V | do
T ={all distance-two neighbor dofs of k}
for l ∈ T do
Vk,l = {k, l} ∪ {common distance-one neighbors of k and l}
Ak,l = A(Vk,l, Vk,l)
if Ak,l is nearly singular and Vk,l /∈ X then
X ← X ∪ {Vk,l}
Vpoint ← Vpoint − Vk,l

end if
end for

end for

Figure 5.7: Example of an AMG subdomain, Vk,l, constructed with Alg. 5.2.
The box indicates a given initial grid point, (i, j) that corresponds to dof k,
crosses indicate distance-two neighbors of (i, j), and dots indicate distance-one
neighbors of (i, j).

There are several ways to determine if a submatrix Ak,l is nearly singular. For
example, if a few steps of local pointwise relaxation on the subsystem result in
poor convergence, then Ak,l is nearly singular. In this thesis, we compute the
smallest eigenvalue λ0 of Ak,l and compare it to a threshold. If the eigenvalue
is smaller than the threshold, we keep the corresponding set. The threshold is
defined as the maximal entry of Ak,l multiplied by a scale factor τ . Based on
numerical experiments, we choose τ = 0.01 for Maxwell’s equations.
One of the issues with the above algorithm is that it visits sets multiple times.
One way to reduce the visits by half is to first construct a matrix where each
non-zero entry in row k corresponds to a diameter-two neighbor, then use the
lower triangle of this matrix. This does not eliminate all multiple visits, since
each set may include more than one distance-two pair. Developing techniques to
further optimize the algorithm is future work.
In the special case of quadrilateral elements, the algorithm above generates the
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5 Automatic construction of algebraic multigrid smoothers

same sets as AFW and Hiptmair in the geometric case. However, this is a general
algorithm that can be applied to any linear system and has the potential to
generate appropriate smoothers in other settings such as for unstructured grids.

5.2.2 Automatic construction of smoothers

The next step is to build an automatic relaxation method based on the automati-
cally constructed sets development in Section 5.2.1. We construct two algorithms,
one is based on the geometric box smoother and the other one is a distributive
smoother as introduced in Section 5.1.2.

Overlapping Schwarz smoother for AMG

The idea of the overlapping Schwarz smoother (OSS) is to seperate the degrees
of freedom into overlapping subsets Vk,l and solve the corresponding systems
Ak,luk,l = fk,l as described in Section 5.1.2. After smoothing on all of these
systems, Gauss-Seidel relaxation is applied to the system defined by the remain-
ing points Vpoint. Section 5.2.1 described the construction of sufficient overlapping
sets Vk,l. The corresponding overlapping Schwarz algorithm is as follows:

Algorithm 5.3: Overlapping Schwarz algorithm

for m = 1, 2, ... do
for Vk,l ∈ X do

rm ← f − Aum
um ← um + IVk,lA

−1
k,l I

T
Vk,l

rm
end for
rm ← f − Aum
um+1 = um + IVpointA

∼1
pointI

T
Vpoint

rm
end for

Here, A,Ak,l, f and u are defined as introduced in Section 5.1. The injection
matrix with regard to a subdomain Vpoint is indicated by IVpoint and Vpoint refers
to the set of remaining points, which are not included in one of the near null-
space sets Vk,l. The term A∼1

point denotes the approximate solution of the system
Apointupoint = ITVpointrm. Here, we use a Gauss-Seidel relaxation method. In par-
ticular, a forward iteration loop for the presmoother and a backward iteration
loop for the postsmoother is applied to obtain a symmetric algorithm.
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5.3 Evaluating the smoothers

Distributive relaxation smoother for AMG

The distributive relaxation (DR) uses the subsets Vk,l to construct a matrix G. We
compute the smallest eigenpair (λ0,v0) of each subset. If the smallest eigenvalue
λ0 is smaller than a threshold τ , the corresponding eigenvector v0 defines a column
of G. We choose τ = 0.01. If there is more than one small eigenpair, i.e., the
smallest eigenvalue is not unique, we randomly select one of the small eigenpairs.
For Maxwell’s equations and a structured grid the matrix G is equivalent to the
discrete gradient matrix used in the geometric Hiptmair smoother described in
Section 5.1.2. The Gauss-Seidel relaxation method is used to relax all dofs and
the matrix GTAG is used to relax the local near null-space components. The
distributive relaxation algorithm is as follows:

Algorithm 5.4: Distributive Relaxation algorithm

for Vk,l ∈ X do
Compute the smallest eigenvector vk,l of Ak,l
Add vk,l to columns of G

end for

for m = 1, 2, ... do
rm ← f − Aum
um ← um + A∼1rm
rm ← f − Aum
um+1 = um +G(GTAG)∼1GT rm

end for

Here, A,Ak,l, G, f and u are defined in Sections 5.1. The terms (GTAG)∼1 and
A∼1 denote the approximate solution by the application of the symmetric Gauss-
Seidel relaxation method.

5.3 Evaluating the smoothers

In Section 5.2.2, we introduced two general algorithms for constructing smoothers
in AMG. Now, we would like to test them on various problems, but it is challenging
in general to evaluate the quality of the resulting smoothers, especially without
a corresponding coarse-grid correction. We start with what we call the Fourier
mode study and highlight positive aspects as well as downsides of this evaluation
method. Moreover, we apply two additional ways of evaluating the established
smoothers which are based on the so-called ideal interpolation operator and the
optimal interpolation operator.
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5 Automatic construction of algebraic multigrid smoothers

5.3.1 Fourier mode study

A well-known method to gain some understanding of how smoothers perform is to
evaluate how well they damp individual Fourier error components as introduced
in Section 3.2.1. To this end, the smoother is applied to the homogeneous linear
system Au = 0 with an initial guess given by a Fourier mode with frequency (k, l),
i.e. ũ = sin(kπx1) sin(lπx2), with l = k = 1, . . . , n − 2. Good smoothers quickly
eliminate highly oscillatory waves which correspond to large values of k and l.
Figure 5.8 visualizes the results of the Fourier mode study of the distributive
relaxation (DR) and the overlapping Schwarz smoother (OSS). It shows the ex-
cellent smoothing property of both relaxation methods for a 33×33 quadrilateral
grid.
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(a) distributive relaxation (DR)
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(b) overlapping Schwarz smoother (OSS)

Figure 5.8: Number of iterations for different Fourier modes k = l =
1, . . . , n− 2 with 2112 degrees of freedom (33× 33 quadrilateral grid).

However, the Fourier mode study does not work as an evaluation method for
unstructured grids since it is based on geometric information. Specifically, the
study does not show that the smoother quickly eliminates highly oscillatory waves
even if we have a good smoother. In summary, for Maxwell’s equations, this
method works in structured-grid settings, but does not generalize.

5.3.2 Ideal interpolation operator

Another approach for evaluating the smoothers is to use a general, but impracti-
cal, interpolation operator and then compute the A-norm of the resulting two-grid
error propagator directly. In the classical AMG setting, a natural choice for this
operator is the so-called ideal interpolation as introduced in Lemma 3.34. Un-
der the usual assumption that the fine dofs are partitioned and ordered first by
F-points and then by C-points, we have

A =

(
Aff Afc
Acf Acc

)
, RT =

(
0
I

)
, S =

(
I
0

)
,
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5.3 Evaluating the smoothers

and the ideal interpolation operator P0 is given by

P0 = (I − S(STAS)−1STA)RT =

(
−A−1

ffAfc
I

)
.

Note that P0 is the minimizer of the weak approximation property,

‖ETG‖2
A ≤ 1− 1

K
, where K = sup

v

‖(I −Q)v‖2
M̃

‖v‖2
A

,

c.f. [30] and Theorem 3.33. We compute the two-grid estimate with ideal inter-
polation, i.e.

‖ETG‖A = ‖(I −M−TA)(I − P0(P T
0 AP0)−1P T

0 A)(I −M−1A)‖A
= ‖(I −M−TA)(S(STAS)−1STA)(I −M−1A)‖A.

The idea is that the two-grid estimate indicates whether or not we use a good
smoother M for the problem under consideration. This means small values should
correspond to a good smoother and large values of the estimate indicate a poor
smoothing behavior. We will see in the following that this is not always the case.
In order to partition the fine-grid points into F-points and C-points, we first have
to define a coarse grid. In the geometric case, one cell of the coarse grid appears
as shown in Figure 5.9a. In the AMG setting, we stick to the case where the
coarse-grid points are a subset of the fine points. Here, we choose the algebraic
coarse grid close to the geometric one, see Figure 5.9b.

(a) geometric setting (b) algebraic setting

Figure 5.9: Coarse-grid cell including fine-grid cells. Boxes indicate coarse-grid
points and dots indicate the remaining fine-grid points.

In Table 5.1, we show convergence factors for Maxwell’s equations using OSS and
DR relaxation methods. We consider three grid sizes: 9×9 grid with 144 dofs,
17×17 grid with 544 dofs and 33×33 grid with 2112 dofs. Table 5.1a displays
two-grid convergence factors using the ideal interpolation operator P0, whereas
Table 5.1b presents two-grid convergence factors that are based on a well-known
geometric interpolation operator, which is called Hiptmair interpolation [40].
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5 Automatic construction of algebraic multigrid smoothers

#dofs DR OSS

144 0.74 0.51
544 0.91 0.83
2112 0.97 0.94

(a) P0

#dofs DR OSS

144 0.11 0.04
544 0.15 0.05
2112 0.15 0.05

(b) geometric interpolation

Table 5.1: Two-grid convergence factors, ‖ETG‖2A, with OSS and DR using
P0 and geometric interpolation.

That means, we use the algebraic coarse grid with Hiptmair interpolation, which
is given by the following stencils,
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 , (5.4)

where the bold numbers correspond to the coarse-grid dofs. On the one hand,
P0 produces poor convergence for both smoothers. On the other hand, using
Hiptmair geometric interpolation [40] instead of P0 achieves good h-independent
results of 0.15 and 0.05. The comparison of both tables shows that a good in-
terpolation operator exists, but using P0 does not produce good results. That
means the ideal interpolation operator P0 does not serve as a good interpolation
for Maxwell’s equations, i.e., it is not the “best” operator.
The reason for this failure of the ideal interpolation operator is not immediately
evident. We like to emphasize that the ideal interpolation operator is based on
the splitting into C-points and F-points and does not include the influence of the
smoother. We refer to the following sections where we identify how the contribu-
tion of the smoother may effect the interpolation property of an operator.
The convergence results in Table 5.1 are based on a two-grid method that uses
the same coarse grid but different interpolation operators. We give an additional
example which highlights that the underlying coarse grid may also influence the
interpolation property of the operator P0. To this end, we consider the ellip-
tic diffusion equation with jumping coefficients, c.f. Definition 2.4, i.e. we have
Poisson-like stencils with different scaling factors, 0 −1 0
−1 4 −1
0 −1 0

 ,
 0 −1 0
−ε 2 + 2ε −ε
0 −1 0

 ,
 0 −ε 0
−1 2 + 2ε −1
0 −ε 0

 ,
 0 −ε 0
−ε 4ε −ε
0 −ε 0

 ,
where ε = 1 · 10−6. The “location” of jumps in the grid is visualized in Figure
5.10. For the sake of simplicity, we call the diffusion equation Jump problem
hereinafter.
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ε

ε ε

ε

Figure 5.10: Location of jumps for a elliptic diffusion equation with jumping
coefficients.

Table 5.2 shows two-grid convergence results for the Jump problem and two
choices of coarse grids as visualized in Figure 5.11. We distinguish F-points,
denoted by “F” and C-points indicated by “C”. One choice for a coarse grid is
given in Figure 5.11a. Here, the coarse points are located at the jumps ε.

#dofs DR OSS

144 0.64 0.19
544 0.88 0.58
2112 0.97 0.86

(a) ‖ETG‖2A for choice 1

#dofs DR OSS

144 0.04 0.03
544 0.05 0.03
2112 0.05 0.03

(b) ‖ETG‖2A for choice 2

Table 5.2: Two-grid convergence factors, ‖ETG‖2A, with OSS and DR using
P0 and two different coarse grids for the Jump problem.

C CF F

F F F F

F F

F F F F

C C

(a) coarse grid choice 1

C C

F FF

F

F

F

F FF

F

F

FC C

(b) coarse grid choice 2

Figure 5.11: Two different coarse grids for the Jump problem.

The convergence results in Table 5.2 demonstrate that different choices of coarse
grids may influence the interpolation property of the ideal interpolation opera-
tor. Summarizing, the ideal interpolation operator does not serve as the “best”
interpolation operator for all kinds of problems. That stresses the need of an in-
terpolation operator that is complementary to the smoother and does not depend
on the choice of the coarse grid.
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5.3.3 Optimal interpolation operator

Another interpolation operator we can use is the so-called optimal interpolation
operator as introduced in Lemma 3.36. This is the minimizer of the sharp version
of the approximation property in Theorem 3.35. Let λ1 ≤ λ2 ≤ · · · ≤ λn and
v1, . . . ,vn denote the eigenvalues and orthonormal eigenvectors of the generalized
eigenvalue problem Avi = λiM̃vi, then the optimal interpolation operator is given
by

P# = (v1v2 . . .vnc),

where nc is the number of coarse points. With P#, the convergence factor has the
following relationship to the eigenvalues λi and the coarse-grid size,

‖ETG(P#)‖2
A = 1− 1

K#

, K# =
1

λnc+1

.

For details we refer to Section 3.4. The optimal interpolation operator P# does
not depend on the choice of the coarse-grid points and is based on the smoothing
operator M . Therefore, P# serves as an appropriate measure for the smoothing
property of the underlying relaxation method as we will see during the course of
this section.
The theoretical two-grid convergence factor ‖ETG(P#)‖2

A can be computed in the
following way. The first step is to compute and sort the eigenvalues of the general-
ized eigenvalue problem. The second step is to choose the number of coarse-grid
points, i.e., the coarse-grid size nc. Then, the two-grid convergence factor can
be obtained with the nc+1 eigenvalue λnc+1 . Different choices of the number of
coarse-grid points lead to different convergence factors. The number of coarse-
grid points nc in relation to the number of fine-grid points n defines the so-called
coarsening ratio. From this, we generate the following figures, which show the
convergence behavior using a smoother and a given coarsening ratio nc/n. The
standard factor-2 coarsening (d = 2) implies a coarsening ratio of 0.25. As indi-
cated in Figure 5.12, for Maxwell’s equations on a quadrilateral grid and factor-2
coarsening we obtain good convergence factors of 0.06 and 0.21 for OSS and
DR, respectively. In comparison, results for a standard pointwise Gauss-Seidel
relaxation method are visualized in Figure 5.13. We see that the Gauss-Seidel
smoother does not serve as a good relaxation method. For Maxwell’s equations on
a star-shaped mesh, depicted in Figure 5.14 provided by the finite element library
MFEM [2], we obtain the results visualized in Figure 5.15. These figures present
good convergence factors of 0.08 and 0.18 with regard to full coarsening for OSS
and DR, respectively. Some additional interesting results can be obtained for
the Jump problem, c.f. Definition 2.4 as introduced in Section 5.3.2. Comparing
Figure 5.16a and Figure 5.16b, we notice that we obtain the same results using
the pointwise Gauss-Seidel smoother and the distributive relaxation method.
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(a) overlapping Schwarz smoother (OSS)
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(b) distributive relaxation (DR)

Figure 5.12: Two-grid convergence factors using P# with OSS and DR on a
quadrilateral grid for Maxwell’s equations.
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Figure 5.13: Two-grid convergence factors using P# with Gauss-Seidel (GS)
relaxation on a quadrilateral grid for Maxwell’s equations.

This is due to the automatic construction of the underlying box sets. As intro-
duced in Section 5.2, our automatic algorithm creates all sets that need additional
smoothing. For the Jump problem, no sets are created and the G matrix ends
up being the identity matrix. Therefore, the distributive smoother is equivalent
to a point-wise Gauss-Seidel relaxation on the original system. That highlights
the strength of our automatic approach. It only creates sophisticated smoothers
when it is necessary.

Figure 5.14: Star-shaped mesh.
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(a) overlapping Schwarz smoother (OSS)
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(b) distributive relaxation (DR)

Figure 5.15: Two-grid convergence factors using P# with OSS and DR on a
star-shaped mesh for Maxwell’s equations.
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(a) Gauss-Seidel (GS) relaxation
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(b) distributive relaxation (DR)

Figure 5.16: Two-grid convergence factors using P# with GS and DR for the
Jump problem.

5.4 Constructing an interpolation operator

The remaining objective is to find a practical interpolation operator that com-
plements the AMG smoothers in Section 5.2.2. The ideal interpolation operator
P0 in Lemma 3.34 has proven useful for developing practical algorithms. Unfor-
tunately, as we saw in Section 5.3.2, it is not a good interpolation operator for
Maxwell’s equations even in its original impractical (non-sparse) form. Further-
more, it is unclear how one might use the optimal interpolation operator P# to
motivate a practical method, since it requires the computation of nc eigenvectors
of the generalized eigenproblem, and P# is typically a dense matrix. One idea is
to start with the general minimizer of (3.27),

P∗ = (I − S(STAS)−1STA)RT (RRT )−1, (5.5)
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5.4 Constructing an interpolation operator

and find operators S and R such that the two-grid convergence factor with P∗ is
closer to the optimal convergence factor using P#. We also aim for P∗ to have
more potential in practice than P#. As a reminder, we think of range(S) as
the space on which the smoother must be effective, whereas R defines the coarse
variables. Keeping this in mind, we employ the matrix G created by Algorithm
5.4 and define

RT = H

(
0
I

)
= HR, S = G

(
I
0

)
= GS, (5.6)

where H is a new matrix, such that HT
RGS = 0. Here, G is augmented with

additional columns such that G ∈ Rn×n, where n is the number of degrees of
freedom. More precisely, we combine the pointwise Gauss-Seidel smoother applied
to the original system matrix A (GTAG with G = I) with the pointwise Gauss-
Seidel smoother applied to the matrix GTAG. There are different possibilities to
augment G with additional columns. Here, we use a Gram-Schmidt process to
generate an orthonormal matrix by adding unit vectors and then apply Gram-
Schmidt steps [38].
To demonstrate the potential of this idea, we manually construct HR and GS for
Maxwell’s equations. We consider a structured grid case and define the operators
based on a regular 2 × 2 aggregation of fine cells into coarse cells as depicted in
Figure 5.17. Consider the case where the coarse cell is in the center of the mesh
with neighboring coarse cells on all sides. The boundary case is similar and is not
shown here. We choose coarse points by picking one fine dof on each coarse edge
as introduced in Section 5.3.2, see Figure 5.9b. Boxes denote the coarse points
and dots represent the remaining fine points.

(a) (b) (c)

Figure 5.17: Canonical coarse-grid cell where boxes denote coarse points and
dots denote the remaining fine points. Numbers correspond to centers of related
stencils.

To show that HT
RGS = 0 and range(HR)

⊕
range(GS) = Rn, we represent each

column of GS and HR by a stencil on the grid. Note that the center of a stencil
representation does not correspond to a dof. The stencils are all centered at nodal
locations in the fine mesh and superscripts are used to indicate the node number
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(1,2, or 3). The stencils are:

G1
S = G2

S =

 1
−1 1

−1

 , H1
R =

 1
0 0

1

 , H2
R =

 0
1 1

0

 ,

G3
S :


 1

0 0
0

 ,
 0

1 0
0

 ,
 0

0 1
0

 ,
 0

0 0
1

 .

The stencils G1
S and G2

S are columns of the original discrete gradient matrix (up
to a scaling factor), that is, they are near null-space components. It is clear
that (H1

R)TG1
S = 0; for example, as are all other column inner products, hence

HT
RGS = 0.

The matrix HR is related to the coarse space. This means that for each coarse-
grid variable there is a corresponding stencil H i

R and range(HT
R)= Rnc . Moreover,

GS is related to the remaining grid points, where G1
S and G2

S are centered on
the boundary of a coarse cell and the interior points are associated with the unit
vectors G3

S. Hence, range(HR)
⊕

range(GS) = Rn.
Using this choice of R and S in (5.5) leads to a modified ideal interpolation opera-
tor P̃∗ that produces convergence factors comparable to the optimal case with P#.
For Maxwell’s equations, P̃∗ also shows promise as a means of constructing prac-
tical interpolation operators. In particular, if we approximate (STAS) = GT

SAGS

in (5.5) by its diagonal, we get an interpolation operator P̂∗ that is similar to
the natural geometric interpolation [40]. The geometric interpolation operator
used by Hiptmair to complement distributive relaxation, is given in (5.4) for an
algebraic setting. In contrast, the interpolation operator P̂∗ appears in stencil
notation for example as,



0.0313 0.0313

−0.0313 0.0313 −0.0313 0.0313

0.2180 0.5 0.2180

•
0.2492 0.5 0.2492


,

where the red dot, •, denotes the center nodal dof as illustrated in Figure 5.17a.
Even though, the interpolation operator P̂∗ is slightly different from the Hiptmair
interpolation operator, we obtain the same two-grid convergence results as given
in Table 5.1. Instead, if we modify the Z term of A such that the modified Z is
diagonal with coefficient β and approximate the STAS term with the diagonal
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5.4 Constructing an interpolation operator

of GT
SAmodifiedGS, then the approximate ideal interpolation operator has exactly

the same nonzero pattern as Hiptmair and converges to it as β goes to zero. For
β = 0.1, the stencils appear as,


0.2495 0.2495

0.5 • 0.5

0.2495 0.2495

 ,


0.2495 0.5 0.2495

•
0.2495 0.5 0.2495

 .
In general, if (STAS) is well-conditioned, we have the potential to apply a similar
approximation strategy to build practical interpolation operators for a broader
class of problems and PDEs.
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6 Conclusions & Outlook

A key point of an efficient multigrid method is the right choice of the smoothing
procedure.

In this thesis we developed multigrid smoothers for saddle point systems, such
as the Stokes equations and Maxwell’s equations. The main achievements of this
thesis are the construction and evaluation of two new algorithms with regard to
geometric and algebraic multigrid.

Within the scope of geometric multigrid methods, we developed a new smoothing
method, an adaptation of the so-called Triad smoother. We were able to demon-
strate the strength of the Triad smoother due to its characteristics. In comparison
to the well-known and powerful but not easy to parallelize Vanka smoother, the
Triad smoother provides good parallelization properties with respect to coloring
schemes and communication effort. Although, the adapted Triad smoother is
more expensive than the Vanka smoother, we see potential for parallel implemen-
tations.
However, it would be beneficial to further analyze, implement and modify the
Triad smoother. The investigation of problems with both, Dirichlet and periodic
boundary conditions could give interesting insights. In addition, the combination
of the Triad smoother, in interior regions of the underlying grid, and the Vanka
smoother, close to boundaries, has the potential to create an algorithm with good
parallelization properties and good convergence results.

Within the scope of algebraic multigrid methods, we developed a new algorithm
that is able to automatically construct smoothing operators. This is especially
important in regards to Maxwell’s equations where a non-pointwise smoother is
not sufficient to eliminate the local high osciallatory modes. Moreover, we eval-
uated the smoothing algorithm by means of the optimal interpolation operator.
Thereby, we demonstrated the challenge to evaluate algebraic multigrid smoothers
without an underlying coarse-grid correction. Especially, the surprising failure of
the ideal interpolation operator gives new insights in theoretical assumptions.
Furthermore, we developed an initial idea to establish a practical interpolation
operator that is complementary to the smoothing method.
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6 Conclusions & Outlook

In future research, it is necessary to prove the failure of the ideal interpolation
operator to obtain an understanding of the underlying theory. From there, it
would be interesting to generate a fully automatic multigrid method including
the construction of a coarse grid and a coarse-grid correction operator.
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List of Notations

Throughout this thesis, scalars are denoted by lower-case letters, vectors are de-
noted by bold lower-case letter and matrices and constants are denoted by upper-
case letters. In addition, the following abbreviations and notations are used across
all chapters:

Symbols

∂u/∂x the partial derivative of u with respect to variable x

∇ the gradient operator, a multi-variable generalization
of the derivative

∇· the divergence operator, a differential operator that
produces a scalar field

∇× the curl operator
∆ = ∇ · ∇ the Laplace operator, a differential operator
〈a, b〉 :=

∫
Ω

ab L2-inner product on continuous functions

〈a,b〉 :=
∑
i

aibi Euclidean inner product on vectors

||a||2 :=
√
〈a, a〉 Euclidean norm

||a||A :=
√
〈Aa, a〉 A-norm or energy norm

Spaces

Rd the d-dimensional real space
Z the set of integers
Z+ = N = {1, 2, . . . } the set of positive integers
N0 = {0, 1, 2, . . . } the set of non-negative integers
Ω ⊂ Rd the bounded and connected domain of a PDE
Ωh the discrete domain
∂Ω the boundary of the domain Ω
Ck(Ω) the set of k times continuously differentiable functions on Ω
Ck

0 (Ω) the set of functions φ ∈ Ck(Ω) having compact support in Ω
Ck

0 (Ω)′ the dual space of Ck
0 (Ω)

Lp(Ω), 1 ≤ p <∞ the set of functions φ on Ω for which |φ|p is Lebesgue integrable.
W s,p(Ω) the fundamental Sobolev spaces
Hs(Ω), s ∈ Z+ the Hilbert spaces
H(curl; Ω) := {u ∈ (L2(Ω))3|∇ × u ∈ (L2(Ω))3}

124



Upper case letters

A a linear partial differential operator

A
the system matrix or stencil, consists of the coefficients
of the variables in a set of linear equations

AFF the part of the system matrix that belongs to F-points

Ãh(θ) Fourier symbol of an operator A respectively Ah
BH
h coarse-grid correction operator

C1, C2 constants
C-points set of points that belong to the coarse grid
D diagonal matrix
ETG two-grid operator
Fh space of harmonics
F a partial differential operator
F-points set of points that do not belong to the coarse grid
Gh infinite discrete grid
H grid width of a coarse grid
I identity matrix
K,K#, K∗ specific constants in AMG theory
L lower triangular matrix
M smoother iteration matrix
O Big O notation, refers to the order of a function
P h
H , P prolongation operator
P∗, P# “best” interpolation operators
RH
h , R restriction operator
S,Sh,Sh(ω),Sh(ω,θ) error propagation smoothing operator
S smoother space (used in AMG theory)

T low :=
[
−π

2
, π

2

)2

T high := [−π
2
, 3π

2
)2
∖[
−π

2
, π

2

)2

U upper triangular matrix
Wl computational work per MG cycle on level l
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List of Notations

Lower case letters

ei edge of a finite element for Nédélec edge elements
e = (e1, . . . , en)T vector that corresponds to an error, i.e. e = u− ũ
fi = f(x) i-th function in a system of PDE that depends on x

f = (f1, . . . , fn)T
vector that corresponds to the right-hand side of a
discrete system

h grid width of a fine grid
ı imaginary unit, i.e. ı2 = −1
n number of grid points
r = (r1, . . . , rn)T vector that corresponds to the residual, i.e. r = f − Au
ti tangential unit vector of edge ei
u(x) function that depends on x

u = (u1, . . . , un)T
vector that corresponds to the discrete unknown of a
system of equations

ui = u(ih)
function evaluated at gridpoint ih (one dimensional case
and notation in context of matrix representations of operators)

ui,j = u(ih, jh)
function evaluated at gridpoint (ih, jh) (two dimensional
notation in context of stencil representations of operators)

ũ approximation to the solution u
v = (v1, . . . , vn)T eigenvector of a matrix
x = (x1, . . . , xd) vector of arguments
xi = ih location of gridpoint with index i

z = (z1, . . . , zq)
vector of functions with components zl, l = 1, . . . , q,
in one dimension, we define z = (z1) = u(x)

αi a degree of freedom (dof)
β parameter within the formulation of Maxwell’s equation

δi,j =

{
1, i = j,
0, i 6= j.

Dirac measure

θ = (θ1, θ2) ∈ [−π
2
, 3π

2
)2 vector of parameters that characterizes the frequency of

the Fourier mode
λA an eigenvalue of A
µh(Sh(ω)) smoothing factor of Sh(ω)
ν number of smoothing steps

ρ(S)
convergence factor of the method that is described by
the operator S

φ shape function or basis function
ϕ(θ,x) := eıθx/h Fourier mode
ω ∈ R weighting factor
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Acronyms

AMG algebraic multigrid (method)
dof degree of freedom
FD finite difference (method)
FE finite element (method)
FV finite volume (method)
FW full weighting (operator)
GS Gauss-Seidel (method)
GS-LEX lexicographic Gauss-Seidel (method)
GS-RB red-black Gauss-Seidel (method)
LFA local Fourier analysis
MG geometric multigrid (method)
ODE ordinary differential equation
PDE partial differential equation
SOR successive over-relaxation (method)
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